
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1998

The use of reduction filters in distributed query optimization The use of reduction filters in distributed query optimization

Wendy Kathleen Osborn
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Osborn, Wendy Kathleen, "The use of reduction filters in distributed query optimization" (1998). Electronic
Theses and Dissertations. 4336.
https://scholar.uwindsor.ca/etd/4336

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4336?utm_source=scholar.uwindsor.ca%2Fetd%2F4336&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9’ black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

This reproduction is the best copy available.

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

THE USE OF REDUCTION
FILTERS IN DISTRIBUTED

QUERY OPTIMIZATION

by
Wendy K. Osborn

A Thesis
Submitted to the Faculty o f Graduate Studies and Research

through the School o f Computer Science in Partial
Fulfillment o f the Requirements for the Degree o f

Master of Science at the
University o f Windsor

Windsor, Ontario, Canada
1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1 National Library
of Canada

Acquisitions and
Bibliographic Services
395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque nationale
du Canada

Acquisitions et
services bibliographiques
395. rue Wellington
Ottawa ON K1A0N4
Canada

Your tom Votrm rmtmrmncm

O ur tom Notrm rmtormnce

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies o f this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’ auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’ auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-52626-7

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Wendy K. Osborn 1998
© All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVED BY:

Dr. J.M. Morrissey, School o f Computer Science

(advisor)

Dr. C.I. Ezeife, School o f Computer Science

(internal reader)

~C)r̂ tS\CiXL
Dr. D. Kellenberger, Faculty o f Education

(external reader)

Dr. I.A. Tjandra, School o f Computer Science

(chair)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

A major issue that affects the performance of a distributed database manage­

ment system is the optimal processing o f a query involving data from several

sites. The problem of distributed query processing is to determine a sequence o f

operations, called an execution strategy, with the minimum cost. This has been

shown to be an NP-Hard problem [Hen80, WC96]. Therefore, most proposed

algorithms for processing distributed queries are heuristic, and focus on produc­

ing efficient (but suboptimal) strategies that minimize some particular cost o f the

query. Many proposed solutions use joins, semijoins, a combination o f joins and

semijoins, and dynamic methods. Solutions that use a filter-based approach have

also been proposed. However, the limitations o f such approaches include the

assumption o f a perfect hash function, the restriction o f the algorithm to specific

query types, and the restriction o f the algorithm to a specific number o f relations

and joining attributes.

Therefore, we propose a new filter-based algorithm that can process general

queries consisting o f an arbitrary number o f relations and joining attributes. Also,

it does not assume the use o f a perfect hash function. The proposed algorithm

accomplishes the same reduction effects as semijoin-based algorithms, but at

a lower cost. The primary goal o f our algorithm is to reduce relation sizes

while incurring minimum data transmission costs. The secondary goal is to incur

iv

With permission of the copyright owner. Further reproduction prohibited without permission.

minimum processing costs by processing each relation as little as possible.

Our proposed algorithm is evaluated against the effects o f a full reducer, to

determine the following: 1) How close does the algorithm come to achieving full

reduction o f the query relations? and 2) How do collisions affect the performance

o f the algorithm? The results o f the evaluation show that: I) On average, our

algorithm eliminates over 90% o f the unneeded data from the query relations, 2)

Our algorithm fully reduces the relations o f over 80% of the queries. 3) Collisions

do not substantially affect the amount o f full reduction being achieved by our

algorithm, and 4) A low percentage o f collisions does not substantially affect the

percentage of fully reduced queries.

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To the women who inspire me

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I wish to thank the following people, both for their valuable assistance and for

helping me keep my sanity. First o f all, I give thanks to a great supervisor, Dr.

Joan Morrissey. Her comments, encouragement, and patience were invaluable

to the completion o f this thesis. I thank Dr. Christie Ezeife and Dr. David

Kellenberger for their comments on my thesis. I also wish to thank my committee

for being accommodating when I needed it most. I wish to thank Zongli Jiang for

running many of the evaluation runs. I also wish to thank my family for support.

Finally, I wish to thank Hong for the margaritas and the Sleemans Honey Brown,

Sandy for the super nachos, Phil for the home brew (hey..what do you mean

you're too busy to make more??), Steph for her wonderful hospitality, Lenni for

the free, much needed ’beverages’ at her wedding, and Terry for putting up with

me... :). Thank you all very much.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Abstract..iv

Acknowledgments ... vii

List of F igures... x

List of Tables.. xii

1. INTRODUCTION ..1

Outline of Thesis ..3

2. B A C K G R O U N D .. 5

Cost Models .. 5

Join-Based A pproaches.. 6

Semijoin-Based A pproaches..9

Filter-Based Approaches.. 14

Dynamic Approaches..21

Combination A pproaches...23

Conclusions...25

3. THE ALGORITHM.. 26

Details of the Algorithm ..26

Construction of Reduction Filters ...27

Processing of Q u e u e ... 33

Conclusion...35

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. EVALUATION... 36

Experimental Rationale.. 36

Evaluation Fram ework.. 38

The Experiments ...43

Conclusion..46

5. RESULTS.. 47

Results of Initial R u n s .. 47

Results of Collision R u n s .. 50

Discussion ..55

Conclusion..58

6 . CONCLUSIONS...59

Future Research Directions..61

SELECTED BIBLIOGRAPHY...62

VITA AUCTORIS ...70

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1 A Distributed Database Management System 1

Figure 2 The Join Ri c< R-> over Attribute B7

Figure 3 The Semijoin Ri * R> over Attribute b........................... 9

Figure 4 The Reduction of R, by the Reduction Filter for

Attribute b ... 15

Figure 5 Example Database ..27

Figure 6 Query Graph for Example Database........................... 29

Figure 7 Query Graph After Removing R1 and A 30

Figure 8 The Reduced Relation R2 .. 30

Figure 9 Query Graph After Removing R2, B and E 31

Figure 10 The Reduced Relation R5 .. 31

Figure 11 Query Graph After Removing R5 and F32

Figure 12 Query Graph After Removing R3, C and D 32

Figure 13 The Reduced Relation R4 .. 32

Figure 14 The Reduced Relation Rt .. 34

Figure 15 The Reduced Relation R3 .. 34

Figure 16 The Set of Reduced R elations....................................35

Figure 17 The Join of the Reduced Relations 35

Figure 18 Example Files for a Q u e ry ...40

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 19 Example Relations

XI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 1 Initial Runs .. 44

Table 2 Results of the Initial R u n s .. 48

Table 3 Average Percentage Reduction at 0%-10%

Collisions ...51

Table 4 Average Percentage of Fully Reduced Queries at

0% -10% Collisions... 52

Table 5 Average Percentage Reduction at 10%*60%

Collisions ... 53

Table 6 Average Percentage of Fully Reduced Queries at

10%-60% Collisions... 54

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1 INTRODUCTION

A distributed database management system (DDBMS) [CP84. OV91, YC84]

consists of several autonomous sites that are remotely or locally distributed and

connected by a network. A DDBMS has several advantages over a centralized

DBMS, including: l) increased accessibility to remote data, 2) reliability, since

the local operation o f one site does not affect the operation o f other sites, and

3) efficiency, since each site contains its own data and can process its own

transactions and queries. However, a major issue that affects the performance

of a DDBMS is the optimal processing of a query involving data from several

sites. The problem of distributed query processing is to determine a sequence

of operations, called an execution strategy, with the minimum cost. This has

been shown to be an NP-Hard problem [Hen80, WC96]. Therefore, most

proposed algorithms for processing distributed queries are heuristic, and focus on
Montreal

Vancouver

Toronto

Figure l A Distributed Database Management System

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

producing efficient but suboptimal strategies that minimize some particular cost

o f the query. Many approaches use joins [LMH^SS. LPP91, CY90b], semijoins

[B G W -81 . AHY83, CL84. MBB95b. KR87. WCS92, W LC 91, CL90. PC90.

Bea95. YL89, RK91, MB97], a combination o f joins and semijoins [CY93. CY92.

CY91. CY90a, CY94], and dynamic methods [YLG +86. BRP92. BR88, BRJ89,

M BBK95. MBB95a].

Recently, some approaches that use filters [Blo70, Mul83] have been proposed

in the literature [M 097, Osb96. CCY92. Mul90, Mul93. Mor96. TC92. Ma97.

M 0 98 . M M 98, VG84, Bra84, MBBK.95]. However, the limitations o f such

algorithms include the assumption o f a perfect hash function (in other words,

the assumption of no collisions), the restriction o f the algorithm to a specific

query type such as tree queries, and the restriction o f the algorithm to a specific

number o f relations and joining attributes.

The main contribution of this thesis is a new algorithm, which uses filters

to accomplish the same reduction effects as semijoins, but at a lower cost. The

primary goal o f our algorithm is to reduce relation sizes while incurring minimum

data transmission costs. The secondary goal is to incur minimum processing costs

by processing each relation as little as possible. This algorithm can process general

queries consisting o f an arbitrary number o f relations and joining attributes, but

does not assume the use of a perfect hash function.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our proposed algorithm is evaluated, not against other algorithms, but instead

against the effects of a full reducer. Our algorithm is evaluated to determine

how close it comes to achieving full reduction o f query relations under various

conditions. The test data used to evaluate the algorithm consists o f many select-

project-join (SPJ) queries, which vary in many ways. Using the results o f the

evaluation, we answer the following questions:

• On average, how much reduction, with respect to the full reducer, is achieved?

• Full reduction of query relations is achieved in what percentage o f queries?

What effect do collisions have on the amount o f reduction?

What effect do collisions have on the percentage o f queries achieving full

reduction?

1.1 Outline of Thesis

The remainder of this thesis is structured as follows. In chapter 2, other

proposed approaches to distributed query processing will be summarized. The

concepts related to these approaches w ill also be presented. In chapter 3, our

proposed algorithm is presented in detail. An illustrated example o f how the

algorithm works is also presented. In chapter 4, the evaluation framework is

discussed in detail. An outline o f the experiments and the rationale for the

evaluation will also be presented. In chapter 5, the results of the evaluation

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are presented and discussed. Finally, in chapter 6, conclusions are made and

some future research directions are given.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 BACKGROUND

The goal of processing a distributed query involving relations from several

sites, is to derive an execution strategy that incurs the minimum cost. It has

been shown that determining an optimal strategy is NP-Hard [Hen80, WC96].

Therefore, research focuses on developing algorithms that generate efficient, near-

optimal strategies.

Several approaches proposed in the literature use relational operators such as

joins [LM H +85. LPP91, CY90b], semijoins [BGW+81, AHY83, CL84. iMBB95b.

KR87. WCS92. WLC91, CL90, PC90. Bea95, YL89, RK.91. MB97], and a

combination of joins and semijoins [CY93. CY92, CY91, CY90a. CY94]. Other

approaches include the use of dynamic methods [YLG+ 86, BRP92. BR88. BRJ89.

MBBK.95. MBB95a], the improvement o f suboptimal execution strategies [CL84],

and. more recently, the use o f filters [Blo70, Mul83] for further minimizing cost

[M 097 . Osb96, CCY92, Mul90. Mul93. Mor96, TC92, Ma97. M 098 . M M 98,

VG84. Bra84, MBBK95]. In this chapter, some concepts related to the above

approaches will be presented. Then, several o f the above approaches will be

presented.

2.1 Cost Models

The goal o f processing a distributed query is to derive a sequence of relational

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operations, or an execution strategy, that incurs the minimum cost. Several cost

models have been proposed. The two most popular are the total cost model

and the response time cost model. The total cost model includes both the data

transmission cost and the local processing cost. However, most heuristics assume

that the local processing cost is negligible in comparison to the data transmission

cost. Therefore, in most cases, the total cost model calculates the cost o f data

transmissions only. The response time cost model calculates the total execution

time o f the query from the beginning to the calculation o f the final result. In the

latter case, most heuristics make assumptions concerning network line contention

and queueing delays which simplify the cost calculation.

2.2 Join-Based Approaches

One o f the most basic relational operations used in distributed query process­

ing is the join. Given two relations. R| and R2 , both containing joining attribute

B. the join o f Ri and Rt is performed by concatenating tuples o f Rj and R2 where

the value o f attribute B is equal for both tuples.

Although the join has the advantage of simplicity, it suffers from several

problems. One is that the result relation can be much larger than the relations

participating in the join. This increases the data transmission cost. It is com­

putationally expensive. There is also the fact that we have to ship a large (and

possibly unneeded) amount o f data to the join site before performing the join.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R1
A B

R2
B C

a1 bl
a 2 bl
a3 b2
a4 b3

b1 c2
b3 c3
b4 c4
b4 c5

R 1~R 2
A B C

a1 b1 c2
a2 b1 c2
a4 b3 c3

Figure 2 The Join Ri c«a R2 o%'er Attribute B

Therefore, the use o f the join for distributed query processing has not been shown

to be a popular approach in the literature. However, for the sake o f completeness,

we will summarize some research that uses a join-based approach.

The R* optimizer [LM H + 85] aims to minimize the total cost o f a distributed

join query. The total cost model includes weighted measures o f both the data

transmission costs and the local processing costs. The R* optimizer uses a

dynamic programming approach to generate new join sequences o f n relations

from join sequences o f n-l relations. It considers several factors, including the

relation access method, the join method, and the join site, when determining the

optimal join sequence. Pruning o f suboptimai sequences at each step attempts

to minimize the full enumeration o f strategies. Although this algorithm produces

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

optimal strategies, it has exponential complexity, and therefore is not a feasible

approach.

The algorithm of Legato et al. [LPP91] also uses a dynamic programming

approach and a dominance property, defined by the authors, to generate new

join sequences from join subsequences. When generating a join sequence, the

algorithm produces a binary join tree which is augmented with information such

as the location o f the relations and intermediate results, the join locations and

the query site. This information is determined in such a way that both the local

processing cost and data transmission cost of a query is minimized. As with the

R* algorithm, the complexity o f this algorithm is exponential.

Chen and Yu [CY90b] focus solely on minimizing the cost of data transmis­

sions for a distributed join query. Given a query graph, the authors define the

concept o f a complete and feasible set o f cuts to the graph, and prove that the set

of cuts can be mapped to a join sequence. The cost o f a set o f cuts is equivalent

to the sum o f the sizes o f the resulting joins in each cut, and is determined so

that the sizes (or alternatively, the data transmission costs) are minimized. This

algorithm has the advantage of polynomial time complexity — making it superior

to the previous works. However, since the algorithm only applies to tree queries,

further research is needed to apply this algorithm to general queries.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a b b c
1 3 Ri 3 2

2 3 3 4

3 5 5 5

4 5 6 6

5 5 6 8

Ri[b] 3 Ri[b]«=>Rj
O

3 2

5 3 4

5 5

Figure 3 The Semijoin Ri x R? over Attribute b.

2.3 Semijoin-Based Approaches

A more popular approach for processing a distributed query is to use the

semijoin. Given two relations Rj and Rj, and a common join attribute b. the

semijoin Rj x Ro over b is executed as follows:

1. Project Rj over b to get Rj[b]

2. Send Rj[b] over to the site o f Rj

3. Perform Rj[b] ixj Rj

The purpose of the semijoin Ri x R> is to reduce the relation R2 before any

joining takes place by removing tuples which will not be part o f the final result.

The semijoin has the advantage that the data transmission cost is reduced since

only an attribute projection, not the entire relation, needs to be shipped to the

query site. It also has the advantage o f never producing a larger relation than those

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

participating in the semijoin. Unfortunately, the semijoin has two disadvantages.

Semijoins incur higher local processing costs since a project, as well as a small

join, must be executed. Also, in many cases, they incur a higher data transmission

cost, with respect to the size o f the attribute projection, than necessary. However,

the semijoin is still considered by many researchers to be an attractive approach for

processing distributed queries. In the remainder o f this section, I w ill summarize

several approaches that use semijoins.

One o f the first distributed query processing algorithms to be developed, the

SDD-1 optimizer [BGW + 81], aims to minimize the data transmission cost o f a

distributed query. SDD-1 transforms a query into a set o f relational calculus ex­

pressions. which specifies a superset o f the data needed for the query. Using this

set o f expressions, a greedy algorithm is used to derive the sequence o f semi­

joins that will retrieve the set o f data needed for the query. A major limitation

of this algorithm is that it may produce suboptimal strategies due to the failure

to consider other semijoins at each step of the strategy generation. Some future

research directions o f this work include removing unprofitable semijoins, reorder­

ing semijoins, incorporating joins, creating a dynamic reducer, and considering

other cost factors.

Apers, Henver and Yao [AHY83] propose a collection o f algorithms which

process general queries — queries involving an arbitrary number o f relations and

joining attributes — and attempt to minimize either the response time or the data

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transmission cost o f a query. All three algorithms in Algorithm GENERAL follow

the following basic framework. First, the general query is decomposed into simple

queries by isolating each joining attribute. Second, a minimum cost schedule

is derived for each simple query. Then, either the response time or the data

transmission cost, is minimized depending on the algorithm used. Finally, the

minimum cost schedules are integrated into an overall strategy for the general

query. Although all versions o f Algorithm GENERAL have polynomial time

complexity, the lack of consideration o f global conditions and many simplifying

assumptions concerning the network may result in suboptimal strategies being

generated. Therefore, research directions from this work include consideration o f

global conditions and network factors such as queueing delays and line contention

when processing a query.

Morrissey et al. [MBB95b, Bea95, MB97] propose a semijoin algorithm

that takes global conditions into account when estimating the cost effectiveness

of a semijoin. The goal o f Algorithm W is to minimize the data transmission

cost o f a query. For each common join attribute, a reducer is created from cost

effective semijoins. In addition to using cost and benefit, the authors use two

additional concepts, marginal profit and gain, which consider global factors in

determining the cost effectiveness o f a semijoin. After creating the schedule

for the construction and application o f the reducers, the schedule is executed by

constructing the reducers in parallel, applying the reducers in parallel, and shipping

n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the reduced relations to the query site in parallel. Empirical testing shows that

W consistently performs better than the A H Y Algorithm GENERAL (total cost)

[AHY83]. Some proposed research directions include the use of filters and the

proposal o f a new dynamic heuristic which constructs multi-attribute reducers.

Yoo and Lafortune [YL89] propose the use o f the A* heuristic search for

determining a semijoin execution strategy. The goal o f the A * algorithm is to

find the best path from the initial state (unreduced relations) to the final state (fully

reduced relations). The authors define two concepts, admissibility and consistency,

which the heuristic function must satisfy to ensure that an optimal solution is found

efficiently. Also, during the search, a pruning strategy eliminates states that will

lead to a non optimal solution. This algorithm has the advantage of being not only

cost-model independent, but also very efficient at determining optimal solutions.

However, since this algorithm only applies to tree queries, a necessary research

direction is to generate a similar algorithm for handling general queries.

Chen and Li [CL84] propose an approach for taking existing semijoin ex­

ecution strategies and testing them for optimality. The authors have identified

several properties to which an optimal execution strategy must adhere. Given

these properties, several improvement algorithms are proposed that test an exe­

cution strategy for optimality based on the identified properties and improve it i f

necessary. Since this method only applies to tree queries, further work is needed

to extend this approach to handle general queries.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Wang et al. [WCS92. WLC91] present a framework for processing general

queries called the one-shot semijoin execution. This framework has three phases.

The first involves the projection o f all required semijoin projections in parallel.

The second involves the parallel transmission of the semijoin projections. The

third involves the execution o f the semijoins in parallel. This framework is used

to develop algorithms — two which minimize the data transmission cost [W LC 91]

and one which minimizes the response time [WCS92]. It has the advantages

of increased parallelism, reduced processing overhead, the opportunity to apply

global optimization techniques, and no propagation o f errors which is inherent in

a sequential processing strategy.

Roussopoulos and Kang [RK91. KR87] propose the two-way semijoin. It

extends the traditional semijoin to include backward reduction, which results in

the reduction o f both relations. A comparison of the two-way semijoin and the

traditional semijoin shows that the two-way semijoin achieves more reduction and

greater reduction propagation effects. The authors also propose an algorithm that

attempts to minimize the local processing cost o f a query. This algorithm uses

the 2 -way semijoin framework and pipelining to eliminate the process o f creating,

storing and transmitting intermediate results. This gives good I/O savings.

Chen and Li [CL90] propose a relational operator called the domain-specific

semijoin, for performing semijoins between fragments in a fragmented database.

The domain-specific semijoin uses the domain knowledge o f a joining attribute

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to ensure that no data that is required for the final result is lost as a result of

performing semijoins between fragments. The authors also propose a simple

algorithm which integrates domain-specific semijoins into an existing semijoin

strategy and show that a strategy incorporating both operators has a lower total

cost than a strategy only containing semijoins.

2.4 Filter-Based Approaches

Filters can be used to achieve the same benefits of a semijoin but with lower

data transmission and local processing costs. A filter is a bit array which is a

compact representation o f the values in an attribute. Although most research

based on filters varies in how the filters are used, the majority encode them using

hashing. Hashing is the procedure o f applying a special function, called a hash

function, to a key or attribute value to produce an address in a data structure. This

data structure can be a hashed index (or hash table) or, for the purposes o f attribute

encoding, a bit array. The hash function applies one or more ’transformations’ to

the value to produce the address. This ensures that a key will always hash to the

same address. Therefore, to encode attribute b:

1. A bit array o f some arbitrary length is allocated and initialized by setting all

bits to zero.

2. For each attribute value in b, use a hash function to produce an address in

the array.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a b b c
1 3 Rj 3 2
2 3 3 4

3 5 5 5
4 5 6 6
5 5 6 8

— b c
0
o

h(b)=>Rj 3 2

T 3 4
0^ 5 5
1

Figure 4 The Reduction o f R. by the Reduction Filter for Attribute b

3. For each address produced, set the corresponding bit to 1.

To reduce a relation R containing joining attribute b, a filter for attribute b from

another relation, denoted as h(b), is applied in the following manner:

1. For each tuple in R, hash on the value for attribute b.

2. For each address produced, test for the presence of a 1 bit in h(b).

3. I f a 1 bit is found, the tuple is kept for further processing.

4. Otherwise, it is discarded.

A filter has the following advantages: lower data transmission costs since the

filter is small, and lower local processing costs since the filter is created during

the processing of a relation or intermediate result. However, because hashing is

utilized, a filter suffers from the problem o f collisions. A collision is the event

of two or more attribute values hashing to the same address. This may result

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in data that is not required for the final result being shipped to the query site.

For the remainder o f this section, research that utilizes some type o f filter-based

approach will be summarized.

Bratbergsengen [Bra84] presents an joining algorithm that uses hash filters.

The purpose of the filters is to reduce both relations before performing a join.

During each iteration, the algorithm creates a filter for the joining attribute A of

R i, reduces R2 with the filter, creates a filter for the reduced joining attribute A

of Ri and applies it to R| to reduce it. This method significantly improves the

response time of a join o f medium sized relations, with a decrease in improvement

for large relation joins. However, the approach needs to be extended to handle

the join of multiple relations.

Valduriez and Gardarin [VG84] propose two “divide and conquer” algorithms

— one for joins, one for semijoins — that utilize bit arrays. In the joining algorithm,

the smaller relation is used to produce a hash table of tuples and a bit array to

represent the joining attribute. The larger relation is divided and allocated among

all processors. At each site, each tuple is hashed and tested against the bit array.

For each tuple passing the filter, its corresponding tuples in the hash table are

retrieved, tested and joined with the tuple. In the semijoin algorithm, both a bit

array and a local data structure o f attribute values are created from a semijoin

projection. The relation to be reduced is divided and allocated to all processors.

At each processor, the tuples are hashed and tested in the bit array. For all

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tuples that pass the filter, they are tested in the local data structure. It is shown

that, under certain conditions, the join and semijoin algorithms using bit arrays

outperform other join and semijoin operators. It was also found that performing

semijoins on two relations before joining them decreases the response time of a

join. As with the above, more work must be done to extend the join algorithm

to handle multi-relation joins. Also, more work must be done to integrate this

approach into a query processing strategy.

Mullin [Mul93] presents four techniques for estimating the size o f a relation

resulting from a join. The purpose is to determine i f the amount of reduction

obtained from performing the join justifies applying semijoins before shipping the

reduced relations to the joining site. These techniques utilize full or partial filters

in various ways. The first technique uses a full filter o f the joining attribute o f

one relation and applies it to the other relation. The fraction o f rejected tuples and

the fraction o f set bits in the filter are used to estimate the join cardinality. The

second technique uses a partial filter for the same purpose. The third and fourth

techniques use full filters (partial filters, respectively) from both relations. The

fraction of bits common to both filters is determined and used in estimating the

cardinality o f the resulting relation. Mullin found that these techniques to produce

very accurate estimations. However, these estimation techniques only apply to

joins o f two relations. Further research is needed to apply these techniques to

joins containing an arbitrary number o f relations.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mullin [Mul90] also proposes a filter based semijoin algorithm that serves

two purposes: to calculate the cost effectiveness o f a semijoin and to perform

the semijoin if it is found to be cost-effective. The goal o f this algorithm is

to reduce the data transmission cost — at the possible expense o f extra local

processing. During each iteration, the algorithm creates a filter for the joining

attribute o f one relation, ships it to the site o f the second relation, and applies

it to the relation. This continues until the cost of shipping the filters outweighs

the amount of reduction achieved by using them. This algorithm is successful at

reducing the data transmission costs o f a semijoin. However, the main limitation

of this work is that the algorithm only considers two relations residing at different

sites with one common joining attribute. Therefore, research is needed to extend

this technique to several relations with many joining attributes.

Chen et al. [CCY92] propose a new relational operator called the hash

semijoin. The goals o f the hash semijoin are to reduce the data transmission

and high local processing costs o f a semijoin. The hash semijoin utilizes a bit

array to represent the semijoin projection when processing a semijoin. The authors

show that, given a filter of a ’suitable’ size, the hash semijoin outperforms the

traditional semijoin. Further work is needed to integrate the hash semijoin in a

query processing algorithm.

Tseng and Chen [TC92] propose a different version o f the hash semijoin,

as well as a replacement algorithm for its application. The authors focus on

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

minimizing the semijoin cost — at the possible expense of decreased reduction

effects. When constructing a filter, each attribute value is encoded with d bits by

using d independent hash functions. The replacement algorithm takes an existing

semijoin strategy and replaces certain semijoins with more cost-effective hash

semijoins. One limitation of the replacement algorithm is that it only applies to

tree queries. Another is that, along with many other proposed algorithms, the

performance has not been extensively evaluated. Therefore, a future direction o f

research proposed by Tseng and Chen is to adapt the replacement algorithm to

general queries. Also, a performance evaluation is necessary.

Morrissey et al. [MBBK.95] propose the use o f filters for more accurately

estimating the cost and benefit of a semijoin when deriving a semijoin execution

strategy. Filters are applied in various estimation techniques, such as semijoin

benefit and selectivity estimation, for both a static heuristic and a dynamic heuristic

that attempt to minimize total cost. It was found, however, that the use of filters

did not improve the accuracy of estimations over the traditional cost and benefit

estimation technique. Future work suggested by the authors include the use o f the

filter as an actual reducer instead of an estimator, and the concurrent application

of several filters to a relation.

Morrissey and Osborn [Mor96, Osb96. M 0 97] propose a heuristic for pro­

cessing general queries. The heuristic utilizes reduction filters to further reduce

data transmission costs, but at the same time provide the same reduction benefits

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as the semijoin. After initially constructing reduction filters for each common

joining attribute and determining the processing order o f the relations, the rela­

tions are reduced in three phases. The first phase applies all relevant filters to the

relations in the given order. The second and third phases apply only ’changed’

filters to the relations. The second phase does this in the reverse processing

order while the third phase does so in the original order. They found a signifi­

cant improvement in performance o f the filter-based algorithm over a traditional

semijoin-based algorithm [MBB95b]. Two limitations o f this work, however, are

the assumption of the perfect hash function and the unnecessary shipment and

application o f some filters, which in turn results in a higher data transmission cost

than necessary. Therefore, future work includes determining ways to eliminate

unnecessary data transmissions and local processing, and investigating the effect

of collisions on the performance o f the algorithm.

Morrissey and Ma [Ma97, M M 98] propose a heuristic for processing general

queries. Algorithm X uses filters to reduce query response time as well as local

processing costs. This simple algorithm involves the parallel transmission and

application o f all relevant filters to all relations. An evaluation o f their algorithm

against the A H Y Algorithm GENERAL (Response Time) [AHY83] shows that

Algorithm X performs significantly better. A limitation o f this work is the

assumption of the perfect hash function. Therefore, a necessary direction o f

research is to investigate the effect that collisions will have on the performance

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o f the algorithm.

2.5 Dynamic Approaches

Many static strategies have been found to be non-optimal due to errors in

estimations and the assumption o f a uniform distribution o f values in a joining

attribute. One proposed solution to this problem is to use a dynamic approach

to query processing.

Bodorik et al. [BRJ89] propose a three-phased framework for the dynamic

execution o f a strategy. During the Monitoring phase, information on the progress

of a strategy, usually with respect to intermediate results sizes, is gathered. During

the Decision to Correct phase, a decision can be made to alter the current strategy

based on the suboptimal results produced by the strategy. In the Corrective

Action phase, a new execution strategy is generated for the remaining query. An

investigation of this framework shows that dynamic query processing has high

overheads, mainly due to the delay when correcting a strategy. Two proposed

research directions, the a p rio ri generation of a strategy in the background during

query execution and sampling o f a partial intermediate result to estimate the join

size, are investigated in [BRP92].

In [BRP92], Bodorik et al propose a dynamic processing method that attempts

to minimize query response time, including the delay from correcting a strategy.

The basic idea of the Aborted Join Last (AJL) method is to postpone expensive

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

joins until the end of the strategy. While the query is executing, an alternative

strategy is generated in the background. Sampling of partial intermediate results

is performed to determine if the delay from the current strategy is greater than the

estimated delay of the alternative strategy. A performance evaluation o f the AJL

method shows that it produces minimal delays. Since this method only applies to

tree queries, further work is needed to apply the AJL method to general queries.

Another limitation is the assumption of only one estimation error occurring at

a time. Bodorik et al. plan to investigate the effect of simultaneous estimation

errors on the response time of a query.

Yu et al. [YLG^Sb] propose three categories o f techniques for adaptive query

processing. The first, direct improvement o f query execution efficiency, contains

techniques that directly manipulate an execution strategy by removing redundant

attributes and relational operations. The second, indirect improvement of query

execution efficiency, contains techniques for manipulating cost estimation formu­

las for join and semijoin result sizes, data transmission costs and local processing

costs. The third, knowledge acquisition, involves obtaining information about the

decisions o f a user interacting with the execution o f a query i f the user can derive

a better execution strategy than the system. Necessary future work includes the

integration o f the proposed techniques into one system, and the extension of these

techniques to handle fragmented and replicated relations.

Morrissey et al. [Bea95, MBB95a] propose two dynamic algorithms. Dyna-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 and Dvna-2. which use semijoins to minimize the data transmission cost o f

a query. In both algorithms, each reducer is created and applied one at a

time. Global estimation techniques and up-to-date information on relation sizes

and attribute selectivity, are used to determine cost effective semijoins for the

reducers. The main difference between the two algorithms is that, during each

iteration. Dyna-1 uses the smallest attribute to determine the next reducer to be

created, while Dyna-2 estimates all reducer sizes and selects the smallest as the

next reducer. Another difference is that Dyna-1 contains no monitoring o f the

reducer creation, while Dyna-2 monitors each step o f this process. A performance

evaluation shows that Dyna-2 outperforms Dyna-1 but only marginally performs

better than the static semijoin algorithm W [Bea95. MBB95b]. In conclusion,

the authors state that information about attribute values and their distribution is

needed for a dynamic algorithm to produce schedules that are superior to those

of a static algorithm.

2.6 Combination Approaches

Chen and Yu [CY93, CY92, CY91, CY90a, CY94] propose the combination

o f joins and semijoins in an execution strategy to further reduce the data trans­

mission cost of a query. The authors define two concepts which result from this

combination. Gainful semijoins are semijoins that are not profitable individually,

but are found to be profitable i f they further reduce the cost o f a subsequent join.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pure join attributes are attributes that are required for the processing o f a query

but not required for the final result, and can be removed when no longer needed

by the query. Chen and Yu apply these two concepts in several algorithms [CY93.

CY92. C Y91, CY90a, CY94], Two algorithms o f interest [CY93, CY92] will be

summarized below.

In [CY92], Chen and Yu propose an algorithm for interleaving a join sequence

with semijoins. Given a join sequence, both profitable and gainful semijoins

are identified based on certain properties o f the relations in the join sequence.

Then, these semijoins are inserted into the existing join sequence. An illustrative

example from their paper shows the benefits o f combining joins and semijoins to

reduce data transmission costs.

In [CY93], Chen and Yu propose the use o f the A* heuristic search to

determine a sequence o f joins and semijoins. The heuristic function, f(x) = g(x)

+ h(x), is derived to calculate the cost o f the join/semijoin sequence up to state

x (g(x)) plus the estimated cost o f the join/semijoin sequence from x to the final

set o f reduced relations (h(x)). The data transmission cost calculated by h(x)

is estimated by summing the sizes o f the intermediate results at state x. The

authors also propose rules for selective expansion, which prohibit the expansion

of unoptimal states. Limitations o f the A* approach are the assumption of tree

queries and the exponential complexity. Future work must be done to apply the

A* technique to general queries.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.7 Conclusions

The goal o f processing a distributed query is to derive an execution strategy

that incurs the minimum cost. In this chapter, several approaches have been

presented, that utilize joins [LM H + 85. LPP91. CY90b], semijoins [B G W ^S l.

A H Y83. CL84. MBB95b, KR87, WCS92, WLC91, CL90, PC90. Bea95. YL89.

RK91. MB97], filters [M 097, Osb96, CCY92. Mul90, Mul93. Mor96. TC92.

Ma97. M 098 , MM98, VG84, Bra84, MBBK95], a combination o f joins and

semijoins [CY93, CY92, CY91, CY90a, CY94] and dynamic methods [Y L G ^ 8 6 ,

BRP92. BR8 8 . BRJ89, MBBK.95, MBB95a]. Given the research directions

proposed from these approaches, it is apparent that much work needs to be done.

In the next chapter, we propose our solution to the distributed query processing

problem. We present a new algorithm with an illustrative example.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 THE ALGORITHM

In this chapter, we present our proposed algorithm. This algorithm uses

reduction filters to accomplish the same reduction effects as semijoins, but at a

lower cost. The primary goal is to reduce the size o f all relations, while incurring

minimum data transmissions. The secondary goal is to minimize the query

processing cost by processing each relation the least number o f times possible.

The algorithm is presented in detail and illustrated with a running example below.

We assume a point-to-point network. We also assume that the distributed

database management system contains relational data that is neither fragmented

nor replicated. We will only consider select-project-join (SPJ) queries. Since most

queries can be stated in this format, this restriction will not limit the effectiveness

o f the algorithm as an optimizer o f general queries. The cost function to be used,

an inverse cost function, calculates the total reduction achieved by the algorithm,

instead of the cost incurred.

3.1 Details of the Algorithm

Queries, to be processed by the algorithm, are represented by a query graph

stored as an adjacency list. This list is used to determine which relation to process

and the corresponding filters that need to be created. A queue is used to keep

track of which relations need further processing. To determine the candidate

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R1 A H R2 A B E R3 C D I
1 8 1 2 4 3 4 9
1 7 4 5 2 6 9 1
2 6 5 4 5 8 6 6
3 8 7 7 7

R4 B C C F R5 E F
4 6

5 8

6 8

Figure 5 Example Database

relations for possible further processing, an inverted list is used to keep track

of which relations contain a specific attribute. Each query is processed in two

phases: (1) Construction o f Reduction Filters and (2) Processing o f Queue, which

are described in detail below.

Phase 1: Construction of Reduction Filters

During this phase, the query graph, which is represented by an adjacency list,

is constructed. It is used to determine the order in which filters are constructed and

used. For each relation in the query graph, a reduction filter is created for each

joining attribute contained in the relation. During the processing of a relation,

any existing filters are applied to the relation to reduce it. Certain relations are

added to the queue if they require further processing. A 'filter rule', given below,

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is used to determine which relations to add to the queue. The iterative process of

constructing the reduction filters is described below:

1. From the query graph, select the relation with the lowest indegree. In other

words, select the relation with the lowest number o f edges incident to it. We

will denote this relation as Rj.

2. Determine i f reduction filters for any o f the joining attributes exist, and apply

them to Rj to reduce it further.

3. While processing R j, construct new reduction filters for all joining attributes

contained in Rj.

4. Determine which relations to place back on the queue. The ’filter rule’ states

that a relation is placed on the queue if:

a. The reduction filters for any o f its joining attributes have changed after

being applied to Rj,

b. it is not R j,

c. it is not already on the queue, and

d. it has been processed already.

5. Remove the relation Rj and all incident edges from the query graph.

6 . Repeat steps 1 to 5 for all relations contained in the query graph.

In the following example, the reduction filters will be denoted by the notation

Xml,n2,..nm. where X is the attribute label and n l, n2,..nm are the addresses

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the bits in the filter that are currently set to 1. All other bits not listed are

assumed to be zero. Using the example database given in Figure 5. the following

query graph is constructed.

The first relation to be processed will be Ri since it has the lowest indegree.

Ri contains the joining attribute A, but since its reduction filter does not exist

already, it is constructed by making a pass through the relation. The resulting

filter is A: 1.2.3. Since this new filter has not changed, no relations are placed on

the queue. The vertex for Ri and the edge for attribute A are removed from the

query graph. We then have the following query graph.

c: d

Figure 6 Query Graph for Example Database

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7 Query Graph After Removing Ri and A

There are three relations with the lowest indegree o f 2. Since two or more

relations have the same indegree, the decision as to which o f these three relations

to reduce next is arbitrary, and depends on the order o f the relations in the

adjacency list. We will process Rt next. This relation contains the joining

attributes A. B, and E. The reduction filter for attribute A already exists and

is applied to Rt. During this process o f reduction, filters for A, B, and E

are constructed. The resulting filters are A :l, B:2 and E:4. We also have the

following reduced relation R2 .

A B E

Figure 8 The Reduced Relation R:

Since the reduction filter for A has changed, the relations that contain A , Ri

and R2 , are tested to see whether they should be placed on the queue. R] is

not already on the queue, not currently being processed and has been processed

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

previously, and therefore it is placed on the queue. Since R2 is the relation

currently being processed, it is not placed on the queue. The relation R2 and the

edges for attributes B and E are removed from the graph, which results in the

following query graph.

R4,
R5

R3

Figure 9 Query Graph After Removing R;. B and E

Relation R5 has the lowest indegree and is thus chosen as the next relation to

be processed. The filter for attribute E exists and is applied to R5 . The filters for

attributes E and F are created. The resulting filters are E:4 and F:6 . The resulting

relation R5 is shown below.

E F

Figure 10 The Reduced Relation R5

Since the filter for attribute E has not changed as a result o f processing R5 ,

no relations are added to the queue. After removing R5 and the edge for attribute

F from the query graph, we have the following graph.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 11 Query Graph After Removing R< and F

Both remaining relations. FU and R4 , both have an indegree o f 2. Since both

relations have the same indegree, the decision as to which relation to reduce next

is arbitrary. We will process R3 first. Neither of the joining attributes C and

D have existing filters. Therefore, a scan is made o f the relation to construct

their filters. The resulting filters are C:3,6,7,8 and D:4,6,7,9. Since we have no

changed filters as a result o f processing this relation, no relations are added to

the queue. After removing R3 and the edges for C and D from the graph, we

are left with the sole relation R*.

R 4 *

Figure 12 Query Graph After Removing Rj. C and D

At this point, the reduction filters for all the joining attributes contained in

R 4 , B. C, D, and F, exist and are applied to R*. The reduction filters constructed

during this process are B:2. C:3, D:4, and F:6 . We have the following reduced

relation R 4 .

B C D F

Figure 13 The Reduced Relation Rj

32

with permission of the copyright owner. Further reproduction prohibited without permission.

The filters for C and D have changed, and therefore, the relation R3 is added

to the queue since it is not the current relation, is not on the queue and has been

processed before. Since R4 has just been processed, it is not added to the queue.

At this point, all relations in the query graph have been processed. We now

proceed to Phase 2 to process the relations on the queue.

Phase 2: Processing of Queue

During this phase, the relations in the queue are processed again and any

filters that are applied are updated. During this process, more relations may

subsequently be added to the queue as the filters change. This phase is repeated

until the queue becomes empty. The processing o f the queue is described below:

1. Remove relation R,- from the front o f the queue.

2. Apply all reduction filters for all joining attributes contained in Rj to reduce

the relation further.

3. Determine which relations to place back on the queue. The same ’filter rule’

used for placing relations on the queue for Phase I is also used here.

From the example query, the queue Q :R],R 3 is produced in Phase 1 . R|

will be processed first. The reduction filter for attribute A is applied to Rj and

updated. The new filter for A is A :l. The reduced relation R| is given below.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A H
1 8

1 7

Figure 14 The Reduced Relation Ri

There is no change to the filter so no relations are added to the queue. R? is

taken from the queue next. The filters for attributes C and D are applied to R;, and

updated. The new filters are C:3 and D:4. We have the reduced relation R3 below.

C D I

Figure 15 The Reduced Relation Rs

Since no filters have changed, no relations are added to the queue. The queue

is now empty and the algorithm terminates.

The final set o f reduced relations is shown in figure 16. The join o f the set

o f reduced relations is shown in figure 17. The join o f the original, unreduced

relations produces the same result. Notice how the algorithm can fully reduce

all relations to only the necessary tuples needed for the final join! Therefore,

this example shows that our proposed algorithm achieves significant reduction in

the relation sizes.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R1 A H
1 8

1 7

R2 A B E

R4 B C D F

R3 C D I

R5 E F

Figure 16 The Set of Reduced Relations

A B C D E F H I
1 2 j 3 4 4 6 8 9
1 2 3 4 4 6 7 9

Figure 17 The Join o f the Reduced Relations

3.2 Conclusion

In this chapter, we have presented the proposed algorithm in detail and have

illustrated it with an example. The main goal of the algorithm is to reduce the

size o f all relations, while incurring minimum data transmissions. The example

demonstrates that the algorithm may achieve a significant reduction in relation

sizes. In the next chapter, we present the evaluation framework and experiments

used to test this hypothesis.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 EVALUATION

In this chapter we provide the rationale for our experimental work. We

describe the framework and give details of our experiments. The aims o f the

evaluation are:

1. To compare the algorithm against the effects of a full reducer. A full reducer

is simulated by joining the query relations and determining which tuples of

each relation participate in the join. The cardinalities o f the ’ fully reduced’

relations are used to determine the amount of full reduction. This comparison

is done under the assumption o f a perfect hash function.

2. To determine how collisions affect the amount o f reduction o f the algorithm.

For each query o f the collision evaluation, a percentage o f collisions, between

1 % and 60% is incorporated. The simulated full reducer used above will be

used here to compare the results o f the algorithm against full reduction. The

results will also be compared against the results that assume a perfect hash

function.

4.1 Experimental Rationale

With few exceptions, previously proposed algorithms have not been objec­

tively evaluated. Heuristics have been evaluated for performance by compar­

ison with another heuristic [MBB95b, M 097, Osb96, CCY92, Mor96, PC90,

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MBBK95, Ma97, M M 98. M 098 , Bea95] or not evaluated for performance at

all [BGW +81. AHY83, CL84, WCS92. WLC91, CY93. Mul90, CL90, TC92],

Although a comparison can determine the improvement in performance o f one

algorithm over another, it can not determine how close an algorithm comes to

achieving full or optimal reduction in relations. Some previously proposed algo­

rithms have been evaluated theoretically by performing a time complexity analysis.

However, a theoretical evaluation does not determine how the algorithm will per­

form when given real-life data with which to work. Complexity alone does not

determine how good an algorithm is.

For these reasons, it is preferable to evaluate the algorithm against a full

reducer. A full reducer is an algorithm that fully reduces all relations involved in

a query by eliminating all non-participating tuples from the relations. Therefore,

our algorithm will be evaluated to determine how close it comes to achieving full

reduction under various conditions. Our approach to evaluating an algorithm is

objective, since its performance is not being compared with the performance of

another algorithm. Our approach to evaluation is better since it w ill allow us to

quantify the amount of reduction possible. Also, our approach will provide new

insights into the problem o f distributed query optimization that are not attainable

by other traditional evaluation techniques.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Evaluation Framework

The evaluation framework consists o f a collection o f software for generating

queries and relations; for executing the queries and compiling the results; and for

analyzing the experimental results. 1

4.2.1 Individual Queries

The algorithm is evaluated using select-project-join (SPJ) queries. Each query

consists o f an arbitrary number of relations, each containing an arbitrary number

of joining attributes. The relations vary in the following ways:

• Relation cardinality — the number o f tuples or records in a relation.

• Attribute domain sizes — the total number o f distinct attribute values an

attribute can contain.

Selectivity — defined as the ratio o f distinct attribute values over the attribute

domain size. Intuitively, the selectivity o f an attribute is an estimate o f the

ability o f the attribute to reduce the size o f the relations. For clarification, a

joining attribute has high selectivity i f the ratio is low, and low selectivity if

the ratio is high. For example, a selectivity o f 0.01 is considered high while

a selectivity o f 0.95 is considered low.

Connectivity — an approximate ratio o f the number o f joining attributes

appearing in all relations o f the query over the total number o f possible join

This evaluation software was programmed by various members o f the Database Research Group o f the University

o f Windsor

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

attributes that can appear in the query. The total number o f possible joining

attributes is a product o f the number o f relations and the number o f common

joining attributes (or joining domains).

Individual queries are generated using qscript. a Tel script. Each relation specified

by qscript is generated by a C program called relbuilder. Both qscript and

relbuilder are described in [Bea95], and are described below for completeness:

qscript. This program generates a query. The input includes the number of

relations, the number o f common join attributes, the range o f relation cardi­

nalities. the range of attribute cardinalities, the range o f attribute selectivities.

and the connectivity. This data is stored in a ’qspecs’ file which is read in

by qscript.2 The output o f qscript consists o f the database statistics, domain

sizes and files containing data for generating relations.

The 'dbstats’ file contains the number o f relations, the number o f common

joining attributes, the relation cardinalities, and. for each attribute in each re­

lation. its cardinality and selectivity. For example, consider the ’dbstats’ file

for a query, given in figure 18. Line 1 contains the number of relations (3) and

the number o f common joining attributes (2). Lines 2, 3 and 4 contains the

statistics for each relation specified in the query. For relation Ro, represented

by line 2 o f ’dbstats’, the cardinality is 232. Ro also contains two joining

- Alternatively, the relation count and attribute count can he specified as command line arguments.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dbstats

3 2

232 197 0.9 165 0.75

464 0 0.0 191 0.87

380 129 0.59 174 0.79

Rel 0

232 2 0 197 218 1 165 219

domains

218

219

Figure 18 Example Files for a Query

attributes — attribute 0, with a cardinality o f 197 and a selectivity o f 0.9. and

attribute 1, with a cardinality o f 165 and a selectivity o f 0.75. Relations R|

and R2 are represented by lines 3 and 4 o f the dbstats and contain the same

statistical information that is contained in line 2.

The 'domains’ file consists o f the domain cardinality for each common join­

ing attribute. For example, the ’domains’ file in figure 18 contains a domain

size o f 218 for common join attribute 0 and a domain size o f 219 for com­

mon join attribute 1.

For each relation specified in the query, a ’Rel’ file is generated, which con­

sists o f the relation cardinality, the number o f joining attributes, and for each

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

joining attribute, the attribute label, the cardinality o f the attribute and the

cardinality o f its domain. For example, we have a ’Rel’ file. ’RelO’, for re­

lation Ro given in figure 18. The cardinality o f Ro is 232. Ro contains two

attributes — attribute 0, with a cardinality o f 197 and a domain size o f 218,

and attribute 1, with a cardinality o f 174 and a domain size o f 219. The

domain sizes are obtained from the ’domains’ file. Similar ’Rel’ files are

created for relations Ri and Rt.

relbuilder. The relbuilder program generates a relation based on the statistics

generated in qscript. The input to relbuilder is a number indicating the relation

to generate. Relbuilder uses this number to access the appropriate ’Rel’ file,

which is generated by qscript. The output is a relation, which contains the

required number o f tuples and the necessary header information, including the

number o f attributes, the number o f joining attributes, and the joining attribute

labels. The joining attributes assume either normal or random distribution

of attribute values, which depends on which distribution is specified in the

relbuilder source code. It should be noted that the original relbuilder used

in [Bea95] does not output the total number o f attributes contained by the

relation in the header file. For the purposes o f these experiments, it was

necessary to modify the code to incorporate this count.

It should be noted that both algorithms described above can only generate queries

containing three to six relations and two to four joining attributes. Therefore, for

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the purposes o f this evaluation, each combination o f a relation count and attribute

count make up what will be referred to as a query type. For example, query type

3—2 represents three relations and two joining attributes, while query type 6-4

represents six relations and four joining attributes. In total, twelve query types

ranging from 3—2 to 6—4 will be represented in the experiments.

4.2.2 Individual Runs

The algorithm is evaluated with over 10,000 queries that vary in many ways

including the number o f relations and joining attributes, relational cardinality,

domain cardinality, selectivity, and the percentage of collisions. In order to

effectively evaluated this algorithm with such a large number o f diverse queries,

it is necessary to split up the queries into runs. For the purpose of this evaluation,

a run executes 600 queries, comprising 50 queries for each of the query types

described above. A C shell script, runexp, is used to execute a run.

The output from each run consists o f a file for each query type. Each file

contains the statistics gathered from the 50 queries, and includes the unoptimized

relation cardinalities, the final cardinalities from the full reducer and the final

cardinalities from the algorithm.

4.2.3 Analysis of Data Files

The data files created from each run are analyzed using two analysis programs.

Analysis I determines for each query type, and for the entire run, the average

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

percentage full reduction that is achieved by the algorithm. Analvsis2 determines

for each query type, and the entire run. the percentage o f queries that achieve

full reduction. Therefore, for each query type, and overall for all 50 queries, the

following will be determined:

1. The average percentage reduction produced by the algorithm, with respect to

full reduction.

2. The percentage of queries that achieve full reduction.

Given the overall averages for each run, the average percentage of reduction and

the overall percentage of queries that achieve full reduction for all runs will be

determined.

4.3 The Experiments

The experiments carried out are divided into two sets. Set 1 evaluates the

performance of the algorithm under the assumption o f the perfect hash function.

With the perfect hash function, all attribute values hash to the address specified by

the value. For example, an attribute value o f 4 will hash to address 4 in the filter.

Using this method of ’hashing’ ensure that no collisions will occur. Set 2, the

collision runs, evaluates the performance of the algorithm given the occurrence

o f specific percentages o f collisions.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Run# Selectivity Conectivity
1 0.02-0.4 75%
2 0.4-0.7 75%
3 0.7-0.95 75%
4 0.4-0.7 100%
5 0.4-0.7 75%

Table I Initial Runs

4.3.1 Initial Runs

The main purpose of the initial runs is to determine how well the algorithm

performs without the effect of collisions. We also wish to determine if varying the

selectivity o f the joining attributes and the connectivity o f the query affects the

performance o f the algorithm. The initial five runs are shown in table I . In these

five runs, the relations consisted o f 200 to 600 tuples, while the attribute domains

consisted o f 150 to 250 distinct values. In the first three runs, the connectivity is

set at 75%. The selectivity ranges of 0.02—0.4. 0.4—0.7 and 0.7—0.95, are chosen

because we feel they best represent high, medium and low selectivity respectively.

In the final two runs, the selectivity is set at 0.4 to 0.7. The connectivities of

100% and 75% are chosen because we feel they best represent full and average

connectivity respectively. A run o f low connectivity was attempted as well.

Unfortunately, many o f the queries generated for this run were invalid, so these

results are not being considered.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.2 Collision Runs

The purpose of the collision runs is to determine what effect collisions will

have on the performance of the algorithm. In the remaining 16 runs, the relations

consisted o f 200 to 600 tuples, the attribute domains consisted o f 150 to 250

distinct values, the query connectivity is set at 75% and the selectivity is set at

0.5-0.95. The final 16 runs are as follows. The first 11 runs evaluate the algorithm

at each percentage of collisions between 0% and 10%. The remaining five runs

evaluate the algorithm at 20%. 30%, 40%, 50%. and 60% collisions.

4.3.3 Generating Collisions

Our algorithm is evaluated at specific percentages of collisions. To ensure

that a specific percentage occurs, we adopt the following method o f simulating

collisions. Given a common join attribute j, its active domain is determined.

The active domain o f a common join attribute j is the set o f values from the

domain o f j that are present in all attributes d;j, i=0..^relations (in other words,

all attributes that take their values from the domain o f j). Then, d% o f the values

in the active domain are chosen as the values that will result in a collision in the

filter. We will call this set X . For each of the values in X, its collision address

is determined. The collision addresses are taken from the set {active domain(j)

- XJ, to guarantee that a collision will occur. This process is repeated for all

common join attributes in a query.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, suppose for common join attribute j, we have the active domain

{1.3.4.5.7.8.9,10,12,14}. I f we want 20% collisions, then we would randomly

choose 2 o f these 10 values as ones which will collide. Let us say that the values

4 and 10 are chosen. Then, the addresses that are set to 1 in the bit filter are

chosen from the remaining values o f {1,3,5,7.8,9,12.14}. Let us choose 1 and

14. Therefore, a value o f 4 will hash to the address 1 in the bit filter while a

value o f 9 will hash to address 14. The remaining attribute values will hash to

the address represented by the value.

4.4 Conclusion

In this chapter we provide the rationale for our experimental work. We

describe the framework and give details of our experiments. The aims of the

evaluation are to compare the algorithm against the effects o f a full reducer, and

to determine how collisions affect the performance of the algorithm. The results

of the proposed experiments are presented in detail in the next chapter.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 RESULTS

In this chapter, we present the results o f the performance evaluation. The

observ ations based on the results o f the initial runs will be presented first, followed

by the observations based on the results of the collision runs. A discussion on

some other interesting results will also be presented.

5.1 Results of Initial Runs

The main purpose o f the initial runs is to determine how well the algorithm

performs without considering collisions, while the secondary purpose is to de­

termine the effect o f varying the selectivity and connectivity on the performance

of the algorithm.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

selectivity
0.02-0.4

selectivity
0.4-0.7

selectivity
0.7-0.95

connectivity
100%

connectivity
75%

Type Avg Full Avg Full Avg Full Avg Full Avg Full
3-2 99.93 94 94.18 52 76.10 40 98.05 84 94.32 46
3-3 99.97 98 98.33 90 89.62 78 100 100 98.37 86
3-4 100 100 100 100 100 100 100 100 99.71 98
4-2 100 100 98.20 70 87.59 58 100 100 98.20 70

4-3 100 100 99.38 90 98.85 96 100 100 99.02 90
4-4 100 100 100 100 99.74 98 100 100 99.96 98

5-2 100 100 99.40 82 93.95 78 100 100 99.58 92

5-3 100 100 99.84 98 99.49 98 100 100 99.91 98
5-4 100 100 100 100 ICO 100 100 100 100 100

6-2 100 100 100 100 98.18 88 100 100 99.88 98
6-3 100 100 100 100 99.42 98 100 100 100 100

6-4 100 100 100 100 100 100 100 100 100 100

Avg 99.99 99.33 99.11 90.17 95.25 86 99.84 98.67 99.08 89.67

Table 2 Results o f the Initial Runs

• The results o f the initial runs show that, in most cases, the algorithm achieves

substantial reductions in the sizes o f the relations. On average, approximately

98.6% of all tuples not required for the final result are eliminated from the

relations involved in the query. Also, these results show that, on average, the

algorithm fully reduces the relations in 92.7% o f all queries.

• The results o f varying the selectivity o f the joining attributes show that

both the amount o f reduction, and the percentage of queries that achieve

full reduction, decrease as the selectivities approach 1.0 (in other words,

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as the selectivity decreases). The difference in the best average reduction

(selectivity o f 0.02-0.4) and the worst average reduction (selectivity o f 0.7-

0.95) is approximately 5%. which is not substantial. However, the difference

in the best percentage o f fully reduced queries (selectivity o f 0.02-0.4) and

the worst (selectivity o f 0.7-0.95) is approximately 13%, which is substantial.

The results o f varying the query connectivity show that both the amount o f

reduction, and the percentage o f queries that achieve full reduction, increase

as the connectivity increases. The difference in the best and worst average

reduction o f relation sizes is less than 1%, which is not substantial. However,

a substantial difference between the best and worst percentages o f fully

reduced queries is found at 9%.

Approximately 90% of the queries, especially those with high selectivity and

high connectivity, produce null results. However, approximately 99% o f these

null queries are fully reduced by the algorithm. Therefore, null queries can be

detected cheaply by the algorithm. This is very important since the shipment

of large volumes o f useless data can be avoided.

Queries o f types 3—2 and 4—2, in many cases, have substantial lower amounts

of data reduction than queries o f other types. Also, queries o f types 3—2 and

4—2 are the least likely to be fully reduced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Results of Collision Runs

The initial results show that, on average, the algorithm achieves significant re­

duction of unneeded data in query relations, and achieves an acceptable percentage

of fully reduced queries. However, the initial runs did not take into consideration

the effect of collisions on the performance of the algorithm. Therefore, the main

question to be answered in this section is: How does the existence o f collisions

affect the performance o f the algorithm?

The results of the collision runs are divided into two groups. The first group

consists of the runs that evaluate the algorithm at collision rates from 0% to 10%.

The second group consists o f the runs that evaluate the algorithm at 10%. 20%.

30%. 40%, 50%, and 60% collisions.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Coll 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

3-2 83.54 83.48 84.60 84.93 84.69 83.87 84.19 81.94 81.59 83.36 85.26

3-3 95.34 97.38 93.95 92.48 95.15 93.95 95.56 93.07 96.15 92.95 95.75

3-4 99.26 100 100 99.81 99.60 100 100 100 99.51 100 99.55

4-2 91.51 92.37 94.92 95.69 94.88 94.97 93.03 90.57 91.85 91.68 93.54

4-3 99.05 99.09 98.66 97.21 98.29 98.89 97.96 99.36 98.52 99.21 97.45

4-4 100 100 100 99.87 100 100 99.72 99.77 100 100 100

5-2 99.55 96.72 97.59 98.55 96.91 97.87 96.40 96.75 97.68 96.86 96.01

5-3 100 100 99.85 99.82 99.96 99.99 99.84 98.70 98.65 99.98 99.64

5—1 100 100 100 100 100 100 100 100 100 100 100

6-2 98.55 98.92 98.74 98.98 99.03 99.67 99.11 99.12 98.30 98.11 99.28

6-3 100 100 99.97 99.99 100 100 99.76 99.74 100 99.93 100

6-4 100 100 100 100 100 100 100 100 100 100 100

Avg 97.23 97.33 9136 97.27 973S 97.43 97.13 96.59 96.85 96.84 97.21

Table 3 Average Percentage Reduction at 0%-10% Collisions

On average. 97.2% o f all unneeded tuples are eliminated by the algorithm

when the collision rate is between 0% and 10%. The range o f the average

percentage reductions from the first group o f runs is less than 1%. Therefore,

on average, the algorithm consistently gives substantial reductions in relation

sizes, given the existence of 0% to 10% collisions.

For query type 3—2, the algorithm gives average percentages o f reduction

which are substantially lower than those o f the remaining query types. The

algorithm still achieves 90+% elimination o f unneeded data for the remaining

query types.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%ColI 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

3-2 34 28 26 36 32 16 26 18 16 16 24

3-3 90 84 78 76 84 78 82 72 84 70 76

3-4 96 100 100 98 98 100 100 100 98 100 98

4-2 44 52 58 68 54 54 56 48 42 50 54

4-3 94 92 96 92 94 96 90 94 92 96 84

4-4 too too 100 98 100 100 98 98 100 100 100

5-2 88 76 68 78 64 72 60 64 74 64 70

5-3 too too 98 96 96 98 98 94 92 96 96

5-4 too 100 100 100 100 100 100 100 100 100 100

6-2 84 82 90 72 76 86 84 78 78 72 90

6-3 98 100 98 98 100 100 96 98 98 98 100

6-4 100 100 100 100 100 100 100 100 100 100 100

Avg 85.67 84.50 84.33 84.33 83.17 83.33 82.50 80.33 81.20 80.33 82.67

Table 4 Average Percentage o f Fully Reduced Queries at 0%-10% Collisions

• On average, 82.9% o f all queries are fully reduced by the algorithm when the

collision rate is between 0% and 10%. The range of the average percentage

of fully reduced queries is approximately 5%. Although this average is less

significant than the average percentage reduction of data sizes, it appears to

still be consistent, given the existence o f collisions between 0% and 10%.

• Query types 3—2 and 4—2 have the worst percentages of fully reduced queries

— less than 60% o f these queries are fully reduced by the algorithm. Query

types 3—3. 5—2 and 6—2 also have lower percentages o f queries achieving

full reduction, but not as substantially low as 3—2 and 4—2. The remaining

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

query types fully reduce 90+% o f queries, given the existence o f 0% to 10%

collisions.

%Coll 10% 20% 30% 40% 50% 60%

3-2 85.26 80.11 75.21 73.31 72.74 69.56

3-3 95.75 93.15 87.27 90.53 86.10 88.58

3-4 99.55 99.02 98.95 97.92 98.58 97.11

4-2 93.54 92.13 89.29 86.25 87.43 81.23

4-3 97.45 97.83 96.41 98.34 94.53 96.62

4-4 too 100 100 100 99.63 98.31

5-2 96.01 96.39 95.39 92.22 91-21 89.37

5-3 99.64 98.38 98.98 96.56 98.72 98.10

5-4 100 100 100 100 100 99.77

6-2 99.28 97.88 96.53 98.55 97.41 95.81

6-3 100 100 99.58 99.13 99.59 99.44

6-4 100 100 100 100 100 100

Avg 97.21 96.24 94.80 94.40 93.83 92.82

Table 5 Average Percentage Reduction at 10%-60% Collisions

• As the percentage o f collisions increases after 10%, the amount o f reduction

begins to decline slightly. The average percentage reduction is 94.9%, with

the average at 10% collisions being 97.2% and the average at 60% collisions

being 92.9%. Therefore, after 60% collisions, the average amount o f reduction

is still substantially high.

As with the 0% to 10% collision range, query type 3—2 achieves the worst

average percentage reduction o f the relations. Query types 3—3 and 4—2 also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

achieves lower percentages o f reduction, although not as substantially low

as query type 3—2. For the remaining query types, the our algorithm still

achieves 90+% elimination o f unneeded data in almost all cases.

• On average. 96% o f the null queries are being fully reduced by our algorithm.

In the presence of 0% to 10% collisions, this is very substantial — many null

queries can still be detected cheaply by the algorithm.

%Coll 10% 20% 30% 40% 50% 60%

3-2 24 4 2 4 0 0

3-3 76 70 58 62 54 58

3-1 98 96 96 94 92 86

4-2 54 32 32 16 30 14

4-3 84 84 84 90 80 82

4-4 100 100 100 100 98 94

5-2 70 60 66 46 44 34

5-3 96 90 94 88 94 86

5-4 100 100 100 100 100 98

6-2 90 76 66 78 76 66

6-3 100 100 98 92 98 96

6-4 100 100 100 100 100 100

Avg 82.67 76.00 74.67 72.50 72.17 67.83

Table 6 Average Percentage of Fully Reduced Queries at I0% -60% Collisions

As the percentage o f collisions increases after 10%, the percentage o f fully

reduced queries declines substantially. Between 10% and 20% collisions,

a decline o f almost 7% occurs. Between 20% and 50% collisions, the

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

percentage o f fully reduced queries ranges between 72% and 76%. At 60%,

the percentage o f fully reduced queries makes another significant decline of

approximately 4.5%. Therefore, after 10% collisions, the amount o f collisions

substantially affects the number o f queries achieving full reduction.

• Query types 3—2 and 4—2 have percentages o f fully reduced queries that are

significantly lower than all other query types. In fact, after 40% collisions,

none of the queries o f type 3—2 are being fully reduced! Query types 3—3,

4—3. 5—2 and 6—2 have the next lowest percentages o f fully reduced queries.

For the remaining query types, the algorithms still fully reduces 90+% of

queries in most cases, even in the presence o f 60% collisions.

Even in the presence o f 10% to 60% collisions, the algorithm still fully reduces

88% of the null queries. Therefore, many o f the null queries can still be

detected by our algorithm.

5.3 Discussion

The performance evaluation shows that, on average, the algorithm gives

substantial reductions o f relation sizes, even when collisions are a problem. Also,

for lower percentages of collisions, the algorithm fully reduces an acceptable

percentage o f queries. However, other trends have been determined from the

experimental results. One trend is that queries containing a lower number

o f joining attributes and fewer relations almost always achieve both the worst

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R1 A B R2 A B
1 4

3 5

5 6
6 2
2 1

1 5

3 4
5 2
6 6
2 1

Figure 19 Example Relations

reduction in relation sizes and the lowest number o f full reductions. It was also

found that both the selectivity of the joining attributes and the query connectivity

affect both the amount o f reduction and the number o f fully reduced queries. A

further analysis o f the results and the algorithm has revealed the following. When

a query contains few joining attributes with low selectivities. the filtering effect

of the reduction filters is hindered. This is illustrated with a simple example.

We have two relations. Rj and R2 , both containing joining attributes A and

B. given in Figure 19. The join of these two relations will result in the following

relation:

A B
2 1 1

The fully reduced Ri and R2 are:

A B R2 A B

2 I 1 2 1

Suppose the algorithm processes Rj first. R| is scanned to create the following

filters for A and B: A: l .2,3,5,6 and B: l .2,4.5,6. I f we assume a domain size o f six

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distinct attribute values for both A and B, then the selectivities o f A and B will

be 0.83. When the filters for A and B are applied to R2 , we have the following

unexpected result:

R2 A B
1 4

3 5

5 6
6 2
2 1

No reduction has occurred in R2 . When the filters for A and B are recreated,

we have the same filters as before. Therefore, we have no additions to the queue

and the algorithm terminates.

The reason why no reduction occurs in R2 is the following. For each tuple

in R2 , the attribute values for A and B are being hashed and set in each filter by

two different tuples in R j. For example, the first tuple in R2 has A equal to I

and B equal to 4. Although no matching tuple exists in R j, the first tuple in Ri

contains A equal to 1 while the second tuple in Ri contains B equal to 4. Both

o f these values will be hashed and set to I in their respective filters. When the

first tuple o f R2 is tested, it passes the filters because both o f its attribute values

hash to a 1 bit in their respective filters!

Although this hinderance in reduction affects queries with few joining at­

tributes and relations, it does not appear to be a problem with the queries con-

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

taining a higher number o f joining attributes and relations. One possible reason

for this is that, even though each joining attribute may have a high selectivity, the

products of the various selectivities o f a common joining attribute can lower the

overall selectivity o f the common joining attribute. Therefore, the higher number

o f joining attributes decrease the chance o f a tuple falsely passing all necessary

filters.

5.4 Conclusion

In this chapter, the results o f the performance evaluation have been presented.

The initial results show that the algorithm achieves both significant reductions

in relation sizes and an acceptable percentage of fully reduced queries. When

determining what effect the existence o f collisions has on the performance o f

the algorithm, it is found that the algorithm still achieves substantial relation

reductions. The algorithm also achieves an acceptable percentage of fully reduced

queries for low percentages o f collisions. Some other interesting results were

found and discussed.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6 CONCLUSIONS

In this thesis, a new filter-based algorithm is proposed that uses filters to

accomplish the same reduction effects as semijoins, but at a lower cost. The

primary goal o f our algorithm is to reduce relation sizes while incurring minimum

data transmission costs. The secondary goal is to incur minimum processing costs

by processing each relation as little as possible This algorithm can process general

queries consisting o f an arbitrary number o f relations and joining attributes, and

it does not assume the use o f a perfect hash function.

Our proposed algorithm has been evaluated to determine how close it comes

to achieving full reduction o f relations under various conditions. The test data

used to evaluate the algorithm consists o f many select-project-join (SPJ) queries,

which vary in many ways. Using the results of the evaluation, we now answer

the following questions:

On average, how much reduction, with respect to the full reducer, is achieved?

On average, our algorithm achieves substantial reductions in the sizes of query

relations. Approximately 97-99% o f all tuples not required for the final result

are eliminated from the relations involved in the query.

• Full reduction o f relations is achieved in what percentage o f queries?

The initial results show that the relations of approximately 93% of all query

are fully reduced by our algorithm. The 0% collision run shows that approx-

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

imately 86% o f all queries are fully reduced. The reason for the difference

in averages is that the selectivity range for the 0% collision run is larger

(0.5—0.95) than the selectivity ranges o f all the initial runs. However, a sub­

stantial number o f queries achieve full reduction, although the percentage is

not as substantial as the average percentage reduction o f query relations.

• What effect do collisions have on the amount o f reduction?

Results show that, no matter how high the percentage of collisions, the

average percentage of reduction is still substantial. The average for 0%

to 10% collisions is approximately 97%, while between 10% and 60% it

is approximately 95%. The worst average percentage reduction, at 60%

collisions, was found to be 93% — still substantial given that 60% collisions

are occurring.

What effect do collisions have on the percentage of queries achieving full

reduction?

Results show the percentage of queries that achieve full reduction is 82% when

the percentage of collisions is between 0% and 10%. However, this percentage

substantially declines when the percentage of collisions increases after 10%.

At 60%, only 68% of all queries achieve full reduction. Although this decrease

is substantial, the average between 0% and 10% is still acceptable.

In conclusion, if a reasonably uniform hashing function is used in our algorithm,

then our algorithm performs significantly well, with respect to both the average

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

percentage reduction o f query relations and the percentage o f queries that achieve

full reduction. This is a reasonable conclusion since it is desirable to use a uniform

hash function which results in few collisions.

6.1 Future Research Directions

Results show that, for higher percentages o f collisions, the percentage o f

queries that achieve full reduction decreases. One direction o f research is to

use multiple reduction filters for each common joining attribute to attempt to

minimize the collision problem.

Results also show the filtering effect o f the algorithm is hindered when queries

contain few relations and few joining attributes. Many tuples that are not required

for the final result are accidentally passing the filter tests. This is also a problem

when the selectivity o f the joining attributes is low. Therefore, another direction

of research is to find a solution to this problem o f false accepts.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SELECTED B IBLIO G RAPHY

[AHY83]

[Bea95]

[B G W *

[Blo70]

[BR88]

[Bra84]

P.M.G. Apers, A.R. Henver, and S.B. Yao. Optimization algorithms

for distributed queries. IE E E Transactions on Software Engineering,

9(I):57 -68 , 1983.

W .T. Bealor. Semijoin strategies for total cost minimization in dis­

tributed query optimization. Master’s thesis. University o f Windsor,

1995.

P.A. Bernstein, N. Goodman, E. Wong, C. Reeve, and J.B. Rothnie.

Query processing in a systems for distributed databases (sdd-1). A C M

Transactions on Database Systems, 6(4):602—625. 1981.

B.H. Bloom. Space/time trade-offs in hash coding with allowable

errors. Communications o f the AC M , 13(7):422-426, 1970.

P. Bodorik and J.S. Riordon. A threshold mechanism for distributed

query processing. In Proceedings o f the A C M Computer Science

Conference, pages 616-621, 1988.

Kjell Bratbergsengen. Hashing methods and relational algebra opera­

tions. In Proceedings o f the Tenth International Conference on VLBD,

pages 323-333, 1984.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[BRJ89]

[BRP92]

[CCY92]

[CL84]

[CL90]

[CP84]

[CY90a]

P. Bodorik, J.S. Riordon, and C. Jacob. Dynamic distributed query

processing techniques. In Proceedings o f the A C M Computer Science

Conference, pages 348—357, 1989.

P. Bodorik, J.S. Riordon, and J.S. Pyra. Deciding to correct distributed

query processing. IE E E Transactions on Knowledge and Data

Engineering, pages 253—264, 1992.

T.-S. Chen, A.L.P. Chen, and W.-P. Yang. Hash-semijoin: A new

technique for minimizing distributed query time. In Proceedings o f

the 3rd Workshop on Future Trends o f Distributed Computing Systems.

pages 325-330. 1992.

A.L.P. Chen and V.O.K.. Li. Improvement algorithms for semijoin

query processing programs in distributed database systems. IE E E

Transactions on Computers, 33(11):959—967, 1984.

J.S.J. Chen and V .O .K . Li. Domain-specific semijoin: a new operation

for distributed query processing. Information Sciences, 52:165—183,

1990.

S. Ceri and G. Pelagetti. Distributed Databases: Principles and

Systems. McGraw-Hill, 1984.

M.-S. Chen and P.S. Yu. Using combination o f join and semijoin

operations for distributed query processing. In Proceedings o f the

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[CY90b]

[CY91]

[CY92]

[CY93]

[CY94]

[HenSO]

I Oth International Conference on Distributed Computing Systems,

pages 328—335, 1990.

M.-S. Chen and P.S. Yu. Using join operations as reducers in

distributed query processing. In Proceedings o f the 2nd International

Symposium on Databases in Parallel and Distributed Systems, pages

116-123. 1990.

M.-S. Chen and P.S. Yu. Determining beneficial semijoins for a join

sequence in distributed query processing. In Proceedings o f the 7th

International Conference on Data Engineering, pages 50—58, 1991.

M.-S. Chen and P.S. Yu. Interleaving a join sequence with semijoins

in distributed query processing. IE E E Transactions on Para lle l and

Distributed Systems, pages 611—620, 1992.

M.-S. Chen and P.S. Yu. Combining join and semijoin operations for

distributed query processing. IE E E Transactions on Knowledge and

Data Engineering, pages 534—542, 1993.

M.-S. Chen and P.S. Yu. A graph theoretical approach to determine

a join reducer sequence in distributed query processing. IE E E

Transactions on Knowledge and Data Engineering, pages 152—164,

1994.

A.R.. Henver. The optimization o f query processing in distributed

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[KR87]

[L M F T 85]

[LPP91]

[Ma97]

[MB97]

[MBB95a]

database systems. PhD thesis, Purdue University, 1980.

H. Kang and N. Roussopoulos. Using 2—way semijoins in distributed

query processing. In Proceedings o f the 3rd International Conference

on D ata Engineering, pages 644—651, 1987.

G .M . Lohman, C. Mohan, L.M . Haas, D. Daniels, B.G. Lindsay,

P.G. Selinger, and P.F. Wilms. Query processing in R*. In Query>

Processing in Database Systems, pages 31—47. Springer, New York,

1985.

P. Legato. G. Paletta, and L. Palopoli. Optimization o f join strategies

in distributed database. Information Systems. 16(4):363—374, 1991.

X . Ma. The use o f bloom filters to minimize response time in dis­

tributed query optimization. Master’s thesis, University o f Windsor.

1997.

J.M. Morrissey and W.T. Bealor. Minimizing data transfers in

distributed query optimization: A comparative study and evaluation.

Computer Journal, 39(8):675—687, 1997.

J.M. Morrissey, S. Bandyopadhyay, and W .T. Bealor. A comparison

o f static and dynamic strategies for query optimization. In Proceed­

ings o f the 7 th IASTED/ISM International Conference on Paralle l and

Distributed Computing Systems, 1995.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[MBB95b] J.M. Morrissey, S. Bandyopadhyay, and W .T. Bealor. A heuristic for

minimizing total cost in distributed query processing. In Proceedings

o f the 7th International Conference on Computing and Information —

IC C I'9 5 , pages 736-758. 1995.

[M BBK95] J.M. Morrissey, S. Bandyopadhyay, W .T. Bealor. and S. Kamat.

Dynamic strategies and bloom filters for minimizing data transfers

in distributed query optimization. University o f Windsor, working

paper. 1995.

[M B K96] J.M. Morrissey, W .T. Bealor, and S. Kamat. A comparative evaluation

of dynamic heuristics for cost minimization. In Proceedings o f the

Eighth International Conference on Computing and Information (IC C I

’96), pages 700-716. 1996.

[M L86] L.F. Mackert and G .M . Lohman. R* optimizer validation and

performance evaluation for distributed queries. In Proceedings o f the

Twelfth International Conference on VLDB , pages 149—159, 1986.

[M M 98] J.M. Morrissey and X. Ma. Investigating response time minimization

in distributed query optimization. In Proceedings o f the International

Conference on Computing and Information (IC C V 98), pages 157—

164. 1998.

[M 0 97] J.M. Morrissey and W .K. Osborn. Experiments with the use of

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[M 098]

[Mor96]

[Mul83]

[Mul90]

[Mul93]

[Osb96]

[OV91]

reduction filters in distributed query optimization. In Proceedings

o f the Ninth LASTED International Conference on Paralle l and

Distributed Computing and Systems, pages 327—330, 1997.

J.M. Morrissey and W .K. Osbom. The use o f reduction filters for

distributed query optimization. In Proceedings o f the 1998 Canadian

Conference on Electrical and Computer Engineering, pages 707—710,

1998.

J.M. Morrissey. Reduction filters for minimizing data transfers in

distributed query optimization. In Proceedings o f the 1996 Canadian

Conference on Electrical and Computer Engineering, pages 198—201,

1996.

J.K. Mullin. A second look at bloom filters. Communications o f the

A C M , 26(8):570—571, 1983.

J.K. Mullin. Optimal semijoins for distributed databases systems.

IE E E Transactions on Software Engineering, 16(5):558—560, 1990.

J.K. Mullin. Estimating the size of a relational join. Information

systems, 18(3): 189—196, 1993.

W .K. Osbom. Distributed query optimization using bloom filters.

Report, 60-491, University o f Windsor, 1996.

M .T . Ozsu and P. Valduriez. Principles o f distributed database

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[PC90]

[RK91]

[TC92]

[VG84]

[WC96]

[WCS92]

[W LC91]

systems. Prentice Hall International, 1991.

W. Perrizo and C.-S. Chen. Composite semijoins in distributed query

processing. Information Sciences, 50:197—218. 1990.

N. Roussopoulos and H. Kang. A pipelined n-way join algorithm

based on the 2—way semijoin program. IE E E Transactions on

Knowledge and Data Engineering, 3(4):486—495. 1991.

J.C.R. Tseng and A.L.P. Chen. Improving distributed query processing

by hash-semijoins. Journal o f Information Science and Engineering,

8:525-540, 1992.

P. Valduriez and G. Gardarin. Join and semijoin algorithms for a

multiprocessor database machine. A C M Transactions on Database

Systems, 9(1): 133—161. 1984.

C. Wang and M.-S. Chen. On the complexity o f distributed query op­

timization. IE E E Transactions on Knowledge and Data Engineering,

8(4):650-662, 1996.

C. Wang, A.L.P. Chen, and S.-C. Shyu. A parallel execution method

for minimizing distributed query response time. IEEE Transactions

on Parallel and Distributed Systems, 3(3):325—332, 1992.

C. Wang, V.O.K. Li, and A.L.P Chen. Distributed query optimization

by one-shot fixed-precision semi-join execution. In Proceedings o f the

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7th International Conference on Data Engineering, pages 756—763,

1991.

[YC84] C.T. Yu and C.C. Chang. Distributed query processing. A C M Com­

puting Surveys, 16:399—433, 1984.

[YL89] H. Yoo and S. Lafortune. An intelligent search method for query

optimization by semijoins. IE E E Transactions on Knowledge and

Data Engineering, 1(2):226—237, 1989.

[Y LG + 86] C. Yu, L. Lilien, K. Guh, M . Templeton, D. Brill, and A. Chen. Adap­

tive techniques for distributed query optimization. In Proceedings o f

the 2nd International Conference on Data Engineering, pages 86—93,

1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

Wendy Osborn was born in 1973 in Windsor, Ontario, Canada. She

graduated from Tilbury District High School in 1992. From there she went on

to the University of Windsor where she obtained a B.C.S. in Computer Science

in 1996. She is currently a candidate for the Master’s degree in Computer Science

at the University o f Windsor and will graduate in the Fall of 1998.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	The use of reduction filters in distributed query optimization
	Recommended Citation

	tmp.1619555350.pdf.ce2Eo

