University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

2002

Incremental object horizontal fragmentation.

Pinakpani. Dey
University of Windsor

Follow this and additional works at: http://scholaruwindsor.ca/etd

Recommended Citation
Dey, Pinakpani., "Incremental object horizontal fragmentation." (2002). Electronic Theses and Dissertations. Paper 2421.

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at $19-253-3000ext. 3208.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F2421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/2421?utm_source=scholar.uwindsor.ca%2Fetd%2F2421&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Incremental Object Horizontal
Fragmentation

By

Pinakpani Dey

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the School of Computer Science in
Partial Fulfillment of the Requirements for
the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2002

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence

Our bile Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-80502-6

| 13 |

Canada

Pinakpani Dey 2002

© All Rights Reserved

il

Abstract

In intranets, extranets and internet applications, data are by nature complex and
distributed over different sites. Object-oriented database management systems meet the
requirements of these applications. It offers complex structures, object identity, inheritance
between classes and extensibility to capture complex data. A distributed database system
partitions large and complex data into smaller pieces and allocates them at different sites to
enhance application performance by reducing data communication and replication costs. The
design issues of distributed database system require solving several interrelated problems: data
fragmentation, allocation and optimization. There are three types of fragmentation — horizontal,

vertical and hybrid.

Horizontal fragmentation of a class keeps all attributes and methods of the class but some
instance objects in each horizontal fragment. In other words, a horizontal fragment is a subset of
class extent or instance objects. Application queries, query access frequencies, instance objects,
and object database schema including class composition hierarchies and class inheritance are
used as input to generate these fragments. When there are major changes in these input over
time, the performance of the distributed object-based system degrades and requires re-
fragmentation. The re-fragmentation is started from scratch with static fragmentation approach
using all input data (old and changed part).

In this thesis, we propose a new algorithm called Incremental Object Horizontal
Fragmentation (IOHF) for distributed object-oriented database systems. This algorithm uses the

changed part of input data and previous fragments to define new fragments more quickly, saving

system resources and making data at distributed sites more available for network and web access.

Keywords: Object-oriented databases, Incremental horizontal fragmentation, Distribution

iv

To my parents and wife,

To my teachers,

To my friends,

Acknowledgements

I would like to take this opportunity to thank the people who help me during my graduate study

in University of Windsor.
Thanks to my advisor, Dr. Christie Ezeife, for your help and cooperation that enabled me to
complete my degree. Thank you, for your precious consulting time and comprehensive guidance

through out my graduate studies and thesis research work.

I would also thank my internal reader, Dr. Xiao Jun Chen and external reader, Dr Nader Zamani.

Your comments, questions and suggestions helped me to improve the thesis quality.
I would like to thank, Dr. Arunita Jaekel for chairing my thesis committee.

I would like to thank my parents, wife, brothers and sisters for encouraging me to complete my

M. Sc. degree.

Special thanks to my colleagues of AIT Systems Inc., for their cooperation and encouragement,

that inspires me to accomplish this degree.

Finally, I would like to thank all my friends for their support, advice and help during my M. Sc.
Study.

vi

Table of Contents

Chapter 1: INtrodUCHIONccceeueeerieirericicriierciee e 1
1.1 The revolutionary approach — Object-Oriented Database Systems............ccceeueenenne. 2
1.2 The evolutionary approach — Object-Relational Database Systems........ccoeverreannnes 3
1.3 Distributed Object-Oriented Database SyStems........coocevvvveinvinnniineienninnnnnenieenne. 4
1.4 Thesis Problem and Contributions..........ccccocevvineviniininninnieiiiene e 8
1.5 Outline of the Thesis Proposal DocUmentcocceevienirvmniinniciniinnnnnnoeeeiesneenns 9
Chapter 2: Previous/Related Workcccoceeenieeniiiiniininiininiiieiennecnns 10
2.1 DEfINItIONS ..eouvieeeiriririreiieieeeeie ettt ceresbe st ste st e st esae s s e sab e s s srasssassanassnsean 10
2.2 Horizontal Fragmentation.........ccoceecceverieeneesienniencnienienienereneieesiesneesnessessenes 11
2.3 Performance Evaluation of Distributed Object-Oriented Database System......... 18
2.4 OODBMS Application in Real Worldc.cccccoevvnicinnniniiniieiininicne, 19
Chapter 3: Incremental Object Horizontal Fragmentationcc.ccecceeuenne. 21
3.1 DEfINItONS ..vveeeiiriiierieete e teriessresieesaeste st e tae e es e s sesseesseseseeaseesassasessnonsesernocns 21

3.2 The Proposed Incremental Object Horizontal Fragmentation (IOHF)
ALGOTIEIIM ciiinieeieeeceecee ettt et ettt sbe st e ne s e e b e e e 22
3.2.1 Changes in Application Access Patternccceecvveevecevenivececcciennne. 29
3.2.2 Changes in Application Query Access Frequencies.................cccvvvevueneene. 34
3.2.3 Changes in class RIEFATCRYcoueccveeeeeeeieeiieieseeseeersie e ieese v eiaens 35
3.2.4 Changes in ObjJect INSIANCESocueeeeeeverereiresieeeeseeereeiee e eeesreseseeneeens 39
3.3 Correctness of IOHF compare to OOHF...........ccccocevvericrniiniinccrnniineniincnnnes 43
3.3.1 Changes in Application Access Patternccoeeeeoeeeneveeceeseenenennenn. 43
3.3.2 Changes in Application Query Access Frequencies.............cuvveevecnnnnn. 47
3.3.3 Changes in class Bierarchycccccuvieneneieseneieieseneeeseeeseeeaee 49
3.3.4 Changes in Object INSIANCEScccoreeeverecerieniaieeeieiesieneeneesee e 53
Chapter 4: Performance ANalysisc.ccoceevveevreeneeneeecreeireeereeeireesveeeeeennes 57
4.1 Theoretical ANAlYSiS.......ccevirerverririeirererienieserrenreieasseseesesessessesasssssnssessessessessesseses 57
4.2 Experimental EvalUationccccceecveceriiiiiiniienieseeseeesseeseeeseesneseesssesvseessesnseens 59
4.2.1 Execution Time for Dataset I..............ccocuecevceevieeviieienieseesiesssessssesssnens 59
4.2.2 Execution Time for Dataset 2.............cccovveuviriveienseeseeserieneeesseenessseessesannes 61
4.2.3 Execution Time for Dataset 3.........ccccocvueiviieieisieieiniieenniieiesiieseieeeereneceeenne 63
Chapter 5: Conclusions and Future Research...........cccoveeveevivervenveenveenneenne. 65
5.1 Future RESEAICHc.civiiieiiiieirtecrtccrcintsee et se s s besae e e e eaans 65
RELEIENCESveviiiinieiiiesteiceete ettt st b bbb eas et eanene 66
VLA AUCHOTIS «.eveveeverieieieesiceiesteteesiesaeestesee e teesesesse e eseesessessereeressasseesenns 70

vii

List of Figures

1.3.1 Top-Down Approach for Distributed SYStem.........ccecvvvervvirerereriienenenerreencreeereeseenne 6
2.2.1 Sample Object Database SChema..........ccceererviirirerenieniiniiiicccree e erne s 12
2.2.2 Class Inheritance HIrarChyccocueveevierienieeieinienientesieetesce st esreeresseeesaesrsesnesseneesans 13
2.2.3 Class Composition HI€rarchycccceevceerireriemniersericennieeseenseteseeseeessssesssneeseressesacens 13
2.2.4 ApPPlICAtION QUETIEScccveeieerriiiriirieereeesneseressseesssnessesensessssessensssnsssseessstessstossnneessossosse 13
3.2.1 The Algorithm Incremental Horizontal Fragmentation (Part I)........c.ccecvereeereirernvccenne 23
3.2.2 The Algorithm Incremental Horizontal Fragmentation (Part I)cccccevervieeienccnnnne 24
3.2.3 The Algorithm Incremental Horizontal Fragmentation (Part III)cccccecvveveiuercnenneen. 25
3.2.4 Sample Object Database SChema.........ccccocevverieriiiriininnecteninecece e 26
3.2.5 Class Inheritance HIerarchycccecvvrieivieerieeniieiieeseeesenesnessrsesesesorsesonsessssesossassssasesons 27
3.2.6 Class Composition HIerarchycocecereeecericierinninteneenesieeeseenesisresseennesesssneesnes 27
3.2.7 ApPlication QUETIESeeeuverieerereirireriieereesreesseessresseseeseeesseesssesssassssesssassssassssasssssssssanasses 27
3.2.8 ACCESS FTEQUENCIEScovveeviiieririiiiiiiicienteiestentesttsee et ete s eseeeressessseseesenensessesaessssssaesness 28
3.2.9 Horizontal Fragments.........ccccereerierierieereeseenessininsesssesesseessesssesssesssssssessesssessserssesssasssses 28
3.2.1.1 New Queries — Changes in Application Access Patterncococceveveerueceereenenicncencneeneens 29
3.2.1.2 Primary and Derived Access Frequencies — Changes in Application Access

PAtOIm ..ottt sttt ettt s s e e e e e be e snee s eennes 32
3.2.3.1 Class Inheritance Hierarchy — Adding New Class.........ccccccerererrerivenrerreneenerscrneecnennees 36
3.2.3.2 Composition Hierarchy — Adding New Class........cccceeeererierrennrienieeneneeeneesirenseeeeneenenes 36
3.2.3.3 Sample Object Database Schema — Adding New Classccccevvverreevrernierencreeneeseeeens 36
3.2.3.4 Application Queries — Adding New Class.....c.cccccevererrerrrrrrereeierinneeneesinereeseesnsssesecssens 37
3.2.4.1 New Instances and Access Frequencies — Changes in Object Instancescceeueeenen. 40
4.2.1.1 Execution Time (Bar Graph) — Dataset 1ccccocveriiriinenvienieiniinniesneneeniesseesseeesseensnns 61
4.2.2.1 Execution Time (Bar Graph) — Dataset 2ccccovuerevmneieriiniieniesiesenieeseessesssessesnessees 62
4.2.3.1 Execution Time (Bar Graph) — Dataset 3coccceeeeieeieeeieiereeeieereeeeee e seeesveesseeenes 64

viii

Chapter 1: Introduction

In the era of information technology, database systems have become an essential
component of everyday life in modern society. In the course of a day, most of us encounter
several activities that involve some interaction with a database [EN0O]. Most of these data are by
nature complex and can not be mapped into a two dimensional table in a traditional relational
database management system (RDBMS) - for example, data for engineering design and
manufacturing (e.g., CAD/CAM and CIM), scientific experiments, telecommunications,
geographic information systems, and multimedia. Traditional RDBMS is not adequate to support
these types of applications that have much more complex kinds of data. Hence, the database
researchers want to develop a database management system that can manage complex data.
There are two different trends for developing database management system for complex data
[KIM90]. These are:

(1) The revolutionary approach: Here, database research is based on a new data model, the
object-oriented model [Ram98][KG94], which leads to object-oriented database
management system (OODBMS). For example, Jasmine, Gemstone, O2, Object Store,
Objectivity/DB and Versant ODBMS are some of the existing object-oriented databases.

(2) The evolutionary approach: In this research and development work, the conventional
relational model is taken as a platform for extensions and adaptations to produce object
relational database management system (ORDBMS). For example, Oracle 9i, Universal
Server (Illustra), Universal Database (DB/2 Extenders), UniSQL/X, OSMOS and

JDataStore are some of the existing object relational databases.

With increasing availability of enhanced network and data communication protocol, from
satellite and cellular communications to the standardization of protocols like ethernet, TCP/IP
and internet, distributed database (DDB) technology needs to merge database, network and data
communication technology. A distributed database system partitions large and complex data into
smaller pieces and allocates them at different sites to enhance application performance by
reducing data communication and replication costs. Electronic commerce over the internet,
multimedia applications, such as news-on-demand or medical imaging, and manufacturing

control systems are all examples of distributed systems.

1.1 The revolutionary approach — Object-Oriented Database

Systems

An object-oriented system is a collection of objects classified into a finite number of
classes. Objects that have the same attributes and methods belong to the same class. This model
is more powerful and complex than the relational model. For example, to store multimedia
information, databases must store various types of multimedia objects, such as video, audio,
images, graphics and documents.

A data model is a logical organization of real world objects (entities), constraints on
them, and relationships among objects. A data model that captures object-oriented concepts is an
object oriented data model. An object-oriented database is a collection of objects. The behavior,
state and the relationships among objects are defined in accordance with an object-oriented data
model. “An object-oriented database system is a database system, which allows the definition
and manipulation of an object-oriented database” [KIM90]. An object-oriented database can also
be defined as a collection of encapsulated objects.

A class C is represented as an order relation such as C = (K, A, M, I) [EB95], where K is
a class identifier, A is a set of attributes, M is a set of methods for accessing these attributes and I
is a set of instances of objects. Object-oriented database also supports inheritance. For example,
class B is a subclass of A, if class B can inherit all attributes and methods of its superclass A. An
object can be a simple or complex object and can establish is-part-of relationship with other
objects. A group of experts in object-oriented DBMSs published the object-oriented database
system manifesto in 1989 as a standard [ABDDMZS89]. A standard OODBMS should include
complex objects, object identity, encapsulation, classes, inheritance, polymorphism,
computationally completeness, extensibility, data persistence, very large databases, concurrency,
recovery, and ad hoc queries features [Rao94].

The first step in defining an object-oriented data model [WT96] is to simply observe and
record the objects in the domain. For example, formulate a description of the solution and
identify the candidates for being the objects in the data model. Then, identify the characteristics
of these objects, which are the object attributes. Examining the logical dependencies among the

objects identifies different kinds of association. Analyzing the system decomposition into

subparts can identify the object relationships. Examining the responses of objects identifies
different kinds of methods. Finally, the classifications of objects into an inheritance structure can
figure out common characteristics and behaviors between objects. These steps are completed in
an iterative fashion until the complete data model has been defined.

According to research in [BF95a] [RBKW91] [Ru94] and [CM94] the following
advantages of OODB system are presented.

* Providing direct modeling of complex and nested objects: For example, a
DEPARTMENT object may have five attributes DNAME, DNUMBER, MGR,
LOCATIONS, and EMPLOYEES. Here, DNAME and DNUMBER are basic data type
(string). MGR, LOCATIONS and EMPLOYEES are complex data type (class).

* Organizing classes (types) into inheritance hierarchies: For example, PROFESSOR and
STUDENT classes can be inherited from the same class PERSON.

= Supporting high-level declarative object query languages (OQL): This is an important
feature, which has been retained from the relational model to reduce application
development times. For example, to retrieve the names of all professors whose salaries
are greater than $60,000 can be written as “select p.NAME from p in PROFESSOR
where p.SALARY > 60000”.

1.2 The evolutionary approach — Object Relational

Databases Systems

To support navigation, security, rollback, backup, recovery and data integrity, a new
database class was born called object relational database management systems (ORDBMSs).
“Object relational DBMSs are relational in nature because they support SQL; they are object-
oriented in nature because they support complex data. In essence, they combine SQL from the
relational world and the modeling primitives from the object world” [SM96].

The object relational system is the evolutionary method of RDBMS, but there are various
approaches for extending relational DBMS with object-oriented concepts. The basic idea is an
extension of the “flat” relational data model with constructions that allows for definition and
manipulation of complex objects [Sz96]. In [SM96], Stonebraker and Moore, describe object

relational database management systems (ORDBMS) having at least the following set of features

as an extension to relational database systems (RDBS): user defined objects, complex objects,
inheritance, and rules. There are two kinds of data types in an ORDBS - atomic and structured
data types. Atomic data types are built in simple types e.g., integer, string etc. Structured data
types are called complex objects or complex types and user can define these types. The functions
can also be defined on both atomic and complex types. Functions can be defined in several
languages e.g., SQL, C, Java, but this depends on the support from the DBMS. Multiple

inheritances are also supported by the systems.

1.3 Distributed Object-Oriented Database Systems

With advances in distributed processing and distributed computing that occurred in the
operating systems arena, the database research community did considerable work to address the
issues of data distribution, distributed query, transaction processing, distributed database and
metadata management. They also developed many research prototypes [ENQO].

A distributed database is a collection of multiple logically interrelated databases,
distributed over a computer network, including intranet and internet. A distributed object based
system is a collection of local object based systems that are distributed among different local
sites and interconnected by a communication network [EB98]. In distributed object based system
(DOBS), class is the entity of distribution [EB95]. A distributed database management system
(distributed DBMS) is then defined as the software systems that permit the management of
distributed database systems (DDBS) and makes the distribution transparent to its users [RZ95]
[OV99]. The DDBS technology should recognize the following four fundamental premises
[OV99].

(1) Transparent management of distributed and replicated data: Transparency means that
the user of the distributed database is shielded from details of data distribution. For
example, user at site A does not need to know that the data he needs in his query is at site
C.

(2) Reliability through distributed transactions: Distributed DBMSs are intended to improve
reliability since they have replicated components and thereby eliminate single points of
failure. For example, faculty, staff and student are three partitions of a university

database. These partitions are allocated into three sites A, B and C. The partition student

is replicated into two different sites A and B. If site A fails, then distributed systems can
retrieve data from site B.

(3) Improved performance: By fragmenting the conceptual database and utilizing parallel
execution, distributed system improves query performance. For example, from (2) above,
a query, group graduate students according to their supervisors, retrieves data from both
student and faculty partitions. Distributed system partitions the query and executes them
in parallel in the student and faculty partitions.

(4) Easier system expansion: In a distributed environment, it is much easier to accommodate
increasing database sizes. For example, from above (2), as the university database is
partitioned and allocated into three separate sites, each partition utilizes different
hardware resources. As a result, when the database size increases, the distributed system

can utilize resources from all three sites.

Moreover, distributed databases provide function for keeping track of data, distributed
query processing, distributed transaction management, replicated data management, distributed
database recovery, security, and distributed directory (catalog) management functions [ENOO].
Distributed systems are economical, because multiple processing elements and resources are
used optimally. Hence, a distributed system divides data and program across different sites
efficiently.

There are two alternative methods of distribution - (1) partitioned and (2) replicated. In
the partitioned scheme, the database is divided into a number of disjoint partitions, each of which
is placed at a different site. Replicated designs can be either fully replicated where the entire
database is stored at each site, or partially replicated where each partition of the database is
stored at more than one site, but not at all of the sites. So, in case of partitioning, again there are
two fundamental design issues.

(1) Fragmentation - the separation of a database into partitions called fragments. For
example, the university database is partitioned into student, faculty and staff.

(2) Allocation - the optimum distribution of fragments over different sites. For
example, student, faculty and staff partitioned databases are allocated to site A,

site B and site C respectively.

There are two possible approaches for distributed systems — top-down and bottom-up
[OV99] [EB95]. Top-down approach is useful when we start to design a system from scratch. On
the other hand, bottom-up is used to reconstruct a database from different existing databases. For
the former one, global conceptual schema (GCS) and access patterns are input to the distribution
design process and output will be local conceptual schema (LCS), where GCS describes
combined logical organization of data from all sites and LCS describes logical organization of
data at each site. Bottom-up approach uses LCS to create GCS. According to [EB95] and
[OV99], the top-down approach for distributed system is shown in figure 1.3.1. Here, GCS,
access information, and external schema definitions (queries) are used as input to the distribution
process. Then, distribution process creates LCS;, where i = 1 to n. These LCS are then used as
input to the allocation process. Allocation process generates local internal schema LIS;, where j =

1 to m. LIS describes the physical data organization on a site (machine).

Global Conceptual Access Information External Schema
Schema (GCS) Definitions (Queries)

— T =

Distribution Process

(Fragmentation)
Local Conceptual Local Conceptual T, Local Conceptual
Schema (LCS) 1 Schema (LCS) 2 Schema (LCS) n

N/

Allocation Process

v

Local Internal Schema Local Internal Schema Local Internal Schema
Site 1 Site 2 Site m

Figure 1.3.1: Top-Down Approach for Distributed System

In this thesis, we concentrate on the distribution process to generate local conceptual
schema (LCS) from global conceptual schema (GCS) by getting information from access
information and external schema definition. Data fragmentation is the process of clustering data
from a class, by grouping relevant attributes and objects accessed by an application, into class

fragments [BKS97] [EB95]. The advantages of data fragmentation are:

It enhances performance of applications, because it reduces the amount of irrelevant data
to be accessed and transferred among different sites in a distributed system [BKS97].
It decomposes a class into class fragments and permits concurrent processing. As a result,

a query can access fragments of the same class simultaneously [LN96].

3. It reduces the amount of data transfer during data migration.

b)

It replicates fragments rather than replicate the entire class.

There are three fundamental types of fragmentation [EB95] [KMN93]. These are:
Horizontal fragmentation of a class, which contains all attributes and methods of the
class but only some instance objects [EB95]. So, a horizontal fragment of class C is C; =
(K, A, M, I'), where (I' < I). For example, a class employee having simple attributes id,
name, age and salaries that range from $30,000 to $100,000, has ten instances. A
horizontal fragmentation can provide two fragments F; and F,, where F; contains the
three instances with salaries greater than $80,000 and F, contains the seven instances
with salaries less than or equal to $80,000.

Vertical fragmentation of a class, which contains subsets of attributes and methods but
all instance objects of the class [EB95]. So, a vertical fragment of class C is C" = (K, 4/,
M,), where (M’ < M) and (4' c A). For example, the ten instances of class employee in
(a) above, could be partitioned vertically to create three fragments F;(id, name), F»(id,
age) and F1(id, salary) and each of them has all instances.

Hybrid fragmentation of a class, which contains subsets of attributes, methods and
instances of the class [EB95]. A hybrid fragment of class Cis C;,” = (K, 4', M, I), where
(M < M), (A < A) and (I' c I). For example, two of the hybrid fragments from the same
example above are F,(id, name) for salary <= $80,000 and F»(id, name) for salary >
$80,000.

1.4 Thesis Problem and Contributions

In [EB95], Ezeife and Barker, introduce the algorithm for object horizontal
fragmentation. This algorithm uses global conceptual schema (GCS) as an input, which is from
static analysis. Major changes such as add new applications, delete existing objects, and add new
classes in a domain will cause a redistribution of the system from scratch. In [EZ99a], Ezeife and
Zheng, introduce an intelligent dynamic algorithm for object horizontal fragmentation. Though,
the algorithm itself can determine the necessity for redistribution, it still fragments the system
from scratch. Irrespective of the method used for fragmentation, if we need to regenerate from
scratch then it will not only increase the system overhead but also reduce its efficiency.

Mathematically, increment means the value of a variable increases by another value. For
example, increment a variable x by 2 means that, new value of x will be x + 2. If the initial value
of x is 5 then new value will be 7. There is an antonym of this word called decrement, which is
used to decrease the value of a variable. Database has a different concept of increment.
Increment means, changes of a system (relational or object-oriented) by both insertion and
deletion of records or objects. For example, a view V= R; ® R,. Here, ® means relational join.
After adding a tuple t; in R;, view will be V| = V] U (t; ® Ry). In this example view V| is
updated incrementally due to the change of R; with tuple t;. In distributed object based systems,
there are several possibilities for changes in the existing system. These are adding new
applications, deleting existing applications, moving of applications from one site to another,
changing access frequencies of applications, adding new classes, deleting classes, adding
instances, deleting instances, and moving instances from one site to another. As a result, in
distributed object based system, increment means modify existing fragments depending on
changes. For example, assuming a horizontal fragment F; has I}, I; and I instances i.e., Fy:{I;, I,
I3}. If we add a new instance I5 into the system and find that Is should belong to horizontal
fragment Fy, then F; = F, U Ls i.e, Fi:{I}, I, I3, Is}. So, without re-fragmenting all instances Iy,
I, I3, and L4, we can modify existing horizontal fragment F; incrementally. Again, assuming a
site S; has a set of fragments F,, F; and F3, i.e., S;{F), F, F3}. If there is a new fragment F4 and
find that F4 belongs to site S, then S| = S; U {F4} i.e., S1:{Fy, F2, F3, F4}.

In essence, the thesis problem is to develop an algorithm to modify fragments (e.g., Fy)

due to changes (e.g., addition of instance Is) in existing object based systems. This thesis

proposes a new algorithm that performs incremental horizontal fragmentation of class objects by
using the changes in input data with the previous fragments to obtain new sets of best fragments.
The proposed incremental horizontal fragmentation scheme, utilizes the technique of object-
oriented horizontal fragmentation (OOHF) [EB95] algorithm and the principles of object and
fragment affinities to undo or/and redo the effects on fragments of an addition, deletion or
change of an input to the fragmentation process. This approach cuts down the use of computer
resources, which are dedicated for re-fragmentation processes. It also makes the process of

applying object re-fragmentation easier to dynamic distribution environment and the web.

1.5 Outline of the Thesis Proposal Document

The remainder of this thesis is structured as follows. Chapter 2 looks at related previous
work on horizontal fragmentation of distributed object based systems. Chapter 3 proposes
algorithms for incremental object horizontal fragmentation (IOHF) for distributed object based
systems. Also, we give an example to show how the algorithms work in comparison with re-
fragmentation from scratch. Chapter 4 presents performance analysis between proposed and

existing algorithms. Chapter 5 discusses conclusions, future work and time lines.

10

Chapter 2: Previous/Related Work

This chapter reviews related previous works on horizontal fragmentation of distributed
object-oriented databases as well as some existing real world applications of OODB. Section 2.1
shows some definitions. Section 2.2 reviews earlier work on horizontal fragmentation. Section
2.3 reviews work on performance evaluation of distributed system. Section 2.4 reviews some

existing real world application of OODB.

2.1 Definitions

Some definitions and two affinity rules are needed for object horizontal fragmentation
algorithm. These are:
Definition 2.1 Access frequency acco(l) of an instance object (/) is the sum of the access
frequencies of all the application queries Q; accessing the object. Thus, acco(I) = X% acc(g;, 1) for
all q application accessing the object.
Definition 2.2 Relevant accesses RelAcc(F; F;) measures the amount of access made to local
objects of fragments F; and F;. Thus, Relevant accesses (F;, F;) is the sum of access frequencies
acco(I;) for all I; € (F; N F)) i.e., RelAcc(F;, Fj) = 2 acco(l;) for all I; € (Fi N F;). For example,
if Fi:{ly, I, Is} and F»: {1}, I4, Is} are two fragments, then RelAcc(F,, F2) = acco(I;) + acco(Is).
Definition 2.3 Irrelevant access IRelAcc(F; F)) are those accesses made to instance objects
which are in fragment, F;, or fragment, F;j, but not in both. Irrelevant access (Fj, F;) is the sum of
access frequency for all I; € ((Fi U Fj) - (Fi © F))) i.e., IRelAcc(F;, Fj) = 2 acco(l;) for all I; €
((Fi W F)) - (Fi n Fy)). For example, if F;:{L;, I, Is} and F:{l;, L4, Is} are two fragments, then
IRelAcc(F,, F») = acco(l,) + acco(ls).
Definition 2.4 Affinity between two Fragments F; and F; of the same class aff(F;, F;) is measured
as the count of how frequently objects of these two fragments are needed together by
applications. Thus, aff(F;, F;) = Relevant access(F;, F;) — Irrelevant access (F;, F;). For example, if
Fi:{li, I, Is} and Fo:{I;, L4, Is} are two fragments, then aff(F,, F») = (acco(I;) + acco(ls)) —
(acco(I) + acco(ly)).
Definition 2.5 The Object-Affinity affo(I;, I)), measures the affinity between two objects I; and [
as the sum of the access frequencies of the two objects for all queries (q) that access both objects.

Thus, affo(l;, I;) is the sum of access frequencies for all q accessing both [; and I;. For example, if

11

I;, I, and I; are instances of a class, then affo(I;, I;) = acco(l;) + acco(ly), affo(I;, Is) = acco(l;) +
acco(I3) and affo(I,, I3) = acco(l,) + acco(I3).

Definition 2.6 Object-fragment affinity, ofaff(l, F) is the sum of object affinities between the
object I; and all objects of the fragment F. Thus, ofaff(l;, F) is the sum of affo([;, I;), for all I; in F,
where j # i. For example, if F:{I}, I, Is} is a fragment of a class, then ofaff(I;, F,) = affo(l;, I) +
affo(I, Is) = acco(I;) + acco(l,) + acco(I;) + acco(Is).

Affinity Rule 2.1 Select the primary fragment that maximizes the affinity measure aff(Fq, F),
where Fq is the derived fragment and F{ is a primary fragment in the class. For example,
assuming F\P, F,° and F5P are primary fragments of a class. Fq is a derived fragment of the class.
Again, assuming that aff(F4, F,*) = 30, aff(F4, F2?) = 40 and aff(Fq, F5°) = 20. Here, aff(F4, F2°)
has maximum affinity measure. As a result, this rule selects primary fragments F,°.

Affinity Rule 2.2 The fragment th that maximizes the function ofaff(l;, th) is where I; is placed.
For example, assuming Fy:{I;, I, Is} and F,:{I;, L4, I3} are two fragments of a class. Object-
fragment affinity of instance I, with fragments F, and F, are ofaff(I;, F;) = 10 and ofaff(I,, F») =
20. Here, I; has maximum affinity of 20 with fragment F,. So, according to this rule, I; is placed
in the fragment F,.

2.2 Horizontal Fragmentation

Horizontal fragmentation (HF) is a process for reducing the number of disk access made
during execution of a query by reducing the number of irrelevant objects accessed. Based on
queries and object based schema, there are two versions of horizontal fragmentation — primary
and derived. Primary horizontal fragmentation of a class is performed, based on predicates of
queries accessing this class. Derived horizontal fragmentation of a class is performed based on a
horizontal fragmentation of another class [EB95][BKS97]. Derived horizontal fragmentation
may occur in the following three methods [EB95]

» Partitioning of a class arising from the fragmentation of its subclasses, which includes
both primary and derived fragments of subclass.

» Fragmentation of a class arising from the fragmentation of some complex attribute (part-
of) of the class.

» Fragmentation of a class arising from the fragmentation of some complex methods.

12

In [EB95], Ezeife and Barker, introduce horizontal fragmentation algorithms for four
types of class models which include (i) class consisting of simple attributes and simple methods,
(ii) class consisting of complex attributes and simple methods, (iii) class consisting of simple
attributes and complex methods, and (iv) class consisting of complex attributes and complex
methods. The inputs to these algorithms are global conceptual schema (GCS) and the access
pattern information. The output of these algorithms is a set of local conceptual schemas (LCS).

To facilitate the brief description of object horizontal fragmentation algorithm (OOHF),

we use classes Company, AutoCompany, TruckCompany, Vehicle, Automobile and Truck as a

Company {CID, Name, Country, GetName, GetCountry}
I, {CID1, GM, Canada}

I, {CID2, GM, USA}

I; {CID3, FORD, USA}

AutoCompany {CID, CAID, NoEmp, Asset, GetEmp, GetAsset}
I, {Company Pointerl, CAID1, 2000, $5,000,000}

L, {Company Pointer2, CAID2, 5000, $10,000,000}

I; {Company Pointer2, CAID3, 1000, $1,000,000}

I; {Company Pointer3, CAID4, 7000, $10,000,000}

TruckCompany {CID, CTID, NoEmp, Asset, GetEmp, GetAsset}
I; {Company Pointer2, CTID1, 3000, $1,000,000}

Vehicle{VID, Weight, CID, GetWeight}
I, {VIDI, 300, Company Pointer 1}
I, {VID2, 400, Company Pointer 1}
I; {VID3, 300, Company Pointer 2}
I, {VID4, 500, Company Pointer 2}
I {VIDS, 300, Company Pointer 3}
Is {VID6, 400, Company Pointer 3}

Automobile {VID, VAID, NoDoor, Type, GetDoor, GetType}
I, {Vehicle Pointerl, VAID1, 4, CAR}

I, {Vehicle Pointer1l, VAID2, 4, MINI VAN}

I; {Vehicle Pointer2, VAID3, 2, SPORTS CAR}

I, {Vehicle Pointer3, VAID4, 4, CAR}

Is {Vehicle PointerS, VAIDS5, 4, MINI VAN}

Is {Vehicle Pointer6, VAID6, 2, SPORTS CAR}

Truck {VID, VTID, Color, GetColor}
I, {Vehicle Pointer4, VTID1, White}

Figure 2.2.1: Sample Object Database Schema

sample data, shown in figure 2.2.1. Each class has its own attributes, methods and instances. For
example, ID (CID), Name and Country are attributes of class Company. GetName and

GetCountry are methods of the class Company. I}, I; and I; are instances of the class Company.

13

Again, each instance of a subclass contains pointer to instance of its super class. For example,

instance I3 of class AutoCompnay contains pointer to instance I, of its super class, Company.

Root Auto Company Truck Company
* Automobile Truck
Vehicle V Company
\ Company Vehicle ‘
Automobile Truck / \ ¢
Root
Auto Company Truck Company Legend
Legend . .
———p Inheritance link
—————p Inheritance link] o
——> Attribute/domain link
mmllp Attribute/domain link

Figure 2.2.2:Class Inheritance Hierarchy Figure 2.2.3: Class Composition Hierarchy

Figure 2.2.2 shows the class inheritance hierarchy, where class AutoComany and class
TruckComapny are subclasses of class Company. Class Automobile and class Truck are
subclasses of class Vehicle. Again, class Company is a complex attribute of class Vehicle. The

classes of the sample database are fragmented based on the queries from figure 2.2.4.

Query 1: This query groups objects of class Company according to their name. Query requires
method GetName of class Company and predicates from this query are P;:Name = GM and
P,:Name = FORD.

Query 2: This query groups objects of class AutoCompany according to their asset, where Asset
> $5,000,000 and Asset < $50,000,000. Query requires method GetAsset of class AutoCompany
and predicates from this query are P;:Asset > $5,000,000 and P:Asset < $5,000,000.

Query 3: This query groups objects of class Automobile according to their types. Query requires
GetType method of class Automobile and predicates from this query are P;:Type = “Car”,
P,:Type = “Mini van” and P3:Type = “Sports car”.

Figure 2.2.4: Application Queries

This algorithm generates dependency graph for all classes of the database from the given
class inheritance hierarchy such that dependency graph captures the inheritance, method and
attribute links between classes. For example, as class AutoCompany and class TruckCompany

are subclasses of class Company, algorithm inserts arcs from class AutoComapny (owner class)

14

to class Company (member class) and from class TruckCompany (owner class) to class
Company (member class) as inheritance composition hierarchy (figure 2.2.3). Again, it inserts an
arc from class Company to class Vehicle as attribute composition hierarchy.

Now, it generates simple predicates P;: A; 6 Value, for all classes from queries, where A;
is an attribute of a class, 6e {=,<, #, <, >, 2} and Value is chosen from the domain of A;. For
example, simple predicates for all classes from queries are,

Pcompany: {Name = “GM”, Name = “FORD”}

PautoCompany: ~ {Asset > $5,000,000, Asset < $5,000,000}

PTruckCompany: { }

Pvenicle: { }
P Automobile: {Type = “Car” Type = “Mini van” Type = “Sports car’}
Prruek: { }

Then, it generates set of complete minterm predicates and primary fragments of each
class. Minterm predicate is the conjunction of simple predicate either in its natural form or its
negated form. The minterms and primary fragments are,

Class Company

Minterms: MM;: Name = “GM” A Name = “FORD”

MM,: Name # “GM” A Name = “FORD”

Fragments: fi*:{I;, [} P {15}

Class AutoCompany

Minterms: MM;: Asset > 5,000,000

MM;: Asset < 5,000,000

Fragments: fiP:{I,, 14} {1l 13}

Class Automobile

Minterms: MM;: Type = “Car” A Type # “Mini van” A Type # “Sports car”

MM;: Type # “Car” A Type = “Mini van” A Type # “Sports car”
MM;: Type # “Car” A Type # “Mini van” A Type = “Sports car”

Fragments: fi%:{I, 14} 6P {L,, Is} 3P (L3, g}

As class TruckCompany, class Truck and class Vehicle do not have any predicates, so there is no

primary fragment for these classes.

15

Now, derived fragments are generated on member classes. Derived fragmentation is
defined on member classes of links, according to both primary and derived fragments of owner
classes. For example, owner class AutoCompany of member class Company has two primary
fragments and no derived fragment. So, class Company has two derived fragments, these are
£,4:{I,, I3} and fzd:{Il, I,}. Similarly, derived fragments of class Vehicle are fld:{Il, I3}, fzd:{Il,
Is} and 3% {I,, I¢}.

Next, it integrates primary and derived fragments to generate the horizontal fragments.
To integrate, it applies affinity rule 2.1 among primary and derived fragments of each class. For
each derived fragment F¢, affinity rule 2.1 selects a primary fragment that maximizes affinity
measure aff(F, F). Then, it merges the derived fragments with the primary fragments. If a class
does not have any derived fragments, then the primary fragments will be horizontal fragments.
For example, as class AutoCompany does not have any derived fragments, so the horizontal
fragments are flh: {Ip, 14} and fzh: {1, I3}. Similarly, the horizontal fragments of class Automobile
are fi%{I;, L}, £%{L,, Is} and f3:{I3, I¢}. To calculate maximum affinity, we need the access
frequencies of instances based on queries in each class. Based on queries of figure 2.2.4, the

access frequencies of class Company and class Vehicle are

Class Company: acco(I;)=5 acco(l,)=5 acco(I3) =10
Class Vehicle: acco(I;)=10 acco(l) =5 acco(I;) =5
acco(lg) =5 acco(ls) =10 acco(lg) =5

Applying affinity rule 2.1, to fragments of class Company, f,% has maximum affinity with
f,° of 5. So, after merging fld with £,°, we get flh:{Iz, I3}. Again, f2d has maximum affinity with
fi? of 10. So, after merging £;* with fi’, we get f;"{I;, I,}. To create disjoint horizontal
fragments, it applies affinity rule 2.2 among the fragments. If an instance is overlapping in
different fragments, then affinity rule 2.2 selects a fragment that maximizes object fragment
affinity measure ofaff(I, F;) and places the instance into that fragment. Here, I, is overlapping in
both fragments. Applying affinity rule 2.2, I is placed in f;" with maximum affinity of 15.
Hence, the horizontal fragments of class Company are fi™ {I,, I;} and " {I,}.

Again, as class Vehicle does not have any primary fragments, so the derived fragments
are the horizontal fragments. Hence, horizontal fragments are fi*:{I;, Iz}, £"{I,, Is} and {1,
Is}. Here, I, is overlapping in two fragments f," and £,". Applying affinity rule 2.2, I, is placed in

16

£," with maximum affinity of 20. Now, the horizontal fragments are fih {1}, HM{1;, Is} and
£ {Ip, I¢}.

Now, for complex attribute, it considers the above horizontal fragments of each class as
primary fragments. As the class Company is a complex attribute of class Vehicle, then the
derived fragments of class Vehicle are ;4 {I3, L4, Is, I} and fzd:{Il, I}. Now, it integrates the
derived fragments with primary fragments. Applying affinity rule 2.1, £, has maximum affinity
with fzh of =15 and £,® has maximum affinity with f2h of —5. So, after merging these derived
fragments with the corresponding primary fragments, we get horizontal fragments f,™{I3},
fzh:{Il, I, Is, 14, I5, I} and £ {I,, I¢}. Here, I, I3 and Is are overlapping in different fragments.
Applying affinity rule 2.2, I, I3, and Is have maximum affinity of 60, 60 and 60 with £
respectively. Hence, the horizontal fragment is flh: {11, I, 15, I4, Is, Ig}.

For complex methods, we are assuming that instances I; and I3 of class Company are
invoked by methods of instances in fragment f;" of class AutoCompany. Similarly, instances of
£," of class AutoCompany invoke instance I, of class Company. Therefore, the derived fragments
of class Company are fld:{Il, I} and fzd:{Iz}. We also assuming that, the above horizontal
fragments of each class are the primary fragments. Applying affinity rule 2.1, £, has maximum
affinity with f;” of 0 and £,% has maximum affinity with f;" of —5. Hence, after merging £, and £;°
with f,", the horizontal fragments of class Company is f;:{I;, I, I3}. Now, the derived fragments
of class Vehicle is f;%{I;, I, Is, L, Is, I¢} due to the complex attribute (Company). Applying
affinity rule 2.1, f;* has maximum affinity with f;" of 40. Hence, after merging f; with f", the
horizontal fragment of class Vehicle is i {I, I, I3, Is, Is, I6}.

In [MK95], Savonnet and Yetongnon present a qualitative approach for class
fragmentation in distributed object-oriented databases. They create a set of partition trees from
class dependency graph (CDG). The CDG represents the inheritance, class composition and
method nesting hierarchies. Each class of original object-oriented (OO) schema belongs to only
one partition tree. Based on weighted factor of a node, this algorithm selects a root node for
partition tree from the CDG. Then, it removes this node from the CDG as well as the descendant
of that node and creates a partition tree. It repeats this process until CDG is empty. Then, this
algorithm horizontally fragments classes of each partition by fragmenting the root class of the

tree and propagating this fragmentation through other descendant classes of the tree. Hence,

17

primary fragmentation is defined on root class of the partition tree, but derived fragmentation is
defined on other classes.

In [RZ95], Ravat and Zurfluh, present a fragmentation algorithm used for horizontal
fragmentation with less time complexity than [OV99] and [CNP82]. They introduce predicate
affinity, which describes the distance between two predicates. They group these predicates with
higher affinity in a horizontal fragment. Each row in usage matrix represents a method used for
horizontal fragmentation and each column represents a simple predicate. If the method “i” uses
the simple predicate “j” then Cj; = 1 otherwise 0, where C;; represent the cell of i row and j™®
column of the matrix. The predicate affinity matrix can be generated from the predicate usage
matrix to represent the access frequency. They use the Bond Energy Algorithm to cluster and
binary partitioning algorithm to partition the matrix. Every sub matrix contains a set of simple
predicates, which must be linked using OR or AND to generate predicate term. Simple predicates
with the same attribute are “ORed”, and the predicates with different attributes are “ANDed”. At
last, they add a remaining fragment, which is the negation of disjunction of predicate terms.
Predicate inclusions and predicate implications could be considered to reduce the number of
predicates in every fragment.

In [BKS97], Bellatreche, Karlapalem, and Simonet, also introduce algorithm for both
primary and derived horizontal fragmentation. The problem with the algorithm of [EB95] is that,
the minterms generated by the algorithm is exponential with respect to the number of predicates.
In [BKS97], by creating predicate usage and affinity matrix, author overcomes the problem. The
predicate usage matrix of a class C contains queries as rows and predicates as columns, which is
similar to the usage and affinity matrix of horizontal fragmentation algorithm described by Ravat
and Zurfluh in [RZ95].

In [EZ99a], Ezeife and Zheng, present dynamic horizontal fragmentation of object-
oriented database. The goal of this research is to analyze and determine the requirements for re-
fragmentation. Then, it re-fragments the system from scratch by using algorithm described in
[EB95]. To evaluate the performance, this algorithm uses two components for dynamic object
horizontal distribution design. These are: (1) a mechanism for determining the performance
threshold of an object horizontal distributed system, which is evaluated based on the partition
evaluator measure and (2) a monitor algorithm for keeping track of changes in the system. The

object horizontal partition evaluator algorithm immediately following a fragmentation and

18

allocation, computes the best system partition evaluation (PE) value, using application queries,
access frequencies, class inheritance hierarchy and class composition hierarchy. This algorithm
computes the system performance threshold using the computed best partition evaluator and
system change variable (S). The system change variable measures, how frequently the system’s
inputs are changed. Monitoring algorithm keeps track of all changes in the input data and runs
periodically. Then, it determines the current PE value using the object horizontal partition
evaluator algorithm. If the current PE value is greater than the threshold value, it calls the system
for re-fragmentation. The advantages of this system are:
= Jt eliminates the need for a full static requirements analysis and provides input for
measuring system performance in order to determine when a re-fragmentation should be
initiated.
* Dynamic fragmentation saves processing cost by eliminating the cost of full requirements
study before every re-fragmentation.
= It improves overall system performance by detecting when the system performance drops
below the threshold.

2.3 Performance Evaluation of Distributed Object-Oriented

Database System

In case of distributed system, when data are updated due to addition and deletion the
system performance may degrade. Performance evaluation for OODBMS is necessary for both
designer and user. Designer needs to optimize the efficiency and adjust parameters of a system.
The user needs to know the feasibility of the system for him.

In [CMVNO93], Chakravarthy, Muthuraj, Varadarajan and Navathe, introduce an objective
function - Partition Evaluator (PE), for vertical partitioning relations in distributed databases and
its analysis, to compare and evaluate different algorithms that use the same input in distributed
database design process. As the overall transaction processing cost in a distributed environment
consists of local transaction processing cost and the remote transaction processing cost, they
divide the partition evaluator into two parts — one is used to evaluate irrelevant local attribute
access cost, the other is used to evaluate relevant remote attribute access cost. The irrelevant
local attribute cost term measures the local processing cost of transactions due to irrelevant

attributes of fragments by assuming all the data fragments required by a transaction are available

19

locally. The relevant remote attribute access term measures the remote processing cost, due to
relevant attributes of data fragments that are accessed remotely by transactions. This partition
evaluator has the flexibility to incorporate other information, such as type of queries
(retrieval/updates), allocation information about the partitions, remote processing cost
(transmission cost) and the transaction usage pattern at any particular site. The partition evaluator
can be used as a basis for developing algorithms to create fragments of a relation.

In [EZ99b], Ezeife and Zheng, represent an algorithm (OHPE) to evaluate the
performance of horizontal fragmentation of object-oriented database. The authors present a
modified objective function, partition evaluator (PE), which is suitable for measuring the
irrelevant local object instance cost (E*v) and relevant remote object instance cost (E%R) for
horizontally fragmented object classes that are placed at distributed sites. The overall
performance penalty for the fragments is the sum of these two performance penalties. For
measuring the performance of a scheme, the object horizontal partitioning scheme computes
horizontal fragments, which are allocated at distributed sites. In the second step, it transforms the
available input data to obtain application object instance sets. The algorithm computes the
application object instance set /4], for every application g at each site ¢. Then, application
object instance sets and the fragments constitute input to the OHPE algorithm, which measures
the PE value for the system. Each PE value corresponds to the total penalty cost incurred by each
scheme through both local irrelevant access costs and remote relevant access costs. A lower PE

value means less performance penalty and thus, a better performance.

2.4 OODBMS Application in Real World

This section shows some real world applications using OODBMS. Nowadays, object-
oriented database is the major storage system for complex data structure.

In [GA98], Garland and Anthony from Motorola Inc., introduced the usefulness of
Objectivity database into the IRIDIUM project. The IRIDIUM project involves a large number
of components, including satellites in low earth orbit, and ground stations. System Control
Segment (SCS), which is central to the entire IRIDIUM system, is developed using object-
oriented (OO) software and development technique. Objectivity/DB has been successfully used
in several SCS ground subsystems. The authors mentioned from their experience that

objectivity/DB is a key element of the ground system software.

20

In [FEB98] Futtersack, Espert and Bolf from research and development (R & D) division
of Electricite De France (EDF) represented a technique for managing documents including
technical reports, project proposal and organization chart with Standard Generalized Markup
Language (SGML) and object-oriented database. As they had 80,000 SGML documents and
60,000 Hyperindex documents, they used SGML for retrieval of documents from the O; object-
based, which stores the documents as a tree structure. In that project, they used Search *97 full-
text engine for searching text into documents. Authors concluded that they acheived better
performance by integrating these three different technologies, namely an object database, a full-
text retrieval engine and a web interface. The object-oriented database also demonstrated that it
was very efficient and well suited for the persistence mechanism for a structured document
management system.

In [HAG98], Hansen, Adams and Gracio, from Information Systems Department of
Pacific Norhtwest National Laboratory (PNNL) submitted and presented a paper, which
describes the experience that their group has had using ObjectStore as a database for a Scientific
Data Management (SDM) System.

In [ThO1], the author showed the data model for Geographical Information System (GIS)
to capture real world data. Depending on the application, GIS has different name: (1) Geographic
Database — it stores geographic data, (2) Land Information System (LIS) — it includes property
and cadastral applications, (3) Automated Mapping/Facility Management (AM/FM) — it includes
utilities management applications, and (4) Natural Resource Information Systems (NRIS) — it
includes natural resource management applications. Data models for these different types of
applications are different. Traditional relational databases are not designed for holding complex
data models and large volume of data that are involved in building and ensuring the ongoing
integrity of a real world geographic mapping database. Recently, object-oriented geospatial
databases and associated mapping products have appeared which provide the technology to step
into a new world of active objects and product independent geodata storage [Ha98].

Multimedia information systems (MMISs) is much more popular on the web. Both
representation and retrieval of the complex and multifaceted multimedia data are not easily
handled with the flat relational model and require new data models. The object-oriented data
models provide powerful abstraction as well as structural and behavioral mechanisms to

represent the complex multimedia information specifying the database schemas [RPMP99].

21

Chapter 3: Incremental Object

Horizontal Fragmentation

The design of distributed databases requires solutions to several interrelated problems:
data fragmentation, allocation and local optimization [CMVN93]. A distributed object based
systems (DOBS) requires class fragmentation and allocation, to get the maximum performance
by transferring minimum data at different sites [EB95]. By reducing the amount of irrelevant
data access and the amount of unnecessary data transfer, fragmentation improves the
performance of an application [EB95]. Though fragmentation and allocation are the two
different aspects of distribution design, distribution in the object world brings new complexities.
All algorithms fragment the object based system from scratch. This chapter describes a new
algorithm to re-fragment the object based system incrementally.

Section 3.1 defines several terms in order to present the algorithm formally. Section 3.2
proposes the new incremental object horizontal fragmentation (IOHF) algorithm for object-

oriented database. Section 3.3 shows the correctness of IOHF with respect to OOHF algorithm.

3.1 Definitions

Before presenting algorithm for incremental object horizontal fragmentation, this section
introduces some more definitions.
Definition 3.1 Maximum object-fragment affinity bond of a class, mofaffbond(I;, C) is the highest
affinity between any object of a class and any fragment of the class at time of initial
fragmentation. For example, I;, I, and I are three instances of a class C. The fragments of the
class are fi:{I;, I} and f:{I3}. Assuming access frequencies are acco(l;) = 10, acco(I) = 10 and
acco(Is) = 5. The object fragment affinity, between object I; and fragment fj, is ofaff(I;, f}) =
affo(I;, I) = acco(l;) + acco(Iz) = 10 + 10 = 20. Similarly, other object fragment affinities of the
class are ofaff(I;, ;) = 15, ofaff(I,, f;) = 20, ofaff(I, f;) = 15, ofaff{Is, f;) = 30, and ofaff(l, f;)
= (. Here, object I3 has the highest affinity of 30 with fragment f;. Then, maximum object-
fragment affinity bond of class C is 30 i.e., mofaffbond(Is, C) = 30.
Definition 3.2 Maximum fragment-fragment affinity bond of a class, mfaffbond(F,F;,C) is the

highest affinity between any two fragments of a class at time of initial fragmentation, where i # j.

22

For example, fi{I;, I}, £2{Is, I4} and f3{Is} are fragments of a class C at time of initial
fragmentation. Assuming, the access frequencies are acco(l;) = 10, acco(lz) = 10, acco(l3) = 5,
acco(ly) = 5 and acco(ls) = 5. Fragment-fragment affinity, between f; and f,, is aff(f;, f2) =
Relevant access (f}, f;) — Irrelevant access (fi, f2) = 0 — acco(l;) — acco(I,) — acco(I3) — acco(ly) =
-30. Similarly, other fragment-fragment affinities of the class are aff(f;, f3) = -25 and aff(fz, f3) =
-15. Here, fragment f, has maximum fragment-fragment affinity of —15 with fragment f3. Then
maximum fragment-fragment affinity bond of class C is —15 i.e., mfaffbond(F2,F3,C)= -15.

Definition 3.3 Derived access frequency dacco(l) of an instance object (I) is the sum of the
access frequencies of all the owner objects. Thus, dacco(l) = z¥ acco(l;), where I; of owner class
points to I of member class. For example, class B is a subclass of class A. Instance Is of class A
is the pointer of instances I; and I, of class B. Then derived access frequency of Is is the sum of

access frequency of I; and I i.e., dacco(Is) = acco(I;) + acco(Iy).

3.2 The Proposed Incremental Object Horizontal
Fragmentation (IOHF) Algorithm

This section presents the proposed incremental object horizontal fragmentation algorithm
for object-oriented database system, called IOHF. This algorithm fragments class objects
horizontally and incrementally, by using changes in input data with the previous fragments to
obtain new sets of best fragments. There are four types of changes, which are involved in
degrading the performance of a distributed system. These are 1) changes in query access pattern,
2) changes in access frequencies, 3) changes in database schema (class inheritance and class
composition hierarchy) and 4) changes in class instances. There are three basic types of changes:
old one can be deleted, new one can be added or existing input can change its location. For
example, new queries might start accessing a class, some of the old queries accessing a class may
no longer be used or some queries might stop accessing one class but start accessing another
class. Application queries, query access frequencies, instance objects, and object-oriented
database schema (class inheritance and class composition hierarchy) are used as input to this
algorithm.

This algorithm performs a sequence of actions on existing fragments to handle each of

the four types of changes. For each of these changes of input data, the algorithm presents a

23

Algorithm 3.1: (Algorithm (IOHF — Algorithm for Performing Incremental Horizontal Fragmentation of
Classes — Part I))

Algorithm IOHF — Part 1
Input: 1. Previous Horizontal Fragments and their Minterm Predicates
2. Changes in Application Queries Access Pattern (A4F)
3. Changes in Application Queries Access Frequencies (A4Q)
4. Changes in class inheritance hierarchy (ACH)
5. Changes in class composition hierarchy (ACCH)
6. Changes in instance objects of classes (ALS fragments)
7. Existing fragmentation input data (AQ, AF, CH, CCH, IS)
Output: Updated Set of Horizontal Fragments of Classes (F'N)
begin
1. // To handle changes in Application Access Pattern, we do the following://
A. For all New Application Queries Arriving for a class do
begin
l.a.1. Obtain new primary horizontal fragments (F") of each fragments of the class using
all of the instance objects of the fragments.
1.a.2. Obtain new derived-horizontal-fragment (F'g) of all member classes of this class
using all of their instance-objects of each fragment.
1.a.3 Merge the new derived fragments (F'y) with new primary fragments (F") using the
affinity rules.
1.a.4. Merge the existing horizontal fragments, F¥, of those classes which have owner
class, with new fragments F'; it has the highest affinity aff(F™, F';) with.
end // end of 1.A sequence//
B. For all Application Queries Deleted for a class from do
begin
1.b.1. Obtain primary horizontal fragments (FF) of the class using all of the class’s instance
objects, applying the query.
1.b.2. Obtain derived horizontal fragments (F®) of all member classes of this class using
all of their instance objects.
1.b.3. By intersecting each fragments (both primary and derived) with existing horizontal
fragments obtain the clustered fragment groups £ = ;" N £,
1.b.4. After subtracting acco(I) and dacco(I) from total access frequency of an object for
deleting queries, merge iji with £" it has maximum affinity with, where i # m.
end // end of 1.B sequence //
C.For all Application Queries for a class moving from a site a to another site b do
begin
1.c.1. Execute sequence 1.B above to delete it.
1.c.2. Execute sequence 1.A above to add it.
end // End of 1.C sequence //
end // end of IOHF sequence 1 only//

Figure 3.2.1: The Algorithm Incremental Horizontal Fragmentation (Part I)

24

Algorithm 3.2: (Algorithm (IOHF — Algorithm for Performing Incremental Horizontal Fragmentation of
Classes — Part II))

Algorithm IOHF - Part 11
begin
2. // To handle change in Application Query Access frequencies, we do the following://
begin
2.1. Compute the affinity measure between every instance object I, in a class and all of the
class’s fragments, ofaff(I, F,) using the change in application access
frequencies. Then, re-assign I to the fragment, F*', with highest affinity, if this highest affinity
is larger than maximum affinity bond moaffbond(l, C) of the class. Maximum
affinity bond of a class is the highest affinity between any object of a class and a fragment at
time of initial fragmentation.
2.2. Obtain derived horizontal fragments (F®) of all member classes of this class using all of
their instance objects due to the new fragments.
2.3. Merge derived fragments F® with the existing fragments F" that has highest affinity.
end // end of sequence 2/

3. // To handle change in class inheritance and composition hierarchies, we do the following://

A. For all new class added to a link in the hierarchy, do

begin
3.a.1. Make all its new superclasses/containing classes (member classes) of this class
and all its new subclasses/contained classes (owner classes) of this class.
3.a.2. For each new owner class of the class, obtain the derived horizontal fragment of
the class, F°.
3.a.3. Merge all new derived fragments F® with existing fragments F" that has highest affinity
aff(F%, F") with.
3.a.4. For each new member class of this class, obtain the derived horizontal fragment
of the class F.
3.a.5. Merge each derived fragment of the class, F*, with the existing horizontal F", it has
the highest affinity aff(F¢, F,) with.

end // end of 3.A sequence //

B. For a class deleted from a link in the hierarchy, do

begin
3.b.1. For each member class of this class, obtain the derived horizontal fragment
based on the class, F°.
3.b.2. After subtracting dacco(I) from total access frequency of each object for deleting class,
merge each derived fragment, F¢, with its existing horizontal fragments F" it has the highest
affinity aff(F%, F,) with.

end // End of 3.B sequence //

C. For a class moving from one part of the link to another in the hierarchy, do

begin
3.c.1. Execute sequence 3.B above to delete it.
3.c.2. Execute sequence 3.A above to add it.

end // End of 3.C sequence //

end // end of IOHF sequence 2 and 3 only//

Figure 3.2.2: The Algorithm Incremental Horizontal Fragmentation (Part II)

25

Algorithm 3.3: (Algorithm (IOHF — Algorithm for Performing Incremental Horizontal Fragmentation of
Classes — Part IIT))

Algorithm IOHF — Part ITI
begin
4. // To handle change in Instance objects, we do the following://
A. For new instance objects arriving, do
begin
4.a.1. Apply all minterms to the new instances of a class to get primary fragments.
4.a.2. For each primary fragment of a class, apply the same minterm that generates it, to all
of the existing fragments of the class. This process finds only one fragment for each minterm
from existing fragments or none. If the process finds a fragment, then merge the primary
fragment with that existing fragment. Otherwise, the primary fragment will be a new primary
fragment for the class.
4.a.3. Apply the merging rule to merge all derived fragments of this class with any old or
new primary fragment of the class it has highest affinity with.
4.a.4. Propagate the presence of these new instance objects of this class by using every
fragment a new instance object is in to define a derived fragment of the member class.
4.a.5. Merge each derived fragments of the member class, F', with its old horizontal
fragment F" it has the highest affinity aff(F";, F%,) with.
end // end of 4.A sequence //
B. For instance objects deleted from a class, do
begin
4.b.1. Remove them from fragments of the class and generates new fragment .
4.b.2. Obtain derived horizontal fragments (F) of all member classes of this
class using all of their instance objects.
4.b.3. By intersecting each derived fragments with new fragments, obtain the clustered-
fragment S=£"n ij.
4.b.4. After subtracting dacco(I) from total access frequency of each deleting object for
deleting instance, merge £, with " it has maximum affinity with.
end // End of 4.B sequence //
C. For instance objects moving from a class to another, do
begin
4.c.1. Execute sequence 4.B above to delete it
4.c.2. Execute sequence 4.A above to add it
end // End of 4.C sequence //
end // end of IOHF sequence 4 only //

Figure 3.2.3: The Algorithm Incremental Horizontal Fragmentation (Part 1II)

sequence of steps to handle (a) adding the necessary input to the system, (b) deleting the
necessary input from the system and (c) moving the necessary input from one location to
another. The step c is generally treated as executing step b followed by an execution of step a.
The detailed algorithm is presented in figure 3.2.1 (part I), figure 3.2.2 (part II) and figure 3.3.3
(part III). The following sections describe the sequence of actions in this algorithm for each of

the four types of changes.

26

Country {CnID, CnName, CnPop, State {CnID, StID, StName, StPop, GetName,
GetName, GetPop} GetPop}
I; {Cn01, Canada, 4000000} I; {Country Pointerl, St01, Ontario, 1500000}
I, {Cn02, USA, 8000000} I, {Country Pointer1, St02, Quebec, 1000000}
I; {Country Pointer2, St03, New York, 2000000}
City {StID, CiID, CiName, CiPop School {CiID, ScID, ScName, ScStudent,
GetStID, GetName, GetPop} ScCategory, GetName, GetStudent, GetCategory}
I, {State Pointerl, Ci0O1, Toronto, 80000} I, {City Pointerl, Sc01, Uof Toronto, 4500, University}
I, {State Pointer1, Ci02, Windsor, 40000} I, {City Pointerl, Sc02, Y University, 4000, University}
I; {State Pointer2, Ci03, Montreal, 50000} I; {City Pointer2, Sc03, U of Windsor, 3000, University}
I, {State Pointer3, Ci04, New York, 90000} I, {City Pointer2, Sc04, ABC School, 500, Elementary}
Is {State Pointer3, Ci05, Queens, 60000} Is {City Pointer4, Sc05, NY University, 3500, University}
Is {City Pointer5, Sc06, M School, 400, Elementary}
Hospital {CiID, HoID, HoName, HoBeds Road {StID, RolID, RoName, RoUOM
GetName, GetBeds} GetName, GetUOM}

I, {City Pointerl, HoO1, Toronto Hospital, 200} I, {State Pointerl, Ro01, 401, km}
I, {City Pointer2, Ho02, Windsor Hospital, 300} I, {State Pointerl, Ro02, 403, km}

I; {City Pointer2, Ho03, WS Hospital, 150} I3 {State Pointerl, Ro03, EC Express, km}
I, {City Pointer3, Ho04, Montreal Hospital, 100} 1, {State Pointer2, Ro04, 401, km}
I; {City Pointer4, Ho05, NY Hospital, 300} Is {State Pointer3, Ro05, 175, mile}

Is {City Pointer5, Ho06, Queens Hospital, 150} I {State Pointer3, Ro06, 194, mile}

Highway {RoID, HiID, HiSpeed, Hil.anes UrbanRoad {RolD, UrID, UrSpeed, UrLanes

GetSpeed, GetLanes} GetSpeed, GetLanes}
I; {Road Pointerl, HiO1, 80, 4} I; {Road Pointerl1, Ur01, 50, 4}
I, {Road Pointerl, Hi02, 100, 4} I, {Road Pointerl, Ur02, 60, 4}
I; {Road Pointerl, Hi03, 100, 8} I; {Road Pointer2, Ur03, 50, 4}
I; {Road Pointer2, Hi04, 100, 4} I, {Road Pointer3, Ur04, 60, 6}
Is {Road Pointer3, Hi05, 100, 4} Is {Road Pointer5, Ur05, 35, 3}
Is {Road Pointer4, Hi06, 100, 6} Is {Road Pointer6, Ur06, 40, 4}

I; {Road Pointer5, Hi07, 75, 4}
Is {Road Pointer6, Hi08, 65, 6}

Figure 3.2.4: Sample Object Database Schema

To facilitate the description of incremental object horizontal fragmentation algorithm, we use
classes Country, State, City, Road, School, Hospital, Urbanroad and Highway as a sample object
database as in figure 3.2.4. Each class has its own attributes, methods and instances. For
example, ID (CnID), Name (CnName) and Population (CnPop) are attributes of class Country.
GetName and GetPop are methods of class Country. I; and I, are instances of class Country.
Again, each instance of a subclass contains pointer to instance of its super class. For example, I,
of class City contains pointer to instance I; of its super class State. Figure 3.2.5 shows the class
inheritance hierarchy, where class State is a subclass of Country, class City and class Road are

subclasses of class State, class Hospital and class School are subclasses of City and class

27

Urabanroad and class Highway are subclasses of class Road. According to OOHF algorithm, the

class composition hierarchy the object database is shown in figure 3.2.6.

Root School Hospital Highway Urban Road
v
Country City Road
State State
City Road Country
School | Hospital Highway l Urban Road Root

Figure 3.2.5:Class Inheritance Hierarchy Figure 3.2.6: Class Composition Hierarchy

Query 1: This query groups objects of class Hospital according to their accommodation. Query
requires method GetBeds of class Hospital and predicates from the query are P;: HoBeds > 150
and P,: HoBeds < 150.

Query 2: This query groups objects of class School according to their category. Query requires
method GetCategory of class School and predicates from the query are P;: ScCategory =
“Univeristy” and P,: ScCategory = “Elementary”.

Query 3: This query groups objects of class City according to their population. Query requires
method GetPop of class Ci#y and predicates from the query are P;: CiPop > 60,000 and P,:CiPop
<60,000.

Query 4: This query groups objects of class State according to their name. Query requires
method GetName of class State and predicates from the query are P;: StName = “Ontario”, P;:
StName = “Quebec” and P3: StName = “New York”.

Query 5: This query groups objects of class Highway according to their speed limit. Query
requires method GetSpeed of class Highway and predicates from the query are P;: HiSpeed >
100 km or 75 miles and P,: HiSpeed < 100 km or 75 miles.

Figure 3.2.7: Application Queries

28

Hospital: acco(I;) = 20, acco(Iz) = 20, acco(I3) = 10, acco(ly) = 10, acco(Is) = 20,
acco(Ilg) = 10

School: acco(I;) =5, acco(Ip) = 5, acco(I3) = 5, acco(Is) = 10, acco(ls) = 5,
acco(lg) =10

Highway: acco(l}) =5, acco(l;) = 10, acco(I3) = 10, acco(l4) = 10, acco(Is) = 10,
acco(l¢) = 10, acco(I7) = 10, acco(Ig) =5

City: acco(I;) = 10, acco(Ip) = 5, acco(I3) = 5, acco(ls) = 10, acco(ls) =5

Road: acco(I;) =5, acco(Iy) = 10, acco(I3) = 10, acco(ls) = 10, acco(Is) = 10,
acco(lg) =5

State: acco(l;) =5, acco(I) = 10, acco(l3) = 5

Country: acco(I;) = 10, acco(Iy) = 5

Figure 3.2.8: Access Frequencies

Figure 3.2.7 and figure 3.2.8 show the application queries and access frequencies of classes
respectively. Based on these application queries and access frequencies, OOHF algorithm
generates horizontal fragments for each class as in figure 3.2.9. For example, class School has
two horizontal fragments, which are flh: {I1, Ip, I5, Is} and fzh: {l4, Is}. So, the class inheritance
hierarchy, composition hierarchy, application queries, access frequencies, database schema and

horizontal fragments are used as input to the [OHF algorithm.

Site 1 Site 2
School i {1, I, s, Is} & (L, 1)
Hospital fi": {1, I, Is} £ {13, 1y, I}
Highway £, {Ib, I3, 14, Is, Is, I3} £ {I, Is}
City fi {1, I, L} £ {13, Is}
Road i {1, I, I, 1s, Is} £ {Is}
State i {1y, I, 11}
Country £ {1, L)

Figure 3.2.9: Horizontal Fragments

29

3.2.1 Changes in Application Access Pattern
When new queries are added to the distributed system, IOHF algorithm generates

minterm predicates and applies these minterm predicates to each existing fragments to create
new fragments. For example, based on new queries (figure 3.2.1.1), it generates minterm

predicates for class Road, class School and class City.

Query 1: This query groups objects of class Road according to their unit of measurement.
Query requires method GetUOM of class Road and predicates from the query are P;: RoUOM
= “km” and P,: RoOUOM = “mile”.

Query 2: This query groups objects of class School according to their number of student.
Query requires method GetStudent of class School and predicates from the query are Pi:
ScStudent > 3000 and P,: ScStudent < 3000.

Query 3: This query groups objects of class City according to their State ID. Qurey requires
method GetStID of class City and predicates from the query are P;: StID = “State Pointer 17,
P,: StID = “State Pointer 2” and P3: StID = “State Pointer 3”.

Figure 3.2.1.1: New Queries — Changes in Application Access Pattern

The minterm predicates are:
Class School: MM;: ScStudent > 3000
MM,: ScStudent < 3000
Class Road: MM;: RoUOM = “KM” A RoUOM = “MILE”
MM;: RoUOM = “KM” A RoUOM = “MILE”
Class City: ~ MM;: StID="State Pointer1” A StID=“State Pointer2” A StID#*“State Pointer3”
MM;: StID=“State Pointer1” A StID=*State Pointer2” A StID=*“State Pointer3”
MM;: StID=“State Pointer1” A StID=*“State Pointer2” A StID=*“State Pointer3”
Class school has two existing fragments, f;°":{I}, I, Is, Is} and £°" {l4, I¢}. Applying
MM, to fragments £;°", we get £;":{I,, I, Is}. Applying MM to fragments £:°, we get £,": {I;}.
Similarly, applying MM, to fragments fi*" and £;°", we get £;"":{} and £;™:{Ls, Is}. After
eliminating fragments with empty sets (e.g., £3"), we get the new fragments of class School as
fi™:{1;, I, Is}, £™:{13} and £3™:{I4, Is}. Similarly, after applying MM, and MM, of class Road
to fragments f,°" and £,°®, we get £;°:{1,, I, I, L}, £":{Is} and £5™:{I¢}. Again, applying MM,

30

MM, and MM; of class City to fragments ;" and £;°, we get f;™: {1}, L}, £™: {14}, £°": {13} and
4 {15}.

Now, based on these new fragments, it generates new derived fragments of all member
classes of the class, using all of their instance objects. For example, the derived fragments of
class City, based on new fragments f;™ of class School is f;"%:{I,, L;}. Similarly, the derived
fragments of class City based on fragments of f,"® and 5™ of class School are £":41,} and
£5":{I,, Is}. Derived fragments of class State, based on primary fragments of class City are
£24:413, £™: (L3}, £°%{I,} and £;":{I;}, based on derived fragments of class City are f5":{I,,
I3}, £": {1} and £™:{I;, I;} and based on primary fragments of class Road are fz"%:{I;, I},
{13} and fio™:{l3}. Similarly, derived fragments of class Country, based on derived
fragments of class State are fi":{I;, L}, £™:{L}, {1, L}, "L}, {L}, £"{L},
£ 40}, 6" (L}, £ {11} and £io™:{L}.

Now, it integrates these new derived fragments with new primary fragments by applying
affinity rule 2.1 and affinity rule 2.2. For example, fragments £, £, and £;™ of class City have
maximum affinity of 0, -5 and 0 with £,"°, f;"* and 4" respectively. After merging these derived
fragments with corresponding primary fragments, we get £ 41, L), £ {1, 1}, £ {13} and
£ {I, Is}. Here, I, and I, are overlapping in different fragments. Applying affinity rule 2.2, I,
and I, are placed in £," and £, with maximum affinity of 20 and 10 respectively. Hence, the
fragments are flnh:{Il, L4}, fznh:{Ig,} and ;™ {I, Is}. Instances I;, I, and I; of class State are
overlapping in different fragments. Applying affinity rule 2.2, I, I, and I5 are placed in 3", fz™
and £5"® with maximum affinity of 15, 15 and 10 respectively. Hence, the fragments are ;" {I,,
I} and £, {Is}. Applying affinity rule 2.2, instances I; and I, of class Country are placed in £,
with maximum affinity of 15 and 15 respectively. Hence, the fragment is £, {I, Io}.

Now, classes have their own existing horizontal fragments " (figure 3.2.8) and sets of
new fragments 7. It merges the existing fragments with new fragments based on affinity rule
2.1 and affinity rule 2.2, for those classes, which are member classes in composition hierarchy.
For example, class School is not a member class of other classes, so the new fragments are the
incremental horizontal fragments of the class. On the other hand, class City is a member class, so
this algorithm merges the existing fragments with the new fragments. Fragments f;°" and £, of
class City have maximum affinity of 15 and 0 with £,"" and £, respectively. After merging these

existing fragments with new fragments, we get flh: {I, I, L4}, fzh {I3, Is} and f3h {I, Is}. Here, I,

31

and 5 are overlapping in different fragments. Applying affinity rule 2.2, I, and I5 are placed in fit
and ;" with maximum affinity of 30 and 10 respectively. Hence, the incremental horizontal
fragments are £, {Ii, I, I4} and £ {I5, Is}. Fragments £,°" and £°" of class Road have
maximum affinity of 30 and 5 with f;™ and f;™ respectively. After merging these existing
fragments with corresponding new fragments, we get fi":{I;, I, Is, I, Is}, £ {15} and £5™ {1}
Here, I is overlapping in different fragments. Applying affinity rule 2.2, I5 is placed in fi" with
maximum affinity of 55. Hence, the final incremental fragments are £, {Ii, I, 15, L4, Is} and
£, {Is}. Fragment f;°" of class State has maximum affinity of 10 with f;™ After merging ;"
with f;™, we get fi™:{1;, I, I3} and £, {I5}. Here, I; is overlapping in both fragments. Applying
affinity rule 2.2, I3 is placed in f," with maximum affinity of 25. Hence, the incremental
horizontal fragment is ;" {I;, I, I;}. Fragment f;°" of class Country has maximum affinity of 15
with f;™. After merging f,°" with f;" the incremental horizontal fragment is £, {11,).

The following table shows incremental horizontal fragments of classes, after adding

queries.

Classes Fragments using IOHF Algorithm
School 1" {I, 1,15} £ {I3} 5 {I4,16}
City 1% {1,,1,14} £ {I3,Is}

Road £ {13,1p,13,1,Is} £ {Ig}
State 1% {11,113}
Country 1" {11, L}

Table 3.2.1.1: Fragments of classes — Adding Queries

When application access pattern changes due to deletion of queries, algorithm IOHF
generates fragments of classes by applying minterm predicates to all of the instances of the class.
For example, when we delete query 2 and query 3 of figure 3.2.7, it applies the minterm
predicates for these queries to class School and class City respectively. The fragments generated
by the minterm predicates of class School are fiP: {I, I, I3, Is} and £,°: {I4, Is}. Similarly, the
fragments for class City are f\°: {I;, I4} and £,F: {I,, I3, Is}.

Now, based on these fragments, it creates derived fragments of all member classes. For
example, the derived fragments of class City, based on fragment f;° and £, of class School are

£,%41, I, L} and £,% {1, Is} respectively. Similarly, the derived fragments of class State, based

32

on fragments of class City are fi%: {I;, Iz}, and £%:{I;, I, I3} and based on the derived fragments
of class City are f3d: {I;, Is} and £,4: {I,, Is}. The derived fragments of class Country, based on
derived fragments of class State are f;%: {I;, I}, £ {I, I}, ;% {I;, I} and £ {1, I}

To remove the effect of the deleted queries from the existing fragments, it generates
clustered fragments for each fragment. By intersecting each fragment (both primary and derived)
with existing fragments of the class, it creates clustered fragments f}ci. For example, after
intersecting f,°:{I;, I, I3, I5} and f1°h:{11, I, I3, Is} of class School, this algorithm generates
fil: {1, I, Is, Is}. Again, after intersecting fi® with £,°® of class School, it generates f;":{}.

Similarly, f,® after intersecting with £,°" and £,°" generates f;:{} and £, {14, I¢} respectively.

Class Name Instance acco(l) dacco(I) Total
School I 5 0 5
I 5 0 5
I; 5 0 5
Iy 10 0 10
Is 5 0 5
Is 10 0 10
Class Name Instance acco(l) dacco() dacco(D) Total
(Based on (Based on
Class School) Class Hospital)
City I 10 5(L) + 5(1,) 20(1y) 40
I 5 5(L) + 10(Ly) 20(L,) + 10(I3) 50
I 5 0 10(1y) 15
I 10 5(Is) 20(Is) 35
Is 5 10(I6) 10(I¢) 25
Class Name Instance acco(l) dacco(l) dacco(I) Total
(Based on (Based on
Class City) Class Road)
State I 5 10(I1y) + 5(1,) S5I)+H10(1,)+10 (L) 45
L 10 5(I) 10(14) 25
I; 5 10(1y) + 5(5) 10(I5) + 5(I¢) 35
Class Name Instance acco(l) dacco(l) Total
(Based on
Class State)
Country I 10 5T+ 10 (1) 25
L 5 5(15) 10
Note: Within bracket of column dacco shows the instance of owner class. For example, 2™ row and
4™ columns of class City represent the access frequency 5 and 10 of instance I and I of owner class
School respectively.

Figure 3.2.1.2: Primary and Derived Access Frequencies — Changes in Application Access Pattern

33

For class City, fi® generates f;":{I;, 14} and £;":{} after intersecting with £,°" and £,°" respectively.
Similarly, £;° generates fi":{l;} & {3, Is}, fi* generates f,":{I;, I, L} & £;%{} and £;°
generates f;“{I,} & £,"{Is} for class City. For class State, £, generates fll‘:{Il, I3}, £ generates
fIIZ:{Il, I, I3}, ;¢ generates f113:{11, I3} and £, generates fll“:{h, Is}. For class Country, £,4
generates fll‘:{h, I}, £, generates i {1, I}, £, generates f113:{11, I} and £,4 generates fll“:{Il,
I}.

Now, it subtracts acco(I) and dacco(I) from total access frequencies for each instance of
the class and merges these fragments ij‘ and f}c"‘ by applying affinity rule 2.1 and affinity rule
2.2, where i # m. Figure 3.2.1.2 shows the access frequencies and derived access frequencies
based on sample data and access frequencies of figure 3.2.4 and figure 3.2.8 respectively. Here,
column “acco(I)” and “dacco(I)” represent the access frequencies and derived access frequencies
of instances respectively. The column “Total” represents the sum of access frequencies and
derived access frequencies (acco(I) + dacco(I)) for each instance. As class Student does not have
any owner class, so the dacco(I) for each instances are 0. On the other hand, class Student and
class Hospital are two owner classes of class City. Instance I; of class City is the superclass
pointer of instances I; and I of class School, so the column “dacco(I) (based on class School)” is
the sum of access frequencies 5 and 5 of I} and I, of class School respectively. Similarly,
instance I; of class Hospital points to the instance I; of class City, so the column “dacco(I) (based
on class Hospital)” is the access frequencies of I; of class Hospital. Now, after subtracting the
access frequencies of instances for query 2 from total access frequencies, the access frequencies
for instances of class School are 0. Fragment f," of class School has maximum affinity of 0 with
£,2, hence after merging ;" with £,", incremental horizontal fragment is f;h {Ly, Ip, 15, L4, Ls, Lg}.
For class City, after subtracting the access frequencies for query 3 and derived access
frequencies for class School from total access frequencies, we get access frequencies of instances
Iy, I, I3, I4 and Is as 20, 30, 10, 20 and 10 respectively. Now, £l £ 6 £;5 £, and £, have
maximum affinity of 10, 30, 0, 10, 30 and 0 with £i5 £ &% fi' i and £, respectively. After
merging these fragments, we get fi":{I;, I, Ls}, £:"{L}, £"{ls, Is}, f2 {01, I, L}, £s*{I>} and
£ {I, Is}. For simplicity, keeping one of the identical fragments, we get i {I, Ip, L4}, o {I}
and 3" {13, Is}. Here, I, is overlapping in different fragments. Applying affinity rule 2.2, I, is
placed in f;" with maximum affinity of 100. Hence, the incremental horizontal fragments are

5 {I;, I, 14} and £ {I, Is}. For class State, after subtracting the derived access frequencies for

34

class City from total access frequencies, we get access frequencies of instances Iy, I, and I3 are
30, 20 and 20 respectively. Now, f;", fi, f,", and f;"“ have maximum affinity of 50, 30, 50, and
50 with fi%, fi", fi", and f;" respectively. After merging these fragments and keeping one of the
identical fragments, we get flh:{h, I3} and fzh: {I;, I, Is}. Here, I; and I; are overlapping in
different fragments. Applying affinity rule 2.2, I, and I3 are placed in £," with maximum affinity
of 100 and 90 respectively. Hence, the incremental horizontal fragment is flh:{Il, I, I5}. For
class Country, after subtracting the derived access frequencies for class State, we get access
frequencies of instances I;, and I, are 10 and 5 respectively. Now, fi", fi% fi", and fi" have
maximum affinity of 15, 15, 15, and 15 with each other. After merging these fragments and
keeping one of the identical fragments, we get the incremental horizontal fragment is fi" {1, I}.

The following table shows incremental horizontal fragments of classes, after deleting

queries.
Classes Fragments using IOHF Algorithm
School £ {11,10,15,14, 15,16}
City f17: {11,114} £ {I3,I5}
State 1% {1,113}
Country | f1:{1;,15}

Table 3.2.1.2: Fragments of classes — Deleting Queries

3.2.2 Changes in Application Query Access Frequencies

IOHF algorithm computes affinity measure, ofaff(I, F;"), between every instance I in a
class and all of the class’s fragments, using new application access frequencies. If the highest
affinity is greater than maximum affinity bond moaffbond(l, C) (definition 3.1) of the class, then
it reassigns I to fragment F," to generate primary fragments. For example, assuming the new
access frequencies of instances of class City are acco(l;) = 5, acco(Iy) = 15, acco(I3) = 15,
acco(ly) = 5 and acco(ls) = 15. Based on existing access frequencies (figure 3.2.8), I}, Ip, I3, I4
and Is have maximum affinity of 35, 30, 40, 35 and 40 with existing fragments £;°%, £;°F, £;°% f;°8
and f;°" respectively. Hence, the maximum affinity bond at time of initial fragmentation is 40.
With new access frequencies, I, I, I3, I4 and Is have maximum affinity of 40, 60, 30, 40 and 30
with £,°" respectively. The existing fragments of class City are £;°% {1, I, L} and £;°% {Is, Is}.

As I has maximum affinity of 60 with £,°", which is greater than maximum affinity bond 40, so

35

I, moves to " to generate new fragments. So, the new fragments of class City are £, {I, Ls}
and £, {L,, I, Is}.

Then, it generates derived fragments of all member classes of the class using all of the
instance objects. For class State, based on primary fragments of class City f," and £,", it generates
derived fragments fi%41,, 13} and £, {I;, I, I3}. For class Country, based on the derived
fragments of class State, it generates derived fragments fi%41,, L} and £%{ 1}, IL}.

Now, classes have their existing fragments ™ (figure 3.2.9) and sets of derived
fragments. Then, it merges these derived fragments with the existing horizontal fragments that
has maximum affinity measure aff(ﬂ, f°hk) with. For example, fragments fld and fzd of class State
have maximum affinity of 0 and 20 with f," respectively. After merging these derived fragments
with existing fragment, the incremental horizontal fragment for class State is £ {1, L, L.
Fragments fld and fzd of class Country have maximum affinity of 15 and 15 with flh respectively.
After merging these derived fragment with existing fragment, the incremental horizontal
fragment of class Country is f;" {I,, L,}.

The following table shows incremental horizontal fragments of classes, after changing

query access frequencies.

Classes Fragments using IOHF Algorithm
City fi: {11, 14} £ {Ip, 13,15}
State 1% {11,113}
Country | fi:{I,Ih}

Table 3.2.1.2: Fragments of classes — Changes in Query Access Frequencies

3.2.3 Changes in class hierarchy

After adding new classes in class inheritance and composition hierarchy, IOHF algorithm
generates new super classes/containing classes, which are member classes of these classes. It
also generates new subclasses/contained classes of these classes, which are owner classes of
these classes. For example, figure 3.2.3.1 shows the class inheritance hierarchy after adding a
new class Zone, which is a subclass of class City, and super class of class School and class
Hospital. Figure 3.2.3.2 shows the composition hierarchy of classes after adding the class Zone.
The object base schema for class Zone is shown in figure 3.2.3.3. Here, CiID, ZoID and ZoName

are attributes of class Zone. Again, GetName is the method of the class Zone. Now, instances of

36

class School and class Hospital point to the instances of class Zone. The changes of class School
and class Hospital are shown in figure 3.2.3.3. For example, the instance I; of class School points
to the instance of I; of class Zone instead of pointing instance I; of class City. The application

queries for new class Zone are shown in figure 3.2.3.4.

Root School Hospital
b4
Cou*ntry Zone Highway Urban Road
4
City E‘ \ State
itle Highway Urban Road Cou*ntry
School ﬂ/:;ital Rt)t

Figure 3.2.3.1: Class Inheritance Hierarchy
— Adding New Class

Zone {CiID, ZoID, ZoName,
GetName}

I, {City Pointer1, Zo01, Central}
L, {City Pointer1, Z002, North}
I {City Pointer2, Zo03, West}
I, {City Pointer2, Zo04, South}
Is {City Pointer4, Zo05, East}

Is {City Pointer5, Zo06, East}

I; {City Pointer3, Zo07, West}

Figure 3.2.3.2: Composition Hierarchy
— Adding New Class

School {CiID, ScID, ScName, ScStudent, ScCategory,
GetName, GetStudent, GetCategory}

I, {Zone Pointer1, Sc01, U of T, 4500, University

I, {Zone Pointer2, Sc02, York University, 4000, University}

I {Zone Pointer3, Sc03, U of Windsor, 3000, University}

14 {Zone Pointer4, Sc04, ABC School, 500, Elementary}

Is {Zone Pointer5, Sc05, NY University, 3500, University}

Is {Zone Pointer6, Sc06, M School, 400, Elementary}

Hospital {CiID, HoID, HoName, HoBeds
GetName, GetBeds}

I; {Zone Pointer2, Ho01, Toronto Hospital, 200}

I, {Zone Pointer3, Ho02, Windsor Hospital, 300}

I; {Zone Pointer4, Ho03, Windsor S Hospital, 150}

14 {Zone Pointer7, Ho04, Montreal Hospital, 100}

Is {Zone Pointer5, Ho05, NY Central Hospital, 300}

Is {Zone Pointer6, Ho06, Q Central Hospital, 150}

Figure 3.2.3.3: Sample Object Database Schema — Adding New Class

37

Query: Group class Zone according to their City name. Query requires method GetName of
class Zone and predicates from this query are:
P: CiName = “Toronto” P,: CiName = “Windsor” P;: CiName = “Montreal”

P4: CiName = “New York” Ps: CiName = “Queens”

Figure 3.2.3.4: Application queries — Adding New Class

Now, applying the minterm predicates of these queries, it generates primary fragments
for class Zone. These are fi°: {I;, I}, &% {l5, L4}, f:{l;}, f*:{Is} and f":{Is}. Based on the
existing fragments of class School, it generates derived fragments fld: {I1, I, 15, Is} and 54 {Ia4,
I} for class Zone. Again, based on the existing fragments of class Hospital, it generates derived
fragments £ {I, I, Is} and £, {14, Ig, I} for class Zone. Then, for each member class of the
class Zone, it obtains derived fragments. For example, the derived fragments of class City, based
on primary fragments of class Zone are f;%:{I;}, f,% {I}, f3d2{13}, £,%:{1s} and £ {Is} and based
on the derived fragments of class Zone are £d: {1, I, L4}, 4 {I, Is}, 2 {I1, I, 14} and fgd: {I,
I3, Is}. The derived fragments of class State, based on the derived fragments of class City are
f%40L}, 650}, % (L), £4{LY, 64}, 6440, LY, 6%, L), &% {1, ;) and 6% {I;, L,). The
derived fragments of class Country, based on the derived fragments of class State are f;%{I;},
6440}, 50, 85 (L), 5L, 6541, LY, £, L), &% {1, L} and 6% {I;).

Assuming access frequencies of class Zone are acco(I;) = 10, acco(l,) = 10, acco(I3) = 10,
acco(ly) = 5, acco(Is) = 10, acco(lg) = 10 and acco(l7) = 5. Then, it merges the derived fragments
with the primary fragments of new classes and the derived fragments with the existing fragments
of other classes that has maximum affinity measure aff(F";, F™) with. For example, the derived
fragments fld, fzd, f;d and f4d of new class Zone have maximum affinity of 0, 5, -10 and 0 with f;°,
fs?, £27 and s respectively. After merging these derived fragments with corresponding primary
fragments, we get f;h:{Il, I, I, Is}, fzh:{I3, L4}, f3h: {I1}, f4h:{Iz, I3, Is} and fsh:{I4, I, I7}. Here, I,
I3, 14, Is, and I; are overlapping in different fragments. Applying affinity rule 2.2, I, Is, Ly, Is, and
I7 are placed in flh, flh, fsh, flh and fsh with maximum affinity 60, 60, 25, 60 and 25 respectively.
Hence, the incremental fragments are flh:{h, Ib, I, Is} and & {14, Is, I7}. The derived fragments
of class City fi%, &%, £, £%, 5%, &%, £%, f;® and £, have maximum affinity of =5, -15, 0, -5, 0, 25,
-5, 25 and 0 with existing fragments f;°", £;°", £, £;°", £°" £;°* £ £,°" and £,° respectively.

After merging these derived fragments with corresponding existing fragments, we get f;*:{I;, L,

38

Iy} and ;" {1, I, Is}. Here, I, is overlapping in different fragments. Applying affinity rule 2.2, I,
is placed in £,* with maximum affinity 30. The incremental horizontal fragments are flh:{Il,' I,,
I} and £% {5, Is}. The derived fragments of class State £;%, £, £, £4, £, £, £°, f;¢ and £°
have maximum affinity of -5, -5, -15, -5, -5, 15, 15, 15 and 5 with f,° respectively. After
merging these derived fragments with existing fragment, we get the incremental horizontal
fragment £, {1;, I, Is}. The derived fragments of class Country fld, £ f3d, f4d, £, f6d, £ £, and
f,! have maximum affinity of §, 5, §, -5, -5, 15, 15, 15 and 5 with f,on respectively. After
merging these derived fragments with existing fragment, we get the incremental fragment £, {I;,
L}.

The following table shows incremental horizontal fragments of classes, after adding a

new class Zone.

Classes Fragments using IOHF Algorithm
Zone 17 {1, 10,05,15} £ {I4,16,17}
City 1" {11, I, 14} £ {I3,Is}

State 1 {11,115}
Country | fi4l,L}

Table 3.2.3.1: Fragments of classes — Adding New Class

After deleting a class from class hierarchy, IOHF algorithm generates derived fragments
for each member class of this class based on the existing fragments. For example, after deleting
the class School from the class inheritance hierarchy (figure 3.2.5), it generates derived
fragments for the class City, class State and class Country. The derived fragments of class City,
based on the existing fragments of class School are fld:{Il, I, I4} and 6% {I,, Is}. Then, the
derived fragments of class State, based on the derived fragments of class City are fi: {I;, Is} and
£,%:{1;, Is}. The derived fragments of class Country, based on the derived fragments of class State
are fld:{Il, I} and fzd:{ll, I}.

Now, it subtracts the derived access frequencies (figure 3.2.1.8) for instances and merges
these fragments with the existing horizontal fragments that has highest affinity measure aff(F%,
F™,) with. For example, after subtracting the derived access frequencies of class School from the
total access frequency of class City, we get access frequencies of instances I, I, I3, I4 and Is are

30, 35, 15, 30 and 15 respectively. Fragments £,¢ and £, have highest affinity of 95 and -35 with

39

" and £, respectively. After merging these derived fragments with corresponding existing
fragments, we get fi"{I;, I, I,} and £;"{I;, I, Is}. Instance I, is overlapping in different
fragments. Applying affinity rule 2.2, I, is placed in f;" with maximum affinity of 130. Hence,
the incremental horizontal fragments are flh: {I, I, 14} and fzh: {I3, Is}. Similarly, for class State,
after subtracting the derived access frequencies of class City, we get access frequencies of
instances 1, I, and I are 30, 20, and 20 respectively. Fragments fld and fzd have highest affinity
of 30 and 30 with f;°® respectively. After merging these derived fragments with existing
fragment, the incremental fragment is f,™:{I,, I, Is}. For class Country, after subtracting the
derived access frequencies of class State, we get access frequencies of instances I;, and I, are 10
and 5 respéctively. Fragments f;% and £,® have highest affinity of 15 and 15 with £,°" respectively.
After merging these derived fragments with existing fragment, the incremental fragment is
£, 41, L}

The following table shows incremental horizontal fragments of classes, after deleting the

class School.

Classes Fragments using IOHF Algorithm
City 1 {1,114} £ {I3,15}
State ;% {1,153}

Country | fi:{I},15}

Table 3.2.3.2: Fragments of classes — Deleting Class

3.2.4 Changes in Object Instances
When new instances arrive for a class at a site, this algorithm applies all minterm

predicates-on objects that defined the existing fragments, to have them belong to some primary
horizontal fragments of the class. Figure 3.2.4.1 shows new instances and their corresponding
access frequencies of class School, class Highway and class City. For instances I; and Iz of class
School, it applies the minterm predicate (MM,: ScCategory = “Univeristy” A ScCategory #
“Elementary”) for query 2 of figure 3.2.7 and generates primary fragments fiP:{Ig}. Again after
applying minterm predicate (MM,: ScCategory = “Univeristy” A ScCategory = “Elementary”) to
the instances I; and Ig, it generates f,":{I;}. Similarly, it generates primary fragments for class

Highway is f;":{Io} and generates primary fragments for class City are f;": {Is} and £;":{I;}.

40

New Instances
Class School: I;{City Pointer3, Sc0007, HM School, 300, Elementary}
I3{City Pointer2, Sc0008, A University, 4000, University}
Class Highway: Is{Road Pointerl, Hi0009, 100, 4}
Class City: I¢{State Pointerl, Ci0006, London, 65000}
I;{State Pointer3, Ci0007, Manhattan, 60000}

Access Frequencies

Class School: acco(I;) =10 acco(Ig) =5
Class Highway: acco(lp) =5
Class City: acco(lg) = 10 acco(l;) =5

Figure 3.2.4.1: New Instances and Access Frequencies — Changes in Object Instances

Then, it obtains derived fragments of all member classes of the class. For example, based
on these primary fragments of class School, it generates the derived fragments of class City are
f,%: {I,} and £% {I;}. It generates the derived fragment for class Road, based on the new
fragments of class Highway is f;*:{I,}. The derived fragments of class State, based on primary
fragments‘of class City are f;%{I;} and £,;*:{I5}, based on derived fragments of class City are
£;%:{1,} and £,% {I,} and based on the derived fragments of class Road is fs%:{I,}. It also generates
the derived fragments of class Country, based on the derived fragment of class State are £;%:{1;},
6540}, B {1}, 640} and £2{1,}.

Now, it applies the same minterm predicates to each existing fragment of each class. If
this process generates any fragment for a class, then it merges the primary fragments with
existing fragment with maximum affinity, otherwise the primary fragments will be the new
fragments for the class. For example, for class School after applying the same minterm predicate
MM, to £;°" and £,°", it generates f;:{I;, I, I, Is} and £,®:{}, so the fragment £;: {Is} will merge
with £;°® to create fragment flh:{ I, I, I3, Is, Is}. Again, the other minterm predicate MM, for
class School is applied to f,°" and £,°". Then, it generates £3%: {} and £®: {L, Is}. So, the fragment
£,P:{I;} will merge with £,° to create fragment £ {Ls, I, I7}. Similarly, for class Highway, it
merges the new fragment f;® with £;°! to generates f;"{Ip, I3, Is, Is, Is, I, Io} and £ {1, Is}.
Again, it merges the new fragments f;® and £;* with f;° and £°" respectively to create ;" {I,, I,
I4, Is} and £, {Is, Is, I;} for class City.

41

Then, it merges these derived fragments with the existing or new horizontal fragments
that has maximum affinity measure aff(F";, F"\) with. For example, for class City, fragments £,
and £,% have maximum affinity of 20 and -5 with new fragments £, respectively. After merging
these derived fragments with new fragments, we get are flh:{h, I, 14, I¢} and fzh:{Iz, I, Is, I7}.
Here, 1, is overlapping in different fragments. After applying affinity rule 2.2, I is placed in f,"
with maximum affinity 45. Hence, the incremental fragments are i {I, Ip, 14, I¢} and fzh:{ L5, Is,
I7}. For class Road, fragment f;° has maximum affinity of 0 with existing fragment £,°", After
merging fld with the f2°h fragment, we get incremental fragments flh:{h, I, I3, I, Is} and fzh: {1,
Is}. Here, I; is overlapping in different fragments. Applying affinity rule 2.2, I, is placed in fi®
with maximum affinity of 60. Hence, the incremental horizontal fragments are flh:{Il, Ip, 15, 14,
Is} and fzh:{I6}. For class State, fragments f;%, £%, £;%, £, and f5* have maximum affinity of —10,
~10, -10, 0 and —10 with existing fragment f;°" respectively. After merging the derived fragments
with existing fragment, the incremental horizontal fragment is f,™: {I,, I, Is}. For class Country,
fragments fld, fzd, f3d, £ and f5d have maximum affinity of 5, -5, 5, 5 and 5 with existing
fragment £;°" respectively. Hence, the incremental horizontal fragment is fih: {I1, I2}.

The following table shows incremental horizontal fragments of classes, after adding new

instances.

Classes Fragments using IOHF Algorithm
School 1% {11,12,15,15,Ig} 6 {14,I6,I7}
Highway | f1":{I2,13, I4,I5,15,17,Io} £ {I,,1g}
City 1% {1,101, 16} £ {Is,Is,17}
Road 17 {11,1n,15,14,15} £ {Is}

State | £ {I1,Ip,]5)
Country | fi: {11}

Table 3.2.4.1: Fragments of classes — Adding New Instances

When instances of a class are deleted, IOHF algorithm removes the objects instances
from the corresponding existing fragments and generates new fragments f-. Existing fragments
will be new fragments for those classes, which do not have any instances to delete. For example,
when the instance I, is deleted from the object base schema of class School, then this algorithm

removes the instance form f;°" {11, I, L5, Is} to create new fragment f;™: {I;, I3, Is}. Similarly,

42

when the instance I, of class School deleted, it generates new fragment £, {I¢}. Again, after
deleting instance I3 from class City, it generates new fragments for class City £;*:{I;, I, I+} and
£,":{Is}. Due to the integrity constraint, when instance I5 of class City is deleted, the instance I4
of class Hospital must be deleted. Hence, the new fragments for class Hospital are f;":{I,, I, Is}
and £,":{Is, I¢}. The new fragments for the remaining classes (Highway, Road, State and
Country) are the same as in figure 3.2.9.

Based on these deleted instances, it obtains derived horizontal fragments of all member
classes of the class, using all of their instance objects. For example, the derived fragments of
class City based on the deleted instances I, and I4 of class School are f,%: {I,} and £, {I}
respectively. Again, the derived fragment of class City based on the deleted instance 14 of class
Hospital is f3%:{I3}. The derived fragments of class State based on the derived fragments of class
City are fi%: (I}, B {I} and f;%: {I,}. Again, the derived fragments of class Country based on the
derived fragments of class State are £,%: {Ii}, £,4: {I,} and £,4: {Ii}.

Now, it intersects these derived fragments with new fragments to make sure that super
class (member) still has a parent instance of it or not. For example, the derived fragment fyd: {I3}
of class City is generated based on the fragment of class Hospital. We know that, the instance I3
of class City has already been deleted. Hence, after intersecting with f;" and £,", f3® will generates
two empty sets. So, f;* is not a valid derived fragment of class City.

Then, it subtracts the derived access frequencies from total access frequencies and
merges these derived fragments with the new fragments with which it has maximum affinity
measure aff(FTi, FHk). For example, after subtracting the derived access frequencies of I; and I4
for class School from the total access frequencies of class City, we get access frequencies of
instances I;, I, I4 and Is are 35, 40, 35 and 25 respectively. Now, fragments £,% and £, have
maximum affinity of -40 and -30 with f," respectively. After merging these derived fragments
with corresponding new fragments, the incremental horizontal fragments of class City are i {I,
I, 14} and £;"{Is}. Similarly, for class State, after subtracting the derived access frequencies of
instance I; and I, for class City from total access frequencies, we get access frequencies of
instances I, I, and I are 30, 25 and 35 respectively. Now, 4, £, and £;* have maximum affinity
of -30, -30 and —40 with fi" respectively. After merging these derived fragments with f}", the
incremental horizontal fragment is f;":{I;, I, I;}. For class Country, after subtracting the derived

access frequency of instance I; for class State from the total access frequency, we get access

43

frequencies of instances I;, and I, are 10 and 10 respectively. Now, £,9, £,% and ;¢ have maximum
affinity of 0, 0 and O with f;". After merging these derived fragments with f,", the incremental
horizontal fragment is £, {I,, I,}.

The following table shows incremental horizontal fragments of classes, after deleting

instances.

Classes Fragments using IOHF Algorithm
School f1": {11, 13,15} £ {16}
Hospital | £ {11, Is} £ {I3,1¢}
City 1% {11,101} £ {Is}
State | i {I,15,13}

Country | f1:{I;,I5}

Table 3.2.4.2: Fragments of classes — Deleting Instances

3.3 Correctness of IOHF algorithm compared to OOHF

algorithm

This section reprocesses and re-fragments the object based system described in figure
3.2.4, based on all of the changes of section 3.2 from scratch using OOHF algorithm. Hence, this
section shows the correctness of IOHF algorithm. Figure 3.2.5 and figure 3.2.6 show the class
inheritance and composition hierarchy for the object based system respectively. This section uses

the access frequencies from figure 3.2.8.

3.3.1 Changes in Application Access Patterns
When application access pattern changes due to addition of queries for classes, this

section uses the OOHF algorithm to generate horizontal fragments from scratch. Figure 3.2.7
shows the existing application queries for the object based system. Figure 3.2.1.1 shows the new
application queries that are to be added into the system. OOHF generates minterm predicates and
then generates primary fragments. For example, the primary fragments for classes are

Hospital fiP: {11, Ip, Is} 6P {Is, Ly, I}

School fiP: {1y, I, Is} 6P {13} 3 {Iy, I}

Highway fi°:{, I3 14 Is, Ig, I} £5P: {1y, Ig}

Road fiP: {1y, Ip, I5, 14} P {Is, I}

44

City fiP:{L;} 6P {13} 37 {14} 0 {IL} £5P: {Is}

State fiP:{1;} P {1} 5P {15}

Now, it generates derived fragments for each member classes of the class. For example,
the derived fragments of class City based on the primary fragments of class Hospital are fi4:41,,
L, 14} and 6% {I, I, Is} and based on the primary fragments of class School are £4(1,, 1),
£%{I,} and f5% {I, Is}. The derived fragments of class Road based on the primary fragments of
class Highway are fld: {I1, I, I3, L4, Is}and fzd: {I, Is}. The derived fragments of class State based
on the primary fragments of class City are f;%:{I}, féd: {IL}, £% {13}, £:%4{1;} and fsd:{I3}, based
on the derived fragments of class City are % {I;, I3}, £%{L;, L, I3}, % {1, L}, £6%{ I;} and
fio%:{I;, I3}, based on the primary fragments of class Road are f;,%:{I;, I} and f;,%:{I3} and based
on the derived fragments of class Road are fi;%: {I;, I, I3} and fis*: {I;, Is}. The derived
fragments of class Country, based on primary fragments of class State are £i4:41,}, £%{1}, and
f%: {I,} and based on derived fragments of class State are £, {Li}, fsd:{Il}, f6d: {I}, f7d:{11},
4 (L}, £%{L, LY, fich: {1y, L}, fu% {0, LY, f5 400, 6 {1, LY, G {1, s (L), fied: {1y, Lo}
and fi,% {I;, LL}.

Now, it integrates primary and derived fragments to generate the horizontal fragments. It
merges derived fragments with primary fragment that has maximum affinity with. For example,
for class City, fragments £, £;3, £:4, £, and ;¢ have maximum affinity with £i®, £°, £;®, f,* and
fif of -5, -5, 0, 5 and O respectively. After merging these derived fragments with corresponding
primary fragments, we get f,":{1;, L, L4}, & (I, I, Is}, £5™ {1}, L}, £ {L,} and £,"{L,, Is}. Here,
I, I, 14 and Is are overlapping in different fragments. Applying affinity rule 2.2, Ij, I, I4 and Is
have maximum affinity of 35, 30, 35 and 20 with £ 8 £ and & respectively. Hence,
horizontal fragments are: fi" {I;, I, Is} and £ {Is, Is}. For class Road, fragments f;® and £;*
have maximum affinity with f;* and £;° of 25 and —10 respectively. After merging these derived
fragment with corresponding primary fragments, we get fi™ {I;, I, Is, L, Is} and £,"{I,, Ls, I¢}.
Here, I; and Is are overlapping in different fragments. Applying affinity rule 2.2, I; and Is are
placed in f;® and £;" with maximum affinity of 60 and 75 respectively. Hence, the horizontal
fragments are i {I1, Ip, I3, L4, Is} and fzh:{I6}. For class State, fragments £4 64 64 19, 4, £,
£, £, £°, fio%, £11%, £12%, £15%, and £14¢ have maximum affinity with £°, £°, £5°, fi°, £F, fi°, £°, 7,
fif, i, £°, 5, £° and £’ of 5, 10, 5, 5, 5, 0,0, 0, 5, 0, 5, 5, 0 and O respectively. After merging
these deri?ed fragments with corresponding primary fragments, we get ;" {Li}, & (L}, fi%{L},

45

£ 400, £ {1, £ {1, IY, B840, I, Y, 041, 1Y, S0 {00, fio (L, I, £, {0, L}, f {1,
f13h: {I;, I, I5}, and f14h: {I;, I3}. Here, instances I;, I, and I; are overlapping in different
fragments. Applying affinity rule 2.2, I}, I, and I; are placed in f;* with maximum affinity of 25,
30 and 25 respectively. Hence, the horizontal fragment is ;™ {I;, I, Is}. As class Country does
not have any primary fragments, so the derived fragments will be the horizontal fragments of the
class. Here, instances I;, and I, are overlapping in different fragments. Applying affinity rule 2.2,
I,, and I, are placed in fo? with maximum affinity of 15 and 15 respectively. Hence, the
horizontal fragment is f;™ {1, I,}.

The following table shows fragments generated by IOHF algorithm are identical to the
fragments generated by OOHF algorithm for each class, after adding queries.

Classes Fragments using OOHF Algorithm Fragments using IOHF Algorithm

School | £1":{I1,I5,I5} £ {15} £5 LI} | 17 {11,115} £ {I3} 37 {I4,16}
Hospital | £":{I1,I5,I5} £ {15,14,16} £ {11,10,15} £ {I3,14,16}
Highway | £ {lp,]3 Lo Is,I6,I;} | £ {I1,1s} 1% {13 Ly Is, I, I7} | 2™ {1115}
City 1 {L1, 10,14} 6" {I3,Is} 1% {11,114} £, {13,I5}
Road i {5, LIt | £ {I6} 15 {1518, 15} | £ {6}
State ;% {11,115} 1% {1,115}

Country | f:{I,15} 17 {I;,10}

Table 3.3.1.1: Fragments of classes — Adding Queries

When application access pattern changes due to deletion of query 2 and query 3 of figure
3.2.7, OOHF algorithm generates primary fragments of classes. The primary fragments of classes

are
Hospital fiP: {1y, Ip, Is} P {I3, I, Ig}
Highway fi%: {I, 1314 15, 16, I} £5P: {1y, Ig}
State fiP:{I;} 6P {1} 3P {15}

Now it generates derived fragments for each member classes of the class. For example,
the derived fragments of class City, based on primary fragments of class Hospital are fld:{Il, I,
L} and £%{L, L, Is}. The derived fragments of class Road, based on the primary fragments of
class Highway are ;% {1, I, I, L, Is} and 6% {I;, I¢}. The derived fragments of class State,
based on derived fragments of class City are f;%:{ I}, Is} and £:%:{ I, L, I5}. Again, the derived

46

fragments of class State, based on the derived fragments of class Road are £,%{1,, I, I} and
£,%:{I;, I3}. The derived fragments of class Country, based on primary fragments of class State
are f;%:{1;}, £%{1,} and £;*:{I,}, and based on the derived fragments of class State are £9:41, L},
£59:41;, L}, £2: 41}, I} and £%{1,, IL}.

Now, it integrates primary and derived fragments to generate the horizontal fragments. It
merges derived fragments with primary fragment that has maximum affinity with. For example,
as class City does not have any primary fragments, so the derived fragments will be the
horizontal fragments of the class. Here, I, is overlapping in different fragments. Applying
affinity rule 2.2, I, is placed in f,® with maximum affinity of 30. Hence, the final fragments are
£, {1y, I, L4} and 6™ {I,, Is}. Again, as class Road does not have any primary fragments, so the
derived fragments will be the horizontal fragments of the class. Here, instance I, is overlapping
in different fragments. Applying affinity rule 2.2, I, is placed in f;" with maximum affinity of 60.
Hence, the final fragments are i {I), b, I, 14, Is} and £ {I¢}. For class State, fragments fld, fzd,
;¢ and £, have maximum affinity of 0, 0, 0 and 0 with f|®, £,°, f;,° and f® respectively. After
merging these derived fragments with corresponding primary fragments, we get fi™{1,, I} and
£ {1}, I, Is}. Here, I; and I; are overlapping in different fragments. Applying affinity rule 2.2, I;
and I; are placed in f," with maximum affinity of 25 and 25 respectively. Hence, the final
fragment is f;":{I;, I, 13}. As class Country does not have any primary fragments, so the derived
fragments will be the horizontal fragments. Here, I, and I, are 0ver1apping in different fragments.
Applying affinity rule 2.2, I; and I, have maximum affinity of 15 and 15 with £, Hence, the
final fragment for country is f;™{I;, L.}

47

The following table shows fragments generated by IOHF algorithm are identical to the
fragments generated by OOHF algorithm for each class, after deleting queries.

Classes Fragments using OOHF Algorithm Fragments using IOHF Algorithm
School 1" {13,10,15,14, 15,16} £17: {I1,15,15,15,14,16}
Hospital | i {11,115} £ {I5,14,16} 17 {1, 1,15} £ {15,14,16}
Highway | fi":{15,]3 14 Is,I¢,17} £ {I1,Is} 15,3 L s, 0,7} | £ {1,1s}
City 17 {1,114} £ {115} 1% {1, 15,14} £ {I5,15}
Road £ {1, 1, 15,14, 15} £ {Ig} £ {11,1,15,14,1s} £, {Ig}
State 1 {11,113} 1 {1,115}
Country | fi":{I1,Io} £ {11, 10}

Table 3.3.1.2: Fragments of classes — Deleting Queries

3.3.2 Changes in Application Query Access Frequencies
When application access frequencies changes, this section uses the OOHF algorithm to

generate horizontal fragments from scratch. For example, assuming the new access frequencies
of instances of class City are acco(l;) = 5, acco(ly) = 15, acco(I3) = 15, acco(Is) = S and acco(ls)
= 15, which are same as access frequencies of section 3.2.2. The access frequencies for all
instances of other classes are same as in figure 3.2.8.

Now, it generates minterm predicates and primary fragments for each class of the class
inheritance hierarchy (figure 3.2.5) based on the application queries from figure 3.2.7. The

primary fragments for classes are

Hospital fiP: {1, I, Is} 6P {15, Iy, I}

School fiP: {1}, I, 15, Is} 6P {14, Ig}

Highway i’ {I, I3 14 15, I, I} £ {1}, Ig}

City fiP:{L4, 1y} £2P:{I, Is, Is}

State fiP: {1} 6P {1} £ {I3}.

Then, it generates derived fragments for each member classes of the class. For example,
the derived fragments of class City, based on primary fragments of class Hospital are fld:{ Iy, I,
I} and £% { I, I5, Is}, and based on primary fragments of class School are £3%: {1}, I, 14} and ;%
{ I, Is}. The derived fragments of class Road, based on the primary fragments of class Highway
are £, {I1, Ip, I, Iy, Is} and fzd:{Il, Is}. The derived fragments of class State, based on primary

48

fragments of class City are £;%{I,, I;} and ;% {1,, I, I;}, based on the derived fragments of class
City are £5%:{1,, I3}, .5 {1}, I, I}, £5%:{I;, I3} and fs*: {I}, I3}, and based on the derived fragments
of class Road are £;*; {Ii, I, I} and fgdl{ll, I3}. The derived fragments of class Country, based on
the primary fragments of class State are f;%:{I;}, £%{I;} and £:%:{I,} and based on derived
fragments of class State are £, {1}, L}, £s%{I;, L}, f6& {1, L}, £% {1, L}, %41, L}, %41, L},
f103: Iy, L} and £, {1,, I).

Now, it integrates primary and derived fragments to generate the horizontal fragments. It
merges derived fragments with primary fragment that has maximum affinity with. For example,
for class City £, £;°, £, and ;° have the maximum affinity with £;?, £°, fi? and £ of -5, 45, -5
and 15 respectively. After merging these derived fragments with corresponding primary
fragments, we get f;™{1;, I, 14}, and £ {I, I, Is}. Here, I, is overlapping in different fragments.
Applying affinity rule 2.2, I, is placed in £,* with maximum affinity of 60. The horizontal
fragmentation are: f;™ {Ii, 14}, and fzh:{Iz, I, Is}. As class Road does not have any primary
fragments, so the derived fragments will be the horizontal fragments of the class. Here, I,
overlaps in different fragments. Applying affinity rule 2.2, I; is placed in f;® with maximum
affinity 60. Hence, the final horizontal fragments are i {Ii, I, I3, I4, Is} and £ {I¢}. For class
State, fragments £,%, £, £, £, £, £, £°, and £;* have maximum affinity with fi?, £;,°, fi°, £,F,
fi?, fi, £, and fi? 0f 0, 0, 0, 0, 0, 0, 0 and O respectively. After merging these derived fragments
with corresponding primary fragments, we get £,2 {L, I3}, £ {Li, I, I3}, f3h:{11, I3}, f4h:{ I, I,
L}, 5% I, L}, £%{1, L}, §%{ I;, I, Is} and fi™{I;, I3}. Here, instances I, I, and I are
overlapping in different fragments. Applying affinity rule 2.2, I, I; and I are placed in ;" with
maximum affinity of 25, 30 and 25 respectively. Hence, the horizontal fragment is f;™; {I;, I, Is}.
As class Country does not have any primary fragments, so the derived fragments will be the
horizontal fragments of the class. Here, I; and I, are overlapping in different fragments.
Applying affinity rule 2.2, I; and I, are placed in f; with maximum affinity of 15 and 15
respectively. Hence, the final horizontal fragment is i {1, Ip}.

49

The following table shows fragments generated by IOHF algorithm are identical to the

fragments generated by OOHF algorithm for each class, after changing query access frequencies.

Classes Fragments using OOHF Algorithm Fragments using IOHF Algorithm
School 17 {11,1p,15,15} £ {1416} 1% {1, 15,15, 15} i (14,16}
Hospital | fi":{1},15,I5} £ {13,14,16} 141,115} £ {13,14,1¢}
Highway | f1":{15,]53]141s,16,17} £ {115} £, L Is,Ie,I7} | £ {11, Ls}

City 1" {T1,14} £ {Ip, 13,15} £ {L1,La} £ {I,13,15}
Road 17 {11,10,13,14, 15} " {Is} 1" {I1,I2,15,14,1s} " {I¢}
State £ {1,113} 1" {1,113}

Country | fi:{I1,Ib} 17 {Ip,10}

Table 3.3.2.1: Fragments of classes — Changes in Query Access Frequencies

3.3.3 Changes in class hierarchy
This section uses the OOHF algorithm to generate horizontal fragments from scratch,

when new classes are added into class hierarchy. It uses class inheritance and composition

hierarchy from figure 3.2.3.1 and 3.2.3.2 respectively. It also uses the sample data for class

Hospital, School and Zone from figure 3.2.3.3 and for class Highway, Urbanroad, Road, City,

State and Country from figure 3.2.4.

Now, it generates minterm predicates and primary fragments for the classes School,

Hospital, Highway, City and State based on the application queries of figure 3.2.7, these are
£ {13, I, I}

Hospital fi*: {1y, I, Is}
School fi°:{1;, I, I3, Is}
Highway

City £iP {1y, L)

State P {1}

fi*:{D, I3 1s Is, L6, I7}

6P {Iu, I¢}
6P {1, Ig}

6P {L, 15, Is}

f2p2 {Iz}

6P {L3}

It also generates minterm predicates and primary fragments for class Zone, based on the

application queries of figure 3.2.3.4. The primary fragments of class Zone are
fiP:{1;, I}

£2°: {13, Ls}

5P {I}

£: {15}

f5p1{16}

Then, it generates derived fragments for each member classes of the class. For example,

the derived fragments of class Zone, based on primary fragments of class School are % {I, I,

I;, Is} and £,% {14, I¢}, and based on primary fragments of class Hospital are f3; {I, I, Is} and

50

£% {L, s, I;}. The derived fragments of class City, based on the primary fragments of class
Zone are f;%{1,}, £:%{L}, £%{13}, £%{14} and £,%:{Is} and based on the derived fragments of
class Zone are £ {11, Ip, 14}, £9; {I, Is}, fd: {I;, I, I4} and £od: {I, I, Is}. The derived
fragments of class Road based on the primary fragments of class Highway are £,.4:401, I, Is, s,
Is} and £,%{ I,, Is}. The derived fragments of class State, based on primary fragments of class
City are f,4: {I;, I3} and £, {1, I, I}, based on the derived fragments of class City are: £ {Li},
£9:40), £5{1), £5:41), £% {1}, {1, I}, 4Ty, 1), fio® {1y, I} and £1,%{1), I, Is} and based
on the derived fragments of owner class Road are flzd:{Il, I, I3} and f15% {11, Is}. The derived
fragments of class Country, based on primary fragments of class State are £i.%41,), £%{1,} and
f;%: {I,} and based on the derived fragments of class State are £,%:{1;, I} and £ {Li, L}, f6d:{11},
&1}, £ 40), B4 {L), fd (L), 0%, LY, f5 40, I, fis% {0, LY, fie®: {1, LY, 1550, I}
and fi¢%: {11, LL}.

Now, it integrates primary and derived fragments to generate the horizontal fragments. It
merges derived fragments with primary fragment that has maximum affinity with. For example,
for class Zone %, £°, £;* and f,% have maximum affinity of 0, 5, -10 and 0 with fi®, f°, £,® and £;°
respectively. After merging these derived fragments with the corresponding primary fragments,
we get fi" {1}, I, I, Is}, £ {Ls, L}, 6% {1;}, & {L, I, Is} and £5™: {14, I, I7}. Here, I, 13, L, s,
and I; are overlapping in different fragments. Applying affinity rule 2.2, I, I3, 14, Is, and I; are
placed in flh, flh, fsh, f," and f;" with maximum affinity 60, 60, 25, 60 and 25 respectively. The
final fragﬁlents are fi™:{I;, I, I, Is} and £,%{L4, Is, I;}. For class City £;%, £, £, £, %, £, £,
f3? and ;! have maximum affinity of 0, -5, -5, 0, -5, 15, 5, 15 and 15 with £;®, £°, £°, fi°, £, fi",
£;°, fi* and f,P respectively. After merging these derived fragments with corresponding primary
fragments, we get £, {I;, I, I4} and £ {I,, I, Is}. Here, I, is overlapping in different fragments.
Applying affinity rule 2.2, I is placed in fi® with maximum affinity of 30. Hence, the final
fragments are f;": {I}, I, I} and £,"{I3, Is}. As class Road does not have any primary fragments,
so the derived fragments will be the horizontal fragments of the class. Here, I; overlaps in
different fragments. Applying affinity rule 2.2, I is placed in f;* with maximum affinity 60.
Hence, the final horizontal fragments are £, {I, I, I3, I4, Is} and £ {I¢}. For class State,
fragments £;%, £°%, £, £, £, £, £, &%, &9, fio?, £1,%, £12°, and £;3® have maximum affinity with
fi¥, &£F, fif, fif, &P, £;°, £, fi°, fi®, fi¥, £F, f,° and fi® of 0, 0, 5, 5, 10, 5, 5, 0, 0, 0, 0, O and 5

respectively. After merging these derived fragments with corresponding primary fragments, we

51

get i { Tj, I}, 6% { I, b, I3}, £%{0L}, (L), N {0, £}, £ (L), &% {1, L) 6L, I},
fio™ {I, 13}, fuh:{ll, I, I3}, flzh:{ I, I, I3} and f13h:{11, I:}. Here, instances I;, I and I3 are
overlapping in different fragments. Applying affinity rule 2.2, I;, I, and I3 are placed in £, with
maximum affinity of 25, 30 and 25 respectively. Hence, the horizontal fragment is il {1, I, 13}
As class Country does not have any primary fragments, so the derived fragments will be the
horizontal fragments of the class. Here, I; and I, are overlapping in different fragments.
Applying affinity rule 2.2, I; and I, are placed in f,° with maximum affinity of 15 and 15
respectively. Hence, the final fragment is f;":{I;, L,}.

The following table shows fragments generated by IOHF algorithm are identical to the
fragments generated by OOHF algorithm for each class, after adding class.

Classes Fragments using OOHF Algorithm Fragments using IOHF Algorithm
School | A il s} AT AT D0 AT
Hospital | f1:{11,15,1Is} £ {I3,14,16} 17 {1, 10,15} £ {I3,14,16}
Highway | fi":{Ip,]5 L4 Is,16,17} £ {1,Ig} 1 {3 L Is,Ie, 17} | £ {T1,1s}

Zone £ {11,115 Is} £ {14, 16,17} i {1, I Is} £ {14,117}
City AT AT A AT A
Road 1% {11,15,13,14,15} £ {Ig} 17 {11,10,15,14,1s} £ {Is}
State i {11,115} i {1,113}

Country | fi":{I1,I5} 1" {115}

Table 3.3.3.1: Fragments of classes — Adding Class
After deleting a class e.g., class School, from the class inheritance hierarchy of figure
3.2.5, OOHF algorithm generates minterm predicates and primary fragments for all other classes
(Hospital, Highway, City and State) based on application queries of figure 3.2.7. The primary

fragments of these classes are

Hospital fi%: {11, I, Is} 6P {Is, Ly, Is}

Highway P (L, L LI, 1, I} 6F: {1, [}

City fiP: {0y, L4} P {1, 15, Is}

State fiP: {1} 6P {I} 6P {I5}.

Then, it generates derived fragments for each member classes of the class. For example,
the derived fragments of class City, based on primary fragments of class Hospital are ;% {1}, I,
I} and £,%{I, 15, Is}. The derived fragments of class Road, based on primary fragments of class

52

Highway are £, {Ii, I, I, 14, Is} and £ {11, I¢}. Derived fragments of class State based on
primary fragments of class City are f;*:{ I}, Is} and £%{ 1}, I, I}, based on derived fragments of
class City are f3d:{ I}, I} and f4d:{ Iy, I, I3} and based on the derived fragments of class Road are
%41, I, I3} and £%:{1,, I1}. The derived fragments of class Country, based on primary
fragments of class State are f;%{I;}, ,%:{I;} and £;*:{I,} and based on derived fragments of class
State are £;%; {I;, L}, £5% {1y, L}, % {I;, L}, &% {I,, L}, fs%{I;, I} and f:{I;, I,}.

Now, it integrates primary and derived fragments to generate the horizontal fragments. It
merges derived fragments with primary fragment that has maximum affinity with. For example,
for class City, £,¢ and £,* have maximum affinity of 15 and 15 with f;” and f,° respectively. After
merging these derived fragments with corresponding primary fragments, we get ™41, I, Ig}
and £, {I,, I, Is}. Here, L, is overlapping in different fragments. Applying affinity rule 2.2, I is
placed in f;" with maximum affinity of 30. Hence, the final fragments are fi":{1, I, L4} and
£, {13, Is}. As class Road does not have any primary fragments, so the derived fragments will be
the horizontal fragments for the class. In the class Road I is overlapping in different fragments.
Applying affinity rule 2.2, I; is placed in f," with maximum affinity of 60. Hence, the final
fragments are f;R {I1, I, I3, I4, Is} and fzh:{I(,}. For class State, fld, fzd, f3d, f4d, £ and £ have
maximum affinity of 0, 0, 0, 0, 0 and 0 with f|®, &7, fi?, f;°, £, and f,® respectively. After
merging these derived fragments with corresponding primary fragments, we get fi™{I;, I3} and
& {I;, I, I3}. Here, I, and I; are overlapping in different fragments. Applying affinity rule 2.2, I,
and I3 are placed in £, with maximum affinity of 25 and 25 respectively. Hence, the final
fragment is f;":{I;, I, I3}. As class Country does not have any primary fragments, so the derived
fragments will be the horizontal fragments of the class. Here, I; and I, are overlapping in
different fragments. Applying affinity rule 2.2, I; and I, are placed in £,¢ with maximum affinity
of 15 and 15 respectively. Hence, the final fragment is £ {11, IL}.

53

The following table shows fragments generated by IOHF algorithm are identical to the
fragments generated by OOHF algorithm for each class, after deleting class.

Classes Fragments using OOHF Algorithm Fragments using IOHF Algorithm
Hospital | f;":{1},I5,Is} £ {13,14,16} 17 {11,1b,I5} 52 {I5,14,16}
Highway | fi":{Ip,]314 15,1517} £ {1, I) 1" {L, I L Is,Je 17} | £ {I,Is}

City i {1, 10,1} £ {1315} £ {11,114} £ {I3,Is}
Road | T {libololals) B () L LLLL | o
State 17 {115,153} ;% {1,115}

Country | f":{I;,I5} £ {Ip,I5}

Table 3.3.3.2: Fragments of classes — Deleting Class

3.3.4 Changes in instance objects
This section uses the OOHF algorithm to generate horizontal fragments from scratch,

when new instances of objects are added into class. It uses the original database schema of figure
3.2.4 and new instances of figure 3.2.4.1 together. It generates minterm predicates and primary
fragments for all classes based on the application queries of figure 3.2.7. The primary fragments

of classes are

School fi’: {1}, I, I, Is, Ig} 6P {1y, Is, I7}

Hospital fi?: {11, I, Is} 6P {Is, Iy, I}

Highway £ (b, L1 16 I o) 6% {1, Ig)

City £i7:41,, I, I} BRI, I, s, Iy}

State 1241} £°: {1} 6P {I3}.

Then, it generates derived fragments for each member classes of the class. For example,
the derived fragments of class City, based on primary fragments of class School are ;% {I,, I, Ls}
and £;%:{I3, I, Is} and based on primary fragments of class Hospital are £3%:{I}, I, 14} and £,%{I,,
I3, Is}. The derived fragments of class Road, based on primary fragments of class Highway are
£, {I, I, I, Is, Is} and 53441, I¢}. The derived fragments of class State, based on primary
fragments of class City are f,%{I}, I;} and £%{I,, I, I}, based on the derived fragments of class
City are £;:{ 1, I}, L% {I,L, L}, &% {I;, I3} and £% {1, I, Is}, and based on the derived
fragments of class Road are f;%: {I;, I, I;} and fz% {I,, Is}. The derived fragments of class
Country, based on primary fragments of class State are f;*: {1}, £ {I;} and £;%:{I,} and based on

54

derived fragments of class State are f4d:{Il, L}, £ {I, b}, £ {I, I}, £, {I, L}, fgdl{Il, L},
fol: {1, I}, fio™: {11, I} and f11% {1, L}.

Now, it integrates primary and derived fragments to generate the horizontal fragments. It
merges derived fragments with primary fragment that has maximum affinity with. For example,
for class City, f;%, £%, 5%, and £, have the maximum affinity with fi?, £;¥, fi* and £,* of 5, 10, 5
and 10 respectively. After merging these derived fragments with corresponding primary
fragments, we get flh:{h, I, 14, I} and £, {I, I, Is, I;}. Here, I, are overlapping in different
fragments. Applying affinity rule 2.2, I is placed in f; with maximum affinity of 45. Hence, the
final fragments are ;™ {I;, I, I, Is} and £ { I, Is, I7}. As class Road does not have any primary
fragments, so the derived fragments will be the horizontal fragments for the class. Here, I;
overlaps in different fragments. Applying affinity rule 2.2 we get, I, is placed in f;* with
maximum affinity 60. Hence, the final horizontal fragments are flh: {I1, I, I3, Iy, Is} and fzh: {Is}.
For class State, f;%, £, £:%, £, 5%, £4, £° and f;® have maximum affinity with f,, P, f;?, £:F, f;°,
P, £° and fi° 0f 0, 0, 0, 0, 0, 0, 0 and O respectively. After merging these derived fragments with
corresponding primary fragments, we get f;{I;, I3} and £{l;, I, Is}. Here, I, and I, are
overlapping in different fragments. Applying affinity rule 2.2, I, and I, are placed in f,* with
maximum affinity of 25 and 30 respectively. Hence, the final horizontal fragment is f; {I;, L,
I3}. As class Country does not have any primary fragments, so the derived fragments will be the
horizontal fragments of the class. Here, I; and I, are overlapping in different fragments.
Applying affinity rule 2.2, I; and I, are placed in £, with maximum affinity of 15 and 15

respectively. Hence, the final horizontal fragment is f;" {I;, L,}.

55

The following table shows fragments generated by IOHF algorithm are identical to the
fragments generated by OOHF algorithm for each class, after adding instances.

Classes Fragments using OOHF Algorithm Fragments using IOHF Algorithm
School 1" {1,115 Is, Is} £ {I4,16,17} % {1,115 Is,Ig} 6 {1, 16,17}
Hospital | f1%:{11,I,,I5} £ {15,14,16} 1% {11,115} £, {I3,14,16}
Highway | f1: {10,314 15161710} | £ {I;,I5} 117 {Ip, 15 s Is,Ig,I7,10} | 2" {I1,Is}

City 1" {11,10,14,16} £ {13,Is,I7} 1 {11, 10, 1s, 16} £y {13,517}
Road £17: {11, I0,13,14,15} £ {Ig} f17: {I1,12,15,14,1s} £ {Ie}
State i {I1,Ip,I3} 1" {11,113}

Country | fi:{I1,I} 17 {1,

Table 3.3.4.1: Fragments of classes — Adding Instances
After deleting existing instances I, and I from class School, I; from class City and I4
from Hospital of database schema, this section fragments object based system using OOHF
algorithm. It applies the minterm predicates based on the application queries of figure 3.2.7 and

generates primary fragments for all classes. The primary fragments of classes are

School fiP: {1y, I3, Is} P {Ig}

Hospital fi*: {I;, I, Is} 6P {15, I}

Highway fi*: {I, I3 1y Is, L, I7} 6P {1, Ig}

City fi’: {Iy, 1a} £°: {Ip, Is}

State fiP: {I;} 6P {1} 6P {I5}

Then, it generates derived fragments for each member classes of the class. For example,
the derived fragments of class City, based on primary fragments of class Hospital are f,%: {I, I,
I} and £ {I, Is}, and based on primary fragments of class School are: £;%: {1, I, 14} and
£,%:{Is}. The derived fragments of class Road, based on primary fragments of class Highway are
fi4: {Ii, I, I, 14, Is} and £:%{I;, Is}. The derived fragments of class State based on primary
fragments of class City are f;% {1}, I3} and £%{I;, I;}, based on the derived fragments of class
City are f3d:{ I;, I3}, 8440, I3}, £5%:{I;, I} and f;*:{I;} and based on the derived fragments of
class Road are f7d:{11, I, Is} and £d: {I, I3}. The derived fragments of class Country, based on
primary fragments of class State are f;%:{I;}, £,%{I;} and £;%:{I,} and based on derived fragments
of class State are £,%:{I;, L}, £:%:{I;, L}, f%:{L;, L}, £%{1, L}, 6% {0, L}, £ {L}, fild: {1, L}
and £,,%: {11, IL}.

56

Now, it integrates primary and derived fragments to generate the horizontal fragments. It
merges derived fragments with primary fragment that has maximum affinity with. For example,
for class City, £,4 64 £, and £,° have the maximum affinity with fi?, £;°, fi® and £, of 15, 10, 15
and O respectively. After merging these derived fragments with corresponding primary
fragments, we get, fi™ {1, I, I4} and ;2 {1,, Is}. Here, I, is overlapping in different fragments.
Applying affinity rule 2.2, I, is placed in £," with maximum affinity of 30. Hence, the final
fragments are fi™ {I, I, I4} and fzh:{ls}. As class Road does not have any primary fragments, so
the derived fragments will be the horizontal fragments of the class. Here, I; overlaps in different
fragments. Applying affinity rule 2.2, I; is placed in £, with maximum affinity 60. Hence, the
final horizontal fragments are £,0 {I}, I, I, I4, Is} and fzh: {I¢}. For class State, fld, fzd, f3d, f4d, fsd,
£, £,¢ and £ have maximum affinity with f;?, fi¥, fi?, fi¥, f;?, £, £, and f;® 0f 0, 0, 0, 0, 0, 5, 0
and O respectively. After merging these derived fragments with corresponding primary
fragments, we get, fi™{I;, I3} and £%{1;, I, Is}. Here, I, and 15 are overlapping in different
fragments. Applying affinity rule 2.2 we get, I; and I3 are placed in £," with maximum affinity of
25 and 25 respectively. Hence, the final horizontal fragment is £, {I;, I, I3}. As class Country
does not have any primary fragments, so the derived fragments will be the primary fragments of
the class. Here, I; and I, are overlapping in different fragments. Applying affinity rule 2.2 we
get, I; and I, are placed in f;* with maximum affinity of 15 and 15 respectively. Hence, the final
horizontal fragment is flh: {I, I}.

The following table shows fragments generated by IOHF algorithm are identical to the
fragments generated by OOHF algorithm for each class, after deleting instances.

Classes Fragments using OOHF Algorithm Fragments using IOHF Algorithm
School i {11,153 Is} £ {Ig} f17:{I1,I3 Is} " {1}
Hospital | £ {1,115} 6 {15,1¢} £ {11, 1,15} £ {I3,16}
Highway | fi": {15,514 Is,I¢,17} £ {1, Is} f17: {1,153 Ly s, I, 17} £ (1,15}

City 1% {13,10,14} £, {15} 1% {13, I, 14} £ {Is}
Road {1,100, 1,15) B {Is} {00,105, 18,15} 6™ {16}
State % {11} i {1,115}

Country | fi":{I;,1o} 17 {115}

Table 3.3.4.2: Fragments of classes — Deleting Instances

57

Chapter 4: Performance Analysis

In this chapter, we compare the performance of IOHF algorithm with OOHF algorithm.
The IOHF algorithm is implemented as described in chapter 3. All experiments are performed on
a 733 MHz computer with 128 megabytes of memory. The operating system is Windows 2000.

All algorithms are written in Visual C++ language and running under Microsoft Visual Studio.

4.1 Theoretical Analysis

We can define the cost of horizontal fragmentation (Cg) of a class by the following
manners:
Ci= Cost for minterm predicates (Cuinterm)
+ Cost for primary fragments (Cprimary)
+ Cost for derived fragments (Cgerived)

Cost for minterm predicates (Cpinterm) Of a class is the sum of cost to generate minterm
predicates from each simple predicate. If P is the total number of predicates from all queries,
those are accessing the class, then total number of minterm predicates will be M = 2%, Assuming,
Cwum (e.g., 0.2 ms) is the cost to generate a minterm predicate from a simple predicate. Then cost
for minterm predicates, Cpinterm = M X Cy = 2P X Cwm.

Cost for primary fragments (Cprimary) of @ class is the sum of cost to apply a minterm
predicate to an instance. If n is the total number of instances of a class and C, (e.g., 0.3 ms) is the
cost to apply a minterm to an instance, then cost for primary fragments, Cprimary =1 X M X C, =
nX2"XC,.

Cost for derived fragments (Cgerived) Of a class is the sum of cost for each subclass to
select the parent pointer for each instance of each primary fragment. Assuming, C4 (e.g., 0.4 ms)
is the cost to find the parent pointer, n, is the number of instances of a primary fragment, F, is

the total number of primary fragments of a subclass and S, is the number of subclasses, then cost

for derived fragments, Cgerivea = Zi=oS“ Z':lF*’ (np X Cy).

58

The total horizontal fragmentation cost of an object based systems is the sum of

fragmentation cost of each class. If there are N nodes (classes) in the class inheritance hierarchy,

))) N
then the total horizontal fragmentation cost is Cy = Zi=1 Cse.

The advantage of IOHF algorithm, over OOHF algorithm is that, it avoids computing for
some nodes (classes) of class inheritance hierarchy of object bases systems. For example, from
section 3.2.1, when we added new queries (figure 3.2.1.1) in class School, class City and class
Road of class inheritance hierarchy (figure 3.2.5), IOHF algorithm generates minterm predicates
based on these new simple predicates for these classes. Then, it generates primary fragments of
these classes and derived fragments of class City, class State and class Country. So, the total cost

of refragmentation of the object based system will be,

Cr = Cee(school) T Cre(City) T Cro(Road) T Crostate) T Cre(Country)

Here, IOHF calculates, the cost of class fragmentation, based on new predicates. For
example, there are two predicates P; and P; in class School for new query. Again, as class State
and class Country do not have any new query, it applies only Cgerivea cost for these classes.

On the other hand, OOHF algorithm refragments all classes based on existing and new
queries. For example, class School has four predicates, Py, P, P; and P4. So, the total cost of
refragmentation of the class inheritance hierarchy will be,

Cr = Cre(schoot) T Cre(Hospital) T Cre(city) T Cro(Highway) T Cte(Road) T Cre(State) T Cre(Country)

Similarly, IOHF algorithm avoids computing, for deleting queries, changes in access

frequencies, adding classes, deleting classes, adding instances and deleting instances.

The disadvantage of IOHF algorithm over OOHF algorithm is that, when the last query is
deleted from a class, IOHF algorithm generates minterm predicates, primary and derived
fragments for this class. On the other hand, instead of applying any query, OOHF algorithm
assumes all instances of the class are in the same fragments. For example, from section 3.2.1,
when we deleted the query 2 (figure 3.2.1.1), IOHF algorithm generates minterm predicates and
primary fragments of class School and derived fragment of class City, class State and class
Country. OOHF algorithm does not apply any query for class School. Though OOHF algorithm
gains the Cryschoot) for class School, but total fragmentation cost (Cr) also depends on the Cy, of

59

other classes. As a result, after deleting queries in section 3.2.1, IOHF algorithm has better
performance than OOHF algorithm. From OOHF algorithm, we can get better performance, only

when we delete all queries from an object based system.

4.2 Experimental Evaluation

Our synthetic object based datasets are generated using a customize program, for class
inheritance hierarchies of figure 3.2.5 and figure 3.2.3.1. The data of each class consists
instances, where an instance includes attributes, methods and pointer to the parent class. Three
different sets of data with different number of instances for each class are used as input to the
algorithms to compare the performance between IOHF and OOHF algorithms. The following

sections show the performance results.

4.2.1 Execution Time for Dataset 1

Table 4.2.1.1 shows number of instances and the changes in inputs for each class to
compare the performance of IOHF and OOHF. Here, column titles, AQ means adding queries,
DQ means deleting queries, AF means changes in access frequencies, AC means adding classes,
DC means deleting classes, Al means adding instances and DI means deleting instances. For
example, data of column AQ indicates, one query is added into class City, one query is added
into class School and one query is added into class Road. The data of column AQ for class Zone
represents, one query is added into the class Zone, when class Zone is added into the class

inheritance hierarchy.

60

Class Number of Changes in Inputs

Name Instances AQ DQ AF AC DC Al DI
Country 2
State 3
City 5 1 1 1 2 1
School 6 1 1 1 2 2
Hospital 5 1
Road 6 1
Highway 8 1
Urbanroad 6
Zone 7 1 1

Table 4.2.1.1: Number of Instances and Changes in Inputs of Classes — Dataset 1

Table 4.2.1.2 shows the execution time for each type of changes in input using OOHF

and IOHF algorithms. Figure 4.2.1.1 shows the bar graph based on the execution time from table
4.2.1.2 for each class.

Changes in Inputs Execution Time (ms) | Execution Time (ms) Time Gain
- OOHF — IOHF (ms)
Adding Queries (AQ) 110.679 80.279 30.400
Deleting Queries (DQ) 78.657 60.742 17.916
Access Frequencies (AF) 94.700 43.935 50.765
Adding Classes (AC) 170.249 135.486 34.763
Deleting Classes (DC) 79.284 34.286 45.687
Adding Instances (AI) 94.284 65.461 28.823
Deleting Instances (DI) 89.120 60.628 28.492

Table 4.2.1.2: Execution Time (ms) — Dataset 1

Execution Time

(ms)

AQ DQ AF AC DC Al

Changes in Inputs

DI

® IOHF

Figure 4.2.1.1: Execution Time (Bar Graph) — Dataset 1

61

From table 4.2.1.2 and figure 4.2.1.1, we can find that IOHF algorithm requires less time

than OOHF algorithm to refragment the object based system.

4.2.2 Execution Time for Dataset 2

Table 4.2.2.1 shows number of instances and the changes in inputs for each class to

compare the performance of IOHF and OOHF.

Class Number of Changes in Inputs

Name Instances AQ DQ AF AC DC Al DI
Country 2
State 16
City 44 1 1 1 3 1
School 78 1 1 1 3 2
Hospital 46 1
Road 45 1
Highway 80 1
Urbanroad 6
Zone 172 1 1

Table 4.2.2.1: Number of Instances and Changes in Inputs of Classes — Dataset 2

62

Table 4.2.2.2 shows the execution time for each type of changes in input using OOHF

and IOHF algorithms. Figure 4.2.2.1 shows the bar graph based on the execution time from table

4.2.2.2 for each class.
Changes in Inputs Execution Time (ms) | Execution Time (ms) Time Gain
— OOHF - IOHF (ms)
Adding Queries (AQ) 3717.237 1336.393 2380.847
Deleting Queries (DQ) 2136.270 1868.847 267.423
Access Frequencies (AF) 3488.032 751.611 2736.421
Adding Classes (AC) 4026.390 3492.981 583.409
Deleting Classes (DC) 2431.120 865.683 1565.437
Adding Instances (Al) 5399.852 2878.061 2524.791
Deleting Instances (DI) 5243.790 2740.005 2503.785
Table 4.2.2.2: Execution Time (ms) — Dataset 2

E

£E

BY H OOHF

5 m |OHF

AQ DQ AF AC DC
Changes in Inputs

Al DI

Figure 4.2.2.1: Execution Time (Bar Graph) — Dataset 2

From table 4.2.2.2 and figure 4.2.2.1, we can find that IOHF algorithm requires less time than

OOHF algorithm to refragment the object based system.

4.2.3 Execution Time for Dataset 3

63

Table 4.2.3.1 shows number of instances and the changes in inputs for each class to

compare the performance of IOHF and OOHF.

Class Number of Changes in Inputs

Name Instances AQ DQ AF AC DC Al DI
Country 2
State 26
City 72 1 1 1 3 1
School 126 1 1 1 3 2
Hospital 90 1
Road 73 1
Highway 128 1
Urbanroad 6
Zone 288 1 1

Table 4.2.3.1: Number of Instances and Changes in Inputs of Classes — Dataset 3

Table 4.2.3.2 shows the execution time for each type of changes in input using OOHF

and IOHF algorithms. Figure 4.2.3.1 shows the bar graph based on the execution time from table

4.2.3.2 for each class.
Changes in Inputs Execution Time (ms) | Execution Time (ms) Time Gain
- OOHF — IOHF (ms)

Adding Classes (AQ) 9509.668 2602.706 6906.962
Deleting Classes (DQ) 6005.153 4223.312 1781.842
Access Frequencies (AF) 9224916 1738.667 7486.249
Adding Classes (AC) 10130.631 8947.833 1182.798
Deleting Classes (DC) 6630.042 1962.656 4467.385
Adding Instances (AI) 9524.735 7880.483 1644.251
Deleting Instances (DI) 9283.269 7725.666 1557.603

Table 4.2.3.2: Execution Time (ms) — Dataset 3

Execution Time

AQ DQ AF AC DC Al
Changes in Inputs

DI

u |IOHF

Figure 4.2.3.1: Execution Time (Bar Graph) — Dataset 3

64

From table 4.2.3.2 and figure 4.2.3.1, we can find that IOHF algorithm requires less time than

OOHEF algorithm to refragment the object based system [ED02].

65

Chapter 5: Conclusions and Future
Research

The problem of fragmenting and distributing data objects in an object-oriented database
system is complex owing to features of encapsulation, inheritance and class composition
relationships that need to be captured. This thesis handles a further important extension of
incremental horizontal fragmentation of classes by specifying the sequence of operations to
perform on existing fragments when an input data is added, deleted or changed. This algorithm
consists of several sequences of operations. Generally, each sequence uses the changes including
addition, deletion and moving, to define new fragments of classes, which are then merged with
existing fragments of the class based on affinity rules.

This algorithm generates fragments based on changes in a particular class and then
propagates only these changes to all of the member classes. Fragments of all other classes remain
the same. Therefore, the re-fragmentation time for the system is reduced. For example, from
section 3.2.1 and section 3.3.1, adding new application, we can find that, the OOHF has started
from scratch to re-fragments all of the classes of the class inheritance hierarchy whether it has
any effect due to the new application or not. On the other hand, in IOHF, we can find that, only
class School, City, Road, State and Country are re-fragmented based on only new application.
When re-fragmenting these classes, it generates minterm predicates and primary fragments only
for new application. As a result, IOHF algorithm needs less iteration than OOHF to complete the
re-fragmentation process of an object based systems. Hence, it increases the performance of a
system by using a few resources.

The algorithm presented here, contributes to solve the problem of re-fragmentation of

object-oriented databases system efficiently.

5.1 Future Research

The following aspects can be considered as future work.
1. Incremental Vertical and Hybrid fragmentation of object-oriented database.

2. Incremental Horizontal, Vertical and Hybrid fragmentation of relational database.

66

References

[ABDDMZS89] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier and S. Zdonik,

[BF95a]

[BKS97]

[CM94]

[CMVN93]

[CNPS82]

[EB9S]

[EB9S]

[ED02]

“The Object-Oriented Database System Manifesto”, In Proceedings of the First
International Conference on Deductive and Object-Oriented Databases, pp 223-
40, Kyoto, Japan, December 1989.
Elisa Bertino, Paola Foscoli, “On Modeling Cost Functions for Object-Oriented
Databases”, IEEE Transcation Knowledge and Data Engineering, Vol 9. No. 3
pp 500-512, April 1995

Ladjel Bellatreche, Kamalakar Karlapalem, Ana Simonet, “Horizontal Class
Partioning in Object-Oriented Databases”, DEXA '97 conference, 1997
Soon M. Chung, Pyeong S. Mah, “Schema integration for multidatabases using
the unified relational and object-oriented model”, Proceedings of the 1995
ACM 23rd Annual computer science conference on the shrinking footprint and
growing impact, pp 208-215, CIKM 1994
S. Chakravarthy, J. Muthuraj, R. Varadarajan, S. Navathe, “An Objective
Function For Vertically Partitioning Relations in Distributed Databases and its
Analysis”, Distributed and parallel Databases, 2(1):183-207, 1993
S. Ceri, M. Negri, G. Pelagatti, “Horizontal data partitioning in database
design”, In proceedings of ACM SIGMOD International Conference on
Management of Data , 1982
C. 1. Ezeife, K. Barker, “A Comprehensive Approach to Horizontal Class
Fragmentation in a Distributed Object Based System” International Journal of
Distributed and Parallel Database, Kluwer Academic Publisher, V1, 1995
C. 1. Ezeife, K. Barker, “Distributed Object Based Design: Vertical
Fragmentation of Classes”, International Journal of Distributed and Parallel
Databases, Vol. 6, No. 4, pp. 327-360, Kluwer Academic Publishers, October
1998
C. 1. Ezeife, Pinakpani Dey, “Incremental Horizontal Fragmentation of
Database Class Objects”, submitted to 5™ International Conference on

Enterprise Information Systems (ICEIS 2003), April 2003.

[EN0O]

[EZ99a]

[EZ99b]

[FEB9S]

[GA98]

[Ha98]

[HAG98]

[KG94]

[KIM90]

[KL95]

[KMNO93]

67

Ramez Elmasri, Shamkant B. Navathe, “Fundamentals of Database Systems”,
Third Edition, Addison-Wesley, 2000

C. 1. Ezeife, Jian Zheng, “Dynamic Database Object Horizontal
Fragmentation”, Proceedings of the 8th International Conference on
Information Systems Development-Methods and Tools, Theory and Practice,
Boise, Plennum Press Publishers, August 1999

C. 1. Ezeife, Jian Zheng, “Measuring the Performance of Database Object
Horizontal Fragmentation Schemes”, Proceedings of the 3rd International
Database Engineering and Applications Symposium (IDEAS 99), IEEE
Publication, Montreal, August 1999

Philippe Futtersack, Christophe Espert, Didier Bolf, “The Electronic Library
Project: SGML Document Management System Based on ODBMS”, SIGMOD
Record, Vol. 27, No. 1, March 1998

Jeff Garland, Dick Anthony, “Using Objectivity on the IRIDIUM System”,
SIGMOD Record, Vol. 27, No. 1, March 1998

P. G. Hardy, “Map Production from an active Object Database using Dynamic
Representation and Automated Generalisation”, Laser-Scan Ltd, Science Park,
Milton Road, Cambridge, CB4 0FY, UK. http:/oldsite.laser-
scan.com/papers/index.htm

David Hansen, Daniel Adams, Deborah Gracio, “In the Trenches with
ObjectStore”, SIGMOD Record, Vol. 27, No. 1, March 1998

Alfons Kemper, Guido Moerkotte, “Object-Oriented Database Management:
Applications in Engineering and Computer Science”, Prentice Hall, 1994

Won Kim, “Introduction to Object-Oriented Databases”, The MIT Press,
Cambridge, Massachusetts, London, England, 1990

K. Karlapalem, Q. Li, “Partitioning Schemes for Object Oriented Databases”,
5th International Workshop on Research Issues on Data Engineering:
Distributed Object Management (RIDE-DOM'95), pages 42-49, 1995

K. Karlapalem, M. M. A. Morsi, S. B. Navathe, “Issues in Distribution Design
of Object-Oriented Databases”, Distributed Object Management, (edited by T.
Ozsu, U. Dayal, and P. Valduriez), pages 148-165, Morgan Kauffman, 1993

[LNOG6]

[MK95]

[OV99]
[Ram98]
[Rao94]

[RBKW91]

[RPMP99]

[Ru94]

[RZ95]

[SM96]

[S296]

68

S. J. Lim, Y. K. Ng., “4 formal approach for horizontal fragmentation in
distributed deductive database design”, Tth international conferences on
Database and Expert Systems Applications, 1996
Savonnet M., Yetongnon K., “4 qualitative approach for class fragmentation in
distributed object oriented databases”, Proceedings of the 5th Annual
Workshop on Information Technologies and Systems. , WIT'S 1995
M. Tamer Ozsu, Patric Valduriez, Prentice Hall, “Principle of Distributed
Database Systems”, 1999
Raghu Ramakrishnan, “Database Management Systems”, Chapter 21, Object-
Database Systems, Page 614-644
Bindu R. Rao, “Object-Oriented Databases Technology Applications and
Products”’, McGraw-Hill, Inc. 1994
Fausto Rabitti, Elisa Bertino, Won Kim, Darrell Woelk, “A4 model of
authorization for next-generation database systems”, ACM Transaction on
Database Systems, Vol. 16, No. 1, pp 88-131, March 1991
Ivan Radev, Niki Pissinou, Kia Makki, E. K. Park, “Graph-Based Object-
Oriented Approach for Structural and Behavioral Representation of Multimedia
Data”, Eight International Conference on Information Knowledge Management
(CIKM’99), November 1999
Elke Angelika Rundensteiner, “4 classification algorithm for supporting object-
oriented views”, Proceedings of the third international conference on
Information and knowledge management, pp 18-25, CIKM 1994
Franck Ravat, Gilles Zurfluh, “Issues in the Fragmentation of Object Oriented
Database”, Proceedings. Basque International Workshop on Information
Technology, 1995
Michael Stonebraker, Dorothy Moore, “Object-Relational DBMSs: The Next
Great Wave”, Morgan Kaufmann Publishers, Inc., 1996
Ivan Szanto, “Extended Relational Database”, http://tu.dhs.org/oodbs/tit-
node4.html, 1996

[ThO1]

[WT96]

69

Dr. Grant Thrall, “Lecture 3 — 29" January: Spatial Data, Data Models, and
Modeling the Real World”, Department of Geography, University of Florida,
2001,
http://www.clas.ufl.edu/users/mbinford/geo3171/LectureNotes/Lecture_3_spati
al_data.pdf

Stephen Wong, Satoshi Tojo, “A Deductive Object-Oriented Database System
for Situated Inference in Law”, IEEE Transactions on Knowledge and Data
Engineering, Vol 8. No3., June 1996

Vita Auctoris

Name Pinakpani Dey

Year of birth 1970

Place of birth Sylhet, Bangladesh
Education M. Sc., Computer Science

University of Windsor
Windsor, Ontario
Canada

2000-2002

B. Sc., Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)
Dhaka

Bangladesh

1988-1992

70

	University of Windsor
	Scholarship at UWindsor
	2002

	Incremental object horizontal fragmentation.
	Pinakpani. Dey
	Recommended Citation

	tmp.1363872243.pdf.ORHNA

