
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

1996 

Semi-join strategies for total cost minimization in distributed Semi-join strategies for total cost minimization in distributed 

query processing. query processing. 

William Todd Bealor 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Bealor, William Todd, "Semi-join strategies for total cost minimization in distributed query processing." 
(1996). Electronic Theses and Dissertations. 3426. 
https://scholar.uwindsor.ca/etd/3426 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3426&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/3426?utm_source=scholar.uwindsor.ca%2Fetd%2F3426&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


1 * 1 National Library
of Canada

Acquisitions and 
Bibliographic Services Branch

395 wetimgion Street 
Ottawa. Ornano 
K1A0N4

Biblioth6que nationale
du Canada

Direction des acquisitions et 
des services bibliographiques

395, rue Wetlmgion 
Ottawa (Ontario)
K1A0N4

*  IW» V ix * r

NOTICE AVIS

The quality of this microform is 
heavily dependent upon the 
quality of the original thesis 
submitted for microfilming. 
Every effort has been made to 
ensure the highest quality of 
reproduction possible.

If pages are missing, contact the 
university which granted the 
degree.

Some pages may have indistinct 
print especially if the original 
pages were typed with a poor 
typewriter ribbon or if the 
university sent us an inferior 
photocopy.

Reproduction in full or in part of 
this microform is governed by 
the Canadian Copyright Act, 
R.S.C. 1970, c. C-30, and 
subsequent amendments.

La qualite de cette microforme 
depend grandement de la qualite 
de la these soumise au 
microfilmage. Nous avons tout 
fait pour assurer une qualite 
superieure de reproduction.

S’il manque des pages, veuillez 
communiquer avec I’universite 
qui a confere le grade.

La qualite d’impression de 
certaines pages peut laisser a 
desirer, surtout si les pages 
originates ont ete
dactylographies a I’aide d’un 
ruban use ou si I’universite nous 
a fait parvenir une photocopie de 
qualite inferieure.

La reproduction, meme partieile, 
de cette microforme est soumise 
a la Loi canadienne sur le droit 
d’auteur, SRC 1970, c. C-30, et 
ses amendements subsequents.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Semi-join Strategies for 
Total Cost Minimization in 

Distributed Query Processing

by 

William T. Bealor

A Thesis
Submitted to the Faculty of Graduate Studies and Research 

through the School of Computer Science in Partial 
Fulfillment of the Requirements for the 

Degree of Master of Science at the 
University of Windsor

Windsor, Ontario, Canada 
1995

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 * 1 National Library
ot Canada

Acquisitions and 
Bibliographic Services Branch

395 Weltmgion Street 
Ottawa. Ontario 
K1A0N4

Biblioth&que nationale
du Canada

Direction des acquisitions et 
des services bibliographiques

395. rue Wellington 
Ottawa (Ontario)
K1A0N4

The author has granted an 
irrevocable non-exclusive licence 
allowing the National Library of 
Canada to reproduce, loan, 
distribute or sell copies of 
his/her thesis by any means and 
in any form or format, making 
this thesis available to interested 
persons.

L’auteur a accorde une licence 
irrevocable et non exclusive 
permettant a fa Bibliotheque 
nationale du Canada de 
reproduire, prefer, distribuer ou 
vendre des copies de sa these 
de quelque maniere et sous 
quelque forme que ce soit pour 
mettre des exemplaires de cette 
these a la disposition des 
personnes interessees.

The author retains ownership of 
the copyright in his/her thesis. 
Neither the thesis nor substantial 
extracts from it may be printed or 
otherwise reproduced without 
his/her permission.

L’auteur conserve la propriete du 
droit d’auteur qui protege sa 
these. Ni la these ni des extraits 
substantiels de celle-ci ne 
doivent etre imprimes ou
autrement reproduits sans son 
autorisation.

ISBN 0-612-10975-5

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Nam a S, [ [  ,<■,,,. t . / { t> {, /£ .

Dissertation Abstract* International and Masters Abstracts International are arranged by broad, genera! subject categories. 
Please select the one subject which most nearly describes the content o f your dissertation o r thesis. Enter the corresponding 
four-d ig it code in  the spaces provided.

SUBJECT TERM

c - IE UMI
SUBJECT CODE

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS
A id iM M __________________ 0729
A rt M e a ty___________________ 0377
Grueno _____________________ 0900
Dm * _______________________0378
Km  A rts  ____ 0357
In io flno lion  Soane*  ___ _— 0723
Joum otsm ___________________ 0391
Library V ia n te  . . . . ___ _ — .0399
Mm *  Comrnunicmiona — ---------.0 7 0 8
M usic_______________________ 0413
Speech C otnm unic o lio n ____ — 04S9
j j i M r ______________________ 0465

EDUCATION
G enera l_____________________ 0515

..0514  

..0516  

..0517  

..0273 

..0282 

..0688

A A ^ o n d j onbtw ing

B itngual a n3  M ufticuburo l. 
Business .
CflBt iw nily  C ilb g s  _ __ _ _  
O s n ^ M ^ a ^ ln ln d io n .

Bem entary _

Guidance a nd  GoureeSng ___.

Indw

‘? y ,og ,..andM̂ B̂nB̂ v̂̂ Bê M̂ ee i
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Abstract

A new static heuristic, called Algorithm W is presented as an efficient 

method for reducing the total volume of data transmitted over the network during 

distributed query processing. It uses the concepts of profit, marginal profit and 

gain to construct small, highly selective reducers using cost-effective semi-join 

sequences. In most cases the heuristic has a complexity of 0 {7wu). A limitation 

of static strategies, such as Algorithm W is that they rely on accurate estimates 

to perform properly. The presence of estimation errors may lead to sub-optimal 

solutions. A  solution to this problem is the use of a dynamic strategy (Boderick, 

1985; Boderick, Pyra et al., 1989) in which the schedule of operations is monitored 

and corrected if the performance deteriorates. A purely dynamic heuristic, 

Algorithm DW  is proposed which uses up to date information eliminating the 

need for schedule monitoring. It is shown that the overheads incurred by using 

exact information are minimal with respect to the overall total cost. A benchmark 

database is proposed upon which the empirical performance of the heuristics can 

be measured. Algorithm W is evaluated against the AHY General (total time) 

algorithm (Apers, Hevner, Yao, 1983) to investigate whether improvements are 

possible. The performance of the proposed heuristics are evaluated to test the 

hypothesis that a dynamic strategy using better estimates will produce improved 

schedules.

iv
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Chapter 1 
Introduction

With the proliferation and continued advancement of telecommunication tech

nology, it is not surprising to see the development of decentralized information 

systems. Distributed Database Management Systems have certain advantages over 

traditional Centralized Database Management Systems in that they achieve the ad

vantages of performance, reliability, availability and modularity that are inherent 

in distributed systems [CP84, OV91, Teo92], By definition, a distributed database 

is a collection of multiple, logically interrelated databases distributed over a com

puter network. Each site within the network consists of an autonomous database 

capable of processing local applications as well as distributed applications which 

require access to data from several different sites via a communication network 

(CP84, OV91].

The use of a relational query enables users to specify a description of the 

required data without having to know the physical location of the data. The 

retrieval of data from various sites in a distributed database is referred to as 

distributed query processing. It is evident that the performance of a Distributed

University o f  Windsor. 1995 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Introduction

Database Management System is critically dependant upon the capability of the 

query optimizer to derive efficient query processing strategies [ES80]. In addition 

to increasing the response time for a query, the use of an ineffective processing 

strategy may cause performance deterioration over the entire distributed database 

[OS8 8 ].

The most common approach to distributed query optimization has been the 

use of a static three phased approach that utilizes either join or semi-join operators 

as the primary reducing operator. O f those algorithms employing semi-joins as 

the primary reducing operator, the algorithms developed by Apcrs, Hevner and 

Yao [AHY83] are regarded as the best heuristics to date. Other less common 

methods are based on the use of improvement algorithms [CL84], the pipelining of 

the semi-join process [RK91], adaptive selection of execution strategies [TI90] as 

well as the use of one-shot fixed precision semi-joins [WLC91 ]. For specific types 

of distributed databases, the use of specialized semi-joins have been proposed as 

the primary reducing operator [PC90, CL90J.

Clearly, in the case of static algorithms, any realistic query optimization hinges 

on the accurate estimation of the cardinality of intermediate results and final results 

of a query [Gra89, Loh89]. It is argued in [Loh89] that the two major assumptions 

(the uniform distribution of data and attribute independence) in the probabilistic 

models used by nearly every optimizer are flawed, resulting in estimation errors.

In addition, little work has been done in the validation of the optimization 

algorithms [Sel89]. In most cases algorithms are compared in theory without

University of Windsor, 1995 2
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Introduction

considering the effect of using real data. Previous work in benchmarking database 

systems [BDT83], suggests that it should not be unreasonable to validate an 

algorithm’s performance against a realistic database.

While it commonly agreed upon that real world data does not conform to the 

uniform distribution and attribute independence assumptions, to our knowledge 

no one has examined whether or not these assumptions have an effect on the 

performance of distributed query processing. Clearly, validation would answer 

this question. In addition, it would also provide insight into the accuracy of the 

estimation techniques.

With respect to the development of new heuristics, citations indicate that 

the Apers-Hevner-Yao (AHY) Algorithms are considered to be the best heuristics 

proposed to handle general queries. Heuristics proposed after the AHY algorithms 

are typically designed around specific hybrid operators, architectures, network 

topologies, etc. Are the AHY algorithms the best that can be achieved ?

In this thesis the following questions are examined:

□  Can improvements be made in semi-join based query optimization heuristics ?

□  Are the assumptions of uniform data distribution and attribute independence 

valid for real world data ?

□  W ill the use of current information available to a dynamic heuristic provide 

better performance than its static counterpart ?

To address these questions a benchmark database has been developed on which 

University o f  Windsor, 1995 3
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Introduction

the performance of the AHY General (total time) algorithm will be compared with 

two proposed heuristics namely. Algorithms W (static) and DW (dynamic).

1.1 THESIS ORGANIZATION

This work is organized into six chapters with chapter 1 constituting the 

introduction to this thesis. In chapter 2 the relevant background material for this 

thesis is reviewed. This review includes discussions on the goal of distributed 

query processing, estimation techniques as well as static and dynamic query 

processing strategies.

In Chapter 3 all of the notations and definitions that are used throughout this 

work are presented. In particular, theorems, proofs and lemmas for numerous 

concepts employed by the proposed heuristics are presented.

Chapter 4 presents detailed descriptions of the three heuristics. A comparative 

example between Algorithm W and AHY is provided to clarify how each heuristic 

is executed. This example also serves to illuminate the differences that exist 

between the two heuristics.

In Chapter 5 the evaluation methodology is discussed. Particular attention 

is paid to the design of the benchmark database and the queries with which the 

heuristics are evaluated with. The remainder of this chapter is used to present 

the experimental results along with a discussion of the conclusions that can be 

inferred from the results.

University o f Windsor, 1995 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Introduction

Lastly, chapter 6  provides a summary of the conclusions attained from the 

work that this thesis represents along with some plans for future work.

University o f Windsor, 1995
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Chapter 2 
Background

In this chapter background information on the distributed query optimization 

problem is presented. In Section 1, the overall objectives of distributed query 

optimization are examined. Section 2, details the use of semi-joins as the primary 

reducing operation. Lastly, in Sections 3 and 4 respectively we present and 

discuss the use of static and dynamic strategies for distributed query optimization 

are discussed.

2.1 QUERY OPTIMIZATION OBJECTIVES

Most research with the exception of [ESW78] has concentrated on the opti

mization of a particular class of queries commonly known as Select-Project-Join 

queries1 [CP84, OV91]. The formulation of an optimized execution strategy is 

based on the minimization of some objective cost function or functions. Some 

commonly used objective functions [Bod85, BR8 8 b] are the:

• dollar cost due to network usage

1 Also referred to as conjunctive normal form queries.
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• dollar cost due to local CPU usage

• combined dollar cost of both local CPU processing and network usage

• delay due to local CPU processing

• delay due to network data transfers

• combined delay due to local CPU processing and network data transfers

• volume of data processed by all information processors

• volume of data transferred over the network

• total size of partial results2

Central to most optimization strategies is the use of either a total cost model

or response time model. In the total cost model the objective is to minimize the 

overall costs that are incurred in processing the query. Most approaches assume 

the total cost to be the amount of data transferred. Due to the nature of distributed 

databases, it is possible that some or all of the processing required for a given 

query can be executed in parallel. The response time model is based on this 

supposition; seeking to minimize the elapsed time for query execution.

2J2 ESTIMATION

The fundamental goal of an optimization algorithm is the formulation of a 

query execution strategy that is optimal. Unfortunately, the formulation of an 

optimal solution can only be accomplished by performing an exhaustive search of 

all possible execution strategies. The complexity of such an enumeration has been

2 A partial result refers to the size of a relation after the application of a relational operation.
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shown to be NP-hard [WC93], making any such algorithms too computationally 

expensive to implement. Hence, heuristic algorithms are employed to quickly 

formulate near-optimal strategies.

The performance of static query optimization algorithms is heavily dependant 

upon the estimation technique used to evaluate the sizes of partial results. Some 

of the commonly used algorithms are as follows.

To estimate the expected number of tuples in a relation resulting from an 

arbitrary number of join operations, Chen and Yu [CY90] propose the following 

theorem.

Theorem: Let G  =  {V .E ) be a join query graph and G r  =  [Vr . E r ) is 

a connected subgraph of G. Let R .\.R o .....R ,, be the relations corresponding 

to nodes Vr  and A i . A * .  . . . . A , ,  be the distinct attributes associated with edges 

in E r .

Let w; be the number of different nodes (relations) that edges with attribute 

j4; are incident to. Suppose R* is the relation resulting from the join operations 

between R i,R 2 , . . . ,R p  and m is the expected number of tuples in /?.*. Then

r m i
m =  -y i= !—

n M '-1
j =  1

For the query graph illustrated in Figure 2.1, the expected number of tuples 

in the resulting relation is estimated as

urn
i=1______

WIBflCIIDI
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R2

Figure 2.1 Sample query graph.

Estimating the size of partial results after the application of a semi-join 

operation is somewhat different than that of the join operation. The two most 

common algorithms, outlined in [Yu85] are as follows.

Suppose that we have two single attribute relations, R\ and i?2 - Suppose 

further that the values of the common join-attribute, say A are uniformly and 

independently distributed on both relations. If  the semi-join R2  x .4  R\ is executed, 

the size of can be estimated as S (R i) x  p2 „, where P2a is the selectivity of 

attribute A of relation i?2 - The selectivity of the reduced attribute A  of relation 

R\ is estimated by p'la — p ia x p2a-

I f  the reducing relation is the result of a sequence of semi-joins, the incoming 

selectivity for this schedule is the product of the selectivities of all of the attributes 

in the schedule. The only restriction is that if there are multiple occurrences of 

an attribute in the schedule then only one instance of its selectivity is used.

Estimation is somewhat different when dealing with multi-attribute relations. 

Suppose Ro is defined as above but R i is now a relation with two join-attributes 

A and B. After the application of the semi-join R2 R i, the cardinality of R i

University o f Windsor, 1995 9
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is easily estimated as |/? i|  x  /m „. R\ may subsequently used to reduce some 

other relation, say Rz. by performing the semi-join /?i over attribute B.

To obtain an accurate estimate of the size of Rz after the semi-join it is necessary 

to estimate the cardinality of attribute B of R.i after the execution of R« x .4 R\. 

Yu [Yu85] shows that this estimation problem is related to the problem: “Given 

n balls with m different colours. What is the expected number of colours if 

t  balls are randomly selected from the n balls’*. In the semi-join problem the 

correspondences are: n balls being the cardinality of R\ prior to reduction; m 

colours being the cardinality of the B  values in R \\ the / selected balls correspond 

to the cardinality of R\ after the application of the semi-join. The expected 

number of colours of the t select balls is

It is important to note that while t is a parameter in the ball-colour problem, 

the cardinality of R \ after the application of the semi-join needs to be estimated. 

For this reason the formula, if  evaluated in its present form is expensive computa

tionally and my cause overflow or underflow for large values of t. The following 

function presented in [BGW+81, Yu85] provides an estimation to the above for

mula after t  has been estimated.
' m , if t >  2 m

< if 2 m  >  t >  m / 2

k f, if ( m /2  > t)
The following example illustrates the use of this estimation formula.

Example: Suppose that R i and R2 are the same as above and R.z is a single 

attribute relation with attribute B. I f  fiiis  reduced by R2 and Rz using semi-joins,

University o f  Windsor, 1995 10
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7?o x .i R\ « b Rz- the cardinality of R.\ can be estimated as |/?i[ x p\ x />>, 

where pz is the selectivity of Rz under attribute B. Because attributes A and B 

are independent of each other, the expected number of distinct values of A and B 

are estimated using the approximation formula described above.

23  SEMI-JOINS AS REDUCERS

Initially, distributed query optimization focused on the use of the relational 

join as the primary reducing operation. While simplistic in its execution, there 

exists the possibility that the size of the relation resulting from a join may exceed 

the sizes of the relations that participated in the join. This particular condition 

is illustrated in Figure 2.2.

In contrast, the semi-join operation is guaranteed to monotonically reduce 

the size of a relation, with the worst case being no reduction. In addition, the 

properties of semi-joins permit their computation with less intersite data transfers 

than for joins. I f  required, the reduction effect of a relational join may be obtained 

through the application of one semi-join and one join as defined by the equivalence 

relation

Ri Exa R j =  (Ri x  R j; R!j cxi Ri)

Based on the properties of semi-joins, the number of tuples in the result 

of the application of a semi-join, say Rz x R i will be in the range 1  <  

\R[\ <  Variance in the reduction effect of a semi-join is illustrated in the 

examples presented in Figure 2 3 . Because the reduction effects of a semi-join
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7?1 /?•>

A B B C
al bl
a2 bl

a2 b2

a3 b2

a4 b2

bl c3

bl c2

b2 c4

b3 cl

b4 c5

Rl Cxi /? 2

A B C

al bl c3

al bl c2

a2 bl c3
a2 bl c2

a2 b2 c4

a3 b2 c4

a4 b2 c4

Figure 22. The possible negative reduction effect of a relational join.

are asymmetric3, it is necessary to consider both applications of the semi-join in 

order to determine which application produces the greatest reduction. Clearly the 

use of a semi-join such that ~  S(/?-) (as illustrated in Figure 2.3(b)), will 

not be cost effective. In this respect, optimization strategics based on semi-joins 

consider the use of beneficial semi-joins only.

A beneficial semi-join refers to a semi-join in which the benefit of performing 

the semi-join exceeds the cost of executing it. In practise the benefit is considered

3 The semi-join Ri x  Rj is not equivalent to the semi-join Rj » R,.
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al bl
a2 bl

a2 b3

a2 b4

a3 b5

i ? 2  R-l
A B

al bl
32 bl

a3 b5

bl cl

b2 c2

b5 cl

b5 c2

b5 c3

b5 c4

b5 c5

R.l X j 

B C

bl cl

b5 cl

b5 c2

b5 c3

b5 c4

b5 c5

(a) (b)

Figure Z3 Illustration of semijoins. 

to be the data that the semi-join eliminates. Benefit is formally defined as

B{R;  > 3<{■,« R j) =  S {R j ) -  S{Rj)  x  p(dia)

=  S{Rj)  X ( 1  — p{dia)) 

where p{dia) is the selectivity of the attribute of R; that is used to reduce Rj.

The cost associated with a semi-join refers to the cost of projecting the 

joining attribute from the reducing relation and transmitting it to the relation 

to be reduced. In general (with the exception of [W 8 4 , HWY85, CL87, YGC8 8 ,
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PLH89, AM91]), the cost of projecting the reducing attribute is considered to be 

negligible in comparison to the transmission cost. Assuming a fixed transmission 

cost between sites, the cost of a semi-join is computed using the following 

function:

C{Ri R j)  =  Co +  Ci x

where the coefficients Co and C\ are fixed constants representing the start-up cost 

for a transmission and the fixed cost per unit of data transmitted respectively. 

S(dj„) represents the size of the projected attribute

2.4 STATIC STRATEGIES

As previously stated the distributed query optimization is an NP-hard problem 

[WC93]. Hence, numerous heuristic algorithms have been proposed for construct

ing “near optimal” query execution schedules [BGW+81, AHY83, Yu85, KR87]. 

The term “near optimal” is used loosely in the sense that measuring the per

formance of a particular heuristic requires the optimal execution schedule to be 

known. In [Bod85] an A* tree is used to determine the optimal execution sched

ules for 30 different queries. Clearly if  thousands of queries are being tested, it 

is unrealistic to attempt to compute the optimal solution for each query. For this 

reason the performance of a heuristic algorithm is typically described in terms 

of an improvement made over another existing algorithm. As a result, it is not 

evidently clear how “close to optimal” a solution for a particular strategy may be.
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2.4.1 Two and Three Phased Approaches

The traditional approach to distributed query optimization has been the use 

of a three phased approach [BGW+ 81, AHY83, Yu85, KR87], consisting of the 

following three phases:

Phase 1 In itia l local processing. Tuples and attributes which are irrelevant with 

respect to the query are filtered out by appropriate selection, projection, 

and join operations at the local site prior to any data transmission. 

This has the effect of reducing the amount of data transmitted over 

the network.

Phase 2 Semi-join preprocessing. After local processing, semi-joins are used to 

further reduce the size of relations. Based on the equi-join clauses in the 

query’s qualification, a semi-join schedule (or sequence) is constructed. 

This schedule is subsequently used for the semi-join preprocessing. 

Phase 3 Final processing. The resulting relations after the semi-join preprocess

ing phase are transmitted to the assembly site (usually the query site) 

where all of the relations are joined to form the result of the query. If  

it is the case that the assembly site is not the query site, the final result 

must be subsequently transmitted to the query site.

While not explicitly stated, if  redundant relations are permitted, the identification 

of the required sites is performed within the local processing phase.

Alternatively, there are a few heuristic algorithms that are based upon a two 
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phased approach consisting of the following phases:

Phase 1 Determine the sequence of relational operations which minimizes the 

total size of the partial results.

Phase 2 Apply a polynomial time algorithm to find the optimal network site 

locations for executing the sequence of relational operations.

The rationale behind the two phased approach is that it essentially decomposes 

the optimization problem into two easier problems which may be solved more 

efficiently. Results in [BR8 8 a] indicate that this approach yields beneficial results 

when both CPU and data transmission costs are incorporated into the objective 

cost function.

One of the first optimization algorithms (based on the use of semi-joins) to be 

proposed and implemented was the SDD-1 optimization algorithm, developed 

for the SDD-1 distributed database system [BGW+81). Designed under the 

assumption that the transmission of data was the slowest component in query 

processing, the objective of the algorithm was to process a query with a minimum 

amount of intersite data transfers. It is important to point out that a reduction in 

the amount of intersite data transfers has the additional advantage of reducing 

the network load.

Being essentially an iterative hill-climbing algorithm, the SDD-1 algorithm 

always selects the most profitable reduction that is immediately at hand. The 

major disadvantage of this approach lies in its inability to backtrack and consider 

other execution strategies which may produce better solutions.
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Another set of heuristics, proposed by Apers. Hevner and Yao [AHY83] was 

developed to handle simple as well as general types of queries. It is evident from 

citations in numerous articles that the Apers-Hevner-Yao (AHY) algorithms are 

considered to be milestones within the field of distributed query optimization.

Using the three phased framework that is common to many heuristics, a new 

static heuristic. Algorithm W  is proposed. Using semi-joins and the concept 

of marginal profit. Algorithm W attempts to minimize the overall total cost of 

executing a query. A complete description of Algorithm W is presented in 

chapter 4.

2.5 DYNAMIC STRATEGIES

Static query optimizers rely heavily on various techniques for estimating the 

sizes of partial results, selectivities and other parameters pertaining to the dis

tributed environment It is recognized that a strategy based on inaccurate estima

tions may be far from optimal [ES80]. Any estimation errors in static strategies 

will be propagated and compounded during the execution of the schedule. Two 

alternative approaches exist for avoiding this problem.

The first approach relies on various dynamic query execution techniques to 

alleviate the problem. A dynamic query execution has the advantage that a strategy 

may be modified if  it is found that it is not proceeding as planned. To determine 

whether a strategy is proceeding as planned requires information regarding the 

progress of the strategy to be gathered by one or more processors. The collection
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of information on the current progress of a strategy is commonly referred to as 

monitoring. Based on this monitoring there is some decision making process 

which decides whether the current strategy being executed should be aborted 

and a new strategy proposed for the portion of the strategy that “has yet to be 

processed” If  the current strategy is to be aborted then some form of corrective 

action will be needed to form and initiate a new strategy in order to complete 

the query. Various methods of monitoring and corrective action arc discussed 

in [BRJ89]

Irrespective of the method of monitoring, the decision to correct can be made 

using methods based on either frequent reformulation or the use of preestablished 

threshold values. A description of both approaches is outlined below.

Reformulation. Whenever a new partial result is formed, the unexecuted por

tion of the query is reformulated using the most up-to-date information available. 

A correction is appropriate if the new reformulation has a lower cost than that 

of the current strategy.

Threshold. When a strategy is formulated, additional information is included 

to support the decision making process. For each parameter4  used in the for

mulation, two threshold values, Vjow and ^high a*® constructed. A strategy is 

corrected if  the actual value of a parameter falls outside the range of the asso

ciated threshold values.

* For total cost estimation the parameter is the size of partial results.
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In any given query there exist some partial results whose estimates are more 

critical than others. A threshold method proposed in [BR8 8 b] deals with this 

problem through the use of a C ritica l Path Network. In this situation, threshold 

values are only constructed for partial results that are considered to be critical to 

the overall execution of the query. I f  any critical threshold value is exceeded, it 

is known that the strategy will be delayed and should be subsequently aborted 

and corrected.

The second approach is to provide more accurate estimates. However, 

it is noted that applications supporting the computation of accurate estimates 

are typically expensive in terms of size and upkeep of the required statistical 

information [BRJ89].

In this thesis a purely dynamic heuristic called Algorithm DW is proposed, 

which computes the execution strategy for a query on the fly using up to date 

information on the participating relations. A dynamic execution of this form does 

not require any schedule monitoring. In addition, it is believed that the overhead 

associated with maintaining up to date information will not constitute a significant 

portion of the overall total cost. A detailed description of Algorithm DW  is given 

in Chapter 4.
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Chapter 3
Assumptions and Definitions

For this thesis a distributed database management system is considered to 

be a collection of independent databases connected via a point-to-point network. 

Queries executed by the distributed database management system are taken from 

the select-project-join (SPJ) class of queries5. Each relation is located at a different 

site and has at least one attribute, other than any join attributes, that is required 

at the query site. For each relation it is assumed that the attribute values arc 

uniformly distributed and that attributes are independent of one another. The cost 

of executing a query is considered to be a linear function relative to the total 

amount of data that is transferred across the network. It is also assumed that the 

local processing costs are negligible with respect to the data transmission costs.

As semijoins are the basis for all of the algorithms discussed in this thesis, 

this operation is outlined first. Suppose a query requires two relations say R.\ and 

i ? 2  to be joined, that is execute R \ c< R^. A straight forward approach is to ship 

both relations to the query site and perform the join there. Alternatively, semijoins

* Alternately referred to as conjunctive normal form queries.
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may be used to reduce one or both of the relations prior to being shipped to the

query site. A semi-join from relation R i to /?2 , denoted R i xi /?•>, is executed

in the following manner

1. Project R \ over the common join attribute to get J?i [y].

2 . Ship R i\ j ]  to the site of R2 .

3. Execute 72i[7] ext R2 .

Using the semi-join, the size of R.2 is reduced by eliminating those tuples 

which will not occur in the relation R i  ixt R2 . A carefully chosen sequence 

of semi-joins can significantly reduce the sizes of the relations before they are 

shipped to the query site, thus reducing the total amount of data transferred across 

the network.

The following are defined for each relation R;, i  =  1 , 2 , . . . ,  m :

Ai  number of distinct attributes in relation Ri where A; >  1 .

S(Ri) size (in bytes or any suitable measure) of Ri.

|/2f j the cardinality of relation R{.

For each attribute6, djj , j  =  1 , 2 . . . . .  A-t of R-, the following are defined:

D{d; j)  the domain of possible values for attribute d-,j.

!-D(ri,-j)| the cardinality of D {d i j ) y that is the number of distinct values that

make up the domain for djj .

® The denotation J ,j refers 10 the jth join-anribute of relation /t;.
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the cardinality of relation i?, projected over attribute that is 

the number of distinct values in attribute 

S{djj) size of attribute djj.

p{d;j) selectivity of attribute </,j, where selectivity is defined as

\D[dij)\

With the execution of any semi-join there is some degree of overhead. The 

execution of the semi-join d;j  x d kj  incurs a cost that is proportional to the amount 

of data (size of djj) that is transmitted from the site of Ri to the site of relation 

22*. The cost is defined as

C(d{j x  dkj) =  Cq +  [Ci x 5(f2,j}]

where Co and C\  are fixed constants. In all of the following definitions and 

examples in this thesis it is assumed that Co =  0 and C\  =  1 .

The benefit associated with the execution of a semi-join is equal the amount 

of data that will not be needed in the final result and hence does not need to be

transmitted to the final result site. The benefit is defined as

B(dij  x  dkj) =  S(Rk) -  (S ( R t ) x p(d{j))

=  S{i*Jt) x ( l - p ( d l-i ))

A  semi-join is termed profitable if the benefit outweighs the cost. Profit is

defined as

P(d,j  x dkj) =  B(d;j x dkj) -  C(dy x dkj)
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A reducer is defined as any attribute which can be used to reduce any other 

attribute (or relation). For the distributed query optimization, the identification 

of those reducers which are inexpensive to use and are good at reducing other 

relations (i.e. small attributes with high selectivities) is of key interest. Each of 

the proposed heuristics presented in this thesis attempts to construct reducers for 

each attribute in a cost effective manner. Each reducer is built using a sequence 

of semijoins daj  x rfy x dCj x . . .  x  d„,j such that S{d„j )  <  S (rifej) <  S{dcj )  <  

. . .  <  S[dmj ) .  The final attribute to be reduced is considered to be the reducer 

and is denoted To estimate the cost and benefit of using a reducer d*m-y some 

provision for estimating its selectivity is required. The selectivity of a reducer 

with respect to any relation occurring in its construction sequence is defined as

□  1 with respect to Rm, since d‘ tj  has no reduction effect on the relation in 

which it is contained.

□  the product of selectivities of all of the attributes which occur after d;j in 

the sequence, since Ri has already been reduced by those attributes which 

precede it in the sequence.

In the case of relations which have a common-join attribute but do not appear 

in the construction sequence, the selectivity of the reducer with respect to the 

relation is simply the product of all of the selectivities of the attributes in the 

sequence. The selectivity of a reducer d*n - w j . l  the relation Ri is formally
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defined as
1. i  =  m

k K j ) =  < J l  ; <
m* > ~ j  *

-r=i+l

E[ otherwise
V X=(l

The cost associated with the application a reducer is the cost of transmitting 

it to the site of the relation that is to be reduced, which is simply To

estimate the benefit of applying the reducer it is necessary to estimate the reduction 

effects the reducer will have on the relation if the reducer were to be used. The 

estimated size of R; after the semi-join d’t)j  x J?( is computed as

S'(Bi) x p{d'mj)

where S’ (R;) is the estimated size of Rj after all semi-joins preceding it in the 

sequence have been performed and p{d *m-)  is the estimated selectivity of the 

reducer wjr.t. R; as defined above. The benefit of the semi-join ri* ■ x /?,■ is 

subsequently defined as

23(«Ci X Ri) =  S’m  X  (1 -  p(«C.j))

In some cases semi-joins may not be profitable, however their use may 

increase the profitability of subsequent semi-joins. These semi-joins are identified 

by examining their estimated marginal profit. For example, consider the semi

join <rx - x  dvj .  Put simply, the marginal profit is the “extra” profit we acquire by 

using d*j  as the reducer rather than r/v . For each relation that can be reduced 

using d* j  (and d*j) there may exist some “extra” profit. The marginal profit is
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therefore considered to be the sum of these “extra” profits. However, the following 

facts must be considered when computing the marginal profit:

□  There is no profit in the semi-join d*j x Ry since the attribute belongs to

the relation.

□  There is no profit in the semi-join d*j x  R;, if  the cost outweighs the benefit 

of the semi-join.

□  If  the case where the semi-join d*j  x  J?,- is not profitable but dV x R: is

profitable, the marginal profit is simply the profit of the semi-join d*. x

□  In the case of Rx we have P  ( dx - x  R.x ) = 0 , therefore the marginal profit

The total marginal profit is obtained by summing all positive marginal profits:

For all other cases the marginal profit w.r.L R; is defined as

M P r , {d'x j x  dyj) =  P{dTvj x  -  P(*Tr j  x Ri)

=  s{R i)  x ( , ( d y  -  p(d ; j ) )  +s(d*x j ) -  s(d'y j )

The marginal profit with respect to Ri  can be summarized as 

' 0 , if  i  =  y

0 , if  P(d*xj  x  R i)  <  0  and P ( d yj  x  R^j  <  0  

M P r , =  < P ( dl j  x  Ri ) '  if  P ( dl j  x Ri )  <  o

otherwise

m
MP(d‘xj x  i„j) =  Y ,  MPr. MPr. > 0

1 = 1
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The gain of a semi-join is defined to be the sum of its profit and marginal profit:

G(,rrJ *  ,i,j) =  r f c  x. dti) +  MP(,rrj *  ,/„•)

A semi-join is cost effective if its gain is positive. In the proposed heuristics, 

the construction of reducers is based solely on the use of cost effective semi-joins. 

In the case where a semi-join is profitable however, there is no marginal profit, 

the semi-join should not be executed since it will be at least as profitable to use 

the reducer to reduce the relation instead.

Theorem 3.1. If, as part of the schedule to construct the reducer <Z* •, there

occurs a semi-join d*j  x  dyj  such that x >  0  and x dyj' j =

0  then it is at least as profitable to execute rf* • x  dtJj  instead, where </* • is the

reducer.

Proof. When constructing the reducer c/* • the semi-joins are executed in the 

following order

daj  X (l[jj  X (I f j  X • ■ • djcj X dyj • • • x d. mj

Therefore we have S -  s f e y j )  ^  x  4w ) -  j  x  ^w')- ®e-

cause S (<£_,) >  => >  /? (< „,) it is clear that D^d*xj x riw )  <

&  (^mj x

Therefore P ^ d ^ j  x  (Kj )  — x  E

Corollary 3.1. Profitability is not a sufficient condition for performing a 

semi-join during the construction of a reducer.
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Corollary 3.2. Semi-joins with no marginal profit should not be performed.

Corollary 3 J . A semi-join should be performed if the marginal profit ex

ceeds the cost. For example, consider the semi-join d*x - x  <lyj  which is part of 

the reducer construction sequence. If  there exists relations 7?,-. i ^ y  such that

m
£ S W i )  X (,(,JV ) -  p (d l j ) )  -  S(d l j )  >  0
i=a

then x r/w j  >  0 , therefore the semi-join should be performed.

3.1 GAINFUL NON-PROFITABLE SEMIJOINS

In this section it is shown that while a semi-join may not be immediately 

profitable, it may be gainful if the marginal profit is sufficiently large. Gainful 

semi-joins should therefore be executed because the overall goal is to maximize 

the reduction effect. In this particular case the reduction effect is due to the 

increased selectivity that is propagated from the non-profitable semi-join to later 

semi-joins. For example7, the data in Table 3.1 represents a query after all local

Relation S (ifr) S(d{ j ) p{d; j)

R I 1 0 0 0 500 0.5
R2 800 600 0 . 6

R3 3000 700 0.7

R4 5000 800 0 . 8

Tabic 3.1 A statistical representation of a query.

7 Note: for simplicity, in this example we assume that each tuple or attribute value constitutes one unit of data 

transmission cost.
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processing has been carried out. All that remains is to join the relations and ship 

them to some (other) result site.

The semi-join < 1 x <h2  is clearly not profitable since the cost is 500 units 

and the benefit is on}y 400 units. However, this semi-join is gainful because the 

marginal profit is substantial:

M PR.M h  *  **21) =  s m  X  ( p K i )  -  p(d'21)) + S{<ru ) -  S{<r2l)

=  (5 0 0 0  x  0 .2 )  +  500  -  30 0  

=  1200

Clearly, the marginal profit is greater than the cost of the semi-join, hence this 

is a gainful semi-join. Obviously, f/ 2 1  should be used to reduce 7?-i however, 

this fact needs to be identified when the semi-join rijj, x  rijo is considered. The 

calculation of marginal profit and gain provides the information necessary to 

make an appropriate decision.

Lemma 3.1. The semi-join <l*x - x dyj  is gainful but not profitable if there 

exist relations R;, i  fL {2:.?/} such that

a) s(<2v)  >  S (i!„) X ( l  - /> (< £ , ) )  and

b> t  [S « )  x -  p(dv))j -  S(dv) > 0

Condition (a) follows from the definition of P^d^ j  *  ^  condition (b)

holds then there exist one or more relations R.-,, i  f t  { x . y }  for which

m

£  MPK, (<£,- X d,j) >  C{d-t i  x  ,/„•)
t=a
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This implies that G  ̂ x r/yj)  >  0 hence, the cost of the semi-join outweighs 

any immediate benefit but the marginal profit is greater than the cost indicating 

that it must be gainful.

Corollary 3.4. A necessary condition for adding a semi-join to the schedule 

for reducer construction is that the marginal profit must be greater than the cost 

of the semi-join.

Corollary 3.5. If  a relation can be found where the marginal profit of the 

semi-join exceeds its cost, it is not necessary to examine an other relations.
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Chapter 4 
The Heuristics

In this chapter the details of the three heuristics implemented in this thesis 

namely. Algorithms AHY General (total time), W and DW arc presented. For this 

thesis Algorithm AHY is used as a benchmark with upon which the performance 

of the proposed heuristics W and DW can be based. The reasoning behind this 

selection is twofold. First, the AHY algorithm is considered by many to be the 

best general query optimizer proposed. Secondly, there is extensive literature 

describing the execution of the heuristic.

In section 1 the details of the AHY algorithms are presented. In the following 

section the description of the proposed heuristic. Algorithm W is given. Section 3 

presents a comparative example of the two heuristics to illustrate their respective 

use and relative differences. Lastly, the proposed dynamic heuristic. Algorithm 

W  is described.

4.1 APERS-HEVNER-YAO (AHY) ALGORITHMS

A collect of algorithms for optimizing a special class of simple queried

* A simple query refers to a query that has only one common join attribute.
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has been introduced and investigated in [AHY83]. These algorithms namely 

Algorithm SERIAL and Algorithm PARALLEL attempt to minimize the total 

time and response time respectively. In each algorithm, semi-joins are used to 

reduce the size of relations by deleting those tuples which will not play a role 

in the final join.

Extending Algorithms SERIAL and PARALLEL, Apers, Hevner and Yao 

present Algorithm GENERAL which is capable of optimizing general queries. A 

general query is characterized by relations which contain more than one common 

join attribute.

As the focus of this thesis is query optimization with respect to total cost, 

discussions on the AHY algorithms w ill be limited to Algorithm SERIAL and 

Algorithm GENERAL (Total Cost).

4.1.1 Algorithm SERIAL

Algorithm SERIAL works as follows:

Step 1: Order relations Rj such that S(J?i) <  S(i?2 ) <  ■ - • <  S{R„).

Step 2: If  no relations are at the result node, then select strategy

Rl —* R% Rn —* result node

or else if Rr is a relation at the result node, then there are two strategies;

a) R\  “-*■ J? 2  Rf  —► • • • —► Rj, —► Rj. or

b) R\  —► R2 —► • • • —► Rj . - 1 —*■ itlr+i R,, —* Rj.
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After studying the literature it appears as though Algorithm SERIAL initially 

ranks the relations in terms of size under the assumption that the cost of transmit

ting a relation is directly proportional to the size of the relation. If  this is indeed 

the case, it is obvious that the use of a non-linear cost model in conjunction with 

Algorithm SERIAL would result in sub-optimal schedules.

4.12 Algorithm GENERAL

The overall strategy employed by Algorithm GENERAL is to decompose 

a general query into a collection of simple queries. These simple queries are 

subsequently processed using Algorithm SERIAL for total cost optimization. The 

resulting schedules are examined and integrated to form an optimized schedule 

representing the general query. A detailed for Algorithm GENERAL is given as 

follows (summarized from [AHY83]):

Step 1 : Do all  in itia l local processing.

Step 2: Generate candidate schedules. Isolate each of the a common join 

attributes, and consider each to define a simple query with an undefined result 

node. Apply Algorithm SERIAL to each simple query. This results in one 

schedule per simple query. From these schedules, the candidate schedules for 

each common join attribute are extracted. Consider the common join attribute 

dij. Its candidate schedule is identical to the schedule produced by Algorithm 

SERIAL, applied to the simple query in which d-,j occurs, up to the transmission 

of djj .  A ll transmissions after that are deleted from the schedule.

University of Windsor. 1995 32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Heuristics

Step 3: Integrate the candidate schedules. For each relation R;,  the candidate 

schedules are integrated to form a processing schedule for Rj.  To minimize total 

cost, schedule integration is performed using cither procedure Total or procedure 

COLLECTIVE. Outlines for procedures TOTAL and COLLECTIVE follow. It 

should be pointed out that procedure TOTAL does, not consider the existence of 

redundant data transmissions in separate relation schedules. Therefore, strategies 

derived using procedure TOTAL may not be optimal.

Step 4: Remove schedule redundancies. Eliminate relation schedules for 

relations which have been transmitted in the schedule for another relation.

The following are outlines for procedures TOTAL and COLLECTIVE. 

Procedure TOTAL

Step X: Adding candidate schedules. For each relation Ri and each candidate 

schedule CSC H i, perform the following. If  a schedule contains a transmission of 

a joining attribute of R i, say dtj ,  then create another candidate schedule identical 

to CSC H i except that the transmission of d;j  is deleted.

Step 2: Select the best candidate schedule For each relation R i and each 

common join attribute d;j, j  =  1 . 2 . . . .  ,a,  select the candidate schedule which 

minimizes the total time (cost) for transmitting Ri. Only joining attributes which 

can be joined with d;j are considered. B E S T ij denotes the best candidate 

schedule for relation R i and joining attribute d-tj .
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Step 3: Candidate schedule ordering. For each relation R,, candidate 

schedules BESTj j  are ordered on joining attributes <l,j. j  =  1.2 a, so that

ARTu +  C(S(7?i) x SLTn) < < ARTi<r +  C{S{Rj) x  SLTi<r)

Schedules involving joining attributes not in R.; are disregarded. ARTij denotes 

the arrival time (cost) of the BESTij schedule. SLTij denotes the accumulated 

selectivity of the BESTij schedule into 72,-.

Step 4: Schedule integration. For each BESTij in ascending order of j .  

construct the integrated schedule to Ri which consists of the parallel transmissions 

of candidate schedule BESTij and all schedules BESTh. where k <  j .  Select 

the integrated schedule that results in the minimum total time (cost) value

TOTTi =  ^ 2  ARTit +  c ( s ( R i ) x l [ S L T !t
k =  1 L \  Jfc=l

Procedure CO LLECTIVE

Step 1: Select candidate schedule. For each relation 72,- and joining attribute 

dij. j  =  l , 2 , . . . o ,  select the minimum cost candidate schedule that contains the 

transmission of all components of attribute j  with selectivities less than 1 .

Step 2: Build processing strategy. For each relation R i, define the schedule 

to be the parallel transmissions of all d ;j candidate schedules to Ri.

Step 3: Test strategy variations. Using a removal heuristic, construct new 

strategies by removing the most costly data transmission. The total time cost of 

the new strategy is compared with that of the old strategy, with the less costly
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strategy being maintained. Testing continues until no further cost benefit can be 

obtained.

An illustrative example of AHY General (total time) is presented in section

4.3.

4.13 Complexity Analysis of Algorithm GENERAL, (total time)

I f  it is assumed that a general query requires data from m relations, and that 

all m relations are joined on a  joining attributes. In step 2, Algorithm SERIAL 

is applied to each simple query. Because the joining attributes must be ordered 

by size the complexity is 0 (crmlog2 m )-

The complexity of procedure TOTAL is 0 (a m 2). In step 1, no more 

than O(crm) candidate schedules are added. For each relation the procedure 

must subsequently determine the B EST i j  schedule among the 0(<rm) candidate 

schedules. Hence, the complexity of step 2  is O (<rm2). Therefore, the complexity 

for an arbitrary general distributed query, Algorithm GENERAL (total time) has 

a processing complexity no worse than 0 (a m r ) .

43 ALGORITHM W

In this section a proposed static heuristic (Algorithm W) that attempts to 

minimize total cost is described. The algorithm is characterized by two distinct 

phases; first, semi-join schedules for constructing each reducer are formed using a 

cost/benefit analysis which is based on the estimated attribute selectivities and the
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sizes of partial results. In the second phase the schedule is executed. A detailed 

description of Algorithm W follows.

Step 1: Determine schedules fo r the construction o f reducers. For each join- 

attribute j ,  establish a schedule for the construction of reducer <1*,,*.

a) Order the attributes by increasing size such that

b) Next, evaluate the semi-joins in order beginning with d „j x  dhj .  The semi-join 

is appended to the schedule for constructing the reducer if

i. It is both profitable and marginally profitable. In other words

ii. It is not profitable but is gainful. That is, we have P(d„ j  x  d^j) <  0 but

If  the semi-join is appended the next semi-join for consideration is d;tj x  dej  

otherwise d*a - x  dcj  is considered. This process is repeated until all attributes 

have been considered. The final attribute to be reduced is the reducer.

Step 2: Reducer selection and application review o f unused semi-joins. In 

this step the reduction effects of the construction and use of each reducer on all 

applicable relations are considered. That is,

a) The reducers are ordered by increasing size.

v It is important to note that cadi schedule is constructed independently and no semi-joins are actually executed in 

this step.
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b) For each reducer in turn, estimate the reduction effects of constructing and 

applying it. Profitable semi-joins are appended to the final schedule.

Step 3: Review o f unused semi-joins. After Step 2 it may be the case that a 

number of reducers have not been used as they are not profitable. In this case, 

check to see if there are any remaining profitable semi-joins for that particular 

join-attribute. This reevaluation process is carried out as follows:

a) sort the attributes by increasing size

b) evaluate each semi-join in turn, appending profitable semi-joins to the final 

schedule. Note, the marginal profit is not considered in this step.

Step 4: Execute the schedule. In this step the reducers are constructed and 

shipped to the designated sites to be used as reducers. The reduced relations are 

subsequently shipped to the query site where the answer is assembled.

An illustrative example of Algorithm W is given in section 43.

4.2.1 Cost-effectiveness Analysis of Algorithm W

The term “cost-effective” in this sense refers to the construction of good 

reducers with a minimum cost overhead associated with their construction. Under 

this context, the heuristic constructs and applies the reducers in the most cost- 

effective manner.

Theorem 4.1. Given relations R \,R .2 .....R n , ordered such that

S (K iM ) <  S(Jfe[#]) <  —  <  S to»[} 1 )
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then the sequence of scmi-joins((</ij x  </•>;) x d y ) . . .  x  dmj  constructs a reducer 

(for the join-attribute j )  with minimum cost. (Minimum in the sense that the data 

transferred between nodes to construct the reducer is kept to a minimum.)

Proof. Assume that the data is distributed such that after the application of 

the semi-join djj x dkj  we have S (</*;) =  x p(dij). where p{dij) is the

selectivity of the attribute d;j.

Consider any x  and y in the sequence above. By definition, we have 

S(dxj )  <  S(dyj )  which implies p{dxy) <  p{dsj ) .  If  we switch the order of 

x and y in the sequence we will incur an increase in the total cost, Costf where

Costi  =  S{dyi) — p{dx;) X  S{dyi)

as we no longer have the reduction effects of dxj .  In addition, there is a decrease 

in the total cost,

Costo  =  S{dxj )  -  p(dyj) x S(dxj )

since we now have the reduction effects of dyj .

In the pathological case were S[dxj )  =  S(dyj ) ,  by definition p{dxj )  =  p{dyj) .  

By inspection it is clear that Costj  =  CosI q , hence the sequence is minimal in 

any case. For the remaining cases we want to prove that Cost j  >  Costjj. Let 

S{dxj )  <  S{dyj ) ,  by definition p{dxj )  <  p{dyj ) .  Substituting for Costf and 

Costf) gives

S (dyj ) — p{dxj )  X  S{dyj) >  S(dxj )  — p[dyj) X  S(dxj )
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Simplification reduces this equation to

S{<lyj) * -P i f l y j )
S{dr j )  1 -  p{dxj )

By definition, S{dxj )  < S{dgj )  therefore.

S(d9j) 
S(dx j)

Similarly, by definition p{dxj )  <  p{dgj )  therefore,

1 <  1 pjdyj) 
1 -  P { d x j )

Hence, Costj  >  Costj). Therefore, except for the noted case, if  the order of any 

two semi-joins is swapped there is an increase in the total cost of constructing 

the reducer. Therefore, the sequence

{(cilj X d2j )  X d%j) . . .  x  dmj  

constructs the reducer with minimal cost. □

Theorem 4.2. Given reducers d*a.d*b.  d’ n ordered such that

then the cost of utilizing the reducers is minimized if  they are applied in this order.

Proof. By definition the selectivity is assumed to be proportional to size. 

Consider using any two reducers d*x and d* on any relation Rz where S{d*T) <

University o f  Windsor, 1995 39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Heuristics

The following two cases must be considered:

(Case 1) The semi-join d*x x  R- is executed first. Then execute the semi-join 

d*y x  R : only if it is profitable. The cost will therefore be cither 

S K ,)  +  or

(Case 2) The semi-join <i* x Rz is executed first. Then execute the semi-join 

d.*x x  R.: only if it is profitable. The cost will therefore be cither 

s (*? ,) +  or s f a ) .

The cost of case 1 will always be less than or equal to the cost of case 2 

(and the benefit of case 1 will always be greater than or equal to the benefit of 

case 2). Clearly the cost is minimized if  the reducers are utilized in order of 

increasing size. □

4.2.2 Complexity Analysis of Algorithm W

Algorithm W  as outlined produces cost-effective schedules in an efficient 

manner. Assume that a query requires the joining of m relations over n common- 

join attributes. In step la  at most m attributes are sorted resulting in a complexity 

of 0 (m  log m ). This step is repeated for the n common-join attributes giving a 

complexity of 0 {nm\ogm).

In step lb  the profit and marginal profit are computed for m  — 1 semi-joins. 

The calculation of profit is always 0 (1 ) however, marginal profit is computed with 

respect to a variable number of other relations. In the worst case the marginal 

profit must be computed with respect to m — 1  relations, resulting in a complexity
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of 0 ( i n 2). Step lb is repeated for each attribute, giving a best case complexity 

of O (n m )  and a worst case complexity of O (n n r ) .

In step 2a the n reducers are sorted, with complexity 0(7j.log7/.). In step 

2b the cost and benefit of at most m-1 are computed. This is repeated n times, 

resulting in a complexity of 0(7j.m).

In step 3 the construction sequences of unused reducers are reviewed. If  a 

is the number of unused reducers to be reconsidered, the complexity for this step 

will be 0 ( a m  log rn). At worst case a  will be n-1.

Thus, Algorithm W  will have a best case complexity of 0 (77777) and a worst 

case complexity of 0 {n m r ) ,  It is important to note that in most cases a positive 

marginal profit can be found with respect to a single relation. A positive marginal 

profit can usually be found by examining the largest relation not participating in 

the semi-join. Therefore, in most cases the expected complexity of Algorithm 

W  is 0 (77777).

43  A COMPARATIVE EXAMPLE

To illustrate and compare Algorithm W  to Algorithm AHY General (total 

time), the execution of each algorithm on the sample query given in Table 4.1 

are outlined in detail.
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dil d i'2 di

R; S(R,) S{d; 1 ) p{dn) S(d;-2) (>{di2) $(da) l>{djz)

Ri 2 0 0 0 500 0.83 800 0.53 600 0.60

R-2 4500 300 0.50 1000 0.67 — —

Rs 6000 —  — 1400 0.93 800 0.80

Table 4.1 Query statistics for the comparative example.

Applying Algorithm AHY General (total time) to the example, three simple 

queries are formed on attributes d;\, d,? and dt3 . In step 2 of Algorithm AHY 

General (total time), the following serial candidate schedules are formed.

For d;i.

. . son  f a  
®tr* r

For d; 2 ,

dv
fa-  H

f a  800 f a  530

C ^ : f 2 800 f 2 S30_________ c,96____ j
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For <7,-3,

d^ l ^L_600------------460

The construction of the schedule for R\ will be discussed in detail. Each of 

the three attributes will be handled in turn.

Attribute dn  In step 1 of Procedure TOTAL, the simple serial schedules 

for d u  are examined to determine if any new schedules can be formed or if any 

schedules are not applicable to the current relation. For d n  the d u  schedule is not 

considered as it cannot be used to reduce itself. With only one candidate schedule 

to consider, schedule d i2  is selected as the B E S T u  candidate schedule for dn :

Total time =  C(300) +  C{0.5 x 2000)

=  1300.

Attribute d n  In step 2 of Procedure TOTAL, two schedules are added to 

the candidate schedules for attribute d^.

A
1000
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Each of the schedules for </i2  are applied to R\. Obviously, the schedule

is not considered, leaving four schedules to be evaluated.

cL, fi.
| 600 \ 530 | 13,10 |

Total time =  C(SOO) +  C(0.53 x 1 0 0 0 ) +  C(0.G7 x 2000) 

=  S00 +  530 +  1340 

=  2G70.

800 S30 ^  496 ^  1247 j

Total time =  C(S00) +  C(0.53 x 1000) +  C{0.3G x 1400) 

+  C(0.62 x 2 0 0 0 )

=  800 +  530 +  498 +  1247 

=  3075.

cL> R.
I22 1000 I 1 1340

Total time =  C(1000) +  C(0.G7 x 2 0 0 0 )

=  1000 +1340  

=  2340.

c^ .  ^ 2  1000 ^ 2  938 ^  1247 |

Total time =  C(1000) +  C(0.G7 x 1400) +  C(0.62 x 2000)

=  1000 +  938 +  1247 

=  3185.
Because the schedule has the smallest total time it is selected as the B E S T u  

schedule.
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Attribute d\$ In step 2 of Procedure TOTAL only one schedule is added 

to the above schedules for attribute <71 3 .

f t 3 800

Each of the schedules with the exception of diz are applied to R\.

dm**
Cijg* | 600 p  4 80  |  1600 |

Total time =  C(600) +  C(0.6 x 800) +  C{0.8 x 2000) 

=  600 +  480 +  1600 

=  2680.

d™ R,
p - J M O --------11 1600

Total time =  C(800) +  C(0.8 x 2000)

=  800 +  1600 

=  2400.

Because d'^  has the smallest total time, it is chosen as the BESTiz  schedule.

In Steps 3 and 4 of Procedure TOTAL, the BESTu  schedules are ordered by 

smallest total time and integrated to construct the following three schedules: 

cL, R.
I21 300 I 1 1000 I

300

^ 2  1000

'1

670
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300 M

1000 536  1
1

<*53
F -

800

1

Since the first of these schedules has the smallest total time; it is chosen as 

the solution of Algorithm AHY General (total time) for Ri.

The respective solutions for relations R2  and R3 are constructed in the same 

manner. The query processing strategy that is constructed by Algorithm AHY 

General (total time) for the example query is

r , .  ^ 1_300— f  1000 |

d19 Rr,
j 12 800  p  2365

cr.,
I 12 BOO 530

<*13 | 13 600

1279

The application of Algorithm W to the query is now examined. In step I, 

the sequences for constructing reducers are determined. On inspection, it is clear 

that at most three reducer may be constructed: dn, d ; 2  and dt3 .

Reducer for dj 1 The first semi-join considered is ^ 2 1  xi d \ \ , where the cost 

is 300 units and the benefit is 700 units. The marginal profit of the semi-join
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with respect to 722 is computed as
M P Ra =  (4500 x 0.17) -  250

=  515.

Since the profit and marginal profit are positive, the semi-join is added to the 

schedule for constructing the da reducer. As there are no further semi-joins to 

consider, the reducer is therefore d jj. For this reducer the construction schedule 

is simply the semi-join dz\ x  dn-

Reducer for rfe The first semi-join to consider is d i2  x ^2 2 , where the cost is

800, the benefit is 2115 and the marginal profit with respect to R3 is calculated as 

M P r ,  =  (4500 x 0.17) +  800 -  530

=  1035.

This semi-join is added to the construction schedule for d,2 . Next we consider

^ 2 2  x  ̂ 3 2 - The cost is 530, the benefit is 3869 and the marginal profit with respect

to R\  is computed as
M P Rt =  (2000 x 0.05) -  446 +  530

=  184.

This semi-join is added so d^  is constructed by the semi-join sequence djo x

d22 X d32.

Reducer for d& The only semi-join to be considered is di3  x  The cost

is 600, the benefit 1800 and the marginal profit with respect to Ri  is calculated as
M P Rl ^  (2000 x 0.2) -  480

=  400 -  480

=  -8 0  => 0 .
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As there is no marginal profit in using no reducer is constructed for »/,a.

Therefore the construction sequences that will be considered consist of the 

following semi-joins:

. 300 ,
<121 — '> «11

, SOO . 330 .
d \o  —‘ (122 —" «32

The reducers produced are and d^*. The size of d ^  is estimated as

500 x 0.5 =  250

and the size of d ^  is estimated as

1400 x 0.53 x 0.6 =  446.

In step 2 of Algorithm W , the use of each reducer is considered. Reducer 

d ^  is considered first, since it is the smallest. The effects of constructing the 

reducer, the relation sizes and the selectivity of rfjj with respect to each relation 

is given below. Next, the effects of using the reducer are considered. The cost

Ri S(Rj) p{d\ i)

1 1000 1.0

2 4500 0.83

3 6000 0.0

of d\x x  d2\  is 250 the benefit is 765, therefore this semi-join is profitable and 

should be appended to the final schedule. Consequently, the use of d*n  implies 

that the semi-join sequence for constructing d ^  should be appended to the final 

schedule prior to its use. Clearly, no other reductions are possible with d\ i  as
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it cannot be used to reduce itself and relation does not have a common-join 

attribute for dn. After the use of the reducer, the reduction effects are estimated 

to be such that |722l =  4500 x 0.85 =  3735.

Next, the use of reducer d y  is considered. The effects of its construction 

on the relation sizes and its selectivity with respect to each relation is shown 

below. The cost of dy x Ri is 498, the benefit is 380; the cost of dy »j R$

Ri S(Rj) p(dy)
1 1 0 0 0  0.62

2 1980 0.93

3 2131 1.0

is 498, the benefit is only 138. Clearly, since neither semi-join is profitable, the 

reducer will not be constructed, leaving the following as the final schedule for 

the construction and application of reducers:

d*i ™ dy R2

In step 3 of Algorithm W those reducers that were not used in steps 1 and 2 

are reexamined, appending any profitable semi-joins to the final schedule. Taking 

into consideration the construction and use of the reducer the current relevant 

statistics are:

Ri S[Rj) S(ia) M i )  S M b ) p M b )

1 1 0 0 0 800 0.53 600 0.60

2 3735 1 0 0 0 0.67 — —

3 6000 1400 0.93 800 0.80

University of 'Windsor, 1995 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Heuristics

The first semi-join considered is d\3  x r/3 3 . The cost is 600 and the benefit 

is 2400 so this semi-join is appended to the final schedule. The current relevant 

statistics1 0  subsequently become

Ri S{R;) S{di2) p{di2)

1 1 0 0 0 800 0.53

2 3735 1 0 0 0 0.67

3 3600 1400 0.76

Reconsidering the semi-join di2 x d22 shows that it has a cost of 800 and a 

benefit of 1755. As a profitable semi-join it is appended to the final schedule. 

The final semi-join to consider is d22 x d$2 which has as cost of 530 and a benefit 

of 2321, therefore it is also appended to the final schedule. As there are no more 

semi-joins to be considered the final schedule produced by Algorithm W is:

. 300 » »* 2o0 n
“ 21 “ *• “ 11 “ 1 1  — ► di3

GOO
dzz Rl

1000
QS

di2 800 d22 R2
1080

QS

d-22
530

ds2 Ri
1279

QS

Based on the sample query Algorithm AHY General (total time) produces a 

schedule with total cost of 7694 units. For the same data Algorithm W produces 

a schedule with a total cost of only 6739 units.

10 Note that it is not possible to correctly estimate the size for however, the maximum it can be is 114S. The 

selectivity is changed to reflect this modification.
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This example illustrates two problems associated with the AHY General (total 

time) algorithm.

1. Because the algorithm constructs reduction schedules for each relation inde

pendently of each other it does not take advantage of the possible use of 

highly effective reducers on other relations.

2. While the reduction schedules arc executed in parallel, there is no synchro

nization mechanism in place to avoid redundant data transmissions11. For 

example, consider final schedules that were produced by the AHY algorithm 

for relations R2 and R3 . Clearly, if these schedules were synchronized only 

one transmission of <ii2  would be required, reducing the total cost by 800 

units.

4.4 ALGORITHM DW

Static strategies, such as Algorithm W  rely on the accurate size estimation 

of intermediate results in order to produce good semi-join schedules. In static 

heuristics, small errors are propagated and typically compounded as the heuristic 

progresses, resulting in sub-optimal schedules [ES80j. In this section we propose 

a purely dynamic version of Algorithm W  which we refer to as Algorithm DW. In 

this algorithm, only one semi-join is examined at a time and executed immediately 

if it is gainful. This heuristic requires minimal monitoring, and does not call for 

any modification of the execution schedule as the dynamic information eliminates

11 Some of these issues are addressed in the COLLECTIVE version of the algorithm however, insufficient details were 

available to permit a comparative performance evaluation.
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any estimation errors. Being a dynamic version of Algorithm W, the complexity 

and cost-effectiveness of Algorithm DW are identical to those of Algorithm W.

In the dynamic heuristic the use of centralized control (the query site) is 

assumed. Information on the sizes of intermediate results arc relayed to the 

control site which decides on the next operation to be performed. Clearly, wc 

incur additional overhead (as discussed in [BRJ89]) but our primary concerns are:

1 . The number of messages that are sent from the relation sites to the query site, 

reporting on the size of partial results. In particular, the number of messages 

required is the same as the number of partial results produced, and we can 

assume that these messages are relatively small since only information on the 

cardinality of the reduced relation (the number of tuples) and the cardinality 

of the attributes of that relation need to be sent to the central site (query site).

2. The possibility of increased response time, since all of the reducers are 

constructed in serial rather than in parallel as in Algorithm W.

4.4.1 Description of Algorithm DW

In the case of the dynamic algorithm, all assumptions and definitions remain 

the same as in the static cases except for a slight variation in the definition of 

the selectivity of one attribute with respect to another. Consider the dynamic 

execution of the following semi-join sequence: daj  x df,j x drj . The selectivity 

of d„ j  w .r.t dbj is estimated as

\<hj\
\D{di } )\
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When the semi-join d„j  x <hj is executed, the cardinality of both the reduced Rh 

and ilbj is know exactly. The selectivity of d*t - with respect to drj  is subsequently 

estimated as

4.4.2 Outline of Algorithm DW

Under the assumption that a query consists of m relations and n join-attributes 

and Let J  be the set of all unused join-attributes and N  the set of join-attributes 

that have been found non-profitable. Initially J  contains all join-attributes and 

N  is empty.

Algorithm DW is executed as follows:

Step 1: From the join-attribute set J, select attribute d;j such that

Vx,y S(d{j) <  S(dXJ/), x  =  1 . . . . . m: y =  1 . . . . , n.

Step 2: Order the attributes dxjby  size such that S{daj )  <  5(<iy) <  • • • <  

S(d,„ j ).

Step 3: Consider the semi-join daj  x  d^j. The semi-join is executed if and 

M P ( d aj  x  dbj) >  0 or P[daj  x  dbj) <  0 but G[daj  x  d^j) >  0. If  the semi-join 

is executed the next semi-join considered is d^- x  dcj ,  otherwise daj  x  dcj  is 

considered. This step is repeated until all applicable semi-joins are considered. 

Remove the common join-attribute j  from J. I f  no semi-joins were performed add 

j  to N  and return to Step I, otherwise continue.
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Step 4: Perform all profitable semi-joins </*j >o R,, where (/* ■ is the reducer 

constructed in Step 3.

Step 5: Remove all common-join attributes from N and add them to J. Repeat 

steps 1 to 5 while J  is not empty.

When the set J  becomes empty Algorithm DW will have applied all of the 

profitable reductions that it was capable of identifying. Finally the reduced 

relations are shipped to the query site.
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Chapter 5 
Evaluation

As noted in [Sel89], little work has been carried out in the validation of 

optimization algorithms. In most cases only analytical comparisons are made 

between algorithms. The use of empirical studies not only provides comparisons 

between algorithms but also a means of evaluating the validity of assumptions 

made and the techniques used.

5.1 METHODOLOGY

The framework for evaluating the algorithms is based on the following 

objectives:

□  To Test Algorithm W with a wide variety of select-project-join (SPJ) type 

queries.

□  To compare Algorithm W  with the Apers-Hevner-Yao (AHY) algorithm.

□  To compare the performance of Algorithm W  with its dynamic version 

Algorithm DW.

University o f Windsor, 1995 55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Evaluation

Some would argue that using only SPJ queries is too restrictive with respect 

to the type of query tested. However, we do not consider this to be a limitation 

since it is possible to translate any query into SPJ form.

5.1.1 The Test Queries

For the evaluations a query is considered to be the statistical information on 

the relations and attributes that are participating in the query after all local site 

processing. While it is unrealistic to construct explicit queries as in [Bod85], 

this statistical representation facilitates the construction of a wide variety of test 

queries.

By varying a number of parameters it was possible to construct queries with 

the following characteristics:

• Each query consisted of between 1 and 6  relations and the number of join- 

attributes varied between 2 and 4. Overall, this gave us 12 different types of 

test queries (e.g. 3 relations -  2 attributes, 3 relations -  3 attributes, etc.)

• The cardinality of each join-attribute domain varied between 500 -  1500.

• Each relation had between 800 and 6000 tuples.

• To provide realistic queries, the number of join-attributes in each relation 

were varied between 1 and the maximum number of join-attributes with the 

restriction that the query remain “connected” in the sense that all relations 

must be joined to answer the query. For our evaluations we considered 3 

levels of connectivity namely, 50%, 75% and 100%. A detailed outline of 

connectivity can be found in Appendix A.
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• Each relation has one other (non-joining) attribute which is required at the 

query site.

Generating the query (statistics table) is accomplished in a 4 step process:

1. Given the number of relations and the maximum number of join-attributes, 

the cardinality of the domain for each join-attribute is randomly chosen.

2. Next, the occurrence of join attributes within each relation are randomly 

determined such that the desired connectivity is satisfied.

3. The cardinality for each join-attribute of each relation is randomly chosen 

such that it does not exceed the cardinality for its associated domain. In 

addition, the cardinality is restricted to guarantee that the selectivity will be 

in the range 0.5 <  p{d{j) <  1.0.

4. Lastly, the cardinality for each relation is randomly chosen such that the 

cardinality of the relation exceeds the cardinality of any of its join-attributes.

The actual query construction is handled by the C program c re -  

a te _ q u e ry .c  (see Appendix B). Given the desired number of relations 

and the maximum number of join-attributes, the program will produce a query 

statistics table as well as the input parameters that are required for constructing 

the actual relations.

5.1.2 The Test Database

A major advantage in adopting the statistical representation of queries is that 

in order to execute a query we are only required to construct the relations that are
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participating in the query (as opposed to having to construct an entire database).

The Wisconsin benchmark database proposed by Bitten, Dewitt and Turbyfill 

[BDT83] provided a good basis for developing the benchmark distributed database 

required for evaluating the queries. For simplicity, as in [BDTS3], only integer 

values are considered. The primary difficulty with using the Wisconsin database 

as defined is that relations are populated with attribute values in an identical 

fashion. For example, suppose it is decided that the domain for some attribute 

say A is 1000, hence the possible values will be in the integer range 0 -  999. If  

for relation R\ attribute A is to have a selectivity value of 0.5, attribute A will be 

populated with the integers 0 -  499. Similarly, if  for relation /?2 , attribute A is 

to have a selectivity of 0.8, attribute A will be populated with values in the range 

0 -  799. Clearly, using this method of populating the attribute values results in 

the creation of key attributes only. As the use of non-key attributes is of concern 

this particular approach to populating attribute values is not appropriate.

The benchmark database employed for evaluation purposed is based essen

tially on the Wisconsin benchmark database [BDT83] with modifications to the 

attribute domain value selection and population methods. The modifications are 

outlined as follows:

1. To overcome the problem of key attributes, the values for a particular attribute 

are randomly selected from the domain pool of values for that attribute. For 

example, suppose the cardinality of the domain for attribute A is 1000, which 

implies that the possible values are 0 -  999. If  attribute A of relation R\

University o f Windsor, 1995 58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Evaluation

is required to have a cardinality of 500 (or equivalently having a selectivity 

of 0 .5 ), 500 different values will be randomly selected from domain, thus 

constituting the actual values for attribute A,

2. When uniformly populating the relation with values, the values for attribute A 

are simply selected in a uniform manner from D[d i„ ) .  Because the attribute 

domain is based on a random selection of values from the overall domain of 

values, the problem of attribute dependance is not encountered.

3. For non-uniform populations, each value in is used once after which

a beta function is used to select each subsequent value. Using each value at 

least once guarantees the correct initial selectivity for the attribute, after which 

the beta function provides a skewed distribution in the number of occurrences 

of each value.

In addition to the statistical information, c re a te _ q u e ry . c also produces 

input files corresponding to each relation in the query. These input files are 

subsequently used by the r e lb u i ld e r . c program to construct the relations 

that are described in the statistical table. Details regarding r e lb u i ld e r . c can 

be found in Appendix B.

5.2 EXPERIMENTAL RESULTS

The performance the heuristics was evaluated with 6  test runs, corresponding 

to each connectivity -  distribution pair (e.g. 50% connectivity -  uniform distribu

tion, 50% connectivity -  random distribution, etc.) Each run consisted of 1,200
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queries. For each query, 100 semi-join schedules were constructed and executed 

using each of the heuristics, recording the costs incurred. Overall, a total of 7,200 

queries were used to evaluate the performance of the algorithms.

Descriptions of each run can be found in Table 5.1. Summaries of the data 

collected for each run can be found in Appendix C.

Run # Distribution Connectivity

1 uniform 1 0 0 %

2 random 1 0 0 %

3 uniform 75%
4 random 75%

5 uniform 50%

6 random 50%

Tabic S.l Descriptions of individual runs.

5.2.1 Relevance of Results

The application of t tests (see Appendix B) to the experimental results 

clearly indicate that for all six experimental runs, the differences observed in the 

percent reduction of Algorithm W to that of the AHY Algorithm are statistically 

significant. In particular, the probability that the results are due to chance under 

198 degrees of freedom is approximately 1:10,000. This is not the case for the 

comparison of Algorithm DW to Algorithm W.

Given the relative similarity in results for Algorithms DW and W it is not 

surprising to find the difference in percent reduction was not found to be significant 

in all runs. In Table 5.2, the runs in which it was not possible to disprove the
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Query Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

3-2

3-3

3-4

- - - - - -

4-2 - - - - - -

4-3 - ■ - ■ - -

4-4 - ■ - ■ - ■

5-2 - ■ — - - —

5-3 ■ ■ ■ ■ - -

5-4 - ■ ■ ■ ■ —

6 - 2 - - - ■ ■ -

6-3 ■ ■ ■ ■ ■ -

6-4 ■ ■ ■ ■ ■ ■

Table 5.2 Statistical relevance of differences between Algorithm DW and Algorithm W.

null hypothesis (that the differences in the means arose by chance) are indicated 

by a square. Clearly for uniform distributions (runs 1, 3 and 5), the results are 

significant for queries 3-2 to 5-2. For random distributions (runs 2, 4 and 6 ), the 

results are only significant for queries 3-2  to 4-2. Additional experimentation 

with larger run sizes should be conducted to determine whether the questionable 

runs are in fact significant.

53 CONCLUSIONS

53.1 Algorithm W versus AHY (total cost)

The following conclusions are made based on the results of the test runs: 
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A H Y vs W  (Uniform-100%)

o3
0 £

; AHY Aljjonihm 

| Algorithm W

3-2 3-3 3-4 4-2 4-3 4-4 5*2 5*3 5-4 6-2 6-3 0-4

Q uery T ype

A H Y vs W  (Random-100%)

70

B  AHY Algorithm 

|  Algorithm W

3-2 3-3 3-4 4-2 4-3 5-2 5-3 5-4 6-2 6-3 6-4

Q uery Type

Figure 5.1 W -  AHY cost comparisons for 100% connectivity.

□  Overall Algorithm W  performs satisfactory in reducing the volume of network 

data transfers during the query processing. On average it provides a reduction 

of between 32% and 97% (approximately) over the unoptimized total cost12.

12 Note, the degree is reduction is dependent upon the number of join-attributes as well as the overall connectivity of 

the query.
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EJ AHY Algorithm 

|  Algorithm W

:»2  3-3 3-4 4-2 4-3 4-» 5-2 5-3 5 -*  6-2 6-3 6-4

Q uery Type

E l  AHY Algorithm 

H  Algorithm W

3-2 3-3 3-4 4-2 4-3 4 -4  5-2 5-3 5 -4  6-2 6-3 6-4

Q uery Type

Figure 52 W  -  A H Y  cost comparisons for 75%  connectivity.

□  Algorithm W  clearly outperforms AHY (as illustrated in Figures 5.1-53). 

On average Algorithm W  outperforms AHY by approximately 18%. The 

greatest difference in performance is found in those queries involving only 

two join-attributes, with queries involving three relations being an exception.

□  Results indicate that Algorithm W performs well under both uniform and 
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A H Y vs W (Uniform-50%)
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Figure 5 3  W  -  A H Y  cost comparisons for 50% connectivity.

random data distributions.

□  Null queries13 were a frequent occurrence in the 100% connectivity queries. 

In particular, the null queries occurred most frequently above the 4-2  query 

type. From Figure 5 3  and Tables C.1 and C.2 it is evident that the execution 

schedules produced by Algorithm W  produce a null query very quickly due

13 A null query simply refers to an empty solution.
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to the manner in which the schedules are constructed. AHY by contrast, 

produces a null query late in its execution or not until all of the all of the 

final relations are joined. Clearly, it is advantageous to identify null queries 

as early as possible, thus minimizing the amount of unnecessary network data 

transfers.

□  Algorithm W does not suffer from the synchronization and redundant trans

mission problems that arise from attempting to optimize the schedules pro

duced by AHY General (total time).

53.2 Algorithm W versus Algorithm DW

A comparison of Algorithm W to Algorithm DW  was undertaken to answer 

the following questions:

W ill a purely dynamic heuristic outperform its static counterpart ?

For the most part the answer is unequivocally “no” (see Figures 5.4-5.6) 

however, the relevance tests indicate that further experimentation is required for 

query types greater than 5-2 under uniform distributions (and for query types 

greater than 4-2 for random distributions). Overall, Algorithm W outperforms 

DW by 2% to 6% on average (approximately). In the case of the three relation, 

two attribute query type, the difference is quite significant. This is a result of the 

naive strategy adopted by Algorithm DW. Clearly, the availability of up to date 

information is not sufficient for the heuristic, hence some method most be provided 

to take into account any global conditions. Currently, the greedy approach used by 

DW considers the execution of a semi-join with no form of “look ahead” except
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for the calculation of marginal profit. In addition, the decision to begin with the 

cheapest semi-join may not lead to the construction of the best reducer. If  for a 

particular semi-join the anticipated reduction does not occur, the execution of that 

semi-join has become an unneeded cost expenditure. In large queries these wasted 

transmissions are generally countered by improvements gained over the course of 

the execution of the query. However, in small queries the limited number of 

semi-joins does not allow DW to recover from "poor” semi-joins.

The problem is to design an improved algorithm which will construct the 

“best” reducer first while still attempting to minimize the overheads. The results 

clearly indicate that further research is required in this area.

W ill the response time o f a dynamic heuristic (DW) increase due to the in

creased number o f serially executed semi-joins ?

In most cases a significant increase in response time is experienced however, 

in some cases with large queries under 50% connectivity the response time is 

actually improved with respect to Algorithm W. (See Table C.7). However, the 

question of relevance along with the proposal of an improved heuristic requires 

that further testing be performed in order to fully answer this question.

Does the transmission o f the statistics regarding intermediate results back to 

the query site constitute a significant cost ?

Based on the results, the transmission of the statistics of intermediate results 

does not constitute a significant cost In the significant cases, this overhead does 

not exceed 3% of the overall total volume of data transferred to process the
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Figure 5 .4  W  -  D W  cost comparisons for 100% connectivity, 

query. (See Table C.8)
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W  vs DW  (Uniform-75 %)

H  Algorithm W 
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3-3 3-4 4- :  4-3 4-4 3-2 5-3 5-4 6-2 6-3 6-4

Query Type

£w
C
u3T3
cc

W  vs DW  (Random-75 %)

H  Algorithm W 

■  Algorithm DW

6-3 6-4

Query Type

Figure 5 i  W -  D W  cost comparisons for 75%  connectivity.
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W vs DW  (Uniform-50%)
Algorithm W 
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Figure 5.6 W  -  D W  cost comparisons for 50%  connectivity.
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Chapter 6
Conclusions and Future Work

Two new semi-join based heuristics for minimizing the total volume of net

work data transfers in distributed query processing have been presented. Algo

rithm W  is a static heuristic which uses the concepts of profit, maiginal profit and 

gain to construct inexpensive and highly selective reducers. Algorithm W has 

been shown to be both efficient and cost effective with a worst case complexity 

of O (71m2) and a best case complexity of 0{nm ).  Algorithm DW is a purely 

dynamic version of Algorithm W  which executes semi-joins in a greedy one at 

a time manner. Unlike other dynamic heuristics proposed, DW does not require 

schedule monitoring or reformulation during execution.

The experiments using random data distributions indicate that heuristics using 

a uniform data distribution assumption do not experience any noticeable drop in 

performance. Additional experimentation should be carried out on very large 

relations to see if  this is still the case.

Extensive testing of the algorithms indicate that Algorithm W  consistently 

outperforms the Apers-Hevner-Yao (AHY) General (total time) algorithm. Re-
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suits seem to indicate that the Algorithm W outperforms Algorithm DW. even 

though the differences were not significant. It should be noted that the lack of 

relevant statistical results suggest that additional experimentation is required to 

form a definitive answer. It was also shown that the overheads associated with the 

dynamic heuristic were minimal with respect to the overall cost, thus illustrating 

that the use of up to date information does not require extensive overhead. Ac- 

knowledging that Algorithm DW is essentially a very naive and simple heuristic, 

it is clear that further research is required to determine whether it is possible to 

develop a dynamic heuristic which will provide any significant improvement over 

Algorithm W.

6.1 FUTURE WORK

Continued development of both static and dynamic heuristics. Some specific 

examples include:

• Modify algorithm W  to use marginal profit as the selection criteria, as opposed 

to the current method based on minimum cost.

• Using the concept of marginal profit, develop a new dynamic heuristic which 

constructs reducers using more than one common-join attribute.

• Investigate the use of bloomfilters [Mul90, Mul93] in a dynamic heuristic. 

The characteristics of bloomfilters suggests that they can provide insight into 

the relative reduction capabilities of each of the join-attributes.
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Another key area of continued research is in the development of more 

sophisticated and flexible benchmark database. The desired database should allow 

for the use of primary keys, foreign keys, and composite keys. In addition, 

controls would be added to provide some degree attribute distribution and attribute 

dependance in order to more closely model real world data. Lastly, the software 

for constructing the database should be flexible enough to allow for random 

database generation, based on predefined parameters or manual construction via 

a user interface.
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Appendix A
Connectivity

The term “connectivity” is used to describe the general underlying presence 

of join-attributes within a query. For any query it is somewhat unrealistic to 

assume that every relation will have an occurrence of each join-attribute. To 

allow for varied occurrences of join-attributes within relations, the probability 

that a relation will have a specific join-attribute is based upon some probability. 

For the experiments conducted in this thesis, these probabilities were chosen to be 

50%, 75% and 100%. It is important to note that the use of probabilistic selection 

alone will may not result in a valid query. For the heuristics presented in this 

thesis, the following conditions must be satisfied:

1. At least two relations must have an occurrence of the same join-attribute.

2. It must be possible to join every relation to form a single conjunctive normal 

form query.

To determine whether condition 2 holds, a graph is constructed with the 

relations as the nodes and the join-attributes as the edges. Condition 2 holds if 

it can be shown that the graph is fully connected, hence the term “connectivity”.
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Therefore, a query with connectivity of 50% refers to one in which approximately 

half of the join-attributes do not occur within the relations. It is important to note 

that these percentages are approximations with respect to the queries of 5 and 6 

relations. The exact minimum coverage (%) is given by the formula

277?. — {77. — 2}
  --------  x 10 0 . 77. > 2 : r?7. > 1

77.777

where m represents the number of join-attributes and n the number of relations.

Proof. Let 77. =  2 and m be some arbitrary positive integer. With only two 

relations, condition 1 requires that each relation must have an occurrence of each 

of the m join-attributes. This also guarantees that condition 2 holds as well. 

Therefore, for two relations the minimum coverage is 100%. Hence the formula 

holds for 7?. =  2.

Clearly, for each additional relation that is added to the query, it only requires 

the presence of one join-attribute (i.e. 77. — 2) in order to satisfy condition 2. 

Condition 1 will always be satisfied as the first two relations must have an 

occurrence of every join-attribute.

Hence, the formula computes the exact minimum coverage (%) of join- 

attributes for a query involving n relations and m join-attributes. □
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Appendix D
WWW Availability

Copies of this thesis, the programs described within, and the raw statistical 

results are available via the World Wide Web at the following URL: 

http:ZAvww.cs.uwmdsor.ca/meta-mdex/research/dbrg/

The programs used in this thesis are given in the following table.

File Name Description

create_query.h The header file for the create_query.c program.

create_query.c Program for creating the query statistics.

relbuilder.h The header file for the relbuilder.c program.

relbuilder.c This program uses the query statisics to constuct actual 
relations that match the statistical characteristics. Note, 
this program allows for either uniform or random data 
distributions when generating the relations.

betaf.c The function used to generate the random distributions.

ahy.h The header file for the ahy.c program.

ahy.c The main logic for the Apers-Hevner-Yao Algorithm 
General (total time).

wJi The header file for the w.c program.

w.c The main logic for Algorithm W heuristic.
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DW.h The header file for the DW.c program

DW.c The main logic for the Dynamic W heuristic.

dyn_sjoin.c Program for executing semi-joins in the Dynamic W  
heuristic.

runAHY.c Program for executing the schedules produced by the 
AHY algorithm on the physical database.

ninW.c Program for executing the schedules produced by the 
Algorithm W on the physical database.

sjoin.c The function for executing semi-joins between the 
physical relations.
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Appendix w
Result Summaries

C.1 TOTAL COST

The experimental results for total cost analysis have been summarized into 

the following tables. Query types are given in column 1. The entries in each row 

(query type) represent the average over 100 runs. Column 2 gives the percentage 

by which the AHY algorithm reduces the unoptimized total cost; similarly columns 

3 and 4 represent the respective percent reductions obtained by Algorithm W and 

DW. Column 5 shows the percentage improvement of Algorithm W over AHY 

and column 6 gives the percentage improvement of Algorithm DW over W. The 

averages over all of the query types are given at the bottom of the table.
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Type AHY W DW W-AHY DW-W

3-2 46.29 61.70 51.58 15.41 -10.12

3-3 59.93 77.48 70.83 17.54 -6.64

3-4 71.66 89.10 85.58 17.44 -3.53

4-2 57.65 78.43 69.96 20.78 -8.47

4-3 72.07 91.97 89.87 19.90 -2.11

4-4 79.14 95.50 94.96 16.36 -0.53
5-2 62.98 87.12 82.09 24.14 -5.03

5-3 76.83 95.67 94.90 18.84 -0.77
5-4 83.13 97.08 96.76 13.95 -0.32

6-2 70.51 93.64 92.00 23.13 -1.63

6-3 80.98 97.12 97.12 16.14 0.01
6-4 83.97 97.71 97.47 13.74 -0.24

Averages: 70.43 88.54 85.26 18.12 -3.28

Table C .I Uniform distribution with approx. 100% connectivity.
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Type AHY W DW W-AHY DW-W
3-2 48.66 63.70 55.79 15.04 -7.91
3-3 61.15 79.56 74.02 18.41 -5.54
3-4 71.70 89.78 85.53 18.08 -4.25
4-2 60.62 79.72 74.02 19.10 -5.69
4-3 72.93 92.33 91.64 19.41 -0.70
4-4 79.32 95.84 95.39 16.52 -0.45
5-2 65.53 87.72 87.07 22.19 -0.65
5-3 77.62 95.77 95.21 18.15 -0.56
5-4 83.76 97.30 97.09 13.54 -0.21
6-2 73.16 94.35 91.88 21.19 -2.47
6-3 80.75 97.04 97.07 16.28 0.03
6-4 84.82 97.81 97.71 12.99 -0.10

Averages: 71.67 89.24 86.87 17.57 -2.37

Tabic CJ2 Random distribution with approx. 100% connectivity.
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Type AHY W DW W-AHY DW-W

3-2 32.56 43.14 32.16 10.59 -10.99

3-3 46.37 60.02 49.23 13.65 -10.79

3-4 56.88 74.36 68.08 17.48 -6.28

4-2 46.02 61.55 52.81 15.53 -8.74

4-3 55.72 74.04 67.84 18.32 -6.21

4-4 65.25 85.47 80.27 20.21 -5.19

5-2 52.08 70.94 65.07 18.85 -5.86

5-3 63.72 85.84 83.16 22.12 -1.97

5-4 71.34 92.35 90.38 21.00 -1.97

6-2 56.72 80.82 76.47 24.09 -4.34
6-3 67.32 90.07 88.15 22.75 -1.92
6-4 74.45 94.56 93.54 20.11 -1.01

Averages: 57.37 76.10 70.60 18.73 -5.50

Tiblc C 3 Uniform distribution with approx. 75% connectivity.
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AHY W DW W-AHY DW-W

3-2 33.93 45.44 37.78 11.51 -7.66

3-3 47.80 62.73 53.39 14.93 -9.34

3-4 56.08 73.58 65.37 17.50 -8.21

4-2 46.22 61.03 54.86 14.81 -6.16

4-3 57.31 75.84 71.75 18.53 -4.09

4-4 64.22 83.59 81.93 19.37 -1.66

5-2 53.83 74.21 68.72 20.38 -5.50

5-3 62.65 83.92 82.08 21.27 -1.84

5-4 71.52 91.16 89.31 19.63 -1.85

6-2 -1.85 81.64 79.07 22.61 -2.57

6-3 67.91 89.74 87.78 21.84 -1.96
6-4 75.64 95.80 95.11 20.16 -0.69

Averages: 58.01 76.56 72.26 18.54 -4.29

Tabic C.4 Random distribution with approx. 75% connectivity.
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AHY W DW W-AHY DW-W
3-2 22.96 31.99 23.28 9.03 -8.71
0-0 34.20 45.95 36.14 11.76 -9.S2
3-4 44.45 60.10 49.37 15.65 -10.73
4-2 33.31 46.47 40.05 13.16 -6.42
4-3 41.02 57.06 49.78 16.04 -7.27
4-4 4 39 66.02 58.01 17.63 i 00 o

5-2 38.44 57.01 51.23 18.57 -5.78
5-3 46.86 65.59 60.73 18.73 -4.86
5-4 49.25 70.05 64.88 20.80 -5.17
6-2 45.36 69.50 63.01 24.14 -6.49
6-3 51.15 75.23 71.40 24.08 -3.83
6-4 55.85 80.22 76.54 24.36 -3.67

Averages: 42.60 60.43 53.70 17.83 -6.73

Table C.5 Uniform distribution with approx. 50% connectivity.
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Type AHY W DW W-AHY DW-W

3-2 24.82 34.63 25.32 9.82 -9.32

3-3 34.82 48.08 38.96 13.27 -9.12
3-4 44.74 59.67 51.96 14.92 -7.71

4-2 34.21 49.66 41.56 15.45 -8.10
4-3 40.29 56.68 50.85 16.39 -5.83
4-4 49.15 67.66 62.48 18.52 -5.18

5-2 39.00 57.98 51.99 18.98 -5.99
5-3 46.93 66.28 61.32 19.35 -4.96
5-4 49.94 70.87 63.68 20.94 -7.19
6-2 47.46 71.55 64.44 24.10 -7.11

6-3 50.95 73.86 67.53 22.91 -6.33
6-4 58.04 81.80 80.13 23.75 -1.66

Averages: 43.36 61.56 55.02 18.20 -6.54

Table C.6 Random distribution with approx. 50% connectivity.

C-2 RESPONSE TIM E

The following Table summarizes the percent increase in response time that A l

gorithm DW  incurs over Algorithm W. The columns correspond to the individual 

test runs which are described in chapter 5.
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TVpe Run 1 Run 2 Run 3 Run 4 Run 5 Run 6
3-2 72.12 72.38 76.71 67.70 70.06 83.78
3-3 65.16 66.71 80.69 81.94 60.20 54.65
3-4 67.62 63.74 59.69 59.69 45.80 46.32
4-2 78.12 86.36 96.46 73.76 87.80 85.12
4-3 62.63 71.03 71.05 71.12 29.83 21.98
4-4 71.36 52.90 65.17 61.96 10.49 9.12
5-2 77.22 69.73 78.72 88.35 62.29 32.38
5-3 66.84 83.32 57.35 50.00 17.25 11.00
5-4 64.87 88.63 46.63 49.47 5.10 3.22
6-2 70.88 86.11 76.38 67.95 26.23 40.07
6-3 72.07 75.20 48.59 72.68 -4.77 -3.54
6-4 79.21 55.27 36.30 24.75 2.31 -2.53

Averages: 70.67 72.62 66.14 65.21 34.38 31.80

Table C.7 Percentage increase in the response time for Algorithm DW over W.

C3  OVERHEAD COSTS

The following Table summarizes the costs incurred by overhead in Algorithm 

DW  as a percentage of the overall total cost.
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Type Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

3-2 0.05 0.05 0.06 0.08 0.12 0.14

3-3 0.10 0.11 0.13 0.15 0.30 0.35

3-4 0.17 0.19 0.32 0.27 0.82 0.83
4-2 0.08 0.09 0.12 0.12 0.22 0.26

4-3 0.13 0.13 0.25 0.28 1.02 1.30
4-4 0.20 0.24 0.50 0.60 2.45 2.79
5-2 0.11 0.12 0.17 0.21 0.41 0.62
5-3 0.18 0.19 0.52 0.49 2.00 2.21
5-4 0.24 0.23 1.08 0.99 3.52 3.95

6-2 0.17 0.18 0.29 0.35 0.99 0.95
6-3 0.28 0.24 0.76 0.73 3.48 3.57
6-4 0.39 0.47 1.55 2.18 4.06 4.62

Averages: 0.18 0.19 0.48 0.54 1.62 1.80

Tisble C.8 Overhead as a percentage o f the total cost in Algorithm DW.
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