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Abstract

In this thesis, we have reported our investigations on interconnection network 

architectures based on the idea of a recently proposed multi-processor architecture, Multi- 

Mesh network. This includes the development of a new interconnection architecture, 

study of its topological properties and a proposal for implementing Multi-Mesh using 

optical technology.

We have presented a new network topology, called the 3D Multi-Mesh (3D MM) that is 

an extension of the Multi-Mesh architecture [DDS99]. This network consists of n3 three- 

dimensional meshes (termed as 3D blocks), each having n3 processors, interconnected in 

a suitable manner so that the resulting topology is 6-regular with n processors and a 

diameter of only 3n. We have shown that the connectivity of this network is 6. We have 

explored an algorithm for point-to-point communication on the 3D MM. It is expected 

that this architecture will enable more efficient algorithm mapping compared to existing 

architectures.

We have also proposed some implementation of the multi-mesh avoiding the electronic 

bottleneck due to long copper wires for communication between some processors. Our 

implementation considers a number of realistic scenarios based on hybrid (optical and 

electronic) communication. One unique feature of this investigation is our use of WDM 

wavelength routing and the protection scheme. We are not aware of any implementation 

of interconnection networks using these techniques.

Keywords: Multiprocessor Architecture, Interconnection Network, Network Parameters, 

Mesh Network, Multi-Mesh, 3D MM, Diameter, Connectivity, Routing, Optical 

Network, Optical Communication, WDM wavelength routed optical network, Optical 

Implementation of a network, Fault tolerant.
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Chapter 1

Introduction

1.1 Multiprocessor Architecture

One of the prime objectives in designing computers has always been to build faster and 

more powerful machines. An obvious way to solve a problem faster is to use a network of 

a large number of processing units or computers, where the different processors solve a 

problem by working simultaneously on different parts of that problem [Ak89]. With the 

advances in technology, the cost and size of processors have been reduced tremendously 

so that it is now possible to use several thousands to millions of computers to build up a 

multi-processor system [Ak89]. The challenge on the hardwire side is to determine how 

these processors should be connected together for optimum performance.

1.2 Interconnection Network

A crucial part of designing a multi-computer architecture is to assure faster data 

communication to allow efficient sharing of data between the processors. Data 

communication is accomplished by sending messages through the computers by using 

shared memory or interconnection network [To94], [Ak89]. In this work, we will 

consider only interconnection networks.

1
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The architecture of an interconnection network defines exactly which processors are 

connected to each other.

In an interconnection network, each processor has a memory and is interconnected to 

other processors with respect to a given topology. Figure 1.1 shows a general architecture 

of a multi-processor architecture where a number of processors and memory modules are 

connected by an interconnection network.

The architecture of the interconnection network in a multi-processor system has a crucial 

role in the performance of the multiprocessor system -  both in terms of the speed of 

communication and the time to run an application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.1: A multi-processor architecture

2



Figure 1.2 shows an example of a simple multiprocessor architecture called tree, where a 

number of processors PI, P2,..., P7 are connected by interconnection network.

In the last few decades, there has been a lot of effort in developing efficient 

multiprocessor interconnection architectures. Two-dimensional mesh [HwBr83], [St83], 

[Le92] is one of the most popular architectures due to its inherent simplicity and ease of 

algorithm mapping. Many variants of the two-dimensional mesh structure, e.g., torus, 

Illiac IV [HwBr83], [Le92], multi-dimensional mesh [Le92] have also been proposed in 

the literature in order to have a topology for more and more efficient computation in a 

parallel/distributed environment. Efficient mapping of many fundamental and most 

frequently used algorithms on variations of the mesh structure have been reported 

[DDS99], [DGS97], [HwBr83], [StCo91], [Le92],

Processor

Link between 
processors

Figure 1.2: Tree interconnection network

3
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In this thesis, we investigate the Multi-Mesh architecture [DDS99] - a recent proposal for 

multi-processor interconnection architecture that uses the 2-dimensional mesh as a basic 

building block. With the same number of processors and the same number of links as in 

the case of a torus, the Multi-Mesh (MM) topology has a much smaller diameter 

[DDS99] so that processors can communicate with each other quickly.

1.3 Optical Communication

Optical networks are used for data communication where signals carrying the data are in 

the form of light waves [ChKr93]. In an optical network, optical fibre is used as the 

media of transportation. Recently, there has been growing interest in developing optical 

networks to support the increasing bandwidth demands of multimedia applications, such 

as video conferencing and World Wide Web browsing [BBRM97]. According to 

Chamberlain and Krchnavek [ChKr93] optical networks have made significant 

contributions to the state of the art for long distance communications, including high 

reliability, low interference, security benefit and very high bandwidth. Traditionally, 

metal-based electrical connection has been used to realize interconnection networks. 

There are a number of limitations in this approach that we will review in chapter 2. For 

high-speed communication in interconnection networks, optical technology has been 

proposed as abetter alternative to copper based communication [LoSu94a], [LoSu94b].

4
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1.4 Work Reported in this Thesis

In this thesis, we report our investigations on mesh type interconnection networks based 

on the concept of the Multi-Mesh architecture. The main results are as follows:

1) We have proposed a new architecture that uses the 3-dimensional mesh as its 

building block rather than a 2-dimensional mesh as done in the Multi-Mesh 

[DDS99]. We have shown that our architecture has better topological properties 

compared to the Multi-Mesh architecture and that a number of algorithms can be 

efficiently mapped on the 3D MM network.

2) We have explored a number of possible approaches for implementing the Multi- 

Mesh architecture using opto-electronic technologies. There are two novel 

features of our approach:

a. We have shown that WDM wavelength-routed networks may be used to 

realize some of the links.

b. We have shown that single faults may be handled easily without 

increasing the number of optical paths used.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Our new topology which we call the 3D Multi-Mesh (3D MM) consists of «3 three- 

dimensional meshes (termed as 3D blocks), each having n3 processors, interconnected in 

a suitable manner so that the resulting topology is 6-regular with n6 processors and a 

diameter of only 3n. We have shown that the connectivity of this network is 6 and the 

diameter is only O ( JV1/6) in contrast to O ( N V3) on a 3-dimensional torus with the same 

node degree of 6. In this thesis, we have proposed an optical implementation for the inter­

block connections of the Multi-Mesh, where we use the advantages of wavelength 

division multiplexing (WDM).

For effective use in parallel processing, it is essential that the delay along each link is 

small and uniform (O (1)). Since the inter-block links used in the 3D MM are relatively 

long, optical links for such inter-block connections may be used to ensure a small 

uniform delay link. The intra-block links, however, can always be kept electronic since 

they introduce short links of constant length. In recent years, the optical interconnection 

system has also drawn much attention among researchers because of its superior power, 

speed and crosstalk properties compared to the electronic links when the interconnection 

distance is more than a few millimeters [ChKr93], [LoSu94b].

6
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1.5 Thesis Organization

In chapter 2, we provide a brief overview of the related fields of our research. First of all 

we discuss the concept of multiprocessor architecture, interconnection networks, network 

parameters, and some examples of static multiprocessor architectures. Then we present 

some optical technology and optical network components that are used to optical 

implementation of the hybrid networks and some examples of hybrid networks.

In chapter 3 we describe our proposed 3D MM network topology, studied its various 

topological properties and provide a table of comparison to compare the topological 

properties of our proposed network with other similar networks. In this chapter we also 

discuss the communication algorithm for routing on the 3D MM network and the 

fundamental algorithm on 3D MM network.

In chapter 4, we propose how the Multi-Mesh architecture may be implemented using 

optical technology and we describe a number of possible approaches for designing optics- 

based interconnections for the Multi-Mesh.

We provide summary of works, proposed possible future directions and concluded in 

chapter 5. In Appendix A we give some more path calculations for different source and 

destinations and in Appendix B we provide glossary of important terms. Finally we give 

the bibliography.

7
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Chapter 2

Literature Review

In this chapter we have provided a brief overview of the related fields of our research. 

First of all we discuss the concept of multiprocessor architecture, interconnection 

networks, network parameters, and some examples of static multiprocessor architectures. 

Then we present some optical components that are used to optical implementation of the 

hybrid networks and some examples of hybrid networks that are similar to our proposed 

network.

2.1 Multiprocessor Architecture

A multiprocessor architecture and/or distributed computer consists of a number of 

processing units or computers that are also called nodes that work simultaneously and/or 

independently to solve a given task. A fundamental problem in any multiprocessor 

system is to maintain an efficient data communication between the processors of the 

network. In a multi-processor network each node consists of a data processor (DP) 

executes and a communication processor (CP) [Zo96] as shown in Figure 1.1(b). The 

data processor executes algorithms and the communication processor is responsible for 

routing and point-to-point communication mechanism shown in Figurel.l (a). In the 

network, the hardware that is used to move the messages is known as routers that are 

situated in the CP.

8
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Communication processors also contain a buffer that contains the messages to be sent to 

the next node. To get full parallelism, nodes are required to get the data to the right place 

within a reasonable amount of time [Le92]. Data communication and sharing occurs by 

sending messages to each other. Since a node is not directly connected to all other nodes, 

a message is moved from one node to another until the message reaches its destination 

[To94].

Router

Processor

CP: Routing Algorithm

DP

Interconnection Network

CP

DP

Figure 2.1: (a) Communication between CP and DP, (b) A node in a network

9
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2.2 Interconnection Network

In a multi-computer architecture, there can be situations where thousands of processing 

units work simultaneously to solve a given problem. These processors may need to share 

data or to send messages to each other. Since the processors are not directly connected to 

all other processors, it is important to ensure that any processor may communicate with 

any other processor simply and quickly. An important requirement of an interconnection 

network is that any pair of processors should be able to communicate with each other as 

fast as possible.

2.3 Network Parameters

Interconnection networks are characterized by a number of parameters. Some of the most 

important parameters are given below-

• Network size: Total number of nodes in a network

• Node degree: The degree of a node is the total number of incoming and outgoing 

links [Be73]. The node degree represents the cost of a node from the 

communication point of view and hence a network topology with fixed and low 

node degree is favorable [SFK97].

10
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• Diameter: The diameter of a graph G is the maximum of the shortest distance 

(hops) between any two nodes [Be73]. For a multi-processor architecture, the 

diameter is an important attribute and is related to information transfer delay. In 

order to achieve faster data communication, diameter should be kept as small as 

possible.

• Connectivity: Connectivity is the minimum number of arcs that have to be 

removed from the network to cut the network into two disconnected networks 

[Be73], [SFK97]. A graph with a connectivity of C can tolerate up to C-l edge- 

faults, since any pair of fault-free nodes can still find a path between the fault-free 

nodes. In other words, a network with a higher connectivity is preferable from the 

point of view of fault tolerance.

• Cost: The total number of communication links required by the network defines 

the network cost [SFK97].

2.4 Types of Interconnection Network

There are two basic types of interconnection network, static and dynamic.

• Static interconnection network

In case of a static interconnection network, all connections among the processors are 

fixed meaning that the processors are wired directly [SFK97]. Static interconnection 

networks are better where the problems are uniform and the communication pattern is 

predictable [SFK97].

11
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• Dynamic interconnection network

The connections between the processors can be changed as the processors are connected 

by switch instead of direct wire. Dynamic interconnection is expensive.

Here we are only interested about the static interconnection network.

Static interconnection topologies

The way that nodes are interconnected is called the network topology [To94]. Static 

interconnection topologies can be classified according to their dimensions [SFK97]:

• One-dimensional topologies

• Two -  dimensional topologies

• Three-dimensional topologies

• Multidimensional topologies e.g. Hypercube, De Bruijn, Kautz etc.

Figure 2.2 [SFK97] shows the classification of static interconnection topology-

KautzStar TreeRing

De Bniijn

Hypercube

3-D
Cube

2D Mesh
Linear
Array

Fully
connected

Multidimensional

Static Interconnection Topologies

Figure 2.2: Types of interconnection topologies

12
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2.5 Examples of Some Simple Multiprocessor Architecture

2.5.1 Linear array

Linear array is the simplest and cheapest way to connect the processors of a parallel 

computer. Each processor has direct connection with two other processors except the 

boundary processors that have one. Figure 2.3 shows an example of such network. This 

network topology has worst diameter that is n-1 and arc connectivity that is only 1 

[SFK97].

Figure 2.3: Linear array

2.5.2 Ring

If the boundary nodes of a linear array are connected to each other, then the network 

topology is called ring topology. Figure 2.4 shows the ring network from a linear array. 

In a ring network all the nodes have two connections. It improves the connectivity and 

diameter of the linear array by a factor of two: diameter = n/2 and arc connectivity =2.

P3 Pn

Figure 2.4: Ring

13
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2.5.3 Star

In a star topology there is one central node, to which all other nodes are connected as 

shown in Figure 2.5. Central node has n -  1 connections where all other nodes have only 

one connection.

Star network is a simple topology but not suitable for large configuration, as the number 

of connections increases for the center node with the increase of nodes.

P3

P4 P5 P6

P7

Figure 2.5: Star network

14
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2.5.4 Tree

Nodes are interconnected in a tree structure as shown in Figure 2.6. It has smaller 

diameter (log n) and the degree of the nodes are 1 for leaf nodes, 2 for root node and 

internal nodes have 3. The main drawback of this network is its poor arc connectivity that 

is only 1.

P3P2

P4 P6P5 P7

Figure 2.6: Tree interconnection network 

2.5.5 Fully connected network

In this network topology, all the nodes are directly connected to each other. This topology 

is ideal from the point of view of network diameter that is 1 but node degree is n-1 for all 

the nodes. So the cost of this network is extremely high and it is not scalable to massive 

parallel computer.

15
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The following figure shows an example of a fully connected network.

p i

P2 P3

P5P4

P6

Figure 2.7: Fully connected network

2.5.6 Hypercube

One of the most popular topologies is the hypercube topology. The hypercube is one 

example of a multidimensional mesh of processors. A d-dimensional binary hypercube 

has 2d nodes. The hypercube topology is attractive for its small diameter (log n) and arc 

connectivity (log n). In binary hypercube each node has an address - a number between 0 

and 2d -  1. Two processors whose binary representations differ in exactly one bit are 

connected together. This property greatly facilitates the routing of messages through the 

network [LoSu94a]. The major disadvantage of hypercube is that its node degree is log n 

and hence the node degree grows as n increases [SFK97].

For a d-dimension hypercube, each node is connected to d nodes. Figure 2.8 shows an 

example of hypercube network. The hypercube and other related networks suffer from 

lack of scalability [LoSu94a].
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1-Dimension 2-Dimensions

3-Dimensions

Figure 2.8: Hypercube topologies of different dimensions

2.5.7 Mesh network

The term mesh has been used by various investigators in different ways. Following 

Ullman, we will use the term mesh to denote a square grid of processors [U184], so that 

the mesh network is a two dimensional arrangement of nodes in a Manhattan Street 

architecture. Among the static interconnection networks, the two-dimensional mesh is 

one of the most popular architectures as it has a very regular and simple architecture 

[HwBr83], [St83], [Le92]. Due to the constant node degree, the mesh network is highly 

scalable [LoSu94a]. Researchers have proposed several variations of the mesh 

architecture using techniques such as wrap-around, diagonal interconnections among the 

nodes. Some popular networks based on the mesh architecture are called two dimensional 

(2D) mesh, two-dimensional wrap around mesh (also called Torus) and three- 

dimensional (3D) mesh.
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2-D Mesh

The most popular mesh is the so-called two-dimensional (2D) mesh where nodes are 

arranged in a grid pattern as shown in Figure 2.9 [Ra92]. Except for the boundary 

processors every other processor is connected to its neighbours to the left, right, above 

and below through bi-directional links [Ra92]. Mesh networks represent a good 

compromise among the contradictory requirements of static network parameters 

[SFK97]. It has, relatively speaking, a short diameter and arc connectivity [SFK97]. In a 

2-dimensional mesh, it is convenient to identify nodes by the x-y coordinate values of 

their positions. Meshes are easy to implement and extend. Variations of the mesh 

topology are possible, depending on whether there is any wrap-around or diagonal 

interconnections among the nodes [SFK97].

Figure 2.9(a) and 2.9(b) show two different types of two-dimensional mesh network.

(aJItoa-D im fiaa^M esh Netwadk (8 x8 ) {&) 2D Meeh

Figure 2.9: (a) Two-Dimensional mesh (8x8), (b) 8-connected 2D mesh
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Torus

A torus is defined as a mesh with wrap-around links as shown in Figure 2.10. We refer to 

a processor in row i and column j as Py, 0 < i, j < n. Processor Pi, o is connected to Pi, n-i 

and P0j is connected with Pn-ij [SFK97]. The 2D mesh and the torus network topologies 

are attractive because of simplicity, regularity, scalability and efficient use of space for 

their VLSI layouts [Le92], [SFK97], [Ra92],

Figure 2.10: Torus Network

Multi-Mesh

The Multi-Mesh (MM) interconnection network topology was proposed by D. Das, M. 

De and B. P. Sinha [DDS99]. The MM has been proposed as an efficient topology for 

optical networks [Le92] and peer-to-peer networks. The MM topology of order n uses

multiple n x n(two dimensional) meshes as the basic building blocks, n2 meshes are again 

arranged in the form of n x n  matrix and each matrix is termed as a block. A processor 

inside the block can be identified by specifying its x and y coordinates in its matrix. 

Similarly a block can also be identified by its x and y coordinates. In our notation B (a, P)
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identifies a block where a, p (1 < a, p < n) are the x and y coordinates identifying the 

block and P (a, P, x, y) identifies a processor where the first two coordinates represent the 

position of its block and the last two coordinates represent the location of the processor 

within the block. If two processors are within the same block and are connected by an 

edge, we will call the two processors to be neighbors.

Based on the neighborhood, processors within a block are categorized into the following 

three classes-

1) The processors with two neighbors (the processors on the comers of the 

block) -

>  x = 1 or x = n,

>  y = 1 or y -n

We will call such processors as corner processors. It is obvious that in a 2D mesh 

there are exactly four such processors.

2) The processors with three neighbors -  the processors on the sides of the 

block (but not on comers) are characterized by x and y values such that exactly 

one of these coordinates are 1 or n. Such processors have

> (1 < x < n, y = 1 or y = n) or

> (x = 1 or x = «, 1 <y < n).

We will call such processors as boundary processors. There are 4(n-2) such 

processors.

3) The processors with four neighbors -  the processors each having four 

neighbors are called internal processor. There is exactly (n-1)2 such processors in 

a 2D block.
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D. Das et al [DDS99] have defined interconnection rules so that the proposed network 

topology of order n contains n processors by interconnecting n2 two dimensional 

meshes, each with n2 processors.

We show a MM network order 3 in Figure 2.11 [DDS99]. We have not shown all the 

interconnecting for clarity.

Figure 2.11: A Multi-Mesh network with 3 X 3  meshes

The Multi-Mesh topology corresponds to a regular graph1. With the same number of 

processors and the same number of links as in the case of a torus, the Multi-Mesh 

topology [DDS99] has the advantage of offering a much lower diameter. The authors 

have shown that the time complexities of different basic operations mapped on it are 

considerably less than those for many existing mesh-type topologies [DGS97], [DDS99]. 

Because of this property, it has also been proposed as an efficient topology for optical 

networks [SFK97].

1 In a graph if each node has same node degree, then the graph is called a regular graph [Be73].
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3D Mesh

The three-dimensional mesh or the 3D mesh can be thought of as n layers of 2D meshes 

arranged in the third dimension or the z direction [LiFiOl]. As a result, there are n x n 2 = 

n3 processors in a 3D mesh. Figure 2.12 shows an example of a 3D mesh. The three 

dimensional (3D) mesh improves the diameter (from A 1 2 to A 13) and arc connectivity 

(from 2 to 3) compared to the 2D mesh.

r

V Processor
Y Intra-block

link

Figure 2.12 3D mesh

In a 3D mesh, n3 processors are arranged along three orthogonal dimensions, say x, y 

and z, so that a processor at coordinates (x, y, z) (which we will denote by P(x, y, z)) is 

connected to six other neighbouring processors at P(x+1, y, z), P(x-1, y, z), P(x, y+1, y, 

z), P(x, y-1, z), P(x, y, z+1) and P(x, y, z-1), when they exist, for all integer values of x, y 

and z, 1 < x, y, z < n. Some processors have 3, 4 or 5 neighbours depending on their 

position in the 3D-mesh while the remaining processors have all 6 neighbours.
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2.6 Optical Technology and Optical Communication

The primary bottleneck in today’s metal-based interconnection networks is the very 

limited bandwidth of long copper lines, which results in limited communication speed 

[LoSu94b]. Optical interconnects offer high-speed computers key advantages over metal 

interconnects which includes: (1) high spatial and temporal bandwidths, (2) high-speed 

transmission, (3) low crosstalk independent of data rates, and (4) high interconnect 

densities [LoSu94b].

In this section, we will describe the following topics on optical devices and optical 

networking related to our investigation:

> Optical fiber

> Optical couplers

> Routers

> WDM networks

> Wavelength routed Network

> Use of optical technology in interconnection network design

Due to lack of space we will not review details of optical technology such as optical 

amplifiers, receivers and transmitters, filters and gratings [So03], [Mu97], [StBa99], 

[BBRM97].
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2.6.1 Optical fiber

Optical fiber is the medium of data transmission in an optical network. Optical fiber is a 

thin filament of glass, which acts as a wave-guide [BBRM97]. Fiber is attractive as a 

communication medium due to the following advantages [So03], [Mu97]:

>  High speed,

> Huge bandwidth

> High security

> Low bit error rate,

> No electromagnetic interference,

> Low power requirement and

> Low signal attenuation.

2.6.2 Optical couplers

Coupler is a general term that covers all devices that combine beams of light into or split 

into beams of light out of a fiber [Mu97]. A splitter is a coupler that divides the optical 

signal on one fiber to two or more fibers. Combiners are the reverse of splitters, and when 

turned around, a combiner can be used as a splitter [Mu97]. The following figure [Mu97] 

shows an example of these devices-

<a) <b) <c)

Figure 2.13: (a) Splitter, (b) Combiner and (c) Coupler
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2.6.3 Optical multiplexers and demultiplexers

Optical multiplexers are used to combine several independent signals at different 

wavelength into one fiber. A demultiplexer works exactly the opposite way that is 

splitting the signals at different wavelengths. Figure 2.14 shows an example of a 

multiplexer and a demultiplexer.

De multiplexerMultiplexer

(a) (b)

Figure 2.14: (a) Multiplexer (b) Demultiplexer

2.6.4 Passive star coupler

One type of optical networks using multi-wavelength fiber links is to use a passive star 

coupler, the star coupler is a “broadcast” device, so that an optical signal transmitted 

using a given wavelength from a node in the network will be communicated to all other 

nodes in the network. This means that the power of the transmitted signal will be equally 

divided among all the output ports connected to the coupler [Mu97]. Figure 2.15 [Mu97] 

shows an example o f a passive star coupler where a signal using wavelength XI from 

input fiber 1 and another on wavelength X4 from input fiber 4 are broadcast to all output
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ports. There is a problem in using star coupler that is, a collision may occur when two or 

more signals from the input fibers are simultaneously launched into the star on the same 

wavelength [Mu97].

A 1 , . ..  A 4

A 1 , . ..  A 4

Figure 2.15: A 4 x 4 passive star coupler

2.6.5 Routers

In an optical network, a router is a device that is connected to a number of fibers, some

carrying incoming optical signals to the router and the others carrying outgoing optical

signals. A router determines how the incoming signals will be directed to outgoing fibers.

Figure 2.16 shows a router with 3 fibers carrying incoming signals and 3 fibers carrying

outgoing signals.

A1, A3 A1, A4
---------------- ► Fiber4

A1, A2, A3
---------------► Fibers

A3
------------------► Flber6

Figure 2.16: Router
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The control settings on the router determine the actual routing. For example in figure 

2.16, the signal at wavelength Xi on fiber 1 may need to be directed to fiber 5. Figure 

2.17 [Mu97] shows an example of a passive router -  wavelengths XI, X2, X3 and X4 

incident on Input fibers 1, 2, 3 and 4 respectively [Mu97]. By using this device we can 

reuse the wavelengths.

o u t p u t lI n p u t l A 2

A1

A 4
o u t p u t 4I n p u t 4

Figure 2.17: A 4 x 4 passive Router

Figure 2.17 shows how a number of MUX/DEMUX allows us to define routers.

2.6.6 WDM network

The huge bandwidth of optical fiber allows a tremendous amount of data transmission 

rate. It is technologically impossible to exploit all of that bandwidth using a single high- 

capacity channel [StBa99] . Due to the fact that this is enormously more than the speed 

of electronic communication, wavelength-division multiplexing (WDM) is a promising 

approach that can be used to exploit the huge bandwidth of optical fiber [Mu97] 

[BBRM97], [StBa99]. In WDM, the optical transmission spectrum is divided into a

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



number of non-overlapping wavelength (or frequency) bands, with each wavelength 

supporting a single communication channel operating at peak electronic speed 

[BBRM97].

2.6.7 Wavelength routed network

A WDM network using passive coupler is not viable when the network contains a large 

number of nodes due to the power requirements of such a broadcasting network [Mu97]. 

A wavelength routed WDM network is a network where each end-node (the source or 

destination of data) is connected to a router and each router is connected to other routers. 

Figure 2.18 shows a small wavelength routed WDM network where a square represents 

an end node and oval represents a router. The advantage of such network is that the data 

is not broadcast to all the end-nodes. The settings of the routers determine which end- 

nodes will be connected by a lightpath (all-optical path through which the information 

flows in a wavelength-routed optical network).

R2

R1

Figure 2.18: A wavelength-routed network
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2.6.8 Single-hop network

A network in which a packet is sent directly (in one hop) from it’s source processor to the 

destination processor without routing through any intermediate processor [Mu97].

2.6.9 Multi-hop network

A network in which a packet may travel through zero or more intermediate processors 

before it reaches to its final destination [Mu97].

2.6.10 Routing and wavelength assignment

Given a network topology and a set of lightpaths (to be determined), routing the 

lightpaths in the network and assigning wavelengths to these lightpaths is referred as the 

routing and wavelength assignment (RWA) problem [Mu97].

2.6.11 Fault tolerant optical network

With WDM optical network each physical fiber link is able to support many lightpaths.

As network grows in size and complexity the amount of lightpaths become more, so the 

failure of a fiber link may causes to significant data losses. In order to have a fault 

tolerant WDM network, it is very important to handle these types of fiber faults. Since 

single fiber failures are the major form of failures in optical networks, in this thesis our 

focus is on the single faults.
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2.7 Use of Optical Technology in Interconnection Network Design

In realizing VLSI multiprocessor systems, an obvious approach for creating the links 

between processors is the use of VLSI fabrication technology for example using the 

metal 1 or metal2 layer and has been done for some time [U184]. It is well known that 

implementing copper base connections to realize complex interconnection is problematic 

since long copper wires are needed for such complex topologies [U184]. A problem of 

metal interconnect technology is that long copper wire accentuates problems like skin 

effect, crosstalk, interference, wave reflections, electrical noise due to current changes, 

and dielectric imperfections [LoSu94b]. These problems can cause severe pulse 

distortions and attenuation, clock skew, and random propagation delays [StCo91].

According to Louri and Sung [LoSu94b] multiprocessor systems based on metal 

interconnects experience the technological limitations of communication bandwidth 

constraints, low interconnect density, long network latencies, and high power 

requirements. Metal-based communications between subsystems and chip has become the 

limiting factor in high-speed computing; maturing optics-based technologies offer 

advantages that may unplug this bottleneck [LoSu94b].

As optical technology has evolved in the last decade, an obvious approach to this 

bottleneck is to use optical technology.
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2.7.1 Advantages of optical interconnects in multi-computers systems

A summary of advantages of using optical interconnections are given below [LoSu94b], 

[ChKr93], [So03]:

> Optics allows inherent parallelism

> Optical Communication has higher bandwidth

> Optical signal propagate in parallel channels without interference

> There is less signal crosstalk in optical communication

> Optical communication is inherently immune from electromagnetic 

interference and ground loops

> There is lower signal and clock skew and lower power dissipation in 

optical communication

>  Propagation speed for optical signals is, for short distances, essentially 

independent of communication distance

> There is potential for reconfigurable interconnects

2.7.2 Free space optical interconnects

Free-space optical interconnects exploits air space for optical signal propagation 

[LoSu94b]. In order to provide communication channel for free space interconnection, 

lenses and holograms are used as optical elements.

Free space interconnects are classified into two categories [LoSu94b]:

1. Space-variant

2. Space-invariant

A totally space-invariant network has a regular structure where each node has same 

connection patterns shown in Figure 2.21 [LoSu94b] whereas in totally space-variant
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network there is no regular pattern (arbitrary interconnection) between the nodes. Figure 

2.21 shows such interconnection.

i m

m(«>

Figure 2.19: Free-Space: (a) Space-Variant (b) Space-Invariant

2.8 Interconnection Networks based on Opto-Electronic Technology

In this section we present two recently proposed high-throughput hybrid optical 

multiprocessor architectures.

2.8.1 OMMH

Optical multi-mesh hypercube (OMMH) network topology for multiprocessor network is 

proposed by Louri and Sung [LoSu94a]. The OMMH network uses meshes and 

hypercube as the basic building blocks. This network topology combines the advantages 

of meshes (constant node degree and scalability) and hypercubes (small diameter, high 

connectivity, symmetry, simple control, routing and fault tolerance) and avoids the 

disadvantages of the lack of scalability of hypercube and the large diameters of meshes.
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This network can maintain constant node degree regardless of the increase in the network 

size [LoSu94a]. The authors claim that the flexibility of the OMMH network makes it 

well suited for optical implementations. The OMMH network uses a three dimensional 

optical design based on ffee-space optics. The analysis and simulations results in 

[LoSu94a] show that the OMMH network is scalable, efficient in communication and 

highly fault-tolerant. Optical implementation of the network is possible with the existing 

hardware. Figure 2.22 [LoSu94a] shows an example of an OMMH network.

¥TY?! • m £ : 2 z : : : :
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Figure 2.20: A  (4, 4, 3) OMMH network with 128 nodes
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2.8.2 OTIS-Mesh

Optical Transpose Interconnect System (OTIS) is proposed by Marsden et. al 

[MMHE93]. OTIS architecture is an example of a hybrid architecture in which the 

processors are partitioned into groups where processors within a group are connected by 

electronic links and processors situated on the different groups are interconnected by 

optical links.

OTIS-Mesh is a type of OTIS computers where a number of well known algorithms can 

be efficiently mapped on OTIS-Mesh architecture [OsOO], [SaWa97], [WaSaOO], 

[ZMPEOO]. OTIS-Mesh is also a hybrid architecture that uses the same idea of OTIS 

computer. Figure 2.21 [WaSaOl] shows an OTIS-Mesh containing 16 processors where 

small square boxes denote processor and large square boxes represents a group of 

processors. The groups are arranged in two-dimensional arrays.

<0,0> (0,1) 
group O group 1

1, 1

O, 0,3 X. 3

3,0 3,1

2.3 3,2 3,3

group 2 group 3
(1, 0) <1. 1)

Figure 2.21: An example of OTIS-mesh network with 16 nodes
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Chapter 3 

Topology of 3D Multi-Mesh

In this chapter we introduce a new network topology, called the 3D Multi-Mesh (3D 

MM) for multiprocessor architecture. As discussed in chapter 2, the 2D Multi-Mesh 

architecture [DDS99] uses a n x n  mesh of processors as its basic building block and 

each processor in a n x n  mesh may be identified by specifying a x-coordinate value (say 

x) and a y-coordinate value (say y). In a block, the processors having x = 1, x = n or 

having y = 1 or y = n have less than 4 connections to other processors within the same 

block. We have seen that these processors are connected to processors in other blocks of 

n x n  processors in a particular pattern resulting in a network with attractive topological 

properties. It is well known that a n x n x n  mesh has better diameter and connectivity 

compared to a n x n  mesh [LiFiOl], [SFK97]. It is therefore reasonable to extend the idea 

of interconnecting blocks of 2-dimensional (i.e., n x n )  meshes of processors to the idea 

of interconnecting 3-dimensional (i.e., n x n x n )  meshes of processors. This is the topic 

that we will explore in this chapter. Our proposed network consists of n3 three- 

dimensional meshes, each having n3 processors, interconnected in a suitable manner so

that the resulting topology is 6-regular with n6 processors. We will call such a network a 

3D Multi-Mesh (3D MM) of order n. In this chapter we introduce the 3D MM topology, 

analyze its architectural properties and compare it to other network architectures.
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3.1 Description of a 3D Block

The basic building block of the proposed 3D MM of order n is the n x n x n  Mesh, which 

we will call a 3D block, consists of n3 processor nodes. We may visualize a 3D block of 

«3 processors as consisting of n planes of n x n  two-dimensional meshes of processors. 

We show an example of a 3D block of order 3 (n = 3) in Figure 3.1. The 3D MM of 

order n consists of n3 such 3D blocks arranged in a three-dimensional n x n x n  array, so 

that there are altogether N  = n6 processors in a 3D MM network. We show a 3D MM 

network of order 3 in Figure 3.2. An n x n x n  3D block has (n-2) x (n-2) x (n-2) 

processors in the block, each having 6 links to other processors inside the same block. 

Each of the remaining processors lies on the six faces1 of the block and has 3, 4 or 5 

links, depending on the position of the processor in the block. Extending the idea used in 

the Multi-Mesh [DDS99] architecture, we connect the processors on the six surfaces of a 

3D block to the processors on the faces of other 3D blocks according to the inter-block 

rules described in the section 3.1.3.

V
x

Processor
y Intra-block

link

Figure 3.1: A 3D block of order 3

1 A  face o f  a cube represents the first or the last plane o f  3D mesh. A  processor P(x, y, z) on the face o f  a 

cube have the value o f  1 or n for at least one o f  the coordinates x, y  or z.
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3D Block

Figure 3.2: 3D MM network of order 3 

3.1.1 Intra-block connection

We arrange the three dimensional mesh (forming the basic building block of the proposed 

3D Multi-Mesh network) consisting of n3 processors along the three orthogonal 

dimensions, say x, y and z, so that a processor within a 3D block is uniquely identified by 

three coordinates x, y, z. A processor identified by the coordinates x, y, z is connected to 

six other neighboring processors (processors within the block that are connected by 

links), when they exist. These neighboring processors are identified by -

> (x + i,y,z),
> ( x - i , y , z ) ,

> (x ,y+l ,z) ,

> (x, y-1, z),

> (x, y, z+1) and

> (x, y, z-1)

Figure 3.1 shows how neighboring processors are connected by the intra-block links.
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3.1.2 Categorization of processors

It is important to note that all 6 neighboring processors may not always exist. We will

term a processor, which has all of its six neighbors in all three dimensions (for 1 < x, y, z

< n), as an internal processor since all its connections are to other processors within the

same block. However, the processors on the six faces of the block identified by x = 1, x

= n, y = l , y  = «, z = 1 and z = n, will have less than six neighbors each. We categorize

these processors as follows:

1) The processors with three neighbors -  the processors on the comers of the 

block have

> x = 1 or x = n,

>  y = 1 or y = n,

> z = 1 or z = n.

We will call such processors as corner processors. It is obvious that we will have 

exactly eight such processors.

2) The processors with four neighbors -  the processors on the sides of the block 

(but not on comers) are characterized by x, y and z values such that exactly two of 

these coordinates are 1 or n. Such processors have

> (x = 1 or x = n, y = 1 or y = n, 1 < z < n) or

>  (x = 1 or x = n, 1 < y < n, z = 1 or z = n) or

>  (1 < x < n, y = 1 or y = n, z = 1 or z = n).

We will call such processors as boundary edge processors. We will have exactly

8(n-2) such processors.
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3) The processors with five neighbors -  the processors on the faces of the block 

(but not on sides or comers) are characterized by x, y and z values such that 

exactly one of these coordinates is either 1 or n. Such processors have

>• (x = 1 or x = n, 1 < y < n, 1 < z < n) or

> (1 < x < n, y = 1 or y = n, 1 < z < n) or

> (1 < x < n ,  1 <y < n ,  z =  1 o rz = «).

We will call such processors as face-centered processors. We will have exactly

6(n-2) such processors in a 3D block.

3.1.3 Inter-block connections

Our 3D Multi-Mesh is an interconnection of n3 3D blocks arranged along the three 

orthogonal dimensions as shown in Figure 3.2. We designate with the symbols a, p and y 

respectively (to make them distinct from x, y and z) the coordinate values along the three 

orthogonal dimensions. Thus, we now have a total of n6 processors where each 

processor can be uniquely identified by its six coordinate values a, P, y, x, y, z that we 

will denoted by P (a, P, y, x, y, z). We will characterize any particular 3D block by a 

given set of values for a, P and y coordinates and we will denote a block by B (a, P, y). 

We connect all the processors on the six faces of each 3D block to the processors on the 

faces of other 3D blocks by one or more inter-block links so that each processor 

eventually has exactly six links to other processors (either in the same 3D block or in 

other 3D block(s)).
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We describe below the rules for the inter-block links.

3.1.4 Rules for inter-block connections

Inter-block Rule 1: (Links from y = 1 and y - n  planes)

The processor P (a, (3, y, x, 1, z) is connected to the processor P (a, x, y, (3, n, z) by a 

symmetric link for all a, y, z where 1 < a, (3, y, x, z< n . We denote this by 

Va, y, z, P (a, p, y, x, 1, z) <-> P (a, x, y, P, n, z)

Such links allow us to interchange only the values of p and x and we will refer to 

these links using the notation Va, y, z (P <-> x). We note that the value of z is not 

changed for the processors connected by these links.

Inter-block Rule 2; (Links from x = 1 and x = n planes)

The processor, P (a, P, y, 1, y, z) is connected to the processor P (z, P, y, n, y, a) by a 

symmetric link for all Vp, y, y where 1< a, P, y, y, z < n. We denote this by 

Vp, y, y, p (a, p, y, 1, y, z) P (z, p, y, n, y, a)

Such links allow us to interchange only the a  and z values and we will refer to these 

links using the notation VP, y, y (a  z). We note that the value of y is not changed 

for the processors connected by these links.

Inter-block Rule 3: (Links from z = 1 and z = n planes)

The processor P (a, P, y, x, y, 1) is connected to the processor P (a, P, y, x, y, n) by a 

symmetric link for all a , p, x, where 1< a,P, y, x, y < n. We denote this by 

Va, p, x, P (a, p, y, x, y, 1) <-> P (a, p, y, x, y, n)

Such links allow us to interchange only the y and y values and we will refer to these 

links using the notation Va, P, x (y <-> y). We note that the value of x is not changed 

for the processors connected by these links.
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From the inter-block connection rules, the following properties follow immediately. 

Property 1:

Starting from a given 3D block, identified by coordinates (al, [31, yl), we can always 

find a suitable processor on one o f its faces, from which we can reach, using only one 

inter-block link, any other 3D block, identified by (a.2, [32, y2), provided exactly 2 o f  

the coordinates o f  (al, y31, yl) are identical to the corresponding coordinates o f  (a2, 

[32, y2).

Property 2:

The 3D Multi-Mesh corresponds to a regular graph where each processor is 

connected to exactly 6 other processors.

The connections are somewhat complicated; to simplify the situation, in Figure 3.3, we 

are showing only the blocks having a  -  1 and y = 1 and we show only the inter-block 

connections along the y-axis for the processors having z = 1.

   &
~3----—ft-

Figure 3.3 Interconnections along the y-coordinate
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In Figure 3.4 we show an example of a 3D MM network of order 2 (n = 2), where we 

show all the inter-block connections for the processors in the block having a  =1 , (3=1, 

y = 1. All other links are not shown.

Figure 3.4: 3D MM network of order 2

3.2 Topological Properties of the 3D Multi-Mesh Network

3.2.1 Diameter

In a graph G, the diameter is the maximum possible value of the length of the shortest 

path between any two nodes of G [Be73]. This is a very important metric for any 

interconnection network. In this section we show that the diameter of the 3D Multi-Mesh 

of order n is 3n. To prove this we have to show that, in a 3D Multi-Mesh of order n, it is
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always possible to define a path from any source to any destination having a length of 3n 

or less.

We consider the source processor S = P (a l, p i, yl, x l, yl, z l) and the destination 

processor D = P (a2, p2, y2, x2, y2, z2), 1 < a l ,  p i, yl, x l, yl, z l, a2, P2, y2, x2, y l, z l  

< n, so that the 3D block corresponding to S is B (a l ,  p i, yl) and that corresponding to D 

is B (oc2, P2, y2). There are three situations to consider:

Situation 1: In this case, exactly two of the coordinates of the source block B (a l ,  p i, 

yl) have the same value as those of the corresponding coordinates in the destination 

block B (a2, P2, y l ) .  In this case, it may be readily verified, from the interconnection 

rules given above, that there exists a direct link between the source block and the 

destination block.

Situation 2: In this case, exactly one of the coordinates of the source block B (a l ,  p i, 

yl) has the same value as that of the corresponding coordinate in the destination block B 

(ot2, P2, y l ) .  In this case, it may be readily verified, from the interconnection rules given 

above that there exists an intermediate block B (a3, P3, y3), such that there is a direct 

link between the source block B (a l ,  p i, yl) and the intermediate block B (a3, P3, 

y3) and a direct link between the intermediate block B (a3, p3, y3) and the destination 

block. There are 3 possible choices for the values of (a3, P3, y3) - (a l ,  p i, y2), (a l ,  p2, 

yl), (a2,p l ,y l ) .
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Situation 3: In this case, none of the coordinates of the source block B (a l ,  (31, yl) have 

the same value as that of the corresponding coordinate in the destination block B (oc2, (32, 

y2). In other words, a l 4  a2, pi 4 P2 and yl 4 y2. In this case, there exist two 

intermediate blocks B (a3, P3, y3) and B (a4, p4, y4) such that there is a direct link 

between

- the source block B (al, p i, yl) and the intermediate block B(a3, (33, y3),

- the block B(a3, P3, y3) and the block B(a4, P4, y4) and

- the block B (o4, P4, y4) and the destination block B(a2, P2, y2).

There are a number of ways in which we may choose the intermediate blocks B (a3, P3, 

y3) and B (a4, P4, y4). For example, we could select B (a2, (31, yl) and B (a2, p i, y2) 

as intermediate nodes.

Since we use 6 coordinates to denote a processor, it is convenient to consider a 6- 

dimensional space where we have a point in that space, representing a processor 

whenever we specify all the 6 coordinates, (a, P, y, x, y, z). A number of processors that 

share 5 of these components must lie on a line. In other words, we may visualize a line of 

processors by specifying any 5 of these 6 components. For example, in figure 3.5, by 

specifying (a, p, y, 2, 2, *) we are specifying the processors (a, P, y, 2 , 2, 1), (a, p, y, 2, 

2 , 2), (a, P, y, 2, 2 , 3) which are next to one another and forms a line of processors. 

Extending the idea, if we specify any 4 of these 6 components, we define a plane.
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For example by specifying (a, P, y, 2, *, *) we are specifying the following lines of 

processors:

- (a, p, y, 2, 1, 1), (a, P, y, 2, 1, 2), (a, p, y, 2, 1, 3)

- (a, p, y, 2 ,2 ,1 ), (a, p, y, 2 ,2 ,2), (a, p, y, 2 ,2, 3),

- (a, p, y, 2 ,3 ,1), (a, p, y, 2 ,3 ,1), (a, p, y, 2, 3,1),

Theorem 1: There always exists a path of length < 3n from any processor P (a l ,  p i, yl,

x l, y l, z l) to any other processor P (a2, P2, y2, x2, y2, z2).

Proof:

If we divide the source block by three imaginary planes - (a l ,  p i, yl, P2, *, *), (a l ,  p i, 

yl, *, y2, *) and (a l ,  p i, yl, *, *, a2) as we show in figure 3.5, we get 8 octants in the 

source block which we will denote as SOI, S02, S03, S04, S05, S06, S07 and S08. 

Similarly by dividing the destination block by three other imaginary planes (a2, P2, y2, 

p i, *, *), (a2, P2, y2, *, yl, *) and (a2, P2, y2, *, *, a l )  we’ll get 8 octants- DOl, D02, 

D03, D04, D05, D06, D07 and D08 in the destination block.
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y = y2

1 = a.2

p2,n, n

’n ,-fc, n
x = p2

n, n, a2

Figure 3.5: Three imaginary planes divide the source block into 8 octants

Since the source (destination) node S = P (a l, p i, yl, x l, y l, z l) (respectively D = P (a2, 

p2, y2, x2, y2, z2)) may be in any one of the 8 octants in the source (destination) block, 

we have to consider 64 possible octet pair combinations for the source destination pair (S, 

D). To illustrate our approach, we will only consider the case where the source 

(destination) node is in the octet SOI (DOl). In other words, 1 < x l < P2, 1 < yl < y2, 1 

< zl < a l,  1 < x2 < p i, 1 < y2 < yl, 1 < z2 < a l .  A possible path PT1 from the source 

node (which is in the block (a l, p i, yl)) to the destination node (in the block (a2, P2, 

y2)) using the intermediate blocks (a 2, p i, yl) and (a 2, p2, yl) may be formulated as 

follows-

Path PT1:

P (a l, p i, yl, x l, y l, z l) -> ... P (a l ,  p i, yl, 1, yl, a2) -> P (a2, p i, yl, n, 

y l, a l )  -» ... -> P (a2, p i, yl, p 2 ,1, a l )  -» P (a2, P2, yl, p i, n, a l )  -» ... -»

P (a2, p2, yl, p i, y2, n) -» P(oc2, p2, y2, p i, yl, 1) -» ... -> P (a2, p2, y2, x2,
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y2, zl).

The length of this path is Lpxi where

Lpti = (xl - 1) + (oc2 -  z l) + 1 + (n- (32) + (yl -  1) + 1 + (n - 72) + (n - a l )  + 1 + (Pl- 

x2) + (yl -  y2) + (z2 - 1)

= x l- l+ a 2-z l+ l+ «-p2+ y l -  l + l +  n -  y2 + w - a l  + l + pi-  x2 + y l -  y l  + z2 -1 

= 3n + xl  + yl - zl - a l  + pi + yl - x2 - y2 + z2 + a2 - P2 - y2.

In a similar way, a possible path PT2 from the source node to the destination node using 

the intermediate blocks (a l, p i, y2) and (a l, P2, y2) maybe formulated as follows-

Path PT2:

P (a l, p i, yl, x l, y l, z l) ^ P  (a l ,  p i, yl, x l, y2, 1) -> P (a l ,  p i, y2, xl, 

yl, n) ... P (a l, p i, y2, P2, n, n) -» P (a l ,  P2, y2, p i, 1, n) -> ... P (a l, 

P2, y2, n, 1, a2) -» P (a2, P2, y2, 1, 1, a l )  -» ... h> P (a 2, P2, y2 , x2, y l, zl).

The length of this path is Lpt2 where

Lpt2= (y2 - y l) + (zl - 1) + 1 + (p2 - xl) + in - yl) + 1 + (n - p i) + (n - a2) + 1 + (x2 - 1) 

+ (y2 -  1) + (a l-  z2)

= y2-yl+ z 1 -1+ 1+P2 - x l + w - y l  + l +  w - p i + w  - a 2 + 1 + x2 -1  + y2 — 1+ a l-z 2 

= 3« -  x l -  yl + zl + a l  - p i - yl + x2 + y2 -  z2 - a2 + P2 + y2.

It may be readily verified that the sum of these two path lengths are Lpxi + Lpx2 = 6«. 

Therefore the smaller of these two paths must be 3n or less.

For other 63 possible cases of source and destination processor locations in various 

octants have been checked in the similar way.
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Next we show that there exists at least one source and destination pair in the network 

whose minimum distance is 3n.We have to consider two situations - n is even and n is

odd

1. If n is even, let us consider the source processor P ( l,l ,l , 1, 1,1,) and the

Yl Yl Yl Yl Yl Yl
destination processor P(— + 1, — + 1, —+ 1, —+ 1, —+ 1, —+ 1).

2 2 2 2 2 2

2. If n is odd, we consider the source P (1 ,1 ,1 ,1 ,1 ,1)  and the destination

n f n + 1 n + 1 n + 1 n + 1 n + 1 n + 1^
\  I  5 I  5 ”  5 ”  5 I  5 “  /  *2 2 2 2 2 2

Situation 1: P (1,1,1,1,1,1,) t o P ( —+ 1, —+ 1, —+ 1, —+ 1,—+ 1, —+ 1), nis  even
2 2 2 2 2 2

p ( u , i , i , i , i ) - » p  a , i ,  1 , 1 , 1 ,  | + i ) - >  p  ( f + i ,  1 , 1 , i , i ) - » p  ( f  +  i ’ i ’ i ’ §

+ 1, 1, l ) - »  P ( ^ + l ,  ^ + 1 ,  1, 1, n, 1 ) - > P ( ^ + 1 ,  ^ + 1 , 1 ,  1, ^ + 1, 1) - > p
Z  Z  z  z  z

( —+1, —+1, —+1, 1, 1, «) —> P ( —+1, — +1, — +1, — +1, — +1, —+1)
2 2 2 2 2 2 2 2 2

The cost of this path is-

( ^ + l - l ) + l + ( » - ^ - l ) + l + ( n - ^ - l ) + l + ( | + l  -1) + (-^ + 1- 1) + (w- ~  - 1)

_ n + 2 + 2n - n - 2 + 2 + 2n - n - 2 + 2 + n + « + 2n - n - 2
2

_ 9 n -3 n  
2

= 3 n
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_ ..................... . „ , n  + 1 n + 1 n + 1 n + 1 n + 1 n + 1 . . , ,
Situation 2: P ( l ,  1,1,1,1,  l ) t o P ( —— — , —— , —— , n is odd

z  z  z  z  /> z>

P (1, 1, 1, 1, 1, 1) -+ P (1, 1, 1, 1, 1 ,^ ± 1 ) ( ^ ± i ,  1, 1, n, 1, 1) ^ P  ( ^ ± 1 ,  1,

1 W +  1 1 u  +  l  n  +  l  ! 1N t» / W +  1 W +  1 1 1 n  +  l  1 \  .1, —  , 1 , 1 ) - » P ( — , l , n ,  1 ) - » P (  — , 1 , 1 , —  , 1)~>

„ . n  + l n + 1 n + 1 . , . „ . n  + l n + 1 n + 1 n + 1 n + 1 n + 1 .
P (  s s  , 1, 1, ») - > P  ( -------, ------, --------. -------->------ » -------- )2 2 2 2 2 2 2 2 2

The cost of this path is:

.n + 1 .. , , n + 1 . . , n + 1 . , .n + 1 .n + 1 .. . n + 1 .
(—  - l )  + l +  ( n - —  ) + 1 + (n — — ) + 1 + ( — —  1) + ( —  1) + (« — —  )

n + l - 2 + 2 + 2n - n - l + 2 + 2n - n - l + 2 + n + l - 2 + n + l - 2 + 2n - n - l

_ 9n -  3n + 9 -  9 
2

= 3 n

The following path shows an example from comer to comer- the source processor is P (1, 

1 ,1 ,1 ,1 ,1)  and the destination processor is P (n, n, n, n, n, n) and

Path: P (1, 1, 1, 1, 1, 1) —» P (1, 1, 1, 1, 1, n) -+ P (n, 1, 1, n, 1, 1) -+ P (n, n, 1, 1, n, 1)

—» P (n, n, n, 1, 1, n) —» P (n, n, n, n, n, n)

The length of this path is (n -  1) + 1 + 1+ 1 + (n -1) + (n-1) = 3n

The diameter of the 3D MM is only O ( N 1/6) in contrast to O ( JVI/3) on a 3-dimensional

toms with the same node degree of 6. We note that the Multi-Mesh has a diameter of O 

( TV1; 4) with a node degree of 4 that was shown to be attractive with respect to other 

topologies [DDS99], [HwBr83], [Le92].
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The node degree and the diameters of the Hypercube, the Multi-Mesh and the 3D MM 

containing N processors given in table 3.1.

Table 3.1: Diameter of Hypercube, Multi-Mesh and 3D MM

Hypercube Multi-Mesh 3 D MM
Node
degree

Diameter Node
degree

Diameter Node
degree

Diameter

log2 N l0g2N 4 N iy4 6 N 1/6

As an example, Table 3.2 shows a comparison between the diameter of a hypercube, 

Multi-Mesh and 3D MM network for different total number of nodes (A7).

Table 3.2: An example of Diameter of Hypercube, Multi-Mesh and 3D MM

# of 
nodes

Hypercube Multi-Mesh 3D MM
Node
degree

Diameter Node
degree

Diameter Node
degree

Diameter

64 6 6 4 6 6 6
4096 12 12 4 16 6 12
256K 18 18 4 44 6 24
16M 24 24 4 126 6 48

Thus, for N  = 4096, the diameter of both the 3D MM network and the binary hypercube 

is equal to 12, but the node degree of the corresponding hypercube is 12, while that of the 

3D MM network is only 6. In other words the diameter for 3D MM networks with 4096 

processors is less and the node degree is constant.

3.2.2 Connectivity of Multi-Mesh network

According to D. Sima, T.Fountain, P.Kacsuk [Be73], [SFK97], the connectivity of a 

graph is defined as the minimum number of arcs of a connected graph that have to be 

removed in order that the resulting sub-graph consists of two disconnected sub-graphs. It 

is also well known that if  the connectivity of a graph is C, we can always find C node 

disjoint paths between any pair of nodes [SBS01].

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



An interconnection network with a higher connectivity is preferable since higher 

connectivity implies better fault tolerance and higher capability for load balancing.

The Multi-Mesh (MM) network that we described in chapter 2 is a regular graph [Be73] 

where the node degree of each processor in the network is four. As a result, the upper 

bound of connectivity of any MM is four. In this section we will prove that the 

connectivity of MM is exactly four.

As we described in Chapter 2, the two-dimensional mesh is the basic building block in a 

Multi-Mesh network. In [DDS99], based on the position of a processor within a block, 

the processor was classified into the following categories:

1) internal processor

2) boundary processor

3) comer processor.

Within a block, an internal processor has exactly four neighbor processor (connected by 

intra-block links), a boundary processor has three neighbors and a comer processor has 

two neighbors. D. De, D and B.P. Sinha [DDS99] shows how the inter-block links of a 

MM network ensure that each processor in a MM network has exactly four links.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Theorem 2:

The connectivity of a Multi-Mesh network is 4.

Proof
In order to prove this, we have to show that, regardless of the position of the source and 

the destination, we can always find 4 edge-disjoint paths EDI, ED2, ED3 and ED4. The 

source and the destination may be in the same block or in different blocks. We will 

discuss only the case where they are in different blocks since that is the more challenging 

task.

We need to consider 9 possible combinations of source and destination processor 

categories. We will consider the following two cases -

• C asel: The source and the destination are both internal processors,

• Case 2: The source is a boundary processor and the destination is an internal 

processor.

The remaining 7 can be handled in the similar way.

Case 1: The source and the destination are both internal processors.

If the source and destination are both internal, then the following conditions are hold:

i) 1 < xl < p2 and 1 < yl < a 2

ii) 1 < x2 < p i and 1 < y2 < a l

Since both the source node and the destination node are internal processors, they both 

have 4 neighbors. We now show how we may create four edge disjoint paths EDI, ED2, 

ED3 and ED4 from the source to the destination node.
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For each path, we

a) first give the path at the block level where we only specify the blocks 

used in the path,

b) then give a short description of the path,

c) finally give a detailed description of the path used.

In giving a short description of a path, we have used the notation X —>* Y to denote that 

we have used a number of intra-block edges to go from processor X to processor Y.

Path EDI:

a) At the block level the path is as follows:

B (a l ,  p i)  -> B (oc2, p i) B (oc2, p2).

b) A short description of the path is as follows:

P (a l, p i, x l, y l) V  P (a l, p i, 1, a2) -4  P (a2, p i, n, a l)  V  P (a2, p i, p2, n)

- 4  P (a2, p2, p i, 1) V  P (oc2, p2, x2, y2).

c) A detailed description of the path used is as follows:

P (a l, p i, x l, y l) -+ P (a l ,  p i, xl-1, y l) -+ ... -4  P (a l ,  p i, 1, yl) - 4  

P (a l, p i, 1, yl + 1) -> ... P (a l, p i, 1, a2) -> P (a2, p i, n, a l )

P (a2, p i, n, a l  + 1) —>... —̂ P (oc2, p i, n, n) —> P (oc2, p i, n - 1, n) —>... —>

P (a2, p i, P2, n) -» P (a2, p2, p i, 1) -» P (a2, p2, p i — 1,1) —» ... -»

P (a2, p2, x 2 ,1) -> P (a2, p2, x2, 1+1) -4 . . .-4 P (a2, p2, x2, y2).

Path ED2:

a) At the block level the path is as follows:

B (a l, p i) ->• B (a2, p i) -> B (a2, p2)

b) A short description of the path is as follows:

P (a l, p i, x l, y l) - 4* P (a l , p i, n, a2) -4  P (oc2, p i, 1, a l )  V  P (a2, p i, p 2 , l )
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-> P (o2, p2, p i , «) * -> P (a2, p2, x2, y2).

c) A detailed description of the path used is as follows:

P (a l, p i, x l, y l) —> P (a l, p i, x l+  1, y l) P (a l, p i, n, y l) -»

P (a l, p i , n, yl + 1) -> ... ->P (a l, p i, n, a2) P (a2, p i, 1, a l )

P (a2, pi, 1, a l-1 ) P (a2, pi, 1 ,1) -» P (a2, pi, 1+ 1,1) - > ...

P (a2, pi, p2 ,1) -» P (a2, p2, pi, n) - » P (a2, p2, pi -  1, n) -» ... -»

P (a2, P2, x2, n) -» P (a2, P2, x2, n -1) P (a2, P2, x2, y2).

1,a2

P2.1 P2,n

n,a2
n,a2

p2 . 1

p 1,1

n,a1n,a1

X2,y2

x1, y1

Figure 3.6: Possible four disjoint paths from source to destination (Case 1)

Path ED3:

a) At the block level the path is as follows:

B (a l, p i) ^  B (a l, p2) B (02, p2)

b) A short description of the path is as follows:

P (a l, p i, x l, yl) ->* P (a l, p i, p 2 ,1) -> P (a l, p2, p i, n) -> * P (a l, p2, n, a 2 )
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- » P (a2, p 2 ,1, a l )  -»* P (a2, (32, x2, y2).

c) A detailed description of the path used is as follows:

P (a l, p i, x l, y l) -+ P (a l, p i, x l, y l - 1) P (a l, p i, x l, 1) -»

P (a l, p i, x l+ 1 ,1) P (a l, p i, p 2 ,1) - + P (a l, p2, p i, n) ->

P (a l, (32, pi+1, n) —>... —> P (a l, P2,n, n) -+ P (a l, P2, n, n-1) —>... -+

P (a l, p2, n, a2) —> P (a2, p 2 ,1, a l )  -» P (a2, p 2 ,1, a l-1 )  -> ... -»

P (02, p 2 ,1, y2) -+ P (a2, p 2 ,1 + 1, y2) P (a2, P2, x2, y2).

Path ED4:

a) At the block level the path is as follows:

B (a l, p i)  -> B (a l ,  p2) -> B(oc2, p2)

b) A short description of the path is as follows:

P (a l, p i, x l, y l) -+* P ( a l , p l , p 2 , w ) - » P ( a l , p 2 , p i ,  1)-+ *P(a l ,  (32, l , a 2 )

-> P (a2, P2, n, a l )  ->* P (a2, p2, x2, y2).

c) A detailed description of the path used is as follows:

P (a l, p i, x l, y l) - » P (a l ,  p i, x l, yl+  1) P (a l, p i, x l, n)

P (a l, p i, xl+1, n) P (a l, p i, p2, n) -> P (a l , p2, p i, 1) -»

P (a l, p2, p l - 1 ,1) P (a l, p 2 , 1,1) -> P (a l ,  p 2 ,1,1+1) -» ... ^

P (a l, P 2 ,1, a2) P (a2, P2, n, a l )  P (a2, P2, n, a l-1 )  -+ ... -+

P (a2, p2, n, y2) -» P (a2, P2, n-1, y2) -+ ...-+  P (a2, P2, x2, y2).

Case 2: Source processor is a boundary processor and destination processor is an internal 

processor. In this case there are three links to other neighboring processor and the other 

link is with a processor situated on the other block.
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We will consider the situation where the following conditions hold:

i) xl = 1 and x l < P2 and 1 < yl < a 2

ii) 1 < x2 < p i and 1 < y2 < a l

Remaining situations can be solved in the similar way. We now show how we may create 

four edge disjoint paths EDI, ED2, ED3 and ED4 from the source to the destination 

node.

Path EDI:

a) At the block level the path is as follows:

B (a l, p i) -»  B ( a2, p i) -+ B (oc2, p2)

b) A short description of the path is as follows:

P (a l, p i, 1, y l) ->* P (a l , p i, 1, a2) -> P (a2, p i, n, a l )  V  P (a2, p i, p2, n)

-+ P (a2, p2, p i, 1) -+* P (a2, p2, x2, y2).

c) A detailed description of the path used is as follows:

P (a l, p i, 1, yl) -> P (a l , p i, 1, yl + 1) -> ... ->P (a l, p i, 1, a2) ->

P (a2, p i, n, a l )  -+ P (a2, p i, n, a l  + 1) -» ... -+P (a2, p i, n, n) -»

P (02, p i, n -1 , n) ->...->P (a2, p i, p2, n) -» P (a2, p2, p i, 1) ->

P (02, P2, p i -  1,1) —> ... ->P (oc2, p2, x 2 ,1) -> P (a2, p2, x2, 1+ 1) ... -»

P (02, p2, x2, yl).

Path ED2:

a) At the block level the path is as follows:

B (al, p i)  -> B (o2, p i) -+ B(a2, p2)

b) A short description of the path is as follows:

P (a l, p i, 1, yl) -»* P (a l, p i, n, a2) ^  P (a2, p i, 1, a l )  -»* P (a2, p i, p 2 , l )
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- 4 P (cx2, (32, p i, n) -4 *  P (<x2, p2, x2, y2).

c) A detailed description of the path used is as follows:

P (a l, p i, 1, yl) -» P (a l ,  p i, 1+ 1, yl) P (a l, p i, n, y l) ->

P (a l, p i, n, yl + 1) —>... -4  P (a l, p i, n, a2) -4  P (a2, p i, 1, a l )  -4  

P (a2, p i, 1, a l-1 )  -» ... -4P (a2, p i, 1,1) -4  P (a2, p i, 1+ 1,1) -> ... -> 

P (a2, p i, p 2 ,1) -4 P (a2, p2, p i, n) -4  P (a2, p2, p i -  1, n) -> ... -4  

P (a2, P2, x2, n) -4 P (a2, P2, x2, n -1) -> ... - » P (a2, P2, x2, y2).

1,a2 1,a2

P2.1

n,a2
n,a2

1,a1

n,a1

X2,y2

Figure 3.7: Possible four disjoint paths from source to destination (Case 2)

Path ED3:

a) At the block level the path is as follows:

B( a l ,  p i) -> B( a l ,  p2) -4  B(a2, p2)

b) A short description of the path is as follows:
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P (a l, p i, 1, y l) V  P (a l ,  p i, p 2 ,1) -» P (a l, p2, p i, n) V  P (a l , p2, n, a l)  

-> P (oc2, P 2 ,1, a l )  -»* P (a2, p2, x2, y2).

c) A detailed description of the path used is as follows:

P (a l, p i, I, y l) -> P (a l ,  p i, 1, y l - 1) -> ... -> P (a l, p i, 1,1) ->

P (a l, p i, 1+1,1) P (a l, p i, p 2 ,1) - » P (a l, p2, p i, n) ->

P (a l, (32, pi+1, n) ->... -»P (a l, P2, n, n) P (a l, P2, n, n-1) -» ... ->

P (a l, p2, n, a l)  - » P (a2, p 2 ,1, a l )  -> P (a2, p 2 ,1, a l-1 )  -> ... -+

P (02, p2, 1, y l)  -» P (a2, p2, 1 + 1, y2) ... -» P (a2, p2, x l ,  yl).

Path ED4:

There is an inter-block link connecting the processors P (a l , (31, I, y l) and P (yl, (31, n, 

a l) .  If yl = a l  we have a self loop. Otherwise we will reach another block B (yl, (31).

If it is on another block then obviously we’ll get another distinct path.

So there are two situations-

i) yl * a l

ii) yl = a l

For situation 1, if  yl /  a l ,  then in order to get PT4 an edge-disjoint path we will take the

following paths-

a) At the block level the path is as follows:

B( a l ,  p i) -+ B( y l, p i) B(yl, P2) -> B(a2, p2)

b) A short description o f the path is as follows:

P (a l, p i, 1, yl) -+ P (yl, p i, n, a l )  ^  * P (yl, p i, P 2 ,1) -> P (yl, P2, p i, n) -> *

P (yl, p 2 ,1, a 2 )-» P (a2, p2, n, y l) V  P (a2, p2, x l, yl).

c) A detailed description of the path used is as follows:
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P (a l, p i, 1, yl) -> P (yl, p i, n, a l )  - + P (yl, p i, n-1, a l )  -> ... -»

P (yl, p i, p2, a l )  ^  P (yl, p i, p2, a l - 1) P (yl, p i, p 2 ,1) -+

P (yl, p2, p i, n) P (yl, P2, p l-1 , 1) P (yl, P 2 ,1, n) P (yl, P2, 1, n -1)

-> ... -> P(yl, p 2 ,1, oc2) -> P(a2, p2, n, y l ) -+ P(a2, P2, n -1, y l ) -> ...

P (a2, p2, x2, yl) -+ P (a2, p2, x2, yl-1) -> ... -> P (a2, P2, x2, y2).

For situation 2, if  yl = a l ,  then in order to get PT4 an edge-disjoint path we will take the 

following paths-

a) At the block level the path is as follows:

B( a l ,  p i)  -+ B( a l-1 ,  p i) -> B (a l-1 , p2) -> B(a2, p2)

b) A short description of the path is as follows:

P (a l, p i, 1, a l )  -> P (a l, p i, n, a l )  -+ P (a l , p i, n, a l-1) -+ P (al-1 , p i, 1, a l )  

->* P ( a l - l , p l , p 2 , 1) —» P (a l-1 , P2, p i, n) —>* P ( a l - l , p 2 , n ,  a2)

-+ P (a2, p 2 ,1, a l -1 )  -+* P (a2, p2, x2, y2).

c) A detailed description of the path used is as follows:

P (a l, p i, 1, a l )  -+ P (a l , p i, n, a l )  -» P (a l ,  p i, n, a l-1) -+ P (al-1 , p i, 1, a l )

-> P (al-1 , p i, 1, a l-1 ) P (al-1, p i, 1,1) -> P (al-1, p i, 1+1,1) -> ... -+ P

(al-1 , p i, p2, 1) -> P (a l-1 , p2, p i, n) P (a l-1 , p2, pl-1, «)->... -+ P (a l-1 , 

p 2 ,1, n ) - » P (a l-1 , p 2 ,1, «-l ) - > . . . - >  P (a l-1 , p 2 ,1, a2 ) -> P  (a2, p2, n, 

a l-1 )  - » P (a2, p2, n, a l - 1  +1) P (a2, P2, n, y2) -> P (a2, p2, n-1, y2)

—> ... —> P (a2, p2, x2, y2).

It may be readily verified that these paths are edge disjoint.
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3.2.3 Connectivity of three dimensional Multi-Mesh (3D MM) network

Our proposed network is a three dimensional Multi-Mesh (3D MM) where we defined 

the interconnection rules in such a way so that we will get a regular graph where the node 

degree of each processor in the network is six. As a result, the upper bound of 

connectivity of 3D MM is six. In this section we will prove that the connectivity of 3D 

MM is exactly six.

As we discussed, the basic building block in a 3D MM is a three dimensional mesh. 

Depending on the position of a processor within a block, the processor was classified into 

the following categories (discussed in the section 3.2.2):

1) internal processor,

2) face-centered processors

3) boundary edge processor,

4) comer processor and

Within a block, an internal processor has exactly six links to other neighbors, a face- 

centered processor has five neighbors, a boundary edge processor has four links to its 

neighbors, a comer processor has three links to its neighbors. By defining the inter-block 

links we ensure that every processor has exactly six links to other processors.

Theorem 3:

The connectivity of a three dimensional multi-mesh (3D MM) network is 6.

Proof
In order to prove this, we have to show that, regardless of the position of the source and 

the destination, we can always find 6 edge-disjoint paths EDPT1, EDPT2, EDPT3,
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EDPT4, EDPT5 and EDPT6. The source and the destination may be in the same block 

or in different blocks. We will discuss only the case where they are in different blocks 

since that is the more challenging task.

We need to consider 16 possible combinations of source and destination processor 

categories. We will only show the following case -  where source and destination both are 

internal processors.

We will consider the situation where the following conditions hold:

i) 1 < xl < (32,1 < yl < y2 and 1 < zl < a l

ii) 1 < x2 < p i , 1 < y2 < a l  and 1 < z2 < a l

Since both the source node and the destination node are internal processors, they both 

have 6 neighbors. We now show how we may create six edge disjoint paths EDPT1, 

EDPT2, EDPT3, EDPT4, EDPT5 and EDPT6 from the source to the destination node. 

For each path, we

a) first give the path at the block level where we only specify the blocks used in 

the path,

b) then give a short description of the path,

c) finally give a detailed description of the path used.

In giving a short description of a path, we have used the notation X —>* Y to denote that 

we have used a number of intra-block edges to go from processor X to processor Y.

Path EDPT1:
a) At the block level the path is as follows:

B (a l, (31, yl) B (a2, p i, yl) B (a2, P2, yl) -» B (a2, p2, y2)

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



b) A short description of the path is as follows:

P (a l, p i, yl, x l, y l, z l) V  P (a l, p i, yl, 1, yl, a2) -> P (oc2, p i, yl, n, y l, a l)

V  P (a2, p i, yl, p2, 1, a l  ) -> P (a2, p2, yl, p i, n , a l )  ->* P(a2, p2, yl, p i, 

y2, n) P(a2, p2, y2, p i, yl, 1) V  P(a2, p2, y2 , x2, y2, z2).

c) A detailed description of the path used is as follows:

P (a l , p i, yl, x l, y l, z l) P (a l ,  p i, yl, xl-1, y l, zl) ... P (a l ,  p i, yl, 1,

y l, zl ) -> P (a l, p i, yl, 1, y l, zl+1) -> ... P (a l, p i, yl, 1, y l, a2) -> P(a2, 

Pi, yl, n, y l, a l )  -> P(a2, p i, yl, n, y l - 1, a l )  ... -» P(a2, p i, yl, n, 1, a l )  

P(a2, p i, yl, n -1, 1, a l )  -> ... -> P(a2, p i, yl, p2, 1, a l)  -> P(a2, p2, yl, p i, n , 

a l )  -> P(a2, P2, yl, p i, n , a l+  1) -> ... P(a2, P2, yl, p i, n , n) -» P(a2, p2,

yl, p i, n - 1 , n) —»... —> P(a2, p2, yl, p i, y2, n) -> P(a2, p2, y2, p i, yl, 

1) -> P(a2, p2, y2, pi -1 , yl, 1) -> ... ^ P (a 2 , P2, y2, x2, yl, 1) -> P(a2, p2, y2, 

x2, yl -  1, 1) -> ... —>P(a2, p2, y2, x2, y2, 1) -» P(oc2, p2, y2, x2, y2, 1 + 

1) —> ... —> P(a2, P2, y2, x2, y2, z2).

Path EDPT2:

a) At the block level the path is as follows:

B (a l, p i, yl) B (a2, p i, yl) B (a2, p i, y2) -»  B (oc2, p2, y2)

b) A short description of the path is as follows:

P (a l, p i, yl, x l, y l, z l) -»* P (a l , p i, yl, n, y l, a2) -> P(a2, p i, yl, 1, y l, a l )  

->*P(a2, p i, yl, 1, y2, n) -> P(oc2, p i, y2, 1, yl, 1) V  P(a2, p i, y2, p2, n, 1) -> 

P(a2, p2, y2, p i, 1,1) V  P(a2, p2, y2 , x2, y2, z2).

c) A detailed description of the path used is as follows:

P (a l, p i, yl, x l, y l, z l) -> P (a l, p i, yl, xl + 1, y l, z l ) —>... -» P (al, p i, yl, n, 

y l, zl ) —̂ P (a l, p i, yl, n, y l, zl + 1 ) -» ... -> P (al, p i, yl, n, y l, a2) -> P(a2, 

p i, yl, 1, y l, a l )  -» P(a2, p i, yl, 1, yl, al+1 ) -4  ... P(a2, p i, yl, 1, yl, n)
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-> P(a2, p i, yl, 1, yl + 1, n) —> ... -> P(a2, p i, yl, 1, y2, n) -» P(a2, p i, y2, 1,

yl, 1) -+ P(a2, p i, y2, 1 , yl + 1, 1) —» ... -+ P(a2, p i, y2, 1 , n, 1) P(a2, p i,

y2, 1 + 1 , n, 1) —>... —» P(a2, p i, y2, p2, «, 1) -> P(a2, p2, y2, p i, 1, 1) -> P(a2, 

p2, y2, p i - 1 ,  1, 1) -> ... -> P(a2, p2, y2, x2, 1, 1) -> P(a2, p2, y2, x2, 1, 1 + 

1) ... -+ P(ot2, p2, y2, x2, 1, z2) -> P(a2, p2, y2, x2, 1+1, z2) -+ ... P(a2, p2,

y2, x2, y2, z2).

Path EDPT3:

a) At the block level the path is as follows:

B ( a l ,  pi ,  y l ) -> B ( a l ,  p2, y l ) -> B ( a2, p2, y l ) -> B ( a2, p2, y2)

b) A short description of the path is as follows:

P (al, p i, yl, x l, y l, z l ) -+ P (al, p i, yl, p 2 ,1, z l) -+ P (al, P2, yl, p i, n, zl)

-+ P (a l, P2, yl, n, n, a 2 ) -+ P(a2, p2, yl, 1, n , a l )  -> P(a2, p2, yl, 1, y2, n)

-+ P(a2, P2, y2 ,1, yl, 1) -> P(a2, P2, y2 , x2, y2, z2).

c) A detailed description of the path used is as follows

P (a l, p i, yl, x l, y l, z l ) ^  P (a l, p i, yl, x l, yl -1 , z l ) -> ... -+ P (a l, p i, yl, x l, 

1, z l) -> P (a l, p i, yl, xl + 1,1, zl) -+ ... -+ P (a l, p i, yl, p 2 ,1, z l) -> P (a l, p2, 

yl, p i, n, z l) —> P (a l, P2, yl, p i + 1, n, z l) —>... -» P (a l, P2, yl, n, n, z l) 

-+ P (a l, P2, yl, n, n, z l + 1) -+ ... -+ P (a l, p2, yl, n, n, a 2 ) -»  P(a2, p2, yl, 1, n 

, a l )  -> P(a2, p2, yl, 1, n - 1 , a l )  -> ... -> P(a2, P2, yl, 1, y2 , a l )  -+ P(a2, P2, 

yl, 1, y2 , a l  + 1) -» ... -> P(a2, p2, yl, 1, y2, ri) -> P(a2, p2, y2, 1, yl, 1) -+

P(a2, p2, y2, 1, yl -1 , 1) ^  ... -+ P(a2, p2, y2, 1, y l,  1) -> P(a2, p2, y2, 1, y2,

1 + 1) P(a2, p2, y2, 1, y2, z2) -> P(oc2, p2, y2, 1+1, y l, z l)  -> ...

P(a2, P2, y2 , x2, y l, zl).
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Path EDPT4:

a) At the block level the path is as follows:

B ( a l ,  pi ,  Yl) B ( a l ,  p2, y l ) B ( a l ,  p2, y2) -> B ( a2, p2, y2)

b) A short description of the path is as follows:

P ( a l , p i , y l , x l , y l , z l ) - »  P (al, p i, yl, [32, n, z l ) P ( a l , p 2 ,  yl, pi,  l ,zl)

-> P (al, p2, y l,p l , y2, 1) -> P (al, p2, y2, p i, yl, n) -> P (al, p2, y2, n, 1, a2) 

P(a2, P2, y2 ,1 ,1, a l )  -» P(a2, P2, y2 , x2, y2, z2).

c) A detailed description of the path used is as follows

P (a l, p i, yl, x l, y l, z l) -> P (a l ,  p i, yl, x l, yl + 1, z l ) -» ... P (a l, p i, yl, x l, 

n, zl ) -» P (a l, p i, yl, x l + 1, n, z l ) -> ... -> P (al, p i, yl, p2, n, z l) -» P (a l, p2, 

yl, p i, 1, z l) P (al, p2, yl, p i, 1 + 1, z l) -> ... -> P (al, p2, yl, p i , y2, zl ) 

P (al, p2, yl, p i, y2, zl -1 ) -> ... -> P (al, P2, yl, p i, y2, 1 ) -* P (a l, P2, y2, p i, yl, 

n) -> P (a l, p2, y2, p i - 1, yl, n) ->• ... -> P (al, p2, y2, 1, yl, n) -» P (a l, p2, y2, 1, 

yl -  1, / ! ) -» ... -> P (a l, p2, y2 ,1, 1, n) -> P (al, p2, y2 ,1, 1, n - 1) -> ... -> P (al, 

p2, y2 ,1, 1, a2) -> P(a2, P2, y2, n ,1, a l )  -> P(a2, p2, y2, n ,l, a l  - 1) 

-> ... -> P(a2, P2, y2, n ,1, z2) -> P(a2, p2, y2, n ,1 +1, z2) ... P(a2, P2, y2, n ,

y2, z2) —> P(a2, P2, y2, n-1, y l, z l)  —»... —> P(a2, p2, y2 , x2, y l, zl).

Path EDPT5:

a) At the block level the path is as follows:

B ( a l ,  pi ,  yl) -* B ( a l ,  pi ,  y2 ) B ( a l ,  P2, y2) ^  B (a2, p2, y2)

b) A short description of the path is as follows:

P (al, p i, yl, x l, y l, z l ) P (a l, p i, yl, x l, y2 ,1) P (a l, p i, y2, x l, yl, n)

- » P(al ,  pi ,y2,  P2, n ,n )^ >  P (a l, P2,y2, p i, 1, n) P (al, p2,y2, n, 1, a2) 

P(a2, P2, y2 ,1 ,1, a l )  P(a2, P2, y2 , x2, y l, zl).

c) A detailed description of the path used is as follows
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P (al, |3l, yl, x l, y l, z l ) -> P (al, (31, yl, x l, y l, zl - 1 )  -» ... -> P (a l, p i, yl, x l, 

y l, 1 ) —> P (a l, p i, yl, x l, yl + 1, 1 ) P (a l, p i, yl, x l, y2, 1) P (al,

p i, y2, x l ,y l ,  n) P (a l, p i,y2 , x l , y l - l , n )  -> ... P (a l, p i, y2, x l ,l ,  n) 

-> P (a l, p i, y2, xl + 1,1, n) -» ... -> P (a l, p i, y2, p 2 ,1, n ) -> P (a l, p2, y2, p i, 

n, n) -» P (a l, P2, y2, pi + 1, n, n) P (a l, p2, y2, n, n, n) -» P (al, P2, y2, n, 

n, n - 1) —> ... —> P (a l, P2, y2, n, «, a2) —» P(a2, P2, y2, 1 , n, a l )  —> P(a2, p2, 

y2, 1 , n, a l  - 1) ... P(oc2, p2, y2, 1 , n, z2)-> P(a2, p2, y2, 1 + 1 , n, z2)

... -» P(a2, P2, y2, x2 , n, z2) P(a2, P2, y2, x2 , n - 1, z2) ... P(a2, P2,

y2 , x2, y2, z2).

Path EDPT6:

a) At the block level the path is as follows:

B ( a l ,  p i, y l ) -» B ( a l ,  p i, y 2 ) -> B ( a2, p i, y 2 ) B (a2, p2, y2)

b) A short description of the path is as follows:

P (a l, p i, yl, x l, y l, z l ) -» P (a l, p i, yl, x l, y2, n) P (a l, p i, y2, x l, yl, 1)

-> P (a l, p i, y2, 1, n, a2 ) -> P(a2, p i, y2, n,n,al) -> P(a2, p i, y2, P2, n, n)

-> P(a2, p2, y2, p i ,1, n ) -> P(a2, p2, y2 , x2, y2, z2).

c) A detailed description of the path used is as follows

P (a l, p i, yl, x l, y l, z l ) -» P (a l, p i, yl, x l, y l, zl + 1) -> ... -» P (a l, p i, yl, x l, 

y l, n) -» P (a l, p i, yl, x l, yl + 1, ri) -» ... P (a l, p i, yl, x l, y2, n) P (a l, p i, 

y2, x l, yl, 1) -> P (a l, p i, y2, xl - 1, yl, 1) -» ... -* P (a l, p i, y2, 1, yl, 1) 

-» P (a l ,  p i, y2, 1, yl + 1, 1 ) - >P( al ,  p i, y2, 1, n, 1) P (a l, p i, y2, 1 ,n , 

1 + 1) ... P (a l, p i, y 2 ,1, n, a2 ) -»■ P(a2, p i, y2, n, n,a l)  -» P(a2, p i, y2, n

, n, a l  + 1) P(a2, p i, y2, n , n, n) —»P(a2, p i, y2, n - 1 , n, n)

-» ... - » P(a2, p i, y2, p2, n, n) -» P(ot2, p2, y2, pi ,1 ,» )  -» P(a2, p2, y2, p i -1 ,1, 

n ) - » . . .  —» P(a2, P2, y2, x2 ,1, n ) —> P(a2, P2, y2, x2 ,1 + 1, n ) —»... —> P(a2, 

P2, y2, x2 ,y2, n ) —> P(a2, P2, y2, x2 ,y2, n - 1 ) —»... —> P(a2, P2, y2 , x2, y2, z2).
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It may be readily verified that these six paths are edge-disjoint. The other cases are similar.

3.3 Message Routing in the 3D Multi-Mesh

Routing problem can be defined as the process of sending messages from source 

processor to destination processor. The routing algorithm implemented on the router is 

responsible for determining the path from source to destination. The length of the path in 

the worst possible situation determines the performance of a routing algorithm.

In this section we present routing messages from any source processor to any destination 

processor for point to point communication. Let the source processor be S = P (al, (31, yl, 

x l, y l, z l) and the destination processor be D = P(a2, |32, y2, x2, y2, z2), 1 < a l ,  p i, yl, 

x l, y l, zl, a2, 32, y2, x2, y2, z2 < n, so that the 3D block corresponding to S is B (al, 

PL yl) and that corresponding to D is B(a2, P2, y2). We will describe the routing along 

the restricted path such as the Theorem 3.1 (Diameter). There are three situation to 

consider that we describe in Theorem 3.1, among them we’ll only consider the situation 

where none of the coordinates of the source block B (a l ,  p i, yl) have the same value as 

that of the corresponding coordinate in the destination block B (a2, p2, y2). The other 

cases are similar.

In this case, none of the coordinates of the source block B (a l, p i, yl) have the same 

value as that of the corresponding coordinate in the destination block B (a2, p2, y2). In
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other words, a l # a2, pi ^  P2 and yl # 72. In this case, there exist two intermediate 

blocks B (a3, (33, 73) and B (o4, P4, y4) such that there is a direct link between

- the source block B (al, (31, yl) and the intermediate block B(a3, (33, y3),

- the block B(a3, [33, y3) and the block B(a4, (34, y4) and

- the block B(o4, p4, y4) and the destination block B(a2, [32, y2).

There are a number of ways in which we may choose the intermediate blocks B (a3, [33, 

y3) and B (a4, [34, y4). For example, we could select B (a2, (31, yl) and B (a2, (31, y2) as 

intermediate nodes. In order to route a message from a source processor S = (a l ,  p i, yl, 

x l, y l, z l) to any destination processor D = P(a2, P2, y2, x2, y2, z2), we first divide the 

source block by three imaginary planes - (a l , p i, yl, P2, *, *), (a l, p i, yl, *, y2, *) and 

(a l, p i, yl, *, *, a2) that we showed in figure 3.5. This gives us 8 octants in the source 

block, which we will denote by SOI, S02, S03, S04, S05, S06, S07 and S08. 

Similarly we divide the destination block by three other imaginary planes (a2, P2, y2, p i, 

*, *), (a2, p2, y2, *, yl, *) and (a2, p2, y2, *, *, a l )  giving us 8 octants- DOl, D02, 

D03, D04, D05, DO6, D07 and DO8 in the destination block.

We will use the boundary processors for the three planes described as exit/entry points to 

communicate to processors in other blocks. In the proof for theorem 3.1, we showed that, 

for a suitable choice of the exit point from the source block, we could choose a 

corresponding entry point for the destination block to define a path PT1. Keeping in mind 

the choices for the entry/exit points for PT1, we chose another set of entry/exit points to 

define a path PT2. We showed that one of these paths must be of length less than or equal
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to 3n. The algorithm for message routing uses this idea to select the optimum path for 

routing.

The idea used in this algorithm is similar to that used in [DDS99].

Algorithm:
Step 1:

i) Determine the octets of the source and destination blocks.

ii) Calculate the two possible paths PT1 and PT2 from source processor to

destination processor as defined in section 3 and choose the path with the shortest 

length. Let the chosen path from B (al, (31, yl) to B(a2, (32, y2) be through 

blocks B(ocii, (3ji, yki) and B(ai2, (3j2, Yis).

iii) Attach, to the data packet, a list consisting of the addresses of the exit/entry

processors of these blocks. This list consists of the following pieces of

information:

Fieldl: Source block exit processor 

Field2: First intermediate block exit processor 

Field3: Second intermediate block exit processor and 

Field4: Destination processor entry processor.

Step 2:

If the value stored in Fieldl is the address of the current processor, go to step 3. 

Otherwise send the packet towards the processor specified in Fieldl using the 

appropriate intra-block link from the current processor and go back to step 2 .

Step 3:

a) Send the packet to the appropriate processor by using appropriate inter-block link 

from the current processor.

b) Update the list of four address field information as follows-
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F ield l«- Field2 

Field2 «- Field3 

Field3 «- Field4 

Field4«- NULL

c) If Fieldl is NULL, stop. Otherwise, and go to step 2.

Example:

A possible path PT1 from the source processor (which is in the block (a l ,  (31, yl)) to the 

destination processor (in the block (a 2, (32, y2)) using the intermediate blocks (a2, (31, 

yl) and (a2, (32, yl) may be formulated as follows-

PT1 = P (al, (31, yl, x l, y l, z l ) ... -> P (al, (31, yl, 1, y l, a2) -> P(a2, p i, yl, n, yl,

a l )  -»... -> P(a2, p i, yl, p 2 ,1, a l )  -> P(a2, p2, yl, p i, n ,a l)  ... P(a2, p2, yl,

PI, y2, n) P(a2, p2, y2, p i, yl, 1) ... -4  P(a2, P2, y2 , x2, y2, z2).

Initially data packet appends the following four fields-

1. (a l, p i, yl, 1, yl, a2) as Fieldl

2 . (oc2, p i ,y l ,p 2 , l , a l )a sF ie ld 2

3. (o2, p2, yl, p i, y2, n) as Field3

4. (oc2, P2, y2 , x2, y2, z2) as Field4

Source processor first checks Fieldl, if the address of Fieldl is not the current processor 

then routes the messages to the processor P (a l, p i, yl, 1, y l, a2) via an intra-block link.

If the address of Fieldl is the current processor then route the message to the processor

P(a2, p i, yl, n, y l, a l )  by using the inter-block link and updates the list of four fields as

follows-

F ield l«- (a2, p i, yl, P 2 ,1, a l )

Field2 (a2, p2, yl, p i, y2, n)
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Field3 «— (a2, (32,72 , x2, y2, z2)

Field4 <- NULL

Then the processor P(a2, (31, yl, n, yl, a l )  checks the Fieldl and route the messages to 

the processor (Fieldl) P (a2, (31, yl, (32,1, a l )  by using intra-block link. Processor 

P (a2, (31, yl, (32, 1, a l )  has the same address as Fieldl so it routes message to processor 

P (a2, (32, yl, (31, n, a l )  via the inter-block link and updates the four fields as follows- 

Fieldl <- (a2, p2, yl, p i, y2, n)

Field2 (o2, (32, y2, x2, y2, z2)

Field3 NULL 

Field4 4-  NULL

Processor P (a2, (32, yl, p i, n, a l )  checks the Fieldl and route the messages to the

processor (Fieldl) that is P (a2, p2, yl, p i, y2, n) by using intra-block link. Processor

P(a2, p2, yl, p i, y2, n) sends the message to P(a2, p2, y2, p i, yl, 1) by using inter-block 

link and updates the four fields as follows- 

F ield l«- (oc2, p2, y2, x2, y2, z2)

Field2 «- NULL 

Field3 <- NULL 

Field4 <— NULL

This processor P (a2, P2, y2, p i, yl, 1) checks the Fieldl and route the messages to the 

address of Fieldl that is (a2, P2, y2, x2, y2, z2) by using intra-block link and updates the 

four fields as follows-

Fieldl <- NULL 

Field2 <- NULL 

Field3 «- NULL 

Field4 <- NULL

As the value of the fieldl is sets to NULL the routing process is terminated.
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3. 4 Summation/Average/Minimum/Maximum in the 3D Multi-Mesh

We may use the 3D MM to compute the sum of up to n data values stored in the n 

processors of a 3D MM of order n. The same idea may be used to compute the average, 

maximum or minimum of up to n data values. The scheme we use is similar to that used 

in [DDS99] for the Multi-Mesh. We assume that each processor has three registers X, Y 

and Z for data communication in the three axes and will use X (a, (3, y, x, y, z) (Y (a, [3, 

y, x, y, z) and Z (a, (3, y, x, y, z)) to denote the X (respectively Y and Z) register in 

processor P (a, (3, y, x, y, z). The data is initially in register Z of all n6 processors in the 

3D MM. The main idea of the algorithm, is to

i) compute, in parallel, the sum of all numbers in each 3D block,

ii) communicate the partial sums to blocks B(l, (3, y), 1 < (3, y < n,

iii) compute the sum of the partial sum of all numbers in B(l, (3, y), 1 < |3, y < n and 

communicate the partial sums to blocks B(l, 1, y), 1 < y<  n,

iv) compute the sum of the partial sum of all numbers in B(l, 1, y), 1 < y < n and 

communicate the result to block B(l, 1, 1).

The algorithm is as follows:

Algorithm Sum 

Step 1

Va, (3, y, x, y, 1 < a , P, y, x, y < n do in parallel 

for k = n -1  downto 1 do

Z(a, p, y, x, y, k) <- Z(a, p, y, x, y, k + 1) + Z(a, p, y, x, y, k);
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/* Z(a, P, y, x, y, 1) now contains the partial sum of n values */

Y(a, p, y, x, y, 1) <- Z(a, p, y, x, y, 1); 

for j = n -1  downto 1 do

Y(a, p, Y,x,j, 1) * Y(a, p, y,x ,j+  1, 1) + Y(a, p, % x,j, 1);

/* Y(a, P, y, x, 1, 1) now contains the partial sum of n2 values */

X(a, P, y, x, 1 ,1) <- Y(a, p, y, x, 1,1); 

for i = n - 1 downto 1 do

X(a, p, y, i, 1 ,1 )« - X(a, p, y, i+1, 1, 1) + X(a, p, y, i, 1,1);

/* X(a, P, y, 1 ,1 ,1) now contains the partial sum of n3 values */

Y (a ,p ,y  1,1 ,1) « -X (a ,P ,y , 1,1,1);

Y(a, p, 1,1, y, n) <- Y(a, p, y, 1,1,1);

/*Using the link (y <-» y) the partial sums in blocks B(a, P, *) are transferred to 

blocks B(oc, p, 1) */

Step 2

Va, P, 1 < a , p, < n do in parallel 

for j = n -1  downto 1 do

Y(a, p, 1,1, j, n) <r- Y(a, p, 1,1, j+ 1, n) + Y(a, p, 1,1, j, n);

/* Y(a, P, 1 ,1 ,1 , n) now contains the partial sum of n values */

Y(a, p, 1 ,1,1 ,1) *— Y(a, P, 1 ,1 ,1 , n); /*Using the link y) */

X(a, p, l , l , l , l ) < - Y ( a , p ,  1 ,1 ,1 ,1);

X(a, 1 ,1, p, n, 1) <— X(a, P, 1 ,1 ,1 ,1 ); /* Using the link (p <-» x)*/

Step 3

Va, 1 < a , < n do in parallel 

for i = n -1  downto 1 do
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X(a, 1,1, i, n, 1) <— X(a, 1,1, i+ 1, n, 1) + X(a, 1,1, i, n, 1);

/* X(a, 1 ,1 ,1  ,n , 1) now contains the partial sum of n5 values */

X(a, 1 ,1 ,1 ,1 ,1 )  <- X(a, 1 ,1 ,1 , n, 1); /*Using the link (p o  x)*/

Z(a, 1 ,1 ,1 ,1 ,1 ) <— X(a, 1 ,1 ,1 ,1 ,1 );

Z(l, 1,1, n, 1, a) <— Z(a, 1 ,1 ,1 ,1 ,1 ); /* Using the link (a  z)*/

Step 4

for k = n - 1 downto 1 do

Z(l, 1,1, n, 1, k)*- Z(l, 1,1, n, 1, k+ 1) + Z(l, 1, 1, n, 1, k);

/* Z(l, 1, 1, n, 1, 1) now contains the partial sum of n6 values */

Z(l, 1 ,1 ,1 ,1 ,1)<— Z(l, 1,1 ,n , 1,1); /*Using the link (a  <-» z )*/

We will now analyze the time needed for this algorithm. Let tc denote the time for one

communication, assuming that inter-block and intra-block communication take the same

time and ta denote the time for one addition. In the steps where we have use an

addition(-t-) operation, the operation is actually one data communication and one addition

so that the total time needed for the operation is tc + ta. Step 1 takes n(tc + ta) + tc + «(tc + ta)

+ tc + «(tc + ta) + tc = (3n + 3) tc + 3n ta time units. Step 2 takes n (tc + ta) + 2tc = (n + 2) tc +

n ta time units. Step 3 takes n (tc + ta) + 2tc = (n + 2) tc + n ta time units. Step 4 takes n (tc +

ta) + tc = (n + 1) tc + n ta time units. The total time required is (6n + 8) tc + 6n ta time. Thus

the algorithm to compute the sum of n6 numbers on the 3D MM is O («). This may be

compared to the time O (n) to compute the sum of n numbers on the Multi-Mesh.

In this chapter we have defined the 3D Multi-Mesh architecture, studied the diameter and 

connectivity of this network, and have developed two important algorithms for the 3D 

MM.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Optical Implementation of Multi-Mesh Links

In order to improve the performance of multiprocessor systems, the use of very high­

speed communication technology is crucial. As mentioned in chapter 2, to avoid the 

limitations of electronic technology that uses copper, optical technology is promising for 

inter-processor communication. We have reviewed a number of optics-based 

interconnection schemes as well as hybrid (electronic and optical) schemes in chapter 2 . 

To our knowledge there is no research on implementing the Multi-Mesh using optical 

technology. In this chapter we will discuss how the Multi-Mesh architecture may be 

implemented using optical technology and we have described a number of possible 

approaches for designing optics-based interconnections for the Multi-Mesh. Our results 

may be extended to define 3D Multi-Mesh using optical technology.

We have already mentioned that the Multi-Mesh (MM) network discussed in Chapter 2 

has attractive topological attributes. In a MM network of order n, there are n2 blocks 

(where a block is a mesh of processors) arranged in the form of an rt * n matrix. In 

chapter 2, Figure 2.11 shows a MM of order 3. In a MM network, the processors within a 

block are connected by intra-block links to other processors in the same block. Some 

processors of different blocks are connected by inter-block links. We now show how we 

can implement the inter-block connections of the MM network by using the wavelength 

routed WDM technology we also reviewed in chapter 2. To present our design, it is
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convenient for us to separate the intra-block connections from the inter-block 

connections. We show a MM network of order 4 in Figure 4.1 where each square 

represents a two-dimensional mesh and inter-block connections are omitted. We show a 

single 2-dimensional block of order 4 in Figure 4.2 where each circle represents a 

processor and each edge represents an intra-block connection.

B2i ® 2 3

^ 3 3

41 42 -*43 J44

: A  B lo ck  o f  ith row  and jth  colum n in  a MM

Figure 4.1: 4 X 4 Blocks of a Multi-Mesh network of order 4

I
:

Figure 4.2: A block of a Multi-Mesh network of order 4
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We note that intra-block connections are short as compared to the length of inter-block 

connections and have a constant length. It is convenient to implement such connections 

using VLSI technology or by using free space optical communication. In this thesis we 

will only look at a hybrid approach where we use metal lines when fabricating the array 

of processors using VLSI technology. The alternative of using free space optical 

communication as proposed in [LoSu94b] is quite straightforward.

The more challenging task is to realize the inter-block connections since the length of 

such a connection changes and becomes very long for large networks.

There are two novel and interesting features of our implementation of inter-block 

connections:

> The first attractive feature is that we have used wavelength routed WDM 

networks rather than WDM networks based on passive star couplers [Mu97]. It 

is well known that the power requirements for passive star couplers make them 

unsuitable for large networks [Mu97]. In other words, using our approach, we 

can easily define larger networks with a relatively lower power budget.

>  The second interesting feature is that we have incorporated fault tolerance using 

protection scheme [Ge98], [RaMu99b], [SRM02], The idea is that each pair of 

processors that are connected by an optical link will have 2 edge-disjoint optical 

paths - the primary path and the back-up path. If there is a failure in the primary 

path, simply the router settings have to be changed so that the back up path can
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be used. This means that, in the case of a single failure in the optical part of the 

network, the overall routing scheme does not have to be changed and the 

network diameter is not affected.

To our knowledge no other interconnection network has used these two ideas.

To realize the inter-block connections, our tasks are to

> define a physical topology consisting of fibers, routers and end-nodes (the sources 

or destinations of data). In the case of a Multi-Mesh, the end-nodes are the 

boundary processors of each block in the Multi-Mesh.

> define a logical topology on the physical topology such that for every undirected 

inter-block link between x and y in a Multi-Mesh there is a logical edge x —> y 

and a logical edge y —» x in the logical topology. For economic reasons, we wish 

to use as few wavelengths as possible.

In a wavelength-routed network given a physical topology, in order to define a logical

topology, we have to

>  determine which processors need to be connected by a lightpath,

>  determine a viable route and a wavelength for each lightpath (RWA problem) 

[Mu97], [StBa99] .
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Since we are implementing a known pattern of connections (as defined by the inter-block 

connection rules of the Multi-Mesh), the lightpaths we need are already defined. In the 

following sections, we first discuss possible physical topologies for this problem and 

present ways to handle the RWA problem to realize the desired connections for the fault- 

free and faulty situations that we have considered.

4.1 Physical Topology for Optical Communication in a Multi-Mesh

In our scheme we propose to use n2 routers - one for each of the n2 blocks. Figure 4.3 

shows part of our physical topology where a square represents a block (which, as 

explained earlier, is a mesh of processors) and an oval represents an optical router. All 

the routers are arranged in the form of a two-dimensional grid. To simplify the diagram 

we have not shown the connections from the boundary processors to the routers. As 

shown in Figure 4.3, the connection between the routers is the architecture of a torus. For 

clarity, we have shown the wrap-around links only for the first and the last rows and 

columns. Each row and column has similar connections.

24

“23

“3 4

43 44

“4 4“4 2 “4 3

: A  R o u t e r  c o n n e c t e d  ____________________  : A  B i d i r e c t i o n a l  l i n k

T  o  r o w  i  a n d  c o l u m n  j

Figure 4.3: Connections between Routers in a Multi-Mesh network of order 4
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At this point, in Figure 4.3, we have used undirected links. Later on, we will implement 

such links using either unidirectional links or bi-directional links. If there is a 

unidirectional link x —> y, it means there is a fiber allowing communication from node x 

to node y. It is not necessarily true that there will be a fiber allowing communication 

from node y to node x. In the case of bi-directional link x <-> y, there will always be two 

fibers - one allowing communication from x to y and one for communication from y to x.

Now we will discuss how we propose to connect the boundary processors of a block to a 

router. We will discuss in detail the physical topology corresponding to the connections 

from the boundary processors on the top and the bottom edge of block By. The physical 

topology corresponding to the connections from the boundary processors on the right and 

the left edge of block By are similar.

rviff

B

Figure 4.4: Outputs of multiplexers are connected to the inputs of router

Router Ry will be connected to the corresponding block By carrying incoming and 

outgoing optical signals as follows:
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1) the router R;j will be connected to block Bij with one fiber carrying signals from 

processors P(i, j, 1, k) of block By for communication to processor P(k, j, n, i) of 

block Bkj, for all k, 1 < k < n, k ^  j. This may be easily achieved by using a 

multiplexer Mjj1, shown in Figure 4.4 with inputs from processors P(i, j, 1, k), for

all k, 1 < k < n. The fiber carrying the output of multiplexer M ^is connected as

an input to router Ry as shown in Figure 4.4. We will later use this fiber to define 

logical edges corresponding to the inter-block connections from the first row of

t l ithe block By to the n row of the other blocks in the same column.

2) the router Ry will be connected to block By with one fiber carrying signals from 

processors P(i, j, n, k) of block By to processor P(k, j, 1, i) of block Bkj, for all k, 

1 < k < n, k ^  This may be easily achieved by using a multiplexer M? shown

in Figure 4.4 with inputs from processors P (i, j, n, k), for all k, 1 < k < n. The 

fiber carrying the output of multiplexer M? is connected an input to router Ry as

shown in Figure 4.4. We will later use this fiber to define logical edges 

corresponding to the inter-block connections from the nth row of the block By to 

the first row of the other blocks in the same column.
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Figure 4.5: Inputs of the demultiplexers are connected to the output of router

3) the router Rij will be connected to block By with one fiber carrying signals from

processors P(k, j, n, i) of block B k j  to processor P(i, j, 1, k) of block B y ,  for all k,

1 < k < n, k ^ j .  This may be easily achieved by using a de-multiplexer ,

shown in Figure 4.5 with inputs from processors P(k, j, n, i) for all k, 1 < k < n. 

The fiber carrying the input to de-multiplexer is an output from the router Ry 

as shown in Figure 4.5. We will later use this fiber to define the logical edges

tVicorresponding to the inter-block connections from the n row of the blocks Bkj to 

the first row of the block By in the same column.

4) the router Ry will be connected to block By with one fiber carrying signals from

processors P(k, j, 1, i) of block B k j  to processor P(i, j, n, k) of block B y  , for all k,

1 < k < « ,  k ^ j .  This may be easily achieved by using a de-multiplexer D ?  ,

shown in Figure 4.5 with inputs from processors P(k, j, n, i) for all k, 1 < k < n. 

The fiber carrying the input to the de-multiplexer D ?  is an output to router R y  as
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shown in Figure 4.5. We will later use this fiber to define the logical edges 

corresponding to the inter-block connections from the first row of other blocks Bkj 

to the «th row of the block By in the same column.

The Figure 4.6 only shows the ith column of a Multi-Mesh and the four fiber links 

between the router Ru and block Bn. All the routers have similar connections to the 

corresponding blocks.

Bi,

n

t E f Rh

: Blocks in ith column

: A Router
: An unidirectional Fiber

Figure 4.6: Connection between router Rn and block Bn
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4.1.1 Physical topology using unidirectional links

The block diagram shown in Figure 4.7 is identical to that shown in Figure 4.3 except 

that the links have directions as shown.

: An unidirectional link

Figure 4.7: A MM network based on unidirectional links

We are discussing here only the implementation of the vertical inter-block connections 

since the horizontal inter-block connections may be achieved in exactly the same way.

4.1.2 Physical topology using bidirectional link

If we use bi-directional links, the only difference is that a link between router x and 

router y actually corresponds to a fiber from x to y and a fiber from y to x. As shown in 

Figure 4.8, we denote a link between x and y b y x o y .

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



< > : A Bidirectional link

Figure 4.8: A MM network based on bidirectional links

4.2 Logical Topology for a Fault-Free Multi-Mesh

As mentioned earlier, our logical topology must have a directed edge for each inter-block 

connection. Here we only discuss the vertical inter-block links since the case for the 

horizontal inter-block links are identical. In a Multi-Mesh of order n, the boundary 

processors on the top (bottom) edge of block B(a, P), are connected to the boundary 

processors on the bottom (top) edge of block B(*, P). In other words, processors P (a, 

P, 1, y) (P (a, p, n, y)) are connected to processor P(y, P, n, a) (P(y, p, 1, a)), for all y, 1 

< y < n, y * a.

In our problem, we need two lightpaths from each block Ba, p to block By, p - one for the 

connection from processor P(a, p, 1, y) to P(y, p, n, a) and one for the connection from
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processor P(a, (3, n, y) to P(y, p, 1, a) for all a , y, 1 < a, y < n. We now look at the ring 

consisting only of the routers in column number P and the fibers connecting them. We 

may view the Ba> p, as the end node connected by the multiplexer collecting lightpaths 

from all processors on the top edge of the block to router Ra> p. The set of lightpaths from 

the top edges of the blocks p, 1 < a  < n define a completely connected ring. Similarly 

the set of lightpaths from the bottom edges of the blocks Ba, p, 1 < a  < n define another 

completely connected ring. In summary our problem is to define complete connectivity 

for a unidirectional ring using a set of wavelengths say {Ai, Aa,... Ar}. This constitutes the 

set of connections from all the processors on the top edge of block in column p. Then we 

define an independent second set of complete connections simply by using another set of 

wavelengths {Ar+i, Ar+2, ... A2R.}. This second set constitutes the set of connections from 

all the processors on the bottom edge of block in column p. Research has already been 

done on wavelength assignment in bi-directional WDM rings [StBa99] and a recursive 

procedure for wavelength assignment for complete connectivity in bi-directional rings 

has been reported [EBC98].

4.2.1 Logical topology using unidirectional links

We now describe our process for assigning routes and wavelengths to each lightpath to 

define complete connectivity for a unidirectional ring. Due to the symmetric nature of our 

network, we have chosen a straight forward route for our lightpaths - we will use only the 

fibers connecting routers in column p when defining lightpaths from any block in column 

P to any other block in the same column. We will use the following algorithm to assign
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wavelengths to each lightpath. This algorithm assumes that there is a unidirectional ring 

with N nodes, 1 < N < n which are assigned numbers 1, 2, ... , N with wavelengths 

already assigned to them for complete connectivity. The algorithm simply puts a new 

node (NodeN+i), in any desired position on the ring and assigns wavelengths for 

communication from every existing node to the new node and wavelengths for 

communication from the new node to every existing node. We assume that node N + 1 is 

placed after node i shown in Figure 4.9, in the network. We will use new wavelengths 

X n + i  ' ,  X . n + 12 ,  ... , X  n + i N  in our algorithm.

Node,

Node,

Node, Node.

Figure 4.9: Inserting the (N+l)th node in a unidirectional ring

Algorithm Assign-wavelength

Step 1) repeat step 2 for all j, 1 < j <N

Step 2) assign wavelength A,n+iJ for communication from node j to node N + 1 

Step 3) assign wavelength A,n+ij for communication from node N + 1 to node j.
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To assign wavelengths for all nodes 1, 2, ... , n, we simply start with 2 nodes which 

require 1 wavelength for communication and then keep adding nodes 3, 4, . . .  n. The total 

number of wavelengths needed is 1 + 2 + ... + (n-1) = «(n-l)/2.

4.2 .2  L og ica l top o logy  u sing  b id irection al links

We will use the same route chosen in the previous section so that we will again use only 

the fibers connecting routers in column (3 when defining lightpaths from any block in 

column |3 to any other block in the same column. We already have an algorithm for 

assigning routes and wavelengths to each lightpath to define complete connectivity for a 

bidirectional ring [EBC98]. They also chose a shortest path routing and have described a 

recursive algorithm to determine the wavelengths needed for complete connectivity. We 

will use their algorithm. Since we need to define two lightpaths from each end node to 

every other end node, we will need K = (n2 -  l)/8 wavelengths.

4 .3  R o b u s t  L o g ic a l T o p o lo g y  fo r  a M u lt i-M e s h

Faults in interconnection networks have been investigated for a long time [Ge98], 

[RaMu99b], [SRM02]. The standard approach in designing fault tolerant interconnection 

networks is that, in the case of faults, we have to determine a path edge (node) disjoint 

from the faulty edge (node). In other words, to avoid faults, in the standard approach, the 

message has to use a different routing algorithm where the message passes through a 

sequence of processors different from that used in the absence of faults.
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We are proposing a scheme for tolerating faults in the optical path that we may include at 

relatively little cost. This scheme uses the protection path scheme, so that if there is a 

fault affecting a number of lightpaths, we can use alternate optical paths. In other words, 

even though the optical path used in sending a message does change, the diameter and 

the routing algorithm remains the same.

We now discuss how we may handle the case of faults in the logical topology. In our 

scheme we make the following assumptions:

> our physical topology uses bidirectional links,

> we do not have to deal with more than one fault at a time.

We will use path protection schemes [SRM02] that has been proposed recently for wide 

area optical networks. In a path protection scheme, when defining lightpaths, it is ensured 

that additional optical resources are included in the network so that every lightpath 

affected by any fault in the network may be rerouted to avoid the faulty element. In the 

absence of faults, primary paths are used for all communication [GeRaOO]. When a single 

fault occurs, a number of lightpaths passing through the fault (resulting from a cut in the 

fiber, fault in the receiver or transmitter) will no longer be usable. Each of these failed 

lightpaths must be rerouted so that they use a backup path that does not use the faulty 

element affecting its primary path. To achieve this, we have to make sure that the spare 

capacity in the optical part of the network is sufficient to allow the creation of such 

backup lightpaths when needed. At the same time, for reasons of economy, the amount 

of additional resources needed to guarantee that backup paths may be created in all 

possible situations must be kept to a minimum. Shared path protection is used to
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minimize the additional overhead needed to create the backup paths [RaMu99a]. In 

shared path protection, the following rules must be followed [RaMu99a]:

>  the primary path and the backup path for a given lightpath must be edge-disjoint,

>  two primary paths sharing a fiber must be assigned different wavelengths,

>  two backup paths may share a fiber as well as have the same wavelength provided 

the corresponding primary paths are edge disjoint (since we assume single fault 

these two fiber-disjoint primary paths cannot fail at the same time).

We will now discuss how we may incorporate protection path scheme using the bi­

directional optical networks discussed earlier in this chapter. In describing this scheme, 

we have to

> indicate the primary paths for each of the inter-block connections,

> indicate how we can define protection paths to handle every possible fault,

>  calculate the cost of such a scheme.

Our scheme uses, for primary paths, the same paths we used in defining the logical 

topology of fault free networks using bi-directional links. We will use the same set of K = 

(n -  l)/8 wavelengths used there.

We now consider the case of a single fault. In describing the approach we will use 

addition (+) or subtraction on rows and columns. It should be noted that there is a “wrap­

around” so that row (or column) n is followed by row (or column) 1. We only discuss the 

failure of communication in the downward direction, say from router R«p to router
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R(a+ i)p. This failure may be due to a failure in the fiber or due to a fault either in the 

router R ap or R(a + i>p. The case of a failure of communication in the horizontal direction 

or in the upward direction is identical. We note that the fiber from router R (xp to router 

R(a+ i)p is used by a primary lightpath from block Bgp to block B(&+. m) p if and only if m < 

n/2 and 5 < a  < 8 + m. Our scheme for setting up backup lightpaths therefore only needs 

to consider the failed lightpaths that happen due to a fault in communication from router 

R ap to router R<a +i)p- For our convenience, we group these primary lightpaths and 

assign labels to them as follows:

Group 1 consisting of the following lightpaths to block B(«+ i)p 

o lightpath PL(«+1) i from block Bap 

o lightpath PL(a+1) 2 from block B(a_i)p 

o

o lightpath PL(a+1)(„ /2) from block B(a - n/2 + i)p

Group 2 consisting of the following lightpaths to block B(a+2)p 

o lightpath PL(<x+2) 1 from block Bap 

o lightpath PL(a+2)2 from block B(a_i)p 

o . . . .

o lightpath PL(a+2x„ /2 _ 0 from block B(a - «/2 + 2>p

Group «/2 consisting of the following lightpath to block B(a + „/2)p 

o lightpath PL(a +„/2) 1 from block B«p
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Example:

Figure 4.10 shows an example of a MM network of order 8 where a fault has occurred 

affecting communicating from router R43 to router R53.

=*41

'12

‘13

*23 '24>22

'32

*43 *44'42

‘54'52

*63 *64’62

*73 '74*72

*83 *84'82

=>75

Bo B» B* Bo

A Block of ith row and jth column ( j^ )  : A router of ith row and jth column

Figure 4.10: A faulty link in a multi-mesh of order 8
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The primary lightpaths in the fibers of different groups are as shown in Table 4.1. 

Table 4.1: Primary lightpaths in the fibers of different groups

Group
number

Label of 
primary 
lightpath

Source node Destination
node

1 PL 51 B43 B53

P L 52 B33 B53

PL 53 B23 B53

P L 54 B13 B53
2 PL6i B43 B 63

p l 62 B33 B 63

p l 63 B23 B 63
3 PL 71 B43 B73

P L 72 B33 B73

4 P L g i B43 B 83

In our scheme for defining backup lightpaths, if n is even, we need additional n/2 

wavelengths (k\, ••• ?W2}to implement our scheme. To define a backup lightpath for

each primary lightpath affected by a fault anywhere in the network, we specify the route 

and the wavelength for each of the backup lightpaths that must replace an affected 

primary lightpath as follows:

a) To replace the primary lightpaths PL(a+;) kin group i we use column (3 + i to route 

the backup lightpath BL(a+i) k, 1 < i < n i l , 1 < k < nil -  i + 1.

b) We assign wavelength Ap to backup lightpath BL(a+i) k wherep = (l-i)© n/2 (k-1) +1 

We note that when calculating p, we use “wrap-around” so that A,i is preceded by Xn/2.
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Example

Figure 4.11 shows the same multi-mesh shown in Figure 4.10 but, includes all the routers 

and the horizontal and vertical fibers. We have omitted the wraparound connections to 

simplify the diagram and we have not shown the connections from a block to the routers. 

Once again we are considering the fault be in the communication from R 43 to R53.

Figure 4.11: A faulty multi-mesh of order 8
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Table 4.2 describes the details of the backup lightpaths. We will only explain one 

situation.

Table 4.2: The backup lightpaths

Group # Primary Lightpath Backup lightpath

originating
from

Terminating
at

Routers used Wave­
length

1 B43 B53 R43 —► R44 —> R54 —► R53 h
B33 B53 R 3 3 -+ R 3 4 —>R 44—>R 54— * ^ 5 3 A,2

B23 B53 R23 *R24 *R 34 *R44 ^ 5 4  *
R 53

^3

B13 B53 R l3  — >■ R 14—> R 24 —► R34 

—»R 44 —> R54 * R53

X 4

2 B43 B 63 R43 > R 44—>R45—♦ R55 —* 
R 65 * R 64 R 63

X4

B33 B 63 R 33—» R 34—> R 35^ R 45—>R 5S 

—* R ^5 —> R 64 R 63
h

B23 B 63 R23 *R 24 *R25 * R 35 * 

R 45—>R 55—>R65—>R 64—  ̂ R 63

X,2

3 B43 B73 R43 —> R44 —> R45 ► R46 —*■

R 56 —*■ R66 R76 —* R75 

R 74—» R73

A.3

B33 B73 R 33 —*■ R 34 —» R35 — * R36 —*■ 

R 36 ~ > R 56 —► R66 ► ^ 7 6  ~+
R73

A4

4 B43 B g 3 R43 —> R 44 —» R45 —> R 46 ~ ►

R47 —► R 57 —* R -67 R 77 R56 
—* R g7 —>• R ge —*■ R gs — > R 84

R 83

^2
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Group 2 includes primary lightpath PL62 from block B33 to B63. The primary path passes 

through the faulty link from router R43 to R53. The corresponding backup lightpath BL62 

will use the route B33 —̂ R33 —> R34—> R35 —> R45—> R55 —> R^5—̂ R64 —> R63—̂ Bg3. The 

wavelength of BL62 will be Xp where p = (1 - i) + (k - 1). Our pool of additional 

wavelengths consists of wavelengths [A,i, X2, X3, A4]. Since the group number is 2, i = 2. 1 

-  2 = -1 which corresponds to X4, Here k = 2 so that k-1 = 1. The wavelength immediately 

after A,4isXi.

In this chapter we have considered the implementation of the inter-block connections in a 

Multi-Mesh using optical links. We have considered the cases of using uni-directional as 

well as bi-directional links. We have proposed a new scheme for handling faults affecting 

the lightpaths where the routing algorithm is unaffected by single optical faults.
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Chapter 5

Conclusions and Future Directions

5.1 Summary of Work Done

In this thesis we have proposed a new network topology called 3D Multi-Mesh (3D MM) 

for multiprocessor architecture which is an extension of a recently proposed architecture 

named Multi-Mesh. The main results of our investigations are as follows:

1) We have proposed a new architecture that uses the 3-dimensional mesh as its 

building block rather than a 2-dimensional mesh as done in the Multi-Mesh 

[DDS99]. We have shown that our architecture has better topological properties 

compared to the Multi-Mesh architecture and that a number of algorithms can be 

efficiently mapped on the 3D MM network.

2) We have explored a number of possible approaches for implementing the Multi- 

Mesh architecture using opto-electronic technologies. There are two novel 

features of our approach:

a. We have shown that WDM wavelength-routed networks may be used to 

realize some of the links.

b. We have shown that single faults may be handled easily without 

increasing the number of optical paths used.
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5.2 Suggestions for Future Work

• We have presented the fundamental algorithms; still there are a number of basic 

algorithms like matrix multiplication, matrix transposes, and sorting etc. that can 

be efficiently mapped on 3D MM network.

• We have proposed a new network topology consists of n6 processors, in real life 

there may be a situation where the number of processors may be less than or 

greater than n6 of processors, in order to accommodate any number of processors 

incomplete 3D MM can be defined in the same way of incomplete Multi-Mesh.

• In our optical implementation of Multi-Mesh, we have taken care of one fiber link 

failure; it can be improved to two or more.

• We have proposed possible approaches of implementing Multi-Mesh using 

optical technology. Our results may be extended to define 3D Multi-Mesh using 

optical technology.

5.3 Concluding Remarks

We have proposed a new architecture for interconnection networks and have shown that 

the proposed network has significantly better topological properties (e.g., diameter, node 

degree) compared to other mesh-based network, specially the Multi-Mesh network. We 

have established the fundamental algorithm for summation/average/maximum/minimum 

and point-to-point communication and shown that this network outperforms the Multi- 

Mesh network. Our optical implementation has the following novel features:

> we have used wavelength routed WDM networks which has lower power 

requirements compared to passive star coupler based designs used in other optical 

implementations

'> we have shown that protection schemes may be used in this network with 

relatively little cost.
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Appendix A

Path Computations for Different Source and Destination Pairs 

Assumptions:

1. ($2 > xl

2. (31 > x2

3. 72 > yl

4. yl > y2

5. cx2 > zl

6. a l  > z2

In order to path calculation in diameter of 3D MM we have assumed the above 6 cases. 

As there are 6 assumptions there can be all together 64 cases as shown in the table.

Table: 64 possible cases of source and destination

Cases p2>xl . pi > x2 72 > y i yl > y2 a2>zl ai>z2

1 T T T T T T
2 T T T T T F
3 T T T T F T
4 T T T T F F
5 T T T F T T
6 T T T F T F
7 T T T F F T
8 T T T F F F
9 T T F T T T
10 T T F T T F
11 T T F T F T
12 T T F T F F
13 T T F F T T
14 T T F F T F
15 T T F F F T
16 T T F F F F
17 T F T T T T
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18 T F T T T F
19 T F T T F T
20 T F T T F F
21 T F T F T T
22 T F T F T F
23 T F T F F T
24 T F T F F F
25 T F F T T T
26 T F F T T F
27 T F F T F T
28 T F F T F F
29 T F F F T T
30 T F F F T F
31 T F F F F T
32 T F F F F F
33 F T T T T T
34 F T T T T F
35 F T T T F T
36 F T T T F F
37 F T T F T T
38 F T T F T F
39 F T T F F T
40 F T T F F F
41 F T F T T T
42 F T F T T F
43 F T F T F T
44 F T F T F F
45 F T F F T T
46 F T F F T F
47 F T F F F T
48 F T F F F F
49 F F T T T T
50 F F T T T F
51 F F T T F T
52 F F T T F F
53 F F T F T T
54 F F T F T F
55 F F T F F T
56 F F T F F F
57 F F F T T T
58 F F F T T F
59 F F F T F T
60 F F F T F F
61 F F F F T T
62 F F F F T F
63 F F F F F T
64 F F F F F F
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We have taken care of the 64 possible cases; due to lack of space here we’re showing 

some interesting cases. We first showed the block level and then in the processor level.

(C ase 1) (All the 6 assumptions are true)

P T 1: B (<xl, p i ,  y l)  ->  B (a2 , p i ,  y l)  ->  B (<x2, p2, y l)  ->  B (ot2, p2, y2)

P (a l, pi, yl, x l, yl, zl) - » P (al, pi, yl, 1, yl, a2) - » P (a2, pi, yl, n, yl, a l)

-» P (a2, pi, yl, p2 ,1, a l)  - » P (a2, p2, yl, pi, n, a l)  -» P (a2, p2, yl, pi, y2, n)

- » P (a2, p2, y2, pi, yl, 1) -> P (ot2, p2, y2, x2, y2, z2)

Path Length:

(xl - 1) + (a2 -  z l) + 1 + (n- P2) + (yl -  1) + 1 + (n - y2) + (n - a l )  + 1 + (Pi- x2) + 

(y i -  y2) + (z2 -1)

= xl - 1 + a2 -  zl + 1 + n- P2 + y l-  l + l +  n - y2 + « - a l  + l + pi- x2 + y l-  y2 + z2 -1 

= 3« + x l  + y l  - z l  - a l  + p i + yl - x2 - y2 + z2 + a2 - P2 - y2

PT 2: B ( a l ,  p i ,  y l)  ->  B ( a l ,  p i ,  y2) ->  B ( a l ,  P2, y2) ->  B (a2 , P2, y2)

P(al, pi, yl, xl, yl, z l ) -> P(al, pi, yl, xl, y2,1) -» P(al, pi, y2, xl, yl, n)

- » P(al, pi, y2, p2, n, n ) -» P(al, p2, y2, pi, 1, n) P(al, p2, y2, n, 1, a2)

—> P(a2, P2, y2 ,1 ,1, a l) P(a2, P2, y2 , x2, y2, z2)

Path Length:

= (y2-yl) + (zl-l)+l+(p2-xl) +(«-yl)+l+(«-pl) + (n-a2) + 1 + (x2-l) + (y2—1) + (al-z2) 

= y2 - yl + zl -1+ 1 + P2 - xl + n - yl + 1 + n - pi + n - a2 + 1 + x2 -1 + y2 -  1+ al-z2 

= 3« -  x l -  y l  + z l  + a l  - p i - yl + x2 + y2 -  z2 - a2 + P2 + y2 

PT1 + PT2 :

PT1: 3n + x l  + y l  - z l  - a l  + p i + yl - x2 - y2 + z2 + a2 - p2 - y2 

PT2: 3n -  x l  -  y l  + z l  + a l  - p i - yl + x2 + y2 -  z2 - a2 + P2 + y2

= 3 n
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(Case 2:) (Assumption 6 false)

PT1: B (a l, p i, y l) ->  B (a2, p i, yl) -> B (a2, P2, yl) B (a2, P2, y2)

P (a l ,  p i, yl, x l, y l, z l) -> P (a l, p i, yl, 1, yl, a2) -» P (a2, p i, yl, n, y l, a l)

-> P (a2, p i, yl, P 2 ,1, a l )  - > P (a2, p2, yl, p i, n, a l )  P (a2, p2, yl, p i, y2 ,1)

P (a2, P2, y2, p i, yl, n) -» P (a2, p2, y2, x2, y2, z2)

Path Length:

(xl - 1) + (a2 -  z l) + 1 + (n- p2) +(yl -  1) + 1 + (n - y2) + (a l - 1) + 1 + (pi- x2) + 

(yl -  y 2 ) + (n  - z 2 )

= xl -1 + a2 -  zl + 1 + n- P2 + y l-  l + l+  « - y2 + « + a l  + l+  pi- x2 + y l-  y2 - z2 -1 

= 3n + x l + y l  - z l  + a l  + p i + yl - x2 - y2 - z2 + a2 - P2 - y2

PT2: B (a l, p i, yl) -> B (a l, p i, y2) —> B (a l, P2, y2) —> B (a2, P2, y2)

P (a l, p i, yl, x l, y l, z l) -> P (a l, p i, yl, x l, y2 ,1) -> P (a l, p i, y2, x l, yl, n)

- 4 P (a l, p i, y2, p2, n, n) - » P (a l, p2,y2, p i, 1,/*) —>P (a l, P2, y2, n, 1, a2)

P (a2, p2, y 2 ,1,1, a l )  P (a2, P2, y2, x2, y2, z2)

Path Length:

= (y2-yl) + (zl-1) +1+ (P2-xl) + («-yl) +1+ (n-pl) + (n-a2) +1+ (x2-l)+ (y2-l)+(z2-al) 

= y2-yl +zl - l + l + p 2 - x l + « - y l  + l-(-n-pi-i-n-oc2 + l + x 2 - l - i - y 2 - l + a l + z 2  

= 3« -  xl -  yl  + zl + a l  - pi - yl + x2 + y2 -  z2 - a2 + P2 + y2

PT1 + PT2 :

PT1: 3/i + x l + y l  - z l  + a l  + p i + yl - x2 - y2 - z2 + a2 - p2 - y2 

PT2: 3/i -  x l  -  y l + z l  - a l  - p i - yl + x2 + y2 + z2 - a2 + P2 + y2

= 3n
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(Case 3) (Assumptions 4 & 5 & 6 False)

PT1: B (a l, (31, yl) -> B (a2, p i, yl) B ( a l ,  p2, yl) - » B (a2, p2, y2) 

P (al, p i, yl, x l, y l, z l ) -» P (a l, p i, yl, 1, yl, a2) P(oc2, p i, yl, n, y l, a l)

-» P(a2, p i, yl, p 2 ,1, a l ) -» P(a2, p2, yl, p i, n , a l )  -> P(a2, p2, yl, p i, y 2 ,1)

-» P(a2, p2, y2, p i, yl, n) -> P(a2, p2, y2 , x2, y2, z2)

Path Length:

(xl-1) + (zl-a2) + 1 + (»-p2) +(yl-l)+ l+ (n -y2)+ (al-1) +1+ (pi- x2)+(y2 -yl)+(n-z2) 

= xl-1 - a2 + zl + 1 + n- p2 + y l-  1 + 1 + n - y2 + a l  -  1 + 1 + pi- x2 - yl+ y2 + n - z2 

= 3n + xl + yl + z l + a l  + pi - yl - x2 + y2 - z2 - a2 - P2 - y2

PT2: a lp ly l -> a ip iy2->  a ip 2 y 2 ^  a2p2y2

P (a l, p i, yl, x l, y l, z l ) -> P (a l, p i, yl, x l, y2, n) P (al, p i, y2, x l, yl, 1)

-4 P (a l, p i, y2, p 2 ,1,1) -» P (a l, p2, y2, p i, n, 1) -> P (a l, p2, y2, n, n, a l)

P(a2, P2, y 2 ,1 ,n, a l )  P(a2, p2, y2 , x2, y2, z2)

Path Length:

= (y2-yl) + (n-zl) + 1+ (p2-xl)+(yl-l)+l+(«-pl)+ (ot2-l) + 1 +(x2-l)+(n-y2)+ (z2 - a l )  

= y 2 - y l - z l - l + l  + P 2 - x l + n  + y l - l + n - p i + n  + a2 + l + x 2 - l + « - y 2 -  al+z2 

= 3n -  x l -  y l - z l - a l  - p i + yl + x2 - y2 + z2 + a2 + P2 + y2

PT1 + PT2 :

PT1: 3« + x l + y l + z l + a l  + p i - yl - x2 + y2 - z2 - a2 - P2 - y2 

PT2: 3/i -  x l -  y l - z l - a l  - p i + yl + x2 - y2 + z2 + a2 + p2 + y2

= 3n
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(Case 4) (Assumptions 3 & 4 & 5 & 6 are false)

PT1: B (a l, p i, yl) -> B (a2, p i, yl) -> B (a2, P2, yl) B (a2, p2, y2)

P (a l, (31, yl, x l, y l, z l ) -> P (a l, (31, yl, 1, yl, a2) P(a2, p i, yl, n, y l, a l )

P(a2, p i, yl, p 2 ,1, a l ) P(a2, p2, yl, p i, n , a l )  -» P(a2, p2, yl, p i, y 2 ,1)

-» P(a2, p2, y2, p i, yl, n) -> P(a2, p2, y2 , x2, y2, z2)

Path Length:

(xl-l)+(zl-a2)+l+(n-p2)+(n-yl)+l+(y2-l)+ (a l - 1) + 1 + (Pi- x2) + (y2 - yl) + (n - z2) 

= xl -1 +zl - a2 + 1 + n- P2 + n - yl+ 1 + y2 -1 + n + a l  + 1 + pi- x2 - yl + y2 - z2 -1

= 3/i + x l  - y l  + z l  + a l  + p i - yl - x2 + y2 - z2 - a2 - p2 + y2

PT2: B (a l, p i, y l) B (a l, p i, y2) —> B (a l, P2, y2) —> B (a2, p2, y2) 

P (a l, p i, yl, x l, y l, z l ) -^  P (a l, p i, yl, x l, y2, n) P (al, p i, y2, x l, yl, 1)

-> P (a l, p i, y2, P 2 ,1,1) -» P (a l, p2, y2, p i, n, 1) P (a l, p2, y2, n, n, a l)

—> P(a2, p2, y 2 ,1 , n , a l )  —> P(a2, P2, y2 , x2, y2, z2)

Path Length:

= (yl-y2)+(«-zl) + 1 +(p2-xl) + (yl-1) +1 +(«-p 1 )+(a2-1)+1 +(x2-1)+(« - y2) + (z2 - a l )  

= y l- y2 - zl -1+  1 + p2 - x l + n + yl + 1 + n - p i + n + a2 + 1 + x2 -1 - y2 -  1- al+z2 

= 3n -  x l + y l - z l - a l  - p i + yl + x2 - y2 + z2 + a2 + P2 - y2

PT1 + PT2 :

PT1: 3n + x l - y l + z l + a l  + p i - yl - x2 + y2 - z2 - 02 - P2 + y2 

PT2: 3/i -  x l + y l + z l - a l  - p i + yl + x2 - y2 + z2 + a2 + P2 - y2

= 3/i
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(Case 5) (Assumptions2&3&4&5&6arefalse)

PT1: B (a l, p i, y l) B (a2, p i, yl) - > B (a2, p2, yl) B (a2, P2, y2)

P (al, p i, yl, x l, y l, z l ) -» P (a l, (31, yl, 1, yl, a2) -> P(a2, p i, yl, n, yl, a l)

->  P(a2, pi, yl, p2, n, a l ) P(a2, P2, yl, pi, 1, a l)  ^  P(a2, p2, yl, pi, y 2 ,1)

-» P(a2, p2, y2, p i, yl, n) -> P(a2, P2, y2 , x2, yl, zl)

Path Length:

(xl-l)+(zl-a2) +l+(«-p2)+(«-yl)+l+(y2-l)+(al-l) +l+(x2 - p i) + (y2 -yl)+(/i - z2)

= xl - 1 - a2 + zl + 1 + n- P2 - y l -  l + l +  n + y2 + a l  + l -  p i+  x2 - yl+ y l - z l  -1 

= 3« + x l - y l + z l + a l  - p i - yl + x2 + y2 - z2 - a2 - P2 + y2

PT2: B (a l, p i, yl) -> B (a l, p i, y2) B (a l, P2, y2) -> B (a2, P2, y2) 

P (al, p i , y l , x l , y l , z l  ) - >  P ( a l , p l , y l ,  x l ,y2 ,n) ->  P (a l,p l,y 2 , x l ,y l ,  1)

-> P (al, p i, y2, P 2 ,1 , 1 ) -> P (a l, p2, y2, p i, n, 1) -> P (al, p2, y2 ,1, n, a2)

—> P(a2, P2, y2, n ,n, a l)  —> P(a2, P2, y2 , x2, y l, zl)

Path Length:

= (yl-y2) + (n - z l) + 1 +(p2-xl) + (y l-l)+ l+ (p l-l)+ (a2-l)+ l+  (n- xl)+(n-yl)+(zl -a l)  

= yl-y2 - zl -1+  1 + P2 - x l + n + yl + 1 + n + pi + n + a2 + 1 - x2 - 1 - y2 -  1- al+z2

= 3n -  x l + y l - z l - a l  + pi + yl - x2 - y2 + z2 + a2 + P2 - y2

PT1 + PT2 :

PT1: 3« + x l - y l + z l + a l  - p i - yl + x2 + y2 - z2 - a2 - P2 +y2 

PT2: 3« -  x l + y l - z l - a l  + p i + yl - x2 - y2 + z2 + a2 + P2 - y2

= 3 n
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(Case 6) (All the assumption 1 & 2 & 3 & 4 & 5 & 6  are false)

P T 1 : B ( a l ,  (31, y l)  ->  B (a 2 , p i ,  y l)  ->  B (a 2 , P2, y l)  ->  B (a 2 , P2, y2) 

P (a l, p i, yl, x l, y l, z l ) -» P (al, p i, yl ,n,  yl, a2) P(a2, p i, yl, 1, y l, a l )

-> P(a2, p i, yl, p2, n, a l ) -> P(a2, p2, yl, p i, 1 , a l )  -> P(a2, p2, yl, p i, y 2 ,1)

->• P(a2, P2, y2, (31, yl, n) -» P(a2, P2, y2 , x2, y2, z2)

Path Length:

(n - xl)+(zl-o2) +l+(p2 -  1 )+(n-yl)+l+(y2-l)+(al-l) +l+(x2 - p i) + (y2 -yl)+(« - z2) 

= - x l -1 - a2 + zl + 1 + n + p2 - y l -  l + l +  « + y2 + a l  + l -  p i+  x2 - yl+ y2 - z2 -1 

= 3n - x l - y l + z l + a l  - p i - yl + x2 + y2 - z2 - a2 + P2 + y2

P T 2 : B ( a l ,  p i ,  y l)  ->  B ( a l ,  p i ,  y2) —> B ( a l ,  P2, y2) ->  B (a 2 , P2, y2) 

P (a l, p i, yl, x l, y l, z l ) -» P ( a l , p i , y l ,  x l ,y2 ,n) ->  P(a l ,p i ,y2 ,  x l , y l , l )

P (a l, p i, y2, p 2 , 1 , 1 )  -» P (a l, p2, y2, p i, n, 1) -> P (al, p2, y2 ,1, n, a2)

—> P(a2, P2, y2, n ,n, a l )  P(a2, P2, y2 , x2, y2, z2)

Path Length:

= (yl-y2)+(«-zl) +1+ (xl-P2)+(yl-l)+ l+(P l-l)+(a2-l)+ l+  (n- x2) + (n-  y2) + (z2 - a l )  

= yl-y2 - zl -1+  1 - p2 + xl + n + yl + 1 + n + p i + n + a2 + 1 - x2 -1 - y2 -  1- al+z2

= 3« + x l + y l - z l - a l  + pi + yl - x2 - y2 + z2 + a2 - p2 - y2

PT1 + PT2 :

PT1: 3« - x l - y l + z l + a l  - p i - yl + x2 + y2 - z2 - a2 + p2 +y2 

PT2: 3k + x l + y l - z l - a l  + p i + yl - x2 - y2 + z2 + a2 - P2 - y2

=  3k
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Appendix B

Glossary of Important Terms

Boundary Processor: The processors on the sides of the block (but not on comers) are 

characterized by x and y values such that exactly one of these coordinates are 1 or n.

Connectivity: The minimum number of arcs that have to be removed from the network 

to cut the network into two disconnected networks.

Corner Processor: The processors situated in the comer of a block meaning that all of 

the coordinate values are exactly 1 or n.

Cost: Total number of communication links of a network.

Diameter: Diameter of a graph is the maximum of the shortest distance (hops) between 

two nodes.

Dynamic Interconnection Network: Connections among the processors can be

changed; the processors are not directly wired.
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Fault Tolerant Optical Network: A network that is capable of working even in the 

presence of faults. In some cases WDM optical network provides alternate paths to avoid 

faults.

Free Space: Instead of optical fiber free space optical interconnection uses air space for 

optical signal propagation

Inter-Block Links: The links that connect the processor of different blocks

Interconnection Network: Interconnection network connects different processors in a 

multi-processor system.

Internal Processor: the processors in a block having all the connections (neighbors) 

within the bock.

Intra-Block Link: Processors within a block are connected by intra-block link.

Lightpath: The all-optical path through which the information flows in a wavelength- 

routed optical network. A lightpath may be composed of a single wavelength or it may 

consist of multimode of wavelengths.
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Logical Topology: Is a graph that is obtained from the physical topology by assigning 

the lightpaths between the nodes. The nodes of the graph are the end-nodes of the 

physical topology and two nodes connected by a directed edge if there is a lightpath 

between them.

Multi-Hop Network: A network in which a packet may hop through zero or more 

intermediate nodes before it reaches its final destination.

Multiplexer/Demultiplexer: Optical multiplexers are used to combine several 

independent signals at different wavelength into one fiber. A demultiplexer works exactly 

the opposite way that is splitting the signals at different wavelengths.

Multiprocessor Architecture: A system consisting of more than one processing units 

where processors work simultaneously to solve a given problem.

Neighbors: Processors within the block that are directly connected are called neighbors.

Network Size: Total number of nodes in a network

Node Degree: Total number of incoming and outgoing links of a node.

Optical Communication: Data communication in a network where data is transmitted 

through optical fiber.
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Optical Couplers: Coupler is a general term that covers all the devices that combine 

beams of light into or split into beams of light out of a fiber.

Optical Fiber: Optical fiber is a medium of data transmission where data is transmitted 

in the form of light wave. Optical fiber is a thin filament of glass, which acts as a wave­

guide

Optical Router: In an optical network, a router is a device that is connected to a number 

of fibers, some carrying incoming optical signals to the router and the others carrying 

outgoing optical signals. A router determines how the incoming signals will be directed 

to the outgoing fibers.

Passive Star Coupler: The passive star coupler is a “broadcast” device, where an optical 

signal transmitted using a given wavelength from a node in the network will be 

communicated to all other nodes in the network.

Physical Topology: Provides the physical connections between the nodes in a network. 

Regular Graph: A graph where each node has same node degrees.

Routing and Wavelength Assignment (RWA): Given a network topology and a set of

lightpaths (to be determined), the problem of routing the lightpaths in the network and
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assigning wavelengths to these lightpaths is referred as the routing and wavelength 

assignment (RWA).

Single-Hop Network: A network in which a packet travels from its source to its 

destination directly (in one hop). The packet does not encounter an electro-optic 

conversion before reaching its final destination.

Static Interconnection Network: All connections among the processors are fixed

meaning that the processors are wired directly.

Wavelength Division Multiplexing (WDM) Network: It is a promising approach used 

in optical fiber where the optical transmission spectrum is divided into a number of non 

overlapping wavelength (or frequency) bands, with each wavelength supporting a single 

communication channel operating at peak electronic speed.

Wavelength Routed Network: A wavelength routed WDM network is a network where 

each end-node (the source or destination of data) is connected to a router and each router 

is connected to other routers. The advantage of such network is that the data is not 

broadcast to all the end-nodes. The settings of the routers determine which end-nodes will 

be connected by a lightpath.
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