
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2004

A new protocol with unbalanced RSA for authentication and key A new protocol with unbalanced RSA for authentication and key

distribution in WLAN. distribution in WLAN.

Zhong. Zheng
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Zheng, Zhong., "A new protocol with unbalanced RSA for authentication and key distribution in WLAN."
(2004). Electronic Theses and Dissertations. 686.
https://scholar.uwindsor.ca/etd/686

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/686?utm_source=scholar.uwindsor.ca%2Fetd%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A N ew Protocol w ith Unbalanced RSA
for A uthentication and Key D istribution

in W LAN

by

Zhong Zheng

A Thesis
Submitted to the Faculty of Graduate Studies and Research through the

Department of Electrical and Computer Engineering in Partial Fulfillment
of the Requirements for the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada
2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-00143-7
Our file Notre reference
ISBN: 0-494-00143-7

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© 2004 Zhong Zheng

All Rights Reserved. No Part of this document may be reproduced, stored or oth

erwise retained in a retrieval system or transmitted in any form, on any medium by

any means without prior written permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A New Protocol with Unbalanced RSA for Authentication and Key Distribution in
WLAN

by

Zhong Zheng

APPROVED BY:

AT Ngom (External Reader)
Department of Computer Science

S. Erfani (In’temaPReatler)
Department of Electrical and Comput^r^ngineering

(/ ^ K A (hpe (Co-supervisor)
Department of/Electrical and Computer Engineering

H. Wu^(Co-supervisor)
Department of Electrical and Computer Engineering

University of Windsor
September 21, 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

In wireless network, security concerns have haunted 802.11 deployments since the

standardization effort began. IEEE attempts to provide confidentiality by using WEP

(Wire Equivalent Privacy), and treats WEP as an option during the authentication.

Unfortunately, WEP had been proved that neither authentication nor data confiden

tiality is reliable. For the short-term solution, IEEE offers TKIP (Temporal Key

Integrity Protocol) to address the flaws found in 802.11, combined with 802.IX for

authentication. In order to provide solid mutual authentication and key-distribution,

TLS (Transport Layer Security) handshake protocol has been used in 802. IX. How

ever, since TLS was not designed specifically for 802.11 in WLAN, there are some

redundant steps in TLS which is not necessary if used for 802.11. Furthermore, in

WLAN, it is normal that the computation abilities between client and server could

be significantly different, which make the client a bottleneck during the handshake

process. According to those drawbacks, a new protocol for authentication and key-

distribution is proposed in this thesis. This new protocol can not only eliminate the

redundant steps in TLS handshake, but also reduce the time consumption for client

during the authentication and key-distribution by applying “unbalanced RSA” . The

proposed protocol with the use of “unbalanced RSA” solves the problems in original

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

802.11 standard, while offering efficiency and security at the same time.

ABSTRACT

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my well-beloved parents and grandparents.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

I would like to thank Dr. Kemal E. Tepe and Dr. Huapeng Wu for the invaluable

direction and feedback they have given me on this thesis. They have provided the

perfect balance of direction and freedom, allowing me to pursue my own ideas and

supporting me the whole while. I would also like to thank Wenkai Tang and all the

other people who have ever helped me during my research.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Abstract iv

Dedication vi

Acknowledgement vii

List of Figures xi

List of Tables xii

Abbreviations xiii

1 Introduction 1

2 A Review on IEEE 802.11 Privacy 5

2.1 Wired Equivalent Privacy (W E P).. 5

2.2 The Flaws in W E P ... 7

2.2.1 The Risks of Keystream Reuse.. 7

2.2.2 Message A uthen tication ... 10

2.3 802.11 Authentication and Its Flaws ... 11

2.3.1 Open System Authentication .. 11

2.3.2 Shared-Key Authentication ... 12

2.3.3 Flaws in A uthentication .. 13

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

2.4 Summary .. 15

3 Combine TLS with 802.IX in TKIP 16

3.1 Combine TLS and 802.IX for Authentication and Key-Distribution . 18

3.1.1 802. I X .. 18

3.1.2 TLS Handshake Protocol.. 20

3.2 Disadvantage of Using TLS Protocol in 802. I X 22

3.2.1 The complicacy of TLS for W L A N ... 22

3.2.2 Unbalanced Computation A b ility .. 24

4 The Proposed Protocol with Unbalanced RSA 26

4.1 The Proposed Pro tocol.. 26

4.1.1 Security A nalysis.. 29

4.1.2 S u m m ary .. 33

4.2 Unbalanced R S A ... 33

4.2.1 Security A nalysis.. 34

4.3 Unbalanced E xponents.. 36

4.4 Summary ... 37

5 Implementation 38

5.1 Implementation D e ta i l .. 38

5.1.1 Certificate Generation C la s s ... 38

5.1.2 Class for C lie n t ... 40

5.1.3 Class for S erver... 42

5.2 Simulation R esu lt... 42

5.2.1 Result A nalysis... 43

5.3 Summary ... 46

6 Conclusion 47

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

A Class for Client 50

B Class for Server 55

C Certificate Generation Class 60

References 63

VITA AUCTORIS 65

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

2.1 WEP Encryption Block D ia g ra m .. 6

2.2 WEP encryption symbolical figure... 7

2.3 Shared-Key Authentication .. 12

2.4 Shared-Key authentication is attacked by a third p e r s o n 13

3.1 802.IX architecture.. 18

3.2 802.IX conversation.. 19

3.3 TLS handshake p ro to co l.. 21

4.1 The proposed protocol for authentication and key-distribution 27

4.2 C ertificate... 31

4.3 RSA a lg o rith m .. 32

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

3.1 Unbalanced time consumption by using different processors for RSA operation 24

4.1 Message Types ... 27

5.1 Time consumption for key-distribution.. 42

5.2 Time consumption for certificate verification... 43

5.3 Number of operations in RSA for data decryption................................ 45

5.4 Number of operations in RSA for certificate verification...................... 46

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abbreviations

AES Advanced Encryption Standard

CA Certificate Authority

CRC Cyclic Redundancy Code

EAP Extensible Authentication Protocol

ICV Integrity Check Value

IEEE Institute of Electrical Electronics Engineers

IV Initialization Vector

LAN Local Area Network

MD5 Message Digest 5

MIPS Million Instructions Per Second

OTP One-time Password

PDA Personal Digital Assistant

PRNG Pseudo-Random Number Generator

RADIUS Remote Authentication Dial-In User Server/Service

RC4 Ron’s Code 4

RFC Request For Comment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABBREVIATIONS

RSA Rivest, Shamir, Adleman (public key encryption technology)

SSL Secure Sockets Layer

TGi Task Group i

TKIP Temporal Key Integrity Protocol

TLS Transport Layer Security

WEP Wired Equivalent Protocol

WLAN Wireless Local Area Network

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Over the past several years, the world has become increasingly mobile. As a result,

traditional ways of networking have proven inadequate to meet the challenges posed

by our modern lifestyle. If users must be connected to a network by physical cables,

their movement is dramatically reduced. Wireless connectivity, however, poses no

such restriction and allows a much more free movement on the part of the network

user.

Unlike wired network, wireless network uses radios instead of wires as the medium

for data transmission. For wired LANs, attackers must obtain physical access to the

network medium before attempting to eavesdrop on traffic. But for wireless network,

physical access to wireless networks is a comparatively simpler matter of using the

correct antenna and modulation methods [1].

The most successful wireless networking technology so far is 802.11, which is

“a suite of protocols defining a wireless local area network (WLAN)” , specified by

IEEE Standard 802.11-1999 [2]. IEEE 802.11 offers a wired LAN equivalent data

l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

confidentiality algorithm, which is called Wired Equivalent Privacy (WEP). WEP is

designed as protecting authorized users of a wireless LAN from casual eavesdropping.

This service is intended to provide functionality for wireless LAN equivalent to that

provided by the physical security attributes inherent to a wired medium [1]. But

unfortunately, WEP had been proved unsecure shortly after it appeared [3] [4].

The main reason which caused WEP flawed is the improper implementation of

RC4 algorithm in WEP [3]. Because the authentication in 802.11 treats WEP as

an option for confidentiality, it can not be regarded as reliable neither [5]. Another

reason is the use of an unkeyed checksum algorithm, which allows the message be

modified without detection [3].

The best solution to address WEP’s flaws is to keep the secret key fresh, or

to design a protocol for key distribution. A new method for authentication is also

necessary. Using a keyed checksum algorithm instead of the unkeyed one can address

the message authentication flaws [6].

The IEEE 802.11 Working Group recognized the gravity of the security issues in

802.11 and created Task Group “i” (TGi) to resolve them. TGi has designed two

solutions for the problems. One is called Temporal Key Integrity Protocol (TKIP)

[6], intended as a short-term patch for currently deployed equipment. The other one

will use AES (Advanced Encryption Standard) [7], a totally different cryptography

algorithm, as a long-term solution.

TKIP offers some new elements, such as a keyed Message Integrity Code (MIC) to

defeat forgeries; a key mixing function to defeat FMS (FMS are the initials of the three

authors) [4] attacks; a new IV sequencing discipline to remove replay attacks. More

importantly, TKIP has adapted IEEE 802.IX [8] to provide both authentication and

key distribution for WLAN, in order to address those flaws in original 802.11. Among

many options supplied by 802.IX, using TLS handshake protocol is the most secure

choice, since it can achieve mutual authentication, and keys can also be distributed

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

during the authentication.

TLS is the third version of SSL, which is originally used as a protocol in trans

port layer [9]. It assumes that both communication parties have their own SSL

version, key-exchange method, and other specific parameters. Therefore, during the

TLS handshake, both parties have to negotiate all the parameters first, then do the

authentication and key distribution. TLS protocol is good because it is considered

compatible to most of the systems which support different SSL versions and differ

ent algorithms. However, if using a certain parameter or key-exchange method can

enhance the performance for authentication and key distribution in a certain case,

then we can force the TLS handshake protocol to use that method, omitting the

negotiation part, simplifying the whole process.

In WLAN, the device for communication on client side could be a laptop, a PDA,

or even a cellphone. Comparing to the server side, the computation ability on client

side is restricted. For example, to finish an RSA encryption with 1024-bit modulus,

using a Pentium4 2.1 GHz processor can achieve about 3456 times faster than using

a 20 MHz microprocessor [10] [11]. Therefore, during the authentication and key

distribution in TLS handshake protocol, which involves time-consuming public key

algorithms, the computation ability on client side is definitely a bottleneck. No matter

how fast the server’s processor can achieve, the time consumption only depends on

the client, which has a slower processor. If we can find out a way to accelerate the

calculation on client side, then the whole process’s performance will be enhanced.

Fortunately, Adi Shamir, one of the three authors who created RSA, brought out an

idea, called “unbalanced RSA” [12], which is especially for solving the problem caused

by the unbalanced computation ability of the two communication parties. The basic

idea in “unbalanced RSA” is to use different size of p and q for different parties, while

remaining the size of modulus n stable. This can significantly reduce the numbers

of calculation operations on one side, so that the total time for RSA calculation

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

will shrink. Thus, we should use “unbalanced RSA” during the authentication and

key distribution in WLAN, and because this is the only method we will use in TLS

handshake protocol, there is no need to negotiate the key exchange method or any

other uncertain parameters. Based on unbalanced RSA, we can both reduce the

time for RSA decryption and simplify the TLS protocol, then decrease the total time

consumption for authentication and key distribution.

In this thesis, a new protocol is designed based on the application of unbalanced

RSA. Java is used to simulate this new protocol with the unbalanced RSA on the

application layer. Next section is a review of the flaws found in original 802.11.

Section 3 discusses the current solutions for those flaws. Section 4 introduces the

proposed protocol for authentication and key distribution in WLAN. The application

of unbalanced RSA is described in this section, too. Section 5 presents the simulation

result, as well as some discussion based on this result. Section 6 is the conclusion of

this research and the future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

A Review on IEEE 802.11 Privacy

In this chapter, WEP and the WEP-based authentication will be explained in detail.

The W EP’s flaws will also be presented. By the end of this chapter, we will gain a

comprehensive background on how unsecure the 802.11 is, and this can help us to

understand the importance of addressing 802.11’s problems.

2.1 W ired Equivalent Privacy (W EP)

The IEEE 802.11 standard [2] defines a data confidentiality mechanism known as

WEP. WEP works using RC4 encryption with a shared key. The security goal of

WEP is data confidentiality equivalent to that of a wired LAN.

Figure 2.1 shows how WEP encrypts a plaintext into a ciphertext. First, we choose

an initialization vector (IV). We then concatenate the shared secret key with IV. The

result is treated as a seed and put into a WEP PRNG (Pseudo Random Number

Generator), which is a part of the RC4 algorithm. The outcome is a key sequence, or

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. A REVIEW ON IEEE 802.11 PRIVACY

Initialization
Vector (IV)

Secret Key
Seed Key Sequence

Plaintext

Integrity Check Value (ICV)

Integrity Algorithm

WEPPRNG

Ciphertext

IV

Message

Figure 2.1: WEP Encryption Block Diagram

keystream. At the same time, an integrity check algorithm is applied to the plaintext

in order to get the ICV (Integrity Check Value). We XOR the concatenation of

plaintext and ICV with the keystream, and the result is the ciphertext. In the end,

we concatenate the plain IV with the ciphertext, and send them as a message to the

receiver.

Symbolically, the encryption process may be represented as follows:

Sender —> Receiver:

IV, (M\ |CRC(M)) © RC4(K, IV)

Where C is Ciphertext, K is Secret Key, M is Plaintext. Or, we can refer to the

following Figure 2.2:

To decrypt a frame protected by WEP, the recipient simply reverses the encryp

tion process. First, he regenerates the keystream RC4(K,IV), then he can get the

plaintext with the ICV by

C 0 RC4(K, IV)

= (M |\CRC{M)) © RC4(K, IV) 0 RC4(K, IV)

= (M\\CRC(M))

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. A REVIEW ON IEEE 802.11 PRIVACY

RC4(Secret Key, IV)

S
IV

r ostitis) *111111111
Plaintext il CRC(Plaintext) Message

Figure 2.2: WEP encryption symbolical figure

Next, the recipient verifies the ICV by doing CRC(M), if the result matches the one

he got from the message, then he assume the message has not been modified during

the transmission. This ensures that the only frames with a valid ICV will be accepted

by the receiver.

2.2 The Flaws in W EP

Many of the headlines about 802.11 over the past years were due to WEP. As networks

become important to business, security has become an increasingly prominent worry.

WEP was initially marketed as the security solution for wireless LANs, but as a

matter of fact, its design had been found flawed as to make that impossible. There

are some very good references which have given comprehensive explanations about

the flaws in WEP, such as [3] and [4], Since the 802.11 authentication is based on

WEP, reference [5] has taken a deep look at the problems in authentication, which

will be explained later in this chapter.

2.2.1 The Risks of Keystream Reuse

WEP provides data confidentiality by using a stream cipher called RC4. Normally,

stream ciphers operate by expanding a secret key (or, as in the case of WEP, a

public IV and a secret key) into an arbitrarily long “keystream” of pseudo random

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. A REVIEW ON IEEE 802.11 PRIVACY

bits (it is done by using a PRNG in WEP). Encryption is performed by XORing

the keystream with the plaintext. On the other hand, the decryption consists of

generating the identical keystream based on the IV and secret key and XORing it

with the ciphertext.

There is a well-known problem about stream ciphers that encrypting two messages

under the same keystream can reveal the original messages. In the case of WEP, if

Ci = Pi® RC4(IV, K)

and

C2 = P2 © RC4(IV, K),

then

C\ ® C2

= {Pi © RC4(IV, K)) © (P2 © RC4(IV, K))

= P i © P2,

where P is {M\\CRC{M)).

In other words, XORing two ciphertexts {Ci and C2) can get the result of (Pi©P 2).

There are several ways to get the plaintext from (Pi © P2). For instance, if one of the

plaintext Pi is known, then the other one will be revealed instantly by

P2 = Pi © (Pi © P2).

Even without knowing any of these two plaintexts, there are still many techniques to

reveal the messages [13] [14].

In order to avoid the “keystream reuse”, WEP uses a per-packet IV to vary the

keystream for each frame of data transmitted. As mentioned before, the keystream

in WEP is RC4(IV, K). Although the secret key K changes rarely, the IV changes

for every frame. Thus, for every different frame, the keystream is different, so there

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. A REVIEW ON IEEE 802.11 PRIVACY

is no way to get (Pi ® P2) from {C\ and C^) based on the same keystream. But

unfortunately, WEP does not achieve this goal.

From Figure 2.1 we know that IV is transmitted in plain, so duplicate IVs can

be easily detected by anyone including attackers. Based on the fact that the shared

secret key rarely changes, any reuse of old IV will expose the system to keystream

reuse attacks.

Even worse, 802.11 standard does not even require the IV to be changed after

every packet. In other words, there is no IV management at all, which let some

implementations do it poorly. For example, a particular PCMCIA card resets the IV

to 0 each time it is re-initialized, and then increase the IV by one for each packet

transmitted. The card is re-initialized each time it is inserted into a laptop, which

can happens frequently. Consequently, keystreams corresponding to low-valued IVs

are likely to be reused many times during the lifetime of the key.

However, even if a perfect method could be found to manage the IVs very well,

the keystream reuse still can not be avoided. This is because the IV field used by

WEP is only 24 bits wide, which nearly guarantees that the same IV will be reused

for multiple messages. For example, assuming there is a busy access point which can

send 1500 byte packets and achieve an average of 5Mbps bandwidth. Then, the time

used for exhausting a 24-bit IV’s space is:

5M b p s

224
= 40269.34(sec) = 11.19 (hour)

416 .625

An old keystream will be used again in less than half a day according to the calculation

above.

Therefore, to extend the life time of IV, or let’s say to extend the length of IV,

is the way to reduce the risk of keystream reuse, and this is what some so-called

“enhanced WEP” did. However, no matter how long the life time of IV is, the risk of

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. A REVIEW ON IEEE 802.11 PRIVACY

keystream reuse may be reduced, but other flaws still exist, such as the flaw caused by

FMS attack [4], There are two requirements for FMS attack to reveal the keystream:

• Enough ciphertexts which used the same secret key with numerous different

initialization vectors.

• Obtain the first word of RC4 output corresponding to each IV.

Since WEP changes its secret key very rarely (in fact, some implementations never

change it at all), the first requirement is easy to achieve. The first word of plaintext

is often an easily guessed constant which could be the date, the sender’s identity, etc.

With the corresponding ciphertext, attackers can get the first word of RC4 output,

or the first word of a keystream without lots of work [3]. The detail of FMS attack is

out of the scope of this thesis, reference [4] has more information about this attack.

The best countermeasure to address the flaws caused by keystream reuse and

FMS attack is to use fresh shared secret key, which is never mentioned in the 802.11

standard. In other words, the key-distribution is very important for WLAN in terms

of security. Changing the secret key frequently can avoid the reuse of IV, and the

first requirement of FMS attack will never be achieved.

The key-distribution is a very important issue for addressing 802.11 security flaws.

This has been considered in TKIP which will be discussed in the next chapter. But

what has been done in TKIP is still not the best solution in the case of WLAN, and

the reason of this is in chapter 4 and 5.

2.2.2 M essage Authentication

The WEP protocol uses an integrity checksum field to ensure that packets do not get

modified during the transmission. The algorithm used is CRC-32 (Cyclic Redundancy

Code 32 bits), and the ICV is part of the encrypted payload of the packet. However,

CRC is not a cryptographically secure authentication code, and it is designed to

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. A REVIEW ON IEEE 802.11 PRIVACY

detect random errors in the message, instead of malicious attacks. Actually, CRC is

exacerbated by the fact that the message payload is encrypted using a stream cipher.

Readers can find the details of this flaw in [3]. The solution of this problem is to

use an encrypted integrity check algorithm to take place of CRC-32 used in 802.11.

This has been done by TKIP using a keyed MIC (Message Integrity Check) called

Michael, which will be explained in the next chapter.

2.3 802.11 Authentication and Its Flaws

On a wired network, authentication is implicitly provided by physical access. While

this is a weak definition of authentication, and one that is clearly inappropriate for

high-security environments, it works reasonably well as long as the physical access

control procedures are strong. Wireless networks are attractive in large part be

cause physical access is not required to use network resources. Therefore, a major

component of maintaining network security is ensuring that stations attempting to

associate with the network are allowed to do so. Two major approaches are specified

by 802.11: open-system authentication and shared-key authentication. Shared-key

authentication is based on WEP and requires that both stations implement WEP.

2.3.1 Open System Authentication

Open System authentication is the simplest of the available authentication algorithms,

and is the only method required by 802.11. Essentially, it is a null authentication

algorithm. Any station that requests authentication with this algorithm may become

authenticated if 802.11 Authentication Type at the recipient station is set to Open

System Authentication. No doubt, this method can provide no security service at all.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. A REVIEW ON IEEE 802.11 PRIVACY

Initiator Responder
________ Authentication request_______

Challenge (a sequence of number)

Response (encrypted challenge using WEP)

Result

Figure 2.3: Shared-Key Authentication

2.3.2 Shared-Key Authentication

Shared-Key authentication uses a challenge and a response along with a shared secret

key to provide authentication.

The entire shared-key authentication is shown as Figure 2.3. The initiator sends an

authentication request management frame indicating that he wishes to use “shared-

key” authentication. The responder responds by sending an authentication manage

ment frame containing 128 octets of challenge text to the initiator. Once the initiator

receives the management frame, he copies the contents of the challenge text into a new

management frame body. This new management frame body is then encrypted with

WEP using the “shared secret” along with a new IV selected by the initiator. The

encrypted management frame is then sent to the responder. The responder decrypts

the received frame and verifies that the ICV is valid, and that the challenge text

matches the one sent in the first message. If the result is positive, the authentication

is successful.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. A REVIEW ON IEEE 802.11 PRIVACY

Initiator Responder
________ Authentication request_______

Challenge (a sequence of number)

A \Catdch the "Challenge"

Attacker

(l i a ! l e n q c (;H) R e s p o n s e - k e y s e q u e n c e

tCatch the "Response" ^

Response (encrypted challenge using WEP)

Result

Figure 2.4: Shared-Key authentication is attacked by a third person

2.3.3 Flaws in Authentication

The current protocol for shared-key authentication is easily exploded through a pas

sive attack by eavesdropping the authentication. The attack works because of the

previously reported weaknesses in WEP.

As shown in Figure 2.4, while two stations are doing shared-key authentication, an

attacker can capture both the second and the third messages, which are the random

challenge (M) in clear and the encrypted challenge (C) by WEP, respectively. Noting

the WEP encryption equation is C = M © Key stream, we XOR M and C, the result

should be the keystream (Keystream = M ®C).

Without the shared-key but only the keystream, the attacker can request authen

tication of any AP (access point) it wishes to. As usual, the access point responds

with an authentication challenge in the clear. The only thing the attacker needs to do

is to take this challenge, encrypt it by XORing it with the keystream, and send the

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. A REVIEW ON IEEE 802.11 PRIVACY

result (ciphertext) back to the access point. This response must be approved because

the keystream it used is the one shared with the AP. Consequently, the attacker will

be allowed to join the network.

So far, what we have discussed is based on an assumption that the access point is in

a privileged position. In other words, the authentication is a one-way authentication

instead of authenticating each other (mutual authentication). 802.11 does not restrict

authentication to any particular scenario. Any station can authenticate with any

other station. So the two parties during an authentication should be treated as

peer to peer, or let’s say they should authenticate each other. But 802.11 does not

restrict a mutual authentication. 802.11 implicitly assumes that access points are in

a privileged position by virtue of the fact that they are typically under control of

network administrators. Network administrators may wish to authenticate mobile

stations to ensure that only authorized users access the 802.11 networks, but mobile

stations can’t authenticate the access point. Stations wishing to join a network must

authenticate to it, but networks are under no obligation to authenticate themselves

to a station. The designers of 802.11 probably felt that access points are part of

the network infrastructure and thus in a more privileged position, but this curious

omission makes a man-in-the-middle attack possible. A rogue access point could

certainly send beacon frames for a network that it is not a part of and attempt to

steal authentication credentials.

Therefore, mutual authentication is a requirement in the case of a man-in-the-

middle attack. In the following chapter, we will see how TKIP adapts 802. IX to do

the mutual authentication for WLAN. In the proposed protocol in chapter 4, mutual

authentication is a requirement, as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. A REVIEW ON IEEE 802.11 PRIVACY

2.4 Summary

In this chapter, 802.11’s privacy and authentication, as well as their flaws have been

well described. The flaws found in WEP is basically caused by the improper imple

mentation of RC4 algorithm. In order to address them, keeping the secret key fresh

is a requirement. Therefore, a key-distribution approach is needed and should be

well designed. Since 802.11’s authentication is based on a flawed WEP, it can not

be treated secure. Furthermore, only an one-way authentication can not avoid the

man-in-the-middle attack. Those flaws will be addressed in the following chapters,

and a more efficient protocol which can not only provide key-distribution and mutual

authentication, but also enhance their performance in terms of time consumption will

be proposed later.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Combine TLS with 802. IX in

TRIP

TKIP is TGi’s response for the need to improve security for already-deployed 802.11

equipments. TKIP is a suite of algorithms wrapping WEP. It adds four new algo

rithms to WEP:

• A cryptographic message integrity code, called Michael, to defeat forgeries;

• A new IV sequencing discipline, to remove replay attacks from the attacker’s

arsenal;

• A per-packet key mixing function, to de-correlate the public IVs from weak

keys; and

• A rekeying mechanism, to provide fresh encryption and integrity keys, undoing

the threat of attacks stemming from key reuse; at the same time, providing

authentication service.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. COMBINE TLS WITH 802. IX IN TKIP

For defeating forgeries, TKIP uses a cryptographic message integrity code, called

Michael. The basic idea of Michael is to apply a hash function into the plaintext to

get a ICV, and verify this ICV on the receiver side. This can avoid the vulnerable

property in CRC-32 such as “it is a linear and unkeyed function of the message” [3].

The detail of algorithm “Michael” is in [15].

For defeating replays, TKIP reuses the WEP IV field as a packet sequence number.

Both transmitter and receiver initialize the packet sequence space to zero whenever

new TKIP keys are set, and the transmitter increases the sequence number with each

packet it sends. TKIP requires the receiver to enforce proper IV sequencing of arriving

packets. TKIP defines a packet as out-of-sequence if its IV is the same or smaller

than a previous correctly received message associated with the same encryption key.

If a message arrived is out of order, then it is considered to be a replay, and the

receiver discards it and increases a replay counter. For details, please refer to [16].

For defeating weak key attacks (FMS attacks), TKIP offers a new per-packet

key construction, called the TKIP key mixing function, substitutes a temporal key

for the WEP base key and constructs the WEP per-packet key in a novel fashion.

Temporal keys are named so because they have a fixed life time and are replaced

frequently. Basically, the TKIP key mixing function transforms a temporal key and

packet sequence counter into a perpacket key and IV. Reference [17] specifies the key

mixing function in detail. The mixing function operates in two phases, with each

phase compensating for a particular WEP design flaw. Phase 1 eliminates the same

key from use by all links, while phase 2 de-correlates the public IV from knowing the

per-packet key.

Since my research focuses on this so-called rekeying mechanism, which provides

both key-distribution and authentication, the following of this chapter will discuss

this topic in detail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. COMBINE TLS WITH 802. IX IN TKIP

EAPOL RADIUS

Supplicant Authenticator Authentication server

Figure 3.1: 802.IX architecture

3.1 Combine TLS and 802.IX for Authentication

and Key-Distribution

As mentioned in Chapter 2, the WEP I Vs can never be reused with the same key

without voiding the RC4 privacy guarantees, and that the TKIP key mixing func

tion can construct at most 216 IVs. This implies that TKIP requires a key-update

mechanism operating at least every 216 packets. The original authentication protocol

that is based on a flawed WEP is vulnerable, thus it needs to be addressed by a well

designed algorithm.

3.1.1 802.IX

802.IX was originally designed for network port authentication. It defines three com

ponents to the authentication conversation: supplicant, authenticator and authenti

cation server, which are all shown in Figure 3.1.

The supplicant is the end user machine that seeks access to network resources.

Network access is controlled by the authenticator, it serves the same role as the access

server in a traditional dial-up network. The authenticator does not maintain any user

information. Any incoming requests are passed to an authentication server, such as

a RADIUS server, for actual processing.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. COMBINE TLS WITH 802. IX IN TKIP

n
f i m

Laptop computer Access Point

Access blocked

Radius Server

EAPOL

Start

Request/Identity

Response/Identity

RADIUS

Radius-Access-Request

Radius-Request Radius-Access-Challenge

Response Radius-Access-Request

Success Radius-Access-Accept

Access allowed

Figure 3.2: 802.IX conversation

The authentication exchange is logically carried out between the supplicant and

the authentication server, with the authenticator acting only as a bridge. A derivation

of EAP (Extensible Authentication Protocol) is used by the authenticator to pass

challenges and reponses back and forth. From the supplicant to the authenticator,

the protocol is EAP over LANs (EAPOL) or EAP over wireless (EAPOW). From

authenticator to the authentication server, the protocol used is RADIUS.

802. IX is a framework, not a complete specification in and of itself. The actual

authentication mechanism is implemented by the authentication server. 802.IX sup

plies a mechanism for issuing challenges and confirming or denying access, but it does

not pass judgment on the offered credentials. A typical message exchange between

supplicant and authentication server is showed in Figure 3.2.

As mentioned before, EAP is the protocol used in 802.IX for data transfer. For

a particular explanation of EAP, please refer to the book [1]. Through EAP, several

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. COMBINE TLS WITH 802. IX IN TKIP

authentication algorithms can be chosen, such as MD-5 challenge, One-time password

(OTP), Generic Token Card, and TLS.

MD-5 Challenge is defined in RFC 1994. Its requests contain a challenge to the

end user. For successful authentication, the challenge must be successfully encoded

with a shared secret. You can also find the explanation of OTP and Generic Token

Card authentication method in RFC 1938 and [1], respectively.

TLS is a well designed protocol for both authentication and key-distribution. The

following section will give a brief review about this protocol.

3.1.2 TLS Handshake Protocol

RFC 2716 describes the use of Transport Layer Security (TLS) for authentication and

key-distribution. TLS is the standardized successor to the widely deployed Secure

Socket Layer (SSL), and TLS authentication inherits a number of useful character

istics from SSL. Most notably, mutual authentication is possible with TLS. Rather

than issuing a one-side challenge to the client, EAP-TLS can ensure that the client

is communicating with a legitimate authenticator. In addition to mutual authenti

cation, TLS provides a method to protect the authentication between the client and

authenticator. It also provides a method to exchange a session key securely between

the client and authenticator, which limits the impact of a compromised WEP key.

Figure 3.3 gives us a basic idea of how the TLS handshake protocol works. The

exchange can be viewed as having four phases.

In phase 1, the client starts a conversation by sending a client-hello message

including highest understood SSL version, a random number for preventing replay

attacks, session ID, ciphersuite and compression method. The ciphersuite is a list that

contains the combinations of cryptographic algorithms supported by the client. The

algorithms include key exchange algorithms and cipherspecs (which include cipher

algorithms, MAC algorithms, etc). Then, the server will send back the server-hello

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. COMBINE TLS WITH 802. IX IN TKIP

Client Server
client_hello

server_hello

certificate

server_key_exchange

certificate_request

server_hello_done

certificate

client_key_exchange

certificate_verify

change_cipher_spec

finished

change_cipher_spec

finished

Figure 3.3: TLS handshake protocol

message which contains the same parameters as the client.hello message. The purpose

of phase 1 is to negotiate a certain protocol version, and a bunch of certain algorithms

and parameters in order to transfer the data after the handshake.

Phase 2 is called server authentication and key exchange. The server begins

this phase by sending its certificate. Then a server.key-exchange message may be

sent if it is required. If mutual authentication is needed, the server will send a

certificate-request message. Next, a server-done message is sent indicating the end of

the second phase.

In phase 3, as a response, the client will send back his own certificate if necessary,

followed by the client-key-exchange message for key exchange. The certificate-verify

message is sent to tell the server the verification result.

During phase 4, both client and server will send change-dpherspec message to

indicate that from now on, they will use the new negotiated algorithms and parameters

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. COMBINE TLS WITH 802.1X IN TKIP

to protect the transmitted data, followed by a finished message indicating the finish

of the whole process.

3.2 Disadvantage of Using TLS Protocol in 802. IX

Although TLS is a well designed protocol for authentication and key-distribution, it

has its own disadvantage when we apply it into WLAN.

3.2.1 The complicacy of TLS for W LAN

As mentioned earlier, TLS is originally designed for transport layer, it is compatible

for most of the system. For instance, in the phase 1 of TLS handshake protocol,

the client and server will negotiate a certain version of SSL in order to finish the

following conversation. This is because different system may support different SSL

version. TLS is the third version of SSL. When a system supporting TSL is willing

to communicate with another system supporting only SSLvl, it must adjust itself to

SSLvl in order to understand every message sent by that system. But in WLAN,

because we only combine TLS into 802. IX, there is only one version of SSL used for

authentication and key-distribution which is TLS. Therefore, negotiating SSL version

is not necessary. Also, the reason both parties negotiate a ciphersuite is that each

system support their own key-exchange algorithm, cipher algorithm for data privacy

and other parameters. During the handshake, they must find a certain bunch of

algorithms and parameters which both of them support, so that after handshake,

they can continue to exchange data. But again, in our case, we still use WEP as

the cipher algorithm for data privacy, and for some efficiency concern which will

be explained in the next chapter, we will use only one key-exchange algorithm to

distribute the key. Thus, negotiating these algorithms is not necessary. Basically, in

the first phase, we only need both parties to setup a session ID and send a couple of

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. COMBINE TLS WITH 802.IX IN TKIP

random numbers due to the prevention of replay attack.

In the second phase of TLS handshake, certificates must be sent for authentica

tion. But server-key-exchange is useless. Server-key-exchange is only necessary for

a couple of certain key exchange algorithms, such as Diffie-Hellman key exchange,

which requires both parties to exchange some parameters before distribute the se

cret key. But in our case, we will use RSA key exchange algorithm to distribute

the key due to the efficiency concern. Since RSA key exchange algorithm doesn’t

require any previous parameters shared by both parties before distributing the key,

server-key-exchange can be deleted in this phase. Also, mutual authentication is a

requirement in WLAN in order to avoid man-in-the-middle attack, the server doesn’t

need to send the certificatejrequest to ask client for a certificate.

In the third phase, because the same reason in phase 2, client-key-exchange can

be eliminated.

During the last phase, the purpose of change-dpherspec is to indicate each other

that right after the authentication and key-distribution, the new negotiated algorithm

and parameters will be used for data privacy. But as mentioned before, we still

use WEP as the cipher algorithm, thus after handshake, both parties know which

algorithm they are going to use, which means sending a message to indicate which

algorithm to use is redundant.

After the analysis above, we can see that many steps in TLS are designed for

traffic in transport layer. For the sake of compatibility, TLS protocol includes almost

everything needed by all kinds of systems, which is why the whole process have 4

phases and many sub-phases. In our case, however, since we only deal with wireless

systems which requires only a certain bunch of algorithms and parameters under a

specific circumstance, we can combine the whole 4-phase TLS handshake protocol into

several simple steps for WLAN. We will see this new protocol in the next chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. COMBINE TLS WITH 802. IX IN TKIP

Table 3.1: Unbalanced time consumption by using different processors for RSA operation

M icroprocessors T im e R equired (m s)

RSA(1024) Encryption RSA(1024) Signature Verification

Using a 20MHz microprocessor in a PDA 622 598

Using a Pentiym4 2.1GHz microprocessor 0.18 0.19

3.2.2 Unbalanced Computation Ability

In TLS, certificate is used for authentication (The concept of certificate will be de

scribed in the next chapter). Basically, the security of certificate depends on the

use of digital signature technology, which is based on public key algorithms. For

key-distribution in TLS, public key algorithms such as DeffieJHellmanJkey.exchange

and RSA_key_exchange are the best choices. However, for WLAN, it is very nor

mal that the clients’ devices for communication are always laptops, PDAs, or even

cellphones. The processors’ computation abilities in these devices are restricted com

pared to those used by servers. Figure 3.1 gives us some examples on how different

the time consumptions are due to different processors. For example, We can see that

by using a 20 MHz microprocessor in a PDA, the time required for doing an RSA

encryption with a 1024-bit modulus is about 622 ms; to do the same operation, if

use a Pentium4 2.1 GHz processor, the time required is only 0.18 ms, which is about

3456 times shorter than that in the first case. To do an RSA signature verification

with a 1024-bit modulus by using both processors, we can nearly get the same result.

It is easy to understand that the time consumption for the whole authentication

and key-distribution depends only on the one whoever’s computation ability is weaker.

In other words, no matter how fast the server’s processor can execute the operations,

authentication and key-distribution can only be finished by the time that the client’s

processor finishes its job, the spending time of which may be much longer than that

of the server.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. COMBINE TLS WITH 802. IX IN TKIP

This is a very serious problem in reality. Disregarding other factors which may de

lay the time, when a user tries to roam from one access point to another in large infras

tructure deployments, the time used for a full reauthentication and key-distribution

by TLS handshake protocol used in 802. IX, such as 600ms, is too slow to support

real-time applications such as audios and videos. Therefore, in order to reduce the

spending time for authentication and key-distribution, we should find out how to

reduce the time for client, even somehow the server’s time may be increased a bit.

An algorithm called “unbalanced RSA” will be used to achieve this goal and will be

introduced in the next chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

The Proposed Protocol with

Unbalanced RSA

In this chapter, the proposed protocol will be introduced. We will also apply unbal

anced RSA into this protocol to reduce the time consumption. Regarding the security

flaws in original 802.11 standard and the disadvantage of using TLS in 802.IX for

authentication and key-distribution, the ability of addressing all those problems in

this proposed protocol with unbalanced RSA will be described in detail.

4.1 The Proposed Protocol

Figure 4.1 is the proposed protocol for authentication and key-distribution in WLAN.

The protocol consists of several messages exchanged by client and server. Each mes

sage has three fields:

• Type: Indicates one of the messages in Table 4.1.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. THE PROPOSED PROTOCOL WITH UNBALANCED RSA

Client Server

Verify CA’s signature.
Send back random, encrypted
secret key, and server’s certificate

Figure 4.1: The proposed protocol for authentication and key-distribution

• Length: The length of the message in bytes.

• Content: The parameters associated with this message.

Table 4.1: Message Types

M essage Type Parameters

clientJiello

server Jiello

finished

session id, random, chain of X.509v3 certificates

session id, random, chain of X.509v3 certificates, encrypted secret key

null

The exchange includes three steps.

Step 1 In this step, the client will send a clientJiello message with the following

parameters:

• Random: A client-generated random structure, consisting of a timestamp and

a sequence of random number. These values serve as nonces and are used during

key exchange to prevent replay attacks.

27

Send session ID, random, and
client’s certificate, including
client’s ID and its public key

Verify CA’s signature.
Decrypt the key, and
send back "finished".

clientJiello

serverJiello

finished

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. THE PROPOSED PROTOCOL WITH UNBALANCED RSA

• Session ID: A variable-length session identifier. A nonzero value indicates that

the client wishes to update the parameters of an existing connection or create

a new connection on this session. A zero value indicates that the client wishes

to establish a new connection on a new session.

• Certificate(s): one or a chain of X.509 certificates. It will be sent for the sake

of being authenticated by the server.

After receiving the clientJiello message, the server will verify the CA’s (Certificate

Authority) digital signature in client’s certificate. If the certificate is approved, the

server will generate a secret key, and encrypt this secret key using client’s RSA public

key which is retrieved from client’s certificate. The encryption result, ciphertext, will

be sent back to the client.

Step 2 In this step, the server sends the server Jiello message with his own random

and a session ID. The random is generated by the server and is independent of the

client’s random. If the session ID of the client was nonzero, the same value is used

by the server; otherwise the server’s session ID contains the value for a new session.

Following the session ID and the random, the server sends his own certificate(s), in

order to be authenticated by the client. At last, the ciphertext which contains the

encrypted secret key will be sent.

After getting the message from the server, the client will first verify the server’s

certificate. If approved, the client then decrypts the ciphertext to get the secret key.

So far, both client and server have authenticated each other; and the secret key has

been distributed to both parties.

Step 3 The client finally sends a finished message to indicate that the whole au

thentication and key-distribution process is done, and from now on, they can use the

shared secret key to transmit data by using WEP algorithm.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. THE PROPOSED PROTOCOL WITH UNBALANCED RSA

4.1.1 Security Analysis

The proposed protocol can prevent the system from all the general attacks.

Interception By using well-designed RSA algorithm for key-distribution and au

thentication, it is extremely difficult to gain any information of the distributed key

and the content of the authentication by an unauthorized party. RSA guarantees the

confidentiality of the data.

Modification With the use of certificate (it will be explained in this section shortly),

an unauthorized party can modify the data only if he can break the hash function,

which is almost impossible.

Fabrication The public key algorithm used in the certificate and key-exchange

method prevents the messages from being fabricated by an unauthorized party.

Replay As mentioned earlier, random is used to defeat replay attack during the

authentication and key-distribution.

In the following of this section, we will take a closer look at the certificate and the

RSA key-exchange method.

Certificate for Authentication

In our proposed protocol, in order to achieve a reliable mutual authentication, we use

the well designed public-key certificate as our algorithm.

The heart of certificate is the digital signature technology. Digital signature is

an application of public key algorithm. It is used to ensure that the signed message

is really from the one who signed it. For instance, Bob wants to send a message to

Alice and, although it is not important that the message be kept secret, he wants

Alice to be certain that the message is indeed from him. Then Bob can use his own

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. THE PROPOSED PROTOCOL WITH UNBALANCED RSA

private key to encrypt the message. When Alice receives the ciphertext, she finds

that she can decrypt it with Bob’s public key, thus proving that the message must

have been encrypted by Bob. No one else has Bob’s private key and therefore no one

else could have created a ciphertext that could be decrypted with Bob’s public key.

Therefore the entire encrypted message serves as a digital signature. In addition, it

is impossible to alter the message without access to Bob’s private key, so the message

is authenticated in terms of both source and data integrity.

In essence, a certificate consists of a public key plus a User ID of the key owner,

with the whole block signed by a trusted third party. Typically, the third party is a CA

(certificate authority) that is trusted by the user community, such as a government

agency or a financial institution. A user can present his or her public key to the

authority in a secure manner and obtain a certificate. The user can then publish the

certificate. Anyone needing this user’s public key can obtain the certificate and verify

that it is valid by way of the attached trusted signautre. Figure 4.2 illustrates the

process.

One scheme has become universally accepted for formatting public-key certificates:

the X.509 standard. X.509 certificates are used in most network security applications,

as well as used in my proposed protocol. The detail of X.509 standard is in RFC 2459.

Certificate is a well designed algorithm for authentication. Because the security of

certificate depends on the digital signature which is one of the public key algorithms,

it can be compromised only if the public key algorithm is defeated. Public key

algorithm such as RSA has been stayed secure for more than three decades. With

a proper modulus, RSA will stay secure in the foreseeable future [12]. Thus, using

certificate for authentication in our protocol can ensure that the man-in-the-middle

attack which happened in the original 802.11 standard will be defeated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. THE PROPOSED PROTOCOL WITH UNBALANCED RSA

Unsigned certificate
contains user ID,
user’s public key

Generate hash code o f
unsigned certificate

Gererate signature by
encrypt hash code
with CA’s private key

Signed certificate Signature

Figure 4.2: Certificate

RSA Key Exchange algorithm for Key-Distribution

Normally, the two communication parties encrypt and decrypt a message using a

shared secret key. The keys are decided upon in advance and somehow this informa

tion is sent securely from one to the other. There are some obvious limitations and

drawbacks to pre-distribution. First of all, it requires two parties, Alice and Bob,

to have met or to have established a secure channel between them in the first place.

Secondly, once Alice and Bob have met and exchanged information, there is nothing

they can do, other than meeting again, to change the key information in case it gets

compromised.

The solution for those problems is to use public key exchange algorithm, such

as RSA and Diffie-Hellman key exchange. The advantage of public key algorithm is

that there is no secret information necessary to be shared before the secret key is

distributed. For efficiency concern which will be discussed later in this chapter, in

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. THE PROPOSED PROTOCOL WITH UNBALANCED RSA

Key Generation

Select p, q p and q both prime

Calculate n=p*q

Calculate (p—l)(q —1)

Select integer e gcd((p— 1)(q— 1), e)=1; l< e < (p - l) (q - l)

Calculate d d = eA(- l) (m o d (p - l) (q - l))

Public key KU = {e, n}

Private key K R = { d , n }

Encryption
Plaintext: M < n

Ciphertext: C = M Ae (mod n)

Decryption
Plaintext: c

Ciphertext: M = CAd (mod n)

Figure 4.3: RSA algorithm

our protocol, we will choose RSA key exchange algorithm to distribute the secret key.

RSA Algorithm for Key-Exchange In order to understand the RSA key ex

change algorithm and for the sake of efficiency concern discussed in the next section,

let’s take a brief review on the RSA algorithm. Figure 4.3 shows the basic idea of

RSA.

For key exchange, we treat the secret key to distribute as a plaintext and encrypt

it with RSA public key. For recipient who holds the relevant RSA private key, he can

simply decrypt the ciphertext and get the secret key. As mentioned before, there is

no secret information required before the key is distributed.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. THE PROPOSED PROTOCOL WITH UNBALANCED RSA

4.1.2 Summary

As far, the proposed protocol has been described. The protocol used to address the

flaws in authentication and key-distribution in 802.11 standard has been explained.

As mention before, one serious problem for using TLS in 802. IX is that the client

processor’s computation ability is the bottleneck during the authentication and key-

distribution. The solution for that is either to use more advanced processor with

stronger computation ability, which depends on the development of the processor

technology and will cost more money, or, to make the current algorithm more efficient.

Both of their purposes are to reduce the time consumption for the whole process.

In the next section, a new algorithm called “unbalanced RSA” will be introduced.

Let’s see how it can make the current RSA algorithm more efficient in the case

that the computation ability is unbalanced, and finally reduce the whole time for

authentication and key-distribution.

4.2 Unbalanced RSA

One of the most important decisions in practical implementations of the RSA cryp

tosystems is the choice of modulus size. It is clear that 512-bit modulus no longer

provides adequate protection, and 1024 bits is a common choice in current RSA sys

tems. With the progress of factoring algorithm, the size of modulus will increase

in the foreseeable future. However, the time complexity of modulus exponentiation

grows rapidly with the size of the modulus (actually, the time complexity of RSA com

putations grows cubically with the size of the modulus [12]), and thus it is difficult

to choose a size which combines efficient operation with long term security.

“Unbalanced RSA” was first mentioned by Adi Shamir, it is based on Chinese

Remainder Theory (CRT). For instance, we use a modulus n with a size of 1024 bits,

and the size of its prime factor p is 256 bits. Then, the size of q is about 768 bits.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. THE PROPOSED PROTOCOL WITH UNBALANCED RSA

The different size of p and q reflects the name of “unbalanced” .

Since RSA encryption is typically used only in order to exchange session keys

for fast secret key cryptosystems, the cleartexts are usually quite short: even three

independent keys for triple DES require only 168 bits, which means it is very likely

that the cleartext is always smaller than p. We can thus assume that the cleartext is

in the range [0,p).

For RSA decryption, we need to consider the equation m = cd (mod n). If we

use the Chinese Remainder Theorem, we can compute m i = cd (mod p) via a 256

bit exponentiation, by reducing c modulo p and d modulo p — 1 at the beginning of

the computation. However, we then have to carry out the 756 bits exponentiation

m 2 = cd(mod q), which is (| | |) 3 = 9 times slower.

As a matter of fact, there is no need to carry out this expensive computation at

all. By definition, mi is equal to m (mod p). However, the cleartext m is known

to be smaller than p, and thus m (mod p) is simply m itself. By combining these

observations, we conclude that mi is the original cleartext m, and thus it is just a

waste of time to carry out the computation of m2 modulo q, which will yield the same

result.

If we compare the size of p which we use to calculate the cleartext to the modulus

n which we should use without using “unbalanced RSA”, the time we need is about

(lU r)3 = 64 times shorter, which is a significant enhancement.

4.2.1 Security Analysis

From the analysis above, we can see that using “unbalanced RSA” can reduce the

time for decryption which is great for client in WLAN. In this section, let’s take a

look at the security affection by using this algorithm.

It is known that the security of RSA relies on the difficulty of factoring the modulus

n. So far, all the known factoring algorithms can be divided into two broad types:

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. THE PROPOSED PROTOCOL WITH UNBALANCED RSA

algorithms whose running time depends on the size of the factors, and algorithms

whose running time depends only on the size of the factored number n. The oldest

factoring algorithms typically searched for the smallest factor p of n, and were thus

of the first type. However, modern algorithms tend to use indirect approaches which

require the same time to find a single digit or a fifty digit prime factor of n.

The fastest factoring algorithm of the first type is currently the elliptic curve

method. Its asymptotic running time is exp(0((ln(p))% • (lnln(P))^)), but its basic

operations are very slow. The largest factor ever found in practice with this algorithm

was about 183 bits long, and it is very unlikely that this algorithm will be able to

find the 256 bit factors of 512 bit RSA keys in the next few years.

Factoring algorithms of the second type are much faster, since they can use a

wider array of mathematical techniques. The best algorithm of this type is currently

the general number field sieve. It has an asymptotic complexity of exp(0((ln(ri))% •

(lnln(n))3)), and is believed to be capable of factoring a 512 bit modulus in 10000 to

15000 MIPS-years [12].

Since the inception of the RSA cryptosystem, all the record breaking factorizations

of RSA keys were based on algorithms of the second type, and it is reasonable to

assume that this trend will continue in the foreseeable future. If we assume this is

the case, then using 256-bit p, with remaining modulus n to be 1024 bits, comparing

to the regular 1024-bit n with 512-bit p , we keep the security of our unbalanced RSA

to be on the same security level. Of course, this is under the condition that the prime

number p is larger than 183 bits, otherwise it can be found by the first factoring

algorithm, although this algorithm is much slower. In order to provide some security

margin, we will use 256-bit p in our protocol, while keeping n to be 1024 bits.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. THE PROPOSED PROTOCOL WITH UNBALANCED RSA

4.3 Unbalanced Exponents

A well known way of speeding up the RSA encryption process c = m e(mod n) is to

use a small encryption exponent e. Recall that during the handshake process, the

client uses RSA encryption equation to verify the certificate. Therefore, we could

use a small encryption exponent e to reduce the time for client during the certificate

verification.

There are two common options for the public exponent e. One is to use e = 3,

which is the smallest value can be used. By this option, the time consumption for

RSA encryption on client can be reduced to the smallest. However, there are couple

of drawbacks: What if the cleartext m is less than , or, m e < n? If so, recalling the

RSA encryption equation c = me (mod n), there is no modulation operation involved

in that equation. Actually, we can find m directly by calculating m = c i When e

is as small as 3, it is really not difficult to find m [18]. Also, Hastad [19] shows that

small public exponents can be dangerous when the same plaintext is sent to many

different recipients.

Regarding to those drawbacks, the other option of the public exponent e is to

use 216 + 1 = 65537, which is chosen due to some implementation concern. But in

our case, since we only use low public exponent during the certificate verification,

which actually depends on digital signature scheme. The cleartext to be signed is

not something we want to protect from recovering, but rather the message which we

want the recipient to believe is from its original signer. In other words, the drawbacks

mentioned just now which threat the exposure of the cleartext is not a problem in

our case. Therefore, we can use e = 3 without any worry.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. THE PROPOSED PROTOCOL WITH UNBALANCED RSA

4.4 Summary

In this chapter, the proposed protocol for authentication and key-distribution in

WLAN is introduced. Certificate and RSA key exchange algorithm are also reviewed

briefly, which is good for the reader in order to understand how this protocol can

address the flaws in 802.11 standard. Then, the concept of “unbalanced RSA” was

presented. We can see that using “unbalanced RSA” can reduce the RSA decryption

time to 64 times shorter under the given condition, which is great for client during

the key-distribution process. More importantly, the security level is kept as high as

the regular RSA even we use a short prime number p. For certificate verification on

client, we can use a low public exponent e = 3 in order to reduce the time consumption

without causing any flaws.

In the next chapter, some simulation work will be introduced according to the

proposed protocol and the “unbalanced RSA” used in WLAN.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Implementation

In this research, I used Java to implement my proposed protocol with the “unbalanced

RSA” on application layer, the purpose of which is to prove the feasibility of my idea.

Then in the next step, we can adapt it to data link layer used in WLAN.

5.1 Implementation Detail

5.1.1 Certificate Generation Class

In order to use certificate as the method for authentication, we need to generate

certificate for CA. In reality, users can get a certificate or a chain of certificates from

CA. For simplification, we will generate a self-signed certificate instead of a certificates

chain. As mentioned before, we use the wide-applied X.509 standard certificate in

our protocol. Noting that X.509 standard is not included in java.sun package, we

need to download a package from other supplier which has this standard, such as

BouncyCastle.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. IMPLEMENTATION

In the certificate generation class, we need to import the following packages, as in
the codes:

i m p o r t j a v a . m a t h . * ;

i m p o r t j a v a . u t i l . * ;

i m p o r t o r g . b o u n c y c a s t l e . j c e . * ;

i m p o r t j a v a . s e c u r i t y .* ;

i m p o r t j a v a . s e c u r i t y . s p e c . * ;

i m p o r t o r g . b o u n c y c a s t l e . a s n l . x 5 0 9 . * ;

i m p o r t j a v a . s e c u r i t y . c e r t . * ;

i m p o r t j a v a . i o . * ;

There is a class in Java called Biglnteger, which is designed for very large integers

such as those used in cryptography. We generate the prime number p and q, using

the Biglnteger’s constructor Biglnteger (size, randomSeed). Then choose the public

exponent to be 3, and calculate the private exponent.
After getting the public key {e, n} and private key {d,n}, we convert them into

the public key object and secret key object: pubkey and prikey, respectively. Then use
the methods and constructors provided by BouncyCastle to generate the self-signed
certificate:

X 5 0 9 V l C e r t i f i c a t e G e n e r a t o r c e r t i f i c a t e G e n e r a t o r =

new X 5 0 9 V I C e r t i f i c a t e G e n e r a t o r () ;

c e r t i f i c a t e G e n e r a t o r . s e t S e r i a l N u m b e r (B i g l n t e g e r . O N E) ;

S t r i n g x 5 0 9 N a m e = ”CN=SomeName” ;

c e r t i f i c a t e G e n e r a t o r . s e t l s s u e r D N (n e w X509Name (x 5 0 9 N a m e)) ;

c e r t i f i c a t e G e n e r a t o r . s e t S u b j e c t D N (n e w X 5 0 9 N a m e (x 5 0 9 N a m e)) ;

C a l e n d a r n e x t Y e a r D a t e = C a l e n d a r . g e t l n s t a n c e () ;

n e x t Y e a r D a t e . a d d (C a l e n d a r .YEAR, 1) ;

c e r t i f i c a t e G e n e r a t o r . s e t N o t A f t e r (n e x t Y e a r D a t e . g e t T i m e ()) ;

c e r t i f i c a t e G e n e r a t o r . s e t N o t B e f o r e

(C a l e n d a r . g e t l n s t a n c e () . g e t T i m e ()) ;

c e r t i f i c a t e G e n e r a t o r . s e t S i g n a t u r e A l g o r i t h m (’’ S H A l w i t h R S A ”);

c e r t i f i c a t e G e n e r a t o r . s e t P u b l i c K e y (p u b k e y);

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. IMPLEMENTATION

String a lias = Long. toHexString

(SecureRandom . getlnstance (’’SHA1PRNG”). nextLong ());
X509Certificate c e r t if ic a te =

certifica teG en erator . gener at eX5 09 Certificate (prikey);

Then, we can store the certificate, private exponent d, prime number p into dif

ferent files for client to use later.

(The complete code of certificate generation class is in Appendix C)

5.1.2 Class for Client

First of all, we need to setup a socket for client and server to communicate,

try {
clientSocket = new Socket (” localhost ” , 4444);
out = clientSocket . getOutputStream ();
in = new

Buffer edlnput Stream (clientSocket . getlnput Stream ());
} catch (UnknownHostException e) {

System . err . println (’’Don11 know about host: l o c a lh o s t . ”);
System . exit (1);

} catch (IOException e) {
System . err . println (” Couldn ’ t get

I/O for the connection to: l o c a l ho s t . ”);
System . exit (1);

}

Then, as the first step in the proposed protocol which was introduced in the

last chapter, client sends its hello_ message to the server, which includes session ID,

random and client’s certificate. The client can do this by using FilelnputStream or

Objectlnput/OutputStream. (The detail of this part of code is in Appendix A.)
In the second step for client, he expects a message from server which includes

server’s certificate and the encrypted secret key. The client then retrieve CA’s public
key from CA’s own self-signed certificate:

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. IMPLEMENTATION

F i l e l n p u t S t r e a m C A F i s = new F i l e l n p u t S t r e a m (” C A c e r t i f i c a t e . c e r ”);

B u f f e r e d l n p u t S t r e a m CA Bis = new B u f f e r e d l n p u t S t r e a m (C A F i s);

C e r t i f i c a t e F a c t o r y CACf = C e r t i f i c a t e F a c t o r y . g e t l n s t a n c e (”X. 5 0 9 ”);

j a v a . s e c u r i t y . c e r t . C e r t i f i c a t e CACert = CACf. g e n e r a t e C e r t i f i c a t e (C A B i s) ;

P u b l i c K e y C A p u b l i c k e y = C A C e r t . g e t P u b l i c K e y () ;

The purpose to get CA’s public key is to verify server’s certificate. This is done
by using the verification method in certificate class:

server Cert . verify (CApublickey);

When we generate the server’s certificate, we have already set the public exponent e

to be 3, as analysed before, to reduce the time consumption of certificate verification

for client.

If the certificate is approved, the client can decrypt the ciphertext to get the secret

key by doing:

p l a i n t e x t = c i p h e r t e x t .modPow(d, p) ;

In this line of code, modPow(exponent, modulus) is the method in Biglnteger which

operate the following equation:

p = C exponent(m ()d m o d u l u s)

Actually, here we apply “unbalanced RSA” to use p instead of n to be the modulus

for RSA decryption on client, in order to reduce the time consumption. Afterward,

the client saves the secret key in a file or somewhere else for later use of transferring

data using secret key algorithm.

At this point, the authentication and key-distribution have been successfully done

with the use of “unbalanced RSA” to speed up the whole process for client. The

client then sends back a message indicating the success of the handshake.

(The complete code is in Appendix A.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. IMPLEMENTATION

Table 5.1: Time consumption for key-distribution

R egular RSA RSA for paranoids

M odulus n (bits) 1024 1024

p (bits) 512 256

q (bits) 512 768

T im e for RSA decryption

on client (ms)

m = cd(mod n) m = cd{mod p)

65.19 1.71

5.1.3 Class for Server

The code for the server is almost identical to the client’s. The difference is that

there is no “unbalanced RSA” involved. The only step server needs to do is receiving

client’s hello-message, verifying client’s certificate with CA’s public key, generating a

secret key, and encrypting this key with client RSA public key retrieved from client

certificate. The complete code can be found in Appendix B.

5.2 Simulation Result

The Java program was tested on a laptop with an Intel Celeron 1.33GHz CPU and

240 MB RAM. The operation system is Windows XP Home Edition. There was no

other process running while executing the codes. We calculated the time consumption

by taking an average of 1000 times handshakes in order to get a more accurate result.

Table 5.1 is the simulation result of time consumption for key-distribution (RSA

decryption). As we can see in the table, the time consumption for RSA decryption on

client by using “unbalanced RSA” is about 38 times shorter than that of using regular

RSA. It is obviously a significant improvement for handshake time consumption, in

the case of unbalanced computation abilities for server and client.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. IMPLEMENTATION

Table 5.2: Time consumption for certificate verification

Tim e for executing c = m e(mod n)

during th e certificate verification (ms)

e = 3 0.075

e = 65537 0.341

Table 5.2 is the simulation result of time consumption for certificate verification

(RSA encryption). This table gets the result that verifying certificate with a public

exponent e = 3 can reduce the time consumption by a factor of = 4.54, comparing

to e = 65537.

5.2.1 R esult Analysis

As mentioned in chapter 4, under the fact that “time complexity of RSA computations

grows cubically with the size of modulus” [12], the time result by using “unbalanced

RSA” should be (^ j r) 3 = 64 times shorter than that of the regular one. But in my

simulation, we only got about 38 times better than original one instead of 64. In

order to find out the reason, we need to take a look at the number of operations when

Java executes the RSA encryption and decryption.

As a matter of fact, the RSA encryption and decryption operations which involves

modulus exponentiation operations is executed by modPow(exponent, modulus), which

is a method in the class Biglnteger in Java. If we take a look at the source code of

Java, we see that the core of this method is the “window algorithm” combined with

Montgomery exponentiation algorithm. According to [20], the “window algorithm”

is somehow difficult to calculate the number of operations, because of the indetermi

nacy of the window size. However, we can calculate the number of multiplications of

Montgomery exponentiation, which is a similar method to the “window algorithm”

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. IMPLEMENTATION

except no window size needed.

The reference [20] proves that the expected average number of multiplications to

compute xe(mod m) by algorithm “Montogomery exponentiation” is

3 l{l + 1){t + 1),

where 1 is the length of modulus and t is the length of exponent.

Note that this expression is an average result, which is under one condition that

the number of ones in the binary form of exponent equals to the number of zeros.

For the worst case, where all the digital number of binary exponent are ones, the ex

pected number of multiplications to compute xe(mod m) by algorithm “Montogomery

exponentiation” is

41(1 + l)(t + -) .

And for the best case where all the digital number of binary exponent are zero except

the most left one, the expected number of multiplications is

21(1 + !)(*+ 2^

Based on the analysis above, we can calculate the number of operations by doing

a regular RSA decryption with 1024-bit modulus and by using “unbalanced RSA” in

my protocol, as shown in Table 5.3.

We can see that the best time ratio between regular RSA and “unbalanced RSA”

is
Regular R S A^worsi casê ^28

Unbalanced RSA(best case) ’

and the worst ratio is

Regular RSA^beab case) _
Unbalanced RSA^worsi case)

Therefore, due to the different values of private exponent d used during RSA

decryption, the ratio between 128 and 32 are all acceptable.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. IMPLEMENTATION

Table 5.3: Number of operations in RSA for data decryption

G eneral R S A algorithm R S A for P aranoid s

b est case average w orst case b est case average w orst case

L ength o f

m odulus n

(Ln b its)

1024 1024 1024 1024 1024 1024

L ength o f p

(b its)

512 512 512 256 256 256

L ength o f q

(b its)

512 512 512 768 768 768

L ength o f public

exp on en t e,

Le (b its)

2 (e = 3) 2 2 2 2 2

len gth o f private

exp on en t d,
Ld (b its)

1022 1022 1022 1022 1022 1022

N u m b er o f

m u ltip lica tion s

in to = cd(mod x)

2 * 1024

*(1024 + 1)

*(1022+ f)

3 * 1024

*(1024 + 1)

*(1022 + 1)

4 * 1024

*(1024 + 1)

*(1022+ §)

2 * 256

*(256 + 1)

* (2 5 6 + |)

3 * 256

3 * 256 * (256 + 1)

*(256 + 1)

4*256

*(256 + 1)

(2 5 6 + f)

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. IMPLEMENTATION

Table 5.4: Number of operations in RSA for certificate verification

R S A en cryp tion (e = 65537) R S A en cryp tion (e = 3)

N u m b er o f m u ltip lication s

in c = m e(mod n)
1024 * (1024 + 1) * (2 * 17 + 7) 1024 * (1024 + 1) * (2 * 2 + 7)

For certificate verification (RSA encryption) in our protocol, we can apply the

same approach to find out the reason of getting a ratio of 4.54 instead of y = 8.5,

which is based on the assumption that “time complexity of RSA computations is

linear with the length of exponent” [12].

Based on Table 5.4, since the binary public exponent 65537 has two ones, as same

as that of the binary public exponent 3, we can calculate the number of operations

of executing RSA encryption, and the time ratio is y y jy = 3.73. The point shown

here is that the ratio of number of operations could be much different as the average

result according to different number of ones in exponent.

5.3 Summary

In this chapter, the simulation of my proposed protocol has been described, as well

as the simulation result. The proposed protocol has been proved practicable. The

time consumption by using “unbalanced RSA” is about 38 times shorter than that

of a regular RSA according to my simulation result. By applying e = 3 in certificate

verification, the calculation speed is about 5 times faster than using e = 65527, as we

expected in chapter 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion

In this thesis, the problems in IEEE 802.11 standard in terms of authentication and

key-distribution have been reviewed in detail. The lack of proper key-distribution

method and reliable authentication algorithm is critical in 802.11. As we can see in

chapter 3, by applying TLS into 802. IX, the flaws can be addressed. However, since

TLS is not designed specifically for WLAN, there are some redundant steps during

the TLS handshake if used for 802.11. For wireless environment, it is common that

the computation abilities between clients and servers are severely different, which

makes the client’s device a bottleneck during the authentication and key-distribution

process.

In order to eliminate the redundant steps in TLS for WLAN and balance the

time consumption between clients and servers, a new protocol for authentication and

key-distribution is proposed. Comparing to TLS handshake, this new protocol is

much simpler and more suitable for 802.11. Furthermore, in order to reduce the time

consumption for client during the handshake, “unbalanced RSA” is applied in this

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. CONCLUSION

protocol. With the use of “unbalanced RSA”, the time required can be reduced by a

factor of 38 for key distribution; using low public exponent can reduce the time by a

factor of 4.5 for certificate verification, according to my simulation, respectively. The

use of “unbalanced RSA” makes the protocol much more efficient than before.

In summary, my contribution in this research can be concluded as following:

• Propose a new protocol for authentication and key-distribution for 802.11

- Address the flaws in terms of key-distribution and authentication found in

original 802.11 standard

- Much simpler than the TLS handshake protocol

• Apply “unbalanced RSA” into the proposed protocol

- Reduce the time consumption for key-distribution

Although we cut down the size of prime factor p during the use of “unbalanced

RSA”, the security is kept as strong as the original one. This is because we remain

the size of modulus n to be 1024 bits as regular, which is the only factor that can

affect the most efficient factoring algorithm. On the other hand, using short public

exponent e = 3 will not affect the security level of the RSA algorithm, especially in

the case of digital signature.

In terms of the trade-off of this proposed protocol, the lack of compatibility is

definitely one. Since this protocol is designed specifically intending to address the

flaws in 802.11 and balance the time consumption, it can not be used anywhere else.

If we want to make it more compatible, we have to negotiate those algorithms and

parameters as TLS handshake did, which makes it more complicated.

Since the secret keys shared by clients and servers need to be distributed fre

quently, and every pair of client and server has its own secret key, an AP needs to

remember all the secret keys being used. The ability of remember how many different

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. CONCLUSION

keys depends only on the memory of the AP. The more memory an AP has, the more

clients it can handle.

The whole protocol is under the assumption that both client and server have

already obtained the certificates from a CA. In reality, we have to think about how

to distribute these certificates quickly and safely. And, how to authenticate the

client and the server by a CA and how to obtain the information which need to be

certificated are another two problems. Further more, we need to consider how to

generate secrets keys on the server side, which surely needs some kind of secret key

generator. All those problems can be treated as open problems and future work after

this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

Class for Client

import java.io.*;
import java.net.*;
import java.security.*;
import java.security.cert.*;
import javax.crypto.*;
import java.security.spec.*;
import j ava.math.*;
import java.security.interfaces.*;
import java.util.*;

public class client8021x {
public static void main (String[] args) throws IOException,

CertificateException, NoSuchAlgorithmException,InvalidKeyException,
IllegalBlockSizeException.NoSuchProviderException, BadPaddingException,
NoSuchPaddingException, KeyStoreException, UnrecoverableKeyException,
InvalidKeySpecException, SignatureException, FileNotFoundException {

/★create a connection and do following things*/
Socket clientSocket = null;
BufferedlnputStream in = null;

byte [] buf = new byte[1024];
int r=0;
OutputStream out = null;

try {
clientSocket = new Socket("localhost", 4444);
out = clientSocket.getOutputStreamO ;
in = new BufferedlnputStream(clientSocket.getlnputStreamO);

} catch (UnknownHostException e) {

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. CLASS FOR CLIENT

System.err.println("Don’t know about host: localhost.");
System.exit(1);

} catch (IOException e) {
System.err.println("Couldn’t get I/O for the connection to:

localhost.");
System.exit(i);

>

FilelnputStream clientCertFis = new FilelnputStreamC'certi.cer");
BufferedlnputStream clientCertBis = new BufferedlnputStream(clientCertFis);

while((r = clientCertBis.read(buf, 0, buf.length)) != -1) {
out.write(buf, 0, r);

>

System.out.println("\nStep 1: Send client’s certificate to
the server: Done!\n");

System.out .println("-- \n");
/ /

System.out.println("\nStep 2: (l)Receive server’s certificate;\n
(2)Verify it;\n
(3)If the certificate is valid,

then receive the encrypted secret key
and decrypt it;\n

(4)Send back a message indicating
success.\n");

//receive server’s certificate
CertificateFactory serverCf = CertificateFactory.getlnstance("X.509");
java.security.cert.Certificate serverCert

= serverCf.generateCertificate(in);

System.out.printlnC(i)The received server’s certificate is:\n");

System.out.printIn(serverCert.toStringO);

///get CA’s public key
FilelnputStream CAFis = new FilelnputStreamC'certi.cer");
BufferedlnputStream CABis = new BufferedlnputStream(CAFis);
CertificateFactory CACf = CertificateFactory.getlnstance("X.509");
java.security.cert.Certificate CACert =

CACf.generateCertificate(CABis);

PublicKey CApublickey = CACert.getPublicKeyO;

///verify server’s cert

Date nowl = new DateO;
long timel = now1.getTime();

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. CLASS FOR CLIENT

try I
serverCert.verify(CApublickey);

> catch (SignatureException e) {
System.err.println("the certificate is fake");
System.exit(l);

> catch (CertificateException e) {
System.err.println("CertificateException");

> catch (NoSuchAlgorithmException e) {
System.err.println("NoSuchAlgorithmException");
System.exit(1);

} catch (InvalidKeyException e) {
System.err.println("InvalidKeyException");
System.exit(l);

} ca.tch (NoSuchProviderException e) {
System.err.println("NoSuchProviderException");
System.exit(1);

>

Date now2 = new DateO;
long time2 = now2.getTime();

long veriperiod = time2 - timel;
///the end of verify

System.out.println("\n\n(2)The server’s certificate is valid!\n");

/♦receive the encrypted ciphertext*/

//receive the length first

DatalnputStream in2 = null;
try {

in2 = new DatalnputStream(clientSocket.getlnputStreamO);
> catch (IOException e) {

System.err.println("Couldn’t get I/O for the connection to:
localhost.");

System.exit(1);
>
int ciphertextlength = 0;
ciphertextlength = in2.readlnt();

//System.out.printIn("the ciphertextbytearraysize is: " +
ciphertextlength);

//receive the cipher
byte[] ciphertextbytearray = new byte[ciphertextlength];
in.read(ciphertextbytearray,0,ciphertextbytearray.length);
/♦System.out.println("the received ciphertext is: " +

(new String(ciphertextbytearray)));*/

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. CLASS FOR CLIENT

System.out.println("(3)The received ciphertext is: \n\n" +
(new Biglnteger(ciphertextbytearray)));

/^Decrypt the ciphertext*/
Biglnteger ciphertext = new Biglnteger(ciphertextbytearray);
//RSA decryption
//get p from p.file

FilelnputStream fisp = new FilelnputStreamC'p");
DatalnputStream disp = new DataInputStream(fisp);
int plength = disp.readlntO ;
//disp.close();
byte[] pbytearray = new byte[plength] ;
fisp.read(pbytearray);
Biglnteger p = new Biglnteger(pbytearray);

//disp.close();
fisp.closeO;
//Biglnteger p = cgcobj .getpO ;

//get d from d.file
FilelnputStream fisd = new FilelnputStreamO'd");
DatalnputStream disd = new DataInputStream(fisd);
int dlength = disd.readlntO;
//disd.close();
byte[] dbytearray = new byte[dlength];
fisd.read(dbytearray);
Biglnteger d = new Biglnteger(dbytearray);
fisd.closeO;

//get n from certificate
FilelnputStream nFis = new FilelnputStreamC'certi.cer");
BufferedlnputStream nBis = new BufferedlnputStream(nFis);
CertificateFactory nCf = CertificateFactory.getlnstance("X.509");
java.security.cert.Certificate nCert = nCf.generateCertificate(nBis);

java.security.interfaces.RSAPublicKey nPub =
(java.security.interfaces.RSAPublicKey)nCert.getPublicKeyO;

//PublicKey CApublickey = CACert.getPublicKeyO;

Biglnteger n = nPub.getModulusO;

/♦decryption using RSA and calculate the time*/
Date currentl = new Date();
long tbefore = currentl.getTime();

Biglnteger plaintext = new Biglnteger("0");
for (int i=l; i<=100; i++)

plaintext = ciphertext.modPow(d, p) ;

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. CLASS FOR CLIENT

Date current2 = new DateO;
long tafter = current2.getTime();

long period = tafter - tbefore;

System.out.println(" The decrypted plaintext is: \n\n" + plaintext);

/♦write the plaintext into the file receivedSecretkey.txt*/

FileWriter fw = new FileWriterC"receivedSecretkey.txt");
BufferedWriter bw = new BufferedWriter(fw);
bw.write(plaintext.toString() ,0, (plaintext.toStringO) .lengthO) ;
bw.flushO;
System.out.printIn("The secret key has been written

into the file *receivedSecretkey.txt’\n");

/ /

/♦send back the string: "The authentication and key distribution
are successfully done!"+/

PrintWriter out2 = null;
try {

out2 = new PrintWriter(clientSocket.getOutputStreamO.true);
} catch (IOException e) {

System.err.println("Couldn’t get I/O for the connection to:
localhost.");

System.exit(1);
>
out2.printIn("The authentication and key distribution

are successfully done!");

out.flushO;
out.close();
in.close();
in2.close();
out2.flush();
out2.close();
clientSocket.close();
System.out.println("(4)A success message has been sent

to the server!");
System.out .printlnC--------------------------------------- ");
System.out.println("Time record:");
System.out.println("The time used for decryption using RSA is (ms): "

+ ((float)period)/100);
System.out.println("The time used for RSA digital signature verification

is (ms): " + veriperiod);
>

>

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

Class for Server

import java.net.*;
import java.io.*;
import java.security.cert.*;
import java.security.*;
import javax.crypto.*;
import j ava.security.interf aces.*;
import java.security.spec.*;
import java.math.*;

public class server8021x {
public static void main(String[] args) throws IOException,

CertificateException, NoSuchAlgorithmException,InvalidKeyException,
IllegalBlockSizeException, NoSuchProviderException, BadPaddingException,
NoSuchPaddingException {

ServerSocket serverSocket = null;
try {

serverSocket = new ServerSocket(4444);
> catch (IOException e) {

System.err.println("Could not listen on prot: 4444.");
System.exit(l);

>

Socket clientSocket = null;
try {

clientSocket = serverSocket.accept();
> catch (IOException e) {

System.err.println("Accept failed.");
System.exit(1);

>

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. CLASS FOR SERVER

/ / g e t client’s cert from client
BufferedlnputStream in = new BufferedInputStream(

clientSocket .getlnputStreamO);

CertificateFactory clientCf
= CertificateFactory.getlnstance("X.509");

java.security.cert.Certificate clientCert
= clientCf.generateCertificate(in);

System.out.printlnC'Step 1:");
System.out.println("(l)Receive client’s certificate;\n");
System.out.printlnC Client’s certificate is:\n\n");

Syst em.out.printIn(cli entCert.toString());
/*get client’s publickey from its cert*/

java.security.interfaces.RSAPublicKey clientPub
= (j ava.security.interfaces.RSAPublicKey)clientCert.getPublicKey();

///get CA’s public key

FilelnputStream CAFis = new FilelnputStreamC'certi.cer");
BufferedlnputStream CABis = new BufferedlnputStream(CAFis);
CertificateFactory CACf = CertificateFactory.getlnstanceO'X.509");
java.security.cert.Certificate CACert

= CACf.generateCertificate(CABis);

PublicKey CApublickey = CACert.getPublicKeyO;

///verify client’s cert
try {

clientCert.verify(CApublickey);
} catch (SignatureException e) {

System.err.println("the certificate is fake");
System.exit(1);

} catch (CertificateException e) {
System.err.printlnC'CertificateException");
System.exit(1);

} catch (NoSuchAlgorithmException e) {
System.err.println("NoSuchAlgorithmExcept ion");
System.exit(l);

> catch (InvalidKeyException e) {
Syst em.err.pr intIn("InvalidKeyExcept ion");
System.exit(1);

} catch (NoSuchProviderException e) {
System.err.println("NoSuchProviderException");
System.exit(1);

>
///the end of verify

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. CLASS FOR SERVER

System.out.println("\n\n(2)Verify client’s certificate:\n
The client’s certificate is valid\n");

/♦encrypt the secret key using client’s publickey*/

/♦Create the cipher*/
Cipher rsaCipher = Cipher.getlnstance("RSA", "BC");

/♦Initialize the cipher for encryption*/
rsaCipher.init(Cipher.ENCRYPT_MODE, clientPub);

/♦Cleartext*/

FileReader cleartextFr = new FileReaderCsecretkey.txt");
BufferedReader cleartextBr = new BufferedReader(cleartextFr);
StringBuffer cleartextSb = new StringBufferO;
String line = " ";
while ((line = cleartextBr.readLineO) != null)

cleartextSb.append(line);
cleartextBr.close();
String cleartextString = cleartextSb.toString();
Biglnteger plaintext = new Biglnteger(cleartextString);

/♦Encrypt the cleartext*/
Biglnteger e, n;
Biglnteger ciphertext;
e = clientPub.getPublicExponent();
n = clientPub.getModulus();
//RSA encryption
ciphertext = plaintext.modPow(e, n);

byte[] cipherByteArray = ciphertext.toByteArrayO;

/ /
///send back server’s certificate

byte[] buf = new byte[1024];
int r=0;
OutputStream out = null;

try -C
out = clientSocket.getOutputStreamO ;

} catch (UnknownHostException ee) {
System.err.println("Don’t know about host: localhost.");
System.exit(l);

>

FilelnputStream serverCertFis = new FilelnputStreamC'certi.cer");

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. CLASS FOR SERVER

BufferedlnputStream serverCertBis = new BufferedlnputStream(serverCertFis);

while((r = serverCertBis.read(buf, 0, buf.length)) != -1) {
out.write(buf, 0, r);

>

System.out.printlnC(3)Send back server’s own certificate: Done!\n");

/*Send the encrypted ciphertext to the client*/

//System.out.println("the ciphertext length is:" + cipherByteArray.length);

//send the ciphertext length first
DataOutputStream out2 = null;
try {

out2 = new DataOutputStream(clientSocket.getOutputStreamO);
} catch (UnknownHostException ee) -(

System.err.println("Don’t know about host: localhost.");
System.exit(l);

>
out2.writelnt(cipherByteArray.length);
//end of sending length

//send cipher
out.write(cipherByteArray);

System.out.printlnC (4)Encrypt the secret key and
send the cipher to the client: Done!\n");

System.out.printlnC'The original cleartext or secretkey is: \n"
+ plaintext);

System.out.printlnC'The ciphertext is: \n" + ciphertext);
/ /

//receive the success sign
BufferedReader in2 = null;
try {

in2 = new BufferedReader(
new InputStreamReader(clientSocket.getlnputStreamO));

} catch (IOException ee) {
System.err.println("Couldn’t get I/O for the connection to: taranis.");
System.exit(1);

>
String fromClient;
fromClient = in2.readLine();
if (fromClient.equals("The authentication and key distribution

are successfully done!")) {
//System.out.println("DONE!");
//System.out.println(fromClient);
System.out.println("\nStep 2: Receive client’s success message: Done!");

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. CLASS FOR SERVER

y

out2.close();
out.close();
in.close();
in2.close();
clientSocket.close() ;
serverSocket.close();

>
>

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix C

Certificate Generation Class

import java.math.*;
import java.util.*;
import org.bouncycastle.j ce.*;
import java.security.*;
import java.security.spec.*;
import org.bouncycastle.asnl.x509.*;
import j ava.security.cert.*;
import java.io.*;

public class cergen {

static final Biglnteger TWO = new Biglnteger("2");
static final Biglnteger THREE = new Biglnteger("3");
static final Biglnteger SECOPT = new Biglnteger("65537");

public static Biglnteger nextPrime(Biglnteger x) {
if ((x.remainder(TWO)).equals(Biglnteger.ZERO))

x = x.add(Biglnteger.ONE);
while(true) {

Biglnteger xMl = x.subtract(Biglnteger.ONE);
if (!(xMl.remainder(THREE)).equals(Biglnteger.ZERO))

if (x.isProbablePrime(lO)) break;
x = x.add(TWO);

>
return x;

>

public static void main(String[] args) throws NoSuchAlgorithmException,

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. CERTIFICATE GENERATION CLASS

InvalidKeySpecException, SignatureException, InvalidKeyException,
FileNotFoundException, IOException, CertificateEncodingException{

Biglnteger n;
Biglnteger q;
Biglnteger d;
Biglnteger p;

Random rnd = new Random();

int sizel = 256;
int size2 = 768;

Biglnteger pi = new Biglnteger(sizel, rnd);//random int
p = nextPrime(pl);

Biglnteger pMl = p.subtract(Biglnteger.ONE);//p minus 1
Biglnteger ql = new Biglnteger(size2, rnd);

q = nextPrime(ql);
Biglnteger qMl = q.subtract(Biglnteger.ONE);

n = p.multiply(q);
Biglnteger phiN= pMl.multiply(qMl);//(p-l)*(q-l)
Biglnteger e = THREE;

d = e.modlnverse(phiN);
I*

// printout n, e, d, p, q
System.out.println("p is: \n" + p + "\n");
System.out.printlnC'q is: \n" + q + "\n");
System.out.printlnC'n is: \n" + n + "\n");
System.out.printlnC'e is: \n" + e + "\n");
System.out.printlnC'd is: \n" + d + "\n");

* /
//generate the pubkey and prikey object
RSAPublicKeySpec pubKeySpec = new RSAPublicKeySpec(n, e);
KeyFactory kf = KeyFactory.getInstance("RSA");
PublicKey pubkey = kf.generatePublic(pubKeySpec);

RSAPrivateKeySpec priKeySpec = new RSAPrivateKeySpec(n, d);
PrivateKey prikey = kf.generatePrivate(priKeySpec);

//generate the self-signed certificate

X509VlCertificateGenerator certificateGenerator
= new X509VlCertificateGenerator();

certificateGenerator.setSerialNumber(Biglnteger.ONE); // set serial number
String x509Name = "CN=SomeName";
certificateGenerator.setIssuerDN(new X509Name(x509Name));
certificateGenerator.setSubjectDN(new X509Name(x509Name));

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. CERTIFICATE GENERATION CLASS

Calendar nextYearDate = Calendar.getInstance();
nextYearDate.add(Calendar.YEAR, 1); // Valid for 1 year
certificateGenerator.setNotAfter(nextYearDate.getTime());
certif icateGenerator.setNotBefore(Calendar.getlnstance().getTime());
certificateGenerator.setSignatureAlgorithmO'SHAlwithRSA");
certificateGenerator.setPublicKey(pubkey);
String alias = Long.toHexString(

SecureRandom.getlnstance("SHA1PRNG").nextLongO);
X509Certificate certificate =

certificateGenerator.generateX509Certificate(prikey);

//System.out.println(certif icate.toString());

//write the certificate into .cer
FileOutputStream fos = new FileOutputStream("certi.cer");
fos.write(certificate.getEncodedO);
fos.closeO;

//write p, d into file p.file and d.file
int plength = p.toByteArrayO.length;
FileOutputStream fosp = new FileOutputStream("p");
DataOutputStream dosp = new DataOutputStream(fosp);
dosp.writelnt(plength);
dosp.flush();
fosp. write (p. toByteArrayO) ;
//dosp.close();
fosp.closeO;

int dlength = d.toByteArrayO.length;
FileOutputStream fosd = new FileOutputStreamO'd");
DataOutputStream dosd = new DataOutputStream(fosd);
dosd.writelnt(dlength);
dosd.flush();
fosd.write(d.toByteArrayO) ;
//dosd.close();
fosd.closeO;

>
>

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] M. Gast, “802.11 Wireless Networks: The Definitive Guide”,
O’REILLY, April 2002.

[2] “IEEE Standard 802.11, Standards for Local and Metropolitan Area
Networks: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specification”, 1999.

[3] N. Borisov, I. Goldberg, D. Wagner, “Intercepting Mobile Communi
cations: The Insecurity of 802.11”, in Proc.International Conference
on Mobile Computing and Networking, ACM, pp 180-189, July 2001.

[4] S. Fluhrer, I. Mantin, A. Shamir, “Weaknesses in the Key Scheduling
Algorithm of RC4” , in Proc.8th Annual Workshop on Selected Areas
of Cryptography, pp 1-24, August 2001.

[5] W. Arbaugh, N. Shankar, Y. Wan, “Your 802.11 Wireless Network has
No Clothes”, IEEE Wireless Communications, Volume 9, Issue 6, pp
44-51, Dec.2001.

[6] J. Walker, “802.11 Security Series, Part 2: The Tempo
ral Key Integrity Protocol (TKIP)”, 2002. (http://cache-
www.intel.com/cd/00/00/01/77/17769_80211_part2.pdf)

[7] J. Walker, “802.11 Security Series, Part 3: AES-
based Encapsulations of 802.11 Data” , 2002.
(http://www.ida.liu.se/ TDDC03/literature/wireless/intel-aes.pdf)

[8] “IEEE Standard for Local and metropolitan area networks - Port-
Based Network Access control” , June 2001.

[9] W. Stallings, “Cryptography and Network Security, Principles and
Practice” , Second Edition, Prentice-Hall, Inc. 1999.

[10] N. Daswani, “Cryptographic Execution Time for WTLS Handshakes
on Palm OS Devices”, Certicom Public Key Solutions, San Jose,

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://cache-
http://www.intel.com/cd/00/00/01/77/17769_80211_part2.pdf
http://www.ida.liu.se/

REFERENCES

CA, September 2000. (http://www-db.stanford.edu/ daswani/paper-
s/WTLSPerformancePresentation.ppt)

11] http://www.eskimo.com/ weidai/benchmarks.html

12] A. Shamir, “RSA for Paranoids”, RSA laboratories’ CryptoBytes, Vol
ume 1, Number 3, Autumn 1995.

13] S. Singh, “The code book: the evolution of secrecy from Mary, Queen
of Scots, to quantum cryptography.” , Doubleday, New York, NY, USA,
1999.

14] W. Tutte, “FISH and I”, A transcript of Tutte’s lecture on June 19,
1998 at the University of Waterloo.

15] N. Ferguson, “Michael: an improved MIC for 802.11 WEP”, IEEE
802.11 doc 02-020r0, January 17, 2002.

16] D. Stanley, “IV Sequencing Requirements Summary” , IEEE 802.11
doc 02-006r2, January 18, 2002.

17] R. Housely, D. Whiting, “Temporal key Hash”, IEEE 802.11 doc 01-
550rl, October 31, 2001.

18] R. Rivest, “RSA Problem”, December 10, 2003. (To ap
pear in Encyclopedia of Cryptography and Security (Kluwer).)
(http://theory.lcs.mit.edu/ rivest/RivestKaliski-RSAProblem.pdf)

19] J. Hastad, “Solving simultaneous modular equations of low degree”,
SIAM J. Computing, 17:336-341, 1988.

20] A. Menezes, P. Oorschot, S. Vanstone, “Handbook of Applied Cryp
tography”, CRC Press, 1996. (www.cacr.math.uwaterloo.ca/hac)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-db.stanford.edu/
http://www.eskimo.com/
http://theory.lcs.mit.edu/
http://www.cacr.math.uwaterloo.ca/hac

VITA AUCTORIS

Zhong Zheng was born in 1980 in P.R. China. He received his Bachelor’s Degree

from Electrical and Computer Engineering Department in Tsinghua University in

2002. He is currently a candidate for the Master of Applied Science Degree in the

Department of Electrical and Computer Engineering at University of Windsor and

hopes to graduate in Summer 2004.

6 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A new protocol with unbalanced RSA for authentication and key distribution in WLAN.
	Recommended Citation

	tmp.1579714207.pdf.smO4f

