# University of Windsor Scholarship at UWindsor

**Electronic Theses and Dissertations** 

1992

An experimental study of the viscometric and volumetric properties of octane-pentadecane nalkane binary and ternary systems at several temperatures.

Jiangning. Wu
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

#### Recommended Citation

Wu, Jiangning, "An experimental study of the viscometric and volumetric properties of octane-pentadecane n-alkane binary and ternary systems at several temperatures." (1992). *Electronic Theses and Dissertations*. Paper 1053.

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.



National Library of Canada

Bibliothèque nationale du Canada

Canadian Theses Service

Service des thèses canadiennes

Ottawa, Canada K1A 0N4

#### NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

#### **AVIS**

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.



# AN EXPERIMENTAL STUDY OF THE VISCOMETRIC AND VOLUMETRIC PROPERTIES OF $C_8$ - $C_{15}$ N-ALKANE BINARY AND TERNARY SYSTEMS AT SEVERAL TEMPERATURES

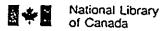
by

Jiangning Wu

A Dissertation

Submitted to the Faculty of Graduate Studies and Research

Through the Department of Chemical Engineering


in Partial Fulfilment

of the Requirements for the degree of

Doctor of Philosophy

at the University of Windsor

Windsor, Ontario, Canada 1992



Bibliothèque nationale du Canada

Canadian Theses Service

Service des thèses canadiennes

Ottawa, Canada K1A 0N4

The author has granted an irrevocable nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-72809-4

Canad'ä

Jiangning Wu

—————

All Rights Reserved

1992

\$

#### **ABSTRACT**

The viscosities and densities of five ternary  $C_8$  -  $C_{15}$  n-alkane liquid systems and their corresponding eight binary subsystems have been measured at 293.15, 298.15, 308.15 and 313.15 K over the entire composition range.

The experimental and literature viscosity data were used to test and modify some existing viscosity predictive models.

The technique proposed earlier by Asfour et al. (1991) for the prediction of the dependence of viscosities of binary n-alkane systems on composition has been extended to cover ternary mixtures.

A pseudo-binary mixture model has been developed in this study to modify the Generalized Corresponding States Principle (GCSP) proposed earlier by Teja and Rice (1981) for either prediction or correlation of the viscosity of liquid mixtures. The proposed modification of the GCSP method has the following advantages for n-alkane liquid mixtures having more than two components: (i) for the prediction of mixture viscosities, it does not require the selection procedure of reference fluids, thus eliminating the possible significant errors resulting from such a selection; (ii) for the correlation of mixture viscosities, it reduces the number of the binary interaction coefficients to one, no matter how many components are in a system. Obviously, this results in substantial cost and time savings.

Two equations are proposed in this study as supplements to the original GCSP to make it more efficient; viz. (i) the first equation is concerned with the prediction of the

interaction coefficient of the binary n-alkane systems from the pure component properties,
(ii) the second equation provides a technique for the appropriate reference fluid selection
when the original GCSP method is used for the viscosity prediction of ternary n-alkane
liquid systems.

Some literature excess property models have also been subjected to testing by using the excess property data calculated from the experimental viscometric and volumetric properties obtained in this study.

# **DEDICATION**

To my parents for their love, encouragement and support.

 $\gtrsim$ 

#### **ACKNOWLEDGEMENTS**

My sincere thanks and appreciation are due to Professor Abdul-Fattah A. Asfour for suggesting this work and for his valuable guidance and continuous encouragement throughout this project.

The financial support from the University of Windsor in form of a University of Windsor Scholarship awarded to this author is gratefully acknowledged.

Thanks to Mrs. Qi for her excellent typing of most of the tables in this dissertation.

Deep thanks to my friends who were there when I needed them.

To my parents and brother, I cannot express the depth of my gratitude for their encouragement and invaluable support.

At last and most important, to my husband, Dingyi Ye, and my son, Tianjiang Ye, to whom I shall forever be grateful for their support and sacrifices.

## TABLE OF CONTENTS

| ·                                                                  | Page  |
|--------------------------------------------------------------------|-------|
| ABSTRACT                                                           | iv    |
| DEDICATION                                                         | vi    |
| ACKNOWLEDGEMENTS                                                   | vii   |
| TABLE OF CONTENTS                                                  | viii  |
| LIST OF TABLES                                                     | xiii  |
| LIST OF FIGURES                                                    | xviii |
| LIST OF APPENDICES                                                 | xxi   |
| CHAPTER 1 INTRODUCTION                                             | 1     |
| 1.1 General                                                        | 1     |
| 1.2 Objectives                                                     | 3     |
| CHAPTER 2 LITERATURE SURVEY                                        | 5     |
| 2.1 General                                                        | 5     |
| 2.2 The Effects of Pressure and Temperature on Liquid Viscosity    | 6     |
| 2.3 Survey of the Literature Viscosity  Models for Liquid Mixtures | 7     |
| 2.3.1 The Eyring theory of viscosity of liquid                     | 7     |
| 2.3.2 McAllister's model                                           | 11    |
| 2.3.3 Heric's model                                                | 20    |
| 2.3.4 Rowley's model                                               | 23    |
| 2.3.5 The Corresponding States Principle                           | 30    |

|              |                                                                         | Page |
|--------------|-------------------------------------------------------------------------|------|
|              | The extended corresponding tates - The shape factor approach            | 34   |
|              | The extended corresponding tates - The Pizer approach                   | 36   |
|              | Proposed modification of the Generalized Corresponding States Principle | 44   |
| 2.4 Viscos   | sity Related Properties                                                 | 45   |
| 2.4.1 D      | Density                                                                 | 45   |
| 2.4.2 E      | Excess volume of mixing                                                 | 45   |
| 2.4.3 E      | Excess viscosity of mixing                                              | 46   |
| 2.4.4 E      | Excess free energy of viscous flow                                      | 46   |
| CHAPTER 3 EX | XPERIMENTAL EQUIPMENT AND PROCEDURES                                    | 48   |
| 3.1 Materi   | ials                                                                    | 48   |
| 3.2 Prepar   | ration of Solutions                                                     | 50   |
| 3.3 Viscos   | sity Measurement                                                        | 50   |
| 3.3.1 B      | Equipment                                                               | 50   |
| 3.3.2 C      | Operation of viscometers                                                | 51   |
| 3.3.3 V      | Viscosity equation                                                      | 53   |
| 3.4 Densit   | ty Measurement                                                          | 56   |
| 3.4.1 E      | Equipment                                                               | 56   |
| 3.4.2 P      | Procedure                                                               | , 61 |
| 3.4.3 E      | Density meter equation                                                  | 61   |

|                                                                               | Page |
|-------------------------------------------------------------------------------|------|
| CHAPTER 4 EXPERIMENTAL RESULTS                                                | 63   |
| 4.1 General                                                                   | 63   |
| 4.2 Calibration of the Density Meter                                          | 63   |
| 4.3 Calibration of the Viscometers                                            | 65   |
| 4.4 Binary System Data                                                        | 72   |
| 4.5 Ternary System Data                                                       | 72   |
| CHAPTER 5 DISCUSSION OF RESULTS                                               | 115  |
| 5.1 Density Data                                                              | 115  |
| 5.1.1 Accuracy and precision of the density measurements                      | 115  |
| 5.1.2 The density - composition correlations                                  | 118  |
| 5.2 Viscosity Data                                                            | •    |
| 5.2.1 Accuracy and precision of the viscosity measurements                    | 118  |
| 5.2.2 The viscosity - composition correlations                                | 121  |
| 5.3 The Excess Properties of Mixing                                           | 121  |
| 5.3.1 Excess volume of mixing                                                 | 121  |
| 5.3.2 Excess activation energy of viscous flow                                | 133  |
| 5.4 Application of the McAllister Viscosity Model to n-Alkane Liquid Mixtures | 141  |
| 5.4.1 Test of the McAllister model using binary mixture data                  | 141  |

|            |                                                                                                        | Page |
|------------|--------------------------------------------------------------------------------------------------------|------|
| 5.4.2      | Extension of the Asfour et al. technique to n-alkane ternary systems                                   | 146  |
| 5.4.3      | Further extension of the McAllister model                                                              | 151  |
| State      | lication of the Generalized Corresponding es Principle (GCSP) to the Viscosity -Alkane Liquid Mixtures | 153  |
| 5.5.1      | Test of GCSP using experimental binary n-alkane viscosity data                                         | 154  |
| 5.5.2      | Test GCSP using experimental ternary n-alkane viscosity data                                           | 158  |
| 5.5.3      | Test of the GCSP method using literature n-alkane quaternary viscosity data                            | 166  |
| 5.5.4      | Proposed modification of the GCSP method                                                               | 172  |
| 5.5.5      | Application of the modified-GCSP method                                                                | 180  |
| 5.6 Sum    | mary of the Viscosity Prediction Models                                                                | 189  |
| 5.6.1      | Binary n-alkane liquid systems                                                                         | 189  |
| 5.6.2      | Ternary n-alkane liquid systems                                                                        | 190  |
| 5.6.3      | Quaternary n-alkane liquid systems                                                                     | 191  |
| CHAPTER 6  | CONCLUSIONS AND RECOMMENDATIONS                                                                        | 193  |
| 6.1 Con    | clusions                                                                                               | 193  |
| 6.2 Rec    | ommendations                                                                                           | 195  |
| NOMENCLAT  | URE                                                                                                    | 197  |
| REFERENCES |                                                                                                        | 202  |

The contract of the contract o

|               | Page |
|---------------|------|
| APPENDICES    | 208  |
| VITA AUCTORIS | 258  |

# LIST OF TABLES

| Table | able                                                                                                                             |       |
|-------|----------------------------------------------------------------------------------------------------------------------------------|-------|
| 2.1   | Viscosity Predictions for System Methane(1) - n-Butane(2) by the Two Corresponding States Methods                                | 42    |
| 2.2   | Viscosity Predictions for System Ethane(1) - Ethylene(2) by the Two Corresponding States Methods                                 | 42    |
| 2.3   | Viscosity Predictions for Systems Benzene(1) - n- Hexane(2) and Benzene(1) - n-Decane(2) by the Two Corresponding States Methods | 43    |
| 3.1   | Values of Refractive Index of Pure Components                                                                                    | 49    |
| 4.1   | Investigated Ternary Systems and Binary Subsystems                                                                               | 64    |
| 4.2   | Calibration Data for the Density Meter                                                                                           | 66-67 |
| 4.3   | Calibration Data for the Viscometers                                                                                             | 68-71 |
| 4.4   | Densities and Excess Volumes of the System n-Octane(1)-n-Undecane(2)                                                             | 77    |
| 4.5   | Densities and Excess Volumes of the System n-Octane(1)-n-Tridecane(2)                                                            | 78    |
| 4.6   | Densities and Excess Volumes of the System n-Octane(1)-n-Pentadecane(2)                                                          | 79    |
| 4.7   | Densities and Excess Volumes of the System n-Decane(1)-n-Pentadecane(2)                                                          | 80    |
| 4.8   | Densities and Excess Volumes of the System n-Undecane(1)-n-Pentadecane(2)                                                        | 81    |
| 4.9   | Densities and Excess Volumes of the System n-Tridecane(1)-n-Pentadecane(2)                                                       | 82    |
| 4.10  | Densities and Excess Volumes of the System n-Decane(1)-n-Tridecane(2)                                                            | 83    |

| Table | e                                                                                                           | Page   |
|-------|-------------------------------------------------------------------------------------------------------------|--------|
| 4.11  | Densities and Excess Volumes of the System n-Undecane(1)-n-Tridecane(2)                                     | 84     |
| 4.12  | Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Octane(1)-n-Undecane(2)       | 89,90  |
| 4.13  | Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Octane(1)-n-Tridecane(2)      | 91,92  |
| 4.14  | Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Octane(1)-n-Pentadecane(2)    | 93,94  |
| 4.15  | Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Decane(1)-n-Pentadecane(2)    | 95,96  |
| 4.16  | Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Undecane(1)-n-Pentadecane(2)  | 97,98  |
| 4.17  | Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Tridecane(1)-n-Pentadecane(2) | 99,100 |
| 4.18  | Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Decane(1)-n-Tridecane(2)      | 01,102 |
| 4.19  | Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Undecane(1)-n-Tridecane(2)    | 03,104 |
| 4.20  | Densities and Viscosities of Ternary System n-Octane(1)-n-Undecane(2)-n-Tridecane(3)                        | 05,106 |
| 4.21  | Densities and Viscosities of Ternary System n-Octane(1)-n-Undecane(2)-n-Pentadecane(3)                      | 07,108 |
|       |                                                                                                             |        |
| \$    | xiv                                                                                                         |        |
|       |                                                                                                             |        |

| 1 2016 |                                                                                                                            | Page  |
|--------|----------------------------------------------------------------------------------------------------------------------------|-------|
| 4.22   | Densities and Viscosities of Ternary System n-Undecane(1)-n-Tridecane(2)-n-Pentadecane(3)                                  | ,110  |
| 4.23   | Densities and Viscosities of Ternary System n-Octane(1)-n-Tridecane(2)-n-Pentadecane(3)                                    | .112  |
| 4.24   | Densities and Viscosities of Ternary System n-Decane(1)-n-Tridecane(2)-n-Pentadecane(3)                                    | 3,114 |
| 5.1    | Comparison of Experimental Values with Literature Values of the Pure Component Properties                                  | 5,117 |
| 5.2    | Least Squares Constants for Eq. (5.1)                                                                                      | 9,120 |
| 5.3    | Least Squares Constants for Eq. (5.2)                                                                                      | 2,123 |
| 5.4    | Comparison of the Minimum Values of Excess Volumes of This Study with Literature Data for System n-Octane(1)-n-Undecane(2) | 131   |
| 5.5    | Least-Squares Constants for Heric's Binary Excess Volume Model at 293.15 K                                                 | 132   |
| 5.6    | Least-Squares Constants for Heric's Ternary Excess Volume Model at 293.15 K                                                | 134   |
| 5.7    | Least-Squares Constants for Heric's Binary Model of Excess Energy of Viscous Flow at 293.15 K                              | 140   |
| 5.8    | Least-Squares Constants for Heric's Ternary Model of Excess Energy of Viscous Flow at 293.15 K                             | 142   |
| 5.9    | Values of Parameters in McAllister Binary Mixture  Model for n-Alkane Mixtures                                             | 143   |
| 5.10   | Comparison of the Method of Asfour et al. with Experimental Data for Binary McAllister                                     |       |
|        | Three-body Model                                                                                                           | 145   |

| Table |                                                                                                                                                                                         | Page  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 5.11  | Comparison of the Method of Asfour et al. with Experimental Data for McAllister Binary Four-body Model                                                                                  | 147   |
| 5.12  | Values of Parameter in McAllister Ternary Model for n-Alkane Systems                                                                                                                    | 148   |
| 5.13  | Values of $v_{123}$ / $(v_1v_2v_3)^{1/3}$ of Ternary n-Alkane Systems                                                                                                                   | 149   |
| 5.14  | Results of Testing GCSP Method by Binary n-Alkane Viscosity Data                                                                                                                        | 5,156 |
| 5.15  | Testing Eq. (5.15) with Literature Data of Some n-Alkane Systems                                                                                                                        | 159   |
| 5.16  | Testing GCSP ( $\xi_{ij} = 1$ ) with Experimental Ternary n-Alkane Viscosity Data                                                                                                       | 161   |
| 5.17  | The Values of Percent Deviation of Testing GCSP( $\xi_{ij} = 1$ ) with the Viscosity Data of n-Alkane Quaternary Mixture $C_7(1)$ - $C_9(2)$ - $C_{12}(3)$ - $C_{16}(4)$ at 303.16 K    | 170   |
| 5.18  | The Values of Percent Deviation of Testing GCSP( $\xi_{ij} = 1$ ) with the Viscosity Data of n-Alkane Quaternary Mixture $C_6(1)$ - $C_{10}(2)$ - $C_{12}(3)$ - $C_{16}(4)$ at 303.16 K | 170   |
| 5.19  | Physical Properties of Some Pure n-Alkanes Used in Pseudo-binary Mixture Model                                                                                                          | 173   |
| 5.20  | Pure n-Alkane Data Used in Pseudo-binary Mixture Model                                                                                                                                  | 175   |
| 5.21  | Least-Squares Constants for the Equations (5.19), (5.20) and (5.21)                                                                                                                     | 181   |
| 5.22  | Least-Squares Constants for Equation (5.22)                                                                                                                                             | 181   |
|       | Results of Using Modified-GCSP Method on Ternary n-Alkane Systems                                                                                                                       | 183   |

| 1 2016 | es e                                                                                                                                 | Page    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 5.24   | Comparison of Using Calculated $\xi_{12}$ Value with Using $\xi_{12} = 1$ in Modified-GCSP for n-Alkane Ternary Mixture $C_6(1)$ - $C_{14}(2)$ - $C_{16}(3)$ at 298.15 K | 184,185 |
| 5.25   | Comparison of Modified-GCSP with GCSP for n-Alkane Quaternary Mixtures                                                                                                   | 186     |
| 5.26   | Results of Using the Modified-GCSP with and without the Interaction Coefficient for Quaternary n-Alkane Systems                                                          | 188     |
|        |                                                                                                                                                                          |         |

# LIST OF FIGURES

| Figure |                                                                                      | Page |
|--------|--------------------------------------------------------------------------------------|------|
| 1.1    | Ternary n-Alkane Systems Investigated                                                | 4    |
| 2.1    | The Eyring Molecular Model of Liquid Viscosity                                       | 8    |
| 2.2    | Types of Viscosity Interactions in a Binary Mixture, The McAllister Three-Body Model | 13   |
| 2.3    | Interaction Model for Ternary System Consisting Molecules of Type 1, 2 and 3         | 18   |
| 2.4    | The NRTL Theory Model for a Binary Mixture                                           | 26   |
| 3.1    | The Cannon-Ubbelohde Viscometer                                                      | 52   |
| 3.2    | Pictorial View of the Constant Temperature Bath                                      | 54   |
| 3.3    | Pictorial View of the Precision Density Meter                                        | 57   |
| 4.1    | Density vs. Composition for Binary n-Alkane Systems at 293.15 K                      | 73   |
| 4.2    | Density vs. Composition for Binary n-Alkane Systems at 298.15 K                      | 74   |
| 4.3    | Density vs. Composition for Binary n-Alkane Systems at 308.15 K                      | 75   |
| 4.4    | Density vs. Composition for Binary n-Alkane Systems at 313.15 K                      | 76   |
| 4.5    | Viscosity vs. Composition for Binary n-Alkane Systems at 293.15 K                    | 85   |
| 4.6    | Viscosity vs. Composition for Binary n-Alkane Systems at 298.15 K                    | 86   |
| 4.7    | Viscosity vs. Composition for Binary n-Alkane Systems at 308.15 K                    | 87   |

| Figur | ure                                                                                        |     |
|-------|--------------------------------------------------------------------------------------------|-----|
| 4.8   | Viscosity vs. Composition for Binary n-Alkane Systems at 313.15 K                          | 88  |
| 5.1   | Excess Volume vs. Composition for Binary n-Alkane Systems at 293.15 K                      | 125 |
| 5.2   | Excess Volume vs. Composition for Binary n-Alkane Systems at 298.15 K                      | 126 |
| 5.3   | Excess Volume vs. Composition for Binary n-Alkane Systems at 308.15 K                      | 127 |
| 5.4   | Excess Volume vs. Composition for Binary n-Alkane Systems at 313.15 K                      | 128 |
| 5.5   | Excess Free Energy of Viscous Flow vs. Composition for Binary n-Alkane Systems at 293.15 K | 135 |
| 5.6   | Excess Free Energy of Viscous Flow vs. Composition for Binary n-Alkane Systems at 298.15 K | 136 |
| 5.7   | Excess Free Energy of Viscous Flow vs. Composition for Binary n-Alkane Systems at 308.15 K | 137 |
| 5.8   | Excess Free Energy of Viscous Flow vs. Composition for Binary n-Alkane Systems at 313.15 K | 138 |
| 5.9   | Plot of Eq. (5.13)                                                                         | 150 |
| 5.10  | Results of Testing Eq. (5.13)                                                              | 152 |
| 5.11  | Plot of Eq. (5.15)                                                                         | 157 |
| 5.12  | Results of Applying GCSP to n-Alkane Ternary Systems at 293.15 K                           | 162 |
| 5.13  | Results of Applying GCSP to n-Alkane Ternary Systems at 298.15 K                           | 163 |
| 5.14  | Results of Applying GCSP to n-Alkane Ternary Systems at 308.15 K                           | 164 |

| Figu | те                                                                                                                         | Page |
|------|----------------------------------------------------------------------------------------------------------------------------|------|
| 5.15 | Results of Applying GCSP to n-Alkane Ternary Systems at 313.15 K                                                           | 165  |
| 5.16 | Results of Applying GCSP to C <sub>7</sub> -C <sub>9</sub> -C <sub>12</sub> -C <sub>16</sub><br>n-Alkane Quaternary System | 167  |
| 5.17 | Results of Applying GCSP to C <sub>6</sub> -C <sub>10</sub> -C <sub>12</sub> -C <sub>16</sub> n-Alkane Quaternary System   | 168  |
| 5.18 | Acentric Factor vs. Chain Length for Pure n-Alkanes                                                                        | 176  |
| 5.19 | Critical Temperature vs. Chain Length for Pure n-Alkanes                                                                   | 177  |
| 5.20 | Critical Pressure vs. Chain Length for Pure n-Alkanes                                                                      | 178  |
| 5.21 | Logarithm of Reduced Viscosity vs. Chain Length for Pure n-Alkanes                                                         | 179  |

# LIST OF APPENDICES

| Appendix |                                                                                | Page |  |
|----------|--------------------------------------------------------------------------------|------|--|
| A        | Raw Data of Viscosity and Density Measurements                                 | 209  |  |
| В        | Excess Properties of Ternary n-Alkane Systems                                  | 238  |  |
| С        | Error Analysis of Density Measurements and Excess Molar Volumes                | 249  |  |
| D        | The Results of Testing Purity of the Chemicals by Gas Chromatographic Analysis | 256  |  |

#### **CHAPTER 1**

#### INTRODUCTION

#### 1.1 General

Viscosity is defined as the shear force per unit area divided by the velocity gradient (Reid et al., 1977). Viscosity of liquid mixtures is a very important transport property. This is because theoretically, it provides a clear insight into the behavior of liquid molecules and practically, it is required for the solution of many engineering problems involving heat transfer, mass transfer and fluid flow.

The characteristics of the liquid state involve (i) strong interactions among molecules, and (ii) disordered molecular arrangement. Because the effective treatment of liquid structure is difficult, theoretical analysis of the viscosity of liquid mixtures has lagged far behind the viscosity theories of gases which have negligible interactions amongst molecules due to large intra-molecular spaces. A reliable and generally valid theory for the quantitative prediction of liquid mixture viscosities has not been established yet (Eyring and Jhon, 1969; Reid et al., 1977; Asfour et al., 1991).

N-alkanes are major components of many industrial liquids, unfortunately, reliable viscometric data on n-alkane mixtures, especially mixtures of more than two components, are very scarce in the literature. Data on such systems are needed for their own value as well as for the theoretical analysis of liquid viscosities.

The semi-empirical McAllister model (McAllister, 1960) which is based on Eyring's

theory of absolute reaction rates is regarded, by many investigators, as the best correlating technique available for binary and ternary non-polar liquid systems (Reid et al., 1977). However, the major drawback of the model is that it contains adjustable parameters which must be determined by using experimental viscosity-composition data. Asfour et al. (1991) reported a new technique for predicting the values of the parameters of the model from the pure component properties for binary n-alkane mixtures, but for the ternary parameter of this model, there has been no comparable prediction technique.

The McAllister model would have too many undetermined parameters if extended to systems of four or more components because of the higher order of molecular interactions. Therefore, it may not be possible to extend the technique reported by Asfour et al. (1991) to cover systems containing more than three compounds. For such mixtures, the Generalized Corresponding States Principle (GCSP) is valid. The GCSP method proposed first for thermodynamic properties (Teja, 1980; Teja and Sandler, 1980) was extended to the viscosity of liquid mixtures by Teja and Rice (1981). It is based on the Corresponding States Principle and the properties of two reference fluids. This method can easily be extended to mixtures having unrestricted number of components. It is predictive or correlating depending on whether the binary interaction coefficients are set equal to unity or not. The disadvantages of this method are: (i) if it is used as a predictive technique and the number of components is more than two, different selections of reference fluids could give significantly different results for the viscosity prediction of n-alkane liquid mixtures and there is no reliable way to choose the appropriate reference fluids, (ii) if it is used as a correlation technique by taking the binary interaction

coefficients as adjustable parameters for multicomponent mixtures, too many binary interaction coefficients would require many costly and time consuming experimental data to determine.

#### 1.2 Objectives

The objectives of this study are as follows:

- To determine the viscosities of five selected ternary n-alkane liquid systems over the entire composition range at 293.15, 298.15, 308.15 and 313.15 K. Figure 1.1 illustrates the ternary systems investigated in this study. Viscosities of the corresponding eight binary subsystems are also to be measured over the same temperature ranges. All the obtained data will be employed in subjecting some literature models to critical testing. In addition, such data will be used for providing possible modifications of existing predictive models to enhance their predictive capabilities.
- To determine the densities of all systems indicated earlier over the same composition and temperature ranges to convert the measured kinematic viscosities to absolute viscosities required by some of the models to be tested.
- To extend the technique reported by Asfour *et al.* for the prediction of McAllister parameters to ternary n-alkane liquid mixtures.

- To modify the Generalized Corresponding States Principle by proposing a pseudo-binary mixture model in order to overcome its shortcomings in both prediction and correlation of multicomponent mixture viscosities.
- To test some literature excess property models by using the excess property data calculated from the gathered experimental data.

| System | n-Octane | n-Decane | n-Undecane | n-Tridecane | n-Pentadecane |
|--------|----------|----------|------------|-------------|---------------|
| 1      | x        |          | x          | x           |               |
| 2      | x        |          | x          |             | x             |
| 3      |          |          | x          | x           | x             |
| 4      | x        |          |            | x           | x             |
| 5      |          | x        |            | x           | x             |

Figure 1.1. Ternary n-Alkane Systems Investigated

#### **CHAPTER 2**

#### LITERATURE SURVEY

#### 2.1 General

Viscosity of liquid mixtures has attracted much attention in the literature (Partington, 1951; Reid et al., 1977) because of its theoretical and practical importance. Viscosity is a property which illustrates the nature of the problem encountered in the theory of transport properties (Pryde, 1966). Viscosity is also a property the knowledge of which is required in many engineering applications which involve heat transfer, mass transfer and fluid flow. It is well known that the three important dimensionless groups, the Reynolds number, the Prandtl number and the Schmidt number, all have viscosity as a main parameter. Unfortunately, reliable viscometric data on liquid mixtures at different temperatures are very scarce in the literature.

The investigation of viscosities of fluids started in 1877 by Arrhenius. More than 50 empirical or semi-empirical equations have appeared in the literature till 1977 (Irving, 1977). New models have continued to appear since 1977. Most of the reported equations describe the viscosity of binary liquid mixtures, however, some of them may be extended to mixtures of three or more components. Usually the extended equations require more adjustable parameters, but the accuracy of prediction is far from satisfactory. A general and reliable theory for the accurate prediction of viscosities of liquid mixtures has not been established yet (Reid *et al.*, 1977; Asfour, *et al.*, 1991).

In this chapter, the effects of pressure and temperature on liquid viscosity are discussed first. This is followed by a survey of the literature viscosity models for liquid mixtures. The last part of this chapter contains the terminology of some viscosity related properties.

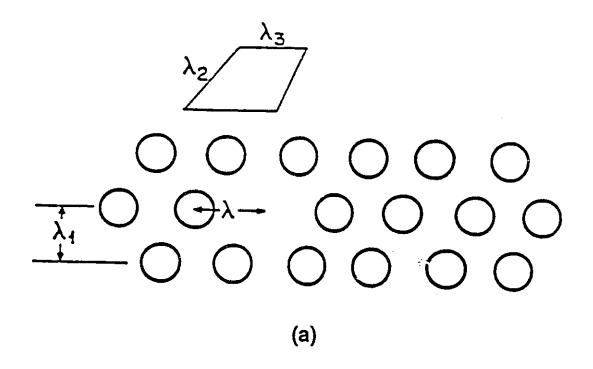
#### 2.2 The Effects of Pressure and Temperature on Liquid Viscosity

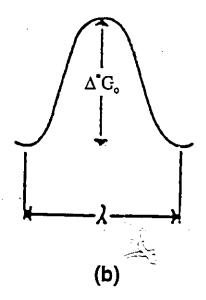
Viscosity of liquids increases if the pressure on the liquid is increased, because the molecules are pushed closer together, more work needs to be done to open up a vacant site for the molecule to jump into. But since the viscosity of liquids below the normal boiling point is not particularly affected by moderate pressures (Reid, et al., 1977), the investigation of liquid viscosity is usually carried on under atmospheric pressure.

The viscosity of liquids decreases with temperature. As pointed out by Andrade (1954) "the most striking feature of liquid viscosity is the very marked way in which it decreases with rise of temperature, whereas the viscosity of gases increases with temperature". The Andrade correlation (Andrade, 1930) is given by

$$n = A e^{B/T} \tag{2.1}$$

It indicates an exponential decrease in viscosity with temperature. Although a number of variants of eq. (2.1) has been proposed since 1930, eq. (2.1) is still the most widely used correlation for showing the effect of temperature on liquid viscosity (Reid et al., 1977).


# 2.3 Survey of the Literature Viscosity Models for Liquid Mixtures


#### 2.3.1 The Eyring theory of viscosity of liquid

A number of existing viscosity models is based on Eyring's absolute rate theory (Eyring, 1936, 1957). This theory is introduced as follows:

By considering viscous flow as a chemical reaction in which the elementary process is the passing of a single molecule from one equilibrium position to another over a potential barrier. Eyring combined the theory of absolute reaction rates, which was originally devised by himself (Eyring, 1935) and has been used successfully in chemical kinetics, with the hole theory and applied them to the study of liquid mixtures (Hischfelder et al. 1954; Eyring, 1936; Ewell and Eyring, 1937; Glasstone, 1941; Tabor, 1969; Eyring, 1957). The model for the viscous flow of a liquid is shown in Figure 2.1. The center to center distance between two layers of molecules in a liquid is  $\lambda_1$ , the space where a molecule is not shown is known as a hole. The average area occupied by a molecule is  $\lambda_2\lambda_3$  and the center to center distance between a molecule and a hole is  $\lambda$  which is the distance that a molecule jumps

When no force is acting on the liquid, the jumping of the molecules to a neighbouring site is a result of thermal activation, the rate of jumping to left and right is equal so that there is no net flow. The potential energy barrier,  $\Delta^{\bullet}G_{\circ}$ , which must be crossed by the jumping molecule in this case is shown in Figure 2.1(b). The frequency





**:**:

Figure 2.1. The Eyring Molecular Model of Liquid Viscosity

for both forward and backward molecule jumps when no force acting is

$$r_o = \frac{kT}{h} \exp\left(-\frac{\Delta^* G_o}{kT}\right) \tag{2.2}$$

where k is Boltzmann's constant and h is Planck's constant.

When a shear stress, f, is applied forward to the liquid, the viscous flow occurs. The force on the molecule is  $(f \lambda_2 \lambda_3)$ . Since work is defined as force multiplied by the distance it acts through and the distance to reach the top of the barrier is  $(\lambda/2)$ , the work done in carrying the molecule to the top of the potential barrier (on the other side of the barrier peak the molecules is assumed to give up all its energy as heat) is

$$work = f\lambda_2 \lambda_3 \frac{\lambda}{2} \tag{2.3}$$

The potential barrier is different for viscous flow from the non-flow situation. In this case, the forward rate of a molecule jumping is

$$r_{forward} = \frac{kT}{h} \left[ \exp\left(-\frac{\Delta^* G_o - f \lambda_2 \lambda_3 \frac{\lambda}{2}}{kT}\right) \right]$$
 (2.4)

and the backward rate of the molecule jumping is

$$r_{backward} = \frac{kT}{h} \left[ \exp\left(-\frac{\Delta^* G_o + f \lambda_2 \lambda_3 \frac{\lambda}{2}}{kT}\right) \right]$$
 (2.5)

Therefore, the net rate of jumping is

1

$$r = \frac{kT}{h} \left[ \exp\left(-\frac{\Delta^* G_o}{kT}\right) \left[ \exp\left(\frac{f \lambda_2 \lambda_3 \lambda}{2kT}\right) - \exp\left(-\frac{f \lambda_2 \lambda_3 \lambda}{2kT}\right) \right]$$
(2.6)

The last term of eq. (2.6) can be simplified to give

$$r = \frac{kT}{h} \exp\left(-\frac{\Delta^* G_o}{kT}\right) \left[2\frac{f\lambda_2\lambda_3\lambda}{2kT}\right] = \frac{f\lambda_2\lambda_3\lambda}{h} \exp\left(-\frac{\Delta^* G_o}{kT}\right)$$
(2.7)

Because the absolute viscosity  $\eta$  is defined as the shear stress divided by the velocity gradient and the velocity gradient across the two molecular layers separated by a distance  $\lambda_1$  is

velocity gradient = 
$$\frac{\text{velocity difference}}{\lambda_1}$$
=  $\frac{\text{(distance per jump)} \times \text{(number of jumps per sec.)}}{\lambda_1}$ 
=  $\frac{\lambda r}{\lambda}$ .

Then the viscosity  $\eta$  is

-

$$\eta = f \frac{\lambda_1}{\lambda r} \tag{2.9}$$

Inserting the value of r from equation (2.7) gives

$$\eta = \frac{h\lambda_1}{\lambda_2\lambda_3\lambda^2} \exp\left(\frac{\Delta^*G_o}{kT}\right) \tag{2.10}$$

If  $\lambda_1 = \lambda$  and treating  $\lambda_2 \lambda_3 \lambda_1$  as the molecular average volume,  $\nu$ , equation (2.10) becomes

$$\eta = \frac{h}{v} \exp\left(\frac{\Delta^* G_o}{kT}\right) \tag{2.11}$$

and

$$\eta = \frac{hN_o}{V} \exp\left(\frac{\Delta^*G}{RT}\right) \tag{2.12}$$

where  $N_o$  is Avogadro's number, V the molar volume of the liquid and  $\Delta^*G$  the molar activation energy of viscous flow. The barrier energy  $\Delta^*G_o$  may also be considered as the energy to create a necessary hole for a molecule to drop in.

If  $\lambda_1 \neq \lambda$ , then eq. (2.10) becomes

$$\eta = \frac{h\lambda_1^2}{\lambda_1 \lambda_2 \lambda_3 \lambda^2} \exp\left(\frac{\Delta^* G_o}{KT}\right)$$

$$= \frac{hN_o}{V} \left(\frac{\lambda_1}{\lambda}\right)^2 \exp\left(\frac{\Delta^* G}{RT}\right)$$
(2.13)

For the kinematic viscosity v

$$v = \frac{\eta}{\rho} = \eta \frac{V}{M} = \left(\frac{\lambda_1}{\lambda}\right)^2 \frac{hN_o}{M} \exp\left(\frac{\Delta^* G}{RT}\right)$$
 (2.14)

### 2.3.2 McAllister's model

McAllister (1960) proposed a semi-empirical model based on Eyring's absolute reaction rate theory for the viscosity of nonpolar binary liquid mixtures.

For a mixture of molecules of types 1 and 2, the two-dimensional, three-body interaction was first assumed and a number of different encounters as shown in Figure 2.2 were proposed. It is clear from Figure 2.2 that there are six types of interactions in a binary mixture, they are 1-1-1. 1-2-1, 1-1-2, 2-1-2, 1-2-2 and 2-2-2. The following assumptions are also made: (i) the probability for the interactions is dependent only on the concentration, not on the free energy of activation, (ii) the rate of each individual interaction is proportional to the energy of activation in much the same way as the reaction rate of a chemical reaction, and (iii) the free energies of activation for viscosity are additive on a number fraction or mole fraction. Therefore, for a mixture, the free energy of activation  $\Delta^*G$  can be expressed in general as

$$\Delta^*G = \sum_{i=1}^2 \sum_{j=1}^2 \sum_{k=1}^2 x_i x_j x_k \, \Delta^* G_{ijk}$$
 (2.15)

where x is the mole fraction. Two additional assumptions are

$$\Delta^* G_{121} \doteq \Delta^* G_{112} \equiv \Delta^* G_{12} \tag{2.16}$$

$$\Delta^* G_{212} = \Delta^* G_{122} = \Delta^* G_{21}$$
 (2.17)

Substituting eqs. (2.16) and (2.17) into (2.15) yields

$$\Delta^{\bullet}G = x_1^3 \Delta^{\bullet}G_1 + 3x_1^2 x_2 \Delta^{\bullet}G_{12} + 3x_1 x_2^2 \Delta^{\bullet}G_{21} + x_2^3 \Delta^{\bullet}G_2$$
 (2.18)

For each type of energy of activation considered here a corresponding kinematic viscosity may be assigned.

For the mixture



Figure 2.2. Types of Viscosity Interactions in a Binary Mixture,
The McAllister Three-body Model
(McAllister, 1960)

, ~ ·

$$v = \frac{hN_o}{M} e^{\Delta^* G/RT} \tag{2.19}$$

where

$$M = \sum_{i} x_i M_i \tag{2.20}$$

For the pure component i

$$v_i = \frac{hN_o}{M_i} e^{\Delta^* G_i/RT}$$
 (2.21)

For interactions

$$v_{ij} = \frac{hN_o}{M_{ij}} e^{\Delta^* G_{ij}/RT}$$
 (2.22)

where

$$M_{ij} = (2M_i + M_j)/3$$
 (2.23)

Substituting eq. (2.18) into (2.19) results in

$$v = \frac{hN_o}{M} e^{(x_1^3 \Delta^* G_1 + 3x_1^2 x_2 \Delta^* G_{12} + 3x_1 x_2^2 \Delta^* G_{21} + x_2^3 \Delta^* G_2)/RT}$$
 (2.24)

By taking logarithms of eqs. (2.19), (2.21), (2.22) and (2.24), combining to eliminate the free energies of activation, rearranging and condensing, the well-known McAllister's three-body model is as follows:

$$\ln v = x_1^3 \ln v_1 + 3x_1^2 x_2 \ln v_{12} + 3x_1 x_2^2 \ln v_{21} + x_2^3 \ln v_2$$

$$- \ln(x_1 + x_2 \frac{M_2}{M_1}) + 3x_1^2 x_2 \ln(\frac{2 + M_2/M_1}{3})$$

$$+ 3x_1 x_2^2 \ln(\frac{1 + 2M_2/M_1}{3}) + x_2^3 \ln(\frac{M_2}{M_1})$$
(2.25)

Equation (2.25) contains two adjustable parameters which have to be determined from mixture viscosity data by the method of least squares. The three-body model works well when the two types of molecules in the mixture are different in size (radius) by less than a factor of 1.5.

McAllister pointed out that when the size of one component molecule is much larger than that of the other component molecule, the three-body interactions considered above may not be realistic, four-body interaction has to be assumed. By techniques analogous to the method given earlier, McAllister derived his four-body model as follows:

$$\ln v = x_1^4 \ln v_1 + 4x_1^3 x_2 \ln v_{1112} + 6x_1^2 x_2^2 \ln v_{1122}$$

$$+ 4x_1 x_2^3 \ln v_{2221} + x_2^4 \ln v_2 - \ln(x_1 + x_2 \frac{M_2}{M_1})$$

$$+ 4x_1^3 x_2 \ln(\frac{3 + M_2/M_1}{4}) + 6x_1^2 x_2^2 \ln(\frac{1 + M_2/M_1}{2})$$

$$+ 4x_1 x_2^3 \ln(\frac{1 + 3M_2/M_1}{4})$$
(2.26)

McAllister (1960) tested his three-body model, eq. (2.25), on various binary systems.

A methanol-toluene system was tested using experimental data over a temperature range 20.00°C - 60.11°C, except for three data points at 25°C and one at 37.8°C, all the calculated viscosity values agreed with the experimental data with a maximum difference of  $\pm$  0.5%. When the benzene-toluene system was tested by eq. (2.25) at 25°C, the maximum deviation is 0.06% and the average difference is 0.02%. Testing the cyclohexane-heptane system at 37.8°C resulted in an average percentage difference of  $\pm$  0.2% and a maximum difference of 0.5%. Testing the polar system, acetone-water by eq. (2.25) resulted in an average deviation of 6.4% and a maximum deviation of 15.8%. The conclusion is that even though the McAllister's three-body model was highly oversimplified, the accuracy obtained for non-polar binary liquid mixtures is sufficiently good (McAllister, 1960). The weakness is that it contains adjustable parameters which have to be determined by using mixture viscosity data. Collection of such data is costly and time consuming.

Recently, Asfour *et al.* (1991) proposed a new technique which can predict the binary parameters of the McAllister's three-body and four-body model very well for nalkane liquid mixtures from the properties of the pure components of the mixture.

The equations suggested by Asfour et al. for predicting the McAllister three-body parameters for n-alkane binary systems are as follows:

$$\frac{v_{12}}{(v_1^2 v_2)^{1/3}} = 1 + 0.044 \frac{(N_2 - N_1)^2}{(N_1 N_2)^{1/3}}$$
 (2.27)

$$v_{21} = v_{12} (v_1/v_2)^{1/3}$$
 (2.28)

where  $N_1$  and  $N_2$  are the carbon atoms/per molecule of components 1 and 2, respectively. And their equations for predicting the McAllister four-body parameters for n-alkane binary mixtures are

$$\frac{v_{1122}}{(v_1^2 v_2^2)^{1/4}} = 1 + 0.03 \frac{(N_2 - N_1)^2}{(N_1 N_2)^{1/4}}$$
 (2.29)

$$v_{1112} = v_{1122} (v_1/v_2)^{1/4}$$
 and  $v_{2221} = v_{1122} (v_2/v_1)^{1/4}$  (2.30)

The predicted values of the parameters are in a very close agreement with those calculated from experimental data.

The McAllister model was extended to ternary mixtures by Chandramouli and Laddha (1963) and by Kalidas and Laddha (1964). In the study of the viscosity of a ternary mixture, molecules of types 1, 2 and 3 and their different interactions are considered. These are shown in Figure 2.3. Still, the two-dimensional, three-body interactions were assumed here, and arbitrarily, the size (radius) of the three types of molecules did not differ by a factor of 1.5 with respect to each other. The extension of the McAllister model is

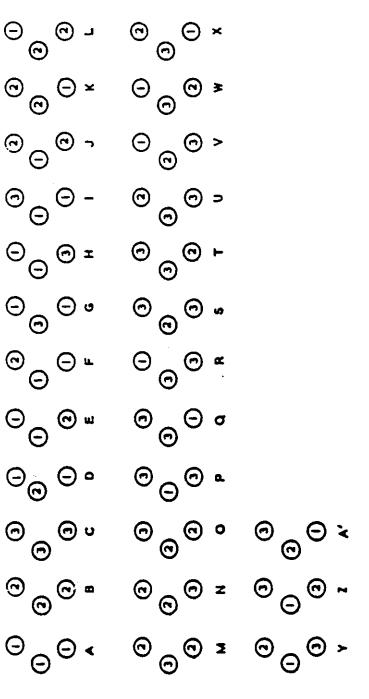



Figure 2.3. Interaction Model for Ternary System Consisting Molecules of Type 1, 2 and 3 (Kalidas et al., 1964) (Kalidas et al.,

$$\ln v = x_1^3 \ln v_1 + x_2^3 \ln v_2 + x_3^3 \ln v_3 + 3x_1^2 x_2 \ln v_{12} + 3x_1^2 x_3 \ln v_{13}$$

$$+ 3x_2^2 x_1 \ln v_{21} + 3x_2^2 x_3 \ln v_{23} + 3x_3^2 x_1 \ln v_{31} + 3x_3^2 x_2 \ln v_{32}$$

$$+ 6x_1 x_2 x_3 \ln v_{123} - \ln(x_1 M_1 + x_2 M_2 + x_3 M_3) + x_1^3 \ln M_1$$

$$+ x_2^3 \ln M_2 + x_3^3 \ln M_3 + 3x_1^2 x_2 \ln(2M_1 + M_2)/3$$

$$+ 3x_1^2 x_3 \ln(2M_1 + M_3)/3 + 3x_2^2 x_1 \ln(2M_2 + M_1)/3$$

$$+ 3x_2^2 x_3 \ln(2M_2 + M_3)/3 + 3x_3^2 x_1 \ln(2M_3 + M_1)/3$$

$$+ 3x_3^2 x_2 \ln(2M_3 + M_2)/3 + 6x_1 x_2 x_3 \ln(M_1 + M_2 + M_3)/3$$

where  $v_{123}$  involves the interactions of three different molecules each of type 1, 2 and 3. The relationship between  $v_{123}$  and its corresponding activation energy is

$$v_{123} = (\frac{hN_o}{M_{123}}) e^{\Delta^* G_{123}/RT}$$
 (2.32)

where

$$M_{123} = (M_1 + M_2 + M_3)/3$$
 (2.33)

In eq. (2.31), there are six binary parameters:  $v_{12}$ ,  $v_{21}$ ,  $v_{13}$ ,  $v_{23}$  and  $v_{32}$ , and one ternary parameter,  $v_{123}$ . The binary constants can be calculated by measurements of viscosities of binary mixtures or can be predicted by the technique reported by Asfour *et al.* (1991). Therefore, eq. (2.31) contains only one undetermined parameter,  $v_{123}$ . Application of eq.(2.31) to acetone-methanol-ethylene glycol mixture at 30°C gave an average deviation of  $\pm$  0.95% and a maximum deviation of  $\pm$  1.81% (Kalidas and Laddha, 1964), the accuracy supported the proposed model which is the extension of McAllister's

three-body model to ternary mixtures.

It can be noted that although the extended McAllister's model, eq. (2.31), gives reasonably accurate results, yet its main drawback is that the value of the parameter,  $v_{123}$ , has to be determined by ternary viscosity-composition data. Moreover, the McAllister model would be very complicated and would possess more undetermined adjustable parameters if it is extended to mixtures having more than three components. This is because of the higher order interactions among the components. Therefore, the McAllister model is only practical for binary and ternary mixtures.

#### 2.3.3 Heric's model

Heric's model is also based on Eyring's absolute rate theory for viscosities.

Eyring's viscosity equation, eq. (2.13), can be written as

$$\frac{\Delta^* G}{RT} = \ln \frac{\eta V}{h N_a} (\frac{\lambda}{\alpha})^2$$
 (2.34)

where  $\alpha$  is equivalent to  $\lambda_1$ .

If for the binary mixture it is assumed that (Katti and Chaudhri, 1964)

$$\frac{\Delta^* G}{RT} = x_1 \frac{\Delta^* G_1}{RT} + x_2 \frac{\Delta^* G_2}{RT}$$
 (2.35)

and

$$\ln \frac{\lambda}{\alpha} = x_1 \ln \frac{\lambda_1}{\alpha_1} + x_2 \ln \frac{\lambda_2}{\alpha_2}$$
 (2.36)

then

$$\ln \eta V = x_1 \ln \eta_1 V_1 + x_2 \ln \eta_2 V_2 \tag{2.37}$$

but for regular solutions,  $\Delta^*G$  would not be a linear function of  $\Delta^*G_1$  and  $\Delta^*G_2$  (Guggenheim, 1952; Rowlinson, 1959), therefore, Katti and Chaudhri's (1964) application of the Eyring viscosity theory based upon the regular solution two-body model is given by

$$\ln \eta V = x_1 \ln \eta_1 V_1 + x_2 \ln \eta_2 V_2 + x_1 x_2 \frac{W_{\text{visc}}}{RT}$$
 (2.38)

where  $W_{\text{vise}}$  was defined as the interaction energy for the activation of viscous flow.

The Katti and Chaudhri's approach was then modified by replacing  $x_1x_2W_{\text{visc}}$  with a power series in concentration and extended to multicomponent systems by Heric (1966) as well as Heric and Brewer (1967) into the following form

$$\ln v = \sum_{i=1}^{n} x_{i} \ln v_{i} + \sum_{i=1}^{n} x_{i} \ln M_{i} - \ln \sum_{i=1}^{n} x_{i} M_{i} + \delta_{i...n}$$
 (2.39)

$$\delta_{i\dots n} = \sum_{\substack{i=1\\i \neq j}}^{n} x_i x_j [A_{ij} + B_{ij}(x_i - x_j) + C_{ij}(x_i - x_j)^2 + \cdots]$$
 (2.40)

or alternatively,

Ź

$$\delta_{i...n} = \sum_{\substack{i=1\\i \neq j}}^{n} x_i x_j (A'_{ij} + B'_{ij} x_i + c'_{ij} x_i^2 + \cdots)$$
 (2.41)

eqs. (2.40) and (2.41) are based upon an assumption that only binary interaction occurs, it leads to a relatively large error when applied to ternary mixtures. Thus, for ternary systems, eqs. (2.40) and (2.41) were expanded by Heric and Brewer (1969) to the following forms:

$$\delta_{123} = \sum_{\substack{i=1\\i \neq j}}^{3} x_i x_j [A_{ij} + B_{ij}(x_i - x_j) + C_{ij}(x_i - x_j)^2 + \cdots]$$

$$+ x_1 x_2 x_3 (A_{123} + B_{123} x_1 + C_{123} x_2)$$
(2.42)

and

$$\delta_{123} = \sum_{\substack{i=1\\i \neq j}}^{3} x_i x_j (A'_{ij} + B'_{ij} x_i + C'_{ij} x_i^2 + \cdots)$$

$$+ x_1 x_2 x_3 (A'_{123} + B'_{123} x_1 + C'_{123} x_2)$$
(2.43)

where eqs. (2.40) and (2.42) are called symmetric because the series reduces to a single term in  $A_{ij}$  at  $x_i = x_j = 0.5$  whereas eqs.(2.41) and (2.43) are called asymmetric.

Testing eqs. (2.39) and (2.40) with data from 14 binary non-electrolyte systems at  $25^{\circ}$ C, a standard error of 0.07% - 0.41% in kinematic viscosity was found (Heric and Brewer, 1967). For ternary mixtures, the asymmetric Heric model gave better results than the symmetric one, its standard error of kinematic viscosity estimation is 0.28% - 0.50% whereas that of the symmetric model is 0.26% - 2.4% when both approaches applied to 11 ternary non-electrolyte systems at  $25^{\circ}$ C (Heric and Brewer, 1969).

In comparing Heric's model with McAllister's model, the former is not superior to the latter in accuracy. The major shortcoming of Heric's model is that it requires a varied number of adjustable parameters and usually the number has to be large enough to achieve the required accuracy.

#### 2.3.4 Rowley's Model

~.

Wei and Rowley (1984a, 1984b, 1985) proposed a method for the prediction of non-aqueous liquid mixture viscosities based on a local composition model and Eyring's viscosity theory. They substituted the following relationship between the activation energy of viscous flow,  $\Delta^*G$ , and the excess free energy of mixing,  $G^E$ ,

$$\Delta^*G = \Delta^*G^i - \sigma G^E \tag{2.44}$$

into Eyring's viscosity theory, eq. (2.12), and regrouping  $G^E$  in terms of  $S^E$  and  $H^E$  to yield

$$\Rightarrow \eta V = (\eta V)_{id} \exp(\frac{\sigma S^E}{R}) \exp(\frac{-\sigma H^E}{RT})$$
 (2.45)

where  $\Delta^{\bullet}G^{i}$  represents the activation energy of an ideal mixture,  $S^{E}$  and  $H^{E}$  are excess entropy and excess enthalpy of mixing, respectively, and  $\sigma$  is a proportionality factor. The excess entropy term was grouped with  $(\eta V)_{id}$  in eq.(2.45) to yield a local shear viscosity and this group was labelled  $(\eta V)_{loc}$ . Thus

$$\eta V = (\eta V)_{loc} \exp(\frac{-\sigma H^E}{RT})$$
 (2.46)

Defining a property,  $\xi$ , as

$$\xi = \ln(\eta V) \tag{2.47}$$

then eq. (2.46) has the form as

$$\xi = \xi_{loc} - \frac{\sigma H^E}{RT} \tag{2.48}$$

where  $\xi_{loc}$  is the contribution to  $\xi$  due to nonrandom mixing on the local level.

In order to use eq. (2.48) to predict mixture viscosity, the nonrandom two-liquid theory (NRTL) which was developed by Renon and Prausnitz (1968) and extended to thermal conductivities by Rowley (1982) has been used to compute  $\xi_{loc}$ .

In the NRTL model (Renon and Prausnitz, 1968), the local mole fractions are assumed to be related to the overall mole fractions as

$$\frac{x_{ij}}{x_{jj}} = \frac{x_i}{x_j} G_{ij} \tag{2.49}$$

$$G_{ij} = \exp(\frac{-\alpha A_{ij}}{RT}) \tag{2.50}$$

where  $x_{ij}$  represents the mole fraction of component i around a central molecule of type j, and  $\alpha$  and  $A_{ij}$  are NRTL parameters obtainable from thermodynamic equilibrium data. It is noticeable that  $A_{ij} \neq A_{ji}$  and  $A_{ij} = 0$  whenever i = j.

The local volume fraction is defined by (Wei and Rowley, 1984a, 1984b, 1985)

$$\Phi_{ij} = \frac{V_l x_{ij}}{\sum_{l=1}^{n} V_l x_{ij}}$$
(2.51)

and the overall volume fraction is known as

$$\phi_i = \frac{x_i V_i}{\sum_{i=1}^n x_i V_i}$$
(2.52)

Substituting eqs. (2.49) and (2.52) into (2.51) yields

 $\overline{\phantom{a}}$ 

$$\phi_{ij} = \frac{\phi_i G_{ij}}{\sum_{l=1}^{n} \phi_l G_{lj}}$$
(2.53)

According to the two-liquid theory (Renon and Prausnitz, 1968; Rowley, 1982), a binary mixture can be considered as two hypothetical pure fluids shown in Figure 2.4. If  $\xi^{(j)}$  represents the viscous effect of the hypothetical pure fluid of type j, then  $\xi_{loc}$  is assumed to be a volume fraction average of  $\xi^{(j)}$  of the n hypothetical pure fluids which represent the n-component mixture,

$$\xi_{loc} = \sum_{j=1}^{n} \Phi_{j} \xi^{(j)} \tag{2.54}$$

The volume fractions were chosen to work here by Wei and Rowley because it produced a form for the binary interaction term consistent with that found for thermal conductivity (Rowley, 1982) and because it gives slightly better results than those given by mole

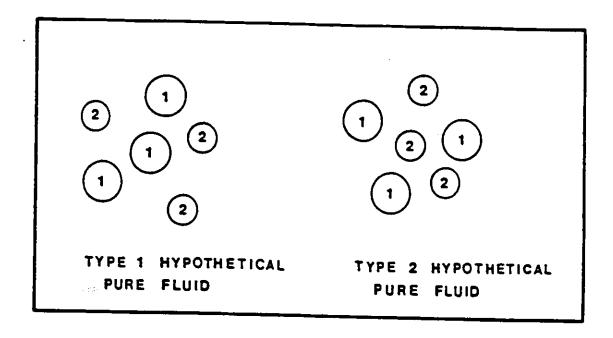



Figure 2.4. The NRTL Theory Model for a Binary Mixture (Rowley, 1982)

fractions (1984a, 1984b, 1985).  $\xi^{(j)}$  in the above equation is assumed to be related to the local volume fractions by

$$\xi^{(j)} = \sum_{i=1}^{n} \phi_{ij} \xi_{ij} \tag{2.55}$$

Combination of eqs. (2.54) and (2.55) gives

$$\xi_{loc} = \sum_{i=1}^{n} \Phi_{i} \sum_{i=1}^{n} \Phi_{ij} \xi_{ij}$$
 (2.56)

where  $\xi_{ij}$  equals  $\xi_{ji}$ . Substituting (2.53) into (2.56) yields

$$\xi_{loc} = \frac{\sum_{j=1}^{n} \phi_{j} \sum_{i=1}^{n} \phi_{i} G_{ij} \xi_{ij}}{\sum_{j=1}^{n} \phi_{l} G_{ij}}$$
(2.57)

In order to calculate the viscous interaction terms  $\xi_{ij}$ , setting

$$\xi_{loc} = \xi_{21} = \xi_{12} \tag{2.58}$$

at a particular composition defined by

$$\frac{x_{21}^* \exp(\xi_{21})}{x_{11}^* \exp(\xi_{11})} = \frac{x_{12}^* \exp(\xi_{12})}{x_{22}^* \exp(\xi_{22})}$$
(2.59)

Eq. (2.59) means that at the \* composition, the ratio of viscous effects due to component 2 and those due to component 1 around a central molecule of component 1 is equivalent to the ratio of viscous effects due to component 1 and those due to component 2 around a central molecule of component 2.

Substituting eq. (2.58) into (2.56) gives a direct solution for  $\xi_{21}$ 

$$\xi_{21} = \frac{\phi_1^* \phi_{11}^* \xi_1^o + \phi_2^* \phi_{22}^* \xi_2^o}{\phi_1^* \phi_{11}^* + \phi_2^* \phi_{22}^*}$$
(2.60)

where the pure component j value for  $\xi$  is represented with  $\xi_j^o$ , i.e.  $\xi_{jj} = \xi_j^o$ . In eq. (2.60),  $\phi_{ii}^*$  can be calculated from eq. (2.53) and  $\phi_i^*$  can be calculated by the equation derived below.

From the definition of volume fraction, it is obvious that

$$\frac{\phi_1}{\phi_2} = \frac{V_1}{V_2} \frac{x_1}{x_2} \tag{2.61}$$

and eq. (2.49) gives

$$\frac{x_1}{x_2} = \left(\frac{\frac{x_{12}}{x_{22}}}{\frac{x_{21}}{x_{11}}} \frac{G_{21}}{G_{12}}\right)^{\frac{1}{2}}$$
 (2.62)

Rearranging eq. (2.59) and replacing  $\xi_{ij}$  with  $\xi_{j}^{\,o}$  yield

$$\frac{x_{12}^{\bullet}}{\frac{x_{22}^{\bullet}}{x_{21}^{\bullet}}} = \exp\left(\xi_{2}^{o} - \xi_{1}^{o}\right) \tag{2.63}$$

Substituting eqs. (2.62) and (2.63) into (2.61) at the \* composition yields

$$\frac{\phi_1^*}{\phi_2^*} = \frac{V_1 \sqrt{G_{21}}}{V_2 \sqrt{G_{12}}} \exp\left(\frac{\xi_2^o - \xi_1^o}{2}\right)$$
 (2.64)

subject to the constraint that

$$\sum_{i=1}^{n} \mathbf{\phi}_i = 1 \tag{2.65}$$

eq. (2.64) becomes

$$\phi_{1}^{*} = \frac{V_{1}\sqrt{G_{21}}\exp(\frac{\xi_{2}^{o}}{2})}{V_{1}\sqrt{G_{21}}\exp(\frac{\xi_{2}^{o}}{2}) + V_{2}\sqrt{G_{12}}\exp(\frac{\xi_{1}^{o}}{2})}$$
(2.66)

Eq. (2.66) is used to calculate  $\phi_i$ .

To complete Rowley's viscosity model, eqs. (2.48) and (2.57) can be combined and rearranged to yield

$$\xi = \sum_{i=1}^{n} \phi_{i} \xi_{i}^{o} + \sum_{i=1}^{n} \phi_{i} \frac{\sum_{j=1}^{n} \phi_{j} G_{ji} (\xi_{ji} - \xi_{i}^{o})}{\sum_{l=1}^{n} \phi_{l} G_{li}} - \frac{\sigma H^{E}}{RT}$$
(2.67)

Eq. (2.67) can employed as follows: first  $\phi_i^*$  is calculated from eq. (2.66) and  $\phi_{ii}^*$  from eq. (2.53), then the binary interactions  $\xi_{ij}$  are calculated from eq. (2.60),  $G_{ij}$  and  $G_{ji}$  from eq. (2.50). The excess enthalpies of mixing can be obtained exclusively from Christensen *et al.* (1982) and the proportionality factor,  $\sigma$ , has been designated a value of 0.25 for non-aqueous systems by Wei and Rowley (1985). Using all the information given earlier,  $\xi$  can be computed by eq.(2.67) and the mixture viscosity is calculated as

÷

$$\eta = \frac{\exp(\xi)}{V} \tag{2.68}$$

Rowley's viscosity model based on the NRTL theory has been tested by using data on 47 binary and seven ternary systems, a reasonable degree of accuracy was achieved in predicting the viscosities of mixtures (Wei and Rowley, 1985). This model can be used for any number of components without adjustable parameters, however, it requires pure component viscosities and binary equilibrium thermodynamic data as well as the data of excess enthalpy of mixing. Unfortunately, the binary equilibrium data and the H<sup>E</sup> data are not always available. These disadvantages, of course, limit the use of the Rowley's model.

### 2.3.5 The Corresponding States Principle

The Corresponding States Principle, in the form originally stated by van der Waals, is based on the reduction of the variables using the critical constants. It is one of the most useful methods for predicting thermodynamic properties of fluids. It makes use of measured properties of one substance to predict the properties of other substances under conditions where no data exist and no satisfactory theoretical treatments may be applied (Hirschfelder, et al., 1954). The Corresponding States Principle for transport properties of pure fluids was established by Helfand and Rice (1960), Preston et al. (1967), Tham and Gubbins (1969, 1970).

The basic assumption of the theory for viscosities is that the viscosity of mixtures

or pure fluids can be equated to that of a hypothetical pure fluid, the viscosity of this hypothetical pure fluid is then evaluated via corresponding states with respect to a given reference fluid (Ely and Hanley, 1981).

In the special case of corresponding states between two pure fluids  $\alpha$  and  $\alpha$ , the pure fluid  $\alpha$  is defined to be in corresponding states with a reference fluid  $\alpha$  if at the same reduced temperature  $T_R$  (=T/ $T_c$ ) and volume  $V_R$  (=V/ $V_c$ ) the reduced property X (where X may be the compressibility, or reduced transport properties: viscosity, diffusivity and thermal conductivity) is given by

$$X^{\alpha}(T_{\mathbf{p}}, V_{\mathbf{p}}) = X^{\alpha}(T_{\mathbf{p}}, V_{\mathbf{p}}) \tag{2.69}$$

or alternatively (Teja, et al., 1985)

$$X^{\alpha}(T_{\mathbf{p}}, P_{\mathbf{p}}) = X^{o}(T_{\mathbf{p}}, P_{\mathbf{p}}) \tag{2.70}$$

where  $P_R$  (=  $P/P_c$ ) is the reduced pressure. It should be pointed out that correspondence defined in terms of the same reduced temperature and pressure is not necessarily equivalent to correspondence defined in terms of reduced temperature and volume, but they become identical when the critical compressibilities of the fluid of interest and the reference fluid are equal (Teja, et al., 1985).

In case X represents reduced viscosity

$$(\eta \epsilon)^{\alpha} = (\eta \epsilon)^{o} (T_{\mathbf{p}}, V_{\mathbf{p}}) \tag{2.71}$$

where  $\eta$  is the viscosity at the temperature of interest and the reciprocal of  $\epsilon$  is the viscosity at  $T_{\epsilon}$  (Reid *et al.*, 1977).  $\epsilon$  is given by dimensional analysis as

$$\epsilon = M^{-1/2} V_c^{2/3} T_c^{-1/2} \tag{2.72}$$

or in the case of corresponding in terms of  $T_{\rm c}$  and  $P_{\rm c}$ 

$$\epsilon = M^{-1/2} P_c^{-2/3} T_c^{1/6} \tag{2.73}$$

ηε above hence represents the reduced viscosity.

In this two-parameter corresponding states principle, the ratios of equivalent to actual temperatures and of equivalent to actual densities are equated to the ratios of critical constants (Hwang, et al., 1987) as follows:

$$\frac{T^o}{T^a} = \frac{T_c^o}{T_c^a} \tag{2.74}$$

$$\frac{\rho^o}{\rho^a} = \frac{\rho_c^o}{\rho_c^a} \tag{2.75}$$

For fluid mixtures, the characterization parameters of the two-parameter corresponding states principle,  $T_c$  and  $V_c$ , must be replaced by appropriate pseudocritical parameters  $T_{cm}$  and  $V_{cm}$  which are dependent on composition. Therefore, the "van der Waals one-fluid" mixing rules (Ely and Hanly, 1981) appear as

0

$$V_{cm} = \sum_{i} \sum_{j} x_i x_j V_{cij} \tag{2.76}$$

$$T_{cm}V_{cm} = \sum_{i} \sum_{j} x_{i}x_{j}T_{cij}V_{cij}$$
 (2.77)

There are various ways to define the cross coefficients  $T_{cij}$  and  $V_{cij}$ . The most common approach is to introduce binary interaction coefficients  $\xi_{ij}$  and  $\eta_{ij}$  which characterize the non-ideality of interaction between the binary pair. The binary interaction coefficients are introduced as follows (Wong *et al.*, 1984):

$$V_{cij} = \eta_{ij} [(V_{ci}^{1/3} + V_{cj}^{1/3})/2]^3$$
 (2.78)

and

$$T_{cij} = \xi_{ij} (T_{ci} T_{cj})^{1/2} \tag{2.79}$$

Equations (2.76) to (2.79) constitute the van der Waals one-fluid model for use with the two-parameter corresponding-states principle.

The values of the binary interaction parameters were normally set to unity in many cases for the prediction of viscosity (Wong et al., 1984).

Equations (2.69), (2.70), (2.71), (2.74) and (2.75) are valid only for simple spherical molecules. The range of applicability of corresponding states can be broadened to non-spherical fluids in the two approaches described below (Teja and Thurner, 1986).

### 2.3.6 The extended corresponding states — The shape factor approach

In this approach, shape factors were incorporated into the calculation of transport properties by Mo and Gubbins (1974) and Ely and Hanley (1981). The two-parameter corresponding states formulism is maintained, except that eqs. (2.74) and (2.75) become

$$\frac{T^o}{T^a} = \frac{T_c^o}{T_c^a \theta_{\alpha,o}(T_R, V_R, \omega^a)}$$
(2.80)

$$\frac{\rho^{\sigma}}{\rho^{\alpha}} = \frac{\rho_{c}^{\sigma}}{\rho_{c}^{\alpha}} \, \Phi_{\alpha,\sigma}(T_{R}, V_{R}, \omega^{\alpha}) \tag{2.81}$$

where  $\theta$  and  $\phi$  are the so-called shape factors (Leach *et al.*, 1968), which are functions of Pitzer's acentric factor,  $\omega$ , of the reduced temperature and of the reduced volume.

The shape factors can be determined exactly for any pure fluid with respect to a reference fluid by simultaneous solution of the conformal-solution equations (Rowlinson and Watson, 1969):

$$Z^{\alpha}(T^{\alpha}, \rho^{\alpha}) = Z^{o}(T^{o}, \rho^{o}) \tag{2.82}$$

$$A^{\alpha}(T^{\alpha}, \rho^{\alpha}) = A^{\alpha}(T^{\alpha}, \rho^{\alpha}) \tag{2.83}$$

where Z is the compressibility factor and A is the molar reduced residual Helmholtz free energy relative to the ideal gas at the same temperature and density. Leach  $et\ al\ (1968)$  have solved eqs. (2.82) and (2.83) for the pure rormal paraffins  $C_1$  -  $C_{15}$  with methane as reference fluid. Their results are generalized as

Ţ.,

:

$$\theta_{\alpha,\sigma}(T_R, V_R, \omega^{\alpha}) = 1 + (\omega^{\alpha} - \omega^{\sigma}) F(T_R, V_R)$$
 (2.84)

where

$$F(T_{\rm p}, V_{\rm p}) = a_1 + b_1 \ln T^+ + (c_1 + d_1/T^+) (V^+ - 0.5) \tag{2.86}$$

$$G(T_R, V_R) = a_2(V^+ + b_2) + c_2(V^+ + d_2) \ln T^+$$
 (2.87)

and

=>

$$T^* = \min\{2, \max(T_R, 0.5)\}$$
 (2.88)

$$V^+ = \min\{2, \max(V_R, 0.5)\}$$
 (2.89)

The shape factors differ with the temperature and volume and their function is to define the state of the reference fluid that corresponds to the state of the fluid of interest.

When the shape factor approach applied to mixtures, the extension of van der Waals one-fluid model to a three-parameter corresponding states principles is used to calculate the pseudocriticals. This extension requires an additional equation to determine the mixture acentric factor. Lee and Kesler (1975), Joffe (1971), and Plocker et al. (1978) used a simple linear combination rule

$$\omega_m = \sum_i x_i \omega_i \tag{2.90}$$

0

Plocker et al., however, have noted that the three-parameter model is successful only for mixtures containing small nonpolar molecules (1978).

The shape factor approach is based on the properties of one reference fluid, it requires accurate PVT and viscosity data of methane (the reference fluid), the critical properties (temperature, density or volume and pressure), acentric factor and molecular weight of each component of the mixture of interest. No viscosity data of the pure component and the mixture are required. The method is predictive, but if  $\xi_{ij}$  and  $\eta_{ij}$  are used as adjustable parameters, it is a correlating method. In principle, the number of mixture components is unrestricted. Ely and Hanley (1981) concluded that with this method the viscosity of a range of pure fluids:  $C_1 - C_{20}$ , aromatics and others, is predicted to within an absolute percent deviation of about 8% and a similar range of mixtures shows that the viscosity is represented to within about 7%.

A packaged program (TRAPP) for this approach developed by Ely and Hanley has been used extensively:

Since only one fluid, methane, can serve as reference fluid, the accuracy of this method has been limited.

## 2.3.7 The extended corresponding states — The Pitzer approach

In this approach, the classical two-parameter corresponding states principle was extended to the three-parameter generalized corresponding states principle (GCSP).

The two-parameter classical corresponding states equation

$$Z^{\alpha}(T_R, P_R) = Z^{\alpha}(T_R, P_R) \tag{2.91}$$

was first written for non-spherical molecule thermodynamic properties by Pitzer et al. (1955) as a Taylor series expansion in the acentric factor

$$Z = Z^o + \omega Z^1 \tag{2.92}$$

where the first term is the compressibility of a spherical reference fluid and the second term is a deviation function. Letsou and Stiel (1973) later extended this approach to viscosities of liquids by rewriting eq. (2.92) in the form

$$\ln(\eta \,\epsilon) \, = \, \ln(\eta \,\epsilon)^o \, + \, \omega \ln(\eta \,\epsilon)^1 \tag{2.93}$$

For the purpose of convenient calculation, Lee and Kesler (1975) provided an analytical framework for the three-parameter corresponding states principle by writing eq. (2.92) as

$$Z = Z^o + \frac{\omega}{\omega^r} (Z^r - Z^o)$$
 (2.94)

In eq. (2.94), Pitzer's original proposal of a Taylor series expansion of a thermodynamic property about that of a simple spherical reference fluid was still retained.

C

Teja et al. (Teja, 1980, Teja and Sandler, 1980) proposed the following Generalized Corresponding States Principle (GCSP) for thermodynamic properties which no longer retains the simple spherical fluid as one of the reference fluids:

15

$$Z = Z^{rl} + \frac{\omega - \omega^{rl}}{\omega^{r2} - \omega^{rl}} (Z^{r2} - Z^{rl})$$
 (2.95)

where r1 and r2 represent two non-spherical fluids which are chosen so that they are similar to the pure component of interest or, in the case of mixtures, to the key components of interest. It is obvious that when  $\omega^{r1} = 0$ , i.e. one of the reference fluids is spherical, eq. (2.95) reduces to eq. (2.94). Therefore, the Lee-Kesler method is a special case of the GCSP.

In an analogous manner, Teja and Rice (1981) extended the GCSP for viscosity as follows

$$\ln(\eta \epsilon) = \ln(\eta \epsilon)^{rl} + \frac{\omega - \omega^{rl}}{\omega^{r2} - \omega^{rl}} \left[ \ln(\eta \epsilon)^{r2} - \ln(\eta \epsilon)^{rl} \right]$$
 (2.96)

where r1 and r2 again refer to two (non-spherical) reference fluids.

When extending eq. (2.96) to mixtures, mixing rules are needed. Teja and Rice (1981) first used the extended van der Waals one-fluid model to calculate the pseudocritical properties  $T_{cm}$  and  $V_{cm}$ . Later Teja and Thurner (1986) used the correspondence defined in terms of reduced temperature and pressure instead of reduced temperature and volume. One of the major inconveniences of using the van der Waals one-fluid model is that it gives mixing rules for  $T_{cm}$ ,  $V_{cm}$  and  $\omega_m$ , whereas the Corresponding States Theory is formulated in terms of  $T_{cm}$ ,  $P_{cm}$  and  $\omega_m$ . Therefore, Teja and Thurner used analogues to the van der Waals mixing rules proposed by Wong *et al.* (1984). They have the following forms

$$(T_{cm}^2/P_{cm}) = \sum_{i} \sum_{j} x_i x_j (T_{ctj}^2/P_{ctj})$$
 (2.97)

$$(T_{cm}/P_{cm}) = \sum_{i} \sum_{j} x_{i} x_{j} (T_{cij}/P_{cij})$$
 (2.98)

$$\omega_m (T_{cm}/P_{cm})^{2/3} = \sum_i \sum_j x_i x_j (T_{cij}/P_{cij})^{2/3} \omega_{ij}$$
 (2.99)

with

$$T_{cij} = \xi_{ij} (T_{cii} T_{cjj})^{1/2} \tag{2.100}$$

$$(T_{ctj}/P_{ctj})^{1/3} = \frac{1}{2} [(T_{cti}/P_{cti})^{1/3} + (T_{ctj}/P_{ctj})^{1/3}]$$
 (2.101)

$$\omega_{ij} = \frac{1}{2} \left( \omega_{ii} + \omega_{jj} \right) \tag{2.102}$$

and a simple mixing rule for mass is

Ç

$$M_{m} = \sum_{i} x_{i} M_{i} \tag{2.103}$$

Eqs. (2.97) and (2.98) are equivalent to the van der Waals mixing rules if  $V_c$  is considered proportional to  $Z_cT_c/P_c$  and  $Z_c$  is a quantity that only changes slightly from one species to another so that  $V_c$  is replaceable by  $T_c/P_c$ .

The mixing rules given by eqs. (2.97) and (2.98) have the advantage that they do not contain the critical volume, which is subject to greater experimental errors than critical temperature and pressure.

The GCSP method requires only the viscosities, the critical properties, the acentric factors of the two reference fluids (but no PVT data), and no mixture properties are required.

In eq. (2.100),  $\xi_{ij}$  is the binary interaction coefficient which can be calculated from experimental data, usually it is set equal to unity. In the case where  $\xi_{ij}$  is set to unity, the GCSP method is predictive. The flexibility of the method is that if the data of the key components of the mixture are not available, other similar fluids can be used as the reference fluids. It even can predict the viscosity of some undefined liquid mixtures very well (Teja *et al.*, 1985). In the case that a binary interaction coefficient is included in the calculations, the method becomes one of correlation rather than prediction.

Teja and Thurner (1986) compared the viscosity prediction of the two corresponding states methods for a number of binary mixtures. No binary interaction coefficients were used in either method. Their results are described below.

For a mixture of methane + n-butane over a temperature range 278 - 511 K and a pressure range 80 - 350 bar, the values of the average absolute deviation (AAD) for the two methods are shown in Table 2.1. From Table 2.1, in the temperature range 278 - 411 K and the pressure range 80 - 350 bar, the AAD between the experimental and the predicted viscosities obtained from the GCSP method is always less than that from TRAPP method. In the temperature range 411 - 511 K and the same pressure range, due to the extrapolation of the reference fluid data in GCSP method, the TRAPP method gave better results. However, when reference fluid data did not have to be extrapolated, then

For the mixture ethane + ethylene, the results of comparison are shown in Table 2.2.

Over the temperature range 323 - 473 K and the pressure range 1 - 500/600 bar for several different compositions, still the GCSP method gave better results.

For the mixtures benzene + n-hexane and benzene + n-decane, the results of comparison are presented in Table 2.3. Experimental data were available at atmospheric pressure and over a limited temperature range. The GCSP method gave an average AAD of 4.0% for the benzene + n-hexane system and 8.8% for benzene + n-decane system. The TRAPP method, on the other hand, gave very large errors for the benzene + n-hexane system. This was due to the methane reference with shape factors predicting the wrong phase at 323 K. It is obvious that the ability of the GCSP method to use different reference fluids offers a tremendous advantage in the prediction of viscosities of components for which the shape factors are not valid.

It is demonstrated from the above comparison that the GCSP method can be used for the calculation of the viscosities of a variety of mixtures over a wide range of temperatures and pressures. In general, its predictions capability is better than those of the TRAPP method.

The use of two reference fluids in this method slightly improves the accuracy compared to TRAPP as shown above. But for multicomponent systems, the effects of the selection of reference fluids on the prediction capability are unknown because all systems tested in the literature are binary. On the other hand, if this method is used as a correlation technique, the number of the binary interaction coefficients will increase rapidly with the number of the components of the mixture.

Table 2.1 Viscosity Predictions for System Methane(1) - n-Butane(2) ( $x_1 = 0.396$ ) by the Two Corresponding States Methods

| No. of Points | Temperature<br>K | Pressure<br>Range<br>bar | GCSP<br>AAD | TRAPP<br>AAD |
|---------------|------------------|--------------------------|-------------|--------------|
| 12            | 278              | 80 - 350                 | 2.42        | 5.46         |
| 12            | 311              | 80 - 350                 | 2.64        | 4.07         |
| 11            | 344              | 80 - 350                 | 2.57        | 6.22         |
| 11            | 378              | 80 - 350                 | 1.69        | 8.96         |
| 11            | 411              | 80 - 350                 | 4.66        | 8.08         |
| 12            | 444              | 80 - 350                 | 7.79        | 6.84         |
| 12            | 478              | 80 - 350                 | 13.01       | 5.91         |
| 12            | <b>5</b> 11      | 30 - 350                 | 18.24       | 5.84         |

Table 2.2

Viscosity Predictions for system Ethane(1) - Ethylene(2) by the Two Corresponding States Methods

| $\mathbf{x}_1$ | No. of<br>Points | Temperature<br>range<br>K | Pressure<br>range<br>bar | GCSP<br>AAD | TRAPP<br>AAD |
|----------------|------------------|---------------------------|--------------------------|-------------|--------------|
| 0.354          | 60               | 323-473                   | 1-600                    | 5.97        | 5.96         |
| 0.699          | 56               | 323-473                   | 1-500                    | 8.25        | 8.97         |
| 0.813          | 60               | 323-473                   | 1-600                    | <u>6.67</u> | <u>7.21</u>  |
|                |                  |                           | Overall                  | 6.93        | 7.34         |

Table 2.3

Viscosity Predictions for Systems Benzene(1) - n-Hexane(2) and Benzene(1) - n-Decane(2) by the Two Corresponding States Methods

| X <sub>1</sub> | No. of<br>Points | Temperature<br>Range<br>K | Pressure<br>bar | GCSP<br>AAD | TRAPP<br>AAD | TRAPP*<br>AAD |
|----------------|------------------|---------------------------|-----------------|-------------|--------------|---------------|
|                |                  | Benze                     | ene(1) - n-Hex  | ane(2)      |              |               |
| 0.930          | 3                | 298 - 323                 | 1.0             | 1.59        | 18.2         | 19.8          |
| 0.818          | 3                | 298 - 323                 | 1.0             | 1.48        | 43.3         | 16.0          |
| 0.735          | 3                | 298 - 323                 | 1.0             | 4.92        | 46.1         | 20.1          |
| 0.595          | 3                | 298 - 323                 | 1.0             | 4.78        | 42.3         | 14.5          |
| 0.437          | 3                | 298 - 323                 | 1.0             | <u>7.42</u> | 40.3         | <u>11.5</u>   |
|                |                  |                           | Overall         | 4.04        | 38.0         | 16.4          |
|                |                  | Benz                      | ene(1) - n-Dec  | cane(2)     |              |               |
| 05             | 3                | 298 - 323                 | 1.0             | 8.79        | 6.00         |               |

<sup>\* 323</sup> K data omitted

12.

5

>>

<>:

# 2.3.8 Proposed modification of the Generalized Corresponding States Principle

Wu and Asfour (1991b) proposed a pseudo-binary mixture model to modify the GCSP method. The proposed modification of the GCSP method has the following two advantages over the original GCSP for n-alkane multicomponent mixtures: (i) the selections of reference fluids which could cause significant errors in predicting viscosity have been avoided, and (ii) the large numbers of the binary interaction coefficients which are essential for minimizing the deviations in the original GCSP for the viscosity correlation have been reduced to one no matter how many components are involved in a system.

In this model, the basic assumption is that the multicomponent mixture ( $n \ge 3$ ) is considered as a binary system consisting of pure component 1 and pseudopure component 2', where component 2' is a mixture of components 2, 3, ...n. The reference fluids in this case are r1 = 1 and r2 = 2'. The required properties of component 2', the acentric factor, the critical properties and the reduced viscosity, are calculated from the corresponding properties of the pure liquid n-alkanes according to the principle of congruence (Brønsted and koefoed, 1946). The details of this modification are described in Chapter 5 later.

#### 2.4 Viscosity Related Properties

#### 2.4.1 Density

Because the kinematic viscosity of fluids,  $\nu$ , is the variable actually measured, the density of these fluids needs to be measured at the same time to convert the kinematic viscosity to absolute viscosity,  $\eta$ , as follows

$$\mathbf{n} = \mathbf{v} \, \mathbf{\rho} \tag{2.104}$$

Density can be measured with high precision.

### 2.4.2 Excess volume of mixing

Excess volume of mixing is defined as (Eyring et al., 1969; Murrell and Boucher, 1982)

==

$$V^E = \Delta V_{mix} = V - \sum_i x_i V_i \qquad (2.105)$$

i.e.

$$V^{EC} = \frac{\sum_{i} x_{i} M_{i}}{\sum_{i} \rho} - \sum_{i} \frac{x_{i} M_{i}}{\rho_{i}}$$
 (2.106)

-

### 2.4.3 Excess viscosity of mixing

The excess of a property is defined as the difference between the real liquid property and the ideal liquid property (Eyring *et al.*, 1969). Therefore, the expression of excess viscosity is as follows:

$$\eta^E = \eta - \sum_i x_i \eta_i \tag{2.107}$$

# 2.4.4 Excess free energy of viscous flow

Eyring's rate process theory, eq. (2.34), gives the absolute viscosity as

$$\eta = \left(\frac{\alpha}{\lambda}\right)^2 \frac{hN_o}{V} e^{\frac{\Lambda^*G}{RT}} \tag{2.108}$$

which can be rewritten as

$$\frac{\Delta^* G}{RT} = \ln(\eta V) + 2\ln(\frac{\lambda}{\alpha}) - \ln(hN_o)$$
 (2.109)

For ideal solutions it was suggested (Reed and Taylor, 1959) that the excess molar free energy of viscous flow be given by

$$\Delta^* G^i = \sum_i x_i \Delta^* G_i \tag{2.110}$$

By definition (Heric and Brewer, 1967)

÷.

$$\Delta^{\bullet}G^{E} = \Delta^{\bullet}G - \Delta^{\bullet}G^{t} \tag{2.111}$$

substituting eq. (2.109) into (2.111) yields

$$\frac{\Delta^* G^E}{RT} = \ln(\eta V) + 2\ln(\frac{\lambda}{\alpha}) - \ln(hN_o)$$

$$-\sum_i x_i [\ln(\eta_i V_i) + 2\ln(\frac{\lambda_i}{\alpha_i}) - \ln(hN_o)]$$
(2.112)

because

$$\ln(\frac{\lambda}{\alpha}) = \sum_{i} x_{i} \ln(\frac{\lambda_{i}}{\alpha_{i}}) \tag{2.36}$$

$$\Delta^* G^E = RT[\ln(\eta V) - \sum_i x_i \ln(\eta_i V_i)]$$
 (2.113)

-

;

#### **CHAPTER 3**

# EXPERIMENTAL EQUIPMENT AND PROCEDURES

#### 3.1 Materials

-

The n-alkane samples used in this study were supplied by Aldrich Chemical Company. These are n-octane, n-decane, n-undecane, n-tridecane and n-pentadecane. The stated purity of the reagents is 99+ mol% with the exception of n-undecane which has a stated purity of 99 mol%. Gas chromatographic analysis and refractive index measurements confirmed that the purities of these chemicals were better than their stated values. Therefore, they were used without further purification. Table 3.1 lists the results of the refractive index measurements of the pure reagents. The results of gas chromatographic analysis are presented in Appendix D.

The chemicals used in viscometer calibration were Cannon Viscosity Standards: N.4. N.8, N1.0 and S3 obtained from Cannon Instrument Company.

The additional chemicals used in density meter calibration were n-hexane, toluene, benzene and carbon tetrachloride. They were all supplied by Aldrich Chemical Company and all have 99+ mol% stated purity. Also used in density meter calibration is double distilled water prepared in this laboratory.

Table 3.1

Values of Refractive Index of Pure Components

| Compound      | Temperature                     | = 293.15K           | Temperature = 298.15 K          |                     |  |
|---------------|---------------------------------|---------------------|---------------------------------|---------------------|--|
|               | Experimental Value <sup>+</sup> | Literature<br>Value | Experimental Value <sup>+</sup> | Literature<br>Value |  |
| n-Octane      | 1.3976                          | 1.39743             | 1.39507                         | 1.39505             |  |
| n-Decane      | 1.41187                         | 1.41189             | 1.40963                         | 1.40967             |  |
| n-Undecane    | 1.41723                         | 1.41725             | 1.41503                         | 1.41507             |  |
| n-Tridecane   | 1.42577                         | 1.42560             | 1.42347                         | 1.42346             |  |
| n-Pentadecane | 1.4319                          | 1.43188             | 1.42987                         | 1.42979             |  |

<sup>\*</sup> TRC Tables, 1988

<sup>+</sup> Refractometer used is an ABBE Refractometer type 1 supplied by ATAGO Company.

## 3.2 Preparation of Solutions

Ternary and binary solutions were prepared by weighing the individual components on a Mettler HK 160 electronic balance. The measuring range of the balance is 0 to 160 g. It has a reproducibility of  $\pm$  1 x 10<sup>-7</sup> Kg. To avoid evaporation losses, the procedure suggested by Asfour (1980) was followed. According to that procedure, 0.03 L glass vials with teflon discs and aluminium seals were used which were all supplied by Chromatographic Specialities Ltd. The pure components were injected into the sealed vials by 0.01 L hypodermic glass syringes fitted with G24 stainless steel needles.

## 3.3 Viscosity Measurement

# 3.3.1 Equipment

Cannon-Ubbelohde capillary viscometers designed by Ubbelohde in 1935 and improved by Cannon et al. (1960) were used to measure the viscosities of the pure components and the mixtures at each temperature level indicated above. These viscometers have the following advantages (Asfour, 1980):

- (i) no significant variation of viscometer constants with temperature.
- (ii) exact filling volume control is not required,
- (iii) they are capable of high precision in routine use.

In this study, two viscometers of size 25A (range  $0.5 - 2.0 \times 10^{-6} \text{ m}^2/\text{s}$ ), two viscometers of size 50B (range  $0.8 - 4.0 \times 10^{-6} \text{ m}^2/\text{s}$ ) and one viscometer of size 75J (range  $1.6 - 8.0 \times 10^{-6} \text{ m}^2/\text{s}$ ) were used. They were supplied by Cannon Instrument Company.

The temperature control of the viscosity measurement was achieved by a model M1-18M constant temperature bath also obtained from Cannon Instrument Company. The control range of the bath is from approximately 10°C above ambient to 100°C. The temperature fluctuation is  $\pm 0.01$ °C below 60°C using water as bath medium and  $\pm 0.02$ °C above 60°C using oil as bath medium. Mercury-in-glass thermoregulator is used by turning a magnetic cap to the expected temperature and the real temperature inside the bath is checked by a calibrated thermometer graduated to 0.01°C. A cooling coil is inside the bath which if connected with the refrigerating circulator can extend the working temperature range down. The control panel of this constant temperature bath has a pilot light, on-off switches for preheater, stirrer motor and a switch used to set heater control for operation below or above 54.4°C (130°F). Below 54.4°C, a relay operates a 200 watt heater to maintain control, above 54.4°C, the same relay operates a 700 watt-heater.

#### 3.3.2 Operation of viscometers

A liquid sample was introduced through tube 1, Figure 3.1, to fill bulb A until the level of the liquid was in between upper and lower etched marks on bulb A, with the viscometer mounted in vertical position. The viscometer supported by a plastic holder

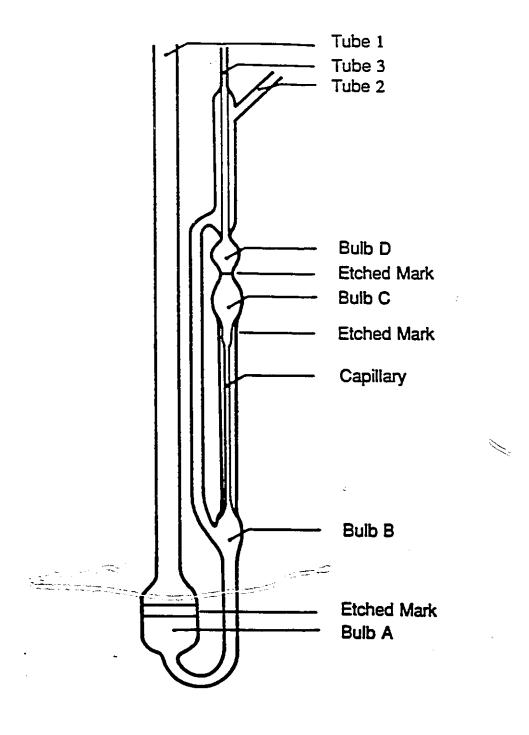
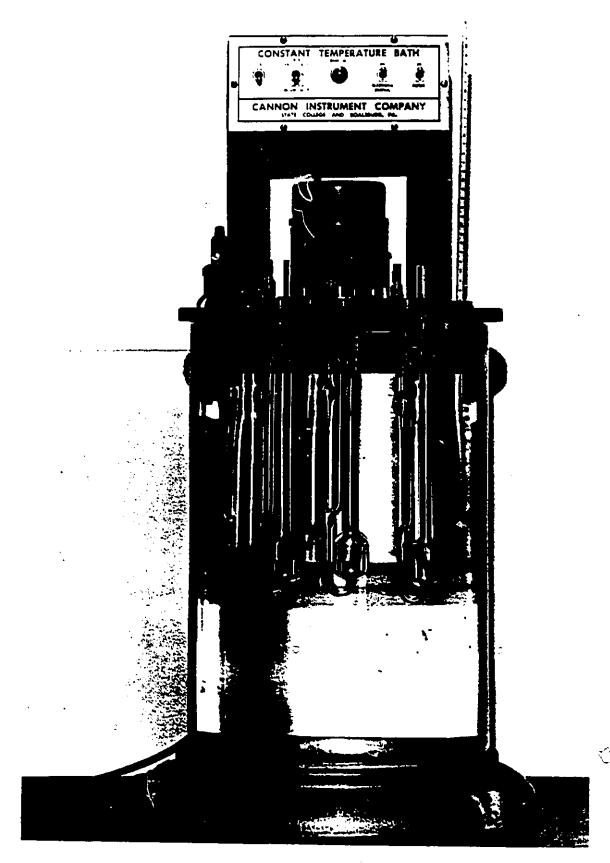



Figure 3.1. The Cannon-Ubbelohde Viscometer

was then placed in the model M1-18M constant temperature bath as shown in Figure 3.2. After the liquid sample reached thermal equilibrium with the bath, the viscosity measurement was started. Approximately 30 minutes is required for thermal equilibrium to be attained. Covering the opening of tube 2 with an on end clamped silicon rubber tubing, the liquid was sucked through the capillary from tube 3 by a pipette. Care must be taken so that no air bubbles are entrapped with the capillary. Once the liquid level crossed bulb D, the pipette was removed from tube 3 and the clamp in the silicon rubber tubing was also removed. The efflux time was determined by measuring the time taken by the liquid meniscus to travel from the upper to the lower etched marks on bulb C. At least three measurements were taken for each sample and the reproducibility was within  $\pm$  0.1%.

#### 3.3.3 Viscosity equation


Cannon et al. (1960) proposed the following equation for calculating liquid viscosity from measured efflux time

$$v = Ct - \frac{E}{t^n}$$
 (3.1)

where C and E are calibration constants determined by fitting viscosity - efflux time experimental data to eq.(3.1) using the method of least squares, and t is efflux time. The value of n depends on the shape of the capillary ends. The viscometers used in this study all have trumpet shaped ends, therefore, n is equal to 2. Thus the following viscosity

-

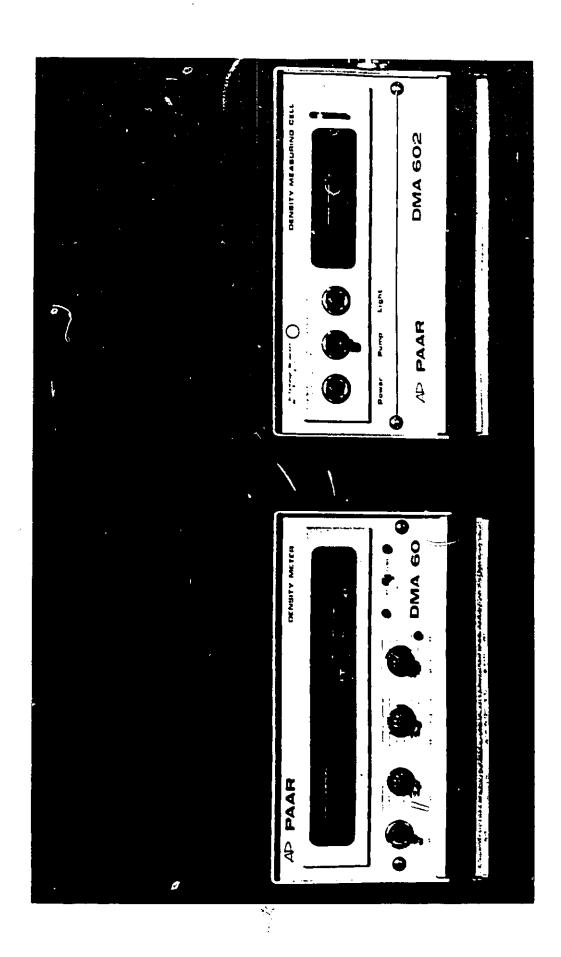
Figure 3.2. Pictorial View of the Constant Temperature Bath



**VISCOSITY MEASURING APPARATUS** 

equation was used

$$v = Ct - \frac{E}{t^2} \tag{3.2}$$


#### 3.4 Density Measurement

#### 3.4.1 Equipment

A high precision density meter (Anton Paar model DMA 60 with a measuring cell DMA 602) was used in this study. The density meter utilizes the oscillating sample tube method. Figure 3.3 shows a pictorial view of the system. Separating the remote cell and the electronic readout unit permits a better thermostating of the sample cell. It also offers a greater flexibility of the system configuration.

Density determination is based on measuring the period of oscillation of a hollow vibrating U-shaped sample tube, which is filled with sample liquid or through which the sample liquid flows continuously. The U-shaped sample tube (oscillator) is made of borosilicate glass (Duran 50) and is inside the DMA 602 remote measuring cell. This tube is fused into a dual-walled, thermostated glass cylinder. The space between the U-shaped sample tube and the inner wall of the dual wall cylinder is filled with a gas of high thermal conductivity to facilitate a rapid temperature equilibration of the sample inside the oscillator with the thermostat liquid which flows through the dual wall cylinder

Figure 3.3. Pictorial View of the Precision Density Meter



# **PRECISION DENSITY METER**

around the sample tube. The oscillator is electronically excited in an undamped harmonic fashion. The direction of oscillation is perpendicular to the plane of the U-shaped sample tube. The frequency of the oscillator is only influenced by that fraction of the volume of liquid or gas which is actually in the vibrating part of the sample tube. It is essential to ensure that the oscillator (sample tube) is completely filled, overfilling does not affect the measurement. The remote cells generate frequency analog square wave signals in synchronization with the zero amplitude positions of the oscillating sample tube. These signals are transmitted into the DMA 60 processing unit through an optical isolator for the purpose of electrical separation (between remote cell and DMA 60). The period of vibration of the U-shaped sample tube is displayed to the eighth decimal place period meter with selectable resolution. With the simple relationship between the density of the sample and the natural frequency of the filled oscillator it is possible to use the method for the determination of the density of samples which are injected into or flowing through the oscillator.

1

 $\subseteq$ 

The range of density that can be measured by this instrument is 0.5 to 2.0 g/cm<sup>3</sup>. The sample size is 0.7 cm<sup>3</sup>. The stated precision of the density meter is  $\pm$  1.5 x 10<sup>-6</sup> kg/L. The achievable accuracy of density measurement depends on the achievable temperature stability. As a result of the temperature dependent changes of the oscillator, a temperature variation of  $\pm$  0.01°C will yield an uncertainty in the density determination of approximately  $\pm$  3 x 10<sup>-6</sup> g/ cm<sup>3</sup>. The temperature dependent density change of the sample must be added to this value.

DMA 602 can work within a temperature range of -10°C to + 70°C (controlled by

ultrathermostat) and a pressure range from vacuum up to 10 bar. It takes power from standard 110 and 220 V alternating current permitting a fluctuation of  $\pm$  10%, within a frequency range of 40 - 60 Hz. It can operate under ambient condition of 0 to 45°C.

To maintain the sample fluid inside the sample tube at a desired temperature DMA 602 has to be coupled to a circulating thermostatic bath with the two sockets at the back of the instrument.

The DMA 60 processing unit is powered by alternating current with the ranges of voltage and frequency as same as the DMA 602 remote cell.

N4 electronic temperature controller is a high precision instrument supplied by Haake, West Germany. It has a precision of  $\pm$  0.01°C with the set-point ranging from 30°C to 300°C. Deionized water is used as the circulating fluid. Since the lowest set point permitted by the instrument is 30°C, a refrigerating circulator is required to couple with it to obtain temperature control at 20 and 25°C in the DMA 602 measuring cell.

As suggested earlier by Asfour (1980), the density meter is placed in a plywood box with a plexiglass front door. The temperature inside the box was controlled at the working temperature, i.e. 20, 25, 35 and  $40 \pm 0.1^{\circ}$ C. The box is fitted with an exhaust fan, a 200 watt household bulb (two bulbs were used for temperatures at 35 and  $40^{\circ}$ C). a transmission cooler which is connected to a refrigerating circulator and a precise thermonitor. The Sargent-Welch Thermonitor (model ST) was supplied by Sargent-Welch Scientific Co., U.S.A. This thermonitor is connected to the household bulb. The transmission cooler provides necessary cooling inside the box. When the temperature in the box becomes lower than the set-point the bulb lights up to bring the temperature to

=

the required level. When the temperature approaches the set-point the power supplied by the thermonitor decreases until it is completely cut-off as the temperature reaches the set-point. The exhaust fan provides the required air circulation. The temperature in the box is monitored by a mercury-in-glass thermometer graduated to 0.1°C. Controlling the temperature in the box in this way has been proven to give extremely reliable results (Asfour, 1980).

#### 3.4.2 Procedure

After thorough cleaning with ethanol and drying with the pump installed in DMA 602. the U-shaped sample tube was filled with the liquid sample which was injected by a 0.002 L glass hypodermic syringe. The ends of the sample tube were covered by Teflon cocks. The injection procedure should be performed very carefully to prevent entrapping any air bubbles and to ensure fully wetting of the wall of the sample tube. At least 20 minutes should be allowed for the sample to reach thermal equilibrium at the designated temperature. The "start" button was pressed and the DMA 60 unit would display the readings of the oscillation period of the sample tube. At least ten readings were taken for one sample, then the average was recorded and the density was calculated from the reading of period.

# 3.4.3 Density meter equation

The equation used in this study for calculating sample density from the vibrating period of the oscillator was suggested by the supplier of the density meter

$$\rho = \frac{AT^2}{1 - BT^2} - C \tag{3.3}$$

where A, B and C are calibration constants which have to be determined from known density values by the method of least squares. T is the period of oscillation.

Ž,

#### **CHAPTER 4**

## **EXPERIMENTAL RESULTS**

#### 4.1 General

Five selected ternary n-alkane liquid systems and their corresponding eight binary subsystems were investigated. The range of the n-alkanes is from  $C_8$  to  $C_{15}$ , which represents liquid n-alkanes. The investigated systems are listed in Table 4.1. In Table 4.1, the component 1, 2 and 3 are arranged according to an ascending order of the carbon numbers. Transport properties and thermodynamic properties of these systems are not available in the literature.

The densities and viscosities of both pure components and mixtures were measured over the entire composition range at four temperature levels: 293.15, 298.15, 308.15 and 313.15 K. These data represent very valuable addition to the literature. They are needed both for their own value and for the testing and modifying of various models which are used to predict volumetric and viscometric properties of n-alkane liquid mixtures. The excess properties of both binary and ternary systems calculated from the experimental data are also reported in this chapter.

# 4.2 Calibration of the Density Meter

The density meter was calibrated at 293.15, 298.15, 308.15 and 313.15 K,

TABLE 4.1

Investigated Ternary Systems and Binary Subsystems

### TERNARY SYSTEMS

n-Octane(1)-n-Undecane(2)-n-Tridecane(3)

n-Octane(1)-n-Undecane(2)-n-Pentadecane(3)

n-Undecane(1)-n-Tridecane(2)-n-Pentadecane(3)

n-Octane(1)-n-Tridecane(2)-n-Pentadecane(3)

n-Decane(1)-n-Tridecane(2)-n-Pentadecane(3)

# **BINARY SUBSYSTEMS**

n-Octane(1)-n-Undecane(2)

n-Octane(1)-n-Tridecane(2)

n-Octane(1)-n-Pentadecane(2)

n-decane(1)-n-Pentadecane(2)

n-Undecane(1)-n-Pentadecane(2)

n-Tridecane(1)-n-Pentadecane(2)

n-Decane(1)-n-Tridecane(2)

n-Undecane(1)-n-Tridecane(2)

•

respectively, by selected liquids of known density, the density range of these calibration liquids covers the density range of interest. The results of calibration are reported in Table 4.2. The three parameters in the density equation were determined from the density of the calibration liquids by the non-linear regression.

The accuracy of the density meter depends on that of the density of the standard liquids used for calibration. Therefore, these liquids were selected very carefully to provide density values as accurate as possible.

## 4.3 Calibration of the Viscometers

Five different size Cannon-Ubbelohde type viscometers were used in this study, two were 25A type, two were 50B type and one was 75J type. The measuring ranges of these viscometers have been reported in Chapter 3.

These viscometers were calibrated with Calibration Standards purchased from Cannon Instrument Company at the temperatures of interest. The range of the standards covers the viscosity range of interest. At least five measurements were performed for each standards to get an average reading, the reproducibility is  $\pm$  0.1%. The two parameters in the viscosity equation were calculated by the least squares method.

The results of calibration along with the standard deviations of fit are listed in Table 4.3.

Table 4.2

Calibration Data for the Density Meter

| Substance                      | Density, kg/L                                       | Density Meter Reading, sec |
|--------------------------------|-----------------------------------------------------|----------------------------|
|                                | Temperature = 293.15 K                              |                            |
| n-Hexane                       | 0.65925 (TRC Tables, 1988)                          | 0.332153                   |
| n-Octane                       | 0.70267 (TRC Tables, 1988)                          | 0.336094                   |
| n-Decane                       | 0.73012 (TRC Tables, 1988)                          | 0.338585                   |
| Toluene                        | 0.8669 (TRC Tables, 1986)                           | 0.350805                   |
| Benzene                        | 0.8790 (TRC Tables, 1986)                           | 0.351880                   |
| Double Distilled Water         | 0.9982343 (Perry, 1950)                             | 0.362166                   |
| Carbon Tetrachloride           | 1.5940 (Timmermans, 1950)                           | 0.409697                   |
| Parameter                      | Value                                               |                            |
| A                              | 16.352364                                           |                            |
| В                              | -0.024420                                           |                            |
| C<br>Standard Diviation of the | 1.139585<br>e Fit = $2.92 \times 10^4 \text{ kg/L}$ |                            |
| >                              | Temperature = 298.15 K                              |                            |
| n-Hexane                       | 0.65471 (TRC Tables, 1988)                          | 0.331633                   |
| n-Octane                       | 0.69862 (TRC Tables, 1988)                          | 0.335622                   |
| n-Decane                       | 0.72635 (TRC Tables, 1988)                          | 0.338144                   |
| Toluene                        | 0.86220 (Timmermans, 1950)                          | 0.350292                   |
| Benzene                        | 0.87366 (Timmermans, 1950)                          | 0.351309                   |
| Double Distilled Water         | 0.99707 (Perry, 1950)                               | 0.361959                   |
| Carbon Tetrachloride           | 1.58445 (Timmermans, 1950)                          | 0.408848                   |
| Parameter                      | Value                                               | -                          |
| A                              | 16.343878                                           |                            |
| В                              | -0.019993                                           |                            |
| C<br>Standard Diviation of the | 1.138456<br>Fit = 2.83 x 10 <sup>4</sup> kg/L       |                            |

Table 4.2 (cont'd)

Calibration Data for the Density Meter

| Substance                                                                      | Density, kg/L                                                                                                                                                             | Density Meter Reading, sec                   |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|                                                                                | Temperature = 308.15 K                                                                                                                                                    | -                                            |
| N.4                                                                            | 0.6473 (Viscosity Standard)                                                                                                                                               | 0.330700                                     |
| n-Octane                                                                       | 0.69042 (Garcia et al., 1986)                                                                                                                                             | 0.334679                                     |
| n-Decane                                                                       | 0.71915 (Inglese et al., 1983)                                                                                                                                            | 0.337252                                     |
| N1.0                                                                           | 0.7768 (Viscosity Standard)                                                                                                                                               | 0.342533                                     |
| S3                                                                             | 0.8295 (Viscosity Standard)                                                                                                                                               | 0.347226                                     |
| Benzene                                                                        | 0.86296 (Timmermans, 1965)                                                                                                                                                | 0.350164                                     |
| Double Distilled Water                                                         | 0.9940610 (Perry, 1950)                                                                                                                                                   | 0.361490                                     |
| Parameter                                                                      | <b>Value</b>                                                                                                                                                              |                                              |
| Α                                                                              | 16.249367                                                                                                                                                                 |                                              |
| В                                                                              | 0.002962                                                                                                                                                                  |                                              |
| C<br>Standard Deviation of th                                                  | 1.130187<br>e Fit = $3.05 \times 10^{-4} \text{ kg/L}$                                                                                                                    |                                              |
|                                                                                |                                                                                                                                                                           |                                              |
|                                                                                | Temperature = 313.15 K                                                                                                                                                    |                                              |
| n-Octane                                                                       | Temperature = 313.15 K<br>0.6863 (TRC, Tables, 1988)                                                                                                                      | 0.334206                                     |
|                                                                                |                                                                                                                                                                           | 0.334206<br>0.336808                         |
| n-Decane                                                                       | 0.6863 (TRC Tables, 1988)                                                                                                                                                 |                                              |
| n-Decane<br>Toluene                                                            | 0.6863 (TRC Tables, 1988)<br>0.7150 (TRC Tables, 1988)                                                                                                                    | 0.336808                                     |
| n-Decane<br>Toluene<br>Benzene                                                 | 0.6863 (TRC Tables, 1988)<br>0.7150 (TRC Tables, 1988)<br>0.8485 (TRC Tables, 1986)                                                                                       | 0.336808<br>0.348754                         |
| n-Decane Toluene Benzene Double Distilled Water                                | 0.6863 (TRC Tables, 1988)<br>0.7150 (TRC Tables, 1988)<br>0.8485 (TRC Tables, 1986)<br>0.8577 (TRC Tables, 1986)                                                          | 0.336808<br>0.348754<br>0.349595             |
| n-Decane Toluene Benzene Double Distilled Water Carbon Tetrachloride           | 0.6863 (TRC Tables, 1988)<br>0.7150 (TRC Tables, 1988)<br>0.8485 (TRC Tables, 1986)<br>0.8577 (TRC Tables, 1986)<br>0.9922497 (Perry, 1950)                               | 0.336808<br>0.348754<br>0.349595<br>0.361233 |
| n-Decane Toluene Benzene Double Distilled Water Carbon Tetrachloride           | 0.6863 (TRC Tables, 1988)<br>0.7150 (TRC Tables, 1988)<br>0.8485 (TRC Tables, 1986)<br>0.8577 (TRC Tables, 1986)<br>0.9922497 (Perry, 1950)<br>1.55498 (Timmermans, 1965) | 0.336808<br>0.348754<br>0.349595<br>0.361233 |
| n-Decane Toluene Benzene Double Distilled Water Carbon Tetrachloride Patameter | 0.6863 (TRC Tables, 1988) 0.7150 (TRC Tables, 1988) 0.8485 (TRC Tables, 1986) 0.8577 (TRC Tables, 1986) 0.9922497 (Perry, 1950) 1.55498 (Timmermans, 1965) Value          | 0.336808<br>0.348754<br>0.349595<br>0.361233 |

Table 4.3

Calibration Data for the Viscometers

Temperature = 293.15 K

|          | Efflux            | Standard                                        | Calculated                                      | Param                                                |                                         | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|----------|-------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Liquid   | Time<br>sec       | Viscosity<br>10 <sup>-6</sup> m <sup>2</sup> /s | Viscosity<br>10 <sup>-6</sup> m <sup>2</sup> /s | C<br>10 <sup>-9</sup> m <sup>2</sup> /s <sup>2</sup> | E<br>10 <sup>-6</sup> m <sup>2</sup> -s | Deviation 10 <sup>th</sup> m <sup>2</sup> /s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| <u> </u> | Viscometer 25A483 |                                                 |                                                 |                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| N.4      | 261.03            | 0.4709                                          | 0.4710                                          | 1.80136                                              | -54.6259                                | 4.43x10 <sup>-4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| N.8      | 431.52            | 0.7780                                          | 0.7776                                          |                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| N1.0     | 720.61            | 1.298                                           | 1.2982                                          |                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|          | Viscometer 25A498 |                                                 |                                                 |                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| N.4      | 255.60            | 0.4709                                          | 0.4712                                          | 1.84180                                              | -26.8300                                | 1.04x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| N.8      | 421.84            | 7.7780                                          | 0.7771                                          |                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| N1.0     | 704.96            | 1.298                                           | 1.2984                                          |                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|          |                   | Visc                                            | ometer 50B15                                    | 58                                                   | -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| N.8      | 182.07            | 0.7780                                          | 0.7787                                          | 4.27295                                              | -25.6315                                | 2.27x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| N1.0     | 303.22            | 1.298                                           | 1.2959                                          |                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| S3       | 1004.10           | 4.290                                           | 4.2905                                          |                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|          | ·                 | Visc                                            | ometer 50B15                                    | i9                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| N.8      | 200.46            | 0.7780                                          | 0.7786                                          | 3.88383                                              | -2.73914                                | 1.91x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| N1.0     | 333.75            | 1.298                                           | 1.2962                                          |                                                      |                                         | e de la companya de l |  |  |  |
| S3       | 1104.69           | 4.290                                           | 4.2904                                          |                                                      | ***                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|          |                   | Visc                                            | ometer 75J29                                    |                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| N.8      | 89.29             | 0.7780                                          | 0.7790                                          | 8.76835                                              | 30.8842                                 | 3.15x10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| N1.0     | 147.86            | 1.298                                           | 1.2951                                          |                                                      | <u> </u>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| S3 ·     | 489.35            | - 4.290                                         | 4.2907                                          |                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

Table 4.3 (cont'd)

# Calibration Data for the Viscometers

Temperature = 298.15 K

|            | Efflux            | Standard                                        | Calculated                                      | Parame                                               | eters                              | Standard                           |  |  |  |
|------------|-------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------|------------------------------------|--|--|--|
| Liquid     | Time              | Viscosity<br>10 <sup>-6</sup> m <sup>2</sup> /s | Viscosity<br>10 <sup>-6</sup> m <sup>2</sup> /s | C<br>10 <sup>-9</sup> m <sup>2</sup> /s <sup>2</sup> | E                                  | Deviation                          |  |  |  |
| Liquid     | sec               |                                                 |                                                 | <del> </del>                                         | 10 <sup>-6</sup> m <sup>2</sup> -s | 10 <sup>-6</sup> m <sup>2</sup> /s |  |  |  |
|            | Viscometer 25A483 |                                                 |                                                 |                                                      |                                    |                                    |  |  |  |
| N.4        | 250.29            | 0.4508                                          | 0.4510                                          | 1.80140                                              | -9.54884                           | 8.14x10 <sup>-4</sup>              |  |  |  |
| N.8        | 408.15            | 0.7360                                          | 0.7353                                          |                                                      |                                    |                                    |  |  |  |
| N1.0       | 670.77            | 1,208                                           | 1.2084                                          | ,                                                    |                                    |                                    |  |  |  |
|            | Viscometer 25A498 |                                                 |                                                 |                                                      |                                    |                                    |  |  |  |
| N.4        | 244.87            | J.4508                                          | 0.4509                                          | 1.84205                                              | 8.70242                            | 4.63x10 <sup>-4</sup>              |  |  |  |
| N.8        | 399.37            | 0.7360                                          | 0.7356                                          |                                                      |                                    |                                    |  |  |  |
| N1.0       | 655.91            | 1,208                                           | 1.2082                                          |                                                      |                                    |                                    |  |  |  |
| _          |                   | Vis                                             | cometer 50B                                     | 158                                                  |                                    |                                    |  |  |  |
| N.8        | 172.35            | 0.7360                                          | 0.7365                                          | 4.26988                                              | -16.1933                           | 1.36x10 <sup>-3</sup>              |  |  |  |
| N1.0       | 282.57            | 1.208                                           | 1.2068                                          |                                                      |                                    |                                    |  |  |  |
| <b>S</b> 3 | 886.98            | 3.787                                           | 3.7873                                          |                                                      |                                    |                                    |  |  |  |
|            |                   | Vis                                             | cometer 50B                                     | 159                                                  |                                    |                                    |  |  |  |
| N.8        | 189.76            | 0.7360                                          | 0.7366                                          | 3.88215                                              | 4.16643                            | 1.67x10 <sup>-3</sup>              |  |  |  |
| N1.0       | 310.79            | 1.208                                           | 1.2065                                          |                                                      | 1                                  |                                    |  |  |  |
| S3         | 975.59            | 3.787                                           | 3.7874                                          | ;                                                    |                                    |                                    |  |  |  |
|            |                   | Vis                                             | cometer 75J2                                    | 9                                                    |                                    |                                    |  |  |  |
| N1.0       | 137.83            | 1.208                                           | 1.2080                                          | 8.76487                                              | 0.34293                            | <u> </u>                           |  |  |  |
| S3         | 432.07            | 3.787                                           | 3.7870                                          |                                                      | 2                                  |                                    |  |  |  |

Table 4.3 (cont'd)

Calibration Data for the Viscometers

Temperature = 308.15 K

| Liquid | Efflux<br>Time<br>sec | Standard<br>Viscosity<br>10 <sup>-5</sup> m <sup>2</sup> /s | Calculated<br>Viscosity<br>10 <sup>-6</sup> m <sup>2</sup> /s | Paran<br>C<br>10° m²/s² | E<br>10 <sup>-6</sup> m <sup>2</sup> -s | Standard<br>Deviation<br>10 <sup>th</sup> m <sup>2</sup> /s |
|--------|-----------------------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------|-----------------------------------------|-------------------------------------------------------------|
|        |                       | Vis                                                         | scometer 25A4                                                 | 83                      | -                                       |                                                             |
| N.4    | 230.96                | 0.4154                                                      | 0.4156                                                        | 1.79564                 | -48.20034                               | 8.46x10 <sup>-4</sup>                                       |
| N.8    | 368.07                | 0.6620                                                      | 0.6613                                                        |                         |                                         |                                                             |
| N1.0   | 589.33                | 1.058                                                       | 1.0584                                                        |                         |                                         |                                                             |
|        |                       | Vis                                                         | scometer 25A4                                                 | 98                      |                                         | •                                                           |
| N.4    | 226.10                | 0.4154                                                      | 0.4156                                                        | 1.83638                 | -21,49524                               | 8.14x10 <sup>-4</sup>                                       |
| N.8    | 360.02                | 0.6620                                                      | 0.6613                                                        |                         |                                         |                                                             |
| N1.0   | 576.29                | 1.058                                                       | 1.0584                                                        |                         |                                         |                                                             |
| ·      |                       | Vis                                                         | scometer 50B1                                                 | 58                      |                                         |                                                             |
| N1.0   | 248.25                | 1.058                                                       | 1.0580                                                        | 4.2465                  | -234.51722                              |                                                             |
| S3     | 711.06                | 3.020                                                       | 3.0200                                                        |                         |                                         |                                                             |
|        |                       | Vis                                                         | scometer 50B1                                                 | 59                      | · · · · · · · · · · · · · · · · · · ·   |                                                             |
| N1.0   | 273.05                | 1.058                                                       | 1.0580                                                        | 3.8591                  | -320.69093                              | . 7                                                         |
| S3     | 782.44                | 3.020                                                       | 3.0200                                                        |                         |                                         | ,                                                           |
|        |                       | Vis                                                         | scometer 75J29                                                | )                       | · · · · · · · · · · · · · · · · · · ·   |                                                             |
| N1.0   | 121.27                | 1.058                                                       | 1.0580                                                        | 8.71520                 | -15.78132                               |                                                             |
| S3     | 346.51                | 3.020                                                       | 3.0200                                                        |                         |                                         |                                                             |

Table 4.3 (cont'd)

Calibration Data for the Viscometers

Temperature = 313.15 K

|        | Efflux<br>Time | Standard<br>Viscosity              | Calculated<br>Viscosity            | Param<br>C                                      | E                                  | Standard<br>Deviation              |
|--------|----------------|------------------------------------|------------------------------------|-------------------------------------------------|------------------------------------|------------------------------------|
| Liquid | sec            | 10 <sup>-6</sup> m <sup>2</sup> /s | 10 <sup>-6</sup> m <sup>2</sup> /s | 10 <sup>-9</sup> m <sup>2</sup> /s <sup>2</sup> | 10 <sup>-6</sup> m <sup>2</sup> -s | 10 <sup>-6</sup> m <sup>2</sup> /s |
|        |                | Vis                                | cometer 25A4                       | 83                                              |                                    |                                    |
| N.4    | 221.99         | 0.3989 .                           | 0.3983                             | 1.79375                                         | -3.90757                           | 2.33x10 <sup>-3</sup>              |
| N.8    | 352.09         | 0.6296                             | 0.6316                             |                                                 |                                    |                                    |
| N1.0   | 553.74         | 0.9943                             | 0.9933                             |                                                 |                                    |                                    |
|        |                | Vis                                | cometer 25A4                       | 98                                              |                                    |                                    |
| N.4    | 217.41         | 0.3989                             | 0.3992                             | 1.83504                                         | -10.40324                          | 9.85x10 <sup>-1</sup>              |
| N.8    | 342.59         | 0.6296                             | 0.6288                             |                                                 |                                    | <i>;</i>                           |
| N1.0   | 542.05         | 0.9943                             | 0.9947                             |                                                 |                                    |                                    |
|        |                | Vis                                | cometer 50B1                       | 58                                              |                                    |                                    |
| N1.0   | 233.33         | 0.9943                             | 0.9943                             | 4.24290                                         | -235.32122                         |                                    |
| S3     | 641.88         | 2.724                              | 2.7240                             |                                                 |                                    |                                    |
|        |                | Vis                                | cometer 50B1                       | 59                                              | -                                  | ·                                  |
| N1.0   | 256.72         | 0.9943                             | 0.9943                             | 3.85660                                         | -279.49511                         |                                    |
| S3     | 706.18         | 2.724                              | 2.7240                             |                                                 |                                    |                                    |
|        |                | Vis                                | cometer 75J29                      |                                                 |                                    |                                    |
| N1.0   | 114.01         | 0.9943                             | 0.9943                             | 8.70956                                         | -16.74097                          |                                    |
| S3     | 312.74         | 2.724                              | 2.7240                             |                                                 |                                    |                                    |

# 4.4 Binary System Data

Figures 4.1 to 4.4 show the density isotherms of all the binary mixtures at the four temperature levels investigated.

The experimental density-composition data and the calculated excess volume-composition data of the eight binary systems are presented in Tables 4.4 to 4.11.

The viscosity isotherms of all the binary mixtures were shown in Figures 4.5 to 4.8. It is obvious that viscosity is not a simple function of composition.

The experimental viscosity-composition data and the excess properties-composition data, i. e. the excess viscosity and excess energy of viscous flow, calculated from viscosity data are listed in Tables 4.12 to 4.19.

## 4.5 Ternary System Data

The experimental density and viscosity data of the five ternary systems are listed in Tables 4.20 to 4.24 whereas their corresponding excess volume, excess viscosity and excess energy of viscous flow data are reported in Appendix B, Tables B.1 to B.5.

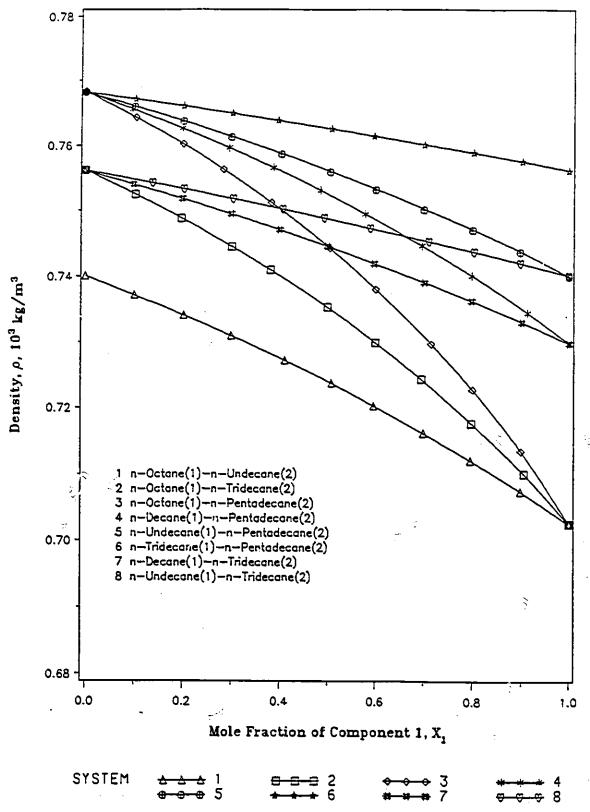



Figure 4.1. Density vs. Composition for Binary n-Alkane Systems at 293.15 K

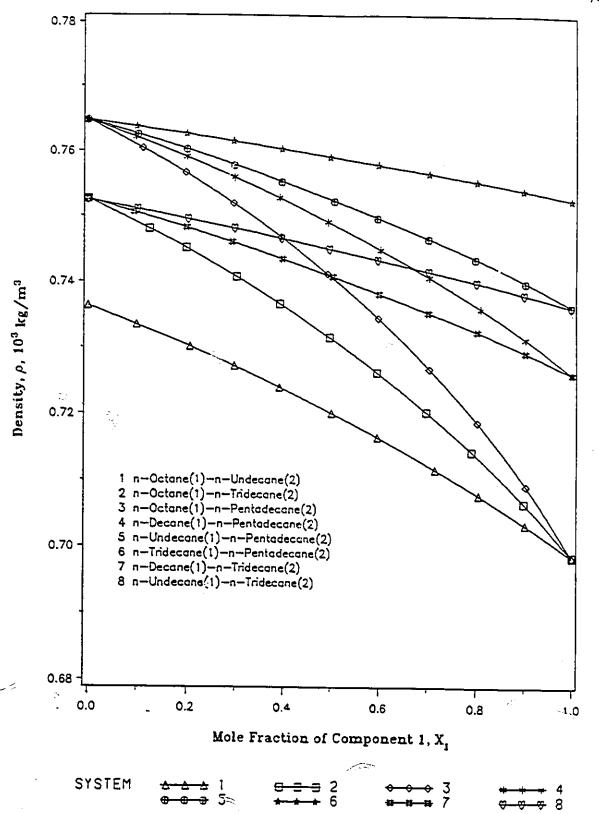



Figure 4.2. Density vs. Composition for Binary n-Alkane Systems at 298.15 K



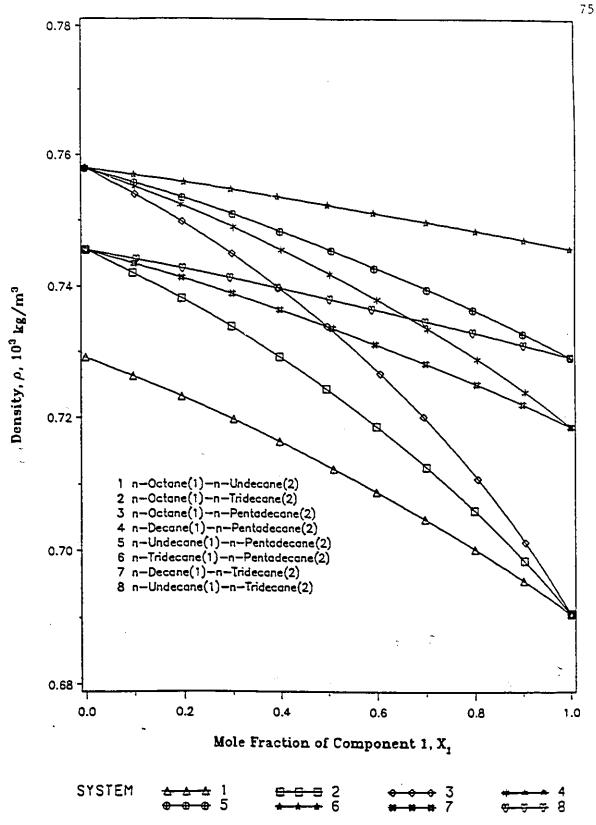



Figure 4.3. Density vs. Composition for Binary n-Alkane Systems at 308.15 K



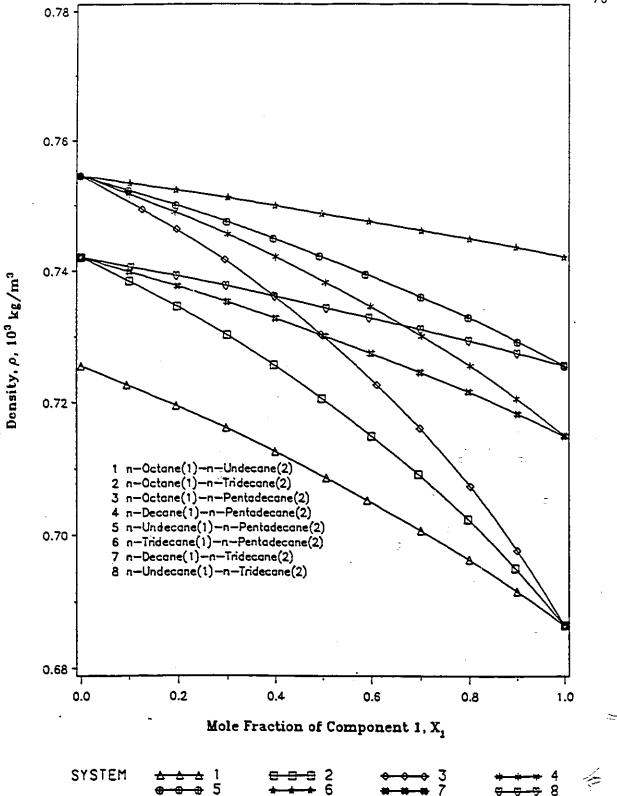



Figure 4.4. Density vs. Composition for Binary n-Alkane Systems at 313.15 K

Table 4.4

Densities and Excess Volumes of the System n-Octane(1)-n-Undecane(2)

| Mole<br>Fraction<br>x <sub>1</sub> | Density<br>kg/L  | Excess<br>Volume<br>L/kmol | Mole<br>Fraction       | Density<br>kg/L        | Excess<br>Volume<br>L/kmol |  |
|------------------------------------|------------------|----------------------------|------------------------|------------------------|----------------------------|--|
|                                    | perature = 293.1 | 15 K                       |                        | Temperature = 298.15 K |                            |  |
| 0.0000                             | 0.7401           | 0.0000                     | 0.0000                 | 0.7363                 | 0.0000                     |  |
| 0.1007                             | 0.7371           | -0.1060                    | 0.0992                 | 0.7335                 | -0.0252                    |  |
| 0.2018                             | 0.7341           | -0.0384                    | 0.2059                 | 0.7302                 | -0.0423                    |  |
| 0.2995                             | 0.7309           | -0.0406                    | 0.2978                 | 0.7272                 | -0.0561                    |  |
| 0.4108                             | 0.7272           | -0.0568                    | 0.3916                 | 0.7240                 | -0.0602                    |  |
| 0.5076                             | 0.7237           | -0.0597                    | 0.5019                 | 0.7200                 | -0.0681                    |  |
| 0.5964                             | 0.7203           | -0.0523                    | 0.5959                 | 0.7164                 | -0.0681                    |  |
| 0.6995                             | 0.7161           | -0.0413                    | 0.7154                 | 0.7116                 | -0.0591                    |  |
| 0.7954                             | 0.7120           | -0.0274                    | 0.8041                 | 0.7077                 | -0.0477                    |  |
| 0.8978                             | 0.7074           | -0.0088                    | 0.9011                 | 0.7033                 | -0.0321                    |  |
| 1.0000                             | 0.7025           | 0.0000                     | 1.0000                 | 0.6984                 | 0.0000                     |  |
| Tem                                | perature = 308.1 | 5 K                        | Temperature = 313.15 K |                        |                            |  |
| 0.0000                             | 0.7291           | 0.0000                     | 0.0000                 | 0.7255                 | 0.0000                     |  |
| 0.0969                             | 0.7263           | -0.0312                    | 0.0953                 | 0.7227                 | -0.0232                    |  |
| 0.1954                             | 0.7232           | -0.0463                    | 0.1962                 | 0.7195                 | -0.0454                    |  |
| 0.3001                             | 0.7197           | -0.0651                    | 0.2979                 | 0.7161                 | -0.0694                    |  |
| 0.3970                             | 0.7164           | -0.0787                    | 0.3995                 | 0.7125                 | -0.0730                    |  |
| 0.5094                             | 0.7122           | -0.0793                    | 0.5061                 | 0.7086                 | -0.0829                    |  |
| 0.5981                             | 0.7088           | -0.0825                    | 0.5914                 | 0.7052                 | -0.0813                    |  |
| 0.6968                             | 0.7047           | -0.0743                    | 0.7010                 | 0.7006                 | -0.0734                    |  |
| 0.7992                             | 0.7002           | -0.0611                    | 0.3001                 | 0.6963                 | -0.0639                    |  |
| 0.8998                             | 0.6955           | -0.0392                    | 0.8999                 | 0.6915                 | -0.0391                    |  |
| 1.0000                             | 0.6905           | 0.0000                     | 1.0000                 | 0.6865                 | 0.0000                     |  |

Table 4.5

Densities and Excess Volumes of the System n-Octane(1)-n-Tridecane(2)

| Mole<br>Fraction | Density<br>kg/L      | Excess<br>Volume<br>L/kmol | Mole<br>Fraction<br>x <sub>1</sub> | Density<br>kg/L        | Excess<br>Volume<br>L/kmol |  |
|------------------|----------------------|----------------------------|------------------------------------|------------------------|----------------------------|--|
|                  | perature = 293.1     | 5 K                        |                                    | Temperature = 298.15 K |                            |  |
| 0.0000           | 0.0000 0.7562 0.0000 |                            |                                    | 0.7526                 | 0.0000                     |  |
| 0.1023           | 0.7525               | -0.0355                    | 0.1246                             | 0.7481                 | -0.0432                    |  |
| 0.1966           | 0.7488               | -0.0582                    | 0.1988                             | 0.7452                 | -0.0697                    |  |
| 0.3011           | 0.7445               | -0.0807                    | 0.3028                             | 0.7408                 | -0.0906                    |  |
| 0.3813           | 0.7409               | -0.1075                    | 0.3936                             | 0.7366                 | -0.1094                    |  |
| 0.4993           | 0.7352               | -0.1373                    | 0.4971                             | 0.7315                 | -0.1171                    |  |
| 0.6002           | 0.7298               | -0.1408                    | 0.5956                             | 0.7262                 | -0.1229                    |  |
| 0.6949           | 0.7243               | -0.1345                    | 0.6970                             | 0.7202                 | -0.1169                    |  |
| 0.7976           | 0.7176               | -0.0807                    | 0.7898                             | 0.7143                 | -0.0978                    |  |
| 0.9047           | 0.7100               | -0.0486                    | 0.8988                             | 0.7065                 | -0.0612                    |  |
| 1.0000           | 0.7025               | 0.0000                     | 1.0000                             | 0.6985                 | 0.0000                     |  |
| Tem              | perature = 308.1     | 5 K                        | Temperature = 313.15 K             |                        |                            |  |
| 0.0000           | 0.7456               | 0.0000                     | 0.0000                             | 0.7421                 | 0.0000                     |  |
| 0.0968           | 0.7420               | -0.0380                    | 0.0995                             | 0.7385                 | -0.0553                    |  |
| 0.1961           | 0.7381               | -0.0803                    | 0.1969                             | 0.7346                 | -0.1024                    |  |
| 0.2969           | 0.7338               | -0.1104                    | 0.2992                             | 0.7302                 | -0.1357                    |  |
| 0.3966           | 0.7292               | -0.1276                    | 0.3967                             | 0.7256                 | -0.1568                    |  |
| 0.4942           | 0.7243               | -0.1376                    | 0.4967                             | 0.7206                 | -0.1710                    |  |
| 0.5983           | 0.7186               | -0.1426                    | 0.5993                             | 0.7149                 | -0.1646                    |  |
| 0.7006           | 0.7125               | -0.1361                    | 0.6949                             | 0.7091                 | -0.1683                    |  |
| 0.7985           | 0.7060               | -0.1110                    | 0.7971                             | 0.7023                 | -0.1411                    |  |
| 0.9019           | 0.6985               | -0.0644                    | 0.8964                             | 0.6950                 | -0.0831                    |  |
| 1.0000           | 0.6905               | 0.0000                     | 1.0000                             | 0.6865                 | 0.0000                     |  |

Table 4.6

Densities and Excess Volumes of the System n-Octane(1)-n-Pentadecane(2)

| Mole<br>Fraction<br>x <sub>1</sub>    | Density<br>kg/L | Excess<br>Volume<br>L/kmol | Mole<br>Fraction       | Density                 | Excess<br>Volume |
|---------------------------------------|-----------------|----------------------------|------------------------|-------------------------|------------------|
| · · · · · · · · · · · · · · · · · · · | perature = 293. |                            | X <sub>1</sub>         | kg/L<br>erature = 298.1 | L/kmol           |
| 0.0000                                | 0.7684          | 0.0000                     | 0.0000                 |                         | -                |
| 0.1032                                | 0.7643          | -0.0494                    |                        | 0.7648                  | 0.0000           |
| 0.2005                                | 0.7602          |                            | 0.1114                 | 0.7604                  | -0.0629          |
| -                                     |                 | -0.1000                    | 0.1978                 | 0.7567                  | -0.0966          |
| 0.2833                                | 0.7563          | -0.1208                    | 0.2962                 | 0.7520                  | -0.1273          |
| 0.3826                                | 0.7512          | -0.1351                    | 0.3951                 | 0.7469                  | -0.1571          |
| 0.5038                                | 0.7442          | -0.1471                    | 0.4927                 | 0.7413                  | -0.1810          |
| 0.6008                                | 0.7380          | -0.1605                    | 0.5978                 | 0.7345                  | -0.1993          |
| 0.7150                                | 0.7296          | -0.1493                    | 0.7035                 | 0.7268                  | -0.1875          |
| 0.7994                                | 0.7227          | -0.1292                    | 0.8008                 | 0.7187                  | -0.1601          |
| 0.8985                                | 0.7134          | -0.0793                    | 0.9026                 | 0.7091                  | -0.1030          |
| 1.0000                                | 0.7025          | 0.0000                     | 1.0000                 | 0.6984                  | 0.0000           |
| Tem                                   | perature = 308. | 15 K                       | Temperature = 313.15 K |                         |                  |
| 0.0000                                | 0.7580          | 0.0000                     | 0.0000                 | 0.7545                  | 0.0000           |
| 0.1015                                | 0.7539          | -0.0661                    | 0.1274                 | 0.7494                  | -0.0953          |
| 0.1973                                | 0.7500          | -0.1180                    | 0.1958                 | 0.7463                  | -0.1285          |
| 0.2986                                | 0.7449          | -0.1655                    | 0.2936                 | 0.7417                  | -0.1891          |
| 0.3975                                | 0.7397          | -0.1959                    | 0.3949                 | 0.7363                  | -0.2192          |
| 0.4973                                | 0.7338          | -0.2210                    | 0.4956                 | 0.7304                  | -0.2537          |
| 0.6065                                | 0.7266          | -0.2277                    | 0.6113                 | 0.7226                  | -0.2529          |
| 0.6944                                | 0.7201          | -0.2182                    | 0.6990                 | 0.7161                  | -0.2489          |
| 0.8053                                | 0.7108          | -0.1763                    | 0.8018                 | 0.7073                  | -0.1974          |
| 0.9040                                | 0.7012          | -0.1133                    | 0.9006                 | 0.6977                  | -0.1203          |
| 1.0000                                | 0.6905          | 0.0000                     | 1.0000                 | 0.6865                  | 0.0000           |

Table 4.7

Densities and Excess Volumes of the System n-Decane(1)-n-Pentadecane(2)

| Mole<br>Fraction | Density<br>kg/L | Excess<br>Volume<br>L/kmol | Mole<br>Fraction       | Density<br>kg/L        | Excess<br>Volume<br>L/kmol |  |
|------------------|-----------------|----------------------------|------------------------|------------------------|----------------------------|--|
|                  | perature = 293. | . ·                        |                        | Temperature = 298.15 K |                            |  |
| 0.0000           | 0.7683          | 0.0000                     | 0.0000                 | 0.7648                 | 0.0000                     |  |
| 0.0958           | 0.7656          | -0.0005                    | 0.0973                 | 0.7621                 | -0.0305                    |  |
| 0.1989           | 0.7626          | -0.0179                    | 0.1999                 | u./591                 | -0.0443                    |  |
| 0.2947           | 0.7596          | -0.0238                    | 0.2983                 | 0.7560                 | -0.0506                    |  |
| 0.3865           | 0.7566          | -0.0340                    | 0.3925                 | 0.7529                 | -0.0650                    |  |
| 0.4839           | 0.7531          | -0.0369                    | 0.4933                 | 0.7492                 | -0.0619                    |  |
| 0.5780           | 0.7495          | -0.0356                    | 0.6025                 | 0.7450                 | -0.0641                    |  |
| 0.6958           | 0.7446          | -0.0303                    | 0.7033                 | 0.7407                 | -0.0652                    |  |
| 0.7980           | 0.7400          | -0.0219                    | 0.8079                 | 0.7360                 | -0.0516                    |  |
| 0.9126           | 0.7344          | -0.0114                    | 0.9014                 | 0.7313                 | -0.0396                    |  |
| 1.0000           | 0.7298          | 0.0000                     | 1.0000                 | 0.7260                 | 0.0000                     |  |
| Ten              | perature = 308. | 15 K                       | Temperature = 313.15 K |                        |                            |  |
| 0.0000           | 0.7580          | 0.0000                     | 0.0000                 | 0.7546                 | 0.0000                     |  |
| 0.1015           | 0.7551          | -0.0225                    | 0.0999                 | 0.7518                 | -0.0181                    |  |
| 0.1942           | 0.7523          | -0.0390                    | 0.1932                 | 0.7490                 | -0.0421                    |  |
| 0.3018           | 0.7489          | -0.0589                    | 0.3013                 | 0.7456                 | -0.0697                    |  |
| 0.4028           | 0.7454          | -0.0612                    | 0.4013                 | 0.7421                 | -0.0842                    |  |
| 0.5033           | 0.7418          | -0.0728                    | 0.5059                 | 0.7382                 | -0.0869                    |  |
| 0.6010           | 0.7379          | -0.0731                    | 0.5986                 | 0.7345                 | -0.0903                    |  |
| 0.7040           | 0.7335          | -0.0736                    | 0.7028                 | 0.7301                 | -0.0774                    |  |
| 0.8051           | 0.7289          | -0.0597                    | 0.8009                 | 0.7255                 | -0,0532                    |  |
| 0.9044           | 0.7239          | -0.0381                    | 0.8988                 | 0.7205                 | -0.0338                    |  |
| 1.0000           | 0.7186          | 0.0000                     | 1.0000                 | 0.7150                 | 0.0000                     |  |

Table 4.8

Densities and Excess Volumes of the System n-Undecane(1)-n-Pentadecane(2)

| Mole<br>Fraction | Density<br>kg/L     | Excess<br>Volume<br>L/kmol | Mole<br>Fraction       | Density<br>kg/L | Excess<br>Volume<br>L/kmol |
|------------------|---------------------|----------------------------|------------------------|-----------------|----------------------------|
| Ten              | perature = 293.     | 15 K                       |                        | perature = 298. | <del></del> .              |
| 0.0000           | 0.7683              | 0.0000                     | 0.0000                 | 0.7648          | 0,0000                     |
| 0.1013           | 0.7660              | -0.0143                    | 0.1026                 | 0.7626          | -0.0154                    |
| 0.2015           | 0.7637              | -0.0159                    | 0.2004                 | 0.7603          | -0.0231                    |
| 0.3004           | 0.7613              | -0.0240                    | 0.2994                 | 0.7579          | -0.0267                    |
| 0.4036           | 0.7587              | -0.0271                    | 0.3983                 | 0.7554          | -0.0348                    |
| 0.5046           | 0.7560              | -0.0258                    | 0.5079                 | 0.7524          | -0.0365                    |
| 0.6010           | 0.7532              | -0.0334                    | 0.5973                 | 0.7498          | -0.0325                    |
| 0.7004           | 0.7502              | -0.0277                    | 0.7022                 | 0.7466          | -0.0334                    |
| 0.8000           | 0.7470              | -0.0207                    | 0.7975                 | 0.7436          | -0.0281                    |
| 0.8974           | 0.7437              | -0.0156                    | 0.9019                 | 0.7400          | -0.0161                    |
| 1.0000           | 0.7400              | 0.0000                     | 1.0000                 | 0.7364          | 0.0000                     |
| Tem              | perature = 308.     | 15 K                       | Temperature = 313,15 K |                 |                            |
| 0.0000           | 0.7580              | 0.0000                     | 0.0000                 | 0.7546          | 0.0000                     |
| 0.1005           | 0.7557              | -0.0125                    | 0.0989                 | 0.7523          | -0.0054                    |
| 0.1976           | 0.7535              | -0.0278                    | 0.1959                 | 0.7501          | -0.0220                    |
| 0.3007           | 0.7509              | -0.0394                    | 0.2996                 | 0.7475          | -0.0299                    |
| 0.4013           | 0.7483              | -0.0366                    | 0.3974                 | 0.7450          | -0.0458                    |
| 0.5074           | 0.7454              | -0.0459                    | 0.4945                 | 0.7423          | -0.0455                    |
| 0.5964           | 0.7428              | -0.0381                    | 0.5890                 | 0.7395          | -0.0518                    |
| 0.7036           | 0.73 <del>9</del> 5 | -0.0504                    | 0.7019                 | 0.7360          | -0.0372                    |
| 0.7972           | 0.7364              | -0.0301                    | 0.7983                 | 0.7328          | -0.0357                    |
| 0.9014           | 0.7328              | -0.0230                    | 0.9013                 | 0.7292          | -0.0109                    |
| 1.0000           | 0.7291              | 0.0000                     | 1.0000                 | 0.7255          | 0.0000                     |

Table 4.9

Densities and Excess Volumes of the System n-Tridecane(1)-n-Pentadecane(2)

| Mole<br>Fraction | Density<br>kg/L | Excess<br>Volume<br>L/kmol | Mole<br>Fraction<br>x <sub>1</sub> | Density<br>kg/L        | Excess<br>Volume<br>L/kmol |  |
|------------------|-----------------|----------------------------|------------------------------------|------------------------|----------------------------|--|
| Ten              | perature = 293. | 15 K                       |                                    | Temperature = 298.15 K |                            |  |
| 0.0000           | 0.7683          | 0.0000                     | 0.0000                             | 0.7648                 | 0.0000                     |  |
| 0.1030           | 0.7672          | -0.0057                    | 0.1000                             | 0.7637                 | -0.0002                    |  |
| 0.2020           | 0.7660          | -0.0051                    | 0.2001                             | 0.7626                 | -0.0049                    |  |
| 0.3023           | 0.7649          | -0.0076                    | 0.2975                             | 0.7615                 | -0.0018                    |  |
| 0.3967           | 0.7638          | -0.0069                    | 0.3984                             | 0.7603                 | -0.0061                    |  |
| 0.5078           | 0.7625          | -0.0056                    | 0.5000                             | 0.7591                 | -0.0048                    |  |
| 0.5972           | 0.7614          | -0.0073                    | 0.5985                             | 0.7579                 | -0.0011                    |  |
| 0.7003           | 0.7601          | -0.0092                    | 0.7037                             | 0.7566                 | -0.0107                    |  |
| 0.8019           | 0.7588          | -0.0053                    | 0.8004                             | 0.7553                 | -0.0031                    |  |
| 0.9018           | 0.7575          | -0.0023                    | 0.8983                             | 0.7540                 | 0.0079                     |  |
| 1.0000           | 0.7561          | 0.0000                     | 1.0000                             | 0.7526                 | 0.0000                     |  |
| Tem              | perature = 308. | 15 K                       | Temperature = 313.15 K             |                        |                            |  |
| 0.0000           | 0.7580          | 0.0000                     | 0.0000                             | 0.7546                 | 0.0000                     |  |
| 0.1064           | 0.7569          | 0.0042                     | 0.1024                             | 0.7534                 | -0.0076                    |  |
| 0.2017           | 0.7557          | -0.0045                    | 0.1963                             | 0.7523                 | -0.0018                    |  |
| 0.2979           | 0.7546          | -0.0067                    | 0.3028                             | 0.7511                 | -0.0060                    |  |
| 0.3944           | 0.7535          | -0.0036                    | 0.4019                             | 0.7499                 | -0.0108                    |  |
| 0.4994           | 0.7522          | -0.0116                    | 0.4997                             | 0.7487                 | -0.0002                    |  |
| 0.5935           | 0.7511          | -0.0074                    | 0.5970                             | 0.7475                 | -0.0101                    |  |
| 0.7015           | 0.7497          | -0.0132                    | 0.7040                             | ნ.7462                 | -0.0121                    |  |
| 0.8030           | 0.7483          | -0.0072                    | 0.8017                             | 0.7448                 | -0.0002                    |  |
| 0.9036           | 0.7470          | 0.0018                     | 0.8985                             | 0.7435                 | -0.0072                    |  |
| 1.0000           | 0.7456          | 0.0000                     | 1.0000                             | 0.7421                 | 0.0000                     |  |

-

Table 4.10

Densities and Excess Volumes of the System n-Decane(1)-n-Tridecane(2)

| Mole<br>Fraction<br>x <sub>1</sub> | Density<br>kg/L | Excess<br>Volume<br>L/kmol | Mole<br>Fraction       | Density<br>kg/L | Excess<br>Volume<br>L/kmol |
|------------------------------------|-----------------|----------------------------|------------------------|-----------------|----------------------------|
| Temperature = 293.15 K             |                 |                            | Temperature = 298.15 K |                 |                            |
| 0.0000                             | 0.7561          | 0.0000                     | 0.0000                 | 0.7526          | 0.0000                     |
| 0.0987                             | 0.7540          | -0.0126                    | 0.0939                 | 0.7506          | -0.0078                    |
| 0.1990                             | 0.7518          | -0.0185                    | 0.1985                 | 0.7483          | -0.0197                    |
| 0.2995                             | 0.7495          | -0.0254                    | 0.2931                 | 0.7461          | -0.0211                    |
| 0.3997                             | 0.7470          | -0.0283                    | 0.3988                 | 0.7435          | -0.0273                    |
| 0.4986                             | 0.7445          | -0.0237                    | 0.5031                 | 0.7408          | -0.0226                    |
| 0.5974                             | 0.7419          | -0.0296                    | 0.5995                 | 0.7382          | -0.0254                    |
| 0.7015                             | 0.7390          | -0.0287                    | 0.7013                 | 0.7353          | -0.0238                    |
| 0.7973                             | 0.7362          | -0.0173                    | 0.8001                 | 0.7324          | -0.0275                    |
| 0.9014                             | 0.7330          | -0.0115                    | 0.9011                 | 0.7292          | -0.0131                    |
| 1.0000                             | 0.7297          | 0.0000                     | 1.0000                 | 0.7260          | 0.0000                     |
| Temperature = 308.15 K             |                 |                            | Temperature = 313.15 K |                 |                            |
| 0.0000                             | 0.7456          | 0.0000                     | 0.0000                 | 0.7421          | 0.0000                     |
| 0.0991                             | 0.7435          | -0.0206                    | 0.1001                 | 0.7399          | -0.0108                    |
| 0.1956                             | 0.7413          | -0.0331                    | 0.1979                 | 0.7377          | -0.0226                    |
| 0.2991                             | 0.7388          | -0.0373                    | 0.2988                 | 0.7353          | -0.0368                    |
| 0.3993                             | 0.7363          | -0.0366                    | 0.3996                 | 0.7328          | -0.0444                    |
| 0.5073                             | 0.7335          | -0.0396                    | 0.5025                 | 0.7301          | -0.0444                    |
| 0.5962                             | 0.7311          | -0.0400                    | 0.5994                 | 0.7274          | -0.0449                    |
| 0.6991                             | 0.7282          | -0.0443                    | 0.6995                 | 0.7245          | -0.0441                    |
| 0.8037                             | 0.7250          | -0.0359                    | 0.7980                 | 0.7215          | -0.0316                    |
| 0.8994                             | 0.7220          | -0.0232                    | 0.9013                 | 0.7182          | -0.0227                    |
| 1.0000                             | 0.7186          | 0.0000                     | 1.0000                 | 0.7148          | 0.0000                     |

 $\mathcal{L}$ 

Table 4.11

Densities and Excess Volumes of the System n-Undecane(1)-n-Tridecane(2)

| Mole<br>Fraction       | Density<br>kg/L | Excess<br>Volume<br>L/kmol | Mole<br>Fraction       | Density<br>kg/L | Excess<br>Volume<br>L/kmol |
|------------------------|-----------------|----------------------------|------------------------|-----------------|----------------------------|
| Temperature = 293.15 K |                 |                            | Temperature = 298.15 K |                 |                            |
| 0.0000                 | 0.7562          | 0.0000                     | 0.0000                 | 0.7525          | 0.0000                     |
| 0.1389                 | 0.7542          | -0.0053                    | 0.1023                 | 0.7511          | -0.0074                    |
| 0.2035                 | 0.7533          | -0.0061                    | 0.2031                 | 0.7496          | -0.0068                    |
| 0.3044                 | 0.7518          | -0.0076                    | 0.2991                 | 0.7482          | -0.0104                    |
| 0.4076                 | 0.7502          | -0.0063                    | 0.3981                 | 0.7466          | -0.0103                    |
| 0.4924                 | 0.7488          | -0.0034                    | 0.4981                 | 0.7450          | -0.0080                    |
| 0.5897                 | 0.7473          | -0.0094                    | 0.5976                 | 0.7434          | -0.0072                    |
| 0.7108                 | 0.7452          | -0.0079                    | 0.7028                 | 0.7416          | -0.0075                    |
| 0.8027                 | 0.7436          | -0.0007                    | 0.8000                 | 0.7399          | -0.0092                    |
| 0.8980                 | 0.7419          | 0.0043                     | 0.9004                 | 0.7381          | -0.0003                    |
| 1.0000                 | 0.7401          | 0.0000                     | 1.0000                 | 0.7362          | 0.0000                     |
| Temperature = 308.15 K |                 |                            | Temperature = 313.15 K |                 |                            |
| 0.0000                 | 0.7456          | 0.0000                     | 0.0000                 | 0.7421          | 0.0000                     |
| 0.1051                 | 0.7441          | -0.0006                    | 0.1040                 | 0.7406          | -0.0027                    |
| 0.1986                 | 0.7428          | -0.0118                    | 0.1964                 | 0.7393          | -0.0127                    |
| 0.2953                 | 0.7413          | -0.0116                    | 0.2972                 | 0.7377          | -0.0119                    |
| 0.3954                 | 0.7397          | -0.0107                    | 0.3982                 | 0.7361          | -0.0157                    |
| 0.5039                 | 0.7379          | -0.0071                    | 0.5078                 | 0.7343          | -0.0129                    |
| 0.5908                 | 0.7365          | -0.0111                    | 0.5968                 | 0.7328          | -0.0153                    |
| 0.6994                 | 0.7346          | -0.0140                    | 0.7018                 | 0.7310          | -0.0209                    |
| 0.7972                 | 0.7329          | -0.0159                    | 0.7985                 | 0.7293          | -0.0080                    |
| 0.9027                 | 0.7310          | -0.0099                    | 0.9009                 | 0.7274          | -0.0096                    |
| 1.0000                 | 0.7291          | 0.0000                     | 1.0000                 | 0.7255          | 0.0000                     |



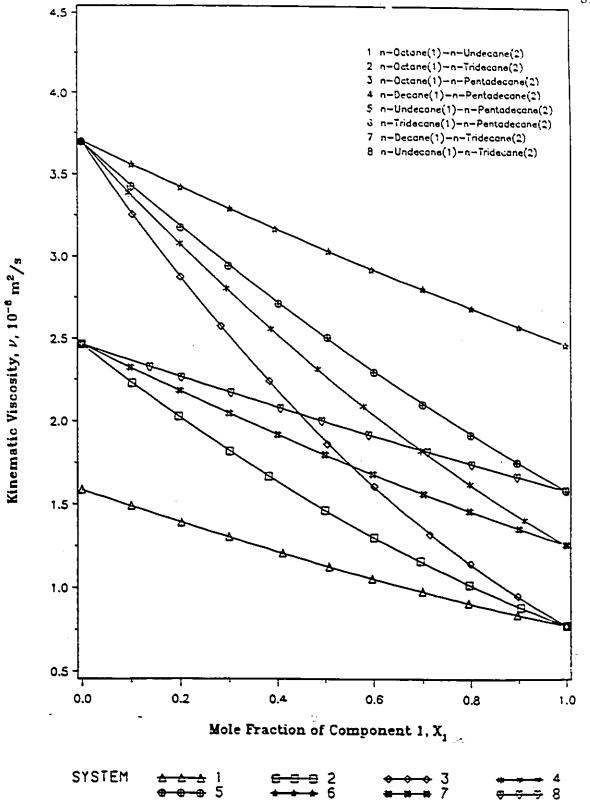



Figure 4.5. Viscosity vs. Composition for Binary n-Alkane Systems at 293.15 K

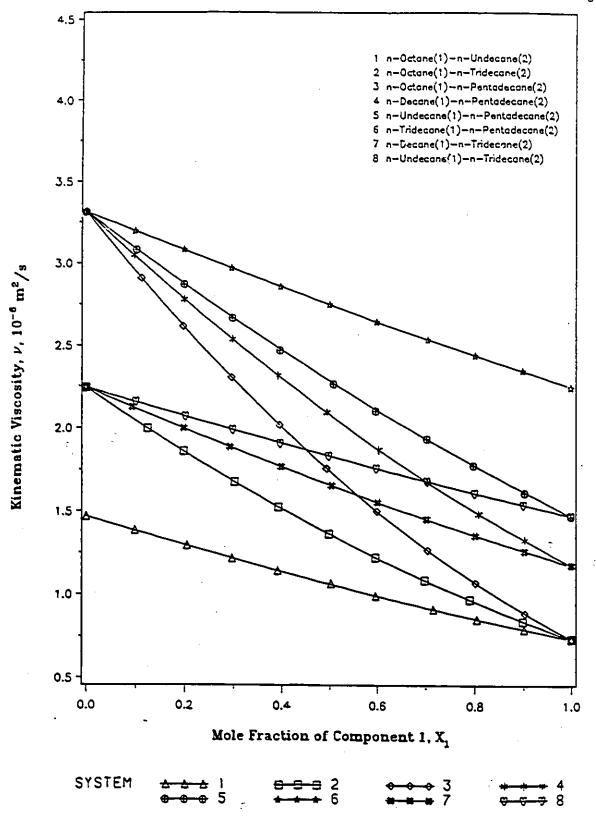



Figure 4.6. Viscosity vs. Composition for Binary n-Alkane Systems at 298.15 K

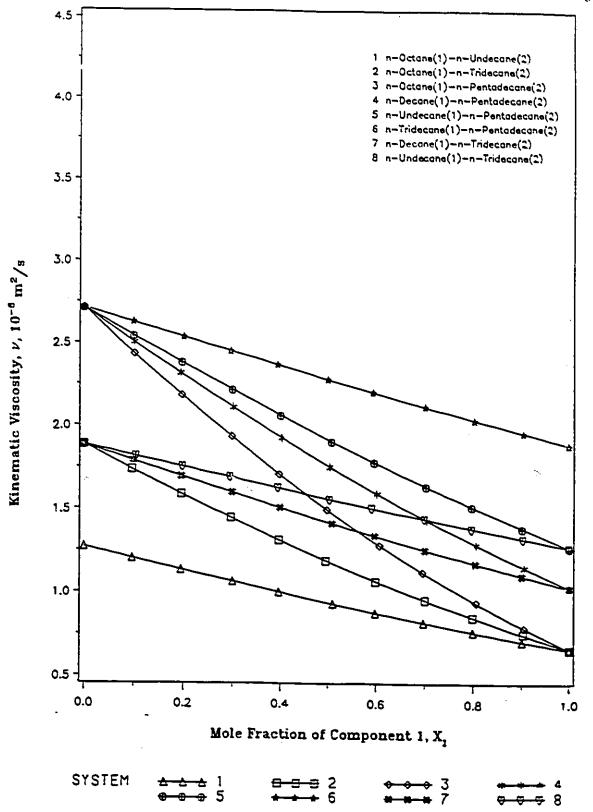



Figure 4.7. Viscosity vs. Composition for Binary n-Alkane Systems at 308.15 K

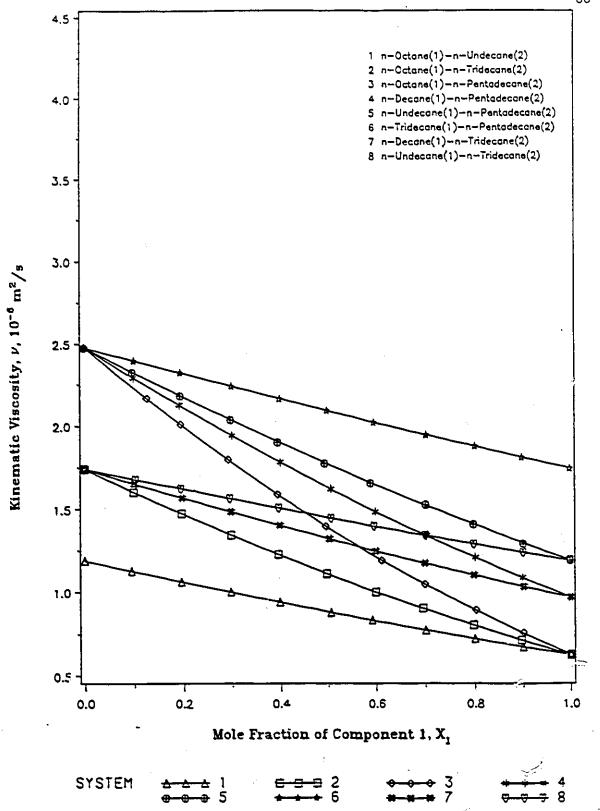



Figure 4.8. Viscosity vs. Composition for Binary n-Alkane Systems at 313.15 K

Table 4.12

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Octane(1)-n-Undecane(2)

| Mole<br>Fraction      | Kinematic<br>Viscosity             | Absolute<br>Viscosity | Excess<br>Viscosity   | $\Delta^{\bullet}G^{E}$ |
|-----------------------|------------------------------------|-----------------------|-----------------------|-------------------------|
| <u>X</u> <sub>1</sub> | 10 <sup>-6</sup> m <sup>2</sup> /s | 10 <sup>-3</sup> Pa.s | 10 <sup>-3</sup> Pa.s | J/mol                   |
|                       |                                    | Temperature = 293.1:  | 5 K                   |                         |
| 0.0000                | 1.5869                             | 1.1744                | 0.0000                | 00000                   |
| 0.1007                | 1.4910                             | 1.0991                | -0.0118               | 34,4653                 |
| 0.2018                | 1.3901                             | 1.0204                | -0.0266               | 48.9088                 |
| 0.2995                | 1.3044                             | 0.9534                | -0.0320               | 70.9063                 |
| 0.4108                | 1.2073                             | 0.8779                | -0.0373               | 81.6587                 |
| 0.5076                | 1.1255                             | 0.8145                | -0.0396               | 81.7471                 |
| 0.5964                | 1.0550                             | 0.7599                | -0.0381               | 79.0857                 |
| 0.6995                | 0.9777                             | 0.7001                | -0.0328               | 71.0946                 |
| 0.7954                | 0.9090                             | 0.6472                | -0.0252               | 56.0375                 |
| 0.8978                | 0.8387                             | 0.5933                | -0.0145               | 30.4807                 |
| 1.0000                | 0.7734                             | 0.5433                | 0.0000                | 0.0000                  |
| ·                     |                                    | Temperature = 298.13  | 5 K                   |                         |
| 0.0000                | 1.4679                             | 1.0809                | 0.0000                | 0.0000                  |
| 0.0992                | 1.3803                             | 1.0124                | -0.0119               | 28.9612                 |
| J.2059                | 1.2890                             | 0.9412                | -0.0223               | 52.4521                 |
| 0.2978                | 1.2141                             | 0.8829                | -0.0281               | 68.5674                 |
| 0.3916                | 1.1402                             | 0.8255                | -0.0320               | 78.9547                 |
| 0.5019                | 1.0616                             | 0.7644                | -0.0302               | 94.6327                 |
| 0.5959                | 0.9901                             | 0.7093                | -0.0317               | 83.7418                 |
| 0.7154                | 0.9098                             | 0.6474                | -0.0255               | 76.6877                 |
| 0.8041                | 0.8511                             | 0.6023                | -0.0199               | 59.2225                 |
| 0.9011                | 0.7905                             | 0.5559                | -0.0110               | 35.1805                 |
| 1.0000                | 0.7309                             | 0.5105                | 0.0000                | 0.0000                  |

Table 4.12 (cont'd)

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Octane(1)-n-Undecane(2)

| Mole<br>Fraction | Kinematic<br>Viscosity             | Absolute<br>Viscosity | Excess<br>Viscosity   | Δ <sup>*</sup> G <sup>E</sup> |
|------------------|------------------------------------|-----------------------|-----------------------|-------------------------------|
| X <sub>1</sub>   | 10 <sup>-6</sup> m <sup>2</sup> /s | 10 <sup>-3</sup> Pa.s | 10 <sup>-3</sup> Pa.s | J/mol                         |
|                  |                                    | Temperature = 308.    | 15 K                  |                               |
| 0.0000           | 1.2719                             | 0.9273                | 0.0000                | 0.0000                        |
| 0.0969           | 1.2019                             | 0.8729                | -0.0086               | 28.6132                       |
| 0.1954           | 1.1339                             | 0.8200                | -0.0149               | 54.0281                       |
| 0.3001           | 1.0643                             | 0.7660                | -0.0194               | 75.1502                       |
| 0.3970           | 1.0022                             | 0.7179                | -0.0217               | 88.7324                       |
| 0.5094           | 0.9337                             | 0.6650                | -0.0215               | 99.0137                       |
| 0.5981           | 0.8782                             | 0.6224                | -0.0221               | 91.0535                       |
| 0.6968           | 0.8212                             | 0.5787                | -0.0192               | 82.5191                       |
| 0.7992           | 0.7639                             | 0.5349                | -0.0146               | 63.8305                       |
| 0.8998           | 0.7101                             | 0.4939                | -0.0080               | 37.3399                       |
| 1.0000           | 0.6583                             | 0.4545                | 0.0000                | 0.0000                        |
|                  |                                    | Temperature = 313.    | 15 K                  |                               |
| 0.0000           | 1.1899                             | 0.8633                | 0.0000                | 0.0000                        |
| 0.0953           | 1.1269                             | 0.8144                | -0.0076               | 27.9552                       |
| 0.1962           | 1.0635                             | 0.7652                | -0.0130               | 54.7831                       |
| 0.2979           | 1.0019                             | 0.7175                | -0.0166               | 76.2628                       |
| 0.3995           | 0.9428                             | 0.6718                | -0.0183               | 92.3124                       |
| 0.5061           | 0.8810                             | 0.6243                | -0.0195               | 96.0964                       |
| 0.5914           | 0.8349                             | 0.5888                | -0.0180               | 98.3707                       |
| 0.7010           | 0.7742                             | 0.5424                | -0.0168               | 81.7004                       |
| 0.8001           | 0.7236                             | 0.5038                | -0.0125               | 65.3852                       |
| 0.8999           | 0.6735                             | 0.4658                | -0.0073               | 36.3218                       |
| 1.0000           | 0.6258                             | 0.4296                | 0.0000                | 0.0000                        |

Table 4.13

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Octane(1)-n-Tridecane(2)

| Mole                    | Kinematic                                       | Absolute                               | Excess                             | ∇,Q <sub>E</sub> |
|-------------------------|-------------------------------------------------|----------------------------------------|------------------------------------|------------------|
| Fraction x <sub>1</sub> | Viscosity<br>10 <sup>-6</sup> m <sup>2</sup> /s | Viscosity<br>10 <sup>-3</sup> Pa.s     | Viscosity<br>10 <sup>-3</sup> Pa.s | ******           |
|                         | 10 1175                                         | ······································ |                                    | J/mol            |
| 2 2222                  |                                                 | Temperature = 29                       | 3.15 K                             |                  |
| 0.0000                  | 2.4638                                          | 1.8631                                 | 0.0000                             | 0.0000           |
| 0.1023                  | 2.2282                                          | 1.6767                                 | -0.0513                            | 66.5319          |
| 0.1966                  | 2.0280                                          | 1.5187                                 | -0.0850                            | 120.6914         |
| 0.3011                  | 1.8193                                          | 1.3544                                 | -0.1113                            | 166,0044         |
| 0.3813                  | 1.6692                                          | 1.2367                                 | -0.1231                            | 190.7308         |
| 0.4993                  | 1.4935                                          | 1.0760                                 | -0.1281                            | 209.6532         |
| 0.6002                  | 1.3010                                          | 0.9495                                 | -0.1214                            | 207.1383         |
| 0.6949                  | 1.1597                                          | 0.8400                                 | -0.1060                            | 188.3204         |
| 0.7976                  | 1.0178                                          | 0.7304                                 | -0.0800                            | 147.0541         |
| 0.9047                  | 0.8829                                          | 0.6269                                 | -0.0422                            | 81.0164          |
| 1.0000                  | 0.7734                                          | 0.5433                                 | 0.0000                             | 0.0000           |
|                         |                                                 | Temperature = 29                       | 8.15 K                             |                  |
| 0.0000                  | 2.2427                                          | 1.6879                                 | 0.0000                             | 0.0000           |
| 0.1246                  | 1.9946                                          | 1.4921                                 | -0.0491                            | 83.1579          |
| 0.1988                  | 1.8564                                          | 1.3833                                 | -0.0705                            | 124.8681         |
| 0.3028                  | 1.6727                                          | 1.2391                                 | -0.0923                            | 170.5899         |
| 0.3936                  | 1.5229                                          | 1.1218                                 | -0.1026                            | 199.4045         |
| 0.4971 -                | 1.3619                                          | 0.9963                                 | -0.1064                            | 215.3638         |
| 0.5956                  | 1.2186                                          | 0.8850                                 | -0.1016                            | 213.1251         |
| 0.6970                  | 1.0845                                          | 0.7811                                 | -0.0861                            | 199.4471         |
| 0.7898                  | 0.9689                                          | 0.6921                                 | -0.0659                            | 166.0345         |
| 0.8988                  | 0.8392                                          | 0.5929                                 | -0.0367                            | 90.5990          |
| 1.0000                  | 0.7309                                          | 0.5105                                 | 0.0000                             | 0.0000           |

Table 4.13 (cont'd)

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Octane(1)-n-Tridecane(2)

| Mole<br>Fraction | Kinematic<br>Viscosity             | Absolute<br>Viscosity | Excess<br>Viscosity   | $\Delta^{\bullet}G^{E}$ |
|------------------|------------------------------------|-----------------------|-----------------------|-------------------------|
| x <sub>1</sub>   | 10 <sup>-6</sup> m <sup>2</sup> /s | 10 <sup>-3</sup> Pa.s | 10 <sup>-3</sup> Pa.s | J/mol                   |
|                  |                                    | Temperature = 30      | 98.15 K               |                         |
| 0.0000           | 1.8856                             | 1.4059                | 0.0000                | 0.0000                  |
| 0.0968           | 1.7350                             | 1.2874                | -0.0264               | 70.3199                 |
| 0.1961           | 1.5884                             | 1.1724                | -0.0469               | 131.1525                |
| 0.2969           | 1.4459                             | 1.0610                | -0.0624               | 177.3084                |
| 0.3966           | 1.3133                             | 0.9577                | -0.0709               | 209.9969                |
| 0.4942           | 1.1903                             | 0.8621                | -0.0736               | 226.3498                |
| 0.5983           | 1.0672                             | 0.7669                | -0.0698               | 226.9019                |
| 0.7006           | 0.9553                             | 0.6806                | -0.0588               | 211.9393                |
| 0.7985           | 0.8532                             | 0.6024                | -0.0439               | 172.8641                |
| 0.9019           | 0.7556                             | 0.5278                | -0.0202               | 118.2215                |
| 1.0000           | 0.6583                             | 0.4546                | 0.0000                | 0.0000                  |
|                  |                                    | Temperature = 31      | 3.15 K                |                         |
| 0.0000           | 1.7410                             | 1.2920                | 0.0000                | 0.0000                  |
| 0.0995           | 1.6033                             | 1.1840                | -0.0222               | 74.0878                 |
| 0.1969           | 1.4739                             | 1.0827                | -0.0395               | 133.6083                |
| 0.2992           | 1.3443                             | 0.9816                | -0.0524               | 182.1096                |
| 0.3967           | 1.2273                             | 0.8906                | -0.0593               | 214.9710                |
| 0.4967           | 1.1134                             | 0.8023                | -0.0614               | 233.0765                |
| 0.5993           | 1.0028                             | 0.7169                | -0.0583               | <sup>233,4713</sup>     |
| 0.6949           | 0.9069                             | 0.6431                | -0.0496               | 219.9543                |
| c <b>0.7971</b>  | 0.8058                             | 0.5659                | -0.0386               | 170.4821                |
| 0.8964           | 0.7143                             | 0.4964                | -0.0225               | 99.8355                 |
| 1.0000           | 0.6258                             | 0.4296                | 0.0000                | 0.0000                  |

Table 4.14

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Octane(1)-n-Pentadecane(2)

| Mole<br>Fraction | Kinematic<br>Viscosity                | Absolute                           | Excess                             | $\Delta^*G^E$ |
|------------------|---------------------------------------|------------------------------------|------------------------------------|---------------|
| X <sub>1</sub>   | 10 <sup>-6</sup> m <sup>2</sup> /s    | Viscosity<br>10 <sup>-3</sup> Pa.s | Viscosity<br>10 <sup>-3</sup> Pa.s | J/mol         |
| <u>`</u>         | · · · · · · · · · · · · · · · · · · · | Temperature = 29                   |                                    | 371101        |
| 0.0000           | 3.6979                                | 2.8413                             | 0.0000                             | 0.0000        |
| 0.1032           | 3.2552                                | 2.4880                             | -0.1161                            | 119,6919      |
| 0.2005           | 2.8738                                | 2.1846                             | -0.1959                            | 216.2265      |
| 0.2833           | 2.5750                                | 1.9475                             | -0.2428                            | 284.5688      |
| 0.3826           | 2.2409                                | 1.6833                             | -0.2787                            | 342,4358      |
| 0.5038           | 1.8610                                | 1.3850                             | -0.2986                            | 363.3479      |
| 0.6008           | 1.6085                                | 1.1871                             | -0.2736                            | 377.7588      |
| 0.7150           | 1.3199                                | 0.9631                             | -0.2352                            | 319.0088      |
| 0.7994           | 1.1456                                | 0.8279                             | -0.1764                            | 276.9753      |
| 0.8985           | 0.9507                                | 0.6782                             | -0.0983                            | 166.3823      |
| 1.0000           | 0.7734                                | 0.5433                             | 0.0000                             | 0.0000        |
|                  |                                       | Temperature = 29                   | 8.15 K                             |               |
| 0.0000           | 3.3136                                | 2.5343                             | 0.0000                             | 0.0000        |
| 0.1114           | 2.9072                                | 2.2107                             | -0.0981                            | 133.3051      |
| 0.1978           | 2.6134                                | 1.9775                             | -0.1565                            | 219.1627      |
| 0.2962           | 2.3036                                | 1.7324                             | -0.2025                            | 299.0771      |
| 0.3951           | 2.0160                                | 1.5057                             | -0.2290                            | 356.2383      |
| 0.4927           | 1.7543                                | 1.3004                             | -0.2367                            | 386.5989      |
| 0.5978           | 1.4971                                | 1.0996                             | -0.2248                            | 387.9487      |
| 0.7035           | 1.2638                                | 0.9185                             | -0.1920                            | 353.3140      |
| 0.8008           | 1.0694                                | 0.7686                             | -0.1450                            | 282.4937      |
| 0.9026           | 0.8872                                | 0.6291                             | -0.0784                            | 164.9750      |
| 1.0000           | 0.7309                                | 0.5104                             | 0.0000                             | 0.0000        |

Table 4.14 (cont'd)

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Octane(1)-n-Pentadecane(2)

| Mole<br>Fraction | Kinematic<br>Viscosity             | Absolute<br>Viscosity | Excess<br>Viscosity   | Δ˙G <sup>E</sup> |
|------------------|------------------------------------|-----------------------|-----------------------|------------------|
| X <sub>1</sub>   | 10 <sup>-6</sup> m <sup>2</sup> /s | 10 <sup>-3</sup> Pa.s | 10 <sup>-3</sup> Pa.s | J/mol            |
|                  |                                    | Temperature = 30      | 8.15 K                |                  |
| 0.0000           | 2.7124                             | 2.0559                | 0.0000                | 0.0000           |
| 0.1015           | 2.4322                             | 1.8337                | -0.0597               | 127.0478         |
| 0.1973           | 2.1811                             | 1.6353                | -0.1047               | 225.7658         |
| 0.2986           | 1.9332                             | 1.4401                | -0.1377               | 309.6018         |
| 0.3975           | 1.7077                             | 1.2631                | -0.1562               | 368.1792         |
| 0.4973           | 1.4956                             | 1.0975                | -0.1621               | 400.0127         |
| 0.6065           | 1.2817                             | 0.9313                | -0.1534               | 400.6040         |
| 0.6944           | 1.1233                             | 0.8089                | -0.1351               | 372.3059         |
| 0.8053           | 0.9424                             | 0.6698                | -0.0965               | 299.8799         |
| 0.9040           | 0.7907                             | 0.5545                | -0.0539               | 171.8228         |
| 1.0000           | 0.6583                             | 0.4546                | 0.0000                | 0.0000           |
|                  |                                    | Temperature =         | 313.15 K              |                  |
| 0.0000           | 2.4757                             | 1.8680                | 0.0000                | 0.0000           |
| 0.1274           | 2.1672                             | 1.6241                | -0.0606               | 157.4021         |
| 0.1958           | 2.0098                             | 1.5000                | -0.0863               | 227.4998         |
| 0.2936           | 1.7974                             | 1.3331                | -0.1126               | 312.0928         |
| 0.3949           | 1.5896                             | 1.1704                | -0.1296               | 373.5203         |
| 0.4956           | 1.3967                             | 1.0201                | -0.1350               | 407.2629         |
| 0.6113           | 1.1921                             | 0.8614                | -0.1273               | 408.8123         |
| 0.6990           | 1.0493                             | 0.7514                | -0.1112               | 380.8423         |
| 0.8018           | 0.8949                             | 0.6329                | -0.0817               | 311.0525         |
| 0.9006           | 0.7599                             | 0.5301                | -0.0424               | 202.5082         |
| 1.0000           | 0.6258                             | 0.4296                | 0.0000                | 0.0000           |

Table 4.15

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Decane(1)-n-Pentadecane(2)

| Mole<br>Fraction | Kinematic<br>Viscosity                         | Absolute                           | Excess                             | Δ*G <sup>E</sup> |
|------------------|------------------------------------------------|------------------------------------|------------------------------------|------------------|
| X <sub>1</sub>   | 10 <sup>-6</sup> m <sup>2</sup> /s             | Viscosity<br>10 <sup>-3</sup> Pa.s | Viscosity<br>10 <sup>-3</sup> Pa.s | J/mol            |
| <del></del>      | · <u>""                                   </u> | Temperature = 29                   |                                    | 3711(7           |
| 0.0000           | 3.6979                                         | 2.8411                             | 0.0000                             | 0.0000           |
| 0.0958           | 3.3867                                         | 2.5930                             | -0.0639                            | 52.6719          |
| 0.1989           | 3.0790                                         | 2.3481                             | -0.1106                            | 104.8836         |
| 0.2947           | 2.8056                                         | 2.1312                             | -0.1433                            | 139.5744         |
| 0.3865           | 2.5567                                         | 1.9343                             | -0.1636                            | 160.7630         |
| 0.4839           | 2.3122                                         | 1.7413                             | -0.1694                            | 175.2693         |
| 0.5780           | 2.0907                                         | 1.5670                             | -0.1628                            | 177.1496         |
| 0.6958           | 1.8228                                         | 1.3573                             | -0.1459                            | 147.4353         |
| 0.7980           | 1.6222                                         | 1.2005                             | -0.1062                            | 122.4323         |
| 0.9126           | 1.4071                                         | 1.0334                             | -0.0530                            | 60.2131          |
| 1.0000           | 1.2583                                         | 0.9183                             | 0.0000                             | 0.0000           |
|                  |                                                | Temperature = 29                   | 8.15 K                             | ···              |
| 0.0000           | 3.3136                                         | 2.5343                             | 0.0000                             | 0.0000           |
| 0.0973           | 3.0466                                         | 2.3220                             | -0.0485                            | 58.2415          |
| 0.1999           | 2.7764                                         | 2.1076                             | -0.0901                            | 106.0720         |
| 0.2983           | 2.5343                                         | 1.9159                             | -0.1161                            | 143.5033         |
| 0.3925           | 2.3145                                         | 1.7425                             | -0.1309                            | 167.9470         |
| 0.4933           | 2.0913                                         | 1.5668                             | -0.1369                            | 179.8614         |
| 0.6025           | 1.8664                                         | 1.3904                             | -0.1294                            | 178.6227         |
| 0.7033           | 1.6720                                         | 1.2385                             | -0.1116                            | 160.7179         |
| 0.8079           | 1.4831                                         | 1.0915                             | -0.0825                            | 122.9532         |
| 0.9014           | 1.3258                                         | 0.9696                             | -0.0469                            | 72.2716          |
| 1.0000           | 1.1715                                         | 0.8505                             | 0.0000                             | 0.0000           |

Table 4.15 (cont'd)

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Decane(1)-n-Pentadecane(2)

| Mole<br>Fraction | Kinematic<br>Viscosity             | Absolute<br>Viscosity | Excess<br>Viscosity   | Δ'G <sup>E</sup> |
|------------------|------------------------------------|-----------------------|-----------------------|------------------|
| <u> </u>         | 10 <sup>-6</sup> m <sup>-</sup> /s | 10 <sup>-3</sup> Pa.s | 10 <sup>-3</sup> Pa.s | J/mol            |
|                  |                                    | Temperature = 30      | 8.15 K                |                  |
| 0.0000           | 2.7124                             | 2.0559                | 0.0000                | 0.0000           |
| 0.1015           | 2.5017                             | 1.8891                | -0.0333               | 61.3433          |
| 0.1942           | 2.3139                             | 1.7409                | -0.0596               | 103.9613         |
| 0.3018           | 2.1093                             | 1.5797                | -0.0792               | 144.8617         |
| 0.4028           | 1.9252                             | 1.4351                | -0.0910               | 168.2878         |
| 0.5033           | 1.7522                             | 1.2997                | -0.0942               | 179.4218         |
| 0.6010           | 1.5943                             | 1.1764                | -0.0890               | 178.9185         |
| 0.7040           | 1.4343                             | 1.0521                | -0.0778               | 158.0065         |
| 0.8051           | 1.2880                             | 0.9388                | -0.0582               | 122,9040         |
| 0.9044           | 1.1524                             | 0.8342                | -0.0322               | 68.9955          |
| 1.0000           | 1.0306                             | 0.7406                | 0.0000                | 0.0000           |
| *1               |                                    | Temperature = 31      | 3.15 K                | ··               |
| 0.0000           | 2.4757                             | 1.8682                | 0.0000                | 0.0000           |
| 0.0999           | 2.2918                             | 1.7229                | -0.0278               | 60.0494          |
| 0.1932           | 2.1265                             | 1.5927                | -0.0483               | 106.1795         |
| 0.3013           | 1.9424                             | 1.4482                | -0.0658               | 146.1495         |
| 0.4013           | 1.7807                             | 1.3215                | -0.0749               | 171.2866         |
| 0.5059           | 1.6200                             | 1.1959                | -0.0774               | 183.9942         |
| 0.5986           | 1.4840                             | 1.0901                | -0.0743               | 181.4641         |
| 0.7028           | 1.3387                             | 0.9773                | -0.0645               | 162.4201         |
| 0.8009           | 1.2102                             | 0.8780                | -0.0485               | 129.5562         |
| 0.8988           | 1.0876                             | 0.7836                | -0.0278               | 75.8249          |
| 1.0000           | 0.9685                             | 0.6924                | 0.0000                | 0.0000           |

Table 4.16

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Undecane(1)-n-Pentadecane(2)

| Mole<br>Fraction | Kinematic<br>Viscosity             | Absolute                           | Excess                             | $\Delta^{\bullet}G^{\mathbb{R}}$ |
|------------------|------------------------------------|------------------------------------|------------------------------------|----------------------------------|
| x <sub>1</sub>   | 10 <sup>-6</sup> m <sup>2</sup> /s | Viscosity<br>10 <sup>-3</sup> Pa.s | Viscosity<br>10 <sup>-3</sup> Pa.s | J/mol                            |
|                  | <u></u>                            | Temperature = 29                   |                                    | 574101                           |
| 0.0000           | 3.6979                             | 2.8409                             | 0.0000                             | 0,000,0                          |
| 0.1013           | 3.4282                             | 2.6262                             | -0.0459                            | 33.9191                          |
| 0.2015           | 3.1790                             | 2.4279                             | -0.0772                            | 64.2913                          |
| 0.3004           | 2.9445                             | 2.2418                             | -0.0985                            | 87.1884                          |
| 0.4036           | 2.7150                             | 2.0599                             | -0.1084                            | 106,0899                         |
| 0.5046           | 2.5083                             | 1.8962                             | -0.1038                            | 122.9530                         |
| 0.6010           | 2.2975                             | 1.7305                             | -0.1087                            | 107.1521                         |
| 0.7004           | 2.1041                             | 1.5785                             | -0.0951                            | 94.8145                          |
| 0.8000           | 1.9213                             | 1.4352                             | -0.0724                            | 73.1493                          |
| 0.8974           | 1.7536                             | 1.3042                             | -0.0411                            | 43.3568                          |
| 1.0000           | 1.5869                             | 1.1743                             | 0.0000                             | 0.0000                           |
|                  |                                    | Temperature = 29                   | 8.15 K                             |                                  |
| 0.0000           | 3.3136                             | 2.5343                             | 0.0000                             | 0.0000                           |
| 0.1026           | 3.0828                             | 2.3509                             | -0.0343                            | 38.0129                          |
| 0.2004           | 2.8711                             | 2.1829                             | -0.0601                            | 66.6975                          |
| 0.2994           | 2.6667                             | 2.0211                             | -0.0781                            | 89.2972                          |
| 0.3983           | 2.4696                             | 1.8655                             | -0.0900                            | 102.4267                         |
| 0.5079           | 2.2661                             | 1.7050                             | -0.0911                            | 112.2657                         |
| 0.5973           | 2.1047                             | 1.5781                             | -0.0881                            | 108.9702                         |
| 0.7022           | 1.9357                             | 1.4452                             | -0.0685                            | 110.0293                         |
| 0.7975           | 1.7752                             | 1.3200                             | -0.0553                            | 82.4534                          |
| 0.9019           | 1.6103                             | 1.1916                             | -0.0319                            | 42.7202                          |
| 1.0000           | 1.4679                             | 1.0809                             | 0.0000                             | 0.0000                           |

Table 4.16 (cont'd)

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Undecane(1)-n-Pentadecane(2)

| Mole<br>Fraction | Kinematic                                       | Absolute                           | Excess                             | $\Delta^{\bullet}G^{E}$ |
|------------------|-------------------------------------------------|------------------------------------|------------------------------------|-------------------------|
| x <sub>i</sub>   | Viscosity<br>10 <sup>-6</sup> m <sup>2</sup> /s | Viscosity<br>10 <sup>-3</sup> Pa.s | Viscosity<br>10 <sup>-3</sup> Pa.s | J/mol                   |
| <u>-</u>         |                                                 | Temperature = 30                   | 98.15 K                            |                         |
| 0.0000           | 2.7124                                          | 2.0559                             | 0.0000                             | 0.0000                  |
| 0.1005           | 2.5412                                          | 1.9204                             | -0.0220                            | 38.0027                 |
| 0.1976           | 2.3797                                          | 1.7930                             | -0.0399                            | 66.0710                 |
| 0.3007           | 2.2167                                          | 1.6646                             | -0.0519                            | 90.6552                 |
| 0.4013           | 2.0612                                          | 1.5424                             | -0.0606                            | 103.5191                |
| 0.5074           | 1.9066                                          | 1.4211                             | -0.0621                            | 111,4035                |
| 0.5964           | 1.7809                                          | 1.3228                             | -0.0600                            | 108.7745                |
| 0.7036           | 1.6362                                          | 1.2100                             | -0.0518                            | 96.3065                 |
| 0.7972           | 1.5154                                          | 1.1159                             | -0.0402                            | 75.9663                 |
| 0.9014           | 1.3864                                          | 1.0159                             | -0.0226                            | 41.1635                 |
| 1.0000           | 1.2719                                          | 0.9273                             | 0.0000                             | 0.0000                  |
|                  |                                                 | Temperature = 31                   | 3.15 K                             |                         |
| 0.0000           | 2.4757                                          | 1.8681                             | 0.0000                             | 0.0000                  |
| 0.0989           | 2.3266                                          | 1.7504                             | -0.0183                            | 36.9855                 |
| 0.1959           | 2.1843                                          | 1.6384                             | -0.0329                            | 65.7502                 |
| 0.2996           | 2.0378                                          | 1.5232                             | -0.0438                            | 89.3006                 |
| 0.3974           | 1.9035                                          | 1.4180                             | -0.0508                            | 102.3707                |
| 0.4945           | 1.7769                                          | 1.3189                             | -0.0523                            | 110.2465                |
| 0.5890           | 1.6573                                          | 1.2256                             | -0.0507                            | 108.7046                |
| 0.7019           | 1.5275                                          | 1.1242                             | -0.0386                            | 108.2701                |
| 0.7983           | 1.4083                                          | 1.0320                             | -0.0339                            | 74.9146                 |
| 0.9013           | 1.2931                                          | 0.9429                             | -0.0196                            | 40.1046                 |
| 1.0000           | 1.1899                                          | 0.8633                             | 0.0000                             | 0.0000                  |

Table 4.17

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Tridecane(1)-n-Pentadecane(2)

| Mole<br>Fraction | Kinematic                                       | Absolute                           | Excess                             | $\Delta$ G $^{\mathrm{E}}$ |
|------------------|-------------------------------------------------|------------------------------------|------------------------------------|----------------------------|
| x <sub>1</sub>   | Viscosity<br>10 <sup>-6</sup> m <sup>2</sup> /s | Viscosity<br>10 <sup>-3</sup> Pa.s | Viscosity<br>10 <sup>-3</sup> Pa.s | J/mol                      |
|                  |                                                 | Temperature = 29                   |                                    | 3711101                    |
| 0.0000           | 3.6979                                          | 2.8409                             | 0.0000                             | 0,000                      |
| 0.1030           | 3.5558                                          | 2.7278                             | -0.0123                            | 8.6070                     |
| 0.2020           | 3.4179                                          | 2.6183                             | -9.0251                            | 11.8402                    |
| 0.3023           | 3.2910                                          | 2.5173                             | -0.0279                            | 20.1172                    |
| 0.3967           | 3.1662                                          | 2.4184                             | -0.0345                            | 20.0521                    |
| 0.5078           | 3.0301                                          | 2.3104                             | -0.0339                            | 23.2388                    |
| 0.5972           | 2.9200                                          | 2.2233                             | -0.0336                            | 21.3281                    |
| 0.7003           | 2.8039                                          | 2.1313                             | -0.0247                            | 23.7757                    |
| 0.8019           | 2.6852                                          | 2.0375                             | -0.0192                            | i7.6673                    |
| 0.9018           | 2.5723                                          | 1.9484                             | -0.0105                            | 10.0964                    |
| 1.0000           | 2.4638                                          | 1.8629                             | 0.0000                             | 0.0000                     |
|                  |                                                 | Temperature = 29                   | 8.15 K                             | · ·                        |
| 0.0000           | 3.3136                                          | 2.5343                             | 0.0000                             | 0.0000                     |
| 0.1000           | 3.1939                                          | 2,4393                             | -0.0104                            | 7.7160                     |
| 0.2001           | 3.0794                                          | 2.3485                             | -0.0165                            | 15.7891                    |
| 0.2975           | 2.9679                                          | 2.2601                             | -0.0224                            | 19.8456                    |
| 0.3984           | 2.8562                                          | 2.1717                             | -0.0254                            | 23.1860                    |
| 0.5000           | 2.7464 -                                        | 2.0849                             | -0.0262                            | 24.6351                    |
| 0.5985           | 2.6430                                          | 2.0031                             | -0.0246                            | 24.6327                    |
| 0.7037           | 2.5331                                          | 1.9166                             | -0.0221                            | 20.4059                    |
| 0.8004           | 2.4362                                          | 1.8401                             | -0.0167                            | 16.0940                    |
| 0.8983           | 2.3454                                          | 1.7684                             | -0.0055                            | 14.9426                    |
| 1.0000           | 2.2427                                          | 1.6879                             | 0.0000                             | 0.0000                     |

\_\_\_\_

Table 4.17 (cont'd)

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Tridecane(1)-n-Pentadecane(2)

| Mole<br>Fraction      | Kinematic<br>Viscosity             | Absolute<br>Viscosity | Excess<br>Viscosity   | Δ*G <sup>E</sup> |
|-----------------------|------------------------------------|-----------------------|-----------------------|------------------|
| <b>x</b> <sub>1</sub> | 10 <sup>-6</sup> m <sup>2</sup> /s | 10 <sup>-3</sup> Pa.s | 10 <sup>-3</sup> Pa.s | J/mol            |
|                       | ·                                  | Temperature = 29      | 8.15 K                | _                |
| 0.0000                | 2.7124                             | 2.0560                | 0.0000                | 0.0000           |
| 0.1004                | 2.6242                             | 1.9862                | -0.0046               | 11.0631          |
| 0.2017                | 2.5339                             | 1.9150                | -0.0099               | 17.5036          |
| 0.2979                | 2.4497                             | 1.8486                | -0.0137               | 21.7793          |
| 0.3944                | 2.3687                             | 1.7848                | -0.0149               | 26.3287          |
| 0.4994                | 2.2800                             | 1.7151                | -0.0163               | 26.7050          |
| 0.5935                | 2.2037                             | 1.6551                | -0.0151               | 26.9859          |
| 0.7015                | 2.1172                             | 1.5872                | -0.0128               | 24.2299          |
| 0.8030                | 2.0367                             | 1.5241                | -0.0099               | 18.1657          |
| 0.9036                | 1.9595                             | 1.4637                | -0.0050               | 11.0208          |
| 1.0000                | 1.8856                             | 1.4060                | 0.0000                | 0.0000           |
|                       |                                    | Temperature = 31      | 3.15 K                |                  |
| 0.0000                | 2.4757                             | 1.8680                | 0.0000                | 0.0000           |
| 0:1024                | 2.3948                             | 1.8043                | -0.0047               | 9.6734           |
| 0.1963                | 2.3204                             | 1.7458                | -0.0092               | 15.2675          |
| 0.3028                | 2.2383                             | 1.6812                | -0.0124               | 20.5039          |
| 0.4019                | 2.1637                             | 1.6227                | -0.0138               | 23.8956          |
| 0.4997                | 2.0916                             | 1.5660                | -0.0142               | 25.6138          |
| 0.5970                | 2.0198                             | 1.5098                | -0.0143               | 23.6647          |
| 0.7040                | 1.9446                             | 1.4510                | -0.0115               | 22.1700          |
| 0.8017                | 1.8756                             | 1.3970                | -0.0092               | 16.3897          |
| 0.8985                | 1.8095                             | 1.3454                | -0.0050               | 9.9090           |
| 1.0000                | 1.7410                             | 1.2920                | 0.0000                | 0.0000           |

\_

Table 4.18

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Decane(1)-n-Tridecane(2)

| Mole<br>Fraction | Kinematic                                       | Absolute                           | Excess                            | $\Delta^*G^{\mathrm{E}}$ |
|------------------|-------------------------------------------------|------------------------------------|-----------------------------------|--------------------------|
| X <sub>1</sub>   | Viscosity<br>10 <sup>-6</sup> m <sup>2</sup> /s | Viscosity<br>10 <sup>-3</sup> Pa.s | Viscosity<br>10 <sup>3</sup> Pa.s | J/mol                    |
| ·                |                                                 | Temperature =                      | ····                              | Jitten                   |
| 0.0000           | 2.4638                                          | 1.8629                             | 0,0000                            | 0,000,0                  |
| 0.0987           | 2.3210                                          | 1.7501                             | -0.0196                           | 22,9110                  |
| 0.1990           | 2.1819                                          | 1.6404                             | -0.0345                           | 42.1194                  |
| 0.2995           | 2.0445                                          | 1.5323                             | -0.0477                           | 52.3604                  |
| 0.3997           | 1.9178                                          | 1.4327                             | -0.0526                           | 63,2314                  |
| 0.4986           | 1.7965                                          | 1.3375                             | -0.0544                           | 67.1014                  |
| 0.5974           | 1.6808                                          | 1.2470                             | -0.0515                           | 66.2251                  |
| 0.7015           | 1.5626                                          | 1.1548                             | -0.0454                           | 56.7302                  |
| 0.7973           | 1.4602                                          | 1.0749                             | -0.0347                           | 44.6320                  |
| 0.9014           | 1.3537                                          | 0.9922                             | -0.0191                           | 24,4301                  |
| 1.0000           | 1.2583                                          | 0.9182                             | 0.0000                            | 0.0000                   |
|                  |                                                 | Temperature =                      | 298.15K                           |                          |
| 0.0000           | 2.2427                                          | 1.6879                             | 0.0000                            | 0.0000                   |
| 0.0939           | 2.1236                                          | 1.5940                             | -0.0152                           | 22,4933                  |
| 0.1985           | 1.9948                                          | 1.4927                             | -0.0290                           | 41.7243                  |
| 0.2931           | 1.8837                                          | 1.4054                             | -0.0371                           | 56.0028                  |
| 0.3988           | 1.7638                                          | 1.3114                             | -0.0426                           | 66.0757                  |
| 0.5031           | 1.6496                                          | 1.2220                             | -0.0446                           | 69.2435                  |
| 0.5995           | 1.5500                                          | 1.1442                             | -0.0416                           | 69.5650                  |
| 0.7013           | 1.4507                                          | 1.0668                             | -0.0339                           | 67.0544                  |
| 0.8001           | 1.3517                                          | 0.9901                             | -0.0278                           | 46.8778                  |
| 0.9011           | 1.2587                                          | 0.9179                             | -0.0154                           | 26.7111                  |
| 1.0000           | 1.1715                                          | 0.8505                             | 0.0000                            | 0.0000                   |

Table 4.18 (cont'd)

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Decane(1)-n-Tridecane(2)

| Mole<br>Fraction | Kinematic<br>Viscosity             | Absolute<br>Viscosity | Excess<br>Viscosity   | Δ <sup>*</sup> G <sup>E</sup> |
|------------------|------------------------------------|-----------------------|-----------------------|-------------------------------|
| x <sub>1</sub>   | 10 <sup>-6</sup> m <sup>2</sup> /s | 10 <sup>-3</sup> Pa.s | 10 <sup>-3</sup> Pa.s | J/mol                         |
|                  |                                    | Temperature = 30      | 8.15 K                |                               |
| 0.0000           | 1.8856                             | 1.4059                | 0.0000                | 0.0000                        |
| 0.0991           | 1.7880                             | 1.3293                | -0.0106               | 24.3741                       |
| 0.1956           | 1.6936                             | 1.2555                | -0.0203               | 40.4240                       |
| 0.2991           | 1.5979                             | 1.180%                | -0.0263               | 56.1464                       |
| 0.3993           | 1.5082                             | 1.1105                | -0.0297               | 66.0539                       |
| 0.5073           | 1.4138                             | 1.0371                | -0.0313               | 68.8514                       |
| 0.5962           | 1.3397                             | 0.9795                | -0.0298               | 68.0500                       |
| 0.6991           | 1.2561                             | 0.9147                | -0.0261               | 59.9164                       |
| 0.8037           | 1.1744                             | 0.8515                | -0.0197               | 45.1053                       |
| 0.8994           | 1.1029                             | 0.7963                | -0.0112               | 26.3457                       |
| 1.0000           | 1.0306                             | 0.7406                | 0.0000                | 0.0000                        |
|                  |                                    | Temperature = 31      | 3.15 K                |                               |
| 0.0000           | 1.7410                             | 1.2920                | 0.0000                | 0.0000                        |
| 0.1001           | 1.6520                             | 1.2223                | -0.0097               | 23.5728                       |
| 0.1979           | 1.5678                             | 1.1565                | -0.0168               | 42.5076                       |
| 0.2988           | 1.4837                             | 1.0909                | -0.0219               | 57.5242                       |
| 0.3996           | 1.4017                             | 1.0271                | -0.0253               | 66.3163                       |
| 0.5025           | 1.3212                             | 0.9645                | -0.0261               | 70.6887                       |
| 0.5994           | 1.2480                             | 0.9078                | -0.0248               | 69.7427                       |
| 0.6995           | 1.1743                             | 0.8508                | -0.0217               | 61.7899                       |
| 0.7980           | 1.1048                             | 0.7971                | -0.0163               | 49.1940                       |
| 0.9013           | 1.0341                             | 0.7427                | -0.0088               | 28.2601                       |
| 1.0000           | 0.9685                             | 0.6923                | 0.0000                | 0.0000                        |

Table 4.19

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Undecane(1)-n-Tridecane(2)

| Mole<br>Fraction<br>x <sub>1</sub> | Kinematic<br>Viscosity<br>10 <sup>-6</sup> m <sup>2</sup> /s | Absolute<br>Viscosity<br>10 <sup>-3</sup> Pa.s | Excess<br>Viscosity<br>10 <sup>-3</sup> Pa,s | Δ*G <sup>E</sup> |
|------------------------------------|--------------------------------------------------------------|------------------------------------------------|----------------------------------------------|------------------|
|                                    |                                                              | Temperature = 29                               |                                              | J/11101          |
| 0.0000                             | 2.4638                                                       | 1.8631                                         | 0.0000                                       | 0.0000           |
| 0.1389                             | 2.3260                                                       | 1.7543                                         | -0.0131                                      | 12,4724          |
| 0.2035                             | 2.2639                                                       | 1.7054                                         | -0.0176                                      | 17.1745          |
| 0.3044                             | 2.1703                                                       | 1.6316                                         | -0.0219                                      | 24.1174          |
| 0.4076                             | 2.0762                                                       | 1.5575                                         | -0.0249                                      | 27.7875          |
| 0.4924                             | 2.0008                                                       | 1.4983                                         | -0.0257                                      | 28.9078          |
| 0.5897                             | 1.9178                                                       | 1.4331                                         | -0.0239                                      | 29.7911          |
| 0.7108                             | 1.8180                                                       | 1.3548                                         | -0.0187                                      | 28.2593          |
| 0.8027                             | 1.7403                                                       | 1.2941                                         | -0.0161                                      | 18.7900          |
| 0.8980                             | 1.6663                                                       | 1.2362                                         | -0.0084                                      | 12.8103          |
| 1.0000                             | 1.5869                                                       | 1.1744                                         | 0.0000                                       | 0.0000           |
|                                    |                                                              | Temperature = 29                               | 8.15 K                                       |                  |
| 0.0000                             | 2.2427                                                       | 1.6877                                         | 0.0000                                       | 0.0000           |
| 0.1023                             | 2.1552                                                       | 1.6187                                         | -0.0069                                      | 11.8034          |
| 0.2031                             | 2.0666                                                       | 1.5491                                         | -0.0153                                      | 15.9711          |
| 0.2991                             | 1.9875                                                       | 1.4870                                         | -0.0192                                      | 21.7227          |
| 0.3981                             | 1.9064                                                       | 1.4234                                         | -0.0227                                      | 23.5406          |
| 0.4981                             | 1.8277                                                       | 1.3617                                         | -0.0237                                      | 24.5405          |
| 0.5976                             | 1.7540                                                       | 1.3039                                         | -0.0211                                      | 26.8218          |
| 0.7028                             | 1.6771                                                       | 1.2437                                         | -0.0174                                      | 25.2261          |
| 0.8000                             | 1.6066                                                       | 1.1888                                         | -0.0133                                      | 19,2641 ==       |
| 0.9004                             | 1.5359                                                       | 1.1336                                         | -0.0075                                      | 10.7730          |
| 1.0000                             | 1.4679                                                       | 1.0807                                         | 0.0000                                       | 0.0000           |

Table 4.19 (cont'd)

Viscosity, Excess Viscosity and Excess Energy of Viscous Flow of the System n-Undecane(1)-n-Tridecane(2)

| Mole<br>Fraction | Kinematic<br>Viscosity             | Absolute<br>Viscosity | Excess<br>Viscosity   | Δ˙G <sup>E</sup> |
|------------------|------------------------------------|-----------------------|-----------------------|------------------|
| $\mathbf{x}_1$   | 10 <sup>-6</sup> m <sup>2</sup> /s | 10 <sup>-3</sup> Pa.s | 10 <sup>-3</sup> Pa.s | J/mol            |
|                  |                                    | Temperature = 30      | 8.15 K                |                  |
| 0.0000           | 1.8856                             | 1.4060                | 0.0000                | 0.0000           |
| 0.1051           | 1.8138                             | 1.3497                | -0.0060               | 9.7022           |
| 0.1986           | 1.7519                             | 1.3012                | -0.0097               | 17.2886          |
| 0.2953           | 1.6892                             | 1.2522                | -0.0125               | 23.1867          |
| 0.3954           | 1.6267                             | 1.2033                | -0.0135               | 28.7158          |
| 0.5039           | 1.5587                             | 1.1502                | -0.0146               | 29.2435          |
| 0.5908           | 1.5059                             | 1,1091                | -0.0142               | 28.4079          |
| 0.6994           | 1.4420                             | 1.0594                | -0.0119               | 25.8523          |
| 0.7972           | 1.3841                             | 1.0144                | -0.0100               | 17.8481          |
| 0.9027           | 1.3244                             | 0.9681                | -0.0058               | 8.6831           |
| 1.0000           | 1.2719                             | 0.9274                | 0.0000                | 0.0000           |
|                  |                                    | Temperature = 31      | 3.15 K                |                  |
| 0.0000           | 1.7410                             | 1.2921                | 0.0000                | 0.0000           |
| 0.1040           | 1.6777                             | 1.2425                | -0.0050               | 9.7926           |
| 0.1964           | 1.6220                             | 1.1991                | -0.0088               | 15.6945          |
| 0.2972           | 1.5636                             | 1.1535                | -0.0112               | 21.9366          |
| 0.3982           | 1.5069                             | ÷ 1.1093              | -0.0121               | 27.0067          |
| 0.5078           | 1.4455                             | 1.0615                | -0.0129               | 27.7690          |
| 0.5968           | 1.3965                             | 1.0234                | -0.0128               | 25.9241          |
| 0.7018           | 1.3404                             | 0.9799                | -0.0113               | 22.1849          |
| 0.7985           | 1.2900                             | 0.9408                | -0.0089               | 16.5313          |
| 0.9009           | 1.2378                             | 0.9004                | -0.0054               | 7.8660           |
| 1.0000           | 1.1899                             | ~ 0.8633              | 0.0000                | 0.0000           |

**Table 4.20** 

Densities and Viscosities of Ternary System n-Octane(1)-n-Undecane(2)-n-Tridecane(3)

| ξ,            | 10-0               |          | 111    | Fraction | Fraction | VISCOSILY              | Viscosity |         |
|---------------|--------------------|----------|--------|----------|----------|------------------------|-----------|---------|
|               | Tomostation of the | 10" Fa.s | Kg/L   | ×        | x,       | 10° m'/s               | IO" Pa.s  | kg/L    |
|               | remperature = 73   | 73,13 N  |        |          | Iemper   | temperature = 298.15 K | K         |         |
| 1.0000 0.0000 | 0 0.7734           | 0.5433   | 0.7024 | 1.0000   | 0.0000   | 0.7309                 | 0.5104    | 0.6983  |
| 0.0000 1.0000 | 0 1.5869           | 1.1744   | 0.7400 | 0.0000   | 1.0000   | 1.4679                 | 1.0807    | 0.7362  |
| 0.0000 0.0000 | 2.4638             | 1.8631   | 0.7562 | 0.0000   | 0.0000   | 2.2427                 | 1.6877    | 0.7525  |
| 0.1043 0.1018 | 2.1314             | 1.6005   | 0.7509 | 0,1053   | 0.1002   | 1.9533                 | 1.4594    | 0.7472  |
| 0.1087 0.7938 | 8 1.5495           | 1.1448   | 0.7388 | 0.1052   | 0.7940   | 1.4407                 | 1.0592    | 0.7352  |
| 0.2058 0.2046 | 6 1.8339           | 1.3664   | 0.7451 | 0.2045   | 0.2002   | 1.6939                 | 1.2560    | 0.7415  |
| 0.2096 0.3973 | 3 1.6725           | 1.2402   | 0.7415 | 0.2062   | 0.3907   | 1.5556                 | 1.1480    | 0.7380  |
| 0.2055 0.5981 | 1.5269             | 1.1267   | 0.7379 | 0.1979   | 0.6038   | 1.4234                 | 1.0453    | 0.7343  |
| 0.3124 0.2921 | 1.5684             | 1.1585   | 0.7386 | 0.2998   | 0.2950   | 1.4715                 | 1.0821    | 0.7354  |
| 0.3067 0.3977 | 7 1.5008           | 1.1059   | 0.7369 | 0.3058   | 0.3990   | 1.3928                 | 1.0210    | 0.7331  |
| 0.4072 0.1998 | 8 1.4735           | 1.0841   | 0.7358 | 0.3981   | 0,1976   | 1.3828                 | 1.0128    | 0.7325  |
| 0.3990 0.3049 | 9 1.4124           | 1.0368   | 0.7340 | 0.4031   | 0.3008   | 1.3095                 | 0.9561    | 0.7301  |
| 0.4007 0.4024 | 1.3426             | 0.9826   | 0.7319 | 0.4020   | 0.4011   | 1.2479                 | 0.9084    | 0.77.80 |
| 0.6048 0.2009 | 9 1.1648           | 0.8443   | 0.7248 | 0.5925   | 0.2097   | 1.1013                 | 0.7945    | 0.7215  |
| 0.7999 0.1002 | 0.9586             | 0.6851   | 0.7147 | 0.7978   | 0.1025   | 0.9046                 | 0.6430    | 0.7108  |

Table 4.20 (cont'd)

Densities and Viscosities of Ternary System n-Octane(1)-n-Undecane(2)-n-Tridecane(3)

| Mole<br>Fraction | Mole ({<br>Fraction | Kinematic<br>Viscosity | Absolute<br>Viscosity | Density | Mole<br>Fraction | Mole<br>Fraction | Kinematic<br>Viscosity | Absolute              | Density |
|------------------|---------------------|------------------------|-----------------------|---------|------------------|------------------|------------------------|-----------------------|---------|
| x <sup>1</sup>   | X <sub>2</sub>      | 10° m²/s               | 10 <sup>-3</sup> Pa.s | kg/L    | χı               | X <sub>2</sub>   | 10° m²/s               | 10 <sup>-3</sup> Pa.s | kg/L    |
|                  | Tempera             | Temperature = 308.15 K | K                     |         |                  | Tempera          | Temperature = 313,15 K |                       | :       |
| 1.0000           | 0.0000              | 0.6583                 | 0.4545                | 0.6905  | 1,0000           | 0.0000           | 0.6258                 | 0.4295                | 0.6864  |
| 0.0000           | 1.0000              | 1.2719                 | 0.9273                | 0.7291  | 0.0000           | 1.0000           | 1,1899                 | 0.8632                | 0.7254  |
| 0,000            | 0.0000              | 1.8856                 | 1.4058                | 0.7455  | 0.0000           | 0.0000           | 1.7410                 | 1.2919                | 0.7420  |
| 0.1062           | 0.0985              | 1.6564                 | 1.2259                | 0.7401  | 0.0964           | 0.0975           | 1.5502                 | 1.1425                | 0.7370  |
| 0.1048           | 0.7952              | 1.2489                 | 0.9091                | 0.7279  | 0.1026           | 0.8003           | 1.1688                 | 0.8466                | 0.7243  |
| 0,2060           | 0.1951              | 1.4543                 | 1.0679                | 0.7343  | 0.1981           | 0.1988           | 1.3634                 | 8966'0                | 0.7311  |
| 0.2060           | 0.3903              | 1.3422                 | 6086'0                | 0.7308  | 0.1993           | 0.3896           | 1.2619                 | 0.9181                | 0.7275  |
| 0.2033           | 0.6018              | 1.2294                 | 0.8937                | 0.7269  | 0,2063           | 0.5973           | 1.1509                 | 0.8323                | 0.7232  |
| 0.3072           | 0.2969              | 1.2636                 | 0.9196                | 0.7278  | 0,2961           | 0.2976           | 1.1955                 | 0.8663                | 0.7246  |
| 0.3030           | 0.3960              | 1.2155                 | 0.8824                | 0.7260  | 0.3028           | 0.4014           | 1.1366                 | 0.8209                | 0.7222  |
| 0,3973           | 0.1979              | 1.2077                 | 0.8759                | 0.7252  | 0.4045           | 0.1996           | 1.1204                 | 0.8080                | 0.7212  |
| 0.3922           | 0.3072              | 1,1533                 | 0.8341                | 0.7232  | 0.4032           | 0.2947           | 1.0774                 | 0.7749                | 0.7192  |
| 0.4007           | 0.4006              | 1.0962                 | 0.7901                | 0.7207  | 0.4016           | 0.4002           | 1.0297                 | 0.7382                | 0.7169  |
| 6909'0           | 0.1954              | 0.9648                 | 0.6883                | 0.7135  | 0.6117           | 0.1972           | 0.9056                 | 0.6424                | 0.7093  |
| 0.7962           | 0.1023              | 0.8132                 | 0.5719                | 0.7033  | 0.8004           | 0,1002           | 0.7619                 | 0.5327                | 0.6992  |

**Table 4.21** 

Densities and Viscosities of Ternary System n-Octane(1)-n-Undecane(2)-n-Pentadecane(3)

| Fraction | Fraction       | Kinematic<br>Viscosity | Absolute<br>Viscosity | Density | Mole<br>Fraction | Mole<br>Fraction | Kinematic<br>Viscosity      | Absolute<br>Viscosity | Density |
|----------|----------------|------------------------|-----------------------|---------|------------------|------------------|-----------------------------|-----------------------|---------|
| x,       | X <sub>2</sub> | 10° m²/s               | 10 <sup>-3</sup> Pa.s | kg/L    | X <sub>1</sub>   | X2               | $10^6  \text{m}^2/\text{s}$ | 10 <sup>-3</sup> Pa.s | kg/L    |
|          | Tempe          | Temperature = 293.15 K | K                     |         |                  | Тетрек           | Temperature = 298.15 K      | <b>y</b>              |         |
| 1,0000   | 00000          | 0.7734                 | 0.5433                | 0.7025  | 1,0000           | 0.0000           | 0.7309                      | 0.5104                | 0.6983  |
| 0.0000   | 1.0000         | 1.5869                 | 1,1745                | 0.7401  | 00000            | 1.0000           | 1,4679                      | 1.0807                | 0.7362  |
| 00000    | 0.0000         | 3.6979                 | 2.8414                | 0.7684  | 0.0000           | 0.0000           | 3,3136                      | 2.5339                | 0.7647  |
| 0,1038   | 0.1022         | 3.0058                 | 2,2900                | 0.7619  | 0,1108           | 0.0995           | 2.7039                      | 2.0494                | 0.7580  |
| 0,1091   | 0.7909         | 1.6329                 | 1.2096                | 0.7408  | 0.1096           | 0.7909           | 1.5097                      | 1.1124                | 0.7369  |
| 0.2082   | 0.2010         | 2.4104                 | 1.8183                | 0.7544  | 0.2131           | 0.2016           | 2.1856                      | 1.6402                | 0.7504  |
| 0.2019   | 0.3999         | 2.0444                 | 1.5306                | 0.7487  | 0.2068           | 0.3952           | 1.8717                      | 1.3939                | 0.7447  |
| 0.2111   | 0.5953         | 1.6758                 | 1.2424                | 0.7414  | 0.2087           | 0.5964           | 1.5557                      | 1.1475                | 0.7376  |
| 0.3068   | 0.2995         | 1.9143                 | 1.4279                | 0.7459  | 0.3025           | 0.2971           | 1.7775                      | 1.3196                | 0.7424  |
| 0.3029   | 0.3988         | 1.7509                 | 1.3003                | 0.7426  | 0,3083           | 0.3947           | 1.6122                      | 1.1908                | 0.7386  |
| 0.4042   | 0.1993         | 1.8103                 | 1.3459                | 0.7435  | 0.4039           | 0.2016           | 1.6674                      | 1.2331                | 0.7395  |
| 0.4007   | 0.3008         | 1,6485                 | 1.2198                | 0.7400  | 0.4023           | 0.2988           | 1.5272                      | 1.1241                | 0.7361  |
| 0.4051   | 0.3987         | 1.4877                 | 1.0948                | 0.7359  | 0.4027           | 0.4017           | 1.3826                      | 1.0121                | 0.7320  |
| 0.6019   | 0.2054         | 1.3013                 | 0.9492                | 0.7294  | 0.5903           | 0.2059           | 1.2367                      | 0,8983                | 0.7264  |
| 0.8005   | 0.1016         | 1.0172                 | 0.7297                | 0.7174  | 0.8034           | 0.1012           | 0.9554                      | 0.6813                | 0.7131  |

Table 4.21 (cont'd)

Densities and Viscosities of Ternary System n-Octane(1)-n-Undecane(2)-n-Pentadecane(3)

| Mole<br>Fraction | Mole           | Kinematic<br>Viscosity | Absolute<br>Viscosity | Density | Mole   | Mole           | Kinematic                      | Absolute              | Density |
|------------------|----------------|------------------------|-----------------------|---------|--------|----------------|--------------------------------|-----------------------|---------|
| χ                | X <sub>2</sub> | 10° m²/s               | 10 <sup>-3</sup> Pa.s | kg/L    | χl     | X <sub>2</sub> | $10^6 \mathrm{m}^2/\mathrm{s}$ | 10 <sup>-3</sup> Pa.s | kg/L    |
|                  | Tempe          | Temperature = 308,15 K | K                     |         |        | Tempera        | Temperature = 313.15 K         | ~                     |         |
| 1.0000           | 0.0000         | 0.6583                 | 0,4545                | 0.6905  | 1.0000 | 0.0000         | 0.6258                         | 0.4296                | 0.6864  |
| 0.0000           | 1.0000         | 1,2719                 | 0.9273                | 0.7291  | 0.0000 | 1.0000         | 1.1899                         | 0.8632                | 0.7254  |
| 0.0000           | 00000          | 2.7124                 | 2.0557                | 0.7579  | 0.0000 | 00000          | 2.4757                         | 1.8679                | 0.7545  |
| 0.1208           | 0.0986         | 2.2240                 | 1.6693                | 0.7506  | 0.1018 | 0.0951         | 2.0918                         | 1.5649                | 0.7481  |
| 0.1086           | 0.7899         | 1.3078                 | 0.9545                | 0.7298  | 0.1030 | 0.7965         | 1.2251                         | 0.8898                | 0.7263  |
| 0.2077           | 0,2035         | 1.8547                 | 1.3791                | 0.7436  | 0.2004 | 0.1964         | 1.7406                         | 1.2892                | 0.7406  |
| 0.2102           | 0.3937         | 1.5907                 | 1.1732                | 0.7375  | 0.1992 | 0.3971         | 1.4970                         | 1.0995                | 0.7345  |
| 0.2025           | 0.6004         | 1.3505                 | 6986'0                | 0.7308  | 0.2014 | 0.5952         | 1,2688                         | 0.9229                | 0.7274  |
| 03060            | 0.3009         | 1.5088                 | 1.1089                | 0.7350  | 0.2998 | 0.2988         | 1,4198                         | 1.0391                | 0.7319  |
| 0.3043           | 0.4040         | 1.3862                 | 1.0139                | 0.7314  | 0.2939 | 0.4029         | 1,3138                         | 0.9572                | 0.7285  |
| 0.3956           | 0,2061         | 1.4455                 | 1,0593                | 0,7328  | 0.4021 | 0.1961         | 1.3473                         | 0.9824                | 0.7291  |
| 0,3983           | 0.3050         | 1.3218                 | 0.9635                | 0.7290  | 0.4011 | 0.2953         | 1.2411                         | 0.9004                | 0.7255  |
| 0.4032           | 0.3977         | 1.2068                 | 0.8748                | 0.7249  | 0.3947 | 0.4066         | 1.1374                         | 0.8206                | 0.7215  |
| 0.6003           | 0.2049         | 1.0700                 | 0.7685                | 0.7183  | 0.6050 | 0.1965         | 1.0072                         | 0.7197                | 0.7145  |
| 6961.0           | 0.1060         | 0.8564                 | 0.6045                | 0.7059  | 0,8015 | 7.0000         | 0.8070                         | 0.5665                | 0.7020  |
|                  |                |                        |                       |         |        |                |                                |                       |         |

Table 4.22

Densities and Viscosities of Ternary System n-Undecane(1)-n-Tridecane(2)-n-Pentadecane(3)

| Mole<br>Fraction | Mole<br>Fraction | Kinematic<br>Viscosity | Absolute<br>Viscosity | Density | Mole<br>Fraction | Mole<br>Fraction | Kinematic<br>Viscosity             | Absolute<br>Viscosity | Density |
|------------------|------------------|------------------------|-----------------------|---------|------------------|------------------|------------------------------------|-----------------------|---------|
| χ                | X <sub>2</sub>   | 10° m²/s               | 10 <sup>-3</sup> Pa.s | kg/L    | χl               | X <sub>2</sub>   | 10 <sup>-6</sup> m <sup>2</sup> /s | 10 <sup>-3</sup> Pa.s | kg/L    |
|                  | Тетре            | Temperature = 293.15 K | K                     |         |                  | Tempera          | Temperature = 298.15 }             | ×                     |         |
| 1.0000           | 0.0000           | 1.5869                 | 1.1743                | 0.7400  | 1.0000           | 0.0000           | 1.4679                             | 1.0807                | 0.7362  |
| 0.0000           | 1.0000           | 2.4638                 | 1.8631                | 0.7562  | 0.0000           | 1.0000           | 2.2427                             | 1.6877                | 0.7525  |
| 0.0000           | 0.0000           | 3.6979                 | 2.8409                | 0.7682  | 0.0000           | 0.0000           | 3.3136                             | 2.5339                | 0.7647  |
| 0.1007           | 0.1011           | 3.2812                 | 2.5100                | 0.7650  | 0.1023           | 0.0994           | 2.9716                             | 2.2622                | 0.7613  |
| 0.1031           | 0.7990           | 2.4643                 | 1,8633                | 0.7561  | 0.0985           | 0.8009           | 2.2530                             | 1.6954                | 0.7525  |
| 0.2021           | 0,2018           | 2.9155                 | 2.2196                | 0.7613  | 0.2025           | 0.2008           | 2.6506                             | 2.0083                | 0.7577  |
| 0.2019           | 0,3946           | 2.7002                 | 2.0491                | 0.7589  | 0.2038           | 0,3949           | 2.4489                             | 1.8492                | 0.7551  |
| 0.1997           | 0,6040           | 2.4707                 | 1.8682                | 0.7561  | 0.1998           | 0.6008           | 2.2579                             | 1.6990                | 0.7525  |
| 0.3002           | 0.2943           | 2.5981                 | 1.9683                | 0.7576  | 0.3023           | 0.2957           | 2.3609                             | 1.7797                | 0.7538  |
| 0.3019           | 0.4009           | 2.4803                 | 1.8753                | 0.7561  | 0,3033           | 0.3999           | 2.2593                             | 1.6998                | 0.7524  |
| 0.4029           | 0.2007           | 2.4780                 | 1.8735                | 0.7560  | 0.3984           | 0.2034           | 2.2712                             | 1.7090                | 0.7525  |
| 0.4006           | 0.3009           | 2.3802                 | 1.7964                | 0.7547  | 0.3991           | 0.3013           | 2.1783                             | 1.6360                | 0.7511  |
| 0.4001           | 0.4047           | 2.2746                 | 1.7133                | 0.7532  | 0.4024           | 0.4038           | 2.0786                             | 1.5578                | 0.7495  |
| 0,6052           | 0.1973           | 2.0862                 | 1.5650                | 0.7502  | 0.6028           | 0.1982           | 1.9195                             | 1.4329                | 0.7465  |
| 0.7995           | 0.0998           | 1.8296                 | 1.3638                | 0.7454  | 0.8027           | 0.0970           | 1.6843                             | 1.2490                | 0.7416  |
|                  |                  |                        |                       | -       |                  |                  |                                    |                       |         |

Table 4.22 (cont'd)

Densities and Viscosities of Ternary System n-Undecane(1)-n-Tridecane(2)-n-Pentadecane(3)

| Mole   | Mole           | Kinematic<br>Viscosity | Absolute  | Density | Mole           | Mole    | Kinematic              | Absolute              | Density |
|--------|----------------|------------------------|-----------|---------|----------------|---------|------------------------|-----------------------|---------|
| X      | X <sub>2</sub> | 10° m²/s               | 10.3 Pa.s | kg/L    | X <sub>1</sub> | X2      | 10.6 m <sup>2</sup> /s | 10 <sup>-3</sup> Pa.s | kg/L    |
|        | Tempe          | Temperature = 308.15 K | K         |         |                | Tempera | Temperature = 313.15 K | <b>&gt;</b>           |         |
| 1,0000 | 00000          | 1.2719                 | 0.9274    | 0.7291  | 1.0000         | 0.0000  | 1.1899                 | 0.8632                | 0.7254  |
| 0.0000 | 1.0000         | 1.8856                 | 1.4058    | 0.7456  | 0.0000         | 1.0000  | 1.7410                 | 1.2920                | 0.7421  |
| 0.0000 | 0.0000         | 2.7124                 | ('2.0559  | 0.7580  | 0.0000         | 0.0000  | 2.4757                 | 1.8680                | 0.7545  |
| 0.1030 | 0.1021         | 2.4487                 | 1.8474    | 0.7545  | 0.0957         | 0.0937  | 2.2586                 | 1.6969                | 0.7513  |
| 9660'0 | 09080          | 1.8887                 | 1.4081    | 0.7455  | 0.1027         | 0.7995  | 1.7425                 | 1.2930                | 0.7420  |
| 0.2019 | 0,1981         | 2.2101                 | 1,6596    | 0.7509  | 0.2012         | 0.2007  | 2.0273                 | 1.5153                | 0.7474  |
| 0.2021 | 0.3938         | 2.0534                 | 1.5367    | 0.7484  | 0.1956         | 0.3991  | 1.8950                 | 1.4117                | 0.7449  |
| 0.2005 | 0.6019         | 1.8958                 | 1,4135    | 0.7456  | 0.1959         | 0.6024  | 1.7563                 | 1.3034                | 0.7421  |
| 0.3030 | 0.2983         | 1.9764                 | 1.4762    | 0.7469  | 0.2922         | 0.2978  | 1.8366                 | 1.3659                | 0.7437  |
| 0,2996 | 0.4028         | 1.9021                 | 1.4182    | 0.7456  | 0.2987         | 0.3959  | 1.7620                 | 1.3077                | 0.7422  |
| 0.3968 | 0.2000         | 1.9147                 | 1.4277    | 0.7457  | 0.3950         | 0.2005  | 1.7696                 | 1.3134                | 0.7422  |
| 0.3732 | 0.3142         | 1.8636                 | 1.3879    | 0.7447  | 0.3973         | 0.2983  | 1.7017                 | 1.2605                | 0.7407  |
| 0.4028 | 0,3998         | 1.7602                 | 1.3071    | 0.7426  | 0.3945         | 0.4067  | 1.6345                 | 1.2082                | 0.7392  |
| 0.6018 | 0.1983         | 1.6337                 | 1.2082    | 0.7396  | 0.6018         | 0.1966  | 1.5163                 | 1.1160                | 0.7360  |
| 0.8003 | 0.1013         | 1.4444                 | 1.0610    | 0.7345  | 0.7985         | 0.1008  | 1.3478                 | 0.9853                | 0.7310  |
|        |                |                        |           |         |                |         |                        |                       |         |

**Table 4.23** 

Densities and Viscosities of Ternary System n-Octane(1)-n-Tridecane(2)-n-Pentadecane(3)

| Mole<br>Fraction | Mole<br>Fraction | Kinematic<br>Viscosity | Absolute<br>Viscosity | Density | Mole<br>Fraction | Mole<br>Fraction | Kinematic<br>Viscosity             | Absolute<br>Viscosity | Density |
|------------------|------------------|------------------------|-----------------------|---------|------------------|------------------|------------------------------------|-----------------------|---------|
| ₹                | Tempe            | .15                    | K K                   | NW L    | y.               | Tempera          | 2 10 m/s<br>Temperature = 298.15 K | 10 Fa.s               | Kg/L    |
| 1.0000           | 0.0000           | 0.7734                 | 0.5432                | 0.7024  | 00001            | 0.0000           | 0.7309                             | 0.5104                | 0.6983  |
| 0.0000           | 1.0000           | 2.4638                 | 1.8630                | 0.7561  | 0.0000           | 1,0000           | 2,2427                             | 1.6877                | 0.7525  |
| 0.0000           | 0.0000           | 3.6979                 | 2.8410                | 0.7683  | 0.0000           | 0.0000           | 3.3136                             | 2.5339                | 0.7647  |
| 0.1051           | 0.0982           | 3,1046                 | 2.3689                | 0.7630  | 0.1047           | 0.0988           | 2.8230                             | 2.1438                | 0.7594  |
| 0.1085           | 0961.0           | 2.3131                 | 1.7433                | 0.7537  | 0.1049           | 0.7983           | 2.1213                             | 1.5913                | 0.7501  |
| 0.2089           | 0.2018           | 2.6031                 | 90261                 | 0.7570  | 0,2045           | 0.1972           | 2.3941                             | 1.8043                | 0.7537  |
| 0.2045           | 0.3899           | 2.4192                 | 1.8256                | 0.7547  | 0.2084           | 0.3920           | 2.1950                             | 1.6479                | 0.7507  |
| 0.2074           | 0.5969           | 2.1921                 | 1.6472                | 0.7514  | 0.2074           | 0.5969           | 2,0119                             | 1.5043                | 0.7477  |
| 0.3024           | 0.2956           | 2.1955                 | 1.6488                | 0.7510  | 0.2986           | 0.2974           | 2.0221                             | 1.5114                | 0.7474  |
| 0.3061           | 0.4020           | 2.0779                 | 1.5566                | 0.7491  | 0.3028           | 0.4005           | 1,9194                             | 1.4310                | 0.7456  |
| 0.4009           | 0.1998           | 1,9797                 | 1.4788                | 0.7470  | 0.4034           | 0.1996           | 1.8217                             | 1.3537                | 0.7431  |
| 0.4030           | 0.2986           | 1.8904                 | 1.4087                | 0.7452  | 0.4092           | 0.2977           | 1.7251                             | 1.2784                | 0.7411  |
| 0.4037           | 0.4025           | 1.7943                 | 1.3338                | 0.7433  | 0.3998           | 0.4065           | 1.6673                             | 1.2334                | 0.7397  |
| 0.6185           | 0.1931           | 1.4105                 | 1.0336                | 0.7328  | 0.6052           | 0,1990           | 1.3402                             | 0.9781                | 0.7298  |
| 0.8009           | 0.1005           | 1.0752                 | 0.7741                | 0.7200  | 0.8034           | 0.0973           | 1.0072                             | 0.7210                | 0.7159  |

Table 4.23 (cont'd)

Densities and Viscosities of Ternary System n-Octane(1)-n-Tridecane(2)-n-Pentadecane(3)

| TT<br>1,0000 0,0000<br>0,0000 1,0000<br>0,0000 0,0000 | 10 <sup>6</sup> m <sup>2</sup> /s<br>Temperature = 308,15 K | 10 <sup>-3</sup> Pa.s |        |        |         |                        |                       |        |
|-------------------------------------------------------|-------------------------------------------------------------|-----------------------|--------|--------|---------|------------------------|-----------------------|--------|
| 0.000                                                 | Temperature = 308,15                                        |                       | kg/L   | x,     | X2      | 10° m²/s               | 10 <sup>-3</sup> Pa.s | kg/L   |
|                                                       |                                                             | K                     |        |        | Tempera | Temperature = 313,15 K | ~                     |        |
|                                                       |                                                             | 0,4545                | 0.6904 | 00001  | 0.0000  | 0.6258                 | 0.4296                | 0.6865 |
|                                                       | 1,8856                                                      | 1,4058                | 0.7456 | 0.0000 | 1.0000  | 1.7410                 | 1.2919                | 0.7421 |
|                                                       | 2.7124                                                      | 2.0557                | 0.7579 | 00000  | 0.0000  | 2.4757                 | 1.8680                | 0.7545 |
|                                                       | 2.3343                                                      | 1,7565                | 0.7525 | 0.0998 | 0.1140  | 2.1460                 | 1.6076                | 0.7491 |
| 0.1086 0.7972                                         | 1.7849                                                      | 1,3261                | 0.7430 | 0.1048 | 0.7955  | 1.6602                 | 1.2280                | 0.7397 |
| 0.2076 0.1961                                         | 1 2,0020                                                    | 1,4947                | 0.7466 | 0.2059 | 0,2011  | 1.8452                 | 1.3712                | 0.7431 |
| 0,2048 0,3941                                         | 1.8589                                                      | 1,3829                | 0.7439 | 0,2003 | 0.3951  | 1.7269                 | 1.2790                | 0.7407 |
| 0.2113 0.5947                                         | 1,6999                                                      | 1,2589                | 0.7406 | 0,2037 | 0.5988  | 1.5881                 | 1.1710                | 0.7374 |
| 0.3057 0.2932                                         | 1.7030                                                      | 1.2604                | 0,7401 | 0,3116 | 0,3083  | 1.5574                 | 1.1462                | 0.7360 |
| 0.3113 0.3989                                         | 1,6182                                                      | 1.1943                | 0.7381 | 0.2998 | 0.4051  | 1.5212                 | 1.1182                | 0.7351 |
| 0.4065 0.1978                                         | 1.5530                                                      | 1.1428                | 0.7359 | 0.4000 | 0.1977  | 1,4555                 | 1.0664                | 0.7327 |
| 0.4081 0.2967                                         | 1.4838                                                      | 1.0892                | 0.7341 | 0.3978 | 0,3018  | 1,3980                 | 1.0220                | 0.7310 |
| 0.4017 0.4051                                         | 1.4273                                                      | 1,0456                | 0.7326 | 0.3959 | 0,4064  | 1.3403                 | 0.9775                | 0.7293 |
| 0,6080 0,1958                                         | 1.1654                                                      | 0,8419                | 0.7224 | 0.6015 | 0,1995  | 1.1024                 | 0.7927                | 0.7191 |
| 0.8052 0.0976                                         | 0,8940                                                      | 0.6332                | 0.7082 | 0.8047 | 0.0986  | 0.8457                 | 0.5957                | 0.7044 |

Table 4.24

Densities and Viscosities of Ternary System n-Decane(1)-n-Tridecane(2)-n-Pentadecane(3)

|        | Fraction       | Viscosity              | Absolute<br>Viscosity | Density | Mole<br>Fraction | Mole<br>Fraction | Kinematic<br>Viscosity         | Absolute<br>Viscosity | Density |
|--------|----------------|------------------------|-----------------------|---------|------------------|------------------|--------------------------------|-----------------------|---------|
| ×      | X <sub>2</sub> | 10° m²/s               | 10 <sup>-3</sup> Pa.s | kg/L    | χi               | X <sub>2</sub>   | $10^6 \mathrm{m}^2/\mathrm{s}$ | 10 <sup>-3</sup> Pa.s | kg/L    |
|        | Тетре          | Temperature = 293.15 K | K                     |         |                  | Tempera          | Temperature = 298,15 K         |                       |         |
| 1.0000 | 0.0000         | 1,2583                 | 0.9183                | 0.7298  | 1,0000           | 0,000,0          | 1.1715                         | 0.8504                | 0.7259  |
| 0.0000 | 1.0000         | 2.4638                 | 1.8631                | 0.7562  | 0.0000           | 1,0000           | 2.2427                         | 1.6877                | 0.7525  |
| 0.0000 | 0,000          | 3.6979                 | 2.8410                | 0.7683  | 0,0000           | 0.0000           | 3,3136                         | 2.5339                | 0.7647  |
| 0.1002 | 0.1025         | 3,2260                 | 2.4658                | 0.7644  | 0.0814           | 0.1024           | 2.9727                         | 2.2630                | 0.7613  |
| 0.0993 | 0.8003         | 2.4266                 | 1.8333                | 0.7555  | 0.0836           | 0,8163           | 2,2293                         | 1.6767                | 0.7521  |
| 0.1979 | 0.2021         | 2.8208                 | 2.1442                | 0.7602  | 0.1700           | 0.2119           | 2.6252                         | 08861                 | 0.7573  |
| 0.1999 | 0.3961         | 2,5995                 | 1,9694                | 0.7576  | 0.1652           | 0.4175           | 2.4286                         | 1.8330                | 0.7548  |
| 0.2022 | 0,6023         | 2,3810                 | 1.7969                | 0.7547  | 0.1696           | 0,6245           | 2.2190                         | 1.6682                | 0.7518  |
| 0.2970 | 0,3010         | 2,4600                 | 1.8587                | 0.7556  | 0,2514           | 0.3155           | 2.3287                         | 1.7540                | 0.7532  |
| 0.2981 | 0.4012         | 2.3488                 | 1.7712                | 0.7541  | 0,2547           | 0.4316           | 2.2119                         | 1.6622                | 0.7515  |
| 0.3953 | 0.1983         | 2.3147                 | 1.7442                | 0.7535  | 0.3479           | 0.2183           | 2,2060                         | 1.6571                | 0.7512  |
| 0.4052 | 0.2985         | 2,1905                 | 1.6465                | 0.7516  | 0,3490           | 0.3270           | 2.1033                         | 1.5766                | 0.7496  |
| 0.3976 | 900+0          | 2.1145                 | 1,5867                | 0.7504  | 0,3494           | 0.4377           | 2.0022                         | 1.4974                | 0.7479  |
| 0.6004 | 0.2004         | 1.8504                 | 1,3792                | 0.7454  | 0.5485           | 0.2266           | 1.7824                         | 1.3249                | 0.7433  |
| 9008'0 | 0.1023         | 1.5322                 | 1.1308                | 0,7380  | 0.7675           | 0.1177           | 1.4660                         | 1.0782                | 0.7355  |

Table 4.24 (cont'd)

Densities and Viscosities of Ternary System n-Decane(1)-n-Tridecane(2)-n-Pentadecane(3)

| Mole<br>Fraction | Mole<br>Fraction                        | Kinematic<br>Viscosity | Absolute<br>Viscosity | Density | Mole   | Mole           | Kinematic              | Absolute             | Density |
|------------------|-----------------------------------------|------------------------|-----------------------|---------|--------|----------------|------------------------|----------------------|---------|
| χ <sup>1</sup>   | X <sub>2</sub>                          | 10° m²/s               | 10 <sup>-3</sup> Pa.s | kg/L    | Χı     | X <sub>2</sub> | 10° m²/s               | 10 <sup>3</sup> Pa.s | kg/L    |
|                  | Tempe                                   | Temperature = 308,15 K | K                     |         |        | Tempera        | Temperature = 313.15 K | ~                    |         |
| 1,0000           | 0.0000                                  | 1.0306                 | 0.7406                | 0.7186  | 1.0000 | 0.0000         | 0.9685                 | 0.6923               | 0.7148  |
| 0.0000           | 1.0000                                  | 1.8856                 | 1.4058                | 0.7455  | 0.0000 | 1.0000         | 1.7410                 | 1.2919               | 0.7421  |
| 0.0000           | 0.0000                                  | 2.7124                 | 2.0558                | 0.7579  | 0.0000 | 0.0000         | 2.4757                 | 1.8680               | .1.7545 |
| 0.1003           | 0,1008                                  | 2.4165                 | 1.8218                | 0.7539  | 0.1006 | 0.1034         | 2,2124                 | 1.6604               | 0.7505  |
| 9660'0           | 0.7999                                  | 1.8601                 | 1.3855                | 0.7448  | 0.0998 | 0.8028         | 1,7166                 | 1.2726               | 0.7413  |
| 0.2013           | 0.1990                                  | 2.1399                 | 1.6040                | 0.7496  | 0,1981 | 0.2033         | 1.9703                 | 1.4702               | 0.7462  |
| 0.1997           | 0.4042                                  | 1.9808                 | 1.4794                | 0.7469  | 0.1987 | 0.3985         | 1.8330                 | 1.3629               | 0.7435  |
| 0.2000           | 0,6013                                  | 1.8336                 | 1.3644                | 0.7441  | 0.2005 | 0.6017         | 1.6934                 | 1.2541               | 0.7406  |
| 0.3010           | 0.3019                                  | 1.8780                 | 1.3986                | 0.7447  | 0.2941 | 0.2992         | 1.7479                 | 1.2961               | 0.7415  |
| 0.2998           | 0.4028                                  | 1.8068                 | 1.3431                | 0.7433  | 0,3010 | 0.4011         | 1.6715                 | 1.2366               | 0.7398  |
| 0.4008           | 0.2012                                  | 1.7816                 | 1.3230                | 0.7426  | 0.3971 | 0.1948         | 1.6588                 | 1.2264               | 0.7393  |
| 0.4006           | 0.3003                                  | 1.7105                 | 1.2676                | 0.7411  | 0.3995 | 0.3033         | 1.5849                 | 1,1690               | 0.7376  |
| 0.4008           | 0.3996                                  | 1.6417                 | 1.2141                | 0.7395  | 0.4001 | 0.4007         | 1.5229                 | 1.1209               | 0.7360  |
| 0.6014           | 0.2009                                  | 1.4595                 | 1.0720                | 0.7345  | 0.6018 | 0.1979         | 1.3605                 | 0.9944               | 0.7309  |
| 0.8038           | 0.0978                                  | 1.2314                 | 0.8952                | 0.7270  | 0.8038 | 0.1000         | 1.1517                 | 0.8330               | 0.7233  |
|                  | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |                        |                       |         |        |                |                        |                      |         |

#### CHAPTER 5

#### **DISCUSSION OF RESULTS**

#### 5.1 Density Data

# 5.1.1 Accuracy and precision of the density measurements

The DMA 60 density meter, in combination with DMA 602 remote cells, provides a system for fluid density measurement with a very high accuracy. Since the samples are kept in the closed glass sample tube during the measurement, the evaporation of the liquid can be avoided.

There are two error sources in density measurements, one is owing to the temperature fluctuation in the thermostat control of the instrument and the other, the thermal expansion of the sample itself. Usually, a possible maximum error of  $\pm 1$  in the fifth decimal place of the density meter readings appeared and such an error would result in an average error of  $\pm 1.1 \times 10^{-4}$  kg/L in density (refer to Appendix C for error analysis of density measurements). In order to check the accuracy of experiments in this work, the experimental values of densities of the pure components were compared with their corresponding literature values. The comparison results are listed in Table 5.1. It is obvious that there is close agreement between the experimental density values of the pure components obtained in this study and those reported in the literature.

For n-tridecane and n-pentadecane at 298.15 and 308.15 K, the density values were

Table 5.

. Comparison of Experimental Values with Literature Values of the Pure Component Properties

|               | Density               | Density, kg/L       | Kinematic Viscosity, 10-6 m²/s | ity, 10° m²/s       | Absolute Viscosity, 10 <sup>-3</sup> Pa.s | aty, 10 <sup>-3</sup> Pa.s |
|---------------|-----------------------|---------------------|--------------------------------|---------------------|-------------------------------------------|----------------------------|
| Compound      | Experimental<br>Value | Literature<br>Value | Experimental<br>Value          | Literature<br>Value | Experimental<br>Value                     | Literature<br>Value*       |
|               |                       |                     | Temperature = 293,15K          | 15K                 |                                           |                            |
| n-Octane      | 0.7025                | 0.70267             | 0.7734                         | 0.7758              | 0.5433                                    | 0.5450                     |
| n-Decane      | 0.7298                | 0.73012             | 1.2583                         | 1.268               | 0.9183                                    | 0.925                      |
| n-Undecane    | 0.7401                | 0.7402              | 1.5869                         | 1.601               | 1.1744                                    | 1.185                      |
| n-Tridecane   | 0,7562                | 0.7561              | 2.4638                         | 2,486               | 1.8631                                    | 1.880                      |
| n-Pentadecane | 0.7684                | 0.76838             | 3.6679                         | 3.726               | 2.8413                                    | 2.863                      |
|               |                       |                     | Temperature = 298.15K          | 15K                 |                                           |                            |
| n-Octane      | 0,6985                | 0.69862             | 0.7309                         | 0.7352              | 0.5105                                    | 0.5136                     |
| n-Decane      | 0.7260                | 0.72635             | 1.1715                         | 1.182               | 0.8505                                    | 0.8588                     |
| n-Undecane    | 0.7364                | 0.7365              | 1.4679                         | 1.483               | 1.0809                                    | 1.092                      |
| n-Tridecane   | 0.7526                | 0.75271             | 2.2427                         | 2.266               | 1.6879                                    | 1.706                      |
| n-Pentadecane | 0.7648                | 0.76490             | 3,3136                         | 3.347               | 2,5343                                    | 2.560                      |

\* TRC Tables, 1988

Table 5.1 (cont'd)

. Comparison of Experimental Values with Literature Values of the Pure Component Properties

| Experimental Literature Value  0.6905  0.69042 [1]  0.7186  0.71915 [2]  0.7291  0.7456  0.7459 [3]  0.7580  0.6865 [3]  0.7149  0.7150 [3]  0.7255 [3]                                   |                     | Density, kg/L | Kinematic Viscosity, 10 <sup>-6</sup> m <sup>2</sup> /s | sity, 10 <sup>-6</sup> m <sup>2</sup> /s | Absolute Viscosity, 103 Pa.s | sity, 10 <sup>-3</sup> Pa.s |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|---------------------------------------------------------|------------------------------------------|------------------------------|-----------------------------|
| 0.6905 0.69042 [1]<br>0.7186 0.71915 [2]<br>0.7291 0.72951 [1]<br>0.7456 0.7459° [3]<br>0.7580 0.7581° [3]<br>0.6865 0.6863 [3]<br>0.7149 0.7150 [3]<br>0.7255 0.7255 [3]                 | Experiment<br>Nalue |               | Experimental<br>Value                                   | Literature<br>Value                      | Experimental<br>Value        | Literature<br>Value         |
| 0.6905 0.69042 [1] 0.7186 0.71915 [2] 0.7291 0.72951 [1] 0.7456 0.7459° [3] 0.7580 0.7581° [3] 0.6865 0.6863 [3] 0.7149 0.7150 [3] 0.7255 0.7255 [3]                                      |                     |               | Temperature = 308.15K                                   | 8.15K                                    |                              |                             |
| 0.7186 0.71915 [2]<br>0.7291 0.72951 [1]<br>0.7456 0.7459* [3]<br>0.7580 0.7581* [3]<br>0.6865 0.6863 [3]<br>0.7149 0.7150 [3]<br>0.7255 0.7255 [3]                                       | 0.6905              | 0.69042 [1]   | 0.6583                                                  | 0.6649 [3]                               | 0.4545                       | 0.4591 [3]                  |
| 0.7291 0.72951 [1] 0.7456 0.7459* [3] 0.7580 0.7581* [3] 0.6865 0.6863 [3] 0.7149 0.7150 [3] 0.7255 0.7255 [3]                                                                            | 0.7186              | 0.71915 [2]   | 1.0306                                                  | 1.039 [3]                                | 0.7406                       | 0.7465 [3]                  |
| 0.7456       0.7459* [3]         0.7580       0.7581* [3]         0.6865       0.6863 [3]         0.7149       0.7150 [3]         0.7255       0.7255 [3]         0.7421       0.7424 [3] | 0.7291              | 0.72951 [1]   | 1.2719                                                  | 1.283 [3]                                | 0.9274                       | 0.9357 [3]                  |
| 0.7580       0.7581* [3]         0.6865       0.6863 [3]         0.7149       0.7150 [3]         0.7255       0.7255 [3]         0.7421       0.7424 [3]                                  | 0.7456              | 0.7459* [3]   | 1.8856                                                  | 1.909 [3]                                | 1,4060                       | 1.424 [3]                   |
| 0.6865       0.6863 [3]         0.7149       0.7150 [3]         0.7255       0.7255 [3]         0.7421       0.7424 [3]                                                                   |                     | 0.7581* [3]   | 2.7124                                                  | 2.749 [3]                                | 2.0560                       | 2.084 [3]                   |
| 0.6865       0.6863 [3]         0.7149       0.7150 [3]         0.7255       0.7255 [3]         0.7421       0.7424 [3]                                                                   |                     |               | Temperature = 313,15K                                   | 3.15K                                    |                              |                             |
| 0.7149 0.7150 [3]<br>0.7255 0.7255 [3]<br>0.7421 0.7424 [3]                                                                                                                               | 0.6865              | 0.6863 [3]    | 0.6258                                                  | 0.6343 [3]                               | 0.4296                       | 0.4355 [3]                  |
| 0.7255 0.7255 [3]<br>0.7421 0.7424 [3]                                                                                                                                                    | 0.7149              | 0,7150 [3]    | 0.9685                                                  | 0.9777 [3]                               | 0.6924                       | 0.6989 [3]                  |
| 0.7421 0.7424 [3]                                                                                                                                                                         | 0.7255              | 0.7255 [3]    | 6681.1                                                  | 1.200 [3]                                | 0.8633                       | 0.8707 [3]                  |
|                                                                                                                                                                                           | 0.7421              | 0.7424 [3]    | 1.7410                                                  | 1.766 [3]                                | 1.2921                       | 1.310 [3]                   |
| 0.7546 [3]                                                                                                                                                                                | 0.7546              | 0.7546 [3]    | 2.4757                                                  | 2.510 [3]                                | 1.8682                       | 1.894 [3]                   |

...

<sup>[1]</sup> Inglesc et al., 1983.
[2] García et al., 1986.
[3] TRC Tables, 1988.
\* These values are not directly available from the literature. Therefore, they are calculated from absolute viscosity and kinematic viscosity values listed in [3].

not available from the literature directly. Therefore, their listed literature values were calculated from the corresponding kinematic viscosity and absolute viscosity values listed in the TRC Tables (1988).

#### 5.1.2 The density - composition correlations

The experimental density data of each binary mixture were fitted to a polynomial of its compositions as follows

$$\rho = \sum_{i=0}^{n} A_{i} x_{1}^{i}$$
 (5.1)

Table 5.2 lists the least squares constants of the polynomial for each binary system at each temperature level. From these constants, the density at any composition for these mixtures can be calculated in the 293 - 313 K temperature range.

#### 5.2 Viscosity Data

### 5.2.1 Accuracy and precision of the viscosity measurements

By using the Cannon-Ubbelohde viscometers, the reproducibility of the viscosities were within  $\pm 0.1\%$ .

The accuracy of the viscosity measurements in this study has been checked by comparing the experimental values of viscosities of the pure components with their

Table 5.2

Least-Squares Constants for the Equation  $\mathbf{p} = \sum_{i=0}^{n} A_i x_i^i , kg / L$ 

| System                          | A <sub>0</sub> | Aı            | A2            | A,      | ¥.      | std dev (kg/L)          |
|---------------------------------|----------------|---------------|---------------|---------|---------|-------------------------|
|                                 |                | Temperature = | re = 293.15 K |         |         |                         |
| n-Octane(1)-n-Undecane(2)       | 0.7401         | -0.0285       | -0.0052       | -0.0052 | 0.0014  | 1.36 x 10 <sup>-5</sup> |
| n-Octane(1)-n-Tridecane(2)      | 0.7562         | -0.0357       | -0.0072       | -0.0108 |         | $3.32 \times 10^{-5}$   |
| n-Octane(1)-n-Pentadecane(2)    | 0,7683         | -0,0363       | -0.0231       | 0.0074  | -0.0138 | $2.05 \times 10^{-5}$   |
| n-Decane(1)-n-Pentadecane(2)    | 0.7683         | -0.0272       | -0.0054       | -0.0049 |         | $8.47 \times 10^{-6}$   |
| n-Undecane(1)-n-Pentadecane(2)  | 0.7683         | -0.0215       | -0.0045       | -0.0023 |         | $1.10 \times 10^{-5}$   |
| n-Tridecane(1)-n-Pentadecane(2) | 0.7683         | -0.0106       | 0.0013        | -0.0002 |         | 5.60 x 10 <sup>-6</sup> |
| n-Decane(1)-n-Tridecane(2)      | 0.7561         | -0.0208       | -0.0041       | -0.0014 |         | $1.10 \times 10^{-5}$   |
| n-Undecane(1)-n-Tridecane(2)    | 0.7562         | -0.0139       | -0.0020       | -0.0003 |         | 1.05 x 10 <sup>-5</sup> |
|                                 |                | Temperature = | e = 298.15 K  |         |         |                         |
| n-Octane(1)-n-Undecane(2)       | 0.7363         | -0.0286       | -0.0062       | -0.0031 |         | 1.41 x 10 <sup>-5</sup> |
| n-Octane(1)-n-Tridecane(2)      | 0.7527         | -0.0360       | -0.0079       | -0.0103 |         | $4.30 \times 10^{-5}$   |
| n-Octane(1)-n-Pentadecane(2)    | 0.7648         | -0.0369       | -0.0219       | 0.0064  | -0.0141 | $1.46 \times 10^{-5}$   |
| n-Decane(1)-n-Pentadecane(2)    | 0.7648         | -0.0263       | -0.0112       | 0.0027  | -0.0040 | $1.19 \times 10^{-5}$   |
| n-Undecane(1)-n-Pentadecane(2)  | 0.7648         | -0.0216       | -0,0046       | -0.0023 |         | 1.06 x 10 <sup>-5</sup> |
| n-Tridecane(1)-n-Pentadecane(2) | 0.7648         | -0,0106       | -0.0016       |         |         | $1.43 \times 10^{-5}$   |
| n-Decane(1)-n-Tridecane(2)      | 0,7526         | -0.0211       | -0.0039       | -0.0015 |         | 1.52 x 10 <sup>-5</sup> |
| n-Undecane(1)-n-Tridecane(2)    | 0.7525         | -0.0140       | -0.0020       | -0.0003 |         | 7.60 x 10 <sup>4</sup>  |

Table 5.2 (cont'd)

| System                          | A <sub>0</sub> | Aı            | A <sub>2</sub> | A,      | A       | std dev (kg/L)          |
|---------------------------------|----------------|---------------|----------------|---------|---------|-------------------------|
|                                 |                | Temperature = | e = 308.15 K   |         |         |                         |
| n-Octane(1)-n-Undecane(2)       | 0.7291         | -0.0291       | -0.0063        | -0.0033 |         | 1.67 x 10 <sup>-5</sup> |
| n-Octane(1)-n-Tridecane(2)      | 0.7456         | -0.0365       | -0.0081        | -0.0105 |         | 4.18 x 10 <sup>-5</sup> |
| n-Octane(1)-n-Pentadecane(2)    | 0.7580         | -0.0373       | -0.0219        | 0.0051  | -0.0134 | 2.03 x 10 <sup>-5</sup> |
| n-Decane(1)-n-Pentadecane(2)    | 0.7580         | -0.0277       | -0.0060        | -0.0056 |         | $2.52 \times 10^{-5}$   |
| n-Undecane(1)-n-Pentadecane(2)  | 0.7580         | -0.0219       | -0.0046        | -0.0024 |         | 1.93 x 10 <sup>-5</sup> |
| n-Tridecane(1)-n-Pentadecane(2) | 0.7580         | -0.0109       | -0.0011        | -0.0004 |         | 1.08 x 10 <sup>-5</sup> |
| n-Decane(1)-n-Tridecane(2)      | 0.7456         | -0.0207       | -0.0071        | 0.0032  | -0.0024 | $6.30 \times 10^{-6}$   |
| n-Undecane(1)-n-Tridecane(2)    | 0.7456         | -0.0139       | -0.0033        | 0.0020  | -0.0012 | 1.03 x 10 <sup>-5</sup> |
|                                 |                | Temperature = | e = 313.15 K   |         |         |                         |
| n-Octane(1)-n-Undecane(2)       | 0.7255         | -0.0295       | -0.0062        | -0.0033 |         | 1.68 x 10 <sup>-5</sup> |
| n-Octane(1)-n-Tridecane(2)      | 0.7421         | -0.0350       | -0.0167        | 0.0029  | -0.0069 | $1.84 \times 10^{-5}$   |
| n-Octane(1)-n-Pentadecane(2)    | 0.7545         | -0.0376       | -0.0212        | 0.0036  | -0.0128 | 1.91 x 10 <sup>-5</sup> |
| n-Decane(1)-n-Pentadecane(2)    | 0.7546         | -0.0275       | -0.0075        | -0.0039 | -0.0008 | 9.36 x 10 <sup>-6</sup> |
| n-Undecane(1)-n-Pentadecane(2)  | 0.7546         | -0.0220       | -0.0046        | -0.0025 |         | $1.32 \times 10^{-5}$   |
| n-Tridecane(1)-n-Pentadecane(2) | 0.7546         | -0.0110       | -0.0012        | -0.0003 |         | $1.42 \times 10^{-5}$   |
| n-Decane(1)-n-Tridecane(2)      | 0.7421         | -0.0215       | -0.0040        | -0.0017 |         | 8.32 x 10 <sup>-6</sup> |
| n-Undecane(1)-n-Tridecane(2)    | 0.7421         | -0.0143       | -0.0019        | -0.0004 |         | 1.16 x 10 <sup>-5</sup> |

corresponding literature values. The results are also listed in Table 5.1. As can be seen from Table 5.1, for the viscosity, the experimental values are close to their corresponding literature values and the experimental values are always lower than the values reported by TRC Tables (1988).

#### 5.2.2 The viscosity - composition correlations

The experimental viscosity data of each binary system were also fitted to a viscosity-composition polynomial for the purpose of viscosity prediction over the complete composition range. The polynomial is as follows

$$v = \sum_{i=0}^{n} B_i x_1^i \tag{5.2}$$

The least squares constants are presented in Table 5.3.

#### 5.3 The Excess Properties of Mixing

## 5.3.1 Excess volume of mixing

Excess volumes on mixing liquid mixtures can be attributed to any one of the following factors: (1) difference in size of the component molecules, (2) difference in shape of the component molecules, (3) structural changes such as changes in the

Table 5.3

(

Least-Squares Constants for the Equation  $v = \sum_{j=0}^{\infty} B_j x_1^j$ ,  $10^{-6} m^2/s$ 

| System                          | В      | Bı         | $\mathbf{B_2}$                   | $\mathbf{B_{j}}$ | В      | std dev (10° m²/s)      |
|---------------------------------|--------|------------|----------------------------------|------------------|--------|-------------------------|
|                                 |        | Temperatur | Temperature = $293.15 \text{ K}$ |                  |        |                         |
| n-Octane(1)-n-Undecane(2)       | 1,5880 | -1,0078    | 0.1932                           |                  |        | 1.40 x 10 <sup>3</sup>  |
| n-Octane(1)-n-Tridecane(2)      | 2.4635 | -2.3757    | 0.8463                           | -0.2360          | 0.0754 | 4.71 x 10 <sup>-4</sup> |
| n-Octane(1)-n-Pentadecane(2)    | 3.6974 | -4,4392    | 1.6986                           | -0.1815          |        | $4.82 \times 10^3$      |
| n-Decane(1)-n-Pentadecane(2)    | 3.6946 | -3,2566    | 0.8218                           |                  |        | $2.93 \times 10^{-3}$   |
| n-Undecane(1)-n-Pentadecane(2)  | 3,6932 | -2,6391    | 0.5326                           |                  |        | $4.99 \times 10^{-3}$   |
| n-Tridecane(1)-n-Pentadecane(2) | 3.6987 | -1,4283    | 0.2482                           | -0.0544          |        | $2.11 \times 10^3$      |
| n-Decane(1)-n-Tridecane(2)      | 2,4634 | -1,4711    | 0,2663                           |                  |        | 9.57 x 10 <sup>-4</sup> |
| n-Undecane(1).n-Tridecane(2)    | 2,4637 | -1,0127    | 0.1637                           | -0.0279          |        | 8.64 x 10 <sup>-4</sup> |
|                                 |        | Temperatur | Temperature = 298,15 K           |                  |        |                         |
| n-Octane(1)-n-Undecane(2)       | 1,4679 | -0,9062    | 0.1934                           | -0.0244          |        | 1,30 x 10 <sup>-3</sup> |
| n-Octane(1)-n-Tridecane(2)      | 2,2429 | -2.0713    | 0.6470                           | -0.0878          |        | $1.00 \times 10^{-3}$   |
| n-Octane(1)-n-Pentadecane(2)    | 3,3136 | -3,8014    | 1,3631                           | -0.1443          |        | 3.45 x 10 <sup>-4</sup> |
| n-Decane(1)-n-Pentadecane(2)    | 3,3140 | -2,8313    | 0.7450                           | -0.0563          |        | $6.42 \times 10^{-4}$   |
| n-Undecane(1)-n-Pentadecane(2)  | 3,3148 | -2,3318    | 0.5763                           | -0.0921          |        | $3.05 \times 10^{-3}$   |
| n-Tridecane(1)-n-Pentadecane(2) | 3,3132 | -1.1984    | 0,1299                           |                  |        | $1.70 \times 10^{-3}$   |
| n-Decane(1)-n-Tydecane(2)       | 2,2429 | -1,2999    | 0,2599                           | -0.0319          |        | $1.20 \times 10^{-3}$   |
| n-Undecane(1)-n-Tridecane(2)    | 2.2430 | -0.8872    | 0.1133                           |                  |        | $1.30 \times 10^{-3}$   |

Table 5.3 (Cont'd)

| System                          | $\mathbf{B}_0$ | Bı      | B,                     | B <sub>3</sub> | $\mathbf{B}_4$ | std dev (10 <sup>4</sup> m <sup>2</sup> /s) |
|---------------------------------|----------------|---------|------------------------|----------------|----------------|---------------------------------------------|
|                                 |                | Тетрег  | Temperature = 308,15 K | 5 K            |                |                                             |
| n-Octane(1)-n-Undecane(2)       | 1.2718         | -0.7383 | 0.1884                 | -0.1209        | 0.0576         | 6.65 x 10 <sup>-4</sup>                     |
| n-Octane(1)-n-Tridecane(2)      | 1.8851         | -1,5625 | 0.1935                 | 0.3476         | -0.2044        | $1.43 \times 10^{-3}$                       |
| n-Octane(1)-n-Pentadecane(2)    | 2.7125         | -2.8422 | 0.7394                 | 0.1699         | -0.1215        | $9.34 \times 10^4$                          |
| n-Decane(1)-n-Pentadecane(2)    | 2.7125         | -2.1355 | 0.4540                 |                |                | 8.33 x 10 <sup>-4</sup>                     |
| n-Undecane(1)-n-Pentadecane(2)  | 2.7126         | -1.7418 | 0,3008                 |                |                | 5.48 x 10 <sup>4</sup>                      |
| n-Tridecane(1)-n-Pentadecane(2) | 2.7130         | -0,9041 | 0.0772                 |                |                | 6.81 x 10 <sup>4</sup>                      |
| n-Decane(1)-n-Tridecane(2)      | 1.8856         | -1.0066 | 0.1517                 |                |                | 4.49 x 10 <sup>-4</sup>                     |
| n-Undecane(1)-n-Tridecane(2)    | 1.8856         | -0.6982 | 0.1450                 | -0.1209        | 0.0602         | $4.17 \times 10^{4}$                        |
|                                 |                | Тетрег  | Temperature = 313,15 K | 5 K            |                |                                             |
| n-Octane(1)-n-Undecane(2)       | 1.1898         | -0.6748 | 0,1845                 | -0.1442        | 0.0687         | 5.57 x 10 <sup>-4</sup>                     |
| n-Octane(1)-n-Tridecane(2)      | 1.7413         | -1.4266 | 0.3461                 | -0.0354        |                | 8.11 x 10 <sup>4</sup>                      |
| n-Octane(1)-n-Pentadecane(2)    | 2.4753         | -2.4806 | 0.4922                 | 0.3424         | -0.2026        | $1.47 \times 10^{-3}$                       |
| n-Decane(1)-n-Pentadecane(2)    | 2,4758         | -1.8774 | 0.3436                 | 0.0630         | -0.0365        | $2.97 \times 10^4$                          |
| n-Undecane(1)-n-Pentadecane(2)  | 2.4752         | -1.5327 | 0.2474                 |                |                | $2.44 \times 10^{-3}$                       |
| n-Tridecane(1)-n-Pentadecane(2) | 2.4759         | -0.8048 | 0.0701                 |                |                | $4.19 \times 10^{4}$                        |
| n-Decane(1)-n-Tridecane(2)      | 1.7410         | -0.9(25 | 0.1378                 | -0.0076        |                | 1.88 x 10 <sup>-4</sup>                     |
| n-Undecane(1)-n-Tridecane(2)    | 1.7411         | -0.6255 | 0,1239                 | -0.1039        | 0.0542         | $3.28 \times 10^{-4}$                       |

9

correlation of molecular orientations, (4) difference in the intermolecular interaction energy between like and unlike molecules, and (5) formation of new chemical species. Normally volume changes occur because of a combination of these various factors. Consequently the complexity associated with the origin of excess volume, coupled with ease with which the latter can be obtained experimentally with good precision, makes it a sensitive tool for testing the theories of liquid mixtures. Apart from this, excess volume (VE) data are useful in the conversion of excess thermodynamic functions determined at constant pressure to the condition of mixing at constant volume, in determining composition from density measurements on mixtures, and in industrial technology. These measurements of excess volumes continue to be an area of active interest (Handa and Benson, 1979).

Figures 5.1 to 5.4 represent plots of the excess molar volumes of the binary mixtures versus composition at the four designated temperatures. It can be observed from these figures that almost all the values of excess volumes are negative and for systems nundecane-n-tridecane and n-tridecane-n-pentadecane the values of V<sup>E</sup> are very close to zero. It can also be seen from Figures 5.1 to 5.4 that the excess molar volumes of mixing increase with the increasing differences between the numbers of carbon atoms of the two components of a system and with the temperature.

From the binary and ternary experimental excess volume data presented in Tables 4.4 to 4.11 and Tables B.1 to B.5, respectively, it is found that the values of all the excess volumes are negative except for four data points in binary systems (they are:  $C_{11}$  -  $C_{13}$  at  $x_1 = 0.8980$ , 293.15 K;  $C_{13}$  -  $C_{15}$  at  $x_1 = 0.8983$ , 298.15 K, at  $x_1 = 0.1004$ , 308.15



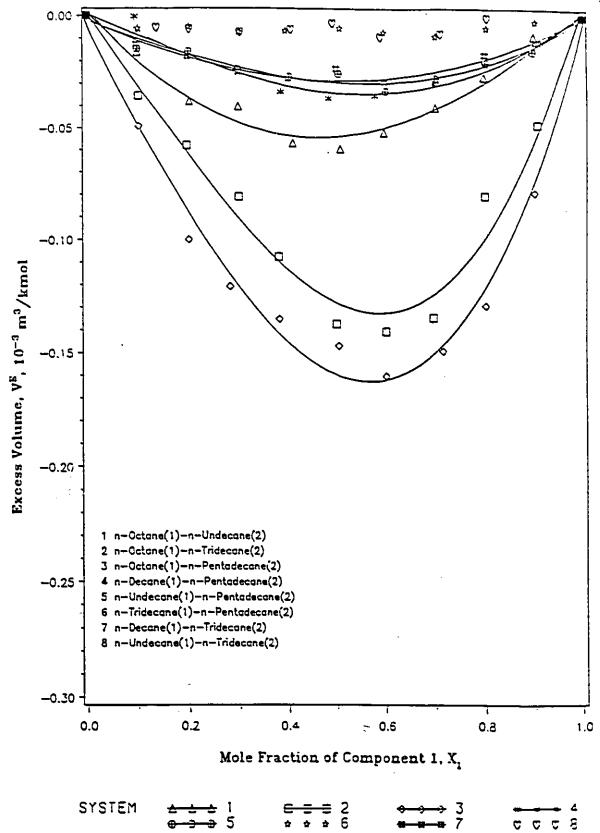



Figure 5.1. Excess Volume vs. Composition for Binary n-Alkane Systems at 293.15 K



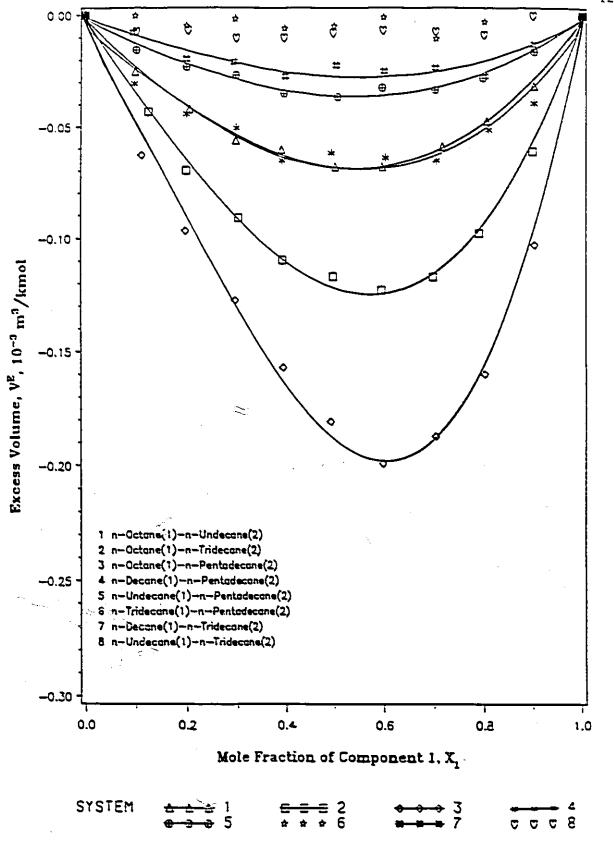



Figure 5.2. Excess Volume vs. Composition for Binary n-Alkane Systems at 298.15 K

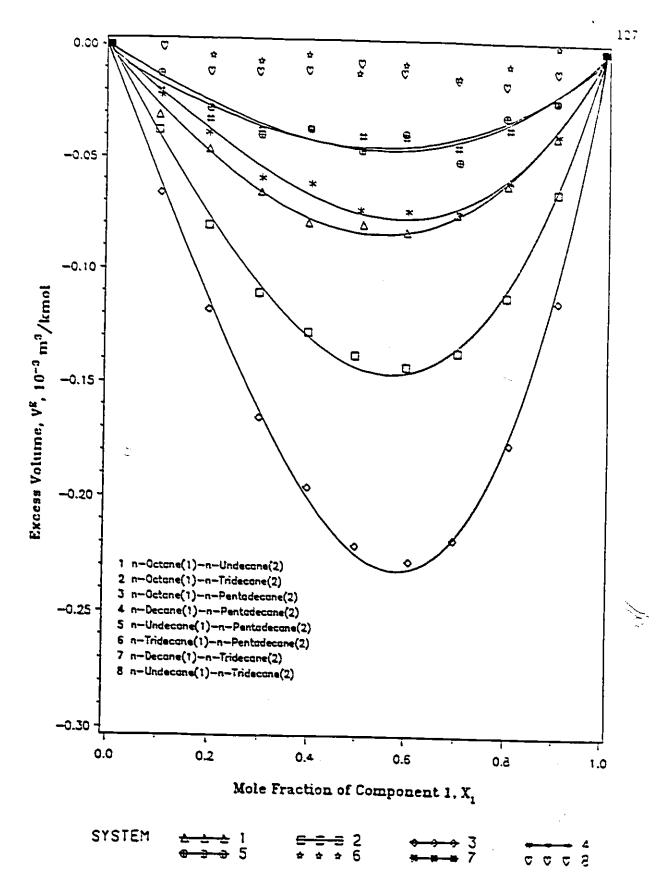



Figure 5.3. Excess Volume vs. Composition for Binary n-Alkane Systems at 308.15 K

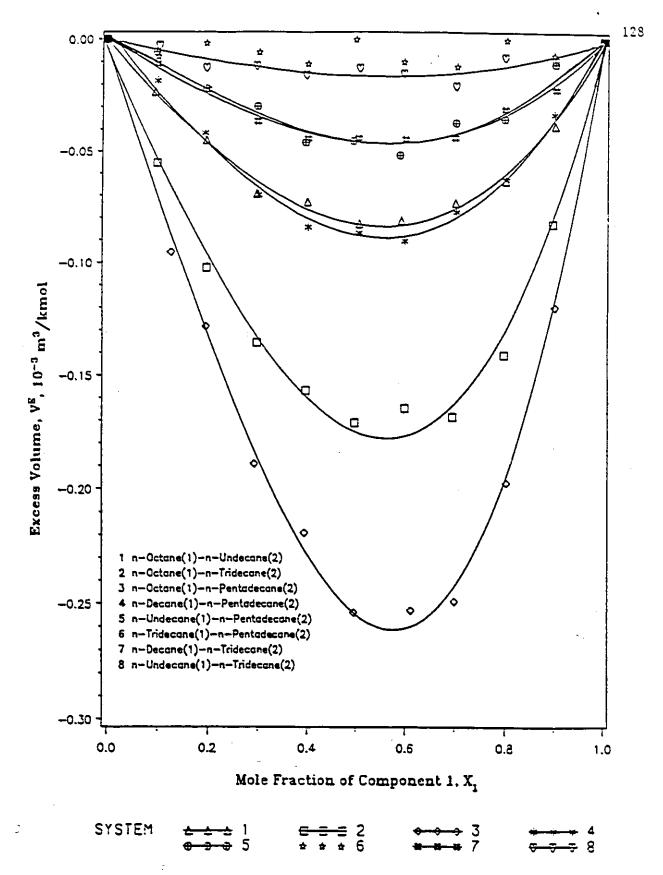



Figure 5.4. Excess Volume vs. Composition for Binary n-Alkane Systems at 313.15 K

K and at  $x_1 = 0.9036$ , 308.15 K) and one data point in ternary systems (it is:  $C_{10} - C_{13} - C_{15}$  at  $x_1 = 0.0836$ ,  $x_2 = 0.8163$ , 298.15 K). These five data points show positive values for  $V^E$  and their values are very close to zero. The slightly positive values of  $V^E$  can be attributed to experimental errors. The negative values of the excess volumes of both binary and ternary n-alkane mixtures are consistent with the predictions of the Congruence Principle (Brønsted and Koefoed, 1946; Desmyter and van der Waals, 1958; Lim *et al.*, 1980).

The maximum error in determining the excess volume data was estimated to be  $\pm$  0.0002 L/kmol (Wu and Asfour, 1991a). Appendix C gives the details of error analysis for excess volumes.

If the additivity of volumes on mixing is used as a criterion of ideal solution behavior (Asfour and Dullien, 1981), then the binary systems n-undecane-n-tridecane and n-tridecane-n-pentadecane, and the ternary system n-undecane-n-tridecane-n-pentadecane at all four temperature levels are quite close to ideal solution behavior because their absolute values of V<sup>E</sup> are very close to zero (refer to Tables 4.4 to 4.11 and B.1 to B.5, respectively).

Garcia et al. (1986) reported excess volume data on the system n-octane-n-undecane between 288.15 and 308.15 K. V<sup>E</sup> values obtained in this study for this system are in very good agreement with the data reported by Garcia et al. in two respects: firstly, V<sup>E</sup> values for this system are negative over the entire composition range at 293.15, 298.15 and 308.15 K. Secondly, at 293.15, 298.15 and 308.15 K, the composition range which corresponds to the minimum V<sup>E</sup> values and the minimum values of V<sup>E</sup> are very close.

Comparison of the two sets of data at these three temperature levels is given in Table 5.4.

No comparison can be made at 313.15 K since Garcia et al. did not report data at that temperature.

On the basis of the experimental data of excess volume of both binary and ternary systems (section 4.4 and Apendice B) one can conclude that the trends of the excess volume - composition relationship are similar at different temperatures. Therefore, data at only one temperature level were arbitrarily selected to test some literature models as follows. The chosen temperature level is 293.15 K.

For the eight binary systems at 293.15 K, the excess volume data have been reported in Chapter 4 (Tables 4.4 to 4.11). These data were correlated to the composition by the following expression which was reported by Heric and Brewer (1969)

$$V^{E} = x_{1}x_{2}[A_{12} + B_{12}(x_{1} - x_{2}) + C_{12}(x_{1} - x_{2})^{2} + \cdots]$$
 (5.3)

and

$$V^{E} = x_{1}x_{2}[A'_{12} + B'_{12}x_{1} + C'_{12}x_{1}^{2} + \cdots]$$
 (5.4)

Eq. (5.3) is called symmetric because it reduces to a single term in  $A_{ij}$  at  $x_i = x_j = 0.5$  whereas eq. (5.4) is called asymmetric. The orders of eqs. (5.3) and (5.4) were selected for a system beyond which additional terms did not give significantly improved results. The constants of the above equations were calculated by the least squares technique and are reported in Table 5.5.

The following equations reported by Heric and Brewer (1969) for ternary systems were fitted to the ternary system data obtained in this study:

Table 5.4

Comparison of the Minimum Values of Fxcess Volume of This Study with Literature Data for System n-Octane(1)-n-Undecane(2)

| Ga                         | rcia et al.                      | Т                          | his Study                         |
|----------------------------|----------------------------------|----------------------------|-----------------------------------|
| composition x <sub>1</sub> | minimum V <sup>E</sup><br>L/kmol | composition x <sub>1</sub> | minimum V <sup>li</sup><br>L/kmol |
|                            | Temperat                         | ture = 293.15 K            |                                   |
| 0.5259                     | -0.0598                          | 0.5076                     | -0.0597                           |
|                            | Temperat                         | ture = 298.15 K            |                                   |
| 0.5134                     | -0.0632                          | 0.5019                     | -0.0681                           |
| 0.5902                     | -0.0629                          | 0.5959                     | -0.0681                           |
|                            | Temperat                         | ture = 308.15 K            |                                   |
| 0.4920                     | -0.0744                          | 0.5094                     | -0.0793                           |
| 0.5403                     | -0.0744                          | 0.5981                     | -0.0825                           |

Table 5.5

Least-Square Constants for Heric's Binary Excess Volume Model at 293.15 K

|                                 | Asym             | netric Mode      | 1                | ··-             |                  |  |  |  |
|---------------------------------|------------------|------------------|------------------|-----------------|------------------|--|--|--|
| System                          | A <sub>12</sub>  | B <sub>12</sub>  | C <sub>12</sub>  | D <sub>12</sub> | std dev<br>L/kmo |  |  |  |
| n-octane(1)-n-undecane(2)       | -0.2306          | 0.0374           | 0.1297           |                 | 0.0031           |  |  |  |
| n-octane(1)-n-tridecane(2)      | -0.5366          | -0.3206          | 0.1886           | 0.4033          | 0.0065           |  |  |  |
| n-octane(1)-n-pentadecane(2)    | -0.6100          | -0.1754          | -0.2305          |                 | 0.0045           |  |  |  |
| n-decane(1)-n-pentadecane(2)    | -0.1487          | -0.0354          | 0.0947           |                 | 0.0023           |  |  |  |
| n-undecane(1)-n-pentadecane(2)  | -0.0093          | -0.0523          |                  |                 | 0.0058           |  |  |  |
| n-tridecane(1)-n-pentadecane(2) | 0.0417           | -0.0617          | 0.2277           | ς,              | 0.0064           |  |  |  |
| n-decane(1)-n-tridecane(2)      | -0.0322          | . 0.0719         | 0.1829           |                 | 0.003            |  |  |  |
| n-undecane(1)-n-tridecane(2)    | -0.0268          | 0.0200           |                  |                 | 0.0029           |  |  |  |
| Symmetric Model                 |                  |                  |                  |                 |                  |  |  |  |
|                                 |                  |                  |                  |                 | std de           |  |  |  |
| System                          | A' <sub>12</sub> | B' <sub>12</sub> | C' <sub>12</sub> | D'12            | L/kmc            |  |  |  |
| n-octane(1)-n-undecane(2)       | -0.1383          | -0.4442          | 0.5190           |                 | 0.003            |  |  |  |
| n-octane(1)-n-tridecane(2)      | -0.4307          | 1.0241           | -4.0849          | 3.2262          | 0.006            |  |  |  |
| n-octane(1)-n-pentadecane(2)    | -0.6652          | 0.5715           | -0.9222          |                 | 0.004            |  |  |  |
| n-decane(1)-n-pentadecane(2)    | 0.0528           | -1.0183          | 1.6615           | -0.8576         | 0.001            |  |  |  |
| n-undecane(1)-n-pentadecane(2)  | 0.0430           | -0.1045          |                  |                 | 0.005            |  |  |  |
| n-tridecane(1)-n-pentadecane(2) | 0.4915           | -2.3116          | 3.7884           | -1.9214         | 0.005            |  |  |  |
| n-decane(1)-n-tridecane(2)      | 0.2225           | -0.8752          | 0.7315           |                 | 0.003            |  |  |  |
| n-undecane(1)-n-tridecane(2)    | -0.1382          | 0.8210           | -1.8526          | 1.2865          | 0.002            |  |  |  |

-

$$V^{E} = \sum_{\substack{i=1\\i \neq j}}^{n} x_{i} x_{j} [A_{ij} + B_{ij} (x_{i} - x_{j}) + (x_{i} - x_{j})^{2} + \cdots]$$

$$+ x_{1} x_{2} x_{3} A_{123}$$
(5.5)

and by the asymmetric form of eq. (5.5)

$$V^{E} = \sum_{\substack{i=1\\i\neq j}}^{n} x_{i} x_{j} [A'_{ij} + B'_{ij} x_{i} + C'_{ij} x_{i}^{2} + \cdots] + x_{1} x_{2} x_{3} A'_{ij}$$
 (5.6)

The constants in eqs. (5.5) and (5.6) were determined by the least squares methods from the ternary excess volume data at 293.15 K and are listed in Table 5.6.

#### 5.3.2 Excess activation energy of viscous flow

The experimental viscosity data were used to calculate the excess activation energy of viscous flow by eq. (2.113). The values of excess activation energy of viscous flow of binary and ternary mixtures have already been reported in Chapter 4 (section 4.4) and in Appendix B. All the values of excess energy are positive and increase with temperature. The positive values of  $\Delta^*G^E$  indicate that viscosity of the mixtures are greater than that of the ideal mixtures.

The plot of  $\Delta^*G^E$  versus mole fraction of component 1 of the eight binary systems at four temperatures are shown in Figures 5.5 to 5.8. All the curves seem to be symmetrical with their maxima at  $x_1 = 0.5$ .

According to Figures 5.5 to 5.8, the changes of the excess free energy of viscous

Table 5.6

Least-Squares Constants for Heric's Ternary Excess Volume Model at 293.15 K

|                                               | Asym<br>Mod      | metric<br>lel     | Symi<br>Mo        | netric<br>del     |
|-----------------------------------------------|------------------|-------------------|-------------------|-------------------|
| System                                        | A <sub>123</sub> | std dev<br>L/kmol | A' <sub>123</sub> | std dev<br>L/kmol |
| n-octane(1)-n-undecane(2)-n-tridecane(3)      | 0.0773           | 0.0073            | -0.2071           | 0.0065            |
| n-octane(1)-n-undecane(2)-n-pentadecane(3)    | -0.6843          | 0.0089            | -0.8422           | 0.0092            |
| n-undecane(1)-n-tridecane(2)-n-pentadecane(3) | -0.9079          | 0.0119            | -1.0740           | 0.0142            |
| n-octane(1)-n-tridecane(2)-n-pentadecane(3)   | -0.1288          | 0.0104            | -0.6344           | 0.0096            |
| n-decane(1)-n-tridecane(2)-n-pentadecane(3)   | -0.9040          | 0.0088            | -1.2160           | 0.0112            |



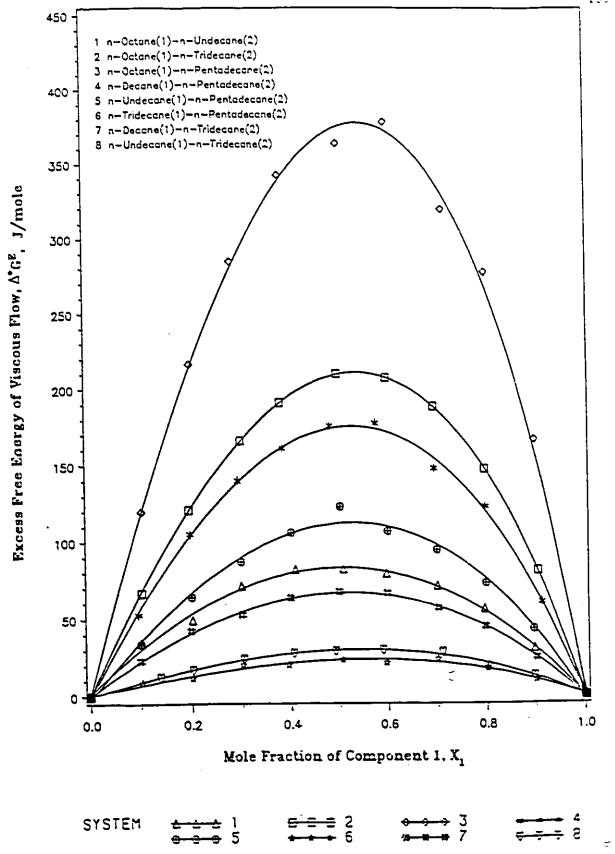



Figure 5.5. Excess Free Energy of Viscous Flow vs. Composition for Binary n-Alkane Systems at 293.15 K

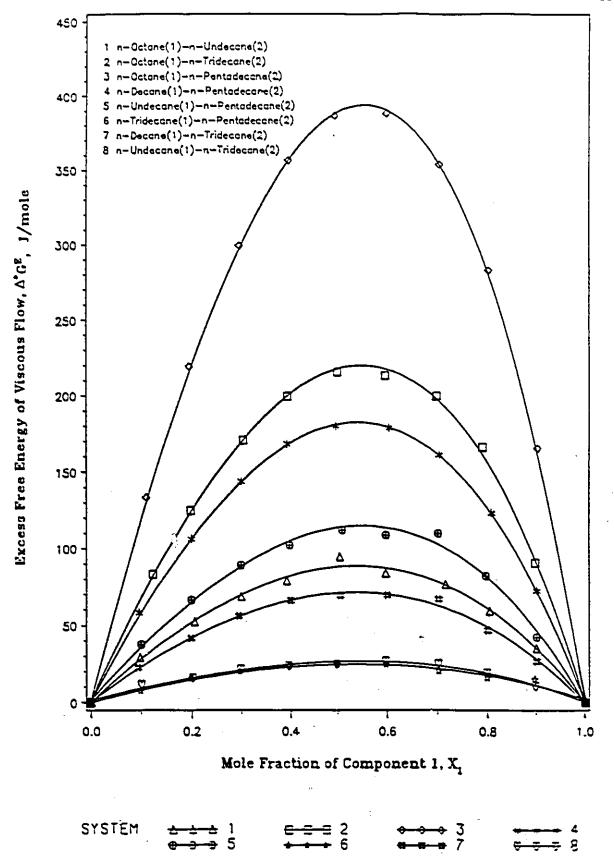



Figure 5.6. Excess Free Energy of Viscous Flow vs. Composition for Binary n-Alkane Systems at 298.15 K



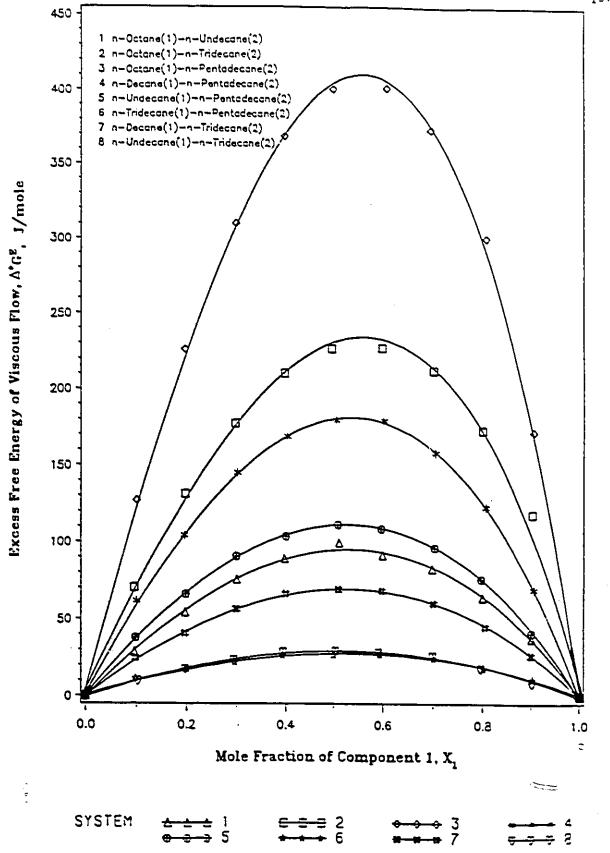



Figure 5.7. Excess Free Energy of Viscous Flow vs. Composition for Binary n-Alkane Systems at 308.15 K



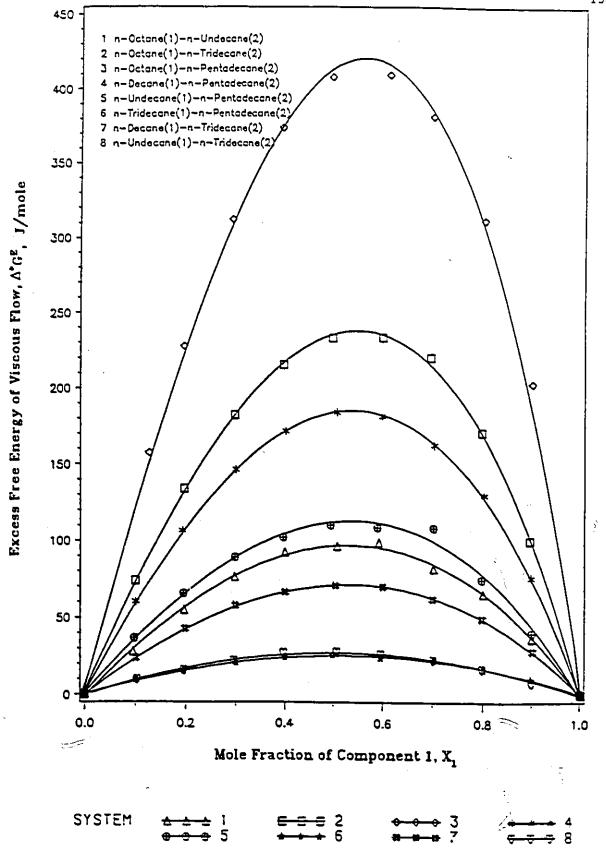



Figure 5.8. Excess Free Energy of Viscous Flow vs. Composition for Binary n-Alkane Systems at 313.15 K

flow with composition at the four temperature levels investigated are similar. Therefore, the values of  $\Delta^*G^E$  vs composition at 293.15 K were used to test the following literature model proposed by Heric and Brewer (1969):

$$\Delta^* G^E = x_1 x_2 [A_{12} + B_{12}(x_1 - x_2) + C_{12}(x_1 - x_2)^2 + \cdots]$$
 (5.7)

or alternatively

$$\Delta^* G^E = x_1 x_2 [A'_{12} + B'_{12} x_1 + C'_{12} x_1^2 + \cdots]$$
 (5.8)

The least squares constants of eqs. (5.7) and (5.8) are presented in Table 5.7.

The ternary excess activation energy data at 293.15 K were used to test the following extensions of eqs. (5.7) and (5.8):

$$\Delta^* G^E = \sum_{\substack{i=1\\i \le j}}^3 x_i x_j [A_{ij} + B_{ij}(x_i - x_j) + C_{ij}(x_i - x_j^2 + \cdots)] + x_1 x_2 x_3 A_{123}$$
(5.9)

and

$$\Delta^* G^E = \sum_{\substack{i=1\\i\neq j}}^3 x_i x_j [A'_{ij} + B'_{ij} x_i + C'_{ij} x_i^2 + \cdots] + x_1 x_2 x_3 A'_{123}$$
 (5.10)

Also, eq. (5.9) is called symmetric and eq. (5.10) asymmetric. The least squares constants of eqs. (5.9) and (5.10) are listed in Table 5.8.

Table 5.7

Least-Squares Constants for Heric's Binary Model of Excess Energy of Viscous Flow at 293.15 K

|                                 | Asymme           | tric Model       |                 |                 |                                  |
|---------------------------------|------------------|------------------|-----------------|-----------------|----------------------------------|
| System                          | A <sub>12</sub>  | B <sub>12</sub>  | C <sub>12</sub> | D <sub>12</sub> | std dev<br>10 <sup>2</sup> J/mol |
| n-octane(1)-n-undecane(2)       | 3.3057           | 0.1489           | 0.1674          | -0.3077         | 0.0256                           |
| n-octane(1)-n-tridecane(2)      | 8.3919           | 1.2183           | -0.0697         | 0.1343          | 0.0040                           |
| n-octane(1)-n-pentadecane(2)    | 14.8286          | 2.0369           | 1.2168          | 2.2212          | 0.0646                           |
| n-decane(1)-n-pentadecane(2)    | 6.9897           | 0.7280           |                 |                 | 0.0292                           |
| n-undecane(1)-n-pentadecane(2)  | 4.3953           | 0.5858           |                 |                 | 0.0304                           |
| n-tridecane(1)-n-pentadecane(2) | 1.0214           | 0.1447           | -0.2143         |                 | 0.0100                           |
| n-decane(1)-n-tridecane(2)      | 2.7004           | 0.2634           | 0.3140          |                 | 0.0180                           |
| n-undecane(1)-n-tridecane(2)    | 1.1920           | 0.2016           |                 |                 | 0.0102                           |
|                                 | Symmetr          | ic Model         |                 |                 | 23                               |
| System                          | ₹, <sup>15</sup> | B' <sub>12</sub> | . C'tz          | D'12            | std dev<br>10 <sup>2</sup> J/mol |
| n-octane(1)-n-undecane(2)       | 3.4260           | -0.5725          | 0.6665          |                 | 0.0244                           |
| n-octane(1)-n-tridecane(2)      | 6.9695           | 3.5215           | -1.8910         | 1.0748          | 0.0040                           |
| n-octane(1)-n-pentadecane(2)    | 11.7873          | 12.5339          | -21.7876        | -17.7699        | 0.0646                           |
| n-decane(1)-n-pentadecane(2)    | 6.2617           | 1.4560           |                 |                 | 0.0292                           |
| n-undecane(1)-n-pentadecane(2)  | 3.0741           | 7.7890           | -16.2447        | 11.5728         | 0.0230                           |
| n-tridecane(1)-n-pentadecane(2) | 0.6623           | 1.1466           | -0.8571         |                 | 0.0100                           |
| n-decane(1)-n-tridecane(2)      | 2.2890           | 2.9753           | -7.1037         | 5.5936          | 0.0158                           |
| n-undecane(1)-n-tridecane(2)    | 0.9904           | 0.4033           |                 |                 | 0.0102                           |

## 5.4 Application of the McAllister Viscosity Model to n-Alkane Liquid Mixtures

#### 5.4.1 Test of the McAllister model using binary mixture data

The semi-empirical McAllister model is based on Eyring's theory of absolute reaction rates and the assumption that for liquid mixtures the free energies of activation for viscosity are additive on a mole fraction basis (McAllister, 1960). By considering the three- and four-body interactions in one plane, respectively, McAllister derived two equations: one is cubic which is given by eq. (2.25), the other is quantic which is given by eq. (2.26). Since the less complicated three-body model works very well for our nalkane mixtures, it was chosen to fit the experimentally obtained binary viscosity data. The values of the two adjustable parameters of the model,  $v_{12}$  and  $v_{21}$ , were calculated from the experimental binary viscosity data by the least squares technique at each designated temperature, and are listed in Table 5.9. Also listed in Table 5.9 are the standard deviations of the fit.

Asfour et al. (1991) developed a new technique for predicting the McAllister parameters for binary n-alkane liquid systems from pure component properties. This technique has already been covered in Chapter 2.

The experimental kinematic viscosity - composition data obtained in this study for the binary systems: n-octane-n-undecane, n-tridecane-n-pentadecane, n-decane-n-tridecane and n-undecane-n-tridecane in the temperature range 293.15 to 313.15 K were used in predicting the McAllister three-body model parameters. Table 5.10 shows a comparison

. . –

Table 5.8

Least-Squares Constants for Heric's Ternary Model of Excess Energy of Viscous Flow at 293.15 K

|                                               | Asymme           | tric Model                       | Symmetri          | ic Model            |
|-----------------------------------------------|------------------|----------------------------------|-------------------|---------------------|
| System                                        | A <sub>123</sub> | std dev<br>10 <sup>2</sup> J/mol | A' <sub>123</sub> | std dev<br>10²J/mol |
| n-octan(1)e-n-undecane(2)-n-tridecane(3)      | -1.2108          | 0.015                            | 0.2544            | 0.016               |
| n-octane(1)-n-undecane(2)-n-pentadecane(3)    | 0.5110           | 0.031                            | 3.1294            | 0.039               |
| n-undecane(1)-n-tridecane(2)-n-pentadecane(3) | -2.2438          | 0.041                            | -1.3709           | 0.036               |
| n-octane(1)-n-tridecane(2)-n-pentadecane(3)   | -3.4659          | 0.047                            | 0.1985            | 0.045               |
| n-decane(1)-n-tridecane(2)-n-pentadecane(3)   | -1.6942          | 0.051                            | -0.6529           | 0.049               |

:=

ζ,

Table 5.9

Values of Parameters in McAllister Binary Mixture Model for n-Alkane Mixtures

|                                         | V <sub>12</sub>        | $\nu_{21}$    | std dev<br>10 <sup>-6</sup> m <sup>2</sup> /s | $v_{12}$               | $v_{2t}$     | std dev<br>10% m²/s   |
|-----------------------------------------|------------------------|---------------|-----------------------------------------------|------------------------|--------------|-----------------------|
| System                                  | Tem                    | perature = 29 | 3.15 K                                        | Tem                    | perature = 2 | 98.15 K               |
| C <sub>8</sub> (1)-C <sub>11</sub> (2)  | 1.0177                 | 1,2925        | 9.68x10 <sup>-1</sup>                         | 0.9624                 | 1.1992       | 1.07x10 <sup>-3</sup> |
| $C_8(1)-C_{13}(2)$                      | 1.2643                 | 1.8020        | 1.88x10 <sup>-4</sup>                         | 1.1892                 | 1.6566       | 1.07x10 <sup>-3</sup> |
| $C_8(1)$ - $C_{15}(2)$                  | 1.5883                 | 2.4949        | $3.10 \times 10^{-3}$                         | 1.4896                 | 2.2742       | 1.06x10 <sup>-3</sup> |
| $C_{10}(1)$ - $C_{15}(2)$               | 1.9662                 | 2.7651        | 1.20x10 <sup>-3</sup>                         | 1.8180                 | 2.5052       | 3.14x10 <sup>-4</sup> |
| $C_{11}(1)-C_{15}(2)$                   | 2,2269                 | 2.9159        | 1.82x10 <sup>-3</sup>                         | 2.0481                 | 2.6288       | 1.42x10 <sup>-3</sup> |
| C <sub>13</sub> (1)-C <sub>15</sub> (2) | 2.8599                 | 3.2542        | 6.24x10 <sup>-4</sup>                         | 2.5879                 | 2.9367       | 7.19x10 <sup>-1</sup> |
| $C_{10}(1)-C_{13}(2)$                   | 1.6240                 | 2.0232        | 4.05x10 <sup>-4</sup>                         | 1.5071                 | 1.8539       | 7.37x10 <sup>-4</sup> |
| C <sub>11</sub> (1)-C <sub>13</sub> (2) | 1.8671                 | 2.1504        | 4.17x10 <sup>-4</sup>                         | 1.7135                 | 1.9656       | 5.96x10 <sup>-1</sup> |
|                                         | Temperature = 308.15 K |               |                                               | Temperature = 313.15 K |              |                       |
| C <sub>8</sub> (1)-C <sub>11</sub> (2)  | 0.8564                 | 1.0554        | 6.91x10 <sup>-1</sup>                         | 0.8099                 | 0.9927       | 7.42x10 <sup>-1</sup> |
| C <sub>8</sub> (1)-C <sub>13</sub> (2)  | 1.0580                 | 1.4207        | 3.06x10 <sup>-3</sup>                         | 0.9899                 | 1.3322       | 8.92x10 <sup>-1</sup> |
| $C_8(1)-C_{15}(2)$                      | 1.3073                 | 1.9141        | 2.05x10 <sup>-3</sup>                         | 1.2359                 | 1.7634       | 3.73x10 <sup>-3</sup> |
| $C_{10}(1)$ - $C_{15}(2)$               | 1.5529                 | 2.0965        | 4.14x10 <sup>-4</sup>                         | 1.4481                 | 1.9301       | 4.09x10 <sup>-1</sup> |
| C <sub>11</sub> (1)-C <sub>15</sub> (2) | 1.7247                 | 2.1988        | 2.73x10 <sup>-4</sup>                         | 1.6038                 | 2.0176       | 1.46x10 <sup>-3</sup> |
| C <sub>13</sub> (1)-C <sub>15</sub> (2) | 2.1566                 | 2.4301        | 2.97x10 <sup>-4</sup>                         | 1.9802                 | 2.2237       | 1.93x10 <sup>-1</sup> |
| $C_{10}(1)$ - $C_{13}(2)$               | 1.3001                 | 1.5826        | 2.52x10 <sup>-4</sup>                         | 1.2167                 | 1.4685       | 1.74x10 <sup>-1</sup> |
| $C_{11}(1)-C_{13}(2)$                   | 1.4685                 | 1.6730        | 4.00x10 <sup>-4</sup>                         | 1.3649                 | 1.5505       | 3.56x10 <sup>-4</sup> |

between the values of  $v_{12}$  and  $v_{21}$  determined from fitting experimental data to eq. (2.25) using the method of least squares and those calculated from eqs. (2.27) and (2.28). The close agreement is very obvious. Moreover, the values of  $v_{12}$  and  $v_{21}$  calculated from eqs. (2.27) and (2.28) were substituted into eq. (2.25) and the kinematic viscosities of the mixture were calculated over the entire composition range. Then the calculated and the experimental kinematic viscosity were compared. The average absolute deviation (AAD) is defined by

$$AAD = \frac{1}{m} \left\{ \sum_{i}^{m} \left| \frac{\eta_{i}^{calcd} - \eta_{i}^{exptl}}{\eta_{i}^{exptl}} \right| \times 100 \right\}$$
 (5.11)

where AAD is a percentage and m is the number of the experimental points. The values of AAD are also listed in Table 5.10. The very good agreement between the calculated and the experimental kinematic viscosity is quite clear.

To test the equations of predicting the McAllister four-body binary parameters, eqs. (2.29) and (2.30), proposed also by Asfour *et al.* (1991), the viscosity data of the following binary systems were used: n-octane-n-tridecane, n-octane-n-pentadecane, n-decane-n-pentadecane and n-undecane-n-pentadecane. The comparison of the values of  $v_{1112}$ ,  $v_{1122}$  and  $v_{2221}$  calculated from eqs. (2.29) and (2.30) with those determined from experimental data is shown in Table 5.11. The corresponding AAD values are also listed in Table 5.11. Again, there is very close agreement between the predicted and the experimental values.

Table 5.10

Ę

=

Comparison of the Method of Asfour et al. with Experimental Data for Binary McAllister Three-body Model

| <del>.</del>      |            | Calc<br>Exper | Calculated from<br>Experimental Data | Catcula<br>eqs. (2.2' | Calculated from eqs. (2.27) & (2.28) |      |
|-------------------|------------|---------------|--------------------------------------|-----------------------|--------------------------------------|------|
| System            | Temp.<br>K | Vı            | V <sub>21</sub>                      | ۷،                    | ٧,11                                 | AAD  |
| n-Octane(1)       | 293.15     | 1.027         | 1.293                                | 1.026                 | 1.304                                | 0.4  |
| -n-Undecane(2)    | 298.15     | 0,963         | 1.199                                | 0.963                 | 1.215                                | 0.3  |
|                   | 308.15     | 0.857         | 1.055                                | 0.856                 | 1.066                                | 0.2  |
|                   | 313.15     | 0.811         | 0.992                                | 0.810                 | 1.003                                | 0.2  |
| n-Tridecane(1)    | 293.15     | 2.859         | 3.260                                | 2.857                 | 3.271                                | 0.07 |
| -n-Pentadecane(2) | 298.15     | 2.587         | 2.937                                | 2.587                 | 2.947                                | 0.1  |
| . ,               | 308.15     | 2.173         | 2.426                                | 2.156                 | 2.434                                | 0.15 |
| -                 | 313,15     | 2.980         | 2.224                                | 1.983                 | 2.230                                | 0.1  |
| n-Decane(1)       | 293.15     | 1.627         | 2.024                                | 1,631                 | 2.040                                | 0.02 |
| -n-Tridecane(2)   | 298.15     | 1.507         | 1.854                                | 1.507                 | 1.871                                | 0.02 |
|                   | 308.15     | 1.300         | 1.583                                | 1.306                 | 1.597                                | 0.03 |
|                   | 313,15     | 1.216         | 1.469                                | 1.220                 | 1.484                                | 0.03 |
| n-Undecane(1)     | 293.15     | 1.867         | 2.150                                | 1.865                 | 2.160                                | 0.1  |
| -n-Tridecane(2)   | 298.15     | 1.718         | 1,967                                | 1.716                 | 1.977                                | 0.1  |
|                   | 308.15     | 1.469         | 1.673                                | 1.472                 | 1.679                                | 0.15 |
|                   | 313.15     | 1.365         | 1.550                                | 1.371                 | 1.557                                | 0.2  |

## 5.4.2 Extension of the Asfour et al. technique to n-alkane ternary systems

The extended McAllister expression for ternary systems, eq. (2.31), has already been given in Chapter 2. The values of the ternary parameter,  $v_{123}$ , determined from the experimental ternary viscosity data in this study are listed in Table 5.12.

The ternary parameter  $v_{123}$  involves the interactions among three molecules each of type 1, 2 and 3 whereas  $v_1$ ,  $v_2$  and  $v_3$ , the kinematic viscosities of pure components 1, 2 and 3, involve the interactions among molecules of type 1, type 2 and type 3, respectively (Kalidas and Laddha, 1964). Therefore, based on the technique of Asfour *et al.*(1991), it is assumed that

$$v_{123} \propto (v_1 v_2 v_3)^{1/3}$$
 (5.12)

in this way, the temperature dependent parameter  $v_{123}$  is converted into a temperature independent lumped parameter  $v_{123}/(v_1v_2v_3)^{1/3}$  as shown in Table 5.13.

Plotting  $v_{123}/(v_1v_2v_3)^{1/3}$  versus  $(N_3 - N_1)^2/N_2$  gives a straight line as shown in Figure 5.9. The equation of the straight line is

$$\frac{v_{123}}{(v_1 v_2 v_3)^{1/3}} = 0.9942 + 0.03167 \frac{(N_3 - N_1)^2}{N_2}$$
 (5.13)

By using eq. (5.13), the ternary McAllister parameter  $v_{123}$  can be predicted from the viscosity and the numbers of carbon atoms of the pure components of the n-alkane mixtures. Eq. (5.13) was tested by using the viscosity data of n-hexane-n-tetradecane-n-hexdecane mixture at 298.15 K taken from literature (Heric and Brewer, 1969). First, the

 $\approx$ 

Table 5.11

. =:

Comparison of the Method of Asfour et al. with Experimental Data for McAllister Binary Four-body Model

| Temp.  System K  n-Octane(1) 293.15  -n-Tridecane(2) 298.15  308.15  n-Octane(1) 293.15 |                   | Experimental Data | 2     | 3                 | eqs. (2.29) & (2.30) | 30)   |      |
|-----------------------------------------------------------------------------------------|-------------------|-------------------|-------|-------------------|----------------------|-------|------|
| c(2)                                                                                    | V <sub>1112</sub> | V <sub>1122</sub> | V2231 | V <sub>1112</sub> | V <sub>1122</sub>    | ٧2221 | AAD  |
| c(2)                                                                                    | 1.1%              | 1.435             | 1.972 | 1.109             | 1.481                | 1.972 | 0.3  |
|                                                                                         | 1.055             | 1,388             | 1.792 | 1.038             | 1.374                | 1.818 | 0.4  |
|                                                                                         | 0.948             | 1,195             | 1.542 | 0.919             | 1.196                | 1.555 | 0.5  |
|                                                                                         | 0.884             | 1.136             | 1.428 | 0.867             | 1.120                | 1.447 | 0.5  |
|                                                                                         | 1.324             | 1.963             | 2.761 | 1.269             | 1.917                | 2.834 | 0.7  |
| -n-Pentadecane(2) 298.15                                                                | 1.248             | 1.811             | 2.507 | 1.209             | 1.764                | 2.574 | 0.8  |
| 308,15                                                                                  | 1.120             | 1.531             | 2,111 | 1.063             | 1.515                | 2.158 | 6.0  |
| 313.15                                                                                  | 1.052             | 1.428             | 1,946 | 1.000             | 1.411                | 1.990 | 1.0  |
| n-Decane(1) 293,15                                                                      | 1.750             | 2,338             | 2,962 | 1.748             | 2.288                | 2.996 | 0.3  |
| -n-Pentadecane(2) 298,15                                                                | 1.628             | 2.122             | 2,688 | 1.612             | 2.090                | 2.711 | 9.4  |
| 1 308,15                                                                                | 1.402             | 1.793             | 2,238 | 1.393             | 1.774                | 2.259 | 0.2  |
| 313.15                                                                                  | 1.310             | 1.661             | 2.057 | 1.299             | 1.643                | 2.077 | 0.3  |
| n-Undecane(1) 293.15                                                                    | 2.046             | 2.539             | 3,050 | 2.033             | 2.512                | 3,104 | 0.3  |
| -n-Pentadecane(2) 298.15                                                                | 1.891             | 2.299             | 2.795 | 1.866             | 2.287                | 2.804 | 0.3  |
| 308.15                                                                                  | 1.597             | 1.944             | 2.316 | 1.594             | 1.926                | 2.328 | 0.15 |
| 313.15                                                                                  | 1.490             | 1.791             | 2.125 | 1.482             | 1.780                | 2.138 | 0.15 |

Table 5.12

Values of Parameter in McAllister Ternary Model for n-Alkane Systems

| System                                  | V <sub>123</sub> | std dev<br>10 <sup>-10</sup> m <sup>2</sup> /s | V <sub>123</sub> | std dev<br>10 <sup>-10</sup> m <sup>2</sup> /s |
|-----------------------------------------|------------------|------------------------------------------------|------------------|------------------------------------------------|
|                                         | T=293.15         | : K                                            | T=298.15         | ικ                                             |
| $C_{8}(1)-C_{11}(2)-C_{13}(3)$          | 1.5364           | 0.56                                           | 1,4277           | 1.00                                           |
| $C_{8}(1)-C_{11}(2)-C_{15}(3)$          | 1.8726           | 1.33                                           | 1.7306           | 1.57                                           |
| $C_{11}(1)-C_{13}(2)-C_{15}(3)$         | 2,4902           | 1.89                                           | 2,3025           | 0.60                                           |
| $C_8(1)$ - $C_{13}(2)$ - $C_{15}(3)$    | 2.1372           | 1.71                                           | 1,9757           | 0.96                                           |
| $C_{10}(1)$ - $C_{13}(2)$ - $C_{15}(3)$ | 2.3710           | 2.05                                           | 2,1751           | 0.27                                           |
|                                         |                  |                                                |                  |                                                |
|                                         | _T=308.15        | <u> K</u>                                      | T=313.15         | <u> </u>                                       |
| $C_8(1)-C_{11}(2)-C_{13}(3)$            | 1.2394           | 1.42                                           | 1.1667           | 0.78                                           |
| $C_8(1)-C_{11}(2)-C_{15}(3)$            | 1.4885           | 1.76                                           | 1.3885           | 1.03                                           |
| $C_{11}(1)-C_{13}(2)-C_{15}(3)$         | 1.9321           | 0.29                                           | 1.7832           | 0.38                                           |
| $C_8(1)$ - $C_{13}(2)$ - $C_{15}(3)$    | 1.6719           | 1.43                                           | 1.5517           | 1.59                                           |
| $C_{10}(1)-C_{13}(2)-C_{15}(3)$         | 1.8382           | 0.30                                           | 1.7025           | 0.37                                           |

Table 5.13  $\label{eq:v123} Values of \, \nu_{123} \, / (\nu_1 \nu_2 \nu_3)^{1/3} \, of \, Ternary \, n\text{-Alkane Systems}$ 

|                                         |          | v <sub>123</sub> /(v <sub>1</sub> v <sub>2</sub> v <sub>3</sub> | )1/3     | · · · · · · · · · · · · · · · · · · · |
|-----------------------------------------|----------|-----------------------------------------------------------------|----------|---------------------------------------|
| System                                  | 293.15 K | 298.15 K                                                        | 308.15 K | 313.15 K                              |
| $C_8(1)-C_{11}(2)-C_{13}(3)$            | 1.0625   | 1.0654                                                          | 1.0644   | 1,0700                                |
| $C_8(1)-C_{11}(2)-C_{15}(3)$            | 1.1310   | 1.1339                                                          | 1.1324   | 1.1324                                |
| $C_{11}(1)-C_{13}(2)-C_{15}(3)$         | 1.0222   | 1.0382                                                          | 1.0350   | 1.0340                                |
| $C_8(1)-C_{13}(2)-C_{15}(3)$            | 1.1148   | 1.1239                                                          | 1.1155   | 1.1147                                |
| $C_{10}(1)$ - $C_{13}(2)$ - $C_{15}(3)$ | 1.0515   | 1.0573                                                          | 1.0562   | 1.0574                                |

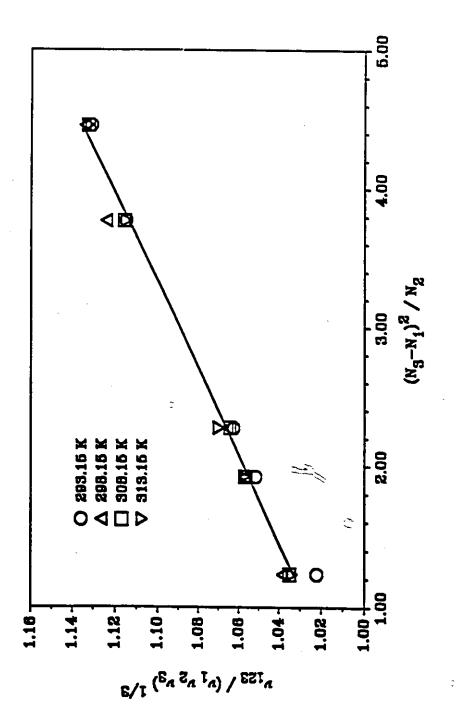



Figure 5.9. Plot of Eq. (5.13)

value of  $v_{123}$  for this system was calculated by eq. (5.13), then the calculated value of  $v_{123}$  was substituted into McAllister ternary model, eq. (2.31), to get the predicted viscosity. Figure 5.10 shows that the predicted and experimental viscosity are in very good agreement. Actually, the average absolute deviation between these values is only 0.36%.

The fact that eq. (5.13) can accurately predict  $v_{123}$  of n-hexane-n-tetradecane-n-hexadecane mixture which is beyond the carbon atom number range for which the equation was derived lends more support to the validity of the technique reported by Asfour *et al.*(1991).

### 5.4.3 Further extension of the McAllister model

The McAllister model would be very complicated and would possess more undetermined adjustable parameters if it is extended to multicomponent mixtures (n>3). This is because of the higher order interactions among the components. Therefore, for mixtures having more than three components, it is not practical to employ the McAllister model.

Consequently, for multicomponent mixtures, a model having reasonable accuracy and easy to use is required.

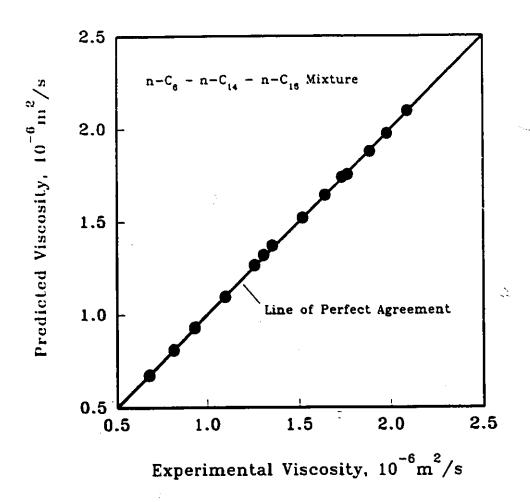



Figure 5.10. Results of Testing Eq. (5.13)

# 5.5 Application of the Generalized Corresponding States Principle (GCSP) to the Viscosity of n-Alkane Liquid Mixtures

The GCSP method is based on the Corresponding States Principle and the properties of two reference fluids: (i) the acentric factor, (ii) the viscosity and, (iii) the critical properties. As we pointed earlier, in Chapter 2, it gave better results than the TRAPP method in many cases. Therefore, it is explored for the specific use with n-alkane mixtures in this study. When applying the GCSP method to mixtures, appropriate mixing rules should be employed to find the pseudocritical properties of the mixture. The mixing rules proposed by Wong *et al.*(1983) which are especially useful for a large range of mixtures are used in this study. These were reported in Chapter 2, by eqs. (2.97) to (2.103).

The binary interaction coefficient,  $\xi_{ij}$ , is given by eq. (2.100). It can be calculated from experimental mixture data. The GCSP method is flexible since if some mixture viscosity data are available,  $\xi_{ij}$  can be included in the calculation, in such a case, the method becomes one of the correlation rather than prediction and if the mixture viscosity data are not available,  $\xi_{ij}$  can be set equal to unity, thus, the method becomes predictive (Teja and Rice, 1981). The predictive capability of the model is very important, because the costly and time consuming experimental work could be avoided if a reliable predictive model is available.

С

#### 5.5.1 Test of GCSP using experimental binary n-alkane viscosity data

The Generalized Corresponding States Principle (GCSP) method was tested by using the viscosity data of the eight n-alkane binary mixtures at the four temperature levels. The results are reported in Table 5.14. The term MAX in the table is the maximum deviation, defined as

$$MAX = \max\{\frac{\eta_i^{colod} - \eta_i^{exptl}}{\eta_i^{exptl}}\} \times 100$$
 (5.14)

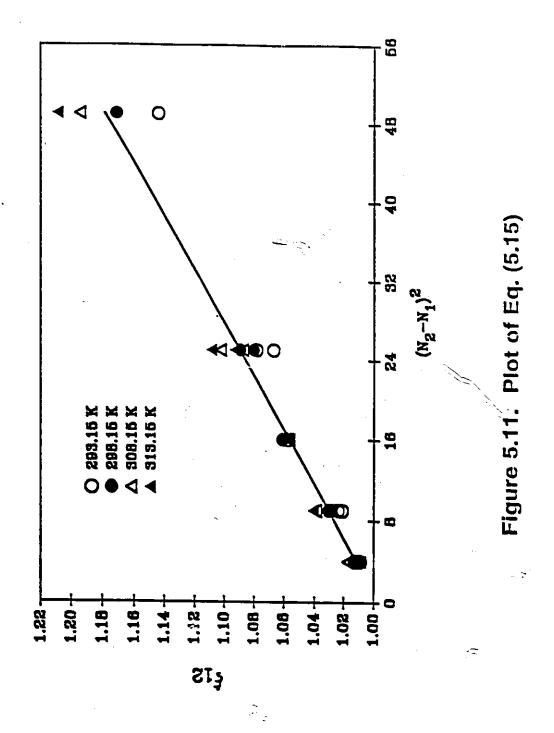
where MAX is a percentage.

As shown in Table 5.14, when the binary interaction coefficient  $\xi_{12}$  is set to unity. the AAD is in the range 0.15 - 3.61%, and for each system AAD increases with temperature. Whereas when  $\xi_{12}$  is included as an adjustable parameter, the range of AAD is 0.01 - 0.38%. Table 5.14 also shows that  $\xi_{12}$  is almost independent of temperature.

According to the data given in Table 5.14, when  $\xi_{12}$  is included in the GCSP method as an adjustable parameter, the AAD is remarkably reduced. Consequently, being able to predict a *priori* value of  $\xi_{12}$  would represent a significant achievement.

It was noticed from Table 5.14 that  $\xi_{12}$  increases with the difference between the carbon atom numbers of the two pure components of the mixture. A plot of  $\xi_{12}$  versus  $(N_2 - N_1)^2$  shows a reasonably good linear relationship as depicted in Figure 5.11. The equation of the straight line is given by

Table 5.14


Results of Testing GCSP Method by Binary n-Alkane Viscosity Data

| System                    | $\xi_{12} = 1$ |                 | ع      |       |        |
|---------------------------|----------------|-----------------|--------|-------|--------|
|                           | AAD            | MAX             | AAD    | MAX   | 513    |
|                           | Ter            | mperature = 293 | 3.15 K | ·     |        |
| $C_8(1)$ - $C_{11}(2)$    | 0.38           | -0.59           | 0.13   | -0.29 | 1.0209 |
| $C_8(1)$ - $C_{13}(2)$    | 1.16           | -1.63           | 0.11   | 0.24  | 1.0668 |
| $C_8(1)$ - $C_{15}(2)$    | 2.42           | -3.46           | 0.38   | -0.97 | 1,1439 |
| $C_{10}(1)$ - $C_{15}(2)$ | 1.34           | -1.98           | 0.16   | 0.23  | 1,0781 |
| $C_{11}(1)$ - $C_{15}(2)$ | 1.00           | -1.86           | 0.16   | 0.21  | 1.0575 |
| $C_{13}(1)-C_{15}(2)$     | 0.21           | -0.38           | 0.07   | -0.15 | 1,0106 |
| $C_{10}(1)$ - $C_{13}(2)$ | 0.43           | -0.61           | 0.05   | -0.09 | 1.0238 |
| $C_{11}(1)-C_{13}(2)$     | 0.24           | -0.40           | 0.05   | -0.12 | 1.0129 |
|                           | Tei            | mperature = 298 | 3.15 K | -     |        |
| $C_8(1)-C_{11}(2)$        | 0.51           | -0.97           | 0.07   | -0.28 | 1.0283 |
| $C_8(1)$ - $C_{13}(2)$    | 1.44           | -1.87           | 0.07   | 0.16  | 1.080  |
| $C_8(1)$ - $C_{15}(2)$    | 2.88           | -3.87           | 0.28   | 0.54  | 1.171  |
| $C_{10}(1)$ - $C_{15}(2)$ | 1.56           | -2.11           | 0.09   | 0.16  | 1.0893 |
| $C_{11}(1)-C_{15}(2)$     | 1.10           | -1.72           | 0.10   | -0.37 | 1.0609 |
| $C_{13}(1)$ - $C_{15}(2)$ | 0.26           | -0.34           | 0.04   | -0.21 | 1.013  |
| $C_{10}(1)$ - $C_{13}(2)$ | 0.55           | -0.88           | 0.05   | -0.20 | 1.030  |
| $C_{11}(1)-C_{13}(2)$     | 0.16           | -0.27           | 0.05   | -0.10 | 1.0083 |

Table 5.14 (cont'd)

Results of Testing GCSP Method by Binary n-Alkane Viscosity Data

|                                         | $\underline{\xi_{12}} = 1$ |                 | ξ <sub>12</sub> ≠ 1 |       |             |  |
|-----------------------------------------|----------------------------|-----------------|---------------------|-------|-------------|--|
| System                                  | AAD                        | MAX             | AAD                 | MAX   | <b>ξ</b> 12 |  |
|                                         | ٦                          | Temperature = 3 | 08.15 K             |       |             |  |
| $C_8(1)-C_{11}(2)$                      | 0.68                       | -1.12           | 0.06                | -0.18 | 1.0386      |  |
| $C_8(1)$ - $C_{13}(2)$                  | 1.87                       | -2.35           | 0.15                | -0.76 | 1.1021      |  |
| $C_8(1)$ - $C_{15}(2)$                  | 3.28                       | -4.33           | 0.22                | 0.37  | 1.1939      |  |
| $C_{10}(1)-C_{15}(2)$                   | 1.53                       | -2.10           | 0.11                | 0.17  | 1.0872      |  |
| $C_{11}(1)-C_{15}(2)$                   | 1.00                       | -1.39           | 0.06                | 0.14  | 1.0565      |  |
| C <sub>13</sub> (1)-C <sub>15</sub> (2) | 0.32                       | -0.42           | 0.02                | -0.06 | 1.0172      |  |
| $C_{10}(1)-C_{13}(2)$                   | 0.50                       | -0.69           | 0.04                | -0.07 | 1.0280      |  |
| $C_{11}(1)-C_{13}(2)$                   | 0.21                       | -0.33           | 0.04                | 0.08  | 1.0118      |  |
|                                         | . 7                        | Temperature = 3 | 313.15 K            |       |             |  |
| $C_8(1)-C_{11}(2)$                      | 0.71                       | -1.12           | 0.07                | 0.14  | 1.0404      |  |
| $C_8(1)$ - $C_{13}(2)$                  | 1.89                       | -2,60           | 0.09                | 0.22  | 1.1081      |  |
| $C_8(1)-C_{15}(2)$                      | 3.61                       | -4.62           | 0.21                | 0.31  | 1.2085      |  |
| $C_{10}(1)-C_{15}(2)$                   | 1.64                       | -2.21           | 0.09                | 0.14  | 1.0927      |  |
| $C_{11}(1)-C_{15}(2)$                   | 1.01                       | -1.62           | 0.11                | -0.34 | 1.0574      |  |
| $C_{13}(1)-C_{15}(2)$                   | 0.24                       | -0.34           | 0.01                | 0.04  | 1.0134      |  |
| $C_{10}(1)-C_{13}(2)$                   | 0.56                       | -0.75           | 0.01                | -0.02 | 1.0306      |  |
| $C_{11}(1)-C_{13}(2)$                   | 0.15                       | -0.26           | 0.04                | 0.09  | 1.0085      |  |



$$\xi_{12} = A_o + A_1 (N_2 - N_1)^2 \tag{5.15}$$

where  $A_0$  and  $A_1$  were calculated from the  $\xi_{12}$  values of eight systems at four temperatures (32 points) listed in Table 5.14.  $A_0$  is 0.9969 and  $A_1$  is 0.0037, the standard deviation of the fit is 0.012. Eq. (2.100) hence has the form for binary n-alkane liquid mixtures

$$T_{cii} = [0.9969 + 0.0037(N_2 - N_1)^2](T_{cii} + T_{cii})^{1/2}$$
 (5.16)

The GCSP method generalized by eq. (5.15) was tested by using literature data (Chevalier et al., 1990; Heric et al., 1967; Wakefield, 1987, 1988; Wakefield et al., 1988). These data are over the entire composition range of each system. The values of AAD are given in Table 5.15 for the cases when  $\xi_{12} = 1$  and  $\xi_{12} \neq 1$ . It is obvious that the value of  $\xi_{12}$  calculated from eq. (5.15) gave much smaller AAD compared with the case when  $\xi_{12}$  is set equal to 1. Therefore, it is possible to utilize the approach proposed here for improving the performance of the GCSP method for binary n-alkane systems without need for experimental data.

#### 5.5.2 Test GCSP using experimental ternary n-alkane viscosity data

Application of GCSP to mixtures of more than two components requires appropriate choice of the reference fluids, r1 and r2. Since the number of combinations of 2 elements from 3 elements is 3, the number of combinations of 2 elements from 4 elements is 6 and so on.

The results of applying GCSP to the five ternary n-alkane liquid mixtures at four

Table 5.15

Testing Eq. (5.15) with Literature Data of Some n-Alkane Systems

| System                                     | No. of<br>Points | Temp. | Pressure atm | GCSP<br>AAD (ξ <sub>12</sub> =1) | GCSP<br>AAD (ξ <sub>12</sub> ≠1)* |
|--------------------------------------------|------------------|-------|--------------|----------------------------------|-----------------------------------|
| $C_6(1)$ - $C_{10}(2)^{\{1\}}$             | 9                | 298   | 1            | 1.78                             | 0.76                              |
| C <sub>5</sub> (1)-C <sub>14</sub> (2) [2] | 10               | 298   | 1            | 3.92                             | 0.63                              |
| $C_6(1)-C_{16}(2)^{[2]}$                   | 20               | 298   | 1            | 6.91                             | 1.08                              |
| $C_8(1)$ - $C_{16}(2)$ [3]                 | 7                | 318   | 1            | 3.55                             | 1.23                              |
| $C_8(1)-C_{16}(2)^{[3]}$                   | 7                | 328   | 1            | 4.06                             | 1.06                              |
| $C_8(1)-C_{16}(2)^{[3]}$                   | 7                | 338   | 1            | 3.65                             | 0.96                              |

- \*  $\xi_{12}$  calculated from eq. (5.15)
- [1] Chevalier et al., 1990

:

- [2] Heric and Brewer, 1967
- [3] Wakefield and Marsh, 1987

temperatures with different combinations of reference fluids are reported in Table 5.16. The binary interaction coefficient,  $\xi_{ij}$ , was set equal to unity. Because in the case of ternary mixtures, there are three binary coefficients,  $\xi_{12}$ ,  $\xi_{13}$  and  $\xi_{23}$ , it would be difficult to determine all of them if only limited experimental data were available. The data in Table 5.16 indicate that the accuracy of prediction differs with the different combinations of r1 and r2, but since the value of MAX and that of AAD do not show large differences, the effect of composition of the ternary mixture on the prediction accuracy is not as significant as the selection of the reference fluids. In order to see the trend clearer, the data in Table 5.16 were plotted in Figures 5.12, 5.13, 5.14 and 5.15. The three different combinations of r1 and r2 are represented by different boxes. As can be seen from these figures, the average absolute percent deviation (AAD) of prediction is a minimum when r1 and r2 are chosen according to

$$N^{r2} - N^{rI} = \min\{N_j - N_i\}$$
 (5.17)

$$i < j$$
,  $i = 1,2,...n$ ,  $j = 1,2,...n$ 

where N<sup>rt</sup> is the number of carbon atoms of reference fluid 1, N<sup>r2</sup> is that of reference fluid 2 and n is the total number of components in the system. Eq. (5.17) indicates that for ternary n-alkane mixtures when the two components having the minimum difference in the number of carbon atoms were chosen as reference fluids, the AAD is the smallest.

Table~5.16 Testing GCSP ( $\xi_{\eta}{=}1)$  with Experimental Ternary n-Alkane Viscosity Data

|                                                             | r1=1 | l, r2=2 | ˈrl=l        | , r2=3 | r1=2 | , r2=3 |
|-------------------------------------------------------------|------|---------|--------------|--------|------|--------|
| System                                                      | AAD  | MAX     | AAD          | MAX    | AAD  | MAX    |
|                                                             |      | Tempe   | rature = 29  | 3.15 K |      |        |
| $C_8(1)-C_{11}(2)-C_{13}(3)$                                | 0.40 | 0.69    | 1.16         | -1.42  | 0.34 | 1,41   |
| $C_8(1)$ - $C_{11}(2)$ - $C_{15}(3)$                        | 0.84 | 1.74    | 2.45         | -3.14  | 1.08 | -1.69  |
| $C_{11}(1)-C_{13}(2)-C_{15}(3)$                             | 0.35 | 0.68    | 0.59         | -0.83  | 0.27 | -0,46  |
| $C_8(1)$ - $C_{13}(2)$ - $C_{15}(3)$                        | 1.35 | -2.15   | 2.20         | -2.92  | 0.71 | 1.79   |
| $C_{10}(1)-C_{13}(2)-C_{15}(3)$                             | 0.62 | -1.00   | 1.12         | -1.50  | 0.41 | -0.76  |
|                                                             |      | Tempe   | rature = 29  | 8.15 K |      |        |
| $C_8(1)$ - $C_{11}(2)$ - $C_{13}(3)$                        | 0.51 | -0.90   | 1.14         | -1.66  | 0,40 | 1.37   |
| $C_8(1)-C_{11}(2)-C_{15}(3)$                                | 1.01 | 1.89    | 2.90         | -3.52  | 1.23 | -1.93  |
| $C_{11}(1)-C_{13}(2)-C_{15}(3)$                             | 0.50 | -0.76   | 0.90         | -1.15  | 0.50 | -0.76  |
| $C_8(1)$ - $C_{13}(2)$ - $C_{15}(3)$                        | 1.64 | -2.70   | 2.72         | -3.44  | 0.99 | 1.88   |
| $C_{10}(1)-C_{13}(2)-C_{15}(3)$                             | 0.65 | -1.18   | 1.37         | -1.77  | 0.55 | -0.88  |
|                                                             |      | Tempe   | erature = 30 | 8.15 K |      |        |
| $C_8(1)-C_{11}(2)-C_{13}(3)$                                | 0.69 | -1.52   | 1.82         | -2.35  | 0.36 | 1.34   |
| $C_8(1)-C_{11}(2)-C_{15}(3)$                                | 1.07 | 2.52    | 3.30         | -3.94  | 1.23 | -1.92  |
| C <sub>11</sub> (1)-C <sub>13</sub> (2)-C <sub>15</sub> (3) | 0.54 | -ù.81   | 0.86         | -1.13  | 0.55 | -0.82  |
| $C_8(1)$ - $C_{13}(2)$ - $C_{15}(3)$                        | 1.88 | -2.70   | 3.08         | -3.87  | 1.06 | 1.60   |
| $C_{10}(1)-C_{13}(2)-C_{15}(3)$                             | 0.77 | -1.19   | 1.40         | -1.85  | 0.64 | -0.98  |
| <u> </u>                                                    |      | Tempo   | erature = 31 | 3.15 K |      | -      |
| C <sub>8</sub> (1)-C <sub>11</sub> (2)-C <sub>13</sub> (3)  | 0.72 | 1.60    | 1.96         | -2.50  | 0.45 | 2.35   |
| $C_8(1)-C_{11}(2)-C_{15}(3)$                                | 1.11 | 3.32    | 3.47         | -4.19  | 1.31 | -1.98  |
| $C_{11}(1)-C_{13}(2)-C_{15}(3)$                             | 0.45 | -0.74   | 0.79         | -1.10  | 0.51 | -0.83  |
| $C_8(1)$ - $C_{13}(2)$ - $C_{15}(3)$                        | 1.95 | -3.24   | 3.19         | -4.06  | 1.08 | 1.56   |
| $C_{10}(1)-C_{13}(2)-C_{15}(3)$                             | 0.81 | -1.25   | 1.48         | -1.94  | 0.67 | -1.03  |

``

-

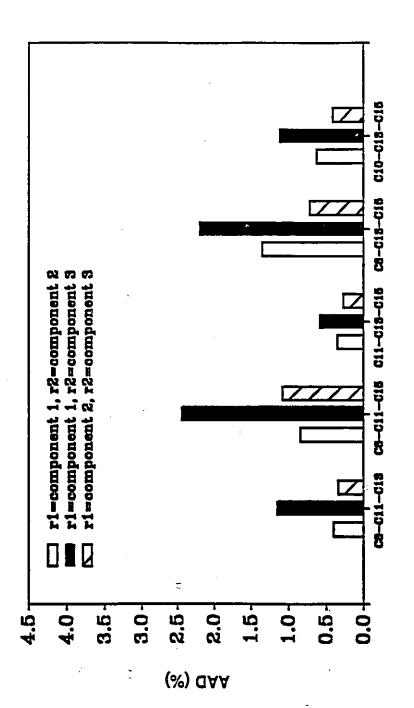



Figure 5.12. Results of Applying GCSP to n-Alkane Ternary Systems at 293.15 K

£.....

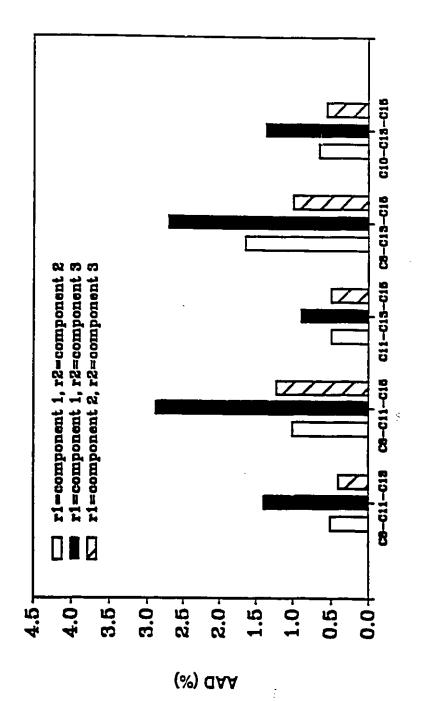



Figure 5.13. Results of Applying GCSP to n-Alkane Ternary Systems at 298.15 K

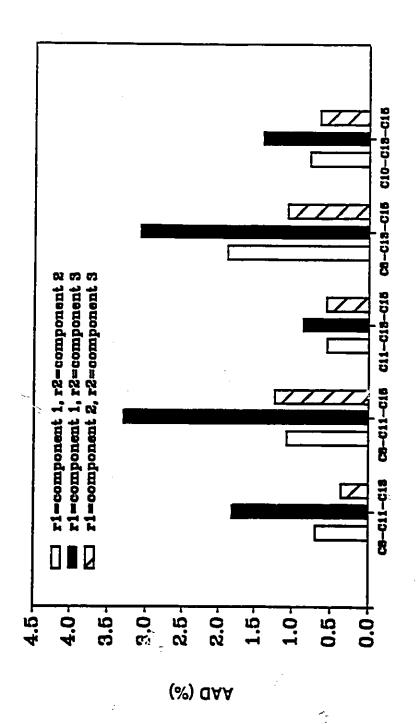



Figure 5.14. Results of Applying GCSP to n-Alkane Ternary Systems at 308.15 K

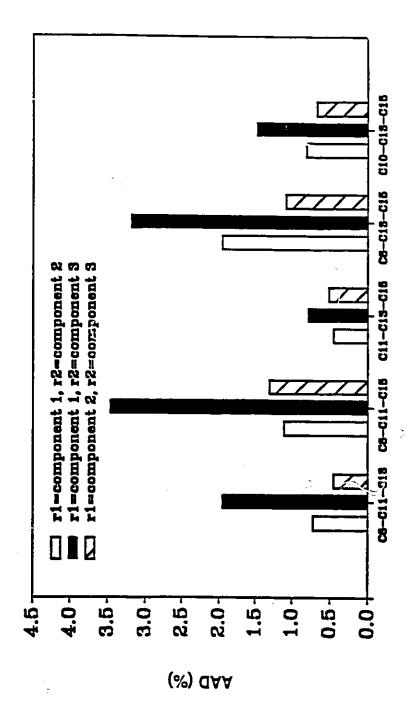



Figure 5.15. Results of Applying GCSP to n-Alkane Ternary Systems at 313.15 K

The GCSP method was also tested by some n-alkane quaternary viscosity data taken from the literature (Wakefield, 1988). Two quaternary systems were used at 303 and 308 K. These are n-heptane(1)-n-nonane(2)-n-dodecane(3)-n-hexadecane(4) and n-hexane(1)n-decane(2)-n-dodecane(3)-n-hexadecane(4). These data are the only n-alkane quaternary viscosity data reported in the literature. The binary interaction coefficients,  $\xi_{ij}$  were set equal to unity. The results for the two systems are shown in Figures 5.16 and 5.17, respectively. Different bars represent different temperatures and the numbers above the bars are their values of maximum error (MAX). Each quaternary mixture has six combinations of r1 and r2. The accuracy of prediction from each combination differs significantly. Unlike the case of ternary systems, the values of the maximum error for several combinations of r1 and r2 are relatively high. For example, for the system C7-C9-C<sub>12</sub>-C<sub>16</sub> at 303 K, when component 3 was chosen as r1 and component 4 as r2, the value of MAX is 18.64%. Such a high deviation value is an indication of the very poor prediction capability of mixture viscosity. Thus, the effect of the selection of reference fluids is more significant on quaternary n-alkane systems than on ternary systems. From Figure 5.16, it seems that eq. (5.17) is also applicable to quaternary n-alkane systems, since the minimum AAD of prediction was obtained when component 1 (C<sub>2</sub>) was chosen as r1 and component 2 (C<sub>0</sub>) as r2, and these two components have the minimum difference in the number of carbon atoms. But as can be seen from Figure 5.17, the expected best combination of r1=C<sub>10</sub> and r2=C<sub>12</sub>, i.e. the combination with the two

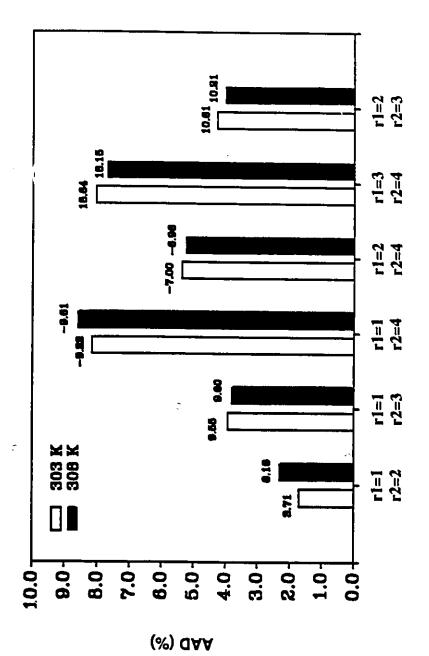
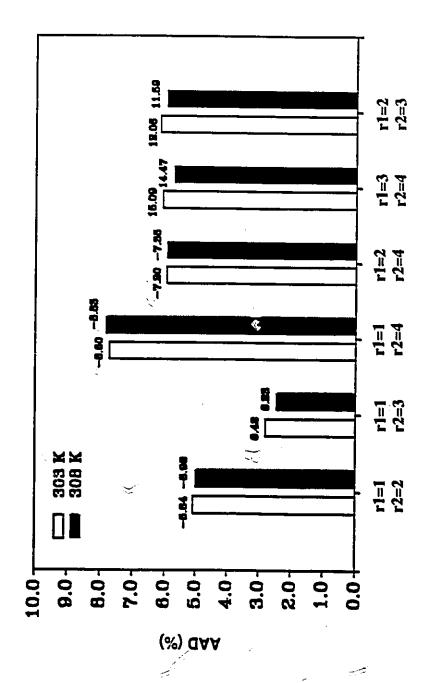




Figure 5.16. Results of Applying GCSP to C<sub>7</sub> - C<sub>9</sub> - C<sub>12</sub> - C<sub>16</sub> n-Alkane Quaternary System



ĩ.<u>.</u>.

Figure 5.17. Results of Applying GCSP to C<sub>6</sub> - C<sub>10</sub> - C<sub>12</sub> - C<sub>16</sub> n-Alkane Quaternary System

reference fluids having the minimum difference in carbon at m numbers, gave 6% AAD and 12% MAX at both temperatures, whereas the combination  $r1 = C_6$  and  $r2 = C_{12}$  gave the minimum AAD, 3%, and 6.5% MAX. Therefore, eq. (5.17) cannot be used in quaternary n-alkane mixtures as a standard for choosing appropriate reference fluids.

The reason is probably that if two of the four components were chosen as r1 and r2 when the concentrations of the other two components are predominant, the mixture and the reference fluids have little similarity. Unfortunately, it is this similarity that provides the GCSP with the capability of predicting mixture viscosity. Therefore, in selecting reference fluids for quaternary mixtures, not only the difference of carbon atom numbers of the reference fluids is important, but also the concentration of the mixture should be considered.

The percent deviations given by the GCSP for the two quaternary mixtures, indicated above, at 303 K at different compositions are shown in Tables 5.17 and 5.18, respectively. The results of the two mixtures at 308 K have the same trends as those at 303 K as shown in Figures 5.16 and 5.17. Therefore, they have not been listed. One can conclude on the basis of the data reported in Tables 5.17 and 5.18 that when two of the four components have predominant concentrations, no high values of MAX are obtained if they are chosen as reference fluids, but such a selection does not guarantee obtaining minimum error. In other words, non-selection of the two components which have predominant concentrations as reference fluids in the quaternary mixture could cause very large errors, but selecting these two components does not necessarily give the best results although it can avoid the large values of deviation. It is a rather complicated situation.

Table 5.17 The Values of Percent Deviation of Testing GCSP ( $\xi_{ij}$ =1) with the Viscosity Data of n-Alkane Quaternary Mixture  $C_7(1)$ - $C_9(2)$ - $C_{12}(3)$ - $C_{16}(4)$  at 303.16 K

|                       |                       |                       |              |              | Percent D    | Deviation (  | %)           |              |
|-----------------------|-----------------------|-----------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | <b>x</b> <sub>3</sub> | r1=1<br>r2=2 | r1=1<br>r2=3 | rl=1<br>r2=4 | r1=2<br>r2=4 | r1=3<br>r2=4 | r1=2<br>r2=3 |
| 0.07483               | 0.07466               | 0.42552               | 3.71         | 9.55         | -8.58        | -6.98        | 0.38         | 10.61        |
| 0.17416               | 0.17445               | 0.32635               | 0.77         | 5.44         | -9.22        | -7.00        | 3.40         | 5.67         |
| 0.25004               | 0.24921               | 0.25028               | -0.58        | 3.26         | -8.87        | -6.14        | 6.85         | 2.87         |
| 0.32462               | 0.32501               | 0.17506               | -1.62        | 1.38         | -8.18        | -4.89        | 10.98        | 0.38         |
| 0.42475               | 0.42538               | 0.07493               | -1.86        | 0.001        | -6.01        | -1.86        | 18.64        | -1.86        |

note: the data were taken from Wakefield, 1988.

Table 5.18 The Values of Percent Deviation of Testing GCSP ( $\xi_{ij}$ =1) with the Viscosity Data of n-Alkane Quaternary Mixture  $C_6(1)$ - $C_{10}(2)$ - $C_{12}(3)$ - $C_{16}(4)$  at 303.16 K

|                       |                       |                       |               |              | Percent D    | eviation (   | %)           |              |
|-----------------------|-----------------------|-----------------------|---------------|--------------|--------------|--------------|--------------|--------------|
| <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | r1=1<br>r2=2  | r1=1<br>r2=3 | r1=1<br>r2=4 | r1=2<br>r2=4 | r1=3<br>r2=4 | r1=2<br>r2=3 |
| 0.08312               | 0.07472               | 0.42175               | -4.43         | 6.42         | -8.01        | -6.99        | -0.22        | 12.06        |
| 0.17435               | 0.17551               | 0.32506               | -5.53         | 3.65         | -8.60        | -7.20        | 2.11         | 4.91         |
| 0.24928               | 0.24931               | 0.25090               | -5.84         | 2.06         | -8.50        | -6.79        | 4.75         | -0.05        |
| 0.32880               | 0.32389               | 0.17333               | -5.68         | 0.88         | -7.91        | -5.85        | 8.27         | -4.69        |
| 0.42524               | 0.42483               | 0.07514               | <b>?-3.90</b> | 0.95         | -5.57        | -2.98        | 15.09        | -9.13        |

note: the data were taken from Wakefield, 1988

There are mainly two cases with regard to the compositions of the mixture:

- (i) In the case where the mole fractions of each component being approximately equal, the reference fluids can be chosen according to eq. (5.17). For example, when the mole fractions of the four components are all around 0.25, as shown in Table 5.17, the minimum deviation of -0.58% appeared when r1 = C<sub>7</sub> (component 1) and r2 = C<sub>9</sub> (component 2). Here the pair C<sub>7</sub> C<sub>9</sub> has the minimum carbon atom number difference. Another example is that when the mole fractions of the four components are all around 0.25, as shown in Table 5.18, the minimum deviation of -0.05% was obtained when r1=C<sub>10</sub> (components 2) and r2=C<sub>12</sub> (component 3). Here again, the pair C<sub>10</sub> C<sub>12</sub> has the minimum carbon atom number difference.
- (ii) In the case where the mole fractions of each component are different, the selection of the reference fluids depends on both the kinds of components and the concentrations of such components as well as some unknown factors.

Therefore, it is really difficult to get correct predictions of the viscosity of quaternary mixtures by the GCSP.

For n-alkane mixtures with more than 4 components, the number of all possible combinations of r1 and r2 increases rapidly. Therefore, the selection of the best

<u>...</u>

combination of r1 and r2 becomes more difficult and the effects of mixture concentration could be more complicated. Obviously, the probability of obtaining incorrect estimation of mixture viscosity will be higher. Therefore, it is desirable to develop a simpler method with reasonably accurate capability in predicting the viscosity of multicomponent n-alkane liquid mixtures.

### 5.5.4 Proposed modification of the GCSP method

To overcome the difficulties encountered with the existing GCSP method, which were discussed earlier, a pseudo-binary mixture model based on the Corresponding States Principle and the Congruence Principle is thus proposed in this study. It is a modification of the GCSP, which is especially useful for n-alkane mixtures with more than three components.

In this model, a multicomponent mixture is considered as a binary system consisting of pure component 1 and pseudopure component 2', where component 2' is a mixture of components 2, 3, ...n. The reference fluids in this case are r1=1 and r2=2'. Therefore, the acentric factor, the critical properties and the reduced viscosity of component 2' (as r2) are required. To do this in the special case of n-alkane liquid mixtures, the corresponding properties of the pure n-alkanes were first investigated. The acentric factor,  $\omega$ , the critical temperature,  $T_c$  and the critical pressure,  $P_c$ , of the pure n-alkanes from  $C_5$  to  $C_{17}$  which were taken from Reid *et al.* (1977) are listed in Table 5.19. The values of the absolute viscosities,  $\eta$ , of  $C_5$  to  $C_{17}$  at several temperature levels taken from

Table 5.19 Physical Properties of Some Fure n-Alkanes Used in Pseudo-binary Mixture Model\*

| Compound      | Molecuiar<br>Weight | Critical<br>Temperature<br>K | Critical<br>Pressure<br>atm | Acentric<br>Factor |
|---------------|---------------------|------------------------------|-----------------------------|--------------------|
| n-Pentane     | 72.151              | 469.6                        | 33.3                        | 0.251              |
| n-Hexane      | 86.178              | 507.4                        | 29.3                        | 0.296              |
| n-Heptane     | 100.205             | 540.2                        | 27.0                        | 0.351              |
| n-Octane      | 114.232             | 568.8                        | 24.5                        | 0.394              |
| n-Nonane      | 128.259             | 594.6                        | 22.8                        | 0.444              |
| n-Decane      | 142.286             | 617.6                        | 20.8                        | 0.490              |
| n-Undecane    | 156.313             | 638.8                        | 19.4                        | 0.535              |
| n-Dodecane    | 170.340             | 658.3                        | 18.0                        | 0.562              |
| n-Tridecane   | 184.367             | 675.8                        | 17.0                        | 0.623              |
| n-Tetradecane | 198.394             | 694.0                        | 16.0                        | 0.679              |
| n-Pentadecane | 212.421             | 707.0                        | 15.0                        | 0.706              |
| n-Hexadecane  | 226.448             | 717.0                        | : 14.0                      | 0.742              |
| n-Heptadecane | 240.475             | 733.0                        | 13.0                        | 0.770              |

<sup>\*</sup> data were taken from "The Properties of Gases and Liquids", Reid et al., 1977

TRC Table (1988) are listed in Table 5.20. All these data were then plotted against their chain length, N (same as the number of carbon atoms). The plots of  $\omega$  vs. N,  $T_c$  vs. N and  $P_c$  vs. N are shown in Figures 5.18, 5.19 and 5.20, respectively. The logarithm of the reduced viscosity,  $\ln(\eta\epsilon)$ , was plotted versus N in Figure 5.21. All the figures show smooth curves. This means that these properties can be well represented by the polynomials of their chain lengths. The constants of these polynomials can be calculated by the least squares technique. Then according to the Congruence Principle (Brønsted and Koefoed, 1946), the properties of the n-alkane mixtures depend on the average chain length, which is given by

$$\overline{N} = \sum_{i} x_{i} N_{i} \tag{5.18}$$

of the pure n-alkanes can be used to estimate the same properties of the pseudopure component 2', with only the chain length of the pure n-alkane, N, replaced by the average chain length of 2', N. Thus, the following polynomials are obtained:

$$\omega^{r^2} = \sum_i A_i \, \overline{N}^i \tag{5.19}$$

$$T_{c,r2} = \sum_{i} B_i \, \overline{N}^i \tag{5.20}$$

$$P_{c,r2} = \sum_{i} C_i \, \overline{N}^i \tag{5.21}$$

and at each designated temperature

į.

----

Table 5.20

Pure n-Alkane Data Used in Pseudo-binary Mixture Model

| -             |          | Absolu   | te Viscosity ( | (10 <sup>-3</sup> Pa.s) |          |
|---------------|----------|----------|----------------|-------------------------|----------|
| Compound      | 293.15 K | 298.15 K | 303.15 K       | 308.15 K                | 313.15 K |
| n-Pentane     | 0.234    | 0.224    | 0.215          | 0.206                   |          |
| n-Hexane      | 0.3117   | 0.2976   | 0.2845         | 0.2724                  | 0.2611   |
| n-Heptane     | 0.4169   | 0.3955   | 0.3761         | 0.3581                  | 0.3416   |
| n-Octane      | 0.5450   | 0.5136   | 0.4850         | 0.4591                  | 0.4355   |
| n-Nonane      | 0.7139   | 0.6676   | 0.6260         | 0.5885                  | 0.5545   |
| n-Decane      | 0.9256   | 0.8588   | 0.7994         | 0.7465                  | 0.6989   |
| n-Undecane    | 1.185    | 1.092    | 1.009          | 0.9357                  | 0.8707   |
| n-Dodecane    | 1.503    | 1.374    | 1.261          | 1.163                   | 1.078    |
| n-Tridecane   | 1.880    | 1.706    | 1.555          | 1.424                   | 1.310    |
| n-Tetradecane | 2.335    | 2.104    | 1.904          | 1.734                   | 1.585    |
| n-Pentadecane | 2.863    | 2.560    | 2.303          | 2.084                   | 1.894    |
| n-Hexadecane  | 3.474    | 3.086    | 2.758          | 2.482                   | 2.243    |
| n-Heptadecane | 4.196    | 3.700    | 3.286          | 2.938                   | 2.642    |

<sup>\*</sup> data were taken from TRC Tables, 1988.

-----

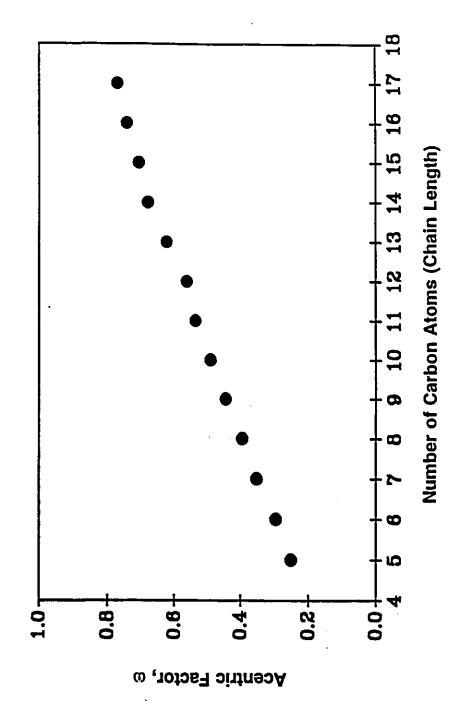
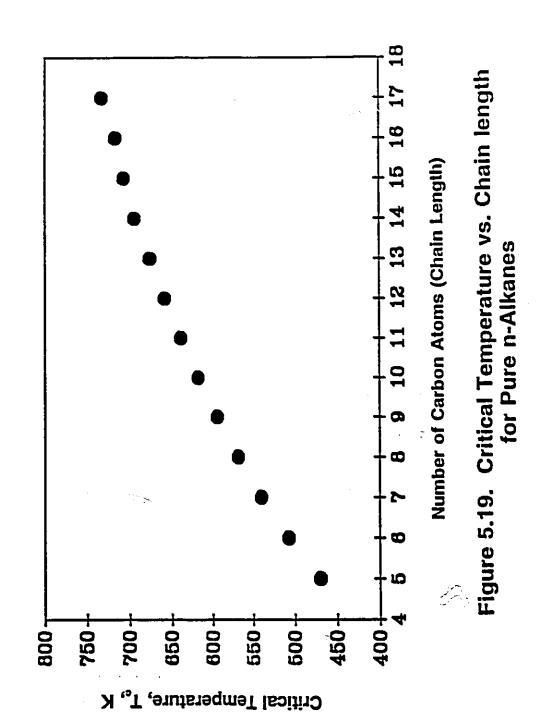




Figure 5.18. Acentric Factor vs. Chain Length for Pure n-Alkanes



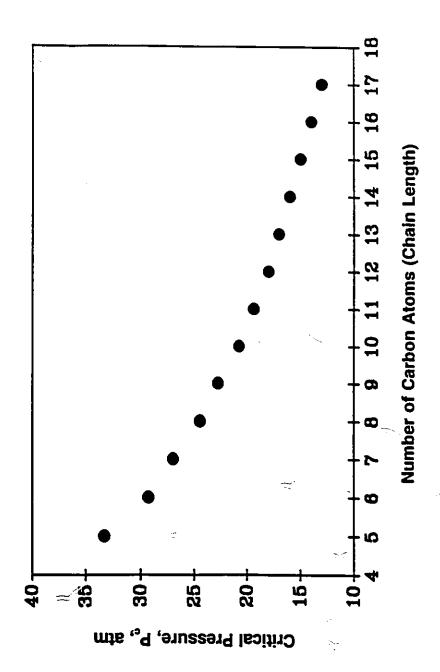



Figure 5.20. Critical Pressure vs. Chain Length for Pure n-Alkanes

\_\_\_\_

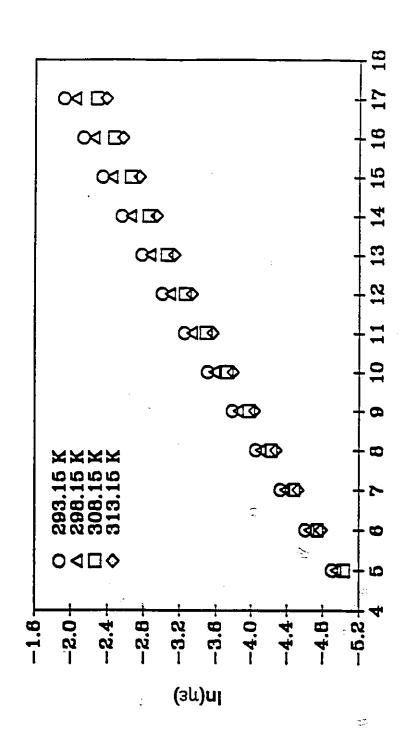



Figure 5.21. Logarithm of Reduced Viscosity vs. Chain Length for Pure n-Alkanes

Number of Carbon Atoms (Chain Length)

$$\ln(\eta \epsilon)^{r^2} = \sum_{i} D_i \, \overline{N}^i \tag{5.22}$$

The values of  $A_i$ ,  $B_i$  and  $C_i$  in eqs. (5.19), (5.20) and (5.21) are listed in Table 5.21, they are calculated from the data in Table 5.19. Because  $\omega_i$ ,  $T_{ci}$  and  $P_{ci}$  are all temperature independent,  $A_i$ ,  $B_i$  and  $C_i$  are also temperature independent. Eqs. (5.19), (5.20) and (5.21) can be used for any n-alkane liquid mixtures at any temperature level.

The values of  $D_i$  at 293.15, 298.15, 303.15, 308.15 and 313.15 are listed in Table 5.22.  $D_i$  are temperature dependent because the viscosity is temperature dependent. Since the viscosities, the critical properties and the molecular weights of the pure n-alkanes are available in the literature, then it is easy to calculate  $D_i$  at the temperatures of interest.

The values of all the constants above were calculated by the method of least squares.

The order of the polynomials was selected as the one beyond which additional terms did not significantly improve the fit.

By considering the multicomponent n-alkane mixtures as the pseudo-binary mixtures and using eqs. (5.19) to (5.22) to calculate  $\omega^{r2}$ ,  $T_{cr2}$ ,  $P_{cr2}$  and  $\ln(\eta\epsilon)^{r2}$ , the modified-GCSP is ready to use.

### 5.5.5 Application of the modified-GCSP method

For the five ternary n-alkane liquid mixtures, the values of AAD and MAX of calculating the absolute viscosity by the proposed modification of the GCSP method in

- 3:

Table 5.21

Least-Squares Constants for the Equations (5.19), (5.20) and (5.21)

|         | i=0        | i=1        | i=2         | i=3         |
|---------|------------|------------|-------------|-------------|
| $A_{i}$ | 0.03990659 | 0.04422527 |             |             |
| $B_{i}$ | 226.48701  | 60.8026973 | -2.63788711 | 0.04772727  |
| $C_{i}$ | 58.584615  | -6.898976  | 0.40398352  | -0.00917832 |

Table 5.22

Least-Squares Constants for Equation (5.22)

| T °K   | D <sub>o</sub> | D <sub>1</sub> | $D_2$       |
|--------|----------------|----------------|-------------|
| 293.15 | -6.521234      | 0.344638       | -0.00437817 |
| 298.15 | -6.522899      | 0.336758       | -0.00432932 |
| 303.15 | -6.523873      | 0.329475       | -0.00430982 |
| 313.15 | -6.543745      | 0.325592       | -0.00440440 |
| 318.15 | -6.532410      | 0.316683       | -0.00428502 |

the case of both  $\xi_{ij} = 1$  and  $\xi_{ij} \neq 1$  are listed in Table 5.23. Comparison of the data in Table 5.23 with those reported in Table 5.16 shows that when  $\xi_{12} = 1$ , the value of AAD given by the modified-GCSP is between the maximum and minimum values given by the original GCSP, but it is very close to the minimum one. When  $\xi_{12} \neq 1$ , the AAD value is significantly reduced. Also, it is clear that  $\xi_{12}$  is almost independent of temperature. The adjustable parameter  $\xi_{12}$  played a very important role in improving the accuracy of the method, but it can only be determined from experimental data. For the purpose of predicting it, an equation was proposed here which is based on the analysis of the relationship between  $\xi_{12}$  and carbon atom numbers of the components of the mixture. The equation is as follows

$$\xi_{12} = B_0 + B_1(N_2 - N_1) + B_2(N_3 - N_2)$$
 (5.23)

where  $B_o = 0.8367$ ,  $B_1 = 0.0328$  and  $B_2 = 0.0426$ . The values of these constants were calculated from the  $\xi_{12}$  values of five ternary mixtures at four temperatures (20 points) given in Table 5.23 by the method of least squares. The standard deviation of the fit is 0.015. The results of testing eq. (5.23) by using the literature viscosity data of the ternary system n-C<sub>6</sub>-n-C<sub>14</sub>-n-C<sub>16</sub> reported by Heric and Brewer (1969) are given in Table 5.24. As shown in Table 5.24, if  $\xi_{12}$  was set to unity, the modified-GCSP method gave 5.16% AAD, but if  $\xi_{12}$  was predicted by eq. (5.23), then the value of AAD is reduced to 1.46%. The results support the prediction of  $\xi_{12}$  by eq. (5.23).

For quaternary n-alkane mixtures, comparison of the modified-GCSP and the original GCSP for quaternary n-alkane mixtures  $C_7$ - $C_9$ - $C_{12}$ - $C_{16}$  and  $C_6$ - $C_{10}$ - $C_{12}$ - $C_{16}$  at 303.15 and 308.15 K (data were taken from Wakefield, 1988) is reported in Table 5.25. As can be

Table 5.23

Results of Using Modified-GCSP Method on Ternary n-Alkane Systems

|                                         | ξ    | , <sub>12</sub> = 1 |              | ξ <sub>12</sub> ≠ 1      |        |
|-----------------------------------------|------|---------------------|--------------|--------------------------|--------|
| System                                  | AAD  | MAX                 | AAD          | MAX                      | ξ12    |
|                                         |      | Temperatur          | e = 293.15 l | K                        |        |
| $C_8(1)$ - $C_{11}(2)$ - $C_{13}(3)$    | 0.56 | -0.93               | 0.12         | 0.32                     | 1.0341 |
| $C_8(1)$ - $C_{11}(2)$ - $C_{15}(3)$    | 1.56 | -2.40               | 0.29         | -0.46                    | 1.0986 |
| $C_{11}(1)-C_{13}(2)-C_{15}(3)$         | 0.32 | 1.13                | 0.35         | 1.06                     | 0.9910 |
| $C_8(1)$ - $C_{13}(2)$ - $C_{15}(3)$    | 1.20 | -2.11               | 0.30         | 0.95                     | 1.0733 |
| $C_{10}(1)-C_{13}(2)-C_{15}(3)$         | 0.48 | 0.88                | 0.34         | 0.99                     | 1.0150 |
|                                         |      | Temperatur          | e = 298.15   | κ                        |        |
| $C_8(1)$ - $C_{11}(2)$ - $C_{13}(3)$    | 0.62 | -1.08               | 0.16         | 0.37                     | 1.0377 |
| $C_8(1)$ - $C_{11}(2)$ - $C_{15}(3)$    | 1.67 | -2.44               | 0.22         | 0.43                     | 1.1045 |
| $C_{11}(1)-C_{13}(2)-C_{15}(3)$         | 0.36 | 0.95                | 0.37         | 0.88                     | 0.9917 |
| $C_8(1)$ - $C_{13}(2)$ - $C_{15}(3)$    | 1.35 | -2.52               | 0.34         | 0.85                     | 1.0844 |
| $C_{10}(1)-C_{13}(2)-C_{15}(3)$         | 0.47 | 0.89                | 0.43         | 0.95                     | 1.0087 |
| ·                                       |      | Temperatur          | re = 308.15  | <u>K</u> _               |        |
| $C_8(1)$ - $C_{11}(2)$ - $C_{13}(3)$    | 0.80 | -1.64               | 0.33         | 0.82                     | 1.0443 |
| $C_8(1)$ - $C_{11}(2)$ - $C_{15}(3)$    | 1.63 | -2.61               | 0.22         | 0.62                     | 1.1051 |
| $C_{11}(1)-C_{13}(2)-C_{15}(3)$         | 0.57 | 1.29                | 0.46         | 1.10                     | 0.9758 |
| $C_8(1)$ - $C_{13}(2)$ - $C_{15}(3)$    | 1.44 | -2.72               | 0.48         | 1.09                     | 1.0853 |
| $C_{10}(1)-C_{13}(2)-C_{15}(3)$         | 0.49 | 1.10                | 0.49         | 1.09                     | 0.9988 |
|                                         |      | Temperatu           | re = 313.15  | <u>K</u>                 | · .    |
| $C_8(1)-C_{11}(2)-C_{13}(3)$            | 0.88 | -1.82               | 0.27         | <b>0.84</b> <sub>-</sub> | 1.0512 |
| $C_8(1)-C_{11}(2)-C_{15}(3)$            | 1.78 | -2.84               | 0.23         | 0.82                     | 1.1139 |
| $C_{11}(1)-C_{13}(2)-C_{15}(3)$         | 0.63 | 1.43                | 0.51         | 1.22                     | 0.9721 |
| $C_8(1)-C_{13}(2)-C_{15}(3)$            | 1.52 | -2.93               | 0.52         | 1.11                     | 1.0903 |
| $C_{10}(1)$ - $C_{13}(2)$ - $C_{15}(3)$ | 0.50 | 1.08                | 0.50         | 1.09                     | 1.0012 |

 $\label{eq:table 5.24} Table 5.24$  Comparison of Using Calculated  $\xi_{12}$  Value with Using  $\xi_{12}{=}1$  in Modified-GCSP for n-Alkane Ternary Mixture  $C_6(1){-}C_{14}(2){-}C_{16}(3)$  at 298.15 K

|                |                       | ξ12=1                                       |                                             |                           |
|----------------|-----------------------|---------------------------------------------|---------------------------------------------|---------------------------|
| X <sub>3</sub> | <b>x</b> <sub>2</sub> | Exptl<br>Viscosity<br>10 <sup>-3</sup> Pa.s | Caled<br>Viscosity<br>10 <sup>-3</sup> Pa.s | Percent<br>Deviation<br>% |
| 0.0650         | 0.0796                | 0.4631                                      | 0.4467                                      | -3.5530                   |
| 0.1028         | 0.1119                | 0.5654                                      | 0.5363                                      | -5.1389                   |
| 0.1046         | 0.1763                | 0.6538                                      | 0.6193                                      | -5.2803                   |
| 0.1521         | 0.1151                | 0.6582                                      | 0.6182                                      | -6.0784                   |
| 0.1650         | 0.1831                | 0.7862                                      | 0.7350                                      | -6.5080                   |
| 0.0878         | 0.3651                | 0.9111                                      | 0.8659                                      | -4.9664                   |
| 0.2118         | 0.2258                | 0.9491                                      | 0.8961                                      | -5.5798                   |
| 0.3274         | 0.0947                | 0.9851                                      | 0.9224                                      | -6.3688                   |
| 0.1297         | 0.4208                | 1.1144                                      | 1.0596                                      | -4.9166                   |
| 0.2648         | 0.2924                | 1.2078                                      | 1.1441                                      | -5.2759                   |
| 0.3995         | 0.1514                | 1.2787                                      | 1,2048                                      | -5.7823                   |
| 0.1105         | 0.5396                | 1.3054                                      | 1.2520                                      | -4.0908                   |
| 0.2522         | 0.3998                | 1,4001                                      | 1,3406                                      | -4.2480                   |
| 0.3777         | 0.2696                | 1.4749                                      | 1.4071                                      | -4.5964                   |
| 0.5182         | 0.1243                | 1.5625                                      | 1.4844                                      | -4.9968                   |
|                |                       | AAD=5.16%                                   |                                             |                           |

note: the experimental viscosity data were taken from Heric, 1969

| X <sub>3</sub> | <b>x</b> <sub>2</sub> | Exptl<br>Viscosity<br>10 <sup>-3</sup> Pa.s | Calcd<br>Viscosity<br>10 <sup>-3</sup> Pa.s | Percent<br>Deviation<br>% |
|----------------|-----------------------|---------------------------------------------|---------------------------------------------|---------------------------|
| 0.0650         | 0.0796                | 0.4631                                      | 0.4620                                      | -0.2314                   |
| 0.1028         | 0.1119                | 0.5654                                      | 0.5587                                      | -1.1807                   |
| 0.1046         | 0.1763                | 0.6538                                      | 0.6471                                      | -1.0226                   |
| 0.1521         | 0.1151                | 0.6582                                      | 0.6458                                      | -1.8813                   |
| 0.1650         | 0.1831                | 0.7862                                      | 0.7688                                      | -2.2194                   |
| 0.0878         | 0.3651                | 0.9111                                      | 0.9037                                      | -0.8131                   |
| 0.2118         | 0.2258                | 0.9491                                      | 0.9356                                      | -1.4186                   |
| 0.3274         | 0.0947                | 0.9851                                      | 0.9634                                      | -2.2083                   |
| 0.1297         | 0.4208                | 1.1144                                      | 1.1008                                      | -1,2229                   |
| 0.2648         | 0.2924                | 1.2078                                      | 1.1877                                      | -1.6641                   |
| 0.3995         | 0.1514                | 1.2787                                      | 1.2508                                      | -2.1835                   |
| 0.1105         | 0.5396                | 1.3054                                      | 1,2922                                      | -1.0110                   |
| 0.2522         | 0.3998                | 1.4001                                      | 1.3830                                      | -1.2190                   |
| 0.3777         | 0.2696                | 1.4749                                      | 1.4517                                      | -1.5729                   |
| 0.5182         | 0.1243                | 1.5625                                      | 1.5315                                      | -1.9839                   |

**TABLE 5.25** 

Comparison of Modified-GCSP with GCSP for n-Alkane Quaternary Mixtures

|       |               |            |            |            |                                                                    |            | GCSP         |            |               |            |            |            |            |
|-------|---------------|------------|------------|------------|--------------------------------------------------------------------|------------|--------------|------------|---------------|------------|------------|------------|------------|
| Modif | Modified-GCSP | r1=1, r2=2 | r2=2       | r1=1, r2=3 | r2=3                                                               | r1=1, r2=4 | r2=4         | r1=2, r2=4 | 12=:4         | r1=3, r2=4 | 12=4       | r1=2, r2=3 | 2=3        |
| AAD   | AAD MAX       | AAD        | AAD MAX    | AAD        | AAD MAX                                                            | AAD        | AAD MAX      | AAD        | AAD MAX       | AAD        | AAD MAX    | AAD        | AAD MAX    |
|       |               |            | n-he       | ptane(1)-  | n-heptane(1)-n-nonane(2)-n-dodecane(3)-n-hexadecane(4) at 303.15 K | -n-dodec   | ane(3)-n-he  | кадесапе   | (4) at 303.1: | 5 K        |            |            | ļ          |
| 4.21  | 4.21 -5.28    | 17.1       | 1.71 3.71  | 3.93       | 3.93 9.55                                                          | 8.17       | 8.17 -9.22   | 5.37 -7.00 | -7.00         | 8.05       | 8.05 18.64 | 4.28       | 4.28 10.61 |
|       |               |            | n-he       | ptanc(1)-  | n-heptane(1)-n-nonane(2)-n-dedecane(3)-n-hexadecane(4) at 308.15 K | -n-dedec   | ane(3)-n-he  | cadecane   | (4) at 308.1: | 5 K        | :          |            |            |
| 4.41  | 4.41 -5.39    | 2.33       | 2.33 6.16  | 3.82       | 3.82 9.60                                                          | 8.60 -9.61 | 19.61        | 5.26       | 5.26 -6.96    | 7.72       | 7.72 18.15 | 4.03 10.2  | 10.21      |
|       |               |            | n-hc       | халс(1)-1  | n-hexane(1)-n-decane(2)-n-dodecane(3)-n-hexadecane(4) at 303.15 K  | n-dodeca   | ıne(3)-n-hex | adecane(   | 4) at 303,15  | ×          |            |            | !          |
| 4.35  | 4.35 -5.46    | 5.08       | 5.08 -5.84 | 2.79       | 2,79 6.42                                                          | 7.72       | 7.72 -8.60   | 5.96       | 5.96 -7.20    | 60.9       | 6.09 15.09 | 6.17       | 6.17 12.06 |
|       |               |            | n-hexa     | xane(1)-1  | ne(1)-n-decane(2)-n-dodecane(3)-n-hexadecane(4) at 308.15 K        | n-dodeca   | ne(3)-n-hex  | adecane(   | 4) at 308.15  | Ж          |            | :          |            |
| 4.34  | 4.34 -5.34    | 5.01       | 5.01 -5.98 | 2.47       | 2.47 6.23                                                          | 7.84       | 7.84 -8.83   | 5.96       | 5.96 -7.35    | 5.73       | 5.73 14.47 | 5.98       | 5.98 11.59 |

note: the data above were taken from Wakefield, 1988

seen, the modified-GCSP works well for the quaternary mixtures, the values of AAD of the modified-GCSP are always less than 4.5% and the values of MAX are always less than 5.5% for the two systems at both temperatures. There are no extremely high values of MAX as is the case in the original GCSP. Besides, it gives the minimum value of MAX in Table 5.25 except for the mixture  $C_7$ - $C_9$ - $C_{12}$ - $C_{16}$  at 303.15 K with r1= $C_7$  and r2=C<sub>9</sub>. Although the modified-GCSP does not give the smallest value of AAD, it gives the second smallest value of AAD for  $C_6$ - $C_{10}$ - $C_{12}$ - $C_{16}$  mixture and the third smallest value of AAD for C<sub>7</sub>-C<sub>9</sub>-C<sub>12</sub>-C<sub>16</sub> mixture when compared with all the AAD values from different combinations of r1 and r2. Considering that for quaternary mixtures, the original GCSP sometimes gave a value of maximum error as high as 18% and there is no valid method to select the best combination of rl and r2, the most important advantage of the proposed modification of the GCSP is that it provides a reliable means for predicting the viscosities of multicomponent (n>3) n-alkane liquid mixtures. There is no risk of obtaining an estimation of viscosity far from its real value over the entire composition range. A comparison of the results obtained by the proposed modification of the GCSP in the cases where  $\xi_{12} = 1$  and  $\xi_{12} \neq 1$  is given in Table 5.26. Correlation with the adjustable parameter  $\xi_{12}$  gave much better results than the prediction without  $\xi_{12}$  , but the viscosity data of the n-alkane quaternary are not enough to get an equation for predicting \xi\_12. Therefore, there is no way to calculate this parameter by using pure component properties for quaternary systems. Moreover, as can be noticed from Table 5.26, the values of  $\xi_{12}$ do not change too much with the temperatures and the systems, the suggestion is thus that the value of  $\xi_{12}$  could be taken as 1.32.

-

Table 5.26

Results of Using the Modified-GCSP with and without the Interaction Coefficient for Quaternary n-Alkane Systems

| System                                             | ξι2 = 1 |               | ξ <sub>12</sub> ≠ 1 |      |        |
|----------------------------------------------------|---------|---------------|---------------------|------|--------|
|                                                    | AAD     | MAX           | AAD                 | MAX  | ξ12    |
|                                                    | 7       | Cemperature = | = 303.15 K          |      |        |
| $C_6(1)$ - $C_{10}(2)$ - $C_{12}(3)$ - $C_{16}(4)$ | 4.35    | -5.46         | 1.25                | 2.86 | 1.3387 |
| $C_7(1)$ - $C_9(2)$ - $C_{12}(3)$ - $C_{16}(4)$    | 4.21    | -5.28         | 1.16                | 2.68 | 1.3110 |
|                                                    | 7       | remperature : | = 308.15 K          |      |        |
| $C_6(1)$ - $C_{10}(2)$ - $C_{12}(3)$ - $C_{16}(4)$ | 4.34    | -5.34         | 1.31                | 2.81 | 1.3382 |
| $C_7(1)-C_9(2)-C_{12}(3)-C_{16}(4)$                | 4.41    | -5.39         | 1.24                | 2.70 | 1.3231 |

As a matter of fact, it is the modified-GCSP method which provided the possibility and convenience of predicting  $\xi_{ij}$ , because there is only one  $\xi_{12}$  in the pseudo-binary mixture model no matter how many components the mixture actually contains. This is very important because there are  $C_n^2 = n!/[2!(n-2)!]$  combinations of  $\xi_{ij}$  in the original GCSP. For example, a quaternary mixture has 6  $\xi_{ij}$  and a quinary mixture has 10 and so on.

The pseudo-binary mixture model can be used for n-alkane liquid mixtures having unrestricted number of components.

Because there are no experimental data available for n-alkane liquid mixtures with more than four components, comparison cannot be made between the two methods for those mixtures in this study.

For mixtures of more than four components, the number of all possible combinations of r1 and r2 will increase rapidly, the selection of the proper combination becomes more difficult, and the probability to risk the incorrect estimation of mixture viscosity will be much higher. Therefore, the modified-GCSP method should be more meaningful for such mixtures.

# 5.6 Summary of the Viscosity Prediction Models

# 5.6.1 Binary n-alkane liquid systems

There are two choices of predicting mixture viscosities reliably for the binary n-

alkane liquid systems. One was reported by Asfour et al. (1991), the other is reported in this study. The two methods and their accuracies are described below:

- (i) The combination of the McAllister three-body model (eq. 2.25) with the technique of Asfour *et al.* (eqs. 2.27 and 2.28) can be used for systems with  $|N_2 N_1| < 4$ , which gives the AAD range of 0.02% ~ 0.4% (refer to Table 5.10), and the combination of the McAllister four-body model with the corresponding technique of Asfour *et al.*(eqs. 2.29 and 2.30) can be used for systems with  $|N_2 N_1| \ge 4$ , which gives the AAD range of 0.15% ~ 1.0% (refer to Table 5.11).
- (ii) The combination of the original GCSP method with the improvement proposed in this study (eq. 5.15) can be used for any binary n-alkane systems without limits in the difference of carbon atom numbers between the two components. The AAD range of this combination is 0.63% ~ 1.23% (refer to Table 5.15).

The above two methods have close AAD ranges, the latter requires more physical properties of the pure components than the former, but it is simpler in calculation than the former.

### 5.6.2 Ternary n-alkane liquid systems

For the viscosity prediction of ternary n-alkane liquid systems, three reliable methods can be used. They all result from the present study.

- (i) The combination of the ternary McAllister model (eq. 2.31) with the extension of the technique of Asfour *et al.* (1991), developed in this study (eq. 5.13), when tested by the only available literature ternary n-alkane viscosity data of C<sub>6</sub> -C<sub>14</sub> -C<sub>16</sub> (Heric and Brewer, 1969), gives an AAD of 0.36%.
- (ii) The combination of the original GCSP with the supplementary equation developed in this study, eq. (5.17), gives AAD range of 0.27% ~ 1.11% (refer to Table 5.16).
- (iii) The combination of the modified-GCSP with the prediction equation for the interaction coefficient, eq. (5.23), gives the AAD range of 0.12% ~ 1.46% (refer to Tables 5.23 and 5.24).

The above three methods have close AAD ranges. If more literature viscosity data of n-alkanes were available, method one and method three would be tested further to give more precise ranges of AAD.

# 5.6.3 Quaternary n-alkane liquid systems

According to the results of this study, the modified-GCSP method is the only reliable method for the prediction of the mixture viscosity for quaternary n-alkane liquid systems. When the binary interaction coefficient,  $\xi_{12}$ , is set to unity for prediction, the values of AAD are always less than 4.5% and the values of AAD when  $\xi_{12}$  is used as an adjustable parameter is in the range of 1.16% ~ 1.31% (reter to Table 5.26). Due to the scarcity of viscosity data of n-alkane quaternary systems, the only suggestion which can be made in this study on the basis of the results listed in Table 5.26 is that  $\xi_{12}$  can be set to 1.32 for more accurate viscosity prediction. It is believed that as long as more quaternary n-alkane viscosity data are collected, an equation similar to eq. (5.23) can be developed to predict  $\xi_{12}$  from the properties of pure components of the mixture.

#### CHAPTER 6

#### **CONCLUSIONS AND RECOMMENDATIONS**

#### 6.1 Conclusions

Viscosities of liquid mixtures are important tools required for engineering applications, but a reliable and generally valid theory for the prediction of liquid mixture viscosity from pure component properties has not been established yet. Thus, most of the theoretical investigations and industry designs are dependent on experimental viscosity data. For n-alkane liquid mixtures, their viscosity data are required for many purposes, especially in the petroleum industry, but there are insufficient data on these mixtures available in the literature. In this study, the viscosities of five selected n-alkane ternary liquid systems and their binary subsystems have been determined at 293.15, 298.15, 308.15 and 313.15 K over the entire composition range. The range of the mixture selected is representive of n-alkane liquid systems. The gathered experimental viscosity data can be considered as valuable addition to the literature.

The technique reported by Asfour *et al.* (1991) for predicting the McAllister binary parameters has been extended in this study to ternary n-alkane mixtures. An equation has been proposed in this study (eq. 5.13), which enables the McAllister model to predict the viscosities of ternary n-alkane mixtures accurately from pure component properties.

The Generalized Corresponding States Principle (GCSP) proposed by Teja and Rice (1981) was first tested by using experimental binary and ternary viscosity data. Then for

binary mixtures, eq. (5.15) has been proposed for the prediction of the binary interaction coefficient, which is essential for reducing prediction errors. For ternary mixtures, eq. (5.17) has been presented for reference fluid selection which can minimize the errors in viscosity prediction.

A pseudo-binary mixture model has been developed in this study. This model modifies the GCSP method for multicomponent n-alkane liquid mixtures. It is applicable to mixtures having unrestricted number of components. Since the GCSP method can be either a predictive or a correlating technique depending on whether or not the binary interaction coefficient is set to unity, the developed modified-GCSP method has been tested for the above two kinds of capabilities by ternary and quaternary data. Results show the obvious superiority of the modified-GCSP over the original one. If the modified-GCSP is used as a predictive method, the significant errors resulting from the choice of the reference fluids, as required by the original GCSP, are avoided. If the modified-GCSP is used as a correlation technique, the number of the binary interaction coefficients which is essential for minimizing the deviations is reduced to one, therefore, less costly experimental data are required. Also, the prediction of the binary interaction coefficient becomes possible.

For ternary n-alkane mixtures, eq. (5.23) was proposed in this study to predict the unique coefficient in modified-GCSP with satisfactory accuracy. For quaternary n-alkane mixtures, the modified-GCSP provides the maximum safety and reasonable accuracy in predicting mixture viscosities. If more viscosity data were available, a similar relationship to eq. (5.23) could be obtained to reduce the deviations further. For mixtures containing

more than four components, the selection of the proper reference fluids becomes more difficult and the probability to get wrong estimation of mixture viscosity from the original GCSP method becomes higher because of the increased number of components. Moreover, the increased number of the binary interaction coefficients required by the original GCSP need much more experimental data to determine their values. Therefore, the modified-GCSP method which does not involve the selection of reference fluids and which can make the binary interaction coefficient unique is more meaningful for such systems.

The densities of the selected five ternary n-alkane mixtures and eight binary subsystems were also measured at four temperature levels indicated above. Together with the viscosity data of these systems, some thermodynamic properties such as excess volume, excess activation energy and excess viscosity have been calculated and fitted to some literature models.

#### 6.2 Recommendations

Because of the scarcity of viscosity data on n-alkane systems containing four components and non-existence of data on those containing five components, the proposed modification of the GCSP method in this study is only verified by relatively limited data base. Although the results obtained have shown the superiority of the modified-GCSP over the original GCSP, viscosity-composition data on quaternary and quinary n-alkane liquid systems should be collected and such data should be employed for further testing

of the modified-GCSP method proposed in this study.

#### **NOMENCLATURE**

A constant generally used as parameter; molar reduced residual Helmholtz

free energy

A<sub>ij</sub> NRTL parameter: Heric's model parameter

AAD average absolute deviation, %

B constant generally used as parameter

C constant generally used as parameter

D constant generally used as parameter

E constant generally used as parameter

f shear stress for viscous flow

G<sub>ii</sub> NRTL nonrandomness factor

Δ'G activation energy of viscous flow per g-mole, J/mol

Δ'G<sub>o</sub> activation energy of viscous flow per molecule

h Planck's constant

H enthalpy of mixing

i index number in sum of the equations

j index number in sum of the equations

k Boltzmann's constant

m number of experimental points

M molecular weight, g/mol

MAX maximum deviation, %

| n                 | number of components of the mixture: nth component in the mixture   |
|-------------------|---------------------------------------------------------------------|
| N                 | number of carbon atoms (chain length) of pure n-alkanes             |
| Ñ                 | average number of carbon atoms of n-alkane liquid mixture           |
| $N_o$             | Avogadro's number                                                   |
| P                 | pressure, atm                                                       |
| R                 | gas constant                                                        |
| r                 | rate of a liquid molecule moving under shear stress                 |
| r <sub>o</sub>    | rate of a liquid molecule moving as a result of thermal fluctuation |
| S                 | entropy of mixing                                                   |
| t                 | efflux time of the viscometers, sec                                 |
| T                 | temperature, K; vibrating period of the density meter.sec           |
| ν                 | effective volume occupied by one molecule                           |
| v                 | molar volume of the liquid, L/kmol                                  |
| w                 | mass of the component, g                                            |
| $W_{\text{vise}}$ | interaction energy for the activation of flow                       |
| x                 | mole fraction                                                       |
| x                 | reduced compressibility, or reduced transport properties            |
| $x_{ji}$          | local mole fraction of component j around central molecule i        |
| <b>Z</b> .        | compressibility factor                                              |

## **Greek Letters**

| α                               | equivalent to $\lambda_1$ ; NRTL nonrandomness parameter                   |
|---------------------------------|----------------------------------------------------------------------------|
| ε                               | reciprocal of the fluid viscosity at critical temperature                  |
| η                               | absolute viscosity, 10 <sup>-3</sup> Pa.s                                  |
| θ                               | shape factor                                                               |
| λ                               | center to center distance between a molecule and a hole in Eyring's theory |
| $\lambda_1,\lambda_2,\lambda_3$ | intermolecular distances involved in Eyring's theory                       |
| v                               | kinematic viscosity, 10 <sup>-6</sup> m <sup>2</sup> /s                    |
| $\nu_{\iota 2}$                 | McAllister three-body binary model interaction parameter                   |
| $v_{21}$                        | McAllister three-body binary model interaction parameter                   |
| V <sub>123</sub>                | McAllister three-body ternary model interaction parameter                  |
| $\nu_{i112}$                    | McAllister four-body binary model interaction parameter                    |
| V <sub>2221</sub>               | McAllister four-body binary model interaction parameter                    |
| $v_{i122}$                      | McAllister four-body binary model interaction parameter                    |
| ξ                               | $ln(\eta V)$                                                               |
| $\xi_{ij}$                      | binary interaction coefficient in the Generalized Corresponding States     |
|                                 | Principle; intermolecular viscous interaction term in Rowley's model       |
| ξ <sub>toc</sub>                | $\xi$ based on local composition                                           |
| ξo                              | pure component ξ value                                                     |
| ρ .                             | density, kg/L                                                              |
| σ                               | free energy mixing parameter in Rowley's model                             |

 $\varphi$  shape factor: volume fraction  $\varphi_{ji} \qquad \qquad \text{local volume fraction of component j around central molecule i}$   $\omega \qquad \qquad \text{Pitzer acentric factor}$ 

### Subscripts

| 1,2,3,4 | refer to various components in the mixture, respectively    |
|---------|-------------------------------------------------------------|
| 123     | refer to interaction between three molecules                |
| c       | critical properties                                         |
| cm      | pseudocritical properties                                   |
| i,j     | refer to ith and jth component in the mixture, respectively |
| ij      | refer to interaction of type i-j                            |
| n       | refer to nth component in the mixture                       |
| 0       | refer to the reference fluid                                |
| rl      | refer to reference fluid 1                                  |
| r2      | refer to reference fluid 2                                  |
| α       | refer to pure fluid $\alpha$                                |

## Superscripts

refer to asymmetric parameter; refer to pseudo binary mixture

\* refer to composition when  $\xi_{21} = \xi_{loc}$ 

calculated value

E excess over the ideal solution property

exptl experimental value

o refer to the reference fluid

R reduced properties

rl refer to reference fluid 1

r2 refer to reference fluid 2

 $\alpha$  refer to pure fluid  $\alpha$ 

#### REFERENCES

- Andrade, E. N. da C. "The viscosity of liquids," Nature, London, 125, 309 and 582 (1930).
- Andrade, E. N. da C. "The viscosity of liquids," Endeavour, 117-127 (1954).
- Asfour, A. A. "Mutual and intra-(self-) diffusion coefficients and viscosities of binary liquid solutions at 25.00°C," Ph.D. Thesis, University of Waterloo, Waterloo, Canada, 1980.
- Asfour, A. A.; Dullien, F. A. L. "Viscosities and densities of four binary liquid systems at 25.00°C." J. Chem. Eng. Data, 26, 312-316 (1981).
- Asfour, A. A.: Cooper, E. F.: Wu, J.; Zahran, R. R. "Prediction of the McAllister model parameters from pure component properties for liquid binary n-alkane systems," *I&EC Research*, 30, 1666-1669 (1991).
- Brønsted, J. N.; Koefoed, J., Kgl. Danske Videnskab. Selskab. Skr., Mat.-fys. Medd., 22. 1 (1946).
- Cannon, M. R.; Manning, R. E.; Bell, J. D. "Viscosity measurement, the kinematic energy correction and a new viscometer," *Anal. Chem.*, 32, 355-358 (1960).
- Chandramouli, V. V.; Laddha, G. S. "Viscosity of ternary liquid mixtures," *Indian J. Technol.*, <u>1</u> (5), 199-203 (1963).
- Chevalier, J. L. E.; Petrino, P. J.; Gaston-Bonhomme, Y. H. "Viscosity and density of some aliphatic, cylic, and aromatic hydrocarbons binary liquid mixtures," *J. Chem. Eng. Data*, 35, 206-212 (1990).
- Christensen, J. J.; Hawks, R. W.; Izatt, R. M. "Handbook of heats of mixing," Wiley, New York, 1982.
- Coursey, B. M.; Heric, E. L. "The congruence principle applied to viscosity of n-alkane mixtures," *Molecular Phys.*, 13, 287-291 (1967).
- Coursey, B. M.; Heric, E. L. "Viscosity prediction through extrapolation with the congruence principle," Can. J. Chem. Eng., 47, 410-413 (1969).
- Desmyter, A.; van der Waals, J. H. "Thermodynamic properties of mixtures of alkanes differing in chain length, IV," Recueil, 77, 53-65 (1958).

- Ely, J. F.; Hanley, H. J. M. "Prediction of transport properties. 1. Viscosity of fluids and mixtures," *I&EC Fundam.*, 20, 323-332 (1981).
- Ewell, R. H.; Eyring, H. "Theory of the viscosity of liquids as a function of temperature and pressure," J. Chem. Phys., 5, 726 (1937).
- Eyring, H. "The activated complex in chemical reactions," J. Chem. Phys., 3, 107-115 (1935).
- Eyring, H. "Viscosity, plasticity, and diffusion as examples of absolute reaction rates," J. Chem. Phys., 4, 283-291 (1936).
- Eyring, H. "Statistical dynamics," Colloquium Lectures in Pure and Applied Science, No. 3, Magnolia Petr. Co., Dallas, 1957.
- Eyring, H.; Jhon, M. S. "Significant liquid mixtures," John Wiley & Sons, Inc., New York, 1969.
- Garcia, M.; Rey, C.; Villar, V. P.; Rodriguez, J. R. "Excess volumes of n-octane + n-undecane between 288.15 and 308.15 K," *J. Chem. Eng. Data*, <u>31</u>, 481-483 (1986).
- Glasstone, S.; Laidler, K. J.; Eyring, H. "The theory of rate processes," McGraw-Hill, New York, 1941.
- Guggenheim, E. A. "Mixtures," Oxford University Press, London, 1952.
- Handa, Y. P.; Benson. G. C. "Volume changes on mixing two liquids: A review of the experimental techniques and the literature data," *Fluid Phase Equilibria*, 3, 185-249 (1979).
- Helfand, E.; Rice, S. A. "Principle of corresponding states for transport properties," J. Chem. Phys., 32, 1642 (1960).
- Heric, E. L. " On the viscosity of ternary mixtures,," J. Chem. Eng. Data, 11, 66-68 (1966).
- Heric, E. L.; Brewer, J. G. "Viscosity of some binary liquid nonelectrolyte mixtures," J. Chem. Eng. Data, 12, 574-583 (1967).
- Heric, E. L.; Brewer, J. G. "Viscosity of some ternary liquid nonelectrolyte mixtures," J. Chem. Eng. Data, 14, 55-63 1969.

:

- Hirschfelder, J. O.; Curtiss, C. F.: Bird, R. B. "Molecular theory of gases and liquids," Wiley, New York, 1954.
- Hwang, M.; Wallace, W. B. "A corresponding states treatment for the viscosity of polar fluids," *I&EC Res.*, 26, 1758-1766 (1987).
- Inglese, A.; Grolier, J.; Wilhelm, E. "Excess volumes of mixtures of oxolane, oxane, 1.3-dioxolane, and 1.4-dioxane with n-alkanes at 298.15, and 318.15 K," J. Chem. Eng. Data, 28, 124-127 (1983).
- Irving, J. B. "Viscosity of binary liquid mixtures: a survey of mixture equations," NEL Report No. 630, East Kilbride, Glasgow: National Engineering Laboratory, February 1977.
- Joffe, J. "Combining rules for the third parameter in the pseudocritical method for mixtures," *I&EC Fundam.*, 10, 532-533 (1971).
- Kalidas, R.; Laddha, G. S. "Viscosity of ternary liquid mixtures," J. Chem. Eng. Data, 9, 142-145 (1964).
- Katti, P. K.; Chaudhri, M. M. "Viscosities of binary mixtures of benzyl acetate with dioxane, aniline, and m-cresol," J. Chem. Eng. Data, 9, 442-443 (1964).
- Leach, J. W.; Chappelear, P. S.; Leland, T. W. "Use of molecular shape factors in vapor-liquid equilibrium calculations with the corresponding states principle," *AIChE J.*, <u>14</u>, 568 (1968).
- Lee, B. I.; Kesler, M. G. "A generalized thermodynamic correlation based on three-parameter corresponding states," *AIChE J.*, <u>21</u>, 510-527 (1975).
- Letsou, A.; Stiel, L. I. "Viscosity of saturated nonpolar liquids at elevated pressures," *AIChE J.*, 19, 409-411 (1973).
- Lim, C. B.; Williamson, A. G. "Excess volumes of ternary and quaternary mixtures of nalkanes," J. Chem. Thermodynamics., 12, 65-70 (1980).
- Looi, C. K.; Mayhew, C. J.; Williamson, A. G. "Application of the principle of congruence to ternary alkane mixtures," *J. Chem. Thermodynamics*, <u>6</u>, 1171-1174 (1974).
- McAllister, R. A. "The viscosity of liquid mixtures," AIChE J., 6, 427-431 (1960).
- Murrell J. N.; Boucher, E. A. "Properties of liquids and solutions," John Wiley & Sons,

- Mo. K. C.: Gubbins, K. E. "Molecular principle of corresponding states for viscosity and thermal conductivity of fluid mixtures," *Chem. Eng. Commun.*, <u>1</u>, 281-290 (1974).
- Partington, J. R. "An advanced treatise on physical chemistry: Vol. II, the properties of liquids," Longmans, Green, London, 1951.
- Preston, G. T.: Chapman, T. W.; Prausnitz, J. M. "Transport properties of cryogenic liquids and their mixtures," *Cryogenics*, 7, 274 (1967).
- Perry, R. H.; Chilton, C. H. "Chemical engineer's handbook, 5th edition," McGraw-Hill, New York, 1973.
- Pitzer, K. S.; Lippmann, D. Z.; Curl, R. F.; Huggins, C. M.; Peterson, D. E. "The volumetric and thermodynamic properties of fluids. II. Compressibility factor, vapor pressure and entropy of vaporization," *J. Am. Chem. Soc.*, <u>77</u>, 3433-3440 (1955).
- Ploecker, K.; Knapp, H.; Prausnitz, J. M. "Calculation of high-pressure vapor-liquid equilibria from a corresponding-states correlation with emphasis on asymmetric mixtures," *I&EC Process Des. Dev.*, <u>17</u>, 324-332 (1977).
- Pryde, J. A. "The liquid state," Hutchinson & CO LTD, London, 1966.
- Reed, T. M. III; Taylor, T. E. "Viscosities of Liquid mixtures," J. Phys. Chem., <u>63</u>, 58-67 (1959).
- Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. "The properties of gases and liquids," McGraw-Hill, New York, 1977.
- Renon, H.; Prausnitz, J. M. "Local compositions in thermodynamic excess functions for liquid mixtures," AIchE J., 14, 135-144 (1968).
- Rowley, R. L. "A local composition model for multicomponent liquid mixture thermal conductivities," *Chem. Eng. Sci.*, <u>37</u>, 897-904 (1982).
- Rowlinson, J. S. "Liquids and liquid mixtures," Butterworths, London, 1959.

Rowlinson, J. S.; Watson, I. D. "The prediction of the thermodynamic properties of fluids and fluid mixtures - I. The principle of corresponding states and its extensions," *Chem. Eng. Sci.*, 24, 1565-1574 (1969).

- Tabor, D. "Gases, liquids and solids," Penguin Inc. Books, Baltimore, 1969.
- Teja, A. S. "A corresponding states equation for saturated liquid densities," AIChE J., 26, 337-341 (1980).
- Teja, A. S.; Rice, P. "Generalized corresponding states method for the viscosities of liquid mixtures," *I&EC Fundam.*, <u>20</u>, 77-81 (1981).
- Teja. A. S.; Sandler, S. I. "II. Applications to the calculation of swelling factors of CO<sub>2</sub> crude oil systems," AIChE J., 26, 341 (1980).
- Teja. A. S.; Thurner, P. A.; Pasumartl, B. "Calculation of transport properties of mixtures for synfuels process design," *I&EC Process Des. Dev.*, <u>24</u>, 344-349 (1985).
- Teja, A.S.: Thurner, P. A. "The correlation and prediction of the viscosities of mixtures over a wide range of pressure and temperature," *Chem. Eng. Commun.*, 49, 69-79 (1986).
- Timmermans, J. "Physico-chemical constants of pure organic compounds," Vol. 1, Interscience, New York, 1950.
- Timmermans, J. "Physico-chemical constants of pure organic compounds," Vol. 1. Interscience, New York, 1965.
- Tham, M. J.; Gubbins, K. E. "Correspondence principle for transport properties of dense fluid," *I&EC Fundam.*, 8, 791 (1969).
- Tham, M. J.; Gubbins, K. E. "Correspondence principle for transport properties of dense fluid. Nonpolar polyatomic fluids," *I&EC Fundam.*, **9**, 63 (1970).
- TRC Thermodynamic Tables, Hydrocarbons, Suppl. No. 92, Thermodynamics Research Center, Houston, TX, 1986.

ζ.

- TRC Thermodynamic Tables, Hydrocarbons, Thermodynamics Research Center, Houston, TX, 1988.
- Wakefield, D. L.; March, K. N. "Viscosities of nonelectrolyte liquid mixtures. I. n-hexadecane + n-octane," *Int. J. Thermophys.*, 8, 649-662 (1987).
- Wakefield, D. L. "Viscosities of nonelectrolyte liquid mixtures. III. Selected binary and quaternary mixtures," *Int. J. Thermophys.*, 2, 365-381 (1988).
- Wakefield, D. L.; Marsh, K. N.; Zwolinski, B. J. "Viscosities of nonelectrolyte liquid mixtures. II. Binary and quaternary systems of some n-alkanes," Int. J.

- Thermophys., 9, 47-59 (1988).
- Wei, I. C.; Rowley, R. L. "Binary liquid mixture viscosities and densities," J. Chem. Eng. Data, 29, 332-335 (1984a).
- Wei, I. C.; Rowley, R. L. "Ternary liquid mixture viscosities and densities," J. Chem. Eng. Data, 29, 336-340 (1984b).
- Wei, I. C.; Rowley, R. L. "A local composition model for multicomponent liquid mixtures shear viscosity," *Chem. Eng. Sci.*, 40, 401-408 (1985).
- Wong, D. S. H.; Sandler, S. I. "Vapor-liquid equilibrium calculations by use of a generalized corresponding states principle. I. New mixing rules," *I&EC Fundam.*, 23, 38-44 (1984).
- Wu, J.; Asfour, A. A. "Composition dependence of densities and excess molar volumes of mixing of C<sub>8</sub> C<sub>15</sub> n-alkane binary liquid systems at 308.15 and 313.15 K," Fluid Phase Equilibria, 61, 275-284 (1991a).
- Wu, J.; Asfour, A. A. "Viscometric and volumetric properties of some n-alkane binary and ternary mixtures as functions of temperature," 11th Symposium on Thermophysical Properties, Boulder, CO USA, June 23-27, 1991b.

A PPENDICES

# Appendix A

Raw Data of Viscosity and Density Measurements

Table A.1

Raw Data of Binary System n-Octane(1)-n-Undecane(2)

| Mole Fraction | Density Meter<br>Reading<br>sec | Viscometer   | Efflux Time |
|---------------|---------------------------------|--------------|-------------|
|               | Temperature                     | e = 293.15 K |             |
| 0.0000        | 0.339514                        | [9]*         | [9]*        |
| 0.1007        | 0.339249                        | 50B158       | 348.890     |
| 0.2018        | 0.338972                        | 50B159       | 357.923     |
| 0.2995        | 0.338684                        | 25A498       | 708,167     |
| 0.4108        | 0.338343                        | 25A483       | 670.153     |
| 0.5076        | 0.338026                        | 50B159       | 289,793     |
| 0.5964        | 0.337717                        | 50B158       | 246.803     |
| 0.6995        | 0.337338                        | 50B159       | 251.715     |
| 0.7954        | 0.336964                        | 50B158       | 212.610     |
| 0.8978        | 0.336540                        | 25A498       | 455,290     |
| 1.0000        | 0.336094                        | [1]*         | [1]*        |
|               | Temperature                     | e = 298.15 K |             |
| 0.0000        | 0.339076                        | [10]*        | [10]*       |
| 0.0992        | 0.338815                        | 50B158       | 323.228     |
| 0.2059        | 0.338517                        | 50B159       | 332.050     |
| 0.2978        | 0.338247                        | 50B158       | 284.294     |
| 0.3916        | 0.337955                        | 50B159       | 293.706     |
| 0.5019        | 0.337594                        | 50B158       | 248.574     |
| 0.5959        | 0.337267                        | 50B159       | 255.048     |
| 0.7154        | 0.336823                        | 25A498       | 493.928     |
| 0.8041        | 0.336472                        | 25A498       | 462.058     |
| 0.9011        | - 0.336066                      | 25A498       | 429.150     |
| 1.0000        | 0.335621                        | [2]*         | [2]°        |

<sup>\*</sup> see Table A.14 for both the types of viscometer and the values of efflux time

Table A.1 (cont'd)

Raw Data of Binary System n-Octane(1)-n-Undecane(2)

| Mole Fraction | Density Meter<br>Reading<br>sec | Viscometer       | Efflux Time sec |
|---------------|---------------------------------|------------------|-----------------|
| ·             | Temperature                     | = 308.15 K       |                 |
| 0.0000        | 0.338206                        | [11]*            | [11]*           |
| 0.0969        | 0.337947                        | 50B159           | 310.578         |
| 0.1954        | 0.337666                        | 50B158           | 266.246         |
| 0.3001        | 0.337353                        | 50B159           | 274.680         |
| 0.3970        | 0.337047                        | 50B158           | 235.002         |
| 0.5094        | 0.336667                        | 50B159           | 240.518         |
| 0.5981        | 0.336352                        | 25A483           | 488.958         |
| 0.6968        | 0.335979                        | 25A498           | 447.140         |
| 0.7992        | 0.335568                        | 25A483           | 425,280         |
| 0.8998        | 0.335137                        | 25A498           | 386.600         |
| 1.0000        | 0.334675                        | [3]*             | [3]*            |
|               | Temperature                     | = 313.15 K       |                 |
| 0.0000        | 0.337775                        | [12]*            | [12]*           |
| 0.0953        | 0.337515                        | 50B158           | 264.815         |
| 0.1962        | 0.337226                        | 50B158           | 249.775         |
| 0.2979        | 0.336920                        | 50B159           | 258.703         |
| 0.3995        | 0.336592                        | 50B159           | 243.247         |
| 0.5061        | 0.336231                        | 25A498           | 480.058         |
| 0.5914        | 0.335924                        | 25A483           | 465.460         |
| 0.7010        | 0.335506                        | 25A483           | 431.577         |
| 0.8001        | 0.335105                        | 25A498           | 394.267         |
| 0.8999        | 0.334672                        | 25A483           | 375.434         |
| 1.0000        | 0.334206                        | [4] <sup>*</sup> | [4]*            |

<sup>\*</sup> see Table A.14 for both the types of viscometer and the values of efflux time

Table A.2

Raw Data of Binary System n-Octane(1)-n-Tridecane(2)

| Mole Fraction | Density Meter<br>Reading<br>sec | Viscometer   | Efflux Time |
|---------------|---------------------------------|--------------|-------------|
|               | Temperatur                      | e = 293.15 K | <del></del> |
| 0.0000        | 0.340972                        | [13]*        | [13]        |
| 0.1023        | 0.340640                        | 75J29        | 254,170     |
| 0.1966        | 0.340309                        | 50B159       | 522.153     |
| 0.3001        | 0.339914                        | 75J29        | 207.563     |
| 0.3813        | 0.339592                        | 50B158       | 390.593     |
| 0.4993        | 0.339077                        | 50B158       | 342.463     |
| 0.6002        | 0.338588                        | 50B159       | 334.977     |
| 0.6949        | 0.338086                        | 50B158       | 271.327     |
| 0.7976        | 0.337475                        | 50B159       | 262.060     |
| 0.9047        | 0.336782                        | 50B159       | 227.310     |
| 1.0000        | 0.336094                        | [1]*         | [1]*        |
|               | Temperature                     | e = 298.15 K |             |
| 0.0000        | 0.340551                        | [14]*        | [14]*       |
| 0.1246        | 0.340139                        | 75J29        | 227.570     |
| 0.1988        | 0.339876                        | 50B158       | 434.755     |
| 0.3028        | 0.339478                        | 50B159       | 430.880     |
| 0.3936        | 0.339104                        | 50B159       | 392.300     |
| 0.4971        | 0.338640                        | 50B158       | 318.908     |
| 0.5956        | 0.338160                        | 50B159       | 313.916     |
| 0.6970        | 0.337618                        | 25A498       | 588.783     |
| 0.7898        | 0.337073                        | 50B158       | 226.846     |
| 0.8988        | 0.336365                        | 50B159       | 216.198     |
| 1.0000        | 0.335627                        | [2]*         | [2]*        |

<sup>\*</sup> see Table A.14 for both the types of viscometer and the values of efflux time

Table A.2 (cont'd)

Raw Data of Binary System n-Octane(1)-n-Tridecane(2)

| Mole Fraction | Density Meter<br>Reading<br>sec | Viscometer         | Efflux Time sec |
|---------------|---------------------------------|--------------------|-----------------|
|               |                                 | erature = 308.15 K | 300             |
| 0.0000        | 0.339703                        | [15]*              | [15]*           |
| 0.0968        | 0.339380                        | 75J29              | 199.028         |
| 0.1961        | 0.339026                        | 50B158             | 373.645         |
| 0.2969        | 0.338636                        | 50B159             | 374.085         |
| 0.3966        | 0.338216                        | 50B158             | 308.680         |
| 0.4942        | 0.337770                        | 50B159             | 307.570         |
| 0.5983        | 0.337252                        | 50B158             | 250,440         |
| 0.7006        | 0.336693                        | 50B159             | 246.163         |
| 0.7985        | 0.336102                        | S0B158             | 199.538         |
| 0.9019        | 0.335410                        | 50B159             | 193.590         |
| 1.0000        | 0.334679                        | [3]*               | [3]*            |
|               | Temperatur                      | e = 313.15 K       | <u> ·</u>       |
| 0.0000        | 0.339282                        | [16]*              | [16]            |
| 0.0995        | 0.338950                        | 50B158             | 377.497         |
| 0.1969        | 0.338600                        | 50B158             | 346.910         |
| 0.2992        | 0.338200                        | 50 <b>B</b> 159    | 347.963         |
| 0.3967        | 0.337786                        | 50B159             | 317.518         |
| 0.4967        | 0.337325                        | 50B158             | 261.605         |
| 0.5993        | 0.336805                        | 50B158             | 235.355         |
| 0.6949        | 0.336282                        | 50B159             | 233.823         |
| 0.7971        | 0.335661                        | 25A498             | 439.097         |
| 0.8964        | 0.334988                        | 25A483             | 398.200         |
| 1.0000        | 0.334206                        | [4]*               | [4]*            |

<sup>\*</sup> see Table A.14 for both the types of viscometer and the values of efflux time

Table A.3

Raw Data of Binary System n-Octane(1)-n-Pentadecane(2)

| Mole Fraction x <sub>1</sub> | Density Meter<br>Reading<br>sec | Viscometer     | Efflux Time |
|------------------------------|---------------------------------|----------------|-------------|
|                              | Temperatur                      | e = 293.15 K   |             |
| 0.0000                       | 0.342067                        | [17]*          | [17]*       |
| 0.1032                       | 0.341704                        | 75J29          | 371,270     |
| 0.2005                       | 0.341332                        | 50B159         | 739,947     |
| 0.2833                       | 0.340982                        | <b>75J29</b>   | 293.707     |
| 0.3826                       | 0.340521                        | 50B159         | 576.980     |
| 0.5038                       | 0.339891                        | 50B158         | 435.510     |
| 0.6008                       | 0.339327                        | 50B159         | 414.137     |
| 0.7150                       | 0.338570                        | 50B158         | 308.830     |
| 0.7994                       | 0.337937                        | 50B158         | 268.023     |
| 0.8985                       | 0.337093                        | 25A498         | 516.110     |
| 1.0000                       | 0.336094                        | [1]*           | [1]*        |
|                              | Temperatur                      | re = 298.15 K  |             |
| 0.0000                       | 0.341649                        | [18]*          | [18]*       |
| 0.1114                       | 0.341254                        | 75 <b>J</b> 29 | 331.684     |
| 0.1978                       | 0.340916                        | 75J29          | 298.172     |
| 0.2962                       | 0.340495                        | 75J29          | 262.822     |
| 0.3951                       | 0.340030                        | 50B158         | 472.123     |
| 0.4927                       | 0.339522                        | 50B159         | 451.900     |
| 0.5978                       | 0.338911                        | 50B158         | 350.588     |
| 0.7035                       | 0.338210                        | 50B158         | 295.928     |
| 0.8008                       | 0.337477                        | 50B158         | 250.400     |
| 0.9026                       | 0.336598                        | 50B159         | 228.550     |
| 1.0000                       | 0.335619                        | [2]*           | [2]*        |

<sup>\*</sup> see Table A.14 for the types of viscometer and the values of efflux time

Table A.3 (cont'd)

Raw Data of Binary System n-Octane(1)-n-Pentadecane(2)

| Mole Fraction  | Density Meter<br>Reading<br>sec | Viscometer    | Efflux Time |
|----------------|---------------------------------|---------------|-------------|
| X <sub>1</sub> |                                 | re = 308.15 K | SEC         |
| 0.0000         | 0.340820                        | [19]*         | [19]*       |
| 0.1015         | 0.340456                        | <b>75J29</b>  | 279.050     |
| 0.1973         | 0.340079                        | <b>7</b> 5J29 | 250.238     |
| 0.2986         | 0.339641                        | <b>75J29</b>  | 221.783     |
| 0.3975         | 0.339166                        | 50B158        | 401.810     |
| 0.4973         | 0.338635                        | 50B159        | 389.990     |
| 0.6065         | 0.337980                        | 50B158        | 301.213     |
| 0.6944         | 0.337387                        | 50B198        | 263.740     |
| 0.8053         | 0.336536                        | 50B159        | 242.785     |
| 0.9040         | 0.335664                        | 25A498        | 430.500     |
| 1.0000         | 0.334679                        | [3]*          | [3]*        |
|                | Temperatur                      | re = 313.15 K |             |
| 0.0000         | 0.340404                        | [20]*         | [20]*       |
| 0.1274         | 0.339940                        | 75J29         | 248.795     |
| 0.1958         | 0.339664                        | <b>75J29</b>  | 230.720     |
| 0.2936         | 0.339242                        | 50B158        | 423.313     |
| 0.3949         | 0.338752                        | 50B158        | 374.243     |
| 0.4956         | 0.338215                        | 50B159        | 361.603     |
| 0.6113         | <u>0.337511</u>                 | 50B159        | 308.355     |
| 0.6990         | 0.336913                        | 25A483        | 584.963     |
| 0.8018         | 0.336113                        | 50B159        | 230.680     |
| 0.9006         | 0.335232                        | 50B159        | 195.123     |
| 1.0000         | 0.334206                        | [4]*          | [4]*        |

<sup>\*</sup> see Table A.14 for both the types of viscometer and the values of efflux time

Table A.4

Raw Data of Binary System n-Decane(1)-n-Pentadecane(2)

| Mole Fraction | Density Meter<br>Reading<br>sec | Viscometer     | Efflux Time |
|---------------|---------------------------------|----------------|-------------|
|               | Temperatur                      | e = 293.15 K   |             |
| 0.0000        | 0.342063                        | [17]*          | [17]        |
| 0.0958        | 0.341822                        | 75 <b>J2</b> 9 | 386.260     |
| 0.1989        | 0.341551                        | 75J29          | 351.183     |
| 0.2947        | 0.341280                        | 50B159         | 722.367     |
| 0.3865        | 0.341005                        | 75 <b>J2</b> 9 | 291.620     |
| 0.4839        | 0.340692                        | 50B159         | 595.347     |
| 0.5780        | 0.340367                        | 50B158         | 489.270     |
| 0.6958        | 0.339927                        | 50B159         | 469,317     |
| 0.7980        | 0.339511                        | 50B159         | 417.680     |
| 0.9126        | 0.339003                        | 50B158         | 329.240     |
| 1.0000        | 0.338581                        | [5]*           | [5]*        |
|               | Temperatur                      | e = 298.15 K   |             |
| 0.0000        | 0.341647                        | [18]*          | [18]*       |
| 0.0973        | 0.341408                        | 75J29          | 347.590     |
| 0.1999        | 0.341135                        | 75J29          | 316.763     |
| 0.2983        | 0.340854                        | 75J29          | 289.140     |
| 0.3925        | 0.340570                        | 75J29          | 264.070     |
| 0.4933        | 0.340240                        | 50B158         | 489.763     |
| 0.6025        | 0.339857                        | 50B159         | 480.760     |
| 0.7033        | 0.339475                        | 50B158         | 391.550     |
| ~ 0.8079      | 0.339042                        | 50B158         | 347.316     |
| 0.9014        | 0.338624                        | 50B159         | 341.510     |
| 1.0000        | 0.338138                        | [6]*           | [6]*        |

<sup>\*</sup> see Table A.14 for the types of viscometer and the values of efflux time

Table A.4 (cont'd)

Raw Data of Binary System n-Decane(1)-n-Pentadecane(2)

| Mole Fraction | Density Meter<br>Reading<br>sec | Viscometer   | Efflux Time |
|---------------|---------------------------------|--------------|-------------|
|               | Temperatur                      | e = 308.15 K |             |
| 0.0000        | 0.340820                        | [19]*        | [19]*       |
| 0.1015        | 0.340563                        | 75J29        | 287.027     |
| 0.1942        | 0.340313                        | 75J29        | 265.473     |
| 0.3018        | 0.340004                        | 75J29        | 242.000     |
| 0.4028        | 0.339689                        | 75J29        | 220.860     |
| 0.5033        | 0.339356                        | 75J29        | 201.008     |
| 0.6010        | 0.339006                        | 50B158       | 375.043     |
| 0.7040        | 0.338609                        | 50B158       | 337.268     |
| 0.8051        | 0.338184                        | 50B158       | 302.705     |
| 0.9044        | 0.337730                        | 50B159       | 297.673     |
| 1.0000        | 0.337251                        | [7] <b>*</b> | [7]*        |
|               | Temperature                     | e = 313.15 K |             |
| 0.0000        | 0.340411                        | [20]*        | [20]*       |
| 0.0999        | 0.340155                        | 75J29        | 263.110     |
| 0.1932        | 0.339903                        | 75J29        | 244.125     |
| 0.3013        | 0.339592                        | 75J29        | 222.983     |
| 0.4013        | 0.339281                        | 75J29        | 204.403     |
| 0.5059        | 0.338929                        | 50B158       | 381.425     |
| 0.5986        | 0.338595                        | 50B158       | 349.315     |
| 0.7028        | 0.338187                        | 50B159       | 346.505     |
| 0.8009        | 0.337772                        | 50B158       | 284.548     |
| 0.8988        | 0.337320                        | 50B159       | 218.097     |
| 1.0000        | 0.336813                        | [8]*         | [8]*        |

<sup>\*</sup> see Table A.14 for the types of viscometer and the values of efflux time

Table A.5

Raw Data of Binary System n-Undecane(1)-n-Pentadecane(2)

| Mole Fraction | Density Meter<br>Reading<br>sec | Viscometer     | Efflux Time |
|---------------|---------------------------------|----------------|-------------|
|               | Temperatur                      | e = 293.15 K   | •           |
| 0.0000        | 0.342058                        | [17]*          | [17]*       |
| 0.1013        | 0.341860                        | 75J29          | 390.997     |
| 0.2015        | 0.341651                        | 75J29          | 362.580     |
| 0.3004        | 0.341436                        | 75 <b>J</b> 29 | 335.840     |
| 0.4036        | 0.341198                        | 50B158         | 635.380     |
| 0.5046        | 0.340951                        | 50B159         | 645.840     |
| 0.6010        | 0.340705                        | 50B158         | 537.670     |
| 0.7004        | 0.340433                        | 50B159         | 541.767     |
| 0.8000        | 0.340144                        | 50B158         | 449.617     |
| 0.8974        | 0.339845                        | 50B159         | 451.500     |
| 1.0000        | 0.339507                        | [9]*           | [9]*        |
|               | Temperature                     | e = 298.15 K   |             |
| 0.0000        | 0.341649                        | [18]*          | [18]*       |
| 0.1026        | 0.341447                        | 75J29          | 351.723     |
| 0.2004        | 0.341243                        | 75J29          | 327.570     |
| 0.2994        | 0.341025                        | <b>75J29</b>   | 304.253     |
| 0.3983        | 0.340797                        | <b>75J29</b>   | 281.765     |
| 0.5079        | 0.340528                        | <b>75J29</b>   | 258.545     |
| 0.5973        | 0.340295                        | <b>75J2</b> 9  | 240.128     |
| 0.7022        | 0.340008                        | 50B158         | 453.315     |
| 0.7975        | 0.339730                        | 50B158         | 415.736     |
| 0.9019        | 0.339405                        | 50B158         | 377.105     |
| 1.0000        | 0.339079                        | [10]*          | [10]*       |

<sup>\*</sup> see Table A.14 for the types of viscometer and the values of efflux time

Table A.5 (cont'd)

Raw Data of Binary System n-Undecane(1)-n-Pentadecane(2)

| Mole Fraction | Density Meter<br>Reading | Winner                     | Efflux Time         |
|---------------|--------------------------|----------------------------|---------------------|
| Х1            | Sec Temperatur           | Viscometer<br>e = 308.15 K | sec                 |
| 0.0000        | 0,340820                 | [19]*                      | [19]*               |
| 0.1005        | 0.340618                 | 75J29                      | 291,563             |
| 0.1976        | 0.340414                 | 75J29                      | 273.023             |
| 0.3007        | 0.340185                 | 75J29                      | 254,325             |
| 0.4013        | 0.339946                 | 75J29                      | 236,475             |
| 0.5074        | 0.339683                 | 50B158                     | <del>41</del> 8.712 |
| 0.5964        | 0.339446                 | 50B159                     | 461.100             |
| 0.7036        | 0.339151                 | 50B198                     | 384,923             |
| 0.7972        | 0.338869                 | 50B158                     | 356.418             |
| 0.9014        | 0.338541                 | 50B159                     | 358.605             |
| 1.0000        | 0.338206                 | [11]*                      | [11]*               |
| _             | Temperature              | e = 313.15 K               |                     |
| 0.0000        | 0.340407                 | [20]*                      | [20]*               |
| 0.0989        | 0.340205                 | 75J29                      | 267.103             |
| 0.1959        | 0.340000                 | 75J29                      | 250.765             |
| 0.2996        | 0.339767                 | 75J29                      | 233.932             |
| 0.3974        | 0.339538                 | 75J29                      | 218.515             |
| 0.4945        | 0.339294                 | 50B158                     | 418.483             |
| 0.5890        | 0.339046                 | 50B159                     | 429.348             |
| 0.7019        | 0.338726                 | 50B158                     | 359.580             |
| 0.7983        | 0.338439                 | 50B158                     | 331.410             |
| 0.9013        | 0.338107                 | 50B159                     | 334.650             |
| 1.0000        | 0.337773                 | [12]*                      | [12]*               |

<sup>\*</sup> see Table A.14 for the types of viscometer and the values of efflux time

Table A.6

Raw Data of Binary System n-Tridecane(1)-n-Pentadecane(2)

| Mole Fraction x <sub>1</sub> | Density Meter<br>Reading<br>sec | Viscometer   | Efflux Time |
|------------------------------|---------------------------------|--------------|-------------|
|                              | Temperatur                      | e = 293.15 K |             |
| 0.0000                       | 0.342058                        | [17]*        | [17]*       |
| 0.1030                       | 0.341959                        | 50B158       | 832.163     |
| 0.2020                       | 0.341860                        | <b>75J29</b> | 389,820     |
| 0.3023                       | 0.341758                        | 75J29        | 375.347     |
| 0.3967                       | 0.341659                        | <b>75J29</b> | 361,117     |
| 0.5078                       | 0.341539                        | 75J29        | 345.607     |
| 0.5972                       | 0.341441                        | 50B158       | 683.353     |
| 0.7003                       | 0.341325                        | 50B158       | 656.183     |
| 0.8019                       | 0.341206                        | 50B158       | 628.407     |
| 0.9018                       | 0.341086                        | 50B159       | 662.303     |
| 1.0000                       | 0.340965                        | [13]*        | [13]*       |
|                              | Temperatur                      | e = 298.15 K |             |
| 0.0000                       | 0.341649                        | [18]*        | [18]*       |
| 0.1000                       | 0.341551                        | 75J29        | 364.398     |
| 0.2001                       | 0.341452                        | 75J29        | 351.340     |
| 0.2975                       | 0.341351                        | 75J29        | 338.610     |
| 0.3984                       | 0.341246                        | <b>75J29</b> | 325.870     |
| 0.5000                       | 0.341136                        | 50B158       | 643.187     |
| 0.5985                       | 0.341026                        | 50B159       | 680.810     |
| 0.7037                       | 0.340909                        | 50B158       | 592.233     |
| 0.8004                       | <b>©340794</b>                  | 50B158       | 570.550     |
| 0.8983                       | 0.340674                        | 50B158       | 549,283     |
| 1.0000                       | 0.340551                        | [14]*        | [14]*       |

<sup>\*</sup> see Table A.14 for the types of viscometer and the values of efflux time

Table A.6 (cont'd)

Raw Data of Binary System n-Tridecane(1)-n-Pentadecane(2)

| Mole Fraction | Density Meter<br>Reading<br>sec | Viscometer     | Efflux Time |
|---------------|---------------------------------|----------------|-------------|
|               | Temperati                       | are = 308.15 K |             |
| 0.0000        | 0.340822                        | [19]*          | [19]*       |
| 0.1004        | 0.340721                        | 75J29          | 301.085     |
| 0.2017        | 0.340620                        | 75J29          | 290,718     |
| 0.2979        | 0.340520                        | 75J29          | 281.065     |
| 0.3944        | 0.340416                        | <b>75J29</b>   | 271.770     |
| 0.4994        | 0.340303                        | 75J29          | 261.583     |
| 0.5935        | 0.340196                        | 50B158         | 518.743     |
| 0.7015        | 0.340073                        | 50B158         | 498.343     |
| 0.8030        | 0.339951                        | 50B159         | 527.465     |
| 0.9036        | 0.339826                        | 50B158         | 461.175     |
| 1.0000        | 0.339706                        | [15]*          | [15]*       |
|               | Temperati                       | pre = 313.15 K |             |
| 0.0000        | 0.340405                        | [20]*          | [20]*       |
| 0.1024        | 0.340304                        | 75J29          | 274.935     |
| 0.1963        | 0.340206                        | 75J29          | 266.390     |
| 0.3028        | 0.340095                        | <b>75J29</b>   | 256.968     |
| 0.4019        | 0.339989                        | <b>75J29</b>   | 248.400     |
| 0.4997        | 0.339878                        | 75J29          | 240.118     |
| 0.5970        | 0.339770                        | 50B159         | 523.473     |
| 0.7040        | 0.339646                        | 50B158         | 458.063     |
| 0.8017        | 0.339526                        | 50B159         | 486.030     |
| 0.8985        | 0.339409                        | 50B159         | 468.860     |
| 1.0000        | 0.339279                        | [16]*          | [16]*       |

<sup>\*</sup> see Table A.14 for the types of viscometer and the values of efflux time

Table A.7

Raw Data of Binary System n-Decane(1)-n-Tridecane(2)

| Mole Fraction x <sub>1</sub> | Density Meter<br>Reading<br>sec | Viscometer    | Efflux Time |
|------------------------------|---------------------------------|---------------|-------------|
|                              | Temperatur                      | e = 293.15 K  |             |
| 0.0000                       | 0.340965                        | [13]*         | [13]*       |
| 0.0987                       | 0.340777                        | 75J29         | 264.757     |
| 0.1990                       | 0.340576                        | 50B159        | 561,793     |
| 0.2995                       | 0.340366                        | 75J29         | 233.233     |
| 0.3997                       | 0.340146                        | 75J29         | 218.797     |
| 0.4986                       | 0.339917                        | 75J29         | 204.963     |
| 0.5974                       | 0.339681                        | 50B159        | 432.773     |
| 0.7015                       | 0.339418                        | 50B158        | 365.643     |
| 0.7973                       | 0.339161                        | 50B158        | 341.683     |
| 0.9014                       | 0.338870                        | 50B158        | 316.753     |
| 1.0000                       | 0.338578                        | [5] <b>*</b>  | [5]*        |
|                              | Temperature                     | e = 298.15 K  |             |
| 0.0000                       | 0.340551                        | [14]*         | [14]*       |
| 0.0939                       | 0.340369                        | 50B158        | 497.328     |
| 0.1985                       | 0.340159                        | <b>75J2</b> 9 | 227,590     |
| 0.2931                       | 0.339958                        | <b>75J2</b> 9 | 214.913     |
| 0.3988                       | 0.339725                        | 50B158        | 413.060     |
| 0.5031                       | 0.339481                        | 50B158        | 386.300     |
| 0.5995                       | 0.339247                        | 50B159        | 399,274     |
| 0.7013                       | 0.338987                        | 25A498        | 787.557     |
| 0.8001                       | 0.338724                        | 50B158        | 316.533     |
| 0.9011                       | 0.338436                        | 50B159        | 324.230     |
| 1.0000                       | 0.338140                        | [6] <b>*</b>  | [6]*        |

<sup>\*</sup> see Table A.14 for the types of viscometer and the values of efflux time

Table A.7 (cont'd)

Raw Data of Binary System n-Decane(1)-n-Tridecane(2)

| Mole Fraction                            | Density Meter<br>Reading<br>sec | Viscometer   | Efflux Time |
|------------------------------------------|---------------------------------|--------------|-------------|
| 7,111,21,121,121,121,121,121,121,121,121 | Temperatur                      | e = 308.15 K |             |
| 0.0000                                   | 0.339702                        | [15]*        | [15]*       |
| 0.0991                                   | 0.339510                        | 75J29        | 205.120     |
| 0.1956                                   | 0.339313                        | 75J29        | 194,280     |
| 0.2991                                   | 0.339090                        | 50B158       | 375.895     |
| 0.3993                                   | 0.338863                        | 50B158       | 354.730     |
| 0.5073                                   | 0.338608                        | 50B158       | 332.440     |
| 0.5962                                   | 0.338388                        | 50B159       | 346.455     |
| 0.6991                                   | 0.338123                        | 50B158       | 295.153     |
| 0.8037                                   | 0.337836                        | 50B159       | 303.424     |
| 0.8994                                   | 0.337559                        | 50B158       | 258.898     |
| 1,0000                                   | 0.337250                        | [7]*         | [7]*        |
|                                          | Temperatur                      | e = 313.15 K |             |
| 0.0000                                   | 0.339279                        | [16]*        | [16]*       |
| 0.1001                                   | 0.339080                        | 75J29        | 189.620     |
| 0.1979                                   | 0.338878                        | 75J29        | 179.944     |
| 0.2988                                   | 0.338661                        | 75J29        | 170.288     |
| 0.3996                                   | 0.338433                        | 75J29        | 160.863     |
| 0.5025                                   | 0.338187                        | 50B159       | 341.958     |
| 0.5994                                   | 0.337945                        | 50B158       | 293.498     |
| 0.6995                                   | 0.337683                        | 50B158       | 276.043     |
| 0.7980                                   | 0.337409                        | 50B159       | 285.585     |
| 0.9013                                   | 0.337109                        | 50B159       | 267.130     |
| 1.0000                                   | 0.336803                        | [8]*         | [8]*        |

<sup>\*</sup> see Table A.14 for the types of viscometer and the values of efflux time

Table A.8

Raw Data of Binary System n-Undecane(1)-n-Tridecane(2)

| Mole Fraction | Density Meter<br>Reading<br>sec | Viscometer   | Efflux Time |
|---------------|---------------------------------|--------------|-------------|
|               | Temperatur                      | e = 293.15 K |             |
| 0.0000        | 0.340972                        | [13]*        | [13]*       |
| 0.1389        | 0.340795                        | 75J29        | 265.317     |
| 0.2035        | 0.340710                        | 75J29        | 258.245     |
| 0.3044        | 0.340574                        | 50B158       | 507.903     |
| 0.4076        | 0.340430                        | 50B159       | 534.580     |
| 0.4924        | 0.340308                        | 75J29        | 228.248     |
| 0.5897        | 0.340167                        | 50B158       | 448.793     |
| 0.7108        | 0.339983                        | 50B159       | 468.095     |
| 0.8027        | 0.339837                        | 50B158       | 407.253     |
| 0.8980        | 0.339682                        | 50B159       | 429.030     |
| 1.0000        | 0.339514                        | [9]*         | [9]*        |
|               | Temperatur                      | e = 298.15 K |             |
| 0.0000        | 0.340541                        | [14]*        | [14]*       |
| 0.1023        | 0.340411                        | 75J29        | 245.895     |
| 0.2031        | 0.340277                        | 75J29        | 235.780     |
| 0.2991        | 0.340147                        | <b>75J29</b> | 226.763     |
| 0.3981        | 0.340008                        | <b>75J29</b> | 217.503     |
| 0.4981        | 0.339863                        | 50B158       | 428.020     |
| 0.5976        | 0.339715                        | 50B158       | 410.757     |
| 0.7028        | 0.339554                        | 50B159       | 432.000     |
| 0.8000        | 0.339401                        | 50B158       | 376.227     |
| 0.9004        | 0.339235                        | 50B159       | 395.630     |
| 1.0000        | 0.339068                        | [10]*        | [10]*       |

<sup>\*</sup> see Table A.14 for the types of viscometer and the values of efflux time

Table A.8 (cont'd)

Raw Data of Binary System n-Undecane(1)-n-Tridecane(2)

| Mole Fraction x <sub>1</sub> | Density Meter<br>Reading<br>sec | Viscometer   | Efflux Time |
|------------------------------|---------------------------------|--------------|-------------|
|                              | Temperatur                      | e = 308.15 K |             |
| 0.0000                       | 0.339706                        | [15]*        | [15]*       |
| 0.1051                       | 0.339568                        | 75J29        | 208.080     |
| 0.1986                       | 0.339445                        | 75J29        | 200.968     |
| 0.2953                       | 0.339311                        | 50B158       | 397.448     |
| 0.3954                       | 0.339168                        | 50B158       | 382.680     |
| 0.5039                       | 0.339008                        | 50B158       | 366.633     |
| 0.5908                       | 0.338878                        | 50B159       | 389.673     |
| 0.6994                       | 0.338710                        | 50B159       | 373.075     |
| 0.7972                       | 0.338554                        | 50B158       | 325.410     |
| 0.9027                       | 0.338378                        | 50B158       | 311.303     |
| 1.0000                       | 0.338209                        | [11]*        | [11]*       |
|                              | Temperatur                      | e = 313.15 K |             |
| 0.0000                       | 0.339283                        | [16]*        | [16]*       |
| 0.1040                       | 0.339146                        | 75J29        | 192.570     |
| 0.1964                       | 0.339023                        | 75J29        | 186.180     |
| 0.2972                       | 0.338882                        | 75J29        | 179.465     |
| 0.3982                       | 0.338738                        | 50B158       | 354.720     |
| 0.5078                       | 0.338575                        | 50B159       | 374.283     |
| 0.5968                       | 0.338440                        | 50B159       | 361.565     |
| 0.7018                       | 0.338277                        | 50B158       | 315.363     |
| 0.7985                       | 0.338117                        | 50B159       | 333.833     |
| 0.9009                       | 0.337947                        | 50B159       | 320.240     |
| 1.0000                       | 0.337774                        | [12]*        | [12]*       |

<sup>\*</sup> see Table A.14 for the types of viscometer and the values of efflux time

Table A.9

Raw Data of Ternary System n-Octane(1)-n-Undecane(2)-n-Tridecane(3)

| Mole     | Mole           | Density Meter           |              | Efflux  | Mole     | Mole           | Density Meter    |            | Efflux  |
|----------|----------------|-------------------------|--------------|---------|----------|----------------|------------------|------------|---------|
| Fraction | Fraction       | Reading                 |              | Time    | Fraction | Fraction       | Reading          |            | Time    |
| χı       | X <sub>2</sub> | sec                     | Viscometer   | sec     | x¹       | X <sub>2</sub> | sec              | Viscometer | Sec     |
|          | Temper         | Terhperature = 293.15 K |              |         |          | T              | Temperature = 29 | 298.15 K   |         |
| 1.0000   | 0.0000         | 0.336090                | [1]          | [1]     | 0.0000   | 0.0000         | 0.335615         | [2]*       | [2]     |
| 0.0000   | 1.0000         | 0,339513                | <b>.</b> [6] | [6]     | 0.0000   | 1.0000         | 0.339068         | [01]       | [10]    |
| 0.0000   | 00000          | 0,340972                | [13]         | [13]    | 0.0000   | 0.0000         | 0.340542         | [14]       | [14]    |
| 0,1043   | 0.1018         | 0.340494                | 75129        | 243.133 | 0.1053   | 0.1002         | 0.340057         | 75129      | 222.855 |
| 0.1087   | 0.7938         | 0.339402                | 50B159       | 398.963 | 0.1052   | 0.7940         | 0.338971         | 50B158     | 337.367 |
| 0.2058   | 0.2046         | 0.339969                | 75129        | 209.235 | 0,2045   | 0.2002         | 0.339541         | 75129      | 193.257 |
| 0.2096   | 0.3973         | 0.339645                | 50B159       | 393.127 | 0.2062   | 0.3907         | 0.339227         | 50B158     | 364.300 |
| 0.2055   | 0.5981         | 0.339321                | 50B158       | 391.370 | 0.1979   | 0.6038         | 0.338895         | 50B159     | 366.660 |
| 0.3124   | 0.2921         | 0.339386                | 50B158       | 367.010 | 0.2998   | 0.2950         | 0.338990         | 50B158     | 344.597 |
| 0.3067   | 0.3977         | 0.339225                | 50B158       | 351.190 | 0.3058   | 0.3990         | 0.338780         | 50B159     | 358.780 |
| 0.4072   | 0.1998         | 0,339124                | 50B158       | 344.787 | 0.3981   | 0,1976         | 0.338725         | 50B158     | 323.817 |
| 0.3990   | 0,3049         | 0.338969                | 50B159       | 363.650 | 0.4031   | 0.3008         | 0.338510         | 50B159     | 337.317 |
| 0.4007   | 0.4024         | 0.338774                | 50B158       | 314.153 | 0.4020   | 0.4011         | 0.338318         | 50B158     | 292.218 |
| 0.6048   | 0.2009         | 0.338131                | 50B159       | 299.907 | 0.5925   | 0.2097         | 0.337726         | 50B159     | 283.679 |
| 0.7999   | 0,1002         | 0.337211                | 50B159       | 246.817 | 0.7978   | 0.1025         | 0.336752         | 25A483     | 520.160 |

\* see Table A.14 for the types of viscometer and the values of efflux time

Table A.9 (cont'd)

Raw Data of Ternary System n-Octane(1)-n-Undecane(2)-n-Tridecane(3)

| Mole     | Mole           | Density Meter         |            | Efflux  | Mole     | Mole           | Density Meter    |            | Efflux  |
|----------|----------------|-----------------------|------------|---------|----------|----------------|------------------|------------|---------|
| Fraction | Fraction       | Reading               |            | Time    | Fraction | Fraction       | Reading          |            | Time    |
| χ        | X <sub>2</sub> | sec                   | Viscometer | sec     | x,       | X <sub>2</sub> | sec              | Viscometer | sec     |
|          | Tempera        | Teperature = 308.15 K |            |         |          | T              | Temperature = 31 | 313.15 K   |         |
| 1.0000   | 0.0000         | 0.334676              | [3]        | [3]     | 00001    | 0.0000         | 0.334199         | [4]        | [4]     |
| 0.0000   | 1.0000         | 0.338203              | [111]      | [11]    | 0.0000   | 1.0000         | 0.337765         | [12]       | [12]    |
| 0.0000   | 0.0000         | 0.339696              | [15]       | [15]    | 0.0000   | 0.0000         | 0.339274         | [16]       | [16]    |
| 0.1062   | 0.0985°        | 0.339206              | 75129      | 190.003 | 0.0964   | 0.0975         | 0.338818         | 75129      | 177.923 |
| 0.1048   | 0.7552         | 0.338100              | 50B158     | 293.453 | 0,1026   | 0.8003         | 0.337667         | 50B159     | 302.267 |
| 0.2060   | 0.1951         | 0.338682              | 75129      | 166,808 | 0.1981   | 0.1988         | 0.338280         | 50B158     | 320.800 |
| 0.2060   | 0.3903         | 0.338365              | 50B158     | 315.523 | 0.1993   | 0.3896         | 0.337959         | 50B158     | 296.790 |
| 0.2033   | 0.6018         | 0.338009              | 50B159     | 317.740 | 0.2063   | 0.5973         | 0.337561         | 50B159     | 297.002 |
| 0.3072   | 0.2969         | Ó.338085              | 50B159     | 326.657 | 0,2961   | 0.2976         | 0.337696         | 50B158     | 281.073 |
| 0.3030   | 03960          | 0.337922              | 50B139     | 314.117 | 0,3028   | 0.4014         | 0.337474         | 50B159     | 293.878 |
| 0.3973   | 0.1979         | 0.337854              | 25A498     | 657.610 | 0.4045   | 0.1996         | 0.337381         | 50B159     | 289.663 |
| 0.3922   | 0.3072         | 0.337669              | 50B158     | 270.847 | 0.4032   | 0.2947         | 0.337199         | 50B159     | 278.438 |
| 0.4007   | 0.4006         | 0.337444              | 50B159     | 283.020 | 0.4016   | 0.4002         | 0.336995         | 50B158     | 241.743 |
| 0.6069   | 0.1954         | 0.336781              | 50B159     | 248.667 | 0.6117   | 0.1972         | 0.336299         | 50B159     | 233.483 |
| 0.7962   | 0.1023         | 0.335850              | 50B159     | 208.810 | 0.8004   | 0.1002         | 0.335367         | 25A498     | 415.183 |
|          |                |                       |            |         |          |                |                  |            |         |

\* see Table A.14 for the types of viscometer and the values of efflux time

Table A.10

Raw Data of Ternary System n-Octane(1)-n-Undecane(2)-n-Pentadecane(3)

| Mole     | Mole           | Density Meter          |            | EMux    | Mole     | Mole     | Density Meter          |            | Efflux  |
|----------|----------------|------------------------|------------|---------|----------|----------|------------------------|------------|---------|
| Fraction | Fraction       | Reading                |            | Time    | Fraction | Fraction | Reading                |            | Time    |
| χ        | X <sub>2</sub> | sec                    | Viscometer | Sec     | χl       | x,       | Sec                    | Viscometer | SCC     |
|          | Тещрег         | Temperature = 293.15 K |            |         |          | L        | Temperature = 298.15 K | 8.15 K     |         |
| 1.0000   | 0.0000         | 0.336091               | <u>*</u> Ε | [1]     | 1,0000   | 0.0000   | 0.335615               | [2]*       | [2]     |
| 0.0000   | 1.0000         | 0.339518               | <u>[6]</u> | [6]     | 0.0000   | 1.0000   | 0.339068               | [10]       | [10]    |
| 0.0000   | 0.0000         | 0.342070               | [17]       | [17]    | 0.0000   | 0.0000   | 0.341638               | [18]       | [81]    |
| 0.1038   | 0.1022         | 0,341483               | 75129      | 342,830 | 0,1108   | 0.0995   | 0.341031               | 75129      | 308.490 |
| 0.1091   | 0.7909         | 0,339580               | 75129      | 186.333 | 0.1096   | 0.7909   | 0,339124               | 50B159     | 388.883 |
| 0.2082   | 0.2010         | 0.340808               | 75129      | 274.940 | 0.2131   | 0.2016   | 0.340346               | 75J29      | 249.383 |
| 0.2019   | 0,3999         | 0,340293               | 75129      | 233.217 | 0.2068   | 0.3952   | 0,339836               | 75129      | 213.547 |
| 0.2111   | 0.5953         | 0,339632               | 75129      | 191.220 | 0.2087   | 0.5964   | 0.339192               | 50B158     | 364.303 |
| 0.3068   | 0,2995         | 0.340043               | 50B158     | 447.980 | 0.3025   | 0.2971   | 0.339625               | 75129      | 202.800 |
| 0.3029   | 0.3988         | 0.339748               | 75129      | 109.777 | 0.3083   | 0.3947   | 0.339286               | 50B158     | 377.543 |
| 0.4042   | 0.1993         | 0.339823               | 50B159     | 466,117 | 0.4039   | 0.2016   | 0.339364               | 75J29      | 190.237 |
| 0.4007   | 0.3008         | 0,339505               | 50B158     | 385.760 | 0.4023   | 0.2988   | 0.339053               | 50B158     | 357.647 |
| 0.4051   | 0.3987         | 0.339136               | 50B158     | 348.120 | 0.4027   | 0.4017   | 0.338687               | 50B158     | 323.767 |
| 0.6019   | 0.2054         | 0.338548               | 50B159     | 335.043 | 0.5903   | 0.2059   | 0.338172               | 50B159     | 318.567 |
| 0.8005   | 0.1016         | 0.337454               | 50B158     | 237.943 | 0.8034   | 0.1012   | 0.336966               | 50B158     | 223.677 |

~

\* see Table A.14 for the types of viscometer and the values of efflux time

Table A.10 (cont'd)

Ξ

<u>\_</u>

Raw Data of Ternary System n-Octane(1)-n-Undecane(2)-n-Pentadecane(3)

| Mole<br>Fraction | Mole<br>Fraction | Density Meter<br>Reading |            | Efflux<br>Time | Mole<br>  Fraction | Mole<br>Fraction | Density Meter<br>Reading |            | Efflax<br>Time |
|------------------|------------------|--------------------------|------------|----------------|--------------------|------------------|--------------------------|------------|----------------|
| χl               | X <sub>2</sub>   | sec                      | Viscometer | sec            | x <sup>1</sup>     | X <sub>2</sub>   | Sec                      | Viscometer | Sec            |
| 5                | Тетреп           | Temperature = 308.15 K   |            |                | •                  | T.               | Temperature = 31         | 313.15 K   |                |
| 1.0000           | 0.0000           | 0.334676                 | [3]        | [3].           | 1.0000             | 0.0000           | 0.334201                 | E          | [4]            |
| 0.0000           | 1,0000           | 0.338202                 | [11]       | [11]           | 0.0000             | 00001            | 0.337766                 | [12]*      | [12]           |
| 0.0000           | 0.0000           | 0.340815                 | [16]       | [19]           | 0.0000             | 0.0000           | 0.340401                 | [50]       | [20]           |
| 0.1208           | 0.0986           | 0.340156                 | 75129      | 255,158        | 0.1018             | 0.0951           | 0.339823                 | 75129      | 240.138        |
| 0.1086           | 0.7899           | 0.338272                 | 50B159     | 338,155        | 0.1030             | 0.7965           | 0.337849                 | 75129      | 140.566        |
| 0.2077           | 0,2035           | 0.339521                 | 75129      | 212.768        | 0,2004             | 0.1964           | 0.339148                 | 75129      | 199.805        |
| 0.2102           | 0.3937           | 0.338972                 | 50B158     | 374.203        | 0,1992             | 0.3971           | 0.338590                 | 50B158     | 352.377        |
| 0.2025           | 0.6004           | 0.338358                 | 50B158     | 317.467        | 0,2014             | 0.5952           | 0.337944                 | 50B158     | 298.427        |
| 0,3060           | 0,3009           | 0.338741                 | 50B159     | 390,423        | 0.2998             | 0.2988           | 0.338352                 | 50B158     | 334.127        |
| 0,3043           | 0.4040           | 0.338417                 | 50B159     | 358.567        | 0,2939             | 0.4029           | 0.338050                 | 50B159     | 340,037        |
| 0.3956           | 0.2061           | 0.338542                 | 50B158     | 339,920        | 0.4021             | 0.1961           | 0,338103                 | 50B158     | 316.988        |
| 0.3983           | 0,3050           | 0.338193                 | 50B159     | 341,793        | 0.4011             | 0.2953           | 0.337771                 | S0B159     | 321.117        |
| 0,4032           | 0.3977           | 0.337824                 | 50B158     | 283.500        | 0.3947             | 0.4066           | 0.337407                 | 50B159     | 294.093        |
| 0.6003           | 0.2049           | 0.337219                 | 50B159     | 276,167        | 0.6050             | 0.1965           | 0.336775                 | 50B158     | 236.403        |
| 0.7969           | 0,1060           | 0.336092                 | 50B159     | 220.216        | 0.8015             | 0.0977           | 0.335630                 | 25A498     | 439.730        |

\* see Table A.14 for the types of viscometer and the values of efflux time.

Table A.11

Raw Data of Ternary System n-Undecane(1)-n-Tridecane(2)-n-Pentadecane(3)

| Mole<br>Fraction | Mole<br>Fraction | Density Meter          |            | Efflux  | Mole   | Mole           | Density Meter    |            | Efflux  |
|------------------|------------------|------------------------|------------|---------|--------|----------------|------------------|------------|---------|
| , x              | X,               | Sec                    | Viscometer | Sec     | , x    | X <sub>2</sub> | Sec              | Viscometer | sec     |
|                  | Temper           | Temperature = 293,15 K |            |         |        | H              | Temperature = 29 | 298.15 K   |         |
| 1.0000           | 0.0000           | 0.339510               | .[6]       | ,i6j    | 1.0000 | 0.0000         | 0.339067         | .[0I]      | [10]    |
| 0.0000           | 1.0000           | 0.340971               | [13]*      | [13]*   | 0,0000 | 1,0000         | 0.340542         | [14]       | [14]    |
| 0.0000           | 00000            | 0.342057               | [17]       | [17]    | 0,0000 | 0.0000         | 0.341637         | [18]       | [18]    |
| 0.1007           | 0.1011           | 0.341761               | 75129      | 374.240 | 0.1023 | 0.0994         | 0.341330         | 75129      | 339.033 |
| 0.1031           | 0.7990           | 0,340964               | 50B158     | 576,697 | 0.0985 | 0.8009         | 0,340539         | 50B159     | 527.640 |
| 0.2021           | 0.2018           | 0.341434               | 75129      | 332,530 | 0.2025 | 0.2008         | 0.341004         | 75129      | 302.413 |
| 0.2019           | 0.3946           | 0.341214               | 75129      | 307.990 | 0,2038 | 0.3949         | 0,340775         | 75129      | 279.397 |
| 0.1997           | 0.6040           | 0.340966               | 75129      | 281.818 | 0.1998 | 0.6008         | 0.340536         | 50B158     | 528.783 |
| 0.3002           | 0.2943           | 0,341098               | 75129      | 296.340 | 0.3023 | 0.2957         | 0.340659         | 75129      | 269.363 |
| 0.3019           | 0.4009           | 0.340963               | 75129      | 282.917 | 0.3033 | 0.3999         | 0.340527         | 75129      | 257.763 |
| 0.4029           | 0.2007           | 0,340959               | 50B158     | 579,900 | 0.3984 | 0.2034         | 0.340535         | 50B159     | 585.046 |
| 0.4006           | 0,3009           | 0,340839               | 50B158     | 557.030 | 0,3991 | 0.3013         | 0.340408         | 50B159     | 561.113 |
| 0.4001           | 0.4047           | 0,340705               | 50B159     | 585,660 | 0,4024 | 0.4038         | 0.340265         | 50B158     | 486.797 |
| 0.6052           | 0.1973           | 0,340428               | S0B158     | 488,203 | 0.6028 | 0.1982         | 0.339995         | 50B159     | 494.437 |
| 0.7995           | 0.0998           | 0.339998               | 50B158     | 428,140 | 0.8027 | 0.0970         | 0.339549         | 50B158     | 394.427 |

\* see Table A.14 for the types of viscometer and the values of efflux time

Table A.11 (cont'd)

Raw Data of Ternary System n-Undecane(1)-n-Tridecane(2)-n-Pentadecane(3)

| X <sub>1</sub> X <sub>2</sub> Sec         Viscouneter         Time         Fraction         Fraction         Reading         Time         Traction         Fraction         Reading         Time         Time           X <sub>1</sub> X <sub>3</sub> sec         Viscouneter         Viscouneter     | Mole     | Mole           | Density Meter |            | Efflux  | Mole     | Mole           | Density Meter |            | Efflux  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|---------------|------------|---------|----------|----------------|---------------|------------|---------|
| x <sub>3</sub> sec         Viscometer         sc         x <sub>1</sub> x <sub>2</sub> viscouneter           Temperature = 308.15 K         Temperature = 308.15 K         Temperature = 313.15 K           0.0000         0.338208         [11f         [11f]         1.0000         0.33768         [12f           0.0000         0.340819         [15f         [15f         0.0000         0.339278         [10f           0.0000         0.340819         [15f         119f         0.0000         0.339278         [11f           0.0000         0.340819         [15f         119f         0.0000         0.339278         [10f           0.0000         0.340819         75129         280.947         0.0000         0.339278         10f           0.8060         0.33968         75129         216.678         0.1057         0.2007         0.339771         75129           0.6019         0.339701         508159         490.900         0.1956         0.33928         75129           0.4028         0.339702         75129         218.213         0.2978         0.33928         75129           0.2002         0.2032         0.2978         0.33928         75129           0.2002                                                                                                                                | Fraction | Fraction       | Reading       | ţ,         | Time    | Fraction | Fraction       | Reading       |            | Time    |
| Condo         0.338208         [11]*         [11]*         1.0000         0.337768         [12]*           0.0000         0.338700         [15]*         [15]*         0.0000         0.337768         [12]*           0.0000         0.339700         [15]*         [15]*         0.0000         0.340402         [10]*           0.0000         0.340819         [19]*         [19]*         0.0000         0.340402         [10]*           0.1021         0.340819         75129         280.947         0.0937         0.340402         [20]*           0.8060         0.33968         75129         280.947         0.0937         0.34011         75129           0.1021         0.34081         75129         253.563         0.1027         0.7995         0.33972         75129           0.5918         0.339701         50B159         490.900         0.1956         0.3991         0.33928         50B158           0.2002         0.2003         0.2978         0.33928         75129           0.2004         0.339702         75129         226.740         0.2983         0.33928         75129           0.2006         0.33942         75129         218.213         0.2983         0.33928                                                                                                                       | ×        | X <sub>2</sub> | sec           | Viscometer | sec     | χı       | X <sub>2</sub> | sec           | Viscometer | sec     |
| 0,0000         0,338208         [11]*         [11]*         1,0000         0,337768         [12]*           1,0000         0,339700         [15]*         [15]*         0,0000         0,339278         [16]*           0,0000         0,340819         [19]*         [19]*         0,0000         0,340402         [20]*           0,1021         0,340819         [19]*         [19]*         0,0000         0,340402         [20]*           0,1021         0,34080         75129         280.947         0,0937         0,340402         [20]*           0,8060         0,33960         75129         216.678         0,1027         0,7995         0,33971         75129           0,1981         0,33970         75129         225.679         0,1956         0,3991         75129           0,6019         0,33970         75129         226.740         0,1959         0,33928         75129           0,2083         0,33970         75129         226.740         0,2927         0,2978         75129           0,2080         0,33970         75129         218.213         0,2987         0,33928         75129           0,2090         0,33943         50B159         495.823         0,3959 <t< th=""><th></th><th>Тетрега</th><th>ı —</th><th></th><th></th><th></th><th>T</th><th></th><th>3.15 K</th><th></th></t<> |          | Тетрега        | ı —           |            |         |          | T              |               | 3.15 K     |         |
| 1,0000         0,339700         [15]*         [15]*         0,0000         1,0000         0,339278         [16]*           0,0000         0,340819         [19]*         [19]*         [19]*         1,0000         0,0000         0,340402         120]*           0,1021         0,34081         75129         280.947         0,0097         0,340402         120]*           0,8060         0,33966         75129         216,678         0,1027         0,7995         0,339772         75129           0,3938         0,33962         75129         235,580         0,1027         0,7995         0,339761         75129           0,6019         0,339701         508159         490,900         0,1959         0,33976         75129           0,4028         0,339702         75129         226,740         0,2922         0,2978         0,33928         75129           0,4028         0,339702         75129         218,213         0,2987         0,3958         75129           0,2000         0,339702         75129         218,213         0,2987         0,3958         75129           0,2000         0,339420         50B159         495,823         0,3957         0,3997         0,3397                                                                                                                        | 1,0000   | 0.0000         | 0.338208      | [11]       | [11]    | 1.0000   | 0.0000         | 0.337768      | [12]       | [12]    |
| 0,0000         0,340819         [19]*         [19]*         0,0000         0,340402         [20]*           0,1021         0,340504         75129         280,947         0,0957         0,0937         0,340111         75129           0,1021         0,330506         75129         280,947         0,0957         0,0937         0,340111         75129           0,8060         0,33966         75129         216,678         0,1027         0,7995         0,339722         75129           0,1981         0,339952         75129         235,580         0,1956         0,3991         0,339761         75129           0,6019         0,339701         508159         490,900         0,1959         0,6024         0,339282         508158           0,4028         0,339702         75129         226,740         0,2978         0,339286         508158           0,2000         0,339702         75129         218,213         0,2959         0,339286         75129           0,2000         0,33973         508159         495,823         0,3959         0,339286         75129           0,339         0,339430         508159         414,190         0,3945         0,4067         0,339773         508158                                                                                                          | 0.0000   | 1.0000         | 0.339700      | [15]       | [15]    | 0.0000   | 1.0000         | 0.339278      | [16]       | [16]    |
| 0.1021         0.340504         75129         280.947         0.0957         0.0937         0.340111         75129           0.8060         0.339696         75129         216.678         0.1027         0.7995         0.339712         75129           0.1981         0.340182         75129         253.563         0.2012         0.2007         0.339761         75129           0.5938         0.339701         50B159         490.900         0.1956         0.3991         0.339782         75129           0.2983         0.339702         75129         226.740         0.2922         0.2978         0.339282         75129           0.2087         0.339702         75129         218.213         0.2987         0.339286         50B158           0.2000         0.339709         50B159         495.823         0.3950         0.339286         75129           0.2000         0.339420         50B159         482.560         0.3973         0.339155         50B158           0.3998         0.339430         50B159         414.190         0.3945         0.1966         0.338728         50B158           0.1983         0.338700         50B159         373.680         0.1966         0.338775         50B158                                                                                                  | 0.0000   | 0.0000         | 0.340819      | [19]       | [19]    | 00000    | 0.0000         | 0.340402      | [20].      | [20]    |
| 0.8060         0.339696         75129         216.678         0.1027         0.7995         0.339272         75129           0.1981         0.340182         75129         253.563         0.2012         0.2007         0.339761         75129           0.3938         0.339952         75129         235.580         0.1956         0.33971         75129           0.6019         0.339701         50B159         490.900         0.1959         0.6024         0.339282         50B158           0.2083         0.339702         75129         226.740         0.2922         0.2978         0.339286         50B158           0.2000         0.339702         75129         218.213         0.2987         0.3958         75129           0.2000         0.339709         50B159         495.823         0.3950         0.339286         50B158           0.3142         0.339430         50B159         414.190         0.3945         0.4067         0.339155         50B159           0.1983         0.338700         50B159         422.877         0.6018         0.1966         0.338775         50B158                                                                                                                                                                                                                   | 0.1030   | 0.1021         | 0.340504      | 75129      | 280,947 | 0.0957   | 0.0937         | 0.340111      | 75129      | 259.290 |
| 0.1981         0.340182         75129         253.563         0.2012         0.2007         0.339761         75129           0.3938         0.339952         75129         235.580         0.1956         0.3991         0.339537         75129           0.6019         0.339701         50B159         490.900         0.1959         0.6024         0.339282         75129           0.2983         0.339702         75129         226.740         0.2922         0.2978         0.339426         75129           0.4028         0.339702         75129         218.213         0.2987         0.3959         0.339286         50B158           0.2000         0.339709         50B159         495.823         0.2987         0.2983         0.339286         75129           0.3142         0.339430         50B159         482.560         0.3945         0.4067         0.339155         50B158           0.1983         0.338700         50B159         422.877         0.6018         0.1966         0.338728         50B158           0.1013         0.338700         50B159         373.680         0.1908         0.19068         0.338775         50B158                                                                                                                                                                  | 0.0996   | 0.8060         | 0.339696      | 75129      | 216.678 | 0.1027   | 0.7995         | 0.339272      | 75129      | 200.023 |
| 0.3938         0.339952         75129         235.580         0.1956         0.3991         0.339537         75129           0.6019         0.339701         50B159         490.900         0.1959         0.6024         0.339282         50B158           0.2983         0.339702         75129         226.740         0.2922         0.2978         0.339426         75129           0.4028         0.339702         75129         218.213         0.2987         0.3959         0.339286         50B158           0.2000         0.339709         50B159         495.823         0.3950         0.2005         0.339288         75129           0.3142         0.339623         50B159         482.560         0.3973         0.2983         0.339155         50B158           0.1983         0.339156         50B158         414.190         0.3945         0.4067         0.339017         50B158           0.1013         0.338700         0.338728         50B158         50B158         50B158         50B158                                                                                                                                                                                                                                                                                                               | 0.2019   | 0.1981         | 0.340182      | 75129      | 253,563 | 0,2012   | 0.2007         | 0.339761      | 75129      | 232.737 |
| 0.6019         0.339701         50B159         490,900         0.1959         0.6024         0.339282         50B158           0.2983         0.339824         75129         226,740         0.2922         0.2978         0.339426         75129           0.4028         0.339702         75129         218,213         0.2987         0.3959         0.339286         50B158           0.2000         0.339709         50B159         495,823         0.3950         0.2005         0.339288         75129           0.3142         0.339623         50B159         482,560         0.3973         0.2983         0.339155         50B159           0.3998         0.339430         50B158         414,190         0.3945         0.4067         0.339017         50B158           0.1983         0.33870         50B159         373,680         0.7985         0.1008         0.338275         50B158                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2021   | 0.3938         | 0.339952      | 75129      | 235,580 | 0.1956   | 0.3991         | 0.339537      | 75J29      | 217.540 |
| 0.2983         0.339824         75129         226.740         0.2922         0.2978         0.339426         75129           0.4028         0.339702         75129         218.213         0.2987         0.3959         0.339286         50B158           0.2000         0.339709         50B159         495.823         0.3950         0.2005         0.339288         75129           0.3142         0.339623         50B159         482.560         0.3973         0.2983         0.339155         50B159           0.3998         0.339430         50B158         414.190         0.3945         0.4067         0.339017         50B158           0.1983         0.338706         50B159         373.680         0.7985         0.1008         0.338275         50B158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2005   | 0.6019         | 0.339701      | 50B159     | 490.900 | 0.1959   | 0.6024         | 0.339282      | 50B158     | 413.623 |
| 0,4028         0,339702         75129         218,213         0.2987         0,3959         0,339286         50B158           0,2000         0,339709         50B159         495,823         0,3950         0,2005         0,339288         75129           0,3142         0,339623         50B159         482,560         0,3973         0,2983         0,339155         50B159           0,3998         0,339430         50B158         414,190         0,3945         0,4067         0,339017         50B158           0,1983         0,339156         50B159         422,877         0,6018         0,1966         0,338728         50B158           0,1013         0,338700         50B159         373,680         0,7985         0,1008         0,338275         50B158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3030   | 0.2983         | 0.339824      | 75129      | 226.740 | 0.2922   | 0.2978         | 0.339426      | 75129      | 210.833 |
| 0.2000         0.339709         50B159         495.823         0.3950         0.2005         0.339288         75129           0.3142         0.339623         50B159         482.560         0.3973         0.2983         0.339155         50B159           0.3998         0.339430         50B158         414.190         0.3945         0.4067         0.339017         50B158           0.1983         0.339156         50B159         422.877         0.6018         0.1966         0.338728         50B159           0.1013         0.338700         50B159         373.680         0.7985         0.1008         0.338275         50B158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2996   | 0.4028         | 0.339702      | 75129      | 218.213 | 0.2987   | 0,3959         | 0.339286      | 50B158     | 414.957 |
| 0.3142         0.339623         50B159         482,560         0.3973         0.2983         0.339155         50B159           0.3998         0.339430         50B158         414,190         0.3945         0,4067         0.339017         50B158           0.1983         0.338706         50B159         422,877         0.6018         0,1966         0,338728         50B159           0.1013         0.338700         50B159         373,680         0,7985         0,1008         0,338275         50B158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,3968   | 0.2000         | 0.339709      | 50B159     | 495.823 | 0.3950   | 0,2005         | 0.339288      | 75129      | 203.137 |
| 0.39980.33943050B158414.1900.39450.40670.33901750B1580.19830.33872650B159422.8770.60180.19660.33872850B1590.10130.33870050B159373.6800.79850.10080.33827550B158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,3732   | 0.3142         | 0.339623      | 50B159     | 482,560 | 0.3973   | 0.2983         | 0.339155      | 50B159     | 440.870 |
| 0.1983         0.339156         50B159         422.877         0.6018         0.1966         0.338728         50B159           0.1013         0.338700         50B159         373.680         0.7985         0.1008         0.338275         50B158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4028   | 0.3998         | 0.339430      | 50B158     | 414,190 | 0.3945   | 0.4067         | 0.339017      | 50B158     | 384.847 |
| 0.1013 0.338700 50B159 373.680 0.7985 0.1008 0.338275 50B158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6018   | 0.1983         | 0.339156      | 50B159     | 422.877 | 0.6018   | 0.1966         | 0.338728      | 50B159     | 392.700 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8003   | 0.1013         | 0,338700      | 50B159     | 373.680 | 0.7985   | 0.1008         | 0.338275      | 50B158     | 317.117 |

\* see Table A.14 for the types of viscometer and the values of essuare time

Table A.12

Raw Data of Ternary System n-Octane(1)-n-Tridecane(2)-n-Pentadecane(3)

-<u>-</u>-

| Mole<br>Fraction | Mole<br>Fraction | Density Meter<br>Reading |            | Efflux       | Mole<br>Fraction | Mole   | Density Meter          |            | Efflux<br>Time |
|------------------|------------------|--------------------------|------------|--------------|------------------|--------|------------------------|------------|----------------|
| χ                | X,               | Sec                      | Viscometer | Sec          | x,               | X,     | Sec                    | Viscometer | sec            |
|                  | Temper           | Temperature = 293,15 K   |            |              |                  | =      | Temperature = 298.15 K | 8.15 K     |                |
| 1.0000           | 0.0000           | 0.336087                 | [1]        | <u>,</u> [1] | 1.0000           | 0.0000 | 0,335615               | [2]*       | [2]            |
| 0.0000           | 1,0000           | 0,340968                 | [13]*      | [13]         | 0.0000           | 1,0000 | 0.340542               | [14]       | [14]           |
| 0.0000           | 00000            | 0.342060                 | [17]       | [17]         | 0.0000           | 0.0000 | 0.341638               | [18]       | [18]           |
| 0.1051           | 0.0982           | 0.341588                 | 50B158     | 726,570      | 0.1047           | 0.0988 | 0.341161               | 75129      | 322.077        |
| 0.1085           | 0.7960           | 0.340746                 | 75129      | 263,856      | 0.1049           | 0.7983 | 0.340326               | 75129      | 242.027        |
| 0.2089           | 0,2018           | 0,341048                 | 75129      | 296,917      | 0.2045           | 0.1972 | 0.340643               | 75129      | 273.153        |
| 0.2045           | 0.3899           | 0,340833                 | 75129      | 275.943      | 0.2084           | 0.3920 | 0.340379               | 75129      | 250.427        |
| 0.2074           | 0.5969           | 0.340542                 | 75129      | 250,057      | 0.2074           | 0.5969 | 0.340107               | 50B159     | 518.257        |
| 0.3024           | 0.2956           | 0.340502                 | 75129      | 250.443      | 0.2986           | 0.2974 | 0.340081               | 50B158     | 473.550        |
| 0.3061           | 0.4020           | 0,340333                 | 50B158     | 486.260      | 0,3028           | 0.4005 | 0.339912               | 75129      | 218.987        |
| 0.4009           | 0,1998           | 0.340139                 | 50B159     | 509.733      | 0,4034           | 0.1996 | 0.339689               | 50B159     | 469.263        |
| 0.4030           | 0.2986           | 0,339978                 | 50B158     | 442.383      | 0,4092           | 0.2977 | 0.339506               | 50B158     | 404,003        |
| 0.4037           | 0.4025           | 0.339810                 | 50B158     | 419.883      | 0.3998           | 0.4065 | 0.339384               | 50B158     | 390.443        |
| 0.6185           | 0.1931           | 0,338858                 | S0B158     | 330,040      | 0.6052           | 0,1990 | 0.338485               | 50B158     | 313.837        |
| 0.8009           | 0.1005           | 0,337690                 | 50B159     | 276,833      | 0,8034           | 0.0973 | 0.337217               | 50B159     | 259.450        |

\* see Table A.14 for the types of viscometer and the values of efflux time

Table A.12 (cont'd)

Raw Data of Ternary System n-Octane(1)-n-Tridecane(2)-n-Pentadecane(3)

| Mole           | Mole           | Density Meter           |            | Efflux  | Mole                       | Mole                      | Density Meter    |            | Efflux  |
|----------------|----------------|-------------------------|------------|---------|----------------------------|---------------------------|------------------|------------|---------|
| x <sub>i</sub> | X <sub>2</sub> | Sec                     | Viscometer | sec     | riacuoii<br>X <sub>I</sub> | riacuon<br>X <sub>2</sub> | sec              | Viscometer | Sec     |
|                | Тещрег         | Terhperature = 308,15 K |            |         |                            | T                         | Temperature = 31 | 313,15 K   |         |
| 1.0000         | 0000'0         | 0.334673                | [3]*       | [3]     | 1,0000                     | 0,0000                    | 0.334204         | [4]        | [4]     |
| 0.0000         | 1.0000         | 0.339699                | [15]       | [15]    | 0.0000                     | 1.0000                    | 0.339275         | [16]       | [16]    |
| 0'0000         | 00000          | 0,340813                | [19]       | [19]    | 0,000                      | 0.0000                    | 0.340403         | [20]       | [20]    |
| 0,1061         | 0,1009         | 0,340326                | 75129      | 267.818 | 0,0998                     | 0,1140                    | 0.339913         | 75J29      | 246.360 |
| 0.1086         | 0,7972         | 0,339464                | 50B159     | 462.117 | 0,1048                     | 0.7955                    | 0.339060         | 75129      | 190.565 |
| 0.2076         | 0.1961         | 0.339796                | 75J29      | 229.678 | 0.2059                     | 0.2011                    | 0,339372         | 75129      | 211.820 |
| 0.2048         | 0.3941         | 0,339552                | 75J29      | 213,255 | 0.2003                     | 0.3951                    | 0.330149         | 75129      | 198.225 |
| 0.2113         | 0.5947         | 0,339249                | 50B158     | 399,957 | 0,2037                     | 0.5988                    | 0.338852         | 50B158     | 373.890 |
| 0.3057         | 0,2932         | 0.339204                | 50B159     | 440.880 | 0.3116                     | 0,3083                    | 0.338727         | 75129      | 178.760 |
| 0.3113         | 0,3989         | 0,339019                | 50B158     | 380,680 | 0,2998                     | 0.4051                    | 0.338646         | 50B158     | 358.087 |
| 0,4065         | 0,1978         | 0,338823                | SQB159     | 401.913 | 0.4000                     | 0.1977                    | 0.338427         | 75129      | 167.047 |
| 0.4081         | 0.2967         | 0.338656                | S0B159     | 383,937 | 0.3978                     | 0,3018                    | 0.338277         | 50B159     | 361.953 |
| 0.4017         | 0.4051         | 0,338520                | 50B158     | 335,613 | 0.3959                     | 0,4064                    | 0.338118         | 50B159     | 346.930 |
| 0.6080         | 0.1958         | 0,337601                | 50B159     | 301.070 | 0,6015                     | 0,1995                    | 0.337192         | 50B159     | 284.947 |
| 0,8052         | 9/600          | 0.336305                | 50B159     | 230.087 | 0.8047                     | 0.0986                    | 0.335847         | 508159     | 217.755 |

---

\* see Table A.14 for the types of viscometer and the values of efflux time

Table A.13

Raw Data of Ternary System n-Decane(1)-n-Tridecane(2)-n-Pentadecane(3)

| Mole     | Mole           | Density Meter          | ,          | Efflux  | Mole     | Mole           | Density Meter          |            | Efflux  |
|----------|----------------|------------------------|------------|---------|----------|----------------|------------------------|------------|---------|
| Fraction | Fraction       | Reading                |            | Тіте    | Fraction | Fraction       | Reading                |            | Time    |
| χi       | X <sub>2</sub> | sec                    | Viscometer | Sec     | x,       | X <sub>2</sub> | sec                    | Viscometer | Sec     |
|          | Тещрег         | Temperature = 293,15 K |            |         |          | T              | Temperature = 298,15 K | 8.15 K     |         |
| 1,0000   | 0,000,0        | 0,338585               | [5]        | [5]*    | 1.0000   | 0.0000         | 0.338128               | .[9]       | [9]     |
| 0.0000   | 00001          | 0.340973               | [13]       | [13]    | 0.0000   | 1.0000         | 0.340542               | [14]       | [14]    |
| 0.0000   | 0.0000         | 0.342060               | [17]       | [17]    | 0.0000   | 0.0000         | 0.341638               | [18]       | [18]    |
| 0,1002   | 0,1025         | 0.341707               | 75129      | 367.938 | 0.0814   | 0,1024         | 0.341328               | 75129      | 339.160 |
| 0.0993   | 0.8003         | 0.340911               | 75129      | 276.787 | 0.0836   | 0.8163         | 0.340504               | 75129      | 254,350 |
| 0.1979   | 0,2021         | 0.341329               | 75129      | 321.737 | 0.1700   | 0,2119         | 0,340968               | 75129      | 299.510 |
| 0.1999   | 0.3961         | 0,341099               | 75129      | 296.503 | 0,1652   | 0.4175         | 0.340742               | 75129      | 277.083 |
| 0.2022   | 0,6023         | 0.340835               | 75129      | 271,587 | 0.1696   | 0.6245         | 0.340473               | 75129      | 253.173 |
| 0,2970   | 0,3010         | 0,340916               | 75129      | 280.595 | 0.2514   | 0.3155         | 0.340604               | 75129      | 265.686 |
| 0.2981   | 0.4012         | 0,340784               | 50B158     | 549,660 | 0,2547   | 0.4316         | 0.340447               | 50B158     | 518.010 |
| 0.3953   | 0,1983         | 0.340731               | 50B158     | 541,687 | 0.3479   | 0.2183         | 0,340421               | 50B159     | 568.240 |
| 0.4052   | 0.2985         | 0.340562               | 75129      | 249.877 | 0,3490   | 0.3270         | 0,340276               | 50B158     | 492.563 |
| 0.3976   | 0.4006         | 0.340450               | 50B158     | 494.830 | 0.3494   | 0.4377         | 0.340123               | 50B158     | 468.897 |
| 0.6004   | 0.2004         | 0.339995               | 50B158     | 433,017 | 0.5485   | 0.2266         | 0.339709               | S0B158     | 417.420 |
| 9008.0   | 0,1023         | 0.339330               | 50B159     | 394.507 | 0.7675   | 0.1177         | 0.338999               | 50B159     | 377.630 |

\* see Table A.14 for the types of viscometer and the values of efflux time

Table A.13 (cont'd)

Raw Data of Ternary System n-Decane(1)-n-Tridecane(2)-n-Pentadecane(3)

| Mole     | Mole     | Density Meter          |               | Efflux  | Mole     | Mole     | Density Meter     |            | Efflux  |
|----------|----------|------------------------|---------------|---------|----------|----------|-------------------|------------|---------|
| Fraction | Fraction | Reading                |               | Time    | Fraction | Fraction | Reading           |            | Time    |
| χı       | X,       | sec                    | Viscometer    | Sec     | x l      | ×        | sec               | Viscometer | sec     |
|          | Тещрен   | Temperature = 308,15 K |               |         |          | £        | Temperature = 313 | 313.15 K   |         |
| 00001    | 00000    | 0.337248               | [7]           | [1]     | 0000'1   | 0.0000   | 0.336803          | [8]        | 141     |
| 0.0000   | 1,0000   | 0.339697               | [15]          | [15]    | 0.0000   | 1.0000   | 0.339275          | [16]       | [16]    |
| 0,000    | 0.0000   | 0.340816               | [16]          | [19]    | 0.0000   | 0,000    | 0,340403          | [20]       | [20]    |
| 0,1003   | 0.1008   | 0,340455               | 75129         | 277.255 | 0,1006   | 0,1034   | 0,340038          | 75129      | 253.985 |
| 9660'0   | 0.7999   | 0,339634               | 75129         | 213,390 | 0.0998   | 0.8028   | 0.339210          | 75129      | 197.040 |
| 0,2013   | 0,1990   | 0.340062               | 75129         | 245,507 | 0,1981   | 0,2033   | 0.339648          | 75129      | 226.190 |
| 0.1997   | 0,4042   | 0.339818               | <b>50B158</b> | 466,207 | 0.1987   | 0.3985   | 0.339410          | 75129      | 210.410 |
| 0.2000   | 0.6013   | 0.339567               | 50B159        | 474.770 | 0.2005   | 0,6017   | 0.339142          | 50B159     | 438.727 |
| 0,3010   | 0,3019   | 0,339625               | 75129         | 215,450 | 0.2941   | 0,2992   | 0.339229          | 75129      | 200.643 |
| 0.2998   | 0.4028   | 0,339498               | 50B159        | 467.817 | 0.3010   | 0.4011   | 0.339073          | 50B158     | 393.590 |
| 0,4008   | 0,2012   | 0,339429               | 50B158        | 419.243 | 0.3971   | 0.1948   | 0.339029          | 50B158     | 390.593 |
| 0.4006   | 0,3003   | 0.339293               | 50B159        | 442.827 | 0,3995   | 0.3033   | 0,338868          | 50B159     | 410.530 |
| 0.4008   | 0,3996   | 0.339152               | <b>50B158</b> | 386.230 | 0.4001   | 0,4007   | 0.338728          | 50B159     | 394.407 |
| 0.6014   | 0.2009   | 0,338694               | 50B159        | 377.627 | 0.6018   | 0,1979   | 0.338268          | 50B159     | 352.187 |
| 0.8038   | 0,0978   | 0.338012               | 50B159        | 318.270 | 0.8038   | 0.1000   | 0.337572          | 50B150     | 707 817 |

\* see Table A.14 for the types of viscometer and the values of efflux time

Tabel A.14

Raw Viscosity Data of Pure Components

| No.   | Substance  | Temperature<br>K | Viscometer | Efflux Time sec |
|-------|------------|------------------|------------|-----------------|
| [1]   | n-Octane   | 293.15           | 50B158     | 180,820         |
| [2]   | n-Octane   | 298,15           | 25A498     | 396.818         |
|       |            |                  | 25A483     | 405.678         |
| [3]   | n-Octane   | 308.15           | 25A498     | 358,447         |
|       |            |                  | 25A483     | 336.337         |
| [4]   | n-Octane   | 313.15           | 25A483     | 348.720         |
|       |            |                  | 25A498     | 341,103         |
| [5]   | n-Decane   | 293.15           | 25A483     | 699,000         |
|       |            |                  | 50B158     | 294,187         |
| [6]   | n-Decane   | 298.15           | 50B159     | 301.753         |
|       |            |                  | 50B158     | 274.323         |
| [7]   | n-Decane   | 308.15           | 50B158     | 241.820         |
|       |            |                  | 50B159     | 265.770         |
| [8]   | n-Decane   | 313.15           | 25A498     | 528,077         |
|       |            |                  | 25A483     | 539.577         |
| [9]   | n-Undecane | 293.15           | 50B158     | 371,482         |
|       |            |                  | 50B159     | 408.435         |
| [10]  | n-Undecane | 298.15           | 50B159     | 378.062         |
|       |            |                  | 50B158     | 343.762         |
| [11]  | n-Undecane | 308.15           | 50B158     | 298.710         |
|       |            |                  | 50B159     | 328.640         |
| ·<br> | <u>.</u>   |                  | 25A498     | 693.367         |
| [12]  | n-Undecane | 313.15           | 25A483     | 663.920         |
|       |            |                  | 25A498     | 649.713         |
|       |            |                  | 50B159     | 307.323         |
|       |            |                  | 50B158     | 279.353         |

Tabel A.14 (cont'd)

Raw Viscosity Data of Pure Components

| No,  | Substance     | Temperature<br>K    | Viscometer | Efflux Time |
|------|---------------|---------------------|------------|-------------|
| [13] | n-Tridecane   | 293.15              | 50B158     | 576.413     |
|      |               |                     | 50B159     | 634.700     |
|      |               |                     | 75J29      | 280.970     |
| [14] | n-Tridecane   | 298.15              | 50B158     | 525,274     |
|      |               |                     | 50B159     | 577.642     |
|      |               |                     | 75J29      | 255.858     |
| [15] | n-Tridecane   | 308.15              | 50B158     | 443.773     |
|      |               |                     | 50B159     | 488,227     |
|      |               |                     | 75J29      | 216.325     |
| [16] | n-Tridecane   | <sub>z</sub> 313.15 | 75J29      | 199.815     |
|      |               |                     | 50B159     | 451.047     |
|      |               |                     | 50B158     | 410.110     |
| [17] | n-Pentadecane | 293.15              | 50B158     | 865.637     |
|      |               |                     | 75J29      | 421.635     |
| [18] | n-Pentadecane | 298.15              | 50B159     | 853.708     |
|      | <i>1</i>      | ·                   | 75J29      | 377.990     |
| [19] | n-Pentadecane | 308.15              | 50B159     | 702.813     |
|      |               |                     | 75J29      | 311.147     |
| [20] | n-Pentadecane | 313.15              | 75J29      | 284.230     |
|      |               |                     | 50B158     | 583.333     |

# Appendix B

Excess Properties of Ternary n-Alkane Systems

Table B.1

£.;

The Excess Properties of Ternary System n-Octane(1)-n-Undecane(2)-n-Tridecane(3)

| Mole                       | Mole           | Excess                             | Excess           | ∆*G <sup>E</sup> | Mole                       | Mole                       | Excess                             | Excess  | Δ'G <sup>E</sup> |
|----------------------------|----------------|------------------------------------|------------------|------------------|----------------------------|----------------------------|------------------------------------|---------|------------------|
| Fraction<br>x <sub>1</sub> | Fraction<br>X2 | Viscosity<br>10 <sup>-3</sup> Pa.s | Volume<br>L/kmol | J/mol            | Fraction<br>x <sub>1</sub> | Fraction<br>x <sub>2</sub> | Viscosity<br>10 <sup>-3</sup> Pa.s | Volume  | J/mol            |
|                            | Tempe          | Temperature = 293.1                | .15 K            |                  | <i>J.</i>                  | Тетр                       | Temperature = 298.15 K             | 5 K     |                  |
| 1.0000                     | 0.0000         | 000000                             | 00000            | 000000           | 1,0000                     | 0w0 J                      | 0.0000                             | 0.0000  | 0.0000           |
| 0.0000                     | 00001          | 0,000                              | 0,0000           | 0,0000           | 000000                     | 1.0000                     | 0.0000                             | 0.0000  | 0.0000           |
| 0.0000                     | 0,0000         | 00000                              | 0.0000           | 0.0000           | 0,0000                     | 0.0000                     | 0.0000                             | 0.0000  | 0.0000           |
| 0.1043                     | 0.101%         | -0.0549                            | -0.0399          | 74.8043          | 0.1053                     | 0.1002                     | -0.0435                            | -0.0381 | 80.3708          |
| 0.1087                     | 0.7938         | -0.0281                            | -0,0336          | 42.7693          | 0.1052                     | 0.7940                     | -0.0227                            | -0.0339 | 44.6241          |
| 0.2058                     | 0.2046         | -0.0842                            | -0.0654          | 120,9099         | 0,2045                     | 0.2002                     | -0.0695                            | -0.0673 | 123.5702         |
| 0.2096                     | 0.3973         | -0.0727                            | -0.0629          | 109.9878         | 0.2062                     | 0.3907                     | -0.0598                            | -0.0638 | 113.5044         |
| 0.2055                     | 0.5981         | -0.0532                            | -0.0591          | 84,1156          | 0.1979                     | 0.6038                     | -0.0430                            | -0.0499 | 85.9025          |
| 0.3124                     | 0.2921         | -0,0911                            | -0.0825          | 142.1149         | 0.2998                     | 0.2550                     | -0.0736                            | -0.0806 | 145.9690         |
| 0.3067                     | 0.3977         | -0.0785                            | -0.0780          | 126.8695         | 0,3058                     | 0.3990                     | -0.0645                            | -0.0814 | 131.3808         |
| 0.4072                     | 0,1998         | -0.1039                            | -0.0909          | 167,2177         | 0.3981                     | 0.1976                     | -0.0862                            | -0.1015 | 172.0650         |
| 0.3990                     | 0.3049         | -0,0898                            | -0.0889          | 147.‡283         | 0.4031                     | 0.3008                     | -0.0745                            | -0.0991 | 153.6354         |
| 0.4007                     | 0.4024         | -0.0745                            | -0.0824          | 126,9276         | 0,4020                     | 0.4011                     | -0.0625                            | -0.0830 | 129.8821         |
| 0.6048                     | 0.2009         | -0.0823                            | -0.0945          | 147.9234         | 0.5925                     | 0.2097                     | -0.0683                            | -0.1072 | 155.5715         |
| 0.7999                     | 0.1002         | -0.0533                            | -0,0705          | 100,8534         | 0.7978                     | 0.1025                     | -0.0433                            | -0.0686 | 110,2246         |

::

Table B.1 (cont'd)

**\*** 

The Excess Properties of Ternary System n-Octane(1)-n-Undecane(2)-n-Tridecane(3)

| Mole<br>Fraction | Mole<br>Fraction | Excess<br>Viscosity   | Excess<br>Volume |          | Mole<br>Fraction | Mole<br>Fraction | Excess<br>Viscosity    | Excess<br>Volume | Δ*G <sup>E</sup> |
|------------------|------------------|-----------------------|------------------|----------|------------------|------------------|------------------------|------------------|------------------|
| x,               | x <sub>2</sub>   | 10°3 Pa.s             | L/kmol           | J/mol    | x <sup>1</sup> x | x <sub>2</sub>   | 10 <sup>-3</sup> Pa.s  | L/kmol           | J/mol            |
|                  | Temj             | Temperature $= 308.1$ | 15 K             |          |                  | Тетр             | Temperature = 313.15 K | 5 K              |                  |
| 1.0000           | 0.0000           | 0.0000                | 0.0000           | 0.0000   | 1.0000           | 0.0000           | 0.0000                 | 0.0000           | 0.0000           |
| 0.0000           | 1.0000           | 0.0000                | 00000            | 0.0000   | 0.0000           | 1.0000           | 0.0000                 | 0.0000           | 0.0000           |
| 0.0000           | 0.0000           | 0.0000                | 0.0000           | 00000    | 0.0000           | 0.0000           | 0.0000                 | 0.0000           | 0.0000           |
| 0.1062           | 0.0985           | -0.0317               | -0.0561          | 79.5725  | 0.0964           | 0.0975           | -0.0245                | -0.0645          | 75.5701          |
| 0.1048           | 0.7952           | -0.0165               | -0.0292          | 44.6901  | 0.1026           | 0.8003           | -0.0137                | -0.0482          | 44.2267          |
| 0.2060           | 0.1951           | -0.0485               | -0.0802          | 128,9975 | 0.1981           | 0.1988           | -0.0391                | -0.1001          | 129.9460         |
| 0.2060           | 0.3903           | -0.0421               | -0.0818          | 116,1777 | 0.1993           | 0.3896           | -0.0349                | -0.0867          | 116.9876         |
| 0,2033           | 0.6018           | -0.0307               | -0.0756          | 89,1893  | 0.2063           | 0.5973           | -0.0256                | -0.0731          | 94.4552          |
| 0,3072           | 0,2969           | -0.0519               | -0,1022          | 151.6222 | 0,2961           | 0.2976           | -0.0426                | -0.1113          | 154.4400         |
| 0.3030           | 03960            | -0.0456               | -0.0856          | 136,0390 | 0,3028           | 0.4014           | -0.0378                | -0.0979          | 139.2172         |
| 0.3973           | 0.1979           | -0.0573               | -0.1240          | 187.9659 | 0.4045           | 0,1996           | -0.0495                | -0.1513          | 187.4802         |
| 0.3922           | 0.3072           | -0.0516               | -0.1063          | 159,9660 | 0,4032           | 0.2947           | -0.0430                | -0.1254          | 170.6162         |
| 0.4007           | 0.4006           | -0.0429               | -0.0981          | 140,7301 | 0.4016           | 0.4002           | -0.0358                | -0.1071          | 145.7026         |
| 0,6069           | 0.1954           | -0.0466               | -0.1207          | 170.0592 | 0.6117           | 0.1972           | -0.0375                | -0.1359          | 176,8483         |
| 0.7962           | 0.1023           | -0.0275               | -0,0852          | 132.6377 | 0,8004           | 0.1002           | -0.0260                | -0.0980          | 117.4748         |

Table B.2

The Excess Properties of Ternary System n-Octane(1)-n-Undecane(2)-n-Pentadecane(3)

| Fraction       | Fraction       | Viscosity           | Volume  | 9        | Fraction | Fraction | Viscosity              | Volume  | D        |
|----------------|----------------|---------------------|---------|----------|----------|----------|------------------------|---------|----------|
| x <sup>1</sup> | X <sub>2</sub> | 10° Pa.s            | L/kmol  | J/mol    | 'x       | x,       | 10 <sup>-3</sup> Pa.s  | L/kmol  | J/mol    |
|                | Tem            | Temperature = 293,1 | 3.15 K  |          |          | Temp     | Temperature = 298,15 K | 5 K     |          |
| 1.0000         | 00000          | 0.0000              | 0.0000  | 0.0000   | 1,0000   | 0.0000   | 0.0000                 | 0.0000  | 0.0000   |
| 0.0000         | 1.0000         | 0.0000              | 0.0000  | 0.0000   | 0.0000   | 1.0000   | 0.0000                 | 0.0000  | 0.0000   |
| 0.0000         | 0.0000         | 0.0000              | 0.0000  | 0.0000   | 0.0000   | 0.0000   | 0.0000                 | 0.0000  | 0.0000   |
| 0,1038         | 0.1022         | -0.1425             | -0.0539 | 144,9157 | 0.1108   | 0.0995   | -0.1157                | -0.0796 | 157.9899 |
| 0.1091         | 0.7909         | -0.0627             | -0.0428 | 79.0635  | 0.1096   | 0.7909   | -0.0504                | -0.0344 | 83.1347  |
| 0.2082         | 0.2010         | -0.2096             | -0.0995 | 236.2205 | 0.2131   | 0,2016   | -0.1696                | -0.1165 | 246.9844 |
| 0.2019         | 0.3999         | 0.1802              | -0.0943 | 213.5744 | 0.2068   | 0,3952   | -0.1472                | -0.0965 | 221.9782 |
| 0.2111         | 0.5953         | -0.1216             | -0.0642 | 150.7777 | 0.2087   | 0.5964   | -0.0974                | -0.0641 | 159.3681 |
| 0.3068         | 0.2995         | -0.2092             | -0.1179 | 262,1321 | 0,3025   | 0.2971   | -0.1704                | -0.1163 | 269.6904 |
| 0.3029         | 0.3988         | -0.1803             | -0.0955 | 225.2426 | 0.3083   | 0.3947   | -0.1456                | -0.1147 | 237.6372 |
| 0.4042         | 0,1993         | -0.2344             | -0.1445 | 304.4397 | 0.4039   | 0,2016   | -0.1906                | -0.1339 | 312.0720 |
| 0.4007         | 0.3008         | -0.1993             | -0.1206 | 260,6655 | 0.4023   | 0.2988   | -0.1615                | -0.1308 | 273.2954 |
| 0.4051         | 0.3987         | -0.1511             | -0.1149 | 214.7435 | 0.4027   | 0.4017   | -0.1232                | -0.1191 | 220.7158 |
| 0.6019         | 0.2054         | -0.1666             | -0.1344 | 251.9539 | 0.5903   | 0.2059   | -0.1419                | -0.1446 | 265.9033 |
| 0.8005         | 0.1016         | -0.1027             | -0.1053 | 170.4723 | 0.8034   | 0.1012   | -0.0798                | -0.1107 | 185.5553 |

~

Table B.2 (cont'd)

The Excess Properties of Ternary System n-Octane(1)-n-Undecane(2)-n-Pentadecane(3)

| Mole                       | Mole                       | Excess                             | Excess           | ₽ <b>D.</b> ∇ | Mole                       | Mole                       | Excess                             | Excess           | Δ*G <sup>E</sup> |
|----------------------------|----------------------------|------------------------------------|------------------|---------------|----------------------------|----------------------------|------------------------------------|------------------|------------------|
| Fraction<br>X <sub>1</sub> | rraction<br>X <sub>2</sub> | Viscosity<br>10 <sup>-3</sup> Pa.s | Volume<br>L/kmoi | J/moi         | rraction<br>X <sub>1</sub> | Fraction<br>X <sub>2</sub> | Viscosily<br>10 <sup>-3</sup> Pa.s | Volume<br>L/kmol | J/mol            |
|                            | Тетр                       | remperature = 308.1                | 15 K             |               | W 22.                      | Тетр                       | Temperature = 313.15 K             | 5 K              |                  |
| 1,0000                     | 0000'0                     | 0.0000                             | 0.0000           | 0.0000        | 1.0000                     | 0.0000                     | 0.0000                             | 0.0000           | 0.0000           |
| 0.0000                     | 1.0000                     | 0.0000                             | 0.0000           | 0.0000        | 00000                      | 1.0000                     | 0.0000                             | 0.0000           | 0.0000           |
| 0.0000                     | 0.0000                     | 0.0000                             | 0.0000           | 0.0000        | 0.0000                     | 0,000                      | 0.0000                             | 0.0000           | 0.0000           |
| 0,1208                     | 0.0986                     | -0.0817                            | -0.0807          | 171,4958      | 0.1018                     | 0.0951                     | -0.0610                            | -0.0842          | 152.5232         |
| 0.1086                     | 0.7899                     | -0,0360                            | -0.0530          | 83,5004       | 0,1030                     | 0.7965                     | -0.0297                            | -0.0605          | 82.0088          |
| 0.2077                     | 0.2035                     | -0.1144                            | -0.1298          | 248.8132      | 0.2004                     | 0.1964                     | -0.0932                            | -0.1338          | 249.0913         |
| 0.2102                     | 0.3937                     | -0.1017                            | -0.1225          | 227.2196      | 0,1992                     | 0.3971                     | -0.0829                            | -0.1290          | 228.6767         |
| 0.2025                     | 0.6004                     | -0.0671                            | -0.0981          | 161.9793      | 0.2014                     | 0.5952                     | -0.0573                            | -0.0963          | 166.6137         |
| 0.3060                     | 0.3009                     | -0.1172                            | -0.1510          | 274.3943      | 0.2998                     | 0.2988                     | -0.0974                            | -0.1699          | 280.0605         |
| 0.3043                     | 0.4040                     | -0.0987                            | -0.1381          | 240,9752      | 0.2939                     | 0.4029                     | -0.0 (132                          | -0.1579          | 245.3421         |
| 0,3956                     | 0.2061                     | -0.1304                            | -0.1804          | 319,1648      | 0.4021                     | 0.1961                     | -0.1102                            | -0.1965          | 329.2422         |
| 0.3983                     | 0.3050                     | -0.1102                            | -0,1667          | 280.0259      | 0.4011                     | 0.2953                     | -0.0939                            | -0.1767          | 289.2971         |
| 0.4032                     | 0.3977                     | -0.0865                            | -0.1379          | 230,1564      | 0.3947                     | 0.4066                     | -0.0711                            | -0.1507          | 234.8816         |
| 0.6003                     | 0.2049                     | -0.0948                            | -0.1672          | 275.0149      | 0.6050                     | 0.1965                     | -0.0806                            | -0.1910          | 284.8650         |
| 0.7969                     | 0,1060                     | -0.0555                            | -0.1353          | 199,4959      | 0.8015                     | 0.0977                     | -0,0504.                           | -0.1360          | 196.2919         |
|                            |                            |                                    |                  |               |                            | ì                          |                                    |                  |                  |

Table B.3

The Excess Properties of Ternary System n-Undecane(1)-n-Tridecane(2)-n-Pentadecane(3)

| Fraction | Fraction       | Excess              | Excess  | Δ'G     | Mole<br>Fraction | Mole<br>Fraction | Excess                 | Excess  | <b>√.</b> G <sup>E</sup> |
|----------|----------------|---------------------|---------|---------|------------------|------------------|------------------------|---------|--------------------------|
| χı       | X <sub>2</sub> | 10.3 Pa.s           | L/kmol  | J/mol   | χ                | X <sub>2</sub>   | 10.3 Pa.s              | Lkmol   | J/mol                    |
|          | Tem            | Temperature = 293.1 | .15 K   |         |                  | Тетр             | Temperature = 298.15 K | 5 K     |                          |
| 1.0000   | 0.0000         | 0.0000              | 0.0000  | 0.0000  | 00001            | 0.0000           | 0.0000                 | 0.0000  | 0.0000                   |
| 0.0000   | 00001          | 0.0000              | 0.0000  | 0.0000  | 0.0000           | 1.0000           | 0.0000                 | 0.0000  | 0.0000                   |
| 0.0000   | 0.0000         | 0.0000              | 0.0000  | 0.0000  | 0.0000           | 0.0000           | 0.0000                 | 0.0000  | 0.000                    |
| 0.1007   | 0.1011         | -0.0643             | -0.0270 | 27.1088 | 0.1023           | 0.0994           | -0.0389                | -0.0008 | 43.7219                  |
| 0.1031   | 0.7990         | -0.0245             | -0.0093 | 19,9036 | 0.0985           | 0.8009           | -0.0176                | -0.0092 | 23.2771                  |
| 0.2021   | 0,2018         | -0.0871             | -0.0273 | 54.4593 | 0,2025           | 0.2008           | -0.0615                | -0.0116 | 67.3570                  |
| 0.2019   | 0.3946         | -0.0695             | -0.0246 | 56,0259 | 0.2038           | 0,3949           | -0.0544                | -0.0005 | 59.7426                  |
| 0.1997   | 0.6040         | -0.0493             | -0.0183 | 37.9797 | 0.1998           | 0.6008           | -0.0361                | -0.0032 | 45.3176                  |
| 0.3002   | 0.2943         | -0.0845             | -0.0279 | 69,4559 | 0.3023           | 0,2957           | -0.0646                | -0.0156 | 75.8224                  |
| 0,3019   | 0.4009         | -0.0704             | -0.0245 | 62.9571 | 0,3033           | 0,3999           | -0.0549                | -0.0105 | 67.1963                  |
| 0.4029   | 0.2007         | -0,0997             | -0.0285 | 76.5313 | 0.3984           | 0.2034           | -0.0738                | -0.0211 | 87.7062                  |
| 0.4006   | 0.3009         | -0.0827             | -0.0275 | 69.9371 | 0.3991           | 0,3013           | -0.0629                | -0.0153 | 77.4867                  |
| 0.4001   | 0,4047         | -0.0651             | -0.0213 | 57.4484 | 0.4024           | 0.4038           | -0.0496                | -0.0111 | 63.5534                  |
| 0.6052   | 0.1973         | -0.0744             | -0.0280 | 67.1828 | 0.6028           | 0,1982           | -0.0573                | -0.0154 | 74.6263                  |
| 0.7995   | 0.0998         | -0.0471             | -0.0167 | 45.1125 | 0,8027           | 0.0970           | -0.0363                | -0.0014 | 49.5778                  |

Table B.3 (cont'd)

The Excess Properties of Ternary System n-Undecane(1)-n-Tridecane(2)-n-Pentadecane(3)

| x         Inatum $x_1$ $x_2$ x         Temperature = 308.15 K         Temperature = 308.15 K         Temperature = 308.15 K           0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           1.0000         0.0000         0.0000         0.0000         0.0000         0.0000           0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           0.1021         -0.0128         -0.0170         22.5813         0.1027         0.7995           0.1981         -0.0139         -0.0234         62.2473         0.1956         0.3991           0.1981         -0.0249         -0.0232         43.9667         0.1956         0.2978           0.2083         -0.0438         -0.0324         62.2473         0.1956         0.2987           0.2090         -0.0376         -0.0339         65.2549         0.2987         0.2983           0.2000         -0.0426         -0.0329         75.8661         0.3959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mole           | Mole   | Excess                | Excess   | a°G <sup>6</sup> | Mole   | Mole           | Excess                             | Excess  | Δ'G <sup>E</sup> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|-----------------------|----------|------------------|--------|----------------|------------------------------------|---------|------------------|
| Temperature = 308.15 K         0,0000       0,0000       0,0000       1,0000       1,0000       0,0000         1,0000       0,0000       0,0000       0,0000       0,0000       1,000         0,0000       0,0000       0,0000       0,0000       0,0000       1,000         0,1021       -0,0258       -0,6084       44,4774       0,0957       0,093         0,1021       -0,0158       -0,0170       22.5813       0,1027       0,799         0,1981       -0,015       -0,0234       69,9167       0,2012       0,209         0,1981       -0,0352       -0,0234       62,2473       0,1956       0,399         0,6019       -0,0349       -0,0332       43,9667       0,1959       0,602         0,2983       -0,0438       -0,0336       75,2479       0,2987       0,2987         0,2000       -0,0376       -0,039       65,2549       0,2987       0,298         0,2000       -0,034       -0,034       63,4933       0,3945       0,406         0,1983       -0,034       73,7624       0,6018       0,196         0,1983       -0,034       73,7624       0,6018       0,196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x <sub>1</sub> | X2     | 10 <sup>-3</sup> Pa.s | L/kmol   | J/mol            | X,     | x <sub>2</sub> | Viscosity<br>10 <sup>-3</sup> Pa.s | Volume  | J/mol            |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 |                | Temp   | erature = 308.1       | 5 K      |                  |        | Тетр           | crature = 313.1                    | 5 K     |                  |
| 1,0000 0,0000 0,0000 0,0000 1,0000 1,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0  | 1.0000         | 00000  | 0.0000                |          | 0.0000           | 1.0000 | 0.0000         | 0.0000                             | 0.0000  | 0.0000           |
| 0.0000       0.0000       0.0000       0.0000       0.0000         0.11021       -0.0258       -0.0084       44.4774       0.0957       0.0937         0.8060       -0.0115       -0.0170       22.5813       0.1027       0.7995         0.1981       -0.0397       -0.0234       69.9167       0.2012       0.2007         0.3938       -0.0352       -0.0234       62.2473       0.1956       0.3991         0.6019       -0.0249       -0.0332       43.9667       0.1959       0.6024         0.2983       -0.0438       -0.0376       75.2479       0.2987       0.2978         0.2000       -0.0378       -0.0393       65.2549       0.2987       0.3959         0.2000       -0.0304       -0.0392       87.9114       0.3950       0.2005         0.3998       -0.0342       -0.0342       -0.0342       0.2983       0.2983         0.1983       -0.0396       -0.0304       73.7624       0.6018       0.1966         0.1983       -0.0396       -0.0304       73.7624       0.6018       0.1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000         | 1.0000 | 0.000                 | 0.0000   | 0.0000           | 0.0000 | 1.0000         | 0.0000                             | 0.0000  | 0.0000           |
| 0.1021       -0.0258       -0.0084       44.4774       0.0957       0.0937         0.8060       -0.0115       -0.0170       22.5813       0.1027       0.7995         0.1981       -0.0397       -0.0234       69.9167       0.2012       0.2007         0.3938       -0.0352       -0.0234       62.2473       0.1956       0.3991         0.6019       -0.0249       -0.0322       43.9667       0.1959       0.6024         0.2983       -0.0438       -0.0376       75.2479       0.2922       0.2978         0.4028       0.0376       75.2479       0.2987       0.3959         0.2000       -0.0378       -0.0393       65.2549       0.2987       0.3959         0.2000       -0.0504       -0.0329       87.9114       0.3950       0.2005         0.3142       -0.0426       -0.0302       75.8661       0.3973       0.2983         0.1983       -0.0341       63.4933       0.3945       0.1066         0.1983       -0.0364       46.1014       0.7985       0.1008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000         | 0.0000 | 0.0000                | 0.0000   | 0.0000           | 0.0000 | 0.0000         | 0.0000                             | 0.0000  | 0.0000           |
| 0.8060       -0.0115       -0.0170       22.5813       0.1027       0.7995         0.1981       -0.0397       -0.0234       69.9167       0.2012       0.2007         0.3938       -0.0352       -0.0234       62.2473       0.1956       0.3991         0.6019       -0.0249       -0.0322       43.9667       0.1959       0.6024         0.2983       -0.0438       -0.0376       75.2479       0.2922       0.2978         0.4028       0.00378       -0.0393       65.2549       0.2987       0.3959         0.2000       -0.0504       -0.0329       87.9114       0.3950       0.2005         0.3142       -0.0426       -0.0332       75.8661       0.3945       0.4067         0.1983       -0.0343       -0.0341       73.7624       0.6018       0.1966         0.1983       -0.0366       -0.0304       73.7624       0.6018       0.1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1030         | 0.1021 | -0.0258               | -0.6084  | 44.4774          | 0.0957 | 0.0937         | -0.0210                            | -0.0160 | 40.5311          |
| 0.1981       -0.0397       -0.0234       69.9167       0.2012       0.2007         0.3938       -0.0352       -0.0234       62.2473       0.1956       0.3991         0.6019       -0.0249       -0.0322       43.9667       0.1959       0.6024         0.2983       -0.0438       -0.0376       75.2479       0.2922       0.2978         0.4028       -0.0378       -0.0393       65.2549       0.2987       0.3959         0.2000       -0.0504       -0.0329       87.9114       0.3950       0.2005         0.3142       -0.0426       -0.0302       75.8661       0.3973       0.2983         0.3998       -0.0343       -0.0241       63.4933       0.3945       0.4067         0.1983       -0.0396       -0.0304       73.7624       0.6018       0.1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0996         | 0.8060 | -0.0115               | -0.0170  | 22.5813          | 0.1027 | 0.7995         | -0.0113                            | -0.0127 | 20.4901          |
| 0.3938       -0.0352       -0.0234       62.2473       0.1956       0.3991         0.6019       -0.0249       -0.0322       43.9667       0.1959       0.6024         0.2983       -0.0438       -0.0376       75.2479       0.2922       0.2978         0.4028       -0.0378       -0.0393       65.2549       0.2987       0.3959         0.2000       -0.0504       -0.0329       87.9114       0.3950       0.2005         0.3142       -0.0426       -0.0322       75.8661       0.3973       0.2983         0.3998       -0.0343       -0.0241       63.4933       0.3945       0.4067         0.1983       -0.0396       -0.0304       73.7624       0.6018       0.1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2019         | 0.1981 | -0.0397               | -0.0234  | 69.9167          | 0.2012 | 0.2007         | -0.0350                            | -0.0326 | <i>11</i> 60.09  |
| 0.6019       -0.0249       -0.0322       43.9667       0.1959       0.6024         0.2983       -0.0438       -0.0376       75.2479       0.2922       0.2978         0.4028       (-0.0378       -0.0393       65.2549       0.2987       0.3959         0.2000       -0.0504       -0.0329       87.9114       0.3950       0.2005         0.3142       -0.0426       -0.0302       75.8661       0.3973       0.2983         0.3998       -0.0343       -0.0241       63.4933       0.3945       0.4067         0.1983       -0.0396       -0.0304       73.7624       0.6018       0.1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2021         | 0.3938 | -0.0352               | -0.0234  | 62,2473          | 0.1956 | 0,3991         | -0.0299                            | -0.0178 | 59.3690          |
| 0.2983       -0.0438       -0.0376       75.2479       0.2922       0.2978         0.4028       (-0.0378       -0.0393       65.2549       0.2987       0.3959         0.2000       -0.0504       -0.0329       87.9114       0.3950       0.2005         0.3142       -0.0426       -0.0302       75.8661       0.3973       0.2983         0.3998       -0.0343       -0.0241       63.4933       0.3945       0.4067         0.1983       -0.0396       -0.0304       73.7624       0.6018       0.1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2005         | 6109'0 | -0.0249               | -0.0322  | 43.9667          | 0.1959 | 0.6024         | -0.0208                            | -0.0097 | 44.1239          |
| 0.4028       (-0.0378       -0.0393       65.2549       0.2987       0.3959         0.2000       -0.0504       -0.0329       87.9114       0.3950       0.2005         0.3142       -0.0426       -0.0302       75.8661       0.3973       0.2983         0.3998       -0.0343       -0.0241       63.4933       0.3945       0.4067         0.1983       -0.0396       -0.0304       73.7624       0.6018       0.1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3030         | 0,2983 | -0.0438               | -0.0376  | 75.2479          | 0.2922 | 0.2978         | -0.0370                            | -0.0335 | 73.5391          |
| 0.2000       -0.0504       -0.0329       87.9114       0.3950       0.2005         0.3142       -0.0426       -0.0302       75.8661       0.3973       0.2983         0.3998       -0.0343       -0.0241       63.4933       0.3945       0.4067         0.1983       -0.0396       -0.0304       73.7624       0.6018       0.1966         0.1013       -0.0369       -0.0966       46.1014       0.7985       0.1008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2996         | 0.4028 | -0.0378               | -0.0393  | 65.2549          | 0.2987 | 0.3959         | -0.0321                            | -0.0323 | 65.6657          |
| 0.3142     -0.0426     -0.0302     75.8661     0.3973     0.2983       0.3998     -0.0343     -0.0241     63.4933     0.3945     0.4067       0.1983     -0.0396     -0.0304     73.7624     0.6018     0.1966       0.1013     -0.0359     -0.0096     46.1014     0.7985     0.1008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3968         | 0.2000 | -0.0504               | -0.0329  | 87.9114          | 0.3950 | 0.2005         | -0.0422                            | -0.0374 | 87.4012          |
| 0.3998     -0.0343     -0.0241     63.4933     0.3945     0.4067       0.1983     -0.0396     -0.0304     73.7624     0.6018     0.1966       0.1013     -0.0359     -0.0096     46.1014     0.7985     0.1008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3732         | 0.3142 | -0.0426               | -0.0302  | 75.8661          | 0.3973 | 0.2983         | -0.0365                            | -0.0346 | 76.6477          |
| 0.1983 -0.0396 -0.0304 73.7624 0.6018 0.1966 0.1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,4028         | 0.3998 | -0.0343               | -0.0241  | 63.4933          | 0.3945 | 0.4067         | -0.0291                            | -0.0286 | 61.8644          |
| 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.6018         | 0.1983 | -0.0396               | -0.0304  | 73.7624          | 0.6018 | 0.1966         | -0.0341                            | -0.0324 | 72.4615          |
| 20010 10010 10010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8003         | 0.1013 | -0.0259               | -0.0096. | 46,1014          | 0.7985 | 0.1008         | -0.0223                            | -0.0235 | 46.2302          |

Table B.4

The Excess Properties of Ternary System n-Octane(1)-n-Tridecane(2)-n-Pentadecane(3)

| Mole                       | Mole                      | Excess                             | Excess  | ∆°G <sup>E</sup> | Mole    | Mole                      | Excess                             | Excess  | ∆*G <sup>E</sup> |
|----------------------------|---------------------------|------------------------------------|---------|------------------|---------|---------------------------|------------------------------------|---------|------------------|
| riacuoii<br>X <sub>1</sub> | riatuon<br>X <sub>2</sub> | Viscosity<br>10 <sup>-3</sup> Pa.s | Volume  | J/mol            | X1      | riacuon<br>X <sub>2</sub> | Viscosily<br>10 <sup>-3</sup> Pa.s | Volume  | J/mol            |
|                            | Tempo                     | remperature = 293.1                | 15 K    |                  |         | Тетр                      | Temperature = 298.15 K             | 5 K     |                  |
| 1.0000                     | 0.0000                    | 0.0000                             | 0.0000  | 0.0000           | 1.0000  | 0.0000                    | 0.0000                             | 0.0000  | 0.0000           |
| 0.0000                     | 1.0000                    | 0.0000                             | 0.0000  | 0.0000           | 0.0000  | 1.0000                    | 0.0000                             | 0.0000  | 0.0000           |
| 0.0000                     | 0.0000                    | 0.0000                             | 0.0000  | 0.0000           | 0.0000  | 0.0000                    | 0.0000                             | 0.0000  | 0.0000           |
| 0.1051                     | 0.0982                    | -0.1346                            | -0.0594 | 109.7461         | 0.1047  | 0.0988                    | -0.0946                            | -0.0518 | 129,1918         |
| 0.1085                     | 0961.0                    | -0.0699                            | -0.0554 | 85.6110          | 0.1049  | 0.7983                    | -0.0548                            | -0.0396 | 87.2030          |
| 0.2089                     | 0.2018                    | -0.1930                            | -0.0894 | 205.7855         | 0.2045  | 0.1972                    | -0.1489                            | -0.0914 | 216.5600         |
| 0.2045                     | 0.3899                    | -0.1641                            | -0.0893 | 190.6378         | 0.2084  | 0.3920                    | -0.1326                            | -0.0829 | 199,9955         |
| 0.2074                     | 0.5969                    | -0.1335                            | -0.0727 | 158.8920         | 0,2074  | 0.5969                    | -0.1048                            | -0.0644 | 170.3795         |
| 0.3024                     | 0.2956                    | -0.2083                            | -0.1264 | 254.2039         | 0.2986  | 0.2974                    | -0.1666                            | -0.1181 | 262.0784         |
| 0.3061                     | 0.4020                    | 0.1879                             | -0.1188 | 234.5260         | 0.3028  | 0.4005                    | -0.1512                            | -0.1038 | 243.7009         |
| 0.4009                     | 0.1998                    | -0.2456                            | -0.1406 | 299,1287         | 0.4034  | 0.1996                    | -0.1950                            | -0.1470 | 318.7903         |
| 0.4030                     | 0.2986                    | -0.2143                            | -0.1347 | 285.9683         | 0.4092  | 0.2977                    | -0.1755                            | -0.1365 | 294.0088         |
| 0.4037                     | 0.4025                    | -0.1860                            | -0.1238 | 256.6140         | 0.3998  | 0.4065                    | -0.1476                            | -0.1187 | 270.9268         |
| 0.6185                     | 0.1931                    | -0.1973                            | -0.1558 | 293,2410         | 0.6052  | 0.1990                    | -0.1628                            | -0.1515 | 311.1641         |
| 0.8009                     | 0,1005                    | -0.1283                            | -0.1174 | 209,9505         | 0.8034. | 0.0973                    | -0.1049                            | -0.1171 | 220.0776         |

1

Table B.4 (cont'd)

The Excess Properties of Ternary System n-Octane(1)-n-Tridecane(2)-n-Pentadecane(3)

| Temperal 0.0000 1.0000 0.0000 0.1009 0.1961 0.3941 0.5947 0.2932 0.3989 0.1978         | 151                                     | 0.0000<br>0.0000 |          | ×      | x<br>X | 10., Pa.s              | L/kmol  | J/mol    |
|----------------------------------------------------------------------------------------|-----------------------------------------|------------------|----------|--------|--------|------------------------|---------|----------|
| 0.0000<br>0.0000<br>0.1009<br>0.7972<br>0.1961<br>0.3941<br>0.2932<br>0.3989<br>0.1978 | · • • • • • • • • • • • • • • • • • • • | 00000            |          |        | Temp   | Temperature = 313.15 K | 5 K     |          |
| 0.0000<br>0.0000<br>0.1009<br>0.7972<br>0.1961<br>0.3941<br>0.2932<br>0.3989<br>0.1978 |                                         | 00000            | 00000    | 1.0000 | 0.0000 | 0.0000                 | 0.0000  | 0.0000   |
| 0.0000<br>0.1009<br>0.7972<br>0.1961<br>0.3941<br>0.2932<br>0.3989<br>0.1978           |                                         | 0000             | 0.0000   | 0.0000 | 00001  | 0.0000                 | 0.0000  | 0.0000   |
| 0.1009 0.7972 0.1961 0.3941 0.5947 0.2932 0.3989 0.1978                                |                                         | 2000             | 0.0000   | 0,000  | 0.0000 | 0.0000                 | 0.0000  | 0.0000   |
| 0.7972<br>0.1961<br>0.3941<br>0.2932<br>0.3989<br>0.1978                               |                                         | -0.0844          | 134.5120 | 0.0998 | 0.1140 | -0.0512                | -0.0523 | 128.5754 |
| 0.1961<br>0.3941<br>0.5947<br>0.2932<br>0.3989<br>0.1978                               |                                         | -0.0512          | 93,3709  | 0.1048 | 0.7955 | -0.0310                | -0.0571 | 92.8101  |
| 0.3941<br>0.5947<br>0.2932<br>0.3989<br>0.1978                                         | ·                                       | -0.1345          | 225,8880 | 0,2059 | 0,2011 | -0.0848                | -0.1225 | 225.0343 |
| 0.5947<br>0.2932<br>0.3989<br>0.1978<br>0.2967                                         | •                                       | 0.1155           | 204.0085 | 0.2003 | 0.3951 | -0.0732                | -0.1216 | 203.6092 |
| 0.2932<br>0.3989<br>0.1978<br>0.2967                                                   |                                         | -0.1107          | 178,3614 | 0.2037 | 0.5988 | -0.0590                | -0.1055 | 176.7987 |
| 0.3989 0.1978 0.2967                                                                   | •                                       | 0.1548           | 273.3484 | 0.3116 | 0.3083 | -0.0959                | -0.1673 | 276.6790 |
| 0.1978                                                                                 | •                                       | 0.1362           | 256,2871 | 0,2998 | 0.4051 | -0.0851                | -0.1563 | 255.0528 |
| 0.2967                                                                                 | ·                                       | -0.1966          | 331.0244 | 0.4000 | 0.1977 | -0.1123                | -0.1989 | 332.4031 |
| 0.4061                                                                                 | ·                                       | -0.1751          | 305,2209 | 0.3978 | 0.3018 | -0.0999                | -0.1913 | 307.4868 |
| 0.4017 0.4051 -0.103                                                                   | -0.1037 -0                              | -0,1697          | 274.7217 | 0,3959 | 0,4064 | -0.0869                | -0.1771 | 278.5784 |
| 0.6080 0.1958 -0.1130                                                                  |                                         | -0.2105          | 321.8547 | 0.6015 | 0.1995 | -0.0951                | -0.2052 | 330.2678 |
| 0.8052 0.0976 -0.0698                                                                  |                                         | . 9891.0-        | 237.6542 | 0.8047 | 0.0986 | -0.0580                | -0.1583 | 245.5354 |

Table B.5

.-

. The Excess Properties of Ternary System n-Decane(1)-n-Tridecane(2)-n-Pentadecane(3)

| LIBOTE  | Mole                      | Excess                             | Excess  | <b>Δ</b> .Θ <sup>ε</sup> | Mole                      | Mole                      | Excess                             | Excess  | $\Delta^{\rm CE}$ |
|---------|---------------------------|------------------------------------|---------|--------------------------|---------------------------|---------------------------|------------------------------------|---------|-------------------|
| χı      | riacuon<br>X <sub>2</sub> | Viscosity<br>10 <sup>-3</sup> Pa.s | Volume  | J/mol                    | riacuon<br>X <sub>1</sub> | riacuon<br>X <sub>2</sub> | VISCOSIIY<br>10 <sup>-3</sup> Pa.s | LAkmol  | J/mol             |
|         | Temp                      | remperature = 293.1                | 15 K    |                          |                           | Temp                      | Temperature = 298.15 K             | 5 K     |                   |
| 1.0000  | 0.0000                    | 00000                              | 0.0000  | 0.0000                   | 1.0000                    | 0.0000                    | 0.0000                             | 0.0000  | 0.0000            |
| 0.0000  | 00001                     | 0.0000                             | 0.0000  | 0.0000                   | 0.0000                    | 1.0000                    | 0.0000                             | 0.0000  | 0.0000            |
| 0.0000  | 0.0000                    | 0.0000                             | 0.0000  | 0.0000                   | 0.0000                    | 00000                     | 0.0000                             | 0.0000  | 0.0000            |
| 0.1002  | 0.1025                    | -0.0823                            | -0.0179 | 48.8507                  | 0.0814                    | 0.1024                    | -0.0472                            | -0.0025 | 54.3527           |
| 0,0993  | 0.8003                    | -0.0341                            | -0.0123 | 36.1522                  | 0.0836                    | 0.8163                    | -0.0257                            | 0.0054  | 31.8426           |
| 0.1979  | 0.2021                    | -0.1186                            | -0.0233 | 87.8415                  | 0.1700                    | 0,2119                    | -0.0804                            | -0.0175 | 91.3940           |
| 0.1999  | 0.3961                    | -0,0999                            | -0.0337 | 83,3020                  | 0.1652                    | 0.4175                    | -0.0695                            | -0.0109 | 82.2407           |
| 0.2022  | 0.6023                    | -0,0664                            | -0.0264 | 74,2278                  | 0.1696                    | 0.6245                    | -0.0517                            | -0.0058 | 65.7117           |
| 0.2970  | 0.3010                    | -0.1169                            | -0.0435 | 117.3676                 | 0.2514                    | 0.3155                    | -0.0897                            | -0.0259 | 109,3107          |
| 0,2981  | 0.4012                    | -0.1043                            | -0.0388 | 103.6052                 | 0.2547                    | 0.4316                    | -0.0777                            | -0.0209 | 99.6963           |
| 0.3953  | 0.1983                    | -0.1429                            | -0.0526 | 132.1690                 | 0.3479                    | 0,2183                    | -0.1063                            | -0.0365 | 137.0568          |
| 0.4052  | 0.2985                    | -0,1235                            | -0.0415 | 119.0225                 | 0.3490                    | 0,3270                    | -0.0930                            | -0.0348 | 123.1802          |
| 0,3976  | 0.4006                    | -0.0981                            | -0.0446 | 109.2928                 | 0.3494                    | 0,4377                    | -0.0779                            | -0.0217 | 104.6465          |
| .0,6004 | 0.2004                    | -0.1114                            | -0.0417 | 123,6224                 | 0.5485                    | 0.2266                    | -0.0939                            | -0.0363 | 132.7614          |
| 9008.0  | 0,1023                    | -0.0708                            | -0.0223 | 81.2279                  | 0.7675                    | 0.1177                    | -0.0640                            | -0.0266 | 97.6979           |

Table B.5 (cont'd)

:

,-, ....

×

. The Excess Properties of Ternary System n-Decane(1)-n-Tridecane(2)-n-Pentadecane(3)

| Mole                       | Mole                       | Excess                             | Excess           | Δ*G <sup>β</sup> | Molc                       | Mole                       | Excess                            | Excess           | Δ'G <sup>E</sup> |
|----------------------------|----------------------------|------------------------------------|------------------|------------------|----------------------------|----------------------------|-----------------------------------|------------------|------------------|
| Fraction<br>X <sub>1</sub> | Fraction<br>X <sub>2</sub> | Viscosity<br>10 <sup>-3</sup> Pa.s | Volume<br>L/kmol | J/mol            | Fraction<br>X <sub>1</sub> | Fraction<br>X <sub>2</sub> | Viscosity<br>10 <sup>3</sup> Pa.s | Volume<br>L/kmol | J/moi            |
|                            | Tempe                      | remperature = 308.1                | .15 K            |                  |                            | Temp                       | Temperature = 313.15 K            | 5 K              |                  |
| 1.0000                     | 0.0000                     | 0.0000                             | 0.0000           | 00000            | 1.0000                     | 0.0000                     | 0.0000                            | 0.0000           | 0.0000           |
| 0.0000                     | 1.0000                     | 0.0000                             | 0.0000           | 0.0000           | 0.0000                     | 1.0000                     | 0.0000                            | 0.0000           | 0.0000           |
| 0.0000                     | 0,0000                     | 0.0000                             | 0.0000           | 0.0000           | 0.0000                     | 0.0000                     | 0.0000                            | 0.0000           | 0.0000           |
| 0,1003                     | 0.1008                     | -0.0365                            | -0.0205          | 64.3680          | 0.1006                     | 0.1034                     | -0.0298                           | -0.0327          | 65.9388          |
| 0.0996                     | 0.7999                     | -0.0194                            | -0.0156          | 36,1574          | 0.0998                     | 0.8028                     | -0.0156                           | -0.0287          | 36.9564          |
| 0.2013                     | 0.1990                     | -0.0577                            | -0.0413          | 106.5707         | 0.1981                     | 0.2033                     | -0.0478                           | -0.0467          | 105.5612         |
| 0,1997                     | 0.4042                     | -0.0510                            | -0.0353          | 92.4779          | 0.1987                     | 0.3985                     | -0.0419                           | -0.0493          | 94,9095          |
| 0.2000                     | 0.6013                     | -0.0375                            | -0.0375          | 73.6574          | 0.2005                     | 0.6017                     | -0.0315                           | -0.0418          | 73.8569          |
| 0.3010                     | 0,3019                     | -0.0651                            | -0.0449          | 120.0112         | 0,2941                     | 0,2992                     | -0.0537                           | -0.0515          | 121.2881         |
| 0.2998                     | 0,4028                     | -0.0566                            | -0.0479          | 108.6108         | 0,3010                     | 0,4011                     | -0.0464                           | -0.0546          | 112.0789         |
| 0.4008                     | 0.2012                     | -0.0749                            | -0.0621          | 145.3748         | 0.3971                     | 0.1948                     | -0.0625                           | -0.0788          | 148.3196         |
| 0.4006                     | 0.3003                     | -0.0661                            | -0.0557          | 128.6335         | 0,3995                     | 0.3033                     | -0.0546                           | -0.0642          | 130,3855         |
| 0.4008                     | 0.3996                     | -0.0549                            | -0.0514          | 111.5819         | 0.4001                     | 0.4007                     | -0.0459                           | -0.0627          | 112.3793         |
| 0.6014                     | 0.2009                     | -0.0623                            | -0.0597          | 127.3654         | 0.6018                     | 0.1979                     | -0.0520                           | -0.0717          | 131.0186         |
| 0.8038                     | 0.0978                     | -0.0399                            | -0.0446          | 85.8556          | 0.8038                     | 0.1000                     | -0.0324                           | -0.0529          | 88.5880          |

# Appendix C

Error Analysis of Density Measurements and Excess Molar Volumes

### C.1 <u>Density Measurements</u>

The equation used for calculating densities is given in Chapter 3 as

$$\rho = \frac{AT^2}{1 - BT^2} - C \tag{3.3}$$

To calculate the predicted error in the density value due to an error in T, the period of vibration, eq. (3.3) is differentiated to obtain

$$\frac{d\rho}{dT} = \frac{2AT}{(1 - BT^2)^2}$$

or

$$d\rho = \frac{2AT}{(1 - BT^2)^2} \tag{C.1}$$

The maximum value of T is 0.3421 seconds and the maximum fluctuation in density meter readings is  $1 \times 10^{-5}$  seconds in this study. The values of the calibration constants which are A = 16.35, B = -0.024 and C = 1.14.

Substituting all the values above into eq. (C.1), then the predicted error in density measurements is

0

$$d\rho = \frac{2 \times 16.35 \times 0.3421}{[1 - (-0.024) \times 0.3421^2]^2} \times 1 \times 10^{-5}$$
$$= 1.11 \times 10^{-4} \ kg/L$$

Therefore, the conclusion is

$$d\rho < 1.5 \times 10^{-4} \ kg/L$$
 (C.2)

### C.2 Excess Molar Volume of Mixing

The equation used to calculate excess molar volumes of mixing is given in Chapter 2 as

$$V^{E} = \frac{\sum_{i} x_{i} M_{i}}{\rho} - \sum_{i} \frac{x_{i} M_{i}}{\rho_{i}}$$
 (2.106)

for a binary mixture, eq. (2.106) becomes

$$V^{E} = \frac{x_{1}M_{1} + x_{2}M_{2}}{\rho_{1}} - \frac{x_{1}M_{1}}{\rho_{1}} - \frac{x_{2}M_{2}}{\rho_{2}}$$
 (C.3)

Subject to the constraint that

$$x_1 + x_2 = 1$$
 (C.4)

eq.(C.3) is rearranged as

$$V^{E} = \frac{M_{1}x_{1} + M_{2}(1 - x_{1})}{\rho} - \frac{x_{1}M_{1}}{\rho_{1}} - \frac{(1 - x_{1})M_{2}}{\rho_{2}}$$

$$= \frac{x_{1}(M_{1} - M_{2}) + M_{2}}{\rho} - \frac{x_{1}M_{1}}{\rho_{1}} - \frac{M_{2} - x_{1}M_{2}}{\rho_{2}}$$
(C.5)

The error in excess molar volume is due to the density measurements of the solution and the weight measurements in making the solution, that is,  $V^E$  is a function of  $\rho$ ,  $\rho_1$ ,  $\rho_2$ ,  $w_1$  and  $\widetilde{w_2}$ , where  $w_1$  and  $w_2$  are the mass of component 1 and 2, respectively.

To calculate the predicted error in the excess molar volume of mixing, V<sup>E</sup> is differentiated with respect to all its variables as

$$dV^{E} = \frac{\partial V^{E}}{\partial \rho} d\rho + \frac{\partial V^{E}}{\rho_{1}} d\rho_{1} + \frac{\partial V^{E}}{\partial \rho_{2}} d\rho_{2} + \frac{\partial V^{E}}{\partial w_{1}} dw_{1} + \frac{\partial V^{E}}{\partial w_{2}} dw_{2}$$
 (C.6)

where

$$\frac{\partial V^{E}}{\partial w_{1}} = \frac{\partial V^{E}}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial w_{1}} \tag{C.7}$$

$$\frac{\partial V^E}{\partial w_1} = \frac{\partial V^E}{\partial x_1} \cdot \frac{\partial x_1}{\partial w_2} \tag{C.8}$$

Substituting eqs. (C.7) and (C.8) into (C.6) yields

$$dV^{E} = \frac{\partial V^{E}}{\partial \rho} d\rho + \frac{\partial V^{E}}{\rho_{1}} d\rho_{1} + \frac{\partial V^{E}}{\partial \rho_{2}} d\rho_{2}$$

$$+ \frac{\partial V^{E}}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial w_{1}} dw_{1} + \frac{\partial V^{E}}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial w_{2}} dw_{2}$$
(C.9)

In fact

$$d\rho_1 = d\rho_2 = d\rho \tag{C.10}$$

and

$$dw_1 = dw_2 = dw \tag{C.11}$$

Thus eq. (C.9) can be simplified as

$$dV^{E} = \left(\frac{\partial V^{E}}{\partial \rho} + \frac{\partial V^{E}}{\rho_{1}} + \frac{\partial V^{E}}{\partial \rho_{2}}\right) d\rho + \left[\frac{\partial V^{E}}{\partial x_{1}} \left(\frac{\partial x_{1}}{\partial w_{1}} + \frac{\partial x_{1}}{\partial w_{2}}\right)\right] dw \quad (C.12)$$

From eq. (C.5):

$$\frac{\partial V^E}{\partial \rho} = \frac{-x_1(M_1 - M_2) - M_2}{\rho^2} \tag{C.13}$$

$$\frac{\partial V^E}{\partial \rho_1} = \frac{x_1 M_1}{\rho_1^2} \tag{C.14}$$

$$\frac{\partial V^E}{\partial \rho_2} = \frac{M_2 - x_1 M_2}{\rho_2^2} \tag{C.15}$$

$$\frac{\partial V^E}{\partial x_1} = \frac{M_1 - M_2}{\rho} - \frac{M_1}{\rho_1} + \frac{M_2}{\rho_2} \tag{C.16}$$

From the definition of mole fraction:

$$x_1 = \frac{\frac{w_1}{M_1}}{\frac{w_1}{M_1} + \frac{w_2}{M_2}} = \frac{w_1 M_2}{w_1 M_2 + w_2 M_1}$$
 (C.17)

the differentiation of  $x_1$  with respect to  $w_1$  is

$$\frac{\partial x_1}{\partial w_1} = \frac{w_2 M_1 M_2}{(w_1 M_2 + W_2 M_1)^2} \tag{C.18}$$

and the differentiation of  $x_1$  with respect to  $w_2$  is

$$\frac{\partial x_1}{\partial w_2} = \frac{-w_1 M_1 M_2}{(w_1 M_2 + W_2 M_1)^2} \tag{C.19}$$

Substituting eqs. (C.13), (C.14), (C.15), (C.16), (C.17), (C.18) and (C.19) into (C.12) yields

$$dV^{E} = \left[\frac{-x_{1}(M_{1} - M_{2}) - M_{2}}{\rho^{2}} + \frac{x_{1}M_{1}}{\rho_{1}^{2}} + \frac{M_{2} - x_{1}M_{2}}{\rho_{2}^{2}}\right]d\rho$$

$$+ \left\{\left(\frac{M_{1} - M_{2}}{\rho^{2}} - \frac{M_{1}}{\rho_{1}} + \frac{M_{2}}{\rho_{2}}\right)\left[\frac{M_{1}M_{2}(w_{2} - w_{1})}{(w_{1}M_{2} + w_{2}M_{1})^{2}}\right]\right\}dw$$
(C.20)

Eq. (C.20) is the general equation used for error analysis of excess molar volumes.

From Figures 5.1 to 5.4, it is clear that the maximum value of  $V^E$  appears at system n-octane(1)-n-pentadecane(2) when temperature = 313.15 K and  $x_1 = 0.5$ . Therefore, data at this point are chosen to calculate the predicted error of excess molar volume. They are listed as follows:

$$M_1 = 114.23$$
 g/mol  $\rho_1 = 0.68647$  g/cm<sup>3</sup>  $x_1 = 0.4956$  g/cm<sup>3</sup>  $M_2 = 212.42$  g/mol  $\rho_2 = 0.75454$  g/cm<sup>3</sup>  $\rho_3 = 0.73036$   $\rho_4 = 0.3222$  g  $\rho_5 = 0.73036$   $\rho_6 = 0.73036$   $\rho_7 = 0.73036$   $\rho_8 = 0.73036$   $\rho_8 = 0.73036$   $\rho_8 = 0.73036$   $\rho_8 = 0.73036$ 

From eq. (C.2) dp can take the value of 1.5 x  $10^{-4}$  g/cm<sup>3</sup> and as indicated in Chapter 3 dw = 1 x  $10^{-7}$  kg = 1 x  $10^{-4}$  g. Substituting all the data above into eq. (C.20) yields

$$dV^{E} = \left[\frac{-0.4956(114.23 - 212.42) - 212.42}{0.73036^{2}} + \frac{0.4956 \times 114.23}{0.68647^{2}} + \frac{212.42 - 0.4956 \times 212.42}{0.75454^{2}}\right] \times 1.5 \times 10^{-4}$$

$$+ \left\{\left(\frac{114.23 - 212.42}{0.73036} - \frac{114.23}{0.68647} + \frac{212.42}{0.75454}\right)\right\}$$

$$= \left[\frac{114.23 \times 212.42}{(6.3222 \times 212.42 + 11.9656 \times 114.23)^{2}}\right] \times 1 \times 1^{-4}$$

$$= 1.65 \times 10^{-4} \ cm^{3}/mol$$

Therefore, the conclusion is

$$dV^E < 2 \times 10^{-4} cm^3/mol = 2 \times 10^{-4} L/kmol$$
 (C.21)

# Appendix D

The Results of Testing Purity of the Chemicals by Gas Chromatographic Analysis

;7

The purities of the n-alkanes used in this study were checked by gas chromatography. The detector type is the Flame Ionization Detector (FID) and the column type is a  $5 \text{ m} \times 0.53 \text{ mm}$  methyl - silicon capillary column. The results are listed as follows:

| Reagent       | Stated Purity (mol%) | Actual Purity (mol%) |
|---------------|----------------------|----------------------|
| n-octane      | 99+                  | 99.7                 |
| n-decane      | 99+                  | 99.8                 |
| n-undecane    | 99                   | 99.9                 |
| n-tridecane   | 99+                  | 99.5                 |
| n-pentadecane | 99+                  | 99.9                 |

### VITA AUCTORIS

NAME:

Jiangning Wu

PLACE OF BIRTH:

?

Nanjing, Jiangsu, China (PRC)

**EDUCATION:** 

Department of Chemical Engineering

Nanjing Institute of Chemical Technology, Nanjing, China

(PRC)

1978-1982 B.Sc.

Department of Chemical Engineering

Nanjing Institute of Chemical Technology, Nanjing, China

(PRC)

1982-1984 M.Sc.

Department of Chemical Engineering

University of Windsor, Windsor, Ontario, Canada

1987-present Ph.D. Candidate