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ABSTRACT

Adhesion and transfer o f aluminum to the surfaces o f  tool coatings that are 

potential candidates for dry machining o f Al-Si alloys were investigated. First, 319 A1 

alloy pins were tested against various industrial coatings (CrN, TiB2, TiAIN, TiN, and 

TiCN) using a pin-on-disc tribometer. The analyzed Scanning Electron Microscope 

(SEM) images o f  the wear tracks were used to rank the coatings according to the amount 

o f A1 transferred on their surfaces. In general, the TiB2 and TiCN coatings exhibited the 

least amount o f A1 transfer on their surfaces compared to the other coatings.

Second, the tribological behaviour o f the diamond-like carbon (DLC) coatings 

against A1 was investigated since aluminum has much lower tendency to adhere to DLC 

in ambient air compared to other hard coatings tested. M agnetron sputtered non

hydrogenated DLC coatings were tested against 319 Al, tungsten carbide (WC) and 

sapphire (AI2O3) at 120, 300 and 400°C and under various test atmospheres including air 

(0-85 % RH), vacuum, inert gases (Ar, He and N2) and 40%  H2-60% He.

Although much softer than WC and AI2O3, 319 Al alloy inflicted the most severe 

wear o f non-hydrogenated DLC especially at elevated temperatures. Non-hydrogenated 

DLC coatings showed high coefficient o f friction, (COF), (0.45-0.75) and high wear rates 

in inert gases and vacuum compared to ambient air (COF= 0.09-0.16). Very low COF 

values (0.01-0.02) were observed in 40% H2-60% He mixture. The low COF values in 

ambient air and in 40% H2-60% He mixture were associated with formation o f  

carbonaceous transfer layers on counterfaces. Formation o f easy-to-shear transfer layer 

together with adsorption and dissociation o f the atmospheric water on the sliding surfaces 

were suggested as the possible mechanisms that minimize COF in ambient air.

To elucidate the effect o f material properties on adhesion, 1100 Al, Cu, and Ti 

were tested against CrN, non-hydrogenated DLC, and TiB2 coatings in ambient air and 

argon. Cu exhibited the least amount o f  transfer to all three coatings. Chemical affinity 

towards the counterface, yield strength, and thermal conductivity were found as the most 

critical properties that determine adhesion and transfer between a given material pair 

during dry sliding contact.

iii
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diamond-like carbon coating deposited at 80 V bias (80-V DLC). 
The diameters o f  the inner and outer circles (ID and OD) are 
measured to calculate the coating thickness (t) using Eqn. 3.1.

Figure 3.2. The indentation load-displacement curve for the diamond-like 
carbon coating deposited at 60 V bias (60-VDLC).

Figure 3.3. Optical image o f  a typical M2 tool steel disc on which the coatings 
used in this study were deposited. The diameter and the thickness of 
the M2 tool steel discs were 25.4 mm and 10 mm respectively.

Figure 3.4. Optical images o f  the microstructure o f the M2 tool steel substrate.
The small brighter/whiter particles are various carbides o f Cr, V, W 
and Mo.

Figure 3.5. A schematic drawing o f  the configuration o f  the Teer UDP 550 
unbalanced magnetron sputtering system used to deposit DLC 
coatings. The letters N and S denote the magnets o f  the sputtering 
units.

Figure 3.6. The Raman spectra o f  the as-deposited Teer Graphit-iC™, 60-V and 
80-V DLC coatings.

Figure 3.7. X-Ray diffraction patterns o f the studied coatings; a) TiB2, b) CrN.
Figure 3.7. X-Ray diffraction patterns o f the studied coatings; c) TiN, d) TiAlN.
Figure 3.7. X-Ray diffraction patterns o f the studied coatings; e) TiCN. Some 

peaks that belong to M2 steel substrate are also indicated.
Figure 3.8. Optical images o f  the microstructure o f  the 319 Al pins.
Figure 3.9. Cu, Al and Ti pins used in this study.

Figure 3.10. Optical images o f  the microstructures o f  the a) Al, b) Cu pins.
Figure 3.10. c) The optical image o f the microstructure o f  the Ti pins.
Figure 3.11. a) and b) The high temperature tribometer (CSM, Switzerland) at 

the University o f  Windsor.
Figure 3.12. Setup screen o f  the computer program for pin-on-disc tests.
Figure 3.13. The high temperature vacuum tribometer (CSM, Switzerland) at the 

GM R&D Center.
Figure 3.14. Schematic o f  the pin-on-disc configuration.
Figure 3.15. SEM images were taken at the locations shown on the sliding track.
Figure 3.16. a) SEI and b) BEI mode SEM images o f  a section o f the sliding 

track o f  the M2 steel when tested in ambient air at 0.12 m/s sliding 
speed for 18 m. Dark particles are the transferred aluminum and the
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light particles are the debris.
Figure 3.17. M easurement o f  the wear rates. 89
Figure 3.18. a) The surface, and b) the cross-sectional profiles o f  a region o f the 90 

wear track on 60-V DLC coating tested against 319 Al at 120°C.

Figure 4.1. Percentages o f  the surface areas o f  the coating sliding tracks covered 100 
by aluminum and loose debris when tested in ambient air (33-51%
RH) at a sliding speed o f  0.12 m/s for 18 m o f  sliding distance. The 
applied load was 5 N.

Figure 4.2. SEM images o f  sections o f  the sliding tracks o f  a) smooth (Ra= 16 101 
nm) and b) rough (Ra= 83 nm) TiB2 coatings tested against 319 Al 
for 300 revolutions (18 m) in ambient air (43% RH) at 0.12 m/s 
sliding speed. The applied load was 5 N. The white particles are the 
loose debris generated during sliding.

Figure 4.3. EDS analyses o f  a) the smooth TiB2 coating, b) a typical loose 102 
debris particle indicated in Figure 4.2.a, and c) an adhered Al piece 
on the TiB2 shown in Figure 4.2.a.

Figure 4.4. a) SEI and b) BEI SEM images o f  a section o f  the sliding track o f  103 
the CrN coating when tested in ambient air (41% RH) at 0.12 m/s 
sliding speed for 18 m. The applied load was 5 N. Significant 
amount o f  Al transfer to the CrN coating surface occurred.

Figure 4.4. c) The EDS analysis o f  the location shown in Figure 4.4.b). The 104 
adhered Al pieces were significantly oxidized.

Figure 4.5. Effect o f  test speed on the percentage o f  the coating surface area 105 
covered by aluminum. Tests were done at sliding speeds o f  0.12 and 
0.60 m/s for 18 m  o f  sliding distance under 5 N  o f load in ambient 
air.

Figure 4.6. Effect o f  test speed on the percentage coating surface area covered 106 
by debris. Tests were done at sliding speeds o f  0.12 and 0.60 m/s for 
18 m o f sliding distance under 5 N  load in ambient air.

F igure 4.7. Effect o f  test atmosphere on the percentage o f  the coating surface 107 
area covered by aluminum. Tests were done under ambient air and 
argon gas at a sliding speed o f 0.12  m/s for a sliding distance 18 m 
under 5 N  load.

Figure 4.8. Effect o f  test atmosphere on the percentage o f the coating surface 108 
area covered by debris. Tests were done under ambient air and argon 
at a sliding speed o f  0.12 m/s for a sliding distance 18 m under 5 N 
load.

Figure 4.9. The COF curves o f the samples tested against 319 Al under argon 109 
and ambient air; a) TiB2 (16 nm Ra), b) TiB2 (83 nm Ra).

Figure 4.9. The COF curves o f  the samples tested against 319 Al under argon 110 
and ambient air; c) M2 steel, d) CrN.

Figure 4.9. The COF curves o f  the samples tested against 319 Al under argon 111 
and ambient air; e) TiN, f) TiAlN.

Figure 4.9. The COF curves o f the samples tested against 319 Al under argon 112 
and ambient air; g) TiCN. Tests were done at a sliding speed o f 0.12
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m/s under an applied load o f  5 N. The COF curves recorded in argon 
generally had less fluctuation than those recorded in ambient air.

F igure 4.10. Effect o f  test temperature on the percentage o f  the coating surface 113 
area covered by aluminum. Tests were done at 25 and 160°C at a 
sliding speed o f 0.12 m/s for 18 m o f sliding distance under 5 N 
load.

F igure 4.11. BEI SEM images o f  the contact surfaces o f  the 319 Al pins tested 114 
against TiCN coatings under a) ambient air and b) argon gas. The 
tests were performed at 0.12  m/s sliding speed under an applied load 
o f  5 N  for a sliding distance o f  18 m.

F igure 4.12. EDS analyses o f  selected locations indicated in Figures 4.1 l.a& b: a) 115 
Location 1 in Figure 4.11.a. b) Location 2 in Figure 4.11.a.

F igure 4.12. EDS analyses o f  selected locations indicated in Figures 4.1 l.a&b: c) 116 
Location 3 in Figure 4.11 .b., d) Location 4 in Figure 4.11 ,b.

F igure 4.13. Percentage o f  the area covered by aluminum versus sliding distance 117 
for smooth (Ra= 16 nm) and rough (Ra= 83 nm) TiB2. Tests were 
done in ambient air at 0.12 m/s sliding speed under 5 N  load.

F igure 4.14. SEM images for a) smooth (Ra= 16 nm) and b) rough (Ra= 83 nm) 118 
TiB2 at 50 revolutions (3 m) when tested against 319 Al in ambient 
air at 0.12 m/s sliding speed under 5 N o f applied load.

F igure 4.14. c) Enlarged view o f a region in Figure 4.14.b). 60 % o f the surface 119 
area o f  the rough TiB2 was covered with mostly thin layers of 
aluminum.

Figure 4.15. COF curves for a) rough (Ra= 83 nm) and b) smooth (Ra= 16 nm) 120 
TiB2 coatings when tested in ambient air at 0.12  m/s sliding speed 
for 18 m o f sliding distance under an applied load o f  5 N.

F igure 5.1. a) The COF curve between the 80-V DLC coating and 319 Al 146 
during sliding in vacuum (6.65x1 O’3 Pa) for 8 .5x l03 revolutions, b)
The SEI SEM image o f  a section o f  the wear track o f  the 80-V DLC 
coating. The DLC coating was heavily worn. Adhered Al pieces 
were observed on the wear track. The applied load and sliding speed 
were 5 N  and 0.12 m/s.

F igure 5.2. SEI SEM images o f  a) a section o f  the wear track o f the 80-V DLC 147 
coating tested against 319 Al in nitrogen (101.3 kPa), and b) 
enlarged view o f the location indicated in a) showing the aluminum 
transfer. The applied load and sliding speed were 5 N  and 0.12 m/s.

F igure 5.3. a) The COF between the 80-V DLC coating and 319 Al during 148 
sliding in dry air for 3.5x103 revolutions, b) the SEM image o f  a 
section o f  the wear track o f the 80-V DLC coating.

F igure 5.3. c) A closer look at the debris generated during sliding between 319 149 
Al and 80-V DLC coating in dry air, d) EDS analysis o f  the 80-V 
DLC coating surface.

F igure 5.3. e) A typical EDS curve o f a debris particle while it is analyzed on 150 
the coating surface. The applied load and sliding speed were 5 N and
0.12  m/s, respectively.

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.3. f) SEM image o f  the contact surface o f  the corresponding 319 Al 151 
pin, and g) the EDS analysis o f the location indicated in f).

F igure 5.4. a) The COF curve, b) SEM image o f  a section o f  the wear track o f 152 
the 80-V DLC coatings tested against the 319 Al pin in air with 22%
RH for 3.5x103 revolutions.

F igure 5.4. c) SEM image o f  the contact surface o f  the corresponding 319 Al 153 
pin, d) EDS analysis o f  the location indicated in c).

F igure 5.5. SEM images o f  a) a region o f  the w ear track o f  the 80-V DLC 154 
coating tested against the WC ball in vacuum for 1.2x l03 revolutions 
and b) the contact surface o f  the corresponding WC ball (1) with 
coating material around (2).

F igure 5.5. c) SEM image o f  a section o f the w ear track o f  the DLC coating 155 
tested against the WC ball in vacuum for 3.5x103 revolutions, and d) 
the EDS analysis o f  the location indicated in c). A significant 
amount o f  WC transfer to the 80-V DLC coating surface was 
observed as verified by EDS. The applied load and the sliding speed 
were 4.9 N  and 0.12 m/s.

F igure 5.6. SEM images o f a) a region o f the w ear track o f  the 80-V DLC 156 
coating tested against the WC ball in dry air (0% RH) for 1.2xl03 
revolutions and b) the contact surface o f  the corresponding WC ball.

F igure 5.6. c) EDS analysis o f  the location indicated in b). The applied load and 157 
the sliding speed were 5 N  and 0.12 m/s.

F igure 5.7. SEM images o f a) a region o f the w ear track o f  the 80-V DLC 158 
coatings tested against the WC ball in air with 50% RH for 1.2xl03 
revolutions and b) the contact surface o f  the corresponding WC ball.

F igure 5.7. c) The EDS analysis o f  the location indicated on the transfer layer 159 
formed on the contact surface o f  the WC ball. The applied load and 
the sliding speed were 5 N  and 0.12 m/s.

F igure 5.8. a) The wear rates, and b) the steady state COF values o f  the 80-V 160 
DLC coating against 319 Al and WC under various test 
environments. The applied load and sliding speed were 5 N  and 0.12 
m/s.

F igure 5.9. The COF curves for the Graphit-iC DLC coating tested against the 161 
319 Al alloy in a) vacuum (6.65x1 O'4 Pa), b) argon.

F igure 5.9. The COF curves for the Graphit-iC DLC coating tested against the 162 
319 Al alloy in c) helium, and d) nitrogen. The applied load was 5 N 
and the sliding speed was 0.12 m/s.

F igure 5.10. a) SEI SEM image o f a region o f  the wear track o f  the Graphit-iC 163 
DLC coating tested against 319 Al alloy in vacuum for lxlO4 
revolutions, b) an enlarged view o f the location indicated by a 
rectangle in b).

F igure 5.10. c) BEI SEM image o f  the contact surface o f  the corresponding 319 164 
Al pin, and d) the EDS analysis o f  the location indicated in c). The 
applied load and the sliding velocity were 5 N  and 0.12 m/s.

F igure 5.11. The variation o f the COF between the 319 Al and Graphit-ic DLC 165 
during sliding in dry air. The applied load and sliding sped were 5 N
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and 0.12  m/s.
Figure 5.12. The COF curve for the Graphit-iC DLC coating tested against the 166 

319 Al alloy at 0.12 m/s sliding speed and 5 N  applied load in 
ambient air (47 % RH).

Figure 5.13. a) The COF curve for the Graphit-iC DLC coating tested against the 167 
319 Al alloy at 0.12 m/s sliding speed and 5 N applied load in the 
40%  H2-60% He atmosphere, b) expanded view o f  the first 300 
revolutions.

Figure 5.14. a) The COF curve for the non-hydrogenated DLC coating tested 168 
against WC at 0.12 m/s sliding speed and 5 N  applied load in He-H2 
mixture, and b) semi-log scale plot o f a).

Figure 5.15. a) The measured wear rates, and b) the steady state COF values of 169 
the Graphit-iC DLC coating against 319 Al under various 
environments. The applied load and sliding speed were 5 N  and 0.12 
m/s.

Figure 5.16. The COF curves between the 80-V DLC coated disc and the 319 Al 170 
pin at 25, 120 and 300°C. Tests were run for 60 m o f sliding 
distance ( lx lO 3 revolutions) under an applied load o f 5 N  at 0.12 
m/s sliding speed.

Figure 5.17. BEI SEM images o f  the regions o f the wear tracks o f  the 80-V DLC 171 
coating tested against the 319 Al pin at 300°C for a) l x l 0 3 
revolutions and b) lxlO4 revolutions. The applied load was 5 N.

Figure 5.18. The variation o f  the wear rate o f the 80-V DLC coating with 172 
temperature when tested against 319 Al, WC and sapphire at 25, 120 
and 300°C. Tests were run for 1,500 m o f  sliding distance (2.5x104 
revolutions) at 25°C and for 60 m o f sliding distance ( lx lO3 rev.) at 
120 and 300°C using 5 N applied load.

Figure 5.19. Comparison o f  the changes in the wear rates o f  the 60-V DLC, 80-V 173 
DLC and the Graphit-iC DLC coatings with temperature. Tests were 
run against 319 Al for 1,500 m o f sliding distance (2.5x104 
revolutions) at 25°C and for 60 m o f sliding distance ( lxlO3 
revolutions) at 120 and 300°C under an applied load o f 5 N.

Figure 5.20. The BEI SEM image o f a section o f the w ear track o f  the 60-V DLC 174 
coating tested against 319 Al pin at 120°C. Test was run for 60 m of 
sliding distance ( lx lO3 revolutions) using 4.9 N  applied load. In 
backscattered electron imaging mode, the image is created according 
to atomic mass difference where heavier elements appear brighter. 
Therefore the dark colored area is the DLC coating and the lighter 
color areas are the M2 steel substrate.

Figure 5.21. SEI SEM image o f  a section o f  the wear track o f the Graphit-iC 175 
DLC coating tested against 319 Al alloy at 400°C showing a large 
am ount o f  aluminum transfer. The test was run for 250 revolutions 
under applied load o f 5 N at 0.12 m/s.

Figure 5.22. The adhesive w ear mechanism that operates in vacuum and inert gas 176 
environments: a) The interaction o f  the surface atoms with 
unsatisfied bonds that results in, b) transfer o f  aluminum to the DLC
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surface, and/or c) transfer o f carbon to the Al pin surface.
F igure 5.23. The oxidational and abrasive wear mechanisms o f the non- 177 

hydrogenated DLC coating in dry air.
F igure 5.24. a) and b) The oxidational and abrasive wear mechanisms o f  the non- 178 

hydrogenated DLC coating in ambient air, c) easy-to-shear 
carbonaceous material at the sliding interface.

Figure 5.25. a) The COF curve for the ambient air to vacuum test when 319 Al 179 
sliding against the 80-V DLC coating. The test started in ambient air 
(52% RH). After some sliding in ambient air (8.5x102 revolutions), 
the test chamber was pumped down to vacuum. The COF decreased 
with the pressure inside the chamber and reached its minimum value 
o f  0.006 when the pressure was around 0.173 Pa. Further decrease in 
pressure did not change the COF value. Finally, the very low COF 
period ended and the COF abruptly jum ped to high values (0.55).
The applied load and the sliding speed were 5 N  and 0.04 m/s, and
b) expanded view o f the initial portion o f  the COF curve.

F igure 5.26. a) The COF curve for the ambient air to vacuum test when WC was 180 
tested against the 80-V DLC coating. The test started in ambient air 
(22% RH). After some sliding in ambient air (3.0x103 revolutions), 
the test chamber was pumped down to vacuum. The COF decreased 
as the pressure inside the chamber was lowered. The low COF 
period lasted for 2.2x103 revolutions and then the COF increased to 
high values (0.52). The applied load and the sliding speed were 5 N 
and 0.05 m/s, and b) a semi-log scale plot o f the same curve.

F igure 5.27. a) SEI, and b) BEI SEM images o f the contact surface o f  the 319 Al 181 
pin that was run against the non-hydrogenated DLC in FL-He 
environment.

F igure 5.27. c) The EDS analysis o f the location indicated in b). 182
Figure 5.28. The COF between the 319 Al alloy pin and the Graphit-iC DLC 183 

coating in H2-He environment at 0.12 m/s sliding speed and 5 N 
applied load. The test was paused for 30 seconds and then re-started 
at 1000, 1500, 2000, 2500 and 3000 revolutions (as indicated by the 
arrows). The high COF period was observed only at the beginning of 
the tests indicating that it was related with the formation the 
carbonaceous transfer layer.

F igure 5.29. The COF between the Graphit-iC DLC coating and the 319 Al alloy 184 
pin at 0.12 m/s sliding speed under 5 N applied load. First, the 
tribopair was run in ambient air o f 32% RH for l x l 0 3 revolutions. 
Then, the test was stopped and the chamber was evacuated to 
5 .45xl0 '3 Pa. After flushing with nitrogen, the chamber was 
evacuated to 5.45x10‘3 Pa again. Finally, the hydrogen (40% H2-  
60% He mixture) was introduced and the test was resumed. Together 
with the test depicted in F igure 5.25, this test shows that the 
observed high COF at the beginning o f  the sliding in hydrogen was 
due to the transfer layer formation on the contact surface o f the 319 
Al alloy pin.
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Figure 5.30. The effect o f  the pressure o f the 40%H2-60%He mixture on the COF 185 
between the Graphit-iC DLC coating and the 319 Al alloy pin as a 
function o f  the number o f revolutions. The sliding speed and the 
applied load were 0.12 m/s and 5 N.

Figure 5.31. The COF between the Graphit-iC DLC coating and the 319 Al alloy 186 
pin as a function o f  the pressure o f  40%H2-60%He. The sliding 
speed and the applied load were 0.12 m/s and 5 N.

Figure 5.32. M icro-Raman spectra o f  the worn and unworn regions o f  the 187 
Graphit-iC DLC that was run against the 319 Al alloy pin in H2-He 
mixture at 0.12 m/s and under an applied load o f  5 N.

Figure 5.33. The friction mechanism o f non-hydrogenated DLC coating in Pfe-He 188 
environment.

Figure 5.34. The wear rates o f  the 60-V DLC and 80-V DLC coatings before and 189 
after annealing at 300°C for 7.7 minutes. The tests that were done at 
300°C are also included for comparison. All tests were run for l x l 0 3 
revolutions o f  sliding distance under an applied load o f 5 N.

Figure 5.35. The EDS analyses o f  the a) 60-V DLC and b) 80-V DLC coatings 190 
before and after annealing at 300°C in air for 77 minutes.

Figure 5.36. SEM images o f  the contact surfaces o f the counterface materials 191 
tested against the 60-V DLC coating for lx lO3 revolutions under 5 N 
applied load at 0.12 m/s, a) WC ball at 25°C, and b) 319 Al pin at 
25°C.

Figure 5.36. SEM images o f the contact surfaces o f the counterface materials 192 
tested against the 60-V DLC coating for lxlO3 revolutions under 4.9 
N  applied load at 0.12 m/s, c) 319 Al pin at 120°C, d) the EDS 
analysis o f  the location indicated in c).

Figure 5.37. The surface profiles o f  the sections o f the wear tracks o f  the 80-V 193 
DLC coating tested against a) 319 Al, b) WC and at 120°C for 
lx l  03 revolutions o f  sliding distance under 5 N  applied load.

Figure 5.38. a) Schematic o f  the pin-on-disc test. Suggested mechanism o f debris 194 
generation: First, the aluminum gets oxidized and the oxide 
thickness reaches a certain value (b & c). Then the oxide layer 
cracks, delaminates and fragments into loose debris (d & e). Some 
debris stay free at the sliding interface and some become embedded 
back on the 319 Al pin surface (f) causing abrasion o f  the DLC.

Figure 6.1. a) SEI and b) BEI SEM images o f  a section o f  the wear track o f  the 214 
Graphit-ic DLC coating tested against 1100 Al in argon for 300 
revolutions (18 m).

Figure 6.1. c) SEI and d) BEI SEM images o f the corresponding 1100 Al pin. 215 
The applied load and the sliding speed were 5 N  and 0.65 m/s.

Figure 6.2. The variation o f  the COF between Al and the Graphit-iC DLC 216 
coatings in argon at 0.02, 0.12 and 0.65 m/s. The constant applied 
load was 5 N.

Figure 6.3. The variation o f the COF between 1100 Al and the Graphit-iC DLC 217 
coatings in ambient air (51% RH) at the sliding speeds o f  0.02, 0.12
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and 0.65 m/s. The constant applied load was 5 N.
F igure 6.4. SEI SEM images o f  a) a section o f the wear track o f  the Graphit-ic 218 

DLC coating tested against Al in ambient air (51% RI-I) for 300 
revolutions (18 m). b) the contact surface o f  the corresponding Al 
pin.

F igure 6.4. BEI SEM images o f  c) the contact surface o f  the corresponding Al 219 
pin, d) an enlarged view o f the location indicated in b) showing the 
layer delamination.

F igure 6.4. e) EDS analysis o f  the location indicated in d). The applied load and 220 
the sliding speed were 5 N and 0.12 m/s.

F igure 6.5. a) Optical image o f  the contact surface o f the Cu pin tested against 221 
the Graphit-iC DLC coating in argon at a sliding speed o f 0.12 m/s 
for l x l 0 4 revolutions, b) SEI SEM image o f  the contact surface of 
the Cu pin tested against the Graphit-iC DLC coating in argon at a 
sliding speed o f  0.12  m/s for 3x 10 revolutions.

F igure 6 .6 . The variation o f  the COF between Cu and the Graphit-iC DLC 222 
coatings in argon at 0.02, 0.12 and 0.65 m/s.

F igure 6.7. a) SEI SEM image o f a section o f  the wear track o f  the Graphit-iC 223 
DLC tested against Cu in ambient air (58% RH) for 3x102 
revolutions (18 m), b) the contact surface o f  the corresponding Cu 
pin.

F igure 6.7. c) An enlarged view o f  the location indicated in b) showing the layer 224 
formation, and d) EDS analysis o f the location indicated in c). The 
applied load and the sliding speed were 5 N and 0.12 m/s.

F igure 6 .8 . The variation o f  the COF between Cu and the Graphit-iC DLC 225 
coatings in ambient air at 0.02, 0.12 and 0.65 m/s. The applied load 
was 5 N.

F igure 6.9. SEM images o f  a) a section o f the wear track o f  the Graphit-iC DLC 226 
coating tested against Ti in argon at 0.12 m/s for 3x10 rev., b) the 
corresponding Ti pin.

F igure 6.9. SEM images o f  c) a section o f the wear track o f  the Graphit-iC DLC 227 
coating tested against Ti in argon at 0.65 m/s for 3 x l0 2 rev., and d) 
the corresponding Ti pin. The applied load was 5 N  in all tests.

F igure 6.10. SEM images o f  a) a section o f the wear track o f  the Graphit-iC DLC 228 
coating tested against Ti in argon at 0.02 m/s for 3x10 rev., b) the 
corresponding Ti pin showing material transfer to its surface. The 
applied load was 5 N.

F igure 6.11. The variation o f  the COF between Ti and the Graphit-iC DLC 229 
coatings in argon at 0.02, 0.12 and 0.65 m/s. The applied load was 5 
N.

F igure 6.12. SEM images o f  a) a section o f  the wear track o f  the Graphit-iC DLC 230 
tested against Ti in ambient air (59% RH) at 0.12 m/s for 3x l03 rev.,
b) the corresponding Ti pin. The applied load was 5 N.

F igure 6.13. The variation o f  the COF between Ti and the Graphit-iC DLC 231 
coatings in ambient air (59% RFI) at 0.02, 0.12 and 0.65 m/s.

F igure 6.14. SEM images o f a) a section o f the sliding track o f  TiB2 coating 232
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tested against Al pin at 0.12 m/s sliding speed in the argon 
atmosphere. The sliding distance and the applied load were 18 m 
and 5 N, respectively, b) an enlarged view o f  a part o f  the sliding 
track showing the severely smeared Al. The direction o f  sliding is 
indicated with an arrow.

F igure 6.15. The variation o f the COF between 1100 Al and the TiEh coating in 233 
argon 0 .02,0.12 and 0.65 m/s. The applied load was 5 N.

F igure 6.16. a) SEM image o f  a section o f the sliding track o f  the TiB2 coating 234 
tested against the 1100 Al pin at 0.12 m/s speed in the argon for 180 
m under 5 N load, respectively, b) The corresponding COF curve.

F igure 6.17. The variation o f  the COF between 100 Al and the TiB2 coating in 235 
ambient air (43% RH) at 0.02, 0.12 and 0.65 m/s. The applied load 
was 5N.

F igure 6.18. a) SEM image o f  a section o f the sliding track o f  the TiB2 coating 236 
tested against Al pin at 0.02 m/s sliding speed in ambient air (43%
RH) for 3x l0 2 rev. o f sliding. A significant amount o f  loose debris 
(white) was detected on and along the sliding track, b) the EDS 
analysis o f  the one o f the debris particles showing the extent of 
oxidation. The applied load was 5 N.
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CHAPTER 1 

INTRODUCTION

1.1. Driving Force for Dry M achining and Manufacturing: Social and Economic 

Aspects

Today, one o f  the main objectives o f the manufacturing industry is to reduce and 

eliminate the use o f  metalworking fluids in machining operations. There are two main 

driving forces behind this objective; these are anticipated government regulations and 

potential economic benefits. For example in Unites States o f  America, the National 

Institute for Occupational Safety and Health (NIOSH) recommends that occupational 

exposures to cutting fluid aerosols be limited to 0.5 mg/m from its current standard value 

o f 5 mg/m3 [1], The reason behind this request is the detrimental effects o f the cutting 

fluid aerosols on machine shop workers and the environment. Cutting fluid aerosol refers 

to the mist and all contaminants in the mist generated during grinding and machining 

operations involving products from metal and metal substitutes [ 1].

NIOSH presented substantial evidence indicating that workers who are constantly 

exposed to metalworking fluid aerosols have an increased risk o f  non-malignant 

respiratory disease and skin diseases [1]. Elimination o f  the use o f  metalworking fluids 

will have a substantial impact towards the improvement o f  the quality o f  the working 

environment. Recycling o f  the dry chips is also easier since there will be no need for a 

cleaning operation before their re-use in another form. The cost o f fluid filtration, 

disposal and maintenance o f  the cutting fluid system is estimated to be around 17% of the 

overall manufacturing cost [2-4]. Therefore elimination o f  the metalworking fluids will 

potentially bring economic benefits to the manufacturing industry.

1.2. Dry M achining of Aluminum and Associated Challenges

North American automotive manufacturers have been constantly seeking new 

ways o f  increasing fuel efficiency o f  their vehicles by reducing the total mass per vehicle. 

The use o f  aluminum alloys instead o f  steel or cast iron brings approximately 66% 

reduction in weight due to its lower density (2.7 vs. 7.8 g/cm3). For this reason, 

automotive companies have been interested in substituting steel or cast iron components
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with those made o f  A1 wherever possible. Nowadays, most o f  the engine components and 

some chassis parts are made o f  different aluminum alloys. For example, 319 A1 grade 

cast aluminum alloy is used in engine blocks.

Efforts to machine cast iron and steel without lubricants have been partially 

successful [5]. However, dry machining o f aluminum alloys is a challenging task: In the 

absence o f  metalworking fluids, aluminum chips formed during the machining operations 

adhere to the tool surfaces. The adhesion o f  aluminum problem also exists in other 

forming operations like sheet metal forming and deep drawing. Adhesion causes tool 

failures and leads to products with poor surface quality.

Among the machining operations, dry drilling o f  aluminum alloys is especially 

problematic. In the absence o f  the metalworking fluids, the aluminum chips formed 

adhere to the surfaces o f drill flutes, causing their clogging in a very short time. The 

process o f  chip evacuation ceases. The clogged drills do not last long in service; the 

average number o f  holes that could be dry drilled in a 319 A1 alloy block using an 

uncoated (high speed steel) HSS drill is less than 50. This is too far from meeting the goal 

o f l x l 0 4 holes set by the industry [6]. The severity o f  aluminum adhesion to an uncoated 

HSS drill subjected to dry drilling o f  319 A1 alloy is shown in Figure 1.1.

1.3. M etalworking Fluids and Alternative W ays o f Cooling

It is useful to emphasize the functions o f  the metalworking fluids. The 

metalworking fluids have three main functions: i) they provide lubrication between the 

cutting tool and the work piece, ii) they assist the removal o f  the chips from the cutting 

area (easy chip evacuation), and iii) they cool the work piece which is important for 

dimensional accuracy and the cutting tool thus preventing its softening by becoming too 

hot. Metalworking fluids also affect the surface quality o f  the machined workpieces. For 

example Haan et al. [7] showed that the surface roughness o f  the holes drilled on SAE 

308 Al alloy doubled in the absence o f cutting fluid. For a successful dry machining 

operation, these points have to be addressed in addition to the adhesion problem.

To help dry machining, alternative ways o f  cooling have been developed [8]. 

Some o f these are:
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i) An under-cooling system where the coolant flows through channels located 

under the insert, then out to the environment without any direct contact with the cutting 

zone [ref 9 in [Error! Bookmark not defined.]].

ii) Internal cooling by a vaporization system in which a vaporizable liquid is 

introduced inside the shank o f the tool and vaporized on the underside o f the insert [ref 

10 in [Error! Bookm ark not defined.]].

c) Cryogenic systems, where a stream o f cryogenic coolant is routed internally 

through a conduit inside the tool [ref 11 in [8]].

d) Thermoelectric cooling systems using thermoelectric couples [ref 12 in [8]].

1.4. Optimization o f  M achining Parameters and Tool Geometry

Machining parameters including feed rate and cutting speed have great influence 

on the performance o f  the tools (wear rate and tool life) and the system requirements 

(force, torque). However, optimization o f  the machining parameters alone is not enough 

for dry machining to become a feasible operation. It is the cutting tool (drill bits in 

drilling) where the m ajor developments need to be made. From their current conditions, 

the tools have to be transformed into such a condition that adhesion o f aluminum chips to 

the tool surface will be minimized and the chips will be easily evacuated. These are the 

two additional requirements for cutting tool design.

What can be done to drill bits to achieve these objectives? In addition to 

optimizing machining parameters, the drill geometry can be optimized to produce chips 

in such morphology that they can be evacuated easily. Since the assistance o f 

metalworking fluids is not available, generation o f chips that are easy to evacuate 

becomes imperative in dry drilling. Smaller, narrower and curled chips are more ejectable 

[9]. Therefore, drill geometry should be modified to generate chips in desired 

morphology. For example, higher helix and points angles produce narrower chips [6].

1.5. Use o f Coatings to Reduce Material Adhesion to Tool Surfaces

As long as the chips adhere to the tool surfaces, there is very little to gain with the 

optimization o f  tool geometry and machining parameters. Therefore, the main task to be 

achieved is the reduction or elimination o f the adhesion o f  the aluminum chips to tool
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surfaces in dry machining. To achieve this result, either the tool should be made o f a 

material on which Al does not have a tendency to adhere or this material should be 

applied on the surface o f  the current industrial tool materials (e.g. high speed steel and 

cemented carbide). Since the latter is more practical, almost all o f  the studies on dry 

machining o f  aluminum were concentrated on the development o f  novel coatings that can 

be applied on the surfaces o f  cutting tools (inserts, drill bits) rather than developing new 

bulk tool materials.

1.6. The Need for the Current Study

As explained above, the application o f a coating on tool surfaces that does not 

adhere to aluminum is the primary condition to be satisfied towards the tool design for 

dry machining o f  Al alloys. However, the causes, mechanisms, and the factors controlling 

adhesion and transfer o f  aluminum to surfaces in sliding contact are not well understood. 

It is obvious that a better understanding o f  the adhesion phenomenon will facilitate 

tailoring a tool coating for dry drilling o f  aluminum alloys.

Another aspect that requires attention is the evaluation o f  the dry drilling 

performance o f  the currently available industrial coatings. Since performing drilling tests 

is expensive, there is a need to develop a quick and low cost laboratory method to 

evaluate the dry drilling performance o f  a given coating.

1.7. Scope and Objectives

Considering the background and motivation described in the previous sections, 

the scope and objectives o f  this work is listed in the following three main groups:

1.7.1. Transfer o f 319 Ai to Various Coating Surfaces

1. To develop a laboratory evaluation method to rank some o f the currently available 

industrial coatings (DLC, CrN, TiEh, TiN, TiAIN, and TiCN) according to the 

transfer tendency o f  319 Al alloy to their surfaces.

2. To study the mechanisms o f adhesion and transfer o f  319 Al alloy to the surfaces 

o f these coatings during dry sliding contact.
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3. To elucidate the roles o f  extrinsic variables, namely environment, temperature and 

sliding speed on adhesion and material transfer o f  319 Al alloy.

1.7.2. Transfer o f  Al, Cu and Ti to CrN, DLC and TiB2 Coatings

1. To contribute to the understanding o f the mechanisms and factors controlling 

adhesion and transfer phenomena between surfaces in dry sliding contact.

2. To elucidate the relative roles o f material properties and test atmosphere (ambient 

air vs. argon) on adhesion and material transfer during dry sliding contact.

1.7.3. Tribological Behaviour o f Non-hydrogenated DLC Coatings

1. To have a systematic investigation o f the tribological behaviour o f the DLC 

coatings against aluminum.

2. To study the effects o f  test environment, temperature and counterface on the 

tribological behaviour o f  DLC coatings.

The Al alloys o f  interest were 319 Al and 1100 Al. The 319 Al alloy was selected 

because o f its wide application in the automotive industry. The studied coatings included 

DLC, CrN, TiB2, TiN, TiAIN and TiCN.

1.8. Organisation o f the Dissertation

The next chapter (Chapter 2) gives a survey o f  the open literature on i) studies o f 

adhesion and material transfer phenomena, ii) performances o f  coatings in dry and near 

dry machining o f Al alloys, and iii) tribological behaviour o f  DLC coatings and the 

controlling factors. Chapter 3 first describes the experimental methods and procedures 

that were used to manufacture and characterize the test materials used in this study. Then, 

descriptions o f the pin-on-disc machines, test conditions and the procedures that were 

used to evaluate the test results are given.

The results and discussion o f the pin-on-disc tests that were performed to 

investigate the transfer behaviour o f 319 Al alloy to various coating surfaces, namely 

TiB2, TiN, TiCN, TiAIN and CrN, are presented in Chapter 4. In Chapter 5, the details 

o f the investigations o f the tribological behaviour o f  the non-hydrogenated DLC coatings
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are described. The effects o f  the test environment, temperature and counterface material 

are discussed.

In C h ap te r 6 , the adhesion and material transfer phenomena between Al, Cu, Ti 

and non-hydrogenated DLC, TiB2 and CrN coatings that were investigated in argon and 

ambient air environments are given. The general discussion o f  the results and 

observations that were originated from this study is also done in C h ap te r 6 . Finally, the 

conclusions are given in C h ap te r 7, the last chapter, where suggestions for future work 

are also included.

6
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F igure 1.1. The image o f  an uncoated HSS drill subjected to dry drilling o f  319 Al alloy. 
The severity o f  aluminum adhesion to drill flutes is clearly seen (courtesy o f the GM 
R&D Center). The drill was 6.35 mm diameter, 2-flute, high helix, 118° point angle, HSS 
drills from Precision Twist Drill Co., (Crystal Lake, IL). Drilling was done at 61 m/min 
speed and 0.13 mm/rev. feed.
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C H A PTE R  2 

LITE R A T U R E R E V IE W

This chapter starts by giving a summary o f  the previous studies that investigated 

adhesion and material transfer phenomena between the surfaces in dry sliding contact. 

Then studies published in the open literature on the machining and tribological 

performance o f  the various tool coatings against aluminum alloys are reviewed. Finally, 

the studies that investigated the tribological behaviour o f  DLC coatings are reviewed.

2.1. Term inology

Most o f  the definitions given in this section are based on the study o f  Markov and 

Kelly [10] who reviewed the published English and Russian literature on adhesion 

initiated wear mechanisms.

Seizure is characterised by plastic deformation o f  one surface only, by 

macroscopic adhesive transfer o f material from a softer surface onto a harder surface and 

by formation o f  widening grooves on the softer surface and protrusions on the harder 

surface.

Scoring is characterised by plastic deformation o f  both surfaces, by absence o f 

macroscopic adhesive transfer o f material, and by formation o f  self-organized centres o f 

scoring riders that consist o f  two mechanically interlocked wedges originated and 

developed alternately by work-hardening metal on either friction surface.

Scuffing is characterised by friction heating and softening o f  material o f  one 

surface and welding o f  it onto the other, cooler surface.

G alling is characterised by transfer from a softer surface o f  cool material by 

being smeared, before it undergoes significant heating, onto a harder surface.

W o rk  of adhesion is the energy required to separate two surfaces from each

other.

2.2. Previous Studies on A dhesion and  M ateria l T ra n s fe r

The occurrence o f  adhesion, material transfer and related phenomena (seizure, 

galling, scuffing, scoring) plays a critical role in determining the performances o f many
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tribological systems. Many researchers investigated these phenomena to have a better 

understanding o f  their fundamental mechanisms [11-30].

Machlin and Yankee [11] compared the GOF values o f  the some freshly cut pure 

metal pairs (Ag, Al, Cd, Cu, Fe, Mg, Pb, Ti, and Zn). They concluded that solid phase

metals tested. Except the Fe-Ag couple, solid phase welding was observed even with 

insoluble couples such as Fe/Cd pair. They proposed that the occurrence o f solid phase 

welding increases as the ratio o f the work o f  adhesion (energy required to separate two 

surfaces from each other) to the shear strength o f  the weaker couple increases.

Ling and Saibel [30] derived a seizure criteria based on considerations o f  the 

thermal aspects o f  sliding contact, which they assumed to be dominating when the two 

surfaces in contact were smooth enough so that there was no appreciable oscillations in 

the direction normal to the surfaces. The authors observed that seizure started when the 

surface temperature o f  the contact area reached the recrystallization temperature o f one o f 

the surfaces. Therefore, they concluded that it was not necessary to reach the melting 

temperature to observe adhesion.

Rabinowicz [14] found that the average size o f  loose wear particles (d) generated 

during the dry sliding o f  self-mated metals is proportional to the surface energy/hardness 

ratio (y/H) as:

The same relation also holds for COF. For example Pb had a y/H ratio o f  2 .2x l0 '8

gave a COF o f 0.6. Fie observed that metals with hexagonal structure gave lower COF 

than the cubic ones.

Sikorski [13] used a twist-compression method to study the adhesion o f  metals. In

cylinders is pushed ( F n 0 r m a i)  and rotated 180° to the fixed sample. Then, a force is applied

welding is the reason for the static COF (the COF at the start o f  sliding) in almost all

Equation 2.1

m and gave a COF o f 1.2 whereas low carbon steel had a y/H ratio o f  1.2x1 O'9 m and

this method, samples in the form o f cylinders are brought into contact and one o f  the
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in the opposite direction to separate the adhered cylinders (Fbreak)- The coefficient o f 

adhesion (COA) is defined as

COA = Ĵ bl£2»i. 
F
A n o r m ' l lnormal

Equation 2.2

Sikorski observed that the COA decreased as the hardness o f  the metal increased 

(F igure 2.1). Similar to Rabinowicz [14], he suggested that compared to the hexagonal 

metals, the observed higher COA values o f face-centered cubic metals was due to their 

larger deformation under a  given load that increases the area o f  contact and hence the 

total adhesion strength. Sikorski proposed that the energy o f  adhesion ( E a d h . )  between two 

metal surfaces was roughly equal to the interface energy per unit area (y) multiplied by 

the real contact area (Ar) (equation 2.3).

In other words, the adhesion strength depended on the size o f  the contact area and 

the energy per unit contact area. He suggested that there were two aspects o f  adhesion; a 

mechanical aspect and a physico-chemical aspect. Mechanical aspect is related to the 

properties o f  metals and their oxides that affect the size and cleanliness o f  real contact 

areas under normal and tangential loading conditions (crystal structure, work-hardening 

coefficient, purity, hardness, elastic modulus, melting point, recrystallization temperature 

and atomic radius). The physico-chemical aspect involves the properties that determine 

whether adhesion would occur under given conditions (mutual solubility, size-factor, 

relative positions o f  the elements in periodic table or type o f  bonding involved.).

Rabinowicz [15] reviewed studies on the effect o f  the metallurgical compatibility 

o f metal pairs on their friction, wear and adhesion behaviour. The metals pairs were 

grouped as “fairly compatible”, “compatible” and “fairly incompatible” when their solid 

solubility is more than, in the vicinity of, or less than 1%, respectively. He could not find 

a correlation between the adhesion tests and the material compatibility.

Eadh. = y x A r Equation 2.3
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Buckley [17] performed adhesion tests on tungsten, rhodium and iridium against 

gold. He detected transfer o f  gold to the surfaces o f  all three elements although gold does 

not form compounds and has no or very limited solubility in these metals. Therefore, he 

suggested that the chemical and physical characteristics o f  the metallic interfaces do not 

necessarily follow the behaviour o f  bulk materials. Buckley [17] also stated that transfer 

o f material occurs from the “cohesively weaker” or softer material (gold in this case) to 

the “cohesively stronger” or harder material.

It should be noted that adhesion and transfer o f  material in sliding are more 

complicated than normal contact because o f the additional effects such as plastic 

deformation by shear stresses and friction induced heating.

Chen and Rigney [19] developed a model based on the thermodynamic behaviour 

o f  regular solutions to predict the role o f  adhesion on transfer and wear during the dry 

sliding o f metal-metal and metal-binary alloy pairs in vacuum. They concluded that at the 

early stages o f sliding, the direction o f material transfer can be predicted by comparing 

the relative energies required for subsurface fracture. In other words, transfer occurs from 

softer material to the harder material as stated earlier by Buckley [17]. Their calculations 

also suggested that in tribosystems that involve material transfer, loose wear debris 

should form from the material that initially transferred to the counterface since the direct 

generation o f  wear debris requires more energy than material transfer.

Hwang et al. [23] investigated the relative importance o f  the material 

compatibility (in terms o f solubility, crystal structure) and hardness ratio (hardness o f the 

disc/hardness o f  the pin) on the friction and wear behaviour o f  various metal pairs (Ag, 

Al, Cr, Cu, Fe, Mo, Pb, Ni, Ti, Sn, Zn) during dry sliding contact. Metal pairs (Table 2.1) 

were grouped as high (e.g. Ag/Al), medium (e.g. Ag/Cu) and low compatible (e.g. Fe/Ag) 

according to the compatibility chart developed by Rabinowicz [15]. They could not find a 

relation between material compatibility and static or steady state COF values. They found 

that material pairs with very large differences in their initial hardness values resulted in 

high static COF values (F igure  2.2.). They also observed that the static COF values had 

the highest correlation with shear modulus while the steady state COF values had the 

highest correlation with hardness.
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Relative compatibility P in/F lat
(compatibility parameter value) (Harduess ratio: / H pm)

High (compatible: 0.5 or higher)

Medium (partially compatible: 0.32)

Low (partially incompatible or 
incompatible: 0.125 ~  0.2)
Initial hardness 
of materials ( tfv )

A g/A l (0.42). N i/C u  (0.43), C u/A l (0.42), M o/C r (0.96), M o/N i (0.92), M o/T i (1.0), T i/C r (0.96), 
T i/F e  (0.8), T i/N i (0.92), N i/A l (0.18), T i/A l (0.17), A g/Sn (0.1), T i/P b  (0.02), T i/Sn(0.04) 
A g/C u  (1.0), Fe/C u  (0.5), T i/C u  (0.4), M o/A l (0.17), M o/Z n  (0.14), T i/Z n  (0.14), Z n /S n  (0.29), 
C u /S n  (0.1), N i/S n  (0.04)
C r/C u  (0.42), Fe/A g (0.5), M o/A g (0.4), M o/C u (0.4), N i/A g  (0.43), A l/P b  (0.14), A l/S n  (0.24), 
Z n /P b  (0.18), C r/S n  (0.04), C u/Pb (0.06), F e /S n  (0.05)
Pb ( ~  6), Sn ( ~  10), Zn (34), Al (42), Ag (100), Cu (100), Fe (200), Ni (230), Cr (240), Ti (250),
Mo (250)



For steels, Hershberger and his colleagues [28, 29] proposed a mechanism that 

related the initiation o f scuffing to adiabatic shear instability. For the scuffing tests, they 

used SAE 4340 steel samples that were subjected to different heat treatment procedures 

to obtain different microstructures with hardness values from 29 to 53 Rc. A block-on- 

ring tribometer lubricated with pure synthetic polyalphaolefin was employed. The applied 

load was increased at a rate o f  8.9 N  per one minute step until scuffing occurred. They 

showed that scuffing occurred when the rate o f  local thermal softening exceeded that o f 

work hardening. I f  the shear strength o f  the junction/contact is more than that o f  the 

material with lower shear strength, then the entire shear is taken by that near-surface o f 

the lower shear strength material. The frictional heating builds up in that material. 

Temperature, strain and dislocation density all increase quickly. Deformation continues 

until the mechanism o f deformation changes (subgrains become smaller until they 

become nanocrystalline. Then deformation is by grain boundary sliding rather than 

dislocation motion). They verified their theory by measuring the dislocation densities of 

the material before, during, and after scuffing was observed using XRD line broadening 

technique. For example, the respective dislocation density values o f  the sample with 50 

Rc hardness were 1.2x l 0 16, 2 .8xlO l6and l . l x l 0 17m '2.

Kayaba and Kato [18] investigated adhesive wear process by sliding model 

asperities (4x20 mm with 15° slope, made o f  304 stainless steel, 0.45%C basic carbon 

steel, and brass) over each other under a normal load o f  212.8 N  in the SEM chamber. 

They observed two modes o f  transfer. In the first mode, successive slip occurs on the slip 

planes within the prow (the plastically deformed zone which rises ahead o f the junction 

without resulting fracture) and forms an extrusion called “slip-tongue”. A shear crack 

subsequently propagates from the root o f the slip-tongue (schematically shown in F igure 

2.3). In the second mode, successive ploughing takes place at the head o f  the wedge by 

accompanying the shear crack growth at its trailing end (F igure 2.4). In both cases, 

cracks produce a dimpled fracture surface. They also observed that the transfer o f 

fragments occurred from a sharp asperity to a blunt asperity. The adhesive transfer was 

by shear rupture that forms a shear dimple on the fracture surface o f  the transferred 

fragment.
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Rooij and Schipper developed [25] and verified [26] a model for material transfer 

from a soft workpiece to a hard tool surface during deep drawing. They showed that 

adhering lump growth can be decreased by higher surface hardness o f the workpiece, 

lower roughness o f  the tool surface, lower nominal contact pressure and lower shear 

strength o f  the interface between the adhered lump and the tool. The surface roughness of 

the sheet material did not affect material transfer.

2.2.1. Effect of Environment on Adhesion and M aterial Transfer in Normal and 

Sliding Contact

The effect o f  the test environment on adhesion and material transfer phenomena 

during normal [17, 22,31-34] and sliding contact has been studied [11, 35-45].

Buckley [17] showed that the presence o f a very small amount o f  adsorbed and 

reacted films on the surface o f  metals and alloys reduced the strength o f interfacial 

bonding, hence reducing adhesion and material transfer. H e tested the self adhesion o f  Fe 

with and without a monolayer o f  sulphur on its surfaces. The force required to separate 

the two clean Fe surfaces was 4x1 O'3 N. When a monolayer o f  sulphur was present, this 

force dropped to lx lO "4 N. His observation on adhesion reducing effect o f surface- 

reactive gases was supported by the fact that the static COF values o f  self mated Cu, Fe 

and steel decreased as the oxygen and chlorine concentration on their surfaces increased 

(Figure 2.5).

Similarly, Miyoshi [22] observed that contaminated surfaces show reduced 

adhesion and COF. He performed adhesion and sliding tests o f  several as-received 

(contaminated) and sputter-cleaned metals (Co, Cr, Fe, Ni, Re, Rh, Ti, W, V, Zr) against 

manganese-zinc ferrite in ultrahigh vacuum conditions. The pull-off (adhesion) forces 

and COF values o f  the contaminated metal surfaces were low and similar to each other. 

On the other hand, the cleaned metals showed higher pull-of forces (Figure 2.6) and COF 

values (Figure 2.7). Miyoshi observed that adhesion and COF decreased as the elastic 

and shear moduli o f  the metals increased. He also showed that, as stated earlier by [13], 

the COF o f metal-ceramic couples was proportional to the multiplication o f  the surface 

energy o f the metal (y) with its real area o f  contact (Ar) against the ceramic (Figure 2.8).
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Wang and Smith [33] calculated that the AI/AI2O3 interface is weaker than bulk 

Al. However, they showed that the presence o f  carbon as one third o f a monolayer at the 

AI/AI2O3 interface increases the adhesion strength o f  the interface by a factor o f three, 

making it stronger than bulk Al. The increased strengthening was caused by the extra 

bonds that carbon makes with both surfaces. For this reason, in the fracture experiments 

the separation occurs within Al rather than at the AI/AI2O3 interface. In another study, the 

authors showed that hydrogen termination reduces the adhesion strength between Cu and 

diamond from 1.3 J/m2 to 0.21 J/m2 [32]. Similarly Qi and Hector [46] showed that 

hydrogen passivation o f  the diamond leads to negligible adhesion and no transfer o f Al to 

its surface whereas strong adhesion occurs when hydrogen is not present on the diamond 

surface.

Hartweck [34] showed that up to a monolayer o f  foreign atoms such as C, N, S 

and P increased the adhesion between iron surfaces. However, a significant decrease in 

adhesion occurred when the coverage was larger than one monolayer. It was suggested 

that the increased adhesion was due to the bonding o f  iron with these elements.

Ramboarina and Lepage [31] studied the effect o f  the co-adsorption o f  water 

vapour and oxygen on the self-adhesion o f aluminum. In a vacuum tensile test machine, 

the pre-notched samples were first strained to rupture, then exposed to the chamber gas 

(oxygen or oxygen + water vapour) in varying amounts (Pressure*time) and then pressed 

against each other at a compressive force (Fc) equal to the force they were ruptured. The 

strength o f  the interface is then measured by straining the sample to rupture again (Fr). 

The coefficient o f adhesion (COA) is defined as the ratio o f  Frto Fc. They found that the 

presence o f dry oxygen in the test chamber did not have a reducing effect on COA. 

However, the adverse effect o f  water vapour on COA became much more pronounced 

when oxygen and water vapour co-existed (F igure 2.9). The authors proposed that the 

loss o f adhesion in the presence o f  water vapour was due to the embrittlement o f the 

interface region that contained hydroxyl radicals.

Machlin and Yankee [11] compared the COF values o f  some freshly cut metals 

before and after they were exposed to air. They observed that freshly cut titanium solid 

phase welded to other metals in frictional contact and the degree o f  welding o f  Ti was 

independent o f  the atmosphere (air, nitrogen or argon) or the time (less than 24 hours) at
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room temperature. However with Fe and Cu, less than 5 minutes o f exposure to air was 

sufficient to significantly reduce the degree o f  solid phase welding. They concluded that 

the seizebility o f  titanium is probably due to the lack o f  resistance o f the contaminant 

film formed on it in air to penetration or wear in frictional contact.

It was shown that humidity, temperature, and working gas all have direct 

influence on the tribological behaviour o f  the sliding systems. They affect the system via 

the chemical reactions, such as oxidation, taking place at the sliding interface and/or via 

the sorption o f  species on the surfaces o f  sliding tracks [47-50]. Oxidation is by far the 

most commonly encountered chemical reaction in tribological systems [47].

Brendle and coworkers [21, 35] studied the effects o f relative humidity, speed and 

the characteristics o f  the test equipment on the transfer behaviour o f  graphite to steel. 

They observed that the fraction o f the area covered by the transferred material increased 

by increasing relative humidity but decreased with increasing speed. Diss and Brendle 

[21] related the effect o f  speed to the occurrence o f  “stick-slip phenomena”. The source 

o f the stick was the higher static coefficient o f friction and slip was due to the lower COF 

during the slip. It was suggested that the adhesion occurred in the stick stage. When the 

sliding speed was increased the probability o f  adhesion decreased since the length o f  time 

the surfaces stay together became shorter. Later, Brendle and Stemple [35] attributed the 

effect o f  speed to the am ount o f  moisture in the area o f  contact and its dependence on the 

kinetics o f water adsorption to the surface.

Heimberg et al. [36] performed reciprocating sliding tests on DLC coatings using 

a ball-on-flat tribometer in dry nitrogen. They were able to correlate the change in 

friction coefficient caused by different test speeds and time delays with the kinetics o f gas 

adsorption onto carbon. Extremely low COF values in the range o f  0.003-0.008 were 

observed when the exposure time o f the DLC coating to dry nitrogen was kept below 5 

sec. The time between the two contacts was not enough to adsorb sufficient amount o f 

nitrogen that would change the friction behaviour. When the exposure time was increased 

using slower sliding speed or a longer time delay, the COF increased to the values typical 

o f DLC coatings under am bient air. Experimental data o f [36] was later used to verify the 

derived frictional coverage models [51, 52].
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2.3. Previous Studies on the M achin ing  Perform ance an d  Tribological B ehaviour of 

Some C oatings against A lum inum

To date, the research and development o f new coatings for the dry machining o f 

aluminum alloys mainly concentrated on three classes o f  coatings: carbon based coatings, 

titanium diboride (TiB2) and other solid lubricant coatings.

2.3.1. C arbon  Based C oatings

Hollman et al. [53] investigated the tribological behaviour o f  CVD-diamond 

coatings against Al, Al-17%Si and steel using a pin-on-cylinder test. They used ethanol 

as the lubricant for aluminum whereas commercial cutting oil was used for steel. Low 

wear rate and low COF were found against aluminum. Decreased diamond surface 

roughness lowered the initial value o f the COF and decreased the amount o f material 

transferred to the counterface.

Lahres et al. [2] investigated the performance o f  diamond, a-C:H, WC/C, CrC/C, 

CrN, TiN, TiAIN, MoS2, TiN+MoS2 coated WC-Co (K10) tools in dry milling o f 

A lZnM gCul.5 and AlSilOMg alloys. Diamond and partially crystalline hard coatings 

with softer morphological parts (WC/C , CrC/C and TiN+M oS2) exhibited potential for 

dry milling. The authors concluded that only the iterative development o f  the whole 

system (coating, tool geometry, chip transportation, machine tool adoption) would deliver 

a successful implementation o f  dry processes.

Derflinger et al. [5] studied the production and performances o f  TiN, TiAIN, 

TiN+WC/C and TiAlN+ W C/C coatings in the dry drilling o f  X 210Crl2 (AISI D3) and 

42CrMo4 (SAE 4140FI). By performing drilling tests under compressed air, they found 

that the number o f  holes drilled per unit worn thickness o f  the coatings was maximum for 

TiAlN+ WC/C coated drills (90), followed by TiAIN (60), TiN+WC/C (50) and TiN 

(30). The beneficial role o f  low friction layer (WC/C) during machining is explained in 

F igure 2.10. WC/C layer on the top wears out mostly after the running in stage. 

However, some o f it remains on the hard coating due to surface roughness and continues 

to serve.

Chen et al. [54] observed a significant increase in tool life when drilling SiC 

particle reinforced aluminum alloy with diamond coated (electron aided hot filament
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CVD) WC-Co drills. With diamond coated drill, the flank wear was 73 pm after drilling 

25 holes as compared to 113 pm o f flank wear after drilling only 13 holes with the 

uncoated drill. Kim and Kang [55] observed an increase in the surface quality o f  the Al 

workpieces using diamond endmills at high speed. No build-up edge and burrs were 

formed with diamond mills.

Luo et al. [56] studied the performance o f cathodic arc deposited DLC coatings 

against Al- 11 %Si alloy and AI2O3 under the dry reciprocating sliding contact. The 

authors divided the tribological behaviour o f the DLC film into three regimes: break in 

stage, strain hardening stage, and fatigue wear stage. In the break-in stage, high COF 

was observed between Al-Si and the DLC due to the adhesion o f the aluminum alloy on 

the DLC film caused by high hertzian contact stress. In the strain hardening stage, 

aluminum alloy strain hardens and oxidizes to form a smooth layer which provides a 

good interface for low friction. Finally in the third wear stage, the hardened layer on the 

counterface cracks and performs micro cutting on DLC film. This three-stage mechanism 

is drawn in Figure 2.11.

Sakamoto et al. [57] studied the performance o f  plasm a CVD diamond coated tool 

in cutting A390-T6 alloy. The diamond they deposited at lower temperature (779 K) was 

much smoother (Figure 2.12) and outperformed the one deposited at high temperature 

(1183 K). The cutting length was 13 times longer for the low temperature deposited 

diamond. The authors related this to the lower surface roughness and better adhesion 

strength obtained at 779 K.

Kagiya et al. [58] produced smooth DLC films with low hydrogen content. They 

performed pin-on-disc, dry milling and dry drilling tests to compare the performance o f 

their DLC with uncoated cemented carbide tools. A5052 and ADC 12 (9.5-12 wt.% Si, 

1.5-3.5 wt. %Cu, Japanese standard) aluminum alloys were used. The DLC coating had 

no adhesion o f  the aluminum alloy in the pin-on-disc test. Tightly curled chips were 

produced during the milling tests with DLC coated tools (Figure 2.13).

For the dry drilling o f  A5052 alloy, the DLC coatings were applied on drills 

specially designed for the dry drilling o f  aluminum. The drills have wide thinning pockets 

that prevent sticking during high feed cutting. Large thinning angle and minimized 

negative form cutting flute also help prevent sticking. Compared to conventional
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products, the DLC coated drill reduced cutting force and improved surface finish o f the 

holes produced significantly [58].

Nouari et al. [59] studied optimization o f  the tool geometry and cutting conditions 

for dry drilling o f  an aluminum alloy (AA2024 T351). They used diamond (Kennametal) 

coated and uncoated W C-Co cemented carbide drills. The use o f  diamond as a coating 

material extended the tool life. They found that the combination o f  the optimised tool 

geometry (high helix and point angles, lower land width and web thickness, and a 

clearance angle between 6° and 8°) and the cutting conditions (high cutting speeds and 

small feed rates) brought a high surface quality and a good dimensional accuracy o f the 

machined material. The use o f diamond coated drill increased the number o f  holes with 

acceptable quality by three times compared to the uncoated drill.

Coldwell et al. [60] examined the dry drilling performances o f  non-hydrogenated 

DLC, hydrogenated DLC and Ti containing M0 S2 coatings when drilling British BS 

L168 : 1978 (ASTM 2014) aluminum alloy (3.9-5 wt. % Cu, 0.5-0.9 wt. % Si). For the Ti 

containing M0 S2 coated drill, different under layer coatings (CrC, CrTiAIN, ZrN, and 

MoZrN) were used whereas CrC under layer was used for the non-hydrogenated DLC, 

hydrogenated DLC coatings. Ti containing M0 S2 coating exhibited highest wear 

resistance with CrTiAIN under layer. The build up o f  aluminum became evident even 

after drilling 30 holes with the Ti containing M0 S2 coating. For the hydrogenated DLC 

coated drill, aluminum build up was observed after drilling 60 holes. After drilling 100 

holes with each coating, they observed that the build up o f  aluminum on the drill surface 

was the minimum for the non-hydrogenated DLC coated drill indicating its anti-adhesive 

property. On the other hand, the quality o f the drilled holes (size and out o f  roundness) 

did not vary with the use different coatings.

Nouari et al. [61] investigated the wear mechanisms o f cemented tungsten carbide 

(uncoated and coated with TiAIN +WC/C) and HSS tools during dry drilling (up to 70 

holes) o f  the AA2024 aluminum alloy. Their results on the surface quality o f the drilled 

holes in terms o f  out o f  roundness and surface roughness showed that HSS tool was not 

suitable for dry machining o f  the AA2024 aluminum alloy. Under high pressure and 

temperature at the contact zone, a material build up was observed on the tool rake face. 

Increasing the cutting speed from 25 m/min to 165 m/min caused an increase in the
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interface temperature (as calculated using a commercial finite element code) from 80 to 

175°C that promoted aluminum transfer from the workpiece to the tool by a diffusion 

mechanism. They found that compared to the uncoated tungsten carbide drills, the use o f 

TiAlN+WC/C coated drills increased the speed at which acceptable quality holes can be 

produced from 25 to 65m/min at a small constant feed rate o f  0.04 mm/rev.

Kishawy et al. [62] investigated the effects o f  flooding lubrication (CM2 coolant), 

dry cutting, and minimum quantity o f  lubrication (MQL) techniques on tool wear, surface 

roughness and cutting forces for the machining o f  A356 alloy. For MQL, a synthetic 

phosphate ester BM2000 with extreme pressure additives was used at rate o f  30 ml/h. 

The authors found that the MQL technology could be a viable alternative to the flooding 

lubrication application. Due to the high content o f silicon in the A356 alloy, the main 

wear mechanisms encountered were abrasive wear at the tool tip region, and adhesive 

wear on the flank and rake faces away from the tool tip. The degree o f  the wear severity 

was found to be a function o f  both insert coating and coolant environment. Experimental 

results showed that the optimal performance o f the uncoated carbide inserts was obtained 

when using MQL. The diamond-coated inserts outperformed the uncoated inserts 

regardless o f  the coolant environment. However, random chipping was observed for the 

diamond coated tools.

Braga et al. [63] compared the drilling performances o f  the uncoated and diamond 

coated carbide drills under MQL (10 ml/h o f oil in a flow o f  compressed air) and 

abundant soluble oil (1 part o f  oil for 25 parts o f  water at a flow rate o f  2.4 m3/h) 

lubrication conditions as a lubricant in the drilling o f  A356 alloy. They found that the 

performance o f  the process (in terms o f  forces, tool wear and quality o f holes) when 

using minimal lubrication was very similar to that obtained using a high amount o f 

soluble oil, with both diamond coated and uncoated drills. Also, the values o f  flank wear 

were similar for the two cooling/lubrication systems used, which proves the feasibility o f  

using the M QL technique.

2.3.2. Titanium Diboride (TiB2) Coatings

Berger and Hogmark [64] investigated the transfer behaviour o f  AA7075 

aluminum alloy to TiN, TiB2 and uncoated cemented carbide. The TiB2 coatings were
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produced by direct current magnetron sputtering PVD under various bias voltages (0- 

50V). Crossed cylinders geometry was used to resemble actual metal cutting (Figure 

2.14). They found that TiB2 coatings deposited at 50 V bias voltage had relatively low 

residual compressive stress (measured by beam deflection technique) and performed 

better than TiN coated and uncoated cemented carbide in term o f adhesion o f  aluminum 

and wear resistance. Very high and oscillating COF was observed. Under a load o f 9 N, 

the average COF was 1.4 for TiE$2, 1.7 for TiN and 1.6 for the cemented carbide. 

Transferred aluminum had a lamellar structure. When an adhered patch o f  aluminum has 

reached a critical thickness, it was either transferred to the test pin or left in the sliding 

path o f  the Al cylinder. TiN suffered from chemical degeneration and mechanical 

decohesion and detachment.

In another study Berger and Hogmark [65] compared PVD deposited TiB2, 

TiAIN, TiN and TiCN coatings for their frictional properties and tendency to pick up 

three different counterface materials (Al 7075, Ti- 6A1- 4V, and Inconel 718) using two 

crossed cylinder test specimens which are forced to slide against each other at a constant 

sliding speed. A gradually increasing load was used (F igure 2.15.).

The authors observed that the TiB2 coating had lower COF (below 0.3 versus 0.4 

and above for the other coatings) and much less aluminum adhesion to its surface 

compared to the other coatings. However, they found no major difference in the 

tribological behaviour o f  TiB2 against Inconel and titanium alloys compared to other 

coatings.

Bjork et al. [66] investigated the performance o f  TiB2, TiN, CrN, TiAIN coated 

and uncoated hot work tool steel extrusion dies against AA 6063 aluminum alloy at 

550°C. Block on ring configuration (Figure 2.16) was used and the test chamber was 

filled with argon gas. They observed that TiB2, CrN and TiAIN were mechanically, 

thermally and chemically stable against aluminum. TiN degenerated gradually by 

cohesive fracture. The order o f  performance was TiB2, TiAIN, CrN and TiN. No wear 

was observed on TiB2. However, they saw that NaOI-I, which was used to remove 

aluminum, decomposed TiB2 indicating that an alternative chemical should be used for 

periodic cleaning o f  TiB2 coated tools.
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Lugscheider et al. [67] reamed GG-25 grey cast iron and Al-12%Si aluminum 

alloy at different speeds using cemented carbide drills coated with TiB2, TiAIN, Ti-B-N, 

ZrN and TiZrN coatings. Dry reaming o f the Al-12%Si alloy was not possible with any 

o f the coatings due to the large formation o f built-up edges which caused tool clogging. 

Cutting o f  the Al-12%Si alloy has been achieved only with TiB2 and TiAIN coated 

reamers under M QL conditions (fatty alcohol at a rate o f  100 ml/h aerosolized in 

compressed air).

Experimental studies on the adhesion o f  aluminum on TiB2 make this coating 

favourable due to the weak tendency o f Al to adhere to its surface. However, to the 

knowledge o f  the author, there is no reported study on the dry drilling o f  aluminum alloys 

with TiB2 coated tools. Therefore, dry drilling performance o f  TiB2 is yet an area to be 

explored.

2.3.3. Solid Lubricant Coatings

M 0 S2 is a solid lubricant material. It can be both used as a monolithic coating [2, 

67] [Error! Bookmark not defined., Error! Bookmark not defined.] or as a top layer 

coating in a multilayer system [Error! Bookmark not defined., Error! Bookmark not 

defined.]. However, its machining performance is less than the carbon based coatings 

[60].

Rechberger et al. [68] evaluated the performance o f  M 0 S2 coated HSS drills in 

machining wrought Al-Mg alloy, Al-7wt%Si and Pt-5wt% Cu under lubricated 

conditions. They observed that M0 S2 coated HSS drills produced smoother surfaces and 

required less torque to drill. The M 0S2 coating performed better at high production rates. 

In a slotting operation for cast aluminum workpieces (Al-7wt% Si alloy) a tool life 

improvement o f over 50% was obtained with this soft coating.

2.4. Review of the Tribological Behaviour of the Diamond-like Carbon Coatings

As indicated by the studies reviewed in Section 2.3, diamond and DLC coatings 

seem to be the most promising groups o f  coatings for dry and M QL machining o f Al 

alloys. For this reason, a detailed review o f the studies on the tribological behaviour o f 

DLC coatings will be given in this section.
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DLC coatings have been attracting scientific and industrial attention because o f 

their low COF and wear rates. They have found application in a variety o f  areas like hard 

discs, bearings, seals, forming and cutting tools. In ambient conditions, aluminum does 

not tend to adhere to DLC surfaces. For example, using a ball-on-flat reciprocating tester 

(Figure 2.17), M urakawa and Takeuchi [69] tested r f  plasm a CVD deposited 

hydrogenated DLC coatings with and without Si (coated on WC-Co balls) against 1100 

Al flats in dry sliding conditions in ambient air. The authors showed that adhesion o f  Al 

to the DLC coating without Si occurred only at the max applied load o f  80 N within the 

test load range (20-80 N) whereas the Si containing DLC showed Al pickup even at 20 N. 

The authors suggested that the chemical affinity o f  Al towards Si was the reason for the 

observed adhesion at the lower load. Due to the reduced adhesion tendency o f aluminum 

to DLC surfaces, DLC is suggested as a promising tool coating for applications like dry 

drilling o f  Al alloys where the adhesion o f aluminum chips to the drill surface is a major 

problem.

The term DLC refers to a large group o f carbon-based coatings. DLC coatings can 

be produced using a variety o f  deposition techniques such as magnetron sputtering PVD, 

plasma-assisted chemical vapour deposition (PACVD), ion beam deposition, microwave 

plasma, pulsed laser, cathodic arc, etc. Depending on the deposition technique and the 

source materials (e.g. graphite, hydrocarbon gas, metal etc.), DLC coatings with very 

different structures and mechanical properties can be produced. Examples are amorphous 

carbon (a-C) with mainly sp bonds and tetrahedral amorphous (ta-C) with mainly sp 

bonds (Figure 2.18). When there is hydrogen in the structure o f  the DLC film it is 

denoted as a-C:H and ta-C:H. Similarly metal doped DLCs are shown as Me:C and 

Me:C:H. Detailed information about the production and characterization and properties 

o f DLC coatings can be found in a recent review by Robertson [70].

A great deal o f research has been done to understand the differences in the 

tribological behaviour o f various types o f DLC coatings. It has been shown that the 

friction and wear characteristics o f  these coatings strongly depend on the bond structure, 

namely the ratio o f  sp2 to sp3 bonds [70], hydrogen [71-75], and dopant (e.g. N, S, F, Si) 

contents [76-78]. The tribological behaviour o f the DLC coatings is also influenced by
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testing conditions, including temperature, applied load, speed [36, 79, 80], water vapour 

and other gaseous species in the test environment [81-85].

The formation o f a carbonaceous transfer layer on the contact surface o f the 

counterface material during sliding against different types o f  DLC coatings in certain 

environments has been well documented [80, 81, 86-88 ]. Friction induced structural 

changes (such as ordering o f  the amorphous carbon structure, graphitization) were 

reported at the sliding interface [89-92]. In his review Donnet [76] showed that proper 

doping o f  the DLC films with Si, F, N  and various metals improves the tribological 

behaviour o f DLC films. For example, doping with Si decreases the surface energy, the 

internal stress and COF o f the DLC films. Also the humidity dependence o f the metal- 

doped DLC films was found to be less than undoped DLC films.

Most tribological contacts generate frictional heat. In machining operations, much 

higher heat is released due to extensive plastic deformation during material removal (i.e. 

chip formation). Therefore, elevated temperature tribological performance o f  the DLC 

coatings is also an important selection criterion to be investigated. It has been shown that 

increasing the test temperature increases the wear rate o f  DLC coatings and there is a 

temperature limit above which the DLC coatings graphitize and oxidize heavily [93-97]. 

This temperature was found to depend on the deposition method, deposition parameters, 

consequently to the structure and the composition o f the DLC coating.

The following sections will give a detailed account o f the previous studies on the 

tribological behaviour o f the various types o f  DLC coatings and the influencing factors.

2.4.1. Effect o f Hydrogen Content o f the DLC Films

Several studies have shown that the presence o f  sufficient hydrogen in a DLC 

film is the most critical intrinsic factor determining its tribological behaviour in various 

environmental conditions [71, 74, 75, 98-101]. For example in vacuum, the DLC films 

containing a large amount o f  hydrogen (about 40 at. % H) have very low COF values 

(<0.01) and low wear rates (< lx l0 '8 mm3/m) [71, 73-74-101]. On the other hand, the 

non-hydrogenated DLC coatings (< 5 at. %) exhibit high COF values (0.5-0.6) and high 

wear rates in vacuum [71, 83]. The origin o f  the high COF o f  the non-hydrogenated DLC 

films in vacuum was attributed to the strong interactions o f  the “dangling bonds” o f
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surface carbon atoms with the counterface materials [71, 83, 101]. For the hydrogenated 

DLC coatings, hydrogen leads to the formation o f  C-H bonds and hence passivate the 

dangling carbon bonds on DLC surfaces, leading to low COF in vacuum [ 71, 102, 103].

The effect o f  hydrogen content on the tribological behaviour o f the DLC coatings 

was also shown in atmospheres other than vacuum. For example, the non-hydrogenated 

DLC films showed drastically reduced values o f  COF and wear rates in the presence o f 

water vapour compared to vacuum test conditions [82, 83, 86]. On the other hand, the 

presence o f water vapour in the test chamber caused higher COF and wear rates o f 

hydrogenated DLC films compared to those in the vacuum environment [82-85, 104- 

108].

Donnet and his colleagues [71, 98] showed that hydrogen in the test environment 

could help partially hydrogenated DLC coatings (34 and 40 at. %H) reach very low COF. 

The authors tested the friction behaviour o f  the plasma-enhanced CVD (PECVD) 

deposited DLC coatings with two different hydrogen contents (34 and 40 at. % H) [71]. 

Tests were done against a steel pin (AISI 52100) in a reciprocating sliding machine under 

vacuum, hydrogen and argon environments at 25°C and 150°C. Under vacuum, the DLC 

film with the lower hydrogen content (34 at. %) exhibited a low COF value o f 0.01 for 

100 cycles after which the COF increased to 0.6, whereas the film with the higher 

hydrogen content (40 at. %) maintained the very low COF value o f  0.03 throughout the 

test. When the lower hydrogen containing DLC (34 at. % H) was tested under a hydrogen 

gas pressure o f 1000 Pa, the COF did not increase as it did under vacuum and only 

reached 0.006 at the end o f  the test. However, the friction behaviour at a lower hydrogen 

pressure o f  100 Pa was similar to the vacuum test, i.e. the COF went to the high value o f  

0.6 after a short very low COF period. Repeating the same test at 150°C resulted in an 

even lower COF value o f  0.002 at the end o f  the test. Thus, the authors concluded that a 

very low COF could be attained only when there is enough hydrogen at the sliding 

interface and that elevating the test temperature lowers the COF due to the more efficient 

thermal-assisted diffusion o f  hydrogen towards the sliding surface.

Erdemir [74] compared the tribological behaviour o f PACVD deposited DLC 

films with different H/C ratios and a hydrogen-free DLC film against steel balls coated 

with the same type o f DLC coating. In dry nitrogen, the hydrogen-free DLC coating (H/C
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ratio o f  0) had a steady-state COF value o f  0.25 whereas the DLC film with the H/C ratio 

o f 10 exhibited a very low COF value o f  0.003-0.005. He suggested that the high COF 

for hydrogen-free DLC film is due to the interaction o f the o bonds o f carbon with the 

counterface material. In hydrogenated DLC film, sigma (a) bond interaction with the 

counterface was eliminated since open carbon bonds at the sliding interfaces were filled 

with hydrogen and hence a very low COF was achieved.

2.4.2. Transfer Layer Formation and Friction-induced Structural Changes

The formation o f  a carbonaceous transfer layer on the contact surface o f the 

counterface material during the sliding o f  different kinds o f  DLC coatings has been well 

documented [80, 81, 90, 109]. The easy shear o f this transfer layer was also quoted as one 

o f  the reasons for the low COF and wear rates o f  the DLC coatings [80, 81, 86-88]. The 

structure, composition, and thickness o f  the transfer layer have been found to depend on 

the loading conditions and the test atmosphere [90 ,110,111].

The change in the structure o f  the carbonaceous transfer layer is generally 

attributed to the friction induced structural transformations such as ordering o f the 

amorphous carbon structure, and the graphitization at the sliding interface [89, 90, 92, 99, 

110, 111].

Liu and Meletis [Error! Bookmark not defined.] were the first to present the 

evidence o f  graphitization o f  DLC coatings during dry sliding. Using a pin-on-disc 

machine they tested ion-beam-deposited DLC coatings (from methane precursor) against 

Ti-Al-4V pins in ambient air (30% RH). The transmission electron microscope (TEM) 

diffraction pattern o f  the as-deposited films revealed an amorphous structure with short- 

range sp3 domains. W hen the debris collected after 1000 m o f  sliding distance was 

examined, the diffraction pattern was similar to that o f  graphite. Thus, the authors 

concluded that as-deposited DLC had a distorted diamond cubic structure and 

transformed into graphite during sliding (friction induced graphitization). It was 

suggested that low friction observed during sliding is due to the low shear strength o f  the 

graphite planes.

The effects o f  sliding speed (0.06 and 1.6 m/s) and applied load (1 and 10 N) on 

the friction and graphitization behaviour o f ion beam deposited DLC coatings were
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studied by Liu et al. [79]. They found that increasing the sliding speed and the applied 

load decreased the COF and the wear o f the DLC coated disc tested against Zr02 . For 

example, at a sliding speed o f  0.06 m/s and an applied load o f 1 N the steady state COF 

was 0.18 whereas the COF dropped to 0.05 when the sliding speed and load increased to 

1.6 m/s and 10 N. The authors suggested that the sliding speed o f  0.06 m/s and the 

applied load o f  1 N  were not enough to promote graphitization, which is necessary to 

maintain low steady-state COF. It was suggested that a higher sliding speed eases the 

hydrogen release from the DLC structure by increasing the temperature at the asperities. 

The applied load was thought to shear and transform this hydrogen-released DLC layer 

into graphite [90].

Using an in situ Raman tribometer, Scharf and Singer [110, 111] observed that a 

transfer film quickly developed on the sapphire surface running against the DLC 

(C:H :Si:0) coatings deposited from siloxane precursor by PECVD method, and the 

tribosystem exhibited low COF values in the range o f  0.03-0.05. The COF increased 

when the transfer layer was removed. The Raman data showed that the transfer film was 

more mostly graphitic compared to the as-deposited coating (Figure 2.19).

Sanchez-Lopez et al. [92] studied the structural changes occurring during the dry 

sliding o f DLC coatings with different hydrogen contents (H/C varied from 0 to 10). 

Examination o f  the transfer layers on the counterface material (AISI 52100 steel balls) by 

Raman spectroscopy indicated the presence o f  a disordered graphite-like structure in the 

hydrogenated DLC coatings. However, using TEM  and electron diffraction, the transfer 

layer was found to be amorphous just like the as-deposited coating. Therefore, the 

authors suggested that these graphitic regions must be smaller than 2  nm since they could 

not detect any o f  the typical features o f nanocrystalline graphite by TEM and electron 

diffraction.

Voevodin et al. [89] studied the friction behaviour o f  pulsed laser deposited 

hydrogen-free DLC films in humid air, nitrogen and vacuum environments against 

sapphire and steel (440 C) balls. The films were did not contain hydrogen (less than 0.1 

at. %) and had mainly sp3 type bonding (ta:C). Raman spectra o f  the wear debris after 

1x10s cycles indicated the transformation from amorphous DLC to polycrystalline 

graphite. As an indirect proof o f  friction-induced graphitization, the authors increased the
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relative humidity o f  the test environment after 102 and 10s cycles. The increase in relative 

humidity after 1x10s cycles reduced the COF as observed typically in graphite-like 

materials [112-114].

2.4.3. Effect of Test Environment on the Tribological Behaviour of DLC Coatings

In an earlier work, Bowden [113] showed that clean surfaces o f diamond, graphite 

and carbon have high COF. Introduction o f  oxygen and/or water vapour greatly reduces 

the COF.

Kokaku and Kitoh [115] studied the effect o f  exposing DLC films to high 

atmospheric humidity on their tribological behaviour. RF-PECVD films deposited from 

benzene (CeHe) were exposed to 90% RH at 60°C for seven days. Compared to the as- 

deposited DLC film, the films exposed to high humidity showed higher COF (0.2 vs

0.39) in ambient air (50% RH) for the first 100 revolutions. By performing ESCA and 

EELS analyses, the authors detected C = 0  and COOH groups forming on the surface o f  

the film exposed to high humidity.

Miyoshi [104] studied the tribological behaviour o f  DLC films (with 44.4 at. %  

H) grown by PACVD method under different power densities (50 and 250 W). He 

observed an inverse relationship between the argon ion etching rate and the deposition 

power and concluded that the films deposited at high power were denser than those 

deposited at lower power. A lower COF o f 0.1 was observed in nitrogen than in air with 

40% RH where the COF was 0.2. The DLC coating deposited at 300 W power density 

was annealed at 700°C in vacuum. When this coating was tested in nitrogen and in air 

with 40% RH, the COF under air was initially lower than in nitrogen, different than the 

as-deposited coating. The author related this observation to the formation o f  a graphite 

layer on the surface during annealing. However, as the test continued the COF in air 

increased and was equal to the value for as-deposited coating. The annealed DLC coating 

failed after 14,500 passes in ambient air whereas it survived until 35,000 passes in 

nitrogen. Therefore, the author suggested that the wear and friction behaviour o f  the DLC 

coatings was dependent on interactions (mechanical and chemical) between the sliding 

pairs and the test atmosphere.
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Andersson et al. [82, 83] demonstrated the different effect o f  water vapour 

pressure on the friction behaviour o f  hydrogen-free and hydrogenated (39 at.%) DLC 

coatings tested against DLC coated steel (M 50) balls. Hydrogen-free DLC coatings had a 

COF o f 0.6 under vacuum. Introducing water vapour to the test environment decreased 

the COF to 0.07. For the highly hydrogenated DLC film the COF was 0.01 under vacuum 

and increased to 0.07 as water vapour was added to the system.

Donnet et al. [85] studied the role o f oxygen and water vapour on the tribology o f 

hydrogenated DLC films (42 at. %). Within the pressure range they worked (vacuum to 

6000 Pa), no significant effect o f oxygen on the COF value (0.01) o f  the DLC film was 

detected. For the effect o f  water vapour, similar to [83], they observed an increase in 

COF from 0.01 to 0.1 as the vapour pressure increased from zero to 500 Pa. The authors 

related the change in the COF with the thickness o f  the carbonaceous transfer film 

formed on the counterface material (steel). A considerable amount o f  transfer film had 

formed under vacuum whereas it got smaller and smaller as the pressure o f  water vapour 

increased. It was suggested that water vapour affects the kinetics o f the formation o f this 

carbonaceous transfer layer.

Zhang et al. [81] investigated the tribological behaviour o f  DLC films, deposited 

by PACVD method from C 6H6, in dry air, 0 2, N2 and vacuum environments against SiC. 

The wear rate under 0 2 was found to be more than 200 times higher than the wear rate 

under N 2. A small contact area covered with a transfer layer was observed on the SiC 

counterface ball for the test run in N2 where the COF was 0.06. For the test in 0 2, the 

COF was 0.1, the contact area was larger and it was rather clean. Therefore, the authors 

concluded that the friction and wear behaviour o f  DLC films was controlled by the 

transfer layer on the opposing surface, formation o f  which depended on the test 

atmosphere.

Jiang et al. [84] investigated the effect o f relative humidity on the tribological 

behaviour o f  DLC films against WC balls using a ball-on-disc machine. The DLC films 

were produced by a combination o f magnetron sputtering and PACVD methods and they 

were non-hydrogenated with mainly sp2 type bonding. The authors observed that 

regardless o f  the test speed (0.05 and 0.25 m/s), the wear rate o f  the DLC coatings
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decreased as the relative humidity increased (Figure 2.20). The role o f  water vapour was 

suggested as the passivation o f the fresh carbon surfaces via adsorption.

Jiang and Arnell [86] studied the effects o f sliding speed and sliding distance on 

the wear behaviour o f magnetron-sputtered DLC coatings. They showed that the variation 

o f the wear rate o f DLC coatings with sliding speed followed a U -shaped parabolic curve 

in the speed range (0.048 to 0.45 m/s) studied. The authors proposed a semi-quantitative 

relationship between the wear rate and the sliding speed assuming that the generation 

debris particles from micro-cracks was controlled by chemically activated interactions 

between environment and the atoms at the crack tip.

Heimberg et al. [36] performed reciprocating sliding tests on DLC coatings that 

were produced by PACVD method in hydrogen and hydrocarbon rich environment. DLC 

coated flats were run against DLC coated balls using a ball-on-flat tribometer in dry 

nitrogen. They were able to correlate the change in friction coefficient caused by different 

test speeds and time-delays with the kinetics o f gas adsorption onto carbon. Extremely 

low COF values in the range o f 0.003-0.008 were observed when the exposure time o f 

the DLC surface to dry nitrogen was kept below 5 seconds. The time period o f 5 seconds 

between the two contacts was not enough to adsorb sufficient nitrogen to change the 

friction behaviour. W hen the exposure time was increased using either a slower sliding 

speed or a longer time delay, the COF increased to the values typical o f DLC coatings 

under ambient air (0 .1).

2.4.4. Modelling the Dependency o f the Tribological Behaviour o f DLC and 

Graphite on the Sorption of Gaseous Species on Their Surfaces

As shown by the studies described in the previous section, the kinetics o f the 

interaction o f  the gaseous species with the sliding surfaces had great effect on the 

tribological behaviour o f  DLC coatings.

Dickrell et al. [51] developed a fractional coverage model for the adsorption and 

removal o f gaseous species in repeated sliding conditions (unidirectional and 

reciprocating). Their model relates the COF to the average fractional coverage o f  gaseous 

species under the pin contact. The validity o f  the model was verified with the COF
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behaviour o f  hydrogenated DLC coatings tested under various sliding speeds and time 

delays reported previously [36].

Similarly, Borodich and Keer [52] examined the applicability o f  some of the well 

known adsorption kinetics equations for the modelling the gas adsorption process on 

DLC films.

Brendle and Stempfle [35] developed a model that successfully simulates the 

friction and wear o f  graphite. They proposed a “triboreactor” model that works between 

the pin the disc at the time o f  each contact. Their model combines three mechanisms; i) 

one step embrittlement o f  graphite governed by the am ount o f  moisture within the 

contact, ii) the kinetics o f  water adsorption outside the contact that obeys Elovich 

equation and iii) the triboreactions between the water and active prismatic surfaces o f  

graphite debris.

2.4.5. Effect o f Test Temperature on the Tribological Behaviour of DLC Coatings

In the literature, there are several studies on the elevated temperature behaviour o f 

DLC coatings [93-97, 116, 117]. These studies indicate that DLC coatings do not perform 

well at high temperatures.

Vanhulsel et al. [97] studied the wear behaviour o f  PACVD produced a-C:H 

coatings (containing 35 at.%  H) against corundum balls using a low-amplitude oscillatory 

test machine. They found that the room temperature COF value o f 0.13 started to 

decrease at temperatures higher than 100°C reaching 0.07 at 300°C and the wear scars 

became larger as the temperature increased. Their room temperature tests on a previously 

annealed sample (16 h at 300°C) gave similar results to an unannealed sample. Therefore, 

they concluded that the tribological behaviour o f a-C:H coatings would change only
<5 *y

when they are exposed to load and heat simultaneously and structural changes (sp -sp 

change and/or dehydrogenation) are confined only to the top surface layer.

Krumpiegl et al. [96] tested three different DLC coatings (a-C, a-C:H and Ti- 

doped Ti-C:H) against M2 steel balls at elevated temperatures (up to 450°C) and under 

vacuum (10‘3 Pa). The DLC coatings showed low wear rates (< 2.7x1 O'7 mm3/N.m) at 

room temperature in ambient air. When the test temperature was increased to 450°C, the 

a-C failed in 10 m and other two failed in 100 m total removal from sliding tracks). The
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authors observed a drastic drop in hardness o f the coatings after heating them to 450°C in 

ambient air. This was thought to be related with the severe oxidation o f  the coating.

Liu et al. [95] studied the high temperature (up to 400°C) tribological behaviour 

o f  DLC films grown using CH4 gas in an RF-PACVD against alumina balls in a 

reciprocating tester. The wear rate increased by more than 10 times when the 

temperature was increased from 200°C to 300°C and the films started to peel o ff from the 

Si substrate above 300°C.

Using thermogravimetric and differential thermal analyses and Raman 

spectroscopy, Wang et al. [94] investigated the high temperature behaviour o f DLC films 

produced by combined PVD and PACVD processes. The authors found that DLC films 

disintegrated at 350°C due graphitic transformation and heavy oxidation.

Bremond et al. [117] performed elevated temperature pin-on-disc tests (up to 

400°C) on a-C:H (10% hydrogen estimated) coatings deposited on 100C6 (AISI 52100 

equivalent) steel discs by PACVD technique. They concluded that the failure o f  the DLC 

coating was due to the combined effect o f the oxidation o f  the coating and the softening 

o f the substrate.

The effect o f  vacuum annealing (up to 590°C) on the friction and wear behaviour 

o f DLC films produced by PACVD method at various temperatures and bias was studied 

by Grill et al. [116]. In humid air, no difference in the COF values between the as- 

deposited films and the ones annealed at different temperatures was found. However, the 

DLC films deposited at higher temperatures and biases showed higher wear resistance 

after annealing.

Gupta et al. [93] studied the friction and wear behaviour o f  diamond films at 25 

and 500°C in ambient air against alumina balls. The COF o f the polished film increased 

from 0.11 at 25°C to 0.28 at 500°C. The authors suggested that the increase in friction 

might be due to either desorption o f the hydrogen from the diamond surface, or formation 

o f tribological layers o f  alumina surface and/or to the increased fracture o f  alumina.

2.5. Remarks

The presented literature survey on the tribological behaviour o f  the DLC coatings 

showed the following:
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1. The friction and wear behaviour o f  DLC coatings strongly depends on the test 

environment.

2. The presence o f  sufficient amount o f hydrogen in the DLC film is the most 

critical intrinsic factor determining the tribological behaviour o f  DLC coatings in 

a given environment.

3. Sufficiently hydrogenated DLC coatings exhibit very low COF and wear rates in 

vacuum and inert gas environments. Introduction o f  oxygen and especially water 

vapour adversely affects their tribological behaviour.

4. DLC coatings without sufficient hydrogen generally show high COF and high 

wear rates in vacuum and inert gas environments. The presence o f  appropriate 

reactive gaseous species (such as water vapour in ambient conditions) in the test 

environment is necessary for them to have low COF and low wear rates.

5. The presence o f  the easy-to-shear carbonaceous material at the sliding interface is 

often accounted for the low COF behaviour o f  DLC coatings.

6 . Increasing the test temperature increases the wear rate o f  DLC coatings regardless 

o f  its content and structure.

7. There is a temperature limit above which the DLC coatings graphitize and oxidize 

heavily. This temperature depends on the deposition method, deposition 

parameters and consequently the structure and the composition o f  the coating.

8 . The mostly used counterface materials for the study o f  the tribological behaviour 

o f  DLC coatings were different types o f  steel (52100, 440C, M2, M50 etc.), 

ceramic based materials (WC-Co, AI2O3, SiC, Si3N4 etc.) or their DLC coated 

versions. As stated in the first chapter, the interest o f  this study is to develop a 

tool coating to be used during the dry machining o f  Al alloys. Therefore, the need 

for a detailed investigation o f  the tribological behaviour o f  DLC coatings against 

aluminum is clear.
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Figure 2.1. The plot o f  the COA values o f  the self-mated metal pairs with respect to their
hardness [13].
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F igure  2.3. Adhesive transfer o f  the slip tongue [18].

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a)

(e)

( f )

Figure 2.4. Adhesive transfer o f  the wedge [18].
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Figure 2.11. Proposed wear mechanism for the counter body against DLC film [56].
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b)

F igure  2.12. Diamond coatings deposited at a) 1183 K b) 779 K  [57].
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F igure 2.13. Chips produced when cutting with uncoated and DLC coated cemented 
carbide tools. Small and curled chips are easier to evacuate [58].
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F igu re  2.14. Experimental setup [64].
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F igu re  2.15. Test configuration [65].
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F igure  2.16. Test configuration [66].
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F igure  2.17. Tribometer used by M urakawa and Takeuchi [69].
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F igure 2.18. Various forms o f  carbon-hydrogen alloys [70].
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Figure 2.19. Raman spectra o f  the as-deposited DLC coating (DLN2) and its transfer 
films after running in humid air for 2x10 cycles and in dry air for 3 x l0 2 cycles [110].
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Figure 2.20. The effect o f  RH in air on wear rate o f  the DLC coating at sliding speeds o f 
0.05 and 0.25 m/s. Data for sliding in water is plotted at a RH o f 100% [84].

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 3

EXPERIM ENTAL METHODS AND MATERIALS

In the first part o f  this chapter, a description o f  the methods and analysis 

techniques used to characterize the materials tested throughout this work is given. Then, 

the coatings used in this work are described: their deposition history, mechanical, 

structural and surface characteristics are given. This is followed by the description o f the 

counterface materials and their properties. Then, the pin-on-disc tribometers used and the 

test conditions o f  the experiments are given. Finally, the tools and procedures used to 

evaluate the pin-on-disc tests including the calculation o f  wear rates o f  the coatings and 

the quantification o f  the material adhered to a coated surface are explained.

3.1. Characterization of Test Materials

3.1.1. Thickness Measurements o f Coatings Using Radial Sectioning Method

Radial sectioning is a conventional method to measure the thickness o f  coatings. 

This method can be applied to all systems where a noticeable colour or reflectivity 

difference exists between the coating and its substrate. In this technique, the coated 

surface is subjected to wear by pressing against a rotating sphere o f  diameter D (Figure

3.1.a). Abrasive suspension (usually diamond) is applied to the contact region between 

the rotating sphere and the coating surface to cause three-body abrasive wear o f the 

coated sample. This process results in a wear crater similar to the one shown in Figure

3.1.b for the diamond-like carbon coating deposited at 80 V bias (80-V DLC). By 

measuring the diameters o f  the inner (ID) and outer circles (OD), the thickness o f  the 

coating (t) can be calculated using the following geometrical relationship,

1
t = -  

2
V 4D 2 - I D 2 - V 4 D 2 - O D 2 Equation 3.1.

In this study, both CSM CALOTEST® and Philtec 2015 Sectioner machines 

located at General M otors Global Research and Development Center in Warren, 

Michigan, USA (referred as the GM R&D Center thereafter in the text) were used to
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measure the thickness o f  the coatings tested. The CSM CALOTEST® uses hardened 

steel balls o f different diameters. The Philtec 2015 uses abrasive diamond coated discs.

3.1.2. Mechanical Property Measurement Tools

3.1.2.1. Rockwell Hardness Measurements

A Rockwell Macromet® (Model 1800-5100T) hardness tester at the University o f 

Windsor was used for the hardness measurements o f  the pin materials and M2 tool steel 

substrates in Rockwell B (Rb) and C (Rc) scales. Rockwell B scale uses a 1.588 mm (1/16 

in.) diameter WC ball under a 100 kg load. A conical diamond indenter is used in 

Rockwell C scale under a major load o f 150 kg.

3.1.2.2. Vickers M icro Hardness Measurements

A Buehler Micromet II® (Model 1600-9000) hardness tester at the University o f  

Windsor was used to measure the hardness values o f the pin materials in Vickers scale 

(HV). The indentations were made using a square-base pyramid (Vickers) indenter under 

a load o f 100 g.

3.1.2.3. Nanoindentation of Coatings

An MTS Nano indenter XP located at GM R&D Center was employed to measure 

the hardness and elastic modulus values o f  the samples using nanoindentation. In this 

technique, an indenter is loaded and unloaded in to a sample to a certain depth (hmax) or 

load (Fmax) in a controlled manner. The most commonly used indenter shape for 

nanoindentation measurements is a three-sided pyramidal diamond called as the 

Berkovich indent. The variations o f the load and displacement values during the entire 

loading and unloading processes are recorded. As an example, the indentation load- 

displacement curve for the diamond-like carbon coating deposited at 60 V bias (60- 

VDLC) is shown in Figure 3.2. The hardness and elastic modulus values o f a sample are 

extracted from its indentation load-displacement curve using the analysis methods 

developed by Oliver and Pharr [118] and Doerner [119]. The values reported in this 

dissertation were calculated according to the Oliver and Pharr procedure. This analysis 

requires the knowledge o f  the area function o f the indent, i.e. the expression o f the

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



contact area (A) o f  the indent in terms o f the distance from its tip (h). The area function 

o f  a perfect Berkovich indent is A=24.5h2. Indentation o f  a sample o f  known hardness 

and elastic modulus (for example fused silica) is used to correct the area function for the 

bluntness o f  the tip.

The hardness H o f  the sample can simply be calculated from the ratio o f  the 

maximum applied load Fmax to the contact area o f  the indent:

jj  _  Jjrax. Equation 3.2.

To calculate the elastic modulus o f  the sample, the slope o f  the initial part o f  the 

unloading curve is used,

- - pdh
2

E*VA Equation 3.3.

Here, the expression E* is generally called as the combined modulus. The elastic 

modulus o f  the sample (Es) is then calculated using the following relation,

- 4  = - 1 ) + VJ  Equation 3.4.
E* E : E.

where Ejand Vj are the elastic modulus and the Poisson’s ratio o f  the indent and vs is the 

Poisson’s ratio o f  the sample. Detailed information on the analysis and modelling o f  the 

indentation process can be found in a recent review by Cheng and Cheng [120]. During 

the nanoindentation measurements o f the coatings, the maximum depth o f indentation 

( h m a x )  was kept less than 10% o f the total thickness o f  the coating in order to minimize 

the substrate effect.

3.1.3. Structural Characterization Methods

3.I.3.I. X-ray Diffraction
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In this study, a Rigaku DMAX-1200 X-ray diffractometer at the University o f 

Windsor and a Siemens D-500 diffractometer at the GM R&D Center, both equipped 

with Cu Ka (X = 1.5406 nm) source tube, were used for the X-ray diffraction studies o f 

the test materials.

3.I.3.2. R am an Spectroscopy

Raman spectroscopy is a technique that uses light to obtain structural information 

o f materials. It is the most suited method to investigate the bonding structure o f  the DLC 

coatings since X-ray diffraction provides very limited information about these materials 

[70]. Raman effect can be explained as follows: W hen a beam o f light is sent to a 

substance, most o f  the light is elastically scattered, having the same wavelength as the 

incoming light beam. However, a small portion o f the light excites the molecules in the 

substance and hence is scattered inelastically. The Raman effect is the shift in the energy 

o f  the inelastically scattered light from the incident light by the energies o f molecular 

vibrations. Raman spectrum is basically the plot o f the intensity o f  the scattered light 

versus energy difference between the elastically and inelastically scattered light. Detailed 

information on Raman effect and its analysis can be found, for example, in [121].

Raman spectra o f  the DLC coatings tested in this work were obtained using the 

spectrometer at GM R&D Center. The principle source o f  excitation for the Raman 

experiments was a diode pumped, frequency doubled N d:Y V 04 solid state laser (Spectra 

Physics M illennia Vs). This laser had an emission wavelength o f  532 nm. The power 

incident on the sample was 100 mW. In order to minimize laser induced heating, the 

laser was imaged onto the sample with a cylindrical lens; the typical spot size was 50 pm 

wide by 3 mm tall, which gave a power density o f 66 W/cm . The experiments were all 

done in a backscattered geometry, and the line focus o f  the laser gave good coupling 

efficiency to the linear input slits o f  the spectrometer. The scattered light from the sample 

was collected with an f/1.4 lens and focused onto the slits o f  a 1 m double grating 

scanning monochrometer with a Cernzy-Turner configuration (JY U-1000). The signal 

was detected with a cooled photomultiplier tube, selected for less than 10 dark counts per 

second (Hamamatsu R-943). The instrument was set with a 300 pm slit width, giving 2 

cm '1 resolution at the diamond phonon energy (1332 cm '1).
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3.1.4. Surface Profilomctry

A Wyko HD 3300 optical surface profilometer at the GM R&D Center was used 

for the characterization o f the surface topographies o f  the tested and untested samples. 

This included the measurement o f the surface roughness o f  the samples and width and 

depth o f the wear tracks. The WYKO HD 3300 was used in the vertical scanning 

interferometry (VSI) mode. In this mode, unfiltered white light reflected from a reference 

mirror combines with the light reflected from the sample to produce interference fringes 

where the fringe with best contrast occurs at best focus. The device then measures the 

degree o f fringe modulation to acquire the surface profile.

3.2. Description of the Substrate Material and the Coatings

3.2.1. M2 Tool Steel Substrates

An M2 type tool steel bar o f  25 mm diameter and 3.00 m length was received in 

annealed condition. The nominal composition (wt.%) o f  M2 steel (AISI type M-2) is 

0.83% C, 4% Cr, 2% V, 6% W, 5% Mo, 0.27% Mn, 0.35% Si, and the balance Fe. The 

M2 steel bar was first cut into 1 cm thick discs (Figure 3.3). Then, the discs were 

subjected to a heat treatment procedure that consisted o f  austenizing at 1200°C for 3-4 

minutes followed by air cooling to 25°C and then tempering at 560°C for 120 minutes. 

The average hardness o f  the heat treated M2 steel discs was 60 ±2 Rc.

The grinding o f the M2 steel discs was accomplished in running water using SiC 

emery papers (120, 240, 400 and 600 grit). Water based diamond suspensions o f  6 and 1 

pm  in size were used to polish the M2 steel discs. The final surface roughness o f  the 

polished M2 steel discs as measured by the optical surface profilometer was 9 nm Ra. The 

optical images o f  the microstructure o f  the M2 steel disc is given in Figure 3.4.

3.2.2. Diamond-like Carbon Coatings

3.2 .2 .1 .60 and 80-V Diamond-like Carbon Coatings

DLC coatings were deposited on M2 tool steel discs (60 ±2 Rc) using a Teer UDP 

550 unbalanced magnetron sputtering system at the GM R&D Center. The deposition 

chamber o f  the Teer UDP 550 machine is 550 mm in diameter and 550 mm in height.
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The system has two DC power supplies. The vacuum system consists o f  a diffusion pump 

and a mechanical rotary pump.

Argon o f 99.999% purity was used to sputter from one Cr and two graphite 

targets (F igure 3.5). The discs were first cleaned with soap and then subjected to 

ultrasonic cleaning for 10 min before they were placed in the deposition chamber. Once 

in the deposition chamber, the discs were sputter cleaned for 30 minutes using Argon 

ions. The base pressure o f  the chamber before deposition was 1.33x1 O'4 Pa. During the 

deposition, the chamber pressure was kept around 0.133 Pa. First, a 0.2 pm thick Cr layer 

was deposited to facilitate bonding. Then, the power on the Cr target was decreased while 

the power on graphite targets was gradually increased to obtain a coating with a 

decreasing Cr content with thickness.

One set o f  samples was produced using a bias voltage o f  60 V (60-V DLC 

coating) and had a thickness o f  2.19 pm. The other set o f  coatings was deposited using a 

bias voltage o f 80 V (80-V DLC coating) and had a thickness o f  1.93 pm. The details o f 

the deposition conditions are given in T able 3.1.

At an indentation depth o f  50 nm, the hardness values o f  the 60-V DLC and the 

80-V DLC coatings were measured as 7.8 and 10.0 GPa, respectively. The elastic 

modulus values o f  the 60-V DLC and the 80-V DLC coatings were 100 and 142 GPa, 

respectively. The surface roughness (Ra) values o f  the DLC coatings were measured as 

34 nm for the 60-V DLC coating, and 39 nm for the 80-V DLC coating.

The Raman spectra o f  the as-deposited 60-V and 80-V DLC coatings (Figure 3.6) 

did not exhibit any sharp peaks, but had an unresolved broad band between 1000 and 

1800 cm '1, indicating that the film had an amorphous structure with mainly sp2 type 

bonding. The hydrogen content o f  the 60 and 80-V DLC coatings is expected to be no 

more than a few atomic percent as no hydrogen was used during their production. 

Therefore, 60 and 80-V DLC coatings are defined as Cr containing, sp rich, non

hydrogenated DLC coatings.
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T ab le  3.1. Deposition parameters o f  the DLC coatings

60-V and 80-V D LC T eer Coatings 

G raphit-iC ™

D eposition System
Teer UDP 550 Unbal. 

Mag. Sput.

Teer UDP 650 

Unbal. Mag. Sput.

T arge ts One Cr and two 

graphite

Two Cr and two 

graphite

Bias (V) 60 and 80 60

A rgon flow ra te  (seem) 20 10

C u rre n t on g rap h ite  ta rge t 

du rin g  the deposition o f the 

top layer (A m peres)

3.5 3.5

Base P ressu re  (Pa) 1.33xl0"J <2.66x10'J

D eposition P ressu re  (Pa) 0.133 0.133

S p u tte r  C lean ing  (min) 30 30
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3.2.2.2. T eer G raphit-iC ™  D LC Coatings

A set o f  DLC coatings (Teer Coatings Graphit-iC™ DLC) was received from Teer 

Coatings Ltd. (W orcestershire, UK). The deposition, characterization, and some aspects 

o f the tribological behavior o f  this DLC coating have been previously reported [122, 

123]. A Teer UDP 650 unbalanced magnetron sputtering system that consisted o f two Cr 

and two graphite targets was used to deposit coatings o f  1.73 pm thickness following a 

procedure similar to those employed for the 60 and 80-V DLC coatings (Table 3.1). 

Similar to the 60-V and 80-V DLC coatings, Raman spectrum o f the as-deposited Teer 

Coatings Graphit-iC™ (F igure 3.6) had a broad peak around 1500 cm '1, which indicates 

that the film was amorphous with mainly sp2 type bonding. Using the elastic recoil 

detection technique, the hydrogen content o f the Teer Coatings Graphit-iC™ was 

measured to be 1.28 at. %. The hardness and elastic modulus values o f  the Teer Coatings 

Graphit-iC™ DLC coatings were measured as 16 and 147 GPa, respectively. The Teer 

Coatings Graphit-iC™ DLC coatings had a Ra value o f  13 nm. This coating served as a 

benchmark to asses the tribological performances o f  the 60-V and 80-V DLC coatings 

and will be referred as “Graphit-iC DLC” thereafter in the text.

3.2.3. T iB 2 C oatings

TiB2 coatings were received from Argonne National Laboratory, Argonne, IL. 

They were deposited on M2 tool steel discs by magnetron sputtering ion plating 

technique. Two TiE$2 coatings with Ra values o f 16 and 83 nm were used to examine the 

effect o f  surface roughness. The thickness o f the TiB2 coating with 16 nm Ra was 4.18 

pm and that o f the TiB2 coating with 83 nm Ra was 3.03 pm . XRD patterns showed that 

the TiB2 coatings were crystalline as shown in F igure 3.7.a. The hardness and elastic 

modulus values o f  the TiB2 coating with a Ra value o f  16 nm were 43.5 and 491 GPa and 

those o f TiB2 coating with a Ra value o f 83 nm were 33.8 and 401 GPa, repectively.

3.2.4. C rN  C oatings

2.12 pm  thick CrN coatings were deposited using the Teer UDP 550 unbalanced 

magnetron sputtering system at the GM R&D Center. Two Cr targets were sputtered 

using a mixture o f  Ar and N 2 gases (ratio o f  the N2 flow rate to that o f Ar was 4) to
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deposit on M2 steel substrates. A Cr interlayer o f 0.2 pm thickness was deposited on M2 

steel substrate to facilitate bonding. The crystalline structure o f the CrN coatings was 

confirmed by the XRD (F igure 3.7.b). The hardness and elastic modulus values o f the 

CrN coatings were measured as 21.8 and 337 GPa, respectively. The CrN coatings had a 

Ra value o f  22 nm.

3.2.5. TiN  C oatings

TiN coatings o f  0.79 pm in thickness were received from Chrisbo Inc 

(Mississauga, Ontario). They were deposited on polished M2 steel discs using cathodic 

arc evaporation machine. A Ti target and N 2 gas were used for the production. The base 

pressure o f  the cham ber before deposition was lx lO '3 Pa and it was kept at 2.0x1 O'2 Pa 

during deposition. XRD pattern o f  the TiN coatings indicated that the coatings were 

crystalline (F igure 3.7.c). The hardness and elastic modulus values o f the TiN coatings 

were measured as 13.9 and 278 GPa, respectively. The TiN coatings had a Ra value o f 43 

nm.

3.2.6. TiAIN C oatings

TiAIN coatings o f  0.82 pm thickness were received from Chrisbo Inc 

(Mississauga, Ontario). They were deposited on polished M 2 steel discs using cathodic 

arc evaporation technique. A solid Ti-Al target was used in N 2 atmosphere for the 

production. The base pressure o f  the chamber before deposition was 1x10’ Pa and it was 

kept at 5 .0x l0‘2 Pa during deposition. XRD pattern o f the TiAIN coatings is given in 

F igure 3.7.d. The hardness and elastic modulus values o f  the TiAIN coatings were 

measured as 14.2 and 257 GPa, respectively. The TiAIN coatings had a Ra value o f  32 

nm.

3.2.7. T iCN  C oatings

TiCN coatings o f  0.87 pm thickness were received from Chrisbo Inc 

(Mississauga, Ontario). They were deposited on polished M2 steel discs using cathodic 

arc evaporation technique. For production, a Ti target was used in a mixture o f N2 and 

C2H2 (acetylene) atmosphere. The base pressure o f  the chamber before the deposition
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was 1.0x1 O'3 Pa and it was kept at 1.0x1 O’2 Pa during the deposition. The crystalline 

structure o f the TiCN coatings was confirmed by XRD (Figure 3.7.e). The hardness and 

elastic modulus values o f  the TiCN coatings were measured as 15.0 and 250 GPa, 

respectively. The TiCN coatings had a Ra value o f 23 nm.

Some o f the physical properties o f  the coatings used in this work are summarized 

in Table 3.2.

3.3. Description o f 319 A1 Alloy Counterfaces and other Counterface Materials 

3.3.1.319 A1 Alloy Pins

Tribological behaviour o f  non-hydrogenated DLC coatings were investigated 

against 319 A1 alloy because o f  its wide application in automotive industry. Pins o f  319 

A1 alloy composition were made by drawing the molten alloy at 702°C into 4 and 5 mm 

diameter glass tubes. Following the solidification, the rods were heat treated in air to T5 

condition (200°C for 8 hours). The rods were then cut to pins o f  15 mm in length. One 

end of the each pin was rounded to have a curvature o f  4 mm in diameter. The chemical 

composition o f  the alloy, determined by inductively coupled plasma-atomic emission 

spectrometry at the GM R&D Center, is given in Table 3.3. The optical images showing 

the microstructure o f  the 319 A1 pins are given in Figure 3.8. Graff-Sargent Reagent 

consisting o f  15.5 ml nitric acid, 0.5 ml hydrofluoric acid, 3.0 g chromium trioxide and 

84.0 ml distilled water was used to etch the 319 A1 samples for microstructural 

investigation. The average hardness o f the 319 A1 pins was 91 H Vioo (33.87 Rb).

3.3.2. Other Counterface Materials: Al, Cu, Ti, AI2O3 and WC

In addition to 319 Al, rods o f Al (1100 Al, 99+wt. %), Cu (99.9+ wt. %), and Ti 

(99.3+wt. %) were also tested against the non-hydrogenated DLC, CrN and TiB2 

coatings. Similar to the 319 Al pins, 5 mm diameter rods o f  these metals were cut to pins 

o f 15 mm in length and one end o f the each pin was rounded to have a curvature o f  4 mm 

in diameter (Figure 3.9). The hardness values o f the Al, Cu, and Ti pins were 33.9,

110.1, and 209.4 FIV100 respectively. The optical images revealing the microstructures o f 

the Al, Cu, and Ti pins are given in Figures 3.10.a-c.
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For comparison purposes, AI2O3 (ruby sapphire type) and WC-Co balls o f 3.175 

mm (1/8 in.) diameter were also used in some tests. The hardness values o f the 

counterface materials used in this work are given in T able 3.4.

T ab le  3.2. Properties o f  the coatings

SA M PLE
H

(GPa)

E

(G Pa)

Ra

(nm )

Thickness

(pm)

T ee r Coatings 

G raphit-iC ™
16.0 147 13 1.73

60-V DLC 7.8 99 34 2.19

80-V D LC 10.0 142 39 1.93

TiB 2, 16 nm  Ra1 43.5 491 . 16 4.18

TiB 2, 83 nm  Ra1 33.8 401 83 3.03

C rN 2 21.8 337 22 2.12

TiN 3 13.9 278 43 0.79

TiAIN3 14.2 257 32 0.82

TiC N 3 15.0 . 250 23 0.87

1 Argonne National Lab, Argonne, IL, USA

2 General M otors R & D  Center, Warren, MI, USA

3 Chrisbo Co., Mississauga, ON, Canada
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T ab le  3.3. Chemical composition (wt. %) o f  the 319 Al pins

%  Si %  Cu %  Fe %  M g %  Zn %  M n %  Ni %  Ti %  Al

6 3.5 0.26 0.08 0.01 <0.01 <0.01 0.08 Balance

T ab le  3.4. Hardness values o f  the counterface materials.

M aterial

H ardness

(HV)

319 Al 91.0

Al 33.9

A I 2 O 3  (sapphire) 2300

Cu 110.1

Ti 209.4

W C-Co 1550
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3.4. Pin-on-disc Tribometers

3.4.1. High Temperature Tribometer

The high temperature tribometer (CSM, Switzerland) at the University o f 

Windsor was used for most o f  the pin-on-disc tests in ambient air (Figure 3.11). This 

tribometer is connected to a  computer that controls the sliding speed using the number o f 

revolutions per minute o f  the driving motor. The test duration can be determined as the 

total number o f revolutions, sliding distance or time elapsed. A computer controlled 

heating element underneath the disc holder provides heating for the elevated temperature 

tests (up to 800°C).

A typical procedure for a pin-on-disc test is as follows: First the pin and disc 

materials are cleaned in ultrasonic acetone bath and placed in the appropriate holders. 

Then, the diameter o f  the sliding track is adjusted using the gauge. The friction arm is 

levelled horizontal for precise loading. The test load is applied on top o f  the pin holder. 

All test information (sliding speed, test duration, test temperature, file identification etc.) 

are keyed into the computer program and the test is started (Figure 3.12). The friction 

force is measured from the very small deflections o f  the friction arm. This tribometer is 

also capable o f  measuring the electrical contact resistance between the pin and the disc 

materials and the depth o f  the sliding track.

3.4.2. High Temperature Vacuum Tribometer

The high temperature vacuum tribometer (CSM, Switzerland) at the GM R&D 

Center (Figure 3.13) was used for the pin-on-disc tests in vacuum, various gases (Ar, He, 

N2, 60 vol. % He- 40 vol. %  H2), and air with controlled humidity (85% RH). This 

machine is a vacuum configured version o f  the high temperature pin-on-disc tribometer 

described in the previous section. The vacuum system consists o f  turbo and mechanical 

pumps that could reach vacuum levels down to lx lO '5 Pa. Pumping, venting and the 

vertical motion o f  the chamber closure/lid operations are controlled via the touch panel 

on the front face o f  the tribometer control unit.
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3.4.3. ISC 450 Tribometer

The ISC 450 model pin-on-disc tribometer from Implant Sciences (now Falex 

Co., Sugar Grove, IL, USA) was used for most o f the pin-on-disc tests presented in 

Chapter 4, which were done to study the transfer behaviour o f  the 319 Al alloy to TiB2, 

CrN, TiN, TiAIN and TiCN coatings. This machine has a heating module that enables 

high temperature testing up to 600°C. A plastic cover w ith a gas inlet was used to define 

the test atmosphere.

3.5. Conditions

3.5.1. Loading Conditions

A constant load o f  5 N  was used in all pin-on-disc tests (Figure 3.14). The linear 

sliding speed o f  0.12 m/s was commonly used. This was achieved by running tests at a 

rotational speed o f  125 revolutions per minute (rpm) on a  19 mm diameter sliding track. 

To investigate the effect o f  sliding speed, linear sliding speeds o f 0.02 m/s and 0.65 m/s 

were also used in some tests. The linear sliding speed o f  0.02 m/s was achieved using a 

rotational speed o f 25 rpm on a 13 mm diameter sliding track. A rotational speed o f  575 

rpm on a 21.6 mm diameter sliding track produced a linear sliding speed o f  0.65 m/s.

The total sliding distance used in a particular test depended upon the purpose o f 

that test. For example, a  sliding distance o f  18 m (3 x l0 2 revolutions at 0.12 m/s) was 

used when the main focus o f  the test was to determine the amount o f adhesion and 

material transfer. Longer sliding distances such as 180 m (3x l03 rev.) and 600 m ( lx l0 4 

rev.) were chosen when the aim was, for example, to cause a comfortably measurable 

amount o f  wear o f the coating in that particular test condition.

3.5.2. Control o f Test Atmosphere

An aqueous potassium chloride (KC1) solution was placed in the test chamber to 

create air with 85% RH [124]. For the tests under argon, helium and nitrogen, the 

chamber was evacuated to 3.99x1 O'3 Pa or lower before the gas was introduced. For the 

tests in 60% He- 40% H2, prior to the introduction o f  the gas, the chamber was evacuated 

to 3.99x1 O'3 Pa, vented with N 2, and evacuated to the same vacuum level again to

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



minimize any residual air and water vapour in the chamber. Unless stated otherwise, all 

non-vacuum tests were performed at 1 atmosphere pressure.

3.6. Evaluation Tools and Procedures

3.6.1. Optical and Scanning Electron Microscopy, Energy Dispersive Spectroscopy

Optical microscopy o f the samples was performed using the Zeiss Axiovert 25 CF 

inverted microscope at the University o f Windsor. A scanning electron microscope 

(SEM, JEOL JSM-5800LY) at the University o f  W indsor, equipped with an energy 

dispersive spectroscope (EDS, Kevex Super Quantum) was used to characterize the pin 

and disc surfaces.

3.6.2. Quantification o f the Amount of Adhesion

The following methodology was used to evaluate the material transfer from the 

pins to the coatings:

1) The wear track was examined using SEM. Two SEM images were taken from 

each location o f  wear tracks as shown in Figure 3.15. One image was taken in secondary 

electron imaging (SEI) mode and the other in backscattered electron imaging (BEI) 

mode.

2) An image analysis program (Image Pro from M edia Cybernetics Inc., Silver 

Spring, MD) was used to determine the percentage o f the area covered by adhered 

aluminum and debris for each image. For each sample, the reported values are the 

averages o f  the values obtained from these images. The contrast difference o f  the SEI 

images were used to differentiate the aluminum adhered to the surface from the loose 

debris particles. In the BEI mode, elements with larger atomic masses appear brighter 

than elements with smaller atomic masses. Consequently, the BEI images provided a 

good way to differentiate the substrate material from the adhered aluminum and the 

debris. The advantage o f  using the two imaging modes simultaneously is shown in 

Figures 3.16.a & b, which show the SEI (Figure 3.16.a) and BEI (Figure 3.16.b) SEM 

images o f the sliding track o f the M2 tool steel. The debris particles were essentially 319 

Al aluminum with some degree o f  oxidation that occurred during transfer. They are 

readily distinguished from the adhered aluminum in the SEI mode, while the contrast
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between the M2 substrate and the rest (adhered aluminum and debris) is more clearly 

defined in the BEI mode.

3.6.3. M easurem en t o f W ear R ates

In this work, the wear rate (w) o f a sample is expressed as mm3/m  i.e. the volume 

o f material lost per unit sliding length. For a circular w ear track, the volume o f the

material removed can be calculated by multiplying the average cross-sectional area 

(Across) o f the wear track with the perimeter o f  a circle (2.7I.R) passing through the middle 

o f the cross section o f  the wear track (F igure 3.17). Hence:

The average A cr0ss is found by measuring the A croSs o f  the wear track at twelve 

different locations along the wear track using the optical surface profilometer described 

in section 3.1.4. As an example, the surface and cross-sectional profiles o f  a region o f the 

wear track on 60-V DLC coating tested against 319 Al at 120°C are given in Figures 

3.18.a and b. The wear rate is,

W ear volume = 2 • % • R  • A cross Equation. 3.5

W ear volume
where Equation. 3.6w =

Sliding distance

Sliding distance = 2- 7t- R- Number o f revolutions. Then,

w  = cross

2 • 7r • R  • Number o f  revolutions

Cancellation o f  the “2- t i - R ” terms gives,

w  =
Number o f  revolutions

cross Equation. 3.7
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F igure 3.1. a) Side view o f the radial sectioning configuration. A hard rotating sphere is 
pressed against the coated sample and abrasive suspension is fed to the contact region to 
remove material by three-body abrasive wear, b) Top view o f the resulting worn area o f 
the diamond-like carbon coating deposited at 80 V bias (80-V DLC). The diameters o f 
the inner and outer circles (ID and OD) are measured to calculate the coating thickness (t) 
using Equation. 3.1.
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F igure 3.2. The indentation load-displacement curve for the diamond-like carbon coating 

deposited at 60 V bias (60-VDLC).
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Figure 3.3. Optical image o f  a typical M2 tool steel disc on which the coatings used in 
this study were deposited. The diameter and the thickness o f  the M2 tool steel discs were 
25.4 mm and 10 mm respectively.
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a)

F igure 3.4. Optical images o f  the microstructure o f  the M2 tool steel substrate. The small 
brighter/whiter particles are various carbides o f Cr, V, W and Mo.
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Figure 3.5. A schematic drawing o f  the configuration o f  the Teer UDP 550 unbalanced 
magnetron sputtering system used to deposit DLC coatings. The letters N  and S denote 
the magnets o f  the sputtering units.
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Figure 3.6. The Raman spectra o f  the as-deposited Teer Graphitic™, 60-V and 80-V 
DLC coatings.
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F igure 3.7. X-Ray diffraction patterns o f  the studied coatings; a) TiB2, b) CrN.
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F igure 3.7. X-Ray diffraction patterns o f  the studied coatings; c) TiN, d) TiAIN.
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F igure 3.7. X-Ray diffraction patterns o f  the studied coatings; e) TiCN. Some peaks that 
belong to M2 steel substrate are also indicated.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- Intermetallics . \  \
Al matrix

F igure  3.8. Optical images o f the microstructure o f  the 319 Al pins.
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F igure 3.9. Cu, Al and Ti pins used in this study
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Figure 3.10. Optical images o f  the microstructures o f the a) Al, b) Cu pins.
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Figure 3.10. c) The optical image o f  the microstructure o f  the Ti pins.
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F igure 3.11. The high temperature tribometer (CSM, Switzerland) at the University o f 
Windsor.
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F igure 3.12. Setup screen o f the computer program for pin-on-disc tests.
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Figure 3.13. The high temperature vacuum tribometer (CSM, Switzerland) at the GM 
R&D Center.
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F igure  3.14. Schematic o f  the pin-on-disc configuration.
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F igure  3.15. SEM images were taken at the locations shown on the sliding track.
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Figure 3.16. a) SEI and b) BEI mode SEM images o f a section o f  the sliding track o f the 
M2 steel when tested in ambient air at 0.12 m/s sliding speed for 18 m. Dark particles are 
the transferred aluminum and the light particles are the debris.
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Figure 3.17. Measurement o f  the w ear rates.
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F igures 3.18. a) The surface, and b) the cross-sectional profiles o f  a region o f the wear 
track on the 60-V DLC coating tested against 319 Al at 120°C.
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CH A PTER 4

A D H ESIO N  AND TRA N SFER B EH A V IO U R  O F  319 Al A LLO Y  TO

INDUSTRIA L CO A TIN G S

In this chapter, the material transfer and adhesion phenomena during dry sliding 

contact between 319 Al and some industrial coatings deposited on M2 tool steel 

substrates were investigated using a pin-on-disc tribometer. The aim was to rank the 

available industrial coatings according to the adhesion tendency o f  aluminum to their 

surfaces. The tested coatings consisted o f  the following: 1) TiB2, 2) CrN, 3) TiN, 4) 

TiCN, and 5) TiAIN. As a reference, uncoated M2 steel discs were also tested. The 

effects o f sliding speed, sliding distance, test temperature and working atmosphere on the 

adhesion and transfer behaviour o f aluminum to these coatings were studied. In order to 

focus on the initial transfer behaviour, sliding distances were kept short. The effect o f 

surface roughness was examined using two TiB2 coatings that have the lowest and 

highest Ra values among the coatings tested in this chapter; one with a Ra value o f  16 nm 

(smooth TiB2) and the other with a large Ra o f  83 nm (rough TiB2). The morphology o f 

sliding tracks was examined using SEM. Following the procedure described in Section

3.6.2, the coatings were ranked according to the amount o f  aluminum transferred and the 

loose debris generated in each test condition.

4.1. Pin-on-disc Tests in A m bien t a ir

Under ambient air (33-51% RH), two different test speeds o f 0.12 and 0.60 m/s 

were employed. The details o f  the experimental setup and test conditions are given in 

Sections 3.4.3 and 3.5.1. The coatings were ranked according to the amount o f aluminum 

transferred to their surfaces. The ranking o f the coatings at 0.12 m/s sliding speed is 

given in F igure 4.1. TiB2 coatings picked up the lowest am ount o f  aluminum among the 

tested coatings. This was the case for both smooth TiB2 (2.7% coverage) and rough TiB2 

(3.4% coverage). F igures 4.2.a and b show the SEM images o f  the sections o f  the sliding 

tracks o f TiB2 coatings with 16 and 83 nm Ra respectively. The wear tracks were covered 

by loose debris and aluminum adhered. The EDS analyses (Figures 4.3.a-c) showed that 

both the loose debris and the adhered aluminum pieces were significantly oxidized. The
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average size o f  the debris particles was in the vicinity o f  3 pm. The TiB2 coatings were 

followed by TiCN (5.7%) and uncoated M2 steel (12.2%) in terms o f  increasing amount 

o f aluminum adhered to their surfaces. TiAIN (23.5%), TiN (24.7%) and CrN (36.4%) 

picked up more aluminum than the uncoated M2 steel. The wear track o f  the CrN coating 

was covered with the largest amount o f  aluminum (Figures 4.4.a and b). The adhered Al 

pieces had considerable oxygen content as verified by the EDS analysis given in Figure

4.4.c.

The TiB2 and TiCN coatings differed from the rest o f  the tested materials in terms 

o f  the amount o f  oxidized loose debris generated on the coated surfaces as shown in 

Figure 4.1. For these two coatings, the amount o f  debris generated on their surfaces 

exceeded the amount o f  aluminum transferred, whereas for the other coatings the amount 

o f the debris was always less than the amount o f  aluminum adhered. It can be noted that 

for TiN and CrN, which were the two coatings that showed the largest amount o f  

aluminum transfer, the amounts o f  loose debris formed on their contact surfaces were the 

smallest (Figure 4.1). The mechanism o f debris generation will be discussed in Section

4.5.1.

4.2. Effect o f Speed

W hen the sliding speed was increased from 0.12 m/s to 0.60 m/s, it is observed 

that the TiB2 coatings once more picked up the least amount o f  aluminum regardless o f  

the surface roughness (1.8% coverage for the smooth TiB2 coating and 1.3% for the 

rough TiB2) coating. A comparison o f  the coating surface areas covered by transferred 

aluminum at these two speeds is given in Figure 4.5. As shown in Figure 4.5, TiB2 

coatings were followed by the TiCN (2.2%), TiAIN (6.2%), TiN (6.6%), M2 steel (8.7%) 

and CrN (15.1%) coatings in increasing order in the amount o f  aluminum transferred to 

their surfaces. The amount o f aluminum transferred decreased sharply compared to 0.12 

m/s for all materials. For example, for the TiAIN coating, the percentage o f  the contact 

area covered by aluminum decreased from 23.5% to 6.2%. For all test materials, the 

amount o f  oxidized loose debris generated also decreased considerably with increasing 

sliding speed as shown in Figure 4.6. The effect o f  sliding speed on the mechanisms o f  

adhesion, material transfer and debris generation will be discussed in Section 4.5.2.
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4.3. Pin-on-disc Tests in Argon

Under the argon atmosphere, the TiB2 coating with smaller Ra picked up the least 

amount o f  aluminum (0.7%), followed by TiCN (1.7%), CrN (3.5%), rough TiB2 (6.8%), 

TiN (6.8%), TiAIN (7.7%), and M2 steel (14.8%) as shown in Figure 4.7. More 

aluminum was transferred onto the M2 steel compared to other test conditions. The CrN 

coating picked up much less aluminum compared to the ambient condition (36.4% vs. 

3.5%). For all materials tested, the amount o f  debris generated under the argon 

atmosphere was also less than that in ambient air (Figure 4.8).

Figures 4.9.a-g show the COF curves o f  the samples tested under argon and 

ambient air. It was observed that the COF curves recorded in argon generally had less 

fluctuation than those in ambient air.

4.4. Pin-on-disc Tests at 160°C

When the test temperature was increased to 160°C, it was observed that the 

uncoated M2 steel picked up the lowest amount o f  aluminum (2.6%) (Figure 4.10). The 

TiB2 with 83 nm Ra ranked the second with 3.8% aluminum coverage. The other coatings 

ranked in the following order in terms o f  contact area covered by aluminum: TiCN 

(6.0%), CrN (6.2%), smooth TiB2, (6.9%) and TiN (7.7%). The largest amount o f 

aluminum transfer occurred to the TiAIN surface (9.9%). Except for the TiB2 and TiCN 

coatings, the amount o f  aluminum adhered to the contact surfaces o f the coatings was less 

than that at room temperature (Figure 4.10).

4.5. Discussion

4.5.1. Aluminum Transfer and Debris Generation under Ambient Atmosphere

The very small amount o f  aluminum transfer to the TiB2 surface can be related to 

its chemical inertness to aluminum [125, 126]. The reduced tendency o f  aluminum to 

adhere to TiB2 was also observed by Berger and his colleagues [64-66] when they studied 

material transfer tendency o f  AA7075 aluminum alloy against TiB2, TiN, TiAIN, and 

TiCN coated cylindrical samples (see Section 2.2.2 for the reviews o f these studies). 

There was either little [64] or no [65] aluminum adhered to the surface o f  TiB2 coated 

cylinders. Other coating surfaces exhibited high amounts o f  aluminum transfer as well as
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higher coefficients o f  friction. Also, the authors did not detect any wear o f  T ilh  when it 

was tested against the AA6063 aluminum alloy at 550°C under argon atmosphere using a 

block-on-ring machine [66 ].

Considering the nitride coatings in F igure 4.1, it is evident that TiCN behaves 

differently than TiAIN, TiN and CrN. The relatively small amount o f  aluminum transfer 

to the surface o f  TiCN compared to the others could be attributed to the presence o f  

carbon.

Formation o f  oxidized loose debris was the characteristic o f  the pin-on-disc tests 

in air with humidity regardless o f  the coating tested against 319 Al. The mechanism o f  

debris formation could be described in the following way: on each rotation o f  the coated 

disc a certain amount o f  material transfer occurs from the tip o f  the aluminum pin to the 

surface o f the coating. When the pin reaches the same point at the next rotation, one o f 

the three events may occur. Namely, i) more aluminum can stick on the top o f  the 

previously adhered aluminum, or ii) the adhered piece can back-transfer to the pin, or iii) 

the pin can remove the previously transferred aluminum, forming loose debris. Therefore, 

the source o f  the debris could be attributed to the material that was previously transferred 

to the coating surface. This idea was first proposed by Kerridge and Lancaster [12], and 

later used by the others [23, 27]. Kerridge and Lancaster [12] studied the transfer and 

wear o f  brass against a hard metal surface using radioactive tracers. They concluded that 

the wear process occurred in two steps: the transfer o f  metal from the wearing surface to 

the opposing surface and the formation o f  wear debris from the transferred layer on the 

opposing surface.

Based on the explanation provided by Kerridge and Lancaster [12] on the debris 

formation mechanism, an argument can be proposed to explain as to why the amount o f 

debris formed was very small for the CrN coatings compared to the amount o f  aluminum 

adhered to its contact surface (F igure 4.1). On the contact surface o f  CrN, the aluminum 

particles transferred remained intact as opposed to turning into loose debris. This 

behavior was in contrast with that o f the TiB2, which as previously stated is inert to 

aluminum, and that o f  TiCN, in which carbon may serve to restrict adhesion. 

Consequently, the bonding between the adhered aluminum and CrN coating should be 

relatively strong. Unfortunately, at the present time our knowledge on the composition
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and properties o f the interface between CrN and the adhered aluminum particles is very 

limited. A thin layer (1-2 nm) o f  aluminum oxide (AI2O3) always forms on the surface o f 

the aluminum in the presence o f  oxygen in the atmosphere. On the other hand, aluminum 

hydroxide (Al(OH)3) forms on top o f this layer when water vapour is present [127]. 

Therefore, it is possible that a bond is formed between the CrN coating and the aluminum 

hydroxide or aluminum oxide compounds on the surface o f  aluminum rather than 

between CrN and aluminum.

As shown in Figures 4.9.a-g, all materials exhibited large fluctuations in the 

measured values o f the COF during sliding in ambient air. The fluctuations in each curve 

may be due to the debris generation, and back and forth material transfer between the 

aluminum pin and the coated disc, which involve chemical reactions with the 

environment, mainly oxidation o f  the surfaces and the transferred material [64].

4.5.2. Effect o f Sliding Speed on Aluminum Transfer and Debris Generation

The decrease in the am ount o f aluminum transferred to the surfaces o f the 

coatings with increasing sliding speed can be explained by; i) the dynamics o f  the stick- 

slip behaviour, and ii) kinetics o f  the interaction o f the surfaces with the reactive gaseous 

species in the test environment. As the test speed increases, the probability o f  sticking 

should decrease because the length o f contact time spent between the pin and any given 

point on the sliding track decreases. As mentioned in the Section 2.1.1., Diss and Brendle 

[21] reported a decrease in the amount o f material transferred with an increase in the test 

speed in their study o f  the transfer o f  graphite to steel. They attributed this inverse 

relationship to the kinetics o f  w ater adsorption on the sliding track. It was suggested that 

when the pin travels through a  point in the sliding track, it removes the species (water) 

adsorbed on the surface. Once the pin passes over a certain point, the adsorption begins 

again and continues until the next visit o f the pin. Increasing speed decreases this 

exposure time and hence less water is adsorbed on the surface. Since adsorbed water on 

the surface is thought to promote material transfer [43], the amount o f  material 

transferred should decrease as the amount o f  water adsorbed decreases.

4.5.3. Effect o f Atmosphere on Aluminum Transfer and Debris Generation
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More aluminum was transferred onto the M2 steel surface under argon compared 

to the test in ambient air (14.8% vs. 12.2%) (Figure 4.7). This reveals the positive role o f 

the surface oxide layers on the steel surfaces in reducing the material transfer.

The amount o f  debris generated under argon atmosphere was also less than that in 

air for all materials tested (Figure 4.8). It can be stated that in general, reducing the 

oxygen and water vapour in the tribosystem caused a decrease in the amounts o f debris 

formation and the aluminum adhesion to the surface. As shown in Figures 4.9.a-g, the 

COF curves o f the samples tested under argon atmosphere were smoother compared to 

those obtained in ambient atmosphere. This is because under the argon gas atmosphere, 

there was less environmentally assisted chemical interaction between the sliding pairs. To 

elucidate this idea, the BEI SEM images o f the contact areas o f  the 319 Al pins, which 

were tested against TiCN coating under ambient air and under the argon gas are given in 

Figures 4.1 l.a  and b respectively. Considering that the BEI SEM images reflect the 

atomic mass differences so that the light elements appear darker, the darker areas in 

Figures 4.1 l.a  and b indicate the presence o f oxygen in aluminum. Contact area o f the 

pin tested in ambient air (Figure 4.1 l.a ) is darker than that tested under argon gas 

(Figure 4.1 l.b ). Therefore, it is reasonable to conclude that less oxygen was gathered on 

the contact area o f the pin tested under argon gas. The EDS spectra (Figures 4.12.a-d) 

obtained from the locations indicated on the SEM images (Figures 4.11.a and b) show 

the presence o f  oxygen and titanium on the contact surface o f  319 Al pin. Higher oxygen 

to aluminum signal ratios, 0.098 at location 1 and 0.096 at location 2, were obtained for 

the pin tested in ambient air compared to that tested in argon gas (0.061 at location at 3 

and 0.01 at location 4). Hence, the presence o f smaller amount o f  oxygen on the contact 

surface clearly indicated that there was less interaction o f  the sliding surfaces with the 

environment under the argon atmosphere.

4.5.4. Effect o f Temperature on Aluminum Transfer and Debris Generation

Compared to 25°C, the sharp decrease in the amounts o f  material adhered to the 

surfaces o f  M2 steel, TiAIN, TiN and CrN coatings at 160°C is thought to be related with 

the change in the water adsorption behaviour o f  these materials. With increasing 

temperature, the amount o f water staying adsorbed on the surfaces o f  the coatings

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



decreases [139]. Since the previous tests in ambient air and argon showed that water 

vapour and oxygen promote the adhesion o f  Al to these materials, the less amount o f  

adhesion at 160°C should be due to the less amount o f  adsorbed water on the coating 

surfaces at this temperature.

4.5.5. Effect o f Surface Roughness on Aluminum Transfer and Debris Generation

No correlation could be established between the surface roughness o f  a coating 

and the amount o f  aluminum transferred to its surface. For example CrN and TiCN 

coatings had similar surface roughness values o f  22 and 23 nm Ra respectively, as shown 

in Table 3.2. However, the percentage o f  the area covered by aluminum at 18 m o f 

sliding at 0.12 m/s sliding speed in ambient air was 36% and 6% respectively.

Somewhat surprisingly, TiEh coatings with very different surface roughness 

values (16 and 83 nm Ra) picked up almost the same am ount o f  aluminum namely, 2.7 

and 3.4%, at the end o f 18 m o f sliding in ambient air. The transfer behaviour o f  319 Al 

to the TiB2 coatings with two different Ra values was investigated in more detail to gain 

more insight about the role o f  surface roughness. Figure 4.13 shows the change in the 

area covered by the aluminum alloy as the number o f revolutions increased from 50 to 

1000 for smooth and rough TiB2. As the number o f  revolutions increased from 50 to 300, 

corresponding to sliding distances o f 3 m to 18 m, the amount o f aluminum picked up by 

the TiB2 coating with the low Ra increased only slightly from 1.2% to 2.7% (Figure 

4.13). The surface morphology o f  this coating tested for 50 rotations was almost 

featureless as shown in Figure 4.14.a. The rough TiB2 coating showed an interesting 

behaviour. When it was tested for 50 revolutions, about 60% o f  the sliding track was 

covered with a thin layer o f  aluminum as shown in Figures 4.14.b and c). However, after 

testing for 300 revolutions, only 3.4% o f the track was covered with aluminum (Figure

4.2.b). Therefore, aluminum particles, which were initially transferred to the coating were 

released and turned into loose debris as the test continued from 50 to 300 rotations. It is 

obvious that the cause o f the initial large material transfer was the high surface roughness 

o f the TiB2 coating. Since the bonding between the TiB2 coating surface and the 

aluminum is weak, the adhered thin layers o f  aluminum were turned into loose debris

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



particles as the sliding continued from 50 to 300 revolutions. At the end o f 300 

revolutions, the percentage o f  the area covered by debris was 7.1% for the rough TiB2.

The COF curves o f the tests mentioned above also indicate this interesting 

behaviour (F igures 4.15.a & b). For the rough TiB2 coating, the initial friction COF o f 

0.5 dropped to 0.30-0.36 after 70 revolutions (F igure 4.15.a). It then started to increase 

and reached 0.6-0.8 at 300 revolutions, which is similar to the COF o f smooth TiB2 

(F igure 4.15.b) at the same number o f revolutions. At this point, the surfaces o f both 

smooth and rough coatings were covered by similar amount o f  aluminum (2.3-3.5 %). 

The type o f  COF dependence depicted for smooth and rough TiB2 at 0.12 m/s was also 

observed for the tests performed at a higher velocity o f 0.60 m/s and those at 160°C.

4.6. Sum m ary and  R em arks

In general, the TiB2 and TiCN coatings exhibited the least amount o f  aluminum 

transfer to their surfaces compared to the other coatings (CrN and TiN, TiAIN). Some o f 

them performed worse than the uncoated M2 steel including TiN and CrN that exhibited 

the largest amount o f  aluminum transfer. However, the amount o f  loose debris generated 

on the surfaces o f these two coatings was small. Increasing the sliding speed from 0.12 to 

0.6 m/s led to a decrease in the amount o f aluminum transferred to the surfaces o f all the 

coating tested.

Increasing the test temperature to 160°C did not significantly change the amount 

o f aluminum transferred to TiB2 and TiCN coatings. However TiN, TiAIN, CrN and M2 

steel picked up significantly less aluminum compared to that at room temperature.

When tested under argon atmosphere, all coatings with the exception o f TiB2 

exhibited a sharp decrease in the amount o f  aluminum adhered to their surfaces. This 

suggested that the interaction o f  oxygen and water vapour with 319 Al and these coatings 

at the sliding interface promoted aluminum adhesion to these coatings. Debris formation 

mainly occurred in ambient air but not in an argon atmosphere.

The amount o f  aluminum transfer to the TiB2 coating was a weak function o f the 

environment. This behaviour was attributed to the high chemical stability o f TiB2. The 

surface roughness played a  critical role in aluminum transfer in the early stages o f sliding
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o f TiEh. The TiEh coating with a higher surface roughness had more aluminum transfer to 

its surface.

4.7. Outlook

The tests presented in this chapter showed that although there are significant 

differences among the coatings tested, none o f them totally prevented aluminum adhesion 

and transfer to their surfaces. These observations suggested that the coatings studied in 

this part o f  the work were not the most promising ones for implementation as tool 

coatings for dry machining o f aluminum. As anticipated, drilling o f  319 A1 alloy blocks 

using drills bits coated with these coatings at the GM R&D Center did not improve the 

tool life significantly [128]. As a result, the focus o f  the study were directed to a new 

potentially promising class o f coatings namely, diamond-like carbon (DLC) coatings.

In ambient conditions, transfer o f  aluminum to the surfaces o f  DLC coatings is 

generally not observed during dry sliding, which makes them more promising compared 

to the coatings studied in this chapter. The studies reviewed in Section 2.3 also indicate 

that carbon based coatings including DLC carry the highest potential to be implemented 

as tool coatings for dry and MQL machining o f  aluminum alloys.

As described in the Section 2.4, the tribological behaviour o f  DLC coatings varies 

enormously depending on their sp2/sp3 bond structure, hydrogen and dopant content. The 

information in open literature on the tribological performance o f  DLC coatings against 

aluminum is very limited. In addition, some o f  published studies lead to confusion due to 

the incomplete characterization o f tested DLC coatings in terms of, for example, 

hydrogen content. Therefore, the need for a systematic investigation o f  the tribological 

behaviour o f  well defined DLC coatings against aluminum was clear. C h ap te r 5, will 

present a comprehensive investigation o f the tribological behaviour o f  DLC coatings 

against aluminum.
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aluminum and loose debris when tested in ambient air (33-51% RH) at a sliding speed o f
0.12 m/s for 18 m o f sliding distance. The applied load was 5 N.
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Figure 4.2. SEM images o f  sections o f the sliding tracks o f  a) smooth (Ra= 16 nm) and 
b) rough (Ra= 83 nm) TiB2 coatings tested against 319 A1 for 300 revolutions (18 m) in 
ambient air (43% RH) at 0.12 m/s sliding speed. The applied load was 5 N. The white 
particles are the loose debris generated during sliding.
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a)

b)

F igure 4.4. a) SEI and b) BEI SEM images o f  a section o f  the sliding track o f the CrN 
coating when tested in ambient air (41% RH) at 0.12 m/s sliding speed for 18 m. The 
applied load was 5 N. Significant amount o f A1 transfer to the CrN coating surface 
occurred.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Co
un

ts

1000

900 --

800 -

500 --
400 --

200  - -

100  - -

0 4 6

Energy (keV)
8 10

Figure 4.4. c) EDS analysis o f  the location shown in b). The adhered A1 pieces were 
significantly oxidized.
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b)

Figure 4.14. SEM images for a) smooth (Ra= 16 nm) and b) rough (Ra= 83 nm) T ifh  at 
50 revolutions (3 m) when tested against 319 Al in ambient air at 0.12 m/s sliding speed 
under 5 N  o f  applied load.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.14. c) Enlarged view o f a region in Figure 4.14.b). 60 % o f the surface area o f  
the rough TiB2 was covered with mostly thin layers o f aluminum.
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CHAPTER 5

TRIBOLOGICAL BEHAVIOUR OF THE NON-HYDROGENATED DLC 

COATINGS AGAINST 319 Al ALLOY

The results o f  the previous chapter showed that the coatings studied in that part o f  

the work (CrN, TiB2, TiN, TiAIN and TiCN) were not the most promising ones for 

implementation as tool coatings for dry machining o f  aluminum since none o f them 

totally prevented aluminum adhesion and transfer to their surfaces. Compared to other 

coatings, the much reduced adhesion tendency o f  aluminum to DLC coating surfaces in 

ambient conditions warrants a closer look at the tribological behaviour o f these coatings 

against aluminum.

In an attempt to better understand the tribological properties o f the DLC coatings 

for cutting tool coating applications, 60-V DLC, 80-V DLC and commercially available 

Graphit-iC DLC coatings were tested against 319 Al alloy, WC and AI2O3 under various 

test atmospheres and at elevated temperatures. The production and characterization 

details o f the DLC coatings are given in Section 3.2.2. Basically, they were amorphous, 

sp2 bond rich, non-hydrogenated DLC coatings.

The coatings were tested in air (0-85 % RH), vacuum, inert gas (Ar, He and N2) 

and 60% He- 40% H2 mixture. The effect o f temperature was investigated at 120, 300 

and 400°C. Static oxidation behaviour o f the DLC coatings by annealing them at 300°C 

in air was used as a method to assess the stability o f  their structures. The observed results 

are explained in terms o f  interactions o f the DLC coating surface with the gaseous 

species in the environment and material transfer to counterfaces.

5.1. Tribological Behaviour o f the 80-V DLC Coatings against 319 Al under Various 

Test Environments

5.1.1. Tests in Vacuum

The 80-V DLC coatings suffered severe wear damage against 319 Al in vacuum 

(6.65xl0 '3 Pa). The average COF and wear rate o f the 80-V DLC coating against the 319 

Al pin were 0.46 and 2.48x1 O'4 mm3/m under vacuum, respectively. The COF curve had 

large fluctuations (Figure 5.1.a). Figure 5.1.b shows a region o f the wear track on the
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80-V DLC coating tested against 319 Al in vacuum for 8 .5x l03 revolutions (i.e., 5.07xl02 

m o f sliding). M ost o f  the coating was removed leaving the M2 steel substrate exposed. 

Transfer o f  319 Al to the wear track was also observed.

5.1.2. Tests in Nitrogen

Similar to the tests under vacuum, the 80-V DLC coatings had severe wear 

damage against 319 Al in the nitrogen environment (Figures 5.2.a and b). The average 

COF and the wear rate o f  the 80-V DLC coating against 319 Al was 0.47 and 3.63x1 O'4 

mm3/m under nitrogen.

5.1.3. Tests in Dry air

In dry air, the average COF o f the 80-V DLC coatings against 319 Al slightly
c  *>

decreased to 0.44 (Figure 5.3.a). The wear rate in dry air was 6.64x10' mm /m, which 

corresponds to a 81% decrease from the vacuum test. In contrast to the tests in vacuum 

and nitrogen, there was no adhered Al in the wear track o f  the 80-V DLC coatings tested 

in dry air (Figure 5.3.b). Some fine debris, consisting o f  mainly oxidized Al, was 

observed along the wear track (Figures 5.3.c-e).

The size o f  the width o f  the wear track was o f  the 80-V DLC coatings tested in 

dry air was smaller than the corresponding ones in vacuum and nitrogen. Again, the 

contact surface o f  the 319 Al pin contained some o f  the material removed from the 

coating. This time, however, the EDS analysis o f  the contact surface indicated that it was 

significantly oxidized (Figure 5.3.f and g).

5.1.4. Tests in Air with 20 - 85%  Relative Humidity

The COF and the wear rates o f  the 80-V DLC coatings against 319 Al were 

drastically reduced in air with humidity levels exceeding 20% RH. In air with 20% RH, 

the steady state COF and the wear rate o f  the DLC coatings were 0.16 and 2.3lxlO '5 

mm3/m. With increasing humidity, the COF and the wear rate further decreased to 0.09 

and 5 .59xl0 '7 tnm3/m  at 50% RH and to 0.085 and 4.38x10'7 mm3/m at 85% RH.

The COF curves recorded in air with 22% humidity (Figure 5.4.a) showed much 

smaller fluctuations compared to the vacuum and nitrogen environments. Again, similar
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to the tests in dry air, there was no adhered Al on the wear track o f  the DLC coating at 

the end o f  the tests (Figure 5.4.b). The sliding track on the DLC coating had a polished 

appearance compared to the unworn coating surface.

On the other hand, a well defined tribolayer was observed on the contact surface 

o f the 319 Al pins tested in air with RH > 20% (Figure 5.4.c). The EDS analysis o f  this 

layer (Figure 5.4.d) showed C, Cr and 0  peaks.

5.2. Tribological Behaviour o f  the 80-V DLC Coatings against WC

In addition to the 319 Al pins, WC balls were also used as the counterface 

material running against the 80-V DLC coatings. The purpose o f  these tests was to 

investigate the tribological behaviour 80-V DLC coatings against a material that is much 

harder than 319 Al and also the coating itself.

5.2.1. Tests in Vacuum and Nitrogen Atmospheres

The 80-V DLC coatings showed high COF (0.50 and 0.56) and high wear rates 

(3 .74xl0 '5 and 1.09xl0 '4 mm3/m) against WC in vacuum (6 .6 .5xl0 '3 Pa) and nitrogen 

environments. The SEM image o f  a region o f  the wear track formed on the 80-V DLC 

coated surface tested in vacuum for 1.2xl03 revolutions (71.6 m o f  sliding) shows the 

severity o f  the damage (Figure 5.5.a). The corresponding WC ball had a ring shaped flat 

contact area that contained materials removed from the coating (C and Cr) as shown in 

Figure 5.5.b. For a longer sliding distance o f  3.5x103 revolutions in vacuum, significant 

adhesion and transfer o f material from the WC ball to the DLC coating surface took place 

as shown in Figure 5.5.c and verified by EDS (Figure 5.5.d).

5.2.2. Tests in Dry Air (0% RH)

The WC ball still caused high wear rates (3 .28xl0‘s mm3/m) when tested against 

the 80-V DLC coating in dry air (0% RH). The average steady state COF value was 0.50,

i.e. the same as the vacuum test. The SEM image o f a section o f the wear track on the 80- 

V DLC coating tested in dry air for 1.2xl03 revolutions is given in Figure 5.6.a. 

Oxidized coating material containing C and Cr was accumulated as debris along the 

edges o f  the wear track on the DLC coating. The WC ball tested against the 80-V DLC
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coating experienced much less wear in dry air compared to the vacuum and nitrogen 

environments (Figure 5.6.b). The contact surface o f  the WC ball was bare and some 

material removed from the DLC coating, which was oxidized during sliding (Figure

5.6.c), was deposited along the contact area as fine powdery debris.

5.2.3. Tests in Air with 20 - 85% Relative Humidity

The tribological behaviour o f the 80-V DLC coatings against WC has shown 

significant improvements w ith increasing relative humidity o f  air. The steady state COF 

and the wear rate o f  the 80-V DLC coating were 0.08 and 1.03xl0‘6 mm3/m  in air with 

20% RH. These correspond to 84% and 96% drop in the COF and wear rates as 

compared to the tests in vacuum. The material removed from the DLC coating was

oxidized and accumulated uniformly along the wear track as shown in Figure 5.7.a. The

contact area o f  the WC ball tested against the 80-V DLC coating in ambient air was much 

smaller compared to the tests performed in vacuum and nitrogen environments (Figure

5.7.b). A transfer layer that covered most o f  the contact surface o f  the WC ball was 

observed when the pin-on-disc tests were performed in humid air. The EDS analysis o f 

the transfer layer (Figure 5.7.c) revealed that it was composed o f  oxidized coating 

materials, namely C and Cr. Therefore, in air with humidity levels exceeding 20% RH, 

the 80-V DLC coating was essentially running against this transfer layer instead o f  the 

WC ball after the first few revolutions o f sliding.

At higher humidity levels (RH> 50%), the COF and the wear rate o f  the 80-V 

DLC coating run against the WC ball increased. At 85% RH, the steady state COF and 

the wear rate were 0.19 and 4.19x1 O'6 mm3/m, respectively. The debris was non-

uniformly accumulated at certain locations along the wear track.

The test results presented in Sections 5.1 and 5.2 showed that the 80-V DLC 

coatings experienced high COF and high wear rates in vacuum and nitrogen gas 

environments. Introduction o f  water vapour to the test chamber drastically reduced the 

COF and wear rates. The measured wear rates and the steady state COF values o f the 80- 

V DLC coatings against 319 A1 and WC under various environments are summarized in 

Figures 5.8.a and b.
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5.3. Tribological Behaviour o f the Graphit-iC DLC Coatings against 319 A1 under 

Various Test Environments

In this study, Graphit-iC DLC coatings served as a benchmark to help assess the 

tribological performances o f  the experimental coatings (60 and 80-V DLC).

5.3.1. Tests in Vacuum, Argon, Helium and Nitrogen

In addition to the vacuum and nitrogen environments, the tribological behaviour 

o f Graphit-iC DLC coatings were also investigated in other inert environments namely, 

argon and helium. The Graphit-iC DLC coating exhibited high COF and high wear rates 

against the 319 A1 alloy in vacuum, argon, helium and nitrogen environments. At a 

sliding o f 0.12 m/s, the average COF was 0.56 in vacuum (6.65x1 O'4 Pa), 0.72 in argon, 

0.74 in helium, and 0.69 in nitrogen. The COF curves o f  the Graphit-iC DLC in these 

environments are plotted in Figures 5.9.a-d.

Figure 5.10.a shows a region o f the wear track on the Graphit-iC DLC coating 

tested against 319 A1 in vacuum for lxlO 4 revolutions (i.e., 5 .97xl02 m o f sliding). A 

significant amount o f  material was removed from the 319 A1 pin, which was transferred 

and adhered to the Graphit-iC DLC coating surface. The transfer o f  A1 to the Graphit-iC 

DLC coating surface occurred in the form o f i) large chunks o f A1 deposited as discrete 

patches and ii) very small smears o f A1 (Figure 5.10.b). The BEI SEM image o f the 

contact surface o f  the 319 A1 pin tested against the Graphit-iC DLC coating in vacuum is 

shown in Figure 5.10.C. The EDS analysis o f the contact surface o f  the 319 A1 pin 

showed that, in addition to Al, the contact surface contained C and Cr that were removed 

from the DLC coating (Figure 5.10.d).

5.3.2. Tests in Dry Air (0% RH)

In dry air, the Graphit-iC DLC coatings showed lower COF and wear rates 

compared to the tests in the vacuum and inert environments. After reaching a peak value 

o f 0.68 at 60 revolutions, the COF decreased to a steady value o f  0.28 (Figure 5.11).

5.3.3. Tests in Ambient Air
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When the 319 Al alloy pin was run against the Graphit-iC DLC coating at 0.12 

m/s sliding speed in ambient air (47% RH), the average COF was 0.12 as shown in 

Figure 5.12. The COF curve was significantly smoother and its average value was much 

lower than the values obtained in vacuum, argon, helium, and nitrogen (Figures.5.9.a-d).

5.3.4. Tests in H 2 -He M ixture against 319 Al

The results o f  the pin-on-disc tests in vacuum, inert gas, dry air and air with 

varying humidity levels showed that the tribological behaviour o f  the DLC coatings 

under investigation is quite sensitive to the presence o f  reactive gaseous species (oxygen 

and water vapour) in the test environment. In addition to this, the literature survey 

(Section 2.4) indicated that the presence o f  sufficient hydrogen in the film structure can 

drastically change the COF and wear behaviour o f  the DLC coatings. Together with the 

experimental observations, this finding generated the idea o f  testing non-hydrogenated 

DLC coatings in a hydrogen rich test environment. A 40%  H2-60% He mixture was used 

for these tests.

The typical variation o f  the COF between the Graphit-iC DLC coating and the 

319 Al alloy during sliding in H 2-He mixture at 0.12 m/s sliding speed is given in Figure

5.13.a The recorded COF curve had three sections. Initially, a high COF (0.70±0.10) 

regime (Figure 5.13.b) that lasted 50-300 revolutions was observed at the beginning o f  

the test. This was followed by a  very low COF period where the COF dropped to the very 

low value o f 0.15. After staying at this very low COF value for some time (about 2000 

revolutions), the COF gradually increased to 0.025-0.040 range and fluctuated in this 

range for the rest o f  the test (about lxlO 4 revolutions). Compared to the other test 

conditions, the Graphit-iC DLC coatings had the lowest COF and the least amount o f  

wear during sliding in He-H2 mixture.

5.3.5. Tests in H2 -He M ixture against WC

The COF behaviour o f  the Graphit-iC DLC coatings against the WC ball in He-H2 

mixture (Figure 5.14.a and b) was similar to that against 319 Al. With the start o f  

sliding, the COF quickly reached to high values about 0.67. This high COF period ended 

around 450 revolutions and the COF drastically dropped to 0.015. Further sliding did not
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caused a change in COF. The measured wear rates and the steady state COF values o f the 

Graphit-iC DLC coating against 319 Al under various environments are summarized in 

Figures 5.15.a and b.

5.4. Elevated Temperature Testing of 80-V DLC Coatings against 319 Al, WC and 

A120 3

To investigate the effect o f  temperature on the tribological behaviour o f  DLC 

coatings, first 80-V DLC coatings were run against 319 Al at 25, 120, and 300°C. The 

COF curves generated during the course o f sliding contact between the 319 Al pins and 

the 80-V DLC samples at 25, 120, and 300°C are given in Figure 5.16. The COF curves 

obtained at 25 and 120°C were characterized with an initial running-in period where the 

COF values were high (0.4-0.5) but then decreased to steady state values in less than 

lxlO 2 revolutions. On the other hand, the COF curve obtained at 300°C did not have a 

steady state value; it increased from 0.20 to at 2 x l0 2 revolutions to 0.56 at lxlO 3 

revolutions and displayed larger fluctuations compared to the ones at 25 and 120°C.

The steady state COF between the 319 Al pin and the 80-V DLC coating was 0.17 

at 25°C in ambient air with 15% RH. At the end o f 2.5x104 revolutions (sliding distance 

o f 1.5x103 m), the wear rate o f  the 80-V DLC coating was 1.25x1 O'6 mm3/m. There was 

no transfer o f  material from the 319 Al pin to the coating surface at 25°C. The sliding 

track on the 80-V DLC coating had a polished appearance compared to the unworn 

coating surface.

At 120°C, the 80-V DLC exhibited high COF and high wear against 319 Al. The 

steady-state COF during the test was 0.30, about two times higher than that at 25°C. The 

wear rate increased to 3.08x10'5 mm3/m , which is an order o f  magnitude higher than the 

wear rate at 25°C.

The 80-V DLC coating suffered the highest amount o f wear at 300°C as 

compared to the 25 and 120°C tests. The wear rate was 3.36x1 O'4 mm3/m at this 

temperature. Initially, the COF was 0.2 but increased to 0.55 after 7x l0 2 revolutions 

(Figure 5.16). The coating was worn in such a way that the M2 tool steel substrate 

surface became exposed and the contact took place mostly between the M2 tool steel 

substrate and the 319 Al pin after about 103 revolutions. Because o f  the continuously
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increasing COF values o f  the coating at 300°C compared to steady state COF values 

obtained at lower temperatures (Figure 5.16), the wear behaviour o f  the coating at this 

temperature was investigated in more detail at longer sliding distances. Comparison o f 

the SEM images o f  the wear tracks o f  the 80-V DLC coating tested against 319 Al for 

lx l0 3 and lx l0 4 revolutions at 300°C showed that considerable amount o f material 

transfer occurred from the 319 Al pin to the disc surfaces once the DLC coating was 

removed from the disc surface as a result o f wear (Figures 5.17.a and b). Also, it was 

observed that the width o f  the wear tracks more than doubled during sliding from lxlO 3 

to lxlO 4 revolutions at this temperature.

5.4.1. Effect o f Counterface Material

In addition to the 319 Al pins, the elevated temperature friction and wear 

behaviour o f  the 80-V DLC coating was also investigated against the harder counterface 

materials namely, tungsten carbide (WC) and sapphire (AI2O3) balls.

In ambient air (15% RH) at 25°C, the 80-V DLC coating exhibited low COF 

values against the tungsten carbide (COF = 0.10) and sapphire (COF = 0.09) balls during 

2.5x104 revolution-tests. The wear rates o f  the 80-V DLC against these two counterface 

materials were also low; 9.73x10‘7 mm3/m against the W C ball and 6.38x1 O'7 mm3/m 

against the sapphire ball. The variation o f the wear rates o f  the 80-V DLC coatings worn 

against 319 Al, WC and sapphire at 25,120, and 300°C is given in Figure 5.18.

At 120°C the wear rate o f the 80-V DLC coating increased to 2 .06x l0 '6mm3/m 

against the WC ball and to 1.03xl0‘5mm3/m against the sapphire ball. The COF between 

the 80-V DLC coating and WC reached 0.46 for a short time at the beginning o f the 

sliding and then decreased to a steady state value o f  0.05. Against sapphire, the COF 

started at 0.15 and then quickly went down to the steady state value o f  0.06.

When the temperature was increased to 300°C, the wear rate o f  the 80-V DLC 

coating increased to 4.48xl0"5 mm3/m against the WC ball and to 2.22x1 O'4 mm3/m 

against the sapphire ball. Therefore, the interesting result that emerged from these 

observations is that at all three test temperatures, the w ear rate o f  the 80-V DLC coating 

was the highest when worn against the 319 Al alloy pin.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



At 300°C, for the 80-V DLC/WC pair, the average COF was 0.10 throughout the 

test. For the 80-V DLC/Sapphire pair, the COF was 0.04 at the beginning but increased to 

0.30 around 800 revolutions, suggesting that the coating was worn down to substrate 

level at this sliding distance. As opposed to the DLC/319 Al pair, the DLC/WC and 

DLC/Sapphire pairs exhibited lower COF with increasing test temperature.

5.4.2. Effect o f Deposition Conditions

The tribological behaviour o f  the 80-V DLC coatings was compared with that o f 

the 60-V DLC and Graphit-iC DLC coatings using 319 Al alloy pins (see Table 3.1 and

3.2). At 25°C, the wear rates o f  the 60-V DLC and the Graphit-iC DLC coatings were 

similar to that o f  the 80-V DLC coating (Figure 5.19). When the tests were done at 

120°C, the 60-V DLC coating exhibited an order o f  magnitude higher wear rate (2.41x10‘ 

4 mm3/m) and the Graphit-iC DLC had an order o f  magnitude lower wear rate (5.5 lx l  O'6 

mm3/m) than the 80-V DLC coating (3.08x10 '5 mm3/m) tested at the same temperature. 

At 120°C, the 60-V DLC coating was significantly worn down so that the substrate was 

exposed as seen in Figure 5.20. Therefore, compared to the 80-V DLC coating, higher 

amount o f  damage was inflicted on the surface o f the 60-V DLC coating at this 

temperature.

At 300°C, the 60-V DLC coating was totally removed from the contact surface. 

Material transfer from the 319 Al pin to the M2 steel disc surface took place. The wear 

rate o f the 60-V DLC coating was 5.26x1 O'4 mm3/m  and that o f  the Graphit-iC DLC 

coating was 4.47x1 O'4 mm3/m  and thus all three wear rates were comparable. Although 

the wear rate o f  the Graphit-iC DLC coating was similar to the 60-V DLC and 80-V DLC 

coatings (Figure 5.19) because o f  the wider wear track caused by the deformation o f the 

319 Al pin, the Graphit-iC DLC coating was only partially worn, as opposed to the 

complete removal o f  the 60-V DLC and 80-V DLC coatings at 300°C. The average depth 

o f the wear track in the Graphit-iC DLC was around 0.9 pm, indicating that about half o f 

the coating still remained intact on the substrate.

The test temperature was further increased to 400°C and at this temperature only 

the Graphit-iC DLC coating was tested since the 60-V DLC and 80-V DLC coatings were 

already completely worn at 300°C. At 400°C, the pin-on-disc test was stopped at 250
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revolutions since a large amount o f adhesion and aluminum transfer occurred to the 

Graphit-iC DLC coating surface. A significant portion o f the coating surface was covered 

by the adhered aluminum (Figure 5.21). The colour o f  the uncontacted area o f the 

Graphit-iC surface changed from dark brown, the colour o f  as-deposited DLC, to black 

indicating the deterioration o f  the coating.

5.5. Discussion

5.5.1. Tribological Behaviour o f the Non-hydrogenated DLC Coatings against 319 

Al in Vacuum and Inert Gas Environments

For all three DLC coatings tested, higher COF values and wear rates occurred 

under vacuum and inert gas environments compared to those obtained in ambient air 

(Figures 5.8.a-b and Figures 5.15.a-b). These observations on the tribological behaviour 

o f the non-hydrogenated DLC coatings against 319 Al were in agreement with the 

previous studies where other counterface materials (steel, ceramic) were employed [74, 

82-84].

The high COF and wear rate o f  the non-hydrogenated DLC coatings in vacuum 

and inert gas environments are commonly attributed to the bonding interactions o f  the 

carbon atoms on the DLC coating surface with the atoms on the counterface material [21, 

82, 83]. It has been suggested that when the pin passes through a certain point on the 

sliding track, it destroys the passivated surface state by friction and possibly by frictional 

heating, creating a fresh surface with dangling carbon bonds. I f  the carbon atoms do not 

fulfill their bonding requirements by the return o f the pin, strong adhesive interactions 

occur between the surface carbon atoms and the atoms on the pin surface, causing high 

fluctuating COF and severe adhesive wear (Figure 5.22.a-c). The degree o f adhesive 

interaction is expected to increase with the increasing chemical affinity o f  the pin 

material towards the DLC coating (C and Cr). The high chemical affinity o f Al towards C 

to form AI4 C 3 (Equation 5.1) could lead to strong adhesion between the 319 Al and the 

non-hydrogenated DLC coating.

4 A1(S) + 3 C(S) = Al4C3(S) Equation 5.1
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The standard Gibbs free energy o f  formation o f AI4C3 is -203 kj/m ole at 300K [129]. 

Consequently, Al pieces became strongly adhered to the wear track o f the non- 

hydrogenated DLC coating as shown in Figures 5.10.a and b.

319 Al (91 HV) itself is too soft to cause abrasive wear o f  the DLC coating unlike 

the hard counterface materials such as WC (1500 HV) and AI2O3 (2300 HV). 

Tribochemical wear o f  the DLC coating involving surface oxidation is unlikely for the 

tests performed in vacuum and nitrogen. Therefore, adhesive wear, as qualitatively 

described above, remains as the most plausible wear mechanism for the 319 Al pin / non- 

hydrogenated DLC coating tribo-pair in the vacuum and nitrogen environments.

5.5.2. Tribological Behaviour o f the Non-hydrogenated DLC Coatings in Dry Air 

against 319 Al: Interaction o f  DLC Coating Surface with O2

Although the introduction o f  dry air (0% RH) into the test chamber caused some 

reduction in the w ear rate and the COF values o f  the non-hydrogenated DLC coatings, 

they were still high (Figures 5.8.a and b). The absence o f  adhered Al pieces on the wear 

track o f  the non-hydrogenated DLC coating at the end o f  the tests suggested that the 

adhesive wear o f  the non-hydrogenated DLC coating did not occur in dry air. Interaction 

o f  the oxygen molecules in dry air with the sliding surfaces is thought to prevent 

adhesion. It has been shown that, the oxygen molecules on the DLC coating surface 

become adsorbed, creating C = 0  bonds [105, 130, 131]. On the opposite side, the 319 Al 

pin quickly oxidized because o f  the very high tendency o f  aluminum oxidation (Equation

5.2). The Gibbs free energy o f  AI2O3 formation, AG° is -1582.3 kJ/mole at 300K [129].

2 AI(S) + 3/2 02 (g) = A 1203 (S) Equation 5.2

Thus, while oxygen could prevent adhesive wear o f  the DLC coating, it is likely that it 

triggered a tribochemical w ear process on the surfaces o f the DLC coatings by oxidation 

[81, 88 , 105, 130-133]. On each return o f the pin to the same location on the DLC 

coating, it caused desorption o f  CO2 by frictional and/or thermal means leading to 

progressive material loss.
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It can be suggested that the major wear mechanisms o f  the non-hydrogenated 

DLC coatings against 319 Al in dry air are:

i) The oxidational wear o f  the DLC coating during sliding, and

ii) The abrasive wear o f DLC caused by the hard, oxidized Al layers on the 

contact surface o f  the 319 Al pin (Figure 5.23). The formation o f  an oxidized tribolayer 

on the contact surface o f  the 319 Al pin was shown in Figures 5.3.f and g.

5.5.3. The Effect o f W ater Vapour on the Tribological Behaviour of Non- 

hydrogenated DLC Coatings against 319 Al

In comparison with the tests in vacuum, nitrogen, and dry air, the COF and the 

wear rate o f  the non-hydrogenated DLC coatings tested against 319 Al were significantly 

reduced in the ambient air with > 20% RH (Figures 5.8.a and b). It is well established 

that, similar to the graphite surfaces [112, 113], the improved tribological behaviour o f 

the non-hydrogenated DLC coatings in ambient air is controlled by water molecules in 

the environment. It is generally agreed that water vapour in the air can passivate the 

“dangling carbon bonds” on the contact surface o f  the non-hydrogenated DLC coatings 

via adsorption and/or dissociation o f water molecules [82, 83, 101].

The water in the test environment adsorbed by the non-hydrogenated DLC 

coating surface provides protection to the DLC coating and thus reduces the adhesive 

interactions with the counterface. Together with the formation o f  the easy-to-shear 

transfer layer, the adsorption o f  water vapour causes the COF to drop to values around 

0.07-0.20 from 0.55-1.0 that were typically observed in vacuum and inert gas 

environments [74, 76, 84, 105].

As explained above, adhesive wear is not expected to be operative in air with 

humidity levels greater than 20%. Similar to the dry air tests, the possible operating wear 

mechanisms in ambient air are:

i) Oxidational wear o f the DLC during sliding,

ii) Abrasive wear caused by the oxidized Al layer and debris.

Compared to the tests in dry air, the much reduced wear rate o f the non- 

hydrogenated DLC coatings in ambient air is due to presence o f  water vapour, which 

passivates the non-hydrogenated DLC surface via adsorption and also promotes the
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formation o f  an easy-to-shear carbonaceous layer covering most o f the contact surface o f  

the 319 Al pin, further reducing abrasive wear (Figure 5.24).

5.5.3.I. The Role o f Material Transfer to the Counterface on Very Low COF

To provide a better understanding o f  the role o f  the transfer layer in reducing the 

COF o f the non-hydrogenated DLC coatings, vacuum pin-on-disc tests were performed 

after some initial sliding in ambient air. The principal hypothesis was that the transfer 

layer formed in ambient air would help reduce the COF in vacuum. Figure 5.25.a shows 

the COF between the 319 Al pin and the 80-V DLC coating where a running-in period o f  

8.5x102 revolutions in ambient air (52% RH) was allowed prior to pumping down the test 

chamber to 1.07x1 O'2 Pa. The COF decreased from 0.15 in ambient air (regime 1 in 

Figure 5.25.a) to very low values o f  0.006 with decreasing chamber pressure and 

maintained its low value for some period o f time (regime 2 in Figure 5.25.a). This very 

low COF period came to an end with an increase in COF to 0.55 accompanied by large 

fluctuations (regime 3 in Figure 5.25.a).

The very low COF values can be explained as follows: The transfer layer formed 

in air with 52% RH (Figure 5.4.c) was continuously consumed and re-generated 

maintaining a certain equilibrium thickness during sliding in air. At the time the pumping 

down o f  the chamber was started, the DLC coating was running against this transfer 

layer. At pressures o f  0.173 Pa (1.297x10‘3 Torr) and lower, the atmosphere in a typical 

vacuum chamber consists o f  mainly water vapour due to the desorption o f  the water that 

was previously adsorbed by the stainless steel chamber walls [134]. In this case, the 

passivation o f the coating surface by the adsorption o f  water vapour is still possible. 

Together with the tribolayer formed on the contact surface o f  the 319 Al pin, this 

passivation results in very low COF values.

Examination o f several COF curves showed that the very low COF values were 

reached and stabilized around 0.173 Pa and further decrease in pressure did not cause any 

further significant drop in the COF values. The very low COF regime lasted until the 

tribolayer became consumed. When the test was started directly in the vacuum 

environment, the very low COF was not observed because o f  the absence o f the 

carbonaceous tribolayer on the contact surface o f the 319 Al pin.
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The same test procedure was implemented for the 80-V DLC coating tested 

against the WC ball. First, the WC ball was tested against the 80-V DLC coating for 

3 x l0 3 revolutions in ambient air (22% RH) to form a transfer layer similar to that shown 

in Figure 5.7.b. The resulting shape o f  the COF curve shown in Figure 5.26 was similar 

to the one in Figure 5.25. During chamber evacuation, the COF decreased from 0.09 to

0.006. The low COF period ended around 5 .2x l03 revolutions and the COF rapidly 

increased to the values (0.52) typically encountered in the vacuum tests without first 

running-in in ambient air. Therefore, the test with WC has provided additional proof that 

the COF o f DLC coatings was controlled by the formation o f  transfer layers on the 

counterface.

5.5.4. Tribological Behaviour of the Non-hydrogenated DLC Coatings in an IL-He 

Environment

As shown in Figures 5.13.a-b, and 5.14.a-b, the low COF values o f 0.015 were 

observed when the Graphit-iC DLC was run against 319 Al and WC in the H2-He 

environment. The hydrogen in the test environment is responsible for the low COF values 

since the helium alone caused high COF and high wear as shown previously (Figure 

5.9.c). It is well known that the non-hydrogenated DLC coatings can have low COF only 

when there is a species in the test atmosphere that can decrease the interactions between 

the sliding surfaces by passivating them. Hydrogen molecules must have created this 

passivation by meeting the bonding requirements o f  the carbon atoms on both surfaces.

5.5.4.I. Material Transfer to the Contact Surface o f the 319 Al Pin

The examination o f  the sliding tracks o f  the DLC coating tested in the H2-He 

environment revealed that the sliding track were smooth and there was only a minute 

amount o f  wear, which probably occurred during the initial high COF period (Figures

5.13.a-b, and 5.14.a-b). The SEM image o f  the contact surface o f  the 319 Al pin that was 

run against the Graphic-iC DLC in H2-He at 0.12 m/s showed the presence o f a transfer 

layer (Figures 5.27.a and b). The EDS analysis o f the transfer layer (Figure 5.27.c) 

showed that it was essentially composed o f carbon and chromium. Therefore, it is clear
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that when the COF was very low in Fh-He environment, the non-hydrogenated DLC was 

running against a carbonaceous counterface, not the bare 319 Al pin surface.

It is concluded that the occurrence o f the high COF period at the beginning o f the 

tests in hydrogen can be attributed to the process o f  transfer layer formation on the 

counterface. In order to confirm this idea, two different tests were performed.

In the first test, after the system reached the very low COF state in H2-He 

environment, the sliding was paused for 30 seconds and then resumed. There was no high 

COF period when the test was re-started (Figure 5.28). This procedure was repeated 

several times and the results were the same. Therefore, this test showed that the 

carbonaceous transfer layer, once formed, was able to maintain itself during sliding.

In the second test, prior to testing in FL-He environment, the 319 Al pin was run 

against the non-hydrogenated DLC for lxlO 3 revolutions in ambient air (32% RH) in 

order to form a transfer layer on the contact surface o f  the 319 Al pin. Then, the test was 

stopped and the chamber was evacuated to 5.45x10' Pa. After flushing with nitrogen, the 

chamber was evacuated to 5.45x1 O'3 Pa again. Finally the H2-He environment was 

introduced and the test was re-started. As seen in the corresponding COF curve (Figure 

5.29), there was no occurrence o f the high COF regime in FL-FIe environment this time 

and the COF decreased to the very low values immediately. Therefore, these tests have 

proven that i) the observed initial high COF regime in H2-He environment corresponded 

to the process o f  the transfer layer formation on the counterface, ii) a carbonaceous 

counterface was essential to achieve very low COF values with non-hydrogenated DLC 

coatings, iii) the transfer layers forming in ambient air and H2-He environment have 

similar properties.

5.5.4.2. The Role o f Hydrogen Pressure on the Very Low COF Behaviour

To investigate the stability o f  the very low COF regime o f  the non-hydrogenated 

DLC coatings under H2-He environment, the following pin-on-disc test was performed: 

First the test was started in the hydrogen environment and was allowed to run in the very 

low COF period for a certain amount o f sliding (5x l03 revolutions). Then the chamber 

was pumped down to 9.5x1 O'3 Pa while the sliding continued. When the COF increased 

to the high values (around 0.75), the chamber was refilled with hydrogen (101.3 kPa) and
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the test was allowed to continue until the very low COF state was restored. This 

procedure was repeated several times. The change in the total pressure o f  the chamber 

and the variation o f  the COF with respect to number o f  revolutions is given in Figure 

5.30. It was observed that the COF started to increase as soon as the pressure was 

decreased. Similar to the beginning o f the test, a high COF regime was observed each 

time the FL-He mixture was re-introduced into the chamber, which is followed by the 

very low COF (0.010-0.015) values. This test showed that the easy-to-shear carbonaceous 

material at the sliding interface was very thin as it was consumed quickly in the absence 

o f  significant amount o f  hydrogen in the test environment.

To explore the dependency o f  COF to the amount o f  hydrogen, the test described 

above was modified such that the chamber was refilled with a lower amount o f gas after 

each pumping down cycle rather then filling to 101.3 kPa. It was found that the 

tribosystem was able to reach very low COF (0.015) values at Fh-He pressures as low as

4.7 kPa (Figure 5.31). The technical difficulties prevented testing at pressures lower than

4.7 kPa. It was observed that the number o f revolutions needed to reach the very low 

COF regime increased with decreasing back-fill pressure o f  H2-He. For example, 

restoring the very low COF regime took 1,130 revolutions at 4.7 kPa as compared to 300 

revolutions at 101.3 kPa. In other words, higher am ount o f  hydrogen in the test 

environment accelerated the creation o f the very low COF regime but, once created, very 

low COF regime can still be maintained at much lower pressures o f  hydrogen.

5.5.4.3. Interaction M echanisms of Hydrogen with the Sliding Surfaces

To learn more about the nature o f the interactions between the sliding surfaces 

and the hydrogen, the worn and unworn sections o f  the non-hydrogenated DLC and the 

contact surface o f  the 319 Al alloy pin that were run in hydrogen were analyzed using the 

Micro-Raman technique (see Section 3.1.3.2). Micro-Raman analysis is an ideal way to 

detect the presence o f  hydrocarbons in a given material. No sign o f  C-H stretching 

(hydrocarbon formation) was detected on the sliding track o f  the DLC coating or on the 

contact surface o f  the 319 Al pin (Figure 5.32). This can be due to i) there was no 

chemisorption (and thus no hydrocarbon bond formation), or ii) the amount o f  

chemisorption was so little that it could not be detected. The fact that the COF increased
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immediately with lowering the hydrogen pressure (F igures 5.30 and 5.31) supports the 

latter. If  there was an accumulation o f C-H bonds, then the COF should have stayed at the 

low COF region for a longer duration even if  there was no further C-H bond production.

Compared to the spectrum obtained from the unworn section o f  the DLC coating, 

the only observed difference o f  the spectra obtained from the edge o f  the wear track and 

that o f the transfer layer formed on the 319 Al pin was the increase in the peak intensities 

around 1370 and 1550 cm '1. This change corresponds to the friction-induced 

graphitization, which is a well-known structural transformation, observed as a result o f  

dry sliding o f  DLC coatings [79, 89, 90, 92, 99]. The transfer layer is, therefore, more 

crystalline and graphite-like compared to the original coating. The destruction o f the 

cross-linked graphite domains during sliding has probably increased the graphitic 

character o f  the transfer layer.

Since the transfer layer is graphite-like, it is reasonable to assume that the

mechanisms o f  the interactions between hydrogen and graphite can help understand the

interactions between hydrogen and the non-hydrogenated DLC. The adsorption o f atomic 

and molecular hydrogen on graphite surfaces has been studied both experimentally and 

theoretically. It was shown that the dissociation o f  the molecular hydrogen into two 

hydrogen atoms and their chemisorption by the edge carbon atoms o f the graphite planes 

is thermodynamically favourable [135-137]. It requires 436 kJ o f  energy to break one 

mole o f  H-H bonds (Equation 5.3) and approximately 831.6 kJ o f energy is released 

when two moles o f  C-H bonds are formed (Equation 5.4) [138].

H2(g) = 2 H(g) Equation 5.3

2 H + C = 2 C-H Equation 5.4

Therefore, the reaction o f  breaking o f  an H-H bond and forming two C-H bonds is 

energetically favoured. This shows that the friction-assisted creation o f  C-H bonds at the 

sliding surfaces is feasible (F igure 5.33).
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5.5.5. Elevated Temperature Tribological Behaviour o f Non-hydrogenated DLC 

Coatings

As shown in Sections 5.1.4., 5.2.3, and 5.3.3, the all three DLC coatings (60-V, 

80-V and Graphit-iC) showed low friction and wear rates at 25°C in ambient air (15% 

RH). However, upon heating to 120°C both the 60-V DLC and 80-V DLC coatings 

suffered high friction and wear (Figure 5.19). The amount o f  wear was higher for the 60- 

V DLC coating compared to that o f the 80-V DLC coating. When the temperature was 

increased to 300°C, the wear o f the Graphit-iC also increased dramatically. This 

observation is consistent with the previous studies in that the wear rate o f  various types o f  

DLC coatings (a-C and a-C:H) increases with increasing test temperature [95-97].

Two reasons are suggested to explain the observed accelerated wear o f  the DLC 

coatings with an increase in the test temperature (Figures 5.19). The first one is the 

inefficiency o f  the passivation mechanism o f the DLC coating surfaces with water vapour 

at elevated temperatures. Similar to graphite [112, 113] the low friction and wear 

behaviour o f non-hydrogenated DLC coatings is due to the adsorbed species (water 

vapour in ambient air, and other polar gas molecules) on the surface. In the absence o f 

adsorbed species (e.g. in vacuum or in inert gas environment), the carbon atoms on the 

non-hydrogenated DLC coating surface interact with the counterface causing high wear 

rates and friction [82, 83,101].

As the test temperature increased, the amount o f  water remaining adsorbed on the 

coating surface decreased [139] and hence the efficiency o f  the coverage o f  the coating 

surface by water molecules decreased. In this case, the DLC coating surface became 

unprotected and the surface carbon atoms started interacting with the counterface atoms 

to meet their bonding requirements rather than being passivated through the water 

adsorption mechanism. Then, in each rotation, the pin removed a certain amount o f 

carbon from the coating by breaking the bonds at the point o f  contact. The removed 

carbon either i) became oxidized to CO2, or ii) transferred to the counterface, or iii) 

turned into loose debris. Therefore the depth o f  the wear track increased with each 

revolution.

The second cause for the poor elevated temperature tribological behaviour o f the 

non-hydrogenated DLC coatings was the loss o f  the room temperature stability. It was
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suggested that the high hardness o f this type o f DLC coating was due to some cross- 

linking between graphite planes [140, 141]. Heating the 60-V DLC and 80-V DLC 

coatings to a relatively low  temperature o f 120°C could be sufficient to weaken the cross- 

linking between the graphite planes. Compared to the 60-V DLC coating, the higher wear 

resistance o f  the 80-V DLC coating at this temperature suggests that increasing the bias 

voltage during deposition was helpful in stabilizing the structure o f  the DLC coating. For 

the Graphit-iC, the abrupt increase in the wear rate did not occur before 300°C rather than 

120°C indicating that the Graphit-iC DLC had a more thermally stable structure 

compared to the 60-V DLC and 80-V DLC coatings. This should be due to the better 

optimization o f  its deposition conditions.

The effect o f  bias voltage can be explained as follows: It is difficult to obtain a 

dense film if  the sputtered carbon atoms do not hit the substrate with sufficient velocity. 

Increasing the kinetic energy (i.e. velocity) o f the sputtered carbon atoms is possible by 

increasing the bias voltage. The 80-V DLC is thought to have higher density than 60-V 

DLC since the kinetic energy o f  the carbon atoms was higher under higher bias (60 V vs. 

80 V). An increase in density resulted’ in a higher stability o f  the coatings and also 

provided higher resistance against high temperature oxidation as previously shown by 

Miyoshi [104].

5.5.5.I. Stability o f the Coatings at High Temperature

Investigation o f  the static oxidation behaviour o f  the DLC coatings by annealing 

them at 300°C in air was used as a method to assess the stability o f  their structures. For 

this purpose, EDS analyses were made on the 60-V DLC and 80-V DLC coatings at three 

different states; i) as-deposited, ii) annealed at 300°C for 7.7 minutes and iii) annealed at 

300°C for 77 minutes. All EDS curves were taken from the unworn portions o f the 

coatings. The EDS spectrum o f  the as-deposited coatings mainly consists o f C, Ar and Cr 

peaks. The argon was present in the coatings since it was used as the sputtering gas. After 

annealing at 300°C for 7.7 minutes, the oxygen peak o f  the annealed 60-V DLC coating 

became somewhat higher than that o f the as-deposited coating. For the 80-V DLC, there 

was no difference between the EDS curves taken from as-deposited coating and the one 

annealed for 7.7 minutes.
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To study the effect o f this short time annealing on the wear behaviour, 60-V DLC 

and 80-V DLC samples annealed at 300°C for 7.7 min were tested against 319 Al at 25°C 

in ambient air. The wear rates o f the annealed samples were higher than those o f the as- 

deposited coatings tested at 25°C, but much lower than those o f  tested at 300°C (Figure 

5.34). This suggests that any change in the DLC film (structural and/or oxidational) as a 

result o f  this short time annealing was confined to the top portion o f  the coating.

Figure 5.35.a shows the EDS curves taken from the unworn areas o f  the as- 

deposited 60-V DLC and the one annealed at 300°C for a longer period o f 77 min (lx lO 4 

revolution-test duration). Figure 5.35.b shows the curves for the 80-V DLC coating at 

the same conditions. Compared to the as-deposited coatings, the EDS curves o f  the both 

60-V DLC and 80-V DLC coatings annealed at 300°C for 77 minutes showed reductions 

in Ar signals, and increases in O, Cr and Fe signals. The reduction in carbon signal was 

more clearly observed in 60-V DLC and this suggests that some o f  the carbon left the 

disc surface by oxidation to CO2 during annealing. The sharp decrease in the ratio o f Ar 

to Cr signals (from 1.08 for as-deposited coating to 0.38 for the annealed coating) 

indicates that some Ar was also released from the coating structure during annealing. 

Comparison o f the Figures 5.35.a and b shows that changes (oxidation and Ar release) 

due to annealing were more pronounced for the 60-V DLC coating. Therefore it can be 

said that the structure o f  the 60-V DLC coating was less stable and less dense compared 

to 80-V DLC coating, which allowed a higher degree o f oxidation.

5.5.5.2. Comparison of the W ear Mechanisms o f DLC Coating against 319 Al with 

WC and A120 3

In their initial conditions (at the onset o f the wear test), the calculated maximum 

Hertzian contact pressure exerted on the 80-V DLC coating was 0.88 GPa by the 319 Al 

pin (4 mm diameter), 1.84 GPa by the WC ball (3.18 mm diameter) and 1.71 GPa by the 

sapphire ball (3.18 mm diameter) under the applied load o f  5 N. Once the test started, the 

tip o f the 319 Al pin deformed plastically and its contact surface area increased, and 

hence the contact pressure exerted by the 319 Al pin decreased. The SEM images o f  the 

WC ball and the 319 Al pins showed that the 319 Al pin had a larger contact area (0.061 

mm2) than the WC ball (0.009 mm2) at 25°C. The contact area increased as the test
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temperature was increased from 25 to 300°C (F igure 5.36.a-c). Therefore, the contact 

pressure exerted by the 319 Al pin on the non-hydrogenated DLC coatings continued to 

decrease with increasing test temperature. The increase in the contact area o f the 319 Al 

pin was due to the combined effect o f  temperature and the applied load (softening and 

deformation). In the temperature range studied, no softening due to thermally activated 

plastic deformation o f the WC (WC-Co eutectic at 1558 K, Tm(Co) =1767, Tm(W)=3052) 

or sapphire (Tm = 2323 K) balls can be expected. Although the pressure exerted by the 

319 Al pin was lower than the pressures exerted by the WC and sapphire, and the 

pressure decreased even more during the elevated temperature tests, the 319 Al pin (91 

HV) caused higher wear o f  the 80-V DLC coating than the harder materials WC (1500 

HV) and sapphire (2300 HV) as shown in F igure 5.18. For example, the average depth o f  

the wear track created on the 80-V DLC coating at 120°C was 0.67 pm  when tested 

against 319 Al, 0.09 pm  against WC and 0.12 pm against sapphire. The three- 

dimensional surface profiles o f  the sections o f  the wear tracks o f  the 80-V DLC coating 

tested against 319 Al and WC at 120°C, given in F igures 5.37.a and b, show that more 

damage was inflicted by 319 Al.

The observation that the sapphire ball caused a higher wear rate than the WC ball 

at 120 and 300°C (F igure 5.18) was not unusual since the sapphire ball is harder than the 

WC ball and hence caused more wear. However, it was rather unexpected to observe that 

319 Al, which is 23 times softer than sapphire and 15 times than WC, caused more wear 

o f the DLC coatings than sapphire and WC. It is clear that the difference in the contact 

stress values cannot explain the observed differences in the wear behaviour o f the DLC 

coatings.

To account for the relatively high wear rate caused by the soft aluminum alloy, a 

two- and three-body abrasive wear model is proposed as schematically illustrated in 

Figures 5.38.a-f: The surface o f the aluminum became oxidized (F igures 5.38.b and c). 

During the initial stage o f  the experiment, the wear o f  the DLC coating occurs by the 

oxidation o f  the DLC and the abrasive action o f  the AI2O3 layer. The wear rate is thus 

expected to be similar to by the sapphire ball. As the wear and oxidation o f the 319 Al 

progress, the oxide layer on 319 Al surface cracks, delaminates, and fragments into loose 

debris (Figures 5.38.d and e). Some o f the debris acts as abrasive particles at the sliding
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interface, others are embedded on the 319 Al pin surface (F igure 5.38.f). Therefore, a 

three-body abrasion mechanism becomes operative. Since the mechanisms o f oxidation 

and debris generation are continuous throughout the pin-on-disc test, there is a 

continuous supply o f  freshly made abrasive aluminum oxide particles at the sliding 

interface, causing severe w ear o f  the non-hydrogenated DLC coating. In the case o f the 

sapphire ball, only a negligible amount o f debris was generated from it due to its high 

hardness. Therefore, there was no three-body abrasive wear mechanism operating. The 

two-body abrasive wear caused by the sapphire ball was also limited due to its starting 

smooth surface. This explains why the 319 Al pin created a deeper wear track than the 

sapphire (AI2O3) ball (0.67 versus 0.12 pm at 120°C). The formation o f  oxidized 

tribolayer on the contact surface o f the 319 Al pin and the presence o f  debris are visible 

in Figures 5.3.f and 5.32.C. The EDS analysis o f  the tribolayers (F igure 5.3.g and 5.32.d) 

clearly shows the extent o f  oxidation, in support o f  the proposed mechanism. Since the 

non-hydrogenated DLC coatings started to deteriorate w ith increasing temperature, the 

319 Al pin with a much larger contact area was able to cause higher wear o f  the DLC 

coating by the abrasive action o f  the generated debris particles although it exerted much 

less contact stress compared to the other counterface materials.

5.6. Sum m ary and  R em arks

5.6.1. Effect o f T est A tm osphere

1. The non-hydrogenated DLC coatings (60-V, 80-V DLC and Graphit-iC DLC) 

experienced high COF (> 0.44) and high wear rates (> 3.28x1 O'5 mm3/m) in vacuum, 

nitrogen and dry air (0% RH) against 319 Al and WC.

2. The non-hydrogenated DLC coatings tested against the 319 Al alloy showed 

higher wear rates than the ones tested against WC. For example, the wear rates o f the 80- 

VDLC coatings tested in nitrogen were 3.63x1 O'4 mm3/m  against 319 Al and 1.09x1 O'4 

mm3/m against WC.

3. Low COF (< 0.16) and low wear rates (< 2.3 lx l  O'6 mm3/m) o f the DLC 

coatings were observed against 319 Al in air with relative humidity > 20%. The same 

observation was also done against WC. This indicated that the presence o f  water vapour
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in the test environment was essential to reach the low COFs and wear rates o f  the non- 

hydrogenated DLC coatings except testing in hydrogen gas environment.

4. Increasing the relative humidity from 20 to 85% slightly decreased the COF 

and wear rates against 319 Al, but increased that against WC.

5. In ambient air w ith > 20% RH, a carbonaceous easy-to-shear transfer layer 

formed on both counterface materials. Sliding in other environments namely in vacuum, 

nitrogen and dry air, did not cause the formation o f  this carbonaceous tribolayer.

6 . The formation o f  the carbonaceous easy-to-shear tribolayer on the counterface 

material and the passivation o f  the non-hydrogenated DLC coating surface by adsorption 

and dissociation o f  the water molecules were suggested as the two possible mechanisms 

responsible for the low COF and wear rates o f  the non-hydrogenated DLC coatings in air 

with humidity. Formation o f  tribolayers on both 319 Al and WC had an overwhelming 

influence compared to the hardness o f the counterface material which was not the main 

factor determining the tribological behaviour o f non-hydrogenated DLC coatings in 

humid air.

7. A very low COF (0.006) was observed under vacuum after an initial running-in 

period (COF = 0.6-0.8) in ambient air during which a transfer layer was formed on the 

counterface materials.

8 . The non-hydrogenated DLC coatings exhibited low COF values (0.01-0.02) 

against aluminum when molecular hydrogen was present the test environment. The very 

low COF values were reached after an initial high COF (0.70 ±0.15) period.

9. The initial high COF period in hydrogen environment corresponded to the 

formation o f  a carbonaceous transfer layer on the contact surface o f  the 319 Al pin. The 

presence o f  this carbonaceous transfer layer on the counterface was found to be essential 

to reach the very low COF state in the presence o f  hydrogen.

10. It was proposed that the very low COF state was maintained by the 

instantaneous passivation o f  available carbon bonds by the hydrogen molecules. The 

chemisorption o f the hydrogen molecules, which consist o f  the breaking o f  the H-H 

bonds and the formation o f  C-H bonds, is suggested as a possible mechanism for the 

passivation. When C-H bonds broke due to frictional and/or thermal processes, hydrogen 

molecules are instantaneously chemisorbed forming C-H bonds.
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11. Changing the test environment from a 40% H2 -  60% He atmosphere (101.3 

kPa) to vacuum caused the COF to increase immediately to 0.65-0.80, suggesting that the 

production o f  the C-H bonds was limited to the very top layers o f  the both sliding 

surfaces.

12. Adhesive wear was the dominant wear mechanism in vacuum and nitrogen 

atmospheres, i.e. when the materials in contact did not have other appropriate species, 

such as O2 and H2O in the test environment, to meet their bonding requirements. 

Chemical affinity o f  the counterface material towards the DLC coating promoted 

adhesive wear.

5.6.2. Effect o f Temperature:

1) The wear resistance o f  the non-hydrogenated DLC coatings is poor at elevated 

temperatures. The mechanisms that provide the high wear resistance o f  the coating in 

ambient temperature cease to operate at temperatures as low as 120°C. Annealing at 

elevated temperatures in air causes the loss o f  the stability and the significant oxidation o f  

the coating.

2) The tribological performance o f  the DLC coatings may be improved by 

optimizing the deposition parameters. For example, increasing the bias voltage improves 

the coating stability and wear resistance.

3) Different counterface materials caused differences in the wear behaviour o f the 

DLC coatings. Although much softer than WC and sapphire, the 319 Al alloy inflicted 

more severe wear damage to the DLC coatings both in terms o f  wear volume and depth 

o f  the wear track especially at elevated temperatures. A  two- and three-body abrasive 

wear model, which considers the continuous generation o f  highly oxidized aluminum 

layer and particles at the sliding interface, is proposed to explain this observation.

5.7. Outlook

This chapter showed that the extrinsic factors such as the composition o f the 

testing environment and the temperature have dramatic effects on the adhesion and 

transfer behaviour o f  319 Al to DLC surfaces. On the other hand, the effects o f  intrinsic 

factors on adhesion and material transfer, i.e. effect o f  the material properties o f  the
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sliding pair, were not very clear. C h ap te r 6 is.devoted to studying o f the role o f  material 

properties o f  the sliding pair on the adhesion and transfer phenomena. The hardness and 

thermal conductivities o f  the sliding materials, the chemical affinities o f  the sliding 

materials against each other and to the species in the environment were put under 

investigation. In addition to 319 Al examined in this chapter, commercial purity Al, Cu 

and Ti were tested against the non-hydrogenated DLC, TiB2, and CrN coatings in ambient 

air and argon atmospheres. TiB2 and CrN were selected because o f  their different 

adhesion and transfer behaviour o f  319 Al to their surfaces as presented in C h ap te r 4.
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Figure 5.1. a) The COF curve between the 80-V DLC coating and 319 Al during sliding 
in vacuum (6.65xlO '3Pa) for 8 .5x l0 3 revolutions, b) The SEI SEM image o f a section o f 
the wear track o f  the 80-V DLC coating. The DLC coating was heavily worn. Adhered Al 
pieces were observed on the wear track. The applied load and sliding speed were 5 N and 
0.12  m/s.
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b)

Figure 5.2. SEI SEM images o f  a) a section o f the wear track o f  the 80-V DLC coating 
tested against 319 Al in nitrogen (101.3 kPa) for 3 .5x l0 3 revolutions, and b) enlarged 
view o f the location indicated in a) showing the aluminum transfer. The applied load and 
sliding speed were 5 N  and 0.12 m/s.
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Figure 5.3. a) The COF between the 80-V DLC coating and 319 Al during sliding in dry 
air for 3.5x103 revolutions, b) the SEM image o f a section o f  the wear track o f the 80-V 
DLC coating.
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F igure 5.3. c) A closer look at the debris generated during sliding between 319 A1 and 
80-V DLC coating in dry air, d) EDS analysis o f  the 80-V DLC coating surface.
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F igure 5.3.e) EDS curve o f  a typical debris particle while it is analysed on the coating 
surface. The applied load and sliding speed were 5 N  and 0.12 m/s.
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F igure 5.3. f) SEM image o f  the contact surface o f  the corresponding 319 A1 pin, and g) 
the EDS analysis o f  the location indicated in b).
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F igure 5.4. a) The COF curve, b) SEM image o f a section o f  the wear track o f  the 80-V 
DLC coatings tested against the 319 A1 pin in air with 22% RH for 3 .5x l0 3 revolutions.
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F igure 5.4. c) SEM image o f  the contact surface o f  the corresponding 319 A1 pin, d) EDS 
analysis o f  the location indicated in c).
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Figure 5.5. SEM images o f  a) a region o f the wear track o f  the 80-V DLC coating tested 
against the WC ball in vacuum for 1.2xl03 revolutions and b) the contact surface o f the 
corresponding WC ball (1) with coating material around (2).
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F igure 5.5. c) SEM image o f  a section o f the wear track o f  the DLC coating tested 
against the WC ball in vacuum  for 3 .5x l03 revolutions, and d) the EDS analysis o f the 
location indicated in c). A  significant amount o f  WC transfer to the 80-V DLC coating 
surface was observed as verified by EDS. The applied load and the sliding speed were 4.9 
N  and 0.12 m/s.
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b)

F igure  5.6. SEM images o f  a) a region o f  the wear track o f  the 80-V DLC coating tested 
against the WC ball in dry air (0% RH) for 1.2xl03 revolutions and b) the contact surface 
o f the corresponding WC ball.
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Figure 5.6. c) EDS analysis o f  the location indicated in b). The applied load and the 
sliding speed were 5 N  and 0.12 m/s.
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b)

Figure 5.7. SEM images o f  a) a region o f the wear track o f  the 80-V DLC coatings tested 
against the WC ball in air with 50% RH for 1.2xl03 revolutions and b) the contact 
surface o f the corresponding WC ball.
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Figure 5.7. c) The EDS analysis o f  the location indicated on the transfer layer formed on 
the contact surface o f  the WC ball. The applied load and the sliding speed were 5 N  and 
0.12 m/s.
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Figure 5.8. a) The wear rates, and b) the steady state COF values o f  the 80-V DLC 
coating against 319 Al and WC under various test environments. The applied load and 
sliding speed were 5 N  and 0.12 m/s.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o u .z

0 .1

0

0

Vacuum (6.65x1 <T Pa)
H----------------- 1------------------h -

2000 4000 6000 8000
Number of Revolutions 

a)

10000

0.9
c  0 .8  o

0.7 
0 .6  

0.5

Argon, 101.3 kPa

2000 3000 400010000

Number of Revolutions 
b)

F igure 5.9. The COF curves for the Graphit-iC DLC coating tested against the 319 Al 
alloy in a) vacuum (6.65x10‘4 Pa), b) argon.
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F igure 5.9. The COF curves for the Graphit-iC DLC coating tested against the 319 Al 
alloy in c) helium, and d) nitrogen. The applied load was 5 N  and the sliding speed was 
0.12 m/s.
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b)

F igure 5.10. a) SEI SEM image o f  a region o f  the w ear track o f  the Graphit-iC DLC 
coating tested against 319 Al alloy in vacuum (6.65x1 O'4 Pa) for lxlO 4 revolutions, b) an 
enlarged view o f  the location indicated by a rectangle in b).
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F igure 5.10. c) BEI SEM image o f the contact surface o f  the corresponding 319 Al pin, 
and d) the EDS analysis o f  the location indicated in c). The applied load and the sliding 
velocity were 5 N  and 0.12 m/s.
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Figure 5.11. The variation o f  the COF between the 319 Al and Graphit-ic DLC during 
sliding in dry air. The applied load and sliding sped were 5 N  and 0.12 m/s.
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Figure 5.12. The COF curve for the Graphit-iC DLC coating tested against the 319 Al 
alloy at 0.12 m/s sliding speed and 5 N  applied load in ambient air (47 % RH).
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Figure 5.13. a) The COF curve for the Graphit-iC DLC coating tested against the 319 Al 
alloy at 0.12 m/s sliding speed and 5 N  applied load in the 40% H2-60% He atmosphere, 
b) expanded view o f  the first 300 revolutions.
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F igure 5.14. a) The COF curve for the non-hydrogenated DLC coating tested against 
WC at 0.12 m/s sliding speed and 5 N  applied load in He-FL mixture, and b) semi-log 
scale plot o f  a).
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Figure 5.15. a) The measured wear rates, and b) the steady state COF values o f  the 
Graphit-iC DLC coating against 319 Al under various environments. The applied load 
and sliding speed were 5 N  and 0.12 m/s.
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Figure 5.16. The COF curves between the 80-V DLC coated disc and the 319 Al pin at 
25 ,120  and 300°C. Tests were run for 60 m o f sliding distance (lx lO 3 revolutions) under 
an applied load o f  5 N  at 0.12 m/s sliding speed.
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F igure 5.17. BEI SEM images o f  the regions o f  the wear tracks o f  the 80-V DLC coating 
tested against the 319 Al pin at 300°C for a) lx lO 3 revolutions and b) lx l0 4 revolutions. 
The applied load and sliding speed were 5 N and 0.12 m/s.
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Figure 5.18. The variation o f  the wear rate o f  the 80-V DLC coating with temperature 
when tested against 319 Al, WC and sapphire at 25, 120 and 300°C. Tests were run for
1,500 m o f sliding distance (2 .5xl04 revolutions) at 25°C and for 60 m o f sliding distance 
(lx lO 3 rev.) at 120 and 300°C using 5 N  applied load.
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Figure 5.19. Comparison o f  the changes in the wear rates o f  the 60-V DLC, 80-V DLC 
and the Graphit-iC DLC coatings with temperature. Tests were run against 319 Al for
1,500 m o f  sliding distance (2 .5x l04 revolutions) at 25°C and for 60 m o f  sliding distance 
( lx l0 3 revolutions) at 120 and 300°C under an applied load o f  5 N.
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|<— wear track------>

F igure 5.20. The BEI SEM image o f a section o f  the wear track o f  the 60-V DLC coating 
tested against 319 A1 pin at 120°C. Test was run for 60 m o f sliding distance (lx lO 3 
revolutions) using 4.9 N applied load. In backscattered electron imaging mode, the image 
is created according to atomic mass difference where heavier elements appear brighter. 
Therefore the dark coloured area is the DLC coating and the lighter color areas are the 
M2 steel substrate.
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wear track

Figure 5.21. SEI SEM image o f a section o f the wear track o f  the Graphit-iC DLC 
coating tested against 319 A1 alloy at 400°C showing a large amount o f aluminum 
transfer. The test was run for 250 revolutions under applied load o f  5 N  at 0.12 m/s.
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F igure 5.22. The adhesive wear mechanism that operates in vacuum and inert gas 
environments: a) The interaction o f  the surface atoms with unsatisfied bonds that results 
in, b) transfer o f aluminum to the DLC surface, and/or c) transfer o f  carbon to the Al pin 
surface.
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Figure 5.23. The oxidational and abrasive wear mechanisms o f the non-hydrogenated 
DLC coating in dry air.
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Figure 5.24. a) and b) The oxidational and abrasive wear mechanisms o f the non
hydrogenated DLC coating in ambient air, c) easy-to-shear carbonaceous material at the 
sliding interface.
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F igure 5.25. a) A typical COF curve for the ambient air to vacuum tests for 319 Al 
sliding against the 80-V DLC coating. The test started in ambient air (52% RH). After 
some sliding in ambient air (8.5x102 revolutions), the test chamber was pumped down to 
vacuum. The COF decreased with the pressure inside the chamber and reached its 
minimum value o f  0.006 when the pressure was around 0.173 Pa. Further decrease in 
pressure did not change the COF value. Finally, the very low COF period ended and the 
COF abruptly jum ped to high values (0.55). The applied load and the sliding speed were 
5 N  and 0.04 m/s, and b) expanded view o f the initial portion o f  the COF curve.
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F igure 5.26. a) The COF curve for the ambient air to vacuum test when WC was tested 
against the 80-V DLC coating. The test started in ambient air (22% RH). After some 
sliding in ambient air (3.0x103 revolutions), the test chamber was pumped down to 
vacuum. The COF decreased as the pressure inside the chamber was lowered. The low 
COF period lasted for 2.2x103 revolutions and then the COF increased to high values 
(0.52). The applied load and the sliding speed were 5 N and 0.05 m/s, and b) a semi-log 
scale plot o f the same curve.
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F igure 5.27. a) SEI, and b) BEI SEM images o f the contact surface o f  the 319 Al pin that 
was run against the non-hydrogenated DLC in H2-He environment.
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F igure  5.27. c) The EDS analysis o f  the location indicated in b).
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Figure 5.28. The COF between the 319 Al alloy pin and the Graphit-iC DLC coating in 
H2-He environment at 0.12 m/s sliding speed and 5 N  applied load. The test was paused 
for 30 seconds and then re-started at 1000, 1500, 2000, 2500 and 3000 revolutions (as 
indicated by the arrows). The high COF period was observed only at the beginning o f the 
tests indicating that it was related with the formation the carbonaceous transfer layer.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.25
<—Air— —60 % Helium- 40 % Hydrogen' 
(32 % RH)i

0.2
co

LL
O

4 - *ca>
'o
it=<DO
O

0.15

0.05

4000 50003000200010000
Number of Revolutions

Figure 5.29. The COF between the Graphit-iC DLC coating and the 319 Al alloy pin at 
0.12 m/s sliding speed under 5 N  applied load. First, the tribopair was run in ambient air 
o f 32% RH for lx l0 3 revolutions. Then, the test was stopped and the chamber was 
evacuated to 5.45x10'3 Pa. After flushing with nitrogen, the chamber was evacuated to 
5.45xl0 '3 Pa again. Finally, the hydrogen (40% H2-60% He mixture) was introduced and 
the test was resumed. Together with the test depicted in F igure 5.25, this test shows that 
the observed high COF at the beginning o f the sliding in hydrogen was due to the transfer 
layer formation on the contact surface o f the 319 Al alloy pin.
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Figure 5.30. The effect o f  the pressure o f  the 40%H2-60%He mixture on the COF 
between the Graphit-iC DLC coating and the 319 Al alloy pin as a function o f  the number 
o f revolutions. The sliding speed and the applied load were 0.12 m/s and 5 N.
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Figure 5.31. The COF between the Graphit-iC DLC coating and the 319 Al alloy pin as a 
function o f  the pressure o f  40%H2-60%He. The sliding speed and the applied load were 
0.12 m/s and 5 N.
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Figure 5.32. M icro-Raman spectra o f the worn and unworn regions o f  the Graphit-IC 
DLC that was run against the 319 Al alloy pin in Kh-He mixture at 0.12 m/s and under an 
applied load o f  5 N.
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Figure 5.33. The friction mechanism o f non-hydrogenated DLC coating in H2-He 
environment.
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Figure 5.34. The wear rates o f  the 60-V DLC and 80-V DLC coatings before and after 
annealing at 300°C for 7.7 minutes. The tests that were done at 300°C are also included 
for comparison. All tests were run for lx lO 3 revolutions o f  sliding distance under an 
applied load o f  5 N.
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Figure 5.35. The EDS analyses o f  the a) 60-V DLC and b) 80-V DLC coatings before 
and after annealing at 300°C in air for 77 minutes.
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b)

F igure 5.36. SEM images o f  the contact surfaces o f the counterface materials tested 
against the 60-V DLC coating for lxlO 3 revolutions under 5 N  applied load at 0.12 m/s,
a) WC ball at 25°C, and b) 319 Al pin at 25°C.
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F igure 5.36. SEM images o f  the contact surfaces o f  the counterface materials tested 
against the 60-V DLC coating for lxlO 3 revolutions under 4.9 N  applied load at 0.12 m/s,
c) 319 Al pin at 120°C, d) the EDS analysis o f the location indicated in c).
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b)

F igure 5.37. The surface profiles o f the sections o f  the wear tracks o f  the 80-V DLC 
coating tested against a) 319 Al, b) WC and at 120°C for lx lO 3 revolutions o f  sliding 
distance under 5 N  applied load.
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Figure 5.38. a) Schematic o f  the pin-on-disc test. Suggested mechanism o f debris 
generation: First, the aluminum gets oxidized and the oxide thickness reaches a certain 
value (b & c). Then the oxide layer cracks, delaminates and fragments into loose debris 
(d & e). Some debris stay free at the sliding interface and some become embedded back 
on the 319 Al pin surface (f) causing abrasion o f  the DLC.
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CHAPTER 6

ADHESION AND TRANSFER BEHAVIOUR OF PURE METALS 

(Al, Cu AND Ti) TO DLC, CrN, AND TiB 2 COATINGS

The work presented in this chapter was performed to contribute to understand the 

roles o f  the intrinsic (material properties) and extrinsic factors (environment and speed) 

on the adhesion and material transfer phenomena during dry sliding o f metals and 

potential tool coatings. Rounded pins o f 1100 Al, Cu and Ti were run against Graphit-iC 

DLC, TiB2 (Ra= 16 nm) and CrN coated M2 tool steel discs in ambient air and argon. 

Three different sliding speeds o f 0.02, 0.12 and 0.65 m/s were used. For the majority o f 

the tests, sliding distances were kept short (300 rev. corresponding to 18 m o f sliding) to 

focus on the initial stages o f  material transfer. After each test, the surfaces o f  the pins and 

discs were examined to characterize adhesion and transfer behaviour in different 

environments. Chapter 6 starts with the presentation o f the results o f  the pin-on-disc tests 

with DLC coatings. This is followed by the presentation o f  the results o f  the tests with 

TiB2 and CrN coatings. A detailed discussion and the interpretation o f  the results, 

together with the results o f  Chapters 4 and 5, will be given.

6.1. Adhesion and Transfer to Graphit-iC DLC

6.1.1 .1100 Al against Graphit-iC DLC in Argon

The tribological behaviour o f  the Graphit-iC DLC coating against 1100 Al was 

similar to the behaviour o f  Graphit-iC DLC coating against 319 Al presented in Section

5.3. In argon, the Graphitic-DLC DLC coating experienced high wear rates (1.28xl0‘5 

mm3/m) against 1100 Al at 180 m o f sliding (3x l03rev.) at 0.12 m/s. There was some Al 

transfer to the Graphit-iC DLC coating surface at 0.12 and 0.65 m/s sliding speeds as 

shown in Figure 6.1.a and b. On the other hand, no adhesion o f  Al to the Graphit-iC 

DLC coating surface was observed at the lowest speed o f  0.02 m/s. The 1100 Al pin 

experienced large surface deformation and material was displaced towards sliding 

direction as shown in Figure 6.1.c and d. The average COF values o f  the Graphit-iC 

DLC coatings against 1100 Al were 0.27 at 0.02 m/s, 0.63 at 0.12 m/s and 0.47 at 0.65
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m/s (Figure 6.2). The latter two showed large fluctuations due to material transfer from 

the 1100 Al pin to the DLC coating surface.

6.1.2.1100 Al against Graphit-iC DLC in Ambient Air

Compared to the tests performed in argon, the COF and the wear rate values o f 

the Graphit-iC DLC coatings against 1100 Al were significantly reduced in ambient air 

(51% RH). A t 0.12 m/s, the average COF and the wear rate o f  the Graphit-iC DLC 

coating against 1100 Al were 0.16 and 7.87xI0 '7 mm3/m. It should be noted that in all 

three sliding speeds, the tests started with high COF values o f about 0.5 and then dropped 

to low values (0.13-0.16) in less than 50 revolutions (Figure 6.3). The COF curves 

recorded in ambient air had much less fluctuations compared to the ones recorded in 

argon (Figure 6.2 vs. Figure 6.3). Also, the average COF values were relatively 

insensitive to sliding speed in ambient air; it was 0.14 at 0.65 m/s and 0.13 at 0.02 m/s. 

Accumulation o f loose oxidized debris along the wear tracks o f  the DLC coating was 

observed (Figure 6.4.a). W ith increasing the sliding speed from 0.02 to 0.65 m/s, there 

was a slight decrease in the amount o f  debris generated. Similar to the case o f 319 Al 

(Section 5.1.4), oxidized tribolayers containing C and Cr were observed on the contact 

surfaces o f  the 1100 Al pin as shown in Figures 6.4.b-d and verified by EDS (Figure

6.4.e).

6.1.3. Cu against Graphit-iC DLC in Argon

In argon, no material transfer was observed between the Cu pin and the Graphit- 

iC DLC coating in all three sliding speeds. The wear o f  the Graphit-iC DLC coatings 

against Cu was negligibly small (< lx lO '9 mm3/m) in argon. Figures 6.5.a and b show 

optical and SEM images o f  the contact surfaces o f  the Cu pins tested against the DLC 

coating at 0.12 m/s sliding speed for lxlO 4 and 3 x l0 3 revolutions. These micrographs 

show no evidence o f  material transfer from the Graphit-iC DLC coating to the Cu pin. 

For a sliding period o f 3 x l0 2 revolutions, the average COF o f the Graphit-iC DLC 

coatings against the Cu pin in argon was 0.26 at 0.02 m/s, 0.42 at 0.12 m/s and 0.35 at 

0.65 m/s with minor fluctuations due to the absence o f  material transfer between the
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sliding surfaces (Figure 6 .6 ). Extending test duration to lxlO 4 revolutions caused a small 

decrease in the average COF to 0.37.

6.1.4. Cu against Graphit-iC DLC in Ambient Air

In ambient air (58% RH), the Graphit-iC DLC coatings exhibited higher wear rate 

(7.99x1 O'7 mm3/m) against Cu compared to the minute amount o f wear that occurred in 

argon. Loose debris was accumulated along the wear tracks o f  the Graphit-iC DLC 

coating as shown in Figure 6.7.a. Figure 6.7.b shows the SEM image o f  the Cu pin run 

against the Graphit-iC DLC coating in ambient air with 58% RH for 18 m o f sliding. 

Oxidized tribolayers containing C and Cr were observed on the contact surfaces o f  the Cu 

pins (Figures 6.7.c and d). The COF curves were relatively smooth, especially at 0.02 

and 0.12 m/s, with values between 0.36-0.46 (Figure 6 .8 ).

It is interesting to note that, in contrast to the high wear o f  the Graphit-iC DLC 

against Al in argon, Cu only caused a negligible amount o f  wear under the same 

condition. On the other hand, both materials caused a similar amount o f  wear o f the 

Graphit-iC DLC in ambient air while the COF against Cu (0.36-0.46) was considerably 

higher than against Al (0.13-0.16).

6.1.5. Ti against Graphit-iC DLC in Argon

At the sliding speeds o f  0.12 and 0.65 m/s, significant adhesion and transfer o f Ti 

to the Graphit-iC DLC coating surface causing the subsequent removal o f  the coating 

from the M2 substrate at several locations was observed as shown in Figures 6.9.a-c. 

Compared to 0.12 m/s, the adhered Ti pieces were larger at 0.65 m/s (Figure 6.9.c). On 

the other hand, there was no adhesion o f Ti to the Graphit-iC DLC coating surface at 0.02 

m/s (Figures 6.10.a and b). The average COF o f the DLC coatings against Ti in argon 

was 0.29 at 0.02 m/s, 0.53 at 0.12 m/s and 0.59 at 0.65 m/s. Due to the large amount Ti 

transfer to the Graphit-iC DLC coating surface, the COF curves were highly fluctuating 

at 0.12 and 0.65 m/s (Figure 6.11).
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6.1.6. Ti against Graphit-iC DLC in Ambient Air

In ambient air (59% RH) at a sliding speed o f 0.12 m/s, the COF and the wear rate 

values o f the Graphit-iC DLC coating against Ti were 0.09 and 7.34x1 O'7 mm3/m 

indicating a significant reduction compared to the tests in argon. As a typical 

characteristic o f  the pin-on-disc tests in ambient air, accumulation o f  loose debris along 

the wear tracks o f  the Graphit-iC DLC coating was observed (Figure 6.12a). Similar to 

the 1100 Al and Cu pins, the contact surfaces o f  the Ti pins were covered with oxidized 

tribolayers containing C and Cr, from the DLC coating (Figure 6.12.b). The average 

COF between the Graphit-iC DLC coating and Ti was 0.09 at 0.02 m/s and 0.11 at 0.65 

m/s i.e. the COF was rather insensitive to sliding speed in the test range as seen in Figure 

6.13.

6.2. Adhesion and Transfer to TiB2 Coating

6.2.1.1100 Al against TiB2 in Argon

At 0.02 m/s sliding speed, some smearing o f  the Al to the TiB2 coating surface 

was observed. The average COF was 0.32. The transferred pieces were small both in size 

(<10 pm) and quantity. A t 0.12 m/s sliding speed, significant amount o f  smearing, 

transfer o f  material as in the form o f very thin layers, occurred and Al fragments covered 

most o f the sliding track (Figures 6.14.a and b). There were also large pieces o f Al (50- 

100 pm) adhered to the TiB2 coating surface. The average COF was high (0.76 ±0.07) at 

0.12 m/s. Similar to the tests at 0.12 m/s, significant amount o f  smearing occurred at 0.65 

m/s sliding speed. After reaching a peak value o f  0.89 around 50 rev., the COF dropped 

to 0.46 with larger fluctuations (Figure 6.15). The adhered pieces, however, were rather 

small in size compared to the ones adhered at 0.12 m/s.
*>

When the test was extended to 180 m o f sliding distance (3x10 revolutions) at 

0.12 m/s sliding speed, some more Al transfer occurred in the form o f chunks o f 100-200 

pm in size (Figure 6.16.a). The width o f  the wear track increased from 570 pm at 18 m 

o f sliding to 700 pm at 180 m. The COF was initially high (about 0.78 at 250 revolutions) 

and dropped to a steady state value o f 0.36 after 500 revolutions (Figure 6.16.b).
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6.2.2.1100 A1 against TiB2 in Ambient Air

No significant smearing, transfer in the form o f very thin layers, was observed 

under any test speed in ambient air (43% RH). The adhered material was mostly in the 

form o f chunks o f  15-50 pm. The COF between 1100 A1 and TiB2 was high and largely 

fluctuating with average values o f 0.64 at 0.02 m/s, 0.69 at 0.12 m/s and 0.72 at 0.65 m/s 

(Figure 6.17). Compared to the tests performed in argon, the most significant difference 

was in the formation o f  loose debris as shown in Figure 6.18.a. There was a large 

quantity o f  debris formed at 0.02 m/s and the amount o f  debris formed decreased with 

increasing the sliding speed. The EDS analyses o f  the both wear debris and the adhered 

pieces showed considerable amount o f oxidation (Figure 6.18.b). When the sliding 

distance was increased from 18 to 180 m at 0.12 m/s sliding speed in ambient air, more 

debris was formed (Figures 6.19.a and b). Most o f  the loose debris stayed on the sliding 

track and some became agglomerated at various locations along the track.

6.2.3. Cu against TiB2 in Argon

There was only a minute amount o f  Cu transfer to the TiB2 coating surface at all 

test speeds. Very small pieces o f  Cu which probably adhered as a result o f  sliding contact 

with asperities on TiB2 surfaces are shown in Figures 6.20.a and b. The contact area o f  

the Cu pin was smooth and clean indicating the absence o f  material transfer (Figure 

6.20.C and d). Longer sliding distance o f  180 m at 0.12 m/s did not change this 

behaviour. At 0.12 m/s sliding speed, the COF curve was smooth throughout the test with 

a mean value o f  0.48 ±0.02. The average COF was 0.56 at 0.65 m/s.

6.2.4. Cu against T1B2 in Ambient Air

The amount o f  debris formed was the highest when Cu was run against the TiB2 

coating at a sliding speed o f  0.12 m/s in ambient air (41% RH). Occasionally, there were 

Cu pieces adhered to the TiB2 coating surface at sliding speeds o f  0.12 and 0.65 m/s 

(Figure 6.21.a). The contact surfaces o f the Cu pins were covered by oxidized tribolayers 

containing Ti and Cu (Figure 6.21.b and c). In all three test speeds, the COF was 0.17 

initially and gradually increased to 0.80 at 300 rev. o f  sliding (Figure 6.22). Increasing 

the sliding distance to 3x103 rev. did not change the behaviour o f  the system; the COF
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maintained its steady state value at 0.80, which was higher than the one observed in the 

argon test (0.48).

6.2.5. Ti against T 1B2 in Argon

In comparison to 1100 A1 and Cu, the largest amount o f  adhesion and material 

transfer occurred from the Ti pin to the TiB2 coating under the argon atmosphere. The 

amount and size o f  the adhered Ti increased with increasing sliding the speed. At 0.02 

m/s, the adhered pieces were small in size (<15 pm) and smeared to the surface (Figures 

6.23.a and b). However, the adhered pieces o f Ti were much larger (30-120 pm) at 0.12 

m/s and 0.65 m/s as shown in Figures 6.24.a and b. The average COF was 0.3 at 0.02 

m/s and 0.7 at 0.12 m/s sliding speeds. At 0.65 m/s, the COF started at 0.60 and then 

increased to 1.2 around 5 m o f  sliding (90 revolutions) and gradually decreased to 0.6 

(Figure 6.25). There was a part o f the sliding track where the coating was detached from 

the substrate. W ith increasing sliding distance, more Ti adhered and covered larger 

portions o f  the TiE$2 coating surface. Meanwhile, the width o f  the sliding track increased 

from 466 pm at 18.00 m to 608 pm at 180.00 m. The COF had the average value o f 0.54 

with fluctuations o f  ± 0.15.

6.2.6. Ti against TiB2 in Ambient Air

Compared to the tests performed under the argon atmosphere, the amount o f Ti 

adhered to the TiB2 coating surfaces was drastically reduced in ambient air (46% RH) at 

0.02 m/s and 0.12 m/s sliding speeds. However, there was still considerable amount o f Ti 

adhesion at 0.65 m/s in ambient air. A very small amount o f debris was formed at this 

speed. A lot o f  debris formation was observed at 0.12 m/s and 0.02 m/s, the latter being 

more. A t 0.02 m/s and 0.12 m/s sliding speeds, the COF started at low values (about 

0.13) and then gradually increased to high values (0.55-0.75) at the end o f  the tests 

(Figure 6.26). W hen the sliding distance was extended to 180 m at 0.12 m/s, the average 

COF was 0.69 ± 0.20 after 18.00 m. There was no increase in the amount o f Ti adhered to 

the TiB2 surface with increasing sliding distance (Figure 6.27.a). However, a lot o f 

debris formed during sliding (Figure 6.27.b). Some o f the debris was in the form o f small
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rounded particles (with higher oxygen content) while the others were plate-like and more 

metallic (i.e. less oxidized).

6.3. Adhesion and Transfer to CrN

6.3.1.1100 A1 against CrN in Argon

At the sliding speed o f  0.65 m/s, the transfer o f  aluminum to the CrN coating 

surface was essentially in the form o f smears as shown in Figure 6.28.a-d. However, at a 

lower speed o f  0.12 m/s, aluminum transferred to the CrN surface both in the form o f 

smears and bulk pieces (Figure 6.28.e and f). There was no bulk transfer o f  A1 at 0.02 

m/s, but some smearing still occurred. At 0.65 m/s, the COF curve had fluctuations with 

the average value o f  0.63. The average COF was 0.76 at 0.12 m/s and 0.26 at 0.02 m/s 

(Figure 6.29). As a general characteristic o f  the tests in argon, there was no loose debris 

generated during sliding.

6.3.2.1100 A1 against CrN in Ambient Air

Different than the other sliding pairs tested in this chapter, significant amount o f 

A1 transfer to the CrN coating surface occurred during sliding in ambient air o f 42% RH 

(Figures 6.30.a-f). The am ount o f debris generated and A1 transferred to the CrN coating 

surface increased as the sliding speed was decreased from 0.65 to 0.02 m/s as shown in 

Figures 6.30.a, c and e. The COF values were high and fluctuated (± 0.14) in all test 

speeds (Figure 6.31). In all test speeds, the COF quickly increased to values around 1.0 

with the start o f  sliding. Then, it gradually decreased to 0.6 at 0.65 m/s, 0.5 at 0.12 m/s 

and 0.65 at 0.02 m/s.

6.3.3. Cu against CrN in Argon

The sliding tracks on the CrN coating were barely noticeable when tested against 

Cu in the argon atmosphere (Figure 6.32.a). No material transfer between the sliding 

surfaces was detected at 0.12 and 0.65 m/s sliding speeds (Figure 6.32.b). The COF 

curves were smooth (± 0.03 fluctuation) with the average values o f  0.47 at 0.65 m/s and 

0.43 at 0.12 m/s (Figure 6.33).
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6.3.4. Cu against CrN in Ambient Air

When Cu was run against the CrN coating in ambient air (42% RH), a decreasing 

amount with debris formation with increasing sliding speed, was observed (Figures 

6.34.a-c). There was very small adhesion o f  Cu to the CrN coating surface. The COF 

curves were smooth with average values o f 0.40 at 0.65 m/s, 0.36 at 0.12 m/s and 0.35 at 

0.02 m/s (Figure 6.35). In parallel with the amount o f debris accumulated on the CrN 

coating surface, the relative amount o f oxidized debris material accumulating around the 

contact surface o f  the Cu pin increased with decreasing sliding speed (Figures 6.36.a-f).

6.3.5. Ti against CrN in Argon

Significant amount o f Ti adhered to the CrN coating surface in argon at 0.65 and 

0.12 m/s (Figures 6.37.a-b). The COF curve had fluctuations with an average value o f

0.81 at 0.65 m/s and 0.64 at 0.12 m/s (Figure 6.38). The CrN coating exhibited some 

wear against Ti. There was almost no Ti adhesion to the CrN coating surface at 0.02 m/s 

but it still was observed that the CrN coating suffered some surface damage (Figures 

6.37.e and f). A smooth COF curve with a mean value o f  0.30 was recorded at 0.02 m/s. 

The sizes and contents o f  the Ti pins also indicated that the direction o f  material transfer 

was from the Ti pins to the CrN coating at 0.65 and 0.12 m/s sliding speeds whereas it 

reversed at 0.02 m/s (Figures 6.39.a -f).

6.3.6. Ti against CrN in Ambient Air

In ambient air (51% RFI), debris formation and adhesion o f  Ti to the CrN coating 

surface was observed at all speeds (Figures 6.40.a-c). Increasing test speed from 0.02 

m/s to 0.65 m/s decreased the amount o f  debris generated. Sliding speed did not affect the 

average values o f the COF appreciably; it was 0.54 at 0.65 m/s, 0.55 at 0.12 m/s and 0.54 

at 0.02 m/s (Figure 6.41).

6.4. Remarks

Among the test results presented in this chapter, the following observations are 

worth highlighting:
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1. Cu did not show any adhesion and transfer to CrN, Graphit-iC DLC or TiE$2 

surfaces in argon.

2. In ambient air, Cu did not stay adhered to the CrN and Graphit-iC DLC coating 

surfaces. Although very small, some transfer o f Cu to the TiB2 surface was observed in 

ambient air.

3. Ti showed very large amount o f transfer to all three coating surfaces in argon. 

Due to its high adhesion tendency, Ti caused some wear o f  the Graphit-iC DLC and CrN 

coatings during sliding contact in argon.

4. Compared to the tests in ambient air, COF was more depended on sliding speed 

in the argon atmosphere. The average COF increased with increasing the sliding speed in 

argon especially in the range o f  0.02 m/s and 0.12 m/s. A t sliding speed o f 0.02 m/s in 

argon, the average COF was generally around 0.3 for all test pairs.

5. For all sliding combinations with the exception o f the 1100 Al-CrN pair, 

changing the test atmosphere from argon to ambient air drastically reduced the amount o f 

material remaining adhered on the coating surfaces and promoted oxidized loose debris 

formation. For the 1100 Al-CrN pair however, in addition to debris formation, a large 

amount o f  A1 adhered to the CrN coating surface in ambient air than in argon.

6. Contact surfaces o f the metal pins had a metallic appearance after the tests in 

argon indicating that the direction o f  material transfer was from them to the coating 

surfaces (i.e. absence o f  transfer layer formation on their surfaces). In ambient air 

however, oxidized material accumulated on the contact surfaces o f  the pins forming 

transfer layers for most test pairs.

7. In argon, all the material removed from the pins stayed adhered on the coating 

surface either in the form o f pieces or smears. In ambient air, most o f the material 

removed from the pins turned into loose debris during further sliding. The EDS analyses 

showed that the debris particles contained significant amount o f oxygen. In both test 

environments, A1 adhesion occurred in the form o f pieces and/or smears whereas Ti 

always mostly adhered as pieces. Very thin smeared layers were only observed with Al.

8. Generally, the amount o f  debris formed decreased with increasing sliding

speed.
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9. In ambient air, Cu had higher average COF value (0.40) against the Graphit-iC 

DLC coating as compared to 1100 A1 (0.14) and Ti (0.09). This suggested that the 

mechanism o f friction between Cu and Graphit-iC DLC was not the same as the one 

between 1100 Al, Ti and Graphit-iC DLC.

6.5. General Discussion o f the Adhesion and M aterial Transfer Phenomena during 

Sliding W ear

The section is devoted to the discussion o f  the factors that control and influence 

adhesion and material transfer between the surfaces in sliding contact. The results o f the 

pin-on-disc tests presented in this and previous chapters will be used. The physical 

properties o f the tested materials, the chemical affinities o f  the sliding pairs towards each 

other, their oxidation characteristics, and interactions with oxygen and water vapour will 

be the main elements o f  discussion.

6.5.1. Adhesion and Material Transfer in an Argon Atmosphere

It is suggested that in an inert atmosphere such as argon, in addition to the relative 

hardness values o f  the contact surfaces, material transfer behaviour between the sliding 

surfaces is controlled by the following two factors; i) the chemical affinity o f the 

materials towards each other, and ii) their thermal characteristics. To support this 

statement, adhesion and transfer behaviour o f  Cu and Ti in argon will be discussed here.

6.5.1.1. W hy Does Cu Not Adhere to the CrN, DLC or T iB 2 Coatings in Argon?

As shown in Sections 6.1.3, 6.2.3 and 6.3.3, only a negligible amount o f transfer 

occurred from Cu to the CrN, DLC or TiB2 coatings in argon at all sliding speeds. It is 

well known that the temperature rise (Tb-T0) due to the frictional heating at the sliding 

interface (equation 6.1. below) is inversely proportional to the thermal conductivities o f  

the sliding pair [142, 143].

Tb - T 0 =
p.F.v 1

k  + iSa. 

lib l 2b
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In equation 6.1, An denotes the nominal contact area at the sliding interface 

between two solids in contact. p, F and v represent the COF, normal force and the 

relative sliding speed between the sliding surfaces. k| and k2 are the thermal 

conductivities o f the materials in sliding contact, and lib and Lb are the two lengths. A 

complete description is given in Appendix A.I.

Among all metals, Cu is the second highest metal thermal conductor with a 

thermal conductivity o f  385 W /m.K after Ag. Therefore, local softening o f  the Cu pin due 

to the frictional heating that would initiate adhesion is not expected to occur since the 

heat generated at the sliding interface can dissipate quickly.

Cu does not have a high driving force for mixing or for compound forming with 

neither CrN nor TiB2 or DLC. In the case o f CrN, the solubility o f  Cu in Cr is almost nil 

as shown in Figure 6.42 [144]. When DLC is concerned, Cu has a very small tendency 

towards C to form copper carbide. Cu has a limited solubility in Ti (maximum 2.1 wt. % 

at 790 °C) (Figure 6.43) [145]. It does not have a tendency to form a compound with 

boron either [146]. Therefore, there are not strong interactions between Cu and these 

coatings that could cause adhesion and material transfer during sliding contact in the 

argon atmosphere. Very small pieces o f Cu, which adhered probably because o f 

mechanical interlocking with TiB2 asperities, were detected on the TiB2 coating surface 

(Figures 6.20.a and b).

6.5.I.2. W hy does T i have high tendency to adhere to CrN, DLC and TiB2 Coatings 

in Argon?

When the Ti pins were run against the CrN, DLC and TiB2 coatings in argon, high 

amounts o f  Ti were transferred to these coatings as documented in Sections 6.1.5, 6.2.5 

and 6.3.5. Naturally, Ti has high chemical affinity towards TiB2 (Figure 6.44). In the 

case o f  DLC, Ti has a high driving force towards C to form TiC (Equation 6.2). The 

Gibbs free energy o f  formation o f TiC is -180.0 kJ/mole at 300 K [129].

Ti(S) + C(S) = TiC(s) Equation 6.2
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For the CrN coatings, the very high chemical affinity o f Ti towards N to form TiN 

should be noted (Equation 6.3). The Gibbs free energy o f  formation for TiN is -243.8 

kJ/mole at 300 K [129].

Ti(S) + lA N2(g) =  TiN(S) Equation 6.3

Ti also forms an intermetallic compound (TiCr2) with Cr and they are completely 

miscible at elevated temperatures (Figure 6.45). Hence, it is not surprising that Ti had 

strong adhesional interactions with these coatings.

The thermal conductivity o f Ti (21.9 W/m.K) is very low in comparison with A1 

(229 W/m.K) and Cu (385 W/m.K). Therefore among the metals tested, the flash 

temperature rise due to the frictional heating at the sliding interface and at the contacting 

asperities must have been the highest for Ti. It is thought that this frictional heating at the 

sliding interface promoted adhesion o f  Ti to the CrN, DLC and TiB2 coating surfaces.

6.5.I.3. Effect o f Sliding Speed on Adhesion and M aterial Transfer in Argon

In Chapter 6  (Sections 6.1.5, 6.2.5 and 6.3.5), it was reported that increasing the 

sliding speed o f  the Ti pin running against CrN, DLC and TiB2 coatings from 0.02 m/s to 

0.65 m/s increased the amount o f Ti transferred to the surfaces o f these coatings in argon. 

It is suggested that the increase in the amount o f  adhesion and material transfer with 

increasing the sliding speed in argon is due to the combined effects o f  the increased 

frictional heating at the sliding interface and the decrease in the interaction time o f the 

remaining reactive gaseous species with the sliding surfaces. Although the number o f 

adhesion spots/junctions decreased with the sliding speed, the amount o f  material adhered 

per junction increased. In the case o f Cu however, the increase in the frictional heating 

was not high enough to cause a local softening that would initiate its adhesion to these 

coatings.

6.5.2. Frictional Heating o f the Sliding Surfaces

In order to have an idea on the extent o f temperature rise at the asperities due to 

the frictional heating during sliding, a computational approach coupled with experimental
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measurements was taken. A K-type thermocouple connected to a personal computer via a 

data acquisition system was used to continuously measure and record the temperature o f 

the pins at a location 2.5 mm far from the sliding interface (F igure 6.46). A1 and Ti pins 

were run against the 80-V DLC and CrN coated and uncoated M2 tool steel discs in 

ambient air (43-57% RH) at sliding speeds o f 0.12 and 0.65 m/s under an applied load o f 

5N. The measured increases o f  the actual bulk temperatures compared to the ambient 

temperature are shown in F igure  6.47. Against the 80-V DLC coating, the temperature 

increase due to sliding at 0.12 cm/s was only 0.6°C for A1 and 0.4°C for Ti, the two 

lowest measured values. A t the same sliding speed, the temperature increases o f  the A1 

and Ti pins sliding against uncoated M2 tool steel were higher; 4.0°C and 3.8°C 

respectively. When the sliding speed was increased from 0.12 m/s to 0.65 m/s, the bulk 

temperatures o f  the A1 and Ti pins running against the 80-V DLC coating increased by 

4.8°C and 3.4°C. On the other hand, the temperature increase at 0.65 m/s was much more 

pronounced when the pins were run against the M2 tool steel disc; 18.9°C for A1 and 

17.8°C for Ti. Sliding against the CrN coated disc at this speed also caused significant 

increases in the bulk temperatures o f  the pins; 19.0°C for A1 and 16.2°C for Ti.

The computational procedure described in A ppendix  A .l, developed by Ashby 

and his colleagues [143, 159, 160], was used to calculate the bulk and flash temperatures 

o f A1 and Ti running against the 80-V DLC and CrN coated and uncoated M2 tool steel 

discs at the same conditions as the experiments described in the previous paragraph 

[147]. The material properties, the values o f the other parameters and assumptions used 

for the calculations are given in T able A.1.2 and  A.1.3.

The calculated increases in bulk temperature values were mostly in agreement 

with the experimentally measured ones as seen in F igure 6.48 supporting the validity o f  

the computation method. The calculated flash temperature values, the ones o f  more 

interest than bulk temperatures because o f  their “suspected role” in initiating adhesion, 

are given T able 6.1. A t 0.65 m/s sliding speed, the flash temperature value o f  the 

contacting asperities between M2 steel and A1 was calculated as 143.7°C. At the same 

sliding speed, the calculated flash temperature value for A1/80-V DLC pair was 93°C. At 

a lower speed o f  0.12 m/s, the flash temperature values for A1/M2 steel and A1/80-V DLC 

pairs were calculated as 49°C and 38°C. The highest flash temperature value (879.9
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Celsius) was for the Ti/CrN pair running at a sliding speed o f  0.65 m/s. Therefore, these 

calculations showed that the role o f frictional heating in initiating adhesion became larger 

with the sliding speed.

T ab le 6.1. The calculated flash temperature values.

P in Disc
Speed
(m/s)

Flash T  
(°C)

Flash T  
(K)

Homologus T  
(T /Tm)

Ti CrN 0.65 904.9 1178.1 0.61

Ti M2 Steel 0.65 452.9 726.0 0.37

A1 CrN 0.65 252.1 525.2 0.56

A1 M2 Steel 0.65 143.7 416.9 0.45

A1 DLC 0.65 92.9 366.0 0.39

Ti DLC 0.65 318.4 591.6 0.30

Ti M2 Steel 0.12 106.4 379.6 0.20

A1 M2 Steel 0.12 48.7 321.9 0.34

A1 DLC 0.12 38.5 311.6 0.33

Ti DLC 0.12 76.3 349.4 0.18

Tm (Al) = 933 K

Tm (Ti) = 1941 K
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6.5.3. Adhesion and M aterial Transfer in Ambient Air

Compared to the tests in argon, one o f  the most obvious differences o f  the results 

o f  the pin-on-discs tests in ambient air was the formation o f  oxidized loose debris. In 

argon, almost all the material removed from pins stayed adhered on the coating surface 

either in the form o f  fragments or smears. In ambient air however, most o f  the material 

removed from the pins turned into loose debris. Actually, for all combinations except 

Al/CrN pair, changing the test atmosphere from argon to ambient air drastically reduced 

the amount material remaining adhered to the coating surfaces and promoted oxidized 

loose debris formation.

The mechanism o f  debris formation was previously discussed in Section 4.5.1 

when the results o f  dry sliding between 319 A1 alloy and various coatings in argon and 

ambient air were analyzed. A t this point, it is useful to have a closer look at the debris 

formation process in more detail.

6.5.3.I. Mechanism o f Debris Generation during Sliding

Some theories on the mechanism o f debris generation suggest the transfer o f 

material to the counterface as the first step o f  the debris generation process [12, 23, 27]. 

For example, Kerridge and Lancaster [12] proposed that the debris generation process 

consists o f  two steps; i) the transfer o f metal from the wearing surface to the opposing 

surface and ii) the formation o f  wear debris from the transferred layer on the opposing 

surface. After the initial transfer from pin to the coating surface, the transferred material 

was detached from the coating surface during the next visit(s) o f  the pin. This was 

followed by the fragmentation o f  the adhered material into loose debris and/or its 

temporary back-transfer to the pin surface.

Since there was a significant amount o f  debris formation in ambient air tests, it is 

proposed that the adhesion and material transfer in ambient air was far more than one 

would estimate by only considering the material remained adhered at the end o f  the tests. 

Therefore, a more accurate statement would be to claim that compared to an inert 

atmosphere, the presence o f  air and/or water vapour in the test environment was effective 

in reducing the amount o f  material that remains strongly adhered to the coating surface 

for all test pairs except Al/CrN.
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Comparison o f the EDS analyses o f  the adhered materials formed in argon and 

ambient air showed that the adhered material that was formed in ambient air was 

significantly oxidized. The occurrence o f  oxidation is not surprising due to the very high 

chemical affinity o f  especially A1 and Ti for oxygen. The standard Gibbs free energies o f 

formation for AI2O3 (Equation 5.2), TiC>2 (Equation 6.4) and CuO (Equation 6.5) at 300 

K are -1,582.3, -888.8 and -129.7 kJ/mole, respectively [138].

Ti(S) + V2 02 (g) — Ti02 (S) Equation 6.4.

Cu(S) + '/z 02 (g) = CuO(s) Equation 6.5.

Since the compositions o f the adhered materials were different, the composition 

and structure o f  the interfaces between the coatings and the adhered materials must also 

be different in argon and in ambient air. Due to the fact that increasing the sliding 

distance increased the amount o f  material adhered in argon but not in ambient air, the 

bonding strength o f  the interface formed between the adhered materials and the coatings 

must be weaker in ambient air.

Among the pairs tested in Chapter 6 , the Al/CrN pair is an exception. For the Al- 

CrN pair, in addition to debris formation, more A1 adhered to the CrN coating surface in 

ambient air compared to that in argon (F igure 6.28 vs. 6.30). A similar observation was 

also documented in Chapter 4 when 319 A1 was run against the nitrogen containing 

coatings (CrN, TiN, TiAIN and TiCN) (F igure 4.7.). As shown in F igure  4.4, most o f the 

sliding track o f  the CrN coating was covered by 319 A1 after sliding in ambient air for 

3 x l0 2 revolutions. Consequently, the bonding formed between the adhered aluminum and 

CrN coating in ambient must be stronger than the one formed in argon.

This example shows that the bonding strength o f  the interface forming in ambient 

air is the most important factor to determine whether the adhered material would stay on 

the counterface or transform into loose debris during further sliding.
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6 .5.3.2. Tribochemistry at Sliding Interfaces in Ambient Air

In ambient conditions, the surfaces o f  most solids are oxidized and covered by 

water vapour. Even if  the adsorbed species (water vapour and oxygen) are removed by 

some means (frictional, thermal), it roughly takes about 7.6x1 O'6 milliseconds for water 

to be re-adsorbed forming a monolayer coverage on the surface in ambient conditions 

[see Appendix A.2 for the calculation]. In this work, the highest sliding speed o f 0.65 

m/s was created by running the discs at 575 rpm. Consequently, it takes 0.104 s to 

complete one revolution. Thus, in ambient air at all three test speeds, the disc surface was 

re-covered with adsorbed water layer(s) between the two visits o f  the pin to the same 

location. Therefore, the tribosystems in ambient air had four material constituents; pin 

material, disc material, oxygen and water vapour.

The Al/CrN example showed that when generalizing on the effects o f  oxygen and 

water vapour on adhesion and material transfer, the following factors should be taken into 

account. Depending on the characteristics o f  the pin and disc materials, the presence o f 

oxygen and water vapour can affect each tribosystem in a different way. Oxygen and 

water vapour in the environm ent can affect the tribo-system by interacting with i) pin 

material, ii) coating material, or iii) both. All three metals tested here, Al, Cu and Ti, are 

well known for their oxides. In addition, they also form hydroxides (Al(OH)3, Cu(OH)2, 

Ti(OH)3) by interacting with H2O [127, 148-150]. Therefore, it is certain that there will 

be interactions between these metals and O2 and H2O during sliding in ambient air.

There is some literature on the interactions o f  oxygen and water vapour with 

DLC, carbon, graphite and diamond. Adsorption o f O2 molecules to form C = 0  bonds, 

adsorption and dissociation o f  H2O to form C-OOH and C-H bonds are shown by 

experiments, calculations and simulations [115]. However, the open literature is rather 

limited on the interactions o f water vapour with CrN and TiEb coatings.

It is quite possible that the interfaces formed between the coatings and adhered 

materials contained oxygen and water vapour. For example, it is known that a thin layer 

(1-2 nm) o f  aluminum oxide (A b 0 3) always forms on the surface o f  the aluminum in the 

presence o f  oxygen in the atmosphere [127, 151]. On the other hand, aluminum 

hydroxide (Al(OH)3 or gibbsite = Al203*3H20) forms on top o f  this layer when water 

vapour is present [127, 148-150]. Therefore, it is plausible that a bond is formed between
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the CrN coating and the aluminum hydroxide or aluminum oxide compounds on the 

surface o f aluminum rather than between CrN and aluminum.

Another possibility can be based on the interaction o f  CrN with oxygen and water 

vapour. Surface chemistry o f  CrN could change as a result o f  these interactions that 

would promote adhesion o f  aluminum to its surface.

6.5.3.3. Effect of Sliding Speed on Adhesion and Material Transfer in Ambient Air

Pin-on-disc tests in ambient air showed that the amount o f  loose oxidized debris 

formed during sliding was inversely proportional to the sliding speed in most cases 

(Sections 4 .2 ,6 .1 .2 ,6 .2 .2 ,6 .2 .6 ,6 .3 .2 ,6 .3 .4 ,6 .3 .6 ).

In a pin-on-disc configuration, increasing the sliding speed can affect the system 

in three ways: First, it increases the interfacial temperature due to frictional heating. 

Second, for a particular spot on the sliding track, the exposure time to the atmosphere 

between two contacting events decreases. Finally, increasing the sliding speed can 

change the deformation characteristics (i.e., adiabatic shear localization etc.) o f  the 

materials under investigation.

In the current pin-on-disc test configuration, different sliding speeds were 

achieved by varying both the number o f revolutions o f the disc per unit time and the 

diameter o f  sliding tracks. The sliding speeds o f  0.02, 0.12 and 0.65 m/s were made 

possible by rotating discs at 25, 125 and 575 rpm respectively.

It is suggested that the observed decrease in the amount o f  debris formed with 

increasing sliding speed was related to the decrease in interaction time o f  the pin and the 

atmosphere with a certain location o f the sliding track on the counterface in two different 

ways. The time needed for two consecutive visits o f  the pin to a certain location o f  the 

sliding track can give an idea about the time period allowed for tribochemical reactions. 

At 25 rpm, it takes 2.400 s to complete one revolution. It is 0.480 s at 125 rpm and 0.104 

s at 575 rpm. Therefore, compared to 25 rpm, the time period allowed for chemical 

reactions is 80.0% less at 125 rpm, and 95.7% less at 575 rpm. Therefore, there was more 

time available for oxidation during the transfer o f  a material from the pin to the coating 

surface at lower sliding speeds. This could have created a weaker or stronger adhered 

material-coating interface compared to the one in argon. Also, lower sliding speeds
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allowed longer time periods for the adsorption o f the atmospheric species (water vapour) 

and the oxidation o f  adhered material until the next visit o f  the pin to the same location.

As mentioned in Section 6.5.3.1, transfer o f pin material to a disc surface is 

considered as the first stage o f  debris formation mechanism. It is natural to think that the 

probability o f junction formation between two sliding surfaces would increase as the time 

o f contact increases. Similarly, with increasing sliding speed, the probably o f material 

transfer from pin to the disc surface decreases due to the decrease in interaction time. 

Comparison o f  the SEM images o f  the sliding tracks tested at 0.12 and 0.65 m/s shows 

that the number o f  junctions/adhesion locations per unit area o f sliding track was less at 

0.65 m/s (e.g. F igures 6.9.a and c). Although they were less in number, the amount o f 

material adhered per junction was much larger at 0.65 m/s. Since the transfer o f  pin 

material to the disc surface decreases with increasing sliding speed, the rate o f the second 

part o f  debris generation process (i.e. removal o f the adhered piece from the counterface 

and its fragmentation into debris) also automatically decreases.
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b)

F igure 6.1. a) SEI and b) BEI SEM images o f a section o f  the wear track o f  the Graphit- 
iC DLC coating tested against 1100 A1 in argon for 300 revolutions (18 m).
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Figure 6.1. c) SEI and d) BEI SEM images o f  the corresponding 1100 Al pin. The 
applied load and the sliding speed were 5 N and 0.65 m/s.
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Figure 6.2. The variation o f the COF between Al and the Graphit-iC DLC coatings 
argon at 0.02, 0.12 and 0.65 m/s. The constant applied load was 5 N.
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F igure 6.4. SEI SEM images o f  a) a section o f  the w ear track o f  the Graphit-iC DLC 
coating tested against Al in ambient air (51% RH) for 300 revolutions (18 m). b) the 
contact surface o f  the corresponding Al pin.
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d)

F igure  6.4. BEI SEM images o f  c) the contact surface o f the corresponding Al pin, d) an 
enlarged view o f the location indicated in b) showing the layer delamination.
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Figure 6.4.e) EDS analysis o f  the location indicated in d). The applied load and the 
sliding speed were 5 N  and 0.12 m/s.
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b)

F igure 6.5 a) Optical image o f the contact surface o f  the Cu pin tested against the 
Graphit-iC DLC coating in argon at a sliding speed o f  0.12 m/s for lxlO 4 revolutions, b) 
SEI SEM image o f  the contact surface o f the Cu pin tested against the Graphit-iC DLC 
coating in argon at a sliding speed o f 0.12 m/s for 3 x l0 3 revolutions.
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b)

F igure 6.7 a) SEI SEM image o f  a section o f the wear track o f  the Graphit-iC DLC tested 
against Cu in ambient air (58% RH) for 3 x l0 2 revolutions (18 m), b) the contact surface 
o f the corresponding Cu pin.
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F igure 6.7.c) an enlarged view o f  the location indicated in b) showing the layer 
formation, and d) EDS analysis o f the location indicated in c). The applied load and the 
sliding speed were 5 N  and 0.12 m/s.

224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C
oe

ff
ic

ie
nt

 
of 

Fr
ic

tio
n

0.6

0.5

0.4

0.3

0.2

0.1

0

F igure 6.8. The variation o f  the COF between Cu and the Graphit-iC DLC coatings 
ambient air at 0.02, 0.12 and 0.65 m/s. The applied load was 5 N.
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F igure 6.9. SEM images o f  a) a section o f the wear track o f  the Graphit-iC DLC coating 
tested against Ti in argon at 0.12 m/s for 3 x l0 2 rev., b) the corresponding Ti pin.
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Figure 6.9. SEM images o f  c) a section o f  the wear track o f  the Graphit-iC DLC coating 
tested against Ti in argon at 0.65 m/s for 3 x l0 2 rev., and d) the corresponding Ti pin. The 
applied load was 5 N in all tests.
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b)

F igure 6.10. SEM images o f  a) a section o f the wear track o f the Graphit-iC DLC 
coating tested against Ti in argon at 0.02 m/s for 3 x l0 2 rev., b) the corresponding Ti pin 
showing material transfer to its surface. The applied load was 5 N.
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b)

F igure 6.12. SEM images o f  a) a section o f  the wear track o f  the Graphit-iC DLC tested 
against Ti in ambient air (59% RH) at 0.12 m/s for 3 x l0 3 rev., b) the corresponding Ti 
pin. The applied load was 5 N.
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b)

F igure 6.14. SEM images o f  a) a section o f  the sliding track o f  TiB2 coating tested 
against A1 pin at 0.12 m/s sliding speed in the argon atmosphere. The sliding distance and 
the applied load were 18 m and 5 N, respectively, b) an enlarged view o f a part o f the 
sliding track showing the severely smeared Al. The direction o f  sliding is indicated with 
an arrow.
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F igure 6.16. a) SEM image o f  a section o f  the sliding track o f  the TiB2 coating tested 
against the 1100 Al pin at 0.12 m/s speed in the argon for 180 m under 5 N  load, 
respectively, b) The corresponding COF curve.
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air (43% RH) at 0.02, 0.12 and 0.65 m/s. The applied load was 5N.
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F igure 6.18. a) SEM image o f  a section o f the sliding track o f  the TiB2 coating tested 
against Al pin at 0.02 m/s sliding speed in ambient air (43% RH) for 3 x l0 2 rev. o f 
sliding. A significant amount o f  loose debris (white) was detected on and along the 
sliding track, b) the EDS analysis o f the one o f  the debris particles showing the extent o f  
oxidation. The applied load was 5 N.
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b)

F igure 6.19 a) The SEM image o f the debris particles gathered along the sliding track 
when Al was tested against TiB2 coating at 0.12 m/s sliding speed in ambient air (50.8 % 
RH) for 180 m o f  sliding distance, b) a closer view o f the debris particles in BEI mode. 
The applied load was 5 N.
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a)

b)

F igure 6.20. a) SEM image o f  a section o f  the sliding track o f  the TiB2 coating tested 
against Cu at 0.12 m/s sliding speed for 180 m o f sliding distance in argon. The applied 
load was 5 N. b) an enlarged view o f a part o f a). The white particles are Cu adhered to 
the TiB2 surface.
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Figure 6.20. SEM images o f  the corresponding Cu pin in c) SEI and d) BEI modes.
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F igure 6.21. SEM images o f  a) a section o f  the wear track o f  the TiB2 coating tested 
against Cu in ambient air at 0.65 m/s for 3x102 rev., b) the corresponding Cu pin showing 
material transfer to its surface. The applied load was 5 N.
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F igure 6.21. c) EDS analysis o f  the location indicated in b).
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Figure 6.23.a) SEM image o f  a section o f the sliding track o f  the TiB2 coating tested 
against Ti pin at 0.02 m/s sliding speed in argon for 3x102 rev. o f  sliding in argon., b) an 
enlarged view o f a part o f a). The applied load was 5 N.
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F igure 6.24. SEM images o f  sections o f  the sliding tracks o f the TiB2 coating tested 
against Ti pin in argon a) at 0.12 m/s and b) at 0.65 m/s sliding speed for 3 x l0 2 rev. o f 
sliding. The applied load was 5 N in all tests.
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F igure 6.25. The variation o f the COF between Ti and the TiB2 coating in argon at 0.02, 
0.12 and 0.65 m/s sliding speeds under a constant load o f  5 N.
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Figure 6.26. The variation o f  the COF between Ti and the TiE$2 coatings in ambient air 
(46% RH) at 0.02, 0.12 and 0.65 m/s.
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b)

Figure 6.27. SEM images o f  sections o f the sliding tracks o f  the TiE^ coating tested 
against Ti pin at 0.12 m/s sliding speed in ambient air (49.1% RH), a) for 3x10 rev. o f  
sliding. The applied load was 5 N, b) the debris particles generated during the test 
described in a) showing the two different kinds o f  debris (rounded small and larger plate
like metallic) generated in ambient air.
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e) f)

Figure 6.28. SEM images o f  sections o f the sliding tracks o f  the CrN coating tested 
against 1100 Al in argon; a) and b) at 0.65 m/s, c) and d) enlarged section o f  b), e) and f) 
at 0.12 m/s sliding speed for 300 rev. o f  sliding. The applied load was 5 N  in all tests.
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F igure 6.29. The variation o f  the COF between 1100 A1 and the CrN coating in argon at 
the sliding speeds o f  0.02, 0.12 and 0.65 m/s under a constant load o f  5 N.
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Figure 6.30. SEI and BEI SEM images o f  sections o f  the sliding tracks o f  the CrN 
coating tested against 1100 A1 pin in ambient air (42% RH); a) and b) at 0.65 m/s, c) and 
d) at 0.12 m/s, e) and f) at 0.02 m/s sliding speed for 300 rev. o f  sliding. The applied load 
was 5 N  in all tests.
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Figure 6.31. The variation o f  the COF between A1 and the CrN coatings in ambient air 
(42% RH) at 0.02, 0.12 and 0.65 m/s sliding speeds under a constant load o f 5 N.
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Figure 6.32. SEM images o f a) a section o f the wear track o f the CrN coating tested 
against Cu in argon at 0.65 m/s for 3 x l0 2 rev., b) the corresponding Cu pin showing the 
absence o f  material transfer to its surface. The applied load was 5 N.
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F igure 6.33. The variation o f  the COF between Cu and the CrN coatings in argon at the 
sliding speeds o f  0.12 and 0.65 m/s under a constant load o f  5 N.
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Figure 6.34. SEM images o f sections o f the sliding tracks o f  the CrN coating tested 
against Cu pin in ambient air (42% RH) a) at 0.65 m/s, b) at 0.12 m/s, and c) at 0.02 m/s 
sliding speed for 3 x l0 2 rev. o f sliding. Debris formation in decreasing amount with 
increasing sliding speed was observed. The applied load was 5 N  in all tests.
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Figure 6.35. The variation o f  the COF between Cu and the CrN coatings in ambient air 
(42% RH) at the sliding speeds o f 0.02, 0.12 and 0.65 m/s under a constant load o f 5 N.
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Figure 6.36. SEI and BEI SEM images o f  contact surfaces o f  the Cu pins tested against 
CrN coating in ambient air (42% RH); a) and b) at 0.65 m/s, c) and d) at 0.12 m/s, e) and 
f) at 0.02 m/s sliding speed for 3x102 rev. o f sliding. The applied load was 5 N in all tests.
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Figure 6.37. SEI and BEI SEM images o f sections o f  the sliding tracks o f the CrN 
coating tested against Ti in argon; a) and b) at 0.65 m/s, c) and d) at 0.12 m/s, e) and I) at 
0.02 m/s sliding speed for 3 x l0 2 rev. o f sliding. The applied load was 5 N in all tests.
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Figure 6.38. The variation o f  the COF between Ti and the CrN coatings in argon at 
sliding speeds o f  0.02, 0.12 and 0.65 m/s under a constant load o f  5 N.
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Figure 6.39. SEI and BEI SEM images o f  contact surfaces o f  the Ti pins tested against 
the CrN coating in argon; a) and b) at 0.65 m/s.
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Figure 6.39. SEI and BEI SEM images o f contact surfaces o f  the Ti pins tested against 
the CrN coating in argon; c) and d) at 0.12 m/s, e) and f) at 0.02 m/s sliding speed for 
3 x l0 2 rev. o f sliding. The applied load was 5 N  in all tests.
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F igure 6.40. SEM images o f  sections o f  the sliding tracks o f  the CrN coating tested 
against Ti pin in ambient air (51% RH) a) at 0.65 m/s, b) 0.12 m/s and c) at 0.02 m/s 
sliding speed for 3 x l0 2 rev. o f sliding. The applied load was 5 N  in all tests.
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F igure 6.41. The variation o f  the COF between Ti and the CrN coatings in ambient air at 
0.02, 0.12 and 0.65 m/s sliding speeds under a constant load o f  5 N.
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Figure 6.46. Experimental setup to measure the temperature increase o f the pins.
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F igure  6.47. The measured increases in the bulk temperatures o f the A1 and Ti pins while 
running against the non-hydrogenated DLC, CrN and M2 steel in ambient air at 0.12 and 
0.65 m/s sliding speeds under the applied load o f  5 N. These values were obtained by 
subtracting the steady state temperatures during running from the ones measured before 
the tests were started.
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Figure 6.48. The calculated and measured increases in the bulk temperatures o f  the Al 
and Ti pins while running against the 80-V DLC, CrN and M2 steel at 0.12 and 0.65 m/s 
under the applied load o f  5 N. The calculations are based on the method developed by 
Ashby and his co-workers [143,159,160]. The method is described in A ppendix A .I.
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CHAPTER 7 

CONCLUSIONS

In order to fulfill the objectives stated in Chapter 1, the tribological behaviour 

during dry sliding contact between 319 Al, 1100 Al, Cu, Ti and surfaces coated with 

DLC and other industrial coatings (CrN, TiB2, TiN, TiAIN and TiCN) have been 

investigated under various test conditions. The main conclusions can be summarized as 

follows:

7.1. Transfer o f 319 Al to Various Coating Surfaces

1) Under the ambient testing conditions, no Al transfer occurred to the non

hydrogenated DLC coating surface after dry sliding contact. All other coatings had 

varying amounts o f aluminum adhered to their surfaces. This observation confirms that 

among the coatings tested, DLC coatings are the most promising class o f  coatings for dry 

machining o f Al alloys.

2) Except for the non-hydrogenated DLC coating, TiB2 picked up the minimum 

amount o f  Al regardless o f  its surface roughness in ambient conditions. This was 

followed by TiCN, TiAIN, TiN and CrN coatings in the order o f  increasing amount o f Al 

transferred on their surfaces.

3) Increasing the sliding speed from 0.12 to 0.60 m/s decreased the amount o f 

aluminum transferred on all the coatings tested.

4) For all coatings except TiB2, there was a sharp decrease in the amount o f 

aluminum adhered to their surfaces when tested under the argon atmosphere. This 

suggested that the presence o f  oxygen and/or water vapour promoted aluminum adhesion 

to these coatings. The amount o f  aluminum transfer to the TiB2 coating was a weak 

function o f the inertness o f  the environment, which was attributed to the high chemical 

stability o f  TiB2.

5) Surface roughness played a critical role in material transfer especially in the 

very early stages o f  sliding o f  rough TiB2 (83 nm Ra). The amount o f aluminum 

transferred increased until a certain sliding distance, followed by a decrease in the
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amount o f aluminum, finally approaching the value o f  the TiB2 coatings with smoother 

surfaces (16 nm Ra).

7.2. Transfer o f Al, Cu and Ti to CrN, DLC and T 1B2 Coatings

1) The lower yield strength, the higher chemical affinity towards the counterface, 

and lower thermal conductivity were found as the three main material properties that 

promoted the adhesion and transfer o f a material to a counterface during dry sliding 

contact.

2) In both argon and ambient air, Al adhered as pieces and/or smears whereas Ti 

always adhered as pieces. V ery thin smeared layers were only observed with Al.

3) In the argon atmosphere, almost all the material removed from the pin was 

transferred and remained adhered to the coating surfaces. In ambient air, however, 

significant amount o f material removed from the pins was converted into oxidized loose 

wear debris during sliding. Since the transfer o f material to the counterface was the first 

step o f the debris generation mechanism, the total amount o f transferred material in 

ambient air was much higher than the one remained adhered at the end o f the tests.

4) The relative strength o f the interface bonding formed in ambient air is 

suggested as the most important factor to determine whether transferred material would 

remain adhered to the counterface or transform into loose debris during successive 

sliding.

5) For all combinations except Al-CrN pair, changing the test atmosphere from 

argon to ambient air drastically reduced the material remaining adhered on the coating 

surfaces and promoted oxidized loose debris formation. For the Al-CrN pair however, in 

addition to debris formation, much more Al adhered to the CrN coating surface in 

ambient air than in argon. This observation suggested that contrary to other sliding pairs, 

the strength o f  the interfacial bonding formed between the adhered Al and the CrN 

coating surface in ambient air was stronger than the one forming in argon.

6) The amount o f  debris formed was found to be inversely proportional to the 

sliding speed. Increasing the sliding speed from 0.02 to 0.65 m/s decreased the amount o f 

debris formed in ambient air for all three metals. It is suggested that the decrease in the 

amount o f debris formed with increasing sliding speed was related to the decrease in
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interaction time o f  the pin and the atmosphere with a certain location o f the sliding track 

on the counterface.

7) The fluctuations in the COF curves were related to the removal, back and forth 

transfer o f  material, and debris generation processes. The debris generation mechanism 

involved the removal o f the adhered material from the counterface and its fragmentation 

into loose small oxidized debris.

7.3. Tribological Behaviour o f Non-hydrogenated DLC Coatings

1) The non-hydrogenated DLC coatings experienced high COF and wear rates in 

vacuum and inert gas environments against counterface materials that either had 

comparable hardness (WC) as the coating or had strong chemical affinity towards it (Al, 

Ti). In argon, Ti caused the highest wear rate o f non-hydrogenated DLC coatings 

followed by 319 Al and WC. Although there was a considerable COF (0.40), Cu caused 

only a negligible amount o f  wear to the non-hydrogenated DLC coatings.

2) Low COF (< 0.16) and low wear rates (< 2 .3 lx l0 ‘6 mm3/m) o f the non- 

hydrogenated DLC coatings associated with the formation o f  carbonaceous transfer 

layers on the counterface materials (Al, Ti and WC) were observed in air with RH > 20%. 

This indicated that the presence o f  water vapour in the test environment was essential for 

the low COF and wear rates o f  the non-hydrogenated DLC coatings against counterface 

materials that are either comparably hard or have strong chemical affinity towards it. 

Increasing the relative humidity from 20 to 85% slightly decreased the COF and wear 

rates against 319 Al, but increased that against WC.

3) In ambient air, a carbonaceous transfer layer formed on counterface materials. 

Sliding in other environments (vacuum, argon, and nitrogen) did not cause the formation 

o f  this carbonaceous tribolayer. Formation o f  the carbonaceous transfer layer on the 

counterface material and the passivation o f the non-hydrogenated DLC coating surface 

by adsorption and dissociation o f the water molecules were suggested as two mechanisms 

responsible for the low COF and wear rate o f the non-hydrogenated DLC coatings in air 

with humidity.

4) A very low COF (0.006) was observed under vacuum (<0.173 Pa) after an 

initial running-in period in ambient air during which a tribolayer was formed on the
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counterface materials o f  Al, Ti, and WC. Longer running-in sliding distances in ambient 

air prolonged the duration o f  the very low COF regime in vacuum. Higher sliding speeds 

reduced it. Together with the creation o f an easy-to-shear transfer layer on the contact 

surface o f  the pins during the ambient air running in period, the adsorption o f the 

remaining water vapour in the test chamber on to the non-hydrogenated DLC coating 

surface has been suggested as the cause o f  the subsequently observed very low COF 

regime in vacuum.

5) Adhesive and abrasive wear mechanisms were suggested as the two dominant 

wear mechanisms in vacuum and inert gas environments, i.e. when the materials in 

contact did not have other appropriate species, such as O2 and H2O in the test 

environment, to meet their bonding requirements. Chemical affinity o f the counterface 

material towards the DLC coating promoted adhesive wear. Oxidational and abrasive 

wear mechanisms were the dominant wear mechanisms in dry and humid air. Catalytic 

effect o f  some metals and their oxides might have also accelerated the oxidational wear 

o f  the non-hydrogenated DLC coatings in dry and humid air.

6) The non-hydrogenated DLC coatings exhibited very low COF values (0.01- 

0.02) against aluminum under the molecular hydrogen atmosphere. The very low COF 

values were reached after an initial high COF (0.70 ±0.15) period. The initial high COF 

period corresponded to the formation o f  a carbonaceous transfer layer on the contact 

surface o f  the 319 Al pin. The presence o f this carbonaceous transfer layer on the 

counterface was found to be essential to reach the very low COF state in the presence o f 

hydrogen.

7) It was proposed that the very low COF state was maintained by the 

instantaneous passivation o f  available carbon bonds by the hydrogen molecules. The 

chemisorption o f  the hydrogen molecules, which consists o f  the breaking o f  the H-H 

bonds and the formation o f  C-H bonds, is suggested as the mechanism for the 

passivation. W hen C-H bonds break due to frictional and/or thermal means, hydrogen 

molecules are instantaneously chemisorbed forming C-H bonds. Changing the test 

environment from hydrogen to vacuum caused the COF to increase immediately, 

suggesting that the production o f the C-H bonds was limited to the very top layers o f both 

sliding surfaces.
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8) The wear resistance of this particular type o f DLC coatings is poor at elevated 

temperatures. The mechanisms that provide the high wear resistance of the coating in 

ambient temperature cease to operate at temperatures as low as 120°C.

9) Annealing at elevated temperatures in air causes the loss o f the stability and the 

significant oxidation of the coating.

10) Different counterface materials caused differences in the wear behaviour of 

the DLC coatings. Although much softer than WC and sapphire, the 319 A1 alloy caused 

more severe wear of the DLC coating both in terms of wear volume and depth of the 

wear track especially at elevated temperatures. A two- and three-body abrasive wear 

model is proposed to explain this observation.

11) It is possible to improve the tribological performance of the DLC coatings by 

optimizing the deposition parameters. For example, increasing the bias voltage and 

decreasing the flow rate was shown to improve the coating stability and wear resistance.

7.4. Practical Conclusions

1) The method developed here, although it does not exactly simulate the drilling 

conditions, was found to be very useful as a screening tool to eliminate the poor 

performing coatings for dry machining of aluminum alloys.

2) The implementation of non-hydrogenated DLC coated tools with water or 

water based lubricants under MQL conditions is suggested as an intermediate solution 

before the total elimination of metalworking fluids in machining operations.

7.5. Suggestions for Future Work

1) TEM investigation of the interface between the adhered aluminum and the 

coating surface. The aim o f this investigation will be to find out the nature o f the 

interface between the adhered material and the coating surface and whether aluminum 

experiences any recrystallization, etc. during transfer. Thus, by examining the nature o f 

the interfaces, the microstructural basis of adhesion will be better characterized.

2) TEM investigation of the aluminum-coating interface after heating and cooling 

to various temperatures under static loaded condition. The aim of these experiments is to
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assess the elevated temperature chemical stability o f the coating against aluminum, which 

is one of the key requirements for a successful tool coating for dry machining.

3) Measurement o f the adhesion strength of the interface experimentally.

4) Closer look to the first revolutions of sliding contact. For example, what is 

occurring after 1st, 2nd, 5th and 10th revolutions? In addition to the pin-on-disc tribometer, 

the scratch test equipment can also be used for this purpose.

5) Designing an experimental configuration that is more representative to study 

adhesion and material transfer during machining. As a repeated sliding test configuration, 

pin-on-disc tests are almost inevitably associated with the formation of tribolayers on one 

o f the two sliding surfaces. However, tribolayers o f the workpiece material does not form 

in machining operations and the cutting tool is always faced with the nascent material. 

Therefore, a test configuration where the tool always faces new workpiece material may 

give better insights. For example a crossed twin cylinders (one coated steel cylinder 

running against an A1 rod) configuration may be used.

6) Detailed examination o f the drills coated with diamond and different types of 

DLC coating after they fail during dry drilling o f aluminum alloys. The aim will be to 

identify the failure mechanisms of the DLC coatings. Do they wear out uniformly or 

catastrophically? Do they fail because of poor adhesion to substrates when they become 

clogged?

7) More characterization o f the transfer layers forming on the counterfaces that 

were run against non-hydrogenated DLC coatings. Are these really oxides or amorphous 

material with a lot o f oxygen dissolved? Are the transfer layers forming on different 

counterfaces identical to each other in term of composition and degree of graphitization? 

Are there two layers on top o f each other (First the mixed layer and then carbonaceous 

transfer layer on top o f it)? What are the mechanical properties of the transfer layers?

8) Effect o f doping with N, S, P, Cl on the tribological behaviour of DLC coatings 

against aluminum. There is substantial evidence that environmental dependency of the 

tribological behaviour of DLC coatings can be altered by appropriate doping elements 

[76-78]. It is of interest to investigate whether dopants could affect the friction and wear 

behaviour o f DLC coatings against aluminum.
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9) Investigation of the Si size, shape and content on the tribological behaviour of 

DLC coatings. It is known that the size o f the Si particles in Al-Si alloys affect the wear 

rate of the cutting tools used for their machining [152]. Therefore, it is of interest to 

investigate if the wear rates o f the DLC coatings are affected by the size o f Si particles in 

Al-Si alloys.
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APPENDICES

A .I. Frictional Heating o f Sliding Surfaces

Temperature increase at the sliding interface due to the heat generated by friction 

is a well known observation that has a lot of importance in the tribological behaviour of 

especially dry sliding tribosystems. There have been many studies to measure, calculate, 

and model the surface and flash temperatures at the interface between the sliding surfaces 

[153-158]. In the following subsection, the methodology developed by Ashby and his co

workers will be described [143,159,160].

A.1.1. A shby’s Method o f Calculating Surface and Flash Temperatures

The rate o f heat generation (q) per unit nominal contact area (An) at the sliding 

interface between two solids in contact can be represented as

q _ jjT \v  Equation A.1.1

Here, p, F and v represent the COF, normal force and the relative sliding speed between 

the sliding surfaces, respectively. The generated heat is shared between the sliding 

surfaces according to their geometry and thermal properties. For the purposes o f this 

study, the temperature calculations are done for a pin-on-disc configuration as shown in 

Figure A.1.1.

Two different temperatures are defined; the bulk temperature (Tb) and the flash 

temperature (T f). The first one, the bulk temperature, is the surface temperature that 

would be reached if the frictional heat was passed uniformly across the nominal contact 

area An. It is given as:

T - T  = p.F.v
k, + k 2

l.b 12b

Equation A. 1.2
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Figure A.1.1. A typical pin-on-disc configuration [160].

278

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where T„ denotes the temperature of the remote sink to which the heat flows, k| and k2 

are the thermal conductivities of the materials in sliding contact, and lib and kb are the 

two lengths. The lib and kb are the equivalent linear heat diffusion distances from the 

sliding surface to the heat sink for the surfaces 1 and 2.

The second calculated temperature, the flash temperature, is the one experienced 

at the true contact area Ar. where the heat generated enters into the material. Due to the 

fact that Ar is much smaller than An in most cases, the T f is usually much higher than Tb. 

In a similar way to Tb, T f is expressed as,

_  . p J\v  
f b A iiL + k

. i f  b r

Equation A 1.3

Here, kf and kr are the new equivalent heat diffusion distances and Tb is the effective 

sink temperature that is given as,

X  = Tb i4Tb —T ) ,  where
A„

Equation A 1.4

A n Fs
Equation A 1.5

Fs is defined as the seizure load at which Ar becomes equal to An and is calculated as,

F =
H0-An

Vi+Iv Equation A 1.6

H0 is the hardness on the softer o f the two surfaces. The open expressions and 

nomenclature for the equivalent heat diffusion distances kb, kb, kr and kr are given in 

Tables A.1.1.a and b. The material properties and the values o f the other parameters
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used to calculate the bulk and flash temperatures that were discussed in Section 6.5.2 are 

listed in Tables A.1.2 and A.1.3.

Table A.1.1. a) Nomenclature, and b) expressions and assumptions for the equivalent
heat diffusion distances

Ad, AC2 Contact areas at heat sinks, (m2)

ai,a2 Thermal diffusivities o f surfaces 1 and 2, (m2/s)

Ho Hardness at 25°C

hci, hC2 Heat transfer coefficients at heat sinks 1 and 2, (W/m2K)

li , l2 Linear distances from surface to heat sinks 1 and 2, (m)

n, ni, n2
A measure o f the lifetime of a contacting asperity; it survives a sliding 

distance, (n/2)nra

ra Radius o f a single isolated asperity junction, (m)

ri
Radius o f a contact-j unction that can be made up of many unit asperities (ra 

<rj <r0), (m)

r0 Radius o f nominal contact area (r0=(An/7t)1/2), (m)

a)

Bulk

i = 1  + A "'k|
,l ' A ..h .

l!b = '7 = tan"'
2.n.an

ro-v

1/2

- - W 1Mr ~  /— 
V7I

n  =  100
Flash

2f Fj tan"1

n.2.7t.a.
Ij.V

n.2.7r.a.
rr v

1/2

r ) for small v 
2 J

1 / 2

( w ^ - r : )  for small v 
2 J

rj = r °

/
'  f ' r„

2 >
1----- O + 1

\ .  Fs. _ra_ /

- 1 / 2

100
r„ =
a H 0(Pa)

, H0= Hardness o f the softer body is taken

b)

280

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table A.1.2. The material properties used to calculate the bulk and flash temperatures
that were discussed in Section 6.5.2.

A1 Ti CrN DLC M2
Density
g/cm3 2.7 4.5 6.1 2.3 7.9

H eat Capacity
J/g-°c

0.904 0.528 0.665 0.711 0.450

Therm al Conductivity
W/mK 229 22 16 15 48

Therm al Diffusivity
m2/s 9.3 8x1 O'5 9.269x1 O'6 3.94x1 O'6 9.17 xlO'6 5.00 xlO’6

H ardness
N/m2 3.58xl08 2.22x109 2.20xl0‘° 1.13xl010 7.00x109

Table A.1.3. The measured average COF and radius of nominal contact area values in
ambient air.

Disc Pin Speed (m/s) COF r0(m)

M2 Steel A1 0.65 0.88 0.00044

M2 Steel A1 0.12 0.82 0.00036

M2 Steel Ti 0.65 0.82 0.00029

M2 Steel Ti 0.12 0.78 0.00031

DLC A1 0.65 0.19 0.00020

DLC A1 0.12 0.18 0.00020

DLC Ti 0.65 0.13 0.00018

DLC Ti 0.12 0.12 0.00018

CrN A1 0.65 0.53 0.00059

CrN Ti 0.65 0.81 0.00047
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A.2. Impingement Rate (Flux) of Gaseous Species [134]

Impingement rate is defined as the total number o f  molecular impingements on 

unit area o f surface in one second. It is expressed as

J = .  t Equation A.2.1
V2ttMRT

In the equation, p and Na stand for pressure (Pa) and Avogadro’s number. M is the 

molecular mass (kg) o f the species under consideration. R and T are the ideal gas 

constant and temperature (K).

The impingement rate in ambient conditions is

j _  1.013xl05 -6.02xl023 _ 0 ff„ ^ 2 7  impingements
~ V 2-71-0.028-8.314-298 ~ ' m 2s

23 impingements
J = 2.8x10

cm2s

The number o f molecules necessary to form a monolayer is found using the 

following way: Diameter o f a nitrogen molecule is about 0.3 nm. Then on a 1 cm of 

length, l/(0.3xl0"8) = 3.3x107 molecules can be aligned. Therefore, on a 1 cm2 area, 

(3.3x107)2= l .lx lO 15 molecules can be fitted. Assuming a sticking coefficient of 0.5, it

1 lxlO 15takes — : — = 7.6x1 O'9 sec to form a monolayer on the surface.
0.5-2.9x10
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