University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

2001

Inner product computational architectures using
the double base number system.

Stanley Jonathan. Eskritt
University of Windsor

Follow this and additional works at: http://scholaruwindsor.ca/etd

Recommended Citation

Eskritt, Stanley Jonathan., "Inner product computational architectures using the double base number system." (2001). Electronic Theses
and Dissertations. Paper 2453.

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F2453&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2453&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2453&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/2453?utm_source=scholar.uwindsor.ca%2Fetd%2F2453&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand cormner and continuing
from left to right in equal sections with smali overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest information and Learning
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

®

UMI

“Inner Product Computational Architectures Using the

Double Base Number System”

by

“Stanley Jonathan Eskritt”

A Thesis
Submitted to the Faculty of Graduate Studies and Research through the
Department of Electrical and Computer Engineering in partial fulfillment
of the requirements for the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada

2001

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence

Our file Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la these ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-62212-6

i+l

Canadi

© 2001 **Stanlev Jonathan Eskritt”

All Rights Reserved. No part of this document may be
reproduced, stored or otherwise retained in a retrieval
system or transmitted in any form. on any medium or by any

means without the prior written permission of the author.

To my parents for their encouragement, and to Daniella for her support.

List of Symbols

m mantissa

r base or radix

SNR Signal to Noise Ratio

14)) Look-up table operator for DBNS addition

W Look-up table operator for DBNS subtraction
t DBNS ternary exponent

b DBNS binary exponent

vi

ALU
CMOS
CNN
dB
DBNS
DFT
DSP
FIR
HDL
c

IIR
LNS
MAC
MOSFET
PE
ROM
RAM
SFG
SNR
VLSI
VHDL
VHSIC

List of Abbreviations

Arithmetic Logic Unit

Complementary Metal-Oxide Semiconductor
Cellular Neural Network

Decibels

Double Base Number System

Discrere Fourier Transform

Digital Signal Processing

Finite Impulse Response

Hardware Description Language
Integrated Circuit

Infinite Impulse Response

Logarithmic Number System

Multiply ACcumulate

Metal-Oxide Semiconductor Field Effect Transistor
Processing Elements

Read Only Memory

Random Access Memory

Signal Flow Graph

Signal to Noise Ratio

Very Large Scale Integration

VHSIC Hardware Description Language
Very High Speed Integrated Circuits

vii

Acknowledgments

There are several people who deserve my sincere thanks for their generous contributions
to this project.

I'would first like to thank my supervisor Dr. G. A. Jullien for his guidance, advice and for
bringing this challenging project to my attention. I am grateful to Gennum Corp. for
providing funding. [would also like to thank my committee members Dr. Vassil Dimitrov.
Dr. Alioune Ngom.

[would also like to recognize the following individuals and corporations for their
contributions: Paul Horbal for his time and comments on the first drafts of this thesis.
CMC for providing and supporting the design software and computing hardware which
made this project possible. Micronet R&D for providing financial and networking support.
Roberto Muscedere for his aid with HDLs, Cadence tools and helping in producing the
hybrid DBNS microchip.

Abstract

Digital signal processing (DSP) permeates many of the products we see around us today.
DSP systems manipulate signals as sequences of numbers, and require massive arithmetic
computations to perform algorithmic processing such as filtering. Traditionally these
systems are designed using the binary number system to perform the computations. This
thesis presents an exploration into the construction of finite impulse response (FIR) filters
using a recently introduced number system. The number system uses two orthogonal bases
and has been referred to in literature as the Double-Base Number System (DBNS). We use
an index calculus implementation of the DBNS to take advantage of the logarithmic-like

properties of the associated arithmetic.

Using the index calculus form of the Double Base Number System (DBNS), instead of the
classical binary representation, a number of advantages are gained. The logarithmic-like
properties of the index calculus DBNS allow for reduced complexity multiplication and
division. expensive operations using binary arithmetic; the orthogonal nature of the index
computations and the multi-digit extensions of the representation reduce the complexity of
computations compare to the Logarithmic Number System. Finally, the non-linear nature
of the representation allows for a natural mapping for some special systems, such as

hearing devices, that require non-linear compression operations.

This thesis investigates a recently disclosed architecture for inner product computations in
the DBNS. This architecture is expanded from the initial single-digit DBNS form to a
hybrid (mix of 1-digit and 2-digit forms) and finally a full 2-digit form, and we show the
efficiencies obtained in using the full 2-digit form. We target the implementation of large
tap length Finite Impulse Response (FIR) filters, and we examine both the problem of

finite precision index coefficient design and the design and fabrication of a systolic

Abstract

architecture using DBNS processors. In particular we introduce a mapping scheme that
allows the output of full-precision filter design packages to be easily converted to finite
precision DBNS indices with close to optimum results, and we fabricate and successfully
test a 15-tap filter design using a 0.35u CMOS process. We finally examine the use of
asymmetrical dynamic ranges on the 2 orthogonal indices in order to reduce the area and

power of the filter architecture with minimal reduction in precision.

Publications and Presentations

The following refereed conference publications and invited talks were generated from the

work presented in this thesis.

[1] V.S.Dimitrov. J.Eskritt. L.Imbert. G.A.Jullien and W.C.Miller. *The use of the multi-

dimensional logarithmic number system in DSP applications.” 15" [EEE Symposium
on Computer Arithmetic, Vail, Colorado. June 2001. Accepted for presentation.

(2] J. Eskritt. “2-digit. 2-Dimensional Logarithms for Efficient FIR Filter Architectures™,
invited presentation at the Micronet Annual Workshop. April 2001 (accepted for pre-
sentation).

(3] J. Eskritt. “Hybrid and 2-digit DBNS Filter Architectures™, invited presentation, Gen-
num Corporation. February 2001.

[4] J. Eskritt. “Inner Product Computional Architectures Using the Double Base Number
Svstem™, VLSI Research Group. University of Windsor, December 2000.

[5] J. Eskritt. R. Muscedere, G.A. Jullien, V.S. Dimitrov and W.C. Miller. “A 2-Digit
DBNS Filter Architecture.” Proceedings of the 2000 [EEE Workshop on Signal Pro-
cessing Systems (SiPS 2000), Lafayette. LA, October. Pages 447-456.

[6] J. Eskritt, ““/nner Product DBNS Computation™, VLSI Research Group, University of
Windsor. September 2000.

[7] J. Eskritt. “DBNS Research for the Micronet Project S.1.WII”. invited presentation,
Gennum Corporation, March 2000.

Table of Contents

Chapter 1

1.1
1.2

~

1.3
1.4
1.5

Chapter 2

(SO (SIS
LI —

Chapter 3

W W
=

Introduction... 1
INtroductionot l
VLSI TeChNOIO@Y ..ot 3
Double Base NUmber SYStemMcocevieireiiieeiieeeeceie et 5
ThesisS ObJECHIVES c.eenneiiie ittt e s 6
Thesis Organizationcocoocciveieeeree e e eeees 6

The Double Base Number System 8
[NETOAUCTION ...ttt e e e nee s e e eeeeeennnes 8
REPreSentation.coiiiiieeeiieeee et 8
Index Calculus .o 13
2.3.1 Multiplication and DiIVISION ...cccceeveeeeeiieeiieiiieeeeee e 13
2.3.2 Addition and Subtractionccccceceiiiieeiiieeeieeeeee e 14
2.3.3 Multi-digit DBNS Arithmeticc.coccoerieiieeriieiececieeeeeeeee 16
ASymmetric EXPONENTS......ccciiiiiiiiiiinieieeereereeae e e seeeeaeeeanvaeeees 16
Logarithmic Number SysStem.......cccooiiemmiiiiiieiiicececeecee e 18
Different Odd BasesS....c.ccuiveemeirieeeeeeiecciee et ennen 20
Conversion Between Binary and DBNScoccooiiiiieiieeeceeeeveee 21
2.7.1 Binary to DBNS Conversionccccceooeeeeeiveeeeieeeeeeeneereeeeenn. 22
2.7.2 DBNS to Binary conversion [9]ccccooceciiiieiieiiieeereeenannn 22
SUMMATY ..ttt ettt et e e e e e e eenes 23

DBNS Finite Precision FIR Filter Design 24
INITOAUCHION ...t eevr e e e e e e e eeees 24
Coefficient Design Techniquesccoccoiveiiiciriiniiecece e 24
3.2.1 Genetic AIZOMtRIMS ..cocooiiiiiiiinieeeee et 25
3.2.2 Integer Programmingcccccccocoeerimmrensinernieneeceneeseeseeeeneene 28

xii

University of Windsor

(5}
W

Chapter 4

4.1
4.2

43
4.4
4.5
4.6
4.7

Chapter 5

W W n
LI N —

5.5
5.6
5.7

Chapter 6

o o oy
U N —

REFERENCES

Appendix A

Al
A2
A3

3.2.3 DIrect Mappingceeeecveemeeeeeeeeeeeeeeeeeeereetreeneeeeeeeeateseseeneeesens 29
SUMIMATY 1.ttt e e et e e e e s e e e e r e ee s e st eaeesnes e snnen 37
DBNS FIR Filter Architectures 38
INETOAUCTION ...ttt cese e ee e et s e e s enmenes 38
Y100) F ol o ¢ | - T U USRS 38
421 PIPEIMING oot e e e e e e e e e e 40
Basic Processing Element.........ocoeviirieeiiiiiiieriiccenee et 41
Hybrid 2 digit DBNS Architectureccocceeeeeoiiiineieecceneee e 43
2 Digit DBNS ArchiteCture.........cocoveeiemiiiciin et 44
4.5.1 Two Digit Channel Reductionc.ccccoccccimmmiiiiciiianrieneeneieaens 46
Comparison to Binaryccccoecieeireiieieciiicii e 50
Y13 00) ¢1F: VTNV UR SRR 52
A DBNS FIR Filter Case Study ...ccccceceeeeereeeresanees .53
[NErOAUCTION ...ttt 53
Verilog SIMUIationccoiiiiiiiiicceeieeeee e 53
VHDL SYNthesiS ettt ettt 56
5.3.1 Placement and Routingccccooiimimiiiiiini e 58
Final Chip Assembly ..., 61
Testing the Chip co.ooeiiiiiiiie et 62
Comparison to 2 digit DBNS ...t 63
SUMIMAEY <ot e et e e et e e te e e ea e s enseasaeeaaeannen 65
Conclusions and Future Work.........eeveeeeecececccssenan 66
CONCIUSIONS c. it e e e et re et ae s e s aaeeeenseeans 66
CONITIDULIONS. ...ttt et e e 67
Suggestions for Future Workcccoooviiireeiiieeee e 67
....... 69

VHDL Code for Hybrid DBNS FIR Filter 71
INErOAUCHION L.cciiiiiiiiiieee et et s e e e s e s e 71
Binary to DBNS Coversion Stagecccoooveeeiiiiiiiniicececnncecreeenne. 71
DBNS MAQC Cell ..ttt e e 73

Xiil

University of Windsor

Appendix B

o —

B.
B.
Appendix C

C.1

Cc.2
C3

Appendix D

D.1
Appendix E

E.1l
E.2
E.3

VHDL Code for 2 Digit DBNS FIR Filter 85
[NtrOdUCHION ...oiii et e 85
MAC Cell e 85

C Code for Mapping into DBNS 89
[NErOdUCTION ..ot e e 89
Optimal Mapping LIStING ...cccoeeoiiimeriiieeeeee e 89
Modified Greedy Mapping LiStingccccooeeouiiiiiiiiiiiiiieeeeeennns 96

Genetic Algorithm Code 102
DBNS Coefficient GENerationccceecceeeeveeeenieveieeeeeieeeeeeeeeennns 102

A Brief Tutorial in High Level Chip Design 113
[NErOAUCTION ..ottt enaes 113
SyStem DeSIZN ..coeueiiiiiiiieeete ettt e 113
Synthesizing the SYStemc.cccooiviiiiiiieeeeeeeee e 115

Xiv

List of Figures

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 5.1
Figure 5.2

Block diagram of a digital filter.......ccocooveiiiioieieeeeeee 2
A 2D DBNS Representation 0f 79oocoiieieeoieeiiecceeeeeeeeeee e 10
A 2D DBNS Representation of 7.25....c.coooiriiiieeieieee e 11
Magnitude response comparison for asymmetric exponents..................... 17
Error for symmetric and asymmetric reSponses.ocveoveeeeeeeeeeenenn.. 18
Comparison between NS and DBNS filter reSponses.........cccceceeeeeeeeneeenn. 20
Magnitude response of DBNS filters with different odd bases.................. 21
CTOSSOVET ...ttt ettt ettt enes e eeneseneeseenes 26
Frequency response of a genetic algorithm produced DBNS FIR filter....28
Result curve due to optimizationccccoeeceeieeieiieiieeeceeeeee e 29
A histogram showing the coefficient values for over 200 filters................ 30
Filter response of a floating point coefficient filtercccoocvveveeenenne... 32
Magnitude response for the mapped filters.........ooocooeveeiiiiiccceeeee 34
Mapped fIlters” eITOr . ..cooveiiiiiii e 34
Error of mapped DBNS [ESPOMSES ..evveueeieirriieeiereietcie ettt 35
Error between designed response and binary and DBNS mappings 36
Error between designed coefficient values and mapped coefficients......... 37
A unidirectional systolic array convolver and processing element............ 39
A DBNS Multiply Accumulate Cell..........ooeoieeuimiiiiiiiieeeeeeeeeeeeeee 42
Hybrid 2 digit DBNS Architecturecoccoeeeiueeeieeceeceeeeeeceeeee e 44
Four channel filter architecture for 2 digit DBNScccooiiieeeeeeeennnn. 45
2 digit reduced channel arcChiteCtureoooeeeeuieuieeeeieeeeeeeee e 48
Comparison between 3 channel filtered signal and floating point signal...48
Error between input signal and filtered signals................ccooveeieiicnennnne, 49
Binary filter reSPONSES....cccevieuiieeeieiieee ettt e eee e 50
Binary multiplier cell (660X925mMmM)ocoeviemiiiiieceeeeeeee e 51
Hierarchal diagram for HDL description of a DBNS filter........................ 54
Magnitude response of genetic algorithm designed DBNS FIR filter....... 55

University of Windsor

I
5
[¢]
wr
£ W

oy
=
o
W

o)
o
-
o
W

ey
5
(¢]
W

Y
=
~
o
W

a3
=
(¢]
W

Q U3 uq U3 (49 03 UQ

Y
g
o
(9}
O 0~ ON W

Input chirp signal ranging from [kHz to SI12kHzcoccoooiiiiiiii 56
Filtered chirp signal ... 57
Input Stage. Binary to DBNS Conversion ROM (2969x666mm) 60
DBNS MAC Cell (3526X857 ITITI) < eeeeeeneeaaaaes 60
Output Stage. Accumulator for both Filter Channels (328x113 mm) 60
Final Chip Layout (16X9 MM .ot 62
15 tap. hybrid DBNS FIR filter (left) and a 53 tap. reduced channel. 2 digit
DBNS FIR filter (FIght) ..ot 64

xvi

List of Tables

Table 2.1

Table 3.1
Table 4.1
Table 4.2
Table 4.3

Stopband Attenuation (in Decibels) for Mapped DBNS Filter Coefficients

With Varying Bases ...ttt ccieteeececte e e e 21
Mapped Filter Specificationsc...ecieiiieeeieecie e e 33
Unidirectional systolic convolver reSultscccooeieiriiiiiiiiiiieeececciicieee 40
53DBNS bandpass FIR filter coefficientscccoeeeeiieeeieieriecceiiienns 47
Area comparison between binary and DBNS filter taps......cccccoocimeennnne. 52

Xvii

Chapter 1

Introduction

1.1 Introduction

Digital signal processing (DSP) increasingly permeates our lives.
Almost every field of science and engineering relies on processing
signals. Signals can be received and analyzed through test
equipment or generated through simulation hardware. Signals are
responsible for allowing us to communicate over large distances
and for entertaining us through radio and television. DSP comes
into play when these signals are discrete. Discrete signals are
signals that exist only at specified points in time and can only
assume a finite number of values [16]. DSP is used in many areas,
such as digital filtering, image processing and even computer

systems.

The representation of signals as discrete is not a large constraint, as
non-discrete bandlimited signals are easily made discrete. Non-
discrete signals, called continuous signals, exist at every point in a
specified time or space. For example, the speed of a car or a person
talking into a telephone. These signals can be quantized and
converted into digital signals. To quantize a signal, it is measured at
specific time intervals and the value is recorded to within a certain

numerical precision.

Introduction

Introduction 1

University of Windsor

A fundamental operation in DSP is filtering. By filtering a signal. unwanted portions of the
signal spectrum can be removed or the signal can be modified and reshaped. For example.
filtering is used to provide the selected channels for display on a television or for selecting
stations on a radio. A basic block diagram of a digital filter is shown in Figure !.1. where

x(nT) is the discrete input and v(n7) is the discrete response of the filter.

Figure 1.1: Block diagram of a digital filter

x(nT) DF y(nT)

This can be represented mathematically as:

y(nT)) = R[x(nT)] (1.1)

where RN is an operator representing the transfer function of the filter. Furthermore, filters

are classified by whether or not they are time-invariant, linear or causal [16].

Definition 1.1 Time-invariance — A filter is time-invariant if the filter's response
to a given input signal does not depend on the time the input sig-

nal is applied.

Definition 1.2 Linearity — A filter is considered linear if it can satisfy the follow-

ing two conditions.
Rlox(nT)] = aR[x(nT)] (1.2)
Rx (nT) +x,(nT)] = Rx;(nT)] + R[x,(nT)] (1.3)
Definition 1.3 Causality — A filter is said to be causal if the response of the filter,

at a given moment, does not depend on any future value of the

input.

One of the most basic structures used in DSP is the Finite Impulse Response (FIR) filter,

or nonrecursive filter. A FIR filter is a filter that does not depend on any past output values

Introduction Introduction 2

University of Windsor

of the filter. If it is assumed that the FIR filter is linear, time-invariant and causal. then the

response of the filter. y(n7). can be expressed as a difference equation.

N
v(nT) = }EaﬂinT—iT) (1.4)
i=0
where a; represents constants, and N is the order of the filter. A benefit of using

nonrecursive filters is that they are guaranteed to be linear and have a linear phase

response.

Another type of filter is the Infinite Impulse Response (IIR) filter or recursive filter. An IIR
filter uses past outputs to influence the current response of the filter. Recursive filters
usually require a much lower order of fiiter to produce the same magnitude response of a
FIR filter, but IIR filters are not guaranteed to be stable or have linear phase. The output

response, y(nT). of a recursive filter can be described by the difference equation:

Y M
v(nT) = Y ax(nT—iT)= Y by(bT —iT) (1.5)
i=0 i=1

where a; and b; represent constants. Therefore, at any given moment. the response of the

filter is dependent on the past N values of the input and the past M values of the output.

For applications that require a linear phase response, such as video and audio applications,
FIR filters are typically used. This is due to the guarantee of linear phase response, ease of

design and stability.

1.2 VLSI Technology

VLSI (Very Large Scale Integration) technology has changed the lives of almost everyone
in the world today. It is the technology that produces high density microchips. Incredibly

sophisticated systems can be built on a piece of silicon the size of a fingernail. These

[ntroduction VLSI Technology 3

University of Windsor

microchips exist in almost every device or product we buy. from computers, stereos and

cellular phones to children’s toys and household appliances.

VLSI was first introduced in 1977 to describe commercial products being sold at that time.
It was used to describe any integrated circuit of greater than 2000 logic blocks [29].
Today’s microchips consist of considerably more logic blocks than 2000. In the past 20
years the transistors used to form VLSI circuits have increase in switching speeds by over

20 times. while decreasing the area used by the transistor to less than 1% [28].

The transistor was invented in 1947. This transistor was a bipolar transistor. Bipolar
transistors were a great advance to electronic circuits that previously used vacuum tubes.
and circuits were reduced to a fraction of their previous size and power requirements. [t
took eleven years (1958) before the first integrated circuit was made. this further reduced
the size and power requirements of electronic circuits. In 1960, the first MOSFET
transistors (both p-channel and n-channel) were invented. The MOSFET transistors were
easier to manufacture. and had better packing densities than the bipolar transistors, but the
MOSFETs had slower switching speeds. In 1963, Complementary Metal-Oxide
Semiconductor (CMOS) circuits were invented. CMOS offered the ease of manufacture
and packing densities of MOSFET transistors, but had the added benefit of negligible
standby power dissipation. The only time power is consumed is when a circuit is switched.
This offered a tremendous advantage over bipolar transistors which dissipated a lot of
power. Bipolar transistors are still in use today. in circuits that require the raw circuit speed
of bipolar transistors, but are typically used in small stand alone bipolar chips, or in a
BiCMOS process that uses CMOS for the majority of the circuits and only a small number

of bipolar circuits [28].

Microchips are produced by forming multiple specialized layers. CMOS transistors are
formed by diffusing gaseous boron and phosphorous into a wafer of single crystal silicon
and using polycrystalline silicon as the gate electrode. Connections are made by layers of
metal traces that are insulated from each other. These traces are usually made of

aluminum. Current processes have up to seven layers of metal available. The more layers

Introduction VLSI Technology 4

University of Windsor

of metal available to the process. the more densely packed the system can be, allowing for

larger systems to be produced in the same area.

The current trend in VLSI design is to produce high quality libraries of basic cells, logic
gates and basic operations (adders. counters, multiplexers, etc.) and design the system
using a hardware description language (HDL). HDLs allow a system to be designed using
a technology independent. high level. programming-like language. Once the system is
fully described in an HDL, it can be compiled from components of the libraries and
fabricated. This process leads to more modular designs and greatly speeds up the design

and testing time of a chip. at the expense of not being optimally designed.

1.3 Double Base Number System

In the area of digital signal processing considerable demand exists for compact, high
speed/real time digital filters for use in applications such as radar image processing.
However, available real-time digital filters are often too slow, too costly, too complex or
require too much power. To correct for this, the attention of some researchers has been
directed to different techniques for designing high speed digital filters making use of
special coding schemes or number systems. Traditional algorithms used in digital signal
processing do not “parallelize” nor “modularize™ easily, hence not allowing the maximum
use of the VLSI technology. It becomes clear that different design approaches are needed
that can incorporate modularity and parallelism. One such approach is a multi-digit
Double Base Number System (DBNS), whose arithmetic is broken up into independent

sub-terms, providing a modular hardware implementation.

The DBNS is a recently developed number system [8], though it does have some relation
to the Logarithmic Number System (LNS), and can be viewed as a multi-dimensional
form of the LNS [10]. DBNS offers a highly redundant number system with a very sparse

representation, through the used of two orthogonal bases.

w

[ntroduction Doublc Basc Numbcr System

University of Windsor

A large number of DSP functions. such as FIR filtering and Discrete Fourier Transform
(DFT). require the use of inner product computations. Inner product computations are
based on multiply-accumulate (MAC) operations. Therefore. specialized DSP hardware.
such as FIR filter microchips. heavily rely on optimized MAC operations. Through the use
of DBNS. a MAC architecture can be built without the need of binary multipliers, thus
reducing the overhead of MAC dependent systems such as filters. DBNS also has a non-

linear number representation that can be advantageous in some systems.

1.4 Thesis Objectives

There are two main thrusts of the work presented in this thesis. The first is to investigate
and expand upon architectures for use with DBNS and FIR filters and. using these
architectures. make a comparison to equivalent binary architectures. The second thrust is
to provide proof of concept by producing a working microchip using the VHSIC
Hardware Description Language (VHDL). Also investigated is the mapping of floating

point numbers into the DBNS representation.

1.5 Thesis Organization

This thesis is organized into six chapters and four appendices. The first chapter (this
chapter) is an introduction. Chapter 2 covers the Double Base Number System, and the
arithmetic associated with it. The second chapter also makes a comparison between the
DBNS and the LNS number systems. Chapter 3 presents the methods used to generate the
coefficients for the DBNS filters. Chapter 4 looks at the architectures used in producing a
FIR filter that uses DBNS for filter coefficients and data. Chapter 5 provides verification of
the DBNS architectures through the production of a working microchip of a 15-tap, hybrid
DBNS, FIR filter, designed using VHDL. Finally, Chapter 6 presents conclusions and

future work for this thesis.

The appendices include additional information that did not fit neatly into the thesis body.

Appendix A and Appendix B contain the VHDL code used to produce the hybrid and two

Introduction Thesis Objectives 6

University of Windsor

digit DBNS microchip described in Chapter 5. Appendix C contains the code for the
decimal to DBNS mapping of data and coefficients. Appendix D contains the code for the
genetic algorithm used for generating DBNS FIR filter coefficients. Finally. Appendix E
provides a brief introduction to high level microchip design. and points the reader to more

complete tutorials and information.

[ntroduction Thesis Organization 7

Chapter 2

The Double Base
Number System

2.1 Introduction

The Double Base Number System (DBNS) is a recently introduced
[8]. highly redundant number system with a very sparse
representation. The DBNS has a number of properties that can be
advantageous to DSP applications, such as the possible overhead
reduction for a DSP system heavily reliant on multiplications. Also
the DBNS, in an index calculus form. has a non-linear number
representation that may benefit certain specialized applications,
such as those requiring accurate representation of both large and
small signals. Recently, the index calculus Double Base Number
System has been compared to the Logarithmic Number System, as

a multi-dimensional form of that number system [10].

2.2 Representation

The DBNS representation of a number differs slightly from the
traditional fixed radix form of representation. Typically a number is

represented in the form:

The Double Basc Number Systecm [ntroduction 8

University of Windsor

where me |Q1.....r— 1} . i1s an integer and r is the radix. For example in the decimal

system r=10. and in the binary system r=2.

The DBNS representation varies from this by replacing the radix, r. with two orthogonal
bases. restricting the range of the mantissa. m, to represent the sign. The equation for

DBNS number representation is:

N
bt
X = mefl 3 (2.2)
i=0

where b;, t; and / are integers. Since m is signed, both positive and negative numbers are

representable. The mantissa. or sign component, must also sometimes equal zero. This is

- . - - . . bl ‘\fx
required because a DBNS digit, using the exponential representation 2 '-3 ', cannot

express a value of zero.

Equation (2.2) shows the binary number system to be a subset of the DBNS if #/=0 for all .

Equation (2.2) also leads to a very simple two dimensional representation [15].

The Double Base Number System Representation 9

University of Windsor

Figure 2.1: A 2D DBNS Representation of 79

J

0 4

2V 127 122 |2

2

Figure 2.1 shows one of the possible mappings of 79 into DBNS. The black squares

. 0,0 1,1 . 53,2
represent the location of a DBNS digit. The digits used are 23 +2'3 7

=1+6+72 = 79. The white squares represent the ‘0’ digits and the black squares
represent the digits that are “1'. From Figure 2.1 the very sparse representation of the

DBNS number system can be seen.

If negative exponents are used, a much wider range of numbers are available and
representation of real numbers. with arbitrary precision, is possible. Representation of
integer numbers will require less digits if their representation allows for negative
exponents. The two dimensional map of Figure 2.1 can still be used for negative
exponents, but it will require a little expanding. Figure 2.2 shows the representation of the

3 1,0

real number 7.25 using 2 DBNS digits 27237 +27'3%=6.75+ 0.5 = 7.25.

The Doublc Basc Number System Representation 10

University of Windsor

[22!’3‘24

2-5 ! 24 20 2

Only a small number of digits are required to represent a number. For example. the

24,18

number 103 can represented, approximately, by the two DBNS digits 273 + 219378

e c o A04,7 47,0 .
and 2315 can be represented. exactly. by the two digits 2°3" +2°3" . Since the Double

Base Number System is a redundant number system. most numbers will have more than
one representation. For example 4.25 has 3 error free two digit DBNS representations,
while 7.25 has a single unique. error free, two digit DBNS representation. It is provable
[10] that every real number may have at most 91 error free. two digit DBNS
representations, but realistically the majority will have at most 4 or 5 error free
representations. This redundancy can be useful in allowing you to choose the best possible

representation for your application.

The previous examples all used the form of +2"3" £2"3" (o first display the DBNS
numbers. This is a more convenient and informative way of writing DBNS numbers, as
apposed to the two dimensional map representation. In this form the number is represented
by the sign and the exponents (also called indices). The exponent on the base of 2 is called

the binary exponent, and the exponent on the base of 3 is called the ternary exponent. If we

The Double Base Number System Representation H

University of Windsor

fix the binary and ternary exponents to a signed. fixed length representation. we can

represent any real number to arbitrary precision.

DBNS Two Dimensional Map Arithmetic

To add any two numbers using the DBNS two dimensional map representation (Figure 2.1
and Figure 2.2). simply overlap the two DBNS maps. Furthermore. a series of reductions
of the DBNS map can be performed in order to reduce the number of resulting DBNS

digits. These reductions can be summarized in three equations [15]:

-)’3/ -)"I-‘J ‘)i‘_/.—l (-) 3)

imf . miaj=1 (=2,

23 +2 =2 3 (2.4)
-] -1,

23/ +2'3/ = 2773/ (2.5)

The Double Basc Number System Representation 2

University of Windsor

The result of this map arithmetic is 2'3%+ 2737+ 273! = 1§+72+96 = 186.

Little work is being done with the two dimensional DBNS map arithmetic as it is difficult
to perform in hardware. though Cellular Neural Networks (CNN) have had some success
[27]. CNNs are analog circuits that can perform digital computations and produce a digital
output. There is currently no way to perform multiplication using the two dimension

DBNS map.

2.3 Index Calculus

Double base numbers are usually represented by their binary and ternary exponents, or
indices. In order to perform mathematical operations with DBNS numbers using these
exponents we need to define these operations. When performing these operations we will

represent the DBNS numbers with the triple (s,. b,. #,). where s is the sign, b, and ¢, are

. bt . . .
integers. such that 5.2 3" is a DBNS representation of a number x. Performing

mathematical operations using this representation of DBNS numbers is called index

calculus. because the numbers are represented by their exponents. or indices.

2.3.1 Multiplication and Division

Multiplication and division are the simplest operations in index calculus DBNS, and offer
very little overhead. or complexity. The equations for multiplication and division, given

X=(8y. by 1) and v=(s,. b,. 1,), are [8]:

x-yv=((s,+s)ymod2, b _+b,t + t_‘,) (2.6)
x/y = ((s,+s.)mod2,b_—b i — t},) 2.7)
Equations (2.6) and (2.7) show that DBNS multiplication can be implemented in hardware

using simple binary adders. This feature of DBNS can be used to reduce the overhead of a

binary system that utilizes many multipliers by replacing them with a DBNS system, since

The Doublc Basc Number System Index Calculus 13

University of Windsor

DBNS multipliers are two binary adders and simple logic for the sign correction. The

binary adders should also require less time to evaluate than the corresponding binary

multiplier.

2.3.2 Addition and Subtraction

Unfortunately. as with logarithms. addition and subtraction operations are not as simple as
muitiplication and division operations. Addition and subtraction must be handled through

a set of identities and look-up tables. The identities are [8][9]:

2u3b_2c3¢/ — 2a3h(l ;zc—a:,)c/—h)
b (2.8)
=23"®(c—a.d - b)
20.,[)_2L'3d — 2u3h 1_2(. ‘u3d—h)
(2.9)

The operators ® and ¥ are lookup tables that must be precomputed and store the

approximate values of:

D(x.y) = 1 +2°3"=2%3P (2.10)

Y(ixyv)y=1-2 (2.11)

The use of large look-up tables, implemented through the use of ROMs. for the evaluation
of addition and subtraction operations is the traditional approach in systems such as the
Logarithmic Number System [24][25]. This technique is only feasible for very small
ranges of DBNS numbers. It is more practical to convert the DBNS numbers to binary and

perform the addition and subtraction using binary representation (see Section 2.7.2).

In order to design efficient DBNS hardware, an algorithm should be designed to have all
additions and subtractions operations either before or after the multiplication operations,
so conversion to and from DBNS will only have to take place one time each. This is easily

done in architectures such as FIR filters. The conversions from DBNS to binary will still

The Double Base Number System Index Calculus 14

University of Windsor

require a look-up table. but one that is much smaller than required for handling DBNS
addition and subtraction. The look-up table is used to convert the ternary portion of the
DBNS number into a binary representation. Therefore the size of the look-up table is

dependent on the number of bits used to represent the ternary exponent.

Example 2.2The addition of the index representation of 72 and 48

(121),,

Note that the answer 121 is incorrect, it should be 120. However, this is a close
approximation, when performing integer arithmetic. This also shows how unsuited DBNS

is for index calculus addition. justifying a conversion to binary before addition.

Example 2.3The multiplication of the index representation of 72 and 48

2332.243I
- 23—432—1
- 2733
= (3456),,

Note how much easier multiplication is in index calculus DBNS than addition. The results

are as accurate as the numbers being used. This is because a look-up table of approximate

values is not required.

The Doublc Basc Number System Index Calculus 15

University of Windsor

2.3.3 Multi-digit DBNS Arithmetic

Multi-digit DBNS arithmetic is simply an extension of the single digit DBNS arithmetic.
and is necessary when numbers are represented by more than one DBNS digit (see
Equation (2.2)). When performing a computation using multi-digit DBNS each digit can
be treated as an independent DBNS number and the operations handled separately. For

example. if X and Y are 2 digit DBNS numbers such that X = x,+x, and

Y =y =y, then:

XY = (xp~x:)()) = X FX0 T XN T XY, (2.12)

where x; and y; are single digit DBNS numbers.

Example 2.4 An example of 2 digit DBNS multiplication of 27 and 23

(2737 -2%3%) . (2532293
e bl S 9 9 3 bl S) l

=2737.2°3% 22737 .2932 229322330 1 032 . 032
T § -) - e] -y D) - — R |

=2_)3_ ()_2_ 03_ __20 33.. 0T20 03_ 2
7.2 2.4 5,2 0,4

= (1152),4 - (324),, — (288) 0 + (81),
= (621),,

The independence of the arithmetic operations is very important, as it allows for parallel
architectures. Furthermore, these parallel structures can be asynchronously clocked,
reducing the power requirement of the circuit. This parallel architecture is not restricted
solely to multi-digit DBNS. but extends to hybrid DBNS systems. A hybrid DBNS system

is one that combines single digit and multi-digit DBNS.

2.4 Asymmetric Exponents

[t is not necessary for the exponents or indices to be of the same number of bits. There are

advantages to having asymmetric indices. As will be seen in Chapter 4, the area

The Double Base Number System Asymmetric Exponcnts 16

University of Windsor

complexity of a DBNS multiply accumulator is heavily based on the size of the ternary
exponent, due the ternary binary conversion ROM necessary for addition, and binary
exponent size has very little effect on the area of the cell. Therefore decreasing the ternary
exponent is an important factor in minimizing the overall area. It is possible. to a limited
extent. to decrease the ternary exponent and increase the binary exponent. while still
maintaining similar accuracy in the number representation. Such asymmetric exponents

can greatly decrease area while still maintaining high accuracy.

Figure 2.3 shows the magnitude responses of two DBNS mapped FIR filters. The lowpass
filter chosen for the example is a typical interpolation filter used for audio and video
applications. One filter was mapped into 5 bit exponents for both the binary and ternary
exponents. The other filter was mapped into DBNS having 6 bit binary and 4 bit ternary
exponents. Note that there is very little difference between these two filter responses. The

error. from the designed response. can be seen in Figure 2.4.

Figure 2.3: Magnitude response comparison for asymmetric exponents

20; T T " : —
—— Dssign
—— 5b5t DBNS
o] —— 6b4t DBNS H
=20~ -
i
—40+ e

Magnitude (dB)
|
[0:]
o
1

1

-100

-120

—-140

T

-160 R

T

-180 . : L ;
0 0.5 1 1.5 2 25 3 35

Normaized Frequency

The Double Base Number System Asymmetric Exponents 17

University of Windsor

Figure 2.4: Error for symmetric and asymmetric responses

—— 5b5t DBNS
—— 6b4at DBNS

15+~ B

0 0.5 1 1.5 2 25 3 3.5
Normaized Frequency

2.5 Logarithmic Number System

The Logarithmic Number System (LNS) is a more mature and documented number

system than the DBNS. In the LNS a number. n. is represented by:

where «; is an arbitrary real number. This representation is very similar to the DBNS
number representation. In fact it could be said that DBNS is a multi-dimensional form of
the logarithmic number system. Multi-dimensional forms of LNS (like DBNS) offer many

advantages over the more traditional single dimensional LNS [10]:

The Double Base Number System Logarithmic Number System 138

University of Windsor

® The area complexity in DBNS systems is based on the size of the ternary exponent. By
using asymmetric exponents, the area can be decreased while maintaining accuracy.

e Multi-digit LNS does not offer substantial area complexity reduction. Multi-digit
DBNS does offer substantial area complexity reduction.

* Linear data maps to the DBNS better and. more often. has error free representations.
This is especially true when using multi-digit DBNS.

* The DBNS is a highly redundant number system. and the LNS is not. A redundant
number system has multiple error free representations. While this redundancy is not
exploited in the DBNS filters described here. it can be very useful. One “redundancy”
that is useful for DBNS filters is the ability to accurately represent a floating point num-
ber with DBNS numbers containing widely varying exponents. This will be shown later
with channel reduction.

® When performing mathematical operations on DBNS numbers whose exponent values
are close to overflow. the numbers can be multiplied by an approximation of 1 to reduce
the value of the exponents and prevent overflow.

e The DBNS architecture is extremely flexible in that it allows the odd base (the 2nd
base) to be any convenient odd base in accordance with any special requirements. This
base change will not affect the architecture, though the values in the look-up tables will
have to be changed.

® The DBNS corresponds to a much smaller hardware representation as opposed to clas-
sical LNS

Some filter magnitude response comparisons have been made between LNS and DBNS
(Figure 2.5). They show that it takes 12bit LNS to exceed the response of a 2 digit, 5bit

binary. 4bit ternary. direct mapped DBNS filter. and that 11bit LNS does not have enough

accuracy to match the DBNS response.

The Double Base Number System Logarithmic Numbcr System 19

University of Windsor

Figure 2.5: Comparison between LNS and DBNS filter responses

DBNS and LNS Filter Response

20+~
| —— 9bit LNS
—— 10bit LNS
o —— 11bitLNS
; —— 12bitLNS
3 —— 5b 4t DBNS
-20-
o}
E
-60}

Magnitude (dB)
|
[+:]
o
)

0.5 1 1.5 2 2.5 3 35
Normalized Frequency (Hz)

2.6 Different Odd Bases

Typically when using the DBNS the bases used are 2 and 3. The odd base is not restricted
to 3. however. and any convenient odd base can be used. Switching the odd base can be
done to tulfill a special requirement of the design. For example using a 10 bit exponent for
an odd base of 35 has shown good characteristics in mapping hearing aid data. Switching
to a new odd base does not introduce any major design changes. DBNS systems use the
same hardware and architecture no matter the odd base. Only exponent sizes may change

with a change of bases.

Overall. a base of 3 offers the best results for filter coefficients. Table 2.1 shows the
stopband attenuation of DBNS filters using different odd bases. A filter was designed in
Matlab using floating point coefficients. and mapped using a modified Greedy Algorithm
(see Modified Greedy Mapping in Chapter 3) into DBNS coefficients. The DBNS

coefficients are two digit DBNS, with 5bit binary and 4 bit odd base exponents. Figure 2.6

The Double Base Number System Different Odd Bases 20

University of Windsor

shows a graph of the magnitude responses of the ideal. designed. filter and of the two digit

DBNS filter response for the filters with an odd base of 3 and 47.

Table 2.1: Stopband Attenuation (in Decibels) for Mapped DBNS Filter Coefficients
with Varying Bases

Base Ideal 3 5 7 11 47

Stopband (dB) 85.5 78 70 64.5 71.3 63.3

Figure 2.6: Magnitude response of DBNS filters with different odd bases

Mapped Multiple Base FIR Filter Response

20

—— ldeal
—— 2digit DBNS base2.3
[e] —— 2digit DBNS base2,47

=20~

Magnitude (dB)
|
0]
[
|l

-100

T

-120

—140+

-~-160

T

-180 : ' : .
o 0.5 1 1.5 2 2.5 3 3.5

Normalized Frequency

2.7 Conversion Between Binary and DBNS

The majority of systems today rely on the use of the binary number system. [n order for
any system utilizing the Double Base Number System to be compatible with existing

systems, conversions to and from binary will be required.

The Double Base Number System Conversion Between Binary and DBNS 2

University of” Windsor

2.7.1 Binary to DBNS Conversion

There are two methods that can be used to convert from binary representation to DBNS
representation. The first method is the most straightforward method. It relies on a ROM to
convert a binary input into DBNS exponents and signs. While the ROM look-up table is
very easy to produce. the size of the ROM can become overwhelmingly large if the

number of bits in the binary representation becomes too high.

The second method of binary to DBNS conversion is the use of a binary to DBNS
converter system. This system converts binary numbers into DBNS numbers based on the
repetitive patterns in the DBNS number system [26]. This process relies on a number of
very small look-up tables and can take many stages. Fortunately these stages can be
pipelined to increase the throughput of the conversion systems. There are two pre-
requisites before this system can be used. First, the number of bits used for the ternary
exponent must be equal to or larger than the number of bits used for the binary exponent.

Secondly the DBNS exponents must be of at least 6 bits in length.

2.7.2 DBNS to Binary conversion [9]

Converting DBNS to binary is three step process. The first step is to convert the ternary

exponent into a binary manissa and a binary shift value:

-

3> m-2° (2.14)
Where ¢ is the ternary exponent. 7 is the mantissa and s is the shift factor. For example the

- . 0 . .
ternary 3! could be translated into 11 p 2 . where the subscript b denotes a binary

representation. This conversion is handled through the use of a look-up table ROM.

In the second step the shift value is added to the binary exponent. This will produce an
“overall” shift value. This result is used in the third stage as a shift value for the mantissa.

Once the mantissa has been shifted, the final result is a binary number that approximates

The Double Basec Number System Conversion Between Binary and DBNS 22

University of Windsor

the DBNS representation. For example. to convert the DBNS representation of 6 into

binary would require:

n =2

In this case the converted value exactiy matches the DBNS representation. This is not
always true. but the approximation can be quite accurate depending on the number of bits

used to represent the mantissa.

2.8 Summary

This chapter discussed advantages and flexibility of the Double Base Number system.
DBNS is well suited for tasks where overhead, due to multiplications, can be reduced. The
difficulties that arise when performing arithmetic can be avoided by converting the DBNS
into binary. through the use of a ROM, binary adder and a barrel shifter. The size of the
ROM is governed by the number of bits in the ternary exponent. The size of the ternary
exponent can be reduced through the use of asymmetric coefficients and by using two digit
DBNS. The non-linear nature of the single digit DBNS makes it ideal for mapping non-
linear data. such as data for hearing devices. The odd base in DBNS is not restricted to a
base of three. but can be changed to any odd base to suit any specialized needs. This
change of the odd base does not change the DBNS architecture in any way, only the

contents of the any conversion ROMs.

The Doublc Basc Number System Summary 23

Chapter 3

DBNS Finite Precision
FIR Filter Design

3.1 Introduction

Good hardware design is not the only requirement for good filter
design. Another important requirement, besides good hardware
design. is good coefficient design. The design of coefficients
determines the quality of the filter, such as stopband attenuation and
passband ripple, as well as the order of the filter. The order of the
filter determines the number of hardware stages required by the
filter. Poor coefficient design can produce the desired filter
response. but at a much higher hardware cost. The technique used
to design the filter coefficients may restrict the hardware design, or
the hardware design may restrict the choice of coefficient design

algorithms.

3.2 Coefficient Design Techniques

There are many different techniques to design filter coefficients.
Many of which require the use of special number representations,
such as canonic signed digit binary representation. For Finite
Impulse Response (FIR) filters the main categories of these design

techniques are:

DBNS Finite Precision FIR Filter Design Introduction

University of Windsor

1. Approximation digital filter design [16]: Techniques to approximate digital filters. such
as using numerical analysis. Fourier series and windowing functions [19]. or the Dis-

crete Fourier Transform for non recursive filter design.

S}

Linear programming: Filter design through the use of linear optimization methods.
These techniques will produce results closer to the optimal design. but at the cost of

taking more time. Includes methods such as Remez Exchange Algorithm [16].

LI

Non-linear programming: Filter design through the use of non-linear optimization tech-
niques. This method is used for very complicated systems where it would be difficult to

use linear programming. One method used is genetic algorithms [13][23].

The techniques that were investigated for the design of filter coefficients for use with the
Double Base Number System (DBNS) filters were genetic algorithms, integer
programming and direct mapping. The filter designed through these was a lowpass filter

suitable for interpolation of video signals.

3.2.1 Genetic Algorithms

Designing coefficients for a DBNS filter at first appears very difficult. Only linear and
non-linear programming techniques can be used because there are no standard methods
for DBNS filter design. The DBNS coefficients are to be in index form, meaning the
coefficients have 3 parts, representing the sign and the two exponents of the DBNS
number. A small change to the value of a coefficient is not a straightforward process. A
small change in one of the exponents of the coefficients can mean a very large change in
the coefficient’s value. This makes a linear programming approach more difficult and a
non-linear programming approach much more appealing. Genetic Algorithms (GA)

[13][23] were chosen as the preferred non-linear method.

Genetic algorithms are a relatively recent optimization technique, initially disclosed in
1975 [21]. Genetic Algorithms are a non-linear programming technique that use the
natural selection properties of evolution to produce a desired result. Multiple random

starting points are selected. referred to as chromosomes. Each chromosome is a series of

DBNS Finite Precision FIR Filter Design Cocfficient Design Techniques 25

University of Windsor

coefficients that are encoded into sub-chromosomes. These sub-chromosomes are a single
bit sequence representing a DBNS digit. The chromosomes are then subject to a set of
predetermined fitness tests. These fitness tests require the decoded chromosomes to
conform to a set of filter specifications. The chromosomes that produce the best results are

then combined through a process called crossover.

Crossover is used to produce the next generation of chromosomes from parent
chromosomes of the previous generation. Keeping with the random nature of evolution.
crossover selects pairs of parent chromosomes randomly. using the results of the fitness
test as a weighting factor. Once a chromosome pair is selected. a pair of offspring
chromosomes are produced by switching a random number of contiguous bits between the
two parent chromosomes (see Figure 3.1). It can take hundreds of thousands of

generations to produce the desired result.

Figure 3.1: Crossover

- Crossover Point

011 0:0 1 0
: Parent
: Chromosomes
0 1 0 0:0 0 1
Crossover
Operator
011 0 0 0 1
Offspring
h
0100 0 1 0 Chromosomes

To keep the population of chromosomes from evolving into a non optimal state, there are
two precautions that can be taken. The first is the use of a mutation factor. The mutation

factor introduces a random change into the chromosomes. There is a very small chance

DBNS Finite Precision FIR Filter Design Cocfficient Design Techniques 26

University of Windsor

that a random bit of a chromosome will be switched. The mutation factor affects the
offspring chromosomes immediately after the crossover operation is performed. The
second technique is to set conditions where low performing chromosomes will be
discarded and replaced with new. random coefficients. The genetic algorithm used for

designing DBNS filter coefficients used a mutation factor.

Another technique used to speed up the convergence of the genetic algorithm is multi-
point crossover and mutation [22]. Because the chromosomes are of such length and
complexity. they can be broken up into segments and have crossover and mutation on
these segments. A good design choice would be to have these segments designed into
natural groupings. For example. in the DBNS genetic algorithm. these segments are the
individual chromosomes. which were each a distinct sub-chromosome. Therefore the

crossover and mutation are performed on a coefficient by coefficient basis.

There were some problems with the genetic algorithm used. The first was that the GA is
very slow. Secondly. there is no guarantee that the GA will converge, producing the
correct answer. Finally, the results produced were not close to optimal. The best filter

design achieved had the following statistics:

e 57% order
e 4(0.35dB stopband attenuation
e |.75dB pass band ripple

e (.09Hz transition band (normalized to | Hz)

Figure 3.2 shows the frequency response of the genetic algorithm filter, using a

normalized frequency range.

DBNS Finite Precision FIR Filter Design Cocfficicnt Design Techniques

University of Windsor

Figure 3.2: Frequency response of a genetic algorithm produced DBNS FIR filter

20 L T T T T T T T T

Magnitude (dB)
|
H
o
T

-1 00 1 I 1 A 1 L L
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (xr rad/sample)

-1000

¥

—-2000

-3000

Phase (degrees)

-4000

~-5000 L 1 ! L 1 1 !) 1
o] 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Normalized Fregenc y (xr rad/sample)

3.2.2 Integer Programming

Finding the best DBNS approximation of a designed filter’s coefficients is an integer
programming task. This is due to the fact that the DBNS exponents, both binary and
ternary. are integers. In general, integer programming is a NP-complete problem. That is
the reason why genetic algorithms were tried first for generating the coefficients. There

are, however. some purely integer programming methods that can be used as well.

The integer programming method used was to map floating point decimal numbers into

DBNS. There are four variables to optimize for each number, one for each DBNS

exponent.

DBNS Finite Precision FIR Filter Design CocfTicient Design Techniques 28

University of Windsor

To simplify the solution, the first three variables, a. b and c. are set using an exhaustive
search. and only the fourth variable. d. is optimized. An important concern. when dealing

with fractional results, is to ensure the more optimal choice is selected.

Figure 3.3: Result curve due to optimization

4 : - T T T T T T T

35+ -

25+

Optimized Value
N
T

. . . L . : : L
o} 1 2 3 4 S 8 7 8 9 10
Optimized Variable

For example if the result curve due to optimization is similar to Figure 3.3. then rounding
a fractional result would produce the result of 5, and not the most optimal result of 4. The
results of the integer programming were very similar to that of the direct mapping scheme

described next. though the required computational time was much higher.

3.2.3 Direct mapping

A study of filter coefficients can be performed to show the typical number range of filter
coefficients for a large set of designs. A histogram showing a study of the coefficient

distribution of over 200 filters is shown in Figure 3.4 [14]

DBNS Finitc Precision FIR Filter Design Cocfficient Design Techniques 29

University of Windsor

Figure 3.4: A histogram showing the coefficient values for over 200 filters

5000

4500 4

4000 4

3500 A

3000 Ao 1

N(x) 500 -
2000 1

1500 o

1000 4 1

500 1
0 ‘
-600 -400 =200 0 200 400 600

Looking at Figure 3.4. it can be seen that the vast majority of the coefficients are zero or

very close to zero. This corresponds very well with the DBNS representation accuracy.

In the DBINS. approximately one half of all representable numbers lie in the range
between zero and one. This means that if a number is less than one it can be very
accurately represented in DBNS. This accurate representation of numbers less than one

allows for a direct mapping of these numbers into DBNS.

Filter coefficients can be designed using standard filter design tools, for example MatLab.
Filter design tunctions in MatLab, such as remez(), can be used to design filter coefficients
in the internal floating point representation. The floating point coefficients can then be
converted directly into a DBNS representation. The conversion, or mapping, can be
performed in two different ways. The first method is the modified Greedy Mapping
algorithm, and the second is optimal mapping using a form of linear programming (in our

case an exhaustive search was conducted).

DBNS Finite Precision FIR Filter Design Coetticient Design Techniques 30

University of Windsor

Modified Greedy Mapping

The Greedy Algorithm was first proposed in [15]. For a single digit. the DBNS number
closest to the target number is selected. Multi-digit DBNS works in a similar way. the first
digit is selected to be as close to the target number as possible. The following digits are
selected to be as close as possible to the remaining value after subtracting the values of the

previous DBNS digits.

The modified greedy mapping algorithm is very similar to the Greedy Algorithm. It was
designed for use with one and two digit DBNS mapping. For one digit it behaves exactly
as the Greedy Algorithm. For two digits. it selects the two closest numbers to the target
value. then fine tunes the mapping with a second digit. The best result of the two possible

is then selected. This produces a more accurate mapping than the Greedy Algorithm alone.

One advantage of the modified greedy mapping method over the optimal mapping is
speed. The modified greedy mapping time increases linearly with an increased
representation range (i.e. more bits per exponent). Another possible advantage to the

modified greedy mapping will be discussed in Chapter 4.

Optimal Mapping

Optimal mapping is performed just as the name implies. The entire representation range is
searched for the best possible match to the target value. This method becomes more
efficient if a sorted list is used. The mapping time increases approximately along a square
law with increased representation range. Despite the square law increase in speed, the
mapping of fifty-three, 2 digit DBNS numbers, using [2bit exponents requires less than a

minute on a Sun Ultra 10 workstation.

An Example of Mapping

A filter was designed using MatLab’s remez() function. The filter designed had the

following specifications:

DBNS Finite Precision FIR Filter Design Cocfficicnt Design Techniques 31

University of Windsor

o 53 order

e 85.36dB stopband attenuation
e (0.000468dB pass band ripple

e {.12Hz transition band (normalized to | Hz)

Figure 3.5: Filter response of a floating point coefficient filter

53 Order FIR Filter
50 T T T 1 T T 1 1 T

|
[8)]
o

T

-100

T

Magnitude (dB)

-150 -

_200 I ! L i 1 L !] 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (xr rad/sample)

T

-1000 - ™~ : : : :) 7

~1500 : : L -

T

Phase (degrees)

-2000 : : , , § : e -
: _ NN
-2500 . > o . . 4

_3000 L 1 1 ! 1 I 1 1 I
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (xr rad/sample)

Figure 3.5 shows the frequency response of this filter. The filter coefficients are all in
floating point representation. This gives the filter coefficients an accuracy hard to achieve

in hardware.

The designed filter is mapped using both the optimal mapping and the modified greedy
mapping. The DBNS representation used for these mappings is two digit, with 5 bits being

used for the binary exponent and 4 bits used for the ternary exponent. These bit widths

W
8]

DBNS Finite Precision FIR Filter Design Cocflicient Design Techniques

University of Windsor

inciude the sign bit for the exponents. The resulting filters had the following specifications

as shown in Table 3.1.

Table 3.1: Mapped Filter Specifications

Designed Optimal M. Greedy
Order 53 53 53
Passband Ripple (dB) 0.000468 0.001339 0.001341
Stopband Attenuation (dB) 85.36 77.98 77.52
Transitionband Width (normalized) 0.12 rO. 12 0.12

The filters’ magnitude response is shown in Figure 3.6, and the error between the design

response and the mapped response is shown in Figure 3.7.

As can be seen from both the table and the figures. there is very little error between the
designed and mapped filters. The optimal mapping method does not offer a significant
accuracy advantage over the modified Greedy Algorithm. The entire design, from
generating the designed filter, to producing the output graphs and statistics took less than a
minute on a Sun Ultra 10 workstation. This is very fast and produces very good filters,

especially when compared to the genetic algorithm approach.

DBNS Finitc Precision FIR Filter Design Cocflicient Design Techniques 33

University off Windsor

Figure 3.6: Magnitude response for the mapped filters

Optimized and Modified Greedy Mapping Filter Responses

O T
| ; —— Optimized i
\ i Modified Greedy !
~20F \ -
| \
a0t \ i
-60 -
o
2 -80- -
DD
=
= - -
£ /\ :
-100+ -4
g i
1
-120 - 1
-140 | =
-160 B
-180 . ’ - : .
[¢] 0.5 1 1.5 2 2.5 3 3.5
Normalized Frequency (Hz)
Figure 3.7: Mapped filters’ error
x 10°° Error of Mapped Responses
12 i T . T
— Optimized
Modified Greedy
10~ -
T \\/\ |
6 — -

»
T
T
1

Magnitude (dB)
N
T

o
T

-2k

|
| |
UL UL

-8 —L L L M !
o} 0.5 1 1.5 2 2.5 3 3.5
Normaiized Frequency (Hz)

DBNS Finite Precision FIR Filter Design Coetticient Design Techniques 34

University of Windsor

Comparing DBNS and Binary Direct Mapping

Direct mapping of DBNS can be accurate. as seen in the last section. Consider the direct
mapping scheme to binary and DBNS of one and two digits. For the comparison. the
remez() FIR filter from the previous section (Figure 3.5) was used as the base filter to be
mapped. For the DBNS mapping 9 bit binary and ternary exponents were used for the
single digit DBNS. and 5 bit binary. 4 bit ternary were used for the two digit DBNS. All
the DBNS mappings used the modified Greedy Algorithm. The number of binary bits used

for the mapping was 10 and 12 bit.
The error between the mapped DBNS responses and the designed magnitude response can
be seen in Figure 3.8. The two digit DBNS mapping is much more accurate. by an order

of magnitude. than the single digit DBNS mapping.

Figure 3.8: Error of mapped DBNS responses

x 107 Error between design and mapped lowpass response
10 T T T T
r ! obit 1-digit |
i | — sbit2—digit | o~

Etror
H
1

=2 L L I L] ¢
[¢] 05 1 1.5 2 25 3 3.5

Frequency (Hz)

w

DBNS Finite Precision FIR Filter Design Coetticient Design Techniques 3

University of Windsor

Figure 3.9 shows the error between the designed magnitude response and the magnitude
response of both the binary mappings and both the DBNS mappings. The stopband
attenuation achieved by these mappings are as follows: 10 bit binary 45dB. 12 bit binary
55dB. single digit DBNS 60dB and 2 digit DBNS is 77dB. [t can be clearly seen that the
DBNS mappings offer a more accurate mapping. particularly in the case of the two digit

mapping.

Figure 3.9: Error between designed response and binary and DBNS mappings

x 1072 Error betwean design and mapped lowpass response
10; - T ;
I S [—— 9bit 1-digit
’ ‘ | — S5bit 2-digit
8- D | —— 10bit binary | |
' ! —— 12 bit binary
j
6~ -
!
ar .
g af | :
w T,
/"
, .
0 : -
2t \.\ ;’, t'. ; ; . 4
: vy Lo ~ .
/ v Y :
; v :
-4t .j .
/ i
! y
-6 L L L L ! :
0 0.5 1 1.5 2 2.5 3 3.5

Frequency (Hz)

Figure 3.10 shows the error between the designed coefficient values and the mapped
coefficients. The binary design has varying errors across all the filter's coefficients. The
largest error in the DBNS mappings is focused at the central coefficients. and rapidly
drops off for the outer coefficients. As typical in a lowpass FIR filter. the central
coefficients have the largest value and the value of the coefficients decreases towards the
outer coefficients [16]. The smaller the number, the more accurately the DBNS can

represent it. thus the reason there is more error in the central coefficients. The larger

DBNS Finite Precision FIR Filter Design Coetticient Design Techniques 36

University of Windsor

central coefficients have more weight in determining the output. therefore if their error

could be decreased it would greatly decrease the error in the mapped response.

Figure 3.10: Error between designed coefficient values and mapped coefficients

x 1072 Error between design and mapped lowpass coefficients
1 ‘ i i T T T
: | —— 9bit 1-digit
! i —— 5bit 2-digit
08f | l — 10bit binary
! \ ; 1 ‘ —— 12 bit binary
0.6 . | 1 ‘ n
4 \ | /.
i q | o
0.4+ 5 i ' . 7
1 : P A
02k N ! : ! P i 1
. . . L Vool i
& o- ! ST {/ | i
= T T AR R -
, L ‘(Dy \ /
/ Sl N
-0.2~ | S o — : 7
a A | L ' i]
] i [V ; i L J
~-0.4+ 1 ; | i/ i A i
/ \;‘ : ! P
{ L \
‘ ' [!
-0.6 i “ SRR Vo | 1
Y Y :‘
(i ! i \ ’
-0.8- / N 8
-1 - L L - L
0 10 20 30 40 50 60
Coefficiants

3.3 Summary

This chapter covered different techniques to generate coefficients for DBNS FIR filters.

While it is possible to use complex and time consuming techniques. such as genetic

algorithms, it is not necessary. The results produced by the use of direct mapping are

better quality filters (i.e. better stopband attenuation) than that of the genetic algorithm,

and are achieved much more quickly than the genetic algorithm or other iterative

optimization techniques. By using standard, well-defined filter design tools, and mapping

the results into DBNS we achieve better results in a fraction of the time.

DBNS Finite Precision FIR Filter Design

Summary

37

Chapter 4

DBNS FIR Filter
Architectures

4.1 Introduction

One of the basic structures in DSP is the FIR filter. FIR filters are
used to modify and transform discrete data in a number of
applications. FIR filters exist in many devices, from CD players to
cell phones to radios. FIR filters can be used in traditional filtering
tasks, or for weighted or moving average calculations. The FIR
filters described here are primarily designed for video rate
applications (approximately 40 MHz). though they can be used in
any general application. This chapter will discuss two architectures
used for Double Base Number System (DBNS) FIR filters. These
architectures are the hybrid 2 digit DBNS and the 2 digit DBNS

filters.

4.2 Systolic Arrays

Filter architectures require many additions and multiplications.
Each multiply block represents a filter coefficient, contributing to
the order of the filter. Fifteen multiplication blocks represent a
fifteenth order filter. In order to arrange the multipliers and adders
into a parallel architecture, where there are a minimum number of

binary two operand adders, we need to use systolic arrays.

DBNS FIR Filter Architecturcs

Introduction 38

University of Windsor

Systolic arrays are a class of pipelined array architectures. and feature the properties of
modularity., local connectivity, regularity. high level of pipelining, and highly
synchronized multiprocessing [11]. Systolic arrays are useful architectures for systems
that have multiple operations performed on each data element in a repetitive manner. This
gives the system a highly parallel processing architecture. These repeated operational

blocks in the systolic array are called processing elements.

Filtering of data is performed in the time domain using convolution. A unidirectional
systolic array convolver was used as the base filter architecture in all DBNS filters
described herein. Figure 4.1 [1 1] shows the typical unidirectional systolic array convolver.

The circles in the figure represent a multiply accumulate processing element.

Figure 4.1: A unidirectional systolic array convolver and processing element

u(n) D D D

T

The top portion of Figure 4.1 is a signal flow graph (SFG). In a SFG a “D” represents a

y{n)

delay element, and the processing elements (the circles) are considered to have no delay.
Realistically, the processing element hardware would contain delay, and care must be
taken to ensure the signals arrive at the correct time. This can be handled through the

addition of delay elements, such as latches.

DBNS FIR Filter Architectures Systolic Arrays 39

University of Windsor

Example 4.1

[f urn) were to consist of the elements {u,. u;. u>. u;}, the data passing through the

convolver would produce the following table. The columns represent the output of the
given processing element. The output of the final processing element is the output of the

filter and 1s therefore labelled as such.

Table 4.1: Unidirectional systolic convolver results

Time PEO PE 1 PE 2 Output
0 Ugivy
1 Uy ugw
2 -1y UgW T Wy Uy >
3 Uy UywyTUH-w) UgW Tl W > Ugw';
4 Uwytuzwy | UgwotU pw+iHws UgW U w3
5 Uwy UpwWoTU W pTL 3wy UgW TU watsw;
6 Uswotl 3wy UgWyHU pW LW T W 3
7 uzwy U Wyl W T W
8 USW I W
9 U3y I
—

4.2.1 Pipelining

In hardware design. a pipeline is a structure that breaks up computational tasks into
smaller independent computations that can be cascaded together and computed
concurrently. The importance of the pipeline is that the input data only waits for a single

stage to compute, rather than the entire task. -

The pipelinability of a systolic array is an important feature. Through pipelining the data
can proceed through the sub-tasks without having to wait for the entire computation to be
completed. Hence by breaking a computational task into multiple independent sub-tasks

the throughput of the system is increased.

DBNS FIR Filter Architectures Systolic Arrays 40

University of Windsor

An example of pipelining is the systolic array convolver discussed above. Instead of
waiting for the data to pass through the convolver individually, each processing element
acts independently and concurrently. Real world hardware does not perform without a
propagation delay. as assumed by processing elements in the SFG. Thus it makes sense to
pipeline the processing elements. The processing elements can be pipelined by breaking
multiply accumulate operation into an independent multiplication and addition. This has

the potential effect of doubling the clock frequency. and the throughput.

4.3 Basic Processing Element

The systolic array convolver is made up of a network of identical processing elements.
Each of these elements performs an inner product calculation, which is performed through
a multiply accumulate (MAC) operation. That is. the processing element performs the

following calculation:

pi = piy +uln) - w (4.1)

where p; is the output of the ith processing element, / is the index of the element. and # is
the index of the input data being operated on. When chained together to form a systolic

array filter. the output equation becomes:

.’V’

v(in) = Z u(n) - w; 4.2)

i=0

where N is the order of the filter.

The DBNS equivalent to a MAC cell is shown in Figure 4.2 [9]. Because the DBNS is

represented in hardware by the triple (s;, b;, t;), there are three pieces of data on which to
be operated. The binary and ternary exponents of the data (by and t4) are added to the
exponents of the coefficients (b, and t.) in order to perform the multiplication portion of

the MAC calculation. The two adders required for this multiplication are in the top part of

DBNS FIR Filter Architcctures Basic Processing Element 41

University of Windsor

Figure 4.2. The sign bits are handled by simple logic and are used for sign correction

before the final accumulation.

The accumulation stage cannot be performed directly after the multiplication. due to the
difficulty in adding two DBNS numbers. It is easier to convert the DBNS value to binary
for the accumulation. This conversion is handled by the ROM. shifter and adder in the
middle of the figure. The ROM contains the data for converting the ternary portion of a

DBNS digit into a binary value. This data is a fixed point binary mantissa and a shift value.

Figure 4.2: A DBNS Multiply Accumulate Cell

1o.1.F =

Loptyt =P 5

h

Exponent Sum

p(n) —p—

The binary portion of the DBNS digit also corresponds to a shift. Therefore the binary
exponent and the shift data from the ROM are added to find the final shift value for the
mantissa data from the ROM. The ROM increases size along a square law based on the
number of bits required to represent the ternary exponent. Therefore it is important to keep

the ternary exponent as small as possible.

DBNS FIR Filter Architectures Basic Processing Element 42

University of Windsor

Once the DBNS to binary conversion has taken place. the accumulation can be performed.
The accumulation sums the previous multiplication with ail the values generated by the

preceding MAC cells.

4.4 Hybrid 2 digit DBNS Architecture

Architecture describes the structure of a system. [t consists of the sub-blocks of the system
and the interconnects or buses between each of these sub-blocks. The architecture of a
system can be hierarchical. For example, the DBNS MAC can be considered a single sub-

block of a system. even though it has its own architecture.

The first architecture investigated was the hybrid 2 digit DBNS architecture. This system
uses two digit DBNS for the data and single digit DBNS for the coefficients. This
architecture was first introduced in [9]. Two digits were used for the data to produce a
pseudo-linear mapping space. This reduced the error introduced by the conversion to
DBNS. Approximately one half of all numbers representable by a DBNS digit are less
than I. and the majority of all filter coefficients are also below [[9]. This allows for a

large number of coefficient values that can be represented by a single digit.

The FIR filter architecture is based on the systolic array convolver (Figure 4.1) discussed
in Section 4.2. For the multiply accumulate processing elements of the systolic array, the
DBNS multiply accumulate structure from Section 4.3 can be used. This systolic array
convolver forms a single filtering channel. A single channel can be used to filter single

digit DBNS data with single digit DBNS coefficients.

[f multi-digit DBNS is to be used for a filter, more than a single filter channel must be
used. Convolution in the time domain corresponds to multiplication in the frequency

domain [16]. For 2 digit hybrid DBNS the frequency domain multiplication is:

Y(z) = H(2) - X(2) = H(z) - (X[(2) + X5(2)) = H(z) - X\ (2) + H(z) - X5(2) (4.3)

DBNS FIR Filter Architectures Hybrid 2 digit DBNS Architecture 43

University of Windsor

where Y(z) is the output of the filter. and X(=) is the 2 digit DBNS input into the filter. H(=)

is the transfer function of the filter, and represents a filter channel. X, (=) and X,(=) are the

individual digits of the 2digit DBNS input .X(=).

Looking at Equation (4.3) we notice that the individual digits of the input. X, (=) and X,(z).
are filtered (multiplied by H(z)) independently from each other. This means that each digit
can be processed separately. Therefore. in order to move to multi-digit DBNS, parallel
filtering channels can be used. To determine the final output of the filter, we sum the
outputs of the filter channels. Figure 4.3 shows the hybrid 2 digit DBNS architecture based

on Equation (4.3). The H(z) blocks represent the independent filtering channels.

Figure 4.3: Hybrid 2 digit DBNS Architecture

X1(z) H()
Y(z)
X2(z) H(z)

4.5 2 Digit DBNS Architecture

The major problem with using the DBNS filter architecture described above is the size of
the DBNS to binary conversion ROM. As the size required for the coefficients increases,
the size of the ROM grows according to a square law, quickly becoming the dominant
feature of a MAC cell. and requiring excess space. Therefore any reduction in the size of
the ternary exponent, the driving factor on the size of the ROM, is an important design

consideration.

To this end a full two digit architecture was developed [17]. This architecture uses two

digit input data, as in the hybrid DBNS filter, but two digits to represent the coefficients.

DBNS FIR Filter Architectures 2 Digit DBNS Architecturc 44

University of Windsor

The idea behind using two digits for the coefficients is that a two digit DBNS
representation requires. at most. one half the number of bits per digit as a single digit
DBNS number. By halving the number of bits used for the termary exponent. the

conversion ROM is drastically reduced in size.

The data X(-) = X |(z) = X5(z) is filtered through multiplication in the frequency
domain by the filter's coefficients H(z) = H(z) = Hy(2). The produced output is

therefore described as:

Y(z) X)) -H()
(X (2) ~X5(2)) - (H((2) + Hy(2)) (4.4)

= X\ H () + X|(2)H(2) + X5 () H ((2) + X5(2)H5(2)

Each multiplication in Equation (4.4) corresponds to a filtering operation with transfer

function of H;(z). The additions make each of these filtering operations independent,

whose final outputs are summed to produce the overall filtered output. These four
independent filtering operations can be performed in parallel using a four channel

architecture, as shown in Figure 4.4,

Figure 4.4: Four channel filter architecture for 2 digit DBNS

H1(z)
X1(2)
H2(z) ‘—\
Y(2)
H1(z) —
X2(z)
H2(z)

DBNS FIR Filter Architcctures 2 Digit DBNS Architecture 45

University of Windsor

The increase in hardware area by adding the additional channels is a linear increase. but
the area reduction of the ROM due to decrease of the ternary exponent bit length follows a
square law. This means that for small exponent systems. the use of a hybrid DBNS system
reduces the area. For systems that have exponents of nine or more bits using the hybrid
DBNS scheme. switching to the two digit architecture would offer superior area

optimization. due to the large decrease of ROM area.

4.5.1 Two Digit Channel Reduction

The problem with the two digit DBNS architecture is the trade off of doubling the number
of channels. for reducing the exponents by a factor of two. Because of this trade-off. it can
be difficult to decide when to use a two digit DBNS system and when to use a hybrid
DBNS system. If a single filtering channel could be removed, the hardware savings to a
two digit DBNS structure would be obvious. Then use of a two digit DBNS system would

almost always be the better design choice.

[f the Greedy Algorithm, or the modified Greedy Algorithm, is used to generate both the

data and the coefficients. then the following relationships can be made: X, » X, and

H, » H,. This is due to the first digit being as close as possible to the target number, and

the second digit correcting for the error, even for the mapping of small numbers. To
illustrate this point Table 4.2 shows the DBNS coefficients of a 53 tap bandpass FIR filter.
The closest value between two digits is in the third entry of the first column, 8.7891e-03

and 2.1701e-04. and there is more than an order of magnitude between them. Obviously

the relationship of X, » X, and A | » H, holds true for this case.

DBNS FIR Filter Architectures 2 Digit DBNS Architecture 46

University of Windsor

Table 4.2: S3DBNS bandpass FIR filter coefficients

1! Digit 2"d Digit 1% Digit 2" pjgit 1%t Digit 2" pigit

-2.0833e-02 | -1.9290e-04 || 9.7546e-03 | 5.7156e-05 || -6.2500e-02 | -2.2862e-04

0 0 0 0 0 0 |
8.7891e-03 | 2.1701e-04 || 1.0547e-01 | 1.9290e-04 || -9.7546e-03 | -1.7147e-04

0 0 0 0 0 0 |
2.6367e-02 | 3.8580e-04 || -9.7546e-03 | -9.0422e-06 || 4.3896e-02 | 3.4294e-04

0 0 0 0 0 0 I
-9.2593€-03 | -1.9052e-05 || -3.1641e-01 | -1.6479¢-03 || 9.2593e-03 | 1.7147e-04 |

0 0 0 0 0 0
-3.2922e-02 | -7.1445e-06 || 4.7461e-01 | 3.5156e-02 || -3.2922¢-02 | -7.1445¢-06 I

0 0 0 0 0 0
9.2593e-03 | 1.7147e-04 || -3.1641e-01 | -1.6479¢-03 || -9.2593e-03 | -1.9052e-05 I

0 0 0 09 0 0 |
4.3896e-02 | 3.4294e-04 || -9.7546e-03 | -9.0422¢-06 || 2.6367e-02 | 3.8580e-04

0 0 0 0 0 0 I
-9.7546e-03 | -1.7147e-04 || 1.0547e-01 | 1.9290e-04 || 8.7891e-03 | 2.1701e-04 |

0 0 0 0 0 0
-6.2500e-02 | -2.2862e-04 || 9.7546e-03 | 5.7156e-05 || -2.0833e-02 | -1.9290e-04 |

0 0 0 0 I

—

Using Equation (4.4). it can be seen that the last term. X5/, becomes negligible because

‘YlHl » (/YIHl or ’YZHI) » /Ysz and Y(Z) = XIHI + X]Hz + XZHI + Xsz. The last

term is so small in comparison to the other three that it becomes insignificant. The new

architecture, using only three channels if shown in Figure 4.5.

DBNS FIR Filter Architectures

2 Digit DBNS Architecture

47

University of Windsor

Figure 4.5: 2 digit reduced channel architecture

P

; H1(z)
xiw,/
N H2(2)

!

Y(z)

X2(z)

H1(z)

A small loss in accuracy of the filter should be expected. Figure 4.6 shows the plot of the
3 channel filtered signal compared to the input floating point signal. and Figure 4.7 shows
the error in between the filtered signals and the input signal. Both the DBNS data signals
and the coefficients used here are represented using two digit DBNS with binary

exponents of 6 bits and ternary exponents of 5 bits.

Figure 4.6: Comparison between 3 channel filtered signal and floating point signal
Floating point Signal and 3 Channel Filtered Signal

T

\ A S NN
/—\ \ </ "\v/’/\ /\ \/ /\\o/ \

!
06

1

1

os8

T

Magnitude
(o]
T
1

!

M v

|
o
[s1]

T

: t

250 300 350 400

Sample

From Figure 4.7, it can be seen that the error in the 3 channel and 4 channel filtered

signals are very close. The amount of noise in a signal can be characterized by its Signal to

DBNS FIR Filter Architectures 2 Digit DBNS Architecture 48

University of Windsor

Noise Ratio (SNR). The signal to noise ratio is calculated using the following formula

[18]:

Y 3\
SNR = 20 log(M dB (4.5)
notse
Using this calculation the signal to noise ratio of the filtered signal of the 3 channel filter
was calculated to be 35.50dB and the SNR of the 4 channel was 35.46dB. Note that the
errors are very close. and that the 3 channel filter actually has a better SNR result. This

should not always be expected to occur.

Figure 4.7: Error between input signal and filtered signals

Error Between 3 and 4 channael filtered signal and input signal
0.04 : T T T T T
——— 3channel
| —— 4 channel

0.03

0.02

Error
[o]
-

-0.02

-0.03

-0.04 ‘ : : ' ' :
o 50 100 150 200 250 300 350 400

Sample Number

The error could be reduced. thereby increasing the SNR, by increasing the number of bits
used to represent the input data. The increase in the number of bits in the input data could
increase the size of the ternary ROM used in the DBNS to binary conversion. if the
number of coefficient bits is similar to the number of data bits. In this case, it makes sense
to also increase the size of the coefficient exponents to match the number bits used for the

data bits. as it would not further increase the size of the ROM. This increase in the

DBNS FIR Filter Architectures 2 Digit DBNS Architecture 49

University of Windsor

dynamic range of the filter coetficients would further increase the accuracy of the filter.

reducing the error and increasing the signal to noise ratio.

4.6 Comparison to Binary

A comparison to a binary system is necessary to show how DBNS compares to a standard
design. The binary system follows the same systolic array architecture. using a pipeline of
MAC cells. as the DBNS filter described above. The binary MAC cell was approximated
using the same design flow used for both the hybrid and two digit DBNS FIR filter designs
(as discussed in Chapter 5). The approximation of the binary MAC cell area was produced
by adding the area of a 16 bit binary multiplier (see Figure 4.9) and the binary
accumulator from the DBNS design (see Figure 5.7). A 16 bit binary MAC cell was used
because it requires 16 bits for a direct mapped binary filter to produce a similar frequency
response to that of the two digit DBNS filter. The frequency responses of a range of direct

mapped binary filters compared to the two digit DBNS filter can be seen in Figure 4.8.

Figure 4.8: Binary filter responses
Mappsed FIR Filter Response

20 T ; T T T
— 12 bit coef
—— 14 bit coef
o] —— 16 bit coef -
—— 6b5t DBNS coef
20+~ .
—40+ -

-100

T

Magnitude Response (dB)
!
@
(o]
1

-120

¥

-140

-160

-180 : ; : L :
0 0.5 1 1.5 2 25 3 a5

Normalized Frequency

DBNS FIR Filter Architectures Comparison to Binary 50

University of Windsor

Unfortunately the design flow and tools used lacked access to any ROM libraries. This
disadvantages the DBNS designs as they rely heavily upon the use of ROMs. which will
have to be made from combinational logic. greatly increasing the area required for a look-
up table. Therefore the size of the DBNS MAC cells are larger than they would normally
be. if designed with access to ROM libraries. The binary system has the advantage of not

using any ROMs at all.

Figure 4.9: Binary multiplier cell (660x9251.um)

4
Y !l

The binary MAC cell is composed of a binary multiplier and an accumulator. The DBNS
MAC cells have the structure as shown in Figure 4.2. The binary filter requires only one
MAC cell per tap. whereas the hybrid and two digit DBNS require two and three MAC
cells per tap. respectively. The filtering channels occupy the majority of the area of a chip
so only a filter tap will be compared. Note that the DBNS MAC cells include the area

necessary for the latches required for the loadable coefficients and the systolic array,

DBNS FIR Filter Architectures Comparison to Binary 5t

University of Windsor

where the binary MAC cell does not. Table 4.3 summarizes the area required for a single

filter tap.
Table 4.3: Area comparison between binary and DBNS filter taps
Binary Hybrid DBNS 2 Digit DBNS
MAC area (um?) 647.564 3.021.782 215.985
MAC/tap I 2 3
Tap area (Lm-) 647.564 6.043.564 647.955

The two digit DBNS tap is only slightly larger than the binary equivalent. Though if the
DBNS MAC was designed using ROM libraries it would be much smaller. making the
overall tap area smaller than the binary tap. Also the area of the binary MAC is missing
area required for the systolic array and loadable coefficient latches. These two factors

show that DBNS FIR filters are a viable alternative to traditional binary filters.

4.7 Summary

This chapter introduced and discussed the architectural design of DBNS FIR filters. Two
architectures were described. the hybrid 2 digit DBNS and the 2 digit DBNS. The 2 digit
DBNS offers superior reductions in area complexity over the hybrid DBNS. particularly
when using channel reduction and larger exponents. Also, despite the disadvantage of
having the ROMs built from combinational logic, the 2 digit DBNS design is of

comparable size to the binary design.

w
[

DBNS FIR Filter Architectures Summary

Chapter 3

A DBNS FIR Filter
Case Study

5.1 Introduction

The Double Base Number System (DBNS) FIR filter has been
shown to be theoretically sound. This was done through theory.
mathematics and MatLab simulations. To fully test and prove the
theory behind the DBNS FIR filter a physical microchip should be

built and tested.

A microchip was built and tested early during the research to test
the validity of the DBNS FIR filter architecture. The designed filter
was a 15 tap hybrid DBNS FIR filter with single digit, 10 bit binary
and ternary exponents for the coefficients and 2 digit. 5bit binary
and 4 bit ternary exponents for the data. The design methodology is
described below. The Hardware Description Languages (HDLs)
used for the design were Verilog for simulation and VHDL for
synthesis. The work presented here was the combined effort of the

author and Mr. Roberto Muscedere.

5.2 Verilog Simulation

The first step was to ensure that the design behaves as expected.

Verilog is the tool of choice for this stage, because the simulation

A DBNS FIR Filter Casc Study

Introduction 53

University of Windsor

results are easier to interpret and understand than simulation in VHDL. The Verilog code
used in our chip design was built in a hierarchical structure. Using a top-down approach,
the overall filter was described in Verilog. Next a single tap was described. and finally the
individual components of a tap. Figure 5.1 shows the overall Verilog hierarchy. The

simulation was performed for a 57 tap FIR filter.

Figure 5.1 Hierarchal diagram for HDL description of a DBNS filter

filter.v (input.lut)

parameters.v

binary4dbnshut.v (btod.hat)

temp.v

[#tap] ctap.v

atap.v

multiplier.v bshifter.v

ternarylut.v

(ternary.lut) SIRD oty

binaryadder.v accum.v

[3] rlatch.v

The filter is designed to have three distinct stages. The first stage is a binary to DBNS
converter. This allows the data to be input in binary format. The converter was
implemented through the use of a large look-up table ROM. A binary to DBNS converter
[26] could not be used because the size of the data exponents, 5 bit binary and 4 bit
ternary, are too small for the conversion algorithm to work. Next is the filtering stage made

up from 2 parallel filtering channels. These channels are made entirely from DBNS MAC

A DBNS FIR Filter Casc Study Verilog Simulation 54

University of Windsor

cells. Finally there is the output stage which sums the binary output of the two filtering
channels for a final output. The second and third stage together form the hybrid DBNS
filter as shown in Figure 4.3. Note that the input and the output of this filter chip is in
binary. while the inner workings use DBNS arithmetic. This allows the chip to be used in

existing systems. or for use without needing to know anything about DBNS.

The Verilog code was written to use loadable/programmable coefficients. These
coefficients are loaded directly into the filtering channels as the DBNS coefficients’
exponents in 2’s complement binary. A genetic algorithm was used to produce the
coefficients used for the simulation. The order of the filter was 57 with a stopband
attenuation of 40dB and a passband ripple of 0.0853dB. and the magnitude response can

be seen in Figure 5.2.

Figure 5.2 Magnitude response of genetic algorithm designed DBNS FIR filter

20 T T T T i | T T T

Magnitude (dB)
\
EeS
o
T

_60 -
_80 -
-100 ! 1 1 1 L ! ! 1 !
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (xr rad/sample)

Of the signals used in testing, the signal that shows the filtering effect best is a chirp
signal. The chirp signal used was a sine wave whose frequency ramped from 1kHz to
512kHz over the course of 1000 samples. A plot of this chirp signal can be seen in Figure
5.3. This signal is supplied to the simulation in binary format, converted to 2 digit DBNS,
by the first stage of the chip, and then filtered. The final output of the filter can be seen in
Figure 5.4. Note that the output signal repeats, using the beginning of the 1 kHz sine wave

and the end of the 512kHz sine wave as the period of the input signal.

w
n

A DBNS FIR Filter Casc Study Veritog Simulation

University of Windsor

Figure 5.3 Input chirp signal ranging from 1 kHz to 512kHz

~ Magnitude

Samples

The output chirp signal shows the chirp signal rapidly dropping of and then almost fiat
around zero, this represents the transition and stop bands of the filter. This output signal

and other test signals mean that the simulation results demonstrate that the DBNS

architecture performs as the filter designed.

5.3 VHDL Synthesis

Design synthesis is what allows for rapid chip design. Synthesis takes a Hardware
Description Language code file and compiles it into a physical design. This allows a
person to describe a system using a programming like interface and yet produce hardware.
VHSIC HDL (VHDL) was the HDL chosen for synthesis. VHDL is more suited to this

task than Verilog. This is because VHDL understands concepts such as sign binary

A DBNS FIR Filter Case Study VHDL Synthesis

University of Windsor

arithmetic and sign extension and handles them automatically. Additionally, our synthesis

tool. Synopsys. has better support for VHDL.

Figure 5.4 Filtered chirp signal

Magnitude

The VHDL was written at the behavioural level. This means that only the behaviour of the
system needs to be described. such as addition, multiplication or shifting. Synopsys
nandles converting this description into gates or other cells supplied by a library of
standard cells. The VHDL coding of the system proceeded very rapidly. due to already
having the Verilog code for the system to convert into VHDL. A quick, simple simulation

using the VHDL code was done to make sure that the VHDL code was correct.

Synopsys was used to take the behavioral description of the system and produce a
description using the necessary library cells and connections for layout. The output was

constrained to the desired timing specifications and for low area. The timing constraint

A DBNS FIR Filter Casc Study VHDL Synthcsis 57

University of Windsor

was set for 20MHz, due to the maximum frequency of the testing hardware used. The
output format from Synopsys was a Verilog file for use with the Cadence tool Design

Floorplanner. and a system timing file (.sdf) used in Silicon Ensemble for routing.

There was one major problem encountered during synthesis. There were no ROM libraries
for use with Synopsys. This meant that the ROMs in the design. one for the input stage
and one for each DBNS MAC cell. must be created from combinational logic. This greatly

increases the area of the components that contain ROMs.

Due to the very large nature of the system. there were too many gates to make
synthesizing the system all at once practical. Therefore another approach was needed. The
system was made up of 3 main components: the input stage, DBNS MAC cells. and the
output accumulator. To make synthesizing feasible each component was processed as if it
were a separate chip. This produced a macro block of each component used later for

manual chip assembly.

5.3.1 Placement and Routing

Placement and routing are used to take the gate level description of a system and produce
a physical layout. This layout, with only a few minor modifications. is used to fabricate the
microchip. Placement is used to place the library cells in a location of the microchip in
such a way as to optimize routing and minimize timing. Routing finds the best way to
connect the cells in a manner that minimizes delay, especially for the clock signals and
critical paths. Throughout both placement and routing, the timing constraint was set for

20MHz. due to the limitations of testing equipment used.

Normally all the cells for the chip would be placed, and then the entire chip would be
routed. For the hybrid DBNS filter this was not possible. There were too many gates for
the workstations used to handle at one time. Therefore, each of the main components were

processed as if it were a chip.

A DBNS FIR Filter Case Study VHDL Synthesis 58

University of Windsor

Design Floorplanner was the tool used to perform the placement of the library cells.
Before the library cells are placed. there are a few steps that need to be taken. First the
pads must be setup and placed in an efficient manner (i.e. the inputs on the top, outputs on
the bottom and the power and ground on the sides). then the cells must be grouped. This
places cells that should be in close proximity together. Next the groups are arranged on the
die and some placement parameters must be set. These parameters include placement of
the power and ground rails and the channel width between rows of cells and the clock tree
must be generated. The clock tree is a very important factor of the placement. It ensures
that the clock signal will arrive at all cells as close as together as possible and with a
minimum of skew. Once these parameters are set and the clock tree is generated. the cells

can be placed.

When the cells are placed, the placement is checked to see the congestion of the wire
routing. If the congestion is too high. the placement must be performed again. adjusting
parameters to allow for more space between the cells. When the congestion in the design

is lowered to acceptable levels. the layout is exported for use in Silicon Ensemble.

The routing for the design was handled through Silicon Ensemble. The output from
Design Floorplanner and the *.sdf file from Synopsys are imported into Silicon Ensemble.
Silicon Ensemble is used to first route the power and ground. next the clock is routed to

ensure the clock gets the best possible routing. Finally, the remainder of the chip is routed.

Sometimes the automated routing will violate design rules. The best method for dealing
with these errors is with the auto fix and replace tool, Froute. When using Froute, it is best
to fix the violations on the pads first, then on the core. When using Froute on the core it is
best to start with small areas and expand the area if the violation cannot be fixed. Even
very large numbers of violations can be repaired in this manner. On the DBNS ALU

macro block over 27,000 rule violations were repaired.

A DBNS FIR Filter Casc Study VHDL Synthesis 59

University of Windsor

Figure 5.5 Input Stage, Binary to DBNS Conversion ROM (2969x6661m)

RIS

Once all the violations are repaired. the design is imported into Cadence Design
Frameworks II (or Cadence). The macro blocks of the three macro blocks can be seen in
Figure 5.5. Figure 5.6 and Figure 5.7. Only one input and one output stage are required for
the filter. but the chip has two processing channels each composed of 15 DBNS ALUs. for
a total of 30 DBNS ALUs. The input stage is 2969x666um. the DBNS ALU is

3526x857um and the output stage is 328x 113 um.

Figure 5.6 DBINS MAC cell (3526x857 um)

A DBNS FIR Filter Case Study VHDL Synthesis 60

University of Windsor

5.4 Final Chip Assembly

The overall system was not synthesized all at once. but broken into smaller blocks. This
meant that the final chip had to be manually assembled. The tool for manually assembling

the chip is Cadence Design Frameworks II.

The macro blocks require some minor modifications. These modifications are performed
so that when the blocks are abutted the proper connections are formed. Once the
modifications are made. the pads and macro cells can be manually placed and the pads

connected to the core.

The second from last step is to check if the design meets the process requirements. The
process may require a certain percentage of the area to be covered by each process layer.
For example the hybrid DBNS filter design had 19% of the area polysilicon and 24% of
the area metal 3. where the process required 30% of both for the area. Extraneous blocks
of polysilicon and all metal layers had to be placed in order to meet these process

requirements.

The final step before sending the chip for fabrication is a Design Rule Check (DRC). This
final check makes sure that the design does not violate any of the design rules that could

cause fabrication errors.

The final size of the chip was 16x9mm. A picture of the final chip can be seen in Figure

5.8.

A DBNS FIR Filter Case Study Final Chip Asscmbly 61

Uaiversity of Windsor

Figure 5.8 Final Chip Layout (16x9 mm)

I
i |l

5.5 Testing the Chip

The first step in testing is to setup the test head. This involves wirewrapping the testhead
pins connected to the chip to the pins that connect to the test fixture connectors. Once the

wirewrapping is done a power up test can be performed.

A DBNS FIR Filter Case Study Testing the Chip 62

University off Windsor

The power up test is the first test to perform on a new chip. It checks to see if there are any
short circuits in the chip or test head. By performing the power up test. a problem in the
chip package was uncovered. The bonding wires between the chip die and the chip
package had too much slack and were pressed against the package cover or another wire.
This caused short circuits between the bonding wires. destroying the chip. To recover from
this problem, the chip had to be tested with the cover removed and the bonding wires

carefully separated ahead of time.

The next test performed was a functional test. For this test, test vectors were generated
from the data used during the Verilog simulations. Because the test vectors were generated
from previous simulation data. the desired output of the filter is known. The functional test

produced results similar to the Verilog simulation results.

Both the power up and the functional tests of the chip were performed successfully and
with positive results. Therefore the DBNS FIR filter and the chip behaved as expected. and

can be considered a successful design.

5.6 Comparison to 2 digit DBNS

In order to compare the area savings between a hybrid DBNS design and a full two digit
DBNS design, a two digit DBNS FIR filter chip had to be designed. The two digit DBNS
filter used 5 bit binary and 4 bit ternary for the coefficients, and used the same number of’
exponent bits for the input data as the hybrid DBNS filter design. This chip followed the
exact same design flow as the hybrid DBNS design described above. The only difference
in the design flow was that the two digit design was not sent away for fabrication and did

not have the extraneous layers placed to satisfy the process rules.

Figure 5.9 shows the 15 tap, hybrid DBNS FIR filter, described in the previous section,
next to a 53 tap, channel reduced, two digit DBNS FIR filter. Note that these two chips are
on the same scale, and that the two digit DBNS uses considerably less area than the hybrid

DBNS filter, even though the two digit filter has 53 taps, three and a half times the number

A DBNS FIR Filter Case Study Comparison to 2 digit DBNS 63

University of Windsor

of taps. Normally the size ditference would not be so severe. but the lack of ROM libraries
vastly increased the size of the ROMs used in the design. and therefore the area required
by a MAC cell on the ROM. This affects the hybrid DBNS design more because the size

of the required ROMs are much larger than the ROMs used in the two digit DBNS design

Figure 5.9 15 tap, hybrid DBNS FIR filter (left) and a 53 tap, reduced channel, 2
digit DBNS FIR filter (right)

HERUE LRI HNRED bl

AN R AR

A DBNS FIR Filter Case Study Comparison to 2 digit DBNS 64

University of Windsor

5.7 Summary

This chapter demonstrates that the DBNS representation can be used to make practical
filters. The filters designed used industry standard tools and standard libraries. The only
lacking industry tool was a ROM library. If ROM libraries were used. the design would
consume considerably less area. making DBNS a more viable design. The input stage
would appear to grow to unreasonable size for data requiring a large number of bits. This
can be avoided by using a binary to DBNS converter, that was unusable for this design

since the data dynamic range was too low.

A DBNS FIR Filter Case Study Summary 65

Chapter 6

Conclusions and
Future Work

6.1 Conclusions

This thesis has explored applications of the double-base number
system to the implementation of systolic FIR filters. We have
discovered that the DBNS number system offers significant
advantages over standard binary systems, mainly through overhead
reduction in area achieved by not using multipliers. This applies not
only in systems with specialized needs. but in general DSP tasks.
Also the design of the coefficients for DBNS filters is very easy. No
computationally intensive tools or algorithms are needed to find
coefficients, since floating point results can be mapped directly into

a 2-digit DBNS format with a simple greedy algorithm.

The investigation into full 2 digit DBNS FIR filter architecture has
shown that the 2 digit architecture is much more area efficient than
the hybrid DBNS architecture. The full 2 digit DBNS filter
architectures are also found to be very competitive to binary

implementations in area of silicon required for the fabrication.

The microchip designed in Chapter 5 was designed to operate in a

binary environment. This means that DBNS filtering systems can be

Conclusions and Futurc Work

Conclusions 66

University of Windsor

fully integrated into a binary system without any special modifications.

6.2 Contributions

This thesis has introduced a simple mapping scheme for converting floating point numbers
into the DBNS representation. This mapping produces results with acceptable accuracy.

allowing the use of existing floating point filter design tools.

The hybrnd 2 digit DBNS FIR filter was extended into a two digit DBNS FIR filter. With
this change the DBNS filter achieves a much lower area complexity than the hybrid DBNS
filter. The use of our greedy 2-digit mapping scheme allows for a channel reduction,

decreasing the area complexity of a DBNS filter by 25%.

We have also introduced the concept of asymmetric coefficient indices that can produce a
reduction in area complexity compared to the use of symmetric indices. By increasing the
binary exponent, and decreasing the ternary exponent. the number representation range
remains almost constant while decreasing the size of the conversion ROM used in our

multiplier/accumulator processor.

A microchip was fabricated as a proof of concept for DBNS filtering architectures. The
successful testing of this chip has shown that DBNS filters can be made in practice and are

a practical alternative to binary implementations.

6.3 Suggestions for Future Work

The Double Base Number System has only recently been disclosed, and there are many
areas that still need to be investigated. First of all, the use of odd bases other than 3 needs
to be investigated. The use of other odd bases may offer many advantages, even if only to

specialized tasks.

Conclusions and Futurc Work Contributions 67

University of Windsor

In the filter design discussion of Chapter 3. we see that the largest errors in DBNS mapped
filters. occur on the small number of largest value coefficients around the point of
symmetry of the impulse response. By reducing this mapping error, the mapped filter
response would be much closer to the original designed filter. Methods for reducing this
error. such as scaling the coefficients to produce more favourable numbers for mapping.

need investigation.

The effects of channel reduction in two digit DBNS filter needs to be examined more
carefully. While favourable results were achieved in this thesis. in general this may not be

the case.

An ASIC filter design of both the hybrid and two digit DBNS FIR filter needs to be
produced using custom cells and ROMS. This will show the true benefit from overhead
reduction caused by using DBNS. We can also use such a design study to perform a more

realistic comparison with competing binary implementations.

Conclusions and Future Work Suggestions for Future Work 68

University of Windsor

REFERENCES

[8]

[9]

[10]

[t1]
[12]

(13]

[14]

(16]

(17]

(18]

V.S. Dimitrov. G.A. Jullien and W.C. Miller. “Theory and Applications of the Double
Base Number System.” IEEE Trans. on Computers. Oct 1999, pp. 1098-1106 vol 48.

G.A Jullien. V.S. Dimitrov, B. Li. W.C Miller, A. Lee. and M. Ahmadi. “4 Hvbrid
DBNS Processor for DSP Computation.” Proceedings of [EEE International Sympo-
sium on Circuits and Sytems (ISCAS) 1999, Orlando. FL. May 30 - June 2. Vol 1,
pages I5 - [8.

V.S.Dimitrov. J.Eskritt. L.Imbert, G.A.Jullien and W.C.Miller. “The use of the multi-
dimensional logarithmic number system in DSP applications.” 15th I[EEE Sympo-
sium on Computer Arithmetic, Vail, Colorado. June 2001. Accepted for presenta-
tion.

S. Y. Kung. “VLSI 4rray Processors.” Prentice Hall 1988. Pages 198, 222.

J. L. Hennessy and D. A. Patterson. “*Computer Organization and Design: The Hard-
ware/Software [nterface.” Morgan Kaufmann Publishers 1998. Pages 436

A. Lee. “Design of I-D and 2-D Filters with Finite-Wordlength Coefficients Using
Genetic 4lgorithms.” Master Thesis, University of Windsor, 2000

M. Shahkarami. “Exploiting Redundancy in Modulus Replication Product Proces-
sors.” Ph.D. Thesis, University of Windsor, 1999

V.S. Dimitrov. Saeid Sadeghi-Emamchaie, G.A. Jullien and W.C. Miller. “4 Near
Canonic Double-Based Number System (DBNS) with Applications in Digital Signal
Processing.” Invited paper, SPIE Conference on Advanced Signal Processing Algo-
rithms. Denver, 1996.

A. Antoniou. “Digital Filters: Analysis, Design and Applications.” McGraw-Hill
1993. Pages 51, 247

J. Eskritt, R. Muscedere, G.A. Jullien, V.S. Dimitrov and W.C. Miller. “4 2-Digit
DBNS Filter Architecture.” Proceedings of the 2000 IEEE Workshop on Signal Pro-
cessing Systems (SiPS 2000), Lafayette, LA, October. Pages 447-456.

M. S. Roden. “Analog and Digital Communication Systems.” Prentice Hall 1996.
Pages 137-138.

REFERENCES 69

University of Windsor

[24]

[25]

[26]

[27]

[28]

[29]

[30]

R. King. M. Ahmadi. R. Gorgui-Nguib. A. Kwabwe, M. Azimi-Sadjadi. “Digital
Filtering in One and Two Dimensions: Design and Applications.”” Plenum 1989

A. Oppenhiem. R. Schafer. “Discrete-Time Signal Processing.” Prentice Hall 1989.

J. Holland. “Adaption in Natural and Artifical Systems.” University of Michigan
Press. 1975.

D. Goldberg. “Generic Algorithm in Search, Optimization, and Machine Learning.”
Addison Wesley. 1989.

A. Lee, M. Ahmadi. G. A. Jullien. W. C. Miller. and R. S. Lashkari. = Design of 1-D
FIR Filters with Genetic 4lgorithm”, Proc. 1999 Inter. Symp. on Circ. and Syst.,
17.9.

D.M.Lewis. “Interleaved memory function interpolators with application to an
accurate LNS arithmetic unit.” IEEE Trans. Computer Arithmetic. Vol. 43, No. 8,
pp-974-982. 1994.

J.N. Coleman. E.L. Chester, C.I. Softley and J. Kaldec. Arithmetic on the European
Logarithmic Microprocessor, [EEE Trans. Comp.. vol 49, No 7, pp 702-715. 2000

R. Muscedere, G.A. Jullien, V.S. Dimitrov. and W.C Miller. “Non-linear signal pro-
cessing using index calculus DBNS arithmetic”” SPIE Vol. 4116. November 2000

S. Sadeghi-Emamchaie. G.A. Jullien, V.S. Dimitrov and W.C. Miller. “Cellular Neu-
ral Network Implementation of Digital Arithmetic using Svmbolic Substitution.”

Y. Taur and T. Ning. “Fundamentals of Modern VLSI Devices.” Cambridge Univer-
sity Press 1998.

T. Dillinger. =“VLSI Engineering.” Prentice Hall 1988.

D. J. Smith. “HDL Chip Design.” Doone 1998.

REFERENCES

70

Appendix A

VHDL Code for Hybrid
DBNS FIR Filter

A.1 Introduction

These files were originally written for the design and fabrication of
the hybrid filter described in Chapter 5. The code was written by
Roberto Muscedere with modification by Jonathan Eskritt. This
VHDL is only suitable for synthesis. To use the code for
simulation, a set of wrapper files would be required to “glue™ the
components into a complete filter, and a test bench and data would

have to be written.

A.2 Binary to DBNS Coversion Stage

This is the VHDL code for the binary to DBNS conversion ROM.

The code has directives to include btod.vhd and parameters.vhd.

A.2.1 binary4dbnslut_export.vhd
library IEEE;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.all;

library DBNS;

use DBNS.btod.all;

use DBNS.DBNSfilter.all;
use DBNS.parameters.all;

University of Windsor

entity binary4dbnslut_export is
port (CLKI: in STD_LOGIC;
CLKO: out STD_LOGIC;
CRESETI: in STD_LOGIC;
CRESETC: out STD_LOGIC;
SINARYIN: in SIGNED(dsize downto 0) ;
SIGN1: cut SIGNED(1 downto 0);
INDEX3IN1: out SIGNED(dbsizel downto 0);
INDEXTERN1: out SIGNED(dtsizel downto 0);
SIGN2: out SIGNEZED(1 downto 0);
INDEXBIN2: out SIGNED(dbsize2 downto 0);
INDEXTERN2: out SIGNED (dtsize2 downto 0));
end binary4dbnslut_export;

architecture behaviour of binaryv4dbnslut_export is
begin

U0: binarv4dbnslut
generic map (dsize,dbsizel,dtsizel,dbsize2,dtsize2)
port map (CLKI, CLKO, CRESETI, CRESETO, BINARYIN, SIGN1,
INDEXBIN1l, INDEXTEZRN1l, SIGN2, INDEXBIN2, INDEXTERNZ);

end pbehaviour;

A.2.2 btod.vhd

This file descirbes the look-up table used for the conversion. It is truncated here. to save

space, as it is over a thousand lines long.

library IEEE;
EEE.std_logic_arith.all;

use IEEE.std_logic_1l164.all;

use IEEE.std_logic_unsigned.all;

package btod is
subtype ROM_WORD_S5_4 is UNSIGNED(21 downto 0);
subtype ROM_RANGE_1024 is INTEGER range -512 to S51i;
type ROM_TABLE_1024_5_4 is array (ROM_RANGE_1024‘low to
ROM_RANGE_1024'high) of ROM_WORD 5 _4;

constant btod_1024_5_4: ROM_TABLE 1024 5 _4 := (

"1101001000000000000000",
"1101001000001000000000",
“1101001000001000010000~,

“01010010000110Q000000001",
*0101001000011000010000",
*0101001000011000000000"
) ;

University of Windsor

end btod;
A.2.3 parameters.vhd

The parameter file includes all the variable parameters. such as bit width and bus size.

These parameters are stored here for global use in all VHDL throughout the design.

.std_logic_arith.all;
-std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

package parameters is

constant dsize : INTEGER := 9;

constant dbsizel : INTEGER := 4;
constant dtsizel : INTEGER := 3;
constant dbsize2 : INTEGER := 4;
constant dtsize2 : INTEGER := 3;
constant cbsize : INTEGER := §;
constant ctsize : INTEGER := 9;
constant dbsize : INTEGER := 4;
constant dtsize : INTEGER := 23;
constant mbsize : INTEGER := 9;
constant mtsize : INTEGER := 9;
constant lbsize : INTEGER := 10;
constant ltsize : INTEGER := 9;
constant absize : INTEGER := 9;
constant sbsize : INTEGER := 12;
constant asize : INTEGER := 18;
constant osize : INTEGER := 15;
constant taps : INTEGER := 57;

end parameters;

A.3 DBNS MAC Cell

The DBNS MAC cell is the most fundamental cell of the DBNS filter. These cells are what
make up the filter itself. The cells include all the circuitry for loadable coefficients. This

VHDL file relies on the the Itap.vhd file and the parameters.vhd file from Section A.2.3.

A.3.1 ltap_export.vhd
library IEEE;

use IEEE.std_logic_arith.all;
use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

73

University of Windsor

liprary SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.all;

liprary DBNS;
use DBNS.DBNSfilter.all;
use DBNS.parameters.all;

entity ltap_export is
port (CLKI: in STD_LOGIC;
CLKO: out STD_LOGIC;
CRESETI: in STD_LOGIC;
CRESETO: out STD_LOGIC;
LRESETI: in STD_LOGIC;
LRESETO: out STD_LOGIC;
DATASININ: in SIGNED(dbsize downto 0);
DATABINOUT: out SIGNED(dbsize downto 0);
DATASIGNIN: in SIGNEZD(1 downto 0);
DATASIGNQUT: out SIGNED(1 downto 0);
DATATERNIN: in SIGNED(dtsize downto 0);
DATATERNOUT: out SIGNED(dtsize downto 0);
ACCUMIN: in SIGNED(asize downto 0);
ACCUMOUT: out SIGNED(asize downto 0j;
LCLKI: in STD_LOGIC;
LCLKO: out STD_LOGIC;
COEFBININ: in SIGNED(cbsize downto 0);
COEFSIGNIN: in SIGNED(1l downto 0);
COEFTERNIN: in SIGNED{(ctsize downto 0);
COEFBINOUT: out SIGNED(cbsize downto 0j};
COEFSIGNOUT: out SIGNED(1l downto 0) ;
COEFTERNQOUT: out SIGNED(ctsize downto 0}) ;
end ltap_export;

architecture behaviour of ltap_export is
begin
U0: ltap
generic map (cbsize, ctsize, dbsize, dtsize, mbsize, mtsize,
lbsize, ltsize, absize, sbsize, asize)
port map (CLKI, CLKO, CRESETI, CRESETO, LRESETI, LRESETO,
DATABININ, DATABINOUT, DATASIGNIN, DATASIGNOUT,
DATATERNIN, DATATERNOUT, ACCUMIN, ACCUMOUT, LCLKI,
LCLKO, COEFZ3ININ, COEFSIGNIN, COEFTERNIN, COEFBINOUT,
COEFSIGNOUT, COEFTERNOUT) ;

end behaviour;

A.3.2 ltap.vhd

This is built around ctap.vhd and contains the registers necessary for the loadable

coefficients.

library IEEE;
use IEEE.std_logic_arith.all;

74

University of Windsor

use IE
use IE

library SYNOPSYS;

EE.std_logic_1164.all;
EE.std_logic_unsigned.all;

use SYNOPSYS.ATTRIBUTES.all;

library DBNS;

use DBNS.D3NSfilter.all;

entity ltap is

generic(cbsize,ctsize,dbsize,dtsize,mbsize,mtsize,lbsize,lcsize,absize,sbsize,

asize: INTEGER) ;

port (CLKI:

in STD_LOGIC;

CLKO: out STD_LOGIC;
CRESETI: in STD_LOGIC;
CRESETO: out STD_LOGIC;
LRESETI: in STD_LOGIC;
LRESETO: out STD_LOGIC;

DATABININ:

DATABINOUT:
DATASIGNIN:

in SIGNED(dbsize downto 0} ;
out SIGNED(dbsize downto 0) ;
in SIGNED(1 downto 0);

DATASIGNOUT: out SIGNED(l1 downto 0) ;

DATATZRNIN:

in SIGNED (dtsize downto 0);

DATATERNOUT: cut SIGNED(dtsize downto 0) ;
ACCUMIN: in SIGNED(asize downto 0) ;

ACCUMOQUT :

out SIGN=D(asize downto 0);

LCLKI: in STD_LOGIC;

LCLKO: out
COEFBININ:

COEFSIGNIN:
COEFTERNIN:
COZFBINOUT:

STD_LCGIC;
in SIGNED(cbsize downto 0);
in SIGNED(1 downto 0);
in SIGNED(ctsize downto 0);
out SIGNED(cbsize downto 0) ;

COEFSIGNQUT: out SIGNED(1 downto 0) ;
COEFTERNOUT: out SIGNED(ctsize downto 0)):;

end ltap;

architecture behaviour of ltap is

pegin

s_rlatchi:

rlatch

generic map (1)
port map (LCLKI,LRESZTI,COEFSIGNIN, COEFSIGNOUT) ;

s_rlatch2:

rlatch

generic map (cbsize)
port map (LCLKI,LRESETI,COEFBININ, COEFBINOUT } ;

s_rlatch3:

rlatch

generic map (ctsize)
port map (LCLKI,LRESETI,COEFTERNIN,COEFTERNOUT) ;

s_ctap: ctap
generic map (cbsize, ctsize, dbsize, dtsize, mbsize, mtsize,

lbsize, ltsize, absize, sbsize, asize)

port map (CLKI, CRESETI, COEFBININ, COEFSIGNIN, COEFTERNIN,

DATABININ, DATABINOUT, DATASIGNIN, DATASIGNOUT,
DATATERNIN, DATATERNOUT, ACCUMIN, ACCUMOUT) ;

University of Windsor

process (CLKI)
begin

CLKO <= not (not (CLKI)):
end process;

process (LCLKI)
pegin

LCLKO <= not (not { LCLKI));
end process;

process (CRESETI)
begin

CRESETO <= not (not (CRESETI));
end process;

process (LRESETI)
pegin

LRESETC <= not { not {(LRESETI)} };
end process;

end behaviour;

A.3.3 ctap.vhd

This description includes the latches required for the systolic array and includes the

instance of the true description of the MAC cell.

library IEEE;

use IEEE.std_logic_arith.all;
use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.all;

library DBNS;
use DBNS.DBNSfilter.all;

entity ctap is

generic{cbsize,ctsize,dbsize,dtsize, mbsize,mtsize, lbsize, ltsize,absize, sbsize,as

ize: INTEGER) ;
port (CLK: in STD_LOGIC;
CRESET: in STD_LOGIC;
COEFBIN: in SIGNED(cbsize downto 0);
COEFSIGN: in SIGNED(1 downto 0);
COEFTERN: in SIGNED(ctsize downto 0);
DATABININ: in SIGNED(dbsize downto 0);
DATABINOUT: out SIGNED{dbsize downto 0);
DATASIGNIN: in SIGNED(l1 downto 0);
DATASIGNOUT: out SIGNED(1 downto 0)};
DATATERNIN: in SIGNED(dtsize downto 0);
DATATERNOUT: out SIGNED(dtsize downto 0);

76

University of Windsor

ACCUMIN: in SIGNE=D{asize downto 0);
ACCUMOUT: out SIGNED(asize downtc 0))
end ctap;

architecture pehaviour of ctap is

signal ACCUMOLl: SIGNED({asize downto 0);
signal ACCUMO2: SIGNED(asize downto 0);

pegin

s_rlatchl: rlacch
generic map (asize)
port map (CLK,CRESET,ACCUMOl,ACCUMO2 };

s_rlatch2: rlatch
generic map (asize)
port map (CLK,CRESET,ACCUMO2, ACCUMOUT) ;

s_rlatch3: rlatch
generic map (1)
port map (CLK,CRESET,DATASIGNIN, DATASIGNOUT) ;

s_rlatch4: rlacch
generic map (dbsize)
port map (CLK,CRESET,DATABININ,DATABINOUT);

s_rlatchS: rlatch
generic map (dtsize)
port map (CLK,CRESET,DATATERNIN, DATATERNOUT) ;

s_atap: atap
generic map (cbsize, ctsize, dbsize, dtsize, mbsize, mtsize,
lbsize, ltsize, absize, sbsize, asize)
port map (COEFBIN, COEFSIGN, COEFTERN, DATABININ, DATASIGNIN,
DATATERNIN, ACCUMIN, ACCUMO1l) ;

end behaviour;

A.3.4 atap.vhd

This 1s the VHDL description of the DBNS MAC cell used to multiply the data with the

coefficients and sum the results with the results of the previous stages.

library IEEE;

use IEEE.std_logic_arith.all;
use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.all;

library DBNS;
use DBNS.DBNSfilter.all;

77

University of Windsor

entity atap 1is

generic(cbsize,ctsize,dbsize,dtsize, mbsize, mtsize, lbsize,ltsize,absize, sbsize, as

ize: INTEGER) ;
port (COEFBIN: in SIGNED(cbsize downto 0) ;
COEFSIGN: in SIGNED(1 downto 0);
COEFTERN: in SIGNED (ctsize downto 0) ;
DATASIN: in SIGNED(dbsize downto 0) ;
DATASICGN: in SIGNED(1 downto 0);
DATATERN: in SIGNED{(dtsize downto 0) ;
ACCUMIN: in SIGNED(asize downto 0} ;
ACCUMOUT: out SIGNED{asize downto 0)) ;

end atap;

architecture behaviour of atap is

signal RESULT3IN: SIGNED (mbsize downto 0) ;
signal RESULTTERN: SIGNED(mtsize downto 0) ;
signal LUTVALUE: UNSIGNED(ltsize downto Q) ;
signal SHIFTVALUE: SIGNED{lbsize downto 0} ;
signal TOTALSHIFT: SIGNED (absize downto 0) ;
signal NOSIGNVALUE: UNSIGNED({sbsize downto 0) ;
signal SIGNVALUZ: SIGNED(sbsize+l downto 0} ;

pegin

s_multiplier: multiplier
generic map (cbsize,ctsize,dbsize,dtsize,mbsize, mtsize)

port map (COEF3IN,COEFTERN,DATABIN, DATATERN, RESULT3IN, RESULTTERN

)

s_ternarylut: ternarylut
generic map (mtsize,ltsize,lbsize)
port map (RESULTTERN, LUTVALUE, SHIFTVALUE) ;

s_binaryadder: binaryadder
generic map (mbsize,lbsize,absize)
port map (RESULTBIN,SHIFTVALUE, TOTALSHIFT)};

s_bshifter: bshifter
generic map (ltsize,absize,sbsize)
port map (LUTVALUE, TOTALSHIFT,NOSIGNVALUE);

s_signcorrect: signcorrect

generic map (sbsize)

port map (COEFSIGN,DATASIGN, NOSIGNVALUE,SIGNVALUE) ;
S_accum: accum

generic map (asize,sbsize)

port map (ACCUMIN, SIGNVALUE, ACCUMOUT) ;

end behaviour;

A.3.5 rlatch.vhd

This file describes a register of latches and can be set to whatever bitwidth is required.

University of Windsor

IEEE;
.std_logic_arith.all;
.std_logic_1164.all;
.std_logic_unsigned.all;

library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.all;

enticy rlatch is
generic(wsize: INTEGER);
port (CLK: in STD_LOGIC;
RESET: in STD_LOGIC;

INDATA: in SIGNED{wsize downto 0);
OUTDATA: out SIGNED(wsize downto 0)

end rlatch;
architecture behaviour of rlatch is
regin

process (CLK,RESET, INDATA)
begin
if (RESET='1’) then

OUTDATA <= (others
elsif (CLK'event and CLK=‘'1")
QUTEATA <= INDATA;

end if;
end process;

end behaviour;

A.3.6 multiplier.vhd

)i

‘)
then

The DBNS multiplier consists of two binary adders that add the ternary and binary

exponents of the data and the coefficients

library IEEE;

use IEEE.std_logic_arith.all;
use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
library SYNOPSYS;

use SYNOPSYS.ATTRIBUTES.all;

entity multiplier is

generic(cbsize,ctsize,dbsize,dtsize, mbsize, mtsize:
pPOrt (COEFBIN: in SIGNED({cbsize downto 0);

COEFTERN: in SIGNED{(ctsize downto 0)};

DATABIN: in SIGNED({dbsize downto 0);

DATATERN: in SIGNED(dtsize downto 0);

RESULTBIN: out SIGNED (mbsize downto 0);
RESULTTERN: out SIGNED({(mtsize downto 0)

end multiplier;

architecture behaviour of multiplier is

begin

79

University of Windsor

process (COEF3IN, DATABIN, COEFTERN. DATATERN)
pegin

2ESULT3IN <= CONV_SIGNED(COEFBIN + DATABIN,mbsize+l) ;
ESULTTERN <= CONV_SIGNED (COEFTERN + DATATERN,mtsize+l);

o

end process;

end pehaviour;

A.3.7 ternarylut.vhd

The ternary look-up tabie is used as a component in the DBNS to binary conversion. It

relies on the threerom.vhd file for the ROM data.

liprary IZEE;

use IEEE.std_logic_arith.all;
use IEEE.std_logic_1lle4.all;
use IEEE.std_logic_unsigned.all;

library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.all;

liprary DBNS;
use DBNS.threerom.all;

entity ternarylut is
generic (mtsize,ltsize,lbsize: INTEGER);
port (TERNARYIN: in SIGNED (mtsize downto 0);
TERNARYOUT: out UNSIGNED(ltsize downto 0);
BINARYOUT: out SIGNED(lbsize dowmto C));
end ternarylut;

architecture behaviour of ternarylut is
begin

process (TERNARYIN)
variable index: INTEGER;
begin

index := CONV_INTEGER (TERNARYIN) ;
TERNARYOUT <= ‘1’ &

CONV_UNSIGNED (threerom_1024_ 20 (index) (ltsize+lbsize downto lbsize+1),ltsize);
BINARYOUT <= CONV_SIGNED(threerom_1024_20(index) (lbsize downto

0),lbsize+1);
end process;

end behaviour;

80

University of Windsor

A.3.8 threerom.vhd

This module provides the data for the temarylut.vhd ROM. The data in the ROM is

truncated. as it can be generated as needed.

o ——

lipbrary IZEE;

use IEEE.std_logic_arith.all;
use I .std_logic_1164.all;

use I .std_logic_unsigned.all;

package threerom is
subtype ROM_WORD 20 is UNSIGNED (19 downto 0);
-- subtype ROM_RANGE_1024 is STD_LOGIC_VECTOR(9 downto 0);
subtype ROM_RANGE_1024 is INTEGER range -512 to S11;
type ROM_TABLE_1024_20 is array (ROM_RANGE_1024’low to
ROM_RANGE_1024’'high) of ROM_WORD_20;
-- type ROM_TABLZ_1024_20 is array (0 to 1022) of ROM _WORD_20;

constant threerom_1024_20: ROM_TA3LE_1024_20 := (

“01101001110011001011",
*00001111010011001101",
*10010111010011001110",

*00611110001100011100G",
“10101101001100011101",
“01000001101100011111",
“11100010101100100000"
):

end threerom;

A.3.9 binaryadder.vhd

This is a simple binary adder that is used as a component in the DBNS to binary

conversion.

library IEEE;

use IEEE.std_logic_arith.all;
use IEEE.std_logic_1l164.all;

use IEEE.std logic_unsigned.all;

library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.all;

entity binaryadder is
generic(mbsize, lbsize,absize: INTEGER) ;

81

University of Windsor

port (BINARY1l: in SIGNED(mbsize downto 0);

3INARY2: in SIGNED(lbsize dewnto 0);

BINARYOUT: out SIGNED(absize downto 0});
end binaryadder;

architecture behaviour of binaryadder is
begin

process (BINARY1, 2INARY2)
pegin

BINARYOUT <= CONV_SIGNED(BINARY1 + BINARY2,absize+l);
end process;

end behaviour;

A.3.10bshifter.vhd

This element is a barrel shifter. That means it can shift any number of places in a single

clock cycle.

library IEEE;

use IEEE.std_logic_arith.all;
use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

liprary SYNOPSYS;
use SYNOPSYS _ATTRIBUTES.all;

entity bshifter is
generic(ltsize,absize,sbsize: INTEGER) ;
port (TERNARYIN: in UNSIGNED(ltsize downto 0} ;
SHIFT: in SIGNED({(absize downto 0);
BINARYQUT: out UNSIGNED(sbsize downto 0) };
end bshifter;

architecture behaviour of bshifter is
begin

process (TERNARYIN, SHIFT)
begin

if (SHIFT = 0) then
BINARYOUT <= CONV_UNSIGNED (TERNARYIN, sbsize+l);
elsif (SHIFT(absize)='0’) then
BINARYOUT <= CONV_UNSIGNED (SHL (TERNA-
RYIN, CONV_UNSIGNED (SHIFT, absize+1)) ,sbsize+l) ;
else
BINARYOUT <= CONV_UNSIGNED (SHR {TERNARYIN, CONV_UNSIGNED (-
SHIFT,absize+1l)),sbsize+l);
end if;

end process;

University of Windsor

end behaviour;

A.3.11signcorrect.vhd

This component ensures that the binary output of the DBNS to binary converter has the

correct sign corresponding to the multiplication

library IEEE;

use IZZE.std_logic_arith.all;
use IZEE.std_logic_l1l€4.all;

use IEEE.std_logic_unsigned.all;

library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.all;

entity signcorrect is
generic(sbsize: INTEGER) ;
port (COEFSIGN: in SIGNED(1 downto 0);
DATASIGN: in SIGNED(1l downto 0);
3INARYIN: in UNSIGNED (sbsize downto 0);
3INARYOUT: out SIGNED(sbsize+l downto 0} };
end signcorrect;

architecture behaviour of signcorrect is
pegin

process (COEFSIGN, DATASIGN, BINARYIN)
pegin

if { COEFSIGN = DATASIGN)} then
BINARYQOUT <= CONV_SIGNED(BINARYIN,sbsize+2);
elsif (COEFSIGN = 0 or DATASIGN = 0) then
BINARYOUT <= (others => '0');
else

BINARYOUT <= - CONV_SIGNED (BINARYIN, sbsize+2) ;
end if;

end process;

end behaviour;

A.3.12accum.vhd

This is the accumulator used to sum the results of this MAC cell with the results of all

previous results.

library IEEE;

use IEEE.std_logic_arith.all;
use IEEE.std_logic_1l164.all;

use IEEE.std_logic_unsigned.all;

83

University of Windsor

liprary SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.all;

entity accum is
generic(asize, sbsize: INTEGER) ;
port (ACCUMIN: in SIGNzZD(asize downto 0) ;
TAPIN: in SIGNED(sbsize+l downto 0);
ACCUMOUT : out SIGNED (asize downto 0)) ;
end accum;

architecture bpehaviour of accum is
pegin

process (ACCUMIN, TAPIN)
pegin

ACCUMOUT <= CONV_SIGNED (ACCUMIN + TAPIN,asize+1l);
end process;

end pbehaviour;

84

Appendix B

VHDL Code for 2 Digit
DBNS FIR Filter

B.1 Introduction

The code in this appendix is a modification of the code in Appendix
A. The modification was performed by Jonathan Eskritt, in order to
convert the code to a two digit DBNS architecture. Only the code

that differs from the code in Appendix A is listed here.

B.2 MAC Cell

All the changes occurred in the MAC cell. The binary to DBNS
conversion ROM, used for the first stage of the filter, remains the
same since the data does not change for a two digit filter system.
The third stage, the output accumulator, again stays the same,
though more are needed. Only three files from Appendix A need to
be changed for synthesis. This is due to designing the code around a
globally sourced parameters file. Changes to the parameters file

changes the bus and bitwidths throughout the design.

B.2.1 parameters.vhd

The parameter file changed to reflect the smaller bitwidths required
for the two digit DBNS filter stem

University of Windsor

library IEEE;

use IEEE.std_logic_arxith.all;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

package parameters is

constant dsize : INTEGER := 9;

constant dbsizel : INTEGER := 4;
constant dtsizel : INTEGER := 3;
constant dbsize2 : INTEGER := 4;
constant dtsize2 : INTEGER := 3;
constant cbsize : INTEGER := 4;
constant ctsize : INTEGER := 3;
constant dbsize : INTEGER := 4;
constant dtsize : INTEGER := 3;
constant mpbsize : INTEGER := §;
constant mtsize : INTEGER := 4;
constant lbsize : INTEGER := 5;
constant ltsize : INTEGER := 9;
constant absize : INTEGER := 9;
constant sbsize : INTEGER := 12;
constant asize : INTEGER := 18;
constant osize : INTEGER := 15;
constant taps : INTEGER := ©53;

end parameters;

B.2.2 ternarylut.vhd

The DBNS to binary conversion uses a much smaller ROM. Not only are there less ROM
addresses. but the word size decreased as well. The ternary look-up table code had to be

changed to reflect these differences.

3

liprary IEEE;
.std_leogic_arith.all;

use IEEE
use IEEE.std logic_1l1l64.all;
use IEEE.std_logic_unsigned.all;

library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.all;

library DBNS;
use DBNS.threerom.all;

entity ternarylut is
generic(mtsize, ltsize, lbsize: INTEGER);
port (TERNARYIN: in SIGNED(mtsize downto 0);
TERNARYQUT: out UNSIGNED(ltsize downto 0);
BINARYOUT: out SIGNED(lbsize downto 0));
end ternarylut;

architecture behaviour of ternarylut is

86

University of Windsor

begin
process {TERNARYIN)
variable index: INTEGER:
begin
index := CONV_INTEGER (TERNARYIN) ;
TERNARYOUT <= ‘'l’ &
CONV_UNSIGNED(threerom 32 15(index) (ltsize+lbsize downto lbsize+l),ltsize);
BINARYOUT <= CONV_SIGNED(threerom_32_15 (index) (lbsize downto
0),lpbsize+l);

end process;

end behaviour;

B.2.3 threerom.vhd

The data in the ROM is not truncated in this listing. This is because the DBNS to binary
conversion ROM is very small in two digit DBNS. In the hybrid design the ROM had 1024

entries. each using 20 bits.

library IEEE;
td_logic_arith.all;

use IEEE.s
use I[EEE.std_logic_1l1l64.all;
use IZEE.std_logic_unsigned.all;

package threerom is
subtype ROM_WORD_15 is UNSIGNED (14 downto 0} ;
-- subtype ROM RANGE 32 is STD_LOGIC_VECTOR (4 downto 0);
subtype ROM_RANGE 32 is INTEGER range -16 to 15;
type ROM_TABLE_32_15 is array (ROM_RANGE_32'low to ROM_RANGE_32"'high) of
ROM_WORD_15;
-~ type ROM_TABLE_32_ 15 is array (0 to 31) cf ROM_WORD_15;

constant threerom_32_15: ROM_TABLE 32 15 := (

*100011110011101",
“001010110021211",
*110000001100000",
“010100001100010",
“111110010100011",
“011110101100101",
“000111000100111",
“101010100101000",
"001111111101010",
*110111110101011",
“0110011111G61101",
*000011011101111",
*100101001110000",
*001011110110010",
*110001110110011",
*010101010110101",

University of Windsor

*000000000110111"~,
“1000000001110cC0",
“001000000111010",
"101100000111011",
“0l1000100C111101"~,
*111001100111110",
*0110110010C0000GC0",
*000100010000010",
*100110100000011",
“001100111000101",
“110011010GQQ110",
*010110011001000",
*QQ00000110001010",
*100001010001011",
“001000111001101",
"101101011001110"
) ;

end threerom;

88

Appendix C

C Code for Mapping
into DBNS

C.1 Introduction

-

In Chapter 3. the concept of mapping floating point numbers
directly into a DBNS representation was introduced. There were
two methods that were discussed: an optimal and a modified
Greedy Aligorithm. These two methods were performed through the
use of two programs written in C. The program listings are

presented in this appendix.

C.2 Optimal Mapping Listing

This program was originally written by Roberto Muscedere, but
was modified by Jonathan Eskritt to restrict the mapping range in
order to prevent overflow conditions. The program generates the
complete mapping range and sorts the list to reduce the mapping

time.

#include <stdio.h>
#include <math.h>
#include <stdlib.hs>

typedef struct _table {
double value;
int binexp, ternexp:
} table;

89

University of Windsor

typedef struct _total {
double value;
signed char si1,s2;
int indl, ind2;
) total;

static int tablecompare(table *i, table *j)
{
if((i->value) > (j->value))
recurn(l);
else if£((i->value) < (j->value))
return(-1};
else
recurn(Q) ;

static int totalcompare(total *i, total *j)
{
1f{(i->value) > (j->value))
return(lj;
else if{(i->value) < (j->value))
recturn(-1);
else
return(Q) ;

void binout (int value, int size)
int i=value;
int j,k;

k=1l<<j;
if (value<0) i=value+k;

for (j=size-1;j>=0;j--)

{
if (1 & (l<<j)) printf{“1“);
else printf(“0”);

int main(int argc, char *argvl(])
{
table *valuel, *value2;
total =*value;
int numvals,numvalsl,numvals2;
int binbitsl, ternbitsl, binbits2, ternbits2;
int i1, 3ji, 1i2;
int count,countl,count2,i;
int binliml, ternliml, binlim2, ternlim2;
int oflh, of2h; //overflow prevention limits
int plus=0,minus=0,one=0;
int mode=0;
double z;
double minimum=0, maximum=16000;
double uplimit=1<<24,downlimit=1>>24;
double b,best,worst;
int bestindex;

90

University of Windsor

int incfactor;
int fz,sz;

FILE *infile=stdin;
char buffer{85];

if (argc!=8)
{

fprintf (stderr,”Usage: %s bl tl overl b2 t2 over2
mode\n\n”,argv[0});

fprintf(stderr, "bl - Bits for first digit binary index\n”) ;
fprintf (stderr,”tl - Bits for first digit ternary index\n”);
fprintf (stderr,“overl - max number to be added to 1st digic\n~);
fprintf (stderr,”b2 - Bits for second digit binary index\n”) ;
fprintf (stderr,”t2 - Bits for second digit ternary index\n”j;

fprintf (stderr,“over2 - max number to be added to 2nd digit\n”);
fprintf (stderr,”"mode - 0, first digit only\n”);
fprintf (stderr,” 1, first and positive second digits

only\n”);
fprintf (stderr,” 2, first and negitive second digits
only\n”);
fprintf (stderr,” 3, first and all second digits\n”);
recturn 1;

}

binbitsl = atoi(argv(l]l);
ternbitsl = atoi(argv(2]);
oflh=atoi(argv{3]);

pinpbits2 = atoi(argv([4]);
ternbits2 = atoi(argv(s]);
of2h=atoi(argv(6l) ;

mode = atoilargv(7]);

numvalsl = pow(2, (binbitsl+ternbitsl))/2;
binliml = pow(2, binbitsl-1);
ternliml = pow(2, ternbitsl-1)-oflh;

numvals2 = pow(2, (binbits2+ternbits2))/2;
cinlim2 = pow(2, binbits2-1);
ternlim2 = pow(2, ternbits2-1)-of2h;

incfactor = numvalsl = numvalsl/32;

fprintf(stderr,”“First Digit Allocated : %d\n” ,numvalsl) ;
valuel = (table *)malloc(sizeof (table)*numvalsl) ;

if (valuel==NULL) return 1;

countl=0;
for(il=-binliml; il<binliml; il++)
for(jl=-ternliml; jl<ternliml; jl++)
{
valuel [countl] .value = exp(il*log(2)+jl*log(3)});
if ((valuel[countl] .value <= uplimit) &&
{valuel [countl] .value >= downlimit))

{

91

University of Windsor

valuel [countl] .binexp =
valuel {countl] .ternexp = jl;
countl++;
if (countl==numvalsl)

{

ii;

numvalsl+=incfactor;
valuel=(table *)real-
loc(valuel,sizeof (table) *numvalsl) ;
if (valuel==NULL)
{
fprintf (stderr, "Out of mem-
ory.\n") ;

return 1;

fprintf(stderr,”First Digit Used : %d\n”,countl) ;
valuel = (table *)realloc(valuel,sizeof (table) *countl);

incfactor = numvals2 = numvals2/32;

fprintf(stderr, "Second Digit Allocated : %d\n”,numvals2) ;
value2 = (table *)malloc(sizeof (table!} *numvals2) ;

if {(value2==NULL) return 1;

count2=90;
for(il=-pinlim2; il<binlim2; il++)
for(jl=-ternlim2; jl<ternlim2; jl++)
{
valuel[count2] .value = exp(il*log(2)+ji*log(3));
if ((value2[count2] .value <= uplimit) &&
(value2 [count2] .value >= downlimit})
{
value2 {count2] .binexp = i1l;
value2 [(count2] .ternexp = jl:
count2++;
1f (count2==numvals2)
{
numvals2+=incfactor;
value2=(table *)real-
loc (value2, sizeorf (table) *numvals2) ;
if (value2==NULL)

{
fprincf (stderr, “Out of memory.\n”);
return 1;

}

}
}
}
fprintf (stderr,”Second Digit Used : %d\n”,count2) ;
value2 = (table *)realloc(value2,sizeof (table) *count2) ;

University of Windsor

fprintf (stderr, "Sorting First Digit Values.\n”) ;
gsort((char *) wvaluel, countl, sizeof(table), *tablecompare);

fprintf (stderr, “Sorting Second Digit Values.\n”):;
gsort ((char *) value2, count2, sizeof(table), *tablecompare);

fz=-1;
for(ii1=0;il<countl;il++)
{
if (valuel([il] .binexp==0 && valuel {il] .ternexp==0]
{
fz=1i1;
preak;
, }
}
i1f (fz==-1) return 1;

sz=-1;
for(il=0;il<count;il++)
{
if (value2({il] .pinexp==0 && value2 {il].ternexp==0)
{
sz=1i1;
break;
¢
1
!

if (sz==-1) return 1;

numvals = (countl*count?2);
incfactor = numvals = numvals/8;
fprinctf (stderr, “Combined Digits Allocated: %d\n”,numvals);

value = (total *)malloc (sizeof (total) *numvals) ;

count=0;
for(il=0;il<councl-1;il++)
p = valuel(il] .value;
if (b «= maximum && b >= minimum)

{
value [count] .value=valuel [i1l] .value;
value [count] .sl1l=1;
value [{count] .s2=0;
value {count] .indl=1i1;
value [count] .ind2=sz;
count++;
if (count==numvals)
{
numvals+=incfactor;
value=(total *)realloc(value,sizeof (total) *numvals);
if (value==NULL)
{
fprintf(stderr, “Out of memory.\n”);
return 1;
}
}
}
one++;
if (mode==3 || mode==1)

93

University of Windsor

for (i2=0;i2<count2;i2++)
{
b=(double) (valuel[il] .value+value2[i2] .value) ;
if (b <= maximum && T >= minimum)
{
value [count] .value=b;
value ([count] .s1=1;
value [count] .s2=1;
value [count] .indl=1i1;
value [count] .ind2=12;
count++;
if (count==numvals)
{
numvals+=incfactor;
value=(total *)real-
loc(value, sizeof (total) *rnumvals) ;
if (value==NULL)
{
fprintf (stderr, “Out of mem-
ory.\n");

return 1;

—

lus++;

Lo

}
}
if (mode==3 || mode==2)
{
for (i2=0;1i2<count2;i2++)
{
b= (double) (valuel(il] .value-value2[i2] .value) ;
if (b <= maximum && b >= minimum)
{
value [count] .value=b;
value [count] .sl=1;
value [count] .s2=-1;
value {count] .indl=1i1;
value {count] .ind2=1i2;
count++;
if (count==numvals)
{
numvals+=incfactor;
value=(total *)real-
loc (value, sizeof (total) *numvals) ;
if {(value==NULL)
{

fprintf (stderr,”Out of mem-
ory.\n") ;

return 1;

}

minus++;

94

University of Windsor

il=count;
for(i=0;i<il;i++)
!
L
value [count] .value=-value [i] .value;
value [count] .sl=-valuei] .s1;
value {count] .s2=-value[i] .s2;
value [count] .indl=value(i] .ind1;
value [count] .ind2=value[i] .ind2;
count++;
if (count==(numvals-1))
{
numvals+=incfactor;
value=(total *)realloc(value,sizeof (total) *numvals) ;
if (value==NULL)
{
fprintf (stderr, “Out of memory.\n”);
return 1;

13

value [count] .value=0;
value [count] .s1=0;
value [count] .s2=0;
value [count] .indi=fz;
value [count] .ind2=sz;
count++;

fprintcf (stderr,”Single Digit Combinations: %d\n”,cone) ;

fprintf (stderr,”Positive Combinations : %d\n” ,plus) ;

fprintf (stderr, “Negative Combinations : %d\n” ,minus) ;

fprintf (stderr, “Combined Digits Used : %d\n”,count) ;
value = (total *)realloc(value,sizeof (total)*count) ;

fprintf (stderr, “Sorting Combined Digit Values.\n”);
gsort ((char *) value, count, sizeof(total), *totalcompare) ;
fprintf (stderr, "Done.\n") ;

worst=0;
while (feof(infile)==0)
{
fgets(buffer, 80, infile) ;
if (feof(infile)==0)
{
sscanf (buffer,”%le”, &z) ;
best=1e9;
pestindex=-1;
for (i=0;ic<count;i++)
{
b=fabs (value[i] .value-z) ;
if ((b<best) || (b==best && valuel[il].s2==0})
{
best=b;
pestindex=1i;
}
}

if (bests>worst)

University of Windsor

{
L
worst=best ;

1

!

printf (“%d\csd\csdicsd\tsd\csd\ctig\tsg\tig\n”,value [bestindex] .s1,valuel [value [b
estindex] .indl] .binexp,valuel[value [bestindex] .indi] .ternexp, value[bestindex] .s2
,value2 [value [pestindex] .ind2] .pinexp, value2 [value [bestindex] .ind2] .tern-
exp, z,value[bestindex] .value, best) ;

!

)
!

fprincf (stderr, "Worst Error : %$15.15e\n”,worst) ;

return 0;

[

C.3 Modified Greedy Mapping Listing

This program maps the floating point numbers intoc DBNS numbers using the modified

Greedy Algorithm. It also allows for odd bases other than 3.

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

typedef struct _table {
double value;
int binexp, ternexp;
int s;
} table;

static int tablecompare(table *i, table *j)
{
if((i->value) > (j->value))
return(l) ;
else if((i->value) < (j->value))
return(-1);
else
return(a) ;

void binout(int wvalue, int size)

int i=value;
int j.k;

k=1l<<j;
if (value<0) i=value+k;
for (j=size-1;j>=0;j--)

{

if (1 & (l<<j)) printf(*1”);

96

University of Windsor

int main{int

{

else printf (*0”);

argc, char *argvil)

table *valuel,*valuel;

int numvalsl,numvals2;

int binbitsl, ternbitsl, binbits2,
int i1, j1;

int countl,count2,i;

int binliml, ternliml, binlim2, ternlim2;

int oflh,

double

z;

ternbcits2;

of2h; //overflow prevention limits

douple uplimit=1l<<24,downlimit=1>>24;

double
int
int

b, best,worst;
pestindex;
incfactor;

int fz,sz;
// double p=pow(3,0x132) *pow(2,0x21b);

FILE *infile=stdin;

char pbuffer(85]:

double

b2=0,val;

int sec,tmp,bestindex2, zeroi, base;

if (argc !=8)

{

pinbitsl =
ternbitsl =
oflh=atoil(a

binbits2 =
ternbits2 =
of2h=atoi(a

fprintf (stderr, "Usage: %s bl tl overl b2 t2 over2
base\n\n”,argv([0]);

fprincf (stderr,"bl - Bits
fprintf (stderr,”tcl - Bits
tprintf (stderr, “overl - max
fprintf (stderr, “b2 - Bits
fprintf (stderr,“t2 - Bits
fprintf (stderr, “over2 - max

for first digit binary index\n”);
for first digit ternaxry index\n”);
number to be added to 1lst digit\n”);
for second digit binary index\n”);
for second digit ternary index\n”};
number to be added to 2nd digit\n”);

fprintf (stderr, "base - The value of the second base\n”);

return 1;

atoi(argv(ll) ;
atoi(argvI[2]);
rgv[3]};

atoi(argv(4]l);
atoi(argv(51]);
rgv(6l);

base=atoi(argv(7]);
fprintf (stderr, “base=%d” , base) ;

numvalsl =
binliml = p
ternliml =

numvals2 =
binlim2 = p
ternlim2 =

pow (2, {(binbitsl+ternbitsl)/2);

ow(2, binbitsi-1);
pow(2, ternbitsli-1)-oflh;

pow(2, (binbits2+ternbits2)/2);

ow(2, binbits2-1);
pow (2, ternbits2-1)-o0f2h;

97

University of Windsor

incfactor = numvalsl = numvalsl/32;

fprintf (stderr,”First Digit Allocated : %d\n”,numvalsl) ;

/t‘k*****tt**t**t*t********t***t*‘k*****itt**t***it*t*t'**

* generate table of all possible values for 1st digit *
t*******tt*f'kt************?t*tttt*******t**t*ttt*******/

valuel = (table *)malloc(sizeof (table)~numvalsl) ;

if (valuel==NULL) return 1;

countl=0;

for(il=-binliml; il<binlimil; il++)
for(jl=-ternliml; jl<ternliml; jl++)
{

valuel [countl] .value = exp(il*log(2)+jl*log(base)) ;
if ((valuel(countl].value <= uplimit) &&
(valuel [countl] .value >= downlimit))
{
valuel [countl] .binexp = ii;
valuel [countl] .ternexp = j1;
valuel {countl] .s=1;
countl++;
if (countl==numvalsl)
{
numvalsl+=incfactor;
valuel=(table *)real-
loc(valuel, sizeof {table) *numvalsl) ;
1f (valuel==NULL)

{
fprintf (stderr, “Out of memory.\n”);
return 1;

}

}
}
}
valuel = (table *)realloc(valuel,sizeof{table)*countl*2+1) ;

count2=countl;

for (countl=0; countl<count2; countl++)

{
valuel [countl+count?2] .value=-valuel [countl] .value;
valuel [countl+count2] .binexp =valuel {countl] .binexp;
valuel [countl+count2] .ternexp =valuel [countl].ternexp;
valuel [countl+count2] .s=-1;

}

countl=count2;

valuel [countl+count2] .value=0;
valuel [countl+count2] .binexp=0;
valuel {countl+count2] .ternexp=0;
valuel [(countl+count2] .s=0;
countl=count2+*2;

fprintf (stderr,”First Digit Used : %¥d\n”,countl+count?) ;

incfactor = numvals2 = numvals2/32;

98

University of Windsor

fprintf (stderr, “Second Digit Allocated : %d\n”,numvals2) ;

/i—**f***************tt****i**************i*****t********

* generate table of all possible values for 2nd digit *
ttt***ri***ft***t*****t***t*t*t****t*******t*ti**f*****/

value2 = (table *)malloc(sizeof (table) *numvals?2) ;
if (value2==NULL) return 1;

count2=_C;
for{il=-pinlim2; il<binlim2; il++)
for(jl=-ternlim2; jl<ternlim2; ji++)
{
value2[count2] .value = exp(il*log(2}+jl*log(base)) ;

if ((value2 [count2] .value <= uplimit) &&
(value2[count2] .value >= downlimit))

{

value2 [countc2] .binexp = il;

value2 [count2] .ternexp = j1;
count2++;
if (count2==numvals2)
{

numvals2+=incfactor;

value2=(table *)real-
loc(value2,sizeof (table) *numvals2) ;

if (value2==NULL)

{
fprincf (stderr,”Out of memory.\n”):;
return 1;

}

}
}
}
value2 = (table *)realloc(valuel,sizeof (table) *count2+2+1) ;

tmp=count?2;

for (countz=0; count2<tmp; count2++)

{
valuel [count2+tmp] .value=-value2 [count2] .value;
valuel [count2+tmp] .binexp =value2[count2] .binexp;
valuel (count2+tmp] . ternexp =value2 [count2] .ternexp;
valuel[count2+tmpl .s=-1;

)

value2 [tmp+count2] .value=0;
value2 [tmp+count2] .binexp=0;
value2 [tmp+count2] .ternexp=0;

value?2 [tmp+count2] .s=0;
count2=tmp*2;

fprintf(stderr, “Second Digit Used : %d\n”,count2+countl) ;

fprintf(stderr,”Sorting First Digit Values.\n");
gsort ((char *) valuel, countl, sizeof(table), *tablecompare) ;

fprintf(stderr, "Sorting Second Digit Values.\n");
gsort{(char *) value2, count2, sizeof(table), *tablecompare) ;

99

University of Windsor

for(ii=0;il<countl;il++}

{
if (valuel (il] .binexp==0 && valuel [il].ternexp==0)
{
fz=11;
break;
?
}
if (fz==-1) return 1;
sz=-1;
for(il=0;il<countc2;il++)
{
if (value2(il] .binexp==0 && value2[il] .ternexp==0)
{
sz=1il;
preak;
}
}
1f (sz==-1) return 1;
zexoi=0;
while (value2 {zeroi] .value != 0) zeroi++;

fprintf(stderr,”Done.\n") ;

worst=0;
while (feof(infile)==0}
{
fgets (puffer, 80, infile) ;
if (feof(infile)==0)
{
sscanf (buffer,”%le”, &z} ;
/t*t*****t**t**t**************
* find first digit *
t*‘k******t*****t*************/
best=1e9;
pestindex=-1;
sec=1;
for (i=0;i<countl;i++)
{
b=fabs (valuel (i] .value-2) ;
if (b<best }
{
best=Db;
bestindex=1i;

v

}
if (bests>worst)
{
worst=best;
}
if ((valuel [bestindex] .value - z) < 0) sec=-1;
else if ((valuel[bestindex] .value - z) == 0) sec=0;

else sec=1l;

/**********i******************

* find second digit *
f***********i********t*******/

100

University of Windsor

best=1e9;

pestindex2=-1;

if (sec==0)
pestindex2=zeroi;
pest=0;

b2=0;
for (i=0;i<count2;i++)
{
b=fabs ((valuel [bestin-
dex] .value+value2 [i] .value) -z) ;
if (b<best)
{
best=Db;
pestindex2=1i;
b2=1;

3
p=fabs ((valuel [bestin-
dex+sec] .value+valueZ{i] .value) -z) ;

if (b<best)

{
best=b;
bestindex2=1i;
b2=2;

}

}
}

if (best>worst)

{

}

i1f (b2 == 2) bestindex += sec;

val=valuel [bestindex] .value + value2[bestindex2] .value;
/**ttt*************t*****t****t***'*t****************

worst=best ;

* change printf to account for 2 differmet indices *
LR R E R R ER RS R A A RS SRR SRRl st R R 2R XS R A X R R RS k'*****f/

printf (*$d\csd\csd\csd\cid\csd\tig\tsg\cig\n”,h6valuel [bestindex] .s,valuel [bestind
ex] .binexp,valuel [bestindex] .ternexp,value2 [bestindex] .s,value2 [bestindex2] .pin-
exp,value2 [bestindex2] .ternexp, z,val, best) ;

}
}

:

fprintf (stderr, “Worst Error : %¥15.15e\n” ,worst) ;

return 0;

101

Appendix D

Genetic Algorithm Code

D.1 DBNS Coefficient Generation

A genetic algorithm was used early in the research of DBNS filters

to generate the filter coefficients. The genetic algorithm. described

-

in Section 3.2.1, was developed by Alfred Lee [13]. Heavy
modifications were made that greatly decreased the simulation

time.

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<string.h>
#include<time.h>

#define T 1.0 //sampling frequency
#define maxFreqgl.1416

#define Npoints47 //% of sampling points
#definemaxFilterOrder 50

/tt*******r****i**t**/

/* define data type */

/********************/

typedef struct {
//the highest bit is the sign bit for double base
unsigned int coef {maxFilterOrder] ;
float fitness;
int absfitness;
} aCHROM;

typedef struct
double val;
int binExp;
int terExp;

102

University of Windsor

int sign;
} DATA;

/t****t**t******t*tt*/
/* Global Variables */

/tt*t**************t*/

float pmut, pcross, errzone;

DATA *coeff;

int Ncoef, Nchrom;

int *ordering;

FILE *inptr, ~*outptr;

DATA *data;

aCHRCOM *chrom, *offsprg, Bchrom;

char ob;

int chrom_len, num;

float stopbd, passbd,ALPHA; //either stopbd or ALPHA is used
unsigned int eachbit [32];

unsigned int fromright (32];

unsigned int fromlefc[32];

unsigned int wvaluemask;

unsigned int signmask;

unsigned int wholemask;

int *scalefactor;

double costab[Npoints+5] [100]; // may have to adjust if values are large

/******t*t******t********t*/

/* Procedure and function */
/**t*****t***t******t******/

int decodeChrom(int chrom_loc, int coef_loc) ;

void inittables()

{

int 1,7

for (i=0;1<32;i++)

{
eachbitc[i]l =1<<i;
for (j=0;j<=1i;j++)

{

}
fromleft {i] = fromright (i}

fromright [i] |=1<<];

-~

(unsigned int)Oxfffffrfff;

}

float delta_w,w;
int n;

delta_w = (flocat)maxFreqg / (float)Npoints;
for (w = 0,n=0; w < maxFreqg + delta_w; w = W + delta_w,n++){
for (j = 1; j < Ncoef; j++){

costab([n] [j] = 2.0 * cos(w * T * j);
}

return;

}

int ANUMBER() {

103

University of Windsor

int i=rand() ;

return{ i);

float UNI(){
float a = (float)rand() / (float)RAND_MAX;

return (a);

unsigned int encodeChrom{int pS_loc)

{

unsigned int echrom=0;
int i;

for (i=0; i<chrom_len-1; i++)
{
if (p5_loc & eachbit{i]) echrom |[= eachbit([i];
}
echrom =(unsigned int) ((double)echrom*({(double) (1<<{chrom_len-1)})}/
((double)num))} ;
return (echrom) ;

void presetChrom(int p5_loc) {
int i,j.,k,tmp;

for (i = 0; i < Nchrom; i++){
for (3 = 0; j < Ncoef; j++){
chrom[i] .coef {j] = 0O;

offsprgfi] .coef[j]l = 0;

for (i = 0; 1 < Nchrom; i++){
for (j=0; j<Ncoef-1; j++){
if (tmp=(ANUMBER()%3)) tmp = chrom_len/tmp;
else tmp = chrom_len/3;
for (k=0; k<tmp; k++){

chrom{i] .coef [Ncoef-j-2] |= eachbit [ANUMBER() %
chrom_len-1];
}
if (j%2==0) chrom[i] .coef [Ncoef-j-2] |= signmask;
}
chrom[i] .coef [Ncoef-1] = encodeChrom(p5_loc);

}

void InsertBestChrom(int maxi, float maxFit, int mini, float minFit) {
int 1, j;

if (maxFit > Bchrom.fitness) {
for (j=0; j < Ncoef; j++){
Bchrom.coef [j] = chrom[maxi] .coef([j];
}

Bchrom.fitness = maxFit;
} else {
for (j=0:; j < Ncoef; j++){

University of Windsor

chrom([mini] .coef [j] = 3chrom.coef[i];
}
chrom[mini] .fitness = minFit;

void scaleFitness () {
int i, indexMax, indexMin;
double minN, maxN;

static int flag = 0;

//Find maximum and minimum
minN = 995.9;

maxN = -989.9;

for(i = C; 1 < Nchreom; i++){

if(minN > chrom(i] .fitness){ minN chrom([i] .fitness; indexMin

if{ maxN <« chrom{i].fitness){ maxiN chrom(i] .fitness; indexMax

}
if (flag !'= 0)
InsertBestChrom{indexMax, maxN, indexMin, minN) ;

else flag++;

//Perform scaling

for(i = 0; i < Nchrom; i++)

I

[

chrom(i] .absfitness = (int) ceil(80.0 * (chrom{i].fitness - minN)/(maxN -

minN)) + 5;
}
}

void DOcrossover (int chroml_loc, int chrom2_loc, int offsprgl_loc, int
offsprg2_loc, int coef_loc) {
int apoint, i;

if (UNI() < pcross){
apoint = ANUMBER() % (chrom_len - 1};

// High cross

/7 offsprgloffsprgl_loc] .coef [coef loc] = (
(chrom([chroml_loc] .coef [coef_loc] & fromright [apoint]) |
(chrom[chrom2_loc] .coef [coef_loc] & fromleft [apoint] & wholemask)) * wheclemask;
// offsprg [offsprg2_loc] .coef [coef_loc] = (

(chrom[chrom2_loc] .coef [coef_loc] & fromright [apecint])
(chrom([chroml_loc] .coef [coef_loc] & fromleft [apoint] & wholemask))
/t

-~

wholemask;

offsprgloffsprgl_loc] .coef [coef_loc] = (
(chrom[chromi_loc] .coef [coef loc] & fromright (apoint]) |
(chrom{chrom2_loc] .coef [coef_loc] & fromleft [apoint] & wholemask));

offsprgloffsprg2_loc] .coef [coef loc] = (
(chromichrom2_loc] .coef [coef_loc] & fromright [apoint])} |
(chrom[chroml_loc] .coef [coef_loc] & fromleft[apoint] & wholemask))
*/

// Low cross

University of Windsor

offsprg{offsprgl_loc] .coef [coef_loc]
{chrom[chrem2 _loc] .coef [coef_loc] & fromright (apoint}) |

(chrom{chroml_loc] .coef [coef_locl & fromleft{apoint] & wholemask) ;

offsprgloffsprg2_loc] .coef [coef_loc]

(chrem([chromi_loc] .ccef [coef_loc] & fromright [apoint]) |

{(chrom{chrom2_loc] .coef [coef_loc] & fromleft [apoint] & wholemask) ;

b
)

void DCmutation(int loc) {
int 1i,3j;

for (i=0; i < Ncoef; i++){
for {j = 0; j < chrom_len; j++)}{
if (UNI() < pmut]

offsprg({loc] .coef[i] "= eachbit([j];

void reproduce () {
int i, count,j;
float rawfitness, total, sum;

total = -0.5;
for(j = 0; J < Nchrom; j++) total = total + (Eloat)chrom(j] .absfitness;
for{ i = 0; i < Nchrom; i++){

rawfitness = UNI() * total;
j = ANUMB3ER() % Nchrom;

sum = (float)chrom([j].absfitness;
count = j;
while(sum < rawfitness) {

count++;

if (count == Nchrom) count = 0;

sum = sum + (float)chrom([count] .absfitness;

}
ordering([i] = count;

}

//decodeChrem
int decodeChrom(int chrom_loc, int coef_ loc) {

int temp;

temp = scalefactor(chrom[chrom_loc] .coef [coef_loc]

if (chromichrom_loc] .coef [coef_ locl & signmask)
return(-temp);
else return(temp) ;

float fitness () {
int j, count,n;
float err,w, delta_w;
double H, temp;
float return_val, max_err;

& valuemask] ;

106

University of Windsor

delta_w = (float)maxFreqg / (float)Npoints;
err = 0;
max_err = G;
for (w = 0,n=0 ; w < maxFreg + delta_w; w = w + delta_w,n++){

//at one freguency of the first half symmetry coefficients
count = 0;

H = coeff [Ncoef - 1}.val;
for (j = 1; j < Ncoef: j++) {

// H=H + 2.0 * coeff [Ncoef - j - 1l]l.val * cos(w = T * J)}:
H = H + coeff[Ncoef - j - 1l.val * costab(n] [j]:
}
H = fabs(H);
//minmax or LMS
if (ob == ‘17){
//exp decay transision region
if { w < passbd)
temp = fabs{ 1.0 - H);
else
temp = fabs(exp(-1.0*ALPHA*(w - passbd)) - H);
if (temp > errZone) err = e€rr + temp - errzZone;
} else if(ob == ‘m’) {
//get the magnitude response error
if (w < passbd)
err = fabs(1.0 - H);
else if (w > stopbd)
err = fabs(H);
else err=0;
if (err < errZone) err = 0;
else err = err - errZone;
if (max_err < err) max_err = err;
} else {
printf (“\ncannot get the objective function\n”};
exitc{-1);
}
}
if (ob == ‘1‘) return_val = 1.0 / err;
else return_val = 1.0 / max_err;
return(return_val);
}
void GETchromfit () { //passing decoded coefficients to fitness

int j,i, loc;

107

University of Windsor

for(j = 0; j < Nchrom; j++) {
for(i=0; i < Ncoef; i++){

loc = decodeChrom(j,i);

if (loc < 0){
coeff[i]l .val = -datal-loc] .val;
coeff [i] .binExp = data[-loc] .pinExp;
coeff [i] .cerExp = data(-loc] .cerExp;
coeff[i] .sign = -1;

relse {
coeff [i] .val = datalloc].val;
coeff[i] .binExp = data{loc] .binExp;
coeff[i] .terExp data(loc] .terExp;
coeff [i] .sign =

o

}

chrom([j] .fitness = fitness{();

int decode3Chrom{int coef_loc} {
int temp;

temp = scalefactor [Bchrom.coef [coef_loc] & valuemask];

if (Bchrom.coef [coef_loc] & signmask)
return(-temp) ;
else return(temp) ;

void report(unsigned int seed) {
int 1i,j,sign, temp;
float maxfitness;

/* open output file */
outptr = fopen(“output.dat”,”w+");
if (outptr == NULL){ printf(“cannot open output file”); exit(-1); }

/* decode the coefficient =/
for(i=0; i < Ncoef; i++){
temp = decodeBChrom (i) ;
if (temp < 0){
coeff[i] .val = - data{-temp] .val;
coeff[i] .binExp = data(-temp] .binExp;
coeff[i] .terExp = data[-temp].texrExp;
coeff (i} .sign = -1;
lelse {
coeff[i] .val = dataftemp] .val;
coeff[i] .binExp = data{temp] .binExp;
coeff[i] .terExp = data([temp] .terExp;
coeff[i] .sign = 1;
}

Bchrom.fitness = fitness();

}

/* printout the coefficient and exponents values */
for(i = 0; i < Ncoef; i++){

108

University of Windsor

fprintf (outptr, “%5d# %d %d”,coeff[i] .sign, coeff (i} .binExp,
coeff[i] .terExp) ;
fprintf (outptr, “\n”);
}

for(i = 1; i < Ncoef; i++){
i if (bestChrom.coefBz [Ncoef - i - 1] (NbitB2 - 1] .bit != 0) sign =
// else sign = 1;

fprintf (outptr, “%Sd# %d %d”,coeff [Ncoef - i - 1].sign, coeff [Ncoef
- 1 - 1] .pinExp, coefflNcoef - i - 1].terExp):
fprintf (outptr, “\n”);

fprintf (outptr, ”\n"”);
for(i = 0; 1 < Ncoef; i++){
fprintcf (outptr, ”\n%18.15£" ,coeff [i] .val) ;

for (j = 1; j < Ncoef; j++){
fprintf (outptr, “\n%18.15f",coeff [Ncoef - j - 1].wval);

fprintcf (outptr, “\n\nThe best fitness is %£f\n”, Bchrom.fitness);
fprintf (outptr, “random seed is %lu\n”, seed);
fclose (outptr) ;

}

int ilog2(int x)

{

int tmp, fix, loop;

loop=0;
while (tmp!=1)
{
tmp=tmp>>1;
locp++;
1
if (x > (l<<loop)) fix=1;
}
else loop=-1;
if (fix==1) loop++;
recurn (loop):;

/****************tt****

** Main Program ***+*+*
******t***************/
int main(int argsize, char **arg) {
int Citer, chromctr, coefctr, MaxIter, indexl, index2;
aCHROM *temp;
int p5_loc;
unsigned int seed;
// arg[l] - m for minimax or 1 for LMS
if (argsize != 10)

109

University of Windsor

fprintf (stderr, “\nwrong number of arguments!!\n\n”);
fprintf (stderr, “Usage: %s ob MaxIter Nchrom pmut pcross Ncoef

errZone pass stop\n\n”, arg(0]):

fprincf(stderr,“ob - 'l‘’ for Least Mean Sguares, ‘m’ for mini-
max\n”!;

fprintf (stderr, “MaxIter - # of iterations Nchrom - population
size\n”) ;

fprintf (stderr, “pmut - mutation probability PCross - crossover
prop.\n”) ;

fprintf (stderr, "Ncoef - # of coceffiecents errZone - max pass-

band/stopband erxr \n”);

fprintf (stderr, "pass - passband edge normalized to sampling rate of
2pi\n”} ;

fprintf (stderr, “stop - if ob=1 transition band decay from passband
exp (-stop (w-pass))\n”);

fprintf (stderr, ” if ob=m stopband edge normalized to sampling
rate of 2pi\n\n”);
exic(-1);
}
ob = *arg(l]; // objective function LMS or minimax
MaxIter = atoif(axgl(2]); // # of generations
Nchrom = atoifarg{3l); // population size
pmut = (float)atof(arg(4]);// mutation probability
pcross = (float)atof(argls5]);// crossover probability
Ncoef = atoilargl(ée]);// number of coefficents
errZone = (float)atof(arg(7]);// max passband and stopband error
ripple
passbd = (float)atof(argl8]l); // passband edge normalized to sam-

pling rate of 2pi

if (ob=='m’) stopbd=(float)atof({arg(9]):// stopband edge normalized to
sampling rate of 2pi

else ALPHA=(float}atof (arg(9]);// transition band decay exp (-ALPHA (w-
passibd))

initctables () ;

seed= (unsigned) time (NULL) ;
srand (seed) ;

/* restriction on the population size */
if ((Nchrom % 2) != 0) Nchrom--;

/* create space for chromosome */
chrom = new aCHROM [Nchrom] ;
if (chrom == NULL) {printf{“don’t have enough space, chrom\n”); exit(-1);}

/* create space for offsprg */
offsprg = new aCHROM [Nchrom] ;
if (offsprg == NULL) {printf(“don’'t have enough space, offsprg\n”); exit (-

1) ;}

/* create space for ordering */
ordering = new int [Nchrom];
if (ordering == NULL) {printf(“don‘t have enough space, ordering\n”);

exit(-1);}

/* create space for coeff for fitness evaluation use */

110

University of Windsor

coeff = new DATA[Ncoef];
if (coeff == NULL){ printf (“\nNot enough memory for *coeff”); exit (-1); }

/* read all available data */

inptr = fopen(“dbns.dat” ,"r");

if (inptr == NULL) { printf(“cannot open readin file\n”); exic(-1j; }

fscanf (inptr, *%d”, &num) ;

chrom_len = ilog2(num)+1l; // log2(num) +1 round up (+1 for sign)
printf (“chrom length is %d\n”,chrom_len);

signmask = eachbit[chrom_len-1];

valuemask = fromright [chrom_len-2];

wholemask = fromright ([chrom_len-1];

data = new DATA [num];

scalefactor = new int [eachbit(chrom_len-1]};

if (data == NULL) {printf(“don’‘t have encugh space, data\n”); exit (-1);}

int i;
for (i=0; i < num; i++)
{
fscanf {(inptr, “$le\t%d\t%d”,&datali] .val, &data(i] .bin-
Exp,&datali] .terExp) ;
if (datali] .binExp==-1 && data[i] .terExp==0}
{
pS_loc = 1i;
printf("0.5 loc is %d giving
%le\n”,p5_loc,data[p5_loc] .val);

}
}
fclose(inptr) ;

for (i=0;i<eachbit [chrom len-1];i++)

scalefactor[il=(int) ({ (double)i / {double)eachbit [chrom_len-1]) *
num) ;
//get the random chromosome
presetChrom(p5_loc) ;
//calcuate the fitness of each chromosome
GETchromfic () ;
Bchrom.fitness = -1.0;
Bchrom.absfitness = -1;
Citer = 0;
scaleFitness () ;
while ((Citer < MaxIter))({
Citer++;
//find Noffsprg and duplicate the chrom to offsprg
reproduce () ;
//crossover, mutation
for (chromctr = 0; chromctr < Nchrom; chromctr = chromctr + 2){
indexl = ordering(chromctr];
index2 = ordering[chromctr + 1];
for (coefctr = 0; coefctr < Ncoef; coefctr++)
DOcrossover (indexl, index2, chromctr, chromectr + 1,
coefctr) ;

DOmutation (chromctr) ;
DOmutation{chromctr + 1);

University of Windsor

/* exchange pointer */
temp = chrom;

chrom = offsprg;
offsprg = temp;

//calcuate fitness of each offsprg

GETchromfic () ;

scaleFitness() ;

if ((float) (1/Bchrom.fitness)==0.0) {report(seed); exit(0);}

if ({Citer % 30) == 0) printf(“\n%d%f”, Citer, Bchrom.fitness) ;

printf{*"\n”);
report (seed) ;

delete (] chrom;
delete[] data;
delete[] coeff;
delete[] offsprg;
delete[] scalefactor:;

returni{0) ;

Appendix E
A Brief Tutorial in High
Level Chip Design

E.1 Introduction

This appendix provides a brief introduction into high level
microchip design. It is assumed that the microchips will be
designed using Hardware Descriptive Languages (HDL) and
compiled into their hardware representation. This is a complex
topic and this tutorial should be supplemented using the many
books and online documentation available to the students in the

VLSI Laboratory.

The first step to high level chip design is a working knowledge of
HDLs. There are many tutorials available on the internet, a quick
search for “vhdl tutorial™ or “verilog tutorial” should garner many
results. I also recommend the book “HDL Chip Design™ from
Doone Publishers [30] (available at www.doone.com). The book
has extensive examples, which are done in both VHDL and Verilog,

and compares the strengths and weaknesses of both HDLs.

E.2 System Design

[f the designer has a working knowledge of HDLs then one can

convert a system specification into the Hardware Descriptive

13

University of Windsor

Language. This can be done in two ways. The first is to start with a high level behaviour
description. and test to see if the description meets the specification. If the description
meets the specification. the system can be divided into smaller more detailed blocks and
simulated again. This is repeated until the overall system is described at a level that is

synthesizable. This is termed as “top-down™ design.

The second method is to describe the blocks that are needed and simulate them in order to
test if they meet specification. These blocks are then pieced together to form the complete

system. This is termed “bottom-up™ design.

In practice a mix of both top-down and bottom-up approaches are usually performed. For
example. in an attempt at bottom-up design, it is usually better to implement a structure as
a sub-block. A top-down design approach can use this block developed from a bottom-up

design.

E.2.1 Choice of HDLs

Choosing the right HDL for a task is important. The purpose of the HDL description, and
the tools that are available determine the best language to be used. In general, it is usually
better to use Verilog for use with Cadence tools (Cadence once owned Verilog and used it
as its proprietary language), or for simulation, and VHDL for synthesis. This convention is
used because Verilog is not designed for system level description, and VHDL handles
binary arithmetic in a better manner, such as understanding sign extension in signed

binary arithmetic.

E.2.2 Putting the Design Together

Assembling the individual blocks into a system can be a long and error prone task to
perform in code. There are two different ways to ease the combining of sub blocks into a
system. The first, usually used for Verilog, is assembling the blocks through a graphical
schematic capture program, such as Cadence Design Frameworks II. Each component is

converted into a symbol with input and output pins. These symbols can then be connected

14

University of Windsor

together, into the system, using graphical interface tools. The completed system can then

be netlisted into a complete Verilog description.

The second method can only be used with VHDL. This method is excellent for producing
repetitive. modular systems. The use of the generate command in VHDL allows the
connection of numerous component blocks in just a few lines of code. All that is needed is

to specify the components and the connections.

Example E.1 The following code will generate a filter with an arbitrary number of taps

GEN: for i in 0 to taps-1 generate

U: ltap
generic map { cbsize, ctsize, dbsize, dtsize, mbsize, mtsize,

lbsize, ltsize, absize, sbsize, asize)

port map (ICLK(56-i), ICLK(56-i+1), ICRESET(S56-1i), ICRESET(56-
i+1) ,ILRESET(56-1i) ,ILRESET(56-1+1) ,IDATABIN(i) ,IDATARIN(i+1),
IDATASIGN (i), IDATASIGN(i+1), IDATATERN (i), IDATATERN (i+1l),
IACCUM(1i), IACCUM(i+1l), ILCLK(56-i), ILCLK(56-i+l1), ICOEF,
BIN(i), ICOEFSIGN(i), ICOEFTERN(i), ICOEFBIN(i+l), ICOEF
SIGN(i+1), ICOEFTERN(i+1)) ;

end generate GEN;

E.3 Synthesizing the System

Once the system is fully described using a HDL, the next step is to synthesize the design
into hardware. The tool used for this is Synopsys, which can compile both VHDL and
Verilog. A fully detailed tutorial in synthesizing systems, with an example producing a 16

bit multiplier, s available from CMC. The latest version. and updates is available at:
http://www.cmec.ca/Training/Digital_Flow/cmc_digfiow.html

Because the CMC Digital Flow document covers the synthesizing of a HDL description,

only the salient points will be covered here.

University of Windsor

L.

[0

The first step is to create a working directory in which the design files are to reside. for

example:

mkdir synopsys

- The working directory requires 2 files: .synopsys_dc.setup and .synopsys_vss.setup.

.synopsys_vss.setup maps the compiled Synopsys libraries to system directories. The

file has the format:

Library: Directory

[t is generally good practice to have the library name and directory names in an identi-
cal format. For example the .synopsys_vss.setup file for the filter designed in this thesis

was:
DBNS: ./DBNS

A sample .synopsys_dc.setup file is provided by CMC. This file is used to set up the
location of the standard cell libraries that will be used in Synopsys. The contents of
.synopsys_dc.setup are explained by the comments in the file. Something similar must

appear in directory from which Synopsys is run. The CMC provided file is:

/* Canadian Microelectronics Corpcration
* Sample .synopsys_dc.setup file, for use with CMC DSM labs

* Novemper 1, 1999

-«

* Library and Search Path variables assume links are in place so

* $SYNOPSYS/cmc/cmosp35 points to the libraries in this design kit
* which are compiled for the proper version of Synopsys

*/

search_path = {.}
search_path = search _path + {synopsys root + /libraries/syn}
search_path = search path + {synopsys root + /cmc/cmosp35/syn}

/* Use only one of the following sets of library statements!! =/

/* For Black Box (bbox) libraries */

link_library = “* tcb773pwc.db tpd773pnwc.db wsram.db”
target_library = {tcb773pwc.db tpd773pnwc.db wsram.db}
symbol_library = {tcb773p.sdb tpd773pn.sdb}

/* For the CMC developed W-Cells */
/*
link_library = “* wcells.db wsram.dp”

116

University of Windsor

target library = {wcells.db wsram.db}

symool library = {wcells.sdb}

vhdlout _use_packages = {IEEE.std_logic_1164, wcells.components}
*/

/* Assume there is a ./Work directory */
/* define_design_lib work -path Work */
define_design_lib dbns -path DENS

/* Try and make names compatible with Cadence dfII, from Preview man. */

bus_naming_style = “%s_%d_"

verilogout_no_tri = “true”

define_name_rules preview -allowed “A-Zz-z0-9_~

/* Preview man. page says set the verilogout_single_bit = true, but to
get the sram cells to work you may need false. */

verilogout_single_bit = “true”

/* Some usefull scripts. */
view_script_submenu_items = \

{“Remove All Designs”,”remove_design find(design \“*\”)", \
"Save All Designs”, “write find(design \”*\"”) -out save.db”, \
“set_dont_touch All Designs”, “set_dont_touch find(design \"*\”)", \
“Remove dont_touch All Designs”, \

“remove_attribute find(design \”*\”)} dont_touch”, \
“Remove Unconnected Ports”, \

“remove_unconnected_ports -blast_buses find(-hierarchy cell, \“*\")”, 6\
“Fix Multiple Ports (on selected hierarchy)”, \

“set_fix multiple_port_nets -all”, \
“Change Names for Preview”, \

“change_names -rules preview -hierarchy > change names.out” }

/* use the following to include the TSMC name changing script */
include /CMC/kits/cmosp3s/samples/TSMC_naming_rule.script

3. A directory must be created for each entry in the .synopsys_vss.setup file, and each

directory name must be the same as those listed in .synopsys_vss.setup

4. Once the previous steps are taken care of, it is time to start Synopsys. To start Synopsys

use the one of the following commands:
dc_shell
for a command line interface (no graphical interfaces) to Synopsys, or:

design_analyzer &

for the graphical interface version of Synopsys. After design_analyzer is started use the

Setup -> Command Window menu to bring up an interface to type in commands.

117

University of Windsor

th

If an error. such as:

dc_shell: Command not found

is encountered when trying to run one of the above commands. it means that the Synop-
sys tools are not in the current path and may need to be setup. At the University of

Windsor this is done by executing the following command:

setup Synopsys

In order to produce a more structured and reproducible compilation in Synopsys. a
compile script can be made. This is important if the code used has errors or if a mistake
is made. The script makes it easy to reproduce the compile quickly and without missing
any steps. A compile script reads in each HDL file. saves them in Synopsys’ internal
format and then compiles the description into hardware and produces a Verilog output
file for use with Cadence tools. An example of such a compile script would be:

remove_design “**

analyze -f vhdl -1ip DBNS parameters.vhd
analyze -f vhdl -1lib DBNS packages.vhd
analyze -f vhdl -1lib DBNS accum.vhd
analyze -f vhdl -lib DBNS signcorrect.vhd
analyze -f vhdl -1lib DBNS bshifter.vhd
analyze -f vhdl -1lib DBNS binaryadder.vhd
analyze -f vhdl -lib DBNS ternarylut.vhd
analyze -f vhdl -1lib DBNS multiplier.vhd
analyze -f vhdl -lib DBNS atap.vhd
analyze -f vhdl -1ib DBNS rlatch.vhd
analyze -f vhdl -1lib DBNS ctap.vhd
analyze -f wvhdl -1ib DBNS ltap.vhd
analyze -f vhdl -1ib DBNS ltap_export.vhd
analyze -f vhdl -1lib DBNS binary4denslut.vhd
analyze -f vhdl -1lib DBNS filter.vhd
elaborate -lib DBNS ltap_export
current_design “accum_asizel8_sbsizel2”
compile -map_effort high

current_design “rlatch_wsizel”

compile -map_effort high

current_design “rlatch_wsize3”

compile -map_effort high

current_design “rlatch_wsize4”

compile -map_effort high

current_design “rlatch_wsizeisg8”

compile -map_effort high

current_design “binaryadder mbsize5_lbsizeS_absized”
compile -map_effort high

current_design “bshifter_ltsize9_absize9_sbsizel2”
compile -map_effort high

18

University of” Windsor

current_design “"multiplier cbsize4_ctsize3_dbsize4_dtsize3l_mbsize5_mtsizes”
compile -map_effort high

current_design “signcorrect_sbsizel2”

compile -map_effort high

current_design “ternarylut_mtsize4_ltsize9_lbsizeS”

compile -map_effort high

current_design “ltap_export”

create_clock -nams “CLKI” -period 25 -waveform { “g” *12.5" } { “CLKI” }
set_dont_touch_network find(clock, “CLKI”)

set_clock_skew -plus_uncertainty 0.5 “CLKI”

set_clock_skew -minus_uncertainty 0.5 “CLKI”

uniquify

set_port_is_pad “*”

insert_pads

/* set_max_transition 2 */

/* set_min_fault_coverage 98 */

compile -map_effort high

write -for verilog -out ltap.v -hier

write_constraints -cover_design -format sdf-v2.l1 -output ltap.sdf

To run a script type the following command into the dc_shell, or into the Command

Window ot the design_analyzer.

include script name

Where script_name is the name of the script. The script may be generated in an

iterative manner as commands are entered into Synopsys. The explanation for the script

1) The first line of the script clears out any existing design currently in Synopsys.

2) The analyze lines read in a file of type VHDL and save them into the Synopsys
library DBNS (as specified in the .synopsys_vss.setup file).

3) The elaberate command is used on the top level cell

4) The current_design command is used to set the focus of Synopsys onto a specific
cell. The compiling of cells should start at the bottom most level of the design hier-
archy and move up through the hierarchy to the top most cell. The names can be
determined from the display window in design_analyzer. The names of the compo-
nents may be different than that specified in the VHDL code. This is due to the use
of parameters.

5) compile -map_effort high converts the VHDL description into a hardware repre-
sentation with trying to minimized the area used.

6) create_clock is used to specify which net is the cleck, and the period and wave-
form characteristics.

7) set_dont_touch_network is used because another tool will be used to optimized
the clock path.

8) [/* ... */ are comments and were left in to show that undesired commands could be
commented out, or notations can be made inside the script.

19

University of Windsor

~J

9) The write command is used to write out the compiled design in Verilog. At this
point the Verilog code is consists only of instances for the standard cells and their
connections.

10) write_constraints is used to produce the time constraints placed on the circuit.
that will be used during routing.

The Verilog output from Synopsys is now ready to be used for Placement. This means
that the individual library cells will be placed into a chip core and surrounded by the
input/output and power pads. The placement of the cells is performed in such a2 manner
as to place cells that are to be connected in close proximity to each other. The tool used
for placement is Cadence Physical Design Planner. and is fully described in the CMC

Digital Design Flow.

After the Placement of the library cells is completed. the Routing of the system nets is
the next step. First the power nets are routed., then the clock net. This is to ensure that
optimal routing is done for critical nets. Lastly, the general nets of the system are
routed. The tool used for routing is Cadence Silicon Ensemble, and is fully described in

the CMC Digital Design Flow.

An important option to include while performing placement is the congestion map. The
congestion map shows the likelihood of being able to fully route the design. If the map
is all gray, the design can be routed. If the map contains any cautionary yellow or warn-
ing red spots. it is probably not possible to route the design. Ensuring that the conges-

tion map is all gray can save a lot of time later.

Finally, the chip is brought into Cadence Design Frameworks I for the finishing
touches. This involves correcting minor design rule violations and meeting any process
requirements. The process requires that certain layers must cover a specified percentage

of the chip’s surface.

The successful completion of the above steps, with the appropriate references to the CMC

Digital Design Flow, will produce a microchip from a high level description.

Vita Auctoris

“Stanley Jonathan Eskritt”, born May 7. 1975 in Windsor, Ontario Canada. Jonathan
attended the University of Windsor, where he studied for and obtained an Honours Bache-
lor of Applied Science degree in Electrical Engineering. Jonathan also pursued graduate
studies at the University of Windsor where he worked towards a Master of Applied Sci-
ence in the area of Electrical and Computer Engineering focusing on special DSP archi-

tectures and VSLI design.

	University of Windsor
	Scholarship at UWindsor
	2001

	Inner product computational architectures using the double base number system.
	Stanley Jonathan. Eskritt
	Recommended Citation

	tmp.1363872243.pdf.UvgMb

