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Abstract

The routing problem in Wavelength-division multiplexing (WDM) networks, on a given 

logical topology, is to find an optimum schem e for data communication so  that the 

network may handle all traffic requirements in an efficient manner and minimize the 

network congestion. This problem is typically solved using a Linear Programming (LP) 

formulation using the node-arc representation and a LP solver such as the CPLEX. As 

the network size increases, the time taken by a tool like CPLEX to find a solution to the 

routing problem becom es unacceptable.

This thesis investigates a novel technique, using the arc-chain formulation for 

representing the logical topology, to speed up the solution of the routing problem. We 

use eta-factorization with the generalized upper bound (GUB) technique to solve such  

problems. Experiments show that our approach significantly outperforms the standard 

LP techniques based on a node-arc formulation, in terms of the time required to 

generate an optimal solution.

Keywords: WDM, multi-commodity, congestion, Linear Programming, Generalized 

upper bounding, eta-factorization.
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Chapter 1: Introduction

With the explosive growth of Internet as well as of data traffic, there is a growing demand for 

huge bandwidth. Optical networks employing the Wavelength-division multiplexing (WDM) 

technology represent the most promising candidate to meet this increasing demand. The 

estimates show that today’s Asynchronous Transfer mode Networks (ATM) do not have the 

capacity to fulfil the exponential growth in data flow or traffic demand by user’s applications 

[MuOO]. WDM technology allows a single optical fiber to send out many light beams of 

different wavelengths simultaneously with tremendous transmissible bandwidth. Because, a 

single link carries tens of Terabits per second with extremely low loss [MuOO], a huge amount of 

data is affected when network failure occurs. A WDM network consists of a set of nodes, 

physically interconnected by optical fiber (the physical topology), upon which a logical 

topology is overlaid by establishing lightpath [MuOO] interconnections between the nodes. 

WDM networks are considered to be the future wide-area backbone networks.

WDM network design usually is divided in two sub-problems: Network design and Routing and 

Wavelength Assignment (RWA) [XY02], The Network design involves physical topology and 

configuration design [XY02]. The physical topology o f a WDM network is defined by

• Network access station/ end-nodes, typically an access station is equipped with number 

of transmitters and receivers to transmit data to or to receive data from multiple data 

sources.

• Optical Cross Connects (OXS) can route the optical signal coming on a wavelength 

towards their respective destinations and

• Fiber links, that provides the physical medium for optical communication.

A Logical topology of a WDM network is the topology viewed by the higher layer such as 

SONET, ATM, IP [HAOO]. It is often defined by a Graph o f end nodes and the lightpaths 

between them. A lightpath is a logical all-optical connection established to satisfy data 

communication requests between a source node and a destination node. In a WDM network, 

logical topology is represented by a graph LG, where the nodes in LG  are the end-nodes in the 

network and, and there is a directed edge i —* j in LG  (often called a logical edge) from node i to 

node j ,  if the node pair (i, J) are connected by a lightpath. [AJB04], Congestion of a WDM 

network is defined as the maximum load offered in a logical link.

1
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The next step o f the network design is to determine the optimal routing strategy considering the 

traffic requirements between the end nodes and the logical topology. Minimizing network 

congestion is a way to optimize routing strategy. If a traffic load t is given for a source 

destination (s, d) pair, then the challenge of the routing strategy is to find a suitable path/ paths 

to route it in an optimal manner. In general there are many path from s to d, one may be s = x i—> 

X2  —>X3  xp= d. The routing strategy determines how much traffic should be carried by this 

path while taking into account about each of the path from source s to destination d. As the 

objective of the routing strategy is to minimize congestion, we have to consider all the node 

pairs in the network that have some traffic demand.

This thesis studies techniques for minimizing the congestion in wavelength routed WDM 

networks by adopting some techniques used in the Operation Research community for multi­

commodity network flows.

1.2 Visualization o f Routing Problem in a WDM network as a Multi-Commodity 
Network Flow Model

The multi-commodity network flow model, a well known optimization model arises in the areas 

of transportation, production and communication. The model concerns flow routing of a number 

o f commodities (e.g. message, vehicles) through a capacitated network at minimal cost. In the 

basic model it is assumed that for each commodity, the flow can be routed on any path 

connecting its origin and destination. Linear programming (LP) formulation is generally used to 

solve this type of problems. The shared resources of the network are expressed using linear 

constraints in an LP.

In a WDM network, each source destination node pair(s, t) with traffic demand t  sends t  amount 

data from s to d. The data communication from all sources to destination shares the network 

resources. If  we view the data between each node pair with traffic demand (t(s, d) *  O') as a 

distinct commodity, the routing problem in wavelength routed WDM networks may be viewed 

as a multi commodity network flow model.

1.3 Motivation

If  the physical topology and traffic matrix of a WDM network is given, then the routing problem 

may be formulated as LP [RS96]. A straight-forward LP formulation can be solved by a

2
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commercial LP solver package, like CPLEX [BMOO] to give optimum routing with minimum 

congestion. For small network, such an approach is feasible.

Visualising the WDM network as multi-commodity flow problem shows that the number of 

commodities with N nodes is very close to N(N-1), since most nodes communicate with each 

other. Thus for a 30-node network, the number of commodities is nearly 870. In operation- 

research multi-commodity flow normally deals with a small number of commodities. So, 

dealing with large number o f commodities becomes a challenging problem, as the number of 

constraints increases rapidly with the size of the network. A previous experiment shows that 

CPLEX solver takes long time to give a solution for larger network and moreover, it can’t 

handle networks with more than 40 nodes.

Thus we introduce a different algorithm to solve the problem. We use arc-chain representation 

to formulate the problem, explore the advantage of the Generalized Upper Bounding (GUB) 

structure of the basis and then use eta-factorization to avoid direct inversion of the matrix. This 

process has a dramatic effect on the time to perform an iteration of the revised simplex method.

1.4 Solution Outline

The network flow problem is formulated in a number of ways in the operation-research field. 

Arc-chain representation has been profitably used for solving minimum-cost network flow 

problems [To66][FF58]. This representation can be readily adapted to the problem of 

minimizing congestion of wavelength-routed WDM network. To solve the problem using arc- 

chain representation, by the revised simplex method the most expensive operation is that of 

inverting a matrix called the basis [Ta82]. For a network with m number edge in logical 

topology and q number commodity the size of basis is (m+q) x  (m+q). So, the time needed to 

invert a matrix limits the size of the network that can be safely handle.

At each iteration of the revised simplex method we need to find an entering column to improve 

the solution. In our approach, instead of generating all possible columns and storing them before 

starting the iteration process, we generate the entering column at each iteration. This implicit 

column generation saves time and memory space.

It is established that the constraints in our problem have a special structure called, Generalized 

Upper Bounding (GUB) structure [DS67]. It is well known that if a LP satisfies the GUB

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



structure, we can avoid the invention of the entire basis (m+q) and can achieve the same result 

by inverting the matrix of size m x  m, which provides a significant improvement on time to 

perform an iteration o f the revised simplex method. A new technique to represent matrices S and 

T  is used with GUB structure which reduces the computational cost for vector-matrix and 

matrix-vector multiplication.

Though the GUB structure gives a significant improvement in time, inverting the matrix of size 

m x  m  takes most of the time to obtain a solution in the revised simplex method. So, we 

introduce eta-factorization to eliminate direct matrix inversion. Eta-factorization is used in the 

GUB structure to obtain the solution and find the simplex multiplier at each iteration of the 

revised simplex method. Use o f eta-factorization on the GUB structure dramatically improves 

the time to perform a iteration of the revised simplex method.

Using these approaches we have formulated our algorithm for routing in a WDM network and 

implemented the algorithm in C language. We have tested our program on various size 

networks.

1.5 Organization o f thesis

In chapter two o f this thesis, we have given a literature review and basic terminology in the 

fields of WDM network and operations research. Chapter three describes our formulation for the 

routing problem. In chapter four, we have given the experimental setup and the results of our 

algorithm for some small to large size networks along with a critical summary o f our work. 

Conclusion and future direction of work is also included in chapter four.
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Chapter 2: Back ground review of related techniques

2.1 WDM Optical Networks

Wavelength-division multiplexing (WDM) is an approach that can exploit huge opto- electronic 

bandwidth mismatch by requiring that each end-user’s equipment operate only at electronic rate, 

but multiple WDM channels from different end-users may be multiplexed on the same fiber. 

Under WDM, the optical transmission spectrum is carved up into a number of non-overlapping 

wavelength (or frequency) bands, with each wavelength supporting a single communication 

channel operating at whatever rate one desires, e.g., peak electronic speed [MOO]. Thus, by 

allowing multiple WDM channels to coexist on a single fiber, one can tap into huge fiber 

bandwidth, with corresponding challenges being the design and development of appropriate 

network architectures, protocols, and algorithms. Also, WDM devices are easier to implement 

since, generally, all components in a WDM device need to operate only at electronic speed; as a 

result, several WDM devices are available in the marketplace today, and more are emerging. 

Optical cross-connects (OXCs), Wavelength division multiplexing (WDM) and demultiplexing 

(WDDM) are among them.

This chapter will review optical network technology, multiplexing/demultiplexing techniques; 

brief description of some commonly used devices in fiber technology and some terminology

2.1.1 Optical fiber

Optical fiber is essentially a thin filament of glass/plastic, which acts as a wave-guide [MOO], An 

optical fiber consists of two concentric layers termed the core and the cladding. These are shown 

on the right side of Figure 2-1. The core and cladding have different indices of refraction with 

the core having m and the cladding n2 . Light is piped through the core. A fiber optic cable has 

an additional coating around the cladding called the jacket. Core, cladding and jacket are all 

shown in the three dimensional view on the left side of Figure 2-1. The jacket usually consists of 

one or more layers of polymer. Its role is to protect the core and cladding from shocks that might 

affect their optical or physical properties [KS]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.1: Fiber Optic Cable, 3 dimensional view and basic cross section [KS]

Because of the total internal reflection phenomena of light, light can travel the length of a fiber 

with very little loss. This occurs because the core and cladding have different indices of 

refraction with the index of the core, nj, always being greater than the index of the cladding, rt2 . 

Figure 2-2 shows how this is employed to effect the propagation of light down the fiber optic 

cable and confine it to the core. If  the light ray is injected and strikes the core-to-cladding 

interface at an angle greater than the critical angle then it is reflected back into the core. Since 

the angle of incidence is always equal to the angle of reflection, the reflected light will again be 

reflected. The light ray will then continue this bouncing path down the length of the fiber optic 

cable. If  the light ray strikes the core-to-cladding interface at an angle less than the critical angle 

then it passes into the cladding where it is attenuated very rapidly with propagation distance. 

This angle is fixed by the indices o f refraction of the core and cladding and is given by the 

formula:

□ c = arc cosine (n2  Mi).

--

,  \ / \ /)s
.....................  /  \

Light ray  a t le s s  th an  
Critical angle is 
a b so rb ed  in jacket

'J a c k e t

Cladding

Cylindrical 
axis of Core

Cladding

Jacket
Angle of 
Incidence

Angle of 
Reflection

Light is P ropagated  by 
Total internal reflection

Figure 2.2: Propagation o f  a light ray down a fiber optic cable [RSJ 

The critical angle is measured from the cylindrical axis of the core. By way of example, if «/ = 

1.446 and nf=-1.430 then a quick computation will show that the critical angle is 8.53 degrees, a 

fairly small angle.

6
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2.1.2 Wavelength Division Multiplexing (WDM) Technology

“Wavelength-division multiplexing (WDM) is an approach that can exploit the huge 

optoelectronic bandwidth mismatch by requiring that each end-user’s equipment operate only at 

electronic rate, but multiple WDM channels from different end-users may be multiplexed on the 

same fiber”[MuOO], This technique divides the huge bandwidth of a fiber into many non­

overlapping bands of wavelength, each operating at a desirable speed [MuOO]. These channels 

can be modulated to accommodate dissimilar data formats, including analog and digital. This 

technique improves the transmission capacity of a fiber having multiple channels at different 

carrier wavelength.

2.1.3 Components of optical network

In order to develop appropriate network architecture, it is required to have protocols, algorithms 

and hardware components for real world implementation. Research for the development of 

optical hardware is ongoing for decades. It is anticipated that next generation Internet will 

employ WDM optical backbone. A Four channel point-to-point WDM transmission system 

using optical amplifiers, multiplexers and demultiplexers is shown in figure 2.3

Multiplexing Terminal Demultiplexing Terminal

| t e ' |—

j TE J-"

fril ■* X4
►  S - i r

Optical Line 
Amplifier

/  \
54 its, a*

Optical Components;

fril Terminal Equipment

H B  WDM Transmitter

Wavelength M«ft^le*erifD«»Mplexer 

^  Optical Amplifier

Figure 2.3: A Four-channel point-to-point transmission channel with amplifiers [MOO]

Evolution o f the WDM network is successful due to stable lasers, erbium doped fiber amplifiers 

and optical low cross talk, stable and compact filters. The tuning bandwidth and speed, and 

temperature stability are essential characteristic of lasers are suitable for WDM networks [AV 

+2001],

7
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OXC: An optical cross connect (OXC) has several input port and output ports. Each OXC can 

switch the optical signal coming on a wavelength of an input fiber link to the same wavelength 

in an output fiber link, without requiring the signal to undergo any optoelectronic conversion. If 

an OXC is equipped with converters, it can switch the optical signal on an incoming wavelength 

of an input fiber to any wavelength in output fiber. A typical OXC with optical switches is 

shown in figure 2.4.

O utput 
p ort 1

Input 
p o r t  1

O p tic a l
S w itc h

O p tica l
S w itc h

Input 
p o r t  3

O u tp u t  
p o rt 3

Figure 2.4: OXC [G92]

2.1.4 Terminology

Lightpath: A lightpath in an optical network is a point-to-point communication path that 

connects a transmitter at a source node to a receiver at a destination node through a number of 

router nodes where no optoelectronic conversion is needed at any intermediate node. [AJB04], 

Two lightpath in the fiber link must be of different wavelength to prevent interference of the 

optical signals [RM99].

Link: A link is a point-to-point optical fiber connection. Each link is able to carry multiple 

wavelengths.

Physical topology: The physical topology of an optical network consists of a set of end-nodes 

(capable o f generating data for transmission, receiving data and having a number of optical 

transmitters and receivers), router nodes and the optical fibers interconnecting these nodes 

[AJB04], It is the network topology seen by the optical layer.

8
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Logical topology: The logical topology is the network topology seen by the higher layer e.g. the 

layer above the optical layer. In a WDM network, logical topology is represented by a graph 

LG, where the nodes in LG  are the end-nodes in the network and, and there is a directed edge i 

—*j in LG  (often called a logical edge) from node i to node j ,  if  the node pair (i, j ) are connected 

by a lightpath. [AJB04]. A physical topology and corresponding logical topology is shown in 

figure 2.5. Where lightpath is established between the nodes 2->l, l->5->3, 5->2, 4->5, 3->4 

o f physical topology. All the connected edge (1-3. 2-5 etc.) of logical topology are called link.

(2 ,1)

(5,2) (3,4)

(1.3)
(1,3)

(4,5)

a) Physical topology b) Logical topology

Figure 2.5: physical and logical topology

Congestion: The congestion o f the network is defined as the load on the logical edge, which 

carries maximum amount of data. Our target is to minimize congestion. [AJB04]

Traffic Matrix: Traffic in a network is the amount of data that must be transmitted from each 

source node to desired destination. It is a square matrix of size equal to number of node in the 

network. The ( i f) th entry in the traffic matrix determines the amount of data that flows from 

node i to node j.

Node 1 2 3 4

1 0 15 0 40

2 0 0 18 22

3 10 0 0 0

4 0 0 20 0
Logical topology

Figure 2.6: 5-Node logical topology and its traffic matrix 

Figure 2.6 shows a logical topology o f a network with four nodes and corresponding traffic 

matrix. The diagonal elements of the traffic matrix are zeros, as data can’t flow from and to 

same node. In the figure it shows that 15 units of data are sent from node 1 to 2. Usually the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



traffic matrix is expressed as a percentage of the capacity of light path. For example, the traffic 

shown in fig 2.6, node 1 to 2 is using 15% of its capacity.

2.1.5 Routing in WDM Network

Routing strategy in a WDM network is the policy of sending data from all source nodes to the 

corresponding destination nodes using appropriate paths. Traffic can be send from source node 

to its destination using one or more paths, where each path consists of one or more logical edge 

or lightpaths. In the figure 2.6, the 40 units of data need to be sent from node 1 to 4. This 

amount can be sent via following two paths:

Using logical link 1 - ^ 4  and using logical link l->2->4. We can use either one of the two paths 

or can distribute the traffic over both paths. For every pair of source destination nodes that has 

some traffic to route we have to consider every possible route in the logical topology. Our 

objective is to route all the traffic in a way that minimize the congestion in the network and thus 

optimize the use of optical resources in network.

2.1.6 WDM Network Architecture:

WDM network technology makes it possible for end users to communicate via all-optical WDM 

channels, which may span multiple fiber links. The architecture of a wavelength-routed WDM 

network is studied in several papers [RM99], [CHMR98], [G91], [GD02], [IMG96], [RSM03], 

“The WDM architecture consists of wavelength cross connects interconnected by fiber links 

[RM99].” The optical cross-connect (OXC) can route optical signal without optoelectronic 

conversion. Each network link has a pair of unidirectional fiber links. The network has access 

station associated with each optical OXC. An access station helps to transmit signals on 

different wavelengths, which are coupled into the fiber using wavelength multiplexers. A 

wavelength-routed optical network is shown in figure 2.7.

10
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1 j Access Station: Contains (tuneable) transmitters and receivers

Switch: Contains photonic switch, and perhaps photonic amplifier, 
wavelength converters etc

Figure 2.7: A wavelength-routed (wide-area) optical WDM networks. [MOO]

2.2 Introduction to Linear Programming (LP) and Revised Simplex Method

In mathematics, linear programming (LP) problems are optimization problems in which the 

objective function and the constraints are all linear [Taha]. Linear programming is the process of 

solving LP problems.

Linear programming is an important field of optimization for several reasons. LP problems are 

the easiest kind o f optimization problems, since everything is linear. Furthermore, many 

practical problems in operations research can be expressed as linear programming problems. 

Finally, many algorithms for other optimization problems work by solving LP problems 

[Taha75],

An Integer Linear Programming (ILP) problem is a linear-programming problem with the 

additional constraint that variables must take on integral values [ILOG]. In general, it is NP- 

Complete Problem. The general form of an ILP problem is written as follows:

11
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{LP P arts:) max CTx
such that A x < b  

{ILP Part :) x e  Z

Where c is a column vector, A is a matrix representing coefficient of x, b is the constraint values 

and Z is the boundary value or acceptable range of values for x. We can also formulate a 

problem in the form:

Minimize (or maximize) cjx/ + C2X2  + . . .  + c„x„

subject to aj]X] + a 12X2  + . . .  + ai„xn ~ bj

0 2 1 X1 + 0 2 2 X2  + . . .  + ~ b 2 . . .

a,n]X] + (lm2X2 . . . "t" umnxn ~ bm

with these bounds /, < x,- <ut

I  n — X n ^  Un

Where ~ can be <, > or =, and the upper bounds «, and lower bounds li may be positive infinity, 

negative infinity or any real number [CPLEX01].

In this example, all the constraints are of the f o r m ^ a ;/x7 < bt , where bt is a scalar. Here c\,
j

n
C2 ,..., cn are the cost coefficients, z  -  ^ CjXj is the objective function to be minimized, x\, X2 ,

j = 1

xn are the decision variables. There are mc inequality constraints and these constraints can 

be represented as a constraints matrix A such that

au a l2 •• au

A = a 2 \ a 22 ..•• a2n

fimel amc 2 - amcti

To solve any LP problem, all the inequality constraints 

equality constraints. In case of the problems where all

we add a non-negative slack variable to transform 

constraint equation becomes

12

in the problem must be transformed into 

constraints are in the form ^ a , yxy < bi
j

the constraints to equations. Thus the
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W herexj, X2, X3, .... x„ > 0

Since there are m number o f constraints, m number of slack variables are added to the matrix. 

The new equation becomes Ax = b where A is a matrix of size m x (n+m) and b is column 

vector of m elements, x  is the vector consisting of the n decision variables xj, X2, x 3, .... xn 

followed by m slack variables x \ ,x 2s,...x”c. In explaining the simplex algorithm we will use 

notation a ; to represent the / h Column of A and if p  is a vector of m we will use p(i) to 

represent the ith element o f p.

When the constraints of the problem are of the form ^a,yX y =bn  we will add an artificial
j

variable to create equation o f form ' ^ a iJxj + x'a = bi and the objective function will be changed
j

to z = X c,.x(. + Mxa, where M is a vary large constant[BJ90]. When the constraints are of form
i

^Gi jXj  > bt , we will subtract a slack variable x ls to convert the constraint into equality
j

constraint ̂ a ^ X j  -x* = bt . Then using artificial variable converts it to equality equation. Thus
j

equation will be in the form a^x} +x la~ x ls = bt and the objective function will be z =
j

^  c x; + Mxa -  x[ .
i

When the equations of a problem are in the form Ax = b and x > 0, and there exist a solution 

vector x that satisfies all the constraints of the problem, it is called a feasible solution. We can 

partition the components o f the x in such a way that there will be m basic variables and n non- 

basic variables, where all the non-basic variables will have the value of 0. A matrix B having the 

columns of matrix A corresponding to the set of basic variables is called a basis. We call the 

x ,
a basic solution of the system where xb =B b and x N = 0. W henxB > 0 , thenvector x = B

X„

the vector x B of basic variables is called a basic feasible solution of the system [BJ90]. The 

corresponding value of the objective function is cBB~'b where cB is a vector of the cost 

coefficients, corresponding to the basic variables inxs .

13
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The simplex method is the first method introduced by G.B Dantzig [DOW55] to solve linear 

programming formulation in which one basic feasible solution is replaced by adjacent solution. 

The revised simplex method is an efficient implementation of the standard simplex method 

when the non basic variable is much greater then the number of constraints. If we are given a 

basic feasible solution with basis B, basic variables x B and cost vector cB, then we carry out the 

following steps [BJ90] iteratively to get optimal solution:

/V 1 A
Step 1: Calculate vector b = B~ b and the objective function z = cBb where cB is the vector of 

cost of basis.

Step 2: Calculate vector w =  cbB~ x , where w is called the vector of simplex multipliers.

Step 3: For each non-basic variable Xj, calculate zy -  Cj = wdj -  c j . Let k  be such that the value 

o fz k - c k > Zj -  1 < j  <n  + mc . I fz k - c k < 0 , stop; otherwise go to step 4.

Step 4: Calculate vectord k = B~xak, if  dk < 0 stop; otherwise go to step 5.

Step 5: Calculate rmin = minimum {/>(/) / d k ( i ) : d k(i) > 0},Vz',l < i < m  and let br be the index of 

b and dk corresponding to rm;n . This gives us the variable x*,. to leave the basis.

Step 4: Update the basis by replacing aBr column with ak.

2.3 Flow o f Commodities in a Network

Optimizing the flow of goods or messages in a network is an important research topic. The 

target is to use a transportation system to move a single entity or multiple entities from a source 

to its destination in an efficient way that makes the best use of the system resources. This 

transportation system could be a roadway, railway or for instance could be a computer network, 

where data need to be transported. We can visualize the transportation system by a graph where 

nodes are the actual/ potential sources and destinations and arcs correspond to the transportation 

routes. We will represent an arc from node i to node j  by i -> j.  The entity being transported is 

called a commodity. The arc (route) for carrying commodities may have limitations. Say for a 

given arc i -> j ,  the maximal carrying capacity can be represented by ny.

The generic models representing the practical applications can be classified as single commodity 

flow models and multi commodity flow models. The single commodity network problem sends 

one commodity from the source to the destination in some optimal way. For example a shipper

14
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wants to ship one type of goods from a railway station to different location (rail station) by train. 

All the locations have different demands for the goods. The objective is to meet the demand 

with a minimum possible transportation cost. To deal with this problem, network flow model 

can be used. Here the rail stations are nodes and the train line joining the stations are the arcs. 

Available capacity of the carrying wagon in a route restricts the total carrying capacity.

In reality, a number of commodities, regulated by their own network flow constraints, share the 

network and the capacity of an arc limits the total sum of flows of all the commodities using the 

arc. To optimize such situation we use special mathematical model -  the multi-commodity 

network flow  model [AM093]. In this model several commodities share the arc capacity with 

their own flow constraints. For example, we want to ship different types of goods to various 

destinations using a railway transportation system. Each destination has a different demand for 

goods. This is a case of multi-commodity flow problem as different goods will share the wagon 

and the wagon has capacity limitations.

2.3.1 Single Commodity Maximal Flow Problem

Single commodity maximal flow problem is a network optimization problem, where the 

objective is to maximize the flow of a commodity from a designated node called the source 

node to another designated node called the destination node (sometimes called a sink node), 

without exceeding the capacity of any arc [FF56]. The source has to supply sufficient amount of 

flow to meet the demand of the destination. There may exist some node in the network that does 

not supply or receive flows, are called intermediate nodes. The incoming and outgoing flow in 

an intermediate node must be equal.

In Figure 2.8 a 4 nodes network is shown with nodes numbered 1 to 4. We associate a label to 

each o f the arc of the network to describe the current flow and the maximal flow capacity of that 

arc. For example an arc z->y with label (xy, uy) denotes that the arc has capacity uy and the 

current flow is xy .

15
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(2, 3)(2,5;

Intermediate
nodes

DestinationSource (3,8) (3,4)

Figure 2.8: Single commodity network

In the network of Figure 2.8, node 1 is the source node and node 4 is the destination, and the 

demand to ship is 5 units. In this case the node 1 is sending 2 units of flow through arc 1 ->2 and

2->3 and 3 units of flow through arcs l->3.and 3->4 to node 4. Thus 5 units of flow are sent to 

node 4, using two different routes, without exceeding the arc capacity. In a capacitated network 

G = (V, E), we can model a single commodity maximum flow problem where V is the set of 

nodes and E  is the set o f directed arcs, with a non-negative capacity u§ associated with each arc

(i->j) G E .

The problem formulation to find the maximum flow from source s to destination d  satisfying the 

arc capacity and the flow conservation constraints is as follows [AMO 93]:

Maximize v  

Subject to

X  xv ~  X xJt=<

V  l  =  S

0 i e V - { s , d }  ... (2.1) 
-v  i = d

0 < x , < U- V i —> j  g  E
lJ V */

This formulation refers to a flow vector x  = (xy.) which corresponds to the value o f flow(scalar 

variable v). The total outflow from node i is the first term ( ^  xi; ) of the flow conservation

constraints and the second term ( xJt) is total inflow into node i. Flow conservation
0':(y->«)s£}

constrains state that for all nodes, except the source and destination nodes, the outflow must be

16
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equal to inflow. These constraints are also known as the mass balance constraints. Capacity 

constraints impose restrictions on the total flows on each arc.

2.3.2 Single Commodity Minimum Cost Network flow (MCF) Problem

In this problem the objective is to make the most economic and best use of the network 

resources. A directed graph G = (V, E) is used to represent the network with A  number of nodes 

and m number of directed arcs, where V is a set of nodes and E  is a set of directed arcs. The cost 

per unit of flow, denoted by cy. is associated with each arc /->/ G E. Like before, the maximum

flow capacity o f each arc i~>j G E is limited by u y .  Each node i e V has a number r; associated 

with it, which represents the requirement (i.e., supply/ demand) at that node. rt> 0  denotes that 

a source node is supplying rt units of flow, while r( < 0  denotes a destination node with a 

demand o fr , for all intermediate nodes r  = 0. The decision variable x„ is the flow on arc /->/.I 3 l lj J

The minimum cost flow problem [AM093] can be formulated as 

Minimize X c i j x ij
i^ jeE

Subject to

X  x i j ~  X  x Ji  =  r i> i e  V  ... ( 2 .2 )
j ) z E )  { j : ( j - * i ) e E }

0 < x . < uu V i —> j e  Eu y J

2.3.4 Multi-Commodity Network flow Problem

In this problem a number o f distinct commodities with their sources and corresponding set of 

destinations share a capacitated network. The network is represented by a directed graph G = (V, 

E) with each arc /-> j  having a capacity (cost/unit flow) w,;. ( cy ). Figure2.9 shows a 5 node

network with a cost and a capacity {utj, ctj) associated with every arc i -> j.

17
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5 , 2)( 3 ,?

(7,1)
(4, 2)

(5,1)

Figure 2.9: Multi-commodity Network flow

We consider a case where there are two commodities K l and K2 flowing from node 1 to 5 and 

node 3 to 4 with a demand of 3 and 6  units respectively. Commodity K x may be sent using the 

paths 1 3 -> 5 and o r l - > 2 - > 3 - > 5 .  Commodity K 2 can be sent using one or both the paths

3-> 4, 3 -> 5 4. In this case for commodity K2 we have to use both paths due to capacity

constraints. As commodity K l has to use the arc 3 5 to send its 3 units of flow so only 1 (4

minus 3) unit capacity is available for commodity K2 in arc 3 -> 5. So, the remaining of the 5 ( 6  

minus 1) units o f commodity K2 have to use the path 3-> 4. This situation is shown in figure 

2.10. The total cost for all the commodities is the sum of the cost of all flows for each 

commodity. The cost for commodity K ] and K 2 will be 3 x 2  + 3 x2  + 3x2  =18 and 

Ix 2  + l x l  + 5x3 =18 respectively, thus total cost of the network flows become 36 units.

(7,1)

5, 3)

(5,1)

Commodity K  

Commodity K2

Figure 2.10 Multi-commodity Network flow
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Mainly two types o f multi-commodity problems are studied in literature [AM093]. These are 

the maximum multi-commodity network flow problem and the minimum-cost multi-commodity 

network flow problem. The objective of the maximum multi-commodity network flow problem 

is to maximize the sum of flows for all commodities satisfying the capacity constraint for all 

arcs and for the minimum-cost multi-commodity network flow problem is to determine the 

demands of all commodities at a minimum cost without violating capacity constraint.

2.4 Representations for multi-commodity network flow problems

The two possible ways o f representing the multi-commodity network flow problems, the node­

arc representation and arc-chain representation are described here.

2.4.1 Node-Arc Incidence Matrix
thA node-arc incidence matrix N x m  represents a network with N nodes and m arcs, where the i 

row corresponds to the z'th node and the yth column corresponds to the / h arc. The column 

corresponding to the arc i -> j  (flow from node / to node j) has

>  + 1  in the row corresponding to node i,

> - 1  in the row corresponding to node j  and

>  0  in all other rows.

Figure 2.12 is the node-arc representation for the network shown in figure 2.11

Figure 2.11: 4-Node network

(s,x) (s.y) (x,y) (y,x) (x,t) (yd) (ty)

s l l 0 0 0 0 0

X -l 0 1 -l 1 0 0

y 0 -l - 1 l 0 l -l

t 0 0 0 0 - 1 - 1 1

Figure 2.12: Node-Arc incidence matrix
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2.4.2 Node-Arc Formulation for Multi-commodity network flow

Consider a network represented by directed graph G = (V, E) of N  nodes and m arcs. Let a 

N x m  matrix (iVa) denote the node-arc incidence matrix for this graph. To formulate the 

minimum cost multi-commodity (MMCF) network flow [AM093] with q commodities in the 

network we will use the following notation:
thsource ©) = the source of the k  commodity 

destination ©) = the destination of the kth commodity 

n  = the total amount of flow of commodity i from source© to destination©

Xy = the flow for commodity k  on arc i j

x k = the entire flow vector for commodity k

ck = the cost vector for x k

Uy = a capacity associate with each arc i j.

With this notation the MMCF can be formulated as

X r k x kC A

k  =  1

Subject t o :

The arc capacity constraints that restricts the total flow of all commodities on arc i j  to at most

The mass balance constraint which state that each commodity has its own supply vector is 

N ax k-  bk \ f k  :1 < k  < q ... ( 2 .4 )

Here bk is a supply vector for commodity k, and bk (i) is defined as follows: 

bk (i) = rk, if i = source©) 

bk (i) = - rk , if  i = destination©)

= 0 , otherwise.

To restrict the flow of commodity k  on arc i j  within uk is

0  < 4 < u *  V k  : l  < k  < q V ( / - » © e £ . . . (  2.5)
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2.4.3 Arc-Chain Incidence Matrix

A chain [BJ90] is a sequence of arcs [(io -4 ij), (i/-4 ii), ..., (ip-/"4 iP)] from a source s to a 

destination d, where s = io and d  = ip.

In a network with m arcs numbered 1,2, ... , ra, a chain can be represented by a vector of m l ’s 

and 0 ’s. In the network, if an arc (i) appears in the chain then the corresponding ;th element in 

the vector becomes 1 otherwise it is 0  ( 1  < i < m.).

Figure 2.13: 4-node network 

A simple networks with 4 node and 6  arcs, is shown in the figure 2.13, the network carries four 

commodities K 1, K2, K3 and. K4. The nodes are numbered 1 to 4 and the arcs are numbered 1 to 

6  as shown. The source and destination o f commodity K 1 is node 1 and 2. There are three chains 

in this network for commodity K 1. These are arc 1 -> 2 and the sequence of arcs [(1 -4 4), (4 -4 

2)] and [(1 -4 3), (3 -4 4), (4 -4 2)]. The chain 1-4 2 may be represented by the vector [1, 0, 0, 

0, 0, 0] since the arc 1 4  2 corresponds to arc number 1 in the network. In this way the chain [(1 

-4 4), (4 -4 2)] may be represented by the vector [0, 0, 0, 1,0, 1] since arcs 1 4  4 and 4 -4  2 

correspond to arcs numbered 4 and 6  in the network, and third chain as [0, 0, 1, 0, 1, 1]. 

Commodity K2  has source 3 and destination 4, commodity K3  has source 2 and destination 4 and 

commodity K 4  has source 1 and destination 3. Commodity K2  and each have a single chain 

represented by the vector [0, 0, 0, 0, 1, 0] and [0, 1, 0, 0, 1,0] respectively. Commodity K4  has 

three chains represented by vector [0 , 0 , 1 , 0 , 0 , 0 ], [ 1 , 1 , 0 , 0 , 0 , 0 ] and [0 , 1 , 0 , 1 , 0 , 1 ].

To represent a network with m arcs and q commodities with N k chains for the kth commodity, 

the arc-chain incidence matrix uses a matrix C of size m x N c whereN c -  N ] + N 2 + ...+ N q. 

We will use C* to represent the j lh chain of the kth commodity, 1 < j  < N k. C* is a vector of
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length m containing 0’s and l ’s only that represents the existence of arcs in that chain. Each 

chain of a commodity corresponds to a column in matrix C , so that the first N x columns 

correspond to chains for commodity 1, the next N 2 columns correspond to chains for 

commodity 2, and so on. We will use a~ to denote the ith element of the / h chain of the kth 

commodity and C k to denote the m x N k sub-matrix of C corresponding to commodity k. In 

other words, if edge i is in chain j  of commodity k, a*, is 1 ; otherwise it is 0 .

For example, Figure 2.14 shows the arc-chain matrix for the network shown in Figure 2.13 for 

commodities K1, K2, K3, andK4.

K 1 K 4

Ci c 2 c 3 c4 c 5 c 6 c 7 c 8

1 1 0 0 0 0 0 1 0

2 0 0 0 0 1 0 0 1

3 0 0 1 0 0 1 0 0

4 0 1 0 0 0 0 0 1

5 0 0 1 1 1 0 0 0

6 0 1 1 0 0 0 1 1

Figure 2.14: The arc-chain matrix 

It may be noted that even a small network with a modest number of commodities may have a 

large number of chains, which may results in a large arc-chain matrix.

2.5 Tomlin’s Approach

Arc-chain formulation was adopted in revised simplex method by Ford and Fulkerson to 

compute the maximal flow multi-commodity network flows [FF58], Tomlin used both the node- 

arc and the arc-chain formulation to solve Minimum-cost multi-commodity network flow 

problem [To6 6 ]. We will use Tomlin’s arc-chain approach with some modification to solve our 

routing problem.

In a formal arc-chain formulation we have to handle a very large arc-chain matrix C = (ak.) as

the number of chains for all commodities becomes extremely large for a non-trivial network. By 

exploiting the special structure of the problem we can avoid dealing directly with the entire
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matrix (creating all the chains). We assign numbers 1 , 2 ,  ,m to the m arcs of the network,

Ui and Cj are used to denote the capacity and cost o f the zth arc, and jc* is used to represent the

flow of commodity k  in chain C *. Capacity vector «/, U2 , ... um for the edges 1, 2,...., m can be 

represent by u . While the network is handling q commodities, n  represent the flow requirement 

of the kth commodity, 1 < k <q. In arc-chain representation a*, has a value 1 if the chain j  of

commodity k  uses arc and a value of 0 , otherwise.

The capacity constraint for the zth arc, for all i, 1 < i < m is

k= q  j= N k

1 1 4 ^ ^  ... (2 .6 )
k= \ j = 1

The flow requirement is expressed as:

£  x )  = rt . . . (2.7)
J = •

is the cost associated with the chain C* so the total cost for all flows with all
/=0

k = q j ~  N  k i = m

commodities becomes ^  ^
k =i j =i ;=i

Presentation of the problem in matrix notation is:

Minimize c A 1 x ,+ c  A 2 x2 + .......+ c A 9xq

Subject to A'Xl + A 2x 2 + ..............+ ^ ?x9 +xj =m ... (2.8)

= r,

= r*

(2.9)

Here ek represent the vector N k for commodities k  = /,... q and xs is a vector of m slack 

variables. As we are dealing with m arcs and q commodities, the formulation will have m + q 

rows and a very large number of columns (one for each chain) in constraint matrix C . To solve 

this problem we don’t need to generate all these chains (column) explicitly. Instead we find only 

shortest chain for each commodity and check if this chain satisfies the simplex condition to be a 

part o f an entering column as outlined in step 3 of the revised simplex algorithm. If the chain
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satisfies the condition then the algorithm creates the chain and proceeds to the next step of the 

revised simplex algorithm.

Steps to find an entering column are as follows:

o We have a basic feasible solution and m + q simplex multipliers in each iteration, 

o Simplex multipliers for arc i are ., nm and for commodity j  are a , , ............. ,a q.

tho If n i > 0 for some i, then the slack variable xs corresponding to i constraint in equation 

(2.8) will improve the objective function. So, xs will enter into the basis, 

o If 7Ci < 0 for some i, x* will enter into basis if

i=m i~m

4 - < * > « >  -  (2 1 °)
/=1 i=\

i=m

i . e . , i f £ ( c , - « i ) 4 < « t  ... (2 .1 1 ).
i= 1

As 7t i < 0, for all values o f / (1 < i < m), cost (c. -  n i ) can be assigned to arc / (1 < / < m) to get

i=m
non-negative weights for all arcs. Then (c; -  n i )a* represents the length of the /  chain for

i=i

commodity k. This is the shortest chain for commodity k, because, if the shortest chain cannot 

satisfy equation 2 .1 1 , then no other chain will be able to satisfy it.

Tomlin’s technique to find an entering variable can be summarised as.

a) for any positive simplex m ultiplier^ , enter the slack variable xs and stop.

b) assign cost (c, -  n t ) to attached edge i (1 < i < m). Enter the variable x* into the basis if  it 

satisfies the equation 2 . 1 1  and stop.

In this approach, the important point is that we only need to keep track of the basis matrix and 

not the chains corresponding to the non-basic variables (which are huge in number).

The initial basic feasible solution is obtained by introducing artificial variables in the last q 

equations and then minimizing the sum of all artificial variables [To6 6 ].
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2.6 Generalized Upper-Bounding (GUB)

Generalized upper bounding (GUB) [DS57] is a technique, used to make the revised simplex 

method more efficient for linear programming problems when the problems have a special 

structure. A matrix of size (m + q) x (m + q) for some m and q, exhibits a GUB structure, if

>  q is relatively large compared to m and

> each column of the last q rows has at most one nonzero entry equal to 1 .

The following figure 2.15 shows a constraint matrix A having GUB structure where blank 

spaces has zero (0 ) entry.

A =

3 2 4 3 5 9 7 4 8 2 5  3'  
2 5 1 3 7 4 6 2 9 3 2 5  
1 1 1

1 1

1 1 1 1

1 1

}m

Figure 2.15: An arc-chain incidence matrix with special structure

For the revised simplex method explained in section 2.2, we are required to find w and d k,

A. _1 A 1where w = cbB~ and d k = B~ ak , to carry out the ratio test in step 2 -  4 at each iteration. That 

means we have to solve a system of (m + q) equations with (m + q) variables. When the matrix 

size is very large then it may become computationally intractable. But, if the matrix satisfies the 

GUB structure, then we can largely reduce the computational expense. The idea is to update the 

basis matrix of size m + q, and compute w and dk , in successive iterations of the revised 

simplex method without inverting the whole matrix of size m + q, but to invert the sub-matrix of 

size m only. When q is much larger compared to m, then the GUB technique can dramatically 

improve the time to compute w and dk .

B

R

l
I

J
I
I
I
I

m rows

q rows
m

columns
<1

columns

Figure 2.16: Basis satisfying GUB structure after permutation
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In the revised simplex method, if we have a basis that satisfies the GUB structure, we can 

always apply column permutation to that basis matrix so that the resulting matrix has an identity 

sub-matrix of size m x m in its lower right comer. Figure 2.16 shows a basis matrix after 

column permutation. Here, S  and T  are matrices of s ize(mxm), ( m x q ) m d ( q x m ) ,  

respectively. So, we can visualise the basis B as the composition of four sub-matrices R, S, T  and 

I. In order to find the value of w and d k in our problem we need to invert the matrix (R - ST) 

o f size m x m  as explained below. In our problem the basis B is of size (m + q) and we need to 

solve the equations w-B =cB and B ■ d k = a k at each iteration of the simplex algorithm. Let the 

basis B  at iteration k  after performing the permutation to get GUB structure is as follows

B = Rk Sk

j k  r

Let the simplex multiplier vector w of size (m + q) be divided into two parts, so that w be the 

vector of the first m simplex multipliers and w" be the vector o f the last q simplex multipliers. 

Similarly, the cost vector cB is divided into cB and c”B corresponding to the first m and last q 

elements. So the equation w-B =cB can be written as

[w w
Rk S k 

Tk I
=  [cB c l ]  . . . . ( 2 .12)

we can re-express the equation (2 .1 2 ) as

w'Rk +w'Tk =c'B . . . (2.13)

and

w S k + w = c l . . . (  2.14)

From equation (2.13) and (2.14) substituting the value of w in equation (2.13) we get

w'(Rk - S kTk) = c'B-c lT k . . . (2.15)

that implies w' = (cB-c lT k)-(Rk - S kTk)~l ...(2.16)

T o calculate the value of w we need to invert matrix (Rk -  Sk Tk) of size m x m ,  which is much 

less expensive than inverting a matrix of size (m + q) x (m + q ) . Once we have the w value we 

can calculate w using equation (2.14) and can get the simplex multipliers.

Let ak and dnk be the first m and last q elements of the entering columnak , d'k and d"k be the 

first m and last q elements of d k . We can write the equation B - d k = d k as
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This can be expressed as 

Rkd'k + Skd;=a'k ...( 2.17)

Tkd'k +d; = a:I - (2 .1 8 )

Eliminating the value of d '  from the equation (2.18) and (2.17), we get 

(Rk - S kTk)d'k =a'k - S ka \ . . ( 2 . l 9 )

* f
From this equation (2.19), we may get the value of dk as 

d'i =(a'k- S ka ' ) i R k - S kTk ) - 1 ...(2.20)

Using the equation (2.18) we can get the value of dk as 

d ^ a ; - T kd'k ...(2.2\)

To get the value of d k using equation (2.20) and (2.21), the expensive operation is to invert the 

matrix(Rk - S kTk) , which is done earlier while calculating the value for w . So, we can readily 

use that result.

2.7 Updating the matrices(R, S, T)

To take advantage of the GUB technique, we have to maintain the GUB structure in each 

iteration of the revised simplex algorithm after updating (removing a column and inserting a 

column) the basis. Here is the technique that is used to ensure that the requisite form

is always maintained. This approach is described in [Ch83]. d{ -[d',d'2 ,...,d'm] is

used to denote a vector of size m consisting of the first m elements from dk . As the basis B

changes due to update at each iteration, the matrix R, S  and T  also changes. Let Bk, Rk, Sk and Tk 

be the matrices at iteration K  and R  *+i, Sk+1 and T k+\ be the matrices at iteration k+1. Our 

objective is to compute R *+i, Sk+i and 7Vi from Rk, S'*and Tk.

Depending on the position of the entering column and the leaving column three different 

situations arise. The different cases are described below:

B
R S  
T I
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Case 1: The leaving column h is one of the first m columns of the basis (i.e. h < m ). In this case 

we just replace the leaving column with the entering column to update basis. Since h < m , this 

update will only affect the matrix R and T. So, updating R and T will update the entire basis

B = Rk+l s k and the new basis still satisfies the GUB structure. The expression for
[*+i 1

(Rk+i ~ SM Tk+i) will be

(Rk+l- S k+lTk+l) = (Rk - S kTk)Fk+l ... (2.22)

Here Fk+l is called an eta matrix [Ch83], which is an identity matrix of size m x m  with inserting 

vector d[ at position h.

0 . . . d\ ...0
1 . . . d '2 ...0

0 . . . d'm . . .  1

Fk+\

Case 2 and 3 arises when the leaving column is one o f the last q column of the basis (i.e. m< h). 

We will use f '  to denote a vector consisting of the first m elements of/ and f "  to denote last q 

element of f  We will use g  to denote any other first m column in the basis where g '  and g" 

denote a vector consisting o f the first m and last q elements of g.

Case 2: If there exist another column g such that f ” = g ” ■ In this case, we can interchange the 

leaving column/ and the column g. Now we can update basis like case 1. Steps are follows:

Stepl. Interchange the two columns /  and g  of the existing basis. So basis B  = Rk

becomes B„intermidiate
Rk s M

Step2. Insert the entering column replacing the column/ to obtain the final basis. 

5 ,intermidiate becomes i? , = Rk+1 Rk+i
J k I new

+ i—
i

1

Let /  originally be the (m + z)th column of Bk and let r denote the zth row of Tk. If  Jk+i is the

m Xm  identity matrix whose hth row has been replaced b y - r  then
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(Rk - S k+lTk) = (Rk - S kTk)J k+l and to obtain the final basis we need to multiply it with eta 

matrix Fk.

(Rk - S kTk) = ( R , - S 0T0 )J lFxJ 1F1  J kFk ... (2.23)

The eta matrix Fk+/ is a m x m  identity matrix whose hlh column has been replace by a vector z

J k+\d' i f  a *  f
of m elements, where z  = J  d '  + e i f  a" = f "  and eh is the hth column of the m x m

h J  J

identity matrix [Ch83].

Case 3. No column of g of basis B satisfies the condition g" = f . In this case simply replace 

the leaving column by the entering column. In this case 

Rk+l- S k+xTk+x= R k - S kT k . ..(2.24)

After k iteration Rk -  SkTk may be represent as

(Rk -  SkTk) = (R0 - S 0T0 )JXFXJ 2F2 ...........J kFk

possibly with missing some of the Ji and Fj matrices.

To summarize, at each iteration of the revised simplex method, we use formulae (2.22) -  (2.24) 

to update the basis, depending on the situation, and keep the new basis in the required 

~R S '
form 5  =

T  I

2.8 Eta-factorization

The efficiency of the revised simplex method described in section 2.2 depends on the 

implementing o f step 2-4, where we need to invert the matrix called basis, to calculate the
/V | /V .

vectors w and d k where w = cbB~ and dk -  B~ ak to carry out the ratio test. Actually we

need to solve two systems yBk =cB andBk_xd =a . Without solving the system from scratch, we

can use some device to facilitate their solutions and can update the matrices/ vectors at the end 

o f iteration.

Let Bk_{ be the basis matrix at step K-l  and Bk be the basis matrix at step k, so that each Bk 

differs from the preceding BkA in only one column (figure 2.17).
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same

B Bk-l

Figure 2.17: Basis before and after iteration 

Where a is the column calculated from Bk-i d = a

Let Ek_x be the Eta matrix (an identity matrix with the column corresponding to the leaving 

variable replaced by d) then Bk = Bk_xEk_x (Fig 2.18).

B k-l

1

1 0

id

0 1

1

E k-l B

Figure 2.18: Basis before and after iteration with eta matrix 

When the initial basis consists of slack variables then it is an identity matrix in that case

B0 = 1

BX=EX

b 2 = e x* e 2

Bk = Ex*E2* *Ek

This is called eta-factorization ofBk .

This gives a convenient way o f solving two systems of equations: the system yBk =cB can be 

viewed as,

{(LyEx)E2)  )Ek = cB
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and the system Bkd - a  can be viewed as 

Ex{E2{ {Ekd))) = a

So by solving the equation iteratively we can get the value of y  and d. As E  is an eta matrix, 

these systems of equations are easy to solve.

So far we have consider the basis as identity matrix but when the basis is not a identity matrix 

then we can write

Bk =BQ*El *E2*  *Ek

Where B0 is the initial basis.

We can solve the two system yBk =cs and Bkd = a  as (((yU m)Um_x)  )Ek =cB and

B0EX(E2( (Ekd))) = a respectively. Now we can do a triangular factorization of the initial

basis JS0 (using lower triangular matrix L and permutation matrix P) before the first iteration to

use them with the growing sequence of EX,E 2, ........Ek to solve the systems

LmPm LXPXB0 =U  where, U = UmUm_x Um

Ui is the eta matrix obtained by replacing / 11 column of /b y  / h column of U. So the equation to 

solve d becomes

Um{Um_x{ {Ekd))) = (LmPm(  (LxPxa)))

In this way the system yBk =cB can be solved by first solving (,((yUm)Um_x)  )Ek =cB and

then calculating y  from ((yLmPm) LXPX) . Similarly the system Bkd =a may be solved by first

calculating (LmPm(........ (LxPxa))) and then solving Um (........(Ekd ) ) ) - a  where a is

replaced by (LmPm( (LxPxa))) .

As the number of eta matrix grows with the iteration, solving the systemsyBk =cB and Bkd - a  

become more laborious and may take longer time than to solve the systems from scratch. To 

avoid this we may compute a fresh triangular factorization of the basis treating Bk as B0 and

start with a new sequence o f EX,E 2,  Ek. This is known as refactorizations of the basis.
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Chapter 3: Efficient Routing In Wavelength-Routed WDM
Networks

3.1 The Routing Problem

In designing a WDM network an important task is to find a logical topology, given the physical 

topology and expected traffic patterns. The next problem is to route that traffic over the logical 

topology in an “optimal” fashion. One widely used method of optimization is to minimize 

congestion in the network [Rs02]. In this chapter we will discuss our proposed techniques and 

algorithms for minimizing congestion in medium to large sized wavelength-routed WDM 

networks.

The routing problem in WDM networks can be viewed as a multi-commodity flow problem. The 

multi-commodity flow problems considered in the Operation Research community typically 

consider a small number of commodities [Me95]. One important aspect of viewing the routing 

problem in WDM networks as multi-commodity network flow problem is that the number of 

commodities becomes quite large. If  we consider a network with N  nodes and m edges, the 

number of commodities is O(N2), since each source destination pair of the network with some 

traffic is considered as a commodity. If we use standard node-arc formulation for minimum cost 

multi-commodity network flow, the number of constraints is 0(7V3), i.e. the number of 

constraints increases rapidly as the number of nodes in the network increases [BJ90]. Table 3.1 

shows the growth rate of arcs, commodities and constraints with node number.

Nodes(A) Arcs(»i) Com m odities^) Constraints (m+Nq)

1 0 30 90 930

2 0 60 380 7660

40 1 2 0 1560 62520

1 0 0 300 9900 990300

Table 3.1: Constraints size increase rapidly with nodes

This work focuses on the techniques for solving the routing problem efficiently, considering the 

large number of commodities in WDM networks. In this chapter we have described our 

approach for fast routing in WDM networks. An initial version of this approach was presented
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in [Sr04]. We have further modified this technique to incorporate eta-factorization, which leads 

to significant improvement in speed.

The node-arc formulation is not a good way to handle large networks, as the number of 

constraints grows rapidly. Using an arc-chain formulation to represent the routing problem can 

significantly reduce the number of constraints. But, a straight forward arc-chain formulation is 

not possible since the number o f possible chains for each commodity is very high, even for a 

medium size network. To address this drawback, we follow Tomlin’s approach [T0 6 6 ] of 

implicitly keeping track of the constraints and generating a chain only when it is established that 

the chain will enter into the basis. Using this approach, the basis size becomes 0 ( N ) for a N  

nodes networks. Inverting a basis of this size, at each iteration, is still very expensive. However, 

since our problem satisfies the structure required for GUB method, we can adopt this technique 

to perform the operation more efficiently. Using the GUB technique, instead of inverting the 

basis o f size (m+ q )x  (m+ q) (where m is the number of arcs in the network and q is the 

number of commodities), it is sufficient to invert a matrix of size m x m . This leads to an 

improvement in the time required to inverse a matrix, since m is 0(N) and q is O(N2).

But experiments [Sr04] show that after applying GUB, inversion of the basis is still the most 

costly operation, in each iteration. So, it is important to try to eliminate the matrix inversion 

operation, as far as possible.

At each iteration of the revised simplex method, we need to solve two systems of equations. 

This requires inversion of the basis matrix. In this chapter we discuss the steps for finding an 

optimal routing over the logical topology, to handle the specified traffic requirements. We also 

show how eta-factorization can be incorporated to eliminate matrix inversions in each iteration, 

and significantly reduce the time required to find a solution.

3.2 Overview of Routing Strategy

We are given a logical topology and the corresponding traffic matrix. Our problem is to route 

the traffic over the given topology, in an optimal way. We will use arc chain formulation to 

represent our problem.

As discussed in chapter 2, let, Ak = ( a k) denote the (m x N k) arc-chain incidence sub-matrix for 

commodity fc We use the following notation in our LP formulation.
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• Gy = 1 if th e /h chain for the kth commodity uses the ith arc; otherwise it is 0 .

•  x) denotes the flow for the kth commodity on the j th chain (C*),

•  xk =  (xf ,.. . ,  XkNt )

• rk is the required flow for commodity k, obtained from the traffic matrix.

Now, the LP formulation for the routing problem can expressed as follows:

Minimize l max 

Subject to

A xxx + A 2x2 + • • • + A 9xq < Amax (3.1) 

e,x, =  rx

e9x9 = r,
H  (3.2)

xk > 0  (k = l  ...q)

The objective is to minimize the congestionAmax. Constraint (3.1) states that the total flow, for 

all commodities, on an arc cannot exceed the maximum load/tmax. In other words, the sum of all

flows, Xj through chains Cy that uses arc i (i.e., ciy = 1 ,) for all commodities k  cannot 

exceed Amax. Equation (3.2) ensures that the total flow for a commodity k  in network meets the 

demand rk for that commodity, i.e.,

^ x j  =rk,\ /k ,  \ < k < q  ... (3.3)
/-i

In equation (3.2) ek represents a row vector with N k l ’s, and xk is a vector of flow variables for 

the different chain o f commodity k  where 1 < k< q.

These equations lead to m + q constraints, where m rows coming from equation (3.1) and q rows 

from equation (3.2). The size of the basis for revised simplex becomes (m + q)x(m  + q ) . Adding 

slack variables ( xs ) to remove inequality constraints, the LP for minimizing congestion can be 

stated as follows.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Minimize Viax 

Subject to

A 1xl + A 2x2 + • • • + Aqxq + xs = Amax ... (3.4) 

eixi = n '

x k > 0 , k  = l,...,q; x s > 0  

Below is the standard revised simplex algorithm to process this LP. For our routing problem, we 

will be working with the basis B, basis variable vector x B and the right-hand side b. Now our 

constraint can be expressed as Bxb = b [Sr04],

Step 1: Find an initial basic feasible solution (Bxb =b).

Step 2: Do step 3-7 until no entering column is found

Step 3: Find, (if possible), an entering column that improves the objective function.

Step 4: If no entering column is found, stop.

Step 5: Find the leaving column.

Step 6 : Replace the leaving column by the entering column and update the basis B and 

right hand side b.

Step 7: Compute the value for the objective function and go to step 2.

3.3 Finding Initial Feasible Solution

In order to start the revised simplex process, we need to have an initial feasible solution, i.e. a 

solution that satisfies all the constraints. This solution is specified by a set of chains used by 

each commodity, and the corresponding flows on these chains such that all constraints are 

satisfied. In an LP, when we have a constraint of the form <bl , we can introduce a slack
\< j< n

variable to change the constraint in equality form + xs -  bt . If all constraints are in this
1£  jZn

form, the initial feasible solution is simply an identity matrix with basis variablesx's, x 2 x'"' . 

In our case, the constraints described in (3.1) are in the form ^ d y X j  <bn  but the constraints
1<  j< n

specified in (3.2) have the fo rm ^a- .x ,  = bi which cannot be handled in this way. We have used
j
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the following algorithm to create a basis B  of size (m + q) x (m + q) , compute the corresponding 

flows x B and obtain the initial feasible solution. This approach was first proposed in [Sr04].

Step 1: for each arc /->/', assign flow vy = 0.

Step 2: Repeat steps 3 to 8  for all k, 1< k <q.

Step 3: Let s(d) = source(destination) for commodity k.

Step 4\ Using Dijkstra’s shortest path algorithm, after assigning unit length to each arc, 

find the shortest path PSd from s to d.

Step 5: for all arcs i in the path Ps<t, repeat step 6 .

Step 6 . vy = vy + rk

Step 7: Create the chain Cf corresponding to the path Psd-

Step 8 : Create the kth column of basis B  using Cf to define the first m elements. The 

remaining q elements will be all 0 , except for the kth element which will be 1 . x k 

denotes the basis variable corresponding to the kth column since it denotes the 

flow in Ci . The value ofx* will be 

Step 9: Find Amax = maximum value of{v!y : Vij,(i —> j ) e  EL) . Let e be the arc number

of the arc carrying Amax . If  more than one arc has the same flow Amax , arbitrarily

pick any one of these arcs and use the arc number of the selected arc for e.

Step 10: Create column (m+1) of basis B containing -1 in the first m positions and 0 in 

all remaining q positions. The corresponding basis variable will be Amax having 

the value computed in step 9.

Step 11: Repeat steps 12 for all i, 1< i < m, i ?e.

Step 12: Create column (m+l+i) of basis B  containing a 0 in all positions except in 

position e. The basis variable corresponding to this will be x'having a 

value Amax - r t .

3.3.1 An Example

In this section, we illustrate the above approach through a simple example. Figure 3.1(a) shows 

a 5 node network with arcs numbered as e\, e% <33, ..., e$ and figure 3.2(b) shows the 

corresponding traffic matrix.
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3.1(a)

Traffic matrix

0 0 5 0 0
0 0 0 4 0
0 0 0 0 2
0 0 0 0 0
0 0 0 3 0

3.1(b)

Figure 3.1: (a) A Logical Topology (b) A corresponding traffic matrix

In the above traffic matrix there are four non-zero entries, which means there are four 

commodities in the networks. These are

K 1 representing 5 units of traffic from node 1 to node 3 

K2  representing 4 units of traffic from node 2 to node 4 

K3 representing 2 units of traffic from node 3 to node 5 and 

K4  representing 3 units of traffic from node 5 to node 4 

According to the step-1 of the algorithm, flow Vy = 0 is initialized, for all node pair (i,j)  where 

there is an arc i —> j. We have 8  arcs in this example.

We have to repeat steps 3-8 for all the commodities K1, K2, K3, and K4. In step 4 we find the 

shortest path Pj3  (l->2->3) from node 1 to node 3 for commodity K1, using Dijkstra’s 

algorithm. For each arc in the shortest path Pjj, we update the flow on the arc (step 6 ).
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2 3Thus, v \ 2 = 5, and V23 = 5. Similarly, we repeat steps 3-8 for the remaining commodities K , K , 

and K4. Thus for commodity K2, V24 = 4; for K3, V31 = 2 and V15 = 2; for K4, V52 = 3 and V24 = 3. 

The commodities K2  and K 4  both use arc 2->4 (arc no 7) and the total flow on this arc is (4 + 3 

= 7 units). This is the maximum flow among all arcs. So, Amax = 7 .

After finishing the above steps, the basis is created as follows

Commodity
'1  i ^ 2  t^ 3

Slack variables
K' K> K 4 2max x\ x] x] x 4 x] 6 8 

X ,  X ,

COp

1
2
3
4
5
6 
7 

+ 8

&
X3 O
E

6  112

' 9 
1 0  

11

0 0 1 0 -1 1 0 0 0 0 0 0
0 0 0 1 -1 0 1 0 0 0 0 0
1 0 0 0 -1 0 0 1 0 0 0 0
0 0 0 0 -1 0 0 0 1 0 0 0
0 0 0 0 -1 0 0 0 0 1 0 0
1 0 0 0 -1 0 0 0 0 0 1 0
0 1 0 1 -1 0 0 0 0 0 0 0
0 0 1 0 -1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

max 
_  1

x;
x \

x !

0

0

0

0

0

0

0

0

5
4
2
3

Figure 3.2: Basis from Initial feasible solution

5
4

2
3
7

5
7

2
0

_5_

This xB value (solution from fig 3.2) satisfies the constraint of the basis vector.
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3.4 Finding an entering column

In the revised simplex method, we need to find the simplex multipliers for each non-basic 

variable xj, and compute the value o fz. -  c} = wa} -  Cj, where w is the vector of (m + q)

simplex multipliers, a - is th e /h column from the constraints matrix and cj is the cost coefficient 

corresponding to basic variable xj. If  the value of z7 -  c} = wa ;. -  cy is positive, then we know 

that inclusion of xj in the basis can improve the objective value. So xj is a potential candidate to 

enter the basis. In our case, we do not explicitly generate the set of non-basic variables, as the 

numbers of possible chains are very large. Instead, we will follow the approach given in [T0 6 6 ], 

and create a chain when we are sure that the chain may be a part of an entering column.

The first step for finding an entering column is to calculate the simplex multiplier vector w . Let 

Kx.........Km be the first m simplex multipliers (corresponding to the m arcs of the network) and

ocx.......a qbe the remaining q simplex multipliers (corresponding to the q commodities) in

vector w. Theorem 1 states the rules for finding an entering column. The complete proof for 

Theorem 1, is given in [Sr04], In this thesis, we simply use the theorem to find a suitable 

entering column.

Theorem 1:

a) If Tti > 0 , for any i, 1 < i < m, slack variable , x's is a candidate to enter the basis.

b) If the sum of the first m simplex multipliers is less than -1, Amax is a candidate to enter 

the basis.
m

c) If, for chain j  o f commodity ) a* <ak, then the variable x y corresponding to this
i=\

chain C* is a potential candidate to enter the basis.

Theorem 1 states that, if  any n i is positive, the corresponding slack variable can be entered into 

the basis. If  all the n i values are non-negative, then ( -  7tt,) is assigned as the length of arc i, and

m

^  (-7T, )akij is the length o f chainC*. If  this length is less than a k, then we can use this chain to
;=1

create the entering column. The steps of the procedure are follows:

Step 1: initialize i to 1.
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Step 2\ if ni > 0, create an entering column consisting o f all O’s except in position /' and 

stop.

Step 3: if  (i < m), i = i + 1 and go back to step 2.

Step 4: Considering all commodities, find, if  possible, chain j  of some commodity k,
m

such that < a k .
M

m

Step 5: If  no chain satisfying ^  ( - n i )a^ < a k is found in step 4, then no entering
i=i

column exists, and the current solution is an optimal one. Otherwise, create an 

entering column with the afj as the /th entry o f the column, for all i, 1 < i < m. In

the remaining positions, only the element in position (m + k) will be 1. The other 

elements will be 0 .

m

To calculate the value of < a k we have used Dijkstra’s method [Di59] to find the
i=i

shortest path Psci from a source destination node pair s and d.

An example illustrating how we use the above theorem is given below.
1 2  1For the logical topology shown figure 3.3, let there be two commodities K  and K  , where K  has 

source node 1 and destination node 4, K 2 has source node 1 and destination node 5. Let the 

simplex multipliers wat some stage be [-0.1, -0.2, -0.2, -0.2, -0.5, 0.5, 0.1].

e3 (0.2)

e7 (0.1)

Figure: 3.3: A four node logical topology
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In Figure 3.4, we have labelled the edges with the appropriate simplex multipliers. Now the 

shortest path for commodity .AT1 is l->3->4, and the length o f the shortest path P 14 = 0.3. 

Similarly, shortest path for commodity K 2 is l->3-^5, and the length of P ]5 = 0.5.

Let the values o f the simplex multipliers ai (for commodity K l) be 0.5 and the value of 0.2 (for

■7 m
commodity K ) be 0.1. Therefore, the condition ^ {-n i)a-j < a k to enter the basis is satisfied for

1=1

K ] but not for K 2. The next step is to create the entering column for K ] as follows:

The path is P j4 = l->3->4, where the arc e2 is l->3 and the arc e4 is 3->4. So, the first m( = 7) 

entries in the entering column for this chain will be [0, 1, 0, 1, 0, 0, 0]. Since the column is for 

the commodity K l, there will be a 1 at position 1 (corresponding to commodity K l) in the 

entering column and a 0 at position 2 (corresponding to commodity K 2). Thus the entering 

column will be [0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 ].

3.5 Finding the leaving column

We use the standard revised simplex method to find the leaving column. The algorithm is briefly 

described below:

Given an entering column d j ,

B ~ la .j(i)  denotes the z'th element o fB ~ld j

Step 1) If  a j is the column to enter to basis, calculate B~'ak using the current basis B.

Step 2) Set MinimumRatio = 9999.00.

Step 3) Repeat step 4 for all i, for all z, 1 < i < (m+q) such that B~lak (z) > 0 .

Step 4) If MinimumRatio > b(i) / B~lak( i) , set MinimumRatio = b(i) / B~lak(i) and 

leavingcolumn = i.

Let b(i)(baew(i)) to denote the z'th element of b(bnew)- The steps are used to update the basis:

Step 1) Replace the leaving column with the entering column

Step2) Update the right hand side b to bnew using the following formula:

bnew(i)= b (i)-d k(i)xMinimumRatio for all z, 1< z < (m+q), i ? leavingcolumn,

bnew (leavingcolumn)= MinimumRatio.
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3.6 GUB and Representation o f matrix S and T

A basis B of size (m + q) x  (m + q) satisfies the GUB structure when

• q is relatively large compared to m and

• each column of the last q rows has at most one nonzero entry, the nonzero entry being 

equal to 1.

By exploiting this GUB structure we can calculate the value of w (w  = c bB ~x ) and

d k ( d k = B ak) without directly computing R  . These values are required to find the entering

column and the leaving column.

In our problem formulation, equation A ]xt + A 2x2 H----h Aqxq +xs = /lmax (3.4) gives m constraints

and equation eixI = rj , \< i< = q  (3.5) gives q constraints where m = O (TV), and q = 0(N 2). Each 

column of the last q rows (equation 3.5) has exactly one nonzero element having 1 in position k. 

So, our basis satisfies the GUB structure.

From our experiments, we have found that after the decomposition of the basis in the

~R S '
T  I

>  In each column o f the matrix S  there is a very small number of l ’s ( « 5 % )

>  Satisfying GUB structure, matrix Thas at most one 1 in each column

So, it is possible to store and represent these two matrixes in a compressed form, which only 

stores information about the position of the l ’s. Thus, matrix T  can be represented as a vector of 

integers, where the size of the vector is the number o f edges (m) in the logical topology. Matrix 

S  can be represented as an integer matrix of size i f  x q). Here, q is the number of commodities 

a n d /is  the maximum number o f l ’s in any column of matrix S. In the example given below, S  is 

the initial (uncompressed) matrix of size 6x9.

0 0 0 0 1 0  1 1 0 '  

0 0 1 0 0 0 1 0 0
0 1 0 1 1 0 0 0 0
1 0 0 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 0 0

form B = , the matrices S  and 7  have the following property

S  =
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H e re /=  2, and q  = 9. So, the information in matrix S  can be represented by the compressed 

matrix Snew of size 2x9, as shown below.

S' =
3 2 1 2 0 3 0 0  3' 
4 - 1  4 4 2 4 1 4 - 1

Here 1S'„ew[i][j]gives the position of the (i+l)th 1 in the j th column of S. If there are nj 1 ’s in th e /h 

column of S, where «, < f  then 5HW[i][j] = -1, for i > rij. For example, let us consider the / h 

column (j = 0) in S new. We get 5,„ew[0][0]=3 and •S,„ew[l][0] = 4. This means that there are two l ’s 

in column 0 of matrix S, and they are in rows 3 and 4, i.e., 5[3][0]=1 and S[4][0]=l. If we 

consider column j  (/=1) in S new, we get 5,„ew[0][l]=2 and »Snew[l][l]  = -1. This means that S[2][l] 

= 1 and all remaining values in the column are 0.

In the case of matrix T, we know that it contains at most one 1 in each column. Therefore the
thcompressed representation can be expressed simply as a vector (Tvector), where the value of the i 

element specifies the position (row number) of the 1 in the /th column of T. If there are no l ’s in

the Ith column of T, a value o f -1 is entered in the corresponding position of Tvt

T  =

0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

= >  Tveclor= [5, 0, 2 ,-1 , 5, 7]

For example, Tvector [0] = 5 means that there is a row 5 of column 1 in matrix T  i.e., T[0][5] = 1. 

The value of/becom es very small (around 1%) in case of large networks (more than 40 nodes). 

Therefore these compressed representations of the S  and T  matrices save significant amount of 

time in performing the matrix-vector multiplication (equation 2.21) and vector-matrix 

multiplication (equation 2.14 & 2.16) required to calculate the simplex multipliers and value of 

d. Table 3.2 shows the savings achieved by this technique for some typical networks.
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Number
of
nodes

Number of 
commodities

Number 
o f edges

Max number of 
l ’s in a column

Size of matrix S and T

Matrix
S

Matrix
T

Old S New S Old T New
T

14 175 50 7 1 50x175 7x175 50x175 1x50

20 370 130 8 1 130x370 8x370 370x130 1x130

25 580 230 7 1 230x580 7x580 580x230 1x230

30 825 270 7 1 270x825 7x825 825x825 1x270

40 1490 560 8 1 560x1490 8x1490 1490x560 1x560

50 2300 730 8 1 730x2300 8x2300 2300x730 1x730

Table 3.2: Savings in Matrix S and T with new representation

3.8 Generalized Upper-Bounding with Eta Factorization

We have discussed the eta factorization technique in chapter 2. Eta factorization provides an

efficient way to eliminate matrix inversion in the revised simplex algorithm. The use of the

Generalized Upper-Bounding technique reduces the time required to invert the basis. But even

after using GUB, matrix inversion remains the most expensive operation of this technique. For a

'R  S '
T I

multiplied w ( w = cbB ~ 1 ) and d k ( dk = B~lak). As the number of nodes (N) increases, the size 

of matrix R also increases and inverting the matrix R  takes a substantial amount of time. Table 

3.3 shows how the average size of matrix R increases with number of nodes. The size of the 

matrix R is the number of edges (m) in the logical topology.

matrix B = , we need to invert the matrix R, in each iteration, to get the value of simplex

Number of nodes Size(m) of matrix R Size of basis (m + q)

10 36 124

20 135 499

30 262 1099

40 557 2060

50 732 3033

Table 3.3: Sample (average) Size o f  matrix R with node number
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To make the revised simplex algorithm faster, we integrate eta factorization along with GUB 

technique for our routing problem. This allows us to eliminate the costly matrix operations. The 

technique has been described in [Ch83] which we are giving below for completeness.

Since our basis is in the form 5  =
R S  
T I

, we need to solve the equation

w (R k - S kTk) = c'B-c"BTk (2.15) to find the simplex multiplier w and equation 

(Rk -  SkTk)ak =ak - S ka* (2.19) to get the value of d'k at each iteration of the revised simplex 

algorithm. Let Bk be the basis after k  iterations. Since Bk and Bk+l differ in only one column, it 

is possible to express the new basis ( Bk ) in terms o f Bk_x as follows: Bk = Bk_x * J kFk, where 

Jk, Fk are eta-matrices as described in section 2.7.

So, if the initial basis is B0 , then 

B1 = B0 *JXFX,

b 2 = b x* j 2f 2 =B0* j xf *J 2F2 , and

B = B  J F = B * T F * I F *  * T FD k k~\ k k D 0 J \r  2 2   J k r k

In our case the initial basis for eta-factorization is B0 =R0-  S0T0 (applying GUB technique). 

After k iteration the basis is

Bk = (R q ~ S0T0)J xFxJ 2F2 .......... J kFk  (3.6)

We get the value of J kFk during update operation of matrices [Ch83].

Now a triangular factorization of R0 -  S0T0 gives the following equation 

LmPm -  W  = U = UmUm_x Ux (3.7)

where, U is the upper triangular matrix and Ut is the eta matrix obtained by replacing f h column 

o f identity matrix by / h column of U

After k iterations, the equation (3.7) becomes (using equation 3.6)

LmPm W R k - S A ^ U J J ^  W / j  J kFk (3-8)

From the equation (2.15) and (3.8) we can write

 UxJ xFxJ 2F2  J kFk =c'B- c X  ........... (3.9)

where w = Z L P  L.P.
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3.8.1 Calculating simplex multipliers w

Now solving the equation (3.9) for Z and then computing ZLmPm LiPl will give the value of

w .

The algorithm for calculating w is as follows:

Step 1: calculate the value o f cB - c BTk,

Step 2: set i = k  and Z = cB -c"BTk ,

Step 3: if / > 1 do steps 4 and 5,

Step 4: set v = Z, replace y  by the solution of ZF\ = v,

Step 5: set v = Z, and replace y  by the solution of ZJt = v. Replace i by i -1.

Step 6: Set j  = 1

Step 7: if  j  < m, then set v = Z, replace Z by the solution of ZLT = v, replace j  by j  +1

and repeat this step.

Step 8: set j  = m.

Step 9: ifj  > 1, then replace Z by ZLjPj replace j  by j  -1, and repeat this step.

The final value is the simplex m ultipliers . We can get the value of w* using equation
* t  r* . Aw S k +w =cB.

3.8.2 Calculating value of d (B 1 a)

A

To calculate the value of dk we have the equation (2.19)

(Rk -  SkTk )d'k = ak -  Skd" this can be written as

LmPm LxP{Rk - S kTk)d'k =LmPm LxP{afk - S kaT)

from equation (3.8) we can write

UmU ^  C V . W i  J kFkd'k =LmPm L tP M -S td T )  (3.10)
Â

Now solving the equation (3.10) gives us the value of d .

The procedure is as follows:

Step 1: calculate the value o f (ak - S kd")

Step 2: set j  = 1 and d ' = (ak - S ka”)

Step 3: ifj  < m, then replace d ' by LjPj d ' , replace j by j  + 1 and repeat this step.
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Step 4: Set j  = m;
A/ A/  A/

Step 5: if  j>  1, then set v = d  , replace d  by the solution of U] d = v, replace j  by j  -

1 and repeat this step.

Step: 5 set i = 1.

Step 3: if  i< k  do step 4 and 5
A /  A fStep 4: set v = d  , replace y by the solution of d  F, = v

Step 5: set v = a , and replace y by the solution of d 'J i = v. Replace i by i -1. go to step 

3.

Thus we get the value of vector d ' . And using equation d "= d * -T kd'k we can get the a  and 

thus the vector d. As the matrices F, J, U are identity matrices, except for only one column or 

row, it is easy to get the solution for simplex multiplier and vector d.

As the iteration number grows, the number of J  and K  matrices become larger and the solution 

using J and K matrices may take more time than the time needed to invert the matrix R - ST. To 

avoid this situation, we will refactorize the matrix (Rk SkTk) at appropriate intervals, replace

(R0 -  S0T0) by (Rk -  SkTk) and start the process all over again.

3.8.3 An Example

Here is an illustrated example of the algorithm for eta factorization. We consider the simple 5 

node network and traffic matrix as shown in figure 3.4

Node 1 2 3 4 5
1 0 8 0 0 6
2 0 0 0 0 1
3 0 0 0 0 5
4 9 0 0 0 0
5 0 9 0 0 0

Figure 3.4: A five node network and traffic matrix
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This network has 6 edges (m=6) and 6 commodities (<7=6) and the basis B is of size 12 (m+q).

m

Bn

▲ '-1 1 0 0 0 0 0 0 0 0 1 1 "

-1 0 1 0 0 0 0 1 1 1 0 0
-1 0 0 1 0 0 0 1 1 1 1 0
-1 0 0 0 1 0 1 0 0 0 0 1
-1 0 0 0 0 0 1 0 0 1 0 1

▼ -1 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0

▼ 0 0 0 0 0 0 0 0 0 0 0 1 _

As this basis satisfies the GUB structure, we can express B0 in the form B0 = X  So 
Tn I

* 0  =

' - 1 1 0 0 0 o ' " 0 0 0 0 1 1 "

- 1 0 1 0 0 0 0 1 1 1 0 0

- 1 0 0 1 0 0 0 1 1 1 1 0

S o  =
-1 0 0 0 1 0

0
1 0 0 0 0 1

-1 0 0 0 0 0 1 0 0 1 0 1

-1 0 0 0 0 1 _ 0 0 1 1 0 0 _

0 0 0 0 0 0  '

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

From the above matrices, we can calculate the value of R0 -  S0T0. We can do so as follows:
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*0 V o

0 0 0 0 1 1" 
0 1 1 1 0  0 
0 1 1 1 1 0  
1 0 0 0 0 1 
1 0  0 1 0  1 
0 0 1 1 0  0

Now to calculate the simplex multipliers, we need to find the upper triangular matrix (U) 

of R0 -  SqT0 as follows:

U =

'-1 1 0 0 0 o ' '-1 0 0 0 0 o '
0 -1 1 0 0 0 0 1 0 0 0 0
0 0 -1 1 0 0 0 0 1 0 0 0

So £/,=
0 0 0 -1 1 0 1 0 0 0 1 0 0
0 0 0 0 -1 0 0 0 0 0 1 0

_0 0 0 0 0 1 _0 0 0 0 0 1

column of U.

with the 1st column of I  replaced by the Is

Similarly Um=U 6 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

where 6th column of I  is replaced by 6th column of U.

We know that Ui is an identity matrix where the ith column is replaced by the ith column of U 

matrix. During the triangulation process, we get the matrices L6 ,P6  Lx and Px (equation 3.7).

k  =

'1 0 0 0 0 o ' "1 0 0 0 0 o'
-1 1 0 0 0 0 0 1 0 0 0 0
-1 0 1 0 0 0

and P, =
0 0 1 0 0 0

-1 0 0 1 0 0 1 0 0 0 1 0 0
-1 0 0 0 1 0 0 0 0 0 1 0
-1 0 0 0 0 1 0 0 0 0 0 1
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'1 0 0 0 0 0 "1 0 0 0 0 0 '
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0

p6 =
0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0

_0 0 0 0 0 -1 _0 0 0 0 0 1

Let the cost of the basis (calculated while creating initial feasible solution) be CB = [ 1 0 0 0 

0 0 0 0 0 0 0 O f. (We use vr  before the a vector to indicate the transpose of vector v is a 

column vector). The right hand side for the equation gives cB- c BTk = [1 0 0 0 0 0]T.

When we calculate the simplex multipliers for the first time, we don’t have matrices F  and J  

which are created when the basis is updated. Therefore, for the first iteration, we have to solve 

the equation:

ZU 6U5  U ^ - c X

We will first consider ZU 6U5  U2 as a vector V and solve the equation VUl = cB -  c"Tk for

UY. After obtaining the value of V, we have the equation ZU 6U5  U2-  [1 0 0 0 0

0] T.

After solving all the U matrix iteratively the Z vector is [-1 -1 -1 -1 -1 0 ] T and after

calculating ZLmPm LlPl to get the simplex multiplier, we get the vector w =[0 0 0 0 1

0] T. Using equation (2.14) we get the value of w" and thus the simplex multiplier becomes [0 

0 0 0 - 1  0 1 0 0  1 0 1]T. In this way, we get the value of simplex multipliers

without doing the expensive inversion operation in a matrix.

To show how we can calculate vector d k using eta factorization, let us have an entering column 

vector a = [0 0 1 0 0 0 0 0 0 0 0  0]T. So, vector (a'k - S ka") = [0 0 1 0 0 0 ]T.

The value of the right-hand side of equation (310) becomes LmPm L ^ ( a h -  Ska ") = [ 0 0 1

0 0 0 ]T. Now we need to solve the equations 

U6U5  £ V 0' = [ 0 0 1 0 0 0 ]T
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A/ TWe can solve it iteratively as before and the solution is d0 = [-1 -1 -1 0 0 0]

Now using equation (2.20) and (2.21) we can get the vector d k=[\ -1 -1 0 0 0 0 0  0]. 

Using this value we can get the leaving column number and update the matrices as described in 

section 3.6. For this small network, we obtain the optimal value in single step but for larger 

networks, we may have the value of F  and J  matrices and, in that case, we need to solve the

equation (3.9) for simplex multipliers and equation (3.10) for the value of vector d k .
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Chapter 4: Experiment and Results

In chapter three we outlined our approach and formulation for traffic routing to minimize 

congestion in a logical topology. In this chapter, we will present and analyze the results of our 

experiments to test and evaluate the proposed approach. Our algorithm augments the approach 

introduced in [sr04]. We compare our results with those presented in [sr04], as well as standard 

LP formulations, solved using CPLEX. All experiments were carried out on a SUN 1.2 GHz 

platform and CPLEX version 9.0 was used to solve the standard LP formulations.

4.1 Methodology

Each of our experiments requires a logical topology and its corresponding traffic matrix to 

develop an optimum routing strategy that gives the minimum congestion for that topology. To 

design a logical topology, the underlying physical topology and traffic matrix must be specified. 

We have used an existing C program presented in [Hou03] to generate the logical topologies. 

Solutions were generated using the three different approaches, based on the same data sets (i.e. 

logical topology and traffic matrix). A C program was used to generate the input file for CPLEX 

in standard lp format.

4.2 Experimental Results

We have carried out experiments on a number o f medium to large size networks, ranging in size 

from 10 to 50 nodes. For each network size, we tested several different logical topologies and 

traffic matrices. The values reported in Tables 4.1 and 4.2 represent average values, based on the 

results of the different experiments for a given network size. The results for the individual 

experiments are given in Appendix A. To compare our result and examine the advantages of eta- 

factorization, experiments were carried out using the following three approaches:

i) Our scheme

ii) Implicit column generation, without eat-factorization [Sr04] and

iii) Standard LP formulation, using CPLEX-9.

Table 4.1 shows the average time (in seconds) to obtain an optimal solution and average number 

of iterations for each o f the three approaches.
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Size of 
Network

Approach
Our Scheme CPLEX Scheme without eta- 

factorization
Average 

Time (secs)
Average # 

of 
iterations

Average 
Time (secs)

Average # 
of 

iterations

Average
Time
(secs)

Average # 
of 

iterations
10 0.1863 174.1579 0.4321 1212.1579 1.24 148

14 0.91181818 448 2.39418182 4240 13.15 370

20 46.4717 8,081 76.5456 42374 2753.45 7567

30 1282.3770 57988 3264.3403 337127 10677.67 41055

40 36031.7913 378270 56667.9297 1505692 ** **

50 159139.416 835952 ** ** ** **

Table 4.1: Summarized data o f  different approach

Node number Time ratio (ours /CPLEX) Iteration ratio(ours /CPLEX)

10 0.43115 0.143564

14 0.380848 0.10566

20 0.607111 0.190707

30 0.392844 0.172006

40 0.635841 0.251227

50 ** **

Average 0.466831 0.158893

Table 4.2: Comparison ratio o f  our approach with CPLEX

** results not found

In Table 4.2, we have compared the solution time and number of iterations for our approach 

with that of CPLEX. We see that our method provides an improvement of 40%-60% over 

standard LP techniques. The average improvement is 46%. The average number of iterations 

required in our approach is l/6th of that of CPLEX. Furthermore, our approach can be used for 

larger networks of 50 nodes, where CPLEX fails to find a solution.

Figure 4.1 (semi log graph) compares the growth rate of the algorithm, to that of CPLEX.
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Figure 4.1: Growth rate with size o f  network

4.3 Analysis o f the experiments

From the experimental results, we observe that our approach with eta-factorization performs 

significantly better than other approaches, for all network sizes. Use of eta-factorization speeds- 

up the algorithm significantly. Our scheme can handle networks of 50 nodes which cannot be 

handled using CPLEX.

To track the development o f Lnax value, we recorded the (sub-optimal) objective values at 

certain intervals. This Xmax values for a 30 node network is shown in Figure 4.2. From Figure 

4.3, we can see that initial development in revised simplex method is very fast and when it 

approaches to the optimal value, development becomes slower. The majority of the time is spent 

to obtain very little improvement (< 10%). So, if we can fix a threshold value for kmax to 

terminate the process, we can get a “near-optimal” solution in a very short time. For example if 

the threshold value was set to 60 then we could reach that value within 420 second, less than 

50% of the fully optimized time.
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Figure 4.2: Improvement o f l max value with time

4.4 Conclusion and Future work

In this thesis we have introduce eta-factorization to determine the optimum routing in a 

wavelength routed WDM network. Adoption of eta factorization with GUB technique produce 

better results in time than the solution from CPLEX-9. The same optimised value from our 

approach and from CPLEX ensure the correctness of the solution. Dining test process we found 

that a significant amount of the solution time is consumed by the multiplication operation of 

matrix-vector and vector-matrix. In arc-chain formulation the matrices have the values of 0’s 

and l ’s only and most of them are zeros. (We have exploited this feature for matrix T and S by 

vertical (column) compression). If we can totally exploit this feature to store the matrix and can 

find a easy way to calculate the value of multiplication, then it will be possible to get a better 

solution in time. Use of data-compression technique to store the matrix may take less time to 

calculate multiplication value. Another future area of research is to combine this technique with 

the problem of finding a logical topology for further improvement in network congestion.
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Appendix A

Data Table for 10-nodes networks

Our approach CPLEX
Case Number value Time Iteration value Time Iteration

logical_top_l 0_11 78.7333 0.1800 170 78.7333 0.3410 978
logical_top_l 0_12 78.4167 0.1500 105 78.4167 0.4070 1191
logical_top_l 0_13 73.2272 0.1500 115 73.2273 0.4600 1356
logical_top_l 0_14 77.4167 0.2000 190 77.4167 0.5570 1445
logical_top_l 0_15 69.1510 0.2400 241 69.1509 0.4140 1147
logical_top_l 0_21 84.4285 0.1600 145 84.4286 0.3190 994
logical_top_l 0_22 79.4286 0.1300 91 79.4286 0.4150 1187
logical_top_l 0_23 72.5714 0.2000 189 72.5714 0.4330 1227
logical_top_l 0_24 77.4167 0.2000 190 77.4167 0.5580 1445
logical_top_l 0_25 69.1510 0.2200 241 69.1509 0.4150 1147
logical_top_l 0_32 79.4286 0.1300 91 79.4286 0.4190 1187
logical_top_l 0_3 3 71.3077 0.2200 203 71.3077 0.5020 1433
logical_top_l 0_3 5 69.1510 0.2200 241 69.1509 0.4150 1147
logical_top_l 0_45 69.1510 0.2200 241 69.1509 0.4140 1147
logical_top_l 0_51 84.4285 0.1600 145 84.4286 0.3180 994
logical_top_l 0_52 79.4286 0.1300 91 79.4286 0.4160 1187
logical_top_l 0_53 72.5714 0.2100 189 72.5714 0.4330 1227
logical_top_l 0_54 77.4167 0.2000 190 77.4167 0.5580 1445
logical_top_l 0_5 5 69.1510 0.2200 241 69.1509 0.4150 1147
Average 75.3671 0.1863 174 75.3671 0.4321 1212

Data Table for 14-nodes networks

Our approach CPLEX
Case Number value rim e Iteration value Time Iteration

logical_top_14_l 1 59.8889 0.9700 475 59.8889 2.6020 4581
logical_top_l 4_12 72.0001 0.7600 397 72.0000 1.9640 3347
logical_top_l 4_14 64.0555 0.8500 356 64.0556 2.5290 4600
logical_top_l 4_15 64.3126 0.7700 354 64.3125 2.1280 4351
logical_top_l 4_22 72.0001 0.7600 397 72.0000 2.0000 3347
logical_top_l 4_24 64.0001 0.8600 402 64.0000 3.2620 5440
logical_top_l 4_25 64.3125 0.7200 302 64.3125 1.4290 2556
logical_top_l 4_31 59.8889 0.9600 475 59.8889 2.5710 4581
logical_top_l 4_32 72.0001 0.7600 397 72.0000 1.9950 3347
logical_top_l 4_3 3 54.6487 1.4600 812 54.6486 3.1390 4805
logical_top_l 4_34 64.0555 0.8500 356 64.0556 2.5000 4600
logical_top_l 4_3 5 64.3126 0.7600 354 64.3125 2.1450 4351
logical_top_l 4_41 59.8889 0.9600 475 59.8889 2.5530 4581
logical_top_l 4_42 72.0001 0.7500 397 72.0000 1.9600 3347
logical_top_l 4_43 54.6487 1.4600 812 54.6486 3.0510 4805
logical_top_l 4_44 64.0555 0.8600 356 64.0556 2.4990 4600
logical_top_l 4_45 64.3126 0.7600 354 64.3125 2.1220 4351
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logical_top_14_51 59.8889 0.9600 475 59.8889 2.5600 4581
logical_top_l 4_52 72.0001 0.7500 397 72.0000 1.9820 3347
logical_top_l 4_53 54.6487 1.4600 812 54.6486 3.0650 4805
logical_top_l 4_54 64.0555 0.8500 356 64.0556 2.5040 4600
logical_top_l 4_55 64.3126 0.7700 354 64.3125 2.1120 4351
Average 63.88 0.9118 448 63.88 2.3942 4240

Data Table for 20-nodes networks

Our approach CPLEX
Case Number value Time Iteration value Time Iteration

logical_top_20_l 1 55.5587 54.6700 9394 55.5585 81.0890 44635
logical_top_20_l 2 61.7007 54.0700 9661 61.7001 80.5370 46236
logical_top_20_l 4 62.8714 29.9800 5863 62.8710 51.8490 33358
logical_top_20_l 5 56.7091 50.3200 7878 56.7090 84.8670 41931
logical_top_20_21 55.5587 54.6800 9394 55.5585 79.8420 44635
logical_top_20_23 59.3862 44.2000 7887 59.3852 86.8630 47510
logical_top_20_24 62.8714 30.0400 5863 62.8710 51.7310 33358
logical_top_20_25 56.7091 50.3400 7878 56.7090 84.7800 41931
logical_top_20_31 55.5587 55.0700 9394 55.5585 81.7620 44635
logical_top_20_3 2 61.7007 54.3600 9661 61.7001 81.5630 46236
logical_top_20_3 3 59.3862 44.2200 7887 59.3852 87.5300 47510
logical_top_20_34 62.8714 30.2000 5863 62.8710 52.9770 33358
logical_top_20_35 56.7091 50.3200 7878 56.7090 84.5680 41931
logical_top_20_41 55.5587 54.6600 9394 55.5585 83.8000 44635
logical_top_20_42 61.7007 53.9000 9661 61.7001 81.2620 46236
logical_top_20_43 59.3862 44.2200 7887 59.3852 87.2620 47510
logical_top_20_44 62.8714 29.9600 5863 62.8710 52.7610 33358
logical_top_20_45 56.7091 50.3000 7878 56.7090 84.0260 41931
logical_top_20_51 55.5587 54.6700 9394 55.5585 80.8040 44635
logical_top_20_52 61.7007 53.9200 9661 61.7001 80.0870 46236
logical_top_20_53 59.3862 44.2200 7887 59.3852 85.5070 47510
logical_top_20_54 62.8714 30.2400 5863 62.8710 52.2250 33358
logical_top_20_5 5 56.7091 50.2900 7878 56.7090 82.8570 41931
Average 59.1323 46.4717 8,081 59.1319 76.5456 42374

Data Table for 30-nodes networks

Our approach CPLEX
Case Number value Time Iteration value Time Iteration

logical_top_30_l 1 52.1681 1385.2300 63702 52.1667 3692.1210 368030
logical_top_30_12 53.2002 1289.1499 56994 53.2000 3508.3380 362333
logical_top_30_l 3 49.8365 1395.9800 60621 49.8365 3059.4520 312422
logical_top_30_14 50.8270 1254.2699 55914 50.8261 3246.7290 317945
logical_top_30_l 5 53.2588 1140.5500 53744 53.2579 2993.4890 330895
logical_top_30_21 52.1681 1380.4900 63702 52.1667 3541.4570 368030
logical_top_30_22 53.2002 1287.7600 56994 53.2000 3183.8580 362333
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logical_top_3 0_23 49.8365 1387.6100 60621 49.8365 3151.4360 312422
logical_top_30_24 50.8270 1252.1700 55914 50.8261 3065.1950 317945
logical_top_30_25 53.2588 1138.1200 53744 53.2579 2962.4710 330895
logical_top_30_31 52.1681 1377.1901 63702 52.1667 3580.8890 368030
logical_top_30_32 53.2002 1280.9999 56994 53.2000 3735.5280 362333
logical_top_30_3 3 49.8365 1382.6699 60621 49.8365 2940.2870 312422
logical_top_30_34 50.8270 1246.6000 55914 50.8261 2984.0380 317945
logical_top_3 0_3 5 53.2588 1134.9301 53744 53.2579 3087.8280 330895
logical_top_30_43 50.8047 1335.9200 60170 50.8046 3486.0260 338573
logical_top_3 0_44 50.8270 1246.0701 55914 50.8261 3105.4100 317945
logical_top_30_45 53.2588 1133.3600 53744 53.2579 2920.8680 330895
logical_top_30_51 52.1681 1379.9399 63702 52.1667 4234.1740 368030
logical_top_30_52 53.2002 1283.0001 56994 53.2000 3543.1150 362333
logical_top_30_53 49.8365 1392.4700 60621 49.8365 3043.0760 312422
logical_top_30_54 50.8270 1248.9800 55914 50.8261 3121.4440 317945
logical_top_30_55 53.2588 1141.2100 53744 53.2579 2892.5970 330895
Average 51.8284 1282.3770 57988 51.8277 3264.3403 337127

Data Table for 40-nodes networks

Our approach 
value TimeCase Number 

logical_top_40_l 1 
logical_top_40_l 2 
logical_top_40_l 3 
logical_top_40_l 4 
logical_top_40_l 5 
logical_top_40_21 
logical_top_40_22 
Average

53.1734 33837.0625
52.2614 36789.8516 
51.3814 38710.7305 
50.4012 34040.3008 
51.8380 36516.6680 
53.2544 36317.1836
52.2614 36010.7422 
52.0816 36031.7913

Iteration value 
361258 53.1600 
392455 52.2500 
390599 51.3700 
345165 50.3909 
374574 51.8246 
391385 53.2423 
392455 52.2486 
378270 52.0695

CPLEX 
Time Iteration

61331.9230 1468652 
57489.1920 1492830 
53611.8890 1207017 
56915.1350 1461725 
59445.9280 1553953 
54139.6890 1514260 
53741.7520 1492830 
56667.9297 1505692

Data Table for 50-nodes networks

Our approach CPLEX
Case Number value Time Iteration value Time Iteration

logical_top_50_l 1 46.0532 166088.969 842210 ** ** **
logical_top_50_l 2 46.3313 148754.781 785464** ** **
logical_top_50_l 3 45.6885 159690.172 823782** ** **
logical_top_50_l 4 45.8053 159522.531 846865** ** **
logical_top_50_15 46.5233 161640.625 881440** ** **
Average 46.08032 159139.416 835952** ** **

** results not found
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