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s The—finite element method is applieéd to the Lot

nonllncar analyqls of tcnsmon and gencral pln ~ended

o truss type. Lluctuled. Geometrld and material non-

N linearltncs are directly, lncorporated within thé discrete |

1
. . element representatlon, this’ permlts the predlctlon of

. }
large nodal dlsﬁﬁaCements, y;eldlng of tens;on members‘

. o® M - »

‘and elast Q,bucyllng of individual members. .

. The pr1nc1nle of minimum total potentlal energy

" \ -

' forms the basis of formulat:on and solutlon plocedure
g : 7 ,
adopted ipfthis.work. _Based on the deformeé&geometry,

the total potentlal energy of a structural system 1s
j constructed by summlng ‘the energy contrlbutlons of the

1nd1v1dual elements. Solutions are generated by dlrect

.
- ("
/ . ML

A mJnlmlzat:on of the total potentlal encrgy cf the. - f L.
‘ ) . utrdcture in ordeb £o rlnd the minimum. energy whigﬁ - .

L 4 -+ \ -
; ' a*jreprescnts the dlsplgcément p051klon at equlllbrlum.tu R
' JA scaled conjugate gradlent unconstralned mlnlmlzatlc%

2 . !

- algorlthm 15 used - to* locate the mlnlmum of the \ -

- Yoy .

T potential energy. The search procedure automatlcally 5\ .
-'detect° and- con51ders the cffect‘ of slackonlng of ' \

'A‘ \

tenalon members and buckilng of compress;on members. :

- P . : . -~
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o R Solutronv are obtalned for a variety of problems |
N N

,4 - .

to 1llu‘;trate thc notcnt:.al of’ Lhc, method, _and result
are compared to athosc obLalncd bzuéthe,r so'lutlon tech— B

"gn‘q.nc's.' The appllcatlo? to prcstrqssed orfhogorxal and ’

C . .

- onorthogonal cable nets and gt,ancral truss structures,

- | B

undcr various ﬁoadlng conditions, havc bccn dcmonstrated
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A cross—sectlonal area of a truss dlscrete element.

c,f,qg constants in the theoretlcal equatlon for stress-
' strain’ cuﬁv

C i generallzed displacement coordingte assoc1ated
with mldspan amplitude .0of the buckllng mode in a
compression member.

du  strain energy density.
.o B modulus of'elasticity.
F force in truss discrete element.
'{Gé} . gradlent 3ector of the element strain energy.
{G} : gradlent vector of the strucé%re total potentlal
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T H . horlzontal component of cable tensron.d
. ~(H) matrix of constants in initial shape determination..
: | 1 '. bendlng moment of 1nert1a for compressxon members.
klj element of matrix- [K].
. [K] matrix of second partials of the total‘potential'

energy of the truss structure.

= - KYK2{K3 consﬁnﬁs of 1ntegrat10n approprlate to truss
- ‘ element axial deformation mode.
L undeformed 1ength of truss dlscrete element.
, 3
. ‘n o number of truss dlscreté elements com9051ng the
. . : structure. . .
' ‘N  total number of displacement degrees of freedom
A o ,of the structure. ' -
“p.gq 'subscrl +s denoting nodal points of al truss |

discrete element before deformatlon.
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P/q subscyibts denoﬁiné nodal points of a truss ‘
) discrete element after deformatgon. _ i -
-{P} - work equlvalent load vector. |
. ’ [R] ~ diagonal scaling- transformatlon matrlx.
{S} . dlrECtlon of search in energy minimization.
* S ‘ deformed length of truss discrete elementf
ﬁ,?,w displacements in the ?;‘Y and~§ reference :
¢ i ‘ coordinafe'directions,-respectively. ’ /
u,ﬁ ' dlsplacements in the' x and z local ceordlnate

,dlrectlons, respect1Vely. !

.

)f .- U strain energy . of truss dlscrete element.
' v volume : " Y
) wo external work
X} vector of lndependent degrees of freedom.
_ i,?,?h’ nodal coordlnates in the %,Y,% reference
' v coordinate system. . . _-.;>
{2} scaled vector of independent degreee of.fréedom. .
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- | © CHAPTER T
INTRODUCTION -

2 . . ‘ -
General truss-type structures: including cable .

i A networks; haVe “Deen rccognlzed as e£f1c1ent and.prabtieai
configuratlons,for achieving various structural and
archirecturql objectives. Structprai suspensiqp eysteme
are belng used w1th 1ncreasrng freguency for thefsqpport
of long span roofs,_prov1dlng an unobstructed 1nterlor,
whlch makes them sultable for large, exhlbltlon halls,

»’stadlums and shopplnq centers. JAlso, ten31on structurcs

oL b : are oftcn more econcmical than conventlonal struetures,
since the loads are carried primarily in pureftension}
thereby_the‘entire cross-section'of ﬁhe'member'isn

~utilized ‘to the, ﬁayimum The number of compre551on
memberg is held Lo the minimum neces sary’to maintain
stability. The cconomy is achlcvcd in Lelm‘ of the

~roof's self-weight where hlgh ten51le steel is rsed in
the.manufacture“of the~members.. .

S When a tension or a general truss= type i.
structure deforms consrderably under load the. change
in geemetry compllcates the theoretrcal analysrs.- Three

. ’ . characteristics common to such structures are responsiblef
: : _ s .

for most of the difficulties: ‘ o : /~"

i
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' (1) Geometric nonlinearity (large deflections) .

*(2) Matérial nonlirearity (laxge strains)
= _— (j) Chdnge of configurationm (tension members
. B S ) T

which, have no stiffness to compreSsion, may,

under certaln loadlng condltlons,t"go slack")’ !
In order to pledlct the structural bthaV1our for
such strnctures, 1t becomes more reallstlc to base

equilibrium considerations on the deformed geometry, to - = -

employ more exact deformation-displacement relations, and

to. consider the nonlinear behaviour of the material.

e T -3

It has been found that geometrlc ‘and material
.nonlineafitieé‘can be conveniently handled by the finite S .

.~ element method, based on the 'principle of minimum total . .
o . o . i i
potential energy. In the finite element analysis, the
N L]

_structure ?s divided into a number. of clements connected
: . _ -

"at nodes. The deformation state of each element is

’

#
. relatively simple as compared to'the deformntion state of ;
N ) . ) e \ -
. the whole otructulc, and is rcpreCﬁnted in terms‘of the

generalized dloplacementa of the nodes belonging to that -

element, defined with reference to a fixed global

coordinate system. The diéplacement modes are independent
5 S for each element in'tetms of its generalizea nodal ) -
dlsplacements.‘.Then the elements are collected together‘
to form the phy51cal atlucture by satisfying Lhe condi-

tion that comp&tlblllty of nodal dzsplacements for two (

or more_nelghbourlng elements ensure_dlsg}acement

* ~a
.
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~ ’ I_" '
compatibility at interelement boundaries.
¢ ) oo ’ '

.

. R . K \'
1.1 Literature Survey and Review vf Prior Work
’ -’ ‘ R - . R .
During the last decade several stud4es have been
published with.different procedures developed for

" determining the forces andfdisp}acements of ten&ion
structures and more specifically eable roofs. The early-._

work on this subject was prircipally focused on the T
- . . 0 T .

o~

determination of equilibrium shapes.

— K i . The‘fiﬁite element method‘has'been used by the

-majority of research workers in the analysis of tensié%
. J ‘

' R . N . * -
structures and .cable nets. Previous extensions of the

finite element displacement method bylseveral'authg}s

‘ j - .
' have treated the problem-of geometric nonlinearity with /

.varying degrees bdf success. Several authors adopted the

-approach of takihg geometric npnlinearity‘into account

<

by solving a ‘sequence. of linear problems} Procedures.

in this approach are characterized by incr@&mental
application of the loading. o o

A method for thevdeterminatioﬁ of. the displace-

ments of a general net was presented-by Siev (Ref. 1). .

The effect of horizontal diéplacements and changes in

~

o ‘ geometry were included-in the,deriVation of the eaﬁptions.

An iteration procedure was proposed as a means of solving

the équations]but no solutions were presented. Siev also

suggested incrementing the loads when the problem is

highly geomctqically'nonlinear.— The response at each

D :
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stagc of- the loading is flrst computcd based on a

llncar1z1ng asuumptlon ‘and then corrcctcd sugécqucntly

o

by iteration. Anothc;.papcr by ‘Siev "(Ref. 2) .presented

an analytical and‘QXperimental study of prestressed .

a

' lsuspcnded roofs boundcd by main cables, using the same

general theory he had.gugngLcd in the prcv;ous

L . T
-. reference. Thornton @nd_Birnstlel (Ref. 3) derived

nonlinear eguations for a general three~dimensional ’

¥

unstiffencd suspension structure composed.of members

capable of resiéting axiai forch'only. They~presehpéd.

two numerical methods for the solution of the resulting
~ - nonlinear clmultancoua algebralc'equatlon tﬁe method
’of cont}nulty and an 1ncremental 1oa method Recently,:
Kumanan (Refs. 4,5) derived equations fcr a general
non—orthdgon&i/cable'network.with reference to a set of
cblique agcs to dctermine-the'displacements and ténsions
of the neﬁwoxk under losd. The derivation is based on

the displaccq gaometry of the, strvcture including

secona~oider displacement terms. Thé Newton-Raphson
: y : .

/ : .

. C .l methdd was ‘'used for the solution of the resulting
& Lo N S |
, : .nonlinear equations..
L I . Another approachAwhi;R has ‘been applied succésé—

fquy to nonllncar analysis of space-type eructureg lS

-the energj rearch approach. The energy doarch approach

. consists of 1nclud:ng ocometrlc nonllnearltlcs by using

nonlinear strain—displaccment equatlons to conStruct the

v

. .
S .
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potential energy for each of the finite.clements. .A

numericgl solution is obtained by seeking the minimu? of
the total potentiél energy for ‘the asscmblage d§ finite
eléméntsTfeprésenting the structure. -This apﬁroach was
used successfully by Bogner, Mallet, Minich, and Schmiﬁ-
éRef. 6); the méthod has proven to be extremely well
su%téa to the nonlinear analysis as gyidencedwby.}he ,
- -  comﬁféhensiye pfoblems treated by this method in Ref. 7
which‘includés instability an&&zsis.' The previogé work.
63 Ref. -6 was modified’by Bognel (Ref. 8) for the
upplication té more gener&fr;ru$s~typg structurés., In
Bogner;sﬂpaper, the governing equations are based on the
deformed geometry of the st;ucture:’this permits'the

prediétion of large nodal displacements and post-buckled

*

configﬁratibns :esulting from gross instability of the

structure: Bogﬂer used the Fletcher-Powell variable
'metriz seérch technique (Ref. 9) in tﬁe minimizatigﬁ of

the total Rptentiaf énprgy of the structure. Qt‘thcAsame.:

time, Buchholdt -(Ref. 10) also developed a theory for

prestresséd cablé-nets based on the‘minimizatioh of the

i - ) : : .

total poténtiai\energy and solved the resulting equations

by the method of Steepﬁst descen t. More recently,

Buchholdt (%ef..ll) ﬁollowing}the game'theoryldeveloped
“in Ref. 10, eﬁployed the method of conjugate gradients-

for the ﬁinimization of the total potential'ene;gy: He .

.

also introduced a scaling technique whigch "increases the
R v . . : '

- ® ) C
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4] .
convergence of the method. ’ i . N

The methods of analy515 of the struclures
rev1cwcd abovc wo‘e based o; the assumptlon of llnearly~. ,\://**//’
elastlc material behav1our% HoweverJ a limited amount of ‘
work has been done on thcqe structures stressed into the
' lnelastlc Legnon or with nonlinear maLerlal propelt:c
Greenberg (Ref. 12) is known as the flrst to include
nonllnear material propertles in the analysis of cable
‘roofs. He used a compound curve whlch is 1n1t1ally
\\.v linear up to the elastlc limit followed'by an exponential
curve to the ultimate st*ess. Jonatowskl and Birnstiel .
(Ref. 13).prescntcd a numerical procedure for determlnlng‘
the inelastic oehaviOUr of three-dlmen51onal suspension
sﬁrucﬁures.' ihey used a continuous smooﬁh curve fitted
_to test results for the cable stress—strain relationship:d
Like Greenberg, they used a -load-increment procedure and
detormlned the ultlmate capacity as the load at vhlch 1he
first cabie ruptures. Rccentlg, in a dissortatlon hy
Kumanan (Ref. f)'the‘dener“l behaviour of cable netwcrks.
- hav1ng hyperbolic paraboloid sbapes, orthogonal and
non-orthogonal, was studled in the elastlc and 1ne1ast1c
regions and their ultimate capac1tles wvere dotermlned
Kumanan‘s;;heo:eﬁical SOlutions were substantiated by
experidontal'resdits obtained‘by-testing models of

" cable networks.

v o . L. .
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4_'~ 1 2 ‘Objectives of the Prcscnt Studz

<

The follow1ng chaptcrs present the sy Lematlc

developmcnt of a finitc element capability for

-

édicting

the rcspon°e of truss type structures. - ficluding cable

\.
o~

roofs) using the eﬁergy sear approach. ) , R

~ In Chapter_ 1f?he iotmulations required for the
- elastic and—~{inelastic analysis'of tension mcmbers is
- pregcnted and lncludes the predlctlon of buckling and
l_ post buckllng bchav1our of truas members capable ‘of
. resisting comprQSSLOn forces. The total potentlal energy

di an assembly of truss-membefs is employed as the

N Q

mathematlcal model\ "Analytic expreSSLOns for the gradient e
compononts of  the potentlal energy are generated.' The

, governing equationSfare based on the deformed geomefry of 2
‘] the structure. A straightfofward variable éorrelat;onA'

scheme which has been thoroughly explalned 1n Ref.' 14, is

»
. used to 1mpo"e geometric adm1551b111ty between elemcntq.

Chapter 11T prcsent° the seaxch mcthod used for

determining the minimum potentlal'energy posmtlonw The ©

' : ) ) . g Lo
conjugate gradient function minimization technique by

-Eletchér and Reéyes {Ref. 15) is discdssed,, A variable

scaling transformation which successfully improﬁes the |
convergence of the Fletchgr—Reevcs algorithm- is also

. ‘ . ) | , ' '
presented. . P

~ [
;oo
°
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Chapter IV is devoted to numerxical evaluations

I

and demonstrates the capabilities of the méthod of

'analysxs and its effcctlveness.
“Finally in Chapter .V, conclusmons are drawn

regarding Lhe merxt of the. approach developed heréein for

! >

Lhe anulyql of qenoral tru s and ten91on struc Mres.

1 A detalled derlvatlon of the Tormulation of
’ \

"Chapter II is presented in Appendlx A.

A method of determination of the initial shape
f :

. . . - )8 - .
. " of a suspension structure is presented in Appendix ‘B.

e - . . N
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GENBRAL FOP.I MULATION

The diséﬁssion in this!phapfer is focused on
presenting the formulation for the potential eneréy

mgthematical model of a general truss-type member, -

.

BxpreSSLOns for the strain energy and its analytic

gradieﬁt are obtained for the member, since both are

“+

requlred for the 1mplementatlon of the potential energy

2 RENVY

function mlnlmmzatlon technlque. . .
o . e\ The formulations ar;.based on.the deforyed '
geOmetry of the strucﬁure which permits the prediction
.of large nodal dlsplacements as wel% as post—buckled ' | ..
configuratlons; also the inelastlc behaviour of tensxon
members is taken into account. Tensmon'members here;n
are defancd as membcr3~capable of" resxsting tenSion . ; F
forces oply (e.g.. cablee,‘ulcs, and guys); and a general o
truss membef'is a member capable of resisting both’
l . tens;oﬁ‘and compressxon and has pln—eﬁded joihts.e -
The pr1nc1ple assumptlons necessarxy for the

" C mathematlcal formulatlons are:

- 1) Members are. tralght and prlsmatlc between

-
-

jéint_s._'
(2) Stressing’ the members does nol’ change

their cross-sectional area.

9 . }

N . L. s . -
. . . .
- .
o ) JRE . .
A . - ’ -
—

R i issi [ -
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(3) Joints :0of the -structure are frictionless;,‘
(4) ALl loedsAarc‘conservative, in that their .

3 . - vy * . .‘
Uosriginal directions are preserved. -

3

2.1 Elastic Analysis of Tension Members

l 2.1.1 Deformation—Displacemcnt Relations

The deformatlon of a goncral tension discrete
.element is measured along the x-axis defined by the

dlsplaced pOSlthnS of the element joints P ‘and’ gd. A

typlcal tension member in .both the undefoimed and deformed "

states is shdé% in Fig. 1. The undeformed length (L) -of-

a discrete element is defined by the lnltlal p051tlons of -

the jOlntS p and q (Fig. l):

» . T ©E=F%_-.%T_ . " (2.1)

where fb and fé are the initial position vectors of the

élcment jOlntS prcscrlbed in a common referenée co— .~L

ordinate system.( /X:%2}; the undeformed lengthlof an

element pq is

o

Under 16adiné, the joiifts undergo displacements (W,9V,%),
nmeasurcd with respecé to the reference coordinate system.
J?he distanee between,the jeints in the deformed pesition
@ ‘ Lo i defined by S: SN - |
f ‘ , "

. . .. ¢ -
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o : P P ,
% 3 . ' ¢ . %
. . | ' - - .

5 = (fc-l‘+ G (T + ) ‘ (2.3)

where ﬁé and'ﬁé are the displacement vectors of the S o
(element joints} the corresponding deformed length is

Y . -

_ N Y o~y 2 LT ATy L (¥ a2
® “{ [(xg+og) ifpfup)}' H LY - G 1
'+’[('E o) - (z +W )] } . (2

.2.1.2 Straln Deformatlon Relatlou : f . ,'{

.\

- The strain of a ten51on member is expressed ln <
terms of the defdrmatlon (u), measured along the .

deformed leng}h of tﬁe member.(k—direction)} For:teaSionv
members.therexis only the axial deformatiqn'(u),~there is
po_transverse deformation in:the aireetions perpendicular
/"s - te{the’x;axis;.5Hehce;wthe strain—deformation relation
‘ " for a'tension member is given.by Lo S
: % o

c=u, : | S (2.5)
—" R A - .. ' / :

This term u, descrlbes Lhe prlmary deiormatxon

.~ ’-

which. occurs as the joints of the element displace
!

relatlve €£o one another. . ' [ T
2.1.3 Element Strain Eneraqy .
The strain.eneréy density 'is defined by t ' o,
. .
c-I'e- / ' !
P
Cawe [Tea (2.6) -
> o\-‘.‘- 0 . . 2 ,‘.é
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‘."‘ . - " .l
N ) ’ . e
: - . - . .
. . / N . b - . .
. . . N . N .

‘Under the assumption of ideal,linear elastic material

behaviourg ; - T -~ ' o .
T E (5 * e?«)“.' ol 5 27 |
. .- . S . ©os .
v ‘where ¢ is the strain of deformat Qﬂi&ﬁq 2:5)-
) €5 iégtﬁe otraln due to prestress ‘ - i ' ;
/ T isifﬁetstless in the ten512n membcr,‘and
2 ‘E is ihe'elastic modulus oé the materlal..;L )
“\j , .' R Integratlon ‘of the straln cnergy density (Ilq

-

By 2 6) over ‘the vogume (V) of thg clcment reoults in the

follow1ng expre551on for the straln energy in termi)of

the.strain; _ e e L e " ’
) ) .‘A ‘_ ) " P ) ‘ } v o . } {
R oo ' U=;,"f(g_+.e)o av,
o ., P SRR
: . or “ . v : ST . T Ll
o 2__./r(e‘ cp)'uo v T (2.8)
. ,. T ' ‘ ' k\ . _ . . L3
. I Subftltutlon fOL the strax frdin Eq.‘z;Salnﬁo Eg.-2:2 and
CoL 5 Y “
B 1ntegratlon over the TYOSS=— sectlonal area (A) ylelds the
’ straLn=energy 1n‘terms of the IOCal deformatlon (u) of
G . - . . Co '
" the element - - .‘<\ L e E ‘ .
~ T \ ) P
U = : + € 2.9
. ('X' p ( ) \ o
e, - o . .
k ' ] "
B wherd § is the distance between the element joints in the. :
déformed'state;qu. 2.4). - o e o o <f
: . -, . ) . _,.‘ c-: , \ /
T . ;o
- e
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.. .

ﬁhc governlng dlfferentlal equatlons for ‘the

ten.'sn:wn discz_‘c_t;e el_emeutgtogethchg with the boundaxy

. rf -
L] . o .

° corxditions are .derived in Appendix A by taking the first N

™ >
— ' varlatlon of Bq. 2.9, . -' . ; ° P ,
. The ’gbvernlng differentla\legp\latlon is glven by g
- . :

>
L
6

e e By Ay R Tl (2.10)
o - dx “&'*-F;»{a;_ -04_'. ’ RN (

—-1 \‘\ »
.. v e ., _)' . \\ e R \
. ' ’ N A AN . : . .
' & . "1, ; . Wo" - . . \ A
. Integrating Eq. 2.10 gives - > ~.
. - .

:C__ .
\

T whe:;e K/iis a constant wu:h resPeC't to }i-f"-gpd can be
," T determlned by lntegratlng Eq 2-11 over ‘the length S::. -
N e S _

. s I .

. s . s - o

[ . . -* ‘ - f K‘] dx.= . % . \(ux + zp) dx | ] ' ) ?. o 'f
) . - . [} . ’ .. '

g . 0 - - .
0 ' BRI ‘
- . . o .

. .

* o j
* . -
$ - .
- - Or Y N .. 'ﬁ- . f
e VL ’ ’. - .
. N K1=-l - §‘+\ep ) e (2.12)
Z. - - N t <
o - -~ =
. - >
{ T E P * . [ N
~ . . e . YR . s . , & -
e A. ..

' . 8
b . . J. 9
. . N ) :
5 . o , SR . .
- . - - . e .
A, e . - SO e T .
. . . B P
1 hd .
T
.
» T . !
1 i . \ o~ .
3 9 . o v a
S .

3 : . Ct el et [ . . . K . : . .
< ) P : f . s . A .
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T It can-dlso be concluded that the -force in the member is
constgﬁt'qnd'is given by ¥ E . o e
\ ' .t - . ) ) .
F = AEK, I - (2.14)

——
> - .

M - . - -
\ . . ' . N

The tension glement strain energy is obtained in
terms of the nodal dlsplacemcnts’by substltutlng Eq.
2 ll into Eq. 2.9 and performlng the indicated lntegratlon-

‘ - u=2s K U © - (2.15)

0%

!

where S is glven by Eg. 2. 4, and K by Eq. 2. 12. Note

,. that K,is directly a nonllnear functlon .of the nodal
. e < -

~

\\ dlsplacements (u VW), measured with resgect to Lhe

-

reference coordinate system, throughﬂs (Eq “2.4).

- L] ,
2.1.4 Analytic Gradient of the Element Strain
) Energy _ - -~
o '.Aqgfﬁh"gradient of the element stroin energy can
. & :.’ : ; ] .

bebdgfined by‘the vector {Gel'as‘ ,

- - CE . .
. Sl S S . . .
s v ' .
a . i . .
. A

’
- -
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. a U . . ) -

3w

i ‘ \ - - ~ :
) where U is " the straln energyﬂbf the ten51on element givek
\ ‘ by Eg. 2.15 given in terms of the nodal displacements of
Q : ~
tﬁe olement U, V., W o ¥ , ¥. and ¥_.  The clements of
p P P q a g -

-the glddLenL vocLor {G '} are obtained by pértiul

-dlfferentlatlon of the expression for U, /waih respect to
each of ‘the six dlsplaccment cémponentﬂ of the element:“
note that both S {given by Eq. 2. 4) and K (glven by |

Eq. 2.12) are in tcrms of these six dlsplaccmcnt

. ' componentsiA This results in the follow1ng cypre3510nf'

'H " . _. .' - . \\
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aU AE ~ - ~ ~
_—= - X + - {X_ +u £
o 2 [( g * % T Y p)] 1
P
l ~
? AE Y + v - (Y +V £
E-“’g‘f'[(q AN A p)] .
v -
p v
3U - C:E_ -~ ~ - ' ~ 9 7
’/ng-- > [(oq + wq) (2 + W )] fl (_.17)
W
1%
‘ 3. . 30
U 3
g P ‘ : :
@ °
U _ _ 3y .
3V av 7’

<
e}
ol
A\

' _ 7 2 .' ! .
- e e 2 Bl wax Y (2.18) -
. S a S}. C L 7 : '

/ ‘ 2.2 Inelastié Analysis of Tension Members

when the stress in a tension membeX exqeeds~the
- ‘ .o . oA .
material proportional 1imit, the ‘inelastic range O
material behaviour must be considered in deriving the

expressions for the element strain-gcnergy and its

gradicnt vector. S o .

)
~ ° -
‘

- . ¢
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2.2.1 Mathematical Model of Stress-Strain Curve

In the analysis of suspension space structures,

~ various mathematical models to represent the stress-

——

strain relationship of the structural elecment have been
7

_adopted by different authors. ‘Greenberé (Ref. 12) used

a coppOLnd curve which is- lnltlally lrnoar up to the
ﬁgﬂ¢é? elastic limit followed by an exponential curve to the

ultimate stress. Jonatowski and Birnstiel~(Ref; 13)

.
used) contlnuous smooth curve fltted to test results.

Kumanan (Ref 4) also used a compound curve whlch is
lnltlally linear up to the proportional limit followed by’
a second degree parabola up. to the ultimate streSSe
\‘The mcthod of analy51s presented hereln is
-capable of handllng any of these models to represent the
. ,1nelast1c behaviour.of tension structures. In the
| following analysis, the mathematical model presented by
Kumanah is adopted to derive expressions for the clement
strain energy and its gradient Qector,.‘* ' '\ i e

l'-"‘“&.

The second-degree parabola between the proportional

_ " m&t—an&—the—p01nt of ultimate strese is aSsumed to have
. R
its axms parallel to the c(straln) ax1s as shown in Flg.,

- / 2, and is given by the'equatlon

: | ]
a2 4+ .2ge + 2fa + ¢ =0 - (2.19)

where o is the stress and g, f, and c are constants
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_determined by Kumanan (Ref. 4) as

’ 2
= - 250(c,_ - ©
9 (o0y = %)
-9 . . (2.2
f. 3 -9, | (2.20)
' 2
d - =.
an [o] Up

v L.

where cp is the stress at Lthe proportional limit

¢ is the yield stress, defined as,oy = (;y703002)E

“

and - E is the material elastic modulus for the linear

part of the curve.

t

. - ‘ 5.2.2 Element Strain Energy

/ : :
; "The strain energy density in the inelastic range
(Fig. 2) is defined by

. e -
au = %Beé + o de o L (2.21)
e
! 1 : where .
‘ 7 g = -2f "+ v/l;fz -2-»4(2qc + c)

X
¢ is the strain of -deformation

¢, is the strain due to prestress

. ‘

: o . _ .
€o is the strain. at the proportional limit. - : I

.
B

8
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The strain of deformation is given by .

g =u, + % u2_ | (2.22)_

where the second order term is considered in order to
moge accurately account for large strains in the inelastic

range. : . ’
? ' ) :
Proceeding in the derivation of the formulation

as has been followed in Sgction 2.1, the strain energy
for a tension member stressed beyond the elastic rande of
raterial behaviour is obtained in terms of the nodal

displacements (See nppendix A}. The resulting element
" strain energy expression 1is: ’

T = 2 . 1 , 2 _ 3/2]
U = AS [%Eee +-&ce + 54g ( egfe + gf 4¢)

f,

- RSE(Ky+ BK ¥ ) = Tig [—Bg(K,+ Ky +oep)

a4 -

2 . 372 T
+ 4f7 - 4c } '

\ (2.23)

- where Kzis a constant given by C R

nie.

(2.24)
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2.2.3 Analytic Gradient of the Element Strain
- Encray

Expressions for the elements of the gradient
.véctor {Ge} of the element-strain cnergy arc obtained by
partial differentiation of t@e cxprcssion for U giyen by.
Eq_." 2.23, with respect to each éf ‘tha six displacemeﬁt
cémpén.ents of the element (again noting that both S ‘;and

'K, are in terms of these six displacement cqmponents):

{ . ’
20U _ A [,> ~ ~ ~
— = -z |X,6 + 1u - (X 4+ u £
= S[(q g - Gy i) ] €
» P ‘ -
\ 30‘:“ A
a2 (Y 4V - Y+ £
W S[(q q)o *p p)J 2 )
- . p s ’
. .
(2.25)
aU A ~ ~
== -z|(Z_ +Ww —z+w)]f
= 2 [, i) - T | 6
. -3 ' ' /
' U _ _ Ay -
. au
q P
W . - _3U ;
v N
] q p J
{
b, .
- 3 W
s = T ~
] W
q - P

-
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@Dere'the@term £, is grven by o :'f

e yne2 1 ane 2., 1372
f2 e 1Eee + fee + 535( Bgce + 4f° 4ic)

. e E (R + s;x2}+ c) - f Z(1 + K)
. - , 3/2
C 1 f 2 2
"" -i-ti_g' [-8g(K2+ ;'sz + Cp) + 4f - 40]
L e 2 %
v+ %3 [—8g(K2+ 4K + o) + 4T - I{lc] (1 > Kl)

(2. 26)

2.3 Elasulc Analysis of Compression Members

In the following, the formulatlon is extended to,
- - the prediction of buckllng«and post- buckllng behaviour of
a truss meber capable of re51st1ng compression forces.

The formulation presented in this section is essentlally
o the same as that presented bf Bogner in Ref. 8. A
‘ detailed derivation of this formulation is given in

Appendlx A,

2 3., 1 Straln-Deformatlon Relatlon

The °strain of a compre831on member 1s expressed
in terms of the deformatlons (u,w), measured in the local
coordinate system (x,z), Wlth orlgln at the end ‘point
p (Flg 3). The x-axis is deflncd by the line between
the. dlsplaced p051tlons of the member joints, the z-axis
is normal to the x—arl_ and lies in thc plane of potanJal
buckling. The transverse deformation i, is a secondary

/ . . ¢ : \ .
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deformation admitted in the compression member represen-

o —-—

tation in order to provide for buckijng of these members
X Wlthln a structural system (local buckllng*)

The strain- de‘ormatlon relation for a general

truss member is written in the form 5

- - X ' r

- . 2 =
¢ =uy, +t%wx zwxx’ | (2.27)

~

. : %, .
| : ) R

where z is measured from the neutral akis of the cross-

section in the plane of potential bending.’

2.3.2 Element Strain Energy

Assuming an ideal linear elastic material, the

strain energy of a general truss member is derived in‘

-

S,

Appendix AJ The-elcment straln energy is expressed in
terms of the nodal, dlsplaCements and the buckllng

amplitude {(C) as

4.2
W RE g2 L, DT C
L U'f > CSKy %R 83 (2.28)
o - N _Q,‘(
where S is given by»Eq}‘z}é, and K;is given by
: 1 ,
\ ' Ky= 1 - L i e 4 ("Cz . (2.29)

9 S p
)
- - . _ o
*By "local buckllng" is meant the buckling of an individual
membex; while the term "gross buckling" refers to overall
lnSLablllty of the str%ctural system. ’ o
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A
The constant C appearing above is defined as the

~—-e_‘3transvcrse displacement at mldspan of a compressinn
\
- l
member which is allowed to buckle, and it is retalncd in

-

the formulatlon as a generallzcd coordinate. Note that
the value of C remains at zero unless if the member has-

buckled. ‘ _‘ » f . .

° 2.3.3 Analytic cradient of the Element Strain
Enexrgy i . - .

Expressions for the ele%ents.of~the gradient
vectox {G ) of the element strain energy are obtained
by partlal dlfferentlatlon of the expressmon for U given

o~ ~ ~ ~

components U v, w,%.,V W .and in the case of
1p' p’ “p’ "g’ "q' "’ ! |
a buckled member; the pidspan displacement C:

pfby Eq. 2.28, w1th respect to each of the six dlsplacement

[ ) . .
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i+
_—= - == + - (X, +u f
= 2 [y + 8 - & REES ,
u .
P
N - 2 [(Yq t g = p)] 2
. P ’
2 . : :
—_= - 5 - (2 + £
e 5 [(Z + wq) ( D wp) 3
- p‘ ’ =
Y _ 38U (2.30)r
q P _ !
' 1
U _ _ 23U
3V v
q P
v L )
: 83U .. 93U '
3w 1%
- q
u _ AE 1%C, , Lnc’
ac 2 'S "3 A S3
- .
where the. term f5 is given by.'
2 . 2.2 4 2 ‘
. K L m¢c _ 3 1| .wct .
£5.= s * 2Ky = Ky —3 >R 5 (2.31)
. st s s
3 _ ‘ |
I 2.4 Total Potential Energy of a Structural System
B 3. ' . R L. . . -
, + The total potential energy .of an assembly of_
n members (tension or .general'-ti:uss members) is defined
4 ot : L ‘ e -
- as J ) . - ‘ - . '
1" I' n ' . . . ) ‘
- (1) ' . '
. m, = 2 U™ =W - (2.32) ' 3
i=1 L

/ . -.. . . . . ‘ ) R - .

-~
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wheré U(l) th

is the strain energy of the i~ element given’

~ by either Eq. 2.15, Eq. 2.23, or Eq. 2.28, depending on

// ’ the type of behaviour the member is'following in ‘the
assembly, dnd W is the external work done by the foroesl

-

s : applled at the jOlntS of the structure.
In general, the total pdtential energy of the
. ' structural.system is a function-of N undetermined
d;splacements, thbh represent the nodai dﬁsﬁlacements of -

the structure, measured with respect to the reference

~

:ooordinate system X,¥, %), and the midspan deflections (C)'

of members permitted to tackle. .7 P

Each of the N 1ndependent degrees of freedom IS
A\
assxgned a dlstlnct numberxr from l to N and a correspondlng

‘-

.pOSltlon ln an N- component dlsplacement vector {X}. The
_ total potentlal energy of the structural system ‘can then

be written as a function of {x}:

o

ﬁp({x}) ='u({x}) - w{{x)) B (2.33)
y .
‘ b

where U{{xXx}) is the sum of the element straln energles in

(  terms. of the 1ndependent dlsplacement degrees of freedom .
({x} of the-system. The external work done is given by.’

X
f

w({x)) ='{X}?{P} | R - . (2.34)
iﬂ .
‘J where {P} is a vector contalnlng the applled 1oads.
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Bl add

'1to gradient. '"'; }7 »f't : B

associated with?eacﬁ of the undeteﬁp&ﬁgg:displacement .
, . . R ;
. : } ‘ ~ . .
degree of'ﬁreedom in {X}. o
o ‘ e N //"
2. 5 Analytlc Gradiecnt of the Total PoLcntlal Energy

The conjugate gradlcnt method and its extenslon’

by Fletcher and«Reeves (Ref. 15) form tho bas;s of an

o . i

eff1c1ent algorlthm for solving for the dlsplacemcnts {X}

% .-

by mlnlmlzatlon. It requlres only evaluatlon,o the totaf

potentlal energy of the structural system an.'z '33) and

The gradlent vector, {G}, of the total potentlalg

energy 15 the vector sum of the gradlent vectors of the

element straln energies minus the applled load vector

.{P} - Thus ‘ : . / : '.“ :‘-, . . o . wy

. o . .ﬁ . .‘ n“ ' L 1

ey = 2 {s‘”} - {p} C b 2 B5)
) l‘“‘l * ~A.' : ..‘

whexe the' gradleut veckor {G(l)}of the ith elementuis

glven by elther Eg. 2 17 Eg. 2.25, or ‘Ly. 2.30, ée?endiné
! -
‘on -the type of behavmour the element is followzng in the

'assembly 'The sum “of the gradlent vectors of the n
.elements .can ‘be computed by the use of the varlable

'correlatlon scheme whlch has been’ thoroughly explalned

“~

in Ref 14. E

- .
- . bl
o]

The neceseary cdndltxon for the occurrence of a

minimum is g;yen,by - o

P

* e
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CHAPTER IIX )
METHOD_ OF. SOLUTION
A L~ %he prinqiple of stationary. potential ehergy can

be stated as: .of all diﬁplacement fields {X) which
satlsfy geometrlc qompatlblllty, those whlch locally

m1n1m17e the potentlal energy, H ({x}), also satlsfy

&

the equlllbrlum condltlons and are stable equlllbrlum

1

; positions. That is:

. - A (xn | o ’ - o
, : - "REET;" =0 3=l,2,...,8 (3.1)
3 xi=(xy* | |

e
Y

LN

where {x} is the dlsplacement fleld at a local mlnlmum.

B

The assoc1ated equlllbrlum p051tlon is stable if

-

np({X} "} o< Hp({x}),for all {X} in some nelghbourhood”of

{(x)*. ]
) . Accordlng to the principle of minimum total
‘ 'poténtlal energy, “the structural analysis problcm can : ' L‘
. \ then be viewed as a problem in mathematlcal programmlng V~ L.

Se \-The.problem-ls to‘flnd the dlsplacement state vector

_{X}={X}* such that the potential energy function:

~

; np({x}) is mlnlmlzed Theluse of~mathematical programming = -
.meLhods offers SGVGral advanLagcs First, the potential

75«5 ' energy iunctlon mathematlcal model for an individual .

_'u Ct s | i . ) '. . e . 6\ . .-
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dlscrete elemcnt is 51gn1f1cantly srmoler to construct
than the correspondlng direct displacement formulatloﬁ.
The potentlal energy function’ mathematlcal model for the
total structuro is also constructcd with relatlve ease
The total potentlal energy lS simply the scalar sum of
the energy contllbutlons of each element (Eq. 2.32).
Sec0ndly, this. approach allows the use of powerful
numerlcal methods. of mathematlcal Qrogrammltg to solve
the nonllnear structural anaIy515 problem.

| The partlceiar type of mathematlcal proérammlng
problem encountered heneln ls'one whlch the varlables'
xs are not restrlcted ‘to certain 1ntervals end is ,
referred to as unconstralncd mlnlmlzatlon. “There is a-
wide variety.of unconstréined minlmlzatlon methods. Fox ‘‘‘‘
(Ref. 16) presented a detailed dlscu551oq of these
methods ané gave valuable guldance in ch0051ng one of
them accordlng to. thc natule of the fnnctlon to be

' mlnlmlzed " The conghgatc gradlent method and its,

extensmon by’ Fletcher and Reevcs (Ref 15) form the basis

I'v

of the mlnlmlzatlon algorlthm used ‘to generate the
solutions to the sample problems presented in this work.
There are other mlnlmlzatlon methods, notably the

varlable metric method by Fletcher and Powell (Ref. 9);

it probably is the most powerful procedurc Xnown for

flndlng a local minimum of a general functlon, ‘and CLT

' conVerges rellably, even in’ 111 condltroned problems,

R .

) -
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but ‘it reguires. the storagc and manipulation of an

. ' .. (N % N) matrix. For the large degrees of freedom systems

/

-

usually encountered in finite element applications, thlS
procedu*e 1nvolves time consuming matrix operations and

- storage problems. On the other hand, the Fletchef~Reeves
method, althdugh requiring a minimum amount'of matrix
operations and‘computer storage, has been characteri!aﬁ
‘by cOnvergéncc difficulties. Fortunately, the incoﬁpora-
tion of a spec1al scaling transformation proposed by Fox
and Stanton (Ref. 17} has produced an algorithm which 1is
computationally eff1c1ent for the §;ructures included in

v

. this study. :

3.1 Fletcher-Reeves Unconstrained Minimization Algorithm

.\;6

. The function minimization, technique eﬁployed'in
this study 1is bégically described by Fletcher and Reeves

in Ref. 15.

The Fletcher-Reeves algorithm begins from an -
arbitrary initial guess vector, {Xj }, to the_minimum of

FE TV

. ‘H ({xTro The lnltlal direction of travel in the
N- dlmenSLOnal space is taken in the negatlve gradlent

'dlrectloq, fso},

(8,F = - {6} =__—vn§(‘{xo}) o (3.2) .

- s . C .

Subsequéntly,‘tﬁe‘mefhod proceeds by generating directions

« of descent {Si} (i= 1,2,..,) and choosing the<step;length

’ I

s

« L
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a; > 0’such that Hp-[{xi} +oay {si}] is a minimum along

* . - - v -
the direction {Si} at a,. The new approximation to the

minimum is achieved -at,
T4

. * ’ ’ ‘.
{¥i+l} = {Xi} j;ai {s;} _ (393?

. "
! and subscquent directions are generated from the

relations; . T

{5 } o= —{Gi+l;? Gifsi} A : (3.4)

i+l

where

(G, 1} = VI ({X; 3 ]) (3.5)

/ T
B, = (G413 {Gi4q! |G1+11 - (3.6)
4 ~ i T B :
v . {§i} {G;} lGi] .

The Fletcher-géeves,aléorithm includes a
convergence criterioﬂ for-accéptihg a as a* at which the
: function‘Value H ({x)) is minimum alpng the}dirécfhon {s}.
Note that {X} is, abveétof whlch minimizes the energy in
.'“ -the previous dlrectlon.i When the directional derlvatlve

dH (a) /da reverses sxgn, the cublc fit scheme rccommcnded

1nTRef. 15 is used. The COnvergence crlterlon for

Y

~

s
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accepting a as a* was achieved by performing the ortho-

gonality test between {5} and {G} as

F

(G1¥ (s} _

Te[IsT ~ “1 -7

where
| N
6] = (e1Ten® = (% 621"
° i :]"-‘l J \
, and - N
|
Is| = [{S}T{sllli = [ 527

The quantity £y defined above lies between plus' and minus

1 and is zero ét a*., A convergence criterion was also

adopted>fo;‘aqcepting TX}* as thE‘VeC£Of yhich minimizes

the total potential energ& function. To accept {X)* as
. : the‘fipal éolhgidn, the convergence‘criterion used,was

~

‘- ‘- - | T (%) - M, ((xX3) < e, . (3.8) -

which shows that the energy would converge to the

- minimum according to a specified accuracy e, (a

16);.

recommended value in the subroutine used is 1 x lof

-

. \ : -
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Subroutine DFMC from fhéQIBM System/360 Scientific
’
Subroutine Package was used to find the local minimum of ' .

A

the total potential energy by the Fletcher-Reeves

¢

b conjugate gradients method.g ) . ‘ 4

| . 3.2 Scaling Transformation

3

Scaling of the variables in the minimization

i problem is a technique which can materiaily %mprove the
convergence to the minimum of the function to be
minimized. | ‘

¢

The term "scaling transformation" as used herein

~ refers to a siﬁple multiplication of the individual_
degrees of freedom by appropr;ate constants and thus to

a nons 1ngular dlagonal transformatlon matrlx. The

objective of .scaling, mathematically, is to acoomplfsh
a coordinate expansion or contraction which will .

~minimize the “eccentricity" of the functlon.
o ) ) . Por the problems dealt wmth hereln the Scallng

S transformatlon propgﬁed in Ref. 17 has proven to 1mprOVe
the convergence characteristics 'and results in an, eff1c1ent
Fletcher-Reeves mlnlmlzatlon algorithm. The scaling is

based on reducing thé ratio .of the maximum to the

minimam eigenvalues of -the matrix of second partials of
the function to be minimized. In the‘cose of linearized

displacement formulations, the total discretized potential

energy can be expressed as

Pl

Iy
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M, (X)), = 50X)" (K3 X} = (x17(2) (3.9) .
where {x} is the vector of independent degrees of frecdom,

{p} is the work eguivalent 1oad vector, and [K] is the

3

ordinary stiffness matrix of the sﬁpported‘structure. In

the scaled coordinates this equation will operate as

m,({z) = L 1z)T (K1 {3} - {2)T{P) C-(3.10)

® = - tiimTY, (B) = 1) S (3.11)

The minimization is then carried out with respect to<the
scaled set of variables ’ : .
s

{2} = IRLEx) " (3.12)

. whefe [R] is a diagonal matrix with diagonhl.elements

-

. | ryy = ——1—1; 3= 1,2,...,N ‘ T (3.12)

In this casé; the matrikx of second partials of
" the total potehtial energy is simply -
K k) = (k) where i, 3 = 1,2;...,N . ‘ BN

P

° .
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In the solution of nomnlinear problems as those
dcalt with in the present study, previous experiencc has
‘proven that a scallng traanormatlon which 1chuded the

\ cffects of the dlagonal elempnts of the matrlces of second
partials of the cubic and quadratic terms in the potential

1}
energy "function does not materlally improve convergence.

Therefore, in all appllcatlon Leported her01n, the scalc

factors are obtained from the quadraplc terms in the

potential energy, The elements of the‘Patrix of second

‘

B

by the use of a varlable _correlation scheme. Expressions

. for those terms are derlved in Appendix A.

Y
.

/" . i ' S ' oL ' !
. ‘ . . . \ e .
* B . : - . * ' . ' . ) . ’
Lt . . Yoo /
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CHAPTER 1V

NUMERICAL EVALUATION AND DISCUSSION OF RESULTS

8 | S o
: In this chapter, solutlons are obtained for a R

5]

varlety of problems in 01dcr ‘to 1nalcilo the potentlal

of the present.study and to evaluate the approach and

method of solution presented herein. The problems

examined- originate from the published literature whigh - ,
s ?

prov1de a basis for comparison.
A coméuter progragm_in Fortran Iv has been
: developed for the theoretical analysis oﬁ general tiuss
and tension structures wi the aid of the IBM 360/50
computer. A minimﬁm of computer stoiage.is required when
the energf search approach is adopted since the need for
an asscmbled stiffness Thatrix (N x N) is eliminated. .
. The numerlcal cxampde e>am1ncd here includes
.elautlc and inelastic ;nalyo s of orthogOnal and non~

orthogonal prestressed cable nets, and the predlctlon of

g
‘response of general truss structures. 1ncludlng post—

buckling behavxour.- The conceptual dlfflcultles associated

. thh tenszon members dropping out of service (1 e., lesing
thelr preten51on_and becoming slack), or wlth their
'yieidihg {so that the force remains conseant°in the ' o

member ‘when an iYleal ciaétic~perfectly plastic stxesu—A

36 ! N | . - '. .

,.
a
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-~

strain curve is used}, are easily resolved-using the

energy secarch approacq. The calculation of the total

potential energy of a tension structure involves summing
the individual contributions from the elements comprising
the system (sce Eq. 2.32), This provides a natural means

to accommodate an altéred structural conflguratlon at any.

o

point 1n the search process by 51mply not 1nclud1ng the

'contrlbutlon of slack members in the summation. Provision
‘for bucklipg or yleldlng of 1nd1v1dual compr0551on ‘members
is also included so that gross 1nstab111ty resulting from

the accumulation of loca; effects can be detected ' Note

. that local buckling is considered to occur when the

compression force in a truss member exceeds its critical

| A

: value (Euler Load).
f . ) .

4.1 Numerichl Evdluation ' ‘ N

.4.1.1 Linear Flastic'Tension Structures

Thc results obtained for ‘the tension structurcs
examined below are based on a materlally 1Jnear elagLJc-
behav10ur and geométrlc n0n11near1ty (formulatlon of
Section 2.1). B ‘ -"_ T

\

e EXAMPLE TLl: . a . ) )

Anh orthogonal cable network, having® the shage of -
. - - a hyperbolic‘paraboloid shown in Fig. 4 was previously
analyzed by Thornton and Birnstiel (Ref. 37

- The cross- sectLOnal area of each cable is equal

to 1.0 sg. in., the valué of the modulus of elasticity is .

.
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equai to 24,000;ksi,~and the horizontal compoaent of
prestress in all cables is equal to 50 kips. Three

cases of loading were considered: ‘ .

¢

(1) vertical load of 1 klp at each joint,

kii) vertical load of 1 kip at each joint’ plus
additional load of 14 kips at joint 7,

(1ii) in addition to the load in (ii), a horizon-
tal load of 10 kips at joint-7 in the
?—direction, |

Tnornton used the method of continuity for the

~equ111brrum Solutlon of Lhe nOnllnear sxmultaneousl

algebraic equatlons, from which the unknown dlsplacement

&

components at the joints could be determinede' In the
method of continuity, the nonlinear set of simdltaneous

algebraic equations were transformed 1nto ‘a set of

. 7

nonllnear differential eqhatlons whlch were 1ntegrated
o«

,' . -, The results obtained: by the plesent analysrg are

. @

in very clooc agreement with thoee of Thornton s, as
. /

. seen in Tables 1 and 2

Usrng the plesent analysrs, the total potcnt1a1

¢

. energy of the structure is a function ofIQS degrees of .
freedom (3 displacement componcnts at each'lnternal

node ). The search procedure sensed the symmetry of Lhe

problem in case (i), although the symmetry of the

structure anq_loadini was not taken into consideration

.

"in preparing the,inp t data for the computer orogram.

) Te

. . . , \ : .
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4

It should he mentioned'that Thofnton has
1nd1cated that the gcometllcally lincar and nonlinear
solutions for dlsplacemcnts varied by 0, 23% for loadlng
condltlon (1), and by 19% for loading condltlon (11).

However, thc geometrlcally llnear and nonllnear solutlons

.for the\horlzontal componcnts of cable tenSlO?S varled by

as much as 101“ for loadlng condltlon (111} The non-

—

linearity is more markcd in the. case of unsymmetrlcal

£

loading.
employed here can be said.to give acgurate results even
when the--nonlinearity is high (case (iii)).

AMPLE L2: ~ ll L

2

e
gN

. A S iA shspended roof bounded by main cables shown in -

‘Fig. 5, was. studled analytlcally ‘and experlmentally by

Siev in Ref. 2. In Ref. l Siev presénted a general

theory for the determlnatlon of the dlsplacemtnts of a
[ ’
" general net, Laklng the horlzontal dis placements into-

-account. The equatlons derlved were 11near and an

1

1terat1ve correctlon for large deflectlons usmng thev

.-

force 1mbalance at the 301nts was suggested.

The model consists of four main cablcs {1 mm in
.diameter), 12—13; 13-14, 14-15 and 15—12, fixed at poxnts
12, 13, 14 and 15, Two of the fixing points, 12 and 14,

are elevated, and the.other two depressed. Tour

"
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diagOnals (0.5 mm ih éiamcter}'are)stfézzhea\@?feaeh
dlrectlon bctwccn the main cables. 'Thcﬂmodulus ofv
) elast101ty was 1.9 X 10 kg/cn"for the 0. b -m dlamcter
wires, and 1.95 x 106 kg/cmz.for the 1.0 mm diameter wire.
. + The horlzontal cOmDonent (H) of prcstress in all dlagonal
cables was assumed COnstant ‘and’ equal to 4 i5 kg.‘ The
horlzqntal eomponent (Hl) oﬁ.prestness *in the segments. of

- . the maiwscables was determined from the equilibrium in

the.horizontaIAplane (see‘Appendiﬁyc), and is given by

BN

the relation,

o . Hy = 5.65684 1
All the dimensions, coordlnates, and ]OlntS

elevatlons are glven in Fig." 5. The system 15tgeometr1cally

f' /;/,/’/%’f"symmetrlc about the two- dlagonal axes.
.7 o -Siev studlcd the behaviour of the model&hnder t
— various modes of'ioadlng.' For comparlson, three cascs
. are preseﬂt@éihexe, for wgich,numerical results are.
. . . E - . . . 3‘1-'""‘4”-:/:)\:“:
. .llsted ln Ref 2. S B

) - In Case (1), the system s loaded at jOlnt "0" o

" with.a vertical load i cremented rom 200 hms to 2000 gms,~

and the vé&tical dlspla

t of" _hlS jOlnt is provided

e by both’ theory and experlmcnt. the experiment;the

o

"Iny

'average of four measured vcrtlcal d'splaceﬁents of jeints

0, l“ 10 "and’ 11 under the ‘same smngl yeitieal load at

K

’veach of these jOlntS was obtalned e results obtained: -

~ -

<
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by the present method of analy51s togcthcr w1th those b)~

'SlCV are given in Table ‘3.

Ay’

“ » ' , In Cases (11) and (1112, the e?stem is loaded aty .

‘all joints wmth horlzontal loads of 0.2 kg and‘l 0 Lg ln
~ .A

the X- dlrectxon, respectlvely. In thesc cases of loadln

there—ts—a symmetry only about the dlagonal parallel to

1

_the X-axis. Dlsplacements in the. x and - A dlrdctlons of gy S

<

,jointsiﬁ l, 3, 4 and 5 are. identical to those of~
301nts ll, lO, 6, 7% 8, and 9 respcctlveiy, whlle dlS}i‘

placemenE\\rn the Y- dlrectlon of ‘thé same ]01gts are.,/7 -

-
Ve —

L equal in magnltude but orposzte 1n 51gn In the present

»‘analy51s, the potent;al energy of the'structure is a’

,.' -

functlen of 36 degrees of freedom (3 dlsplaccment oo

: components at each lnner jolﬁt) ' '
0 {. ' .
The three dlsplacement components af the jOlntS

-

and the tension for each sectlon for the two cases ‘are .,

° . ..~ o ¢

. . compare@ in Tableo 4 and 5. ) o
EXAMPLE L3:. - '; | S 1-' IR S
“The geheréilbeﬁavioUr of the offhoéonal:hyger; f'”
pollc parab0101d cable net éhown An Frg. 6, was. . _-u. |
_oftermlned by Kumanan in Ref. 4. ﬁ" r’?’_ < -.i-  '

- . Vo 4

The dlmenolons of the roof 1n plane are 240 ft.

' A
. (' A 120 ft.f r15lng by 12 ‘ft. from A to B, dropplng Lo
: \—',/ / \

the ame level as %\to ¢, rising. agaln by 12 ft. to D,

dropplng to»the same lexel as A to L, and f}nally rlslng

o

by 12 ft. ‘from E to P The vertlcal coordlnates of the

»

lnner 301nts are determlncd usmng tge dé%ect method

et LT - -~ L. I- A .
' . o ' I ' ’ : . e < . :'i :
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explained in Appendix B, based on the equilibrium of

So- ) foxccs at j01an.

P ’ . -

. ' , Values of 24,000 ksi for the elastlc modulus,

B

*50 kips for the horizontal components of the pretensmbning

force fon‘all.cables,‘and 1.25 sq. in. crosseseotional

-r
.

areas for all cables,were used o . :

The struc¢fure has 28 inner joints resultlng 1n

Ny

. 84 dlsplacement degrees of . freedom._-The structurc ‘s
- >' - ’vsymmetrlcal about the llne B—E which therefore - reducés*
| the number of dlsplacement degrees of freedom from 84 to
1 ‘ ;ﬁ\ 452\ The dlsplacement beuaV1our of the roof was dctermlned

;9 T under vertlcalm&oads of 1.0 klp/JOlnt. B :

a

dlsplacements and tensions under load were based on the

. dlsplaced geometry of the structu{e, and secobnd- order -
: TR 7 - .
A N . ;
' ' displacement terms were-included. The 1teret1ve Newton-
.Raphson method was adapted for':ﬁﬂpsolutioﬁAof the

-
n

- nonllnear equatlons. ', . i

e o ! h 'l«-

‘ o o Typlcal results of the vcrtlcal dlsplacements of

’

i _ the roof jOlnLS as given by Kumanan in Ref. 4,
]~ L4 .
with the results obtalned by the present analy51§ ar
v v ' . a ) i
' - shown in Table 6. | ‘
| . -

toge: er~

”

 EXAMPLE L4:

-

. 4
_The- (esent, method of analysis is efficient and

y - accurate for the Stydy of non-orthogonal cable-roof .

r

a2
- -
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.~ structures. ‘Thercvis no additional provisiods to be

introduced ink the_ﬁormulatioﬁ‘to account for non-"
9 . s

orthbgonality.
The non-orthogonal hypcrbolxc paraboloxd roof

~ %40 ft. x 120'ft. rising by 12 ft.'from A to B, dropping
i

J

+to the same level as A at C, and again rlslng by 12 ft

to: D, .as shown 1n ‘Fig. 77 was analyzed by Kumanan (Ref.
4,5). The vert1ca1 coordlnates of the 1nner jOlntS are

.determlned by the mcthod explained in Aopcndlx B. ®
! - a i

i S ' Values of 24,000 ksi for the elastic modulus,
. 50 kips for the horlzontal components of the preten51on—
1ng of all cab{es, and 1. 25 sq. in. for the Cross-

v - sectional areca of ‘the cables lq both directions were
- )

" used. ' N -

The structure has 61 301nts 1nvolv1ng 183

v . °
.

dlsplécement degrees of freedom, three components at. each

\
s

» Joint. Thls number could be rcduced to,108 degrees of

freedom by coh51der1ng the antlsymmetry about the dlagOnal

: Ac or DB. - ' ' \ “o

+ The displacement behav10ur of the roof is
determlned under vertmcal loads of 1 0’ klp/jOlnt, hicﬁ

corresponds to a unlformly dlstrlbuted load of 5 psf of

_— A: plan areéa of_the roof G'

€& In Ref. 5, humanan ‘derived the equxllbrlum

equations neglecting the hlgher‘order terms which is valid

-only for an infinitesimal load. Two methods - to cprrect
._l‘ . = . N

&
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£or nonllnearlty when larger loads_*“é'aﬁpiied {(an
approximate meLhod and an lncrencntal load mcthod) were
‘used by Kumanan. The approx1matc method of correction
was used to obtain the results for this problem. In this -
thod half the displacements obtained by solving the
equilibrium equatlons are added to the initial coordlnates
and ‘the. new displacements are calculated using the =
orrected coordinates. ’The‘iteration is:continued untii
the values converge suff1c1ently This cerreetion amounts
C to hasingvtheucalculatlons on a conflguratLOn which is
nwalf-way between the initial and final (dlsplaced) F
configurations.
Typlcal resuzts of the’ vertlcal/ displacements ’
_of~ the roof 301nts as glven by Kumanan in Ref 5;
‘;*together with the results obtained by the present analysis

- are shown in Table 7.

4.1.2 Inelastic Tension Structures

. The inelastic apalysis and the-@eterminafion of
; . the ultimate 1oad capacity of the two cable-net roqf’
L. prev10usly analyzed (EXAMPLES L3 ande4) were carried out

-

L ]con%}derlng material nonllnearlty .The same theoretical
model for the stress -strain curve’ suggesLed by Kumanan '
- 1 (Ref. 4) is adapted here for dGVeloping the energy search o
| ' approach to 1nc1uderthe'study of inelastic beha&iour of |

cable roofs under lncrea51ng load (see Chapter 1X,

Section 2.?). “4 . K

. . N -
", .1 - . . = .- »
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“ . In the num;Zical calculations of'the ultimate
‘load, valgos of 24,000 ksi for theAelastic modulﬁ;,

124.9 ksi- for the proportigﬁékilimit, 155 ksi for the
yleld stress, 250 k51 for tho oltimate stress,.and 4.5% for
the ultlmate straxn were used. .Accordingly} the stress-

strain curve relatlonshlp (Eq* 2.19) is given by

o2 - 453000 ¢ - 230.925 o } 15600 = 0

<. where ¢ is the stress in k51 and € is the strain.

°

The criterion of fallure of the roof is deflned o)

as when the ultimate §tress is reached in the most hlghly

'stressed segment of the cables. Kumanén used an
1ncrementa1 load method where the tangent modulii-
'correspondlng to the stress 1evels in the cablés wére
‘used throughout the derxved equatlons. “The external
applled load was 1ncrementally increased untll the ultlmate
load was reached

The vailue of the'ultimote load;fot the orthogonal
-cablevnet obtained by Kumanan“was 65.2 kips/joiht with a
max1mum deflectlon &f 15. 9 ft., whlle for the mon—

-

. rthogonal cable net the ultlmatc load was 49 1 hlpS/jOlnt

)

with a maximum deflectlon of 22.5 ft.

¢

By tbe present energy search approach the value

. ) 7
of the ultlmate load for the orthoglnal cable-net was

caicuiated and found to he 67.7 kips/joint, with a

t
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maximum deflection of 15.6. £t., and for-the non-prthogonall
cable-né€t the ultimate-load Qae 49.2 kips/joint with a = =
max1mum deflec;xon of 22.8 ft. In‘generating”the ultimate
1oad, the external applied load was increased by 4 klps/
joint, starting from initial load of 4 klps/jOInt, and a
smallexr increment (0.1 klpS/jOlnt) was used to arrive at A -
the final value of the ultimate load. It should be -
mentioned that no proﬁisions wefe made in the formulations

- to’account for the occurrence of unloading of cable
segments. The ;oad—stress hietory of the roof's cable ’ e
,segments indicated no case of cable uﬁioading in the"

inelastic range..

4,1.3 Linear Elastic General Truss'Structures

EXAMPLE Gl:
_—ﬁ———'—_
K

with the, applled loadLng is completely descrlbed in

Fig. 8. It is essentially the same structure 1nvest1-'
gated in Ref: 6 (Case T2).

The formulatlon presented in the present work for

compression members is essentlally the same’ as that

K]

developed in Ref. 6, except for the three refinements
;-
suggested by Bogner- lp Ref. 8:
{1) the possibility of includlng prestress,
» (2} the asstmed transverse -displacement state,isﬁ |
.aééumed to be propdrtional to the fitsﬁ buck-
Igng eigenmode instead of'é,p61Ynomia1, and

X Y S '

-

.1‘

v . . -' N . A 9 I

-~ 14

-
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(3) the capability of handling change of
cenfiguration is provided.

. This example is intended to fndicdte'the

- appllcablllty of the geometrically nonlinear truss fiﬁitc '

‘elements presented Lo the predchLOn of fJnlte dloplacc—
ments and post- buckllng bohav1our.» The fouce and
dlsplaccmcnt behav;our predlcted by three different
mathematlcal models of the structure are presented ‘as
’obtalned in Ref F, together WLth the results obtalncd
by the present analysis in Tables 8 and 9, re!%ectlvely.
. The results shown in. column 2 of Tables 8 and 9,
were pfedicted by a c0nventional linear%matrlx method.

In columns 3 and 4 of the table, the behavieur predicted

"assuming laxge displacements of the nodes but no buckling,
. Ty

is presented. Finally, the prediction of large node v

' displaeements and post-buckling configuration, is
prescnted 1n—columns 5 and 6. ‘

—

.ﬁhe results obteln( by the present analySLS are
ba51cally the samc as Ref..6, as can be seen in the twd.

* *

tables.‘ The sllght dlfferences seen between the two
Vresults is attrlbuted to: - .-
'(1)\ In Rcf 6, the buckled shape of a truss
'compreselon element is approxxmated by an aesumed
Ypolynomial with flve coeff1c1ents determined from the
vlmposcd and natural boundary condltlons. 'fn the-eresent

74
work; the assumcd transvcrsc dlsplacement of a truss
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) compression element is tahen to he proportional te the
firét bucPling eigehmodc (Eq. A-42) which precisely
represents the buckling shape. -

(2) The predlctlon of the behaviour of the trdss
wlth the simultaneous con51deratlon of large nodal .
dlsplacements and local buckling was based on the stiff-_
ness characteristics of the individual discrete elements.
The stiffness_characteristics ef~the-truss compression
element in its.-two deformed statcs{ straight and buckled,
was evaluated in Ref. 6. The critical load for the
truss element was estimated to be 0.2%,g;eater than the
Euler buckling load. This, explaine the slight difference,

- ‘
1n the results in columns 5 and G of the tables. Ih the

ol

present analysis, the critical load for the truss element quA

is exact}y taken to be equal to the Euler buckling load"
(Eq A-40). B s ] | '
PIOV1eloﬁ—fbr|local buckllng detection is ea51ly
~1ncorporat&d in the computer program. Local bu%kllng of
individual members occurs when the force in a truss . P
'member exceeds its critical value (Euler load) . ' Slm;}}*
‘the - value of the varlable K given by gq A-43, 1is |
'vlnvestlgatcd during the search process. If the value of
IKawas found to be negatlve, and 1L is gleatcr thanfor ’ -t
equal to K cr glven by Lq. A-39, then thc value of K, is
“.set equal to‘%cr' i. e., the force 1n Lhe truss member rs

set exactly .equal to the bpckllng.load. .

v * -

]
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In the case of the prediction of the truss
behaviour assumlng large nodal dlsplacements but not

allowmng buckling, the potentlal energy of the structure

was a funct;on of 6 degrees of freedom, namely the

displacements of nodes 5 and 6. For the case assuming

F

large nodal dlsplacements and where four truss members.

[ 4

are permitted to buckle, the potent1al energy was a

. function of 10 degrees of freedom, 6 nodal dlsplacements
8.

- 49

"at nodes 5 and 6, plus 4 mldspan dlsplacements (descrlblng

the local transverse displacement state of the members
<

which are.permitted to buckle, Eg. A-42). The four truss

members»(l-S), (2-6), (i 5), and (4-5) were permltted to
buckle on the;basis of

the linear method.

It should be emphasxzed that the error lnherent

-in the behaviour predlctedlllnearly 154apparent. It is

also clear that local buckling influences the force
.diStribution mcre than the nodal .displacements. )

, .~

"EXAMPLE G2:

As a final example, the suspended -dome-truss
structure shown in Figures 9 and 10 is studied. The’
structure consists of a 120 ft dlameter shallow truss

dome .6;£t. in height (Fig. 9). The dome has 42

o

tubular aluminum menbers. (round tube section of -

, - 4.
. Qiameter = 4% in., A = 1.718 in’, I = 4.114 int&and

vt

'

¢
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weight of 2.02'pounds<per ft.). _The ehallow dome is
suspended from the nodes on the outer c1rcumference by
12 slender hangers (each 12 ft. loug, A = 0. 1 in% ) to a
horizontal network of’orthogonal prestressed cables
(Fig. 10)}. .The prestreseed cable network (high tensile
steel wires, A = 0.5 in?) provides the strength necessary’
to support the loads involved in the éheiysie. fhe ‘
prestress force in each cable of the network is takeu
equal to 25 kips. o | -
The behaviour of this;structurai QYStem"
'demonstrates the effé/iiveness of tHefanalysis and permits
- the 1nvestlgatlon of a snap-through phenomenon as’ well as
the post—buckling behaviour coupled with the’ response'or a
typlcal cable network ‘IA

The total potentlal energy of the structure is a

;_' "functlon of 162 degrees of freedom (120 nodal dlsplace-'

>

" ment components of the structure s 40 nodes, plus 42

. posszble mldspan buckling amplltudes of the dome bars) ;
symmetry was not’ taken 1nto con51deratlon, however,
complete symuetry in dlsplacements and stresses resulted
in all loadlng'condltzons. ‘In_the follow&ngxg}scuSSLOn,
loa&-displacement"histories are geﬁerated and the search.
procedure uses the solutlon for the previous loading
condltxon as the startlng point for the current‘loading _

condition. For graaual load incrementation this feature

is a somewhat helpfui es a computer'time—Saving’device;

- o .o
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‘however, solutions are ohtained eseentially indeoendently-
for each locading case, since the method of soiution_ ~
_itself is not a load incrementation schee.
b TwO cases of‘behav}our response are studied:
‘Case (i): The dome is suspended only from the
circumrerence jointe.. Initially the dead weiéhtlof the
structure isvconsidered as %oncentrated loads at all the
dome joints; then an externél:downward load at. joint 1
; ‘ is superimposed in 100 1bs. 1ncrements. - |
‘ The load ~displacement hlstorles for nodes 1 and
. 2 are'shown in Flgures 11 and 12, while the load-ﬁxce
<ﬁ§ hlstorles of members A, C D and E ‘are shown in Fmg.b- B
13. Inspection of the flgures 1ndlcate that the |

\

relatlonshlps are llnear up to a .superim

sed load at

node 1 of 610 lbs. At this load me‘mber's A an

—_—

buckle-and is accompanled by a snap—through" buckling™

‘phenomenon Qf the complete dome structure resultlng in o
?a conflgnratlon which is. 1nVerted wlth respect to the_ |
original configuratlon. The large dlsplacements that
result _are shown in Flgures 11.and.13 where it is seen

that node 1 snaps from.a "small" deflectlon of 0. 9248

ft. to a large deflection of 12, 89 ft. and node 2 from o
o / .
‘0, 7836 ft. to 9.78 fr. .

“.

. 1‘ Inspectlon of. Flg. 13 reveals that all the - . Y

dome members' whlch were in tension prior to the- "snap-

, through" become compression members and’all dome members

il
.

o

Y
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- . 2 : ‘

| which were compression members- become tension members :
(including members A and B). N . ;

: . . o o ‘

As the load increased from 610 lbs., the S /

behaviour is again linear as indicated in FigsT‘{%, 12
i : ~ and 13. At a load of 1240 lbs. the outer circumfefential - S
members (D) ‘buckle. The buckling of members D aéeih4 _ /

& cause a .change in the shape of the load-deflection

.0

histories as the load is increased beyond 1240 lbs. ' /

(Flgs. 11 and 12). “Once that members D have  buckled

: the forces 1n meémbers D remains c0nstant (Fig. 13) and /

¢ =

the ten51on force 1n member E also remains constant in -
egreement with equilibrium considerations. The forces
'in members A follow a linear relationship from the snap- ! . 53

through buckling,load of 610 lbs. unti;fa load'of 1870;;h

f

'1bs. is reached at which members- C also buckle.

Although the strictural behaviour could have been'-' / o
. : =Y -- ' ‘ /
monitored further, it was felt-that the effectiveness

/
of the analysis procedure had been demonstrated and /

that a practical alternatlve 1Qvolved preventing the
snap-through‘buckllng phenomenon as described 1n'ﬁhe T3
following dlSCUSSlon. ' : _ \ - _,/'
Case (li) In addltlon to the 12 hange;s of
case (i), three more hangers (A = D.1 in? ) are
introduced between nodes 1, 2 and 12 of the dome and

* npodes 20, 21 and 25 of the cable network respectlvelya
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Sﬁarting from the dead weight loads of the dome and

¢ v 3

" superimposing loads at node 1 rhe behaviour is predicted.
The load-displacement histories‘for'nodes 1, 2,
4 and 5 are shown in Fig. 14, while the load-force

" histories for members A, B, C and for the hangers_até.

i nodes 1, 2 and 3 are shown 1n Figures ls_and 16,
respectlvely._ In all:cases, the relationships are.
ba51cally llnear until the superimposed load at node 1

 reaches 1160 lbs. At this load, members A and B buckle *

" "and the hangers at nodes 2 and 12 go slack. Therefore,
any increase in load at node 1l causes a redlstrlbutlon ofJ
forces in the non—buckled members, since the buckled

=
members cannot carry any.addltional load and also smnce-

-~

the hangers at nodes 2 and 12 cannot take any compressmon

) forces. It is therefore seen in Fig. 14 that the

_ deflectlon of node l lncreases more rapldly as. the load

A'is 1ncreased‘beyond the load. which ‘causes buckllng in- .
members,A and:B.‘ This is accompanled by a more. rapld |
increase'oferhe force in the hanger~at node 1 and a |
.decrease of the forces. in the circumferentlal hangers
as’ shown'ln Flg. IG:’ Since. the hanger at node 1

_resists a hlgher percentage of theesuperlmposed load
after buckling, less load is. carried by the truss L
.members as exempllfled by the load- force hlstory of -
member C (Fig. 15).' The load-deflectlon behav1our of

o nodes-z“andi4 after buckllng (Fig. 14) is a result of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. -
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" of the hangers of node 2 and 12 and the change of geo- .
" metry of tﬁ sugpended structure. ' Y T
) ' L > . : st
- Note that the additionalv hangers preclude-the
SR | FURR
possibility of & snap-through buc¢kling phenomenon. e .
N Tt . . v . ‘ A
A4 8 @ -
| { .
¢ " a |
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by u51ng nonlinecar deformatlon dlspbacement and straln-
displacement relatlons.

o

o

-

' CHAPTER V.

I

SUMMARY AND CONCLUSIONS &

&
SThe governlng equat:ons are

thérefore based’ on the deformed geomctry of Lhé

structure whlch permlts the pred%ctlon of large nodal

dlsplacements and post—buckled conflguratlons, the

nstabllltles which result from~

unstable defo:med‘npdal configu

»

relatlonshlp).

v

searchers: to deal with nonlinear structural problcms,

. B - .
;load incrementation is avoided

incorporation

Reproduced with permission of the copyright owner

formulaLaOn also allows the deteg¢tion of gcneral

accumulation of local
. - o 3

a "load incremeﬁtatiqn‘procedur r

%bf,tﬁe nonlineaxr

}he occurrence of

.

ration due -to the

N

e
Jr
_z’nstabilltles. In the ‘case Gf

‘Q

ionlincar stress-strain

PO

The method presented do

s not require the use of

llowed by many re-

>

oids hcr01n by dlrect

i-ves
xtles 1nto the ﬁgrmu] Li

55 . R
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acvlon. -

_The finite element method has been applied to

~

e ten51on members,hthe‘dn lysis'pnesented-alco lncorporates
2 materlal nonllnearltles (i .,

¢

the nonllnear analysls of general'truss—typc structures. “\\

Geometrlc nonllnearlty was 1ncorporated ln the andlysxs



- . ~ T - . 9

The method of analysis developed herein represents an

'advance toward more realistic predictiog of the behaviour
» v A v . s
T -of genpral truss type structures. ’

-
0

[

LN

Thc potentlal ene?ii functlon*mathematlcal modcl

‘of.a structural system of nite °lcmcntq prcsented in +

gj;s worL is generally simpler to construct than Lhe

S

v k correspondlng dlrect dlsplacement formulatlon. The -

calculation of the total potentlal energy of the

structurc is 51mp1y the scalar sum of the energy ‘contri-

butlons from the individual. members which cgmprise-the

N

structure; the construction of the direct displdtement
fo;mulation would. require "the additional effort of

éither ﬁaking,the variation of the'potontial enérgy or

. ) . . . - . - |
considering equilibrium explicitly at each node point
witﬁ réferénce to the deformed position (Refs. 1, 3, 4,'

o

The potentlal encrgy function mathematlcal nodel

"for an 1nd1v1dual dlscrete clement is also constructed

with relative ease. : S . -9

3y . ’ ) A : ©
‘The direct search for the position of the

minimum;tOtal-potential energy function of the:struc—

N - ture using the.Flctcher Recves unconstralned mlnlmlzatlon

matlon was found- to be eff;cmcnt and gnves a Urate
.solutlon f9 nonlinear problems. No COnvergence problcms

were encoﬁntered solutJan were: obLalned for every
| /-/
problcm w1th1n a reasonable number«of lterafqbns.

%

) ‘ ' ‘ - : .. . . ;‘ /“\{ -
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. The éﬁergx séérch approach hgs provcﬂ tg prqvidc

\¥ “a natu:al means to agcommodate changéé in structurdl.
conflgulatlon dae to slackening of tcnglon members and

. buckling of compression membera. The method also was

e . cqpable of- dealing with yleldlng ‘of tension members
(material nonlincarity), and the detcermination of the

ultimate load capacity of cable rcofs. The accuracy of

. the method appears acceptable for all the cases

v

’ investigated in the previous chapter where comparisons

with results by other different approaches were made.

N v

. . Finally, the formulation presented banzse;ve'

. . ~ as a basis to derive similar formulations for structural
members with other than pin-connected ends; this would

b .

permit the analysis of sfayed and guye? toweys wiiich
"are a combination of tension members and stringer-=

column members.

,

The previous dlscu551on can bé summarized By
. the cnsulng conclusxons whlch pertain to the followlng
) nonllneal structural analysis problems dealt wlth *

e herein:

- . ~ -

(a) - Prestressed orthogonal and nonorthogonal .
! cablé nets ‘{incdluding large nodal dis-
- placements, slackening of cable scgments
and materlal nonlinearity).

(b) General truss—type structures (1nclud1n
' large nodal dlsplacnmgnts; slackening of }
tension members,’ buckllng of individual
compression membhers, prediction of gross
“buckling loads -and post»buckllng bchav10u1)

Reproduced with permission of the copyrlght owner. Further reproductlon prohlblted Wlthout permission.
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~ -

o " 71. .The energy search formulation presented is an
- - AY . - .
- efficient alternative to dircct’foﬁfulqtiop methods”

with respect to 'the total effort required to

?

formulate and solve the above nonllnear structural

.o« analysis problems;_ , T

N .

2. The Pletcher Reeves algorlthm uSed for the’ m1n1m17a—
tion of the ‘total potentlal encrgy of. the structure

15 an efficient tool for the analy51s of tens;on and

2

general.truss structures.
3. The method Dresented handles the difficulties
associated w1th the bﬂhav1our of tension and

~general truss structures ef£1c1ently and accurately

K ¢ N

-
—~
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TABRLE 1

EXAMPLE L1 - Vertical Displaccments of
Cable "a"™ of Net Shown in Fig.

Under Vertical

°

Loading

4

Vertical Displacement (feet)

Joint Case'(%g* Case (ii)**
Number — -
Thornton - Writer Thornton Writer
(Ref. 3. (Ref. 3)
34 0.0 0.0 0.0 0.0 -
1 0.254 - 0.250 0.381  0.377
3 _ 0.552 0.554 1.268 1.272
T 0.772 0.770 3.718° 3.720
13 - 0.861 0.864 1.722  1.728 .
- 19.  0.772 0.770 1.020° 1.019 -
_ _ S 23 © 0.552 - 0.554 0.605 0.607
r : 25 0.254  0.250 . 0.259  0.255
oA 26 0.0 0.0 0.0 0

| R

*Case (i) : Vertical -Load of 1 kip at.

Each Joint.

3

 x*Case (if): Vertical Load of 1 kip at

- N ' .

Each Joint Plus Additional
Load of 14 kips at Joint 7.

i

lé'
o he
..
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TABLE 2

EXAMPLE L1 - Results for Cable "a" .of
Wet Shown in Fiy. 4, Undecr Vertical
and Horizontal Loading -(Case-iii)

<Horizontal

Vertical , - “Conmponents
‘ Displacement of Cable
- Joint - (fget) i 'Member Tension (klps)
Numbeor -
Thornton . o . Thornton .
(Ref. 3) ertgr (Ref. 3) Writer
34 0.0 . 0.0 34-1  45.947  45.916
1 ©0.445  0.441 1-3 46.056 46.005
3 1.368 1.371 . " 3-7 46.264 46.240
- 7 3.750 3.752 7-13 36.657 36.609
13 1.664 1.669- 13-19 . 36.679 36.622
19 ' - - 0.963 0.962 19-23 ° 36.697 36.629
23 0.558 0.561 '23-25 - 36.710 36.710 -~
25  © 0.228  0.224 25-26 ' 37.706 °°36.708° .
0.‘0" - . ‘i . —- -

26 Q.0

2
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3
L  TABLE 3 - ’ ‘
EXAMPLE L2 - Vertical Displacements.of Joint~o”
of Net Shown in Fig. 5 Under Vertical
Load at the Same Joint- (Casc (i)}
¢ . " | .
“Vertical Displacement (cms)
Load - siev. (Ref. 2) . o
kg - s — ,Writer
“Experiment Theory -
0.2 0. 200 0.213  +. 0.214
0.4 0.393 0.432 1 0.426
0.6 . 0.592 0.630 0.632
0.8, 0.784 0.833. 0.836 .,
1.0 S 0.973 1.032 . 1.035,
1.2 1.163 1.224 l.227
. 1.4 1.348 1.41r . 1.415
1.6 1.530 1.593 1.597 =
1.8 . 1.713 = 1.768 1.772 '
2.0- > 1.895. = 1.937 1.941
7 Y
- . 5
b T
.'. C L.. ;
. . .
e \\\ R
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TABLE .5
EYAMPLE L2 - Tension in Sections (kgs) .
for Loading Cases (ii) and {(iii)
* case (ii) | , Case {iii)
.- 8ection @t . - 7
. ol Siev . Siev .y _ . . :
o a Nujnber (Ref.. 2) Wr:l.ter (Ref. 2) Writer .
0 24.502  24.423  21.254  21.174 - *
) s 1 26.358  26.281, 30.383 30.308 o .
s -2 4.145 4.139 4.140 4.133 - - .
£, '3 23.529!" "23.462 20.039  19.968 . \ ‘
b 4 4.123 "4.106 - 3.822 3.806 —
5 4.369  #.353 .5.013 4.998 1
6 . -.25.423 . 25.355 29.401 ~ 29.334° . . .7
L 7 24.190° 24.113 19.755 - 19.676 I
» 8 . = 4.046  4.029 3.485 3.469, . . .
.9 7 4.159° 4,143 4,411 - 4.396 -7
10 © :4:453 4.437- 5.522 . 5.506 . '
11 . - 26.681 26.604  32.118 . 32.043 = 7' g
12 4.112 4,105  3.920 ° 3.9 e o
) 13 4.036 4.020° ©3.743 ° 3.727\_ Lt
* 14 . 4.275 74.260 ° 4.900 4.885 " _ o
- S - 14,172, 4.166 4,194 4.187_ S
. - - B i ' s
i . e D )
bl : ' « ,‘\‘ . A ’ -
¢ "1\
» ¢ ja \ .
— -7 I R l. ..4
oy . , ;/j.";-

'
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) .
. TABLE 6 ) b
, . o . - . N :
-  EXAMPLE L3 - Vertical Digplacuments of
- the Cable Roof Shown in Fig. 6
- _ Under Vertical Loadlng (l }1p/301nt) ..
. ) ! ° L
o . ?efticalbDispidcement'(ftf).
Joint Némber = = — e
ST -Kumanan (Ref.u4) Writex
e g -
. . ? N 60, 097225_’[ ~0.097918 -
-0.218935 ~0-2216730
; ’ -0.326019 - _ =-0:318829
E 20.208622 . . =0.208971
A - =04 411922 -0.407352
%‘ .618200 - . ~0.624458
B . ‘o ~-0.149592 . —-0.74958%
oL s - -0.307045 &  ~-0.306545
Ce, - =0. 645787 - ~. =0.6B3722 .
' . =0.212964" ' -0.213448 .
, (; —0.432823 ‘ - =0.427226
. . .*=0.6565790 -0.639941%.
e . < =D.101908 <~ =0.102647
R ‘ - 20.226937 2).224849
o ~0.358106 ° -0.347196. -~
~, ST X i . . :
./_’: ! 0. v -(‘. - .\ ,
O : I o ' '
.s‘\ V Loy ' R ‘ . ; . *
¢ O . ) L L~ N - )
. , o . 4 : ‘.'.
- a o i . - . . . ] 'A . .v§\~
:’ rd .‘4 . "/' ".'/ ‘ -.‘ ‘ ) ] ’ 1 -’o.. IT
/.. '.,': ; "-". . -‘ - , : .‘O. A .
. .i> QA ]
~ »"\"'."u .

s <
v
v
v .
s b »
- 3
>
4
s
~ - '
4
a
. h Y 'S
<
- i
KY
A\
*

-
. 1
- A
.
~
B .
 J
> o e ®
(RS -
.o
' .
3
Y
- , .
-
]
°
-
Y
@ . .
.
S
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TABLE 7

EXAMPLE L4 -°Vertical Displaccments of the

Non-orthogonal Cable Roof Shown 1
__. -under Vertical Loading (1 kip/joint).

n Fig. 7

> N
| L
- ~ Vertical Displacements 6Et) AN
Joint-Ne.__ : —— :
) - “Tkumapap (Ref. 5 ) Writer :
N1 0.205983 ~  =0:196013 . -
20 -0-.51¢138 . =0.500102 | -
3 I -0.382553 -0.370509 - - S
4 ~.. 7=-D.829292 -0.807666
5, \\\\\\\¥‘4Q5732224 -0.714396
6 =0.7450873 -0.441454
7 . -1.0882)5- ~1.068485
8 . -1.014998~"~.: .-0.997858
9 -0.801635 T=0:790219
10 , .~0.458200 <« =0..453151
11 ~1.262860 ' . -1.248153~.
12 ~1.203370. .~ =1.19%0767 ..l
. 13 '.1.031159 , . -1.023062 . -
14 ~0.756990 © . ~-0,753920
15 -0.401313 =0.401787
~ 16 ~1.328606 -1.319547
Y17 -1.273480 - -1.264430-_
18 ~1.115296 -1.110431 ™.
.19 -0.866189 =0,866213 - -
20 ~0s551684 -0:555793
21 ’ -0.224608° . =0.230291 .
22 -1.262858 " -1.248153
23 -1:202629 - 4-1.180082
.- 24 w s -1.029952 . -43—1.021963
25 . ¥ -0.755783 -0.752861
26 “ .° -0.400632  # --0.401203
27 -14088214 .~1.068485 k
28 . =1.013703 - ¢ %0.996631 -
/ 297 -0.799682.  ° -0.788393
30/ ~0.45666647 - ©  -0.451754
31/ -0.829292 ~0.807665"
32 ~0.730763 © =0.712964
33, -0.449147 ~0.439788
34 © -0.518198 -0.500102 .
35 . -0.381486 . -0.369412°
36 - -0.196013

~0.205985
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APPENDIX NI

’ - ‘ i '
~ GENERAL TRU‘%S I“INITI" ELPMLNT FOPJ&ULATION"
3 o . . 2oe
I. Llnea Elastic Analysis - of Ten.,lop Mombcrs R
v p— - .
,\/3 ) ‘ _' A Lyulcal truds tensxon member 1n Lhe undefoxmed .
< . and .dc;formed states is~sho'\m-in Fig. 1, The initial
i undeformed~length is given by ¢
. o (2 g2 w 2%
- L = X - + (Y. - X + (4 _ = 2 A-1
1&g - ) ¥, - %) (7,7 Z 7 (A=1)
0. ‘.{ ['
- <1me deformed }length Is given by .
} . '

s = {I(X_ -+ T )~ (X +%)12+[('f R R I A R

q q P P q L4 P P

. .
) . ~ -~ ' i~d ~ N 2 ;5 v ) . )
+0(22 +w) - (2 4+ W )17} o A-2
[(Z + T - (F o+ ¥ .} | | (A-2)

.- .
The locatlon of thexmeﬁber jOlntS P and q in the initial

Q,\Q

L o " - posiftion are ‘given b X Y §>~ X ? and Z coordinates,
" P 9 Y p’p’ TR Ta’ Ta T T o

measured with respect to the reference cbordlnae% system

~

.-‘. : (x" Z) Note that'ﬁJ v, and w are the d}splacement
components of the member jolnts in. the X, Y and Z

dlrectlons respcctlvely

.

.,The straln—deformatlon relatlon is expressed in

P

term§ of the axlal deformatlon (u), ﬁ%}surcd along the

» deformed length of_the member (x-direction), and is ‘given

- - 88 "
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- / {
: by \ |
i € =7 REN (A-3)
x . ,
Integration of the strain energy definition o
- ’ €+C ' \’. ‘ .
' p ’ . ot ‘
o S v = f o de (A-4)

under the assumption of ideal linear elastic material

behavioun . _ 1 »

".g = E(,C + Cp) ' /\./" . .(A"'S)'

( : 3 -
‘resultg in the following expression for the strain energy
in terms of thc strain . J .
j[ (¢ + ¢ ) av o -~ {A-6)
Substltutlon for the straln from Eg. A-3 and 1ntegrat1ng
. " over the cross—gection‘Yields the ;train energy  in terms
Of‘l] \- . ' : . . ,: ' N rh
: 4y .. AE - . 2 C ‘ ATy
o U= = ‘}r -.(ux + ep{ ax s (a-7)

']

-From éhe fundadentals of the calculur of varlatlons, thc

actual dlsplacement state is the one for whlch the £1rst

'.varlatxon of the straln energy_ls zZero;

. - /

_- ' - . B . - '. . ?THI
! /' r ) . w' r'd
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S S
* AT
sU = 0 ﬁ? Ojf'~z u, du, dx b =5 OJ[ 260 ¢ dx
Intgg}ating By parts ; .
| ‘ ' S ' gux
dU = 0 = AL U dul - S Tdx du dx
) o ‘ )
: i . ,
[y. I " S S de .
) + AL 6u' . - f 3 su dx
s | P o 0 . .
| 6r ‘ ) - - ¢ \/
. ) S g
= = - B + A du dx a) -
¢ : . . {A-8)
o ‘ S -
? - + e ) su] “(b)
“ ) | + BA] (ux p o -

L Each of the contrlbutlons (a) and (b) in Eg.’ A—8 must be

3 :1nd1v1dually equal to zero,151nce the variation 6u is'
arbitrary; this»gives :
o | | e - T a9
— + =0 . o
- L ax (Ux -cp).k _ T
'- ' 'V.' "' .. o . \ \ .8 '
] PO ' AT , :
/ which” represents the governing differential Qquatlon_for
* A - '. - -~
I o . \
the problem. By integration,
< v . - ) .
C -k . - (a-10)
et e T H IR
O} . -
’ \ ‘4. . ) . . . ‘ . ‘ ‘ '/.‘
) LT - N : = . - . /
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From Fiqg. 1, it is apparent that the imposed
' boundory conditions are |
p/ 7/ )
ul =0 and ul  T=s-L L (A-11)
x=0 . : lx:S - .

*
Also, the variational guantity éu must vanish at the onds

.of the member, therefore, Eq. A-8(b) alnd.Eq. A-10 indicate
" ‘that the force in the membér is constant and given,by‘, St
. N ’ ‘.- )

F = AFK,
4

L ;o
s "~ {A-12)

The constant-K, éan-_be‘ determihed by integrating Eq. A-10

over the length S: . - S 2 . . .
’ f | S ‘ . ‘ . :;
- K,dx = 0/ (uX + cp) dx . ‘ C
or | |
, . | [}
=1 - L (A13) -
. ( . . . ! R i
- Substituting Eq., A-10 into Eq A-7 and pgrfm;min'g the.
 indicated in‘t_egr'ati’on_, the .tené_ion element strain energy
©is given by . ' ' ‘ : -
G- T s o . oo )
v=2% 5 K * - (A=14) .

. Y . ' : : .
' . . 4 - - . 2 .
L vy A ’ ’ Fa :
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)
T .

IL. Inclastic Analysis of Tension Mcmbers ' r

i

o - - . . ,
The stress-strain relationship between the pro-

portional‘limit‘and'the point of ultimate stress (Fig: 2).

v

is given by. . . -
7 .

. 2 ] “. ‘o
e g = —2f ¢ Jag? 24(2ng. + ) cv- o (am15)

K

The strainZdeformatioh relation is given by
! : . ' ¢,
e a2 1
e = u .tk px - : (5— 6)

.

Ifitegrating the strain energy denﬁity definiﬁion'gives‘

-

T oy P '
T du = 4Eel # @ de oo B=1T)

! ' - o E : !
" After subst@tu@ing-tﬁe stress o from Eg. A-15 the

N S . .
following expression of the element strain energy in

terms of the stFain ig obtained o ' .
- 2 SESTR 2 _ .0 3/2
/U'h-‘V'[{ ’ﬂ:;e + f o *+ —-—249( 8g.- € * 4f y /

m
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.where ';e' 18- the eraJn at the propOLtlon,al llm.t. .

Su))thutlng fnr Lhc strain, from Lq. A-16 and lnchLaLlng

. over the cross- qect‘lon s S . : - ’ [
l. ) ) . . ’ - . J— ‘. * / N .
. 2 S | 2 s 3/2}'
] = LT 3 - — (- -
. U NS [ ,Ece_ 4 f Ce‘ -l; 74g (~8g o t 4£7 - 4c) o
. S . ) R ‘ ) -t S r - l N
, 2 - 1 3/2¢
-~ A f + + ¢ - = .
’ OJf (qx 3 u, Ep)gx Aajf 249‘8 dx
. . ' oL - _ ) (A-19)
L] » ' : . ' ' ) .
' ~wherg the term B is. giyen asfj I 1
. . B'= ~-8g(u_ + % u2 +E ) + 4f2 - -4c ' . {(A=20)
: . ST X X . P < .o .
- « - * i ' \ :
o . X . ) 2 '. .
e The followlng e*cpress:.on is obtalned after tcrklng thc:
- first varlatlon of Eq. A-19; 1ntegratum by parts .and .
rearranqlr?g terms:
& . -
‘» S . !s . .. ‘ . ’ -
- — ’ -d f _ ) .
‘ BUTQ_AU/ {a-i[(—i--F!sB)(l-%ux)]}Gudx - (a)
‘ -
- . | .. 18
- - i . £ .k i
. | s e tA , { - 5 +- ¥°BH) (1 + gx)‘}éu (b)“ B
; - SR
_ wheré B is glven by Eq. A—20 ’ , . . /Jﬁ ‘
Each of the Sontrlbutlon., (a) and (b) in Eq. A- 21
must be GQUul to Zero, 51nce the varlatlon su’ lS arbltrary.
’ : . i ' L. . . \
! N + . B
- ) I'
+
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. T A E o - 94 .
. © - T "—-‘_---._.. e e e : -__— . I . :/
Thus, o ' . '
g ;j o . . : i -
o -3 B 11+ ux')]' = 0 - 22
. | . N ot
W which revrcsentsAthe bverning differential equétidﬁ for ;
~ , g

this casej by 1ntegrat10n, the expre551on between
_1‘ - ’ Afk g, ¢ and £ are cénstants, it foLlows th@t; - .
u, = K,= constant = N ' (A¥23)

--Also, the variational qudntity’éu must.vanish at
R . the ends of the.member. Equations A-21 (b) and:A—23

indicate'tha£ fﬁe force in the member is constant and’

LY

‘given by : | c R

“ VL | . o R ; . . R
| . D . .

k]

F=Aa |4

. NFh

_+_%[eBg(K2+ ka + ep) + 4f2 - 4c]5] (1 + KQ

SR R I C e L)\

o V ; The cons\?nt h2can be determlned -by 1ntegrat1ng
R

. Dq A—23 over the .length S and anorporatlng the 1mposcd

boundary condltlons gxyen by Eq. A< ll,

-l - o ———

! . . '

X . N ,bj('gKadx_S-oj(- ux-dx o

or'm - ' | :

f . . . . . X A c - . i -~
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brackets-xs equal to,a constant, and as’ the quantltAes |

.



. -

SubStLtutlng Eq ‘A- ?3 1nto Eq A l9 and- performmng

v

thc 1nd1catod lntcgratlon, thn clcmeﬁt straln cnorgy fox‘

-

the tension member in the ihelastid’ rang‘;s.glvcn by :

£ - . -2 .
. . . K . -

A T 2 3/2]
= . LR 4 —_ -
v As[ Ecg * £€, Hagys (895, +A 4575 - 4e) .

-

-

© o+ RS E(KF K ¢ ) < ghe [-ﬁ}g(k-!— Ko e )

P : s ¢ . -

e III. .Elastib Anaiysis of Compreésloﬂ Members K

A general truss element 'in the uﬁdeformed and

¢ - deformed states 1s~shown 1n Flg 3.7 The 1n1t1al undeformed

. ’ .
N

b . length (L) ls glven by Eq A- 1, and’ the deformed length .
ST o .
(S) lS glven by Eq. A-2.. SN e et
, ' " '<The stgsggldeformatioh relation is given by

- .
. L}

. € ="u. + 35w2 - zw. o ‘V;'-lfA"'zj)

. “<e : ‘X - K XX ) . ..
¢ Lt T . o e ’ ~ - v LR '
PR where z 1is measured from the neu&ral ax%Sfof“the cross~=

S sectmon 1n the -plane of bendlng" . L e

. " o.’
o4 - Integratlon of the straln cnergy.denSLty

[P

aeflnltlon S L .
s etE : » /t
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&,
.
.
.
L)

-~ -
9 -

'U):‘ld()r-'th'@.. assumption of ideal lincar elastic material

. . . .. , '\ . . 9 ':
behaviour, | . - . . .
- o« = E{e + Cp)_’ ,
‘ hd 4 ‘ ' . . 5 Y ~
) gLVC—‘.S tHhe element <'tra1n energy as N )
. 5 X
= . -]
/ ¢ U f(E + € )2 dvf! - - ﬂ
Substltutlon for the strain from Eg. A=27-and lntegratlng ) —
. - over thef cross ,scyctlon ‘y1=lds the strain energy 1n terms )
- of the. local deformat}.ons {(u, 31) of the element . |
: ) e
E’ ’ . ' 2 ax ‘ RN
_ v=L .J-(ux#w—zw +t )2 aa ‘
Y * . ‘_‘-‘ 4

x' -
. 7 -
- M‘ .
! - 2.2 ~ ,
+ z'w }‘dA dx / o
X , ©
- e . /
' oo o - RS o .o N S ' Ks
! ot Sir‘ce e . Y'I ) ' ) .,A 6 ‘ . \ . ) R ’ - o L .
o fdA ='A, f‘z an =Ty ama .
b s . . - . D s ., ) ‘ -~
i f 22 ‘1 (sect¥on® t of inertia). . | ~
i z“ dA =-I (section's moment of 1in " '
‘V',,_ fA S . . B B . - o
> \'" : . "
R 9 -
- ) - l ». ¥
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therefore, ' . ,'/ . }
- '. ’ ' . } ' ' i . P . . ‘ ‘
u .\ e ( + sz + c }2 + AI-V;Z } dx  (A-28)
.4 T2 e .0 Uy 172y p'’ A xx §- '
e | . ’ . o " . . ‘}
T . ©  Takiflg the first variation of Eg. A-28, integrating
by parts and reari“anging, terms gives: L
T NS _ . o A ~
U = 0 -ME f d‘('+%2+c)}6udx - (a)
, . - : \ { ax ‘Yx Me T '
+ 0 ‘)l ’ {
. S )
o i I o_ dar PR } .
. +§E Of {A Woskx T 3% [(ux + +‘cp) wx] sw dx
' v } o . ’ . ‘ 4 . . - \(b)
\., o ‘{ - T H ) . S ’
. . ) - 2 A . . . . .
_ ‘ 'T'ADA ] (ux + v+ ?p) su |0 ;o . (c)
/ ' T ‘ , .- (A-29)
: N ~AE L W - {u_. + 35w2 + ¢ )'w } Sw (d)
. C A XXX x  “Tx - P x 0
j !
SR ' +131-‘ (w, ) 6w | - (e)
R v xx" x _
. <10
 Bach .of the cont:pibtitions (a) through (e) in Eq. A-29 '
mus¥. individually be zero, and since the variations
. [ 3 . . ) Co o ' :
Sy . 6u and éw.are arbitrary: )
. - g
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" 3?\ :
’ a L. =
, ‘ I (uy + hw o+ t_:‘p) 0 (A 30)
and °o . T .
. [y o
T _ .
r Yexxx [(u + Xwo o+ cp)w ] 0 (A-31) R
= - ~
. . . \ . ' -
. Equations A-30 and A-31 icpresent the govexhing A . -
% d#fferential equations for the general truss discrete
. element. Integrating Eg. A-30 gives ’ .
. 4 T 2 . ! .
ug A e e = K _ (a-32)
Since K;is constant with respect to x, Eg, A-31 ocan be
. ’ ’ L4 . ' k3 '
written in the form . ' o ' - j;
’, f _ - by .
Wy - W= 0 S (A-33)

' XXXX XX : _
\ i - .

The retatidns of the ends of the-geheral truss

JA

‘element are not 1mposed 51nce moment free jOlntS have .
been assumed, therefore, the’ varlatlonal quantlty Sw,, in |

contribution (e) of Eq. A- 29 is arbltrary at the ends of

’

the element and the term 1n braces must be zero. The

.
v —

naturaf bounda?y condltlons are then:
. . ,t
7’ - .

=0 , wxx o= p “ﬂA: . 1A-34)
x=5

1
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The'vdriational quaﬁtitics éu and 4w in contri-
,butions’ {(c¢) and (d) of Eq. A—29Vhre prescribed zero on
the boundaries. ' From Fig. 3, the imposed boundary .
- . . 4 ‘-\V- L

" ‘conditions are \

u =0, u =85 ~1L - {A-35)

and

w =0, w _ =0 " (A-36)
x=0 : X=S .

~

As the variational quantity é8u vanishes at the ends of

—

the eiemént, EQ:_X:EQ(C) and Eq. A-32 indicate that the

force in the general truss element is a constant given

7z

"by

F = AEK, . (A=37)

Y T

-
- . - I

N The.general solution of Eq. A-33 is-éiven by .

. ~AK ' . o -AK 4
L= TARy ‘L“ﬁj , -
w _.Bl +_B2x + B3 sin T X% + 84 cgs b4  (A 38)

. . ) .. :r \‘
'..,«——~—~——{- :. 1 . - ) s \ ' !’ v
lwhere K0 for compression members. (Eg. A-

-

' capable of having nonzero values of the deformation w

27), which é;e.
, when buckling,occurs. The natural boundary .conditions

. .‘ . - . . .
) given by Eg. A-34, together"with the imposed boundary
- conditions given by Eg. A-36 are substituted in Eq.

A-~38 £o_solve for thexféur-constants,-which resdlﬁs in.

. . . . v . . _//.

. . . .
B . , o . - .. - : <
. . . ot - . . . N 3
I3 - - = N
. - 4 : :
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/
{we]

[¥%) -
4]
’.4-
=

9] ‘ .

[

D

g
oo v
If the trivial solution -is disregarded, then K,must

be treated as an eigcnvalue

' P o
~ ’ ) o _. _ (mm 2 I : _ ‘
. ) E }gcr - ('s) A_ r m*‘l,z,.-.. v ‘ (A 39)
. ' :
ﬂ:- . 3 » ‘ - » "
According to Eq. A-37; the crltlcal)force (buckling load) <
. : ’ )
in the member is given by:
Y 3 N '
¢ 5 . . .
. | P =% (—1) EL;,-m=1,2,... | /- (n-40)

)

Substituting Eq. A-39 into Egq. A-38, the eigengalues

~ corresponding to the critical values of K,are obtained
IR as | T - . )
"w_ = B_ sin miX , m=1,2,... . (A—41)
The assumed local transvcrse deformatlon mode of a
gencral truss member 1is Laken to be proportlonal to

{
.tne first buckling elgenmode

Y

2D
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N | w=c sin 2 ' . (A-42)
. ‘ | V\
The constant C dcfining the midspan displacement is 
retalned in the formulatlon as a gcncrallzed coordlnaLe
. The constant K3now can bé dctermlned by 1ntcgrat1ng

- . - -

Eq. A~32'over the length

S . S .
. ‘ f K,dx = f (ux + Lw +.¢ ) dx
N - 0 . 1]

- or ‘ o

o - L 7C, 2 o
- N Ky= 1 - g+ ¢y + (38 o (A-43)
The element strain energy 1is obtained in terms of ﬁ
)

the nodal dlsplacq¥xpts and the buckllng amplltude upon

substltutlng Equatlons A 32, A- 43 and A-42 1nto Eq. A- 28

1Y

and performlng the 1ndlcated 1ntegratlon.. : R }

- . .

[ - . ' 4 2 ¢ ' N '
: _ME[gp2 [, I mc . ~

. U_~-—' > [SK3 +-% K 53 ] . - | (» 44)

. Kl l 1
. IV. Element Stlffness Second Partlals Matrlx

)

" The scallng transformatlon technlque recommended

to improve the convergence of the Fletcher-Reeves

algofithm to the minimum'of the total potential energy

o R L.
of the structure {(Chapter III), requires the evaluation
« . & 9

.
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of the diagonal matrix [R] with diagonal clements

o 1 " .
‘ = —= 0, § = 1,2,...,N . (A-45)
33 G5 T (a-4
‘ 13 '
[ 4 . : ’
where {K] = (kjj) is thc matrix of second partials of

-the guadratic terms in the total potential eneigy, and N _
is the total number of displacement degrees of freedonm.
‘The elements of the matrix (K] are computed from the

.

element stiffness second partials mQ:iices by the use of

a variaﬂlelcorrelatiOn SCheme.. The ‘diagonal elements of
- the matrix of second partial derjvatives of the e;gméﬁt ;
‘ stiffness matrix are obtained by partially differentiatihg
the expressions of Eq.12:30 with respect to ;ach of the

element seven degrees of freédom, as follows

.7 , - . af .
- . 8 U - AE . ~ A ~ ~ /3
fa*f_T[‘.?3+[‘xq+“¥"Xp+“p’] ]

Q
]m
a
1
'
>
nl
!
Hh
W
+
—
Y
e
+
I
i
%
©
+
<
'U\—I
—l
[++]
Ir—n
W
| S

QL
<
N

@
o
¥ et
n °
|
o
|
th
[9%)
.+
e B
. ’-.2
N
e
+
.
le
.
S
+
=
M-
Y]
Im
w
—t

. . . - ——— e,
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2% _ 2%y
o A o
g b —_
2%y _ 2%u
P 2 S ‘ .
q p )
- %y _ 3%u
o
. q P
\\ '} .‘ u
) : C 2 2 4.2 4. . -
R It bl Sl -
) ¢ 28 - As
Py

_ k¢ L _ n%c? 3 1 1°c?
f3'— 3 + 2K3 2 - - 3_ K3_ i "A"‘ 5
. s s . s

Expefieﬁce has proven that consideridg the
1inéar terms only in the above expressions is
.bsﬁfficién't' to form the're_quired sca}ing t;ansfdrmaﬁion
matrikﬂ‘ This is obtained Wy considering the ‘

approximations

e 7 ‘n=sand C=0

]
1
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&

__ AE
K=~ 732
' _AD
Ky = = 7
N
- AE Tl oy % 2
= - _'i. —— - Z . "2 1 + + 3f L]
Ky, ! [f4 e LT 200 + ) + 31, .] "
“ I ?
. Rag = X121 o
& ' (A-47)
‘. 4
- Kgg = Kyp | .
- - Kgg = K33 - _ . | ;o
4 K . . ! .
, AE nzc I ﬂ4 | , ' | '
Kpg =T[5+ 3% Eﬁj - | '
P > 3
R . | .
wﬁe're f4 is .givex} by ' : . S -
N ) i; ‘ 2‘;2 oy | . . o
f4 = L + L ) \\ . ' L
- hY
. ! f
.
A/
- ‘ L ]

-
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- APPFNDIX B

DFTERMINATION O THE INITIAL SHAPE OI‘
) A SUSPENSION STRUCTURE

" In prestressed suSpeneion structures the.initftl
shaﬁe of the structure is dependent upon the prestress
fo}c&s and must satisfy the equilibriuﬁ conditions. ';n
general, the initial position of a suspension structure
can easxly be determined by con51der1;§ the equilibrium
at the structure:s joints.

Consider the eguilibrium-of‘a general joint (a)
of a general non—orth050nel;ca e net as shown in Fig.
B—l‘: The h izonﬁ;l.componentz‘in ﬁhe cables extending
.in the m-dijection must be equal to' each other in order
to satlsfy equlllbrlum in that dlrectlon.‘ This
'horlzontal comp0nent ;s denoted by H Slmllarly, tﬁe
horlzontal componpntq in the cables extending in the

n-dlrectlon must be equal and 1s denoted by H‘

The vert1ca1 components "of the tens1ons in the

cables segments meetlng at joint (a) - shall satlsfy the
' uvertlcal equ;llbrlum.
® . . Y

Vap ¥ Vac * Vad ¥ Vae K 0 o ,(S-lx

]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106
e . ' . o &
" where the vertical components arc given by the relations:

-~

——r

’ Zb ~ Za ) B
° 'Vab = IIm 7 . -
. ~ab : L L
i : 7 - Z.f
v = H c a
ac m (Z ’ -
T ac
. (B-2)
{
Z, - 2
vad = Hn‘[ dt. 'aJ\\
. - Tad O ’

T Zo "~ 237 - , S
) .4 . Vae =$Hn.[5—77—*—-] B e e o
S - D ¢

where { is the iength of a'cable$3egment'in'the Ho;izon--

tal X-Y plane and Zoyr 2pr Z.r Zg1, L, are the vertical

“  coordinates to be determined. ;
o’ Substituting Eq. B-2 into Eg. B-1 gives:
. L [ A N
. Z,. - Z 2. -2 Z. - 2 Z2 -2
Hm[ b£ a . ct a] + H [ d£ a . ef a] =0
ab ac n ad ae .
s : @ : . ' . soho
- . . oL . o (B-3)
-.Fof given’values of Hﬁ, Hﬁ, and the coordinates of* the ———7
joints on the boundary of. the net, Eq. B-3 leads to a
S . system of p simultqnéous linear aigebraic equationsffor
. - t

¥

1
.
-
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<

the p un}nown valucq of z-coordinates. Thcse-equations

’ t
can easily be, cxprcosea in a ‘matrix form as follows

The p joints Sﬁ the net where the 2 coordinates

total number of the net ]OlnLS.

Def;ne a vector {2z} given by:

" -

, o e . : (2, )
. y . z

are unknown' are assigned numbers from 1 to p, and the q
joints where the Z coordinates are known are assigned

numbers from p+l to r, where r. (r p+q) is equal to the

.

. N

107

(B-5)

’ * )
. Zp+l .
! i ]
. &
> ¢ .
- | | | - S
The equilibrium'of the‘forces at each joint (Eq. B-3)
\ .
. can then be written ln a matrlx form as
“ f‘
. . (2} = {0}
n , ' (pxr) (rxl). (pxl)

. -~
K -
-
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G
. Eq. B-5 can be partitioned in the form
r - %p 0
H : H : _‘Exi)_ = — — —
(pxp) (pxq) _ - °q ’ S
L (gx1) , {;[

S
The vector {Zp} contains the p unknown YA

coordinates: of joints, and the vector &Zq} coritains ’

the g knéwn.z'coordihates of joints. Eg. B-6 can be
} . . ' ..
rewritten as:
H zZ } + [H z ) = {0}
A p]_ { p} (B, { q} *: ) |
(pxp) (px1}  (pxq) {(gxl) " pxl *
and the solution fof’{zpﬂ is given by
A
gz} = -~ M iz )
P p’ g t’q

The inverﬁe of fhe matrix IHp]

(B=T)

‘(‘B‘_-8’) ‘

o K TN
can be obtalned

"'by using the direct method of Gauss Fllmlnatlon, and .

the solution for {Z } is obtalned dlrectly by performlng

- the matrix multlpllcatlon.;n Eq. ‘B-8.

~.
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, APPENDIX C . - - o ,f
S - _ EQUILIBRIUM BQUATTONG OI." PRESTRESS I‘ORCES IN

. _ THE UNLOADED CABLE MET O «E‘(AM’PLE L2 ST

. e . e . . : . .. “ ° \
- . N
3 - .
- . -

o

- The suspended roof of example L2 was aq’iyzed

]

-fanalytlcally and eyperlmentally by Slev in Ref. 2.

< . -
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e ; s ©  The equxllbrlum in the horlental piane (x Y)
. of the horlyontal1preqfres§=components fq¢ces 1n thc . ¢
‘ :
Lo ‘%3 ‘unloaded system gives the relatlon between the horl-i‘ .
X 20ntal comoonent () of prestress in &ll dlagonal o j'
cables,Aand (HI) of the main cables .{Fig.” C-1):
- N N . S T .
< 0 X . In the X-direcgtion: =~ '
LC - i H +_Hl cos 8§ = Hl cos 45°. > . _~»(q—l-)
’ B > . . . . . .. ~ ‘. o ﬂ-. o o
S . In the X*di:ection:. L K :
e ':,N‘“ - ) S NS .
B SRR ‘ ".~_ H + Hi:siﬁ‘45?_% Hy cgsL&i (C-2)
_: . ’. 3 . . \‘) ) *l, . -
4-Ffom the previous two equations: .
- .H’—'_. v ? ) N . . ::L e . s N
L My sin 450+ H - o0 S
A - . oL 0‘.'4— = tan 8 . _ : (C-3)
.o o " H: cos 457, - X& g ; '
. - ' B ~ 1 4 ' . P C T
: ‘ » ‘ : . .
o109 . ot . ‘
S s L -.--'f AT !

.

2




s

b T e : . R g oo , 110
o From the ge%metry oﬁ Flg Cl (geometry of modcl studled

N

by Sicv- experlmcntally) .. L " o
= AR T g
. s a/2 4+ 8/7 S -
. tan 8 = Y/ - (C-4)
3 > . H
: ' -~ ) o o -
Substltutlng Eqg. C -4 in Eg. C- 3 gives " :

, M ) (C—S)
.'c
. The namerieal uélues.of5a and 6§ are giVen'by Siev as: ‘
o '.,g ' , \' B - ‘ - N ' ‘ ~ : -
: , L d,= 60.6090 and & = 14.2857 @ . L
Thus the relation beﬁwéencﬁ_and,Hljis given'by': ' '

) g : * @

- )
.

o Hl=.5.65684 H -

oo o, ¢ 1y
o e

- .A. - - -
B L. . s : e .
v : h - . c o

LA ’

Erx Fig. C’l p01nts 3,4, 7 and 8 are at mld h01ght
- . .
(Z =0. 0), where 1 and 2 are $ymmetr;cal w1th respect

- o ~

:33 _ . » “to mld helght : In othex woxdé, an equlllbrlum cqudtlon

-t
<~ ™

of the vertlcal prestress components forces ' in the -
, ! ¢ °

.- ,“ uhloaded system eontalns a SLngle unknown 1.the: A
elevatlon —f of - p01nts 0 l 2,5, 6 9,10, and 11 - whe;e
o :’- the hé\ght is equﬁ to 63 5 Cms._'!‘ : i::“; L

‘ o ) . . . N , - c ﬁ -- . ’6.. , o s . N ' o -..
R 3 .,H — . .o 63-5 . . PR .
. g f + --— f - — [ ) - f»]\: 0o - . ‘(C_ss) ‘
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Nt .
. -
' . . ' ) ) - \ * »
) © On substituting II-l from Eq. C-5 into Eq. C-6, H 1is
' eliminated. Rearranging and éj.mplifyin? gives
’ t . “
. f.63.5_ _a
"Y2 36 + 2/2 a
’ or _ : o
. s £'=12.7 em )
b Thus the elevatians.of all the cable net nodes are
- determined (Fig. 5). | u
. v
_ f
_ !.
. ;. N .
. e
. " ’
' / R
13 ﬁu. "
. ; ..
P )
. 4 o
‘k\

L 3 R
-
.
.-
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