NUCLEOTIDE CYCLASES AND CYCLIC NUCLEOTIDE BINDING PROTEINS IN MYXOCOCCUS XANTHUS.

LAKSHMI A. DEVI
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
 DEVI, LAKSHMI A., "NUCLEOTIDE CYCLASES AND CYCLIC NUCLEOTIDE BINDING PROTEINS IN MYXOCOCCUS XANTHUS." (1982). Electronic Theses and Dissertations. 2880.
 https://scholar.uwindsor.ca/etd/2880

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

CANADIAN THESES ON MICROFICHE

THESES CANADIENNES SUR MICROFICHE

-

National Library of Canada
Collections Develongent Branch
Canadián Theses on

\author{

- Microfiche Service
 Ottawa, Canada
 KIA ON4
}

Bibiotheque nationale du Canada
Direction du développement des collections
Sẹrvice des thèses canadiennes'
sur microfiche
x

Abstract

NOTICE The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort hàs been made to ensure the highest quality of reproduction possibile.

. If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C: 1970 , c. C-30. Please read the authorization forms which accompany this thesis.

AVIS

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure. de reproduction.

S'il manque des pages, veuillez communiquer. avec l'université qui a conféré le grade.

Lá qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban ube ou si l'université nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déjá l'objet d'un droit d'auteur (ardicles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, mème partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C.30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thẹse.

> LA THĖSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS RECUE

HAS BEEN MICROFILMED EXACTLY AS RECEIVED

 1is

NL-339 (r. 82/08)

theses canadiennes SUR MICROFICHE

$$
57284
$$

NAME OF AUTHOR/NOM DE L'AUTEUR \qquad Lakshmi A. Devi

Title of thesis/tithe oe la théSe \qquad Nucleotide cycloses and cyclic nucleotide binding proteins in myxococcus xanthus.
\qquad
DEGREE FOR WHICH THESIS WAS PRESENTED/,
GRADE POUR LEQUEL CETIE THESE FUT PRÉSENTÉE \qquad
YEAR THIS DEGREE CONFERRED/ANNÉE D'OBTENTION DE CE GRADE OCtober 1982
NAME OF SUPERVISOR/NOM DU DIRECTEUR DE THESE \qquad \ldots Dr. H. D. MeCurdy

Permission is hereby granted to the NATIONAL LIBRARY OF CANADA to microfilrı this thesis and tu lend or self copies of the film.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or other-

L'autorigation est, par la présente, accorded a la BIBLIOTHÉ-' QUE NATIONALE DU CANADA de microtilmer cette thess et . de prêter au de venire dens exemplaires du film.

L'auteur se reserve les autres droits de. publication: ni la theseni de longs extroits de celle-ti ne doivent être imprimés on autrement reproduits sans l'autorisation écrite de l'auteur.

DATED/DATE NO Sept 1902 SIGNED/SIGNÉ

PERMANENT ADDRESS/RÉSIDENCE FIXEd \qquad
\qquad C

[^0]3
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NUCLEOTIDE CYCLASES AND CYÇLICं NUCLEOTIDE BINDING PROTEINS IN MYXOCOCCUS XANTHUS
by
,

A Dissertation presented to the University of Windsor in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY
in
Department of Biology

Windsor, Ontario, 1982

1
$+1$
6. 1

(C) Lakshmi A. Devi 1982
 '778409

$$
\begin{aligned}
& \text {. } \\
& \text { Q }
\end{aligned}
$$

*

TABLE ÓF CONTENTS

PAGE

ABSTRACT ii
ACKNOWLEḊGEMENTS iv
LIST OF FIGURES V
LIST OF TABLES vi
INTRODUCTION 1
MATERIALS AND METHODS 4
RE/ULTS
PART I. STUDIES ON ADENYLATE AND GUANYLATE 4 CYCLASE ACTIVITIES 13
PART II. STUDIES ON CGMP AND CAMP BINDING PROTEINS 33
piscussion 59
SUMMARY 65
ABBREVIATION 66
REFERENCES 67
VITA AUCTORIS 71

ABSTRACT

- iii -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

The guidance and support of Dr. H.D. McCurdy; Jr. is deeply appreciated and fondly remembered.
Thanks are extended to the committee members who reviewed this work and Dr. J. Ho for his assistance during the preliminary studies.

This study was supported by Grant Al022 from the National Research Council of Canada and University of. Windsor Scholarships for Postgraduate Study.

LIST OF FIGURES

1 1. Cellular adenylate cyclase activity in M. xanthus. 17
2. Guanylate cyclase activity in Myxococcus xanthus. 19
3. Substrate-velocity plot of guanylate cyclase activity. 21
4. Effect of Mn^{+}and Mg^{+4} on guanylate cyclase activity 23
5. Substrate-velocity plot of adenylate cyclase activity 25
6. Adenylate cyclase activity in $100,000 \mathrm{~g}$ supernatant 27
7. Adenylate cyclase activity in $100,000 \mathrm{~g}$ pejlet. 31
8. cGMP binding as a function of time 35
9. CGMP binding as function of protein concentration. 39
10. Effect of nonradioactive cGMP, CAMP, GTP and GMP on binding of labelled cGMP binding 41
ll. Scatchard plot of $\left[{ }^{3} \mathrm{H}\right]$ cGMP binding by shock fluid. 43
12. cGMP binding activity during development 45
13. cAMP binding as a function of protein concentration. 47
14. cAMP. binding as a function of time 49
15. Specificity of cAMP binding activity 51
16. Scatchard plot of cAMP binding activities 53
17. cAMP binding activities diring development 55

Pages

1. Cyclase activities in the $100,000 \mathrm{~g}$ supernatant , and pellet. 30
2. The effect of pyruvate, GTP, NaE and CAMP, on guanylate cyclase activity 31
3. The effect of pyruvate, ATP and Nap on soluble and particulate adenylate cyclase activity? 32
4. Partial purification of binding proteins 56
5. Cellular distribution of binding proteins 57
6. Specificity of cAMP binding. 58

Chapter I
 INTRODUCTION

- The finding of a similar development-specific lectin [Myxobacterial hemagglutinin (MBHA)] in M. xanthus (Cumsky , and Zusman, 1979) suggested that the similarities between \underline{D}. discoideum and M. xanthus were not merely superficial but reflected-simitar morphogenetic mechanisms. Hence the search for other mechanistic similarities was encouraged.

A number of workers examined. the possibility that CAMP played a role in M. xanthus. First, it was observed that CAMP and ADP stimulated fruiting in \dot{M}. xanthus (Campos and Zusman, 1975). Subsequently, Parish, et al. (1976) and Yajko and Z usman. (l978) demonstrated the presence of cAMP in M. xanthus and $Z u s m a n(1978)$ reported CAMP phosphodiesterase activity in cell free extracts.

In D. discoideum exogenous phosphodiesteras'e hastened ágregation (Alacantra and Brazil, 1976) and cAMP suppressed the PD effect (Wier, 1977). In M. xanthus, however, it was found that cGMP rather than CAMP delayed the appearance and depressed the number of fruiting bodies, hence suggesting that cGMP not CAMP functioned as the fruiting chemoat ractant in M. xanthus (McCurdy, et al. 1978).

These observations contributed to the proposal of a modei for the roles of cyclic nucleotides during development. in M. xanthus. This model incorporated the suggestion of Yajko and Zusman (2978) that cAMP functions as derepressor of development specific operons and, proposed further that cGMP functions as a aggregation chemoattractant (McCurdy, et a1. 1978).

Consistent with this proposal it was subsequently reported that CAMP concentration peaked immediately. Aafter induction, that cGMP peaked Jintracellularly between 18-28h and that the latter. also exhibited an extracellular peak corresponding to aggregation. Further it was found that cyclic nutleotide PD activities were maximal at the time of maximal aggregation (Ho and McCurdy, 1980). It was also confirmed that cGMP is indeed a chemoattractant for M. xanthus under nutrifnt deprived (i.e. fruiting) conditions. (Ho and McCurdy, 1979).

During development in D. discoideum adenylate cyclase (Klein, 1976), guanylate cyclase (Mato and Konijn, 1977) and cAMP surface receptors (Malchow and Gerisch, 1974) exhibit changes in activity that refléct critical roles in development. In the following we report the results of an examination of nucleotide cyclases and cyclic nucleotide binding proteins ing. xanthus which suggest that they may play a similar critical role in the development of this prokaryote.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter II

MATERIALS AND METHODS

forganism and growth conditions

Myxococcus xanthus strain M300 (McCurdy, et al. 1978) was used for ${ }^{\circ}$ all experiments.

Working cultures were cultivated on SP agar plates (MCCurdy, $19 \mathrm{Ga}_{3}$) or in 30 mls of liquid SP in 125 ml screw cap flasks with shaking at $30^{\circ} \mathrm{C}$ in the dark. Stock cultures were maintained either on SP slants at 18° for weekly transfers or frozen at $-70^{\circ} \mathrm{C}$.

Studies on fruiting body formation
Fruiting medium, FM (MCCurdy, et al. 1978) contained the following per litre of distilled water: $\mathrm{K}_{2} \mathrm{HPO}_{4}, 1.4 \mathrm{~g}$; ${ }^{\mathrm{KH}}{ }_{2} \mathrm{PO}_{4}, 0.35 \mathrm{~g}$; Casitone (Difco, Detroit, Mich), 0.4g; $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 1.0 \mathrm{~g} ;$ agar, $15 \mathrm{~g} ; \mathrm{pH}, 7.3$. Three milliliter quan-? tities of autoclaved FM were aseptically dispensed onto $50^{\circ} \mathrm{x}$ 9 mm petri dishes (Falcon, Oxnard, CA., Type 1006). After the agar plates had solidified, the condensate was allowed to dry for 3 to 6 h with covers partially open.

FM plates were each spot-inoculated with 7×10^{6} cells and, after brief drying, incubated at $28^{\circ} \mathrm{C}$. After various time intervals a number of replicate plates were harvested by scraping the cells from the agar surfaces and resuspend-
ing them in a buffer containing 0.05 M Tris-hydrochloride, pH 7.5; $0.01 \mathrm{M} \mathrm{Mg}^{++}$and 3 mM mercaptoethanol.

Protein Determinations

The method of Lowry, et al. (1951) was used for protein estimations: Bovine serum albumin was used as standard.

Biochemicals

The following compounds were obtained from Sigma chemical Co., [St. Louis, MO]: Adenosine $5^{\prime-t r i p h o s p h a t e, ~ s o d i u m ~}$ salt (ATP); Guanosine $5^{\prime-t r i p h o s p h a t e, ~ l i t h i u m ~ s a l t ~(G T P) ; ~}$ Adenosine $3^{\prime \prime}, 5^{\prime}$--monophosphate (CAMP); Guanosine 3', 5'- inonophosphate ($C G M P$); Adenosine monophosphate (AMP): Guanosine monophosphate (GMP); 1-Methyl-3-isobutyl xanthine (IBMX); 2Mercaptoethanol; Phenylmethanesulfonyl fluoride (PMSF); Sodium azide; Creatine kinase; Phosphocreatine; Tris (hydroxy methyl) amino methane; HEPES; Maleic acid and Glycine. The CAMP and cGMP radioimmune assay (RIA) kits were obtained from New England Nuclear Corp., [Lachine, Qucbec].
$\left(8-{ }^{3} \mathrm{H}\right)$ Guanosine $3^{\prime}, 5^{\prime}-$ monophosphate ($18 \mathrm{ci} / \mathrm{mmol}$) and $\left(8-{ }^{3} \mathrm{H}\right)$ Adenosine $3^{\prime}, 5^{\prime-m o n o p h o s p h a t e ~(20 c i / m i n o l) ~ w e r e ~ o b-~}$ tained from Amersham Corp., Oakville, iontariol. The DEAE cellulose, $C M$ cellulose and Sephadex $G-200$ were products of Whatman Corp., [Clifton, New Jersey]. Millipore filters were from Millipore Co., [Bedford, Mass.].

For liquid scintillation counting, the filmware plastic bags (20 ml) were obtained from Nalge Co., [Rochester, New York]. Triton $X-100$ was obtained from Rohm and Haas Co., [West Hill, Ontariol. 2,5-oxazole (PPO) and 1,4-2(5-phenyl 'oxozolyl) benzene toluene was obtained from Fisher Chemical Co., IDon Mills, Ontariol.

Toluene treatinent of cells was done according to Harwood and Peterkofsky (1975). Ten pls of toluene were added to 1 ml of cell suspension containing approximately $0.5 \mathrm{mg} /$ ml protein, and incubated at $30^{\circ} \mathrm{C}$ for 10 minutes.

For preparation of crude homogenate and preliminary fractionation, cells were suspended in homogenizing buffer consisting of 50 mM Tris-hydrochloride, pH 7.5 ; $10 \mathrm{mM} \mathrm{MnSO}_{4}$; 3nM mercaptoethanol and $20 \% \mathrm{v} / \mathrm{v}$ glycerol. The cells were broken by two, twenty second bursts of sonication with a Bronwill Biosonik (Bronwill Scientific, Rochester, New York), set at full power. The cell free extract obtained after low speed centrifugation (7000 g) was centrifuged at $100,000 \mathrm{~g}$ for 90 min at $4^{\circ} \mathrm{C}$. The clear supernatant was removed and the following procedure was undertaken to wash the thin peliet adhering to the inner wall of the centrifuge tube. The tube was inverted to drain of f all the remaining supernatant and the sides of the inverted tube including the surface of the pellet were washed quickly with the homogenizing buffer. After removing the buffer completely the pellet was suspended in homogenizing buffer to a'final volume equivalent to original volume of $\backslash 5 \mathrm{mls}$. This wash procedure was employed mainly to minimize the loss of enzyme activity that occurs even at $4^{\circ} \mathrm{C}$.

Enzyme Assays

Adenylate cyclase: The enzyme assay was essentially by the method of Terasaki, et al. (1979). The 100 pl reaction
mixture contained 50 mM . Tris-hydrochloride, pH 7.5 ; 2 mm Mnso_{4}; 2 mM Creatine kinase; 2 mM Phosphocreatine, 3 mM Sodium \because azide; 3 mM l-Methyl-3-isobutyl xanthine (IBMX is a cycfic nücleotide phosphodiesterase inhibitor in Myxococcus xanthus, Ho and McCurdy, 1980); 2 mM Mercaptoethanoel and 0.1mM ATP. The reaction was carried out at $30^{\circ} \mathrm{C}$ for 10 min and then stopped by adding $85 \mu \mathrm{l}$ of 0.2 M acetic acid at 4 C followed by boiling for 3 minutes. After cooling 15 μl of 0.8 N NaOH were added to neutralize the reaction mixture and CAMP determinations were made by using the radioimmune assay of o Steiner, et al. (1972). The data analysis was made using the computer program of Brooker, et al. 1979.

Guanylate Cyclase Assay

The enzyme assay was essentially by the method of Garbers and Murad (1979). The reaction mixture was same as above except that 1 mM GTP was used as substrate and again the determinations were made using the radioimmune assay of Steiner, et al. (1978) and the data analysis using a computer program of Brooker, et al. 1979.

In the assays of both adenylate and guanylate cyclases Tris-HCl, Tris-maleate, Glycine-NaOH and HEPES buffers were used for pH optimum determinations. The enzyme activity was linear with respect to protein concentration (up to $3.33 \mu \mathrm{~g} / \mu \mathrm{l}$) and time (up to 30 min) in the assay.

Preparation of Periplasmic Shock Fluid

- Osmotic shock was carried out by the method of of Nossal and Heppel (1966), as modified by Burchard (1974) for use in Myxococcus xanthus. The techrique is operationally considered to release the fluids located in the periplasmic space although it cannot be precluded that small amounts of other proteins (i.e. some located in the outer membrane) are released. We shall use the term 'Periplasmic protein' based upon the operational definition in common use. In any case it is the peripheral location that was of importance here.
- Vegetative cells were collected by centrifugation at $7,000 \mathrm{~g}$ for 10 min at $4^{\circ} \mathrm{C}$ and washed once with T buffer (10mM Tris HC1, pH 7.5). The washed cells were collected by centrifugation and resuspended in 40 volumes of T buffer. After gentle mixing of the cell suspension for $2 b \mathrm{~min}$, an equal volume of 40% sucrose in T buffer was added with stirring and cells were incubated for 10 min with gentle shaking. The bacteria were collected by centrifugation and then shocked with 80 volumes of cold deionized water containing 0.5 mM MgCl 2 , at $0^{\circ} \mathrm{C}$. The cells were pelleted by centrifugation and the pellet was saved. The shock fluids were routinely concentrated 20 fold by lyophilization. EDTA was omitted from the shock procedure as it induced lysis in M. xanthus. More than 90% of the shocked cells were viable as determined by viable counts on SP agar.

The post-shocked pellet was suspended in Tl buffer (T buffer containing $5 \mathrm{mM} \mathrm{MgCl}_{2}$ and 3 mM mercaptoethanol) and
broken by 2,15 second bursts of sonication with a Brownizi Biosonik (Bronwill Scientific, Rochester, New York) set at full power. The cell free extract was obtained after low speed centrifugation (7000 g for 10 min). The supernatant: fraction was dialyzed overnight against 100 volumes of Tl buffer.

Binding Assay

The assay of cyclic nucleotide binding proteins was a modification of the procedure described by Gilman'(1970).

The 250 ul reaction mixture contained 10 mM Tris- HCl , pH 7.5 ; $5 \mathrm{mM} \mathrm{MgCl}_{2}$; 3 mM Mercaptoethanol; 3 mM 1-Methyl-3-isobutyl xanthine (IBMX); imM Phenyl methane sulfonyl fluoride (PMSF, a protease inhibitor): 20 nM tritiated cyciic nucleotide ($10,000 \mathrm{cpm} / \mathrm{pmole}$) and 200 to 800 ug of cell protein. The cytoplasmic cAMP binding assay contained the same reaction mixture except that 200 nM tritiated cyclic nucleotide ($10,000 \mathrm{cpm} /$ pmole) was used.

The reaction mixture was incubated for 10 min at $0^{\circ} \mathrm{C}$ and the assay was terminated by passing the mixture over a membrane ${ }^{\frac{\beta}{\%}}$ filter (Millipore corp. Type HAWMP, $0.45 \mu \mathrm{M}$ pore size) and washing immediately with 3 ml of ice cold Tl buffer. The filter was dried under a heat lamp and counted in a scintillation counter (Beckman; LSC Model 3150P). Controls containing high concentrations of non - ra-
dioactive cyclic nugleotides were run in parallel with binding assays. Determinationś containing boiled proteins were equivalent to controls containing high concentrations, of non-radioactive cyclic nucleotides.
Purification procedure
The purification procedure was essentially that of willis, et al. (1974). The shock fluid concentrated by lyophilization wäs passed through a Sephadex G-200 column equilibrated with...T buffer. A single broad protein peak was obtained. The fractions with binding activity were pooled and the pH adjusted to 4.5 with 7.5% acetic acid. The precipitate was scparated by centrifugation and the supernatant was loaded onto a high fow-rate CM cellulose column (1 ml resin bed volume, $6-8 \mathrm{mg}$ of protein to be fractionated; column height:diameter $3: 1)$ equilibrated with $C M$ buffer (10 mM sodium acetate, pH 4.5). The column was washed with $3-5$ volumes of $C M$ buffer followed by elution with 3.5 volumes of 0.3 M NaCl in CM buffer. About 208 of the binding activity was "absorbed and subsequently eluted from the the column. When the effluent was again passed through a column the same recovery was obtained. Hence it appeared unlikely that there was selective adsorpton between more than one binding protein. The eluted fractions containing all binding activity were pooled and the pH was adjusted to 7.5 with concentrated ammonium hydroxide and then, dialysed overnight against T buffer at $4^{\circ} \mathrm{C}$. The dialysate was loaded onto a

DEAE cellulose column (1 ml resin bed volume, $4-6 \mathrm{mg}$ protein to be fractionated; column height:diameter l2:1) previously equilibrated with T buffer. The column was washed with 5 bed volumes of cold buffer and activity was eluted with a : linear gradient of $0-0.4 \mathrm{M} K \dot{C} 1$ in T buffer. The flow-rate was kept at $8-10 \mathrm{mls} / \mathrm{h}$. The cytoplasmic cAMP binding protein eluted between 0.1 to 0.15 M KCl , whereas the CAMP binding protein from shock fluid eluted between 0.17 to . 23 M KCl . The cGMP binding protein eluted between 0.15 to 0.17 M KCl . All active fractions were pooled for activity and dialysed overnight against T buffer.

PART I: STUDIES ON ADENYLATE AND GUANYLATE CYCLASE

 - ACTIVITIES
Enzyme Activities During Development

When Myxocescus xanthus M300 was induced to fruit by inoculation onto FM, maximum aggregation occured at approxi-• mately 40 hours. . Fruiting bodies were clearly delimited at about 60 h and myxospore differentiation was completed between 7.5-85 hours.

Both adenylate and guanylate cyclase were detected at levels of activity which varied with the time of development.

The level of adenylate cyclase activity in toluenized vegétative cells was $2-4$ pmole/mg protein/min, but during development it exhibited much higher peaks between 10-20h and between $40-50 \mathrm{~h}$ (Fig. l). There was also a third smaller but reproducible peak at about 75 hours.

Initial guanylate cyclase activity in toluenized cells was about $3-4$ pmole/mg protein/min but then rose sharply to a peak between $8-20 \mathrm{~h}$, decreased until 40 h and then rose again to a less dramatic maximum at about 75 h (Fig. 2).

Guanylate "Cyclase

Guanylate cyclase activity was detectable in both the $100,000 \mathrm{~g}$ supernatant and pellet (Table l). Both activities exhibited concave substrate-velocity curves, however, the insolubility of the substrate prevented the obtaining of data from higher concentration which with the usual saturation kinetics, would have yielded sigmoidal curve. Both the supernatant and pellet enzymes exhibited, K_{m} of $l_{m M}$ and a Hill coefficient of 2.6 (Fig. 3). Accordingly, it appears that the same enzyme is detected in both fractions and it probably exhibits positive cooperativity. Guanylate cyclase was dependent on divalent cations: $M n^{++}$was more effective than $\mathrm{Mg}{ }^{++}$or $\mathrm{Ca}{ }^{+}$, producing optimal activity at 0.15 mm whereas the concentration of Mg^{++}for optimal activity was 1.5 mM (Fig. 4). The enżyme exhibited a sharp pH optimum at pH 7.0. It was stimulated by cAMP and pyruvate, but neither ATP (Macchia, et al. 1975) nor fluoride ion (Macchia, et al. 1981; Sun, et al. 1974) had any effect (Tab'le 2).

Adenylate Cyclase

Adenylate cyclase activity was located in both the $100,000 \mathrm{~g}$ supernatant. (soluble enzyme) and pellet (particulate enzyme) (Table l). The apparent K_{m} for the latter was $72 u m$ and the Hill coefficient, $N=1$. The supernatant enzyme had an apparent K_{m}^{*} of 220 um and a Hill coefficient of $N=1.9$ which may indicate positive cooperaţivity towards the substrate (Fig. 5).

The supernatant enzyme exhibited a sharp pH optimum at pH 8:5 whereas the pellet enzyme had maximal activity between pH 7.5 to 9.0. Both enzymes required Mn^{4+}. or $\dot{\mathrm{Mg}}{ }^{++}$with Mn^{++}being more effective than Mg^{++}(Table 3). Ca^{-1+} had no effect on either the soluble or particulate enzyme. Soluble enzyme was stimulated by pyruvate, NaF and GTP while that of the particulate enzyme was not (Table 3).

To determine if the activity peaks seen during develop ment reflected one or both enzymes, changes in soluble and particulate enzyme activities were separately examined during development. It was observed that soluble activity exhibited two peaks, one around 8 h and another at approximately 75 h (Fig. 6). Pellet enzyme activity was initially high in the vegetative cells, declined and then rose to a peak around 40 h (Fig. 7). Hence, while the specific activities determined using toluenized developing cells are not the result of the combined specific activities of pellet and supernatant enzymes (the two enzymes perhaps, being differentially extracted, the results do seem consistent with the assumption that the 8 h and 75 h peaks observed are attributable to supernatant enzyme while the 40 h peak is attributable to the pellet enzyme.

1

Figure 2: Guanylate cyclase activity in toluenized Myxococcus xanthus. The enzyme-was assayed as described under 'Materials and Methods'. The specific activity was expressed as. pmole cGMP/mg protein/min and plotted as a mean with bars showing highest and lowest detected values. Each point represents an average of 5-6 separate determinations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3: Substrate-velocity plot of guanylate cyclase activity The enzyme was assayed•in the $100,000 \mathrm{~g}$ soluble (o) and particulate ((0) Eractions of M. xanthus. Substrate concéntration was varied from $1 \sigma^{2} \mathrm{M}$ to $10^{-6} \mathrm{M}$. Inset, hill plot of, guanylate cyclase activity obtained using $100,000 \mathrm{~g}$ soluble (0) and particulate (*) fractions at various concentrations of GTP from $10^{-2} \mathrm{M}$ to $10^{-6} \mathrm{M}$.

Figure 4: Effect of Mg^{++}and Mn^{++}on guanylate cyclase activity. The reaction was carried out at $30^{\circ} \mathrm{C}$ under standard conditions, using toluenetreated cells, except that indicated concentrations ($0-15 \mathrm{mM}$) of MnSO_{4} (e) or Mgcl $_{2}(0)$ were used.

Concentration (mM)

Figure 5: Substrate-velocity plot of adenylate cyclase activity. The enzyme was assayed in the $100,000 \mathrm{~g}$ soluble (0) and particulate (1) fractions from the vegetative cells of M. xanthus. Substrate concentrations were varied from $0.5 \times 10^{-2} \mathrm{M}$ to $0.6 \times 10^{-6} \mathrm{M}$. Inset; Hill plot of adenylate cyclase activity obtained using $100,000 \mathrm{~g}$ soluble (0) and particulate (1) fractions at various concentrations of ATP from. $0.5 \times 10^{-2} \mathrm{M}$ to $0.6 \times 10^{-6} \mathrm{M}$.

(ATP) $\mathbf{m M}$

Figure 6: Adenylate cyclase activity in $100,000 \mathrm{~g}$ soluble
fraction of Myxococcus xanthus during

)

Figure 7: Adenylate cyclase activity in 100.000 g particulate fraction of Myxogoccus xanthus during development. The assay was carried out as described under 'Materials and Methods.' The enzyme activity is expressed as pmol caMP/mg protein/min and of two separate determinations.

TABLE 1

Cyclase activities in the $100,000 \mathrm{~g}$ supernatant and pellet. Eractions

Specific* activity pmol/mg protein/min

Total activity pmol

Adenylate cyclase

supernatant fraction	1.81	4.52
pellet fraction	12.1	18.15
Guanylate cyclase	\ddots	
supernatant fraction	3.3	8.25
pellet fraction	4.3	6.73

TABLE 3

\checkmark

The effect of pyruvate, ATP. and NaF on soluble and particulate adenylate cyclase activity

PART II: STUDIES ON CGMP AND CAMP BINDING PROTEINS

Purification of cAMP and CGMP binding proteins

cAMP and cGMP binoing activity present in the crude shock fluid was partially purified as described in 'Materials and Methods'. The concentrated shock fluid was passed through a Sephadex G-200 column equilibrated with T buffer. The activity peak was loaded on to a cm cellulose column. The small amount (20\%) of activity bound was eluted with 0.3M NaCl in CM buffer. Binding activity was further purified by passing it over a DEAE cellulose column and elution of the bound activity with a linear salt gradient. A peak of cAMP binding activity was found to elute between . 17 to . 23 M KCl and a cGMP binding activity peak eluted between . 15 to . 17 M KCl from DEAE cellulose column.

When the cell free extract from the post-shocked pellet. was passed through the purification steps as above, a single peak of cAMP binding activity was eluted between .l to .l5M KCl from DEAE cellulose column.

The purification data are summarized in table 4. The recovery of periplasmic cAMP binding protein was 26%. whereas that of the cGMP binding protein was 7\%. The purification of cytoplasmic CAMP binding protein was 5 fold whereas that of ${ }_{c}$ the periplasm was 30° fold.
Characterization of CGMP binding protein
908 of cGMP binding activity found in the vegetative cells was recovered in periplasmic shock fluid (Table 5).

The binding was complete within 10 seconds and stable for up to 30 mins (Fig. 8). No appreciable cGMP hydrolysis. was detected under the assay conditions. cGMP binding was linear with increasing amounts of protein (Fig. 9). It was found in compeţitive binding assays that the binding was not inhibited cAMP, GTP or GMP (Fig. 10). All the binding activities were corrected for the non-specific binding of labelled cGMP. The Scatchard analysis of the binding data for CGMP yielded a straight line suggesting the presence of a single class of binding sites (Fig. il). The apparent dissociation constant (K_{D}) was calculated to be $42 n M$.

During development M. xanthus exhibited two peaks of cGMP binding activity; a minor but reproducible (peak was observed at about 18 h and a major peak occurred around 40 h , the time of maximum aggregation (Fig. 12). Thereafter the binding decreased to initial levels.

Properties of cAMP binding proteins

CAMP binding was also detected in the periplasmic shock fluid (Table 5). The binding was linear with increasing protein concentrations (Fig. 13) and binding was complete within 20 seconds at $4^{\circ} \mathrm{C}$ (Fig. 14). Binding of labelled CAMP was not inhibited by CGMP, ATP or AMP over the concentration ranges tested (Fig. 15). Scatchard analysis of the partially purified periplasmic CAMP binding protein indicated the presence of only one class of binding sites with an apparent dissociation constant (K_{D}) of $l \mu M$ (Fig. 16).
cAMP binding was also detected in the post-shocked pellet (Table 5). This activity had properties which were virtually identical to the cytoplasmic cAMP binding activity reported by orlowski (1980), i.e. cGMP, ATP nor AMP had any effect on cAMP binding at $50 \mu M$ (Table 6) and a Scatchard plot of cAMP binding activjty was linear with a dissociation constant (K_{D}) of 57 nM (Fig. 16).

During development, cytoplasmic cAMP binding activity exhibited a peak early in development around $8-18 \mathrm{~h}$ and a subsequent decline to relatively constant levels (Fig. 17). The periplasmic cAMP binding activity however, exhibited a. peak around 45-55h. binding assay was performed as described in the text. The binding reaction was started by the addition of concentrated shock fluid to $\left[{ }^{3} \mathrm{H}\right]$ сAMP $\left(20 \mathrm{nM}\right.$ final concentration) at $4^{\circ} \mathrm{C}$. Each point represents an average of three separate determinations.

0
2

```
)
Figure 9: cGMP binding as a function of protein
    concentration. The assay was started by adding
    concentrated shock fluid to reaction mixture.
    The value on the abscissa represents the amount
    of protein in 250\muls reaction mixture.
.
```

)
1

Figure 10: The effects of non-radioactive cGMP ($\boldsymbol{A})$, CAMP (Δ), GTP () on binding of labelled cGMP. The nucleotides were present in increasing concentrations in the presence of $20 \mathrm{nM}\left({ }^{3} \mathrm{H}\right)$ cGMP. The binding assay was performed as described under 'Materials and Methods'.

Figure 11: Scatchard plot of $\left[{ }^{3} \mathrm{H}\right] c \mathrm{G} M \mathrm{P}$ binding by shock fluid. The binding assay was performed as described in the text. The 250 ul incubation mixture contained $200 \mu \mathrm{~g}$ protein and the amount of cGMP bound was calculated from the amount of radioactivity retained by the millipore filter.

Figure l2: cGMP binding activity during development of \underline{M}. xanthus. The binding assay was performed as described in 'Materials and Methods'. Concentrated periplasmic shock fluids were prepared at the times indicated after inoculation on FM. Bound CGMP is plotted with the bars showing highest and lowest detected values in 4-5 separate determinations.

Time HR

Figure 13: cAMP binding as a function of protein concentration. The assay was performed as described in' 'Materials and Methods', boiled protein is used as control. The value on the :abscissa represents the amount of protein in $250 \mu \mathrm{ls}$ reaction mixture.

2

Figure 14: cAMP binding as a function of time. Details of the assay are presented in the text. The binding reaction was started by addition of cell free extract to $[3 \mathrm{H}] \mathrm{cGMP}(200 \mathrm{nM}$ final concentration) at $4^{\circ} \mathrm{C}$.

Figure 15: Specificity of cAMP binding activity. The
unlabelled cAMP (0), cGMP (0), ATP (Δ) and AMP
(A) were present at increasing concentrations.
The standard binding assay described in the
text was used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 16: . Scatchard plot of cAMP binding activities. The assay was performed using periplasmic shock fluid (1) and shock pellet cell-free extract (O) as described in 'Materials and Methods'. The amount of CAMP bound was calculated from the amount of radioactivity retained by the filter. The amount of free cAMP was calculated from the total amount of camp added to the mixture less the amount bound.

2

Figure 17: cAMP binding activities during development of M. xanthus. Periplasmic shock fluid (A) and post-shock pellet cell free extract (0) were obtained from the same batch of cells
, immediately after harvesting. Binding data represent average of four separate determinations, bars indicate the highest and the lowest values detected.

Time HR

Partial purification of binding proteins.

Periplasmic oGMF Binding protein Shock fluid
(concentrated) G-200
CM-cellulose
DEAE-cellulose

Cytoplasmic CAMP
Binding protein
Cell free
extract extract G-200 DEAE-cellulose

45	404.1	
	5.98	
25	209.0	3.80
10	43.44	1.81
5	8.4	0.3

1.5

1 100

De-cellulose

Periplasmic oAMP

Periplasmic oAMP Binding protein						
Shock fluid	37	9.6	0.93	0.28	1	100
(concentrated)	20	6.72	0.30	1.12	4.0	70.0
G200	10	4.96	0.09	5.52	19.7	51.6
CM-cellulose	5	2.49	0.06	8.3	29.6	25.9

TABLE 5

The cellular distribution of binding proteins.

0

Periplasmic	Post-shock
shock fluid	pellet

cGMP binding activity
(pmole bound)
0.388
0.042
0.43

CAMP binding activity
(pinole bound)
1.13
2.03
1.4

* The total cyclic nucieotides bound was obtained from sonicating and subsequently assaying the sonicated extracts of vegetative cells.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 6

```
Specificity of cAMP binding:
```


The guanylate cyclase. from vegetative cells of Myxococcus xanthus has many properties in common with the enzymes predviously reported in prokaryotes: it is not stimulated by fluoride- an agent known to activate guanylate cyclase of eukaryotes; it requires Mn^{++}for activity and does not use ATP as substrate. The K_{m} for GTP of 1 mM is in the range of values so far reported for guanylate cyclases of prokaryotes [0.1 to 5 mM] (Clark and Bernlohr, 1972, Macchia, et al. 1975 and Sun, et. al. 1974).

On the other hand it resembles the eukaryotic enzyme in that it seems to exhibit cooperativity towards its substrate (Garbers, et al. 1975; Chrisman, et al. 1975; Craven, et al. 1975̣).

At least two forms of adenylate cyclase activity can be separated by high speed centrifugation of cell free extracts.

While the terms "soluble, and'particulate". may' not pres cicely reflect the in yivo nature of the enzyme, it is like-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ide examined the lysates of 21 bacterial species for .. adenylate cyclase activity and found. that the bacterial enzymes generally fell into two groups: (i) prédominantly soluble in cell lysates and stimulated by pyruvate and (ii) primarily membrane-associated, not pyruvate stimulated. similarly we found that the soluble form of adenylate cyclase was stimulated by pyruvate whereas pyruvate had no effect on pellet activity. The soluble form of adenylate cyclase resembles the eukaryotic enzyme in that it is stimulated by GTP and NaF (Bhat, et al. 1980).

The soluble and particulate adenylate cyclase activities are also distinguishable by their kinetic behaviour. The presence: of two different adenylate cyclase activities exhibiting different $K_{m} s$ has also been reported for Streptococcus salivarius (Khandelwal and Hamilton; 1979), for which it was suggested that the presence of two activities reflected their association with different subcellular fractions.

Adenylate cyclase activity exhibited peaks at critical periods in development. The first peak occuring around 8 h could be responsible for the peak of cAMP concentrations previously reported to occur between 0 and 20 h (Ho athd McCurdy, 1980). The 40 h peak while coincident with aggregation does not correlate with any observed increase of cAMP concentrations (Yajko and Zusman, 1978; Ho and McCurdy, 1980). This may be due to high phosphodiesterase activity
observed at that stage (Ho and McCurdy, 1980). The third peak occured around 75 h when microcyst formation within fruiting bodies is initiated. Previous studies McCuray, et al. 1978; Yajko and zusman, 1978) have demonstrated a şharp peak in cAMP content during early development of glycerol induced myxospores.

It was hypothesized (McCurdy, et al. 1978) that CAMP is involved in derepressing differentiation specific operons at two critical times. First, shortly after induction of fruiting body formation; second, on initiation of myxospore induction. It is consistent with these expectations that it is the soluble, apparently allosteric form of adenylate cyclase which exhibits maxima at these critical times.

Guanylate cyclase activity exhibited a peak of activity ty between 0 and 20 h , a time which slightly preceeds the intracellular and subsequent extracellular accumulation of cGMP associated with aggregation (Ho and McCurdy, 1980). Similarly the second peak in the activity corresponds to the second rise in cGMP concentration occuring late in development as reported earlier (Ho and McCurdy, 1980).

If one takes into account the phosphodiesterase activities, it appears that cyclic nucleotide accumulation is a reflection of cyclase activities in M. xanthus.

The studies on brading proteins indicated the presence of a cGMP specific periplasmic binding protein and two CAMP binding proteins distinguishable by their elution patterns
on DEAE cellulose, their dissociation constants and their cellular locations. The cytoplasmic cAMP binding protein has been identified with that previously reported by Orlowski (1980).

The properties of the binding proteins are consistent with the premise that they function as receptors which mediate the physiological effects of their ligands. Among these are their high "specificities and affinities, although then periplasmic cAMP binding activity is marginal in this respect with its K_{D} of lpM. It is also unlikely that the binding activities are identifiable with enzymes attacking the ligands. Ligand binding was stable in all cases for at least 30 mins with no evidence of hydrolysis and was not affected by the corresponding nucleotide monophosphates. PDs were inhibited in the reaction mixtures but in any case exhibited different patterns during. development from those of the binding proteins (Ho and McCurdy, 1980). The K_{D} of cAMP binding protein (57nM) differed significantly from the K_{m} for CAMP-PD ($24 \mu \mathrm{M}$, Yajko and Zusman, 1978). It is unlikely therefore that $P D$ interfered with the assay ${ }_{i}$.

It would be consistent with a physiological receptor function if the location and levels of activity of the binding proteins corresponded to the site of action of their ligands as well as changes in their concentration levels.

Accordingly, the periplasmic location of cGMP binding protein makes it accessible to its extracellular and chemo-
tactic ligand (Ho and McCurdy, 1979). Eurthermore, as would be expected, it increases in activity concomittant with the increase in extracellular cGMP concentration which is associated with fruiting body aggregation (Ho and McCurdy, 1980).

Similarly the cytoplasmic cAMP binding protein increased concomittantly with the increase in intracellular cAMP leveis observed upon fruiting body induction, an observation that supports the premise that it functions with camp in derepression of morphogenesis in a manner analogous to CAP protein in E.coli (2ubay, et al. 1970).

The periplasmic camp binding protein exhibits a peak of activity at the later stages of development which corresponded to a significant increase in extracellular concentrations of cAMP (Ho and MCCurdy, 1980). Whether such a correlation is of significance in fruiting body formation is unknown.

In conclusion, this study was based upon the assumption that nucleotide cyclases and cyclic nucleotide binding proteins play a role in development of M. xanthus. In general, our results are consistent with that proposition although only correlative in nature. What is now required is an examination of aggregation-defeicient mutants of \underline{M}. xantous M300 to determine whether their developmental defects correspond to deficiencies in the elements of cyclic nucleotide metabolism which were examined in this dissertation study.

Should this be found to be the case more detailed examinations of the distribution, physical characteristics and mechanisms of action of these activities would be justified.
Should this be found to be the case more detailed examina-
tions of the distribution, physical characteristics and me-
chanisms of action of these activities would be justified.

Activities) of nucleotide cyclases and cyclic nucleotide binding proteins and their behaviour during development were examined. The cyclases were distributed between $100,000 \mathrm{~g}$ supernatant and pellet fractions. The adenylate cyclase activity of the latter differed from that of the soluble fraction in its kinetic behaviour. Both the supernatant and the pellet fractions contained the same guanylate cyclase activity.

The cyclic nucleotide binding proteins exhibited affinities, specificities and cellular distribution expected of physiological receptors. The two CAMP binding proteins were distinct as indicated by their elution patterns from DEAE cellulose column, cellular location and affinities towards cAMP. Only one cGMP binding protein was detected and it was located in the periplasm.

The activities of nucleotide cyclases and cyclic nucleotide binding proteins exhibited changes during development that suggest their involvement in morphogenesis in. $\mathrm{M}_{\text {. }}$ xanthus.

ABBREVIATIONS

AMP	Adenosine 5'-monophosphate
ATP	Adenosine 5^{\prime}-triphosphate
CAMP	Adenosine 3', 5'-monophosphate
CGMP	Guanosine $3^{\prime}, 5^{\prime}$-monophosphate
CM-cellulose	Carboxy-methyl cellulose
CM-buffer	10 mm Sodium acetate, pH 4.5
DEAE-cellulose	Diethylaminoethyl cellulose
EDTA	Ethylenediaminetetraacetic acid
FM	Fruiting medium
GMP	Guanosine $5^{\prime \prime}$-monophosphate
GTP	Guanosine 5'-triphosphate
HEPES	N^{\prime}-2-Hydroxyethylpiperazine
	$N^{\prime}-2-e t h a n e s u l f o n i c ~ a c i d ~$
IBMX	l-Methyl-3-isobutyl xanthine
PD	Phosphodiesterase
PMSF	Phenyl mehane sulfonyl fluoride
Tris HCl	Tris (hydroxyme thyl)aminomeh tane hydrochloríde
T buffer	10 mM Tris HCl, pH 7.5
Tl buffer	10 mM Tris $\mathrm{HCl}, \mathrm{pH} 7.5 ; 5 \mathrm{mM} \mathrm{MgCl}{ }_{2}$; 3mM mercaptoethanol

REFERENCES

Alacantra, F. and G.W. Brazil (1976). Extracellular cyclic AMP phosphodiesterase accelerates differentiation in Dictyostelium discoideum. J. Gen. Microbiol. 92:183-191.

Barondes, S.H. (1978). Dęvelopmentally regulated slime mold lectins and specific cell cohesion. In The molecular basis of cell-cell interaction. R.A. Lerner, and D. Bergsma (Eds.), Alan R. Liss, Inc., New York p. 491-496

Bhat, M.K., R. Iyengar, J. Abramowitz, M.E. Bordelon-Riser and L. Birnbaumer (1980). Naturally soluble component(s) that confer(s) guanine nucleotide and fluoride sensitivity to adenylate cyclase. Proc. Natl. Acad. Sci. (U.S.A) 77:3836-3840.

Brooker, G., J.F. Harper, W.L. Terasaki and R.D. Moylan (1979). Radioimmunoassay of cyclic AMP and cyclic GMP. Adv. cyclic Nucleo. Res. 10:1-33.

Burchard, R.P. (1974). Studies of gliding motility in Myxococcus xanthus. Arch. Microbiol. 99:271-280.

Campos, J. and D. Zusman (1975). Regulation of development in Myxococcus ranthus: Effect of 3^{\prime}, 5^{\prime}-cyclic AMP ADP and nutrition. Proc. Natl: Acad. Sci. (U.S.A.) 72:518-522

Chrisman, T.D., D.L. Garbers, M.A. Parks and J.G. Hardman (1975). Characterization of particulate and soluble guanylate cyclases from rat lung. J. Biol. Chem. 250:374-381.

Clark, V.L. and T.W. Bernlohr (1972). Guanyl cyclase of Bacillus licheniformis. Biochem. Biophys. Res. Comm. 46:1570-1575.
Craven, P.A. and D.R. DeRubertis (1975). Properties and subcellular distribution of guanylate cyclase activity in rat renal medulla: correlation with tissue content of Guanosine 3',5'-monophosphate Biochem. 5: 5131-5137.

Cumsky, M. and D. Zusman (1979). Myxobacterial hemagglutinin: A development-specific lectin of Myxococcus xanthus. Proc. Natl. Acad. Sci. (U.S.A.). 76:5505-5509

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Garbers, D.L., E.L. Dyer and J.G. Hardman (1975). Effect of cations on guanylate cyclase of sea urchin sperm. J. Biol. Chem. 250:382-387.

Garbers, D.L. and F. Murad (1979). Guanylate cyclase assay methods. Adv. Cyclic Nucleo. Res. 10:57-67.

Gilman, A.G.(1970). A protein binding assay for adenosine 3',5'-cyclic monophosphate. Proc. Natl. Acad. Sci. (U.S.A.) 67:305-312

Harwood, T. and A. Peterkofsky (1975). Glucose-sensitive adenylate cyclase in Toluene-treated cells of Escherichia colisB. J. Biol. Chem. 250:4656-4662.

Ho, J. and H.P. McCurdy (1979). Demonstration of positive chemotaxis to cyclic GMP and 5'-AMP in Myxococeus xanthus by means of a simple apparatus for gene rating practically stable concentration gradients. Can. J. Microbiol. 25:1214-1218.

Ho, J. and H.D. McCurdy (1980). Sequential changes in the cyclic nucleotide levels and cyclic nucleotide phosphodiesterase activities during development of Myxococcus xanthus. Current Microbiol. 3:197-202.

Ide, M. (1971). Adenylate cyclases of Bacteria. Arch. Biochem. Biophys. 144:262-268.

Khandelwal, R.L. and J.R. Hamilton (1971). Purification and properties of adenylate cyclase of Strepto coccus salivarius. J. Biol. Chem. 246:3297-3304.

Klein, C. (1976). Adenylate cyclase activity in Dictyostelium discoideum amoebae and its chánges during differentiation. FEBS Letts. 68:125-128.

Konijn, T.H., J.G. Van De Meene, J.t. Bonner and D.S. Barklay (1967). The acrasin activity of adenosine 3',51-cyclic phosphate. Proc. Natl. Acad. Sci.. (U.S.A.) 58:1152-1154

Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.

Macchia, V., G. Caputo, E. Mandata, A. Rocino, S. Adhya and I. Paston (1.981). Guanylate cyclase activity in Escherichia coli mutants defective in Adenylate cyclase. J. Bact. 147:931-934.

Macchia, V., S. Varone, M. Weissbach, D.C. Miller and I. Pastan (1975). Guanylate cyclase in Escherichia Coli. J. Biol. Chem. 250:6214-6217.

Malchow, D. and G. Gerisch (1974). Short-term binding and hydrolysis of cyclic 3', 5'-adenosine mono phosphate by aggregating Dictyostelium cells. Proc. Natl. Acad. Sci.(U.S.A.) 71:2423-2427.

Mato, J.M. and T.M. Konijn (1977). Chemotactic signal and cyclic GMP accumulation in Dictyostelium discoideum. In Development and differentiation in the cellular slime molds. P. Cappuccinelli and J.M. Ashworth (Eds.), Vol. 1, P.63. New York: Elsevier Press.

McCurdy, H.D. Jr. (1963). A method of isolation of my xobacteria in pure culture. Can. J. Microbiol. 2: 282-285.

McCurdy, H.D. (1974). The Gliding Bacteria. In Bergey's mannual of determinative bacteriology R.E. Buchanan and N.E. Gibbons (Eds.). 8th edition, The williums and Wilkins Co., Baltimore. p.76-98.

McCurdy, H.D., J. Ho and W.J. Dobsorf (l978). Cyclic nucleotides, cyclic nucleotide phosphodiesterase and deyelopment in Myxococcus xanthus. Can. J. Microbiol. 24:1475-1481.

Newell, P. (1977). Aggregation and cell surface receptors in cellular slime molds. In Microbial Interactions; Reissig, J.L. (Ed.). Vol. l,Chapman and Hall, London. p.l.

Nossal, N.G. and L.A. Heppel (1966). The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J. Biol. Chem. 24l:3055-3062.

Orlowski, M. (1980). Cyclic adenosine 3',5'-mono phosphate binding protein in developing Myxococcus xanthus. Can. J. Microbiol. 26:905-911.

Parish, J.H., R. Wedgwood, and D.G. Herries (1976).
, Morphogenesis in Myxococcus xanthus and Myxococcus virescens (Myxobacterales). Arch. Microbiol. 107:343-351.

Steiner, A.L., C. Parker and D.M. Kipnis (1972). Radio immune assay for cyclic nucleotides. I. Preparation. of antibodies and iodinated cyclic nucleotides. J. Biol. Chem. 247:1106-1113.

Sun, I.L., L. Shapiro and O.M. Rosen (1974). Purification and characterization of guanyl cyclase from Caulobacter crescentus. Biochem. Biophys. Res. Comm. 6l:193-203.

Terasaki, W.L., G. Brooker, J. de Villis, D. Inglish, C-Y. Hsu, and R.D. Moylan (1978). The involvement of cyclic AMP in protein synthesis in catecholamine refractoriness. Adv. Cyclic Nucleo. Res., 9:33-52.

Toorchen, D. and E.J. Henderson (1979). Characterization of multiple extracellular cAMP phosphodiesterase forms in Dictyostelium discoideum. Biochem. Biophys. Res. Comm. 87:1168-1175.

Wier, P.W. (1977). Cyclic AMP, cyclic AMP phospho diesterase and duration of the interphase in Dictyostelium discoideum. Differentiaion 2:183-191.

Willis, R.C., R.G. Morgan, C. Cirakoglu, G.D. Schellenberg, N.H. Gerber and C.E. Furlong (1974). Preparation of the periplasmic binding proteins from Salmonella typhimurium and Escherichia coli. Arch. Biochem. Biophys. 161: 64-75.

Yajko, D.L. .and D. Zusman (1978). Changes in cAMP levels during development in Myxococcus xanthus. J. Bact. 133: 1540-1542.

Zubay, G., D. Schwartz and J. Beckwith (1970). Mechanism of activation of catabolite sensitive genes: a positive © control system. Proc. Natl. Acad. Sci. (U.S.A.) 66:104-110.

Zusman, D.R. (1978). A rapid batch assay for cyclic AMP phosphodiesterase. Analytical Biochemistry 84;551-558.

Born	September 17, 1955
	Tamil Nadu, India.
Primary Education	South Board Primary School, South Kanara,
	Karnataka, India; 1960-1967
Secondary Education	Kendriya Vidyalaya, Coimbatore,
	Tamil Nadu, India; 1968-1971
University Education	Government Arts and Science College,
	University of Mysore, Karnataka,
	India; Graduated with B.Sc. 1974
	Department of Botany, Manasagangothri,
	University of Mysore, Karnataka,
	India; Graduated with M.Sc. 1976

- Borr

Primary Education

University Education

September 17, 1955
Tamil Nadu, India.

South Board Primary School, South Kanara, Karnataka, India; 1960-1967

Kendriya Vidyalaya, Coimbatore, Tamil Nadu, India; 1968-1971

Government Arts and Science College, University of Mysore, KKarnataka, India; Graduated with B.Sc. 1974

Department of Botany, Manasagangothri,

India; Graduated with M.Sc. 1976

[^0]: NL-01 (3.74)

