Non-linear energy search analysis of truss-type structural systems.

Noor El-Din Mohammed El-Hakim
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

El-Hakim, Noor El-Din Mohammed, "Non-linear energy search analysis of truss-type structural systems." (1975). Electronic Theses and Dissertations. 2867.
https://scholar.uwindsor.ca/etd/2867

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

23886

National Library of Canada

Bibliotheque nationale du Canada

CANADIAN THESES ON MICROFICHE

IHĖSES-CANADIENNES SUR MICROFICHE".

UNIVERSITY/UNIVERSITÉ \qquad University of iindsor, Windisor, Ontario \qquad DEGREE FOR WHICH THESIS WAS PRESENTED/ GRADE POUR LEQUEL CETTE THESE FUT PRESENTÉE
M.A.Sc. ${ }^{2}$

YEAR this'degree conferred/anNEE D'OBTE'NIION DE CE'DEGRÉ 1975

NAME OF SUPERVISOR/NOM DU DIRECTEUR DE THÈSE
$\because \quad \mathrm{Dr}$ Ge H Monforton

\qquad - - - - -
σ

Permission is hereby granted to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film.

L'autorisation est. par làprásento, accordfe à la'BIBLIOTHE-, que nationale du canada de micrdfilmer cette these et. de préter ou de vandre des exemplaires du film: author reserves other publication rights, and neither the thesis nor extensive extracts from it mayen printed or otherwise reproduced without the author's written permision. 'L'auteur. se reserve les autres droits de publication; ni la' thàseni de longs èxtraits de celle-ci ne doivent âtre imprimes ou autrament ceproduits sans l'autorisafion écrite de l'auteur.

PERMANENT ADDRESS/RÉSIDENCE FIXÉ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NON-IINEAR ENERGY SEARCH ANALYSIS OF TRUSS-TYPE - STRUCTURAL SYSTEMS 6

SUBMITTED TO THE FACULTY OF, GRADUATE STUDIES THROUGH ~
TME DEPARTMENT OF CIVIL ENGINEERING IN PARTIAL FULFILMENT. OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APELFED'SCIENCE AT THE UNIVERSTYY OF WINDSOR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(e) Noon El-Din Mohamed El-Hakim 1975

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

ABSTIBAC'T

The: 'finite element methöd is applied to the nonlincar analysis, of tension and gencral pin-endea truss-typestructures. 'Gcometric' and materdal nonInnearities are \&irectly incorporated within the discrete element representation; this permits the prediction of large nodal disṕqacements, yielding òf terssion members. -and elasticubuckling of individual members.

The principle of minimum total potential energy forms the basis of formulation and solution procedure adopted if this work. Based on the deformed geometry, the total potential energy of a structural system is constructed by summing the energy contributions of the individual elements. Solutions are generated by direct minimization of the total potential energy of the structure in orden to find the minimumenergy which represents the displacement position at equilibrium. A scaled conjugate gradient unconstrained minimization algorithm is used to locate the minimum of the potential energy. The seafch procedure automatically detects and considers the effects of slackening of tension members and bucking of conpression nembers.

Solutions are obtained for a variety of problems to illustrate the potential of the method, and results \therefore are compared to those obtained brother solution techniches. The application to prestressed orthogonal and honorthogonal cable nets and general truss. structures, under various loading conditions, have been demonstrated.

0
s.

iii

ACKNOWLEDGEMEN'TS

The writer wishes to express his sincere gratitude to Dr. G.R. Monforton, Professor in charge of this research, for his valuable advice, encouragement and suggestions throughout this study.

The writer is also grateful to the National Research Council for the financial, assistant provided during the study 'period (Grant Mo. 68.9).

Thanks are also due to the University of
Windsor Computer Center staff.

LIST OF SYMBOLS

A . \quad cross-sectional area of a-truss discrete element. c,f,g constants in the theoretical equation for stressstrain' curfve.
C generalized displacement coordinate associated with midspan amplitude of the buckling mode in a compression member.
du strain energy density.
modulus of elasticity.
F force in truss discrete element.
$\left\{G_{e}\right\}$ gradient yector of the element strain energy.
$\{G\}$ gradient vector of the strucfure total potential energy.

H
[H]
I
k_{j}
[K]
horizontal component of cable tension...
matrix of constants in initial shape determination.
bending moment of inertia for compression members.
element of matrix [K].
matrix of second partials of the total potential energy of the truss structure.
$\mathrm{K}_{1} \mathrm{~K}_{2}, \mathrm{~K}_{3}$ constants of integration appropriate to truss element axial deformation mode.
p, q
undeformed length of truss discrete element. number of truss discrete elements composing the . structure.
total number of displacement degrees of freedom ,of the structure.
subscripts denoting nodal points of al truss discrete element before deformation.

$\widetilde{p}, \widetilde{q}$	subscripts denoting nodal points of a truss discrete element after deformation.
\{P\}	work equivalent load vector.
[R]	diagonal scaling-transformation matrix.
\{S \}	direction of search in energy minimization.
5	deformed length of truss discrete element.
$\bar{\sim}{ }_{\sim}, \widetilde{\mathrm{v}}, \widetilde{\mathrm{w}}$	displacements in the \tilde{X}, \tilde{Y} and \widetilde{Z} reference coordinate'directions, respectively.
u,w	displacements in the x and z local coordinate directions, respectively.
U	strain energy of truss discrete element.
V	volume
W	external work
\{ X \}	vector of independent degrees of freedom.
$\tilde{X}, \tilde{x}, \tilde{z}$	nodal coordinates in the $\widetilde{X}, \widetilde{Y}, \tilde{Z}$ reference coordinate system.
\{ Z$\}$ E	scaled vector of independent degrees of freedom. strain due to deformation.
ε	strain due to prestress.
ε_{e}	strain at the proportional Iim
σ	stress
${ }^{\circ} \mathrm{p}$	stress at the proportional limit.
${ }^{\circ} \mathrm{y}$	the yield stress.
p.	total potential energy.

vi.

TABLE OF CONTENTS

i. \quad PAGE
ABSTRACTii
ACKOWLEDGEMENTS : iv

TARLE OF CONTENTS vii

1.I Literature Survey and Review of
Prior Work3
1.2. Objectives of the Present Study 7
CHAPTER II. GENERAL FORMULATION 9
2.1 Elastic Analysis of Tension Members 10
2.1.1 Deformation-Displacement Relations 10
2.1.2 Strain-Deformation
. Relation 11 1
2.1.3 Element Strain Energy 11
2.1.4 Analytic Gradient of the Element Strain Energy 14
2.2 Inelastic Analysis of Tension 'Members 16
2.2.1 Mathematical Model of
712
(
2.2.3 Analytio Gradient of the Element Strain Energy 20
2. 3° Elastic Analysis of Compression 1
Members
2.3.1 ${ }^{\prime}$ Strain-Deformation
Relation 2.1
2.3.2 Element Strain Energy 22
2.3.3 Analytic Gradient of the Element Strain Energy 23
2.4. Total Potential Energy of a Structural System 24
2:5 Andiytic Gradient of the Total poțential Energy 26
METHOD OF SOLUTION 28
3.1. Fletcher-Reeves Uñconstrained Minimization Algorithm 30
3.2 Scaling Transformattion 33
CHAPTER IV. NUMERICAL EVALUATION AND DISCUS'SION OF RESULTS 36
4.1 Numerical Evaluation 37
4.1.1 Linéar' Elastic Tension Structures 37
4.1.2 Inelastic Tension Structures 44
4.1.3 Linear Elastic General 46 Truss Structures
CHAPTER V. SUMMARY AND CONGLUSIONS 55
FIGURES 59
TABLES. 77
REFERENCES 86
APPENDIX A. GENERAL TRUSS FINITE ELEMENT FORMULATIONS 88°
APPENDIX B, DETERMINATION OF THE INITIAL SHAPE OF: A SUSPENSION STRUCTURE 105
APPENDIX C. EQUIIIBRIUM EQUATIONS OF PRESTRESS FORCES IN THE UNLƠADED CABLE NET OF EXAMPLE. L2 109

LIST' OF FIGURES

FIGURE NO.

PAGE

1 -Tension Discrete EIement 59
2 . Stress-strain Curye for cable 60
3 Compression Truss Discrete Element. 6.
4 Example Ll: Orthogonal.Hyperbolic 62
Paraboloid Net
5 . Example L2: Suspended ROof stŕructure Bounded by Main Cables 63
6 Example E3: orthoginal Hyperbolic 64
-7 . Example L4; Non-orthogonal Hyperbólic Paraboloid Cable-Net 65
8 Cantilever Truss 66 67
Suspended Shaflow Truss Dome'
68
Io Horizontal oprestress' Cable Network:
 11 Load-Displacement Histiony of Node 1.
Case (i) 69
12 Load-Displacement History of Node 2.
case (iI. 70
Load-force History of Members A, C, D and E. Cáse (i). 71
"Load-Displacement History of Nodes 1 , $14 \quad{ }^{\text {Load-Displacement Hist }} \quad 2,4$ and 5. Case (ii) 72
'15 Load-Force Hi
C.' Case (ij) $\cdot 73$
16 Forces in Hangers at Nodes 1,2 and 3. Casé (iji) 74

FIGURE NO.

	LIST OF TABLES	PAGE
table 1.	EXAMPLE $L 1$ - Vertical Displacements of Cable "a" of Net Shown in Fig. 4 Under Vertical Loading.	77
TABLE 2	EXAMPLE•LI - Results for Cable "a" of" Net Shown in Fig. 4, Under Vertical and Horizontal Loading (Case iii)...........	78
TABLE 3.	EXAMPLE L2 - Vertical Displacements of Joint "O" of Net' Shown in Fig. " 5 Under Vertical Load at the Same Joint (Case (i))	79
TABLE 4	EXAMPLE L2 - Displacements of. Joints, Under Horizontal Loads of 0.2 kg (Case. (ii)), and $1.0 \mathrm{~kg}{ }^{(}$(Case (iii)) atlall Joints	8.0
TABLE 5	EXAMPLE L2 - Tension in Sections (kgs) for Loading Cases (ii) and (iii)	81
TABLE 6	EXAMPLE L3 - Vertical Displacements of the Cable Roof Shown in Fig. 6 Under Vertical Loading (l kip/j̣oint)...........	82
TABLE	EXAMPLE L4 - Vertical Displacements of the Non-orthogonal Cable Roof Shown in Fig. 7 Under Vertical Loading (1 kip/ joint)	83
TABLE 8	Force Distribution (lbs) of the Truss Shown in Fig.	84
TABLE	Node Displacements (Inches) of the Truss Shown in Fig. 8	85

CHAPTER I

INTRODUCTION

General truss-type structures, including cable networks; have been recognized as efficient and practical configurations for achieving various structural and architectural objectives. Structural suspension systems are being used with increasing frequency for the support of long-span roofs, providing an unobstructed interior, which makes them suitable for large exhibition halls, stadiums and shopping centers. Also, tension structures are often more economical than conventional structurés, since the loads are carried primarily in pure tension; thereby the entire cross-section of the member ish utilized to the maximum. The number of compression: members is held to the minimum necessary to maintain stability - The conomy is achieved in term; of the roof's self-weight where high tensile steel is used in the manufacture of the members.
f, When a tension or a general truss-type structure deforms considerably under load, the: change in geometry complicates the theoretical analysis. : Three characteristics common to such structures are responsible for most of the difficuities:
(1) Geometric nomlincarity (large deflections)
(2) Matérial nonlinearity (large strains)
(3) Change of configuration (tension mémbers which, have no stiffness to compression, may, under certain loading conditions, "go slack")

In order to predict the structural behaviour for such structures, it becomes more realistic toं base equilibrium considerations on the deformed geometry, to. employ more exact deformation-displacement relations, and to consider the nonlinear behaviour of the material.

It has been found that geometric and material nonlinearities can be conveniently handled by the finite element method, based on the principle of minimum total potential energy. In the finite element analysis, the structure $1 s$ divided into a number of elements connected ' at nodes. The deformation state of each element is relatively simple as compared to the deformation state of the whole structure, and is represented in terms of the generalized displacements of the rodes belonging to that element, $;$ defined with reference to a fixed global coordinate system. The displacement modes are independent for each element in terms of its generalized nodal : ' displacements. Then the elements are collected together to form the physical structure by satisfying the condition that compatibility of nodal displacements for two or more neighbouring elements ensure displacement
compatibility at interelement boundaries.
1.1 Literature S'urvey and Review of Prior Work

During the last decade several studfes have been published with different procedures devoloped for determining the forces and displacements of tention structures and more specifically cable roofs. the early work on this subject was principally focused on the determination of equilibrium shapes.

The, finite element method has been used by the majority of research workers in the analysis of tension structures and cable nets. Previous extensions of the Finite element displacement method by several authors have treated the problem of geometric nonlinearity with varying degrees of success. Several authors adopted the approach of taking geometric nonlinearity into account by solving a sequence of linear problems. Procedures. in this approach are characterized by incremental application of the Ioading.

A method for the determination of the displacements of a general net was presented by Siev (Ref. i). The effect of horizontal displacements and changes in geometry "were included in the derivation of the entions. An iteration procedure was proposed as a means of solving ${ }^{\text {a }}$ the equations, but no solutions were presented. Siev also suggested incrementing the loads when the problem is highiy geonctrically nonlinear. The response at each
stage of the loading is first computed based on a lincarizing assumption and then corrected subsequently by iteration. Another paper by Siev"(Ref. 2) presented an analytical and experimental study of prestressed.. suspended roofs bounded by main cables, using the same general theory he had suggestod in the previous. - reference. Thornton and Birnstiel (Ref. 3) derived noniinear equations for a generai three-dimensional, unstiffencd suspension structure composed. of members capable of resisting axial forces only. They presented two numerical methods for the solution of the resulting nonlinear simultaneous algebraic equations, the method of continuity and an incremental load method. Recently, Kumanan (Refs. 4,5) derived equations for a general non-orthogonel cable'network with reference to a set of oblique axes to determine the displacements and tensions of the netwowk under lot: The derivation is based on the displacred goometry of the. strincture including second-order displacement terms. The Newton-Raphson method was used for the solution of the resulting nonlinear equations.

Another approach whiclt has been applied successfuliy to nonlincar analysis of space-type structures is' the energy search approach. The energy scarch approach consists of including geometric nonlinearitics by using noniinear strain-displacement equations to constrự the
potential energy for each of the finite elements. A
0 , numarical solution is obtained by seeking the minimum of the total potential energy for the assmblage of finite elements representing thé structure. This approach was used successfully by Bogner, Mallet, Minich, and Schmit (Ref. \dot{G}); tho mêthod has proven to be extremely well suited to the nonlinear analysis as evidenced by the comprehensive problems treated by this method in Ref. 7 which includes instability andysis. The previoús work of Ref. 6 was modified by Bogner (Ref. 8) for the upplication to more generad truss-type structures.. In Bogner's paper, the governing equations are based on the deformed geometry of the structure; this permits the prediction of large nodal displacements and post-buckled configurations resulting from gross instability of the structure. Bogner used the Fletcher-Powell variable. metric search technique (Ref. 9) in the minimization of the total potontiai energy of the structure. λt the same time, Buchholdt (Ref. 10) also developed a theory for prestressed cable-nets based on the minimization of the total potential energy and solved the resulting equations by the method of steepest descent. More recently, Buchholdt (Ref. Il) following the same theory developed in Ref. 10, employed the method of conjugate gradients for the minimization of the total potential energy. He . also introduced a scaling technique whish increases the

Convergence of the method:

The methods of analysis of the structures reviewed above wore based on the assumption of linearlyelastic material behaviour, However, a limited amount of work has been done on these structures stressed into the inelastic region or with nonlinear material properties. Greenberg (Ref. 12) is known as the first to include nonlinear material properties in the analysis of cable roofs. He used a compound curve which is initially linear up to the elastic limit followed by an exponential curve to the ultimate stress. Jonatowski and Birnstiel \because (Ref. 13) presented a numerical procedure for determiníng the inelastic behaviour of three-dimensional suspension structures. They used a continuous smooth curve fitted to test results for the cable stress-strain relationship. Like Greenberg, they used a load-increment procedure and detcrmined the ultimate capacity as the load at which the first cable ruptures. Recently, in a dissertation by Kumanain (Ref. 4) the general behaviour of cable networlis having hyperbolic paraboloid shapes, orthogonal and non-orthogonal, was studied in the elastic and inelastic regions and their ultimate capacities were determined. Kumanan's theoretical solutions were substantiated by experimental results obtained by testing models of cable networks.

1.2 Objectives of the Present Study

The following chapters present the systematic development of a finite element capability for predicting the response of truss-type structures fincluding cable roofs) using the efergy search approach.

In Chapter If, the formulations required for the elastic andinelastic analysis of tension mombers is presented, and includes the prediction of buckling and post-buckling behaviour of truss members capable of resisting compression forces. The total potential eneryy of an assembly of truss member's is employed as the mathematical model.' Analytic expressions for the gradient . components of the potential energy are gencrated. The governing equations are based on the deformed geometry of the structure. A straightforward variable corcelation scheme which has been thoroughly explained in Ref.' 14 , is used to impose geometric admissibility between eiements.

Chapter III presents the ssarch method used for determining the minimum potential energy position. The conjugate gradient function minimization technique by Fletcher and Reeves (Ref. 15) is discussed.. A variable scaling transformation which successfulily improves the fonvergence of the Fletcher-Reeves algorithm is also presented.

Chapter IV is devoted to numerical evaluations and demonstrates the capabilities of the method of "analysis and its effectiveness.

Finally in Chapter V, conclusions are drawn regarding the merit of the approach developed herein for the analysis of general truss and tension structures.

1 A detailed derivation of the formulation of

- Chapter II is presented in Appendix A.

A method of determination of the initial shape of a suspension structure is presented in Appendix'B.

CHAPTER II

GENERAL FORMULATION

The discuss \ddagger in this chapter is focused on presenting the formulation for the potential energy mathematical model of a general truss-type member, Expressions for the strain energy and its analytic gradient are obtained for the member, since botly are required for the implementation of the potential energy function minimization technique.

The formulations are based on the deformed geometry of the structure which permits the prediction of large nodal displacements as' well, as post-buckled configurations; also the inelastic behaviour of tension members is taken into account. Tension members herein are defincd as members capable of resisting tension forces only (e.g., cables, ties, and guys); and a general truss member is a member capable of resisting both. tension and compression and has pin-ended joihts. The principle assumptions necessary for the mathematical formulations are:
(1) Members are straight and prismatic between joints:
(2) Stressing the members does not change their cross-sectional area.
(3) Joints of the structure are frictionless..
(4) All loads are conservative, in that their. Uoriginal directions are preserved.

2.1 Elastic Analysis of Tension Mombers

2.1.1 Deformation-Displacement Relations

- The deformation of a genera'l tension discrete
element is measured along the x-axis defined by the displaced positions of the element joints $\widetilde{\mathrm{p}}$ and $\widetilde{q} . ~ A$ typical tension member in both the undeformed and deformed states is shown in Fig. 1. The undeformed length (L) -of. a discrete element is defined by the initial positions of the joints p and q (Fig. 1):

$$
\begin{equation*}
\dot{\bar{L}}=\bar{r}_{q}-, \bar{r}_{p} \tag{2.1}
\end{equation*}
$$

where \bar{r}_{p} and \bar{r}_{q} are the initial position vectors of the elcment joints prescribed in a common reference co-. ordinate system. $(\tilde{X}, \tilde{y}, \tilde{z})$; the undeformed length of an element pa is

$$
\begin{equation*}
L=\left|\bar{r}_{q}-\bar{r}_{p}\right|^{\prime}=\left\{\left(\tilde{X}_{q}-\tilde{X}_{p}\right)^{2}+\left(\widetilde{Y}_{q}-\widetilde{Y}_{p}\right)^{2}+\left(\tilde{\widetilde{Z}}_{q}-\widetilde{z}_{p}\right)^{2}\right\}^{3 / 2} \tag{2.2}
\end{equation*}
$$

Under loading, the joints undergo displacements ($\tilde{u} ; \widetilde{v}, \tilde{v}$), measured with respect to the reference coordinate system. The distance between the joints in the deformed position is defined by $S:$

$$
\begin{equation*}
\bar{s}=\left(\bar{r}_{\dot{q}}+\bar{u}_{q}\right)-\left(\bar{r}_{p}+\bar{u}_{p}\right) \tag{2.3}
\end{equation*}
$$

1
where \bar{u}_{p} and \bar{u}_{q} are the displacement vectors of the (element joints; the corresponding deformed length is

$$
\begin{align*}
& s=\left\{\left[\left(\widetilde{X}_{q}+\tilde{u}_{q}\right)-\left(\tilde{X}_{p}+\tilde{u}_{p}\right)\right]^{2}+\left[\left(\tilde{Y}_{q}+\tilde{v}_{q}\right)-\left(\tilde{Y}_{p}+\tilde{v}_{p}\right)\right]^{2}\right. \\
& \left.+\left[\left(\widetilde{z}_{q}+\widetilde{w}_{q}\right)-\left(\widetilde{z}_{p}+\widetilde{w}_{p}\right)\right]^{2}\right\}^{\frac{3}{2}} \tag{2.4}
\end{align*}
$$

2.1.2 Strain-Deformation Relatioi

The strain of a tension member is expressed in terms of the deformation (u), measured along the . deformed length of the member (x-direction) for tension members there is only the axial deformation (u), there is no transverse deformation in the directions perpendicular to the' x-axis. Hence, the strain-deformation relation for a tension member is given by

$$
\begin{equation*}
c=u_{x} \tag{2,5}
\end{equation*}
$$

This term. u_{x} describes the primary deformation which ioccurs as the joints of the element displace relative to one another.

2.1.3 Element Strain Energy

The strain enerǵy density is defined by

$$
\begin{equation*}
\therefore \quad d U=\int_{0}^{\varepsilon++\varepsilon} \int_{0}^{d d \varepsilon} \tag{2.6}
\end{equation*}
$$

Under the assumption of ideal, linear elastic material behaviour

$$
\begin{equation*}
\sigma=E\left(\varepsilon /+\varepsilon_{p}\right) \tag{2.7}
\end{equation*}
$$

where ε is the strain of deformatioriter; 2.5)
${ }^{E} p$ is the strain due to prestress:
, an is the stress in the tension member, and
E is the elastic modulus of the material.. :
Integration of the strain energy density (Eq.
(2.6) over the volume (V) of the element results in the following expression for the strain energy in terms of the strain:
a

$$
U=\frac{y}{2}^{\vdots} \int_{V}\left(\varepsilon+\varepsilon_{p}\right) \sigma d V_{r}
$$

or

$$
\begin{equation*}
\left.\mathrm{U}=\frac{\mathrm{E}}{2} \iint_{\mathrm{V}}^{\pi}+\varepsilon_{\mathrm{p}}\right)^{2} d \mathrm{dV} \tag{2.8}
\end{equation*}
$$

Substitution for the strain fuck Eg, 2.5 ,into Eq. $2: 8$ and integration over the cross-sectional area (A) yields the strain energy in' terms of the local deformation (u) of the element

$$
\begin{equation*}
v=\frac{\lambda E}{2} \int_{0}^{s}\left(U_{x}+\varepsilon_{p}\right)^{2} d x \tag{2.9}
\end{equation*}
$$

where s is the distance between the element joints in the deformed state (Eq. 2.4).

The governing differential equations for the tension discrete element together with the boundary conditions are derived in Appendix A by taking the first * variation of Eq. 2.9.

The governing. differential equation is given by

$$
\begin{equation*}
\frac{d}{d x}\left(u_{x}+v_{4}\right)^{\prime}=0_{-1} \tag{2.10}
\end{equation*}
$$

Integrating Eq. 2.10 gives.

Where $K_{i} i s$ a constant with respect to x, and can be determined by integrating Eq. 2.ll, over, the length S :

$$
\because \int_{0}^{s} \dot{k}_{1} d x=\int_{0}^{s} f^{s}\left(u_{x}+\varepsilon_{p}\right) d x
$$

$$
\begin{equation*}
\dot{\mathrm{K}}_{1}=1-\frac{\mathrm{L}}{\mathrm{~S}}+\varepsilon_{p} \tag{2.12}
\end{equation*}
$$

From Fig: 1 , the imposed boundary conditions

It can also be concluded that the force in the member is constint and is given by *

$$
\begin{equation*}
F=A E K_{1} \tag{2.14}
\end{equation*}
$$

The tonsion element strain energy is obtained in terms of the nodal displacements by substituting Eq. 2.11 into Eq. 2.9 and performing the indicated integration:

$$
\begin{equation*}
\mathrm{U}=\frac{\mathrm{Ag}}{2} \mathrm{~S} \mathrm{~K}_{1}^{2} \tag{2.15}
\end{equation*}
$$

where S is given by Eq. 2.4, and K by Eq. 2.12. Note that K, is directly a nonlinear function of the nodal: 1 displacements ($\tilde{u}, \widetilde{v}, \widetilde{w}$), measured with respect to the reference coordinate system, through- S (Eq. 2.4).

2.1.4 Analytic Gradient of the Element Strain Energy

Hipe gradient of the elenent strain energy can. be getined by the vector $\left\{G_{e}\right\}$ as. .
where U is the strain energy the tension element givep by Eq. 2.15 given in terms of the nodal displacements of the elchent $\tilde{u}_{p}, \tilde{v}_{p}, \tilde{w}_{p}, \tilde{u}_{q}, \tilde{v}_{q}$ and \tilde{w}_{q}. The clementes of the gradient vector $\left\{G_{e}\right\}$ are obtained by partial differentiation of the expression for U, with respect to each of the six displacement components of the element; note that both S (given by Eq. 2.4) and K_{1} (given by Eq. 2.12) are in terms of these six displacement components. This results in the following expressions:
where the term f_{I} is given by:

$$
\text { , } 1 /
$$

$$
\begin{equation*}
\mathrm{I}_{1}=\frac{\mathrm{K}_{1}^{2}}{\mathrm{~S}}+2 \mathrm{~K}_{1} \frac{\mathrm{~L}}{\mathrm{~S}} \tag{8}
\end{equation*}
$$

2.2 Inelastic Analysis of Tension Members

When the stress in a tension member exceeds the material proportional limit, the inelastic range of material behaviour must be considered in deriving the expressions for the element strain-onergy and its gradient vector.

$$
\begin{align*}
& \frac{\partial U}{\partial \tilde{u}_{p}}=-\frac{\lambda E}{2}\left[\left(\tilde{X}_{q}+\tilde{u}_{q}\right)-\left(\tilde{X}_{p}+\tilde{u}_{p}\right)\right] \tilde{E}_{1} \\
& \frac{\partial U}{\partial \widetilde{v}_{p}}=\frac{A E}{2}\left[\left(\tilde{Y}_{q}+\widetilde{v}_{q}\right)-\left(\widetilde{Y}_{p}+\tilde{v}_{p}\right)\right] E_{1} \\
& \frac{\partial U}{\partial \widetilde{w}_{p}}=-\frac{\lambda E}{2} \cdot\left[\left(\widetilde{U}_{q}+\widetilde{w}_{q}\right)-\left(\widetilde{Z}_{p}+\widetilde{W}_{p}\right)\right] f_{1} \tag{2.17}\\
& \frac{\partial U}{\partial \tilde{u}_{q}}=-\frac{\partial U}{\partial \tilde{u}_{p}} \\
& \frac{\partial U}{\partial \widetilde{v}_{q}}=-\frac{\partial \tilde{\Psi}}{\partial \widetilde{v}_{p}} \\
& \frac{\partial U}{\partial \widetilde{w}_{q}}=-\frac{\partial U}{\partial \widetilde{w}_{p}}
\end{align*}
$$

2.2.i Mathematical Model of Stress-Strain Curve

In the analysis of suspension space structures, various mathematical models to represent the stressstrain relationship of the structural element have been adopted by different authors. Greenberg (Ref. 12) used a compound curve which is initially linear up to the elastic limit followed by an exponential curve to the ultimate stress. Jonatowski and Birnstiel (Ref. 13) used ${ }^{\text {a }}$ continuous smooth curve fitted to test results. Kumanan (Ref. 4) also used a compound curve which' is initially linear up to the proportional limit followed by a second-degree parabola up to the ultimate stress.

The method of analysis presented herein is capable of handing any of these models to represent the inelastic behaviour of tension structures. In the following analysis, the mathematical model presented by Kumanan is adopted to derive expressions for the clement strain energy and its gradient vector.

The second-degree parabola between the proportional limit and the point of ultimate stress is assumed to have - its axis parallel to the ε (strain) axis as shown in Fig. 2 , and is given by the equation

$$
\begin{equation*}
\sigma^{2}+2 g \varepsilon+2 f o+c=0 \tag{2.19}
\end{equation*}
$$

where σ is the stress and $9, f$, and c are constants.
determined by Kumanan (Ref. 4) as

$$
\begin{gather*}
g=-250\left(\sigma_{y}-\sigma_{p}\right)^{2} \\
f=-\frac{g}{E}-\sigma_{p}
\end{gather*}
$$

and

$$
c=a_{p}^{2}
$$

where σ_{p} is the stress at the proportional limit
σ_{y} is the yield stress, defined as. $\sigma_{y}=\left(\varepsilon_{y}-0.002\right) \mathrm{E}$ and E is the material elastic modulus for the linear part of the curve.
2.2.2 Element Strain Finery
) The strain energy density in the inelastic range (Fig. 2) is defined by

$$
\begin{equation*}
d U=k_{k} E \varepsilon_{e}^{2}+\int_{\varepsilon_{e}}^{\varepsilon+\varepsilon_{p}} d \varepsilon \tag{2.21}
\end{equation*}
$$

where

$$
\therefore=\frac{-2 f+\sqrt{4 f^{2}-4(2 q c+c)}}{2}
$$

ε is the strain of deformation
ε_{p} is the strain due to prestress
ε_{e} is the strain' at the proportional limit.

The strain of deformation is given by

$$
\begin{equation*}
\varepsilon=u_{x}+v_{y} u_{x}^{2} \tag{2.22}
\end{equation*}
$$

where the second order term is considered in order to accurately account for large strains in the inelastic range.

Proceeding in the derivation of the formulation as has been followed in Section 2.1, the strain energy for a tension member stressed beyond the elastic range of raterial behaviour is obtained in terms of the nodal displacements (See Appendix A). The resulting element strain energy expression is:

$$
\begin{align*}
& U=A S\left[3 \overline{3} \varepsilon_{e}^{2}+4 \varepsilon_{e}+\frac{1}{24 g}\left(-8 g \varepsilon_{e}+4 f^{2}-4 c\right)^{3 / 2}\right] \\
& -A S E\left(K_{2}+3 K_{2}^{2}+\varepsilon_{p}\right)-\frac{A S}{2 A G}\left[-8 g\left(K_{2}+3 K_{2}^{2}+\varepsilon_{p}\right)\right. \\
& \left.+4 E^{2}-4 C\right]^{3 / 2} \cdot \tag{2.23}
\end{align*}
$$

where K_{2} is a constant given by

$$
\begin{equation*}
K_{2}=1-\frac{L}{S} \tag{2.24}
\end{equation*}
$$

2.2.3 Analytic Gradient of the Element Strain Energy

Expressions for the elements of the gradient vector $\left\{G_{e}\right\}$ of the element-strain energy are obtained by partial differentiation of the expression for u given by. Eq. 2.23, with respect to each of the six displacement components of the element (again noting that both s and K_{2} are in terms of these six displacement components):

$$
\begin{align*}
& \frac{\partial U}{\partial \widetilde{u}_{p}}=-\frac{A}{S}\left[\left(\widetilde{x}_{q}+\tilde{u}_{q}\right)-\left(\widetilde{x}_{p}+\tilde{u}_{p}\right)\right] f_{2} \\
& \frac{\partial U}{\partial \widetilde{v}_{p}}=-\frac{A}{S}\left[\left(\widetilde{Y}_{q}+\widetilde{v}_{q}\right)-\left(\widetilde{Y}_{p}+\tilde{v}_{p}\right)\right] f_{2} \tag{2.25}\\
& \ldots \\
& \frac{\partial U}{\partial \tilde{w}_{p}}=-\frac{A}{S} \cdot\left[\left(\widetilde{z}_{q}+\widetilde{w}_{q}\right)-\left(\widetilde{z}_{p}+\widetilde{w}_{p}\right)\right] f_{q}
\end{align*}
$$

$\frac{\partial U}{\partial \widetilde{u}_{\dot{q}}}=-\frac{\partial U}{\partial \tilde{u}_{p}}$

$$
\frac{\partial U}{\partial \tilde{v}_{q}} \equiv-\frac{\partial U}{\partial \tilde{v}_{\mathrm{p}}}
$$

$$
-\frac{\partial U^{4}}{\partial \widetilde{W}_{q}}=-\frac{\partial U}{\partial \widetilde{W}_{P}}
$$

. where the term f_{2} is given by

$$
\begin{align*}
f_{2} & =\frac{1 / 2 E \varepsilon_{e}^{2}+f \varepsilon e}{}+\frac{1}{24 g}\left(-8 g \varepsilon_{e}+4 f^{2}-4 c\right)^{3 / 2} \\
& -f\left(K_{2}+\frac{1}{2} K_{2}^{2}+c_{p}\right)-f \frac{L}{S}\left(1+K_{2}\right) \\
& -\frac{1}{24 g}\left[-8 g\left(K_{2}+\frac{1}{2} K_{2}^{2}+\varepsilon_{p}\right)+4 f^{2}-4 c\right]^{3 / 2} \\
& +\frac{1}{2} \frac{L}{S}\left[-8 g\left(K_{2}+\frac{1}{2} K_{2}^{2}+\varepsilon_{p}\right)+4 f^{2}-4 c\right]^{1 / 2}\left(1+K_{2}\right) \tag{2.26}
\end{align*}
$$

2:3 Elastic Analysis of Compression Members

- In the following, the formulation is extended to, the prediction of buckling-and post-buckling behaviour of a truss menter capable of resisting compression forces. The formulation presented in this section is essentially the same as that presented by Bogner in Ref. 8. A detailed derivation of this formulation is given in nppendix A .

2.3.1 'Strain-Deformation Relation

The ${ }^{\circ}$ strain of a compression member is expressed in terms of the deformations (u, w), measured in the local coordinate system (x, z), with origin at the end point $\underline{\underline{p}}$ (Fig. 3). The x-axis is defined by the line between the displaced positions of the member joints, the z-axis is normal to the x-axis and lies in the plane of potential buckling. The transverse deformation w, is a secondary
deformation admitted in the compression member representation in order to provide for biackijng of these members within a structural system (local buckling*).

The strain-deformation relation for a general truss member is written in the form

$$
\begin{equation*}
\varepsilon=u_{x}+\frac{1}{2} w_{x}^{2}-z w_{x x} \tag{2.27}
\end{equation*}
$$

where z is measuxed from the neutral axis of the crosssection in the plane of potential bending.

2.3.2 Element Strain_Energy

Assuming an ideal linear elastic material, the strain energy of a general truss member is derived in. Appendix A : The element. strain energy is expressed in terms of the nodal; displacements and the buckling. amplitude (C) as

$$
\begin{equation*}
\mathrm{U}:-\frac{A E}{2} \cdot \mathrm{SK}_{3}^{2}+\frac{1}{2} \frac{I}{\pi} \frac{\pi^{4} C^{2}}{s^{3}} \tag{2.28}
\end{equation*}
$$

where S is given by $-E q .2 .4$, and K_{3} is given by

$$
\begin{equation*}
K_{3}=1-\frac{L}{S}+\varepsilon_{p}+\left(\frac{\pi C}{2 S}\right)^{2} \tag{2.29}
\end{equation*}
$$

*By "local buckling" is meant the buckling of an individual member, while the term "gross buckling". refers to overall. instability of the stryctural system.

The constant C appearing above is defined as the transverse displacement at midspan of a compression - member which is allowed to buckle, and it is retained in the formulation as a generalized coordinate. Note that the value of C remains at zero unless if the member has buckled.

2.3.3 Analytic Gradient of the Element Strain Energy

Expressions for the elements of the gradient vector $\left\{G_{e}\right\}$ of the element strain energy are obtained by partial differentiation of the expression for u given Joy Eq. 2.28, with respect to each of the six displacement components $\tilde{u}_{p}, \tilde{v}_{p}, \tilde{w}_{p}, \tilde{u}_{q}, \tilde{v}_{q} ; \tilde{w}_{q}$, and, in the case of a buckled member; the midspan displacement c :

$$
\begin{aligned}
& \frac{\partial U}{\partial \widetilde{u}_{p}}=-\frac{A E}{2}\left[\left(\tilde{X}_{q}+\tilde{u}_{q}\right)-\left(\tilde{X}_{p}+\tilde{u}_{p}\right)\right] f_{3} \\
& \frac{\partial U}{\partial \widetilde{v}_{p}}=--\frac{A E}{2}\left[\left(\tilde{Y}_{q}+\widetilde{v}_{q}\right)-\left(\widetilde{Y}_{p}+\widetilde{v}_{p}\right)\right] f_{3} \\
& \frac{\partial U}{\partial \widetilde{w}_{p}}=-\frac{A E}{2}\left[\left(\widetilde{z}_{q}+\widetilde{w}_{q}\right)-\left(\widetilde{z}_{p}+\widetilde{w}_{p}\right)\right] f_{3} \\
& \frac{\partial U}{\partial \tilde{u}_{q}}=-\frac{\partial U}{\partial \widetilde{u}_{p}}
\end{aligned}
$$

3.

$$
\frac{\partial U}{\partial \tilde{v}_{q}}=-\frac{\partial U}{\partial \tilde{v}_{p}}
$$

$$
\frac{\partial U}{\partial \tilde{\mathrm{w}}_{\mathrm{q}}}=-\frac{\partial U}{\partial \widetilde{\mathrm{w}}_{\mathrm{D}}}
$$

$$
\frac{\partial U}{\partial C}=\frac{A E}{2} \frac{\pi}{2} C_{\Gamma^{2} C} K_{3}+\frac{I}{A} \frac{\pi^{4} C}{S^{3}}
$$

where the term E_{3} is given by.

$$
\begin{equation*}
f_{3}=\frac{K_{3}^{2}}{S}+2 K_{3} \frac{L}{S^{2}}-K_{3} \frac{\pi^{2} C^{2}}{s^{3}}-\frac{3}{2} \cdot \frac{I}{A} \frac{\pi^{4} C^{2}}{S^{5}} \tag{2.31}
\end{equation*}
$$

2.4 Total Potential Energy of a Structural System

 - The total potential energy of an assembly of n members (tension or general truss members) is defined as f .$$
\begin{equation*}
\Pi_{p}=\sum_{i=1}^{n}(i)-W \tag{2.32}
\end{equation*}
$$

where $U^{(i)}$ is the strain energy of the $i^{\text {th }}$ element given

- by either Eq. 2.15, Eq. 2.23, or Eq. 2.28, depending on the type of behaviour the member is following in the assembly, and W is the external work done by the forces applied at the joints of the structure.

In general, the total potential energy of the structural system is a function-of N undetermined displacements, which represent the nodal displacements of the structure, measured with respect to the reference coordinate system ($(\widetilde{X}, \tilde{Y}, \tilde{Z})$, and the midspan deflections (C) of members permitted to kuckle.

Each of the N independent degrees of freedom is assigned a distinct number from l to N and a corresponding position in an N-component displacement vector $\{x\}$. The total potential energy of the structural system can then be written as a function of $\{X\}$:

$$
\begin{equation*}
n_{p}(\{x\})=u(\{x\})-w(\{x\}) \tag{2.33}
\end{equation*}
$$

where $U(\{X\})$ is the sum of the element strain energies in terms of the independent displacement degrees of freedom $\{x\}$ of the system. The external work done is given by

$$
\left\{\begin{array}{l}
\mathcal{N}(\{x\})=\{x\}^{T}\{p\} \\
\}\}
\end{array}\right.
$$

where $\{P\}$ is a vector containing the applied loads.
associated with each of the undetermined displacement degree of freedom in \{x\}.

2.5 Analytic Gradient of the Total Potential Energy

The conjugate gradient method and its extension by Fletcher and Reeves (Ref. 15) form the basis of an efficient algorithm for solving for the displacements \{X\} by minimization. It requires only evaluation of the total potential energy of the structural system (Eq. 2.33) and its gradient.

The gradient vector, $\{G\}$, of the total potential. energy is the vector sum of the gradient vectors of the element strain energies minus the applied load vector '\{P\}.' Thus

$$
\begin{equation*}
\{G\}=\sum_{i=1}^{n}\left\{G_{e}^{\left.\{i)^{n}\right\}-\{P\}}\right. \tag{2.35}
\end{equation*}
$$

where the gradient vector $\left\{\mathrm{G}^{(i)}\right.$, of the $i^{\text {th }}$ element..is given by either Eq. 2.17 ; Eq. 2.25 , or Eq. 2.30 , depending on the type of behaviour the element is following in the assembly. The sum of the gradient vectors of the n elements can be computed by the use of the variable correlation scheme which has been thoroughly explained in Ref. 14.

The necessary condition for the occurrence of a minimum is given by
\div خ

$$
[G\}=\{0\}
$$

Or

$$
\begin{equation*}
\frac{\partial R_{p}(\{x\})}{\partial X_{j}}=0^{i} ; j=1,2, \ldots, N \ldots \tag{2.36}
\end{equation*}
$$

where ${\underset{\sim}{j}}^{j}$ is the $j^{\text {th }}$ component of the vector $\{\mathrm{Xf}$.

$$
0
$$

CHAPTER III

METHOD, OF SOLUTION

5.- The principle of stationary potential energy can be stated as: of all displacement fields $\{x\}$ which satisfy geometric compatibility; those which locally minimize the potential energy, $I_{p}(\{x\})$, also satisfy the equilibrium conditions and are stable equilibrium positions. That is:

$$
\begin{equation*}
\left.\frac{\operatorname{rn}_{p}\left(\left\{x^{*}\right\}\right)}{\partial X_{j}}\right|_{\{x\}=\{x\}^{*}} \quad{ }^{6}=0 \quad j=1,2, \ldots, N \tag{3.1}
\end{equation*}
$$

where $\{X\}^{*}$ is the displacement field at a local minimum. The associated equilibrium position is stable if $\eta_{p}\left(\{x\}^{*}\right)<\Pi_{p}(\{x\})$ for ail $\{x\}$ in some neighbourhood of $\{x\}^{*}$.

According to the principle of minimum total potential energy, the structural analysis problem can then be viewed as a problem in mathematical programming. The problem is to find the displacement state vector $\{x\}=\{x\} *$, such that the potential energy function $\Pi_{p}(\{X\})$ is minimized. The use of mathematical programming methods offers several advantages. \because "First, the potential energy function mathematical model for an individual
discrete element is significantly simpler to construct than the corresponding direct displacement formulation. The potential encrịy function mathematical model for the total structure is also constructed with relative ease. The total potential energy is simply the scajar sum of the energy contifibutions of each element (Eq: 2.32). Secondly, this approach allows the use of powerful numerical methods of mathematical programming to solve the nonlinear structural analysis probiem.

The particiriar type of mathematical programming problem encountered herein is.one which the variables x_{j} are not restricted to certain intervals and is referred to as linconstrained minimization. There is a. wide variety of unconstrained minimization methods. Fox \quad. (Ref. 16) presented a detailed discussion of these methods and gave valuable guidance in choosing one of them according to the nature of the function to be minimized. The conjugate gradient method and its. - extension by Fletcher and Reeves (Ref. 15) form the basis of the minimization algorithm used to generate the solutions to the sample problems presented in this work. There are other minimization methods, notably the variable metric method by Fletcher and Powell (Refo. 9); it probably is the most powerful procedure known for finding a local minimum of a general function, and converges reliably, even in ill-conditioned problems,
but it requires the storage and manipulation of an ($\mathrm{N} \times \mathrm{N}$) matrix. For the large degrees of freedom systems usually encountered in finite element applications, this procedure involves time consuming matrix operations and storage problems. On the other hand, the Fletcher-Reeves method, although requiring a minimum amount of matrix operations and computer storage, has been characterizt by convergence difficulties. Fortunately, the incorporation of a special scaling transformation proposed by fox and Stanton (Ref. 17) has produced an algorithm which is computationally efficient for the structures included in this study.
3.1 Fletcher-Reeves Unconstrained Minimization Algorithm

The function minimizationd technique employed in this study is basically described by fletcher and Reeves in Ref. 15.

The Fletcher-Reeves algorithm begins from an arbitrax initial guess vector, $\left\{x_{0}\right\}$, to the minimum of $\Pi_{p}(\{x\})^{2}$. The initial direction of travel in the N -dimensional space is taken in the negative gradient direction, $\left\{S_{0}\right\}$;

$$
\begin{equation*}
\left\{S_{0}\right\}_{0}=-\left\{G_{o}\right\}=-\nabla \Pi_{\mathrm{p}}\left(\left\{x_{0}\right\}\right) \tag{3.2}
\end{equation*}
$$

Subsequently, the method proceeds by generating directions of descent $\left\{s_{i}\right\}(i:=1,2, \ldots)$ and choosing the step length
$\alpha_{i}>0$ such that $H_{p} \cdot\left[\left\{x_{i}\right\}+\alpha_{i}\left\{S_{i}\right\}\right]$ is a minimum along the direction $\left\{S_{i}\right\}$ at α_{i}^{*}. The new approximation to the minimum is achieved at,

$$
\begin{equation*}
\left\{x_{i+1}\right\}=\left\{x_{i}\right\}+\alpha_{i}^{*}\left\{s_{i}\right\} \tag{3,3}
\end{equation*}
$$

and subscquent directions are generated from the, relations:

$$
\begin{equation*}
\left\{s_{i+1}\right\}=-\left\{G_{i+1}\right\} \beta_{i}\left\{s_{i}\right\} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\{G_{i+1}\right\}=\nabla \Pi_{p}\left(\left\{x_{i+1}\right\}\right) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{i}=\frac{\left\{G_{i+1}\right\}^{T}\left\{G_{i+1}\right\}}{\left\{G_{i}\right\}^{T}\left\{G_{i}\right\}}=\frac{\left|G_{i+1}\right|^{2}}{\left|G_{i}\right|^{2}} \tag{3.6}
\end{equation*}
$$

The Fletcher-Reeves algorithm includes a convergence criterion for accepting α as α * at which the - function value $\Pi_{p}(\{x\})$ is minimum along the direction $\{s\}$. Note that $\{x$ \} is a vector which minimizes the energy in the previous direction. When the directional derivative dil ${ }_{p}(\alpha) / d \alpha$ reverses sign, the cubic fit scheme recommended \therefore int Ref. 15 is used. .The convergence criterion for;
accepting a as α * was achieved by performing the orthogonality test between $\{S\}$ and $\{G\}$ as

$$
\begin{equation*}
\frac{\{G\}^{T}\{S\}}{T G\}^{T}|S|}=\varepsilon_{1} \tag{3.7}
\end{equation*}
$$

where

$$
|G|=\left[\{G\}^{T}\{G\}\right]^{\frac{1}{2}}=\left[\sum_{j=1}^{N} G_{j}^{2}\right]^{\frac{1}{2}}
$$

and

$$
|s|=\left[\{S\}^{T}\{S\}\right]^{\frac{3}{2}}=\left[\sum_{j=1}^{N} S_{j}^{2}\right]^{\frac{3}{2}}
$$

The quantity ${ }^{\varepsilon_{1}}$ defined above lies between plus and minus 1 and is zero at α^{*}. A, convergence criterion was also adopted for accepting $\{X\} *$ as the vector which minimizes the total potential energy function. To accept $\{x)^{*}$ as the final solution, the convergence criterion user was

$$
\begin{equation*}
\Pi_{p}\left(\{x\}^{*}\right\}-\Pi_{p}(\{x\})<\epsilon_{2} \tag{3.8}
\end{equation*}
$$

which shows that the energy would converge to the minimum according to a specified accuracy ε_{2} (a recomended value in the subroutine used is 1×10^{-16}):

Subroutine DFIXC from the ${ }^{\$ 1 B M}$ System/360 Scientific Subroutinc Package was used to find the local minimum of the total potential energy by the Fletcher-Reeves conjugate gradients method.
3.2 Scaling Transformation

Scaling of the variables in the minimization problem is a technique which can materially improve the convergence to the minimum of the function to be minimized.

The term "scaling transformation" as used herein refers to a simple multiplication of the individual degrees of freedom by appropriate constants and thus to a nonsingular diagonal transformation matrix. The objective of.scaling, mathematically, is to accomplish a coordinate expansion or contraction which will. minimize the "eccentricity" of the function.

- For the problems dcalt with herein the scaling transformation proposed in Ref. 17 has proven to improve the convergence characteristics and results in an efficient Fletcher-Reeves minimization algorithm. The scaling is based on reducing the ratio of the maximum to the minimum eigenvalues of the matrix of second partials of the function to be minimized. In the case of linearized displacement formulations, the total discretized potential energy can be expressed as.

$$
\begin{equation*}
\Pi_{p}(\{x)) \equiv x_{2}\{x]^{T}[K]\{x\}-\{x)^{T}\{P\} \tag{3.9}
\end{equation*}
$$

where $\{X\}$ is the vector of independent degrees of frecdom, $\{P\}$ is the work equivalent load vector, and $[K]$ is the ordinary stiffness matrix of the supported structure. In the scaled coordinates this equation will operate as

$$
\begin{equation*}
\Pi_{p}(\{z\})=z_{2}\{z\}^{T}\{\bar{K}]\{z\}-\{z\}^{T}\{\bar{P}\} \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
[\bar{K}] \doteq[R]^{-1}[K][R]^{-1},\{\bar{P}\}=[R]^{-1}\{P\} \tag{3.11}
\end{equation*}
$$

The minimization is then carried out with respect to the scaled set of variables

$$
\begin{equation*}
\{Z\}=[R][M\} \tag{3.12}
\end{equation*}
$$

where [R] is a diagonal matrix with diagonal.elements

$$
\begin{equation*}
r_{j j}=\frac{1}{\left(k_{j j}\right)^{\frac{1}{2}}} \quad j=1,2, \ldots, N \tag{3.12}
\end{equation*}
$$

In this casé the matrix of second partials of the total potential energy is simply

$$
[k]=\left(k_{i j}\right) \text { where } i, j=1,2 ; \ldots, N .
$$

In the solution of nonlinear problems as those dealt with in the present study, previous experience has " \quad ' proven that a scaling transformation which included the effects of the diagonal elements of the matrices of second partials of the cubic and quadratic terms in the potential energy function does not materially improve convergence. Therefore, in all applications reported hercin, the scale factors are obtained from the quadratic terms In the potential energy, The elements of the matrix of second 'partials are computed from the element stiffness matrices by the use of a variable correlation scheme. Expressions for those terms are derived in Appendix A.

CLAPPER IV

NUMERICAL EVALUATION AND DISCUSSION OF RESULTS
ξ
In this chapter, solutions are obtained for a variety of problems in order to indicate the potential of the present..study and to evaluate the approach and method of solution presented herein. The problems examined -originate from the published literature which. provide a basis for comparison.

A computer program in Fortran IV has been developed for the theoretical analysis of general truss and tension structures with the aid of the. IBM 360/50 computer. A minimum of computer storage is required when the energy search approach is adopted since the need for an assembled stiffness matrix ($\mathrm{N} \times \mathrm{N}$) is eliminated.

- The numerical examples examined here includes elastic and inelastic analysis of orthogonal and nonorthogonal prestressed cable nets, and the prediction of - ---i . response of general truss structures including postbucking behaviour. The conceptual difficulties associated. with tension members dropping out of service (ie., losing thȩir pretension and becoming slack), or with their yielding (so that the force remains constant ${ }^{\circ}$ in the member 'when an ideal clastic-perfectly plastic stress-
strain curve is used), are easily resolvedusing the energy search approach. The calculation of the total potential energy of a tension structure involves summing the individual contributions from the elements comprising the system (see Eq. 2.32), This provides a natural means to accommodate an altered structural configuration at any. point in the search process by simply not including the contribution of slack members in the summation. Provision for buckling or yielding of individual compression members is also included so that gross instability resulting from the accumulation of locai effects can be detected. Note that local buckling is considered to occur when the compression force in a truss member exceeds its critical value (Euler Load).

4.1 Numerical Evaluation

4.1.1 Linear Elastic Tension Structures

The results obtained for the tension structures examined below are based on a materially linear elastic behaviour and geometric nonlinearity (formulation of Section 2.1). EXAMPLE $\dot{L}]$]:

An orthogonal cable network, having the shape of a hyperbolic paraboloid shown in Fig. 4 was previously analyzed by. Thornton and Birnstiel (Ref. 3).

The crosis-sectional area of each cable is equal to 1.0 sq . in., the value of the modulus of elasticity is
equal to $24,000 \mathrm{ksi}$, and the horizontal component of prestress in all cables is equal to 50 kips. Three cases of loading were considered:
(i) vertical load of J. kip at each joint,
(ii) vertical load of 1 kip at each joint plus additional load of 14 kips at joint \neq,
(iii) in addition to the load in (ii), a horizontal load of 10 kips at joint 7 in the \widetilde{Y}-direction.

Thornton used the method of continuity for the equilibrium solution of the nonlinear simultaneoús algebraic equations, from which the unknown displacement components at the joints could be detexmined. In the method of continuity, the nonlinear set of simuitaneous algebraic equations were transformed into a set of nonlinear differential equations which were integrated. - . The results obtained by the present analysis are in very close agreement with those of Thornton's, as seen in Tables 1 and 2 .

Using the present analysis, the total potential energy of the structure is a function of 175 degrees of freedom (3 displacement components at each internal node). The search procedure sensed the symmetry of the problem in case (i), although the symmetry of the structure and loading was not taken into consideration in preparing the input data for the computer program.

It should be mentioned that Thorntion has indicated that the geometrically linear and nonlinear solutions for displacements varied by $0,23 z$ for loading condition (i), and by 198 for loading condition (ii). However, the geometrically linear and nonlinear solutions for the horizontal components of cable tensions varied by as much as 1018 for loading condition (iii\}. The nonlinearity is more märked in the case of unsymmetrical loading.

By comparing the results, the method of analysis employed here cän be said to give accurate results even when the nonlinearity is high (case (iii)).

EXAMPLE L2:

A suspended roof bounded by main cables shown in. Fig. 5, was. studied analyticaliy and experimentally by Siev in Ref. 2. In Ref. 1 siev presented a general theory for the determination of the displacenents of a general net, taking the horizontal displacements into account. The equations derived were linear and an iterative correction for large deflections using the ${ }^{\circ}$. force imbalance at the joints was suggested.

The model consists of four main cables (1 mm in diameter), 12-13, 13-14, 14-15 and 15-12, fixed at points 12, 13, 14 and 15. Two of the fixing points, 12 and 14 , are elevated, and the other two depressed. Four
diagonals (0.5 mm in diameter) are stretched in each direction between the main cables. The modulus of elasticity was $1.9 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$ for the 0.5 mm diameter wires, and $1.95 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$ for the 1.0 mm diameter wire. , The horizontal component (H) of prestress in all diagonal cables was assumed constant and equal to $4,15 \mathrm{~kg}$. The horizontal component (H_{1}) of prestress in the segments of. the maim cables was determined from the equilibrium in the horizontal plane (se e-Appendix C), and is given by the relation,

$$
\mathrm{H}_{1}=5.65684 \mathrm{H}
$$

All the dimensions, coordinates, and joints elevations are given in Fig: 5. The system is'geometrically symmetric about the two diagonal axes.

Siev studied the behaviour of the model under various modes of ${ }^{\text {itzoading. For comparison, three casts }}$ are presented here, for which numerical results are listed in Reft. 2.

In case (i) " the system fo loaded at joint " 0 " with a vertical load incremented from 200 kms to 2000 gms , and the vertical dispiadement of this joint is provided by both theory and experiment. In the experiment the average of four measured vertical displacements of joints 0,$1 ; 10$ and 12 under the same single vertical load at each of these joints was obtained. The results obtained.
by the present method of analysis together with those by Siev are given in rable 3.

In Cases (ii) and (iii) the sisstem is loaded at all joints with horizontal loads of 0.2 kg and 1.0 kg in the X-direction, respectively. In these cases of loading, there isp symmetry only about the diagonal parallel to the x-axis. Displacements in the x and q directions of joints $0,1,2, \ddot{3}, 4$ and 5 are identical to those of \because joints 11, $10,6,7 \% 8$, and 9 respectively, while dist. placements in the X-direction of the same joints are equal-in magnitude but orposite in sign. In the present analysis, the potential energy of the structure is a. function of 36 degrees of freedom (3.displacement. components at each inner joint):

The three displacement componerits of the joints: and the tension for each section for the two cases are compared in Tables 4 and 5.

EXAMPLE L3:

The generai behaviour of the orthogonal hyperpolic paraboloid cable-net shown`in Fig: 6, was determined by Kumanan in Ref. 4.

The dimensions of the roof in plane are 240 ft.
 the game level as A to C, rising again by i2 f.t. to. D. dropping to the same lefel as A to $E ;$ and frimlly rising by, 12 ft . from E to F. The vertical coordinates of the innex joints are determined using the dolvect method
explained in Appendix B, based on the equilibrium of foicics at joints.

Values of $24,000 \mathrm{ksi}$ for the elastic modulus,
" 50 kips for the horizontal components of the pretensioning force for ald cables, and 1,25 sq. in. cross-sectional areas for all cables, were used.

The struêture has 28 inner joints resulting in 84 displacement degrees of freedom: The structure is symmetrical about the line $B-E$, which therefore reduces ${ }^{*}$ the number of displacement degrees of freedom from 84 to A 45. The displacement benaviour of the roof was determined under vertical loads of $1.0 \mathrm{kip} / j o i n t$.

The cquations derived by Kumanan to determine the displacements and tensions under load were based on the displaced geometry of the structure, and second order . displacement terms were included. The iterative NewtonRaphson method was adapted for solution of the nọnlinear equations.

Typical results of the vertical displacements of the roof joints as given by Kumanan in Ref. 4 , together with the results obtained by the present analysis' ard shown in rable 6.

EXAMPLE L4:

The present, method of analysis is efficient and accurate for the study of non-orthogonal cable-roof

structures. (There is no additional provisions to be introduced into the formulation to account for non-" orthogonality.

The non-orthogonal hyperbolic paraboloid roof 240 ft. $x 120$ ft. rising by 12 ft . from n to B ; dropping to the same level as \dot{A} att C, and again' rising by 12 ft . to: D, as shown in Fig. 7., was analyzed by Kumanan (Ref. 4,5). The vertical coordinates of the inner joints are determined by the method explained in Appendix B. values of $24,000 \mathrm{ksi}$ for the elastic modulus, 50 kips for the horizontal components of the pretensioning of all cables, and 1.25 sq , in. for the cross-- sectional area of the cables in both directions were used.

The structure has 61 joints involving. 183 displacement degrees of freedom, three components at each joint. This number could be reduced to 108 degrees of freedom by considering the antisymmetry about the diagonal AC or DB.

- The displacement behaviour of the roof is \because determined under vertical loads of $1.0 \mathrm{kip} /$ joint, which corresponds to a uniformly distributed load of 5 psf of plan area of the roof.
* In Ref. $\dot{5}$, Kumanan derived the equilibrium equations neglecting the higher order terms which is valid only for an infinitesimal load. Two methods to correct
for nonlinearity when larger loads are applied (an approximate method, and an incremental load method) wore. used by Kumanan. The approximate method of correction was used to obtain the results for this problem. In this method, half the displacements obtained by solving the equilibrium equations are added to the initial coordinates and the new displacements are calculated using the corrected coordinates. The iteration is continued until the values converge sufficiently. This correction amounts to basing the calculations on a configuration which is italf-way between the initial and final (displaced), configurations.

Typical results of the vertical, displacements of the roof joints as given by Kumanan in Ref. 5 ; together with the re'sults obtained by the present analysis are shown in Table 7.

4.1.2 Inelastic Tension Structures

The inelastic analysis and the determination of the ultimate load capacity of the two cable-net rogts previously analyzed (EXAMPLES L3 and L4) were carried out fconsjdering material nonlinearity. The same theoretical model for the stress-strain curve"suggested by Kumanan (Ref. 1) is adapted here for developing the energy search approach to includesthe study of inelastic betiaviour of cable roofs under increasing load, (see chapter. II, Section 2.2).
load, values of $24,000 \mathrm{ksi}$ for the elastic modulus, 124.9 ksi for the proportigndy limit, $155^{\prime} \mathrm{ksi}$ for the yield stress, 250 ksi for the ultimate stress, and 4.5% for the ultimate strain were used. Accordingly, the stressstrain curve relationship (Eq, 2.19) is given by

$$
\sigma^{2}-453000 \varepsilon-230.925 \sigma+15600=0
$$

where σ is the stress in ksi and ε is the strain. The criterion of failure of the roof is defined: , as when the ultimate stress is reached in the most highly stressed segment of the cables. Kumanan used an incremental load method where the tangent modulii. corresponding to the stress levels in the cables were used throughout the derived equations. The external applied load was incrementally increasea until the ultimate load was reached.

The value of the ultimate load for the orthogonal cable-net obtained by Kumanan was 65.2 kips/joint with a maximum deflection 15.9 ft. , while for the nonorthogonal cabie-net the ultimate load was 49.1 kips/joint with a maximum deflection of 22.5 ft .

By the present energy search approach, the value of the ultimate load for the orthoginál cable-net was cajculated and found to be 67.7 kips/joint, with a
maximum deflection of 15.6. ft., and for the non-orthogonal cable-nett the ultimate load was 49.2 kips/joint with a maximum deflection of 22.8 ft . In generating the ultimate load, the external applied load was increased by 4 kips/ joint, starting from initial load of 4 kips/joint, and a smaller increment (0.1 kips/joint) was used to arrive at the final value of the ultimate load. It should be mentioned that no provisions were made in the formulations to account for the occurrence of unloading of cable segments. The load-stress history of the roof's cable. segments indicated no case of cable unloading in the: inelastic range.

4.1.3 Linear Elastic General Truss Structures

EXAMPLE GI:

The truss structure investigated below, together with the, applied loading is completely described in Fig. B. It is essentially the same structure investigated in Ref: 6 (Case T2).

The formulation presented in the present work for compression members is essentially the same as that - developed in Ref. 6, except for the three refinements suggested by Bogner in Ref. 8:
(1). the possibility of including prestress,
(2) the assomed transverse displacement state is as"sumed to be proportional to the first buckling eigenmode instead of a polynomial, and 6
(3) the capability of handing change of configuration is provided.
This example is intended to indicate the applicability of the geometrically nonlinear truss finitc elements presented to the prediction of finite displacements and post-buckling behaviour. The force and . displaccment behaviour predicted by three different mathematical models of the structure are presented as obtained in Ref. 6 , together with, the results obtained by the present analysis in Tabies 8 and 9, resectively. - The results shown in column 2 of Tables 8 and 9 , were predicted by a conventional linear'matrix method. In columns 3 and 4 of the table, the behaviour predicted assuming large displacements of the nodes but no buckling, is presented. Finally, the prediction of large node displacements and post-buckling configuration, is presented in-columns 5 and 6.

The results obtain by the present analysis are basically the same as Ref.. 6, as can be seen in the two tables. The slight differences seen between the two results is attributed to:
(1) In Ref. 6 , the buckled shape of a truss compression element is approximated by an assumed polynomial. with five coefficients determined from the imposed, and natural boundary conditions: In the present work; the assumed transverse displacement of a truss \because
$\therefore \quad$
\because
compression element is taken to be proportional to the first buckling eigenmode (Eq, $A-42$) which precisely represents the buckling shape,
(2) The prediction of the behaviour of the truss with the simultaneous consideration of large nodal displacements and local buckling was based on the stiff-. ness characteristics of the individual discrete elements. The stiffness characteristics of the truss compression element in its two deformed states, straight and buckled, was evaluated in Ref. 6. The critical load for the truss element was estimated to be 0.2% greater than the Euler buckling load. This explajins the slight difference in the results in columns 5 and 6 of the tables. In the present analysis, the critical load for the truss element is exactly taken to be equal to the Euler buckling load (Eq. A-40).

- Provision for local buckling detection is easily incorporated in the computer program. £ocal buekling of individual members occurs when the force in a truss member exceeds its critical value (Euler load). Simply; the value of the variable K_{3} given by Eq. $A-43$, is investigated during the search process. If the value of K_{3} was found to be negative, and it is greater "than or equal to $K_{3 c r}$ given by Eq. A-39, then the value of K_{3} is set equal to For' i.e., the force in the truss member is set exactly equal to the buckling load.

In the case of the prediction of the truss behaviour assuming large nodal displacements but not allowing buckling, the potential energy of the structure was a function of 6 degrees of freedom, namely the displacements of nodes 5 and 6. For the case assuming large nodal displacements and where four truss members are permitted to buckle, the potential energy was a function of 10 degrees of freedom, 6 nodal displacements at nodes 5 and 6 , plus 4 midspan displacements (describing the local transverse displacement state of the members which are permitted to buckle, Eq. A-42). The four truss members ($1-5$), (2-6), (3-5), and (4-6) were permitted to buckle on the basis of the behaviour results predicted by the linear method.

It should be emphasized that the error inherent in the behaviour predicted linearly is apparent. It is aliso clear that local buckling influences the force distribution more than the nodal displacements.

EXAMPLE G2:
As a final example, the suspended dome-truss structure shown in Figures 9 and 10 is studied. The structure consists of a 120 ft . diameter shallow truss dome 6/ft. in height (Fig. 9). The dome has 42 tubular aluminum members (round tube section of diameter $=4 \frac{1}{2}$ in. $A=1.718$ in. $A=4=414$ in ${ }^{4}$ and
weight. of 2.02 pounds per ft.l. . The shallow dome is suspended from the nodes on the outer circumference by 12 slender hangers (each 12 ft. long, $A=0.1$ in.) to a horizontal network of orthogonal prestressed cables (Fig. 10). The prestressed cable network (high tensile steel wires, $A=0.5 \mathrm{in}^{2}$) provides the strength necessary to support the loads involved in the analysis. The prestress force in each cable of the network is taken equal to 25 kips.

The behaviour of this structural system demonstrates the effectiveness of the analysis and permits the investigation of a snap-through phenomenon as well; as the post-buckling behaviour coupled with the response of a typical cable network.

The total potential energy of the structure is a function of 162 degrees of freedom (120 nodal displacement components of the structure's 40 nodes, plus 42 possible midspan buckling amplitudes of the dome bars); symmetry was not'taken into consideration, however, complete symmetry in displacements and stresses resulted in all loading* "onditions. In the following discussion, load-displacement histories are generated and the search procedure uses the solution for the previous loading condition as the starting point for the current loading condition. For gradual load incrementation this feature is a somewhat helpful as a computer time-saving device;
however, solutions are obtained essentially independently for each loading case, since the method of solution. itself is not a load incrementation scheme.

Two cases of-behaviour response are studied:
Case (i): The dome is suspended only from the circumference joints. Initially the dead weight of the structure is considered as concentrated loads at all the dome joints; then an external downward load at joint 1. is superimposed in 100 lbs. increments.

The load-displacement histories for nodes 1 and 2 are'shown in Figures 11 and 12; while the load-force histories of members A, C, D and E are shown in Fig. 13. Inspection of the figures indicate that the relationships are linear up to a superimposed load at node 1 of 610 lbs. At this load members A and B buckile and is accompanied by a "snap-through" buckling phenomenon of the complete dome structure resulting in I a configuration which is inverted with respect to the orfginal configuration. The large displacements that result are shown in Figures 11 and. 12 where it is seen that node 1 snaps from a "small" deflection of 0.9248 ft. to a large deflection of 12.89 ft . and node 2 from 0.7836 ft . to 9.78 ft .

Inspection of. Fig. 13 reveals that all the dome' members' which were in tension prior to the "snapthrough ${ }^{n}$ become compression members and'all dome members
which were compression members become tension member's (including members A and B).

As the load increased from 610 lbs., the behaviour is again linear as indicated in Figs. 11,12 and 13. At a load of 1240 lbs . the outer circumferential members (D) buckle. The buckling of members D again
cause a change in the shape of the load-deflection. histories as the load is increased beyond 1240 lbs. (Figs. 11 and 12): Once that members D have buckled the forces in members D remains constant (Fig. 13) and the tension force in member E also remains constant in agreement with equilibrium considerations. The forces in members A follow a linear relationship from the snapthrough buckling. load of 610 lbs: until a load of 1870 Lbs. is reached at which members C also buckle: Although the structural behaviour could have been monitored further, it was felt that the effectiveness of the analysis procedure had been demonstrated and/ that a practical alternative involved preventing the snap-through buckling phenomenon as described in the following discussion.

Case (ii): In addition to the 12 hangers of case (i), three more hangers ($A=D .1$ in ${ }^{2}$) are introduced between nodes 1,2 and 12 of the dome and nodes $20^{\circ}, 21$ and 25 of the cable network; respectively.

Starting from the dead weight loads of the dome and superimposing loads at node 1 the behaviour is predicted. The load-displacement histories for nodes 1, 2 , 4 and 5 are shown in Fig: 14; while the load-force histories for members A, B, C and for the hangers at nodes 1,2 and 3 are shown in Figures 15 and 16 , respectively. In allcases, the relationships are basically linear until the superimposed load at node 1 reaches 1160 lbs. At this load, members A and B buckle and the hangers at nodes 2 and $¥ 2$ go slack. Therefore, any increase in load at node 1 causes a redistribution of forces in the non-buckled members, since the buckled mempers cannót carry any additional load and also since the hangers at nodes 2 and 12 cannot take any compression forces. It is therefore seen in Fig. 14 that the deflection of node 1 increases more rap̃idly as the load is increased beyond the load which causes buckling in. members A ánd B. This is accompanied by a more rapid increase of the force in the hanger at node 1 and a decrease of the forces in the circumferential hangers as' shown in 'Fig. 16 . Since the hanger at node 1 resists a higher-percentage of the superimposed load after buckling, less load is carried by the truss members as exemplified by the load-force history of member C (Fig. 15): The load-deflection behaviour of nodes 2 and 4 after buçking (Fig. 14) is a result of
the combined effect of buckling of the six truss members, the change of force levels in the hangers; the slackening of the hangers of node 2 and 12 and the change of geometry of the suspended structure.

Note that the additional hàngers preclude the possibility of a snap-through buckling phenomenon.

Chaprer $\dot{\text { V. }}$

SUMMARY AND CONCLUSIONS

The finite element method has been applied to the nonifincar analysis of general truss-type structures. Geometric nonlinearity was incorporated in the analysis by using nónlincar deformation-displiacement and straindisplacement $\overline{\text { relations. }}:$ The governing equations are therefore based on" the "deformed geometry of the structure which permits the prediction of large nodal displacements and post-buckled configurations; the , formulation alio allows the detection of general . \therefore-.instabilities which result from the occurrence of unstable deformed nodal configuration due to the accumulation of local innstabilities: In the case of a tension members, the andysis presented also incorporaters material nonlinearities (i.e. \quad nonliñear stress-strín relationship):

The method presented does not require the use of a`load incrementation procedure .llowed by many researchers to deal with nonlinedr structural problems; \cdots iod incrementation is avoided herein by direct incorporation the nonlinearlties into the formulation.

The method of analysis developed herein represents an advance toward more realistic prediction of the behaviour of general truss-type structures.

The potential energy function mathematical. model of structural system of finite elements presented in this work is generally simpler to construct than the corresponding direct displacement formulation. The calculation of the total potential energy of the structure is simply the scalar sum of the energy contributtons from the individual members which comprise the structure; the construction of the direct displácement formuzation would require the additional effort of either taking the variation of the potential energy or considering equilibrium explicitly at each node point with reference to the deformed position (Refs. 1, 3, 4, 5). The potentialenergy function mathematical model for an individual discrete element is also constructed. with relative ease.

The direct search for the position of the minimum total. potential energy function of the struc-. ture using the Fletcher-Reeves unconstrained minimization algorithn incoiporated with a variable scaling transformation was found to be efficient and gives accurate solution fgr nonlinear problems. No convergence problems were encoíntered; solutions were obtained for every problem within a reasonable number of iterptions.

The energy search approach has proven to provide a natural means to afcommodate changes in structural configuration due to slackening of tension members and buckling of compression members. The method also was capable of dealing with yielding of tension mombers (material nonlincarity), and the detormination of the ultimate load capacity of cable roofs. The accuracy of the method appears acceptable for all the cases investigated in the previous chapter where comparisons with results by other different approaches were made.

Finally, the formulation presented can serve as a basis to derịve similar formulations for structural members with other than pin-connected ends; this would permit the analysis of stayed and guyed towers which are a combination of tension members and stringercolumn members.

The previous discussion can be summarized by the ensuing conclusions which pertain to the following nonlinear structural analysis problems dealt with herein:
(a) Prestressed orthogonal and nonorthogonal cable nets (inciluding large nodal displacinents, slackening of cable segments. and material nonlinearity).
(b) General truss-Eype structures (including large nodal displacements, slackening of tension members; buckling of individual compression members, prediction of gross buckling loads and postobuckling, behaviour).
-1. The energy search formulation presented is an efficient alternative to direct formilation methods with respect to the total effort required to formulate and solve the above nonlinear structural" analysis problems.
2. The Fletcher-Reeves algorithm used for the minimization of the total potential encrgy of the structure is an efficient tool for the analysis of tension and general truss structures.
3. The method presented handles the difficulties associated with the brhaviour of tension and general truss structures efficiently and accurately.

Figure 3. Compession Truss Discrete Element. \because

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
is

Coordinate \tilde{Z} of joint in initial position indicated by 0.00 (feet)

Figure 4. Example Ll: orthogonal Hyperbolic Paraboloid Net. 60.80700
 60.60900 \qquad

Figure 5. Example $\mathrm{L} 2:$ Suspended Roof Structure Bounded by Main Cables.

Axis of symmerry

Figure 6. Example L3: Orthogonal Hypérbolic Paraboloid Cable-Net.

Figure 7. Example L4: Non-orthogonal Hyperbolic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8. Cantilever Truss.

.

Figure 9. Suspended Shallo/Truss Dome.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 14. Load-Displacémēnt History of Nodes $1,2,4$ and 5, Case (ii)..

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 16 . Forces in Hangers at Nodes $1 ; 2$ and 3. Case (iil

Figure B-1. General Joint "a." of a General Non-orthogonal Cable Net.

TABIE 1
EXAMPLE L1 - Vortical Displaccments of Cable "a" of Net Shown in fig. 4 Under Vortical Loading

*Case (i): Vertical Load of l. kip at. Each Joint.
**Case (ij): Vertical Load of 1 kip at Each Joint Plus Additional Load of 14 kips at Joint 7:

TABLE 2*

EXAMPLE Li - Results for Cable "a" of Net Shown in Fíg. A, Under Vertical and Horizontal Loading. (Case.iii)

Joint Number	Vertical Displacement (feet)		Member	AHorizontal Components of Cable Tension (kips)	
	Thornton (Ref. 3)	Writer		Thornton (Ref. 3)	Writer
34	0.0	0.0	34-1	45.947	45.916
1	0.445	0.441	1-3	46.056	46.005
3	1.368	1.371	3-7	46.264	46.240
7	3.750	. 3.752	7-13	36.657	36.609
13	1.664	1.669	13-19	36.679	36.622
19	0.963	0.962	19-23	36.697	36.629
23	0.558	0.561	23-25	36.710	36.710
25	0.228	0.224	25-26	37.706	$\because 36.708$
26	Q. 0	0.0	--	--	--

TABLE 3
EXAMPJE I,2 - Vortical Displacoments. of Joint "́o" of Net Show in Fig. 5 Under Vertical

Load at the Same Joint- (Casc (i))
-" .

Lóad kg	Vertical Displacement (cms)		
	- Siev (Ref. 2)		Writer -. \because
	Experinont	Theory	
0.2	0.200	0.213	$\therefore 0.214$
0.4	0.393	0.432	0.426
0.6	0.592	0.630	0.632
0.8	0.784	0.833	0.836
1.0	$\because 0.973$	1.032	1.035.
1.2	1.163	1.224	1.227.
1.4	1.348	1.412	1.415
1.6	1.530^{6}	1.593	1.597
1.8 :	$\therefore \quad 1.713$	1.768	1.772
2.0 -	$\bigcirc \quad 1.895$	1.937	2.941

ι.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

$$
+
$$

EXMMPLE L2 - Tension in Sections (kgs) for Loading' Cases (i.i) and (ii.i)

Section Numbers.	$\begin{gathered} \text { Sien } \\ \text { (Ref. } 2 \text {) } \end{gathered}$	Writer	$\begin{gathered} \text { Siev } \\ \text { (Ref. 2) } \end{gathered}$	Writer
0	24.502	24.423	2.1 .254	21.174
1	26.358	26.281.	30.383	30.308
. 2	4.145	4.139	4.140	4.133.
'3	23.529^{1}	- 2.3 .452	20.039	19.968
4	4.123	4.106	3.822	3.806
5	4.369	-. 353	5.013	4.998
6	25.423	25.355	29.401	29.334
7	24.190	24.113	19.755	19.676
8	4.046	4.029	3.485	3.4.69.
9	4.159	-4.143 ${ }^{\circ}$	4.41 .7	4.396
10	:4:453	4.437	5.522	5.506
11	- 26.681	26.604	32.118	32.043
12	4.112	4.105	3.920	3.912
13	4.036	4.020	$\therefore 3.743$	3.727
14	4.275	4.260	$\because 4.9 .00$	4.885
$.15{ }^{\prime}$	4,172	4.166	4.194	4.187

EXAMPLE L3 - Vertical Dippiacoments óe
the Cable Roof Shown in Fig. 6 Under Vertical Loading (l kip/joint)
Jojnt Nomber $\frac{\text { Vintical Dispiacement (ft:) }}{\text { Kumanan (Ref:4) Writer }}$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EXAMPLE LA - "Vertical Displacomonts of the Non-orthogonal Cable Roof Shown in Pig. 7 -- Under Vertical Loading (l kip/joint)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RLEERENCES

1. Siev, A, " A-Gencral Analysis of. Prestresined Nets", International Association for Bridge and Structural Engineering, Vol. $23 ., 1,963$, pp. 283: 293.
2. Sievfi A:, "Prestressed Suspendet Rooís Bounded by Main Cables", International, Associarion for Wridge and Structural. Engineerirrgr Vol. 27; 1967, pp. 171-185.
3. Thorntion, $C: H$, and Birnstiel, $C .$, "Three-Dimensionap Suspension Structures", Journal of the Structurbl Di,vision, $A S C E ;$ ST2; April 1967, pp. 247-270.
t. \therefore Kumanan, T., "Elastic and Inelastic Analysis of Pretensioned Cable-Roof. Structures", Ph.D. Thésis, The Faculty of Graduate Studies, Universyy of Windsor, (1971).
4. Kumanản, T., "Analysis of Noriorthagonal Cable Roof ${ }^{\prime}$ ", M:A.Sc. Thesis, The Faculty of Graduate Studies, University of Windsor, ${ }^{\prime}$ (1969).
5. Bogner, F.K., Mallet, R.H., Minich, M.D., and Schmit, Li:A.a, "Development and Ewaluation of Energy Search Methods of Nonlinear structural. Analysis! , AFFDL-TR-65-113, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio (1965).
6. Mȧlef, R.H. and Berke; L., "Automated Methods for the Finite Displacement Analysis of ThreeDimensional Trass and Frame, Assemblies", AFFDL-TR-66i102, Air Force Flight Dynamics Laboratory . Wright-Patterson Air Force Base, Qhio (1966).
7. 'Bogner, F.K., "Analysis of Tension Structures", AFFDL,-TR-68-150, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Folce Base, Ohio (1968)...
8. Fletcher, R. and Powell, M.J,D.; "A Rapid'ly" Convergent Descent Mothod for Minimization", Computer Journal, vol: 6; 1963, pp. 163-168.
9. Buchholdt, H.A., "Deformation of Prestréssed CableNets", Acta Polytechnica Scandinavica, Civil Engincering and-Building Construction Series, No. 38, forondheim (1966).
10. Buchholdt, H. A. \because Das, N.K. and Ai-Hilyir A.J. "A Gradient Method, for the Analys (s of coble Structures with Fhexible Boundaries Structures, London, April 1974.
12:- G̣reenberg, D.P., "Inelástic Analysis of Suspension Roof Structures", Journal of the Structural Division, ASCE, ST5, May 1970!. pp. 905-931.
13، Jonatowski, J.J. and Birnstiel, c. " "Inelastic Stiffened Smpension Gpace Structures", Jourral of the Structural Division, ASCE, ST6, -June 1970, pp. 1143-1166.
Schmit, L.A., Bogner, FKK. and Fox, R.L., "Finite Deflection Structural Analysis Using Plate and Shell Discazete Elements": :AIAA Journal, Vol.: 6, No. 5, May 1968, Pp: 781-791. .
15.' Fletcher', R. and Reeves, C.M., "Function Minimization by Conjugate Gradients", Computer jJournal,
Voi. 7,1964, pp...l49-154.
11. Fox, R.L., optimization Methods for Engindering Design, Addison-Wesley Publishing Company, 1971.
12. Fox, R.L: and stanton, E. "Developments in Structural Analysis \cdot by Direct Eneqgy Minimiza: tion", AIAA Journal, Nol. 6, No. 6, June 1968, pp. 1036-í042

APPENDIX A

A typical truss tension member in the undeformed and deformed states is showninfig. l. The initial. undeformed length is given by

$$
L=\left[\left(\tilde{X}_{q}-\tilde{X}_{p}\right)^{2}+\left(\tilde{Y}_{q}-\tilde{Y}_{\mathrm{p}}\right)^{2}+\left(\tilde{Z}_{q} \div \tilde{Z}_{\mathrm{p}}\right)^{2}\right]^{\frac{1}{2}} \quad(A-1)
$$

The deformed length is given by

$$
\begin{equation*}
\left.+\left[\left(\widetilde{z}_{q}^{j}+\widetilde{w}_{q}\right)-\left(\widetilde{z}_{p}+\widetilde{w}_{p}\right)\right]^{2}\right\}^{\frac{1}{2}} \tag{A-2}
\end{equation*}
$$

The location of the-mefmber joints' p and q in the initial position are given by $\tilde{X}_{p},{ }^{\prime} \tilde{\Psi}_{p}, \tilde{z}_{p}{ }^{\prime}, \tilde{X}_{q}, \tilde{X}_{q}$ and $\tilde{\widetilde{Z}}_{q}$ coordinates, measured with respect to the reference coordinate system $(\tilde{x}, \tilde{Z}, \tilde{z})$: Note that $\tilde{u} ; \tilde{\mathrm{v}}$, and \tilde{w} are the displacement components, of the member joints in the $\tilde{X} ; \widetilde{Y}$, and \widetilde{Z} directions respectively.

The strain-deformation relation is expressed in terms of the axial deformation (u): measured along the

- deformed length of the member (x-direction), and is given

$$
\begin{equation*}
\varepsilon=u_{X} \tag{A-3}
\end{equation*}
$$

Integration of the strain energy definition

$$
\begin{equation*}
d U=\int_{0}^{\varepsilon+\varepsilon} p{ }_{0}^{d \varepsilon} \tag{A-4}
\end{equation*}
$$

under the assumption of ideal linear elastic material behaviour.

$$
\sigma=\dot{E}\left(\varepsilon+\varepsilon_{p}\right)
$$

result a in the following expression for the strain energy in terms of the strain

$$
\begin{equation*}
u=\frac{E}{2} \int_{V}^{D}\left(\varepsilon+\varepsilon_{p}\right)^{2} d V \tag{A-6}
\end{equation*}
$$

Substitution for the strain from Eq. A-3 and integrating over the cross-section yields the strain energy in terms of u

$$
\begin{equation*}
u=\frac{A E}{2} \int_{0}^{S}\left(u_{x}+\varepsilon_{p}\right)^{2} d x \tag{A-7}
\end{equation*}
$$

From the fundamentals of the calculus of variations, the 'actual displacement state is the one for which the first variation of the strain energy is zero;
$\delta U=0=\frac{A E}{2} \int_{0}^{S} \cdot 2 u_{x} \delta u_{y} d x+\frac{A E}{2} \int_{0}^{S} 2 \delta u_{x}{ }_{0}{ }_{P} d x$

Integrating by parts

$$
\begin{aligned}
\delta U=0= & A E\left\{\left|u x \varepsilon_{0}\right|_{0}^{S}-\int_{0}^{S} \frac{d u x}{d x} \delta u d x\right. \\
& +A E\left\{\left.\left.\right|_{p} \delta u\right|_{0} ^{S}-\int_{0}^{S} \frac{d \varepsilon}{d x} \delta u d x\right]
\end{aligned}
$$

$$
\begin{align*}
\delta \underline{U}= & 0=-E A \int_{0}^{S}\left\{\frac{d}{d x}\left(u_{x}+{ }^{\varepsilon} p\right)\right\} \delta u d x \tag{A-8}\\
& +\left.\left.E A\right|^{a}\left(u_{x}+\varepsilon_{p}\right) \delta u\right|_{0} ^{S} \tag{b}
\end{align*}
$$

Each of the contributions (a) and (b) in Eq. A-8 must be individually equal to zero, since the variation $\delta \mathrm{u}$ is ${ }^{\text {f. }}$ arbitrary; this gives

$$
\frac{d}{d x}\left(u_{x}+\varepsilon^{p}\right)=0
$$

which represents the governing differential equation for the problem, By integration,

$$
\begin{equation*}
\dot{u}_{\dot{x}}+\varepsilon_{p}=K_{1} \tag{n-10}
\end{equation*}
$$

From Fig. 1, ite is apparent that the imposed boundaxy conditions are

$$
\begin{equation*}
\left.u\right|_{x=0}=0 \quad \text { and }\left.\quad u\right|_{x=S} ^{\prime}=s-L \tag{n-11}
\end{equation*}
$$

Also, the variational quantity fu must vanish at the ends - of the member, therefore, Eq. $A-8(b)$ and Eq. $A-10$ indicate that the force in the member is constant and given, by.

$$
\begin{equation*}
F=\Lambda E K_{1_{d}} \tag{A-12}
\end{equation*}
$$

The constant. K_{1} can be determined by integrating Eq. $n-10$ over the length 5 :

$$
\int_{0}^{S} k_{1} d x=\int_{0}^{S}\left(u_{x}+\varepsilon_{p}\right) d x
$$

$$
\begin{equation*}
K_{1}=1-\frac{L}{S}+\varepsilon_{p} \tag{A-13}
\end{equation*}
$$

Substituting Eq, A-10 into Eq. A-7 and performing the. indicated integration, the tensْion element strain energy is given by

$$
\begin{equation*}
U=\frac{A E}{2} s K_{1}^{2} \tag{A-.14}
\end{equation*}
$$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

II: Inelastic Analysis of pension Members
The stress-strain relationship between the proportional limit, and the point of ultimate stress (Fig $; 2$) is given by

$$
\begin{equation*}
0=\frac{-2 f+\frac{\sqrt{4 f^{2}-4(2 g \varepsilon+c)}}{2}}{} \tag{A-15}
\end{equation*}
$$

The strain -deformation relation is given by

$$
\begin{equation*}
\varepsilon \Rightarrow u_{x^{-}}+\frac{1}{2} u_{x}^{2} \tag{A-16}
\end{equation*}
$$

Integrating the strain energy density, definition gives'

$$
\begin{equation*}
d U=\frac{1}{2} E \varepsilon_{e}^{2}+\int_{\varepsilon}^{\varepsilon+\varepsilon} e_{p}^{a} d \varepsilon \tag{A-17}
\end{equation*}
$$

After substituting the stress o" from Eq. A-15 the following expression of the element strain energy. in terms of the strain is obtained
where re is the strain at the proportional limit. Substituting for the strain, from Eq: A-1G and integrating over the cross -section:

$$
\begin{align*}
& -A \int_{0}^{S} f\left(u_{x}+b_{s} u_{x}^{2}+c_{p}\right) d x-A \int_{0}^{S} \frac{1}{24 g} B^{3 / 2} d d x \tag{A-19}
\end{align*}
$$

where the term B is given as d
;

$$
\begin{equation*}
B=-8 g\left(u_{x}+1_{r} u_{x}^{2}+\varepsilon_{p}\right)+4 f^{2}-4 c \tag{A-20}
\end{equation*}
$$

The following expression is obtained after taking the first variation of Eq. A-19; integration by parts and rearranging terms:

$$
\begin{equation*}
\delta u=0=A \int_{0}^{S}\left\{\frac{d}{d x}\left[\left(-\frac{f}{2}+x_{1} B^{\frac{3}{2}}\right)\left(1+u_{x}\right)\right]\right\} \hat{o} u d x \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\left.\right|_{0}+\left.A\right|_{0}\left\{\left.\left(-\frac{f}{2}+\frac{1}{2}+B^{\frac{3}{2}}-1\left(1+u_{x}\right)\right\} \delta u\right|_{0} ^{S}\right. \tag{b}
\end{equation*}
$$ \therefore

$\int_{\text {Eq. }}$
Each of the contributions (a) and (b) in Eq. A-2l must be equal, to zero, since the variation of is arbitrary.

Thus,

$$
\begin{equation*}
\frac{d}{d x}\left[\left(-\frac{1}{2}+\frac{1}{2} B^{\frac{1}{2}}\right)\left(1+u_{x}\right)\right]=0 \tag{A-22}
\end{equation*}
$$

which represents the governing differential equation for this case; by integration, the expression between
brackets is equal to constant, and as the quantities f_{f}, g, C and e_{p} are constants, it follows that;

$$
\begin{equation*}
u_{x}=K_{2}=\text { constant } \tag{A-23}
\end{equation*}
$$

Also; the variational quantity fou must vanish at the ends of the member. Equations $A-2 l(b)$ and $A-23$ indicate that the force in the member is constant and given by

$$
\left.F \stackrel{\sum}{=} A \frac{1}{2}+\frac{1}{2}\left[-8 g\left(K_{2}+1_{2} K_{2}^{2}+\varepsilon_{p}\right)+4 f^{2}-4 C\right]^{\frac{1}{2}}\right]\left(1+" K_{2}\right)
$$

$$
\begin{equation*}
K_{2} \text { can pe determined by integrating } \tag{A-24}
\end{equation*}
$$ Eq. $A-23$ over the length S and incorporating the imposed boundary conditions given by Eq. A-11:

$$
\int_{0}^{S}-\mathrm{K}_{2} d x^{-}=\int_{0}^{S} u_{x} d x
$$

$$
\begin{equation*}
K_{2}=1 \cdots \frac{L}{S} \tag{A-25}
\end{equation*}
$$

Substituting Eq: $n-23$ into Eq. A-19 and performing the indicated integration, the element strain cnergy, foo the tension member in the inelastie range is given by:

$$
U=A S\left[\frac{1}{2} E c_{e}^{2}+f \varepsilon_{e}+\frac{1}{24 g}\left(-8 g g^{\circ}+4 f^{2}-4 c\right)^{3 / 2}\right]
$$

$$
\therefore A S f_{1}\left(K_{2}+b_{2} K_{2}^{2}+\varepsilon_{p}\right)-\frac{A S}{24 g}\left[-8 g\left(\chi_{1}+1_{2} K_{2}^{2}+c_{p}\right) \cdots\right.
$$

III. Elastic Analysis of Compression Members

A general truss element in the undeformed and deformed states is shown in Fig: 3." The initial undeformed length. (L) is given by Eq. $A-I$, and'the deformed length
(S) is gíven by Eq: A-2.

The strain-deformation relation is given by

$$
\begin{equation*}
\varepsilon=u_{x}+\frac{3}{2} w_{x}^{2}-z w_{x x} \tag{A-27}
\end{equation*}
$$

where z is measured from the neubral axis of tlie crossm section in the plane of bending \because

Integration of the strain energy density definition

$$
r d u^{\prime}=\int_{0}^{c} \int_{\sigma}^{c+\varepsilon} d \varepsilon
$$

under the assumption of ideal linear elastic material behaviour,

$$
\alpha=E\left(\varepsilon+E_{p}\right)
$$

gives

Substitution for the strain from Eq. $A-27$ and integrating over the cross section yields' the strain energy in terms of the local deformations (u, W) of the element:

$$
\begin{aligned}
& \mathrm{U}=\frac{E^{\prime}}{2} \int_{0}^{S} \int_{A}^{\prime}\left(u_{x}{ }^{2}+\frac{1}{z} w_{x}^{2}-{ }_{z} w_{x x}+E_{p}\right)^{2} d A d x \\
& =\frac{e^{2}}{2} \int_{0}^{S} \int_{R}\left\{\left(u_{x}+\frac{1}{2} w_{x}^{2}+\varepsilon_{p}\right)^{2} \because 2 z\left(u_{x}+-\frac{1}{1} w_{x}^{2}+c_{p}\right)\right. \\
& +z^{2} \dot{w}_{x x}^{2} \not \subset d A d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { since, } \int_{A} d A^{\prime}=A, \quad \int z d A=a_{0} \text { and } \\
& \int_{A} d A^{\prime}=A, \int z d A=A_{0} \text { and } \\
& \int_{A} \dot{z}^{2} \mathrm{dA}=\mathrm{I}(\operatorname{section} \text { s moment of inertia) }
\end{aligned}
$$

therefore,
, Taking the first variation of Eq. A-28, integrating by parts and rearranging terms gives:

$$
\begin{align*}
& \delta U=0=-A E \int_{0}^{i}\left\{\frac{d}{d x}\left(u_{x}+\frac{1}{2} w_{x}^{2}+E_{p}\right)\right\} \delta u d x \\
& +A E \int_{0}^{S}\left\{\frac{I}{A} w_{x x x x}-\frac{d}{d x}\left[\left(u_{x}+{\frac{z_{2}}{v}}_{2}^{2}+\varepsilon_{0}\right) w_{x}\right]\right\} \delta w d x \\
& \text { (b) } \\
& +A E\left|\left(u_{x}+3_{2} w_{x}^{2}+\varepsilon_{p}\right) \delta u\right|_{0}^{S} \tag{c}\\
& -A E\left|\left\{\frac{Y}{A} w_{x x x}-\left(u_{x}+\frac{1}{z} w_{x}^{2}+c_{p}\right) w_{x}\right\} d w\right|_{0}^{S} \tag{d}\\
& \cdots+E I\left|\left(w_{x x}\right) \delta w_{x}\right|_{0}^{S}: \tag{e}
\end{align*}
$$

Each of the contributions (a) through (e) in Eq: $n-29$ mustrindividually be zero, and since the variations δu and δw are arbitrary:
1°

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

$$
\begin{equation*}
\frac{d}{d x}\left(u_{z}+\frac{1}{2} w_{x}^{2}+c_{p}\right)=0 \tag{A-30}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{J_{A}}{A} w_{x x x x}-\frac{d}{d x}\left[\left(u_{x}+\frac{2}{z} w_{x}^{2}+\varepsilon_{p}\right) w_{x}\right]=0 \tag{A-31}
\end{equation*}
$$

Equations $A-30$ and $A-31$ represent the governing dinferential equations for the general truss discrete element. Integrating Eq. A-30 gives

$$
\begin{equation*}
u_{x}+{ }^{+} \frac{1}{2}^{2} w_{x}^{2}+c_{p}=K_{3} \tag{A-32}
\end{equation*}
$$

Since K_{3} is constant with respect to x, Eq: $A-31$ can be written in the form

$$
\begin{equation*}
w_{x x x x}-\frac{A K_{3}}{I} w_{x x}=0 \tag{A-33}
\end{equation*}
$$

The rotations of the ends of the general truss - element are not imposed since moment free joints have been assumed; therefore, the variational quantity δw_{x} in contribution (e) of Eq. A-29 is arbitrary at the ends of the element and the term in braces must be zero. The natural boundasy conditions are then:

$$
\begin{equation*}
\left.w_{x x}\right|_{x=0}=0,\left.w_{x x}\right|_{x=S}=0 \tag{n-34}
\end{equation*}
$$

The variational quantities δu and δw in contri-- butions (c) and (d) of Eq. A-29 are prescribed zero on the boundaries. From Fig. 3, the imposed boundary conditions are

$$
\left.u\right|_{x=0}=0,\left.u\right|_{x=S}=s-L
$$

and

$$
\begin{equation*}
\left.w\right|_{x=0}=0,\left.w\right|_{x=S}=0 \tag{A-36}
\end{equation*}
$$

As the variational quantity δu vanishes at the ends of the element, Eq. A-29(c) and Eq. A-32 indicate that the force in the general truss element is a constant given by.

$$
\begin{equation*}
\mathrm{F}=\mathrm{AEK}_{3} \tag{A-37}
\end{equation*}
$$

The general solution of $\mathrm{Eq} . \mathrm{A}-33$ is given by
 capable of having nonzero values of the deformation w when buckling, occurs. The natural boundary conditions given by Eq. A-34, together with the imposed boundary conditions given by Eq. A-36 are substituted in Eq. A-38 to. solve for the four constants, which results in

$$
\begin{gathered}
B_{1}=B_{2}=B_{3}=0 \\
B_{3} \sin \sqrt{\frac{-A K_{3}}{I}} s=0
\end{gathered}
$$

If the trivial solution is disregarded, then K_{3} must
8 be treated as an eigenvalue

$$
\begin{equation*}
K_{3 C r}=-\left(\frac{m \pi}{. S}\right)^{2} \frac{I}{N^{-}}, m=1,2, \ldots \tag{A-39}
\end{equation*}
$$

According to Eq. A-37; the critical force (buckling load) \& in the member is given by:

$$
F_{c r}=\left(\frac{m \pi}{S}\right)^{2} E I, \cdot m=1,2, \ldots
$$

Substituting Eq. A-39 into Eq. A-38, the eigenvalues corresponding to the critical values of K_{3} are obtained as

$$
\begin{equation*}
W_{m}=B_{m} \sin \frac{m \pi x}{S}, m=1,2, \ldots \tag{A-41}
\end{equation*}
$$

The assumed local transverse deformation mode of a general truss member is taken to be proportional to the first buckling eigenmode

$$
\begin{equation*}
w=c \sin \frac{\pi x}{5} \tag{A-42}
\end{equation*}
$$

The constant C defining the midspan displacement is retained in the formulation as a generalized coordinate. The constant k_{3} now can be determined by integrating FAq. A-32 over the length
$\stackrel{\sim}{*}$

$$
\int_{0}^{S}{k_{3}}_{0} d x=\int_{0}^{S}\left(u_{x}+\frac{1}{2}^{w_{x}}{ }_{x}^{2}+\dot{\varepsilon}_{p}\right) d x
$$

or

$$
\begin{equation*}
K_{3}=1-\frac{L}{S}+\varepsilon_{p}+\left(\frac{\pi C}{2 S}\right)^{2} \tag{A-43}
\end{equation*}
$$

The element strain energy is obtained in terms of the nodal displacements and the buckling amplitude. upon substituting Equations $A-32, A-43$ and $A-42$ into Eq: $A-28$ and performing the indicated integration:

$$
U=\frac{A E}{2}\left[\mathrm{SK}_{3}^{2}+\frac{1}{2} \frac{I}{A} \frac{\pi^{4} \mathrm{c}^{2}}{S^{3}}\right]
$$

IV. Element Stiffness Second Partials Matrix

The scaling transformation technique recommended to improve the convergence of the Fletcher-Reeves. algorithm to the minimum of the total potential energy of the structure (Chapter III), requires the evaluation
of the diagonal matrix $[R]$ with diagonal elements

0

$$
\begin{equation*}
r_{j j}=\frac{1}{\left(k_{j j}\right)^{\frac{1}{2}}}, j=1,2, \ldots, N \tag{A-45}
\end{equation*}
$$

where $[K]=\left(k_{j j}\right)$ is the matrix of second partials of the quadratic terms in the total potential eneygy, and N is the total number of displacement degrees of freedom. The elements of the matrix $[K]$ are computed from the element stiffness second partials matrices by the use of a variable correlation scheme. The diagonal elements of the matrix of second partial derjvatives of the etgpent. stiffness matrix are obtained by partially differentiating the expressions of Eq. ' 2.30 with respect to each of the element seven degrees of freedom, as follows

$$
\begin{aligned}
& \frac{\partial_{U}^{2}}{\partial \widetilde{u}_{p}^{2}}=\cdot-\frac{A E}{2}\left[-E_{3}+\left[\left(\tilde{x}_{q}+\tilde{u}_{q}-\left(\tilde{X}_{p}+\tilde{u}_{p}\right)\right] \frac{\partial f_{3}}{\partial \widetilde{u}_{p}}\right]\right. \\
& \frac{\partial^{2} U}{\partial \widetilde{v}_{p}^{2}}=-\frac{A E}{2}\left[-f_{3}+\left[\left(\widetilde{X}_{q}+\tilde{v}_{q}^{\prime}\right)-\left(\widetilde{Y}_{p}+\tilde{v}_{p}\right)\right] \frac{\partial f_{3}}{\partial \widetilde{v}_{p}}\right] \\
& \frac{\partial^{2} \tilde{U}^{\circ}}{\partial \widetilde{w}_{p}^{2}}=-\frac{A E}{2}\left[-f_{3}+\left[\left(\widetilde{z}_{q}+\tilde{w}_{q}\right)-\left(\widetilde{z}_{p}+\widetilde{w}_{p}\right)\right] \frac{\partial f_{3}}{\partial \widetilde{w}_{p}}\right]
\end{aligned}
$$

where f_{3} is given by

$$
f_{3}=\frac{\dot{K}_{3}^{2}}{S}+2 K_{3} \frac{L}{S^{2}}-\frac{\pi^{2} C^{2}}{s^{3}} K_{3}-\frac{3}{2} \frac{I}{A^{4}} \frac{\pi^{4} C^{2}}{s^{5}}
$$

Experience has proven that consideridg the linear terms only in the above expressions is sufficient to form the required scaling transformation matrix. This is obtained by considering the approximations

$$
L^{\circ}=S \text { and } C=0
$$

This leads .to the following expressions:

$$
\begin{aligned}
& K_{11}=-\frac{A E}{2}\left[F_{4}+\frac{1}{L^{3}}\left(\widetilde{X}_{q}-\widetilde{X}_{p}\right)^{2}\left[-2^{8}\left(1+{\varepsilon_{p}}^{\prime}\right)^{2}+3 f_{4} L\right]\right] \\
& K_{22}=-\frac{\lambda E}{2}\left[E_{4}+\frac{1}{L^{3}}\left(\widetilde{Y}_{q}-\widetilde{Y}_{p}\right]^{2}\left[-2\left(1+{c_{p}}^{\prime}\right)^{2}+3 E_{4} L\right]\right] \\
& K_{33}=-\frac{A E}{2}\left[E_{4}+\frac{1}{L^{3}}\left(\widetilde{Z}_{q}-\widetilde{Z}_{p}\right) \quad\left[-2\left(1+\varepsilon_{p}\right)^{2}+3 f_{4} L\right]\right] .
\end{aligned}
$$

$$
\mathrm{K}_{44}=\mathrm{K}_{11}
$$

C

$$
\begin{align*}
\mathrm{K}_{55} & =\mathrm{K}_{22} \tag{A-47}\\
& \\
\mathrm{~K}_{66} & =\mathrm{K}_{33}
\end{align*}
$$

$$
K_{77}=\frac{A E}{2}\left[\frac{\pi^{2} E_{D}}{L}+\frac{I}{A} \frac{\pi^{4}}{L^{3}}\right]
$$

-!
where f_{4} is given by

$$
E_{4}=\frac{\varepsilon^{2} P}{L}+\frac{2 \varepsilon p}{L}
$$

APPENDIX B

DETERMINATION OF THE INITIAL SHAPE OF A SUSPERSION STRUCTURE

In prestressed suspension structures the initinl shape of the structure is dependent upon the prestress forces and must satisfy the equilibrium conditions. In general, the initial position of a suspension structure can easily be determined by considering the equilibrium at the structure's joints.

Consider the equilibrium of a general joint (a) of a general non-orthogonal, cagle net as shown in fig. B-1. The hquizontal components in the cables extending in the m-difection must be equal to each other in order to satisfy/equilibrium in that direction. This horizontal component is denoted by " H_{m}. Similarly, the horizontal components in the cables extending in the n-direction must be equal and is denoted by H_{n}.

The vertical components of the tensions in the cables segments meeting, at joint (a) shall satisfy the vertical equịlibrium:

$$
\begin{equation*}
\bar{v}_{\mathrm{ab}}+\mathrm{v}_{\mathrm{ac}}+\mathrm{v}_{\mathrm{ad}}+\mathrm{v}_{\mathrm{ae}}=0 \tag{B-1}
\end{equation*}
$$

where the vertical components are given by the relations:

$$
\begin{align*}
& \text { - } v_{a b}=I_{m}\left[\frac{Z_{b}-z_{a}}{\ell_{a b}}\right] \\
& \mathrm{V}_{\mathrm{ac}}=\mathrm{H}_{\mathrm{m}} \cdot\left[\frac{\bar{z}_{c}^{-2}-2_{a}}{\gamma_{a c}^{l}}\right] \tag{B-2}\\
& v_{a d}=H_{n}^{m}\left[\frac{z_{d}-Z_{a}}{l_{a d}}\right]
\end{align*}
$$

$$
\mathrm{v}_{\mathrm{ae}}=\dot{H}_{\mathrm{n}}\left[\frac{\mathrm{z}_{\mathrm{e}}-\dot{\mathrm{s}}_{\mathrm{a}}}{\ell_{\mathrm{ae}}}\right]
$$

where ℓ is the length of a cable segment in the horizontail $X-Y$ plane and $z_{a}, z_{b}, Z_{c}, Z_{d \prime}, Z_{e}$ are the vertical coordinates to be determined. , Substituting Eq. B-2 into Eq. Bi gives:

$$
\begin{equation*}
H_{m}\left[\frac{Z_{b}-z_{a}}{\ell_{a b}}+\frac{z_{c}-z_{a}}{l_{a c}}\right]+H_{n}\left[\frac{z_{d}-z_{a}}{\ell_{a d}}+\frac{z_{e}-z_{a}}{\ell_{a e}}\right]=0 \tag{B}
\end{equation*}
$$

-. For given values of $\mathrm{H}_{\mathrm{m}}, \mathrm{H}_{\mathrm{n}}$, and the coordinates of the joints on the boundary of the net. Eq. B-3 leads to a. system of P simultaneous linear algebraic equations for
the p unknown values of z-coordinates. These equations can easily be expressed in a matrix form as follows:

The p joints of the net where the z coordinates are unknown are assigned numbers from 1 to p, and the q joints where the Z coordinates are known are assigned numbers from $p+1$ to r, where $r(r=p+q)$ is equal to the total number of the net joints:

Define a vector $\{Z\}$ given by:
b
The equilibrium of the forces at, each joint, (Eq. B-3) can then be written in a matrix form as

$$
\left.\begin{array}{cc}
{[\mathrm{H}]} & \{Z\} \\
(\mathrm{p} \times r) & (r \times 1)
\end{array}\right)(\mathrm{p} \times \mathrm{I})
$$

$$
\stackrel{3}{3}
$$

Eq. 3-5 can be partitioned in the form

The vector $\left\{z_{p}\right\}$ contains the p unknown z coordinates of joints, and the vector $\left\{\mathrm{Z}_{\mathrm{q}}\right.$ \} contains the q known 2 coordinates of joints. Eq. $3-6$ can be rewritten as:

$$
\begin{align*}
& \left\{H_{p}\right\}\left\{z_{p}\right\}+\left[H_{q}\right\} \quad\left\{z_{q}\right\}:=\{0\} \tag{B-7}\\
& (p \times p)(p \times 1)
\end{align*}
$$

and the solution for $\left\{z_{p}^{-1}\right.$ is given by

$$
\begin{equation*}
\left\{z_{p}\right\}=-\left\{H_{p}\right\}^{-1}\left[H_{q}\right\}\left\{z_{q}\right\} \tag{B-8}
\end{equation*}
$$

The inverse of the matrix $\left[H_{p}\right]$ can be obtained by using the direct method of Gauss Elimination, and the solution for $\left\{\dot{z}_{p}\right\}$ is obtained directly by performing the matrix multiplication. in Eq. B-8.

APPENDIX C

EQUILIBRIUM EQUATIONS OF PRESTRESS FORCES JA THE UNLOADED CABLE NET OF EXAMPLE LI

The suspended roof of example L2 was aiouzed analytically and experimentally by sieve in Ref. 2 .

The equilibrium in the horizontal. plane (\widetilde{X}, \tilde{Y}) of the horizontal prestress components. forces in" the © unloaded system gives the relation between the hort-: zontal component (H) of prestress in all diagonal cables, and (H_{L}) of the main cables (Fig." $\mathrm{C}-1$):

In the \tilde{X}-direction:
$\therefore \quad H+H_{1} \cos \theta=H_{1} \cos 45^{\circ}$.

In the \widetilde{Y} direction:

- From the previous two equations:

$$
\begin{equation*}
\frac{-\hat{H_{1}} \sin 45^{\circ}+\mathrm{H}}{\mathrm{H}_{\mathrm{i}} \cos 45^{\circ}-\tan \theta} \tag{c-3}
\end{equation*}
$$

From the geometry of Fig. Cl (geometry of model studied by Siev experimentally):

$$
\tan \theta=\frac{a / 2+\delta \sqrt{2}}{a / 2}
$$

$$
\pi(C-4)
$$

Substituting ${ }^{\text {Eq. }} \mathrm{C}$ C-4 in Eg. C-3 gives

$$
\begin{equation*}
\mathrm{H}_{1} \stackrel{\cdots}{=} \frac{\sqrt{2}}{\delta}\left[\frac{\mathrm{a}}{\sqrt{2}}+\delta\right] \mathrm{H} \tag{c-5}
\end{equation*}
$$

The numerical wálues of and δ are given by siev as:
ℓ

$$
\dot{a}_{\alpha}=60.6090 \text { and } \delta=14.2857
$$

Thus the relation between. H and. H_{l} is given by

$$
s \quad H_{l}=.5 .65684 \mathrm{H}
$$

Ifr Fig. C-1, points $3,4,7$ and 8 are at midheight $(\tilde{Z} \doteq 0.0)$; where 1 and 2 are symmetrical" with respect to mid-height. "In other words, an equilibrium equation of the vertical prestress components force"s in the unloaded system contains \hat{a} single unknown \rightarrow the elevation $\pm f$ of points $0,1,2,5,6,9,10$, and ll - where the hopight is equaf to 63.5 cms:

$$
\begin{equation*}
\frac{H}{2}+\frac{2 H}{a \sqrt{2}} \underset{0}{a y \sqrt{2}+\delta}\left[\frac{63.5}{2}-E\right]=0 \tag{c-6}
\end{equation*}
$$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

On substituting H_{1} from Eq. C-5 into $\mathrm{Eq} . \mathrm{C}-6, \mathrm{H}$ is
1 eliminated. Rearranging and simplifying gives

$$
f=\frac{63.5}{\sqrt{2}} \frac{a}{35+2 \sqrt{2} a}
$$

or

2

$$
f^{f}=12.7 \mathrm{~cm}
$$

Thus the elevations of all the cable net nodes are determined (Fig. 5).

9
1.

0

VITA AUCTORIS

b
1949° Born on January list in Fayoum, Egypt.
1971 Graduated with a B.Sc.(honrs.) in Civil 'Engineering from Cairo University.
1971 Joined the Suez Canal Authority, Egypt, as a Structural Engineer.

1973 In September, 1973, enrolled at the University - of Windsor in a programme leading to the degree of Master of Applied Science in Civil Engineering.

