
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2008

Feature-based calibration of distributed smart stereo camera Feature-based calibration of distributed smart stereo camera

networks networks

Aaron Mavrinac
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Mavrinac, Aaron, "Feature-based calibration of distributed smart stereo camera networks" (2008).
Electronic Theses and Dissertations. 2088.
https://scholar.uwindsor.ca/etd/2088

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/72779395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2088&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2088?utm_source=scholar.uwindsor.ca%2Fetd%2F2088&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

FEATURE-BASED CALIBRATION OF DISTRIBUTED
SMART STEREO CAMERA NETWORKS

by

AARON MAVRINAC

A Thesis

Submitted to the Faculty of Graduate Studies

through Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2008

© 2008 Aaron Mavrinac

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-42305-9
Our file Notre reference
ISBN: 978-0-494-42305-9

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Author's Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been published or

submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's copyright nor

violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work

of other people included in my thesis, published or otherwise, are fully acknowledged in accordance with

the standard referencing practices. Furthermore, to the extent that I have included copyrighted material that

surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have

obtained a written permission from the copyright owner(s) to include such material(s) in my thesis and have

included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis

committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to

any other University or Institution.

m

Abstract

A distributed smart camera network is a collective of vision-capable devices with enough processing power

to execute algorithms for collaborative vision tasks. A true 3D sensing network applies to a broad range

of applications, and local stereo vision capabilities at each node offer the potential for a particularly robust

implementation. A novel spatial calibration method for such a network is presented, which obtains pose

estimates suitable for collaborative 3D vision in a distributed fashion using two stages of registration on

robust 3D features. The method is first described in a general, modular sense, assuming some ideal vision and

registration algorithms. Then, existing algorithms are selected for a practical implementation. The method

is designed independently of networking details, making only a few basic assumptions about the underlying

network's capabilities. Experiments using both software simulations and physical devices are designed and

executed to demonstrate performance.

iv

Dedication

This work is dedicated to Crystal, my best friend.

v

Acknowledgements

First and foremost, I thank my thesis advisors Dr. Xiang Chen and Dr. Kemal Tepe, for their invaluable

guidance and support throughout this research work. I also thank Dr. Mohammed Khalid, my departmental

reader, as well as Dr. Arunita Jaekel, my external reader, for their own advice toward the completion of my

research and this thesis. I appreciate the instruction and guidance offered by Dr. Maher Sid-Ahmed, Dr.

Jonathan Wu, Dr. Huapeng Wu, and Dr. Bubaker Boufama during my studies.

I am indebted to my fellow students for their support and frequent assistance; in particular, I would like

to thank Mr. Ahmad Shawky for his mentoring in the theory and practice of computer vision early on and his

continued support and advice throughout my research.

My thanks go out to various other faculty and staff at the University of Windsor who in one way or

another supported my work. The department technicians, Mr. Don Tersigni and Mr. Frank Cicchello, and the

Technical Support Centre staff provided materials and expertise instrumental to the experiments herein.

My deepest gratitude goes out to members of the academic community and of free software projects

worldwide, who put in countless hours of hard work and, believing in the spirit of community, make that

work freely available on the Internet. The innumerable software packages, code snippets, and reference

pages I used every day literally made this work possible.

Finally, I would like to acknowledge the financial support provided by the Natural Sciences and Engi

neering Research Council of Canada throughout my research.

VI

Contents

Author's Declaration of Originality iii

Abstract iv

Dedication v

Acknowledgements vi

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Distributed Smart Cameras 1

1.2 Paradigms 2

1.2.1 Homogeneous Distributed Network 2

1.2.2 True 3D Sensing 2

1.2.3 Stereo Camera Nodes 3

1.3 Thesis 3

1.3.1 Statement 4

1.3.2 Methodology 4

2 Literature Survey 5
2.1 Distributed Smart Camera Networks 5

2.1.1 Justification oftheDSSC Concept 5

2.1.2 Calibration 7

2.2 Interest Point Detection 8

2.3 Registration 8

3 Theoretical Foundations 9
3.1 Geometry 9

3.1.1 Euclidean Distance 9

3.1.2 Rotation Matrix 9

vn

CONTENTS viii

3.1.3 Relative Pose 10

3.2 Node Concepts 12

3.2.1 Nodes and Groups 12

3.2.2 Node Pose Conventions 12

3.2.3 Point Sets and Features 12

3.3 Graphs 13

3.3.1 Communication Graph 13

3.3.2 Vision Graph 13

3.3.3 Calibration Graph 13

4 General Solution 15

4.1 Problem Statement 15

4.2 Assumptions 15

4.2.1 Pre-Deployment Offline Access 15

4.2.2 Shared View 16

4.2.3 Fixed Nodes 16

4.2.4 Static Scene 16

4.2.5 Abstract Network 16

4.2.6 Local Assumptions 17

4.3 Problem Analysis 17

4.3.1 3D Visual Data Primitive 18

4.3.2 Two-Stage Registration 18

4.3.3 Feature Matching 18

4.3.4 Coarse Grouping 24

4.3.5 Pairwise Pose Refinement 27

4.3.6 Distributed Operation 29

4.4 Distributed Calibration Algorithm 30

4.4.1 Initialization 30

4.4.2 Coarse Grouping 31

4.4.3 Pairwise Pose Refinement 34

5 Implementation Details 39
5.1 Stereo 3D Vision 39

5.1.1 Calibration 39

5.1.2 Correspondence 39

5.1.3 Point Triangulation 40

5.2 Interest Point Detection 40

5.2.1 Requirements 41

5.2.2 Algorithm 42

CONTENTS ix

5.3 Registration 43

5.3.1 Coarse Registration 43

5.3.2 Fine Registration 43

6 Experiments 45
6.1 Performance Metrics 45

6.1.1 Convergence 45

6.1.2 Accuracy 46

6.1.3 Scalability 46

6.2 Equipment and Software 47

6.2.1 Stereo Cameras 47

6.2.2 Distributed Calibration Software 48

6.2.3 Local Point Detection Software 48

6.3 Manual Point Set 49

6.3.1 Apparatus 49

6.3.2 Procedure 50

6.3.3 Results 51

6.4 Automatic Point Set 53

6.4.1 Apparatus 53

6.4.2 Procedure 54

6.4.3 Results 54

6.5 Virtual Point Set 57

6.5.1 Apparatus 57

6.5.2 Procedure 57

6.5.3 Results 57

7 Conclusions 65
7.1 Overview 65

7.2 Comparison with Existing Work 65

7.2.1 Single-Camera Node Methods 66

7.2.2 Lighthouse 66

7.3 Summary of Contributions 67

7.4 Future Work 67

7.4.1 Embedded Implementation 67

7.4.2 Improved Feature Reliability 68

7.4.3 Tiered Calibration for Large Networks 68
7.4.4 Dynamic Calibration 68

7.4.5 Basis for a 3D Sensing Network 69

A Glossary of Terms 70

CONTENTS x

B Software Source Code 73

B.l Distributed Calibration (Python) . . 73

B.l.l Node Program 73

B.1.2 Geometry Module 94

B.1.3 Registration Module 99

B.2 Local Point Detection (C) 103

B.2.1 Main Program 103

B.2.2 Stereo Library 123

Bibliography 128

Vita Auctoris 133

List of Figures

3.1 Fixed-Axis Rotation Convention 10

3.2 Example Field of View Overlap 13

3.3 Example Vision Graph 14

3.4 Example Calibration Graph 14

4.1 Feature Selection (/ = 4) 19

4.2 Feature Categorization 22

4.3 Group Topology 25

4.4 Group Merging 26

4.5 The Field of View Cone 28

4.6 Feature Selection Process 36

4.7 Feature Matching Process 36

4.8 Match Processing Process 36

4.9 Group Merge Initiator Process 37

4.10 Group Merge Responder Process 37

4.11 Group Update Process 37

4.12 Pose Refinement Initiator Process 37

4.13 Pose Refinement Responder Process 38

4.14 Fine Registration Process 38

4.15 Pose Update Process 38

6.1 Adjustable Stereo Camera Mount (Node) 47

6.2 Local Point Detection Software GUI 48

6.3 Convergence Time Trends in n and p 52

6.4 Accuracy Trends in n and p 53

6.5 Calibration Graph for Automatic Experiment 1 55

6.6 Calibration Graph for Automatic Experiment 2 55

6.7 Calibration Graph for Automatic Experiment 3 56

6.8 Calibration Graph for Automatic Experiment 4 56

6.9 Virtual Point Set Generation 57

6.10 Bandwidth Usage in |N| (Average and Maximum) 58

xi

LIST OF FIGURES xii

6.11 Node-Local Storage in |N| (Average and Maximum) 59

6.12 Coarse Registration Processing in |N| (Average and Maximum) 59

6.13 Fine Registration Processing in [N| (Average and Maximum) 60

6.14 Camera Deployment for Automatic Experiment 1 61

6.15 Pose Visualization for Automatic Experiment 1 61

6.16 Camera Deployment for Automatic Experiment 2 62

6.17 Pose Visualization for Automatic Experiment 2 62

6.18 Camera Deployment for Automatic Experiment 3 63

6.19 Pose Visualization for Automatic Experiment 3 63

6.20 Camera Deployment for Automatic Experiment 4 64

6.21 Pose Visualization for Automatic Experiment 4 64

List of Tables

6.1 Manual Point Set Experiment Results 51

6.2 Virtual Point Set Experiment Results 58

xiii

Chapter 1

Introduction

1.1 Distributed Smart Cameras

The field of distributed smart cameras is one still in its infancy, largely unexplored by the literature purely

on its own. It combines research from a wide variety of fields, including computer vision, image and signal

processing, embedded systems, distributed systems, and communications. As with any other emerging area of

research with a diverse lineage, there is an inherent challenge in defining its scope in a way that embraces all

the possibilities offered by this new technology. The challenge is twofold: as research from the various parent

fields converges on the nascent one, it must both account for new limitations imposed by the intersection of

the fields and see new opportunities presented by their union.

Visual sensor networks are a concept closely related to distributed smart cameras. The two overlap almost

fully, particularly in the extant body of research, and indeed they may soon converge into a single area of

study. However, at present, it is important to keep their definitions as broad as possible so as not to exclude

potential opportunities, and so it would not be entirely accurate to use the terms interchangeably, nor to call

either a subset of the other. To illustrate, one might envision a visual sensor network not composed of smart

camera devices, or a distributed smart camera system which does not embody the fundamental concept of a

sensor network.

The type of system envisioned in this research falls fully within the intersection of the two fields: it could

accurately be called either a distributed smart camera network or a visual sensor network. The emphasis,

however, is on the distributed nature of the algorithms used, and in that light, a definition is here provided for

the former term which shall be used throughout this thesis:

A distributed smart camera network is a group of physically dispersed devices, each capable of
sensing and locally processing visual data from the environment via one or more digital cam
eras, which may communicate with one another and/or with other devices to perform collective
processing of this data.

This definition is quite general, so to further delimit the type of system this research pertains to, a set of

1

CHAPTER 1. INTRODUCTION 2

paradigms are applied to it, outlined and described in Section 1.2.

1.2 Paradigms

1.2.1 Homogeneous Distributed Network

The definition of a distributed smart camera network in Section 1.1 may, in fact, be too general. The name

itself implies that collective processing of the data throughout the network should be distributed in nature,

not simply that the devices be physically distributed over some geographic area; that is, the nodes themselves

should use some of their local processing power to collaborate in global processing over the network, rather

than just forwarding their local results to a central station.

This is a highly advantageous system design which lends itself extremely well to this type of system.

Smart camera nodes gather an enormous amount of information compared to other types of sensor nodes

(which typically measure only one or a few values), and though they distill this information with local pro

cessing to a degree that varies by application, processing the information collectively is in all practical cases

a computationally intensive task. Fortunately, the type of processing envisioned includes tasks like tracking,

registration, reconstruction, and other highly parallelizable algorithms. Furthermore, the data which need to

be processed together tend to be localized geographically in large networks, so that the associated commu

nication is also compartmentalized in networks relying on physical proximity. Thus, the network becomes

extremely scalable, as each node added to the network also adds distributed computation power, which, aside

from a relatively small amount of overhead and inefficiency in parallelization, makes up for the load it adds.

As with scalability in processing, distributed data yields an opportunity to design extremely reliable and

robust storage and retrieval systems. In whatever final form it takes after processing, visual data about the

same space-time area might be stored redundantly on multiple nodes, so that if some nodes fail others are

fully equipped to respond to queries.

In addition to run-time scalability and reliability, the distributed paradigm offers one additional major

advantage. If the network is a homogeneous one - one in which all nodes are physically identical and run the

same algorithms with the same initial conditions - the complexity and cost of development, manufacturing,

and deployment are significantly reduced, since only one type of node need be produced and installed and

the network initializes itself in an ad-hoc manner.

1.2.2 True 3D Sensing

The bulk of research in distributed smart cameras to date has centered on systems involving single cameras

at each node. The focus is usually on specific tracking and surveillance applications which allow for some

simplifying assumptions about the contents of the scene, the relative locations of the nodes, etc., so various

2D computer vision algorithms are applied within these constraints to solve such problems.

A true 3D sensing network, as advocated in [1], can be applied to a more general class of problems.

For instance, the tracking problem is greatly simplified once 3D positions of the detected objects are known.

CHAPTER 1. INTRODUCTION 3

Virtual views - reconstructions of the scene from arbitrary viewpoints in space and time, possibly at greater

resolution than a single node can provide - would be immensely useful to surveillance, manufacturing, and

many other applications. But in addition to improving existing applications, whole new ones can be envi

sioned that may not be possible at all without full 3D sensing.

1.2.3 Stereo Camera Nodes

While it is possible to create a 3D sensing network using single-camera nodes, this presents a series of

challenges. In general, it is assumed that a node does not initially know its location and orientation, or

pose, relative to the other nodes in the network. As will be seen in Chapter 2, some work has been done

in calibrating networks of such nodes for 3D vision, but without the constraint of a short baseline, this is

an exceptionally difficult problem. Apart from this, even if the nodes are perfectly calibrated, 2D point

correspondences for 3D triangulation are still very difficult to find due to occlusion and variations in the

reflective properties of a surface.

These problems are minimized if the stereo baseline is much shorter than the distance to the scene. There

fore, if stereo cameras are used at each node, 3D features can be recovered locally, and then any network-level

processing operates purely on robust 3D data. The calibration problem in 3D then becomes a registration

problem, where various iterative statistical methods can be employed to yield a much more accurate pose

estimate than, say, the bilinear tensor (fundamental matrix) in the wide-baseline stereo case provides. Using

such nodes relaxes the complicated deployment and scene constraints imposed by single-camera nodes, and

provides more complete and accurate 3D reconstruction capabilities overall.

1.3 Thesis

The focus of this thesis is on the first step in building any functional distributed smart camera network:

calibration. In order to perform any sort of useful collaborative processing of visual data, it must be known

how one piece of data relates to another.

If the totality of what a distributed smart camera network observes is thought of as existing within a space-

time coordinate system, as in [1], it is required that each node be able to reconcile its own locally observed

data with a world reference frame, and thereby to the data from the other nodes. The world reference frame

need not be any particular coordinate basis; indeed, it may in fact be an abstract conceptualization of what

is, in reality, simply a series of pairwise relative mappings between nodes. The important factor is that each

node has or can obtain the knowledge necessary to align its own data.

This thesis concentrates on the spatial portion of this calibration. The assumptions in Section 4.2 reduce

the problem to development of a distributed algorithm for geometric localization and orientation (Chapter 4)

and the selection of appropriate computer vision methods for practical use (Chapter 5). Temporal synchro

nization is implicitly satisfied by these assumptions, but for future work, there do exist means of achieving

it explicitly in a distributed network [55, 62]. The assumptions also abstract away most of the networking

details, so that the algorithm does not depend on any particular topology, medium, or protocol.

CHAPTER 1. INTRODUCTION 4

1.3.1 Statement

The objective of this thesis is to develop a distributed spatial calibration algorithm capable of localizing

and orienting the coordinate systems of a series of homogeneous smart stereo camera nodes within a world

coordinate system, solely based on the three-dimensional visual data obtained by the nodes, where the nodes

have no a priori knowledge of their location and orientation within the environment or with respect to one

another. The algorithm should not require any manual input whatsoever, nor should it inherently depend on

any particular configuration of the scene (although, as will be discussed, some general conditions might be

necessary in practical implementations). To achieve this objective practically, in addition to implementing

the algorithm itself, appropriate underlying computer vision methods shall be selected from the 2D images

up. The method developed shall be independent of the topology, medium, and protocols used to network the

smart camera nodes, aside from some general assumptions about the network's capabilities.

1.3.2 Methodology

With the objective and paradigms established, Chapter 2 provides a survey of the literature justifying the

concepts and the opportunity for improvement, and covers the state of the art in the two major relevant

computer vision topics. Chapter 3 covers some basic theory and conventions, providing a framework within

which the remainder of the work is developed.

The calibration problem itself is approached in two stages. First, in Chapter 4, the calibration problem

is examined in purely geometrical terms, as stated in Section 4.1. A series of local assumptions are made

(Section 4.2.6) to temporarily satisfy some practical requirements abstractly, so that the algorithm, described

in a generic way in Section 4.4, concentrates wholly on realizing a distributed solution to the geometrical

problem. Second, in Chapter 5, the practical requirements of the algorithm are examined, and the local

assumptions used in the previous chapter are replaced by suitable computer vision methods.

Chapter 6 describes several simulated and physical experiments, and reports on their results. It outlines

the performance metrics (Section 6.1) used to evaluate the algorithm's performance, and the equipment and

software (Section 6.2) used to perform the experiments. Three types of experiments are described along with

their results, followed by a comparison with existing calibration algorithms.

Chapter 2

Literature Survey

2.1 Distributed Smart Camera Networks

2.1.1 Justification of the DSSC Concept

The concept of distributed smart stereo cameras brings together three distinct advantageous paradigms:

1. Passive 3D (Stereo) Vision

2. Multiple Views

3. Distributed Collaborative Processing

These have been been used extensively to improve on the basic operations of computer vision over what

is possible with traditional monocular methods. The underlying premise of distributed smart stereo camera

network research is that combining all three will allow for yet better low-level solutions and a new range of

high-level applications.

This section explores how in the literature the above paradigms have been used, albeit not all concurrently,

to enhance some of the most important primitive vision operations. The general benefits and limitations

in each case are summarized, and then the advantages of employing all three paradigms in the form of a

distributed smart stereo camera network are extrapolated.

Shape Recognition

The 3D shape information offered by stereo vision is richer and much more robust than 2D contours in the

monocular case. It can be similarly reduced to metrics for comparison to a database, as in [36, 37], greatly

improving recognition performance and extending the range of applicability. However, such methods Still

suffer from the fact that a full 3D reconstruction is not available from a single view, and without application-

specific constraints, this can only be mitigated by cumbersome schemes of moving the target relative to the

camera rig or by complicated machine learning methods to account for the incompleteness of the information.

5

CHAPTER 2. LITERATURE SURVEY 6

Distributed smart stereo cameras, in contrast, offer the potential for a full 3D reconstruction of the object

without constraints, allowing recongition methods to yield more robust performance without added complex

ity.

Object Tracking

Both stereo vision and the use of multiple views allow objects to be tracked in three dimensions, which is

generally not possible in monocular vision. Stereo vision has been posited for tracking [38], since it offers

direct 3D information, but its usefulness is limited by the fact that objects can only be tracked within the field

of view of a single camera rig. Much research has been done, particularly for surveillance and environment

monitoring applications, into tracking across multiple views, both overlapping [39, 40,42] and disjoint [41].

More recently, the advantages of a decentralized (distributed) approach to multi-view tracking using smart

camera devices have been explored [43, 44, 45].

The complexity of decentralized tracking across multiple views could certainly be reduced if the analysis

were performed on explicit 3D information rather than interpretation of 2D images; distributed smart stereo

cameras are thus in a position to greatly improve object tracking in the general case.

Motion Analysis

Motion analysis, the extraction of quantitative data from dynamic scenes, is another area which has benefitted

from both stereo vision and multiple views. It is possible to recover richer 3D motion data from stereo

image sequences [46, 61,47] than in the monocular case, allowing for more informative high-level analyses.

Motion estimation from multiple views has been heavily researched [48,49], particularly due to its obvious

applications in surveillance and environment monitoring. The multiple view approach has also been extended

to the distributed paradigm, where it benefits from localized collaborative analysis [50, 51]. Again, however,

these approaches are rarely, if ever, combined. The stereo approach suffers from the same occlusion effects

as the monocular approach, and the multiple view approach relies either on 2D methods such as blob analysis

which do not generalize well or on difficult and non-robust wide-baseline 3D reconstruction.

An approach employing distributed smart stereo cameras would impart a distributed multi-view method

with robust true 3D scene reconstruction information, also sidestepping the occlusion problem, and as a result

methods based on such a system would generalize very well.

Scene Reconstruction

With the exception of some specific cases, two or more views are necessary for passive three-dimensional

scene reconstruction. Generally, the entire purpose of stereo vision at its basic level is 3D scene reconstruc

tion, and methods for this are well-established in the literature [33, 58, 59, 60]. Multiple views not strictly

consisting of stereo camera rigs but employing the same or similar methods exist, usually generalized to a

wide-baseline approach, but these methods are inherently not robust due to the difficulty of matching features

across widely separated views [18, 52]. For many practical applications, more specific approaches allow for

partial scene reconstructions which are sufficient for the application but do not generalize well. A review of

CHAPTER 2. LITERATURE SURVEY 7

multi-ocular reconstructions with a focus on accuracy is presented in [53]. View synthesis is one possibility

which happens to lend itself particularly well to the distributed paradigm, as explored in [54]; however, the

drawback is that it is computationally expensive.

Distributed smart stereo cameras are an ideal solution for full 3D reconstruction of arbitrary scenes. As

suming a calibration method such as the one presented in this work is able to converge, local 3D reconstruc

tions may be combined in a distributed fashion via collaboration between the appropriate nodes, allowing for

fast, scalable, and generally applicable scene reconstruction methods.

2.1.2 Calibration

As was mentioned in Chapter 1, the majority of research in distributed smart cameras to date has focused on

monocular vision at each node. A number of methods for distributed self-calibration have been proposed for

this paradigm, and though the vision components are not readily applicable to 3D sensing nodes, the general

localization and distribution concepts developed apply to any vision-based system.

The problem has been approached from one of two angles. Coming from the perspective of traditional

sensor networks, the primary challenges are the directionality of vision sensors, the higher degree of accuracy

required by vision applications, and the large volume of raw sensor data. Conversely, from the perspective of

traditional computer vision, the challenge is in the scalable distribution of processing among nodes and the

related limitations of network bandwidth.

While traditional sensor network methods generally employ omnidirectional sensors and thus require

only localization, vision-based networks also require orientation. Traditional sensor networks have benefitted

from the fact that their network topology is generally geographic (for example, with ad-hoc wireless com

munications), and thus their communication graph is a rough estimate of node localization. To apply similar

methods to directional vision sensors, the concept of the vision graph is introduced in [6], where an edge on

the graph represents shared field of view rather than a communication link.'

Functional calibration methods are presented for monocular distributed smart cameras in [6, 7], These

are based on wide-baseline stereo methods, which are generally not robust due to the matching problem [18],

and require unwieldy initialization schemes or dictate deployment constraints. Some methods, such as [8],

use motion of objects in the scene to calibrate, but these still suffer from the matching problem to a degree

and require certain kinds of scene. Potentially more robust methods are presented in [9, 10]; however, these

require the use of markers or beacons placed in the environment, which is infeasible in many cases and may

constrain deployment or extension to dynamic calibration.

With the true 3D sensing network paradigm introduced in [1], advocating distributed smart stereo cam

eras, a calibration method called Lighthouse is presented in [2] which uses 3D features and geographic hash

tables [4] to localize and orient nodes. The same basic concept is employed by the calibration method de

scribed in this work, but the method in [2] does not appear to converge well, provides little information on

the vision and registration problems, and has some inherent inefficiencies which are addressed here.

'These concepts are used throughout this work, and are elaborated upon in Section 3.3.

CHAPTER 2. LITERATURE SURVEY 8

2.2 Interest Point Detection

The detection of salient features in the three-dimensional environment is fundamental to this work. These fea

tures are triangulated from interest points or corners detected automatically in the two-dimensional images.

The development of algorithms which do so repeatably, in such a way that the detected features are stable

from various viewpoints, is an area of research which has received much attention lately. The literature on

interest point detection is reviewed here with an emphasis on repeatability, which as will be seen in Section

5.2 is the primary concern in this work.

One of the most popular corner detection methods is that developed by Harris and Stephens [16], which

operates by considering the differential with respect to direction of the intensity values of a small window

surrounding each pixel, and choosing those which return high values in both directions as corners. The

advantage of this method over previous attempts is that if a circular or circularly-weighted window is used,

the response is isotropic. Thus, this detector is invariant to translations and rotations in the image plane. The

Harris operator has been employed by a number of subsequent interest point detectors, such as SUSAN [17]

and FAST [22, 23].

The Harris operator can also be made invariant to scale changes by computing a multi-scale measure at

various scales [18]. It can also be made invariant to affine transformations in the image by iteratively warping

the shape of the smoothing kernel or the image patch [18, 19].

Algorithms such as SIFT [20] and SURF [24] employ operations such as the Laplacian of Gaussian

(LoG), Difference of Gaussians (DoG), and Determinant of Hessian (DoH) to detect blobs, which include

interest points and edges. These operations are similarly made invariant to scale and affine transformations.

This type of detector yields a large number of repeatable points with distinctive associated descriptors.

An evaluation of these detectors and their performance in the context of 3D objects can be found in [25].

2.3 Registration

Registration is the process of transforming different sets of data, normally acquired visually, into a common

coordinate system. It is an active research topic in computer vision with a variety of applications, and many

different methods have been developed suiting diverse needs. The point registration concept lends itself par

ticularly well to the problem of determining relative motion from point features detected in the environment,

so it plays a central role in this work.

A recent survey of registration algorithms [12] separates them into two classes: those which are able to

operate with no initial alignment estimate but yield relatively inaccurate results, called coarse registration

methods, and those which can only operate given an initial alignment estimate but accordingly generate

highly accurate results, called fine registration methods. As will be seen in Section 4.3.2, the use of two

registration stages (one coarse, one fine) is a pivotal part of this work. The specific algorithms in Section 5.3

were chosen based on the algorithm requirements from those reviewed in [12].

Chapter 3

Theoretical Foundations

3.1 Geometry

3.1.1 Euclidean Distance

The Euclidean distance is the intuitive straight-line distance between two points in a metric space. The

distance between two points P — (p\,p2, • • • ,pn) and Q = {q\,q2,-- ,qn) in n-dimensional Euclidean space

is defined as:

r - e n = JI>«-?.o2 (3-D
Most of the distances encountered in this work are computed in 3D Euclidean space.

3.1.2 Rotation Matrix

A rotation matrix R in Euclidean n-space is a n x n real orthogonal matrix, whose transpose is its inverse, i.e.

RT = R_1, and whose determinant det(R) = 1. A 3 x 3 rotation matrix corresponds to a geometric rotation

about a fixed origin in three-dimensional Euclidean space. The product of two rotation matrices is itself a

rotation matrix, corresponding to a composition of the rotations.

Rotating about the origin intuitively means (by convention) rotating by 0 about the original ;c-axis from y

to z, rotating by <j) about the original y-axis from z to x, and rotating by \|f about the original z axis from x to

y, illustrated in Figure 3.1.

The rotation matrix for this set of angles can be found by composition (multiplication) of the individual

matrices for each of these rotations, resulting in the following representation:

R =

costycosvf sinQsin§cos~y — cosQsiny cosQsintycosy + sinQsiny

costysiny sinQsintysiny + cosQcosy cosQsinfysirty — sinQcosy

—sinfy sinQcosfy cosQcosfy

(3.2)

9

CHAPTER 3. THEORETICAL FOUNDATIONS 10

y

A

Figure 3.1: Fixed-Axis Rotation Convention

The angles in the range [0,27t) can also be recovered from the entries of the rotation matrix:

arcsin(-R3i) if R31 < 0;

arcsin(-R3i) + 7t if R31 > 0.

0 =

arctan(lf)+7r ifcose = ^ < ° ;

v=

" " V K33 / ' ' " " cos(|)

arctan (f *) + 2% if sin6 = £
\ *vJ3 1 co

otherwise. arctan (g22-

1*22. < Q -
COS<|l ^ " '

arc tanfe)+7C i f c o s V=^<0;
arctan(&)+271 i f s i n v = S < ° ;
arctan (̂ I otherwise.

(3.3)

(3.4)

(3.5)

3.1.3 Relative Pose

Pose is a concept used to describe the relative motion between two nodes of a distributed smart camera

network, which is the basis of calibration. Each node is considered to have its own local coordinate system.

The relative pose of node A with respect to node B is denoted PAB, and is the rigid transformation in 3D

Euclidean space from the coordinate system of A to that of B.

The transformation PAB : R3 -»R3 consists of a rotation matrix (3x3 real orthogonal matrix) RAB and a

3-element translation vector TAB- PAB maps a point* 6 K3 as follows:

PAB(X) = RABX + TAB (3.6)

CHAPTER 3. THEORETICAL FOUNDATIONS 11

Identity

The identity pose is represented by Pi = (R/,T/), The transformation associated with this pose has no effect,

so that Pi(x) = x. R/ and T> are defined as follows:

T[=

R/ =

1°
' 1

0

0

0

0

1

0

0

0

0

1

(3.7)

(3.8)

Inversion

The inverse of pose P = (T, R), denoted P~', which maps the destination coordinate basis back to the source,

can be determined as follows:

P(x)

-Rx

Rx

x

x

W)
l(x)

=

=

=

=

=

=
—

Rx + T

-/»(*)+ T

P(x)-T

R_1/»W-R_1T

R - ' P ^ - R - ' T

R-lP{x)-R~lT

R ' x - R ' T (3.9)

Composition

A succession of pose transformations PBC{PAB{X)) can be composed into a single pose, denoted (PAB °

PBC){X), as follows:

PB{PA{X)) = RB(RAX + TA)+TB

(PA°PB)(X) = RBR4*+(RsT.4+TB) (3.10)

This transformation maps from the coordinate system of A to that of B, then from that of B to that of C;

therefore, the transformation from A to C can be computed via composition as PAC = {PAB °PBC){X). This

operation is transitive, so one node's pose relative to another can be computed indirectly over an arbitrary

number of intermediate poses if they exist.

CHAPTER 3. THEORETICAL FOUNDATIONS 12

3.2 Node Concepts

3.2.1 Nodes and Groups

A node is the abstract or physical smart stereo camera device itself; nodes shall be denoted by sequential

capital letters (A, B, and so forth). The set of all nodes in the network is denoted N (where |N| represents the

total number of nodes).

A group is a set of nodes which agree on a single leader node; a group led by node A shall be denoted GA

(where \GA\ represents the number of nodes in the group). Every group is a subset of the network (GA C N),

and every node is a member of exactly one group (so, if GA and GB are two separate groups, \GA D GB\ = 0).

3.2.2 Node Pose Conventions

The relative pose, as defined in Section 3.1.3, is primarily used to describe either the unknown true pose of

one node relative to another or the final pairwise pose estimate as estimated by the calibration process. As

stated, the pose of node A relative to node B is denoted PAB-

In this work, an intermediate type of relative pose is employed to describe the results of coarse regis

tration and grouping. The relative coarse pose estimate of node A with respect to node B is denoted CAB-

Additionally, within a group, it will be seen that each node has a group coarse pose estimate relative to the

leader of the node's current group; thus, a node A that is a member of group GB has a group coarse pose Q ,

which is equal to CAB-

3.2.3 Point Sets and Features

A point set is the full set of interest points detected locally at a node; the point set of node A shall be denoted

SA- The overlap between point sets SA and Sg refers to the size of the intersection of the two sets \SA C\SB\,

said intersection occurring where a point in SA corresponds to the same physical point as a point in SB- The

percent overlap is defined as follows:

%0(SA,SB) = — ^ ~ ~ x 100% (3.11)

A feature is any subset of the point set of a certain size (determined by a parameter of the algorithm);

when discussing a single arbitrary feature from node A, it shall be denoted FA, where FAQSA- Two features

FA and FB, from nodes A and B respectively, are considered to match (denoted FA « FB) if each point in FA

corresponds to the same physical point as a point in FB- In the context of the algorithm, it is impossible to

ascertain this correspondence, so the term match implies rather a presumed match based on a criterion of

geometrical similarity.

CHAPTER 3. THEORETICAL FOUNDATIONS 13

3.3 Graphs

Three types of undirected graphs are helpful in describing distributed smart camera calibration: the commu

nication graph, the vision graph, and the calibration graph [6]. Graphs are described as connected if there

exists a path connecting every pair of nodes, and complete if there exists an edge between each pair of nodes.

3.3.1 Communication Graph

The communication graph describes the effective communication links between nodes in the network from

the perspective of the layer presented to the application. A complete communication graph indicates that any

node may communicate directly with any other node, whether physically or via lower-level routing software.

This graph is of limited interest here due to the abstract network assumption (Section 4.2.5).

3.3.2 Vision Graph

The vision graph describes which nodes share significant portions of their field of view. A pair of nodes

have a connecting edge in this graph if the volume of space in the intersection of their fields of view is

considered large enough that it might contain sufficient data for the operations required by the algorithm; this

is, of course, dependent on a large number of factors and in general the vision graph is used in a qualitative

context.

Figure 3.3 demonstrates a vision graph associated with the nodes with overlapping fields of view shown

in Figure 3.2.

®

® :> f 7 < % / ' \ ®

y::®

Figure 3.2: Example Field of View Overlap

3.3.3 Calibration Graph

The calibration graph describes which nodes have a direct estimate of their pairwise pose. Obviously, it is

desirable that this graph be connected, so that any two nodes X and Y can compute their relative pose P\y by

CHAPTER 3. THEORETICAL FOUNDATIONS 14

Figure 3.3: Example Vision Graph

composition of known pose estimates. Edges can only be established where there exist edges in the vision

graph, and the most complete calibration graph possible is identical to the vision graph. For later reference,

in this work, edges are established by pairwise pose refinement, the second stage of calibration (see Section

4.3.2).

Figure 3.4 demonstrates a calibration graph that might arise from nodes with the vision graph of Figure

3.3. In this case, nodes B and D do not have an edge between them, and so do not have direct pairwise pose

estimates to one another. They would need to compute an indirect estimate, possibly through node C, to

perform any tasks requiring calibration.

Figure 3.4: Example Calibration Graph

Chapter 4

General Solution

4.1 Problem Statement

The overall objective is to spatially calibrate a series of homogeneous smart stereo camera nodes, with no

a priori knowledge and using only the nodes' 3D visual data, in a distributed fashion. Assuming the visual

data consists of a set of 3D points triangulated from stereo images of the environment, the problem may be

reduced to geometrical terms:

Given a set of nodes N, each node X eN having a point set Sx, estimate the pose PXY for enough

node pairs (X,Y) such that the calibration graph for N is connected.

The shared view assumption (Section 4.2.2) and the repeatability criterion of interest point detection (Section

5.2.1) imply a sufficient degree of overlap between a sufficient number of node pairs for convergence.

This chapter will develop a practical, network-based, distributed algorithm for solving this problem with

out considering the details of certain parts, such as the actual acquisition of the 3D point sets using cameras or

the noise-tolerant registration of one node's point set to another's. It will be described in a modular fashion,

so that different specific methods may be chosen, where applicable. The design is, of course, coupled to a

degree with extant algorithms, but as much as possible these considerations are relegated to Chapter 5, which

discusses the practical implementation.

4.2 Assumptions

4.2.1 Pre-Deployment Offline Access

It is assumed that, prior to deployment of the network, there is a period during which each node may be

accessed without restriction in a controlled environment, in order to perform certain essential modifications

to software (such as assignment of a unique identifier, network configuration, and intrinsic/stereo calibration

15

CHAPTER 4. GENERAL SOLUTION 16

of the cameras). This could occur as part of the manufacturing process, so it does not preclude the node

devices being ready for deployment "out of the box" as is desired.

4.2.2 Shared View

For full convergence, it is assumed that the vision graph is connected. This imposes the basic minimum

constraint on node deployment that the shared field of view of the entire network must be continuous and

have substantial internal pairwise overlap.

4.2.3 Fixed Nodes

It is assumed that each node is fixed in its location and orientation relative to all other nodes. It is also

assumed that, once internally calibrated for stereo vision, no node changes the relative motion between its

cameras or the internal parameters (e.g. focal length) of either of its cameras. In theory, such changes can be

locally detected and measured, and then compensated for in some way; however, that is beyond the scope of

this work.

4.2.4 Static Scene

It is assumed that the contents of the scene are fully static for the purposes of acquiring calibration point sets.

This can be restated as an assumption that the scene contents giving rise to each node's calibration image pair

are identical. This assumption is made solely for simplicity, and it could easily be relaxed using background

estimation techniques (widely researched and generally used for foreground object segmentation) or accurate

temporal synchronization.

4.2.5 Abstract Network

It is assumed that the nodes are capable of autonomously forming an ad-hoc network wherein each node can

be addressed by a unique identifier. This carries with it an implicit deployment assumption about the network

medium; for example, depending on the specific requirements of the medium, the nodes are each wired to a

network trunk or hub, or are all within wireless range of at least one neighbour. No specific media or protocols

are prescribed or assumed within this work, so any configuration which does not violate the aforementioned

assumption and has sufficient capacity is acceptable.

From the algorithm's point of view, the network is assumed to be fully connected [57], or in other words,

the communication graph is assumed to be complete. As mentioned in Section 3.3, this does not imply

anything additional about the physical topology of the network; it simply means that all necessary hardware

and software layers exist so that the following criteria are met:

1. Each node has an identifier that is unique within the network.

2. Each node maintains a list of all other nodes' identifiers.

CHAPTER 4. GENERAL SOLUTION 17

3. Each node may address any other node by its identifier, and send it an arbitrary amount of data with

assured delivery.

These assumptions are valid for most modern networks. The first two requirements are provided at the data

link and network layers, and the third at the transport layer. The algorithm itself is therefore independent of

the implementation detail of interfacing to the underlying network.

4.2.6 Local Assumptions

These assumptions apply only in the development of the algorithm within this chapter; suitable implementa

tions are discussed in Chapter 5.

Stereo 3D Vision

It is assumed that a suitable set of 3D points are detected at each node. The algorithm is described without

regard for the details of acquisition, so in essence, it is assumed that each node has calibrated its cameras for

stereo vision reasonably and can perform repeatable interest point detection, correspondence, and triangula-

tion. Regardless of how it is accomplished, the calibration method expects a set of 3D points relative to the

node's local coordinate system to be available throughout its execution.

To implement this assumption in a practical case, 3D point sets can be manually supplied to the algo

rithm, allowing for control over the degrees of repeatability and error. This local assumption is removed by

examining and introducing specific algorithms for calibration, interest point detection, correspondence, and

triangulation in Sections 5.1 and 5.2.

Abstract Registration

It is assumed that the algorithm has access to suitable coarse and fine registration algorithms, as explored in

Section 4.3.2. The development of the calibration method is, of course, informed by knowledge of existing

registration algorithms, but prescription will be limited to general classes of algorithms for modularity. The

calibration method expects the coarse registration algorithm to take two point sets and some parameters as

input and return a relative pose and an error metric, and the fine registration algorithm to take two point sets,

an initial rotation estimate, and some parameters as input and return an accurate relative pose and an error

metric.

This local assumption is removed by examining and introducing specific algorithms for coarse and fine

registration in Section 5.3.

4.3 Problem Analysis

In this section, the fundamental operation of the calibration method is developed progressively based on the

requirements and assumptions, finally resulting in an outline for a general solution. The progression reflects

the thought process and research behind the theoretical development of the method.

CHAPTER 4. GENERAL SOLUTION 18

4.3.1 3D Visual Data Primitive

The most fundamental piece of three-dimensional visual data that can be obtained by a stereo camera node

is a point. A 3D point in the coordinate system of the observing node is a single piece of range image

data, triangulated from corresponding 2D points in the stereo image pair using known calibration parameters.

Thus, the point is the basic data primitive used by the calibration method. One of the local assumptions in

Section 4.2.6 ensures that a number of such points are detected at each node; the point set represents the

entirety of any node's visual observations for the purposes of developing the calibration method.

4.3.2 Two-Stage Registration

As discussed in Section 2.3, registration algorithms may be divided into two types: coarse registration meth

ods, which do not require an initial alignment estimate and produce relatively inaccurate results, and fine

registration methods, which require an initial alignment estimate and produce accurate results.

In this case, no alignment estimate is initially available for the nodes' point sets, yet accurate pose esti

mates are desired. The typical solution is a two-stage registration, where a coarse algorithm is used first to get

an alignment estimate, and then this estimate is supplied to a fine algorithm. Fundamentally, this approach is

applicable, but on closer inspection there is still a problem. Not only is there no intial alignment estimate, but

the nodes do not even know whether or how their point sets overlap with those of the other nodes. All regis

tration algorithms depend on some substantial degree of overlap between the two data sets, so some method

of determining what data sets to operate on is necessary; this is the feature matching process described in the

following section.

4.3.3 Feature Matching

In order to find coarse pose estimates between nodes with no knowledge of their point set overlap in a

distributed fashion, a pairwise feature matching process similar to that described in [2] can be employed.

Following from Section 4.3.2, a. feature, in this context, is a fixed-size subset of a node's 3D point set.

The goal is to find pairwise matches between nodes' features, and then use those matches to calculate

coarse relative pose estimates for the node pairs. The former part can be achieved by applying a coarse

registration algorithm on similar features and observing if the resulting error metric falls below a certain

threshold. Conveniently, the same algorithm also outputs a relative pose estimate, so the basis for the latter

part of the goal occurs simultaneously.

CHAPTER 4. GENERAL SOLUTION 19

Feature Selection

Periodically,1 a feature, or subset of fixed size / , is selected2 from the point set (illustrated in Figure 4.1),

and compared to similar features from other nodes. For now, the details of how they are brought together for

comparison are ignored.

Figure 4.1: Feature Selection (/ = 4)

Consider point sets from two nodes, A and B, from which, according to the coarse matching algorithm,

each node randomly selects a feature (non-repeating combination), resulting in FA C SA and FB C SB where

|^A| = \FB\ = / < \SA nSfl|. The performance of the matching scheme depends directly on the probability of

a match between FA and FB, P(FA =s FB), since as this probability decreases, it takes longer to find matches

and more bandwidth and storage must be used to transmit and store categorized features.

First, the individual probabilities that FA and FB will be within the set of shared points 5,4 DSB are found.

Let P(Q) = P(FA C SA DSB) and P(R) = P(FB C SA DSB), and let C(n,k) represent the binomial coefficient,

indicating the number of possible non-repeating combinations of size n chosen from k.

P(QnR) = P{Q)P(R)

c(\sAnsB\,f)2

C(|5A|,/)C(|5fl|,/)
(4.3)

'The delay between feature selections is determined by how quickly nodes are generally able to describe, propagate, and match
features. The delay should be as short as possible while avoiding network flooding and a backlog of features to be matched at the nodes.
Due to the complexity of modeling the various parameters that might have an effect on this, in the current implementation, it is optimized
by trial and error.

2Different selection methods are possible. One might select features randomly, as in [2], or precompute them and select them in
some meaningful order, as described in Section 4.4.2. Also, even with no a priori knowledge of the scene structure, the feature matching
scheme might benefit in performance from the application of some constraints on feature selection. A trade-off between matching
probability and overall convergence might be optimized in this way. Constraints on the geometric nature of possible features might
also allow for better performance in feature categorization (discussed later in this section). Feature selection constraints have not been
investigated in depth in this work.

CHAPTER 4. GENERAL SOLUTION 20

Assuming that conditions Q and R are satisfied (that is, all points in features FA and FB are shared in SA nSs),

for a given FA, only one combination FB will match it.

P(FA*FB\QnR) =
1

c(\sAnsB\j)
From Equations 4.3 and 4.4, P(FA « Fg) can be calculated.

(4.4)

P{FA^FB) = P(FA*FB\QnR)P{QnR)

1 c(|sAnss|,/)
2

[C(|^|,/)C(|5S|,/)J c(|sAnsB|,/)
c(\sAnsB\,f)

C(\SA\,f)C(\SB\,f)
\sAnsB\\f\(\SA\~f)\(\sB\-f)\

\sA\i\sB\\(\sAnsB\-f)\
(4.5)

By inspection, P(FA « FB) increases as the ratio of \SA C\SB\ to |ISA| and |iSs| increases, for a given / . It will

be seen in Section 5.2.1 that this ratio is the repeatability criterion of interest point detection. The number of

correspondences \SA C\SB\ and the repeatability score are controlled by the interest point detection algorithm

and its parameters.

The feature size parameter / , however, must be chosen directly, and there is no quantitative optimum

that works in all cases. Decreasing / increases the probability of false matches, which impacts convergence;

obviously, however, for unique 3D matching, there is a condition that / > 3. It may also result in less

accurate estimates for each match in coarse registration. On the other hand, increasing / has a negative

impact on matching performance and possibly on the later fine registration, as it drives up the minimum

required number of correspondences I^DSfil which means, as will be seen in Section 5.2, that \SA\ and \SB\

must be greatly increased, reducing matching performance directly as well as possibly reducing repeatability.

Increasing / may also impact convergence if the resultant \SA DSB\ requirement begins to exceed the actual

point set overlap of nodes that might otherwise have matches.

Feature Categorization

In the previous subsection, no details are given as to how features are brought together for comparison. This

is an important issue in terms of parallelization and scalability, as there is no central place where all features

can be compared.

The idea of feature categorization is borrowed from the data-centric storage literature, used with reference

to distributed smart camera networks in [1] and more specifically to their calibration in [2]. The goal is to

evenly distribute the processing and storage of the data in a distributed system based on some quantitative or

qualitative metric of the data itself. Since, for obvious reasons, it is desirable in this case to compare features

which are geometrically similar, the logical choice is some descriptor of the geometry of a feature invariant

to translation and rotation, called the geometric descriptor function (equivalent to the geometric hash in [2]).

CHAPTER 4. GENERAL SOLUTION 21

This metric is then hashed through a categorization function, which returns the address(es) of the destina

tion node(s) for the feature. In [2], the categorization function is a geographic hash used to store the feature

in a geographic hash table (GHT) [4], but as the authors state, this requires localization, which is part of what

the calibration method is attempting to determine to begin with. Their solution is to bootstrap ever-larger

GHTs by feature injection and merging; however, this results in a lower convergence rate, and introduces

categorization problems by making the hash table dynamic. To improve the convergence rate of this type

of scheme, one might consider starting with a network-wide GHT using a geographic routing method which

does not require localization, such as [5]. However, there are several reasons why this is not done here:

1. Geographic routing methods require specific network topologies and protocols, which violates the

abstract network generalization (Section 4.2.5).

2. There is no reason to believe that geographic hashing is the only data-centric storage method suitable

for distributing features for comparison.

3. Geographic hashing may, in fact, be ill-suited to feature categorization, as consistent hashing is difficult,

especially in a dynamic table.3

A better solution is to use a consistent and evenly-distributed data-centric storage technique which incorpo

rates the entire network from the beginning, one which does not require localization or any other information

the nodes do not initially possess. The abstract network assumption (Section 4.2.5) states that nodes are

aware of and able to route messages to all other nodes in the network. Since the features are to be distributed

based on their local geometric structure, in general, it is appropriate to divide the solution set of the geometric

descriptor function equally among the nodes in the network (with some overlap, depending on the measure

ment accuracy, so that similar features at boundaries are compared). If this is done in the same way at each

node, then geometrically similar features can be stored at the same node regardless of the source, satisfying

the objective.

Figure 4.2 shows how features are categorized. In this example, nodes A and C both detect the feature

represented by the square. They individually compute the geometric descriptor of this feature, and the results

are very close (ideally identical) because, of course, the hash function is operating on the same feature and is

invariant to translation and rotation. They both, therefore, send their individual features, as they view them,

to the same node; in this case, node B. Node C is shown detecting another feature as well, represented by the

triangle. This feature is substantially different in geometry, so the geometric descriptor falls in the range of a

different node, E, to which C sends this feature.

The geometric descriptor function must be deterministic, so that differing results from the same function

imply differing input features. It is not necessarily injective, so it may be possible for different input features

to generate the same result. Normally, it is desirable for hash functions to have the mixing property, meaning

that a small change in the input results in a large change in the result; this is unacceptable in this case. The

3 As explained in [2], an appropriate range would need to be selected for the GHT so that features are spread out evenly, and this
would likely require an irregular hashing function shape. Furthermore, with the tables constantly growing, features would frequently
need to be recategorized and forwarded to new nodes.

CHAPTER 4. GENERAL SOLUTION 22

" (

Figure 4.2: Feature Categorization

geometric descriptor is used to gauge similarity between features, so instead, it should be a smooth function,

and ideally a linear one, in the feature geometry.

Ideally, the difference between the descriptors of two features FA and Fg describes the degree of difference

d between those features (Equation 4.6):

d(FA,FB) = \g(FA)-g{FB)\ (4.6)

Based on the measurement accuracy of a node and the specific coarse registration algorithm used, there is

a similarity threshold tj, such that it is necessary to compare two features FA and Fg if d (FA, FB) < tj, and

unnecessary otherwise; this will be termed the similarity condition. When the geometric descriptor space is

divided among the nodes in the network, initially, there is no overlap at the boundaries. It is necessary to

extend the range of the categorization boundaries of each node exactly tj/2 in all directions, so that any two

features less than tj different will be categorized together on at least one node (and will thus be tested for

matching). Additionally, within a node, an incoming feature FA need only be tested for matching to a feature

FB if the similarity condition is met.

The remaining problem is to obtain a more or less even distribution of the features (and thus, the pro

cessing load) when the geometric descriptor space is divided initially. This depends on the nature of the

geometric descriptor. Since it is impossible for the nodes to know the actual solution set of the function, since

that would require it to have copies of all possible features from all nodes and therefore defeat the purpose

of categorization, an estimation of the feature density within the solution space of the descriptor function is

required. This cannot depend on the locally detected features in any way; otherwise, each node would cal

culate the distribution differently. Without knowledge of the particular deployment environment, a generally

acceptable distribution based on "average" feature geometry must be determined in advance, informed by the

interest point detector used, the size of the node's field of view, and any constraints on feature detection.

®

' " " - • • A -

CHAPTER 4. GENERAL SOLUTION 23

Match Reporting

When a feature is selected, categorized, and sent to the appropriate node for matching, it is represented in

the local coordinate basis of the originating node, and tagged with that node's unique identifier so that the

matching node knows which node detected it. The matching node then stores it in a local database, and

attempts coarse registration against other features in its database which satisfy the similarity condition.

When a match between two features is found, the match is reported to both of the originating nodes. The

report informs each node of the unique identifier of the node it matched features with, as well as the estimated

relative pose of that node, based on the results of coarse registration. These are then used for grouping, which

is covered in the following section.

To be more specific, coarse registration algorithms operate on a model point set and a data point set, and

output a pose estimate P of the data relative to the model. In this case the data is an incoming feature, and

the features stored in the matching node's database serve as successive models.4 When a match is found, the

originating node of the model is sent the pose P, which, if the match is not a false one, is an estimate of the

pose of the originating node of the data relative to the originating node of the model. The originating node of

the data, however, needs the inverse of this pose, so instead of P, it is sent P _ 1 as defined in Equation 3.9.

Coarse Pose Estimation

While it is desirable to use a relatively small value for the feature size / , this results in a substantial possibility

of false matches, especially in environments that contain similar objects which generate nearly identical

features. Furthermore, even with a true match, the coarse registration algorithm may be unable to guarantee

the degree of accuracy desired for a coarse pose estimate.

These problems can both be resolved by combining and averaging the results of several feature matches.

To ensure that no false matches are used, a match threshold tm > 3 is required as the minimum number of

pairwise feature matches (as received by one node of the pair) whose pose estimates are sufficiently similar,

with the entire set meeting the condition in Equation 4.7. To increase confidence in the result at a cost of

reduced convergence, tm may be increased.

QoCj^P, (4.7)

This can be enforced by means of a consistency threshold, tc, expressing the maximum Euclidean distance

between points mapped by the match poses. Since the average of the suitable poses needs to be calculated for

later use anyway, a simple implementation involves mapping a point - for generally good results, the centroid

of the node's point set, p$, can be used - through the average pose, then ensuring that each of the original

poses maps the same point to within tc of that mapping in the Euclidean distance, as follows:

\\Cm(Ms)-Cms{}is)\\<tc (4.8)

There is no readily apparent way to guarantee that all nodes which are potential candidates for pairwise pose

4This arrangement is purely by convention and could easily be reversed.

CHAPTER 4. GENERAL SOLUTION 24

refinement (fine registration) have a coarse pose estimate without exhaustively matching all features, which is

inefficient and probably infeasible. This critical issue is addressed by the coarse grouping scheme described

in the following section.

4.3.4 Coarse Grouping

The goal of feature matching is to bring all of the nodes in the network into (coarse) alignment with one

another. This does not necessarily require pairwise matches between all nodes: one node might obtain its

coarse pose with respect to another node either directly, or indirectly as a composition of mappings (according

to Equation 3.10) over a number of hops across nodes. This is the purpose of groups and the group coarse

pose (defined in Sections 3.2.1 and 3.2.2, respectively).

The benefit of grouping is that once nodes are within the same group, there is no longer any need to

perform feature matching and coarse pose estimation between those nodes. The entire network can therefore

be brought into alignment with one another by a process of merging groups. If the merging process is designed

such that the coarse pose estimates within a group are acceptably accurate for fine registration (discussed later

in this section), then any two nodes which, based on these estimates, share a significant portion of field of

view, regardless of whether they directly estimated their coarse pose relative to one another, can refine their

pairwise pose. Groups are therefore sufficient to ensure that all candidate pairs undergo pose refinement, with

no need for exhaustive feature matching.

Groups might conceivably be implemented in a number of different ways, but this calibration method

requires it to be distributed and homogeneous.

Group Merging and Leaders

In [2], nodes are initialized into a singleton GHT: a degenerate case containing only the one node. It is

sensible, in keeping with the homogeneity requirement and distributed paradigm, that all nodes begin in

singleton groups as well. Note that a singleton group is in fact a true group (though also a degenerate case)

according to the definition, since the node's pose relative to itself is simply the identity pose, as represented

by Equations 3.7 and 3.8.

When two singleton groups find an acceptable coarse pose estimate relative to one another based on fea

ture matching, they can merge into a single group containing both nodes, as they then collectively satisfy the

definition of a group. However, the details of how this is to be achieved are not readily apparent. Obviously,

the nodes need to agree on a method for exchanging the coarse pose information, but they must do so in a

distributed fashion. Further problems arise when one considers what happens when a third node enters the

group, based on a relative coarse pose estimate with one of the original nodes. A naive approach might in

volve each node storing pairwise estimates with respect to all other nodes in the group, but this is inefficient

in terms of scalability.

To resolve this, the concept of a group leader is introduced. The leader is simply a node within any given

group whose local coordinate basis serves as the basis for every other node's group coarse pose estimate. The

leader's own pose estimate, of course, is the identity pose. Group leaders also provide an elegant method for

CHAPTER 4. GENERAL SOLUTION 25

group nomenclature: the identifier of the leader doubles as the identifier of the entire group. This intrinsically

indicates which node in a group is its leader.

©
* V

® ©

4

©

Figure 4.3: Group Topology

Figure 4.3 shows the conceptual topology of two groups, GA and GF- The double-ended arrows represent

actual pairwise coarse pose estimates obtained via feature matching, and thus the path, or hops, by which each

node's coarse pose estimate relative to the group leader was originally computed. In reality, only the group

coarse pose estimate relative to the current leader need be stored (implementation concerns notwithstanding).

Note that although a node such as E might well share features with node C or even node A and thus could

obtain a more direct (and less erronous) group coarse pose estimate, once it is within group A, it will not do

so. As mentioned previously, this arrangement would seem to give rise to potential accuracy issues; these are

addressed later in this section.

Initially, the nodes in singleton groups are, by definition, the leaders of those groups. When two groups

merge, a new leader must be chosen from one of the two original group leaders,5 and the new leader's original

group essentially annexes the other group.

The merging process itself is simply a matter of bringing the pose estimates of the merging group's nodes

into the coordinate basis of the annexing group. Since any pair of nodes (one in each group) can initiate a

merge based on their discovery of a pairwise coarse pose estimate by feature matching, those nodes must

be capable of figuring out on their own how to carry out the merge. Each node is thus endowed with the

following information related to its current group:

• The identifier of its current group (and thus, its leader).

• Its coarse pose estimate relative to its group.

'Technically, any node in either of the original groups could become the new group's leader, by the same mechanism, since the nodes
could all determine their coarse pose relative to any such node. However, choosing one of the nodes already occupying the position is
vastly less complex in practice.

K

r G F

©

CHAPTER 4. GENERAL SOLUTION 26

• A list of other nodes in its group.

The merging process consists entirely of updating these three pieces of information, which can be done (for

the entire group) by the initiating nodes themselves. The annexing group simply updates its list of nodes to

include the nodes in the new group, while the merging group also updates to the new group identifier and

changes coarse pose estimates accordingly.

©
4fc
r 1

® ©
GA . %y

©

©

© ® G >

©v ©
A©

Figure 4.4: Group Merging

Figure 4.4 illustrates a typical group merge. NodeZ), of group GA, and node G, of group GF, find a relative

coarse pose estimate through feature matching, and initiate a merge. The nodes in group GA do not modify

their group coarse pose information. Node G's new group coarse pose estimate (C'c) is the composition of its

estimated pose relative to node D with node D's group coarse pose estimate:

C'G = CGDoCD (4.9)

The new group coarse pose estimates for the merging group's leader (node F) and any other nodes in the

merging group (in this case, node H) can similarly be calculated as compositions of known pose estimates:

^ = ^ 0 (^ 0 0 ,) (4.10)

C'H = CHo{CG-lo(CGD°CD)) (4. II)

A node will choose to employ Equation 4.9, 4.10, or 4.11 depending on whether it is the initiating node, the

group leader, or another node, respectively.

Since merging consists of composition operations, it is a transitive operation which can occur based on

matches (and the resultant relative coarse pose estimates) between any pair of nodes in different groups.

CHAPTER 4. GENERAL SOLUTION 27

Alignment Accuracy

Since coarse pose estimates are used exclusively as a precursor to the fine registration stage, these estimates

need only be accurate enough to provide an acceptable basis for the fine registration algorithm employed.

These are generally quite forgiving, able to perform well with initial relative rotations of up to 30°, and direct

coarse registration results with good data are generally well within this range [12]. The coarse registration

results are also likely to be especially accurate in this case, since the feature matching scheme ensures that

there are no outliers.

However, the error accumulated over multiple hops may easily push the initial estimate outside the fine

registration algorithm's acceptable range. It is improbable that two nodes observing enough of the same

points to initiate pairwise fine registration will have enough hops between them to accumulate this degree of

error, but that is by no means a guarantee. No provisions are made for this possible problem here, but it may

need to be considered in some situations, for example by enforcing a maximum path length for group coarse

pose estimates.

4.3.5 Pairwise Pose Refinement

Once a given pair of nodes belong to a group via the feature matching process, those nodes can use their

coarse relative pose estimate as a starting point for pose refinement. This is achieved by applying a fine

registration algorithm to a large number of points initialized into coarse alignment.

Limiting Fine Registration Points

In general, supplying a larger number of corresponding points supplied to the fine registration algorithm will

yield a more accurate fine pose estimate. A naive approach would simply have one node send its entire point

set to the other for fine registration; this would certainly maximize the total number of points (and therefore,

the total number of corresponding points), but extraneous points due to differing field of view would reduce

the correspondence ratio, or overlap, between the sets, negatively affecting the performance of registration.

Also, since such an approach is not initially informed by the coarse pose estimates, there is no inherent way to

decide whether nodes share any field of view at all, and thus many computationally intensive fine registrations

would be performed for no purpose.

It is therefore desirable to limit in advance the exchanged points to those which could possibly be found

within the shared field of view of both nodes. A simple and effective way to achieve this is to estimate the

field of view of each node as a cone extending along its local z-axis to a certain distance, determining the

intersection space of the cones as transformed by the coarse relative pose estimate, and selecting only those

points within the intersection space. This is depicted in two dimensions in Figure 4.5, where nodes A and B

would attempt pose refinement using only the indicated points, and node C would not attempt it with either

node A or node B at all.

Since only a coarse pose estimate is available, and also due to the effects of occlusion and instability in

interest point detection, any such solution is inherently rough, but at the very least a potentially large number

CHAPTER 4. GENERAL SOLUTION

....---©

Figure 4 .5 : The Field of View Cone

of pointless fine registrations can be avoided.

Pose Accuracy

Pose estimates returned by the fine registration algorithm should be rejected if the registration error exceeds

a certain threshold.

Indirect Pairwise Pose

The goal of the calibration algorithm is to provide a means for any pair of nodes in the network to determine,

with minimal computation, an accurate relative pose to one another. Clearly, in the general case, not all

nodes will share enough field of view or corresponding points to perform direct pairwise pose refinement.

One immediately obvious solution is to repeat the composition procedure used in merging groups; however,

although the potential accumulation of error was deemed acceptable for the purposes of the coarse stage

(discussed in Section 4.3.4), it is neither desirable nor unavoidable at the fine stage.

Rather than relying on compositions across an arbitrary number of hops as required by coarse grouping,

a pair of nodes attempting to determine their relative pose can now communicate directly to find the shortest

path along the existing pairwise fine pose estimates and thus obtain a composition with a minimum of error.6

A node A may find such an estimate PAB relative to a node B according to the following algorithm (suppose

FPA represents the set of fine pose estimates at node A):

1. If PAB e FPA, select PAB and end.

2. For each PAx 6 FPA, request FPx from node X. If PXB € FPx, select PAB = PAX°PXB and end.

3. For each PXy 6 FPx, request FPy from node Y. If/Vs GF/V, select PAB = PAX°PXY°PYB and end.
6It may be more accurate to explicitly store the actual fine registration error values with each fine pose estimate and scale the "length"

of each hop (path segment) by this value. For simplicity, in this work, it is assumed that fine pose estimates meeting the error criterion
are roughly equivalent, and thus each hop is considered to have unit length when determining the shortest path.

®--

CHAPTER 4. GENERAL SOLUTION 29

4. Continue until PAB has been found.

As indirect fine pose estimates are found (even intermediate ones that were not requested) they should be

added to FP, to avoid unnecessary repetition of network requests and computations. Depending on how

queries to the network are designed, these poses could be calculated on an as-needed basis, or a final step

could be added to the calibration algorithm to force each node to build FP to include every other node in

the network. In a large network, it might also be advantageous to intelligently order this process in order to

minimize communication and computation time.

4.3.6 Distributed Operation

For this algorithm to be truly applicable to distributed smart stereo camera networks, it must be capable of

operating without establishing network-wide synchronization. This paradigm also creates fundamental future

allowances for node failure, communication delays and outages, and dynamic calibration.

A scheme which lends itself particularly well to this problem is the asynchronous passing of messages

between processes. According to previous assumptions and requirements, the following three commonly-

used assumptions about message passing [57] are made here:

1. Transmission is made without any duplication of messages.

2. Transmission is made without any change to the messages.

3. The delay in delivering a message, though random, is finite (no loss of messages).

In keeping with the homogeneity requirement, it is desirable that the processes be textually symmetric at

the node level. However, it is clear from the two-stage split, described in Section 4.3.2, that the algorithm

involves at least two processes at each node, which are asymmetric. Therefore, a somewhat unconventional

distributed algorithm concept is employed, which can be observed on two levels. At the local level, a number

of asymmetric processes on a single node share local state information and other local resources, but are

otherwise fully in the global scope and interact directly with processes on other nodes. At the global level, a

number of nodes contain a textually symmetric set of processes, which do not share state information or any

other resources and communicate only through messages. It is important to note that interactions between

processes local to the same node operate on the global level; the processes simply happen to access and

update the same local state information.

The dissemination of features for coarse matching and the initiation of pairwise pose refinement can be

thought of as initiator processes similar to those described in [34], with additional processes only operating on

incoming messages; however, this is again replicated across all nodes, so like the aforementioned asymmetry,

the diffusing computations paradigm applies to the local structure at each node but not the algorithm as a

whole.

CHAPTER 4. GENERAL SOLUTION 30

Effect on Grouping

In the absence of network-wide synchronization, the coarse grouping procedure described in Section 4.3.4

becomes somewhat more complicated. Messages related to group merging and updates being received out

of order and from multiple sources would be impossible to reconcile at any individual node. To rectify this

problem, two mechanisms are established:

1. Only the current leader of a group has the authority to modify group parameters and composition.

2. Two group leaders must lock out all other changes and synchronize to each other for the duration of a

merge.

Non-leader nodes forward merging information up to their group leaders (even messages originally destined

for them when they were the group leader). Group leaders sort out the details and decide how to proceed,

often rejecting outdated requests. In turn, non-leader nodes act only on authoritative group updates from their

current leaders, sometimes deferring more recent updates pending completion of previous ones. Section 4.4.2

details how this is implemented.

4.4 Distributed Calibration Algorithm

The algorithm is split into ten different processes at each node; six for coarse grouping, and four for pairwise

pose refinement. These processes execute within the context of their respective nodes' data spaces. Each

process acts upon receipt of a message, with the exception of the feature selection process, which executes

periodically, and the pose refinement initiator process, which executes whenever the group composition is

updated. Termination of each process occurs based on various conditions (as not all processes necessarily

operate throughout the entire calibration), and calibration is complete at each node when all processes at that

node have terminated.

There are four parameters intrinsic to the algorithm itself, which have been described at length in Section

4.3: the feature size / , the similarity threshold td, the match threshold tm, and the consistency threshold

tc. Certain other implementation-specific parameters are also required, notably those for the coarse and fine

registration algorithms; in particular, tec and tef are referenced here as generic error thresholds for the coarse

and fine registration algorithms, respectively. All such parameters are, of course, expected to be symmetric

across all nodes, as part of their textual symmetry.

4.4.1 Initialization

Self Initialization

Initialize nodeid, the unique identifier (node ID) for this node, and set groupid (this node's current group) to

nodeid, putting this node in its own singleton group.

CHAPTER 4. GENERAL SOLUTION 31

Initialize two associative arrays, coarsepose and finepose, indexed by node ID. These arrays store the

coarse and fine pose estimates, respectively, relative to the node ID in the key.7 Set the nodeid (self) index

for both to the identity pose P/.

Initialize the merge lock, a simple node-local lock synchronization mechanism [57] which any process

can acquire and which blocks any subsequent process attempting to acquire it until the current process has

released it. Initialize the group update event, a flag which any process can set, check, or reset asynchronously.

Network Initialization

As per the abstract network assumption (Section 4.2.5), this node is assumed to have routing information

for all other nodes in the network. Initialize any data structures necessary to perform routing of messages.

Particularly, initialize a distribution of nodes for feature categorization in the geometric descriptor space, such

that a node ID is returned for any descriptor value (this shall be referred to as the binning function).

Point Set Initialization

As per the assumption of inherent stereo 3D vision in Section 4.2.6, this node is assumed to have the ability

to detect a reasonably repeatable set of interest points from the environment by stereo triangulation. Initialize

an array points to contain a set of 3-tuples representing the triangulated positions of the points within this

node's local coordinate system.

Process Initialization

Start all processes described in Sections 4.4.2 and 4.4.3.

4.4.2 Coarse Grouping

Feature Selection Process

Periodically, populate an array feature with / different elements from points, either randomly or according

to another selection model. Assign it a locally unique featureid, such as a sequential number. Compute the

geometric descriptor of feature (as descriptor), and select the destination matching node according to the

binning function. Send the output message to the feature matching process on the destination node.

• Output: nodeid, featureid, descriptor, feature

7One might expect that a node would only need to store its coarse pose estimate relative to its current group leader, since it may only
be a member of one group at a time, and thus conclude that storing estimates from previous groups is unnecessary. This is fundamentally
correct reasoning, but the asynchronicity of the processes which access the coarse pose estimate means that negotiations already in
progress but not completed when the cunrent estimate changes still rely on these previous estimates, and it is more efficient to store them
locally at each node than to embed them in messages.

CHAPTER 4. GENERAL SOLUTION 32

Feature Matching Process

• Input: sourceid, featureid, descriptor, feature

This process maintains an array matchdb which contains all previously received features.

Compare the incoming feature (as the data) to each feature stored in matchdb (as the model) to which it

meets the similarity condition (where the difference between their descriptor values is less than tj) through

the coarse registration algorithm. If the source node of the new feature is S and the source node of the

matching database feature is M, the pose returned will be PSM- For each case where the final registration

error e < tec, perform an unbiased, deterministic node selection8 between S and M. Send one of the following

messages to the winning node's match processing process depending on which node is selected:

• A message to S, where otherid is M and cpose is PSM-

• A message to M, where otherid is S and cpose is PMS = P$~M-

Finally, add the incoming feature (along with its source node ID, feature ID, and geometric descriptor) to

matchdb.

• Output: otherid, featureid, cpose

Match Processing Process

• Input: otherid, featureid, cpose

This thread maintains an associative array matches, indexed by node ID, each entry containing an array of

feature IDs and relative pose estimates returned by coarse matching between this node and the other node.

Ensure that otherid is not already in this node's group, that otherid is not marked as complete in matches,
and that matches:otherid does not already contain a match with this featureid. Add the featureid and cpose
to matches'.otherid.

If there are now at least tm matches to node otherid, for each unique combination of tm matches which

includes the incoming match:

1. Calculate the average pose transformation of the poses associated with the matches.

2. If \\Pm(pc) — Pavg{Pc)\\ < *c f°r every match with associated pose Pm:

(a) Send the output message to the group merge initiator process of the current group leader, where
cpose contains this node's current group coarse pose estimate and apose contains Pmg.

(b) Mark this node as complete in matches.
8This node selection function must be deterministic in the sense that it returns the same node when executed on a given pair of nodes

no matter which matching node is performing the selection, so that matches between that pair of nodes are always routed to the same
node in the pair, and should be as unbiased as possible so that some nodes do not tend to receive more matches for processing than
others.

CHAPTER 4. GENERAL SOLUTION 33

(c) Exit the loop.

3. Continue with the next unique combination.

• Output: nodeid, otherid, cpose, apose

Group Merge Initiator Process

t Input: sourceid, otherid, cpose, apose

While this node is the group leader, if sourceid is not in this node's group, attempt to acquire the merge lock.

If this node is no longer the current group leader9 and otherid is not already in this group, forward the

input message to the current group leader.

Otherwise, initiate a merge with otherid by sending a merge output message to its group merge responder

process, where group is an array containing all node IDs in this group and cpose is initialized to Pi.

• Output: nodeid, group, cpose

Wait for its acknowledgement message.

• Input: sourceid, otherid, opose

If the acknowledgement message is a preemption signal (see the group merge responder process description),

reinsert the pose input message into the queue and return to message processing. Otherwise, based on this

message, construct a group update message, where newgroupid is the sourceid in the message, ogroup
and opose are its returned group contents and relative pose change (see the group merge responder process

description) respectively, and cpose and apose are obtained from the original input message. Send this update

message to the group update process of each other member of this group. Update this node's coarse pose

estimate relative to sourceid (its new group leader) according to Equation 4.10. Release the merge lock and

set the group update event.

• Output: nodeid, newgroupid, ogroup, opose, cpose, apose

Once this node is no longer its group leader, forward all remaining messages destined for this process to the

current group leader.

Group Merge Responder Process

• Input: sourceid, ogroup, cpose
9Due to the asynchronicity of message passing in this scheme, the situation might easily arise where a node's match processing

process sends its output to the current group leader, and a subsequent merge changes the group leader before the message is actually
delivered or before this process successfully acquires the merge lock.

CHAPTER 4. GENERAL SOLUTION 34

While this node is the group leader, attempt to acquire the merge lock. If this process does not acquire the

lock for a certain random interval (within a specified range), assume that a merge deadlock has occurred and

send a special acknowledgement message to this node's group merge initiator process containing a signal that

this process wishes to preempt the other. Once the merge lock has been acquired, ensure that the initiating

source node is not in this node's group before proceeding.

If this node is no longer the current group leader, compose this node's current group coarse pose estimate

into the input message's cpose and forward the message to the current group leader.

Otherwise, acknowledge the merge with sourceid by sending an acknowledgement message to its group

merge initiator process, where cpose is repeated from the input message (note that any necessary changes in

this pose will have been incorporated by the pose compositions included in the leader forwarding).

• Output: nodeid, group, cpose

Construct a group update message, where ogroup is repeated from the input message and the three pose

entries (opose, cpose, and apose) are all set to />/. Send this update message to the group update process of

each other member of this group. Set the group update event.

• Output: nodeid, newgroupid, ogroup, opose, cpose, apose

Once this node is no longer its group leader, for all remaining messages destined for this process, compose

this node's current group coarse pose estimate into the message's cpose and forward the message to the

current group leader.

Group Update Process

• Input: sourceid, newgroupid, ogroup, opose, cpose, apose

Since group update messages may arrive out of order but cannot be processed this way, this process dif

fers from the others in that it waits specifically for a message from its current group leader. This ensures

consistency, as discussed in Section 4.3.6.

Set this node's groupid to newgroupid, update its coarse pose estimate according to Equation 4.11 using

opose, cpose, and apose, and append the nodes in ogroup to this node's group list.

4.4.3 Pairwise Pose Refinement

Pose Refinement Initiator Process

Wait for the group update event to be set. Reset the group update event. For each new node in the group,

perform an unbiased, deterministic node selection between it and this node. Send an initiation message to the

responder process of each node which wins the selection and for which this node does not already have an

entry in finepose, where cpose is this node's current group coarse pose estimate.

• Output: nodeid, groupid, cpose

CHAPTER 4. GENERAL SOLUTION 35

Pose Refinement Responder Process

• Input: sourceid, sgroupid, spose

If this node does not have an entry for sourceid in coarsepose, continue checking each time the group update

event is set until it does.

Compute a relative pose estimate between this node and the source node based on spose and this node's

coarse pose estimate relative to sgroupid. From this, determine a cone approximation of the source node's

field of view (see Figure 4.5) within this node's local coordinate system. Populate an array fpoints with all

points in points falling within this cone. If fpoints contains at least 3 points, respond to the source node's

registration process with the output message where cpose is this node's coarse pose estimate relative to

sgroupid.

• Output: nodeid, sgroupid, cpose, fpoints

Fine Registration Process

• Input: sourceid, sgroupid, spose, spoints

Similarly to the responder process, compute a relative pose estimate, determine a field of view cone, and

populate an array fpoints. If fpoints contains at least 3 points, attempt fine registration on spoints (as the

data) and fpoints (as the model). If the registration error e < tej, set this node's entry for sourceid in nnepose

to the result, and send the output message to the source node's update process, where rpose is the inverse of

the result.

• Output: nodeid, rpose

Pose Update Process

• Input: sourceid, rpose

Set this node's entry for sourceid in nnepose to rpose.

CHAPTER 4. GENERAL SOLUTION 36

• • g(V.) • i i i

Select Describe Categorize

Figure 4.6: Feature Selection Process

Figure 4.7: Feature Matching Process

Figure 4.8: Match Processing Process

CHAPTER 4. GENERAL SOLUTION 37

' Input
(Leader)/

/ V

J Merge
^ \ Lock

Initiate Merge and
Await Acknowledgment

v x Preempt? > — - J ° U , P U \
Y \ / N \ (Group)

Merge
Unlock

Update'
Set ,

Figure 4.9: Group Merge Initiator Process

' Input
(Leader) I

_ _ / Merge
~ ^ \ Lock

Preempt
Timer

Output
(Leader)

Output
(Group)

I 11 J Output
1 / ' H (Preempt)

Merge
Unlock

Update
Set ,

Figure 4.10: Group Merge Responder Process

Figure 4.11: Group Update Process

Update
Output
(Group)

Figure 4.12: Pose Refinement Initiator Process

CHAPTER 4. GENERAL SOLUTION

- .

/ Input /

/
/ *

/ /
W Points /

Figure 4.13: Pose Refinement Responder Process

Figure 4.14: Fine Registration Process

Input Fine Pose

Figure 4.15: Pose Update Process

Chapter 5

Implementation Details

5.1 Stereo 3D Vision

5.1.1 Calibration

Camera calibration (both of individual cameras and of stereo pairs) is generally a fastidious process. Many

stereo camera calibration methods attempt to reduce the complexity of the parameters or the level of interac

tion required to perform calibration, at the expense of precision. In most applications, the time and interaction

required for full calibration is impractical or impossible, so these methods provide a feasible alternative when

a large degree of imprecision can be tolerated. In the case of distributed smart stereo cameras, however,

precision is vital for proper matching and reconstruction across nodes.

The pre-deployment offline access assumption (Section 4.2.1) allows for stereo camera calibration, among

other things, to be performed in an offline setting with full control over the environment. Therefore, it is

desirable to employ a calibration method whose parameters will yield the highest possible precision when

performing 3D reconstruction (in this case, point triangulation), regardless of the time and interaction level

required to achieve it.

The Camera Calibration Toolbox for Matlab [64] implements these methods with an interactive interface.

This software is used to initially calibrate the physical camera nodes for the experiments in Chapter 6.

5.1.2 Correspondence

Assuming that suitable interest points can be detected in both images - which will be realized in Section

5.2 - in order to determine the 3D positions of the physical points, the image points must be brought into

correspondence with one another.

The zero-mean normalized cross-correlation (ZNCC) score is a measure of similarity for template match

ing, frequently used (among others) in computer vision for pixel correspondence. In this case, it is used to

compute the correlation between interest points in each image. Equation 5.1 is an expression for the ZNCC

39

CHAPTER 5. IMPLEMENTATION DETAILS 40

score between a window Lc of size ffxlC about an interest point in the left image and a window Rc of equal

size about one in the right image:

ZNCC = E7=i * t i [Rcfrfi-tiRc)} • [Lc(iJ) -v(Lc)} (5 1}

vfc£i Hi MJ) -KRc)}2 • Jz% tlx [Lc(ij)-n(Lc)}
2

Of immense benefit to the accuracy and speed of correspondence is the existing knowledge, from the calibra

tion in Section 5.1.1, of the camera pair's intrinsic and extrinsic parameters. This allows for the application

of the epipolar constraint [33] to correspondence. For each interest point in the left image for which a cor

respondence in the right image is sought, the right-image epipolar line can be calculated according to the

following procedure:

1. Normalize the pixel coordinates of the left-image interest point based on the left camera intrinsics.

2. Calculate the right-image epipolar line (in normalized image coordinates) for this point based on the

stereo extrinsics.

3. Transform the normalized epipolar line into right-image pixel coordinates based on the right camera

intrinsics.

Only right-image interest points falling within a certain distance of this epipolar line1 need be considered as

potential correspondences, greatly reducing the probability of false matches and the number of ZNCC score

computations required.

5.1.3 Point Triangulation

An algorithm for triangulating the position of a 3D point based on the normalized image coordinates of its

respective projections in a stereo image pair is described in [33]. It derives two expressions for estimating the

3D coordinates. Ideally, these are equal, but in practice, image noise and error in camera calibration cause

them to differ. In this case they are averaged to yield a more accurate estimate.

5.2 Interest Point Detection

The stable detection of interest points, reviewed in Section 2.2, is fundamental to this work. The effectiveness

of the method used determines how well the 3D point sets correspond across nodes with different viewpoints,

which has a huge impact on registration performance and thus the performance of the overall calibration

algorithm.

'Since the calibration procedure in Section 5.1.1 includes optical distortion, the epipolar line, when drawn in the right-image pixel
coordinate space, will in fact be a curve, generally speaking.

CHAPTER 5. IMPLEMENTATION DETAILS 41

5.2.1 Requirements

The requirements for interest point detection performance are imposed from three sources: the correspon

dence algorithm, the coarse matching scheme, and the fine registration algorithm. The requirements can be

described by two quantitative performance criteria of the interest point detector: the total number of one-to-

one correspondences between a pair of images or nodes, and the repeatability of the points detected. The

repeatability score for interest point detection between a given pair of images or nodes is quantitatively cal

culated as the ratio of the number of one-to-one correspondences to the (minimum) total number of detected

points [19]. These two criteria affect the performance of each of the three algorithms differently.

Correspondence

The correspondence algorithm of Section 5.1.2 primarily responds to repeatability. However, this only ap

plies to stereo images locally at each node. Since finding points for stereo correspondence is one of the

primary applications of interest point detection, most methods will perform suitably. The main challenges for

repeatability are changes in scale (focal length) and motion (point of view) between the two images, neither

of which are significant enough in small-baseline stereo to have a serious effect. Regardless, however, if the

interest point detector cannot provide a high repeatability rate between the stereo images at one node, it is

highly unlikely that the resultant triangulated points will exhibit satisfactory repeatability for the registration

stages.

Coarse Matching

The coarse matching scheme described in detail in Section 4.4.2 has a special performance requirement

dependent on both the number of correspondences and the repeatability score between two nodes attempting

to match features.

As explained in Section 4.3.3, the performance of the matching scheme depends on the probability of

matching two randomly selected features between two given nodes. In order to relate Equation 4.5 to the

performance criteria of the interest point detector, the criteria must be expressed in the terms used in that

section. Equations 5.2 and 5.3 describe the number of correspondences N and the repeatability score R,

respectively.

N=\SADSB\ (5.2)

» , Iftnftl
min(|^|, |5 s |)

 (J"

It is clear from Equation 4.5 that P(FA « FB) increases if |5a nSs | increases relative to j ^ | and \SB\\ this

translates into a desired increase in R.

Additionally, it is required that N be large enough to actually contain at least tm features, imposing the

constraint C(N,f) > tm. It should be mentioned that, as explained in Section 4.3.3, optimal performance

CHAPTER 5. IMPLEMENTATION DETAILS 42

is achieved with a minimum N satisfying this inequality, for a given / . However, in accordance with the

homogeneity requirement, all nodes must use the. same parameters for interest point detection, and there is

no a priori way to know N for a given pair of nodes, so the detector must yield a fairly large value of N to

ensure that the minimum requirement is satisfied in the vast majority of applicable pairwise cases.

Fine Registration

In Section 5.3.2, it is explained that this implementation uses the Trimmed Iterative Closest Point (TrICP)

algorithm [15] for fine registration. This registration method is applicable to point cloud overlaps under 50%.

As it will likely begin with a relatively good initial alignment from the coarse pose estimation result, but also

considering occlusion effects and error in field of view estimation, 50% shall be considered the minimum

repeatability criterion for good performance. Also, in general, the TrICP algorithm's performance increases

as N increases.

There are two qualifications to be noted here. The first is that, strictly speaking, the repeatability must

occur between the 3D point sets at each node, which does not necessarily translate directly into repeatability

between any particular pair of 2D images from those nodes. However, given the correspondence method

chosen in Section 5.1.2, it can be considered essentially identical to the repeatability in detecting points in

the nodes' respective left images. The second is that the repeatability need only be measured across images

with nearly identical scene contents (occlusion notwithstanding), as before fine registration takes place, only

the points falling in the estimated intersection of the nodes' fields of view are selected. The actual point of

view, however, may vary arbitrarily under the current set of assumptions.

Summary

Based on the individual requirements, the following criteria are applied to interest point detection:

C(NJ) > tm (5.4)

R>0.5 (5.5)

It should be stressed that Equation 5.5 is not an absolute requirement - the calibration algorithm may still

converge if it is not met. In any case, neither of these criteria can be directly applied to the selection of

an interest point detection algorithm. Rather, they are intended to simultaneously guide the selection of the

interest point algorithm, the imposition of deployment constraints, and the extent of scene control.

5.2.2 Algorithm

Ideally, an interest point detection algorithm would be chosen to meet the requirements in Equations 5.4 and

5.5 without imposing any deployment constraints beyond a connected vision graph and without requiring

any control over the scene. However, stable interest point detection across widely separated views in 3D is a

CHAPTER 5. IMPLEMENTATION DETAILS 43

difficult problem, and as the evaluation in [25] would suggest, none of the methods mentioned in Section 2.2

are satisfactory on their own to ensure convergence of the calibration algorithm.

For practical purposes, the FAST detector [22, 23] is selected for this implementation. Convergence can

be encouraged by constraining nodes to share large portions of their fields of view or by calibrating on a

scene with strong interest points. In order to meet the repeatability requirements with a manageable number

of points in a real-world scenario, it is likely that control over the scene during calibration is necessary

for convergence. An example is the use of objects with strong textural features in the automatic point set

experiments in Section 6.4.

Though this imposes severe limitations on the general applicability of this implementation, interest point

detection is still a very active research topic in computer vision, especially within the 3D context, and future

improvements in stability across widely separated views will undoubtedly improve the situation. While it is

impossible to ensure convergence regardless of the scene contents, it is desirable to generalize the system to

as broad a range as possible so that good results are obtained in most practical cases.

5.3 Registration

5.3.1 Coarse Registration

The size / of features used for matching in the coarse grouping stage of calibration is necessarily small

- likely too small to allow for anything but perfect overlap of the points. An excellent solution to this

registration problem is the fully-contained version of the DARCES algorithm [13], using three control points.

DARCES without the RANSAC component is a relatively simple algorithm, allowing it to perform matching

very quickly on a large number of features.

For this purpose, DARCES simply requires an error threshold tec, which dictates the maximum Euclidean

distance of each successive control point from its expected location as the points are found, and of the re

maining points from their expected locations.

5.3.2 Fine Registration

The concept of the Iterative Closest Point (ICP) algorithm [14] lends itself well to the fine registration problem

encountered in pairwise pose refinement, since it directly returns a pose estimate and the registration error.

However, the difficulty of stable interest point detection, occlusion effects, and uncertainty about the overlap

in field of view all contribute to poor overlap in the point sets used for pose refinement, and ICP's performance

degrades heavily when the point sets do not fully overlap. The Trimmed Iterative Closest Point (TrICP)

algorithm [15], used in this implementation, overcomes this limitation by operating on the best subset of

points, which can be automatically tuned to any degree of overlap, and is applicable to overlaps under 50%.

The TrICP algorithm requires an error threshold tef and a minimum change per iteration tr as stopping

conditions. Additionally, since in this case the overlap is variable, the t, parameter must be automatically

set using an objective function, which requires a weight parameter X. Finally, a separate maximum error

CHAPTER 5. IMPLEMENTATION DETAILS 44

threshold emax is required to decide whether to accept or reject the fine registration.

CHAPTER 6. EXPERIMENTS 46

6.1.2 Accuracy

Accuracy is the measure of the error in the algorithm's resulting pose estimates.

A method of evaluating accuracy has been developed for this work. Since the calibration algorithm is

based on the three-dimensional point as its data primitive, the mean error in a pose estimate can be determined

by averaging the Euclidean distance between a number of points with ground-truth correspondence, detected

and triangulated at the nodes separately from those used for calibration. Although error accumulates with the

path length (number of pose compositions) in the calibration graph, it is more relevant to consider the length

of the path in the vision graph,1 since the 3D reconstruction consistency among nodes observing the same

part of the scene is the likely criterion. The mean 1-hop error, then, is the average Euclidean distance between

the ground-truth point sets pairwise between all nodes with edges on the vision graph. The mean 2-hop error

considers pairwise paths up to two edges in length, and so forth until the entire vision graph is considered.

How relevant multi-hop accuracy is depends on the application.

6.1.3 Scalability

Scalability is the measure of the effect on the algorithm's performance of the number of nodes in the network.

The three primary resources to consider are node-local computing resources (i.e. CPU and memory), node-

local data storage, and network bandwidth. For a given network, the addition of a node will presumably

increase the consumption of each of these resources; it is desirable to minimize this increase.

In order to properly evaluate scalability, it is necessary to examine individual factors arising from the

algorithm itself. The most significant of these can be summarized in terms of the number of nodes n as

follows:

• Feature dissemination requires bandwidth resources in \N\ per node.

• Feature matching (coarse registration) requires computing and storage resources in |N|.

This assumes that the vision graph maintains an approximately constant number of pairwise edges regardless

of |yv|, as would be the case with most applications. In cases where this assumption does not hold, it is

necessary to add a third factor:

• Pairwise pose refinement computation (fine registration) requires computing resources in \N\.

Scalability in all three resources can be quantized experimentally in terms of the above factors. For node-local

computing resources, each of the registration operations (coarse and fine) is assigned a weight depending on

its relative computational requirements, and the total number of times these operations are executed at each

node is recorded. For node-local storage resources, the final size of the matching database, in number of
features, is recorded. For network-wide bandwidth resources, the outgoing bandwidth usage per second at

each node is recorded.

'As was mentioned in Section 3.3.3, the calibration graph structure approaches that of the vision graph. It is clear that maximizing
the number of edges, thus minimizing the number of hops between nodes with edges on the vision graph, is beneficial to the accuracy
metric.

CHAPTER 6. EXPERIMENTS 47

The actual effect of increasing resource consumption differs depending on which is most significant. The

convergence time of the calibration algorithm depends either on the total bandwidth usage as it relates to

network capacity, or on the total node-local processing as it relates to throughput on each node. The ability

of the calibration algorithm to complete at all may be affected by the storage use as it relates to the available

storage on each node.

6.2 Equipment and Software

6.2.1 Stereo Cameras

Four physical stereo camera rigs with adjustable mounts were constructed for experimentation (Figure 6.1.

Each consists of two Prosilica EC1350 1.4 megapixel digital CCD IEEE-1394 cameras with Computar

M3Z1228-MP manual focus lenses. The aluminum mounting frames allow adjustment and fixation of the

relative x-axis translation (baseline) and y-axis rotation between the cameras. After calibration, these rigs are

tested as having a mean triangulation error within their range of 2.58%, translating to approximately 0.5 to

2.0 millimetres depending on the distance in z.

Figure 6 .1 : Adjustable Stereo Camera Mount (Node)

All four rigs are connected via a National Instruments IEEE-1394 image acquisition controller to a single

Intel Pentium D (x86_64) PC. This is strictly for practical efficiency: no centralized processing of any kind is

performed, and the software is designed and tested to work with each rig connected to its own PC (effectively

forming a "node") communicating over a TCP/IP network; this PC, however, has enough resources to run

four nodes at once, with communication on local TCP/IP.

For the purposes of experiments using these camera rigs, the associated nodes are named Baureo, Lirr,

Mayestril and Sheerek, sometimes abbreviated as B, L, M and S, respectively.

CHAPTER 6. EXPERIMENTS 48

6.2.2 Distributed Calibration Software

The main distributed calibration algorithm is implemented as a single multi-threaded program for each node,

with a main initialization and message passing program overseeing the execution of ten other threads (one

for each process in Section 4.4). It reports verbose time-stamped status messages so that the progress of

calibration can be observed, and offers an interactive shell with various options for viewing and storing the

results once calibration is complete; these would, of course, be unnecessary and therefore disabled on real

embedded nodes.

The calibration software relies on external files as input for network information and the point sets for each

node. The network description file, in this case, is generated manually, as it represents the information that

would normally be obtained at a previous stage of routing initialization in an ad-hoc network. The point files

can be generated by the local point detection software, similar to the expected situation in a real distributed

smart stereo camera network with an embedded node architecture, or by other means for experimentation.

The distributed calibration software is implemented in Python [65]. See Section B.l for full annotated

source code.

6.2.3 Local Point Detection Software

Representing the initialization stage of calibration, the local point detection is actually implemented as a

separate piece of software from the rest of the calibration algorithm for the purposes of experimentation.

This division allows for manual control of the detection stage, examination and manipulation of its results,

and, in the case of the virtual point experiments described in Section 6.5, complete removal of vision-based

point detection.

The software presents an interface for entering and storing local stereo camera calibration parameters.

These are used to capture images, detect image interest points (either manually or using the FAST detector),

perform automatic correspondence on the points if necessary, and triangulate the 3D coordinates of the as

sociated points. The points are then saved to a file which can be taken as input by the distributed calibration

software. Figure 6.2 shows the graphical interface to the local point detection software.

turirgetKS •' "'• - ' ' ' - , ' - ' • , - • ' ' , •

NOlJfl I D [E*»»o , , ,„ , ... „ , Z T ™ T Sl«»aSonpthat 3«jofW» Op> Unk»d

Left Camera Parameters D , M ^ 1 Right Camera Parameters D , v l c , __
xamT" j jcam5"~

Fo«l Leitgft PwmapoJPuirK foeWW9*> Pfinetpai Point

Di*torton ; Onlomon

POTBTTO j o i i m '.KTOOJW foaiiasT [dbaboo j f-ois47i Jimi? ôoooT? "ESTOOZTT'̂ JO'OQOOO

Stereo Parameters

r(Bn*IMenV«c!at

f 171 I t m"\6 03 M«" '"""pi 918 94

RDtetianVsclor

|i"a0329 [b~0721S JOOOTSI

Figure 6.2: Local Point Detection Software GUI

Under automatic operation, once point detection is complete, the distributed calibration software de-

Point Detection

feinn

'<o >f"s'
Manual

Calibration Resources

CHAPTER 6. EXPERIMENTS 49

scribed in the previous section is launched externally for the node. In this way, the full calibration process

occurs completely automatically after a single button click in the GUI for each node, which is considered

functionally equivalent to signalling a self-contained embedded device to begin calibration by some other

means.

The software performs simultaneous dual image acquisition, interest point detection in each image, cor

respondence of the interest points between the images, and triangulation of the 3D coordinates of each point

in the camera coordinate system. Thus, it is able to directly produce the requisite 3D point set for a node.

Although this is designed to operate fully automatically, there are various options for user verification and

intervention. Notably, it is possible to override automatic interest point detection and correspondence with a

series of manual mouse clicks in each image.

The local point detection software is implemented in ANSI C, using the National Instruments LabWin-

dows/C VI development environment and vision libraries for image acquisition and manipulation. See Section

B.2 for full annotated source code.

6.3 Manual Point Set

In order to test the capabilities of the calibration algorithm and tune its parameters under controlled condi

tions, the first experiment series is designed to operate on manually selected points with full correspondences

across all four nodes. The primary purpose of this experiment type, once suitable parameters are found, is to

test the effects of different point set sizes and overlap characteristics on convergence and accuracy.

6.3.1 Apparatus

The four stereo camera rigs are mounted within the vision platform such that each has full view of the

experimental target. On each node, the local point detection software is run with manual point detection

enabled, and a predetermined ordered series of 100 points on the target is selected. Four sets of 100 3D

points are thus produced, with any given index in one node's point set corresponding to the same physical

point represented by that index in the other three nodes' point sets.

Point Set Size and Overlap

With a large controlled point set for each node, it is possible to extract a number of subsets of different

sizes and with different relative overlaps. In this experiment series, overlap is staggered to approximate

the situation where nodes share only part of their field of view. This has a dual effect. Obviously, it will

challenge the coarse grouping portion of the calibration algorithm proportionately to the overlap ratio. More

subtly, however, since in reality the nodes all mutually share their fields of view, they will share their whole

point sets for fine pairwise pose estimation, thus testing that portion's performance for the same overlap ratio.

CHAPTER 6. EXPERIMENTS 50

6.3.2 Procedure

A total of 22 point subsets are extracted from the data, and each is tested using the distributed calibration

software, with all four nodes running locally on the same workstation.2 This procedure is repeated twice for

each subset, and the average results for convergence time and mean error are calculated and recorded.

Subset Extraction

Point subsets Z?„,p, L„tP, M„,p and Sn>p, of size n and overlap ratio p, are extracted from the original point sets

B, L, M, and S according to the following algorithm (assuming zero-indexed sets):

1. Calculate the number of non-overlapping points e = n — np, and the total pool size P = n + 3e.

2. Iterate i from zero to the pool size P:

(a) Select a unique random integer value 0 < r < P.

(b) If i < n, add Br to Bn,p.

(c) If e < i < n + e, add Lr to L„iP.

(d) If 2e < i < n + 2e, add Mr to M„tP.

(e) Ifi>3e, add Sr to S„)P.

Point set sizes of 20, 30, 40 and 50 were extracted, with the largest pairwise overlap ranging between 50%

and 100% in increments of 10%. Note that the pool size required for overlaps of 50% and 60% with 50 points

is larger than 100, so these combinations are not tested.

Calibration Parameters

The matching parameters to the calibration algorithm are chosen as / = 4 and tm = 3. Based some testing of

the accuracy of the cameras and their stereo parameters, the other two main parameters are set as tj = 10.0

and tc = 5.0. The cone approximation of the field of view extends 3.0 metres from the focal point, at an angle

of TC/3 from the focal axis.

Again based on camera accuracy, some parameters are chosen for the registration algorithms. The coarse

error threshold is set as tec = 2.8. The fine error threshold is set as tef = 1.0, with aminimum change of

tr = 0.01 per iteration, an objective function weight X = 2.0 minimizing the error for £ in the range [0.4,1.0]

(see the automatic overlap setting procedure in [15]), and a final maximum mean squared registration error

ofem a t= 100.0.

Based on the network and processor capabilities of the host PC, feature dissemination is set to occur every

0.08 + 0.0001/ seconds, where i is the number of features sent from the node.
2AMD Athlon 64 3700+ (2.2 GHz), 1536MB RAM, running Gentoo Linux (kernel version 2.6.24) and Python 2.4.

CHAPTER 6. EXPERIMENTS 51

Convergence Time

The convergence time is recorded from the start of initialization to the completion of all threads. Note that

the convergence time is primarily valid as a relative measure of execution time; as is discussed in Section

B.l, the absolute performance of the algorithm could be greatly improved by reimplementation in a compiled

language executing locally on smart camera devices, a subject for future work.

Mean Error

The mean error is calculated between all pairs of nodes as described in Section 6.1.2. For each permutation

Nj,Nj of the node set N, the fine pose estimate Pji, which maps the points of Nj to the coordinate system of

N, is obtained (if it is available directly) or computed (if it is only available indirectly; see Section 4.3.5 for

details). The mean error is computed over all 100 original points by averaging the Euclidean distance of a

given point in the Nj set with the mapping Pp of the corresponding point in the Nj set.

6.3.3 Results

The average recorded results (convergence time and mean error) of the manual point set experiments are

shown in Table 6.1.

Table 6.1: Manual Point Set Experiment Results
Points (n)

20
20
20
20
20
20
30
30
30
30
30
30
40
40
40
40
40
40
50
50
50
50

Overlap (p)

50%
60%
70%
80%
90%
100%
50%
60%
70%
80%
90%
100%
50%
60%
70%
80%
90%
100%
70%
80%
90%
100%

Convergence Time (s)

262
49
54
27
33
18

371
209
114
74
48
38
911
441
276
117
128
79
271
248
177
230

Mean Error (mm)

2.6158
2.5652
2.2460
2.2841
2.1925
2.1299
2.1220
2.1438
2.0830
2.0474
2.0915
2.0582
2.0888
2.1262
2.0506
2.1257
2.0502
2.0141
2.1048
2.1025
1.9908
1.9989

CHAPTER 6. EXPERIMENTS 52

Convergence

All 22 point subsets converge in both runs. Figure 6.3 shows a clear trend: convergence time increases

exponentially as the point set size n increases or the overlap ratio p decreases. This is in accordance with the

theoretical probability of rinding matches, as treated in Section 4.3.3, where n = \A\ — \B\ and np = \AC\B\\

as n increases or p decreases, matches found via feature dissemination and coarse matching become more

scarce in relation to the number of features disseminated (and thus, the execution time and bandwidth).

Figure 6.3: Convergence Time Trends in n and p

Accuracy

The resultant fine pose estimates do not vary greatly in accuracy, as pairwise estimates with large registration

error are rejected and estimates for those pairs are instead calculated indirectly by composing intermediate

estimates (see Section 4.3.5). This shows that the algorithm is quite robust against arbitrarily low pairwise

overlap ratios even in nodes sharing large portions of their field of view, which is particularly important in

cases where parts of the scene are occluded.

The general trend is that accuracy improves slightly both with point set size and overlap ratio. There is

a more drastic drop in accuracy when the overlap size np, which is the number of points the fine registration

algorithm will ultimately optimize on, is very low (this can be seen here in the lowest overlap ratios for

n = 20).

Interpretation

Based on these results, it can be concluded that small, robust point sets are desired at each node. However,

the point set size must be large enough to provide good overlap (both in ratio and total size) with at least one

other node, so that fine pose estimation has a substantial number of points to work with and yields accurate

results. In this implementation, a point set size of 30 to 50 points appears reasonable, and it should be ensured

CHAPTER 6. EXPERIMENTS 53

Figure 6.4: Accuracy Trends in n and p

that the interest point detection is robust enough to overlap at least 50% within the shared field of view with

at least one other node for a given deployment.

6.4 Automatic Point Set

Having established some general criteria for reasonably timely convergence in the manual point set experi

ments, the next step is to test real automatic calibration of the network. The purpose of these experiments is

to test the convergence and accuracy performance of the algorithm in real conditions.

6.4.1 Apparatus

The four stereo camera rigs are mounted within the vision platform in a variety of configurations, all meeting

the requirement that the vision graph be connected.

Practical Considerations

Due to the limitations of interest point detection, the current implementation cannot reliably converge calibra

tion with only the shared view deployment constraint. To encourage nodes to detect point sets of reasonable

size meeting the criteria of Equations 5.4 and 5.5, for the purposes of this series of experiments, calibration

is performed on scenes with well-defined, non-ambiguous interest points. The lack of a large number of

extraneous or ambiguous points in the vision platform provides part of this, but the main factor is the use of

scene objects with strong textural features.

For the four automatic point set experiments conducted here, the camera rigs are placed such that their

vision graph is complete, and a conical calibration target with a number of black shapes on a white surface

CHAPTER 6. EXPERIMENTS 54

is placed within their shared field of view. The target has texture around its entire surface, and provides

occlusion.

6.4.2 Procedure

Four instances of the local point detection software, configured to execute the distributed calibration software

on completion, are run in automatic mode on the vision platform workstation. Convergence time and the final

calibration graph are recorded. A ground truth point set is manually selected for each camera rig, and the

mean error is calculated and recorded.

Calibration Parameters

Since the equipment configuration used in these experiments is the same as with the manual point set, the

calibration parameters used are identical (see Section 6.3.2).

Convergence Time

As with the manual point set experiments, the convergence time is recorded from the start of initialization to

the completion of all threads.

Mean Error

The mean error is calculated between all pairs of nodes for which pairwise pose estimates can be determined

as described in Section 6.1.2. A new target is placed in the scene, and the same 20 physical points are

manually selected and triangulated as the ground truth set. Then, as with the manual point set experiments,

the pairwise pose estimates are computed as necessary and the mean error is computed over these 20 points.

6.4.3 Results

The mean error, convergence time, and final calibration graphs for each of the four experiments are shown

here.

Experiment 1

See Figure 6.14 for the deployment used in this experiment, and Figure 6.15 for a visualization of the cali

bration results.

• Mean Error: 2.7666 mm

• Convergence Time: 159 s

CHAPTER 6. EXPERIMENTS 55

Figure 6.5: Calibration Graph for Automatic Experiment 1

Experiment 2

See Figure 6.16 for the deployment used in this experiment, and Figure 6.17 for a visualization of the cali

bration results.

• Mean Error: 3.0844 mm

• Convergence Time: 38 s

Figure 6.6: Calibration Graph for Automatic Experiment 2

Experiment 3

See Figure 6.18 for the deployment used in this experiment, and Figure 6.19 for a visualization of the cali

bration results. Note that calibration has not fully converged in this experiment, so the results apply only to

the three nodes comprising the main group.

• Mean Error: 2.7160 mm

• Convergence Time: 648 s

CHAPTER 6. EXPERIMENTS 56

Figure 6.7: Calibration Graph for Automatic Experiment 3

Experiment 4

See Figure 6.20 for the deployment used in this experiment, and Figure 6.21 for a visualization of the cali

bration results.

• Mean Error: 2.5813 mm

• Convergence Time: 240 s

Figure 6.8: Calibration Graph for Automatic Experiment 4

Interpretation

The algorithm is capable in most cases of converging given a reasonably obvious set of scene environment

points (in the form of the cone target). The mean errors obtained are not much higher than the base triangu-

lation error of the camera rigs themselves, which as previously mentioned is up to roughly 2.0 millimetres at

the ranges in question.

Experiment 3 provides an example of a case without full convergence; in this situation, the pose estimates

within the groups able to converge are still relevant and accurate for those nodes. The convergence time in

such cases is much higher because the coarse grouping stage will exhaustively try to bring nodes together,

but in the meantime the pose estimates within the calibrated groups are still available.

CHAPTER 6. EXPERIMENTS 57

6.5 Virtual Point Set

Since only four physical camera rigs are available, testing scalability to larger networks is impossible in an

automatic experiment and difficult to control using the manual methods. Instead, controlled virtual point sets

are supplied to the same calibration algorithm implementation to test the scalability metric.

6.5.1 Apparatus

Virtual point sets for a given number of nodes are automatically generated by a Python script using the

same geometrical libraries as the calibration implementation. First, a specified density of points are placed

randomly inside a cylindrical area. The points' positions are then captured within the field of view and

coordinate system of "virtual nodes," positioned at random angles and radial distances along the length of the

cylinder. Figure 6.9 shows a visualization of the concept with 5 nodes, where the central axis of the cylinder

is shown as a line and the virtual node viewpoints are represented as pyramids.

Because these points are free of detection error and occlusions, and because the field of view estimate

is inherently perfect, this method has the added advantage of removing other sources of variability from the

experiments.

Figure 6.9: Virtual Point Set Generation

6.5.2 Procedure

Point sets are generated for 5,10, 15, 20, and 25 nodes. The total outgoing bandwidth in kilobytes, final size

of the matching database in features, and total number of coarse and fine registration executions are recorded.

6.5.3 Results

The recorded results of the virtual point set experiments, with node average and node maximum for each

measured value, are shown in Table 6.2.

CHAPTER 6. EXPERIMENTS

Table 6.2: Virtual Point Set Experiment Results
odes

5
10
15
20
25

Total Bandwidth (KB)

26.67/29.19
64.57/79.53

176.40/239.14
216.08/290.48
280.41/417.14

Features Stored
29.80 / 37
93.10/111
223.33 / 327
310.10/440
369.96/581

Coarse Reg.

201.60/446
1555.80/5461

14022.13/29557
24250.60/57736
35347.44 / 72757

Fine Reg.

1.40/2
1.70/3
1.80/3
1.65/3
1.92/3

Bandwidth Usage

As expected, total bandwidth usage per node increases approximately linearly in relation to the number of

nodes in the network (Figure 6.10).

5 10 15 20 25

Nodes

Figure 6.10: Bandwidth Usage in |N| (Average and Maximum)

This affects different networks in different ways. In a network where the physical medium is shared by all

nodes - the worst-case scenario - the total network bandwidth usage is the relevant factor. In that case,

the bandwidth usage increases non-linearly: based on these experiments, at roughly \N\2-6. However, many

networks and topologies are more efficient and therefore able to mitigate this effect. The aforementioned

shared-medium case can be considered a ceiling on the increase, while in an ideal case where each pair of

nodes has an unshared pairwise link, the per-node bandwidth usage (as in Table 6.2 and Figure 6.10) can be

considered a floor.

Node-Local Storage

The number of features stored at each node increases approximately linearly in relation to the number of

nodes (Figure 6.11). Features are very small data (a series of / 3-tuples, an identifier, and a geometric

descriptor value), but when scaling to extremely large networks it must be ensured that adequate storage is

provided at each node for these features.

CHAPTER 6. EXPERIMENTS 59

Figure 6.11: Node-Local Storage in |N| (Average and Maximum)

Node-Local Processing

The number of coarse registration operations performed at each node increases approximately linearly in

relation to the number of nodes (Figure 6.12); as expected, this is proportional to the number of features

stored. If processing throughput is the limiting factor, this increase will cause the convergence time to increase

linearly with the number of nodes.

•-Coarse A
*-Coar» M

Figure 6.12: Coarse Registration Processing in |N| (Average and Maximum)

Since this network does not significantly increase the number of nodes whose fields of view overlap as its
total number of nodes increases, the number of fine registrations per node does not increase (Figure 6.13).
Thus, although fine registration can be considerably more computationally intensive than coarse registration,
it does not contribute to increased convergence time.

CHAPTER 6. EXPERIMENTS 60

Interpretation

Figure 6.13: Fine Registration Processing in |N| (Average and Maximum)

Generally, these results show that the calibration algorithm scales well computationally, with the number of

coarse registration operations increasing at no more than 0(n) in the number of nodes. Similarly, the storage

requirements are 0(n) in the number of nodes. Depending on the network specifics, the algorithm may

approach linear scalability in bandwidth usage as well, and increases at no more than approximately 0(n26)

in the number of nodes in the shared-medium case.

The actual absolute requirements are low enough that, with modern processing, storage, and networking

technologies, the algorithm should scale well into the hundreds or thousands of nodes.

CHAPTER 6. EXPERIMENTS

Figure 6.14: Camera Deployment for Automatic Experiment 1

B L

M

Figure 6.15: Pose Visualization for Automatic Experiment 1

CHAPTER 6. EXPERIMENTS 62

Figure 6.16: Camera Deployment for Automatic Experiment 2

^ r B
M

L

Figure 6.17: Pose Visualization for Automatic Experiment 2

CHAPTER 6. EXPERIMENTS

Figure 6.18: Camera Deployment for Automatic Experiment 3

B» B

•
M

L

Figure 6.19: Pose Visualization for Automatic Experiment 3

CHAPTER 6. EXPERIMENTS 64

Figure 6.20: Camera Deployment for Automatic Experiment 4

M
B

L

Figure 6.21: Pose Visualization for Automatic Experiment 4

Chapter 7

Conclusions

7.1 Overview

A feature-based calibration method for distributed smart stereo camera networks has been developed which

converges well, provides accurate pairwise orientation, and scales well to large networks. This provides

a base upon which to build a full 3D visual sensor network providing primitive data-centric queries, upon

which in turn a variety of high-level applications can be developed.

Currently, the algorithm makes it possible for smart stereo camera devices to self-localize and self-orient

relative to one another in a distributed fashion, allowing for various subsequent stages of realization for a

variety of applications. The immediate opportunity is to provide a generalized framework for building these

solutions, which would rest on the underlying assumption that the network is accurately calibrated and can

perform 3D reconstruction across multiple views. The preliminary conceptualization is discussed in Section

7.4.5.

The major implementation drawback is the instability of interest point detection in the general case; at

present, it is necessary to control the scene somewhat by adding one or more calibration targets for conver

gence to occur reliably. Improving this situation is an important avenue for future work, and is elaborated

upon in Section 7.4.2. Another limitation of the current implementation is its slow performance, often on the

order of minutes. This arises from network constraints and the fact that the implementation uses an inter

preted language, both of which could be improved on a more specific embedded system, addressed in Section

7.4.1.

7.2 Comparison with Existing Work

Since distributed smart stereo cameras are a new concept within a new field, very little exploration has been

done as yet in the literature. The major source for this concept to date is the recent work described in [1], and

the only other directly comparable calibration algorithm is found in the related work, the Lighthouse method,

65

CHAPTER 7. CONCLUSIONS 66

in [2]. With this in mind, this calibration algorithm is compared first qualitatively with some of the existing

methods for single-camera nodes before moving on to a more quantitative comparison with Lighthouse.

7.2.1 Single-Camera Node Methods

The advantages of stereo camera networks are discussed in Chapter 1, but counting this as an implicit advan

tage, it is still beneficial to consider how this calibration algorithm compares to single-camera methods on

other fronts.

While the method in [6] appears to work quite well for networks consisting of single-camera nodes, its

major drawback is that it currently requires a priori knowledge of the vision graph. The authors state that they

plan to automatically generate this via invariant feature matching, but it can be seen from the coarse grouping

portion of the calibration algorithm in this work that this is no trivial matter even with robust 3D point sets,

let alone with only 2D images. The DALT algorithm in [7] similarly requires knowledge of matching feature

points to build microclusters (similar to the vision graph concept), with no explicit robust method for actually

doing so. Using robust 3D feature matching and the distributed grouping scheme, this calibration algorithm

is able to reliably approximate this information without any a priori information.

Methods such as that in [8] rely on the motion of objects through the fields of view of the nodes in order

to estimate poses. This limits its applicability to situations where such motion would actually exist, such

as in surveillance. Also, the results are not particularly accurate, although they could perhaps be used to

initialize one of the previous algorithms [6, 7]. This calibration algorithm makes less assumptions about

the contents of the scene, however, and provides highly accurate pairwise pose estimates without requiring

external refinement.

The methods of [9] and [10] are fairly robust, but both require the use of markers or beacons in the

environment. One of the major strengths of this calibration algorithm is that it does not implicitly depend on

any particular scene contents; as long as the scene and the interest point detector combine to provide a good

set of points, calibration is possible. The cumbersome or infeasible process of controlling the contents of the

scene can be completely avoided in many real cases.

7.2.2 Lighthouse

The most similar approach to the one taken in this work, and the only other distributed smart camera network

calibration technique using true 3D features published to date, is the Lighthouse method in [2]. This method

performs distributed feature matching in a similar way, but its grouping method uses GHTs, which require

localization information to function and are ill-suited to feature matching distribution even when methods not

requiring localization are used. The method assumes the existence of robust feature detection and geometric

hashing; as is seen in this work, this is not a trivial process, and it is necessary that the design of algorithms

using these features be coupled with knowledge of methods for feature detection and description.

As a result, it is difficult to compare evaluations of convergence quantitatively. The Lighthouse method

appears to assume what would be considered here an unrealistically high degree of feature overlap and an

unrealistically low total number of features per node. It is compared to a "flooding" scheme, essentially

CHAPTER 7. CONCLUSIONS 67

equivalent to centralized aggregation and matching of features, and approximates it in terms of convergence.

However, the method appears unable to merge the entire network into a single group in any tested case,

which is qualitatively poor convergence. By contrast, given more features with less overlap, this calibration

algorithm easily converges into a single group.

Accuracy is not evaluated in the Lighthouse method, as the pairwise pose refinement step is considered

external. Since similar feature matching methods are used, the accuracy of Lighthouse's results should be

comparable to those of the coarse pose estimates in this algorithm, although no data is provided about this

either. Consequently, given its internal pairwise pose refinement step, this algorithm is considered to provide

superior calibration accuracy.

Evaluated in the context of certain wireless sensor network protocols, notably the geographic routing

methods used with GHTs, Lighthouse exhibits good scalability in terms of bandwidth usage. The feature dis

tribution in this method is similar to GHT insertion, and thus would benefit similarly from appropriate routing

methods, offering equivalent scalability. Node-local processing and storage requirements in the network sie

are not evaluated directly, but again, since the feature matching process is similar, the scalability should be

comparable.

7.3 Summary of Contributions

The primary contribution of this work is a scalable, general-purpose distributed spatial calibration method

and algorithm for smart stereo camera networks. This is the most complex and important building block of a

true 3D sensing network.

In conjunction with the development of this method, algorithms for interest point detection and registra

tion have been surveyed, providing a truly practical implementation and also exposing areas of improvement

in these problems.

Another important contribution is an examination of the significance of and relationships between the

communication graph, vision graph, and calibration graph. Visual sensor networks differ fundamentally

from other networks, and these graphs provide a theoretical basis for modelling them.

7.4 Future Work

7.4.1 Embedded Implementation

Currently, the practical applications of this work are limited without a concrete underlying platform. Now that

the fundamental requirements are established, a next step towards practicality is the design and implemen

tation of a physical embedded smart stereo camera device capable of providing the underlying networking

system in an ad-hoc manner and of executing distributed collaborative algorithms such as this calibration

method.

CHAPTER 7. CONCLUSIONS 68

7.4.2 Improved Feature Reliability

The challenge in using 3D feature-based methods for calibration and other components of a distributed smart

stereo camera network's sensing system is the inherent difficulty of obtaining reliable feature data from 2D

images of the scene. Here, standard image-based detection and correspondence methods have been used,

which is cited as the most prominent drawback in the calibration algorithm. There are, fortunately, many

possibilities for improving this situation.

The analysis of existing image-based interest point detection algorithms in [25] has shown that none are

fully adequate for 3D transformations, with the best of them invariant only to affine changes. However, these

limitations are primarily imposed by the fact that the algorithms are provided only a single image as input.

With stereo cameras, new algorithms could avail themselves of the much richer information and provide

far more robust interest point detection relevant to a 3D context. Some work has been done attempting to

use stereo information to enhance the relevancy and distribution of interest points in [26, 27], using epipolar

gradients - information not available in single images - to enhance basic Harris-based corner detection. More

directly, some investigation into developing a 3D rigid interest point detector from stereo images has been

presented in [63].

With the availability of interest point descriptors arising directly from the detector, the feature matching

portion of calibration could be greatly improved as well, taking advantage of more than just the coordinates

of the interest points in categorizing and matching features.

7.4.3 Tiered Calibration for Large Networks

At certain large network sizes, the increased convergence time or storage requirements of the algorithm be

come infeasible. It may thus be desirable to divide the network into a series of subgroups which are known to

be at least somewhat contiguous in terms of the portion of the total network coverage they represent, perform

calibration within these subgroups, and then perform a second calibration for the full network with the cali

brated subgroups initialized as groups (using their fine pose estimates to initialize the coarse pose estimates).

This might be cascaded an arbitrary number of times, thus providing essentially unlimited scalability.

Such an adaptation would be possible using the existing calibration algorithm essentially unmodified,

requiring only a simple higher-level mechanism to initialize and coordinate the successive calibrations, and

an assumption that the deployment locations and orientations of the nodes are known to some degree.

7.4.4 Dynamic Calibration

It is desirable for a calibration algorithm for distributed smart stereo camera networks to adapt to changes

in node presence and pose. Such adaptation should be automatic, both for small changes in node pose (e.g.

panning or drift) and for large changes in the network (e.g. adding, removing, or relocating nodes).

Dynamic calibration is currently achievable only in a "manual" way; if, after a network is calibrated,

nodes are added to or removed from the network, or change position or orientation, the calibration algorithm

can be reinitialized with all the group structure and pose estimates which are still valid from the previous cal-

CHAPTER 7. CONCLUSIONS 69

ibration. However, no mechanism has been discussed for how to detect such changes or how to automatically

reinitialize the network. Such a mechanism is a candidate for future work directly applicable to this method.

True dynamic calibration, where the nodes constantly adjust their relative pose estimates based on new

information in real time, is the ultimate goal. It is conceivable that a second calibration algorithm could take

over upkeep for relatively small pose adjustments after the primary calibration is complete, so the aforemen

tioned reinitialization would be necessary only for large adjustments or changes in the network composition.

7.4.5 Basis for a 3D Sensing Network

In order to realize the ultimate goal of providing a framework upon which various distributed smart stereo

camera network applications can be built, the basic services must be expanded beyond spatial calibration

alone. Providing temporal synchronization and a basic space-time query system, as proposed in [1], is the

greater context of this work.

Appendix A

Glossary of Terms

coarse registration
See registration.

DARCES

Data-Aligned Rigidity-Constrained Exhaustive Search, a method for fully-contained coarse registration [13]

used in feature matching. Traditionally used with RANSAC for registration of partially overlapping data sets.

feature
A subset of small fixed size selected from the point set for feature matching.

fine registration

See registration.

group
A group of nodes agreeing on a common leader node within the group. See also group leader, group coarse

pose.

group coarse pose
The coarse pose estimate of a node relative to the leader of its current group. See also group leader.

group leader
A node which provides a common coordinate reference for group coarse pose estimates. Also, the node

within a group responsible for performing group merge operations.

group merge
A transitive operation involving the composition of coarse pose estimates which brings two groups together

70

APPENDIX A. GLOSSARY OF TERMS 71

into a single group.

ICP

Iterative Closest Point, a method for fine registration [14]. See also TrICP.

interest point detection

The process of detecting salient features, such as corners, in 2D images. A variety of methods exist.

leader

See group leader.

match
Two features are said to match when they are geometrically similar to within some threshold. May also refer

to the resultant transformation (pose) returned by coarse registration upon detecting a match. Defined in Sec

tion 3.2.3.

merge
See group merge.

node
A smart stereo camera device in the network.

point set

The set of all 3D points locally detected (via interest point detection) and triangulated at a node.

pose

A rigid Euclidean transformation describing an object's location and orientation.

RANSAC

Random Sample Consensus, an iterative method to estimate parameters of a mathematical model from a set

of observed data which contains outliers.

registration
The process of transforming two or more visually acquired data sets into a common coordinate system. A
variety of methods exist, generally divided into coarse registration and fine registration algorithms.

relative pose
The rigid Euclidean transformation from the local coordinate system of one node to that of another node. See

also pose.

APPENDIX A. GLOSSARY OF TERMS 72

repeatability

A metric by which interest point detection algorithms are evaluated, which describes their stability in detect

ing points under varying conditions and from various viewpoints.

rotation matrix

A n x n real orthogonal matrix corresponding to a geometric rotation about a fixed origin in n-dimensional

Euclidean space.

similarity condition

A condition specifying that two features must be sufficiently similar in order to attempt coarse registration

for the purpose of feature matching. Defined in Section 4.3.3.

translation vector

A n-element vector corresponding to a geometric translation in n-dimensional Euclidean space.

TrICP
Trimmed Iterative Closest Point, a method for fine registration of partially overlapping data sets [15] based

on/CF.

Appendix B

Software Source Code

B.l Distributed Calibration (Python)

The distributed calibration software is written in the Python programming language [65], and uses the NumPy

numeric library [66] for some of the linear algebra computations. It is split into three parts: node.py, which

runs the multi-threaded core distributed calibration algorithm; geometry.py, which provides classes for geo

metrical mappings; and registration.py, which performs the coarse and fine registration algorithms.

B.l.l Node Program

node.py

"""Distributed Smart Stereo Network Calibration Algorithm"""

author = 'Aaron Mavrinac'

version = '1.0'

import time

import sys

import csv

import math

import numpy

import pickle

import random

import socket

import threading

import geometry

import registration

73

APPENDIX B. SOFTWARE SOURCE CODE 74

ttft##t###t#tt#«#t####tff##ff#f#t*#f##f'fftfftt#ttttf*t##ftttt#f#fftft*«#«#t#*ff

CONSTANTS

tt**ttf##ft#t«#t#t«t#»#tftt#t*t#t«t#t*#«#ft#f*#«##tt#t«#t««tt#t##fttttt#tt####t

NODE_CONE_ANGLE = (1 . 0 / 3 . 0) * math.pi

NODE_CONE_LENGTH = 3000.0

NODE_FEATURE_SIZE = 4

NODE_FEATURE_DELAY =0.08

NODE_DIFF_THRESH =10.0

NODE_MERGE_THRESH = 3

NODE_CONSIST_THRESH =5.0

COARSE_THRESH = 2.8

FINE_TE =1.0

FINE_TR =0.01

FINE_LAMBDA =2.0

FINE_EMAX = 100.0

GENERAL FUNCTIONS

timestamp printing function

timestamp = lambda : time.strftime("[%H:%M:%S]")

factorial function

fac = lambda n : [1, 0][n > 0] or fac(n - 1) * n

dictionary length function

dictlen = lambda x : sum(map(lambda k : len(x[k]), x.keysf)))

unbiased deterministic node selector

def nodeselect(a, b):

mod = (net.idsubscript (b) - net.idsubscript(a)) % 2

if (mod and b > a) or (not mod and b < a):

return True

else:

return False

APPENDIX B. SOFTWARE SOURCE CODE 75

unique combination generator

def uniquecombinations(items, n) :

if n == 0:

yield []

e lse:

for i in xrange(len(items)) :

for cc in uniquecombinations! items[i + 1:] , n - 1) :

yield [items[i]] + cc

network class

class network! list):

def init (self) :

self.outaccount = {}

list. init (self)

def idsubscript (self, node):

"""Returns the subscript for a node given its node ID"""

for i in range(len (self)):

if self[i][0] == node:

return i

def send(self, node, msg):

"""Sends a pickled message to another node"""

outmsg = pickle.dumps(msg)

client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

try:

client.connect (self.hostport(node))

client.send(outmsg)

client.close ()

bandwidth accounting

t = int(time.time())

if self.outaccount,has_key(t):

self.outaccount[t] += len(outmsg)

else:

self.outaccount [t] = len(outmsg)

except:

print timestamp (), "Failed to send", msg[0], "message to [", node, "] . "

def hostport(self, node):

"""Returns the hostname and port number for a node"""

i = self.idsubscript(node)

APPENDIX B. SOFTWARE SOURCE CODE 76

return (self[i][1], self[i][2])

t COARSE PROCESS 1: Feature Selection

class coarse_feature_thread(threading.Thread):

def run(self):

generate the feature list

rfeatures = []

for c in uniquecombinations(range (len(globals()['points'J)), \

globalsO ['NODE_FEATURE_SIZE']) :

cfeat = []

for r in c:

cfeat.append(globals()['points'][r])

rfeatures.append([c, self.geometric_hash(cfeat)])

rfeatures.sort (lambda x, y : cmp(x[1], y[1]))

pre-bin all features

features = {}

for node in globals ()['net'] :

features! node[0]] = []

for rf in rfeatures:

if rf[1] > node[4]:

break

if rf[1] > node[3]:

features! node[0]].append(rf)

del rfeatures

wait for other nodes to come online

print timestampO, "Waiting for other nodes..."

waitlist = network()

for node in globals () ['net'] :

if node[0] != globals()['nodeid']:

waitlist.append(node)

while(len(waitlist)):

for node in waitlist:

ping = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

try:

ping.connect (waitlist.hostport(node[0]))

APPENDIX B. SOFTWARE SOURCE CODE

ping.send(pickle.dumps(['ping']))

ping.closet)

del waitlist[waitlist.idsubscript(node[0])]

except:

time.sleep(1.0)

periodically send out features

print timestampf), "Starting coarse feature dissemination."

i = 0

while len (globals ()['group']) < len (globals () ['net']) \

and dictlen(features) > 0:

for node in features.keys ():

if len(features [node]) > 0:

feature = ['cfeature', globals() t'nodeid'], i]

rf = features[node].pop(0)

feature.append(rf[1])

for r in rf[0]:

feature.append! globals()['points'][r])

globals()['net'].send(node, feature)

i += 1

time.sleep(globals()['NODE_FEATURE_DELAY'] + 0.0001 * i)

else:

del features[node]

feature = ['cfeature']

for node in globals () ['net'] :

globals()['net'].send(node[0], feature)

print timestampO, "Stopping coarse feature dissemination process."

globals () ['net'] .send(globals () ['nodeid'], ['die'])

def geometric_hash(self, feature):

"""Simple geometric descriptor (total Euclidean distance to centroid)

centroid = geometry.point (0, 0, 0)

gdesc =0.0

for p in feature:

centroid += p

centroid /= float(len(feature))

for p in feature:

gdesc += abs(centroid.euclidean(p))

return gdesc

APPENDIX B. SOFTWARE SOURCE CODE

COARSE PROCESS 2: Feature Matching

class coarse_matching_thread(threading.Thread) :

def run(self):

dc = 0

matchdb = []

while len(globals()['group']) < len(globals () ['net']) \

and dc < len(globals()['net']):

grab next message in the queue

globals()['cvqueue']['cfeature'].acquire()

while len(globals () ['msgqueue']['cfeature']) == 0:

globals()['cvqueue']['cfeature'].wait()

feature = globals()['msgqueue']['cfeature'].pop(0)

globals()['cvqueue']['cfeature'].released

if len(feature) — 1:

dc += 1

continue

process feature matching

for fext in matchdb:

if abs(feature[3] - fext[2]) <= globals()['NODE_DIFF_THRESH'] \

and not feature! 1] == fext[0] \

and not (feature[1] in globals()['group'] \

and fext [0] in globals()['group']):

rpose = registration.coarse_registration(fext[3:], \

feature! 4:], globals()['COARSEJTHRESH'])

globals()[' acc_coarse'] += 1

if rpose.nonzero ():

print timestampO, "Matched features between node [", \

feature! 1], "] and node [", fext[0], "] . "

if nodeselect (fext[0], feature[1]):

match = ['cmatch', feature! 1], feature [2] + fext[1], \

rpose]

globals () ['net'] .send (f ext [0], match)

else :

match = ['cmatch', fext[0], fext[1] + feature[2], -rpose]

globals()['net'].send(feature[1], match)

matchdb.append(feature! 1:])

match = ['cmatch']

APPENDIX B. SOFTWARE SOURCE CODE 79

for node in globals () ['net'] :

globals()['net'].send(node[0], match)

print timestampO, "Stopping coarse matching process (stored", \

len(matchdb), "features)."

globals()['acc_matchdb'] = len(matchdb)

globals () ['net'] .send(globals () ['nodeid'], ['die'])

COARSE PROCESS 3: Match Processing

class coarse_matchproc_thread(threading.Thread):

def run(self) :

dc = 0

matches = {}

for node in globals ()['net'] :

matches[node[0]] = []

while dc < len(globals () ['net']):

grab next message in the queue

globals()['cvqueue']['cmatch'].acquire!)

while len (globals () ['msgqueue'] ['cmatch']) == 0:

globals () ['cvqueue'] ['cmatch'].wait()

match = globals () ['msgqueue']['cmatch'].pop(0)

globals () ['cvqueue'] ['cmatch'].release))

if len(match) == 1:

dc += 1

continue

store and process feature match

if not matches! match[1]] == 'done' \

and not match[1] in globals()['group'] \

and not match[2] in map(lambda x : x[0], matches[match[1]]):

print timestampO, "Received a match with node [", match[1], "] . "

if len(matches[match[1]]) >= \

(globals () ['NODE_MERGE_THRESH'] - 1):

try to find enough consistent matches to merge

for matchsubset in uniquecombinations(matches[match[1]], \

globals()['NODE_MERGE_THRESH'] - 1):

matchsubset.append([match[2], match[3]])

APPENDIX B. SOFTWARE SOURCE CODE

c a l c u l a t e t h e average pose

avgpose = geometry.pose(0/ 0)

avg the ta = 0 . 0

avgphi = 0 . 0

avgpsi = 0 . 0

for rpose in map(lambda x : x[1] , matchsubset) :

for i in range(3) :

avgpose.T[i] += rpose.T[i] / \

float! globalsO ['NODE_MERGE_THRESH'])

avgtheta += rpose.om()[0] / \

f l o a t (g l o b a l s O ['NODE_MERGE_THRESH'])

avgphi += rpose.om()[1] / \

f l o a t (g l o b a l s O ['NODE_MERGE_THRESH'])

avgpsi += rpose.om()[2] / \

float! globalsO ['NODE_MERGE_THRESH'])

avgpose.generate(avgpose.T.x, avgpose.T.y, avgpose.T.z, \

avgtheta, avgphi, avgpsi)

check if matches are consistent

flag = False

for rpose in map! lambda x : x[1], matchsubset):

if rpose.map! globals ()['pointc']).euclidean(avgpose.map! \

globalsO ['pointc'])) > globals() ['NODE_CONSIST_THRESH']:

flag = True

break

if flag:

continue

matches! match[1]] = 'done'

send the merge message to the other node

print timestampO, "Forwarding pose from", \

globalsO ['NODE_MERGE_THRESH'], "matches to leader [", \

globalsO ['groupid'], "] ."

pose = ['cpose', globals()['nodeid'], match[1], \

globals () ['coarsepose'] [globals ()['groupid']], avgpose]

globals () ['net'] .send(globals ()[' groupid'], pose)

break

add the match to the set

if not matches! match[1]] == 'done':

matches! match[1]].append! [match[2], match[3]])

pose = ['cpose']

APPENDIX B. SOFTWARE SOURCE CODE 81

for node in globals () ['net'] :

globals()['net'].send(node[0], pose)

print timestampO, "Stopping coarse match processing process."

globals () ['net'] .send(globals () ['nodeid'], ['die'])

#t*ttt#t##tt#t#t#ttt##f#t#f#t###ttt#ttttt#t«#tttt#ttt###4###ttt«ft#t«t##tt#tt##

COARSE PROCESS 4: Group Merge Initiator

class coarse_pose_thread(threading.Thread):

def run(self):

dc = 0

last = globals () ['nodeid']

while dc < len(globals () ['net']) \

and globals () ['nodeid'] == globals ()['groupid'] :

grab next message in the queue

globals () ['cvqueue'] ['cpose']. acquire ()

while len (globals () ['msgqueue'] ['cpose']) == 0:

globals () ['cvqueue'] ['cpose'].wait()

pose = globals()['msgqueue']['cpose'].pop(0)

globals()['cvqueue']['cpose'].released

if len(pose) == 1:

dc += 1

continue

if len(globals () ['group']) == len(globals()['net']):

break

if not pose[2] in globals ()['group']:

globals () ['mergelock'] .acquire ()

if pose[2] != last:

if not group leader, forward to group leader

if globals () ['nodeid'] != globals () ['groupid'] :

print timestampO, "Re-forwarding pose from node [", pose[1], \

"] to leader node [", globals () ['groupid'], "] . "

globals()['net'].send(globals()['groupid'], pose)

globals () ['mergelock'] .release ()

break

send a merge message to the other group

print timestampO, "Initiating merge into group containing node [", \

APPENDIX B. SOFTWARE SOURCE CODE

pose[2], "] . "

merge = ['emerge', globals () ['nodeid'], globals ()['group'], \

geometry.pose (0, 0)]

globals()['net'].send(pose[2], merge)

last = posef 2]

wait for acknowledgement from the other group's leader

globals {) fevqueue'] ['cack']. acquired

while len(globals () ['msgqueue'] ['cack']') == 0:

globals () ['cvqueue'] ['cack'].wait()

ack = globals()['msgqueue']['cack'].pop(0)

globals()['cvqueue']['cack'].released

check for merge thread preempt

if len(ack) == 1:

print timestampt), "Merge initiation preempted, deferring."

reinsert the pose message

globals () ['cvqueue'] ['cpose'].acquired

globals()['msgqueue']['cpose'].insert (0, pose)

globals () ['cvqueue'] ['cpose'].released

globals (} ['mergelock'] .released

give the merge thread a chance to acquire the lock

time.sleep (1.0)

continue

update former own group

print timestampt), "Merge with group [", ack[1], \

"] acknowledged, merging."

update = ['cupdate', globals ()['nodeid'], ack[1], ack[2], \

ack[3], pose[4], pose[3]]

for node in globals () ['group'] :

if node != globals()['nodeid']:

globals () ['net'] .send(node, update)

update self

globals () ['groupid'] = ack[1]

for node in ack[2]:

globals()['group'].append(node)

coarsepose[ack [!]] = ((-pose[3]) + pose[4]) + ack[3 J

globals () ['mergelock'] .released

globals () ['groupupdate'] .set ()

print timestampt), "Group [", globals()['groupid'], "] now contains", \

globals () ['group']

APPENDIX B. SOFTWARE SOURCE CODE 83

forward all future poses to leader

while dc < len(globals()['net']):

grab next message in the queue

globals () ['cvqueue'] ['cpose']. acquire ()

while len(globals()['msgqueue']['cpose']) == 0:

globals()['cvqueue']['cpose'].wait()

pose = globals()['msgqueue']['cpose'].pop(0)

globals()['cvqueue']['cpose'].released

if len(pose) == 1:

dc += 1

continue

globals () ['net'] .send(globals () ['groupid'], pose)

merge = ['emerge']

for node in globals () ['net'] :

globals () ['net'].send(node[0], merge)

print timestampd, "Stopping coarse group merge initiator process."

globals () ['net'] .send(globals () ['nodeid'], ['die'])

COARSE PROCESS 5: Group Merge Responder

class coarse_merge_thread(threading.Thread):

def run(self):

dc = 0

while dc < len(globals()['net']) \

and globals () ['nodeid'] == globals () ['groupid']:

t grab next message in the queue

globals {) ['cvqueue'] ['emerge']. acquired

while len(globals()['msgqueue']['emerge']) ==0:

globals()['cvqueue']['emerge'].wait()

merge = globals () ['msgqueue']['emerge'].pop(0)

globals()['cvqueue']['emerge'].released

if len(merge) == 1:

dc += 1

continue

preempt after a random period to avoid deadlocks

if not globals()['mergelock'].acquire) False):

APPENDIX B. SOFTWARE SOURCE CODE

tmr = threading.Timer(random.randrange(3, 30, 3), self.preempt)

tmr.start ()

globals () ['mergelock'] .acquire ()

tmr.cancel()

make sure the offer is still valid

if merge[1] in globals () ['group']:

continue

if not group leader, forward to group leader

if globals () ['nodeid'] != globals () ['groupid']:

print timestampf), "Re-forwarding merge from node [", merge[1], \

"] to leader node [", globals()['groupid'], "] . "

merge[3] += globals ()['coarsepose'] [globals () ['groupid']]

globals () ['net'] .send(globals () ['groupid'], merge)

globals () ['mergelock'] .release ()

break

send acknowledge

ack = ['cack', globals () ['nodeid'], globals () ['group']]

ack.append! merge[3])

globals () ['net'] .send(merge[1], ack)

update own group

print timestampf), "Updating group [", globals ()[' groupid'], \

"] memberships with group [", merge[1], "] . "

update = ['cupdate', globals ()['groupid'], globals ()['groupid'], \

merge[2]]

for i in range(3):

update.append) geometry.pose(0, 0))

for node in globals () ['group'] :

if node != globals()['nodeid']:

globals()['net'].send(node, update)

update self

for node in merge[2]:

globals()['group'].append(node)

globals () ['mergelock'] . release ()

globals () [' groupupdate'] . set ()

print timestampO, "Group [", globals()['groupid'], "] now contains",

globals () ['group']

forward all future merges to leader

while dc < len(globals!)['net']):

grab next message in the queue

APPENDIX B. SOFTWARE SOURCE CODE 85

globals () ['cvqueue'] ['emerge']. acquire))

while len(globals()['msgqueue'J['emerge']) == 0:

globals()['cvqueue']['emerge'].wait()

merge = globals()['msgqueue']['emerge'].pop(0)

globals()['cvqueue']['emerge'].released

if len(merge) == 1:

dc += 1

continue

merge[3] += globals()['coarsepose'][globals()['groupid'] j

globals () ['net'] .send(globals () ['groupid'], merge)

print timestampO, "Stopping coarse group merge responder process."

globals () ['net'] .send(globals () ['nodeid'], ['die'])

def preempt(self):

"""Sends a preemption message to this node's initiator process."""

print timestampO, "Preempting to process merge."

ack = ['cack']

globals {) ['net'] .send(globals () ['nodeid'], ack)

COARSE PROCESS 6: Group Update

class coarse_update_thread(threading.Thread):

def run(self):

while globals () ['nodeid'] == globals () ['groupid'] \

and len (globals ()['group']) < len (globals ()[' net']):

globals () ['groupupdate'] .wait ()

while len(globals ()[' group']) < len (globals ()['net']):

grab next message in the queue

globals()['cvqueue']['cupdate'].acquired

t = False

while not t:

for i in range (len(globals() ['msgqueue']['cupdate'])):

if globals()['msgqueue']['cupdate'][i][1] == \

globals()['groupid']:

update = globals()['msgqueue']['cupdate'].pop(i)

t = True

break

APPENDIX B. SOFTWARE SOURCE CODE 86

if not t:

globals()['cvqueue']['cupdate'].wait()

globals () ['cvqueue'] ['cupdate']. release ()

if len(update) ==2:

break

process group update

print timestampO, "Got group update for group [", update! 2], "] . "

globals()['coarsepose'][update[2]] = \

((globals () ['coarsepose'] [globals () ['groupid']] - update[6]) + \

update[5]) + update! 4]

globals()['groupid'] = update! 2]

for node in update[3]:

globals () ['group'] .append(node)

globals() ['groupupdate'].set()

print timestampO, "Group [", globals () ['groupid'], "] now contains", \

globals () ['group']

print timestampO, "Stopping coarse group update process."

globals () ['net'] .send(globals () ['nodeid'], ['die'])

t FINE PROCESS 1: Pose Refinement Initiator

class fine_init_thread(threading.Thread):

def run(self):

offset = 0

while offset < len (globals () ['net']) and (globals () ['threadcount'] > 4 \

or offset < len(globals()['group'])):

globals () ['groupupdate'] .wait ()

globals () ['groupupdate'].clear()

glen = len (globals ()['group'])

for node in globals()['group'][offset:glen]:

if nodeselect (globals()['nodeid'], node) \

and not globals ()['finepose'] .has_key(node):

print timestampO, "Initiating fine calibration with node [", node, \
n l it

init = ['finit', globals ()['nodeid'], globals ()['groupid'], \

globals () ['coarsepose'] [globals ()['groupid']]]

APPENDIX B. SOFTWARE SOURCE CODE 87

globals () ['net'].send(node, init)

offset = glen

init = ['finit']

for node in globals () ['group'] :

globals () ['net'] .send(node, init)

print timestampO, "Stopping pose refinement initiator process."

globals () ['net'] .send(globals () ['nodeid'], ['die'])

FINE PROCESS 2: Pose Refinement Responder

class fine_respond_thread(threading.Thread):

def run(self):

dc = 0

while dc < len(globals0 ['net']) \

or len(globals()['msgqueue']['finit']) > 0:

grab next message in the queue

globals ()['cvqueue'] ['finit'].acquire ()

while len(globals()['msgqueue']['finit']) ==0:

globals () ['cvqueue'] ['finit'].wait()

init = globals()['msgqueue']['finit'].pop(0)

globals()['cvqueue']['finit'].release!)

if len(init) == 1:

dc += 1

continue

process fine init

while not globals(}['coarsepose'].has_key(init [2]):

globals () ['groupupdate'] .wait ()

relpose = globals()['coarsepose'][init[2]] - init[3]

fpoints = []

for p in globals ()['points'] :

p = relpose.map(p)

if p.z < globals () ['NODE_CONE_]JENGTH'] \

and p.euclidean(geometry.point(0, 0, p.z)) < \

(p.z * math.tan(globals()['NODE_CONE_ANGLE'])):

fpoints.append! p)

if lent fpoints) > 3:

APPENDIX B. SOFTWARE SOURCE CODE 88

print timestampO, "Responding to fine calibration with node [", \

init[1], "] , " , len(fpoints), "points."

respond = ['frespond', globals()['nodeid'], init[2], \

globals()['coarsepose'][init[2]], fpoints]

globals () ['net'].send(init[1], respond)

else:

print timestampO, "Not enough points shared with node [", init[1], \

respond = [' frespond']

for node in globals () ['group'] :

globals()['net'].send(node, respond)

print timestampO, "Stopping pose refinement responder process."

globalsO ['net'].send(globals()['nodeid'], ['die'])

FINE PROCESS 3: Pose Refinement Registration

class fine_registration_thread(threading.Thread):

def run(self):

dc = 0

while dc < len (globals () ['net']) \

or len(globals()['msgqueue']['frespond']) > 0:

grab next message in the queue

globals () ['cvqueue']['frespond'].acquire!)

while len(globals () ['msgqueue']['frespond']) == 0:

globals()['cvqueue']['frespond'].wait()

respond = globals0 ['msgqueue']['frespond'].pop(0)

globals()['cvqueue']['frespond'].released

if len(respond) == 1:

dc += 1

continue

process fine response

relpose = globals ()['coarsepose'] [respond[2]] - respond! 3]

fpoints = []

for p in globals () ['points'] :

q = relpose.map(p)

i f q .z < g l o b a l s O ['NODE_CONE_LENGTH'] \

APPENDIX B. SOFTWARE SOURCE CODE 89

and q.euclideanf georaetry.point(0, 0, q.z)) < \

(q.z * math.tan(globals0 ['NODE_CONE_ANGLE'])):

fpoints.append(p)

if len(fpoints) > 3:

print timestampO, "Computing pairwise fine calibration with node [", \

respond[1], "] . "

emin = float (10 ** 18)

for zeta in range(40, 101):

zeta /= 100.0

fpose, e = registration.fine_registration(respond! 4], fpoints, \

zeta, globals () ['FINE_TE'], globals () ['FINEJTR'])

globals () ['acc_fine'] += 1

e *= (zeta ** -(1.0 + globals()['FINE_LAMBDA']))

if e < emin:

emin = e

zetamin = zeta

globals()['finepose'][respondf 1]] = fpose

emin /= (zeta ** -(1.0 + globals()['FINE_LAMBDA']))

if emin < globals () ['FINE_EMAX'] :

globals()['finepose'][respond! 1]] += relpose

reg = ['freg', globals () ['nodeid'], \

-globals()['finepose'][respond[1]]]

globals (} ['net'].send(respond[1], reg)

else:

del globals()['finepose'][respondf 1]]

print timestampO, "Fine calibration error with node [", \

respond! 1], "] too large:", emin

else:

print timestampO, "Not enough points shared with node [", \

respond! 1], "] . "

reg = ['freg']

for node in globals () ['group'] :

globals0 ['net'].send(node, reg)

print timestampO, "Stopping pose refinement registration process."

globalsO ['net'] .send(globals () ['nodeid'], ['die'])

t FINE PROCESS 4: Pose Refinement Update

((j^iOM^eu/,, + [z]A6JP
-
SAS) uado) jtapEai'ASD = seuix

()XJOM33U = 53U

UOT^EZTIE'PTUT ^OM^au #

() 3UIT:j • 3UJT^ = ^JP^SSUIT^

u' [u 'I I]A6JB-SAS '„] apou BUTZTXET^TUI,, ' () duiE^sauii:} ^uxjd

(x)3Txe
-
sAs

„j"rpp^ep piapou,, '[o]A6ae
-
sAs 'H:aBEsni, 3uijd

:£ > (ABJE'SAS) uax JT

S^U9Uin6jE >(Daip #

wvaoona NIVW #

([.3TP/] '[/PT
8
P°

U
/] OsieqoxB)puas- [,}9u,] ()sxEqox&

„'sgsoojd a^spdn :}uaui9UTja;t ssod Buiddo^g,, ' () duiE^seuiT^ ^uijd

[z]
6e:[

 = [[I]6
3J

] [/Ssodeuij,] () sxsqoxB

..' [.. ' [T] 63J

\ '„] epou H^T« uoi^EjqTXBO euxj asTAUTBd Bui^Epdn,, ' () duie^saun:} iinid

UOT^BJ^STBBJ: auij ssaooid #

anux^uoo

I =+ =P

:i == (Baj)usx JT

()3SEax3J
-
[,6ajj ,] [;8nanbAo7] () sxsqoxB

(o)dod'[/Beij,] [jananbBsui,] () sxEqoxB = Baa

()}TBM-[(Bsaj ,] [̂nsnbAO ,] () sxBqoxB
:
0 == ([/6eJ5,] [̂nenbBsuiJ () sxsqoxB) uax ©XT

1
!"

() ajtrtboE
-
[,69:13 ,] [yananbAD ,] () sxsqoxB

anenb am UT aBsssaui }xau qejB #

:0 < ([;6ejj,] [̂nenbBsui,] () sxeqoxB) uax JO

\ ([^3uy] (JsxeqoxB) uax > op axT".«

0 = op

: (jx
8s

)uru jap

: (pBajiii'BuTppaiq^)pB9iu.:f~a:;Epdn
-
9UTj sgi?xo

06 aaoj aDxnos nxvAUdos a xiaNaddv

APPENDIX B. SOFTWARE SOURCE CODE

for line in lines:

net.append([line[0], line[1], int(line[2]), float (line[3]), \

float(line[4])])

self initialization

nodeid = sys.argv[1]

groupid = nodeid

group = [nodeid]

coarsepose = { groupid : geometry.pose(0, 0) }

finepose = (nodeid : geometry.pose(0, 0) }

acc_matchdb = 0

acc_coarse = 0

acc_fine = 0

point set intialization

points = []

lines = csv.reader(open (sys.argv[2] + "/" + nodeid + ".pts"))

for line in lines:

points.append(geometry.point(float (line[0]), float (line[1]), \

float(line[2])))

pointc = geometry.point(0, 0, 0)

for p in points:

pointc += p

pointc /= float (len (points))

message queue i n i t i a l i z a t i o n

msgqueue = { 'cfeature' : [], 'cmatch':[], 'cpose':[], 'emerge':[], 'cack':[],

'cupdate': [], 'finit':[], ' frespond':[], ' freg': [] }

cvqueue = { 'cfeature':threading.Condition(), 'cmatch':threading.Condition(),

'cpose':threading.Condition(), 'emerge':threading.Condition(), \

'cack' :threading.Condition(), 'cupdate':threading.Condition(), \

'finit' :threading.Condition!), 'frespond':threading.Condition!), \

' freg' :threading.Condition ())

mergelock = threading.Lock()

groupupdate = threading.Event()

start listening for connections

APPENDIX B. SOFTWARE SOURCE CODE

dscnode = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

dscnode.bind(net.hostport(nodeid))

dscnode.listen(20)

start the various processing threads

print timestampO, "Starting all threads."

threadcount = 10

coarse_feature_thread().start()

coarse_matching_thread().start()

coarse_matchproc_thread().start()

coarse_pose_thread().start()

coarse_merge_thread() . start ()

coarse_update_thread() . start ()

fine_init_thread().start()

fine_respond_thread().start()

fine_registration_thread().start()

fine_update_thread().start()

add all incoming messages to the appropriate queue

inaccount = {}

while threadcount > 0:

channel, details = dscnode.accept()

inmsg = pickle.loads(channel.recv(1048576))

channel.close()

bandwidth accounting

t = int(time.time())

if inaccount.has_key(t):

inaccount [t] += len(pickle.dumps(inmsg))

else:

inaccount! t] = len(pickle.dumps(inmsg))

if inmsg[0] == 'ping':

continue

elif inmsg[0] == 'die':

threadcount -= 1

else:

cvqueue[inmsg[0]].acquire!)

msgqueue[inmsg[0]].append(inmsg)

cvqueue[inmsg[0]].notify()

cvqueue[inmsg[0]].released

APPENDIX B. SOFTWARE SOURCE CODE

close network

print timestampO, "Closing socket for incoming messages."

dscnode.close 0

print basic output information

print timestampO, "Calibration complete at node [", nodeid,

int (time.timeO - timestart), "seconds total."

print

print "Coarse Pose Estimate - Node [", nodeid, "] , Group [",

print coarsepose[groupid].T

print coarsepose[groupid].R

print

print "Fine pose estimates available for", len (finepose), "

interactive shell for additional output

while True:

cmd = raw_input ("> ")

if cmd == 'exit' :

break

elif cmd == 'group':

print "Group [", groupid, "] contains", group

elif cmd == 'list' :

print finepose.keys ()

elif cmd == 'dump':

pickle.dump(finepose, \

open(sys.argv[2] + "/" + nodeid + ".fine", 'w'))

print "Fine pose results for node [", nodeid, "] dumped."

elif cmd and cmd.split()[0] == 'fine':

if finepose.has_key(cmd.split()[1]):

print "Fine Pose Estimate - Node [", cmd.split()[1],

print fineposef cmd.split()[1]] .T

print finepose[cmd.split()[1]] .R

else:

print "No fine pose estimate for [", cmd, "] exists."

elif cmd == 'netstats':

outbw = inbw = 0

for i in net.outaccount.keys():

outbw += net.outaccount[i]

APPENDIX B. SOFTWARE SOURCE CODE

for i in inaccount.keys():

inbw += inaccount[i]

print "Bandwidth Usage Statistics - Node [", nodeid, "] "

print "Total:", outbw, "bytes out,", inbw, "bytes in"

print "Average:", (outbw / (max(net.outaccount.keys()) - \

min(net.outaccount.keys()))), "bytes/sec out,", (inbw / (\

max(inaccount.keys()) - min(inaccount.keys()))), "bytes/sec

print "Peak:", max (net.outaccount.values()), "bytes/sec out,", \

max(inaccount.values()), "bytes/sec in"

elif cmd == 'netraw':

print "OUT"

for i in net.outaccount.keys ():

print str(i) + "," + str(net.outaccount[i])

print "IN"

for i in inaccount.keys ():

print str(i) + "," +.str(inaccount[i])

elif cmd == 'resources':

print "Match Database Size:", acc_matchdb

print "Coarse Registrations:", acc_coarse

print "Fine Registrations:", acc_fine

elif cmd == 'nrcsv':

outbw = 0

for i in net.outaccount.keys ():

outbw += net.outaccount[i]

print outbw, acc_matchdb, acc_coarse, acc_fine

else:

print "Unrecognized command."

B.1.2 Geometry Module

geometry.py

"""Geometry, point and pose classes"""

author = 'Aaron Mavrinac'

version = '1.0'

import math

import numpy

TOO SMALL = 0.0000000001

APPENDIX B. SOFTWARE SOURCE CODE 95

class point:

"""3D point (vector) class"""

def init (self, x, y, z = 0.0):

self.x = float(x)

self.y = float(y)

self.z = float (z)

def getitem (self, i) :

if i == 0:

return se l f . x

e l i f i == 1:

return se l f .y

e l i f i == 2:

return se l f . z

def setitem (self, i , value) :

if i == 0:

self.x = value

elif i == 1:

self.y = value

elif i == 2:

self.z = value

def add (self, p):

"""Vector addition"""

return point (self.x + p.x, self.y + p.y, self.z + p.z)

def sub (self, p):

"""Vector subtraction"""

return point (self.x - p.x, self.y - p.y, self.z - p.z)

def mul (self, p):

"""Scalar multiplication or dot product"""

if isinstance(p, point):

return (self.x * p.x + self.y * p.y + self.z * p.z)

else:

return point (self.x * p, self.y * p, self.z * p)

def rmul (self, p):

"""Sca lar m u l t i p l i c a t i o n or dot product"""

return self . mul (p)

def div (self, p) :

"""Scalar division"""

return point (se l f .x / p, se l f .y / p, se l f . z / p)

APPENDIX B. SOFTWARE SOURCE CODE

def neg (self):

"""Negation"""

return point(-self.x, -self.y, -self.z)

def repr (self):

"""Representat ion"""

return "(" + str(self.x) + ", " + str{ self.y) + ", " + \

str(self.z) + ") "

def tuple(self):

"""Returns the tuple of this vector"""

return (self.x, self.y, self.z)

def array(self):

"""Returns the NumPy array of this vector"""

return numpy.array([[self.x], [self.y], [self.z]])

def magnitude; self):

"""Returns the magnitude of this vector"""

return math.sqrtf self.x ** 2 + self.y ** 2 + self.z ** 2)

def normalize! self):

"""Returns this vector normalized"""

m = self.magnitude()

return point (self.x / m, self.y / m, self.z / m)

def euclidean(self, p):

"""Returns the Euclidean distance to point p"""

return math.sqrt((self.x - p.x) ** 2 + (self.y - p.y) ** 2 + \

(self.z - p.z) ** 2)

def angle (self, p):

"""Returns the angle between this vector and vector p"""

return math.fabst math.acos(p.normalize() * self.normalize ()))

class pose:

"""3D pose (rotation and translation) class"""

def _init (self, T, R) :

if isinstance(T, point):

self.T = T

else:

self.T = point! 0, 0, 0)

if isinstancef R, numpy.ndarray):

self.R = R

else:

self.R = numpy.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], \

APPENDIX B. SOFTWARE SOURCE CODE

{ 0.0, 0.0, 1.0]])

def add (self, other):

"""Pose composition: PB(PA(x)) = (PA + PB)(x)"""

Tnew = point((other.R[0][0] * self.T.x + other.R[0][1]

self.T.y + other.R[0][2] * self.T.z), (other.R[1][0] *

self.T.x + other.R[1 .][1] * self.T.y + other.R[1][2] * \

self.T.z), (other.R[2][0] * self.T.x + other.R[2][1] *

self.T.y + other.R[2][2] * self.T.z)) + other.T

Rnew = numpy.dot(other.R, self.R)

return pose (Tnew, Rnew)

def sub (self, other):

"""Pose subtraction, inverts the right term and adds"""

return self. add (-other)

def neg (self):

"""Pose inversion"""

Rinv = self.R.transpose()

Tinv = point (0, 0, 0)

for i in range(3):

Tinv[i] = -(Rinv[i][0] * self.T.x + Rinv[i][1] * se

Rinv[i][2] * self.T.z)

return pose(Tinv, Rinv)

def generate(self, x, y, z, theta, phi, psi'):

"""Generate a T and R given a translation point and 3 angles"""

self.T = point (float (x), float(y), float (z))

theta = float (theta) % (math.acos(-1) * 2)

phi = float (phi) % (math.acosf -1) * 2)

psi = float (psi) % (math.acos(-1) * 2)

self.R[0][0] = math.cos(phi) * math.cos(psi)

self.R[0][1] = math.sin(theta) * math.sin(phi) * \

math.cos(psi) - math.cos(theta) * math.sin(psi)

self.R[0][2] = math.cos(theta) * math.sin(phi) * \

math.cos(psi) + math.sin(theta) * math.sin(psi)

self.R[1][0] = math.cos(phi) * math.sin(psi)

self.R[1][1] = math.sin(theta) * math.sin(phi) * \

math.sin(psi) + math.cos(theta) * math.cos(psi)

self.R[1][2] = math.cos(theta) * math.sin(phi) * \

math.sin(psi) - math.sin(theta) * math.cos(psi)

self.R[2][0] = -math.sin(phi)

self.R[2][1] = math.sin(theta) * math.cosf phi)

APPENDIX B. SOFTWARE SOURCE CODE

self.R[2][2] = math.cos(theta) * math.cos(phi)

for i in range(3):

for j in range(3 }:

if abs(self.Rf i][j]) < TOO_SMALL:

self.R[i][j] = 0.0

def om(self):

"""Return the fixed-axis rotation angles from R"""

phi = math.asint -1.0 * self.Rf 2][0])

if phi < -TOO_SMALL:

phi += 2.0 * math.pi

if abs(phi) < TOO_SMALL:

phi = 0.0

sign = math.cos (phi) / abs(math.cos(phi))

theta = math.atanf self.R[2][1] / self.R[2][2])

if abs(theta) > TOO_SMALL:

if sign * self.R[2][2] < 0:

theta += math.pi

elif sign * self.Rf 2][1] < 0:

theta += 2.0 * math.pi

else:

theta =0.0

psi = math.atanf self.Rf 1][0] / self.Rf 0][0])

if abs(psi) > TOO_SMALL:

if sign * self.Rf 0][0] < 0:

psi += math.pi

elif sign * self.Rf 1][0] < 0:

psi += 2.0 * math.pi

else:

psi = 0.0

return (theta, phi, psi)

def nonzero (self) :

"""Check if this pose has any effect"""

if self.T.x == 0 and self.T.y == 0 and self.T.z == 0 \

and (self.R - numpy.diagt numpy.array((1, 1, 1]))).any()

return False

else:

return True

def map(self, p):

"""Map a point through this pose"""

APPENDIX B. SOFTWARE SOURCE CODE 99

return self.map_translate(self.map_rotate(p))

def map_rotate(self, p):

"""Rotation component of point mapping"""

q = point ((self.Rf 0][0] * p.x + self.Rf 0][1] * p.y + \

self.Rf 0][2] * p.z), (self.Rf 1][0] * p.x + self.Rf 1][1] * \

p.y + self.Rf 1][2] * p.z), (self.Rf 2][0] * p.x + \

self.Rf 2][1] * p.y + self.Rf 2][2] * p.z))

return q

def map_translate(self, p):

"""Translation component of point mapping"""

q = p + self.T

return q

B.1.3 Registration Module

registration.py

"""Registration functions"""

author = 'Aaron Mavrinac'

version = ' 1 . 0 '

import numpy

import geometry

def zeromatrix(m, n) :

"""Generates a matrix of m by n zeroes"""

a = []

for i in range (m) :

a.append([])

for j in range (n) :

a[i].append(0.0)

A = numpy.array (a)

return A

def coarse_registration(M, P, tr):

"""Coarse registration - DARCES (fully contained)"""

rpose = geometry.pose (0, 0)

first control point

for i in range (len (P)) :

for j in range (len (P)) :

APPENDIX B. SOFTWARE SOURCE CODE

dps < tr:

if j == i:

continue

dps = P[i].euclidean(P[j])

second control point

for k in range(len(M)):

for 1 in range(len(M)):

if 1 == k:

continue

if abs(M[k].euclidean(M[1]

third control point

for m in range(len(P)) :

if m == i or m == j:

continue

dpa = P[i].euclidean(P[m])

dsa = P[j].euclidean(P[m])

for n in range(0, len(M)):

if n == k or n == 1:

continue

if abs(M[k].euclidean(M[n]

and abs(M[1].euclidean(M[n]

calculate the optimal Euclidean transformation from M

Pavg = geometry.point(0, 0, 0

Mavg = geometry.point(0, 0, 0

for pp in P:

Pavg += pp / float (len(P)

for pm in M:

Mavg += pm / float{ len(M)

K = zeromatrix(3, 3)

for pair in [(i, k), (j, 1

P[pair[0]] -= Pavg

M[pair[1]] -= Mavg

for x in range(3):

for y in range(3):

K[x][y] += P[pair[0]][x

M[pair[1]][y]

P[pair[0]] += Pavg

M[pair[1]] += Mavg

V, A, Ut = numpy.linalg.svd(K)

vudet = numpy.linalg.det(numpy.dotf V

dpa)

dsa

< tr \

} < tr:

to P

(m, n)] :

* \

Ut

APPENDIX B. SOFTWARE SOURCE CODE 101

S = numpy.diag(numpy.array([1, 1, vudet]))

R = numpy.dot(numpy.dot(V, S), Ut)

T = geometry.point(Pavg.x - (R[0][0] * Mavg.x + \

R[0][1] * Mavg.y + R[0][2] * Mavg.z), Pavg.y - \

(R[1][0] * Mavg.x + R[1][1] * Mavg.y + \

R[1][2] * Mavg.z), Pavg.z - (R[2][0] * Mavg.x + \

R[2][1] * Mavg. y + R [2] [2] * Mavg.z))

rpose = geometry.pose(T, R)

verify the remaining points

for pp in P:

f = False

for pm in M:

if abs(rpose.map(pm).euclidean(pp)) < tr:

f = True

break

if not f:

rpose = geometry.pose(0, 0)

break

if not f:

break

return rpose

return rpose

def fine_registration(M, S, zeta, te, tr):

"""Fine registration - Trimmed Iterative Closest Point"""

P = []

for s in S:

P.append! s)

Sits = float (10 ** 18);

Npo = int(zeta * len (P))

e = Sits / float (Npo)

pose = geometry.pose (0, 0)

if Npo < 3:

return pose, e

for n in range (100) :

for each point in P, find closest in M and compute individual distances

APPENDIX B. SOFTWARE SOURCE CODE

pm = []

for pi in range(len (P)):

pm.append! [pi, 0, P[pi].euclideanf M[0])])

for mi in range (1, len(M)):

if P[pi].euclidean(M[mi]) < pm[pi][2]:

pm[pi] = [pi, mi, P[pi].euclidean(M[mi])]

sort distances in ascending order, select Npo least, compute Sits

pm.sort(lambda x, y : cmp(x[2], y[2]))

pm = pm[:Npo]

Sits = sum(x[2] ** 2 for x in pm)

if any stop condition met, exit

ep = e

e = Sits / float (Npo)

if e < te or (abs(e - ep) / e) < tr:

break

compute the optimal motion R,t minimizing Sits

Pavg = geometry.point(0, 0, 0)

Mavg = geometry.point(0, 0, 0)

for i in range (Npo):

Pavg += P[pm[i][0]] / float(Npo)

Mavg += M[pm[i][1]] / float(Npo)

K = zeromatrix (3 , 3)

for i in range (Npo):

K += P[pm[i][0]].arrayO * M[pm[i][1]].array!).transpose!)

K /= float (Npo)

K -= Pavg.array () * Mavg.array () .transpose ()

A = K - K.transpose()

B = K + K.transpose!) - (K.trace!) * \

numpy.diag! numpy.array! [1.0, 1.0, 1.0])))

Q = zeromatrix (4 , 4)

Q[0] [0] = K.trace!)

for i in range(3):

Q [0] [i + l] = Q [i + l] [0] = A [(i + 1) % 3] [(i + 2) % 3]

for j in range! 3):

Q[i + 1] [j + 1] = B[i][j]

w, v = numpy.linalg.eigh(Q)

APPENDIX B. SOFTWARE SOURCE CODE 103

max = 0
for i in range (1, len(w)):

if w[i] > w[max]:

max = i

qR = v[:, max]

R = zeromatrix(3, 3)

R[0][0] = qR[0] ** 2 + qR[1] ** 2 - qR'[2] ** 2 - qR[3] ** 2

R[0][1] = 2 * (qR[1] * qR[2] - qR[0-] * qR[3])

R[0][2] = 2 * (qR[1] * qR[3] + qR[0] * qR[2])

R[1][0] = 2 * (qR[1] * qR[2] + qR[0] * qR[3])

R[1][1] = qR[0] ** 2 + qR[2] ** 2 - qR[1] ** 2 - qR[3] ** 2

R[1][2] = 2 * (qR[2] * qR[3] - qR[0] * qR[1])

R[2][0] = 2 * (qR[1] * qR[3] - qR[0] * qR[2])

R[2][1] = 2 * (qR[2] * qR[3] + qR[0] * qR[1])

R[2][2] = qR[0] ** 2 + qR[3] ** 2 - qR[1] ** 2 - qR[2] ** 2

RP = numpy.dot(R, numpy.array([[Pavg.x], [Pavg.y], [Pavg.z]]))

T = Mavg - geometry.point(RP[0], RP[1], RP[2])

qpose = geometry.pose(T, R)

transform P by R,t and loop

for i in range (len (P)):

P[i] = qpose.map(P[i])

pose += qpose

return pose, e

B.2 Local Point Detection (C)

B.2.1 Main Program

capture.c

•include <userint.h>

•include <ansi_c.h>

•include <cvirte.h>

•include "nivision.h"

•include "vp_imaq.h"

•include "fast .h"

APPENDIX B. SOFTWARE SOURCE CODE

•include "stereo.h"

•include "capture.h"

•include <formatio.h>

//•define DBG_WRITE_BMP

//•define DBG_SHOW_ITER_NUM

//•define DBG_POINT_ACCEPT

//•define DBG_CORR_VERIFY

//•define DBG_DISABLE_PYDSC

•define MANUAL_CORNERS 20

•define FAST_PROX 5

•define FAST_MINTHRESH 10

•define CORR_WINSIZE 13

•define CORR_YTHRESH 0.005

•define CORR_THRESH 0.9

•define TRI_ZMIN 100.0

•define TRI_ZMAX 2000.0

•define NONMAX 1

static int mainpanel;

int main (int argc, char *argv[])

{

if (InitCVIRTE (0, argv, 0) == 0)

return -1; /* out of memory */

if ((mainpanel = LoadPanel (0, "capture.uir", MAINPANEL)) < 0)

return -1;

DisplayPanel (mainpanel);

RunUserlnterface ();

DiscardPanel (mainpanel);

return 0;

}

int CVICALLBACK mp_cb (int panel, int event, void *callbackData,

int eventDatal, int eventData2)

(

switch (event)

(

APPENDIX B. SOFTWARE SOURCE CODE 105

case EVENT_GOT_FOCUS:

break;

case EVENT_LOST_FOCUS:

break;

case EVENT_CLOSE:

exit(0);

break;

}

return 0;

}

int CVICALLBACK capture (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData2)

{

int i, j, x, y, SL, SR, linked, manual, thresh, threshinc, np, pmin, pmax,

width, height, ncl, ncr, nclnm, ncrnm, win_r, zncc_maxj, fH;

char nodeid[256], ldev[32], rdev[32], point[256];

double lpar[9];

double rpar[9];

double T[3], om[3];

double ** R, ** E;

double epi[3];

int * P;

xy * draw, * CRraw;

Point * CL, * CR;

dxy * CLn, * CRn;

dxy CRn_rect;

Image * SnapL, * SnapR, * ImgL, * ImgR;

unsigned char * lim, * rim;

double Lcorr[CORR_WINSIZE][CORR_WINSIZE],

Rcorr[CORR_WINSIZE][CORR_WINSIZE];

double winarea, Lavg, Ravg,

zncc, zncc_a, zncc_b, zncc_top, zncc_boa, zncc_bob;

double * zncc_max;

dxyz pt3d;

WindowEventType man_event;

Rect man_rect;

APPENDIX B. SOFTWARE SOURCE CODE

/* debug variables */

RGBValue ovlc;

dxy dbgdxy;

Point dbgpt;

int corrpct, corrtot, flag, pole;

switch (event)

{

case EVENT_COMMIT:

* === PARAMETERS & INITIALIZATION === */

SetCtrlVal(panel, MAINPANEL_LED_CPU, TRUE);

DisplayPanel (panel);

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

MAINPANEL_STR_NODEID, nodeid);

MAINPANEL_STR_CAML_DEV, Idev);

MAINPANEL_STR_CAMR_DEV, rdev);

MAINPANEL_NUM_CAML_FC1, &lpar[0

MAINPANEL_NUM_CAML_FC2, &lpar[1

MAINPANEL_NUM_CAML_CC1, Slpar[2

MAINPANEL_NUM_CAML_CC2, Slpar[3

MAINPANEL_NUM_CAML_KC1, &lpar[4

MAINPANEL_NUM_CAML_KC2, &lpar[5

MAINPANEL_NUM_CAML_KC3, &lpar[6

MAINPANEL_NUM_CAML_KC4, &lpar[7

MAINPANEL_NUM_CAML_KC5, &lpar[8

MAINPANEL_NUM_CAMR_FC1, Srpar[0

MAINPANEL_NUM_CAMR_FC2, Srpar[1

MAINPANEL_NUM_CAMR_CC1, &rpar[2

MAINPANEL_NUM_CAMR_CC2, &rpar[3

MAINPANEL_NUM_CAMR_KC1, &rpar[4

MAINPANEL_NUM_CAMR_KC2, Srpar[5

MAINPANEL_NUM_CAMR_KC3, Srpar[6

MAINPANEL_NUM_CAMR_KC4, &rpar[7

MAINPANEL_NUM_CAMR_KC5, &rpar[8

MAINPANEL_NUM_STERE0_T1, &T[0]

MAINPANEL_NUM_STERE0_T2, ST[1]

APPENDIX B. SOFTWARE SOURCE CODE

GetCtrlVaK panel, MAINPANEL_NUM_STERE0_T3, &T[2]);

GetCtrlVaK panel, MAINPANEL_NUM_STERE0_0M1, s0m[0]);

GetCtrlVaK panel, MAINPANEL_NUM_STERE0_0M2, Som[1]);

GetCtrlVaK panel, MAINPANEL_NUM_STERE0_0M3, Som[2]);

GetCtrlVaK panel, MAINPANEL_BIN_LINKED, slinked);

GetCtrlVaK panel, MAINPANEL_BIN_FAST_MANUAL, Smanual);

ovlc.R = ovlc.G = ovlc.B = 255;

corrpct = corrtot = flag = 0;

imaqSetWindowThreadPolicy(IMAQ_SEPARATE_THREAD);

for(i = 0; i < 2; i++)

imaqShowScrollbars(i, TRUE);

/* compute the rotation matrix and essential matrix */

R = stereo_rodrigues(om[0], om[1], om[2]);

E = stereo_essential(om[0], om[1], om[2], T);

/* === IMAGE ACQUISITION === */

/* prepare image buffers */

SnapL = imaqCreatelmage! IMAQ_IMAGE_U8, 0);

SnapR = imaqCreateImage(IMAQ_IMAGE_U8, 0);

ImgL = imaqCreatelmage(IMAQ_IMAGE_U8, 0);

ImgR = imaqCreatelmage(IMAQ_IMAGE_U8, 0);

/* capture the images */

SetCtrlVaK panel, MAINPANEL_LED_1394, TRUE);

DisplayPanel (panel);

if(linked)

(

SL = vp_imaq_open (ldev);

SR = vp_imaq_open(rdev);

vp_imaq_snap_stereo(SL, SR, SnapL, SnapR);

APPENDIX B. SOFTWARE SOURCE CODE

vp_imaq_close(SL) ;

vp_imaq_close(SR);

}

else

{

SL = vp_imaq_open(ldev) ;

vp_imaq_snap(SL, SnapL);

vp_imaq_close (SL);

SR = vp_imaq_open(rdev);

vp_imaq_snap{ SR, SnapR);

vp_imaq_close(SR);

}

SetCtrlVaK panel, MAINPANEL_LED_1394, FALSE

DisplayPanel (panel);

/* convert to grayscale */

imaqCast(ImgL, SnapL, IMAQ_IMAGE_U8, NULL, 8

imaqCast(ImgR, SnapR, IMAQ_IMAGE_U8, NULL, 8

/* debug: write out BMP files */

tifdef DBG_WRITE_BMP

sprintf(point, "%s-left.bmp", nodeid);

imaqWriteBMPFile(ImgL, point, FALSE, NULL);

sprintf(point, "%s-right.bmp", nodeid);

imaqWriteBMPFile(ImgR, point, FALSE, NULL);

fendif

/* === INTEREST POINT DETECTION === */

if(manual)

f

/* manual interest point selection */

ncl = ncr = MANUAL_CORNERS;

CL = (Point *)malloc(ncl * sizeof(Point

APPENDIX B. SOFTWARE SOURCE CODE

CR = (Point *)malloc(ncr * sizeoff Point));

P = (int *)malloc(ncl * sizeof(int)) ;

imaqDisplaylmage(ImgL, 0, FALSE);

imaqDisplaylmagef ImgR, 1, FALSE) ;

imaqSetCurrentTool(IMAQ_POINT_TOOL);

i = 0;

while (i < MANUAL_CORNERS)

{

j = 0;

while(j < 3)

{

imaqGetLastEvent (&man_event, &x, NULL, &man_rect);

if(man_event == IMAQ_CLICK_EVENT && x == 0)

(

CL[i] = imaqMakePoint(man_rect.left, man_rect.top);

j 1= 1;

}

if(man_event == IMAQ_CLICK_EVENT SS x == 1)

{

CR[i] = imaqMakePoint(man_rect.left, man_rect.top);

j 1= 2;

}

}

if(ConfirmPopup("Point Detection", "Accept this pair?")
(

imaqOverlayPoints (ImgL, &CL[i], 1, Sovlc, 1,

IMAQ_POINT_AS_CROSS, NULL, NULL);

imaqOverlayPoints (ImgR, SCR[i], 1, Sovlc, 1,

IMAQ_POINT_AS_CROSS, NULL, NULL);

imaqDisplaylmage(ImgL, 0, FALSE);

imaqDisplaylmage(ImgR, 1, FALSE);

P[i] = i;

i++;

}

APPENDIX B. SOFTWARE SOURCE CODE 110

MessagePopup{ "Point Detection", "Manual point selection complete.");

imaqSetCurrentTool(IMAQ_N0_T00L) ;

/*' normalize the interest point coordinates */

CLn = (dxy *)malloc(ncl * sizeof(dxy));

CRn = (dxy *)malloc(ncr * sizeof(dxy)');

for(i = 0; i < ncl; i++)

stereo_normalize(CL[i].x, CL[i].y, lpar[0], lpar[1],

lpar[2], lpar[3], lpar[4], lpar[5],

lpar[6], lpar[7], lpar[8], SCLn[i]);

for(i = 0; i < ncr; i++)

stereo_normalize (CR[i].x, CR[i],y, rpar[0], rpar[1],

rpar[2], rpar[3], rpar[4], rpar[5],

rpar[6], rpar[7], rpar[8], &CRn[i]);

}

else

{

win_r = (CORR_WINSIZE - 1) / 2;

winarea = (double)(4 * win_r * win_r + 4 * win_r + 1);

lim = imaqImageToArray(ImgL, IMAQ_NO_RECT, Swidth, Sheight);

rim = imaqImageToArray< ImgR, IMAQ_NO_RECT, NULL, NULL);

GetCtrlValf panel, MAINPANEL_NUM_FAST_THRESH, Sthresh);

threshinc = thresh / 2;

GetCtrlVaK panel, MAINPANEL_NUM_PTS_BASE, Spmin);

GetCtrlVaK panel, MAINPANEL_NUM_PTS_VAR, ipmax);

pmin -= pmax;

pmax *= 2;

pmax += pmin;

CL = NULL;

CR = NULL;

P = NULL;

CLn = NULL;

CRn = NULL;

zncc_max = NULL;

APPENDIX B. SOFTWARE SOURCE CODE 111

while (1)

{

/* FAST corner detection */

CLraw = fast_corner_detect_9(lim, width, height, thresh, Sncl);

if(NONMAX)

(

CLraw = fast_nonmax(lim, width, height, CLraw, ncl, thresh,

Snclnm);

ncl = nclnm;

}

CRraw = fast_corner_detect_9(rim, width, height, thresh, Sncr);

iff NONMAX)

{

CRraw = fast_nonmax(rim, width, height, CRraw, ncr, thresh,

incrnm);

ncr = ncrnm;

}

/* clean up the detected corners */

j - 0;

forf i = 0; i < ncl; i++)

f

iff ! (CLraw[i].x > win_r

&& CLraw[i].x < (width - win_r - 1)

&& CLraw[i].y > win_r

SS CLraw[i].y < (height - win_r - 1)))

CLraw[i].x = -1;

for(x = 0; x < i; x++)

iff CLraw[x].x < (CLraw[i].x + FAST_PROX)

&& CLraw[x].x > (CLraw[i].x - FAST_PROX)

&& CLraw[x].y <= CLraw[i].y

£& CLrawf x].y > (CLraw[i].y - FAST_PROX))

CLraw[i].x = -1;

iff CLraw[i].x >= 0)

j++;

}

APPENDIX B. SOFTWARE SOURCE CODE

CL = (Point *)realloc(CL, j * sizeof(Point));

j - 0;

for(i = 0; i < ncl; i++)

if(CLraw[i].x >= 0)

CL[j++] = imaqMakePoint(CLraw[i].x, CLraw[i].y);

ncl = j;

j = 0;

for(i = 0; i < ncr; i++)

(

iff ! (CRraw[i].x > win_r

&& CRraw[i].x < (width - win_r - 1)

&& CRraw[i].y > win_r

&& CRraw[i].y < (height - win_r - 1)))

CRraw[i].x '= -1;

for(x = 0; x < i; x++)

if(CRraw[x].x < (CRraw[i].x + FAST_PR0X)

&& CRraw[x].x > (CRraw[i].x - FAST_PR0X)

&& CRraw[x].y <= CRraw[i].y

&& CRrawf x].y > (CRrawf i].y - FAST_PROX))

CRraw[i].x = -1;

if(CRrawf i].x >=0)

j++;

}

CR = (Point *)realloc(CR, j * sizeof(Point));

j = 0;

for (i = 0; i < ncr; i++)

iff CRraw[i].x >= 0)

CR[j++] = imaqMakePoint(CRraw[i].x, CRraw[i].y);

ncr = j;

P = (int *)realloc(P, ncl * sizeof(int));

/* normalize the interest point coordinates */

CLn = (dxy *)realloc(CLn, ncl * sizeof (dxy));

CRn = (dxy *)realloc(CRn, ncr * sizeof(dxy));

for(i = 0; i < ncl; i++)

stereo_normalize(CL[i].x, CL[i].y, lpar[0], lpar[1],

lparf 2], lpar[3], lpar[4], lpar[5],

APPENDIX B. SOFTWARE SOURCE CODE

lpar[6], lpar[7], lpar[8], SCLn[i])

for(i = 0; i < ncr; i++)

stereo_normalize(CR[i].x, CR[i].y, rpar[0], rpar[1],

rparf 2], rpar[3], rpar[4], rpar[5],

rpar[6], rpar[7], rpar[8], &CRn[i])

/* epipolar-constrained ZNCC correspondence */

zncc_max = (double *)realloc(zncc_max, ncl * sizeof(double)

for(i = 0; i < ncl; i++)

{

Lavg = 0.0;

for(x = -win_r; x <= win_r; x++)

for (y = -win__r; y <= win_r; y++)

{

Lcorr[x + win_r][y + win_r] =

(double)lim[CL[i].x + x + width * (CL[i]. y + y)

Lavg += Lcorr[x + win_r][y + win_r];

}

Lavg /= winarea;

zncc_max[i] = CORR_THRESH;

zncc_maxj = -1;

for(j = 0; j < 3; j++)

epi[j] = E[j][0] * CLn[i].x + E[j][1] * CLn[i]

+ E[j][2];

for(j = 0; j < ncr; j++)

{

if(fabs((epi[0] * CRn[j].x + epi[1] * CRn[j].y

+ epi[2]) / sqrt(epi[0] * epi[0]

+ epi[1] * epi[1])) < CORR_YTHRESH)

{

Ravg = 0.0;

for(x = -win_r; x <= win_r; x++)

for(y = -win_r; y <= win_r; y++)

(

Rcorr[x + win_r][y + win_r] =

APPENDIX B. SOFTWARE SOURCE CODE

}

(double)rim[CR[j].x + x + width * (CR[j

Ravg += Rcorr[x + win_r][y + win_r];

}

Ravg /= winarea;

zncc_top = zncc_boa = zncc_bob =0.0;

for(x = 0; x < CORR_WINSIZE; x++)

for(y = 0; y < CORR_WINSIZE; y++)

{

zncc_a = (Lcorr[x][y] - Lavg);

zncc_b = (Rcorr[x][y] - Ravg);

zncc_top += zncc_a * zncc_b;

zncc_boa += zncc_a * zncc_a;

zncc_bob += zncc_b * zncc_b;

}

zncc = zncc_top / sqrt(zncc_boa * zncc_bob);

if (zncc > zncc_max[i])

{

zncc_maxj = j;

zncc_max[i] = zncc;

P[i] = znccjnaxj;

if(zncc_maxj > -1)

for(j = 0; j < i; j++)

iff P[j] == zncc_maxj)

{
iff zncc_max[j] > zncc_max[i])

{

P[i 1 = -1;

break;

}

else

P[j] — l ;

APPENDIX B. SOFTWARE SOURCE CODE

I* change thresh */

np = 0;

forf i = 0; i < ncl; i++)

if(P[i] > -1)

np++;

lifdef DBG_SHOW_ITER_NUM

sprintf(point, "Detected %d points using threshold Id.",

np, thresh);

MessagePopup("Point Detection", point);

lendif

iff np < pmin)

{

iff threshinc > 0)

threshinc /= -2;

}

else iff np > pmax)

{

iff threshinc < 0)

threshinc /= -2;

1
else

break;

iff ! threshinc)

break;

thresh += threshinc;

iff thresh < FAST_MINTHRESH)

f

thresh = FAST_MINTHRESH;

threshinc = 0;

}

}

}

/* interest point verification */

iff ncl > 0 && ncr > 0)

APPENDIX B. SOFTWARE SOURCE CODE

{

Hfdef DBG_POINT_ACCEPT

if(! manual)

{

for(i = 0; i < ncl; i++)

{

if(P[i] == -1)

continue;

imaqOverlayPoints (ImgL, SCL[i] , 1, sovlc, 1,

IMAQ_POINT_AS_CROSS, NULL, NULL);

imaqOverlayPoints(ImgR, &CR[P[i]], 1, sovlc, 1,

IMAQ_POINT_AS_CROSS, NULL, NULL);

}

imaqDisplayImage(ImgL, 0, FALSE);

imaqDisplayImage(ImgR, 1, FALSE);

if(! ConfirmPopup("Point Detection",

"Accept these interest points?"))

break;

}

#endif

}

else

{

MessagePopup("Point Detection", "No interest points detected."

break;

}

/* === TRIANGULATION === */

sprintf(point, "..\\pydsc\\experiment\\demo\\%s.pts", nodeid);

fH = OpenFile(point, VAL_WRITE_ONLY, VAL_TRUNCATE, VAL_ASCII);

for(i = 0; i < ncl; i++)

{

if(P[i] == -1)

continue;

/* debug: interactive verification */

APPENDIX B. SOFTWARE SOURCE CODE 117

#ifdef DBG_CORR_VERIFY

imaqClearOverlay(ImgL, NULL);

imaqClearOverlay(ImgR, NULL);

imaqOverlayPoints(ImgL, SCL[i], 1, Sovlc, 1,

IMAQ_POINT_AS_CROSS, NULL, NULL);

imaqOverlayPoints(ImgR, &CR[P[i]], 1, sovlc, 1,

IMAQ_POINT_AS_CROSS, NULL, NULL);

imaqDisplayImage(ImgL, 0, FALSE);

imaqDisplaylmage(ImgR, 1, FALSE);

corrtot++;

if(! ConfirmPopup("Point Detection", "Do these points match?"))

continue;

else

corrpct++;

tendif

pt3d = stereo_triangulate(CLn[i], CRn[P[i]], R, T);

iff pt3d.z > TRI_ZMIN SS pt3d.z < TRI_ZMAX)

{

sprintf(point, "%lf, %lf, %lf", pt3d.x, pt3d.y, pt3d.z);

WriteLine (fH, point, -1);

}

1

tifdef DBG_CORR_VERIFY

sprintf(point, "Correspondence matched %.2f%% correctly.",

(100.0 * (float jcorrpct / (float)corrtot));

MessagePopupf "Point Detection", point);

fendif

CloseFile(fH);

/* === CLEANUP === */

free(CL);

freef CR);

APPENDIX B. SOFTWARE SOURCE CODE

free(CLn);

free(CRn);

free(P);

if(! manual)

free(zncc_max);

free(R);

free(E);

SetCtrlVaK panel, MAINPANEL_LED_CPU, FALSE);

/* === START PYDSC CALIBRATION === */

#ifndef DBG_DISABLE_PYDSC

sprintff point, "..\\pydsc\\pydsc_demo_%s.bat", nodeid);

system(point);

#endif

break;

}

return 0;

}

int CVICALLBACK calibrate (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData2)

{

int i, num_images, SL, SR, linked;

char nodeid[256], ldev[32], rdev[32];

char fn[256];

Image * SnapL, * SnapR, * ImgL, * ImgR;

switch (event)

{

case EVENT_COMMIT:

GetCtrlVaK panel, MAINPANEL_NUM_CAL_IMAGES, &num_images);

GetCtrlVaK panel, MAINPANEL_STR_NODEID, nodeid);

GetCtrlVaK panel, MAINPANEL_STR_CAML_DEV, ldev);

GetCtrlVaK panel, MAINPANEL_STR_CAMR_DEV, rdev);

GetCtrlVaK panel, MAINPANEL_BIN_LINKED, ilinked);

APPENDIX B. SOFTWARE SOURCE CODE

I* prepare image buffers */

SnapL = imaqCreatelmage(IMAQ_IMAGE_U8, 0);

SnapR = imaqCreatelmage(IMAQ_IMAGE_U8, 0);

ImgL = imaqCreatelmage(IMAQ_IMAGE_U8, 0);

ImgR = imaqCreatelmage(IMAQ_IMAGE_U8, 0);

for(i = 0; i < 2; i++)

imaqShowScrollbars(i, TRUE);

for(i = 1; i <= num_images; i++)

(

/* capture the images */

if(linked)

{

SL = vp_imaq_open(Idev);

SR = vp_imaq_open(rdev);

vp_imaq_snap_stereo(SL, SR, SnapL, SnapR);

vp_imaq_close(SL);

vp_imaq_close(SR);

}

else

(

SL = vp_imaq_open(ldev);

vp_imaq_snap (SL, SnapL);

vp_imaq_close(SL);

SR = vp_imaq_open(rdev) ;

vp_imaq_snap(SR, SnapR);

vp_imaq_close(SR);

}

/* convert to grayscale */

imaqCast(ImgL, SnapL, IMAQ_IMAGE_U8, NULL, 8);

imaqCast(ImgR, SnapR, IMAQ_IMAGE_U8, NULL, 8);

/* output to files */

APPENDIX B. SOFTWARE SOURCE CODE 120

sprintff fn, "%s-left%.2d.bmp", nodeid, i);

imaqWriteBMPFile(ImgL, fn, FALSE, NULL);

sprintff fn, "%s-right%.2d.bmp", nodeid, i);

iiiiaqWriteBMPFile (ImgR, fn, FALSE, NULL);

/* display images and ask for approval */

imaqDisplayImage(ImgL, 0, FALSE) ;

imaqDisplaylmage(ImgR, 1, FALSE);

iff ! ConfirmPopupf "Camera Calibration", "Accept this image pair?"))

i—;

}

MessagePopup("Camera Calibration", "Image acquisition complete.");

break;

}

return 0;

}

void CVICALLBACK param_load (int menuBar, int menultem, void *callbackData,

int panel)

f

int fH;

char file[MAX_PATHNAME_LEN], data[4096],

nodeid[256], ldev[32], rdev[32];

double lfcl, lfc2, lccl, lcc2, lkcl, lkc2, lkc3, lkc4, lkc5;

double rfcl, rfc2, reel, rcc2, rkcl, rkc2, rkc3, rkc4, rkc5;

double stl, st2, st3, soml, som2, som3;

iff FileSelectPopupf "", "*.dsc", "", "Load Node Parameters",

VAL_LOAD_BUTTON, 0, 1, 1, 0, file) == 1)

f

fH = OpenFilef file, VAL_READ_ONLY, NULL, VAL_ASCII);

ReadLine(fH, nodeid, 255);

ReadLinef fH, ldev, 31);

ReadLine(fH, rdev, 31);

ReadLinef fH, data, 4095);

APPENDIX B. SOFTWARE SOURCE CODE 121

}

sscanf(data, "%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,

%lf,Uf,%lf,Hf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf\

Slfcl, &lfc2, &lccl, &lcc2, slkcl, Slkc2, &lkc3, &lkc4, &lkc5,

Srfcl, &rfc2, Srccl, Srcc2, Srkcl, &rkc2, &rkc3, &rkc4, &rkc5,

Sstl, Sst2, &st3, Ssoml, &som2, Ssom3);

CloseFile(fH);

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

SetCtrlVal

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

MA1NPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL,

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

MAINPANEL.

.STR_NODEID, nodeid

STR_CAML_DEV, ldev

.STR_CAMR_DEV, rdev

NUM_CAML_FC1, lfcl

NUM_CAML_FC2, lfc2

NUM_CAML_CC1, lccl

NUM_CAML_CC2, lcc2

NUM_CAML_KC1, lkcl

NUM_CAML_KC2, lkc2

NUM_CAML_KC3, lkc3

NUM_CAML_KC4, lkc4

NUM_CAML_KC5, lkc5

NUM_CAMR_FC1, rfel

NUM_CAMR_FC2, rfc2

NUM_CAMR_CC1, reel

NUM_CAMR_CC2, rcc2

NUM_CAMR_KC1, rkcl

NUM_CAMR_KC2, rkc2

NUM_CAMR_KC3, rkc3

NUM_CAMR_KC4, rkc4

NUM_CAMR_KC5, rkc5

NUM_STERE0_T1, stl

NUM_STERE0_T2, st2

NUM_STERE0_T3, st3

NUM_STERE0_0M1, soml

NUM_STEREO_OM2, sora2

NUM_STEREO_OM3, som3

);

void CVICALLBACK parara_save (int menuBar, int menultem, void *callbackData,

int panel)

APPENDIX B. SOFTWARE SOURCE CODE 122

int fH;

char file[MAX_PATHNAME_LEN], data[4096],

nodeid[256], ldevf 32], rdev[32];

double lfcl, lfc2, lccl, lcc2, lkcl, lkc2, lkc3, lkc4, lkc5;

double rfcl, rfc2, reel, rcc2, rkcl, rkc2, rkc3, rkc4, rkc5;

double stl, st2, st3, soml, som2, som3;

if(FileSelectPopup("", "*.dsc", "", "Save Node Parameters",

VAL_SAVE_BUTTON, 0, 1, 1, 1, file))

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

GetCtrlVal

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

panel,

MAINPANEL_STR_NODEID, nodeid);

MAINPANEL_STR_CAML_DEV, ldev);

MAINPANEL_STR_CAMR_DEV, rdev);

MAINPANEL_NUM_CAML_FC1, &lfcl

MAINPANEL_NUM_CAML_FC2, &lfc2

MAINPANEL_NUM_CAML_CC1, Slccl

MAINPANEL_NUM_CAML_CC2, &lcc2

MAINPANEL_NUM_CAML_KC1, Slkcl

MAINPANEL_NUM_CAML_KC2, Slkc2

MAINPANEL_NUM_CAML_KC3, &lkc3

MAINPANEL_NUM_CAML_KC4, &lkc4

MAINPANEL_NUM_CAML_KC5, SlkcS

MAINPANEL_NUM_CAMR_FC1, Srfcl

MAINPANEL_NUM_CAMR_FC2, Srfc2

MAINPANEL_NUM_CAMR_CC1, Srccl

MAINPANEL_NUM_CAMR_CC2, Srcc2

MAINPANEL_NUM_CAMR_KC1, Srkcl

MAINPANEL_NUM_CAMR_KC2, &rkc2

MAINPANEL_NUM_CAMR_KC3, Srkc3

MAINPANEL_NUM_CAMR_KC4, Srkc4

MAINPANEL_NUM_CAMR_KC5, &rkc5

MAINPANEL_NUM_STERE0_T1, &stl

MAINPANEL_NUM_STEREO_T2, Sst2

MAINPANEL_NUM_STEREO_T3, Sst3

MAINPANEL_NUM_STERE0_0M1, Ssoml)

MAINPANEL_NUM_SIEREO_OM2, &som2)

MAINPANEL_NUM_STEREO_OM3, Ssom3)

APPENDIX B. SOFTWARE SOURCE CODE

sprintf(data, "%lf,%lf,%lf,%lf,llf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,

%lf,%lf,%lf,llf,%lf,%lf,%lf,%lf,Uf,%lf,llf,%lf",

lfcl, lfc2, lccl, lcc2, lkcl, lkc2, lkc3, lkc4, lkc5,

rfcl, rfc2, reel, rcc2, rkcl, rkc2, rkc3, rkc4, rkc5,

stl, st2, st3, soml, som2, som3);

fH = OpenFile(file, VAL_WRITE_ONLY, VAL_TRUNCATE, VAL_ASCII);

WriteLine(fH, nodeid, -1);

WriteLine(fH, ldev, -1);

WriteLine(fH, rdev, -1);

WriteLine(fH, data, -1) ;

CloseFile(fH);

1

}

int CVICALLBACK manual (int panel, int control, int event,

void *callbackData, int eventDatal, int eventData2)

{

int manual;

switch (event)

(

case EVENT_COMMIT:

GetCtrlVal(panel, MAINPANEL_BIN_FAST_MANUAL, Smanual);

SetCtrlAttribute(panel, MAINPANEL_NUM_FAST_THRESH, ATTR_DIMMED,

break;

)

return 0;

}

B.2.2 Stereo Library

stereo.h

#ifndef STEREO_H

#define STEREO_H

typedef struct (double x, y; } dxy;

typedef struct { double x, y, z; } dxyz;

APPENDIX B. SOFTWARE SOURCE CODE 124

dxyz stereo_make_dxyz(double * P) ;

double ** stereo_rodrigues(double theta, double phi, double psi);

double ** stereo_essential(double theta, double phi, double psi, double * T);

void stereo_normalize(int x, int y, double fcl, double fc2, double ccl,

double cc2, double kcl, double kc2, double kc3,

double kc4, double kc5, dxy * Cn);

dxyz stereo_triangulate (dxy CLn, dxy CRn, double ** R, double * T);

#endif

stereo.c

•include <ansi_c.h>

•include <math.h>

•include "stereo.h"

dxyz stereo_make_dxyz(double * P)

{

dxyz p;

p.x = P[0];

p.y = P[i];

P-z = P[2];

return p;

}

double ** stereo_rodrigues(double theta, double phi, double psi)

(

int i;

double ** R;

R = (double **)malloc(3 * sizeof(double *));

for(i = 0; i < 3; i++)

R[i] = (double *)malloc(3 * sizeoft double));

R[0][0] = cos(phi) * cos(psi);

R[0][1] = sin(theta) * sin(phi) * cos(psi)

- cos(theta) * sin(psi);

APPENDIX B. SOFTWARE SOURCE CODE 125

R[0][2] = cos(theta) * sin(phi) * cos(psi)

+ sin(theta) * sin(psi);

R[1][0] = cos(phi) * sin(psi);

R[1][1] = sin(theta) * sin(phi) * sin(psi)

+ cos(theta) * cos(psi);

R[1][2] = cos(theta) * sin(phi) * sin(psi)

- sin(theta) * cos(psi);

R[2][0] = -sin(phi);

R[2][1] = sin(theta) * cos(phi);

R[2][2] = cos(theta) * cos(phi);

return R;

double ** stereo_essential(double theta, double phi, double psi, double * T)

{

int i, j;

double ** R, ** E;

double Tx[3] [3];

R = stereo_rodrigues(theta, phi, psi);

E = (double **)malloc(3 * sizeoff double *));

for(i = 0; i < 3; i++)

E[i] = (double *)malloc(3 * sizeof(double));

for(i = 0; i < 3; i++)

{

Tx[i][i] = 0.0;

Tx [i] [(i + 1) % 3] = -T[(i + 2) % 3];

Tx[i][(i + 2) % 3] = T[(i + 1) % 3];

}

for(i = 0; i < 3; i++)

for(j = 0; j < 3; j++)

{

E[i][j] = R[i][0] * Tx[0][j] + R[i][1] * Tx[1][j]

+ R[i][2] * Tx[2][j];

APPENDIX B. SOFTWARE SOURCE CODE

r e tu rn E;

}

void stereo_normalize(int x, int y, double fcl, double fc2, double ccl

double cc2, double kcl, double kc2, double kc3,

double kc4, double kc5, dxy * Cn)

{

int i;

double r2, k_radial, xin, yin;

/* focal length and principal point */

Cn->x = xin = ((double)x - ccl) / fcl;

Cn->y = yin = ((double)y - cc2) / fc2;

/* radial/tangential distortion */

if(kcl != 0 M kc2 != 0 || kc3 != 0 || kc4 != 0 || kc5 != 0)

for(i = 0; i < 20; i++)

(

r2 = Cn->x * Cn->x + Cn->y * Cn->y;

k_radial = 1 + kcl * r2 + kc2 * r2 * r2 + kc5 * r2 * r2 * r2;

Cn->x = (xin - (2 * kc3 * Cn->x * Cn->y + kc4

* (r2 + 2 * Cn->x * Cn->x))) / k_radial;

Cn->y = (yin - (2 * kc4 * Cn->x * Cn->y + kc3

* (r2 + 2 * Cn->y * Cn->y))) / k_radial;

}

}

dxyz stereo_triangulate (dxy CLn, dxy CRn, double ** R, double * T)

{

int i;

double xt[3], xtt[3], u[3], XL[3];

double DD, Zt, Ztt, n_xt2, n_xtt2;

double dot_uT, dot_xttT, dot_xttu;

xt[0] = CLn.x;

xt[1] = CLn.y;

APPENDIX B. SOFTWARE SOURCE CODE

x t t [0] = CRn.x;

x t t [1] = CRn.y;

x t [2] = x t t [2] = 1.0;

dot_uT = do t_x t tT = do t_x t tu = n_xt2 = n_xt t2 = 0.0;

for(i = 0; i < 3; i++)

{

u[i] = R[i] [0] * x t [0] + R[i] [1]• * x t [1]

+ R[i] [2] * x t [2] ;

n_xt2 += x t [i] * x t [i] ;

n_xtt2 += x t t [i] * x t t [i] ;

}

for(i = 0; i < 3; i++)

{

dot_uT += u[i] * T[i] ;

dot_xttT += xtt[i] * T[i];

dot_xttu += u[i] * xtt[i];

}

DD = n_xt2 * n_xtt2 - dot_xttu * dot_xttu;

Zt = (dot_xttu * dot_xttT - n_xtt2 * dot_uT) / DD;

Ztt = (n_xt2 * dot_xttT - dot_uT * dot_xttu) / DD;

for(i = 0; i < 3; i++)

XL[i] = 0.5 * ((xt[i] * Zt)

+ ((R[0][i] * xtt[0] + R[1][i] *

+ R[2][i] * xtt[2]) * Ztt - T[i]))

return stereo_make_dxyz (XL);

}

Bibliography

[1] M. Akdere, U. Cetintemel, D. Crispell, J. Jannotti, J. Mao, and G. Taubin, "Data-Centric Visual Sensor

Networks for 3D Sensing," Proc. 2nd Intl. Conf. on Geosensor Networks, 2006.

[2] J. Jannotti and J. Mao, "Distributed Calibration of Smart Cameras," Proc. Intl. Wkshp. on Distributed

Smart Cameras, pp. 55-61, 2006.

[3] K. Obraczka, R. Manduchi, and J. J. Garcia-Luna-Aveces, "Managing the Information Flow in Visual

Sensor Networks," Proc. 5th Intl. Symp. on Wireless Personal Multimedia Communications, vol. 3, pp.

1177-1181,2002.

[4] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker, "GHT: A Geographic

Hash Table for Data-Centric Storage," Proc. 1st ACM Intl. Wkshp. on Wireless Sensor Networks and

Applications, 2002.

[5] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica, "Geographic Routing Without Lo

cation Information," Proc. 9th Intl. Conf. on Mobile Computing and Networking, pp. 96-108, 2003.

[6] D. Devarajan and R. J. Radke, "Distributed Metric Calibration of Large Camera Networks," Proc. 1st

Wkshp. on Broadband Advanced Sensor Networks, 2004.

[7] W. E. Mantzel, H. Choi, and R. G. Baraniuk, "Distributed Camera Network Localization," Proc. 38th

Asilomar Conf. on Signals, Systems and Computers, 2004.

[8] S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar, "Distributed Localization of Networked Cam

eras," Proc. 5th Intl. Conf. on Information Processing in Sensor Networks, pp. 34-42, 2006.

[9] C. Beall and H. Qi, "Distributed Self-Deployment in Visual Sensor Networks," Proc. Intl. Conf. on

Control, Automation, Robotics and Vision, pp. 1-6, 2006.

[10] C. J. Taylor and B. Shirmohammadi, "Self Localizing Smart Camera Networks and their Applications

to 3D Modeling," Proc. Intl. Wkshp. on Distributed Smart Cameras, pp. 46-50, 2006.

[11] R J. Besl, "Active, Optical Range Imaging Sensors," Machine Vision and Applications, vol. 1, no. 2, pp.

127-152, 1988.

128

BIBLIOGRAPHY 129

[12] J. Salvi, C. Matabosch, D. Fofi, and J. Forest, "A Review of Recent Range Image Registration Methods

with Accuracy Evaluation," Image and Vision Computing, vol. 25, no. 5, pp. 578-596, 2007.

[13] C.-S. Chen, Y.-P. Hung, and J.-B. Cheng, "RANSAC-Based DARCES: A New Approach to Fast Au

tomatic Registration of Partially Overlapping Range Images," IEEE Trans, on Pattern Analysis and

Machine Intelligence, vol. 21, no. 11, pp. 1229-1234, 1999.

[14] P. J. Besl and N. D. McKay, "A Method for Registration of 3-D Shapes," IEEE Trans, on Pattern

Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239-256, 1992.

[15] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, "The Trimmed Iterative Closest Point Algorithm,"

Proc. Intl. Conf. on Pattern Recognition, pp. 545-548, 2002.

[16] C. Harris and M. Stephens, "A Combined Corner and Edge Detector," Proc. Alvey Vision Conference,

pp. 147-151, 1988.

[17] S. M. Smith and J. M. Brady, "SUSAN - A New Approach to Low Level Image Processing," Intl.

Journal of Computer Vision, vol. 23, no. 1, pp. 45-78, 1997.

[18] A. Baumberg, "Reliable Feature Matching Across Widely Separated Views," Proc. IEEE Conf. on Com

puter Vision and Pattern Recognition, pp. 1774-1781, 2000.

[19] K. Mikolajczyk and C. Schmid, "Scale and Affine Invariant Interest Point Detectors," Intl. Journal of

Computer Vision, vol. 60, no. 1, pp. 63-86, 2004.

[20] D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," Intl. Journal of Computer Vi

sion, vol. 60, no. 2, pp. 91-110,2004.

[21] K. Mikolajczyk and C. Schmid, "A Performance Evaluation of Local Descriptors," IEEE Trans, on

Pattern Analysis and Machine Intelligence, vol. 10, no. 27, pp. 1615-1630, 2005.

[22] E. Rosten and T. Drummond, "Fusing Points and Lines for High Performance Tracking," Proc. 10th

IEEE Intl. Conf on Computer Vision, pp. 1508-1511, 2005.

[23] E. Rosten and T. Drummond, "Machine Learning for High-Speed Corner Detection," Proc. 9th Euro

pean Conf. on Computer Vision, pp. 430-443, 2006.

[24] H. Bay, T. Tuytelaars, and L. Van Gool, "SURF: Speeded Up Robust Features," Proc. 9th European

Conf. on Computer Vision, pp. 404-^117, 2006.

[25] P. Moreels and P. Perona, "Evaluation of Features Detectors and Descriptors Based on 3D Objects,"

Proc. 10th IEEE Intl. Conf. on Computer Vision, pp. 800-807,2005.

[26] E. Vincent and R. Laganiere, "Matching with Epipolar Gradient Features and Edge Transfer," Proc. Intl.

Conf. on Image Processin, pp. 277-280, 2003.

BIBLIOGRAPHY 130

[27] E. Vincent and R. Laganiere, "Models from Image Triplets Using Epipolar Gradient Features," Image

and Vision Computing, vol. 25, no. 11, pp. 1699-1708, 2007.

[28] D. Scharstein and R. Szeliski, "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspon

dence Algorithms," Intl. Journal of Computer Vision, vol. 47, no. 1, pp. 7-42, 2002.

[29] J. J. Koenderink and A. J. van Doom, "Geometry of Binocular Vision and a Model for Stereopsis,"

Biological Cybernetics, vol. 21, pp. 29-35, 1976.

[30] R. Y. Tsai, "An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision," Proc.

IEEE Conf. on Computer Vision and Pattern Recognition, pp. 364—374, 1986.

[31] R. Y. Tsai, "A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrol

ogy Using Off-the-Shelf TV Cameras and Lenses," IEEE Journal of Robotics and Automation, vol. 3,

no. 4, pp. 323-344, 1987.

[32] Z. Zhang, "A Flexible New Technique for Camera Calibration," IEEE Trans, on Pattern Analysis and

Machine Intelligence, vol. 22, no. 11, pp. 1330-1334,2000.

[33] H. C. Longuet-Higgins, "A Computer Algorithm for Reconstructing a Scene from Two Projections,"

Nature, vol. 293, pp. 133-135, 1981.

[34] E. W. Dijkstra and C. S. Scholten, "Termination Detection for Diffusing Computations," Information

Processing Letters, vol. 11, no. 1, pp. 1-4, 1980.

[35] K. M. Chandy, J. Misra, and L. M. Haas, "Distributed Deadlock Detection," ACM Trans, on Computer

Systems, vol. 1, no. 2, pp. 144-156,1983.

[36] H. A. L. van Dijck, F. van der Heijden, and M. J. Korsten, "Model Based Object Recognition Using

Stereo Vision and Geometric Hashing," Proc. 2nd Ann. Conf. for the Advanced School for Computing

and Imaging, pp. 253-358, 1996.

[37] Y Sumi and F. Tomita, "3D Object Recognition Using Segment-Based Stereo Vision," Proc. Asian

Conf. on Computer Vision, pp. 249-256, 1998.

[38] E. Cuevas, D. Zaldivar, and R. Rojas, "Stereo Tracking," Technical Report B 05-17, Freie Universitt

Berlin, Fachbereich Mathematik und Informatik, 2005.

[39] S. M. Khan, O. Javed, and M. Shah, "Tracking in Uncalibrated Cameras with Overlapping Field of

View," Proc. Intl. Wkshp. on Performance Evaluation of Tracking and Surveillance, 2001.

[40] Y Li, A. Hilton, and J. Illingworth, "A Relaxation Algorithm for Real-Time Multiple View 3D-

Tracking," Image and Vision Computing, vol. 20, no. 12, pp. 841-859, 2002.

[41] E. D. Cheng and M. Piccardi, "Matching of Objects Moving Across Disjoint Cameras," Proc. Intl. Conf.

on Image Processing, pp. 1769-1772,2006.

BIBLIOGRAPHY 131

[42] E. G. Rieffel, A. Girgensohn, D. Kimber, T. Chen, and Q. Liu, "Geometric Tools for Multicamera

Surveillance Systems," Proc. Intl. Conf. on Distributed Smart Cameras, pp. 132-139, 2007.

[43] F. M. S. Ramos and F. M. Patricio, "Application of Distributed Platforms in a Video Surveillance Sys

tem," Real-Time Imaging, vol. 7, no. 5, pp. 447-455, 2001.

[44] M. Quaritsch, M. Kreuzthaler, B. Rinner, and B. Strobl, "Decentralized Object Tracking in a Network

of Embedded Smart Cameras," Proc. Intl. Wkshp. on Distributed Smart Cameras, pp. 99-105,2006.

[45] S. Fleck, F. Busch, P. Biber, and W. Strasser, "3D Surveillance A Distributed Network of Smart Cam

eras for Real-Time Tracking and its Visualization in 3D," Proc. Conf. on Computer Vision and Pattern

Recognition, pp. 118-118, 2006.

[46] O. Faugeras, N. Ayache, and Z. Zhang, "A Preliminary Investigation of the Problem of Determining

Ego- and Object Motions from Stereo," Proc. Intl. Conf. on Pattern Recognition, pp. 242-246,1988.

[47] J.-Y. Shieh, H. Zhuang, and R. Sudhakar, "Motion Estimation From A Sequence Of Stereo Images: A

Direct Method," IEEE Trans, on Systems, Man and Cybernetics, vol. 24, no. 7, pp. 1044-1053, 1994.

[48] M. Ringer and J. Lasenby, "Modelling and Tracking Articulated Motion from Multiple Camera Views,"

Proc. British Machine Vision Conf, 2000.

[49] L. Snidaro, C. Piciarelli, and G. L. Foresti, "Activity Analysis for Video Security Systems," Proc. IEEE

Intl. Conf. on Image Processing, pp. 1753-1756, 2006.

[50] C. Wu and H. Aghajan, "Gesture Analysis in Multi-Camera Networks," Proc. Intl. Wkshp. on Dis

tributed Smart Cameras, pp. 110-115, 2006.

[51] C. Wu and H. Aghajan, "Collaborative Face Orientation Detection in Wireless Image Sensor Networks,"

Proc. Intl. Wkshp. on Distributed Smart Cameras, pp. 115-120, 2006.

[52] J. Matas, O. Chum, M. Urban, and T. Pajdla, "Robust Wide-Baseline Stereo from Maximally Stable

Extremal Regions," Image and Vision Computing, vol. 22, no. 10, pp. 761-767,2004.

[53] P. Firoozfam and S. Negahdaripour, "Theoretical Accuracy Analysis of N-Ocular Vision Systems for

Scene Reconstruction, Motion Estimation, and Positioning," Proc. 2nd Intl. Symp. on 3D Data Process

ing, Visualization, and Transmission, pp. 888-895, 2004.

[54] S. Soro and W. Heinzelman, "Camera Selection in Visual Sensor Networks," Proc. IEEE Conf. on

Advanced Video and Signal Based Surveillance, pp. 81-86, 2007.

[55] O. Younis and S. Fahmy, "A Scalable Framework for Distributed Time Synchronization in Multi-hop

Sensor Networks," Proc. 2nd IEEE Communications Society Conf. on Sensor and Ad Hoc Communica

tions and Networks, pp. 13-23, 2005.

BIBLIOGRAPHY 132

[56] Q. Li and D. Rus, "Global Clock Synchronization in Sensor Networks," IEEE Trans, on Computers,

vol. 55, no. 2, pp. 214-226,2006.

[57] M. Raynal, Distributed Algorithms and Protocols, John Wiley & Sons, 1988.

[58] O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint, The MIT Press, 1993.

[59] Y. Ma, S. Soatto, J. Kosecka, S. S. Sastry, An Invitation to 3-D Vision: From Images to Geometric

Models. Springer-Verlag, 2004.

[60] E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision, Prentice Hall, 1998.

[61] Z. Zhang and O. Faugeras, 3D Dynamic Scene Analysis: A Stereo Based Approach, Springer, 1992.

[62] D. Mills, Network Time Protocol {Version 3): Specification, Implementation and Analysis, IETF RFC

1305, March 1992; http://www.rfc-editor.org/rfc/rfcl305.txt

[63] A. Jacobs, "An Interest Point Detector and Local Image Descriptor for 3D Rigid Scenes,"

IEEE Technical Committee on Digital Libraries Bulletin, vol. 2, no. 2, http://www.ieee-

tcdl.org/Bulletin/v2n2/jacobs/jacobs.html (current 2006).

[64] J. Bouguet, Camera Calibration Toolbox for Matlab, http://www.vision.caltech.edu/bouguetj/calib.doc

(current April 13,2007).

[65] Python Software Foundation, Python 2.5 Documentation, http://docs.python.org (current September 19,

2006).

[66] SciPy Project, NumPy Example List, http://scipy.org/Numpy_ExampleJList (current February 26,2008).

http://www.rfc-editor.org/rfc/rfcl305.txt
http://www.ieee-
http://tcdl.org/Bulletin/v2n2/jacobs/jacobs.html
http://www.vision.caltech.edu/bouguetj/calib.doc
http://docs.python.org
http://scipy.org/Numpy_ExampleJList

Vita Auctoris

Aaron Mavrinac was born in 1982 in Windsor, Ontario. He graduated from Holy Names High School in 2001.

From there he went on to the University of Windsor, where he obtained a B.A.Sc. in Electrical and Computer

Engineering in 2005. He is currently a candidate for the Master of Applied Science degree in Electrical and

Computer Engineering at the University of Windsor, and plans to graduate in Spring 2008.

133

	Feature-based calibration of distributed smart stereo camera networks
	Recommended Citation

	ProQuest Dissertations

