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Abstract

In elliptic curves cryptography, the curves are always defined over a particular finite

field to provide the required cryptographic services. Currently, such services are the

engine of most network security applications in practice. Scalar multiplication is the

core operation of most such cryptographic services. Scalar multiplication performs

field inversion very frequently in the underlying finite field. Field inversion is the most

time-consuming operation that requires a special attention. Therefore, by accelerating

field inversion, in addition to their inherent high level of security, such cryptographic

services are executed fast.

In finite extension fields GF (pm) with the extension degree m, accelerating field

inversion by following Fermat’s approach is reduced to the problem of finding a clever

way to compute an exponentiation, which is a function of the field’s extension degree

m. By applying the concept of short addition chains combined with the idea of

decomposing (m − 1) into several factors plus a remainder, with some restrictions

applied, field inversion in such fields is computed very fast.

Two field inversion algorithms are proposed based on the suggested methods

above. They are mainly proposed for extension fields of characteristic p two and

three using normal basis representation. Fast Frobenius map operation proposed

and extended to higher characteristic extension fields. Both algorithms, relative to

existing inversion algorithms, require the minimal number of field multiplications,

the second costly operations, those necessary to perform the exponentiation for field

inversion. The obtained results confirmed the validity of the proposed ideas herein.
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Chapter 1

Introduction

Elliptic curve cryptography (ECC) was independently proposed by Miller [1] and

Koblitz [2] in 1985. After the emergence of ECC as the alternative public-key system,

instead of the legacy system that previously proposed by Rivest, Shamir and Adleman

(RSA: [3]), such systems gained much more interest by many society sectors than its

predecessors.

The strength of elliptic curves in practical cryptographic-applications due to the

strength of their associated group structures, qualified them to be recognized and

standardized internationally by ISO and IETF, and in the USA by NIST and ANSI

organizations. As a result of this, ECC was accepted in commercial sector in 1990 [4],

and since then, many commercial cryptographic-systems were designed and dispensed

in the markets.

In academic sector, many researchers have directed their focus on the interesting

field of elliptic curves, either by paying more attention on the mathematical aspects

of such curves, or by somehow optimizing their associated arithmetic operations for

use in cryptographic applications (such as in ECC), as in this dissertation.

1



CHAPTER 1. INTRODUCTION

1.1 Finite Fields and ECC

An elliptic curve is simply a mathematical curve of cubic-degree, which is a

non-singular complete algebraic curve. Therefore, such a curve is defined by a

characteristic equation of two unknown variables, with some coefficients known a

priori. The characteristic equation used to describe the elliptic curve is defined over

(its variables and coefficients are taken from) some mathematical field, such as the

field of complex numbers, field of real numbers, field of rational numbers, etc [4].

In using elliptic curves for cryptographic-applications, such as in ECC, they must

be defined over mathematical fields with finite number of elements, which have a

strong number-theoretic foundations, to satisfy the security requirements imposed

by the concerned application. Such fields are exist, well-defined mathematically and

referred to as finite fields [5].

Earlier in this chapter, it was mentioned that an elliptic curve in cryptography

is associated with a strong group structure. The obtained abelian group of finite

curve-points, resulted by defining an elliptic curve over a specific finite field, indeed

has a strong algebraic properties, since the finite field has an inherent strong number-

theoretic foundation [6].

In ECC, curve-operations such as scalar multiplication (SM), point addition

(PA) and point doubling (PD) are highly dependent on the arithmetic operations in

the field over which the elliptic curve is defined (referred to as, the underlying field).

Thus, to accelerate cryptographic-applications (or -algorithms) such as the elliptic

curve digital signature algorithm (ECDSA) for authentication, elliptic curve

diffie-hellman (ECDH) algorithm for key-exchange, or elliptic curve el-gamal

(ECEl-Gamal) algorithm for encryption, we need to optimize the arithmetic

operations in the underlying field.

Scalar multiplication is the core algorithm in most cryptographic-applications

based on elliptic curves, including the previously mentioned ones. In fact, it

dominates their execution-times to a great extent, since it heavily relies on

2



CHAPTER 1. INTRODUCTION

(performs very frequently) field inversion in the underlying field [7].

Since finite fields are simply mathematical fields, they have all arithmetic

operations defined such as addition, squaring, multiplication, inversion, etc. Field

inversion is the most time-consuming operation, the costlier operation, in finite

fields [8]. It relies heavily on field multiplication, the second costly operation [9], to

calculate the inverse of the concerned field element. Therefore, to accelerate

cryptographic-algorithms based on elliptic curves, it is imperative to accelerate field

inversion in the underlying field by reducing the required number of multiplications,

which is the main interest in this dissertation.

1.2 Existing Work and Contribution

In finite extension fields GF (pm), when the characteristic p is equal to two and the

extension degree m is greater than one, the fields are referred to as binary extension

fields GF (2m), with field elements represented as binary vectors of dimension m.

When p is equal to three and m is greater than one, the fields are referred to as

ternary (characteristic three) extension fields GF (3m), with field elements represented

as ternary vectors of dimension m. In GF (3m), the coefficients of each vector belong

to the set {0, 1, 2}, or more generally, the set {0, 1, · · · , p − 1}, which is exactly the

subfield GF (p). In both types of finite extension fields, the vectors are interpreted in

different way depending on the used representation basis [10].

1.2.1 Binary Extension Fields GF (2m)

In GF (2m) with field elements represented using normal basis representation (NB),

arithmetic (or field) operations such as additions and squarings are simply (mod 2)-

additions and cyclic-shifts, respectively. As a result of this, such fields are attractive

from software and hardware perspectives (no rounding-errors and carry-propagation

chains exist). For this reason, they have predominant usage in many applications

3



CHAPTER 1. INTRODUCTION

including ECC [11, 12, 13]. In such applications, the associated finite field arithmetic

operations must be executed fast, in particular, accelerating the execution time of

finite field inversion (or the inverse) algorithm is of paramount importance, as it was

mentioned earlier herein.

A group of interested academic researchers previously proposed algorithms for

finding the inverse fast in GF (2m) [14, 15, 16, 17]. Such algorithms are based on

Fermat’s Little Theorem (FLT) and using NB for the field elements. In using Fermat’s

approach, inverse calculation is basically an exponentiation that requires repeated

squarings and multiplications. For example, given a nonzero element δ ∈ GF (2m),

its inverse using FLT method is given by

δ−1 = δ2
m−2 = δ2

1 × δ22 × · · · × δ2m−2 × δ2m−1

. (1.1)

Inverse calculation without any attempt to manipulate Eq. (1.1), with the aim to

reduce the required number of multiplications, requires (m − 1) field squarings and

(m − 2) extension field multiplications. Wang et al. [18] basically proposed a VLSI

implementation of FLT method, given in Eq. (1.1) above, for computing the inverse

in GF (2m).

In using NB, field squaring of a nonzero element δ ∈ GF (2m) is simply a right

cyclic-shift that is computed very fast compared to field multiplication. Therefore,

it is imperative to reduce the number of the required multiplications in Eq. (1.1)

above for fast inverse computation. Itoh and Tsujii [14] computed the inverse fast

using their proposed inversion algorithm (referred to as, ITA) by computing Eq. (1.1)

above in an ingenious way. The number of the required extension field multiplications

necessary for inversion (inversion cost) is given by

[`(m− 1) + w(m− 1)− 2] , (1.2)

whereby `(.) and w(.) are the binary-length and Hamming-weight (the number of

1s in the binary-representation) of the argument (m− 1) that is given by a positive

4



CHAPTER 1. INTRODUCTION

integer, respectively. The worst case in ITA algorithm happens when (m − 1) is a

full-weight value, whereby `(m − 1) = w(m − 1), which has encouraged academic

researchers to devise other mathematical ways to reduce the inversion cost for such a

case in computing the inverse.

Chang et al. [15] proposed inversion algorithm (referred to as, CEA) which further

reduces the inversion cost in some ms, or in some binary extension fields GF (2m) since

each m represents a unique extension field, by factorizing (m − 1) into two factors.

Given that (m − 1) = s × t, i.e., factorized into two factors, then the inversion cost

using CEA algorithm is given by

[(`(s) + w(s)− 2) + (`(t) + w(t)− 2)] . (1.3)

Unfortunately enough, CEA algorithm is not applicable in the cases when (m−1)

is a prime value.

Takagi et al. [16] proposed inversion algorithm (referred to as, TYT) which

improves on CEA algorithm by decomposing (m − 1) into several factors and a

small remainder h. Further reductions in the inversion cost is achieved in some ms,

or in some GF (2m), and the remainder h handled the prime case of (m − 1) in

which CEA algorithm is not applicable. Given that (m − 1) =
∏k

j=1 rj + h, i.e.,

decomposed into several factors and a remainder, then the inversion cost using TYT

algorithm is given by

(
k∑
j=1

`(rj) + w(rj)− 2

)
+ h. (1.4)

Notice how Eq. (1.4) above is partly a linear function of the remainder h itself,

with h restricted to the value of 1 as reflected in their paper. The restriction of h to a

single value minimizes the set of GF (2m) those associated with the minimal number

of the required multiplications for inversion, or in other words, minimizes the set of

those GF (2m) that are associated with the minimal inversion cost.

5



CHAPTER 1. INTRODUCTION

Li et al. [17] proposed inversion algorithm (referred to as, LCA) which improves

on TYT algorithm by re-using some intermediate results, after decomposing (m− 1)

in the same manner, without restricting the remainder h to the value of 1, but to a

specific set of values. Therefore, further reductions in the inversion cost in some ms,

or in some GF (2m), is obtained. Given that (m− 1) =
∏k

j=1 rj + h, i.e., decomposed

into several factors and a remainder, then the inversion cost using LCA algorithm is

given by

(
k∑
j=1

`(rj) + w(rj)− 2

)
+ w(h). (1.5)

Notice how Eq. (1.5) above is partly a function of the Hamming weight of the

remainder h, rather than a linear function of h itself as in TYT algorithm.

Our main contribution relevant to inversion in characteristic two extension fields (see

Chapter 4.1) is represented by the following:

1. Propose a decomposition algorithm for the extension degree m of GF (2m) that

results in further reductions in the inversion cost

2. Propose a field inversion algorithm to implement our decomposition algorithm

in GF (2m) using NB for the field elements

By appropriately decomposing (m − 1) into several factors and a remainder h,

i.e., (m − 1) =
∏k

j=1 rj + h, the remainder h if properly selected to belong to the

short addition chain (SAC1) of the first factor r1 (denoted as Cr1), or any other

factor in (m− 1) as long as h is less than or equal to that specific factor, all relevant

multiplications to h are saved, thus, the inversion cost of the proposed algorithm is

given by

1The minimum possible addition chain for r1 in which h is one of the elements (see Chapter 2.4).

6



CHAPTER 1. INTRODUCTION

(
k∑
j=1

`(rj) + w(rj)− 2

)
+ 1. (1.6)

Notice how the required number of multiplications is now independent of the

remainder h, as it is clear from Eq. (1.6) above.

In subsequent chapters we are going to prove Eq. (1.6) and to show that our

proposed inversion algorithm in GF (2m) is expected to have as low as or even lower

inversion cost than other existing inversion algorithms. This finding is applicable

to many extension degrees ms, or equivalently is applicable to many GF (2m), that

are suitable for use in ECC-based cryptographic applications, including the ones

recommended for governmental cryptographic applications.

1.2.2 Ternary Extension Fields GF (3m)

Ternary extension fields GF (3m) are very important in ECC for use in cryptographic

systems based on bilinear-mapping, such as the Weil pairing or Tate pairing, and

exhibits more bandwidth efficiency relative to other extension fields as declared by

Galbraith in [19]. In keeping up with our interest to accelerate field inversion, we are

going to present what has been done so far, in the academic literature, in such type

of extension fields, and then show our contribution in such fields.

In particular, in GF (3m) many authors in the literature including [20, 21, 22],

depend on the inversion scheme that previously proposed by Itoh and Tsujii in [23],

which is based on Fermat’s inversion approach. The scheme simplifies inversion in

such extension fields, to inversion in the subfield GF (3), in addition to the need for

performing a logarithmic number of extension field multiplications in such fields, i.e.,

GF (3m)-multiplications.

The aforementioned inversion scheme is also applicable to any odd-characteristic

extension field GF (pm), for prime characteristic p > 2 and m > 1, where in such

a case, the subfield is GF (p), and the required multiplications are performed in the

7



CHAPTER 1. INTRODUCTION

extension field GF (pm).

For example, given p = 3 and a nonzero element δ ∈ GF (3m), its inverse based

on the inversion scheme in [23] is computed as in the following expression (referred

to as, ITI expression):

δ−1 = (δr)−1 × (δ)r−1, (1.7)

which has inversion cost equal to [`(m− 1) + w(m− 1)] GF (3m)-multiplications, in

addition to the need for a subfield inversion for finding the inverse of δ.

ITI expression, given in Eq. (1.7) above, is not written as a complete field inversion

algorithm in GF (pm), for any odd-prime characteristic p and m > 1. The authors

just mentioned the use of addition chains to calculate (δ)r−1 term, without writing an

algorithm to perform this task or even the task of computing the field inverse itself.

A group of authors rely on ITI expression to compute and accelerate the inverse,

with attempts to improve it from software and hardware perspectives, by defining

their own domain parameters and representation basis, while imposing the specific

constraints and conditions [24, 25] to achieve their final goals.

Our main contribution relevant to inversion in characteristic three extension fields

(see Chapter 4.2) is represented by the following:

1. Propose a cohesive and complete field inversion algorithm in GF (3m) using NB

somehow based on ITI expression

2. Employ our decomposition algorithm and propose the relevant inversion

algorithm to implement it in GF (3m) using NB

3. Propose fast Frobenius map in GF (3m) and use it as the basis for extending

the idea to higher characteristic extension fields

We propose a cohesive and complete field inversion algorithm in GF (3m) using

NB and somehow based on ITI expression. Given a nonzero element δ ∈ GF (3m) in

8



CHAPTER 1. INTRODUCTION

which is inverse is required, the inverse is computed using our first algorithm proposed

in such fields with inversion cost that is given by

[`(m− 1) + w(m− 1)− 1]GF (3m)-Multiplications. (1.8)

By comparing the inversion cost of our algorithm given in Eq. (1.8) against the

inversion cost of other existing algorithms given in Eq. (1.7) above, in addition to

avoiding the required subfield inversion, our algorithm also requires less number of

GF (3m)-multiplications.

In addition, we propose a second field inversion algorithm in GF (3m) using NB,

which implements the decomposition algorithm that proposed earlier herein for

GF (2m). As a result of this, some algorithms are modified in order to be suitable

for use in GF (3m). As mentioned earlier herein, our final goal is to reduce the

inversion cost, especially when (m − 1) =
∏k

i=1 ri + h, i.e., is appropriately

decomposed into several factors and a remainder h. Based on previous discussion,

given a nonzero element δ ∈ GF (3m) in which its inverse is required, the inversion

cost, using our second algorithm proposed in such field is given by

(
k∑
j=1

`(rj) + w(rj)− 2

)
+ 1. (1.9)

The inversion cost given in Eq. (1.9) above, is exactly similar to that result

we previously obtained in GF (2m) [see Eq. (1.6) above]. This in fact is true since

our decomposition algorithm depends on the extension degree m, but not on the

characteristic p of the concerned field.

Our proposed field inversion algorithms in GF (3m) are expected to have as low

as or even lower inversion cost than other existing inversion algorithms. This finding

is applicable to many extension degrees ms, or equivalently is applicable to many

GF (3m) that are of particular interest for ECC, whereby our algorithms in some of

such fields require lower inversion cost [26].
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Furthermore, we propose an accelerated Frobenius map operation in GF (pm) for

odd-prime p and m > 1 using polynomial basis representation (PB). We start by

considering characteristic p = 3 and extend the idea to higher characteristic extension

fields. In GF (3m) using PB, the Frobenius map is equivalent to cubing operation. The

proposed fast Frobenius map operation is expected to have almost free runtime and

space complexity, especially when GF (pm) follows the definition of Type-II optimal

extension fields (OEFs), as it will be clarified later on.

1.3 Notes and Dissertation Organization

The astute reader, notice that in this dissertation most of our research work is the

application of engineering principles through mathematics. This is represented by

providing some mathematical facts (or ideas) that finally translated to a set of newly

derived algorithms. Such algorithms are intended to solve a specific problem with

low complexity or cost from the engineering perspective.

Our final goal herein is to speed up field inversion for cryptographic applications,

especially those applications based on ECC. To achieve this, we will start by

considering the aforementioned FLT method, in attempt to reduce the required

number of multiplications for inversion (inversion cost), which in turn, accelerates

the execution time of any proposed field inversion algorithm more apparently by

using NB. This reduction can be achieved through the mathematical manipulation

for the extension degree m of the concerned GF (pm). Based on this, our proposed

field inversion algorithms in binary and ternary extension fields are the outcomes of

such manipulation.

Furthermore, we will consider the Frobenius map operation, by proposing a fast

operation with almost free runtime and space complexity in ternary and higher

characteristic extension fields, given that such fields follow the definition of Type-II

OEFs. The proposed fast Frobenius map operation is necessary for accelerating

inversion in finite fields using PB for the field elements.
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The astute reader will notice the sequential way for solving the inverse problem

with the lowest inversion cost possible in finite extension fields. More specifically, in

the literature review chapter (see Chapter 3), we will move from the previous work

achieved in accelerating field inversion in binary and ternary extension fields to the

current work in a sequential manner. We will start our presentation by explaining

the ideas, that previously proposed by academic researchers by considering their

published work, from the oldest to the newest, which coincides with their attempts

to improve the inversion cost of inversion algorithms in finite extension fields. Our

proposed work in this dissertation is one of such attempts to further improve the

inversion cost in such fields.

This dissertation consist of six chapters arranged in logical sequence, in such a

way, the reader can grasp the ideas and the mathematical concepts presented herein.

The mathematical background chapter mainly focus on the mathematical aspects of

finite fields those necessary for understanding the different types of finite fields to be

used herein, the representation bases for the elements in such fields, and the effect of

such representation on the arithmetic operations in the concerned field.

The literature review chapter is included mainly to present the state-of-the-art

mathematical solutions to the problem of accelerating field inversion, as previously

and currently suggested by the academic researchers in the literature. Also, it allows

the reader to observe the diverse mathematical flavors for the solution, until the

reader reaches the solution proposed by the current authors herein.

The proposed algorithms chapter is included mainly to introduce the reader to

our newly proposed ideas and concepts, dedicated to further improve the solution

for accelerating inversion problem in finite fields. In that chapter, our proposed

field inversion algorithms for binary and ternary extension fields are presented and

elaborated. In addition, all relevant helper algorithms are provided, which assist main

algorithms in computing the inverse.
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The results and analyses chapter aims mainly to provide comparison tables to

compare the inversion cost, in terms of the required number of extension field

multiplications, using our proposed inversion algorithms in comparison with other

existing inversion algorithms. In addition, it presents a set of useful propositions

relevant to the proposed algorithms and to the associated helper algorithms.

Furthermore, the results will be analyzed to give the reader a better idea about the

competitive advantage in using our proposed inversion algorithms over other

existing algorithms.

Finally, this dissertation is concluded with closing remarks that summarizes the

main things achieved from our proposed research work. In addition, it provides the

future recommendations to pinpoint the potential tracks to follow in such type of

research field, which may attract the attention of academic researchers.
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Chapter 2

Mathematical Background

This chapter is mainly concerned with the mathematical aspects and concepts relevant

to finite fields. First, we will present the available different types of finite fields,

their commonly used representation bases, and their associated arithmetic operations.

Then, we are going to define and show how the inverse of a nonzero field element is

calculated using the inversion approach based on Fermat’s little theorem. Finally,

we are going to give an idea about the short addition chains, first, by defining such

chains, then, by showing how they are useful for inverse calculation in finite fields1.

2.1 Finite Fields

Finite fields are mathematical fields, identical to the well-known regular fields such

as the field of complex numbers, field of real numbers, or field of rational numbers,

etc, except that they contain a finite number of elements. Such a number is referred

to as the field order.

Since finite fields are simply mathematical fields, they have all the well-known

arithmetic operations defined such as addition, multiplication, division (or inversion),

etc. Mathematically, a finite field is defined as a finite set of elements denoted as IF,

that is associated with two binary operations (addition: + and multiplication: ×),

1The reader is referred to [27] to better understand most mathematical material presented herein.
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which satisfies the following set of axioms [4]:

1. (IF,+) forms abelian group, with ‘0’ the additive identity

2. (IF∗,×) forms multiplicative group, with ‘1’ the identity element

3. Closure law: (a+ b) = c, or (a× b) = d, for all a, b, c, d ∈ IF holds

4. Distributive law: (a+ b)× c = (a× c) + (b× c), for all a, b, c, d ∈ IF holds

The closure law guarantees that the result of an arithmetic operation is again belongs

to the concerned field. Notice how the field arithmetic operation, namely field division

(or inversion), is implied from the items 2 and 3 in the above list, since every nonzero

element in the multiplicative group IF∗ has a multiplicative inverse, which is another

element that belongs to the group itself. Also, this is because the finite field is a

commutative division ring. The French mathematician Evariste Galois, who laid the

foundations for Galois theory [28], declared that any field with a prime-power order

(i.e., field order is a power of a prime number) is a finite field, whereby the prime is

the field’s characteristic p and the power is the extension degree m of the field. Based

on his declaration, there are three major classes of finite fields (or Galois fields), as

it will be shown in what follows.

2.1.1 Prime Fields

Given that p is a prime number, the set of integers Z modulo p is referred to as the

prime field, denoted as GF (p). The prime field is exactly the set {0, 1, 2, · · · , p− 1}

of prime-power order, whereby the prime is p and the power is simply equal to 1.

Mathematically, the prime field is defined as follows.

Definition 1. The integer ring RZ is equivalent to the set of all integers Z together

with two binary operations defined, namely the addition and multiplication.

Definition 2. The principal ideal (p) is the smallest ideal, that is, a subset of the

ring RZ that is generated by the unique prime integer p ∈ RZ.
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Definition 3. The quotient ring Q = RZ
(p)

is isomorphic to GF (p), which is the set

of cosets of (p), or equivalently, the set {0, 1, 2, · · · , p − 1} of coprime numbers with

p.

In prime fields, all arithmetic operations are modular, which means, the result

is reduced to modulo p. As a symbolic example, we will just show the addition,

multiplication and division operations. Given the nonzero elements a, b ∈ GF (p), for

any prime integer p, then we have

a+ b −→ z = a+ b (mod p) : z ∈ GF (p).

a× b −→ z = a× b (mod p) : z ∈ GF (p).

a

b
−→ z = a× c (mod p) : c = b−1, z ∈ GF (p),

whereby

b× c ≡ 1 (mod p).

Basically, the inverse c of b is another element in GF (p) that gives the result of 1 when

multiplied by b over the modulus p. It can be solved either by using the extended

Euclidean algorithm (or one of its variants), or by using the inversion approach based

on Fermat’s little theorem (more on this later on). In general, since all arithmetic

operations in prime fields are modular, then they follow the well-known number-

theoretic rules.

2.1.2 Binary Extension Fields

A binary extension field is a Galois field with a prime-power order, whereby the prime

is the integer p = 2 and the power is any positive integer m > 1. Thus, simply its

order, or its number of elements, is a power of 2 value. In the academic literature,

such a field is denoted as GF (2m), whereby p = 2 is the field’s characteristic and m

is the field’s extension degree relative to the subfield GF (2), which simply equals the

set {0, 1}. Mathematically, the binary extension field is defined as follows.
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Definition 4. The binary polynomial f(x), is an irreducible field polynomial of degree

m > 1 defined over, or its coefficients are taken from the subfield GF (2), which has

its roots in the extension field GF (2m).

Definition 5. The polynomial ring Rp = GF (2)[x], is the set of all polynomials of

any degree defined over, or with coefficients taken from the subfield GF (2).

Definition 6. The principal ideal P = (f(x)) is the smallest ideal, that is, a subset

of the ring Rp that is generated by the irreducible field polynomial f(x) ∈ Rp.

Definition 7. The quotient ring Q = Rp
P

is isomorphic to GF (2m), which is the

set of all polynomials of degrees < m defined over GF (2), that is exactly the binary

extension field.

Based on the above definitions, the elements of a binary extension field GF (2m)

can be thought of as polynomials of degrees never exceed m whose coefficients equal

to either 0 or 1. Also, they can be considered as binary vectors of dimension (or size)

m, the extension degree.

For every positive integer m, or extension degree, there exist at least one binary

irreducible polynomial f(x) of degree m, necessary for generating the associated

extension field GF (2m), whereby the field elements are represented either by using

normal or polynomial basis representation (see next section).

As a symbolic example, we will just show the addition, multiplication and division

operations. Given the nonzero elements α, β ∈ GF (2m), then we have

α + β −→ γ = α + β (mod 2) : γ ∈ GF (2m).

α× β −→ γ = [α× β (mod 2)] (mod f(x)) : γ ∈ GF (2m).

α

β
−→ γ = [α× δ (mod 2)] (mod f(x)) : δ = β−1, γ ∈ GF (2m),

whereby

β × δ ≡ 1 (mod f(x)).
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Basically, the inverse δ of β is another element in GF (2m) that gives the result of

1 when multiplied by β over the modulus f(x). It can be solved either by using

the extended Euclidean algorithm (or one of its variants), or by using the inversion

approach based on Fermat’s little theorem (more on this later on). Notice that

when multiplying two extension field elements together, two modular reductions are

performed. The first is referred to as the subfield modular reduction that ensures the

coefficients belong to GF (2), represented by (mod 2) operation above. The other

is referred to as the extension field modular reduction that ensures the degrees are

less than m, represented by (mod f(x)) operation above. In general, all arithmetic

operations in binary extension fields require two modular reductions to produce the

final result, except for the addition operation in the concerned extension field.

2.1.3 Odd Characteristic Extension Fields

An odd-characteristic extension field is a Galois field with odd prime-power order,

whereby the prime is the integer p > 2 and the power is any positive integer m > 1.

Thus, simply its order, or its number of elements, is a power of any odd prime. In

the academic literature, such a field is denoted as GF (pm), whereby p is the field’s

characteristic, and m is the field’s extension degree relative to the subfield GF (p)

that simply equals the set {0, 1, 2, · · · , p−1}. Mathematically, the odd-characteristic

extension field is defined as follows.

Definition 8. The field polynomial f(x), is an irreducible polynomial of degree m > 1

defined over, or its coefficients are taken from the subfield GF (p), which has its roots

in the extension field GF (pm).

Definition 9. The polynomial ring Rp = GF (p)[x], is the set of all polynomials of

any degree defined over, or with coefficients taken from the subfield GF (p).

Definition 10. The principal ideal P = (f(x)) is the smallest ideal, that is, a subset

of the ring Rp generated by the irreducible field polynomial f(x) ∈ Rp.
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Definition 11. The quotient ring Q = Rp
P

is isomorphic to GF (pm), which is

the set of all polynomials of degrees < m defined over GF (p), that is exactly the

odd-characteristic extension field.

Based on the above definitions, the elements of odd-characteristic extension field

GF (pm) can be thought of as polynomials of degrees never exceed m whose coefficients

never exceed p. Also, they can be considered as GF (p) vectors of dimension (or size)

m, the extension degree.

For every positive integer m, or extension degree, there exist at least one field

irreducible polynomial f(x) of degree m, necessary for generating the associated

extension field GF (pm), whereby the field elements are represented either by using

normal or polynomial basis representation (see next section).

As a symbolic example, we will just show the addition, multiplication and division

operations. Given the nonzero elements α, β ∈ GF (pm), then we have

α + β −→ γ = α + β (mod p) : γ ∈ GF (pm).

α× β −→ γ = [α× β (mod p)] (mod f(x)) : γ ∈ GF (pm).

α

β
−→ γ = [α× δ (mod p)] (mod f(x)) : δ = β−1, γ ∈ GF (pm),

whereby

β × δ ≡ 1 (mod f(x)).

Basically, the inverse δ of β is another element in GF (pm) that gives the result of 1

when multiplied by β over the modulus f(x). It can be solved either by using the

extended Euclidean algorithm (or one of its variants), or by using the inversion

approach based on Fermat’s little theorem (more on this later on). Again, when

multiplying two extension field elements together, two modular reductions are

performed. The first is referred to as the subfield modular reduction that ensures the

coefficients belong to GF (p), represented by (mod p) operation above. The other is

referred to as the extension field modular reduction that ensures the degrees are less
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than m, and represented by (mod f(x)) operation above. In general, all arithmetic

operations in odd-characteristic extension fields require two modular reductions to

produce the final result, except for the addition operation in the concerned

extension field.

When the field characteristic p = 3, then we have the ternary (or characteristic

three) extension field. In fact such a field follows all the rules and specifications of

odd-characteristic extension fields.

2.1.4 Optimal Extension Fields

In general, when odd-characteristic extension fields are subject to a specific

restrictions in order to accelerate their associated arithmetic operations, when such

operations are implemented in software or hardware, such fields are referred to as

optimal extension fields (OEFs).

On the one hand, in attempt to accelerate subfield modular reduction operation,

with respect to the field’s characteristic p as the modulus, then the optimized field

is referred to as Type-I OEF. On the other hand, in attempt to accelerate extension

field modular reduction operation, with respect to the field’s irreducible polynomial

f(x) as the modulus, then the optimized field is referred to as Type-II OEF, as it will

be clear from the following presentation.

Definition 12. Given c ∈ IN (a positive integer), a pseudo-Mersenne prime is a

prime number N = 2k − c with bk
2
c ≥ log2(c). If c = 1, then N is a Mersenne prime.

If c = −1, then N is a Fermat prime.

Definition 13. The odd-characteristic extension field GF (pm) is referred to as

optimal extension field (OEF), if the following is satisfied:

1. p is a pseudo-Mersenne prime (if c = ±1, then Type-I OEF).

2. f(x) = xm − w is the field irreducible binomial (if w = 2, then Type-II OEF).
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When a pseudo-Mersenne prime p is used as the characteristic of the concerned

field, then it simplifies the subfield modular reduction operation, whereas when the

irreducible binomial f(x) is used as the field polynomial of the concerned field, then

it simplifies the extension field modular reduction operation [29]. The existence of

an irreducible binomial for a particular GF (pm) is asserted by the following theorem

[30].

Theorem 1. Given m ≥ 2 ∈ IN (a positive integer) and w ∈ GF ∗(p) (a nonzero

subfield element), then f(x) = xm − w is an irreducible binomial in the polynomial

ring GF (p)[x] if and only if the following is satisfied:

1. each prime factor of m, including m itself, divides z = Order(w) over GF (p),

but not p−1
z

and,

2. p ≡ 1 (mod 4) if m ≡ 0 (mod 4).

The following corollary specify the condition through which a polynomial is defined

as an irreducible binomial based on the above theorem.

Corollary 1. If w ∈ GF (p) is a primitive element and m is a divisor of (p−1), then

f(x) = xm − 2 is an irreducible binomial for the field GF (pm).

From the above corollary, given a primitive element in the subfield along with a

divisor extension degree m for (p−1), whereby p is the characteristic of the concerned

field, then it is very easy to find a field irreducible binomial. A primitive element is

a field element which has order less by 1 than the order of the field to which it

belongs. In mathematical way, if w ∈ GF (p) is a primitive element, then its order

is z = Order(w) = (p − 1). The primitive element is also known as the generator

element in finite fields.
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2.2 Representation Bases

Unlike the elements in the prime field, which has a unique representation for its

elements as integers, the elements in extension fields have more than a

representation basis. Apart from the other available representation bases, normal

and polynomial basis representations are the most commonly used ones in the

academic literature. In what follows such representation bases are introduced. In

this section, the presentation relevant to finite fields arithmetic operations is made

general and is applicable to any extension field, regardless of the characteristic p of

the concerned field.

2.2.1 Normal Basis

The normal basis representation (NB) is being used extensively in the academic

literature, as is the case in this dissertation, to represent the elements of the

concerned extension field GF (pm). It has the advantage of performing pe-th powers

(for characteristic p and a positive integer e ∈ IN) with free computation-time. Such

powers are needed in the computation of field inversion.

In the contrary, NB multiplication is known to have an expensive computation-

time from software and hardware perspective. Given the fact that a minor reduction

in the required number of NB multiplications, in the computation of field inversion

for example, has a great effect on improving the overall performance. Accelerating

NB multiplication is an active topic that attracts the interest of many academic

researchers in the literature [31, 32].

Definition 14. Given a basis element δ ∈ GF (pm) that is a root of the irreducible

normal polynomial f(x), the set of basis elements N = (δp
0
, δp

1
, · · · , δpm−2

, δp
m−1

)

defines a normal basis for GF (pm), with the property that none of its subsets adds to

zero. In linear algebra terms, the elements in N are linearly independent.
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In using NB, any field element α ∈ GF (pm) can be written as

α =
m−1∑
i=0

aiδ
pi ∀ ai ∈ GF (p), (2.1)

with vector representation as (a0a1 · · · am−2am−1)p. Notice how am−1 is on the right-

hand side, whereas a0 is on the left-hand side in such a representation.

Addition

Adding two extension field elements is a very straightforward operation in using NB.

Given the field elements α and β ∈ GF (pm), with vector representations as

α = (a0a1 · · · am−2am−1)p,

and

β = (b0b1 · · · bm−2bm−1)p,

respectively, then their sum is given by

α + β =
m−1∑
i=0

(ai + bi mod p)δ
pi . (2.2)

From Eq. (2.2) above, the addition of field elements is simply equivalent to

coefficients-wise (mod p)-additions of the corresponding two field elements, whereby

the coefficients are taken from the concerned subfield GF (p). The addition of field

elements is considered a fast execution-time field operation.

pe-th Powers

The pe-th powers (for characteristic p and a positive integer e ∈ IN) are necessary for

the computation of field inversion in finite extension fields GF (pm). This subsection

is dedicated mainly to describe how such powers are obtained in using NB for the

field elements.
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Theorem 2. Given any nonzero element α ∈ GF (pm) and an irreducible polynomial

f(x) of degree m, if the greatest common divisor gcd(α, pm) = 1, then α is invertible

in GF (pm) and αp
m−1 ≡ 1 mod f(x) holds (Fermat’s little theroem).

Corollary 2. Fermat’s theorem above asserts that αp
m ≡ α mod f(x), which means

that GF (pm) is a cyclic finite field.

In using NB, since the characteristic p of the concerned field is included in exponent

part of the basis elements, raising an extension field element to the p-th power is a

linear operation. Therefore, given any nonzero element α ∈ GF (pm), since

α =
m−1∑
i=0

aiδ
pi = (a0a1 · · · am−2am−1)p, (2.3)

then

αp =
m−1∑
i=0

aiδ
pi+1

= (am−1a0 · · · am−3am−2)p. (2.4)

By comparing Eqs. (2.3) and (2.4) given above, in general, the pe-th powers are

simply e-th right cyclic-shifts in using NB at software-level, or wiring re-arrangements

at hardware-level (no special hardware is required to perform such an operation).

In other words, raising an extension field element to a prime-power, whereby the

characteristic p of the concerned field is the prime, is a linear operation with free

execution-time in using NB.

Multiplication

Finite field multiplication using NB is the field operation that is being studied

extensively in the academic literature, at both software and hardware levels. As it

was mentioned earlier herein, in particular, extension field multiplication is the

second costly operation in terms of the execution time in finite fields. Such a

multiplication requires both subfield and extension field modular reductions,

whereby in the worst case scenario, the number of times in which each of the
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aforementioned modular reductions is performed is given as a linear function of the

extension degree m of the concerned extension field GF (pm).

Given f(x) as the irreducible polynomial of the concerned field, to multiply two

nonzero extension field elements α and β ∈ GF (pm), with vector representations as

α = (a0a1 · · · am−2am−1)p,

and

β = (b0b1 · · · bm−2bm−1)p,

respectively, and

γ = (c0c1 · · · cm−2cm−1)p,

which represents the product vector, then, the extension field multiplication using

NB is given by

γ = α× β =
m−1∑
i=0

aiδ
pi ×

m−1∑
j=0

bjδ
pj

=
m−1∑

i=0,j=0

aibjδ
piδp

j

=
m−1∑

i=0,j=0

aibj

m−1∑
s=0

λ
(s)
ij δ

ps

=
m−1∑
s=0

(
m−1∑

i=0,j=0

aibjλ
(s)
ij

)
δp

s

=
m−1∑
s=0

(
m−1∑

i=0,j=0

ai+sbj+sλ
(0)
ij

)
δp

s

.

Therefore, the coefficients of γ, i.e., cs for (0 ≤ s ≤ m− 1), are computed as

cs =
m−1∑
i=0

m−1∑
j=0

ai+sbj+sλ
0
ij,

where [λ0ij] is the multiplication matrix M . It is an m×m matrix with entries belong

to the subfield GF (p). Its complexity, denoted as CM , is defined as the number of

nonzero entries. Such a matrix is well-defined and it is well-known that CM ≥ 2m−1

[33] in using NB.

Although it is not shown in the expressions above, both extension and subfield field

modular reductions are required, especially, when the subfield multiplications for the

coefficients of the concerned field elements produce values > p (field’s characteristic),
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and the exponents of the basis elements having values > m (field’s extension degree)

of the concerned field.

Fast software implementation of NB multiplication is currently an active research

topic in the academic literature [34, 35]. In part, this is due to the fact that such

multiplication type has costlier execution-time than the multiplication using PB. Add

to this, combined with the fact that the pe-th powers are free using NB, this is the

other reason that has pushed the academic researchers to currently put much of their

effort to accelerate NB multiplication, to make it the basis of choice for field inversion

in the near future.

2.2.2 Polynomial Basis

In the academic literature, polynomial basis representation (PB) is also referred to as

the standard or canonical basis. This subsection is mainly dedicated to define such a

basis along with its associated arithmetic operations. In other meaning, we are going

to define the way in which field arithmetic operations are performed using such a

representation basis for the field elements.

Definition 15. Given a basis element δ ∈ GF (pm) that is a root of the irreducible

polynomial f(x), the set of basis elements P = (δm−1, δm−2, · · · , δ1, δ0) defines a

polynomial basis for GF (pm), with the property that none of its subsets adds to zero.

In linear algebra terms, the elements in P are linearly independent.

In using PB, any field element α ∈ GF (pm) can be written as

α =
m−1∑
i=0

aiδ
i ∀ ai ∈ GF (p), (2.5)

with vector representation as (am−1am−2 · · · a1a0)p. Notice how am−1 is on the left-

hand side, whereas a0 is on the right-hand side in such a representation.
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Addition

Adding two extension field elements is a very straightforward operation in using PB.

Given the nonzero elements α and β ∈ GF (pm), with vector representations as

α = (am−1am−2 · · · a1a0)p,

and

β = (bm−1bm−2 · · · b1b0)p,

respectively, then their sum is given by

α + β =
m−1∑
i=0

(ai + bi mod p)δ
i. (2.6)

From Eq. (2.6) above, notice that the addition of field elements is simply

equivalent to coefficients-wise (mod p)-additions of the corresponding two field

elements, whereby the coefficients are taken from the concerned subfield GF (p).

The addition of field elements is considered a fast execution-time field operation.

pe-th Powers

Raising an extension field element to a specific power, or performing an exponentiation

operation using PB, whereby the exponent is a power of the characteristic p of the

concerned field, works in a different way than that followed in using NB.

For example, in using PB, raising a field element to a pe-th power is linear, but not

a free-time operation, and must be performed through a specific linear map operation,

referred to as the e-th iterate of Frobenius map, as it is evident from what follows.

Theorem 3. Given any nonzero element α ∈ GF (pm), the e-th iterate of Frobenius

Map is defined as

IFe : α 7−→ αp
e ∀ characteristic p, and a positive integer e ∈ IN.

Notice that both elements α and αp
e ∈ GF (pm), which means that the e-th iterate

of Frobenius map IFe is an automorphism, or a commutative endomorphism as it is
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also known in the academic literature. That is, it is a linear mapping from a finite

field to itself, whereby the mapping inputs and outputs are belong to the same field.

Basically, IFe is a linear operation with respect to the coefficients ai ∈ GF (p),

since it has no effect on them. But, it is not linear with respect to basis elements δi

for (1 ≤ i ≤ m − 1), since it incurs significant increase in their exponents to values

much greater than the field extension degree m, as evident from what follows: Given

any nonzero element α ∈ GF (pm) and the field irreducible polynomial f(x), then we

have α =
∑m−1

i=0 aiδ
i, and its IFe is given by

αp
e

=
m−1∑
i=0

aiδ
ipe = a0 + a1δ

pe + · · ·+ am−1δ
(m−1)pe (mod f(x)) . (2.7)

From Eq. (2.7) above, the effect of IFe on basis elements, i.e., δi for (1 ≤ i ≤ m−1),

falls within the scope of extension field modular reduction operation, which depends

on the choice of field irreducible polynomial. The effect of choosing the appropriate

field irreducible polynomial f(x) on accelerating IFe (or the pe-th power) will be

clarified in subsequent sections, which is very useful in accelerating field inversion in

using PB, as it was the case earlier in using NB for the field elements.

Multiplication

Finite field multiplication using PB is studied extensively in the academic literature,

at both software and hardware levels. As it was mentioned earlier herein, PB

multiplication requires less execution-time relative to NB multiplication.

Nonetheless, extension field multiplication is the second costly operation in finite

fields, after extension field inversion, since it still requires both subfield and

extension field modular reductions, regardless of the used representation basis.

Given f(x) as the irreducible field polynomial, to multiply two nonzero extension

field elements α and β ∈ GF (pm), with vector representations as

α = (am−1am−2 · · · a1a0)p,
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and

β = (bm−1bm−2 · · · b1b0)p,

respectively, and

γ = (c2m−2c2m−3 · · · c1c0)p,

which represents the product vector, then, the extension field multiplication using

PB is given by

γ = α× β =
m−1∑
i=0

aiδ
i ×

m−1∑
j=0

bjδ
j

=
m−1∑
i=0

m−1∑
j=0

(aibj mod p)δ
(i+j) =

2m−2∑
k=0

ckδ
k,

whereby

ck =
∑
i+j=k

(aibj mod p),

for (0 ≤ i, j ≤ m− 1) and characteristic p of the concerned field.

Several techniques to implement field multiplication using PB are exist in the

academic literature. It is well-known that a single extension field multiplication is

equivalent to exactly m2 subfield multiplications, in addition to their associated

subfield modular reductions, whereby m is the extension degree of the concerned

extension field GF (pm).

Techniques such as the standard product, operand scanning, or product scanning

can be combined with convolution-based algorithms such as Karatsuba’s algorithm

[36] to further accelerate the extension field multiplication. Such algorithms, in their

functioning, rely on increasing the number of subfield additions in order to reduce

the required number of subfield multiplications, those necessary to implement the

required extension field multiplication in GF (pm).
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2.3 Fermat’s Inversion Approach

In general, there are two major approaches for calculating the inverse in finite fields.

Regardless of the specific type of finite field under consideration and the used

representation basis for the field elements, the first approach is based on Euclid’s

inversion method or one of its variants [37, 38]. The other inversion approach is

based on Fermat’s little theorem (FLT) [39, 40], which is the focus of attention in

this dissertation.

2.3.1 Definition

The inversion approach based on FLT, or simply Fermat’s inversion approach, since

its discovery, has attracted the interest of many academic researchers, especially those

who are interested in finding the inverse in finite extension fields using NB for the

field elements. The fact that, in such approach, inverse calculation is reduced to

calculating an exponentiation operation, that is calculated with frequent extension

field multiplications and pe-th powers, for characteristic p and any positive integer

e, armed with the fact that the pe-th powers are simply right cyclic-shifts using NB,

such facts are the main reasons for the current interest in Fermat’s inversion approach

using NB. The following theorem defines such an approach in GF (2m).

Theorem 4. Given any nonzero field element α ∈ GF (2m) and an irreducible field

polynomial f(x) of degree m, if the greatest common divisor gcd(α, 2m) = 1, then α

is invertible and α2m−1 ≡ 1 mod f(x) holds.

Since α is invertible, dividing both sides in the expression α2m−1 ≡ 1 in the above

theorem by α, gives us α2m−2 = α−1. Given the following series decomposition

2m − 2 = 21 + 22 + · · ·+ 2m−2 + 2m−1,

then we have,

α−1 = α2m−2 = α21+22+···+2m−2+2m−1

.
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Therefore, the inverse of α using FLT method is given by

α−1 = α21 × α22 × · · · × α2m−2 × α2m−1

. (2.8)

From Eq. (2.8) above, field inversion using FLT method in its basic form requires

(m − 2) GF (2m)-multiplications and (m − 1) 2e-th powers. When using NB for the

field elements, from both software and hardware perspectives, field squaring is a right

cyclic-shift and wiring rearrangement, respectively. Therefore, in using NB, field

squarings are very fast operations compared to extension field multiplications.

Despite the use of the previous fact in the design of the fast Massey-Omura field

multiplier [41], a NB multiplication still a very time-consuming operation relative to

a field squaring in GF (2m). Therefore, in using NB, speeding up inverse calculation

is achieved either by accelerating the execution time of NB multiplier, or by reducing

the number of the required NB multiplications in FLT method, which is our main

focus herein.

2.3.2 How it Works

The following example provides an idea on how FLT method works for finding the

inverse in GF (2m). The example is represented by an expression showing the

progressive computation for the inverse. The relevant figure is also included to

illustrate the computation process graphically. Both of them, the expression and the

figure, are included here to give the reader a better idea on how the method works.

Given a nonzero extension field element α ∈ GF (26), then its inverse, i.e., α−1, is

computed using FLT method as follows

α−1 = α26−2 = α62 = (α× (α× (α× (α× α2)2)2)2)2. (2.9)

It is seen from the expression in Eq. (2.9) above, that the number of extension

field multiplications are (m − 2) = (6 − 2) = 4 GF (26)-multiplications. In addition,

the number of squarings are (m − 1) = (6 − 1) = 5 GF (26)-squarings. This is the
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straightforward (or the basic) way for computing the inverse. In subsequent chapters

we will show the other available ways to compute the inverse fast by mathematically

manipulating FLT method. Figure 2.1 illustrates inverse computation graphically

based on FLT method.

Figure 2.1: Graphical Inversion (FLT Method)

By referring to Figure 2.1 above, two computation lines are shown there

representing the required number of extension field arithmetic operations necessary

for inversion. The required number of such operations is exactly the same as that

we previously obtained by using the expression in Eq. (2.9) above.

It can be seen from Figure 2.1 above that the required number of both extension

field arithmetic operations, namely field squaring and multiplication operations, is a

linear function with the extension degree m, which means, as m becomes very large

the required number of such operations is also very large, thus, the execution time

for field inversion using FLT method is very large too.
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2.4 Short Addition Chains

The concept of short addition chains (SACs) is very useful and has many theoretical

and practical applications. It provides a way for calculating terms like (αp
r−1) in finite

extension fields, whereby α is a nonzero field element, p is the field’s characteristic and

r is a positive integer. This subsection is dedicated mainly to provide an introduction

on such a concept. More illustrative examples on such a concept exist in subsequent

chapters, more specifically, in the places where it is required to calculate the inverse

of a nonzero field element in binary and ternary extension fields.

2.4.1 Definition

Definition 16. The Short Addition Chain (SAC) of a positive integer r, denoted

as Cr, is a short chain ( sequence) of elements ( integers) of length l, defined with

the property that r ( the last chain-element) is obtained by the gradual addition of

the previous elements within the chain (or the gradual addition of previous chain-

elements) [42, 43].

Mathematically, the SAC of a positive integer r is given by

Cr = (c0, c1, · · · , cl−1, cl),

with c0 = 1, cl = r and the ith chain-element is given by

ci = ci1 + ci2 ,

for (0 ≤ i, i1, i2 ≤ l) and (i > i1, i2). Cr is associated with another short sequence of

integer pairs, whereby each pair is representing the ith subsequent chain-element ci in

Cr, and is given by

Ar = ((ci1 , ci2) | 0 ≤ i1, i2 ≤ l − 1).

For example, given the positive integer r = 18, then

C18 = (1, 2, 4, 8, 16, 18), (2.10)
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which is associated with A18 = ((1, 1), (2, 2), (4, 4), (8, , 8), (16, 2)) and following the

rule ci = ci−1 + ci−1 = 2ci−1 for i ∈ {1, 2, 3, 4}, except for i = 5, where c5 = c4 + c1.

Another SAC for r = 18 is given by C18 = (1, 2, 3, 6, 12, 18), which is associated with

A18 = ((1, 1), (2, 1), (3, 3), (6, , 6), (12, 6)) following the rule ci = ci−1 + ci−1 = 2ci−1

for i ∈ {1, 3, 4}, and ci = ci−1 + ci−2 for i ∈ {2, 5}.

2.4.2 How it Works

Given a nonzero field element α ∈ GF (2m), SACs are used to perform calculations

of the form (α2r−1) using Cr. More specifically, (α2r−1) term is obtained gradually

by using the previous elements of Cr. The length l of Cr represents the number of

the required extension field multiplications necessary to produce (α2r−1) term. Such

calculation type using SACs can be generalized for any field characteristic p. For

example, given a nonzero field element α ∈ GF (pm), then calculating (αp
r−1) term

using Cr is possible too, which requires the minimal number of GF (pm)-

multiplications. Let us consider the following general example on calculations based

on short addition chains (SACs).

Let α ∈ GF (pm), and r a positive integer that has the following general SAC

given by

Cr = (c0, c1, c2, c3, cl), (2.11)

whereby c0 = 1 and cl = r.

Given that the chain-element c1 = (c0 + c0), chain-element c2 = (c1 + c0), chain-

element c3 = (c2 + c2), and chain-element cl = (c3 + c2), then the sequence of integer

pairs is given by

Ar = ((c0, c0), (c1, c0), (c2, c2), (c3, c2)) .

The general steps for calculating the term (αp
r−1) = (αp

cl−1) using Cr are given

as in the following:
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αp
c1−1 = (αp

c0−1)p
c0 × αpc0−1

αp
c2−1 = (αp

c1−1)p
c0 × αpc0−1

αp
c3−1 = (αp

c2−1)p
c2 × αpc2−1

αp
cl−1 = (αp

c3−1)p
c2 × αpc2−1

From above calculation steps, it is apparent that the required extension field

multiplications to compute (αp
r−1) term are 4 GF (pm)-multiplications that is exactly

equal to the length of Cr, which is represented by the number of commas separating

its elements (see Eq. (2.11) above).

Notice also that the required number of extension field multiplications is equivalent

to [`(r)+w(r)−2]. Assuming α ∈ GF (2m) and we need to calculate (α2r−1) term using

Cr, given that r = 18, then we have [`(18) +w(18)− 2] = 5 GF (2m)-multiplications.

Such multiplications number to calculate the term is equal to the number of commas

separating the elements in C18 (see E.q (2.10) above).

In subsequent chapters there will be some examples on how terms like (αp
r−1) can

be calculated using the concept of short addition chains. Such terms are necessary

for finding the inverse in finite fields and are necessary to understand some of the

proposed ideas in this dissertation.
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Literature Review

This chapter is mainly dedicated to review the state-of-the-art inversion algorithms,

those previously proposed by interested academic researchers to solve field inversion

problem, more specifically, for the elements in binary and ternary extension fields.

The focus here is on inversion algorithms using NB in such fields and based on

Fermat’s inversion approach. In using such approach, field inversion problem is

reduced to solving exponentiation in the concerned field.

In the first section, we review field inversion algorithms those previously proposed

in GF (2m) using NB and based on Fermat’s approach. In such algorithms, the various

attempts by academic researchers for solving field inversion problem might attract the

reader attention. The presentation will proceed in a sequential manner, with respect

to the publication date of each author, which coincides with each author’s attempt

to improve the solution for field inversion problem in GF (2m).

In the second section, we review field inversion algorithms those previously

proposed in GF (3m) based on Fermat’s approach. Despite the fact that many

academic authors in their work have relied on the same inversion approach,

proposed earlier for such fields, however, some authors put more effort on improving

the approach at hardware-level by using different techniques with some restrictions

imposed to achieve their final goals.
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3.1 Field Inversion in GF (2m)

Binary extension fields GF (2m) are of paramount importance for use in ECC-based

cryptographic applications. On the one hand, this is due to their suitability for

hardware implementation, since they are simply binary vectors. On the other hand,

this is due to the absence of rounding-errors and carry-propagation chains. In such

fields the outputs of their arithmetic operations, when operating on their elements

which consist of coefficients belong to the subfield GF (2), are always reduced modulo

2, i.e., modular reductions are performed on the final results.

A group of interested academic researchers have proposed algorithms for fast field

inversion in GF (2m). Such algorithms are based on FLT with the elements of the

concerned field represented by using NB. This section is mainly dedicated to preview

such inversion algorithms.

3.1.1 Itoh and Tsujii Algorithm

Itoh and Tsujii proposed an algorithm that significantly reduces the number of the

required multiplications for inversion [14]. Their inversion algorithm is referred to as

ITA in the sequel and can be described as follows: Given that 2m − 2 = 2(2m−1 − 1),

by representing m− 1 as a q-bit binary number (mq−1mq−2 . . .m1m0)2 with the most

significant bit (MSB) mq−1 = 1, then we have

2m−1 − 1 = 2(mq−1mq−2...m1m0)2 − 1. (3.1)

Given that

2(mj ...m0)2 − 1 = (2mj2
j − 1)2(mj−1...m0)2 + 2(mj−1...m0)2 − 1, (3.2)

by applying Eq. (3.2) to Eq. (3.1) repeatedly with j = q − 1, q − 2, . . . , 1, then it

follows
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2m−1 − 1 = (2mq−12q−1 − 1)2(mq−2...m0)2 + (2mq−22q−2 − 1)2(mq−3...m0)2 + · · ·

· · ·+ (2m121 − 1)2m0 + (2m0 − 1). (3.3)

In addition, given that

(2mj2
j − 1) = mj(2

2j−1

+ 1)(22j−1 − 1)

= mj(2
2j−1

+ 1)(22j−2

+ 1) · · · (220 + 1)(220 − 1)

= mj(2
2j−1

+ 1)(22j−2

+ 1) · · · (220 + 1), (3.4)

by substituting Eq. (3.4) in Eq. (3.3) with j = q − 1, q − 2, . . . , 1, and noting that

(2m0 − 1) = m0 and mq−1 = 1, then we have

2m−1 − 1 = (· · · ((1 + 22q−2
)2mq−22q−2

+mq−2)(1 + 22q−3
)2mq−32q−3

+ · · ·

· · ·+m1)(1 + 220)2m020 +m0.

Therefore, the inverse of a nonzero element α ∈ GF (2m) using ITA expression is

given by

α−1 = (((· · · (((α1+22
q−2

)2
mq−22

q−2

× αmq−2)1+22
q−3

)2
mq−32

q−3

× · · ·

· · · × αm1)1+22
0

)2
m02

0

× αm0)2. (3.5)

The number of multiplication operations involved in Eq. (3.5) above can be

estimated to be the sum of the following two parts: i) the number of ‘+’ sign in any

exponent, and ii) the number of ‘×’ sign. It can be seen from Eq. (3.5) above that

the number of ‘+’ sign is (q − 1) or [`(m− 1)− 1]. The number of ‘×’ sign depends

on whether or not mj is equal to one for j = 0, 1, . . . , q − 2, since αmj = 1 if mj = 0

and the sign ‘×’ immediately preceding αmj (= 1) can be saved. Note that

mq−1 = 1, thus we have part ii) is [w(m − 1) − 1]. So the total number of
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multiplication operations required to compute Eq. (3.5) above, or the inversion cost

of ITA inversion algorithm is given by

[`(m− 1) + w(m− 1)− 2] . (3.6)

ITA inversion algorithm was derived based on previous discussion, which is a

translation for the expression given in Eq. (3.5) above (see Algorithm 1).

Algorithm 1 ITA Inversion Algorithm in GF (2m) [14]

Input: α ∈ GF ∗(2m), and m− 1 = (1mq−2...m1m0)2.

Output: δ = α2m−2 = α−1 ∈ GF (2m)

Initialization: δ := α;

for i := q − 2 to 0 do

δ := δ × δ22
i

;

if mi = 1 then

δ := α× δ22
i

;

end if

end for

δ := δ2;

return δ

3.1.2 Chang et al. Algorithm

In order to handle the worst case in ITA inversion algorithm especially when (m− 1)

is a full-weight value, whereby `(m − 1) = w(m − 1), many authors attempted to

find various mathematical expressions, represented by decomposing (m − 1) value

into several factors and remainders, in order to reduce the number of the required

extension field multiplications in inverse calculation, or in other words, in order to

lower the inversion cost.
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Chang et al. [15] proposed CEA inversion algorithm that achieves more reductions

in inversion cost in comparison with ITA algorithm in some GF (2m) by factoring

(m − 1) into two non-trivial factors. Their algorithm can be described as follows:

Given that (m− 1) = x× y, then we have

2m − 2 = 2(2m−1 − 1) = 2(2x×y − 1). (3.7)

By further expanding the expression in Eq. (3.7) above, then we have

2m − 2 = 2(2x×y − 1) = (2x+1 − 2)((2x)y−1 + (2x)y−2 + · · ·+ (2x)1 + (2x)0). (3.8)

The expression given in Eq. (3.8) above can be rewritten as follows

2m − 2 = 2×
(
(2x − 1)((2x)y−1 + (2x)y−2 + · · ·+ (2x)1 + (2x)0)

)
. (3.9)

Therefore, α−1 can be written as

α−1 = α2m−2 =
(

(α2x−1)((2
x)y−1+(2x)y−2+···+(2x)1+(2x)0)

)2
.

Assume that δ = (α2x−1) has been computed with an instance of ITA algorithm

by setting the algorithm input as α and (m − 1) = x, which apparently requires

[`(x)+w(x)−2] multiplications. Given that factor y is represented by the r-bit binary

vector (1yr−2 · · · y1y0)2, by following a similar procedure to that previously used in

the derivation of ITA algorithm, the inverse of a nonzero element α ∈ GF (2m) using

CEA expression is given by

α−1 =
(

((· · · (((δ1+2x2
r−2

)2
yr−2x2

y−2

× δyr−2)1+2x2
r−3

)2
yr−3x2

r−3

× · · ·

· · · × δy1)1+2x2
0

)2
y0x2

0

× δy0)
)2
. (3.10)

In general, CEA inversion algorithm by itself consists of two portions. The first, is

exactly an instance of ITA algorithm, which is necessary to calculate δ = (α2x−1) term
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as mentioned above. The second, is a similar instance of the algorithm, except for,

the inclusion of the factor x in exponent part in computation steps as evident from

CEA expression given in Eq. (3.10) above. Apparently, the second portion requires

[`(y) + w(y) − 2] multiplications. Thus, the total inversion cost of CEA inversion

algorithm in some GF (2m) is given by

[`(x) + w(x)− 2] + [`(y) + w(y)− 2] . (3.11)

It is evident from the above expression given in Eq. (3.11) that such factors, in

some cases, can reduce the inversion cost further in comparison with the case of not

factoring (m−1) value. One thing to note is that CEA algorithm is not applicable in

the case when (m− 1) is a prime value. Such prime values reduce the set of GF (2m)

those expected to have low inversion cost based on their factoring method.

3.1.3 Takagi et al. Algorithm

Takagi et al. [16] proposed TYT inversion algorithm that achieves more reductions

in inversion cost in comparison with CEA algorithm in some GF (2m) given that

(m − 1) =
∏k

j=1 rj + h. TYT algorithm is a further improvement on top of CEA

and ITA in two aspects: Firstly, it allows for prime (m − 1) values by using the

remainder h (cases not applicable using CEA algorithm). Secondly, it allows for more

than two factors as long as the inversion cost is low. TYT algorithm can be described

as follows: Assuming that (m−1) =
∏k

j=1 rj +h, i.e., decomposed into several factors

and a small remainder h. In [16], the inverse equivalent value in GF (2m), i.e., 2m−2,

is expressed by using the following expression which is given by

2m − 2 = 2m−1 + 2m−2 + · · ·+ 2m−h + 2m−h − 2, (3.12)

whereby h, the remainder, is any positive integer that determines the required number

of terms in the expression.
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Based on the expression given in Eq. (3.12) above, the inverse of a nonzero element

α ∈ GF (2m) using TYT expression is given by

α−1 = α2m−2 = α2m−1 × α2m−2 × · · · × α2m−h × α2m−h−2, (3.13)

which can be rewritten as

α−1 = α2m−2 = α2m−1 × α2m−2 × · · · × α2m−h×︸ ︷︷ ︸
h multiplications

(α2m−h−1−1)2. (3.14)

Firstly, consider the computation of the underbraced terms given in Eq. (3.14)

above. It is clearly evident that they require h multiplications. Secondly, given that

(m − h − 1) =
∏k

j=1 rj, i.e., the factors portion in (m − 1), then the last term

(α2m−h−1−1) = (α2r1×r2×···rk−1) in Eq. (3.14) above can be computed by applying

CEA algorithm recursively: Firstly, let x = r1 × · · · × rk−1, y = rk, and δ = (α2x−1),

then based on the expression given in Eq. (3.10) above, computing δ requires

[`(rk) + w(rk)− 2] multiplications. Secondly, let x = r1 × · · · × rk−2, y = rk−1, and

δ = (α2x−1), to compute δ, or equivalently (α2r1×···×rk−1−1) term it requires

[`(rk−1) + w(rk−1)− 2] multiplications, etc. Finally, to compute (α2r1−1) term using

an instance of ITA algorithm requires [`(r1) + w(r1)− 2] multiplications. Thus, the

total inversion cost of TYT inversion algorithm in some GF (2m) is given by

(
k∑
j=1

`(rj) + w(rj)− 2

)
+ h. (3.15)

It is evident from the above expression given in Eq. (3.15) above that the

inversion cost, in terms of the required number of extension field multiplications, is

a logarithmic function with each individual factor in (m − 1), and a linear function

with the remainder h. However, in [16] h was restricted to the value of 1. Although

it handled the prime (m − 1) case, but this restriction reduces the set of GF (2m)

those expected to have low inversion cost based on their decomposition method.
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Algorithm 2 TYT Inversion Algorithm in GF (2m) [16]

Input: α ∈ GF ∗(2m), and m

Output: η = α−1 ∈ GF (2m)

Initial: (m− 1);

if (m− 1) is not decomposed then

return η := ITA(α,m− 1);

else

(m− 1) =
∏k

j=1 rj + h;

δ := ITA(α, r1);

r := 1;

for j := 2 to k do

η := δ;

r := r × rj−1;

for i := qj − 2 to 0 do

η := η × η2r2
i

;

if m
(j)
i = 1 then

η := δ × η2r2
i

;

end if

end for

δ := η;

end for

for i := 1 to h do

η := η × α2m−i
;

end for

return η

end if

TYT inversion algorithm was derived based on previous discussion, which is a

translation for the expression given in Eq. (3.14) above (see Algorithm 2).
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Given that the inversion cost depends mainly on the way of decomposing

(m − 1) value, the authors in [16] have defined an optimal decomposition (OD)

criterion. Therefore, the OD for (m− 1) value is the one that minimizes the number

of the required extension field multiplications necessary for inversion, or the

inversion cost, and consists of the fewest components (factors and remainders)

based on TYT method. Hence, an exhaustive search with efficient pruning is

necessary to find such optimal decomposition.

3.1.4 Li et al. Algorithm

Li et al. [17] proposed LCA algorithm that achieves more reductions inversion cost in

comparison with TYT algorithm in some GF (2m) given that (m− 1) =
∏k

j=1 rj + h,

i.e., decomposed into several factors plus a remainder h. LCA algorithm attains two

aspects of improvement on top of TYT algorithm: Firstly, in LCA algorithm the

remainder h is not restricted to a single value, but to a specific set of values. This in

fact increase the set of GF (2m) those associated with low inversion cost based on their

decomposition method. Secondly, LCA algorithm reuse some intermediate results to

save `(h)-dependent computations. This in fact reduce the inversion cost further and

render it a function of the Hamming weight of h, i.e., w(h). This is why in [17], the

remainder h is restricted to minimum w(h) values. LCA algorithm can be described

as follows: Given the following expression

2m − 2 = 2m−1 + 2m−2 + · · ·+ 2m−h + 2m−h − 2,

by rearranging the expression with (m− 1) in mind, then we have

2m − 2 = 2m−h
(
2h − 1

)
+ 2

(
2m−h−1 − 1

)
. (3.16)

Since (m − 1) =
∏k

j=1 rj + h, then (m − h − 1) =
∏k

j=1 rj, the available factors

in (m − 1). Therefore, the inverse of a nonzero element α ∈ GF (2m) using LCA
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expression is given by

α−1 = α2m−2 =
(
α2h−1

)2m−h

×
(
α2

∏k
j=1 rj−1

)2

=
(
α2h−1

)2m−h

×
(

(α2r1−1)2
)e
,

given that,

e =
(

(2r1)r2−1 + · · ·+ 1) · · · ((2
r1×···×rk−1

)rk−1 + · · ·+ 1)
)
. (3.17)

The variable e in Eq. (3.17) above is computed is in a way similar to our previous

computation for the factors in (m − 1), exactly when we considered TYT algorithm

as given in Eq. (3.14) above, which requires
∑k

j=2(`(rj) +w(rj)− 2) multiplications.

With the focus on both (α2r1−1) and (α2h−1) terms in Eq. (3.17) above, more

reduction in inversion cost is obtained as follows: Given that

r1 =
n∑
i=1

2ui ,

with u1 > u2> · · · > un, and

h =
l∑

i=1

2ti ,

with t1 > t2 > · · · > tl. Now if r1 ≥ h, then we have u1 ≥ t1. In addition, given that

(α2r1−1) = (αsun )(· · · (αsu3 )((αsu2 )(αsu1 )2
2u2

)2
2u3 · · · )22

un

, (3.18)

and

(α2h−1) = (αstl )(· · · (αst3 )((αst2 )(αst1 )2
2t2

)2
2t3 · · · )22

tl

(3.19)

as in [17], thus in computing (αsu1 ) term in Eq. (3.18) above (which depends on

`(r1), the binary-length of r1), all other terms such as (αsui ) and (αsti ) given in Eqs.

(3.18) and (3.19) for (1 ≤ i ≤ n, l) are available in intermediate results. Therefore,

finding the inverse using LCA algorithm proceeds as follows: Assuming that (α2r1−1)

term is computed using an instance of ITA algorithm, which requires [`(r1)+(r1)−2]

multiplications, add to this
∑k

j=2(`(rj)+w(rj)−2) multiplications of variable e, with
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an extra w(h) multiplications of the remaining computations necessary to calculate

(α2h−1) term, then the inverse of a nonzero element α ∈ GF (2m) is computed using

LCA algorithm with inversion cost that is given by

(
k∑
j=1

`(rj) + w(rj)− 2

)
+ w(h). (3.20)

It is evident from Eq. (3.20) above that the inversion cost of LCA algorithm, is a

logarithmic function with each individual factor in (m− 1), and a function with the

Hamming-weight of the remainder h, i.e., w(h), rather than a function with h itself

as in using TYT inversion algorithm.

In [17], OD criterion is again defined in a similar way as in [16]. Therefore, the

OD for (m− 1) is the one that minimizes the number of the required extension field

multiplications necessary for inversion, or the inversion cost, and consists of the fewest

components (factors and remainders) based on LCA method. Hence, an exhaustive

search with efficient pruning is required to find such optimal decomposition.

3.2 Field Inversion in GF (3m)

In general, characteristic three (or ternary) extension fields GF (3m) are of paramount

importance for use in ECC-based cryptographic applications, and in particular, for

use in cryptographic applications based on bilinear mapping in ECC. On the one

hand, this is due to the availability of field irreducible binomials those necessary to

accelerate some arithmetic operations in such fields. On the other hand, this is due

to their bandwidth efficiency relative to other extension fields in calculating the Weil

and Tate pairings in ECC.

A group of interested academic researchers have proposed algorithms for fast

field inversion in GF (3m). Such algorithms are mainly based on the approach that

previously proposed by Itoh and Tsujii in [23]. In what follows, we review the

relevant inversion algorithms in GF (3m) based on such approach.
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3.2.1 ITI Algorithm

Presumably, the approach that previously proposed by Itoh and Tsujii [23] is

considered as the standard method for finding the inverse in odd-characteristic

extension fields GF (pm), for odd-prime characteristic p and m > 1. In fact, many

academic researchers have relied on such approach with attempts to improve it from

software and hardware perspectives. This was achieved by applying their own

representation basis and domain parameters, while in the mean time, imposing the

specific restrictions and conditions to achieve their final goals. This has encouraged

the lack, to some extent, of other inversion approaches for odd-characteristic

extension fields GF (pm) in the literature. In this subsection, we fill this gap by

proposing our inversion approach in such fields, more specifically, in GF (3m).

The basic idea in [23] can be described as follows: Given the positive integer

r = pm−1
p−1 , which is the quotient when dividing both orders for the multiplicative

groups of the extension field, i.e., GF ∗(pm), and its subfield, i.e., GF ∗(p), then we

have

r =
pm − 1

p− 1
= pm−1 + pm−2 + · · ·+ p1 + 1, (3.21)

and

(r − 1) = pm−1 + pm−2 + · · ·+ p1, (3.22)

which is equivalent to the p-dic representation of (r − 1) = (11 . . . 110)p. Therefore,

given any nonzero element α ∈ GF (pm), its inverse based on ITI expression is given

by

α−1 = (αr)−1 × αr−1 = (αr)−1 ×

(r−1)︷ ︸︸ ︷
αp

m−1+pm−2+···+p2+p1 (3.23)

The inverse of α using ITI expression given in Eq. (3.23) above is computed by

using the following four steps:
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Step 1. Exponentiation in GF (pm) to get the element αr−1

Step 2. GF (pm)-multiplication of α.αr−1 to get the element αr

Step 3. Subfield inversion for αr to get the element β = (αr)−1

Step 4. GF (pm)-multiplication of β.αr−1 to get the inverse α−1

Indeed, the output of the above four steps is the inverse of the nonzero element

α ∈ GF (pm). Notice that when performing the above four steps, we are reducing

the computation of extension field inversion to a subfield inversion, in addition to

the necessity to perform some logarithmic number of extension field multiplications.

Also, notice that αr is a subfield element, i.e., αr ∈ GF (p), since the mathematical

expression for the exponent r, is equivalent to finding the norm for the extension field

element α. The norm is a map from an extension field element to a subfield element.

In addition, notice that terms calculation in the overbraced expression relevant to

(r − 1) given in Eq. (3.23) above require the computation of the e-th iterates of the

Frobenius map, for all e ∈ {1, 2, · · · ,m− 1} (see Chapter 2.2.2).

The straightforward approach to compute αr−1 term in Step 1. above requires

exactly (m− 2) extension field multiplications (denoted as GF (pm)-multiplications).

Thus, extension field inversion is computed with two extra GF (pm)-multiplications

and a subfield inversion, which totals to m GF (pm)-multiplications plus a subfield

inversion. In using the straightforward approach for inverse computation, the required

number of GF (pm)-multiplications is a linear function with the extension degree m.

Inversion algorithm in [23] was proposed mainly for use with polynomial basis

representation (PB) and, the extension field GF (pm) was generated using an

irreducible polynomial of the form f(x) = xm +
∑m−1

i=0 fix
i defined over GF (p). In

using PB, the Frobenius map (see Chapter 2.2.2) is an important operation for

inversion algorithms, which is necessary for generating the pe-th powers, for

characteristic p and any positive integer e.

In [23], the e-th iterate of Frobenius map is calculated using M ×M matrix, with

47



CHAPTER 3. LITERATURE REVIEW

complexity of m2 subfield multiplications. The algorithm was slightly modified to

perform as many subsequent p-th powers as possible between GF (pm)-multiplications,

in order to reduce the required number of the e-th iterates of Frobenius map to a

logarithmic value.

In the academic literature, it has been mentioned that applying the concept of

addition chains (ACs) is the best alternative for computing αr−1 term given in Step

1. above, which requires a logarithmic performance, in terms of the required number

of GF (pm)-multiplications. The term is computed with [`(m − 1) + w(m − 1) − 2]

GF (pm)-multiplications in [23]. With extra two GF (pm)-multiplications and a

subfield inversion, in using the ACs approach for inversion, the inversion cost of a

nonzero element α ∈ GF (pm) using ITI expression is given by

[`(m− 1) + w(m− 1)] GF (pm)-Multiplications,

Subfield GF(p)-Inversion,

[`(m− 1) + w(m− 1)− 1] GF (pm)-Frobenius Maps. (3.24)

The authors in [20] have followed the ACs approach for inversion but, they

accelerated the Frobenius map operation further in using PB for the field elements.

Given that α =
∑m−1

j=0 ajx
j using PB, after expressing the i-th iterate of the

Frobenius map for a nonzero element α ∈ GF (pm) as follows

αp
i

(x) = am−1x
(m−1)pi + · · ·+ a1x

pi + a0 mod f(x), (3.25)

for any positive integer i representing the i-th iterate and (0 ≤ j ≤ m− 1), whereby

f(x) = xm−w (the field irreducible binomial) is defined over GF (p), w ∈ GF (p), the

authors in [20] have focused on the elements that are not kept fixed, like (xjp
i
) terms

those given in Eq. (3.25) above for all (1 ≤ j ≤ m− 1).
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By making use of the special properties of the field irreducible binomial f(x), the

authors in [20] expressed the terms affected by the i-th iterate of the Frobenius map

as follows

xe ≡ wqxs mod f(x),

whereby s ≡ e (mod m), q = e−s
m

and e = jpi. Based on Corollary 2 in their paper,

they further reduced the expression to

xe ≡ wqxj mod f(x).

From above discussion, the cost of the i-th iterate of Frobenius map is exactly

(m − 1) subfield multiplications that still requires subfield modular reductions, in

addition to the pre-computed values of wqxj terms for all (1 ≤ j ≤ m − 1). The

Frobenius map operation, as it was mentioned earlier herein, is needed for performing

the pi-th powers necessary for field inversion. The number of the required GF (pm)-

multiplications is not changed in comparison with [23]. Thus, the inversion cost in

[20] is identical to that value given in Eq. (3.24) above, except that, the Frobenius

map operation is computed fast based on their method.

The advantage of using normal basis representation (NB) for field inversion in

odd-characteristic extension fields, more specifically, in GF (3m) is utilized in [44]. As

it was mentioned earlier herein (see Chapter 2.2.1), in using NB the e-th iterates of

Frobenius map are simply reduced to either e-th right cyclic-shifts in software, or

e-th permutations in hardware. Therefore, the computation of the e-th iterates of

Frobenius map is totally free in using NB for the field elements.

Again, the cost analysis in [44] is identical to that given in Eq. (3.24) above,

except that, the e-th iterates of Frobenius map became free-time operations using

NB for the field elements and, the PB multipliers are replaced with NB multipliers.

Currently, accelerating NB multipliers is an active research topic by many interested
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researchers in the academic literature [34, 45].

As a final note, the above ITI expression is not translated to a cohesive and

complete field inversion algorithm in GF (pm), or even in GF (3m). The academic

researchers just mentioned the use of the addition chains to calculate αr−1 term,

without writing an algorithm to perform such a task or even the task of finding the

inverse by itself, which is clearly evident from the above presentation.
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Chapter 4

Proposed Inversion Algorithms

This chapter is mainly dedicated to present the proposed ideas herein. In the first

section, we are going to present our proposed decomposition algorithm for m of the

concerned GF (2m). The algorithm employ a decomposition method that achieve

further reduction in inversion cost in comparison with other methods in some GF (2m).

Then, we are going to show our main field inversion algorithm that proposed to

implement the decomposition algorithm using NB for the field elements, which relies

on FLT inversion approach. Furthermore, we are going to provide all other algorithms

required to assist in the functioning of the main inversion algorithm.

In the second section, we are going to show our field inversion algorithms those

mainly proposed for use in GF (3m) using NB for the field elements, which rely on

FLT inversion approach. Our first inversion algorithm in such fields is somehow based

on ITI expression (mentioned earlier herein). It is the first algorithm that has been

written in full for finding the inverse in GF (3m) in the literature. In addition, it has

a relatively lower inversion cost in comparison with other algorithms that are exactly

based on ITI expression.

Our second inversion algorithm in GF (3m) is basically based on the

decomposition algorithm that proposed earlier by us in GF (2m) (see Chapter 4.1).

The algorithm simply implements the decomposition method employed in that
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algorithm for computing the inverse in GF (3m). We have modified most of previous

algorithms in GF (2m) to implement the decomposition algorithm in GF (3m). The

algorithm is expected to have the lowest possible inversion cost in such fields.

Finally, we are going to propose a fast Frobenius map operation in such fields and

extend it to higher characteristic fields, which requires almost free runtime and

space complexity, as it will be clear later on in this chapter.

4.1 Characteristic Two Algorithm

Given that (m−1) =
∏k

j=1 rj +h, while the inversion cost of TYT algorithm depends

on the value of the remainder h, which is restricted to the value of 1 (see Chapter

3.1.3), the inversion cost of LCA algorithm depends on the Hamming weight of h, and

this is why h is restricted to minimum Hamming weight values (see Chapter 3.1.4).

In this section, we propose an improved field inversion algorithm in GF (2m) using

NB for the field elements, which is based on FLT inversion approach. The inversion

cost, in terms of the number of the required extension field multiplications necessary

for inversion, of the algorithm is dependent on neither the value nor the Hamming

weight of h and is given by

(
k∑
j=1

[`(rj) + w(rj)− 2] + 1

)
.

Furthermore, in the proposed algorithm the value of h is not limited to small

values or low Hamming weight values as in other algorithms. This in fact increase

the set of GF (2m) those expected to have the lowest possible inversion cost based on

the decomposition method of our field inversion algorithm.

Our proposed field inversion algorithm in GF (2m) can be described as follows:

Given that (m− 1) =
∏k

j=1 rj + h, and since

2m − 2 = 2
(
2m−1 − 1

)
, (4.1)
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by substituting the value of (m− 1) in the exponent part in Eq. (4.1) above, then we

have

2m − 2 = 2
(

2
∏k
j=1 rj+h − 1

)
,

which can be expressed as

2m − 2 = 2
(

2h × (2
∏k
j=1 rj − 1) + (2h − 1)

)
. (4.2)

By performing further mathematical manipulations on the expression in Eq. (4.2)

above, then it can be expressed as follows

2m − 2 = 2
(
(2r1 − 1)× e× 2h + (2h − 1)

)
, (4.3)

whereby the expression for variable e is given in the following equation for the inverse.

Therefore, based on Eq. (4.3) above, the inverse of a nonzero element α ∈ GF (2m)

using our proposed IVR expression is given by

α−1 = α2m−2 =
(
α2m−1−1

)2
=

(
α2

∏k
j=1 rj+h−1

)2

=(
(α2r1×···×rk−1)2

h × (α2h−1)
)2

=
(

(α2r1−1)
e2h × (α2h−1)

)2
,

given that

e =
(

((2r1)r2−1 + · · ·+ 1) · · · ((2
r1×···×rk−1

)rk−1 + · · ·+ 1)
)
. (4.4)

Theorem 5. Given that (m − 1) =
∏k

j=1 rj + h. Assuming that h is appropriately

selected to belong to the short addition chain of r1, denoted as Cr1, or any factor in

(m− 1), then, the computation of (α2r1−1) term guarantees the availability of (α2h−1)

term as an intermediate value, and the inversion cost is given by(
k∑
j=1

[`(rj) + w(rj)− 2] + 1

)
GF (2m)-Multiplications. (4.5)
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Proof. From Eq. (4.4) above we have the inverse of α that is given by

α−1 =
[
(α2r1−1)

e2h × (α2h−1)
]2
. (4.6)

In using NB in GF (2m) we can safely assume that all power of two exponents are

free. Such powers are simply cyclic-shifts. So the inverse expression is reduced to the

following

α−1 =
[
(α2r1−1)

e × (α2h−1)
]
. (4.7)

If we forget about the computational cost of (α2r1−1) term for now (we return to

it before ending the proof), the computational cost of (α2r1−1)
e

term is given by

k∑
j=2

[`(rj) + w(rj)− 2], (4.8)

and its detailed steps are given as follows: Firstly, the computational cost of

(α2r1−1)(2
r1 )r2−1+···+(2r1 )0 = (α2r1×r2−1) term is [`(r2) + w(r2) − 2] multiplications.

Secondly, the computational cost of (α2r1×r2−1)(2
r1×r2 )r3−1+···+(2r1×r2 )0 = (α2r1×r2×r3−1)

is [`(r3) + w(r3)− 2] multiplications. Finally, the computational cost of

(α2r1×···×rk−1−1)(2
r1×···×rk−1 )rk−1+···+(2r1×···×rk−1 )0 = (α2r1×···×rk−1) = (α2r1−1)

e

,

is [`(rk) + w(rk) − 2] multiplications. Thus, the computational cost relevant to all

factors in (m− 1), except for r1, is exactly as given in Eq. (4.8) above.

By returning to (α2r1−1) term, its computational cost can be given as follows: Let

the short addition chain (SAC) for r1 given by

Cr1 = {c0, c1, c2, c3},

whereby c0 = 1 and c3 = r1. In addition, let the sequence of integer pairs of Cr1 given

by
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Ar1 = {(c0, c0), (c1, c1), (c2, c2)},

using the addition rule c1 = c0 + c0, c2 = c1 + c1, and c3 = c2 + c2. Then, it follows

that (α2r1−1) = (α2c3−1) is computed as follows

(α2c0−1)2
c0 × (α2c0−1) = (α2c0+c0−1) = (α2c1−1)

(α2c1−1)2
c1 × (α2c1−1) = (α2c1+c1−1) = (α2c2−1)

(α2c2−1)2
c2 × (α2c2−1) = (α2c2+c2−1) = (α2c3−1) (4.9)

By assigning any integer values for the elements of the chain Cr1 which satisfy the

addition rule of Ar1 ; let’s say for example c0 = 1, c1 = 2, c2 = 4, c3 = r1 = 8 such

that Cr1 = C8 = {1, 2, 4, 8}, then [`(r1) + w(r1) − 2] = [`(8) + w(8) − 2] = 3. The

obtained value, namely 3, is exactly equal to the number of multiplications necessary

to compute (α2r1−1) = (α28−1) term as given in Eq. (4.9) above. Or in other words,

the value 3 is equal to the length of Cr1 = C8, which represents the number of commas

that separate the chain elements. Therefore, the computational cost of (α2r1−1) term

is given by

[`(r1) + w(r1)− 2] , (4.10)

multiplications. Notice that, if h = ci for i ∈ [0, 1, 2, 3], then (α2h−1) = (α2ci−1) is

available as one of the intermediate results as evident from Eq. (4.9) above. Thus, all

computational cost relevant to (α2h−1) term are saved, and we need only one extra

multiplication to join the terms in Eq. (4.7) above. Therefore, by adding the costs

given in Eqs. (4.8) and (4.10) plus an additional multiplication necessary to join

(α2h−1) term, then the inversion cost of our proposed inversion algorithm is exactly

as given in Theorem 5 above.

55



CHAPTER 4. PROPOSED INVERSION ALGORITHMS

From the proof of Theorem 5 shown above, it is clearly evident that the inversion

cost of our proposed field inversion algorithm in GF (2m) only depend on the constant

1 (independent of the remainder h), rather than its dependency on h itself as in TYT

inversion algorithm, or the dependency on w(h) as in LCA inversion algorithm.

In addition, the above inversion cost is applicable to a wide range of binary

extension fields, especially after decomposing each extension degree m of the

concerned GF (2m) using the decomposition method employed in our proposed

decomposition algorithm. Similar to the case in other existing inversion algorithms,

which rely on different types of decomposition methods, however, the set of GF (2m)

those associated with the minimal inversion cost is quite wider using our proposed

inversion algorithm. This is mainly true because the remainder h is not restricted in

its value.

In the following, we introduce our proposed algorithms necessary for inversion in

GF (2m) through a running example. We are going to consider the field GF (2163) in

our example. The selection criterion for this field is that it is one of the

recommended fields for use in ECC. Assuming that m = 163 is the input to our

proposed decomposition algorithm, which is referred to as WHDA(m) (see

Algorithm 3), then the output is the 3-tuple (5, 32, 2). The 3-tuple means that

(m− 1) = (163− 1) = 162 = 5× 32 + 2.

Given that the short addition chain for factor r1 = 5 is given by

Cr1 = C5 = {1, 2, 3, 5}, then the sequence of integer pairs of C5 is given by

Ar1 = A5 = {(1, 1), (2, 1), (3, 2)}. The sequence follows the rule ci = ci−1 + ci−1 for

i = 1, and ci = ci−1 + ci−2 for i ∈ {2, 3}, given that c0 = 1 and c3 = 5.

In continuation with our example, we assume that the field element in which

its inverse is required is α ∈ GF ∗(2163). By using the 3-tuple (5, 32, 2), the above

sequences we just obtained for factor r1 = 5 (i.e., C5, A5) and the element α as the

inputs to our proposed WHCA(e, Cv, Av, κ) algorithm, somehow follows the approach
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presented in [46] with major modifications, such as the incorporation of all code

relevant to our decomposition method (see Algorithm 4). For example, if e = α,

Cv = {1, 2, 3, 5}, Av = {(1, 1), (2, 1), (3, 2)} and κ = 2, then, the computational steps

using the algorithm proceed as follows:

(α21−1)2
1 × (α21−1) = (α3) = (α22−1)

(α22−1)2
1 × (α21−1) = (α7) = (α23−1)

(α23−1)2
2 × (α22−1) = (α31) = (α25−1) (4.11)

Algorithm 3 WHDA(m) Algorithm in GF (pm)

Input: extension degree m

Output: (m− 1) = r1 × n+ h given as (r1, n, h)

Initial: t := (m− 1), l :=
√
t, j := 0;

if t is odd: S ← So = {1, 3, · · · , l := dle}. Use l := blc if l odd;

if t is even: S ← Se = {2, 4, · · · , l := blc}. Use l := dle if l odd;

for all i in the selected S do

R := t− i;

while (R 6= 2k and 2|R and dR/2e ≥ i) do

R :=
(
R
2

)
, j := j + 1;

end while

save the resulted 3-tuple (R, j, i) in array (memory)

j := 0;

next i;

end for

find (R, j, i) with i ∈ CR, large j;

return (r1 := R, n := 2j, h := i)

57



CHAPTER 4. PROPOSED INVERSION ALGORITHMS

So there are two outputs generated by the algorithm as given in Eq. (4.11) above.

The first is (α2r1−1) = (α25−1) term. The second is (α2h−1) = (α22−1) term. Given

that h = 2 is an element in the chain Cr1 = C5, then, the latter term is our savings

because the term is available as intermediate result. As we can see from Eq. (4.11)

above, the cost of both terms is 3 GF (2163)-multiplications.

In continuation with our example, the factors in (m − 1), other than r1, are

represented by the variable n that is given in the 3-tuple (5, 32, 2), thus, n = 32 is the

value of such factors. Let λ = (α2r1−1) = (α25−1) = α31, the output of the WHCA

algorithm, and v = n = 32. Assume that λ and v are the inputs to our proposed

WHFA(λ, v) algorithm (see Algorithm 5).

Algorithm 4 WHCA Algorithm in GF (2m)

Input: e ∈ GF ∗(2m), Cv and Av precomputed,

κ := 0 if (m− 1) not-decomposed, otherwise κ := h

Output: δ2cl = e−1 ∈ GF (2m), f = (α2κ−1)

Given: δci(e) = e2
ci−1, δci1+ci2 (e) = [δci1(e)]

2
ci2 × δci2 (e)

Initial: l := length(Cv), δc0 := e;

for i := 1 to l do

δci(e) := [δci1(e)]
2
ci2 × δci2 (e);

if κ = ci then

f := δci(e);

end if

end for

if κ 6= 0 then

return δcl , f

end if

return δ2cl , f
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Algorithm 5 can be described as follows: Given that we have only one factor,

namely v = n, then the outer for loop (depends on the number of factors in (m− 1))

is executed only once. In addition, the loop counter i in the inner for loop (depends

on the binary length of each factor) will loop from 4 to 0, which is basically 5 loops.

This is because v = 32 = (100000)2, thus, the maximum value of the loop counter is

given by i = (q−2) = (6−2) = 4, whereby q is the binary length of v. Given that the

if statement is not going to be satisfied, and variable r = r×rj−1 = r×r1 = 1×5 = 5,

then the computational steps with a = λ = (α231) will proceed as follows:

(a)× (a)2
5×24

= a(2
5×24+1) = b

(b)× (b)2
5×23

= b(2
5×23+1) = c

(c)× (c)2
5×22

= c(2
5×22+1) = d

(d)× (d)2
5×21

= d(2
5×21+1) = e

(e)× (e)2
5×20

= e(2
5×20+1) = f (4.12)

Notice that f = (α25−1)(2
5×24+1)(25×23+1)(25×22+1)(25×21+1)(25×20+1) in Eq. (4.12)

above. In general, f = (α2r1−1)e which is exactly the first term on the right-hand

side of Eq. (4.7) above. Given the availability of (α25−1) term as given in Eq. (4.11)

above, the cost of computing f is 5 GF (2163)-multiplications, which is represented

by the ‘+’ signs in the expression.

To complete the process of finding the inverse in our example, we need to join the

available terms, such as f and (α2h−1), and apply some powers of two after joining

the terms. Such powers are assumed free using NB for the field elements. In other

words, we need to continue the computation of the expression given in Eq. (4.6)

above. In fact, this is the responsibility of our proposed main inversion algorithm,

which is referred to as Inverse(α,m) (see Algorithm 6).
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Algorithm 5 WHFA Algorithm in GF (2m)

Input: λ ∈ GF (2m), v =
∏k

j=2 rj : rj = (1m
(j)
qj−2 · · ·m

(j)
0 )2

Output: µ = λe = (α2r1−1)e

Initial: r := 1;

for j := 2 to k do

µ := λ;

r := r × rj−1;

for i := qj − 2 to 0 do

µ := µ× µ2r2
i

;

if m
(j)
i = 1 then

µ := λ× µ2r2
i

;

end if

end for

λ := µ;

end for

return µ

Algorithm 6, the main field inversion algorithm, consists of all other previously

mentioned helper algorithms such as WHDA, WHCA and WHFA as its main

building blocks, whose are ready for call by the the main algorithm, when

appropriate and depending on the current case under consideration.

In using our main field inversion algorithm with the element α and m = 163 as the

inputs, i.e., Inverse(α, 163), we need one extra GF (2163)-multiplication to join f and

(α2h−1) terms. Given that the cost of computing f term is 5 GF (2163)-multiplications

as given in Eq. (4.12) above, and the cost of computing (α2r1−1) and (α2h−1) terms

is 3 GF (2163)-multiplications as given in Eq. (4.11) above, then, finding the inverse

of α ∈ GF ∗(2163) using our main inversion algorithm costs in terms of the required

GF (2163)-multiplications, or its inversion cost is given by 9 GF (2163)-multiplications.
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Algorithm 6 Inverse Algorithm in GF (2m)

Input: α ∈ GF ∗(2m), extension degree m

Output: δ = α−1 ∈ GF (2m)

Initial: (m− 1);

Case when (m− 1) is not-decomposed:

if ((m− 1) = 2k or w(m− 1) = 2) then

return δ := WHCA(α,Cm−1, Am−1, 0)

Case when (m− 1) is decomposed:

else

fetch (r1, n, h) from the array (memory);

[η, ρ] := WHCA(α,Cr1 , Ar1 , h);

γ := WHFA(η, n);

if (h = 0) then

return δ := γ

else

return δ := ((γ)2
h × ρ)2

end if

In general, the following block diagram shown in Figure 4.1 gives an idea about

the working principle of the proposed main field inversion algorithm, namely

Inverse(α,m) algorithm. The diagram shows the relation between the main

inversion algorithm and other helper algorithms that described in our previous

discussion. The diagram is somehow applicable to any field inversion algorithm

which is based on our proposed decomposition algorithm with negligible differences,

more specifically, such as the algorithm that we are going to propose in GF (3m) as

in the following sections.

Notice that WHDA(m) algorithm shown in Figure 4.1 above can mainly run

off-line. It means that the algorithm add no extra runtime in the main inversion
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Figure 4.1: Main Inversion Algorithm Block Diagram

algorithm. In addition, given that the output of such algorithm in most cases is the

3-tuple (r1, n, h), it means that the optimal decomposition criterion (OD), which is

defined with other decomposition methods, is already applied in using our

decomposition method. This even is applicable in the cases whereby the output of

such algorithm is the prime factors of (m − 1), since the number of factors never

exceeds three. Reminding the reader that the OD is associated with the lowest

inversion cost, with the fewest factors and remainders that is suitable from

hardware perspective.

4.2 Characteristic Three Algorithms

In this section, we introduce our proposed field inversion algorithms in GF (3m)

using NB for the field elements, which are based on FLT inversion approach. Our
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first inversion algorithm is somehow based on ITI expression mentioned earlier

herein. It is the first algorithm that is written in full for complete inversion in

GF (3m). In addition, it is associate with lower inversion cost in comparison with

other existing algorithms those exactly based on ITI expression. Our second

inversion algorithm is basically based on the decomposition method we proposed

earlier herein in GF (2m). In fact, it implements our proposed decomposition

algorithm in GF (3m). The algorithm is expected to have the lowest inversion cost in

such fields. Finally, we show the Fast Frobenius map operation in such fields which

is extended to higher characteristic extension fields. Such operation is expected to

have free runtime and space complexity.

4.2.1 ITI-Based Inversion Algorithm

Our first field inversion algorithm proposed in GF (3m) can be described as follows:

Given the positive integer r as the quotient of dividing the order of the

multiplicative group of the field GF (pm), namely GF ∗(pm), on the order of its

subfield’s multiplicative group, namely GF ∗(p) = {1, 2, · · · , p− 1}, then we have

r =
pm − 1

p− 1
= pm−1 + pm−2 + · · ·+ p1 + 1, (4.13)

thus

(r − 1) = pm−1 + pm−2 + · · ·+ p2 + p1, (4.14)

which is the p-adic representation of (r − 1) = (11 . . . 110)p. Given that

pm − 1 = (p− 1)×
[
pm−1 + pm−2 + · · ·+ p1 + p0

]
, (4.15)

then it can be expressed as

pm − 1 = (p− 1)×
[
pm−1 + pm−2 + · · ·+ p1

]
+ (p− 1). (4.16)
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For characteristic p = 3, we have

3m − 1 = 2×
[
3m−1 + 3m−2 + · · ·+ 31

]
+ 2, (4.17)

thus we have

3m − 2 = 2×
[
3m−1 + 3m−2 + · · ·+ 31

]
+ 1, (4.18)

which has the 3-adic representation of (r − 1), i.e., (11 . . . 110)3, as the main

computational component.

Therefore, the inverse of α ∈ GF ∗(3m) using our first inversion algorithm proposed

in such fields is given by the following expression (referred to as, IVI expression):

α3m−2 =
(
α2
)3m−1+···+32+31 × α =

(
α2
)ψ × α, (4.19)

whereby ψ is the 3-adic representation of (r − 1). Our first field inversion algorithm

proposed in GF (3m), namely WHTI(α,m) algorithm, is basically a translation for

the expression given in Eq. (4.19) above (see Algorithm 7).

Unlike other existing field inversion algorithms those exactly based on ITI

expression. Such algorithms require an extra one extension field multiplication in

addition to the subfield inversion for computing the inverse in the concerned

extension field (see Chapter 3.2.1). Because subfield inversion is not required in our

algorithm, the algorithm is modular thus suitable for VLSI implementation. This is

mainly because it requires only two field operations, namely the multiplication

operation and the cyclic-shifts for the coefficients, for computing the inverse in the

concerned extension field as seen from the algorithm. The inversion cost of

Algorithm 7 proposed for use in GF (3m), in terms of the required number of ternary

extension field multiplications, is given by

[`(m− 1) + w(m− 1)− 1] GF (3m)-Multiplications,
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Algorithm 7 WHTI Algorithm in GF (3m)

Input: α ∈ GF ∗(3m), extension degree m

Output: γ = α−1 ∈ GF (3m)

Initial: (m− 1) as (1mq−2 · · ·m1m0)2, γ := β := α2;

for i := q − 2 to 0 do

γ := γ × γ32
i

;

if mi = 1 then

γ := β × γ32
i

;

end if

end for

γ := γ3 × α;

return γ

[`(m− 1) + w(m− 1)− 1] GF (3m)-Frobenius Maps. (4.20)

From Eq. (4.20) above, in general, a Frobenius map represents a cubing operation

in GF (3m), and in particular, such an operation is simply represented by a right

cyclic-shift in such fields using NB for the field elements. For easy comparison with

the result we have obtained earlier which is relevant to other algorithms that are

based on ITI expression [see Chapter 3, Eq. (3.24)], GF (3m) given in Eq. (4.20)

above can be changed to GF (pm) to indicate any odd-characteristic extension field,

including GF (3m) by itself.

As we can see from Eq. (4.20) above, the inversion cost of Algorithm 7 mainly

depends on two parameters. The first, depends on the binary length of (m − 1)

value, and is represented by the unconditional statement within the main loop in

the algorithm. The second, depends on the Hamming weight of the binary (m − 1)

value, and is represented by the conditional statement within the main loop in the

algorithm.

To show how Algorithm 7 works through an example, let us assume that the
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element in which its inverse is required is α ∈ GF (36). Inverse computation using

the algorithm can be described as follows: Firstly, m = 6 and (m− 1) = 5 = (101)2,

thus q = 3 and the loop counter i will loop from 1 down to 0. Secondly, given that

γ = β = α2, then the computation proceed as follow:

For i = 1 :

γ = γ × γ32
1

= (α2)× (α2)3
21

= α20

For i = 0 :

γ = γ × γ32
0

= (α20)× (α20)3
20

= α80

γ = β × γ32
0

= (α2)× (α80)3
20

= α242

After end for:

γ = α× γ3 = (α)× (α242)3 = α727. (4.21)

Given that α−1 = α36−2 = α727 as given in Eq. (4.21) above, then the inversion

cost of Algorithm 7, as evident from the above computational steps, is given by

4 GF (36)-multiplications in this specific example. This result is conforming to the one

obtained using Eq. (4.20) above, whereby [`(m−1)+w(m−1)−1] = [`(5)+w(5)−1] =

4 multiplications, given that the GF (36)-Frobenius maps are free operations in using

NB for the field elements.

4.2.2 WHDA-Based Inversion Algorithm

The second field inversion algorithm we propose in GF (3m) is based on the

decomposition algorithm that we have proposed earlier herein (see Chapter 4.1).

The algorithm is based on FLT inversion approach using NB for the field elements,
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and can be described as follows: Given that (m− 1) =
∏k

j=1 rj + h and the following

expression

3m − 2 = 3×
(
3m−1 − 1

)
+ 1, (4.22)

if we substitute the value of (m− 1) in Eq. (4.22) above, then we have

3m − 2 = 3×
(

3
∏k
j=1 rj+h − 1

)
+ 1. (4.23)

Expanding the new exponent in Eq. (4.23) above, gives us

3m − 2 = 3×
[
3h × (3r1×···×rk − 1) + (3h − 1)

]
+ 1. (4.24)

By doing further expansion and finally collecting terms in Eq. (4.24) above, then

we have

3m − 2 = 3×
[
e× 3h × (3r1 − 1) + (3h − 1)

]
+ 1, (4.25)

whereby the expression for variable e in Eq. (4.25) above is given in what follows.

Therefore, based on Eq. (4.25) above, the inverse of a nonzero element α ∈

GF (3m) using our proposed IVD expression is given by

α−1 = α3m−2 =
(
α3m−1−1

)3
× α =(

α3
∏k
j=1 rj+h−1

)3

× α =
(

(α3r1×...×rk−1)3
h × (α3h−1)

)3
× α

=
(

((α3r1−1)e)
3h × (α3h−1)

)3
× α =

(
(α3r1−1)e

)3h+1

×


f− term︷ ︸︸ ︷

(α3h−1)3 × α

 ,

given that

e =
(

(3r1)r2−1 + · · ·+ 1) · · · ((3
r1×···×rk−1

)rk−1 + · · ·+ 1)
)
. (4.26)
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Theorem 6. Given that (m − 1) =
∏k

j=1 rj + h. Assuming that h is appropriately

selected to belong to the short addition chain of r1, denoted as Cr1, or any factor in

(m− 1), then, the computation of (α3r1−1) term guarantees the availability of (α3h−1)

term as an intermediate value, and the inversion cost is given by(
k∑
j=1

[`(rj) + w(rj)− 2] + 1

)
GF (3m)-Multiplications. (4.27)

Proof. The proof here follows the one previously presented for the case of GF (2m)

(see Chapter 4.1)

From Eq. (4.27) above, it is clearly evident that the inversion cost of our second

proposed field inversion algorithm in GF (3m) only depend on the constant 1

(independent of the remainder h). Thus, we have obtained a similar result to that in

GF (2m) as in Eq. (4.5) above. Notice that, WHDA(m) algorithm [see Chapter 4.1,

Algorithm 3], is the decomposition algorithm that we are going to use to decompose

the extension degree m of the concerned GF (3m).

Furthermore, the above inversion cost is applicable to a wide range of ternary

extension fields, especially after decomposing each extension degree m of the

concerned GF (3m) using the decomposition method employed in our proposed

decomposition algorithm. Notice that, decomposition algorithms in GF (3m) are

rare, if not exist at all in the academic literature. In addition, such algorithms are

mainly depend on the m, but not on the characteristic p of the concerned extension

field. However, keep in mind that even when applying the same decomposition

method in inversion algorithms for different extension fields, the inversion cost could

be different.

In the following, we introduce our proposed algorithms necessary for inversion in

GF (3m) through a running example. We are going to consider the field GF (3167)
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in our example. The selection criterion for this field is that the field is of particular

interest for ECC. Assuming that m = 167 is the input to our proposed decomposition

algorithm, which is referred to as WHDA(m) [see Chapter 4, Algorithm 3], then the

output is the 3-tuple (10, 16, 6). The 3-tuple means that (m−1) = (167−1) = 166 =

10× 16 + 6.

Given that the short addition chain for factor r1 = 10 is given by Cr1 = C10 =

{1, 2, 4, 6, 10}, then the sequence of integer pairs of C10 is given by Ar1 = A10 =

{(1, 1), (2, 2), (4, 2), (6, 4)}. The sequence follows the rule ci = ci−1+ci−1 for i ∈ {1, 2},

and ci = ci−1 + ci−2 for i ∈ {3, 4}, given that c0 = 1 and c4 = 10.

In continuation with our example, we assume that the field element in which its

inverse is required is α ∈ GF ∗(3167). By using the 3-tuple (10, 16, 6), the above

sequences we just obtained for factor r1 = 10 (i.e., C10, A10) and the element α as the

inputs to our proposed WHTCA(e, Cv, Av, κ) algorithm (see Algorithm 8), somehow

follows our previous algorithm [see Chapter 4, Algorithm 4], except that all power 2s

are replaced by power 3s and incorporation of f -term as given in Eq. (4.26) above.

For example, if e = α, Cv = {1, 2, 4, 6, 10}, Av = {(1, 1), (2, 2), (4, 2), (6, 4)} and

κ = 6, then, the computational steps using the algorithm proceed as follows:
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(α31−1)3
1 × (α31−1) = (α8) = (α32−1)

(α32−1)3
2 × (α32−1) = (α80) = (α34−1)

(α34−1)3
2 × (α32−1) = (α728) = (α36−1)

(α36−1)3
4 × (α34−1) = (α59048) = (α310−1) (4.28)

So there are two outputs generated by the algorithm as given in Eq. (4.28) above.

The first is (α3r1−1) = (α210−1) term. The second is f = (α3h−1)3 × α = (α36−1)3 × α

term. Given that h = 6 is an element in the chain Cr1 = C10, and the computation

of f -term is concurrent with the computation of (α3r1−1) term, thus, as we can see

from Eq. (4.28) above, the cost of both terms is 4 GF (2167)-multiplications.

Algorithm 8 WHTCA Algorithm in GF (3m)

Input: e ∈ GF ∗(3m), Cv and Av precomputed,

κ := 0 if (m− 1) not-decomposed, otherwise κ := h

Output: δ3cl = e−1 ∈ GF (3m), f = (α3κ−1)

Given: δci(e) = e3
ci−1, δci1+ci2 (e) = [δci1(e)]

3
ci2 × δci2 (e)

Initial: l := length(Cv), δc0 := e;

for i := 1 to l do

δci(e) := [δci1(e)]
3
ci2 × δci2 (e);

if κ = ci then

f := [(δci(e))
3 × α]; ⇐= (f -term)

end if

end for

if κ 6= 0 then

return δcl , f

end if

return δ3cl , f
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In continuation with our example, the factors in (m − 1), other than r1, are

represented by the variable n that is given in the 3-tuple (10, 16, 6), thus, n = 16 is

the value of such factors. Let λ = (α3r1−1) = (α310−1) = α59048, the output of the

WHTCA algorithm, and v = n = 16. Assume that λ and v are the inputs to our

proposed WHTFA(λ, v) algorithm (see Algorithm 9), somehow follows our previous

algorithm [see Chapter 4, Algorithm 5], except that all power 2s are replaced by power

3s.

Algorithm 9 can be described as follows: Given that we have only one factor,

namely v = n, then the outer for loop (depends on the number of factors in (m− 1))

is executed only once. In addition, the loop counter i in the inner for loop (depends on

the binary length of each factor) will loop from 3 to 0, which is basically 4 loops. This

is because v = 16 = (10000)2, thus, the maximum value of the loop counter is given

by i = (q − 2) = (6 − 2) = 3, whereby q is the binary length of v. Given that the if

statement is not going to be satisfied, and variable r = r×rj−1 = r×r1 = 1×10 = 10,

then the computational steps with a = λ = (α359048) will proceed as follows:

(a)× (a)3
10×33

= a(3
10×33+1) = b

(b)× (b)3
10×32

= b(3
10×32+1) = c

(c)× (c)3
10×31

= c(3
10×31+1) = d

(d)× (d)3
10×30

= d(3
10×30+1) = e (4.29)

Notice that e = (α310−1)(3
10×33+1)(310×32+1)(310×31+1)(310×30+1) in Eq. (4.29) above.

In general, e = (α3r1−1)e which is exactly the first term on the right-hand side of Eq.

(4.26) above. Given the availability of (α310−1) term as given in Eq. (4.28) above,

the cost of computing e is 4 GF (3167)-multiplications, which is represented by the ‘+’

signs in the expression.
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Algorithm 9 WHTFA Algorithm in GF (3m)

Input: λ ∈ GF (3m), v =
∏k

j=2 rj : rj = (1m
(j)
qj−2 · · ·m

(j)
0 )2

Output: µ = λe = (α3r1−1)e

Initial: r := 1;

for j := 2 to k do

µ := λ;

r := r × rj−1;

for i := qj − 2 to 0 do

µ := µ× µ3r3
i

;

if m
(j)
i = 1 then

µ := λ× µ3r3
i

;

end if

end for

λ := µ;

end for

return µ

To complete the process of finding the inverse in our example, we need to join the

available terms, such as e and the f -term, and apply some powers of three after joining

the terms. Such powers are assumed free using NB for the field elements. In other

words, we need to continue the computation of the expression given in Eq. (4.26)

above. In fact, this is the responsibility of our proposed main inversion algorithm,

which is referred to as ITnverse(α,m) (see Algorithm 10).

Algorithm 10, the main field inversion algorithm, consists of all other previously

mentioned helper algorithms such as WHDA, WHTCA and WHTFA as its main

building blocks, whose are ready for call by the the main algorithm, when appropriate

and depending on the current case under consideration.
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Algorithm 10 ITnverse Algorithm in GF (3m)

Input: α ∈ GF ∗(3m), extension degree m

Output: δ = α−1 ∈ GF (3m)

Initial: (m− 1);

Case when (m− 1) is not-decomposed:

if ((m− 1) = 2k or w(m− 1) = 2) then

return δ := WHTCA(α,Cm−1, Am−1, 0)

Case when (m− 1) is decomposed:

else

fetch (r1, n, h) from the array (memory);

[η, ρ] := WHTCA(α,Cr1 , Ar1 , h);

γ := WHTFA(η, n);

if (h = 0) then

return δ := (γ × α)

else

return δ :=
(

(γ)3
h+1 × ρ

)
end if

In using our main field inversion algorithm with the element α and m = 167 as

the inputs, i.e., ITnverse(α, 167), we need one extra GF (3167)-multiplication to join

e and f -term. Given that the cost of computing e term is 4 GF (3167)-multiplications

as given in Eq. (4.29) above, and the cost of computing (α3r1−1) and f -term is

4 GF (3167)-multiplications as given in Eq. (4.28) above, then, finding the inverse

of α ∈ GF ∗(3167) using our main inversion algorithm costs in terms of the required

GF (3167)-multiplications, or its inversion cost is given by 9 GF (3167)-multiplications.

In general, the working principle of Algorithm 10 somehow follows the block

diagram shown in Figure 4.1 above. The diagram gives an idea about the relation

between the main inversion algorithm and other helper algorithms that described in

our previous discussion.
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4.2.3 Accelerating Frobenius Map Operation

In using Type-II optimal extension fields (OEFs) (see Chapter 2.1.4), it is possible to

accelerate the j-th iterate of the Frobenius map, or the 3j-th power computation in

GF (3m) using PB for the field elements. Unless it is clearly mentioned that the field

characteristic p = 3, the following presentation assumes the general extension field

GF (pm), namely the odd-characteristic extension field with odd-prime p and m > 1.

Given a nonzero element α ∈ GF (pm) represented as α =
∑m−1

i=0 aix
i using PB,

its j-th iterate of the Frobenius map is given by

αp
j

=
m−1∑
i=0

aix
ipj = a0 + a1x

pj + · · ·+ am−1x
(m−1)pj mod f(x). (4.30)

Given that in using Type-II OEFs, the field polynomial generating the field

GF (pm) is the irreducible binomial f(x) = xm − w of degree m, and given that the

basis element x is a root of f(x), then we have

w ≡ xm (mod f(x)) , (4.31)

or equivalently w = xm. As given in [4], if m is square-free value, then we have

p ≡ 1 (mod m). (4.32)

Based on Eq. (4.32) above, we can express the terms affected by the action of the

Frobenius map as follows

xip
j

= xb
ipj

m
cmxip

j ( mod m) = xb
ipj

m
cmxi = wq

j
i xi, (4.33)

for qji = b ipj
m
c, any j-th iterate of Frobenius map and (1 ≤ i ≤ m−1). This is because

xm = w based on Eq. (4.31) above, and ipj (mod m) = i based on Eq. (4.32) above.

74



CHAPTER 4. PROPOSED INVERSION ALGORITHMS

Therefore, based on Eq. (4.33) above, the j-th iterate of the Frobenius map is

given by

αp
j

=
m−1∑
i=0

(aiw
qji )xi ∀ (0 ≤ i ≤ m− 1). (4.34)

Given that w = 2 in using Type-II OEFs, with the fact that the exponent (qji ) in

Eq. (4.34) above is simply a positive integer, then we have

αp
j

=
m−1∑
i=0

(ai2
k)xi ∀ (0 ≤ i ≤ m− 1), k = qji , w = 2. (4.35)

The (m− 1) subfield multiplications of (ai2
k) terms for (1 ≤ i ≤ m− 1) given in

Eq. (4.35) above can be reduced to arbitrary shifts. This is the result of multiplying

the subfield coefficients ai for (1 ≤ i ≤ m−1) by an arbitrary power of 2 value, i.e., 2k

for a particular positive integer k. However, such shifts still require subfield modular

reductions as given in [4, 20, 49].

To further improve the calculation of (ai2
k mod p) expression for (1 ≤ i ≤ m−1),

i.e., the subfield multiplication and modular reduction operations in GF (3m), whereby

the characteristic p = 3, we have noticed the following. Given that in GF (3m) the

elements have coefficients ai ∈ GF (3) = {0, 1, 2} for all (0 ≤ i ≤ m − 1), with the

fact that k is an arbitrary positive integer, then the interesting result in such fields

can be described as follows:

Given ai = 0 for (0 ≤ i ≤ m − 1), the coefficients whose value is equal to zero,

the result of calculating (ai2
k mod p) expression is always equal to zero, regardless

of the value of the positive integer k, and even the characteristic p.

Given ai = 1 for (0 ≤ i ≤ m− 1), the coefficients whose value is equal to one, the

result of calculating (ai2
k mod p) expression is given as follows: For k = 1, 2, 3, · · · ,

we have

(ai2
k mod p) = p− 1, p− 2, p− 1, p− 2, · · · = 2, 1, 2, 1, · · · : p = 3. (4.36)
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Furthermore, given ai = 2 for (0 ≤ i ≤ m − 1), the coefficients whose value is

equal to two, the result of calculating (ai2
k mod p) expression is given as follows: For

k = 1, 2, 3, · · · , we have

(ai2
k mod p) = p− 2, p− 1, p− 2, p− 1, · · · = 1, 2, 1, 2, · · · : p = 3. (4.37)

Therefore, based on Eqs. (4.36) and (4.37) given above, performing subfield

multiplication and modular reduction is a well-defined sequence of repeated values.

It is simply a cyclic-toggling operation for the values of ai coefficients for

(1 ≤ i ≤ m − 1), to a new values again taken from GF (p), the subfield to which ai

coefficients belong. Each specific new value in the sequence depend on the exponent

k, more specifically, if its value is odd or even.

Table 4.1 presents the cyclic-toggling sequences obtained for (ai2
k mod 3)

whereby the coefficients ai ∈ GF (3) = {0, 1, 2}, the subfield of GF (3m), for all

(0 ≤ i ≤ m− 1) and a positive integer k = 0, 1, 2, · · · .

Table 4.1: Cyclic-Toggling for (ai2
k mod 3)

ai ∈ GF(3)

2k 0 1 2

21 0 2 1

22 0 1 2

23 0 2 1

24 0 1 2

25 0 2 1

. . . .

By referring to Table 4.1 above, if the positive integer k has any odd value and

the i-th coefficient ai = 1 for (1 ≤ i ≤ m− 1), then (ai2
k mod 3) = 2 always. If the

positive integer k has any odd value and the i-th coefficient ai = 2 for (0 ≤ i ≤ m−1),

then (ai2
k mod 3) = 1 always. In both cases, if the positive integer k has any even
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value, the coefficients ai for (1 ≤ i ≤ m − 1) are kept unchanged. Thus, by just

knowing if the positive integer k is either odd or even, we know ahead whether

toggling the concerned coefficient is necessary or not, which instantaneously produces

the result of the subfield multiplication and modular reduction operations.

Given that the positive integer k = qji = b ipj
m
c is data-independent, which means

it does not depend on the field element under consideration, thus its value can be

calculated off-line. Since each term affected by the action of the Frobenius map has its

own k value, rather than storing k itself, a hash value can be stored to represent the

value type of k, for example, either 0 to indicate that k is even value or 1 to indicate

that k is odd value. Thus, by a priori knowing whether to toggle the concerned

coefficient or not, the terms affected by the action of the Frobenius map are calculated

very fast.

Based on our previous discussion above, the j-th iterate of the Frobenius map

is almost a free operation, i.e., it is associated with almost free runtime and space

complexity. Given that such operation can substitute the j-th right cyclic-shifts

required for inversion in GF (3m) using NB for the field elements, or equivalently the

3j-th powers, such operation can accelerates field inversion in such fields using PB

for the field elements. Notice that, such operation can be easily extended to higher

characteristic extension fields, which means, it can be extended to any Type-II OEF

regardless of its characteristic p.

For example, consider the extension field GF (5m) with characteristic p = 5,

whereby the elements in such field have coefficients ai ∈ GF (5) = {0, 1, 2, 3, 4} for

all (0 ≤ i ≤ m − 1). We are going to formulate the cyclic-toggling sequence for the

coefficients ai having the value 1 for (1 ≤ i ≤ m − 1). Then use it, the sequence, to

derive other cyclic-toggling sequences for the other coefficient values in GF (5), i.e.,

for 2, 3 and 4, respectively. Finally, we will present the sequences we have obtained

for (ai2
k mod 5) in a tabular form.
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To calculate subfield multiplication and modular reduction operations fast in

characteristic-five extension fields GF (5m), i.e., calculating (ai2
k mod 5) expression

fast based on our previous discussion, the calculation process can be described as

follows:

Given ai = 0 for (0 ≤ i ≤ m − 1), the coefficients whose value is equal to zero,

the result of calculating (ai2
k mod p) expression is always equal to zero, regardless

of the value of the positive integer k, and even the characteristic p.

Given ai = 1 for (0 ≤ i ≤ m− 1), the coefficients whose value is equal to one, the

result of calculating (ai2
k mod p) expression is given as follows: For k = 1, 2, 3, · · · ,

we have

(ai2
k mod p) = (p− 3), (p− 1), (p− 2), (p− 4), (p− 3), (p− 1), (p− 2), (p− 4), · · ·

= 2, 4, 3, 1, 2, 4, 3, 1, · · · : p = 5. (4.38)

Notice how the first element in the sequence given in Eq. (4.38) above has its

value equal to 2. This is because its order is directly after the element which has the

value 1 in the above sequence, whereby 1 is representing the coefficients value that is

currently under consideration, i.e., ai = 1.

Using the sequence we just obtained in Eq. (4.38) above, we can figure out the

sequence for ai = 2 given that (0 ≤ i ≤ m − 1), i.e., the cyclic-toggling sequence for

coefficients whose value is equal to two. By considering the previous sequence, we start

our new sequence for ai = 2 with the first element having the value 4 and continue

with the following elements in sequence. This is because its order is directly after the

element which has the value 2 in the above sequence, whereby 2 is representing the

coefficients value that is currently under consideration. Thus, our new sequence for

ai = 2 is given by

(ai2
k mod 5) = 4, 3, 1, 2, 4, 3, 1, 2, · · · : ai = 2. (4.39)

By continuing in this manner, we can figure out the cyclic-toggling sequences for
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the remaining coefficient values, i.e., ai = {3, 4} ∈ GF (5) for (0 ≤ i ≤ m− 1). Table

4.2 presents the cyclic-toggling sequences obtained for (ai2
k mod 5) whereby the

coefficients ai ∈ GF (5) = {0, 1, 2, 3, 4}, the subfield of GF (5m), for all (0 ≤ i ≤ m−1)

and a positive integer k = 0, 1, 2, · · · .

It can be seen from Table 4.2 above that any cyclic-toggling sequence for

coefficients ai ∈ GF (p) for (0 ≤ i ≤ m − 1) can be obtained easily using the

following expression

ai × 2k (modp) : k = qji = bip
j

m
c (modp− 1). (4.40)

Given that the expression in Eq. (4.40) above is independent of the field element in

which its j-th iterate of Frobenius map is required in a given extension field GF (pm),

such expression can be calculated off-line to accelerate such a map in the concerned

extension field in using PB for the field elements.

Table 4.2: Cyclic-Toggling for (ai2
k mod 5)

ai ∈ GF(5)

2k 0 1 2 3 4

21 0 2 4 1 3

22 0 4 3 2 1

23 0 3 1 4 2

24 0 1 2 3 4

25 0 2 4 1 3

26 0 4 3 2 1

27 0 3 1 4 2

28 0 1 2 3 4

. . . . . .
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The following example gives an idea about how the cyclic=toggling sequences can

be use to accelerate the j-th iterate of Frobenius map in the concerned extension field.

Assume α ∈ GF (52) and we want to calculate the 2-th iterate of Frobenius map in

such field, or equivalently α52 . Given that the irreducible binomial is f(x) = x2 − 2,

α = x+ 3 = [a1 a0]5 = [1 3]5, k = 0 for a0 (or ka0 = 0) and k = 2 for a1 (or ka1 = 2)

by using Eq. (4.40) above, then the calculation steps can be described as follows:

Given that α = x+3 = [a1 a0]5 = [1 3]5 that is associate with k = [ka1 ka0 ] = [2 0],

by referring to Table 4.2 above, when k = 2 and a1 = 1, then we have the new value

a1 = 4. Again, when k = 0 and a0 = 3 then we have the value of a0 unchanged. Thus

α5 = 4x+3 = [a1 a0]5 = [4 3]5. Repeat previous steps with k = [ka1 ka0 ] = [2 0] again,

then we have α52 = x+ 3 = [a1 a0]5 = [1 3]5. Thus, the 2-th iterate of Frobenius map

α52 = α using the cyclic-toggling concept that provided by means of previous steps.

To confirm the previous result we just obtained, we calculate α52 using the regular

calculation method in GF (52) given that α = x+ 3 as in the following:

α52 = (x+ 3)5
2

= x5
2

+ 352 . (4.41)

The result in Eq. (4.41) above follows from the fact that (γ + δ)p
i

= γp
i
+ δp

i
for

any positive integer i. Given that f(x) = x2 − 2, thus x2 = 2. Therefore, we have

x5
2

= x25 = x24 × x = (2)12 × x = x. (4.42)

The result in Eq. (4.42) above follows from the fact that [(2)12 (mod 5) = 1]. In

addition, we have

352 = 325 ( mod 2) = 31 = 3. (4.43)

Therefore, based on Eqs. (4.42) and (4.43) given above, we have α52 = x+ 3 = α.

This result conforms with the previously obtained result which is based on the cyclic-
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toggling concept. This means that such a concept can be used to further accelerate

the Frobenius map operation in such extension fields.

As noted from the previous tables above, finding the cyclic-toggling sequence for

any coefficient value in the concerned subfield, is a very straightforward task that is

easy and quick. The cyclic-toggling sequences for the respective coefficients represent

the calculation of multiplication and modular reduction operations in the concerned

subfield GF (p), in particular, in using Type-II OEFs.

In comparison with other existing methods for accelerating the Frobenius map

operation [4, 20, 47], which require (m− 1) subfield multiplications that still require

subfield modular reductions, our fast Frobenius map operation is associated with

almost free runtime and space complexity. This in fact is achieved through the use

of the cyclic-toggling sequences concept.
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Chapter 5

Results and Analysis

This chapter is mainly dedicated to present the achieved results in tabular form.

The results relevant to our proposed inversion algorithms has been obtained either

through the direct application of inversion cost expressions, or using the output of

a programmed algorithm. The first case is applicable to the proposed algorithms

those based on ITI expression, including WHTI(α,m) algorithm [see Chapter 4.2,

Algorithm 7]. The latter case is applicable to the proposed algorithms those based

on our decomposition algorithm, namely WHDA(m) algorithm [see Chapter 4.1,

Algorithm 3]. The algorithm is programmed using C++ programming language to

produce the decompositions for m of the concerned GF (pm), given that p ∈ {2, 3}.

In both cases, the results are simply the inversion cost values, expressed in terms

of the required number of extension field multiplications necessary for inversion, using

our proposed field inversion algorithms for binary and ternary extension fields. Such

results are used for comparison purposes against other existing inversion algorithms

available in the literature. The results will also be analyzed to give the reader a better

idea about the competitive advantage of our proposed inversion algorithms.

In the following section, we first show the competitive advantage of our proposed

inversion algorithm in GF (2m), in terms of the inversion cost, over other existing

inversion algorithms in such fields. Then, we show the competitive advantage of the
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first inversion algorithm we have proposed in GF (3m) over other existing inversion

algorithms in such fields. Furthermore, we show the competitive advantage of the

second inversion algorithm we have proposed in GF (3m) over our first inversion

algorithm we have proposed in such fields.

In the rest of this chapter, we are going to provide a summary on all chapter

findings and highlight the main points relevant to the obtained results.

5.1 Comparison Tables

This section is mainly dedicated to present, in the form of tables, the obtained

decompositions and inversion costs of various existing inversion algorithms available

in the literature, including our proposed algorithms for comparison purposes. We

recall that all field inversion algorithms, including our algorithms in binary GF (2m)

and ternary GF (3m) extension fields, respectively, whether employing our proposed

decomposition algorithm or not, their inversion cost is measured by the required

number of extension field multiplications necessary for inversion. This is why the

achieved results are listed in the form of tables, whereby each column represents a

different inversion algorithm, while each row represents a different extension degree

m of the concerned extension field.

For decomposition based inversion algorithms there are two types of entries within

the tables. The first is the optimal decomposition (OD), which reflects the way

in which each extension degree m is decomposed using the decomposition method

employed in the concerned inversion algorithm. The second is the inversion cost (IC),

which reflects the required number of extension field multiplications necessary for

inversion. Notice that the smaller the inversion cost the better the performance of

the concerned inversion algorithm, because the execution time is going to be faster.

The reader is going to observe the existence of six tables. The first, a table

dedicated to compare our proposed Inverse(α,m) algorithm [see Chapter 4.1,
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Algorithm 6] with other existing inversion algorithms such as ITA, TYT and LCA

algorithms [14, 16, 17]. The comparison is conducted over a set of applicable

GF (2m) (or ms) for use in ECC including the ones recommended for government

use. From that table, the reduction in inversion cost using our inversion algorithm is

up to four GF (2m) multiplications in comparison with other existing algorithms.

The second and the third tables again dedicated to compare Inverse(α,m)

algorithm with TYT and LCA algorithms, but now using some of their reported

extension degrees ms, or GF (2m). Although the comparison is conducted over a

small set of GF (2m), given the fact that our algorithm has inversion cost similar to

that of LCA algorithm in that specific set, it has less inversion cost in comparison

with TYT algorithm and up to one GF (2m) multiplication.

The forth, a table dedicated to compare our proposed WHTI(α,m) algorithm in

GF (3m) [see Chapter 4.2, Algorithm 7], with other algorithms those exactly based

ITI expression [20, 23, 44] over a set of ms, or GF (3m), of particular interest for use

in ECC. From that table, the reduction in inversion cost is up to one GF (3m)

multiplication in addition to avoiding the subfield inversion using our inversion

algorithm in comparison with ITI-based inversion algorithms.

The fifth, a table dedicated to compare our proposed GF (3m) inversion algorithms

with each other over a set of ms, or GF (3m), of particular interest for use in ECC. This

comparison aim to show the advantage of ITnverse(α,m) algorithm [see Chapter 4.2,

Algorithm 10] in comparison with WHTI(α,m) algorithm in such fields. From that

table, the reduction in inversion cost is up to three GF (3m) multiplications using

ITnverse(α,m) algorithm in comparison with WHTI(α,m) algorithm.

The sixth, a table dedicated to compare our proposed inversion algorithms, such

as Inverse(α,m) and ITnverse(α,m) algorithms, against ITA, TYT and LCA

algorithms, over a continuous set of extension degrees ms, or over a continuous set

of extension fields. Since the inversion cost of Inverse(α,m) and ITnverse(α,m)

algorithms is identical, the comparison here generally, reflect the effectiveness of our
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decomposition algorithm over other algorithms. From that table, using our inversion

algorithms one third of inversion cost values are lower than that in other algorithms.

Therefore, approximately a reduction of 32% in inversion cost is achieved in that

continuous set, in comparison with other inversion algorithms.

Notice that the acronym IC that is shown in the following tables refers to inversion

cost, while the acronym OD refers to the optimal decomposition for the extension

degree m of the concerned extension field.

5.1.1 Characteristic Two

Given that our decomposition algorithm [WHDA(m)] was previously applied on a

selected set of extension degrees ms of GF (2m), those selected from within the

range (100 ≤ m < 571), their optimal decompositions (OD), in addition to the

corresponding number of the required extension field multiplications, or the

inversion costs (IC) using our proposed field inversion algorithm [Inverse(α,m)],

are listed in Table 5.1 above. As a preliminary step to show the effectiveness of

Inverse(α,m) algorithm and for comparison purposes, the OD and the IC of other

existing inversion algorithms [ITA, TYT, LCA] are also listed in the same table.

It can be seen from Table 5.1 above that our proposed inversion algorithm

achieves better reductions in inversion cost in comparison with other existing

inversion algorithms. In some extension degrees ms, or in some binary extension

fields GF (2m), such reductions in inversion cost are up to four extension field

multiplications. Although the listed set of extension degrees ms of GF (2m) is not

comprehensive, the results shown in the table reflect the applicability of our

proposed decomposition method employed in our algorithm in accelerating field

inversion in GF (2m), in comparison with other existing decomposition methods.

85



CHAPTER 5. RESULTS AND ANALYSIS

Table 5.1: Proposed vs Other Inversion Algorithms [GF (2m) : 100 ≤ m < 571]

GF (2m) ITA [14] TYT [16] LCA [17] Proposed [Algo. 6]

m (m− 1) IC OD IC OD IC OD IC

100 99 9 11×9 9 11×9 9 3×32+3 8

108 107 10 2(13×4+1)+1 10 11×9+8 10 13×8+3 9

116 115 10 23×5 10 23×5 10 7×16+3 9

150 149 10 37×4+1 10 37×4+1 10 9×16+5 9

163 162 9 19×8 9 19×8 9 81×2 9

164 163 10 18×9+1 10 18×9+1 10 5×32+3 9

168 167 11 83×2+1 11 41×4+3 11 10×16+7 10

174 173 11 43×4+1 11 43×4+1 11 21×8+5 10

180 179 11 2(11×8+1)+1 11 11×16+3 11 11×16+3 10

184 183 12 14×13+1 11 14×13+1 11 11×16+7 10

208 207 12 23×9 11 23×9 11 24×8+15 10

215 214 11 107×2 11 53×4+2 11 13×16+6 10

216 215 12 43×5 11 43×5 11 13×16+7 10

228 227 11 113×2+1 11 25×9+2 11 7×32+3 10

231 230 11 23×10 11 23×10 11 7×32+6 10

233 232 10 29×8 10 29×8 10 29×8 10

280 279 12 31×9 12 31×9 12 17×16+7 11

283 282 11 141×2 11 20×14+2 11 17×16+10 11

294 293 11 73×4+1 11 73×4+1 11 9×32+5 10

299 298 11 2(37×4+1) 11 37×8+2 11 18×16+10 10

312 311 13 31×10+1 13 18×17+5 12 19×16+7 11

320 319 14 29×11 12 29×11 12 19×16+15 11

324 323 11 19×17 11 19×17 11 5×64+3 10

350 349 13 29×12+1 12 29×12+1 12 21×16+13 11

360 359 13 179×2+1 13 97×3+68 12 11×32+7 11

392 391 12 23×17 12 23×17 12 12×32+7 11

404 403 12 67×6+1 12 67×6+1 12 25×16+3 11

409 408 11 24×17 10 24×17 10 51×8 10

424 423 13 47×9 13 47×9 13 13×32+7 11

436 435 13 29×5×3 12 29×5×3 12 27×16+3 11

448 447 15 149×3 12 149×3 12 27×16+15 11

571 570 13 19×6×5 12 19×6×5 12 35×16+10 12
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A selected set of extension degrees ms of GF (2m), selected from [17] is shown in

Table 5.2 above. Such a set of binary extension fields is associated with the lowest

possible inversion cost using the decomposition method employed in LCA algorithm.

The aim of the following comparison is to show the effectiveness of our decomposition

method, employed in our Inverse(α,m) algorithm, relative to the decomposition

method of LCA algorithm over the provided set of GF (2m). Therefore, the OD and

the IC using our algorithm for such ms of GF (2m), are also listed in the same table.

Table 5.2: Proposed vs LCA Algorithm

GF (2m) LCA [17] Proposed [Algo. 6]

m (m− 1) OD IC OD IC

123 122 40×3+2 9 14×8+10 9

187 186 34×5+16 10 11×16+10 10

189 188 36×5+8 10 22×8+12 10

238 237 68×3+33 11 14×16+13 11

384 383 25×5×3+8 12 23×16+15 12

428 427 25×17+2 12 13×32+11 12

It can be seen from Table 5.2 above that the inversion cost of both algorithms is

identical in that specific set of GF (2m). Therefore, our proposed inversion algorithm,

namely Inverse(α,m) algorithm, can be a substitute for LCA algorithm to calculate

the inverse in such binary extension fields. Knowing that our inversion algorithm is

associated with the lowest possible inversion costs over a broader set of GF (2m) as

clarified in Table 5.1 above in comparison with LCA algorithm.

A selected set of extension degrees ms of GF (2m), selected from [16] is shown in

Table 5.3 above. Such a set of binary extension fields is associated with the lowest

possible inversion cost using the decomposition method employed in TYT

algorithm. To show that our decomposition method employed in Inverse(α,m)

algorithm can achieve lower inversion costs in that specific set and in comparison

with TYT decomposition method, the OD and the IC using our inversion algorithm
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for such ms, or in such GF (2m), are also listed in the table for comparison purposes

with TYT inversion algorithm.

Table 5.3: Proposed vs TYT Algorithm

GF (2m) TYT [16] Proposed [Algo. 6]

m (m− 1) OD IC OD IC

128 127 18×7+1 10 15×8+7 10

192 191 38×5+1 11 23×8+7 11

256 255 17×5×3 10 17×15 10

320 319 29×11 12 19×16+15 11

384 383 2(38×5+1)+1 13 23×16+15 12

416 415 83×5 12 25×16+15 11

It can be seen from Table 5.3 above that the inversion cost of both algorithms is

the same in some GF (2m), except for the last three entries in the table, whereby

they indicate that our algorithm achieves lower inversion costs in comparison with

TYT inversion algorithm. Therefore, our proposed inversion algorithm, namely

Inverse(α,m) algorithm, can be a substitute for TYT algorithm to calculate the

inverse in such GF (2m). Knowing that our inversion algorithm is associated with

the lowest possible inversion costs over a broader set of GF (2m) as clarified in Table

5.1 above in comparison with TYT algorithm.

The achieved results above reflect the applicability of our field inversion

algorithm proposed mainly in GF (2m) [see Chapter 4.1, Algorithm 6]. It is clear

that our inversion algorithm is associated with the minimal possible inversion cost

in most GF (2m), including the ones recommended for use in ECC. Therefore, when

our algorithm is employed as the main component for inverse computation in other

algorithms, such as in the scalar multiplication algorithm in ECC that relies heavily

on field inversion, the scalar multiplication algorithm is executed very fast.

The scalar multiplication is the core algorithm of most modern cryptographic

applications (or algorithms) that must be executed fast. Some cryptographic
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algorithms based on ECC that have the scalar multiplication as the core algorithm

are: elliptic curve digital signature algorithm (ECDSA), elliptic curve diffie-hellman

(ECDH) key-agreement algorithm and elliptic curve elgamal (EC-ElGamal)

encryption algorithm, etc.

We conclude this subsection by presenting a set of useful propositions necessary to

understand the way in which our proposed main inversion algorithm works, namely

Inverse(α,m) algorithm, and in the mean time, to clarify some other aspects relevant

to the optimal decomposition(s) for m of GF (2m) using our decomposition algorithm,

namely WHDA(m) algorithm. Notice that in the following propositions we referred

to our WHCA algorithm [see Chapter 4.1, Algorithm 4].

Subsequently, other set of propositions is included to assist in searching for the

short addition chains for a particular integer and to confirm the existence of such

addition chains.

We will start by introducing some helpful notations for the propositions: The

number of required extension field multiplications in calculating (α2x−1) by using the

integer-value x (NRMs(x)), binary length of x (l(x)), Hamming weight of x (w(x)),

x is a full-weight integer (l(x) = w(x)), the short addition chain of x (Cx), the length

of Cx is (lCx). Notice that if x = (m − 1), then NRMs((m − 1)) is equal to that

number required for finding the inverse. Also, if x = h, then NRMs(h) = 1 (based on

our proposed decomposition method). Furthermore, given WHDA(m) = r1 × n + h,

then NRMs(WHDA(m)) = NRMs(r1 × n+ h) = NRMs(r1) +NRMs(n) + 1.

Prop. 1. Given m = (2k + 1) for any positive integer k, no decomposition is required

for m. In calling WHCA algorithm, the inverse is obtained with NRMs(2k) = k

multiplications.

Prop. 2. Given m = (2k+2j+1) for any positive integers k > j (i.e., w(m−1) = 2),

no decomposition is required for m. In calling WHCA algorithm, the inverse is

obtained with NRMs(2k + 2j) = k + 1 multiplications.
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Prop. 3. Given m = (p + 1), for prime p with w(p) = 3, then WHDA(p + 1) is

expected to produce more reductions, and the inverse is obtained with NRMs(r1×n+

h) multiplications.

Prop. 4. Given m = (p × q + 1), for prime p and q with w(p × q) = 3, then

WHDA(p× q+1) is expected to produce more reductions, and the inverse is obtained

with NRMs(r1 × n+ h) multiplications.

Prop. 5. Given m = (2k×p+1) for any positive integer k and prime p. If w(p) < 3,

no decomposition is required for m. In calling WHCA algorithm, the inverse is

obtained with NRMs(2k × p) = k + NRMs(p) multiplications. If w(p) ≥ 3, let

r1 = 2k and r2 = WHDA(p+ 1), thus the inverse is obtained with NRMs(r1× r2) =

k +NRMs(r2) multiplications.

Prop. 6. For the set of extension degrees ms those decomposed as r1 × n + h, if

h ∈ Cr1 is a full-weight remainder, w(r1) = 2 and n = 2k for any positive integer

k, when increasing k while fixing r1 and h values, those ms are expected to have the

minimum NRMs(r1 × n+ h) in inverse calculation relative to other ms.

Prop. 7. For the set of extension degrees ms those decomposed as r1 × n + h with

h = 1 ( this h always ∈ Cr1), those ms in inverse calculation have NRMs(r1×n+h)

same as that required by using TYT algorithm. With h = 2k for any positive integer k

( this h often ∈ Cr1), those ms in inverse calculation have NRMs(r1×n+h) same as

that required by using LCA algorithm. Thus, such ms are also associated with lowest

possible inversion cost using our proposed inversion algorithm.

Prop. 8. For the set of extension degrees ms those decomposed as r1 × n + h with

h = r1 ( this h always ∈ Cr1), those ms can be factorized into prime factors. In such

a case, WHDA(m) algorithm may or may not produce the minimum NRMs(r1 ×

n + h) in inverse calculation compared to prime factors decomposition. Select first

decomposition if associated with lower inversion cost, otherwise, select the latter using
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the prime factors r1 and r2, since r1 × n + r1 = r1 × (n + 1) = r1 × r2. Factorize r2

if possible, to achieve more reductions.

The following propositions are helpful in finding the short addition chains (SACs)

for an integer, which may be applicable to some cases. In searching for the SAC for

the positive integer x (i.e., Cx):

Prop. 1. If x has a large value, then there are many possible SACs for x, thus, the

set of values that can be taken by the remainder h is maximized, given that h ∈ Cx.

Prop. 2. If x = r1 × r2 × · · · × rk (multiplication of several factors), given that h is

equal to any factor ri for 1 ≤ i ≤ k, then h must belong to the SAC of x, i.e., h ∈ Cx.

Prop. 3. If x = r1×r2×· · ·×rk (multiplication of several factors), given that r1 > ri

for 2 ≤ i ≤ k and x 6= 2k for any positive integer k, then there must be a SAC of x

of length lCx = lCr1 + dlog2 rie for 2 ≤ i ≤ k.

Prop. 4. If x = 2k for any positive integer k, then x has only one SAC of length

lCx = k, which is the Power of Two SAC, i.e., (1, 2, 4, · · · , 2k). Notice that the

elements of the General SAC can have any value, not only power of two values.

Prop. 5. If x = 2k + 2j for any positive integers k > j (i.e., w(x) = 2), then x has at

least two SACs of length lCx = k + 1, where the Power of Two SAC is one of them.

Prop. 6. If x = k + n, given that k is the largest 2i value in x for i = 1, 2, 3, · · · ,

if w(n) < 3, then Cx is obtained by using either the General or the Power of Two

SAC. Otherwise, if w(n) ≥ 3, then the General SAC is expected to produce the short

addition chain of x, i.e., Cx.

5.1.2 Characteristic Three

Recalling that the performance of a field inversion algorithm is measured by its

required number of extension field multiplications, those necessary for finding the

inverse of a nonzero element in the concerned ternary extension field GF (3m), thus,
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an optimal performance inversion algorithm requires less number of such

multiplications, or less inversion cost, relative to its counterparts.

The performance of our first field inversion algorithm proposed mainly in GF (3m)

[see Chapter 4.2, Algorithm 7] is better than its counterparts those based on ITI

expression (see Chapter 3.2.1), in the sense that, in addition to avoiding the required

subfield inversion, it requires less GF (3m) multiplications as evident from Eqs. (3.24)

and (4.20) given above. Table 5.4 is dedicated to compare our proposed WHTI(α,m)

algorithm with ITI-based inversion algorithms [20, 23, 44] over a set ofms, orGF (3m),

taken from within the range (79 ≤ m < 239) of particular interest for use in ECC.

Notice that, in the table Isub refers to a subfield inversion.

Table 5.4: Proposed vs Other Algorithms [GF (3m) : 79 ≤ m < 239]

GF (3m) ITI-Based Algorithms [20,23,44] Proposed Algo. 7

m (m− 1) IC = (Mults + Isub) IC = Mults

79 78 (11 + 1) 10

97 96 (9 + 1) 8

108 107 (12 + 1) 11

116 115 (12 + 1) 11

150 149 (12 + 1) 11

163 162 (11 + 1) 10

167 166 (12 + 1) 11

173 172 (12 + 1) 11

193 192 (10 + 1) 9

208 207 (14 + 1) 13

215 214 (13 + 1) 12

239 238 (14 + 1) 13

It can be seen from Table 5.4 above that our proposed inversion algorithm achieves

better reductions in inversion cost in comparison with ITI-based inversion algorithms.

For all ternary extension fields GF (2m), such reductions in inversion cost are up to

one extension field multiplication. In addition, given that our algorithm does not the
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require subfield inversion as in other algorithms, this renders our algorithm modular

and suitable for VLSI implementation. The modularity of our algorithm stems from

its reliance on only two field operations for inversion, such as the multiplication

operation and the cyclic-shifts operation.

We recall that our second field inversion algorithm proposed mainly inGF (3m) [see

Chapter 4.2, Algorithm 10], works based on (or employs) our proposed decomposition

algorithm for the extension degree m of the concerned extension field. Given that

our decomposition algorithm [WHDA(m)] was previously applied on a selected set of

extension degreesms ofGF (3m), those selected from within the range (79 ≤ m < 239)

of particular interest for use in ECC, their optimal decompositions (OD), in addition

to the inversion costs (IC) using ITnverse(α,m) algorithm, are listed in Table 5.5

above for comparison purposes with WHTI(α,m) algorithm.

Table 5.5: Proposed Inversion Algorithms [GF (3m) : 79 ≤ m < 239]

GF (3m) Proposed [Algorithm 7] Proposed [Algorithm 10]

m (m− 1) IC OD IC

79 78 10 9×8+6 8

97 96 8 � C96 7

108 107 11 13×8+3 9

116 115 11 7×16+3 9

150 149 11 9×16+5 9

163 162 10 81×2 9

167 166 11 10×16+6 9

173 172 11 20×8+12 9

193 192 9 � C192 8

208 207 13 24×8+15 10

215 214 12 13×16+6 10

239 238 13 17×14 10

In table 5.5 above, notice that the entries preceded by the symbol � indicate that

the short addition chain for m has been used for inversion, but that specific m of

93



CHAPTER 5. RESULTS AND ANALYSIS

GF (3m) has not decomposed. For example, when considering inversion in GF (396),

then the short addition chain C96 = {1, 2, 4, 8, 16, 32, 64, 96} is used, which requires

7 GF (396) multiplication for inversion. Also, when considering inversion in GF (3192),

then the short addition chain C192 = {1, 2, 4, 8, 16, 32, 64, 128, 192} is used, which

requires 8 GF (3192) multiplication for inversion, and so on. In addition, notice that

the reduction in the required number of GF (3m) multiplications necessary for field

inversion (or the reduction in inversion cost) in using ITnverse(α,m) algorithm is

up to three extension field multiplications relative to WHTI(α,m) algorithm.

In fact, the obtained results in Table 5.5 above confirm the applicability and the

validity of our proposed decomposition method for accelerating inversion in ternary

extension fields GF (3m), as it is exactly the case in binary extension fields GF (2m)

based on our previous discussion herein. In addition, the obtained results confirm

that ITnverse(α,m) algorithm has better performance, or less inversion cost, not

only in comparison with our proposed WHTI(α,m) inversion algorithm, but also in

comparison with ITI-based inversion algorithms in GF (3m). Such algorithms

showed inferior performance relative to our WHTI(α,m) inversion algorithm, as it

was clarified in Table 5.4 above.

We recall that this type of research work, the decomposition methods for the

extension degree m, is rare in ternary extension fields GF (3m), if not exist at all.

In addition, we recall that our inversion algorithms that employ our decomposition

algorithm in binary GF (2m) and ternary GF (3m) extension fields, respectively, are

associated with identical inversion cost. Therefore, the optimal decompositions (OD)

and the inversion costs (IC) comparisons of such algorithms against ITA, TYT and

LCA inversion algorithms [14, 16, 17], is a valid and applicable work. Keeping in

mind that ITA, TYT and LCA algorithms employ different types of decomposition

methods. Table 5.6 above provides such a comparison, over a continuous set of

extension degrees ms, taken from within the range (200 − 231). This set has been

used to further emphasize the validity and applicability of our inversion algorithms.
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Table 5.6: WHDA(m)-Based vs Other Algorithms [GF (pm) : m = 200, ..., 231]

GF (pm) ITA [14] TYT [16] LCA [17] WHDA(m)-Based Algs.

m (m− 1) IC OD IC OD IC OD IC

200 199 11 18×11+1 11 18×11+1 11 12×16+7 10

201 200 9 20×10 9 20×10 9 25×8 9

202 201 10 20×10+1 10 20×10+1 10 12×16+9 10

203 202 10 2(25×4+1) 10 20×10+2 10 12×16+10 10

204 203 11 29×7 11 29×7 11 25×8+3 10

205 204 10 17×12 9 17×12 9 17×12 9

206 205 11 17×12+1 10 17×12+1 10 25×8+5 10

207 206 11 41×5+1 11 17×12+2 10 25×8+6 10

208 207 12 23×9 11 23×9 11 24×8+15 10

209 208 9 13×16 9 13×16 9 13×16 9

210 209 10 13×16+1 10 13×16+1 10 13×16+1 10

211 210 10 14×5×3 10 13×16+2 10 13×16+2 10

212 211 11 14×5×3+1 11 13×16+3 11 13×16+3 10

213 212 10 53×4 10 53×4 10 25×8+12 10

214 213 11 53×4+1 11 53×4+1 11 13×16+5 10

215 214 11 107×2 11 53×4+2 11 13×16+6 10

216 215 12 43×5 11 43×5 11 13×16+7 10

217 216 10 18×12 9 18×12 9 27×8 9

218 217 11 18×12+1 10 18×12+1 10 13×16+9 10

219 218 11 109×2 11 18×12+2 10 13×16+10 10

220 219 12 73×3 10 73×3 10 27×8+3 10

221 220 11 20×11 10 20×11 10 13×16+12 10

222 221 12 17×13 10 17×13 10 17×13 10

223 222 12 37×6 10 37×6 10 26×8+14 10

224 223 13 37×6+1 11 37×6+1 11 26×8+15 11

225 224 9 14×16 9 14×16 9 7×32 9

226 225 10 14×16+1 10 14×16+1 10 7×32+1 10

227 226 10 2(7×16+1) 10 14×16+2 10 7×32+2 10

228 227 11 113×2+1 11 25×9+2 11 7×32+3 10

229 228 10 19×12 10 19×12 10 57×4 10

230 229 11 19×12+1 11 19×12+1 11 7×32+5 10

231 230 11 23×10 11 23×10 11 7×32+6 10
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It can be seen from Table 5.6 above that more than one third of inversion cost

values of our proposed inversion algorithms are less than the values that associated

with the other existing inversion algorithms. This is an indicator on the superior

performance of our algorithms in such extension fields for inversion in comparison

with other algorithms. The other two third of inversion cost values of our algorithms

are exactly the same as the minimum values that attained by using the other existing

inversion algorithms. Therefore, our proposed field inversion algorithms can be used

as a substitute for other existing inversion algorithms. This is because they cover a

very large set of extension degrees ms, or in other words, our algorithms are suitable

for field inversion in almost all binary and ternary extension fields.

We recall that a minor reduction in the number of extension field

multiplications, or inversion cost, has a remarkable positive effect on the overall

performance of the concerned field inversion algorithm, especially in using normal

basis representation for the elements of the concerned field. Thus, the achieved

results in Table 5.6 above confirm the validity and the applicability of our proposed

decomposition method in accelerating field inversion, not only in ternary extension

fields GF (3m), but also in binary extension fields GF (2m), in comparison with

different types of decomposition methods that employed in other existing inversion

algorithms available in the literature.

5.2 Summary

At the beginning of this chapter, we showed how Inverse(α,m) algorithm in GF (2m)

is associated with the lowest possible inversion cost in comparison with ITA, TYT

and LCA inversion algorithms. The algorithm implements the decomposition method

employed in our proposed decomposition algorithm, namely WHDA(m) algorithm.

Given the fact that other existing inversion algorithms rely on different decomposition

methods for the extension degree m of the concerned GF (2m).
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Furthermore, we showed how WHTI(α,m) inversion algorithm in GF (3m) is

associated with lower inversion cost, in comparison with ITI-based inversion

algorithms. In addition, we indicated the modularity of the algorithm because of its

reliance on only two field operations for performing field inversion in such fields.

The algorithm does not require the subfield inversion operation that is indispensable

in using ITI-based inversion algorithms.

Finally, we showed how ITnverse(α,m) inversion algorithm in GF (3m) is

associated with the lowest possible inversion cost in comparison with, not only

WHTI(α,m) algorithm, but also in comparison with ITI-based inversion

algorithms. The algorithm implements the decomposition method employed in our

proposed decomposition algorithm, namely WHDA(m) algorithm. Knowing that

such decomposition methods for the extension degree m of the concerned GF (3m)

are rare, if not exist at all in such fields.
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Chapter 6

Discussion

The current chapter is mainly dedicated for wrapping up this dissertation. In the

first section, we are going to provide a summary for the achieved work and highlight

the main points mentioned in the previous chapters, and then, provide the closing

remarks that are relevant to our research work presented herein. In the second section,

we will present some future recommendations that will be provided in the form of

suggestions, which are considered either as a continuation to our current research

work presented herein or as a newly suggested ideas and notions that may attract the

interest of academic researchers for future consideration.

6.1 Summary and Conclusions

In the first chapter of this dissertation we have provided an introduction that relates

elliptic curves to finite fields, and we have showed how they are related to each

other. In such introductory chapter we have clarified the paramount importance of

finite fields, in general, for use in elliptic curve cryptography (ECC). In particular,

when we have directed the spotlights on the arithmetic operations of the concerned

elliptic curve (or simply, on curve-operations), and when we have assumed that such

operations are located at the highest level of hierarchy, we have showed that all such

curve-operations, in its functioning, are heavily related to the arithmetic operations
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in the underlying finite field over which the elliptic curve is defined, as in ECC. We

have assumed that such field-operations are located at the lowest level of hierarchy.

Based on our discussion above, we have showed that by optimizing the

underlying field-operations, curve-operations located at the highest level of

hierarchy will also be optimized. Since finite field inversion (or simply, the inverse)

is the most time-consuming operation, in terms of the execution time, and since the

core curve-operation, namely the scalar multiplication operation, which is the heart

of most cryptographic applications based on ECC, heavily relies on the inverse

(performs field inversion very frequently in its functioning), this is why in the first

chapter of this dissertation, we have focused mainly in our introduction on inverse

acceleration in two different types of extension fields, namely the binary and ternary

extension fields. In addition, we have reflected that our final goal is to accelerate the

scalar multiplication operation, which is responsible for accelerating most

cryptographic applications based on ECC, as it was mentioned earlier herein.

In the second chapter of this dissertation we have provided a mathematical

background to clarify all the mathematical concepts either relevant to finite fields,

such as their definitions, representation bases and their associated arithmetic

operations, or relevant to other concepts that are useful for understanding how

inverse calculation is performed in finite extension fields. In such a chapter, we have

included only the necessary mathematical concepts for better understanding of most

materials presented herein.

We started our journey by defining the classes of finite fields, which are classified

into three main classes, the representation bases for their elements, like normal and

polynomial bases, and their associated arithmetic operations. Then, we have moved

forward and defined a specific type of finite fields, namely the optimal extension

fields (OEFs), which in turn are classified into two types, namely Type-I and Type-II

OEFs. We have mentioned earlier that such fields are very useful for accelerating field-

operations at both the software and hardware levels, more specifically, for accelerating
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the most frequently used extension-field and subfield modular reduction operations.

After that, we have moved further forward and showed how Fermat’s little

theorem is very useful in calculating the inverse in finite fields. As we indicated

earlier herein, such a theorem has converted the problem of field inversion to solving

exponentiation operation in such fields. Such an exponentiation operation in finite

fields is simply calculated by performing repeated multiplications and pe-th powers.

Therefore, we have moved to define the concept of the short addition chains (SACs),

since such a concept is necessary for taking care of the first calculation part of

exponentiation which represents the required multiplication operations. The SACs

concept provides a systematic and fast way to calculate terms like (αp
r−1), which

has solved the computationally intensive part in field inversion, especially in using

NB for the field elements. The other calculation part of the exponentiation which

represents the required pe-th powers has been solved in a straightforward manner.

Such powers are simply represented by cyclic-shift operations in using NB for the

field elements. This computational part in field inversion is associated with an

extremely low execution time, if not free, since the cyclic-shift operations are very

fast relative to multiplication operations.

In the third chapter of this dissertation we have provided a literature survey on

all existing and relevant field inversion algorithms. We have started by considering

inversion in binary extension fields GF (2m), by previewing the available algorithms

based on Fermat’s inversion approach and using NB for the field elements. We have

explained how the ITA inversion algorithm works, which can be considered as the

standard inversion algorithm in such fields. As we have mentioned earlier herein,

in using ITA algorithm, the number of the required extension field multiplications

necessary for inversion, or the inversion cost, is expressed as a logarithmic function of

the extension degree m, which is a function with the binary-length `(m− 1) and the

Hamming-weight w(m−1). We recall that for some extension degrees ms, or in some

GF (2m), ITA algorithm has a worst case scenario, which is represented by case when
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`(m − 1) = w(m − 1). We have also indicated earlier that the academic researchers

put more attention on a such case, in attempt to improve it in their proposed work.

After that, we have moved to explain CEA inversion algorithm, which

introduced the concept of factorization (or decomposition) for the extension degree

m into two factors as the starting point to improve the worst case in ITA algorithm.

Because of its limitations, we have moved further to explain TYT inversion

algorithm, which has solved the case when (m − 1) is a prime value that is not

applicable using CEA algorithm. TYT algorithm is also associated with lower

inversion cost, whereby the number of multiplications necessary for inversion is

given as a function with each factor and the remainder h in (m − 1), given that

(m − 1) is decomposed into several factors and a remainder. Our final move in

binary extension fields was toward explaining LCA inversion algorithm, which has a

lower inversion cost, since the number of multiplications necessary for inversion is

given as a function with each factor and the Hamming-weight of the remainder w(h)

in (m− 1), rather than a function with h itself as in using TYT inversion algorithm.

Finally in chapter three, we have started by considering field inversion in ternary

extension fields GF (3m), and have provided a literature survey on all existing and

relevant inversion algorithms in such fields. As we have mentioned earlier herein, most

inversion algorithms that previously proposed in GF (3m), are mainly relied on the so-

called ITI expression to calculate the inverse. The expression is not written in full as

a cohesive inversion algorithm in such fields. Inverse calculation using ITI expression

is only provided in the form of different steps, with different types of field operations.

As it was mentioned earlier, many researchers have focused on software and hardware

aspects in attempts to improve inverse calculation by using ITI expression, with some

constraints and conditions applied to achieve their final goals.

In the fourth chapter of this dissertation we have introduced the decomposition

method employed in our decomposition algorithm and the proposed field inversion

algorithms. We started by considering binary extension fields GF (2m) by proposing
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an inversion algorithm, which is an improved version of the aforementioned LCA

algorithm. As clarified earlier, our proposed decomposition method, when applied in

such fields, it reduces the number of multiplications necessary for inversion to a

function with each factor in (m− 1) plus a constant term of value equal to 1, which

means that our proposed inversion algorithm is independent of the remainder h,

contrary to other existing inversion algorithms, such as TYT algorithm, which

depends on the remainder h itself, and LCA algorithm, which depends on the

Hamming-weight of the remainder h. Our proposed inversion algorithm in GF (2m)

showed the best performance in comparison with other inversion algorithms.

After that, we have started by considering field inversion in ternary extension fields

GF (3m), by proposing our first inversion algorithm, which has better performance

relative to ITI-based inversion algorithms in such fields. Then, we have moved to

our second field inversion algorithm proposed in GF (3m), which has employed our

proposed decomposition method. As it was pointed earlier herein, the performance

of such inversion algorithm is better than our first inversion algorithm proposed in

such fields, and also better than other existing inversion algorithms available in the

literature. It is associated with the best performance since it requires the minimal

possible number of extension field multiplications those necessary for inversion, as it

was indicated earlier herein. Finally, we have moved to present our proposed fast

Frobenius map operation that is applicable in Type-II OEFs. Such operation was

extended to higher characteristic fields, which is associated with almost free runtime

and space complexity.

In the fifth chapter of this dissertation we have provided all the obtained results

and the associated analyses that are relevant to our research work herein. We have

started by showing the obtained results relevant to inversion in extension fields in

the form of tables, whereby we first considered binary extension fields GF (2m). Each

column in the provided tables represented a different inversion algorithm and each

row represented a different extension degree m of GF (2m), with the entries in each
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table representing inversion cost values that used for comparison purposes with other

available algorithms in such fields.

After that, we have moved to show the obtained results in ternary extension

fields GF (3m), whereby the results are presented again in the form of tables, exactly

the same way as in the case of binary extension fields. We have also included a table

of continuous range of extension degrees ms to show the behavior of our proposed

decomposition method. From that table, it was revealed that one third of inversion

cost values are lower in using our inversion algorithms, or in other words,

approximately a reduction of 32% in inversion cost is achieved in using our

algorithms in comparison with other inversion algorithms. The rest of inversion cost

values of our algorithms were exactly the same as the minimum values that attained

by using other existing inversion algorithm.

In the sixth chapter of this dissertation, which is exactly the current chapter, we

have provided a summary for all what has been done in the previous chapters, and

highlighted the main points that achieved out of our proposed work. In addition, we

are going to conclude our dissertation as in what follows.

Based on what has been mentioned in our discussion above, it is clear that our

research work is somewhat valid and applicable for use in practical cryptographic

applications based on ECC. In fact, the set of selected extension degrees ms, or the

set of chosen binary and ternary extension fields, those associated with fast inverse

calculation, as a result of using our proposed field inversion algorithms, fall within

the recommended ranges, or within the recommended finite fields, as recommended

by NIST and IETF organizations for use in ECC.

Since our main focus here is on accelerating field inversion in binary and ternary

extension fields, the most studied fields by academic researchers in the literature, this

can be considered as the other competitive advantage which reinforces our research

work herein. We recall that the binary extension fields GF (2m) are suitable for use

in cryptographic applications from the software and hardware perspective (no carry-
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propagation chains or rounding errors exist), and ternary extension fields GF (3m) are

suitable for use in cryptographic applications that are based on bilinear mappings,

such as either Weil or Tate pairings, as it was mentioned earlier herein.

The above mentioned facts allow us to safely recommend and encourage the use

of our proposed field inversion algorithms in elliptic curves cryptography, more

specifically, for use in practical cryptographic applications (or algorithms) based on

elliptic curves, since the core curve-operation in such applications, namely the scalar

multiplication operation, which can use any of our proposed field inversion

algorithms to find the inverse of a field element is going to be a very fast operation,

in terms of the execution time, which in turn accelerates the execution time of the

concerned cryptographic application.

6.2 Future Recommendations

In our research work herein we have mainly focused on accelerating field inversion

in binary and ternary extension fields. We proposed a decomposition method for

the extension degree m of the concerned field. Such a method is employed in our

proposed field inversion algorithms. The method require the minimal number of

extension field multiplications, or the lowest possible inversion cost, relative to other

decomposition methods that employed in other existing inversion algorithms available

in the literature.

In this section, we recommend some relevant research work, which may be useful

for future consideration or may attract the interest of other academic researchers,

those interested in such a type of research work. The recommendations are presented

in the form of suggestions either for implementing a specific idea or a new algorithm

similar to those previously mentioned herein, or for paving the road for continuing

on our research work and the proposed ideas that presented herein.

104



CHAPTER 6. DISCUSSION

Our first suggestion is to consider and think about hardware implementation for

any of the field inversion algorithms proposed above, either in binary or ternary

extension fields. By doing so, we can convert the proven mathematical facts into a

reality by designing practical inversion systems with low space and time complexity.

Such systems are expected to be suitable for implementing most of cryptographic

applications that are based on elliptic curve cryptography.

Another suggestion is to extend the current research work by considering other

representation bases, other than the normal and polynomial bases. In addition, by

considering other extension fields, other than the binary or ternary extension fields.

For example, by applying the our decomposition method in extension fields such as

the “medium Galois fields” with new representation basis [48]. In such fields, both

the extension degree m and the characteristic p that is a pseudo-Mersenne prime, are

medium-valued integers.

The final suggestion is to consider accelerating field inversion for cryptographic

applications, at both hierarchical levels simultaneously. By this we mean, to consider

speeding up inversion by trying to optimize elliptic curve arithmetic operations (at

the highest level), while at the same time, trying to optimize the underlying finite

field arithmetic operations (at the lowest level), in order to accelerate field inversion

at both hierarchical levels.

As a final note, it is known in the academic literature that the expressions (or

algorithms) for finding the inverse are cumulative in its nature (a limitation). By

itself, this can be a valid future research work, in the sense that, one can devise

other mathematical expressions for inverse calculation to overcome this limitation.

The reader can consider Appendix B included herein for a possible solution to this

limitation, which significantly reduces the latency in inverse calculation.
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Appendix A:

Elliptic Curve Cryptography

Appendix A is mainly included herein to show how field inversion is very important

in elliptic curve cryptography (ECC). It presents a short and quick introduction, in a

concise way, to show this importance. First, it defines the ECC. Then, it gives a brief

idea about some of the curve-operations, such as the scalar multiplication operation

(also known as point multiplication in the academic literature), to show how the

inverse is extremely required in performing such an operation. Scalar multiplication

is the heart of most practical cryptographic-applications based on ECC, whereby it

dominates their execution times.

Cryptography, in general, is the artistic science of writing secret codes, and in

particular, it is the main tool that currently used to protect either stored information

(or data), such as in computer systems, or to protect the exchanged information,

such as in telecommunication systems. Cryptography provides important services to

the field of network security such as encryption, authentication , key transportation,

etc. Cryptography is mainly divided into two major categories, namely the private-

key cryptography, used only for encryption, and the public-key cryptography, used

for performing most cryptographic services such as those mentioned above. By itself,

public-key cryptographic-systems are divided into two main classes, namely the RSA-

based and the ECC-based systems.

ECC is standardized internationally by ISO and IETF, and in the USA by ANSI

106



and NIST organizations. The ECC-based systems (or cryptographic applications) in

their function rely heavily on the strong number-theoretic foundations of finite fields

(or Galois fields), and because of this reliance, they require shorter keys in

comparison with the RSA-based systems. Therefore, ECC-based systems are

characterized by their hardware efficiency and the requirement for less computation

times. The following highlights the main points relevant to ECC:

• Given an elliptic curve E that is defined over a finite field Fq, then the group

of curve-points denoted as G = E(Fq), has a number of points that defines the

curve E, which is approximately equal to the field’s order q.

• The strength of the group G operations stems from the mathematical

hardness of the elliptic curve discrete-logarithm problem (ECDLP) that

indirectly depends on the finite field over which the curve E is defined.

• ECDLP: Given the points P and Q ∈ G, with neither of them equal to the

point at infinity, find an integer k such that

Q = k × P. (1)

In this case, finding k is mathematically hard, whereby k is called the discrete-

logarithm of Q to the base P . In the context of ECC, k is a large private integer

(or secret key) and the point P is usually a base point on the curve E.

• ECC-based cryptographic systems provide comparable security level with much

shorter keys in comparison with RSA-based cryptographic systems because of

ECDLP, thus, they are more hardware-efficient with less computation times.

To show how such elliptic curve-operations work, for example the scalar

multiplication operation, the following example is very useful for showing how field

inversion is indispensable for such an operation. Given the elliptic curve E that is

defined over F2m [or equivalently GF (2m)], which is described by the following
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characteristic equation

y2 + x.y = x3 + ax2 + b,

where y, x, a, b ∈ F2m . Let P = (x1, y1) and Q = (x2, y2) two points on E with neither

of them is the point at infinity and P 6= −Q (not on the same vertical line), then

R = (x3, y3) = (P +Q) is given by

x3 = λ2 + λ+ x1 + x2 + a,

and

y3 = (x1 + x3)λ+ x3 + y1,

whereby

λ =
y1 + y2
x1 + x2

if P 6= Q (PA: point Addition operation), (2)

and

λ =
y1
x1

+ x1 if P = Q (PD: point doubling operation). (3)

Point addition (PA) is the operation of adding two different curve-points to each

other, whereby point doubling (PD) is the operation of adding a curve-point to itself.

The geometrical meaning of such curve-points, i.e., PA and PD, is shown in the

following figure (see Figure 6.2.1).

From Figure 6.2.1 above, to add two curve-points P and Q (i.e., point addition)

graphically, we extend the line connecting them to find a third co-linear curve-point,

namely −R, then, reflecting its y-coordinate across the x-axis to get the curve-point

R which represents the final result of point addition. To add a curve-point P to itself

(i.e., point doubling) graphically, we extend the tangent line of such a point to find

the other co-linear curve-point, namely −R, then, reflecting its y-coordinate across

the x-axis to get the curve-point R which represents the final result of point doubling.
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Figure 1: PA (Left Side) and PD (Right Side)

Algorithm 11 Left-to-right Scalar Multiplication Algorithm [4]

Input: k = (kr−1 · · · k1k0)2, P ∈ G = E(F2m)

Output: k × P

Initial: Q :=∞ (point at infinity)

for i := r − 1 to 0 do

Q := 2Q; (PD)

if ki = 1 then

Q := Q+ P ; (PA)

end if

end for

return Q

Scalar multiplication (SM) (i.e., point multiplication) is the curve-operation that

is responsible for computing the right-hand side in ECDLP expression as given in

Eq. (A.1) above, for large and private integer k and curve-point P on E. This

computation is required in almost all the cryptographic applications based on ECC

such as in elliptic curve digital signature algorithm (ECDSA) for authentication,

elliptic curve diffie-hellman algorithm (ECDH) for key-exchange, and elliptic curve

el-gamal algorithm (ECEl-Gamal) for encryption.
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At algorithmic level, the scalar multiplication algorithm calls very frequently for

performing both PA and PD operations for its final output to be ready, as evident

from Algorithm 11 shown above.

The above shown algorithm reflects the reliance of the scalar multiplication on

both point addition and doubling operations, as it was mentioned earlier. Since both

curve-operations, namely PA and PD, as evident from their mathematical expressions

given in Eqs. (A.2) and (A.3) above, must iteratively calculate λ and depending on r

value, which is the binary length of the extremely large integer k. Given that in each

computation for λ expression one field inversion operation must be performed, this

is exactly how the scalar multiplication and field inversion operations are connected

with each other in ECC-based cryptographic applications.
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Appendix B:

Reduced-Latency Inversion

Appendix B is mainly included herein to present our proposed reduced-latency field

inversion algorithm along with its associated architecture (functional block diagram).

Our algorithm (or architecture) is basically based on ITA algorithm, except that it

is designed to reduce the latency in computing field inversion. Significant latency

reduction is achieved using our algorithm, which is more apparent in the worst cases

in ITA algorithm.

It is known in the literature, and previously mentioned by the academic

researchers [49, 50] that it is difficult to parallelize ITA expression [see Chapter

3.1.1, Eq. (3.5)]. This is the result of its cumulative nature, whereby previous

calculation steps must be ready and available in order to proceed with the following

calculations. Our reduced-latency field inversion algorithm (see Algorithm 12)

proposed mainly in binary extension fields GF (2m), is a parallel version of ITA

expression. It is included herein to refute the previous claims issued by other

authors.

From Algorithm 12 above, assuming that both for loops are executed

simultaneously, the inverse of a nonzero element β ∈ GF (2m) is obtained at the qth

iterate, which is the time for `(m− 1) extension field multiplications, whereby `(.) is

the binary-length of the argument. This is achieved by running the two processes in

tandem (or running a dual-core processor in hardware-mapping), whereby the first
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Algorithm 12 Reduced-Latency Inversion Algorithm in GF (2m)

Input: β ∈ GF ∗(2m), extension degree m, (m− 1) as (1mq−2 · · ·m1m0)2

Output: b2 = β−1 ∈ GF (2m)

Initial: t = [t0t1 · · · tq−2], if m0 = 0 : b = 1, else : b = β;

δ := β;

for i := 0 to q − 2 do

δ := δ × δ22
i

;

ti := δ;

end for

for i := 1 to q − 1 do

if ti−1 6= 0 then

if mi = 1 then

a := (ti−1)
2
∑i−1
j=0

mj2
j

;

else

a := 1;

end if

end if

b := b× a;

end for

return b2

process computes the `(m − 1)-dependent extension field multiplications, and the

second process computes the w(m − 1)-dependent extension field multiplications,

whereby w(.) is the Hamming-weight of the argument. Our previous discussion can

be clarified by means of the following functional block diagram (see Figure 2).

Since both processes are running simultaneously, our approach renders inverse

calculation independent of the time required for computing w(m − 1)-dependent

multiplications for any extension degree m. Therefore, the latency is significantly

reduced to a value equal to the time of `(m − 1) extension field multiplications.
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Figure 2: Reduced-Latency Architecture
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However, the total multiplications required for inversion is same that required by

ITA algorithm.

To show how field inversion is computed using our proposed algorithm, it is useful

to consider the following example. Given that the extension degree m = 16 and

a nonzero element β ∈ GF (216) in which its inverse is required, the computation

will proceed as in the following figure (see Figure 3). Despite the use of 6 extension

field multipliers, the latency of our proposed architecture is equivalent to the time of

4 extension field multiplications. This is because the multipliers pointed to by the

curved-lines (2,3) in Figure 3 are running in parallel.

For this particular example, the latency of ITA inversion algorithm is equivalent

to the time of 6 extension field multiplications, with the remark that, the latency

of of ITA inversion algorithm grows logarithmically with consideration for the extra

execution time incurred by w(m − 1) term, while it grows logarithmically in our

proposed reduced-latency inversion algorithm without such a consideration.

Our proposed field inversion algorithm achieve its utmost competitive advantage,

in terms of latency reduction, in comparison with ITA inversion algorithm for the

extension degrees ms for which their binary representation is all ones, i.e., when

(m−1) = 2e−1 for a positive integer e (or equivalently, when m = 2e). Such extension

degrees ms are known to be the worst cases in using ITA inversion algorithm, this

is because the required extension field multiplications necessary for inversion and the

associated latency are maximal, and are given by (2e− 2) value.

In summary, our proposed field inversion algorithm is associated with latency that

is significantly reduced to the time of `(m−1) multiplications, which is the number of

extension field multiplications necessary for inversion expressed in terms of the binary-

length of (m − 1). Unlike ITA inversion algorithm, which has latency that requires

in addition to `(m − 1) value, an extra execution time of w(m − 1) multiplications,

which is the number of the extra extension field multiplications necessary for inversion

expressed in terms of the Hamming-weight of (m− 1). Our previous result of latency
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reduction is applicable to any binary extension field GF (2m). The maximum value

for latency reduction is achieved in using our proposed algorithm in the worst cases

in ITA algorithm, which reach a reduction of up to 50% in such cases.

Figure 3: Reduced-Latency Example
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