University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

2001

SpiderNet: A multi-server code service model
design for computational grid support.

Xiaohong. Yu
University of Windsor

Follow this and additional works at: http://scholaruwindsor.ca/etd

Recommended Citation

Yu, Xiachong,, "SpiderNet: A multi-server code service model design for computational grid support.” (2001). Electronic Theses and
Dissertations. Paper 3562.

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F3562&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3562&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3562&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/3562?utm_source=scholar.uwindsor.ca%2Fetd%2F3562&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

SpiderNet----A Multi-Server Code Service Model Design for
Computational Grid Support

by

Xiaohong Yu

A Thesis
Submitted to the Faculty of Graduate Studies and Research
Through the School of Computer Science
In Partial Fulfillment of the Requirements for
The Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

© 2001 Xiaohong Yu

il

National Library Bibliothéque nationale
of Canada du Camulaue n
sitions and <itions et
a'ﬁﬁ%graphic Services gqrv‘l‘ces biblizgtaphiques
395 W Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your e Votre réddrence
Our e Notre rélérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése m des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-67605-6

Canadi

Abstract

One goal of a Computational Grid is to aggregate ensembles of shared, heterogeneous,
and distributed resources to provide computational "power” [Foster00]. The increasing
use of Web technology Internet and Intranet is making the Web an attractive framework
for solving distributed applications, in particular, because the interface can be made
platform independent. Several systems have been developed that make distributed
computing available. However. these systems are either not web-based or not taking the
enterprise Java technology [Chen97]. Typically, those systems are unnecessarily

complicated and require long development.

This thesis is an approach to research and development on distributed, multi-server code
service system model ---SpiderNet. While a service-based architecture for distributed
computer systems is not new. a theory and practice approach on using EJB in multi-
server environment is presented in this thesis report. It adapts enterprise Java and web
application server technology trying to solve the fundamental problem of multi-server

model: work balance for efficiency and fail over for availability.
This thesis also demonstrates that with using Web and enterprise Java development

toolkit. it is possible to build applications using a graphical “drag-and-drop™ and web-
based interface. thereby speeding up the application development.

m

To My Wife and My Family

Acknowledgements

There is a beauty which God gives at birth, and which withers as a flower. And there is a
beauty which God grants when by his grace men are born again. That kind of beauty
never vanishes but blooms eternally. There are many people I would like to thank for
their helps. Without their helps. it’s impossible to finish this thesis.

Thanks go to a great supervisor, Dr. Robert D Kent. His comments, encouragement. and
patience were invaluable to the completion of this thesis. I would also like to
acknowledge c3.ca and HPC Windsor for use of resources and SHARCnet for the

awarding of support of research during the summer of 2001.

Thanks go to Dr. Saba and Dr. Schlesinger, for their valuable suggestions. Thanks also go
to Dr. Morrissey for her chairing my thesis defense. I'm thankful to my committee for
being very accommodating. [would like to thank Mary, Paul and other people of the
School of Computer Science for their helps.

I would like to thank my wife Xiuling and my daughter Helen. for their understanding,
consistent support and encouragement. During my study period, there were so many days
and nights that [couldn’t stay with them when they need me so much. Special thanks to

my parents and relatives for their unconditional love and silent support.

Table of Contents

Abstract
Dedication
Acknowledgement
Chapter

1. Introduction

1.1 Motivation
1.2 Objective
1.3 Organization of This Thesis

2. Background: Distributed System and Component Technology

2.1 Distributed System Architecture and Characteristics in Heterogeneous

Network

2.2 Web Information System Technology

2.3 Components and Enterprise Platform Technology

2.3.1
23.2
2.3.3
234
23.5

CORBA
Serviet
JSP
EJB

Jini and JavaSpaces

2.4 Summary of Component Technology

2.4.1
24.2

EJB and CORBA
EJB and Jini

2.5 The Extensible Markup Language (XML)

3. Enterprise Development Platform

3.1 Concept of Framework
3.2 J2EE Platform

3.3 Using Enterprise JavaBeans

33.1
332

Introducing EJB
How to Use EJB

in
v

N & W = -

()

9

10
10
12
12
13
14
14
15
17
18
18
19
21
21
27

3.4 High Light of Previous Research — Grid Computation and Framework 28

34.1

CodeNet

28

3.4.2 Review Some Examples of Current Grid Computation and

Multi-Server Technology

4. Using EJB in Multi-Server Environment

4.1

4.2

4.3

4.4

4.5

4.6
4.7

Basic Concepts
4.1.1 Stateful and Stateless Request
4.1.2 Workload Balancing and Fail Over
4.1.3 Idempotent
4.1.4 Smart Stubs
Stateless Session Bean
4.2.1 Workload Balancing
4.2.2 Fail Over
Stateful Session Bean
4.3.1 State Replication
4.3.1.1 Database Oriented Replication
4.3.1.2 Memory Based Oriented Replication
4.3.2 Workload Balancing
4.3.3 Fail Over
Entity Bean
4.4.1 Workload Balancing
4.4.2 Fail Over
4.4.3 Caching
4.4.3.1 Read-Only Caches
4.43.2 Read-Write Caches
EJB Clustering
4.5.1 Container
4.5.2 Home Stub
4.5.3 Remote Stub
Summary
EJB Future Development
4.7.1 Functional Separation
4.7.2 Firewall Restriction

29
31
32
32
32
33
33
35
35
36
38
39
39
39
40

42
43
43
43
45

22 &S

51
52
53
53

4.73
4.7.4
4.7.5

Dynamic EJB Generation Proxy
Transaction and Security Context Definition
Multiple Developers Support

S. Prototype Design and Implementation

5.1
5.2
53

5.4
S.5
5.6
S.7

System Architecture

Development Environment

Multi-Server Configuration

53.1
53.2
533

Default and global properties
Cluster properties

Per-server properties

JDBC Connection Pools

System Features

Design Implementation
EJB Classes

5.71
5.7.2
5.73
5.7.4
5.7.5
5.7.6

CodeServiceBean
OrderServiceBean
OrderBean
ServiceBean
CodeBean
UnitBean

5.8 Security

5.9 System Operations

§.10 Limitations

6. Conclusions and Future Work

6.1 Contributions and Conclusions

6.2 Discussions and Future Development

Bibliography

Appendix A
VITA AUTORIS

55

2238 RA

61
61
61
63

65
70
70
70
70
70
70
70
72
73

81
81

2L

Vil

Chapter 1 Introduction

This thesis is primarily concerned with using enterprise java technology for multi-server

and web application model design.

1.1 Motivations

Today the Internet becomes a standard vehicle for information exchange and very
attractive resources for distributed computing. As more computer involved in Internet
with diversity in hardware and software. [Seige00, Schne97] networked computing
environment is becoming more diverse. Large-scale distributed software projects have
often been specialized for their domain due to the limitations of communication

technology and lack of common middleware technology.

Today’s enterprise exposes 6 challenges for application developers {Subra00]:
Responsivencss: High-paced. fast-changing information driven economy means that
responding quickly to new information is critical in establishing and maintaining a
competitive edge.

Programming Productivity: To develop and deploy applications as effectively and as
quickly as possible is very important.

Reliability and Availability: To get system running continuously with some fault
tolerance ability is critical to success.

Security: To implement an effective security model is necessary and becomes more and
more difficult.

Scalability: To make the application grow and meet new demand both in its operation
and user base is very important. since an application’s potential user may be millions of
individual users through the Internet. The scalability requires not only the ability to
handle a large increase in the number of clients but also effective use of system resources.
Integration: Since there are many developed system and much of information exists as
data in old and outdated information systems, it’s necessary for the new applications to
be able to integrate with the existing information system. The ability to combine old and
new technologies is key to the success of enterprise application development. Industry

experience shows that integrating these resources can take up to 50% of application
development time [SUN10].

The use of structured project management is critical to the success of current software
development projects. With the appearance of Giga-byte network and the development of
component and framework technology, it’s possible to develop a large, effective, multi-
tier and distributed application on heterogeneous platforms and resources. In contrast to
traditional 2-tier client-server systems, systems of 3 or more tiers are the current
technology trend. With the development of middle tier and framework technology, the
applications will share a common need to couple devices that have not traditionally been
thought as part of the application. [Foster00].

The research and development of grid computation has been started a few years ago and
several grid application systems have been successfully developed. However, most of the
systems are based on traditional distributed technology that is complex and inflexible

instead of simple. uniform platform. Valuable effort and time are wasted due to repeat

development of the same works.

Component technology and Enterprise Java technology have developed rapidly in recent
vears. The research and development of B2B., B2C framework greatly affects the
application development pattern and developing time [Butle00]. The framework not only
make it possible to accomplish file transfer, but also to direct access to computer,
software. data and other resources. All the resources can work as collaborative problem
solving and resource sharing/brokering. We will discuss more dciails about framework

and component technology in the following chapter.

To build a framework in large, it need vary kinds of support including OS and database
management system providers. middleware and tool vendors, vertical market
applications. component developers and research institutions. A robust and flexible
platform needs to be implemented on the wide variety software and hardware. Data
representation format, transfer protocols, and underlying infrastructure support need to be

standardized with flexibility. This infrastructure should be composed by many flexible

components.

The Java 2 Platform. Enterprise Edition (J2EE) defines the standard for developing
multitier enterprise applications. J2EE simplifies enterprise applications by basing them
on standardized modular components, a set of services to those components, and the
ability of handling many details of application behavior automatically, without complex
programming. The portal, openness and standardize of J2EE platform make it an ideal
platform for building large scale distributed system.

1.2 Objective
Multi-client and multi-server is a fundamental problem for building distributed
infrastructure framework. Workload balance makes servers working corroboratively. thus

improve the system’s efficiency. Fail over makes the system more reliable and available.

Our object in this thesis is giving an approach on designing distributed, multi-server
computing model. We wish to design and construct the appropriate software model to
support the available of possible database tools. networked type configuration and
protocol. support for independent code development carry out within the context of a
local database and extended to permit sharing, modification and reversionning of
software. A prototype of multi-server system for code service---SpiderNet has been
designed and built. Using Web Application Server (WAS) as the middle tier, SpiderNet
system has multiple servers. It provides registry, user search, user update, code retrieve,
code generate and update for multiple users concurrently access. The system can charge
users according to the usage of the codes. It has an on-line billing system. It will be
posted as a Website and can be accessed by global users concurrently. As a multi-server
system. it possesses workload balancing and fault tolerance. Based on this design model,

security. B2B. B2C and more complicated distributed applications can be further
developed.

In this thesis report, we give an approach of adapting enterprise Java and web server
technology to provide code service for users. In the following chapters, we will discuss

component technology and multi-server prototype design.

The objectives in this thesis can be summarized as the followings:
e To develop a new approach for multi-server model design.
e To develop a multi-server system that can handle workload balance and fail over.
e To simplify design and development by adapting EJB technology on J2EE
platform.

e To develop a prototype to validate this approach.

1.3 Organization of the Thesis

The remaining part of this thesis is organized as the following:

In chapter 2. we will introduce the component technology. We will briefly introduce
servlets. CORBA. JSP. EJB. Jini and JavaSpaces. These component technologies are
comer stone of J2EE platform. We will also introduce XML technology. They are
essential for our prototype design. In the final part of this chapter, we will do the

comparison of these technologies.

In chapter 3. we will introduce platform and EJB technology. We will give more detail of
the design. architecture and utilization of EJB. At the end of this chapter, we will briefly

overview the research of CodeNet and some existing computational grid application
systems.

In chapter 4. we will explain using EJB in multi-server design. How EJB can handle
workload balance and fail over in distributed system. We will introduce some concepts
such as Idempotent. Smart stub. etc. EJB future development will also be discussed.

In chapter 5. we will cover the prototype design and implementation. Although it is

implemented on Windows platform, it can run on any platform with Java virtual machine.

This prototype is not complete, but it sufficiently demonstrates many concepts and our
design ideas. It will be posted as a Web site with its homepage.

Finally in chapter 6. we will cover the conclusions and discuss the future works.

Chapter 2
Background: Distributed System and Component Technology

A distributed system is a collection of independent computers that appear to the users of
the system as a single computer. Distributed data processing refers to a data processing
arrangement in which the data is decentralized and scattered in various places [Singh99].
Hence. processing occurs in a number of distributed locations and only semi-processed
information is communicated on data communication lines from remote points to the
central computers. It requires two or more distinct processors to complete a single
transaction, and the distribution of applications and business logic is spread across

multiple processing platforms.

2.1 Distributed System Architecture and Characteristics in Heterogeneous Network
Figure 2.1 illustrates the client using a distributed object model. Client/server architecture
is a versatile. message-based modular infrastructure intended to improve usability,
flexibility. interoperability. and scalability as compared to a centralized, mainframe. time-
sharing approach to computing [Siege00]. This model is typically used in traditional
distributed programming.

| S

Client Distributed Object
l emote Interface

emote Interface T
Skeleton
Stub

Network
(TCP/TP...)

Network
(TCP/P...)

Figure 2.1 Distributed Object Model

Client/server systems cannot easily take advantage of new technologies, such as network
computers. A classic client/server application is a fat client, in which the client has to
have run-time environment. The client program accesses an RDBMS, shared files on a
file server. or both. The clientserver system can off-load some of the business logic from
clients onto a series of unattended computers; the extra processing tier gives the
client/server application some of the attributes of a Web-based application. In the case of
poorly designed web-based application, a substantial amount of business logic is
performed in Java-Script or Java applet [Manol99].

In large enterprise environments, the performance of a two-tier architecture client/server
usually deteriorates as the number of online users increases. This is primarily due to the
connection process of the DBMS server. The DBMS maintains a thread for each client
connected to the server. Even when no work is being done, the client and server exchange
keep-alive messages on a continuous basis. If something happens to the connection, the
client must reinitiate the session [Singh99].

In heterogeneous network computing, influencing how any system will behave in
production are its performance. reliability, network traffic, administrative, security, and

workload balance characteristics. To complicate matters further, these factors are

interrelated.

Many middle tier software try to solve this kind of problem. Some of them, such as ORB
(Object Request Broker). make a certain kind of distributed computing available.
However. there is no concept of an “operating system™, where system-level functionality
is handled automatically. The lack of implicit system-level infrastructure places an

enormous burden on the application developer [Monso(00]

Some database vendors provide transaction processing and some kinds of system level
capabilities. Even this. it is not a framework and does not work well in heterogeneous

network environment. Distributed object architecture is required in such an environment.

Web-based applications represent a move away from the empowering effect of desktop
computing toward centralized computing. A classic web-based application uses a browser
for data presentation, WASs for business logic, and database servers for storage. The

WAS provides naming. security. transactions and workload management [BrownO1].

A heterogeneous computing environment, in which different types of processing resource
and interconnection technologies are effectively and efficiently used, has the potential to
maximize performance and cost effectiveness of a wide range of scientific and distributed
applications. Scalability is important for distributed computing. Scalability is one of those
things that developers do not always consider when they start a project, but that becomes

a major issue when it is successfully implemented [Subra00].

2.2 Web Information System Architecture

The Web and Web-based protocols (HTTP, HTML, XML, SOAP, etc.) are pervasive,
they penetrate corporate firewalls, and they provide a strong infrastructure that spans
consumer-to-business, business-to-business, and intra-enterprise types of relationships.

The Web application topology consists of the following items:

Internet and Intranet Clients: These clients communicate with WASs through using
Internet standard protocols. such as TCP/IP, HTTP, and HTML, to access business logic

and data. The primary role of the client is to accept and validate user input, and to present
results received from the WAS to the user.

Infrastructure Services: These provide the WAS and its business logic components
with directory and security services. Included in these services are firewalls that prevent

an organization’s network from exposure when connecting to the Internet and prevent
unauthorized access to internal data and computing resources.

Web Application Servers: These are the hubs of the web application topology

processing requests from clients by orchestrating access to business logic and data on the

server and returning web pages composed of static and dynamic content back to the
clients. The WASs provide a wide range of programming, data access, and application

integration services for developing the business logic part of a web application.

External Services: These consist of existing mission-critical application and data within
the enterprise as well as external partner service, such as payment services, financial
services, and external information services. Most often, these existing applications and

services control the company’s core business processes.

To develop a successful web application, in addition to designing the system architecture
and doing software engineering. various skills are needed. such as artistic, production and
business organization [Fred01]. Usually, the project is required to be available on the
market in a short time. To develop a large-scale Web distributed project successfully. it’s

hard to imagine without using component technology.

2.3 Components and Enterprise Platform Technology

Components are objects with additional capabilities that enable them to function in large-
scale information system. These additional features include the ability to do the following
tasks [IBM. MatenOl1}:

o Create and destroy objects

e Provide an object with a location in a distributed network
e Establish a system identity for an object

e Store the state of an object in a resource manager

e Handle the activation and paging of an object

e Map transaction semantics to an object’s state transitions
e Coordinate an object’s locks with its underlying data store
e Control access to an object

e Search for an object

o Notify an object that an event has occurred

e Transport the state of an object across a distributed network

Server-side components can be bought and sold as independent pieces of executable
software. They conform to a standard component model and can be executed without
direct modification in a server that supports that component model. Server-side
component models often support attribute-based programming, which allows the runtime
behavior of the component to be modified when it is deployed, without having to change
the programming code in the component. The server administrator can declare a server-
side component’s transactional. security, and persistence behavior by setting these
attributes to specific values. In the following we briefly discuss the existing component

models:

2.3.1 CORBA

The Common Object Request Broker Architecture (CORBA) specification defines
communications between distributed objects and integrated object services [Siege00].
CORBA provides a common framework for developing applications that use
components. It defines the software services that enable objects to communicate
transparently across a distributed computer network. CORBA is language and platform
independent and can handle objects that are implemented with different vendor packages,
located on different machines. coded in different programming languages, and run on

different operating systems.

CORBA specifies the common object services, such as naming, life cycle, transaction,

security. persistence. which are used to manage distributed components.

2.3.2 Servlets

Java servlets are a complementary technology to applets. A serviet is a Java program that
runs on a Web server. A special interface allows it to receive requests from a web
browser. such as a user-initiated submission from an HTML form. Serviets typically
access enterprise resources in response to an incoming request, and then format new
HTML pages dynamically for transmission back to the browser. To simplify HTML
generation. servlets can use Java Server Page (JSP) scripting [Subra00].

10

Servlets use the Java Servlet Application Program Interface (API) and its associated
classes and methods. Servlets can also use Java class packages that extend and add to the
Java Servlet APL Like applets, servlets are part of the Java standard and are designed to
run across diiferent platforms [SUN]. However, unlike applets, Java servlets do not use
the Java Virtual Machine (JVM) supported by a browser. Serviets run on a web server.
This makes their behavior more reliable and predictable.

The serviet-based application retains Internet access and the ability to process logic
locally at the client. It reduces the costs of administration and client hardware. Compared
to the applet-based application. the servlet-based application avoids the overhead
associated with downloading an applet. It reduces concerns related to the capabilities of
the client browser. since it does not require a JVM. It also avoids restrictions for

communicating through a firewall.

Unlike the widely used Common Gateway Interface (CGI) programs, which require an
entire process to handle user requests, servlets can handle user requests by using threads.

This capability makes servlets much more efficient than CGI programs [Calla0Ol,
Subra00].

A servlet can be loaded automatically when the web server is started, or it can be loaded
the first time a client requests its services. After being loaded, a servlet continues to run,

waiting for additional client requests. A servlet can perform a wide range of functions
including [SUN]:

e Handle connections with multiple clients, accepting input from and broadcasting
results to the multiple clients. A serviet can handle multiple clients at the same
time.

e Create and return an entire HTML Web page containing dynamic content based

on the client request.

11

e Create part of an HTML Web page that can be embedded in an existing HTML
page

e Communicate with other resources, including databases and Java-based
applications.

e Open a new connection from the server to an applet on the browser and keep the
connection open. allowing many data transfers on the single connection. The
applet can also initiate a connection between the client browser and the server,
allowing the client and server to easily and efficiently carry on a conversation.
The communication can be through a custom protocol or through a standard such
as [IOP.

e Filter data by MIME type for special processing, such as image conversion and
server-side includes (SSI).

e Provide customized processing to any of the server’s standard routines. For

example. a servlet can modify how a user is authenticated.

2.3.3 Java Server Pages (JSP)

The function of JSP is based on Sun Microsystems JavaServer Pages Specification. JSP
files are similar in some ways to server-side includes that compose of n static HTML
files. because both embed servlet functionality into the web page [Wahli00]. However. in
a server-side include. a call to a servlet is embedded within a special servlet tag; in JSP

pages. Java servlet code (or other Java code) is embedded directly into HTML page.

One of the many advantages of JSP pages is that they enable one to effectively separate
the HTML coding from the business logic in the web pages. JSP pages can be used to

access reusable components, such as servlet, Java beans, enterprise beans, and Java-based
Web applications.

2.3.4 Enterprise Java Beans
Enterprise Java Beans (EJBs) [Maten0l, Monso00, Roman99] are the standard
component architecture for building distributed applications in the Java programming

language. They are server-side components that must reside in a home environment and

12

run in an execution environment. The execution environment must provide run-time

service such as transaction support, persistence, and resource management.

Handling multiple users. transactions, and allowing the application to scale are parts of a
business framework that are much more generic than the business processes themselves.
The enterprise JavaBeans specification tries to free the application developer from
dealing with low-level issues such as multi-threading, caching, concurrency control, and

resource management. More detail will be covered in the next chapter.

2.3.5 Jini and JavaSpaces

Jini network technology provides simple mechanisms, which enable devices to plug
together to form a community without any planning. installation, or human intervention.
Each device provides services that other devices in the community may use [SUNI11].

These devices provide their own interfaces. which ensures reliability and compatibility.

Jini technology uses a lookup service with which devices and services register [Jini].
When a device plugs in. it goes through an add-in protocol. called discovery and join-in.
The device first locates the lookup service (discovery) and then uploads an object that

implements all of the services' interfaces (join).

-

To use a service. a person or a program locates it using the lookup service. The service's
object is copied from the lookup service to the requesting device where it will be used.
The lookup service acts as an intermediary to connect a client looking for a service with
that service. Once the connection is made, the lookup service is not involved in any of the

resulting interactions between that client and that service.

It does not matter where a service is implemented. Compatibility is ensured because each
service provides everything needed to interact with it. Thus, there is no need for a central

repository of drivers. or anything similar.

13

JavaSpaces employs a mechanism for accessing and processing distributed objects
[SUN]. JavaSpaces manages features such as object processing, sharing, and migration.
A client application makes contact with a JavaSpaces server. The client asks for a certain
type of object by sending a template describing what the object looks like. The space will
then respond with the entry that best fits the template description. The client sends a read
operation to make a copy of the entry within that space and work with it. Alternatively,
the client can also do a take operation to take an existing entry from that space, removing
it from the list of entries. The client then processes the entry object as needed. Once
completed. it can do a write operation to put that entry object back into the space, so that

others can use it. When multiple clients looking for a particular entry. the server system

needs a queue for processing.

Services employ a proxy. which is an object with service attributes and communication
instructions. to move around the network. Through the processes of discovery and join.

services are found and registered on a network.

2.4 Summary of Component Technology

We can see from above that all distributed object services use a naming service of some
kind. Java RMI and CORBA use their own naming services. All naming services do
essentially the same thing: object binding and a lookup APIL. Object binding is the
association of a distributed object with a natural language name or identifier. A binding is
really a pointer or an index to a specific distributed object, which is necessary in an
environment that manages hundreds of different distributed objects. A lookup APIs

provides the client with an interface to the naming system. We do some comparisons of

these components in the followings.

2.4.1 EJB and CORBA

As a platform-independent and language-independent distributed object protocol,
CORBA is often thought of as the superior protocol. However, CORBA suffers from
some limitations. Pass —by-value. a feature easily supported by Java RMI-IIOP, was only
recently introduced in the CORBA 2.3 specification and is not well supported

14

[Monso00]. Another limitation of CORBA is casting remote proxies. In Java RMI, user
can cast or widen a proxy's remote interface to a subtype or supertype of the interface.
just like any other object. This is a powerful feature that allows remote objects to be
polymorphic.

EJB would not be complete without a way to integrate with CORBA however; EJB
inherits many useful properties form CORBA. CORBA allows EJB customers to
communicate with existing CORBA applications. as well as integrate with existing
investments written in non-Java languages such as C++ and COBOL. Indeed, CORBA

and EJB are related. much of the conceptual foundation in Java 2 Platform. Enterprise
Edition came from CORBA [Monso00].

2.4.2 EJB and Jini

EJBs can be deployed within any application server that supports the EJB Container
APIs. These containers shield the EJB developer from much of the complexity normally
faced by the writers of common business logic. This increases overall developer

productivity. and enhances the robustness of the resulting code as we mentioned before.

Jini technology is focused on a different problem space. It provides for the unification of
a collection of services into a "Jini Community” which gives them a common device
namespace, failure mode and security model [These01]. Such Jini Community is both
customizable for a given user and extremely fluid. as Jini devices can both add
themselves when powered up. alert a network manager, and remove themselves when

hardware problems occur. There is no operator intervention of any kind required.

Java client platform allows developers to write software that is independent of both the
hardware and operating system it runs on. EJBs extend this paradigm to the server by
providing additional independence from various legacy infrastructures such as messaging
middleware. transaction support, naming & directory services, object protocols and
relational databases. Since these vary infrastructures are used to construct a corporate
enterprise. with EJBs, write it once, it runs everywhere, and it integrates with everything.

1S

Jini on the other hand redefines the client by allowing the devices it accesses to be both
remote and dynamic. Essentially Jini extends the Java paradigm to make the client's

device configuration independent of network topology. The network in effect becomes
the client computer [Jini].

Jini offers services. as collections of objects written in Java, which can be federated to
accomplish a task. Services communicate through protocols, such as discovery and
lookup. look up for invocation or location of a service and discovery for registration of a
service in the Jini lookup service. However. Jini is not a distributed system, and the
concepts and facilities Jini uses are very limited [Carva00]. Jini has the notion of services
and the facilities for finding them, allowing very simple devices to belong to the Jini

communities. Jini has no notion of global resource management, no model for large
scalable systems.

Further. there are not as many commercial Jini products as J2EE supports. Currently, Jini
as a framework is not complete enough to enable efficient development of enterprise

software. Table 2.1 provides a comparison of Jini and EJB [These01].

Comparator Jini EJB

Architectural Model: Peer-to-Peer 3-tier
Variable-size Client Thin Client
Variable-size Services Thick Services

Typical Platforms: Java Client Java Application Server
and Java Device and Java Legacy Server

Tvpical Topology: Distributed Client Distributed Enterprise

Wire Protocols: RMI, RMI-IIOP (CORBA)
Device Discovery/Join

Best Feature: Intelligent Write an EJB once,
Devices use their Run it in every Enterprise
Intelligence

Table 2.1 Comparisons of Jini and EJB

16

The component technologies discussed above are fundamental parts for constructuring
enterprise application framework.

2.5 The Extensible Markup Language (XML)
XML is used more and more popular. XML is designed to make it easy to exchange
documents and structured information over the Internet. It is a standard for defining

document markup languages [Brad00]. A markup language is a set of elements or tags
that have one or more of the following functions [Cepon99]:

e Describing the structure of the document

e Describing the content of the document

¢ Controlling how the document is presented to the user.
HTML is the most widely used markup language for Web-based documents. but it has
many limitations. HTML tags describe the visual presentation of Web pages and do not
really specify their logical structure. HTML users are restricted to a relatively small set of
tags and cannot create their own tags because commercially available Web browsers do

not support tags that are not part of the HTML standard.

XML overcomes these limitations. XML users can define their own custom tag set. or use
tags from any publicly available document type definition (DTD). XML tags specify the

content and structure of a document. Presentation is decoupled from the document’s

content.

17

Chapter 3 Enterprise Development Platform

Enterprise platform is an enterprise application development framework or environment,
such as J2EE platform. Microsoft .Net enterprise platform. The framework speeds the
software development cycle. Since the application developers do not need to reinvent the

system-level functionality [Monso00].

3.1 Concept of Framework
A framework is an abstracted collection of classes. interfaces. and patterns dedicated to

solving a class of problems through a flexible and extensible architecture {Govon99].

Frameworks have been defined in many ways:

A framework is a collection of classes that provide a set of services for a particular
domain: a framework thus exports a number of individual classes and mechanisms which
clients can use or adapt.” [Booch]

“A framework is a set of prefabricated software building blocks that programmers can
use. extend. or customize for specific computing solutions.” [Talig]

A framework is more than a class hierarchy. It is a class hierarchy plus a model of

interaction among the objects instantiated from the framework.” [Lewis]

These definitions indicate that a framework can include more than simply a collection of
classes. and may also present a defined process or method of interaction between its
objects. Combining objects and interactions provides a truly useful environment in which
categories of problems can be addressed in far less time than it would take to reanalyze
the problem and reinvent new solutions.

Frameworks encapsulate critical design architectures specific to their purpose. In doing
this. classes of frameworks can be utilized by developers to save time otherwise wasted

by reinventing common application problems.

18

3.2 J2EE Platform
The J2EE specification provides a complete range of enterprise-class functionality for
server-side computing [Sunl0]. The platform is designed to provide an integrated Java

application environment for building enterprise-level n-tier Java applications.

The J2EE standard embraces existing resources required by multitier applications with a
unified. component-based application model. This enables the next generation of
components. tools. systems. and applications for solving the strategic requirements of the
enterprise [SUN].

The J2EE specification requires application servers to support a specific set of protocols
and Java enterprise extensions. This ensures a consistent platform for deploying J2EE
applications. The EJB specification enables developers to create server-side, distributed
objects in a consistent way. The specification also defines a deployment strategy so that
EJBs can be deployed without regarding to any specific platform or EJB server [Nilss00].
J2EE application servers provide the following “standard” services [Monso00]:

Enterprise JavaBeans 1.1

J2EE products must support the complete specification
Servlets 2.2

J2EE products must support the complete specification
Java Server Pages 1.1

J2EE products must support the complete specification
HTTP and HTTPS
Web components in a J2EE server service both HTTP and HTTPS requests. The Serviets
specification itself only requires support for HTTP. The J2EE product must be capable of
advertising HTTP 1.0 and HTTPS (HTTP 1.0 over SSL3.0) on ports 80 and 443
respectively.
Java RMI-IIOP 1.0

19

As was the case with EJB 1.1, only the semantics of Java RMI-IIOP are required; the
underlying protocol need not be IIOP. Therefore, components must use return and
parameter types that are compatible with [IOP, and must wuse the
PortableRemoteObject.narrow() method.

JavalDL

Web components and enterprise beans must be able to access CORBA services hosted
outside the J2EE environment using JavalDL (Interface Definition Language), a standard
part of the Java 2 platform.

JDBC 2.0

J2EE requires support for the JDBC 2.0 Standard Extension. but not the JDBC 2.0
Optional package.

JNDI 1.2

Web and enterprise bean components must have access to the Java Naming and Directory
Interface (JNDI) Environment Naming Context (ENC), which make available EJBHome
objects. JTA UserTransaction objects, JDBC DataSource objects, and optionally Java
Messaging Service (JMS) connection factory objects

JavaMail 1.1 and JAF 1.0

A J2EE products must provide access to the JavaMail API for sending basic Internct mail
messages (the protocol is not specified) from web and enterprise bean components. JAF
is the Java Activation Framework, which is needed to support different MIME types and
is required for support of JavaMail functionality.

Java Transaction API 1.0

Web and enterprise bean components must have access to JTAusertransaction objects via

the JNDI ENC under the “java:comp/UserTransaction” context. The UserTransaction
interface is used for explicit transaction control.

Java Messaging Service 1.0

J2EE products must support the JMS API definitions (base classes and interfaces), but are
not required to provide a JMS implementation. This means that JMS is an optional
service in J2EE. If a JMS implementation is supported, the connection factories can be
made available through the JNDI ENC.

20

Currently. EJB 2.0, Servlet 2.3 and JSP 1.2 become new standard. The specification is
continuing to upgrade. With simplicity, portability, scalability and legacy integration,

J2EE is the platform for enterprise solutions.

3.3 Using Enterprise JavaBean

The power of EJB is that it can take advantage of the services that the container provides.
Although the application developer can provide some of the same services as an
Enterprise JavaBeans container. each of those services must be developed and integrated
separately. If changing business environment imposes new requirements on an
application. those new requirements must be met with custom code. Since Enterprise
JavaBeans are written to an industry-standard API, they can often be run unmodified in a
new application server that provides increased functionality [Subra00].

3.3.1 Introducing EJB

Enterprise JavaBeans (EJB) is an architecture specified by Sun Microsystems and
published for the first time in March 1998. Sun Microsystems™ definition of Enterprise

JavaBeans is:

“The Enterprise JavaBeans architecture is a component architecture for the development
and deployment of component-based distributed business applications. Applications
written using the Enterprise JavaBeans architecture are scalable, transactional, and multi-
user secure. These applications may be written once, and then deployed on any server

platform that supports the Enterprise JavaBeans specification”.

The EJB specification. which is based on the Java platform and part of Java 2 Enterprise
Edition (J2EE). is a part of the framework for server-side component-based development.
EJB is used for building server-side systems that are scalable, reliable, secure, and
portable. The EJB specification also defines a set of services that must be provided by

EJB servers. such as transaction management, persistence, security, concurrency and
instance pooling.

Transaction is an important concept in distributed computing. A transaction is a set of
operations that transforms data from one consistent state to another. This set of operations
is an indivisible unit of work. and in some contexts, a transaction is referred to as a
logical unit of work. A transaction is also a tool for distributed systems programming that
simplifies failure scenarios. Transactions provide the ACID properties [IBM]:

e Atomicity: a transaction’s changes are atomic: either all operations that are part of
the transaction happen. or none happen.

e Consistency: a transaction moves data between consistent states

e [solation: even though transactions can run concurrently, no transaction sees
another’s work in progress. The transactions appear to run seriously.

e Durability: after a transaction completes successfully, its changes survive

subsequent failures.

The EJB specification provides a detailed description of the services needed to support
enterprise beans. It separates the enterprise bean’s business logic from the intricacies of

persistency. transactions. security, and other middleware-related services.

The architecture of EJB is shown as Figure 3.1. An Enterprise Java Server (EJS) manages

one or more containers.

EJB Server
EJB Container O
Database
EJB P. Or
Component

Component
Remote
\EgRemote \—/

Client

AN

Figure 3.1 EJB Architecture

EJB containers provide services to a set of enterprise bean instances. First, a container
controls the enterprise bean's life cycle: it creates beans instances. manages pools of
instances. and destroys them. Second. containers are also responsible for providing
services such as persistency and security to the beans they manage. Third. containers are
transparent to the programs. EJB client can always use the services of a container when
invoking an enterprise bean. The container take care of providing the level of service the

client requested at deployment time.

A container is the run-time component of an EJB environment. It communicates with the
enterprise server to implement naming (JNDI), transaction, security and memory
management services, and obtains access to the service on behalf of the enterprise-bean
instance. The EJS can be a WAS or a database server.

EJBs are distributed objects [Maten01. Roman99]. A client access EJB by EJBHome and
EJBRemote interface. EJBHome lists the methods that client programs can use to create
and find bean instances. The EJB Remote interface defines the business methods of the
enterprise bean. The container creates the EJB Object class from this interface definition.
After a client program has access to the home object, it asks the container to create an

enterprise-bean instance. A client program never accesses a bean instance directory; it

always goes through the EJB Object. A bean that has been idle for some time can be
transparently swapped to disk and re-activated when the client program requests it. This

would not be possible if the client held a reference to the bean instance. The steps

involved in using an EJB is shown in Figure 3.2 [IBM]:

Web Application Server

EJB Container o
4 7

Naming EJB Home EJB Object
Service | |

2
A] yA
V4
1 l 3 5
y4
Client 4——1

Figure 3.2 Steps for Using an EJB

Steps used to call methods on an EJB [IBM]:

1.

!\)

!Ju

The client requests from the naming services a reference to the EJB Home
interface of a particular class of EJBs.

The naming service replies with the location of the Home interface instance for
the EJB class in the container in which the EJB is deployed.

The client performs either a create (for the new bean instance) or a find (for an
existing entity bean instance) on the EJB Home interface instance

The EJB Home interface instance locates or creates the EJB instance and places it
in the container and creates the EJB Object interface instance.

The EJB Home interface instance replies to the client with a reference to the EJB
Object instance.

24

6. The client calls methods on the EJB Object interface instance to access business
logic on the EJB.
7. The EJB Object interface instance calls the corresponding methods on the EJB

while the container manages the resource needed to accomplish this task.

There are three types of EJB: Session bean, Entity bean and Message-Driven bean.
Session bean can be divided as stateless session bean and stateful session bean. Session
bean represent tasks and operations. They are transient and do not correspond to data in
persistent storage. A stateful session bean can maintain state information. State
information that is associated with a stateful session bean is not shared between clients.
Entity beans represent persistent data. Each entity bean is mapped to a data store that is
shared with other enterprise bean. In most cases. an entity bean must be accessed in some

transactional manner. Entity beans are unique and do not store state information. They
can be shared between clients.

Management of the persistent state of an entity bean can be done in two ways [IBM]:

e Bean-managed persistence (BMP)

e Container-managed persistence (CMP).
In BMP. EJB directly accesses persistent storage. Accessing to persistent storage must be
implemented by the software developer. In CMP,. the bean relies on its container to
provide transparent access to persistent storage. The software developer does not need to

explicitly implement access to persistent storage.

The properties of EJB can be defined in the EJB description file. Access control or

security. bean pool size and bean type can all be defined. EJBs have states. EJB state
transition diagram is shown in Figure 3.3 [IBM].

25

oes not exist

Newlnstance()

setSessionContext() jbRemove()
ejbCreate(args)

| cibPassivate(

Method Ready | SEATEVARD

Passive

beforeCompletion()
ejbPassivate() afterCompletion(true) afterCompletion(false)

/

Transaction ransaction Non Transaction
Method ethod Ready Method ERROR

L__/

Figure 3.3 EJB State Transition Diagram (Stateful EJB)

The entity beans and stateless beans can be pooled [Gomez00]. The benefit is that the
pool of beans can be much small than the actual number of clients connecting. This is due
to client “think time”. such as network lag or human decision time on the client side.
While the client is thinking, the container can use the bean instances to service other

clients. saving previous system resources.

Another benefit of EJB is that developers do not need to write thread-safe code
[Monso00]. The developers never need to worry about thread synchronization when
concurrent clients access the component. The EJB container will automatically instantiate

multiple instances of the component to service concurrent client requests.
The container thread services can be both a benefit and a restriction. The benefit is that

application developers do not need to worry about race conditions or deadlock in the

application code. The restriction is that some problems lend themselves very well to

26

multithreaded programming, and that class of problem cannot be easily solved in an EJB
environment. EJB is intended to relive component developers from worrying about
threads or thread synchronization. The EJB container handle those issues for developer
by load-balancing client requests to multiple instances of a single-threaded component.
An EJB server provides a highly scalable environment for single-threaded components.

EJB masks the physical location of the remote object the client is invoking on. Location
transparency is a necessary feature of multi-tier deployments. It means that client code is
portable and not tied to a specific multi-tier deployment configuration. Also, EJB
specification use RMI-IIOP that is more robust than RMI in distributed communications.

EJB’s security management [Vogel99] is very powerful as it gives the developer the
ability to create the components without having to hard code security issues. The
developer uses an abstraction called security role. A security role is a grouping of user
permissions that enable the execution of the various components that make up an
application. The security roles are assigned at deployment time according to the
corresponding security policies of the operational environment. The JavaBeans
component architecture demonstrated the usefulness of encapsulating complete sets of
behavior into easily configurable. readily reusable components on the client side. The
convergence of these three concepts -- server-side behaviors written in the Java
programming language. connectors to enable access to existing enterprise systems, and
modular. easy to deploy components - led to the EJB standard and its ability to
effectively leverage and consolidate industry-wide knowledge of middleware. EJB

technology helps protect existing IT investments and promotes freedom of choice for
future investments [SUN].

3.3.2 How to use EJBs

The clients of EJB can be a servlet, JSP, or another EJB. The clients communicate with
session beans, which can be stateful or stateless. These beans then communicate with
entity beans, which in tum communicate with the data store.

The typical use of EJB can be shown as Figure 3.4

JSP

l

HTML AN Servlet

DCOM

Figure 3.4 Calling EJB

3.4 Review of Previous Research

In this section. we will introduce and analyze CodeNet and several computational grid
application systems.

3.4.1 CodeNet

The intention of building CodeNet [Zhong00, Zhang00] is building a class library for
software reuse. The system includes code generator, language analyzer and Oracle8
Database. Using CORBA as the middleware, client and server can communicate through

Internet. Basically, it’s single client/server model, since it has single server and multiple

clients cannot connect to the server concurrently.

The system provides a simple function for natural language processing and code
generating. It gives a demonstration for reuse-oriented program developments. Besides

some bugs relative to operating system, the system is not complete. There are some

28

serious limitations such as single database connection. This makes the system not only
limited to single user connection, but also the server to database and user to database
operations cannot be concurrently processed. Even for single server, the powers of the

server and database server are far less utilized. More detail can be referenced from
[Zhong00. Zhang00].

3.4.2 Some Examples of Current Grid Computation and Multi-Server Technology

Although the history of grid computation is not long, there are some application systems
and projects.

Legion [Legion] is developed by University of Virginia. It connects workstations,
supercomputers. and other computer resources together into a system for Meta
computing. One application project is Seti (Set it at home) project. Many home
computers are not using during the night. The system sends the data from Harbor
telescope to those home computers through Internet for scientific calculation. The data
need to be segmented to small blocks before they are sent to the individual home
computers. The home computers process it and send the results back to the system. This
benefits both home computer users and scientific research. However, the data blocks

between the individual home computers have not much relations.

Globus [Globus] is an object-oriented distributed system built on a stationary
communication infrastructure whose emphasis is on high availability of reliable objects.
Processes interact and communicate through shared objects whose state can physically
distributed. Each communicating process maintains a copy of the shared object manages
the state among the replicas of the object. However, “Globe is not a user-oriented OS”
[Carva00]. Its emphasis is on objects and on their policies for distribution, replication and
coherence. Globe does not provide the view of mobile, customizable and user-oriented

execution environments.

29

Globus and Legion are pursuing the goal of building software architecture for grid
environments. “These systems do not address much for user, component, mobility and

change-oriented philosophy *“[Carva00].

The FETISH system is trying to communicate with Anyone, Anywhere, Anytime [SUN].
It uses Jini technology to allow businesses to register its service, data or application with

FETISH and receive access to any other service on the network.

The FETISH project is enabling a services-to-services (S2S) capability that will allow
end users to integrate multiple services together, code them to interact with one another

and develop complex value-added packages and services to others.

The architecture is designed as a peer-to-peer (P2P) distributed object system, allowing
the FETISH servers to establish more options for services and data to navigate across the
network. The FETISH servers act as proxy, lookup devices and have a directory of all
available services and their APIs. The actual services, data and applications do not

actually reside on the FETISH servers; requests are mapped to the closest available

services.

We have explained the framework concepts and introduce EJB technology in this

chapter. In the next chapter. we will discuss several possible approaches of using EJB in
multi-server model design.

30

Chapter 4 Using EJB in Multi-Server Environment

When considering in multi-server environment, things become much more complicated
than in a single server environment. We need to solve resource sharing, concurrency,
multiple protocol. security, parallel computing, persistence, isolation, fault tolerance, and
load balance that are much simpler or do not even exist in single server environment.

Multiple servers work together to compose a cluster [Buyya99]. There are two purposes:

1. Clustering for Performance

These types of clusters are typical for high performance computing (HPC). Workloads
focus on performance and scalability by applying as many CPUs to a problem solving as
possible. Most scientific calculations use some form of batch-processing or work-sharing
software. There are usually no resilience features. In case of application or system failure.
a checkpoint/resume mechanism might exist to provide the restarting of failed batch
loads. Scientific clusters are used for a wide range of disciplines. such as weather

forecast. genome mapping. protein folding. automobile design. high-energy physics, and

vary kinds of simulation and modeling.

2. Clustering for High Availability

High availability (HA) clusters add availability features on top of operating system
infrastructures. Availability is achieved by using scripts that monitor application service
health on individual cluster nodes. In case of service failure (due to the failing of disks,
networks. or the application service itself), the application will be restarted on another

node. Individual cluster nodes are primarily administered independently of each other.

EJB is a distributed object that is callable from a remote system. An EJB has many good
properties as we mentioned in the previous chapters, such as transaction, security,
persistence. portable. etc. It fits very well in the distributed computing environment. Of
course. EJB is not a panacea. It has its own limitation and can not solve all problems. In

this chapter. we will discuss how EJB can solve HPC and HA problems. First, let us see

some basic concepts.

31

4.1 Basic Concepts

4.1.1 Stateful and Stateless Request

In Web client-server environment, the client sent requests to the server and the server
sent replies back to the client. If each client’s request is completely independent of every
other client’s request. then it does not matter if two requests are ever processed on the
same server or not, we can call them stateless request. If the request from an individual

client is depend on the previous request, we can call it stateful request.

4.1.2 Workload Balance and Fail Over
Failover and load balance {IBM. BEA] are very important for improving system

availability and efficiency.

Load balance optimizes the distribution of work. Incoming work requests are distributed
to the application servers and other objects that can more effectively process the requests.
Load balance is most effective when used in systems that contain servers on muitiple
machines. It also can be used in systems that contain multiple servers on a single, high-
capacity machine. In either case. it enables the system to make the most effective use of
the available computing resources. Further, to increase the prcessibility, it should be able
to add additional machine to the server group. Adding additional machines requires logic
to load-balance client requests across machines. There must be logic to load-balance

incoming requests to the presentation tier, as well as load-balance requests from the

presentation tier to the business tier.

Failover is sometime called fault-tolerance, in that it allows the system to survive a
variety of failures or faults. Failover is only on a technique in the much broader field of
fault-tolerance, and there is no such a technique that can make a system100% safe against

any possible failure. The goal is to greatly minimize the probability of system failure, but
it can not be completely eliminated.

Failover is the process by which the cluster automatically relocates an application from a
failed node to a healthy one. When a failover occurs. clients may see a brief interruption

of service. but they are not aware that the application has been rehosted on a different
physical cluster node [IBM].

4.1.3 Idempotent

An idempotent method is one that can be called repeatedly with the same arguments and
achieve the same results [Roman99]. It can be defined as:

if f(x) =yv.

then f(f(x)) =y

An idempotent method in a distributed system is one that does not impact the state of the

system. so it can be repeatedly called. It is an important concept for fail over.

4.1.4 Smart Stubs

Smart stubs [SUN] are direct replacements for the original stubs that perform the same
function with additional behavior. They can be added and removed with no code changes

within the client application or the server object.

The additional behavior may be the timing of method calls, caching of data, or a
collection of references to multiple instances of different servers so that it supports
workload balance and fail over. Smart stubs are invisible to object servers—proxies and

are purely client-side facilities [SUN].

When for workload balancing and fail over, the smart stubs provide all the necessary
information for failover and load balancing across multiple server environments. A smart

stub has a policy that determines the specific algorithms that it must use for load
balancing and failover.

Whenever the client invokes an operation on the bean, the smart stub automatically and
transparently forwards the request to one of the available server objects [SUN]. When the

33

invocation of a method fails. the policy determines if a retry should be attempted. Retries
are not always necessary since it may be caused by network congestion, server slow
down; but when it is possible. the policy will choose a new server offering that specific

service to handle the request. Therefore it can achieve fail over.

Servers
Client
ome Object
Server A
o emote
ome .
Get Bean Object SM bject \.\ -
—_—
Stub -
S Database
Method Remote < ome Object

|

Call Object SM

——»Stub ' Server B
emote /

bject

A

JNDI

Figure4.1 Smart Stub and Policy

When a bean is deployed in a cluster, the home interface is bound into the replicated
naming service. When a client looks up the home interface with JNDI, it gets a smart stub
with reference to the actual home on each server that deployed the bean. When the
create() or find() methods are called, the smart stub routes the call to the appropriate

server based on the policy. That server will then create an instance of the bean. Figure 4.1
illustrates this.

The policy for load balancing algorithm could be round robin, random. weighted round
robin. or statistically based on network modeling.

34

When the naming tree is replicated across all the members of a cluster, a client can
request the initial context from a JNDI tree from any member of the cluster. When a
server of the cluster wants to offer a service, it places a stub on the corresponding node of
its naming tree. The stub is actually placed in a service pool at the node. This service pool
contains all the stubs belonging to the members of the cluster offering the service. The

lookup in a JNDI tree is aware of all the service providers in the cluster.

The creating of smart stub can have several different approaches. For example, idl2java
compiler generates the default proxy class and three methods that are added to the
interface Helper class. The developer creates the smart stub subclass by extending the
default client proxy class. and overriding methods as appropriate. The default proxy

handles any remote object methods that are not overridden.

Since there are two main types of EJB. session EJBs for process and entity EJBs for data.
multi-server data process is actually these two kinds of EJBs process when we consider

with using EJB design. We will discuss how EJBs can handle workload balance and fail

over in the followings.

4.2 Stateless Session Bean

For stateless session bean. every client request directed to a stateless session is
independent of any previous request that was directed to the same bean. The container
will maintain a pool of instances for each type of bean, and will provide the appropriate
type of the bean when it receives client’s request. Because of this, it does not matter if the
same actual bean instance is used for consecutive requests, or whether two consecutive

requests are serviced by bean instance in the same application server.

4.2.1 Workload Balancing

35

Since all instances of the same type of a stateless session bean are considered identical
even though they use different Java objects, all method invocations on the remote home
and remote stub in different server are the same. Thus, clients’ requests can be load
balanced in servers. Also, developers can decide whether they want the methods on the
remote stub to be load balanced across instances in the cluster or pinned to instances on a
certain server. Further, the subsets of methods on a single stub can load balanced. So
stateless session EJBs are the most scalable types of EJBs.

4.2.2 Fail Over

Since stateless session bean is idempotent, fail over on remote home stubs can always
occur with no problem. Fail over on remote stubs can automatically occur on methods in
the remote interface that are idempotent. Stateless session beans can have create() and

home() methods in the home interface. Both of these methods have idempotent property.

When we want to code the non-idempotent method, we can programmed it as manually
fail over. or use stateful session bean instead of stateless bean. Manual programmatic fail
over can be adopted for methods that are non-idempotent and for those WASs that do not

support automatic fail over of methods. The following code will manually fail over any

method invocation that is not automatically done.

InitialContext ctx = null;
ClientHomeStub home = null;
ClientRemoteStub remote = null;

try |
ctx = contextl:;
home = ctx.lookup(contextl):;
// Loop until create() completes successfully
boolean createSuccessful = false;
while (createSuccessful == false) {
try |

remote = home.create():;

} catch (CreateException ce) {
ctx =context2;

36

home = ctx.lookup (context2):
continue;

} catch (RemoteException re) {
// Handle system exception here.
// If fail over should occur, call continue;

} catch (Exception e) {
// Home stub failure condition detected.

// If £ail over should occur, call continue;
continue;

}

// If processing gets here, then no failure condition
detected.

createSuccessful = true;

} // while

boolean answerlIsFound = false:;

while (answerlsFound == false) {
try |

remote.method (..);
} catch (ApplicationException ae) ({
// Handle application exception here.
// If fail over should occur, call continue.

} catch (RemoteException re) ({
// Handle server-side exception here.
// If fail over should occur, call continue.

} catch (Exception e) {
// Failure condition detected.

// 1f fail over should occur, call continue.
continue;

}

// 1If processing gets here, then no failure condition
detected.

answerIsFound = true;
} // while

}
catch (Exception e) {}

Figure 4.2 Manual Fail Over Program

37

Clients get the required objects by searching the JNDI tree with “context”. The context is
simply a nickname instead of hard code of actual object. The client get actual object
home interface from JNDI. If the client can not find the real object from JNDI, then client

can decide to try another nick name or another JNDI tree. It can be implemented in WAS
or client code.

4.3 Stateful Session Bean

Each instance of a particular stateful session bean exists in only one application server,
and can only be accessed by directing requests to that particular bean. Two ways for
dealing with multi-server:

1) EJB’s home interface is duplicated to all servers in the same server group or cluster.

2) Store the EJB’s state to the database.

It can be achieved in two ways: store the state directly or by calling an entity bean. It is
shown in Figure 4.3

Serverl
JNDI Naming Tree
Container
AV ErB
A
n 2

1| Home Interface

L

Figure 4.3 Fail Over of Stateful Session Beans

38

4.3.1 State Replication
For stateful session EJBs. the state could be replicated in multi-servers to resist server-
side failures and loss of session-oriented state data. This state replication is very similar

to HupSession replication that is offered by many servlet engines.

The critical. transactional. and persistent data should always be stored via JDBC or entity
EJBs instead of session EJBs. Stateful session EJBs should be used for storage of

session-oriented (conversational) data that would not adversely impact the system if the
data were lost [Roman99].

Replication of stateful data typically occurs at one of two points:
1. At the end of every method call.
2. After the commit of a transaction.
Containers that replicate the state of a stateful session EJB can have two ways: database-

oriented replication and memory replication. We discuss these scenarios in the following:

4.3.1.1 Database Oriented Replication

One approach to is to keep the state in a database or other persistent store. This approach
can rely on underlying database locking to avoid concurrency conflicts. This is suitable
for persistent components. This approach scales like stateless services, but differs in that
the latter requires explicit disk reads/writes. Some databases are very good at caching

objects in memory and doing the minimal disk /O necessary to provide transactional
protection.

4.3.1.2 Memory Based Replication

A second approach is to keep a secondary copy in memory on another machine. This is
more susceptible to failures and is not suitable for persistent components. The difficult
here is determining when and how the state of an object has changed, since persistent
components are generally just written out when transactions are committed. Stateful
session beans can be configured to use in-memory replication. The replication system
takes care of transporting an update data from the primary copy to the secondary copy.

39

Scalability comes from distributing the primaries and secondaries across the cluster. This
is in contrast to replication systems that keep all of the objects on (1) a fixed-size subset
of the servers, or (2) all of the servers. Approach (1) typically uses a process pair of
servers to hold session state. Approach (2) requires so much “chatter” back and forth

between all the server instances that after two or three nodes.

4.3.2 Workload Balancing

Since remote home stubs can invocate different servers in the cluster, these stubs can be
serviced by any container in the cluster. With stateful session beans, the server is
responsible for maintaining state on behalf of the client within the server. Subsequent

requests from the client need to be directed to the server that is hosting the instance that
has its state.

As a result of this “pinning™ of clients to their server-side data objects, remote stubs are
limited in the load balancing of method invocations. A remote stub must direct all
requests from a client to a server that is hosting the object with the client’s data. In the
most common scenario. a stateful session EJB instance is only hosted on a single server,
however. it is possible to replicate stateful session EJBs across servers or persistent
stores. In a situation where a stateful session EJB is replicated across multiple servers, a
remote stub could conceivably load balance different requests to different servers. This
would not be an ideal scenario, since most servers that implement stateful session EJB
replication have a designated “primary” object that requests are sent to first. The effort

involved with load balancing requests in this scenario outweighs any benefits that may be
achieved from caching [These01].

4.3.3 Fail Over

Stateful session beans can have create() and home() methods in the home interface. Both
of these methods have stateless behavior and are idempotent. Fail over on remote home

stubs can always occur automatically.

40

Fail over on remote stubs can automatically occur on methods in the remote interface that
is idempotent. Stateful session EJBs can also have idempotent methods. Any method
that does not alter the state of the system or alters the value of the state stored in the
stateful session EJB is an idempotent method. For example, if a stateful session EJB has
a series of repetitive get methods to retrieve the values of static data stored in the server,

these get methods would be idempotent.

Automatic fail over for stateful session EJB idempotent methods can only occur under
certain conditions. If a stateful session EJB instance is replicated after every method
invocation. automatic fail over on idempotent methods can always occur in the server
group. If replication occurs after every transaction commit, automatic failover can only
occur in between transactions. Since a stateful session EJB can have its state altered
during a transaction. the replicated instance would not see the updated state until the
commit of the transaction. [n this case, automatic fail over can only occur in between
transactions. Also. we can utilize database replication method as we mentioned above to

solve this problem.

Similar to stateless session beans. for methods that are non-idempotent and for those
containers that do not support automatic fail over of methods, manual. programmatic fail

over can be employed as described for stateless session EJBs.

InitialContext ctx = null:;
SomeHomeStub home = null:
SomeRemoteStub remote = null;

try {
ctx = .}

// Automatic fail can occur by the stub.

home = ctx.lookup(..):

boolean answerlsFound = false;

while (answerIsFound == false) {
try |

remote.method(..);

} catch (ApplicationException ae) {

41

// Handle application exception here.
// If fail over should occur, call continue.

} catch (RemoteException re) {
// Handle server-side exception here.
// If fail over should occur, call continue.

} catch (Exception e) {
// Failure condition detected.
// If fail over should occur, call continue.
continue;

}

// 1f processing gets here, then no failure condition
detected.

answerIsFound = true;

} // while
} catch (Exception e) {}

Figure 4.4 Manual Fail Over Program

This program is similar to the previous one. Client can try different JNDI, try another
nick name. or whatever.

4.4 Entity Bean

Entity beans represent data. The information contained in an entity bean is not usually
associated with a “session™ or with handling of one client request or series of client
requests. But it is common for one client to make a succession of requests targeted the

same entity bean instance. It is possible for multiple independent clients to access the

same entity bean instance more-or-less concurrently [Maten01].

For read-mostly data. such as static data, that does not require strict transactional
semantics. We would want broadly used data to be widely replicated for the highest
performance. but at the same time. cannot afford the very high cost of simultaneously
updating every such instance within a single transaction. Such *“read mostly” entity beans
require relaxing strict transactional semantics to gain the desired efficiency.

42

4.4.1 Workload Balancing

Since entity beans are rarely accessed remotely, most access to entity EJBs occurs over
local interfaces by collocated session EJBs and not remote interfaces by remote clients
[Roman99]. The load balancing and failover aspect of entity EJBs is handled at a higher
level. either by session EJBs or through web-based load balancing. The need to load

balance invocations to different servers is not really an effort employed by a home or
remote stub.

Some application servers do support remote home stub and remote stub clustering for
entity EJBs. I[n terms of load balancing, entity EJB invocations follow load balancing
rules similar to stateful session EJBs: remote stub invocations can be load balanced in

between transaction commits.

4.4.2 Fail Over
Fail over of entity EJBs is exactly the same as stateless session EJBs. Entity beans can

have create(). find(). and home() methods in the home interface. All of these methods
have stateless behavior and are idempotent.

Automatic fail over for entity EJB remote stub idempotent method invocations occurs
conditionally. If an entity EJB instance is persisted after every method invocation,
automatic fail over on idempotent methods can always occur since all of the other servers
can load the latest persistent state upon every invocation. However. if synchronization
with the persistent store only occurs after a transaction commit, automatic failover can

only occur in between transactions or on those entity EJBs that do not participate in a
transaction.

4.4.3 Caching

Entity EJB represents data. In order to improve performance, entity EJBs are often
cached [IBM]. Since the amount of synchronization needed to manage a cache in a
cluster is very high. a cache generally needs to be accessed 3 or 4 times more update than
without using caching to make benefits of having the cache outweigh not having it.

43

There are two strategies for caching:
e Single-container or Multi-container

e Read-only or Read-write [IBM]

When the data is relatively isolated, EJB can be cached in single container. In multi-
container. the bean is always reloaded from the database at the beginning of each
transaction [There01]. Therefore, it is in theory acceptable for a client to attempt to

access the bean and start a new transaction on any container that has been configured to
host that bean.

Read-only caches are easy to implement and are non-transactional while read-write
caches are difficult to implement but can be transactional. Read-write caches improve

some performance. but it is more expensive. Figure 4.5 shows the Read-only cache and

Read-write cache.

Serverl

JNDI Naming Tree

Container A | R, | Entity EJB Read Caches

ead-Write Caches

Database

Server / JNDI Tree

Container B | R, | Entitv EJB ead-Write Caches
Hl

H,
Entity EJB

Read Caches

& 3L

Figure 4.5 Read-only and Read-Write Caches

4.4.3.1 Read-Only Caches

A read-only cache allows for non-transactional access to the data of an entity EJB. Read-
only caches implement some sort of “invalidation strategy” that determines when the data

in the read-only instance is no longer valid and should be reloaded from the persistent

45

store. Entity EJBs that operate in a persistent cache never have ejbStore() called and can
never be called with a transactional context [Roman99].

The most common invalidation strategy approaches used on read-only entity EJBs
include: timeout, programmatic through the home stub or remote stub, or system-wide
notification from a read-write cache. Read-only entity EJB caches that are invalidated by
a timeout cache their contents on a periodic timer basis. When the timer is triggered, the
cache is invalidated and the read-only entity EJB will be reloaded immediately or upon
the next method invocation. Timeout invalidation can lead to reads of inconsistent data
since a transaction commit that alters the data on a read-write cache of the same primary
key could have been executed before the invalidation occurs. Programmatic and system-

wide notification invalidation strategies are the most common and very similar.

Read-only caches typically only use a single entity EJB instance per primary key per
server. This means that multiple, concurrent accesses to the read-only cache are
serialized in a single server. but concurrent across multiple servers in a cluster. Read-

only caches typically do not use multiple instances for a single primary key in a single
server.

Many application servers provide a “read-mostly” pattern that connects a single server
read-write cache with a cluster-wide read-only cache on a programmatic invalidation
strategy. When a read-write cache has a successful commit, a notification message is
sent from the container to all of the read-only caches for the same primary key. Each of
the read-only caches that receive the notification message immediately invalidates their
cache. If the read-write cache has a transaction rollback, a notification message is not
required since the state contained in the read-only cache would be identical to the rolled
back state of the read-write cache. This “read-mostly” strategy provides an automatic

coupling between the read-only caches and read-write caches of a single primary key
[ThereOl1].

4.4.3.2 Read-Write Caches

A read-write cache across the cluster is different from a transactional read-write cache
that exists on a single server. With single server read-write caching, the server does not
have to coordinate the data it maintains for any in-memory primary keys with other
containers caching the same primary key. Single server read-write caching relies upon
database transaction isolation levels to detect collisions. A clustered read-write cache not
only has to detect any collisions at the transaction isolation level, but it must also notify

or propagate any changes to other caches in the cluster.

Implementing clustered read-write caches is difficult and can have different strategies.
Clients that access a clustered read-write cache can do so without having to differentiate
between different INDI names. The cache determines whether or not the current access
is read-only or read-write. If the data associated with the primary key being accessed is
not locked by the application server or is not locked at the database level, and there is no
transactional context associated with the current method invocation, the read-only cache
can be accessed. Any other invocation would access the cache using read-write and
transactional semantics (that may lock the data either in the server or at the database

level). The two most popular read-write strategies are [These01]:

e Application server monitored database triggers. In this scenario, every time
the data that maps to an entity EJB read-write cache is modified in the
persistent store. a trigger is fired. When the trigger is fired, each read-write
cache updates its contents so that read-only clients can access the latest data.
Since each of the servers will receive the notification, the updating of the data

can occur concurrently across the cluster by multicast.

e Cooperative synchronization of each read-write cache in the cluster. This
strategy assumes that all data for a given primary key is read-only until locked
by another server. All notifications between servers can occur using multicast,

point-to-point, or a higher level of message propagation such as JMS.

47

4.5 EJB Clustering
In web client-server environment. a failed request could have occurred at one of three

points:

1. After the request has been initiated, but before the method invocation on the

server has begun to execute

9

After the method invocation on the server has begun to execute, but before the
method has completed.

3. After the method invocation on the server has completed, but before the

response has been successfully transmitted to the remote client.

"~

Client Server

Figure 4.6 Fail Points

In the first case. fail over of the request to another server can always occur. In the second
and third cases. fail over of the request to another server should only occur if the

processing that will be repeated is idempotent.
It’s impossible for a remote stub to know which of the three points of execution that the

request was in when the failure occurred. even though failures of requests that have not
even begun method execution, since fail can happen at any of the three points above.

48

Serverl

— 4 JNDI Naming Tree

96

Home Stub

Home Skelion

A Replicated

j Naming Tree
1

Replicated
Beans

LIE1TTe}
qmI§ uews
Kotjod

A
EJB

—& JNDI Naming Tree
.; L L {3
j .1
AP g
Container

Network Modeling

Server2

Figure 4.7 EJB Clustering

Remote stubs can only automatically fail over requests that were sent to methods that are
idempotent. The EJB methods can be coded as idempotent or non-idempotent by
developers. Idempotency of methods can be applied to all types of EJBs. Automatic fail
over of non-idempotent methods is only possible for requests that failed before the
server-side object began execution. However, since it is generally impossible to detect at

which point a request failure occurred, it’s impossible to provide automatic fail over of

49

non-idempotent methods. Fail over of non-idempotent methods must occur

programmatically by the client that originated the request.

An EJB can be clustered in three locations: the container, the home stub, and the remote
stub. The container resides within the application server while the remote and home
stubs are generated by the application server or a compilation tool and downloaded to run

remotely on a client. Different cluster-specific logic can be applied to these locations.

The remote stubs are downloaded by Java clients and run local on a remote machine.
Also. since remote stubs are generated at runtime by an EJB container or at build time by
an EJB compiler. Container Provider (CP) can develop load balancing and fail over
algorithms for EJBs that does not execute in their own application server. CPs can
generate logic that is incorporated as part of a remote home or remote stub that executes
before or after each invocation on the stub on the remote client. This, along with the
logic that can be incorporated directly into a container on an application server, provides
a large permutation of options for clustering logic and EJBs. A particular CP decides the

level, type. and occurrence of cluster logic.

4.5.1 Container — An Application Server Vendor (ASV) can provide some load
balancing and fail over logic directly within the container. If an EJB were deployed to
multiple servers in a cluster, each server in the cluster would have a container hosting that
EJB. The containers could communicate with one another using an inter-server
communication protocol [These0l]. The containers could use this inter-server
communication protocol to re-route requests, replicate stateful data, or communicate
actions. For example, if a container on one server is burdened with requests for a
particular type of stateful session bean, the container may be able to forward the request
to its counterpart located in another server. When a stateful session bean is created, a
backup copy can be placed on another server in the same cluster. The backup copy is not
used unless the primary fails at which point the backup becomes the primary and
nominates another backup. Every time a transaction on a stateful session bean commits,

the bean is synchronized with its backup to ensure that both locations are current. If the

50

container ever has a system failure and loses the primary bean instance, the remote stub
of the bean fails over invocations to the server that contains the secondary instance. The
inter-server communication protocol would be used in this scenario to replicate the
stateful data and to communicate notifications about the state of the bean to each
container. Stateful session bean replication is a highly desirable feature since it provides
non-interruptible access to some business logic. It is not designed, however, to provide
persistent access to data since simultaneous failure of the primary and backup servers

cannot be recovered. Entity beans should always manage persistent data.

4.5.2 Home Stub — This object is the first object accessed by remote clients and runs
locally on a client’s virtual machine. In the most common scenario, remote stubs are
generated at deployment time by an EJB compiler that is provided by the ASV
[TheseO1]. Since stub code is auto-generated by a ASV, the underlying logic in a stub
can be ASV-specific. ASVs can instrument method-level load balancing and failover
schemes directly in a stub. Since the primary responsibility of the home stub is to direct
create or load requests to a skeleton that can service them the server which handles a
request is not important. Effectively. every create(), find(), and home() method

invocation can have its request load balanced to a different home skeleton in the cluster.

The most common scenario for home stub generation is the use of a ASV-specific EJB
compiler. An EJB compiler will generate the compiled Java classes that make up the
stubs. skeletons. and any other ASV-specific implementation files needed to support the
EJB and place them back into the JAR file. Some application servers can use interception
technology such as the JDK 1.3 Proxy class to automatically generate remote home and
remote stub logic dynamically at runtime. This is also called hot deployment.

Whether or not an application server uses interception technology or creates custom

classes for the stubs and skeletons does not alter the places where cluster-based logic can
be inserted.

51

4.5.3 Remote Stub — Remote stub is instantiated by the home skeleton and returned back
to the client. This object can perform the same types of load balancing and failover that a
home stub can do. A remote stub that references an EJB instance with stateful data that
may or may not be replicated to other servers needs to be intelligent when it forwards
invocations. Remote stubs must load balance and fail over requests to instances that can

properly handle the request without disrupting the system.

The load balancing and fail over logic either existed in a remote home or remote stub or
in the container itself. This is an indirect implication of the fact that load balancing and
fail over logic reside outside of the system that is being clustered. In regards to EJBs,
only clients that make use of remote home or remote stubs will be able to see load

balancing or fail over of requests [These01].

4.6 Summary

Overall. we can see from above that there is a vast array of configurations that clusterable
EJB may be conformed to.

A remote client initially connects to a cluster. The client can be stand alone Java program
using RMI/IIOP. a servlet operating with WAS, or another EJB. The client does so by
using the JNDI library. The client issues the request using a cluster address. A load
balancer, proxy. or other piece of Initial Access Logic intercepts the first request and can
perform a load balance to one of the nodes in the cluster.

The client receives the InitialContext and executes a lookup() method invocation to
receive a remote home stub. If the naming servers are replicated in the cluster, all of the
naming servers will have the home stubs for all EJBs in the cluster, the InitialContext

object can load balance the lookup() invocation to any node. The client receives the
remote home stub and executes a create(). find() or home() method.

[f the same EJB container is hosted on multiple servers in the cluster, the remote home

stub can forward the request to any of the containers on any of the servers using a load

52

balancing algorithm. Since create(), find(), and home() invocations are stateless
invocations that do not need to be pinned to a particular instance (container), a remote
home stub can load balance its requests.

The client receives a remote stub in response to a create() or find() method invocation. If
the remote stub is not pinned to a particular instance, then any business operation made

on the remote stub can also load balance the request between servers in the cluster.

The WAS Vendor and application developer can have many choices for implementing of
workload balancing and fail over through smart stub, caching, container, database and
specific programming.

Currently, many ASVs provide powerful WAS, such as BEA WebLogic, IBM
WebSphere. Oracle9iAS. SUN iPlanet, etc. these servers are not only support J2EE
specification. but also support clustering WASs. Different clustering protocols are used
by different ASVs. For example. The WebLogic service advertisement protocol (WSAP)

is based on [P multicasting and it transmits three types of messages: heartbeats,
announcements, and state dumps.

Further complex protocol that is based on the network monitoring information can be

developed. One possible approach is using Queuing Theory for workload balance.

4.7 EJB Future Development
The followings are possible EJB development in future:

4.7.1 Functional Separation

Currently EJB container, serviet and JSP engine are in the same WAS instance, they
benefit from being in the same memory space. It is better to separate them to different
container according to their usage. Since EJB may use much more than the others, or vice
versa. For example. servlets are configured in 5 WAS instances and EJBs are configured
in 10 WAS instances. They are all full utilizing servers processing power. If they run on

33

different computers. there is a price to be paid by having the requests travel over the
network. In some case the price of the network is worthwhile because of the scalability

gained from having the load distributed over various machines.

4.7.2 Firewall Restrictions

The boundaries between physical hardware/software layers provide potential points for
defining the web application's De-Militarized Zone (DMZ). However. not all boundaries
can support a physical firewall, and certain boundaries can support only a subset of
typical firewall policies. For example, it’s difficult to achieve that placing firewall with

full functionality between distributed servers while still achieve good load balancing and
fail over.

4.7.3 Dynamic EJB Generation Proxy

When we create a new EJB. it has to be deployed in the deployment descriptor. With the
DynamicProxy APl we can generate such an EJBean proxy but we cannot control the
name of its class nor enter it in the deployment descriptor instead of the original EJBean.
The client has to refer to (get the home from) the EJBean proxy instead of the original. It
should not against the EJB separation between deployment and runtime phases.

DynamicProxy in Java is very elegant to implement client side and server side
interceptors or any proxy design patterns. But the architecture of EJB is more static and

force to declare the "servers" (EJBean) before runtime.

EJB 2.0 states that only entity beans that implements local interfaces
(Javax.ejb.EJBLocalObject and javax.ejb.EJBLocalHome) can participate in an ejb-
relationship. This means that you would have to have two sets of entity EJBs. One set for
EJB 1.1 and a second set for EJB 2.0. Unfortunately, all methods in the remote
component interface MUST throw java.rmi.RemoteException. All methods in the local
component interface MUST NOT throw java.rmi.RemoteException. At a glance it could
seem that it would mean two sets of session EJBs. If your session beans use entity beans
directly. i.e. session beans import interfaces of entity beans; the quick and dirty route

54

would be to have two sets of session EJBs as well. But this is far from ideal regarding

reuse. maintenance and portability.

4.7.4 Transaction and Security Context Definition

The problem of the state associated with every method call, such as the transaction
context and security identity of the caller. How to move this state from the client EJB to
the server EJB is not defined in the Enterprise JavaBean 1.1 specification or the RMI
specification. This lack of run time compatibility between EJB containers is considered a
weakness of the current situation. {Subra00]. The EJB2.0 specification does specify
RMIIIOP and other CORBA protocols as the solution to the interoperability problem.
However. the 2.0 specifications made transaction interoperability and certain aspects of

security interoperability optional. In other word, the situation is still not completely
resolved.

4.7.5 Multiple Developer Support
Multiple developers operate EJBs from a central EJB container. yet be totally

independent of each other. and hence no impact of one developer having to re-start their

EJB context to allow redeployment of a JAR.

In this chapter. we discussed various strategies in dealing with fail over and workload
balancing. Many of them are embedded in WAS, such as WebLogic and WebSphere.
These embedded functions are convenient for developers. In the next chapter, we will use

WebLogic for multi-server model design approach.

55

Chapter S Prototype Design and Implementation

The aim of this thesis is mainly to study and describe using EJB for building multi-server
design model. and to investigate it in practice by using it in an appropriate application
that requires that kind of services provided by EJB. Earlier we talked about several
features and properties of the EJB, such as. scalability, portability and its being
component-based. These issues must be fulfilled by the EJB server. Still, EJB servers are
supposed to provide other services that are known to give EJB its strength: transaction
management, persistence and security. This system shall be able to handle multiple
distributed clients concurrently access. The system can be configured as multiple physical
servers. More over. this prototype will give the model that has sufficient functionalities
and capacities to be useful in real world. The application described below has been

chosen with these services in mind.

The application is an on-line code service and shopping system. First, the system brings
the users to its homepage. After check the user validation, it will show a list of codes.
remark and prices for the codes. Also. the system can generate the code according to
user’s option. We use some tools such as WebSphere Studio, JBuilder and UML in our
prototype design.

§.1 System Architecture

We are trying to make thin client approach as we discuss in the previous chapter. The
client side only needs a Web browser and JVM. The server side provides all the services.
The system architecture is shown in Figure 5.1 and Figure 5.2. Users start from
Index.jsp. This JSP page will automatically compiled to a serviet class before its first use.
The Index.jsp starts a session. This session will be maintained until the browser is closed
or a timeout occur. The value of timeout can be defined in the WebLogic property file:

Weblogic. httpd. session.timeoutSecs=integer

We built the class and unit library. The JSP files calls EJBs that mapping to the database
tables. This library is for code generation. Figure 5.1 shows these relations.

56

SpiderNet

WebLogic Server Xiaohong
_

.c? HTTP Oracle8i
E . Library
(2]

WebLogic Server

Xiaohong53t vd

(e >

Figure 5.1 Clustered Servers in SpiderNet

Since we programmed several different types of files in our system, for easy

identification. we define the following naming conventions shown in table 5.1:

Class Type Suffix Example Files

Serviet S CodeSearchS, UserSearchS
Stateless session bean SL CodeServiceSL,

Stateful session bean SF OrderSF

Entity bean EB UnitEB

Table 5.1 Naming Conventions

57

Figure 5.2 shows system function modules.

Web Application Server Xiaohong33t

Web Application Server Xiaohong
Server Admin
Entity Bean Poo Data Mapping
el
[CodeSearchS
Req | ~ =
- s '
z = Session Bean ~®— UserSearchS
= I
oHe |
Res <& UserForm

Figure 5.2 System Function Modules

These functional modules are explained in the followings:

User — User access SpiderNet by Internet browser

User Validation — Check the user list to see whether he/she is on the list.

JDBC Connection Pool

|

()

Oracle8i
Enterprise

N

Server Admin — Administrator can configure the properties of WebLogic. He/she should

have system administrator privilege.

Customer Search - This module gets data from user and sends it to UserForm.

Session Bean — Temporary store the user information. It has transaction properties. Since

multi-clients connect to the server concurrently, each user has his own session. Further.

when the user is not active for a period of time, (it can be set in Weblogic property file)
the session bean can be passivated to database. The object can be used for another user

session. The bean pools size can be set in the EJB description file.

58

Code - This is an entity bean. This entity bean maps to the database table Code and
stores the code information. Accessing to the database may be expensive and takes time.
The database connection building up may up to | second. It’s possible to improve
performance by caching the database data at the server level. In such a case, if multiple
consecutive requests are directed to the same server, they may find the required data still
in the cache. and thereby reduce the overhead of access to the underlying database.

Another advantage is when many users retrieve the same code from the system. the
system do not need to create database connection for each user. The system can create
multiple Code objects instead. This saves database connection time and database
connection resource, since Oracle8i can not support a large number of connections.

JDBC Connection Pool - a database connection resources that can be shared for all the
connected users. This property can be set in Oracle8i and WebLogic property file. The
value set in WebLogic file should not more than the value set in Oracle8i. It increases the
efficiency of using database. since Oracle8i enterprise supports more than 100 concurrent

connections. We will further discuss it in section 5.4.

Although the system is not complicated, many concepts we discuss earlier are practiced.
For example. CodeService is a stateless bean. OrderSF is a stateful bean and Code is an
entity bean.

5.2 Development Environment
In order to develop an application that is multi-server based and J2EE environment
supported. first we need to setup the development environment. We need powerful
machines. Two computers. Xiaohong and xiaohong53t, are networked in this prototype
design. They are configured as following:
Xiaohong: PIII 550 with 160M memory
Operating system: Windows 2000 server
Software:

C:\weblogic BEA WebLogic Version 5.1

C:\ydk1.3 Sun JDK Version1.3.0.2

C:\oracle\ora81 Oracle8i Version 8.1.6

59

C:\spidercode SpiderNet Code

Xiaohong$3t: PII 350 with 256M memory

Operating system: Windows NT work station 4.0 with SP6a

Software:
C:\weblogic BEA WebLogic Version 5.1
C:\jdk1.3 Sun JDK Versionl.3.0.2
C:\spidercode SpiderNet Code

The directories are configurable. Other software such as IE 5.0, GNUmake, JBuilder 4.0,
WebSphere Studio. etc are installed on both computers for easy development and
debugging.

The computers are networked through a hub: PUREDATA PDC 8023U-4P. The network
card for PII 350 is PUREDATA 10/100 Ethernet and for PIII 550 is Linksys 10/100 USB
network card. Since it’s USB interface. the fastest speed is 12Mby/s in theory. In practice,
the speed is much lower than 12Mb/s.

5.3 Multi-Server Configuration
Since WebLogic 5.1 supports multi-server clustering configuration, we can use this

property instead of programming our won. The configuration include the following steps:

1. Configure DNS. Assign an IP address to each WebLogic Server and a multicast
address for the cluster.

(18]

Set up weblogic.properties files for the cluster.

LI

Locate classes and register classes in the properties files.
4. Specify deplovment and startup class properties in the properties files.

5. Set the CLASSPATH for each WebLogic host.

The two networked computers are assigned the following IP addresses:
Xiaohong: 192.168.0.1 #mycluster Yu

Xiaohong53t: 192.168.0.7 #mycluster Yu

A server name for each server in the cluster points to the IP address for each server. The
cluster name is Yu. These [P address are reserved and not used on the Internet. The
servers in a WebLogic Cluster use [P multicast to communicate between themselves.

This is set in the weblogic.properties file for each Server.

5.3.1 Defauit and global properties

The global properties are set in the following file for both computers:
/weblogic/weblogic.properties

These properties includes:

System password = xxxxxxxxx

All servlet registrations. with the weblogic.httpd.register property.

5.3.2 Cluster properties
Cluster properties is configured in the file:

rweblogic/yu/weblogic.properties

All clusterable deployments. registrations of startup classes are registered with the
property weblogic.system.startupClass. All paths that we configure in the cluster

properties file. such as servlet classpath, document root, etc.. should point to the correct
directory.

5.3.3 Per-server properties
/weblogic/<mycluster>/serverxxx/weblogic.properties

RMI objects that have been compiled without the ~clusterable flag
weblogic. httpd.clustering.enable=true
weblogic.cluster.defaultLoadAlgorithm

weblogic. httpd. session.persistence=true

weblogic. httpd.session. persistentStoreType=replicated

61

The first property is obvious. We just simply set cluster mode to true for clustering
configuration. The load balancing algorithm set the load balancing strategy to be used

between replicated services. The default is "round-robin", with acceptable values of

"random"”. "round-robin". and "weight-based”. Load balancing is explained in previous

chapter.

The other property settings are the same as single WebLogic server setting. Some of them

are:

weblogic.system.listenPort=7001
weblogic.password.system=weblogic
weblogic.allow.execute.weblogic.serviet=everyone
weblogic.security.ssl.enable=true
weblogic.system.SSLListenPort=7002
weblogic.security.certificate.server=democert.pem
weblogic.security.key.server=demokey.pem
weblogic.security.certificate.authority=ca.pem

weblogic.htipd. session.enable=true

weblogic. httpd. http.keepAliveSecs =60

weblogic. httpd. https.keepAliveSecs =120
weblogic.jdbc.enableLogFile=false
weblogic.jdbc.logFileName=jdbc.log

weblogic. httpd. initArgs.file=default Filename=index. html

weblogic. htipd.register. *. shtml=weblogic.servlet.ServerSideincludeServlet
weblogic.htipd.register.proxy=weblogic.t3.srvr. HttpProxyServiet
weblogic. httpd.serviet.classpath=/weblogic/myserver/servletclasses
weblogic.httpd.servlet.reloadCheckSecs=1

The defauit port for WebLogic is 7001, although we can set the other port. Same thing to
the security listen port. it is set to 7002. The security keys are stored in democert.pem,

62

demokey.pem and ca.pem file. The session keep alive is set to 60 second. If the session is
not active for this period. it will be closed and the resource will be free for creating other

sessions.

5.4 JDBC Connection Pools

Establishing a connection to a database is a pretty expensive operation in the sense that it
can take up to a second. Because of this. the traditional way of handling database
connections from a client is to establish a connection between the client and database
when the client application starts and then maintain the connection until the client ends.
This architecture is costly because it needs as many connections as active clients, and
worse still. the connection is not being used efficiently, as the interaction with the
database is intermittent. And the connection is almost always idle. A more efficient
alternative is the use of connection pools. The idea is that a predefined number of
database connection are established initially and then made available to the clients when
needed. As the connection has already been established, when the client requests one it is
available immediately. When the client is done with the connection, it is not dropped but

returned to the pool and made available to other clients.

In this prototype design. a JDBC connection pool yuconpl was created. It is defined as
the followings:

Weblogic.jdbc.connectionPool.yuconpl =\
url=jdbc:weblogic:oracle, \
driver=weblogic.jdbc.oci.Driver, \
loginDelaySecs=1. \
initialCapacity=1. \
maxCapacity=20, \
allowShringking=true, \
shrinkPeriodMins=10, \
refreshTestMinutes=10, \

testable=dual, \

props=user=scolt; password=tiger; server=0racle8i

63

loginDelaySecs define the number of seconds to wait between each attempt to open
a connection to the database. This is to simulate the practical situation, because not
all clients build the database connection at the same time.

InitialCapacity defines the number of connections that have to be established when
the WebLogic server is starting.

MaxCapacity defines the maximum number of connections a pool can have.
CapacityIncrement means that when all connections are in use and an additional
one is requested, WebLogic will automatically increment the number of
connections.

ShrinkPeriodMins, the connection pool can shrink after this time periods, if the
allowshrinking is set to true.

Refresh TestMinutes is for testing the database connections are still alive. If the test

fails. a new database connection will be established.

5.5 System Features

This application is running as a Website. Multiple servers are running for code service

support. Not only the system supports multiple client concurrent connections, but also

client requests can be distributed between servers, making the server group appear as a

single logical server to the client. Increasing the number of servers improves the server’s

process ability and availability. On this configuration model, Cluster servers can enter

and leave a cluster at any moment.

The system provides the following features:

User Registry: New user can register and old user has his own records. The user
information can be updated.

Code List: The system shows the available codes to users.
On-line Shopping: Users can buy the code that he need from the SpiderNet Web

site.

Code Generation: users can select the features from options and generate

customized code that they want.

¢ Billing System: The system can display the prices of the codes, add the total cost
and charge the user who buy the codes

e Security: The information between users and system, such as credit card number

and codes, are exchanged through SSL security protocol.

5.6 Design Implementation
First we need to setup database scheme and create database tables. Then create the JSP
files and Java class files. The source codes and executable java class files are stored in src

and srv directory respectively. The flow diagram is shown in Figure 5.3

65

Code Unit

Spider CodeNet
Home Page

|
User Validation

'

UserListS
(Serviet)

Code Search
CodeSearch.jsp

:

Menuhtml ™

Code List http://
spidercodenet/code

Code Generate

list.jsp

-

UserSearchS
(Servlet)

User Form
http://spidernet/userf
orm.jsp

——————

UserMaintanceS
(Serviet)

Order
http://spidercode/o
rder.jsp

Order List
http://spidercode
net/orderlist.jsp

:

l L Insert, Update ——T

OrderMaintenance

————=1 S (Servlet)

Figure 5.3 System Flow Chart

Send e-mail or Fax

L »{ to confirm (Java

Message)

The sequence diagram for user session is illustrated in Figure 5.4. Sequence diagram for
user search is shown in Figure 5.5. When the customer has selected the desired items and

added to his/her order list. The system calculates and shows the total price of the code.

Time

Time

Browser

oy

iUserSearchS OrderList.jsp

Session

Database

Request HTTP GET) -

“Select...”

Browser

o

=

Response

SetAttribute() ' l
forward ;

GetAttribute()

—

¥

Figure 5.4 Sequence Diagram for User Session

UserSearch.jsp

- Request()

IUserSearch

Select. Insert, Delete, Update ()

Database

—

Result

Result

————————

HTTP Get

Response

|

Figure 5.5 Sequence Diagram for User Search

67

When the client wants to generate the code, the system calls the codeGenerate. The

sequence diagram for code generation is shown in Figure 5.6

Client

EJBHome

Object

Container Bean Instance

Database

CodeGenerate()

Weblogic CodeEB

CodeCreate ()

CodeRetrieve ()

1
J

CodeStore() »

Read container-ménaged fields

Werite state to database

Code;\citvate ()

CodePassivate(L%

Codeload ()

Popuiate Container-managed fields

Codeload ()

1.

Figure 5.6 Sequence Diagram for Code Generation

The class generation is achieved by retrieve units from the Unit table, which compose

method library. Figure 5.7 shows the sequence diagram of this operation. Figure 5.8
shows the relations of UnitEB. Code and Unit tables.

68

Client

EJBHome

Object

Container

Bean Instance

Database

UnitCreate()

UnitRetrieve ()

Weblogic

UnitEB

UnitCreate ()

- UnitStore()

Read container-a‘afnaged fields

Write state to database

UnitPassivate() »

Uniu\zcitvate ()

-

UnitLoad ()

Populate Container-managed fields

=

UnitLoad ()

-

-

Figure 5.7 Sequence Diagram for Unit Generate

CodeUnitEB

Code Table

Unit Table

Figure 5.8

69

5.7 EJB Classes
6 EJB are designed in the SpiderNet System:

e Stateless Bean: CodeService, OrderService, Service
e Stateful Bean: Order
e Entity Bean: Code. Unit

The following are the EJBs classes:
5.7.1 CodeServiceBean:

Bean Class: CodeServiceBean
Home Interface: CodeServiceHome
Remote Interface: CodeService
5.7.2 OrderServiceBean:

Bean Class: OrderServiceBean
Home Interface: OrderServiceHome
Remote Interface: OrderService
5.7.3 OrderBean:

Bean Class: OrderBean

Home Interface: OrderHome
Remote Interface: Order

5.7.4 ServiceBean:

Bean Class: ServiceSLBean

Home Interface: ServiceSLHome
Remote Interface: ServiceSL

5.7.5 CodeBean:

Bean Class: CodeBean

Home Interface: CodeHome
Remote Interface: Code

Primary Key: compound of (C_Name, C_Size) from Code table
5.7.6 UnitBean:

Bean Class: UnitBean

Home Interface: UnitHome

70

Remote Interface: Unit

Primary Key: compound of (U_C_Name, U_C_Size, U M_Name) from Unit table

These EJBs are called by the relative JSP files or other EJBs. Each EJB has deployment
description files. The following are description file for EJB CodeServicesSL:

<?xml version="1.0"7>
<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN'
‘http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd™>
<gjb-jar>
<enterprise-beans>
<session>
<ejb-name>xiaohong.yu.CodeServicesSL</ejb-name>
<home>xiaohong.vu.CodeServicesSLHome</home>
<remote>xiaohong.vu.CodeServicesSL</remote>
<ejb-class>xiaohong.vu.CodeServicesSLBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</sesston>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>xiaohong.yu.CodeServicesSL</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

Deployment descriptor weblogic-ejb-jar:
<?xml version="1.0"7>
<!DOCTYPE weblogic-ejb-jar PUBLIC '-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB/EN'
'http://www . bea.com/servers/wlis5 10/dtd/weblogic-ejb-jar.dtd™>
<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>xiaohong.yu.CodeServicesSL</ejb-name>
<caching-descriptor>
<max-beans-in-free-pool>100</max-beans-in-free-pool>
</caching-descriptor>
<enable-call-by-reference>false</enable-call-by-reference>
<jndi-name>xiachong.yu.CodeServicesSL</jndi-name>
</weblogic-enterprise-bean>
</weblogic-ejb-jar>

71

Similar. we have description files for OrderServicesSL, OrderSF, ServicesSL, CodeEB
and UnitEB. The contents of these files can be found in Appendix A.

5.8 Security
There are two kinds of security check in SpiderNet:
1. WebLogic security check
2. Register.jsp
WebLogic can set local user ID and password in its property file:
Weblogic.password.xiaohong=xxxxxxxx
System can use register.jsp for security check by cookie or URL rewriting.

Add the following properties to weblogic property file for security:

Weblogic.security.ssl.enable=true
Weblogic.system.SSLListenPort=7002
Weblogic.security.certificate.server=democert.pem
Weblogic.security. key.server=demokey.pem

Weblogic.security.certificate.authority=ca.pem

For remote user. there is one or more firewall between client and server. Client can
choose one way or two-way SSL security option. Client needs to install the certificate
authority key in its browser if he chooses two-way security option. This security check

mechanism can also apply to local users.

L
Remote user ocal user

Firewall user user
user user
Web/Web Web
Application |aa—v »| Application Database
Server : Server
(group) (group)
user user j
; user user

Figure 5.9 Users and Security

5.9 System Operations

Servers are started by going to directory “SpiderCode™, setting runtime environment and
inputting the command “SpiderRun™. This will start WebLogic servers. The servers will
output lots of run time messages. The system interface is presented to its customers
through a Web site and a customer interacts with the system using a Web browser. At
first. a user will locate to the SpiderNet homepage by pointing the RUL to
http://xiaohong:7001/index.jsp or http://xiachong53t:7001/index.ijsp for Xiaohong and

Xiaohong353t respectively. as is shown in Figure 5.10. From the main menu, the user can

g0 to register. search codes. customers, etc.

Since it is presented as a web site. it is self-illustrated and straightforward to use. It is not
necessary to cover every detail of usage of the system. The following Figures show some

screen shots of the system during run time. We brievely introduce them.

73

Repmer ' Cavumers . ComestCumomer ComesOnier | Cofes | Semer Lorom |

E++ Solution Provider

Figure 5.10 SpiderNet Home Page

Input user phone number for the old user and system retrieves the user information by
simply click the username. New users need to register first. Figure 5.11 is the customer
list and Figure 5.12 is the new user registration form.

74

First Name . Last Nume Ciy : State Comary ! Fhone

E ee Rent 1 Windsor ON Canada 11-519- 1234567
padutony Yu 2 {Torento ON Canada 1-519-2550197
S sene Thong 3 Wndsor ON Canada 11-519-2234567
Paud Prency 3 Windsor ON Canada 11-519-3234567
ita 3 d: s Windsor ON Canads 11-5194234567
Chouldy 6 Wmndsor ON ‘Canada 11-519-5234567

Code 100 "Wndsor Ontano Canada 1416+ 1234567

Main menz:

Existing customner:

Telephone 1 - <16 - 1234567

Name Frm [Sower Zast [Caoetver
Addres T code o8
Address (e 1 PC.
Adgesemen [
Bemaks Bes

Major crosmroads [COver

Figure 5.12 User Information Form

75

Figure 5.13 is logout form. When we need to log on as different user. The server will start

another session.

Figure 5.13 Logout Form

Figure 5.14 ask user to input phone number for creating new user record.

76

Telsphone (Country code 1)
aeacae [
Poae
.

Figure 5.14 Login by Phone Number

When user clicks List Order in Figure 5.12. the system will show all the orders the user
has made. It also shows the user the code names and select option box for new order. The

prices are shown beside. If the order is not delivered, the user can modify the order

information. Figure 5.15 shows this.

77

Main mens: : I] . !"

Register Custamers Coryess Castomer | Cur=mtOpdsr | Codoy | Sermes ; Logeor |
Last action: (Fr1 Aug 31 230946 EDT 2000)
List erders for customer Spidar Code:
__Orders Duts Price Delivery Ouwdec . States | Roemard Action
s Wed Aug 22 01 15 59 EDT 2001 2555 98 Address 0 Deirvered [
B2 Fn Aug 51 0005 24 EDT 2001 1489554 Madem D Detvered b

o T
Maia mese: fegseer Custumeny Curent Customer | ComvmOrder | Codes [Sevicy | Logow |
Last action: (Fa Aug 31 23 10 08 EDT 2001) Order meczestuly loaded!
Specials:
No Specuals Today
Codes:

Code [Compm & Sex [MAN 8 Cuntomee [Serole - 8 Queary [3

Itemns incinded in the erder:
Code [Fonrems 8 Sce [WaR & Customnce [Sroe o ey B SNEDEN TR

Place an evder (or customer Spider Code (Order =2 32):

Date 2001-08-31 0005240 Statux Debwered

Debvery Address & Quier ©

E
"

Figure 5.16 Order Detail List

78

Click the “view source™. the customer can see the code it generate. Figure 5.17 shows

Code Order

Date Fn Aug 31 23 1252 EDT 2001 Orders 32, Date 2003-08-31 000524 0. Statws Defvered. Delivery Address Prics $14895 54, Romarks

Tsoms
Public Static Class Horwental
The class bady WAN

Netwerk Customige is Sanple
ey >

Public Static Class Compute
The class body MAN
Netwark Customize is Saxpic
Quantity |
Customer
Tolephane | - 316 - 12343567 Name: First Spwder Last Code

Addresy: ZIP cade 100 Addruss (lime 1) EPC Address (line 2)

Figure 5.17 Description of Source Code

Summary of Operations:

A typical use of the system can be the following steps:

(1) A customer connects to the system by pointing the browser to SpiderNet

homepage (for example www.spidernet.com)
(2) Figure 5.10 will be shown to the user

(3) Customer browses through the code list. The prices are shown beside. Customer

can view the introduction of the code.

(4) Customer adds the chosen code to the order

(5) Customer can see the summary of order including date, customer name, items,
total price.

(6) Customer delivers the code. The code is downloaded from the system.

79

5.10 Limitations

The major limitations of this model are:

— The system depends on WASs. Although different vendors of WAS provide
similar functions. They are not always compatible and need different
configurations.

— The system has not been tested in multi-server mode due to a license restriction

problem. The performance only can be measured in single server with multiple

client concurrent connection mode.

We have built the system prototype model. Although it is not complete and many
function need to be further developed, it is efficiently verify the theory we have discussed

in the previous chapters. In the next chapter, we will give the conclution and future work.

80

Chapter 6 Conclusions and Future Work

6.1 Contributions and Conclutions

In this thesis. we present a multi-server design model using EJB technology on J2EE
platform. This model touches the fundamental problems of grid computation: workload
distribution and fault tolerance. The key innovation of this design is trying to use EJB

technology for multi-server design.

The following is the summary of the contributions of this thesis:

(1) Give the analysis and design in using EJB for multi-server design.

(2) This design model tries to solve challenging problem in high performance and
high availability in multi-server model design.

(3) EJB was used to improve system performance.

(4) Give a development approach based on component and application framework
technology. Using WAS as a middle tier, we can use many services from the
server instead of building everything from scratch.

(3) The system architecture is flexible. There is much room for future development.

(6) A multi-server prototype model was built.

(7) Thin client solution: the clients only need a Web browser and Java virtual
machine in order to use the system service.

(8) JDBC connection pool was used for improve system and database efficiency and

performance.

By using WAS as a middle tier and EJB technology for building multi-server,
Application system always gets benefit from the development of underlying software
framework. There is considerably more work to be done in the area of application
framework. specification and EJB technology. The effort on this work is not only benefit

for individual application. but also many other application developers and the whole e-
business.

81

6.2 Discussions and Future Development

Things change very fast in computer world. A few years ago, there was no Java or EJB,

components were just starting to appear; currently these approaches are becoming
mainstream. Based on this prototype model, many further works can be developed. We
suggest the following future research directions that need to be further discussed:

Integrating EJB and Jini
Integrating EJB and Jini for Component-Based Development of Web-based

Enterprise Solutions. Combine advantage of these two technologies for E+ +

solutions.

Web Services

Web Services are self-contained, self-describing, modular applications that can be
published. located. and invoked across the Web. Web Services perform the functions
that can be anything from simple requests to complicated business processes. A web
services platform will allow components/applications built using a variety of
application platforms to be integrated in to a single enterprise application. It is an
integration technology. Once a Web service is deployed. other applications (and other

Web Services) can discover and invoke the deployed service.

The Web Services approach allows this information to be stored and universally
retrieved by any application which requires the information, in a common and well-

defined manner. independent of platform and programming environment.

Network Modeling Protocol Design for Smart Stub Policy
More complicated protocols need to be developed for smart stub policy. Of course,
there will be more overhead when one adopts more complicated protocols. But the

disadvantages will be overcome by effectively using the server resource and new

computer hardware technology.

82

Using Object Oriented Database Instead of Using EJBs

Database provides most of the services like transactions, security, concurrency etc.
just like any App server. Storing object themselves in the database, with associated
business methods. would be far more efficient solution instead of using relational

database and then using middleware for objects. Oracle9i AS is an example for this

issue.

JXTA technology

JXTA technology is a set of open. generalized peer-to-peer protocols that allow any
connected device on the network from cell phone to PDA from PC to server to
communicate and collaborate in a peer to peer manner. With the explosion of content
on the network. and the existence of millions of connected devices, a multi-
dimensional web or Expanded Web has emerged. Content is both on the edge of the
network and in the "deep web". JXTA technology enables new and innovative

network applications to be created. giving complete access to content on the
Expanded Web.

MultiPools

JDBC MultiPools create a list of connection pools to be used by a single instance of
WAS Server. A configurable algorithm determines which connection is returned.
MultiPools provide support for load balancing and high availability. MultiPools make

it easier for an application to switch to another RDBMS for distributed processing or

during a failover situation.

Improving the Efficiency of Java Platform

Java has a number of drawbacks in its current form. The most significant is
performance. Both EJB and Jini have this problem. How to balance just-in-time and
ahead-of-time for optimum performance issue needs to be further researched.

83

Bibliography

[Amir98] Yair Amir. Baruch Awerbuch, and Ryan S. Borgstrom
*The Java Market: Transforming the Internet into a Metacomputer™, 1998

[Anero99] Nikolaos Anerousis
An Architecture for Building Scalable, Web-based Management Services (1999)
http://citeseer.nj.nec.com/

[ArcstO1]http://www.io-software.com/products/index.html

[Aron00] Mohit Aron

“Differentiated and Predictable Quality of Service in Web Server Systems”, 2000
http://citeseer.nj.nec.com/aron00differentiated.html

[Avers00] Luis Aversa

“Load Balancing a Cluster of Web Servers -- Using Distributed Packet Rewriting™. 2000
http://citeseer.nj.nec.com/aversa0Oload.html

[Booch] Grady Booch
“Object-Oriented Analysis and Design™

[Brad00] Neil Bradley
“The XML Companion™. Second Edition, 2000
Addison-Wesley. ISBN:0-201-67486-6

[Bram00] Randall Bramiey. Kenneth Chiu.Shridhar Diwan

A Component Based Services Architecture for Building Distributed Applications™
http://citeseer.nj.nec.com/

[Brown01] Kyle Brown. Dr. Gary Craig, etc

“Enterprise Java Programming with IBM WebSphere”
Addison-Wesley. 2001. ISBN: 0-201-61617-3

[Broy98] Manfred Broy

A uniform mathematical concept of a component, appendix to M. Broy: What
characterizes a software component?”

Software Concepts & Tools. Voleme 19. Number 1. 1998, pp57

[Butle00] Martin Butler
~[BM s Pattern for e-business™
http://www.butlergroup.com/ibm.asp

[Buyya99] Rajkumar Buvva
~High Performance Cluster Computing: Architectures and Systems”

Prentice Hall. ISBN: 0130137847May. 1999

[Buyya0O1] Rajkumar Buyya and Sudharshan Vazhkudai
~“Compute Power Market: Towards a Market-Oriented Grid”
http://citeseer.nj.nec.com/buvva0lcompute.html

[Calla01] Dustin R. Callaway

“Inside Servlets---Server-Side Programming for the Java Platform, Second Edition™
Addison-Wesley. 2001. ISBN: 0-201-70906-6, pp90

[Carva00] Dulcineia Carvalho. Roy Campbell. Dennis Mickunas

A Framework in Execution Environments in 2K”

Department of Computer Science. University of Illinois at Urbana-Champaign
http://citeseer.nj.nec.com/445641.html

[CCFO00] CCF Project Team. Emory University
“CCF: A Framework for collaborative Computing”™
IEEE Internet Computing. January/February 2000.

[Cepon99] Alex Ceponkus & Faraz Hoodbhoy
“Applied XML: A Toolkit for Programmers™
John Wiley & Sons. 1999. Inc. ISBN: 0-471-34402-8

[Chen97] Zhikai Chen Kurt Maly Piyush Mehrotra Praveen K. Vangala Mohammad
Zubair

“Web Based Framework for Distributed Computing™ (1997)
http://citeseer.nj.nec.com/

[Colaj98] Michele Colajanni Dip. di Informatica
*Dynamic Load Balancing in Geographically Distributed Heterogeneous Web Servers™
http://citeseer.nj.nec.com/colajanni98dynamic.html

[Elizab00] M. Elizabeth C. Hull. Peter N. Nicholl. Philip Houston, Niall Rooney
“Towards a visual approach for component-based software development™
Software Concept and Tools. Volume 19. Number 4. ppl154

[Fayad99] Mohamed E. Fayad. Douglas C. Schmidt, Ralph E. Johnson
~Building Application Frameworks, Object-Oriented Foundations of Framework Design™
John Wiley & Sons, Inc. 1999. ISBN:0-471-24875-4

[Finga0O0] Peter Fingar
*“Component-Based Frameworks for E-Commence”
Communications of the ACM. October 2000/Vol. 43. No 10, pp 63

[Fleis00] Brett D. Fleisch, Heiko Michael, etc
“Fault Tolerance and Configurability in DSM Coherence Protocols™

85

IEEE Concurrency, April-June 2000, ppl0

[Foste00] Ian Foster
*Building the Grid: An Integrated Services and Toolkit Architecture for Next Generation
Networked Applications™ http://www.gridforum.org/building_the_grid.htm

[Foster96] Ian Foster, Carl Kesselman and Steven Tuecke
“The Nexus Approach to Integrating Multithreading and Communication™
ACM. Joumnal of Parallel and Distributed Computing37, 70-82 (1996)

[FredO1] Ashley Friedlein

*Web Project Management---Delivering Successful Commercial Web Sites™, pp7
Morgan Kaufmann Publishers. 2001, ISBN: 1-55860-678-5

[Gartn00] Felix C.Gartner

“Fundamentals of Fault-Tolerant Distributed Computing in Asynchronous
Environments™

ACM Computing Surveys. March 1999. Volume 31

{Globu] “Globus: A Meta Computing Infrastructure Toolkit”

http://citeseer.nj.nec.com/cache/papers2/cs/41 54/ftp:2SzzSzinfo.mcs.anl.govzSzpubzSzte
ch_reportszSzreportszSzP614.pdf/foster96globus.pdf

[Goldb98] Adele Goldberg
A reuse business model™
Software Concepts & Tools. Volume 19, Number 1. 1998, ppl1

{Gomez00] Paco Gomez and Peter Zadrozny
Java 2 Enterprise Edition with BEA Weblogic Server”
Wrox. ISBN: 1-861002-99-8

[Govon99] Darren Govoni
~Java Application Frameworks™
John Wiley & Sons, Inc. ISBN: 0-471-32930-4, pp3.4

[Henri98] Jorg Henrichs
“Optimizing and Load Balancing Metacomputing Applications”
ACM. 1998 International Conference on Supercomputing, July 13-17, 1998, pp165

[IBM] www.redbook.ibm.com
http://www.bm.com/software/developer/

[Ingha00] David B. Ingham and Santosh K. Shrivastava

*Constructing Dependable Web Services”
[EEE Internet Computing, January/February 2000, pp25

86

[Jini] http://www-unix.mcs.anl.gov/gridforum/jini/

[Kabir00] Mohammed J. Kabir
“Apache Server Administrator’s Handbook™
IDG Books ISBN: 0-7645-3306-1 ppl15

[Kosti00] Alexander E. Kostin. Member, IEEE, Isik Aybay, and Gurcu Oz
“A Randomized Contention-Based Load-Balancing Protocol for a Distributed
Multiserver Queeing System™

[EEE Transactions on Parallel and Distributed Systems, vol.11, no.12, December 2000

[Krish00] Balachander Krishnamurthy, Jia Wang
“On Network-Aware Clustering of Web Clients”

ACM. Computer Communication Review, Sigcomm, Volume 30, Number 4. October
2000, pp97

[KuzmO1] Aleksandar Kuzmanovic and Edward W. Knightly
“Measuring Service in Multi-Class Networks”, 2001
http://citeseer.nj.nec.com/kuzmanovicO l measuring.htmi

[Legion] www legion.virginia.edu

[Lewis] Ted Lewis

“Object-Oriented Application Frameworks™

[Lu00] Paul Lu

“Implelmenting Scoped Behavior for Flexible Distributed Data Sharing™
IEEE. Concurrency. July-September, 2000. pp63

[Manol99] Frank Manola
“Technologies for a Web Object Model”
[EEE Internet Computing , January/February, 1999, pp38

[MatenO1]} Vlada Matena

“Applying Enterprise JavaBeans ---Component-Based Development for the J2EE
Platform™

Addison-Wesley, ISBN:0-201-70267-3

[Monso00] Richard Monson-Haefel
“Enterprise JavaBeans”
O’Reilly. ISBN: 1-56592-869-5, pp 399

[Nilss00] Dale R. Nilsson. Peter M. Jakab, Bill Sarantokos, Russell A. Stinehour

“Enterprise Development with VisualAge for Java, Version 3™
John Wiley & Sons, Inc. ISBN: 0-471-38949-8, pp437

87

[Peter96] Larry L. Peterson & Bruce S. Davie
“Computer Networks---A System Approach”
Morgan Kaufmann Publishers. Inc. 1996, ISBN:1-55860-368-9

[Roman99] Ed Roman
“*Mastering Enterprise JavaBeans and the Java2 Platform, Enterprise Edition™
John Wiley & Sons. ISBN: 0-471-33229-1

[Schne97] Jeff Schnejder
*Using Enterprise Java™
QUE. ISBN: 0-7897-0887-6

[Siege00] Jon Siegel
“CORBA 3 Fundamentals and Programming™
John Wiley and Sons. Inc. ISBN: 0-471-29518-3

[Singh99] Harry Singh
“Progressing to Distributed Multiprocessing™
Prentice Hall PTR. ISBN:0-13-095683

[Solom00] David A. Solomon & Mark E. Russinovich
“Inside Microsoft Windows 2000. Third Edition”
Microsoft Press. 2000. ISBN: 0-7356-1021-5. pp784

[Subra00] Subrahmanyam Allamaraju, Karl Avedal, etc
Professional Java Server Programming J2EE Edition™
Wrox Press Ltd. 2000. ISBN: 1-861004-65-6

[SUN] Sun Microsystems. http://java.sun.com/products/
http://docs.sun.com/
http://java.sun.com/j2ee/

http://developer.java.sun.com/
Java ™ 2 Platform.Enterprise Edition Blueprints —www.java.sun.com/j2ee/blueprints

Java ™ 2 Platform Enterprise Edition Specification —www.java.sun.com/products
Java ™ Servlet Specificati n.v2.2 —www_java.sun.com/products/serviet/index.html
JavaServer Pages ™ Specification.vl.] —www.java.sun.com/products/jsp/index.html
[SUN10] http://www.sun.com/products-n-solutions/software/oe-platforms/java2ee.html
[SUNI11] http://www.sun.com/us/service/sunps/jdc/java_centers.html

[Talig] Taligent
“Building Object-Oriented Frameworks™

[These01] http://www.theserverside.com
http://www2.theserverside.com/reviews/index.jsp

[Vogel99] Andreas Vogel. Madhavan Rangarao

“Programming with Enterprise JavaBeans, JTS, and OTS:Building Distributed
Transactions with Java and C++"

John Wiley & Sons. Inc. ISBN: 0-471-31972-4

[Wahli00] Ueli Wahli. Mitch Fielding, etc

~Serviet and JSP Programming with IBM WebSphere studio and VisualAge for Java™
ibm.com/redbooks. ISBN: 0-7384-1608-8

[BEA] BEA
http://www.bea.com

[Zhang00] Michael Hui Zhang, “Design and Construction of a Distributed Library-Based
Software Reuse Model™. Thesis Report, 2000

[Zhong00] Andy Sheng Zhong. “Software Library for Reuse-oriented Program
Development™, Thesis Report. 2000

During the course of thesis. we have occasion to reference a number of websites which
contain material related to vary aspects of current development. Although this

information was not of a type to be referenced directly, we have included the reference
below as useful links:

http://www.itpapers.com/

http://www.jguru.com/fag/ejb

http://www.weblogic.com/doc5 1/examples/ejb/package-examples.ejb.html

http://safari2.oreilly.com/table.asp?bookname=entjbean2

http://www.javaworld.com/jw-03-1999/jw-03-middieware.html

http://www.javaworld.com/javaworld/jw-04-1999/jw-04-middleware.html

hutp://citeseer.nj.nec.com/cache/papers2/cs/16505/http:zSzzSzjava.sun.comzSzproductsz
SzejbzSzpdfzSzj2ee_dnatwp.pdf/roman99technical.pdf

http://www.javamagazin.de/

http://www.ohioedge.com/

89

Appendix A: SpiderNet Source Code Definition

This appendix contains the SpiderNet source code definition. We have the root directory
$SpiderCode. The files are organized with directories. Each directory of the source files
corresponds to a java package. All the Java source files are stored in directory src and the

compiled Java class files are stored in directory srv.

Java Classes in Package xiaohong.yu (\SpiderCode\src\yu\java)

Files: Code. CodeGeneration. CodeServicesSL, CodeServiceSLBean.
CodeServicesSLHome. Customer. CustomerListS. CustomerMaintenancesS.
CustomerSearchS. Helen. OrderDetail, OrderMaintenceS, OrderMaser, OrderServiceSL.
OrderServiceSLBean. OrderServiceSLHome, OrderSF, OrderSFBean, Unit

JSP Files (\SpiderCode\src\yu\jsp)

CodeList. CustomerForm. CustomerSearch. Index. Logout. Message. OrderForm.
OrderList. OrderSubForm. Specials

Servlet Files (\SpiderCode\src\vu\servlet)

CustomerListS. CustomerMaintenceS. CustomerSearchS. OrderMaintenceS.

ServiceMaintenceS

XML Description Files

The description files are stored in CodeServicesSL, OrderServicesSL. ServicesSL,
OrderSF. CodeEB and UnitEB sub directories. Each sub directory contains two files: ejb-

jar and weblogic-jar. We already gave the description file of CodeServicesSL EJB, the
description files of the other EJBs are listed in the followings:

OrderServicesSL
ejb-jar:
<?xml version="1.0"7>
<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN'
‘http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd™>
<gjb-jar>
<enterprise-beans>
<session>
<ejb-name>xiaohong.yu.OrderServicesSL </ejb-name>

<home>xiaohong.yu.OrderServicesSLHome</home>
<remote>xiaohong.yu.OrderServicesSL</remote>
<ejb-class>xiaohong.yu.OrderServicesSLBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>xiaohong.yu.OrderServicesSL</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

WebLogic-jar
<?xml version="1.0"7>
<!DOCTYPE weblogic-ejb-jar PUBLIC '-//BEA Systems, Inc//DTD WebLogic 5.1.0 EJB/EN'
'http://www .bea.com/servers/wls5 10/dtd/weblogic-ejb-jar.dtd™>
<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>xiaohong.yu.OrderServicesSL</ejb-name>
<caching-descriptor>
<max-beans-in-free-pool>100</max-beans-in-free-pool>
</caching-descriptor>
<jndi-name>xiaohong.vu.OrderServicesSL</indi-name>
</weblogic-enterprise-bean>
</weblogic-ejb-jar>

OrderSF
ejb-jar
<?xml version="1.0"7>
<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1/EN'
'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd™>
<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>xiachong.yu.OrderSF</ejb-name>
<home>xiaohong.yu.OrderSFHome</home>
<remote>xiaohong.yu.OrderSF</remote>
<ejb-class>xiaohong.yu.OrderSFBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>
<assembly-descriptor>

91

<container-transaction>
<method>
<ejb-name>xiaohong.yu.OrderSF</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

webLogic-jar
<Xxml version="1.0"7>
<!DOCTYPE weblogic-ejb-jar PUBLIC '-//BEA Systems. Inc.//DTD WebLogic 5.1.0 EJB/EN'
'http://www .bea.com/servers/wls3 10/dtd/weblogic-ejb-jar.dtd™>
<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>xiaohong.yu.OrderSF</ejb-name>
<caching-descriptor>
<max-beans-in-cache>300</max-beans-in-cache>
<idle-timeout-seconds>60</idle-timeout-seconds>
</caching-descriptor>
<jndi-name>xiaohong.yu.OrderSF</jndi-name>
</weblogic-enterprise-bean>
</weblogic-ejb-jar>

CodeEB
ejb-jar
<?xml version="1.0"7>
<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN’
'http:/java.sun.com/j2ee/dtds/ejb-jar_1_1.dud™>
<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>xiaohong.yu.CodeEB</ejb-name>
<home>xiaohong.yu.CodeEBHome</home>
<remote>xiaohong.yu.CodeEB</remote>
<ejb-class>xiaohong.yu.CodeEBBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>xiaohong.yu.CodeEBPK </prim-key-class>
<reentrant>False</reentrant>
</entity>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>xiaohong.yu.CodeEB</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>
</method>

92

<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

weblogic-jar
<>ml version="1.0"7>
<!DOCTYPE weblogic-ejb-jar PUBLIC '-//BEA Systems. Inc.//DTD WebLogic 5.1.0 EJB/EN'
"http://www .bea.com/servers/wls5 10/dtd/weblogic-ejb-jar.dtd™>
<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>xiaohong.yu.CodeEB</ejb-name>
<caching-descriptor>
<max-beans-in-cache>100</max-beans-in-cache>
<idle-timeout-seconds>35</idle-timeout-seconds>
</caching-descriptor>
<persistence-descriptor>
<delay-updates-until-end-of-tx>false</delay-updates-until-end-of-tx>
</persistence-descriptor>
<jndi-name>xiaohong.yu.CodeEB</jndi-name>
</weblogic-enterprise-bean>
</weblogic-ejb-jar>

UnitEB
ejb-jar
<?xml version="1.0"7>
<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems. Inc.//DTD Enterprise JavaBeans |.1//EN'
'http://java.sun.com/j2ee/dtds/ejb-jar_I_1.dtd™>
<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>xiaohong.yu.UnitEB</ejb-name>
<home>xiaohong.yu.UnitEBHome</home>
<remote>xiaohong.vu.UnitEB</remote>
<ejb-class>xiaohong.yu.UnitEBBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>xiaohong.yu.UnitEBPK </prim-key-class>
<reentrant>False</reentrant>
</entity>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>xiaohong.yu.UnitEB</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>

93

</ejb-jar>

weblogic-jar
<?xml version="1.0"7>
<!DOCTYPE weblogic-ejb-jar PUBLIC '-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB/EN’
'http://www.bea.com/servers/wlis5 10/dtd/weblogic-ejb-jar.dtd™>
<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>xiaohong.yu.UnitEB</ejb-name>
<caching-descriptor>
<max-beans-in-cache>100</max-beans-in-cache>
<idle-timeout-seconds>35</idle-timeout-seconds>
</caching-descriptor>
<persistence-descriptor>
<delay-updates-until-end-of-tx>false</delay-updates-until-end-of-tx>
</persistence-descriptor>
<jndi-name>xiaohong.yu.UnitEB</jndi-name>
</weblogic-enterprise-bean>
</weblogic-ejb-jar>

ServiceSL
ejb-jar
<?xml version="1.0"7>
<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN'
'http://java.sun.com/j2ee/dtds/ejb-jar 1 _1.dtd™>
<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>xiaohong.yu.ServicesSL</ejb-name>
<home>xiaohong.yu.ServicesSLHome</home>
<remote>xiaohong.yu.ServicesSL</remote>
<ejb-class>xiaohong.yu.ServicesSLBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>xiaohong.yu.ServicesSL</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

weblogic-jar
<?xml version="1.0"7>

94

<!DOCTYPE weblogic-ejb-jar PUBLIC '-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB/EN'
'http://www .bea.com/servers/wlsS$ 10/dtd/weblogic-ejb-jar.dtd™>
<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>xiaohong.yu.ServicesSL</ejb-name>
<caching-descriptor>
<max-beans-in-free-pool>100</max-beans-in-free-pool>
</caching-descriptor>
<jndi-name>xiaohong.yu.ServicesSL</jndi-name>
</weblogic-enterprise-bean>
</weblogic-ejb-jar>

95

VITA AUCTORIS

Xiaohong Yu was born in 1966 in Fuqing, P.R. China. He graduated from Fuqing No.1
High School in 1983. From there he went on to Fuzhou University where he obtained a
B.C.S . in Computer Science in 1987. He is currently a candidate for the Master’s degree
in Computer Science at University of Windsor and will graduate in the fall of 2001.

	University of Windsor
	Scholarship at UWindsor
	2001

	SpiderNet: A multi-server code service model design for computational grid support.
	Xiaohong. Yu
	Recommended Citation

	tmp.1363975211.pdf.zn4a6

