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Abstract

An experimental investigation is performed to determine air side forced
convective heat transfer and flow characteristics of wavy fin, serpentine, multi-port slab,
crossflow microchannel heat exchanger.

Experiments are conducted for 30 different operating conditions in single-phase
air-to-ethylene glycol crossflow configuration. These operating conditions (752 < Re, <
3165, and 23°C < T,; < 46.5°C) yield air side Nusselt number (Nu,), and Colburn factor
(jo) of up to 8.4 and 0.009 respectively. The Nu, and j, obtained in these experiments are
generally higher, and friction factor, f, is generally lower than those found in the
literature. Possible explanations for the apparent discrepancies are explored.

A thorough uncertainty analysis is performed. Uncertainties in Nu,, j,, and
friction factor f, are approximately 4.8%, 5.2%, and 5.8% respectively. A large number
of key heat exchanger performance parameters are also investigated in order to develop

general correlations suitable for industrial applications and engineers.
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Nomenclature

2A

A

Frontal ,Blocked

A

Frontal ,Fin

A

Frontal ,Fin,HX

A

Frontal , HX

A

Frontal ,Slab

AFronml ,Slab,HX

HT ,a,HX

A

HT ,Fin

A

HT ,Fin,HX

HT ,in,MC
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Two times the wavy fin amplitude. (m)

Area. (m2 )

Total heat transfer area in the air side. (mz)
Inner cross sectional area of the microchannels. (mz)
Cross sectional area of a single microchannel. (mz)

Cross sectional area of the test chamber duct. (mz)

Combined frontal area of all fins and slabs in the heat exchanger, which

blocks air flow. (mz)

Frontal area of a single fin. (mz)

Combined frontal area of all fins in the heat exchanger. (mz)
Frontal area of the heat exchanger. (mz)

Frontal area of an individual slab. (mz)

Combined frontal area of all heat transferring slabs in the heat
exchanger. (m2 )

Combined available heat transfer surface area of all fins and slabs in

the heat exchanger. (mz)

Heat transfer surface area of a single fin. (mz)

Combined heat transfer surface area of all fins in the heat
exchanger. (m2 )

Inner heat transfer surface area of an individual microchannel. Also
known as the liquid side heat transfer surface area for one

microchannel. (m2 )
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. - Combined inner heat transfer surface area of all microchannels within

all heat transferring slabs. (mz)

Ayt inMc.stab Inner heat transfer surface area of all microchannels within a slab. (mz)

Avina Minimum free flow area available for air flow. (mz)

Avr s Total area of an individual slab that is not occupied by fins. It is the
summation of individual areas on the slab, which are situated between
two adjacent fins. (mz)

Avr b x Combined area of the slabs for the entire heat exchanger, which is not
occupied by the fins. (m2 )

W — Combined cross-sectional area of all microchannels within all heat
transferring slabs. (m2 )

Ags e Cross-sectional area of an individual microchannel. (m2 )

Axs vic siab Combined cross-sectional area of all microchannels within a slab. (mz)

C' Correction factor for estimating air velocity from dynamic pressure.
Depends on the Pitot static tube construction.

C.in Heat capacity of the fluid with lower heat capacity. (J / s.°C)

c, Specific heat. (J lkg.'C )

Cha Air specific heat. (J lkg'C )

c Heat capacity. (J /s.C )

ol Heat capacity ratio.

Chose Air side dimensionless pressure coefficient.

D Diameter. ()

Dy i Theoretical hydraulic diameter on the air side for the heat exchanger.
Calculated from Kays and London (1984). (m)

D, ¢ Inner diameter of the microchannel. (m)
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Nomenclature

D, Diameter of an individual microchannel. (m)
MC Outer diameter of the microchannel (taken as equal to the slab
height). (m)
f Friction factor.
f, Air side friction factor.
F LMTD Correction factor for multi-pass cross-flow heat exchanger.
F, Fin Pitch. (m)
G Mass flux. (kg /mz.s)
G, Air mass flux (also known as air mass velocity). (kg / mz.s)
h Convective heat transfer coefficient. (W /m*:C )
h, Air side heat transfer coefficient. (W /m2.°C)
h, Glycol side heat transfer coefficient. (W /m*:C )
H,. Height of an individual fin. (m)
- Height of the heat exchanger contained within square duct section of
the test chamber. (m)
Hg, Height of an individual slab. It is parallel to air flow direction. (m)
HB,, Heat balance with respect to average heat transfer rateé (%)
HB, Heat balance with respect to glycol side heat transfer rate Qg (%)
J Colburn factor.
7, Air side Colburn factor.
k Thermal conductivity. (W /m.C )
Ky Thermal conductivity of aluminum. (W /m:C )
ki Thermal conductivity of the fin. (W /m.C )
k, Glycol thermal conductivity. (W Im:C )
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L

HT ,MC,HX

L

‘HT ,Slab

L

HX,TC

S

Fin,HX

Fin,Slab

FinArray HX

zZ =2 =2 =

HT ,Slab,HX

N

Mmc
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Abrupt contraction pressure loss coefficient.

Abrupt expansion pressure loss coefficient.
Flow length. (m)

Fin parameter. (m)

Wavy Fin Wavelength. (m)

Length of an individual fin in the direction of air flow. (m)

Combined length of microchannels participating heat transfer for the

entire heat exchanger. (m)

The length of each slab passes participating in heat transfer. (m)

Length of the heat exchanger contained within square duct section of

the test chamber (excludes serpentine portion of heat exchanger within

the side covers). (m)

Mass flow rate. (kg / s)

Air mass flow rate. (kg / s)
Glycol mass flow rate. (kg / s)

Glycol mass flow rate through all channels of the heat

exchanger. (kg / s)

Fin parameter. (\/1/_1’1’1 )

Number of tubes/channels.

Total number of fins in the heat exchanger.
Total number of fins per slab.
Total number of fin arrays in the heat exchanger.

Total number of slabs in the heat exchanger participating in heat
transfer.

Number of microchannels.
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NMC,Slah

NTU

psratic

p total
Pe
Pe

8
Pr
Pr

a
Prg

0

lelx

rA,HT,aZLiq

Fin

Nomenclature

Total number of microchannels per slab.

Number of Transfer Units.
Nusselt number.

Air side Nusselt number.

Glycol side Nusselt number.

Glycol side pressure at the heat exchanger inlet. (kPa)
Glycol side pressure at the heat exchanger outlet. (kPa)
Static pressure read by the Pitot static tube. (Pa)

Total pressure read by the Pitot static tube. (Pa)

Péclet number.

Glycol side Péclet number.

Prandtl number.

Air side Prandtl number.

Glycol side Prandtl number.

Average heat transfer rate. Q=0 +0Q,.(W)

Maximum possible heat transfer rate. 0, =m, c, (T T ) (W)

Ratio of air side to liquid side heat transfer area.
Air side thermal resistance. (°C / W)
Glycol side thermal resistance. ( °C /W)

Total thermal resistance. ( Cc/ W)

Thermal conductivity of the aluminum that interfaces between glycol

and air.(°C/W)

Reynolds number.

Air side Reynolds number.

Spacing between two adjacent fins. (m)
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S, Longitudinal pitch. (m)

S; Transverse pitch. (m)

St Stanton number.

St, Air side Stanton number.

t Time. (s)

[ Thickness of an individual fin. (m)

r Temperature. ( °C )

T Air temperature (also taken as air bulk temperature unless mentioned

otherwise). ( °C )

T, Air bulk temperature. ( °C )

T, Air inlet temperature. ( °C )

T,, Air outlet temperature. ( C )

T, Glycol temperature (also taken as glycol bulk temperature). ( °C )
T,, Glycol bulk temperature. ( C )

T,, Glycol inlet temperature. ( C )

T, Glycol outlet temperature. ( °C )

T, Outer surface temperature of the glycol. ( C )

U Overall heat transfer coefficient. (W /m*:C )

UA Heat exchanger proportionality constant (product of overall heat

transfer coefficient and heat exchanger area). (W /" C )

4 Velocity. (m/s)
1’4 Air flow velocity. (m/ s)
v, Glycol flow velocity. (m/s)
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vHT,Liq,HX

Greek Letters

o

B,

ﬁA—LiqZV—HX

ﬂA—LiqZV—Liq

Ap

Ap

a
Ap a,HX
Ap Dynamic

8

Ap

pitot

AT

Nomenclature

Velocity of the fluid flowing through the microchannel. (m/ s)

Width of a slab. It is the length of slab in the direction parallel to the air
flow.(m)

Characteristic length. (m)

Volume of liquid refrigerant within the heat transferring lengths of all

microchannels in the heat exchanger. (mg)

Volume of the heat exchanger actively participating in heat

transfer. (m3 )

Glycol volume flow rate. (m’ /s)

Thermal diffusivity. (m2 / s)
Air side heat transfer surface area density. (m2 / m3)

Liquid side heat transfer surface area density. (m2 / m3)

Liquid side heat transfer surface area per unit liquid side heat transfer

volume. (m2 / m3)

Pressure drop. (Pa)

Air side pressure drop. (Pa)

Air side pressure drop across heat exchanger. (Pa)
Air side dynamic pressure. Apj, ... = Pt = Paic - (PQ)
Glycol side pressure drop across the heat exchanger. (kPa)

Dynamic pressure read by the Pitot static tube. (Pa)

Temperature difference. ( °C )
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AT,

AT,

AT,

AT,

AT

AT,

AT,

LM
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Temperature difference between the two fluid streams at end (1) of the

heat exchanger. ( °C )

Temperature difference between the two fluid streams at end (2) of the
heat exchanger. ( °C )

Change in air temperature AT, =T, —T,,. (°C )

Mean temperature difference between slab outer surface and air inlet.
(c)

Change in glycol temperature. AT, =T, -T, . (°C )

Mean temperature difference between slab outer surface and glycol
inlet.("C)

Log mean temperature difference. ( C )

Heat exchanger effectiveness.
Efficiency.

Overall surface efficiency.

Fin efficiency.

Wavy Fin Wavelength. (m)

Dynamic viscosity. (kg / m.s)

Air dynamic viscosity. (kg / m.s)

Glycol dynamic viscosity. (kg / m.s)

Density. (kg / m’ )

Air density. (kg /m’ )

Air density evaluated at the average temperature. (kg /m3)
Air density evaluated at the inlet temperature. (kg /m’ )

Air density evaluated at the outlet temperature. (kg / m’ )
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Nomenclature

Glycol density. (kg / m’ )

Ratio of minimum free flow area to total frontal area.

Ratio of minimum free flow area to total frontal area for the air side.

Symbols for Uncertainty Analysis

B

Parameter

Parameter

tv,95

U

Parameter

Abbreviations

COP
DAQ
DFM
DNL
DPTD
FSO
FSR
HVAC
LPM
LSB
PTD
RSS
RTD

Total bias error in the parameter based on elemental bias errors
B.B,,B,...
Total precision error in the parameter based on elemental precision

errors B, P, P,...

Student t-table distribution value for degree of freedom v and 95%
confidence level.

Uncertainty associated with a parameter.

Coefficient of Performance

Data Acquisition System

Digital Flow Meter

Differential Non Linearity

Differential Pressure Transducer

Full Scale Output

Full Scale Range

Heating Ventilating and Air Conditioning
Liters per minute

Least Significant Bit

Pressure Transducer

Root Sum Square

Resistance Temperature Detector
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Chapter 1: Introduction

Energy is a thermodynamic quantity that is subject to a conservation law, and is known as
the capacity of a physical system to do work. It can exist in many different useful forms,
including kinetic, potential, elastic, thermal, gravitational, sound, light, and
electromagnetic energy. Some useful work performed by energy include the sun emitting
light and heat energy to grow plants, lamps using electrical energy to light houses, and
cars using stored energy in gasoline to move. The development, security, and prosperity
of any nation and its citizens are powered by energy. The science that deals with
understanding energy concepts is known as thermodynamics. The form of energy that is

of particular interest in this thesis is thermal energy or heat.

Heat is a form of energy that transfers from one system to another due to a temperature
difference. Thermodynamics, however, only deals with the amount of heat transfer
resulting from the process of a system moving from one equilibrium state to another; it
does not indicate the duration of such processes. Heat transfer is known as the science
that addresses the rate of this form of energy transfer. Engineers are concerned with heat

transfer due to the applied nature of their work.

In order to properly utilize and benefit from heat energy in many industrial and
residential applications, it is necessary to transfer, add, or remove heat from one system
into another. A heat exchanger is a device that enables exchange of heat between two
fluids that are at different temperatures, while keeping the fluids from mixing. Heat
exchangers are found in such diverse applications as air conditioning, chemical

processing, power generation, and automotive engine cooling.

Heat exchangers can be classified in many different ways, and into many different types.
They can be classified broadly into the three following types:

) regenerative heat exchangers;

(i1) contact heat exchangers; and

(ii1))  surface heat exchangers.

Faisal A. Sddiqui. M.A.Sc. Thesis 2011. Dept of Mechanical, Automotive, and Materials Engineering, University of Windsor, Canada 1



Chapter 1: Introduction

A contact heat exchanger runs on the principle of direct contact, mixing and sharing the
heat of the two fluids. Examples of this type of heat exchanger include the de-aerator,
spray condenser, and wet cooling tower. A regenerative heat exchanger works on the
principle of heat storage in a suitable medium. In most cases, the same fluid is used on
either side of this heat exchanger. Fluid is cycled through the regenerative heat
exchanger, where it reaches a high temperature. It then goes through an external
processing step and is flowed back through the heat exchanger in the opposite direction
for further processing. Surface heat exchangers are the most versatile in their
applications, and are therefore are most common. The two fluids are separated by a

surface through which heat is transferred.

Surface heat exchangers can be further classified based on fluid flow directions as
follows:

@) parallel flow;

(i) counter flow; and

(ii1)  cross flow.

In a parallel flow heat exchanger the two fluids flow in same direction while transferring
heat. In counter flow heat exchangers, however, the two fluids flow in opposite directions
while exchanging heat. In a cross flow heat exchanger, the two fluids flow perpendicular
to each other while heat transfer takes place. The heat exchanger used in this study is a

cross flow type micro channel heat exchanger.

In the past century, the development of heat exchanger technology for use on an
industrial scale has primarily involved expensive, large, and heavy devices with high
pressure drops and high power pumps. These heat exchangers rely mainly on high input
power to drive the pumps to reach the large flow rates and flow velocities necessary to
provide heat transfer at satisfactory rates. Low energy costs and lax environmental
regulations allowed industries to operate with high energy consumption heat exchanger
models in the past. In recent years however, they have been forced to look for more

efficient ways of heat transfer due to energy shortages, high cost, and strict
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environmental standards. These economic, energy and environmental challenges
together with need for efficient, low cost, and in some cases mobile devices, has given
rise to a search for lightweight compact heat exchangers. Inventing ways to enhance heat
transfer is the primary research focus for a majority of researchers in this field. Increasing
the heat transfer area per unit volume, and the heat transfer coefficient, as well as
lowering the approach temperatures, altering tube shapes and orientation, and enhancing
flow configurations are some of the research topics associated with heat transfer

enhancements.

Considerable effort has been put into researching conventional and compact heat
exchangers in the past. Research on micro channel heat exchangers to enhance heat
transfer is comparatively new. Pioneering work was done by Tuckerman and Pease
(1981), who first showed that micro fabrication techniques used in microelectronics can
also be employed to produce microchannel heat exchangers for engineering and
commercial applications on a large scale. Since that work many additional researches
have published important finding in this field. There is, however, considerable
discrepancy in the published literature, and a general lack of consensus when it comes to
the theory of micro channel heat transfer and fluid flow. Mehendale et al. (2000)
classified the size ranges of flow channels into simple four categories based on
geometrical dimensions. Some channel classifications provided by other researchers vary
from his findings. Discrepancies in the published literature are also dependent on
experimental uncertainty and surface roughness. Judy et al. (2002) found that the small
dimensions of micro channels cause difficulty in accurately measuring such driving
parameters as the hydraulic diameter, roughness, flow velocity, pressure drop, volume
flow rates, and flow densities, which in turn lead to large experimental uncertainties.
Steinke & Kandlikar (2006) demonstrated that experimental data in the low Reynolds
number range exhibit large uncertainty due to errors associated with measurement of
mass flow rates. It was found that for the same material and surface finish, roughness

height in MCs can be significantly higher than conventional pipes.
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In general micro channel heat exchangers are expected to be more effective due to higher
surface area per unit volume, improved compactness, higher heat transfer coefficient,
lower approach temperatures, and longer air flow dwell time over heat exchanger. The
improvement in micro channel manufacturing technology has resulted in lower costs per
unit and ability to mass produce. These advantages coupled with current industry need for
efficient heat transfer has made research in this field very attractive. It has led to the

choice of micro channel array heat exchanger as the subject of current study.

Despite the quantity of literature published in this field, the general lack of consensus and
concrete correlations regarding the fluid flow and heat transfer make it difficult for micro
channel heat exchangers to be utilized in industry. Thus there is a need to further
investigate microchannel heat exchanger fluid flow and heat transfer characteristics to
generate useful correlations for specific types of micro channel heat exchangers. Most of
the previous research involved rectangular micro channel heat exchangers due to the ease
of manufacturing and fabrication. Most previous research also involved water as the
working fluid. Research on serpentine type micro channel heat exchangers in the
published literature is scarce. In this study circular micro channels in slab and serpentine
arrangements will be investigated. An important automotive coolant, 50% ethylene glycol
will also be utilized, along with water as the base fluid. Proper Reynolds number ranges,
which are used in many heat exchangers, will be selected for study to determine the
appropriate Nusselt number and Reynolds number relationships. Heat transfer, friction
factor and pressure drop characteristics, and heat exchanger performance will also be

investigated.

1.1 Motivation:

Heat-transfer enhancement using small-sized heat-exchangers has gained significant
research and application interest in recent years because of the need for energy efficient
of heat transfer resulting from high energy costs and stringent environmental regulations.
Considerable development of new micro-fabrication and manufacturing techniques has

enhanced the research appeal of microchannels to achieve high performance heating and
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cooling. Reduced size and lightweight thermal-fluid systems that maintain high heat
transfer capability are an increasing requirement for today’s industries. Microchannel
heat exchangers can meet this need, for example, by replacing conventional automotive
heat exchangers for engine and transmission cooling and air-conditioning systems. Micro
channel heat exchangers are a good candidate for research over conventional and

compact heat exchangers for the following reasons:

e Improved heat transfer and thermal performance. Micro channel heat exchangers
have smaller diameters, which provide higher heat transfer coefficient, leading to
improved heat transfer and thermal performance.

® Increased coil and overall unit efficiencies.

e Substantial refrigerant charge reduction. Due to small channel diameters, the
channel volume is lower; and hence less refrigerant needs to be circulated in the
channels.

e Reduced air-side pressure drop for a given load. A micro channel heat exchanger,
for a given load, can have greater spacing, and a lower blockage ratio while
maintaining a heat transfer area similar to a conventional heat exchanger. Greater
spacing will lead to reduced air-side pressure drop.

e Lower tube side friction factors and pressure drop for a given load. Friction
factors are related to flow velocity in both the turbulent and the laminar region.
Micro channel heat exchangers can provide the same heat transfer in the laminar
flow regime, which would have required conventional heat exchangers to operate
in turbulent regime. Due to the low velocity in laminar regime, the friction factor
and hence, the pressure drop can be lower.

e More compact and reduced coil size. Microchannel heat exchangers can provide
the same amount of heat transfer area at a lower volume compared to
conventional and compact heat exchangers; hence it is more compact.

¢ Minimal equipment cost impact. Due to the reduction in volume, a reduction in
the material used, and hence the material cost, is possible.

® Increased reliability as a result of better corrosion resistance. Most microchannel

heat exchangers can be manufactured from aluminum rather than cast iron or
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steel. Operation in the low pressure laminar region will not deform aluminum
channels. Aluminum has excellent corrosion resistance.
Enhanced structural robustness. Structural robustness is enhanced due to the

increased corrosion resistance.

Additionally, there are benefits for using micro channel heat exchangers in automotive

industry.

Reduced weight, and improved fuel economy. Vehicles with less weight will
require a smaller amount of fuel for similar mileage.

Smaller components, occupying less room under the hood. Compared to
conventional radiators, micro channel radiators will occupy less volume for the
same heat transfer area, and lead to compact vehicles.

More effective cooling. Compared to traditional radiators, the same volume
provides greater heat transfer area, leading to greater cooling.

Increased component life. Flow in microchannels is usually laminar, which means
uniform flow distribution and less damage to the inner tube surface from flow

fluctuations.
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1.2 Objectives:

Although there has been some research conducted on performance and pressure drop of
micro channel heat exchangers, the majority of this research has utilized rectangular or
square channels followed by circular channels. Few studies have been conducted with
straight microchannel configurations, and even fewer with serpentine microchannels
configuration. Research on micro channel heat exchangers using ethylene glycol as the
working fluid is virtually non-existent. So far, the researchers who have studied
microchannel heat exchangers have done so from the point of view of liquid flow inside
the channels; they have neglected the air-side heat transfer characteristics associated with

this novel technology.

These previous statements show that there is a major lack of knowledge of the fluid flow
and heat transfer parameters and characteristics for serpentine microchannel heat
exchangers using ethylene glycol and air as working fluids. Further exploration is
required in order to accurately understand fluid flow and heat transfer behaviors of such
configurations and working fluids. There is no single study on micro channels that
encompasses all the major aspects of research: fluid flow, heat transfer, friction factor,

pressure drop characteristics, and heat exchanger performance.

The main aim of current study thus is to conduct experiments to investigate the proposed
configurations and working fluids to determine the following information.

e Heat transfer characteristics. The air-side heat transfer coefficient in the
dimensionless form of the Nusselt number, Nu,, and Colburn factor, j,, will be
obtained. Correlations of Nusselt number and Colburn factor with Reynolds
number, Re,, will be established.

e Friction Factor Characteristics.

e Pressure Drop Characteristics. Air flow pressure drop features across the heat
exchangers will be analyzed and presented in dimensionless form as a function of

Reynolds number.
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e Heat Exchanger performance. Correlations relating NTU (Number of Transfer
Units), effectiveness, pressure drop, and Reynolds number will be developed.

® Possible scope of improvements.

e (Correlations between the obtained characteristics. Compare Nusselt number to
Reynolds number, Colburn factor to Reynolds number, and friction factor to
Reynolds number relationships obtained through experiments to the available

literature.

In order to accomplish the objectives of this work a series of experiments using 50%
ethylene glycol as the working fluid in a glycol-air cross flow mode will be conducted.
The experiments will utilize a multi-port serpentine microchannel heat exchanger. A
single phase working fluid condition will be used for both working fluids throughout all
of the experiments. The air-side results obtained from these experiments will be

compared to the available and comparable literature.
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Heat exchangers have been used in a wide variety of engineering applications and
processes in the past century. They are one of the most important and major components
in any industrial process that involves adding, removing or transferring heat. The
importance of this device, coupled with its variety of uses, has led to extensive research
aimed at optimizing performance. The air-side pressure drop, heat transfer, and fluid flow
performance of conventional cross flow heat exchangers have been the subject of
significant research in the past century. Much of this research involves the investigation

of the heat transfer and fluid flow characteristics of finned heat exchangers.

Microchannel heat exchangers are one of the most recent developments in heat exchanger
technology. As such, the available literature on this technology is relatively scarce
compared to conventional heat exchangers. Tuckerman and Pease (1981) first introduced
the concept of the microchannel flow passage to remove the heat from silicon integrated
circuits. Microchannel research generally involves only the liquid side of Liquid-to-Air
crossflow. Research on finned microchannel heat exchangers is very rare, investigations

of air-side heat transfer and fluid flow investigation are virtually non-existent.

Based on the limited literature available on liquid-side, properties it is evident that micro
channel heat exchangers possess superior thermal and hydraulic features, i.e. heat transfer
coefficient, heat transfer area, approach temperature, channel geometry, arrangements
and orientations, when compared to conventional and compact heat exchangers.
Microchannel heat exchangers show great promise due to their larger heat transfer area
per unit volume, and higher heat transfer coefficients. A brief review of selected literature
on micro channel heat exchangers, their heat transfer and fluid flow features, and a
comparison to conventional heat exchangers is followed by a survey of air-side

investigations of conventional finned tube and plate fin heat exchangers.
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2.1 Previous research on Microchannel heat exchangers

A number of studies have been conducted to examine the heat transfer and flow
behaviors in microchannels. Owhaib and Palm (2004) experimentally studied single
phase convective heat transfer in circular microchannels. Various available heat transfer
augmentation techniques for microchannel were reviewed by Steinke and Kandlikar
(2004). Morini (2004) surveyed the previous literature and experimental results of single
phase convective heat transfer in microchannels. Hetsroni et al. (2005) conducted
experiments into the heat transfer in microchannels, and compared the results to theory
and numerical results with different microchannel geometries. A crossflow micro heat
exchanger capable of expediting the heat transfer from liquid to gas was designed Harris
et al. (2000). They demonstrated that such heat exchangers could be used in wide range
of automotive, home heating, and aerospace applications. Kandlikar (2006) investigated
and categorized various diameter flow passages; also they studied multiphase fluid flow
and heat transfer characteristics in microchannels. Khan and Fartaj (2010) reviewed many
potential applications of the microchannel heat exchangers, since they provide high heat
transfer, reduced weight, energy, and space over traditional heat exchangers. The authors
investigated the heat and fluid flow for characteristics for various working fluids in
different microchannel air-to-liquid cross flow test specimens. Experiments by Khan and
Fartaj (2010a) experimentally investigated the fluid flow behavior in a multi-port circular

straight microchannel slab in the classical laminar flow regime.

2.1.1 Heat transfer enhancement using Microchannel heat exchangers

Several researchers have attempted to classify and compare micro channel heat
exchangers to conventional heat exchangers with respect to important fluid flow and heat
transfer parameters. For example, Ramshaw (1995) found that micro channel heat
exchangers can significantly increase the heat exchange that can be accomplished per unit
volume as an aim of process intensification. Shah (1991) stated that “a heat exchanger is
referred to as a micro heat exchanger if the surface area density is above about 10,000

"

m*/m’” Mehendale ef al. (2000) classified a hydraulic diameter of 1-100 um as a micro-
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structured exchanger, compared to a hydraulic diameter of greater than 6 mm as

conventional heat exchanger.

Bier et al. (1990) and (1993) studied a micro channel heat exchanger with an active
volume of 1 cm’® and surface density of 14,200m’/m’ and 4000 channels per cubic

centimeter. They found that a volumetric thermal power of 18,000 MW/m® could be
achieved with an overall heat transfer coefficient on the order of magnitude of 20
kW/m’K and a temperature difference of 50 °C. Similar results were also reported by
Kang et al. (2002), who used pure water as the working fluid in the laminar regime to
produce a volumetric heat transfer of 5446 MW/m® and an overall heat transfer
coefficient of 24.7 kW/m’K from rectangular microchannels with 9000-um lengths, 40-
um widths, and 200-um depths and a surface-area density of 15,294 m*m’. Luo et al.
(2007) used a counter current micro channel heat exchanger with multi passage
microchannels; there were 28 channels per plate with each channel lengthened by right
angle turns to prolong residence time. The width of the channels was 200 um, separated
by borders with a thickness of 50 um. They calculated an overall heat transfer coefficient

of 5000-25,000 W/m?K and a volumetric thermal power of 315 MW/m’K.

Lee et al. (2004) presented a polymer type micro channel heat exchanger applicable to a
272 BGA multi-chip module (MCM). The fabricated heat exchanger was 300-um in
height. They found that this heat exchanger was able to reduce thermal resistance up to
89% (from 50 to 7 °C/W) by the liquid cooling method and parametric optimization.
Kido (2000) from Matsushita Refrigeration Company developed a compact heat
exchanger incorporating a rotary fluid pump and a special manifold. Tests on this heat
exchanger showed considerable thermal resistance reductions of about 0.03 K/W;

however, a very large pressure drop, low flow rates, and a low overall COP were noted.

Peng et al. (1994), Wang and Peng (1994), Adams et al. (1998) and Qu et al. (2000)
indicated that microchannel flow can deliver up to 60 times higher heat transfer rates than
conventional channels, and can easily achieve a heat flux level in excess of 100 W/em?.

These benefits, however, are accompanied by a high fluid pressure drop of over 200 kPa.
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This pressure drop is identified as the major drawback to micro channel heat exchangers.
Typical conventional heat exchangers have an average heat transfer surface area per unit
volume of 50 to 100 m*/m?> , and a heat transfer coefficient of up to 5000 W/m?K when

using liquid as the working fluid.

Oh et al. (2003) studied the effect of the orientation of microchannel tubes, hydraulic
coating, and louver pitch on the heat transfer performance of a microchannel evaporator.
They found that the orientation of the microchannel tubes has a great effect on the heat
transfer performance. Hrnjak and Litch (2008) studied a prototype ammonia chiller with
an air cooled condenser and a plate evaporator. Two aluminum condensers were
evaluated in the chiller: one with a parallel tube arrangement between headers and
‘““microchannel’’ tubes (hydraulic diameter D, = 0.7 mm); and the other with a single
serpentine ‘‘macrochannel’’ tube (D, = 4.06 mm). They found that the microchannel
charge was an average of 53% less than for the serpentine. The °‘microchannel’’
condenser charge per heat transfer capacity ratio was around 76% less than for the
‘““macrochannel’” serpentine condenser. The experiments showed that refrigerant charge
is directly proportional to the hydraulic diameter, and that by using smaller hydraulic
diameters and a lower refrigerant charge, higher heat transfer capacity is achievable. Qi et
al. (2009) studied two retrofitted compact and high efficiency microchannel evaporator
and subcooling condenser. The authors compared them with currently used baseline heat
exchangers in mobile air conditioning. They found a volume reduction of 17.2% and
15.1%, and a weight reduction of 2.8% and 14.9% for the microchannel evaporator and

condenser, respectively.

2.1.2 Microchannel heat exchanger geometry improvements

Microchannel heat exchangers typically find applications in the electronics industry.
However, electronics cooling applications restrict how the system can be designed.
Several researchers have investigated and optimized microchannel heat exchanger
geometry. One notable study was conducted by Kandlikar and Upadhye (2005). They

generated channel optimization plots for a microchannel heat exchanger designed to cool
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a chip with dimensions 10mm x 10mm. Their generated optimization plot was able to
accurately determine various channel geometrical parameters, including an optimal
number of channels for a maximum allowable chip temperature of 360K and inlet fluid
temperature of 300K. They also investigated the effect of split flow arrangement, and

found that such arrangement provides a substantial pressure drop reduction.

2.1.3 Effect of Microchannel enhancement

A number of investigators have focused on the application of certain enhancements to
microchannels. As mentioned in the previous section Kandlikar and Upadhye (2005)
analyzed the effect of splitting flow arrangements using enhanced, offset strip-fin
geometry to obtain a significant pressure drop reduction. Kandlikar and Grande (2004)
reviewed liquid cooling with internal flow channels; they stated that three dimensional
microchannels, which use microstructures or grooves in channels and channel surfaces,
can achieve significant increases in single phase cooling. Colgan et al. (2005) compared
various offset fin geometries using multiple heat exchanger zones and optimized cooler
fin designs. They found that a unit thermal resistance of 10.5 C-m*W from the cooler
surface to the inlet water can be achieved while maintaining a fluid pressure drop of less

than 35 kPa.

2.2 Air side investigations of conventional crossflow heat exchangers

For conventional heat exchangers the air-side thermal resistance generally accounts for
90% of total thermal resistance (Wang, 2000). Hence the evaluation of air side
appropriate heat transfer and fluid flow correlations for the heat exchanger is being
considered imperative. Many researchers have investigated the air-side heat transfer and
fluid flow characteristics of conventional and compact cross flow heat exchangers. A
sample of the literature is summarized below in terms of the air-side operating flow
regimes, fin types used, correlations developed, as well as the effect of fin types, fin
parameters, i.e. fin height, width, length, and spacing, and also flow regimes on air-side

fluid flow and heat transfer characteristics.
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Wang et al. (2000) focused on the data reduction methodology for the air-side
performance of finned tube heat exchangers and recommended specific data reduction
methods for obtaining the air-side performance of fin-and-tube heat exchangers. The
authors recommended that energy balance (i.e. difference in the magnitude of heat
transfer rates) between the air-side and liquid side should be less than 5% for accurate
results. The authors advised that future researchers utilize proper selection of established
effectiveness NTU relationships for analyzing any particular heat exchanger, along with
the calculation of the friction factor in a manner that would negate entrance and exit

losses.

Dong et al. (2007a) studied experimentally a total of 11 wavy fin and flat tube crossflow
heat exchangers across a range of air-side Reynolds number between 800-6500. The heat
exchangers of varying fin pitches, lengths, and heights were subjected to a constant tube-
side water flow rate. They reported that friction (f) and Colburn (j) factors decreased with
increasing Reynolds number. It was also reported that an increase in fin spacing increases
the f and j factors for a given Reynolds number; the f factor as function of Reynolds
number did not vary with fin height. The authors also developed heat transfer and
pressure drop correlations for wavy fins, which were reported to be more than 95%

accurate in predicting those parameters.

Nuntaphan et al. (2005) studied 23 crimped spiral crossflow heat exchangers for the
effects of tube diameter, fin spacing, tube pitch, and tube arrangement. The authors
reported that increasing the fin height increased the pressure drop and decreased the heat
transfer coefficient significantly for an in-line arrangement. However the effect was
found to be not so drastic when examining a staggered fin arrangement because its air-
flow blockage pressure drop term dominated other pressure drop contributions. They also

reported smaller fin spacings led to lower heat transfer coefficients.
Tang et al. (2009) investigated the air-side heat transfer and the friction factor of 12-row,

18-mm finned heat exchangers. The authors investigated a range of air-flow Reynolds

numbers between 4000 and 10000; they found that crimped spiral type fins provide
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higher heat transfer and pressure drop compared to plain, slit types of fins. They also
found that slit fin heat exchangers perform better compared to other heat exchangers at

higher Reynolds number ranges.

De Paepe et al. (2005) investigated the performance of several plate-fin types for 30
different air-side Reynolds numbers between 400 and 1600. The authors developed a
Reynolds number vs. j factor correlation, which can predict j factors using surface

temperature measurements with only 13% error.

Paeng et al. (2009) measured the forced convective heat transfer of plate fin-tube heat
exchangers at air-side Reynolds numbers between 1082 and 1649. The authors then
numerically computed the average air-side Nusselt number. They found errors of less
than 6% when the numerically computed value was compared with experimental values,

hence demonstrating the suitability of the particular numerical model used.

Dong et al. (2007) studied air-side heat transfer and pressure drop characteristics for 16
types of offset, strip fin, flat tube, heat exchangers over air-side Reynolds numbers
between 500 and 7500. The authors developed correlations for the j factor and f factor
against Reynolds number using regression analysis, which predicted 95% of the j factor

and 90% of the f factor experimental data within +10%.

Huzayyin et al. (2007) investigated the effect operating conditions for wavy finned tubes.
The operating conditions included air temperature, air relative humidity, and evaporator
pressure on such air-side performance as cooling capacity, pressure drop, and heat
transfer coefficient. The authors found that increasing the air inlet temperature, air coil
face velocity, and air inlet relative humidity resulted in a decrease in the air temperature
drop across the coil. They also reported that the pressure drop across the coil increases

with an increase in the inlet air relative humidity, and the coil face velocity.

Dong et al. (2008) analyzed the air-side heat transfer and pressure drop characteristics of

9 louver-finned, flat tube heat exchangers of varying fin spacing and length. The authors
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reported j and f factors over a Reynolds number range between 500 and 6500. They
reported an increase in air side heat transfer coefficient (4,) and pressure drop (4p) with a
decrease in fin spacing and length; fin spacing had a greater influence on the thermal

hydraulic characteristics of the louvered fins.

Khan et al. (2004) investigated an elliptical tube array heat exchanger with air-side
Reynolds numbers between 10,000 and 33,000. Results showed that an increase in the
heat transfer rate and Nusselt number depended on an increase in the air-side Reynolds
number according to a power law relation. The dimensionless pressure drop coefficient
was seen to reduce from 0.33 to 0.16, i.e. from a Reynolds number 10,000 to 20,000, and

remained constant at this level.

Wang et al. (2000a) studied the air-side thermal-hydraulic characteristics of 18 different
fin-tube heat exchangers with a plain fin configuration. The authors reported that for a
given number of tube rows, the heat transfer characteristics were greatly dependent on fin
pitch. It was found that for up to two rows, the heat transfer performance increased with a
decrease in fin pitch, while for four or more rows, the effect of fin pitch was negligible. It
was also found that for a given fin pitch, friction performance was not significantly

altered by the number of tube rows.

Park et al. (2009) studied the air-side thermal-hydraulic performance of a flat-tube
aluminum heat exchanger constructed with serpentine louvered, wavy, and plain fins.
Both dry and wet conditions were investigated. The authors found that fin spacing has a
significant influence on f and j factors, as they decrease with decrease in fin spacing. This
effect is seen to be more pronounced at high Reynolds numbers. The authors reported
that for louvered fin heat exchangers, fin spacing has greater influence on the f factor
under wet conditions than at dry conditions. It was also found that under wet conditions,

louver spacing has greater influence on performance than at dry conditions.
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Tang and Yang (2005) experimentally investigated the thermal performances of single-
row fin-and-tube heat exchanger. The authors found the leading thermal resistance on the

air side.

The convective heat transfer is mainly influenced by boundary layer separation effects
and by wake interactions suggested by Incropora and Dewitt (2002). Tao et al. (2006)
performed three dimensional numerical simulations to investigate the local heat transfer
coefficient and fin efficiency of wavy fin-and-tube heat exchangers for laminar flow.
They observed that the local Nusselt number in the wake region was very low that would
lead to weak convective heat transfer in this region. Similar results were obtained by Tian
et al. (2009) during numerical studies on wavy fin-and-tube heat exchangers which had

three-row round tubes in staggered or in-line arrangements.

Taler (2005) developed a numerical model for predicting the heat transfer correlations for
crossflow compact heat exchangers, and computed air side heat transfer coefficient from
overall thermal resistance. The author chose to implement their numerical model for a
double row, two-pass automotive radiator in laminar flow region. The major and minor
diameters of the oval shaped tubes were 11.82mm and 6.35mm respectively. His
numerical simulation revealed that the regions behind the tubes contributed very small to
the performance of the heat exchanger. The heat transfer rate was observed very low in

the second row due to presence of the wakes in the front and behind the tube.

El-Shaboury and Ormiston (2005) numerically studied on forced-convection heat transfer
of crossflow in banks of plain tubes in square and non-square inline arrangements. They
found that the heat transfer rate around the first tube in the bundle was always higher than

the tubes following it.

2.3 Uncertainty in Microchannel heat exchangers

Kandlikar (2006) divides the uncertainties or errors in micro channel heat exchangers into

three groups: uncertainties inherent to fluid properties; uncertainties relative to micro
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channel geometric characteristics; and uncertainties due to flow rate measurements.
While most of these uncertainties are within an acceptable range, they tend to become
unmanageable for cross section dimensions. For example uncertainties in hydraulic
diameters are magnified to the fourth power in the calculation of flow rate. Kandlikar
also finds that for a measurement inaccuracy of only 10-nm across a depth of 1.0-um
produces an error of 4% in the estimation of flow rate. For a rectangular micro channel
heat exchanger of height a and width b, a major influence on the overall uncertainty

comes from the uncertainty in measurement of a and b.

Lower Reynolds numbers tend to exhibit large uncertainties due to the errors associated
with flow rate measurements. Uncertainties in the overall calculation can be also
introduced as a result of uncertainties in channel dimensions, flow rate measurements,
entrance and exit losses, and the developing region effects. Steinke and Kandlikar (2006)
analyzed the uncertainties in the experimental measurements of Nusselt number.
Uncertainties in surface temperature measurement and flow channel dimensions also
contribute to the overall uncertainty. Uncertainties in geometrical measurements also play
a role in introducing uncertainties to the friction factor estimation. It is also found that
smaller diameter tubes tend to have higher overall uncertainty in general due to the

relative difficulty in measuring small heat transfer rates accurately.

2.4 Summary of literature review

From the above-provided description of past research, it is evident that there is a great
scatter of results and findings in the available literature. Such literature is found to be
either on analysis of liquid side of microchannel heat exchangers, or an air-side of finned
conventional heat exchangers. An air-side investigation of a microchannel heat exchanger
does not exist; published investigations of microchannel heat exchangers utilizing

ethylene glycol were not found.

A great portion of the research on microchannel has used water as the base fluid,

including Mala et al. (1999), Weilin et al. (2000), Wu et al. (2003), Peng et al. (1994),
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Peng et al. (1994a), Yu et al. (1995), Jiang et al. (1995), Papautsky et al. (1999), Wilding
et al. (1994). Few researchers have used fluids other than water as the working fluid.
Hegab er al. (2002) used R134a; Pfahler et al. (1989) using propanol; Pfahler et al
(1991) using silicone oil and isopropyl alcohol; and Judy et al. (2002) used methanol and
isopropanol. No published literature was found using ethylene glycol in micro channels.
Of the surveyed literature, none dealt with glycol in small diameter channels, except for
Jokar et al. (2005), who used larger hydraulic diameters ranging between 2.6 and 4.1

mm. This diameter range, however, does not fall in the micro channel category.

Researchers also investigated various channel shapes, the three most frequent of which
are rectangular, trapezoidal, circular cross sections. Most publications tend to use
rectangular microchannels due to the relative ease of manufacturing such channels. These
publications include Peng et al. (1994), Peng et al. (1994a), Jiang et al. (1995), Papautsky
et al. (1999), Hegab et al. (2002), Pfahler et al. (1989), Pfahler et al. (1991), Wu et al.
(1998), Arkilic er al. (1994), Arkilic et al. (1997), Shih et al. (1996) etc. Researchers who
used circular channels include Mala et al. (1999), Yu et al. (1995), Judy et al. (2002),
Chung et al. (2002), and Choi et al. (1991). Research done on trapezoidal cross section
channels include Weilin et al. (2000), Wu et al. (2003), Wilding et al. (1994), Pfahler et
al. (1991), and Harley et al. (1995) etc.

Several publications found deviations from classical laminar flow heat transfer and fluid
flow theory because the hydrodynamic and thermal developing and developed regions
were not considered properly. Available air-side finned heat exchanger research by Dong
et al. (2007), Nuntaphan et al. (2005), De Paepe et al. (2005), Paeng et al. (2009),
Huzayyin et al. (2007), Wang et al. (1999), Park et al. (2009), and Tang et al. (2009)
involved various fin types. The air-side Reynolds number is these experiments ranged
from 400 to 10,000, and showed the effect of fin height, width, length, flow regimes, and
environmental conditions, on heat transfer and fluid flow parameters as well as heat

exchanger performances.
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Previous air side research by Wang (2000), and Tang and Yang (2005) have found that
thermal resistance on the air side of the air-to-liquid heat exchanger dominates the total
thermal resistance (composed of air, liquid, and wall thermal resistances). In some cases

the air side thermal resistance reached up to 90% of the total thermal resistance.

Conventional heat exchangers employing in-line or staggered tube row configuration
develop regions of low fluid velocity behind the rows. This area is called wake region.
El-Shaboury and Ormiston (2005), Taler (2005), Tao et al. (2007), and Tian et al. (2009)
performed numerical analysis of in-line tube row configurations. These studies have all
found that heat transfer rate for second and subsequent rows are adversely affected by

wake region resulting relatively lower heat transfer rates when compared to the first row.

2.5 Scope of current study

A large number of articles in the published literature have been carefully examined; their
research scope and findings were compiled and provided in this chapter. After reviewing
this literature, and in light of the previous work, a finned multi-port circular microchannel
heat exchanger was studied experimentally. 68 circular microchannels, 1 mm in diameter,
situated parallel to each other, were fabricated inside the serpentine slab structure. The
heat exchanger was made of aluminum, and was attached inside a 305-mm x 305-mm x
600-mm Plexiglas test chamber. The serpentine slab was oriented to provide a 0° air flow
angle of attack. The air flow was perpendicular to the channel lengths and parallel to the
structure width. Placing the slabs in this orientation also ensured a longer air dwell time
over them, and optimized heat transfer. A single-phase 50% ethylene glycol-water
mixture was used as the working fluid in a series of experiments against air under similar
cross flow condition. The air Reynolds number ranged between 750 and 3165. The glycol
Reynolds number range was held fairly constant at 200 £ 5. These Reynolds number
ranges were chosen because they were found to be applicable for current micro channel
heat exchangers. Through experimental study on these heat exchangers, an air-side

Reynolds number vs. Nusselt number relationship will be examined. Also general fluid
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flow, heat transfer, and pressure drop characteristics, as well as heat exchanger

parameters will be examined.
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3.1 Microchannel heat exchanger research facility

This detailed study of microchannel heat exchanger was undertaken in the University of
Windsor’s Microchannel Research Facility, room B05, of Essex Hall. It is a state-of-the-
art research facility, whose sole focus is microchannel and microchannel heat exchanger
research and development; it is a one-of-a-kind in southwestern Ontario. The research
facility is composed of a closed loop thermal wind tunnel with a built-in heat exchanger
for heating and cooling the air flow. It has an external water supply system for the heat
exchanger, several types of microchannel heat exchangers, a data acquisition system
utilizing LabVIEW, and numerous measurement devices. The detailed schematic of the
experimental setup and the research facility including all major components is presented

in Figure 3.1.

3.2 Research facility apparatus

A large number of apparatus are utilized in a typical test run; the major equipment and
sub-systems are illustrated in Figure 3.1 schematic and Figure 3.2 photograph. The entire
experimental setup consists of sub-systems such as: thermal wind tunnel, working fluid
tank, gear pump (glycol-side), piston pump (air-side), circulation heater, city water
supply, and data acquisition system. Each of these sub-systems is composed of multiple
components. The details of each of these sub-systems and their components are described

as follows.

3.2.1 Thermally insulated wind tunnel

The closed loop thermal wind tunnel houses a built-in heat exchanger and a detachable
test section. It is 544 cm long, 75 cm wide and 164 cm high, and is the largest component
in the research facility. The wind tunnel has 1-cm thick wall and a contraction ratio of

6.5.
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Figure 3.2: Microchannel heat exchanger research facility

Air circulation through the wind tunnel is accomplished by utilizing a blower that is
driven by a hydraulic piston pump, the details of which are provided in section 3.2.6. The
direction of air-flow inside the wind tunnel is shown in Figure 3.3. Maximum recorded
average air velocities inside the wind tunnel of up to 30 m/s are possible in the absence of
a test heat exchanger inside the test section. Experiments with the serpentine
microchannel heat exchanger in place revealed that an air flow velocity of up to 11 m/s is
achievable. It is dependent on frontal area and blockage ratio of the heat exchanger. The
built-in tubular heat exchanger is situated at the upstream side of air passage inside the
tunnel duct. This heat exchanger draws water from external water supply and is used to
heat, cool, and control the air temperature as required by the parameters of the
experiment. The built-in heat exchanger is robust enough to handle the full flow rate
supplied by the city, and in experimental runs has been demonstrated to handle flow rates

in excess of 42 liters per minute.
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‘Wind Tunnel Built-In:

Air Flow Direction [ HeatEx?hanger .

Figure 3.3: Wind tunnel with air flow direction

3.2.2 Test chamber

The fully assembled test chamber is shown in Figure 3.4. It has a length of 600 mm,
width of 305 mm, and depth of 305 mm. The test chamber is constructed of Plexiglas
with thermal conductivity of 0.19 W/m.°C. It is constructed in such a way that it will fit
snuggly onto the wind tunnel's loading platform. The test chamber is a square cross
section duct that matches the attaching portion of the wind tunnel. This arrangement
ensures uniformity of air flow into the test chamber from the wind tunnel, hence
eliminating any adverse effects related to air flow fluctuations. It is fabricated with screw
holes for attaching to the wind tunnel. The roof of the test chamber has a removable lid
which aids with both the in attaching process to the wind tunnel, as well as maintenance.
After attaching the test chamber to the wind tunnel, the inner wall of the test chamber is
taped with the wind tunnel to ensure flow uniformity and to reduce flow fluctuations. The
test chamber also has a docking port on its roof for placing a Pitot tube or a hot wire
anemometer for velocity and pressure measurements. A series of holes are regularly
spacing on the top and side walls of the test chamber, making it possible to insert a Pitot
tube. The holes traverse across the cross section of test chamber to measure air flow

pressure and velocity in accordance with log-Tchebycheff method. Sections of Plexiglas
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were also attached to the outside of the bottom wall of the test chamber for structural

robustness.
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Figure 3.4: Fully assembled test chamber

3.2.3 Serpentine Microchannel heat exchanger

The serpentine microchannel heat exchanger, Figure 3.5, is constructed of aluminum. It is
305 mm wide, 285 mm high, and has a frontal area of 0.08669 m>. The depth of the
microchannel heat exchanger in direction parallel to air flow is 100 mm. The
microchannel slabs and fins, which alternate in the construction of the heat exchanger,
are also 100 mm wide. The microchannel heat exchanger consists of inlet and exit pipes,
an inlet and an exit major header, and three inlet and three exit minor headers. The
function of the major inlet and exit headers is to accumulate the liquid flowing from inlet
pipe and minor exit headers, respectively, and to send the liquid flow into the minor inlet

headers and exit pipe, respectively. The minor inlet and exit headers receive the liquid
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flowing into them from the major inlet header and microchannels, respectively, and send
the flowing liquid into the microchannels and major exit header respectively. The flow
regime achievable in this heat exchanger with the existing equipment was in the laminar

region.

Detail B

Inlet/Outlet
Pipe

Figure 3.5: Microchannel heat exchanger used in this study

3.2.3.1 Microchannel arrangement within the heat exchanger slab

An illustration of the serpentine microchannel slab is shown in Figure 3.6. The serpentine
slab houses a total of 68 microchannels. Each of these equally spaced microchannels is 1
mm in diameter, and the distance between the centers of the first and last microchannels
in this series is 98 cm. The radius of the fillets at the ends of the slab width is 1 mm,

giving the total width of 100 mm as previously mentioned.
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Detail A
Scale: /}0?

Figure 3.6: Microchannel serpentine section with channel arrangements

3.2.3.2 Heat exchanger serpentine slab arrangement

The microchannel heat exchanger consists of 3 serpentine microchannel slabs. The
serpentine slabs are essentially one large (1838 mm) straight slab bent into five slab
segments of alternate flow directions. The outer segments are each 370 mm long, the
three middle segments are each 320 mm long. The three serpentine slabs therefore make
up 15 slabs of alternate flow directions, perpendicular to the air flow direction. The
effective heat transfer length of these 15 slabs is limited by the cross section of the test
chamber to be 305 mm each. An illustration of the slab arrangement is shown in Figure
3.7. As seen in this figure, the slab inlets and exits are connected to the minor inlet and

exit headers.
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Figure 3.7: Slab arrangement within microchannel heat exchanger
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3.2.3.3 Heat exchanger fin arrangement

The fins of this microchannel heat exchanger are fabricated from large pieces of thin
aluminum sheet. A total of 14 such sheets are placed alternately between the
microchannel slabs. The sheets are 98 mm wide in the direction parallel to the air flow.
They are bent at right angles to create the geometry shown in Figure 3.8. The fin top and
bottom surfaces shown in Figure 3.8 are attached to the slab to aid heat transfer from the
slab to the fins. As such, the fins and slab together create rectangular blocks of flow area
through which air can pass without mixing in the transverse direction. The fins are on
average 18 mm high, and are manufactured to have a density of 12 fins per 25.4 mm (1
inch). The center of one fin to the center of another therefore is 2.12 mm as shown in
Figure 3.8. The total length of the finned area is 12 inches, and the total number of fins in

this length is 144 £ 0.3.

Figure 3.8: Microchannel heat exchanger fin
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3.2.4 Circulation immersion heater with PID controller

The heater used in this experiment is a circulation immersion heater, Model #
MFLI606X2818, from Wattco, Figure 3.9. It is furnished with a removable flange,
threaded nozzles, drain plugs, insulation, and mounting brackets, which allow it to be
easily incorporated into the existing research facility sub-systems. The heater is 4" 150 1b
flanged steel vessel with 38.1 mm (1-1/2 inch) inlet and outlet. It is capable of providing
up to 6 kW. It has a heating element watt density of 4.6 W/cm?, which classifies it as a

medium range watt density heater; low watt density is preferred for longer heater life.

REMOVABLE FLANGE
HEATER

SLIP-ON OR WELD
NECK FLANGE

THREADED
NOZZLES

HEATING ELEMENTS
(COPPER OR INCOLOY)

VESSEL DESIGNED IN
ACCORDANCE
WITH ASME CODE

e—STEEL CASING

MOUNTING
BRACKETS

3/4 NPT PLUG
FOR DRAIN

1/2 NPT FOR
THERMOWELL

END DISC

Figure 3.9: Circulation immersion heater with various components

The heater is controlled via a 1/16 DIN Series SD Controller, Model # SD6C-HJAA-
AARG. It is furnished with an auto tuning feature, an on-off control, and a proportional
integral derivative (PID) control. The on-off control switches the output to either full on
or full off, depending on the input, set point, and hysteresis. The auto tuning feature
allows the controller to measure the system response to determine effective settings for

PID control. PID control provides more accurate control than on-off control. It adjusts
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output when the temperature is within a proportional band by lowering the output power
when the process temperature is close to the set point. For the experimental runs, the PID

control and auto tuning feature were turned on for more accurate temperature control.

3.2.5 Gear pump with variable speed step motor

The pump utilized in the research facility is a positive displacement bronze gear pump
from Omega, Model # FPUGR202-RCB. It is suitable for pumping water, oils, and
certain solvents, and can provide outputs at a relatively constant flow rate regardless of
the outlet pressure. This pump is capable of handling fluids with a viscosity of 21,630 cSt
(100,000 SSU), and can provide up to 689 kPa gage (100 psig) pressure. It is powered by
an external motor capable of up to 1725 rpm. The pump is connected by the shaft to a 3-
phase, 230 V, variable-speed external motor, which can be controlled a frequency
controller. By controlling the frequency, the speed of the motor and hence the liquid flow

rate can be controlled.

3.2.6 Hydura piston pump for air circulation

A Hydura piston pump, Model # PVQ 06LS, circulated air through the wind tunnel. It
works in conjunction with a Hydura variable displacement motor, Model # HB5-31. The
variable speed motor is controlled through a needle valve, which facilitates manual

adjustment displacement, and hence both the flow rate and the velocity of the air flow.

3.3 Research facility instrumentation and data acquisition

Temperature on the air-side and on the surface of the heat exchanger slabs was measured
by thermocouples. The 50% glycol-water mixture temperature measurement was
conducted using appropriate RTDs. The strategic location and arrangement of these

thermocouples and RTDs and their specification is detailed below.
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3.3.1 Temperature measurement arrangements

Thermocouples used on the surface of heat exchanger in various locations. These T-type
thermocouples were placed on the bends, minor headers, and inlet and exit pipes of the
heat exchanger. They provide both surface temperature measurements for further

analysis, as well as a general trend of surface temperature along the heat exchanger slabs.

The air-side inlet temperature was measured by placing a grid of 9 equally spaced
thermocouples on the wind tunnel duct, 3-5 mm from the inlet of the test chamber. It was
anticipated that the air temperature variation in the test chamber exit cross section would
be greater because of the presence of the heat exchanger. To take this variation into
account, 25 equally spaced thermocouples were arranged in a grid and placed on the wind
tunnel duct 3-5 mm from the exit of the test chamber. The thermocouple inlet and exit
grids are shown in Figure 3.10 together with dimensions in dual units (mm and inch
respectively). They were placed on the wind tunnel rather than test chamber since they
will not require removal when removing the test chamber to change test heat exchangers.
The close proximity of these thermocouples to the test chamber inlet and exit eliminates

any incorrect temperature profile representation.

T 304.8
12 \
QO
Q
o)
\\
Air Inlet Temperature Air Outlet Temperature
Thermocouple Grid Thermocouple Grid

Figure 3.10: Thermocouple arrangements at the inlet and exit of test chamber
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Resistance temperature detectors account for the predictable change in the electric
resistance of some materials with changing temperature. Omega ultra precise immersion
RTD sensors are used in the experiments. They are constructed of 100 ohm platinum with
an accuracy of 1/10 DIN, and have a temperature range of -100 to 400 °C (-148 to 752
°F). The probe diameter is 6 mm (1/4 inch); the probe length is 51 mm (2 inch). It is
furnished with mounting threads for ease of integration into the existing liquid piping
network. The RTDs are located in both the inlet and the exit pipes of the heat exchanger

to measure the glycol-water temperature. Figure 3.11 illustrates the RTD.

Figure 3.11: Ultra precise RTD

3.3.2 Pressure measurement arrangements

The pressure measurement on the air-side of the heat exchanger was accomplished with
the aid of a FlowKinetics pressure acquisition system as well as differential pressure

transducers (DPTDs). The glycol-flow pressure was measured using Omega pressure
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transducers of an appropriate range. The details of these measurement systems are

discussed below.

Pressure Ports

Battery
Compartment

Power Adapter

Relative Humidity
Sensor

Pitot Probe
Temperature sensor (optional)

K-Type thermocouple
KTy Ple) Silicone Tubing

Figure 3.12: FlowKinetics flow and pressure acquisition system (Courtesy: FlowKinetics)

The FlowKinetics FKT series flow measurement / pressure acquisition system was
utilized in conjunction with a Pitot static tube for measuring the air-side pressures. It is a
portable, micro-processor-based pressure acquisition system that is capable of measuring:
up to three different independent pressures, current atmospheric pressure, gas
temperature, relative humidity, and gas density. This system and its accessories are
shown in Figure 3.12. The flow measurement and pressure acquisition system, Model #
FKT-3DP1A-0.4-5-1, accommodates K-type thermocouple sensors, and relative humidity
sensors. It also has pressure ports for accommodating pressure differential readings from

the test chamber pressure taps. The pressure ports are also connected with the Pitot static
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tube, Model # PO12A, to measure pressure differentials and to compute flow velocities.
The Pitot static tube (Pitot probe) has a 317.5 mm (12.5 inches) insertion length, and a
probe diameter of 3 mm (1/8 inches). It can accommodate a maximum temperature of

426 °C (800 °F). It is illustrated in Figure 3.12.

The glycol-side pressure readings were facilitated by Omega's PX Series pressure
transducer, Model # PX-277, Figure 3.13. It has a stainless steel fitting and body, and has
a broad temperature compensated range of -20 to 80 °C. This pressure transducer can
read pressures between 0 and 100 psig, and outputs 0-5 DC volts. The relation between
the pressure readings and output voltage is linear. It is furnished with a DIN plug

connector for ease of removing and attaching DAQ wires.

Figure 3.13: Omega PX series pressure transducer
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3.3.3 Personal computer & DAQ hardware

The data acquisition system is composed of a custom built computer operating with
Microsoft Windows XP Professional 5.01.2600 Service Pack 3, v.3311. It is furnished
with an Intel Pentium 4 processor, 2800 MHz speed, 512 MB RAM, and a 16 inch LG
Monitor. A National Instrument data acquisition card, Model # PCI 6052E, is installed in
the PC, which is connected to an SCXI Module signal conditioner. The SCXI Module is
capable of handling up to 128 channels. It is connected with a terminal block, Model #
SCXI 1303, which is capable of reading up to 96 signal inputs simultaneously from the

various measurement sensors mentioned in previous sections.

3.3.4 Other hardware and monitoring devices

Additional hardware and monitoring devices support the data acquisition system. These
devices are not involved in actual measurements and acquisition, but rather facilitate the
data acquisition process. An Omega Digital Thermometer, Model # HH506R, is used in
conjunction with a T-type thermocouple to monitor and maintain the temperature of
glycol in the liquid tank. An Omega multi-function digital manometer, Model # HHP
2025, with a range of 0 to 200 kPa, measures the absolute pressure in the experimental
facility prior to experiments to ensure a uniform experimental environment across all
experimental runs. A TSI VelociCalc air velocity meter, Model # 8345, with a range of 0
to 30 m/s, is used in conjunction with a telescopic hot wire probe to monitor the velocity,
flow rate, and temperature of the air flow through the test chamber. It helps to achieve

and maintain the flow conditions as per the set test conditions.

An Omega dual thermocouple and RTD calibrator, Model # CL543, with an accuracy of
+ 0.2 °C calibrated the RTDs and thermocouples used in the lab. An APC UPS, Model #
BR1200LCD, was used to protect the sensitive equipment from power surges and
fluctuations. It also provides up to 100 minutes of back up power to the PC and other
equipment in case of power outage. An HP power supply, Model # 721A, with a range of

0 to 30V) was used to provide constant 24+2 DC volts to the devices/sensors in the lab
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that require an excitation voltage to operate. It automatically limits peak current flow to

the set nominal value, thereby preventing accidental current surges.

3.3.5 LabView version 8

LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) from National
Instruments is a visual programming language platform and development environment.
Its use includes, but is not limited to, data acquisition, instrument control, and industrial
automation. It is compatible with wide variety of operating systems including Microsoft
Windows, UNIX, Linux, and Mac OS X. Using intuitive graphical icons and wires that
resemble flowcharts, LabVIEW was used to develop a sophisticated measurement system
for the research facility. It offers integration with up to thousands of hardware devices,
including the National Instrument data acquisition card, NI-PCI-6052E multi-function

1/0 Board, installed in the PC.

3.4 Experimental methods and operating conditions

In all of the experiments, the 50% ethylene glycol-water mixture was passed through the
channels of the microchannel heat exchanger, and the air flow was oriented perpendicular
to the liquid flow across the heat exchanger through the finned spaces. The flow
arrangement is therefore of the crossflow type. The experiments investigated the fluid
flow and heat transfer phenomenon associated with the heating of air. Air flows at six
different temperatures lower than the glycol-water mixture temperature were blown
across the heat exchanger. The liquid at a higher temperature flowed through the channels
concurrently with the external air flow. The air approach temperature for all experiments
therefore was lower than the microchannel slab/fin surface temperature; the slab/fin

surface temperature was lower than the glycol-water flow temperature.
The wind tunnel built-in heat exchanger located upstream from the test heat exchanger

was used to heat the air inside the wind tunnel. It was used to achieve, adjust, and

maintain the free stream inlet temperature to the test chamber. A mixing chamber was
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connected to the hot and cold city water supply at its inlet, and to the built-in heat
exchanger at its outlet. The lowest and highest air temperatures were achieved using the
100% cold and 100% hot water supply, respectively. Intermediate air temperatures were
achieved by passing a mixture at the appropriate proportion of cold and hot water through
the built in heat exchanger for 30 minutes, while air was being circulated through the
wind tunnel at the same time. It ensured stability of both air-flow velocity and
temperature. Slight fluctuations of air-flow temperature in the experimental runs can be

explained in terms of city supply water flow fluctuations.

The circulation heater mentioned previously was the source of heating for the glycol-
water mixture passing through the heat exchanger. The glycol-water temperature was set
at the desired level by using the Watlow temperature controller; it was maintained at that
level through the use of PID control. The operating principle of this PID control was

mentioned previously.

While the glycol-water flow temperature and flow velocities were maintained, the air-
flow temperature and velocities generated a set of unique heat transfer and fluid flow
data. These data were then used to observe the effect of flow and temperature variation
on the heat transfer and fluid flow characteristics. The inlet and exit temperatures, flow
velocities of glycol-water and air, and the outer surface temperatures were the major

parameters to be monitored. The experimental operating conditions are tabulated below.
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Table 3.1: Experimental operating conditions and controlling parameters

Controlling Parameters

50% Glycol-Water Mixture Air
Inlet Mass Flow Rate | Reynolds Inlet Velocity Reynolds
Temperature . Number | Temperature Number
. (’"j ksl | perature | (v, ) [mis] | Nu
(T.,) €1 (T.,) °C)
23 854 — 3165
28 825 — 3081
33 3,5,7,9, | 813-3006
74+1 0.0345+£0.005 | 2005
38 and 11 790 — 2918
43 768 — 2859
46.5 752 - 2787

3.5 Data collection process

Six different air temperatures between 23 °C and 46.5 °C were considered for analysis.
For each of these air temperatures, five different air velocities steps between 3m/s to 11
m/s, 750 < Re, < 3165, were investigated against a constant flow rate and temperature of
glycol-water mixture. The glycol-side mass flow rate was approximately 0.0345 + 0.005
kg/s, which corresponds to a Reynolds number of 200 + 5. The Reynolds number is based

on the microchannel inner diameter.

All experiments commenced by starting the gear pump and adjusting its variable speed
motor to circulate the glycol-water mixture through the channels of test heat exchanger.
Then the Hydura piston pump was started and its needle valve was adjusted to circulate
the air flow through the wind tunnel and across the test chamber and test heat exchanger.
With glycol flowing through the test heat exchanger, the circulation heater is started and
set to the operating condition. While the air flow is being stabilized, the water supply is

also started. The circulation heater quickly heats the glycol-water mixture to the required
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value. Air velocity and temperature are stabilized simultaneously over approximately 30

minutes.

After one of the six particular air-side operating temperatures was achieved and
stabilized, five different air-side velocities were tested, one at a time, against the constant
flow and temperature glycol-water mixture through the heat exchanger to collect the
necessary data for the respective operating conditions. As such a total of unique 30 data
sets for air heating were collected for analysis. Stability of the system, flow velocity and
temperatures were well maintained both on the glycol side and on the air side, despite
flow fluctuations in the city water supply to the built-in heat exchanger. To eliminate any
adverse effects of these variations, three to four sets of each experimental run were

conducted; the mean of only the most stable data sets were utilized in the analysis.

3.5.1 Calibration

Ideally the calibration process should be implemented under the same conditions applied
during testing. Therefore prior to each experiment, the temperature readings of all
monitoring thermocouples, as well as inlet and exit thermocouples and RTDs on both the
air-side and glycol-side, were calibrated according to the thermocouple and RTD
calibrator mentioned previously. These values were recorded and entered into the
National Instrument LabView Data Acquisition System so that the experimental values

would provide the most accurate representation.

3.5.2 Working fluid temperature measurements

Because the air and glycol-water mixture working fluids utilized in the heat exchanger
operated along different cross sections, different methods and temperature measurement
in differing configurations needed to be applied. The following sections illustrate these

methods.
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3.5.2.1 Air temperature measurements

As mentioned earlier, two planes of 9 and 25 thermocouples for both inlet and exit
temperature measurement and acquisition were located along the wind tunnel duct just
outside of the test chamber. After approximately 30 minutes of circulating air through
the wind tunnel and test chamber, the flow and other parameters had stabilized to the
required operating temperature, and data acquisition was begun. Thermocouples at the
approach upstream and downstream of the test section measured the air temperature. Data
were then recorded at a rate of 1 kHz for a duration of 180 to 200 seconds and averaged
to get the average temperature at the particular location of the thermocouple. The average
temperature of different thermocouples on this plane was then averaged to determine the
plane temperature profile. A similar method was applied on the downstream plane. These
temperature profiles both at the upstream and downstream were found to be fairly
uniform; upstream temperatures were noted to be more uniform than the downstream

values.

The temperatures recorded from the nine thermocouples upstream of the heat exchanger
were then averaged as follows to represent a uniform temperature applicable at the center

of the duct cross section:

N
T, = %Z{lZETM ]} where N =9 and n =total samples at 1 kHz over 180 —200sec
J=1| N J

J=l
(3.1)
Air inlet temperature distribution profile at the wind tunnel inlet cross section for the

operating condition involving target air flow of Sm/s at 38°C is shown in Figure 3.14.

The temperature distribution is found to be fairly uniform with temperature variations
within 3°C. Nine equally spaced thermocouples were used to acquire the temperature
readings resulting in an average air inlet temperature of 38.27°C . The figure shows large
parts of the cross section with temperature 37<T,,<38.5°C, which is expected if the
uniform temperature distribution is to result in an average temperature of 38.27.

Temperature at the outer edges of the cross section is slightly higher than the rest of the

cross section. This deviation could also have been caused due to back flow or uneven
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mixing at that region. The magnitude of this variation however, is within the typical

range of uncertainty for thermocouples.

12

37.5
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39

Y [in]
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X [in]

Figure 3.14: Temperature profile at the test chamber inlet cross section (7,;=38.27°C)
Figure 3.15 illustrates the outlet air temperature distribution at the wind tunnel outlet
cross- section for the same operating condition as above. Unlike the inlet cross section
temperature distribution, this cross section presents a wide range of temperatures and
uneven temperature distribution. The temperature distribution was anticipated to be non-
uniform at this cross section due to air flow through the cross flow heat exchanger.

Therefore a total of 25 thermocouples were employed here, and their readings resulted in

an average outlet temperature of 45.11°C . The hot liquid in the heat exchanger entered
through left hand side (i.e. X=0), and exited on the right hand side (i.e. X=12) after
passing through several bends and flowing side to side several times. The temperature

distribution therefore illustrates a higher temperature on the left hand side as air flowing
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through this region which was exposed to the highest surface temperature of the heat

exchanger.
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Figure 3.15: Temperature profile at the test chamber outlet cross section (7, ,=45.11°C)

Data from the 25 thermocouples were recorded and averaged as follows to provide the

best possible representation:

N n
T,, = Z{lZ[TM]} where N =25 and n =total samples at 1 kHz over 180—200sec

1
N n j=1
(3.2)

The deviation from this mean downstream temperature to any thermocouple temperature
reading on the downstream plane was found to be less than 5% in most cases. The
average of the mean temperatures from these thermocouples for data analysis purpose

was therefore deemed acceptable.
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The mean temperature difference between the air inlet and outlet temperatures was

evaluated as:

AT, =T, -T (3.3)

a,i a,o

The mean temperature difference between slab outer surface and air inlet was evaluated
as follows:

AT =T -T 3.4)

a-s a,i s,0

3.5.2.2 Glycol-water mixture temperature measurements

Unlike the air side flow, which takes place in a 305 x 305 mm duct, the glycol-water flow
takes place in narrow tubes and microchannels. It is not therefore feasible to place
thermocouples inside the tube as it would interfere with the flow and heat transfer. Hence
RTDs were used because they did not adversely affect the flow and pressure drop
characteristics. An RTD was placed at the pipe inlet to the heat exchanger to measure the
inlet temperature; another was placed at the outlet pipe of the heat exchanger to measure
the exit temperature. These RTDs were connected to the DAQ and their temperature
readings were recorded at a frequency of 1 kHz for a duration of approximately 180 to

200 seconds.

The glycol-water mixture inlet temperature was determined by taking the average of all

the samples collected during this period of time as follows:

Tg = lZ“[Tg i], where n = total samples at 1 kHz over 180 —200sec 3.5
Taale

A similar method was applied for the temperature readings from the outlet RTD. Hence

the glycol outlet temperature was obtained as follows:

T,, = %Z[Tg,o , where n =total samples at 1 kHz over 180 —200sec (3.6)
j=1
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The mean temperature difference between glycol-water mixture inlet and outlet
temperatures was evaluated as:

AT, =T, -T,, (3.7)

3.5.3 Surface temperature measurements

The microchannel slab surface temperature was measured by thermocouples strategically
placed on the bend of the heat exchanger. Every bend of the microchannel slab had a total
of 2 or 3 thermocouples located along the direction of the air flow to measure the effect
of temperature both along the length and the width of the slab. Again each thermocouple
measurement was recorded by the DAQ at 1 kHz for the duration of test, and the average
of these samples was taken to be the average temperature reading of the particular

thermocouple. The average outside surface temperature (7, ) for the whole length of a

single serpentine slab is taken to be the average of all thermocouples on that slab. The

whole heat exchanger is consisted of three such serpentine slabs.

Therefore the average surface temperature (7, ,) is obtained through the following

equation:

N
T,, = %Z[Tm , where N = total thermocouples on the slab (3.8)

The variation of surface temperatures along the length of the serpentine slab was found to

be fairly linear. This averaging method was therefore found acceptable.

3.5.4 Working fluid flow and pressure drop measurements

As mentioned earlier, because the two working fluids for this heat exchanger have
different thermophysical properties and operate along different cross sections, they
required different temperature measurement methods. The measurement of their flow

characteristics and pressure drops also needed different methods and apparati. The
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instrumentation section described the devices used for these purposes. The following

sections illustrate the methods.

3.5.4.1 Air flow and pressure drop measurements

The air flow measurements included the air velocity and mass flow rate; the pressure
drop was measured across the microchannel slab array. As mentioned in the
instrumentation section, the flow measurement and pressure acquisition system was used
in conjunction with pressure taps (see Figure 3.4) located on both sides of the test heat
exchanger. Specifically they were located on the side walls of the test chamber, and at the
middle between the top and bottom wall, to measure the pressure difference. This

accurate pressure acquisition system provides the pressure readings in pascal (Pa).

3.5.4.2 Approach air velocity measurements (V,)

The air approach velocity was measured in conjunction with a Pitot static tube. The
dynamic pressure was acquired by the Pitot static tube, the static and total pressure ports
of which were connected to the acquisition system. Pressure readings were used to

calculate the difference in pressure (Ap ,,, ) between the static and total pressure ports.

The mean air-side dynamic pressure difference for all of the experimental runs was

evaluated as per the following equation:
AP i = lZ[Apmm} , where n=4to5 repeats (3.9
n j=1 J

Using the dynamic pressure difference, the mean inlet velocity is evaluated according to:

20
v, =" [~ Lo (3.10)
P,
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Where, C' is a correction factor that depends on the Pitot tube construction, particularly

the spacing of the holes. For current experiments it is taken as 1.

3.5.4.3 Air-side mass flow rate estimation

After determining approach air mean velocity at the test chamber inlet from the dynamic
pressure, the mean velocity of air was used to estimate the air-side mass flow rate. The
air-side mass flow rate across the heat exchanger was obtained using principle of

conservation of mass and is expressed as follows:

m, =p,A,.V. (3.11)

duct ” a’®

A

duct

is the constant cross section area of test chamber.

3.5.4.4 Air-side pressure drop across tube array measurement (4p, x)

Pressure taps were drilled at various locations in the side walls of the test chamber as
seen in Figure 3.4. These strategically placed pressure tap locations at the top, bottom and
middle provide a wide variety of options for testing the pressure drop across the array at
different locations and different distances from the test heat exchanger. The middle row
of pressure taps used to measure the air-side pressure drop across the array. It is second

farthest from the heat exchanger as shown in Figure 3.4.

3.5.4.5 Glycol-water mixture flow and pressure drop measurements

A different set of equipment and a different methodology were used to measure and
record the glycol mass flow rate, velocity, and pressure drop across the microchannel

heat exchanger. The following sections elaborate further on these measurements.
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3.5.4.6 Glycol mass flow rate measurements (7, )

The mass flow rate of glycol through the microchannel heat exchanger was measured
during each experimental run even though the flow conditions for glycol were not altered.
The mass flow rate measurement was accomplished by collecting the glycol exiting from
the heat exchanger outlet. The duration over which glycol was collected was also

recorded.

The mass flow rate was calculated by dividing mass collected by time duration as

follows:

3.

m, = l —= | , where n=4to 5 repeats (3.12)
n

3.5.4.7 Glycol velocity estimation (V)

Using the conservation of mass principle and the mass flow rate obtained from the

previous section, the glycol flow velocity was calculated as follows:

V, =—5— (3.13)

A . is the inner cross section area of the microchannels.

C,i

3.5.4.8 Glycol pressure drop measurements (4p,)

The pressure drop measurements for glycol required a device that would not adversely
affect the flow of glycol. Therefore a Pressure Transducer (PTD) was placed at the pipe
inlet to the heat exchanger to measure the inlet pressure in pascals (Pa); another was

placed at the outlet pipe of the heat exchanger to measure the exit pressure of same unit.
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These PTDs were connected to the DAQ and their pressure readings were recorded at a

frequency of 1 kHz for duration of the experiment.

The glycol-water mixture inlet pressure was determined by taking the average of all the

samples collected during the experiment as follows:

n

Pei= lZ[pg’i], where n = total samples at 1 kHz over 180 —200sec (3.14)

J=1

A similar method was also applied for the temperature readings from the outlet RTD. The

glycol outlet pressure was obtained as follows:

Peo= %Z:‘[pg"’ , Where n =total samples at 1 kHz over 180—200sec  (3.15)
=

The pressure difference between the inlet and outlet pressures across the heat exchanger

equals the pressure drop on the glycol side and is expressed as follows:

Apg = pg,i _pg,g (3’16)

3.6 Uncertainty of measurement for the apparatus

The overall experimental setup is composed of various components necessary to generate
meaningful results and analysis. These components include but not limited to the list

shown in Table 3.2
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Table 3.2: Apparati contributing to the uncertainty

Pressure Gages Liquid Tank

Air Compressor Pump (In-line)

Temperature Gage Heater (In-line)

Closed Loop Wind Tunnel Flexible Hose

Micro Channel Heat Exchanger Digital Flow Meter
Proportional Pressure Relief Valve Impeller Flow Meter
Resistance Temperature Detector (RTDs) Data Acquisition System
Closed Loop Pipe Network for water circulation Pressure Transducers (PTDs)

This research endeavor attempted to formulate and evaluate where possible the
uncertainties inherent in the various instruments and measurement systems. These
uncertainties would propagate through the calculations along with other uncertainties.
These other uncertainties pertaining to the fluid properties, the micro channel geometrical
characteristics, and the flow rate measurements. By obtaining meaningful data sets under
varying geometrical characteristics, flow rate measurements, and fluid properties, the
calculation and interpretation of uncertainties in many heat transfer parameters will be
performed. Measurement errors, bias and precision errors, design stage uncertainty
analysis, error propagation, and multiple measurement uncertainty analysis can be

elaborated.
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The methodology for thermal and hydraulic performance analysis of current heat
exchanger is presented in this chapter. The fundamental concepts of fluid flow and heat

transfer are illustrated as part of this data reduction methodology.

4.1 Evaluation of thermophysical properties of the glycol-water and air

The thermophysical properties of air include the density, viscosity, thermal conductivity,
specific heat, Prandtl number, enthalpy, thermal diffusivity, and thermal expansion
coefficient. They were evaluated at the bulk temperatures for the 50% glycol-water

mixture and for the air.

The bulk temperature for the air side was evaluated as the arithmetic average of the air
inlet and outlet temperatures.

]1(; i + ]1(; o

Ta,b = T (4 1)

The bulk temperature for the 50% glycol-water mixture was evaluated as the arithmetic

average of the glycol-water inlet and outlet temperatures.

T = Tg.i +Tg,0
g.b 2

4.2)
4.2 Key assumptions
The following assumptions were considered for the reduction of the current experimental

data.

1. Air flow across the heat exchanger is in steady state.
2. Air condensation on the heat exchanger surface is insignificant.

3. Radiative heat transfer between the heat exchanger and the air is negligible.
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4. Radiative heat transfer between the test chamber and the room is negligible.

5. Conductive heat transfer between the heat exchanger and the room is negligible.

6. The changes in fluid temperature and velocity at heat exchanger inlet and outlet
are assumed negligible for significantly altering the operating condition.

7. The working fluid streams experienced little or no change in velocities and
elevations. Therefore kinetic and potential energy changes are negligible.

8. Axial heat conduction along the slab (i.e. along the direction of glycol flow), is

usually insignificant and can be considered negligible.

4.3 Dimensionless fluid flow and heat transfer parameters

A dimensionless number is one that describes a particular physical system, and is
considered a pure number without any physical units. Such numbers are not affected by
any change in units of measurement. A set of dimensionless numbers are used
extensively in the study of fluid mechanics and heat transfer analysis because they can
relate and generalize relationships between different parameters. Heat transfer and fluid
flow conditions can be related in terms of non-dimensional parameters such as the
Nusselt number, Nu, or Stanton number, St, Reynolds number, Re, and Prandtl
number, Pr. A list of dimensionless numbers used in present analysis, along with a brief

explanation of each is presented below.

4.3.1 Reynolds number
Osborn Reynolds (1842-1912), was British Scientist famous for demonstrating that a

combination of parameters can be successfully characterize fluid flow regimes, namely
laminar and turbulent. This combination is a dimensionless number and is known as the
Reynolds number, Re. It is also defined as the ratio of inertial forces to viscous forces in
a particular flow regime, and is illustrated as follows:

Re — Inertia force ~ pVZ 4.3)

Viscous force y7i

where, p =fluid density, V =velocity, u =viscosity, and Z =characteristic length.
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When viscous forces dominate inertial forces, the result is a smaller Reynolds number
and smooth flow. Such a flow regime is called laminar flow. When inertial forces
dominate viscous forces, the result is a higher Reynolds number and disordered motion

within the flow. It is known as turbulent flow.

4.3.2 Prandtl number
The Prandtl number, Pr, is named after Ludwig Prandtl (1875-1953) of Germany. He

was famous for introducing the concept of boundary layer. The Prandtl number is the

ratio of momentum diffusivity to thermal diffusivity for a fluid.

_ Momentum diffusivity  4c,
Thermal diffusivity k

Pr

4.4)

where, ¢ = fluid specific heat, and k =thermal conductivity.

The Prandtl number is also a measure of the relative development of the velocity
boundary to the thermal boundary. The flow velocity of a fluid has significant bearing on
the temperature profile. The temperature profile in turn significantly influences the rate of
heat conduction from a surface. For fluids such as air, where Pr < 1, the thermal boundary
layer is thicker relative to velocity boundary layer; hence heat is quickly dissipated from

the fluid. For Pr>>1, heat dissipates very slowly.

4.3.3 Nusselt number
German engineer Wilhelm Nusselt (1882-1957), was famous for developing a

dimensional analysis of heat transfer without prior knowledge of Buckingham = theorem.
The Nusselt number, Nu, is named after him. It is a dimensionless representation of the
heat transfer coefficient, %, and is the ratio of convective to conductive heat transfer for
any particular fluid.

Convection heat transfer rate  hZ
Nu = : =— 4.5)
Conduction heat transfer rate k
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The Nusselt number is greater where the convective heat transfer dominates conductive
heat transfer. Such conditions are desirable, and are characterized by enhanced heat
transfer within the fluid; heat is transferred by convection through the layers of a fluid in

motion as opposed to a fluid at rest.

4.3.4 Stanton number
The Stanton number, S?, is named after a British engineer, Sir Thomas Edward Stanton

(1865-1931). This dimensionless number is the ratio of heat convection to the enthalpy
rate change of a fluid, whose temperature is approaching that of the adjacent solid
surface. The Stanton number is especially significant where the axial heat conduction of
the fluid is negligible. It is inversely related to the Reynolds number, similar to the
pressure drop and the friction factor. This dimensionless number also relates three very
important parameters for heat transfer and fluid flow, namely the Nusselt number,
Reynolds number, and Prandtl number for any flow condition and geometry.

. Heat convection  h  h  Nu
Enthalpy rate change Gc, pVe, RePr

(4.6)

where, G =mass flux.

4.3.5 Péclet number
The Péclet number, Pe, is named after French physicist Jean Claude Eugene Péclet

(1793-1857). It is of significant importance in the study of transport phenomena in fluid
flows, and is the ratio of the rates of advection and diffusion for a physical quantity by
the flow. The Péclet number in the context of diffusion of heat is defined as the product
of the Reynolds number and the Prandtl number. It is given as follows:

_ Rate of advection ZV  ZV
Rate of diffusion a k

Pe

=RePr 4.7)

where, o =thermal diffusivity.
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4.3.6 Colburn factor for convective heat transfer
The Colburn factor, j, is essentially a modified Stanton number. It takes into account

moderate variations in the fluid Prandtl number.

= StPr 4.8)

4.4 Data reduction objectives

The main objective of the current study is to investigate the air side heat transfer and flow
characteristics of a multi-pass, multi-port, serpentine microchannel heat exchanger.
Hence the purpose of data reduction is to evaluate the air-side factors that pertain to the

core of the heat exchanger. These factors are: the overall thermal resistance (R,,,),
effectiveness (£), NTU , Nusselt number ( Nu, ), Colburn factor ( j, ), Reynolds number

(Re,) pressure drop (Ap, ), friction factor ( f, ).

One assumption made for data analysis is to treat the ethylene glycol - water mixture as
an incompressible Newtonian fluid. As such, the liquid side properties are independent of
pressure and can be viewed as functions of temperature only. The test-liquid is assumed
to be uniformly distributed through all the channels because the manifold diameter is ten
times larger than a single channel. The flow of air through the finned spaces over the slab
is also assumed to be uniform with no blockage, turbulence, fluctuations, or back
pressure. The glycol-water mixture and air temperatures in the core section of heat
exchanger are assumed to be the average of their respective inlet and exit temperatures.
The thermodynamic properties of the air and the test-liquid in the heat exchanger core
section are therefore evaluated based on these average temperatures. The fundamental
variables for the liquid and the air side were measured at an optimum steady state for all

operating conditions.

Faisal A. Sddiqui. M.A.Sc. Thesis 2011. Dept of Mechanical, Automotive, and Materials Engineering, University of Windsor, Canada 5 6



A Sudy of Cross-Flow Air Heating via a Multiport Serpentine Microchannel Heat Exchanger

4.5 Data reduction

The mass flow rate of both the 50% ethylene glycol-water mixture and the air through the

heat exchanger was calculated using the following equations,

my o =V p, (4.9)

my=m, =PV A (4.10)

Here V, is calculated from equation (4.11), which was derived from equation (3.10) for

2Ap, .
V= Z2P pynamic. 4.11)
\ 2.

Since each of the three inlet manifolds supply liquid to 68 channels, the total number of

Cc'=1,

independent channels carrying fluid is 204. The glycol-water mixture flow velocity and

Reynolds number were evaluated using the principle of mass conservation (m = pVA)) as

shown in the following equations.

m  =m, = pAV| =
e 4 p |MC 3(68)
mc ! (4.12)
m 4m m

8 ,HX 8 ,HX 8 ,HX

= V. = = =
M€ 204pA . 2047pD}. SlmpD;,.

Meax | Mo (4.13)

_ pDV| _
|51, Dy | Slau, Dy

Iy

pgD
My

Re, =Rd],,

The air side mass velocity into the heat exchanger core is calculated based on the

minimum free flow area through the fin and slab arrays.

m
G, =—" 4.14
‘ AMin,a ( )
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The air side Reynolds number is therefore evaluated using the Reynolds number

definition in conjunction with the core mass velocity.

pVAMin a m
5 D a D
A ‘ Hyd ,a,HX A ' Hyd ,a,HX G D ,
Rea _ [pVD ] — ‘Min,a — '‘Min,a — a*~ Hyd ,a,HX (4 15)
H ), H, H, H,

The heat transfer rates of liquid and air due to forced convection are evaluated by the

following equations respectively.

I
3.

Q.g ¢ Cps (Tg,i _Tg.tJ) (4.16)

S .

Qa = a Cp,a (T;t,o - T:t,i) (417)
The heat transfer rate for both the liquid side and the air side fell within £3% of each
other. Therefore, an arithmetic average of the air-side and waterside heat transfer rates
was defined as the overall heat transfer rate as per Rugh et al. (1992).
. +
0= M (4.18)
2
In theory, the heat released by liquid and absorbed by air should be the same. In reality,
however, it is never achieved due to such extraneous factors as heat leakages, system
response lag/errors, and experimental errors. The difference between the heat absorbed
by air and released by the liquid can be expressed as a percent and is defined as the heat

balance. The following two equations illustrate the heat balance calculation method with

respect to glycol heat transfer rate (Q, ), and glycol-air average heat transfer rate (Q)

respectively.

g |2 %100 (4.19)

———|x100 (4.20)
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The average heat balance percentages are found in the present study to be well within the
acceptable margin (+15% ) recommended by ASME PTC 30-1991.

The overall thermal resistance, R

total °

was calculated using the overall heat transfer rate.

=R, +R,, +R, _ 1 _FAL, (4.21)

UA Q

R

total

The correction factor, F', pertaining to crossflow heat exchangers was taken from
Bowman et al. (1940). Based on the experimental operating conditions and temperature

loadings, F is found to be constant at 0.98. The log mean temperature difference (A7}, )

for counter flow used in conjunction with F is determined based on the following

equation.
AT — AT,
AT, =——"2% (4.22)
LM AY}
In
AT,
In this equation,
AT =T,,-T, (4.23)

The overall thermal resistance (R, ,) for the current test heat exchanger has three

components: air side (R, ), wall side (R, ), and glycol-water side (R, ).

ln Do,MC
D.
Rtotal = L = % = Ra + Rwall + Rg = 1 L + 1 (425)
UA 0O (mhA), 27k, (hA),

The overall surface efficiency is evaluated to properly represent the air side fin arrays. It

is expressed by the following equation.

A .
N, =1——="(1-1,,) (4.26)
HT ,a,HX
In this equation,
AHT,a,HX = AHT,Fin,HX + ANF,Slah,HX (427)
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Shah and Sekulic (2003) defined the fin efficiency for wavy fins of uniform cross-
section. This definition is found suitable for fins in current heat exchanger and is

therefore adopted and expressed in the following equation.

_ tanh(ML) 4.28)
nFin - ML .
In this equation,
M = 2h, (4.29)
kFintFin
L % L (4.30)

The heat transfer coefficient is the amount of heat transferred through a unit area of a
medium over a unit time, for a unit temperature difference between the medium
boundaries. Accurate measurement and surface temperature readings are required in
order to calculate the respective fluid side heat transfer coefficients. The current heat
exchanger geometry poses a considerable challenge for properly measuring the surface
temperatures for both the finned surfaces as well as the microchannel slab located

between arrays of fins.

The heat transfer coefficient for the glycol-water mixture is therefore primarily evaluated
by first evaluating the Nusselt number, using the Gnielinski correlation for thermally
developing and hydrodynamically developed flow in smooth circular tube as referenced

in Kaka¢ and Liu (2002).

Pe D
Nu, = 3[3.66" + 1.6 M] 4.31)
'‘HT ,MC ,HX
Pe, =Re, Pr, (4.32)
Pr, = e 433)

8
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Therefore the heat transfer coefficient for the glycol-water mixture is obtained from the

definition of Nusselt number.

h,=—=2% (4.34)

The air side heat transfer coefficient is obtained through an iterative process, utilizing
expressions for the overall thermal resistance, and the fin and surface efficiencies.
1. The thermal resistances are calculated.

R,.= 1 —FA.T = (4.35)
UA 0

R = Lpe 4.36
wall 27[]( ( )

Aluminium LHT,MC,HX

1
R =———7— 4.37
« = A (4.37)

¢“ “HT ,in,MC ,HX

2. Set: n,=1, and enter it into Eq. (4.38), which is obtained by rearranging
Eq.(4.25), to solve for h,:

h, = ! (4.38)

’ ”aAHT,a,HX [Rzoml — R, — Rg]

3. Enter h, obtained from Eq. (4.38) into Eq.( 4.29) to solve for M

4. Enter M obtained from Eq. (4.29) into Eq. (4.28) to solve for 7,

5. Enter 7,,, obtained from Eq.( 4.28) into Eq.( 4.26) to solve for 7,

6. Enter 7, obtained from Eq. (4.26) into Eq. (4.38) to solve for A,

7. Loop through steps 2 — 6 withnew #,, h , and #,, , for 3 ~ 4 trials to obtain final

values for 7, , ,,and h,.

Measurement of the surface temperature in the present study was accomplished using 56

strategically-placed thermocouples on un-finned exposed surfaces, around the serpentine
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bends, and at the heat exchanger inlet and exit tube surfaces just before and after the test
section boundary. The average of the measured surface temperatures for each of the
individual operating condition was used to compute a secondary set of heat transfer
coefficients for both the glycol-water mixture and for the air for validation purposes only.

It is shown as follows.

h, = Q. (4.39)
AHT,in,MC,HX (Tg _Ts>
ho— 2 (4.40)

‘ naAHT,a,HX (Ts - Ta)

The results obtained using this secondary approach were compared to the heat transfer
coefficient primary evaluation method outlined above. The two results were found to

agree with each other within £5%.

The heat exchanger effectiveness is the ratio of the actual heat transfer rate to the
theoretical heat transfer rate of a heat exchanger with infinite heat transfer area. For the

microchannel heat exchanger it is evaluated based on the following equation.

P S Q (4.41)

0. [r;wp] AT, [r;wp] (1,,-T,)

m

The Number of Transfer Units (NTU), which is a measure of heat exchanger

performance, was computed by using the following expression.

NTU = U—A (4.42)
Cmin
In this equation,
UA = L (4.43)
total
C..= My o o (4.44)
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The Stanton number, the dimensionless heat transfer characteristic that measures the ratio
of heat transfer into a fluid to the thermal capacity of the fluid was evaluated for air side
of the present heat exchanger.

h
St =—+¢ 4.45
“ Gre (4.45)

a“p.a

The Colburn factor for the air side ( j,) which modifies the Stanton number to consider

moderate variations in the fluid Prandtl number, is defined as follows.
j=51,P° (4.46)
The Reynolds number is the ratio of the inertia forces to the viscous forces of a fluid. For

air flow through the heat exchanger finned areas, it is determined from the following

relationship.

GD,.
Rea _ [,OVD] _ a*~ Hyd ,a,HX (447)

)7 K,

Wang et al. (2000) recommended a method to compute the fanning friction factor at the
core of heat exchanger; it does not require calculation of the entrance and exit losses.
This relationship is based on the pressure drop equation proposed by Kays and London
(1984). It takes into account the area contraction ratio, as well as the fluid inlet, exit, and

average densities. This relation is expressed as follows.

A 2A : 4
fa — A Min,a ][pa,h pch,Hsza,l _<1+Gj> &—1] (448)
HT ,a,HX Ioa,i a pa,o
where,
A,
o, =—""— (4.49)
Aantal,HX
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The primary objectives of the present study were to obtain the air-side heat transfer (i.e.

Q, Nu,, j,), fluid flow (i.e. Ap f,), and heat exchanger performance (&, NTU ,

a,HX *
UA, n,,) characteristics, as well as develop general correlations to compare with

previously published works. To accomplish these objectives, the experiments in the

present study utilized heating of air under varying operating conditions.

The air was subjected to a wide range of flow and temperature conditions while the
temperature and flow conditions on the glycol-water side was maintained at a constant

level. For the air heating process, the hot inlet glycol-water entered the microchannels at

T,;,=74x1°C; and the cold air-side flow was varied at 23, 28, 33, 38, 43, and 46.5

+0.2°C. The glycol mass flow rate was 0.0345+0.005kg /s, which translates to a
Reynolds number of Re, =200%5. The air-side flow rate was varied such that the

nominal flow velocity condition upstream of the heat exchanger was 3, 5,7, 9, or 11 m/s
at each of the temperature levels. These combinations translate to a nominal Reynolds

number range of 752 to 3165 for Re, .

In this chapter, the effect of several different parameters on the heat transfer rate, Nusselt

number, NTU and effectiveness, Colburn j factor, and friction factor have been

discussed. The results and observations of these sets of experiments have been reviewed

and are accepted for publication.

The following sections discuss the effect of several different parameters on heat transfer
and fluid flow characteristics. These parameters include the effect of Reynolds number
on heat transfer rate, Nusselt number, and pressure drop; the effect of temperature on heat
transfer and Nusselt number; the effect of temperature and Reynolds number on NTU and

effectiveness.

Faisal A. Sddiqui. M.A.Sc. Thesis 2011. Dept of Mechanical, Automotive, and Materials Engineering, University of Windsor, Canada 64



A Sudy of Cross-Flow Air Heating via a Multiport Serpentine Microchannel Heat Exchanger

5.1 Heat transfer characteristics

In this section the air side heat transfer characteristics of the microchannel heat exchanger
will be discussed. General correlations for different inlet temperature levels will also be
developed. The parameters closely scrutinized in this section include the heat balance
between the two fluids, heat transfer rate, dimensionless temperature, Nusselt number and

Colburn j factor.

5.1.1 Heat balance (HB) in the experiment

Figure 5.1 shows the heat balance between glycol and air, calculated with respect to Q,

and Q
10 T T T T T T T T T T T T T T T T T T T LV N o
. HB4=100[(Qg - Qa) / Qg] 1
# HB =100[(Qq - Q) / Q]
+7%
5 - +5% .
'z' L )l
o, oK
o ¢ o = * 4
%)
c . .
s 0 . '
©
0 N <& oy *°
= 3 * 2 L g
o s o e S M
T -5 5% = .
7%
_1 0 ) ) ) ) I ) ) ) ) I ) ) ) ) I ) ) ) ) I ) ) ) )
700 1200 1700 2200 2700 3200
Re,

Figure 5.1: The effect of air side Reynolds number on heat balance between ethylene glycol-
water mixture and air in the present study
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The Q, is found to vary within +5% from Q, and £7% from Q, . Both levels of variation

for the entire set of collected data and operating conditions are within the acceptable level
of £15% as set by ASME PTC 30-1991. Such level of accuracy can be attributed to the
significant amount of insulation accompanying the piping and flow network, test
chamber, and sensors. Since the liquid side temperature is measured using highly
accurate RTDs, the heat transfer rates calculated for glycol-water mixture regarded as
having greater credibility. As the heat balance between glycol-water and air lies well
within the acceptable range, the collected data is therefore found reliable for further heat

transfer analysis.

5.1.2 Effect of Reynolds number on heat transfer rate

The heat transfer rate (Q) is evaluated in Chapter 4 is plotted against Re in Figure 5.2.
sc0OO——mMmm—m8mm™™Mm™M™M™mm—————————————————

5500} .
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P - OT,=28C ]
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Figure 5.2: The effect of air side Reynolds number on average heat transfer rate
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The Q increases with increasing in Re, with power law relationship. The curves in this

plot are best described by equations of the form Q =xRe] [0 <y<landx> 0] , which

suggest a decreasing slope with increase in Re_, and is evident in Figure 5.2. This

a’

increase in Q is attributed to the increase in convective heat transfer with Reynolds

number. The highest heat transfer for a given T, is found for the highestRe,. Higher

heat transfer rates (Q) are found at lower air inlet temperature for a particular Reynolds
number (Re,) due to larger inlet temperature differential between the two fluids. The

average heat transfer rate is a function of both the air and glycol-water solution heat

transfer rates. The curves for average heat transfer rate therefore closely reflect the state

of air side heat transfer rate. The diminishing positive slope for Q can be explained by

the same phenomenon occurring on the air side. The relative increase in air side heat
transfer rate as a function of Reynolds number diminishes due to formation and

development of thicker boundary layer at higher Re,. Thick boundary layers inhibit heat

transfer.
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5.1.3 Effect of Reynolds number on dimensionless temperature

The effect of Reynolds number (Re,) on non-dimensional temperature (AT, /T,;) is

shown in the Figure 5.3. The dimensionless temperature decreases with increasing frontal

air velocity i.e. Re, in the power law relationship with negative exponent. The value of

non-dimensional temperature is higher at lower temperature for a particular Reynolds

number due to higher temperature difference at lower air inlet temperature. The data can

be regarded as credible when the data points can be closely approximated with their curve

fit.
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Figure 5.3: The effect of air side Reynolds number on its dimensionless temperature
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5.1.4 Effect of Reynolds number on Nusselt number

Air side Nusselt number ( Nu,) is computed for all temperature levels at different frontal
air velocities. The effect of air side Reynolds number (Re,) on Nusselt number ( Nu, ) is
shown in Figure 5.4. As expected, the Nusselt number ( Nu,) increase non-linearly with
increase of Re, since convective heat transfer increases with increasing Reynolds

number. The slopes of the curves in this figure also demonstrate a decreasing slope with

increase in Re , which is characteristic of power law of
Nu,=xRe! [0<y<Iandx>0], form. The Nusselt number ( Nu,) for a given air-side
Reynolds number increases as the inlet air temperature (7, ,) rises. A general Nu,-Re,

correlation capable of predicting Nu, within £10% has been obtained in the present

study by combining all different temperatures as

Nu, =0.845Re’*™ (5.1

As the air inlet temperature is increased from one level to another, the bulk temperature
of air also increased. The viscosity of any gas increases with increase in its bulk
temperature. Therefore as the bulk temperature of air is increased its viscosity also

increased. This in turn reduces the Re_ for a given velocity as the air inlet temperature is

increased. This fact in conjunction with all other experimental conditions being kept

constant would yield the same Nu, at lower Re, for the higher T,, levels. The same

principle applies to several other parameters such as £, NTU , UA, and Ap,_ . .
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5.1.5 Effect of Reynolds number on Colburn j factor

Air side Colburn factor ( j ) are computed for all temperature levels at different frontal
air velocities. The effect of air side Reynolds number (Re,) on Colburn factor ( j, ) is
illustrated in Figure 5.5. The figure indicates that the Colburn factor ( j ) decreases with
increasing Reynolds number (Re, ) and its value is higher at higher air inlet temperatures
(T,,) for a givenRe,. The j, is found to decrease with the power-law relationship with
an increase in Re, at a givenT,,, and is modeled with j, =xRe) [y<Oandx>0]. A

general j —Re, correlation capable of predicting j within £10% has been obtained

from present study by combining all six different temperatures and is found to be

j, =0.948Re 7> (5.2)
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Figure 5.5: The effect of air side Reynolds number on Colburnj factor
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5.2 Fluid flow characteristics

The following few sections will closely scrutinize the air side fluid flow characteristics of
the microchannel heat exchanger. Accompanying general correlations at each different
inlet temperature levels will also be developed. The parameters investigated in this
section include the pressure drop across heat exchanger, friction factor, and

dimensionless pressure coefficient.

5.2.1 Effect of Reynolds number on pressure drop

The pressure drop (Ap, ,, ) across the heat exchanger core are plotted against the air side
Reynolds number (Re,) in Figure 5.6. The figure shows a power-law relationship of
increased slope, and hence described in the form of Ap,,, =xRe] [y>1landx>0].

The air side Reynolds number (Re,) is based on the hydraulic diameter which is
evaluated for air side matrix flow passages suggested by Kays and London (1984).
Pressure drops and friction factors are evaluated for all predefined temperature levels (23
to 46.5°C) at different air velocities corresponding Reynolds number range from 752 to
3165. This figure shows the effects of air side Reynolds numbers and air inlet
temperatures on air side pressure drops. The air side pressure drops increase with
increasing Reynolds number in non-linear manner. The figure also shows a little

difference in pressure drop across heat exchanger for different 7,, at lowerRe,. A
general Ap, .. -Re, correlation capable of predicting Ap, . within £10% has been

obtained in the present study by combining all different temperatures as

Ap, x =0.0016Re;*” (5.3)
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Figure 5.6: The effect of air side Reynolds number on pressure drop across heat exchanger
core
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5.2.2 Effect of Reynolds number on friction factor

Figure 5.7 is generated to show f, as a function of Re,. The f —Re, data for each T, is
best fit with power-law with negative exponent and decreasing slope, and in the form of
f,=xRe} [y<Oandx>0]. Hence f, decreases with increasingRe,. The rate of
decrease in f, is greater at Re  increase originating in lower compared to higher end of
Re, spectrum. The plot also illustrates that f, decreases slightly (3 — 4%) with an
increase in air inlet temperature (7, ;) at the same Re,,. The effect of temperature here is
therefore found to be insignificant. A general Re, — f, correlation capable of predicting
f, within +5% has been obtained from the present study by combining all temperature

levels as follows.

f,=0.775Re;"*™ (5.4)
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Figure 5.7: The effect of air side Reynolds number on heat exchanger core friction factor
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5.3 Heat exchanger performance characteristics

This section will illustrate various performance parameters pertaining to the current heat
exchanger. The investigation will yield general correlations at every different inlet
temperature levels. The parameters closely scrutinized in this section include the

effectiveness, NTU, surface temperature, fin efficiency, and UA — value.

5.3.1 Effect of Reynolds number on effectiveness

The effectiveness, €, is determined in Chapter 4, and its variation is shown in Figure 5.8

with respect toRe,. The figure illustrates a monotonic increase in effectiveness with
increase inRe . The increase in £ with respect to Re, is accompanied by a decreasing
slope, and is modeled by equationé€ = xRe’ [O< y<land x> O]. The increase in &
over a range of Re, at the higher Re, would therefore be lower in comparison to the

corresponding range at lower Re,. For a given Re,_, the € is observed to be greater with

.
increase in 7 ,, as it is accompanied by decrease in Q, , which is inversely proportional

max °

to €. The effectiveness ranged from 81.2% to 94.8% is observed in the experiment. A

general €-Re, correlation capable of predicting & within 4% has been obtained in the

present study by combining all different temperatures as

£=0.435Re>™ (5.5)
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Figure 5.8: The effect of air side Reynolds number on heat exchanger effectiveness
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5.3.2 Effect of Reynolds number on UA - value

The effect of air side Reynolds number (Re_ ) on UA is plotted in Figure 5.9. The UA
value is the inverse of R, and is the measure of how well heat is transferred through the
heat exchanger. By determining UA value for a particular heat exchanger, its overall heat
transfer coefficient both inside (U,), and outside (U,) slabs/tubes surfaces can be
determined. The figure shows UA value increases with increase in Re,6 at a given
temperature in a non-linear basis, which is best modeled by power-law relationship of the
form UA=xRe] [0<y<landx>0]. The UA value also increases with T,, for a
givenRe,. A general UA-Re, correlation capable of predicting UA within 7% has

been obtained in the present study by combining all different temperatures as

UA=70.582Re>" (5.6)
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Figure 5.9: The effect of air side Reynolds number on heat exchanger UA-value
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5.3.3 Effect of Reynolds number on fin efficiency

The fin efficiency (77,,, ), of the present heat exchanger as a function of Re, is plotted in

Figure 5.10. The figure shows that fin efficiency of current heat exchanger is fairly high

and ranging from 93.2% to 95.8% over the set operating conditions.
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Figure 5.10: The effect of air side Reynolds number on fin efficiency
The data for all T, level is best fit by negative exponent power-law relationship and
modeled with 77,,, =xRe} [y <0 and x>0]. The fin efficiency decreases with increase
inRe,. The decreasing negative slope means the drop in fin efficiency is higher at lower
end of Re, range. The figure also illustrates higher fin efficiency is possible for a given
Re, through decrease inT,,, as the fins can transfer heat more effectively to the

comparatively cooler air. A general 77,, -Re_  correlation capable of predicting 77,

within *1% has been obtained in the present study by combining all different
temperatures as

N =1.047Re " (5.7
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5.3.4 Effect of pressure drop on effectiveness

Figure 5.11 illustrates effectiveness as a function of pressure drop across the heat
exchanger. The figure shows an increase in £ is associated with an increase in pressure

drop. The data shows a trend, which is best fit with power-law curve of the form as

e=xAp.,, [0<y<landx>0]. This means the effectiveness can be increased by the

same amount at the higher end of effectiveness spectrum at a cost of greater increase in
pressure drop across heat exchanger. This relationship provides engineers with a
challenge to deduce proper effectiveness and pressure drop requirements for a particular
application. The figure also shows that effectiveness at a given pressure drop across the

heat exchanger increases with increase in7 ;.
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Figure 5.11: The effect of air side pressure drop across heat exchanger core on heat
exchanger effectiveness

A general £-Ap correlation capable of predicting £ within £2.5% has been obtained

a,HX
in the present study by combining all different temperatures as

€=0.637Ap) " (5.8)
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5.3.5 Relationship between C*, effectiveness, and NTU

The effect of heat capacity rate ratio (C") on effectiveness (&), and Number of Transfer

Unit (NTU ) is plotted in Figure 5.12. Both the&, and NTU decreases with increase in
C" in power law manner. The relationship for both £€—C", and NTU —C" is modeled

with negative exponent power-law of the form e=xC? [y<Oandx>0], and
NTU =xC”} [y<Oandx>0]| respectively. The increase in C translates into a

decrease in Re , since C" =C . /C, while C, is kept constant. At lower C" (or higher

a’

Re,), both the £, and NTU are greater for a given7,.. The NTU is also found to be

a,i

greater at higher7, ;for a given C" (or Re,). The £-C" relationship also illustrates an

. . . . . . * . .
increase in heat exchanger € with increase in 7, for a given C value, as increase in T, ,

is accompanied by decrease in Q , which is inversely proportional to €.
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Figure 5.12: The relationship between heat capacity, effectiveness, and NTU
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5.3.6 Heat exchanger surface temperature

The heat exchanger slab surface temperature is shown in Figures 5.13 — 5.18. Figure

5.13, 5.14, and 5.15 illustrate the top, bottom, and middle serpentine sections of the heat

exchanger respectively for the operating condition 23°C and 3m/s. The figures
illustrate a large gradient of surface temperature from the glycol side inlet at X =0mmto
the outlet at X =1800mm . The air first makes contact with the section at ¥ =0mm and
flows over the slab until it exits from Y =100mm . The figures also show that it takes a
longer axial distance (i.e. X —direction) for the top section surface temperature to drop to
the same temperature of middle or bottom slab. This suggests a lack of uniformity of the

air pressure and flow entering the heat exchanger at 3m/ s .
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Figure 5.13: Surface temperature of the top serpentine section at 23 °C, 3 m/s.
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Figure 5.14: Surface temperature of the middle serpentine section at 23 °C, 3 m/s.
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Figure 5.15: Surface temperature of the bottom serpentine section at 23 °C, 3 m/s.
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The lack of uniformity of the air pressure and flow is however, the case when the
operating condition is on the other extreme at 46.5°C and 11m/s as illustrated in
Figures 5.16-5.18. Figures 5.16, 5.17, and 5.18 illustrate the top, middle, and bottom

serpentine section surface temperature for the operating condition at 46.5°C and 11m/s .
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Figure 5.16: Surface temperature of the top serpentine section at 46.5 °C, 11 m/s.
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Figure 5.17: Surface temperature of the middle serpentine section at 46.5 °C, 11 m/s.

100
80_ I

800 1000 1200 1400 1600 1800
X [mm]

Figure 5.18: Surface temperature of the bottom serpentine section at 46.5 °C, 11 m/s.
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At this operating condition the sections reach the lowest temperature level faster than the
previously mentioned operating condition. In each operating condition higher
temperature is observed at Y =100mm to the outlet atY = Omm . One reason for this is
that the air first makes contact with the slab at ¥ =0mm removes heat from the slab

surface and become warmer. The temperature difference between the warm air and rest of
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the slab thus becomes smaller, which leads to reduced heat removal closer to
Y =100mm . Another reason for the higher temperature close to Y =100mm as oppose to
Y =0mm s seen due to the presence of boundary layer. Boundary layer develops and
thickens along the direction air flow. Thus the thickness of boundary layer would be
greater closer to Y =100mm compared to Y =0mm . Since boundary layer is not
conducive to heat transfer, less heat is removed at its thickest portion (i.e. closer to
Y =100mm ). It can be also seen from Figures 5.13-5.18, that with the exception of top
section surface at 23°C and 3 m/s, the surface temperature stabilizes after about
X =650mm to X =1000mm, which corresponds to 2 to 3 pass within each of the
serpentine section. The magnitude of drop in surface temperature along the X direction is

higher for 11 m/s compared to that 3 m/s.

5.4 Comparison with other studies and models

In this section, comparison will be made between other studies and heat exchanger
models to illustrate the heat transfer and fluid flow enhancements made possible through
the use of microchannel slabs compared to others. Slab vs. inline tube arrangement

performances, as well as Nusselt number, friction factor and Colburn j factor will be

compared.

5.4.1 Nusselt number comparison

The effect of air side Reynolds number on air side Nusselt number in the current study is
compared to another similar plate fin-tube type heat exchanger of larger tube diameter
from Taler (2005) in Figure 5.19. The heat exchanger developed by Taler (2005)
employed mono-ethylene glycol solution, and was an inline, double row, two-pass, plate

finned heat exchanger of comparable dimension to the present heat exchanger. The figure

shows that the Nu, value of current study is higher compared to Taler (2005) for same
Re, range. This further illustrates the heat transfer superiority of microchannel slab over

inline tubes.
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Figure 5.19: Comparison of air side dimensionless heat transfer coefficient Nusselt number

between present study and Taler (2005)
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5.4.2 Colburn factor comparison

Figure 5.20 compares the Colburn factor for heat convection, ( j,) for present study with

same fin-tube heat exchanger from Taler (2005). The constructions of these heat

exchangers are similar in general except for present heat exchanger's much smaller

channel diameter as well as slab geometry. The j, value is higher in the current study

compared to Taler (2005) over the same Reynolds number range. It indicates that the

microchannel heat exchanger in the current study has superior performance with respect

to convection heat transfer.
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Figure 5.20: Comparison of air side Colburn j factor for heat convection correlation

developed in present study to Taler (2005)
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5.4.3 Friction factor comparison

Figure 5.21 illustrates the comparison between two heat exchangers. These are the heat
exchangers used in the current study and in Dong et al. (2007). The air side of the wavy
fin and flat tube conventional heat exchanger from Dong et al. (2007) is as like as the air
side of current heat exchanger. The correlation for friction factor in present study was
derived based on the computation method by Kays and London (1984) is illustrated in
Chapter 4. This method does not require calculation of the entrance and exit losses and
takes into account the area contraction ratio, as well as the fluid inlet, exit, and average
densities. The friction factor correlation provided in Dong et al. (2007), which takes into
account the various fin dimensions was derived based on another method from Kays and
London (1984). The correlation developed by Dong et al. (2007) and accompanying Kays

and London (1984) method is given in that order as follows.

0.3703 -0.25 -0.1152
F F L.
f,=1.16Re " | — £ —Fin. (5.5)
HFin 2A L/l
A, 2A
f — Min,a ( paZ,HX _ KC _ Kej (56)
AHT,a,HX p‘/max

This method takes into account the entrance and exit pressure losses, and treats air as
incompressible fluid with constant density according to average air temperature. Using
these correlations, the friction factor for both heat exchangers were plotted and compared.
The present heat exchanger shows lower friction effect than Dong et al. (2007) for a

given Re_ in this figure. It is found that present heat exchanger minimizes the friction

factor.
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Figure 5.21: Comparison of friction factor between the heat exchanger from present study
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5.4.4 Slab vs. inline tube comparison

Flow over tube banks in crossflow orientation is very common in many industrial
applications. In the conventional heat exchangers the tube rows arrangement of a bank is
usually met by either inline or staggered in the direction of flow as shown by Figure 5.22

(a). A wake region is formed behind the tube when fluid is flowing over the tube. The

tube diameter, transverse pitch (.S, ) and longitudinal pitch (S, ) are playing vital role for

heat transfer; the smaller values of S, /S, are adversely affected in heat transfer.

However, the effect of wake region behind the tube is insignificant for multi-port
microchannel slab geometry shown in Figure 5.22 (b). The heat exchanger used in the
current study is built up by multi-port microchannel slab. The multi-port microchannel
slab, which offers flat heat transfer areas at the top and the bottom faces of each slab, has
no gap in between the flow channels for fluid interaction. This allows the flowing air to
make very good contact heating surfaces, increases dwell time, and provides almost
uniform temperature distribution throughout the heat exchanger core. Thus it expected to

lead to higher heat transfer over the conventional heat exchangers of isolated tube rows.

Air Flow Direction

7
—> Omowg/ @

Figure 5.22: (a) In-line tube arrangement, (b) Slab arrangement
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The Nusselt number and Colburn j factor correlations developed in the present study

were compared with correlations developed by Taler (2005) earlier in Figures 5.19, and
5.20. The figures demonstrated that the correlations for the present heat exchanger

provided higher Nusselt number, and Colburn j factor and therefore superior heat

transfer performance over the flow regime considered. It was also mentioned in Chapter 2
that the author through his numerical simulation found the regions behind the tubes
contributed very little to the performance of the heat exchanger. Due to the
underperformance of this region inside the heat exchanger the overall performance of the

heat exchanger was adversely affected.

The fluid mean velocity is one of the key driving forces behind convection heat transfer.
The convection heat transfer increases with the increase mean flow velocity. The
underperformance of the region behind the tubes can therefore be explained in terms of
flow velocity. The flow velocity behind a row of tube is particularly low in comparison to
the velocity over or under the tube as shown by the numerical simulation by FLUENT in
Figure 5.23. In this figure the arrows are the fluid particle velocity vector. Their direction
represents the flow direction of fluid particles in a particular location. The length of the

arrows conveys the relative magnitude of the flow velocity.

5 —b

Figure 5.23: Numerical simulation of flow velocity around tube rows
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The fluid makes contact and flows past the first tube with relatively high velocity. The
fluid velocity interacting with the second and third row is therefore significantly lower.
This adverse effect on the subsequent rows of tubes becomes more acute with the
increase in number of rows. The heat transfer performance of the subsequent rows

therefore diminishes significantly.

The effect of low flow velocity in the wake region is not as significant for of a slab and
channel geometry. In Figure 5.24, a numerical simulation is presented to illustrate this
point. In this simulation the fluid, flow regime, and velocity is kept identical to that of
Figure 5.23. To maintain similarity the slab is given the same frontal area (i.e. projected
slab cross section area in the direction of air flow) as the tubes. This slab can
accommodate three channels of diameter equal to tube diameter of Figure 5.23. It can be
seen that only one wake region forms only behind the slab. The flow velocity
immediately next to the slab is about the same magnitude of that in Figure 5.23. The

Newtonian fluid makes a good contact with the slab surface and has longer dwell time.

Figure 5.24: Numerical simulation of flow velocity around a slab

One advantage of this geometry over circular tube is difference the way conduction heat

transfer takes place. The conduction heat transfer is much uniform in this case compared
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to the in-line model. Liquids can transfer heat to the inner surface of channels within
aluminum slab by convection. This heat will conduct from the inner surface of channels
to outer surface of slab through conduction. Since all channels are contained within the
slab and are not separated by fluid wake regions, the heat will conduct from location of
higher temperature to lower temperature (i.e. from the back to the front of the slab where
it is met with higher fluid velocity). This difference in conduction heat transfer provides
the slab with much effective means of heat transfer as heat can conduct from inner
channel surface to outer slab surface based on temperature difference and not limited by

low velocity wakes.
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Chapter 6: Conclusions and Recommendations

The main objective of the present study was to investigate air side forced convection heat
transfer and fluid flow characteristics, microchannel heat exchanger performance
characteristics, and comparison of results obtained to the available literature. In order to
successfully meet these objectives cold air was blown over the external surface of a
prototype finned, multi-port, serpentine microchannel heat exchanger. The heat
exchanger was fixed with inside a Plexiglas test chamber, which was attached to a close
loop calorimetric wind tunnel. Both the air flow velocity and temperature were varied
over a wide range to produce 30 unique operating conditions. Both the temperature and
flow velocity of the 50% glycol-water solution refrigerant used inside the test chamber
were maintained constant for all experimental runs. The air side inlet temperatures
investigated in this study was set at 23, 28, 33, 38, 43, 46.5°C. At each of these
temperature levels the air flow velocity was varied at five different levels between 3 to
11m/s with an increment of 2 m/s, which translate into Reynolds number ranging

between 752-3165. The glycol-water solution temperature and mass flow rate was kept
constant at 74°C and 0.0345 kg/s producing a Reynolds number of 200. The

conclusions and recommendations from the present study are presented in this chapter.

6.1 Conclusions
The main objectives in this study were to ascertain the heat transfer, and fluid flow

characteristics of microchannel heat exchanger, its performances, and making
comparisons with available literature. In this study many of these characteristics are
given in dimensionless form, which is particularly useful in comparing with other studies
or use of present data in future studies. The heat transfer, fluid flow, heat exchanger

performance, and comparisons deduced from the analysis of results are presented below.
e The air side flow Reynolds number was found to be the main controlling

parameters for influencing heat transfer. The heat transfer rate also increases in

power law manner with an increase in Reynolds number.
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e Both the dimensionless temperature coefficient and the Colburn j factor were

seen to decrease with increase in Reynolds number while the opposite was noticed
for Nusselt number. All increases and decreases were monotonic and are modeled
best with a power law relationship. The overall correlations obtained for

determining Nusselt number and Colburn j factor to within £10% is provided as
follows.

Nu, =0.845Re’*™

j, =0.948Re ;"™

¢ The Reynolds number was the main controlling parameter which influenced the
pressure drop across heat exchanger array. The pressure drop across heat
exchanger increased monotonically with increase in Reynolds number and was

best modeled as power law relationship.

e With regards to friction factor, the air flow Reynolds number was the primary
parameter of influence. The friction factor decreased with an increase Reynolds
number in power law manner. The general correlation obtained by unifying all
data for estimating the friction factor as a function of Reynolds number is given as

follows.

£, =0.775Re*"

e The UA-value as function of Reynolds number was also seen to increase with a
power law relationship of decreasing positive slope. The variation of UA was
found to be significant with change in Reynolds number. A general correlation for
estimating UA value of the heat exchanger at a given Reynolds number is given

as follows.

UA =70.582Re>"*
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e The fin efficiency was found to decrease with an increase in the Reynolds
number. The decrease however was found to be minuscule for the range of
Reynolds number being considered. The general correlation developed for

obtaining fin efficiency at a given Reynolds number is given as the following.

Ny, =1.047Re >

e The effectiveness of the heat exchanger as function of pressure drop across heat
exchanger was seen to increase with a power law relationship of decreasing
positive slope. The variation of effectiveness was found to be significant with

change in Reynolds number.

¢ Both the effectiveness and NTU was found to decrease with an increase in heat
capacity ratio. The decrease in effectiveness and NTU with respect to heat
capacity ratio was found to be significant but not great. The general correlations
developed for obtaining effectiveness within #2.5% and NTU within £5% at a

given heat capacity ratio are given as the following.

£=0.750C"""

NTU =1.788C 2%

e It is seen that at low air flow velocity or Reynolds number, there is a flow
maldistribution through the heat exchanger array, which was suggested based on
the temperature contour. With the exception of top surface at 3 m /s air velocity,
the slab temperature tended to stabilize after 2 to 3 passes, and remained virtually
constant at that temperature until it exited the slabs. At 3 m/s the top slab
surface temperature stabilized in the final pass of the five pass serpentine slab.
The difference is likely due to the difference in flow pressure experienced by the

slabs at low Reynolds number.
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®  When the air flow temperature and velocity was increased, the relative difference
between the slab surface temperature contours diminished. All three slab
temperatures stabilized at or after approximately 3 passes. This reduction in
temperature contour difference can be explained by the relatively uniform

pressures experienced by all three slabs at this flow rate.

e The correlations developed for dimensionless heat transfer parameters such as

Nusselt number and Colburn j factor, and dimensionless fluid flow parameter

such as friction factor in this study was compared with available correlation from
similar heat exchangers. The general trends for these three parameters tend to

agree well with the correlations chosen for comparison.

e The slab presents enhanced heat transfer by reducing the effect of wake region
common to in-line and staggered tube configuration. The present geometry
provides better heat transfer performances by mitigating wake region adverse
effects, providing longer air dwell time, and effective conduction heat transfer
mechanism between from inner surface of channels inside the slab to outer

surface of the slab.

e Comparison between the correlation for present heat exchanger and wavy finned
flat tube heat exchanger, reveled a general agreement in friction factor trend and
magnitude. The present heat exchanger also demonstrated a reduction in friction

factor hence indicating lower pumping power requirements.

e [t was found that the microchannel slab fin construction of the present heat
exchanger provides significant heat transfer enhancements when compared with
in-line tube fin heat exchangers. This difference was attributed to the formation of
low fluid velocity wake regions behind the tubes of in-line heat exchanger. The
rate of convection heat transfer is dependent on fluid velocity. The wake region
reduced the heat transfer performance of in-line heat exchanger by creating these

low velocity regions. This effect was found insignificant for slab with channels as
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it is characterized by uniform conduction heat transfer from channel inner surface
to slab outer surface. The heat from the outer slab surface is then transferred to the

external flow without being adversely affected by the wake region.

This study provides several important relationships and correlations pertaining to the heat
transfer, fluid flow, and performance characteristics for multi-port microchannel slab fin
heat exchanger. It can therefore be considered to be of significant importance to heating,
cooling, refrigeration, HVAC industries. One of the primary concerns for the industrial
application is associated costs and benefit. Some form of tradeoff (i.e. fluid flow and
pumping power to heat transfer rate) between the parameters discussed is usually
associated with achieving the optimum cost benefit ratio. The characteristics,
relationships, and correlations in this study would help in such decision making for a

particular industrial application.

6.2 Recommendations

The observations from the present study will assist in further research efforts, and
investigations in the field of heat transfer and thermo fluids. A large number of
correlations were developed for heat transfer, fluid flow and heat exchanger
characteristics for the present heat exchanger model. These correlations may prove useful
to the industrial applications and heat exchanger engineers/designers. The results and
conclusions deduced here can be verified and improved by broadening the range of heat
transfer and flow regimes. They can also be improved through designing new heat
exchangers with different fin, slab, channel dimensions and spacing, orientations, and

shape.

The present study can be expanded by several means. They are:
¢ Investigation of air cooling using the present heat exchanger.
e Theoretical study involving second law of thermodynamics analysis of the present

heat exchanger.
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Comparison of current results with those from in-line and staggered tube fin heat
exchanger within similar operating conditions.

Numerical analysis of the present heat exchanger within the same experimental
conditions.

Investigating heat transfer and fluid flow of multi-row slab-fin heat exchanger.

Investigating effect spacing between the following: channel, fin, rows of slab.

There were various limitations present in the present experimental setup. Therefore future

researchers utilizing the present experimental setup would be well advised to make the

following modifications in order for to achieve more accurate and efficient data

collection.

Increasing the size of liquid tank to several times the present capacity would
ensure stable temperature of fluid flow through the heat exchanger and would
enable longer duration of un-interrupted data collection.

Using a chiller to replace the presently used city water supply system would
greatly increase the stability of the water used to cool the air flowing inside the
wind tunnel.

Use of infrared camera or thermochromic liquid crystal material to measure the
slab surface, air inlet and outlet temperatures would significantly increase the
accuracy of air temperature measurement.

Implementing a high power electric motor to run the wind tunnel fan instead of
hydraulic pump would greatly stabilize the air flow inside the wind tunnel, as well
as provide a greater range of flow velocity.

Replacing the presently used gear pump with a higher capacity pump would
enable the researcher to study operating conditions involving turbulent flow
through the microchannel.

Replacing current 6 kW heater in favor of higher capacity would enable study of

greater range of heat transfer.
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Appendix — A: Key Sensors and DAQ Specifications

Data Acquisition (DAQ) Card: NI-PCI-6052FE

Supplied by: National Instruments Corporation

Purpose: Used to interface between the signal conditioner and the PC in order to D/A &

A/D Signals, and to aid the DAQ software acquire the data at appropriate sampling rate.

Analog Input Characteristics
Number of channels: 16 single-ended or 8 differential (software-selectable per
channel)
Type of A/D converter (ADC): Successive approximation
Resolution: 16 bits
Max sampling rate: 333 kS/s
Input signal ranges (Bipolar): £10 V, 5V, +2.5V, £1 V, £500 mV, £250 mV,
+100 mV, £50 mV
Input signal ranges (Unipolar): 0to 10 V,0to 5 V,0t02 V,0to 1 V,0to 500 mV,
0to 200 mV, 0 to 100 mV

Analog Output Characteristics
Number of channels: 2 voltage
Resolution & Max sampling rate: 16 bits

Type of D/A converter (DAC): Double-buffered, multiplying

Analog Transfer Characteristics
Relative accuracy: +1.5 LSB (Least Significant Bit) typical
Differential Non Linearity (DNL): £0.5 LSB typical, £1.0 LSB max

Offset error (Pregain after calibration): +1.0 pV max

Stability

Recommended warm-up time: 15 minutes
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Appendix — A: Key Sensors and DAQ Specifications

Signal Conditioner Module: SCXI-1102

Supplied by: National Instruments Corporation

Purpose: Used to provide high accuracy thermocouple measurements by acquiring
millivolt, volt, 0 to 20 mA, and 4 to 20 mA signals. Also provides high accuracy RTD
measurements acquiring capability when used in conjunction with SCXI-1581 current

excitation module.

Analog Input Characteristics
Number of channels: 32 Differential

Input signal ranges: £100 mV @ gain = 100, or £10 V @ gain = 1.

Analog Transfer Characteristics

Nonlinearity: 0.005% FSR

Offset error:
300 uV max after, or 600 uV before calibration @ gain = 1.
15 uV max after, or 100 pV before calibration @ gain = 100.

Gain error (relative to calibration reference):
0.015% of reading max after, or 0.04% of reading before calibration @ gain = 1.
0.020% of reading max after, or 0.1% of reading before calibration @ gain = 1.

Stability
Recommended warm-up time: 20 minutes

Offset temperature coefficient: 20 uV/°C @ gain=1, 1 uV/°C @ gain = 100
Physical

Dimension: 18.8 cm x 17.2 cm

Weight: 611 g (24.6 0z)
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A Sudy of Cross-Flow Air Heating via a Multiport Serpentine Microchannel Heat Exchanger

Current Excitation Module: SCXI-1581

Supplied by: National Instruments Corporation

Purpose: Used to provide 32 channels of highly accurate and stable 100 uA current
excitation to applications requiring such fixed current excitation. Such current excitation

enables high accuracy RTD resistance measurements.

Input
Input signal ranges: £100 mV @ gain = 100, or £10 V @ gain = 1.

Excitation
Number of channels: 32 single ended outputs
Current output: 100 uA
Accuracy: +0.05%
Temperature drift: +5 ppm/°C

Stability

Recommended warm-up time: 10 minutes

Physical
Dimension: 18.8 cm x 17.2 cm

Weight: 731 g (25.8 oz)

Environmental
Operating temperature: 0 to 50 °C
Storage temperature: —20 to 70 °C
Relative humidity: 10 to 90%
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Appendix — A: Key Sensors and DAQ Specifications

Liquid Inlet Pressure Transducer (PTD): PX219-015G5V (0-5 V, 0-103 kPa)

Supplied by: Omega Engineering Incorporated

Purpose: Used to obtain the inlet pressures of 50% glycol-water solution and transmit to

the data acquisition system.

Accuracy: 0.25% FS (including linearity, hysteresis and repeatability)
Operating Temperature: -54 to 121°C (-65 to 250°F)

Compensated Temperature: -20 to 80°C (-4 to 176°F)

Thermal Effects: 0.04% FS/°C (0.02% FS/°F)

Proof Pressure: 150%

Burst Pressure: 300% range max

Response Time: 2 ms typical

Weight: 128 g (4.5 oz)

Electrical Connections: DIN 43650 plug connector

Voltage Output
Excitation: 24 Vdc @ 15 mA
Output: 0 to 5 Vdc or 0 to 10 Vdc, +£1.5% FSO, 3-wire. Currently set to 0-5 V.
5 Vdc Output: 7 to 35 Vdc
10 Vdc Output: 12 to 35 Vdc
Zero Balance: 0 Vdc +2% FSO

4 to 20 mA Output
Excitation: 24 Vdc (7 to 35 Vdc) reverse polarity protected
Output: 4 to 20 mA (2-wire) £1% FSO
Zero Balance: 4 mA +2% FSO
Max Loop Resistance: 50 x (supply voltage - 10) Q
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A Sudy of Cross-Flow Air Heating via a Multiport Serpentine Microchannel Heat Exchanger

Liquid QOutlet Pressure Transducer (PTD): PX309-005G5V (0-5V, 0-34 kPa)
Supplied by: Omega Engineering Incorporated

Purpose: Used to obtain the outlet pressures of 50% glycol-water solution and transmit

to the data acquisition system.

Accuracy: £0.25% FS BSL at 25°C; includes linearity, hysteresis and repeatability
Operating Temperature: -40 to 85°C (-40 to 185°F)

Compensated Temperature: 0 to 50°C (32 to 122°F) for <5 psi range

Proof Pressure: 300% or 20psi, whichever is greater for <50 psig range

Burst Pressure: 500% of capacity or 25 psi, whichever is greater

Response Time: <1 ms typical
Weight: 154 g (5.4 oz)

Electrical Connections: 1.5 m (5”) 3 Conductor cable

Voltage Output
Excitation: 9-30 Vdc reverse polarity and over-voltage protected
Output: 0 to 5 Vdc or 0 to 10 Vdc, £1.5% FSO, 3-wire. Currently set to 0-5 Vdc
5 Vdc Output: 7 to 35 Vdc
10 Vdc Output: 12 to 35 Vdc
Zero Balance: 0 Vdc +2% FSO; 4% for 1 and 2 psi ranges

4 to 20 mA Output
Excitation: 9-30 Vdc reverse polarity and over-voltage protected
Output: 4 to 20 mA (2-wire) £1% FSO
Zero Balance: 4 mA +2% FSO; +4% for 1 and 2 psi ranges
Max Loop Resistance: 50 x (supply voltage - 10) Q

Faisal A. Sddiqui. M.A.Sc. Thesis 2011. Dept of Mechanical, Automotive, and Materials Engineering, University of Windsor, Canada 1 1 1



Appendix — A: Key Sensors and DAQ Specifications

Gas Differential Pressure Transducer (DPTD): PTDD PX277-01D5V (0-10 V)

Supplied by: Omega Engineering Incorporated

Purpose: Used to obtain the air dynamic pressures in conjunction with Pitot static probe

located upstream of the heat exchanger array, and transmit to the data acquisition system.

Excitation: 12 to 35 Vdc

Output: 0 to 5 or 0 to 10 Vdc selectable. Currently set to 0-10 Vdc range
Accuracy: £1.0% FS

Operating Temperature: -18 to 80°C (0 to 175°F)

Compensated Temperature: -4 to 65°C (25 to 150°F)

Thermal Effects: 0.02%FS/°C (£0.0125%FS/°F)

Proof Pressure: 10 psi

Selectable Range (inch H,O): 0 to 1.0, 0 to 0.5, 0 to 0.25, -0.5 to 0.5, -0.25 to 0.25, -
0.125 to 0.125. Currently set to 0 to 1.0 inch H,O.

Media Compatibility: Clean dry air or inert gas

Pressure Fittings: 0.2" hose barbs (3/16" Tygon tubing recommended)
Termination: Screw terminal block

Enclosure: Enamel coated, 18 GA steel, NEMA-4 (IP-65) rated
Weight: 454 ¢ (1.0 1b)
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Gas Differential Pressure Transducer (DPTD): PTDD PX277-05D5V (0-10 V)

Supplied by: Omega Engineering Incorporated

Purpose: Utilized in obtaining the differential pressure across the heat exchanger in

conjunction with pressure taps located in the middle of test chamber walls at the opposite

sides of the heat exchanger.

Excitation: 12 to 35 Vdc

Output: 0 to 5 or 0 to 10 Vdc selectable. Currently set to 0-10 Vdc range
Accuracy: £1.0% FS

Operating Temperature: -18 to 80°C (0 to 175°F)

Compensated Temperature: -4 to 65°C (25 to 150°F)

Thermal Effects: 0.02%FS/°C (+0.0125%FS/°F)

Proof Pressure: 10 psi

Selectable Range (inch H,0): 0 to 5.0, 0 to 2.5, 0 to 1.25, -2.5 t0 2.5, -1.25 to 1.25,
0.625 to 0.625. Currently set to 0 to 5.0 inch H,O.

Media Compatibility: Clean dry air or inert gas

Pressure Fittings: 0.2" hose barbs (3/16" Tygon tubing recommended)
Termination: Screw terminal block

Enclosure: Enamel coated, 18 GA steel, NEMA-4 (IP-65) rated
Weight: 454 g (1.0 1b)
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Appendix — A: Key Sensors and DAQ Specifications

Gas Flow Measurement/Pressure Acquisition System: FKT-3DP1A-0.4-5-1
Supplied by: FlowKinetics™ LLC

Purpose: Used to obtain simultaneous measurement of concurrent independent
differential pressures, atmospheric pressure, temperature, relative humidity, density, and

velocity of the gas being tested.

Pressure Connectors: Accepts 3.175 mm (1/8 inch) ID flexible tubing.

Differential Pressure Transducers
Accuracy: +0.1% typical (£0.22% max) FS at 25°C
Media: Clean, dry, non-corrosive gases.

Auto-zero feature eliminates Zero offset and zero temperature shift effects.

Absolute Pressure Transducer
Media: Clean, dry, non-corrosive gases.
Range: 15 to 115 kPa (2.2 to 16.7 psi)
Accuracy: +0.5% FS typical (0 to 85°C).
Includes effects of linearity, temperature and pressure hysteresis, zero temperature

shift and span temperature shift.
Damping: User selectable from 1 to 64 data averages.
Temperature (detachable probe)

Type: K-type wire thermocouple.

Range: -73°C to 482°C (-100°F to 900°F).
Accuracy: +1°C (£1.8°F) typical at 25°C
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A Sudy of Cross-Flow Air Heating via a Multiport Serpentine Microchannel Heat Exchanger

Relative Humidity (detachable probe)
Range: 0% to 99% Relative Humidity
Storage: 0 to 90% Relative Humidity
Accuracy: 2% typical @ 25°C
Hysteresis and Repeatability: +1.3% typical
Stability: +1% typical
Response time: 15 sec in slow moving air at 25°C
Temperature Range: -40°C to 85°C (-40°F to 185°F)
Probe size: Cylinder 100 mm (4 in) long with a diameter of 13 mm (0.5 in).
Cable length: 150 cm (60 in)

Display
Description: 4 line large character variable contrast alphanumeric LCD
Viewing area: 102 mm (4.02 in) by 41.5 mm (1.63 in)
Pressure units: kPa, inH20, mmHg, and psi.
Velocity units: m/s, ft/s and ft/min.
Temperature units: °C and °F
Density: kg/m’ and Ib/ft’

Humidity: Percent relative humidity
Output: RS232 serial port interface, 9 pin connector. USB adapter available.
Physical

Dimension: 22.1 cm X 19.1 cm x 9.9 cm

Weight: 1.33 kg (46.9 oz)
Environmental

Operating temperature: 0 to 50 °C
Storage temperature: —10 to 60 °C
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Appendix — A: Key Sensors and DAQ Specifications

Liquid Digital Flow Meter (DFM): 04004SN1-XXX (0.4-5.3LPM)

Supplied by: Proteus Industries Incorporated

Purpose: Utilized to obtain the flow rate of 50% glycol-water solution and transmit to

the data acquisition system.

Flow Measurement Capability
Accuracy: £ 1% FS.
Linearity: + 1.5% FS from 0.1 to 1.0x the flow range.
Repeatability: + 1% FS from 0.1 to 1.0x the flow range.

Temperature Measurement Capability
Accuracy: + 3% FS.
Linearity: + 1% FS from 0.1 to 1.0x the temperature range.

Repeatability: + 0.5% FS from 0.1 to 1.0x the temperature range.

Pressure Measurement Capability
Accuracy: + 3% FS.
Linearity: + 1% FS from 0.1 to 1.0x the pressure range.

Repeatability: + 0.5% of FS from 0.1 to 1.0x the pressure range.

Electrical Specifications
Power Requirements: 24 + 10% VDC, 200 mA
Over-Voltage Protection: Resettable thermal fuse turns unit OFF if input > 29 Vdc.
Electrical Connection: 2 m 8/24 AWG PVC insulated cable, rated 1.5 A at 36 Vdc.
Switch Type: Relay Closure, Normally Open and Normally Closed contacts.
Relay Rating: SPDT, 1 A at 48 Vdc.

Faisal A. Sddiqui. M.A.Sc. Thesis 2011. Dept of Mechanical, Automotive, and Materials Engineering, University of Windsor, Canada 1 1 6



Appendix — B: Key Heat Exchanger Dimensions
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Figure B.1: Key elementary heat exchanger dimensions
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Appendix — B: Key Heat Exchanger Dimensions

Table B.1: Key heat exchanger dimensions

Dimensions  Brief Description and Calculation Formulae Nominal Uncertainty

Value (%)
Ly g [ m] The length of each slab passes participating 0.3048 +0.15
in heat transfer. It is perpendicular to the
direction of air flow.
W, [m] Width of a slab. It is the length of slab in the 0.100 +0.20
direction parallel to the air flow.
H, [ m] Height of an individual slab. It is parallel to 0.002 +0.50
air flow direction.
N i siap Total number of fins per slab. 144 +0.30
Apyomal.siab Frontal area of an individual slab. 6.096x10~* +0.52
[]
Evaluated as:
Apronat,star = Lt stavH s
A Total number of slabs in the heat exchanger 15 +0
participating in heat transfer.
Apyomar sy Combined frontal area of all heat 9.144x107° +0.52

[mz] transferring slabs in the heat exchanger.

Evaluated as:

A A

Frontal ,Slab, HX = NHT,Slab,HX Frontal ,Slab

Note: Nominal values are shown up to 3 decimal points in this table. Greater accuracy is used in all
calculations. Using these values to calculate subsequent parameters may result in slight discrepancy.
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A Sudy of Cross-Flow Air Heating via a Multiport Serpentine Microchannel Heat Exchanger

Table B.1: Key heat exchanger dimensions (continued)...

Dimensions  Brief Description and Calculation Formulae Nominal Uncertainty
Value (%)
Findrray X Total number of fin arrays in the heat 16 +0
exchanger.
I\ Total number of fins in the heat exchanger. 2304 +0.30
Evaluated as:
NFin,HX = NFinArray,HX NFin,Slab
te [ m] Thickness of an individual fin. 1.850x10™* +16
H,, [m] Height of an individual fin. 1.579x10™ 2 +0.25
L, [ m] Length of an individual fin in the direction 0.100 +0.20
of air flow.
S [m] Spacing between two adjacent fins. 2.107x107° +2.01
At rin Heat transfer surface area of a single fin. 3.372x107° +0.33

Evaluated as:

A

HT ,Fin

=2H,, (L +tFin)+L S

Fin Fin™~ Fin

Note: Nominal values are shown up to 3 decimal points in this table. Greater accuracy is used in all
calculations. Using these values to calculate subsequent parameters may result in slight discrepancy.
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Appendix — B: Key Heat Exchanger Dimensions

Table B.1: Key heat exchanger dimensions (continued)...

Dimensions  Brief Description and Calculation Formulae Nominal Uncertainty

Value (%)
Ay pin i Combined heat transfer surface area of all 7.771 +0.45
5 fins in the heat exchanger.
[ ]
Evaluated as:
AHT,Fin,HX = NFin,HXAHT,Fin
Apomal Fin Frontal area of a single fin. 2.921x10° +16
[ ]
Evaluated as:
AFrontal,Fin = HFintFin
Apy o Fin1ix Combined frontal area of all fins in the heat  6.730x10 > +16
h .
[m2] exchanger
Evaluated as:
AFronml,Fin,HX =N Fin, HX AFrontal,Fin
Ap ol Blocked Combined frontal area of all fins and slabs 1.587x1072 +6.79
[m2] in the heat exchanger, which blocks air
flow.

Evaluated as:

+A

AFrontal,Blocked = AFrontal,Fin,HX Frontal ,Slab,HX

Note: Nominal values are shown up to 3 decimal points in this table. Greater accuracy is used in all
calculations. Using these values to calculate subsequent parameters may result in slight discrepancy.
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Table B.1: Key heat exchanger dimensions (continued)...

A Sudy of Cross-Flow Air Heating via a Multiport Serpentine Microchannel Heat Exchanger

Dimensions  Brief Description and Calculation Formulae Nominal Uncertainty
Value (%)
Ly ¢ [ m] Length of the heat exchanger contained 0.3048 +0.15
within square duct section of the test
chamber (excludes serpentine portion of
heat exchanger within the side covers).
Hpy e [ m] Height of the heat exchanger contained 0.287 +0.25
within square duct section of the test
chamber.
Ayl ix Frontal area of the heat exchanger. 8.748x1072 +0.29
[]
Evaluated as:
Aponatix = L 1 H 1
Avina Minimum free flow area available for air 7.160x10~> +1.55

[]

flow.

Evaluated as:

A, =A

‘Min,a Frontal , HX -

A

Frontal ,Blocked

Note: Nominal values are shown up to 3 decimal points in this table. Greater accuracy is used in all
calculations. Using these values to calculate subsequent parameters may result in slight discrepancy.
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Table B.1: Key heat exchanger dimensions (continued)...

Appendix — B: Key Heat Exchanger Dimensions

Dimensions  Brief Description and Calculation Formulae Nominal Uncertainty
Value (%)
Avr st Total area of an individual slab that is not 5.557x10° 2 +1.55
[ 2] occupied by fins. It is the summation of
m
individual areas on the slab, which are
situated between two adjacent fins.
Evaluated as:
AUF,Slab =2Wg,, (LHT,Slab -N Fin.Slab® Fin )
Ayr Stap i Combined area of the slabs for the entire 0.834 +1.55
[ 2] heat exchanger, which is not occupied by
m
the fins.
Evaluated as:
ANF,Slah,HX = NHT,Slab,HX ANF,Slab
Combined available heat transfer surface 8.604 +0.43

AHT,a,HX

[]

area of all fins and slabs in the heat

exchanger.

Evaluated as:

A =A

HT ,a,HX HT ,Fin,HX + ANF,Slab,HX

Note: Nominal values are shown up to 3 decimal points in this table. Greater accuracy is used in all
calculations. Using these values to calculate subsequent parameters may result in slight discrepancy.
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A Sudy of Cross-Flow Air Heating via a Multiport Serpentine Microchannel Heat Exchanger

Table B.1: Key heat exchanger dimensions (continued)...

Dimensions  Brief Description and Calculation Formulae Nominal Uncertainty

Value (%)

Dy anx [m] Theoretical hydraulic diameter on the air 3.325x10°° +1.62
side for the heat exchanger. Calculated from

Kays and London (1984).

Evaluated as:

DHyd,a,HX =4Wy, (AMin,a /AHT,a,HX )

o [_] Minimum free flow to frontal area ratio for 0.819 +1.57

a

the air side.

Evaluated as:

O-a = AMin,a /AFromal,HX

Vo [m3] Volume of the heat exchanger actively 8.739x10"° +0.35
participating in heat transfer. It is also the
volume of the heat exchanger contained

within the square duct section of the test

chamber.

Evaluated as:

Vix =H HX,TC Ly ,TCWSZab

Note: Nominal values are shown up to 3 decimal points in this table. Greater accuracy is used in all
calculations. Using these values to calculate subsequent parameters may result in slight discrepancy.
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Appendix — B: Key Heat Exchanger Dimensions

Table B.1: Key heat exchanger dimensions (continued)...

Dimensions  Brief Description and Calculation Formulae ~ Nominal =~ Uncertainty

Value (%)
B, Air side heat transfer surface area density. 985 +12.35
[mz / m*ﬂ
Evaluated as:
B, = Ayt TV ux
D, [ m] Diameter of an individual microchannel. 0.001 +3.48
Ny s Total number of microchannels per slab. 68 +0
Ly vie [ m] Combined length of microchannels 311 +0.15
participating heat transfer for the entire heat
exchanger
Evaluated as:
LHT,MC,HX = LHT,SlahNMC,SlahNHT,Slab,HX
Ags ve Cross-sectional area of an individual 8.016x1077 +6.96
5 microchannel.
("]

Evaluated as:

AXS,MC = (7[/4)D1%/1C

Note: Nominal values are shown up to 3 decimal points in this table. Greater accuracy is used in all
calculations. Using these values to calculate subsequent parameters may result in slight discrepancy.

Faisal A. Sddiqui. M.A.Sc. Thesis 2011. Dept of Mechanical, Automotive, and Materials Engineering, University of Windsor, Canada 1 24



A Sudy of Cross-Flow Air Heating via a Multiport Serpentine Microchannel Heat Exchanger

Table B.1: Key heat exchanger dimensions (continued)...

Dimensions  Brief Description and Calculation Formulae Nominal Uncertainty

Value (%)
Axs v siab Combined cross-sectional area of all 5.451x10°° +6.96
5 microchannels within a slab.
[ ]
Evaluated as:
AXS,MC,Slab =N MC,SlahAXS,MC
SR —— Combined cross-sectional area of all 8.177x10~* +6.96
[ 2] microchannels within all heat transferring
m
slabs.
Evaluated as:
AXS,HT,MC,HX = NHT,Slab,HX AXS,MC,Slab
AT in MC Inner heat transfer surface area of an 9.674x10° 4 +3.49
[ 2] individual microchannel. Also known as the
m
liquid side heat transfer surface area for one
microchannel.
Evaluated as:
AHT,in,MC =7 DMCLHT,Slab
Ay v siab Inner heat transfer surface area of all 6.578x10° 2 +3.49
5 microchannels within a slab.
[ ]

Evaluated as:

A

HT ,in,MC,Slab — N MC,Slab

A

HT ,in,MC

Note: Nominal values are shown up to 3 decimal points in this table. Greater accuracy is used in all
calculations. Using these values to calculate subsequent parameters may result in slight discrepancy.
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Appendix — B: Key Heat Exchanger Dimensions

Table B.1: Key heat exchanger dimensions (continued)...

Dimensions  Brief Description and Calculation Formulae Nominal Uncertainty

Value (%)
Ay vy Combined inner heat transfer surface area of 0.987 +3.49
[ 2] all microchannels within all heat
m

transferring slabs.

Evaluated as:

AHT,in,MC,HX = NHT,Slab,HXAHT,in,MC,Slab
Ty HT atiq Ratio of air side to liquid side heat transfer 8.720 +3.51
[_] area.

Evaluated as:

rA,HT,aZLiq = AHT,a,HX /AHT,in,MC,HX
B Lig2v—HX Liquid side heat transfer surface area 113 +12.82

density.
[mz / ms} y

Evaluated as:

ﬁA—LiqZV—HX = AHT,in,MC,HX /VHX

Volume of liquid refrigerant within the heat ~ 2.492x10™* +6.97

vHT,Liq,HX

[ 3] transferring lengths of all microchannels in
m

the heat exchanger.

Evaluated as:

vHT,Liq,HX = AXS,HT,MC,HX LHT,Slab

Note: Nominal values are shown up to 3 decimal points in this table. Greater accuracy is used in all
calculations. Using these values to calculate subsequent parameters may result in slight discrepancy.
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A Sudy of Cross-Flow Air Heating via a Multiport Serpentine Microchannel Heat Exchanger

Table B.1: Key heat exchanger dimensions (continued)...

Dimensions  Brief Description and Calculation Formulae Nominal Uncertainty

Value (%)

B tiv-1ia Liquid side heat transfer surface area per 3959 +7.79

5 3 unit liquid side heat transfer volume.
[m I m }

Evaluated as:

A

ﬁA—LiqZV—Liq = Ay inmc.Hx /vHT,Liq,HX

Note: Nominal values are shown up to 3 decimal points in this table. Greater accuracy is used in all
calculations. Using these values to calculate subsequent parameters may result in slight discrepancy.
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Appendix — C: Uncertainty Analysis

A large number of fluid flow and heat transfer parameters as well as heat exchanger
performance parameters have been discussed in chapters 4 and 5. In this appendix, an
evaluation method of uncertainty associated with these parameters is presented.
Uncertainties in this appendix are evaluated by considering a sample experimental run
(not one of the 30 different operating conditions). This analysis is intended to provide the
reader with an insight into available uncertainty analysis methods and their appropriate
uses. It can also be used as a guide for researchers with similar experiment based research
work. The parameters discussed in this thesis can be considered as part of different levels
(i.e. first level, second level, third level and so on) for the purpose of uncertainty analysis.
The uncertainties associated with first level parameter can be considered as the elemental
uncertainties. Uncertainties in various dimensions, temperature, and pressure
measurements can be attributed to this group. The second level parameters are considered
to be a function of the first level parameters. An example of such parameter is the bulk
fluid temperatures, which are the functions of the fluids inlet and outlet temperatures.

Third level parameters are functions of second level parameters and so on.

This appendix will show that uncertainties are introduced in the first level parameters
such as heat exchanger dimension, fluid inlet and outlet temperature, and pressure
measurements by the elemental errors in the form of bias, and precision errors in
measuring equipments such as digital caliper, sensors such as PTDs, DPTDs, and RTDs,
and data acquisition components such as DAQ card, and signal conditioners.
Uncertainties from these first level parameters then propagates into uncertainties of
second level parameters such as flow and heat exchanger areas, volumes, bulk
temperatures etc. Such uncertainties would then propagate further into third level such as
heat transfer rates, Reynolds numbers etc. The relative uncertainties of few key fluid flow
and heat transfer parameters for a trial run are tabulated in Table C.7. The following
sections will discuss a comprehensive method of uncertainty analysis and propagation

which has yielded the results in Table C.7.
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C.1 Methods for uncertainty analysis

The broad range of uncertainty evaluation techniques can be classified into several
methods. They pertain to uncertainty analysis methods for measurement tools, physical

properties, and heat transfer and fluid flow parameters. They are as follows.

Method 1: Measurement tools and DAQ components.

Measurement tools include digital caliper, and DAQ components include RTDs, PTDs,
DPTDs, DAQ card, and signal conditioner. Manufacturers of these equipments provide
various specifications including but not limited to accuracy, linearity, drifts, hysteresis,
and repeatability. These elemental errors, with the exception of repeatability are
considered bias. Repeatability pertains to limits of precision error. Further precision error
is found through experiments for the data collected. The scatter in data provides a
standard deviation, which contributes to precision error. Once all possible elemental
sources of bias (i.e. B;, By, ..., By) and precision (i.e. P;, Py, ..., P,) errors are found, the
bias and precision errors are evaluated by taking Root Sum Square (RSS) of their

respective sources as follows.

B=+B+B:+..+B (C.1)

P=+ /P + P} +..+P (C.2)

The overall uncertainty of the equipment is then found through RSS of the bias and

precision error as follows.

U=+JB>+P? (C.3)

Method 2: Fluid physical properties.
The experimental data for each operating condition is collected over a period of 3 to 4

minutes with a sampling rate of 1 kHz. This results in a data set comprising of 180,000 to
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240,000 samples. The average fluid temperatures for these individual samples are
evaluated and the lowest and highest values are identified. The fluid properties such as
density, viscosity, specific heat, conductivity etc. are evaluated at both of these values of
temperature. The uncertainties in these physical properties are then evaluated based on

properties at these temperatures as follows.

(C4)

1
UPropertyﬂuid = E‘[Propertyﬂuid @ 71b,_ﬂuid,max:| - ':Propertyﬂuid @ 71b,_ﬂm’d,mini'

An exception to this is the Prandtl number, which is a function of few physical properties

mentioned above and as such fall into method 3.

Method 3: Certain lengths, areas, volumes, and Heat transfer and fluid flow
parameters.

The heat transfer and fluid flow parameters such as heat transfer rate, mass flow rate,
Reynolds number, and many others discussed in chapters 4, and 5 are functions of lower
level parameters. The uncertainties of these lower level parameters propagate into these
higher level parameters based on how they are related through the functions relating
them. These relationships are gauged through partial differentiation of the relating
function with respect to the lower level parameters. The uncertainties in these higher
level heat transfer and fluid flow parameters are then evaluated using the RSS of the
individual products of partial derivatives, and uncertainties of the lower level parameters

constituting them. For example if Y is dependent on X,, X, ,..., X, and so on... then the

uncertainty of Y is determined using the RSS as follows.

av . Y (ov ’ oY ’
v =Ly Xyl My Cs5
! (aXl le +[8X2 XZ] ' +(aX X"] ( )
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The relative uncertainty is defined as

2 2 2
oY oY oY
—U —U, | +...... —U
U, [ax1 le J{axz sz " +(axn X"J

(£ (X0 X, X,) T

C.2 Uncertainty in dimension measurements

The heat exchanger dimensions and their corresponding uncertainties are obtained in two
different ways. A digital caliper is used to measure the heat exchanger dimensions
smaller than the range of the caliper. Few dimensions that exceed the maximum range of
the caliper measurement are obtained from the manufacturer. The following sections

discuss uncertainties of heat exchanger dimensions.
C.2.1 Uncertainty inherent to digital caliper

The digital caliper introduces a constant bias error into the measurements taken using it.
This bias error composed of two elemental errors. They are errors resulting from the
caliper accuracy, and resolution. The accuracy, resolution, and bias errors are calculated

as follows.

B

Accuracy

=42.54x10" m (C.7)

B =lB =+1.27x10"m (C.8)

Resolution 2 Accuracy

— 2 2 _ -5
BDigiml Caliper ~— \/BACcumcy + BRewlurion - i284><10 m (C9)

The uncertainties in length measurements utilizing the digital caliper involve both bias
and precision error. The precision error is estimated through a set of measurements.

Details of precision error estimation are given in section C.2.3.
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C.2.2 Uncertainty information from heat exchanger manufacturer

The nominal values and corresponding uncertainties for some of the basic lengths are
obtained from the heat exchanger manufacturer. There are two categories for choosing

the manufacturer supplied data over the digital caliper measurement. They are chosen if:

(1) The lengths exceed the range of the digital caliper.
(2) The uncertainty value supplied by the manufacturer is smaller than the bias

error inherent to the digital caliper.

A 95% confidence level is assumed for the uncertainties provided by the manufacturer.
These parameters include the heat exchanger length, and height, slab height, fin thickness

among others.

C.2.3 Uncertainty in heat exchanger dimensions

Measurements involving digital caliper are subjected to both the bias error inherent to
digital caliper and a precision error based on repeated measurements of the same length
parameter in different locations within the heat exchanger. These measurements include
), fin height (H

the width of the slab (W, ), number of fins per slab (N ), fin

Fin,Slab Fin

length (L, ), fin spacing (S,,,), and microchannel diameter ( D,,.). They are recorded
and tabulated in Table C.1. Once these basic lengths are measured and their uncertainties
are determined using method 1, the nominal values and uncertainties other lengths, areas,
and volumes are calculated based on mathematical relationships relating them. Since
these lengths, areas, and volumes are function of lower level length parameters, the
uncertainties for them are calculated from method 3. The following is the uncertainty

analysis for few the key heat exchanger dimensions.
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Table C.1: Heat exchanger measurements using digital caliper

No. Wy, (m) Nuwsw Hpg, (m) Ly, (m) S i (m) Dy, (m)
I 0.0994791 142 0.0157226 0.0997458 0.0022098 0.0010414
2 0.1002411 143 0.0157734 0.099822 0.002032 0.0010287
3 0.0995553 144  0.0157988 0.1004062 0.0020066 0.0009779
4 0.099695 144 0.0157353 0.0996442 0.0020828 0.0010033
5 0.1005332 142 0.0156972 0.0999744 0.0021082 0.0010668
6 0.1004443 144  0.0157734 0.0997077 0.0020701 0.0009779
7 0.099822 144 0.0157861 0.0993775 0.0021336 0.0010033
8 0.0995553 143  0.0157734 0.1002792 0.0022225 0.0010287
9 0.1003046 144 0.0158242 0.1000125 0.002032 0.0010668
10  0.100711 144 0.0158242 0.0998855 0.0020701 0.0009525
11 0.0998855 142 0.0157353 0.1002919 0.0020955 0.0009271
12 0.0997585 143  0.0157607 0.1000125 0.0021971 0.0009271
13 0.0996569 144  0.0158623 0.0997966 0.002032 0.0010287
14 0.0998093 144  0.0159004 0.099949 0.002032 0.0010414
15 0.1000887 144  0.0158623 0.0992378 0.002032 0.0009906
16 0.0997204 144  0.0157861 0.0992505 0.0021336 0.0009652
17 0.0995172 144  0.0157607 0.0994029 0.0020447 0.0010795
18 0.0997585 144  0.0157226 0.0997712 0.0020447 0.0010287
19  0.1002665 144  0.0158115 0.0996823 0.0021082 0.0009779

20 0.0999998 144  0.0158496 0.1004316 0.0021209 0.001016
21 0.0994537 143 0.0158623 0.0995553 0.0022225 0.0009779
22 0.0996061 144 0.0157353 0.0996315 0.0021717 0.0010287
23 0.0997458 144  0.0157353 0.0998474 0.0020955 0.0010287
24 0.0994029 145 0.0157099 0.0997839 0.0020955 0.0010287
25  0.099949 146  0.0157861 0.1006983 0.0020955 0.0009906
26 0.10033 144 0.0158623 0.1005459 0.0021082 0.0009525
27 0.0993013 143  0.0157861 0.1003554 0.0021463 0.0010414
28 0.0993902 143  0.0157988 0.1000252 0.0021717 0.0009906
29  0.0993648 144  0.0158877 0.0999363 0.0021082 0.0009525
30  0.100076 144 0.0157734 0.1002411 0.0021082 0.001016
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Table C.1: Heat exchangers measurements using digital caliper (continued...)

No. W, (m) Nuwsw Hp, (m) Ly, (m) Spin (m) Dy (m)

31 0.0993521 146  0.015748 0.1003935 0.0022225 0.0010414
32 0.1006094 144  0.0158877 0.0997839 0.0022098 0.0009398
33 0.0999871 145  0.0156972 0.1005205 0.0021971 0.0009398
34 0.100711 144 0.0157099 0.0998855 0.0019939 0.0010287
35 0.0999744 143  0.0157099 0.0999236 0.002032 0.0010414
36 0.1001649 143  0.0157353 0.1000379 0.0019812 0.0009525
37 0.0993521 144 0.0157734 0.1005332 0.0021971 0.0010541
38 0.0998855 145 0.0157353 0.0993394 0.0021971 0.0010033
39  0.0998855 144  0.0157988 0.1005586 0.0020701 0.0009525
40 0.1007237 146  0.0157988 0.1006221 0.0020066 0.001016
41  0.0993394 144  0.0157861 0.0993775 0.0020955 0.0010541
42 0.0994918 145 0.0158623 0.1004316 0.0021971 0.0009779
43 0.0997966 143  0.0157099 0.0998855 0.0019939 0.0010795
44  0.1001141 143 0.0157734 0.0997712 0.0020447 0.0010668
45  0.100076 144 0.0158623 0.10033 0.0021463 0.0010795
46 0.1001903 145 0.0157861 0.0996315 0.0020828 0.0010668
47 0.0997204 145 0.0158242 0.0995299 0.0021717 0.0009906
48 0.1006094 143  0.0157226 0.0993648 0.0021971 0.0010414
49 0.1001014 145 0.0157861 0.0996442 0.002159 0.0010414
50 0.1000379 144  0.0157734 0.0995934 0.0021717 0.0010668
51 0.0992505 145 0.0157988 0.100203  0.002032 0.0010541
52 0.0992886 144  0.0156972 0.1007491 0.0021717 0.0009652
53 0.0992632 146  0.0158242 0.1003554 0.0020193 0.0010287
54 0.0993902 146  0.015748 0.0992378 0.0021971 0.0009779
55 0.1003046 144  0.0157861 0.099695 0.0019939 0.0009398
56 0.1006348 144  0.0158496 0.1001649 0.002159 0.0010668
57 0.0997839 145  0.0159004 0.1006094 0.0022225 0.0010033
58 0.1004951 145  0.0158115 0.1004062 0.0020066 0.0009652
59  0.099568 143 0.0158369 0.0997585 0.0021082 0.0010287
60  0.100203 143 0.0157861 0.0996315 0.0019939 0.001016
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For each of these parameters a total of 60 measurements are taken as evident from Table

C.1. Based on these 60 measurements, the student ¢ — distribution for 95% confidence

level is found to be 7, .,

=2. Using this value, and standard deviation of the readings,

the precision error for each of these parameters is computed in the following manner.

B, =Hty4,S, =32 \/WN [+ N =60]
o = FyosaSy, . = +2 Sj/ﬁ [+ N =60]

P, =%ty,,S, =32 f/Hﬁ [+ N =60]

P, =%ty4,S, =2 Sty [+ N =60]

SSF.
5p = Ty osaSs, =12 \/ﬁ [ N = 60]
SD .
PDMC = itN,95%SDMC ~12—= [ N = 60]

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

The overall uncertainty in each of these parameters is therefore found by RSS of their

individual precision and digital caliper bias as follows.

Slab

NFm JSlab

U

LF/n

SF/'n

DMC
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—\/Bngttal Calzper slab
\/Bngztal Calz[’er NFm Slab

2
_\/Bngltal Caliper + PHFm

2
\/ Digital Caltper LFM

— 2 2
- i\/BDigital Caliper + PSF,,,

- _\/Bngltal Calzper DMC
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Once the individual uncertainties of each of these basic heat exchanger parameters are
found and additional uncertainty information from heat exchanger manufacturer is
received, the uncertainty evaluation of other parameters proceeds according to method 3

in the following manner.

The expression for the frontal area of an individual slab is given as follows.

AFrontal,Slab = LHT,SlabHSlab (C22)
Its uncertainty is calculated as follows.
2 2
0A 0A
| v — i ‘Frontal ,Slab L + Frontal ,Slab UH< (C23)
Frontal ,Slab a LHT,Slah HT ,Slab a HSlah Slab
Where,
0A
Frontal ,Slab — HSlah (C_24)
oL
HT ,Slab
aAF tal ,Slab
—Lromal Sb _p (C.25)
aH ‘HT ,Slab

Slab

The expression for the combined frontal area of all heat transferring slabs in the heat

exchanger is given as follows.

AFrontal,Slab,HX = NHT,Slab,HX AFrontal,Slab (C26)
Its uncertainty is calculated as follows.
2 2
0A 0A
—+ Frontal ,Slab,HX Frontal ,Slab,HX
AFrontal Slab HX - oN UN HT Slab HX 0A UAanml Slab (C27)

HT ,Slab,HX Frontal ,Slab
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Where,
0A

Frontal Slab,HX __
aN — “Frontal ,Slab
HT ,Slab,HX

0A

Frontal ,Slab,HX ~__ N
aA — *VHT,Slab,HX

Frontal ,Slab

(C.28)

(C.29)

The expression for the total number of fins in the heat exchanger is given as follows.

Fin,HX = NFinArray,HX NFin,Slab

Its uncertainty is calculated as follows.

2 2
U —+ aNFin,HX + aNFin,HX
NFm JHX - aN NFmArray JHX aN NFM Slab
FinArray ,HX Fin,Slab
Where,
a]VFin,HX _ N
aN = 4V Fin,Slab
FinArray, HX
a]\"Fin,HX _ N
aN — * Y FinArray, HX
Fin,Slab

The expression for the heat transfer surface area of a single fin is given as follows.

A

HT ,Fin

=2H,, (L +tFin)+L N

Fin Fin™ Fin
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Its uncertainty is calculated as follows.

2 2 2 2
U, =t aAHT,Fin u, |+ aAHT,Fin U, |+ aAHT,Fin U + aAHT,Fin U,
o oH Fin " aLFin " ot Fin " N Fin "

(C.35)
Where,
e (L, 1) (€36
agL_: 2H,, +S,, (€37)
af;;, ~2m,, (€38)
83,;_;:,-” L (C.39)

The expression for the combined heat transfer surface area of all fins in the heat

exchanger is given as follows.

Az pinx = N rinix Aur rin (C.40)
Its uncertainty is calculated as follows.
U = i\/ {a’;;— Ui J + (aAaZ—” Uiy ] (C41)
Fin, HX HT , Fin
Where,
—agf\l,TFFHjX = Aur i (C42)
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0A

HT ,Fin,HX — N

0A

HT ,Fin

Fin,HX (C43)

The expression for the frontal area of a single fin is given as follows.

Frontal ,Fin = HFintFin (C44)
Its uncertainty is calculated as follows.
Ay (A ’
UAanm['Fm — i_ S‘Zlml,ﬂn UHFM + Ig;ntal,Fm UtFm (C45)
Fin Fin
Where,
0A .
g}z_llnml,Fm :tFin (C46)
Fin
0A ‘
Ig{;ntal,Fm — HFm (C47)
Fin

The expression for the combined frontal area of all fins in the heat exchanger is given as

follows.

AFronral,Fin,HX = NFin,HX AFronml,Fin (C48)
Its uncertainty is calculated as follows.
2 2
UA — i a14antal,Fin,HX N + a14Frontal,Fin,HX UA (C49)
Frontal ,Fin HX a N Fin HX a A Frontal ,Fin
Fin,HX Frontal ,Fin
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Where,
a14antal,Fin,HX _A
aN — “Frontal ,Fin
Fin, HX
aAanral,Fin,HX _ N
aA - Fin,HX
Frontal ,Fin

(C.50)

(C.51)

The expression for the combined frontal area of all fins and slabs in the heat exchanger,

which blocks air flow is given as follows.

+A

AFrontal,Blocked = AFrontal,Fin,HX

Its uncertainty is calculated as follows.

Frontal ,Slab,HX

U —+ a14F rontal ,Blocked + a14F rontal ,Blocked
Afronal Blocked A Afrontal Fin,HX 0A
Frontal ,Fin,HX Frontal ,Slab,HX
Where,
a14F rontal ,Blocked __ 1
a14Frontal,Fin,HX
0A

Frontal ,Blocked —__ 1

0A

Frontal ,Slab,HX

AFrmxm/,Slab,HX

The expression for the frontal area of the heat exchanger is given as follows.

=Ly TC

H

AF rontal ,HX HX . TC
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Its uncertainty is calculated as follows.

2 2
Afrontal HX =1 aAme‘d'HX Lyx e m UHHx TC (C57)
rontal , aLHX . . aHHX 7 :
Where,
aAF tal ,HX
rontal, - HHX e (C58)
aLHX,TC
aA ronta,
G;I = Ly ¢ (C.59)

HX.TC

The expression for the minimum free flow area available for air flow is given as follows.

A=A A

'Min,a Frontal , HX - Frontal ,Blocked (C60)

Its uncertainty is calculated as follows.

2 2
0A,, 0A,,
Min, Min,
N — i m,a N + m,a UA (C'61)
Min,a aA Frontal HX aA Frontal ,Blocked
Frontal , HX ‘Frontal ,Blocked

Where,
0A,,
—Mina (C.62)
aAF rontal ,HX
0A,,
— e =] (C.63)

0A

Frontal ,Blocked
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The expression for the total area of an individual slab that is not occupied by fins is given

as follows.

A

NF,Slab —

2W,

Slab (

L

HT Slab ~

NFin,Slathin ) (C64)
Its uncertainty is calculated as follows.

2 2
( a14NF,SI¢117 U j + ( a14NF,SI¢117 U ] +
Wtap Lyt siab
aVVSlab al‘HT,Slab

=t (C.65)

ANF stab 3 2 3 2
ANF,Slab ANF,Slab
NSt gy 4| NSl 1y
a N Fin Slab at Fin
Fin,Slab Fin

Where,
Ay o
ﬁ =2 (LHT,Slab -N Fin.Slab® Fin ) (C.66)
0A
=W, (C.67)
aLHT,Slab
aANF Slab
— = 2W, .1, C.68
aNFm’Slab Slab” Fin ( )
Ay o
aN;Slb ==2Wg,N Fin, Slab (C.69)
tFin

The expression for the combined area of the slabs for the entire heat exchanger, which is

not occupied by the fins, is given as follows.

A

NF,Slab,HX — NHT,Slah,HX

ANF,Slah (C70)
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Its uncertainty is calculated as follows.

2 2
—+ aANF,Slab,HX aANF,Slab,HX U (C 71)
Avp siabaix Nur stab.Hx ANF stab :
aNHT,Slah,HX aANF,Slab
Where,

0A
NF Slab,HX —_

IN = Aur st (C.72)
HT ,Slab,HX

0A
NF,Slab,HX _

aA - NHT,Slah,HX (C'73)

'NF ,Slab

The expression for the combined available heat transfer surface area of all fins and slabs

in the heat exchanger is given as follows.

AHT,a,HX = AHT,Fin,HX + ANF,Slah,HX (C74)
Its uncertainty is calculated as follows.
2 2
Ayt a,Hx =t aAHT,a,HX AT Fin HX aAHT’“'HX UANF Slab HX (C75)
- aAHT,Fin,HX o aANF,Slab,HX o
Where,
0A
HT ,a,HX — 1 (C76)
a14HT,Fin,HX
0A
HT ,a,HX — 1 (C77)
a14NF,Slab,HX

Faisal A. Sddiqui. M.A.Sc. Thesis 2011. Dept of Mechanical, Automotive, and Materials Engineering, University of Windsor, Canada 1 43



Appendix — C: Uncertainty Analysis

The expression for the theoretical hydraulic diameter for air side of the heat exchanger is

given as follows.

D =4Ws, (AMin,a I Ayr o nix ) (C.78)

Hyd ,a,HX

Its uncertainty is calculated as follows.

aDHyd,a,HX ’ al)Hyd,a,HX ’ aI)Hyd,a,HX ’
UDH,wi «a,HX =1 aW UWSlah + T UAMin a + 814— UAHT \a,HX (C79)

Slab 'HT ,a,HX

Where,
oD, ..
W = 4(AMin,a / AHT,a,HX ) (C.80)
oD,
Mz“'(“’ﬂah /AHTaHX) (C.81)
a14Min,a o
oD,
— e = AW, (AMin,a /AfIT,a,HX ) (C.82)
aAHT,a,HX

The expression for the minimum free flow to frontal area ratio for the air side is given as

follows.

O-a = AMin,a / AFrontal,HX (C83)
Its uncertainty is calculated as follows.
d K 2
U, =t ( % v, J +(LUAF J (C.84)
’ aAMin,a e a14F rontal ,HX o
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Where,
a0
a —
aA - 1/14antal,HX
Min,a
L =—A / A2
aA - ‘Min,a Frontal ,HX
Frontal HX

(C.85)

(C.86)

The expression for the volume of the heat exchanger actively participating in heat

transfer is given as follows.

Vix =H HX,TCLHX,TCWSlab

Its uncertainty is calculated as follows.

2 2
UVHX = i ( aVHX UHHX Tc j + ( aVHX ULHX Ic j + ( aVHX U
oH HX,TC ' aLHX 7C ' aWSlab

Where,
e
ai:ﬁ =H HX,TCWSlab
% =H v Ly 1c

The expression for the air side heat transfer surface area density is given as follows.

;Ba = AHT,a,HX IV ix
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Its uncertainty is calculated as follows.

2 2
Uﬁ == (iUAHT HX] +(%Uv’”j (C.93)
’ aAHT,a,Hx - avHX
Where,

% =1/V (C.99)

aAHT,a,HX

9B,

aVHX =—Ayranx /sz (C.95)

The expression for the combined length of microchannels participating heat transfer for

the entire heat exchanger is given as follows.

L

HT ,MC,HX

=L

'HT ,Slab

NMC,SlabNHT,Slab,HX (C96)

Its uncertainty is calculated as follows.

2 2 2
ULHT.MC HX = i (ang’MC’HX ULHT Slab J + ( a;;\-l]T’MC,HX UNMC Slab ] + ( ;;HT’MC’HX UNHT Slab,HX J

'HT ,Slab MC,Slab HT ,Slab,HX
(C.97)
Where,
oL
% = NMC,SlabNHT,Slab,HX (C.98)
HT ,Slab
oL
aHT’—MC'HX = LHT,SlabNHT,Slah,HX (C.99)
N MC Slab
oL
aHTM = LHT,Slah NMC,Slab (C.100)
N HT ,Slab,HX
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The expression for the cross-sectional area of an individual microchannel is given as

follows.

As e =(714) Dy (C.101)

Its uncertainty is calculated as follows.

0A ?
U, ==/| =2y, (C.102)
XS .MC aDMC MC
Where,
aIAXS MC
—===(xz/2)D C.103
aDMC ( ) MC ( )

The expression for the combined cross-sectional area of all microchannels within a slab is

given as follows.

Ays ve.sia = Ne siavAxs me (C.104)
Its uncertainty is calculated as follows.
2 2
UAXS MC Slab = i (aAXS’MC’Slab UNMC Slab ] + ( aAXS,MC’Slab UAXS‘ mc ] (C 105)
o ON e siap ' Ay e N
Where,
0A
= A (C.106)
MC,Slab
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IAys e siab
— = N e stab (C.107)
ans,Mc

The expression for the combined cross-sectional area of all microchannels within all heat

transferring slabs is given as follows.

A

XS,HT ,MC ,HX = NHT,Slab,HX AXS,MC,Slah (C108)

Its uncertainty is calculated as follows.

2 2
—+ aIAXS,HT,/WC,HX aAXS,HT,MC,HX U (C 109)
Axs 1T MC.HX - a N Nur stab 1x a A Axs MC Slab :
HT ,Slab,HX XS ,MC,Slab
Where,
0A
XS ,HT ,MC,HX __
aN - AXS,MC,Slab (Cl 10)
HT ,Slab,HX
0A
XS,HT MC,HX __
- NHT,Slab,HX (Cl 1 1)

a14XS,MC,Slab

The expression for the inner heat transfer surface area of an individual microchannel is

given as follows.

AHT,in,MC = ﬂ'DMCLHT,Slah (C.112)
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Its uncertainty is calculated as follows.

2

My, © (A,

UAHT in.MC =1 ( I UDMC J + MULHT Slab (Cl 13)
N Dy aLHT,Slab '

Where,
aA in
;;—’Al’cm =Ly (C.114)
aA in
—aZT' MC — 2D, (C.115)

'HT ,Slab

The expression for the inner heat transfer surface area of all microchannels within a slab

is given as follows.

Aur inmc.si = N siavAur inc (C.116)
Its uncertainty is calculated as follows.
2 2
0A,;, 0A,,, .
AHT,m,MC,SIab = i a";m’MC,Slab NMC,SIab + %W UAHT,M,MC (C'l 17)
MC,Slab HT ,in,MC
Where,
A7 i MC Slab
B - = AHT,in,MC (C.118)
N v sta
aAHT in,MC,Slab
B == Nyc s (C.119)
At inmc
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The expression for the combined inner heat transfer surface area of all microchannels

within all heat transferring slabs is given as follows.

AHT,in,MC,HX = NHT,Slab,HX AHT,in,MC,Slab (C' 120)
Its uncertainty is calculated as follows.
2 2
—+ a141‘17",1'}1,MC,HX aIAHT,I'H,IWC,I‘IX (C 121)
AT in MC HX - a N Nuyr siab Hx a A AT in MC Slab :
HT ,Slab,HX 'HT ,in,MC,Slab
Where,

0A
HT ,in, MC ,HX __

aN - AHT,in,MC,Slab (C 122)

HT ,Slab,HX

aAHT,in,MC,HX —_ N C 123

aA - HT ,Slab,HX ( * )
'HT ,in,MC ,Slab

The expression for the ratio of air side to liquid side heat transfer area is given as follows.

Ty uT a2Lig = A /A

HT ,a,HX HT ,in,MC,HX

Its uncertainty is calculated as follows.

2 2
— 4+ arA,HT,aZLiq arA,HT,aZLiq
YA HT a2 Liq = a A AT a,HX a A AlT in MC HX
HT ,a,HX HT ,in,MC ,HX
Where,

arA HT,Air2Li
s JAir2Liq 1/A

aA - HT ,in,MC,HX
HT ,Air,HX
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or o
aAA,HT,AtrZqu = Ay iy /Aér,m,Mc,Hx (C.127)

HT ,in, MC ,HX

The expression for the liquid side heat transfer surface area density is given as follows.

=A

HT ,in,MC ,HX

I (C.128)

IBA—LiqZV—HX

Its uncertainty is calculated as follows.

2 2
B Py
U :i —Lig2V—-HX U + A-Lig2V-HX U C129

ﬂA—quzv—Hx { a A AlT in MC HX avHX Vi ( )

HT ,in,MC ,HX

Where,
B o
A » (C.130)
a14HT,in,MC,HX
B s
— o _AHT,in,MC,HX /viIX (C.131)
A

The expression for the volume of liquid refrigerant within the heat transferring lengths of
all microchannels in the heat exchanger is given as follows.
v = Axs ur mc.aix Lt siap (C.132)

HT,Liq,HX

Its uncertainty is calculated as follows.

2 2
UVHT_U HX =3 (aiVHT,Liq’HX UAXS.HT.MC.HX ] + (azliﬁﬂ ULHT,SIab ] (C 133)

XS,HT ,MC ,HX 'HT ,Slab
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Where,
avHT Liq,HX
_— HlLighX _ g Stab (C.134)
aAXS,HT,MC,HX e
v,
W = AXS,HT,MC,HX (C.135)
HT ,Slab

The expression for the liquid side heat transfer surface area per unit liquid side heat

transfer volume is given as follows.

IBA—Liqzv—Lz’q = AHT,in,MC,HX /VHT,Liq,HX (C'136)
Its uncertainty is calculated as follows.
2 2
UﬂA—L’ 2V-Li =t (aﬁA_uqzv_uq UAHT’ MC HX] * aﬁA_Liqzv_Liq UVHT Lig HX (C137)
B aAHT,in,MC,HX - avHT,Liq,HX o
Where,
0 , .
le/vm Lo X (C.138)
aIAHT,in,MC,HX o
aﬁ —Li —Li
W =—Aur jn e, ux /VZT,Liq,HX (C.139)
HT Liq,HX

All the uncertainties and nominal values of key heat exchanger dimensions used and

calculated from the above equations have been tabulated in appendix B.
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C.3 Uncertainty in data acquisition components

The following sections illustrate the bias errors inherent to various data acquisition
components. The measurements taken with these DAQ components will involve both
these bias errors and precision errors resulting from all the measurements taken at 1 kHz

over the data collection duration (i.e. 3-4 minutes).
C.3.1 Uncertainty inherent to data acquisition card

The DAQ card contributes a bias error to the measurements of the collected data. A set of
elemental errors comprise this bias error. These errors are contributed by Least
Significant Bit (LSB), Relative accuracy, Differential Non Linearity (DNL), and offset
error. These elemental bias error sources and the uncertainty inherent to the DAQ card

(i.e. its bias error) calculated through RSS are shown as follows.

Peak to Peak Voltage [50—(-50) |x107V

# of Bits 16
2 2

B, =LSB= =1.523x10°V

B, =Relative Accuracy =+1.5LSB =2.289x10°V
B, = Differential Non Linearity =DNLy,,,_,,, =+0.5LSB =7.629x107'V

B, = Offset Error (Pre Gain, Post Calibration) =+1.0x10"°V

“Bpap cou =\|B> + B2+ B2 + B2 =3.025x10°V (C.140)

C.3.2 Uncertainty inherent to signal conditioner
The SCXI signal conditioner is situated upstream of DAQ card in the signal stream. Since

it conditions the signal to appropriate form for DAQ card to interpret, any errors of signal

conditioning will influence the measurement of the collected data. The bias error
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contributed by the signal conditioner includes two elemental errors. These are
Differential Non Linearity, and offset error. The uncertainty inherent to the signal
conditioner (i.e. its bias error) is calculated through RSS, of these elemental errors as

follows.

B, = Differential Non Linearity =0.005%FSR = * 01.(8(85 [50—(-50) |x107°V =510V
B, = Offset Error = +1.5x107°V
<. Byoyy =+ B + B} =5.22x10°°V (C.141)

C.3.3 Uncertainty inherent to terminal block

The terminal block is integrated with the signal conditioner and in absence of adequate
accuracy information; its uncertainty is not calculated individually. It is assumed that the
uncertainties of signal conditioner account for the terminal block as well. Hence on an

individual basis the terminal block is assigned an uncertainty of zero.

C.3.4 Overall uncertainty in data acquisition components

The overall uncertainty in data acquisition component is therefore computed through the

RSS of the individual uncertainties from section C.3.1 to C.3.3. It is presented as follows.

- Boso-suem =\ Biso-cuns + By =6.033x10°V (C.142)

C.4 Uncertainty in glycol temperatures (inlet, outlet, bulk, AT,)

The uncertainties in glycol temperature measurements are contributed by the bias errors

of the temperature measurement sensors (i.e. RTDs), random errors due to scatter of the
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data collected, as well as the DAQ component uncertainties. Detail methodology of this

uncertainty estimation is provided in the following sections.

NIPCI6os2E | [ |
= Q
1a®
Q
= 6 O
RTD Terminal Block Signal Conditioner DAQ Card

Figure C.1: Signal stream for RTD temperature measurement

C.4.1 Uncertainty inherent to liquid side RTDs

The bias error associated with the inlet and outlet Ultra Precise RTDs have been supplied
by their manufacturer Omega Engineering. The bias error as a function of temperature is

provided as follows.

B.,=%

o =%75] 03+0.003[7(C) | (C.143)

C.4.2 Random errors in glycol temperature measurement

The random errors in glycol inlet and outlet temperature measurement are found based on
the scatter of the data. This random error is presented in terms of precision error. The
precision error is found by knowing three information. They are:

(1) Total number of temperature samples collected.

(2) Standard deviation of the temperature samples acquired.

(3) Student t-distribution value based on the total number of samples.

Once these three information are known, the precision error in inlet and outlet glycol

temperature measurement is found through the following equation.
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S
Perp =Ety 950,87 = £1.96—== [ N 21000] (C.144)

=)

C.4.3 Overall uncertainty in glycol temperature measurement

The overall uncertainty in glycol inlet and outlet temperature measurement due to RTD

alone is therefore given by the RSS of bias and precision errors as follows.

1 ’ Sym )
Uprp = 2Bl + P2ocuronen = i\/{E(O.3+ 0.005|T|)} + (1.96 3%” j (C.145)

The sensitivity of the inlet and outlet RTD measurement (Volts/unit temperature) is
calculated by differentiating the RTD voltage-temperature equation, to find the slope at

the inlet and outlet temperatures from the following equations.

RTD Temperature — Resistance Equation:

R, =R,[1+ AT +BT” | (C.146)
Where,
R =100Q
A=3.9080x10""
B=-5.8019%x107
IExcimtion = 100 X 10_6 A
RTD Voltage Output:
VRTD = IExcimtionRT = IExcitationRo ':1 + AT + BTZ:I (C 147)
Therefore, RTD Sensitivity:
aVRTD s N
K= aT = IExcitationRo [A+ 2BT] =3.908%x10™ —1.1604x10°T (C148)
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Using the sensitivity of the RTDs, the uncertainty of the DAQ components can be

translated from voltage to °C as follows.

—6
. = 4603310y =4 SOXI0V

K (C.149)
6.033x10™°

=+
3.908%x107° —1.1604x107*T

Hence the overall uncertainty in the nominal inlet and outlet glycol temperature acquired
is therefore calculated through RSS of the individual uncertainties of RTD and DAQ

component by the following.

. — [rr2 2
. UT,Glycol - i UDAQ + URTD

2
6.033x10°V
N 3.908x107° —1.1604x10® |T| ] (C.150)

1 ’ p—
+[B(0.3+0.005 |T|)} +(1.96ﬂj

N

The bulk temperature is the sum of inlet and outlet nominal temperatures. Since it is a
function of two lower level parameters, the method 3 is used to find the uncertainty in

bulk temperature as follows.

T +T
ghzu (C.151)
2
2 2
oT oT
U, = ( “’UT”} +( ”UTJ (C.152)
or,, of,, *
Where,
oT 1
g.b
——=— C.153
oT,, 2 ( )
oT 1
g.b
&b C.154
of,, 2 ( )
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The difference between the glycol inlet and outlet temperatures (47,) is calculated by
subtracting outlet temperature from the inlet. Since both of these temperatures have the
same bias error contributions from DAQ components and RTD, they are cancelled by
each other when subtracting one from the other. The inlet and outlet temperatures are
however subject to different amounts of precision error resulting from different scatter in
the data collected. As such, the uncertainty in the temperature difference is due to their
individual precision errors only. The uncertainty in temperature difference is therefore

calculated from the RSS of these precision errors as follows.

2
S
T’Rm"j (C.155)

2
S )
cUgonn =5 P P2 +P2 = [ 1.96—LF2L | 41196
AT ,Glycol \/ DAQ RTD,i RTD.o \/( N VN

Table C.2: Summary of glycol temperature uncertainty calculation

NI PCI 6052E
© Q
»O
Q
1) 0 O
RTD Terminal Block Signal Conditioner DAQ Card
By, = B,,=0 B, = DNL B, =LSB
.\ 1 [O.3+ ] P,=0 B, = Offset B, = Relative
710/ 0.005|T(°C)
‘ ‘ Upy =0 Usexr =+ B! +B; B, = DNL
S ‘
Perp = (1.96 LA B, = Offset
JN
2 2
Ugrp = Brrp + e DNL: Differential
Non Linearity

Upso = Bono = Baso-cuna + Biyy =06.033x10°°V

—x [rr2 2
UT,GZycol =% UDAQ + URTD

_ 2
=% PRTD,i

U

AT ,Glycol

+P,

RTD,o
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C.5 Uncertainty in air temperatures (inlet, outlet, bulk, AT,)

The uncertainties in air temperature measurements using thermocouples alone are
contributed by the bias, and random errors from three error groups. These error groups
are (1) Instrument error, (2) Spatial variation error, and (3) Temporal variation error.
Error group (2) applies here due to the fact that a total of 9 and 25 equally spaced
thermocouples are used at the inlet and the exit of the test chamber, hence providing with
a spatial temperature variation. Error group (3) is considered since the measurements are
taken at 1 kHz sampling rate for a period of three to four minutes, which leads to a
temporal temperature variation. In addition to the errors from these source groups, the
DAQ component uncertainties also contribute to the overall uncertainties in temperature
measurement. Detail methodology of this uncertainty estimation is provided in the

following sections.

NIPCI6052E | [ ||
< = Q
»O » 3
O < >
Thermocouple Terminal Block Signal Conditioner DAQ Card

Figure C.2: Signal stream for thermocouple temperature measurement

C.5.1 Uncertainty inherent to air side thermocouples
Only error group (1) contributes to the bias error for the thermocouples. Since the
thermocouples are well calibrated, the effect of uncalibrated thermocouple bias is greatly

reduced from the measurements. Therefore the bias error from error group (1) is assumed

to be 0.1 °C, as follows.

B =0.1C (C.156)
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It is also assumed that all inlet and outlet thermocouples are calibrated to the same extent,

and as such, there is no significant difference in bias error between them. Therefore error

group (2) does not contribute to bias error.
B,=0°C (C.157)

Also, since error group (3) deals with temporal variation, there is no bias error

contribution from this group as well.
B,=0°C (C.158)

The bias index is therefore as follows.

BThermocouple = \] 312 + 322 + B32 (C 159)

C.5.2 Random errors in air temperature measurement

The error groups (2), and (3) account for the spatial and temporal variations in
temperature measurements. These are the contributors of random/precision errors in
temperature measurement using thermocouples. Error group (1) deals with design stage

uncertainty, and therefore does not provide any precision error.

-v
Il
o

(C.160)

The contribution to random error from error group (2), based on N =180,000 ~ 240,000
readings from M =9 inlet, and M =25 outlet thermocouples is given as follows.

p=1 (C.161)

M
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Where,

S, =42 o (C.162)
] d -
<T>—MmZ_;Tm (C.163)
o N
Tw=tS'T (C.164)
Nn:I
v, =M -1 (C.165)

Vv, : Degree of freedom associated with this precision error
T, : Mean of 180,000~240,000 reading from a particular thermocouple
<f> : Mean of individual thermcouple means at the inlet and outlet respectively

S, : Standard Deviation of individual thermcouple means at the inlet/outlet respectively

The contribution to random error from error group (3), based on the total number of

temperature samples collected from 9 inlet and 25 outlet thermocouples is given as

follows.
<ST Pooled >
P =-—" (C.166)
P JmMN
Where,
9 N ,__ . \2
S ;;(T’"" _<T>) (C.167)
T.,Pooled ~— M (N _1) .
v,=M(N-1) (C.168)
v, : Degree of freedom associated with this precision error
St pootea - P0Oled Standard Deviation of based on total thermocouples and samples

Faisal A. Sddiqui. M.A.Sc. Thesis 2011. Dept of Mechanical, Automotive, and Materials Engineering, University of Windsor, Canada 1 6 1



Appendix — C: Uncertainty Analysis

The precision index is therefore as follows.

P P 1P+ P (C.169)

ermocouple —

C.5.3 Overall uncertainty in air temperature measurement

The overall uncertainty in temperature measurement has contribution from both the

thermocouples alone and also the DAQ system uncertainties.

The precision index is composed of elements that have different degree of freedom. The
degree of freedom for the precision index is computed through Welch-Satterthwaite

formula as follows.

V= — (C.170)
2(34 /Vi) sz"‘ 5
=l Vo Vs
and, 1,05 =1.96 [N >1000] (C.171)

Once the degree of freedom for precision index is determined, the uncertainty of
measurement for the thermocouples alone (discounting DAQ system), is found through

RSS of the bias and precision index as follows.

2
_ 2
UThermowuple - \/BThermowuple + (tv,95 PThermocouple ) (C 172)

Using the sensitivity of the T-type thermocouples, the uncertainty of the DAQ

components can be translated from voltage to °C as follows.

KThermocouple = 43 X 1 0_6 ‘%C (C 1 73)
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6.033x10°V _ 6.033x107°V

=16.033x107°V = =
KThermocouple 43 X 10_6 ‘%C

U

=0.14°C (C.174)

DAQ

Hence the overall uncertainty in the nominal inlet and outlet air temperature acquired is
therefore calculated through RSS of the individual uncertainties of the thermocouples and

DAQ component by the following.

U, = Uk +U:

Thermocouple (C * 1 75)
The bulk temperature is the sum of inlet and outlet nominal temperatures. Since it is a
function of two lower level parameters, the method 3 is used to find the uncertainty in

bulk temperature as follows.

T +T
= 5 (C.176)
U, = oL, U 2+ L., U 2 (C.177)
T,, aTal Ty aTag Ty -
Where,
or,, 1
@h — — C.178
T ( )
oT
w1 (C.179)
oT 2

The difference between the air inlet and outlet temperatures (A7,) is calculated by
subtracting the outlet temperature from the inlet. Since both of these temperatures have
the same bias error contributions from DAQ components and thermocouples, they are
cancelled by each other when subtracting one from the other. The inlet and outlet
temperatures are however subject to different amounts of precision error resulting from

different scatter in the data collected. As such, the uncertainty in the temperature
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difference is due to their individual precision errors only. The uncertainty in difference in

air temperature is therefore calculated from the RSS of these precision errors as follows.

Uy = \/PDZAQ

+ P

Thermocouple

(C.180)

Table C.3: Summary of air temperature uncertainty calculation

NI PCI 6052E —
< : :
>0 »
Q
; O

Thermocouple Terminal Block | Signal Conditioner DAQ Card
B, = B, = Instrumental | B, =0 B, = DNL B, =LSB
B, = P, = Spatial P,=0 B, = Offset B, = Relative
B, = P, =Temporal U,,=0 Usey = / B’ + B’ B, = DNL
B=\/B’ +B; +B; B, = Offset

P=\|P’+P} +P}

. (P22 " P32 )2
or
V2 V3

UTherm = Bz +(tv,95P)2

DNL.: Differential

Non Linearity

UDAQ =
Card

— — 2 2
UDAQ - BDAQ - \/BDAQ—Card + BSCXI

=6.033x10°V

R 2
UT,Air - i UDAQ + UTherm

_ [p2 2
UAT,Air - PDAQ + PTherm
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C.6 Uncertainty in glycol pressures

The uncertainties in glycol pressure measurements are contributed by the bias errors of
the pressure measurement sensors (i.e. PTDs), the random errors due to scatter of the data
collected, as well as the DAQ component uncertainties. Detail methodology of this

uncertainty estimation is provided in the following sections.

NIPCI6052E | [ ||
= N
»O
Q
5 O
PTD Terminal Block Signal Conditioner DAQ Card

Figure C.3: Signal stream for PTD pressure measurement

C.6.1 Uncertainty inherent to liquid side PTDs

The bias error associated with the inlet and outlet PX series PTDs are supplied by their

manufacturer Omega Engineering.

Based on the available information the bias error for the inlet pressure transducer has four
individual contributors. These are instrument accuracy (taking into account linearity,
hysteresis, and repeatability), zero balance, span setting, and thermal effects. The bias

error for the inlet PTD is therefore computed through RSS and is given as follows.
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2 2 2
BPTD inlet _\/BAccumc» + BO Offset + BSpan Setting + BThermal —Effect

2 2 2 2
=+ (%FSOJ +(iFsoj +(£F50j (004|T|F50j
100 100 100

= J_r\/6.3125><10‘4 FSO* +1.6x107 FSO* 1|’

(C.181)

=+ [F50*(63125x10" +1.6x107 1)

= £F$0,/6.3125x10™ +1.6x107 |7

= +5,6.3125x10 +1.6x107 |1 V

Also based on the available information the bias error for the outlet pressure transducer
has three individual contributors. These are instrument accuracy (takes into account
linearity, hysteresis, and repeatability), zero balance, and span setting. The bias error for

the outlet PTD is given as follows.

=+ 2
BPTD—Outler - BAccuracy + BO Offset BSpan—Serring

2 2
=% %FSO iFSO + £FSO
100 100 100

= +6.3125%107* FSO* (C.182)
=42.5125%x10 FSO
=40.12562V

C.6.2 Random errors in glycol pressure measurement

The random errors in glycol inlet and outlet pressure measurement are found based on the
scatter of the data. This random error is presented in terms of precision error. The
precision error is found by knowing the following 3 information:

(1) Total number of pressure samples collected.

(2) Standard deviation of the pressure samples acquired.

(3) Student t-distribution value based on the total number of samples.
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Once this information is known the precision error in glycol inlet and outlet pressure

measurement is found through the following equations.

S

,PTD—inlet ..
P e =y 05085 = il.96”T [ N =1000] (C.183)
P =+ S ~+1 96—S”’PTD‘O“”“ -* N >1000 C.184
PTD—Outlet — —tN,95% P =" /_N [ = ] ( . )

C.6.3 Overall uncertainty in glycol pressure measurement (inlet, outlet, and

bulk)

The overall uncertainty in glycol inlet and outlet pressure measurement due to PTD alone

is therefore given by the RSS of bias and precision errors as follows.

— 2 2
UPTD—inlet - i\/BPTD—inlet + PPTD—inlet

JN

2
S pro
i\/FSOZ(6.3125><10‘4+1.6><10‘7|T|2)+(1.96Mj (C.185)

S Y
=i\/l.5781><10‘2+4><10‘6|T|2+(1,96Mj v

IN

— 2 2
UPTD—Outlet - i\/BF‘TD—OMIZeI + PPTD—OutleI

2
S
J_r\/6.3125><104‘ FSO* +(1.96Mj (C.186)

IN

2
S
i\/1.5781x10-2+(1,96MJ v

NG
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Hence the overall uncertainty in the nominal inlet and outlet glycol pressure acquired is
therefore calculated through RSS of the individual uncertainties of PTD and DAQ

component by the following.

2
+ UDAQ—System

+,/U?

PTD~—inlet(+)DAQ-System[V] ~ —\/ PTD—inlet

U

FSO*(6.3125%10™ +1.6x107 T |
v (C.187)

JN

=+ S 2
. 2
+[1.96Mj +(6.033x10°°)

2
S ,
= J_r\/l.5781><10‘2 +4x107° |T|2 +(1,96MJ Vv

IN

+U?

DAQ-System

+,/U?

PTD—-Outler(+)DAQ—System[V] —\/ PTD-Outlet

6.3125%107* FSO?

U

=+ S 2 (C.188)
+(1.96MJ +6.033%107°

NG

2
S
i\/1.5787><10‘2 +(1,96Mj %

N

The sensitivity of the inlet and outlet PTD measurement (Pressure/Voltage) is taken from
the slope of pressure-voltage calibration curve provided by the manufacturer is given
below.

K =20.773kPalV (C.189)

PTD—inlet

K =6.895kPa/V (C.190)

PTD—Outlet
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Using the sensitivity of the PTDs, the combined uncertainty of inlet side with DAQ

components and outlet side with DAQ components can be translated from voltage to kPa

as follows.

=+
UPTD—inlet(+)DAQ—System[kPa] —KPTD—inletUPTD—inlet+DAQ—Sysrem[V]

FS0* (63125107 +1.6x107 T’

=120.773 S
+ [1 96 p,PTD—inlet

JN
1.5781x107 +4x10° |T|*

=+20.773 s ¥ kPa
+(196 p,PTD—mletJ

JN

2 , kPa
j +(6.033x107°)

U =Ko outeaU

PTD—Outlet(+)DAQ—Syxtem[kPa] PTD—Outlet+ DAQ—System[V ]

6.3125%107* FSO*

= +6.895 s :
+(1.96Mj +(6.033x10°)°

JN

kPa

2
S
:i6.895\/1.5781><10‘2+(1,96Mj Pa

JN
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Table C.4: Summary of glycol pressure uncertainty calculation

NiPCi6os2E | [ |
= Q
Z >0 N
O < >
PTD Terminal Block Signal Conditioner DAQ Card
B, = Accuracy B, =0 B, = DNL B, =LSB
B, =0~ Offset P,=0 B, = Offset B, = Relative
B3 = Span UTB =0 USCXI — IBIZ +322 B3 = DNL
B, =Thermal B, = Offset
B’ +B;

B, = + DNL: Differential

B; +B;

S
P, = [1.96%}
Uppp = vV BIZ’TD + PPZTD

Non Linearity

6.033x10°°V

— _ 2 2
UDAQ - BDAQ - \/BDAQ—Card + BSCXI

_ [r2 2 _ [r2 2
Up,inlet,Glycol - iI(PTD—inlet UDAQ + UPTD,i Up,outlet,Glycol - iI(PTD—()utlet UDAQ + UPTD,o

C.7 Uncertainty in air pressures

The uncertainties in air pressure measurements (both differential and dynamic pressures)
derive contributions from the bias errors of the pressure measurement sensors (i.e.
DPTDs), random errors due to scatter of the data collected, as well as the DAQ
component uncertainties. Detail methodology of this uncertainty estimation is provided in

the following sections.
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Figure C.4: Signal stream for DPTD pressure measurement

C.7.1 Uncertainty inherent to air side differential PTDs

The bias error associated with the PX series DPTDs used in differential and dynamic
pressure measurements have been supplied by their manufacturer Omega Engineering.

The same pressure transducer of different range of utilized to measure these pressures.

Based on the available information the bias error for the Pitot tube dynamic pressure
measurement DPTD (range O-1" H,O) has two individual contributors. These are
instrument accuracy (taking into account linearity, hysteresis, and repeatability), and
thermal effects. The bias error for the inlet PTD is therefore computed through RSS and

is given as follows.

2 2
= 2 nE 0.02
BPitot - i\/BAccuracy + BTl1ermal_Eﬁect - i\/(ﬁ FS | + 100 |T| FS

=J_r\/1><1o-“FS2 +4x10°|7[" FS? (C.193)

= +J0.01+4x10° [TV

Since the differential pressure measuring DPTD is almost identical with the exception of
range (range 0-5" H;0), it has the same two individual contributors with different
magnitude of contribution in terms of pressure but not voltage. These contributors are
instrument accuracy (takes into account linearity, hysteresis, and repeatability), and
thermal effect. The bias error for the differential pressure measuring DPTD is given as

follows.
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1) (002 ’
BAP,HX = i\/Bziccumcy + Bﬁhermal?E_ffecr = i\/(m FS] +( 100 |T| FS)

=+ Ix10™ FS? +4x10°* ||’ Fs? (C.194)

= +/0.01+4x10°|T

|2

Vv

C.7.2 Random errors in air pressure measurement

The random errors in air dynamic and differential pressure measurement are found based
on the scatter of the data. This random error is presented in terms of precision error. The
precision error is found by knowing the following 3 information:

(1) Total number of pressure samples collected.

(2) Standard deviation of the pressure samples acquired.

(3) Student t-distribution value based on the total number of samples.

Once this information is known the precision error in air dynamic and differential

pressure measurement is found through the following equations.

S,
P, =%t .S ~+1.962Le [+ N >1000 (C.195)
P N,95%" p IN [ ]
SAp HX
Py, iy =Fy 950 Sp = £1.96—2= [+ N 21000] (C.196)

=

C.7.3 Overall uncertainty in air pressure measurement
The overall uncertainty in air dynamic and differential pressure measurement due to the

respective DPTD alone is therefore given in volts by the RSS of bias and precision errors

as follows.
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_ 1 [n2 2
UPitoz,[V] =% BPitoz +Ph Pitot

.V (C.197)
==,/(0.01+4x10° |T|2)+(1.96ﬁj v
UAp,HX,[V] =% Bip,HX + PAi,HX
PR (C.198)
— 4 (0.01+4><10‘6|T|2)+(1.96 jﬁﬂxj 14

Hence the overall uncertainty in the nominal dynamic and differential air pressure
acquired is therefore calculated through RSS of the individual uncertainties of the

respective DPTD and DAQ component by the following.

_ ’ 2 2
UDynamic—Prexsure - i UPitot + UDAQ

s 2 (C.199)
== (0.01+4><1o-6 |T|2)+(1.96M] +3.6397x107"" v
JN
UDiﬁerential—Premure = i Uip,HX + UIZ)AQ
(C.200)

N

2
- i\/(0.01+4><10—"|T|2)+(1.96SA”JJ +3.6397x107 Vv

The sensitivity of the dynamic and differential DPTD measurement (Pressure/Voltage) is

taken from the slope of pressure-voltage calibration curve and is given below.

K

Pitot

= 24.49% (C.201)

o 125.5% (C.202)

Ap
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Using their respective sensitivities, the combined uncertainties of the dynamic pressure
DPTD with DAQ components, and differential pressure DPTDs with DAQ components

can be translated from voltage to kPa as follows.

=+
Dynamic—Pressure,[ Pa] - Kpimt UDynamic—Presmre,[V 1

- i24.49\/(0.01+4><10‘6 [T]")+3.6397%10™" +(1.96M

JN

2 (C.203)
] Pa

=*K

Differential—Pressure [ Pa] Ap,HX U Differential—Pressure [V ]

J_r125.5\/(0.01+4><1o-6 [Tf")+3.6397%107™" +(1.96 Sapas

JN

2 (C.204)
j Pa

Table C.5: Summary of air pressure uncertainty calculation

NiPCI6os2E | [ |
O O ;
-0 »
Q
5 O
DPTD Terminal Block Signal Conditioner DAQ Card
B, = Accuracy B, =0 B, = DNL B, =LSB
B, =Thermal P,=0 B, = Offset B, = Relative
Upy =0 Uses =\ B +B; B, = DNL
B, = Offset

DNL: Differential

Non Linearity

U o = Boso =/ Biso-cuns + Bisy =6.033x10°°V

_ 2 2 _ 2 2
UDynamic—Presmre - iI{pitot \/UDAQ + UDPTD,Dyn UDiﬂerential—Pressure - iI{AP,HX \/UDAQ + UDPTD,Diﬂ
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C.8 Uncertainty in glycol flow rate

The voltage response of the digital flow meter correlated well with the mass flow rate
obtained through bucket and stop watch method. Therefore the uncertainty resulting from
digital flow meter can be taken to be the uncertainty in glycol flow rate. The uncertainties
in glycol flow rate measurements are contributed by the bias errors of the flow
measurement sensors (i.e. digital flow meter), random errors due to scatter of the data
collected, as well as the DAQ component uncertainties. Detail methodology of this

uncertainty estimation is provided in the following sections.

NiPCI6os2E | [ |
O o R
@) "y
O - g N <>
O
DFM Terminal Block Signal Conditioner DAQ Card

Figure C.5: Signal stream for digital flow meter flow measurement

C.8.1 Uncertainty inherent to liquid side Digital Flow Meter (DFM)

The bias error associated with the DFM is supplied by its manufacturer Proteus

Industries.

Based on the available information the bias error for the DFM has two individual
contributors. These are instrument accuracy (taking into account linearity, hysteresis, and
repeatability), and linearity. The bias error for the DFM is therefore computed through

RSS and is given as follows.

1Y (15 Y
B,,=*/B.  +B.  =+|—FS|+ ——FS
DFM \/ Accuracy Linearity \/(100 ) (IOO ) (C205)

=+/3.25x107* FS? =+0.018FS
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C.8.2 Random errors in glycol volume flow rate measurement

The random errors in glycol flow rate measurement are found based on the repeatability
information provided by the manufacturer as well as the scatter of the data. This random
error is presented in terms of precision error. The precision error is found by knowing the

following 3 information:

(1) Total number of flow rate samples collected.
(2) Standard deviation of the flow rate samples acquired.

(3) Student t-distribution value based on the total number of samples.

Once this information is known the precision error flow rate measurement is found

through the following equations.

Poewy = EBrepeativitiy (C.206)
SV
Poras 2 =Ety g5 Sy— = i1.96ﬁ [* N =21000] (C.207)
1Y S—Y
P =P A P =% (ﬁ FS) +(1.96%J (C.208)

C.8.3 Overall uncertainty in glycol volume flow rate measurement

The overall uncertainty in glycol flow rate measurement due to the DFM alone is

therefore given by the RSS of bias and precision errors as follows.
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UDFM :i\/BéFM +PD2FM
2 2 2 S 2
=+ (LFSJ +(£st +(LFSJ +]1.96 e
100 100 100 JN (C.209)

S
=+4.25%107 FS? -» N >180000 and —22£ = ()
JN

=1+2.062x107° FS

Hence the overall uncertainty in the nominal glycol flow rate acquired in volts is
therefore calculated through RSS of the individual uncertainties of DFM and DAQ

component by the following.

UFZUW Rate[V ] = im (C 210)

= +4.25%107* FS2 +3.6397x10™"

The sensitivity of flow meter measurement (Volume flow rate/Voltage) is calculated

from the following equations.

_ 0V rru

DFM —

LPM
Vv

K =1.792V,,,, —0.3264 ‘ (C.211)

a DFM

Using the sensitivity of the DFM, the combined uncertainty of the DAQ components and

flow meter can be translated from voltage to liters per minute (LPM) as follows.

U =*K

Flow Rate[ LPM ] DFM UFlow RatelV ]

(C.212)

+(1.792V,,,,, —0.3264)/4.25x10™* FS* +3.6397x10™"
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Table C.6: Summary of glycol flow rate uncertainty calculation

NI PCI 6052E
O © R
O
i - Q O
O
DFM Terminal Block Signal Conditioner DAQ Card
B, = Accuracy B, =0 B, = DNL B, =LSB
B, = Linearity P,=0 B, = Offset B, = Relative
Bppy =+ B! +B; Upy =0 Usexi =+ Bl +B; B, = DNL
P, = Repeatability B, = Offset
P =|1 96—SDF i
2 ) \/ﬁ DNL.: Differential Uppp =
Card
Non Linearity
Poru :‘\/P12+P22
BgFM
Upen = +
P[?FM
U o = Bono = Biso-cuns + Bisy =6.033x10°°V

_ 2 2
UFlow Rate[LPM] — iKDFM \/UDAQ + UDFM[V]

C.9 Uncertainty in fluid thermophysical properties

The fluid thermophysical properties are determined at the respective fluid bulk
temperatures. The uncertainties in the fluid basic thermophysical properties involved the
use of method 2. These basic physical properties include fluid density, viscosity, specific
heat, and thermal conductivity. The fluid Prandtl number is a dimensionless number
which is also found in many property tables mainly because its evaluation depends on
fluid and fluid state only. It is therefore deemed appropriate to include it in this section.
Since the Prandtl number is function of other fluid properties its uncertainty is

determined through method 3.
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C.9.1 Uncertainty in glycol density

The uncertainty in glycol density is estimated through the following equation.

1
Upg :EH:pg @’Tb,g,male_[pg @n,g,mm} (C213)
C.9.2 Uncertainty in glycol viscosity
The uncertainty in glycol viscosity is estimated through the following equation.
1
U, :5‘[% @7, , . -4 @T,,,.] (C.214)

C.9.3 Uncertainty in glycol specific heat

The uncertainty in glycol specific heat is estimated through the following equation.

__‘[m oo | =€ @ T, | (C.215)

C.9.4 Uncertainty in glycol thermal conductivity

The uncertainty in glycol thermal conductivity is estimated through the following

equation.

(C.216)

- ‘k @t,,,. |-k @T,,,.]
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C.9.5 Uncertainty in glycol Prandtl number

The expression for the glycol Prandtl number is given as follows.

K,
Pr, == n

4

Its uncertainty is calculated as follows.

Where,
daPr, ¢,,
ou, B k,
dPr, M
dc,, k,
dPr, A
ok, K

C.9.6 Uncertainty in air density

The uncertainty in air density is estimated through the following equation.

U, =[lp. @7, ]-[p. 0T, ]
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C.9.7 Uncertainty in air viscosity

The uncertainty in air viscosity is estimated through the following equation.

1
Uya = EH:ﬂa @ T;a,a,max:l - I:Il'la @ T;a,a,min:l (C223)
C.9.8Uncertainty in air specific heat
The uncertainty in air specific heat is estimated through the following equation.
1
Ucpﬂ = EH:cp,a @ Ei,a,max:' - [Cp,a @ T;;,a,min:l (C224)

C.9.9 Uncertainty in air thermal conductivity

The uncertainty in air thermal conductivity is estimated through the following equation.

1
l]kH = EH:ka @ T;a,a,max:l - I:ka @ T;a,a,min:l (C225)
C.9.10 Uncertainty in air Prandtl number
The expression for the air Prandtl number is given as follows.
c
Pr, = 'u“k — (C.226)
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Its uncertainty is calculated as follows.

2 2 2
JPr J0Pr J0Pr
Uy, =4[ U, | +|5=U,_ | +|Z=U
5| e, | o[ 380, ] o e,

p.a

Where,
a Pra _ pa
aﬂd k(t
dPr, _ 4,
acw k,
a Pra _ ﬂacp,a
ok k?

C.10 Uncertainty in mass flow rates

(C.227)

(C.228)

(C.229)

(C.230)

The mass flow rate of both glycol and air are functions of several lower level parameters.

The steps for determining the glycol and air mass flow rate based on method 3 is

documented in this section.

C.10.1 Uncertainty in glycol mass flow rate

The expression for the glycol mass flow rate is given as follows.

g HX = Vg pg
Its uncertainty is calculated as follows.
L] 2 L] 2
U. =+ a’gg"“ i Imgrx ;.
mg HX & 2
P, oV,
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Where,
Oy _ (C.233)
ap,
O _ P, (C.234)
0V,

C.10.2 Uncertainty in air mass flow rate

The uncertainty in air mass flow is determined by first determining the air flow velocity.

The expression for the air flow velocity is given as follows.

f 2A, ,
‘/a — prnamzc (C235)
pa

Its uncertainty is calculated as follows.

2 2
U, =% LU% | {avu ) j (C.236)
! aAp Dynamic e ap a ‘
Where,
v, ! (C.237)

aAp Pitot \/ 2p aAp Dynamic

2A ynamic
Ve _ LN o (C.238)

w2

a

Once the uncertainty in air flow velocity is determined the uncertainty in air mass flow

rate is also determined through method 3.
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The expression for the air mass flow rate is given as follows.
m, = ma,HX = pa‘/aAMin,a

Its uncertainty is calculated as follows.

a Min,a

Where,

C.11 Uncertainty in Reynolds numbers

The Reynolds number of both glycol and air are functions of several

(C.239)

(C.240)

(C.241)

(C.242)

(C.243)

lower level

parameters. The use of method 3 for determining the glycol and air mass flow rate is

documented in the following section.
C.11.1 Uncertainty in glycol Reynolds number

The expression for the glycol Reynolds number is given as follows.

.
m
8 HX

Re, =— %
* 5lmu,D,,.

(C.244)
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Its uncertainty is calculated as follows.

dRe dRe * (9Re :
Uu, ==+ % £ U. + LU + LU (C.245)
Reg Py Dy
a m Mg 1x apg ) aI)MC
8 HX
Where,
oRe
= 1D (C.246)
amg i THE e
dRe, _ My (€247
ap, B 512D, '
oRe m
© s (C.248)

aD,.  Slmu D3

C.11.2 Uncertainty in air Reynolds number
The uncertainty in air Reynolds number is determined by first determining the air mass

velocity (also known as mass flux). The expression for the air mass velocity is given as

follows.

G, =—" (C.249)

2
U, =% | ey J{ 96, UA] (C.250)
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Where,
G, 1
a ma Min,a
oG, _omy
a14Min,a Af/lin,a

(C.251)

(C.252)

Once the uncertainty in air flow mass velocity is determined the uncertainty in air

Reynolds number is also determined through method 3. The expression for the air side

Reynolds number is given as follows.

G,D

a’~ Hyd ,a,HX
Re =—————

= m

Its uncertainty is calculated as follows.

2 2
URe =+ (aR_eaUG j + aR—eaUDH.d B +(_
’ aGa ‘ al)Hyd,a,HX o

Where,

aRea _ DHyd,a,HX
dG H,

a

dRe, G,
oD

Hyd ,a,HX ll'la

dRe, B G, Dy anx

2

ou, H,
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C.12 Uncertainty in heat transfer rates

The following sections discuss the uncertainty analysis of heat transfer rates for both

glycol, and air side, as well as their average heat transfer rate based on method 3. The

determination of the heat transfer rate and associated uncertainty level indicates the

soundness of heat balance and transfer from one fluid to another.

C.12.1 Uncertainty in glycol heat transfer rate

The glycol heat transfer rate is a function of glycol mass flow rate, specific heat and

temperature differential between the inlet and outlet temperatures acquired by the RTDs.

The expression for the glycol heat transfer rate is given as follows.

L] 2 L] 2 L] 2
— an an an
. 0 ‘re OAT
2 amg s Cp,g g
Where,
20
- =c, AT,
amg
20 -
2 =m_ AT
de, &8
an o
OAT =M Co

8
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C.12.2 Uncertainty in air heat transfer rate

The air heat transfer rate is calculated in similar manner as glycol since they are also

composed of parameters similar to the air side. The expression for the air heat transfer

rate is given as follows.

L] L]
Qa = ma Cp,a (T;t,o - T:t,i)

Its uncertainty is calculated as follows.

L] 2 L] 2 L] 2
0 0 0
U. =+ —Q.“ Uu. | + —Q" UCM + Q, UAT“
0, ama m, acp, p ’ BATa
Where,

a L]

&:cp,aAn

om,

99, _ AT,

acp,a

aQ{t —_ * C

aAT a “p,a
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C.12.3 Uncertainty in average heat transfer rate

The average heat transfer rate is the function of the two aforementioned heat transfer

rates. The expression for the average heat transfer rate is given as follows.

. +
0= 9 5 Q. (C.268)
Its uncertainty is calculated as follows.
L] 2 L] 2
U.=% a—QU. + aQU. (C.269)
Q a Qg Qg a Qa Qg
Where,
J Q = % (C.270)
20,
o Q = 1 (C.271)
20, °

C.13 Uncertainty in log mean temperature difference

The log mean temperature difference is logarithmic average of temperature difference
between the hot and cold fluids at both ends of the heat exchanger. It is a function of two

temperature differentials; namely AT,, and AT,. Therefore uncertainty calculations for

log mean temperature difference requires first calculating the uncertainty in these

temperature differentials.
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The expression for A7, is given as follows.

AT, =T,, T, (C.272)

a,o

Its uncertainty is calculated as follows.

2 2
OAT, 0AT,
U, =% LU + LU C.273
(afg,i J {BTM J o
Where,
OAT,
= C.274
o7, ( )
oAT, =-1 (C.275)
aY:l,D
The expression for AT, is given as follows.
AT, =T,,-T, (C.276)
Its uncertainty is calculated as follows.
oar, ) (oar,, Y
U,, == 2U + 2U C.277
(aTw ] ( o, ] o
Where,
0AT,
=1 C.278
aT,, ( )
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AT,
or

a,li

(C.279)

Once the uncertainties and nominal values of A7, and AT, are known, the expression

for the log mean temperature difference is given as follows.

AT — AT.
AT, = ITZ (C.280)
In 4
AT,
Its uncertainty is calculated as follows.
U —+\/(3ATLM U J2+(8ATLM U jz (C.281)
ATy, aA’Tl AT, aAT2 AT,
Where,
oar, " (iﬂ _(l_i?j
LM 2 ! (C.282)

0AT| { At [
ln( ! j
AT,

_IH(MJ_(M_IJ
AT, AT.
AT, _ 2 2 (C.283)

AT, [ ( AT HZ
In 1
AT,
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C.14 Uncertainty in thermal resistances

This section illustrates the uncertainties overall thermal resistances as well as the glycol

side thermal resistance, and wall (conductive aluminum, which interfaces between glycol

and air) by using method 3. Uncertainties in these thermal resistances will indicate the

soundness of air side Nusselt number and heat transfer coefficient evaluated.

C.14.1 Uncertainty in total thermal resistance

The uncertainty in total thermal resistance is a function of crossflow correction factor, log

mean temperature difference and average heat transfer rate. The expression for the total

thermal resistance is given as follows.

1 FAT,,
otal - 1. e
UA 0O
Its uncertainty is calculated as follows.
2
2
oR 2 oR 3R

URmm[ =% (#WUFJ +(8A+;’WUATLMJ 4| ey
LM ) Q 0

Where,

aRtotal AT'LM
oF Q
aIetotal E
0T,
aRIotal F A’TLM
20§
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C.14.2 Uncertainty in wall thermal resistance

The wall thermal resistance is function of microchannel internal diameter, external
diameter (taken as the slab height), combined length of all microchannels and thermal
conductivity of aluminum. The uncertainty in thermal conductivity of aluminum is taken

as zero. The expression for the wall thermal resistance is given as follows.

111 DO,MC

i,MC

R, ., = ’ (C.289)

wall —
27Z'kAluminium LHT,MC,HX

Its uncertainty is calculated as follows.

2 2 2
oR oR oR
URM” =+ ( wall UD,, e ] + (M UD,~ e ] + (# ULHT e ] (C290)
oD, 0,MC 7 oD, i, MC 7 aLHT,MC,HX o

Where,
R
R _ ! (C.291)
aD{),MC Do,MC (Zﬂ-kAluminiumLHT,MC,HX )
OR 1
wall  _ _ (C292)
al)i,MC Di,MC (Zﬂ'kAluminiumLHT,MC,HX )
ln ( DU,MC J
oR D,
wall — _ ’MZC (C293)
aIJHT,MC,HX 27[kAluminiumLHT,MC,HX
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C.14.3 Uncertainty in glycol side thermal resistance

The glycol side thermal resistance is evaluated based on glycol heat transfer coefficient
as well as combined inner surface area of all microchannels in the heat exchanger. The

expression for the glycol thermal resistance is given as follows.

1
R=— C.294
« =7 ( )

¢“ “HT ,in,MC ,HX

Its uncertainty is calculated as follows.

2 2
U, =+ aRg U +(LU ] (C.295)
R, — — h, AHT in MC HX :
! ahg ) aAHT,in,MC,HX o
Where,
oR
g —— 3 ! (C.296)
ahg hg AHT,in,MC,HX
oR
g =— 3 ! (C.297)
aAHT,in,MC,HX hg AHT,in,MC,HX

C.15 Uncertainty in fluid Nusselt number & heat transfer coefficient

In this present study the evaluation of glycol Nusselt number is followed by glycol heat
transfer coefficient. In contrast, the air side Nusselt number evaluation follows the air
heat transfer coefficient. All four of these parameters are function of other parameters,

and their uncertainty analysis based on method 3 is shown in the following sections.
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C.15.1 Uncertainty in glycol Nusselt number
Glycol Nusselt is a function of glycol Péclet number, microchannel diameter and the
combined heat transfer length of all the microchannels in the heat exchanger. As such,

their uncertainties are first evaluated prior to evaluating uncertainty in Nusselt number.

The expression for the glycol Péclet number is given as follows.

Pe, =Re, Pr, (C.298)

Its uncertainty is calculated as follows.

2 2
oPe dPe
U, =t CUp |+ =20, (C.299)
s JRe . 0 Pr, %
Where,
aPeg
R = Prg (C.300)
e
8
oPe i
= Reg (C.301)
0 Pr,

The uncertainties in microchannel diameter as well as the combined length of all
microchannels in the heat exchanger have been found earlier, and are also documented in
appendix B. The uncertainty in glycol Nusselt number can proceed based on this

information. The expression for the glycol side Nusselt number is given as follows.

Pe D,

Nu, = i/3.663 +1.61° (C.302)

HT ,MC,HX
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Its uncertainty is calculated as follows.

o aNugU 2+ aNug
Mo I oPe . oD,
Where,
N, 3
s _LOU ) o6 4161
aPeg 3
oN. 3[
e 10U 5 660 11617
a,. 3
N, 3
Y _ 161 3.663+1.61{
alJHT,MC,HX 3

D

g MC

-2
Pe J 7 ( Pe, D, ]
LHT,MC,HX L?-IT,MC,HX

2 2
U oNu, U
Dy + a L Lyr mc mx
'HT ,MC,HX
%
Pe gDMC D,
LHT,MC,HX LHT,MC,HX
%
Pe, D, Pe,
LHT,MC,HX LHT,MC,HX

C.15.2 Uncertainty in glycol heat transfer coefficient

(C.303)

(C.304)

(C.305)

(C.306)

The glycol heat transfer coefficient is a function of glycol Nusselt number, thermal

conductivity, and microchannel hydraulic diameter. The expression for the glycol heat

transfer coefficient is given as follows.
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Where,
oh k
L (C.309)
ONu, D,
oh, _ Nu, (C.310)
ok Dy
oh Nu k
g Tehe
e (C311)
MC MC

C.15.3 Uncertainty in air heat transfer coefficient

The uncertainty evaluation for air side heat transfer coefficient requires first evaluating
total, wall, and glycol side thermal resistances, as well as the fin efficiency and total air
side heat transfer surface area. Their uncertainties have been evaluated previously with

the exception of fin efficiency.

The expression for the fin efficiency is given as follows.

_ tanh(ML) (C312)
nFin - ML .
Its uncertainty is calculated as follows.
2 2
U, = i\/(—aa?‘;” UMJ +(—ag£f" ULj (C313)
Where,
_ MLsech® (ML) —tanh (ML

aa’;;n _ MLsech'( MZ)L (ML) (C314)
97y, _ MLsech® (ML) —tanh (ML) (©315)

oL M
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The uncertainty in air side heat transfer coefficient can proceed based on this information.

The expression for the air side heat transfer coefficient is given as follows.

h— ! (C316)
naAHT,a,HX Rtotal - Rwall - R

8

Its uncertainty is calculated as follows.

=+ o (C.317)

2 2 2
oh oh oh
+ —U + U + 57U
( a Rmm[ Riotal j ( a Rwall Ryan J [ aRg R, ]

Where,
oh, _ : 1 (C.318)
aﬂa 774 AHT,a,HX ':Rtotal - RW“” - Rg}
o, : 1 (C319)
aAHT,a,HX naAHT,a,HX I:Rtotal —R,— Rg }
oh, _ 0. Aur o nx (C.320)
= 2 :
aRtotal |:77¢1AHT,11,HX ':R[oml - Rwall - Rg }:|
oh, M. At amx (C.321)
= 2 :
dR,. [77,1 At anx [Rmmz —R,.,—R, ]:|
aha _ naAHT,a,HX (C.322)

aRg [naAHT,a,HX [mel ~Ruu — R, ﬂz
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C.15.4 Uncertainty in air Nusselt number

The air side Nusselt number is a function of air side heat transfer coefficient, thermal
conductivity, and hydraulic diameter. The expression for the air-side Nusselt number is

given as follows.

h D
Nua —__a I-]I:d,a,HX (C323)

a

Its uncertainty is calculated as follows.

2 2 2
U, =* (ag;l”" Uh“j +(_a DaN“a UDJ {ag{ e U,(J (C.324)

a Hyd ,a,HX

Where,
D,
aNua _ PHyd.amx (C.325)
o, k,
h
_Nu,__h, (€326)
al)Hyd,a,HX kél

@ =_ (C.327)

C.16 Uncertainty in effectiveness

Effectiveness for present study is defined by a function of average heat transfer rate,
glycol mass flow rate, and specific heat, as well as the temperature difference between
the temperatures of both fluids at their respective inlets. The temperature differential here
is subject to total uncertainties associated with acquiring these temperatures since

different sensors are utilized. The expression for the effectiveness is given as follows.
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P _— (C.328)
O, [mcp] AT, . [mcp] (Tg,i—TM.)
min 4

Its uncertainty is calculated as follows.

2 2 )
LN L +(aa€ U, ]
Q mg p.8
U =+ [\9€ orm, e (C.329)
2 2
LI N L
aTg,i * aTa,i
Where,
o1 (C.330)
00 mgcp,g(Tgl_Tat)
0€ Q
A (C.331)
amg m, €, (Tg,i _Tavi)
aag S (C.332)
Crs m, Clzng (Tg,i _Ta,i)
aaTg @ 2 (C.333)
8 m,Cp, ( g _Ta,i)
aaTg 0 2 (C.334)
“im,c, . (Tg,i -1, l)
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C.17 Uncertainty in Number of Transfer Unit (NTU)

The expression for the NTU is given as follows.

NTU _vA
Cc

min

Its uncertainty is calculated as follows.

Where,
OINTU 1
oUA C_.
INTU _ UA
aC‘min Crfun

C.18 Uncertainty in air side heat convection Colburn factor

(C.335)

(C.336)

(C.337)

(C.338)

The evaluation of uncertainty associated with Colburn factor first requires computation of

uncertainties in Stanton number. The Stanton number is a function of air side heat

transfer coefficient, mass velocity, and specific heat. The expression for the Stanton

number is given as follows.
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Its uncertainty is calculated as follows.

oSt ’ oSt ’ oSt ’
U, == U + U + U C.340
St, ( aha h, J ( aGa G, J (acp’a Cpa ] ( )
Where,
oSt 1
4 = C.341
oh, G.C,. ( )
oL, ___h, (C.342)
aG, G,c,,
ot, ___h. (C.343)
acpa G.c,.

Once the uncertainty in Stanton number is evaluated, the analysis of uncertainty in
Colburn factor for convective heat transfer can proceed. The expression for the Colburn

factor is given as follows.

; %
Jo =St Pr}? (C.344)
Its uncertainty is calculated as follows.
2 2
9 9
U. =% U + U C.345
Ja \/( aSta St, j ( a Pra Pr, j ( )
Where,
I _ps (C.346)
oSt
e 2 phh (C.347)
oPr, 3
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C.19 Uncertainty in air side friction factor

The evaluation of uncertainty associated with air side friction factor first requires
computation of uncertainties in air density at the inlet and outlet. Uncertainties for all

other required parameters for this analysis have been computed previously.

The uncertainty for air density at inlet is estimated as per method 2.

1
Upa_,’ = EH:IOa,i @ T;z,i,max:l - l:pa,i @ T:z,i,min] (C.348)
The uncertainty for air density at outlet is also estimated as per method 2.
1
Upg,o = 5‘[pa,o @ E,(},max:l - I:pa,o @ 7;,0,17”‘”} (C.349)

Once this information is known, the analysis of uncertainty in air side friction factor can

be evaluated. The expression for the air side friction factor is given as follows.

AMin,a ] [ Ioa,b
AHT,a,HX pa,i

Its uncertainty is calculated as follows.

2 2 2
F U, |+ _¥ U, A2y
a A Min.a a A HT .a HX a pm,a Pa b

20D, yx P, —<1+O'2>

fa: Gaz

Pai (C.350)
pa,o

‘Min,a HT .a,HX
of ’ of ? of 2
Up =t |+ m—U, |+ 53U, |+ U €351
: (apin,a P J (apom,a Pao J (aApa,HX Apa px ] ( )

2 2
K of
+(8G UGHJ +(80‘ Uj

a a
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Where,

2A . .

afa — 1 pa,b pa,HzX a,i _(1+O_j) ﬁ_l (C.352)
a14Min,a AHT,a,HX pa,i Ga pa,o

afa - _ AMin,a pa,b 2Apa,HX a,i _(1+O.2) &_1 (C353)

aAHT,a,HX AI%IT,a,HX pa,i G; ‘ pa,o

A, 2A . .

Vo | Auna || L)) 2BP0mcPai (14 52| Pas_y (C.354)
apa,h AHT,a,HX pa,i Ga pa,o

{_pa,hJ 2Apa,HXpa,i _(1+O_2){&_1j
afa :( AMin,a J pj’i Gaz ' pa,o

P, \A 2A
| Pap Paz,Hx —(1+0'5) 1
pa,i Ga Ioa,o

HT ,a,HX
A,
Ao :(1+of)[ Minc J{p ‘;”] (C.356)

(C.355)

8,06,,,, uranx )\ Pao
A, 20 .
afa - Min,a ptl,b |: p‘;”:| (C.357)
aApa,HX AHT,a,HX pa,i Ga
A, 4A ;
afa — Min,a pﬂ.b _ pa,h;X 4.t (C358)
dG, Apranx )\ Pai G,
A, ;
o - g, | L || Pos || Pes_y (€.359)
dJo, At anx )\ Pai )\ Pao
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Based on the equations presented in this appendix the nominal values and the
uncertainties all the parameters are calculated. The uncertainties for few of the important
fluid flow and heat transfer parameters are expressed as a percentage of their nominal
values in Table C.7. In order to avoid partiality towards any of the particular operating

conditions in this study, a trial run is selected for illustration and analysis of results. The

trial operating condition is set at 25°C, and 3—-11m/s . From the results of uncertainty
analysis at this temperature, it is evident that for a given temperature, the uncertainty
relative to nominal value in key fluid flow and heat transfer parameter on the air side
increases with a decrease in air velocity. This is to be expected as air and heat flow
uniformity, and distribution is enhanced at higher flow rates. The highest uncertainties
are found for air side Nusselt number and Colburn j factor. For the glycol side
parameters, the change in relative uncertainty is absent. Once again, this is to be expected

since the glycol side operating condition is not altered along with the air side.
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Table C.7: Uncertainties of key parameters as percentages of nominal value

Operating 25°C 25°C 25°C 25°C 25°C
Conditions 3ml/s Sm/s Tmls Om/s 11m/s
Key Parameters Uncertainties as percentage of nominal value
AP pynamic 4.86 4.59 4.30 4.01 3.83
Ap, ux 3.14 3.01 2.84 2.63 2.54
T, 0.29 0.32 0.37 0.44 0.52
T,, 0.20 0.21 0.21 0.22 0.23
n;g 0.73 0.73 0.73 0.73 0.73
v, 243 2.30 2.15 2.01 1.91
. 2.22 2.14 2.04 1.95 1.90
Re, 3.56 3.57 3.56 3.56 3.57
Re, 3.15 3.10 3.03 297 2.93
0, 0.73 0.73 0.73 0.73 0.73
é 2.57 2.40 2.26 2.14 2.06
é 1.33 1.28 1.20 1.15 1.11
AT, 5.54 4.55 3.84 3.31 2.90
Nu, 0.00 0.00 0.00 0.00 0.00
h, 3.48 3.48 3.48 3.48 3.48
Mein 0.99 0.97 0.96 0.95 0.94
n, 0.89 0.87 0.86 0.85 0.84
h, 791 6.63 5.72 5.07 4.55
Nu, 8.07 6.82 5.95 5.32 4.83
£ 1.73 1.63 1.54 1.47 1.41
NTU 5.84 4.89 4.22 3.72 3.35
Ja 8.36 7.13 6.27 5.65 5.17
I 6.48 6.31 6.10 5.89 5.78
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75

APbynamic [Pa]

-— O APDynamic=3.30536 + 24.4854-V

1

1.5

2

Aprnamic VOItage [V]

Figure D.1: Calibration curve for PX277-01D5V (DPTD)

Based on the data for PX277-01D5V used in measurement of dynamic pressure with

Pitot static tube:

Calibration Equation: Ap,, ... =24.49V +3.31

Sensitivity: K = 24.49%
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L — O APHx2=10.3537 + 125.497-V

APanx [Pa]

270
50....|....|....|....|....|....|....|....'
0.35 0.85 1.35 1.85 2.35 2.85 3.35 3.85 4.35

DAQ Aphx,a Voltage [volt]
Figure D.2: Calibration curve for PX277-05D5V (DPTD)

Based on the data for PX277-05D5V used for measurement of air side pressure drop
across heat exchanger:

Calibration Equation: Ap, ,, =125.5V +10.35

Sensitivity: K = 125.5%
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Appendix — E: Permission from FlowKinetics, Re: Fig 3.12

The following is the email transcript for permission to include the FlowKinetics Flow and

Pressure Acquisition System as Figure 3.12 in the thesis.

INBOX Message 1/6/2011 7:54 PM
From: FlowKinetics LLC <inform@flowkinetics.com>
Subject: Re: Seeking permission to include copyrighted material
Date: Thu, 06 Jan 2011 15:06:49 -0600

To: Faisal Siddiqui <siddiqy@uwindsor.ca>

Faisal,

You can include the material as requested.
Best regards,

Sam Galls, Ph.D.

Vice President

FlowKinetics TLLC

email: inform@flowkinetics.com
Web: www.flowkinetics.com

On 1/5/2011 10:18 PM, Faisal Siddiqui wrote:
Dear Sir/Madam
This is Faisal SIDDIQUI, a graduate student from University of Windsor,
Canada. I am contacting you to seek permission to include the following
material within the electronic version of my Masters thesis to better

illustrate my experimental setup:

*Fig. Al FKT series components*, (from the manual file for FKT 3DPI1A
named: FKTSeriesManual.pdf)

If you are not the rights holder for this material I would be grateful
if you would advise me who Lo contact.

The thesis will be made available within the University of Windsor’s
online Thesis and Dissertations repository

(http://web4.uwindsor.ca/units/leddy/leddy.nsf/ThesesAndDissertations!OpenForm) .

The repository 1is non-commercial and openly available to University of
Windsor student/staff community.

Thank you very much.
Sincerely
Faisal SIDDIQUI

MASc. Mechanical Engineering Candidate
University of Windsor

https://webmaill.uwindsor.ca/Session/905455-hwevOKF6ruzZNgFJilEJe...
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