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Abstract

The routing problem in Wavelength-division multiplexing (WDM) networks, on a given
logical topology, is to find an optimum scheme for data communication so that the
network may handle all traffic requirements in an efficient manner and minimize the
network congestion. This problem is typically solved using a Linear Programming (LP)
formulation using the node-arc representation and a LP solver such as the CPLEX. As
the network size increases, the time taken by a tool like CPLEX to find a solution to the
routing problem becomes unacceptable.

This thesis investigates a novel technique, using the arc-chain formulation for
representing the logical topology, to speed up the solution of thé routing problem. We
use eta-factorization with the generalized upper bound (GUB) technique to solve such
problems. Experiments show that our approach significantly outperforms the standard
LP techniques based on a node-arc formulation, in terms of the time required to
generate an optimal solution.

Keywords: WDM, multi-commodity, congestion, Linear Programming, Generalized
upper bounding, eta-factorization.
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Chapter 1: Introduction

With the explosive growth of Internet as well as of data traffic, there is a growing demand for
huge bandwidth. Optical networks employing the Wavelength-division multiplexing (WDM)
technology represent the most promising candidate to meet this increasing demand. The
estimates show that today’s Asynchronous Transfer mode Networks (ATM) do not have the
capacity to fulfil the exponential growth in data flow or traffic demand by user’s applications
[Mu00]. WDM technology allows a single optical fiber to send out many light beams of
different wavelengths simultaneously with tremendous transmissible bandwidth. Because, a
single link carries tens of Terabits per second with extremely low loss [Mu00], a huge amount of
data is affected when network failure occurs. A WDM network consists of a set of nodes,
physically interconnected by optical fiber (the physical topology), upon which a logical
topology is overlaid by establishing lightpath [Mu00] interconnections between the nodes.

WDM networks are considered to be the future wide-area backbone networks.

WDM network design usually is divided in two sub-problems: Network design and Routing and
Wavelength Assignment (RWA) [XY02]. The Network design involves physical topology and
configuration design [XY02]. The physical topology of a WDM network is defined by
e Network access station/ end-nodes, typically an access station is equipped with number
of transmitters and receivers to transmit data to or to receive data from multiple data
sources.
e Optical Cross Connects (OXS) can route the optical signal coming on a wavelength
towards their respective destinations and

e Fiber links, that provides the physical medium for optical communication.

A Logical topology of a WDM network is the topology viewed by the higher layer such as
SONET, ATM, IP [HAOO]. It is often defined by a Graph of end nodes and the lightpaths
between them. A lightpath is a logical all-optical connection established to satisfy data
communication requests between a source node and a destination node. In a WDM network,
logical topology is represented by a graph LG, where the nodes in LG are the end-nodes in the
network and, and there is a directed edge i — j in LG (often called a logical edge) from node i to
node j, if the node pair (i, j) are connected by a lightpath. [AJB04]. Congestion of a WDM

network is defined as the maximum load offered in a logical link.
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The next step of the network design is to determine the optimal routing strategy considering the
traffic requirements between the end nodes and the logical topology. Minimizing network
congestion is a way to optimize routing strategy. If a traffic load ¢ is given for a source
destination (s, d) pair, then the challenge of the routing strategy is to find a suitable path/ paths
to route it in an optimal manner. In general there are many path from s to d; one may be s = x;—
X2 = X3 ...—> Xp,= d. The routing strategy determines how much traffic should be carried by this
path while taking into account about each of the path from source s to destination d. As the
objective of the routing strategy is to minimize congestion, we have to consider all the node

pairs in the network that have some traffic demand.

This thesis studies techniques for minimizing the congestion in wavelength routed WDM
networks by adopting some techniques used in the Operation Research community for multi-

commodity network flows.

1.2 Visualization of Routing Problem in a WDM network as a Multi-Commodity
Network Flow Model

The multi-commodity network flow model, a well known optimization model arises in the areas
of transportation, production and communication. The model concerns flow routing of a number
of commodities (e.g. message, vehicles) through a capacitated network at minimal cost. In the
basic model it is assumed that for each commodity, the flow can be routed on any path
connecting its origin and destination. Linear programming (LP) formulation is generally used to
solve this type of problems. The shared resources of the network are expressed using linear

constraints in an LP.

In a WDM network, each source destination node pair(s, #) with traffic demand ¢ sends ¢ amount
data from s to d. The data communication from all sources to destination shares the network
resources. If we view the data between each node pair with traffic demand (¢(s, d) # 0) as a

distinct commodity, the routing problem in wavelength routed WDM networks may be viewed

as a multi commodity network flow model.

1.3 Motivation

If the physical topology and traffic matrix of a WDM network is given, then the routing problem
may be formulated as LP [RS96]. A straight-forward LP formulation can be solved by a
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commercial LP solver package, like CPLEX [BMO0] to give optimum routing with minimum

congestion. For small network, such an approach is feasible.

Visualising the WDM network as multi-commodity flow problem shows that the number of
commodities with N nodes is very close to N(N-1), since most nodes communicate with each
other. Thus for a 30-node network, the number of commodities is nearly 870. In operation-
research multi-commodity flow normally deals with a small number of commodities. So,
dealing with large number of commodities becomes a challenging problem, as the number of
constraints increases rapidly with the size of the network. A previous experiment shows that
CPLEX solver takes long time to give a solution for larger network and moreover, it can’t

handle networks with more than 40 nodes.

Thus we introduce a different algorithm to solve the problem. We use arc-chain representation
to formulate the problem, explore the advantage of the Generalized Upper Bounding (GUB)
structure of the basis and then use eta-factorization to avoid direct inversion of the matrix. This

process has a dramatic effect on the time to perform an iteration of the revised simplex method.

1.4 Solution Outline

The network flow problem is formulated in a number of ways in the operation-research field.
Arc-chain representation has been profitably used for solving minimum-cost network flow
problems [To66][FF58]. This representation can be readily adapted to the problem of
minimizing congestion of wavelength-routed WDM network. To solve the problem using arc-
chain representation, by the revised simplex method the most expensive operation is that of
inverting a matrix called the basis [Ta82]. For a network with m number edge in logical
topology and ¢ number commodity the size of basis is (m+q) x (m+q). So, the time needed to

invert a matrix limits the size of the network that can be safely handle.

At each iteration of the revised simplex method we need to find an entering column to improve
the solution. In our approach, instead of generating all possible columns and storing them before
starting the iteration process, we generate the entering column at each iteration. This implicit

column generation saves time and memory space.

It is established that the constraints in our problem have a special structure called, Generalized

Upper Bounding (GUB) structure [DS67]. It is well known that if a LP satisfies the GUB
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structure, we can avoid the invention of the entire basis (m+¢) and can achieve the same result
by inverting the matrix of size m x m, which provides a significant improvement on time to
perform an iteration of the revised simplex method. A new technique to represent matrices S and
T is used with GUB structure which reduces the computational cost for vector-matrix and

matrix-vector multiplication.

Though the GUB structure gives a significant improvement in time, inverting the matrix of size
m x m takes most of the time to obtain a solution in the revised simplex method. So, we
introduce eta-factorization to eliminate direct matrix inversion. Eta-factorization is used in the
GUB structure to obtain the solution and find the simplex multiplier at each iteration of the
revised simplex method. Use of eta-factorization on the GUB structure dramatically improves

the time to perform a iteration of the revised simplex method.

Using these approaches we have formulated our algorithm for routing in a WDM network and
implemented the algorithm in C language. We have tested our program on various size

networks.

1.5 Organization of thesis

In chapter two of this thesis, we have given a literature review and basic terminology in the
fields of WDM network and operations research. Chapter three describes our formulation for the
routing problem. In chapter four, we have given the experimental setup and the results of our
algorithm for some small to large size networks along with a critical summary of our work.

Conclusion and future direction of work is also included in chapter four.
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Chapter 2: Back ground review of related techniques

2.1 WDM Opftical Networks

Wavelength-division multiplexing (WDM) is an approach that can exploit huge opto- electronic
bandwidth mismatch by requiring that each end-user’s equipment operate only at electronic rate,
but multiple WDM channels from different end-users may be multiplexed on the same fiber.
Under WDM, the optical transmission spectrum is carved up into a number of non-overlapping
wavelength (or frequency) bands, with each wavelength supporting a single communication
channel operating at whatever rate one desires, e.g., peak electronic speed [M00]. Thus, by
allowing multiple WDM channels to coexist on a single fiber, one can tap into huge fiber
bandwidth, with corresponding challenges being the design and development of appropriate
network architectures, protocols, and algorithms. Also, WDM devices are easier to implement
since, generally, all components in a WDM device need to operate only at electronic speed; as a
result, several WDM devices are available in the marketplace today, and more are emerging.
Optical cross-connects (OXCs), Wavelength division multiplexing (WDM) and demultiplexing
(WDDM) are among them.

This chapter will review optical network technology, multiplexing/demultiplexing techniques;

brief description of some commonly used devices in fiber technology and some terminology

2.1.1 Optical fiber

Optical fiber is essentially a thin filament of glass/plastic, which acts as a wave-guide [M00]. An
optical fiber consists of two concentric layers termed the core and the cladding. These are shown
on the right side of Figure 2-1. The core and cladding have different indices of refraction with
the core having n; and the cladding n,. Light is piped through the core. A fiber optic cable has
an additional coating around the cladding called the jacket. Core, cladding and jacket are all
shown in the three dimensional view on the left side of Figure 2-1. The jacket usually consists of
one or more layers of polymer. Its role is to protect the core and cladding from shocks that might

affect their optical or physical properties [KS]
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Carg fr s Crakiing Iny}
Figure 2.1: Fiber Optic Cable, 3 dimensional view and basic cross section [KS]

Because of the total internal reflection phenomena of light, light can travel the length of a fiber
with very little loss. This occurs because the core and cladding have different indices of
refraction with the index of the core, n;, always being greater than the index of the cladding, n..
Figure 2-2 shows how this is employed to effect the propagation of light down the fiber optic
cable and confine it to the core. If the light ray is injected and strikes the core-to-cladding
interface at an angle greater than the critical angle then it is reflected back into the core. Since
the angle of incidence is always equal to the angle of reflection, the reflected light will again be
reflected. The light ray will then continue this bouncing path down the length of the fiber optic
cable. If the light ray strikes the core-to-cladding interface at an angle less than the critical angle
then it passes into the cladding where it is attenuated very rapidly with propagation distance.
This angle is fixed by the indices of refraction of the core and cladding and is given by the
formula:

0. = arc cosine (ny /ny).

Jacket
...~ Cladding

= N S RN N S T et

Light ray at less than Jacket
Critical angle is Angle of Angle of
ahsorbed in jacket Incicence Reflection

Light is?ropagated by
Total internal reflection

Figure 2.2: Propagation of a light ray down a fiber optic cable [RS]

The critical angle is measured from the cylindrical axis of the core. By way of example, if n; =
1.446 and n,= 1.430 then a quick computation will show that the critical angle is 8.53 degrees, a

fairly small angle.
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2.1.2 Wavelength Division Multiplexing (WDM) Technology

“Wavelength-division multiplexing (WDM) is an approach that can exploit the huge
optoelectronic bandwidth mismatch by requiring that each end-user’s equipment operate only at
electronic rate, but multiple WDM channels from different end-users may be multiplexed on the
same fiber’[Mu0O]. This technique divides the huge bandwidth of a fiber into many non-
overlapping bands of wavelength, each operating at a desirable speed [Mu00]. These channels
can be modulated to accommodate dissimilar data formats, including analog and digital. This
technique improves the transmission caf)acity of a fiber having multiple channels at different

carrier wavelength.

2.1.3 Components of optical network

In order to develop appropriate network architecture, it is required to have protocols, algorithms
and hardware components for real world implementation. Research for the development of
optical hardware is ongoing for decades. It is anticipated that next generation Internet will
employ WDM optical backbone. A Four channel point-to-point WDM transmission system

using optical amplifiers, multiplexers and demultiplexers is shown in figure 2.3

Multiplexing Terminal Bemultiplexing Terminal
Optical Line

- PN S
FE—--—T e 2 [TE |
. x4 “7]’“’ XA RS >“‘ x5 FE]
(FE}—f--.—t x fFE]

Optical Components:

Terminal Bquipmeni } @@ Wavelenpth Multiplexer/Demultiploxer

B WDM Transmister _ P> Optical Amplifier

Figure 2.3: A Four-channel point-to-point transmission channel with amplifiers [M00]

Evolution of the WDM network is successful due to stable lasers, erbium doped fiber amplifiers
and optical low cross talk, stable and compact filters. The tuning bandwidth and speed, and
temperature stability are essential characteristic of lasers are suitable for WDM networks [AV
+2001].
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OXC: An optical cross connect (OXC) has several input port and output ports. Each OXC can
switch the optical signal coming on a wavelength of an input fiber link to the same wavelength
in an output fiber link, without requiring the signal to undergo any optoelectronic conversion. If
an OXC is equipped with converters, it can switch the optical signal on an incoming wavelength

of an input fiber to any wavelength in output fiber. A typical OXC with optical switches is

shown in figure 2.4.
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Figure 2.4: OXC [G92]

2.1.4 Terminology

Lightpath: A lightpath in an optical network is a point-to-point communication path that
connects a transmitter at a source node to a receiver at a destination node through a number of
router nodes where no optoelectronic conversion is needed at any intermediate node. [AJB04].
Two lightpath in the fiber link must be of different wavelength to prevent interference of the
optical signals [RM99].

Link: A link is a point-to-point optical fiber connection. Each link is able to carry multiple

wavelengths.

Physical topology: The physical topology of an optical network consists of a set of end-nodes
(capable of generating data for transmission, receiving data and having a number of optical
transmitters and receivers), router nodes and the optical fibers interconnecting these nodes

[AJBO04]. It is the network topology seen by the optical layer.
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Logical topology: The logical topology is the network topology seen by the higher layer e.g. the
layer above the optical layer. In a WDM network, logical topology is represented by a graph
LG, where the nodes in LG are the end-nodes in the network and, and there is a directed edge i
—j in LG (often called a logical edge) from node i to node j, if the node pair (i, j) are connected
by a lightpath. [AJB04]. A physical topology and corresponding logical topology is shown in
figure 2.5. Where lightpath is established between the nodes 221, 12523, 522, 425, 324
of physical topology. All the connected edge (1-3. 2-5 etc.) of logical topology are called link.

(4.5)

a) Physical topology b) Logical topology
Figure 2.5: physical and logical topology

Congestion: The congestion of the network is defined as the load on the logical edge, which

carries maximum amount of data. Our target is to minimize congestion. [AJB04]

Traffic Matrix: Traffic in a network is the amount of data that must be transmitted from each
source node to desired destination. It is a square matrix of size equal to number of node in the
network. The (i) th entry in the traffic matrix determines the amount of data that flows from

node i to node j.

Node 1 2 3 4

1 0 15 0 40

2 0 18 22

3 10 0 0 0

4 0 20 0
Logical topology

Figure 2.6: 5-Node logical topology and its traffic matrix
Figure 2.6 shows a logical topology of a network with four nodes and corresponding traffic
matrix. The diagonal elements of the traffic matrix are zeros, as data can’t flow from and to

same node. In the figure it shows that 15 units of data are sent from node 1 to 2. Usually the

9
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traffic matrix is expressed as a percentage of the capacity of light path. For example, the traffic

shown in fig 2.6, node 1 to 2 is using 15% of its capacity.

2.1.5 Routing in WDM Network

Routing strategy in a WDM network is the policy of sending data from all source nodes to the
corresponding destination nodes using appropriate paths. Traffic can be send from source node
to its destination using one or more paths, where each path consists of one or more logical edge
or lightpaths. In the figure 2.6, the 40 units of data need to be sent from node 1 to 4. This
amount can be sent via following two paths:

Using logical link 1 -> 4 and using logical link 1->2->4. We can use either one of the two paths
or can distribute the traffic over both paths. For every pair of source destination nodes that has
some traffic to route we have to consider every possible route in the logical topology. Our
objective is to route all the traffic in a way that minimize the congestion in the network and thus

optimize the use of optical resources in network.

2.1.6 WDM Network Architecture:

WDM network technology makes it possible for end users to communicate via all-optical WDM
channels, which may span multiple fiber links. The architecture of a wavelength-routed WDM
network is studied in several papers [RM99], [CHMR98], [G91], [GD02], [IMG96], [RSMO03].
“The WDM architecture consists of wavelength cross connects interconnected by fiber links
[RM99].” The optical cross-connect (OXC) can route optical signal without optoelectronic
conversion. Each network link has a pair of unidirectional fiber links. The network has access
station associated with each optical OXC. An access station helps to transmit signals on
different wavelengths, which are coupled into the fiber using wavelength multiplexers. A

wavelength-routed optical network is shown in figure 2.7.

10
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[_] Access Station: Contains (tuneable) transmitters and receivers

Switch: Contains photonic switch, and perhaps photonic amplifier,
wavelength converters etc

Figure 2.7: A wavelength-routed (wide-area) optical WDM networks. [M0O0]

2.2 Introduction to Linear Programming (LP) and Revised Simplex Method

In mathematicé, linear programming (LP) problems are optimization problems in which the
objective function and the constraints are all linear [Taha]. Linear programming is the process of

solving LP problems.

Linear programming is an important field of optimization for several reasons. LP problems are
the easiest kind of optimization problems, since everything is linear. Furthermore, many
practical problems in operations research can be expressed as linear programming problems.
Finally, many algorithms for other optimization problems work by solving LP problems
[Taha75].

An Integer Linear Programming (ILP) problem is a linear-programming problem with the
additional constraint that variables must take on integral values [ILOG]. In general, it is NP-

Complete Problem. The general form of an ILP problem is written as follows:

11
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(LPParts:) max C'x
such that Ax<b
(ILP Part:) xeZ
Where c is a column vector, A is a matrix representing coefficient of x, b is the constraint values
and Z is the boundary value or acceptable range of values for x. We can also formulate a
problem in the form:

Minimize (or maximize) cixptexyt ...t e

subject to apx; v apxs+. .. Fapx,~b;
axx; + axps +. ..t doke~ bo. .

AmiX] T QX2 + . . .+ QunXn ~ by

with these bounds L S x <u

Where ~ can be <, > or =, and the upper bounds #; and lower bounds /i may be positive infinity,

negative infinity or any real number [CPLEX01].

In this example, all the constraints are of the formz a,x; < b,, where b; is a scalar. Here cy,
j

n
..., cn are the cost coefficients, z = Zc X is the objective function to be minimized, x1, x»,
J=1

...+, Xq are the decision variables. There are m. inequality constraints and these constraints can

be represented as a constraints matrix 4 such that

a, 4y A,

a, a a
4= t 2 2n

am 3 amc2 am n

To solve any LP problem, all the inequality constraints in the problem must be transformed into

equality constraints. In case of the problems where all constraints are in the form Zaijx ;Sh,

J
we add a non-negative slack variable to transform the constraints to equations. Thus the
constraint equation becomes

12
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! =

anx, +apx, +..ta,x, +x, =b
2 _

@y X tayx, +..+a,x,+ x; =b

A%+, %+ ta,, x,+ x =b

Where x;, x2, X3, .... Xn >0
Since there are m number of constraints, m number of slack variables are added to the matrix.
The new equation becomes Ax = b where A is a matrix of size m x (n+m) and b is column

vector of m elements, x is the vector consisting of the »n decision variables x;, xz X3 ... Xu
followed by m slack variables x!,x?,..x™. In explaining the simplex algorithm we will use
notation 4,to represent the /™ Column of 4 and if p is a vector of m we will use p(i) to
represent the i element of p.

=b;, we will add an artificial

When the constraints of the problem are of the formZaijx 5
j

+x! = b, and the objective function will be changed

variable to create equation of form Za,.jx ;
J

toz= Zci x; + Mx,, where M is a vary large constant{BJ90]. When the constraints are of form
Zaijx ; 2b,, we will subtract a slack variable x! to convert the constraint into equality
j

constraintz a;x; — x! = b,. Then using artificial variable converts it to equality equation. Thus
J

equation will be in the form Y a,x,+x,—x)=b, and the objective function will be z =
J

i
Zcixi +Mx,—x.
i

When the equations of a problem are in the form Ax = b and x > 0, and there exist a solution
vector x that satisfies all the constraints of the problem, it is called a feasible solution. We can
partition the components of the x in such a way that there will be m basic variables and » non-
basic variables, where all the non-basic variables will have the value of 0. A matrix B having the

columns of matrix 4 corresponding to the set of basic variables is called a basis. We call the

X
vector x = [ g ] a basic solution of the system where x, = B'b and x, = 0. Whenx, >0, then

Xy
the vector x,of basic variables is called a basic feasible solution of the system [BJ90]. The

corresponding value of the objective function is ¢,B™'b where ¢, is a vector of the cost

coefficients, corresponding to the basic variables inx, .

13
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The simplex method is the first method introduced by G.B Dantzig [DOWS5S5] to solve linear
programming formulation in which one basic feasible solution is replaced by adjacent solution.
The revised simplex method is an efficient implementation of the standard simplex method

when the non basic variable is much greater then the number of constraints. If we are given a
basic feasible solution with basis B, basic variables x, and cost vector ¢, then we carry out the

following steps [BJ90] iteratively to get optimal solution:

Step I: Calculate vector b =B™'b and the objective functionz = ¢ ,313 where ¢, is the vector of
cost of basis.
Step 2: Calculate vectorw=¢,B™", where W is called the vector of simplex multipliers.

Step 3: For each non-basic variable x;, calculatez, ~c; =wa, —c, . Let k be such that the value

ofz, —¢c,2z,-c,Vj, 1< j<n+m,. Ifz, —¢, <0, stop; otherwise go to step 4.

~1a

Step 4: Calculate vectord =B7a,if d « < 0 stop; otherwise go to step 3.
Step 5: Calculate 7y, = minimum {b(i)/d, (i) : d, (i) > 0}, Vil <i < m and let b, be the index of
b and d , corresponding to rmi, . This gives us the variable x;, to leave the basis.

Step 4: Update the basis by replacing a,, column witha, .
2.3 Flow of Commodities in a Network

Optimizing the flow of goods or messages in a network is an important research topic. The
target is to use a transportation system to move a single entity or multiple entities from a source
to its destination in an efficient way that makes the best use of the system resources. This
transportation system could be a roadway, railway or for instance could be a computer network,
where data need to be transported. We can visualize the transportation system by a graph where
nodes are the actual/ potential sources and destinations and arcs correspond to the transportation
routes. We will represent an arc from node i to node j by i > j. The entity being transported is
called a commodity. The arc (route) for carrying commodities may have limitations. Say for a

given arc i = j, the maximal carrying capacity can be represented by u;;.
The generic models representing the practical applications can be classified as single commodity
flow models and muiti commodity flow models. The single commodity network problem sends

one commodity from the source to the destination in some optimal way. For example a shipper

14
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wants to ship one type of goods from a railway station to different location (rail station) by train.
All the locations have different demands for the goods. The objective is to meet the demand
with a minimum possible transportation cost. To deal with this problem, network flow model
can be used. Here the rail stations are nodes and the train line joining the stations are the arcs.

Available capacity of the carrying wagon in a route restricts the total carrying capacity.

In reality, a number of commodities, regulated by their own network flow constraints, share the
network and the capacity of an arc limits the total sum of flows of all the commodities using the
arc. To optimize such situation we use special mathematical model — the multi-commodity
network flow model [AMO93]. In this model several commodities share the arc capacity with
their own flow constraints. For example, we want to ship different types of goods to various
destinations using a railway transportation system. Each destination has a different demand for
goods. This is a case of multi-commodity flow problem as different goods will share the wagon

and the wagon has capacity limitations.

2.3.1 Single Commodity Maximal Flow Problem

Single commodity maximal flow problem is a network optimization problem, where the
objective is to maximize the flow of a commodity from a designated node called the source
node to another designated node called the destination node (sometimes called a sink node),
without exceeding the capacity of any arc [FF56]. The source has to supply sufficient amount of
flow to meet the demand of the destination. There may exist some node in the network that does
not supply or receive flows, are called intermediate nodes. The incoming and outgoing flow in

an intermediate node must be equal.
In Figure 2.8 a 4 nodes network is shown with nodes numbered 1 to 4. We associate a label to
each of the arc of the network to describe the current flow and the maximal flow capacity of that

arc. For example an arc i=>j with label (x;, u;) denotes that the arc has capacity «; and the

current flow is x;; .

15
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Intermediate
nodes

Source Destination

3, 4)

Figure 2.8: Single commodity network

In the network of Figure 2.8, node 1 is the source node and node 4 is the destination, and the
demand to ship is 5 units. In this case the node 1 is sending 2 units ’of flow through arc 1->2 and
2->3 and 3 units of flow through arcs 1->3.and 3->4 to node 4. Thus 5 units of flow are sent to
node 4, using two different routes, without exceeding the arc capacity. In a capacitated network
G = (V, E), we can model a single commodity maximum flow problem where V is the set of

nodes and E is the set of directed arcs, with a non-negative capacity u; associated with each arc
(i2))€E.
The problem formulation to find the maximum flow from source s to destination d satisfying the

arc capacity and the flow conservation constraints is as follows [AMO 93]:

Maximize v
Subject to
vV i=s
X— Y, %,=10 ieV—{s,d} .. (2.1
{iti—))eE} {(j>DeE} - i=d

0<x;<u;, Vi jekE
This formulation refers to a flow vector x = (xy) which corresponds to the value of flow(scalar

variable v). The total outflow from node i is the first term ( 2 x; ) of the flow conservation
(i )eE}

constraints and the second term ( Z x, ) is total inflow into node i. Flow conservation
UHj>NeE}

constrains state that for all nodes, except the source and destination nodes, the outflow must be

16
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equal to inflow. These constraints are also known as the mass balance constraints. Capacity

constraints impose restrictions on the total flows on each arc.

2.3.2 Single Commodity Minimum Cost Network flow (MCF) Problem

In this problem the objective is to make the most economic and best use of the network
resources. A directed graph G = (¥, E) is used to represent the network with N number of nodes

and m number of directed arcs, where V is a set of nodes and E is a set of directed arcs. The cost

per unit of flow, denoted by ¢, is associated with each arc i=>j € E. Like before, the maximum

flow capacity of each arc i=>j € E is limited by u;. Each node i€ V' has a number 7, associated

with it, which represents the requirement (i.e., supply/ demand) at that node. r,> 0 denotes that
a source node is supplying 7 units of flow, while ,< 0 denotes a destination node with a
demand of7,, for all intermediate nodes 7, = 0. The decision variable x; is the flow on arc i

The minimum cost flow problem [AMO93] can be formulated as
Minimize z Cy Xy

i—jeE
Subject to

X;— Y x,=r,ieV .. (2.2)

ij Ji
{j(i= J)eE} {J:(j—i)E}

0<x;,<u; Vi—ojekE

2.3.4 Multi-Commodity Network flow Problem

In this problem a number of distinct commodities with their sources and corresponding set of
destinations share a capacitated network. The network is represented by a directed graph G = (V,

E) with each arc i> j having a capacity (cost/unit flow) u,(c,). Figure2.9 shows a 5 node

network with a cost and a capacity (u;,c; ) associated with every arc i = j.

if?

17
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5,1)

Figure 2.9: Multi-commodity Network flow

We consider a case where there are two commodities K' and K flowing from node 1 to 5 and
node 3 to 4 with a demand of 3 and 6 units respectively. Commodity K' may be sent using the
paths 1 >3 > 5andor 1 > 2 -> 3> 5. Commodity K° can be sent using one or both the paths
3> 4,3 > 5 > 4. In this case for commodity K> we have to use both paths due to capacity
constraints. As comniodity K' has to use the arc 3 > 5 to send its 3 units of flow so only 1 (4
minus 3) unit capacity is available for commodity K* in arc 3 = 5. So, the remaining of the 5 (6
minus 1) units of commodity K have to use the path 3-> 4. This situation is shown in figure
2.10. The total cost for all the commodities is the sum of the cost of all flows for each

commodity. The cost for commodity X' and K* will be 3x2+3x2+3x2 =18 and

I1X2+1x1+5%x3 =18 respectively, thus total cost of the network flows become 36 units.

w5nsS Commodity K
Commodity K*

Figure 2.10 Multi-commodity Network flow
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Mainly two types of multi-commodity problems are studied in literature [AMO93]. These are
the maximum multi-commodity network flow problem and the minimum-cost multi-commodity
network flow problem. The objective of the maximum multi-commodity network flow problem
is to maximize the sum of flows for all commodities satisfying the capacity constraint for all
arcs and for the minimum-cost multi-commodity network flow problem is to determine the

demands of all commodities at a minimum cost without violating capacity constraint.

2.4 Representations for multi-commodity network flow problems

The two possible ways of representing the multi-commodity network flow problems, the node-

arc representation and arc-chain representation are described here.

2.4.1 Node-Arc Incidence Matrix

A node-arc incidence matrix N Xm represents a network with N nodes and m arcs, where the i
row corresponds to the i node and the /™ column corresponds to the /® arc. The column
corresponding to the arc i = j (flow from node i to node j) has

» +1 in the row corresponding to node i,

» -1 in the row corresponding to node j and

» 0 1in all other rows.
Figure 2.12 is the node-arc representation for the network shown in figure 2.11

X

y

Figure 2.11: 4-Node network

X)) | )| &) [ 0x) | ) | 00 | )

Figure 2.12: Node-Arc incidence matrix
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2.4.2 Node-Arc Formulation for Multi-commodity network flow

Consider a network represented by directed graph G = (V, E) of N nodes and m arcs. Let a
Nxm matrix (N,) denote the node-arc incidence matrix for this graph. To formulate the
minimum cost multi-commodity (MMCF) network flow [AMO93] with ¢ commodities in the
network we will use the following notation:

source (k) = the source of the K commodity

destination (k) = the destination of the Kt commodity

r; = the total amount of flow of commodity i from source(i) to destination(i)

x,, = the flow for commodity k on arc i = j
x* = the entire flow vector for commodity k
&* = the cost vector for x*

u,; = a capacity associate with each arc i 2.

With this notation the MMCEF can be formulated as
N k_k
Minimize 2 c X
k=1
Subject to :
The arc capacity constraints that restricts the total flow of all commodities on arc i = to at most
g
u is Y xf<Su,Vi—o jeE ... (2.3)
k=1

The mass balance constraint which state that each commodity has its own supply vector is
Nx*=bF Vk:1<k<gq..(2.4)
Here b* is a supply vector for commodity k, and b* (i) is defined as follows:

b* (i) = n, if i = source(k)

b* (i) = - rt, if i = destination(k)

=0, otherwise.

To restrict the flow of commodity & on arc i j within u,.f. is

0<xi<ul Vk:1Sk<q V(@-jeE ..253)

ij i
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2.4.3 Arc-Chain Incidence Matrix

A chain [BJ90] is a sequence of arcs [(ip = i;), (i1 i2), ..., (ip-1= ip)] from a source s to a
destination d, where s =ipand d= i,

In a network with m arcs numbered 1, 2, ... , m, a chain can be represented by a vector of m 1’s
and 0’s. In the network, if an arc (i) appears in the chain then the corresponding i? element in

the vector becomes 1 otherwise itis 0 (1 <i <m.).

Figure 2.13: 4-node network

A simple networks with 4 node and 6 arcs, is shown in the figure 2.13, the network carries four
commodities K’ , K , K and. K*. The nodes are numbered 1 to 4 and the arcs are numbered 1 to
6 as shown. The source and destination of commodity K’ is node 1 and 2. There are three chains
in this network for commodity K’. These are arc 1> 2 and the sequence of arcs [(1 > 4), (4 2>
2)] and [(1 = 3), (3 = 4), (4 = 2)]. The chain 1-> 2 may be represented by the vector [1, 0, 0,
0, 0, 0] since the arc 1> 2 corresponds to arc number 1 in the network. In this way the chain [(1
=> 4), (4 > 2)] may be represented by the vector [0, 0, 0, 1, 0, 1] since arcs 1 > 4 and 4 > 2
correspond to arcs numbered 4 and 6 in the network, and third chain as [0, 0, 1, 0, 1, 1].
Commodity K’ has source 3 and destination 4, commodity K has source 2 and destination 4 and
commodity K* has source 1 and destination 3. Commodity K” and K° each have a single chain
represented by the vector [0, 0, 0, 0, 1, 0] and [0, 1, 0, 0, 1, 0] respectively. Commodity K? has
three chains represented by vector [0, 0, 1,0, 0, 0],[1, 1,0,0,0,0]and [0, 1,0, 1,0, 1].

To represent a network with m arcs and ¢ commodities with N, chains for the Kb commodity,

the arc-chain incidence matrix uses a matrix C of size mxN_, where N, =N, +N, +..+ N_.

We will use C} to represent the /* chain of the k" commodity, 1 <j < N,. C} is a vector of
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length m containing 0’s and 1’s only that represents the existence of arcs in that chain. Each

chain of a commodity corresponds to a column in matrixC, so that the first N, columns
correspond to chains for commodity 1, the next N, columns correspond to chains for
commodity 2, and so on. We will use a; to denote the i element of the /" chain of the ™
commodity and C* to denote the mx N , sub-matrix of C corresponding to commodity £. In
other words, if edge i is in chain j of commodity £, a,.f. is 1; otherwise it is 0.

For example, Figure 2.14 shows the arc-chain matrix for the network shown in Figure 2.13 for
commodities K*, K%, K> and K*.

K' K |K K
G G G |G |6 o (¢ G
1 1 0 0 0 0 0 1 0
2 0 0 0 0 1 0 0 1
3 0 0 1 0 0 1 0 0
4 0 1 0 0 0 0 0 1
5 0 0 1 1 1 0 0 0
6 0 1 1 0 0 0 1 1

Figure 2.14: The arc-chain matrix
It may be noted that even a small network with a modest number of commodities may have a

large number of chains, which may results in a large arc-chain matrix.

2.5 Tomlin’s Approach

Arc-chain formulation was adopted in revised simplex method by Ford and Fulkerson to
compute the maximal flow multi-commodity network flows [FF58]. Tomlin used both the node-
arc and the arc-chain formulation to solve Minimum-cost multi-commodity network flow
problem [To66]. We will use Tomlin’s arc-chain approach with some modification to solve our

routing problem.

In a formal arc-chain formulation we have to handle a very large arc-chain matrix C= (a,.'j‘.) as

the number of chains for all commodities becomes extremely large for a non-trivial network. By

exploiting the special structure of the problem we can avoid dealing directly with the entire
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matrix (creating all the chains). We assign numbers 1, 2, ....... ,m to the m arcs of the network,

u; and ¢; are used to denote the capacity and cost of the i arc, and xf is used to represent the
flow of commodity % in chain C ;‘ . Capacity vector u;, u,, .. un, for the edges 1, 2,...., m can be

represent by # . While the network is handling g commodities, r; represent the flow requirement
of the £ commodity, 1 < £ <gq. In arc-chain representation ag has a value 1 if the chain j of

commodity & uses arc i, and a value of 0, otherwise.

The capacity constraint for the i® arc, foralli, 1< i <m is

k=g =Ny
i z a,;fxf Su, .. (2.6)

k=1 j=1

The flow requirement is expressed as:

j=Ny

Y xb=r L27)
J=t

i=m

Zcia;‘. is the cost associated with the chain C f so the total cost for all flows with all
i=0

k=q j=N; j=m i
commodities becomes Z 2 2 ca.;.x,

1 I J
k=1 j=1 j=I
Presentation of the problem in matrix notation is:

Minimize ¢ A'x, +c A*x, +....... +cA'x
1 2 q

Subjectto  A'x, + A%x, +.ovrnen +A%, +x, =4 .. (2.8)
ex, =h
% 79
ex, =r,

Here e, represent the vector N, for commodities £ =1,... ¢ and x, is a vector of m slack

variables. As we are dealing with m arcs and ¢ commodities, the formulation will have m + ¢
rows and a very large number of columns (one for each chain) in constraint matrix C. To solve
this problem we don’t need to generate all these chains (column) explicitly. Instead we find only
shortest chain for each commodity and check if this chain satisfies the simplex condition to be a

part of an entering column as outlined in step 3 of the revised simplex algorithm. If the chain
23
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satisfies the condition then the algorithm creates the chain and proceeds to the next step of the
revised simplex algorithm.
Steps to find an entering column are as follows:

o We have a basic feasible solution and m + ¢ simplex multipliers in each iteration,

o Simplex multipliers for arc i are 7,,......,7, and for commodity j are ¢y, ....... 0,

o If z, >0 for some i, then the slack variable x, corresponding to i™ constraint in equation

(2.8) will improve the objective function. So, x, will enter into the basis.

o If m; <0 for some i, xf will enter into basis if

i=m i=m

Ycai-Y maj -, <0 ... (2.10)

i=1 i=1
ie.,if iim(c,. —n‘,.)ag <o, .. (2.11).
i=1
Asm, <0, for all values of i (1 <i<m),cost (c; —7;)can be assigned to arc i (1 <i<m) to get
non-negative weights for all arcs. Then iim‘(c,. —ni)ag represents the length of the 7™ chain for
i=1
commodity k. This is the shortest chain for commodity %, because, if the shortest chain cannot

satisfy equation 2.11, then no other chain will be able to satisfy it.

Tomlin’s technique to find an entering variable can be summarised as.

a) for any positive simplex multiplier 77, , enter the slack variable x, and stop.

b) assign cost (¢, — ;) to attached edge i (1 <i<m). Enter the variable xjf into the basis if it

satisfies the equation 2.11 and stop.

In this approach, the important point is that we only need to keep track of the basis matrix and
not the chains corresponding to the non-basic variables (which are huge in number).
The initial basic feasible solution is obtained by introducing artificial variables in the last q

equations and then minimizing the sum of all artificial variables [To66].
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2.6 Generalized Upper-Bounding (GUB)

Generalized upper bounding (GUB) [DS57] is a technique, used to make the revised simplex
method more efficient for linear programming problems when the problems have a special
structure. A matrix of size(m + q) X (m + g) for some m and ¢, exhibits a GUB structure, if ,

» gq is relatively large compared to m and

» each column of the last g rows has at most one nonzero entry equal to 1.
The following figure 2.15 shows a constraint matrix A having GUB structure where blank

spaces has zero (0) entry.

| e

- N W
- N
—
W W
~N
O
SN 3
N B
O o0
w N
N W
W W

11

Figure 2.15: An arc-chain incidence matrix with special structure

For the revised simplex method explained in section 2.2, we are required to find w andd >

where w=¢,B"" and d . =B7'4, , to carry out the ratio test in step 2 — 4 at each iteration. That

means we have to solve a system of (m + q) equations with (m + q) variables. When the matrix
size is very large then it may become computationally intractable. But, if the matrix satisfies the

GUB structure, then we can largely reduce the computational expense. The idea is to update the
basis matrix of size m + g, and compute W andd 4> in successive iterations of the revised

simplex method without inverting the whole matrix of size m + g, but to invert the sub-matrix of

size m only. When ¢ is much larger compared to m, then the GUB technique can dramatically

improve the time to compute w and d ‘-

|
_3__:___5_’____ m rows
B = :
T : 1 q rows
m q
columns columns

Figure 2.16: Basis satisfving GUB structure after permutation
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In the revised simplex method, if we have a basis that satisfies the GUB structure, we can
always apply column permutation to that basis matrix so that the resulting matrix has an identity
sub-matrix of size m x m in its lower right corner. Figure 2.16 shows a basis matrix after
column permutation. Here, S and T are matrices of size(mxm), (mXxg)and(gxm),
respectively. So, we can visualise the basis B as the composition of four sub-matrices R, S, T and

I In order to find the value of W and d , in our problem we need to invert the matrix (R - S7)

of sizemXm as explained below. In our problem the basis B is of size (m+¢) and we need to

solve the equations W-B =¢, and B-d, = d, at each iteration of the simplex algorithm. Let the
basis B at iteration £ after performing the permutation to get GUB structure is as follows
B = Rk Sk

T, I

Let the simplex multiplier vector W of size (m+¢q) be divided into two parts, so that W’ be the

vector of the first m simplex multipliers and w” be the vector of the last ¢ simplex multipliers.

Similarly, the cost vector ¢, is divided into ¢; and ¢j corresponding to the first m and last ¢

elements. So the equation W-B =¢, can be written as

AP AN R S o4 ~y
[w w]-[TK IK}=[CB érl (212
K

we can re-express the equation (2.12) as

WR,+W'T, =&, ...(2.13)

and

WS, +W =¢;...(2.14)

From equation (2.13) and (2.14) substituting the value of W’ in equation (2.13) we get

W(R, =8,T,)=¢8,-¢T, ...(2.15)

that implies W =(&; —-¢;7,) (R, - S, T,)™" ...(2.16)

To calculate the value of %" we need to invert matrix (R, — S, 7, ) of size mx m, which is much
less expensive than inverting a matrix of size (m+q) X (m + q) . Once we have the W’ value we

can calculate w” using equation (2.14) and can get the simplex multipliers.

Let @, and 4 be the first m and last q elements of the entering columnd,, d, and d; be the

first m and last ¢ elements of d . - We can write the equation B - d , =4, as
26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 ]

T, 1]\|dr| lar]

This can be expressed as

Rd, +8,d =@, ...(2.17)

Td,+d/ =& ...(2.18)

Eliminating the value of c;',f from the equation (2.18) and (2.17), we get

(R, —S,T,)d, =d, —S,4"...(2.19)

From this equation (2.19), we may get the value of c?,; as

d; =(a,-8,4")-(R,~S,T,)" ...(2.20)

Using the equation (2.18) we can get the value of c?,f as

d" =& -T,d, ...(221)

To get the value of d , using equation (2.20) and (2.21), the expensive operation is to invert the

matrix (R, —S,7,), which is done earlier while calculating the value forw. So, we can readily

use that result.

2.7 Updating the matrices(R, S, T)

To take advantage of the GUB technique, we have to maintain the GUB structure in each
iteration of the revised simplex algorithm after updating (removing a column and inserting a

column) the basis. Here is the technique that is used to ensure that the requisite form

R S ¢ ’ ’ ? .
B = {T IJ is always maintained. This approach is described in [Ch83]. d, =[d,,d,,...,d.,] is

used to denote a vector of size m consisting of the first m elements from d .- As the basis B

changes due to update at each iteration, the matrix R, S and T also changes. Let By, Ry, Syand T
be the matrices at iteration K and R j+i, Sw1 and T x+; be the matrices at iteration k+1. Our

objective is to compute R x11, S+ and T'xy from Ry, Syand 7 .

Depending on the position of the entering column and the leaving column three different

situations arise. The different cases are described below:
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Case 1: The leaving column 4 is one of the first m columns of the basis (i.e. # < m ). In this case
we just replace the leaving column with the entering column to update basis. Since s < m , this

update will only affect the matrix R and 7. So, updating R and T will update the entire basis

R S
B :[TM k} and the new basis still satisfies the GUB structure. The expression for
k+1

(Rin = SpTin) will be
Rint = SenTe) = (R, =S Ty - (2.22)
Here F,,,is called an efa matrix [Ch83], which is an identity matrix of size mXm with inserting

vector d/ at position A.

10 d .0

0 1 d .0
Fk+1_ .

0 0... d .1

Case 2 and 3 arises when the leaving column is one of the last g column of the basis (i.e.m < k).
We will use f” to denote a vector consisting of the first m elements of fand f” to denote last g
element of £ We will use g to denote any other first 7 column in the basis where g” and g”

denote a vector consisting of the first m and last g elements of g.

Case 2: If there exist another column g such that f” = g”. In this case, we can interchange the

leaving column fand the column g. Now we can update basis like case 1. Steps are follows:

RS
Stepl. Interchange the two columns f'and g of the existing basis. So basis B = [ Tk Ik }
k

~ R S
becomes By, migine =| F Tk .
rormida [TK I }

Step2. Insert the entering column replacing the column f'to obtain the final basis.

Bintermidiate = Rk SkH becomes Bnew = kel k+l .
e 1 T 1

Let f originally be the (m + i)th column of By and let 7denote the /™ row of Tj. If Jiu is the
mxm identity matrix whose 4™ row has been replaced by —# then
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(R, —S,..T, ) =(R, —S,T,)J,, and to obtain the final basis we need to multiply it with eta
matrix F, .

(R, =S, T,)=(R, =S, T))J,FJ,F,........... J.F, ... (2.23)

The eta matrix Fi+; is a mxm identity matrix whose 4™ column has been replace by a vector 2

Jk+1d, éf a”:/_- f”

of m elements, where 2= Jod' +e, ifa"=f" and e, is the A" column of the mxm

identity matrix [Ch83].

Case 3. No column of g of basis B satisfies the conditiong” = f”. In this case simply replace
the leaving column by the entering column. In this case

R, -8l =R -8T,..(Q224

After k iteration R, —S,7, may be represent as

(R, —-S,T,)=(R,—S,T})J,F,J,F,...... J.F,

possibly with missing some of the J; and F; matrices.

To summarize, at each iteration of the revised simplex method, we use formulae (2.22) — (2.24)

to update the basis, depending on the situation, and keep the new basis in the required

: R S
form B = .
T I

2.8 Eta-factorization

The efficiency of the revised simplex method described in section 2.2 depends on the

implementing of step 2-4, where we need to invert the matrix called basis, to calculate the
vectors w and d, where Ww=¢,B™ and d, = B4, to carry out the ratio test. Actually we
need to solve two systems yB, =c, and B, ;d =a . Without solving the system from scratch, we

can use some device to facilitate their solutions and can update the matrices/ vectors at the end

of iteration.

Let B, , be the basis matrix at step K-/ and B, be the basis matrix at step £, so that each B,

differs from the preceding B,_; in only one column (figure 2.17).

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



; same

sSame

B By
Figure 2.17: Basis before and after iteration

Where a is the column calculated from By, d=a

Let E, , be the Eta matrix (an identity matrix with the column corresponding to the leaving

variable replaced by d) then B, = B,_|E,_, (Fig 2.18).

1
1 l]o
o |]!
| 1
B E By

Figure 2.18: Basis before and after iteration with eta matrix

When the initial basis consists of slack variables then it is an identity matrix in that case

B,=1
B =E
B, =E *E,

This is called efa-factorization of B, .

This gives a convenient way of solving two systems of equations: the system yB, =c, can be

viewed as,

(VEDE))...)E, = ¢4
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and the system B,d =a can be viewed as
E(E,(.(Ed))=a

So by solving the equation iteratively we can get the value of y and d. As E is an eta matrix,

these systems of equations are easy to solve.

So far we have consider the basis as identity matrix but when the basis is not a identity matrix

then we can write

Where B, is the initial basis.
We can solve the two system yB,=c, and Bd=a as ((WU,U,,)--)E,=c, and
ByE,(E,(....(E,d))) =a respectively. Now we can do a triangular factorization of the initial

basis B, (using lower triangular matrix L and permutation matrix P) before the first iteration to

use them with the growing sequence of E ,E, , ....... E, to solve the systems
LJP,...LEB=U where, U=U U, ,........ U,

U, is the eta matrix obtained by replacing j* column of by j™® column of U. So the equation to

solve d becomes

U,WU, (... E)=(L,P,(...(LEa)))

In this way the system yB, =c, can be solved by first solving ((yU,)U,._,).....)E, =c, and
then calculating y from ((yL,P,).......L, B) . Similarly the system B,d =a may be solved by first
calculating (L, P,(.......(L,Ba))) and then solving U, (U, (....... (E,d)))=a where a is
replaced by (L, P, (.......(L,Ra))) .

As the number of eta matrix grows with the iteration, solving the systems yB, =c, and B,d =a

become more laborious and may take longer time than to solve the systems from scratch. To

avoid this we may compute a fresh triangular factorization of the basis treating B, as B, and

start with a new sequence of £, ,E, , ....... E, . This is known as refactorizations of the basis.
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Chapter 3: Efficient Routing In Wavelength-Routed WDM
Networks

3.1 The Routing Problem

In designing a WDM network an important task is to find a logical topology, given the physical
topology and expected traffic patterns. The next problem is to route that traffic over the logical
topology in an “optimal” fashion. One widely used method of optimization is to minimize
congestion in the network [Rs02]. In this chapter we will discuss our proposed techniques and
algorithms for minimizing congestion in medium to large sized wavelength-routed WDM

networks.

The routing problem in WDM networks can be viewed as a multi-commodity flow problem. The
multi-commodity flow problems considered in the Operation Research community typically
consider a small number of commodities [Me95]. One important aspect of viewing the routing
problem in WDM networks as multi-commodity network flow problem is that the number of
commodities becomes quite large. If we consider a network with N nodes and m edges, the
number of commodities is O(V?), since each source destination pair of the network with some
traffic is considered as a commodity. If we use standard node-arc formulation for minimum cost
multi-commodity network flow, the number of constraints is O(V), ie. the number of
constraints increases rapidly as the number of nodes in the network increases [BJ90]. Table 3.1

shows the growth rate of arcs, commodities and constraints with node number.

Nodes(V) Arcs(m) Commodities(q) | Constraints (m+Ngq)
10 30 90 930

20 60 380 7660

40 120 1560 62520

100 300 9900 990300

Table 3.1: Constraints size increase rapidly with nodes

This work focuses on the techniques for solving the routing problem efficiently, considering the
large number of commodities in WDM networks. In this chapter we have described our

approach for fast routing in WDM networks. An initial version of this approach was presented
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in [Sr04]. We have further modified this technique to incorporate eta-factorization, which leads
to significant improvement in speed.

The node-arc formulation is not a good way to handle large networks, as the number of
constraints grows rapidly. Using an arc-chain formulation to represent the routing problem can
significantly reduce the number of constraints. But, a straight forward arc-chain formulation is
not possible since the number of possible chains for each commodity is very high, even for a
medium size network. To address this drawback, we follow Tomlin’s approach [To66] of
implicitly keeping track of the constraints and generating a chain only when it is established that
the chain will enter into the basis. Using this approach, the basis size becomes OV fora N
nodes networks. Inverting a basis of this size, at each iteration, is still very expensive. However,
since our problem satisfies the structure required for GUB method, we can adopt this technique
to perform the operation more efficiently. Using the GUB technique, instead of inverting the
basis of size (m+ q)x (m+ q)(where m is the number of arcs in the network and g is the
number of commodities), it is sufficient to invert a matrix of sizemx m. This leads to an

improvement in the time required to inverse a matrix, since m is O(V) and g is OQV°).

But experiments [Sr04] show that after applying GUB, inversion of the basis is still the most
costly operation, in each iteration. So, it is important to try to eliminate the matrix inversion
operation, as far as possible.

At each iteration of the revised simplex method, we need to solve two systems of equations.
This requires inversion of the basis matrix. In this chapter we discuss the steps for finding an
optimal routing over the logical topology, to handle the specified traffic requirements. We also
show how eta-factorization can be incorporated to eliminate matrix inversions in each iteration,

and significantly reduce the time required to find a solution.

3.2 Overview of Routing Strategy

We are given a logical topology and the corresponding traffic matrix. Our problem is to route
the traffic over the given topology, in an optimal way. We will use arc chain formulation to

represent our problem.

As discussed in chapter 2, let, 4* = (a,.j‘. ) denote the (mx N, ) arc-chain incidence sub-matrix for

commodity £. We use the following notation in our LP formulation.
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e a} =1ifthe " chain for the ¥ commodity uses the i" arc; otherwise it is 0.

e  x* denotes the flow for the k" commodity on the ;" chain (C*),

—{,x E
* X —(xl ,...,xNk)

e 7, is the required flow for commodity %, obtained from the traffic matrix.

Now, the LP formulation for the routing problem can expressed as follows:

Minimize Amax

Subject to

Ax +Lx)+ 4 A%, < A )

€,.X; = rl
“% 21 32
eq.xq = rq
%20 (k=1 ..

The objective is to minimize the congestion A, . Constraint (3.1) states that the total flow, for

all commodities, on an arc cannot exceed the maximum load 4, . In other words, the sum of all

flows, xf through chains C]’f that uses arc i (Le, a,;f = 1,) for all commodities £ cannot

exceed A_,, . Equation (3.2) ensures that the total flow for a commodity & in network meets the

demand 7 for that commodity, i.e.,

N

Yxb=nVk, 1<k<q .. (33)

j=1
In equation (3.2) e, represents a row vector with N, 1’s, and x, is a vector of flow variables for
the different chain of commodity £ where 1 <k<gq.
These equations lead to m + g constraints, where m rows coming from equation (3.1) and g rows
from equation (3.2). The size of the basis for revised simplex becomes(m + g)X(m+ q) . Adding
slack variables (%, ) to remove inequality constraints, the LP for minimizing congestion can be

stated as follows.
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Minimize Amax
Subject to

Ax+ Axy 4ot A% + 5 = Ay oo (3.4)

ex =1

é,X. =7,

22 2
..(3.5)

eqxq =7'q

x,20,k=1...,q;x, 20

Below is the standard revised simplex algorithm to process this LP. For our routing problem, we
will be working with the basis B, basis variable vector x, and the right-hand side 5. Now our

constraint can be expressed as Bx, = b [Sr04].

Step 1: Find an initial basic feasible solution (Bx; = b).

Step 2: Do step 3-7 until no entering column is found

Step 3: Find, (if possible), an entering column that improves the objective function.

Step 4. If no entering column is found, stop.

Step 5: Find the leaving column.

Step 6: Replace the leaving column by the entering column and update the basis B and
right hand side b.

Step 7: Compute the value for the objective function and go to step 2.

3.3 Finding Initial Feasible Solution

In order to start the revised simplex process, we need to have an initial feasible solution, i.e. a
solution that satisfies all the constraints. This solution is specified by a set of chains used by

each commodity, and the corresponding flows on these chains such that all constraints are

satisfied. In an LP, when we have a constraint of the form 2 a,x;<b,, we can introduce a slack

I j<n

variable to change the constraint in equality form Zaijx it x! =b,. If all constraints are in this

I<j<n

form, the initial feasible solution is simply an identity matrix with basis variables x!,x2,..., x” .

Vs

In our case, the constraints described in (3.1) are in the form zaijx ;<b,, but the constraints

1£j<n

specified in (3.2) have the formz a;x; = b, which cannot be handled in this way. We have used
J
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the following algorithm to create a basis B of size (m+ q)x(m+ g), compute the corresponding

flows xand obtain the initial feasible solution. This approach was first proposed in [Sr04].
Step I: for each arc i->j, assign flow v;= 0.
Step 2: Repeat steps 3 to 8 for all , 1<k <gq.
Step 3. Let s(d) = source(destination) for commodity .
Step 4: Using Dijkstra’s shortest path algorithm, after assigning unit length to each arc,
find the shortest path P, from s to d.
Step 5: for all arcs i =2; in the path Py, repeat step 6.
Step 6: vij=v;;+ri

Step 7: Create the chain C| corresponding to the path Py,
Step 8: Create the k™ column of basis B using C} to define the first m elements. The

remaining g elements will be all 0, except for the ™ element which will be 1. x!
denotes the basis variable corresponding to the £™ column since it denotes the
flow inC{ . The value of x will be 4.

Step 9: Find 4, = maximum value of{v; : Vij,(i = j)€ E,} . Let e be the arc number

of the arc carrying A, . If more than one arc has the same flow 4

max

arbitrarily
pick any one of these arcs and use the arc number of the selected arc for e.

Step 10: Create column (m+1) of basis B containing -1 in the first m positions and 0 in
all remaining g positions. The corresponding basis variable will be 4_,  having
the value computed in step 9.

Step 11: Repeat steps 12 forall i, 1<i<m, i #e.

Step 12: Create column (m+1+i) of basis B containing a 0 in all positions except in
position e. The basis variable corresponding to this will be x:having a

valued . —7,.

3.3.1 An Example

In this section, we illustrate the above approach through a simple example. Figure 3.1(a) shows
a 5 node network with arcs numbered as e;, e, es, ..., eg and figure 3.2(b) shows the

corresponding traffic matrix.
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1 M 2
e8 e7 e3
eb
3.1(a)
00500
00040
Trafficmatrix =10 0 0 0 2
00000
0 0030
3.1(b)

Figure 3.1: (a) A Logical Topology (b) A corresponding traffic matrix

In the above traffic matrix there are four non-zero entries, which means there are four
commodities in the networks. These are

K’ representing 5 units of traffic from node 1 to node 3

K’ representing 4 units of traffic from node 2 to node 4

K representing 2 units of traffic from node 3 to node 5 and

K* representing 3 units of traffic from node 5 to node 4
According to the step-1 of the algorithm, flow v;; = 0 is initialized, for all node pair (i, j) where
there is an arc i—j. We have 8 arcs in this example.
We have to repeat steps 3-8 for all the commodities X, K, K>, and K. In step 4 we find the
shortest path P;3 (1>2->3) from node 1 to node 3 for commodity K’, using Dijkstra’s
algorithm. For each arc in the shortest path P;3, we update the flow on the arc (step 6).
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Thus, vi2 = 5, and v,3 = 5. Similarly, we repeat steps 3-8 for the remaining commodities KK
and K*. Thus for commodity Kz, Va4 = 4; for K3, vy =2 and v5 = 2; for K* vsy =3 and vas = 3.
The commodities K? and K* both use arc 2->4 (arc no 7) and the total flow on this arc is (4 + 3

= 7 units). This is the maximum flow among all arcs. So, 4, =7 .

After finishing the above steps, the basis is created as follows

Commodity Slack variables
k' k* k¥ Kkt Ao x; xs2 xf x: xs5 xf xf
T" To1i10 [ 11 Jo [oJo [oolo] |~ 0
2 [0Jo o1 |1 |0 |1 Jolo Jo[oo] |*™ 0
3 [1]0o oo [-1]o Jo [1]o [oJolo]|™ 0
2 |4 [o]Jo o]0 [1]o [0 [0]1 [o]o]o] |™ 0
< 5 [0/o]o]0 |1 10 [0 [0]o [1]o]0O] |*m= 0
6 [1]oJo o [-1]o Jo [ojo Jo[1]o||™:|=]0
17 o[1 [o 1 |1 ]o o Jo]o [ofo]O] | 0
8 [olo[1 1o [-1lo o [olo [ojol1]| | 0
£ 1 [Alolo]o |o |0 |o |o]o [o]olo] |™ 5
g |0 [o[1 Jolo o o [0 [olo JoJofo] |5 4
£ [11 [oJo {1 {0 Jo [0 (o [o]o [olo]0] |5 2
© w12 7o {01 [0 |o |o |ojo [ojolo]| - 3

Figure 3.2: Basis from Initial feasible solution

Xs=

N O N 2 W N W N R WV

L

This x, value (solution from fig 3.2) satisfies the constraint of the basis vector.
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3.4 Finding an entering column

In the revised simplex inethod, we need to find the simplex multipliers for each non-basic

variable x;, and compute the value ofz; —c, =Wa, —c;, where w is the vector of (m + ¢)
simplex multipliers, 4, is the j™ column from the constraints matrix and ¢; is the cost coefficient
corresponding to basic variable x;. If the value of z;, —c, =Wwa, —c, is positive, then we know

that inclusion of x; in the basis can improve the objective value. So x; is a potential candidate to
enter the basis. In our case, we do not explicitly generate the set of non-basic variables, as the
numbers of possible chains are very large. Instead, we will follow the approach given in [To66],

and create a chain when we are sure that the chain may be a part of an entering column.

The first step for finding an entering column is to calculate the simplex multiplier vectorw. Let

/A 7, be the first m simplex multipliers (corresponding to the m arcs of the network) and
..., be the remaining g simplex multipliers (corresponding to the g commodities) in

vectorw. Theorem 1 states the rules for finding an entering column. The complete proof for

Theorem 1, is given in [Sr04]. In this thesis, we simply use the theorem to find a suitable

entering column.

Theorem 1:
a) If m,>0,foranyi, 1 <i<m, slack variable, x!is a candidate to enter the basis.

b) If the sum of the first m simplex multipliers is less than -1, A4, is a candidate to enter

the basis.

c¢) If, for chain j of commodity %, i("ﬁ)a; <a,, then the variable x;f corresponding to this

i=l

chain C f is a potential candidate to enter the basis.

Theorem 1 states that, if any 7z, is positive, the corresponding slack variable can be entered into

the basis. If all the 7, values are non-negative, then (— 7, ) is assigned as the length of arc 7, and

2(—%,. )ag is the length of chainC jk . If this length is less than ¢, , then we can use this chain to

i=1

create the entering column. The steps of the procedure are follows:

Step 1. initialize i to 1.
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Step 2: if ;> 0, create an entering column consisting of all 0’s except in position i and
stop.
Step 3: if (i <m), i = i+ 1 and go back to step 2.

Step 4: Considering all commodities, find, if possible, chain j of some commodity £,

such that Y (-7,)a; <@ .
i=l

Step 5: If no chain satisfying Z(—”i )al;‘. <a, is found in step 4, then no entering

i=l
column exists, and the current solution is an optimal one. Otherwise, create an

entering column with the a,.f. as the i entry of the column, for all i, 1 <i<m. In

the remaining positions, only the element in position (m + k) will be 1. The other

elements will be 0.

To calculate the value of Z(—ﬂ; )a,.’j‘. < o, we have used Dijkstra’s method [Di59] to find the

=l
shortest path P, from a source destination node pair s and d.
An example illustrating how we use the above theorem is given below.
For the logical topology shown figure 3.3, let there be two commodities X' and K*, where K has
source node 1 and destination node 4, K> has source node 1 and destination node 5. Let the

simplex multipliers w at some stage be [-0.1, -0.2, -0.2, -0.2, -0.5, 0.5, 0.1].

Figure: 3.3: A four node logical topology
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In Figure 3.4, we have labelled the edges with the appropriate simplex multipliers. Now the
shortest path for commodity K! is 1->3->4, and the length of the shortest path P7,=0.3.
Similarly, shortest path for commodity K is 1235, and the length of P;5=0.5.

Let the values of the simplex multipliers a; (for commodity K") be 0.5 and the value of o, (for

commodity Kz) be 0.1. Therefore, the condition i(_”i )a,.j‘. <, to enter the basis is satisfied for

pa)
K' but not for K>. The next step is to create the entering column for K as follows:

The path is P;, = 12324, where the arc e, is 1->3 and the arc e4 is 3>4. So, the first m( = 7)
entries in the entering column for this chain will be [0, 1, 0, 1, 0, 0, 0]. Since the column is for
the commodity K, there will be a 1 at position 1 (corresponding to commodity K') in the
entering column and a 0 at position 2 (corresponding to commodity K*). Thus the entering

column will be [0, 1,0, 1,0, 0, 0, 1, 0].

3.5 Finding the leaving column

We use the standard revised simplex method to find the leaving column. The algorithm is briefly

described below:

Given an entering columnd,
B'a ;(i) denotes the i™ element of B~'4 ;
Step 1) If 4, is the column to enter to basis, calculate B4, using the current basis B.
Step 2) Set MinimumRatio = 9999.00.
Step 3) Repeat step 4 for all i, for all i, 1 < i < (m+q) such that B™'4,(i) > 0.
Step 4) If MinimumRatio > b(i)/ B™'4,(i), set MinimumRatio = b(i)/ B_ldk () and

leavingcolumn = i.

Let b(i)(buew(i)) to denote the i™ element of b(Bew). The steps are used to update the basis:
Step 1) Replace the leaving column with the entering column

Step2) Update the right hand side b to by, using the following formula:
b, 0)=b(i)— d ()X MinimumRatio for all i, 1<i<(m+q), i #leavingcolumn,
b, (leavingcolumn)=MinimumRatio .
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3.6 GUB and Representation of matrix S and T

A basis B of size (m+ q)xX(m+ q) satisfies the GUB structure when
e g is relatively large compared to m and
e cach column of the last g rows has at most one nonzero entry, the nonzero entry being
equal to 1.

By exploiting this GUB structure we can calculate the value of W (Ww=¢,B™") and

d i ( d , = B™'a, ) without directly computing B'. These values are required to find the entering

column and the leaving column.

In our problem formulation, equation A'x, + A’x, +--+ A%x, + %, = A, (3.4) gives m constraints
and equation ex;, =7, 1<i<=gq (3.5) gives g constraints where m = O(N), and g = O(N?). Bach
column of the last ¢ rows (equation 3.5) has exactly one nonzero element having 1 in position %.

So, our basis satisfies the GUB structure.

From our experiments, we have found that after the decomposition of the basis in the

R S
formB = {T I:l , the matrices § and T have the following property

> In each column of the matrix S there is a very small number of 1’s ( <<5%)

> Satisfying GUB structure, matrix 7 has at most one 1 in each column
So, it is possible to store and represent these two matrixes in a compressed form, which only
stores information about the position of the 1’s. Thus, matrix T can be represented as a vector of
integers, where the size of the vector is the number of edges (m) in the logical topology. Matrix
S can be represented as an integer matrix of size (f % q). Here, g is the number of commodities
and f'is the maximum number of 1°s in any column of matrix S. In the example given below, S is

the initial (uncompressed) matrix of size 6x9.

o = = O O O
-0 O O - o
—_— O O e OO
O = o= O oo
O e OO O -
o o = o © ©

o © 90 - o o
S OO e O
S OO O =
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Here f=2, and g = 9. So, the information in matrix S can be represented by the compressed

matrix S,., of size 2x9, as shown below.
g =[321203003}
l4-14 4 2 41 4-1

Here Syq.[i][jlgives the position of the (i+1)" 1 in the j column of S. If there are »; 1’s in the /™
column of S, where n; < £, then S,..[i][j] = -1, for i > n;. For example, let us consider the jth
column (7 = 0) in Sye,.. We get Spe.[0][0]=3 and S,.,[1][0] = 4. This means that there are two 1’s
in column O of matrix S, and they are in rows 3 and 4, i.e., S[3][0]=1 and S[4][0]=1. If we,
consider column j (j=1) in Syew, We get Syew[0][1]=2 and S,.,[1][1] = -1. This means that S[2][1]:“

=1 and all remaining values in the column are 0.

In the case of matrix T, we know that it contains at most one 1 in each column. Therefore the
compressed representation can be expressed simply as a vector (Zyecsor), Where the value of the it
element specifies the position (row number) of the 1 in the /™ column of 7. If there are no 1’s in

the i column of T, a value of -1 is entered in the corresponding position of Tyecsor-

(0100 0 0]

000000

001000

000000
T={000000 = T =[5, 0, 2,1, 5, 7]
100010

000000

000001

00000 0

For example, T, [0] = 5 means that there is a row 5 of column 1 in matrix T'i.e., T[0][5] = 1.

The value of fbecomes very small (around 1%) in case of large networks (more than 40 nodes).
Therefore these compressed representations of the S and T matrices save significant amount of
time in performing the matrix-vector multiplication (equation 2.21) and vector-matrix

multiplication (equation 2.14 & 2.16) required to calculate the simplex multipliers and value of
d. Table 3.2 shows the savings achieved by this technique for some typical networks.
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Number | Number of | Number | Max number of | Size of matrix S and T

of commodities | of edges | 1’s in a column

nodes Matrix | Matrix | Old S NewS |OldT New
S T T

14 175 50 7 1 50%x175 7x175 | 50x175 1x50

20 370 130 8 1 130370 | 8x370 |370x130 | 1x130

25 580 230 7 1 230x580 | 7x580 | 580x230 | 1x230

30 825 270 7 1 270x825 | 7x825 | 825x825 | 1x270

40 1490 560 8 1 560%x1490 | 8x1490 | 1490x560 | 1x560

50 2300 730 8 1 730%2300 | 8x2300 | 2300x730 { 1x730

Table 3.2: Savings in Matrix S and T with new representation

3.8 Generalized Upper-Bounding with Eta Factorization

We have discussed the eta factorization technique in chapter 2. Eta factorization provides an

efficient way to eliminate matrix inversion in the revised simplex algorithm. The use of the

Generalized Upper-Bounding technique reduces the time required to invert the basis. But even

after using GUB, matrix inversion remains the most expensive operation of this technique. For a

matrix B = [T I} , we need to invert the matrix R, in each iteration, to get the value of simplex

multiplied w (W=¢,B™") and d i ( d . =B7'4,). As the number of nodes (N) increases, the size

of matrix R also increases and inverting the matrix R takes a substantial amount of time. Table

3.3 shows how the average size of matrix R increases with number of nodes. The size of the

matrix R is the number of edges (m) in the logical topology.

Number of nodes | Size(m) of matrix R Size of basis (m + q)
10 36 124

20 135 499

30 262 1099

40 557 2060

50 732 3033

Table 3.3: Sample (average) Size of matrix R with node number
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To make the revised simplex algorithm faster, we integrate eta factorization along with GUB
technique for our routing problem. This allows us to eliminate the costly matrix operations. The

technique has been described in [Ch83] which we are giving below for completeness.

R S
Since our basis is in the form B = I:T I:| , we need to solve the equation

W(R, -8,T,)=¢,-&;T, (2.15) to find the simplex multiplier W and equation

(R, - 8,T,)d, =4, —8,&" (2.19) to get the value of d, at each iteration of the revised simplex
algorithm. Let B, be the basis after £ iterations. Since B, and B,,, differ in only one column, it
is possible to express the new basis (B, ) in terms of B,_, as follows: B, = B,_ *J,F,, where

Ji, F} are eta-matrices as described in section 2.7.

So, if the initial basis is B, , then

B =B,*J |},

B,=B *J,F,=B,*J F*J,F,, and

B, =B, J,F, =B,*J F*J,F,*.  *JF,

In our case the initial basis for eta-factorization is B, = R, —S,T;, (applying GUB technique).
After k iteration the basis is

B, =(R,— S, I}, F,J,F,........... J.F, ....(3.6)

We get the value of J, F, during update operation of matrices [Ch83].

Now a triangular factorization of R, —S,T; gives the following equation

LP,..>LPR -ST)=U=UU,_..... U....(3.7)

where, U is the upper triangular matrix and U, is the eta matrix obtained by replacing /1 column
of identity matrix by /" column of U

After k iterations, the equation (3.7) becomes (using equation 3.6)

LPy.. L B(R, =S, T,)=U,U,_jccricr. UJ\FJyFyeevooees J,F, (3.8)

From the equation (2.15) and (3.8) we can write

ZUU, fooeeerron UJFJ,F,y.......... JF,=&-8T, .......(3.9)

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.8.1 Calculating simplex multipliers +

Now solving the equation (3.9) for Z and then computing ZL,P,......L, B, will give the value of

The algorithm for calculating W is as follows:
Step 1: calculate the value of &, —¢;7;,
Step 2: seti=kand Z= ¢, -&;T,,
Step 3:if i> 1 do steps 4 and 5,
Step 4: set v = Z, replace y by the solution of ZF; = v,

Step 5: set v = Z, and replace y by the solution of ZJ; = v. Replace i by i -1.

Step 6: Setj=1

Step 7: if j <m, then set v = Z, replace Z by the solution of ZU,= v, replace j by j +1
and repeat this step.

Step 8: setj=m.

Step 9: if j > 1, then replace Z by ZL P, replace j by j -1, and repeat this step.

The final value is the simplex multiplier'. We can get the value of ¥" using equation

AL LY. 4 AN
WS, +w =¢;.

3.8.2 Calculating value of d (B 'a)

To calculate the value of d . we have the equation (2.19)
(R, —S,T,)d, =&, —S,4" this can be written as

LP,...LPR,-ST)d =LP,.LP@& -Sa"

UU, oo UJFJ,F,...... JFd.=LP,...LP(@ -S4 ...(3.10)

Now solving the equation (3.10) gives us the value of d.

The procedure is as follows:

Step 1: calculate the value of (G, —S,4”)
Step 2: setj=1and d’=(4, —S,4")

Step 3: if j < m, then replace d’ by LP d’, replace j by j + 1 and repeat this step.
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Step 4: Setj =m;
Step 5:if j> 1, thenset v= d’, replace d’ by the solution of U ; d’=v, replace j by j -

1 and repeat this step.
Step: Sseti=1.
Step 3:if i<k dostep4and 5

Step 4: setv= d’, replace y by the solution of d’ F; =v

Step 5: setv = d’ , and replace y by the solution of d’Ji=v. Replace i by i -1. go to step
3.

Thus we get the value of vectord’ . And using equation d” =4, —T,d, we can get the d”and

thus the vector d. As the matrices F, J, U are identity matrices, except for only one column or

row, it is easy to get the solution for simplex multiplier and vector d.

As the iteration number grows, the number of J and K matrices become larger and the solution

using J and K matrices may take more time than the time needed to invert the matrix R - ST. To

avoid this situation, we will refactorize the matrix (R, —S,7,) at appropriate intervals, replace

(R, —S,T,) by (R, —S,T;) and start the process all over again.

3.8.3 An Example

Here is an illustrated example of the algorithm for eta factorization. We consider the simple 5

node network and traffic matrix as shown in figure 3.4

@ Node

(=] [ fen] R Fand P

ol Rl far) Fanl Ko o3 4 O
OO |O|OIW
O|lo|lnim=| N W

@

A\
@
B[N —
OIO|O |||

Figure 3.4: A five node network and traffic matrix
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This network has 6 edges (m=6) and 6 commodities (g=6) and the basis B is of size 12 (m+q).

4T110 0000000 11]
1010000 1110 0
100100011110
M4 00010100001
4000001007101
L Y1 00001001100
%0 0000 01000O0TO0O0
000000010000
q!l0 00000001000
000000 O0O0O0OTI1O0O0
600000 0O0O0O0TO0
Y0 00000000001,

S,
As this basis satisfies the GUB structure, we can express B, in the form B = [I;O IO:|
0

.11 0 0 0 0 0 0 0 0 1 1]
-1 001 0 0 0 01 1100
-1 00100 01 1110
R0= S():
-1 0 0 010 1 00 0 01
-1 0 00 00 1 00101
-1 0 0 0 0 1] 0 011 0 0]
[0 0 0 0 0 O]
0 00 00O
000 00O
];)—_—.
0 00 00 O
000 00O
0 0 0 00 0]

From the above matrices, we can calculate the value of R, —S,7;, . We can do so as follows:
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(00001 1]
011100
011110
100001
100101
001100

R, - ST, =

Now to calculate the simplex multipliers, we need to find the upper triangular matrix (U)

of Ry - S,T; as follows:

(-1 1000 0] 100000

0-11000 010000

00-1100 001000 .
U= So U, = with the 1¥ column of 7 replaced by the 1%

000-110 000100

0000-10 000010

00 00 01 10 00001 |

column of U.

(10000 0]
010000
001000
Similarly U, =U, = 000100 where 6™ column of 1 is replaced by 6™ column of U.
000010

00000 1]

We know that U, is an identity matrix where the i" column is replaced by the i* column of U

matrix. During the triangulation process, we get the matrices L, F, .......L and F, (equation 3.7).

1 0000 0] (10000 0]
110000 010000
101000 001000
L‘z andR:
100100 000100
100010 000010
-1 0000 1] 1000001]
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(100000 ] 100000
010000 010000
001000 001000
L6= })6=
000100 000100
000010 000010
(0000 0-1 | 000001 |

Let the cost of the basis (calculated while creating initial feasible solution)be C, =[1 0 0 0

000000 0 0]".(Weuse v’ before the a vector to indicate the transpose of vector visa

column vector). The right hand side for the equation gives &,—¢;7, =[1 0 0 0 0 01"

When we calculate the simplex multipliers for the first time, we don’t have matrices F and J

which are created when the basis is updated. Therefore, for the first iteration, we have to solve

the equation:

We will first consider ZUU............ U, as a vector ¥ and solve the equation VU, = &, —¢;T; for

U,. After obtaining the value of V., we have the equation ZUJU........... vu,=[1 0 0 00

01"
After solving all the U matrix iteratively the Z vectoris [-1 -1 -1 -1 -1 0] T and after

calculating ZL P,......L,B to get the simplex multiplier, we get the vector w'=[0 0 0 0 1

0]". Using equation (2.14) we get the value of %" and thus the simplex multiplier becomes [0

0 0 0 -1 01 0 0 1 0 1] Inthisway, we get the value of simplex multipliers

without doing the expensive inversion operation in a matrix.

To show how we can calculate vector d , using eta factorization, let us have an entering column
vectora=[0 0 1 0 0 0 0 0 0 0 0 0]". So, vector (4,-S,4)=[0 0 1 0 0 0]".
The value of the right-hand side of equation (310) becomes L P,......LR(a, —S,a")=[0 0 1

0 0 0] T Now we need to solve the equations

UUs...oon..... Ud;=[0 0100 0]"
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We can solve it iteratively as before and the solution is é'g =[-1 -1 -1 0 0 0]"

Now using equation (2.20) and (2.21) we can get the vector d =1 -1 -10000 0 0]

Using this value we can get the leaving column number and update the matrices as described in
section 3.6. For this small network, we obtain the optimal value in single step but for larger

networks, we may have the value of F and J matrices and, in that case, we need to solve the

A

equation (3.9) for simplex multipliers and equation (3.10) for the value of vector d, .
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Chapter 4: Experiment and Results

In chapter three we outlined our approach and formulation for traffic routing to minimize
congestion in a logical topology. In this chapter, we will present and analyze the results of our
experiments to test and evaluate the proposed approach. Our algorithm augments the approach
introduced in [sr04]. We compare our results with those presented in [sr04], as well as standard
LP formulations, solved using CPLEX. All experiments were carried out on a SUN 1.2 GHz

platform and CPLEX version 9.0 was used to solve the standard LP formulations.

4.1 Methodology

Each of our experiments requires a logical topology and its corresponding traffic matrix to
develop an optimum routing strategy that gives the minimum congestion for that topology. To
design a logical topology, the underlying physical topology and traffic matrix must be specified.
We have used an existing C program presented in [Hou03] to generate the logical topologies.
Solutions were generated using the three different approaches, based on the same data sets (i.e.
logical topology and traffic matrix). A C program was used to generate the input file for CPLEX
in standard lp format.

4.2 Experimental Results

We have carried out experiments on a number of medium to large size networks, ranging in size
from 10 to 50 nodes. For each network size, we tested several different logical topologies and
traffic matrices. The values reported in Tables 4.1 and 4.2 represent average values, based on the
results of the different experiments for a given network size. The results for the individual
experiments are given in Appendix A. To compare our result and examine the advantages of eta-
factorization, experiments were carried out using the following three approaches:

1) Our scheme

ii) Implicit column generation, without eat-factorization [Sr04] and

iif) Standard LP formulation, using CPLEX-9.
Table 4.1 shows the average time (in seconds) to obtain an optimal solution and average number

of iterations for each of the three approaches.
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Size of Approach
Network Our Scheme CPLEX Scheme without eta-
factorization
Average | Average# | Average | Average# | Average | Average#
Time (secs) of Time (secs) of Time of
iterations iterations (secs) iterations
10 0.1863 174.1579 |0.4321 1212.1579 | 1.24 148
14 0.91181818 | 448 2.30418182 | 4240 13.15 370
20 46.4717 8,081 76.5456 42374 2753.45 7567
30 1282.3770 | 57988 3264.3403 | 337127 10677.67 | 41055
40 36031.7913 | 378270 56667.9297 | 1505692 | ** o
50 159139.416 | 835952 * *ox *x *x

Table 4.1: Summarized data of different approach

Node number Time ratio (ours /CPLEX) | Iteration ratio(ours /CPLEX)
10 0.43115 0.143564

14 0.380848 0.10566

20 0.607111 0.190707

30 0.392844 0.172006

40 0.635841 0.251227

50 *% K%k

Average 0.466831 0.158893

Table 4.2: Comparison ratio of our approach with CPLEX

*% results not found

In Table 4.2, we have compared the solution time and number of iterations for our approach

with that of CPLEX. We see that our method provides an improvement of 40%-60% over

standard LP techniques. The average improvement is 46%. The average number of iterations

required in our approach is 1/6™ of that of CPLEX. Furthermore, our approach can be used for
larger networks of 50 nodes, where CPLEX fails to find a solution.

Figure 4.1 (semi log graph) compares the growth rate of the algorithm, to that of CPLEX.
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Node vs time
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Figure 4.1: Growth rate with size of network

4.3 Analysis of the experiments

From the experimental results, we observe that our approach with eta-factorization performs
significantly better than other approaches, for all network sizes. Use of eta-factorization speeds-

up the algorithm significantly. Our scheme can handle networks of 50 nodes which cannot be
handled using CPLEX.

To track the development of Ay, value, we recorded the (sub-optimal) objective values at
certain intervals. This Am.x values for a 30 node network is shown in Figure 4.2. From Figure
4.3, we can see that initial development in revised simplex method is very fast and when it
approaches to the optimal value, development becomes slower. The majority of the time is spent
to obtain very little improvement (< 10%). So, if we can fix a threshold value for Amax to
terminate the process, we can get a “near-optimal” solution in a very short time. For example if
the threshold value was set to 60 then we could reach that value within 420 second, less than

50% of the fully optimized time.
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Figure 4.2: Improvement of Ay, value with time

4.4 Conclusion and Future work

In this thesis we have introduce eta-factorization to determine the optimum routing in a
wavelength routed WDM network. Adoption of eta factorization with GUB technique produce
better results in time than the solution from CPLEX-9. The same optimised value from our
approach and from CPLEX ensure the correctness of the solution. During test process we found
that a significant amount of the solution time is consumed by the multiplication operation of
matrix-vector and vector-matrix. In arc-chain formulation the matrices have the values of 0’s
and 1’s only and most of them are zeros. (We have exploited this feature for matrix T and S by
vertical (column) compression). If we can totally exploit this feature to store the matrix and can
find a easy way to calculate the value of multiplication, then it will be possible to get a better
solution in time. Use of data-compression technique to store the matrix may take less time to
calculate multiplication value. Another future area of research is to combine this technique with

the problem of finding a logical topology for further improvement in network congestion.
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Appendix A

Data Table for 10-nodes networks

Our approach CPLEX
Case Number  value Time Iteration  value Time Iteration
logical_top_10_11 78.7333  0.1800 170  78.7333 0.3410 978
logical_top_10_12 78.4167 0.1500 105 78.4167 0.4070 1191
logical top_10_13 73.2272  0.1500 115  73.2273  0.4600 1356
logical_top_10_14 77.4167  0.2000 190 77.4167 0.5570 1445
logical_top_10_15 69.1510  0.2400 241  69.1509 0.4140 1147
logical_top_10_21 84.4285 0.1600 145 84.4286 0.3190 994
logical_top_10_22 79.4286  0.1300 91  79.4286 0.4150 1187
logical_top_10_23 72.5714 0.2000 189 ' 72.5714 0.4330 1227
logical_top_10_24 77.4167  0.2000 190 77.4167 0.5580 1445
logical_top_10_25 69.1510  0.2200 241  69.1509 0.4150 1147
logical_top_10_32 79.4286  0.1300 91 79.4286 0.4190 1187
logical_top_10_33 71.3077 0.2200 203  71.3077 0.5020 1433
logical_top_10_35 69.1510 ~ 0.2200 241  69.1509 0.4150 1147
logical_top_10_45 69.1510  0.2200 241  69.1509 0.4140 1147
logical top_10_51 84.4285 0.1600 145  84.4286 0.3180 994
logical top_10_52 79.4286  0.1300 91 79.4286 0.4160 1187
logical_top_10_53 72.5714  0.2100 189  72.5714 0.4330 1227
logical_top_10_54 77.4167  0.2000 190 77.4167 0.5580 1445
logical_top_10_55 69.1510 0.2200 241  69.1509  0.4150 1147
Average 75.3671 0.1863 174 - 75.3671 0.4321 1212

Data Table for 14-nodes networks

Our approach CPLEX
Case Number  value Time Iteration  value Time Iteration
logical_top_14_11 59.8889  0.9700 475  59.8889 2.6020 4581
logical_top_14_12 72.0001  0.7600 397 72.0000 1.9640 3347
logical_top_14_14 64.0555 0.8500 356  64.0556 2.5290 4600
logical_top_14_15 64.3126  0.7700 354  64.3125 2.1280 4351
logical top_14 22 72.0001  0.7600 397  72.0000 2.0000 3347
logical_top 14 24 64.0001  0.8600 402  64.0000 3.2620 5440
logical_top_14_25 64.3125 0.7200 302  64.3125 1.4290 2556
logical_top_14 31 59.8889  0.9600 475 59.8889 2.5710 4581
logical_top_14_32 72.0001  0.7600 397  72.0000 1.9950 3347
logical top_14_33 54.6487 1.4600 812 54.6486 3.1390 4805
logical top_14 34 64.0555 0.8500 356 64.0556 2.5000 4600
logical top_14_35 64.3126  0.7600 354 64.3125 2.1450 4351
logical top_14 41 59.8889  0.9600 475 - 59.8889 2.5530 4581
logical_top_14_42 72.0001  0.7500 397  72.0000 1.9600 3347
logical_top_14_43 54.6487 1.4600 812 54.6486 3.0510 4805
logical_top_14 44 64.0555 0.8600 356 64.0556 2.4990 4600
logical_top_14_45 64.3126  0.7600 354 64.3125 2.1220 4351
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logical_top_14_51 59.8889  0.9600 475  59.8889  2.5600 4581

logical_top_14 52 72.0001  0.7500 397  72.0000 1.9820 3347
logical top 14_53 54.6487  1.4600 812 54.6486 3.0650 4805
logical top_14 54 64.0555 0.8500 356 64.0556 2.5040 4600
logical top_14_55 64.3126  0.7700 354  64.3125 2.1120 4351
Average 63.88 09118 448 63.88 2.3942 4240

Data Table for 20-nodes networks

Our approach CPLEX
Case Number  value Time Iteration  value Time Iteration
logical_top_20_11 55.5587 54.6700 9394 555585 81.0890 44635
logical_top_20_12 61.7007 54.0700 9661 61.7001 80.5370 46236
logical_top_20_14 62.8714 29.9800 5863 62.8710 51.8490 33358
logical_top_20_15 56.7091  50.3200 7878 56.7090 84.8670 41931
logical top_20_21 55.5587 54.6800 9394 55.5585 79.8420 44635
logical_top_20_23 59.3862 44.2000 7887 59.3852 86.8630 47510
logical_top_20_24 62.8714  30.0400 5863 62.8710 51.7310 33358
logical_top_20_25 56.7091  50.3400 7878 56.7090 84.7800 4193}
logical_top_20_31 55.5587 55.0700 9394 55.5585 81.7620 44635
logical_top_20_32 61.7007  54.3600 9661 61.7001 81.5630 46236
logical_top_20_33 59.3862  44.2200 7887 59.3852 87.5300 47510
logical_top_20_34 62.8714  30.2000 5863 62.8710 52.9770 33358
logical_top_20_35 56.7091 50.3200 7878 56.7090 84.5680 41931
logical_top_20_41 55.5587 54.6600 9394  55.5585 83.8000 44635
logical_top_20_42 61.7007  53.9000 9661 61.7001 81.2620 46236
logical_top_20_43 59.3862  44.2200 7887 59.3852 87.2620 47510
logical_top_20_44 62.8714  29.9600 5863 62.8710 52.7610 33358
logical_top_20_45 56.7091  50.3000 7878  56.7090 84.0260 41931

logical top_20_51 55.5587 54.6700 9394 55.5585 80.8040 44635
logical_top_20_52 61.7007  53.9200 9661 61.7001 80.0870 46236
logical_top_20_53 59.3862  44.2200 7887 59.3852  85.5070 47510

logical_top_20_54 62.8714  30.2400 5863 62.8710 52.2250 33358
logical_top_20_55 56.7091  50.2900 7878  56.7090 82.8570 41931
Average 59.1323 46.4717 8,081 59.1319 76.5456 42374

Data Table for 30-nodes networks

Our approach CPLEX
Case Number  value Time Iteration value Time Iteration
logical_top_30_11  52.1681 1385.2300 63702 52.1667 3692.1210 368030
logical_top_30_12  53.2002 1289.1499 56994 53.2000 3508.3380 362333
logical top_30_13  49.8365 1395.9800 60621 49.8365 3059.4520 312422
logical top_30_14  50.8270 1254.2699 55914 50.8261 3246.7290 317945
logical_top_30_15  53.2588 1140.5500 53744 53.2579 2993.4890 330895
logical_top_30_21  52.1681 1380.4900 63702 52.1667 3541.4570 368030
logical_top_30_22  53.2002 1287.7600 56994 53.2000 3183.8580 362333
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logical_top_30_23 49,8365 1387.6100 60621 49.8365 31514360 312422
logical_top_30_24 50.8270 1252.1700 55914 50.8261 3065.1950 317945
logical top_30_25 53.2588 1138.1200 53744 53.2579 2962.4710 330895
logical_top_30_31  52.1681 1377.1901 63702 52.1667 3580.8890 368030
logical _top_30_32  53.2002 1280.9999 56994 53.2000 3735.5280 362333
logical_top_30_33  49.8365 1382.6699 60621 49.8365 2940.2870 312422
logical_top_30_34  50.8270 1246.6000 55914 50.8261 2984.0380 317945
logical_top_30_35  53.2588 1134.9301 53744 53.2579 3087.8280 330895
logical_top_30_43  50.8047 1335.9200 60170 50.8046 3486.0260 338573
logical_top_30_44  50.8270 1246.0701 55914 50.8261 3105.4100 317945
logical_top_30_45  53.2588 1133.3600 53744 53.2579 2920.8680 330895
logical top_30_51  52.1681 1379.9399 63702 52.1667 4234.1740 368030
logical_top 30_52  53.2002 1283.0001 56994 53.2000 3543.1150 362333
logical_top_30_53  49.8365 1392.4700 60621 49.8365 3043.0760 312422
logical top_30_54  50.8270 1248.9800 55914 50.8261 3121.4440 317945
logical top_30_55  53.2588 1141.2100 53744 53.2579 2892.5970 330895
Average 51.8284 1282.3770 57988 51.8277 3264.3403 337127
Data Table for 40-nodes networks

Our approach CPLEX

Case Number  value Time Iteration value Time Iteration

logical_top_40_11 53.1734 33837.0625 361258 53.1600 61331.9230 1468652
logical top_40_12 52.2614 36789.8516 392455 52.2500 57489.1920 1492830
logical top_40_13 51.3814 38710.7305 390599 51.3700 53611.8890 1207017
logical top_40_14 50.4012 34040.3008 345165 50.3909 56915.1350 1461725
logical top_40 15 51.8380 36516.6680 374574 51.8246 59445.9280 1553953
logical_top_40_21 53.2544 36317.1836 391385 53.2423 54139.6890 1514260
logical_top_40 22  52.2614 36010.7422 392455 52.2486 53741.7520 1492830
Average 52.0816 36031.7913 378270 52.0695 56667.9297 1505692
Data Table for 50-nodes networks

Our approach CPLEX

Case Number  value Time Iteration value Time Iteration

logical_top_50_11 46.0532 166088.969 842210 ** *k *k
logical top_50_12 46.3313 148754.781 785464 ** ** *k
logical_top_50_13 45.6885 159690.172 823782** *k *ok
logical_top_50_14 45.8053 159522.531 846865 ** ** *k
logical_top_50_15 46.5233 161640.625 881440** *¥ *%
Average 46.08032 159139.416 835952** *% wk

** results not found
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