
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

Using active database for management of requirements change Using active database for management of requirements change

Haipeng Ge
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Ge, Haipeng, "Using active database for management of requirements change" (2005). Electronic Theses
and Dissertations. 4481.
https://scholar.uwindsor.ca/etd/4481

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4481&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4481?utm_source=scholar.uwindsor.ca%2Fetd%2F4481&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Using Active Database for

Management of Requirements Change

By
Haipeng Ge

A Thesis
Submitted to the Faculty of Graduate Studies and Research

through Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2005

© 2005 Haipeng Ge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09744-2
Our file Notre reference
ISBN: 0-494-09744-2

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 ST 5.S'

Abstract

Software system development projects experience numerous changes during their life

cycle. These changes are inevitable and driven by several factors including changes to a

system’s environment and changes of customers’ needs.

Requirements change has been reported as the major contributing factor for poor

quality or even failures of software projects. This indicates that management of

requirements change still remains a challenging problem in software development.

A critical part of the requirements change management process is impact analysis. To

carry out impact assessment, traceability information is needed. Over two decades,

requirements traceability has been an important research topic in software research, but

the actual practice of maintaining traceability information is not always entirely

successful.

In this thesis, a new traceability technique was presented for mapping dynamic

behaviors of requirements into Active Databases. The technique keeps requirements and

their related artifacts synchronized with respect to their states. It automatically maintains

traceability links between requirements and related artifacts when a requirement is

changed. This approach can not only efficiently handle basic and necessary traceability

functions, but also centralize reactive behavior by using Active Database to ensure no one

bypass traceability policies.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgment

I would like to express my appreciation to my previous advisor, Dr. Li, Liwu, whose

support and guidance make this work possible.

I am very appreciative of Dr. Wu, Dan for being my advisor after Dr. Li passed away.

His helps are unforgettable.

Also, I would specially thank Dr. Lu, Jianguo for being the internal reader. His

suggestions are the great helps to this thesis.

I would like to express my gratitude to Dr. Kao, Diana for being the external reader

from her busy schedules and her suggestions and comments.

Specially, thank Dr. Rueda, Luis for serving as the chair of the committee.

Behind the scenes are my family and friends who were always there for me. I am

beholden to you all for your encouragement and support.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract... iii

Acknowledgements..iv

List of Figures..viii

List of Tables.. ix

CHAPTER

1. Introduction...l

1.1. Introduction.. 1

1.2. Motivation..3

1.3. Research Objective... 4

1.4. Organization of this thesis.. 4

2. Background and Related Research.......................................5

2.1 Introduction..5

2.2 Requirements Engineering..6

2.2.1 Requirements Engineering Process...6

2.2.2 Process M odel.. 7

2.3 Requirements Management...8

2.3.1 Introduction.. 8

2.3.2 Requirement Management Functions.. 8

2.3.3 Efficient Requirements Management.. 9

2.4 Requirements Traceability..10

2.4.1 Introduction.. 10

2.4.2 Traceability Links.. 12

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.3 Issues Involved in Building Traceability M odel..13

2.4.4 Traceability Policies...14

2.5 Requirements Storage... 16

2.6 Traceability M ethods.. 17

2.6.1 Traceability M atrix.. 17

2.6.2 Graph-based Approaches...17

2.6.3 Contribution Structures..18

2.6.4 Information Retrieval...19

2.6.5 Event-based traceability.. 20

2.7 Summary...21

3. Active Rules in Active Database.. 22

3.1 Features of Active Database.. 22

3.2 M odeling...23

3.3 Rule Analysis... 24

4. Mapping Dynamic Behaviors of Requirements into Active

Database..26

4.1 Types of Requirements Change..26

4.2 The Attributes of Requirement, Design and Component Tables........................28

4.3 State Transition Diagram... 31

4.4 E/R M odel... 34

4.5 System Architecture..35

5. Interactions among Requirements, Designs, and Components 37

5.1 Triggered Message Sequence Charts..37

5.2 Basic Interactions... 38

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Validation and Analysis ...39

6.1 Active Rules in Oracle Database.. 39

6.2 Trigger Development Process .. 40

6.3 Implementation.. 43

6.4 Validate the proposed method.. 46

6.5 Analysis...48

6.5.1 Compare with E B T ... 49

6.5.2 Compare with Version Control... 49

6.5.3 Proj ect Management... 50

6.5.4 Reconcile Technical and Social Aspects... 51

7. Conclusion and Future Work ..52

References...54

Appendix A ..58

VITA AUCTORIS ..60

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 2.1 Requirements Engineering Process 5

Figure 2.2 Coarse-grain Activity Model 7

Figure 2.3 A Spiral Model of the Requirements Engineering Process 8

Figure 2.4 Traceability Management across the System Development Life Cycle 11

Figure 2.5 Traceability Links 12

Figure 2.6 A Requirements Traceability Model 13

Figure 2.7 Relations in TOOR 18

Figure 2.8 Traceability Recovery Process Using IR 19

Figure 2.9 EBT Architecture 20

Figure 3.1 Principal Steps of Rule Execution 24

Figure 4.1 Requirements Change Types 27

Figure 4.2 Requirements State Transition Diagram 31

Figure 4.3 E/R Model for Requirements Traceability 34

Figure 4.4 Requirements Management System Architecture 35

Figure 5.1 Example of TMSC 37

Figure 5.2 Interactions among requirement, designs and system component 38

Figure 6.1 Artifacts impacted when a change is introduced 47

Figure 6.2 Change Management 48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables
Table 2.1 Traceability Matrix 17

Table 4.1 A Requirement Entity 28

Table 4.2 A Design Entity 30

Table 4.3 A Component Entity 30

Table 6.1 The possibilities of Combination of States 43

Table 6.2 Major Differences between EBT and the Proposed Method 49

Table 6.3 Major Differences between CVS and the Proposed Method 50

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1 Introduction

1.1 Introduction
Requirements problems are expensive and plague almost all systems and software

development organizations [SSV99], Software undergoes changes at all stages of its life

cycle. That is, changes to requirements may occur at the requirements elicitation stage,

requirements specification stage, design stage, implementation stage, and maintenance

stage. Management of requirements change is frequently critical to the success of the

software product.

Karl Wiegers and David Card [SSV99] pointed out that despite a half-century of

progress in the development of software systems, many organizations continue to

struggle with the elicitation, specification, and management of requirements. The

foremost reason is that requirements engineering is not only a technical issue, but also a

social issue. Much of the information that requirements engineers need is embedded in

the social worlds of users and managers, and is extracted through interactions with these

people, e.g. through interviews and questionnaires. At its source, this information tends to

be informal and highly dependent on its social context for interpretation [GOU94],

As a system’s environment changes and customers develop a better understanding of

their real needs, requirements change is inevitable. Requirements management is the

process in Requirements Engineering to manage changes to a system’s requirements.

The principal concerns of requirements management are: managing changes to agreed

requirements; managing the relationships between requirements; and managing the

dependencies between the requirements document and other documents produced during

the systems and software engineering process [KS02].

The relationships and dependencies between requirements and between requirements

and other software engineering artifacts* are needed by impact analysis of proposed

changes* to requirements. This is usually called traceability information. Requirements

management is essentially a process of managing those large amounts of traceability

information and ensuring that it is delivered to the right people at the right time [KS02],

*An artifact is apiece o f information produced or modified as part o f the software process [RJ 01].

*A proposed change implies that impact analysis should be performed to determine how change would impact the

existing system [CCC03].

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, requirements cannot be managed effectively without requirements

traceability. Requirements traceability refers to the ability to describe and follow the

lifecycle of a requirement and its related software artifacts in both a forwards and a

backwards direction, ideally through the whole system lifecycle [GF94], Requirements

traceability captures the relationships between requirements, software design, and system

implementation of a project [RPSE95]. All the system components, including hardware,

software, personnel, manuals, policies, and procedures created at various stages in the

development process are linked to requirements [RPSE95].

In the past two decades, the concern of requirements change in the development and

maintenance process of large-scale, complex software projects has increased

considerably. Weak engineering discipline in requirements management has become the

leading cause of software failures [SG95].

Software engineering researchers have focused on identifying more effective

strategies and methods to handle changing requirements [NZW04], From the traditional

methods, such as matrices, hypertext links, graph-base approaches, word processors, and

spreadsheets, to commercial tools such as DOORS, Requisite Pro, Cradle and Slate, all

these techniques and tools support traceability by establishing direct links between

requirements and other traceable artifacts [CCC03].

Jane Cleland-Huang et al. [CZL04] proposed a method for requirements traceability,

named Event-Based Traceability (EBT), based on event-notification to establish loosely

coupled relationships between artifacts. EBT techniques can be used to trace performance

requirements.

Jane Cleland-Huang et al. [CZL04] also proposed a “Best-of-Breed” approach to

traceability, in which the retum-on-investment of the requirements traceability effort is

maximized through strategic deployment of a heterogeneous set of traceability

techniques. Those techniques include matrix, information retrieval (IR), Event-based

traceability, tracing non-functional requirements (NFR) through design patterns, and
other traceability techniques.

In 1994, Gotel and Finkelstein [GF94] published an extensive survey of traceability

problems, in which they identified several contributing factors such as insufficient of the

allocation of time, staff, and resources, lack of clarity concerning roles played by

individuals in the traceability process, failure to follow standard practices, lack of

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ongoing cooperation and coordination between people responsible for various traceable

artifacts, difficulty in obtaining necessary information in order to support the traceability

process.

All these problems have been around for such a long time without being well solved

[CCC03], One main reason is that no single technique can cover all the concerns, but a

combination of many techniques will burden practitioners.

1.2 Motivation
This research is motivated by the continuing need to increase the efficiency of

management of requirements change. To improve management of requirements change

we need to be able to collect current and correct traceability information between

requirements and related artifacts. Traceability techniques are used to identify all artifacts

that should be updated when a change is introduced. Unfortunately, there is a tendency in

even the best traceability schemes for links to fail to keep pace with the evolving system,

resulting in the gradual erosion of the traceability infrastructure and its eventual failure to

reliably represent the current state of relationships [CCC03]. Those contributing factors

include unclear traceability policies and failure to follow standard practices; insufficient

resources, time, and support allocated to traceability; lack of clarity concerning roles

played by individuals in the traceability process; inappropriate traceability methods; lack

of monitoring mechanism for traceability maintenance processes.

Here, I argue that a good solution for requirements traceability should focus on

following factors:

• Requirements traceability model should be easy to understand by all stakeholders;

• Providing horizontal and vertical traceability;

• Requirements traceability system implementation should be easy and based on

common software;

• To release time-pressure on software engineering practitioners, the system should be

easy to use and provide automation as much as possible.

In this thesis, I propose a new technique for requirements traceability which considers

the above factors by using active database. When a change is made to a requirement, the

active database management system (ADBMS) can automatically update the state of

related artifacts based on the types of change to maintain links in an efficient and

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consistent manner.

1.3 Research Objective
The research objective is to develop an effective technique for management of critical

functional requirements change. Critical functional requirements are the central mission

of software system. In fact in certain critical system in which safety is an overarching

objective, traceability of critical components must be achieved despite its cost [CZL04],

Therefore, the critical functional requirements change should be traced at a fine-grained

level.

However, when we trace critical functional requirements, there is a tendency for the

traceability infrastructure to erode over its lifetime, as time-pressured practitioners fail to

consistently and systematically update each and every link when changes occur [CCC03],

Then it will fail to reflect the current and accurate state of relationships between

requirements and their related artifacts.

In the technical side, the proposed method introduces the new concept of internal

change into requirements traceability scheme which minimizes the possibility of missing

traceability links. In the social aspect, the proposed method places centralized constraints

by using active database on traceability maintenance process to ensure no one bypass

traceability policies. It also keeps requirements and their related artifacts in a consistent

state*. The well integration of these two aspects will demonstrate that the proposed

method is suitable for tracing critical functional requirements.

1.4 Organization of the Thesis
This thesis is organized as follows: Chapter 1 explains the motivation and objective

of this thesis. Chapter 2 presents background and reviews related research in

requirements traceability. The features of active databases systems are introduced in

Chapter 3. Chapter 4 presents the proposed system architecture for mapping the dynamic

behavior of requirements into active database. Chapter 5 shows the interactions among

requirements, designs and system components by using Triggered Message Sequence

Charts. The effectiveness of the proposed method is assessed in Chapter 6. Chapter 7

presents the conclusions.

*An artifact is in a consistent state when its state and the state o f its related links accurately represent the current state

o f the system configuration.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 Background and Related Research

2.1 Introduction
Requirements engineering (RE) is one branch of software engineering that has

emerged to facilitate the development of software that truly meets the needs of the client

[ZAV97]. Requirements engineering process activities shown in Figure 2.1 include

requirements elicitation, requirements analysis and negotiation, requirements

documentation and requirements validation [RE04]. In parallel with all of the above

processes is a process of requirements management which is concerned with managing

changes to the system requirements. The principal requirements management activities

are change control and impact analysis. Change control is concerned with establishing

and executing a formal procedure for collecting, verifying and assessing changes; Impact

analysis is concerned with assessing how proposed changes affect the existing system. To

carry out these activities, information about requirements dependencies, requirements

rationale and the implementation of requirements should be maintained. This is usually

called traceability information. This research presents a new method for requirements

traceability (RT). Sections 2.2 - 2.6 review related research in requirements engineering,

requirements management, requirements traceability, and traceability techniques,

respectively.

Impact
Analysis

Change
Control

Requirements
Validation

Requirements
Elicitation

Requirements
Documentation

Requirements
Analysis and
Negotiation

Requirements
Development

Requirements
Management

Requirements
Engineering

Figure 2.1 Requirements Engineering Process

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Requirements Engineering

Requirements engineering is concerned with the identification of the goals to be

achieved by the envisioned system [LAMOO], It is important to realize that it is

impossible to develop a computer-based system without knowing its goals.

2.2.1 Requirements Engineering Process

The stage that precedes system design is called requirements engineering. Its aim is to

ensure that the delivered system satisfy customer’s needs. Normally, requirements

engineering is a complex process, because many people involved in it may have different

background, views, needs, and interests. The activities in the requirements engineering

process are as follows:

(a). Requirements Elicitation

In this process, the system requirements are discovered through consultation with

stakeholders, from system documents, existing domain knowledge, and market research.

The stakeholders analyze the problems, the needs, and the domain characteristics. Based

on that analysis, they decide the changes to be introduced in the domain and the functions

that should be performed by the system.

(b). Requirements Analysis and Negotiation

In this process, stakeholders analyze the requirements in detail and different

stakeholders negotiate to decide on which requirements are to be accepted. This process

is necessary because there are inevitably conflicts between the requirements from

different sources, information may be incomplete or the requirements expressed may be

incompatible with the budget available to develop the system.

(c). Requirements Documentation

In this process, the agreed requirements are documented at an appropriate level of

detail. In general, the requirements document should be understandable by all system

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stakeholders. This usually means that the requirements must be documented using natural

language and diagrams. More detailed system documentation, such as system models

may also be produced.

(d). Requirements Validation

In this process, requirements specifications are checked with respect to customers'

needs. It must be ensured that users get a complete understanding of how the future

system will be before it is built. This is also a crucial process that can be done well only if

requirements have been described explicitly.

2.2.2 Requirements Engineering Process Model

In practice, there are no distinct boundaries between these activities, the activities are

interleaved and there are many iteration and feedback from one activity to another

activity.

Figure 2.2 shows a sequence of theses phases.

A g r e e d
r e q u ire m e n ts

R e q u ir e m e n ts
a n a ly s is a n d
n e g o tia tio n

R e q u ir e m e n ts
d o c u m en ta tio n

R e q u ir e m e n ts
va lid ation

R e q u ir e m e n ts
elic itatition

S y s te m
sp e c ific a tio n

E x istin g s y s t e m s
inform ation

O rg a n isa tio n a l
s ta n d a r d s

S ta k e h o ld e r

R e g u la t io n s

D o m a in
inform ation

Figure 2.2 Coarse-grain activity model of the requirements

engineering process [RE04]

In Figure 2.3, it shows that the different activities in requirements engineering are

repeated until a decision is made. If a problem in requirements document is found, the

elicitation, analysis and negotiation, documentation, and validation spiral is re-entered.

This continues until an acceptable document is produced or until external factors such as

schedule pressure or lack of resources mean that the requirements development process

should end. A final agreed requirements document then is produced. Any further changes

to the requirements are then part of the requirements management process.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Informal s ta tem en t of
requirem ents

D ecision point:
A ccept docum ent or re-enter

spiral

R equirem ents analysis
and negotiationR equirem ents elicitation

Start

A greed requirem entsR equ irem en ts d o cu m en t and
validation report

Requirem ents
docum entationR equirem ents validation

Draft requirem ents docum ent

Figure 2.3 A spiral model of the requirements engineering process [RE04],

2.3 Requirements Management

2.3.1 Introduction

The management of requirements is an essential element of software development to

ensure program success. As software systems become increasingly large, the

management of their requirements becomes increasingly challenging [PN98].

As computer based system has been involved large application domain, management

of these system development has been more complicated and sometimes uncontrollable.

The successful management of a large system development requires strict control over

the requirements specification, the documentation and code constituting the product

[PN98],

2.3.2 Requirement Management Functions

There are two important activities in requirements management process: impact

analysis and change control. Impact analysis is defined by Bohner and Arnold as

“identifying the potential consequences of a change, or estimating what needs to be

modified to accomplish a change” [BOH91]. Impact analysis uses relationships between

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

requirements and related artifacts. Lack of detailed information between requirements

and related artifacts limits the effectiveness of impact analysis.

Change control is concerned with the procedures, processes and standards which are

used to manage changes to a system’s requirements. Change control ensures that

traceability information is collected for each proposed change and overall judgment is

made about the costs, possibility and benefits of proposed changes. Without formal

change control, it is impossible to ensure that proposed changes to the requirements fulfill

the fundamental business goals.

2.3.3 Efficient Requirements Management

The aim of requirements management is to reduce requirements related errors and to

ensure requirements traceability throughout all development phases. Following are some

important issues that efficient requirements management should consider:

• Ensure Requirements Traceability.

Requirements traceability is very important to ensure that the software is produced in

accordance with stakeholders expectations and that the stakeholders receive what they

have paid for, no more and no less.

We should well organize all collected requirements and make sure all of them are

handled, even though some are not necessarily implemented. This implies that each

requirement and all other components need to have their own, unique identifier in order

to perform requirements tracing. And the storage of information in a table or database can

ensure full traceability.

• Using Appropriate Attributes of Requirements.

When we store the information of requirements traceability, we should find a way to

get a good representation of requirements. That means what kind of attribute of a

requirement should be selected. And this selecting should make it easier to sort

requirements and to search for requirements with specific properties. By using

appropriate attributes, we can view and analyze requirements from many different points

of view. Some potential attributes are:

• Source

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Priority

• Requirement types

• Status

• Date

• Created by

• Updated information

• Choosing Appropriate Requirements Management (RM) tools.

There are many advantages when we use RM tools to support requirements

traceability. The tools provide various methods by which stakeholders are able to view,

update requirements traceability links. Some tools can also produce statement of

compliance from customer and product requirements, keep track of testing progress,

evaluate cost and so on.

• Making Sure Developers Get Enough Training When Using RM Tools

The requirement management tools available today require a high degree of

knowledge not only in the potential application of the tool but also in the actual use of the

tool base itself. After you get appropriate RM tool, the next thing is how to use it, or how

to utilize RM tool to maximize your return-on-investment. Some requirements

management tools are complicated, and need time to learn how to use it. All practitioners

must get training and must follow the procedures of RM tools.

2.4 Requirements Traceability

2.4.1 Introduction

One of the aims of requirements management is to ensure requirements traceability

throughout system development life cycle. Within system development life cycle,

requirements must be traced both forward and backward to assure that the correct system

is being designed and produced [PAL97]. Requirements traceability, then, is defined as

the ability to describe and follow the life of a requirement, in both a forward and

backward direction, ideally through the whole systems life cycle [GF94].

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Traceability management* applies to the entire development life cycle from project

initiation through operation and maintenance as shown in Figure 2.4.

Traceability Management

System Requirements

Hardware and
Software

Requirements

Design

Build and Test

Integration Test
and Evaluation

Operation and
Maintenance

Figure 2.4 Traceability management across the system development life cycle [PAL97]

Successful software system development depends on the ability to satisfy stakeholder

needs and to reflect these satisfactions in the delivered system. Requirements and their

related artifacts that are in a correct, current and consistent state, play a major role in

ensuring that the delivered system truly meets customer needs.

Large-scale complex software systems are initiated by customer expectation. From

this beginning, system requirements are elicited to broadly outline the expectation, which,

in turn, are investigated to ascertain feasibility and examine trade-offs. Once the

feasibility of the desired system have been determined to be necessary and sufficient to

launch a new system, design is completed and systems are constructed, tested, and

implemented. It is essential to maintain traceability from the system requirements to

related artifacts to assure that the delivered system meets the customer’s needs.

Traceability gives essential assistance in understanding the relationships that exist

within and across software requirements, design and implementation and is critical to the

development process by providing a means of ascertaining how and why system

development products satisfy stakeholder requirements, especially for large complex

systems[PAL97]. Traceability provides a means to validate and verify system

requirements to assure the delivered system truly meets customer’s needs.

*Traceability management controls and directs tracing from top level through to design and code [PAL97].

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, traceability is often misunderstood, frequently misapplied, and seldom

performed entirely successful [PAL97]. There are many challenges to achieving

traceability, particularly the absence of automated technique to assist in establishing

traceability links between requirements and between requirements and their related

artifacts.

2.4.2 Traceability Links

Davis [DAV90] has classified traceability information into four types. Figure 2.5

shows four kinds of traceability links with respect to their relationships to requirements:

F<

Stakeholders’ need

Bac

irward-to traceak

kward-from trace

ility Fon
Requirements

document
ability ̂ Bac

i/ard-from tracea

kward-to traceak

>ility

Design specification

ility

Pre-requirement Post-requirement
traceability traceability

Figure 2.5 Traceability Links

(a). Forward to traceability

Changes in stakeholder needs, as well as in technical assumptions, may require a

radical reassessment of requirements relevance.

(b). Forward from traceability

Responsibility for requirements achievement must be assigned to system components,

such that accountability is established and the impact of requirements change can be

evaluated.

(c). Backward to traceability

Compliance of the system with requirements must be verified, and gold-plating must

be avoided.

(d). Backward from traceability

The contribution structures underlying requirements are crucial in validating

requirements, especially in highly political settings.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The first two traceability types are called post-requirements traceability. They link

requirements to design and implementation, documenting responsibility assignment,

compliance verification, or impact analysis of a requirement. The latter two types are

called pre-requirements traceability. They document the rationale and sociopolitical

context from which the requirements emerge. It is fair to say that post-traceability is

much better understood than pre-traceability, even though only pre-traceability will really

provide the often demanded linkage between the business and IT.

2.4.3 Issues Involved in Building Traceability Model

A primary concern in the development of large-scale, real-time, complex, computer

intensive systems is ensuring that the performance of system meets the specified

requirements [RE93]. It is necessary to build a comprehensive scheme for maintaining

traceability that all system components, created at various stages of the development

process, are linked to the requirements. These components include software, hardware,

standards, business policies, personnel, and procedures. The following figure is an

example of requirements traceability model, which is from the ADIP project (a flight

control project) of DoD of the U.S. [RPSE95],

C H A N G E P R O P O S A L

R A T IO N A L E

T E S T

C O M P L IA N C EREQUIREMENTS

S T A K E H O L D E R

©W
E X T E R N A L

Figure 2.6 A Requirements traceability model [RPSE95],

This model shows us what kind of information should be captured when we apply

requirements traceability scheme in our project. In this model, stakeholders create source

documents and requirements. Stakeholders can initiate change proposal to modify

requirements. Higher level requirements are iteratively refined to derive lower level detail

requirements. Requirements that identify system constraints and dictate the system design

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

activity are explicitly identified. Also, traceability on how the requirements are allocated

to the system components is captured [RPSE95].

A principal challenge in building a requirements traceability model is that it should

represent and provide the semantics of various traceability linkages or relationships

between requirements and system components. One must consider following important

issues [RE93] when designing a traceability model:

• Bi-directional Traceability

Bi-directional traceability includes both forward and backward traceability.

Bidirectional traceability can make sure that stakeholders' needs are satisfied by system

components and the delivered system is what the stakeholders expect, no more and no

less.

• Criticality of Requirements

To identify critical requirements is to relate them to the major task of the system. This

needs a mechanism to represent the elaboration and refinement of requirements. Because

we do not want to record linkages between every requirement and every output created

during the system design process related to it. This will lead an uncontrollable amount of

information.

• Design Rationale

Traceability linkages to represent rationale would capture the why or reason for

design decisions. Tracking relationships among design objects, and understanding how

and which of those objects is affected by change, is vital in the maintenance of the

system. Traceability could be very useful for justifying why you did something the way

you did it [RE93],

• Project Management

Traceability ensures customer satisfaction by providing us a documented means by

which to prove to the customer that all of the stated requirements are met and that the job

is completed [RPSE95].

Project manager can use traceability links such as status, completion date, and

authorization between various components of the system for scheduling, continuity, and

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

security. Traceability provides a means to them to fully control the project. System

engineers can utilize traceability information to capture the engineer's design rationale

explaining why the system was designed the way it was. This information could prove

invaluable throughout life cycle maintenance and on the development of similar systems

[RPSE95],

• Accountability

Some accountability information should be captured to provide a better means in

maintaining and revising a system. The information include: design elements designed

by, validated by, and modified by development personnel.

• Horizontal and Vertical Traceability

Horizontal traceability refers to the traceability between objects of same type, and

vertical traceability refers to the traceability between object of different types.

• Automated Support for Traceability

Maintaining traceability links will be extremely time-consuming and error-prone if

we manually capture traceability information. So an automated requirements

management tools is very important.

2.4.4 Traceability Policies

The fundamental problem with maintaining traceability information is the high cost

of collecting, analyzing and maintaining that information. To help software engineers

who are responsible for requirements management, it is helpful if an organization

maintains a set of traceability policies which defines the traceability information to be

maintained. These should normally include the following:

a) What kind of traceability information should be maintained?

b) What kind of traceability techniques should be used for maintaining traceability

links?

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c) A description of when the traceability information should be collected during the

requirements engineering and system development processes, the roles of the

people who are responsible for maintaining the traceability information.

d) The process used to ensure that the traceability information is updated after the

change has been made.

Traceability policies usually have to be specialized for each project. However,

whatever traceability policies are specified, it is very important that they should be

realistic. Maintaining traceability information is tedious, time-consuming and labour-

intensive. Very comprehensive traceability policies may be fine in principle but, if they

cannot actually be implemented, they are useless.

2.5 Requirements Storage

Requirements are stored in a repository provided by computer systems such as word

processor, spreadsheet and database system.

A word processing system or spreadsheet system is usually used to create the initial

version of the requirements document. The requirements are stored as one or more files.

Most organizations which produce requirements for small and medium-sized systems

maintain their requirements in this way.

Relational databases are now the most commonly used type of database. Relational

databases were designed for storing and managing large numbers of records which have

the same structure and minimal links between them. A requirements database can be used

to link requirements and related artifacts.

Object-oriented databases have been developed relatively recently and are structurally

more suitable to requirements management. They are better than relational databases

when there are many different types of entity to be managed and where there are direct

links between different entities in the database. They allow different types o f information

to be maintained in different objects and managing links between objects is fairly

straightforward.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Traceability Methods

This section examines current traceability practices and methods and discusses some

of the difficulties and weaknesses related to each approach. This discussion provides a

clear direction as to the types of problems that a new traceability method should attempt

to solve.

2.6.1 Traceability Matrix

The traceability matrix [PAL97] is the most frequently used method for establishing

traceability. In a basic traceability matrix the cells that represent relationships between

the entities defined in the current row and column are marked with an “X”. It is also

possible for an entity to be displayed as both a row and a column so that intra-entity

relationships can be defined.

The following table shows that traceability was established to design specification,

class diagrams, java code and test cases.

Requirements
Number Description Traces To

RS15
Players shall be able to move pieces

on the board DS08.CD13, JV03.TC05

RS16
Players shall be able to write comment

on the whiteboard DS08,CD13,JV04,TC06

RS18
The board shall support multiple

players DS09,CD14,JV06,TC08

Table 2.1 Traceability Matrix

The advantage of traceability matrices is that they are simple to construct and when

they carry only the limited amount of information shown in these example, they are

relatively simple to maintain. However, in reality, traceability links are numerous and

extend between many different types of products, which make link maintenance

extremely difficult.

2.6.2 Graph-based Approaches

Pinheiro and Goguen [PG96] designed TOOR for tracing requirements. TOOR stands

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for “Traceability of Object-Oriented Requirements”. TOOR is derived from its use for

object-oriented development and its object-oriented implementation, which allows the

definition of classes and subclasses of objects and relationships among objects. Of

course, the requirements themselves are not necessarily object-oriented.

TOOR supports the linking of requirements to design documents, specifications,

programming code, and various other artifacts through the use of relations instead of

simple links [JH02]. These relationships are user-definable.

Figure 2.7 represents the configuration of objects and relations with people involved.

Requirements are associated with project specification through either PartOf (e.g.

TR0001) or direct relationship (e.g. requirement TR0005).

A ssm rt~ t - *■ E l E xtra c t - - T I O O K s y i ,

Assm rt .* E 2 _ _ _ ■......... i E x f r a c f ------------ * T W 2 - 7 S

A s s m t r ~ ~ * E 3 -----------— E x h x x t ■ - T P C ^ i k I

A s s a r t - :£ 4 :.......... ~ E xtra c t ~ • T p y , i t j

A s s e r t r*■ £ 5 — E x lr a c i"

' l K U U * > - ! p

* I f e j G ’ 6 I p

A s s e r t ----- .— * E 6 . -
— t r x J r c K r f ' ■ - - T k i : i ? i p

A s s e r t ~
------ ,— —

- E xtract
* ' “" ' 7

fkwtOi/

PS

Figure 2.7 Relations in TOOR [PG96].

This approach is very powerful and expressive. It supports an extremely rich

traceability scheme. But it needs professionals to give the definition of objects and

relationship, and the maintenance of those links could be very complex.

2.6.3 Contribution Structures

This approach identified the inadequate pre-requirements traceability, caused by the

paucity and unreliability of information about requirements production, was uncovered as

a likely reason for requirements traceability problems in the longer-term [GF95].

Concepts from the social sciences are applied into requirements traceability to address

some problems. It links tangible RE artifacts (contributions) to details of agents who have

contributed to their production (contributors) using contribution relations.

Contribution structure refers to all the contribution relations defined for an artifact.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The relation between agents and artifacts could be defined using terms like “contributed

to” and “contributed by”. Contribution format defines the nature of the contribution

relations, and which includes some attributes: principal, author, documentor, approved

by, pending approval by, not approved, and so on.

This approach extends conventional forms of artifact-based requirements traceability

with accompanying contribution structures, which thereby offers a way to accommodate

the diverse forms of personnel-based requirements traceability [GF95],

2.6.4 Information Retrieval (IR)

Information Retrieval can be used in certain situations to dynamically generate links

in place of user-defined explicit links [CZL04], Most of the documentation that

accompanies large software systems consists of free text documents expressed in a

natural language. Examples include requirements and design documents, user manuals,

logs of errors, maintenance journals, design decisions, reports from inspection and review

sessions, and also annotations of individual programmers and teams [ACCDOO].

Therefore, a query can be constructed from the keywords of the requirement to be traced,

and based on the similarity of the query with artifacts in the search space, the retrieval

algorithm then returns a set of likely links to the user [CZL04],

The following figure shows the process of traceability link recovery using IR:

Q u e ry E x tra c tio n

com ponen t

T ext N orm alization

Separation

S topw ord
Indexer

Figure 2.8 Traceability Recovery Process Using IR [ACCDOO]

In the first path which is at the bottom of the picture, software documents are indexed

based on a vocabulary that is extracted from the documents themselves, the second path

builds and indexes a query for each source code class, finally, a classifier computes the

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

similarity between queries and documents and returns, for each class, a ranked list of

documents [ACCDOO].

The primary advantage of IR traceability techniques is that they eliminate the need

for maintaining links, and when applicable can eradicate the problem of outdated and

incomplete links. But, it can only work effectively if and when there is a high lexical

correlation between the requirement and its related artifacts.

2.6.5 Event-based Traceability

Event-based requirements traceability [CCC03] is based upon event-notification and

builds loose coupled relationship between artifacts through an event service. Figure 2.9

shows Event-based traceability architecture. It contains three main components. The

requirements manager is responsible for managing requirements, monitoring changes to

those requirements, and for publishing change event messages to the event server. The

event server is responsible for establishing traceability by handling initial subscriptions

placed by dependent entities. It also listens for event notifications from the requirements

manager and forwards event messages to relevant subscribers. The subscriber manager

listens on behalf of the subscribers that it manages for event notifications forwarded by

the event server. Depending upon event and subscriber type, the manager either stores the

incoming event message in an event log for later human-supported resolution, or else

processes it automatically according to a set of predefined rules.

Require­
ments
Manager

Actions
applied by
user m order
to change
requirements

Requirem ents Traditional direct traceability link
Dependent

entity
» Document (not present in the EBT approach)

Monitor

Subscriptioi
Changed value
or new/changed
functionality

Event
Recognition

Algorithm

— ------------- Event
Publisheg Notification Subscriber

Event
* Subscription

Manager fcvertf
L e o __J

Figure 2.9 EBT Architecture [CCG02]

Event-based requirements traceability addresses several of the identified causes of

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

traceability failure, such as the problems related to the need for close coordination

between team members, lack of visibility into the current state of the dependencies, lack

of training, and the tendency of developers to fail to maintain links because of a

perceived lack of immediate benefits [CCC03]. Event-based requirements traceability

can also support tracing certain types of NFRs, through the use of design patterns as

intermediary objects.

2.7 Summary
This chapter presents background and related research in requirements management

and requirements traceability. Requirements traceability is fundamental for management

of requirements and evolving requirements when developing and maintaining software

systems. Traditional traceability techniques store traceability information in word

processor, relational database or object-oriented database. In this thesis, I will present a

new traceability technique which stores traceability information in active database.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 Active Rules in Active Database

Traditionally, database systems have been viewed as repositories that store the

information required by an application and are accessed either by user programs or

through interactive interfaces [PD99]. In such a context, database management systems

(DBMS) are passive when external events happen and difficult to maintain in a consistent

state.

Active database management systems (ADBMS) support mechanisms that enable

them to respond automatically to events and centralize reactive semantics to increase data

consistency. These advantages can be applied into requirements traceability system. By

using reactive behavior in ADBMS, requirements changes can be captured automatically.

By using centralized reactive semantics, requirements and their related artifacts can be

maintained in a consistent state. In this chapter, active rules and rules analysis are

described.

3.1 Features of Active Rules

As the scale and complexity of data management increased, interest has grown in

bringing active behaviors into databases, allowing them to respond independently to data-

related events. Typically these behaviors are described by event-condition-action (ECA)

rules [GSS04],

EC A rules have up to three components: event, condition, and action. The event

describes an external happening to which the rule may be able to respond. The condition

examines the context in which the event has taken place. The action describes the task to

be carried out by the rule if the relevant event has taken place and the condition has

evaluated to true. In sum, if the specified event occurs and if the condition is true, the

specified action is executed [GSS04],

There are several advantages in using ECA rules to implement reactive functionality

compared to direct implementation in application code:

• ECA rules allow an application’s reactive functionality to be specified and managed

within a rule base rather than being encoded in diverse programs and, thus, enhance

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the modularity, maintainability, and extensibility of applications.

• It promotes code reusability. Rather than replicating code in distinct applications, the

code resides in a single place from which it is implicitly invoked. Such centralization

accounts for increasing consistency because no application can bypass the policy, and

maintenance is eased as changes to the policy are localized in a single piece of code.

• Moreover, in a client/server environment, centralized reactive behavior reduces

network traffic, as the reaction associated with the event is executed locally as the

single implicit invocation arises.

• ECA rules have a high-level, declarative syntax. They are amenable to analysis and

optimization techniques, which cannot be easily applied if the same functionality is

expressed directly in application code.

• ECA rules realize a generic mechanism that can abstract a wide variety of reactive

behaviors, in contrast to application code that is typically specialized to a particular

kind of reactive scenario.

3.2 Modeling

Active databases support certain applications by moving the reactive behaviors from

the application into the ADBMS. Active databases are thus able to monitor and react to

specific circumstances of relevance to an application. The reactive semantics is both

centralized and handled in a timely manner [PD99].

An ADBMS must provide a knowledge model (i.e., a description mechanism) and an

execution model (i.e., a runtime strategy) for supporting this reactive behavior [PD99].

3.2.1 Knowledge Model

The knowledge model of an ADBMS indicates what can be said about active rules in

that system. The knowledge model of an active rule is considered to have three principal

components, an event, a condition, and an action [PD99].

An event is something that happens at a point in time.

The role of a condition indicates whether it must be given. In ECA-rules, the

condition is generally optional. When no condition is given for an ECA-rule, or where the

role is none, an event-action rule results. In systems in which both the event and the

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

condition are optional, it is always the case that at least one is given.

The range of tasks that can be performed by an action is specified as its options.

Actions may update the structure of the database or rule set, perform some behavior

invocation within the database or an external call, inform the user or system administrator

of some situation, abort a transaction, or take some alternative course of action using do-

instead.

3.2.2 Execution Model

The execution model specifies how a set of rules is treated at runtime. The execution

model of a rule system is closely related to aspects of the underlying DBMS (e.g., data

model, transaction manager) [PD99].

The following figure shows the principal steps that take place during rule execution:

Event Source

Signaling Evaluation ExecutionScheduling

Evaluated
Rules

Event
O currences

Triggering

Triggered
Rules

Selected
Rules

Figure 3.1 Principal steps of rule execution [PD99]

The signaling phase refers to the appearance of an event occurrence caused by an

event source.

The triggering phase takes the events produced thus far, and triggers the

corresponding rules. The association of a rule with its event occurrence forms a rule

instantiation.

The evaluation phase evaluates the condition of the triggered rules. The rule conflict

set is formed from all rule instantiations whose conditions are satisfied

The scheduling phase indicates how the rule conflict set is processed.

The execution phase carries out the actions of the chosen rule instantiations. During

action execution other events can in turn be signaled that may produce cascaded rule

firing.

3.3 Rule Analysis

Rules can be seen as an implementation mechanism, but implementation must be

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

preceded by analysis. Reactive behavior is based on business policies. Business policies

are explicit statement of constrains placed on the business that concern both structural

aspect and behavioral aspect. Structural aspect is concerned with the description of

essential concepts, relationships, or states. Behavioral aspect is concerned with the

procedures that govern how the business operates.

Recovering business policies focus on the structural aspect. It expresses the

conditions that should hold in the domain. Causal business policies focus on the

behavioral aspect. It reflects the procedural aspects of the organization. In this thesis, an

E/R model is used to represent the structural aspect of requirements traceability, a state

transition diagram is used to represent the behavioral aspect of a requirement. In this

way, traceability policies are mapped into Active Database.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 Mapping Dynamic Behaviors of
Requirements into Active Database

In this chapter, I present an approach to map the dynamic behaviors of requirements

change into active databases. I shall use a state transition diagram to define the states or

stages in the lifecycle of a requirement. An E/R model is used to represent the structural

patterns of requirements traceability in active database. Lastly, I will present the system

architecture for managing requirements changes.

4.1 Types of Requirements Change

Software development is a dynamic process, this causes software requirements

change while development is still in process. Identifying and characterizing the nature of

requirements changes could lead to more effective management of changing requirements

[NZW04]. As system’s environments change or customers develop a better

understanding of their real needs, requirements changes are inevitable. This kind of

change is considered as external change. However, during the development of software

system, a requirement will undergo different development stages. In each stage, this

requirement may have different set of related artifacts, or the relationship between this

requirement and its related artifacts changes. This kind of change is considered as internal

change. Figure 4.1 shows external change and internal change of a requirement in

requirements traceability scheme.

The formal definitions of external change and internal change are given below:

External Change: Relating to, or connected with the outside or an outer part, such as

system’s environments or customer’s new needs. It is explicit.

Internal Change: Of, or located within the surface, such as relationships between a

requirement and its related artifacts during the development of a software system. It is

implicit.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Stakeholders
External C hanges C hange Proposal

Modify

Insert

Requirement

CodeDesignRequirement
Development T est

Internal C hanges

Figure 4.1 Requirements Change Types

Traditional traceability techniques such as matrix, IR and EBT have focused on

external change. When we trace critical requirements which are the central mission of the

system, there is a tendency for the traceability infrastructure to erode over its lifetime, as

time-pressured practitioners fail to consistently and systematically update each and every

link when changes occur [CCC03]. Then it will fail to reflect the current and accurate

state of relationships between requirements and their related artifacts. Apparently,

mechanisms of monitoring maintenance of requirements change are lacking in the

traditional traceability techniques.

The introduction of internal change into requirements traceability scheme provides a

means to monitor requirements traceability maintenance process. This mechanism

ensures that practitioners must follow requirements traceability policies. Maintenance of

requirements change are also monitored and controlled by active rules. In this thesis, the

proposed method will consider both external and internal change.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 The Attributes of Requirement, Design and Component

Tables

Relational databases are now the most commonly used type of database.

Requirements are maintained in a database with each requirement represented as one or

more database entities. The facilities of the database can be used to link related

requirements and it is usually possible to formulate fairly complex database queries to

identify requirements groupings. The database may provide some version control

facilities or, at least, provision for these facilities to be implemented.

In this thesis, a small project (Chess game software system) is used to validate the

proposed method. First, the requirements of this system are elicited. Then, based on

those requirements, the design specifications are defined and described. Finally, the

system components are developed to satisfy those requirements.

In Chapter 2 section 2.3.3, I discussed that using appropriate attributes of

requirements is very important for efficient requirements management. In this section, the

attributes of requirements, design specifications and system components which will be

used in Chess game software system are introduced below. The detailed data definition of

this system is presented in Appendix A.

Table 4.1 shows data definition of requirements which have 11 attributes:

REQUIREMENT

Identifier: TEXT
Statement: TEXT | GRAPHIC
Date_entered: DATE
Date_changed: DATE
Rationale: Rationale ID
Stakeholder: Stakeholder ! D
Design: DesignJD
Status: STATUS
Dependants: REQJJST
ls_dependent_on: REQJJST
Level: TEXT
Comments: TEXT___________

Table 4.1 A Requirement Entity

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A requirement has the following attributes:

1. Identifier

This is a simple text string which is assigned when a requirement is created in the

database and it is the key of this table.

2. Statement

This is a statement of the requirement which may be natural language text or a diagram.

3. Date_entered

The date that the requirement was originally entered in the database.

4. Date changed

The date of the last alternation to the requirement.

5. Rationale

This is a reference to a set of information which provides a rationale explaining why the

requirement has been included. The associated information may include text, diagrams or

photographs.

6. Stakeholder

This is a reference to stakeholders who are responsible for this requirement.

7. Design

This is a reference to a design entity which is related to this requirement.

8. Status

This is a variable representing the status of the requirement. The status may be ‘new’,

‘waiting’, ‘satisfied’, ‘pending’, ‘testing’ and ‘inactivated’.

9. Dependants

This is a list of references to requirements which depend on this requirement.

10. Is dependent on

This is a list of references to requirements on which this requirement depends.

11. Level

Level number which shows the position of a requirement in a requirement tree structure.

12. Comments

This is any other information which may be useful. In this thesis, I use this field to record

event.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.2 shows data definition of designs which have 12 attributes:

DESIGN

Identifier: TEXT
Statement: TE X T | G RAPHIC
Type: TEXT
Date entered: DATE
Date changed: DATE
Stakeholder: Stakeholder_ID
Requirement: Req_id
Component: Com ponentJD
Status: STATUS
Dependents: DESIG N_LIST
Is dependent on: D E S IG N L IS T
Level: TEXT
Comments: TEXT

Table 4.2 A Design Entity

1. Type

The type of design specification.

2. Component

This is a reference to a system component which fulfills this design.

3. Status

The status may be ‘null’, ‘designing’ and ‘designed’.

Table 4.3 shows data definition of components which have 12 attributes:

COMPONENT

Identifier: TEXT
Statement: TEXT | GRAPHIC
Type: TEXT
Date_entered: DATE
Date_changed: DATE
Stakeholder: StakeholderJD
Design: DESIGNJJST
Test: Test_ID
R esource: R e s o u rc e _ ID
Status: STATUS
Dependents: COM PONENTJJST
ls_dependent_on: COMPONENTJJST
Level: TEXT
Comments: TEXT

Table 4.3 A Component Entity

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Test

This is a reference to a test case which verifies satisfaction with requirements.

2. Resource

A description of any and all resources that are managed, affected, or needed by this

entity.

3. Status

The status may be ‘null’, ‘developing’ and ‘developed’.

In practice, it is almost impossible to define a schema which covers everything. The

proposed method will only focus on functional-requirements traceability.

4.3 State Transition Diagram

A state transition diagram [PVC98] specifies the lifecycle of a requirement. It shows

the possible sequences of state transitions and the operations that make the state

transitions. Nodes in the diagram represent the various states of a requirement, and arcs

denote state transitions caused by events applicable to that requirement. The state

transition diagram in Figure 4.2 is used to specify the lifecycle of software requirements.

W aiting-
D esign ing

W aiting-
D evelopingo ^

P end ing -
D evelopingN ew

T esting
Inactivated

P en d in g -
D eveloped

S atisfied

C _D : C h a n g e D e c is io n ~|

Figure 4.2 Requirements State Transition Diagram

As shown in Figure 4.2, a requirement can go through the following states:

1. New: A newly created requirement is in the new state. A requirement in the new state

can be modified by a requirements engineer.

2. Waiting: After a requirement in the new state is assigned to design components or it is

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modified, the requirement enters the waiting state. Modifying a requirement in the

pending state also transfers the requirement to the waiting state.

3. Testing: After the development of the designed components that are related to a

requirement is finished, the requirement enters the testing state. If the test of the

software components against the requirement passes, the requirement enters the

satisfied state; otherwise, the requirement returns the waiting state for re-engineering

or re-development.

4. Satisfied: The requirement has been satisfied or realized by certain system components

or the system components related to the requirement has passed specific test against

the requirement.

5. Pending: When a change is made or proposed for a requirement that is in the satisfied

state or waiting-developing state, we need an impact analysis for the change. The

impact analysis may lead to one of three possibilities: The change is aborted, and the

requirement is returned to the previous state; the requirement is changed as expected

and it enters the waiting state; and the requirement is inactivated.

6. Inactivated'. After a requirement is inactivated or disposed, the requirement enters the

inactivated state.

The state transition diagram describes state changes of requirements based on events

of action or operation execution for requirements. The state transition diagram in Fig. 5.2

uses the following events:

External change events:

1. New. Create a new requirement.

2. Activate: Activate an inactivated requirement.

3. Inactivate: Inactivate an active requirement.

4. Change: Modify a requirement when change decision is yes.

5. Impact analysis: Impact analysis is performed to determine how a change may

impact on the existing system.

6. Change Abort: A change is aborted when change decision is no.

Internal change events:

1. Designing: Begin to design for a requirement.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Designed: The design for a requirement is finished.

3. Developing: Begin to develop for a requirement.

4. Developed: The development of related artifacts for a requirement is finished.

5. Pass: System components pass the test.

6. Do not pass: System components do not satisfy the related requirement and the

requirement needs re-develop.

Based on the above states and events, two examples are given below to show the

active rules for the impact analysis event and the change event.

RuleName: Impact Analysis

RuIeStatus: Active

On a change proposal is introduced for a requirement

If State = Satisfied or Waiting-Developing

Do query all the related artifacts;

set State to Pending;

send the report to software engineers;

RuleName: Change

RuIeStatus: Active

On update a requirement

If State == Pending and the decision of change — Yes

Do modify the requirement;

Set State to Waiting-Designing;

Set the State of related artifacts to Designing or Null;

Notify the designers and developers;

If State == Pending and the decision of change == No

Do Set State to the previous state

Notify the software engineers;

If State == New or Waiting-Designing

Do Modify the requirement;

Notify the software engineers

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These active rules are placed on requirements table to monitor requirements change.

When an external or internal event happens, the active rule evaluates the conditions

according to the type of the event, and then takes appropriate action to make sure the

state of a requirement follows the sequence which is described in the state transition

diagram.

4.4 E/R Model

Figure 4.3 presents a high-level entity-relationship (ER) model for modeling

requirements traceability with active rules:

Requirem ents Conflict Set

Active Rules Stakeholders

Verification
Procedures

Resource

Design

System Com ponents

Rationale

Figure 4.3 An E/R Model for Requirements Traceability

In the above figure, each of the entity types except active rules and conflict set is

represented using a table in SQL. The SQL create table commands for the corresponding

tables are provided in Appendix A.

A requirement is created by a stakeholder and a stakeholder can create many

requirements. A requirement should base on rationales. A design specification is dictated

by certain requirements and it should be satisfied by system components. Moreover, a

system component relates to certain resources and should be verified by a verification

procedure.

Stakeholders could be the program sponsor (customer), the project manager, the

system analyst/designer, the test engineer, system maintenance personnel, or the end user

of the system [RPSE95]. A major use of traceability is to provide accountability [RE93].

The accountability information include: design elements designed by, validated by, and

modified by development personnel [RE93], The availability of such information will be

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

indispensable in maintaining and revising a system [RE93].

Rationale information is another important component of traceability. Traceability

linkages to represent rationale would capture the why or reason for design decisions

[RE93],

Conflict Set is a queue of triggered rules waiting to be fired. Verification Procedures

is to verify the satisfaction of system components with requirements. Resource is to

record the information of hardware, software and so on that are allocated to a system

component.

4.5 System Architecture

Based on the above descriptions of the dynamic behavior of a requirement and the

structural feature of requirement traceability scheme, a full working version of

requirements management tool can be developed. The following is the proposed system

architecture.

The system architecture is illustrated in Figure 4.4. This architecture consists of the

six main components: 1) The Requirements Manager; 2) The Design Manager; 3) The

System Components Manager; 4) The Impact Analysis Manager; 5) The ECA Rule

Engine; 6) The Database System - an ADBMS with trigger and stored procedures

mechanism.

D e s i g n
Manager

wyste m
G o mpon ent

 Mananer

Impact Analys
Manager

a

. p rotpd Unas

ECA Rules I

Scheduler

D B M S DBMS Trigger Mechanism

D atabas

Date of
Requirements
Design Spec
System Components
(Resources
Rationales
Stakeholders
Verification Proc.

Figure 4.4 Requirements Management System Architecture

The Requirements Manager allows the creation, deletion and modification of

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

requirements. It permits the user to create, inactivate, decompose, refine, modify, merge

and replace requirements.

The Design Manager allows the creation, deletion and modification of design

specifications. It permits the user to modify the root design specification and create the

sub-detailed design specifications.

The System Components Manager allows the creation, deletion and modification of

system components. It permits the user to modify the root system components and create

the sub-detailed system components.

The Impact Analysis Manager allows the query of related design specifications and

system components when a change is introduced to a requirement. It also permits the user

to input information of why to make such change, who approves it, who will do it, and

when it will be done.

The ECA Rules Engine is the kernel of this system. It consists of event detector,

conditions evaluator, scheduler, action processor.

The database serves the purpose of storing requirements, design specifications and

system components. The trigger mechanism drives the execution of update of

requirements.

In this thesis, two components of this architecture are implemented: ECA Rules

Engine and Database.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 Interaction among Requirements,
Designs, and Components

5.1 Triggered Message Sequence Charts

Triggered Message Sequence Charts (TMSC) [SC02] describe system scenarios in

terms of the sequences of atomic actions (message sends and receives, and local actions)

that each parallel process (or instance) may engage in [SC02], In this section, a brief

overview of the visual syntax of TMSC is given. For the details of the syntax and

semantics of TMSC, readers are suggested to refer to [SC02].

R D S

a 2

a 4

a 3

A 2A 1

Figure 5.1 An Example TMSC

Graphically, TMSC can be represented as in Figure 5.1. The partitioning of the

sequence of events of an instance into the trigger and action sequences is indicated by a

horizontal line. For each instance, the sequence of events above the line constitutes its

trigger, while the sequence below the line constitutes its action. The presence of a small

bar at the foot of each instance indicates that the instance cannot beyond this point in the

TMSC, while the absence means that behavior of this instance beyond the TMSC is left

unspecified i.e. there are no constraint on its subsequent behavior. The TMSC in Figure

5.1 consists of three instances: a requirement R, a design D, and a system component S.

The TMSC in Figure 6.1 may be read as follows:

If R sends al to D, then it should receive a3 from D. After R receives a3, it should

perform the local-action Al and terminate; if D receives al from R and a2 from S in any

order, then it should send a3 to R and a4 to S, and its subsequent behavior is left

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

unspecified; if S sends a2 to D and receives a4 from D, then it should perform the local-

action A2 and terminate.

5.2 Basic Interactions

In this section, an example is given to illustrate basic interaction between requirement

(R), design (D) and system component (S) using Triggered Message Sequence Charts.

The example in Figure 5.2 shows the basic interaction between requirement, design

and system component when a new requirement is created.
R D S

N e w N e w

D e v e lo p e d

S a tis f ie d

D e v e lo pD e s ig n

Figure 5.2 Interactions among requirements, designs and system components
when a new requirement is created.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6 Validation and Analysis

The basic structural and behavioral features of requirements in an active database

have been introduced, now I discuss how these active rules are supported in concrete

systems. In this chapter, first, the active rules in Oracle Database are described; secondly,

the development processes of active rules in Oracle Database are introduced; thirdly, the

proposed method is implemented in Oracle Database; finally, the case studies are

conducted to validate the proposed method.

6.1 Active Rules in Oracle Database

Active rules are known as triggers in Oracle Database. Triggers are stored procedures

that are invoked by Oracle in response to database INSERT, UPDATE and DELETE

SQL statements. Triggers can execute PL/SQL statements, call stored procedures, and

raise errors. The PL/SQL code executed within a trigger may include additional INSERT,

UPDATE and DELETE statements that potentially invoke other triggers.

Oracle follows an event-condition-action approach for the description of triggers. For

example:

create or replace trigger new req
after insert on Requirement
for each row
when (new.status = ‘new’)
begin

insert into DESIGN values
(:new.req_no, ‘NEW’, NULL);
DBMS_OUT.PUT_LINE(‘New requirement has just been created!’);

end;

Every trigger has a name (in this case, new req). The event definition describes the

happening to which the rule may have to respond, such as the insertion, update or

deletion of a tuple. The ‘for each row” clause indicates that this is a trigger with

tuple_level transition granularity that has an immediate coupling mode. The condition is

declared in the when clause, and it is a Boolean expression. The action is a PL/SQL

block. PL/SQL blocks are delimited by begin and end.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Trigger Development Process

In this section, the processes of developing triggers in Oracle Database are described

which include the following six steps:

1) Identify rules for procedural enforcement.

2) Construct a constraints violation/enforcement list (CVL/CEL).

3) Create the trigger functional description (TFD).

4) Identify errors raised for processing requirements.

5) Encapsulate functionality into a constraints package.

6) Write triggers and test.

1) Statement of rules

The origin of any software effort, including a simple constraint, begins with a

statement of the requirement, or in this case, a statement of the rule. Some of the

requirements/rules are:

• A Requirement must have a unique identifier (rule 1).

• A Requirement Status must be in (“New”, “Waiting”, “Pending”, “Satisfied”,

“Inactivated”, “Testing”) and the transition o f status must follow the sequence

stated in figure 4.2 (rule 2).

• A Component must have a valid Design Identifier (rule 3).

2) Construct a constraints violation list

The second step is to construct a constraints violation list (CVL). This is a list of

database actions that have the potential for violating a rule. For the rules stated above, we

have the following CVL:

• We can INSERT a requirement with a NULL identifier (rule I).

• We can UPDATE the status o f a requirement from “Testing” to “Pending” (rule

2).

• We can INSERT a Component with a NULL Design identifier (rule 3).

The difference between a rule and the CVL is the rule written by someone who

understands the requirement, where the CVL is written by someone who understands the

database design and has an insight to how the rule can be violated.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3) Trigger functional description

The purpose of this step is to construct the trigger functional description. It describes

the high-level logic of each trigger, its data requirements, and trigger level, for example,

row or statement. There are three tables that need triggers:

• Requirement

• Design

• Component

The trigger functional descriptions are:

1. Requirement INSERT (rule 1)

Description: This trigger will detect a rule violation if the identifier is NULL or

duplicated with other identifier.

Data requirements : :NEW.REQID

LEVEL This is ROW because the trigger needs access the correlation values.

2. Requirement UPDATE (rule 2)

Description: The trigger will inspect the NEW:STATUS and OLD:STATUS correlation

values. A violation will exist if the NEW:STATUS is “Testing” and OLD:STATUS is

“Pending” .

Data requirements: :NEW.STATUS, :OLD.STATUS

LEVEL: This is ROW because the trigger needs access to the correlation values.

3. Component INSERT (rule 3)

Description: This trigger will detect a rule violation if the Design identifier is NULL.

Data requirements: :NEW.DESIGN_ID

LEVEL: This is ROW because the trigger needs access to the correlation values.

4) Error/Process Analysis

The purpose of this step is to identify the error messages for each rule violation. For

each of these triggers, we can potentially raise an application error. Following is the

package specification:

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PACKAGE ERRORS IS

REQ ID VIOLATION CONSTANT INTEGER := -30001;

INVALID STATUS TRANS CONSTANT INTEGER := -30002;

INVALID DESIGN ID CONSTANT INTEGER := -30003;

REQ ID VIOLATION MSG VARCHAR2 (30) NOT NULL :=

“CANNOT INSERT REQUIREMENT”;

INYALID STATUS TRANS MSG VARCHAR2 (30) NOT NULL :=

“CANNOT UPDATE THE STATUS”;

INVALID DESIGN ID MSG VARCHAR2 (30) NOT NULL :=

“DESIGN ID NEEDED”;

END ERRORS;

Not all triggers raise an application error in response to a constraint violation.

5) Encapsulate functionality into a constraints package

This step creates the specification and body of a constraints package. This is a

PL/SQL package that encapsulates the rules of the procedural constraints. Each procedure

in the package accepts arguments that are passed as trigger correlation values. The

procedure determines if a violation has occurred and raises an application error.

6) Code the trigger

Having placed the trigger’s functionality in a package, developing the trigger code is

a straightforward process. Following is an example for the second constrains violation list

trigger:

Create or replace trigger requirements bus

Before update on requirements

Begin

requirements table_pkg. clear table;

End;

In above Before-Update-Statement trigger, it clears correlation table in PL/SQL table

package.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Create or replace trigger requirements_aur

After update on requirements

For each row

Begin

requirements table_pkg. insert values;

End;

In above After-Update-Row trigger, it inserts correlation values into PL/SQL table.

Create or replace trigger requirements jrn s

After update on requirements

Begin

requirements cons_pkg. enforce rule_3;

End;

In above After-Update-Statement trigger, it calls enforce_rule_2 functions from

Constrains package.

6.3 Implementation

In Chapter 5 section 5.2, the basic interactions between requirement, design and

component using a simple example were illustrated. A requirement can be in one of 8

states: New, Waiting-Designing, Waiting-Developing, Testing, Satisfied, Pending-

Developing, Pending-Developed and Inactivated. A design can be in one of 3 states: Null,

Designing and Designed. A component can be in one of 3 states: Null, Developing and

Developed. The possibilities of combination of states of three are 72, but only 8 of those

are considered as useful. The following table shows that at any time the states of

requirement, design and component must be in one of them.

Requirement Design Component
1 New Null Null
2 Waiting Designing Developing
3 Waiting Designed Developing
4 Testing Designed Developed
5 Satisfied Designed Developed
6 Pending Designed Developing
7 Pending Designed Developed
8 Inactivated Inactivated Inactivated

Table 6.1 The possibilities of combination of states

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For a CHANGE event, every time a change is introduced to a tuple in requirements

table, there are six triggers to enforce the integrity of status between requirements and

their related artifacts. Those triggers are BEFORE-INSERT-STATEMENT trigger,

BEFORE-INSERT-ROW trigger, AFTER-INSERT-STATEMENT trigger, BEFORE-

UPDATE-STATEMENT trigger, BEFORE-UPDATE-ROW trigger and AFTER-UPDATE-

STATEMENT trigger. Every time a trigger is fired, the trigger will call functions and

procedures that defined in the PL/SQL packages and constraint packages to maintain

traceability links and synchronize the status of requirements and their related artifacts.

The following is an example which shows how triggers of requirements table handle

requirements change:

1. SQL INSERT STATEMENT:
Insert into requirements values
('R30', /****Requirement Identifier****/
'The user must provide a self-image that will be used to represent them
during play', /****Requirement Statement****/
SYSDATE, /****Date-Entered****/
", /****Date-Changed****/
RAT30, /****Rationale i d****/
STA5, /****stakeholder i d****/
", /****Design i d****/
' N E W ' , / * * * * s t a t u s * * * * /

/****Child****/r r

'R18', /****parent****/
'LEVEL1', /****LEVEL****/
'Refine R18' /****Comment****/);

This SQL Insert statement is used to insert a new requirement to the traceability

database.

2. UPDATE PARENT REQUIREMENTS
If rec. status" NEW' and rec. commentsO' LEVELO'

and rec_is_dependent_on<>' '
Then

update requirements set requirements.dependants=rec.is_dependent__on
where requirements.req_id = rec.is_dependent__on;
insert into req_list values
(rec.is_dependant_on,'Its child is',rec.req_id);

end;
The above function is encapsulated in constrains package. When a new requirement is

inserted into the traceability database, the trigger placed on the requirements table will be

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fired and it will call this function in constrains package to update its related parent

requirements.

3. UPDATE CHILD REQUIREMENTS
If rec . status=' NEW' and rec . commentsO' LEVELO' and rec.dependantsO' '
Then

update requirements set requirements.is^dependent on=rec.dependants
where requirements.req_id = rec.dependants;
insert into req list values
(rec.req_id,'Its child i s r e c .dependants);
Delete from req__list
where req_list. req_id=rec. is__dependent_on and

req_list.next=rec.dependants ;
end;

The above function is encapsulated in constrains package. When a new requirement is

inserted into the traceability database, the trigger placed on the requirements table will be

fired and it will call this function in constrains package to update its related child

requirements.

4. UPDATE RELATED ARTIFACTS
req_idl requirements.req_id%type;
req_id2 requirements.req_id%type;
lev_id requirements.lev%type;

begin

req__id2 ; = rec.req_id;

loop
select req_id into req_idl from req_list where next = req_id2;
select lev into lev^id from requirements where req_id=req_idl;
If lev_id = 'levelO'
Then exit;
End if;
req_id2 := req_idl;
End loop;

/**dbms_output.put_line(req_idl);**/

update designs set status = 'Designing' where req id = req idl;

end;
The above function is encapsulated in constrains package. When a new requirement is

inserted into the traceability database, the trigger placed on the requirements table will be

fired and it will call this function in constrains package to update its related designs.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Validate the Proposed Method

To assess the effectiveness of the proposed method, two case studies are implemented

to test the ability of the proposed method to perform forward and backward traceability

and to manage requirements change. These case studies are conducted on the

environment of Oracle Database lOg and Windows 2000 Server. A small project (Chess

Game Software System) is used to test the proposed method. First, system requirements

are elicited; second, design specifications are defined according to the related

requirements; third, the simulated coding information is described. At the same time, the

information of requirements, design specifications, coding and other related artifacts are

put into the proposed system to establish traceability links.

The following case studies demonstrate how the proposed method provides the

traceability information for impact analysis when a change proposal is introduced and

how the proposed method handles the requirements change when the change decision is

made.

6.4.1 Case Study 1: Impact Analysis

In this case study, an attempt to enhance the registration of Chess Game Software

System was made by introducing a new requirement that “R30: The user must provide a

self-image that will be used to represent them during play”. Before the introduction of

this requirement, impact analysis should be performed to determine which artifacts would

be impacted, and where functions should be added.

First, a requirement was identified which would be impacted by this introduction. The

database was searched using a keyword of “register”. The requirement identified is “R18:

A user must register before being eligible to enter the board space”. Next, a query was

conducted to find out which artifacts would be impacted by refining this requirement.

Finally, an analysis of dependencies on requirement R18 resulted in the dependency tree

shown in following figure 6.1:

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Login

Component

Login

Status: Developing

Scenario Sequence Diagram

Login

Central Server
Op: Log in

Design

Login

Status: Waiting

Scenario

Login

Figure 6.1 Artifacts impacted when a change is introduced.

This case study demonstrated that the proposed method has the ability to identify the

artifacts that would be impacted by a change request. And the status of requirement and

related artifacts are clear, it provides great insight for software engineers who will

perform impact analysis.

6.4.2 Case Study 2: Change Management

This case study is to evaluate the effectiveness of the proposed method on handling

requirements change. Following case study 1, after the change decision was made, the

new requirement R30 was inserted into database and made it as a child of requirement

R18. Then a set of query was conducted, dependency tree is shown in following figure

6 .2 :

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S ta tu s : D e v e lo p in g

H TM L

Login

A ppS erverC onn.
java

S ta tu s : D e v e lo p in g

Java C ode

S ta tu s : D e v e lo p in g

C o m p o n e n t

L ogin

Status: Designing

Scenario

Login

Status: Designing

C lass D iagram

C entral S erver
Op:LoginR 3 0 : T h e u s e r m u s t

p ro v id e a s e lf - im a g e th a t
will b e u s e d to r e p r e s e n t

th e m d u r in g p lay .

S ta tu s : W aitin g

S c e n a r io S e q u e n c e D ia g ra m

S ta tu s : D e s ig n in g

Login

Status: Designing

Design

Login

R 1 8 : A u s e r m u s t r e g is te r
b e fo re b e in g e lig ib le to

p la y c h e s s g a m e .

Status: W aiting

Figure 6.2 Change Management

This case study demonstrated that the proposed method has the ability to maintain

traceability links when a requirement is changed. The requirements were put in the state

of “Waiting”, after designing, developing and testing phases, the requirements are

satisfied. The whole process is monitored by active rules. Hence, the proposed method

demonstrated the effectiveness of handling requirements change.

6.5 Analysis

In the previous sections, I discussed how to use Oracle trigger to implement the

proposed method. From the results of experimentation, the proposed method

demonstrated the effectiveness of providing forward and backward traceability and

handling requirements change.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Requirements traceability supports critical tasks in both the development and

maintenance phases of a software project, but to be effective, the scheme must be

maintained in an accurate state. This approach maintain a traceability scheme over a long

period of time by defining relationships which have the ability to evolve in response to

not only external change events, but also internal change events. The status of

requirements and related artifacts are clear, it provides great benefit for people who

perform impact analysis.

Traceability policies usually have to be specialized for each project. It decides on

exactly how traceability information should be represented, the responsibilities for

traceability information collection. This approach uses Active Database to place

constrains on traceability maintenance process, no one can bypass those policies.

However, maintaining traceability information is time-consuming, tedious and

labour-intensive. The proposed method is a new technique for tracing critical functional

requirements in finely-grained manner. It is relatively expensive, but if we pay short-term

pain, we will get long-term benefit.

6.5.1 Compare with Event-based Traceability (EBT)

Event-based Traceability is based upon event notification and build loosely coupled

relationships between requirements and their related artifacts. I have introduced EBT in

the section 2.6.5. Table 6.2 shows the major differences between EBT and the proposed

method:

EBT The proposed method

Relationship Loosely coupled Tightly coupled

Event monitor mechanism ECA + Database Active Database

Tracing Performance

requirements

Critical functional

requirements

Suited for Coarsely-grained manner Finely-grained manner

Table 6.2 Major differences between EBT and the proposed method

6.5.2 Compare with Version Control

The output of the software process is information that may be divided into three broad

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

categories [ROG05]: (1) computer programs (both source level and executable forms);

(2) work products that describe the computer programs (targeted at both technical

practitioner and users), and (3) data. The items that comprise all information produced as

part of the software process are collectively called a software configuration [ROG05].

Version control combines procedures and tools to manage different versions of

configuration objects that are created during the software process [ROG05]. A version

control system has following major capabilities: (1) a project database that stores all

relevant configuration objects; (2) a version management capability that stores all

versions of a configuration object; (3) a make facility that enables the software engineer

to collect all relevant configuration objects and construct a specific version of the

software.

The Concurrent Versions System (CVS) is a widely used tool for version control.

Originally designed for source code, but useful for any text-based file. Following table

shows the major differences between CVS and the proposed method:

CVS The Proposed Method

Focus on Source code Requirement

Change control No Yes

Relationship Horizontal Vertical and Horizontal

Table 6.3 Major differences between CVS and the proposed method

6.5.3 Project Management

Traceability ensures customer satisfaction by providing us a documented means by

which to prove to the customer that all of the stated requirements are met and that the job

is completed [RPSE95], In the process of developing large, complex systems or safety-

critical systems, it is very important to minimize the possibility of missing a stated or

derived requirement. For a critical requirement which is related to the central mission of

system, missing even a single traceability link could be catastrophic when a change

request is introduced to this requirement. The proposed method provides a means for

tracing critical requirements in a finely-grained manner.

The state of requirements and their related artifacts provided by the proposed method

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gives the project manager great insight of a project. The project manager is more

concerned with the daily progress of the product. The proposed method is able to show

that how many requirements are implemented and verified, how many requirements are

implemented, but not verified, and how many requirements are not implemented. So, the

project manager feels that she/he is in full control of the project.

6.5.4 Reconcile Technical and Social Aspects

Requirements engineering is not only a technical issue, but also a social issue. A new

requirements traceability technique should consider both technical and social aspects. In

the technical side, the proposed method introduces internal change into requirements

traceability scheme which minimizes the possibility of missing traceability links. In the

social aspect, the proposed method places centralized constraints on traceability

maintenance process to ensure no one bypass traceability policies. The well integration of

these two aspects proves that the proposed method suits to tracing critical requirements.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7 Conclusion and Future Work

In this thesis, a new traceability technique for mapping the dynamic behavior of

requirements into active relational databases was proposed. A modeling framework,

architecture and its execution flow were presented.

A state transition diagrams is used to represent dynamic behavior of requirements. An

E/R model represents structural behavior of requirements. The architecture proposed

considers applications developed using Oracle Databases. The full working version of

this system could be relatively complex, and it can be implemented on any database

system which supports active rules, such as Oracle, DB2.

The main feature of this method is the extension of reactive capability supported by

an underlying active database system in order to manage changing requirements. The

advantages of this approach are that both static and dynamic aspects of requirements are

integrated and mapped to the active database. In addition, requirements and related

artifacts are stored in the relational database which makes the management of changing

requirements efficient and effective. Moreover, it also provides requirements

management and project management.

The proposed approach is well suited for the integration of requirement behavior with

active relational databases, because of its simplicity and its ability to deal with the

complexity of requirements change.

This research makes the following contributions to management of requirements

change:

First, traditional traceability methods focus on external requirements change. In this

thesis, a new concept of internal change is introduced into requirements traceability

scheme. This approach extended requirements change to not only requirements

themselves, but also status changes of requirements in the different development stages.

It also provides a mechanism to monitor requirements change management process.

Second, it provides a method to map the dynamic behavior of requirements into

active database which places constrains on traceability maintenance process to ensure no

one bypass those policies.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This thesis only focuses on tracing functional requirements. Next steps will be further

experimentation in enhancing pre-requirements traceability functions and tracing non­

functional requirements.

Pre-requirements traceability is concerned with those aspects of a requirement’s life

prior to its inclusion in the requirements specification [GF94]. Empirical findings

identified that insufficient pre-requirements traceability is the main contributor to

continuing requirements traceability problems. The main reason is the invisibility of the

individuals and groups that gave rise to the requirements artifacts [GF95]. Our approach

can be extended for providing more pre-requirements traceability by integrating with

other techniques.

Non-functional requirements define the overall qualities or attributes of the resulting

system. They are critical to the successful implementation of almost every nontrivial

software system [CS03]. Traditional traceability techniques have focused upon the

functional requirements of the system, however if non-functional requirements such as

performance, reliability, and safety are not considered, then functional changes may

introduce unexpected side effects which will degrade the system quality.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[ACCDOOJG. Antoniol, G. Casazza and A. De Lucia, “Information Retrieval Models for

Recovering Traceability Links between Code and Documentation”, IEEE Trans.

On Software Engineering, Vol. 28, No. 10, pp. 970-983.

[BOH91]S.A. Bohner, “Software change impact analysis for design evolution”,

Proceedings of the International Conference on Software Maintenance and

Reengineering, 8:292—301, 1991.

[CHA95]S. Chakravarthy, “Early Active Database Efforts: A Capsule Summary”,

IEEE Transactions on Knowledge and Data Engineering, Vol. 7, No. 6, Dec. 1995.

[CS94]R. Chandra and A. Segev, “Active databases for financial applications”,

Research Issues in Data Engineering, 1994. Active Database Systems, Proceedings

Fourth International Workshop on, 14-15 Feb. 1994. Pages: 6 - 52.

[CCG02]J. Cleland-Huang, C.K. Chang and Y. Ge, “Supporting Event Based

Traceability through High-Level Recognition of Change Events”, IEEE Proc. Int'l

Computer Software and Applications Conf. (COMPSAC), Aug. 2002.

[CCC03]J. Cleland-Huang, C.K. Chang and M. Christensen, “Event-Based Traceability

for Managing Evolutionary Change”, IEEE Transactions on Software Engineering,

Vol. 29, No. 9, Sept. 2003.

[CCW03]J. Cleland-Huang, C.K. Chang and Jeffrey C. Wise, “Automating

performance-related impact analysis through event based traceability”,

Requirements Eng., 2003.

[CCY02JJ. Cleland-Huang, Carl K. Chang and Yujia Ge, “Supporting Event Based

Traceability through High_level Recognition of Change Events”, Proceedings of

the 26th Annual International Computer Software and Applications Conference, 2002.

[CLE02]J. Cleland-Huang, “Robust Requirements Traceability for Supporting

Evolutionary and Speculative Change”, PhD dissertation, Univ. of Illinois at

Chicago, Mar. 2002.

[CZL04]J. Cleland-Huang, G. Zemont and W. Lukasik, “A Heterogeneous Solution for

Improving the Return on Investment of Requirements Traceability”, Proceedings

of the 12th IEEE International Requirements Engineering Conference, 2004.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[CN93]A. Comelio and S.B. Navathe, “Using active database techniques for real time

engineering applications”, Data Engineering, 1993. Proceedings. Ninth International

Conference on, 19-23 April 1993. Pages: 100 - 107.

[DAV90JA.M Davis, “The analysis and specification of systems and software

requirements”, Systems and Software Requirements Engineering, IEEE Computer

Society Press, 1990, 119-144.

[FE00JA. Finkelstein and W. Emmerich, ’’The future of Requirements Management

Tools”, in Information Systems in Public Administration and Law, Austrian

Computer Society, 2000.

[GSS04]D. Goldin, S. Srinivasa and V. Srikanti, “Active databases as information

systems”, Database Engineering and Applications Symposium, 2004. IDEAS '04.

Proceedings. International, July 7-9, 2004. Pages: 123 - 130.

[GF94JO. Gotel and A. Finkelstein, “An Analysis of the Requirements Traceability

Problem”, Proc. Of the 1st Int'l Conf. On Requirements Engineering, 1994, pp. 94-

101 .

[GF95JO. Gotel and A. Finkelstein, “Contribution Structures”, Requirements

Engineering, 1995, Proceedings of the Second IEEE International Symposium on 27-

29 March 1995 Page(s): 100 - 107.

[GOU94]Joseph A. Goguen, “Requirements engineering as the reconciliation of social

and technical issues”, Requirements Engineering, Social and Technical Issues, 1994.

Page: 165-199.

[JAR98]M. Jarke, “Requirements Traceability”, Comm. ACM, vol. 41, no. 12, pp. 32-

36, Dec. 1998.

[JH02]Jane Huang, “Robust Requirements Traceability for handling Evolutionary

and Speculative Change”, Ph.D. Thesis, University of Illinois at Chicago, 2002.

[KS02]G. Kotonya and I. Sommerville, “Requirements Engineering: Processes and

Techniques”, John Wiley & Sons, 2002.

[LAM00]Axel van Lamsweerde, “Requirements Engineering in the Year 00: A

Research Perspective”, Proceedings of the 22nd International conference on

Software Engineering, June 2000.

[NDS04]N. Nurmuliani, Didar Zowghi and Sue Fowell, “Analysis of Requirements

Volatility during Software Development Life Cycle”, Proceedings of the 2004

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Australian Software Engineering Conference, 2004.

[NZW04JN. Nurmuliani, D. Zowghi and S.P. Williams, “Using Card Sorting Technique

to Classify Requirements Change”, Proceedings of the 12th IEEE International

Requirements Engineering Conference, 2004.

[OWE98JK.T. Owens, “Building Intelligent Databases With Oracle PL/SQL,

Triggers, and Stored Procedures”, 2nd ed. Upper Saddle River, NJ: Prentice-Hall,

1998.

[PAL97JJ.D. Palmer, “Traceability”, Software Req. Eng., R.H. Thayer and M.Dorfman,

eds., 1997.

[PD99JN.W. Paton and O. Diaz, “Active Database Systems”, ACM Computing Surveys,

Vol.31, No. 1, 1999, pp.63-103.

[PCVM99JF.A.M. Porto, S.R. Carvalho, M.J. Viannae Silva and R.N. Melo, “Persistent

object synchronization with active relational databases”, Technology of Object-

Oriented Languages and Systems, 1999. TOOLS 30. Proceedings, 1-5 Aug. 1999.

Pages: 53 - 62.

[PG96]F.A.C. Pinheiro and J.A. Goguen, “An Object-Oriented Tool for Tracing

Requirements”, IEEE Software, Vol. 13, No. 2, Mar. 1996, pp. 52-64.

[PN98]Sooyong Park, Jongho Nang, “Requirements management in large software

system development”, Systems, Man, and Cybernetics, 1998. 1998 IEEE

International Conference o n , Volume: 3 , 11-14 Oct. 1998, Pages:2680 - 2685 vol.3.

[PVC98]F. Porto, M.J. Vianna e Silva and S. Carvalho, "Object life-cycles in active

relational Databases", Technology of Object-Oriented Languages, 1998. TOOLS

26. Proceedings, 3-7 Aug. 1998, Pages: 168 - 179.

[RAM98]Ramesh, B., “Factors Influencing Requirements Traceability Practice”,

Comm. Of the ACM, Dec. 1998, Vol 41, No. 12.

[RE04]Gerald Kotonya and Ian Sommerville, “Requirements Engineering: Processes

and Techniques”, John Wiley & Sons Ltd, May 2004.

[RE93]B. Ramesh and M. Edwards, “Issues in the Development of a Requirements

Traceability Model”, Requirements Engineering, 1993, Proceedings of IEEE

Intemaitonal Symposium on, 4-6 Jan. 1993, pp. 256-259.

[RJ01JB. Ramesh and M. Jarke, “Toward Reference Models for Requirements

Traceability”, IEEE Trans. Software Eng., vol. 27, no. 1, pp. 58-92, Jan. 2001.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[RPSE95JB. Ramesh, Powers, C. Stubbs and M. Edwards, “Implementing Requirements

Traceability: A Case Study”, Requirements Engineering 1995, Porceedings of the

Second IEEE International Symposium on, 27-29 March 1995, pp.89-95.

[ROG05]Roger S. Pressman, “Software Engineering: A Practitioner’s Approach”, 6th

Edition, published by McGraw-Hill.

[SC02JB. Sengupta and R. Cleaveland, “Triggered Message Sequence Charts”, ACM

SIGSOFT 2002, 10th International Symposium on the Foundations of Software

Engineering.

[SC03]B. Sengupta and R. Cleaveland, “Refinement-Based Requirements Modeling
thUsing Triggered message sequence charts”, Proceedings of the 11 IEEE

International Requirements Engineering Conference, 2003.

[SDS99JA. Sundermier, S.W. Dietrich and V. Shah, “An active database approach to

integrating black-box software components”, Computer Software and Applications

Conference, 1999. COMPSAC ’99. Proceedings. The Twenty-Third Annual

International, 27-29 Oct. 1999. Pages: 403 -409 .

[SG95]The Standish Group, Chaos Reports, 1995,

www.standishgroup.com/visitor/chaos.htm.

[SSV99]Pete Sawyer, Ian Sommerville and Stephen Viller, “Capturing the Benefits of

Requirements Engineering”, IEEE Software, March/April 1999.

[WD01JB. Wu and Kudakwashe Dube, “Applying Event-Condition-Action Mechanism

in Healthcare: a Computerised Clinical Test-Ordering Protocol System

(TOPS)”, IEEE Computer Society, pp.3-14, 2001.

[WIE99]K. Wiegers, “Automating Requirements Management”, Software

Development, 7(7), July 1999.

[ZAV97] P. Zave, “Classification of research efforts in requirements engineering”,

ACM Computing Surveys, 29(4):315—321, 1997.

[ZRP04]M. Zoumboulakis, G. Roussos and A. Poulovassilis, “Active Rules for Sensor

Databases”, Proceedings of the First Workshop on Data Management for Sensor

Networks, Toronto, Canada, Aug, 2004.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.standishgroup.com/visitor/chaos.htm

APPENDIX A

A traceability database was established by using Oracle SQL statements. Following
are those statements:

CREATE TABLE REQUIREMENTS
(req^id

statement
date_entered
date_changed
rationale_id
stakeholder id
design id
status
dependants
is_dependent_on
lev
comments

varchar2(10)

varchar2(80),
date,
date,
varchar2 (10),
varchar2(10),
varchar2(10),
varchar2(12),
varchar2 (10),
varchar2 (10),
varchar2 (10),
varchar2 (40))

CONSTRAINT pk_requirements
PRIMARY KEY,

CREATE TABLE DESIGNS
(design_id

statement
type
date_entered
date_changed
stakeholder id
req id
component_id
status
dependants
is_dependent_on
lev
comments

varchar2(10)

varchar2 (80),
varchar2(40),
date,
date,
varchar2(10),
varchar2(10),
varchar2(10),
varchar2(12),
varchar2 (10),
varchar2 (10),
varchar2 (10),
varchar2(40))

CONSTRAINT pk_designs
PRIMARY KEY,

CREATE TABLE REQ_LIST
(req_id
description
next

varchar2(10),
varchar2(40),
varchar2(10))

CREATE TABLE DESIGN_LIST
(design_id
description
next

varchar2 (10),
varchar2(40),
varchar2(10));

CREATE TABLE COMP^LIST
(component id
description
next

varchar2(10),
varchar2(40),
varchar2(10));

CREATE TABLE COMPONENTS
(comp_id

statement

varchar2 (10)

varchar2 (80),

CONSTRAINT pk_components
PRIMARY KEY,

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

date_entered
date_changed
testcase_id
stakeholder_id
design_id
resources_id
status
dependants
i s_dependent_on
lev
comments

date,
date,
varchar2 (10),
varchar2(10),
varchar2(10),
varchar2 (10),
varchar2(12),
varchar2 (10),
varchar2(10),
varchar2(10),
varchar2 (40));

CREATE TABLE TESTCASE
(testcase_id

statement
date_entered
date_changed
stakeholder_id
comments

varchar2(10)

varchar2(80),
date,
date,
varchar2(10),
varchar2 (40))

CONSTRAINT pt
PRIMARY KEY,

CREATE TABLE RESOURCES
(resources_id

statement
date__entered
date_changed
stakeholder_id
status
comments

varchar2(10)

varchar2(80),
date,
date,
varchar2(10),
varchar2(12),
varchar2(40))

CONSTRAINT p}
PRIMARY KEY,

CREATE TABLE STAKEHOLDERS
(stakeholders id varchar2(10)

name
date entered
date__changed
department
position
status
comments

varchar2 (80),
date,
date,
varchar2(30),
varchar2 (30),
varchar2 (12),
varchar2 (40));

CONSTRAINT p)
PRIMARY KEY,

CREATE TABLE RATIONALE
(rationale^id

statement
date_entered
date_changed
stakeholder_id
status
comments

varchar2(10)

varchar2 (80),
date,
date,
varchar2(10),
varchar2(12),
varchar2(40))

CONSTRAINT p)
PRIMARY KEY,

59

testcase

resources

stakeholders

rationale

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS
Haipeng Ge was bom in 1970 in Anshan, China. He graduated from Northeastern

University where he obtained a B.S. in Computer Science in 1994. He is currently a

candidate for the Master’s Degree in Computer Science at the University of Windsor and

hopes to graduate in summer 2005.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Using active database for management of requirements change
	Recommended Citation

	tmp.1619557702.pdf.xzgq5

