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Abstract 

A distributed smart camera network is a collective of vision-capable devices with enough processing power 

to execute algorithms for collaborative vision tasks. A true 3D sensing network applies to a broad range 

of applications, and local stereo vision capabilities at each node offer the potential for a particularly robust 

implementation. A novel spatial calibration method for such a network is presented, which obtains pose 

estimates suitable for collaborative 3D vision in a distributed fashion using two stages of registration on 

robust 3D features. The method is first described in a general, modular sense, assuming some ideal vision and 

registration algorithms. Then, existing algorithms are selected for a practical implementation. The method 

is designed independently of networking details, making only a few basic assumptions about the underlying 

network's capabilities. Experiments using both software simulations and physical devices are designed and 

executed to demonstrate performance. 
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Chapter 1 

Introduction 

1.1 Distributed Smart Cameras 

The field of distributed smart cameras is one still in its infancy, largely unexplored by the literature purely 

on its own. It combines research from a wide variety of fields, including computer vision, image and signal 

processing, embedded systems, distributed systems, and communications. As with any other emerging area of 

research with a diverse lineage, there is an inherent challenge in defining its scope in a way that embraces all 

the possibilities offered by this new technology. The challenge is twofold: as research from the various parent 

fields converges on the nascent one, it must both account for new limitations imposed by the intersection of 

the fields and see new opportunities presented by their union. 

Visual sensor networks are a concept closely related to distributed smart cameras. The two overlap almost 

fully, particularly in the extant body of research, and indeed they may soon converge into a single area of 

study. However, at present, it is important to keep their definitions as broad as possible so as not to exclude 

potential opportunities, and so it would not be entirely accurate to use the terms interchangeably, nor to call 

either a subset of the other. To illustrate, one might envision a visual sensor network not composed of smart 

camera devices, or a distributed smart camera system which does not embody the fundamental concept of a 

sensor network. 

The type of system envisioned in this research falls fully within the intersection of the two fields: it could 

accurately be called either a distributed smart camera network or a visual sensor network. The emphasis, 

however, is on the distributed nature of the algorithms used, and in that light, a definition is here provided for 

the former term which shall be used throughout this thesis: 

A distributed smart camera network is a group of physically dispersed devices, each capable of 
sensing and locally processing visual data from the environment via one or more digital cam­
eras, which may communicate with one another and/or with other devices to perform collective 
processing of this data. 

This definition is quite general, so to further delimit the type of system this research pertains to, a set of 

1 



CHAPTER 1. INTRODUCTION 2 

paradigms are applied to it, outlined and described in Section 1.2. 

1.2 Paradigms 

1.2.1 Homogeneous Distributed Network 

The definition of a distributed smart camera network in Section 1.1 may, in fact, be too general. The name 

itself implies that collective processing of the data throughout the network should be distributed in nature, 

not simply that the devices be physically distributed over some geographic area; that is, the nodes themselves 

should use some of their local processing power to collaborate in global processing over the network, rather 

than just forwarding their local results to a central station. 

This is a highly advantageous system design which lends itself extremely well to this type of system. 

Smart camera nodes gather an enormous amount of information compared to other types of sensor nodes 

(which typically measure only one or a few values), and though they distill this information with local pro­

cessing to a degree that varies by application, processing the information collectively is in all practical cases 

a computationally intensive task. Fortunately, the type of processing envisioned includes tasks like tracking, 

registration, reconstruction, and other highly parallelizable algorithms. Furthermore, the data which need to 

be processed together tend to be localized geographically in large networks, so that the associated commu­

nication is also compartmentalized in networks relying on physical proximity. Thus, the network becomes 

extremely scalable, as each node added to the network also adds distributed computation power, which, aside 

from a relatively small amount of overhead and inefficiency in parallelization, makes up for the load it adds. 

As with scalability in processing, distributed data yields an opportunity to design extremely reliable and 

robust storage and retrieval systems. In whatever final form it takes after processing, visual data about the 

same space-time area might be stored redundantly on multiple nodes, so that if some nodes fail others are 

fully equipped to respond to queries. 

In addition to run-time scalability and reliability, the distributed paradigm offers one additional major 

advantage. If the network is a homogeneous one - one in which all nodes are physically identical and run the 

same algorithms with the same initial conditions - the complexity and cost of development, manufacturing, 

and deployment are significantly reduced, since only one type of node need be produced and installed and 

the network initializes itself in an ad-hoc manner. 

1.2.2 True 3D Sensing 

The bulk of research in distributed smart cameras to date has centered on systems involving single cameras 

at each node. The focus is usually on specific tracking and surveillance applications which allow for some 

simplifying assumptions about the contents of the scene, the relative locations of the nodes, etc., so various 

2D computer vision algorithms are applied within these constraints to solve such problems. 

A true 3D sensing network, as advocated in [1], can be applied to a more general class of problems. 

For instance, the tracking problem is greatly simplified once 3D positions of the detected objects are known. 
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Virtual views - reconstructions of the scene from arbitrary viewpoints in space and time, possibly at greater 

resolution than a single node can provide - would be immensely useful to surveillance, manufacturing, and 

many other applications. But in addition to improving existing applications, whole new ones can be envi­

sioned that may not be possible at all without full 3D sensing. 

1.2.3 Stereo Camera Nodes 

While it is possible to create a 3D sensing network using single-camera nodes, this presents a series of 

challenges. In general, it is assumed that a node does not initially know its location and orientation, or 

pose, relative to the other nodes in the network. As will be seen in Chapter 2, some work has been done 

in calibrating networks of such nodes for 3D vision, but without the constraint of a short baseline, this is 

an exceptionally difficult problem. Apart from this, even if the nodes are perfectly calibrated, 2D point 

correspondences for 3D triangulation are still very difficult to find due to occlusion and variations in the 

reflective properties of a surface. 

These problems are minimized if the stereo baseline is much shorter than the distance to the scene. There­

fore, if stereo cameras are used at each node, 3D features can be recovered locally, and then any network-level 

processing operates purely on robust 3D data. The calibration problem in 3D then becomes a registration 

problem, where various iterative statistical methods can be employed to yield a much more accurate pose 

estimate than, say, the bilinear tensor (fundamental matrix) in the wide-baseline stereo case provides. Using 

such nodes relaxes the complicated deployment and scene constraints imposed by single-camera nodes, and 

provides more complete and accurate 3D reconstruction capabilities overall. 

1.3 Thesis 

The focus of this thesis is on the first step in building any functional distributed smart camera network: 

calibration. In order to perform any sort of useful collaborative processing of visual data, it must be known 

how one piece of data relates to another. 

If the totality of what a distributed smart camera network observes is thought of as existing within a space-

time coordinate system, as in [1], it is required that each node be able to reconcile its own locally observed 

data with a world reference frame, and thereby to the data from the other nodes. The world reference frame 

need not be any particular coordinate basis; indeed, it may in fact be an abstract conceptualization of what 

is, in reality, simply a series of pairwise relative mappings between nodes. The important factor is that each 

node has or can obtain the knowledge necessary to align its own data. 

This thesis concentrates on the spatial portion of this calibration. The assumptions in Section 4.2 reduce 

the problem to development of a distributed algorithm for geometric localization and orientation (Chapter 4) 

and the selection of appropriate computer vision methods for practical use (Chapter 5). Temporal synchro­

nization is implicitly satisfied by these assumptions, but for future work, there do exist means of achieving 

it explicitly in a distributed network [55, 62]. The assumptions also abstract away most of the networking 

details, so that the algorithm does not depend on any particular topology, medium, or protocol. 



CHAPTER 1. INTRODUCTION 4 

1.3.1 Statement 

The objective of this thesis is to develop a distributed spatial calibration algorithm capable of localizing 

and orienting the coordinate systems of a series of homogeneous smart stereo camera nodes within a world 

coordinate system, solely based on the three-dimensional visual data obtained by the nodes, where the nodes 

have no a priori knowledge of their location and orientation within the environment or with respect to one 

another. The algorithm should not require any manual input whatsoever, nor should it inherently depend on 

any particular configuration of the scene (although, as will be discussed, some general conditions might be 

necessary in practical implementations). To achieve this objective practically, in addition to implementing 

the algorithm itself, appropriate underlying computer vision methods shall be selected from the 2D images 

up. The method developed shall be independent of the topology, medium, and protocols used to network the 

smart camera nodes, aside from some general assumptions about the network's capabilities. 

1.3.2 Methodology 

With the objective and paradigms established, Chapter 2 provides a survey of the literature justifying the 

concepts and the opportunity for improvement, and covers the state of the art in the two major relevant 

computer vision topics. Chapter 3 covers some basic theory and conventions, providing a framework within 

which the remainder of the work is developed. 

The calibration problem itself is approached in two stages. First, in Chapter 4, the calibration problem 

is examined in purely geometrical terms, as stated in Section 4.1. A series of local assumptions are made 

(Section 4.2.6) to temporarily satisfy some practical requirements abstractly, so that the algorithm, described 

in a generic way in Section 4.4, concentrates wholly on realizing a distributed solution to the geometrical 

problem. Second, in Chapter 5, the practical requirements of the algorithm are examined, and the local 

assumptions used in the previous chapter are replaced by suitable computer vision methods. 

Chapter 6 describes several simulated and physical experiments, and reports on their results. It outlines 

the performance metrics (Section 6.1) used to evaluate the algorithm's performance, and the equipment and 

software (Section 6.2) used to perform the experiments. Three types of experiments are described along with 

their results, followed by a comparison with existing calibration algorithms. 



Chapter 2 

Literature Survey 

2.1 Distributed Smart Camera Networks 

2.1.1 Justification of the DSSC Concept 

The concept of distributed smart stereo cameras brings together three distinct advantageous paradigms: 

1. Passive 3D (Stereo) Vision 

2. Multiple Views 

3. Distributed Collaborative Processing 

These have been been used extensively to improve on the basic operations of computer vision over what 

is possible with traditional monocular methods. The underlying premise of distributed smart stereo camera 

network research is that combining all three will allow for yet better low-level solutions and a new range of 

high-level applications. 

This section explores how in the literature the above paradigms have been used, albeit not all concurrently, 

to enhance some of the most important primitive vision operations. The general benefits and limitations 

in each case are summarized, and then the advantages of employing all three paradigms in the form of a 

distributed smart stereo camera network are extrapolated. 

Shape Recognition 

The 3D shape information offered by stereo vision is richer and much more robust than 2D contours in the 

monocular case. It can be similarly reduced to metrics for comparison to a database, as in [36, 37], greatly 

improving recognition performance and extending the range of applicability. However, such methods Still 

suffer from the fact that a full 3D reconstruction is not available from a single view, and without application-

specific constraints, this can only be mitigated by cumbersome schemes of moving the target relative to the 

camera rig or by complicated machine learning methods to account for the incompleteness of the information. 

5 
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Distributed smart stereo cameras, in contrast, offer the potential for a full 3D reconstruction of the object 

without constraints, allowing recongition methods to yield more robust performance without added complex­

ity. 

Object Tracking 

Both stereo vision and the use of multiple views allow objects to be tracked in three dimensions, which is 

generally not possible in monocular vision. Stereo vision has been posited for tracking [38], since it offers 

direct 3D information, but its usefulness is limited by the fact that objects can only be tracked within the field 

of view of a single camera rig. Much research has been done, particularly for surveillance and environment 

monitoring applications, into tracking across multiple views, both overlapping [39, 40,42] and disjoint [41]. 

More recently, the advantages of a decentralized (distributed) approach to multi-view tracking using smart 

camera devices have been explored [43, 44, 45]. 

The complexity of decentralized tracking across multiple views could certainly be reduced if the analysis 

were performed on explicit 3D information rather than interpretation of 2D images; distributed smart stereo 

cameras are thus in a position to greatly improve object tracking in the general case. 

Motion Analysis 

Motion analysis, the extraction of quantitative data from dynamic scenes, is another area which has benefitted 

from both stereo vision and multiple views. It is possible to recover richer 3D motion data from stereo 

image sequences [46, 61,47] than in the monocular case, allowing for more informative high-level analyses. 

Motion estimation from multiple views has been heavily researched [48,49], particularly due to its obvious 

applications in surveillance and environment monitoring. The multiple view approach has also been extended 

to the distributed paradigm, where it benefits from localized collaborative analysis [50, 51]. Again, however, 

these approaches are rarely, if ever, combined. The stereo approach suffers from the same occlusion effects 

as the monocular approach, and the multiple view approach relies either on 2D methods such as blob analysis 

which do not generalize well or on difficult and non-robust wide-baseline 3D reconstruction. 

An approach employing distributed smart stereo cameras would impart a distributed multi-view method 

with robust true 3D scene reconstruction information, also sidestepping the occlusion problem, and as a result 

methods based on such a system would generalize very well. 

Scene Reconstruction 

With the exception of some specific cases, two or more views are necessary for passive three-dimensional 

scene reconstruction. Generally, the entire purpose of stereo vision at its basic level is 3D scene reconstruc­

tion, and methods for this are well-established in the literature [33, 58, 59, 60]. Multiple views not strictly 

consisting of stereo camera rigs but employing the same or similar methods exist, usually generalized to a 

wide-baseline approach, but these methods are inherently not robust due to the difficulty of matching features 

across widely separated views [18, 52]. For many practical applications, more specific approaches allow for 

partial scene reconstructions which are sufficient for the application but do not generalize well. A review of 
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multi-ocular reconstructions with a focus on accuracy is presented in [53]. View synthesis is one possibility 

which happens to lend itself particularly well to the distributed paradigm, as explored in [54]; however, the 

drawback is that it is computationally expensive. 

Distributed smart stereo cameras are an ideal solution for full 3D reconstruction of arbitrary scenes. As­

suming a calibration method such as the one presented in this work is able to converge, local 3D reconstruc­

tions may be combined in a distributed fashion via collaboration between the appropriate nodes, allowing for 

fast, scalable, and generally applicable scene reconstruction methods. 

2.1.2 Calibration 

As was mentioned in Chapter 1, the majority of research in distributed smart cameras to date has focused on 

monocular vision at each node. A number of methods for distributed self-calibration have been proposed for 

this paradigm, and though the vision components are not readily applicable to 3D sensing nodes, the general 

localization and distribution concepts developed apply to any vision-based system. 

The problem has been approached from one of two angles. Coming from the perspective of traditional 

sensor networks, the primary challenges are the directionality of vision sensors, the higher degree of accuracy 

required by vision applications, and the large volume of raw sensor data. Conversely, from the perspective of 

traditional computer vision, the challenge is in the scalable distribution of processing among nodes and the 

related limitations of network bandwidth. 

While traditional sensor network methods generally employ omnidirectional sensors and thus require 

only localization, vision-based networks also require orientation. Traditional sensor networks have benefitted 

from the fact that their network topology is generally geographic (for example, with ad-hoc wireless com­

munications), and thus their communication graph is a rough estimate of node localization. To apply similar 

methods to directional vision sensors, the concept of the vision graph is introduced in [6], where an edge on 

the graph represents shared field of view rather than a communication link.' 

Functional calibration methods are presented for monocular distributed smart cameras in [6, 7], These 

are based on wide-baseline stereo methods, which are generally not robust due to the matching problem [18], 

and require unwieldy initialization schemes or dictate deployment constraints. Some methods, such as [8], 

use motion of objects in the scene to calibrate, but these still suffer from the matching problem to a degree 

and require certain kinds of scene. Potentially more robust methods are presented in [9, 10]; however, these 

require the use of markers or beacons placed in the environment, which is infeasible in many cases and may 

constrain deployment or extension to dynamic calibration. 

With the true 3D sensing network paradigm introduced in [1], advocating distributed smart stereo cam­

eras, a calibration method called Lighthouse is presented in [2] which uses 3D features and geographic hash 

tables [4] to localize and orient nodes. The same basic concept is employed by the calibration method de­

scribed in this work, but the method in [2] does not appear to converge well, provides little information on 

the vision and registration problems, and has some inherent inefficiencies which are addressed here. 

'These concepts are used throughout this work, and are elaborated upon in Section 3.3. 
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2.2 Interest Point Detection 

The detection of salient features in the three-dimensional environment is fundamental to this work. These fea­

tures are triangulated from interest points or corners detected automatically in the two-dimensional images. 

The development of algorithms which do so repeatably, in such a way that the detected features are stable 

from various viewpoints, is an area of research which has received much attention lately. The literature on 

interest point detection is reviewed here with an emphasis on repeatability, which as will be seen in Section 

5.2 is the primary concern in this work. 

One of the most popular corner detection methods is that developed by Harris and Stephens [16], which 

operates by considering the differential with respect to direction of the intensity values of a small window 

surrounding each pixel, and choosing those which return high values in both directions as corners. The 

advantage of this method over previous attempts is that if a circular or circularly-weighted window is used, 

the response is isotropic. Thus, this detector is invariant to translations and rotations in the image plane. The 

Harris operator has been employed by a number of subsequent interest point detectors, such as SUSAN [17] 

and FAST [22, 23]. 

The Harris operator can also be made invariant to scale changes by computing a multi-scale measure at 

various scales [18]. It can also be made invariant to affine transformations in the image by iteratively warping 

the shape of the smoothing kernel or the image patch [18, 19]. 

Algorithms such as SIFT [20] and SURF [24] employ operations such as the Laplacian of Gaussian 

(LoG), Difference of Gaussians (DoG), and Determinant of Hessian (DoH) to detect blobs, which include 

interest points and edges. These operations are similarly made invariant to scale and affine transformations. 

This type of detector yields a large number of repeatable points with distinctive associated descriptors. 

An evaluation of these detectors and their performance in the context of 3D objects can be found in [25]. 

2.3 Registration 

Registration is the process of transforming different sets of data, normally acquired visually, into a common 

coordinate system. It is an active research topic in computer vision with a variety of applications, and many 

different methods have been developed suiting diverse needs. The point registration concept lends itself par­

ticularly well to the problem of determining relative motion from point features detected in the environment, 

so it plays a central role in this work. 

A recent survey of registration algorithms [12] separates them into two classes: those which are able to 

operate with no initial alignment estimate but yield relatively inaccurate results, called coarse registration 

methods, and those which can only operate given an initial alignment estimate but accordingly generate 

highly accurate results, called fine registration methods. As will be seen in Section 4.3.2, the use of two 

registration stages (one coarse, one fine) is a pivotal part of this work. The specific algorithms in Section 5.3 

were chosen based on the algorithm requirements from those reviewed in [12]. 



Chapter 3 

Theoretical Foundations 

3.1 Geometry 

3.1.1 Euclidean Distance 

The Euclidean distance is the intuitive straight-line distance between two points in a metric space. The 

distance between two points P — (p\,p2, • • • ,pn) and Q = {q\,q2,-- ,qn) in n-dimensional Euclidean space 

is defined as: 

r - e n = JI>«-?.o2 (3-D 
Most of the distances encountered in this work are computed in 3D Euclidean space. 

3.1.2 Rotation Matrix 

A rotation matrix R in Euclidean n-space is a n x n real orthogonal matrix, whose transpose is its inverse, i.e. 

RT = R_1, and whose determinant det(R) = 1. A 3 x 3 rotation matrix corresponds to a geometric rotation 

about a fixed origin in three-dimensional Euclidean space. The product of two rotation matrices is itself a 

rotation matrix, corresponding to a composition of the rotations. 

Rotating about the origin intuitively means (by convention) rotating by 0 about the original ;c-axis from y 

to z, rotating by <j) about the original y-axis from z to x, and rotating by \|f about the original z axis from x to 

y, illustrated in Figure 3.1. 

The rotation matrix for this set of angles can be found by composition (multiplication) of the individual 

matrices for each of these rotations, resulting in the following representation: 

R = 

costycosvf sinQsin§cos~y — cosQsiny cosQsintycosy + sinQsiny 

costysiny sinQsintysiny + cosQcosy cosQsinfysirty — sinQcosy 

—sinfy sinQcosfy cosQcosfy 

(3.2) 

9 
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y 

A 

Figure 3.1: Fixed-Axis Rotation Convention 

The angles in the range [0,27t) can also be recovered from the entries of the rotation matrix: 

arcsin(-R3i) if R31 < 0; 

arcsin(-R3i) + 7t if R31 > 0. 

0 = 

arctan(lf)+7r ifcose = ^ < ° ; 

v= 

" " V K33 / ' ' " " cos(|) 

arctan ( f * ) + 2% if sin6 = £ 
\ *vJ3 1 co 

otherwise. arctan ( g22-

1*22. < Q -
COS<|l ^ " ' 

arc tanfe)+7C i f c o s V=^<0; 
arctan(&)+271 i f s i n v = S < ° ; 
arctan ( ̂  I otherwise. 

(3.3) 

(3.4) 

(3.5) 

3.1.3 Relative Pose 

Pose is a concept used to describe the relative motion between two nodes of a distributed smart camera 

network, which is the basis of calibration. Each node is considered to have its own local coordinate system. 

The relative pose of node A with respect to node B is denoted PAB, and is the rigid transformation in 3D 

Euclidean space from the coordinate system of A to that of B. 

The transformation PAB : R3 -»R3 consists of a rotation matrix (3x3 real orthogonal matrix) RAB and a 

3-element translation vector TAB- PAB maps a point* 6 K3 as follows: 

PAB(X) = RABX + TAB (3.6) 
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Identity 

The identity pose is represented by Pi = (R/,T/), The transformation associated with this pose has no effect, 

so that Pi(x) = x. R/ and T> are defined as follows: 

T[ = 

R/ = 

1° 
' 1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

(3.7) 

(3.8) 

Inversion 

The inverse of pose P = (T, R), denoted P~', which maps the destination coordinate basis back to the source, 

can be determined as follows: 

P(x) 

-Rx 

Rx 

x 

x 

W) 
l(x) 

= 

= 

= 

= 

= 

= 
— 

Rx + T 

-/»(*)+ T 

P(x)-T 

R_1/»W-R_1T 

R - ' P ^ - R - ' T 

R-lP{x)-R~lT 

R ' x - R ' T (3.9) 

Composition 

A succession of pose transformations PBC{PAB{X)) can be composed into a single pose, denoted (PAB ° 

PBC){X), as follows: 

PB{PA{X)) = RB(RAX + TA)+TB 

(PA°PB)(X) = RBR4*+(RsT.4+TB) (3.10) 

This transformation maps from the coordinate system of A to that of B, then from that of B to that of C; 

therefore, the transformation from A to C can be computed via composition as PAC = {PAB °PBC){X). This 

operation is transitive, so one node's pose relative to another can be computed indirectly over an arbitrary 

number of intermediate poses if they exist. 
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3.2 Node Concepts 

3.2.1 Nodes and Groups 

A node is the abstract or physical smart stereo camera device itself; nodes shall be denoted by sequential 

capital letters (A, B, and so forth). The set of all nodes in the network is denoted N (where |N| represents the 

total number of nodes). 

A group is a set of nodes which agree on a single leader node; a group led by node A shall be denoted GA 

(where \GA\ represents the number of nodes in the group). Every group is a subset of the network (GA C N), 

and every node is a member of exactly one group (so, if GA and GB are two separate groups, \GA D GB\ = 0). 

3.2.2 Node Pose Conventions 

The relative pose, as defined in Section 3.1.3, is primarily used to describe either the unknown true pose of 

one node relative to another or the final pairwise pose estimate as estimated by the calibration process. As 

stated, the pose of node A relative to node B is denoted PAB-

In this work, an intermediate type of relative pose is employed to describe the results of coarse regis­

tration and grouping. The relative coarse pose estimate of node A with respect to node B is denoted CAB-

Additionally, within a group, it will be seen that each node has a group coarse pose estimate relative to the 

leader of the node's current group; thus, a node A that is a member of group GB has a group coarse pose Q , 

which is equal to CAB-

3.2.3 Point Sets and Features 

A point set is the full set of interest points detected locally at a node; the point set of node A shall be denoted 

SA- The overlap between point sets SA and Sg refers to the size of the intersection of the two sets \SA C\SB\, 

said intersection occurring where a point in SA corresponds to the same physical point as a point in SB- The 

percent overlap is defined as follows: 

%0(SA,SB) = — ^ ~ ~ x 100% (3.11) 

A feature is any subset of the point set of a certain size (determined by a parameter of the algorithm); 

when discussing a single arbitrary feature from node A, it shall be denoted FA, where FAQSA- Two features 

FA and FB, from nodes A and B respectively, are considered to match (denoted FA « FB) if each point in FA 

corresponds to the same physical point as a point in FB- In the context of the algorithm, it is impossible to 

ascertain this correspondence, so the term match implies rather a presumed match based on a criterion of 

geometrical similarity. 
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3.3 Graphs 

Three types of undirected graphs are helpful in describing distributed smart camera calibration: the commu­

nication graph, the vision graph, and the calibration graph [6]. Graphs are described as connected if there 

exists a path connecting every pair of nodes, and complete if there exists an edge between each pair of nodes. 

3.3.1 Communication Graph 

The communication graph describes the effective communication links between nodes in the network from 

the perspective of the layer presented to the application. A complete communication graph indicates that any 

node may communicate directly with any other node, whether physically or via lower-level routing software. 

This graph is of limited interest here due to the abstract network assumption (Section 4.2.5). 

3.3.2 Vision Graph 

The vision graph describes which nodes share significant portions of their field of view. A pair of nodes 

have a connecting edge in this graph if the volume of space in the intersection of their fields of view is 

considered large enough that it might contain sufficient data for the operations required by the algorithm; this 

is, of course, dependent on a large number of factors and in general the vision graph is used in a qualitative 

context. 

Figure 3.3 demonstrates a vision graph associated with the nodes with overlapping fields of view shown 

in Figure 3.2. 

® 

® :> f 7 < % / ' \ ® 

y::® 

Figure 3.2: Example Field of View Overlap 

3.3.3 Calibration Graph 

The calibration graph describes which nodes have a direct estimate of their pairwise pose. Obviously, it is 

desirable that this graph be connected, so that any two nodes X and Y can compute their relative pose P\y by 
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Figure 3.3: Example Vision Graph 

composition of known pose estimates. Edges can only be established where there exist edges in the vision 

graph, and the most complete calibration graph possible is identical to the vision graph. For later reference, 

in this work, edges are established by pairwise pose refinement, the second stage of calibration (see Section 

4.3.2). 

Figure 3.4 demonstrates a calibration graph that might arise from nodes with the vision graph of Figure 

3.3. In this case, nodes B and D do not have an edge between them, and so do not have direct pairwise pose 

estimates to one another. They would need to compute an indirect estimate, possibly through node C, to 

perform any tasks requiring calibration. 

Figure 3.4: Example Calibration Graph 



Chapter 4 

General Solution 

4.1 Problem Statement 

The overall objective is to spatially calibrate a series of homogeneous smart stereo camera nodes, with no 

a priori knowledge and using only the nodes' 3D visual data, in a distributed fashion. Assuming the visual 

data consists of a set of 3D points triangulated from stereo images of the environment, the problem may be 

reduced to geometrical terms: 

Given a set of nodes N, each node X eN having a point set Sx, estimate the pose PXY for enough 

node pairs (X,Y) such that the calibration graph for N is connected. 

The shared view assumption (Section 4.2.2) and the repeatability criterion of interest point detection (Section 

5.2.1) imply a sufficient degree of overlap between a sufficient number of node pairs for convergence. 

This chapter will develop a practical, network-based, distributed algorithm for solving this problem with­

out considering the details of certain parts, such as the actual acquisition of the 3D point sets using cameras or 

the noise-tolerant registration of one node's point set to another's. It will be described in a modular fashion, 

so that different specific methods may be chosen, where applicable. The design is, of course, coupled to a 

degree with extant algorithms, but as much as possible these considerations are relegated to Chapter 5, which 

discusses the practical implementation. 

4.2 Assumptions 

4.2.1 Pre-Deployment Offline Access 

It is assumed that, prior to deployment of the network, there is a period during which each node may be 

accessed without restriction in a controlled environment, in order to perform certain essential modifications 

to software (such as assignment of a unique identifier, network configuration, and intrinsic/stereo calibration 

15 
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of the cameras). This could occur as part of the manufacturing process, so it does not preclude the node 

devices being ready for deployment "out of the box" as is desired. 

4.2.2 Shared View 

For full convergence, it is assumed that the vision graph is connected. This imposes the basic minimum 

constraint on node deployment that the shared field of view of the entire network must be continuous and 

have substantial internal pairwise overlap. 

4.2.3 Fixed Nodes 

It is assumed that each node is fixed in its location and orientation relative to all other nodes. It is also 

assumed that, once internally calibrated for stereo vision, no node changes the relative motion between its 

cameras or the internal parameters (e.g. focal length) of either of its cameras. In theory, such changes can be 

locally detected and measured, and then compensated for in some way; however, that is beyond the scope of 

this work. 

4.2.4 Static Scene 

It is assumed that the contents of the scene are fully static for the purposes of acquiring calibration point sets. 

This can be restated as an assumption that the scene contents giving rise to each node's calibration image pair 

are identical. This assumption is made solely for simplicity, and it could easily be relaxed using background 

estimation techniques (widely researched and generally used for foreground object segmentation) or accurate 

temporal synchronization. 

4.2.5 Abstract Network 

It is assumed that the nodes are capable of autonomously forming an ad-hoc network wherein each node can 

be addressed by a unique identifier. This carries with it an implicit deployment assumption about the network 

medium; for example, depending on the specific requirements of the medium, the nodes are each wired to a 

network trunk or hub, or are all within wireless range of at least one neighbour. No specific media or protocols 

are prescribed or assumed within this work, so any configuration which does not violate the aforementioned 

assumption and has sufficient capacity is acceptable. 

From the algorithm's point of view, the network is assumed to be fully connected [57], or in other words, 

the communication graph is assumed to be complete. As mentioned in Section 3.3, this does not imply 

anything additional about the physical topology of the network; it simply means that all necessary hardware 

and software layers exist so that the following criteria are met: 

1. Each node has an identifier that is unique within the network. 

2. Each node maintains a list of all other nodes' identifiers. 
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3. Each node may address any other node by its identifier, and send it an arbitrary amount of data with 

assured delivery. 

These assumptions are valid for most modern networks. The first two requirements are provided at the data 

link and network layers, and the third at the transport layer. The algorithm itself is therefore independent of 

the implementation detail of interfacing to the underlying network. 

4.2.6 Local Assumptions 

These assumptions apply only in the development of the algorithm within this chapter; suitable implementa­

tions are discussed in Chapter 5. 

Stereo 3D Vision 

It is assumed that a suitable set of 3D points are detected at each node. The algorithm is described without 

regard for the details of acquisition, so in essence, it is assumed that each node has calibrated its cameras for 

stereo vision reasonably and can perform repeatable interest point detection, correspondence, and triangula-

tion. Regardless of how it is accomplished, the calibration method expects a set of 3D points relative to the 

node's local coordinate system to be available throughout its execution. 

To implement this assumption in a practical case, 3D point sets can be manually supplied to the algo­

rithm, allowing for control over the degrees of repeatability and error. This local assumption is removed by 

examining and introducing specific algorithms for calibration, interest point detection, correspondence, and 

triangulation in Sections 5.1 and 5.2. 

Abstract Registration 

It is assumed that the algorithm has access to suitable coarse and fine registration algorithms, as explored in 

Section 4.3.2. The development of the calibration method is, of course, informed by knowledge of existing 

registration algorithms, but prescription will be limited to general classes of algorithms for modularity. The 

calibration method expects the coarse registration algorithm to take two point sets and some parameters as 

input and return a relative pose and an error metric, and the fine registration algorithm to take two point sets, 

an initial rotation estimate, and some parameters as input and return an accurate relative pose and an error 

metric. 

This local assumption is removed by examining and introducing specific algorithms for coarse and fine 

registration in Section 5.3. 

4.3 Problem Analysis 

In this section, the fundamental operation of the calibration method is developed progressively based on the 

requirements and assumptions, finally resulting in an outline for a general solution. The progression reflects 

the thought process and research behind the theoretical development of the method. 



CHAPTER 4. GENERAL SOLUTION 18 

4.3.1 3D Visual Data Primitive 

The most fundamental piece of three-dimensional visual data that can be obtained by a stereo camera node 

is a point. A 3D point in the coordinate system of the observing node is a single piece of range image 

data, triangulated from corresponding 2D points in the stereo image pair using known calibration parameters. 

Thus, the point is the basic data primitive used by the calibration method. One of the local assumptions in 

Section 4.2.6 ensures that a number of such points are detected at each node; the point set represents the 

entirety of any node's visual observations for the purposes of developing the calibration method. 

4.3.2 Two-Stage Registration 

As discussed in Section 2.3, registration algorithms may be divided into two types: coarse registration meth­

ods, which do not require an initial alignment estimate and produce relatively inaccurate results, and fine 

registration methods, which require an initial alignment estimate and produce accurate results. 

In this case, no alignment estimate is initially available for the nodes' point sets, yet accurate pose esti­

mates are desired. The typical solution is a two-stage registration, where a coarse algorithm is used first to get 

an alignment estimate, and then this estimate is supplied to a fine algorithm. Fundamentally, this approach is 

applicable, but on closer inspection there is still a problem. Not only is there no intial alignment estimate, but 

the nodes do not even know whether or how their point sets overlap with those of the other nodes. All regis­

tration algorithms depend on some substantial degree of overlap between the two data sets, so some method 

of determining what data sets to operate on is necessary; this is the feature matching process described in the 

following section. 

4.3.3 Feature Matching 

In order to find coarse pose estimates between nodes with no knowledge of their point set overlap in a 

distributed fashion, a pairwise feature matching process similar to that described in [2] can be employed. 

Following from Section 4.3.2, a. feature, in this context, is a fixed-size subset of a node's 3D point set. 

The goal is to find pairwise matches between nodes' features, and then use those matches to calculate 

coarse relative pose estimates for the node pairs. The former part can be achieved by applying a coarse 

registration algorithm on similar features and observing if the resulting error metric falls below a certain 

threshold. Conveniently, the same algorithm also outputs a relative pose estimate, so the basis for the latter 

part of the goal occurs simultaneously. 
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Feature Selection 

Periodically,1 a feature, or subset of fixed size / , is selected2 from the point set (illustrated in Figure 4.1), 

and compared to similar features from other nodes. For now, the details of how they are brought together for 

comparison are ignored. 

Figure 4.1: Feature Selection (/ = 4) 

Consider point sets from two nodes, A and B, from which, according to the coarse matching algorithm, 

each node randomly selects a feature (non-repeating combination), resulting in FA C SA and FB C SB where 

|^A| = \FB\ = / < \SA nSfl|. The performance of the matching scheme depends directly on the probability of 

a match between FA and FB, P(FA =s FB), since as this probability decreases, it takes longer to find matches 

and more bandwidth and storage must be used to transmit and store categorized features. 

First, the individual probabilities that FA and FB will be within the set of shared points 5,4 DSB are found. 

Let P(Q) = P(FA C SA DSB) and P(R) = P(FB C SA DSB), and let C(n,k) represent the binomial coefficient, 

indicating the number of possible non-repeating combinations of size n chosen from k. 

P(QnR) = P{Q)P(R) 

c(\sAnsB\,f)2 

C(|5A|,/)C(|5fl|,/) 
(4.3) 

'The delay between feature selections is determined by how quickly nodes are generally able to describe, propagate, and match 
features. The delay should be as short as possible while avoiding network flooding and a backlog of features to be matched at the nodes. 
Due to the complexity of modeling the various parameters that might have an effect on this, in the current implementation, it is optimized 
by trial and error. 

2Different selection methods are possible. One might select features randomly, as in [2], or precompute them and select them in 
some meaningful order, as described in Section 4.4.2. Also, even with no a priori knowledge of the scene structure, the feature matching 
scheme might benefit in performance from the application of some constraints on feature selection. A trade-off between matching 
probability and overall convergence might be optimized in this way. Constraints on the geometric nature of possible features might 
also allow for better performance in feature categorization (discussed later in this section). Feature selection constraints have not been 
investigated in depth in this work. 
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Assuming that conditions Q and R are satisfied (that is, all points in features FA and FB are shared in SA nSs), 

for a given FA, only one combination FB will match it. 

P(FA*FB\QnR) = 
1 

c(\sAnsB\j) 
From Equations 4.3 and 4.4, P(FA « Fg) can be calculated. 

(4.4) 

P{FA^FB) = P(FA*FB\QnR)P{QnR) 

1 c(|sAnss|,/)
2 

[C(|^|,/)C(|5S|,/)J c(|sAnsB|,/) 
c(\sAnsB\,f) 

C(\SA\,f)C(\SB\,f) 
\sAnsB\\f\(\SA\~f)\(\sB\-f)\ 

\sA\i\sB\\(\sAnsB\-f)\ 
(4.5) 

By inspection, P(FA « FB) increases as the ratio of \SA C\SB\ to |ISA| and |iSs| increases, for a given / . It will 

be seen in Section 5.2.1 that this ratio is the repeatability criterion of interest point detection. The number of 

correspondences \SA C\SB\ and the repeatability score are controlled by the interest point detection algorithm 

and its parameters. 

The feature size parameter / , however, must be chosen directly, and there is no quantitative optimum 

that works in all cases. Decreasing / increases the probability of false matches, which impacts convergence; 

obviously, however, for unique 3D matching, there is a condition that / > 3. It may also result in less 

accurate estimates for each match in coarse registration. On the other hand, increasing / has a negative 

impact on matching performance and possibly on the later fine registration, as it drives up the minimum 

required number of correspondences I^DSfil which means, as will be seen in Section 5.2, that \SA\ and \SB\ 

must be greatly increased, reducing matching performance directly as well as possibly reducing repeatability. 

Increasing / may also impact convergence if the resultant \SA DSB\ requirement begins to exceed the actual 

point set overlap of nodes that might otherwise have matches. 

Feature Categorization 

In the previous subsection, no details are given as to how features are brought together for comparison. This 

is an important issue in terms of parallelization and scalability, as there is no central place where all features 

can be compared. 

The idea of feature categorization is borrowed from the data-centric storage literature, used with reference 

to distributed smart camera networks in [1] and more specifically to their calibration in [2]. The goal is to 

evenly distribute the processing and storage of the data in a distributed system based on some quantitative or 

qualitative metric of the data itself. Since, for obvious reasons, it is desirable in this case to compare features 

which are geometrically similar, the logical choice is some descriptor of the geometry of a feature invariant 

to translation and rotation, called the geometric descriptor function (equivalent to the geometric hash in [2]). 
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This metric is then hashed through a categorization function, which returns the address(es) of the destina­

tion node(s) for the feature. In [2], the categorization function is a geographic hash used to store the feature 

in a geographic hash table (GHT) [4], but as the authors state, this requires localization, which is part of what 

the calibration method is attempting to determine to begin with. Their solution is to bootstrap ever-larger 

GHTs by feature injection and merging; however, this results in a lower convergence rate, and introduces 

categorization problems by making the hash table dynamic. To improve the convergence rate of this type 

of scheme, one might consider starting with a network-wide GHT using a geographic routing method which 

does not require localization, such as [5]. However, there are several reasons why this is not done here: 

1. Geographic routing methods require specific network topologies and protocols, which violates the 

abstract network generalization (Section 4.2.5). 

2. There is no reason to believe that geographic hashing is the only data-centric storage method suitable 

for distributing features for comparison. 

3. Geographic hashing may, in fact, be ill-suited to feature categorization, as consistent hashing is difficult, 

especially in a dynamic table.3 

A better solution is to use a consistent and evenly-distributed data-centric storage technique which incorpo­

rates the entire network from the beginning, one which does not require localization or any other information 

the nodes do not initially possess. The abstract network assumption (Section 4.2.5) states that nodes are 

aware of and able to route messages to all other nodes in the network. Since the features are to be distributed 

based on their local geometric structure, in general, it is appropriate to divide the solution set of the geometric 

descriptor function equally among the nodes in the network (with some overlap, depending on the measure­

ment accuracy, so that similar features at boundaries are compared). If this is done in the same way at each 

node, then geometrically similar features can be stored at the same node regardless of the source, satisfying 

the objective. 

Figure 4.2 shows how features are categorized. In this example, nodes A and C both detect the feature 

represented by the square. They individually compute the geometric descriptor of this feature, and the results 

are very close (ideally identical) because, of course, the hash function is operating on the same feature and is 

invariant to translation and rotation. They both, therefore, send their individual features, as they view them, 

to the same node; in this case, node B. Node C is shown detecting another feature as well, represented by the 

triangle. This feature is substantially different in geometry, so the geometric descriptor falls in the range of a 

different node, E, to which C sends this feature. 

The geometric descriptor function must be deterministic, so that differing results from the same function 

imply differing input features. It is not necessarily injective, so it may be possible for different input features 

to generate the same result. Normally, it is desirable for hash functions to have the mixing property, meaning 

that a small change in the input results in a large change in the result; this is unacceptable in this case. The 

3 As explained in [2], an appropriate range would need to be selected for the GHT so that features are spread out evenly, and this 
would likely require an irregular hashing function shape. Furthermore, with the tables constantly growing, features would frequently 
need to be recategorized and forwarded to new nodes. 
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Figure 4.2: Feature Categorization 

geometric descriptor is used to gauge similarity between features, so instead, it should be a smooth function, 

and ideally a linear one, in the feature geometry. 

Ideally, the difference between the descriptors of two features FA and Fg describes the degree of difference 

d between those features (Equation 4.6): 

d(FA,FB) = \g(FA)-g{FB)\ (4.6) 

Based on the measurement accuracy of a node and the specific coarse registration algorithm used, there is 

a similarity threshold tj, such that it is necessary to compare two features FA and Fg if d (FA, FB) < tj, and 

unnecessary otherwise; this will be termed the similarity condition. When the geometric descriptor space is 

divided among the nodes in the network, initially, there is no overlap at the boundaries. It is necessary to 

extend the range of the categorization boundaries of each node exactly tj/2 in all directions, so that any two 

features less than tj different will be categorized together on at least one node (and will thus be tested for 

matching). Additionally, within a node, an incoming feature FA need only be tested for matching to a feature 

FB if the similarity condition is met. 

The remaining problem is to obtain a more or less even distribution of the features (and thus, the pro­

cessing load) when the geometric descriptor space is divided initially. This depends on the nature of the 

geometric descriptor. Since it is impossible for the nodes to know the actual solution set of the function, since 

that would require it to have copies of all possible features from all nodes and therefore defeat the purpose 

of categorization, an estimation of the feature density within the solution space of the descriptor function is 

required. This cannot depend on the locally detected features in any way; otherwise, each node would cal­

culate the distribution differently. Without knowledge of the particular deployment environment, a generally 

acceptable distribution based on "average" feature geometry must be determined in advance, informed by the 

interest point detector used, the size of the node's field of view, and any constraints on feature detection. 

® 
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Match Reporting 

When a feature is selected, categorized, and sent to the appropriate node for matching, it is represented in 

the local coordinate basis of the originating node, and tagged with that node's unique identifier so that the 

matching node knows which node detected it. The matching node then stores it in a local database, and 

attempts coarse registration against other features in its database which satisfy the similarity condition. 

When a match between two features is found, the match is reported to both of the originating nodes. The 

report informs each node of the unique identifier of the node it matched features with, as well as the estimated 

relative pose of that node, based on the results of coarse registration. These are then used for grouping, which 

is covered in the following section. 

To be more specific, coarse registration algorithms operate on a model point set and a data point set, and 

output a pose estimate P of the data relative to the model. In this case the data is an incoming feature, and 

the features stored in the matching node's database serve as successive models.4 When a match is found, the 

originating node of the model is sent the pose P, which, if the match is not a false one, is an estimate of the 

pose of the originating node of the data relative to the originating node of the model. The originating node of 

the data, however, needs the inverse of this pose, so instead of P, it is sent P _ 1 as defined in Equation 3.9. 

Coarse Pose Estimation 

While it is desirable to use a relatively small value for the feature size / , this results in a substantial possibility 

of false matches, especially in environments that contain similar objects which generate nearly identical 

features. Furthermore, even with a true match, the coarse registration algorithm may be unable to guarantee 

the degree of accuracy desired for a coarse pose estimate. 

These problems can both be resolved by combining and averaging the results of several feature matches. 

To ensure that no false matches are used, a match threshold tm > 3 is required as the minimum number of 

pairwise feature matches (as received by one node of the pair) whose pose estimates are sufficiently similar, 

with the entire set meeting the condition in Equation 4.7. To increase confidence in the result at a cost of 

reduced convergence, tm may be increased. 

QoCj^P, (4.7) 

This can be enforced by means of a consistency threshold, tc, expressing the maximum Euclidean distance 

between points mapped by the match poses. Since the average of the suitable poses needs to be calculated for 

later use anyway, a simple implementation involves mapping a point - for generally good results, the centroid 

of the node's point set, p$, can be used - through the average pose, then ensuring that each of the original 

poses maps the same point to within tc of that mapping in the Euclidean distance, as follows: 

\\Cm(Ms)-Cms{}is)\\<tc (4.8) 

There is no readily apparent way to guarantee that all nodes which are potential candidates for pairwise pose 

4This arrangement is purely by convention and could easily be reversed. 
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refinement (fine registration) have a coarse pose estimate without exhaustively matching all features, which is 

inefficient and probably infeasible. This critical issue is addressed by the coarse grouping scheme described 

in the following section. 

4.3.4 Coarse Grouping 

The goal of feature matching is to bring all of the nodes in the network into (coarse) alignment with one 

another. This does not necessarily require pairwise matches between all nodes: one node might obtain its 

coarse pose with respect to another node either directly, or indirectly as a composition of mappings (according 

to Equation 3.10) over a number of hops across nodes. This is the purpose of groups and the group coarse 

pose (defined in Sections 3.2.1 and 3.2.2, respectively). 

The benefit of grouping is that once nodes are within the same group, there is no longer any need to 

perform feature matching and coarse pose estimation between those nodes. The entire network can therefore 

be brought into alignment with one another by a process of merging groups. If the merging process is designed 

such that the coarse pose estimates within a group are acceptably accurate for fine registration (discussed later 

in this section), then any two nodes which, based on these estimates, share a significant portion of field of 

view, regardless of whether they directly estimated their coarse pose relative to one another, can refine their 

pairwise pose. Groups are therefore sufficient to ensure that all candidate pairs undergo pose refinement, with 

no need for exhaustive feature matching. 

Groups might conceivably be implemented in a number of different ways, but this calibration method 

requires it to be distributed and homogeneous. 

Group Merging and Leaders 

In [2], nodes are initialized into a singleton GHT: a degenerate case containing only the one node. It is 

sensible, in keeping with the homogeneity requirement and distributed paradigm, that all nodes begin in 

singleton groups as well. Note that a singleton group is in fact a true group (though also a degenerate case) 

according to the definition, since the node's pose relative to itself is simply the identity pose, as represented 

by Equations 3.7 and 3.8. 

When two singleton groups find an acceptable coarse pose estimate relative to one another based on fea­

ture matching, they can merge into a single group containing both nodes, as they then collectively satisfy the 

definition of a group. However, the details of how this is to be achieved are not readily apparent. Obviously, 

the nodes need to agree on a method for exchanging the coarse pose information, but they must do so in a 

distributed fashion. Further problems arise when one considers what happens when a third node enters the 

group, based on a relative coarse pose estimate with one of the original nodes. A naive approach might in­

volve each node storing pairwise estimates with respect to all other nodes in the group, but this is inefficient 

in terms of scalability. 

To resolve this, the concept of a group leader is introduced. The leader is simply a node within any given 

group whose local coordinate basis serves as the basis for every other node's group coarse pose estimate. The 

leader's own pose estimate, of course, is the identity pose. Group leaders also provide an elegant method for 
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group nomenclature: the identifier of the leader doubles as the identifier of the entire group. This intrinsically 

indicates which node in a group is its leader. 
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Figure 4.3: Group Topology 

Figure 4.3 shows the conceptual topology of two groups, GA and GF- The double-ended arrows represent 

actual pairwise coarse pose estimates obtained via feature matching, and thus the path, or hops, by which each 

node's coarse pose estimate relative to the group leader was originally computed. In reality, only the group 

coarse pose estimate relative to the current leader need be stored (implementation concerns notwithstanding). 

Note that although a node such as E might well share features with node C or even node A and thus could 

obtain a more direct (and less erronous) group coarse pose estimate, once it is within group A, it will not do 

so. As mentioned previously, this arrangement would seem to give rise to potential accuracy issues; these are 

addressed later in this section. 

Initially, the nodes in singleton groups are, by definition, the leaders of those groups. When two groups 

merge, a new leader must be chosen from one of the two original group leaders,5 and the new leader's original 

group essentially annexes the other group. 

The merging process itself is simply a matter of bringing the pose estimates of the merging group's nodes 

into the coordinate basis of the annexing group. Since any pair of nodes (one in each group) can initiate a 

merge based on their discovery of a pairwise coarse pose estimate by feature matching, those nodes must 

be capable of figuring out on their own how to carry out the merge. Each node is thus endowed with the 

following information related to its current group: 

• The identifier of its current group (and thus, its leader). 

• Its coarse pose estimate relative to its group. 

'Technically, any node in either of the original groups could become the new group's leader, by the same mechanism, since the nodes 
could all determine their coarse pose relative to any such node. However, choosing one of the nodes already occupying the position is 
vastly less complex in practice. 

K 

r G F 

© 



CHAPTER 4. GENERAL SOLUTION 26 

• A list of other nodes in its group. 

The merging process consists entirely of updating these three pieces of information, which can be done (for 

the entire group) by the initiating nodes themselves. The annexing group simply updates its list of nodes to 

include the nodes in the new group, while the merging group also updates to the new group identifier and 

changes coarse pose estimates accordingly. 
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Figure 4.4: Group Merging 

Figure 4.4 illustrates a typical group merge. NodeZ), of group GA, and node G, of group GF, find a relative 

coarse pose estimate through feature matching, and initiate a merge. The nodes in group GA do not modify 

their group coarse pose information. Node G's new group coarse pose estimate (C'c) is the composition of its 

estimated pose relative to node D with node D's group coarse pose estimate: 

C'G = CGDoCD (4.9) 

The new group coarse pose estimates for the merging group's leader (node F) and any other nodes in the 

merging group (in this case, node H) can similarly be calculated as compositions of known pose estimates: 

^ = ^ 0 ( ^ 0 0 , ) (4.10) 

C'H = CHo{CG-lo(CGD°CD)) (4. II) 

A node will choose to employ Equation 4.9, 4.10, or 4.11 depending on whether it is the initiating node, the 

group leader, or another node, respectively. 

Since merging consists of composition operations, it is a transitive operation which can occur based on 

matches (and the resultant relative coarse pose estimates) between any pair of nodes in different groups. 
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Alignment Accuracy 

Since coarse pose estimates are used exclusively as a precursor to the fine registration stage, these estimates 

need only be accurate enough to provide an acceptable basis for the fine registration algorithm employed. 

These are generally quite forgiving, able to perform well with initial relative rotations of up to 30°, and direct 

coarse registration results with good data are generally well within this range [12]. The coarse registration 

results are also likely to be especially accurate in this case, since the feature matching scheme ensures that 

there are no outliers. 

However, the error accumulated over multiple hops may easily push the initial estimate outside the fine 

registration algorithm's acceptable range. It is improbable that two nodes observing enough of the same 

points to initiate pairwise fine registration will have enough hops between them to accumulate this degree of 

error, but that is by no means a guarantee. No provisions are made for this possible problem here, but it may 

need to be considered in some situations, for example by enforcing a maximum path length for group coarse 

pose estimates. 

4.3.5 Pairwise Pose Refinement 

Once a given pair of nodes belong to a group via the feature matching process, those nodes can use their 

coarse relative pose estimate as a starting point for pose refinement. This is achieved by applying a fine 

registration algorithm to a large number of points initialized into coarse alignment. 

Limiting Fine Registration Points 

In general, supplying a larger number of corresponding points supplied to the fine registration algorithm will 

yield a more accurate fine pose estimate. A naive approach would simply have one node send its entire point 

set to the other for fine registration; this would certainly maximize the total number of points (and therefore, 

the total number of corresponding points), but extraneous points due to differing field of view would reduce 

the correspondence ratio, or overlap, between the sets, negatively affecting the performance of registration. 

Also, since such an approach is not initially informed by the coarse pose estimates, there is no inherent way to 

decide whether nodes share any field of view at all, and thus many computationally intensive fine registrations 

would be performed for no purpose. 

It is therefore desirable to limit in advance the exchanged points to those which could possibly be found 

within the shared field of view of both nodes. A simple and effective way to achieve this is to estimate the 

field of view of each node as a cone extending along its local z-axis to a certain distance, determining the 

intersection space of the cones as transformed by the coarse relative pose estimate, and selecting only those 

points within the intersection space. This is depicted in two dimensions in Figure 4.5, where nodes A and B 

would attempt pose refinement using only the indicated points, and node C would not attempt it with either 

node A or node B at all. 

Since only a coarse pose estimate is available, and also due to the effects of occlusion and instability in 

interest point detection, any such solution is inherently rough, but at the very least a potentially large number 
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Figure 4 .5 : The Field of View Cone 

of pointless fine registrations can be avoided. 

Pose Accuracy 

Pose estimates returned by the fine registration algorithm should be rejected if the registration error exceeds 

a certain threshold. 

Indirect Pairwise Pose 

The goal of the calibration algorithm is to provide a means for any pair of nodes in the network to determine, 

with minimal computation, an accurate relative pose to one another. Clearly, in the general case, not all 

nodes will share enough field of view or corresponding points to perform direct pairwise pose refinement. 

One immediately obvious solution is to repeat the composition procedure used in merging groups; however, 

although the potential accumulation of error was deemed acceptable for the purposes of the coarse stage 

(discussed in Section 4.3.4), it is neither desirable nor unavoidable at the fine stage. 

Rather than relying on compositions across an arbitrary number of hops as required by coarse grouping, 

a pair of nodes attempting to determine their relative pose can now communicate directly to find the shortest 

path along the existing pairwise fine pose estimates and thus obtain a composition with a minimum of error.6 

A node A may find such an estimate PAB relative to a node B according to the following algorithm (suppose 

FPA represents the set of fine pose estimates at node A): 

1. If PAB e FPA, select PAB and end. 

2. For each PAx 6 FPA, request FPx from node X. If PXB € FPx, select PAB = PAX°PXB and end. 

3. For each PXy 6 FPx, request FPy from node Y. If/Vs GF/V, select PAB = PAX°PXY°PYB and end. 
6It may be more accurate to explicitly store the actual fine registration error values with each fine pose estimate and scale the "length" 

of each hop (path segment) by this value. For simplicity, in this work, it is assumed that fine pose estimates meeting the error criterion 
are roughly equivalent, and thus each hop is considered to have unit length when determining the shortest path. 

®--
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4. Continue until PAB has been found. 

As indirect fine pose estimates are found (even intermediate ones that were not requested) they should be 

added to FP, to avoid unnecessary repetition of network requests and computations. Depending on how 

queries to the network are designed, these poses could be calculated on an as-needed basis, or a final step 

could be added to the calibration algorithm to force each node to build FP to include every other node in 

the network. In a large network, it might also be advantageous to intelligently order this process in order to 

minimize communication and computation time. 

4.3.6 Distributed Operation 

For this algorithm to be truly applicable to distributed smart stereo camera networks, it must be capable of 

operating without establishing network-wide synchronization. This paradigm also creates fundamental future 

allowances for node failure, communication delays and outages, and dynamic calibration. 

A scheme which lends itself particularly well to this problem is the asynchronous passing of messages 

between processes. According to previous assumptions and requirements, the following three commonly-

used assumptions about message passing [57] are made here: 

1. Transmission is made without any duplication of messages. 

2. Transmission is made without any change to the messages. 

3. The delay in delivering a message, though random, is finite (no loss of messages). 

In keeping with the homogeneity requirement, it is desirable that the processes be textually symmetric at 

the node level. However, it is clear from the two-stage split, described in Section 4.3.2, that the algorithm 

involves at least two processes at each node, which are asymmetric. Therefore, a somewhat unconventional 

distributed algorithm concept is employed, which can be observed on two levels. At the local level, a number 

of asymmetric processes on a single node share local state information and other local resources, but are 

otherwise fully in the global scope and interact directly with processes on other nodes. At the global level, a 

number of nodes contain a textually symmetric set of processes, which do not share state information or any 

other resources and communicate only through messages. It is important to note that interactions between 

processes local to the same node operate on the global level; the processes simply happen to access and 

update the same local state information. 

The dissemination of features for coarse matching and the initiation of pairwise pose refinement can be 

thought of as initiator processes similar to those described in [34], with additional processes only operating on 

incoming messages; however, this is again replicated across all nodes, so like the aforementioned asymmetry, 

the diffusing computations paradigm applies to the local structure at each node but not the algorithm as a 

whole. 
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Effect on Grouping 

In the absence of network-wide synchronization, the coarse grouping procedure described in Section 4.3.4 

becomes somewhat more complicated. Messages related to group merging and updates being received out 

of order and from multiple sources would be impossible to reconcile at any individual node. To rectify this 

problem, two mechanisms are established: 

1. Only the current leader of a group has the authority to modify group parameters and composition. 

2. Two group leaders must lock out all other changes and synchronize to each other for the duration of a 

merge. 

Non-leader nodes forward merging information up to their group leaders (even messages originally destined 

for them when they were the group leader). Group leaders sort out the details and decide how to proceed, 

often rejecting outdated requests. In turn, non-leader nodes act only on authoritative group updates from their 

current leaders, sometimes deferring more recent updates pending completion of previous ones. Section 4.4.2 

details how this is implemented. 

4.4 Distributed Calibration Algorithm 

The algorithm is split into ten different processes at each node; six for coarse grouping, and four for pairwise 

pose refinement. These processes execute within the context of their respective nodes' data spaces. Each 

process acts upon receipt of a message, with the exception of the feature selection process, which executes 

periodically, and the pose refinement initiator process, which executes whenever the group composition is 

updated. Termination of each process occurs based on various conditions (as not all processes necessarily 

operate throughout the entire calibration), and calibration is complete at each node when all processes at that 

node have terminated. 

There are four parameters intrinsic to the algorithm itself, which have been described at length in Section 

4.3: the feature size / , the similarity threshold td, the match threshold tm, and the consistency threshold 

tc. Certain other implementation-specific parameters are also required, notably those for the coarse and fine 

registration algorithms; in particular, tec and tef are referenced here as generic error thresholds for the coarse 

and fine registration algorithms, respectively. All such parameters are, of course, expected to be symmetric 

across all nodes, as part of their textual symmetry. 

4.4.1 Initialization 

Self Initialization 

Initialize nodeid, the unique identifier (node ID) for this node, and set groupid (this node's current group) to 

nodeid, putting this node in its own singleton group. 
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Initialize two associative arrays, coarsepose and finepose, indexed by node ID. These arrays store the 

coarse and fine pose estimates, respectively, relative to the node ID in the key.7 Set the nodeid (self) index 

for both to the identity pose P/. 

Initialize the merge lock, a simple node-local lock synchronization mechanism [57] which any process 

can acquire and which blocks any subsequent process attempting to acquire it until the current process has 

released it. Initialize the group update event, a flag which any process can set, check, or reset asynchronously. 

Network Initialization 

As per the abstract network assumption (Section 4.2.5), this node is assumed to have routing information 

for all other nodes in the network. Initialize any data structures necessary to perform routing of messages. 

Particularly, initialize a distribution of nodes for feature categorization in the geometric descriptor space, such 

that a node ID is returned for any descriptor value (this shall be referred to as the binning function). 

Point Set Initialization 

As per the assumption of inherent stereo 3D vision in Section 4.2.6, this node is assumed to have the ability 

to detect a reasonably repeatable set of interest points from the environment by stereo triangulation. Initialize 

an array points to contain a set of 3-tuples representing the triangulated positions of the points within this 

node's local coordinate system. 

Process Initialization 

Start all processes described in Sections 4.4.2 and 4.4.3. 

4.4.2 Coarse Grouping 

Feature Selection Process 

Periodically, populate an array feature with / different elements from points, either randomly or according 

to another selection model. Assign it a locally unique featureid, such as a sequential number. Compute the 

geometric descriptor of feature (as descriptor), and select the destination matching node according to the 

binning function. Send the output message to the feature matching process on the destination node. 

• Output: nodeid, featureid, descriptor, feature 

7One might expect that a node would only need to store its coarse pose estimate relative to its current group leader, since it may only 
be a member of one group at a time, and thus conclude that storing estimates from previous groups is unnecessary. This is fundamentally 
correct reasoning, but the asynchronicity of the processes which access the coarse pose estimate means that negotiations already in 
progress but not completed when the cunrent estimate changes still rely on these previous estimates, and it is more efficient to store them 
locally at each node than to embed them in messages. 
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Feature Matching Process 

• Input: sourceid, featureid, descriptor, feature 

This process maintains an array matchdb which contains all previously received features. 

Compare the incoming feature (as the data) to each feature stored in matchdb (as the model) to which it 

meets the similarity condition (where the difference between their descriptor values is less than tj) through 

the coarse registration algorithm. If the source node of the new feature is S and the source node of the 

matching database feature is M, the pose returned will be PSM- For each case where the final registration 

error e < tec, perform an unbiased, deterministic node selection8 between S and M. Send one of the following 

messages to the winning node's match processing process depending on which node is selected: 

• A message to S, where otherid is M and cpose is PSM-

• A message to M, where otherid is S and cpose is PMS = P$~M-

Finally, add the incoming feature (along with its source node ID, feature ID, and geometric descriptor) to 

matchdb. 

• Output: otherid, featureid, cpose 

Match Processing Process 

• Input: otherid, featureid, cpose 

This thread maintains an associative array matches, indexed by node ID, each entry containing an array of 

feature IDs and relative pose estimates returned by coarse matching between this node and the other node. 

Ensure that otherid is not already in this node's group, that otherid is not marked as complete in matches, 
and that matches:otherid does not already contain a match with this featureid. Add the featureid and cpose 
to matches'.otherid. 

If there are now at least tm matches to node otherid, for each unique combination of tm matches which 

includes the incoming match: 

1. Calculate the average pose transformation of the poses associated with the matches. 

2. If \\Pm(pc) — Pavg{Pc)\\ < *c f°r every match with associated pose Pm: 

(a) Send the output message to the group merge initiator process of the current group leader, where 
cpose contains this node's current group coarse pose estimate and apose contains Pmg. 

(b) Mark this node as complete in matches. 
8This node selection function must be deterministic in the sense that it returns the same node when executed on a given pair of nodes 

no matter which matching node is performing the selection, so that matches between that pair of nodes are always routed to the same 
node in the pair, and should be as unbiased as possible so that some nodes do not tend to receive more matches for processing than 
others. 
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(c) Exit the loop. 

3. Continue with the next unique combination. 

• Output: nodeid, otherid, cpose, apose 

Group Merge Initiator Process 

t Input: sourceid, otherid, cpose, apose 

While this node is the group leader, if sourceid is not in this node's group, attempt to acquire the merge lock. 

If this node is no longer the current group leader9 and otherid is not already in this group, forward the 

input message to the current group leader. 

Otherwise, initiate a merge with otherid by sending a merge output message to its group merge responder 

process, where group is an array containing all node IDs in this group and cpose is initialized to Pi. 

• Output: nodeid, group, cpose 

Wait for its acknowledgement message. 

• Input: sourceid, otherid, opose 

If the acknowledgement message is a preemption signal (see the group merge responder process description), 

reinsert the pose input message into the queue and return to message processing. Otherwise, based on this 

message, construct a group update message, where newgroupid is the sourceid in the message, ogroup 
and opose are its returned group contents and relative pose change (see the group merge responder process 

description) respectively, and cpose and apose are obtained from the original input message. Send this update 

message to the group update process of each other member of this group. Update this node's coarse pose 

estimate relative to sourceid (its new group leader) according to Equation 4.10. Release the merge lock and 

set the group update event. 

• Output: nodeid, newgroupid, ogroup, opose, cpose, apose 

Once this node is no longer its group leader, forward all remaining messages destined for this process to the 

current group leader. 

Group Merge Responder Process 

• Input: sourceid, ogroup, cpose 
9Due to the asynchronicity of message passing in this scheme, the situation might easily arise where a node's match processing 

process sends its output to the current group leader, and a subsequent merge changes the group leader before the message is actually 
delivered or before this process successfully acquires the merge lock. 
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While this node is the group leader, attempt to acquire the merge lock. If this process does not acquire the 

lock for a certain random interval (within a specified range), assume that a merge deadlock has occurred and 

send a special acknowledgement message to this node's group merge initiator process containing a signal that 

this process wishes to preempt the other. Once the merge lock has been acquired, ensure that the initiating 

source node is not in this node's group before proceeding. 

If this node is no longer the current group leader, compose this node's current group coarse pose estimate 

into the input message's cpose and forward the message to the current group leader. 

Otherwise, acknowledge the merge with sourceid by sending an acknowledgement message to its group 

merge initiator process, where cpose is repeated from the input message (note that any necessary changes in 

this pose will have been incorporated by the pose compositions included in the leader forwarding). 

• Output: nodeid, group, cpose 

Construct a group update message, where ogroup is repeated from the input message and the three pose 

entries (opose, cpose, and apose) are all set to />/. Send this update message to the group update process of 

each other member of this group. Set the group update event. 

• Output: nodeid, newgroupid, ogroup, opose, cpose, apose 

Once this node is no longer its group leader, for all remaining messages destined for this process, compose 

this node's current group coarse pose estimate into the message's cpose and forward the message to the 

current group leader. 

Group Update Process 

• Input: sourceid, newgroupid, ogroup, opose, cpose, apose 

Since group update messages may arrive out of order but cannot be processed this way, this process dif­

fers from the others in that it waits specifically for a message from its current group leader. This ensures 

consistency, as discussed in Section 4.3.6. 

Set this node's groupid to newgroupid, update its coarse pose estimate according to Equation 4.11 using 

opose, cpose, and apose, and append the nodes in ogroup to this node's group list. 

4.4.3 Pairwise Pose Refinement 

Pose Refinement Initiator Process 

Wait for the group update event to be set. Reset the group update event. For each new node in the group, 

perform an unbiased, deterministic node selection between it and this node. Send an initiation message to the 

responder process of each node which wins the selection and for which this node does not already have an 

entry in finepose, where cpose is this node's current group coarse pose estimate. 

• Output: nodeid, groupid, cpose 
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Pose Refinement Responder Process 

• Input: sourceid, sgroupid, spose 

If this node does not have an entry for sourceid in coarsepose, continue checking each time the group update 

event is set until it does. 

Compute a relative pose estimate between this node and the source node based on spose and this node's 

coarse pose estimate relative to sgroupid. From this, determine a cone approximation of the source node's 

field of view (see Figure 4.5) within this node's local coordinate system. Populate an array fpoints with all 

points in points falling within this cone. If fpoints contains at least 3 points, respond to the source node's 

registration process with the output message where cpose is this node's coarse pose estimate relative to 

sgroupid. 

• Output: nodeid, sgroupid, cpose, fpoints 

Fine Registration Process 

• Input: sourceid, sgroupid, spose, spoints 

Similarly to the responder process, compute a relative pose estimate, determine a field of view cone, and 

populate an array fpoints. If fpoints contains at least 3 points, attempt fine registration on spoints (as the 

data) and fpoints (as the model). If the registration error e < tej, set this node's entry for sourceid in nnepose 

to the result, and send the output message to the source node's update process, where rpose is the inverse of 

the result. 

• Output: nodeid, rpose 

Pose Update Process 

• Input: sourceid, rpose 

Set this node's entry for sourceid in nnepose to rpose. 
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Figure 4.6: Feature Selection Process 

Figure 4.7: Feature Matching Process 

Figure 4.8: Match Processing Process 
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Figure 4.12: Pose Refinement Initiator Process 
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Chapter 5 

Implementation Details 

5.1 Stereo 3D Vision 

5.1.1 Calibration 

Camera calibration (both of individual cameras and of stereo pairs) is generally a fastidious process. Many 

stereo camera calibration methods attempt to reduce the complexity of the parameters or the level of interac­

tion required to perform calibration, at the expense of precision. In most applications, the time and interaction 

required for full calibration is impractical or impossible, so these methods provide a feasible alternative when 

a large degree of imprecision can be tolerated. In the case of distributed smart stereo cameras, however, 

precision is vital for proper matching and reconstruction across nodes. 

The pre-deployment offline access assumption (Section 4.2.1) allows for stereo camera calibration, among 

other things, to be performed in an offline setting with full control over the environment. Therefore, it is 

desirable to employ a calibration method whose parameters will yield the highest possible precision when 

performing 3D reconstruction (in this case, point triangulation), regardless of the time and interaction level 

required to achieve it. 

The Camera Calibration Toolbox for Matlab [64] implements these methods with an interactive interface. 

This software is used to initially calibrate the physical camera nodes for the experiments in Chapter 6. 

5.1.2 Correspondence 

Assuming that suitable interest points can be detected in both images - which will be realized in Section 

5.2 - in order to determine the 3D positions of the physical points, the image points must be brought into 

correspondence with one another. 

The zero-mean normalized cross-correlation (ZNCC) score is a measure of similarity for template match­

ing, frequently used (among others) in computer vision for pixel correspondence. In this case, it is used to 

compute the correlation between interest points in each image. Equation 5.1 is an expression for the ZNCC 

39 
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score between a window Lc of size ffxlC about an interest point in the left image and a window Rc of equal 

size about one in the right image: 

ZNCC = E7=i * t i [Rcfrfi-tiRc)} • [Lc(iJ) -v(Lc)} ( 5 1} 

vfc£i Hi MJ) -KRc)}2 • Jz% tlx [Lc(ij)-n(Lc)}
2 

Of immense benefit to the accuracy and speed of correspondence is the existing knowledge, from the calibra­

tion in Section 5.1.1, of the camera pair's intrinsic and extrinsic parameters. This allows for the application 

of the epipolar constraint [33] to correspondence. For each interest point in the left image for which a cor­

respondence in the right image is sought, the right-image epipolar line can be calculated according to the 

following procedure: 

1. Normalize the pixel coordinates of the left-image interest point based on the left camera intrinsics. 

2. Calculate the right-image epipolar line (in normalized image coordinates) for this point based on the 

stereo extrinsics. 

3. Transform the normalized epipolar line into right-image pixel coordinates based on the right camera 

intrinsics. 

Only right-image interest points falling within a certain distance of this epipolar line1 need be considered as 

potential correspondences, greatly reducing the probability of false matches and the number of ZNCC score 

computations required. 

5.1.3 Point Triangulation 

An algorithm for triangulating the position of a 3D point based on the normalized image coordinates of its 

respective projections in a stereo image pair is described in [33]. It derives two expressions for estimating the 

3D coordinates. Ideally, these are equal, but in practice, image noise and error in camera calibration cause 

them to differ. In this case they are averaged to yield a more accurate estimate. 

5.2 Interest Point Detection 

The stable detection of interest points, reviewed in Section 2.2, is fundamental to this work. The effectiveness 

of the method used determines how well the 3D point sets correspond across nodes with different viewpoints, 

which has a huge impact on registration performance and thus the performance of the overall calibration 

algorithm. 

'Since the calibration procedure in Section 5.1.1 includes optical distortion, the epipolar line, when drawn in the right-image pixel 
coordinate space, will in fact be a curve, generally speaking. 
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5.2.1 Requirements 

The requirements for interest point detection performance are imposed from three sources: the correspon­

dence algorithm, the coarse matching scheme, and the fine registration algorithm. The requirements can be 

described by two quantitative performance criteria of the interest point detector: the total number of one-to-

one correspondences between a pair of images or nodes, and the repeatability of the points detected. The 

repeatability score for interest point detection between a given pair of images or nodes is quantitatively cal­

culated as the ratio of the number of one-to-one correspondences to the (minimum) total number of detected 

points [19]. These two criteria affect the performance of each of the three algorithms differently. 

Correspondence 

The correspondence algorithm of Section 5.1.2 primarily responds to repeatability. However, this only ap­

plies to stereo images locally at each node. Since finding points for stereo correspondence is one of the 

primary applications of interest point detection, most methods will perform suitably. The main challenges for 

repeatability are changes in scale (focal length) and motion (point of view) between the two images, neither 

of which are significant enough in small-baseline stereo to have a serious effect. Regardless, however, if the 

interest point detector cannot provide a high repeatability rate between the stereo images at one node, it is 

highly unlikely that the resultant triangulated points will exhibit satisfactory repeatability for the registration 

stages. 

Coarse Matching 

The coarse matching scheme described in detail in Section 4.4.2 has a special performance requirement 

dependent on both the number of correspondences and the repeatability score between two nodes attempting 

to match features. 

As explained in Section 4.3.3, the performance of the matching scheme depends on the probability of 

matching two randomly selected features between two given nodes. In order to relate Equation 4.5 to the 

performance criteria of the interest point detector, the criteria must be expressed in the terms used in that 

section. Equations 5.2 and 5.3 describe the number of correspondences N and the repeatability score R, 

respectively. 

N=\SADSB\ (5.2) 

» , Iftnftl 
min(|^|, |5 s | )
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It is clear from Equation 4.5 that P(FA « FB) increases if |5a nSs | increases relative to j ^ | and \SB\\ this 

translates into a desired increase in R. 

Additionally, it is required that N be large enough to actually contain at least tm features, imposing the 

constraint C(N,f) > tm. It should be mentioned that, as explained in Section 4.3.3, optimal performance 
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is achieved with a minimum N satisfying this inequality, for a given / . However, in accordance with the 

homogeneity requirement, all nodes must use the. same parameters for interest point detection, and there is 

no a priori way to know N for a given pair of nodes, so the detector must yield a fairly large value of N to 

ensure that the minimum requirement is satisfied in the vast majority of applicable pairwise cases. 

Fine Registration 

In Section 5.3.2, it is explained that this implementation uses the Trimmed Iterative Closest Point (TrICP) 

algorithm [15] for fine registration. This registration method is applicable to point cloud overlaps under 50%. 

As it will likely begin with a relatively good initial alignment from the coarse pose estimation result, but also 

considering occlusion effects and error in field of view estimation, 50% shall be considered the minimum 

repeatability criterion for good performance. Also, in general, the TrICP algorithm's performance increases 

as N increases. 

There are two qualifications to be noted here. The first is that, strictly speaking, the repeatability must 

occur between the 3D point sets at each node, which does not necessarily translate directly into repeatability 

between any particular pair of 2D images from those nodes. However, given the correspondence method 

chosen in Section 5.1.2, it can be considered essentially identical to the repeatability in detecting points in 

the nodes' respective left images. The second is that the repeatability need only be measured across images 

with nearly identical scene contents (occlusion notwithstanding), as before fine registration takes place, only 

the points falling in the estimated intersection of the nodes' fields of view are selected. The actual point of 

view, however, may vary arbitrarily under the current set of assumptions. 

Summary 

Based on the individual requirements, the following criteria are applied to interest point detection: 

C(NJ) > tm (5.4) 

R>0.5 (5.5) 

It should be stressed that Equation 5.5 is not an absolute requirement - the calibration algorithm may still 

converge if it is not met. In any case, neither of these criteria can be directly applied to the selection of 

an interest point detection algorithm. Rather, they are intended to simultaneously guide the selection of the 

interest point algorithm, the imposition of deployment constraints, and the extent of scene control. 

5.2.2 Algorithm 

Ideally, an interest point detection algorithm would be chosen to meet the requirements in Equations 5.4 and 

5.5 without imposing any deployment constraints beyond a connected vision graph and without requiring 

any control over the scene. However, stable interest point detection across widely separated views in 3D is a 



CHAPTER 5. IMPLEMENTATION DETAILS 43 

difficult problem, and as the evaluation in [25] would suggest, none of the methods mentioned in Section 2.2 

are satisfactory on their own to ensure convergence of the calibration algorithm. 

For practical purposes, the FAST detector [22, 23] is selected for this implementation. Convergence can 

be encouraged by constraining nodes to share large portions of their fields of view or by calibrating on a 

scene with strong interest points. In order to meet the repeatability requirements with a manageable number 

of points in a real-world scenario, it is likely that control over the scene during calibration is necessary 

for convergence. An example is the use of objects with strong textural features in the automatic point set 

experiments in Section 6.4. 

Though this imposes severe limitations on the general applicability of this implementation, interest point 

detection is still a very active research topic in computer vision, especially within the 3D context, and future 

improvements in stability across widely separated views will undoubtedly improve the situation. While it is 

impossible to ensure convergence regardless of the scene contents, it is desirable to generalize the system to 

as broad a range as possible so that good results are obtained in most practical cases. 

5.3 Registration 

5.3.1 Coarse Registration 

The size / of features used for matching in the coarse grouping stage of calibration is necessarily small 

- likely too small to allow for anything but perfect overlap of the points. An excellent solution to this 

registration problem is the fully-contained version of the DARCES algorithm [13], using three control points. 

DARCES without the RANSAC component is a relatively simple algorithm, allowing it to perform matching 

very quickly on a large number of features. 

For this purpose, DARCES simply requires an error threshold tec, which dictates the maximum Euclidean 

distance of each successive control point from its expected location as the points are found, and of the re­

maining points from their expected locations. 

5.3.2 Fine Registration 

The concept of the Iterative Closest Point (ICP) algorithm [ 14] lends itself well to the fine registration problem 

encountered in pairwise pose refinement, since it directly returns a pose estimate and the registration error. 

However, the difficulty of stable interest point detection, occlusion effects, and uncertainty about the overlap 

in field of view all contribute to poor overlap in the point sets used for pose refinement, and ICP's performance 

degrades heavily when the point sets do not fully overlap. The Trimmed Iterative Closest Point (TrICP) 

algorithm [15], used in this implementation, overcomes this limitation by operating on the best subset of 

points, which can be automatically tuned to any degree of overlap, and is applicable to overlaps under 50%. 

The TrICP algorithm requires an error threshold tef and a minimum change per iteration tr as stopping 

conditions. Additionally, since in this case the overlap is variable, the t, parameter must be automatically 

set using an objective function, which requires a weight parameter X. Finally, a separate maximum error 
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threshold emax is required to decide whether to accept or reject the fine registration. 



CHAPTER 6. EXPERIMENTS 46 

6.1.2 Accuracy 

Accuracy is the measure of the error in the algorithm's resulting pose estimates. 

A method of evaluating accuracy has been developed for this work. Since the calibration algorithm is 

based on the three-dimensional point as its data primitive, the mean error in a pose estimate can be determined 

by averaging the Euclidean distance between a number of points with ground-truth correspondence, detected 

and triangulated at the nodes separately from those used for calibration. Although error accumulates with the 

path length (number of pose compositions) in the calibration graph, it is more relevant to consider the length 

of the path in the vision graph,1 since the 3D reconstruction consistency among nodes observing the same 

part of the scene is the likely criterion. The mean 1-hop error, then, is the average Euclidean distance between 

the ground-truth point sets pairwise between all nodes with edges on the vision graph. The mean 2-hop error 

considers pairwise paths up to two edges in length, and so forth until the entire vision graph is considered. 

How relevant multi-hop accuracy is depends on the application. 

6.1.3 Scalability 

Scalability is the measure of the effect on the algorithm's performance of the number of nodes in the network. 

The three primary resources to consider are node-local computing resources (i.e. CPU and memory), node-

local data storage, and network bandwidth. For a given network, the addition of a node will presumably 

increase the consumption of each of these resources; it is desirable to minimize this increase. 

In order to properly evaluate scalability, it is necessary to examine individual factors arising from the 

algorithm itself. The most significant of these can be summarized in terms of the number of nodes n as 

follows: 

• Feature dissemination requires bandwidth resources in \N\ per node. 

• Feature matching (coarse registration) requires computing and storage resources in |N|. 

This assumes that the vision graph maintains an approximately constant number of pairwise edges regardless 

of |yv|, as would be the case with most applications. In cases where this assumption does not hold, it is 

necessary to add a third factor: 

• Pairwise pose refinement computation (fine registration) requires computing resources in \N\. 

Scalability in all three resources can be quantized experimentally in terms of the above factors. For node-local 

computing resources, each of the registration operations (coarse and fine) is assigned a weight depending on 

its relative computational requirements, and the total number of times these operations are executed at each 

node is recorded. For node-local storage resources, the final size of the matching database, in number of 
features, is recorded. For network-wide bandwidth resources, the outgoing bandwidth usage per second at 

each node is recorded. 

'As was mentioned in Section 3.3.3, the calibration graph structure approaches that of the vision graph. It is clear that maximizing 
the number of edges, thus minimizing the number of hops between nodes with edges on the vision graph, is beneficial to the accuracy 
metric. 
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The actual effect of increasing resource consumption differs depending on which is most significant. The 

convergence time of the calibration algorithm depends either on the total bandwidth usage as it relates to 

network capacity, or on the total node-local processing as it relates to throughput on each node. The ability 

of the calibration algorithm to complete at all may be affected by the storage use as it relates to the available 

storage on each node. 

6.2 Equipment and Software 

6.2.1 Stereo Cameras 

Four physical stereo camera rigs with adjustable mounts were constructed for experimentation (Figure 6.1. 

Each consists of two Prosilica EC1350 1.4 megapixel digital CCD IEEE-1394 cameras with Computar 

M3Z1228-MP manual focus lenses. The aluminum mounting frames allow adjustment and fixation of the 

relative x-axis translation (baseline) and y-axis rotation between the cameras. After calibration, these rigs are 

tested as having a mean triangulation error within their range of 2.58%, translating to approximately 0.5 to 

2.0 millimetres depending on the distance in z. 

Figure 6 .1 : Adjustable Stereo Camera Mount (Node) 

All four rigs are connected via a National Instruments IEEE-1394 image acquisition controller to a single 

Intel Pentium D (x86_64) PC. This is strictly for practical efficiency: no centralized processing of any kind is 

performed, and the software is designed and tested to work with each rig connected to its own PC (effectively 

forming a "node") communicating over a TCP/IP network; this PC, however, has enough resources to run 

four nodes at once, with communication on local TCP/IP. 

For the purposes of experiments using these camera rigs, the associated nodes are named Baureo, Lirr, 

Mayestril and Sheerek, sometimes abbreviated as B, L, M and S, respectively. 
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6.2.2 Distributed Calibration Software 

The main distributed calibration algorithm is implemented as a single multi-threaded program for each node, 

with a main initialization and message passing program overseeing the execution of ten other threads (one 

for each process in Section 4.4). It reports verbose time-stamped status messages so that the progress of 

calibration can be observed, and offers an interactive shell with various options for viewing and storing the 

results once calibration is complete; these would, of course, be unnecessary and therefore disabled on real 

embedded nodes. 

The calibration software relies on external files as input for network information and the point sets for each 

node. The network description file, in this case, is generated manually, as it represents the information that 

would normally be obtained at a previous stage of routing initialization in an ad-hoc network. The point files 

can be generated by the local point detection software, similar to the expected situation in a real distributed 

smart stereo camera network with an embedded node architecture, or by other means for experimentation. 

The distributed calibration software is implemented in Python [65]. See Section B.l for full annotated 

source code. 

6.2.3 Local Point Detection Software 

Representing the initialization stage of calibration, the local point detection is actually implemented as a 

separate piece of software from the rest of the calibration algorithm for the purposes of experimentation. 

This division allows for manual control of the detection stage, examination and manipulation of its results, 

and, in the case of the virtual point experiments described in Section 6.5, complete removal of vision-based 

point detection. 

The software presents an interface for entering and storing local stereo camera calibration parameters. 

These are used to capture images, detect image interest points (either manually or using the FAST detector), 

perform automatic correspondence on the points if necessary, and triangulate the 3D coordinates of the as­

sociated points. The points are then saved to a file which can be taken as input by the distributed calibration 

software. Figure 6.2 shows the graphical interface to the local point detection software. 
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Figure 6.2: Local Point Detection Software GUI 

Under automatic operation, once point detection is complete, the distributed calibration software de-
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scribed in the previous section is launched externally for the node. In this way, the full calibration process 

occurs completely automatically after a single button click in the GUI for each node, which is considered 

functionally equivalent to signalling a self-contained embedded device to begin calibration by some other 

means. 

The software performs simultaneous dual image acquisition, interest point detection in each image, cor­

respondence of the interest points between the images, and triangulation of the 3D coordinates of each point 

in the camera coordinate system. Thus, it is able to directly produce the requisite 3D point set for a node. 

Although this is designed to operate fully automatically, there are various options for user verification and 

intervention. Notably, it is possible to override automatic interest point detection and correspondence with a 

series of manual mouse clicks in each image. 

The local point detection software is implemented in ANSI C, using the National Instruments LabWin-

dows/C VI development environment and vision libraries for image acquisition and manipulation. See Section 

B.2 for full annotated source code. 

6.3 Manual Point Set 

In order to test the capabilities of the calibration algorithm and tune its parameters under controlled condi­

tions, the first experiment series is designed to operate on manually selected points with full correspondences 

across all four nodes. The primary purpose of this experiment type, once suitable parameters are found, is to 

test the effects of different point set sizes and overlap characteristics on convergence and accuracy. 

6.3.1 Apparatus 

The four stereo camera rigs are mounted within the vision platform such that each has full view of the 

experimental target. On each node, the local point detection software is run with manual point detection 

enabled, and a predetermined ordered series of 100 points on the target is selected. Four sets of 100 3D 

points are thus produced, with any given index in one node's point set corresponding to the same physical 

point represented by that index in the other three nodes' point sets. 

Point Set Size and Overlap 

With a large controlled point set for each node, it is possible to extract a number of subsets of different 

sizes and with different relative overlaps. In this experiment series, overlap is staggered to approximate 

the situation where nodes share only part of their field of view. This has a dual effect. Obviously, it will 

challenge the coarse grouping portion of the calibration algorithm proportionately to the overlap ratio. More 

subtly, however, since in reality the nodes all mutually share their fields of view, they will share their whole 

point sets for fine pairwise pose estimation, thus testing that portion's performance for the same overlap ratio. 
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6.3.2 Procedure 

A total of 22 point subsets are extracted from the data, and each is tested using the distributed calibration 

software, with all four nodes running locally on the same workstation.2 This procedure is repeated twice for 

each subset, and the average results for convergence time and mean error are calculated and recorded. 

Subset Extraction 

Point subsets Z?„,p, L„tP, M„,p and Sn>p, of size n and overlap ratio p, are extracted from the original point sets 

B, L, M, and S according to the following algorithm (assuming zero-indexed sets): 

1. Calculate the number of non-overlapping points e = n — np, and the total pool size P = n + 3e. 

2. Iterate i from zero to the pool size P: 

(a) Select a unique random integer value 0 < r < P. 

(b) If i < n, add Br to Bn,p. 

(c) If e < i < n + e, add Lr to L„iP. 

(d) If 2e < i < n + 2e, add Mr to M„tP. 

(e) Ifi>3e, add Sr to S„)P. 

Point set sizes of 20, 30, 40 and 50 were extracted, with the largest pairwise overlap ranging between 50% 

and 100% in increments of 10%. Note that the pool size required for overlaps of 50% and 60% with 50 points 

is larger than 100, so these combinations are not tested. 

Calibration Parameters 

The matching parameters to the calibration algorithm are chosen as / = 4 and tm = 3. Based some testing of 

the accuracy of the cameras and their stereo parameters, the other two main parameters are set as tj = 10.0 

and tc = 5.0. The cone approximation of the field of view extends 3.0 metres from the focal point, at an angle 

of TC/3 from the focal axis. 

Again based on camera accuracy, some parameters are chosen for the registration algorithms. The coarse 

error threshold is set as tec = 2.8. The fine error threshold is set as tef = 1.0, with aminimum change of 

tr = 0.01 per iteration, an objective function weight X = 2.0 minimizing the error for £ in the range [0.4,1.0] 

(see the automatic overlap setting procedure in [15]), and a final maximum mean squared registration error 

ofem a t= 100.0. 

Based on the network and processor capabilities of the host PC, feature dissemination is set to occur every 

0.08 + 0.0001/ seconds, where i is the number of features sent from the node. 
2AMD Athlon 64 3700+ (2.2 GHz), 1536MB RAM, running Gentoo Linux (kernel version 2.6.24) and Python 2.4. 
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Convergence Time 

The convergence time is recorded from the start of initialization to the completion of all threads. Note that 

the convergence time is primarily valid as a relative measure of execution time; as is discussed in Section 

B.l, the absolute performance of the algorithm could be greatly improved by reimplementation in a compiled 

language executing locally on smart camera devices, a subject for future work. 

Mean Error 

The mean error is calculated between all pairs of nodes as described in Section 6.1.2. For each permutation 

Nj,Nj of the node set N, the fine pose estimate Pji, which maps the points of Nj to the coordinate system of 

N, is obtained (if it is available directly) or computed (if it is only available indirectly; see Section 4.3.5 for 

details). The mean error is computed over all 100 original points by averaging the Euclidean distance of a 

given point in the Nj set with the mapping Pp of the corresponding point in the Nj set. 

6.3.3 Results 

The average recorded results (convergence time and mean error) of the manual point set experiments are 

shown in Table 6.1. 

Table 6.1: Manual Point Set Experiment Results 
Points (n) 

20 
20 
20 
20 
20 
20 
30 
30 
30 
30 
30 
30 
40 
40 
40 
40 
40 
40 
50 
50 
50 
50 

Overlap (p) 

50% 
60% 
70% 
80% 
90% 
100% 
50% 
60% 
70% 
80% 
90% 
100% 
50% 
60% 
70% 
80% 
90% 
100% 
70% 
80% 
90% 
100% 

Convergence Time (s) 

262 
49 
54 
27 
33 
18 

371 
209 
114 
74 
48 
38 
911 
441 
276 
117 
128 
79 
271 
248 
177 
230 

Mean Error (mm) 

2.6158 
2.5652 
2.2460 
2.2841 
2.1925 
2.1299 
2.1220 
2.1438 
2.0830 
2.0474 
2.0915 
2.0582 
2.0888 
2.1262 
2.0506 
2.1257 
2.0502 
2.0141 
2.1048 
2.1025 
1.9908 
1.9989 
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Convergence 

All 22 point subsets converge in both runs. Figure 6.3 shows a clear trend: convergence time increases 

exponentially as the point set size n increases or the overlap ratio p decreases. This is in accordance with the 

theoretical probability of rinding matches, as treated in Section 4.3.3, where n = \A\ — \B\ and np = \AC\B\\ 

as n increases or p decreases, matches found via feature dissemination and coarse matching become more 

scarce in relation to the number of features disseminated (and thus, the execution time and bandwidth). 

Figure 6.3: Convergence Time Trends in n and p 

Accuracy 

The resultant fine pose estimates do not vary greatly in accuracy, as pairwise estimates with large registration 

error are rejected and estimates for those pairs are instead calculated indirectly by composing intermediate 

estimates (see Section 4.3.5). This shows that the algorithm is quite robust against arbitrarily low pairwise 

overlap ratios even in nodes sharing large portions of their field of view, which is particularly important in 

cases where parts of the scene are occluded. 

The general trend is that accuracy improves slightly both with point set size and overlap ratio. There is 

a more drastic drop in accuracy when the overlap size np, which is the number of points the fine registration 

algorithm will ultimately optimize on, is very low (this can be seen here in the lowest overlap ratios for 

n = 20). 

Interpretation 

Based on these results, it can be concluded that small, robust point sets are desired at each node. However, 

the point set size must be large enough to provide good overlap (both in ratio and total size) with at least one 

other node, so that fine pose estimation has a substantial number of points to work with and yields accurate 

results. In this implementation, a point set size of 30 to 50 points appears reasonable, and it should be ensured 



CHAPTER 6. EXPERIMENTS 53 

Figure 6.4: Accuracy Trends in n and p 

that the interest point detection is robust enough to overlap at least 50% within the shared field of view with 

at least one other node for a given deployment. 

6.4 Automatic Point Set 

Having established some general criteria for reasonably timely convergence in the manual point set experi­

ments, the next step is to test real automatic calibration of the network. The purpose of these experiments is 

to test the convergence and accuracy performance of the algorithm in real conditions. 

6.4.1 Apparatus 

The four stereo camera rigs are mounted within the vision platform in a variety of configurations, all meeting 

the requirement that the vision graph be connected. 

Practical Considerations 

Due to the limitations of interest point detection, the current implementation cannot reliably converge calibra­

tion with only the shared view deployment constraint. To encourage nodes to detect point sets of reasonable 

size meeting the criteria of Equations 5.4 and 5.5, for the purposes of this series of experiments, calibration 

is performed on scenes with well-defined, non-ambiguous interest points. The lack of a large number of 

extraneous or ambiguous points in the vision platform provides part of this, but the main factor is the use of 

scene objects with strong textural features. 

For the four automatic point set experiments conducted here, the camera rigs are placed such that their 

vision graph is complete, and a conical calibration target with a number of black shapes on a white surface 
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is placed within their shared field of view. The target has texture around its entire surface, and provides 

occlusion. 

6.4.2 Procedure 

Four instances of the local point detection software, configured to execute the distributed calibration software 

on completion, are run in automatic mode on the vision platform workstation. Convergence time and the final 

calibration graph are recorded. A ground truth point set is manually selected for each camera rig, and the 

mean error is calculated and recorded. 

Calibration Parameters 

Since the equipment configuration used in these experiments is the same as with the manual point set, the 

calibration parameters used are identical (see Section 6.3.2). 

Convergence Time 

As with the manual point set experiments, the convergence time is recorded from the start of initialization to 

the completion of all threads. 

Mean Error 

The mean error is calculated between all pairs of nodes for which pairwise pose estimates can be determined 

as described in Section 6.1.2. A new target is placed in the scene, and the same 20 physical points are 

manually selected and triangulated as the ground truth set. Then, as with the manual point set experiments, 

the pairwise pose estimates are computed as necessary and the mean error is computed over these 20 points. 

6.4.3 Results 

The mean error, convergence time, and final calibration graphs for each of the four experiments are shown 

here. 

Experiment 1 

See Figure 6.14 for the deployment used in this experiment, and Figure 6.15 for a visualization of the cali­

bration results. 

• Mean Error: 2.7666 mm 

• Convergence Time: 159 s 
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Figure 6.5: Calibration Graph for Automatic Experiment 1 

Experiment 2 

See Figure 6.16 for the deployment used in this experiment, and Figure 6.17 for a visualization of the cali­

bration results. 

• Mean Error: 3.0844 mm 

• Convergence Time: 38 s 

Figure 6.6: Calibration Graph for Automatic Experiment 2 

Experiment 3 

See Figure 6.18 for the deployment used in this experiment, and Figure 6.19 for a visualization of the cali­

bration results. Note that calibration has not fully converged in this experiment, so the results apply only to 

the three nodes comprising the main group. 

• Mean Error: 2.7160 mm 

• Convergence Time: 648 s 
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Figure 6.7: Calibration Graph for Automatic Experiment 3 

Experiment 4 

See Figure 6.20 for the deployment used in this experiment, and Figure 6.21 for a visualization of the cali­

bration results. 

• Mean Error: 2.5813 mm 

• Convergence Time: 240 s 

Figure 6.8: Calibration Graph for Automatic Experiment 4 

Interpretation 

The algorithm is capable in most cases of converging given a reasonably obvious set of scene environment 

points (in the form of the cone target). The mean errors obtained are not much higher than the base triangu-

lation error of the camera rigs themselves, which as previously mentioned is up to roughly 2.0 millimetres at 

the ranges in question. 

Experiment 3 provides an example of a case without full convergence; in this situation, the pose estimates 

within the groups able to converge are still relevant and accurate for those nodes. The convergence time in 

such cases is much higher because the coarse grouping stage will exhaustively try to bring nodes together, 

but in the meantime the pose estimates within the calibrated groups are still available. 
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6.5 Virtual Point Set 

Since only four physical camera rigs are available, testing scalability to larger networks is impossible in an 

automatic experiment and difficult to control using the manual methods. Instead, controlled virtual point sets 

are supplied to the same calibration algorithm implementation to test the scalability metric. 

6.5.1 Apparatus 

Virtual point sets for a given number of nodes are automatically generated by a Python script using the 

same geometrical libraries as the calibration implementation. First, a specified density of points are placed 

randomly inside a cylindrical area. The points' positions are then captured within the field of view and 

coordinate system of "virtual nodes," positioned at random angles and radial distances along the length of the 

cylinder. Figure 6.9 shows a visualization of the concept with 5 nodes, where the central axis of the cylinder 

is shown as a line and the virtual node viewpoints are represented as pyramids. 

Because these points are free of detection error and occlusions, and because the field of view estimate 

is inherently perfect, this method has the added advantage of removing other sources of variability from the 

experiments. 

Figure 6.9: Virtual Point Set Generation 

6.5.2 Procedure 

Point sets are generated for 5,10, 15, 20, and 25 nodes. The total outgoing bandwidth in kilobytes, final size 

of the matching database in features, and total number of coarse and fine registration executions are recorded. 

6.5.3 Results 

The recorded results of the virtual point set experiments, with node average and node maximum for each 

measured value, are shown in Table 6.2. 
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Table 6.2: Virtual Point Set Experiment Results 
odes 

5 
10 
15 
20 
25 

Total Bandwidth (KB) 

26.67/29.19 
64.57/79.53 

176.40/239.14 
216.08/290.48 
280.41/417.14 

Features Stored 
29.80 / 37 
93.10/111 
223.33 / 327 
310.10/440 
369.96/581 

Coarse Reg. 

201.60/446 
1555.80/5461 

14022.13/29557 
24250.60/57736 
35347.44 / 72757 

Fine Reg. 

1.40/2 
1.70/3 
1.80/3 
1.65/3 
1.92/3 

Bandwidth Usage 

As expected, total bandwidth usage per node increases approximately linearly in relation to the number of 

nodes in the network (Figure 6.10). 

5 10 15 20 25 

Nodes 

Figure 6.10: Bandwidth Usage in |N| (Average and Maximum) 

This affects different networks in different ways. In a network where the physical medium is shared by all 

nodes - the worst-case scenario - the total network bandwidth usage is the relevant factor. In that case, 

the bandwidth usage increases non-linearly: based on these experiments, at roughly \N\2-6. However, many 

networks and topologies are more efficient and therefore able to mitigate this effect. The aforementioned 

shared-medium case can be considered a ceiling on the increase, while in an ideal case where each pair of 

nodes has an unshared pairwise link, the per-node bandwidth usage (as in Table 6.2 and Figure 6.10) can be 

considered a floor. 

Node-Local Storage 

The number of features stored at each node increases approximately linearly in relation to the number of 

nodes (Figure 6.11). Features are very small data (a series of / 3-tuples, an identifier, and a geometric 

descriptor value), but when scaling to extremely large networks it must be ensured that adequate storage is 

provided at each node for these features. 
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Figure 6.11: Node-Local Storage in |N| (Average and Maximum) 

Node-Local Processing 

The number of coarse registration operations performed at each node increases approximately linearly in 

relation to the number of nodes (Figure 6.12); as expected, this is proportional to the number of features 

stored. If processing throughput is the limiting factor, this increase will cause the convergence time to increase 

linearly with the number of nodes. 

•-Coarse A 
*-Coar» M 

Figure 6.12: Coarse Registration Processing in |N| (Average and Maximum) 

Since this network does not significantly increase the number of nodes whose fields of view overlap as its 
total number of nodes increases, the number of fine registrations per node does not increase (Figure 6.13). 
Thus, although fine registration can be considerably more computationally intensive than coarse registration, 
it does not contribute to increased convergence time. 
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Interpretation 

Figure 6.13: Fine Registration Processing in |N| (Average and Maximum) 

Generally, these results show that the calibration algorithm scales well computationally, with the number of 

coarse registration operations increasing at no more than 0(n) in the number of nodes. Similarly, the storage 

requirements are 0(n) in the number of nodes. Depending on the network specifics, the algorithm may 

approach linear scalability in bandwidth usage as well, and increases at no more than approximately 0(n26) 

in the number of nodes in the shared-medium case. 

The actual absolute requirements are low enough that, with modern processing, storage, and networking 

technologies, the algorithm should scale well into the hundreds or thousands of nodes. 
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Figure 6.14: Camera Deployment for Automatic Experiment 1 
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Figure 6.15: Pose Visualization for Automatic Experiment 1 
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Figure 6.16: Camera Deployment for Automatic Experiment 2 
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Figure 6.17: Pose Visualization for Automatic Experiment 2 
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Figure 6.18: Camera Deployment for Automatic Experiment 3 
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Figure 6.19: Pose Visualization for Automatic Experiment 3 
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Figure 6.20: Camera Deployment for Automatic Experiment 4 
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Figure 6.21: Pose Visualization for Automatic Experiment 4 



Chapter 7 

Conclusions 

7.1 Overview 

A feature-based calibration method for distributed smart stereo camera networks has been developed which 

converges well, provides accurate pairwise orientation, and scales well to large networks. This provides 

a base upon which to build a full 3D visual sensor network providing primitive data-centric queries, upon 

which in turn a variety of high-level applications can be developed. 

Currently, the algorithm makes it possible for smart stereo camera devices to self-localize and self-orient 

relative to one another in a distributed fashion, allowing for various subsequent stages of realization for a 

variety of applications. The immediate opportunity is to provide a generalized framework for building these 

solutions, which would rest on the underlying assumption that the network is accurately calibrated and can 

perform 3D reconstruction across multiple views. The preliminary conceptualization is discussed in Section 

7.4.5. 

The major implementation drawback is the instability of interest point detection in the general case; at 

present, it is necessary to control the scene somewhat by adding one or more calibration targets for conver­

gence to occur reliably. Improving this situation is an important avenue for future work, and is elaborated 

upon in Section 7.4.2. Another limitation of the current implementation is its slow performance, often on the 

order of minutes. This arises from network constraints and the fact that the implementation uses an inter­

preted language, both of which could be improved on a more specific embedded system, addressed in Section 

7.4.1. 

7.2 Comparison with Existing Work 

Since distributed smart stereo cameras are a new concept within a new field, very little exploration has been 

done as yet in the literature. The major source for this concept to date is the recent work described in [1], and 

the only other directly comparable calibration algorithm is found in the related work, the Lighthouse method, 
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in [2]. With this in mind, this calibration algorithm is compared first qualitatively with some of the existing 

methods for single-camera nodes before moving on to a more quantitative comparison with Lighthouse. 

7.2.1 Single-Camera Node Methods 

The advantages of stereo camera networks are discussed in Chapter 1, but counting this as an implicit advan­

tage, it is still beneficial to consider how this calibration algorithm compares to single-camera methods on 

other fronts. 

While the method in [6] appears to work quite well for networks consisting of single-camera nodes, its 

major drawback is that it currently requires a priori knowledge of the vision graph. The authors state that they 

plan to automatically generate this via invariant feature matching, but it can be seen from the coarse grouping 

portion of the calibration algorithm in this work that this is no trivial matter even with robust 3D point sets, 

let alone with only 2D images. The DALT algorithm in [7] similarly requires knowledge of matching feature 

points to build microclusters (similar to the vision graph concept), with no explicit robust method for actually 

doing so. Using robust 3D feature matching and the distributed grouping scheme, this calibration algorithm 

is able to reliably approximate this information without any a priori information. 

Methods such as that in [8] rely on the motion of objects through the fields of view of the nodes in order 

to estimate poses. This limits its applicability to situations where such motion would actually exist, such 

as in surveillance. Also, the results are not particularly accurate, although they could perhaps be used to 

initialize one of the previous algorithms [6, 7]. This calibration algorithm makes less assumptions about 

the contents of the scene, however, and provides highly accurate pairwise pose estimates without requiring 

external refinement. 

The methods of [9] and [10] are fairly robust, but both require the use of markers or beacons in the 

environment. One of the major strengths of this calibration algorithm is that it does not implicitly depend on 

any particular scene contents; as long as the scene and the interest point detector combine to provide a good 

set of points, calibration is possible. The cumbersome or infeasible process of controlling the contents of the 

scene can be completely avoided in many real cases. 

7.2.2 Lighthouse 

The most similar approach to the one taken in this work, and the only other distributed smart camera network 

calibration technique using true 3D features published to date, is the Lighthouse method in [2]. This method 

performs distributed feature matching in a similar way, but its grouping method uses GHTs, which require 

localization information to function and are ill-suited to feature matching distribution even when methods not 

requiring localization are used. The method assumes the existence of robust feature detection and geometric 

hashing; as is seen in this work, this is not a trivial process, and it is necessary that the design of algorithms 

using these features be coupled with knowledge of methods for feature detection and description. 

As a result, it is difficult to compare evaluations of convergence quantitatively. The Lighthouse method 

appears to assume what would be considered here an unrealistically high degree of feature overlap and an 

unrealistically low total number of features per node. It is compared to a "flooding" scheme, essentially 
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equivalent to centralized aggregation and matching of features, and approximates it in terms of convergence. 

However, the method appears unable to merge the entire network into a single group in any tested case, 

which is qualitatively poor convergence. By contrast, given more features with less overlap, this calibration 

algorithm easily converges into a single group. 

Accuracy is not evaluated in the Lighthouse method, as the pairwise pose refinement step is considered 

external. Since similar feature matching methods are used, the accuracy of Lighthouse's results should be 

comparable to those of the coarse pose estimates in this algorithm, although no data is provided about this 

either. Consequently, given its internal pairwise pose refinement step, this algorithm is considered to provide 

superior calibration accuracy. 

Evaluated in the context of certain wireless sensor network protocols, notably the geographic routing 

methods used with GHTs, Lighthouse exhibits good scalability in terms of bandwidth usage. The feature dis­

tribution in this method is similar to GHT insertion, and thus would benefit similarly from appropriate routing 

methods, offering equivalent scalability. Node-local processing and storage requirements in the network sie 

are not evaluated directly, but again, since the feature matching process is similar, the scalability should be 

comparable. 

7.3 Summary of Contributions 

The primary contribution of this work is a scalable, general-purpose distributed spatial calibration method 

and algorithm for smart stereo camera networks. This is the most complex and important building block of a 

true 3D sensing network. 

In conjunction with the development of this method, algorithms for interest point detection and registra­

tion have been surveyed, providing a truly practical implementation and also exposing areas of improvement 

in these problems. 

Another important contribution is an examination of the significance of and relationships between the 

communication graph, vision graph, and calibration graph. Visual sensor networks differ fundamentally 

from other networks, and these graphs provide a theoretical basis for modelling them. 

7.4 Future Work 

7.4.1 Embedded Implementation 

Currently, the practical applications of this work are limited without a concrete underlying platform. Now that 

the fundamental requirements are established, a next step towards practicality is the design and implemen­

tation of a physical embedded smart stereo camera device capable of providing the underlying networking 

system in an ad-hoc manner and of executing distributed collaborative algorithms such as this calibration 

method. 
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7.4.2 Improved Feature Reliability 

The challenge in using 3D feature-based methods for calibration and other components of a distributed smart 

stereo camera network's sensing system is the inherent difficulty of obtaining reliable feature data from 2D 

images of the scene. Here, standard image-based detection and correspondence methods have been used, 

which is cited as the most prominent drawback in the calibration algorithm. There are, fortunately, many 

possibilities for improving this situation. 

The analysis of existing image-based interest point detection algorithms in [25] has shown that none are 

fully adequate for 3D transformations, with the best of them invariant only to affine changes. However, these 

limitations are primarily imposed by the fact that the algorithms are provided only a single image as input. 

With stereo cameras, new algorithms could avail themselves of the much richer information and provide 

far more robust interest point detection relevant to a 3D context. Some work has been done attempting to 

use stereo information to enhance the relevancy and distribution of interest points in [26, 27], using epipolar 

gradients - information not available in single images - to enhance basic Harris-based corner detection. More 

directly, some investigation into developing a 3D rigid interest point detector from stereo images has been 

presented in [63]. 

With the availability of interest point descriptors arising directly from the detector, the feature matching 

portion of calibration could be greatly improved as well, taking advantage of more than just the coordinates 

of the interest points in categorizing and matching features. 

7.4.3 Tiered Calibration for Large Networks 

At certain large network sizes, the increased convergence time or storage requirements of the algorithm be­

come infeasible. It may thus be desirable to divide the network into a series of subgroups which are known to 

be at least somewhat contiguous in terms of the portion of the total network coverage they represent, perform 

calibration within these subgroups, and then perform a second calibration for the full network with the cali­

brated subgroups initialized as groups (using their fine pose estimates to initialize the coarse pose estimates). 

This might be cascaded an arbitrary number of times, thus providing essentially unlimited scalability. 

Such an adaptation would be possible using the existing calibration algorithm essentially unmodified, 

requiring only a simple higher-level mechanism to initialize and coordinate the successive calibrations, and 

an assumption that the deployment locations and orientations of the nodes are known to some degree. 

7.4.4 Dynamic Calibration 

It is desirable for a calibration algorithm for distributed smart stereo camera networks to adapt to changes 

in node presence and pose. Such adaptation should be automatic, both for small changes in node pose (e.g. 

panning or drift) and for large changes in the network (e.g. adding, removing, or relocating nodes). 

Dynamic calibration is currently achievable only in a "manual" way; if, after a network is calibrated, 

nodes are added to or removed from the network, or change position or orientation, the calibration algorithm 

can be reinitialized with all the group structure and pose estimates which are still valid from the previous cal-
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ibration. However, no mechanism has been discussed for how to detect such changes or how to automatically 

reinitialize the network. Such a mechanism is a candidate for future work directly applicable to this method. 

True dynamic calibration, where the nodes constantly adjust their relative pose estimates based on new 

information in real time, is the ultimate goal. It is conceivable that a second calibration algorithm could take 

over upkeep for relatively small pose adjustments after the primary calibration is complete, so the aforemen­

tioned reinitialization would be necessary only for large adjustments or changes in the network composition. 

7.4.5 Basis for a 3D Sensing Network 

In order to realize the ultimate goal of providing a framework upon which various distributed smart stereo 

camera network applications can be built, the basic services must be expanded beyond spatial calibration 

alone. Providing temporal synchronization and a basic space-time query system, as proposed in [1], is the 

greater context of this work. 
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Glossary of Terms 

coarse registration 
See registration. 

DARCES 

Data-Aligned Rigidity-Constrained Exhaustive Search, a method for fully-contained coarse registration [13] 

used in feature matching. Traditionally used with RANSAC for registration of partially overlapping data sets. 

feature 
A subset of small fixed size selected from the point set for feature matching. 

fine registration 

See registration. 

group 
A group of nodes agreeing on a common leader node within the group. See also group leader, group coarse 

pose. 

group coarse pose 
The coarse pose estimate of a node relative to the leader of its current group. See also group leader. 

group leader 
A node which provides a common coordinate reference for group coarse pose estimates. Also, the node 

within a group responsible for performing group merge operations. 

group merge 
A transitive operation involving the composition of coarse pose estimates which brings two groups together 
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into a single group. 

ICP 

Iterative Closest Point, a method for fine registration [14]. See also TrICP. 

interest point detection 

The process of detecting salient features, such as corners, in 2D images. A variety of methods exist. 

leader 

See group leader. 

match 
Two features are said to match when they are geometrically similar to within some threshold. May also refer 

to the resultant transformation (pose) returned by coarse registration upon detecting a match. Defined in Sec­

tion 3.2.3. 

merge 
See group merge. 

node 
A smart stereo camera device in the network. 

point set 

The set of all 3D points locally detected (via interest point detection) and triangulated at a node. 

pose 

A rigid Euclidean transformation describing an object's location and orientation. 

RANSAC 

Random Sample Consensus, an iterative method to estimate parameters of a mathematical model from a set 

of observed data which contains outliers. 

registration 
The process of transforming two or more visually acquired data sets into a common coordinate system. A 
variety of methods exist, generally divided into coarse registration and fine registration algorithms. 

relative pose 
The rigid Euclidean transformation from the local coordinate system of one node to that of another node. See 

also pose. 
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repeatability 

A metric by which interest point detection algorithms are evaluated, which describes their stability in detect­

ing points under varying conditions and from various viewpoints. 

rotation matrix 

A n x n real orthogonal matrix corresponding to a geometric rotation about a fixed origin in n-dimensional 

Euclidean space. 

similarity condition 

A condition specifying that two features must be sufficiently similar in order to attempt coarse registration 

for the purpose of feature matching. Defined in Section 4.3.3. 

translation vector 

A n-element vector corresponding to a geometric translation in n-dimensional Euclidean space. 

TrICP 
Trimmed Iterative Closest Point, a method for fine registration of partially overlapping data sets [15] based 

on/CF. 
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Software Source Code 

B.l Distributed Calibration (Python) 

The distributed calibration software is written in the Python programming language [65], and uses the NumPy 

numeric library [66] for some of the linear algebra computations. It is split into three parts: node.py, which 

runs the multi-threaded core distributed calibration algorithm; geometry.py, which provides classes for geo­

metrical mappings; and registration.py, which performs the coarse and fine registration algorithms. 

B.l.l Node Program 

node.py 

"""Distributed Smart Stereo Network Calibration Algorithm""" 

author = 'Aaron Mavrinac' 

version = '1.0' 

import time 

import sys 

import csv 

import math 

import numpy 

import pickle 

import random 

import socket 

import threading 

import geometry 

import registration 
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ttft##t###t#tt#«#t####tff##ff#f#t*#f##f'fftfftt#ttttf*t##ftttt#f#fftft*«#«#t#*ff 

# CONSTANTS 

tt**ttf##ft#t«#t#t«t#»#tftt#t*t#t«t#t*#«#ft#f*#«##tt#t«#t««tt#t##fttttt#tt####t 

NODE_CONE_ANGLE = ( 1 . 0 / 3 . 0 ) * math.pi 

NODE_CONE_LENGTH = 3000.0 

NODE_FEATURE_SIZE = 4 

NODE_FEATURE_DELAY =0.08 

NODE_DIFF_THRESH =10.0 

NODE_MERGE_THRESH = 3 

NODE_CONSIST_THRESH =5.0 

COARSE_THRESH = 2.8 

FINE_TE =1.0 

FINE_TR =0.01 

FINE_LAMBDA =2.0 

FINE_EMAX = 100.0 

############################################################################### 

# GENERAL FUNCTIONS 

############################################################################### 

# timestamp printing function 

timestamp = lambda : time.strftime( "[%H:%M:%S]" ) 

# factorial function 

fac = lambda n : [ 1, 0 ][ n > 0 ] or fac( n - 1 ) * n 

# dictionary length function 

dictlen = lambda x : sum( map( lambda k : len( x[ k ] ), x.keysf) ) ) 

# unbiased deterministic node selector 

def nodeselect(a, b ): 

mod = ( net.idsubscript ( b ) - net.idsubscript( a ) ) % 2 

if ( mod and b > a ) or ( not mod and b < a ): 

return True 

else: 

return False 
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# unique combination generator 

def uniquecombinations( items, n ) : 

if n == 0: 

yield [] 

e lse: 

for i in xrange( len( items ) ) : 

for cc in uniquecombinations! items[ i + 1: ] , n - 1 ) : 

yield [ items[ i ] ] + cc 

# network class 

class network! list ): 

def init ( self ) : 

self.outaccount = {} 

list. init ( self ) 

def idsubscript ( self, node ): 

"""Returns the subscript for a node given its node ID""" 

for i in range( len ( self ) ): 

if self[ i ][ 0 ] == node: 

return i 

def send( self, node, msg ): 

"""Sends a pickled message to another node""" 

outmsg = pickle.dumps( msg ) 

client = socket.socket( socket.AF_INET, socket.SOCK_STREAM ) 

try: 

client.connect ( self.hostport( node ) ) 

client.send( outmsg ) 

client.close () 

# bandwidth accounting 

t = int( time.time() ) 

if self.outaccount,has_key( t ): 

self.outaccount[ t ] += len( outmsg ) 

else: 

self.outaccount [ t ] = len( outmsg ) 

except: 

print timestamp (), "Failed to send", msg[ 0 ], "message to [", node, " ] . " 

def hostport( self, node ): 

"""Returns the hostname and port number for a node""" 

i = self.idsubscript( node ) 
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return ( self[ i ][ 1 ], self[ i ][ 2 ] ) 

############################################################################### 

t COARSE PROCESS 1: Feature Selection 

############################################################################### 

class coarse_feature_thread( threading.Thread ): 

def run( self ): 

# generate the feature list 

rfeatures = [] 

for c in uniquecombinations( range ( len( globals()['points'J ) ), \ 

globalsO ['NODE_FEATURE_SIZE'] ) : 

cfeat = [] 

for r in c: 

cfeat.append( globals()['points'][ r ] ) 

rfeatures.append( [ c, self.geometric_hash( cfeat ) ] ) 

rfeatures.sort ( lambda x, y : cmp( x[ 1 ], y[ 1 ] ) ) 

# pre-bin all features 

features = {} 

for node in globals ()['net'] : 

features! node[ 0 ] ] = [] 

for rf in rfeatures: 

if rf[ 1 ] > node[ 4 ]: 

break 

if rf[ 1 ] > node[ 3 ]: 

features! node[ 0 ] ].append( rf ) 

del rfeatures 

# wait for other nodes to come online 

print timestampO, "Waiting for other nodes..." 

waitlist = network() 

for node in globals () ['net' ] : 

if node[ 0 ] != globals()['nodeid']: 

waitlist.append( node ) 

while( len( waitlist ) ): 

for node in waitlist: 

ping = socket.socket( socket.AF_INET, socket.SOCK_STREAM ) 

try: 

ping.connect ( waitlist.hostport( node[ 0 ] ) ) 
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ping.send( pickle.dumps( [ 'ping' ] ) ) 

ping.closet) 

del waitlist[ waitlist.idsubscript( node[ 0 ] ) ] 

except: 

time.sleep( 1.0 ) 

# periodically send out features 

print timestampf), "Starting coarse feature dissemination." 

i = 0 

while len ( globals ()['group'] ) < len ( globals () ['net'] ) \ 

and dictlen( features ) > 0: 

for node in features.keys (): 

if len( features [ node ] ) > 0: 

feature = [ 'cfeature', globals() t'nodeid'], i ] 

rf = features[ node ].pop( 0 ) 

feature.append( rf[ 1 ] ) 

for r in rf[ 0 ]: 

feature.append! globals()['points'][ r ] ) 

globals()['net'].send( node, feature ) 

i += 1 

time.sleep( globals()['NODE_FEATURE_DELAY'] + 0.0001 * i ) 

else: 

del features[ node ] 

feature = [ 'cfeature' ] 

for node in globals () ['net'] : 

globals()['net'].send( node[ 0 ], feature ) 

print timestampO, "Stopping coarse feature dissemination process." 

globals () ['net'] .send( globals () ['nodeid'], [ 'die' ] ) 

def geometric_hash( self, feature ): 

"""Simple geometric descriptor (total Euclidean distance to centroid) 

centroid = geometry.point ( 0, 0, 0 ) 

gdesc =0.0 

for p in feature: 

centroid += p 

centroid /= float( len( feature ) ) 

for p in feature: 

gdesc += abs( centroid.euclidean( p ) ) 

return gdesc 
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############################################################################### 

# COARSE PROCESS 2: Feature Matching 

############################################################################### 

class coarse_matching_thread( threading.Thread ) : 

def run( self ): 

dc = 0 

matchdb = [] 

while len( globals()['group'] ) < len( globals () ['net'] ) \ 

and dc < len( globals()['net'] ): 

# grab next message in the queue 

globals()['cvqueue'][ 'cfeature' ].acquire() 

while len( globals () ['msgqueue'][ 'cfeature' ] ) == 0: 

globals()['cvqueue'][ 'cfeature' ].wait() 

feature = globals()['msgqueue'][ 'cfeature' ].pop( 0 ) 

globals()['cvqueue'][ 'cfeature' ].released 

if len( feature ) — 1: 

dc += 1 

continue 

# process feature matching 

for fext in matchdb: 

if abs( feature[ 3 ] - fext[ 2 ] ) <= globals()['NODE_DIFF_THRESH'] \ 

and not feature! 1 ] == fext[ 0 ] \ 

and not ( feature[ 1 ] in globals()['group'] \ 

and fext [ 0 ] in globals()['group'] ): 

rpose = registration.coarse_registration( fext[ 3: ], \ 

feature! 4: ], globals()['COARSEJTHRESH'] ) 

globals()[' acc_coarse'] += 1 

if rpose.nonzero (): 

print timestampO, "Matched features between node [", \ 

feature! 1 ], "] and node [", fext[ 0 ], " ] . " 

if nodeselect ( fext[ 0 ], feature[ 1 ] ): 

match = [ 'cmatch', feature! 1 ], feature [ 2 ] + fext[ 1 ], \ 

rpose ] 

globals () ['net'] .send ( f ext [ 0 ], match ) 

else : 

match = [ 'cmatch', fext[ 0 ], fext[ 1 ] + feature[ 2 ], -rpose ] 

globals()['net'].send( feature[ 1 ], match ) 

matchdb.append( feature! 1: ] ) 

match = [ 'cmatch' ] 
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for node in globals () ['net' ] : 

globals()['net'].send( node[ 0 ], match ) 

print timestampO, "Stopping coarse matching process (stored", \ 

len( matchdb ), "features)." 

globals()['acc_matchdb'] = len( matchdb ) 

globals () ['net'] .send( globals () ['nodeid'], [ 'die' ] ) 

############################################################################### 

# COARSE PROCESS 3: Match Processing 

############################################################################### 

class coarse_matchproc_thread( threading.Thread ): 

def run( self ) : 

dc = 0 

matches = {} 

for node in globals ()['net'] : 

matches[ node[ 0 ] ] = [] 

while dc < len( globals () ['net'] ): 

# grab next message in the queue 

globals()['cvqueue'][ 'cmatch' ].acquire!) 

while len ( globals () ['msgqueue'] [ 'cmatch' ] ) == 0: 

globals () ['cvqueue'] [ 'cmatch' ].wait() 

match = globals () ['msgqueue'][ 'cmatch' ].pop( 0 ) 

globals () ['cvqueue'] [ 'cmatch' ].release)) 

if len( match ) == 1: 

dc += 1 

continue 

# store and process feature match 

if not matches! match[ 1 ] ] == 'done' \ 

and not match[ 1 ] in globals()['group'] \ 

and not match[ 2 ] in map( lambda x : x[ 0 ], matches[ match[ 1 ] ] ): 

print timestampO, "Received a match with node [", match[ 1 ], " ] . " 

if len( matches[ match[ 1 ] ] ) >= \ 

( globals () ['NODE_MERGE_THRESH'] - 1 ): 

# try to find enough consistent matches to merge 

for matchsubset in uniquecombinations( matches[ match[ 1 ] ], \ 

globals()['NODE_MERGE_THRESH'] - 1 ): 

matchsubset.append( [ match[ 2 ], match[ 3 ] ] ) 
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# c a l c u l a t e t h e average pose 

avgpose = geometry.pose( 0/ 0 ) 

avg the ta = 0 . 0 

avgphi = 0 . 0 

avgpsi = 0 . 0 

for rpose in map( lambda x : x[ 1 ] , matchsubset ) : 

for i in range( 3 ) : 

avgpose.T[ i ] += rpose.T[ i ] / \ 

float! globalsO ['NODE_MERGE_THRESH'] ) 

avgtheta += rpose.om()[ 0 ] / \ 

f l o a t ( g l o b a l s O ['NODE_MERGE_THRESH'] ) 

avgphi += rpose.om()[ 1 ] / \ 

f l o a t ( g l o b a l s O ['NODE_MERGE_THRESH'] ) 

avgpsi += rpose.om()[ 2 ] / \ 

float! globalsO ['NODE_MERGE_THRESH'] ) 

avgpose.generate( avgpose.T.x, avgpose.T.y, avgpose.T.z, \ 

avgtheta, avgphi, avgpsi ) 

# check if matches are consistent 

flag = False 

for rpose in map! lambda x : x[ 1 ], matchsubset ): 

if rpose.map! globals ()['pointc'] ).euclidean( avgpose.map! \ 

globalsO ['pointc'] ) ) > globals() ['NODE_CONSIST_THRESH']: 

flag = True 

break 

if flag: 

continue 

matches! match[ 1 ] ] = 'done' 

# send the merge message to the other node 

print timestampO, "Forwarding pose from", \ 

globalsO ['NODE_MERGE_THRESH'], "matches to leader [", \ 

globalsO ['groupid'], "] ." 

pose = [ 'cpose', globals()['nodeid'], match[ 1 ], \ 

globals () ['coarsepose'] [ globals ()['groupid'] ], avgpose ] 

globals () ['net'] .send( globals ()[' groupid' ], pose ) 

break 

# add the match to the set 

if not matches! match[ 1 ] ] == 'done': 

matches! match[ 1 ] ].append! [ match[ 2 ], match[ 3 ] ] ) 

pose = [ 'cpose' ] 
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for node in globals () ['net' ] : 

globals()['net'].send( node[ 0 ], pose ) 

print timestampO, "Stopping coarse match processing process." 

globals () ['net'] .send( globals () ['nodeid'], [ 'die' ] ) 

#t*ttt#t##tt#t#t#ttt##f#t#f#t###ttt#ttttt#t«#tttt#ttt###4###ttt«ft#t«t##tt#tt## 

# COARSE PROCESS 4: Group Merge Initiator 

class coarse_pose_thread( threading.Thread ): 

def run( self ): 

dc = 0 

last = globals () ['nodeid'] 

while dc < len( globals () ['net'] ) \ 

and globals () ['nodeid'] == globals ()['groupid'] : 

# grab next message in the queue 

globals () ['cvqueue'] [ 'cpose' ]. acquire () 

while len ( globals () ['msgqueue' ] [ 'cpose' ] ) == 0: 

globals () ['cvqueue'] [ 'cpose' ].wait() 

pose = globals()['msgqueue'][ 'cpose' ].pop( 0 ) 

globals()['cvqueue'][ 'cpose' ].released 

if len( pose ) == 1: 

dc += 1 

continue 

if len( globals () ['group'] ) == len( globals()['net'] ): 

break 

if not pose[ 2 ] in globals ()['group']: 

globals () ['mergelock' ] .acquire () 

if pose[ 2 ] != last: 

# if not group leader, forward to group leader 

if globals () ['nodeid'] != globals () ['groupid'] : 

print timestampO, "Re-forwarding pose from node [", pose[ 1 ], \ 

"] to leader node [", globals () ['groupid'], " ] . " 

globals()['net'].send( globals()['groupid'], pose ) 

globals () ['mergelock' ] .release () 

break 

# send a merge message to the other group 

print timestampO, "Initiating merge into group containing node [", \ 
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pose[ 2 ], " ] . " 

merge = [ 'emerge', globals () ['nodeid'], globals ()['group'], \ 

geometry.pose ( 0, 0 ) ] 

globals()['net'].send( pose[ 2 ], merge ) 

last = posef 2 ] 

# wait for acknowledgement from the other group's leader 

globals {) fevqueue'] [ 'cack' ]. acquired 

while len( globals () ['msgqueue'] [ 'cack' ]' ) == 0: 

globals () ['cvqueue'] [ 'cack' ].wait() 

ack = globals()['msgqueue'][ 'cack' ].pop( 0 ) 

globals()['cvqueue'][ 'cack' ].released 

# check for merge thread preempt 

if len( ack ) == 1: 

print timestampt), "Merge initiation preempted, deferring." 

# reinsert the pose message 

globals () ['cvqueue'] [ 'cpose' ].acquired 

globals()['msgqueue'][ 'cpose' ].insert ( 0, pose ) 

globals () ['cvqueue'] [ 'cpose' ].released 

globals (} ['mergelock' ] .released 

# give the merge thread a chance to acquire the lock 

time.sleep ( 1.0 ) 

continue 

# update former own group 

print timestampt), "Merge with group [", ack[ 1 ], \ 

"] acknowledged, merging." 

update = [ 'cupdate', globals ()['nodeid'], ack[ 1 ], ack[ 2 ], \ 

ack[ 3 ], pose[ 4 ], pose[ 3 ] ] 

for node in globals () ['group'] : 

if node != globals()['nodeid']: 

globals () ['net'] .send( node, update ) 

# update self 

globals () ['groupid'] = ack[ 1 ] 

for node in ack[ 2 ]: 

globals()['group'].append( node ) 

coarsepose[ ack [ ! ] ] = (( -pose[ 3 ] ) + pose[ 4 ] ) + ack[ 3 J 

globals () ['mergelock' ] .released 

globals () ['groupupdate' ] .set () 

print timestampt), "Group [", globals()['groupid'], "] now contains", \ 

globals () ['group' ] 
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# forward all future poses to leader 

while dc < len( globals()['net'] ): 

# grab next message in the queue 

globals () ['cvqueue'] [ 'cpose' ]. acquire () 

while len( globals()['msgqueue'][ 'cpose' ] ) == 0: 

globals()['cvqueue'][ 'cpose' ].wait() 

pose = globals()['msgqueue'][ 'cpose' ].pop( 0 ) 

globals()['cvqueue'][ 'cpose' ].released 

if len( pose ) == 1: 

dc += 1 

continue 

globals () ['net' ] .send( globals () ['groupid'], pose ) 

merge = [ 'emerge' ] 

for node in globals () ['net' ] : 

globals () ['net'].send( node[ 0 ], merge ) 

print timestampd, "Stopping coarse group merge initiator process." 

globals () ['net' ] .send( globals () ['nodeid' ], [ 'die' ] ) 

############################################################################### 

# COARSE PROCESS 5: Group Merge Responder 

############################################################################### 

class coarse_merge_thread( threading.Thread ): 

def run( self ): 

dc = 0 

while dc < len( globals()['net'] ) \ 

and globals () ['nodeid'] == globals () ['groupid']: 

t grab next message in the queue 

globals {) ['cvqueue'] [ 'emerge' ]. acquired 

while len( globals()['msgqueue'][ 'emerge' ] ) ==0: 

globals()['cvqueue'][ 'emerge' ].wait() 

merge = globals () ['msgqueue'][ 'emerge' ].pop( 0 ) 

globals()['cvqueue'][ 'emerge' ].released 

if len( merge ) == 1: 

dc += 1 

continue 

# preempt after a random period to avoid deadlocks 

if not globals()['mergelock'].acquire) False ): 
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tmr = threading.Timer( random.randrange( 3, 30, 3 ), self.preempt ) 

tmr.start () 

globals () ['mergelock' ] .acquire () 

tmr.cancel() 

# make sure the offer is still valid 

if merge[ 1 ] in globals () ['group' ]: 

continue 

# if not group leader, forward to group leader 

if globals () ['nodeid'] != globals () ['groupid']: 

print timestampf), "Re-forwarding merge from node [", merge[ 1 ], \ 

"] to leader node [", globals()['groupid'], " ] . " 

merge[ 3 ] += globals ()['coarsepose'] [ globals () ['groupid'] ] 

globals () ['net'] .send( globals () ['groupid'], merge ) 

globals () ['mergelock' ] .release () 

break 

# send acknowledge 

ack = [ 'cack', globals () ['nodeid'], globals () ['group' ] ] 

ack.append! merge[ 3 ] ) 

globals () ['net'] .send( merge[ 1 ], ack ) 

# update own group 

print timestampf), "Updating group [", globals ()[' groupid' ], \ 

"] memberships with group [", merge[ 1 ], " ] . " 

update = [ 'cupdate', globals ()['groupid'], globals ()['groupid'], \ 

merge[ 2 ] ] 

for i in range( 3 ): 

update.append) geometry.pose( 0, 0 ) ) 

for node in globals () ['group'] : 

if node != globals()['nodeid']: 

globals()['net'].send( node, update ) 

# update self 

for node in merge[ 2 ]: 

globals()['group'].append( node ) 

globals () ['mergelock' ] . release () 

globals () [' groupupdate' ] . set () 

print timestampO, "Group [", globals()['groupid'], "] now contains", 

globals () ['group' ] 

# forward all future merges to leader 

while dc < len( globals!)['net'] ): 

# grab next message in the queue 
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globals () ['cvqueue' ] [ 'emerge' ]. acquire)) 

while len( globals()['msgqueue'J[ 'emerge' ] ) == 0: 

globals()['cvqueue'][ 'emerge' ].wait() 

merge = globals()['msgqueue'][ 'emerge' ].pop( 0 ) 

globals()['cvqueue'][ 'emerge' ].released 

if len( merge ) == 1: 

dc += 1 

continue 

merge[ 3 ] += globals()['coarsepose'][ globals()['groupid'] j 

globals () ['net'] .send( globals () ['groupid'], merge ) 

print timestampO, "Stopping coarse group merge responder process." 

globals () ['net'] .send( globals () ['nodeid'], [ 'die' ] ) 

def preempt( self ): 

"""Sends a preemption message to this node's initiator process.""" 

print timestampO, "Preempting to process merge." 

ack = [ 'cack' ] 

globals {) ['net' ] .send( globals () ['nodeid'], ack ) 

############################################################################### 

# COARSE PROCESS 6: Group Update 

############################################################################### 

class coarse_update_thread( threading.Thread ): 

def run( self ): 

while globals () ['nodeid'] == globals () ['groupid'] \ 

and len ( globals ()['group'] ) < len ( globals ()[' net' ] ): 

globals () ['groupupdate' ] .wait () 

while len( globals ()[' group' ] ) < len ( globals ()['net'] ): 

# grab next message in the queue 

globals()['cvqueue'][ 'cupdate' ].acquired 

t = False 

while not t: 

for i in range ( len( globals() ['msgqueue'][ 'cupdate' ] ) ): 

if globals()['msgqueue'][ 'cupdate' ][ i ][ 1 ] == \ 

globals()['groupid']: 

update = globals()['msgqueue'][ 'cupdate' ].pop( i ) 

t = True 

break 
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if not t: 

globals()['cvqueue'][ 'cupdate' ].wait() 

globals () ['cvqueue'] [ 'cupdate' ]. release () 

if len( update ) ==2: 

break 

# process group update 

print timestampO, "Got group update for group [", update! 2 ], " ] . " 

globals()['coarsepose'][ update[ 2 ] ] = \ 

( ( globals () ['coarsepose'] [ globals () ['groupid'] ] - update[ 6 ] ) + \ 

update[ 5 ] ) + update! 4 ] 

globals()['groupid'] = update! 2 ] 

for node in update[ 3 ]: 

globals () ['group'] .append( node ) 

globals() ['groupupdate'].set() 

print timestampO, "Group [", globals () ['groupid'], "] now contains", \ 

globals () ['group' ] 

print timestampO, "Stopping coarse group update process." 

globals () ['net'] .send( globals () ['nodeid'], [ 'die' ] ) 

############################################################################### 

t FINE PROCESS 1: Pose Refinement Initiator 

############################################################################### 

class fine_init_thread( threading.Thread ): 

def run( self ): 

offset = 0 

while offset < len ( globals () ['net'] ) and ( globals () ['threadcount' ] > 4 \ 

or offset < len( globals()['group'] ) ): 

globals () ['groupupdate' ] .wait () 

globals () ['groupupdate'].clear() 

glen = len ( globals ()['group'] ) 

for node in globals()['group'][ offset:glen ]: 

if nodeselect ( globals()['nodeid'], node ) \ 

and not globals ()['finepose'] .has_key( node ): 

print timestampO, "Initiating fine calibration with node [", node, \ 
n l it 

init = [ 'finit', globals ()['nodeid'], globals ()['groupid'], \ 

globals () ['coarsepose'] [ globals ()['groupid'] ] ] 
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globals () ['net'].send( node, init ) 

offset = glen 

init = [ 'finit' ] 

for node in globals () ['group'] : 

globals () ['net'] .send( node, init ) 

print timestampO, "Stopping pose refinement initiator process." 

globals () ['net'] .send( globals () ['nodeid'], [ 'die' ] ) 

############################################################################### 

# FINE PROCESS 2: Pose Refinement Responder 

class fine_respond_thread( threading.Thread ): 

def run( self ): 

dc = 0 

while dc < len( globals0 ['net'] ) \ 

or len( globals()['msgqueue'][ 'finit' ] ) > 0: 

# grab next message in the queue 

globals ()['cvqueue'] [ 'finit' ].acquire () 

while len( globals()['msgqueue'][ 'finit' ] ) ==0: 

globals () ['cvqueue'] [ 'finit' ].wait() 

init = globals()['msgqueue'][ 'finit' ].pop( 0 ) 

globals()['cvqueue'][ 'finit' ].release!) 

if len( init ) == 1: 

dc += 1 

continue 

# process fine init 

while not globals(}['coarsepose'].has_key( init [ 2 ] ): 

globals () ['groupupdate' ] .wait () 

relpose = globals()['coarsepose'][ init[ 2 ] ] - init[ 3 ] 

fpoints = [] 

for p in globals ()['points'] : 

p = relpose.map( p ) 

if p.z < globals () ['NODE_CONE_]JENGTH'] \ 

and p.euclidean( geometry.point( 0, 0, p.z ) ) < \ 

( p.z * math.tan( globals()['NODE_CONE_ANGLE'] ) ): 

fpoints.append! p ) 

if lent fpoints ) > 3: 



APPENDIX B. SOFTWARE SOURCE CODE 88 

print timestampO, "Responding to fine calibration with node [", \ 

init[ 1 ], " ] , " , len( fpoints ), "points." 

respond = [ 'frespond', globals()['nodeid'], init[ 2 ], \ 

globals()['coarsepose'][ init[ 2 ] ], fpoints ] 

globals () ['net'].send( init[ 1 ], respond ) 

else: 

print timestampO, "Not enough points shared with node [", init[ 1 ], \ 

respond = [ ' frespond' ] 

for node in globals () ['group'] : 

globals()['net'].send( node, respond ) 

print timestampO, "Stopping pose refinement responder process." 

globalsO ['net'].send( globals()['nodeid'], [ 'die' ] ) 

############################################################################### 

# FINE PROCESS 3: Pose Refinement Registration 

############################################################################### 

class fine_registration_thread( threading.Thread ): 

def run( self ): 

dc = 0 

while dc < len ( globals () ['net'] ) \ 

or len( globals()['msgqueue'][ 'frespond' ] ) > 0: 

# grab next message in the queue 

globals () ['cvqueue'][ 'frespond' ].acquire!) 

while len( globals () ['msgqueue'][ 'frespond' ] ) == 0: 

globals()['cvqueue'][ 'frespond' ].wait() 

respond = globals0 ['msgqueue'][ 'frespond' ].pop( 0 ) 

globals()['cvqueue'][ 'frespond' ].released 

if len( respond ) == 1: 

dc += 1 

continue 

# process fine response 

relpose = globals ()['coarsepose'] [ respond[ 2 ] ] - respond! 3 ] 

fpoints = [] 

for p in globals () ['points' ] : 

q = relpose.map( p ) 

i f q .z < g l o b a l s O ['NODE_CONE_LENGTH'] \ 



APPENDIX B. SOFTWARE SOURCE CODE 89 

and q.euclideanf georaetry.point( 0, 0, q.z ) ) < \ 

( q.z * math.tan( globals0 ['NODE_CONE_ANGLE'] ) ): 

fpoints.append( p ) 

if len( fpoints ) > 3: 

print timestampO, "Computing pairwise fine calibration with node [", \ 

respond[ 1 ], " ] . " 

emin = float ( 10 ** 18 ) 

for zeta in range( 40, 101 ): 

zeta /= 100.0 

fpose, e = registration.fine_registration( respond! 4 ], fpoints, \ 

zeta, globals () ['FINE_TE'], globals () ['FINEJTR' ] ) 

globals () ['acc_fine'] += 1 

e *= ( zeta ** -( 1.0 + globals()['FINE_LAMBDA'] ) ) 

if e < emin: 

emin = e 

zetamin = zeta 

globals()['finepose'][ respondf 1 ] ] = fpose 

emin /= ( zeta ** -( 1.0 + globals()['FINE_LAMBDA'] ) ) 

if emin < globals () ['FINE_EMAX' ] : 

globals()['finepose'][ respond! 1 ] ] += relpose 

reg = [ 'freg', globals () ['nodeid'], \ 

-globals()['finepose'][ respond[ 1 ] ] ] 

globals (} ['net'].send( respond[ 1 ], reg ) 

else: 

del globals()['finepose'][ respondf 1 ] ] 

print timestampO, "Fine calibration error with node [", \ 

respond! 1 ], "] too large:", emin 

else: 

print timestampO, "Not enough points shared with node [", \ 

respond! 1 ], " ] . " 

reg = [ 'freg' ] 

for node in globals () ['group'] : 

globals0 ['net'].send( node, reg ) 

print timestampO, "Stopping pose refinement registration process." 

globalsO ['net'] .send( globals () ['nodeid'], [ 'die' ] ) 

############################################################################### 

t FINE PROCESS 4: Pose Refinement Update 
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for line in lines: 

net.append( [ line[ 0 ], line[ 1 ], int( line[ 2 ] ), float ( line[ 3 ] ), \ 

float( line[ 4 ] ) ] ) 

# self initialization 

nodeid = sys.argv[ 1 ] 

groupid = nodeid 

group = [ nodeid ] 

coarsepose = { groupid : geometry.pose( 0, 0 ) } 

finepose = ( nodeid : geometry.pose( 0, 0 ) } 

acc_matchdb = 0 

acc_coarse = 0 

acc_fine = 0 

# point set intialization 

points = [] 

lines = csv.reader( open ( sys.argv[ 2 ] + "/" + nodeid + ".pts" ) ) 

for line in lines: 

points.append( geometry.point( float ( line[ 0 ] ), float ( line[ 1 ] ), \ 

float( line[ 2 ] ) ) ) 

pointc = geometry.point( 0, 0, 0 ) 

for p in points: 

pointc += p 

pointc /= float ( len ( points ) ) 

# message queue i n i t i a l i z a t i o n 

msgqueue = { 'cfeature' : [], 'cmatch':[], 'cpose':[], 'emerge':[], 'cack':[], 

'cupdate': [], 'finit':[], ' frespond':[], ' freg': [] } 

cvqueue = { 'cfeature':threading.Condition(), 'cmatch':threading.Condition(), 

'cpose':threading.Condition(), 'emerge':threading.Condition(), \ 

'cack' :threading.Condition(), 'cupdate':threading.Condition(), \ 

'finit' :threading.Condition!), 'frespond':threading.Condition!), \ 

' freg' :threading.Condition () ) 

mergelock = threading.Lock() 

groupupdate = threading.Event() 

# start listening for connections 
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dscnode = socket.socket ( socket.AF_INET, socket.SOCK_STREAM ) 

dscnode.bind( net.hostport( nodeid ) ) 

dscnode.listen( 20 ) 

# start the various processing threads 

print timestampO, "Starting all threads." 

threadcount = 10 

coarse_feature_thread().start() 

coarse_matching_thread().start() 

coarse_matchproc_thread().start() 

coarse_pose_thread().start() 

coarse_merge_thread() . start () 

coarse_update_thread() . start () 

fine_init_thread().start() 

fine_respond_thread().start() 

fine_registration_thread().start() 

fine_update_thread().start() 

# add all incoming messages to the appropriate queue 

inaccount = {} 

while threadcount > 0: 

channel, details = dscnode.accept() 

inmsg = pickle.loads( channel.recv( 1048576 ) ) 

channel.close() 

# bandwidth accounting 

t = int( time.time() ) 

if inaccount.has_key( t ): 

inaccount [ t ] += len( pickle.dumps( inmsg ) ) 

else: 

inaccount! t ] = len( pickle.dumps( inmsg ) ) 

if inmsg[ 0 ] == 'ping': 

continue 

elif inmsg[ 0 ] == 'die': 

threadcount -= 1 

else: 

cvqueue[ inmsg[ 0 ] ].acquire!) 

msgqueue[ inmsg[ 0 ] ].append( inmsg ) 

cvqueue[ inmsg[ 0 ] ].notify() 

cvqueue[ inmsg[ 0 ] ].released 
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# close network 

print timestampO, "Closing socket for incoming messages." 

dscnode.close 0 

# print basic output information 

print timestampO, "Calibration complete at node [", nodeid, 

int ( time.timeO - timestart ), "seconds total." 

print 

print "Coarse Pose Estimate - Node [", nodeid, " ] , Group [", 

print coarsepose[ groupid ].T 

print coarsepose[ groupid ].R 

print 

print "Fine pose estimates available for", len ( finepose ), " 

# interactive shell for additional output 

while True: 

cmd = raw_input ( "> " ) 

if cmd == 'exit' : 

break 

elif cmd == 'group': 

print "Group [", groupid, "] contains", group 

elif cmd == 'list' : 

print finepose.keys () 

elif cmd == 'dump': 

pickle.dump( finepose, \ 

open( sys.argv[ 2 ] + "/" + nodeid + ".fine", 'w' ) ) 

print "Fine pose results for node [", nodeid, "] dumped." 

elif cmd and cmd.split()[ 0 ] == 'fine': 

if finepose.has_key( cmd.split()[ 1 ] ): 

print "Fine Pose Estimate - Node [", cmd.split()[ 1 ], 

print fineposef cmd.split()[ 1 ] ] .T 

print finepose[ cmd.split()[ 1 ] ] .R 

else: 

print "No fine pose estimate for [", cmd, "] exists." 

elif cmd == 'netstats': 

outbw = inbw = 0 

for i in net.outaccount.keys(): 

outbw += net.outaccount[ i ] 
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for i in inaccount.keys(): 

inbw += inaccount[ i ] 

print "Bandwidth Usage Statistics - Node [", nodeid, " ] " 

print "Total:", outbw, "bytes out,", inbw, "bytes in" 

print "Average:", ( outbw / ( max( net.outaccount.keys() ) - \ 

min( net.outaccount.keys() ) ) ), "bytes/sec out,", ( inbw / ( \ 

max( inaccount.keys() ) - min( inaccount.keys() ) ) ), "bytes/sec 

print "Peak:", max ( net.outaccount.values() ), "bytes/sec out,", \ 

max( inaccount.values() ), "bytes/sec in" 

elif cmd == 'netraw': 

print "OUT" 

for i in net.outaccount.keys (): 

print str( i ) + "," + str( net.outaccount[ i ] ) 

print "IN" 

for i in inaccount.keys (): 

print str( i ) + "," +.str( inaccount[ i ] ) 

elif cmd == 'resources': 

print "Match Database Size:", acc_matchdb 

print "Coarse Registrations:", acc_coarse 

print "Fine Registrations:", acc_fine 

elif cmd == 'nrcsv': 

outbw = 0 

for i in net.outaccount.keys (): 

outbw += net.outaccount[ i ] 

print outbw, acc_matchdb, acc_coarse, acc_fine 

else: 

print "Unrecognized command." 

B.1.2 Geometry Module 

geometry.py 

"""Geometry, point and pose classes""" 

author = 'Aaron Mavrinac' 

version = '1.0' 

import math 

import numpy 

TOO SMALL = 0.0000000001 
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class point: 

"""3D point (vector) class""" 

def init ( self, x, y, z = 0.0 ): 

self.x = float( x ) 

self.y = float( y ) 

self.z = float ( z ) 

def getitem ( self, i ) : 

if i == 0: 

return se l f . x 

e l i f i == 1: 

return se l f .y 

e l i f i == 2: 

return se l f . z 

def setitem ( self, i , value ) : 

if i == 0: 

self.x = value 

elif i == 1: 

self.y = value 

elif i == 2: 

self.z = value 

def add ( self, p ): 

"""Vector addition""" 

return point ( self.x + p.x, self.y + p.y, self.z + p.z ) 

def sub ( self, p ): 

"""Vector subtraction""" 

return point ( self.x - p.x, self.y - p.y, self.z - p.z ) 

def mul ( self, p ): 

"""Scalar multiplication or dot product""" 

if isinstance( p, point ): 

return ( self.x * p.x + self.y * p.y + self.z * p.z ) 

else: 

return point ( self.x * p, self.y * p, self.z * p ) 

def rmul ( self, p ): 

"""Sca lar m u l t i p l i c a t i o n or dot product""" 

return self . mul ( p ) 

def div ( self, p ) : 

"""Scalar division""" 

return point ( se l f .x / p, se l f .y / p, se l f . z / p ) 
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def neg ( self ): 

"""Negation""" 

return point( -self.x, -self.y, -self.z ) 

def repr ( self ): 

"""Representat ion""" 

return "(" + str( self.x ) + ", " + str{ self.y ) + ", " + \ 

str( self.z ) + " ) " 

def tuple( self ): 

"""Returns the tuple of this vector""" 

return ( self.x, self.y, self.z ) 

def array( self ): 

"""Returns the NumPy array of this vector""" 

return numpy.array( [ [ self.x ], [ self.y ], [ self.z ] ] ) 

def magnitude; self ): 

"""Returns the magnitude of this vector""" 

return math.sqrtf self.x ** 2 + self.y ** 2 + self.z ** 2 ) 

def normalize! self ): 

"""Returns this vector normalized""" 

m = self.magnitude() 

return point ( self.x / m, self.y / m, self.z / m ) 

def euclidean( self, p ): 

"""Returns the Euclidean distance to point p""" 

return math.sqrt( ( self.x - p.x ) ** 2 + ( self.y - p.y ) ** 2 + \ 

( self.z - p.z ) ** 2 ) 

def angle ( self, p ): 

"""Returns the angle between this vector and vector p""" 

return math.fabst math.acos( p.normalize() * self.normalize () ) ) 

class pose: 

"""3D pose (rotation and translation) class""" 

def _init ( self, T, R ) : 

if isinstance( T, point ): 

self.T = T 

else: 

self.T = point! 0, 0, 0 ) 

if isinstancef R, numpy.ndarray ): 

self.R = R 

else: 

self.R = numpy.array( [ [ 1.0, 0.0, 0.0 ], [ 0.0, 1.0, 0.0 ], \ 
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{ 0.0, 0.0, 1.0 ] ] ) 

def add ( self, other ): 

"""Pose composition: PB(PA(x)) = (PA + PB)(x)""" 

Tnew = point( ( other.R[ 0 ][ 0 ] * self.T.x + other.R[ 0 ][ 1 ] 

self.T.y + other.R[ 0 ][ 2 ] * self.T.z ), ( other.R[ 1 ][ 0 ] * 

self.T.x + other.R[ 1 .][ 1 ] * self.T.y + other.R[ 1 ][ 2 ] * \ 

self.T.z ), ( other.R[ 2 ][ 0 ] * self.T.x + other.R[ 2 ][ 1 ] * 

self.T.y + other.R[ 2 ][ 2 ] * self.T.z ) ) + other.T 

Rnew = numpy.dot( other.R, self.R ) 

return pose ( Tnew, Rnew ) 

def sub ( self, other ): 

"""Pose subtraction, inverts the right term and adds""" 

return self. add ( -other ) 

def neg ( self ): 

"""Pose inversion""" 

Rinv = self.R.transpose() 

Tinv = point ( 0, 0, 0 ) 

for i in range( 3 ): 

Tinv[ i ] = -( Rinv[ i ][ 0 ] * self.T.x + Rinv[ i ][ 1 ] * se 

Rinv[ i ][ 2 ] * self.T.z ) 

return pose( Tinv, Rinv ) 

def generate( self, x, y, z, theta, phi, psi'): 

"""Generate a T and R given a translation point and 3 angles""" 

self.T = point ( float ( x ), float( y ), float ( z ) ) 

theta = float ( theta ) % ( math.acos( -1 ) * 2 ) 

phi = float ( phi ) % ( math.acosf -1 ) * 2 ) 

psi = float ( psi ) % ( math.acos( -1 ) * 2 ) 

self.R[ 0 ][ 0 ] = math.cos( phi ) * math.cos( psi ) 

self.R[ 0 ][ 1 ] = math.sin( theta ) * math.sin( phi ) * \ 

math.cos( psi ) - math.cos( theta ) * math.sin( psi ) 

self.R[ 0 ][ 2 ] = math.cos( theta ) * math.sin( phi ) * \ 

math.cos( psi ) + math.sin( theta ) * math.sin( psi ) 

self.R[ 1 ][ 0 ] = math.cos( phi ) * math.sin( psi ) 

self.R[ 1 ][ 1 ] = math.sin( theta ) * math.sin( phi ) * \ 

math.sin( psi ) + math.cos( theta ) * math.cos( psi ) 

self.R[ 1 ][ 2 ] = math.cos( theta ) * math.sin( phi ) * \ 

math.sin( psi ) - math.sin( theta ) * math.cos( psi ) 

self.R[ 2 ][ 0 ] = -math.sin( phi ) 

self.R[ 2 ][ 1 ] = math.sin( theta ) * math.cosf phi ) 
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self.R[ 2 ][ 2 ] = math.cos( theta ) * math.cos( phi ) 

for i in range( 3 ): 

for j in range( 3 }: 

if abs( self.Rf i ][ j ] ) < TOO_SMALL: 

self.R[ i ][ j ] = 0.0 

def om( self ): 

"""Return the fixed-axis rotation angles from R""" 

phi = math.asint -1.0 * self.Rf 2 ][ 0 ] ) 

if phi < -TOO_SMALL: 

phi += 2.0 * math.pi 

if abs( phi ) < TOO_SMALL: 

phi = 0.0 

sign = math.cos ( phi ) / abs( math.cos( phi ) ) 

theta = math.atanf self.R[ 2 ][ 1 ] / self.R[ 2 ][ 2 ] ) 

if abs( theta ) > TOO_SMALL: 

if sign * self.R[ 2 ][ 2 ] < 0: 

theta += math.pi 

elif sign * self.Rf 2 ][ 1 ] < 0: 

theta += 2.0 * math.pi 

else: 

theta =0.0 

psi = math.atanf self.Rf 1 ][ 0 ] / self.Rf 0 ][ 0 ] ) 

if abs( psi ) > TOO_SMALL: 

if sign * self.Rf 0 ][ 0 ] < 0: 

psi += math.pi 

elif sign * self.Rf 1 ][ 0 ] < 0: 

psi += 2.0 * math.pi 

else: 

psi = 0.0 

return ( theta, phi, psi ) 

def nonzero ( self ) : 

"""Check if this pose has any effect""" 

if self.T.x == 0 and self.T.y == 0 and self.T.z == 0 \ 

and ( self.R - numpy.diagt numpy.array( (1, 1, 1 ] ) ) ).any() 

return False 

else: 

return True 

def map( self, p ): 

"""Map a point through this pose""" 
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return self.map_translate( self.map_rotate( p ) ) 

def map_rotate( self, p ): 

"""Rotation component of point mapping""" 

q = point ( ( self.Rf 0 ][ 0 ] * p.x + self.Rf 0 ][ 1 ] * p.y + \ 

self.Rf 0 ][ 2 ] * p.z ), ( self.Rf 1 ][ 0 ] * p.x + self.Rf 1 ][ 1 ] * \ 

p.y + self.Rf 1 ][ 2 ] * p.z ), ( self.Rf 2 ][ 0 ] * p.x + \ 

self.Rf 2 ][ 1 ] * p.y + self.Rf 2 ][ 2 ] * p.z ) ) 

return q 

def map_translate( self, p ): 

"""Translation component of point mapping""" 

q = p + self.T 

return q 

B.1.3 Registration Module 

registration.py 

"""Registration functions""" 

author = 'Aaron Mavrinac' 

version = ' 1 . 0 ' 

import numpy 

import geometry 

def zeromatrix( m, n ) : 

"""Generates a matrix of m by n zeroes""" 

a = [] 

for i in range ( m ) : 

a.append( [] ) 

for j in range ( n ) : 

a[ i ].append( 0.0 ) 

A = numpy.array ( a ) 

return A 

def coarse_registration( M, P, tr ): 

"""Coarse registration - DARCES (fully contained)""" 

rpose = geometry.pose ( 0, 0 ) 

# first control point 

for i in range ( len ( P ) ) : 

for j in range ( len ( P ) ) : 
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dps < tr: 

if j == i: 

continue 

dps = P[ i ].euclidean( P[ j ] ) 

# second control point 

for k in range( len( M ) ): 

for 1 in range( len( M ) ): 

if 1 == k: 

continue 

if abs( M[ k ].euclidean( M[ 1 ] 

# third control point 

for m in range( len( P ) ) : 

if m == i or m == j: 

continue 

dpa = P[ i ].euclidean( P[ m ] ) 

dsa = P[ j ].euclidean( P[ m ] ) 

for n in range( 0, len( M ) ): 

if n == k or n == 1: 

continue 

if abs( M[ k ].euclidean( M[ n ] 

and abs( M[ 1 ].euclidean( M[ n ] 

calculate the optimal Euclidean transformation from M 

Pavg = geometry.point( 0, 0, 0 

Mavg = geometry.point( 0, 0, 0 

for pp in P: 

Pavg += pp / float ( len( P ) 

for pm in M: 

Mavg += pm / float{ len( M ) 

K = zeromatrix( 3, 3 ) 

for pair in [ ( i, k ), ( j, 1 

P[ pair[ 0 ] ] -= Pavg 

M[ pair[ 1 ] ] -= Mavg 

for x in range( 3 ): 

for y in range( 3 ): 

K[ x ][ y ] += P[ pair[ 0 ] ][ x 

M[ pair[ 1 ] ][ y ] 

P[ pair[ 0 ] ] += Pavg 

M[ pair[ 1 ] ] += Mavg 

V, A, Ut = numpy.linalg.svd( K ) 

vudet = numpy.linalg.det( numpy.dotf V 

dpa ) 

dsa 

< tr \ 

} < tr: 

to P 

(m, n ) ] : 

* \ 

Ut 
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S = numpy.diag( numpy.array( [ 1, 1, vudet ] ) ) 

R = numpy.dot( numpy.dot( V, S ), Ut ) 

T = geometry.point( Pavg.x - ( R[ 0 ][ 0 ] * Mavg.x + \ 

R[ 0 ][ 1 ] * Mavg.y + R[ 0 ][ 2 ] * Mavg.z ), Pavg.y - \ 

( R[ 1 ][ 0 ] * Mavg.x + R[ 1 ][ 1 ] * Mavg.y + \ 

R[ 1 ][ 2 ] * Mavg.z ), Pavg.z - ( R[ 2 ][ 0 ] * Mavg.x + \ 

R[ 2 ][ 1 ] * Mavg. y + R [ 2 ] [ 2 ] * Mavg.z ) ) 

rpose = geometry.pose( T, R ) 

# verify the remaining points 

for pp in P: 

f = False 

for pm in M: 

if abs( rpose.map( pm ).euclidean( pp ) ) < tr: 

f = True 

break 

if not f: 

rpose = geometry.pose( 0, 0 ) 

break 

if not f: 

break 

return rpose 

return rpose 

def fine_registration( M, S, zeta, te, tr ): 

"""Fine registration - Trimmed Iterative Closest Point""" 

P = [] 

for s in S: 

P.append! s ) 

Sits = float ( 10 ** 18 ); 

Npo = int( zeta * len ( P ) ) 

e = Sits / float ( Npo ) 

pose = geometry.pose ( 0, 0 ) 

if Npo < 3: 

return pose, e 

for n in range ( 100 ) : 

# for each point in P, find closest in M and compute individual distances 
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pm = [] 

for pi in range( len ( P ) ): 

pm.append! [ pi, 0, P[ pi ].euclideanf M[ 0 ] ) ] ) 

for mi in range ( 1, len( M ) ): 

if P[ pi ].euclidean( M[ mi ] ) < pm[ pi ][ 2 ]: 

pm[ pi ] = [ pi, mi, P[ pi ].euclidean( M[ mi ] ) ] 

# sort distances in ascending order, select Npo least, compute Sits 

pm.sort( lambda x, y : cmp( x[ 2 ], y[ 2 ] ) ) 

pm = pm[ :Npo ] 

Sits = sum( x[ 2 ] ** 2 for x in pm ) 

# if any stop condition met, exit 

ep = e 

e = Sits / float ( Npo ) 

if e < te or ( abs( e - ep ) / e ) < tr: 

break 

# compute the optimal motion R,t minimizing Sits 

Pavg = geometry.point( 0, 0, 0 ) 

Mavg = geometry.point( 0, 0, 0 ) 

for i in range ( Npo ): 

Pavg += P[ pm[ i ][ 0 ] ] / float( Npo ) 

Mavg += M[ pm[ i ][ 1 ] ] / float( Npo ) 

K = zeromatrix ( 3 , 3 ) 

for i in range ( Npo ): 

K += P[ pm[ i ][ 0 ] ].arrayO * M[ pm[ i ][ 1 ] ].array!).transpose!) 

K /= float ( Npo ) 

K -= Pavg.array () * Mavg.array () .transpose () 

A = K - K.transpose() 

B = K + K.transpose!) - ( K.trace!) * \ 

numpy.diag! numpy.array! [ 1.0, 1.0, 1.0 ] ) ) ) 

Q = zeromatrix ( 4 , 4 ) 

Q[ 0 ] [ 0 ] = K.trace!) 

for i in range( 3 ): 

Q [ 0 ] [ i + l ] = Q [ i + l ] [ 0 ] = A [ ( i + 1 ) % 3 ] [ ( i + 2 ) % 3 ] 

for j in range! 3 ): 

Q[ i + 1 ] [ j + 1 ] = B[ i ][ j ] 

w, v = numpy.linalg.eigh( Q ) 
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max = 0 
for i in range ( 1, len( w ) ): 

if w[ i ] > w[ max ]: 

max = i 

qR = v[ :, max ] 

R = zeromatrix( 3, 3 ) 

R[ 0 ][ 0 ] = qR[ 0 ] ** 2 + qR[ 1 ] ** 2 - qR'[ 2 ] ** 2 - qR[ 3 ] ** 2 

R[ 0 ][ 1 ] = 2 * ( qR[ 1 ] * qR[ 2 ] - qR[ 0-] * qR[ 3 ] ) 

R[ 0 ][ 2 ] = 2 * ( qR[ 1 ] * qR[ 3 ] + qR[ 0 ] * qR[ 2 ] ) 

R[ 1 ][ 0 ] = 2 * ( qR[ 1 ] * qR[ 2 ] + qR[ 0 ] * qR[ 3 ] ) 

R[ 1 ][ 1 ] = qR[ 0 ] ** 2 + qR[ 2 ] ** 2 - qR[ 1 ] ** 2 - qR[ 3 ] ** 2 

R[ 1 ][ 2 ] = 2 * ( qR[ 2 ] * qR[ 3 ] - qR[ 0 ] * qR[ 1 ] ) 

R[ 2 ][ 0 ] = 2 * ( qR[ 1 ] * qR[ 3 ] - qR[ 0 ] * qR[ 2 ] ) 

R[ 2 ][ 1 ] = 2 * ( qR[ 2 ] * qR[ 3 ] + qR[ 0 ] * qR[ 1 ] ) 

R[ 2 ][ 2 ] = qR[ 0 ] ** 2 + qR[ 3 ] ** 2 - qR[ 1 ] ** 2 - qR[ 2 ] ** 2 

RP = numpy.dot( R, numpy.array( [ [ Pavg.x ], [ Pavg.y ], [ Pavg.z ] ] ) ) 

T = Mavg - geometry.point( RP[ 0 ], RP[ 1 ], RP[ 2 ] ) 

qpose = geometry.pose( T, R ) 

# transform P by R,t and loop 

for i in range ( len ( P ) ): 

P[ i ] = qpose.map( P[ i ] ) 

pose += qpose 

return pose, e 

B.2 Local Point Detection (C) 

B.2.1 Main Program 

capture.c 

•include <userint.h> 

•include <ansi_c.h> 

•include <cvirte.h> 

•include "nivision.h" 

•include "vp_imaq.h" 

•include "fast .h" 
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•include "stereo.h" 

•include "capture.h" 

•include <formatio.h> 

//•define DBG_WRITE_BMP 

//•define DBG_SHOW_ITER_NUM 

//•define DBG_POINT_ACCEPT 

//•define DBG_CORR_VERIFY 

//•define DBG_DISABLE_PYDSC 

•define MANUAL_CORNERS 20 

•define FAST_PROX 5 

•define FAST_MINTHRESH 10 

•define CORR_WINSIZE 13 

•define CORR_YTHRESH 0.005 

•define CORR_THRESH 0.9 

•define TRI_ZMIN 100.0 

•define TRI_ZMAX 2000.0 

•define NONMAX 1 

static int mainpanel; 

int main (int argc, char *argv[]) 

{ 

if (InitCVIRTE (0, argv, 0) == 0) 

return -1; /* out of memory */ 

if ((mainpanel = LoadPanel (0, "capture.uir", MAINPANEL)) < 0) 

return -1; 

DisplayPanel (mainpanel); 

RunUserlnterface (); 

DiscardPanel (mainpanel); 

return 0; 

} 

int CVICALLBACK mp_cb (int panel, int event, void *callbackData, 

int eventDatal, int eventData2) 

( 

switch (event) 

( 
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case EVENT_GOT_FOCUS: 

break; 

case EVENT_LOST_FOCUS: 

break; 

case EVENT_CLOSE: 

exit( 0 ); 

break; 

} 

return 0; 

} 

int CVICALLBACK capture (int panel, int control, int event, 

void *callbackData, int eventDatal, int eventData2) 

{ 

int i, j, x, y, SL, SR, linked, manual, thresh, threshinc, np, pmin, pmax, 

width, height, ncl, ncr, nclnm, ncrnm, win_r, zncc_maxj, fH; 

char nodeid[ 256 ], ldev[ 32 ], rdev[ 32 ], point[ 256 ]; 

double lpar[ 9 ]; 

double rpar[ 9 ]; 

double T[ 3 ], om[ 3 ]; 

double ** R, ** E; 

double epi[ 3 ]; 

int * P; 

xy * draw, * CRraw; 

Point * CL, * CR; 

dxy * CLn, * CRn; 

dxy CRn_rect; 

Image * SnapL, * SnapR, * ImgL, * ImgR; 

unsigned char * lim, * rim; 

double Lcorr[ CORR_WINSIZE ][ CORR_WINSIZE ], 

Rcorr[ CORR_WINSIZE ][ CORR_WINSIZE ]; 

double winarea, Lavg, Ravg, 

zncc, zncc_a, zncc_b, zncc_top, zncc_boa, zncc_bob; 

double * zncc_max; 

dxyz pt3d; 

WindowEventType man_event; 

Rect man_rect; 
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/* debug variables */ 

RGBValue ovlc; 

dxy dbgdxy; 

Point dbgpt; 

int corrpct, corrtot, flag, pole; 

switch (event) 

{ 

case EVENT_COMMIT: 

* === PARAMETERS & INITIALIZATION === */ 

SetCtrlVal( panel, MAINPANEL_LED_CPU, TRUE ); 

DisplayPanel ( panel ); 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

MAINPANEL_STR_NODEID, nodeid ); 

MAINPANEL_STR_CAML_DEV, Idev ); 

MAINPANEL_STR_CAMR_DEV, rdev ); 

MAINPANEL_NUM_CAML_FC1, &lpar[ 0 

MAINPANEL_NUM_CAML_FC2, &lpar[ 1 

MAINPANEL_NUM_CAML_CC1, Slpar[ 2 

MAINPANEL_NUM_CAML_CC2, Slpar[ 3 

MAINPANEL_NUM_CAML_KC1, &lpar[ 4 

MAINPANEL_NUM_CAML_KC2, &lpar[ 5 

MAINPANEL_NUM_CAML_KC3, &lpar[ 6 

MAINPANEL_NUM_CAML_KC4, &lpar[ 7 

MAINPANEL_NUM_CAML_KC5, &lpar[ 8 

MAINPANEL_NUM_CAMR_FC1, Srpar[ 0 

MAINPANEL_NUM_CAMR_FC2, Srpar[ 1 

MAINPANEL_NUM_CAMR_CC1, &rpar[ 2 

MAINPANEL_NUM_CAMR_CC2, &rpar[ 3 

MAINPANEL_NUM_CAMR_KC1, &rpar[ 4 

MAINPANEL_NUM_CAMR_KC2, Srpar[ 5 

MAINPANEL_NUM_CAMR_KC3, Srpar[ 6 

MAINPANEL_NUM_CAMR_KC4, &rpar[ 7 

MAINPANEL_NUM_CAMR_KC5, &rpar[ 8 

MAINPANEL_NUM_STERE0_T1, &T[ 0 ] 

MAINPANEL_NUM_STERE0_T2, ST[ 1 ] 
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GetCtrlVaK panel, MAINPANEL_NUM_STERE0_T3, &T[ 2 ] ); 

GetCtrlVaK panel, MAINPANEL_NUM_STERE0_0M1, s0m[ 0 ] ); 

GetCtrlVaK panel, MAINPANEL_NUM_STERE0_0M2, Som[ 1 ] ); 

GetCtrlVaK panel, MAINPANEL_NUM_STERE0_0M3, Som[ 2 ] ); 

GetCtrlVaK panel, MAINPANEL_BIN_LINKED, slinked ); 

GetCtrlVaK panel, MAINPANEL_BIN_FAST_MANUAL, Smanual ); 

ovlc.R = ovlc.G = ovlc.B = 255; 

corrpct = corrtot = flag = 0; 

imaqSetWindowThreadPolicy( IMAQ_SEPARATE_THREAD ); 

for( i = 0; i < 2; i++ ) 

imaqShowScrollbars( i, TRUE ); 

/* compute the rotation matrix and essential matrix */ 

R = stereo_rodrigues( om[ 0 ], om[ 1 ], om[ 2 ] ); 

E = stereo_essential( om[ 0 ], om[ 1 ], om[ 2 ], T ); 

/* === IMAGE ACQUISITION === */ 

/* prepare image buffers */ 

SnapL = imaqCreatelmage! IMAQ_IMAGE_U8, 0 ); 

SnapR = imaqCreateImage( IMAQ_IMAGE_U8, 0 ); 

ImgL = imaqCreatelmage( IMAQ_IMAGE_U8, 0 ); 

ImgR = imaqCreatelmage( IMAQ_IMAGE_U8, 0 ); 

/* capture the images */ 

SetCtrlVaK panel, MAINPANEL_LED_1394, TRUE ); 

DisplayPanel ( panel ); 

if( linked ) 

( 

SL = vp_imaq_open ( ldev ); 

SR = vp_imaq_open( rdev ); 

vp_imaq_snap_stereo( SL, SR, SnapL, SnapR ); 
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vp_imaq_close( SL ) ; 

vp_imaq_close( SR ); 

} 

else 

{ 

SL = vp_imaq_open( ldev ) ; 

vp_imaq_snap( SL, SnapL ); 

vp_imaq_close ( SL ); 

SR = vp_imaq_open( rdev ); 

vp_imaq_snap{ SR, SnapR ); 

vp_imaq_close( SR ); 

} 

SetCtrlVaK panel, MAINPANEL_LED_1394, FALSE 

DisplayPanel ( panel ); 

/* convert to grayscale */ 

imaqCast( ImgL, SnapL, IMAQ_IMAGE_U8, NULL, 8 

imaqCast( ImgR, SnapR, IMAQ_IMAGE_U8, NULL, 8 

/* debug: write out BMP files */ 

tifdef DBG_WRITE_BMP 

sprintf( point, "%s-left.bmp", nodeid ); 

imaqWriteBMPFile( ImgL, point, FALSE, NULL ); 

sprintf( point, "%s-right.bmp", nodeid ); 

imaqWriteBMPFile( ImgR, point, FALSE, NULL ); 

fendif 

/* === INTEREST POINT DETECTION === */ 

if( manual ) 

f 

/* manual interest point selection */ 

ncl = ncr = MANUAL_CORNERS; 

CL = ( Point * )malloc( ncl * sizeof( Point 
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CR = ( Point * )malloc( ncr * sizeoff Point ) ); 

P = ( int * )malloc( ncl * sizeof( int ) ) ; 

imaqDisplaylmage( ImgL, 0, FALSE ); 

imaqDisplaylmagef ImgR, 1, FALSE ) ; 

imaqSetCurrentTool( IMAQ_POINT_TOOL ); 

i = 0; 

while ( i < MANUAL_CORNERS ) 

{ 

j = 0; 

while( j < 3 ) 

{ 

imaqGetLastEvent ( &man_event, &x, NULL, &man_rect ); 

if( man_event == IMAQ_CLICK_EVENT && x == 0 ) 

( 

CL[ i ] = imaqMakePoint( man_rect.left, man_rect.top ); 

j 1= 1; 

} 

if( man_event == IMAQ_CLICK_EVENT SS x == 1 ) 

{ 

CR[ i ] = imaqMakePoint( man_rect.left, man_rect.top ); 

j 1= 2; 

} 

} 

if( ConfirmPopup( "Point Detection", "Accept this pair?" ) 
( 

imaqOverlayPoints ( ImgL, &CL[ i ], 1, Sovlc, 1, 

IMAQ_POINT_AS_CROSS, NULL, NULL ); 

imaqOverlayPoints ( ImgR, SCR[ i ], 1, Sovlc, 1, 

IMAQ_POINT_AS_CROSS, NULL, NULL ); 

imaqDisplaylmage( ImgL, 0, FALSE ); 

imaqDisplaylmage( ImgR, 1, FALSE ); 

P[ i ] = i; 

i++; 

} 
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MessagePopup{ "Point Detection", "Manual point selection complete." ); 

imaqSetCurrentTool( IMAQ_N0_T00L ) ; 

/*' normalize the interest point coordinates */ 

CLn = ( dxy * )malloc( ncl * sizeof( dxy ) ); 

CRn = ( dxy * )malloc( ncr * sizeof( dxy )'); 

for( i = 0; i < ncl; i++ ) 

stereo_normalize( CL[ i ].x, CL[ i ].y, lpar[ 0 ], lpar[ 1 ], 

lpar[ 2 ], lpar[ 3 ], lpar[ 4 ], lpar[ 5 ], 

lpar[ 6 ], lpar[ 7 ], lpar[ 8 ], SCLn[ i ] ); 

for( i = 0; i < ncr; i++ ) 

stereo_normalize ( CR[ i ].x, CR[ i ],y, rpar[ 0 ], rpar[ 1 ], 

rpar[ 2 ], rpar[ 3 ], rpar[ 4 ], rpar[ 5 ], 

rpar[ 6 ], rpar[ 7 ], rpar[ 8 ], &CRn[ i ] ); 

} 

else 

{ 

win_r = ( CORR_WINSIZE - 1 ) / 2; 

winarea = ( double )( 4 * win_r * win_r + 4 * win_r + 1 ); 

lim = imaqImageToArray( ImgL, IMAQ_NO_RECT, Swidth, Sheight ); 

rim = imaqImageToArray< ImgR, IMAQ_NO_RECT, NULL, NULL ); 

GetCtrlValf panel, MAINPANEL_NUM_FAST_THRESH, Sthresh ); 

threshinc = thresh / 2; 

GetCtrlVaK panel, MAINPANEL_NUM_PTS_BASE, Spmin ); 

GetCtrlVaK panel, MAINPANEL_NUM_PTS_VAR, ipmax ); 

pmin -= pmax; 

pmax *= 2; 

pmax += pmin; 

CL = NULL; 

CR = NULL; 

P = NULL; 

CLn = NULL; 

CRn = NULL; 

zncc_max = NULL; 
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while ( 1 ) 

{ 

/* FAST corner detection */ 

CLraw = fast_corner_detect_9( lim, width, height, thresh, Sncl ); 

if( NONMAX ) 

( 

CLraw = fast_nonmax( lim, width, height, CLraw, ncl, thresh, 

Snclnm ); 

ncl = nclnm; 

} 

CRraw = fast_corner_detect_9( rim, width, height, thresh, Sncr ); 

iff NONMAX ) 

{ 

CRraw = fast_nonmax( rim, width, height, CRraw, ncr, thresh, 

incrnm ); 

ncr = ncrnm; 

} 

/* clean up the detected corners */ 

j - 0; 

forf i = 0; i < ncl; i++ ) 

f 

iff ! ( CLraw[ i ].x > win_r 

&& CLraw[ i ].x < ( width - win_r - 1 ) 

&& CLraw[ i ].y > win_r 

SS CLraw[ i ].y < ( height - win_r - 1 ) ) ) 

CLraw[ i ].x = -1; 

for( x = 0; x < i; x++ ) 

iff CLraw[ x ].x < ( CLraw[ i ].x + FAST_PROX ) 

&& CLraw[ x ].x > ( CLraw[ i ].x - FAST_PROX ) 

&& CLraw[ x ].y <= CLraw[ i ].y 

£& CLrawf x ].y > ( CLraw[ i ].y - FAST_PROX ) ) 

CLraw[ i ].x = -1; 

iff CLraw[ i ].x >= 0 ) 

j++; 

} 
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CL = ( Point * )realloc( CL, j * sizeof( Point ) ); 

j - 0; 

for( i = 0; i < ncl; i++ ) 

if( CLraw[ i ].x >= 0 ) 

CL[ j++ ] = imaqMakePoint( CLraw[ i ].x, CLraw[ i ].y ); 

ncl = j; 

j = 0; 

for( i = 0; i < ncr; i++ ) 

( 

iff ! ( CRraw[ i ].x > win_r 

&& CRraw[ i ].x < ( width - win_r - 1 ) 

&& CRraw[ i ].y > win_r 

&& CRraw[ i ].y < ( height - win_r - 1 ) ) ) 

CRraw[ i ].x '= -1; 

for( x = 0; x < i; x++ ) 

if( CRraw[ x ].x < ( CRraw[ i ].x + FAST_PR0X ) 

&& CRraw[ x ].x > ( CRraw[ i ].x - FAST_PR0X ) 

&& CRraw[ x ].y <= CRraw[ i ].y 

&& CRrawf x ].y > ( CRrawf i ].y - FAST_PROX ) ) 

CRraw[ i ].x = -1; 

if( CRrawf i ].x >=0 ) 

j++; 

} 

CR = ( Point * )realloc( CR, j * sizeof( Point ) ); 

j = 0; 

for ( i = 0; i < ncr; i++ ) 

iff CRraw[ i ].x >= 0 ) 

CR[ j++ ] = imaqMakePoint( CRraw[ i ].x, CRraw[ i ].y ); 

ncr = j; 

P = ( int * )realloc( P, ncl * sizeof( int ) ); 

/* normalize the interest point coordinates */ 

CLn = ( dxy * )realloc( CLn, ncl * sizeof ( dxy ) ); 

CRn = ( dxy * )realloc( CRn, ncr * sizeof( dxy ) ); 

for( i = 0; i < ncl; i++ ) 

stereo_normalize( CL[ i ].x, CL[ i ].y, lpar[ 0 ], lpar[ 1 ], 

lparf 2 ], lpar[ 3 ], lpar[ 4 ], lpar[ 5 ], 
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lpar[ 6 ], lpar[ 7 ], lpar[ 8 ], SCLn[ i ] ) 

for( i = 0; i < ncr; i++ ) 

stereo_normalize( CR[ i ].x, CR[ i ].y, rpar[ 0 ], rpar[ 1 ], 

rparf 2 ], rpar[ 3 ], rpar[ 4 ], rpar[ 5 ], 

rpar[ 6 ], rpar[ 7 ], rpar[ 8 ], &CRn[ i ] ) 

/* epipolar-constrained ZNCC correspondence */ 

zncc_max = ( double * )realloc( zncc_max, ncl * sizeof( double ) 

for( i = 0; i < ncl; i++ ) 

{ 

Lavg = 0.0; 

for( x = -win_r; x <= win_r; x++ ) 

for ( y = -win__r; y <= win_r; y++ ) 

{ 

Lcorr[ x + win_r ][ y + win_r ] = 

( double )lim[ CL[ i ].x + x + width * ( CL[ i ]. y + y ) 

Lavg += Lcorr[ x + win_r ][ y + win_r ]; 

} 

Lavg /= winarea; 

zncc_max[ i ] = CORR_THRESH; 

zncc_maxj = -1; 

for( j = 0; j < 3; j++ ) 

epi[ j ] = E[ j ][ 0 ] * CLn[ i ].x + E[ j ][ 1 ] * CLn[ i ] 

+ E[ j ][ 2 ]; 

for( j = 0; j < ncr; j++ ) 

{ 

if( fabs( ( epi[ 0 ] * CRn[ j ].x + epi[ 1 ] * CRn[ j ].y 

+ epi[ 2 ] ) / sqrt( epi[ 0 ] * epi[ 0 ] 

+ epi[ 1 ] * epi[ 1 ] ) ) < CORR_YTHRESH ) 

{ 

Ravg = 0.0; 

for( x = -win_r; x <= win_r; x++ ) 

for( y = -win_r; y <= win_r; y++ ) 

( 

Rcorr[ x + win_r ][ y + win_r ] = 
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} 

( double )rim[ CR[ j ].x + x + width * ( CR[ j 

Ravg += Rcorr[ x + win_r ][ y + win_r ]; 

} 

Ravg /= winarea; 

zncc_top = zncc_boa = zncc_bob =0.0; 

for( x = 0; x < CORR_WINSIZE; x++ ) 

for( y = 0; y < CORR_WINSIZE; y++ ) 

{ 

zncc_a = ( Lcorr[ x ][ y ] - Lavg ); 

zncc_b = ( Rcorr[ x ][ y ] - Ravg ); 

zncc_top += zncc_a * zncc_b; 

zncc_boa += zncc_a * zncc_a; 

zncc_bob += zncc_b * zncc_b; 

} 

zncc = zncc_top / sqrt( zncc_boa * zncc_bob ); 

if ( zncc > zncc_max[ i ] ) 

{ 

zncc_maxj = j; 

zncc_max[ i ] = zncc; 

P[ i ] = znccjnaxj; 

if( zncc_maxj > -1 ) 

for( j = 0; j < i; j++ ) 

iff P[ j ] == zncc_maxj ) 

{ 
iff zncc_max[ j ] > zncc_max[ i ] ) 

{ 

P[ i 1 = -1; 

break; 

} 

else 

P[ j ] — l ; 
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I* change thresh */ 

np = 0; 

forf i = 0; i < ncl; i++ ) 

if( P[ i ] > -1 ) 

np++; 

lifdef DBG_SHOW_ITER_NUM 

sprintf( point, "Detected %d points using threshold Id.", 

np, thresh ); 

MessagePopup( "Point Detection", point ); 

lendif 

iff np < pmin ) 

{ 

iff threshinc > 0 ) 

threshinc /= -2; 

} 

else iff np > pmax ) 

{ 

iff threshinc < 0 ) 

threshinc /= -2; 

1 
else 

break; 

iff ! threshinc ) 

break; 

thresh += threshinc; 

iff thresh < FAST_MINTHRESH ) 

f 

thresh = FAST_MINTHRESH; 

threshinc = 0; 

} 

} 

} 

/* interest point verification */ 

iff ncl > 0 && ncr > 0 ) 
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{ 

Hfdef DBG_POINT_ACCEPT 

if( ! manual ) 

{ 

for( i = 0; i < ncl; i++ ) 

{ 

if( P[ i ] == -1 ) 

continue; 

imaqOverlayPoints ( ImgL, SCL[ i ] , 1, sovlc, 1, 

IMAQ_POINT_AS_CROSS, NULL, NULL ); 

imaqOverlayPoints( ImgR, &CR[ P[ i ] ], 1, sovlc, 1, 

IMAQ_POINT_AS_CROSS, NULL, NULL ); 

} 

imaqDisplayImage( ImgL, 0, FALSE ); 

imaqDisplayImage( ImgR, 1, FALSE ); 

if( ! ConfirmPopup( "Point Detection", 

"Accept these interest points?" ) ) 

break; 

} 

#endif 

} 

else 

{ 

MessagePopup( "Point Detection", "No interest points detected." 

break; 

} 

/* === TRIANGULATION === */ 

sprintf( point, "..\\pydsc\\experiment\\demo\\%s.pts", nodeid ); 

fH = OpenFile( point, VAL_WRITE_ONLY, VAL_TRUNCATE, VAL_ASCII ); 

for( i = 0; i < ncl; i++ ) 

{ 

if( P[ i ] == -1 ) 

continue; 

/* debug: interactive verification */ 
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#ifdef DBG_CORR_VERIFY 

imaqClearOverlay( ImgL, NULL ); 

imaqClearOverlay( ImgR, NULL ); 

imaqOverlayPoints( ImgL, SCL[ i ], 1, Sovlc, 1, 

IMAQ_POINT_AS_CROSS, NULL, NULL ); 

imaqOverlayPoints( ImgR, &CR[ P[ i ] ], 1, sovlc, 1, 

IMAQ_POINT_AS_CROSS, NULL, NULL ); 

imaqDisplayImage( ImgL, 0, FALSE ); 

imaqDisplaylmage( ImgR, 1, FALSE ); 

corrtot++; 

if( ! ConfirmPopup( "Point Detection", "Do these points match?" ) ) 

continue; 

else 

corrpct++; 

tendif 

pt3d = stereo_triangulate( CLn[ i ], CRn[ P[ i ] ], R, T ); 

iff pt3d.z > TRI_ZMIN SS pt3d.z < TRI_ZMAX ) 

{ 

sprintf( point, "%lf, %lf, %lf", pt3d.x, pt3d.y, pt3d.z ); 

WriteLine ( fH, point, -1 ); 

} 

1 

tifdef DBG_CORR_VERIFY 

sprintf( point, "Correspondence matched %.2f%% correctly.", 

( 100.0 * ( float jcorrpct / ( float )corrtot ) ); 

MessagePopupf "Point Detection", point ); 

fendif 

CloseFile( fH ); 

/* === CLEANUP === */ 

free( CL ); 

freef CR ); 
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free( CLn ); 

free( CRn ); 

free( P ); 

if( ! manual ) 

free( zncc_max ); 

free( R ); 

free( E ); 

SetCtrlVaK panel, MAINPANEL_LED_CPU, FALSE ); 

/* === START PYDSC CALIBRATION === */ 

#ifndef DBG_DISABLE_PYDSC 

sprintff point, "..\\pydsc\\pydsc_demo_%s.bat", nodeid ); 

system( point ); 

#endif 

break; 

} 

return 0; 

} 

int CVICALLBACK calibrate (int panel, int control, int event, 

void *callbackData, int eventDatal, int eventData2) 

{ 

int i, num_images, SL, SR, linked; 

char nodeid[ 256 ], ldev[ 32 ], rdev[ 32 ]; 

char fn[ 256 ]; 

Image * SnapL, * SnapR, * ImgL, * ImgR; 

switch (event) 

{ 

case EVENT_COMMIT: 

GetCtrlVaK panel, MAINPANEL_NUM_CAL_IMAGES, &num_images ); 

GetCtrlVaK panel, MAINPANEL_STR_NODEID, nodeid ); 

GetCtrlVaK panel, MAINPANEL_STR_CAML_DEV, ldev ); 

GetCtrlVaK panel, MAINPANEL_STR_CAMR_DEV, rdev ); 

GetCtrlVaK panel, MAINPANEL_BIN_LINKED, ilinked ); 
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I* prepare image buffers */ 

SnapL = imaqCreatelmage( IMAQ_IMAGE_U8, 0 ); 

SnapR = imaqCreatelmage( IMAQ_IMAGE_U8, 0 ); 

ImgL = imaqCreatelmage( IMAQ_IMAGE_U8, 0 ); 

ImgR = imaqCreatelmage( IMAQ_IMAGE_U8, 0 ); 

for( i = 0; i < 2; i++ ) 

imaqShowScrollbars( i, TRUE ); 

for( i = 1; i <= num_images; i++ ) 

( 

/* capture the images */ 

if( linked ) 

{ 

SL = vp_imaq_open( Idev ); 

SR = vp_imaq_open( rdev ); 

vp_imaq_snap_stereo( SL, SR, SnapL, SnapR ); 

vp_imaq_close( SL ); 

vp_imaq_close( SR ); 

} 

else 

( 

SL = vp_imaq_open( ldev ); 

vp_imaq_snap ( SL, SnapL ); 

vp_imaq_close( SL ); 

SR = vp_imaq_open( rdev ) ; 

vp_imaq_snap( SR, SnapR ); 

vp_imaq_close( SR ); 

} 

/* convert to grayscale */ 

imaqCast( ImgL, SnapL, IMAQ_IMAGE_U8, NULL, 8 ); 

imaqCast( ImgR, SnapR, IMAQ_IMAGE_U8, NULL, 8 ); 

/* output to files */ 
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sprintff fn, "%s-left%.2d.bmp", nodeid, i ); 

imaqWriteBMPFile( ImgL, fn, FALSE, NULL ); 

sprintff fn, "%s-right%.2d.bmp", nodeid, i ); 

iiiiaqWriteBMPFile ( ImgR, fn, FALSE, NULL ); 

/* display images and ask for approval */ 

imaqDisplayImage( ImgL, 0, FALSE ) ; 

imaqDisplaylmage( ImgR, 1, FALSE ); 

iff ! ConfirmPopupf "Camera Calibration", "Accept this image pair?" ) ) 

i—; 

} 

MessagePopup( "Camera Calibration", "Image acquisition complete." ); 

break; 

} 

return 0; 

} 

void CVICALLBACK param_load (int menuBar, int menultem, void *callbackData, 

int panel) 

f 

int fH; 

char file[ MAX_PATHNAME_LEN ], data[ 4096 ], 

nodeid[ 256 ], ldev[ 32 ], rdev[ 32 ]; 

double lfcl, lfc2, lccl, lcc2, lkcl, lkc2, lkc3, lkc4, lkc5; 

double rfcl, rfc2, reel, rcc2, rkcl, rkc2, rkc3, rkc4, rkc5; 

double stl, st2, st3, soml, som2, som3; 

iff FileSelectPopupf "", "*.dsc", "", "Load Node Parameters", 

VAL_LOAD_BUTTON, 0, 1, 1, 0, file ) == 1 ) 

f 

fH = OpenFilef file, VAL_READ_ONLY, NULL, VAL_ASCII ); 

ReadLine( fH, nodeid, 255 ); 

ReadLinef fH, ldev, 31 ); 

ReadLine( fH, rdev, 31 ); 

ReadLinef fH, data, 4095 ); 
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} 

sscanf( data, "%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf, 

%lf,Uf,%lf,Hf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf\ 

Slfcl, &lfc2, &lccl, &lcc2, slkcl, Slkc2, &lkc3, &lkc4, &lkc5, 

Srfcl, &rfc2, Srccl, Srcc2, Srkcl, &rkc2, &rkc3, &rkc4, &rkc5, 

Sstl, Sst2, &st3, Ssoml, &som2, Ssom3 ); 

CloseFile( fH ); 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

SetCtrlVal 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

MA1NPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL, 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

MAINPANEL. 

.STR_NODEID, nodeid 

STR_CAML_DEV, ldev 

.STR_CAMR_DEV, rdev 

NUM_CAML_FC1, lfcl 

NUM_CAML_FC2, lfc2 

NUM_CAML_CC1, lccl 

NUM_CAML_CC2, lcc2 

NUM_CAML_KC1, lkcl 

NUM_CAML_KC2, lkc2 

NUM_CAML_KC3, lkc3 

NUM_CAML_KC4, lkc4 

NUM_CAML_KC5, lkc5 

NUM_CAMR_FC1, rfel 

NUM_CAMR_FC2, rfc2 

NUM_CAMR_CC1, reel 

NUM_CAMR_CC2, rcc2 

NUM_CAMR_KC1, rkcl 

NUM_CAMR_KC2, rkc2 

NUM_CAMR_KC3, rkc3 

NUM_CAMR_KC4, rkc4 

NUM_CAMR_KC5, rkc5 

NUM_STERE0_T1, stl 

NUM_STERE0_T2, st2 

NUM_STERE0_T3, st3 

NUM_STERE0_0M1, soml 

NUM_STEREO_OM2, sora2 

NUM_STEREO_OM3, som3 

); 

void CVICALLBACK parara_save (int menuBar, int menultem, void *callbackData, 

int panel) 
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int fH; 

char file[ MAX_PATHNAME_LEN ], data[ 4096 ], 

nodeid[ 256 ], ldevf 32 ], rdev[ 32 ]; 

double lfcl, lfc2, lccl, lcc2, lkcl, lkc2, lkc3, lkc4, lkc5; 

double rfcl, rfc2, reel, rcc2, rkcl, rkc2, rkc3, rkc4, rkc5; 

double stl, st2, st3, soml, som2, som3; 

if( FileSelectPopup( "", "*.dsc", "", "Save Node Parameters", 

VAL_SAVE_BUTTON, 0, 1, 1, 1, file ) ) 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

GetCtrlVal 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

panel, 

MAINPANEL_STR_NODEID, nodeid ); 

MAINPANEL_STR_CAML_DEV, ldev ); 

MAINPANEL_STR_CAMR_DEV, rdev ); 

MAINPANEL_NUM_CAML_FC1, &lfcl 

MAINPANEL_NUM_CAML_FC2, &lfc2 

MAINPANEL_NUM_CAML_CC1, Slccl 

MAINPANEL_NUM_CAML_CC2, &lcc2 

MAINPANEL_NUM_CAML_KC1, Slkcl 

MAINPANEL_NUM_CAML_KC2, Slkc2 

MAINPANEL_NUM_CAML_KC3, &lkc3 

MAINPANEL_NUM_CAML_KC4, &lkc4 

MAINPANEL_NUM_CAML_KC5, SlkcS 

MAINPANEL_NUM_CAMR_FC1, Srfcl 

MAINPANEL_NUM_CAMR_FC2, Srfc2 

MAINPANEL_NUM_CAMR_CC1, Srccl 

MAINPANEL_NUM_CAMR_CC2, Srcc2 

MAINPANEL_NUM_CAMR_KC1, Srkcl 

MAINPANEL_NUM_CAMR_KC2, &rkc2 

MAINPANEL_NUM_CAMR_KC3, Srkc3 

MAINPANEL_NUM_CAMR_KC4, Srkc4 

MAINPANEL_NUM_CAMR_KC5, &rkc5 

MAINPANEL_NUM_STERE0_T1, &stl 

MAINPANEL_NUM_STEREO_T2, Sst2 

MAINPANEL_NUM_STEREO_T3, Sst3 

MAINPANEL_NUM_STERE0_0M1, Ssoml ) 

MAINPANEL_NUM_SIEREO_OM2, &som2 ) 

MAINPANEL_NUM_STEREO_OM3, Ssom3 ) 
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sprintf( data, "%lf,%lf,%lf,%lf,llf,%lf,%lf,%lf,%lf,%lf,%lf,%lf, 

%lf,%lf,%lf,llf,%lf,%lf,%lf,%lf,Uf,%lf,llf,%lf", 

lfcl, lfc2, lccl, lcc2, lkcl, lkc2, lkc3, lkc4, lkc5, 

rfcl, rfc2, reel, rcc2, rkcl, rkc2, rkc3, rkc4, rkc5, 

stl, st2, st3, soml, som2, som3 ); 

fH = OpenFile( file, VAL_WRITE_ONLY, VAL_TRUNCATE, VAL_ASCII ); 

WriteLine( fH, nodeid, -1 ); 

WriteLine( fH, ldev, -1 ); 

WriteLine( fH, rdev, -1 ); 

WriteLine( fH, data, -1 ) ; 

CloseFile( fH ); 

1 

} 

int CVICALLBACK manual (int panel, int control, int event, 

void *callbackData, int eventDatal, int eventData2) 

{ 

int manual; 

switch (event) 

( 

case EVENT_COMMIT: 

GetCtrlVal( panel, MAINPANEL_BIN_FAST_MANUAL, Smanual ); 

SetCtrlAttribute( panel, MAINPANEL_NUM_FAST_THRESH, ATTR_DIMMED, 

break; 

) 

return 0; 

} 

B.2.2 Stereo Library 

stereo.h 

#ifndef STEREO_H 

#define STEREO_H 

typedef struct ( double x, y; } dxy; 

typedef struct { double x, y, z; } dxyz; 
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dxyz stereo_make_dxyz( double * P ) ; 

double ** stereo_rodrigues( double theta, double phi, double psi ); 

double ** stereo_essential( double theta, double phi, double psi, double * T ); 

void stereo_normalize( int x, int y, double fcl, double fc2, double ccl, 

double cc2, double kcl, double kc2, double kc3, 

double kc4, double kc5, dxy * Cn ); 

dxyz stereo_triangulate ( dxy CLn, dxy CRn, double ** R, double * T ); 

#endif 

stereo.c 

•include <ansi_c.h> 

•include <math.h> 

•include "stereo.h" 

dxyz stereo_make_dxyz( double * P ) 

{ 

dxyz p; 

p.x = P[ 0 ]; 

p.y = P[ i ]; 

P-z = P[ 2 ]; 

return p; 

} 

double ** stereo_rodrigues( double theta, double phi, double psi ) 

( 

int i; 

double ** R; 

R = ( double ** )malloc( 3 * sizeof( double * ) ); 

for( i = 0; i < 3; i++ ) 

R[ i ] = ( double * )malloc( 3 * sizeoft double ) ); 

R[ 0 ][ 0 ] = cos( phi ) * cos( psi ); 

R[ 0 ][ 1 ] = sin( theta ) * sin( phi ) * cos( psi ) 

- cos( theta ) * sin( psi ); 
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R[ 0 ][ 2 ] = cos( theta ) * sin( phi ) * cos( psi ) 

+ sin( theta ) * sin( psi ); 

R[ 1 ][ 0 ] = cos( phi ) * sin( psi ); 

R[ 1 ][ 1 ] = sin( theta ) * sin( phi ) * sin( psi ) 

+ cos( theta ) * cos( psi ); 

R[ 1 ][ 2 ] = cos( theta ) * sin( phi ) * sin( psi ) 

- sin( theta ) * cos( psi ); 

R[ 2 ][ 0 ] = -sin( phi ); 

R[ 2 ][ 1 ] = sin( theta ) * cos( phi ); 

R[ 2 ][ 2 ] = cos( theta ) * cos( phi ); 

return R; 

double ** stereo_essential( double theta, double phi, double psi, double * T ) 

{ 

int i, j; 

double ** R, ** E; 

double Tx[ 3 ] [ 3 ]; 

R = stereo_rodrigues( theta, phi, psi ); 

E = ( double ** )malloc( 3 * sizeoff double * ) ); 

for( i = 0; i < 3; i++ ) 

E[ i ] = ( double * )malloc( 3 * sizeof( double ) ); 

for( i = 0; i < 3; i++ ) 

{ 

Tx[ i ][ i ] = 0.0; 

Tx [ i ] [ ( i + 1 ) % 3 ] = -T[ ( i + 2 ) % 3 ]; 

Tx[ i ][ ( i + 2 ) % 3 ] = T[ ( i + 1 ) % 3 ]; 

} 

for( i = 0; i < 3; i++ ) 

for( j = 0; j < 3; j++ ) 

{ 

E[ i ][ j ] = R[ i ][ 0 ] * Tx[ 0 ][ j ] + R[ i ][ 1 ] * Tx[ 1 ][ j ] 

+ R[ i ][ 2 ] * Tx[ 2 ][ j ]; 
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r e tu rn E; 

} 

void stereo_normalize( int x, int y, double fcl, double fc2, double ccl 

double cc2, double kcl, double kc2, double kc3, 

double kc4, double kc5, dxy * Cn ) 

{ 

int i; 

double r2, k_radial, xin, yin; 

/* focal length and principal point */ 

Cn->x = xin = ( ( double )x - ccl ) / fcl; 

Cn->y = yin = ( ( double )y - cc2 ) / fc2; 

/* radial/tangential distortion */ 

if( kcl != 0 M kc2 != 0 || kc3 != 0 || kc4 != 0 || kc5 != 0 ) 

for( i = 0; i < 20; i++ ) 

( 

r2 = Cn->x * Cn->x + Cn->y * Cn->y; 

k_radial = 1 + kcl * r2 + kc2 * r2 * r2 + kc5 * r2 * r2 * r2; 

Cn->x = ( xin - ( 2 * kc3 * Cn->x * Cn->y + kc4 

* ( r2 + 2 * Cn->x * Cn->x ) ) ) / k_radial; 

Cn->y = ( yin - ( 2 * kc4 * Cn->x * Cn->y + kc3 

* ( r2 + 2 * Cn->y * Cn->y ) ) ) / k_radial; 

} 

} 

dxyz stereo_triangulate ( dxy CLn, dxy CRn, double ** R, double * T ) 

{ 

int i; 

double xt[ 3 ], xtt[ 3 ], u[ 3 ], XL[ 3 ]; 

double DD, Zt, Ztt, n_xt2, n_xtt2; 

double dot_uT, dot_xttT, dot_xttu; 

xt[ 0 ] = CLn.x; 

xt[ 1 ] = CLn.y; 



APPENDIX B. SOFTWARE SOURCE CODE 

x t t [ 0 ] = CRn.x; 

x t t [ 1 ] = CRn.y; 

x t [ 2 ] = x t t [ 2 ] = 1.0; 

dot_uT = do t_x t tT = do t_x t tu = n_xt2 = n_xt t2 = 0.0; 

for( i = 0; i < 3; i++ ) 

{ 

u[ i ] = R[ i ] [ 0 ] * x t [ 0 ] + R[ i ] [ 1 ]• * x t [ 1 ] 

+ R[ i ] [ 2 ] * x t [ 2 ] ; 

n_xt2 += x t [ i ] * x t [ i ] ; 

n_xtt2 += x t t [ i ] * x t t [ i ] ; 

} 

for( i = 0; i < 3; i++ ) 

{ 

dot_uT += u[ i ] * T[ i ] ; 

dot_xttT += xtt[ i ] * T[ i ]; 

dot_xttu += u[ i ] * xtt[ i ]; 

} 

DD = n_xt2 * n_xtt2 - dot_xttu * dot_xttu; 

Zt = ( dot_xttu * dot_xttT - n_xtt2 * dot_uT ) / DD; 

Ztt = ( n_xt2 * dot_xttT - dot_uT * dot_xttu ) / DD; 

for( i = 0; i < 3; i++ ) 

XL[ i ] = 0.5 * ( ( xt[ i ] * Zt ) 

+ ( ( R[ 0 ][ i ] * xtt[ 0 ] + R[ 1 ][ i ] * 

+ R[ 2 ][ i ] * xtt[ 2 ] ) * Ztt - T[ i ] ) ) 

return stereo_make_dxyz ( XL ); 

} 
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