University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

1993

Improving explanation facilities in expert systems.

Hien My. Bui
University of Windsor

Follow this and additional works at: http://scholaruwindsor.ca/etd

Recommended Citation
Bui, Hien My., "Improving explanation facilities in expert systems." (1993). Electronic Theses and Dissertations. Paper 2406.

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at $19-253-3000ext. 3208.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F2406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/2406?utm_source=scholar.uwindsor.ca%2Fetd%2F2406&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

& National Library

of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisiions et

Bibliographic Services Branch des services bibliographiques

395 Wallington Street
Ortawa, Ontano
K1AUNA K1A ONJ

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are raissing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of

this microform is governed by-

the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

3495, rue Wellington
Ouawa {Ontano)

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a confére le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surteut si les pages
originales ont eté
dactylographiées a laide d'un

ruban usé ou si l'université nous

a fait parvenir une photocopie de

- qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

IMPROVING EXPLANATION
FACILITIES IN EXPERT SYSTEMS

by
Hien My Bui

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the School of Computer Science in Partial
Fulfillment of the Requirements for the Degree of
Master of Science at the
University of Windsor

Windsor, Ontario, Canada
September, 1993

7]

A

National Library
of Canada

i+l

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Onlario

KIAON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada " to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission. |

3953, rue Wellingion
Qntawa {Ontario)

Bibliothéque nativnale
du Canada

Direction des acquisitions et
des services bibliographiques

Your feg Volrg ridence

Owr hig Notre réldepnce

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition - des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
~autrement reproduits sans son
‘autorisation.

ISBN 0-315-87376-0

o

Canadi

Hicnh My Bui 1993
© All Rights Reserved!

! Chapier 2 and 3 and Appendix A and B are surveys, Substantial material in these surveys was direaly twken from

source references and summarics, No right is assumed in this cuse.

Abstract

One of the imporiant features of expert systems is to provide explanations
suitable to the user’s needs. Thus it is desirable 1o construct an expert system
which can flexibly give explanations to ditferent levels of users. Many existing
expert systems are only designed for one type of user. In this work, using the
Designer’s Assistant system as the platform, we build up the user modelling and
text retrieval components so that the system can adapt to ditferent levels ol the
user’s expertise. In the implementation, a model is built for cach user using
the system based on his/her expertise, goals, needs, etc. Text documentation is
retrieved for a particular user based on his/her model and is used as explanations.
The result is that different explanations are provided for different users, depending

on their needs.

iv

fa

To my parents, my husband and baby.

Acknowledgments

I would like to acknowledge the guidance and support provided by Dr. S.
Bandyopadhyay and Dr. W. Miller for their role as my supervisory commitice
member. Specifically, I am very grateful to Dr. J. Morrissey for taking the time
and effort in guiding me through this work. She has made numerous valuable
suggestions and comments on the thesis. Special thanks must go to Phu, Arunita,
Tibor, and Steve for all their help throughout the various stages of this work. Last
but not least, I would like to thank Dr. R, Frost for his help and encouragement

throughout this work.

vi

TABLE OF CONTENTS

AbStract e iv
Acknowledgments vi
Listof Figures e Xi
1 INTRODUCTION i i i et as 1
1.1 ObjectiveofThesis 1

1.2 Motivation, 1

1.3 SolutionOutline, 2

1.4 Thesis Organization 3

2 EXPLANATION FACILITIES IN EXPERT SYSTEMS 5
21 Introduction i 5

2.2 Overview of Expert Systems ard Explanation Facilities 5

2.21 What is an Expert System 5

2.2.2 Components of Expert Systems 6

2.2.3 Whatis an Explanation Facility 9

2.2.4 Why is an Explanation Facility Useful 9

2.2.5 Components of Explanation Facility 10

2.2.5.1 A Why explanation 10

2.252 AHowexplanation 10

2253 AWhatexplanation 10

226 EXample.t 11

2.3 Aspects of Explanation Facilities 14

2.3.1 Content of explanations 14

232 Usermodels 15

2.3.3 The human-computer interface. 15

24 AnalysisofResearch 16

241 Contentofexplanations 16

24141 Introspection — The First Approach ... 16

2.4.1.2 Introspection — The Second Approach . 17
2.4.1.3 - Introspection — The Third Approach. .. 18
2.4.1.4 Explanation by concocting 19

vii

2.4.2 Usermodels 19

2.4.3 The human-computer interface
25 FutureTrends. o, 21
2.6 Conclusion

USER MODELLING IN EXPLANATION FACILITIES IN EXPERT

SYSTEMS . . . e 24
3.1 Infroduction 24
3.2 Frameworks for User Modelling 24

3.2.1 User modelling classification 27
3.2.11 Carbonell'sapproach 27
3.21.141 Empirical quantitative models:. . . 27
3.2.11.2 Analytical cognitive models: 28

3.2.1.2 Rich'sapproach. 28

3.2.1.2.1 Canonical vs. individual model . . 29

3.2.1.2.2 Explicit vs. implicit 30

3.2.1.23 Long-term vs. short-term models . 31

3.3 Techniques for Building User Models 33
3.3.1 Inferringindividualfacts 34
3.3.2 Using stereotypes to infer many things at atime 36

3.4 ReviewofCurrentSystems 37
3.41 RepresentingUserModels 37
342 ScalarModels 39
3.43 Ad Hoc Modelling Systems 40
3.44 ProfleModels, 41
345 OverlayModels 42
346 ProcessModels 44

35 FutureWork. 45
36 Conclusion0t 46

4 IMPLEMENTATION 48

4.1 Introduction 48
4.2 Implementation Context 49
421 What is the Designer's Assistant? 49
4.2.2 Why Choose the Designer's Assistant as an
Experimental Platform? 50
43 UserModelling 51
431 TheldealUserModel 51
4.3.2 The Design's Assistant User Mode! 51
433 Howdowebuldthemodel............. 52
4.3.4 How the model is maintained 54
4.4 Information Retrieval Techniques 57
4.4.1 How Keywords are Acquired and Used 57
4,42 Types of IR Techniques Used 59
45 Userinterface 59
46 ConclusionS . . .« v vttt e 60
5 CONCLUSIONS AND FUTUREWORK 62
51 Summaryand Conclusions 62
52 Futurework i 63
B i e e e e e e 65
....................................... 65
A APPENDIX A — INFORMATION RETRIEVAL 73
A1l Introduction i e 73
A.2 Information Retrieval Systems 73
A.2.1 Data base managementsystems 74
A.2.2 Question-Answering System 75
A.2.3 Information Retrieval Systems 75
A3 Activities in Information Retrieval Systems 76
A3.1 Information Analysis 76
A.3.1.1 Theinverse document frequency weight. 80
A.3.1.2 Thesignal-noiseratio 80
A.3.1.3 The term discrimination value 82
A314 TermThesaurus................ 87

ix

B.1
B.2

B.3

B.4

B.5
B.6

A.3.2 Information Organization and Search 89
A3.3 QueryFormulations.................. 91
A.3.31 Boolean query formation and search. . . 91
A.3.3.2 Matching Functions and Serial Search . 94
A.3.3.3 Probabilistic Information Retrieval 96
A.3.4 Information Retrieval and Dissemination 98
Conclusion« ...y 100
APPENDIX B — USER INTERFACE FOR EXPERT
SYSTEMS e 102
Introduction i 102
The Requirements for User Interfaces to Expen
Systems 103
B.21 The paturalidiom 104
B.2.2 ‘Immediatefeedback 105
B.2.3 Recoverability 105
B.2.4 The appropriate interaction styles 106
B.2.5 Multiple interfaces to the same knowledge .. 106
Aspects of the User Interface 107
B.3.1 Dialoguecontrol 107
B.3.2 Natural languagearocessing 108
B.3.3 Newtechnology 108
Review of Current Building Tools to Support User
Iterfaces v v v v e e e e 109
B.41 TheKEEinterface e e e 110
B.4.2 The Activelmagespackage 110
B43 Slotgraph 111
B.4.4 SimKitinterfacetools 111
B.45 CommonWindows 111
B.4.6 KEEpictures Toolkit 112
A General Approach to Implementing Interface Tools 112
ConclusSIoN i i e e e 114
PROGRAMULISTING 116
VITAAUCTORIS oo i e 200

List of Figures

Figure 1
Figure 2
Figure 3
Figure 4

Figure 5
Figure 6

Diagram of Components of Expert Systems 7
Anoverlaymodel 43
Excerpt from Typical Stop List 84

Typical term deletion algorithm (data for 1,033
documents in medicing) 86
Typical Thesaurus Excerpt 88

A sequence of refines query statement in the Stair

Xi

Chapter 1 INTRODUCTION

1.1 Objective of Thesis

The objective of this thesis is 10 investigate how the quality of explanations
given in expert systems can be improved by the use of user modelling technigues,
information retrieval techniques and user interface techniques.

To accomplish the objective, two main tasks were undertaken: a survey of
related areas and an implementation. Areas surveyed include: explanation facili-
ties in expert systems, user modelling in explanation facilities in expert systems,
user interfaces for expert systems and finally information retrieval systems. To
test our ideas, we have implemented different user models in an existing cxpert

system for FIR filter design [Sar 90] which was limited to only one type of user.

1.2 Motivation

A major factor which can affect the ease with which people use an cfpcrl
system is the ability of the system to tailor its behavior to the specific needs of
an individual user. Many expert systems are only designed for one type of user.
They require the user to be familiar with the concepts and icrms of a domain. The
most common form of explanation facility in use is non-interactive and consists of
printing out trace of the rules being used or displaying canned text explanations.

Although rule traces can be useful for debugging, they rarely provide an acceptable

Y
L%

explanation for the user. Canned text, another form of explanation, involves
anticipating user questions in advance and storing appropriate answers in English
text. The major problem with the use of canned text is that it is unlikely that all
user questions will be anticipated in advance and this makes it difficult to provide
more advanced forms of explanation.

In short, current explanation facilities are not adequate and are difficult to use
for naive users. We suggest that they can be improved by using techniques from

user modelling, information retrieval and user interfaces.

1.3 Solution QOutline

The ability of an expert system to provide explanations is linked to the
performance of three main techniques used in the expert system: user modelling,
information retrieval and user interface. User modelling techniques can assist
in finding relevant and pertinent help for different types of users. Information
retrieval techniques can be used to retrieve meaningful passages of text which are
the basis of explanations. User interface techniques can be used to improve the

interaction between the user and the system..

In our work, we make use of these three techniques to provide a better
explanation for the user of expert systems.

First of all, user models are built by combining explicit and implicit ap-

proaches. In this work, we consider two stereotypes of users: expert and naive.

tw

S

At the initial stage the stereotype is formed. Then an individual model is devel-
oped as the user uses the expert system. During the design process the user is
questioned about his/her goal, level of expertise, type of explanations preferred,
etc. and his/her behavior is observed.

When a model is built for a specific user, it is used to select a set of suitable
keywords which are associated with rules in the knowledge base. Based on
these keywords, simple information retrieval information techniques are applied
to extract relevant text which is used as the content of explanations. In this way,
different explanations are provided for different users, depending on their needs.

Finally, user interface techniques are employed to allow the user to be
interactively involved in the designing process. It helps the user to use the sysiem
more efficiently and effectively.

Therefore, with our solution, the user of an expert system can obtain mean-
ingful explanations suitable to his/her background. Moreover, the employment of

user interface techniques make the system more user-friendly and easier 10 use.

1.4 Thesis Organization

In chapter two we provide background information on explanation facilitics
in expert systems. It contains a brief description of an expert system, its
components, the usefulness of explaiation facilities and aspects of explanation

facilities. Chapter three describes user modelling in explanation facilitics in expert

systems. Frame works for user modelling and classification of user modelling are
presented along with techniques for building user models and reviewing of current
systems. Chapter four provides the description of the actual implementation of
the system. We also provide reviews of information retrieval systems and user
interfaces of expert systems in the appendixes A and B respectively. Appendix

C comains a listing of the program.

T

Chapter 2 EXPLANATION FACILITIES
IN EXPERT SYSTEMS

2.1 Introduction

In the Artificial Intelligence area, researchers have considered the development
of explanation facilitics to be one of the most valuable contributions towards
developing a methodology for building expert systems. Most of the research
activity is concerned with improving the quality of explanation produced.

The ability to explain its reasoning is usually considered an important com-
ponent of any expert system. An explanation facility is useful on several levels:
it can help developers to test, monitor and debug the system during pru ~ram
development; it can assure the domain expert that the system’s knowledge and
reasoning process is appropriate; and it can instruct the naive user or student

about the knowledge in the system.

The problem of producing explanations can be viewed in a framework ol
three major considerations: the content of explanations, user md\ching and the
| human-computer interface. In the following sections a discussion 1‘i\n(l review of

work carried out in each area is presented.

2.2 Overview of Expert Systems and Explanation Facilities

2.2.1 What is an Expert System

In recent years, expert systems have been produced in many different arcas of

5

expertise such as diagnosis in various areas of medicine, chemistry, electronics,
geology, management, oil and mineral exploration and income tax. An expert
system is an intelligent computer program which uses knowledge and inference
procedures to solve problems that usually require significant human expertise for
their solution. The knowledge nccessary to perform at such a level, and the
inference procedures used, can be thought of as a model of the expertise of the

best practitioners in the field.

2.2.2 Components of Expert Systems

An expert system usually consists of the following separate components:

. Knpwledge base: This is the body of facts, rules and heuristics which forms
the basis of a knowledge system.

. Inference engine: This is the part of a knowledge based system that contains
the procedures‘ for reaching a conclusion.

. Explanation facilities: This component provides explanations to a user. It
explains how solutions were reached and justifies the steps used to reach them.
It allows users to ask “Why”, “How” and “What” explanations of the inference
engine.

. Rule editor: This component allows users to add, delete and modify facts

or rules.

. Graphic interface: This is included as part of the explanation facilities
of some expert systems. For example, it might allow users to view an expert
demonstration of the operation of a computer-aided design (usually for designing
digital logic circuits).

The following diagram shows a hierarchical view of an expert system where
User can be end users, knowledge engineers or domain cxperts. Information can

be passed from one entity 1o the other along the lines in the direction of the arrows.

Figure 1 Disgram of Componemts of Expert Sysienms

> Graphic Interface -

Inference Engine
Knowledge Base |, I User

Explanation Facilities

Rule Editor

Terminology

Some frequently used terms are:

Goal: this is a specific task, strategy, or fact which needs to be reached or
satisfied.
Rule: this is a formal wiy of specifying a recommendation, directive, or
strategy. Rules are expressed as:
- IF <premise> THEN <conclusion> or

- IF <condition> THEN <action>.

Backward chaining: this is an inference method where the system starts with
what it wants 1o prove, for example G, and tries to establish the facts it needs
to prove G. It seeks to satisfy a stated goal by seeking rules in which the THEN
portion matches the goal, then seeking other rules whose THEN portions match

the IF portion of the rule whiéh satisfies the goal.

Forward chaining: this is another inference method where the rules are
matched against the facts to establish new facts. It seeks to identify all rules
whose IF portions are true, then uses the THEN portions of those ruies to find

other rules which are also true.

Tracing: this facility provides the user with a trace or display of the system
operation, usually by listing the names (values of variables used) for all rules

fired, or showing the names of all subroutines called.:

Slot: this is an attribute “associated with a node in a frame system. The node

may stand for an object, concept, or an event. For example, a node rcprcis{i:ﬁting

8

the object employee may have a slot for the attribute name and one tor the attribute

address. These slots would be filled with the employee’s actual name and address.
2.2.3 What is an Explanation Facility

An explanation refers to information that is presented to justity a particular

course of reasoning or action.

In expert systems an explanation facility typically refers to a number of
techniques that help a user understand what a system is doing and why. Many
knowledge systems allow a user to ask "Why", "How", or "What" gueries. In
each case the system responds by revealing something about its assumptions or

its inner reasoning.

2.2.4 Why is an Explanation Facility Useful

The explanation facility is an important component of any expert system. It
helps users understand and trust the system and helps decide the best way (o
exploit the system’s capabilities, In many consulting applications, explanation
facilities need the ability to justify and“ci;plain their advice to the user. This is
necessary for the following reasons:

. Because the knowledge base is limited, the user may want to know if the

system makes use of all the knowledge that the user considers relevant.

. The user may want to know if the strategies adopted by the system for

solving the problem are satisfactory.

i

1
i

. The user may wish to know if all the relevant data describing the problem

state are being considered [Hen88].
2.2.5 Components of Explanation Facility

"The function of the explanation component is to give the reason for questions
usked by the inference component (Why explanation); and to justify the deduced
facts (How explanation) or help users to understand a technical term or rule
(What explanation),

2.2.5.1 A Why explanation

A Why explanation is an extract from the argumentation chain (that is, in
general, the rules used). Basic components of an Why explanation include:

. the current goal

. the current rule under investigation

. the current satisfied premises.
2.2.5.2 A How explanation
The basic components of a How explanation include:

. the knowledge source employed

. The context of acquisition which may consist of supporting facts.
2.2.5.3 A What explanation

A What explanation provides additional information of definition or details

of terms and rules.

10

2.2.6 Example

The following example taken from MYCIN's expert system to illustrate its
capability to explain the reasoning to the user [Sho76]. This means that it can
describe its reasoning steps; how a request tfor data is related 1o a goakl how
one goal leads to another; and how a goal is achicved. The example shows
a consultation excerpt in which the program demonstraies a line of reasoning

(chained goals) that lead backwards from the current question:

Is the patient a compromised host {(rule 343} -> is the patieat immunosiip-
pressed? (rule 395) —> iy the patient receiving steroids? (rule 543) —> is e.coliy

causing the meningitis?

In the questioning session after the consultation, one can inguire further about
the program’s intermediate reasoning steps, including why it didn’t ask about

something. User response is shown in bold.
23) Is J. Smith a compromised host?

*k*Why
[i.e. WHY is it important to determine whether J. Smith is a compromised host?|

[3.0] This will aid in determining whether J. Smith is immunosuppressed.

If

is
[3.1] J. Smith is not a compromised host

11

then

it is definite (1.0) that J. Smith is not immunosuppressed

[RULE343]

{back to question 23...]
***Why
[i.e. WHY is it important to determine whether J. Smith is immunosuppressed?]

[4.0]... in order to determine whether J. Smith has received corticosteroids.

If

[4.1] J. Smith is not immunosuppressed

then

it is definite (1.0) that J. Smith has not received

corticosteroids.

[RULE385]

[back to question 23...]

Rk Why

[i.e. WHY is it important to determine whether J. Smith has received corticos-

teroids?)]

[5.0]... in order to determine the organisms causing the infection.

It has already been established that

[5.1) the infection which requires therapy is meningitis, and

12

[5.2] only circumstantial evidence is available ror this case,

[5.3] the type of meningitis is bacterial.
Therefore,
If
[5.4] J. Smith is receiving corticosteroids
then
there is evidence that the organisms causing the infection
are:
e.coli (.4), klebsiella-pneumoniae (.2), or
pseudomonas-aeruginosa (.1)

[RULE543]

[back to guestion 23...]
***Ng
Now the user can ask for other éxpianations:
***Did you consider whether the paticnt was receiving steroids?
RULES43 could have used:
whether J. Smith has received corticosteroids.
Clause 4 of RULES543 {the patient has received corticosteroids | was already

knowsi=to be false.

T

*+*How did you know that the patient had not reccived steroids?

13

and

RULE395 was used to conclude that J. Smith has not received corticosteroids.
The last question asked before the conclusion was made was 23.

***What was question 23?

Question 23 was asked in order to find out whether J. Smith is a compromised

host in an effort 1o execute RULE343,

2.3 Aspects of Explanation Facilities

The explanation facility of expert systems helps increase user confidence in
and patience with systems by revealing internal rules leading to system conclu-
sions. Applying system knowledge can help users understand how the system
reached its conclusions, help debug, test or monitor the knowledge base and
problem-solving behavior and convince users that the system’s conclusions are
reasonable.

In knowledge-based systems, there are three top-level functions to generate

the explanation.

. content of explanations
. user models

. the human-computer interface.
2.3.1 Content of explanations

If the user queries some aspect of the system’s decision making, we need to

generate an information structure containing elements that make up an explanation.

14

Q

In constructing this explanation we must consider the current problam solving task,

Explanation content cin be put together in two ways

-By introspecting: that is, picking appropriate traces for the user query or
retrieving knowledge base portions used in making the decision.

-By concocting: that is, producing a justification that does not relate to
how the decision was actually made, but that independently makes the decision

plausible.

2.3.2 User models

It may not be necessary to communicate all available explanation content o
users. By applying user goals, states of knowledge, and the dialog structure,
systems filter, shape, and organize process output so that explanations respond
to user needs. This often requires user modeling, and tailoring explanations for

the user [MWMB85].

2.3.3 The human-computer interface

The content of explanation and user modelling functions produce all the
infonﬁation needed conceptually and logically for the required explanation. But
how to present it to users is still an issue to be considered. Some considerations
are What is an appropriate human-computer interface for effective display? What

is the best form of presentation; natural language or in graphical form?

15

(%

In general, in the process of gencrating explanations, the content of expla-
nation function is more important than the other two. Poor explanations will be
presented if the explanation content is inadequate or inappropriate even if the

theories for user modeling and the interface functions are good.

2.4 Analysis of Research

In the following we consider in more detail approaches which are widely

employed in the content of explanations, user modelling and user interface.

2.4.1 Content of explanations

2.4.1.1 Introspection — The First Approach

Davis, Shortliffe and the other originators of MYCIN [Sho76] contributed
the first approach to knowledge systems explanation. Their essential con-
cept was that a trace of the problem-solving activity at the implementation level
(for MYCIN, this would be its rule architecture) can give explanations about what
the system did. During the execution of the program, MYCIN’s explanation facil-
ity answered user questions about how and wity certain conclusions were reached
by combining a declarative reading of production rules with a simple natural lan-
guage translation system to generate an augmented trace of the system reasoning.

MYCIN expressed its explanation entirely in terms ol}:‘ﬁies and goals.
f;‘"

X

16

2.4.1.2 Introspection — The Second Approach

In the first approach, traces of rule activations may describe program behavior,
but they can not justify it, because the justification is part of the knowledge used to
design and implement the program. This knowledge is not represented explicitly
in the code. The principles of reasoning in the domain are typically confused with
the model of the domain that the system reasons with. With his Xplain system
[Swa83], Swartout introduced the second approach. e suggested that one
way to design an expert consultation program is to specify the domain model
and the domain principles, and then invoke an automatic programmer upon this
specification to generate the performance program. The process of integrating the
prescriptive and descriptive aspects of the specification into the final system is
recorded and used to produce explanations of the system’s behavior. A knowledge
based systen: has task-specific goals and problem-solving knowledge that we
can view as compiled from more general domain knowledge. If the system
remembers a trace of the compilation, it can justify system rules in terms of
deeper knowledge. Xplain uses deep2 knowledge (the “domain model” contains

facts about the domain of application as causal paths and taxonomies) and a

representation of problem-solving control strategies (“domain principles” include

[

2 “deep” knowledge refers 1o mulii-levels of abstraction of knowledge. For example, first level uf ¢nowledge is the

domain knowledge of application. Sccond level of knowlzdge is the domnin knowledge of the domain knowledge of

application. i T

17

methods and heuristics, which are usually either hard-coded into the interpreter
or given to the interpreter as meta-rules) to compile a knowledge-based system.
Therefore, the system can examine the control strategy to analyze system behavior
and can use the deep model to justify system rules.

2.4.1.3 Introspection — The Third Approach

The third important approach toexplanation can be seen in NEOMYCIN
[CL81]. Clancey indicated that knowledge-based systems typically perform tasks
best described at a higher level than a rule base’s goal-subgoal level. But MYCIN
had explicit representation of the rules only, and not of problem-solving strategies
that may be encoded implicitly in rule formalisms by system designers; therefore,
it could not answer “why” questions that needed 1o be interpreted strategically.
However, Clancey points out that if system behavior is represented at the task
level, it can produce explanations at the task level. NEOMYCIN solves the same
diagnosis problem as MYCIN, but explicitly represents the diagnostic task (a
domain-independent strategy for doing diagnosis). It contains diagnostic operators
including “establish hypothesis space” and “explore and refine” that represent
the diagnostic strategy and in terms of which it can explain its problem-solving
activity, that is, forward reasoning from data, associations which trigger new
hypotheses, and a “working memory” of alternative hypotheses that it explores
alccordi{"llg to a “group and differentiate” strategy. Thus, NEOMYCIN can give

strategic explanations describing its higher level goals.

18

2.4.1.4 Explanation by concocting

Explanations are generated by concocting when problem solvers have no
access to records of their own problem solving, or when information contained
in those records is unnecessary or incomprehensible to users {CTI89]. The
explanation may argue convincingly that the answer is correct without actually
referring to the derivation process, just as mathematical proof persuades without

representing the process by which mathematicians derived the thcorem.

2.4.2 User models

A model of the user can be used as a step in determining what needs to
be explained to a particular user. The ability to adapt to a specific user is an

important aspect of explanation,

The intended user will influence the explanation content. Consequently, much
explanation research focuses on determining the level and content for a given
user [WS89]. For example user modelling helps systems to construct internal
representations of user knowledge, goals, and plans. McKeown ¢t al. have
implemented user models\\' to tailor explanations for specific users [MWME5]
— analyzing users to discovers the goals of their system interaction and using
these goals to direct responses to queries and thereb-y providing the most relevant

information possible.

19

Other research concentrates on what information and detail level systems
should present to users during explanation. In ONCOCIN [LS83], Langlotz
and Shonliffe are able to highlight significant differences between the user’s
and system’s solutions by first asking the user to solve the problem — this
is 2 common approach in Intelligent Tutoring Systems. In BUGGY {BB80],
Brown and Burton compile an exhaustive representation of errors in arithmetic to
identify a student’s addition and subtraction “bugs”. Genesereth [Gen82] takes
the approach of constructing a user plan in the course of an interaction to determine

a user’s assumptions about a complex consultation program.

In other user-modelling research user goals are employed to achieve explana-
tions satisfying the implicit intent of user queries [HRWLe83]. Wallis and Short-
liffe use numeric markers to distinguish “complexity levels” and the importance
of rules [WS82]. Explunation lavels vary according to how many problem-solving
steps systems explicitly list for users: In the other words, based on detail and user
expertise, the system omits highly complex and minimally important steps (those

with high complexity ratings and low importance ratings) from explanations.

2.4.3 The h'uman-computer interface

;i\
Questions to be asked are: Can the system and its users employ queries in an

interactive discussion or should a query be provided as a simple probe? How can

an appropriate human-computer interface effectively display and present informa-

20

tion to users? These aspects significantly influence the generated explanation’s
form and content; interactive explanations are more ditficult 1o produce than non-
interactive explanations [WS89). It is difficult to decide which explanations are
best presented in natural language and which in gr;aphicnl form.

KEE [Tek85], Intellicorp’s knowledge engineering environment, provides
many features including frame inheritance, advanced graphical representations,
menu-driven commands, and several programming paradigms. It also provides an
explanation facility based on the Why/How query. KEE uses a buckward-chaining
explanation window to display answers regarding ‘why’ and ‘how’ queries in

network form and allows users to implement their own explanation facility.

2.5 Future Trends

The contribution of expert system researchers has been to place a high priority
on the accountability of consultation programs, and to show how explanations of
program behavior can be systematically related to the chains of reasoning used
by rule-based systems. These contributions include attempts to separale out the
different kinds of structural and strategic knowledge implicit in expert performance
[Cla83], and attempts to make explicit and accessible the design purposes of
generating better explanations and automatic programming [Swaf3]. That is,
different ways of structuring knowledge system for different slr;ue.gical purposes.

The effect of the structural knowledge is to provide a handle for separating out

21 ¢

Y

what the knowledge system is from when it is to be applied, and whether or not

the strategy for invoking the knowledge system is explicit or encoded indirectly.

A reasoning system must contain, and be able to explain not only knowledge
about a domain, but also knowledge about knowledge about a domain (meta-level
knowledge) [Dav80]. In NEOMYCIN, the strategies are made abstract by making
metarules and tasks domain-independent. It is possible to direct a consultation
using this general problem-solving approach so that resulting explanations of
strategy are able to convey this strategy. In future, discourse rules will be

developed for determining a reasonable level of detail for a given user.

Another important area is constructing a user interface that is able to generate
natural language explanations in response to user questions and more specifically

to their needs.

2.6 Conclusion

In the artificial intelligent area, explanation is a complex topic. We have
introduced the main concerns and activities of researchers who are interested in
both developing a methodology for building expert systems and improving the

qgality of explanation they produce.

Expert systems must be able to explain what they do and why, but traditional

approaches fail to provide adequate explanations and justifications.

et
b

22

Current systems have limited explanatory capabilities and present maintenance
problems because of a failure to explicitly represent the knowledge and reasoning

that went into their design.

23

Chapter 3 USER MODELLING IN EXPLANATION
FACILITIES IN EXPERT SYSTEMS

3.1 Introduction

Within an expert system, it may not be necessary to communicate all available
explanation contents to users. Since the knowledge base contains many different
objects with regard to different areas of the knowledge, most users will be neither
fully naive nor truly expert with respect to the knowledge base. “Naive” and
“expert” are the extremes of a4 knowledge spectrum and most users will be at
intermediate points in the spectrum. Such users may have local expertise about
some objects in the knowledge base and not others. Hence, it is not sufficient
for the system to indicate whether a user is naive or expert. Systems should
apply user goals, states of knowledge, and the dialogue structure to filter, shape,
and organize process output so that explanations respond to user needs. This
often requires user modeling, and tailoring explanations for the user [MWMB35].
User modeling, techniques for building user models and review of user models

in current systems are presented in following sections.

3.2 Frameworks for User Modelling

In this section we will define some terms which are used throughout this

thesis to understand what is an user model and how it is classified.

24

W

"

-

An expert user is one that is knowledgeable about the domain of the knowl-

edge base, generally spending a lot of time using the system.

A naive user is not knowledgeable about the domain of the knowledge base,

generally using the computer and/or package infrequently.

The requirements of these two classes of user differ substantially. The expert
is concerned with speed and flexibility of input, direct control of the operation of
each module of the system and access to all the resultant output in a structured
and flexible manner. The naive user wants a clear and coherent interface where
the system provides guidance as to the current options and their implications,
error trapping and easy error recovery, and a concise summary of the results in

an easily understood manner.

A stereotype consists of a set of facts and rules that are believed w apply
to a class of users. Stereotyping is a major technique which researchers use to

build models of users.

An individual has exactly one stereotype with which it is currently associated

and a collection of definite ground facts which are true.

A user modelling component is the part of a dialog system whose function
is to incrementally construct a user model, store, update, delete entries, maintain
the consistency of the model, and supply other components of the system with

assumptions about the user.

25

The term “user model” can be used to describe a wide variety of knowledge
about a user, either explicitly or implicitly encoded, which is used by the system
to improve the level of man-machine interaction. In “Leaming and Teaching with
Computer” O’Shea and Self [OS83] gave a very good broad definition of a user

model, which encompasses a wide variety of modelling schemes:

“Any information which a program has which is specific to the particular
student being taught. The information itself could range from a simple count
of how many incorrect answers have been given, to some complicated data
structure which purports to represent a relevant part of the student’s knowledge

of the subject.”

The issue of user modelling has been raised in many areas of artificial in-
telligence, from man-machine interfaces to expert systems and intelligent tutor-
ing systems [Sle85]. This has led to a proliferation of different approaches and
techniques. Several classification schemes have been proposed, which can be em-
ployed in order to provide an analytical understanding of user modelling. These
schemes are helpful and are used to clarify how user modelling can be taken into

consideration in the design of expert systems.

In order to provide a more analytical insight intqthe,,n:imre of user models, we
will first examine a classification of them, then describe different techiniques for
inferring users knowledge of individual concepts from their observed behaviors to

i

26

build user models. Several user-modelling systems will also be bricfly reviewed.
3.2.1 User modelling classification

In the following, we will survey two major approaches, one proposed by

Carbonell [Car83] and one proposed by Rich [Ric83].

3.2.1.1 Carbonell’s approach

The scheme proposed by Carbonell identifies two calegories: empirical quin-

titative models and analytical cognitive models.

Empirical quantitative models:

Empirical quantitative models entail information derived from an abstract
formalization of general classes of users. The model is defined through parameters
cmﬁpiled from empirical data, encoding quantitative relations between primitive
operations carried out by the user during the interaction with the system in solving
a specific task, and a measurement of the performance shown by the user in
solving such a task. Classical examples of this class are the keystroke model
developed by Card, Moran, and Newell {CMN83] and the ZOG system developed
by Robertson, Newell and Ramakrishna [RNR81]. ZOG is a frame-based system
that facilitates user-computer communication. Its design was inﬂucﬁccd by such
factors as the response speed necessary to prevent user frustration. These models

contain only surface knowledge about the user (or a specific class of users), and

27

no internal reasoning takes place. Therefore, the resulting system does not contain

any separate knowledge base devoted to represent user modelling information.

Analytical cognitive models:

Analytical cognitive models are aimed at simulating aspects of user cognitive
processes taking place during interaction with the system. These models are
based on explicit representation of user knowledge, Vlof a qualitative nature.
Implementation utilizes artificial intelligence techniques. The consideration of
a knowledge base devoted to store user modelling information allows the specific
traits of each single user in a given class to be followed. For example, UMFE
[Sle85} is a front end sfslcm for the explanation component of expert systems.
It determines the user’s level of sophistication by asking as few questions as
possible, and then presents a response in terms of concepts which UMFE believes
the user understands. It uses a series of implementor-defined inference rules to
decide the concej)ts which the user is likely to know or may not know, given the

concepts the user indicated he or she knew in earlier questioning.

3.2.12 Rich’s approach o

Rich [Ric83] gives three “dimensions” for classifying user models: .

i JP_

e

O A m\pdél of a single stereotype-user versus a collection of models of individual

users.

O Models specified by the user or systems designer versus models inferred by
the system based on the user’s behavior.

O Models of long-term user characteristics versus models of the current task.

Canonical vs. individual model The first dimension is one single model of a
typical user versus a collection of many individual models. The first category pro-
posed by Carbonell [Car83] conforms to the canonical model approach, whereas
any system that has to be capable to tailor its behavior to a heterogencous varicty

of users has to conform to the individual model paradigm.

Canonical models characterize an abstract “typical” user, while individual
ones have potential to accommodate each user’s particular nceds. A \{aricly
of computer systems have been designed around a canonical user model. For
example, ZOG [RNR81] as previously described. Another example of a system
built around & mode! of a canonical user is Genersereth’s automated consultant for
MACSYMA, a symbolic mathematical package [Gen?B]; “The consultant exploits
an explicit model of the problem solving strategy us'é/d by MACSYMA users.

But there is a limit to the usefulness of the canonical models to a system with

e

a heterogeneous user community.

Individual models can enable such systems to provide each user an interface
more appropriate to his needs than could be provided using a canonical model.

There exist techniques for implementing such models so that they acwally do

29

improve the performance of the system. The decision to exploit individual user
models has a profound impact on the other aspects of user modelling. If a system
possesses only a single model of a canonical user, that mode! can be designed once
and then directly incorporated into the overall system structure. If, on the other
hand, the system is ultimately to possess a large array of models corresponding
to each of its users, the question of how and by whom those models are to be

constructed arises and this leads to the second dimension of user models.

Explicit vs. implicit There are two ways to make systems different for different
users. Explicit models are based on information which is provided by the user
to describe himself/herself or his/her needs (either under user control or system
coﬁiml), whereas implicit ones are constructed by observing his/her behavior (the

maodels are built up by the system).

From the point of view of an increase of the level of user interaction and
of theé usability of the system, the latter approach is much more desirable. The
model can be built without user intervention, and the knowledge included in the
| model, though uncertain because it results from an inference process, is generally
more reliable than that directly provided by the user, who is usually a bad source

of information about himself/herself [NW77].

In the explicit model, the user is asked to rate histher level of expertise with

the system, then uses that level 1o determine how much information to provide

30

in explanation or error messages. The system essentially contains models of how

much information people at cach level already possess.

Beside the lack of accuracy inherent in explicit models, there is yet another
consideration for allowing the system to build its user models itself. Users do
not want to stop and answer a large number of questions before they can get
on with whatever they are trying to use the system to do. This is p:mibulurly
true of people who intend to use the system only a few times, and for only brief
periods. In this case, the system should form an initial mode! and let the user
immediately begin to use the system. This initial model can be based on the
known characteristics of the system’s overall user community. As the person
interacts with the system, he/she provides it- with additional information about
himself/herself. As it acquires this information, the sysiem can gradually update
its model of the user until eventually it comes to be a model of that individual as
distinct from the canonical user. Using this approach, the greatest effort will be
expended on the|;gonstruction of models of frequcl:xt users, while much less effort
will be expended on models of infrequent users.

.
Long-term vs. short-term models The last dimension for considering the clas-
sification of user models is short-term versus long-term modelling, The former
focuses on information that changes in the short term (e.g., during a single session)

and the latter on characteristics that changes more slowly, possibly over a long

31

period of time (e.g., a whole series of sessions). This last dimension is useful for
pointing out some of the differences between user modelling techniques adopted
in intelligent tutoring systems and those utilized in man-machine interfaces. In
fact, the rapid change of user characteristics during a session is a distinguishing
feature of tutoring systems, which indeed have the goal of changing (possibly in
the short term) the knowledge level of the student.

In order to interact reasonably with a user, a systern must have access to
a wide variety of information ranging in time from relatively long-term facts,
like his/her level of mathematical sophistication, to quite short-term facts, like
the subject of last sentence the user typed. Although all of this information can
contribute to the habitability of a system, it is useful, at least at the beginning of an
exploration into the topic of user modelling, to separate the problem of inferring
long-term from that of inferring short-term model because different techniques

may be appropriate for the solution of the two problems.

;

Short-term modelling is important in understanding natural language dialogue.
Long-term models have more available evidence to base inferences on than short-
term ones and so may appear to be more accurate. However, this is confounded
by the fact that what is being modelled is continually changing. But many systems
could usually exploit a large amount of much more stable knowledge about their
users. These long-term modéls can be derived over the course of a series of

interactions between the system and its users. The model can contain such

32

7}

information as the user’s level of expertise with compuier systems in general,
his/her expertise with this system in particular, and his/her familiarity with the
system’s underlying task domain. In addition to these general things that could
be of use in a wide variety of systems, the user models employed by a particular
system will often need to contain specific information relevant to the system and

its task domain.

3.3 Techniques for Building User Models

Some specific techniques that can be used for user modelling can be repre-

sented as follows

1. elicitation mode, that is, the way information is organized at acquisition time.

2. acquisition procedure, that is, the way information is actually collected or

produced.

According to the first criterion, two basic ‘'modes of information elicitation

can be mentioned:

« Acquisition of a single information item at a time, which represents a specific
fact about the user currently interacting with the system.

» Acquisition of a cluster of information items in one shot, which represents a

collection of facts about the current user.

33

ty

According to the second criterion, three main procedures for information
acquisition can be identified:
« Observation of free dialogues between the user and the system, and obser-
vation of the answers provided by the user to specific direct questions posed
by the system.

+ Inference from observed facts encompasses two steps:

a. acquisition through observation of facts that are not appropriate 10 be
directly inserted in the user model but can be used as raw data from
which some useful information items can be derived.

b. inference from the observed facts of the appropriate information items to

be inserted in the model.

+ Inference from known facts is the expansion and refining of the model without

using new information items acquired from the user-system dialogue.

These techniques fall into two broad groups: methods fo,r.: inferring single
facts at a time and methods for inferring whole clusters of facts at once.
3.3.1 Inferring individual facts

One of the simple ways to derive information about a user is to look at the
way he/she uses the system. Any user who begins a session with a series of
advanced commands is probably an expert. Any user whose first few attempts to

form commands are rejected by the system is probably a novice and needs some

34

help. One way to implement user modelling based on this sort of information
is to construct a dictionary of system commands, options, and so forth, and 1o
associate with each item an indication of what information the use of that item

provides about its user.

Another way that users provide information about themselves is via the pattern
of their commands. Consider the situation when a user asks a system for a
particular piece of information. If he/she gets what he/she wants, he/she will
either leave or continue with his/her next request. But if he/she does not satisty,
he/she is likely to try to restructure his/her request in another attempt to get what
he/she wanted. This indicate to the system that it does not satisty the user’s need

with its first response.

The model of the user can also be modified by observing the patterns of the
user’s questions. If the system misjudges the user’s level and answers his/her first
question by referring to a system parameter that means nothing to the user, the
user’s next question will refer to that parameter to figure out what it means. In
this case, the system can conclude that its model is wrong and then modifies
it until the user is satisfied with the level of explanation. Similarly, if the
system underestimates the user’s knowledge, he/she will ask for more specific

information, and the system can then update its model.

35

3.3.2 Using stereotypes to infer many things at a time

The techniques that have been discussed so far cnable a system to infer
individual facts about a user. But if a user model is to be very complex, the
question of how to collect all the required information within a reasonable period
of time arises. If a user will have only a few interchanges with a system, then
user modelling that requires many interactions to build an initial model will be
of little use. However, in many situations it is possible to observe one or a small
number of facts and from them to infer, with a fair degree of accuracy, a set of

additional facts.

Stereotypes are useful for doing the kind of reasoning about people required
to build user models. In particular, they provide a way of forming plausible
inferences about yet unseen things on the basis of the things that have been

observed.

A stereotype represents a collection of traits. It can be represented as a
collection of auribute-value pairs. Each such attribute will be called a facer. A
model of an individual user can also be represented as set of facets filled with

values. The facets of the stereotypes used by a system should correspond to the

facets of the user models built by the system.

Some traits may be easily observable. They serve as rriggers that cause the

activation of the entire stereotype. Since tlje presence of a trait may only be
: 1

36

suggestve of a particular stereotype rather than absolute evidence tor it cach
trigger has associated with it a rating that ix a rough measure of the probability
that the stereotype is appropriate given that the trigger was observed.
Stereotypes represent structure among traits. There is often additional struc-
ture that can be captured by representing a cotlection of stercotypes as a hicrarchy.
Information in very general stereotypes can be used unless contlicting information
is suggested by more specific stereotypes. The most general siercotype available
to a system can represent 4 model of a canonical user. Thus even without much
information, a system built on stereotypes will do no worse than one built on the

traditional built-in model of a canonical user.

3.4 Review of Current Systems

In user modelling, the representation of user modelling is usually determined
by the application purpose of the system. In this section we will review how user

models are represented and the different types of models inferred.

3.4.1 Representing User Models

User models are often represented in one of three forms: a parametric form
in which a small set of values is identified 1o characierize the user for a particular
task; a discrete-event form in which the command or keystroke sequence is

massaged into a finite-state or finite-context model; or & frame-like form i

37

r

which domain knowledge is used to identify explicitly his performance with each
concept.

An example of a parametric model is provided by Rowe [Row84]. Observing
that databases are often used repeatedly for very similar tasks, he identified a
theoretical model of these tasks which enabled his system to infer parameters
for the model based implicitly on the user’s recent queries to the database. The
parameters are incorporated into the task model to predict which database items
are of most interest. Many computer-aided instruction programs represent user
models in parametrized terms. For example, branching systems developed from
Skinnerian stimulus-response principles present-course material and then quiz the
student. The history of correct und incorrect responses drives the selection of
subsequent instructional material. In these systems the courseware author must
anticipate every wrong response, and prespecify branches to appropriate remedial
material based on his/her ideas about what the underlying misconception might
be [BF82).

Discrete-event models arise out of a system-theoretic approach to behavior-
to-structure transformation. The commands invoked by the user are treated as an
abstract sequence to be modelled in a way which supports analysis of the behavior
and prediction of future inputs. The “reactive keyboard” [WCD82], which forms
an implicit model of a user’s keyboard input, is an example of this technique.

It intercepts the keystrokes made by a physically handicapped user, storing each

38

one along with its context, and expedites text entry by predicting sequences of
characters which will be typed next.

Frame-like models are based on expert-system knowledge representation tech-
niques and use ad hoc structures to store information relevant to selected facets
of a user’s performance. These are updated by ruies which rely on knowledge
of the task domain. Explicitly representing a student’s perceived understanding
of the domain allows flexible and modular construction of assistance programs.
For example, it allows separation of teaching strategy from the subject expertise
to be taught.

Parametric models are useful for well-defined tasks, but lack the flexibility
required to support computer tutoring, Discrete-event models pose difficulties
of communication with the user, since they work in an alicn and very low-
level language of sequences of commands and abstract systemic madels of them.
Frame-like models are imprecise since it is not possible in gencral to infer users’
knowledge accurately from their behavior in complex domains. But they offer
a great deal of structure and flexibility and, since they can provide individual

estimations of a user’s knowledge of each concept in the domain.

3.4.2 Scalar Models

In scalar models, the system asks an user to'select his/her level of sophistica-

tion which represented by a scalar value; based on that value, the expert system

39

will give explanations of a causal reasoning chain to the user or prompt him/her
with error messages and possible suggestions.

The earliest adaptive CAI programs often used this method to represent the
student’s level of sophistication by a scalar value. Woods and Hartley [WH?]]
report that the first version of the Leeds arithmetic system kept a single number to
represent the overall complexity of the tasks which the individual student was able
to tackle. Loosely, this model asserts that the number of keystrokes determines
how productive a user can be at & not very demanding task, such as searching
for information or performing a well defined text editing procedure. Wallis and
Shortliffe [WS82] assumed that the user can be represented by an integer difficulty
level. The purpose of their system is 10 explain a causal reasoning chain to the
user of an expert system; the concepts used in the explanation are essentially

determined by the user- selected difficulty level.

The scalar models are simple for implementing, but are not flexible and are
imprecise in reflecting the true level of users difficulty in case they misjudged

that level themselves.

3.4.3 Ad Hoc Modelling Systems

In ad hoc modelling systems, different models are built based on different ap-
plications, these models like frame-like models which are based on expert-system

knowledge representation techniques and use ad hoc structures to store informa-

40

tion relevant 1o selected facets of a user’s performance. Their characteristics can
be referred to frame-like models’ characteristics described above.

Hartley et al. |AE72] reported a system which captured many of the aspects
of medical diagnosis. The student doctor was presented with a “patient™ which
consisted of a pattern of Zs, Os and *s and was asked 1o classily the pattern as one
of a limited number of types. On request the system would generite characteristic
examples of each “disease”. The system thus had information about the task
seen by the student and his or her response. Additionally, this particular system
executed a series of models on the task given the student, and compared these
results with the student’s. Two sets of models were used, one based on swereotype
matching and the other on a probabilistic model (for each set of models, one
model corresponded to unweighted attributes, the second 1o a slight weighting
and the third to an increased weighting; thus the unweighted probabilistic model

corresponded to a (pure) Bayesian model).

3.4.4 Profile Models

In GRUNDY [Ric79], users were characterized in terms of a series of
weighted attributes, such as romantic, suspense loving etc. As GRUNDY’s task
was to select an appropriate book for the user, Rich had similarly characterized
each book; GRUNDY then proceeded to do a match between the stylized charac-

teristics of the user and the books. To do this, it exploits two collections of data:

41

« descriptions of individual books. Each description is a set of facets filled
with appropriate values.
» stereotypes that contain facets that relate to people’s taste in books. Associated

with each stereowype is a collestion of triggers.

GRUNDY exploits user modelling techniques more extensively, Its main
objective is to tilor interaction to the individual user. The system utilizes a
hierarchy of frames comprised of several slots, called facets. At the beginning of
the interaction, GRUNDY prompts the user with some specific questions and, trom
the answers obtained, it collects the information needed to select the stereotypes
appropriate for that user. These will constitute the mitial user model. The model
contains long-term knowledge preserved from session to session, which includes
the user’s backgrodhd and characteristics, and a record of past interactions with
the system. An (implicit) refinement of the model is carried out by GRUNDY
when the user expresses his/her judgment on the quality of the results produced
so far by the system: the refinement is performed by changingj(increasing or

lowering) confidence factors attached to the facets of the stereotypes belonging

to the current user model; it is supported by information gathered through a

- =

bounded scope dialogue driven by the system

B

N
3.4.5 Overlay Models

In overlay model, the knowledge of-the domai'h is represented as a network

1
v

—

G
/
=

I

and each node has a numerical value associated with 1t indicating the likelihood
that a particular user knows the knowiedge associated with the nodes. An overlay

model is illustrated below,

Figure 2 An overlay model

P/ s Domain Knowledge

D_l Overlay User Model

In SCHOLAR, Carbonell {Car70} represented knowledge of his task domain,
the geography of South America, as a hierarchical semantic nctwgrk. Nodes which
conesp;f:ded to topics the student user knew/did not know were appropriatcly
marked.

The overlay:modcl, proposed by Carr and Goldstein |CG77], is the simplest of
the modelling techniques. Overlay modelling assumes that ali differences between

the student’s behavior and the behavior of the expert 'm\odcl can be explained by
N "
\ 43

M

the lack of a skill or skills on the part of the student. Thus the knowledge of the
student is viewed as a subset of the expert’s knowiedge. Since overlay models
do not require information beyond the contents of the expert model, they are

relatively casy to implement.

Overlay modelling has serious drawbacks. An overlay model has no provision

for dealing with knowledge or beliefs of the student that differ from the expert’s.

The significant difference between an overlay model and a profile model is
that the former uses topics which the user is intending to acquire, as opposed to

the more general descriptors used with profile models.

3.4.6 Process Models

All these sysiems assumed that the user’s knowledge was merely a subset of
the expert’s. Recent studies in Cognitive Science have shown this is frequently
not a valid assumption, and so models which allow both the correct and incorrect

knowledge to intermingle have been introduced.

Self [Sel74] was the first person to suggest explicitly that a student-user model
should be executable, so that models could be used predictively, and in some sense
capture the processes by which the user solves the task. The BUGGY project
|BB78], was the first significant instance of the idea of a process model. ‘Funher,

the concept of a process model:was extended significantly to include incorrect

> [

44

or buggy sub-procedures so that the BUGGY svstem was able 1o replicate the

performance of students with (consistent) errors,

Sleeman [S1e82] used a similar technique to capture the errors made by
algebra students. PIXIE [Sle87] is an intelligent tutoring system for diagnosing
and remedying student’s errors in a particular domain, for example carly linear

algebra.

An important aspect of these iatter models is that they are prm:c.v.\"mndcls-
and so can be executed by an appropriate interpreter- thus enabling them to be
used predictively. Both BUGGY [BB78} and PIXIE address the issue of inferring
models by observing the student’s performance on a series of tasks. “Technical
issues addressed by these systems include how to make the search computationally

tractable, and how to overcome spurious responses.

The essential difference between the ad hoc modelling systems and the process
models is that the former are highly dependent on specialized inference engines
to interpret their user models. In the process model, the user model in its own
right is suggestive about how the user would perform the task, and these models

can be executed by a more standardized inference engine.

N

5
3.5 Future Work

Research on user modelling has been very active in the last few years.

/I:
A number of interesting proposals have been-made concerning representation

S
MH

45

——

R

systems for user models, methods for generating assumptions about the user from
his/her natural-language input, and strategies for the planning of the system’s
dialog contributions on the basis of its model of the user. Several prototype
systems have been implemented in order to exemplify and further investigate
these proposals. However, the development of flexible user modelling componants
is rather costly and user modelling tasks will require a much richer knowledge
base, a series of representational schema to capture the user’s knowledge, and
an extensive range of inference techniques. Future modelling systems should
use their models predictively and report to the investigator situations where the
models persistently fail to predict subsequent user behavior. Alternatively, future

systems might use additional knowledge to resolve the conflict.

3.6 Conclusion

A user model is simply the model a system keeps of the individual currently
using it. User models are generally needed to aid in the interaction between the
system and a user: to help in undersmndi::\g- what the user wants the system to
do, or to enable the system to provide its responses to the particular user and
his needs. Thus user modelling has concentrated on modelling the user’s goals,:vl

~ plans, and . beliefs.

Many interactive systems have a strong need 10 maintain models of individual

users. The stereotype can contain definite facts and define rules of inference as

b,

y T 46

well as default information and rules. The rules can be used o derive new
infdrmation, both definite and assumed, from the currently belicved information
about the user.

It is important that a user modeler not rely oo heavily on answers 1o specific
questions in building models of individuals. The most obvious way to build a
user model without asking many questions is to make direct inferences from a

user’s behavior to a model of him/her.

47

Chapter 4 IMPLEMENTATION

4.1 Introduction

In this chapter, we describe the implementation used to test our ideas for
improving explanations in expert systems. The platform used is the Designer’s
Assistant system [Sar 90] which is a knowledge base system for designing high
speed digital signal processing applications. To this system we have added a
user modelling component and a text retrieval component. The idea is to use
the information retrieval component to select relevant passages of text for an
explanation and to use the user modelling component to decide what should be

retrieved and how it should be presented.

We organize this chapter as follows: section 4.2 provides a brief description of

* the Designer’s Assistant system and the reasons for choosing it as an experimental

platform. In section 4.3 we discuss in detail how to build and maintain the user
model. In section 4.4 we discuss how keywords are attached to rules and used with
simple information retrieval techniques to retrieve relevant text as a basis for an
explanation. Section 4.5 describes the user interface. It includes the specification
of options wh-ich a user can have during the design process. Fin.:allly, section 4.6

!

"\. 7 .
co\ntamsﬁle cqu)nclusmns of the chapter.

48 -

4.2 Implementation Context

A knowledge base system for high speed digital signal processing application,
in particular the design of digital FIR filters using & special purpose systolic
architecture has been developed [Sar 90]. The knowledge base is just one
component of the Designer’s Assistant, an expert system, which is part of a
systolic compiler system. The main aim of the systolic compiler project was o
develop a system capable of generating a VLSI chip layout from user inputs. We
use the Designer’s Assistant as our experimental platform. A briel dcsci'ipti(m of

what the system is and why it is chosen is given below.
4.2.1 What is the Designer’s Assistant?

The Designer’s Assistant is a knowledge base system which allows users 1o
interactively design digital signal processing systems. It consists of five main

components:

1. The knowledge base,

2. The inference engine, :
3. The explanation facilities,
4, The user interface, and

5. The abort facility.

The Designer’s Assistant is based on an expert system shell developed

using Quintus Prolog. It allows interfaces to subroutine libraries in standard

49

programming languages such as C or Fortran. IF-THEN rules are employed to
store knowledge. The inference engine, whose inferencing scheme is similar to
that of Prolog, is capable of making inferences using the rules in the knowledge
base. The explanation facility component enables the system to explain its
reasoning. The user interface makes use of the windowing facilities of the
Prowindows system to provide the user with the window-based input/output. The
user is led through the design process by answering a number of queries posed by
the system. Finally, the abort/ restart facility gives the user freedom to discontinue

a session in the middle of design process.

4.2.2 Why Choose the Designer’s Assistant
as an Experimental Platform?

The Designer’s Assistant is chosen as our experimental platform because we
need an expert system environment which can accommodate different levels of
users; besides the system is conveniently available. Furthermore, the Designer’s
Assistant is based on the declarative programming paradigm that makes the
program more readable and easy to modify. The other advantage of the system
is that its user interface component provides a flexible and friendly environment

to both expert and novice users.

- 50

4.3 User Modelling

4.3.1 The Ideal User Model

There are various different types of information about users which the ideal
user model might contain, These include knowledge about a user’s level of com-
petence with a system including a history log of previous interactions, knowledge
about the user’s level of domain expertise, knowledge about the user’s interests,
values, aptitudes, goals, expectations and assumptions, knowledge about the pre-
ferred method of interaction and finally knowledge about the user’s model of how
the system works. The development of flexible and real user models is very com-
plicated and costly. Building a full user modelling system is beyond the scope
of this thesis. In this thesis we developed the “models” for two users — one
expert and one naive, really a simulation of what the system might build il we

had the resources available.

4.3.2 The Design’s Assistant User Model

In the context of the Design’s Assistant, we start off with two stercotypes
but evolve towards individual user models. Facets include knowledge dpmain.
frequency of system use, quantity of information, quality of explanation, goal, user
interface preferred. Expert users require the flexibility of input, speed, and direct

control of the process. Naive users usually require a clear and coherent interface,

51

system-lead user, error trapping and easy error recovery, and clear presentation

of results.

A user model is established for each user based on explicit information
obtained from the user and from the 6bscrved behavior of the user. With the
established user model, a list of keywords is selected. These keywords form an
input for the information retrieval component to retrieve relevant texts which are
used as explanations. In this way, explanations generated are more likely to be
suitable to the user’s needs. This is an improvement over traditional explanation
facilities. In particular, for the Designer’s Assistant this use of user modelling
techniques greatly improves its performance because it is easier to use and leads

to quicker designs.

!

4.3.3 How do we build the model

User modelling component was developed using Quintus Prolog [Sys88a]

_and Quintus Prowindows [Sys88b). To build the user model, we start with two

stereotypes of users: cxpeft and naive uses. For a frequent user, the system
explicitly develops an individual model by restoring his/her previous information
from the database. For an infrequént user, it explicitly asks the user to answer
basic questions in order to form his/her initial model. These questions are based

on five categories as explained below:

[*

Level of expertise. The user is asked to rank his/her level of expertise on a
scale from 1 to 5 for which | is the least expert and 3 s the most.

Frequency of use of system. The uscr is asked whether he/she uses the
system only once, daily, monthly, or sometimes. 1f the user only uses the
system once, all his/her information will be discarded after the session is

finished. For the daily user, his/her model is more likely 1o stay the same.

- The situation is different for the monthly and sometimes users. For the first

type of these users, the system restorc§ his/her information of the model which
can be changed implicitly, while for the later type the system asks whether
he/she wants to store this modsl into the database or not.

Quantity of information. The user is asked to rank his/her preferred quantity
of information and explanations from short to long on a scale from | 1o 3.
Ouality of e.fplanation. The user is asked how he likes the cxplanations
presented from a technical point of viqw. A scale from 1 to § is given which
funs from the least to the most technical.-

Goal. The user is asked whether his/her goal is either of a student or of an

expert. i

Beside explicitly asking questions, the system can implicitly change the

parameters assigned to each user at initial stage. The changes are made based on

the number of times that the user requires explanations, the user’s wrong input

values, or information that he/she wants to change when having that option.

53

After this process a user model is established. Whenever the use requires
explanations from the system a list of keywords is generated based on his estab-
lished user model. This list is then sent to the information retrieval component to
retrieve a full ext (contained keywords) which is considered as a content of expla-
nations. Hence, the content of explanations varies depending on given keywords.
To illustrate the above point we will consider the default cases. If the user is a
naive one then his level of expertise is the lowest and the quality of explanation is
the least technical. However, if the user is an expert then his level of expertise is
the highest and the quality of explanation given is the most technical. The list of
keywords selected is based on these criterin. In general, keywords are generated
differently at a particular rule according to different levels of expertise or different
quality of explanations requested. We also note that the quantity of explanations
has only an effect on the size of the content of explanations. Changing the quan-
tity of explanations results in a display of part or full text documentation from

the information retrieval component.

4.3.4 How the model is maintained

Each user is assumed to have a unique name. After each session, if the
process terminates successfully all updated information about the user is stored
into a file. Otherwise the user has the option of saving information and it may

or may not be used at a later date. If the user saves his/her model’s information,

54

hisfher own model will be retrieved when he/she uses the system: otherwise the

system will start a fresh from the beginning to built his/her maodel.

In database, a user model containg the information as tollows:

User name.

Explanation or not

Type of explanation.
Frequent use of the system.
Goal.

Level of expertise.

Quality of explanation.

Quantity of informastion.

The data structure for a user model consists of eight different fields. Each

field is described as below:

1. Name: Character field contains unique user’s name used as Primary Key.

2. Explanation: Character field contains the value yes or no showing whether
the user wants explanations or not.

3. Type: Character field with the value designer or end-user indicating what
type of explanation is provided.

4. Frequency: Character field with the value once, daily, monthly, or sometimes.

This is used to update user models.

55

Goal: Character field indicating user’s goal with the value studenr or expert.
P

S,
6. Expertise: Numerical ficld containing the value from 1 to 5 to indicate the

level of expertise of user.
7. Quality: Numerical field with the value from 1 to 5 indicating how technical

the explanation provided should be.
8. Quantity: Numerical field containing a value from 1 to 5. This is used to0

decide how much information the user wants.

The following example shows how users’ information is stored in the database.

Py

2 Jenny Price’,” (John Norrie',.'(

y *

L
[

user _lisy(’."(’Michael Smith
(' Bill Yuille’,'."("Jim Farrell’,’.'(

'Philip Poon’,.’(’Carmen Lee
*Steve Owens,'.' ('Dave White’ [1)))))))).

user_data(’ Michael Smith’ yes,end_user daily,student,].3,3)-.7
user_data('Jenny Price’ \yes,end_user daily,student,1.3,5).
wser_data('John Norrie’ \yes.designer daily,expert,5.5,5).
u.fer_dara(*Philip Poon’ .no,designer,monthly,student,3,3,3).
user_data(’ Carmen Lee’ yes,end_user,daily,siudent,1,1,1).
user_data(’ Bill Yuille' ,no,designer daily,expert,3,3,5).
user_data('Jim Farrell’ yes.end_user,monthly,expert,5,3,5).

user_dara(’ Steve Owens’ no.end_user,mothly,expert,1,2,3).

e
wser_data('Dave White' .yes;designer,daily.smdem,4 4.3).
f—z 56
[
|

In this example, consider the user “Bill Yuille™. He is an expert, uses the
systemn every day: his level of expertise is 3. quality of explanation is 3 and
quantity of information is 5. At the moment, he doesn’t want explanations from
the system. But he wants the system to store his information which may be used

later on.

4.4 Information Retrieval Techniques

In this section we discuss how information retrieval techniques are used to

construct explanations.

4.4.1 How Keywords are Acquired and Used

The domain knowledge, FIR filters in this case, is represented as a set of
IF-THEN rules. We have attached a list of keywords 10 cach rule. To retrieve
relevant information for a particular user, the user model is used to select a set
of keywords. In the text retrieval component, simple information retricval search
techniques are employed to search for a textual explanation relevant to what is
going on in the design process. We note that the user doesn’t have to be an expert
in the domain area or on information retrieval search techniques.

Each rule has keywords attached to it. The order runs from the least to the

most technical. The list of keywords attached to each rule can be illustrated as

below: o

57

Rulel:

I-lkwl 1-1kw2 ... 1-1kw5

1-2kwl 1-2kw2 ... 1-2kw5

1-5kwl 1-5kw?2 ... 1-5kw5
Rule2:

2-1kwl 2-1kw2 ... 2-1kw$

2-2kwl 2-2kw2 ... 2-2kw5

2-5kwl 2-5kw2 ... 2-5kwS

Keywords are selected depending on the level of expertise and the quality
of explanation required by the users. For example, if the level of expertise is
2 and the quality of explanation is 3 then keyword 2-2kw3 is scle_gtcd for Rule
2. The number of keywords generated depends on the number of rules involvedﬂ

in the process.

At each stage, the user should be able to do a number of things as follows

O Replace keyword with a broader, narrower, more or less technical keyword

58

Y

.

Assign weights to keywords
Add keywords

Delete keywords

O O o0 O

Be able to ask the system to modify provided explanations for more technical

or less technical, longer explanation or shorter explanation,

4.4.2 Types of IR Techniques Used

Depending on the quality of explanation and the level of expertise, option
1 or option 2 can be used. In option 1, the selected keywords as described
above are used as the input for information retricval component to retricve the
relevant text. In option 2, the selected keywords are used -\.\.f'ith a thesaurus in the
information retrieval component to generated the relevant text. Option 2 is used

under following circumstance only:

1. When the users are truly novices, that is at the lowest level of expertise and
the least quality of explanation, and require less technical explanation.

2. When the users are truly experts, that is at the highest level of expertise and
the most quality of explanation, and require more technical explanation.

4.5 User Interface)
The user interface in the expert system is performed through a window-based

input/output which makes use of the windowing facilities of the Prowindows

59

system {Sys88b). A mousc-and-menu style is employed for the user’s choices
and the choices are displayed in the form of a set of options.

At any stage the user has the option to change any of his information.
Furthermore, the system asks the user whether he/she wants explanations to be
provided or not. If the “no” is selected then the system provides no explanations.
While the choice of “yes” leads to two different types for explanations, one for
the end user and one for the design user. When the design user is requested,
the system will display a list of rule trace along with an canned text attached
to each rule for explanation. For the choice of end user, the system provides
two different interfaces corresponding to two different types of end users: expert
users and student users. It will ask the user a series of questions in order to form
an initial model. When the user is an expert the system will give him/her more

options to modify his/her list of keywords than a student user.

4.6 Conclusions

In this chapter we have described the functionality of user modelling and
information retrieval components which have been added to the Designer’s As-
sistant, an expert system for the design of FIR fillers. Two stereotypes have
been implemented: expert and novice. Initially a user is a_ssigned to a stereotype
but as he/she uses the system the user model is dcvelop.éd through a variety of

techniques. When an explanation is required, the user’s model is used to select

60

a set of keywords. These kevwords are then passed 1o the information retrieval
component which uses these keywords to select relevant passages ol ext as a
basis for explanation. The user model is used to wilor the exact guantity and

quality of explanation given.

61

Chapter 5 CONCLUSIONS AND FUTURE WORK

In this chapter we summarize the results of the thesis and suggest some

directions for future work.

5.1 Summary and Conclusions

We have introduced the main concerns and activities of researchers who are
interested in both developing a methodology for building expert systems and
improving the quality of explanation they produce.

Expert systems must be able to explain what they do and why, but traditional
approaches fail to provide adequate explanations and justifications. Ideally, the
quality of the explanations could be improved by having the system model what
it believes the user knows, developing tutorial strategies giving the system a more
global view of its interaction with the user and allowing it to take part in directing
it, and improving the system’s understanding of its own explanatory capabilities
and the user’s question so that it can reformulate the user’s request into what it
can deliver. However, an explanation system should do ‘more than just read back

reasoning steps or give canned responses as many currently do.

We suggest that current explanation facilities can be improved by using
techniques from user modelling, information retrieval and user interfaces. We

have added user models and information retricvzél components to the Designer’s

62

Assistant, an expert system for the design of FIR filters. Two stereotypes have
been implemented: expert and novice. Initially a user is assigned to a stereotype
but as he/she uses the system the user model is developed through a variety of
techniques. When an explanation is required, the user’s model is used to select
a set of keywords. These keywords are then passed to the information retrieval
component which uses these keywords 10 select relevant passages of text as a
basis for explanation. The user model is used to wilor the exact quantity and
quality of explanation given. Every user gets a difterent explanation as necded.

This is an improvement over traditional explanation facilitics.

5.2 Future work

Modelling is a very open-ended task because people have a great deal of
diverse knowledge which is structured in many different ways. User models
can be developed for every individual user. This is most desirable where one
particular system is to be used by people with substantially different bnck;i;round.
The systems should know who their users are, the context in which they are

2
uyi:fé to work. It is also aimed at improving the performance of the system,
both the system_gxtemal bchav_i?r to the interaction (eg., dialogue with the
user, information displayed on Skplanation given, corrections of user’s errors

and possible suggestions) and adjustment of system internal operation to user’s

characteristic.

63

w!

&

Rescarch on user mudeling has been very active in the last few years.
A mimber of interesting proposals have been made concerning representation
systems for user models, methods for generating assumptions about the user from
his/her natural-language input, and strategies for the planning of the system’s
dialog contributions on the basis of its model of the user. Also, several prototype
systems have been implemented in order to exemplify and further investigate
these proposals. However, a great number of fundamental problems still remain
unsolved and the development of flexible user modeling components is rather
costl‘y'.

It seems clear that these more open-ended modelling tasks will require a much
richer knowledge base, a series of representational schema to capture the user’s
knowledge, and an extensive range of inference techniques. Future modelling sys-
tems should use their models predictively and repﬁrt to the investigator situations
where the miodels persistently fail to predict subsequent user behavior. Alterna-

tively, future systems might use additional knowledgc,.tpxrlésolvc the conflict.

e
NI
Rhe

7

/

REFERENCES

[AE5S91P.H. Ault and E. Emery. Reporting the news. Dodd,Mead and Co., New
York, 1959.

[BB78]J. S. Brown and R. R. Burton. Diagnostic models for procedural bugs in basic
mathematical skills. Cognitive Science, 2, 1978.

[BB80}J. S. Brown and R. R. Burton. Diagnostic models for procedural bugs in basic
mathematical skills. Cognitive Science, 2, 1980.

[BF82]A. Barr and E. A. Feigenbaum. The Handbook of Artificial Intelligence.
William Kaufman, Menlo Parlf, CA, 1982.

[BGT87]G. Brajnik, G. Guida, and C. Tasso. User modeling in intelligent information

retrieval, Information Processing and Management, 23(4), 1987.

[BK81]D. A. Buell and D, H. Kraft. Threshold values and booleun retrieval sysiems.

L
Information Processing and Management, 17(3), 1981.

-~ [Boo80]A. Bookstein. Fuzzy requests: An approach to weighted boolean searches.

Journal of the ASIS, 31(4), July 1980.

/~ [BWSB]R. Bird and P. Wadler. /ntroduction to Functional Programming. Prentice

Hall, 1988.

65

[Car70]). R. Carbonell. Ai in cai: An artificial intelligence approach to computer-aided

instruction. /EEE Transactions on Man-Machine Systems, 11, 1970,

[Car831).G. Carbonell. The role of user modelling in natural language interface design.
Technical report, Carnegic Mellon University, Department of Computer

Science, Pitsburgh, 1983.

[CG77]B. Carr and 1. Goldstein. Overlays: A theory of modeling for computer aided
instruction, Massachuserts Institute of Technology, Al Memo 406, February

1977.

[CL81]W.J. Clancey and R. Letsinger. Neomycin: Reconfiguring a rule-based expert
system for application to teaching. In Proceedings of the International Joint

Conﬁe:rencc on Al, 1981.

[Cla83]W. J. Clancey. The epistemology of a rule-based expert system: A framework

for explanation. A/, May 1983.

“""[‘CM84a]K. L. Clark and F. G. McCabe. micro-PROLOG: Programming in Logic.

Prentice-Hall International, 1984.

[CM84b]W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag,

second edition, 1984.

[CMNB83]S.K. Card, T.P, Moran, and A. Newell. Thepsychology of Human-Computer

Interaction. Lawrence Eribaum, Hillsdale, NJ, U.S.A, 1983.
[CNV88IM. A. Covington, D. Nute, and A. Vellino. Prolog Programming in Depth. .

66

Compute Books, Scott, Foresman and Company. 1988,

[CTI89]B. Chandrasekaran, Michael C. Tanner, and John R. Josephson. Explaining
control strategies in problem solving. [EEE Expert, Spring 1989,
[Dav80]R. David. Metarule: reasoning about control. A/, 15, 1980.

[dB83]). deKleer and J. S. Brown. Assumptions and ambiguities in mechanistic
mental models. In D. Genter, A. L. Stevens, and Eds., editors, Mental Models.

Erlbaum, Hillsdale, NJ, 1983.

[Den67]S. F. Dennis. The design and testing of a fully automatic indexing-searching
system for documents consisting of expository text. In G. Schecter, editor,
Information Retrieval: A Critical Review. Thompson Book Co., Washington,

D.C., 1967.

[DST86]E. Drascher, D. Sharpe, and K. Tidwell. Common Windows Manual. Intel-

licorp, MountainView, CA, 1986.

[FH88]A. J. Field and P.G. Harrison. Functional Programming. Addison-Wesley,
1988.

[Gen82]M. R. Genesereth. The role of plans in intelligent teaching systems. In
D. Sleeman, J. Brown, and eds, editors, Intelligent Tutoring Systems. London:

Academic Press, 1982.

(GSES83)P. Genter, A. L. Stevens, and Eds. Mental Models. Lawrence Erlbaum,
Hillsdale, NJ, 1983.

67

{HER0]J. Hobbs and D. Evans. Conversation as planned behavior. Cognitive Science,

4, 1980.

[Hen88)James A. Hendler. Expert Systems: The User Interface. Ablex, New Jersey,
1988.

{HHWS84)J. D. Hollan, E. L. Hutchins, and L. Weitzman. Steamer: An interactive

inspectable simulation-based training system. Al magazine, 1984.

|[HRWLe83)F. Hayes-Roth, D. A. Waterman, D. B. Lenat, and eds. Building Expert

Systems. Addison-Wesley, Reading, Mass., 1983.

[Jon72}). SparcK Jones. A statistical interpretation of term specificity and its

application in retrieval. Journal of Documentation, 28(1), March 1972.

[LS83]C. Langlotz and E. H. Shortliffe. Adapting a consultation system to critique

user plans. Technical report, Stanford University HPP-83-2, April 1983.
[LS87]W. Leigh and A. Smith. Prolog to Expert Systems. Mitchell, 1987.

[LuhS8]H. P. Luhn. The automatic creation of literature abstracts. /IBM Journal of

Research and Development, 2(2), April 1938,

[MWMSS]K. R. McKeown, M. Wish, and K. Matthews. Tailoring explanations for the

user. In Proc. Ninth 1JCAI, Morgan Kaufmann,Los Altos, Ca., Aﬁg. 1985.

[NW77]R.E. Nisbett and T.D. Wilson. Telling more ihan we can know: Verbal reports

on mental processes. Psychological Review, 84, 1977.

68

7
[
|

47

[OS83]T. O’Shea and J. Self. Learning and Teaching with Compuers: Artificial

Intelligence in Education. Prentice-Hall Inc., Englewood Clifts, NJ, U.S.A,

1983.

[Pol81]A. S. Pollitt. An expert system as an online search intermediary. Sth

International Online Information Meetings, December 1981,

[Rad76]T. Radecki. Mathematical model of information retricval based on a concept

of a fuzzy thesaurus. Information Processing and Management, 12(5), 1976,

[RC85]M. H. Richer and W. J. Clancey. Guidon-watch: A graphic intertace
for viewing a knowledge-based system. [EEE Computer Graphics and

Applications, 5(11), 1985.

[Ric79]E. Rich. Building and exploiting user models. Technical report, Carnegie
Mellon University, Department of Computer Science, Pittsburgh, 1979,

[Ric82]E. Rich. Stereotpes and user modeling. In A. Kobsa and W, Wahlister, editors, |
User Models in Dialog Systems. Springer-Verlag, 1982.

[Ric83]E.A. Rich. Users are individuals: Individualizing user models. /nernational
Journal of Man-Machine Studies, 18, 1983.

[RNR81]G. Robertson, A. Newell, and D. Ramakrishna. Zog approach to man-machine

communication. /nternational Journal of Man-Machine Studies, 14(4), 1981,

[Row84]IN. C. Rowe. Modelling degrees of item interest for a general database query

system. International Journal of Man-Machine Studies, 20, 1984.

69
‘/—N\

Y

[Sard0]A. Sarkar. Implemensation of a knowiedge base for fir filter design. Technical

report, University of Windsor, Department of Computer Science, Windsor,
1990.
[Sch82|B. Schneiderman. The future of interactive systems and the emergence of

direct manipulation. Behavior and information technology, 1, 1982.
[Sel74]J. A. Self. Student models in computer-aided instruction. /nternational Journal
of Mun-Machine Studies, 6, 1974.

[SFW90]G. Salton, IE. A. Fox, and H. Wu. Extended boolean information retrieval.
Technical report, Cornell University, Department of Compulcr‘Sciencc,
Windsor, Ithaca. New York, August 1990. |

[Sha51]C. E. Shannon. Prediction and entropy of printed english. Bell Sysiem
Technical Journal, 30(1), January 1951.

{Sho76]E. H. Shortliffe. Computer Based Medical Consultations: MYCIN. North-
Holland, Amsterdam, 1976.

[S1e82]D. H. Sleeman. Assessing competence in basic algebra. In D. Sleeman,

J. S. Brown, and Eds, editors, /ntelligent Tutoring Systems, London, 1982.
Academic Press. -~ .. S
[Se85]D. Sleeman. Umfe: A user modelling front-end subsystem. International

- Journal of Man-Machin Swudies, 23, 1985.
[S1e87]D. H. Sleeman. Pixie: A shell for developing intelligent tutoring systems. In

70

e

R. W. Lawler and M. Yazdani. editors. Artificial Intelligence and Education

Volime I, Norwood, NJ, 1987. Ablex.

[SM83]G. Salton and M. 1. McGill. /ntroduction to Modern Information Retrieval.

McGraw-Hill Book Co., New York, 1983,

[SSBT81]E. H. Shortliffe, A. C. Scott, M. B. Bischoff, W. van Melle, and C. D. Jacobs.
Oncoctin: An expert system for oncology protocol management. In Proc.

Seventh 1JCAI, Vancouver, BC, Aug. 1981.

[SW86]M. Stelzner and M. D. William. Specification by reformulation: An approach

to knowledge-basced interface design. 1986.

[Swa83]W. R. Swartout. Xplain: A system for creating and explaining expert

consulting programs. Al, September 1983,

{Sys88a]Quintus Computer Systems. Quintus Prolog Development Environment
(User's Guide, Reference Manual, Library Manual). Mitchell, Inc. Mountain

View, Ca., 1988.

[Sys88b]Quintus Computer Systems. Quintus proWindows User':s'" Guide. Mitchell, Inc.,

Mountain View, Ca., 1988.
' [Tek85]Teknowledge. S./ Product Description. Palo Alto, California, 1985.

[Tor89]T. Toronyi. Explanation facilities for an expert system shell, Technical report,

University of Windsor, Department of Computer Scicnce, Windsor, 1989.
[VR79]C. J. van Rijsbergen. Information Retrieval. Butterworths, London, 1979.

Q\ : 7
b

s

[VS78|Stairs VS. A tool for the end user. IBM Scicntific and Cross Industry Center,
June 1978.

[WCDS82]I. H. Witten, J. G. Cleary, and J. J. Darragh. The reactive keyboard: a new
technology for text entry. In Convergin Technologies: Proceedings of the
Canadian Information Processing Society Conference, Outawa, Ontario, 1982,

[WHT71]P. M. Woods and J. R, Hartley. Some learning models for arithmetic tasks
and their use in computer-based learning. British Journal of Educational

Psychology, 41, 1971.

[WK79]W. G. Waller and D. H. Kraft. A mathematical model for a weighted boolean

retrieval system. Information Processing and Management, 15(5), 1979.

|WS821J. W. Wallis and E. H. Shortliffe. Explanatory Power for Medical Expert
Systems: Studies in the Representation of Causal Relationships for Clinical

Consultations, Methods of Information in Medicine. 1982,
| WS89]Michael R. Wick and James R. Slagle. An explanation facility for today’s

expert systems. /EEE Expert, Spring, 1989.

\
S

Fmmnr

72

APPENDIX A — INFORMATION RETRIEVAL

A.1 Introduction

Information retrieval (IR) deals with the representation, storage, organization,
and accessing of information items and finaliy retrieving them in response o
user’s query. In principle, we have no restriction on the type of information
items dealt with in information retrieval. These information files can be personal
records, part inventories, customer account information, business correspondence,

document holding in libraries, patient records in hospitals and so on.

A.2 Information Retrieval Systems

There are various &pcs of information system. The most important computer-
based information systems today are data base management systems, automatic
question-answering systems and information retrieval systems. It appears on the
surface that the problems which arise in these three information éystcnms are much
the same, in the sense that in each case stored information files are processed in
response to queries submitted by users, and that answers are generated to these
queries. However, in practice, the problems are different. We:shall bricfly discuss

these information systems in the following sections.

73 -

7

S

A.2.1 Data base management systems

Data base management systems are concerned with the storage, maintenance,
and retrieval of data facts available in the systems in an explicit form. That is,
they process specific data elements noimally stored in two-dimensional tables.
Each row of such a table may be uscdlto represent a record included in the file,
cach column identifies some attributes whose values are then used to distinguish
the records from each other. An example of such table is a personnel file whose
rows identify the individual employees in an organization and whose columns
camuin employee numbers, address, job classifications, salary amount and the

department numbers for various individuals.

The problems of concern for researchers in data base management then include
storage and retrieval of data, the updating or deleting of data, formulations of
database queries, the protection of data from unintentional or deliberate misuse or
damgge, and the transmission of data to remote users or other data managemenl;

systems.

In data base processing, each search request must state the specific values of
certain record identifiers such as age, job classification, salary category and so on

for the records.of interest. The retrieved information consists of all the records

that inatch the stated search request exactly. '

|
i\
A\

74"

A.2.2 Question-Answering System

Question-answering systems provide access to factual information in a natural
language setting. Since in question-answering, queries dealing with particular
facts may have té be answered directly, the stored data base otften consists of large
numbers of facts relating to special areas of discourse, together with general world
knowledge covering the context within which conversations between persons
usually take place. Typical problems of concern in question-answering sysiem
therefore include constructing the knowledge-base 1o store the facts of interest
in a given subject area, storing general world knowledge in a given question-
answering situation, analyzing the user query by employing syntactic, semantic
and inferencing techniques, comparing the analyzed query with stored knowledge,

and generating a suitable response derivable from relevant facts already known.

A.2.3 Information Retrieval Systems

Information retrieval systems are concerned with the representation, storage,
and access to documents or representatives of documents. The aim of information

retrieval is to retrieve bibliographic references, that is, citations or abstracts to

~ ~

bibliographic items;-or retrieve full text of all documents. The input inforination
Y
. NS
to the system includes the natural language text of the documents or of document
excerpts and abstracts. The output in response to a search request consists of scts

of references or the full text of documents. These references are intended to give

tan

e

N

9]

)

the system user information about documents of potential interest.

A.3 Activities in Information Retrieval Systems

The task of designing and using an information retrieval system involves four
major activities: information analysis, information organization and search, query

formulation, and information retrieval and dissemination.

A.3.1 Information Analysis

In a document processing environment, this task is probably the most impor-
tant and also the most difficult to carry out. The analysis operation, also known as
indexing consists of the assignment to the document ite.is of identifiers or index
terms capable of representing document content. These index terms are designed
to identify and represent stored items and hence they fulfill three related purposes

as described by Salton and McGill [SM&3].

1. To allow the location of items dealing with topics of interest to the user

2. To relate items to each other, and thus relate the topic areas, by identifving
distinct items dealing with similar, of_related topic areas.

3. To predict the relevance of individual information items to specific information
L}equiremem.\' through the use of index terms with well-defined scope and

meaning.

76

There are two types of identifiers in widespread use: objective attributes
and subjective attributes. For example, in 2 personnel file a person’s name,
age, and job classification could be used as objective attributes to identify a
personnel record. Similarly, in a library file a book’s author, publisher, and date
of publication could be used to identify the record of a book. In addition to u:éing
the values of certain objective auributes for information identification, it is also

possible to utilize subjective attributes or content terms 10 describe stored items.

The automatic indexing process starts with the observation that the words
occur in natural language text unevenly; hence, classes of words are distinguish-
able by their occurrence frequencies. H. P. Luhn |[Luh58], one of the pioneers

in automatic indexing, stated

“The justification of measuring word significance by use-frequency is based on

the fact that a writer normally repeats certain words as he advances or varies his

~ arguments and as he elaborates on an aspect of a subject. This means of emphasis

is taken as an indicator of significance.

Based on the frequency characteristics of individual words in document texts,

Luhn proposed an algorithm to derive index terms as follows:

1. Given n documents, calculate the frequency of each unique term k in each

document i denoted by FREQ;k

2. calculate ‘TOTFREQy by

77 k@

v,

TOTFREQy = Y FREQjx
i=l1
which is the total collection frequency for term k

3. Arrange the words in decreasing order using their collection frequency.
Decide on some high threshold value, low threshold value and remove all
words with collection frequencies above the high threshold and below the
low lh;cshold. The r§m0val of words with a collection frequency above
high thﬁ:shold value eliminates high-frequency function words such as the,
of, and, to, a, in, that, is, was, he. Similarly, the removal of words with a
collection frequc:lncy below low threshold value deletes terms which occur so
infrequently in the collection that their presence does not affect the retrieval

performance in a significant way.

4. The remaining medium frequency words are now used as index terms to

represent the document content.

This approach has certain disadvantages: the removal of all high frequency
words might produce some losses in recall .due to the fact that the use of broad,
high frequency words is effecti've .i’n retrieving large numbers of relevant items.
The elimination of low-frequency terms might produce losses in precision. B)}
recall and precision are meant the two parameters that measure the effectiveness -

of retrieval. Recall measures the proportion of relevant .information actually

retrieved in response to a search (that is, the number of relevant items actually

78

obtained divided by the total number of relevant items contained in the collection).
Precision measures the proportion of retrieved items actually relevant (that is, the
number of relevant items actually obtained divided by the total number of retrieved
items). The other disadvantage is the necessity to choose suitable thresholds in

order to distinguish the useful medium-frequency terms from the remainder.

It is Jesirable that a useful index term must fulfill a dual function: it must
represent the content of the document and distinguish the documents to which it
is assigned from the remainder 1o prevent the indiscriminate retrieval of all items.
Thus, the use of absolute frequency measures such as FREQ;; or TOTFREQy; for
the identification of content indicators is put into question. This can be illustrated
by the use of the term computer as a document indicator |“computer” is likely
to occur in every collection item and cannot therefore be used to distinguish
the items from each other. This consideration suggests the usé of “rclmi{:c
frequency” measures to identify terms occurring with substantial frequencies in
some individual documents of a collection. Such terms -may then help in retrieving
the items to which they are assigned, while also distinguishing then from the
remainder of the collection. Several approaches have ?een proposed to derive term
weighting functions based on the above consideration. 'l:hos.c include in inverse
- document frequency function, the signal-noise ratio and the term discrimination -

value.

79

A.3.1.1 The inverse document frequency weight.

In this method, it is assumed that term importance is proportional to the
standard occurrence frequency of each term k in each document i and inversely
proportional to the total number of documents to which each term is assigned.

The inverse document frequency can be described as {Jon72]

n
. —_— l = I D AR v, N O 1 .
Iﬂyl(DOCFREQk) + oga(n) — loga(DOCFREQy) + |

where n is the number of documents on the collection and DOCFREQy denotes
the number of documents in which a term k occurs.
A possible weighting finction which measures the importance or weight of

term k in a given document i can be written as
Weighty, = FREQj, [loga(n) — loga(DOCFREQ,) + 1]

As we can see in the above expression, the weight would increase as the frequency
of the term in the document, FREQ increases but decrease as DOCFREQy
increases. Thus this function assigns a high degree of importance of terms

occurring in only a few documents of a collection.

A.3.1.2 The signal-noise ratio

In this approach, the construction of measures of term importance is done
based on the consideration of information theory. The in_fonnati_é{n content of a

message, or term can be measured as an inverse function of the probability of
A
0

80

occurrence of the words in a given text. That is,
INFORMATION = ~logs(p)

where p denotes the probability of occurrence of the word and INFORMATION
denotes the information measure of the word. Shannon |ShaS 1] gives a formula tor
average or expected information, when a document is characterized by t possible

identifiers, or terms, each occurring with a probability py; as follows

{
AVERAGE INFORMATION = = plog(p)
| o

Analogous to Shannon’s information measure, the noise NOISEy of an index
term k for a collection of n documents is

h

. FREQ;. TOTFRIEQ 1,)
NOISE, = — I fugy | — — ==
OI5E ;’I'O.i‘l-'ltls‘(gk ”-"-’(FREQ B
The measure of noise varies inversely with the concentrittion of a term in the ~

document collection. The signal of term k is defined as follows |Den67| =
SIGNAL, = logy(TOTFREQ) — NOISEY
The weight or importance of term k in document i can now be calculated as

WEIGHT) = FREQu+SIGN AL
I
8 _ / N
\i_gking into account both occurrence frequency ant‘_’!_ﬁthe\':\;j\gﬂ_uvl\,

]
W

! 81 : y

p
A

A3.1.3 The term discrimination value

In this method, the construction of the term weight or term importance
is accomplished by the use of the “discrimination value” of a term. The
discrimination value of a term measures the degree to which the use of the term

will help to distinguish the documents from cach other.
WEIGHTy, = FREQu+DISCVALU E)

where DISVALUE; denotes the discrimination value of term k.
The derivation of the discrimination value is considered below.

Let D; and Dj represent two documents each identified by a set of index
terms. Define SIMILAR(D;,D;) to be a similarity measure that can be used to
represent the similm"i\ty between the documents. The value of SIMILAR(D;,Dj)
runs form 0 to 1 representing no agreement among the assigned index term to
perfect agreement. Let D’ be the document in which the terms are assumed to

exhibit average frequency characteristics, that is,
N 1 o=
e Dy P RED), = = Y FPREQ:.
(AVERAGE FREQ), ~ ;_l FREGQ;;

The average similarity is then computed as A
1.
1

1 '
AVGSIM = constanty_ SIMILAR(D', D;)

i=l

Let (AVGSIM)y rel?t'esent the space density (average similarity) of the original

document collection with term k being removed from all the documents. Then

82

the discrimination value DISCVALUE,, can be calcubinted tor cach term k as
DISCVALUE, = (AVGSTAD - AVGSTM

It is noted that term with positive DISCVALUE gives good discriminators.
Term with DISCVALUE close to zero leaves the similarity among documents
unchanged when it is added or removed. Terms with negative DISCVALUE yicld

poor discriminators whose utilization renders the documents more similar,
A SIMPLE AUTOMATIC INDEXING PROCESS

In this part we will briefly describe a simple process for automatic indexing of
a collection of documents. For bibliographic retrieval purposes, it is sufficient to
use the titles of documents or abstracts for analysis. However, in many full-text
retrieval systems, the full text of the documents is used for indexing purposes.
This happens in specialized areas of discourses such as law or medicine. In these
areas the vocabulary may be specialized and the presence of a particular term has

specific annotations.

The first step in indexing process involves in the identification of all individual
words that make-up the documents:: Foliowing this is the elimination of high
_frequency function words. These words comprise of 40 10 50 percent of the
text words which are poor discriminators and can not be used to identify the

document content. In English there are about 250 common words and these

83

words ae included in a so-called srop-fise. An example of a stwop-list is given

in the table below

Figure 3 Excerpt from Typical Stop List

A Amongst Becomes
About An Becoming
Across And Been
After Another Betore
Afterwards Any Beforchand
Again Anyhow Behind
Against Anyone Being
All Anything Below
Almost Anywhere Beside
Alone Are Besides
Along Around Between
Already As Beyond
Also At Both
Although Be But
Always Became By
Among Because Can
Become

The next step is to identify good index terms and to assign them to the
documents of a collection. It is useful 10 use word stems by removing prefixes
and suffixes. For example words such as analysis, analyzing, analyzer, analyzed

and analyzing are reduced to a word stem “analy” which will have a high'c‘:r'

frequency of occurrence in the document texts.

Once the word stems are generated, there is a need 'to recognize equivalent

stems and to choose those stems to be used as index terms. The frequency-
N

84

-

based technique considered previously can be employe. to determine the potential
usefulness of the remaining word stems. A term importance factor can be obtiined
by using the inverse document frequency 1/DOCFREQy. DISCVALUE or the
SIGNAL;, may also be used to emphasize precision. The word stems with
sufficiently high term value factors can be assigned to the documents of the

collection with or without a term weight.

The last step is to delete terms whose important factors are not high enough.
An example of an indexing system is given in the simplified form of the flow

_chart below [Lov 63].

35

Figure 4 Typical term deletion algorithm datx for 1,033 dovuments in medicine)

of _1 ,_0_33 ab_s_t_ljacts iq _biomec;[icine

\j

Delete 176-¢orﬁrhon' funbtion words
included in stop list

U, S

Delete all terms with collection ’
frequency TOTFREQkK equal to 1
(terms occurring in one document 1
with frequency 1)

Remove terminal "s" endings and \

combine identical word forms

Delete 30 very high-frequency terms

occurring in over 25 percent of the
documents

Delete 255 additional terms with
negative term discrimination values

Y
Final indexing vocabulary

The elimination of some broad high-frequency terms may produce some losses

86

Identify all unique words in coliection -

13,471 terms

13,301 terms leit

7.236 terms leit

6.056 terms lelt

6,026 term lefl

5,771 term left

in recall and the deletion of low-frequency terms may results in reduced retrieval
recall and precision. Thus instead of deleting the high-frequency or low-frequency

terms, it is preferable to improve these terms by transforming them into terms

with better discrimination properties.

A3.1.4 Term Thesaurus

The other method to construct index terms is 10 use context and term associ-
ation. This can be done by creating a term thesaurus. A thesaurus then provides
a classification of terms used in a given topic area into thesaurus classes, A
thesaurus may broaden the vocabulary terms by addition of thesaurus class iden-
tifiers to the normal term lists, therefore, it enhances the recall performance in
retrieval. The thesaurus class identifiers can also replace the original term entries
to improve recall and provide vocabulary normalization. The table given below
provides an excerpt of a thesaurus used in an automatic indexing environment for

engineering documents [SM83].

87

Figure 5 Tvpical Thesaurus Excerpt

408

409

410

411

412

Dislocation
Junction

Mino /-Carrier
N-P-N

P-N-P
Poiat-Contact
Recombine
Transition
Unijunction

Blast-Cooled
Heat-Flow
Heat-Transfer

Anneal
Strain

Coercive
Demagnetize
Flux-Leakage
Hysteresis

Induct

Insensitive
Magnetoresistance
Square-Loop
Threshold

Longitudinal
Transverse

413

414

415

416

capacitance
Impedance-Maiching
impedance
inductance

Mutual-Impedance
Muwal-Inductance
Mutuali
Negative-resistance
Positive-Gap
Reactance

Resist
self-Impedance
Self-Inductance
Self

Antenni

Klystron

Pulses-Per-Beam
Receiver
Signal-to-receiver
Transmitter

Waveguide -

Cryogenic
Cryotron
Persistent-Current
Superconduct
Super-Conduct

Relay

In this case the thesaurus class identifiers are represenied by numbers. If the

38

document has the term “anncal” then that term may oe replaced by 410. When
a document contains the term “anneal” and the query term is “strain”, a term
match would result through a thesaurus transformation without using the original

word stems.

A.3.2 Information Organization and Search

Once the items have been indexcd, the information file in which they will be
placed must be organized appropriately. A search procedure is designed to locate
items in the file by comparing the information requests with the stored document
items. There are a variety of different search systems. The first possibility of
file creation and search is a sequential scan. In this procedure, the information
file is left unorganized and a sequential search is conducted for the whole file.
In such a search, a query statement is compared with the identifiers of the first
information item, then with those of the second item, and so on until the last item
is reached. This approach is inexpensive; however, it can be applied only for
small collections of documents, since a sequential scan of the whole file may not

be performed fast enough to satisfy a user.

When only a single auribute controls the access to a file, it may be convenient
to order the file by the values of that attribute. In this way, we can speed up a
search for an information item by developing an sparse index to provide access to

segments of a file. The search for a particular item now requires only a search of

89

the sparse index and a search of the portion of the file specitied by the index. The
organization of a telephone book is an example — access to the file is controlled
by a singie attribute (subscriber name), is ordered by values of that attribute
(position in an alphabetical listing of names), and is supplemented by an index
(the names in the upper outer corner of each page) which restricted the file scan

to a single page.

In practice, the use of an ordered file and index covering a single auribute type
may be unduly restrictive, For example, one might want to access a lile using
variety of objective auributes, such as customer name, age, address, or bank
balance. Furthermore, a single query could also include several types of content
identifiers. Ir principle, several copies of a file could be designed. Each one
would be ordered differently — by name, age, balance, and so on. As the number

of attributes that are of interest grows, this solution becomes too expensive.

The alternative is to store a single copy of the main file and to build an
index structure covering various attributes. This organization is an inveried file.
In this way an inverted fite provides for each acceptable query term a list of the
document identifiers corresponding to th-at term. The documents responding 10
particular Boolean query statements can be rapidly identified in an inverted file
system by using list intersections for terms related by Boolcan and operators, or

list unions for terms connected by Boolean or operator.

90

The main advantage of the inverted file search is that it ensures quick access to
the information items because the index alone is examined in order to derermine
the items which satisfy the search request, rather than the actual file of items.
Furthermore, the unsorted main file is relatively easy to maintin. However, its
drawback lies in the fact that the size of the index structure may be substantial
since pointer lists are maintained for all possible index terms. This is true
especially for systems in which the terms attached to the items are weighted
to reflect the term’s importance, or in which information is included in the index
to specify the location of each occurrence of a term in a document. In many
practical inverted file systems, the index’s size rivals that of the main file, and

the need to maintain two large files presents substantial problems.

A.3.3 Query Formulations

A3.3.1 Boolean query formation and search

We now consider the query formulation process. Most existing systems re-
quire an exact match between the query terms and the corresponding keywords
attached to the store records or documents. Thus most retrieval systems require
search formulation for the query terms. Various methods are available for ex-
pressing combinations of query terms. Boolean term combinations in which terms
related by the Boolean operator and, or and not are the standard mechanisms.

A typical query statement may be formulated as A and B, A or B, A and not B

91

or (A and B) or C. These imply. respectively, that the documents o be retrieved
must be identified by both term A and term B, by cither term A or term B, by
term A but not term B, or finally by either term C or the combination of terms A
and B. In an inverted file arrangement, boolean querics can be answered by list

unions for the or operator or by list intersection for the and operator,

In bibliographic and full text rewieval systems where individual ext words
are used as identifiers to the information items, we may formulate a query to

request documents dealing with, for example
(FILE AND ORGANIZATION) OR (INFORMATION AND RETRIEVAL)

Most existing retrieval systems also allow the use of truncated terms. We
could request documents about “INFORM* AND RETRIE*” where the asterisk
represents truncation. The search would then be conducted for items identified by
“information”, “inform”, “informer”, or “informational” as well as by retrieve”,

“retrieval”, “reirieving” and so on.

An example of systems that uses traditional Boolean logic to formulate the
search statement is the Lexis system [SM83], the system offered by Mead Data
Central to provide a service specifically devoted to the manipulation of legal
information. In the Lexis system, the full text of documents are stored and used
for automatic indexing process, search and retrieval. The search terms consists of

index terms and are connected by the Boolean logic to form search statements.

92

Common words such as the, it and her are excluded. Hyphenated words such as
ANTI-TRUST are stored as two separate lerms in the system. Lexis can recognize
some special word endings and reduce them to common terms; for example, the

terms CITY. CITIES, CITY’S and CITIES’ all retrieve the same document set.

Rather than retrieving all documents containing all the given query terms, we
may assign weight to each query term and be satisfied with retrieved documents
for which a sum of weights of the matching query terms exceeds a given threshold.
In this case, the retrieved documents are ranked in a decreasing order according
to the sum of the matching term weights.

The use of Boolean queries has a number of disadvantages. For example, in
the search responding to an “or” query such as A or B or C or D, a document
containing all the query terms is equivalent to a document contain only one term.
Likewise, for an “and” query such as (A and B and C and D) a document
with all but one query term is as bad as a document with no query term at ail.
Thus there are various proposals to generalize and improve the Boolean query
formulation process. Among these are fuzzy set models and extended Boolean
query formulation. The fuzzy set models are compatib{e with the conventional
Boolean logic and also facilitate the assignment of weights to document identifiers
(but not the query terms) [Boo8Q], [Rﬁd76], [WK79], [BK81]. Unfortunately,
the fuzzy set models are subject to the same disadvantages as the conventional

Boolean processing models for the ‘‘or” query statement and the “and” quer
P g query query

93

statement.

Extended Boolean processing systems overcome these disadvantages by using
a relaxed system of interpretation for the Boolean operators [SFWS2]. In the
extended system, the presence of more identifiers for a given document that
match query terms is worth more than the presence of fewer identifiers. This
can be accomplished by developing a “generalized distance function™ based on
Lp vector norm. This distance function is used to compare the Boolean queries
with the document identifiers and the interpretation for the Boolean operators can
be relaxed through a parameter P involved in the generalized distance function.
If P = oo then the Boolean operators are as in the conventional Boolean logic.
The operators and and or are interpreted less and less strict as P decreases from
infinity to 1. For example if P = 10 then an “and” operator will favor most
rather than all query terms in a document; likewise an “or” operator will favor
the presence of some query terms in a document riather than the presence of one
term when P = 10, The lowest limit of P is 1 and at this limit the “and” and
“or" operators are undistinguished in the sense that the queries (A and B) and
(A or B) are treated simply as the vector query (A,B).

A.3.3.2 Matching Functions and Serial Scarch

Search strategies [Rij79] can also be implemented by making use of a
“matching function”. This function provides a measure of association between

a query and a document.

94

;1"‘X &

=

There exist many examples of matching functions in the literature. For
example,

2ADN Q|
M= S
|0} + Q|

where M is the matching function, D the set of identifiers representing the

document, and Q is the set representing the query.

Another example of maiching function is the cosine relation used by SMART
project. If we let Q = (q;, g2...., Q) and D = (d;, da, ..., dy) where q; and d;
are numerical weights associated with the keyword i, then the matching function
using cosine correlation is given by

l

3 qid;

i=1

¢ R
(Z (@2 % (d.—)z)

o=

i=1 i=1
The use of a matching function in search strategy can be illustrated in a by
serial search. If we Have a collection of N documents denoted by D; for i=1 to
N, then the serial search proceeds by computing at each document the value of
the matching function M(Q,D;) for the same query. Having obtained N values of

M(Q,D;), the set of documents to be retrieved is determined by two ways,

1. A suitable threshold is given for the matching function. Documents to be

retrieved are those having matching function values above the threshold.

95

2. The documents are ranked in increasing order according to the matching

function values. A rank position R is chosen and the set of document to be

retrieved is {D;lr(i) < R} where r(i) is the rank position assigned to D;,

The main problem with this approach is the assignment of the threshold or
cut-off. It can be easy see that this process is arbitrary since we can not tell in

advance what value of the threshold for each query will give the best retrieval.

A.3.3.3 Probabilistic Information Retrieval

From the above discussion, we see that a document s retricved in response 10
a query whenever there is a maich between the identifiers assigned to the document
and the query keywords. That is, the document is assumed to be relevant to the
corresponding query. Another retrieval process based on probability theory has
been proposed. In this method, it is assumed that when the index and query terms
are sufficiently similar, the corresponding probability of relevance is large enough
to make it reasonable to retrieve the document in answer to the query. The rule
for retrieval using probability model can be described as follows:

Let P(Term;iRel) be the probability of Term; occurring in a document given
that the document is relevant to a given query and let P(Term;INotrel) be the
probability of Term; occurring given that the document is not relevant to the
query. Then a retrieval function P(RellDoc) which is the probability of relevance

given a document having a document vector

96

Doc = <Termy, Terms, ..., Termy)>, can be calculated using Bayes’ formulae

HRe Do\ P Rel
P(Rel|Doc) = P(Led]|Doc) P(Red)

P(Doc)
and
2 | Notre)P{Notrel
P{Notrcl|Doc) = Do ;))(';)[)I)(e
oc

where P(Rel) and P(Notrel) are the a priori probabilities of relevance and non

relevance of a document respectively, and PfDoc) is given by
P(Doc) = P(Doc|Rel).P(Rel) + P(Doc|Notrel). P(Notrel)
with the above information, the retrieval rule calls for retrieval when

P(Rel|Doc) 2 P(Notrel|Doc)

or when

P(RellDoc) P{Doc|Rel).P(#el)
P(Notrel]Doc) — P(Doc|Nolrel) P(Notrel) =

DISC =

where DISC is the discriminant function.

The above rule indicates a relationship between the retrieval of the records
and the occurrence characteristics of the terms in both the relevant and nonrelevant |
items. To use the rule we need to determine the probabilities of P(DoclRel) and
P(DocINotrel). If we assume that the terms are independent and the occurrence

characteristics are obtained from a sample collection, then

P(Doc|Rel) = P(Termy|Rel).P(Termy|Rel)...P(Term;|Rel)

97

We consider a collection of N documents and assume that R documents out
of N are relevant 1o a given query Q and N-R documents are nonrelevant. The
probabilities P(Term;lRel) and P(Term;iNotrel) which represent the probabilities
that a given Term; occurs in a document given the condition of relevance and
nonrelevance, are calculated by

P(TerngiRel) = o

R
n;—r;

N=-I

P(Term|Notrel) =

where r; denotes the number of relevant documents in which Term; occurs, and

(n;—r;) is the number of nonrelevant documents which contain Term;.

With this approach, the result of a search is an ordered list of documents that

satisfy a query, ranked according to their probuble relevance.

A.3.4 Information Retrieval and Dissemination

In response 19 a query statement, the retrieval process involves displaying
the identifications of documents such as citations, titles, abstracts, etc. In most
existing information retrieval systems, methods for query improvement or refor-
mulation are provided. This process makes use of vocabulary displays which
consist of terms related to those included in the original query statements. These
related terms may then be used to expand query formulations. There also exist

methods for the evaluation of search output. The operation often involves some

98

sort of assessment of relevance by users. If enough relevant items are retrieved,

the retrieval operation are considered satisfactory.

In most existing on-line information retrieval sysiems, the inveried file organ-
ization is used and the query formulation techniques such as Boolean connective,
term truncation, term weights and so on are incorporated. Furthermore, the on-
line system provides additional facilities for formulating better query statements to
obtain better output. One of these facilities is the display of the system’s search
vocabulary. The user can obtain lists of all the terms in the inverted directo-
ries and list of synonyms or related terms, and use these terms to expand query

statements or to generate alternative query statements.

Another facility is “browsing”. This facility provides feedback for query
refinement using the displayed abstract of a previously retrieved document, the

user can obtain better query terms relevant to documents in interest.

In most on-line systems, it is also possible to save previous query statements.
New statements can then be created by combining pieces of old query statements.
For example, if query A is “information retrieval” and B is “file organization”,
then a ncw, more refined query can be created as “A and B” which covers the
area * information retrieval and file organization”. An example of on-line retrieval
system which has some of the facilities for refining query statement is the well-

known Stairs retrieval system [VS78]. The table below shows a typical sequence

99

of refined query statements in the Stars retrieval system

Figure 6 A sequence of relines query statement in the Stir systenn.

Query Query Statement Explanation
Number
1 Health and resort and rheumatic | Use of boolean connections
2 Health adjacent resort and Use of erm location
rheumat™ information and of
truncated terms
3 2 and hotel; within sentence Refinement of an carlier
quiet query statement
4 Select 3 with full board less Output restriction based on
than 75 value of certain objective
attributes

A.4 Conclusion

In the above we have outlined three types of information system as well as

the four major activities involving in designing and using information retrieval

systems. These include information analysis, information organization and search,

query formation, and information retrieval and dissemination. Researches in

information retrieval system are still going 10 improve upon existing methods

for a better search and retrieval of information. Furthermore, advances in many

secondary areas also help speed up operations and yield more cffective output

products. The new developments include the design of user-fricndly interfuces

100

and the application of expert systems acting as an intermediary in information

retricval sysiems [Pot81), [BGT87].

101

APPENDIX B — USER INTERFACE FOR EXPERT SYSTEMS

B.1 Introduction

Computers today are providing an expanding range of services to a rapidly
growing pool of users. But they are not very good at communicating with their
users. They often fail to understand what their users want them o do and then
are unable to explain the nature of the misunderstanding to the user. In fact,
it is the common experience of users of interactive systems, whether novice or
experienced, infrequent or regular, that communication with their machines is a

time-consuming and frustrating experience.

An expert system, unlike a traditional computer program, its not just it too!
that implements a process, but rather it is a representation of that process. Further,
many of these processes correspond to judgments that can have critical real world
consequences. The user interface must often present not only conclusions, but an
explication of the processes by which those conclusions arc reached. The user
interface requirements for expert systems have evolved considerably since the
days when a consultation system first conducted a dialogue with the user. Larger-
scale expert systems have also increased requirements for the user interface 10

help in managing-~omplexity.

102

The following sections will represent the requirements for a user interface
to expert system, the aspects of the user interface, building tools to support user

interface and a general approach implementing an interface tool.

B.2 The Requirements for User Interfaces
to Expert Systems

The user-system interface (also called the user imerface) is responsible for

the communication of information between the applications and the user.

Requirements for interfaces to expert systems should be categorized into
those supporting system developers and those supporting end users. The interface
requirements for these two classes of users are not the same, although they may
overlap. Major differences in these requirements stem from the different focus

of the two classes of users

1. The major focus of the developers is on the representation of the domain and

the reasoning processes.

2. The major focus of the end users is on the domain itself.

Developers’ interface tools, therefore, will enable the developer to look at the
underlying representation of the domain and allow tracing of the various reasoning
processes. The end users’ interface, on the other hand, should make their mental

models of the domain explicit.

103

To assist both users and developers in managing complexity, major require-

ments for user interfaces o expert systems are idenitfied as fotlows:

1. The interface should represent the domain in the user’s natural idiom,

o

The interface should provide immediate teedback to the user in the cftects

of changes to system state by explicitly maintaining and displaying complex

constraints and interrelationships.

3. The user must be able to recover casily from trying ditferent alternatives.

4. The user interface must support the user at different interaction styles or
levels of abstraction.

5. User interface must be implemented in such a way that it is possible to have

multiple interfaces to the same knowledge.

B.2.1 The natural idiom

Mental models are systematic descriptions of objects and relationships be-
tween objects [GS83), and computational models are logical extensions whcr;
problems are too large or complex to be dealt with using & mental model. The
interface needs to map directly onto this perception reflecting how the knowledge
in the prograri maps onto the mental model. In other words, expert systems necd
to provide interactive displays of the user’s model in the natural idiom (form),
an idiom that is frequently graphic. Spreadsheets are an early example of using

the natural idiom in a decision support environment, while Steamer [HHW84], a

104

teaching system based on the concept of intelligent graphics that make visible to
the student the operations of an otherwise abstract and complex steam generator
system for large ship, is the canonical example in the Al community. The ON-
COCIN project |Sho81] has attempted to provide this type of interface by graph-

ically representing medical documents for doctors to enter patient information.

B.2.2 Immediate feedback

As well as displaying the domain in the natural graphic idiom, the displays
must allow the user to act directly upon them, and then provide immediate
feedback on the effects of the user’s actions.

Immediate feedback on the system state frequently requires that the graphics
reflect the running of the model through some sort of animations. Animation
aids the envisionment process (described by de Kleer as * an inference process
which, given the device’s structure determines its functions™) [KB83] and the

user’s understanding of system behaviors.
B.2.3 Recoverability

The end users of expert systems tend to be highly skilled knowledge workers,
who may or may not be experts in the precise area addressed by the system. Aside
from the fact that such users tend to be less patient with “unfriendly” systems,
the success of the system is directly related to the users’ ability to try out various

actions on the system and then change their minds. They must be able to recover

105

easily from sttuations they don’t want to be in and 1o experiment with ditferent

responses without much penalty.

B.2.4 The appropriate interaction styles

As applications become larger and more complex, an overall requirement
of the interface is to assist both developers and end users in dealing with
complexity. This implies that interface design issues become more important,
the larger the application is. To assist in dealing with complexity, the interface
must assist the developer in decomposing the problem, and help the end user to
understand the relationships between various levels of abstraction. To support
these two requirements, the interface must allow both types of users o work at
the appropriate interaction styles [Hob85], a style that changes frequently during

a user session.

B.2.5 Multiple interfaces to the same knowledge

Multiple, overiapping problems using the sume knowledge implies different
interfaces for different types of problems, but integrated into the same system.
The same knowledge, therefore, will be reflected in more than one interface or
view [RC85]. The requirement for multiple views of the same knowledge has

implications about the implementation of interfaces.

106

B.3 Aspects of the User Interface

B.3.1 Dialogue control

Dialogue control refers 1o the way in which the system and the user interact.
The most common form of dialogue in expert systems today is a rigid style
consultation with an exhaustive set of yes/no or menu style questions initiated
by the system. The user generally has only a limited set of options available for
interrupting this dialogue, for example, asking for how or why explanations or for
clarification of a question. Options such as these, however, are typically treated
by the system as temporary interruptions in its ongoing inquisition, rather than a
smooth change of initiative into the user’s hands. This lack of flexibility often
leads to problems with user acceptance. The main difficulty is that the users have
to answer a large number of questions, many of which appeared to be irrelevant.
For example, in some areas users might just want to consult a system for one
particular piece of information, rather than being locked into a full consultation.
Similarly, an experienced user might not want advice on a particular remedy for
a problem, but might want to find out answers to questions such as “why does

a particular remedy work”.

Expert systems must be good consultants as well as good problem solvers.
When developing an expert system, designers need to ensure that the dialogue

facilities of the system match the communication needs of the users and the

107

constraints of the task environment. In a trouble-shooting situation users ofen
want to volunteer information of their own choice, fairly rapidly and in an order
which suits them. Without a natural language interface, however, providing an

adequate volunteer facility poses a difficult man machine interface problem.
B.3.2 Natural language processing

The most natural and familiar of expression is for most human beings, their
natural language. Unfortunately, natural language as a system is 0o vague
and poorly understood to be used as a complete model for interactive computer
languages. There is even the possibility that certain aspects of natural language
are fundamentally incompatible with the requirements of man-machine interaction.
However, none of these argues against the possibility that certain well-undersiood
attributes of users’ natural language can provide & useful starting point for human
engineering of interactive command languages.

The field of natural language processing is even more at the rescarch stape
than is that of user models, particularly with regard to interfaces to expert systems.

Full natural language interfaces are still more of an aspiration than a reality.
B.3.3 New technology

Many systems today offer “wide bandwidth” interfaces where the user is
presented with a high resolution bit mapped screen with “windows”™, These

N
\
NN

windows allow the simultaneous display of, and interaction with, different party

108

of the software. Such systems are also generally equipped with a “mouse control”™
which can be used to identify and manipulate different parts of the display. These
windowing and mouse control features are claimed by sysiem developers to lead

10 greatly enhanced man-machine communication.

B.4 Review of Current Building Tools to
Support User Interfaces

New user interface design approaches are using graphical and pictorial repre-
sentation as an integral part of the dialogue, rather than as just an optional way
of displaying data. The appropriate use of graphical presentation has the great
advantage, since a human can extract, process, understand, and respond to the
relevant information from a visual scenes which is much more fundamental than

- the ability to manipulate data verbally or arithmetically.

IntelliCorp markets knowledge-based programming machine tools appropriate
for building a wide range of expert systems applications. The general approach
to supporting the design and development of user interfaces to expert systems has
been to develop a layered set of tools that facilitate design and implementation
of highly inteructive, graphic interfaces rather than textual interfaces. The goal is
to free system developers from many of the details of building graphic interfaces
so that they can focus their attention on matching the interfaces to the users’
cognitive task.

109

B.4.1 The KEE interface

The Knowledge Engincering Environment {(KEE) software development sys-
tem is an integrated package of wols that allows programmers to develop
knowledge-based systems without extensive training in Al technologies.

The first release, KEE 1, had carly versions of the KEE interface featuring
the unit display and the knowledge-base graph. These displays help the developer
to examine knowledge-base structures at both the object level and the object
hierarchy level. By the time that KEE 1.2 was released an “active rule graph”
had been added. This graph animates the firing of rules, assisting the developer
in debugging rules, and the end user in understanding the reasoning strategics the

system is taking.

B.4.2 The ActiveImages package

Aclivé:lmagcs is a package that provides facilities for building control pancel
interfaces to knowledge structures in knowledge-based applications |SW36). The
user interfaces built with Activelmages explicitly mimic operator panels for many
control systems. The Activelmages package provides a set of predefined graphic
objects, such as gauges, thermometers, bargraphs, and histograms, which can be

used to display and contro! the state of a knowledge-based system.

Because Activelmages can be created quickly and easily, system developers

frequently build control panels to help them debug their applications. This is o

110

case where an end user interface is also valuable for system developers.
B.4.3 Slotgraph

By the time that KEE 2.1 was released, the need for a general interface
tool reflecting user-specified relationships between objects had been determined.
Slotgraph creates graphs of user-specified relations, objects in slotgraph displays
are active, and commands relevant to the object can be obtained by mousing on

the object name.
B.4.4 SimKit interface tools

SimKit is a set of knowledge-based simulation and modeling tools. The
SimKit Model Editor, provides a direct manipulation interface for building com-
plex system models. Supporting the Model Editor is a Library Editor, which
assists the system developer in establishing the relationships between model ob-
jects and relationships and their graphic representations. SimKit also supports
the graphic specification of part/whole or composite/component relationships, a

facility that assists the user in viewing a problem at multiple levels of abstraction.
B.4.5 Common Windows

Common Windows | DST86] a window system that is an extension to Common
Lisp. Common Windows places the emphasis on system building tools by feature

constructs and-techniques that have proven useful in previous window systems
&

such as Interlisp-D and Zetalip window systems. Many high-level facilities have

((
11

been provided to handte the most common problems which mtertace builders tace,

such as scrolling and hotspotting tmaking a region of a window mousc-sensitive).
B.4.6 KEEpictures Toolkit

KEEpictures, object-oriented graphics toolkit, enables users of the KEE sys-
tem to construct a variety of iconic interfaces. Its intended uses range from simple
graphic displays to sophisticated animation techniques.

The KEEpictures environment provides & set of primitive standard picture
classes, such as circle, axes, lines, and strings. Each of these primitives can be
shaped, enlarge, shrunk, and altered in a variety of ways. Pictures can be combined
together to form larger, composite pictures. As well as using the standard building
blocks provided by KEEpictures, users can also draw their own picture using
bitmaps. These bitmaps can then be ziddcd together or to other types of pictures,

to form the final picture.

B.5 A General Approach to Implementing Interface Tools

KEEpictures, Activelmages, and SimKit all implement their various interface
primitives through object-oriented programming, using inheritance over object
hierarchies of class/subclass and class/member relationships in KEE, Behavior of
the graphic objects is implemented by sending the object a message to create a
member of itself, delete, move or reshape itself. Specialization of class definitions

provides modularity when defining object behaviors.

112

Y

These tools have a combination of interaction styles, ranging from direct
manipulation |Sch82] to mouse-and-menu to conversational. The choice among

these styles depends on a number of factors as follows

1. A mousc-and-menu style is used when the user must make a choice, and the

choices can be constrained to a limited set of options.

[

A conversaional style is used when the choices to be made by the user cannot
be constrained, as is typically the case when the user is naming objects or
object attributes.

3. A dircct manipulation style is used in selected situations when user options

can be preconceived and sufficiently limited.

Flexibility is critical to the success of these tools also because of the evolving
nature t?f*_interlece requirements and special purpose requirements form specific
domains. To relax the standard trade off between ease of use and flexibility, an
approach to interface design called specification by reformulation |[SW386] has been
introduced. This approach involves making the results of a partial specification
quickly visible, and then allowing the user to refine the specification incrementally
and view the results. This approach requires a particular relationship between
knowledge representation and interface design. The interface design features two

distinct, but integrated interfaces:

1. An intelligent, interactive interface that enables the user to create qu’ibkly

f
”.
7

113

approximate specifications, or prototypes.

o

A programmatic interface that enables the user 10 modity and reformulate
the products of the interactive interface. The programmatic interface, while
harder 1o use than the interactive interface, is optimized for expressiveness

and completeness.

Reformulation is dependent on a declarative representation of the graphic

images for communication beiween the two interfuces.

B.6 Conclusion

In the above we have reviewed the requirements for user interfaces to expert
systems, its aspects and building tools to support user ihtcrf:lccs as well as a
general approach to implementing interface tools. One of the clearest lessons
learned from the early pioneering expert systems is that excellent decision making
performance in itself will not guarantee user acceptability. Attention also needs to
be paid to the user interface. Failure to recognize the man-machine interface needs
of expert system users is probably the biggest reason for the disparity between the
numerous expert systems which have been successfully developed in a laboratory
and the small number which have actually made it into everyday field use. In
the laboratory expert systems tend to be used by people who love them and are
tolerant of their idiosyncracies. Outside the laboratory they will only be used if

people find them useful and easy to work with.

114

—

el

Until fairly recently the user interface was not considered o be important
enough to justify design cffort separate from that required for the knowledge
base, inference engine and other knowledge base specific software. It was simply
something which was tagged on the end. Many organizations, however, are now
realizing the importance of the user interface and are putting research effort in

this direction.

(B

PROGRAM LISTING

/* bring in needed libraries */

:= use_module(library(dialoeg)}.
1~ use_module(library(fromonto)}).
:= use_module{library(strings)).
;= use_module(library(basics)) .
i~ use_module{library(files)}.

:— use_module(library{messages)).
:— use_module(library(sets)).

/* make necessary procedures dynamic */
:= dynamic known/2, default/2.

executable_dir ([parm, prop,known, explanation,
store_value, append, write,nl,
fail, !, read, user_def val,
user_def fuzzy_ val,type of_ parameter,
append_tolerance_to_x, assert, retract,
guantise, execute_all]).

/* cause unknown procedures to fail*/

:- prolog_flag(unknown, _, fail).

add_and_check (Name, Response, Query, Return, Dict key) :-
assert (user_response_database (
Name, Response, Query, Dict_key)),
1

!

check_value to_response{Response, Return).

116

add_ans (Window, Dictionary, Answers) :-
send (Window, clear),
remove_dict_ items(Dictionary),
add_new_ans{(Dictionary, Answers, 1),
send (Window, dict, Dictionary).

add_new_ans(_, [l,_) :-
]

add_new_ans(Dictionary, [Label | Rest], N) :-
convert_to_string(N, Num_string),
concat {* (*, Num_string, String),
concat {String, "} ‘, Stringl},
concat (Stringl, Label, Labell),
send (Dictionary, append, dict_item(Label, Labell,
Next is N + 1,
add_new_ans(Dictionary, Rest, Next}.

add_gues {(Window, Question) :-
send {(Window, clear},
get (Window, size, size({Width, _)),
Length is Width//9,
build length_list (Question, Length, List),
display_message_strings(Window, List),
send (Window, line no, 0},!.

blank_line(how) :-
send (@how_display_window, print, * "}.

blank_line(whynot) :- A
send (@whynot_wind, print, ' ’).

blank_line{(_} :- nl.

build length_list(‘end of string’, _, {]).
build length_list {String, Length, {Line | Tail]) :-

17

0)),

get_string_of length(String, Length, Line, Remainder},
build length_list (Remainder, Length, Taii}.

call_sda(_,_) :-
clean,
unix (shell (opensdal)}.

change previous_response (Dict_key, Object) :-
user_response_database (Property,
Previous_response, Query, Dict_key),

determine guestion{Query, Parm_prop, Dimension},

save_current_display(Object),

remove response{Property),

execute previous question(Parm_prop, Property,
Dimension, New_response),

Ly

check _new_response (Previous_response, New_response),

reset_previous_display (Object}.

check_default (Parameter, Item) :-
default (Parameter, Default_value),
!
.t

send(Item, selection, Default_value).

check default(, Item) :-
send{Item, selecticon, ’’).

check file header {Stream) :-

system_name{[Linel, Line2, Line3, Linedl},
read (Stream, Inputl),

Linel = Inputl,

read{(Stx=am, Input?2),

Line2 = Input2,

read (Stream, Input3),

Line3 = Input3,

read(Stream, Inputd),

118

Lined = Inputd,
I

check_file header {Stream) :-
close{Stream) .

check_his{_, History) :-

nonvar (History),
]

check _his(Rule, [History]} :-
convert_to string(long, Rule, String),
concat {1 cannot prove ‘, String, History},
1

check _new_response (X, X} := !.

check_new_response(_, _) :-
{\+ change_in_database ->
assert (change_in_database)
; otherwise -> true),
reset_cursor {@user_log_window},
display_message{@message_window,
"Evaluating change made...please wait’),

!
-

fail.

check_parameters(_, 0, _).
check_parameters(Rule, Number, New rule) :-

arg(Number, Rule, X),

is_a list (X},

length (X, Length),

(Length > § —-x

get_short_form(X, Short, Length)
; otherwise ->

119

Shoxrt = X},
arg{(Number, New_rule, Short},
Next is Number - 1,
check parameters(Rule, Next, New_rule).

check_parameters{Rule, Number, New_rule) :-
arg (Number, Rule, Parameter),
arg {Number, New_rule, Parameter),
Next is Number - 1,
check_parameters{Rule, Next, New_rule).

check_remainder (Cond_list, ' and’, _) :-
functor {Cond_list, ’,’', _),
!

check remainder (explanation(_, _), '’, 0) := !.

check_remainder (explanation(_, _), ‘) then’, if)
check_remainder(_, ')} then’, if}).
check_remainder(_, ‘ and’, _).

check_session_file(Filename, Stream) :-
file_exists(Filename),
cpen(Filename, read, Stream),
check file header (Stream),
display message(@message_window,
'Loading old session...Please wait’),
create_log_window,
1
check _session_ file(Filename, _) :-
file exists(Filename},

!
.

send (@load_window, flash},

120

1
L

create load window{’4.1 File is not of FFDES format.’},
process_message 1.

check_session_file(_, _) :-
send (@load_window, flash),
create_load_window(’4.1 File does not exist.’),
process_message_l.

check_true([[Predicate, true], 1], [p, Historyl} :-
convert_to string(long, Predicate, String),

concat (String, 7 is true.’, History},
!

check_true(l|[r, Predicate, true], 1], [p, History]) :-
convert_to_string{long, Predicate, String),
concat {String,’ is true.’, HRistory},
1
check_true([[r, Predicate, {true]], 1], (p, Historyl) :-
convert_to_string(long, Predicate, String),
concat (String, * is true.’, History),
!

..

check_true (Rule, Rule).

check_value_to_response(Value, "unknown’) :-

Value = "unknown’,
|

check_value to_response(Value, Response) :-
Value = Response.

clean -
kill_prowindows,
retractall (history(_}),
retractall (user_response_database(_, _, _, _}),

121

retractall (change_in_database},
retractall (whynot_history{(_,)},
retractall (old cursor(_,_}},
retractall {executable(_, }),
retractall (error_complete_flag),
retractall (change_in_progress},
retractall (last_query(_}),
retractall {(default(_,_)),
retractall{builtin{)},
retractall (calculated_valuves{_ ,)),
retractall (conds{_, _)).
retractall{rules{(_, _)).
retractall (functor_list{_)}),
retractall (user_name(_)),
retractall (knowledge level{)},
retractall (quantity_explanation(_)),
retractall (quality explanation(_}},
retractall{goal(_)),
retractall (usexr_level (_)},
retractall (end_user(_)),
retractall (explanation({_}},
retractall{user_datal(_,_,_,_,_+_+_)),
retractall (user list{_)),
retractall {keyword list(_}),
retractall (user_yes),
retractall (add_keyword),
retractall (delete_keyword),
retractall (replace_keyword),
retractall (change_explanation_flag),
.~retractall (why_ completel),
" retractall (why_complete) .

confirmed(_, _, _) :-
change in_database,

122

1
“r

fail.

confirmed{ezplanation(_, Y, 0, _) :-
t

confirmed(true, 1, _) :-
|

..

confirmed (error_message(Property, String}, 1, _) :-

t
-

error_message (Property, String).

confirmed(Rules, {History_1l | [History tail]], Level)
functor {(Rules, ',’, _),
arg{l, Rules, Rule_l1),

]
“r

confirmed{Rule_1, Save_his, Level},
check_true(Save_his, History_l),
check_his (Rule_1, History 1),

arg(2, Rules, Rules_tail),

!'

confirmed(Rules_tail, Save_tail, Level},
check_true{Save_tail, History_tail),

check_his (Rules_tail, History_tail).

confirmed(Negated rule, History, Level) :-
functor (Negated_rule, "\+', _},
arg{l, Negated_rule, Rule),

1
-

\+ confirmed(Rule, History, Level),
check his{Rule, History).

confirmed({(Condition -> True;otherwise-> False),
= History, Level) :-

]
r

(Condition -> confirmed(True, History, Lovel)
; confirmed(False, History, Level}).

confirmed({{Condition -> True: False), Historvy, Level}) :-

1
-

(Condition -> confirmed{True, History, Level)
; confirmed({False, History, Level}).

confirmed({Condition -> True), History, Level) :-

!
.~ r

(Condition -> confirmed{True, History, Level)).

confirmed{Rule, {[r, Rule, Cond_used] | {Historyl]], Level) :-
functor (Rule, F, _},
executable dir (Executables),
nonmember {(F, Executables),
dynamic_dir (L},
memberchk (F, L),

preprocess{Rule, Condition_set),

!
-

confirm rule(Rule, Condition_set, Cond_used, History, Level),
check_his(Rule, History).

confirmed(Rule, [p, String], _) :-

functor (Rule, append, _}.

1
r

Rule,
convert_to_string(long, Rule, Stringl),
concat {(Stringl, * is true.’, String).

confirmed{!, 0, Level) :-
assert (cut (Level)).

confirmed (execute_all(Pred), History, Level) :-

1
L

execute_all(Pred, History, Level).

" 124

confirmed(kRule, [p, String], _} :-
insert bulltin dict{Rula),
Rule,
test_and_convert _to_string{Rule, String),
delete_builtin dickt,!i.

confirmed(Rule, 0, Level) :-
assert (executable {Level,Rule)),
delete_builtin_dict,!,
fail.

test and_convert_to_string(nl,’ ’}.

test_and_convert_te_string({!, " ’).

test_and_convert_to_string(Rule, * ’} :-
functor (Rule, write,).

test_and convert_to_string(Rule, String} :-
convert_to string(long, Rule, Stringl),
concat (Stringl, * is true.’, String).

confirm_rule(, {1, _, _, _} -

k
v

fail.

confirm_rule(Rule, [Condition_set | _],

Condi' ions, History, level) :-
instantiate_rule(Ruvle, Condition_set, Conditions),
insert_rule dict (Rule, Conditions, Level),
'Next_level is Level + 1,
confirmed(Conditions, History, Next_level),
check_his(Rule, History),
delete_rule dict{Level),

retractall{cut (Next_level}),
1

confirm_rule(_, s ﬁ; Level) :-
" change_in_database,

125

i

Next is Level + 1,
retractall (cut (Next}),

i
L

fail.

confirm_rule{Rule, [Conditions | Taill],
Conds, History, Level) :-
save_whynot_history(Conditions, Level),
delete rule dict(Level},
!

Next is Level + 1,
(cut (Next) ->
retractall {(cut (Next}),
fail
; otherwise ->
confirm rule{Rule, Tail, Conds, History,

convert_1(X, Z) :-
name (X, Y},
append(Y, [0".], W),
read(Z) from_chars W.

convert_to_string(X, Y} :-
write(X) onto_chars 2,
name (Y, 2) .

convert_to_string{long, Rule, String) :-
funétor(Rule, Predicate, Arity),
functor (New_rule, Predicate, Aritv),
check_parameters(Rule, Arity, New_rule),
convert_to_string(New_rule, String).

default (filter name, ‘fir_filter’).
default (highest_frequency, 3000).

126

Level}) .

7y

delete builtin dict :-
builtin{String),
retractall(builtin{_)),
print_string{String, 0, why, delete).

delete rule_dict (Level) :-
rules{Level, Rule_key),
retractall{rules{Level, _)),
print_string(Rule_key, 0, why, delete),
remove_conditions_dict {(Level).

determine_explain_type (string(Text),string(t}} :-
add_ques (@why_text, Text). '

determine_explain_type (string(Filename), string(£f)) :-
file_exists(Filename),
send (@why_rule window, show, false),
why_ file_view,
open (Filename, read, In_stream),
set_input {In_stream),
read {Text_string),
why file read(Text_string},
close (In_stream),
process_callbacks (retract (done_view}},
!
determine_explain_type(string(Filename),string(£f))} :-
concat (' The file ’, Filename, String),
concat (* does no exist.’, String, Stringl),
send {@why_text, print, Stringl},
send {@why text, print, ‘Inform knowledge base engineer.’).

determine_explain_type(string(g:éphics),string(g)) e
send (@why text, print} Graphics).

127

L]

determine_question{parm{_, Dim), parm, Dim).
determine_question(parm{(_), parm, []).
determine_question(prop(_), prop, I}}.

display_and_save(’if_construct’, _, _, _}.
display and save(String, Ident, Tail,
[Spaces, Where, If, Levell]) :-
{Ident == ->
check_remainder (Tail, End_string, If},
concat (Spaces, String, Stringl),
concat (Stringl, End_string, Output)
; Output = String),
print_string(Output, Ident, Where, append),
save_conds_key (Level, Output, Ident, Where).

display_user_response(Value, Name, Dict_key} :-
convert_to_string(vValue, Value_ string),
convert_to_string(Name, Name_string},
concat (Name_string, ’ : ’, Temp),
concat (Temp, Value_string, Dict_key),
send (@user_ log_dict, append, Dict_key).

ensure_proper_response (Object, Message,:Name, Value) :-

Message = message (Object,” Name, Value),

\+ Value = why,!. ’
ensure_proper_response (Object, Message, Name, Value) :-
' Message = message {Object, Name, Value),

\+ Value<= change_user_info,!.
ensure_proper_response (Object, _, Name, Value) :-

get (@sys, wait, Message),

ensure_proper_response (Object, Message, Name, Value).

128

cxecute_all (Rule, History, Level) :-
bagof { (Rule, Conditions), clause(Rule, Conditions), List),
test preconditions(List, Sorted list),
execute confirmed{Rule, Sorted list, History, Level}.

execute_confirmed{ , , _, _) -

change_in_database,

!
s r

fail.

execute_confirmed(_, []1, 0, _} i~ !.
execute_confirmed(Rule, [Conditions | Tail],
[History_1 | History], Level) :-
insert_rule_dict (Rule, Conditions, Level),
Next_level is Level + 1,
confirmed(Conditions, History_l, Next_level),
check_his(Rule, History_1),
delete rule_dict{Level),
execute_confirmed({Rule, Tail, History, Level),!.

execute_confirmed(Rule, [_ | Tail], History, Level) :-
delete_rule dict{Level),
execute_confirmed (Rule, Tail, Histoxry, Level}.

ékecute_message(_, view_response, -
Key, Object, Name, Value) :- .
!, i
user_response_database (Property, _, _, Key),
get_property_question(Properﬂ?, Question),
open_view_gques_ans, ‘
adq_ques(@ques_ans_windoy, Question),
get (@sys, wait, Message)g,f' N
get_specific_message (Message, ques_ﬁbne),
send (@ques_ans_window, show, false},

£

129
N

get_message (Object, Name, Value}.

execute_message(_, response_change, HKey,
Object, Name, Value)} :-

send {Object, show, false),
!,
assert (change_in progress),
change_previous_response (Key, Object),
retractall (change_in_progress),
send (Object, show, true},
get_message (Object, Name, Value).

execute_message (Object, Name, Value, Object, Name, Value):- !.

execute_precondition(Precond, _Weight} :-
{Precond = [] ->
!
; otherwise ->
Precond) .

execute_previous_question{parm, Prop, [], Value) :-
!

parm{Prop, Value).
execute_previous_question{parm, Prop, Dim, Value) :-
!I
parmi{Prop, Value, Dim).
execute_previous question(prop, Prop,'_, y) -

prop (Prop} .

explanation(_,).

generate_question_string(X, [], X}.

generate question_string(Question, [Head | Tail],

130

Return_string) :-
concat (Question, Head, String),
generate_gquestion_string(String, Tail, Return_string).

generate_if_then_else(Condition, True, False,
[Spaces, Where, _, Level]) :-
concat (Spaces, '’ *, New_spaces),
(functor (Condition, *,*, _) =>
arg(l, Condition, Cond),
arg(?2, Condition, Tail),
write{’cond : ‘),write(Cond),
write(’string : ’),write(String),
write{’ident : *),write{Ident),
write(*level : ?),write{Level),
generate_string(Cond, String, Ident,
{New_spaces, Where, if, Level]),
concat{(*if (’, String, Output},
display_and_save (Output, Ident, Tail,
[Spaces, Where, if, Levell},
process_conditions([New_spaces, Where,
‘ if, Level], Tail)
; otherwise ->
generate_string{Condition, String, Ident,
[New_spaces, Where, if, Levell),
concat{’if (', String, Output},
display_and_save(Output, Ident, [],
(Spaces, Where, if, Levell)),
process_conditions([New_spaces, Where, 0, Level], True),
process_conditions([New_spaces, Where, 0, Level], False).

generate_string{explanation{String, Ident), String, Ident, _) :-
' .

generate_string({Condition -> True; False),

131

*if construct’, _, Contval) :-
generate_if then_else(Condition, True, False, Control).

generate_string((Cond -> True;otherwise-> False),
*if construct’, _, Control) :-
generate if then_else{Cond, True, False, Control).

generate_string((Condition -> True),
*if_construct’, _, Control) :-
generate_if then_else(Condition, True, [}, Control).

generate_string{(Condition, String, 0, _) :-
functor (Condition, ‘\+', _},
arg{l, Condition, Cond_l)},
convert_to_string{long, Cond_1, Stringl},

concat (Stringl, ’ is false’, String),
1

generate_string{Condition, String, 0, _) :-
convert_to_string(long, Condition, String).

get_message{Object, Name, Value) :-

get (@sys, wait, Message),

(clause(change_in_progress,_)} ->
_ensure_proper_response (Object, Message, Name, Value),
retractall (change_in_progress)

: otherwise ->

Message = message {Objectl, Namel, Valuel),

!
.

execute_message (Objectl, Namel, Valuel,
Object, Name, Value)).

get_preconditions(Y, Pre, Weight, Cond} :-
functor(Y, ’,’, _).

132

arg(l, Y, precondition(Pre)},
arg{2, Y, Tail),
arg(l, Tail, weight{Weight)),

arg{2, Tail, Cond},
I

get_preconditions(Y, [1, (], Y).

get_property_question(Property, Question) :-
question(Property, _, Question),
1
get_property_question(Property, Question} :-

question(Property, _, Question, _),
1

get_property_question{Property, Question) :-
question(Property, Question).

get_short_form(X, Short_x, Length) :-
get_short_x(4, X, Short_x, Length).

get_short_x{0, _, [..., Length], Length}.

get_short x(Number, [Head | Tail], [Head | Short], Length} :-
Next is Number - 1,
get_short_x({Next, Tail, Short, Length).

insert_builtin_dict (Rule} :-
convert_to_string(long, Rule, String),
assert {builtin(String)},
print_string(String, 0, why, append).

insert_rule_dict (Rule, Conditions, Level) :-
convert_to_string(long, Rule, String),

133

concat (String, ¢ 1if’, Stringl),

assert (rules(Level, Stringl)),
print_string(Stringl, 0, why, append},
process_conditiens{[’ *, why, 0, Levelj,

instantiate_rule(_, [], [1} :- !,

instantiate_rule(Rule, Predicate, Conditions)
arg{l, Predicate, Rule),
arg(2, Predicate, Conditions).

is_a list(X) :-
var (X),

!
+ e

fail.
‘is_a_list([_ | _1.

known{Property, Value) :-
user_response_database (Property, Value, _,
\+ Value == unknown,!.

known (Prop, Value) :-
calculated_values (Prop, Value} .

known{Property, Value) :-
user_response_database (Property, Value, _,

length_of_list{List, Arity, Num} :-

functor (List, ',', _).

1
oy

arg({2, List, Tail},
Numl is Num + 1,

length_of list(Tail, Arity, Numl),
1

..

134

Conditions).

e

R

length of list(_, Arity, Num} :-
Arity is Num + 1.

load_previous_responses (Stream) :-
read (Stream, [Property, Response, Query, Dict_keyl},
assert {old_session_response (Property,

Response, Query, Dict_key)),

1
L]

load_previous_responses(Stream).
load_previcus_responses(_).

parm{Parameter, _, Return) :-
old_session_response{Parameter, Response, Query, Dict_key),
!

send (Quser_log_dict, append, Dict_key),
retractall (cld_session_response(Parameter, _, _, _)).,

add_and_check (Parameter, Response, Query, Return, Dict_key).

parm{Parameter, Value, Dimension) :-

user_response_database {(Parameter, ‘unknown’, _, _).

!
L4
retractall (user_response_database (Parameter, _, _, _)},

parm(Parameter, Value, Dimension).

parm(Parameter, _, Value) :-

user_response_database (Parameter, StoredvValue, _, _),

!
s

Value = StoredValue.

parm{Parameter, _, Value) :-
calculated_values (Parameter, Value),!.

parm (Parameter, List, Dimension} -

question (Parameter, point, Question),
send (@message_window, clear),

135

open_point_window(Question),
get_message (@point_window, Name, Responso),
'
process_chosen{@point_window, Name, Response,
Return list, Dimension),
send {@point_window, show, false},
L
display_ user_response (Return_list, Parameter, Dict_Kkey),
add _and check (Parameter, Return_list,

parm(Parameter,Dimension}), List, Dict key).

parm{Parameter, Value, Alternate_answers) :-
questicon(Parameter, Type, Question, _},
send (€message_window, clear),
parm menu{Parameter, Type, Question,
Alternate_answers, Value).

parm (Parameter, Return) :-
old_session_response{Parameter, Response,
Query, Dict_key),
Ly
send (Buser_log dict, append, Dict_key},
retractall (old_session_response(
- Parameter, , _, 1)),
add_and_check (Parameter, Response,

Query, Return, Dict_key).

parm(Parameter, Value) :-
user_response_database (Parameterx, "unknown’, _,),
1
“r

retractall (user_response_database (Parameter, _, _, _}),
parm{Parameter, Value).

parm(Parameter, Value) :-
user_response database (Parameter, Storedvalue, _, _), g

136

1
.

Value = StoredValue.

parm(Parameter, Value) :-~
calculated_values{Parameter, Value).

parm(Parameter, Value} :-
question(Parameter, Type, Question, Answers),
asserta(save_user_def_ val (Parameter)),
send {@message_window, clear),
!,
parm_menu{Parameter, Type, Question, Answers, Value)},
retractall(save_ user_def_val(_)}.

parm{Parameter, Value} :-
question{Parameter, Type, Question},
!'
asserta (save_user_def val (Parameter)),
send (@message_window, clear),
parm_atom(Parametex, Type, Question, Value},

retractall (save_usexr def val(_}).

parm(Parametexr, Value) :-
question(Parameter, Question),
asserta(save_user_def_ val (Parameter)),
send (@message_window, clear),
parm_atom{Parameter, a, Question, Value),
retractall(save_user_def_val{(_}).

parm_menu (Parametex, ¢, Q, A, Value) :-
sort_if default (Parameter, A, Sorted A},
add _ans (@parm_brows, @parm_menu_dict, Sorted A},
open_parm(Q, - menu_qgues, Parameter),
get_message (@menu_ques, Name, Response},
!
L 4

process_chosen {8menu_ques, Name,

137

Response, Return_value, _}),
send (@menu_ques, show, false},
display user_response(Return_value, Parameter, Dict_key),
!
- r

add and check(Parameter, Return_ value,
parm{Parameter, A), Value, Dict key).

parm_menu (Parameter, list, Q, A, List) :-
open_selection_window(Q, A),
get_message (@selection_window, Name, Response),
!,
process_chosen(@selection_window, Name,
Response, Return_list,),
send (@selection_window, show, false),
display_user_response{Return_list, Parameter, Dict_key),
add_and_check (Parameter, Return_list,

parm{Parameter, A}, List, Dict_key).

parm_atom(Parameter, a, Q, Value) :-
open_parm{Q, atom_ques, Parameter),
get_message (@atom_ques, Name, Response),
!r
process_chosen (@atom_ques, Name, Response, Return_value,
send (@atom_ques, show, false),
convert 1l (Return_value, Y},
display_user_response(Y, Parameter, Dict_key),
!

-7

add_and_check(Parameter, Y, parm(Parameter), Value, Dict_key).

),

parm_atom(Parameter, slider, Q, Value) :-
range (Parametex,), % see if range exists
]
-r

- open_parm(Q, slider_ques, Parameter},
get_message (@slider ques, Name, Response},

138

t
L

process _chosen(@slider_gques, Name, Response, Return_value,
send(@slider ques, show, false},
display_user_response{Return_value, Parameter, Dict_key),

t
.r

add_and_check{Parameter, Retuzn_value,
parm(Parameter), Value, Dict_key).

patm_atom(Parameter, slider, ¢, Value) :-

parm_atom(Parameter, a, Q, Value).

parmrange (Parameter,Minimum, Maximumi) :-

parm(Parameter, Value),
Minimum=<Value,
" Maximum>=Value.

parmset (Parameter, Set} :-

parm(Parameter, Value),
memberchk (Value, Set}.

preprocess (Rule, Confirm list) :-

bagof ((Rule, Conditions), clause(Rule,
Conditions}, List),

usingl (X},

append(x,[Rule],xli,

qgtractall(usingl(_)),.

assert {usingl (X1} }, Ny

asserta(using(List}}, ' .

retractall(first_time),

assert(first_time), '

nl,write(‘__ Rule ’),write(Rule),nl,

\ ,

- r

139 ., R

L
|
)
.

.

3

test _preconditions(List, Confirm list}).

print_how{f], _} := !.
print_how{0,) :- !.
print_how ([0], _) :— !,

print_how([p, * "1, _) :- L.
print_how(({p, String], Where) :-
blank line (Where),

print_string(String, 0, Where, _},
1

brint_how{[o ! Qﬂistory]], Where) :-
'~ print_how(History, Where),!.

print_how([{0] | [History]], Where) :-

print_how(History, Where), !.

print_how([History | [Taill], Where) :-
print_how{History, Where),
print_how(Tail, Where),!.

print_how([[r, Rule, Conditions] | [History]], Where) :-
convert_to_string{long, Rule, String},
concat (String, ’ il¢Y, Stringl),
blank_line(Where),
print_string(Stringl, 0, Where, _),
process_conditions ([’ *, Where, 0, _], Conditions),

print_hnow (History, Where),!.

print_file_ header (Stream) :-

)

140

A

Eh

system_name{{Linel, Line2, Line3, Line4]),

writeq(Stream, Linel), write{(Stream, *.’), nl{Stream),
writeq(Stream, Line2), write({Stream, ‘.’), nl(Stream),
writeg(Stream, Line3), write(Stream, ’.’), nl({(Stream),
writeq{Stream, Lined), write(Stream, ’.’), nl(Stream).

print_string(' "y : PR

print_string{String, 0, why, append) :-
send (Gexplain_dict, append, String),
send (@explain_dict, text_string,
‘no explanation available’),
send (Rexplain_dict, string_ident, ‘t’},
1
print_string(String, 0, why, delete) :-
send{@explain_dict, delete, String),!.

print_string(String, 0, how_display, _) :-
send (@how_display window, print, String),
!

.

print_string(String, 0, whynot_display, _) :-
send (@whynot_wind, print, String),!.

print_string{String, 0, _, _) :-
write{String),nl,
!

print_string (String, ldent, why, append) :-
send (@explain_dict, text_string, String),
send(@explain_dict, string_ident, Ident),
1

-

print_string(_, _, _,) := !.

print_whynot (Level, Where} :-
whynot _history({Rule, Condition),lLevel),
convert to _string(long, Rule, String),
concat (String, ' if’, Out_string),
blank_line(Where},
print_string(Out_string, 0, Where, _),

process_conditions ([’ *, Where, 0, _], Condition),

Next is Level + 1,

display whynot executables{Next, Where),

print_whynot {Next, Where),
print_whynot {_, }.

process_chosen(_, _, completed, [], _) :-

!

process_chosen (Object, _, change_user_info, Value, _)
!r
create_change_user_info,
get_message (Object, Name_2, Response_2},
process_chosen(Object, Name_2, Response_2, Value,

process_chosen(Object, _, why, Value, _) :-
!J'
explanation(Ex},
(Ex == yes —->
process_why
| . .
nl,write(’no explanatgqm‘chosen *y,nl,
display message (Emessage_window,
'Explanation facility has turned off ...’)
),
get_message (Object, Name_2, Response_Z2),
send (@message_window, clear),
process_chosen (Object, Name_2, Response_2, Value,

142

2

Ry

process_chosen(Cbject, _, abort, Value, _}) :-
!
send (Object, show, false),
open_abort_wind,
process_message_1,
send{Object, show, true),
get_message (Object, Name_2, Response_2),
process_chosen(Object, Name_2, Response_2, Value,

procesc _chosen{_, _, unknown, unknown, _) :-
!

. =

process_chosen (@point_window, _,

Point, [List | Value], Dim) :-

convert_1(Point, List),

length_of list (List, Dim, 0),

Ir

send (@point_window, label, ''}),

send (@point_response, append, Point),

get_message(Object, Name, Response),

process_chosen (Object, Name, Response, Value, Dim).

i
1

" process_chosen(Q@point_window, _, _, Value, Dim) :-
!.r
send (@point_window, £flash),
concat (' ‘The point must be a ’, Dim, String),
concat {String, ' dimensional point.’, Stringl),
send (@point_window, label, Stringl), -
get_message (Object, Name, Response),
1

il

[

process_chosen(@selection_window, _, Selection,
[Selection_| Valuel], _} :-
Y oT
send(@selection_response; append, Selection),

143

2

).

process_chosen(Object, Name, Response, Value, Dim).

get_message (Cbject, Name, Response),
process_chosen (Object, Name, Response, Value, _}.

process_chosen(_, _, Value, Value, _).

process_conditions{(_, []) :-
t

process_conditions (Control, Conditions) :-
functor (Conditions, *,’, _),
arg(l, Conditions, Cond_l),
arg(2, Conditions, Tail},
generate_string(Cond_1, String, Ident, Control},
display_and_save(String, Ident, Tail, Control),
process_conditions (Control, Tail},
1
process_conditions(Control, Condition) :-
generate_string(Condition, String, Ident, Control),
= display and_save(String, Ident, [], Control).

process_explanation(Old, New) :-
display_gxplanation(old, New),
process_message_1. '

process_message_l :-
get (@sys, wait, Message),
< Message = message (Object, Name, Value),
Goal =.. [Name, Object, Value],
Goal -> true | error_2.

N
NEMEJA¢
T

144

prop{Property} -
old session_response(Property, Response,
Query, Dict key},
send (Buser_log_dict, append, Dict_key},
retractall (old_session_response(
Property, _, _, _)).
assert {(user_response_database (Property,
Response, Query, Dict_key)}},
|
L 4

Response = ¥y.

prop (Property) :-
user_response_database (Property, ‘unknown’,
!
.7

retractall (user_response_database (Property,
prop (Property) .

prop{Property} :-
user_response_database (Property, Value, _,
1

Value = y.

prop (Property) :- _

send (@message_window, clear),

question(Property, Question),

open_prop (Question, prop_ques),

get_message (€prop_ques, Name, Response},

1:

process_chosen {@prop_ques, Name,
Response, Return_value, _},

send (@prop_ques, show, false),

display user_ response(Return_value,

Property, Dict_key).
I

L}

add_and_check (Pxoperty, Return_value,

145

prop (Property), y, Dict key}.

quit_proc(_,_) :-
write user_ file,
kill_prowindows,
clean.

range (num_of_ spots, [0, 50]).

read_is(X, ¥Y) :-
send (X, show, false),
assert (last_query(¥)),
get_user_file,
question_user_l,
execute_user_is_query(Y),
!f
send {(Quser_log_window, show, false),
open_ans_wind(yes),
process_message 1,

read_is(_,_) :-
send(@user log_window, show, false},
open_ans_wind(no),
process_message_1l.

remove_conditions_dict (Level) :-
conds (Level, Condition_key),
retractall (conds (Level, Condition_key)}),
send (@explain_dict, delete, Condition_key),
remove_conditions_dict (Level).

remove_conditions_dict (_) :- !.

146

remove_default{Long_form, [Long_form|Rest], Rest)
t

remove default (Long_form_ 1, {Long_form_2|Restl],
[Long_form_2|Rest2])) :-
remove_default(Long_form_l, Restl, Rest2).

remove_dict_items (Dictionary) :-
get_chain_ref (Dictionary, members, Key_list),
\+ Key_list = [],
send_list (Dictionary, delete, Key list).

remove_dict_items{_}.

remove_response(Property) :-
user_ response_database (Property, _, _, Dict_key)
retractall (user_response_database(Property, _,
send (@user_log_dict, delete, Dict_key),
send (Guser_log_window, clear),
send (Ruser_log_window, dict, @user_log_dict).

reset_previous_display(@menu_ques} :-
)
o7
send (@menu_ques, load, 'FFDES.question’),
delete_ file(’'FFDES.question’),
send (@parm_brows, clear),
send (@parm_menu_dict, fres),
send (@sys, load_from_file, 'FFDES.dictionary’),
send (@parm_brows, dict, @parm_menu_dict),
delete_file(’'FFDES.dictionary’).

reset_previous_display(@selection_window) :-

|
s

send (@selection_window, load, 'FFDES.question’),

147

’

’

e

delete file(’FFDES.question’),

send (@selection_input, clear),

send (@selection_dict, free},

send{@sys, load from_file, "FFDES.dictionary’),
send (@selection_input, dict, @selection_dict},
delete_file(’'FFDES.dictionary’),
send(@selection_response, load, ’'FFDES.responses’),
delete_ file(’FFDES.responses’}.

reset_previous_display(@point_window) :-
1
L]
send (@point_window, load, 'FFDES.question’),
delete file('FFDES.question’},
send (@point_response, load, 'FFDES.responses’),

delete file('FFDES.responses’).

reset_previous_display(_).

save_conds_key (Level, Condition, 0, why) :-
assert (conds (Level, Condition)),
]

save_conds _key{_, _, _, _) - 1.
save_current_display(@menu_gques) :-

!l'

send (@menu_gques, save, ‘FFDES.question’},

send {@parm_brows, clear),

send (@parm_menu_dict, save_in_file, 'FFDES.dictionary’).

save_current_display(@selection_window} :-

!
LN

send (@selection_window, save, 'FFDES.question’),

send{@selection_input, clear),
send (@selection_dict, save_in_file, 'FFDES.dictionary’),

148

send{lselection_response, save, 'FFDES.responses’).

save_current_display(@point_window) :-
| :

send (@point_window, save, 'FFDES.question’},
send (@point_response, save, ‘FFDES.responses’).

save_current display(_).

save_database (Filename) :-
display message (@message_window, ‘Saving responses...’),
open (Filename, write, Stream),
last_query (Query},
retractall(last_query(_}},
print_file_header (Stream},
writeq (Stream, Query),
write{Stream, ’.’), nl(Stream),
save_response_database (Stream),
close{Stream),
write user_ file.

save_response_database(Stream) :-
user_response_database (Property, Value, Query, Dict_key),
writeq(Stream, [Property, Value, Query, Dict_key]),
write(Stream, *.*),
nl {Stream),-
retractall (user_response_database (Property, _, _, _)).!,
save_response_database (Stream}.

save_response_database(_).

sa@e_whgnot_hiStory(Conditions, Level) :-
whynot_history(_, Level),
t, _

retracﬁall(whynot_history(_,Level)),
assert (whynot_history(Conditions, Level)).

149

save_whynot_history (Conditions, Level) :-
assert (whynot history(Conditions, Level)).

sort_if default (Parameter, A, [Long_form|New list]) :-
default (Parameter, Long_form}, % check for default
1

- r

removemdefault(Long_form, A, New list),.
sort_if default({_, A, A).

start_old session(_ ,Filename} :-
check_session_file(Filename, Stream),
read{Stream, Query},
load_previous_responses{Stream),
close (Stream),
read_is(@load_window, Query),
|

store_defaults(Item, Default_value) :-

default (Item, _J,

!
7

retractall (default (Item, _b),
assert (default {Item, Default_value)).

store_defaults (rtem, Default_value) :-
assert {default {Item, Default_value)).

store_value (Prop, Value) :-

calculated_values (Prop, _),

L

retractall{calculated_values(Prop,_)},

assert (calculated values (Prop, Value}).
store_value (Prop, Value) :-

assert (calculated_values{Prop, Value)).

150

system name([’FFDES June 15, 19897,
*finference : Linda S$trajnic & Tibeor Toronvyi’,
*knowledge base : Arunita Sarkar’,
‘rule editeor : Hien Bui’]}.

test preconditions([], []).

test_preconditions([Predicate | Tail], {{(Rule, Condition)
| Condition_taill) :-
arg{l, Predicate, Rule},
arg(2, Predicate, Complete_list},
get_preconditions (Complete_ list, Precondition,
Weight, Condition),

execute_precondition(Precondition, Weight),

1
. r

test_preconditions(Tail, Condition_tail}.

test_preconditions([_ | Taill, Condition_list} :-
test_preconditions(Tail, Condition_list).

unix shell{_,) :~-
clean,
unix (shell).

write out:-
assert (functor_list ([])),
using{l), !,
write_element (L}.

write_element {[L]):-
get functor(L),!.
write_element ([H|IT]):-
get_functor (H),
write_element (T).

151

write element({]).

get_functor (L} :-
functor (L,’,’,),
arg(l,L,Rule),
write append(Rule}),
arg(2,L,Rulel),
get_ functor(Rulel).

get_functor{lL}:-
write_append(L).

write append(L):-
functor (L, !'’,), !.
write append{l):-
functor (L, \+*,),
arg{l,L,Rule},
write_append(Rule),!.
- write_append (L) :-
functor (L, ’==*,), !.
write_append(L):-
functor(L,’:’,_),!.
write_append (L) : -
functor (L,’is’,_),!.
write_append (L) :-
functor(L,’true’, }),!.

write_append(Rule) :-
functor (Rule, Name, X},
functorx_list (L),
(Name == store_defaults ->arg(l,Rule,E},
append (L, (Name,E], L1} |

(Name == user_def val ->arg(l,Rule,E),
append (L, (Name, E], L1} |
(Name == user_def_ fuzzy val-> arg(l,Rule,E),
append(L, {Name,E], L1} |
(Name == store_value -> arg(l,Rule,E),

152

append (L, [Name,E], L1} |
append(L, [Name],L1}}))),
retractall (functor_list{_}),
assert (functor_list(Ll)).

process why design_user :-

add_ques (@message_window,

*Explanations are available by clicking the
left mouse button on the rule you wish explained.’},
open_why_window_design_user,
process callbacks{retract (why_complete)},
send (@message_window, clear),
send (@why_rule_window, show, false).

process_why:-—

end_user {X),
(X == yes =-> write_out_and keyword |
process_why_design_user).

insert_empty list:-

retractall (functor_list(_)},
agssert {functor_list({])).

write_out_and keyword:-

write out,

try keyword,

insert_empty_list,
process_callbacks (retract (why_completel)),
send (Bmessage_window, clear),

send (@why_rule_windowl, show, false).

N

txry keyword:-

retractall {keyword list({_)),
functor_list(L),nl,write(L),nl,

153

{(first_functor_list ->
retractall(first functor_list),
asserta(functor_list_backup{(lL))|true
),

assert (keyword_list((])},

user_level {Level),

find keyword_of_functor(L,Level),

keyword list (K},

nl,write (K},

open_why window.

find_keyword_of_ functor([explanation,V|T], Level):-
find_keyword_of_ functor{[V|T],Level),!.
find_kayword_of_functor([user_def_val,V|T], Level):-
save_user_def_val (Parameter),
nl,write(Parameter),write(V),nl,
list_rated_functor (0ldlist}),
(Parameter == ->
{(Level > 1 ->

Levell is Level - 1

|

Levell = Level

)I

(first_time ->
% retractall(first_time),
functor_list (F1l),
nthl(l,Fl,Rule),

write{Rule),nl,

template (Rule, Key},

nthl (Level, Key, Olckey},

write (Oldkey),nl,

keyword_list (K1},

(member (Oldkey,Kl} ->
del_element (Oldkey, K1, K11l),
retractall (keyword_list(_)),
nthl (Levell, Key, Newkey},

154

append { [Newkey],K11,K12),

assert (keyword list(Kl2})),

nl,write{K1ll),nl,

nl,write(Kl12},nl,

(member (Rule,0ldlist)->

{(member (V,0ldlist} ->

true
|
append{0ldlist, [V,Levell],Newlist),
retractall({list_rated_functor(_)},
write{Newlist),nl,
assert(list_rated_functor(Newlist})
)

!
append{0ldlist, [Rule, Levell], New),

append{New, |V, Levell], Newlist},
retractall{list_rated_functor(_)},
nl,write{Newlist),nl,
assert(list_rated functor{(Newlist})
)

|
append{Oldlist, {V,Levell], Newlist),

nl,write(Newlist),nl,
retractall(list_rated functor{_})},
assert (list_rated_functor (Newlist))
}

l
append (0ldlist, [V,Levell],Newlist),

nl,write{Newlist),nl,
retractall{list_rated functor(_)).
assert (list_rated_functor{Newlist))
)

|
(member (V,0ldlist) ->
nextto (V, Levell,Oldlist)

!

155

Levell = Level
}
),
get_list_of_keyword(user_def val,V, Levell),
find_keyword_of_ functor (T, Level),!.
find_keyword_of_functor{luser_def_ fuzzy val,VIT], Level) -
get_list_of keyword{user_def_ fuzzy_val,V, Level),
find_keyword_of_ functor (T, Level),!.
find keyword of functor{[store value,V|T], Level):~
get_list_of keyword({store_value,V,Level),
find_keyword of functor (T, Level),!.
find keyword_of_ functor{lknown,V|T], Level) :-
find _keyword of functor{{V|T],Level),!.
find keyword of_ functor(|[store_defaults,V|T],Level):-
get_list_of keyword(store_defaults,V, Level),
find keyword_of_functor(T,Level),!.
find keyword_of_ functor ([H|T],Level):-
get_list_of_ keyword(H, Level},
find_keyword_of_functor(T,Level).
find_keyword_of_ functor([],).

get list of keyword(user_def_ val,V,Level):-
template((user_def val(V,_)),Key),
which_keyword_list (Key, Level).

get_list of keyword(user_def fuzzy val,V,Level}:-
template({user_def fuzzy_val(V,_)),Key),
which keyword_list (Key, Level).

get_list_of_ keyword(store_value,V,Level):-
template((store_value(V,_)), Key),
which_keyword list (Key,Level).

get_list_of_ keyword(store_defaults,V,Level):-
template((store_defaults(V,_)),Key),
which_keyword list (Key,Level).

get_list of keyword(H,Level):-

156

template (H, Key),
which keyword_list (Key,Level}.
get_list of keyword(_,).

which_keyword_list (List, Level) :-
length{List, Length),
{Level > Length -> last (Keyword, List}|
nthl (Level, List, Keyword, _)]J,
which_keyword(Keyword) .

which_keyword({Keywordlist) :-
guality explanation (Number},
length{Keywordlist, Length},
{Number > Length -> last (Keyword, Keywordlist) |
nthl (Number, Keywordlist, Keyword, _)},
append_keyword (Keyword) .

append_keyword{Keyword) :-
keyword list (List),
append (List, {Keyword], Listl),
retractall (keyword_list{(_}),
assert (keyword list (Listl}).

delete_keyword (Keyword) : -
keyword_ list (List},
del_element (Keyword,List,Listl),
retractall (keyword_list{_List)),
assert (keyword_list (Listl)).

question_user_ l:-

object {@questl),

send (fquestl, show, true),!.
question_user_ 1:-

new (@questl, dialog),

157

send{@guestl, append, label{
'Did you use the system before? 7)),

send (@questl, append, button(

‘Yes’, cascade (0, user yes, 011)),
send (@questl, append, button(

'No’, cascade (0, user no,)1}},

send{@questl, open, point (510, 300}),
process_message_ 1.

user_yes(X,_}:-
send (X, destroy),
assert (user_yes),
question_user_ 2.
user_no(X,):-
send (X, destroy),
question_user_ 2.

question_user 2:-
new(Bquest2, dialog),
send{@quest2, size, size(450,50}),
new{@user_name, text_item({
*Your name: ', '’,
cascade (@quest2, read user_name, 0))},
send (@user_name, width, 100),
send(@ﬁser_name, advance, none},
send (@quest2, open, point(510,300)),
send {@quest2, append, @user_ name),
process_message_l.

read_user_name (X, Y) :=-
send (X, destroy},
assert (user_name(Y)),
nl,write(¥),nl,
(user_yes =-> retract (user_yes), if_yes | if_pno).

if no:-

158

explanation or_not,
explanation{Ex),
(Ex == yes —>
(end_or_design_user,
end_user (X},
(X == yes ->»
question_user_ 6,
question_user_ 3,
question_user_4,
gquestion_user_5

i nl)) | true).

question_user_ 3:-
new (Bquestd, dialog),
send(@quest3, append, label(’Please indicate
your level of knowledge in designing FIR filtex’)),

send {(@quest3, append, label(

f—- from naive to expert (1 - 5)7)),
new{@quest33, browser),
send (Bquest3, above, Gquest33),
send_list {@quest33, append, [1, 2, 3, 4, 51),
send (Aquest33, selected,

cascade (@quest 3, selected_3, 0)),

send (Qquest33, clicked, 0),
send {@quest3, open, point(510,300)},
process message_l.

selected_3 (X, Range) :-
send (X, destroy),
convert_ 1 (Range, Number),
assert (knowledge_level (Number}),
assert (user_level (Number)),
nl, write{Number),nl.

question_user_4:-

s

159

new{@quest4, dialog),
send(@questd, append, label/(
’Please select quantity of explanation’)),

send{@guest4, append, label(

f—— from short to long (1 - 5)*)),
new{@quest44, browser),
send (Bquest4, above, @Gquestddq),
send_list {@quest44, append, 1, 2, 3, 4, 5]),
send (Bquest44, selected, cascade

{@questd, selected 4, 0)),

send (Bquestd44, clicked, 0),
send (@questd, open, point(510,300)),
process_message 1.

selected 4(X,Range):-
send (X, destroy),
convext 1l {Range, Number},
assert (quantity explanation (Number)),
nl, write (Number),nl.

guestion_user_ 5:-

néw{fquest3, dialog)},
send (@questS, append, label (

'How would you like the quality of explanation? *})),
send {@quest5, append, label(

*—— from less to more technical (1 - 5} *)),
new (@quest55, browser),
send (@quest5, abo''e, @quest55),
send_list (@quest55, append, [1, 2, 3, 4, S51),
send(@quest55, selected,
cascade (@que st5, selected;5, 0)),

send {@quest55, clicked, 0), o
send {@questS, open, point(510,300)),
process_message 1. '

160

selected 5(X,Range):-
send (X, destroy},
convert_ 1 (Range, Number},
assert (quality explanation(Number)),
-nl, write({Number),nl.

gquestion_user_ 6:-
new{@quest6, dialog),

send {Bguest6, append, label(’What is your goal ? ’)),

send {@questé, append, button/{
*Student’, cascade({0, user_student, 0))},
send (€questb6, append, ‘button({
*\'.zpert’, cascade(0, user_expert, 0))),
send {@quest6, open, point{510,300}},
process;message_l.

user_student (X,) :-
send (X, destroy),
assert (goal (student)),
nl, write(student},nl.
useF_expert(x,_):-
yend (X, destroy),
assert (goal (expert)),
nl, write(expert),nl.-

get_user_ file:-

open(’user file’, read, Stream), TSN

- read (Stream, List),
assert(List},
get_content_file(Stream}.

get_content_file(Stream):-
read (Stream, Data},

any_more(Stream, Data).

any_more(Stream,end_pf_filé}:—

N 161

a

s

-

_.\

close (Stream}, !.

any more{Stream,Data) :-
assertz (Data),
get_content_file(Stream).

if _yes:-

user_name (Name),

user_ list(List),

{member (Name, List)-> del_element (Name, List, Listl),
retractall{user_list(_List)),
assert{user_list(Listl}),
retrieve_info (Name) |
nl,if no).

retrieve_info(Name) ;-
(user_data(Name,Kl,Qn,Ql,G,Ul,Eu,Ex) ->
assert (knowledge level (Kl)),
assert (quantity_explanation (Qn)},
asserl (quality_explanation(Ql)),
assert {goal{G)),
assert (user_level(lJ1}),
assert (end_user(Eu}),
assert (explanation (ExX)),
retract (user_data (Name,K1,Qn,Ql,G, UL, Eu,Ex)), ! |
user_data (N, K,Qnl,Q11,G1,011, Eul,Ex1),
retract (user_data(N,K,Qnl,Q11,G1,Ul1,Eul,Exl)),!

. !

assertz (usex_data{N,K,Qnl,Q11,G1,Ull; Eul,Exl))).
(\

write user::file:-
open(’user_file’, write, Stream),
- user_list (Ulist),
user name (Name),
knowledge_ level (K1),
quantity.3xplanation(Qn),

162

quality ewxplanation(Ql),

goal (G},

user_level (Ul),

end_user (Eu),

explanation(Ex),

append({(Name],Ulist,Ulistl),)

write_canonical (Stream, user_list (Ulistl)),

write(Stream, '.’),

nl (Stream),

write canonical (Stream, (user_data(
Name, K1, ©On, Ql, G, Ul,Eu,Ex))).,

write (Stream, ’.’),

nl (Stream),

write back user_ file(Stream),

close (Stream) .

write_back_user file(Stream):-
user_data(Name, K1, Qn, Ql, G, Ul, Eu,Ex),
write_canonical (Stream, (user_data(
Name, K1, Qn, Ql, G, Ul, Eu,Ex))),
write (Stream, ’.’},
nl{Stream},
retract {user_data{Name, K1, Qn,
Ql, G, Ul, Eu,Bx)),!,
write_back_user_ file(Stream),!.
write_back user_file(_ Stream).

reduce_knowledge_level:-
knowledge_ level (K1),
(K1 > 1 -> (K11 is K1 - 1,
retractall (knowledge level()],
assert {knowledge_level (K11)}) Itrue).

template{calculate_stopband_edge, [
[‘transition width’],

. 163

[f scale’],
[’ stopband edge’]]}).

template (call bartlett, {
[triangular’],
["bartlett’1]).

change_abort_wind(Wind, y) :-

!
~r

send (Wind, show, false),

send {fabort_gques, clear},

send (@abort_ques, print,

‘Do you wish to save the questions and answers’),

send (Rabort_ques, print, ‘' (for the current query)
processed so far?’),

send(@yes_cascade, name, enter_ filename),

send (@no_cascade, name, enter_filename),

send(Wind, show, true),

process_message_1.

change_abort_wind (Wind, n) :-
send (Wind, show, false).

change_cursor (Window, Type) :-
get (Window, cursor, Cursor),
assert (old_cursor (Window, Cursor)),
cursor_types {Type, New_cursor),
send{Window, cursor, New_cursor),!.
change cursor{_,_).

create_ans_wind({Y) :-
new (Y, dialog(’Answer to IS query’)),
send (@Y, size, size (500, 300)),
send (@Y, append, label{’Answer is:’, none)),
send (@Y, append, label{(’ ’,none}},

164

send (@Y, append, label{’ ’, none)),

send (@Y, append, label(’ *, none)),

send (RY, append, label(Y, none}),

send (@Y, append, label(’ ’, none)},

send (BY, append, label(’ ’, none}),

send (@Y, append, button({’CONTINUE’,
cascade {0, open_and process, main))).

create_atom wind{(Q, Parameter) :-
new (Batom_qgues, browser),
send (Ratom_ques, size, size(500,80)),
new{@atom_response, dialog),
new(fatom_text, text_item('Ans: 7, ‘‘,
cascade (@atom_ques, 0, 0))},
check_default (Parameter, @atom_text),
send (Gatom_text, advance, none),
send (Qatom_response, append, Ratom_text),
send(f@atom_response, append, label{(’ ’, none)},
send (@atom_response, append, button(’UNKNOWN’,
cascade (Ratom_ques, 0, unknown))),
send (Ratom_response, append, button(’WHY’,
cascade (Gatom_ques, 0, why))),
send (@ztom_response, append, button(
- "ABORT’ , cascade {@atom_ques, 0, abort))},
send (Gatom_response, append, button(
* CHANGE USER INFO’,
cascade (Gatom_qgues, 0,change_user_info))),
send (@atom_ques, above, @atom_response),
send (@atom_ques, open, point (510, 300)),
add_ques (Gatom_ques, Q).

create_cursors :-
new (@hour_map, bitmap(16,16)),
send (@hour_map, load, ‘hglass.cursor’),
new (@hour_glass, cursor (@hour_map)),

165

new(@no_entry map, bitmap(le,le)),
send{@no_entry map, load, ‘do_not enter’},
new (@no_entry_cursor, cursor{lno_entry map}),
new(@stop_map, bitmap(le,l6}),
send(@stop_map, leoad, ’‘stop.cursor’},
new(@stop_cursor, cursor{@stop_map)).

create_error window(String} :-
object (Rerror_window),
ll
add_cues (@error_window, String},

send(terror_window, show, true).

create_error window(String) :-
new (Gerror_window, browser),
send (@error_window, size, size(500, 80)},
new(@erroxr_return, dialog),
send (@error_return, append, button(’Continue’,

cascade {0, error_complete,C))),

send (@error_window, above, Qerror_return),
send {@error_window, open, point (445, 275)},
add_ques (@error_window, String).

create_filename wind :-
new(@filename_wind, dialog),
send (@filename_wind, size, size(500,70)),
send(@filename_wind, append, text_item(
‘Enter name of file (IN QUOTES):’,
t+, cascade({@filename_wind,0,0}}).

create_how :-
object (@how_display_window),
send (@how_display_window, clear),
send (fhow_display_ window, show, true),

166

create _how -
new({@how display_window, browser
(*3.1.1 HOW Explanation’}},
send (@how_display window, size, size(500,546}),
new(@hcw _return, dialog(’HOW Explanation’}},
new({@how_button, button(’QUIT’,
cascade (Rhow_display window, open_and_process, main))},
send{@how_return, append, @how_button),
send {@how_display window, above, @how_return},
send (Rhow_display_window, open, point(510,300}).

create_is wind :-

retractall(usingl(_)),

retractall (using{_}},

assert (usingl({])),

assert (first_functor_list),

retractall{list_rated_functor(_)),

assert (list_rated_functor([])},

new_dialog(@is_query, ‘1.0 Query’, is_wind_items),

send (@is_query, size, size(500,150}),

new({@enter_is, text_item(’IS: ', '’,
cascade (@is_query, read_is, 0})),

send{@enter_is, width, 100},

send (@enter_is, advance, none},

send (@is_query, append, @enter_is),

is_wind_items{_, button(’PREVIOUS SESSION’,
cascade (0, open_and process, load)}),
—r £
is_wind_items(_, button(’QUIT’,
cascade (0, open_and process, main)),
right, {]).
is_wind_items(_, label(’ ’, none), below,[]).

is_wind items(_, label({

167

‘Enter the query in brackets’, none), balow, [1).

create_lcad_window({Label) :-
object (Rload window),

|
L)

send{(@load_window, label, Label},
send (@load_window, show, true).

create_load window(Label) :-
new_dialog(@load_window, Label, load_items),
send{@load window, size, size(500,7C}},
send (@load window, open, point(510,300}}.

load_items(@old filename, text_item(
‘Enter filename of previvus session: *, ',
cascade (0, start_old_session, 0)}}, _, []).
load_items(_, label(’ 7,none}, _, [1).
load_items(_, button(’QUIT’, cascade(
0, open_and process, main)), _, {1}.

create log_window :-
object (Ruser_log window),
!
-

send (Guser_log_window, show, true).

create_log_window :-
new{@user_log_window, browser (‘Previous Responses ')}),
send (@user_log window, size, size(500,150)),
send (Guser_log_window, open, point (510, 0}},
create_log_window_icon,
send (Quser_log_window, clicked,
cascade (0, view_response, 0)),

send (Quser_log_window, selected,

cascade (0, response_change, 0)),

I 168

new{Quser log dict, dict),
send (Buser log _window, dict, @user_ log _dict).

create_log window_icon :-—

file exists({’response.icon’},
new{@response_hitmap, bitmap (64, 64)),

send {@response_bitmap, load, *response.icon’},
send {@user log_window, icon, @response_bitmap’.

create_log_window_icon.

create_menu_wind(Q) s

create_message_window_icon :-

new{@menu_gques, browser),
send (@menu_ques, size, size (500, 80}),
send (@parm_brows, selected,
cascade (@menu_ques, 0, 0)},
send (@parm_brows, below, @menu_ques),
new(@menu_response, dialog),
send {@menu_response, size, size (500, 95})1}),
send (@menu_response, append, button{
* UNKNOWN’ , cascade (@menu_ques, 0, unknown})),
send (@menu_response, append, button{’WHY’,
cascade (Bmenu_ques, 0, why)}),
send (@menu_response, append, button{’ABORT’,
cascade (@menu_ques, 0, abort))},
send (émenu_response, append, button{
! CHANGE USER INFO',
cascade (@menu_ques, 0, change_user_info))),
send {@meru_response, below, @parm_brows},
send (@menu_ques, open, point (310, 3000,
add_ques (@menu_ques, Q).

Q__,

file_exists(’'message.icon’),
new (@message bitmap, bitmap(64, 64)},

169

send (@message_bitmap, load, ‘message.icoen’l,
send {@message_window, icon, @message bitmap}.
create_message_window_icon.

create_point_window(Q) :-
new (@point_window, browser},
send (@point_window, size, size(500,80)),
new({@point_input, dialog),
new(@input_x, text_item(’Point: ', ’ ',
cascade {@point_window, 0,0})},
send (Rinput_x, advance, clear},
send{@point_input, append,
label (* Enter each point or set of’, none}),
send (@point_input, append,
label (' points separately in the’, none)},
send (@point_input, append,
label (' form :’, none)},
send (@point_input, append,
label (* (X, X1, X2, ...}’, none)),
send (@point_input, append, label{’ ’, none)),
send (@point_input, append, @input_x),
send (@point_input, below, @point_window),
new(@point_response, browser),
send (@point_response, right, @point_input),
new (@point_options, dialog),
send (@point_options, append, button(’COMPLETEDR’,
cascade (@point_window, 0, completed))),
send (@point_options, append, button{’UNKNOWN’,
cascade (@point_window, 0, unknown))),
send (@point_options, append, button(’WHY’,
cascade (@point_window, 0, why})},
send (@point_options, append, button(’ABORT’,
cascade (@point_window, 0, abort))},
send (@point_cptions, append, button{’CHANGE USER INFO’,
cascade (@point_window, C,change_user_info))),
send (@point_options, below, @point_response),

170 ‘ -

send (@point window, open, point(510,300)),
ada_ques({@point_window, Q).

create_prop_wind{(Q} :-

new (@prop gques, browser),
send (@prop_ques, size, size (500, BO);,
new (@prop_response, dialog),
send {@prop response, append,

button{’YES’, cascade (@prop_ques, 0, y)}).,
send (@prop_response, append,

button{’NO’, cascade (@prop_ques, g, n))),
send (tpcop_response, append, label(’ ’,none)),
send (@prop_response, append,

button {’ UNKNOWN’ , cascade {@prop_ques, (0, unknown}}),
send {@prop_response, append, button{’WHY’,

cascade (@orop_ques, 0, why))},
send (@prop_response, append, button(’ABORT’,
cascade (@prop_ques, 0,abort))},
send(@prop_respdnse, append, button{
*CHANGE USER INFO’,
cascade (@prop_ques, 0,change_user_info))}),

send {@prop_ques, above, @prop response),
send (@prop_ques, open, point (510, 300)),
add_ques (@prop_ques, Q).

create_selection_window(Q, A} :-

new(@selection_dict, dict),
new(@selection_window, browser),
send (@selection_window, size, size(500,80)),
néwk@selection_input, browser),
send (@selection_input, dict, @selection_dict),
send(@selection_input, clicked,

cascade (@selection_window, 0, 0}),
send{@selection_input, selected,

cascade (@selection_window, 0, 0)),

1

send{@selection_input, below, @scloction windowl,
new(@selection_response, browser},
send(@selection_response, right, @selection_input),
new (@selection_options, dialog),
send{@selection_options, append, button{’COMPLETED’,
cascade (@selection_window, (, completed))},
send (@selection_options, append, button(’UNKNOWN’,
cascade (@selection_window, 0, unknown))),
send (@selection_options, append, button(’'WHY’,
cascade {@selection_window, 0, why))),
send{@selection_options, append, button(’ABORT’,
cascade (@selection_window, 0, abort))},
send{@selection_options, append, button(’'CHANGE USER INFO',
cascade (@selection_window, 0, change_user_info)}),
send (@selection_options, below, @selection_response),
add_ans (@selection_input, @selection_dict, A),
send(@selection_window, open, point{510,300)),
add_ques(@selection_window, Q).

create_slider_wind(Ques, [Min, Max], Parameter} :-
new({@slider_gues, browser),
send(@slider_ques, size, size(500,80)),
new(@slider_response, dialoq),
new({@slider, slider(’Choose’, Min, Max, Min,
cascade (@slider gues, 0, 0))),
check_default (Parameter, @slider),
send(@slider_response, append, @slider),
send(@s.ider_response, append, label(’ ‘, none)),
send (@slider response, append, button(’UNKNOWN’,
cascade(@slider_queé}-gh unknown))),
send{@slider_response, append, button(’WHY’,
cascade (@slider_ques,0,why})),
send (@slider response, append, button{’ABORT’,
cascade (@slider_ques, 0, abort)}),
send (@slider response, append, button(’CHANGE USER INFO',

172

cascade (@slider_ques, 0,change_user_info))),
send(@slider ques, above, @slider_response),
send{@slider ques, open, point (510, 300},
add ques(@slider ques, Ques).

create _whynot :-
object {(@whynot _wind},

send (@whynot_wind, clear},
send (Bwhynot_wind, show,true}.

create_whynot -
new(@whynot_wind, browser(’3.2.1 WHYNOT Explanation’)},
send (@whynot_wind, size, size(500,546)),
new{@whynot_return, dialog(’/WHYNOT Explanation’)),
new (@whynot_button, button(’RETURN’,
cascade (0, open_and_process,main))},

send (@whynot_return, append, @whynot_button),

. send(@whynot_wind, above, @whynot_return),
serd (@whynot_wind, open, point (510,300)).
which cursor object a given type references. */

cursor_types (hour, @hour_glass).
cursor_types (stop, @stop_cursor).
cursor_types(no_entry, @no_entry cursor).

display explanation{(_, how) :-

\+ clause (history(_),_),

1
display_explanation(_,whyndt) 1=
\+ clause (whynot_histeory(_,_).,_),
['

8

display_explanation(0ld, New)} :-

173

send (0ld, show, false),
open_display_explanation (New).

display how{_, _) :-
send (Bquery display, show, false),
display_message (@message_window,

‘Displaying HOW...please wait’),

create_how,
send (Rhow_button, show, false},
history (History),
print_how(History, how_display),
send (@how_display window, line_no, (),
send (Bhow_button, show, true},
process_message_1.

display message(Window, String) :-
send (Window, clear),
display_message_strings(Window, [String]),
send (Window, line_no, 0).

display_ message_strings{(_, []} :- !.

display message_strings{Window, [Line | Tail}) :-
send (Windew, append, Line},
display message_strings(Window, Tail}.

display_why_explanation(_, _) :-
get (Gexplain_dict, current, _),
get (Q@explain_dict, text_string, String),
get (Rexplain_dict, string_ident, Identifier),
determine explain_type(String, Identifier).

display_whynot (_,_} :- .
send{@query_display, show, false),

174

display messaye{@message_window,
*Displaying WHYNOT...please wait’),
create_ whynot,

send (@whynot _button, show, false},
print_whynot (0, whynot_display},
send (@whynot_wind, line_no, 0),
send (Bwhynot _button, show, true},
send {@message_window, clear),
process_message_1l.

display whynot_ executabl:¢s{Level, Where) :-
clause (executable (Level, Rules},),
convert_to_string{long, Rules, String),
concat (String, ' has failed’, ODutstring),
blank_line (Where},
print_string{Qutstring, 0, Where, _).
display whynotf_executables{(_, _).

enter filename (Cbject, y) :-
!r
send (Object, show, false},
create_filename_wind,
send(@filename_wind, open, point(51¢,300}),
get_message(, _, Value),
send(@filename_wind, show, false},
convert_1l{(Value, Converted_value),
save_database (Converted_value),
kill prowindows,
retractall (user_response_database(_, _, _,
abort.

enter_filename{Object, n} :-
send {Object, show, false},
kill prowindows,
abort.

175

),

oY

error_ complete(_, _} :-
assert{error_complete flag).

error_message (Property, String) :-
create_error_window(String),
send (Rerror_window, flash),
{calculated values(Property,) ->
retractall(calculated_values(Property,))
| remove response(Property)),
process_callbacks (retractall(error_complete flag)),
send(@error_window, show, false).

execute_user_is_query(Y) :-
convert_ 1{Y, 2},
confirmed (2, History, 0},
!
-7

retractall (history(_)},
assert (history({History)).

execute_user_is_query(Y) :-
change_in_database,
!:
retractall (change_in_database},
retractall(builtin{_)},
retractall(conds(_,)},
retractall(rules{_,_)},
get_chain ref(@explain_dict, members, Entries),
send_list (Qexplain_dict, delete, Entries), '
execute_user_ is query(Y). '

how file(_, Filename) :-
display_message{@message_window,
'Writing HOW explanation to file Please walt),
tell (Filename),
history fHistoxry),

L
N

176

print_how(History, Filename},
tctd,
open_and_process{@query display, mainj}.

main_dialogs :-
new (@message_window, browser (' FFDES -~ message window’}},
send (Bmessage_window, size, size(500,60}},
send (@message_window, open, point (510, 217}},
display message (@message_window, ’‘Please wait...’),
create_message_window_icon,
new_dialog(@main, ‘Main functions’, main_dialog_items),
send (@main, size, size(520,70)),
send (@main, open, point (510,300)),
new{@parm_menu_dict, dict),
new(@parm_brows, browser),
new(@explain_sheet, sheet}),
send (@explain_sheet, append, [text,_string, string_ident}),
new{@explain_dict, dict),
send{@explain_dict, sheet, @explain_sheet),
add_ques (@message_window,
'R selection can be made by clicking the
left button of the mouse on the option you wish.’),
process_message_l. .

main_dialog_items(_, button(’QUERY’,

cascade (@main, open_and process, is_query}), _, [1).
main_dialog_items(_, button(’EDITOR’,

cascade (@main, open_and process, editor_menu)},

right, []).
main_dialog_items{_, button(’EXPLANATIONS’,

cascade (@main, open_and_process,

explain_menu)), right, []).
main_dialog_items{_, button(’SYSTEM’,
cascade (@main, open_and_process, system menu)),

right, [1]).

main_dialog_items{ , button(’QUIT’, cascade

177

(Bmain, quit_proc, 0}), right, []).

create_system_menu ;-
new_dlalog(@system menu, ’4.0 System functions’,
system_items),
send (@system_menu, size, size(500,150)})),
send (@system_menu, open, point(510,300)}.

system_items(_, button(’UNIX’,
cascade (0, unix_shell, Q0}), _, I[1l}.
system_items{_, button(’SDA’, ‘
cascade (0, call_sda, 0)), right, []).
system_items(_, button{’CONSULT',
cascade (0, reconsult_kbase, 0)}, right, []}.
system_items (_, button(’RETURN’, :
cascade (0, open_and_process, main)), right, []}).

create explanation _menu :-
new_dialog(@explain_menu,
3.0 Query explanations’, explain_items),
send (@explain_menu, size, size(500,150)},
send{@explain_menu, open, point (510, 300}).

explain_items(_, button(’HOW’,
cascade (0, process_explanation, how)), _, []}.
explain_items(_, button(’WHYNOT’, :
"~ cascade {0, process_explanation, whynoﬁ)),
. right, [1).
explain_iéems(_, button(’RETURN’,
cascade (0, open_and _process, main)), right, f{]).

create_editor_menu :-
new_dialog(@editor_menu,
2.0 Edit functions’, editor_items),
send (Beditor menu, size, size(500,150}),
send (@aditor_menu, open, point (510, 300)). N =

178

editor items(, button{’aDD’, none), _, []}).
editor_items(_, bucton(’DELETE’, none), right,

(1.

editor_items({_, button{’EDIT', none), right, []).

editor_items(_, button(’RETURN’,

cascade (0, open_and_process, main)), right, []).

reconsult kbase(_, } :-
send({@system_menu, show, false),
create_consult wind,
get (@sys, wait, Message),
get_specific_message(Message, reconsult),
open_and_process (@consult_wind, main}.

get_specific_message({message(_, ques_done,),
ques_done) :-= .
get_specific_message(message(_,
' open_and_process, _), _) :— !,
get_specifi: message(message{_,
cycle_check, _), Looking)

get (@kbase_consult, selection, Kbase),

send (@kbase_file, show, Kbase),

get (@inf_consult, selection, Inf),

éénd(@inferenceﬂfile, show, Inf),

get (@sys, wait, Message),

get_specific_message (Message, Looking).
get_specific_message (message (From,

reconsult, _}, reconsult)
!r
reconsult,
send (@message_window, clear).
get_specific_message(_, Looking_for) :-
get (Usys, wait, Message},
get_specific_message (Message, Lookiug_for),

createﬁconéult_wind i=
object (Bconsult_wind),

R

B 179°=

o r

send (Qconsult_wind, show, true).

create_consult_wind :-
new_dialog(@consult_wind, ‘4.4 Ceonsult knowledge
base or inference’, consult_items),
send (@consult_wind, size, size(500,150)),
send (€consult_wind, open, point(510,300)).

consult _items(, label(’Press CONSULT when done,
RETURN to flip between options.’,
none), _,[]).
consult_items(, label(’ ‘, none}, ,[1)}.
consult_items (@kbase consult, menu(’Consult
knowledgebase: ', cycle, c¢ycle check), _,
[append: [true,false]]).
consult_items (@kbase_file, text_item ('FILEMNAME:’,
*knowledge’,none), right, [1).
consult_items(@inf_consult, wenu(’Consult
inference: *, cycle, cycle_check),
below, [append: [true,false]]).
consult_items(@inference file, text_item('FILENAMEi',
*inference’, none), right, []}.
consult_items(_, label(’ ', none), below, []).
consult_items(_, button{’CONSULT’,
cascade {(@consult_wind, reconsult,0}), below, []).
consult_items{_ , button{’QUIT’, cascade(@consult_wind,
open_and_process, main)),
right, []). "

reconsult :- N
display message (@message_window, ‘Consulting
files...please wait.'},
get (@kbase file, selection, Kinput),
get (Rinference_file, selection, Inf_input),
convert_to_string(Kinput, Kbase),

180

convert to_string{Inr_input, inicrenced,
{ get(@kbase consult, selection, true),
file exists(Kbasc) -»
consult {Kbase)
get (@kbase_consult, selection, true) --

ve

write (Kbase), write(’ dces not exist’),nl
true},
{ get{@inf consult, selection, true),
file_exists{Inference) ->
consult (Inference)
get {(@inf consult, selection, true} ->
write{Inference}, write(® does not exist’},nl
: true}.

we

-

open_abort_wind :-
object (Babort_ques),
1

send(@abort_ques, show, true).

open_abort_wind :-
new{@abort_ques, browser (’'Abort’)),
send (@abort_ques, size, size (500, 70)),
new (@abort_response, dialog),
new (Qyes_cascade, cascade{@abort_ques,
change_abort_wind, y)),
new(@abort_yes, button(’YES’, @yes_cascade}),'
send (Gabort_response, append, Qabort_yes),
new (@no_cascade, cascade (Rabort_ques,
change_abort_wind, n}),
new({Qabort_no, button(’NO’, @no_cascade)),
send (@abort_response, append, @abort_no),
send (@abort_ques, above, Babort_response),
send (@abort ques, open, point(510,300}},
send {@abort_ques, print, 'Are you sure
that you want to abort??2?'},

W

181

send (Gabort ques, print, ‘Press the left
button to confirm or the’),
send (@abort_ques, print, ‘middle button to cancel.’).

open_and_process (X, Y; :-
open_proc(X, Y},
process_message_l.

open_ans_wind (Y} :-
object (@Y},

1
~r

send (@Y, show, true).

open_ans_wind{yes} :-
create_ans_wind(yes),
send (@yes, open, point (510G, 300}))}.

open_ans_wind{no) :-
create_ans_wind{no},
send(@no, open, pcint{510, 300)).

open_display_explanation (New} :-
object (@query_display),
!r
(New %?how ->
send (@query_display, label,
*3.1 How explanation’},
send (@filename, message,
cascade (0, how_file,0)),
send (@query_button, message,
cascade (0, display_how, 0))
; otherwise ->
send (@query_display, label,
*3.2 Whynot explanation’),
send(@filename, message, cascade({,

182

whynot_file, M),
send (@gquery_button, message, carcade (U,
display whynot, M1},
send (@query display, show, true}.

open_display explanation (New) :-

new (@query display, dialog(’3.1 How explanation’}),
send (Bquery_display, size, size (500, 200)),
send (Rquery display, append, label{’ ',none)),
send (@guery display, append,
label {"Enter filename, (no guotes or
periods allowed),’, nonel},
send (@query_display, append,
label({’ or click DISPLAY for
screen view.’, none})),
send (@query_display, append, label(’ ’,none)),
new(@filename, text_item(’'File : *, ',
cascade (Q}, how_£file,0))),
send(@filename, width, 20},
send (@filename, advance, none},
send (@query_display, append, @filename),
send {@query_display, append, label(’ ’, none)},
new (@query button, button(’DISPLAY’,
cascade (0, display_how, 0})),
send (@query display, append, Rquery_button),
send (@query display, append, button(’QUIT’,
cascade (0, open_and_process, main})),
send{@query_display, open, point(510,300)),
{(New = whynot ->
send (Gquery_display, label,
*3.2 Whynot explanation’},
send (@filename, message,
cascade (0, whynot_file, 0}},
send (@guery button, message,
cascade (0, display whynot, 0})
; otherwise -> true}.

183

open_parm{Ques, slider dues, Paraneter) -
object (@slider gues),
[,
add_gues (@slider_ques, Ques),
range {Parameter, [Min, Max]),
send{@slider, high, Ma=x),
send(@slider, low, Min},
send(@slider, selection,Min),
check default (Parameter, @slider),

send(@slider_ques, show,true).

open_parm{Ques, atom_gues, Parameter) :-

object (Batom_ques),

!
. r

check_default (Parameter, @atom_text),
add_ques (Gatom_gques, Ques),
send (@atom_ques, show, true).

open_parm{Ques, Y, _) -

cbiject (@Y),

!
-’

add_ques (@Y, Ques},
send (@Y, show, true}.

rpen_parm{Ques, menu_ques, _)} :-

1
-’

create_menu_wind (Ques) .

open_parm(Ques, atom_ques, Parameter} :-

!
!

create_atom_wind{(Ques, Parameter).

open_parm(Ques, slider gues, Parameter) :-

range {Parameter, [Min, Max]),
create_slider_ wind(Ques, [Min, Max], Parameter).

open_point_window({Q) :-

184

object (€point_window},

L

add_ques (@point_window,),
send (@point_response, clear),

send (f€point window, show, truej.

open_point_window(Q} :-
create_point_window(Q).

e N =

open_proc (X, Y} :-
cbiject (@Y),
!

remove_user_log_window(Y),
send (X, show, false),
send (@Y, show, true).

L e

open_proc (X, explain_menu) :-
send (X, show, false),
create_explanation_menu.

open_proc{X, system_menu} :-
send (X, show, false),
create system_menu.

open_proc{X, load) :-
send (X, show, false),
create_load window(’4.1 Old session filename’).

open_proc (X, is_gquery) :-
send (X, show, false},
create_log_window,
create_is_wind,
send{fis_query, open, point (510, 300)).

open_proc (X, editor_menu) :- -
send (X, show, false},

185

create editor menu.

npen_ prop(Ques, Y) :-

obiject (@Y),
1

add ques{@Y, Ques),
send (@Y, show, true).

open_prop {Ques, prop_ques) :-
create_prop_wind(Ques) .

open_selection_window(Q, A) :-
object (@selection_window},
!t
add_ques (@selection_window, Q),
add_ans (@selection_input, @selection_dict, A),

send (@selection_window, show, true).

open_selection_window(Q, A} :-
create_selection_window(Q, A).

open_view_ques_ans :-
object (@ques_ans_window),
!r
send (@ques_ans_window, clear},

send (@ques_ans_window, show, true).

open_view_ques_ans :-
new (@ques_ans_window, browser(’’)),
send (@ques_ans_window, size, size(500,150)),
new{@ques_ans_done, dialog(’’)),
send (@ques_ans_done, append, button(’DONE’,
' cascade (0, ques_done, 0}}),

)

136

—.

send (fques_ans_window, above, dques ans done),
send (@ques_ans_window, cursor, dstop_cursort,
send (Bques_ans_window, open, point(510,.00)).

open_why window_design_user :-
object (@why_rule window),!,
redisplay_why_dict_design_user,
send (@why_rule_ window, show, true}.

open_why_ window_design_user :-
new (@why_rule_window,
browser {’ Explanation facility’)},
new{@why complete, dialog(’Return window’)),
new (@why button, button(’DONE’,
cascade {0, why_done, 0))}},
send (@why _complete, append, @why button),
new(@why text, browser {’Explanation facility’}),
send (Bwhy_text,size, size(400,100)),
send (@why_text, left, @why_complete),
send (@why_rule window, size, size(500,300)), /

send (@why_rule_window, ahove, Qwhy_complete), b

send {@why_rule window, open, point(0,217)), ﬁ .

send {@why_rule_window, selected, ,w’/_f;ﬁﬁ\
cascade (0, display_why_explanation, 0)}, df,//“—\F Y

send (@why_rule_window, clicked, ¥ \y% §/f

cascade (0, display why_explanation, Q}},
redisplay why_dict_design_user.

redisplay_why dict_design_nser:-
send {@why_button, show, false),
send (Rwhy rule_window, clear),
send (@why_text, clear},
send (@why rule_window, dict, @explain_dict),
send (@why_rule_window, line_no, 0),

187

send (Bwhy button, show, true).

open_why_ window:—
object (@why_rule_windowl),!,
send (@why_rule_windowl, destroy),
open_why window.

open _why_window:—
new (@why_rule_windowl,
browser (' Explanation facility’}).
new (@why completel, dialog(’Return window’)},
new(@why buttonll, button(’DONE’,
cascade (0, why _donel, 0}))),

send (@why completel, append, @why_buttonll),
user_level (Level),
(Level =:= 5 ->

(new (@why_buttonl, button(’UPDATE KEYWORD’,

cascade (0, enter_keyword, 0))},
new(@why button2, slider("LESS TECHNICAL:’, 1,5,
Level, cascade(0,more_less_technical, 0)})),

send (@why_completel, append, @why_button2})!

(Level =:= 1 ->

new (@why_buttonl, slider (' MORE TECHNICAL:’,1,5,

Level, cascade(0, more_less_technical, 0})}]
new (@why buttonl, slider{’MORE-LESS TECHNICAL:’, 1,5,
Level, cascade(0, more_less_technical, 0})}}},

send (@why completel, append, @why_buttonl},
send (@why rule_windowl, size, size(500,300}),
send (@why rule_windowl, above, @why_completel),
send (@why_rule windowl, open, point(0,217)),
redisplay why_dict.

188

redisplay why dict:-
keyword list (List),
send {@why_buttonll, show, false),
send (Bwhy rule windowl, c<lear),
send (@why_rule windowl, append,List),
send (@why_buttonll, show, true).

remove_user_log window (main} :-
object (Guser_ log_ window),
send (Ruser_log_window, show, false),
!

LY

remove_user_ log_window({query_display) :-
send (Quser_log _window, show, false),
!

..

remove_user_ log_window(_).

reset cursor (Window) :-
old_cursor (Window, Cursor),
retractall (old cursor({Window,)},
send (Window, cursor, Cursor),!.
reset_cursor({_).

more_less_technical (_,V):-
nl,write(V),nl.

enter_keyword(_,_):-
open_keyword option.

open_keyword_option:-
object (@keyword_option}, !,
send {@keyword option, show, true).
open_keyword_option:-
new (@keyword option, dialog(’Update keyword’}),
send (@keyword_option, append, button(
*ADD KEYWORD’, cascade (0,add keyword,0))},

189

send (Bkeyword option, append, button(’/DELETE KEYWORD’,
cascade (0,delete_kayword,0))),

send (@keyword_option, append, button(’REPLACE KEYWORD',
cascade (0, replace_keyword,0})},

send (@keyword_option, append, button(’ASSIGN WEIGHT KEYWORD’,

cascade (0,assign_weight_keyword,0}))},
send {Bkeyword_option, append, button(’DONE’,
cascade (0,done_key _option,0))),
send {@keyword_option, open, point(0,70}},
process_message_1l.

add_keyword (X, _):-

assert (add_keyword),

open_enter_keyword(’Please enter your own keyword’).
delete_keyword(X,) :-

assert (delete_keyword),

open_enter_keyword{’Please enter keyword

which you want to delete’}.

replace_keyword(X,_):-

assert (replace_keyword),

open_enter_keyword(’Please enter keyword

which you want to replace’).
assign_weight_keyword(X,_):-
nl, write(’ assign weight to keyword ‘), nl.

done_key option(X,_):-

send{X, show, false).

open_enter_ keyword(M):-
new({@enter_keyword, dialog(M}},
send (@enter_keyword, size, size(500,50)),
(replace_keyword -> retractall({replace keyword),
new(@user_keywordl, text_item(’0ld keyword: ‘,
1+, cascade({@enter_keyword, delete_old keyword, 0}}},
new (Quser_keyword, text_item(’New keyword: ',
**, cascade (Benter_keyword, add_new_keyword, 0Y)y,

190

send {@user keywordl, width, 100},
send(@user_keywordl, advance, truch,
send(@enter_keyword, append, duser keywordl)
Inew (Buser_keyword, text_item{’Keyword: *,’’,
cascade (fenter_keyword, get_user_keyword, 0)})),
send (Buser_keyword, width, 100},
send {@user_keyword, advance, none),
send (@enter_keyword, open, point{(0,620}),
send (@enter_keyword, append, @user_keyword),
process message_l.

get_user_ keyword(X,Y):-
send (X, destroy),
(add_keyword -~> retractall{add_keyword),
append_keyword (Y) |
(delete_keyword -> retractall (delete_keyword),
delete_keyword{Y)| true)},
open_why window.
delete_old_keyword(_X,Y):-
delete_keyword (Y},
process_message_l.

add_new_keyword(X,Y) :-
send (X, destroy)},
append_keyword(Y},
open_why_window.

why done{ , _)} :-
assert (why_complete).
why_donel (_, _) :-
(object (Rkeyword_option)-> send{@keyword_option,
show, false)|true),
(object (Renter_keyword) -> send(@enter_keyword,
destroy) |true),

191

assert (why completel).

why file complete(_, _) :—
send (@why _file return, show, false},
send (@why file window, show, false),
send (Bwhy_rule window, show, truej,
assert (done_view) .

why file_read(end_of file} :- !.

why file read{(String) :-
send{@why file_ window, print, String},
read{In_string),
why file read(In_string).

why file_ view :-
object (@why_file window),
send (@why file_window, clear),
send (@why file_ window, show, true),

send (@why_file return, show, true),
]

why file view :-
new{@why_file_window, browser (' RULE EXPLANATION’)),
new (@why_file_return, dialog(’’}),
send (@why_file_ return, append,
button(’RETURN’, cascade (0,
why_file complete, 0))),
send (@why file window, size, size(500,600)},
send (@why_file window, above, @why_file return),
send (@why_file window, open, point(510,300)).

whynot_file(_ , Filename) :-
display message (@message_window, ’‘Writing WHYNOT
explanation to file Please wait’),
tell (Filename),

192

print_whynot (0,Filename},
told,
open_and_process (@query_ display, main).

explanation_or_not:-
new (@explain_or_not, dialog),
send (@explain_or_not, append, label(’Do you like
the system provides explanations 2 ')},
send (@explain_or _not, append, button(’YES’,
cascade (0, yes_explain, 0))),
send (@explain_or_not, append, button(’/NO’,
cascade {0, no_explain, 0))},
send{@explain_or_not, open, point{510,300)},
process_message_l.

yes_explain(X,_Y):-
send (X, destroy),
assert (explanation(yes)).
no_explain(X,_):-
assert (explanation(no}},
send (X, destroy) .

end_or_ design_user:-
new {@end_or_design_user, dialog),
send (@end_or_design_user, append, label
(* Explanations for end-user or design-user?)},
send(@end or_design_user, append,
button(’End User’,cascade(0, end_user, 0))),
send (@end_or_design_user, append,
button(’Design User’,cascade(0,design_user, 0))y,
send (@end_or_design_user, open, point(510,300}),
process_message_l.
'\\
end_user(X,_}):-
send (X, destroy},
assert (end_user (yes}).

193

design user (X,) -
send (X, destroy),
assert (end user (no}}).

create_change_user_info:-
new{@change_info, dialog(’Changing
user information’)),
send (@change_info, append, label {’Which
information do you want to change? *)},
send (@change_info, append, label{’ ')},
send (Gchange_info, append, button(’Explanation’,
cascade (0, change_explanation,0})),
send (Q@change_info, append, button(’End user’,
cascade (0, change_end user,0})),
send (@change_info, append, button(’Level of knowledge’,
cascade {0, change_knowledge_level ,0})),
send (Bchange_info, append, button(’Quantity of Explanation’,
cascade (0, change_quantity_explanation ,0))),

send (@change_info, append, button{’Quality of Explanation’,
cascade (0, change_quality_explanation ,Q)}),

send (@change_info, append, button(’Goal’,

cascade (0, change_goal ,0})}),
send (@change_info, open, point{(0,200})},
process_message_l.

change_explanétion(x,_):—
send (X, destroy),
retractall(expianation(_)),
assert (change_explanation_£flag),
explanation_or_not.
change_end_usex(X,_):-

194

send (X, destroy),

retractall (end_user(_}},

end_or_design_user.
change_knowledge_level (X, _}:-

send (X, destroy),

retractall (knowledge_level(_}},

retractall {user_level(_)},

question_user_3.
change_guantity_explanation(X,_):-

send (X, destroy),

retractall (quantity_explanation{_}),

guestion_user 4.
change_quality_explanation(X,_):-

send (X, destroy),

retractall (quality_explanation(_)},

question_user_ 5.
change_goal(X,_}:-

send (X, destroy),

retractall(goal{)},

question_user_ 6.

kill prowindows :-

{object (@atom_response) ->

send (@atom_response,destroy) |true),
{object (Ratom_text) ->

seﬁd(@atom_text,destroy)|true),
{(cbject (Rhour_map) ->

send (@hour_map,destroy} |true),
(object (@hour_glass) ->

send (Ghour_glass, destroy) [true),
{object {@no_entry map) =->

send (@no_entry map,destroy} litrue),
(object (Bno_entry_cursor) ->

send (@no_entry_cursor,destroy) |true),
{(object (@stop_map) ->

195

send (Bstop _map,destroy) [true},
(object (Bstop_cursor) ->

send (@stop_cursor,destroy) |true),
{object (Rerror_window) ->

send(@error_window,destroy}itrue),
{object {(Rerror_return) -~>

send (@error_return,destroy) |true},
(object (Rfilename_wind) ->

send(@filename_wind, destroy) [true},
{object (Bhow_display_window) =->

send (Rhow_display_window,destroy) | true),
{object (Rhow_return) ->

send {@how_return,destroy)} |true),
(object {@how_button) —>

send (@how_button, destroy) |true),
{object (@enter_is) ->

send(€enter_is,destroy)|true),
(object (Guser_ log_window} ->

send (Quser_log_window, destroy) |tzue),
{object (Quser_log dict) ->

send (Ruser_log_dict,destroy) |true),
(object (@response_bitmap) ->

send (@response_bitmap, destroy) |true},
{object (€menu_ques) ->

send {@menu_ques, destroy) |true),
{object (@menu_response} ->

send {@menu_response,destroy) | true},
(object (@message_bitmap) ->

send (Emessage_bitmap,destroy) |true),
(object (@point_window) ->

send (@point_window,destroy) |true),
(object (@point_input) =->

send (@point_input,destroy) |true},
{object (@input_x) ->

send (@input_x, destroy) |true),
(object (Bpoint_response) ->

196

T
S

send (@point_response,destroy) [true),
(object (@point_options) ->

send (@point_options,destroy) |[true),
{object (@prop_gques) ->

send (@prop_gues,destroy) ltrue),
{object (@prop_response) ->

send (@prop_response,destroy} |true},
{object (@selection_dict) ->

send(@selection_dict,destroy} ltrue},
(ohject (@selection_window} ->

send (€selection_window,destroy)} |true),
(object (@selection_input) ->

send{@eelection_input, destroy) |true},
(object {@selection_response) ->

send (@selection_response,destroy) |true),
(object (Eselection_options) =>

send (@selection_options,destroy) |true),
(object (@slider ques) ->

send (@slider_ques,destroy) |true),
(object (@slidex_response) ->

send(@slidex_response,destroy) |true),
{object (@slider) ->

send{@slider,destroy) |true),
{object (@whynot_wind) ->

send (Bwhynot_wind, destroy} | true),
{object (@whynot_return) ->

send (@whynot_return,destroy} |true),
(object (@whynot_button) ->

send (@whynot_button,destroy) |true),
(object (Emessage_window) ->

send {(@message_window,destroy) |true},
{object (@parm_menu_dict) ->

send (@parm_menu_dict,destroy) ltrue},
(object (@parm_brows) ->

send (@parm_brows,destroy) jtrue),
(object (Rexplain_sheet) ->

197

send (@explain_sheet,destroy) |true),
{object (Rexplain dict) =->

send {@explain_dict,destroy) ltrue),
(object (Rabort_ques} =->

send (Rabort_ques,destroy) |true),
(object (@abort_response) ->

send (@abort_response,destroy} ltrue),
(object (Byes_cascade) ->

send (fyes_cascade, destroy) |true),
(object (@abort _yes) ->

send (@abort_yes,destroy) [true),
{object (@no_cascade) —->

send (@no_cascade, destroy) |true),
{object (RBabort_no) ->

send (@abort_no,destroy) |true),
(object (@query_display) ->

send {@query_display,destroy) |true),
(object (@filename) ->

send (@filename, destroy) | true),
(object {(Rquery_button) ->

send (@query_button, destroy) |true),
(object (Bques_ans_window) ->

send {@ques_ans_window,destroy) |true),
{object (Bques_ans_done) ->

send (@ques_ans_done, destroy) | true),
{object (Bwhy_rule_window)} =->

send (@why_rule window,destroy) |true},
{object (@why_complete) ->

send (@why_complete, destroy) |true),
{(object {@why_button) ->

send {@why_button, destroy) |true),
{object (@why text) ->

send (@why_text,destroy) |true),
(object (@why_file_window) ->

send (@why_file_ window,destroy) |true),
{object (@why_file_return) ->

198

send {@why_file return,destroy) [true),
(cbject {(Bis query) ->

send(@is_query,destroy) ltrue),
{object {@load_window) ->

send{@load window,destroy) |true},
(object (Emain) ->

send (Bmain, destroy) |true},
(cbject (@system_menu) ->

send{@system_menu,destroy) |true),
(object (Rexplain_menu} ->

send (@explain_menu, destroy) ltrue),
(cbject (@editor_menu) ->

send (@editor_menu,destroy} | true},
(object (@consult_wind) ->

send (@consult_wind, destroy) [true).

199

N

VITA AUCTORIS

Hien My Bui was bom in 1959 in Vinh Long, VietNam. She completed her
high school education at Pho Thong Cap 3 High School in 1976. She graduated
from the University of Windsor in 1989 with a Bachelor of Science in Computer
Science. In September 1993 she finished her Master of Science in Computer

Science at the University of Windsor.

200

	University of Windsor
	Scholarship at UWindsor
	1993

	Improving explanation facilities in expert systems.
	Hien My. Bui
	Recommended Citation

	tmp.1363872243.pdf.i0oTP

