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Abstract

In wireless network, security concerns have haunted 802.11 deployments since the 

standardization effort began. IEEE attempts to provide confidentiality by using WEP 

(Wire Equivalent Privacy), and treats WEP as an option during the authentication. 

Unfortunately, WEP had been proved that neither authentication nor data confiden

tiality is reliable. For the short-term solution, IEEE offers TKIP (Temporal Key 

Integrity Protocol) to address the flaws found in 802.11, combined with 802.IX for 

authentication. In order to provide solid mutual authentication and key-distribution, 

TLS (Transport Layer Security) handshake protocol has been used in 802. IX. How

ever, since TLS was not designed specifically for 802.11 in WLAN, there are some 

redundant steps in TLS which is not necessary if used for 802.11. Furthermore, in 

WLAN, it is normal that the computation abilities between client and server could 

be significantly different, which make the client a bottleneck during the handshake 

process. According to those drawbacks, a new protocol for authentication and key- 

distribution is proposed in this thesis. This new protocol can not only eliminate the 

redundant steps in TLS handshake, but also reduce the time consumption for client 

during the authentication and key-distribution by applying “unbalanced RSA” . The 

proposed protocol with the use of “unbalanced RSA” solves the problems in original

IV
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802.11 standard, while offering efficiency and security at the same time.
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Chapter 1

Introduction

Over the past several years, the world has become increasingly mobile. As a result, 

traditional ways of networking have proven inadequate to meet the challenges posed 

by our modern lifestyle. If users must be connected to a network by physical cables, 

their movement is dramatically reduced. Wireless connectivity, however, poses no 

such restriction and allows a much more free movement on the part of the network 

user.

Unlike wired network, wireless network uses radios instead of wires as the medium 

for data transmission. For wired LANs, attackers must obtain physical access to the 

network medium before attempting to eavesdrop on traffic. But for wireless network, 

physical access to wireless networks is a comparatively simpler matter of using the 

correct antenna and modulation methods [1].

The most successful wireless networking technology so far is 802.11, which is 

“a suite of protocols defining a wireless local area network (WLAN)” , specified by 

IEEE Standard 802.11-1999 [2]. IEEE 802.11 offers a wired LAN equivalent data

l
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1. INTRODUCTION

confidentiality algorithm, which is called Wired Equivalent Privacy (WEP). WEP is 

designed as protecting authorized users of a wireless LAN from casual eavesdropping. 

This service is intended to provide functionality for wireless LAN equivalent to that 

provided by the physical security attributes inherent to a wired medium [1]. But 

unfortunately, WEP had been proved unsecure shortly after it appeared [3] [4].

The main reason which caused WEP flawed is the improper implementation of 

RC4 algorithm in WEP [3]. Because the authentication in 802.11 treats WEP as 

an option for confidentiality, it can not be regarded as reliable neither [5]. Another 

reason is the use of an unkeyed checksum algorithm, which allows the message be 

modified without detection [3].

The best solution to address WEP’s flaws is to keep the secret key fresh, or 

to design a protocol for key distribution. A new method for authentication is also 

necessary. Using a keyed checksum algorithm instead of the unkeyed one can address 

the message authentication flaws [6].

The IEEE 802.11 Working Group recognized the gravity of the security issues in

802.11 and created Task Group “i” (TGi) to resolve them. TGi has designed two 

solutions for the problems. One is called Temporal Key Integrity Protocol (TKIP) 

[6], intended as a short-term patch for currently deployed equipment. The other one 

will use AES (Advanced Encryption Standard) [7], a totally different cryptography 

algorithm, as a long-term solution.

TKIP offers some new elements, such as a keyed Message Integrity Code (MIC) to 

defeat forgeries; a key mixing function to defeat FMS (FMS are the initials of the three 

authors) [4] attacks; a new IV sequencing discipline to remove replay attacks. More 

importantly, TKIP has adapted IEEE 802.IX [8] to provide both authentication and 

key distribution for WLAN, in order to address those flaws in original 802.11. Among 

many options supplied by 802.IX, using TLS handshake protocol is the most secure 

choice, since it can achieve mutual authentication, and keys can also be distributed

2
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1. INTRODUCTION

during the authentication.

TLS is the third version of SSL, which is originally used as a protocol in trans

port layer [9]. It assumes that both communication parties have their own SSL 

version, key-exchange method, and other specific parameters. Therefore, during the 

TLS handshake, both parties have to negotiate all the parameters first, then do the 

authentication and key distribution. TLS protocol is good because it is considered 

compatible to most of the systems which support different SSL versions and differ

ent algorithms. However, if using a certain parameter or key-exchange method can 

enhance the performance for authentication and key distribution in a certain case, 

then we can force the TLS handshake protocol to use that method, omitting the 

negotiation part, simplifying the whole process.

In WLAN, the device for communication on client side could be a laptop, a PDA, 

or even a cellphone. Comparing to the server side, the computation ability on client 

side is restricted. For example, to finish an RSA encryption with 1024-bit modulus, 

using a Pentium4 2.1 GHz processor can achieve about 3456 times faster than using 

a 20 MHz microprocessor [10] [11]. Therefore, during the authentication and key 

distribution in TLS handshake protocol, which involves time-consuming public key 

algorithms, the computation ability on client side is definitely a bottleneck. No matter 

how fast the server’s processor can achieve, the time consumption only depends on 

the client, which has a slower processor. If we can find out a way to accelerate the 

calculation on client side, then the whole process’s performance will be enhanced. 

Fortunately, Adi Shamir, one of the three authors who created RSA, brought out an 

idea, called “unbalanced RSA” [12], which is especially for solving the problem caused 

by the unbalanced computation ability of the two communication parties. The basic 

idea in “unbalanced RSA” is to use different size of p and q for different parties, while 

remaining the size of modulus n stable. This can significantly reduce the numbers 

of calculation operations on one side, so that the total time for RSA calculation

3
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1. INTRODUCTION

will shrink. Thus, we should use “unbalanced RSA” during the authentication and 

key distribution in WLAN, and because this is the only method we will use in TLS 

handshake protocol, there is no need to negotiate the key exchange method or any 

other uncertain parameters. Based on unbalanced RSA, we can both reduce the 

time for RSA decryption and simplify the TLS protocol, then decrease the total time 

consumption for authentication and key distribution.

In this thesis, a new protocol is designed based on the application of unbalanced 

RSA. Java is used to simulate this new protocol with the unbalanced RSA on the 

application layer. Next section is a review of the flaws found in original 802.11. 

Section 3 discusses the current solutions for those flaws. Section 4 introduces the 

proposed protocol for authentication and key distribution in WLAN. The application 

of unbalanced RSA is described in this section, too. Section 5 presents the simulation 

result, as well as some discussion based on this result. Section 6 is the conclusion of 

this research and the future work.
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Chapter 2

A Review on IEEE 802.11 Privacy

In this chapter, WEP and the WEP-based authentication will be explained in detail. 

The W EP’s flaws will also be presented. By the end of this chapter, we will gain a 

comprehensive background on how unsecure the 802.11 is, and this can help us to 

understand the importance of addressing 802.11’s problems.

2.1 W ired Equivalent Privacy (W EP)

The IEEE 802.11 standard [2] defines a data confidentiality mechanism known as 

WEP. WEP works using RC4 encryption with a shared key. The security goal of 

WEP is data confidentiality equivalent to that of a wired LAN.

Figure 2.1 shows how WEP encrypts a plaintext into a ciphertext. First, we choose 

an initialization vector (IV). We then concatenate the shared secret key with IV. The 

result is treated as a seed and put into a WEP PRNG (Pseudo Random Number 

Generator), which is a part of the RC4 algorithm. The outcome is a key sequence, or

5
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2. A  REVIEW  ON IEEE 802.11 PRIVACY

Initialization 
Vector (IV)

Secret Key
Seed Key Sequence

Plaintext

Integrity Check Value (ICV)

Integrity Algorithm

WEPPRNG

Ciphertext

IV

Message

Figure 2.1: WEP Encryption Block Diagram

keystream. At the same time, an integrity check algorithm is applied to the plaintext 

in order to get the ICV (Integrity Check Value). We XOR the concatenation of 

plaintext and ICV with the keystream, and the result is the ciphertext. In the end, 

we concatenate the plain IV with the ciphertext, and send them as a message to the 

receiver.

Symbolically, the encryption process may be represented as follows:

Sender —> Receiver:

IV, (M\ |CRC(M))  © RC4(K, IV)

Where C is Ciphertext, K  is Secret Key, M  is Plaintext. Or, we can refer to the 

following Figure 2.2:

To decrypt a frame protected by WEP, the recipient simply reverses the encryp

tion process. First, he regenerates the keystream RC4(K,IV),  then he can get the 

plaintext with the ICV by

C 0  RC4(K, IV)

= (M |\CRC{M)) © RC4(K, IV)  0  RC4(K, IV)

= (M\\CRC(M ))

6
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RC4(Secret Key, IV)

S
IV

r ostitis) *111111111
Plaintext il CRC(Plaintext) Message

Figure 2.2: WEP encryption symbolical figure

Next, the recipient verifies the ICV by doing CRC(M),  if the result matches the one 

he got from the message, then he assume the message has not been modified during 

the transmission. This ensures that the only frames with a valid ICV will be accepted 

by the receiver.

2.2 The Flaws in W EP

Many of the headlines about 802.11 over the past years were due to WEP. As networks 

become important to business, security has become an increasingly prominent worry. 

WEP was initially marketed as the security solution for wireless LANs, but as a 

matter of fact, its design had been found flawed as to make that impossible. There 

are some very good references which have given comprehensive explanations about 

the flaws in WEP, such as [3] and [4], Since the 802.11 authentication is based on 

WEP, reference [5] has taken a deep look at the problems in authentication, which 

will be explained later in this chapter.

2.2.1 The Risks of Keystream  Reuse

WEP provides data confidentiality by using a stream cipher called RC4. Normally, 

stream ciphers operate by expanding a secret key (or, as in the case of WEP, a 

public IV and a secret key) into an arbitrarily long “keystream” of pseudo random

7
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2. A  REVIEW  ON IEEE 802.11 PRIVACY

bits (it is done by using a PRNG in WEP). Encryption is performed by XORing 

the keystream with the plaintext. On the other hand, the decryption consists of 

generating the identical keystream based on the IV and secret key and XORing it 

with the ciphertext.

There is a well-known problem about stream ciphers that encrypting two messages 

under the same keystream can reveal the original messages. In the case of WEP, if

Ci = Pi® RC4(IV, K)

and

C2 =  P2 © RC4(IV, K),

then

C\ ® C2

=  {Pi © RC4(IV, K))  © (P2 © RC4(IV, K))

=  P i © P2,

where P  is {M\\CRC{M)).

In other words, XORing two ciphertexts {Ci and C2) can get the result of (Pi©P 2 ). 

There are several ways to get the plaintext from (Pi © P2 ). For instance, if one of the 

plaintext Pi is known, then the other one will be revealed instantly by

P2 =  Pi © (Pi © P2).

Even without knowing any of these two plaintexts, there are still many techniques to 

reveal the messages [13] [14].

In order to avoid the “keystream reuse”, WEP uses a per-packet IV to vary the 

keystream for each frame of data transmitted. As mentioned before, the keystream 

in WEP is RC4(IV, K).  Although the secret key K changes rarely, the IV changes 

for every frame. Thus, for every different frame, the keystream is different, so there

8
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2. A REVIEW  ON IEEE 802.11 PRIVACY

is no way to get (Pi ® P2 ) from {C\ and C^) based on the same keystream. But 

unfortunately, WEP does not achieve this goal.

From Figure 2.1 we know that IV is transmitted in plain, so duplicate IVs can 

be easily detected by anyone including attackers. Based on the fact that the shared 

secret key rarely changes, any reuse of old IV will expose the system to keystream 

reuse attacks.

Even worse, 802.11 standard does not even require the IV to be changed after 

every packet. In other words, there is no IV management at all, which let some 

implementations do it poorly. For example, a particular PCMCIA card resets the IV 

to 0 each time it is re-initialized, and then increase the IV by one for each packet 

transmitted. The card is re-initialized each time it is inserted into a laptop, which 

can happens frequently. Consequently, keystreams corresponding to low-valued IVs 

are likely to be reused many times during the lifetime of the key.

However, even if a perfect method could be found to manage the IVs very well, 

the keystream reuse still can not be avoided. This is because the IV field used by 

WEP is only 24 bits wide, which nearly guarantees that the same IV will be reused 

for multiple messages. For example, assuming there is a busy access point which can 

send 1500 byte packets and achieve an average of 5Mbps bandwidth. Then, the time 

used for exhausting a 24-bit IV’s space is:

5M b p s

224
= 40269.34(sec) =  11.19 (hour)

416 .625

An old keystream will be used again in less than half a day according to the calculation 

above.

Therefore, to extend the life time of IV, or let’s say to extend the length of IV, 

is the way to reduce the risk of keystream reuse, and this is what some so-called 

“enhanced WEP” did. However, no matter how long the life time of IV is, the risk of

9
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2. A REVIEW  ON IEEE 802.11 PRIVACY

keystream reuse may be reduced, but other flaws still exist, such as the flaw caused by 

FMS attack [4], There are two requirements for FMS attack to reveal the keystream:

• Enough ciphertexts which used the same secret key with numerous different 

initialization vectors.

• Obtain the first word of RC4 output corresponding to each IV.

Since WEP changes its secret key very rarely (in fact, some implementations never 

change it at all), the first requirement is easy to achieve. The first word of plaintext 

is often an easily guessed constant which could be the date, the sender’s identity, etc. 

With the corresponding ciphertext, attackers can get the first word of RC4 output, 

or the first word of a keystream without lots of work [3]. The detail of FMS attack is 

out of the scope of this thesis, reference [4] has more information about this attack.

The best countermeasure to address the flaws caused by keystream reuse and 

FMS attack is to use fresh shared secret key, which is never mentioned in the 802.11 

standard. In other words, the key-distribution is very important for WLAN in terms 

of security. Changing the secret key frequently can avoid the reuse of IV, and the 

first requirement of FMS attack will never be achieved.

The key-distribution is a very important issue for addressing 802.11 security flaws. 

This has been considered in TKIP which will be discussed in the next chapter. But 

what has been done in TKIP is still not the best solution in the case of WLAN, and 

the reason of this is in chapter 4 and 5.

2.2.2 M essage Authentication

The WEP protocol uses an integrity checksum field to ensure that packets do not get 

modified during the transmission. The algorithm used is CRC-32 (Cyclic Redundancy 

Code 32 bits), and the ICV is part of the encrypted payload of the packet. However, 

CRC is not a cryptographically secure authentication code, and it is designed to

10
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2. A  REVIEW  ON IEEE 802.11 PRIVACY

detect random errors in the message, instead of malicious attacks. Actually, CRC is 

exacerbated by the fact that the message payload is encrypted using a stream cipher.

Readers can find the details of this flaw in [3]. The solution of this problem is to 

use an encrypted integrity check algorithm to take place of CRC-32 used in 802.11. 

This has been done by TKIP using a keyed MIC (Message Integrity Check) called 

Michael, which will be explained in the next chapter.

2.3 802.11 Authentication and Its Flaws

On a wired network, authentication is implicitly provided by physical access. While 

this is a weak definition of authentication, and one that is clearly inappropriate for 

high-security environments, it works reasonably well as long as the physical access 

control procedures are strong. Wireless networks are attractive in large part be

cause physical access is not required to use network resources. Therefore, a major 

component of maintaining network security is ensuring that stations attempting to 

associate with the network are allowed to do so. Two major approaches are specified 

by 802.11: open-system authentication and shared-key authentication. Shared-key 

authentication is based on WEP and requires that both stations implement WEP.

2.3.1 Open System  Authentication

Open System authentication is the simplest of the available authentication algorithms, 

and is the only method required by 802.11. Essentially, it is a null authentication 

algorithm. Any station that requests authentication with this algorithm may become 

authenticated if 802.11 Authentication Type at the recipient station is set to Open 

System Authentication. No doubt, this method can provide no security service at all.
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2. A  REVIEW  ON IEEE 802.11 PRIVACY

Initiator Responder
________ Authentication request_______

Challenge (a sequence of number) 

Response (encrypted challenge using WEP) 

Result

Figure 2.3: Shared-Key Authentication

2.3.2 Shared-Key Authentication

Shared-Key authentication uses a challenge and a response along with a shared secret 

key to provide authentication.

The entire shared-key authentication is shown as Figure 2.3. The initiator sends an 

authentication request management frame indicating that he wishes to use “shared- 

key” authentication. The responder responds by sending an authentication manage

ment frame containing 128 octets of challenge text to the initiator. Once the initiator 

receives the management frame, he copies the contents of the challenge text into a new 

management frame body. This new management frame body is then encrypted with 

WEP using the “shared secret” along with a new IV selected by the initiator. The 

encrypted management frame is then sent to the responder. The responder decrypts 

the received frame and verifies that the ICV is valid, and that the challenge text 

matches the one sent in the first message. If the result is positive, the authentication 

is successful.
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Initiator Responder
________ Authentication request_______

Challenge (a sequence of number)

A \Catdch the "Challenge"

Attacker

( l i a ! l e n q c ( ;H )  R e s p o n s e  -  k e y  s e q u e n c e

tCatch the "Response" ^

Response (encrypted challenge using WEP) 

Result

Figure 2.4: Shared-Key authentication is attacked by a third person

2.3.3 Flaws in Authentication

The current protocol for shared-key authentication is easily exploded through a pas

sive attack by eavesdropping the authentication. The attack works because of the 

previously reported weaknesses in WEP.

As shown in Figure 2.4, while two stations are doing shared-key authentication, an 

attacker can capture both the second and the third messages, which are the random 

challenge (M) in clear and the encrypted challenge (C) by WEP, respectively. Noting 

the WEP encryption equation is C =  M  © Key stream, we XOR M and C, the result 

should be the keystream (Keystream = M  ®C).

Without the shared-key but only the keystream, the attacker can request authen

tication of any AP (access point) it wishes to. As usual, the access point responds 

with an authentication challenge in the clear. The only thing the attacker needs to do 

is to take this challenge, encrypt it by XORing it with the keystream, and send the

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. A REVIEW  ON IEEE 802.11 PRIVACY

result (ciphertext) back to the access point. This response must be approved because 

the keystream it used is the one shared with the AP. Consequently, the attacker will 

be allowed to join the network.

So far, what we have discussed is based on an assumption that the access point is in 

a privileged position. In other words, the authentication is a one-way authentication 

instead of authenticating each other (mutual authentication). 802.11 does not restrict 

authentication to any particular scenario. Any station can authenticate with any 

other station. So the two parties during an authentication should be treated as 

peer to peer, or let’s say they should authenticate each other. But 802.11 does not 

restrict a mutual authentication. 802.11 implicitly assumes that access points are in 

a privileged position by virtue of the fact that they are typically under control of 

network administrators. Network administrators may wish to authenticate mobile 

stations to ensure that only authorized users access the 802.11 networks, but mobile 

stations can’t authenticate the access point. Stations wishing to join a network must 

authenticate to it, but networks are under no obligation to authenticate themselves 

to a station. The designers of 802.11 probably felt that access points are part of 

the network infrastructure and thus in a more privileged position, but this curious 

omission makes a man-in-the-middle attack possible. A rogue access point could 

certainly send beacon frames for a network that it is not a part of and attempt to 

steal authentication credentials.

Therefore, mutual authentication is a requirement in the case of a man-in-the- 

middle attack. In the following chapter, we will see how TKIP adapts 802. IX to do 

the mutual authentication for WLAN. In the proposed protocol in chapter 4, mutual 

authentication is a requirement, as well.
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2.4 Summary

In this chapter, 802.11’s privacy and authentication, as well as their flaws have been 

well described. The flaws found in WEP is basically caused by the improper imple

mentation of RC4 algorithm. In order to address them, keeping the secret key fresh 

is a requirement. Therefore, a key-distribution approach is needed and should be 

well designed. Since 802.11’s authentication is based on a flawed WEP, it can not 

be treated secure. Furthermore, only an one-way authentication can not avoid the 

man-in-the-middle attack. Those flaws will be addressed in the following chapters, 

and a more efficient protocol which can not only provide key-distribution and mutual 

authentication, but also enhance their performance in terms of time consumption will 

be proposed later.
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Chapter 3

Combine TLS with 802. IX  in 

TRIP

TKIP is TGi’s response for the need to improve security for already-deployed 802.11 

equipments. TKIP is a suite of algorithms wrapping WEP. It adds four new algo

rithms to WEP:

• A cryptographic message integrity code, called Michael, to defeat forgeries;

• A new IV sequencing discipline, to remove replay attacks from the attacker’s 

arsenal;

• A per-packet key mixing function, to de-correlate the public IVs from weak 

keys; and

• A rekeying mechanism, to provide fresh encryption and integrity keys, undoing 

the threat of attacks stemming from key reuse; at the same time, providing 

authentication service.

16
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For defeating forgeries, TKIP uses a cryptographic message integrity code, called 

Michael. The basic idea of Michael is to apply a hash function into the plaintext to 

get a ICV, and verify this ICV on the receiver side. This can avoid the vulnerable 

property in CRC-32 such as “it is a linear and unkeyed function of the message” [3]. 

The detail of algorithm “Michael” is in [15].

For defeating replays, TKIP reuses the WEP IV field as a packet sequence number. 

Both transmitter and receiver initialize the packet sequence space to zero whenever 

new TKIP keys are set, and the transmitter increases the sequence number with each 

packet it sends. TKIP requires the receiver to enforce proper IV sequencing of arriving 

packets. TKIP defines a packet as out-of-sequence if its IV is the same or smaller 

than a previous correctly received message associated with the same encryption key. 

If a message arrived is out of order, then it is considered to be a replay, and the 

receiver discards it and increases a replay counter. For details, please refer to [16].

For defeating weak key attacks (FMS attacks), TKIP offers a new per-packet 

key construction, called the TKIP key mixing function, substitutes a temporal key 

for the WEP base key and constructs the WEP per-packet key in a novel fashion. 

Temporal keys are named so because they have a fixed life time and are replaced 

frequently. Basically, the TKIP key mixing function transforms a temporal key and 

packet sequence counter into a perpacket key and IV. Reference [17] specifies the key 

mixing function in detail. The mixing function operates in two phases, with each 

phase compensating for a particular WEP design flaw. Phase 1 eliminates the same 

key from use by all links, while phase 2 de-correlates the public IV from knowing the 

per-packet key.

Since my research focuses on this so-called rekeying mechanism, which provides 

both key-distribution and authentication, the following of this chapter will discuss 

this topic in detail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. COMBINE TLS WITH 802. IX  IN TKIP

EAPOL RADIUS

Supplicant Authenticator Authentication server

Figure 3.1: 802.IX architecture

3.1 Combine TLS and 802.IX  for Authentication  

and Key-Distribution

As mentioned in Chapter 2, the WEP I Vs can never be reused with the same key 

without voiding the RC4 privacy guarantees, and that the TKIP key mixing func

tion can construct at most 216 IVs. This implies that TKIP requires a key-update 

mechanism operating at least every 216 packets. The original authentication protocol 

that is based on a flawed WEP is vulnerable, thus it needs to be addressed by a well 

designed algorithm.

3.1.1 802.IX

802.IX was originally designed for network port authentication. It defines three com

ponents to the authentication conversation: supplicant, authenticator and authenti

cation server, which are all shown in Figure 3.1.

The supplicant is the end user machine that seeks access to network resources. 

Network access is controlled by the authenticator, it serves the same role as the access 

server in a traditional dial-up network. The authenticator does not maintain any user 

information. Any incoming requests are passed to an authentication server, such as 

a RADIUS server, for actual processing.

18
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n
f i m

Laptop computer Access Point 

Access blocked

Radius Server

EAPOL

Start

Request/Identity

Response/Identity

RADIUS

Radius-Access-Request

Radius-Request Radius-Access-Challenge

Response Radius-Access-Request

Success Radius-Access-Accept

Access allowed

Figure 3.2: 802.IX conversation

The authentication exchange is logically carried out between the supplicant and 

the authentication server, with the authenticator acting only as a bridge. A derivation 

of EAP (Extensible Authentication Protocol) is used by the authenticator to pass 

challenges and reponses back and forth. From the supplicant to the authenticator, 

the protocol is EAP over LANs (EAPOL) or EAP over wireless (EAPOW). From 

authenticator to the authentication server, the protocol used is RADIUS.

802. IX is a framework, not a complete specification in and of itself. The actual 

authentication mechanism is implemented by the authentication server. 802.IX sup

plies a mechanism for issuing challenges and confirming or denying access, but it does 

not pass judgment on the offered credentials. A typical message exchange between 

supplicant and authentication server is showed in Figure 3.2.

As mentioned before, EAP is the protocol used in 802.IX for data transfer. For 

a particular explanation of EAP, please refer to the book [1]. Through EAP, several

19
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authentication algorithms can be chosen, such as MD-5 challenge, One-time password 

(OTP), Generic Token Card, and TLS.

MD-5 Challenge is defined in RFC 1994. Its requests contain a challenge to the 

end user. For successful authentication, the challenge must be successfully encoded 

with a shared secret. You can also find the explanation of OTP and Generic Token 

Card authentication method in RFC 1938 and [1], respectively.

TLS is a well designed protocol for both authentication and key-distribution. The 

following section will give a brief review about this protocol.

3.1.2 TLS Handshake Protocol

RFC 2716 describes the use of Transport Layer Security (TLS) for authentication and 

key-distribution. TLS is the standardized successor to the widely deployed Secure 

Socket Layer (SSL), and TLS authentication inherits a number of useful character

istics from SSL. Most notably, mutual authentication is possible with TLS. Rather 

than issuing a one-side challenge to the client, EAP-TLS can ensure that the client 

is communicating with a legitimate authenticator. In addition to mutual authenti

cation, TLS provides a method to protect the authentication between the client and 

authenticator. It also provides a method to exchange a session key securely between 

the client and authenticator, which limits the impact of a compromised WEP key.

Figure 3.3 gives us a basic idea of how the TLS handshake protocol works. The 

exchange can be viewed as having four phases.

In phase 1, the client starts a conversation by sending a client-hello message 

including highest understood SSL version, a random number for preventing replay 

attacks, session ID, ciphersuite and compression method. The ciphersuite is a list that 

contains the combinations of cryptographic algorithms supported by the client. The 

algorithms include key exchange algorithms and cipherspecs (which include cipher 

algorithms, MAC algorithms, etc). Then, the server will send back the server-hello

20
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Client Server
client_hello

server_hello

certificate

server_key_exchange

certificate_request

server_hello_done

certificate

client_key_exchange

certificate_verify

change_cipher_spec

finished

change_cipher_spec

finished

Figure 3.3: TLS handshake protocol

message which contains the same parameters as the client.hello message. The purpose 

of phase 1 is to negotiate a certain protocol version, and a bunch of certain algorithms 

and parameters in order to transfer the data after the handshake.

Phase 2 is called server authentication and key exchange. The server begins 

this phase by sending its certificate. Then a server.key-exchange message may be 

sent if it is required. If mutual authentication is needed, the server will send a 

certificate-request message. Next, a server-done message is sent indicating the end of 

the second phase.

In phase 3, as a response, the client will send back his own certificate if necessary, 

followed by the client-key-exchange message for key exchange. The certificate-verify 

message is sent to tell the server the verification result.

During phase 4, both client and server will send change-dpherspec message to 

indicate that from now on, they will use the new negotiated algorithms and parameters

21
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to protect the transmitted data, followed by a finished message indicating the finish 

of the whole process.

3.2 Disadvantage of Using TLS Protocol in 802. IX

Although TLS is a well designed protocol for authentication and key-distribution, it 

has its own disadvantage when we apply it into WLAN.

3.2.1 The complicacy of TLS for W LAN

As mentioned earlier, TLS is originally designed for transport layer, it is compatible 

for most of the system. For instance, in the phase 1 of TLS handshake protocol, 

the client and server will negotiate a certain version of SSL in order to finish the 

following conversation. This is because different system may support different SSL 

version. TLS is the third version of SSL. When a system supporting TSL is willing 

to communicate with another system supporting only SSLvl, it must adjust itself to 

SSLvl in order to understand every message sent by that system. But in WLAN, 

because we only combine TLS into 802. IX, there is only one version of SSL used for 

authentication and key-distribution which is TLS. Therefore, negotiating SSL version 

is not necessary. Also, the reason both parties negotiate a ciphersuite is that each 

system support their own key-exchange algorithm, cipher algorithm for data privacy 

and other parameters. During the handshake, they must find a certain bunch of 

algorithms and parameters which both of them support, so that after handshake, 

they can continue to exchange data. But again, in our case, we still use WEP as 

the cipher algorithm for data privacy, and for some efficiency concern which will 

be explained in the next chapter, we will use only one key-exchange algorithm to 

distribute the key. Thus, negotiating these algorithms is not necessary. Basically, in 

the first phase, we only need both parties to setup a session ID and send a couple of
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random numbers due to the prevention of replay attack.

In the second phase of TLS handshake, certificates must be sent for authentica

tion. But server-key-exchange is useless. Server-key-exchange is only necessary for 

a couple of certain key exchange algorithms, such as Diffie-Hellman key exchange, 

which requires both parties to exchange some parameters before distribute the se

cret key. But in our case, we will use RSA key exchange algorithm to distribute 

the key due to the efficiency concern. Since RSA key exchange algorithm doesn’t 

require any previous parameters shared by both parties before distributing the key, 

server-key-exchange can be deleted in this phase. Also, mutual authentication is a 

requirement in WLAN in order to avoid man-in-the-middle attack, the server doesn’t 

need to send the certificatejrequest to ask client for a certificate.

In the third phase, because the same reason in phase 2, client-key-exchange can 

be eliminated.

During the last phase, the purpose of change-dpherspec is to indicate each other 

that right after the authentication and key-distribution, the new negotiated algorithm 

and parameters will be used for data privacy. But as mentioned before, we still 

use WEP as the cipher algorithm, thus after handshake, both parties know which 

algorithm they are going to use, which means sending a message to indicate which 

algorithm to use is redundant.

After the analysis above, we can see that many steps in TLS are designed for 

traffic in transport layer. For the sake of compatibility, TLS protocol includes almost 

everything needed by all kinds of systems, which is why the whole process have 4 

phases and many sub-phases. In our case, however, since we only deal with wireless 

systems which requires only a certain bunch of algorithms and parameters under a 

specific circumstance, we can combine the whole 4-phase TLS handshake protocol into 

several simple steps for WLAN. We will see this new protocol in the next chapter.
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Table 3.1: Unbalanced time consumption by using different processors for RSA operation

M icroprocessors T im e R equired  (m s)

RSA(1024) Encryption RSA(1024) Signature Verification

Using a 20MHz microprocessor in a PDA 622 598

Using a Pentiym4 2.1GHz microprocessor 0.18 0.19

3.2.2 Unbalanced Computation Ability

In TLS, certificate is used for authentication (The concept of certificate will be de

scribed in the next chapter). Basically, the security of certificate depends on the 

use of digital signature technology, which is based on public key algorithms. For 

key-distribution in TLS, public key algorithms such as DeffieJHellmanJkey.exchange 

and RSA_key_exchange are the best choices. However, for WLAN, it is very nor

mal that the clients’ devices for communication are always laptops, PDAs, or even 

cellphones. The processors’ computation abilities in these devices are restricted com

pared to those used by servers. Figure 3.1 gives us some examples on how different 

the time consumptions are due to different processors. For example, We can see that 

by using a 20 MHz microprocessor in a PDA, the time required for doing an RSA 

encryption with a 1024-bit modulus is about 622 ms; to do the same operation, if 

use a Pentium4 2.1 GHz processor, the time required is only 0.18 ms, which is about 

3456 times shorter than that in the first case. To do an RSA signature verification 

with a 1024-bit modulus by using both processors, we can nearly get the same result.

It is easy to understand that the time consumption for the whole authentication 

and key-distribution depends only on the one whoever’s computation ability is weaker. 

In other words, no matter how fast the server’s processor can execute the operations, 

authentication and key-distribution can only be finished by the time that the client’s 

processor finishes its job, the spending time of which may be much longer than that 

of the server.
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This is a very serious problem in reality. Disregarding other factors which may de

lay the time, when a user tries to roam from one access point to another in large infras

tructure deployments, the time used for a full reauthentication and key-distribution 

by TLS handshake protocol used in 802. IX, such as 600ms, is too slow to support 

real-time applications such as audios and videos. Therefore, in order to reduce the 

spending time for authentication and key-distribution, we should find out how to 

reduce the time for client, even somehow the server’s time may be increased a bit. 

An algorithm called “unbalanced RSA” will be used to achieve this goal and will be 

introduced in the next chapter.
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Chapter 4

The Proposed Protocol with 

Unbalanced RSA

In this chapter, the proposed protocol will be introduced. We will also apply unbal

anced RSA into this protocol to reduce the time consumption. Regarding the security 

flaws in original 802.11 standard and the disadvantage of using TLS in 802.IX for 

authentication and key-distribution, the ability of addressing all those problems in 

this proposed protocol with unbalanced RSA will be described in detail.

4.1 The Proposed Protocol

Figure 4.1 is the proposed protocol for authentication and key-distribution in WLAN. 

The protocol consists of several messages exchanged by client and server. Each mes

sage has three fields:

• Type: Indicates one of the messages in Table 4.1.

26
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Client Server

Verify CA’s signature.
Send back random, encrypted 
secret key, and server’s certificate

Figure 4.1: The proposed protocol for authentication and key-distribution

• Length: The length of the message in bytes.

• Content: The parameters associated with this message.

Table 4.1: Message Types

M essage Type Parameters

clientJiello 

server Jiello 

finished

session id, random, chain of X.509v3 certificates

session id, random, chain of X.509v3 certificates, encrypted secret key

null

The exchange includes three steps.

Step 1 In this step, the client will send a clientJiello message with the following 

parameters:

• Random: A client-generated random structure, consisting of a timestamp and 

a sequence of random number. These values serve as nonces and are used during 

key exchange to prevent replay attacks.
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Send session ID, random, and 
client’s certificate, including 
client’s ID and its public key

Verify CA’s signature. 
Decrypt the key, and 
send back "finished".

clientJiello

serverJiello

finished
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•  Session ID: A variable-length session identifier. A nonzero value indicates that 

the client wishes to update the parameters of an existing connection or create 

a new connection on this session. A zero value indicates that the client wishes 

to establish a new connection on a new session.

• Certificate(s): one or a chain of X.509 certificates. It will be sent for the sake 

of being authenticated by the server.

After receiving the clientJiello message, the server will verify the CA’s (Certificate 

Authority) digital signature in client’s certificate. If the certificate is approved, the 

server will generate a secret key, and encrypt this secret key using client’s RSA public 

key which is retrieved from client’s certificate. The encryption result, ciphertext, will 

be sent back to the client.

Step 2 In this step, the server sends the server Jiello message with his own random 

and a session ID. The random is generated by the server and is independent of the 

client’s random. If the session ID of the client was nonzero, the same value is used 

by the server; otherwise the server’s session ID contains the value for a new session. 

Following the session ID and the random, the server sends his own certificate(s), in 

order to be authenticated by the client. At last, the ciphertext which contains the 

encrypted secret key will be sent.

After getting the message from the server, the client will first verify the server’s 

certificate. If approved, the client then decrypts the ciphertext to get the secret key. 

So far, both client and server have authenticated each other; and the secret key has 

been distributed to both parties.

Step 3 The client finally sends a finished message to indicate that the whole au

thentication and key-distribution process is done, and from now on, they can use the 

shared secret key to transmit data by using WEP algorithm.

28
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4.1.1 Security Analysis

The proposed protocol can prevent the system from all the general attacks.

Interception By using well-designed RSA algorithm for key-distribution and au

thentication, it is extremely difficult to gain any information of the distributed key 

and the content of the authentication by an unauthorized party. RSA guarantees the 

confidentiality of the data.

Modification With the use of certificate (it will be explained in this section shortly), 

an unauthorized party can modify the data only if he can break the hash function, 

which is almost impossible.

Fabrication The public key algorithm used in the certificate and key-exchange 

method prevents the messages from being fabricated by an unauthorized party.

Replay As mentioned earlier, random is used to defeat replay attack during the 

authentication and key-distribution.

In the following of this section, we will take a closer look at the certificate and the 

RSA key-exchange method.

Certificate for Authentication

In our proposed protocol, in order to achieve a reliable mutual authentication, we use 

the well designed public-key certificate as our algorithm.

The heart of certificate is the digital signature technology. Digital signature is 

an application of public key algorithm. It is used to ensure that the signed message 

is really from the one who signed it. For instance, Bob wants to send a message to 

Alice and, although it is not important that the message be kept secret, he wants 

Alice to be certain that the message is indeed from him. Then Bob can use his own
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private key to encrypt the message. When Alice receives the ciphertext, she finds 

that she can decrypt it with Bob’s public key, thus proving that the message must 

have been encrypted by Bob. No one else has Bob’s private key and therefore no one 

else could have created a ciphertext that could be decrypted with Bob’s public key. 

Therefore the entire encrypted message serves as a digital signature. In addition, it 

is impossible to alter the message without access to Bob’s private key, so the message 

is authenticated in terms of both source and data integrity.

In essence, a certificate consists of a public key plus a User ID of the key owner, 

with the whole block signed by a trusted third party. Typically, the third party is a CA 

(certificate authority) that is trusted by the user community, such as a government 

agency or a financial institution. A user can present his or her public key to the 

authority in a secure manner and obtain a certificate. The user can then publish the 

certificate. Anyone needing this user’s public key can obtain the certificate and verify 

that it is valid by way of the attached trusted signautre. Figure 4.2 illustrates the 

process.

One scheme has become universally accepted for formatting public-key certificates: 

the X.509 standard. X.509 certificates are used in most network security applications, 

as well as used in my proposed protocol. The detail of X.509 standard is in RFC 2459.

Certificate is a well designed algorithm for authentication. Because the security of 

certificate depends on the digital signature which is one of the public key algorithms, 

it can be compromised only if the public key algorithm is defeated. Public key 

algorithm such as RSA has been stayed secure for more than three decades. With 

a proper modulus, RSA will stay secure in the foreseeable future [12]. Thus, using 

certificate for authentication in our protocol can ensure that the man-in-the-middle 

attack which happened in the original 802.11 standard will be defeated.
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Unsigned certificate 
contains user ID, 
user’s public key

Generate hash code o f  
unsigned certificate

Gererate signature by 
encrypt hash code 
with CA’s private key

Signed certificate Signature

Figure 4.2: Certificate 

RSA Key Exchange algorithm for Key-Distribution

Normally, the two communication parties encrypt and decrypt a message using a 

shared secret key. The keys are decided upon in advance and somehow this informa

tion is sent securely from one to the other. There are some obvious limitations and 

drawbacks to pre-distribution. First of all, it requires two parties, Alice and Bob, 

to have met or to have established a secure channel between them in the first place. 

Secondly, once Alice and Bob have met and exchanged information, there is nothing 

they can do, other than meeting again, to change the key information in case it gets 

compromised.

The solution for those problems is to use public key exchange algorithm, such 

as RSA and Diffie-Hellman key exchange. The advantage of public key algorithm is 

that there is no secret information necessary to be shared before the secret key is 

distributed. For efficiency concern which will be discussed later in this chapter, in
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Key Generation

Select p, q p and q both prime

Calculate n=p*q

Calculate (p—l)(q —1)

Select integer e gcd( (p— 1 )(q— 1), e )=1; l< e < ( p - l ) ( q - l )

Calculate d d = eA( - l ) ( m o d  ( p - l ) ( q - l ) )

Public key KU = {e, n}

Private key K R = { d , n }

Encryption
Plaintext: M < n

Ciphertext: C = M Ae (mod n)

Decryption
Plaintext: c

Ciphertext: M = CAd (mod n)

Figure 4.3: RSA algorithm 

our protocol, we will choose RSA key exchange algorithm to distribute the secret key.

RSA Algorithm for Key-Exchange In order to understand the RSA key ex

change algorithm and for the sake of efficiency concern discussed in the next section, 

let’s take a brief review on the RSA algorithm. Figure 4.3 shows the basic idea of 

RSA.

For key exchange, we treat the secret key to distribute as a plaintext and encrypt 

it with RSA public key. For recipient who holds the relevant RSA private key, he can 

simply decrypt the ciphertext and get the secret key. As mentioned before, there is 

no secret information required before the key is distributed.
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4.1.2 Summary

As far, the proposed protocol has been described. The protocol used to address the 

flaws in authentication and key-distribution in 802.11 standard has been explained. 

As mention before, one serious problem for using TLS in 802. IX is that the client 

processor’s computation ability is the bottleneck during the authentication and key- 

distribution. The solution for that is either to use more advanced processor with 

stronger computation ability, which depends on the development of the processor 

technology and will cost more money, or, to make the current algorithm more efficient. 

Both of their purposes are to reduce the time consumption for the whole process. 

In the next section, a new algorithm called “unbalanced RSA” will be introduced. 

Let’s see how it can make the current RSA algorithm more efficient in the case 

that the computation ability is unbalanced, and finally reduce the whole time for 

authentication and key-distribution.

4.2 Unbalanced RSA

One of the most important decisions in practical implementations of the RSA cryp

tosystems is the choice of modulus size. It is clear that 512-bit modulus no longer 

provides adequate protection, and 1024 bits is a common choice in current RSA sys

tems. With the progress of factoring algorithm, the size of modulus will increase 

in the foreseeable future. However, the time complexity of modulus exponentiation 

grows rapidly with the size of the modulus (actually, the time complexity of RSA com

putations grows cubically with the size of the modulus [12]), and thus it is difficult 

to choose a size which combines efficient operation with long term security.

“Unbalanced RSA” was first mentioned by Adi Shamir, it is based on Chinese 

Remainder Theory (CRT). For instance, we use a modulus n with a size of 1024 bits, 

and the size of its prime factor p is 256 bits. Then, the size of q is about 768 bits.
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The different size of p and q reflects the name of “unbalanced” .

Since RSA encryption is typically used only in order to exchange session keys 

for fast secret key cryptosystems, the cleartexts are usually quite short: even three 

independent keys for triple DES require only 168 bits, which means it is very likely 

that the cleartext is always smaller than p. We can thus assume that the cleartext is 

in the range [0,p).

For RSA decryption, we need to consider the equation m = cd (mod n). If we

use the Chinese Remainder Theorem, we can compute m i =  cd (mod p) via a 256

bit exponentiation, by reducing c modulo p and d modulo p — 1 at the beginning of 

the computation. However, we then have to carry out the 756 bits exponentiation 

m 2 = cd(mod q), which is ( | | | ) 3 =  9 times slower.

As a matter of fact, there is no need to carry out this expensive computation at 

all. By definition, mi is equal to m  (mod p). However, the cleartext m  is known 

to be smaller than p, and thus m  (mod p) is simply m  itself. By combining these 

observations, we conclude that mi is the original cleartext m, and thus it is just a 

waste of time to carry out the computation of m2 modulo q, which will yield the same 

result.

If we compare the size of p which we use to calculate the cleartext to the modulus 

n  which we should use without using “unbalanced RSA”, the time we need is about 

(lU r)3 =  64 times shorter, which is a significant enhancement.

4.2.1 Security Analysis

From the analysis above, we can see that using “unbalanced RSA” can reduce the 

time for decryption which is great for client in WLAN. In this section, let’s take a 

look at the security affection by using this algorithm.

It is known that the security of RSA relies on the difficulty of factoring the modulus 

n. So far, all the known factoring algorithms can be divided into two broad types:
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algorithms whose running time depends on the size of the factors, and algorithms 

whose running time depends only on the size of the factored number n. The oldest 

factoring algorithms typically searched for the smallest factor p of n, and were thus 

of the first type. However, modern algorithms tend to use indirect approaches which 

require the same time to find a single digit or a fifty digit prime factor of n.

The fastest factoring algorithm of the first type is currently the elliptic curve 

method. Its asymptotic running time is exp(0((ln(p))% • (lnln(P))^)), but its basic 

operations are very slow. The largest factor ever found in practice with this algorithm 

was about 183 bits long, and it is very unlikely that this algorithm will be able to 

find the 256 bit factors of 512 bit RSA keys in the next few years.

Factoring algorithms of the second type are much faster, since they can use a 

wider array of mathematical techniques. The best algorithm of this type is currently 

the general number field sieve. It has an asymptotic complexity of exp(0((ln(ri))% • 

(lnln(n))3)), and is believed to be capable of factoring a 512 bit modulus in 10000 to 

15000 MIPS-years [12].

Since the inception of the RSA cryptosystem, all the record breaking factorizations 

of RSA keys were based on algorithms of the second type, and it is reasonable to 

assume that this trend will continue in the foreseeable future. If we assume this is 

the case, then using 256-bit p, with remaining modulus n to be 1024 bits, comparing 

to the regular 1024-bit n with 512-bit p , we keep the security of our unbalanced RSA 

to be on the same security level. Of course, this is under the condition that the prime 

number p is larger than 183 bits, otherwise it can be found by the first factoring 

algorithm, although this algorithm is much slower. In order to provide some security 

margin, we will use 256-bit p in our protocol, while keeping n to be 1024 bits.
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4.3 Unbalanced Exponents

A well known way of speeding up the RSA encryption process c =  m e(mod n ) is to 

use a small encryption exponent e. Recall that during the handshake process, the 

client uses RSA encryption equation to verify the certificate. Therefore, we could 

use a small encryption exponent e to reduce the time for client during the certificate 

verification.

There are two common options for the public exponent e. One is to use e =  3, 

which is the smallest value can be used. By this option, the time consumption for 

RSA encryption on client can be reduced to the smallest. However, there are couple 

of drawbacks: What if the cleartext m  is less than , or, m e < n? If so, recalling the 

RSA encryption equation c = me (mod n ), there is no modulation operation involved 

in that equation. Actually, we can find m  directly by calculating m = c i  When e 

is as small as 3, it is really not difficult to find m [18]. Also, Hastad [19] shows that 

small public exponents can be dangerous when the same plaintext is sent to many 

different recipients.

Regarding to those drawbacks, the other option of the public exponent e is to 

use 216 +  1 =  65537, which is chosen due to some implementation concern. But in 

our case, since we only use low public exponent during the certificate verification, 

which actually depends on digital signature scheme. The cleartext to be signed is 

not something we want to protect from recovering, but rather the message which we 

want the recipient to believe is from its original signer. In other words, the drawbacks 

mentioned just now which threat the exposure of the cleartext is not a problem in 

our case. Therefore, we can use e =  3 without any worry.
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4.4 Summary

In this chapter, the proposed protocol for authentication and key-distribution in 

WLAN is introduced. Certificate and RSA key exchange algorithm are also reviewed 

briefly, which is good for the reader in order to understand how this protocol can 

address the flaws in 802.11 standard. Then, the concept of “unbalanced RSA” was 

presented. We can see that using “unbalanced RSA” can reduce the RSA decryption 

time to 64 times shorter under the given condition, which is great for client during 

the key-distribution process. More importantly, the security level is kept as high as 

the regular RSA even we use a short prime number p. For certificate verification on 

client, we can use a low public exponent e =  3 in order to reduce the time consumption 

without causing any flaws.

In the next chapter, some simulation work will be introduced according to the 

proposed protocol and the “unbalanced RSA” used in WLAN.
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Chapter 5

Implementation

In this research, I used Java to implement my proposed protocol with the “unbalanced 

RSA” on application layer, the purpose of which is to prove the feasibility of my idea. 

Then in the next step, we can adapt it to data link layer used in WLAN.

5.1 Implementation Detail

5.1.1 Certificate Generation Class

In order to use certificate as the method for authentication, we need to generate 

certificate for CA. In reality, users can get a certificate or a chain of certificates from 

CA. For simplification, we will generate a self-signed certificate instead of a certificates 

chain. As mentioned before, we use the wide-applied X.509 standard certificate in 

our protocol. Noting that X.509 standard is not included in java.sun package, we 

need to download a package from other supplier which has this standard, such as 

BouncyCastle.
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In the certificate generation class, we need to import the following packages, as in 
the codes:

i m p o r t  j a v a . m a t h . * ;

i m p o r t  j a v a .  u t i l . * ;

i m p o r t  o r g  . b o u n c y c a s t l e  . j c e  . * ;

i m p o r t  j a v a  . s e c u r i t y  .*  ;

i m p o r t  j a v a . s e c u r i t y . s p e c . * ;

i m p o r t  o r g  . b o u n c y c a s t l e  . a s n l . x 5 0 9  . * ;

i m p o r t  j a v a  . s e c u r i t y  . c e r t  . *  ;

i m p o r t  j a v a  . i o  . * ;

There is a class in Java called Biglnteger, which is designed for very large integers

such as those used in cryptography. We generate the prime number p and q, using

the Biglnteger’s constructor Biglnteger (size, randomSeed). Then choose the public

exponent to be 3, and calculate the private exponent.
After getting the public key {e, n} and private key {d,n}, we convert them into 

the public key object and secret key object: pubkey and prikey, respectively. Then use 
the methods and constructors provided by BouncyCastle to generate the self-signed 
certificate:

X 5 0 9 V l C e r t i f i c a t e G e n e r a t o r  c e r t i f i c a t e G e n e r a t o r  =  

new  X 5 0 9 V I C e r t i f i c a t e G e n e r a t o r  ( ) ;  

c e r t i f i c a t e G e n e r a t o r  . s e t S e r i a l N u m b e r  ( B i g l n t e g e r  . O N E ) ;

S t r i n g  x 5 0 9 N a m e =  ”CN=SomeName” ;

c e r t i f i c a t e G e n e r a t o r .  s e t l s s u e r D N  ( n e w  X509Name ( x 5 0 9 N a m e ) ) ;  

c e r t i f i c a t e G e n e r a t o r .  s e t S u b j e c t D N  (n e w  X 5 0 9 N a m e ( x 5 0 9 N a m e ) ) ;

C a l e n d a r  n e x t Y e a r D a t e  =  C a l e n d a r . g e t l n s t a n c e  ( ) ;  

n e x t Y e a r D a t e  . a d d  ( C a l e n d a r  .YEAR, 1 ) ;

c e r t i f i c a t e G e n e r a t o r .  s e t  N o t  A f t e r  ( n e x t Y e a r D a t e  . g e t T i m e  ( ) ) ;  

c e r t i f i c a t e G e n e r a t o r  . s e t N o t B e f o r e

( C a l e n d a r  . g e t l n s t a n c e  ( ) .  g e t T i m e  ( ) ) ;  

c e r t i f i c a t e G e n e r a t o r  . s e t S i g n a t u r e A l g o r i t h m  ( ’’ S H A l w i t h R S A ” );  

c e r t i f i c a t e G e n e r a t o r  . s e t P u b l i c K e y  ( p u b k e y );
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String a lias = Long. toHexString

(SecureRandom . getlnstance (’’SHA1PRNG” ). nextLong ());
X509Certificate c e r t if ic a te  =

certifica teG en erator . gener at eX5 09 Certificate ( prikey );

Then, we can store the certificate, private exponent d, prime number p  into dif

ferent files for client to use later.

(The complete code of certificate generation class is in Appendix C)

5.1.2 Class for Client

First of all, we need to setup a socket for client and server to communicate, 

try {
clientSocket = new Socket (” localhost ” , 4444); 
out = clientSocket . getOutputStream (); 
in = new

Buffer edlnput Stream (clientSocket . getlnput Stream ());
} catch ( UnknownHostException e) {

System . err . println (’’Don11 know about host: l o c a lh o s t . ” );
System . exit  (1);

} catch (IOException e) {
System . err . println (” Couldn ’ t get

I/O for the connection to: l o c a l ho s t . ” );
System . exit  (1);

}

Then, as the first step in the proposed protocol which was introduced in the

last chapter, client sends its hello_ message to the server, which includes session ID,

random and client’s certificate. The client can do this by using FilelnputStream or

Objectlnput/OutputStream. (The detail of this part of code is in Appendix A.)
In the second step for client, he expects a message from server which includes 

server’s certificate and the encrypted secret key. The client then retrieve CA’s public 
key from CA’s own self-signed certificate:
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F i l e l n p u t S t r e a m  C A F i s  =  new F i l e l n p u t S t r e a m  ( ” C A c e r t i f i c a t e  . c e r  ” );  

B u f f e r e d l n p u t S t r e a m  CA Bis  =  new B u f f e r e d l n p u t S t r e a m  ( C A F i s );  

C e r t i f i c a t e F a c t o r y  CACf  =  C e r t i f i c a t e F a c t o r y  . g e t l n s t a n c e  ( ”X.  5 0 9 ” );  

j a v a  . s e c u r i t y  . c e r t  . C e r t i f i c a t e  CACert  =  CACf.  g e n e r a t e C e r t i f i c a t e  ( C A B i s ) ; 

P u b l i c K e y  C A p u b l i c k e y  =  C A C e r t . g e t P u b l i c K e y  ( ) ;

The purpose to get CA’s public key is to verify server’s certificate. This is done 
by using the verification method in certificate class:

server Cert . verify ( CApublickey);

When we generate the server’s certificate, we have already set the public exponent e 

to be 3, as analysed before, to reduce the time consumption of certificate verification 

for client.

If the certificate is approved, the client can decrypt the ciphertext to get the secret 

key by doing:

p l a i n t e x t  =  c i p h e r t e x t  .modPow(d, p ) ;

In this line of code, modPow(exponent, modulus) is the method in Biglnteger which 

operate the following equation:

p  =  C exponent(m ()d  m o d u l u s )

Actually, here we apply “unbalanced RSA” to use p instead of n to be the modulus 

for RSA decryption on client, in order to reduce the time consumption. Afterward, 

the client saves the secret key in a file or somewhere else for later use of transferring 

data using secret key algorithm.

At this point, the authentication and key-distribution have been successfully done 

with the use of “unbalanced RSA” to speed up the whole process for client. The 

client then sends back a message indicating the success of the handshake.

(The complete code is in Appendix A.)
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Table 5.1: Time consumption for key-distribution

R egular RSA RSA for paranoids

M odulus n (bits) 1024 1024

p  (bits) 512 256

q (bits) 512 768

T im e for RSA decryption 

on client (ms)

m  =  cd(mod n) m  =  cd{mod p)

65.19 1.71

5.1.3 Class for Server

The code for the server is almost identical to the client’s. The difference is that 

there is no “unbalanced RSA” involved. The only step server needs to do is receiving 

client’s hello-message, verifying client’s certificate with CA’s public key, generating a 

secret key, and encrypting this key with client RSA public key retrieved from client 

certificate. The complete code can be found in Appendix B.

5.2 Simulation Result

The Java program was tested on a laptop with an Intel Celeron 1.33GHz CPU and 

240 MB RAM. The operation system is Windows XP Home Edition. There was no 

other process running while executing the codes. We calculated the time consumption 

by taking an average of 1000 times handshakes in order to get a more accurate result.

Table 5.1 is the simulation result of time consumption for key-distribution (RSA 

decryption). As we can see in the table, the time consumption for RSA decryption on 

client by using “unbalanced RSA” is about 38 times shorter than that of using regular 

RSA. It is obviously a significant improvement for handshake time consumption, in 

the case of unbalanced computation abilities for server and client.
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Table 5.2: Time consumption for certificate verification

Tim e for executing c = m e(mod n) 

during  th e  certificate verification (ms)

e =  3 0.075

e =  65537 0.341

Table 5.2 is the simulation result of time consumption for certificate verification 

(RSA encryption). This table gets the result that verifying certificate with a public 

exponent e = 3 can reduce the time consumption by a factor of =  4.54, comparing 

to e =  65537.

5.2.1 R esult Analysis

As mentioned in chapter 4, under the fact that “time complexity of RSA computations 

grows cubically with the size of modulus” [12], the time result by using “unbalanced 

RSA” should be ( ^ j r ) 3 =  64 times shorter than that of the regular one. But in my 

simulation, we only got about 38 times better than original one instead of 64. In 

order to find out the reason, we need to take a look at the number of operations when 

Java executes the RSA encryption and decryption.

As a matter of fact, the RSA encryption and decryption operations which involves 

modulus exponentiation operations is executed by modPow(exponent, modulus), which 

is a method in the class Biglnteger in Java. If we take a look at the source code of 

Java, we see that the core of this method is the “window algorithm” combined with 

Montgomery exponentiation algorithm. According to [20], the “window algorithm” 

is somehow difficult to calculate the number of operations, because of the indetermi

nacy of the window size. However, we can calculate the number of multiplications of 

Montgomery exponentiation, which is a similar method to the “window algorithm”
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except no window size needed.

The reference [20] proves that the expected average number of multiplications to 

compute xe(mod m ) by algorithm “Montogomery exponentiation” is

3 l{l +  1 ){t +  1),

where 1 is the length of modulus and t is the length of exponent.

Note that this expression is an average result, which is under one condition that 

the number of ones in the binary form of exponent equals to the number of zeros. 

For the worst case, where all the digital number of binary exponent are ones, the ex

pected number of multiplications to compute xe(mod m) by algorithm “Montogomery 

exponentiation” is

41(1 + l)(t + - ) .

And for the best case where all the digital number of binary exponent are zero except 

the most left one, the expected number of multiplications is

21(1 + !)(*+ 2^

Based on the analysis above, we can calculate the number of operations by doing 

a regular RSA decryption with 1024-bit modulus and by using “unbalanced RSA” in 

my protocol, as shown in Table 5.3.

We can see that the best time ratio between regular RSA and “unbalanced RSA”

is
Regular R S  A^worsi casê   ^28

Unbalanced RSA(best case) ’

and the worst ratio is

Regular RSA^beab case) _
Unbalanced RSA^worsi case)

Therefore, due to the different values of private exponent d used during RSA 

decryption, the ratio between 128 and 32 are all acceptable.
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Table 5.3: Number of operations in RSA for data decryption

G eneral R S A  algorithm R S A  for P aranoid s

b est case average w orst case b est case average w orst case

L ength  o f  

m odulus n 

(Ln b its)

1024 1024 1024 1024 1024 1024

L ength  o f  p 

(b its)

512 512 512 256 256 256

L ength  o f  q 

(b its)

512 512 512 768 768 768

L ength  o f  public  

exp on en t e,

Le (b its)

2 (e =  3) 2 2 2 2 2

len gth  o f  private  

exp on en t d, 
Ld (b its)

1022 1022 1022 1022 1022 1022

N u m b er o f  

m u ltip lica tion s

in  to =  cd(mod x)

2 * 1024 

*(1024 +  1)

*(1022+ f )

3 * 1024 

*(1024 +  1) 

*(1022 +  1)

4 * 1024 

*(1024 +  1) 

*(1022+ §)

2 * 256 

*(256 +  1) 

* ( 2 5 6 + |)

3 * 256 

3 * 256 * (256 +  1) 

*(256 +  1)

4*256  

*(256 +  1) 

( 2 5 6 + f )

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. IMPLEMENTATION

Table 5.4: Number of operations in RSA for certificate verification

R S A  en cryp tion  (e =  65537) R S A  en cryp tion  (e =  3)

N u m b er o f  m u ltip lication s

in  c =  m e(mod n)
1024 * (1024 +  1) * (2 * 17 +  7) 1024 * (1024 +  1) * (2 * 2 +  7)

For certificate verification (RSA encryption) in our protocol, we can apply the 

same approach to find out the reason of getting a ratio of 4.54 instead of y  =  8.5, 

which is based on the assumption that “time complexity of RSA computations is 

linear with the length of exponent” [12].

Based on Table 5.4, since the binary public exponent 65537 has two ones, as same 

as that of the binary public exponent 3, we can calculate the number of operations 

of executing RSA encryption, and the time ratio is y y jy  =  3.73. The point shown 

here is that the ratio of number of operations could be much different as the average 

result according to different number of ones in exponent.

5.3 Summary

In this chapter, the simulation of my proposed protocol has been described, as well 

as the simulation result. The proposed protocol has been proved practicable. The 

time consumption by using “unbalanced RSA” is about 38 times shorter than that 

of a regular RSA according to my simulation result. By applying e = 3 in certificate 

verification, the calculation speed is about 5 times faster than using e =  65527, as we 

expected in chapter 4.
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Chapter 6

Conclusion

In this thesis, the problems in IEEE 802.11 standard in terms of authentication and 

key-distribution have been reviewed in detail. The lack of proper key-distribution 

method and reliable authentication algorithm is critical in 802.11. As we can see in 

chapter 3, by applying TLS into 802. IX, the flaws can be addressed. However, since 

TLS is not designed specifically for WLAN, there are some redundant steps during 

the TLS handshake if used for 802.11. For wireless environment, it is common that 

the computation abilities between clients and servers are severely different, which 

makes the client’s device a bottleneck during the authentication and key-distribution 

process.

In order to eliminate the redundant steps in TLS for WLAN and balance the 

time consumption between clients and servers, a new protocol for authentication and 

key-distribution is proposed. Comparing to TLS handshake, this new protocol is 

much simpler and more suitable for 802.11. Furthermore, in order to reduce the time 

consumption for client during the handshake, “unbalanced RSA” is applied in this
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protocol. With the use of “unbalanced RSA”, the time required can be reduced by a 

factor of 38 for key distribution; using low public exponent can reduce the time by a 

factor of 4.5 for certificate verification, according to my simulation, respectively. The 

use of “unbalanced RSA” makes the protocol much more efficient than before.

In summary, my contribution in this research can be concluded as following:

• Propose a new protocol for authentication and key-distribution for 802.11

-  Address the flaws in terms of key-distribution and authentication found in 

original 802.11 standard

-  Much simpler than the TLS handshake protocol

• Apply “unbalanced RSA” into the proposed protocol

-  Reduce the time consumption for key-distribution

Although we cut down the size of prime factor p during the use of “unbalanced 

RSA”, the security is kept as strong as the original one. This is because we remain 

the size of modulus n to be 1024 bits as regular, which is the only factor that can 

affect the most efficient factoring algorithm. On the other hand, using short public 

exponent e =  3 will not affect the security level of the RSA algorithm, especially in 

the case of digital signature.

In terms of the trade-off of this proposed protocol, the lack of compatibility is 

definitely one. Since this protocol is designed specifically intending to address the 

flaws in 802.11 and balance the time consumption, it can not be used anywhere else. 

If we want to make it more compatible, we have to negotiate those algorithms and 

parameters as TLS handshake did, which makes it more complicated.

Since the secret keys shared by clients and servers need to be distributed fre

quently, and every pair of client and server has its own secret key, an AP needs to 

remember all the secret keys being used. The ability of remember how many different
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keys depends only on the memory of the AP. The more memory an AP has, the more 

clients it can handle.

The whole protocol is under the assumption that both client and server have 

already obtained the certificates from a CA. In reality, we have to think about how 

to distribute these certificates quickly and safely. And, how to authenticate the 

client and the server by a CA and how to obtain the information which need to be 

certificated are another two problems. Further more, we need to consider how to 

generate secrets keys on the server side, which surely needs some kind of secret key 

generator. All those problems can be treated as open problems and future work after 

this thesis.
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A ppendix A

Class for  Client

import java.io.*;
import java.net.*;
import java.security.*;
import java.security.cert.*;
import javax.crypto.*;
import java.security.spec.*;
import j ava.math.*;
import java.security.interfaces.*;
import java.util.*;

public class client8021x {
public static void main (String[] args) throws IOException,

CertificateException, NoSuchAlgorithmException,InvalidKeyException, 
IllegalBlockSizeException.NoSuchProviderException, BadPaddingException, 
NoSuchPaddingException, KeyStoreException, UnrecoverableKeyException, 
InvalidKeySpecException, SignatureException, FileNotFoundException {

/★create a connection and do following things*/
Socket clientSocket = null;
BufferedlnputStream in = null;

byte [] buf = new byte[1024]; 
int r=0;
OutputStream out = null; 

try {
clientSocket = new Socket("localhost", 4444); 
out = clientSocket.getOutputStreamO ;
in = new BufferedlnputStream(clientSocket.getlnputStreamO); 

} catch (UnknownHostException e) {
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System.err.println("Don’t know about host: localhost.");
System.exit(1);

} catch (IOException e) {
System.err.println("Couldn’t get I/O for the connection to:

localhost.");
System.exit(i);

>

FilelnputStream clientCertFis = new FilelnputStreamC'certi.cer"); 
BufferedlnputStream clientCertBis = new BufferedlnputStream(clientCertFis);

while((r = clientCertBis.read(buf, 0, buf.length)) != -1) { 
out.write(buf, 0, r);

>

System.out.println("\nStep 1: Send client’s certificate to
the server: Done!\n");

System.out .println("------------------------------------------ \n");
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

System.out.println("\nStep 2: (l)Receive server’s certificate;\n
(2)Verify it;\n
(3)If the certificate is valid,

then receive the encrypted secret key 
and decrypt it;\n

(4)Send back a message indicating 
success.\n");

//receive server’s certificate
CertificateFactory serverCf = CertificateFactory.getlnstance("X.509"); 
java.security.cert.Certificate serverCert

= serverCf.generateCertificate(in);

System.out.printlnC(i)The received server’s certificate is:\n");

System.out.printIn(serverCert.toStringO);

///get CA’s public key
FilelnputStream CAFis = new FilelnputStreamC'certi.cer"); 
BufferedlnputStream CABis = new BufferedlnputStream(CAFis); 
CertificateFactory CACf = CertificateFactory.getlnstance("X.509"); 
java.security.cert.Certificate CACert =

CACf.generateCertificate(CABis);

PublicKey CApublickey = CACert.getPublicKeyO;

///verify server’s cert

Date nowl = new DateO; 
long timel = now1.getTime();
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try I
serverCert.verify(CApublickey);

> catch (SignatureException e) {
System.err.println("the certificate is fake");
System.exit(l);

> catch (CertificateException e) {
System.err.println("CertificateException");

> catch (NoSuchAlgorithmException e) {
System.err.println("NoSuchAlgorithmException");
System.exit(1);

} catch (InvalidKeyException e) {
System.err.println("InvalidKeyException");
System.exit(l);

} ca.tch (NoSuchProviderException e) {
System.err.println("NoSuchProviderException");
System.exit(1);

>

Date now2 = new DateO; 
long time2 = now2.getTime();

long veriperiod = time2 - timel;
///the end of verify

System.out.println("\n\n(2)The server’s certificate is valid!\n");

/♦receive the encrypted ciphertext*/

//receive the length first

DatalnputStream in2 = null; 
try {

in2 = new DatalnputStream(clientSocket.getlnputStreamO);
> catch (IOException e) {

System.err.println("Couldn’t get I/O for the connection to:
localhost.");

System.exit(1);
>
int ciphertextlength = 0; 
ciphertextlength = in2.readlnt();

//System.out.printIn("the ciphertextbytearraysize is: " +
ciphertextlength);

//receive the cipher
byte[] ciphertextbytearray = new byte[ciphertextlength]; 
in.read(ciphertextbytearray,0,ciphertextbytearray.length);
/♦System.out.println("the received ciphertext is: " +

(new String(ciphertextbytearray)));*/

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A. CLASS FOR CLIENT

System.out.println("(3)The received ciphertext is: \n\n" +
(new Biglnteger(ciphertextbytearray)));

/^Decrypt the ciphertext*/
Biglnteger ciphertext = new Biglnteger(ciphertextbytearray);
//RSA decryption 
//get p from p.file 

FilelnputStream fisp = new FilelnputStreamC'p");
DatalnputStream disp = new DataInputStream(fisp); 
int plength = disp.readlntO ;
//disp.close();
byte[] pbytearray = new byte[plength] ; 
fisp.read(pbytearray);
Biglnteger p = new Biglnteger(pbytearray);

//disp.close(); 
fisp.closeO;
//Biglnteger p = cgcobj .getpO ;

//get d from d.file 
FilelnputStream fisd = new FilelnputStreamO'd");
DatalnputStream disd = new DataInputStream(fisd); 
int dlength = disd.readlntO;
//disd.close();
byte[] dbytearray = new byte[dlength]; 
fisd.read(dbytearray);
Biglnteger d = new Biglnteger(dbytearray); 
fisd.closeO;

//get n from certificate 
FilelnputStream nFis = new FilelnputStreamC'certi.cer"); 
BufferedlnputStream nBis = new BufferedlnputStream(nFis); 
CertificateFactory nCf = CertificateFactory.getlnstance("X.509"); 
java.security.cert.Certificate nCert = nCf.generateCertificate(nBis);

java.security.interfaces.RSAPublicKey nPub =
(java.security.interfaces.RSAPublicKey)nCert.getPublicKeyO; 

//PublicKey CApublickey = CACert.getPublicKeyO;

Biglnteger n = nPub.getModulusO;

/♦decryption using RSA and calculate the time*/
Date currentl = new Date(); 
long tbefore = currentl.getTime();

Biglnteger plaintext = new Biglnteger("0"); 
for (int i=l; i<=100; i++)

plaintext = ciphertext.modPow(d, p) ;
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Date current2 = new DateO; 
long tafter = current2.getTime();

long period = tafter - tbefore;

System.out.println(" The decrypted plaintext is: \n\n" + plaintext);

/♦write the plaintext into the file receivedSecretkey.txt*/

FileWriter fw = new FileWriterC"receivedSecretkey.txt");
BufferedWriter bw = new BufferedWriter(fw);
bw.write(plaintext.toString() ,0, (plaintext.toStringO) .lengthO) ; 
bw.flushO;
System.out.printIn("The secret key has been written

into the file *receivedSecretkey.txt’\n");

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/♦send back the string: "The authentication and key distribution
are successfully done!"+/

PrintWriter out2 = null; 
try {

out2 = new PrintWriter(clientSocket.getOutputStreamO.true);
} catch (IOException e) {

System.err.println("Couldn’t get I/O for the connection to: 
localhost.");

System.exit(1);
>
out2.printIn("The authentication and key distribution 

are successfully done!");

out.flushO; 
out.close(); 
in.close(); 
in2.close(); 
out2.flush(); 
out2.close(); 
clientSocket.close();
System.out.println("(4)A success message has been sent

to the server!");
System.out .printlnC--------------------------------------- ");
System.out.println("Time record:");
System.out.println("The time used for decryption using RSA is (ms): "

+ ((float)period)/100);
System.out.println("The time used for RSA digital signature verification 

is (ms): " + veriperiod);
>

>
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Class for Server

import java.net.*;
import java.io.*;
import java.security.cert.*;
import java.security.*;
import javax.crypto.*;
import j ava.security.interf aces.*;
import java.security.spec.*;
import java.math.*;

public class server8021x {
public static void main(String[] args) throws IOException,

CertificateException, NoSuchAlgorithmException,InvalidKeyException, 
IllegalBlockSizeException, NoSuchProviderException, BadPaddingException, 
NoSuchPaddingException {

ServerSocket serverSocket = null; 
try {

serverSocket = new ServerSocket(4444);
> catch (IOException e) {

System.err.println("Could not listen on prot: 4444."); 
System.exit(l);

>

Socket clientSocket = null; 
try {

clientSocket = serverSocket.accept();
> catch (IOException e) {

System.err.println("Accept failed."); 
System.exit(1);

>
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/ / g e t client’s cert from client
BufferedlnputStream in = new BufferedInputStream(

clientSocket .getlnputStreamO);

CertificateFactory clientCf
= CertificateFactory.getlnstance("X.509"); 

java.security.cert.Certificate clientCert
= clientCf.generateCertificate(in);

System.out.printlnC'Step 1:");
System.out.println("(l)Receive client’s certificate;\n"); 
System.out.printlnC Client’s certificate is:\n\n");

Syst em.out.printIn(cli entCert.toString());
/*get client’s publickey from its cert*/

java.security.interfaces.RSAPublicKey clientPub
= (j ava.security.interfaces.RSAPublicKey)clientCert.getPublicKey();

///get CA’s public key

FilelnputStream CAFis = new FilelnputStreamC'certi.cer"); 
BufferedlnputStream CABis = new BufferedlnputStream(CAFis); 
CertificateFactory CACf = CertificateFactory.getlnstanceO'X.509"); 
java.security.cert.Certificate CACert

= CACf.generateCertificate(CABis);

PublicKey CApublickey = CACert.getPublicKeyO;

///verify client’s cert 
try {

clientCert.verify(CApublickey);
} catch (SignatureException e) {

System.err.println("the certificate is fake");
System.exit(1);

} catch (CertificateException e) {
System.err.printlnC'CertificateException");
System.exit(1);

} catch (NoSuchAlgorithmException e) {
System.err.println("NoSuchAlgorithmExcept ion");
System.exit(l);

> catch (InvalidKeyException e) {
Syst em.err.pr intIn("InvalidKeyExcept ion");
System.exit(1);

} catch (NoSuchProviderException e) {
System.err.println("NoSuchProviderException");
System.exit(1);

>
///the end of verify
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System.out.println("\n\n(2)Verify client’s certificate:\n
The client’s certificate is valid\n"); 

/♦encrypt the secret key using client’s publickey*/

/♦Create the cipher*/
Cipher rsaCipher = Cipher.getlnstance("RSA", "BC");

/♦Initialize the cipher for encryption*/
rsaCipher.init(Cipher.ENCRYPT_MODE, clientPub);

/♦Cleartext*/

FileReader cleartextFr = new FileReaderCsecretkey.txt"); 
BufferedReader cleartextBr = new BufferedReader(cleartextFr); 
StringBuffer cleartextSb = new StringBufferO;
String line = " ";
while ((line = cleartextBr.readLineO) != null) 

cleartextSb.append(line); 
cleartextBr.close();
String cleartextString = cleartextSb.toString();
Biglnteger plaintext = new Biglnteger(cleartextString);

/♦Encrypt the cleartext*/
Biglnteger e, n;
Biglnteger ciphertext; 
e = clientPub.getPublicExponent(); 
n = clientPub.getModulus();
//RSA encryption
ciphertext = plaintext.modPow(e, n);

byte[] cipherByteArray = ciphertext.toByteArrayO;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
///send back server’s certificate

byte[] buf = new byte[1024]; 
int r=0;
OutputStream out = null; 

try -C
out = clientSocket.getOutputStreamO ;

} catch (UnknownHostException ee) {
System.err.println("Don’t know about host: localhost."); 
System.exit(l);

>

FilelnputStream serverCertFis = new FilelnputStreamC'certi.cer");
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BufferedlnputStream serverCertBis = new BufferedlnputStream(serverCertFis);

while((r = serverCertBis.read(buf, 0, buf.length)) != -1) { 
out.write(buf, 0, r);

>

System.out.printlnC(3)Send back server’s own certificate: Done!\n");

/*Send the encrypted ciphertext to the client*/

//System.out.println("the ciphertext length is:" + cipherByteArray.length);

//send the ciphertext length first 
DataOutputStream out2 = null; 
try {

out2 = new DataOutputStream(clientSocket.getOutputStreamO);
} catch (UnknownHostException ee) -(

System.err.println("Don’t know about host: localhost.");
System.exit(l);

>
out2.writelnt(cipherByteArray.length);
//end of sending length

//send cipher
out.write(cipherByteArray);

System.out.printlnC (4)Encrypt the secret key and
send the cipher to the client: Done!\n");

System.out.printlnC'The original cleartext or secretkey is: \n"
+ plaintext);

System.out.printlnC'The ciphertext is: \n" + ciphertext); 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

//receive the success sign 
BufferedReader in2 = null; 
try {

in2 = new BufferedReader(
new InputStreamReader(clientSocket.getlnputStreamO));

} catch (IOException ee) {
System.err.println("Couldn’t get I/O for the connection to: taranis."); 
System.exit(1);

>
String fromClient; 
fromClient = in2.readLine();
if (fromClient.equals("The authentication and key distribution

are successfully done!")) {
//System.out.println("DONE!");
//System.out.println(fromClient);
System.out.println("\nStep 2: Receive client’s success message: Done!");
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y

out2.close(); 
out.close(); 
in.close(); 
in2.close(); 
clientSocket.close() ; 
serverSocket.close();

>
>
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Certificate Generation Class

import java.math.*;
import java.util.*;
import org.bouncycastle.j ce.*;
import java.security.*;
import java.security.spec.*;
import org.bouncycastle.asnl.x509.*;
import j ava.security.cert.*;
import java.io.*;

public class cergen {

static final Biglnteger TWO = new Biglnteger("2"); 
static final Biglnteger THREE = new Biglnteger("3"); 
static final Biglnteger SECOPT = new Biglnteger("65537");

public static Biglnteger nextPrime(Biglnteger x) { 
if ((x.remainder(TWO)).equals(Biglnteger.ZERO)) 

x = x.add(Biglnteger.ONE); 
while(true) {

Biglnteger xMl = x.subtract(Biglnteger.ONE); 
if (!(xMl.remainder(THREE)).equals(Biglnteger.ZERO)) 

if (x.isProbablePrime(lO)) break; 
x = x.add(TWO);

>
return x;

>

public static void main(String[] args) throws NoSuchAlgorithmException,
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InvalidKeySpecException, SignatureException, InvalidKeyException, 
FileNotFoundException, IOException, CertificateEncodingException{

Biglnteger n;
Biglnteger q;
Biglnteger d;
Biglnteger p;

Random rnd = new Random();

int sizel = 256; 
int size2 = 768;

Biglnteger pi = new Biglnteger(sizel, rnd);//random int 
p = nextPrime(pl);

Biglnteger pMl = p.subtract(Biglnteger.ONE);//p minus 1 
Biglnteger ql = new Biglnteger(size2, rnd);

q = nextPrime(ql);
Biglnteger qMl = q.subtract(Biglnteger.ONE);

n = p.multiply(q);
Biglnteger phiN= pMl.multiply(qMl);//(p-l)*(q-l)
Biglnteger e = THREE;

d = e.modlnverse(phiN);
I*

// printout n, e, d, p, q
System.out.println("p is: \n" + p + "\n");
System.out.printlnC'q is: \n" + q + "\n");
System.out.printlnC'n is: \n" + n + "\n");
System.out.printlnC'e is: \n" + e + "\n");
System.out.printlnC'd is: \n" + d + "\n");

* /
//generate the pubkey and prikey object 
RSAPublicKeySpec pubKeySpec = new RSAPublicKeySpec(n, e); 
KeyFactory kf = KeyFactory.getInstance("RSA");
PublicKey pubkey = kf.generatePublic(pubKeySpec);

RSAPrivateKeySpec priKeySpec = new RSAPrivateKeySpec(n, d); 
PrivateKey prikey = kf.generatePrivate(priKeySpec);

//generate the self-signed certificate

X509VlCertificateGenerator certificateGenerator
= new X509VlCertificateGenerator(); 

certificateGenerator.setSerialNumber(Biglnteger.ONE); // set serial number 
String x509Name = "CN=SomeName";
certificateGenerator.setIssuerDN(new X509Name(x509Name)); 
certificateGenerator.setSubjectDN(new X509Name(x509Name));
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Calendar nextYearDate = Calendar.getInstance();
nextYearDate.add(Calendar.YEAR, 1); // Valid for 1 year
certificateGenerator.setNotAfter(nextYearDate.getTime());
certif icateGenerator.setNotBefore(Calendar.getlnstance().getTime());
certificateGenerator.setSignatureAlgorithmO'SHAlwithRSA");
certificateGenerator.setPublicKey(pubkey);
String alias = Long.toHexString(

SecureRandom.getlnstance("SHA1PRNG").nextLongO); 
X509Certificate certificate =

certificateGenerator.generateX509Certificate(prikey);

//System.out.println(certif icate.toString());

//write the certificate into .cer
FileOutputStream fos = new FileOutputStream("certi.cer"); 
fos.write(certificate.getEncodedO); 
fos.closeO;

//write p, d into file p.file and d.file 
int plength = p.toByteArrayO.length;
FileOutputStream fosp = new FileOutputStream("p");
DataOutputStream dosp = new DataOutputStream(fosp); 
dosp.writelnt(plength); 
dosp.flush();
fosp. write (p. toByteArrayO) ;
//dosp.close(); 
fosp.closeO;

int dlength = d.toByteArrayO.length;
FileOutputStream fosd = new FileOutputStreamO'd");
DataOutputStream dosd = new DataOutputStream(fosd); 
dosd.writelnt(dlength); 
dosd.flush();
fosd.write(d.toByteArrayO) ;
//dosd.close(); 
fosd.closeO;

>
>
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