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ABSTRACT
The torsional vibratioﬁ characteristics of a geared
\E{stem with clearance are 1nvest1gated in this study. The
\cgearance results in a b111near restorlng.force character-
istic which is non-linear in nature. This particular type
of nop linearity causes the generation of ultraharmonic,
harmonic and Subharmonic Tesonances.

Analytical solutions are derived for ultraharmonic,
harmonic\ and subharmonic resonances by the application of .
the Ritz' averaging method with two OrL three term approkimai
tions for forcing functions of the type T cos wt and
C w2 cos wt. T and C aretconstants and w is the forcing
frequency. The accuracy of this approximate method is
verified by means of analog computer 51mulat10n The-ana-
lytlcal solutions agree quite closely with analog computer
results. The analytical solutions are also compared'with
experimental results obtained from a mechanical model with
a bilinear restoring force charécteristic. The mechanical
model exhibits ultraharmonic and harmonic resonances but
fails to develop distinct subharmonic resonances owing ‘to
inadequate power capacity of the vibrator system used.

With the analog computer however, the subharmonic resonance
is excited over a limited frequency range. Altﬁbugh'the
experimental results are lower in magnitude than predicted,
fhey dlstlnctly show the nature of non-linear reSponse

The theory of limiting conditions for the generation of

subharmonic resonances is developed in Appendix IV.
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1. INTROQDUCTION

1.1 CHARACTERISTICS OF NON-LINEAR SYSTEMS

Vibrating systems have generally non-linear restoring
force characteristics. In most cases the magnitude of
nonlinearity is sufficiently small to pravide acceptable
results with a linear approximation. . Non-linearities are
of two types; continuous and discontinuous. Continuous
non-linear restoring forces are prodqced by imperfect
elasticity of materials, such as rubber used for flexible
couplings and vibration is&lation suspensions, geometric
configurations of linear springs and by large amplitudes®
of angular motion. There are specially designed springs,
sucﬁ as Belleville, sine and wire mesh, which have con-
tinuous non-linear characteristics. Discontinuous non-
linearities are exhibited by systems with restoring force
characteristics represented by simple combinations of
straight lines. In practice, they often result from the dis-.
continuous contact with elastic restraiﬁts due to clearances
and backlash.

The vibration of systems with non-linear restoring
forces is periodic, but contains harmonics of the funda-
mental oscillation. As a result three distinct types of
forced vibration can occur, which are the harmonic, ultra-
harmonic and subharmonic resonances. The harmonic resonance
iS equivalent to a linear resonance. An ultraharmonic is

the resonance of one of the higher harmonics of motion when



it reaches the region of the natural frequency of the
system. Similariy a subharmonic is the resonance of one
of the harmonics whose frequency is 1/n times the forcing
frequency, where n is an integer. The type of resonance
and its order are defined by the ratio of the frequency of
the predominant component of the motion to the frequency
of the disturbing force. -
The ultraharmonic and subharmonic resonances are the -
general characteristics of a non-linear system. Their order
and magnifud; are typical for a specifié system. For
example a non-linear system with symmetrical restoring
force characteristics may exhibit odd orders of resonances

only. Asymmetrical restoring force characteristic, on the

other hand, may produce both even and odd order resonances,

&

1.2 SUBJECT OF INVESTIGATION

In this study, the vibration response of a torsional
system with'bilinear type torsional stiffness has been
investigated. This non-linear restoring force characteristic
results from a clearance in a geared system vibrating
torsionally. The restoring force is zero within the
clearance and acts linearly when contact is made. This
type of restoring force characteristic is found in actual
power transmission systems with angular clearances. These
clearances are caused by the backlash in gear teeth, wear

of tooth flanks etc. In torsional vibrations, excessive



shocks and cyclic stresses may result from such non-
linearitie§ causing premature failures. In a particular
case a failure due to such a condition has been observed-
in the 'drive of a Krupp-Renn revolving kiln (12).%*

The aim of this investigation is to stﬁdy this non-

linear phenomenon qualitatively and quantitatively.

1.3 ANALYTICAL METHODS FOR THE SCLUTION OF NONLINEAR
VIBRATION EQUATIONS

In most cases it is not possible to obtain exact so-
lutions for the differential equations representing non-
linear vibration. Approximate'solutions of such equations
to the first degree, are not difficult or laborious.

These are often preferred over exact solutions for the

sake of simplicity. The latter, if at all possible, often
require tedious calculations. On the other hand, one of

the difficulties with approximate solutions is the selection
of the most suitable method from the many which are in ex-
istence. The factors which have to be considered when the
choice is made, are the magnitude of non-linearity and the
accuracy of the solution, the laboriousness of the procedure
and the type of vibration or resonance represented by the
equation. . )

There are several methods which produce solutions in

the closed form. These are:

* Numbers in parentheses denote publications listed in the
bibliography, pages 56 through 68.



1. Ktz Averaéing‘Method

2. Krylov-Bogoliubov énd Mitropolski Method

3. Perturbation Method

4. Substitution Method

The Ritz averaging method provides sufficiently ac-
curate solutions. The effectiveness of the method improves
with the Tagnitude of non-linearity. Non-autonomous systems
and asymmé??ﬁcal restoriné force characteristics do not
present any undue difficulties. Higher orders of approxi-
mations yield better accuracy, but the complexity of the
problem increases. However, the difficulties are of a
purely algebraic nature. There is no impedimept to the
application of the Ritz averaging method to systems of more
than one degree of freedog, where the majority of other
methods become extremely complicated or fail altogether.

The substitution method closely follows the Ritz aver-
aging method in terms of accuracy which iﬁcreases with the
order of approximation. There is no difference in the labor-
;ousness of the two methods, but the simplicity of the mathe-
ﬁatical basis for the substitution method may be an advantage
in some applicatiéﬁs.

The perturbation method is very laboriuos and perhaps
its only advantage™is that the form of the solution need ﬁot
be assumed before application. The Krylov-Boboliubov method
is very useful in the analysis of self excited oscillations
and non-linear damping. The perturbatijon and Krylov-Bogolibov

methods are suitable only for auasilinear systems with symmetrical



restoring for;e characteristics. In case of forced vibra-
tion, the amplitude of the disturbing force is restricted
to small values within the limits imposed by the magnitude
of non-linearify.

There are also graphical procedures available, such as
the Phase-Plane method and numerical integration techniques.
Their range of appfggefion is generally restricted to point
solutions. Furthermore, they are unsuitable for the analysis
of the more complex types of non-linear effects such as sub-
harmonic and ultraharmonic resonances.

1.3.1 RITZ AVERAGING METHOD

After careful evaluation, the Ritz averaging method was
selected for the problem under study. Its application is
described below: -

Consider the non-linear differential equation
Jo + C'E1(6) + K £,(8) = £.(t) (1.3.1.1)

in which the restoring force fz(e) and the damping force

fl(é) are non-linear odd functions of thé displacement and

velocity respectively. In other words -fz(e) = fz(—s) and

-fl(é) = fl(—é). If we divide through by the congtant moment
C!

of mass inertia J and place % = p2 and N Z tp, the differential

n

equation E(8) becomes:

c-—cll—‘

E(8) = 0 + 2 praf, (8) + p? £,(8) £.(t) = 0

(1.3.1.1a)



We then assume our approximate solution of equation (1.3.1.1a)

consisting of n terms and denote it by 8, so that

o

6 = a0 (t) + a,6,(t) + ...+ a e (t) (1.3.1.2)
Upon substitution of the approximate solution é, the differ-
ential equation becomes E(é) and E(g) # 0. This equation
deficiency E(B) will vary from instant to instant, but over
an arbitrary duration of time T it will be possible to demand
that each of the n weighted averages of the deficiency must
vanish. In calculating the weighted averages of E(é), we
postulate the existence of n weight functions and denote them
by wl(t), mz(;), - mn(t). The Ritz averaging criterion then
states that if wl(t) 1s placed equal to ¢1(t), mz(t) placed
equal to ¢2(t), etc. and finally wn(t) placed equal to ¢n(t),
the resulting'n averaging integrals, each placed equal to zero
will yield n algebraic equations from which the coefficients
815 35, ... a, can be found. Undef these circumstances the
approximate solution for é will be the best obtainable in the
n terms chosen. |

a

The Ritz averaging integr¥als are given by:,

T .
f {E(8) ¢1(t)} dt
Q

n
o

T ~
;S {E(8) ¢2(t)} dt =
o

1
[}

and similarly
T ~
I {E(8) ¢n(t)} dt = 0 {1.3.1.3)
o



For a steady state vibration of a non-linear system acted
upon by a sinusoidal excitation, the Ritz criterion (1.3.1.3)
may be expressed for the duration T = %ﬂ or alternatively

for the angle of 2r radians as follows:

2 ~ )
;O {E(8) ¢1(mt)}ka(ﬂ)

=0
0
2m ~
f {E(®) ¢2(wtj} d(wt) =0
o
2T ~
and S {E(8) ¢n(wt)} d(wt) =0 (1.3.1.3a)

0

1.3.2 OTHER METHODS

Application of remaining methods has been explained in

various textbooks (83), (38)L3(1§); (84), (68), (38) and various

publications (76). ‘
1.4 SIMULATION OF THé/;;YSICAL SYSTEM

1.4.1 ANALOG COMPUTE

In practice, physical §y§tems can in most cases be
represented by mathematical equations or sets of equations.
Their solutions are often difficult or practically impossible
to obtain by the classic approach. The analog computer pro-
vides rapid solutions of linear or non-linear equations and ~
makes possible qualitative surveys of the behavior of the
simulated system.

The analog computer performs the required mathematical
operations in a parallel manner on continuous variables. In

electronic analog computers, the continuous variables are



d.c. voltages. The electronic analog computer makes it
possible to build an electrical modei of a physical system,
where the voltages on the computer represent the dependenf
variables of the physical system.. Except for a constant

of proportionality or a scale factor, each voltage will be-
have with time in a manner similar to the physical system
variable. The actual behavior is thus simulated because of
the equi&alence of operation of the electrical model. This
capability of the analog computer is of great value in per-
forming scientific research or engineering design because
it permits an insight into the relationship between the
mathematical equations and the response of the physical system.
Once the electrical model is completed, well controlled ex-
periments can be performed quickiy, inexpensively, and with
great flexibility to predict the behavior of the physical
system. ‘

The analog computer is'basically a set of mathematical
building blocks, each able to perfofﬁ specific mathematical
operations on voltages. By appropriate(; interconnecting
these buildiné blocks, an electrical médel is produced, in
which the voltages at the outbuts of the blocks _obey the
relation given in fhe mathematical description of a physical
system. The standard components of an analog computer per-
form the following operations: ~ inversion, algebraic summa-
tion, in%egraion wigh‘respect to time, multiplication and

division, and function generation.



1.4.2 DIGITAL COMPUTER

Non-linear differential equations are difficult to
compute even with the help of a digital computer (53).
Recently, the availability of the Continuous System Modelling
Program (CSMP) has simplified the numerical solutions of non-'
iinear ordinary differential equations (22).

The Continuous System Modelling Progrém is designed to
facilitate the digital simulation of continuous processes,
whose behavior follows a set of ordinary differential equa-
tions. This program provides an application oriented lan-
guage that allows these problems to be prepared directly
and simply from either a block diagram representation or a
set of ordinary differential equations. This program in-
cludes a basic set of functsonal blocks, with which the
components of a continuous system may be represénted. It
accepts application oriented statements for defining the
connections between these functional blocks. CSMP also ac-
cepts FORTRAN statements to deal with non-linear and time
variant problems of considerable complexity. The applica-
tfgh of CSMP allows the user to concentrate upon the
phenomenon being studied rather than upon the detailed

technique for numerical computation,

¢
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2. LITERATURE SURVEY

2.1 LITERATURE RELATED WITH BASIC NON-LINEAR VIBRATION

STUDIES

Several books are exclusively de}oted to non-linear
vibrations, such as StokeI'(SE), Minorsky (68) and Hayashi (32).

Some chapters deal with this subject in Timoshenko
(84),Jacobsoﬁ and Ayre (38) and DenHartog (15). 1In general
these books desc%ibe non-linear systems and methods of
obtaining analytical solutions. An interesting publica-
tion ( 14) presents a broad overview of non-linear systems
and their characteristics as compared to linear systems.

Most of the past work is based on non-linear systems

lrepresented by the well known Duffing equation, which is

; + O i + K(x * uxn) = P cos wt
where n is an integer,

Klotter and Pinney (48) have studied forced vibrations
in systems represented by a Duffing Equation with a harden-
ing type restoring force characteristic. They also have
established a stability criterion for vibrations of their
system,

Similarly; Caughey (10) has studied conditions for the
existence and the stability of ultraharmonics and sub-
harmonics in forced oscillations of systems having a small
cubic non-linearity represented by the Duffing equation.

Burgess (9) has published a report on the harmbnic,

~./
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superharmonic and subharmonic response of a single degree
of freedom system of the Duffing type. Atkinson (2} has
obtained ultraharmonic oscillations as solutions to the
Duffing equation using an electronic differential analyzer
and verified results obtained earlier by Burgess.

Raganti (79) has obtained the subharmonic solutions of
order 1/3 of thé damped Duffing equatiqQn with large non-
linearity in a suitable parametric form. The solutions
are compared with the results obtained by direct numerical
integration of the same equation, using the Runge-Kutta
method.

Hayashi (35) has investigated the stability criteria
of non-linear periodic oscillations and has studied subharmonic
oscillations in non-linear systems (33). He has shown that
the order of subharmonicg has a close relationship with the
form of the non-linear characteristics €.g. subharmonic
oscillations of order 1/3 are related with the non-linear
characteristic expressed by cubic and quantic functions.

2.2 APPROXIMATE METHODS FOR THE SOLUTION OF NON-LINEAR

"VIBRATION PROBLEMS

The literature was reviewed for the most suitable ap-
proximate method available for obtaining analytical solutions
for the bilinear type restoring force characteristics.

Special attention’ was given to the methods in which an approx-
imate solution is assumed. In the search along these lines

several possible approaches were observed. For instance,

1
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Mahalingam (63) has proposed an approximate solution for
forced vibration. In this method, the problem of free
vibration is first solved and the response to forced vibration
is then found using a frequency function in place of the actual
restoring force characteristics. The author claims that this
method i§}powerful when the restoring force characteristic is
made up of a number of straight lines. Similarly Schweisinger
and Manmputh (81) have proposed a one term approximation method
based on the Ritz procedure. DenHartog (16) has introduced
approximate graphical solutions for the problem of forced vibra-
tion of an undamped single degree of freedom vibrating system
with a non-linear spring, whose characteristic is given in the
form of a curve. His approach is based on the aquarter cycle energy
method. As a follow up of DenHartog's publication, Silverman (82)
came up with an application of Hamilfon's principle to obtain
forced vibration displacement in the form of a Fourier Series.
Brock () has proposed an iterative procedure employing
numerical integrations for the analysis of free and forced
vibrations of undamped systems having non-linear elasticity.
There are few publications suggesting graphical solution for
solving transient vibration problems. Lemon (50) has given
a procedure for adopting the phase plane method to the solutién
of a single degree of freedom system with a non-linear restor-
ing force characteristic. Bruce (7) has shown application
of the‘graphical method to a simple éase of free vibrations

of a non-linear system, with a restoring force characteristic
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composed of linear segments. Bishop (5) has again applied
the graphical method to the free and forced vibrations of a
. »

bilinear system. He has also suggested the approximation of
any spring characteristic by a series of straight lines.
Evaldson, Ayre and Jacobsen (25) have obtained the response
of a non-linear system, with spring characteristics composed
of straight lines, to transient disturbances, using the
graphical solution technique.

There are several references (83), (45), (46) and (47)
on the application of the Ritz averaging method for solving
non-linear vibration problems. A technical report by Klotter
(45) is of particular interest. In this publication, the
author has introduced the Ritz averaging method and has applied
it to cases for which exact ;olutions were possible., The
first case studied was the undamped vibration of systems with
restoring forcgg of ;he polynomiai type. Exact solutions we;e
compared with resuits obtained by means of the Ritz method using
a single term approximation and good agreement was shown to exist.

‘The second case relates to free or forced vibrations of
systems with several types of piecewise linear restoring force
characteristics. The author has again compared the exact values
with the averaging method using a single term solution and has
shown that the single term approximate solutions are very close
to the exact solutions when the driving frequency is not close

to any type of non-linear resonance other than harmonic.

Reif (77), (78) has applied the Ritz averaging method to obtain
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solutions of the ultraharmenic resonance of order 2 and
the subharmonic resonance of order 1/2 for a non-linear
system with an asymmetrical restoring force characteristic.
He has also verified these results by means of an analog
comﬁuter. Reif (76) has also solved the Duffing eqﬁation
using the Ritz averaging, Krylov-Bogoliubov, perturbation’
and substitution methods and has compared the accuracy and
relative advantages of these methods on the basis of an analog
computer simulation.
Levenson (51) derived a numerical solution of suﬁharmonic
response for the Duffing equation. =
Ashwell and Chauhan (1) have applied the method of
harmonic balance to a study of subharmonic oscillations of
order 1/2 with single degree of freedom systems having non-

linear spring characteristics of skew symmetrical form.

2.3 STUDY OF PIECEWISE LINEAR SYSTEMS

DenHartog and Mikina (16) and DenHartog and Heiles (17)
have studied forced vibration in non-linear systems with
various combinations of linear springs. The authors have
obtained the exact solutions for the steady state motion of
these systems under the influence of a harmonic external
force. The results have been plotted for stiffness ratios
Kl/K2 =0, 0.5, 2 and =~ in thé non-dimensional form. In
these solutions the presence of higher order harmonics in
the motion has been ignored. They however form a basis for

approximate solutions that may be analytically simpler.

\
\
e



Klotter (45) has obtained approximate solutions for
forced vibration in non-linear systems with various com-
binations of linear springs, using the Ritz averaging
‘method. This method is much simpler than the exact sol-
ution (18) and provides an acceptable degree of accuracy
for practical applications.

Atkinson and Heflinger (3) have studied a bilinear
system by means of an electronic analog. They have shown
the existence of ultraharmonic and subharmonic components
in the gystem response. This publication provides a basic
understanding of the bilinear system.

Chaloupka (12) has giveﬁ a case study of the drive of
a Krupp-Renn revolving kiln, in which excessive wear of the
gears was observed aPter several years of operation. The
study indicatesethat the failure was caused by a sub-

. harmonic resonance of order 1/2, which resulte& from the
non-linear charactef of the torsional stiffness of the drive
due to excessive backlash in the gear teeth. The author"
has studied this problem experimentally and analytically.

Bruevich (8) has investigated the action of harmonic
oscillations on a piecewise linear system. An equation is
obtained/fgr the periods of a piecewise linear system of any
order in the case when the characteristic of the non-linear
element is continuous and consists of segments of two inter-
secting lines, and tﬁe external perturbance is harmonic.

Maezawa (55) has introduced an analytical method to
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obtain steady state solutions for forced vibration of
asymmetric piecewise linear systems using a method utiliz-
ing appropriate perfect Fourier series expansion. This
method consists of 1. Linearizing the original non-linear
equation of motion by expanding the non-linear part of the
restoring and damping force into a Fourier series with the
same pericd as the given exciting force; 2. Obtaining the
formal solution of the linearized equation by taking the
non-linear part to Pe an exciting force from without. The
solution contains certain unknown coefficients of the Fourier
expansion; 3. Determining these unknown coeffiéients from
the coﬁditions that the formal solution satisfies the given
pieqewise linear characteristics of the system. These re-
quirements result in an infinite set of simultaneous linear
equationg for the nén-dimensionaliéed coefficients of this
Fourier expansion as an infinite number of unkhowns. The
guthor has given a method utilizing the appropriate series
tgansformation for the improvement of convergence. Numerical
computations were performed and response curves for two
typical cases were shown to illustrate this method. The
theory was also‘verified by means of an analog computer.
Maezawa (56),(57), (58), (61), has also shown the appli-
cation of the Fourier series method for obtaining subharmonic
and superharmonic resonance solutions in a piecewise linear
system. He (62} has algo}discussed forced vibrations in an

unsymmetrical piecewise linear system excited by general
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periodic force functions. The superharmonic resonances up
to the second order, are analyzed by means of a perfect
Fourler series.

Tsuda (90) has obtained solutions for harmonic, sub-
harmonic and ultraharmonic_resonances of a one dimensional
power transmission systeﬁ having an angular clearance. The
author has discussed stabilitx/hiscrimination and has solved
approximately the maximum amplitude state of the system under
velocity proportional damping and collision damping, which
takes place at the clearance. The author has presented a
series of numerical diagrams to determine maximum amplitude
states of the systém. He has also verified experimentally
his theory on the approximation of collision damping.

Yeh and Yao (93) have obtained the response of bilinear
structure systems to earthquake loads using the continuous
system modelling program (CSMP) (¥5). The results of their
study show that the bilinear system is more effective in
resisting earthquake loads than the corresponding linear
system with either spring component of the bilinear system,

Karasudhi, Tan and Lee (40} have analyzed the vibration
of a single storey frame with bilinear hysteresis, supporting
a fotating machine. The excitation force, caused by the
rotating unbalanced mass of the machine, was sinusocidal with
a frequency dependent amplitude. It was shown that the system
exhibits unbounded resonance when the product of the machine

unbalanced mass and its eccentricity exceeds a critical value.
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Masri_(GS) has obtained an exact solution for the
steady state motion of a sinusoidally excited single-degree-
of-freedom system with bilinear hysteresis and f&scous damp-
ing.

Dubowsky ané Freudenstein (22) have presented the
dynamic behavior of an elastic mechanical joint w&th clear-
ances. The authors have formulated a mechanical model and
have obtained the dynamic response analytically and numeric-
ally. The results include the frequency response, displace-
ments, force amplification and vibrational characteristics
of the system under various operating conditions. The authors
have shown the application of the describing function technique
(well known in control engineering) to obtain approximate sol-
utions of the system.

OVERALL REVIEW OF ANALYTICAL METHODS SUITABLE FOR THE

SOLUTION OF THE PIECEWISE LINEAR SYSTEM

The exact analytical solutions for pliecewise linear
systems obtained by DenHartog and Mikina £;6), and DenHartog
and Heiles (17), provide a basis for Q?e/tomparison of sol-
utions obtained by other approximate methods. The exact
solﬁtion, discussed in the above mentioned references, does
not make allowance for higher order harmonics and thus is un-
suitable for ultraharmonic and subharmonic resonance solutions.
Moreover the exact solution is tedious to obtain.

Graphical methods appear to be predominantly suitable

for free vibrations and cannot be applied to ultraharmonic
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-

and subharmonic resonances.

There are.several publications suggésting one term
approximation methods (81), (63), (82) and (5) for obtain-
ing solutions for forced vibrations of non-linear systems
with piecewise linear restoring forces. However, these
methods can be applied to the harmonic resonance, but
cannot bebextended to the ultraharmonic and subharmonic *
resonances.

| Several authors have used the Ritz averaging method
with various non-linear problems, for which either exact
solutions or experimental results, such as analog computer,
were known. They have shown that the method provided ﬁery
satisfactory accuracy and has greater scope of applicability.
Burgess (9) has obtained solutions for harmonic, ultrahar-
monic and subharmonic responses of a system of the Duffing
type, using the Ritz averaging method. Klotter (45) has
applied this method to free and forced vibrations of systems
with several types of Piecewise linear restoring force character-
istics and has shown good agreement between exact solutions
and the Ritz averaging method with a single term approximation.

Based on these considerations, the Ritz averaging method

was selected for the theoretical analysis of the system under

study.
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3. ANALYTICAL SOLUTIONS

3.1 THE DEVELOPMENT OF, THE GOVERNINd DIFFERENTIAL

EQUATIONS OF MOTION

3.1.a. FORCING INPUT OF THE TYPE T Cos uwt

Figure 3.1.1.1b shows the restoring force character-
istics of an asymmetrical bilinear system. The asymmetry
1s caused by the action of a constant torque To' The mean
position of the vibration is shifted to 0, which is now
used as the origin. The.angular displacement 61 represents
the shift due to the constant torque To' The range of
displacement is divided into three regions. Within regions
I and III, the stiffness is linear and the tooth contact -
is made with the restrainer walls. Region II represents
motion within the cleérance where the stiffness i; ZeTo.
The equation of motion in region I is given by:

J8 + K8 = T+ T Cos ut for 6 > -9 (3.1.A.1)

1
The equation of motion in region II is given by:

J& = T+ T Cos uwt for -(28,%87) < 0 <-0; (3.1.A.2)
and the equation of motion in region III is given by:

J8 + K[0 -{-(20, + 68,)}]= T, + T Cos wt

for 8 < -(280+81)
(3.1.A.3)

For the special case of a symmetrical bilinear restoring

force characteristic, the mean torque T, = 0 and thus the

asymmetry factor, 61 = 0.

f)
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3.1.b FORCING INPUT OF THE TYPE C mz Cos wt

The equations of motion are derivéd for a system
with a symmetrical restoring force characteristic. Figure
3.1.1.1C shows.the.réstoring force characteristic.

The equation of motion in region I is given by:

C wz Cos wt

Je + K(8-8)

or

Il

g + pz(e-eo) Z mz Cos wt for & > 60 (3.1.B.1)

-l:’.’

where

(s

C 2
Z=jr and p =
The equation of motion in region II is given by:
J8 = C w? Cos wt

or
T re—

g8 = 7 mz Cos wt for -6 < 8 <8

o tS.l.B.Z)

0
The equation of motion in region III is given by:

I}

Jo + K[8 -(-8)] = C w? Cos wt

-

or

Z w® Cos wt fore <-8_  (3.1.B.3)
. "'
3.2 ANALYTICAL SOLUTIONS OF THE EQUATIONS OF MOTION

o + pZ[6 -(-6,)]

The equations of motion are solved by using the Ritz
‘averaging method. To apply the Ritz averaging method a
solution for the displacement musf be assumed in the form
of a series.

The series is truncated in accordance Qith the degree
of accuracy required. The assumed appfoxiﬁation mus t

satisfy the boundary conditions corresponding to a periodic



solution. It must also be consistent with the physical
restraints of the system. The general form of the

solution can be expressed as:

B =M+ Ql Cos wt + Q2 Cos 2wt + Q3 Cos 3wt

+ Qg Cos dut + .... (3.2.1)

22
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The constant term M results from the asymmetry of the

restoring force. The term Ql Cos wt repfesents the
fundamental harmonic component of the motion and the
other terms represent higher harmonic components. The

; .
fundamental harmonic of the same frequency as the dis-
turbing force must be included to allow for the transfer
of energy to the vibrating system. The other harmonics
become predominant components of motion at their corres-
ponding orders.of ultraharmonic resonances, e.g. Q,, Q3
and Q4 peak out at 2nd, 3rd and 4th order ultraharmonic

resonances.

For the harmonic resonance, a two term solution of

the following form iigassumed:

B8 =M+ Q1 Cos wt (3.2.2)

The above is the simplest approximation which can be used
with an asymmetrical restoring force. The term M rep-
resents the shift of the mean value, the term Ql Cos wt
is necessary to allow transfer of energy from the forc1ng

function. The analytical solutions are fully developed

in Appendix I.
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For 3rd order ultraharmonic resonance, the simplest

form of_the_solutioﬁhmust ¢onsist of the followihg three terms:
8 =M+ Q Cos wt + Q Cos 3wt (3.2.3)

In the above, the additional term Q. Cos 3wt is included to
represent the predominant component of the ultraharmonic
resonance. The analytical solutions ate obtained in
Appendix I.

For the 1/3rd order subharmonic resonance, a three

term solution of the following form must be used:

~

B = M + Q, Cos wt + Q1/3 Cos %3 (3.2.4)

‘The term Q1/3 Cos %E represents the predominant
component of the 3rd order subharmonic resonance. The

analytical solutidqus are presented in Appendix I.
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4. EXPERIMENTAL STUDY ' | r

4.1 SIMULATION TECHNIQUES

4.1.1 ANALOG COMPUTER SIMULATION

An EAI modeifTR-ZO analog computer;wa% used for this
study. This computer has twenty operational amplifiers,
twenty coefficient potentiometers, six integrator modules,
non-linear computing components and function generators.

ANALOG COMPUTATION

The dynamic equation of motion of a bilinear system is

given by:
M 2 ’ -
o+ p £(0) = T(t) ~ (4.1.31}4)
Where f(®) represents the bilinear restoring force

characteristics,

.o 2
and T(t) = T cos wt or C @ cos wt

o

P = circular linear natural frequency.

Generalized circuits for the solution of equation

El

(4.1.1.1) are given in figures 4.1.1.1 to 4.1.1.4. 1In order

L]

to maintain reasonable machine accuracy and to reduce the

effect of transient vibration, separate computing sequences -

of short duration were used for each frequency. Correspond-

ing values gf total amnliﬁude and phase angle were set as e
initial conditions for the forced vibration. A small amount

of damping was introduced at the start of computétion and

was then gradually reduced to zero before the output was

recorded by means of a two channel pen recorder. This



25°

technique was used to remove the transient free vibration
which was e£cited by the start of computation. For each
set of\{iiEiEiL/6g;‘z;;1e of vibration was divided into
several parts and ordinates were scaled off, and a harmonic
analysis was carried out by means of a digital computer.

4.1.2 DIGITAL COMPUTER SIMULATION

Thé Continuous System Modeling Program (CSMP) was used
to simulate the bilinear vibrating system. The block diagram
and the corresponding structural statements are shown in
Figure 4.1.2.1. Two function generators were used to produce
the bilinear effect and the periodic disturbing force input.
The general forms of the generators are shown in Figure 4.1.2.2.
At each frequency, initial values were set for the ampli-
tude and numerical integrations were performed from t = 0 to
t = 150 secs. Results were printed and plotted at an interval
‘of 0.1 sec. A small amount of damping was introduced in the
system to damp out the transient component. However, the
system response seemed to be influenced by damping. This
was evident by the presence of a small phase difference be-
tween the periodic disturbing input and fhe vibration output.
The vibration output was steady affer t = 100 seconds. A
cycle of steady séa;e vibration was divided into several parts
and ordinates were recorded. These values of ordinates were

T

fed to another digital computer program for harmonic analysis.
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4.2 MECHANICAL MODEL TECHNIQUE

4.2.1 DESIGN OF THE MODEL OF THE BILINEAR NON-LINEAR SYSTEM

The design details of the experimental’'model are shown
in Figure 4.2.1.1. It consists of a shaft with a circular
cross section 'S', a rectangular vibrating arm 'A', four
bush bearing 'B', a tooth block 'D' and a .rigid restrainer
B —

The system has a natural frequency of 26 Hz.\ The shaft
diameter is 5/8" and the length between the vibrating arm
and the tooth block is 32". The dimensions of the vibrating
arm are 8" x 2%" x 1 %” . The®fixed end consists of a
case hardened restrainer with a cavity to accommodate the
tooth block. The tooth block is clamped on the shaft. The
tooth block is made in two halves. The upper half contains a
rectangular tooth and is case hardened. The tooth block assembly
slides into the restrainer cavity. A slot is cut in the re-
strainer to accommodate the tooth block and a fixed clearance
(070015") is maintained between the tooth and outer restrainer
slot walls. The tooth block assembly is shownAin Figure 4.2.1.2.

‘The shaft is supported by four bush bearings. Each
bearing consists of ‘a phosphor bronze bushing contained in
a mild steel housing. A slot is cut in the bush and a screw
i; provided to adjust pressure on the shaft. A hole is also
provided for lubrication.

The bearing housings and restainer are mounted on the_

base plate 'C'. Three 3/4" holes are provided on the base



plate to clamp it on a vibration isolated table. The

overall view of the set up is shown in Figure 4.2.1.3. #
The vibration excitation system is also shown iﬁ

Figure 4.2.1.3. The electro dynamic shaker is mounted

upside down on a specially fabricated structure. fhe shaker

pin is Eonnected to the vibrating arm through a soft helical

spring. A counter weight is attached on the vibrating arm to

bring.the shaker pin to its mechanical center as shown in #ig-

ure 4.2.1.3.

REMARKS ON ,THE DEVELOPMENT OF THE EXPERIMENTAL MODEL

The described apparatus was developed through several
stages of improvement. Initially the vibrator was suspended
by‘means‘of springs but it was not possible to maintain its
stability under all operating conditions. The shaker pin was
algso connected to the vibrating arm;by a piano wire. It
was, however, observed that the motion\of the vibrating arm
.was interacting with the shaker pin movement, which could
not be kept sinusoidal. The results were not repeatable.
Hence this schemé was abondoned and a fixed suspension system
for the shaker was designed with a spring coupling to the model.
This arrangement proved satisfactory in operation.

Several tooth pap clearances (26 ) of magnitudes 0.01",
0.005" énd 0.003" were tried. The vibration excitation system
could not maintain constant shaker pin displacement within
this range at higher frequencies. Thus the subharmonié
fesonance could not be excited. Consequently, the exper-
iments were restricted to the 0.003" clearance only.



28

4.2.2 INSTRUMENTATION

A schematic diaéram of the experimental set-up is
shown in Figure 4.2.2.1. The arm 'A' is excited sinusoid-
ally at point 'Q' and the system response is picked up by -
an accelerometer mounted at location 'P'. The accelerometer
output is amplified and fed to a real time analyzer to obtain
frequency analyses,

4.2.2.1 VIBRATION EXCITATION SYSTEM

The vibration excitation system consists of an automatic
vibration exciter control (B&K 1025), excitation amplifier
(GM,5535),‘e1ectrodynamic shaker (PR 7270) and accelerometer
preamplifier (BGK 2622).
4.2.2.2 VIBRATION PICK-UP SYSTEM

The V1brat€pn pick-up system consists of an accelero-
meter (B&K 4343) and accelerometer preamplifier (B&K 2623).
4.2.2.3 VIBRATION READOUT/PROCESSING SYSTEM

The vibration readout system consists of a measuring
amplifier (B§K 2607), oscilloscope (Tetronix type 564},
X-Y display (SD 13116-2A) and X-Y recorder (Hewlett-Packard).
The vibration processing system consists of a frequency
analyzer such as B§K 2107 or 2113 and ; real time analyzer

(SD 301).
4.2.3 EXPERIMENTAL PROCEDURE

Firstly, the vibration test System was set up to con-
trol the shaker motion. To achieve shaker control an
accelerometer 'R' (B§K 4333) was installed on the shaker

pin. The output of this accelerometer was fed back to the



automatic vibration exciter control via the accelerometer
preamplifier. This forms a control feedback loop for the
shaker and the exciter. Figure 4.2.3.1 shows a control
accelerometer mounted on the shaker pin attachment. The
automatic vibration exciter control was then set up for a
constant displacement mode by selecting a compressor regula-
tion speed and adjusting the output voltage for a required
vibration level. Subsequently the freauency was swept through
the desired range and the System response was monitored.

4.2.4 MEASUREMENT AND ANALYSIS OF EXPERiMENTAL DATA

An accelerometer 'P' was installed on the vibration arm
'A' at a distance 3.5" from the shaft axis to monitor the
system vibration response. The accelerometer was connected
to the measuring amplifier through an accelerometer preampli-
fier and an associated power supply unit (ZR 0024). The
measuring amplifier was calibrated using an accelerometer
calibrator (B§K 4291).

The measuring amplifier output was connected to a
Spectral Dynamics real time analyzer unit, which consisted
of a real time analyzer, ensemble average (SD 309), X-Y
display and an X-Y recorder. The real time analyzer was -
also calibrated in conjunction with tHe measuring amplifier.
The X-axis of the X-Y display represented frequency on a
1inea; scale and its range was selected on the real time
analyzer. The Y-axis represented component amplitudes

and was set to a logarithmic (dB) scale.
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The shaker pin displacement was preset to 0.1 in.
peak-to-peak and.the frequency was scanned to observe the
hafmonic resonance and thus obtain the natural frequency
of the mechanical model. Using this technique, the natural
frequency of the system was found to be 26 Hz. The same
procedure was repeated with several other shaker pin dis-
placements to verify the results.

The shaker pin displacement was preset to 0.056 in.,
0.07 in., 0.105 in., 0.140 .in., and 0.175 in. peak-to-peak
to correspond with vaiues of §=0.8, 1.0, 1.5, 2.0 and 2.5.
The relationship between the shaker pin displacement and
S is shown in AppendixIII. The frequency of the shaker pin
was adjusted manually. At each frequency setting the output
of the accelerometer mounted at 'P° (figure 4.2.2.1) was
observed on the storagé oscilloscope and a frequency analysis
was carried out using the real time analyzer. The accelera-
tion components were converted into nOn-dimension;l amplitudes
Gl’ Qz etc: (shown in Appendix III). Several frequency settings
were taken to observe the ultraharmonic, harmonic and subharmonic

resonance phenomena,
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5. DISCUSSION OF RESULTS

5.1 GENERAL DISCUSSION -t

The analytical solutions are firstly developed for a
System with an asymmetrical restoring force characteristic.
The asymmetrical solutions can be simplified for symmetrical
restoring force characteristics by assuming 51 = 0.

The main contribution of this study is the development
of the analytical solutions by means of the Ritz averaging
method for the ultraharmonic, harmonic.and subharmonic
'resonances of a system with a bilinear asymmetrical restoring
force characteristic. It is believed that the obtained re-
sults, in terms of the asymmetry factor @1, are in the simplest
form for adequate definition of the behavior of the system,

It should be noted that in the graphs analytical re-
sults are represented by solid lines and experimental results

by points.

5.1,2 HARMONIC RESONANCE:

The harmonic resonance phenomenon in a non-linear
system corresponds basically to the linear resonance and
takes blace at the natural frequency of the system. The
expressions are developed in Appendix I. Section I.1.1
deals with the disturbing torque of type T Cos wt. The
general expressions for the analytical solutions with the
asymmetrical restoring force characteristic are obtained
by assuming a two term solution and applying the Ritz

averaging method. Two simultaneous equations, (I.1.1.6)
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and (I.1.1.7), are produced.
The equations (I.1.1.6) through (I.1.1.9) are solved
for selected values of the parameters S and 51. Correspond-~

ing values of M and 71 are calculated for set magnitudes of

61. The analytical results are.c for the asymmetry

. factor, ?1 = 0 and 0.05. The value 51 =

special case of the symmetrical restori

represents the
force character-
istic. The other value Fl = 0.05, fepresents weak symmetry
and thus corresponds best to the restoring force character-
istic of the mechanical model./ The analytical results for
the symmetrical restoring rce characteristic for different
values of excitation amplitude 5 are shown in figure 5.1.1.
The backbone curve (5 = 0) represents the free vibration
response of the system. The.response curve has positive
and negative branches. The motion is stable due to the
absence of the jump phenomenon. 7

The analog computer results are superimposed on the
analytical results, shown in figure 5.1.1. The analog —
computer results are in close agreement with the analytical
solutions and thus verify the accuracy of the Ritz averaging

method. It also indicates that a two term solution is a
\

\
I't should be noted, however, that the two terﬁ\splution

very good approximation.

is not valid in regions of low or high values of n, where
ultraharmonic and subharmonic resonances occur and correspond-

ing approximate solutions must have additional terms. The
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results are shown by'dotted lines for n < 0.4 where
ultraharmonic resonances develop.

Solutions for the asymmetrical restoring force
characteristic, with an asymmetry factor él = 0.05,
are shown in figures 5.1.2 through 5.1.4. The response
‘curve of the amplitude Ql is shown in figures 5.1.2 §
5.1.3 for § = 2.0 and 1.0 respec&ively. While the an&fﬁg
computer results agree very well with tﬂe analytical solution,
indicating again that the Ritz method with a two term approx-
imation yields very good results, the experimental values
arg=g€nerally lower in magnitude and there is a shift to the
right. One possible explanation is that the experimental
value for the natural frequency of the mechanical model was
measured too low, which resulted in higher values of the fre-
quency ratio n. The natural frequency of the mechanical model"
was determined by running a forced vibration test. This pro-
cedure is.discussed in section 4.2.4. Thus some error in
determining the natural frequency is possible due to the
influente of damping and the difficulty in locating exactly
the peak of resonance. As an estimation of the influence
of this error in determining the natural freuqency, referring
to figu?e 5.1.2, the point Ql = 9.4049, n = 0.9111 will shift

ton = 0.87 for an error of 1 Hz in the experimental value of

)

the natural freugncy and to n 0.85 and n = 0.81 for errors of .

2 Hz and 3 Hz respectively. Similarly a point 61.= 3.9143,

n 0.7023 will shift to n = 0.68 for an error of 1 Hz and

3
1

0.65 and n = 0.63 for errorsof 2 Hz and 3 Hz respectively.
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In.the analytical and analog computer models damping
was absent, but in the mechanical model a damping ratio
¢ = 0.07 was determined experimentally. The experimental
p01nts show a typical 1nf1uence of damping, which reduces
the amplitude of vibration. Some additional energy dissipation
is also caused by the collisipn of the teeth with the clearance
walls. Although the experimental results are consequently
lower, the general trend is maintained,

In the mechanical model, the vibration output was moni-
tored by an accelerometer mounted on thae vibrating arm at
point 'P' (shown iﬁ figure 4.2.2.1). The accelerometer
outputs at different forcing frequencies are shown in figures
5.2.1 through 5.2.4 and their frequency spectra are shown in
figures 5.2.5 through 5.2.8. The forc1ng frequencies are
selected to show typ1ca1 acceleration patterns in the low
frequency region, where the ultraharmonic resonances develop,
and in the harmonic Teésonance region. Figure 5.2.7 shows an
acceleration spectrum at a forcing frequency, f = 19.9 H;
(n

region and near the harmonic resonance. The odd order har-

i

0.76), which is away from the ultraharmonic resonance

monics are predominant. The lst order harmonic, which is
the main component of the motion, has the maximum amplltude
Figure 5.2.8 presents the acceleration spectrum at the forc-
ing frequency f = 33.3 Hz (n = 1.28), which is just beyond
the harmonic reasonance peak. 0dd order harmonics pre-
dominate, Figures 5.2.5 and 5.2.¢ show the frequency con-

tents of the acceleration at forcing frequencies f = 9.6 Hz
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(n = 0.37) and 13.8 Hz (n = 0.53) respectively., The de-
Velgpment of the 3rd and 2nd ultraharmonic resonances can
be clearly seen.

The vibration energy is spread over the harmonic
components of the actual vibration motien. In the approx-
imate analyticél solution all the energy is represented by
a single term, g?ich consequently will be greafer in mag-
nitude than the corresponding single experimental term.

The éxistence of the constant term M in the analytical
solutions of the symmetrical réstoring force characteristics
is riot clearly evident in the first instance. In general,

M should not be there with the symmetrical system but it
must be used because the origin for the definition of stif-
fness has been chosen at the point 'O' (shown in figure
3.1.1.1b). When 51 = 0, the point '0' moves to the end

of the clearance. The natural mean positioﬁ of the motion
remains off-set by an amount -80 from this new origin, hence
the mean shift M is equal to -1. The plof of M versus n is
shown in figure 5.1.4.

The analog and digital computer oytputs are shown in
figures 5.1.6 through 5.1.9. The free vibration response
ogtained on the analog computer for 8 = 2.0, 3.0, 4.0 is
shown in figure 5.1.6. Digital computer simulation Tresults
for 8 = 2.0 are shown in figure 5.1.9. Several runs were
made on the digital computer to obtain free vibration re-

sponses for ® = 2.0, 3.0 and 4.0. 1In both simulation
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techniques identical results.were obtained. Similarly,
forced vibration responses were-obtained on the analog
computer for different forcing amplitudes S ='1.0 and

2.0. Typical analog computer outputs are shown in figures
3.1.7 and 5.1.8. From these plots the phase shift of the
amplitude © before and after the harmqnic_resonance is
evident. | )

Tﬁe harmonic resonance of the system, with a symmet -
rical bilinear restoriﬂg'force characteristic, to the
centrifugal type input C mz Cos wt is obtained by solving
two simultaneous equations (I.2.1.5) and (I.2.1.6), which
are developed in section I.2.1 (Appendix I). Both equations
are solved for set values of parameters Ql'and Z' and cor-
respondiﬁg values of n are calculated. Analytical results
for a particular value of Z' = 2.0 are shown in figure 5.1.5.
The backbone curve (Z' = 0) is also drawn in this figure.
The?? are two distinct branches for a particular value of
Z'. irhe negative branch becomes asymptotic to |Gll = 7!
at high values of n, but the single term solution is‘not
valid in this region due to the presence of the subharmonic
Tesonance. The single term solution is also not valid in
the n = 1/3 rggion,'whére_the 3rd order ultraharmonic reson-

ance takes place. The .analog computer results are super-

imposed on the analytical results. There is good agreement

.with analytical solutions, which supports the suitability

of the single term approximation fcr this case and the
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accuracy of the-Ritz method.

5.1.b 3RD 6RDER ULTRAHARMONIC RESONANCE:
| Ultraharmonic resonances take place when frequencies
of the higher harmonics of motion coincide with the natural
frequency of the system. *
The general form of the displacement is expressed

in series form as: . -
g =M+ Ql Cos wt + Q3 Cos 3wt + QS Cos Swt + ... etc.

In the above expression normally Q3 and Q5 etc. are negligibly
small, unless'3w = p or nearly so, then n = 1/3 and Q3 is
magnified producing the ultraharmonic resonance of order 3.

This condition is evident in' the spectrum shown in figure

.5. Similarly at or near Sw = p, Q5 15 magnified. The
order of the ultraharmonic resonance is defined by the ratio
The term Q1 must be included in the corresponding approx-
imation soluyion for the transfer of energy to all vibration
components, which can take place only at the frequencf of

the disturbing effect. Hence the simplest approximate
solution for the 3rd order ultraharmonic resonance must

have the first three terms. Thus,

/I

8 = M+ Ql Cos wt + Q3 Cos 3wt

The analytical solutions are developed in Appendix I. Sec-

tion I.1.2 corresponds to the input of type T Cos wt and
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section I.2.2 covers the input of the type C wz Cos wt.

' The application of the Ritz method Qith the disturbing
torque T Cos wt réSults in five simultaneous équations
(I.1.2.5) through'?l.l.z.g}. Similar expressions are
developed for an input of the type C wz Cos wt, by assum- u
iné a two term solution. The application of the Ritz aver-
aging method results in three simuitaneous equations (I1.2.2.7)
through (I1.2.2.9). The equations (I.1.2.5) through (i.1.2.9)
are solved for selected values of the parameters 5 and ?1.
For set magnitudes of 63 corresponding values of M, 61 and n
are calculated. -The analytical results are obtained for
§1= 0 and 0.05. The analytical results for the symmetrical
restoring force characteristic are shown in figure 5.1.10 and
5.1.11. Figure 5.1.10 shows the response curve of the 3rd
harmonic component 63 and the harmonic component Ql islshown
in figure 5.1.11. The curve of QS has both positive and neg-
ative branches and the motion appears to be stable since con-
ditions for a jump are not present. The component 63 has a
well defined resonance near n = 1/3, The component Ql has
two positive bfanches, which correspond to the positive and
negatiyé bran;hes of 63. 61 does not depart significantly
from fhé‘ﬁagménic resonance curve developed in the previous
section. QS becomes dominant only in the ultraharmonic
resonance region:. The relative magnitudes of the 3rd order

ultraharmonic resonance are compared to the harmonic resonance

in figure 5.1.34. Analytical and analog computer results show
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good agreement. Therefore, the validity .of the three
term approximation and the accuracy of the Ritz method
are }erified.

The analytical results for the asymmetrical restoring
force characteristics with én asymmetry factor, El = 0.05
and § = 2.0 and 1.0 are shown in figures 5.1.12 throﬁgh
5.1.17. The experimental results were obtained for the
mechanical @odel for‘% = 0.8, 1.0, 1.5, 2.0 and 2.5 and

.are shown in figures 5.2.9 through 5.2.20. The experimental
daté reduction tecﬁgique is discussed in detail in section
5.2. Figures S.l.iZ and 5.1.13 show analytical and experi-
mental results of QS and @; for a particular value of

S =2.0. Referring t6 figure 5.1.12, experimental values

of 63 indicate a vélley and a peak. The peak corresponds

to the 3rd order ultraharmonic resonance and it is shifted
towards the right. The explanations for this.shift are the
same as for the harmonic resonance. An additional factor,
which is of greater influence here than in the harmonic
resonanqgﬁregion, 1s the presence in:the actual motion of
significant higher haﬁmonics, as shown in figure 5.2.5.
Sincelthese are neglected -in the theoretical solution, ex-
perimental values of Q3 must be lower due to thé spread of
energy over a greater number of cbﬁﬁonents. fh? experimental
results dip down between n = 0.2 and 0.4 with a minimum at

approximately n = 0.25. This is po§sib1y due to the forma-

" tion of the 4th order ultraharmonic. Under these conditions
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the 4th order harmonic would absorb the major portion
of the vibration energy at the expense of the 3rd ordgr'
component. Similar conditions appear to prevail near
n = 0.5 where the 2nd order ultraharmonic resoﬁance may
be initiated. Referring to figure 5.2.11 and 5.2.12, it
1s observed that the component §4 peaks out at n = 0.25,
.then 63 starts developing and reathes maximum value at about
n=0.36. Referring to figures 5.2.10 and 5.2.11, it is
observed that the component 62 peaks at about n = 0.53 1@9
and 63 bottoms out. The experimental values of 61 are
consistently lower than the analytical results and they are
also shifted towards the right (figure 5.1.13). As in the
case of harmonic resonance the contrlbutlng factor for low-
ering of exper1mental results are damping, error in deter-
mlnathn of the natural frequency of the mechanical model,
collision and. approximation in the solution. Although the
experimental results are lower in magnitude, yet they show
well defined 2nd, 3rd and 4th order ultraharﬁonic resonances.
Experimental results for § = 1.0 § 1.5 are shown in figure 5.1.15
through 5.1.17 and 5.2.13 through 572.16. The results indi-
cate the same trends as for § = 2.0, as discussed before.
The ultraharmonic'resonan;e,produced by the forcing
input of the type C wz Cos wt, is obtained bf solving the
three simultaneous equations (I.2.2.7) through (I.2:2.9)7
For set magnituées of 63 corresponding values of 61 and n

are calculated for selected values of the parameter Z'.
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Analytical results, for a particular vélue Z' = 10.0, aré
shown in figures 5.1.18 and 5.1.19. Figure 5.1.18 shows
the curve of the 3rd harmonic component 63 and that of
the fundamental component 61 is shown in figure 5.1.19.
The curve of 63 has positive and negative branches énd the
motion Qill be stable since the conditions for a jump are
not present. The component 61 has two positive branches
corresponding to both branches of 53. -

The analog and digital computer simulation results
are superimposed on the analytical solutions, shown in
figures_S.l.lS aﬁd 5.1.19. On the analog computer it was
observed that the 3rd order ultraharmonic resonance could
only be generated at comparatively high values of Z'.

An expression for the limiting value of Z', below

which non-linear conditions d%/&ot exist, is developed in
Appendix IV, With-fgzziéwipé;ion it can be shown that the
N ~——
system has a non-linear restoring force characteristic only
when Z' > 1. Hence, the ultraharmonic resonance can be
excited only with values of Z°' greater than 1. Hoﬁéver,
the 3rd order ultraharmonic resonance could not be produced
on the analog computer for magnitudes of Z' lower than q.0.
[t appears that this is due to-inherent damping present in
the electronic components of -the analog computér,,the intro-
duction of damping at the beginnihg of computation and the
weak natyre of the ultraharmonic resonance itself.

LY

The ?nalog and digital outputs are shown in figures

.
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5.1.20 through 5.1.23. In figures 5.1.20 and 5.1.21 the
existence of the 3rd order ultraharmonic resonance is |
clearly evident. Similarly the analog and digital com-
puter outputs for the forcing function C w2 Cos‘mt and

values of Z' = 10.0.and n = 0.22 are shown in figures 5.1.22
and 5.1.23, |

e

5.1.c 1/3RD ORDER SUBHARMONIC RESONANCE:

When the frequency w of the disturbing torque rises well
above p, the natural frequency of the system, new and addi-

tional components appear in the motion with frequencies of

% and % etc. The original harmonics of frequencies 2w, 3w

H

etc. become now negligibly small. The displacement function

is:
é =M+ Q. Cos wt + Q Cos L& + g Cos Yt .
1 1/3 3 ~1/5 5
+ Q3 Cos 3wt + Q5 Cos Swt + ... etc.

In the above expression Q1/3 and Ql/s are small in comparison
witb Ql’ unless % = p or nearly so, Whéf/Ql/S is magnified and
the subharmonic resonance of order 1/3 takes place. Similarly
at % = p, Ql/S is magnified and subharmonic resonance of order
1/5 is generated. The term Ql must be included in the assumed
solution to allow for the transfer of vibratory énergy at the
frequency of the disturbing force. The simplest approximate |
solution for the 1/3rd order subharmonic resonance will thus

have the following terms:
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8 = M + Q Cos wt + Q; - Cos ";—l

The analytical solutions are derived in Appendix I.
Sections I.1.3 and I.2.3 correspond to the inputs of
the type T Cos wt and C w® Cos wt respectively.

The applicigéon of the Ritz method to the asymmetrical
case results in five simultaneous équations, (I.1.3.5) to
(I.1.3.9). Similar expressions are developed for the sym-
metrical restoring force characteristic and an input of
the type C w2 Cos wt by assuming a two term solution. Three
simultaneous equations (I.2.3.7) to (I.2.3.9) are then pro-
duced. The solutions are shown in Appendix I. The equations
(I.1.3.5) through (I.1.3.9) are solved'for selected values of
the parameteér S and.§l. For set magnitudes of 61/3 correspond- -
ing values of M, Gl and n are calculated. The analytical re-
sults are obtainéd for the symmetrical restoring force character-
istic (51 = 0) and are shown in figures 5.1.24 through 5.1.26.
The figure 5.1.24 shows the résponse curve of the 1/3rd harmonic
component 61/3. The harmenic component Ql is shown in figure
I5.1.25. Both are drawn for § = 2.0. The curve of 61/3 has both
positive and negative branches and the motion is stable since
conditions for a jump are not present. In the analytical re-
sults the component 61/3 has a well defined resonance at |

»

n = 3.0. The component 61 has two negative branches correspond-

ing to both branches of 61/3. The comparison of relative mag-
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nitudes of 61/3 and Q, indicateg that in the subharmonic
resonance region, 61/3 develops very rapidly whereas 61
drops down slowly. For instance, while 61/3 increases from
2.0 to 14.0, Gl drops down from 0.8 to 0.2, for a variation
of n = 1.8 to 2.8. A plot of M versus n is shown in figure
5.1.26.

The physical system was 51mulated on the analog and
digital computers for a symmetrical bilinear restoring force
characteristic. Both types of inputs were used. With
T Cos-wt and § = 2.0, the System produced 1/3rd order sub-
harmonic resonance over a narrow frequency range, n = 1.6 to
2.0, with the right initial conditions. As the frequency in-
creased beyohd n= 2.0, the overall amplitude of the vibration
became less than the clearance, thus the tooth lost contact
with the retainer walls and the system reverted to a linear
restoring force characteristic, These results indicate that
the excitation of this type of resonance depends upon the
magnitude of the disturbing effect. It was expected that a
disturbing force amplitude-frequency boundary was present,
beyond which the subharmonic resonance cannot exist. The
mathematical development of the equation of this boundary
is shown in Appendix IV. This criterion establishes a Te-
lationship between cut-off frequencies and forcing ampli-
tudes The cut-off frequency is the highest value, above
which a forcing function cannot excite the subharmonic

resgnance.,
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Although for § = 2.0 the theoretical cut-off frequency
is n = 1.45, the analog computer results show the possible
pfesence of the subharmonic resonance for values of n up to
2.0. The application of a larger amplitude of ion as the
initial condition, will result in a wider frequency range of
tooth contact, thus extending correspondingly the{subharmonic
resonance limit.

The sample wave forms for § = 2.0 and n = 1.6 are shown
in figure 5.1.30. The digital comﬁuter simulation response
is shown in figure 5.1.31. This technique also verifies ana-
lytical and analog computer results as shown in figure 5.1.24,

To generate the 1/3rd order subharmonic resonance .in the
mechanical model, a stepped shaft of natural frequency 12 Hz
was used in place of the 5/8" diameter shaft with 26 Hz natural
frequency. The purpose of this change was to be able to vi-
brate the system at higher frequencies and still maintain
constant displacement outﬁut wifhin the power limiations of
the shaker. o

In the testing procedure the system was vibrated through
a wide range of frequencies with a maximum value of § = 2.5,
It was not possible to generate a sﬁbharmonic resonance, at
higher frequencies the system just followed the harmonic
resonancé response. As indicateﬁ by the cut off frequency
equation, at higher frequencies, the tdoth lost contact with
the walls of the clearance space and reverted to a linear

restoring force. Owing to the inherent damping produced

A %Y
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primarily by the four bush bearings, the maximum‘output
power of the shaker was insufficient to increase the ampli-
tude for maintaining tooth contact and.hence also the non-
linear restoring force in the subharmonic resonance region.
Moreover, the dissipation of energy is propo;tional to the
square of the frequency of vibration, and hence the sub-
harmenic components are more sensitive to dampiqg. It is
expected that if a shaker with sufficient power had been
available, the subharmonic resonance would have been generated.

The analytical results which are independent of damp -
ing, indicate with sufficiently large disturbing force am-
plitudes the presence of a strong 1/3rd order subharﬁonic
resonance, as shown in figure 5,1.24. It could only be
verified with a limited success by means of simulation tech-
niques utilizing analog and digital computers.

The subharmonic resonance response to the forcing input
of the type C mz Cos wt is shown in figures 5.1.28 and 5.1.29.
Figure 5.1.28 presents the curve of the 1/3rd harmonic com-
ponent 51/3. Similarly, the harmonic component Ql is shown
‘in figure 5.1.29. The curve of 61/3 has positive and negative
branches and the motion will be stable due to the absence of
the jump phenomenon. The component Ql has two negative
branches corresponding to both branches of 61/3. There is
close'agreement between simulation and analytical results
for 61/3. But the analog computer values for 61 are more

scattered and generally are lower in magnitude. The dif-

v
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ference is caused by damping introduced in the simulation
technique. Typical analog and digital computer wave forns
are given in figures 5.1.32 and 5.1.33.

With this type of disturbihg effect it is also possible
for the system to revert to linear restoring force conditions.
The appropriate analysis is shown in Appendix IV. It estab-
lishes the limiting value of Z' below which non-linear con-
ditions do not exist and hence the subharmonic resonance
cannot be excited. Using this criterion the limiting value
of Z' is 1. Therefore with 2! > 1, the subharmonic resonance
can take place.

5.1.d OVERALL VIEW OF THE RESONANCE PHENOMENA

The analytical solutions for the 3rd order ultraharmonic,
harmonic and 1/3rd order subharmonic resonances with the ex-
citation torque of the type T Cos wt are grouped together in
figure 5.1.34 for comparison. In the absence of damping, the
amplitudes-become asymptotic or indefinite near the resonance.
Hence their peak values are.indeterminate. The development of
typical non-linear resonance is clearly observed. In comparison
with the harmonic resonance, it is evident that the intensity
of the 1/3rd order subharmonic resonance is at least as great.
Although because of equipment limitations, a quantitative ex-
perimental verification was not possible, there is sufficient
évidence to indicate that in.qiéhtly damped systems subharmonic
resonances can be destructive. The amplitudes of the 3rd order

ultraharmonic resonance are relatively smaller and should not,
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in general, cause serious nproblems., Vibration with a sym-
metrical bilinear restoring force characteristic'contains
pPredominantly odd order ultraharmonic and subharmonic reson-
ances, as shown for example by Atkinsoq (3).

5.2 REVIEW OF RESULTS OBTAINED BY THE MECHANICAL MODEL

TECHNIQUE

Acceleration wave forms and their frequency composition

-

at several frequency settings for § = 2.9 are shown in fig-
ures 5.2.1 through 5.2.8. The frequency Spectra at these
forciné frequencies indicate the Presence of several higher
harmonic components. For comparison of magnitudes of indj-
vidual harmoﬂic ctomponents, one shouid bear in mind that the
amplitude of the first acceleration harmonic component is -
equal to 2 Q1 and similarly the Second, third ang fourth h
components are 4w2 QZ’ sz Q3 andllﬁm2 Q4 respectively,
where Ql’ QZ’ Q3 amd Q4 are the displacement amplitudes. At
each frequency setting, the first four harmoni&s were read
from the real time analyzef output and were converted into
non-dimensionail amplitude§ Ql’.GZ’ 63 and Qﬁ (as shown in
Appendix III.?). The plots of 51, QZ’ QS and 64 versus n
dre presented in figures 5.2.9 through 5.2.12. A careful
study of these.results indicates the existence of 2nd, 3rd
and 4th order ultraharmonic resonances. The evep order
ultraharmonic TeéSonances are present because of effective
asymmetry in the restoring force characteristic, which re-

results from the inability to obtain perfect balance of

the driving arm. The asymmetry is specified by the para-
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. meter 51, which has been defined before. Figure 5.2.9

-

shows, for gl = 0.05, the variation of 61. In figure
5.2.10 the magnification of 62 in the neighbourhood of
n+= 0.5 indicates the Zpd order .ultraharmonic resonance.
A sub51dlary énergy transfer from the 4th order resonance
is also eV1dent in the V1c1n1ty of n = 0. 25 Similar

cond521ons are evident in Figures 5.2, 11 and 5.2.12 and
a peated for other values of ¥ ip Flgures 5.2.13 to
5.2.20.

In summary the mechanical model showed a well defined

harmonic resonance and 2nd, 3rd and 4th order ultraharmonic

resonances. The comparison of amplitudes indicates that
the’ Strength of resonance decreases inversely with the
order magnitude.

Subharmonic resonances, as discu§sed previously, could
not be generated on the mechanical model because of the ip-
adequate power of the vibrator.

For Quantitative evaluation, spectra of eéxperimental

values of Gi’ 62, QS and Qﬁ'at different values of n, for
3

n

1.0, 1.5, 2.0 and 2.5 are shown in figures 5.2.2] through
5.2.24, Referring to figure 5.2.21, before the harmonic
resonance, the Ql tdmponenf developes in proportion with £he
forcing amplitqﬁe 8. But beyond it decreases rapidly, hence
the accuracy of the measured values in that region is in‘

question. A greater dependence of the higher order components

upon S in the range of their respective resonances is evident
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from Figures 5.2.22 to 5.2.24. _

5.3 ESTIMATE OF EXPERIMENTAL ERRORS

,

The error§/;EB considered in two parts:
1. Transducer and readout equipment.
2. Data reduction.

Transducer and Readout ErTrors:

Accelerometers, includipg cables, are individually
calibrated by the manufacturer to a suggested accuracy of
r 2%, with flat frequency response within 2% from 1 Hz to
12000 %z and with stability better than 2% per year. The
mass of the accelerdﬁeter is quite small in compa}ison with
the vibrating arm. - Hence the mass loading effect of the
accelerometer is negiigible.”

The accuracy of the acceleromefer‘calibrator 1s stated
to be/better than * 2% by the manufacturer. -

The digital countef, which was used to determine fre-
quency of the shaker pin, ﬁeasured the period of the-oscil-
‘lation iﬁ.milli seconds. The instrument error oﬁ freq;ency
values was within = O.i%.

ol

Data Reduction:

The real time analyzer was calibrated for 1 'g"peak
wﬁfbh corresponded with SO dB on fhe Y-axis. During frequency
analyses of . the accelerometer output, the acceleration har-
‘monics were read within ¢ 1 dB or 12.23% laccuracy. The accel- .
eration harmonics were converted into non-dimensional ampli-

tudes as shown in Appendix III.2. Evaluation of equation
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IIT.2.2 indicates that the non-dimensional amplitude of
motion (Ql) depends primarily upon the magnitude of the
acceleration harmonic (nl) and the angu%ar clearance (80).
The accuracy in the calculation of 61 is a function of
accuracy involved in acceleration measurements, which are
within 21 dB and clearance measurements, which can &e Qith-
in +t16.66%. The periPd 't can be measured within 0.1%
accuraéy. Hé€nce it is not considered a source of -errors.
The error involved in natural freaguency measurements
would influence the values of the frequency ratio n. As
a rough estimate, an overall reading error of 2 Hz would
result in an error of 7% in the value of n. An analytical
apbroach of the experimental error analysis is presented

in Appendix V.

v

5.4 REMARKS ON THE APPLICATION OF THE RESULTS

The piecewise linear res?oring force charécteristic
is caused by discontinuous contact -with elastic restraintél
due to clearances. The example of such phenomenon is a
geared system in whiéh torsional oscillations are generally
present when transmitting power. Such a system will exhibit
the harmonic, ultraharmonic and subharmonic resonances.
C@aioupka (12) has shown the existence of a 1/2 order sub-
harmonic resonance in a torsional system with gears.. In
this particular publicﬁtion, the author has studﬁed, the
behavior of a s?stem having piecewise linear restoring force

* characteristics caused by backlash in gear teeth.

The results obtained suggest that ultraharmonic resonances
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can be easily excited, but because 6f the relatively

small amplifUdes they are not 1ike;y to cause serious
problems in real systems. Subharmonic resonances, on

the other hand, will only be excited with large disturbing
forces in strongly non-linear systems with relatively low
damping. Although thigfg;y not occur often in practice,
when it does it is likely to be very destructive.

The relétively simple method developed in this pro-
ject, of calculating the limiting frequency above which
the subharmonic- resonances cannot be excited, should be
very useful in practical applications.

Although the study dealt with torsional vibration, the

any sysfem with clearances, by replacing appropriately angu-

lar parameters and variables.
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6. CONCLUSIONS AND SCOPE OF FUTURE WORK
CONCLUSIONS

gation undertaken:

"

1.

The following conclusions are drawn from the investi-

The Ritz averaging method with two or three term approx-
imation provides satisfactory results.
The mechanical model with slight asymmetrical restoring

force characteristics develops even and odd order ultra-

harmonic resonances.

A system witH symmetrical restoring force characteristics
develops only odd order ultraharmonic and subharmonic
resonances.

The ultraharmonic resonances can be easily generated,

but their intensities are much smaller in comparison
with the harmonic resonance.

Analytical solutions without damﬁing indicate the pos-
sibility of large amplitude subharmonic resonances in
the éase of a forcing input of the type T Cos wt . Ex-
periments with the mechanical model and the analog
computer show that it is difficult to generate this
resonance in actual systems at low excitation amplitudes.
The subharmonic resonance appears also to be proportion-
ately more susceptible to damping. It must be therefore
concluded that such a resonance is likely to occur only
in systems with large non-linearit}, very low damping

and high excitation forces. If it is excited, however,
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it is at least as destructive to the vibrating system
as the harmonic resonance.

6. The analytical solutions indicate also the possibility
of‘large amplitude ultraharmonic resonance with exci-
tation of the type C mz Cos wt. The system failed to
show this resonance at low magnitudes of Z'. Experi-
mental results however, suggest again that such a res-
onance ca;§BHTy-be excited in system with very low
damping and high excitation forces. On the other hand,
as indicated by analog computer testing, this type of
excitation appears to have ‘a higher potential for gen-
erating subharmonic resonances. The magnitude of this
resonance 1is signif?hant and it is comparable with the
harmonic resonance.

6.2 SCOPE OF FUTURE WORK

The most important consequence of non-linear vibration,
caused by clearances, is the possibility of exciting sub-
harmonic resonances. It is recommended that an improved
mechanical model with a sufficiently powerful vibrator, be
used to verify the theoretical results obtained in that fre-

quency domain. /

In geared systems there are additional sources of non-
lineérity, which were not considered in this study. Since
their combined effect may be greater than that due to clear-
ances, 1t is aiso recommended to investigate the following:

1. Stiffness variations due to the number of teeth simul-

\

.4 .



2.

taneously in contact.

Stiffness variations due to the sliding of the point

of contact along the tooth profile.

N

25
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Figure 4.2.1.2 Tooth Block Assembly
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Figure 4.2.1.3 Overall View of the Experimental
Set Up
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Figure 4.2,3.1 View Showing Shaker Pin
Attachment to the Vibrating
Arm 'A' and Control Acceler-~
ometer



U sy ﬁD 10T "3Im S0) =

anbioy Surqumistq (p="g) woisds

[BOTII9UHEAS 9yl 10J 9Suodsay 2IUBUOSSIY DTUOULLR|]
o13eY. Aduanbal,

u

-
5

1

0°1

a0

9°0

1S aandty

UOTIBINUIG
131ndwo) doreuy - e

_

OA-

I

_ .

D STuciliey Jo spnatduy

jom}
—

FQ 1usuodio

Al

14!



. ‘ ‘U sy H.@ uoE. ‘1m s0) |
= §-950°6 = 19) W9ISASTEOTIFoWUASY 10 2sUOdSSY 2IUBUOSSY ITUOULLE]]

= 9anbuaoy] Yurqinisig

2°1°S 2.8ty

(07 =
U orzey Aousanboay
0°Z 8'T 9°'1 V1 AN 0°'1 870 0°0 70 2’0 0
_ ] _ _ _ _ | _ |
pn—— LvN
L) "
L ¢
— v
— -9
- -— 8
— N
$3INS9y UOIIEBIN
~-wTg 1aindwon ZoTruy m
— o —x1
1INs3y Telusuriadxy o
I | | b1

dury

.

Ib JUaUD

duIo) DTUOULIE[] JO opnaty

e



U sy mwuoﬂm ‘3™ s0) [ = @nbioj :ﬂnhnumﬂm
0°T=S “60°0="8) walsdg
Tedta3suuisy 103 asuodsay 90UBWOSSY DTUOWIB] $°'T°G san3d T
U orjey Aouanbax,

8°1 9°'T v.ﬁ. Z'1 0°'1 8°0 9°0 PO 2 0
L N N
_md
~ I
ToslInsay
Tejuswgiadxy @ .

H yo epnatrduy

o~
(o
-

Ib jusuodwo) dTUOWIE



92

(0°1=

‘U SA W I0Td @ so) | = anbiol Sutqinisiqg
‘50°0=" 8) welsAs TeoTilouwdsy I0J osuodsoy o9dUBUOSSY JITUOWIEH 4 *T°S

e U otrzey Ad>uanbaxg

0°'1 60 8°0 L°0 9°0 S0 b0 €70 Z°0

2IndTy

10

L




Losp L 1014
*3m S0) M ) = anbio], BUTQINISI( ‘WS1SAS TeOTIIauAG 103 9suodssy 9OUBUOSSY uﬂmoﬂ_cm: G*1°'G 2INdT,
u 011\ Adusnbaiy
0°¢ g't - 91 A 1 0'1 8°0 9°0 po’ ¢'0 0
! | _ T _ | I T _ 0

_I
UOTIBTIWITS J1o3ndwo) SoTeuy 4

I{_] Jusunduio) dStuowrey jo apnatrduny



~

1mso) ], = @anbio] Sutqinisiqg
{0=5) osuodsay uorleIqIp 9914 ‘Inding 193ndwo) Soreuy 9-1's 9andTy

A

an
i

O]}

0 ¢



: . 0°¢ = ¢ “Imso) | = anbioy Burqinisiqg
: . . TUOLION 9seyd-uj
(£°0=W) asuodsay UOTIBIQTIA padaog “anding 121nduo) oyeuy L°T°S aand14

SIS o
— .

fo

SI3S fe—7

imso)y g




96

0°Z = § ‘Im so) ], = 3anbiol Burqumsig

) UOTIO0W 3SBYJ JO INQ
(I"T =Uu) ssuodsay uoTieIqQTp Pe2104 ‘Inding x9indwoy BoTeuy gy°g 2INn31,

r

ASBYJ . JO INQ I'T = U

Sbasse1

(D ——————

eI 1

—

m s0) [

I



A e e e

.. ——————————————————————————————————

+ —————————————————————————— - - -

e e - e

F e ——

o - . e

P ——— —— e ———— -

.’—-.. _______________

e e

B ——— s o ————

... ———————————————

- —— —— - ——

. e _—— e ——

e —— e e e

‘ ————————————————————————

e ———— e — — ———

e ——— e ——— e o — o —

P e e

+ _________________ S e — — i . i —

o e e e e

e

P e e e e

+ ———————————————————————————————

e e e e e e

e e a

e —— e e e

e, — e e -

+ ———————————————

e . -

+ ________________

e e e e e

+ ————————————————————

e e e e e e

F e e e e e e

e e e e

-’- —————————————————————————————————

F o e

e e e e __

e e e e __

e e e e e

o e e e —_————

B R L — e e e —

o —— o

/Q A ——e e

. o o,

- e e e T T

e e e e e

e e m e

+ ———————————————————

e e ——— - - - —— -

+ —————————————————————————————

e e e e e e e e

A e e e e e ___

F o e e e e
0°2 =0

DO M GO TOOOC e
'DUDODCJOOUOC)UUOGU

) O-—tv-c-t—-chUC)OOD-iﬁN'*LJOOOOOU-dNH
COoNOC

[
a0

COo20CGUVLLICOLIOVACODCQOOY

r

o]

0%
10

|
lomiusureett,

L}
e8]

MO M
W o I o 3 BT Al (N
g

. a2

D=L MU o

AL el A AU LR A VIRTEN § e o o8

i
u
oY}

L
T
-
i
LI Y R R I Y

I
[N}
e
49
i

- P AR I B SR
—sl%<dw "t ~
=nLlwiltl
TN DLTY Y
KPR
21553 °1
SL06"1
SLdnot 1
SLE »a*t
zlEe3w1
EY BOEN |
—=3d77*S
—3uZ222*
—a9L55%*y —

~anLlagn*é-
ELSiE'I—

WD i U Y)

MUrd 9 seigr g
[o 2 S LT O PO

o}

Lt i B B B R P

0 S0uU0L*v
C Anrc)es

D =CCoLw

3 aloLieg

0 a000E"L

O ZC3cs°¢

O Z0CLECE

0 a¢liasl*to

0 200Lse,

0 30059*F

0 30006 dw

0 2065S°F

5 5CHI5°¢Y

0 209Gvreg

G 20ILv*El

& zo0uEream

0 =ligfeg

C Zdowzee™

0 Z0.02°f§

0 =CdeT"gH

O Z0a0lEl

S ACIZ0*C L

O zuwc0s e

D on0S6* >

O 2CJ06°2,

0 0363720
U ZCIa%T

9 F0ngsez 3
C o=Culitz L
v -.-(;\:-_‘-;'24; O
AT
J .'JMUUE‘C.SH
(AT A S ]
¢ Tr)anpezE

& zaustezl B
S ztulereP o
I 30N T

¢ ;.caoa-afjg’
RV R

0 =0JCl 2F o
0 ZlcaC*20 o
0 327029 o
Q0 3Cuwé T o
J 2ui0e1l8 5
D ECLa8° T 2
¢ 231081 F @
0 Hudsitia 5
J o=Ztwaetl

o BG39 1]

G 0209 Tm—
N 50055°1

¢ 509751

0 ZiGsver1 {E”
0 Z00nwet

0 selge 1.

O =20J2F * [

3 LO3ve*

7 =dltEC

C s20S1°1

C =330t

0 300-0°"1
S23s 1



U SA mb 10Id Im soy | = anbaoy Burqinisig (g = 1Q) waisdy
[E2T230uAS 10] dsuodsay 3DUBUOSBY DTUCULIBI[RILT() I8PIQ PIS QT 'S 9INSTy
U oraey Aouanbauiy
& 0°1 670 80 L0 9°() 570 v £ Z'0 1°0

. i i I T i _ j 1 i

0'¢=58
UoT1eTnuWTS J193nduwo) T1elTs8Iq + +
[~ UOTIBTMWTIS Iainduo) Soreuy W
A+

duyy

D DTUOULLE)] PIS JO 9pN3TT

EQ Jusuodilo




L9 ]
(3T

'usA Iy 1014
(0 =19 ) weisds [mdOTIIBULAG 103 asTo

M s0] L
dsay 9dueuosay atuol

u OTIaey ALdusanbauy

= 9nbuao], Jurqumisi(
WEYRLI[N ISPIQ pAC TT'T1°G 9IndTy

0°'1 60 8°0 L0 9°0 S0 LAY £°0 Z'0 1°0 0
| 1 I ] { ' | [ |
- m>+ ]
0'¢ =§ .
uotjey
-nit; Jondwo) [e1tdiTg 4 N
goneruty 1oindwo) foreuy ¥
_ | i J J | | | i

]

jusuoduo) dTuouEY JO apn3 T T dury

-[6‘



Q

r—

0°T

LT m>MD 10Td ..mD.N = mu 1™ 500 L = OZU.HO..—.. Mﬁ_MDHJHMﬁD
(5070 =1g) WRISASTEDTIISUMASY 10] 3SUOASR| SIURUOSHY DTUOLUBYEII[(] I9PI) PIS 77 1°S dandry
) u Ooraey Aduanbaly - :

6°0 870 L0 9°0 5°0 V0 £°0 Z'0 1°0 . 0
“ T I | I ! _ ! [
% * o [ /
[ ¢ 9
— .. /. .
. —12°0
..0..
| _ --"1¥0
~ — 970
B -1 80
- —0°1
B . . ) AR
1INsSal TeluskTIadxy e
l _ _ _

v'I

(Lio) dTuoutey pa¢ Jo opnaryduy

?Q JusUO



ush By3ord "0z = §) am soy 1 = enbioy Burqunisig
50°0 = 1g) Wolsdg [edTI3sumdsy -10J ISUOUSDY 9dULUUsLy ITUOLLIBYRIL[{] 19pIQ PIS ST T°G SINsT
- ’ U orgzey Aouanbauyg
6°0 80 L70 g°0 &0 P 0 <o A\ T°0 0

| | I _ _ [ ! _ _ 0

S3Tnsal Jeiuswidadxy o

A+

uodmo) dtuourely yo spnytyduy

[_Q JUus

04



122

‘USA [ 3I0Td {0z = §) Im so) ] = @nbioy, Jurginisig  (sgrg = 19)
293545 TedTJ3ouisy 10J osuodsay ajuruOSYY| QTUCUUEHRLIT(] I9PI) PI§ T 1°S auandr1y .
U oryey Adusnbouy
6°0 8°0 L0 9°'0 S0 Vo £'0 ¢ 0 L0 0

_ | T _ i [ _ * * el

)

[y

e

s 2



103

U sp MD”:;m '(0°T=8) 2™ so) I = onbio] Burqinisig
. (50°0="8) waisdg
Te2TIlouwASYy I0F 8suodsay 9DUBUOSSY DTUOWIBYUBIIT[ I9PIQ pIS ST"T°S 2and1yg

L otiley Aousnbaxqg

S1TNSay
— TeluswTIadxy ®

Eb jusuoduo

J DTUouIeH PIf FO apnitiduny



104

‘u m>ﬂUQbH% (0°1=5) 3™ 50D L = mmwho% @Mwﬂﬂwuwwm
pr0=lg) wa3

1enTrlouwdsy Iogy osuodsay mu:mzomwm JTUOUXRYRIIT[ ISPIQ PIE
u otley Aousnbaxd

0°1 6°0 8°0 L0 9°'0 50 ¥°0 0

9T' ('S 921n3Td

_ | _ _ _ _ _ NUM

s31Insay
L Tejusutriodxy @

IQ jusuocdwo) DTUCULIBY ;o'apnzytdmv




-

"u sy W 30Td (0°1=8) Im s0) [ = onbio] urgqinistd
(50°0="8) we1as4s .

. TedTi39uuASY I0F 9suodsay 2DOUBUOSSY DTUOWIBYBILT X8pI0 Pif LT°T°S 2and1g

0°1

U o131y Aduanbaiyg

6°0 8'0 L0 9°0 5° 0 b0 $°0 70 1°0 0

] _ | n _ _ T b1-




- -
]

b SA mD 01d " (001 = ,2) I™ sO) .™ J = anbroj BULGIMISTIQ
Wo1SAS TEOTIIaumAS 103 9SUOUSY 9IUBUOSSY ITUOULEBYRAI[ JSPIQ PISGT T 'S @Ind1g
L ollwy Aduenbaxy

0°'1 6°0 80 L0 9°0 S0 v 0 £°0 2’0 T°0 ]
[ _ [ I [ I ! _ _ 0
— . —2°0
- ~
" _5
| — ._ — @.O
—’ N
- ' —8'0
- . 1
> . ,
——
| __ —0°1
ATTBOTIATEUR . ;
PedBI1 3q 30U PTNOD SAIN) ~- = \
|
uotleTnuig 1aindwol TelTdIg + S
— I —17'1
uoTiETMUTS J93ndwo) HoTeUy !
. an-
N _ | _ | : | |

2!

D JTUCULiEl PIS JO apniryTduny

Sb Juaucdio



[ g
L)

U sy ﬁb loid “(0°0T = :Z) M so) ,m ) = anbio] FurqInisiqg
WalsAS [eITA3owUAS J0J 9SuUoUSIY SDURUOSSY I TUCULIBYBIIT( 19pIg pIg gL TS @xndTg
U oriey Ldusnbau

0°1 6'0 8°0 L0 0°0 S0 ¥'0 £'0 Z'0 1°0 0
I 1B _ _ ! _ [ _ | 0
- )
| . —10°2
- - _— Oov
3
[
[x3
c
’ (a9
4]
. N — 09 O
Hy
_—
| ]
| oz 2
Q
: 3
8]
[ | =
0ot 5
. 2l
v uorleTruts J1oinduo) TeITSTY 4
B . —jo*ct
N uoTieTnuTg J193ndwo) Joreuy ¥
_ _ | _ _ _ | - _ _
. 0'%T




108

0°Z =S “am so) | = snbioy Surqinisiqg
- (b2'0 =u ) asuodsay
9DUBLOS®Y JTUQUUIBYRIIT[) ISPI) PIg ‘.u:mu:o Ja3nduwo) doteuy gz°T ' 2andTy

L4

Im s0) [




Ou av¥mba”|
00 Auwoacry
00 armoari

Curmdtnvicr
I0=30BL vt~
TQ=33104°8 =~
\G=alluu™2=
Lg=dCC0w"{ -
1g=dBCwL v~
10,492 iw*Gu
lo-debt~9=
10rdllZ™i~
10=3w04 1
10=3kvd
1o =-Jxow
uo Athd
Ow A6Owl®
uo dTWNEE=]~
Q0 avPOC*]~
00 MEiC*L=-

1w
1=

V0 soLbd”| -
90 0060 L~
Q) IGLhaT |-
Ll supt®l=
00 J49Wib*1le
Eu #C2we =
Q0 dblwee)-

Yeh "=
oace e
1o=dkiC&*a
locsitrgdy~
10~ abibe*uw
[LErT: L AL T
to-a001%
10=24 lwg*g
10-s0aQ9* L=
Lde=I% by Qa
£0=3l 0D
16~

10 .
Tu=dui sl
10=d88T1*y

awh®}
oD JCooe*y
00 AQUE L

00 Whwwo*)

1m S0 L

e

P

- .

- —— et e e e

D P r e —.

—
Vemmmm o e

e e e et
iy -
— -
—m———
- Z sy
W e L L LTI I I TN
—— ju—— -
D U e S S
B o= -z

wrecs
Flalohtd
LT
Fol LI
FLLFSAY
it
iDL~ E
at1eucy
IvvRatl
oeteg
ALeX°L

s
oIy
bt

M los g~ <0
It E- 29
'u -

e bl datad
copGooon

0

LY N
(-2 7-2-T. Y. p o=

[N
[ -]

10-EDG" ¥~ 40 3o

1I0-280BG*E~- &o

1
o6
oo
00
1]
00
od
ao
-3
Q0
ao
3]
o0
Qo
a0
o0
Qo
o0
.1}
[-1:3
-]
(-1}
-3}
00
o0
6o
oc
ce

O =32igwtu

diAw0*1
dvd ag"1
aldid *1
P Yyl
AcIto*y
MCLEtE
FW0LLvR
TR
Mivu
atelg ¢
AL LC
Sl d*E
ELLYE b
PAL LT

L0 IuLtoct

$28s 3

109

Q

g

=

o)

0

Y

3

o

=

£

)

b ~

= <

= o~

—

Q 1

o

5

L

o

pot )

™ 3

+ [75]

= =]

g ©

5 &~

% H

ST 3
™

o - 9

OO M

P o

= R

g2 =

3 — o

[ TS
O~

— .0

< EH

cE3 .

5 B %

o~ O

-

—

o3

i

i

Q

.é) !

o

4 5



110

(0"l = ,Z) 3™ sop ;™ D = anbioj, BUIQINISI(] \U_O
(22°0 = u ‘0 = 1g) welsig TedTI3aundg 103 asuodssy
9oURUOS3Y STUOULIBYRIIT( 19pIQ pis - Inding Jaindwo) Boreuy 22°T°S sIndtyg

3 S0) ,m 0

@



lﬂ"‘hl.ll.'v

b
lO=aTh Wk
10=dveul*?
10-JdWEoarz

lo-iﬂd“-k-

10=sobiii=
16-3Cude =

lp=a08 012~ »

lu=agruC T
[1-CF L AW RF )
l0=abfiv d-
WO=slBbu*Za
lo-deitoeg=
to-30to L~
ID=3wNio (=~
l0=Jvawy (=
10=JGELR*Lw
LY=2vDga*(~
Iv=-avgos i -
Tu=dadc0*y=-
10=d2iC 1w~
10=dib vl w=
10=sDZvE *ya
3

E0wad s v '-
1e=wi W) b=
Lu=aiQWau*un
1o-evuCute=
lu=svbadi®y=
IG=3Zlwi"w=—
tC-Jdub e w=
L

Tu=savwl
bO=dbl 2 *w—
[T AR T
o=udall™e=
1WW=sluunsl -
Iomakbam® -
(R AP
lu=gubeCvel
IL=40dwe ([~
0=adeO8 "=
eI T TR
Id=gwwra=i=
(LR LI KA
Va= ot sy -
lu= 04 w2~
10=-4liad~2=
lu=a0dBQ" ¢~
la-divdm® -
[LEFTETLE T
fu=sasb ot -
T=—pal el t=
lu=vlsa0"

0~ Jl\'\'l-
LU= w2~
du=shbin®y
Lu=i0urute
du=adawi®y
Cumalewd
1&-4(5\0’1

bomuddw
a

lO-)!&‘h‘l
.

IC=nwst I'

10=wewidyL

ID—Jquv'(
10=Javwa$*i
BOo=dwwiicg
IO=awten*y
10-diviets
{0~degc Oy
lo=2lELr*y

f0=sdivu®y
by=lte vy
to=adiuV* ¥
Q=pwdlsi*y
lurabdoan®y
1C=Jl s 0By
fL=sdvauty

W 500 ;0 9

B ey

-

aa 3001G'|-
00 diwtiert=-
00 I%OOLTE~
Qo ALl 1=
a1 JRACH" T
20 49 Im]-
ga H-ﬂ"-'l.‘

o Ii&ﬂl'l-
ol ACIwQ*)=
0=, 0st b+
to=2C bt r =

IR ICIIIVOOOFS

LA L PR

Raat-1 -1 TV R
36 LTLOAMAL 1L I0_0M s 2B L 3D

=Lt

«
.
»
-
~
s
-
)
[

F0~uvC 10" -
1G=p0veb*E~

Nhthre Al oo A A AL ey
L3-1- 230 - 13 T TEPT. T4 1 L L o

n
€0 S04\ "T
20 40041t
20 Jwon*t
20 QT T
20 Mhwagt)
¢y maZiCt

4

JO0O0DCQAUACD00a0D

2

AL e
Iowsr g
au el ®
FEE TN '|

L L T N T Y R T N N O T N L L L L L T T L L L TNy,

CICCDo00OVUCOOCL UaL WO 0O0D0000D000RO0CGa0D0D

Ty
ONQYao Yool UL

3rd Order Ultraharmonic Resonance Response

~
o
— e
k=)
o~ —
S
It -
)
L
o 3
< nowm
=3 o]
a~0
&1
- |
8 73
%%U
]
ol o
& o
1 =
v o
= om
=S
enf
G+
um%ﬂ
o
Hg.o
3] )
=Hu 3
o~ In]
Qof =
vl D) e
jam I
M
[N ]
—
[Fp]
Q
T~
(=]
)
o
43

11



(0°z=3 .ouﬁ.mlu WaISAS [BOTIIDLLIAS 103 95

9°¢

b°g

U sp m\Hb I0Td  "3m soy | = enbiol ~UTQINISTQ

A

0°¢

uoUussy 9dUBUOSDY OT
U OT3®y Aduanbauy

8°¢

9°¢

ucuLLBYqng 18pIQ pIc/T P2 1°S 2INT T
7 1 0°'¢ 8°'T

_

_

|

IA+

] T 1

uorzernuts 1oindwo) TeatSig ¢

uorlernwis i1aindwo) Horeuy W

I I | [

0°¢

0°v

0°9

08

0°01

<
o~
—

0° bl

£/1 0 JUSUOULO) DTUOULLEY PIC/T j0 spmatrduy

——



"uosp —b 30Td "1™ s0) [ =-enbio] Surginisi(

= G wo =1g) 93sAy TedTIIduwmdS J0J Ssuodsay 9IUBUOSIY DdTuouIvyqng I1apig PiE/T SZ2°1°§ =andyy
= - : u o13Ey Aduenboly
B¢ 9'¢ ¢ 0°¢ 8¢ 9'¢ P 7°T 0°¢ 8°T 9°1 1°0-
_ w _ _ _ _ _ _ _
oA -
| — 70~
- / .
| ™~ ~co- §
o
[ur
g
[a ¥
. o
| AN ~vo- &
N o
=)
:
b=
[
- — §°'0- 2]
| g
) o]
3
3
[ —9'0-
Al
[ )
*
_.mumH:Eﬂm zoindwo) TeltdIg ¢ * -
uotlernurs Joindwo) FoTeuy  # N
| _ | _ _ _

g°0-



114

v'e

‘U sp W 301d

*q1m son L = enbiol Burqanistq "(0'Z = S 0 = HB wa3sAs
_TedT13euudS 103 dsuodsdy IDUBUOSSY OITUOWIBYANG 48PI0 PIE/T 9Z°T°S oang Ty
u orley Aouenbaig
£ 7% 1'% 0°¢ 6°C 8°7 L7 9°¢ §°¢Z

{ | o ! | _ { | !

0°¢Z-

8'1-

9°T-

v I-

¢°T-

0°'T-

8°0-

9°0-

v°0-

Z°0-

=]



N

"Im so0) | = snbioj Juiqrnisiqg 9IUBUOSIY DTUOWIBYQNG
I9pI0 pag/T ‘Ausnbarg 330 ID Jo sSMOOT Lz TS sandiy
U O13'Y Adusnbaur,
0°¢ 82 9°Z v'Z e 0°2 8°T 9°1 b1 1 "1
I I ] I _ [ [ . I
l |

0°1

0°¢

0'¢

0y

0°S

0°9

0°¢L



i 16

9°¢

pg

‘U SA m\H@ IOTd "(p*z = ,7) 1™ so) :® 0 = anbdoj; Furquinysig
.Emumxm TedTI39uAG 103 asuodsay 9dURUOSSY OdTUCWIBYYNS 18pl) PIS/T 87°T°S 2InSty

U o131y Aduanbai.

8°¢

9°¢

Ve [ 0°¢ 8°1

9°'1

_

I

I

i [ _

WTIBTUTS Joindio) Tel1dig ¢

UOTIBTNMUWIS Iaindwo) Foreuy I

|
o
~

-
LS

!
<
-

|
=
0

|
o
oo

1 0°0T

/I_Q Jusuodiio) OTUCULLE| PIS /T FO apng TTduny

-l 0er~

0°v1



117

: ‘uSA By j01g (07 = ,z2) I sop ;™ 3 = dnbio], Burqanisig
wo3sAS TeOLI3SENKS 103 Isuodsay IDUBUOS3Y DTUOULIEYQNS 19pIQ pIg/T 6Z°T1°S 2and1g

U ort

1w Aduanbaig

9°¢ bL ¢ 0'¢ g'¢” 9°¢ vz 7 0'¢ 81 9°'T
i [ i 1 _ [ _ I [
3A~
A=
FUoT3eTNHTS J93ndwo) Te3IdTg + —
uoctieTNUTS xaindwo) Hoieuy *
! | | _ | ] | | |

0°¢-

1°zZ-

°Z-

£°Z-

~t
™~
1

ul
(o]
I

9z

L'~

Tdury

I

J OTUQLIEY JO apnl

Ib usuoduo



118

’ (0'7 = §) am sop | = snbioy BUTQIMISIQ
(91 =U ‘g ='Q) Weisds TedTIrI5uMAS 103 asuodsay
9DUBUOSSY DSTUOULIRY(NS 18pI) plg/T “anding isindwo) dorewy (¢ T°§ oandtyg

Co

s23s/ 3

o

¢ . ™ 0D I




~

Z0=3004us e

z . [ ]
iecise it 5 i
(ovdcues u i et
00 ik -l
09 IY sawet
e L4 maiban e
a0 -stinery
ac 180 =us g "¢
3% 18210 ,00%¢
0o ’}-n"lﬁd:‘n
oo
o9
0o
T
13
0e
15
10~
lo=-ac
€6 -3 -
1D=36av0*y~

AtLLl*s~

o=
28 ALTo6| -

-

Lol L T
auncasanno

M Afnaec |
2] dugwhct

Jivensy
WBio®

3

0% mehitt

I8 e
fou

R Y R

10=pudaarra
10-4Fkdyrin
10=pbulosg -
0= Ivwpd i~
0= 95  wa
O =dC06Z %=

Gu MEiIG*)
Q0 Jvedq=
00 Muvs®l

Q0 MIW =
A0 teelitla-
Q0 lapcitia
0% Wienci-
00 Siwdw
B8R 33471
8L bt
1

‘El'l

o] i, LA B4
tO-aid*y 1= ltil\"
U=dal0aty 10 lbog*

'S
1r

P

"
1A -g0wdey

M S0 [ 0 .

Pl ARaY

At L L T 10 T SR I NP SN s

[N
@

L I N LT L A
L ILO 3L L ILOI000C00LALOOCCAUD~IrO0o0O0r A oA 3CORBCDONG

K ITTEY
EYLEN
Dl Ty}
YL RS

AN NTaT AR e wNAR

SCILTCACA I I BOIL AP AL EN

AR AR N N L e s

Q22 LOCYE LG 2D

ROAGGE 3,

kAl A AR AN ey

o~

0, n =1.6)

0

1
2.

1/3rd Order Subharmonic Resonance

1 System (0O
T Cos 'wt (S.=

tal Computer CSMP Output.

igi

Response for Symmetrica

Disturbing Torque

Figure 5.1.31 D



‘ N
o

S w |
. / (0°z = ,Z) ™ so) ,m ) = anbro] Burqamisiqg
(72 =u ‘g = 'Q) wesSAg TEOTIIoUmAS

. 103 9suodsay 9DURUOSSY DTUOCULIBYGNSG 1opiQ pig/T Indang Jteindwo) Soreuy ZE°T°§ 2Indrg
3 -
Q
14-
1M s0) M D).




1
og N&\iﬁ'.
o8 Jolilce
00 A0L00°9

00 L&dw [
10=3v 108+ L
00 A w¥¥a"1 -
00 1909 v

o AteI~t=-
to 20401°1-
0o Heeara-
40 ol u-
00 M lI=9-

Al rrerrL L RN

00 AQles~6-
Q00 W0RL*L-
00 MYOL*H-
10 ¥oeo~T=
10 Fvivl=i-
10 340CI*1-
(0 31061~

10 J0C¥T=1t
10 avletit=1
19 FCwagr=y
00 JE9vv“s
00 JC009T4
00 alvices

afeSL T
39 "'0“' 1

B¥EL
00 iuou:'n-

D
o0oR0o

oocQ
Y1

e i R
- —

———

00 3lowe (=

L
Q0 MBLatt

Q0 ILMC'T
00 F10lw*1
10=20C 19°9
0= eag T~
10=34 900" 8-
0 LoLL"t=

00 JoiTE=f-
10 %01
00 ALLQO
00 JIEOVL*w—
Q08 AZWOR e
Q0 0449w~
00 v
S0 Fvin
00 WCLiP"C-
09 Jﬁlﬂt‘t-

00 Jojwue®l
00 aHaLL*Yy
D0 AowlTr
90 MECE"T
Q0 HMCI&*Z
6o Jtowk-(

00 J29MstE~

40 0 Tew-1t
I¢ Wlaw=1
W oa

30 BOCVU'I
I0 WIve 1
40 d0lwe*l
20 MHowe~t
&0 Jacw=i
To Japgecl
Z0 04w
20 F09Ce* 1
£0 Z)uCe"y
I0 MvCet1
&0 JOCCY"t
T0 FOZEw*!
%0 FDICw"1t

5.1.33 D

igital Computer CSMP Output. 1/3rd Order Subharmonic Resonance Response
0, n= 2

igure

)

for Symmetrical System (©)

121

.0}

-4
2

C w?® Cos wt (Z' =

-

Disturbing Torque

]
e



\\l!.l/a
. . q .
(@7 = S) I s0) | = enbioj, Burqinisig -uorioy
Jo siausuodiio) ulel JO saNTBA TBOTIS100Y] .0} umiloadg MUBUOSSY  pe [*g INITy
tul R : U oriey Aousnbaay
o 0 9°¢ Z'¢ 0'¢ 8¢ 'z 0°2Z 9°T 'L 0T 870 b0

I _ | I { 1N ' _ |

JUBUCSIY oA IAN-
JTUCUNBURIITN I8PI0 PIg “D

IRUEBUOSDY
| DTuoBdERYQNS
I2pI0 NIS/T

£ ~O DA~

I J

O

o
9pM3TTdiy TBUOTSUSUT( UON

<
—

S



123

Shaker Pin

Displacement

Acceleration

Waveform at

Point 'P!

Figure 5.2.1 -Acceleration Waveform Display
f=29.6 Hz, p = 26.0 Hz,

Shaker rPin

Displacement

b -
dcceleration

'.Javefdm at

Point '2°

Figure 5.2.2 Acceleration Waveform Display
f=13.8 Hz, p = 26.0 Hz,

_T]:O-SS, S.ﬂ 2'0 )
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Figure 5.2.3 Acceleration Waveform Display
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Figure 5.2.4 Acceleration Waveform Display
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APPENDIX I

ANALYTICAL SOLUTION DEVELOPMENT

1.1 SYSTEM RESPONSE TO A DISTURBING TORQUE OF TYPE

T Cos wt

-

General solutions for the asymmetrical case are derived
here. These can be modified for the special case of a sym-
metrical system by omitting @1 from the solution.

'I.1.1 HARMONIC RESONANCE:

Rewriting equations (3.1.A.1) through (3.1.A.3) in the

following form:

Ej(8) = J8 + K8 - T - T Cos wt =.0
EZ(B) = Jo - T0 - T Cos wt =0

- e U _
E.(8) = Jo + K[8 - { -(20,+81)3] ~ T™T Gos wt = 0

(I.1.1.1)
The simplest form of the solution, which can be assumed
in this case is: ‘
6 =M + Q, Cos wt (I.1.1.2)
Substituting (I.1.1.2) for the approximate value of the dis-
placement (EJ‘in (I.l.l.l); The resulting equation is defined as
E(g), in order to simplify the notation. Applying the Ritz

averaging method, the following equations are obtained:

2T

/' OE(8) d(wt) = 0
0 .
27 -~
S E(®) Cos wt d(wt) = 0 (I.1.1.3)

¢]
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In equation (I.1.1.3) E(8) is represented by El(e) between
limitg 0 to Ty EZ(B)'between Ty to T, and ES(B) between
T, and m. The El(e), Ez(e) and ES(E) are expressed as:

-

E;(8) = -Ju® Q, Cos Gt K(M+Q; Cos wt) - T_ - T Cos wt = 0

g = J.2 C
Ez( ) = -Jw Q1 os wt

§3(8)

Referring to figure 3.1.1.2, equation (I.l.1.3)cgn be

To - T Cos wt = 0

i}

2 :
-Jw Q1 Cos wt + K(M+Ql Cos wt) + K(290+81)

- To - T Cos wt = 0

written in complete form as:

T T

1 -
2. "E;(8)d(wt)+2S
D,O T

2 T

o

E,(8)d(ut)+2f
1 12
1 - R
El(e)Cos wt d(wt)+2f

T

Eg(a)d(u}t) =

T (I.1.1.4)

2/

Ez(e)Cos wt d(wt)
0

1
m ~
EE(B)COS wt d{wt) .

+ 2f

T2

[l

0
(I.1.1.5)

Integfatioh of expressions (I.1.1.4) and (I.1.1.5) yields two

non-linear algebraic equations. From equation (I.1.1.4):

Q,(Sint,-Sint,) - (2 + B)(m - ©,) + B, ™
M- 1272 %ﬂ s 1) 2 1 (1.1.1.6)
. 1 2 -
From equation (I.1.1.5) b
. .
2= g 2 2 .0 To SinZTl Sin2‘r2 2 o
TR G Y ) ()
1 Q

- 1
[
. . 2 = ¥ L1.1.7
(Slnrl-SlnTz) - (———J(2+61)Slnrz G% )

LA
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Therefore

o
From figure 3.17572

5 = -8, o at wt = T,
and . o = ~(260+81) at wt =T,

Applying these conditions to expression (I.1.4.2)

-81 =M + Ql Cos T

. Dividing throughout:by 6, and rewritiﬁg

) ‘ -
-31 =M + Qi Cos T,

»

-’ . "l —el

o 4
Similarly;

2

+

'-(zéo+el) =M+ Q Cos 1

Dividing by 8, throughout and rewriting:

-(2+§1) =M + af“COS T,

Therefore

(I.1.1.8)

(I.1.1.9)

147
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L
I.1.2 3RD ORDER ULTRAHARMONIC RESONANCE:

The simplest form of the solution, which can be used

in this case, consists of three terms, thus
B = M+ Q, Cos wt + Qg Cos 3ut (1.1.2.1)

Substituting (I.1.2.1) into (I.1.1:1) and redefining

E,(8), E,(8) and E;(6) as:

El(g) = -JQZ Ql Cos wt - 9Jmi Q:5 Cos 3wt + K(M'-'-Q1 Cos wt
+ Q3 Cos 3wt) - T, - T Cos wt = 0

EZ(E) - -Jgi\ql Cos wt - 9Ju’ Qg Cos 3wt - T - T Cos ut = 0
/

ESCE) S, Q, Cos uwt - 9.Ju? Qg Cos 3wt + K(M + Q Cos wt

+ Qg Cos 3ut) + K(28 +® - T, - T Cos wt = 0

1)
" Applying the Ritz averaging method and referring to figure

3.1.2.1, the following e&#ﬁtidns are obtained:

T ~ T, ~ : T -
2 f El(e) d(wt) + 2 J EZ(G) dlwt) + 2 f E3(8) d(wt) =0
: _ T

0 2

T1 (I.1.2.2)
~ ) o
2 7 El(e) Cos wt d(wt) + 2 f ‘EZ(B) Cos wt d(wt)
. T

- ~1
+ 2 f E3(e) Cos wt d{wt) = 0
T .
2 (I.1.2.3)
T ~ : _ T, -
and 2 J El(e) Cos 3wt d(wt) + 2 f Ez(e) Cos 3wt d(wt)
) _ . ) Ty -
+ 2 J BE(B) Cos 3wt d{wt) = 0
T
2

(I.1.2.4)
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Integration of expressions (I.1.2.2) to (1.1.2.4)
yields three non-linear algébraic equations.
From equation (I.1.2.2):

Q1(81n 1,-5Sin rl)+63 'g(Sln 3t,-5in 3T1) (2+61)(w 12)+8
(n+11 2)

A3

(I.1.2.5)

From equation (I.1l.2. 3)
[((B)m- 63{-1 (Sin 47y~ Sin 412)+ % (Sin 2t;-Sin ZTZ)}
-2M(Sin T,-8in 12)+2(2+§l)81n T,]

Ql i (m+t -T,)+ 1(Sin 2t,-Sin 2t,)-T7 2] ' ‘
[(rety-T)* 7 1 2)-m™

(I.1.2.6)
From equation (I.1.2.4):
n2 = (g n)(a—)[-I (Sin 411-Sln 4T2)+ 7 (Slf;"l"Sin 212)]
- N 3 L
s (3 ) [+ (Ty-T,)% L (Sin 67,-Sin 67.) 1+ (=2 y
) 27 F 1 2 YXES 3
3
(Sin 31,-Sin 312);(7%?)(%7)q2+§1)5in 31,
3
(1.1.2.7)

From figure 3.1.2.1

-~

g = -91 at wt = Tl

~

8

I

—(290+81) at wt = T,

Applying these conditions to expression (I.1.2.1)

—61‘= M+ Ql Cos Tyt Q3 Cos ifl

' Dividing throughout by 8  and rewriting

-8, = M+ 61 Cos 1q + 63 Cos 31y
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Therefore, x 7 .

- - - Q. Cos 37

[—2 _3 1 (I.1.2.8)
Q

-1

T1I= Cos

Similarly,

—(280+81) = M + Ql Cos T, * Q3 Cos 3T2

Dividing fhroughout by 8, and rewriting

¥

-(2+§l) =M+ 61 Cos't, + QS Cos.3r2

hence -~
-1 .72 - ?1 - M- Qg Cos 3t

= Cos 7] — 2
QG

] (I.1.2.9)

1.1.3 1/3RD ORDER SUBHARMONIC RESONANCE :

The simplest form of the solution, which can be used in’

this case is:

8 =M + Q1 Cos wt %‘Ql/s'Cos %E (1.1.3.1)

Substltutlng (I.1.3.1) into (I. l 1.1) and redeflnlng
E (e), E (e) and E (8) as:

~ 2
- _1.2 _ Juw wt
El(e) = -Juw .Q1 Cos wt ~5— Q1/3 Cos T ¢ K(M + Q1 Cos mt‘
t Lol
w -
+ Ql/S Cos 3—) - TO - T Cos wt =0
PO 2 J 2 wt -
E,(0) = -Ju Q1 Cos wt - g w Q1/3 Cos — - TO - T Cqs wt = 0
p 2 J 2 t E -
E<(8) = -Ju Q) Cos wt - 7w Qq /3 Cos %7 * K(M + Q; Cos wt

wt ' ' _
+ Q1/3 Cos 7Tt K(280+91) - T, - T Cos wt =0
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Applying the Ritz averaging method, and referring to

figure 3.1.3.1, the following eduations are obtained: -

T T

1 ~ 2 .~ 3w ~
2 .f El(e) d{wt) + 2 J EZ(B) d{wt) + 2 f Es(e).d(wt) =0
0 ' T T
1 2
(I.1.3.2)
Ty . T, .
2 J El(e)Cos wt d(wt) + 2 f Ez(e) Cos wt d(wt)
0 . T
3 ~
+ 2 f EE(B) Cos wt d(wt) =0 - (I.1.3.3)
T2
and - .
1 - wt 2 - wt
2 é El(s) Cos T d(wt) + 2 i EZ(S) Cos T d{wt)
1
3
+ 77 (8) Cos %© d(wt) = 0  (I.1.3.4)
T
2

Integration of expressions (I.1.3.2) to (I.1.3.4) yields
three non-linear algebraic equation. -

From equation (I1.1.3.2):

T T
Q) (Sin t,-Sin 1,)-3q; ,5(Sin -%-- Sin 33)-(2+€1)(3n-12)+3n§1

M- ) (3ﬂ+11—r2) .
' 51.1.3.5)
From eézz;ion (I.1.3.3):
_ 3 411 \ ) 412 3 ) ZTl . 212
[3TTS-"Q1/3{ T (Sln——z— - Sin '—3-—1*' Vi (Sln—s—- - SIHT)}
7. - - ZH(Sigirl-Sin 12) - 2(2+81) Sin 72] :
1 [3m FTyom T, f .%(Sin Zrl-Sin ZTZ) - 37 nz]
' (I.1.3.-6)
k\7 g



From equation (I.1.3.4)

41 4t

2 2

1/3

e &) (2 1§ in oE - sin %) + 3 (sin

) (2+8,) Sin 33

152

2T 2T
1. Sin 2 ]

—= —=

2T i

T

(I.1.3.7)

21
6 3 1 3 . 1 .
* P e 7 (mry) ¢+ 7 (Sin —b - sin —8))
N .
18, M .ot . T2 18
* () (6———) (Sin’y= - Sin %) - (Wq
1/3 1/3
From figure 3.1.3.1
g = -81 at wt = Tl
8 = -(280+61) at m& =T, .
Applying these conditions to expression (I.1.3.1)

T

~6) = M+ Ql Cos. Tt Q1/3 Cos ™

Dividing throughout by eo and rewriting

T
_ 1
. -8y = M+ Gl Cos Ty * 61/3 Cos =

Therefore,
~6; - W - Ql Cos T

Tl = .'SCos_l [ — 1]
Q/3
Similarly,
. ' _ T,
—(280+81) =M + Ql Cos T, ¥ 01/3 Cos T

Dividing throughout by 80 and rewriting

~(2+§1) =M + 61 Cos T, + 61/3 Cos ==

(I.1.3.8)
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T, = 3Cos—1[ . ] (I.1.3.9)

I.2 SYSTEM RESPONSE TO A DISTURBING TORQUE OF TYPE C wz Cos ut

I.2.1 HARMONIC RESONANCE:

Rewriting equations (3.1.B.1) through (3.1.B.3) in the follow-
ing form:

E;(8) = 8 + p° (8-0_) - 2 w? Cos wt = 0

EZ(G) ] le.mz Cos wt = 0

E(6) [6-(-8.)] - Z w® Cos wt = 0 (I.2.1.1)

The simplest form of the solution, which can be assumed

in this case is:

B = Q1 Cos wt (I.2.1.2)

- Expression (I.Z.i.Z) for the approximate value of the
displacement 5 is substituted for 8 in expression (I.2.1.1).
The resulting equa;ion is defined hereby és E(E). Applying
the Ritz averaging method, the following equations are obtained:
2T~
g&, E(8) Cos wt. d(wt) = 0 (I.2.1.3)
.

Because the characteristic is symmetrical with respect to
the origin, the upper limit in equation (I 2.1.3) may be changed
to v/2. 1In equation (I.2.1. 3, E(S) i1s represented by E (B)
between limits 0 to Ty E (8) between T and 1/2 with-

B, = Q1 Cos Tye The El(e) and EZ(B) are represented as:

o}
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El(e) = -wz Q1 Cos wt + pz(Q1 Cos wt—eo) - 7 mz Cos wt =0

Ez(e) = -mz Q1 Cos wt - Z m2 Cos wt = 0

Thus, referring to figure 3.2.1.2, equation (I.2,1.3) may

be written in the more complete form:
1 - . m/2 .
4r El(e) Cos wt d(wt) + 4f EZQG) Cos wt d(wt) =0
! T
1

T

(I.2.1.4)

Integration of expression (I.2.1.4) yields:

2 = Z 2 . . _
(-n" Q - 5; n“yw + 61(211+51n 2t4) - 48in 1, = 0
or 5 (2 .
4Sin 1, - Q. (4T +Sin 2t.)
n® = 1 1 1 1 (I.2.1.5)
(-Ql - 29
From figure 3.2.1.2
8 =9 at wt = T
o *1
Applying this condition to expression (I.2.1.2) *X
I~

80 = Q1 Fos le

- Dividing throughout by 6, and rewriting 1 =,61 Cos t

hence,

t, = Cos™h [ (I.2.1.6)
Q
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I.2.2 3RD ORDER ULTRAHARMONIC RESONANCE : ‘\*a&)

The simplest form of the solution, which can be used

in this case, consists of two terms, thus
B = Ql Cos wt + Q3 Gos 3wt (I.2,2.1)

Applying the Ritz averaging method, the following equations
are obtained:
2T o~
. S E(8) Cos wt d(wt)
0

(I.2.2.2)
2T

f E(8) Cos 3wt d(wt) = 0
0

In equation (I.Z.2. 2), E(e) 1s represented by E (8) between
limits 0 to Ty E (8) between T, to T, and E (6) between
To to ., i

The E (8) E (9) and E (6) are expressed as:

El(e) = Ql Cos mt - 9w Q3 Cos 3wt +p (Ql Cos wt +
Q3 Cos 3wt - 8_) - Z w? Cos wt = 0

EZ(B)= -wz'Ql Cos wt - sz Q3 Cos 3wt - Z w2 Cos wt = 0

~ 2 2 )
E5(8) = -w® Q) Cos wt - 90® Q; Cos 3ut +p2LQ1 Cos wt +
Q3 Cos 3wt + 80) - 7 wz Cos wt = 0

Referring to figure 3.2.2.1, equafions (1.2.2.2) can

be written in the complete form as:

'l'l - Tz -
2 s El(e) Cos wt d(wt) + 2 f Ez(e) Cos wt d(wt)

ol ' r T

+ 2 f 53(8) Cos wt d(wt) = 0 (I.2.2.3)
T
2
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and- Ty . . .
27 Eq(8) Cos 3wt d(wt) + 2 / % E,(8) Cos 3wt d(wt)
(e} T .
1
. ) .
* 2/ E;(8) Cos 3wt d(wt) = 0 (I.2.2.4)
T
2

Integration of expressions (I.2.2.3) and (I.2.2.4)

yields:

2 - Z 2 . . !
(-n Qq- E; nyw +Ql(2rl+51n 211) + 63(§ln 2T1+1/2

Sin 47 - 45in 1, = 0 (I.2.2.5)

1) 1
and, -

97 nz 63 + Ql(Sin 211+ % Sin 411) + 63(2T1+.% Sin 611)

- 3 Sin 31, = 0 (1.2.2.6)

From expression (I1.2.2.5):

K

. . 1 . ' 2
[4Sin 11—63E51n 2t + 7 Sin 4ti) + 2" 17
- . 2

} (2T1+Sln Zrl-ﬂ n°)

(I.2.2.7)

From expression (I.2.2.6):

2 Q-l . 1 .. 1 1 ..
ne = (9TT 2 } (Sin 2r1+ > §1n 411).+ (g;)(2T1+ ¥ Sin 611)
3
- % (—%) sin 37, (1.2.2.8)
9w Q3
From figufe 3.2.2.1
. . L
8 = 80 at wt = Tl
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. between limits 0 to Tys 52(9) between t
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Applying this condition to expression (I1.2.2.1)

B = Q1 Cos T, * Q3 Cos 3t

a! 1

(I1.2.2.9)}

Dividing throughout by'eO and rewriting

1= Gl Cos 7, =+ 63 Cos 37,

hence
’ .1 1-T5 Cos 3¢

= Cos [
@l q

l] -

I.2.3 1/3RD ORDER SUBHARMONIC RESONANCE:

The simplest form of the solution, which can be used in

this case, consists of two terms, thus

wt

8 = Q Cos wt + Q; /5 Cos 5 (1.2.3.1)

Applying the Ritz averaging method, the following equa-
EK

tions are obtained:

6 -
g E(8) Cos wt d(wt) = 0
an-,d s
) 6m  ~ wt
e / E(8) Cos %% d(uwt) = 0 (1.2.3.2)
o]

In equation (I.2.3.2), El(e) is represented by El(e)

to 1, and ES(B)

1 2

between T, to 3m. *®

The El(e), Ez(e) and E3(e) are expressed as:
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Eltgﬂ = -u; Ql Cos wt gi Ql/3 Cos %; +P2(Q1 Cos wt
+ Qq 5Cos -9 -2 w? Cos wt = 0
Ez(g) = -y Q1 Cos wt gi Q1/3 Cos %E - Z w Cos wt =0
53(5) = -t Qq Cos wt %i Ql/3 Cos %E +P2(Q1 Cos wt-
+ Ql/S Cos %E + 80).— Z w? Cos wt = 0

Referring to figure 3,2.3.1, equations (
be written as:

T

1 -
2 f El(e) Cos wt d(wt) + 2 1
) 19

T2

EZ(BJ Co
. Sw_ .
+ 2 f ES(B)COS wt d(wt)
T
2

0

T

f

T
+ 2 f
T1

1 2

wt

2 3

= N t
E,(8)Cos E,(8) Cos %— d(

53(5) Cos %EJdet) 0

Integration of expressions (i.2.3.3) and (I.2

(-nz 51 - %— nz) %1 + Gl(rl + %-S;g 2t,)
8]
2T
N % Sin -gl) - 28in 1 = 0
and,
4t 27 2
3 1 3 .. 1 3T .n
Qlgsin o=+ 38in -] - J0 (9 Q3

] 2T1 0Ty
Sin —3—) = 6811’13-—3 0

1.2.3.2) can now

s wt d(wt)

(I.2.3.3)

3
wt) + 2 1.
T2

(1.2.3.4)

.3.4) fFlelds:

411

_ 3
" Q30 778in —=

(I.2.3.5)

‘ 3
Q5 7

(1.2.3.6)
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From expression (I.2.3.5)

2 _- 3 4'['1 2'['1
. , ) . .
3. - 4Sin Tyt Z' 3w n Ql/S( = Sin —— * 33in —r)
1 . -2
(2Tl + 8in 217 - 37 n°)
(I.2.3.7)
and from expression (I.2.3.6)
Qi 6y, 3 e Y1 3 2Ty 6 3
n2 _ (_l)(EJL T Sin —g= t z Sin —3—) + (%D(Tl-+ 7 Sin
Q3
C 2T T
. 1) - (%ﬁ . :_l_) Sin 3l (I.2.3.8)
/s
From figure (3,2.3.1)
B =8 at wt = T

o : 1
Applying this condition to expression (I.2.3.1):

- T
= 1

Dividing. throughout by eo and rewriting

hence,
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" APPENDIX II

* ITERATIVE PROCEﬁURE FOR THE. SOLUTION OF SIMULTANEOUS EQUATIONS:

To .illustrate the iterative procedure, simultaneous

equations(I.1.1.6), (I.1.1.7), (I.1.1.8) and (I.1.1.9) will

be solved using this technique. ‘
-6, - M
Ty = Cos™H[ =] (1.1.1.8
Q |
]
1. "2 - Fl - M 4
T, = Cos [ ] (I1.1.1.9)
: Q) -
Q,(Sin 1, - Sin T,)} - (2 *+ ) (w- 1,) + 6, ™
- 1 Z L L 2 L (1.1.1.6)
1 (m +' 1y - ).
2 —[S;) + (3) [+ + 1/2(t -T,)} + 1/4(Sin 21, - $in 21,)]
" g T 7T 1772 1 2
1

c A &y (sinty - osinty) - (=2 (2 + T sin T,
1 . LIRS | '

2

(I.1.1.7)

To initiate iteration, starting values are chosen for
M, T and T,. New values of T, and T, are calculated by sub-
stituting the prgviouély assumed stafting values. Again, these
new calculated valﬁes are taken as starting values and next new
values are calculated. This procedure is continued until there
is a sufficient convergence. The conditions for convergence

are taken as --

: Ti(I) - TI(I-l) < € € = 0.001 (error function)
and
TZ(I) - TZ(I-I) < e



b
T s

T\v/ The iterated values of .1, and 1, are substituted into

the expression far H(I.l.l;s). The calculated value of M-is

substituted into (1.1:1.7) to calculate nz.

¥

The iterated values of T and T, and calculated value

of M become starting values for the iterations of T, and T,.

The new iterated values of T and T, are used to calculate

new values of M and nz.

This procedure is continued until there is a sufficient

. \ a
convergence for M and_nz. The te of convergence is defined

as -- ‘ P .
M(1) - M(I-1) < ¢ e = 0.001 (error function)
or  nf(1) - nf(I-1) <« |

The computer prognfm for the solution of the simul-

N .
. taneous equations u§?ng tpe iterative Pprocedure is given on

page 162, . e
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APPENDTIX III

III.1 RELATIONSHIP BETWEEN SHAKER PIN MOTION AND INPUT TORQUEK- .

TO THE SHAFT: L]

[

i y

X R St
¢ X =718

Y Cos wt ~|

¢
=

Equation of motion is given by:

IM = J6 ~
Jo + Ko + K(x=y) T = 0 Where K = shaft torsional
. stiffness
Jé + (K+Kr?)o = K y r K = spring constant
Jo + K'0 = KY r Cos ut ~K' = K+K r?
8 + p* e = §'Y r Cos wt p? = %L
o + p2 o = § Cos wt T=RKYr
Since
p? = §L= (K +JK r) ‘
or K+ K r? = Jp? (1)

For the vibrating arm and the counter weight
J = 0.179 1b in sec?
For the shaft .
- n-d“G ) s 1"
K=z - 4= 5/8
K = 5617.60 1b in/rad




——

/

From the experiment p = 29.3 c/s

From equation (1) --

K + Kr?2 = Jp?

164

= -
5617.60 + K(3.5)2 = 0.179 (21 x 29.3)°

K

+ Since

T =

And © _
§ =

Therefore

Moo o g
i}

34.5 1b/in
K Yr
T
Reo
Kyr
&
o
S ¥'80‘inches‘
K r
0.175" ak-peak

~105"
.070"

peak-peak
peak-peak

. 056" peak-peak

=

K = 5617.60, ©_ = 0.0015

K = 34.5

f?i>§

R R R

il

It
[ &}
o
-

g |

It
(a8
o

T
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III.2. CALCULATION OF THE NON- DIMENSIONAL AMPLITUDES OF MOTION.

/
Let Gl’ G2' G & G be the amplltudes of the 1st,
2nd, 3rd and 4th harmonlc components of acceleratlon at
a certain forc1ng frequency,

Since a = 8, and 8 = Q1 Cos wt

o 2
Gl = -w Ql Cos wt

A _ 2 |
- o IGll = w® Q IT11.2.1
and G2 = - 40 Q2 Cos 2wt, since 8§ = Q2 Cos 2wt
éd . | ‘
2
or |Gzl = 4w” Q, \\\“_'//
. a2 : .
Similarly .|G3] = %w® Qg
2
and |G4| =16w” Q, .
’ Gy - 2
From III.2.1. Q1 = ;7
-y X 386.4
= i inches where n, = magnitude
{(2n/¢t)

of acceleration in 'g' and t = periodic time.

EEERY

' 1 n1 x 386.4
Ql(Angular) ='(F)' 7 rad,
(2n/t)
BO (clearance) "= 0,0015 inches
£ B8
8  (Angular = ?3 rad. &
. "o clearance) 1
- - o Q ' n, x 386.4 8
. = 1 1 1 0
~- . Q, = - = () /[ (==) )
. 1 @; T (ZTr/t)2 LS
T n. x 386.4
= (L L , x Lo 111.2.2



S

Similarly

and

Na» Mgy Ny

166 °

n, x 386.4

q, = 2 — X 111.2.3

‘ 4(2n/t) 0

| r. n, x 386.4-

U = (D) 5 — X 5 111.2.4

g(2m/t) .0

r n, x 386.4

- 1
q, - (?l) 4 — X 5 I11.2.5

16 (2w/t): 0

are the magnitudes of acceleration in 'g's.

P
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APPENDIX IV
\ ' ‘ A
LIMITING CONDITIONS FOR THE GENERATION OF THE

HIGHER ORDER RESONANCES IN SYMMETRICAL SYSTEM

For a certain value of a forcing amplitude S, after

passing through the harmonic resonance, the amplitude of
motion decreases with the increase‘of n. If the-~first
Subharmonic resonance is not initiated before the tooth
loses contact with thé restrainer walls, the restoring
force and the system become linear and‘subhé¥monic reson-
ances cannot be generated. The value of n at which the

tooth loses contact is caitled the cut-off frequency, which

can be used as a critical value for defining the limit offﬁhe
subharmonic generation capacity. Hence, the term "cut-off"

frequency means the frequency above which a forcing function
of a given amplitude.cannot excite -the subharmonic resonance.
PP
‘'The relationships between the forcing amplitude § and
the corresponding cut off.frédﬁentf n for the two-typés of

disturbing torques are derived bii;r.

a. Disturbing torque = T Cos wt

The equation of motion within the clearance is given
by

-

N Joe = T Cos wt

L1 T ’
OR | 8 = 3 Cos uf (IV.1)

Substituting the approximation for displacement, which is valid

within the range of the harmonic resonance,

B: Ql Cos wt
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into (1V.1) we have ‘

/> ) - w? Q, Cos wt = % Cos wt
T
or . ]Qll = 7
: Juw i
Q
Since Ql = gl and n=22
0 5,
T
hence - IQll =
Jpn 8
. 0
But
T = L and p2'= X
Kéo J
TJ 8
therefore Q[ = =
. T 1 -JKBOnZ n?

The condition for—loss of tooth contact and hence

for the limiting{aqgular amplitude below which non-1linear

conditions do nd; e%ist is given by [61| = 1. Therefore, -
{nz . T

or’ . _ .
W“E J

i.e. "cut-off" frequency. '

 Thus if the conditions fOr_the initiation of the sub-

harmonic resonance at a spebific value of S occur at a fre- '///

quency above n = JE?, then this resonance wil} not take

place. The graph of § vs "cut off" n is shown in figure

5.1.27,
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b. Disturbing torque = C mz Cos wt .

The equation of motion.within the clearance is given

by !

Jo = C mz Cos wt
or 8 = Z w® Cos wt (1V.2)
where Z = % '

L3

Assuming the simpest solution. which is valid near

-~

harmonic 'resonance 6 = Q1 Cos wt and substituting inte (IV.2)

yields: 3 g
: 2 _ 2
s -t Qy Cos wt =.Z w” Cos wt
or '
o, =z
or
g1 = 2

~
-

The limiting value of Z' for the "cut-off" frequency
below which non-linear conditions do not exist, is.given by:
' A Y

*

- f .
Therefore it is only possible to excite the subharmonic

resonance at values Z' > 1,
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APPENDIX V

EXPERIMENTAL ERROR ANALYSIS

The textbook (36) and reference (43) & (86) describe
a method to estimate the uncertaintyﬁin°the calculated
result on the bagis of the uncertainties in the primary
measuréménts. Thé result R is given as a function of the

independent variables X1, X5, ...,‘xn. Thus )

R = R(xl, Xys Xgs ey xn)

3

Let Wr be the uncertainty in the result and Wl, WZ, - wn
be the uncertainkies in the independent variables. If the
uncertainties in the measurement of independent variables
are all given with the same odds, then the uncertainty in
the result having these odds is given as

' 2 | 2 1/2
(%%E . WZ) +

2
_ 3R
Wr = [(gEI . Wl)

Estimation of Errors in Measurements of the Amplitude of Motion:

From equation III.Z.2

Ql ) (z%) . n} b 382:4 .‘%_ , . 7
(2m1/t) 0
= £(r), T, N, t, 8)
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Using equation V.1 ' 7

o
- aq 3qQ 3q
_ 1 2 1 2 1 2
WR = [(ﬁ . WI‘l) + Cgr— . WI‘] + E_n—l . Wnl)
N ?3q 3q 1/2
1 Yo s 2 1 2 ,
- folgg e WE)T (aeo We,)"]

where er, Wr, Wnl, Wt -and weo dre uncertainties in measure-
ments of radial distanceS T, & r, acceleration compbnents,
time period t and the gap clearanqe 80. The uncertainties
er and Wr are'of the order of * 0.1%. The uncertainty WT
is of the order = O.i%, since the period was meésured in
milli seconds employing a digital counter. The‘uncertainty
WBO is of the order of + 0.1%.

. Hence neglecting er, Wr, Wt and WSO in the above re-

lationship yields

W =(3Q1 Wn.)
R ™ 9wy - "M
or e G 3B ey
r (2w/t) 0

-

L
The &bove exﬁressioﬁ V.2 shows that uncertainties of
measurements of the amplitudes of motion is proportional
to the uncertainties involved in acceleration measurements.
When using the real time Spectrum analyser, the amplitude
of the acceleration component can be read within +1 dB or
12.23% a;cura&y, The' error of the accelerometer and the
associated instrumentation is well within 3%. Hence the

r/,.*-~1smcv.=:1"tr=1in1:}r of the calculated values of the amplitude of

motion are within 15.23%.
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&

,
5_,//g;milafly for highér harmonics Qz» Qs Q) etc.

From equation III.2.3

62 = f;l) . ZE?%%%;% x-%; | ..V.3
Ffom equation V.2 _ //\\
. | T B R " |
WR = (?l) Zf§%%i§7 . %; an
Sfmilarly uncertainty invglved in Q3 is given by
"1 386.4 1
o7 & 9(2n/t)s %% Wn‘3 v

From the above expressions it.is evident that uncertainties -
involved in higher order amplitudes of motion are 1/4, 1/9
§ 1/16 of the uncertainties of measurements of fundamental

r component ,
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