University of Windsor

Scholarship at UWindsor
Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2007

Some extensions of Cochran's theorem

Jianhua Hu
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
Hu, Jianhua, "Some extensions of Cochran's theorem" (2007). Electronic Theses and Dissertations. 4691.
https://scholar.uwindsor.ca/etd/4691

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.


https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4691?utm_source=scholar.uwindsor.ca%2Fetd%2F4691&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

SOME EXTENSIONS OF

'COCHRAN’S THEOREM

by

JIANHUA HU

A Dissertation
Submitted to the Faculty of Graduate Studies
through Mathematics and Statistics
in Partial Fulfillment of the Requirements for
~ the Degree of Doctor of Philosophy at the
| University of Windsor

Windsor, Ontario, Canada

2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-35069-0
Our file Notre référence
ISBN: 978-0-494-35069-0
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
qguelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



All rights reserved, 2007

© Jianhua Hu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



iii

Abstract

The aim of this dissertation is to obtain the distributions of matriz quadratic forms
(MQFs) in a normal random matrix and some extensions of Cochran’s theorem. The

main contribution of this dissertation consists of the following two parts.

1. Let Y be an n x p multivariate normal random matrix with mean - and
general covariance Yy . In this dissertation, a general covariance Ly of Y means thaf
the collection of all np elements in Y has ankarbitrary np X np covariance matrix, For
the symmetric matrix W, a set of general necessary and sufficient conditions is derived
for the matrix quadratic form YWY to have a noncentral Wishart distribution. Then
a muvltivariate version of Cochran’s theorem concerning the nohcentral Wishartness
and independence of matrix quadratic forms:is obtained. Some exémples and . the -

usual versions of Cochran’s theorem are presented as special cases of this result.

2: Let Y be an n X p multivariate normal random matrix with mean g and gen-
eral covariance matrix Yy . For the symmetric matrix W, a set of general necessary
and sufficient conditions is derived for a matrix quadratic form to be distributed as a
difference of independent noncentral Wishart random matrices (DINWRM). A multi-
variate version of Cochran’s theorem concerning differences of independent noncentral
Wishart random matrices (DINWRMs) is obtained. Two usual versions of Cochran’s
theorem concerning differences of independent noncentral Wishart random matriéés

are presented as special cases of our result.

In addition to the above contribution, for the first part, we use a matrix approach
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iv
to present the proven result for the zero mean O case. This case has been solved
by Masaro aﬁd Wong (2004&). They used Jordan’ algebra representations to obtain
a genéral multivariate version of Cochran’s theorem concerning Wishartnesé and in-
dependence. . Their result and proof is more mathematically involved. Further, we
provide a discrete represéntation version of Cochran’s theorem.

For the second part, we use ‘a matrix approach to present the proven result for

~ the meank zero case. This case has been solved by Masaro and Wong (2004b). They
used Jordan algebra homomorphisms to obtain the necessary and sufficiert; conditions
for the matrix quadratic fdrms YWY, YWY, ..., YWY to be an independent
family of random matrices distributed as differences of independent Wishart random
matrices (DI WRMs). Their result and proof is more mathematically involved. Our
presentation provides a discrete representation version of Cochran’s theorem concern-

ing DIWRMs.
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List of Nomenclature

R: the real number set
R? : the Euclidean space of dimension p consisting p x 1 real vectors
|A] : the determinant of square matrix A

tr(A) : - the trace of matrix A
M xp : the set of n x p matrices over real set R
<> trace inner product

<8 >: the linear span of a given set' S

Il All:  the trace norm of matrix A a

Sp: the set of symmetric matrices of order p
I: the identity matrix of order p

AT the Moore-Penrose inverse of matrix A

s7(s) . the spectral radius of square matrix s

N, : the set of nonnegative definite matrices of order p over real set R
n.n.d. : nonnegative definite

No: the neighborhood of 0

A% the ath n.n.d. root of A for a > 0

A=%:"  the oth n.n.d. root of AT for @ >0

vec( ) : wvec operator

& : the Kronecker prodlict

Kppt  the commutation matrix of order np
Eij: the symmetric matrix of order p whose ijth entry and jith entry

both are 1 and all other entries 0
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K

NP(’"’H E) :

Nnxp(ll’a EY) :

Wp(m, X) :

Wp(m, Z, A) :

Mq(s), M(s) :

MQF :
MQFs :
DIWRM :

DIWRMs :

DINWRM :

DINWRMs :

viii

the set of matrices Ey;, 1 <i < j <p, called the basic basis

- of the set Sp

the set of matrices HE;H', 1 <i <j <p, for ¥ € Ny, where
H is an orthogonal matrix such fhat H'YH is diagonal and
H, = {HE;;H' : Ej; € E,}, called the similar basis (of the Sp)
associated with . k

set {t: ‘AtA =0, tc Ky}

set {h:¥h¥Y =0, he H,}

multivariate normal distribution with mean vector

1t and covariance matrix X

multivariate normal distribution with mean matrix

p and covariance matrix Xy

Wishart distribution with m degrees of freedom

and covariance matrix ¥ of order:p

noncentral Wiéhart distribution with m degrees of freedom,

covariance matrix ¥ of order p and non-centrality matrix-A

. the moment generating function of matrix quadratic form Q

matrix quadratic form

matrix quadratic forms

difference of independent Wishart random matrices

differences of independent Wishart random matrices

difference of independent noncentral Wishart random matrices

differences of independent noncentral Wishart random matrices
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Chapter 1

Introduction and Liter'a_tﬂre

1.1 Cochran’s Theorem

It is well-known that Cochran’s theorem plays an ‘important role in the distribution .
theory for (matrix) quadratic forms in ﬁormal random variables and in the application
of the theory of statistics, such as the theory of least squares, variance component
analysis, estimation including MINQUE theory and testing of hypothesis and time se-
ries analysis. This has attracted many scholars to research and develop the extensions |
of Cochran’s theorem for over seventy yeafs.

In general, for a set of symmetric matrices Wy, Wy, ..., W of order n, the nec-
essary and sufficient algebraic conditions are expected to characterize the probability
statement that a set of matrix quadratic forms YWY, YWY, ..., YWY, where
Y is an n x p normally distributed random matrix, is an independent family of cen-
tral or noncentral Wishart random matrices. This is one problem that extensions

of Cochran’s theorem intend to solve. For convenience of statement, it is called the
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Chapter 1. Introduction and Literature L ' ' 2

original problem in this dissertation.

The property of a rﬁatrix quadratic‘form being distributed as a (noncentral)
vWishart random matrix is called the (noncentral) Wishartness of the matrix quadratic
form. The property that a quadratic form in ’a normal random vector is distributed
as a (ﬁoncentral) chi—squaré random variable is called the (noncentral) chi-squareness
of the quadratic form.

"~ Note that, in the original problem, the symmetric matrices Wy, Wy, ..., Wl do not
need to be nonnegative definite, then, it is quite natural for staiisticians to discuss
_whether’ a matrix quadratic form is distributed as a difference of two independent
(noncentral) VWishart random matrices.. This is called the extended problem in
this dissertation fér the sake of differentiating frorﬁ the original problem.

The extended problem is formally stated as follows: For the symmetric matrices
Wy, Wa, ..., W, of order n, the necessary and sufficient algebraic conditions are
expected to characterize the probability statement that a set of matrix quadratic
fofmsY’ WhY, YWY, ..., YWY, where Y is'an n X p normally distributed random
matrix, is an independent family of random matricés distributed as differences of
independent (noncentral) Wishart rand_oﬁ matrices. The extended problem is also
one problem that the extensions of Cochran’s theorem intend to solve.

Although the extended problem is different from the oﬁginal problem; a new
theqrém stating the necessary and sufficient algebraic conditions to characterize the
original problem or the extended problyem is called a new version or.an extension of
Cochran’s theorem. So far, many versions of Cochran’s theorem concerning the orig-

inal problem have been obtained and some versions of Cochran’s theorem concerning
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Chapter 1. Introduction and Literature -3

the extended problem have been developed.
In the next section, we shall review the literature for the original problem and the

extended problem.

1.2 Literature Review

Cochran investigated the distribution of quadratic forms in a normal random vector. -
His well-known result of the algebraic characterization of the chi-squareness and i‘nde;
pendence of quadratié forms in a normal random vector was published in Proceedings
of the Coymbrikdge Philosophical Society in 1934. Cochran (1934) proned that the‘ sum
of ranks ry, 79, ..., ry of the symmetri(; matrices Wy, Wa, ..., W, being their order
nis a necessary and sufficient algebraic condition for the quadratic forms y'Wiy,
y'Way, ..., y'Wy, where y is an n-variate norrnally distributed randbm vector with |
mean vector 0 and population covariance matrix I,,, to be an independent family of
chi-square random variables with ry, T2y oo T degrees of freedom, respectively. This
is the well-known Cochran’s theorem in statistics. |

Since 1934, Cochran’s result has become a cornerstone of the theory of anélysis
of variance in experimental designs, regression analysis and data analysis. Many
scholars have been attracted to generalize Cochran’s result in thé univariate normal
system. Madow (1940) generalized the result for y with nonzero mean vector g while’
Chipman and Rao (1964) extended Cochran’s theorem to y with poéitive definite
population covariance matrix ¥. Various extensions of Cochran’s résult and their

interrelationships were given by Ogasawara and Takahashi (1951), James (1952),
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Chapter: 1. Introduction and Literature B 4

Graybillvand Marsaglia (1957), Khatri (1963, 1968), Banerjee (1964), Chipman and
‘Rao (1964), Rayner a,nbdk Livingst (1965), Loynes (1966), Shanbhag (1966, 1968),
Banerjee and Nagase(1976), Good (1969), Styan (1970) and Anderson and Styan
~ (1982). " |
k The indépende'nce‘of two quadratic forms with the case Y = I, were investi-
gated by Craig (1943) and Sakamoto (1944). Parallel results were then obtained and
k - extended to the singuiarkcase by. Ogasawara and Takahashi (195‘1), and by Khatri
(1963), for nonzero mcén, and by Good (1963) and Shanbhag (1966) for zero mean
only. The corresponding results for the independence of two second degree polynomial
quadratic expressions were established by Laha (1956). |

The interested reader can further refer to Johnson and Kotz (1970), Styan (1970),
Rao and Mitra (1971), Searle (1971), Rao (1973), Khatri (1980), Driscoll and Gund-
berg (1986) and the references therein for various univariate versions of Cochran’s
theorem and their interrelationships.

In the earlier 60’s, Khatri (1962, 1963) extended Cochran’s theorem from the
univariate case to the multivariate case. With the development and applications of
statistics, matrix quadratic forms have exténsive applications in multivariate analysis
of dispersion and in multiple regression in time series analysis, see Anderson (1971)
and Rao (1973) for several examples. It was also noted that the covariance matrix
of the normal random matrix Y is the structure of a Kronecker product in those
applications. -For example, the asymptotic distribution of some maximum likelihood
estimates in linear stochastic models is normal with dispersion matrix of the form of

a Kronecker product, see' Anderson (1971).
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Chapter 1. Introduction and Literature : 5

Thus, there are numerous papers developing some extensions of Cochran’s theorem
concerhing the Wishartness and independence of matrix quadratic forms in a normal
random matrix with the covariance structure of a Kronecker product. ’Namely, the
various necessary and sufficient conditions for the maﬁrix quadratic forms Y"Wl'Y,‘
Y'W5Y, ..., YWY to be an independent family of (noncentral) Wisharf' random
matrices were establishied for situations where the covariance matrix of Yv is the Kro-
‘necker product A @ ¥ of the design covariance A and the population covariance. 3.
We refer the interested reader to Rao-and Mitra (1971}, Khaﬂi (1980), Fang and
Wu (1984), Siotani et al. (1985), Fan (1986), de Gunst (1987), Mathai and Provoéf
(1992), Baksalary et al. (1994), Vaish and Chaganty (2004), Tian and Styém (2005)
and the reference therein.

Since the application of matrix quadratic forms is more and more extensive there
are also a number of important instances where the covariance matrix Xy of Y cannot
be represented as the form of the Kronecker product A®X of the design covariance A
and the population covariance ¥, see Anderson et al. (1986), Pavur (1987), Rao and
Kleffe (1988), Mathew (1989) and Wong et al. (1995). So-scholars started to exfénd'
Cochran’s theorem to the cases that the covariance of the normal random matrix Y
is a general nonnegative definite matrix Xy, namely, the collection of all np elements
in Y has an arbitrary np x np covariance matrix. |

Pavur (1987) obtained the distribution of matrix quadratic forms on condition
that the underlying matrix W is nonnegative definite, the population covariance %
is nonsingular and the covariance. structure of ¥ does not need to be the form of a

Kronecker produét. Wong et al. (1991) obtained a set of necessary and: sufficient
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Chapter 1. Introduction and Literature , ‘ ' 6

- conditions for the generai case except for placing restrictions on the coluﬁln space of
Zy, ’extending Pavur’s results. A verifiable version of Cochran’s theorem was also
_obtaihed by Weng and‘ Wang (1993) for the case where the underlying matrices are
honnegaﬁve,deﬁnite. Later, refinements and simpler proofs of the main result in
Wong and Wang (1993) were obtained by Mathew and Nordstrom (1997) and Wong
et al. (1999). Wang et al: (1996) obtained a version of Cochran’s theorem for
. multivariate components of variance models, where the covariance Yy is the sum of a
series Kronecker.preducts-and underlying matrices W7, Wy, ..., W, are nonnegative
definite. They extended the result of Wong and Wang (1993) to the case of matrix
quadratic expressions. kWang (1997) still obtained versions of Cochran’s theorem
for matrix quadratic express. Wong (2000) collects these necessary and sufficient
algebraic conditions developed in the 90’s. Also see Dumais and Styan (1998) for an

- extensive bibliography on Cochran’s theorem prior to-1998.

The underlying matrices Wy; Ws, .., W, associated with the matrix quadratic
fofms YWY, Y'WLY, ..., YWY are symmetric rather than nonnegative definite.
This was a cokndition assumed in Cochran’s univariate version in 1934. So it is our
motivation toobtain a fully general multivariate version of Cochran’s theorem. Under
the condition that the underlying matrices W,'s associated with matrix quadratic
forms' Y’ VV,-Y’S are symmetric, the original problem becomes much harder. because
the matrices Wi’s can no longer be factorized into square roots as can be done in the
case of nonnegative definite matrices.

Masaro and Wong (2003) obtained a set of verifiable, but cumbersome, necessary

and sufficient conditions about the Wishartness of the matrix quadratic form Y'WY
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Chapter 1. Introduction and Literature : T

with the symmetric matrix W in a normal random matrix ¥ with mean 0 and general
cov‘ariance Yy.

Recenﬂy, Masaro and Wong (2004a) used Jordan algebra horhomorphismé to fur-
ther obtained a quite generalized extension of Cochran’s theorem. They extended the
problem to the case of the Hg-valued matrix quadratic forms in a real, complex or
quaternionic normal random matrix Y with zero mean and general covariance, where
']HIS denotes the family of n. x n Herrhitian matrices over A;. Here Ay is R (the set
-of real numbers), C (the set of complex numbers) or H (the seﬁ of the division ring.
of qilarternions) according to d = 1,2 er 4‘. However, their generalization ie fer away
from the topic with which some statisticians are concerned. |

In addition, Cochran’s theorem has been extended and generalized in other direc-
tions. It was noted that Cochran’s theorem on the distributions of quadratic forms in
normal random variables can be equivalently formulated as a rank additivity result
for symmetric-idempotent matrices. The various generalizations of Cochrank’s theo-
rem regarding the underlying matrices Wy, Wa, ..., W, with certain properties were
obtained by Anderson and Styan (1982), Styan and Takemura (1983), Baksalaryiand
Hauke (1990), Semrl (1996), Behboodian (2001), Waterhouse (2001), Lesnjak (2004)
and Tian and Styan (2005). Anderson and Fang (1987) extended Cochran’s theo-
rem from normal distributions to elliptical contoured: distributions ineluding the case
of tripotent matrices and left-special distributions. An interested reader cankﬁnd‘
the further extensiyons‘of Cochran’s theorem in elliptically contoured distributions in
Zhang (1989), Anderson and Fang (1990), Fang and Zhang (1990), Wang and Wong

(1995), Wong and Cheng (1998, 1999).
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Chapter 1. Introduction and Literature ' 8

Another important’ ektension of Cochran’s theorem is one called the extended
problem in Section 1.1. Luther (1965) established the equivalence between a quadratic
form distributed as' the unique difference of two independent chi-square random vari-
ables and the tripoteney of the undérlying matrix of this quadratic form. The other
‘discussionb and correspondihg results concerniﬁg a difference of two independent chi-
squafe random variables and the’tripotency of the underlying matrix can be found in
Graybill (1969), Rao and Mitra (1971) and Anderson and Styan (1982). More gener-

- . ally, Baldessari (1967) obtained the necessary and sufficient conditions for-a quadratic
form, in normal random variables, to be distributed as a given linear combination of
independent chi-square random va’riables, generalizing the results of Graybill and
Marsaglia (1957) and Luther (1965). Later, Tan (1977) extended Baldessari’s result
to singular normal random variables. Khatri (1977) further extended the result of
Baldessari (1967) to a singular covariance matrix, to a quadratic form family and to
a quadratic expression family.

Tan (1975) extended the eﬁ(tended problem from univariate case to multivariate
case. He gave a set of necessary and sufficient conditions for matrix quadratic expres-
sions; in a normal random matrix with a Kronecker product A ® ¥ covariance matrix,
to be independent family of random matrices distributed as differences of independent
noncentral Wishart random matrioes. Mathai (1993) introduced the noncentral gen-
eralized Laplacian distribution and obtained some univariate versions of Cochran’s
theorem. The distribution considered in Mathai (1993) is, with a change of scale,

~ one considered in Graybill (1969). Wong and Wang (1995) extended Tan’s results to

the case of a general covariance matrix. They gave a set of necessary and sufficient
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Chapter 1. Introduction and Literature ‘ : 9

conditions for matrix quadratic expressions to be an independent family of random
matrices distributed as differences of independent noncentral Wishaft random matri-
ces.

Recently, Masaro and Wong (2004b) obtained a set of verifiable, but cumbersome,
necessary and Sufﬁcient conditions for a matrix quadratic form, in a normal random
matrix Y with zero mean and general covariance, to be distributed as a differeﬁce
of two independent Wishart random kmatrices with a diagonal common covariance A.
Further, they used certain Jordaﬁ algebra homomorphisms to dérive a set of general
necessary -and suﬁicient conditions for matrix quadratic forms, in a normal fandorﬁ
matrix Y with zero mean and general covariance, to be an independent family of

random matrices distributed as differences of independent Wishart random matrices.

1.3 Owur Motivation and Researéh Results

The underlying matrices a,sSOCiated with matrix quadratic forms are symmetric rather
than nonnegative definite. This was a condition assumed in Coéhran’s univariate ver-
sion in 1934. So, differentiatihg from the existing research results, it has been our
motivation and goal to use a matrix approach to establish a fully general mul-
tivariate version of Cochran’s theorem concerning the (noncentral) Wishartness
and independence of matrix quadratic forms under the quit general conditions. For
instance, the underlying matrices of matrix quadratic forms are symmetfic, not neces-
sarily nonnegative definite, and the random matrix Y has a normal distribution with

general covariance structure, not necessarily Kronecker product nor positive definite.
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| ~ Chapter 1. Introduction and Literature ' 10

Moredvér, our motivation and goal also include the development of a fully general

mulfivariate version of Coghran’s theorem concerning differences of indepen-

dent (noncentral) Wishart random matrices under the same conditions via a matrix
ka’pproach.

This dissertation Will focus its attention onk our goals: 1) to dévelop the multivari-

ate versions of Cochran’s theorem conéeming the central or noncentral Wishartness

‘ _ and independence of matrix quadratic forms; 2) to develop the multivariaté versions

of Cochran’s theorem concerning the.independence and the differences of independent

vcentral or noncentral Wishart distributions.

Our research results consist of the following two parts. |

1. Let Y be an n x p multivariate normal random matrix with mean g and general
cOvafiance Zy. In the dissertation, the general covariance Xy of Y means that the
collection of all np elements in'Y has an arbitrary np X np covariance matrix. For the
symmetric matrix W, a set of general necessary and sufﬁéient conditions is derived for
the matrix quadratic form YWY to have a noncentral Wishart distribution. Then
a multiVariate version of Cochran’s theorem concerning the noncentral Wishartness
and independence of matrix quadratic forms is obtained. Some examples and the

usual versions of Cochran’s theorem are presented as special cases of this result.

2. Let Y be an n x p multivariate normal random matrix with mean g and gen-
eral covariance matrix Xy. For the symmetric matrix W, a set of general necessary
and sufficient conditions is derived for a matrix quadratic form to-be distributed as a

difference of independent noncentral Wishart random matrices (DINWRM). A multi-
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Chapter 1. Introduction and Literature v 11

variate version of Cochran’s theorem concerning differences of independent noncentral
Wishart random matrices (. DINWRMs ) is obtained. Two usual versions of Cochran’s
theorem concerning differences of independent noncentral Wishart random matrices

are presented as special cases of our result.

In addition, for the first part, we use a matrix approach to present the proven
result for the zero mean case. This case has been solved by Masaro and Wong (2004a).
They used Jordan algebra representations to obtain a general multivariate version of -
Cochfeﬁ;s tilegrem cencerning Wishartness and independence. Their result and proof
is more matkhematically involved. Our presentation provides a discrete repreéentation
version of Cochran’s theorem.

For the second part, we use a matrix approach to present the proven result fer the
mean zero case. This case has also been solved by Masaro and Wong (2004b). They :
used Jordan algebra homomorphisms to obtain the necessary and sufﬁcient conditions
for the matrix quadratic forms Y’ A WgY,k ..., YWY to be an independent
family of random matrices distributed as differences: of independent Wishart mndem ,
matrices (DIWRMs). Their result and preof is also more mathematically involved.
QOur presentation provides a discrete representation version of Cochran’s theorem

concerning DIWRMs.

1.4 The Organization of this Dissertation

This. dissertation falls into five chapters. Chapter 1 introduces Cochran’s theorem,

follows the track of its development and reviews the literature on various versions of
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Cochran’s theorem during several decades. Chapter one also states our motivation
and research'resuits which are sdme extensions of Cochran’s theorem.

: Chapter 2 déals with the notations and preliminaries which are useful to the sub-
séquent ch_apters. ‘It inchides matrix algebra, e.g. Kronecker products, the Moore-
Penrose inverée. It introdﬁces‘Wishart distributibns, noncentral Wishart distribu-
tions, matrix quadratic forms ahd the moment generating functions. It also states.
some‘ useful lemmas which are used in the derivation of our main results.

| Chapter 3 is entirely devoted to the development of the multivariate version of
Cochran’s theorem concerning the central or noncentral Wishartness and indepen-
dence of matrix quadratic forms in 'norrhal random matrix- Y with méan 1 and gen-
Feral covariance Xy. For the symmetric matrix W, a set of general necessary and
sufficient conditions (Theorem 3.3.1) is derived for the matrix qﬁadratic form YWY
to be distributed as a noncentral Wishart random matrix. For the symmetric matri-
ces Wi, Wa, ..., Wi, a set of general necessary and sufficient conditions (Theorem
3.4.2) is obtained for the matrix quadratic forms YWY, Y'WLY, ..., YWY to be
an independent family of Wishart random matrices. Some examples and applications
are presented. The usual versions of Cochran’s theorem are presented as special cases
of these results (from Corollary 3.3.4 to Corollary 3.4.5). As the intermediate result,
we use a fnatrix approach to kobtain a discrete representation Version of Masaro and
Wong’é recent resﬁlt (2004a). Namely, a set of succinct and verifiable necessary a_nd
sufficient conditions is established for the matrix quadratic form YWY with the sym-
metric matrix W to be distributed as a Wishart random matrix (Theorem 3.1.3 and

Theorem 3.1.1 for a special case). Then a set of succinct and verifiable necessary and
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sufficient conditions is developed for the matrix quadratic forms Y’ WlY, Y'WLY, ...,
Y'W;Y with the symmetric matrices Wy, Wy, ..., W) to b‘e an independent family
of Wish’art'random matrices (Theorem 3.2.4 and Theorem 3.2.3 for a special case).
Some examples and bapplications are presented. Also, we use the matrix‘ approach to
present the main result (Theorem 3.2.9) obtained by Masaro and Wong (2004a). -
Chapter 4 is devoted to the multivariate version of Cochran’s theorem concerning
differences of independent central or noncentral Wishart random matrices. Let ¥ be .
normal . random matrix with mean g and general covariance Z)y For the symmetric
matrix W, a set of general necessary and sufficient conditions (Theorem 4.3.1) is de-
rived for the matrix quadratic form YWY to be distributed as a difference of two
independent noncentral Wishart random matrices. For the symmetric matrices Wi,
Wa, ..., W, of order n, a set of general necessary and sufficient conditions (Theorem
4.4.1) is obtained for the matrix quadratic forms Y'W1Y, YWY, ... YWY to be |
an independent family of random maftrices distributed as differences of independent
noncentral Wishart random matrices. Some special cases are presented (from Corol-
lary 4.4.2 to Corollary 4.4.4). ‘As an intermediate result, we use a matrix approach to
obtain a refined and improved version of Masaro and Wong’s recent result (2004b).
Namely, a set of succinct and verifiable necessary and sufficient ‘conditions is estab-
lished for the matrix quadratic form YWY with the symmetric matrices W to be
distributed as a difference of two independent Wishart random matrices (Theorem
4.1.2 and Theorem 4.1.1 for a special case). Then a set of succinct and verifiable nec-

essary and sufficient conditions is developed for the matrix quadratic forms YWY,

Y'W,Y, ..., YWY with the symmetric matrices Wi, Wa, ..., W, to be an inde-
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pendent family of random matrices distributed as differences of independent Wishart
: random matrices (Theorem 4.2.2 and Theorem 4.2.1 for a special case). Some special
cases are presented (from Corollary 4.2.3 to Corollary 4.2.6). Also, we use the matrix
; approach kt_o present the main result (Theorem 4.1.8) obtained by Masaro and Wong
(2004b).

Chapter 5 outlines.some considerable topics and ideas on the problems discussed
in above chapters for the future research.

The appendix éttaches the proof of a set of necegsary and sufficient bconditions’,
thained'by Masaro and Wong (2004b), for a matrix quadratic form, in a normal
random matrix with zero mean 0 and general covariance Yy, to be distributed as
a difference of two independent Wishart random rﬁatrices with a diagonal common

covariance A.

Finally, the index of symbols lists the common symbols used in this dissertation.
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Chapter 2
Notations and Preliminaries

Chapter 2 will deal with the notations and preliminaries which are useful to the sub-
sequent chapters. It includes some concépts of matrix algebra, e.g. the trace inner
product, the Cartesian product, Kronecker Products, the Moore-Penrose inverse, the -
idempotency, the tfipotency and the commutation matrix.” [t defines Wishaft distri-
butions and noncentral Wishart distributions, and matrix quadratic forms and their
moment generating functions. It also states some useful lemmas which are used in.

the derivation of our main results in the subsequent chapters.

2.1 Matrix Algebra

In this dissertation, we shall use M, 5, to denote the set of n x p matrices over the

real set R. The trace inner product <, > equipped in M,,,, is defined as

< A B >=tr(AB') for all A, B € My, o (21)

15
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where B’ is the transpose of B. We shall use ||.|| to denote the trace norm in the
mvat‘rices’set Myxps deﬁnéd as HAI|2 =< A A >. We shall use S, to denote the set
of symmetric matrices of order p over the real set R and use Hézl Sy to denote the
; Cartesian product of the symmetric’matrices set S, equipped with the trace inner

product <, > defined as

i
< (S,i)’ (5,) >= Z < 8;,8; > for all s;; §; S Sp, t=1,2,...,1L ] (2.2)

i=1

We shall use r(A) tokdenote the rank of matrix A and use A" to denote the
Moore-Penrose inverse of matrix A if, for the matrix A, there exists a matrix At
Such that AT AA* = AT AATA = A, (AAT) = AAT and (ATA) = A+A. When
A is nonnegative definite (nn.d.) and o > 0, A% will denote the ath n.n.d. root
of A, A“"‘ will denote the ath n.n.d root‘of A*. and A° will denote ATA; thus
AV = ACA-om Amahe,

We shall use bold-face lower case symbols or light-face upper case symbols to
denote xhatrices or vectors. We shall use N, to denote the set of nonnegative definite
matrices.-of korder p over the real set R.

We shall use ey to denote the matrix whose ijth entry is 1 and all other entries 0

and E;; to denote the symmetric matrix of order p whose ijth entry and jith entry

: vboth are 1 and all other entries 0. Write

We shall call E,, the basic basis of the set Sp,.
We shall use sr(A) to denote the spectral radius of the square matrix A, i.e.

sr(A) = maz{|A| : X is an eigenvalue of square matrix A}.
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The sqﬁare matrix A is said to be idempotent if A% = A, to be tripofent if
A3 = A. The matrices A and B are said to be orthegonal if A’B =0, and A is said
to be primitive in a family if A is non-zero and can not be written as the sum of two
nonzero orthogonal idempotent elements in the family. |

For the nonnegative definite matrix X of order p, there exists an orthogonal matrix
H,ie. H'H = I, where I, denotes the identity matrix of order p, such that H’ EH =

diagloy, 09, ..., 0p]. Write
Hp = {Hij = HEin, 1 S % S] Sp, Eij € Ep}

We shall call H,, the similar basis (of the set S,) associated with 3. The “similar”

is due to the similarity between the matrix H;; in H, and the matrix E;; in E,.

Lemma 2.1.1. If A is a nonnegative definite matriz of order np with rank r(A) = q,

theh there exists a g X np matriz L of rank q. such that
A=LL, L=][Ly,Ls,...,Ly. (2.3)
U)Zth Lz E Mq)(n.

For the n X p matrix Y, we shall write Y into Y = [y1,y2,...,¥n/, ¥i € R?, where
R? is the p dimensional real space, and use vec(Y) to denote the np dimensional vector
[y, y2,. s ¥n']’. Here the vec operator transferms a matrix into a vector by stacking
the rows of the matrix one underneath the other. For A in M, and B in My,
we shall define the Kronecker product of matrices A and B, denoted by A ® B, as
A ® B = [a;;B]. The Kronecker product is also often called the direct product or
the tensor product. The connection between the Kronecker product and the vec of

matrices is often used in the calculations-of our results.
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- Lemma 2.1.2. If A € M,»q, B € M, and Cec My, then

(A ® B)vec(C) = vec(ACB'). B ’ (2.4)

Moreover, the Kronecker product ® also has the following properties, see Rao and

Mitra (1971), Chapter 1, Kruskal (1975) and,Muirhe.ad (1982), Chapter 2.

(A®C)(B& D)= (AB)® (CD), (A B) = A' 9 B, | (2.5)

tr(A® B) = tr(A)tr(B), (A ® B)* = A* ® B™. 7 (26)

The following lemma, will be often used in the proofs of our results in the subse-

quent chapters.

Lemma 2.1.3. For A, B and C’,FAB'B = CB'B is equivalent to AB" = CB’, and

B'BA = B'BC is equivalent to BA = BC.

Proof. For A, B and C, multiplying both sides of the equation AB’ = CB’ on the
~ right by B yields equation AB'B = CB'B.

Conversely, multiplying beth sides of the equation AB’B = CB’'B on the right,

respectively, by A’ and C’ yields equations AB'BA’ = CB'BA’ and AB'BC" =
 CB'BC'. It follows that
||AB’ —~CB||? =< AB' ~CB',AB' —CB' >= tr((ABf — CB)(AB' - CRBY)
=tr(AB'BA' — AB'BC' — CB'BA' + CB'BC") = 0,

ie. AB'=CB.

Similarly, it is easy to prove the equivalence between BA = BC and B'BA =

B'BC: ' ~ O
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The following lemma is due to Masaro and Wong (2004a).

Lemma 2.1.4. Suppose' A and B are symmetric matrices of order p with A? = A

and AB +BA=2B. Then'AB = BA.

The vectors vec(Y') and vec(Y') clearly contain the same np components, but in

a different order. We shall define the commutation matrix K, of order np as follows
Kppvece(Y') =vec(Y), Y € Muyp.

Note the fact that the commutation matrix K, is the unique np X np permutation
matrix which transforms vec(Y”) into vec(Y). The commutation matrix K,y, has
the following properties, see Magnus and Neudecker (1975) or Magnus and Neudecker

(1991), Chapter 2.
K, = Kpn and K, Kpp = Iy, (2.7)

The key property of the commutation matrix Kngp enables us to interchange the two

matrices of a Kronecker product.

Lemma 2.1.5. Let A be a p X g matriz and B an n X r matriz. Then
K A®B)K,=B®A, Kpn(BRAK,;=ARB. (2.8)

With the commutation matrix K,,,, the relation of the covariance matrix ¥y of

Y and the covariance matrix Sy of Y’ can be easily expressed as
Ey = Evec(Y) = EKnpvec(Y’) = Kany/K;lp or Ey/ = K;LpEyKnp. (29)

(2.9) implies that the covariance matrix Xy~ and the covariance matrix Xy are similar.
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Lemma 2.1.6. Let ¥y and ¥ be nonnegative deﬁn.z'te matrices of order np and p,

respectively, W be a symmetric matriz of order n and s, § be symmetric matrices of

ord‘er'_p. Let
F(s,5W,5y) = Sy(W @5)Sy (W ®8)Sy
and
O(s,5,W,L) = L(s @ W)L'LE® W)L’
: Thén
Sy [W ® (s55 + 558)[Sy = F(s,5, W, Sy) + F(,s,W, Sy) (2.10)

18- equivalent to

L{(s55 + 558) @ W]L' = O(s,5, W, L) + ©(&,s, W, L) (2.11)
where Syr = L'L, L =Ly, Lo, ..., Ly, ¢ = rank(Sy), Li € Mgxn, i =1,2,...,p.
Proof. There is a ¢ x np matrix L with ¢ = rank(Xy-) such that Xy, = L'L from
Lemma 2.1.1. Since by (2.7)-(2.9)

Ty (sT8 @ W)Ey/ zKllpEyKnpK,'w(W ® sX8) Knp K, Xy Ky
=K, Sy (W @ s¥8) Ly Kpp,
and |
| Ly (s @W)Ey/ (8§ @ W)y
= K, Sy Knp K, (W ® 8) K K, iy X Knp Ky (W & 8) K pp K, Yy K

— KISy (W ©5)Zy (W & 8)Sy K.
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(2.10) is equivalent to
Sy [(s55 + §58) ® WSys = O(s,5, W, Sy') + 3,8, W, Syr).  (2.12)

Using L'L to replace Ly in Eq. (2.12) above equation and then by Lemma 2.1.3, we

have completed the proof of the desired result. . , O

We shall repeatedly use (2.11) to replace (2.10) in the proofs of the results in the
subsequent chaptefs.

The following property is useful when we focus our attention on the set Sp.

Lemma 2.1.7. The following statements (a) and (b) are equivalent.

(a) For any s € S,
Sy(W @ sIs)Sy = Sy (W @ s)Sy(W ®@8)Sy; (2.13)

(b) For any s,§ €'S,,

- Ty[W ® (sE5 + §2s)jz:y = F(s,5,W,Zy) + F3,s, W, Zy). ‘ (2.14) -
Proof. Since

Sy (W @ s58) Sy = %[zy(w & 58)Dy + Sy (W @ s55) Ty ],

it suffices to show that (a) = (b). Note that for s,5 € §,,

Sy [W © (s55 + 558)] Ty = %23, (W ® (s +8)S(s +5) — (s — 5)(s — §))) Dy

Since s + §,8s — § € Sp, with (a) and simple operations, we obtain (2.14) and that

completes the proof. ‘ O
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We shall use < S > to denote the linear span of a given set S . The folloWing

lemma is due to Wong and Wang (1995).

Lemma 2.1.8. Let ¥ € N, then the following conditions are equivalent.
(a) T#0;
(b) < {(sZ)'s: s€S,} >=8§, for positive integer n.

Lemma 2.1.9. The following conditions are equivalent.
(a) < {sEyus: s €Sy} >=8, for any Ey; € By, i =1,2,...,p;

(b) < {sEysE;js : s € Sp} >= Sy for any i,5 € {1,2,...,p}.

2.2 Cehtral and Noncentral Wishart Distributions

Let y be a p x 1 real random vector with mean vector u and covariance matrix X.

Namely,'
w=E(y); ¥ =Cou(y) = E(y - E(y))(y - E(y))',

- where E denotes the expected value. If y is a multivariate normal distribution then we
write y ~ N,(u, £) where ~ means distributed as. In the case of ¥ being nonsingular

the density function of y is given by

fly)=

1 1 »
(zﬂ)p/2|2\1/2exp{_§ <Y - ET(y —p) >} (2.15)

In the case of ¥ being singular, there exists a p x ¢ matrix L of rank ¢ (< p) such
that

y=p+ La.
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Then

E(y) = p+LE(z), ¥ =Cou(y)=LCou(z)L,

“implying that there exists a ¢ x 1 vector z such thaf z ~ N(0, I,) and z has its density
function. See Mathai et al. (1995), Chapter 1, and Muirhead (1982), Chapter 1, for
more details about the multivariate normal distributidn.

The n x p random matrix Y taking the real values in set M”XP is said to have
a real multivariate normal distribution with mean (matrix) py € M,x, and covari-
ance {matrix) Xy E N, if the vector vec(Y') has a muitivariate normal distribution

Nop(vec(py ), Ey). In this case we write Y ~ ./’\/'m(p(p,7 Zy). Npsi (2, Z) ‘is nothing

else but Np(p, X).

Definition 2.2.1. If A = X'X, where X is an m X p random matriz normally
distributed as Npxp(0, I, @ £) with ¥ € N, then A is said to hqve the (central)

Wishart distribution with m degrees of freedom and covariance matriz ¥.

We shall use Wp(m, %) to denote the Wishart distribution with m degrees of free-
dom and covariance ¥ of order p, and write A ~ W,(m, ¥) if A has this distribution,
where the subscript on W denotes the size of the matrix A. A is also said to be a
’Wishart random matrix.

When m 2> p, A = X'X is nonsingular and then the Wishart distribution
W,(m,%) has a density function. When m < p, A = X'X is singular and the
Wishart distribution W,(m, %) does not have a density function, see the references
Muirhead (1982), Chapter 3 and Chapter 10, Eaton (1983), Chapter 8, and Srivastava

(2003) for more details.
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The Wishart distribution generalizes the chi-square distribufion.

Wé shall use Y'WY o VVI,(ml7 ) - Wp(mg, E)‘ to denote that Y'WY has the
distribution of the difference of two independent Wishart random matrices with dis-
tribution ‘Wp(ml, %) and Wy(mg, £). In this case, YWY is said to be distributed as

a difference of independent ‘Wishart random matrices (DIWRM).

Properties of Wishart distributions are given‘ in the following two lemma.

" Lemma 2.2.1. If YWY ~ W,(m,Z) and H is a p X k matriz of rank k, then

(YHYW (Y H) ~ Wi(m, H'SH).

Lemma 2.2.2. IfY’WY ~ Wy(mi, ) —W,(m2, X) and H is a p X k matriz of rank

k, then (Y HYW (Y H) ~ Wy(my, H'SH) = W,(ma, H'SH).

Definition 2.2.2. If A = X'X, where X is an m X p random matriz normally
distributed as Npxp(ph, Im @ ) with £ € N, then A is said to have the noncentral
Wishart distribution with m degrees of freedom, covariance matriz ¥ and non-

centrality matriz A = py'p.

We shall write that A4 is W,(m, 2, A) or A ~ Wp(m, Z; A). A is also said to be a
noncentral Wisharf random mafrix |

The noncentral Wishart distribution generalizes the nkoncentral chi-square dis-
tribution in the same way that the Wishart distribution ‘generalizes the chi-square
distribution. The Wishart distribution is one special noncentral Wishart distribution
with g = 0 and then A = 0. |

We shall use YWY ~ Wy(mq, 2, A1) — Wy(ma, £, A2) to denote that YWY

has the distribution of the difference of two independent noncentral Wishart random
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matrices with W,(my, X, A1) and W,(mg, £, A2). In this case, YWY is said to be dis-
tributed as a difference of independent noncentral Wishart random matrices
(DINWRM).

The properties of noncentral Wishart distributions are given in the followiﬁg two

lemmia.

Lemma 2.2.3. If YWY ~ W,(m, %, X) and H is a p x k matriz of rank k, then

(YH)W (Y H) ~ Wi(m, H'SH, H'AH).

Lemma 2.2.4. If YWY ~ W,(m1,Z, A1) — Wh(ma, X, A2) and H is a p X k matrz

of rank k, then (Y HYW (Y H) ~ Wy(mq, H'SH, H' X H) — W,(me, H'SH, H' X\ H).

Above lemmas will be used repeatedly in the subsequent chapters.

2.3 Matrix Quadratic Forms (MQFs) and Moment
Generating‘ Functions

Let y be a px 1 real normal random vector. Then for the symmetric matrix W of order |
p, V'Wy is called a quadratic form in a normal random vector y. Theoretical results
on YWy as well as applications and generélizations are available from Mathai and
Provost (1992). To distinguish it from the quadratic form, er shall call yWy+a’ y+d
a quadratic expression in y where ais'a p x 1 vector and d is a real number. Regarding
quadratic forms and quadratic expressions we refer the interested reader to Mathai
et al. (1995), Chapter 2, for more details. |

For the symmetric matrix W of order n, we shall call YWY a matrix quadratic
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férm' (MQF) ina noimal random matrix Y and call YWY + BY + Y'B+C a
matrix quadréﬁé expfession in-a. normal randofn matrix Y where BisapXxn
matrix and C'isa syfnmetric matrix of order p. In this dissertation, we shall focus our
ka/ttention on the matrix quadratic form Y'WY as well as a family of matrix quadratic
forms Y’ Wlf, Y’WQYV,k L YWY We shall use @ to denote YWY as well as
Y'WY + BY —l— Y'B + C without distinction.
We are interested in whether the matrix quadratic form YWY is distributed as
'a Wishart random matrix in the case g = 0 or a noncentral Wishart random matrix
in the c.ase p # 0. Necessary and sufficient conditions for the matrix quadratic form
Y'WY to have a Wishart distribution W,(m, £) or a noncentral Wishart distribution
W,(m, X, A) will be investigated. The property of the métrix quadratic form YWY
distﬂbuted as ak Wishart random matrix is called its Wishartness. In the similar
way, the property of the matrix quadratic forﬁl Y'WY distributed as a noncentral -
Wishart  random matrix is called its noncentral Wishartness. For a set of sym-
*metric matrices Wy, Wa, ..., W, 6f order n, we are interested in the independence as
well as Wishartness or noncentral Wishértness of the matrix quadratic fdrms YWY,
Y'WoY, ..., Y'W,Y. We are also interested whether a set of matrix qﬁadratic forms
is an independent family of random matrices distributed as differences of independent

_ (noncentral) Wishart random matrices.

Definition 2.3.1. If Q is a matriz quadratic form, the moment generating function,

denoted by Mg(s), of @ is defined as

My(s) = E(e<®9”), s € S,. 2.16
Q 4
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We often write M (s) instead of Mg(s) for short.

For the symmetric matrices Wy, W, ..., W, of order n, we haVé a set. of matrix
quadratic’e'xpressions {Q:}_;, where Q; = YWY + B'Y +Y'B + C, B; € Muxyp,
Ci €8S, i =12,...,1. The following lemma, due to Wong et al. (1991), gives

the joint moment generating function M(s) of a set of matrix quadratic expressions

{Qitier-

" Lemma 2.3.1. LetY be annXxp random matriz normally distributed as Nopxp(tt, By )
and Wy, Ws, ..., VVl be symmetric matrices of order n. Then the joint moment

generating function M (s) of matriz quadratic expressions Qi, Q2, ..., Qi is given by
M(s) = |, — 25* | exp{< s, X> 42 < p*, Sy (Ly — 25 1520 >} (2.17)

where S =S, x S, x -+ xS, (I times), s = (s:) € S, T* = SL[, (Wi @ )52,
pr o= Zizl vec(Wips; + Bisy), Ai = pf'Wip + Bip+ p/'Bi + C; € Sp, A = (X)) €S

and sr(X*) < 1.

Proof. Let Q = (Q;), then for s € S,

1
<5,Q>=<(2),(Q) >= ) <s,Qi>
i=1
!
—_—Z{< SZ‘,YIWZ'Y >+ < SZ‘,Béy >+ < Si,YIBi >+ <s;, G >}
i=1 '
!
=3 {<Y,W,¥s; > +2 <Y, Bjs; >+ <s;,C; >}
i=1 : .
l
= Z{< vec(Y), (W; @ s;)vec(Y) > +2 < vee(Y),vec(B;s;) > + < s;,C; >}
i=1

(2.18)
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Let vec(Z) ~ Nup(0, 1), then vec(Y) = vec(p) + Byvec(Z) ~ Nyp(vee(p), Zy) and

1 (218) becomes
< 8,Q >=<vec(Z),Lvec(Z) > +2 < vec(Z), 2;//2,;4* >4 <8, A>.

Thus by (2.16)

M(s) ;—E(ea:p{< s,Q >}

1 1 |
=W/gg emp{—§ < wec(z),vee(z) > + < vec(z), L vec(z) >
np

r2< vec(z), 2;/2;;* >+ <8, A>}dz .
1 1 |
:—(2”)@/2 /§R"P exp{—ﬁ < vec(z) — a}, (Inp — 25%)(vec(z) — ) >
1 j |
+ <8, A > +§ < (Inp — 25", a > }dz.

where a = 2(I,,, — 22*)“1Z¥2u*. Therefore, for sr(X*) < 1/2,
. : 1
M(s) =|I,, — 25*| "V 2exp{< s, A > +5 < (Inp — 25" ), ¢ >}
=1y ~ oDV 2erp{< s, A > +2 < ptt, Y2, — 2501 s 2 >},
| O

Let us discuss the moment generating functions of some special and useful matrix
quadratic forms. The following two corollaries are the immediate consequences from

Lemma 2.3.1.

Corollary 2.3.2. LetY be annxp random matriz normally distributed as Noxp(pt, [n®

Y)), then, the moment generating function M(s) of Y'Y is given by

M(s) = |I,— 282512 2ezp{< 5, X > +2 < A, sTH3([,—251/2sTY2) 1125 >}

(2.19)
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forall s € S, such that sr(SY/2sTY?) < 1/2 with A = p' .

Proof. - In Lemma 2.3.1, taking ¥y = L,/ ® X, [l =1, W; = I, and s = s, €5, for all

s € S, such that sr(X/2s5Y/?) < 1/2, we obtain from (2.5)

o = Sy @ 8)5Y2 = (I, ® SY2) (I, ® s) (I, ® BY?) = I, ® Y2512,

So
I — 25|72 =|I, ® I, — 21, ® S/ 2sT1/?| 7112
(|| L, — 25262y V2 [T, oxl/2gnl/2|n/,
and '
SY2(Ly ~ 2591 (1, © $2)(L,,, — 21, © TV2%5V2) Y (I, & BV2)
| =1, ® [SV3(1, — 25V2s31/2) I p/2,
Thus

< pt, E;/Q(I »— 22"-)"1252/1* >=< vec(us), vec(ust/*(I, — 2512sx1/2)-151/2) >
— <y 1207 _ ovl/2 y1/2y~1531/2
=< gy, sE(I, — 25%sE7) T E s >,

implying that (2.19) holds. |

By Definition 2.2.2, (2.19) is the moment generating function of a random matrix |
distributed as the noncentral Wishart distribution W,(n, £, A) with A = p'p. For
convenience, we can use (2.19) to extend W,(n, ¥, A) so that the casen =0 or ¥ =0

is included.

Corollary 2.3.3. Let 'y be a p x 1 random vector normally distributed as Np(0,%).

Then the moment generating function M(s) of yy' is given by
M(s) = |I, ~ 2%} /2sx1/2|71/2

for all s € S, such that sr(Z'/?sX/?) < 1/2.
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The following corollary follows from Lemma 2.3.1, Corollary 2.3.2 and indepen-

dence,

Corollary 2.3.4. Let Q1 and @ be independent symmetric matrices of order p dis-
tributed, respectively, as Wy(my, X, A1) and Wy(my, T, X2). Then the moment gener-

ating function M(s) of @ = Q1 — Q2 is giveh by

M(s) = |I,— 25" 2s x| 7™ /2 1,4 251 25 T2 "M Peap{ < 8, Ay — Ay > +28, 4205}

©(2.20)

foralls € S, such that sr(3Y?s2V/?) < 1/2, where ®; =< Al,sEl/Q‘(Ip‘—221/V2821/2)‘1

T2 > and By =< Mg, sTV2(I, + OX1/2g31/2)~1T1/2g

In fact, (2.20) is the moment generating function of a random matrix distributed as
a difference of two independent noncentral Wishart random matrices with Wy (m1, , A1)
and Wy(ma, £, X9). For convenience,‘ we can use (>2.20) to extend Wp(my, 2, Ar)- b'
Wy(ma, £, A2) so that the case my = 0 or mg or ¥ = 0 is included.

The following lemma is useful in studying a difference of two independent Wishart
random matrices. It can be obtaihed by imita{:ing the proof of Theorem 2.3 in Wong

et al. (1991).

Lemma 2.3.5. Let Y be an nxp random matriz normally distributed as Noxp(0, Zy)
and 5 € N,. Then the following statements are equivalent propositions.

() YWY ~ W,(my, £) — Wy(ma, £);

(b) Forany s € S,,

|Inp — 22§/2(W ® S)Ei/ﬂ' — |Ip'— 221/2S21/2|m1|1p + 221/2S21/2|m2;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2. Notations and Preliminaries ‘ 31

' (c) The matriz Sy *(W®s)SY? and the diagonal matriz diag[L,, /852 —I,,,®
Y2532 0] € S, have the same characteristic polynomial for all s € S,; and

(d) For any positive integér k and any s € Sy,
tr(Sy (W ®s))* = [mi + (—1)emy)tr(Ts)*.

Proof. By Corollary 2.3.4 and analytic continuation, (a) and (b) are equivalent. Note
that (b) amounts to
() | I, — S2(W © )TV?| = |1, — SY/268Y/2/m| [ 4 $V/2s51/2)m2,

Replacing s with s/ (A € R) in (b'), we have
My — VAW @ 8)SY2| = [AL, — SY28Y2™ | AL + 21’/2521/2[’"2 RV ———}

implying that (c) holds and vice versa. (c) means that Xy/ 2(W®s)2§/ ? and diag[ln, ®
S2¥H2 ., ® $Y/2s¥Y2 0] in S,, have the same spectrum {\;}7Z,; equivalently, |
for any positive ihteger k and any s € Sp, |

k

tr (2;/2(W ® s)zly“) = tr (diaglln, ® SV%TY2, —I,,, ® 52512, 0])*

namnely,

k
tr (2;/2(14/ ® s)ziﬂ) = tr (diag[ln, ® (TV2sXV2)k 1., @ (SM2sT1/2)k 0])

= [tr(Im,) + (=1)Ftr(In,)]tr (XY 2s51/2)k,

which proves the equivalence between (c) and (d). O
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! Chapter 3
A Multivariate Version of
CoChran’s Theorem on Noncentral

- Wishartness and Independence

Let Y be an n x p multivariate normal random matrix with mean g and general co-
variance Ly. The expression “general covariance” ¥y of Y implies that the collection
of ail np elements in 'Y has ah arbitrary np x np covariance matrix. For a set of
- nonzero symmetric'matrices Wy, Ws, ..., W, of order n, we shall discuss necessary
and sufficient conditions for matrix quadratic forms YWY, Y’ WQY, L, YWY to
be fbmk jndependent family of noncentral Wishért random matrices with some integers
my, My, ..., My and non—cgntrality matrices Xi, A1, ...y Ap
For the symmeétric matrix W of ordkerkn, a set of necessary and suﬁicient conditions

is derived for the noncentral Wishartness of matrix quadratic form YWY (Theorem

3.3.1) in Section 3.3. For a set of symmetric matrices Wy, Ws, ..., W; of order n,

32
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a set of necessary and sufficient conditions is obtained for matrix quadratic forms
Y’ WlY, Y'W,Y, ..., YYW,Y to be an independent family of noncentral Wishart
random Ihatrices (Theorem 3.4.2) in Section 3.4. An example and the usual versibns
of Cochran’s theorem are presented as the special cases of our result. | |
In addition, as the intermediate result, we use a matrix approach to present the
proven result for the mean O case. This case has been solved by Masaro and Wéng ;
(2004a). They used J ordan algebra fepresentations to obtain a general multivariate
version of Cochran’s theorem concerning Wishartness and independence. Their re-
sult and proof is more mathematically involved. In our presentation, we provide a -
discrete representation version-of Cochran’s theorem in Section 3.1-3.2. For detéils,
in Section 3.1, we shall establish a set of succinct necessary and sufficient conditions,
in terms of verifiable matrix equations, for the matrix quadratic form Y'WY with
the symmetric matrix W to have a Wishart distribution. In Section 3.2, we shall
develop a set of succinct necessary and sufficient conditions for the matrix quadratic
forms Y'W1Y, Y'WoY, ..., Y'WiY with the symmetric matrices Wy, W, ... W to
be an independent family of Wishart random matrices. In addition some examples

and applications or corollaries are discussed.

3.1 Wishartness of a Matrix Quadratic Form (MQF)

First let us consider the simple case where the covariance 2. of the Wishart distribution

is a diagonal matrix. In this dissertation, without a special claim, we shall use A to
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denote a diagonal matrix of order p in the following form.
A = diag|oy,09,...,0:,0,...,0], r=r(A), 0; >0 (i=1,2,...,7).

The,folloWing theorem provides us with the necessary and sufficient conditions for a

matrix quadi‘atic form to have a Wishart distribution Wy(m, A).

Theorem 3.1.1. Let Y be an nxp random matriz normally distributed as Nyxp(0, Zy)
- with general cobarianée Yy and W be a symmetric matriz of order n. Then the ma-
“triz quadratic form Y'WY has a Wishart distribution Wy(m,A) for e nohnegative
integer mzf and only if there exists a A in N, such th’at for any elements t,t in the

basic base ]E,’,,

W 2 (tAE + EAD)Sy = F(t,§, W, 5y) + F(E, ¢, W, 5y) (3.1)
‘where F(t,t,W,5y) = Sy (W @ t)Sy(W ® E’)zy with

{t: Sy (Wet)y =0, t e E,} = {t:AtA =0, t cE,} (3.2)
and |

m=tr(Zy(W®& A+))/T(A). | ‘ (3.3)
Proof. By Lemma 2.1.1, decompose Ly~ as
Yyr=LL; L=[Ly,Lg,...,L,)

with L; € Mgyp, (1= 1,2, ... ?p) and r(Zy/) < ¢ < np.
Let

Bij = (LzWL; -+ LjWL;)/Z‘/O'iO'j, Z,j S Tr.
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Then Theorem 2.1 of Masaro and Wong (2003) tells us that (3.1)-(3.3) are equivalent :
to the following conditions: |

(A1) F(LWL) =m>0(i=1,2,...,r);

(A2) tr(LW L)) =mo; (i =1,2,...,7);

(A3) LWL} + L;WL; =0 for i or j>r

(B1) BZ = By;

(B2) 4B}, = Bii + By; i # j;

(B3) BiiBjj =0 i # j;

(B4) By;B;; + B;jB;; = B;; i # j; and

(B5) B = 2(BuBji + BjiBy) for distinct 3, 7, k.

Note that from (B1)-(B5), we also obtain

* Bij = BiiBijBj; + Bj;BijBui, i # j | (3.4)
and then
' Bi’ikBjk = 0, BijBk:l = 0 for distinet i,j, k, l. ‘ (35)

First of all, suppose conditions (Al)-(AB) and (B1)-(B5) hold. We shall show fhat
(3.1)-(3.3) hold.

For convenience, we shall use the 4-dimensional subscript to represent a péir of
elemenfs in the basic base E,. For example, if t = E; and t = Ej1Li<j<r
we use (44,17) to represént (t,t). By the strucfure of A and (A3), we only need to
consider these elements E;;, 1 < ¢ < j <r, in the basic base E,,. Then we divided all

4-dimensional subscripts from these elements E;;, 1 <4 < j <r into the following
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seven classes. Let ~

01_'=‘{(z'i,u') S 1< g‘ r},

Co={(ij,ij): 1<i<j g r},

Cy = {(i1,55) : 1<4,5 <mi#5},

Co={(i0, i) U (i) : 1<i<j<rl,

Cs = {(ik, jk) : 1 <4, <k <r;i,j distinct},

Ce = { (i1, 77 ) U (#'5",i5) - 1 <4,7 < 3" < ryi,d, 5 distinct}; and

Cr={(1j,i'j): 1<i<j<r1<i<y <4, 4,¢, 7 distinct}.
Then |

UC {(i7,i5): 1<i<j<n1<i’<j <r}

Write Q = {E;;:1 <4< j<r}. Then Q =UL,C;. So any 4—dimensional subscript
(ij, i'7") must be the element of one and only one set of Cy,; Cs, ..., Cr.

From Lemma 2.1.6, to prove (3.1), it is equivalent to show that for any pair of

elements in the basic base Ep,ywe have
L[(tAt +tAt) ® WL/ @(t t,W,L) +O(t,t,W,L). ; ’ (3.6)

Eqg. (3.6) follows from (B1)-(B5) and (3.4) with simple matrix calculations.
Exactly as in the proof of Lemma 2.1.6, (3.2) is equivalent to Eq. (3.7). So,

proving (3.2) is equivalent to showing that for any element t in the basic base E,,
{t: Lt W)L =0} =Ko (3.7)

where Ko = {t : AtA =0, t € E,}.
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Since
Ko={t: AtA=0} ={E;;: iorj>r}
and from (A3)
{t: Le®@W)L =0} ={E;: iorj>r},

This means that Eq. (3.7) holds.

By (2.8), (2.9), (A1) and (A2), |

1 1
tr(Sy (W @ AY) = tr(L(AT ® W)L') = tr(Ldiagl~ @ W,~ & W,..., %l ® WL
1 g2 :

= Z tr(LW L)) /o; = rm,
=1

which proves (3.3).
Next, suppose (3.1), (3.2) and (3.3) hold, we shall show that (A1)-(A3) and (B1)-
(B5) hold.

Taking (ij,75') € Cy, the left side value of (3.6) is
2L((E4AEy) @ W)L = 202 By

while the right side value of (3.6) is 202B;;B;;. Eq. (3.6) implies that (B1)holds.

Taking (ij,4'j’) € Ca, the left side value of of (3.6) is
2L((E¢JAE”) &® W)LI S 20'1'0']'(.81'1' + Bjj),

while the right side value of (3.6) is 80;0;B;;B;;. Eq. (3.6) means that (B2) holds.

Taking (ij,4'j") € Cs, the left side of (3.6) is

L((E4AE;; + Ej;AEy) @ W)L = 0,
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-~ while the right side of (3.6) is

0;0;(BiiBjj + Bj;Bii).

3 Eq. (3.6) impliés that B’jiBjj; = —ByBjj;, or B;;B;; is skew-symmetric. Then
|| Bii Byj|| =< BiiBjj, BiBj; >= tr(BiiBj;(BuBj;)) = tr(BiiBj;) = 0,

so B;;Bj; = 0, thus (B3) holds.

‘Ta‘kingv (i, 71") € Ci the left side of Ba. (3.6) is
L(EZAE; ® W)L + L(E;AE; @ W)L = 2,/576;0:By;;
| while the right ’side of Eq. (3.6) ié |
é\/-(TO'jUi(BjjBi:j 4 BijBiz').

(B4) follows from Eq. (3.6) and equivalently from (3.1).

Taking‘(ij,vi’j’) € Cs, the left side of Eq. (3.6) is
L(EgAEj, @ W)L' + L(EjAEy ® W)L = 2,/5:5,04B;;,
while the right side c;f Eq. (3.6) is
4,/7:5,01(BixBjx + BirBir).

Eq. (3.6) implies that (B5) holds.
As above discussed, (B1)-(B5) follow from (3.1).

By eq: (3.7),

{t: LEW)L =0} NE,={t : AtA=0}NE, ={E;; : iorj>r},
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that implies
L(Ei; ® W)L =0 foriorj>r, ie. L¢WL;~ + LWL, =0foriorj>r.

So (A3) follows.

Let

Se={S=L(s*@W)L: s" = , a€S,},

then we define the operation o on S, ag ;
1
S105; = 5(5'15'2 + 859;) for any 53, Sy € S,.

Note that By; = L(\/%_%E,-j @W)L' €8S, (1<i<j<r). By (3‘.'1), phe set S, is
closed under the operation o. From the abové proofs of (B1)-(B5), we have obtained
these facts that under the operation o, {B;; : 1 <14 < j <r} is a basis of the set S,,
only if By1, Bya, ..., By and Byji, + Bigi, + -+ Bi, ({81,502, -, 6} € {1,2,...,7})
are idempotent elements of S,. Moreover, By, Bas, ..., By, are nonzero, orthogonal.
They can not be written as the sum of two non-zero orthogonal idempotent elements
of S,. So.each of Byi, Baa, ..., By, is a primitive idempotent of S, and therefore each

of them has same rank, say (¢ > 0), i.e. ’r(Bii) =r(LLWL)=c¢1=12,...,r, (see

for example, Jacobson (1968)). Moreover, by (3.3),

T

m = tr(Sy(W®A™))/r(A) = tr(L(AT@W)L') /r = Ztr(B,-,-) /r=> r(Bi)/r=c,

i=1

which proves condition (Al).

And since
tr(L;W L)) = o4tr(By) = 0;7(By) = or(LiW L) = o;m,

(A2) holds and, therefore, the proof is complete. O
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‘ ‘Note that (3.1) and (3.2) determine the Wishartness of the matrix quadratic
~forms YWY while (3.3) »determines its m degrees of freedom if Y'WY has a Wishart
: dkistribution.b

We ’pro_vide an-example to illustréte the appli’cation of Theorem 3.1.1." This ex-

ample was discussed in Masaro and Wong (2003).

- Examples 3.1.2. Let Y = (Yii)axa ~ N3x2(0, Zy) with

- :
12 02><2 A

, 0 1

Ly = | Ogxa Oy Oaxo where A =

00

V7 S ( NOI
and )

1 o O

W=1g b ec ,a,b,cER.

0 ¢ O
L.

Then, we discuss the Wishartness of the matriz quadratic form YWY and determine

its degrees of freedom if Y'WY has a Wishart distribution.
Proof. The basic basé is

10 01 00

Ey =< By = , Bg = y Bog =
00 o 01
: 10
For the diagonal matrix A = , to determine the Wishartness of the matrix
01|

quadratic form YWY, by Theorem 3.1.1, it suffices to verify (3.1)-(3.2).
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Taking (t,t) = (£11, E12), we have

Ew 0 0 B
EY[W®(E11AE12-FE12AE11-)]EY= 0 0 0 0

{00
where B = and
01
Fi, 0 ¢ B
F(En, B, W, By) + F(Ew, Eu,W,Sy)=1 0 0 0 0

So (31) holds for (t,f) = (Ell,Elg). Slmllarly, when (t,f) = (En,EH), (Elg,Elg),,
(B, Ex), (Erz, Ey), (Ea2, Eap), respectively, (3.1) also holds. Here we can use a

Matlab programming to do these computations. -

t1 t3
Obviously, Ko = @. Let t = € H,. Then Ly (W ®t)Zy = 0, or
' t3 t2
I : ]
ti ts3 aty+cty atz+cty 0 0
iz 1o ats aty 0 0
00 0 0 00
: —0,
00 0 0 00 ’
0 0 Ctl Ct3 0 0

t1 t3 aty + cts at3+ct2 0.0

i.e. tl = t2 = t3 =0. We obtain

{t : Ey(W ®t)2y =0, te Ep} = @,
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whichi implies that (3.2) holds.
So (3.1) and (3.2) imply that the matrix quadratic form Y'WY has a Wishart
‘ distribution.

Finally, its degrees of freedom are given by (3.3). We have

IQ 0 A [2 o ‘CLIQ 0

, 1 )
m. = ét’l" 0 0 0 als bl, cly

A 0 12 -0 CIQ 0

1 1 ' _

A aA +cly O

Hence, it follows from Theorem 3.1.1 that YWY ~ Wsy(m, I3) with m = 1. |

Now we shall discuss the general case, where the covariance ¥ of the Wishart

distribution Wy(m, ¥) is a general nonnegative definite matrix of order p.

Theorem 3.1.3. Let Y be an nxp random matriz normally distributed as Nyxp(0, By)
and W be a symmetric matriz of order n. Then the matriz quadratic form YWY has
a Wishart distribution Wy(m, ) for a nonnegative integer m if and only if there ex-

ists a matriz ¥ in Ny, such that for any elements h, h in the similar base H,, associated

with 2,

Sy [W @ (hSh + hSh)[Sy = F(h, &, W, Sy) + (i, b, W, Zy) - (38)
with

(h: Sy(Weh)Sy =0} =K (3.9)
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where K= {h: ¥hY¥ =0, h € H,} and
m=tr(Sy(W @ £1))/r(Z). . ’ (3.10)

Proof. Since ¥ -€ N,, by lemma 2.1.1, there is an orthogonal matrix H of order p such

that H'H = I, and
H'SH = diag|oy,09,...,0:,0,...,00 = A, r =r(X), 0, >0, i=1,2,...,r.

And YH ~ Noxp(0, Sy w), where Yyn=({1® H")%y(I @ HY, follows from Lemma
212 and Y ~ Nyyp(0, Ty ).
Let

t = H'hH for any h € H,,.

The function t = H'hH is a one to one map from the similar base H,, associated with
¥ onto the basic base E,. By replacing h, h, ¥ and £y, respectively, with HtH’,
HtH', HAH' and (I Q H) Sy x(I® H') in (3.8)-(3.10), we obtain that for any elements

t and t in the basic base [E,,

Tyu[W ® (tAE + tAL) Sy = F(t, 8, W, Syn) + F(§,t, W, Zyn), (3.11)
{t : EYH(W ® t)zy]{ = 0} =Kq and (3.12)
m = tr(Syg(W @ A1) /r(A). - (3.13)

By Theorem 3.1.1, (3.11)-(3.13) are the necessary and sufficient conditions for H’ Y'WYH
to have a Wishart distribution Wy(m, A). So YWY ~ W,(m, %) follows from Lemma
2.2.1. The equivalence between (3.11)-(3.13) and (3.8)-(3.10) tells us that the converse

holds as well. |
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Remark 3.1.4. Note that, gwen the covariance matriz £, (8.8) and (3.9) deter-
mine the Wishartness of the matriz quadratic form Y'WY while (3.10) determines

its degrees of freedom if YWY has a'Wisha,rt distribution.

Theorem 3.1,3 is an important result of this chapter. Now let us discuss an

example and some corollaries as special cases of Theorem 3.1.3.

: Examples 3.1.5. Let Y = (Yij)axa2 ~ N3x2(0, Zy) with

A 00 1
11 1 1
S Yy = 0 0 0 where A = 2 2 and B = 2 2
11 1 1
2 2 2 2
0 0 B |. v
and B i
4.2 .2

W= 1|2 -1 0| €8s

" then, we discuss the Wz’shartnessvof the matriz quadratic form Y'WY and determine

its degrees of freedom if YWY has a Wishart distribution.

5 3
Proof. Consider the covariance X = > 2| There exists an orthogonal matrix
: 3 5
22
2 2 ‘ 1 0 ,
H= 2 such that H'XH = : ‘Then the similar base Hy associ-
V2 V2 0. 4
2. 72
ated with ¥ is given by
L1 1 0 % 1
Hy={Hy=| ° ' |, He= , Hy = ’
, 1 1 i
~3 2 0 -1 : 2
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To determine the Wishartness of the matrix quadratic form YWY, by Theorem 3.1.3,
it suffices to verify (3.8) and (3.9).

Taking (h,h) = (Hyy, Hy,), we have

- 0 0 2AH»B -
: ZY[W ® (HinAHy + HipAHq11)|Zy = 0 0 0
| 2BHjpA - 0 0
and |
0 0 2AH;3H\1B
F(Hy, Hia, W, Sy) + F(Ha, Hu, W, y) = 0 o 0
| 2BH{1BH12A . 0 | 0
Since

2AngB = 2AH12H11B and 2BH12A = QBHllBng‘A,

(3.8) holds for (h,h) = (Hy1, Hyp). Similarly, when

- (h,h) = (Hyy, Hy), (Hy, Ha), (Hia, Hy2), (Hiz, Haa), (Hao, Has),

respectively, (3.8) holds for them. Here we also use a Matlab programming for this

algebraic computation.

hi o hs
Obviously, K=0. Leth= | € Hy. Then Sy (W @ h)Sy = 0 or

hs hy

4AhA 0 2AhB
0 0 0 =0,

2BhA 0 BhB
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ie. h1+h2+2h3~—0 h1 =ho, hi+ho—2h3 =0 = hy = hg = hy = 0. It means
»that {h Ty(W @ h)Zy =0, he H,} = 0, which (3 9) holds.
So (3.8) and (3.9) 1mply that matrix quadratic form Y'WY has a Wishart distri-
\bution.’ |
Finally, its degrees of freedom are given by (3.10).- We havé '
— (S (W & E)/r(D)

A 0 0 4v+  2m+ 2%t \

i

-

0 0 B||2xt o0 Tt

tr1{lo o o 22+~2+0}

4AYT 24Xt 2ATT
= %—tr‘ 0 '0 0 = —12—[t7“(4AE+) +tr(BEY)] = 1.

2BY* 0 BY+

Hence, it follows from Theorem 3.1.1 that the matrix quadratic form YWY has a

Wishart distribution Wp(1,%). _ O

In Theorem 3.1.3, if the covariance ¥y of Y is replaced with the Kronecker product
A ® Y where A is a nonnegative definite matrix of order n, Theorem 3.1.3 is reduced

to the following corollary which was proved by Khatri (1963) and de Gunst (1987).

Corollary 3.1.6. LetY be an nxp random matric normal’ly distributed as Nyxp(0, A®
¥) for some A € N,,. Then, for W € S, the matriz quadratic form Y'WY has a

Wishart distribution Wy(m, £) for some m € {0,1,2,...} if and only if

AWAWA = AW A; (3.14)
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AWA # 0; and : : (3.15)

mzf(AW). | (3.16)

Proof. Using A® ¥ to replace Ty in (3.8) and (3.9), by (2.5), we obtain (3.14) and

(3.15). By (2.5), (2.6) and (3.10),

m =tr((A @ )W @ ) /r(E) = tr(AW ® ST7)/r(5)
—tr (AW (5°)/r(5) = tr(AW),

0 (3.16) holds and the desired result has been obtained. : 0

In Theorem 3.1.3, if we replace the covariance Ly of Y with the sum of spe--
cial Kronecker products, we have the following corollary which was also discussed in

Masaro and Wong (2004a).

Corollary 3.1.7. LetY be annxp mndom matriz norrrially distributed as Naxp(0, Zy).

Suppose Yy = EAHX)E%, r < p,-A €N, i =12...,r, and W € Sy
=1 :

Then the matriz quadratic form Y'WY has a Wishart distribution Wy(m, X)), where

,
No= Za,-Ei,-, for some m € {0,1,2,...} if and only if there ezist real numbers
i=1 o

o, >0, k=1,2;...,r, such that for all 2,5,k <r,

AiWAkWAj = O'kAiWAj; ‘ (317)

AWA; #0; and (3.18)

m Z ltr(A-W) (3.19)
T =1 7 o ‘
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Proof From (3. 1), (3.2) and (3.3), replacing Xy and 2 with Z A;®FE;; and Z o:Es,
=1 i=1
“respectlvely, we obtain that for-any t = (t;;),t = (t;) € IE,,,

o

S (OLAWA; = AW AW A;) ® Bis(t Bk + T Eut) Ej; = 0

=
or
: Z (O’kAiWAj‘— AlWAkWAJ) & (tikfkj + f{ktkj)eij =0, (320)
i,5,k=1 o : : : ‘
{t : Z AlWAJ ® Ez'z'tEjj = 0} = { Z EutE” = 0}
A ij=1 ‘ ; : 4,7=1
- Namely,
. Opyr  *
t: Z AZWAJ & EiitEjj =0;=<t: t= S Ep (321)
4,j=1 * * .
and
= tr (ZA We E'“E+> /r(Z Ztr (AW) tr(EuZ] ). (3.22)
i=1 ' og=1

Note that tfx; + Lixtr; can take the value 0 or 1 or 2 for any 7,k,j <r. So (3.20) is
equivalent to (3.17) and (3.21) is equivalent to (3.18). Since

ot = i: iEm',

=1
(3.22) becomes

T

== Ztr(A W)t ( Z ~—Ekk> = 12 %tr(A,-W),

i=1 ¢

therefore, we have completed the proof of the desired result. O
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In Theorem 3.1.3, if y is an n x 1 normal random vector with mean vector 0 and
covariance C, (3.8)-(3.10) are reduced to the familiar conditions which were shown

by many scholars in the sixties.

Corollary 3.1.8. Lety be an n x 1 random vector normally distributed as N, (0, C)
and W be & symmetric matriz of order n.. Then the quadratic form y'Wy has a
Wishart distribution Wy(m, 1), that is, a chi-square distribution with m degrees of

freedom for a nonnegative integer m if and only if

CWCWC = CWC; and , o L (3.23)
m=r(CW). ; (3.24)

Proof. In the univariate case p=1, Sy =C, £ = 1 (if @ ~ Wi (m,0), then Q/o -~
x*(m)) and h = 1. (3.8) is reduced to (3.23), (3.9) is reduced to an identity and

(3.10) is reduced to (3.24). a

In fact, (3.23) and (3.24) imply that m = r(CWC), see Styan (1970).
In Theorem 3.1.3, if the covariance Xy of Y’ is nonsingular, Theorem 3.1.3 réduces

to the following corollary.

Corollary 3.1.9. In Theorem 8.1.8, suppose Ly is nonsingular. Then the matrix

quadratic YWY follows a Wishart distribution W,(tr(W), Z) if and only vif there

exists a matriz ¥ € N, such that

Wel=WelE (WeI).
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* Proof. Since Sy is nonsingular, & must be nonsingular from (3.9). The desired con-

dition follows from (3.8). Since

S W e S W e syt

=S 1@ u (W e Sy(W 8 I)(I @ =715y’
—SPUes)W e D) Ies s
=nAW e/
| Z%,/Q(W ® 5-1)2? is idempotent. So by (3.10),
m = tr(Sy(W ® zﬁj /r() = r(zw(w ® 2OV /r(D)
=r(W QI H/r() =r(W).

O

With some matrix operations, the following sufficient condition is easily derived

from Corollary 3.1.9.

Corollary 3.1.10. In Theorem 3.1.8, if Sy is nonsingular and Y'WY ~ Wy(m, X),

then X.is a nonsingular covariance matriz and the W is a nonnegative definite matriz.

Corollary 3.1.10 tells us that the algebraic condi;cioﬁs obtained in Theorem 3.1.3 do
determine not ohly the distribution of a matrix quadrétic form but also the property
of thé underlying matrix W being nonnegative definite in the case of nonsingular Ey.v
So wheh Yy is nonsingular and W issyminetric rather than nonnegative definite,

_the matrix quadratic form YWY does not have any Wishart distribution. When W
is symmetric rather than nonnegative definite and the Wishartness of YWY holds,
then Xy must be a singular matrix. In addition, when ¥ is singular and Y'WY has

a Wishart distribution W,(m, £), then Ly must be a singular matrix.
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If we use the set S, to replace the similar base H,, in Theorem 3.1.3, we can easily

obtain the following result.

Theorem 3.1.11. LetY be annxp random matriz normally distributed as Nisp(0,Zy)
and W be a symmetric matriz of order n. Then matriz quadratic form Y’ WY has a
Wishart distribution W,(m, X)) for some m € {0,1,2,...} if and only if there ezists

a ¥ €N, such that ‘for any s €S,

Sy (W @ s5s)Sy = F(s,s, W, By) | ' | (3.25)
with

(s: Sy(WRs)Sy =0} = {s: ¥sT =0} . o (3.96)

and

m = tr(Sy (W @ 7)) /r(2).
Proof. By Lemma 2.1.7, (3.25) is equivalent to that for any s, 8 € Sy,

Sy[W @ (s£5 + 3%s)| 8y = F(s,8, W, Zy) + F(§,5 W, Zy). (3.27)

Since it is obvious to prove Eq. (3.8) from Eq. (3.27), it suffices to show that Eq.
(3.27) follows from Eq. (3.8) and condition (3.26) is equivalent to condition (3.9).

Assume that Eq. (3.8) holds. For any s, bé in set Sp, s and § can be expressed as
the linear combinations of hy; € Hp, 1 <7 < j <p,ie.

S = Z S,’jhi]', Sijg cR

1<i<j<p

and

§ = Z Suhp, Su € R.

1<k<i<p
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" Then we have
Xy [W ® (sZs + sEs)]E

Z Z sy [W ® (hz]thl + hklzhzj)]EY

1<i<j<p 1<k<l<p

Z Z sijéu|F hz]ahkla W,5y) + F(hkz,hu, W, Zy)]

1<i<j<p 1<k<I<p

=F( Y sihy, > Suhu, W,Sy)+ F( ) Suhw, Y sihy, W Sy)

1<i<j<p 1<k<l<p 1<k<i<p 1<i<j<p

= F(s,5,W,Zy)+ F(8,s,W, Zy),

that implies that Eq. (3.27) holds.

Note thaf (3.26) is equivalent to
{s: Syu(W ®8)Tyy =0} = {s: AsA =0} (3.28)
Where H is an orthogonal matrix such that
H'EH =A= diag[al,(fg,‘...,ar,O,...,O], r=r(X), witho; >0, 1=1,2,...,r.

~ And (3.9) is equivalent to (3.12). So it suffices to show that (3.12) is equivalent to
(3.28). |
Suppqse Conndition (3:12) holds. Let T = {t;; € E, : Zyg(W ® t;;)Zyy # 0}, a
subset of E,. Then the set < T > is é subsef of S, and, for any nonzero s e<T >,
we have | o

. EYH(W@)S)ZYH # 0.

It implies that

{S : EYH(W ®S)EYH = 0} =< {t : EYH(W ®t)2yﬂ =0, te Ep} >
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Since

{s: AsA=0}=<{t: AMtA=0,t cE,} >=< Ko >,

Eq. (3.28) holds from (3.12).

Conversely, suppose Eq. (3.28) holds. Since
{t: ALA=0, t €E,} = {s: AsA =0} NE,,
“and |
{t: Zyg(WRt)Zyn=0,t €E} ={s: ZYH(W ®s8)Xyn = 0} F!‘IE,,, ,
condition (3.12) holds. So the proof is complete. o o

Masaro and Wong (2004a) essentially obtained Theorem 3.1.11 as the special case
of their main result by using Jordan algebra homomorphisms in their technical report.
Their result was obtained for very genéral case and the proof is- more mathematically
involved. In this thesis, we consider the set S, and use a matrix approach stated in’
this svection to .obtain the same result ’as Masaro and Wong. So, the result given in
Theorem 3.1.11 has the advantage to be less mathematically involved while it gives
the same result as in Masaro and Wong (2004a).

Putting Theorem 3.1.3, Theorefn 3.1.11 and Corollary 2.3.1 of Wong et al. (1991)

together, we obtain the following corollary.

Corollary 3.1.12. LetY be an nxp random matriz normally distributed as Npxp(0, Zy)
and W be a symmetric matriz of order n. Suppose P is an idempotent square matriz

of order p. Then the following statements (a)-(9) are equivalent.
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(a) Y'WY has a Wishart distribution W,(m, X) with m degrees of freedom and
,covav‘"z'ance matriz 3. |

(b) There exists a 3 € Ny, such that forkany S € Sp,
Ly — S2W @ 8)SY?| = |1, _ sz,

( c) There‘ exists a X € N, ’sztach that for any s e Sp,

Ly — Zly/VZ(W ®s)Ty’| = Ifnp»; P® (ST,
(d) There ewisis a & € N, such that for aﬁy s €Sy,

SV W ©s)Sy? and P & (SY%s5Y?) are simz;lar.
(e) There exists a L € N, sucﬁ that ‘for any s € Sy,

tr(SY (W @ 8)Sy%)* = mir (ZV2%8Y2), k=1,2,....
( f) There ezists a © € Np §uch that for any s € Sp,
Ey(W ®s¥s)Ey = F(s,s,W,5y)

with {s Ty(W®@s)Zy =0} = {s:UsE =0} and m = tr(Ey (W ® 2*))/7"(2);

(g9) There exists a ¥ € N, such that for any h, h in the similar base H, associated

with E;
Sy [W@ (hSh + Bz:h)] Sy = F(h, b, W, Zy) + F(h, h, W, Sy)
with {h : Zy(W @ h)Sy = 0} = {h : ThY = 0} and m = tr(Ey (W @ 1)) /r(2).

It is seen that (g) of Corollary 3.1.9 is easy to verify, compared to the rest.
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3.2 Wishartness and Independence of MQF's .

We have studied the Wishartness of a matrix quadratié form in a normal random
matrix in Section 3.1. In this section we focus our attenfion on thé Wishartness and
independénce of a set of matrix quadraﬁc forms. 7

| Before establishing our succinct and verifiable multivariate version of Cochfan’s
Theorem; we give the following neéessary and sufficient condition for the independence
’of a set of matrix quadratic forms. The more general result refers to Lemma 3.4.1 iﬁ ‘

Section 3.4.

Lemma 3.2.1. Let'Y be an nxp random matriz normally distributed as Nyxp(0, Zy)
and Wy, Ws, ..., W, be symmetric matrices of order n.. Then the matriz quadratic
forms YWY, Y'WoY, ..., YWY are independent if and only if for any distinct

i,j€{1,2,...,1} and any t;,t; in the basic base E,,
Ty (Wi @ t:)Zy (W; ® t5)Zy = 0. ; (3.29)

Proof. Suppose the matrix quadratic forms Y'W1Y, Y'WaY, ..., YWY are inde-
pendent. For distinct ¢,j and any t;, t; € Ep, the trace inner products < t;, Y'W;Y >

and < t;, Y'W,Y > are independent. Since
< b, Y'W,Y) >=< vec(Y), (W; ® t;)vec(Y) >= vec(Y) (W; ® t;)vec(Y)
and vec(Y') has multivariate normal distribution Nouxp(0, Zy), we obtain
Sy (W; @ 6)Ty (W; @ t,)Sy =0

from Theorem 4s of Searle (1971), which (3.29) holds.
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Cobnveyrsely, suppose that for any distinct 4,5 € {1,2,...,} and any t;,t; € E,,
: condition; (3.29) holds. Then for any distinct ¢, j € {1,2,...,1} and any s;,s; €S,

condition (3.29) still holds, namely. for any s;,s; € S,
Zy(VVi"(X) Si)zy(Wj ®’ Sj)zy =0. ; : (330)

Let Y'WY = (Y'W.Y). To show that the matrix quadratic forms Y'W,Y, Y'W,Y,

.., Y'WY are independent, it suffices to show that :

!
Mywy(s) = [] Myw,y(s:)

=1

for s = (s;) in NV where A is a neighborhood of 0 inS= Sp X Sp X ... xS, (I times).

Now,

: l
i MY/WY(S) = E(exp < (Si), (Y,WzY) >) =F (expz < S,‘,Y,WiY >)
. i=1

‘ 5
=FE (exp < vec(Y), Z(W’ ® sz-)pec(Y) ~>>

i=1
!
=F <exp < wvec(Y)vec(Y), Z(W,; ® s;) >)
i=1
.. By Corollary 2.3.3,
‘ ~1/2
Mywyy(s) =

l§
I, ® I, - 2%y <Z(VV2 ® Si)> Yy

i=1

Then by condition (3.30),

(I, ® I, —22,,2 (W; @ s; Ey H[I @ I, — 28y (W; ® ;) Ly ).

i= 1 =1
Thus
! !
Mywy(s) = [[1n® I, - ZZy(W ®s) Ty | = [ [ Mywy (s:)
=1 i=1
and the proof is complete. ’ 0
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If Zy = A®Y for some A € N, and £ € N,,, Lemma 3.2.1 is reduced to the

following well known result.

Corollary 3.2.2. In Lemma 3.2.1, suppose Ly = AR for some A €N, and & €Ny,
then the matriz quadratic forms Y'W1Y, Y'WoY, ..., Y'W|Y are independent if and

only if AW, AW;A =0 for all distinct i,5 € {1,2,...,1}.

Based on Theorem 3.1.1, Theorem 3.1.3 and Lemma ‘3.2.1, we shall defrelop a suc-
cinct and vefiﬁable multivariate version of Cochran’s theorem concerning the Wishart-
ness and independence of matrix quadratic forms in a normal random matrix."Y with
mean-0 aﬁd covariance matrix 2y-.

First, we focus our attentioﬁ on theé case where the common covariance of Wishart

W, (i, A) random matrices is a diagonal matrix A.

Theorem 3.2.3. Suppose that Y- is an n X-p random matriz nofmally distributed as
Noxp(0,Zy) and Wi, Wa, ..., W, are symmetric matrices of Ofder n. Then a set
of matriz quadratic forms YWY, Y'W,Y, ..., YWY is an independent family of
Wishart Wy(m;, A) random matrices ’for’vsome m; € {0,1,2,...} if and only if there -
erists a A € Ny, such that the following statements (a) and (b) hold. |

“(a) For any i € {1,2,...,1} and any elements t; and t; in the basic base E,,
Ty [Wi ® (tiAL; + tA4;)] Sy = F(t;, t, Wi, Sy) + F(t, ti, Wy, Zy)

where F(ti,gi, Wi, Ey) = Ey(Wi &® ti)Ey(Wi & Ei)zy with {ti : Ey(VVz & ti)Zy =
0} =Ko and m; = tr(Ey(W; @ 1)) /r(X); and |

(b) For any distinct 1,5 € {1,2,.. .‘,l},

Sy (Wi ® A Sy (W, ® AY)Ey = 0. | (331
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Prbof. Let {Y'W;Y'}._, be an independent family of Wishart W,(m;, A) random ma-
trices.kThen statements (ka) and (b) follovx} from Theorem 3.1.1 and Lemma 3.2.1.

| Cdnverseiy, Suppose (a) and (b) hold. For i = 1,2,.. ';’l’b the matrix quadratic
form Y’ VV,Y has-a Wishart distribution W, (m,, ¥) from Theorem 3.1.1. To complete
the proof, it suffices to show thét condition (3.29) holds from statements (a) and (b).

Since (3.29) is equivalent to
L(Si Y VV@‘)LIL(SJ' ®WJ)L, = 0 where L'L = Eyl and 8;,8; € ‘Sp (332)

and (3.31) amounts to
L(AT @ W,)L'L(A* @ W;)L = 0, (3.33)

we only need to prove (3.32) from statements (a) and (3.33).

For s; in set S;, s; can be written as

a *
8; = where a € S,.
* %
. pXp
Write )
a 0 ;
s; = where a € §,.
oo

- pxp

By (A1) of Theorem 3.1.1, for any s;,s; € Sp‘,
L(si @ Wi)L'L(s; @ Wy)L' = L(s; ® W;)L'L(s; ® W;)L'. (3.34)
By Lemma 2.1.6 and Lemma 2.1.7, we can obtain from statement (a) that for s} € S,

1%

L(s*As; @ W)L' = O(s!,s!, Wi, L)
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and

L(s; @ W;)L' =L %(A"’As}‘ +siAAD) W, L

1 (3.35)
:5[@(A+,SI,W1,L)—I—@(SI,A“L,W,-,L)] ‘

where O(A*,s;, W;, L) = L(AT ’® Wi)L'L(s} ® W)L In particqlar,

L(AT @ W)L = (AT, A+, W,, L). | | (3.36)
With (3.35), (3.36) and by Lemma 2..1.4;

L(st ® W) L'L(AY @ Wi)L' = ©(AT, s}, W;, L). | (331
So, from (3.35) and (3.37)

L(s! ® Wi)L' = (s}, A+, W, L). (3.38)
Similarly,

L(s; ® Wy)L' = ©(A*,s], W, L). | (3.39)

Thus, by (3.34), (3.38) and (3.39), for any s;,s; € S,
L(s;@W,)L'L(s;@W;)L' = L(s;‘®W¢)L'L(A+®W¢)L’L(A+®Wj)L'L(t;®Wj)L’ =0,
that completes tlhie proof. : O

“Next, we shall extend Theorem 3.2.3 from the diagonal covariance A to the general

nonnegative definite covariance 2.

Theorem 3.2.4. Suppose that Y has a normal distribution Nyxp(0,Zy) and W,

Ws, ..., Wi are symmetric matrices of order n. Then a set of matriz quadratic forms
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Y’ W?Y, Y'W,Y, . ..,Y’ WlY is an independent family of Wishart Wy(m;, X) random

- matrices for some m; € {O, 1,2,...} of and only if there exists a £ € N, such that the
i ,fkollovu’)ing Siatements (a) and (b) hold.

(a) For any 4 e {1,2,. 1} and any elements hy, h; in the similar base H, asso-

ciated with 3,
Sy {Wi@ (h;Th; + ﬁmhi)] Sy = F(hy, by, Wi, Zy) + Fi(hy, hy, Wi, By) - (3.40)

with

{h; : Zy(W;®h;))Ly =0} =K ‘ -~ (3.41)
and |
my = tr(Sy (W @ TF)) /r(D); | | (3.42)
and

(b) For any distinct 1,5 € {1,2,...,1},
Ty (W; @ SH)Zy(W; @ 37Ty = 0. (3.43)
Proof. Since ¥ € N,;, by Lemma 2.1.1, there is an orthogonal matrix H of order p
such that H'H = I, and

H'SH = dz'ag[al,@,...,‘UT,O,...,O] =N r=7rZ), 0, >0, 1=1,2,...,7

And YH ~ Nnxé(O, Yyn), where Eyyg = (I ® H')Zy (I ® H), follows from Lemma
9212 and Y ~ Njyp(0, Sy). -
Defining

t; = H'h,H forany h; e H,, i =1,2,...,1,
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for any ¢ ———‘1, 2,...,1, the function t; = H'h;H is a 1-1 map from the similar base H,
associated with 3 onto the basic base E,,. By replacing h;, 1~1,», ¥ and Yy, respectively,

with Ht;H', Ht,H', HAH' and (I ® H)Sy(I ® H') in (3.40)-(3.43), we obtain

Syr [W & (6:At; + tAL)] Syr = F(ti, t, Wi, Syr) + F(ti, 6, Wi, Syp) (3.44)

{t:: Syu(W ©t)Syy =0, t; € E,} = Ko, | o (3.45)

i = tr(Syn(V @ A)fr(A) (3.46)
and

EyH(VV, ® A+)EYH(WJ' ® A+)EYH =0 (347) :

which are equivalent to (3.40)-(3.43), respectively. By Theorem 3.2.3, (3.44)-(3.47) are
the necessary and sufficient conditions for the matrix qnadratic forms H'Y'W,Y H’s
to be an independent family of Wishart W,(m;, A) random matrices for some m; €
{1,2;...}. By Lemma 2.2.1, (3.40)-(3.43) are the necessary and sufficient condi-
tions for matrix quadratic forms Y'W,Y’s to'be an independent famkily of Wishart
W,(m;, £} random matrices for some m; € {1,2,...} and vice versa. So we nave

completed the proof of the desired result. O

Theorem 3.2.4 is the core result which we inﬁend to establish for the model stated
in this Chapter.

Now, let us present its special cases.

In Theorem 3.2.4, if the covariance Xy of Y is replaced with the Kronecker produet
A® Y where A € N,,, we have the following corollary which was obtained by Khatri k

(1963).
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Corollary 3.2.5. Let ¥ ~ Noyp(0,AQT), AQL £ 0, W; € Sy, i =1,2,...,1.
Then {(Y'W,Y}._, is an independent family of Wishart Wy(m;, ) random matrices

for some m; € {0,1,2,...} if and only if for distinct 4,5 € {1,2,...,1},

AW, AW A = AW A; | ' (3.48)
AW, A #0; ' | (3.49)
m; = tr(AWS): and B | (3.50)
AW, AW; A = 0. | | (3.51)

Proof. Use A ® X to replace Xy in (3.40)-(3.43). The desired results (3.48)-(3.51)

follow from (3.40)-(3.43), respectively, in Theorem 3.2.4. ; O

In Theorem 3.2.4, if we replace the covariance Ly of ¥ with the sum of special
‘Kronecker products, Theorem 3.2.4 is reduced to the following corollary which is an

extension. of Corollary 3.1.7.

Corollary 3.2.6. Let Y ~ Ny, (0, Zy) with Ty = ZAi@Eji, r < p, where A; € N,
: i=1

and W; € Sy, i =1,2,...,0. Then {Y'W,Y}_, is an independent family of Wishart

Wy(ma; 2) random matrices, where 3 = Z o;Ey, for some m, € {0,1,2,...} if

 and only if there exist real numbers oy > 0,05 > 0,...,0, > 0 such that for all
i,j,ke{1,2,...,r} anda,be {1,2,...,1},
AW AW A, = 0, AW, A;; o (3.52)
AW, A; #0; ' (3.53)
11 '
My = — —tr(A;W,); and (3.54)
Ti= G
AW, AWLA; = 0. (3.55)
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Proof. From (3.43), replacing £y and ¥ with Z A, ® E;; and Z 0;E;;, respectively,
: i=1 , i=1 v

we obtain,

Z AiWaAkWﬁAj &® Eii2+Eij+Ekk =0. |
1,5,k=1

Namely, A;W,AiW3zA;, = 0. Relations (3.52)-(3.54) follow immediately from Corol-

lary 3.1.9 and. the proof is completed. ' -

In Theorem 3.2.4, if y is an n’>< 1 random normal vector with mean vector 0 and
covariance C, (3.40)-(3.43) are reduced to the following familiar result which were
shown by Khatri (1963), Rayner and Livingstone (1965), Shanbhag (1968) and Styan

(1970).

Corollary 3.2.7. Let y be a random wvector normally distributed as N,(0,C) and
W; €S, ¢ =12,...,1.. Then {y’Wiy}ﬁzl s an z’ndependent family of chz’-squdre
x%(m;) random variables with m; degrees of freedom for m; € {0,1,2,...} if and only

if for any distinct 1, j € {1,2,...,1},

CW,CW,C = CWiC; (3.56)
m; = r(CW;); and (3.57)

CW;CW;C = 0. : ' (3.58)

Proof. In the univariate case p =1, Zy = C, ¥ = 1 without loss of generality (if*
Q ~ Wi(m,0), then Q/c ~ x*(m)). Then, (3.43) is reduced to (3.58). The rest

follows from Corollary 3.1.8. ‘ : O

In Theorem 3.2.4, if the covariance Xy of Y is nonsingular, Theorem 3.2.4 is

reduced to the following corollary.
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Corollary 3.2.8. In Theorem 3.2.4, suppose Yy is ‘novnsz'ngular. Then {Y'W,Y }._,
~is an indepehdent famz“lyk of Wishart Wy(tr(W;),X) random matrices if and only if
tﬁere exists d YeN, such’ that for any distinct 1,7 € {1,2,...,1},
(a) (W; ® Jp)zg(wi@ L)=W;®%; and

(b) (Wi ® L)y (W; © I) = 0.

From Corollary 3.2.8, we can infer the fact that the underlying matrices W;’s are
' nonnegative definite if matrix quadratic forms are Wishartness.
Putting Theorem 3.1.11 and Theorem 3.2.4 together, we can obtain the following

result.

‘Theorem 3.2.9. Suppose that random matrizY is normally distributed as Npxp(0, Zy)
and {W;} is a family of symmetric matrices of order n. Then matriz quadratic forms

{Y'W;Y} is an independent family of Wishart Wy(m;, £) random matrices for some

m; € {0,1,2,...} if and only if there exists a Y€ N, such that the following state-

ments (a) and (b) hold. |

(a) Fori€ {1,2,...,l} ands; €S,,

Sy [W; © 5,58 Sy = Sy (Wi @ 8:) Sy (W; @ )y (3.59)
with

{5 Sy (Wi 0 8)Sy = 0} = {s; :‘ ;% = 0} (3.60)
and

m; = tr[Sy (W; ® 51 /r(S). (3.61)
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(b) For any distinct 3,7 € {1,2,...,1},
Sy(Wi @ SHEy(W; @ Sy = 0. (3.62)

Theorem 3.2.9 gives a matrix presentation of a similar result obtained by Masaro

and Wong (2004a) through Jordan algebra homomorphisms.

3.3 Noncentral Wishartness of a MQF

In this section, we shall use the moment generating function of Y'WY to study the
noncentral Wishartness of a matrix form in a normal random matrix. The following .

theorem is thé main result of this section.

Theorem 3.3.1. Let Y ~ Npxp(pt, Ey) and W be a symmetric matriz of ofder
n. Then the matriz quadratic form Y'WY has a noncentral Wishart disirz’butz’on_
Wp(m,E,A) for some matric X € My, and some m € {0, 1,2,’. ..} of and only of
there exists a £ € N, such that (a) and (b) hold.k

(a) For any elements h,h in the similar base H,, associated with %,

Sy [W ® (hTh + ﬁEh)} Yy = F(h,h, W, Sy) + F(h,h, W, Zy) (3.63)
with

{h:3y(We h)zy =0} =K and (3.64)

m=tr(Zy (W ® 2‘+)) /(). : ; | (3.65)

(b) For any s in a neighborhood Ny of 0 in Sy andn =1,2,...,

tr(A(sE)"s) = tr(vec(p)vec(p) (W ® s)Zy["(W ©s)) (3.66)
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- with
A=pWp | | (3.67)

| Proof. From Lemma 2.3.1; the moment generating function M(s) of Y'WY is given

by

M(s) = I, — 252(W ® )52 V2eap{< s, W/ Wy > +280} (3.68)

for any s ~ S, such that sr(Ei,/z(W ® 5)2%/2) < 1/2 where

By =< vec(pvec(p), (W ®8)Sy/*[I — 28/2(W @ 8)5y/*| 'S/’ (W ® ) > .

Comparing the moment generating function ‘Mi(s) of the Wishart distribution
stated in Corollary 2.3:2 with M (s) given in (3.68), we obtain that YWY ~ W,(m, X, X)

if and only if for any symmetric matrix s of order pin a neighborhood Ny of 0 in Sps

I — 28Y2(W ® 8)SY2|7V/2 = |I — o525 5t/2|~m/2 | (3.69)
and
< szi/Q(I,, . 221/2521/2)-121/% >= &y (3.70)
with A = p/'Wu. |

Sinée, from Lemma 2.3.1, the moment generating function, My(s), of matrix

quadratic form (Y — p)’W(Y — p) is given by
- _ 1/2 1/2)-1/2
Mo(s) = |1 — 285y (W ®s)Ey"| /%, for any s € §, N N, (3.71)

(3.69) amounts to (Y —u) W (Y —p) ~ W,(m, ). By Theorem 3.1.3, (3.69) amounts

to (3.63)-(3.65).
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Moreover,
<A, STVA(I, — 28126 D12)7Ix g n= tr (ASDYA(1, — 25Y/2s51/2) 715 %)

: 0o A . 1 sl :
1 1/2\n n+l
— ¢r <A521/2[Ip + 2(22’ 12371/ ) ]21/25> =tr (A[SE =+ 3 Z(.‘ZSE) + ]s)

n=1 - n=1

and

®g = tr (Uec(u)vec(p)' ((W ®s)Zy + % Z[Q(W ® S)Ey]n+1> (W ® s)> .

n=1

Thus, (3.70) is equivalent to

2(252)”“]5)

= tr'(vec(u)vec(u)' ((W ®8)Ty + % i[Q(W & S)Ey]n+1) W s)) (3.72) |

(NN

tr (A[SZ +

n=1

for s € S, N N.
We arbitrarily choose s in' V. Replacing s in (3.72) by as with very small positive
number a, two sides of (3.72) are two power series with respect to a.- Comparing
two power series implies that (3.72) amounts to (3.66), and that proves the desired

result. , O

From the proof in Theorem 3.3.1, we obtain the following relation between YWY

and (Y — )W (Y — ).

Corollary 3.3.2. Let Y ~ N,y,p(p, Zy) and W be a symmetric matriz of order
n. Then YWY ~ W,(m, I, W'Wp) for some matriz A € My, and some m €
{0,1,2,... }if dnd only if there exists a ¥ € N, such that

(@) (Y = )WY — p) ~ Wy(m, E) and
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(b) for any s in a neighborhood Ny of 0 in'S, andn =1,2,...,
tr (WWp(sZ)"s) = tr (vec(pu)vec(p)' [(W ® s)Zy] (W ®5)) .

The following eXample gives an application of Theorem 3.3.1 and also provides an
illustration of a quadratic form4 Y'WY which is a‘noncentral Wishart but where W
is not nonnegative definite.

Eﬁcamples 3.3.3. Let Y ~ Niyo(p, Xy) with

00 A0 O

p=|00| ad Zy=|0 0 0

01 0 0 B
where
10 0.0
A= and. B=
00 01
and } 3
2 a V2
W= a b ’C 683, a, b,CER.
\/§ c 1

Then, we discuss the noncentral Wishartness of the matriz quadratic form YWY and

determine its degrees if Y'WY- has a noncentral Wishart distribution.

Proof. Consider ¥ = ' . In this case
01
1.0 0 1 00
H,=E,= E; = , Erp= , By =
00 10 01
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With necessary matrix operations, (4.1) holds for all element pairs (E1y, F11), (E11, F12), E

(B, Ex), (E, E2), (E12,E22) and (Eay, E).

hs

Obviouély, K=0. Let h= € H,. Then

hs hy

F2h1 000 0 v2hs

0 0000 0
o 0000 0 |
Ey(W@h)Eyz ‘ =0
0 0000 0 ‘
0 0000 ©

V2hs 000 0 0 hy

= h = 0, implying that (3.64) holds. And

A0 O 2Tt gyt V2%t

m=tr|| 0 0 0 Xt bt ot /(%)

0 0 B V2Tt ent ot

24T % x
1
= %tr 0 0 0 ||=jreasraEs) =1
* x BYt

To verify (3.66), we write

0 0 V2sB
C. = (W @s)vec(pvec(n)' = | 0 0 csB

00 sB
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and i, -
| 2sA 0 +/2sB
D, =W ®s)2;} =| gasA 0 ¢sB for s €S,.
_ ’ ] V2sA 0. sB
Note that £ —24 +’B. We have —
i ; * 0 * -
prl = . 0 forn=10,1,2,.... (3.73)

V2(sT)"sA 0 (sX)*sB

We shall use mathematical induction to prove (3.73) as follows:

For n = 0, (3.73) is reduced to the trivial case. Suppose (3.73) holds forn = k > 1.

Then

* 0 x 2sA 0 2sB

DfH:DfD*: % 0 * asA 0 c¢sB

V2(sZ)sA 0 (sX)*'sB V2sA 0 sB
* 0 ok

= , - -0 *

V2(sE)*1s(24 + B)sA+ 0 (sX)*s(24+ B)sB

= * 0 *

V2(sT)ksA 0 (sT)sB

It follows from (3.73) that n =0,1,2, . ..

tr(C,DY) = tr (2sB(sZ)" 'sA + sB(sL)" 'sB) = tr (sB(sZ)") .
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And
' 0 0 ,
A=pWp=|" = B.
0 1

So.(3.66) holds. Hence, it follows from Theorem 3.3.1 that Y'WY has a Wishart

20
distribution Wa(m, ¥, X) with m = 1 degree of freedom, covariance ¥ = :
‘ 01
00 ‘
and non-centrality matrix A = . O
01 '

Assume that the covariance Dy of Y is a Kronecker product covariance structure
A®Y with non-negative definite matrix A, Theorem 3.3.1 is reduced to the following

corollary which was essentially obtained by Khatri (1963) and De Gunst (1987).

Corollary 3.3.4. In Theorem 8.3.1, supposed that By = AQ % for some A € N,,. |
Then, for the symmétm’c matriz W of order n, the matriz quadmﬁc bem Y’ WY has
a noncentral Wishart distribution W,(r(AW), &, u'W p) if and only if

(a) AWAWA = AW A #0, and

(b)) UWAWAW p = f'WAW pu = /W

Proof. (a) follows from Corollary 3.1.6. 'R‘eplacing Ey with A ® ¥ in (3.66), we
obtain that for any symmetric matrix s of order p in a neighborhood Ny of 0 in S,
and n=1,2,...,
tr(A(sE)"s) = tr (vec(p) [(W @ s)(A @ Z)["(W @ s)vec(u))
= tr (vec(p) [(WA)"W @ (sZ)"slvec(p))

= tr (vec(p) vec[(W A)*W pu(sZ)"s]) = tr(p' (W A)"W p(sZ)"s).
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- By Lemma 2.1.8, for n=12,...
y,;"(WA)”Wp — R (3.74)
| (3.74) iis equivalent to, under (a),
| | p’WAWAwp = WWAWp = W,
so the desvired result follows from Theorem 3.3.1. O
Moreover, taking Zy = I, ® & in Theorem 3.3.1, we have the following corollary,
which was proved earlier ’by‘Khatri (1959). |

Corollary 3.3.5. Let Y ~ Nysp(pt, In ® ) and W be a symmetric matriz of order
n.. Then a necessary and sufficient condition for the matriz quadratic form YWY to
have a noncentral Wishart distribution W,(tr(W), Z, W'W ) is that W is idempotent.

This distribution is central when Wp=0.
The following result is due to Eaton (1983).

Corollary 3.3.6. Let Y ~ Nyx,(p, A ® X) and W be a symmetric nonnegative
definite - matriz of order n.  Write W = V2, where V is nonnegative definite. If
VAV is an orthogonal projection of rank m and VAWp = Vu, then YWY -~

Wy (m, Z, f’'W ).

Assume that W is a symmetric matrix such that ¢r(AW) =r(A) and ¥ = AQ %,

we get the followih‘g result, due to Vaish and Chaganty (2004).

Corollary 3.3.7. Let Y ~ Nosp(pt, A®Y) and W be a symmetric matriz of order n.
Then a necessary and sufficient condition for matriz quadratic form Y'WY to have

a noncentral Wishart distribution W,(r(A), X, W'W ) is that WAW = W.
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In Theorem 3.3.1, if we replace the covariance Xy of Y with the sum of special
Kronecker products, Theorem 3.3.1 is reduced to the following corollary, another

* extension of Corollary 3.1.7.

Corollary 3.3.8. Let Y ~ Nuyp(p, Zy) with Ty = ZAi ® E;, r < p, where
=1

A; € N, Then, for W € S, the matriz quadratic form Y'WY has a noncentral

Wishart distribution Wy(m, Z, wW'W ) for some nonnegative integer m, where

==Y ok
: Gl

if and only if there exist real numbers o; > 0, | = 1,2,...,7 such that for all 3,7,k €

{1,2,...,7},
‘ ; 11
AW AW A; = 0, AW A; #0, m= =Y —tr(AW) (3.75)
' T O '
and
oWy =p'WAW B, oio;Wp=puWAWAW . | (3.76)

Proof. (3.75) follows from Corollary 3.1.7. Replacing Xy and ¥ with ZA" ® Ey;

i=1
r

and Z oiEi;, respectively, in (3.66), we obtain that for any symmetric matrix s in a

i=1

neighborhood My of 0in S, and n =1,2;.. .,

r

tr (A(s i U,E,-i)”s) =tr (vec(u)' {(W ® s) S_:(Az ® Ey)

i=1

Wwe S)vec(ﬂ)> ,

(3.77)°

where A = u'Wp.

When n =1, (3.77) is reduced to

> tr(MoisEgs)) = Y _tr('W AW u(sEys)), for's € NoN'S,.
i=1

i=1
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Lemma 2.1.9 and the arbitrariness of s imply that fori =1,2,...;r
»¢wwu;ww&ww | | | (3.78)
"Ina sirhilar way, for n = 2, (3.77) is equivalent to
ai‘aj,u'Wu = WWAWA;W p, ’for any Z,] =1,2,...,r. | (3.79)

The results of n > 2 in (3.77) can be obtained from (3.77)-(3.79). So the desired

" result follows immediately from Theorem 3.3.1.- ‘ ‘ O

In Theorem 3.3.1, if y is n X 1 random normal vector with mean vector p and

covariance C' of order n, (3.63)-(3.67) are reduced to the following familiar result

which were shown in the sixties.

Corollary 3.3.9. Let y be a 'rahdom vector normally distributed as Ny(p,C) and
W be a symmetric matriz of order n. Then the quadratic form y'Wy has a noncen-
tral Wishart Wy (r(CW),1, W'W ) or chi-square distribution with r(CW) degrees of

freedom and parameter 62 = p'Wp if and only if
CWCOWC = CWC, and | (3.80)
PWCWCWp=py'WCWu = u/'Wp. (3.81)

Proof. In the univariate case p = 1, (3.80) follows from Corollary 3.1.8. Replacing

Sy with C and ¥ with 1 (if @ ~ Wi(m, o), then Q/o ~ x*(m)), (3.66) is reduced to
pwWus™™ =/ (WC)"Wus™™, forn=1,2,...,

which is equivalent to (3.81) under (3.80). So the desired result follows from Theorem

3.3.1. 0O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3. Cochran’s Theorem on Noncentral Wishartness and Independence 75

Suppose that Ly is nonsingular in Theorem 3.3.1 we get the following corollary.

Corollary 3.3.10. In Theorem 3.3.1, suppose Zy 1is nonsingular, then the matriz
quadratic form Y'WY has a noncentral Wishart distribution W, (tr(W), Z, W'W ) if
and only if there exists some ¥ € Ny, such that |

(a) WRL = (W NIy(WeI); and

(b) for any syﬁmetrz‘c matriz s of order p in a neighborhoodk M ofO in Sp and’

n=1,2,...,
tr (WWp(sE)"s) = tr (vec(u)vec(p) [(W @ 5)Zy]"(W ® 5)).

Proof. (a) follows from Corollary 3.1.9 and (b) follows from Theorem 3.3.1. O

3.4 Noncentral Wishartness and Independence of

- Matrix Quadratic Forms

Although the following result and its proof imitate Theorem 2.2 and its proof of Wong
et al. (1991), some modifications have been made so that the corresponding necessary

and sufficient conditions can be verified.

Lemma 3.4.1. Let Y ~ Npyo(pt, Zy) and {W;}_, be symmetric matrices in S,.
Then a set of matriz quadratic forms Y'W;Y ’s is independent if and only if for any
distinct i,7 € {1,2,...,1} and any h;, h; € H,, where H,, is o similar base associated

with any given ¥ € N,

(a) Zy(W; @ hy)Yy (W; ® hy)Zy =0,
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(b) Ey(Wi ® h,)Ey(WJ ® hj)’U@C(u) = 0, and

v (C) vec(p) (W; ® hi)‘:y(Wj ® hj)vec(p) = 0.

Proof. Suppose {Y'W;Y'}._, is an independent family. Let 7 # j and h;,h; € H,,
=1 J P

* then < h;, Y'W;Y" > and < h;, Y’W,Y > are independent. Since
< h;, YW;Y) >=< vec(Y), (W; @ hy)vec(Y) >= vec(Y) (W; ® h;)vec(Y)

and vec(Y) has a nofmal distribution AN,x,(p, Xy), it follows from Theorem 4s of
Searle (1971) thatv(a), (b) and (c) hold. |

Conversely, assumé that for any distinct i,’j €{1,2,...,1} and ‘any h;, h; € H,
(a), (b) and (c) hold. Then for any distinct 4,5 € {1,2,...,l} and any s;,s; € Sp,
Si = Z suhy (s € R and hy € Hy) and s; = Z sphr (s3; € R). With

1<k<I<p 1<k<I<p

simple operations, we have

(@) Ly (W; @ 8:)Zy (W; ®s;)Xy =0

(V') Sy (Wi @ 5)Sy (W; @ ;)vec() = 0, and

() vec(p) (W; ® Si)ZY(Wj ®sj)vec(u) =0.

Recall that the family YWY = (Y'W;Y) is independent if and only if

Mywy (s HMYWY S;)

=1
for s = (s;) in Ny, where N} is a neighborhood of 0-in S =S, X Sp x ... S, (1 times).
So by Lemma 2.3;1, the family {Y’ W;Y }._, is independent if and only if

: l
@1 -2) S Wi@s)s 1/2|—Hu 282 (W; ® 5;,) /%, and

=1

!
) < S vec(Wipsy), £ (1, — 25%) 151/ Zvec (W;us;) >

1 . J=1
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= Z < vec(W; usz) i,/2[l 25y (W; ® si)E%ﬂ]'lE%/?vec(Wiusi) >

i=1
where I* = £/ (Z W; ® si> S/2. By (a'), Sy (Wi ®s;) Sy (W, ®s,)Sy = 0 for all

distinct 4,7 € {1,2,...,1}. So (i) follows. For the same reasons,

l
(r-22" =] (I osAW; s, )21/2)

=1

-1

Let D;; =< (W,; ® s;)vec(p), E;,/Z(I ~ 22*)‘IE¥Z(WJ- ® s;)vec(p) >, then for (ii),

it suffices to show that

D;; =0 fori# jand ‘ - (3.82) -

Dis =< vec(p), (Wi ® ;)T (I AW, @' )21/2) YA (Ws @ si)vec(p) >

(3.83)
From (a'), for i # j,
(-2t = ﬁ (I XYW, ®s; 21/2) B Hi ( YA S")Ew)k
i “i=1 k=0
_1+i§:(221/2 W; ®s )21/2) :
=1 k=1

And for any i,7 € {1,2,...,1}

! k

D;; = < (W; ® s;)vec(p), 21/2 (I + ZZ( 1/2 )252) > 21/2(W ® sj)vec(u) >
) (

fos)
i=1 k=1

1/2

= < (W, & s;)vec(p), oy + Z (221/2 (W, ®s; 21/2) ) 21/2(W ® s;)vec(p) >

k=1

= < vec(p), (W; ®s; )21/2( ®s])vec(u) > 4
< wec(p), (W,- ®si)2§/2 (221/2(W ®s;)Z 1/2) 21/2(W ® s;)vec(p) > .
k=1 ,
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(3.84)
By (¢!), for distinct 4,5 € {1,2,...,1},
< vee(p), (W; ® s;)Zy(Wj ® s;)vec(p) >= vec(p) (W; @ 8;) By (W ® sj)vec(p) = 0

and by (V'), for distinct 4,7 € {1,2,...,1}
; o :
< vee(p), (Wi @ s Y (25 (W; @5)T3%) S (W; @ s;)vec(n) >
. ' k=1

" ,
. k :
= vec(u) (W; ® sz-)E;/2 E (22%//2(Wj ® Sj)E%/Q) E;/Q(Wj ® sjjvec(p) = 0.
, k=1

/

N

So Dy, =0 fori # 7, proving (3.82). Using (3.84) again

o : " ‘ k ,
Dy = < vec(p), (Wi @ 5:)Ty/" (I +3° (e sz’ ) = (W; ® siJvec(p) >
k=1

, ‘ ' =1
= < vec(p), W; ® s,')zli,/2 (I - 22;/2(Wi ® si)Ei,ﬂ) Zi,/Z(Wi ® s;)vec(p) >,

that proves (3.83). (ii) follows from (i) and the proof is completed. o

Replacing H,, with E, is a usual usage in Lemma 3.4.1 while replacing H, with
Sp is the result of Wong et al." (1991). :Suppose that 4 =0 kin Theorem 3.4.2,1t is
reduced to Lemma 3.2.1 stated in Section 32

Combining Theorem 3.3:1 with Lemma 3.4.1, we obtain the following multivariate

version of Cochran’s theorem.

Theorem 3.4.2. Suppose that Y ~ Noyp(p, Ey) and {W;Y_, is a family of sym-
metric matrices of order n. Then a set of matriz quadratic forms {Y'W;Y}_, is an
independent family of noncentral Wishart Wy(ms, £, ;) random matrices for some
m; € {0, 1,2,...} and some matrizc X; € My, if and only if there exists some £ € N,

such that the following statements (a), (b) and (c) hold.
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(a) Forie {1,2,..., l}' and any elements h;, h; in the similar base Hy, associated
with X,
Sy [Wi ® (h;Th; + E,»Ehi)] Sy = F(h;, by, Wi, Sy) + F(h;, hs, W, Sy)  (3.85)
with

{hl . Ey(Wi & hz)Ey = 0} = K and m; = tT(Ey(Wi & E+))/T‘(E) (386)

-~ (b) For anyi € {1,2,...,1}, any symmetric matriz s; of order p in a neighborhood

No of 0 inSp, andn=1,2,...,
tr (AX(s;2)"s;) = tr (vec(p)vec(p) (Wi ® 8;)Zy (W ® si)) R (3.87)

with \; = p'Wip.

(c) For any distinct i,j € {1,2,...,1} and t;, t; € E,

Sy (W; @ TH) Sy (W; @ 5H)Dy = 0, ~ (3.88)
Sy (Wi ® t:) Sy (W; ® t)vec(p) = 0, and (3.89)
vec(p)' (W; ® ti)Ey(Wj ® t;)vec(p) = 0. , (3.90)

Proof. Let {Y'W,Y}._, be an independent family of noncentral Wishart W,(m;, £, A;)
random matrices. Then statements (a)-(c) follow from Theorem 3.3.1 and Lemma
3.4.1.

Conversely, suppose statements (a)-(c) hold. Since (a) and (b), from Theorem

3.3.1, forany i =1,2,...,1, YWY ~ Wy(m;, 5, Ay).
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To prove the independence of matrix quadratic forms Y'W;Y’s, it suffices to show

that for any 4,7 € {1,2, st} ahd any t;,t; € E,, we have
EY(Wi & tz)EY(WJ & tj)zy =0." ' : (391)

First, assume ¥ is diagonal matrix, namely, & = A = diag[oy,09,...,0,,0...,0].
Due to the structure of A, we only need to consider elements Ej;, 1 <4 < j <, in
the basic base E,, for (391)

Exactly as in the proof of Lemma 2.1.6, we can prove that (3.88) is equivalent to

LN @ W) L'L(A* ® W,)L' = 0 where L'L = Ty (3.92)

and (3.91) is equivalent to

L(tz ® Wi)L,L(t]‘ X Wj)LI =0, ti,tj & {EZJ 11 <1<5< ’I"}. (393)

) T 1 . .
So it suffices to show (3.93). Since AT = E —Ey, by (3.85) or its corresponding
) ) a;
=1

Lemma 2.1.6;

LAY @ W))L' = L(ATAAT @ W)L = ©(AT, AT W, L). (3.94)

Also by (3.85) or its corresponding Lemma 2.1.6,

1 o 1
Lt @W,)L' = L -2-(A+At,- +tAAY) @ W,-] L'= 5[@(A+,ti, Wi, L)+O(t;, AT, W;, L))

(3.95)
With (3.94) and (3.95), we obtain from Lemma 2.1.4

L(tz by Wl)L,L(A—’_ & Wi)LI == @(A+, ti, VVi, L) (396)
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Thus, (3.95) and (3.96) give
L{t: @ Wi)L' = O(t:, AY, Wi, L), L o (397)
In a similar way, we get

L(t; ® W))I/ = O(A* ¢, W;,L). | (3.98)

Hence, (3.93) follows from (3.97), (3.98) and (3.88), which equivalently proved (3.91).
Next, for the nonnegative definite 2, there exists an orthogonal matrix H such

that H'SH = A. Then (3.88) canb be written as

Sya(Wi @ AT ) Eyg(W; @ AT) Sy =0
where Zyg = (I @ H')Zy (I ® H). AISQ, (3.85) can be written as

Syr [Wi ® (6t + 6:At:)] Sym = F(ts, t, Wi, ‘zyé) + F(ts, i, Wi, ZYH)'
The first equation of (3.86) can be written as
(6 Syn(Ws ® ) Syn = 0} = Ko,

From the proof of the previous special case; for any t;;t; € E,,

Syu(W; @ t) Xy n(W; @ t5) Xy = 0,

equivalently, for any h;,h; € H,, Sy (W; ® h;)Sy(W; @ h;)Sy = 0. Thus, (3.91)
follows from the fact that each t € E, is the linear combination of elements in the

similar base H,, associated with ¥, that completes the proof. O

Theorem 3.4.2-is reduced to Theorem 3.2.4 when p = 0.

In Theorem 3.4.2, suppose Xy is nonsingular, we have the following corollary.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3. Cochran’s Theorem .on Noncentral Wishartness and Independence : 82

\Cor(‘)llary 3.4.3. In Theorem 3.4.2; suppose Sy is nonsingular, then {Y'W,Y}!_, is

~an independent family of noncentral Wishart Wy(tr(W;), L, ' Wip) random matrices '
if and only if there exists some & € N, such that
(@) Wie T = (W 0 ISy (W, ® I);

b) for any'z' e{1,2,...,1}, any symmetric matriz's; of order p in a nez’ghborhobd

No of O inSp and n = 1,2,.;.,
tr (N/WiU(Siz)ﬁsij =tr (vec(u)vec(u)'[(’Wi ® 8:)Sy]"(W; ®s:)); and
(c) fbr any distinct 1,7 € {1,2, e ,kl},k
(Wi ® L)Sy(W; & I,) = 0.
Proof. The proof follows immediately from. Corollary 3.3.2 and Corollary 3.2.5. | O

If Xy is a Kronecker product structure A ® ¥ for some A € N,,, Theorem 3.4.2 is

reduced to the following familiar result.

Corollary 3.4.4. In Theorem 8.4.2, suppose EY =A®Y for some A € N,, then
{Y'W, Y} _, is an independent family of noncentral Wishart W,(tr(AW,), X, u/'W; )
random matrices if and only if for any distinct 4,5 € {1,2,...,1},

(a) AW, AW, A = AW, A # 0;

(b) WW AW AW, = /W, AW, = /W p;

(c) AW;AW;A = 0; | |

(d) AW;AW;pu = 0; and

(6) MIW@AWJM = 0.
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Note that when p = 1, Theorem 3.4.2 is reduced to the chi-square version of .

Cochran’s theorem obtained in the sixties.

Corollary 3.4.5. Let y ~ N,(u,C) and {W,-} be a set of symmetric matric.ésf of
ordern. Then a set of quadratié formsy'W,y'’s is an independent family of nonéentml
chi-square x2(r(CW,), w'W;u) random variables if and only if for any distinct z',‘ Jje
{1,2,...,1},

(a) CW,CW,C = CW,C # 0;

(b) W Wi CW,CWip = p'W,CWipt ’—“‘M’Cﬂ{ and

(c) CW,CW,;C =0, CW,CW;u=0, yW,CW,;u=0.
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Chapter 4
A Multivariate Version of

Cochran’s Theorem Concerning

DINWRMs

In this Chapter we shall discuss the extended problem stated in Section 1.1.- Let Y be
aﬁ n X p multivariate normal random matrix with mean p and general covariance Xy-.
In Section 4.3, we giVe a set of necessary and sﬁfﬁcient conditions (Theorem 4.3.1)
for the matrix quadratic form YWY with the symmetric matrix W to be diyétributed
as differences of independent noncentral Wz’ks_hart random Wiatrices (DINWRMs). In
Sectiqn 4.4, we cOnsidér the symmetric matrices Wy, Wa, , W;. Then we develop
a set of necessary and suﬂi¢ient conditions (Theorem 4.4.1) for the matrix quadratic
forms YWY, Y" WLy, ..., YWY to be an independent family of random métrices
distributed as differences of independent noncentral Wishart random matrices.

In this Chapter, as the intermediate result, we also use a matrix approach to

84
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present the proven result for the mean zero case. This case has been solved by
Masaro and Wong (2004b). They used Jordan algebra homomorphiéms to obtain the
necessary ’a‘nd sufficient conditions for the matrix quadratic forms’ Y'W,\Y, Y’ WQY,
..., Y'W}Y to be an ihdependent family of random matrices distributed as dijj‘erenceé
of independent Wishart random matrz’cesy(DI WRMs). Their result and proof is more
mathematically involved. Our presentation provides’a discrete representation vers’ion
of Cochran’s theorem concerning DIWRMS. For details, in Section 4.1 a set of neces-
sary and sufficient conditions (Theorem 4.1.2 and Theorem 4.1.1 for a special éase_)
is established for the matrix quadratic form YWY with the symmetric matrices W -
to be distributed as a difference of independent Wishart random matrices (DIWRM).
In Section 4.2, we consider symmetric ma‘frices Wi, Wa, ..., W; and develop a set
of necessary and sufficient conditions (Theorem 4.2.2) for the matrix quadratic forms
YWY, YWLY, .., YWY to be an independent family of random matrices dis-
tributed as differences of independent Wishart random matrices. Some special cases
are presented. Also, we use a matrix approaéh to present the result (Theorem 4.1.8)

obtained by Masaro and Wong (2004b).

4.1 Conditions for a MQF to be Distributed as a

DIWRM

The following theorem gives a set of condition for the matrix quadratic form YWY
to be distributed as a difference of independent Wishart random iatrices, where the

Wishart distributions W,(mq, A) and Wp(ms, A) have a diagonal common covariance
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A.
Theorem 4.1.1. LetY be an nxp random matriz normally distributed as Naxp(0, Zy)
‘and W be a symmetric matriz of order n. Then YWY ~ W,(mq, A) —W,(ma, A) for

some nonmnegative integers my and my if and. only if there exists a diagonal A € N,

such that for any elements t,t in the basic base E,,
Iy [We (t)\E + tAL)] zyk= G(t, T, A, Sy) + G(E, t, A, Zy) (4.1)
where G(t,t,A, Zy) = EY(W ®6) Sy (W @ ATy (W @ t)%y and
:g(w & AHS(W ® 6)Sy = Sy (W & 6Ty (W ® Ay (4.2)
with
{ﬁ Sy (Wet)Sy =0} =Ko : (4.3)

where Ko = {t : AtA =0,t € E,} and

tr(Sy (W @ AT)Zy (W @ t)) + tr(Sy (W ®t)) = 2mytr(At) (4.4)

tr(Zy(W ® A+)EY(W ®t)) — tr(Zy (W ® t)) = 2matr(At). (4.5)

Proof. By Lemma 2.1.1, decompose the nonnegative definite matrix Yy~ as

Zy/ = L,L, L= [Ll,LQ,...,Lp]_

with Ly € Mgxn (6 =1,2,...,p) and r(Zys) < g < np.b
Exactly as in the proof of Lemma 2.1.6, we obtain the following equivalent relations

of (4.1)-(4.5), respectively,
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(a) L[(tAt + tAt) ® W]L' =T(t,t,A, L) + T(t, ¢, A, L);

(b)L(A+ ® W)L'L(t @ W)L/ = L(t @ W)L/L(A @ W)L';

() {t: Lt ® W)L = 0} = Ky; | ’

(d) tr(L(A* @ W)L'L(t  W)L') + tr(L(t ® W)L') = 2mytr(At); and

(&) tr(L(A* ® W)L'L(t ® W)L') — tr(L(t ® W)L') = 2motr(At)
where T'(t,t, A, L) = L(t @ W)L'L(A* @ W)L'L(t  W)L'.

Let | :

B = LWL, + LW Li]/2./5i05, i,§ <1 |

Then from the Theorem of the Appeﬁdix, we only show that (a) — (e) are equi\}alent
to the following conditions (C1)-(C6).

(Cl) LiWLj+ L;WL; =0 for i or j >r;

(C2) B = By, tr(By) = my — mg, tr(BZ) = my + my;

(C3) BiuBjj =0, i # J;

~ (C4) 4B}, = B} + B3, i # j;

(C5) ByBi; = Bi;Byj, i # j; and

(C6) 2(Bi + By;)(BixBji, + BixBix) = Bij for all distinct i, j, k.

First of all, suppose conditions (C1)-(C6) hold. We show that (4.1)-(4.5) hold.

Let

B= zr:Bii (4.6)
i=1

and use (i7,7'5') to represent combination (t, t) from the basic base E,. Then by (C1)
we only consider these combinations (ij,7'5"), 1 <i<j <r1<4 <j <r. Write

Q={(i5;75): 1<i<yj<rl<d <y <r}. Divide the index set €2 into the
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| folloWing seven index subsets:

Dy ={(if,i): 1<i< r};

Dy = {(@7.i7): 1<i < <rk

Dy = {(d,43) : 1 <i4,§ <ri# i}

Dy = {(ii, i) U (if,0) : 1< <rh

D5 ={(ik,jk) : 1< i,jk< k < r;i,7 distinct};

Dg = {(i1,7'7) U (¢'§',4i) : 1 <i4,¢,7 <wr;i, 7,7 distinct,s < j'}; and

Dr = {(ij,#f'): 1<i<j<rl<é<j <rijd,7 distinct).
‘Note that by (C3), (C4) and Lemma 2.1.3,

BBy =0 for distinct i, 7, k. | (4.7)

For (if,i'") € Dy, (a) is reduced to 0i0;(Bi; + Bj;) = 02B; BBy, which follows
from (C2) and (C3).
For (i7,i'j') € Ds, (a) is reduced to 0,0;(Bii + Bj;) = 4&iajBijBB,-j, which is
derived from (C5) and (4.7).
For (i5,7'j'y € D3, (a) is reduced to 0;0;(ByBBj; + Bj;BB;;) = 0, which is
- obtained from (C3). |

For (ij,7'j') € Dy, (a) is reduced to
- 2\/6i6;0,By; = 2,/0;0;0:(BisBBy; + By;BBii),

which follows from (C5), (CG) and (4.7).

For (if,4'j") € Ds, (a) is reduced to

2w/0'i0'j0'kBij = 4«/Ui0'j0'k(BikBBjk + BJkBBZk),
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which follows from (C5), (C6) and (4.7).

For (i,1'j") € D¢ U Dy, (a) is reduced to

4N/0'iajai’0'j’(BijBBi'j’ + Bi’j'BBij) =
which follows from (4.7), that proves that (a) holds.
For (ij,7j") € Q, (b) or BB;; = B;; B follows from (4.7) and (C5).
Further, let

Z tiiBiy, tij=00r1, 1<i<j<p

I<i<i<p

Then, by (C1)

LE@W)L =L( Y. tE; @ W)L Ztucn Wt Yty /G0 By

1<i<j<p : 1<i<j<r

Since t € {t: L(t ® W)L' = 0}, we get

Zt”o-,Bu + Y ty/Fio; By = 0.

1<i<j<p
From (C2) and (C5), B #0, 1 <4< j<r 1<# <5 <r. Soty=0for
i,7 = 1,2,...,r, which is equivalent to (c). |
Finally, taking t = Ej;, by (C2) and (C3),
tr(L(AT @ W)L'L(Ey; @ W)L') + tr(L(E; @ W)L')
= oitr(BBy; + By) = oi[tr(B2) + tr(By)] = 2my0; = 2mytr(AE;)

and similarly,

tr(L(ATQW)L'L(Ex®W) L) ~tr(L(Ez@W)L') = o;[tr(B2)—tr(By)] = 2matr (AEy).
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Taking t = Ej; i # j, tr(AE;;) = 0. By (C2) and (1(33), there exists an orthogonal

imatrix H, which does not depend on 7, such that
Bii = H(Eu ® Ay)H' : ' (4.8)

where Ay = diag[ln,, —Im,,0]. By (C3)-(C5) and (4.8) we obtain

2B;j = H(ey ® Ajj +ej; ® Aj)H' . (4.9)

where Aij = dlag[U”,‘/”,O] c Mnxm Uij € Mmlxmla Vii € Mmzxm2 and A;] = Aji7

UUsy = Imyy VigVis = Iy S0
tr(L(A* ® W) L'L(E;; ® W)L') + tf(L(Ei,-é W)L)
= 2/Gig;[tr(BBy;) + tr(By;)] = 2\/2;;:7157«[(3% + Bj; £ I)By]
= /Emtr((en ® Au+ e ® Ay 1 I)(e Ay + o5 ® Ag)) = 0,
which proves (d) and (e). |

Conversely, suppose (4.1)-(4.5) hold and, equivalently, (a)-(e) hold. We show that

conditions (C1)-(C6) hold.
(C1) follows from (c), i.e. L(E;; ® W)L' =0, forior j > 0.

Fixing (1 < i< jb_S r) and taking t #,E'z E;; in (a)-(b), we have
By = ByBBy;, B;B=BB; : ‘ (4.10)
and tr(BBy; + By) = 2mu, tr(BBy — By;) = 2my or
tr(Biy) =my — mg, tr(BBy;) = my + ma. | (4.11)
Taking t = E;; and t = Ej; in (a) gives

BiiBBjj -+ BjjBB,‘i =0 (4.12)
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By (4.10) and (4.12), we have ||B;B;; + B;; Byl = 0, i.e. ByB;; = 0, which proves

(C3). Also by (4.10) and (4.12), we obtain

B*=B, K B (4.13)
and then
Bfi = By, ' (4.14)

so tr(B2) = tr(ByByBBy;) = tr(B3B) = tr(B;;B) = m; + ma, which proves (CZ)

Taking t = E;; and t = E;; in (a) gives
By = By;BByj + By;BBii. R (4.15)
Taking t = E;; and t = Ej; in (a) and (b) gives
B, = ByBB,; + By BBy | (4.16)

and

So BMB” - BiiBijBBjj and Biijj = BiiBBiijja which proves (05)

Taking t = t = E;; in (a) gives

4B;BB;; = By + Bjj. (4.18)

From (C3), (C5) and (4.16)-(4.18), we obtain 4B}, = B + B}

., which proves (C4).

From (4.9), (4.15), (4.16) and (C3), we obtain that for distinct 4, 7, k,

BijBkk =0 : ) (4.19)
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Taking t = Ej and t = Ej; for distinct i, 5, k in (a) gives

Bi; = 2Byt BBj, + 2By BBi. (4.20)

“So from (4.20), (4.19)and (C5),
| Bij = 2By BBk + 2B;k Bk Bix = 2By BixBj + 2B;; Bj1. Big

= Z(Bz'z' -+ Bjj)(BikBjk -+ 2BjkBik),

which proves (C6) and then the proof is completed. O

Theorem 4.1.1 provides us the equivalent matrix algebraic conditions of YWY ~
W,(my, A) —=W,(ms, A). Here the covariance A is a diagonal matrix. Based on
Theorem 4.1.1, we establish the matrix algebraic conditions equivalent to YWY ~
Wp(ml,E) — W,(ma, L) with a common covariance ¥. The following theorem ié

for the case of a common covariance matrix ¥ € N, instead of a diagonal common

covariance A.

Theorem 4.1.2. Suppose that Y ~ Nixp(0,Zy) and W is a symmetric matriz of
order n. Then Y'WY ~ Wy(my, ) — W,(ma, X) for nonnegative integers m; and my
if and only if there exists some 3 eN, such that fbr any.elements h, h in the similar

~ base H, associated with X,

z;, [W ® (hSh + BZh)] Sy = G(h, b, %, Sy) + G(h,h, %, y) (4.21)
and |

Zy(W® ZH)Ey (W @ h)Sy = Ly(W @h)Sy (W @ 2Dy (4.22)
with

{h:Zy(W @ h)Zy = 0} -K | (4.23)
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where K={h:XhX¥ =0, he IHI,,} and
tr(Ty (W @ T5)Zy (W @ h)) + tr(Zy (W ® h)) = 2mytr(Zh) (4.24)
tr(Sy(W ® SH Sy (W @ h)) — tr(Sy (W @ h)) = Imatr(Sh). (4 25)
Proof. Since ¥ € N, there is ah orthogonal matrix H of order p such that |

H'YH = diag|o1,09,...,0,0,...,00 = A, r=7r(X), 0;>0,i=1,2,...,1,

and Y H has a normal distribution N,x,(0, Sy g) where Syy = (I Q H)Ey(I® H)). = -

Assume (4.21)-(4.25) hold. Let
t = H'hH,

then the function t = H'hH is a one to one map from thg similar base H), associated
with ¥ onto the basic base E,. By replacing h, h and ¥, respectively, with HtH’, .
HtH' and HAH' in (4.21)-(4.25), with (2.5) and necessary tensor calculations, (4.21)-

(4.25) are, respectively, expressed as, for any t,t in the basic base E,.
Syu [W & (bAt +tAt)] Syn = G(h,h, A, Syy) + G(h, h, A, Zyg)
Lye(W @ AN Sya(W @ t)Syg = Syu(W @ t)Syup(W @ A1) vy,
{t: Syu(W @ t)Syy = 0} = K,,
tr(Syg(W @ AN)Zyg(W @ t)) + tr(Sys(W ® t)) = 2mytr(At),

and

tr(Syr(W ® AN)Syr(W & t)) — tr(Syu(W ®1t)) = 2matr(At).
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By Theorem 4.1.1, H'Y'WY H ~ W,(my, A)=W,(my, A). Hence YWY ~ W,(mq, Z)—

W,y(ma, A) follows from Lemma 2:2.2.

The comnverse can be shown by foll’owing the above steps backwards. O

- Remark 4.1.3. In fact, ’wheneuer Y'WY ~ Wp(ma, B) — Wh(ma, A), the degrees of

freedom my and mo can be given by

P 27%2) [tr(Sy (W ® 2f))2 + tr(Zy(W ® E+))] ,
mg = ﬁ [tr(Sy(W ® E¥))? - tr(E;/(_W ® 2+),),] '

Next ‘we shall discuss the applications of Theorem 4;1.2 and Theorem 4.1.1.
In Theorem 4.1.2, su’ppose that the covariance Yy is the Krohecker produét AQY
for nonnegative definite’ A of order n.. Theorem 4.1.2 is reduced to the following

corollary, which was obtained by Tan (1975).

Corollary 4.1.4. Let W be a symmetric matriz of order n andY ~ Nyyp,(0, A ® X)
with A € N,, and £ € Np. Then, YWY ~ W,(my,X) — W,(my, ) for nonnegative
integers my and me if and only if |

(1)AWA = AWAW AW A # 0; and

(2) tr(AW)2 + tr(AW) = 2my, tr(AW)é —tr(AW) = 2ma.

Proof. Replace A ® ¥ with Xy in (4.21)-(4.25). With (2.5) and some calcula‘ﬁions,
we prove (4.23). Then, (1) follows from (4.21) and (4.22); and (2) follows from (4.24)

and (4.25), which proves the desired result. a

In Theorem 4.1.2, if y is an n x 1 random normal vector with mean vector 0 and
covariance C of order n, (4.21)-(4.25) are reduced to the familiar conditions which

were showed by Tan (1975).
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Corollary 4.1.5. Lety ~ N,(0,C) and W be a symmetric matriz of order n. Then

YWy ~ x*(m1) — x*(ma) for nonnegative integers my and my if and only if

CWC = CWCWCWC #0; and ' - (4.26)

tr(CW)? + tr(CW) = 2ma, tr(CW)? —tr(CW) = 2ma. (4.27)

Proof. In the univariate case p = 1, ¥y = C. Using Theorem 4.1.2, we get Corollary

4.15. - L O

If C=I in Corollary 4.1.5, (4.26) is reduced to the well—known‘condition, W3=W,
if and only if the quadratic form y'Wy is distributed as a diﬁ"erence of two independent -
chi-square random variables, see Luther (1965) aﬁd Graybillv (1969).

In Theorem 4.1.2, if we réplace the covariance Ly of Y with the sum of special

Kronecker products, we have the following’corollary.‘
Corollary 4.1.6. Let YV ~ Naxp(0, Zy) with Ty = ZA,- ® Ey, r <p, A; € N,.
i=1

Then, for W € S, YWY ~ W,(m1,E) = W,(ma,X), where ¥ = iaiEﬁ, for
nonnegative integers my and my if and only if there exist real numbersiz:;c >0,k =
1,2,...,r such that for all i,4,k < r,

(1) AWAWAWA; = 02AWA; # 0;

(2) 0;AWAWA; = 0, AWA; WA, and

1 1 : 1 1
(3) ?tT(AiWV + ;tT‘(AzW) - 2m1, gt’f‘(fhW)Q - ;t’f‘(AiW) = 2m2.

7

. T T
Proof. Replace Ly and 3 with Z A;RF; and Z o;Ey;, respectively, in (4.21)-(4.25).
i=1 =1

(4.21)-(4.25), respectively, become

r ; 1 , o ,
Z (G'kAiWAj — ;-;AlWAkWAkWAJ) & Eii(tEkkt -+ tEkkt)Ejj =0,

i,5,k=1
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S
Y AWAWA; — — AW AW A) © Bl =0,
i i

byt |
. {t : Z AiWAj ® EmtE]] = 0} = {t : Z UinEiitEjj — 0} :
e 4,5=1 i1 .
and .
3 r 1 . | . . | . i | |
tr <Z —AWAW ® Eiit)’+ tr (Z tr(AiW)tT(Eiit)> = letr(z i Et)
: P . ‘
i=1 . ey £n
| - 1 | : : . T r
tr (Z E_‘AiWAiW ® Ez'it> —tr (Z tT(Az'W)tT(Ei-t)) = 2m2tr(z 0;Ext).
=1 ~ —~ 2

The desired results follow from the above equations by the arbitrariness of t € E,. O

Corollary 4.1.7. In Theorem 4.1.2, supposé Xy ‘is nonsingular. - Then Y’WY_'N
Wp(my, ) — W,(ma, X for nonnegative integers my and mq if and only if there

exists some ¥ € N, such that for any. element h in the similar base H, associated

with %,
WeS=(We)Sy(W eSSy (WeI) | (4.28)
-~ and
(W @SS (W @ h) = (W @ h)Sy(W ®k2‘—1) | (4.29)
- with
tr(Sy (W @ ) Zy (W ® h)) + tr(Zy (W ® h)) = 2mitr(Zh) (430
t}«(zy(W R L NSy (W ®@h)) — tr(Sy(W @ h)) = 2m,tr(Th). (4.31)

Proof. Note that if Ty is nonsingular, then £~! exists from (4.23) in Theorem 4.1.2.
The desired results are obtained from Theorem 4.1.2 with routine tensor operations.

O
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Considering the symmetric matrix set S, rather than the similar base set H,, the -

following theorem can be obtained from Theorem 4.1.2.

Theorem 4.1.8. Let Y annxp random matriz normally distributed with Ny, 5, (0, Ey)
and W be a symmetric matriz of order n. Then Y'WY ~ W, (m1, £) — Wy(mg, Z)
for nonnegative integers my and my if and only if there exists some ¥ € N, such that

for any matriz s in' Sy,

Yy (W @ s¥s)Zy - Ty(W® s)zy(w ® 2+)2Y(W ® )Ty (4.32)
and |

Sy (W ® SHE(W ®8)Sy = Sy(W @s)Sy(W @ TH)Ty (4.33)
with |

{s: Sy(W®s)Sy =0} = {s: ¥s¥ =0} A (4.34)
and

tr[(Sy (W ® SHEy + DSy (W @ 5)Ty] = 2mytr(Ss) (4‘.35) |

tr{(Sy(W @ THSy — DSy (W ®5)Zy] = 2mytr(Ts). (4.36)

Proof. (4.22) <= (4.33), (4.24) <= (4.35) and (4.25) <= (4.36) are trivial by the
linearity of these conditions. And the equivalence between (4.23) and (4.34) can be
shown by using the same way in the proof of Theorem 3.1.11.

Since for any elements s,8 in the similar base S,

Sy [W © (s554558)] Sy = %Ey (W & [(s+58)5(s +8) — (s —§)5(s —8)]) Sy, (437)
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(4.32) is equivalent. to
Sy [W @ (8554 558)| Sy = G(s,5, 5, Ty) + G(5,5,%, Ty) for s,5 € S,. (4.38)

Obviously, (4.38) implies (4.21) and hence (4.32) => (4.21),
| Further, assume that (4.21) holds. For any s, § in the set S,, s and § can be
expféssed as the linear combinations of hy; € Hj,, 1 <4< j <p. Let

s = Z sijhyj, s;; ER and §= Z Skihgr, Sp € R.

1<i<j<p 1<k<i<p

Then we have
Yy [W ® (sX8§ + 8Xs)|Zy

=3 1<i<ji<p Y. 53uZy[W ® (hyShy + huThy)|Ty

1<k<i<p .

= Z Z 8438ki{G (hij, by, 2, Dy) + G(hy, hy;, 2, By )]

1<é<j<p 1<k<i<p

=G( Y syhy, Y Buhg, T, Ty)+G( D> Swhw, Y sihi, I, Zy)

1<i<j<p 1<k<I<p 1<k<i<p 1<i<j<p
= G(S, §, 2, Ey) + G(é, S, E, Ey),

that perés that (4.21) implies (4.38), which implies (4.32), and that completes the

proof. O

Masaré and Wong (2004b) essentially obtained Theorem 4.1.8 as the special case
of their main result by using Jordan algebra homomorphismé in theif technical report.
Their result was obtained for Very general case and its proof was quite technical. In
this thesis, we use a matrix approach to obtain the same result as Masaro and Wong.
Thus, our approach has-advantage to‘be simple for applications while providing the

same result as in Masaro and Wong (2004b).
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Putting Theorem 4.1.2, Theorem 4.1.8 and Lemma 2.3.5 together, we haveb the

following corollary.

Corollary 4.1.9. Let Y ~ Ny (0,8y) and £ € Ny, Then the following statements

are equivalent.

(a) YWY ~ Wy(my, E) — Wy(mg, £) for nonnegative integers my and mo;

(b) There exists some ¥ € Ny, such that for anys €S,
Ly — 252 (W @ 8)2Y/%| = |1, — 2825 Y2™ |1, + 25126 51/2 2,

(c) There ezists some ¥ € N, such that the matriz 2%,/2(W ® S)Z;/? and the

diagonal matriz diag[l,, ® SV2s%1/2 —1,,, @ L1222 0] € Syp have the same char-

acteristic polynomial for all s € S,; and

( d) There exists some ¥ € N, such that for any positive integer k and any s € Sps
tr(Zy(W ®s))F = iml + (—l)kmg]tr(Eé)k.
(e) There exists some & € N, such that for any matriz s in'S,,
Sy(W® SZSk)Ey‘ =G(s,s,%, Ey)

and

Sy (W @ SHE(W @5)Sy = Sy (W ©5)Zy (W ® £4)Sy
with {s : Ly (W ® )Xy = 0} = {s : ¥s¥ = 0} and

tr[(Zy (W E+)2y + DXy (W Rs)Zy] = 2m1tr(Zs)

tr[(Sy(W © SHSy — 1)Ey(W @8)Sy] = 2matr(Ss).
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‘ (f) There exists some ¥ € Ny, such that for any elements h, h in the similar base
H, associated with %,

Sy [W ® (hSh + Ezh)] Ty = G(h,h, %, Ty) + G(l, b, 5, Ty)
and

Ty(W @ ZHEy(W ® h)Zy = Sy(W ® h)Sy (W ® 1)y

 with {h: Sy (W @ h)Sy = 0} = K and
tr(Sy (W @ THZy (W @ b)) + tr(Sy (W @ b)) = 2mytr(Zh)
tr(Sy(W @ £7)Zy (W ® h)) — tr(Zy (W @ h)) = 2mgtr(Sh).

It is seen that (f) of Corollary 4.1.9 is easy to verify, compared to the rest.

| 4.2 Conditions for MQFs to be an Independent
Family of Random Matrices Distributed as D1I-

 WRMs

Replacing H, with E, and applying Theorem 4.1.1 and Lemma 3.4.1, we establish a
multivariate version of Cochran’s theorem. Namely, we prove a result concerning dif-

ferences of independent Wishart random matrices with a common diagonal covariance

A.

Theorem 4.2.1. Suppose that Y ~ Nyy,,(0,Zy) and W;’s are symmetric matrices
of order n. Then {Y'W;Y}'_, is independent and, for i = 1,2,... .1, YWY ~

Wo(mas, A) ~ W, (mag, A) for nonnegative integers mq; and my if and only if there
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exists some A € Ny, such that for any distinct i,j € {1,2,...,1} and ti, t; in the basic
bas‘e E,, |

() Sy [W; ® (b:AE; + £:A4:)]Sy = Gi(ts, T, A, Ty) + Gi(Ei, ti, A, Ty );

(b) Ty (W; © ATy (W; © )y = Sy (W; ® t) Sy (W; © AT)Zy;
o (e) {ti : Ty (W; @ t;)Ty = 0} = {t; : At;A = 0};

(d) tr(Sy (W; @ AN Zy (Wi @ t;) + tr(Sy(W; ® t;)) = 2mytr(At,),

tr(Sy (W; ® AT)Sy (Wi @ t2)) — tr(Sy(W; ® £:)) = 2maitr(Aty); and
(e) Sy(W; ® AH)Sp(W,; @ AH)Sy =0 |

where Gi(tiy {';i, A, Ey) = Ey(Wz & tl)Ey(Wz & A+)Ey(Wz ® Ez)zy )

Proof. Let {Y’ W;Y'}._, be an independent family of random matrices distributed
~ as the differences of independent Wishart random matrices. Then (a)-(e) hold by
Theorem 4.1.1 and Lemma 3.2.1.

Conversely, suppose (a)-(e) hold. For ¢ =1,2,...,1,
Ylmy ~ Wp(mli, A) - Wp(m% A)

follows from. Theorem 4.1.1. Thus, to prove the independence of the matrix quadratic
family, by Lemma 3.2.1, it suffices to show condition (3.29) or. condition (3.30), from
conditions (a)-(e).

Exactly as in the proof of Lemma 2.1.6, (3.30) is‘equivalent to
L(s; ® W;)L'L(s; @ W;)L' = 0 where L'L =Sy s;,8; € S, (4.39)
and (e) amounts t0

LAY @ W,))L'L(AT @ W)L’ = 0. (4.40)
J
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: ‘Nbamely, we only need to obtain (4.39) from statements (a)-(e).

For'any s; in the set Sp, 8; can be written as

a x
8, = ‘ where a € S,.
k%
| e,
Write k .
' a 0
s; = ~ where a € §,.
0 0
: - pxp
By (c), for any s;,s; € S,
Lisi ® W) L'L(s; ® W;)L' = L(s; @ W) LI'L(s; @ W)L, (4.41)

Since, by (a)-and (b),

CL(st @ W)L =L LAt As? + st AAT & Wi| L/
g 2 no

DO

([L(A* ® W,-)L']?L(s; ® Wi)L' + L(s; @ W;) L'[L(A* ® W;) L')?]

=L(s* @ Wi)L'[L(At @ W) L)%,

(4.42)

similarly,
L(s; @ Wy)L' = [L(A* @ W)LPL(s @ W)L, | | (4.43)
we obtain (4.39) from (4.41), (4;42) and (4.43), so the proof is complete. O

Based on Theorem 4.2.1, we obtain a multivariate version of Cochran’s theorem
concerning differences of independent Wishart random matrices with a common co-

variance ¥ rather than a diagonal common covariance A. Exactly as in the proof
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of Theorem 4.1.2; we derive the following theorem from Theorem 4.2.1 and (1) of

Lemma 3.4.1.

Theorem 4.2.2. Suppose that Y ~ Npyp,(0, Zy) and Wi’s are symmetric matrices
of order n. Then {Y'W;Y}._, is independent and, for i = 1,2,...,, Y’W,-Y:N
Wp(mli, Y) - W,p(ma;, X) for nénnegatz’ve integers my; and Mo if and only if there
ezists some £ € Ny, such that for anyi € {1,2,...,1} and any elements h; and h; in
the similar base H, associated with X, | | |

(a) Sy [m ® (h;Sh; + ﬁizhi)} Yy = Gi(hi,hy, T, Ty) + Gi(hy, by, E,“'L‘yl),‘

(5) Sy (Wi © SH)S(W; © he) Sy = Sy (W; @ h)Sy (W ® TSy 5

(c) {h;: Zy(m ®h;))Zy =0} =K; |

(d) tr(Ey (W; @ Z1)Zy (W; @ hy)) + tr(Zy (W; @ h;)) = 2mytr(Ehy),

tr(Zy (W; @ ZH)Zp(W; @ Iy)) — tr(Sy(W; ® hz)) = 2my;tr (Xh); and

(e) for any distinct i, € {1,2,..:,1},

Proof. Since ¥ € N,, by Lemma 2.1.1, there is an orthogonal matrix H of order p

such that H'H = I,, and
H'SH = diag[o1,02,...,00,0,...,00 = A, r=7(2), 6; >0, i =1,2,...,r.

And YH ~ Npyy(0, Sy ), where Syg = (I ® H’)’EY(I ® H).
Defining |
t; = HhH forany h; e H,, i=1,2,... L
for any ¢ =1,2,...,[, the function t; = H'h;H is a one to one map from the similar

base Hl, associated with ¥ onto the basic base E,. By replacing h;, h;, T and Zy,
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i‘espectively, with Ht;H', Ht;H', HAH' and (1@ H)Sy (1@ H') in (a)-(e), we obtain
E,YH [Wz ® (tiAEi + EzAtz)] Yy = Gi(hi, fli, A, EYH) <4 Gz(fl,, h;, A, EYH) (4.45)

Syu(Wi ® A)Syu(W; @ t:)Zya = Tyn(Wi @ t:)Zyu(W; ® AT)Syn,  (4.46)

C{t  Zyr(Wi®t)Syn = 0t € B} = Ko, (4.47)
tT(ZYH(Wi ® Z+)EYH(VVZ ® h,)) + tT‘(EYH(VVi &® hl)) = 2m1itr(§3h¢), (
, ' | 4.48)
tr(Sya(Wi @ SN Zyu(W; @ b)) — tr(Sya(W; @ by)) = 2may;tr(Shy)
and 'k
Lyg(W; ® A+)EyH(I/Vj & A+)2YH =0. ' (4.49)

By Theérem 4.2.1, (4.50)-(4.49) are the necessary and sufficient conditions for ma-
trix. quadratic forms H'Y'W;Y H’s to be anvindependent family of random Iﬁatrices
distributked as differences of independent Wishart random matrices with Wp(mli, A)
and W, (mag;, A). Then {Y'W,;Y}._; is an independent family of random matrices
* distributed as differences of independent Wishart random matrices with W,(my;, £)

and W, (my;, ¥) from Lemma 2.2.2 and vice versa, so the proof is completed. O

Theorem 4.2.2 is the core result in this chapter. In the sequence, we discuss its

special cases and applications.

Corollary 4.2.3. In Tﬁeorem 4.2.2, suppose Yy is nonsingular. Then {Y'W;Y}_,
is independent and, for i=1,2,...,1, YWY ~ W,(mi, Z) — W,y(ma, Z) for non-
negative integers ma; and mqo if and only if there exists some X € N, such that for
any distinct i,7 € {1,2,...,1} and any element h; € H,,

(D) W; @ L = (W; @ Iy (W; @ E~H Sy (W & I);
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(2) (W; ® E_l)EY(Wi@ h;) = (W; @ hy))Zy (W; @ £71); |
(3) t’I‘(Zy(Wi ® E‘l)Ey(m &® hz)) -+ tT‘(Zy(Wi ® h1)) = 2mh~tr(2hi),

tr(Sy (Wi ® £y (W; ® hy)) — tr(Sy (Wi @ hy)) = 2maitr(Shy); and

(4) W @ NIy(W,; @ I) = 0.

Proof. Note that if Ty is nonsingular, then £~ exists from (c) in Theorem 4.2.2. (4)
follows from (e) of Theorem 4.2.2. With routine tensor product calculations, the rest

follows from Corollary 4.1.7. ‘ -0

In Theorem 4.2.2, suppose that the covariance Yy of Y is the Kronecker product
A®Y for nonnegative definite A of order n. Theorem 4.2.2 is reduced to the following’

corollary, which was shown by Tan (1975) and Wong and Wang (1995).

Corollary 4.2.4. Let Wy, Ws, ..., Wl be symmetric matrices of ordern and Y ~
Nixp(0, AR L) wz‘tth €N, and ¥ € N,,. Then, {1‘/"I/V,-Y}§:1 is independent with for
1 =1,2,...,1, Y’W,-Y ~ Wy(may, 8) — W,y(ma;, 2) for nonnegative integers my; and
ms if and only if any distiﬁct i,j € {1,2,....0},

(1)AW; A = AW, AW;AW;A # 0;

(2) tr(AW,)? + tr(AW;) = 2ma;, tr(AW;)? — tr(AW;) = 2my;; and

(3) AW;AW;A = 0.

Proof. (3) is obtained by replacing A ® ¥ with Yy in (4.50) in Theorem 4.2.2. (1)

and (2) follow from Corollary 4.1.4; that proves the desired result. O

In particular, if y is an n x 1 random normal vector with mean vector 0 and
covariance C of order n, Theorem 4.2.2 is reduced to the familiar conditions which

were shown by Tan (1977).
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CorOIlary 4.2.5. Let'y ~ N,(0,X) and Wy, Wy, ..., W, be symmétric matri-
ces of order n.  Then {y’Wiy}l;1 is independent and, for i = 1,2,...,1, yW;y ~

A2(my) = x3(my;) for honnegative mntegers -my; and ms if and only if any distinct
me@;mﬂ‘

(1) CW,C = CW.OW.CWC £ 0;

(2) tr(CW)? + tr(CW) = 2my, tr(CW)? — tr(CW) = 2my; and

(3) CW,CW,C = 0.

In Theorem 4.2.2, if we replace the covariance Ly of ¥ with the sum of special

Kronecker products, we have the following corollary.

Corollary 4.2.6. Let Y ~ Nouxp(0, Zy) with By = ZA“ ® Eaa, r<p, A, €N,
a=1 v ;
and W; € Sy, i = 1,2,...,1. Then {Y'W,;Y}\_, is independent and, fori=1,2,...,1,

T

Y’W;Y ~ Wy(mai, ) — Wy(ma, L), where ¥ = Zo'bEbb; for nonnegatz've integers
my; dnd my if and only-if there exist real numbe:s:lac >0,c=1,2,...,7, such that
foralla, b, ce {1,2,...,< r} and any distinct i,5 € {1,2,...,1},

(1) AaWiAcwiACWiAb = 02AW; A;

(2) AW;Ay # 0;

(8) oy AV AW, Ay = 0, AWV AW, Ay

(4) AdWiAW;A, = 0; and

1 1 o1 1
(5) ;—gtr(AaW’i)Q + ;;tr(AaVV,-) = 2m11, ;tT(AaWi)g - ‘(};tT'(AaVVi) = 2m2i.

a

Proof. We use (4.50) by replacing ¥y and ¥ with Z A, & Ey; and Z op Py Tespec-
: a=1 b=1
tively. Then, (4.50) becomes

Z AW AW A @ By T EgXtE,. = 0,

a,b,e=1
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hence, A,W;A,W,A, = 0, which proves (4). The other conditions follow from Corol- - -

lary 4.1.6. ‘ ' : ]
Plitting Theorem 4.1.8 and Theorem 4.2.2 together, we obtain the following result.

Theorem 4.2.7. Suppose that Y ~ Nosep(0, By) and W;’s are symmetric matm’ces
of order n. Then {Y’I/V,-Y}ﬁ;l is inde‘pehdent and, for i = 1,2,...,1, YWY ~
Wy(mai, £) — Wy(ma, Z) for nonnegative integers my; and miy if and only if there
exists some & € N, such that for any i € {1,2,...,1} and any elements s; in Sy,

(a) Ty{W; ® (s:8s:)| By = Gi(si, 8, 2, Zy)

(b) Sy (W, © SHSW; ©'5)Ey = Sy (Wi ® ;) Sy (W; @ S+ Sy -

(¢) {si : Ty (W ®5:)Ty = 0} = {s : T = 0};

(d) tr (S (W; & THEy (Ws @ 55)) + tr(Sy (Wi © 51)) = 2mustr(Ss:),

tr(Sy(W; @ Ty (W; ® ;) — tr(Zy (W ® s;)) = 2mgitr(s;); and

(e) for any distinct i,7 € {1,2,...,1},
Ey(Wi & E’+)2y(Wj ® 2+)Ey =0. . ‘ ‘ (450)

Theorem 4.2.7 was essentially obtained by Masaro and Wong (2004b) through
Jordan algebra homomorphisms.

4.3 Conditions for a MQF to be Distributed as av‘

DINWRM

_In this section, we extend Theorem 4.1.2 to the case where Y ~ N y,(t, Xy) with

nonzero mean matrix (.
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Theo'rexﬁ 4.3.1. Suppose that Y ~ Npxp(pt, Xy) and W is a symmetric matriz of
- order n. Then Y'WY ~ Wp(ml, Z, A1) = Wy(mg, 2, Ag) for some matrices Ay, Ay €

Mpxp ia‘nd nonnegatibe integers my, m; if and only if there exists some X € Ny such
; that the following siaterﬁe’nts (a) and (b) hold.

(a) For any elements h, h in the similar base H, associated with 3,

Sy [W ® (h‘zﬁ n ﬁz:h)] Sy = G(h,}, T, Sy) +G(h,h, %, Ty) . (451)
such that

(W ® 2+)2(W ®h)Zy = Sy (W ® h)Ey(W LTy | (4.52)
with

(h:Sy(Weh)Sy =0} =K (4.53)
and

Sy (W & SHEy (W @ b)) + tr(Sy (W © b)) = Imatr(Sh) sy

tr(Sy (W ® SH)Sy (W @ h)) - tr(Ey(W 2h)) = 2matr(Sh); (4.55)

(b) For any s in a neighborhood Ny of 0 in S, and k =1,2, ...,

ktr (A + /\2)5(25‘)21@—‘1) = tr (vec(p)vec(u) (W @ s)[Zy (W @s)]**7!)  (4.56)

tr((Ar = A2)s(Z8)%) = tr (vec(pvec(p) (W & 8)[Ey(W & s)]*) (4.57)

with

Al - }\2 = ,LLIW[L ) (458)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



" Chapter 4. Cochran’s Theorem Concerning DINWRMs 109

Proof. By Lemma 2.3.1, the moment generating function M(s) of YWY is given by
M(s) = |I - 252 (W © 8)SY2|exp{< s, W'Wp > +2%,} o (4.59)

where sr(E%,/z(W ® S)E;ﬂ) < 1/2 and ®y =< vec(ﬂ)vec(p,)’, W S)E;,ﬂ[.[——
22§/%W®s>2§/2}-12§/2(W®s) >). |

Recall that YWY ~ W,(mq, Z, A1) QWp(mg, %, Ag)v meansk that YWY can be
expressed as a difference of two independent random rhatriées Dy and ‘Dg with Dy ~
W,(my, X, A1) and Dy ~ W,(m2, X, Az). By Corollary 2.3.2, the moment generating
function Mi(s) of Dy and the moment generating function Ma(s) of »-~D§, respectively,

are given by

MI(S) =|I— 221/2521/2k|‘m1/2ea:p{’< s, A1 > +28,} (4.60)
and . |

Ma(s) = |1 + 25125512~ 2e5n 1 < —s Ay > +205) | (461)

where &, =< A;,sSV2(] — 28V/2TY2) 152 > @y =< Ay, sEY2(I + 25Y%s
Y2 -1¥1/%g > and s € S, such that sr(XY2s2H?) < 1/2.
Independence implies that for s in a neighborhood A of 0 in S,,

M(S) — E(6<S’D>) — E(e<s,D1*D2>) — E(C<S,D1>)E(e<s,~D2>) — Ml(S)MQ(S)-

Using (4.59)-(4.61) and comparing the same items in both sides of M (s) = M;(s)Ma(s),
we obtain the following conditions:
(i) [ — 253 (W @)Ti/?|71/2 = |I — 25 1/2sT V2| =™ /2|[ 4 ox1/25)1/2|ma/2,

(ii) for any symmetric matrix s in a neighborhood My of 0 in S,

®g = By + Py; and ’ (4.62)
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(iii) Ay — Ay = p'W p, which proves (4.58).
By Lemma 2.3.5, (i) is equivalent to (Y —p) W (Y — ) ~ Wp(my, Z) —Wy(my, ).

(4.51)1— (4.55) follow from Theorem 4.1.2.

* For any s in a neighborhood A} of 0 in S, we have

2@ = tr(A[s¥s + 2s(Ts)? + 2%s(Zs)® + ... )), ' (4.63)

o, = tr(Ag[SEs ~ 25(¥s)? 4+ 2%s(Zs)® + . ]) g ; (4.64)

and -
By = tr(vec(p)vec(p) (W ®@s)Sy T+ 2(W ®5)Y? + 24(W ®s)T3 +...)) (4.65)

where T = Ey (W & s).

We arbitrarily choose s in Ny. Replacing s in (4.63)-’(4.65') by as with very small
positive number o« and putting (4.63)-(4.65) into (4.62), two sides of (4.62) are two
power series with respect to «. Comparing two power series implies that (4.62) |

amounts to (4.56) and (4.57), and that proves the desired result. d0

In fact, we have obtained the following relation between Y'WY and (Y—p)W(Y -

. ) in the proof of Theorem 4.3.1.

Corollary 4.3.2. Let Y ~ Nuxp(p,Zy) and W be a symmetric matriz of order
n. Then Y'WY ~ Wy(mq, X, A1) — W,(me, E; Ag) for matrices Ay, Ay € My, and
nonnegative integers my, my if and only if there exists some ¥ € N, such that

(1) Y =) WY — p) ~ Wy(my, £) — Wp(ma, X); and
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(2) for any s in a neighborhood No of 0 €S, and k =1,2,...,

tr (A + Ao)s(Zs)#71) =tr (vec(p)vec(p)' (W & S)[EY(W ®s)|%1),

tr (A1 — Ao)s(Es)%) =tr (vec(p)vec(p) (W @ s)[Sy (W @8)]%);
w’ith Al - Az = [,L’W[,l,
Suppose that Yy is the Kronecker product covariance structures AQ Y for A € N,

Theorem 4.3.1 is reduced to the folldwing corollary.

" Corollary 4.3.3. LetY ~ Nosp(p, AQY) with A € N, and W be a symmetric matriz.
of ordern. Then Y'WY ~ W,(my, S, A1) =W, (ma, T, Ag) for matrices ALz € M,,X,,
and nonnegative integers my, my if and only if the following statements (1)-(4) hold.

(1) AWAWAWA = AWA # 0; |
(2) tr(AW)? + tr(AW) = 2my, tr(AW)? — tr(AW) = 2my;
(3) AL+ Ag = WWAW i = (/W AW AW AW p; and

(4) A1 — Ao = Wy = p/'WAW AW p.

Proof. (1) and (2) follow from Corollary 4.1.4. Use A® X to replace Sy in (4.56) and
(4.57) of Theorem 4.3.1. By (2.5) and (2.6), (4.56) and (4.57) are expressed as, for -
k=12,
tr (A + AQ)S(SS)Qk—l) = tr (vec(p)vec(p) (W ® s)[Sy (W ® s)]*1)
=tr (vec(u)’vec(W(AW)Qk“lus(Es)%_l))
= tr (W (AW)* L us(Zs)?1)

and

tr (A = A2)s(Zs)%*) = tr (uW (AW)** us(Ts)?) .
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' By Lemma 2.1.8, we have
A+ A= W (AW)*L and (4.66)
A v—‘A2',= ,,./W(AW)% S - (4.67)
for k= 1,2, .. (3) érid (4) are equivalent to ‘(4.66) and (4.67) from (1), and so the
proof is completed. | |

The following corollary is for the spécial case p = 1 of Theorem 4.3.1.

Corollary 4.3.4. Let y ~ N, C) with C € Nn‘ dnd_W be a symmetric matriz
of orde.rb n. Then yWy ~ X2(m1,5%)(— x%(ma, 82) for some numbers 62, 82 and
nonnegative'integers my, my if and only if the following statements (1)-(4) hold.
(1) CWCWCWC = CWC # 0;
| (2) tr(CW)2 +tr(CW) = 2my, tr(CW)? —’t’l‘(CW) = 2my;
(3’) 6:13 + 02 = WWCWp = pWCWCWCW u; and

(4) 6% — 82 = uyWp = yf/WCWCW .

4.4 Conditions for MQFs to be an Indépendent
Family of Random Matrices Distributed as DIN-
WDs

In this section, we shall extend Theorem 4.2.2 to the case where Y ~ N y,(1, Ly)

with nonzero mean matrix p.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4. Cochran’s Theorem Concerning DINWRMs - 113

Exactly as in the proofs of Theorem 4.2.2 and Theorem 4.3.1, we only need to . ° |
put them with Lemma 3.4.1 together and obtain the following multivariate version of
Cochran’s theorem concerning differences of independent noncentral Wishart random

matrices.

Theorem 4.4.1. LetY ~ Nngp(u, Ty) and Wy, Wy, ..., W, be symmetric 'matﬁces
of order n. Then ’{Y’WiY}l-zl is independent and, for i = 1,2,...,1, YWY ~
W,(my;, 3, ,\h-)’ = Wp(mas, E; X2;) for some matrices Ay, Ao of order p and somé 2
nonnegative integers my;, mo; if -and only if there exists s"omc Y. € N, such that the
following statements (a), (b) and (c) hold. | |

(a) For cm‘y i€ {1,2;...,1l} and any elements h;, flz in the similar base H, asso-

ciated with X3,

Sy [W ® (h;Sh; + ﬁiEhi)] Sy = Gi(hi, by, %, Ty) + Gi(hs, i, 5, 5y)  (4.68)

such that

Ty (W @ SHE(W @ hy)Ty = Sy (W @ h)Zy (W © 2+)2y (4‘.69)‘,
with

{bi: Sy(W &hy)Sy = 0,} K | (4.70)
and

tr(Sy (W @ BN Sy (W @ hy)) + tr(Zy (W @ hy)) = 2mytr(Thy) (4.71)

tr(Sy(W @ SHZp(W @ hy)) — tr(Zy (W @ hy)) = 2mg;tr(Shy); | (4.72)
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(b)For .any distinct i,j€{1,2,...,1} and h;,h; € H,

:y(vm',® 2+)Ey(Wj ® TT)Ty =0, (4.73)
Sy (Wi @ h)Sy (W @ hyJuec) =0 o am
- vec(u)'(Wi ® hi)zy(Wj @ hj)vec(pn) = 0; (4.75)

(md

‘ (c) For any s in a neighborhood Ny of 0 in'Sp and k=1,2,...,
tr (M + Ao)s(S8)%1) = tr (vec(p)vec(n) (W @ s)[Sy(W @ s)[*)  (4.76)

tr (M — )\2)S(Es)2k) = tr (vec(p)vec(pn) (W @ s)[Sy(W ® s)]%) (4.77)

with
Al = AQ - [L,Wu. : (478)

Theorem 4.4.1 is the core result in this chapter. Now, let us discuss its special

cases.

Corollary 4.4.2. In Theorem 4.4.1, suppose Ly 1is ﬁonsingular.’ Then {Y'W;Y}i_,
independent and, for i =1,2,...,1, YWY ~ W,(my;, L, Ay;) . Wy (mas, B, Ag;) for
~ ‘matrices Xli, Xoi of order p and some nonnegative integers my;, my; if and only zf
there exists some"E € N,, such that for distinct i,j € {1, 2’, ..., 1} and any element h;
in the similar base H, associaie with X,
(1) (W ®Z) = (W; @ )Xy (W, ® YHEy(Ws @ I);
(2) (W; ® )2y (W; @ hy) = (W; @ h)) Sy (W; @ 71,

(3) tT(Ey(Wi & 2+)Ey(Wi ® hz)) “l-'tT‘(Zy(Wi ® hz)) = 2m1,-t7"(2hi),
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tT‘(EY(VVz ® E_l)Zy(VVi (% hz)) - tT‘(Ey(Wi ® hz)) = 2m2itr(2hi);
(4) (W; @ NEy(W; @ I) = 0;

(5) for any s in a neighborhood No ofHO €S, andk=1,2,...,

tr (A + Ag)s(Zs)* 1) = tr (vec(g)vec(u)'(W ®5)[Sy (W ® 5)]%1) '7 ’

tr (A = Ao)s(Zs)) = tr (vec(u)bec(u)’(W ®s)[Sy(W ®s)]*); and
with Ay — X = /Wy,

Proof. Conditions (1)-(4) follow from Corollary 4.2.3 while conditions (5) follows from

Theorem 4.4.1. o _ . ‘ o

Corollary 4.4.3. In Theorem 4.4.1, suppose Ly = AR X for some A € N,,. Then

{Y’W,-Y}ﬁ:i is independent and, for i = 1,2,...,1,
YIWiY ~ Wp(ml’ia Ea A1’i)"'_ Wp(méia 27 AZz)

for matrices Ay;, Ag; of order p and nonnegative integers mﬁ, Mg if and only if for
any. distinct i,7€{1,2,...,1}, R

(1) AW, AW, AW;A = AW;A #0;

(2) tr(AW;)? + tr(AW;) = 2may, tr(AW;)? — tr(AW;) = 2mai;

(8) Avi + Aoy = W W, AW, = /W, AW, AW, AW, u,

Mi = Agi = WWips = WW AW AWips;
(4) AW, AW; A = 0;
(5) AW, AW;p = O; and

(6) WWiAW,p = 0.

Proof. (1)-(3) follow from Corollary 4.4.2. (4)-(6) follow from CQroliary 3.4.4. O
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~ Let us look the special case p = 1 of Theorem 4.4.1.

Corollary 4.4.4. Lety ~ N;,(u, C) with C € N, and Wy, Wy, ..., W, be symmetric

matrices of order n. Then {y'vWiy}ﬁ=1 is independent and, for i = 1,2,...1,
Y Wiy ~ x2(mai, 85) = x*(mai, 63)

for sorﬂe numbers. 015, 095 and nonnegative integers mq;, my; if and only if for any
“distinet i, j € {1,2, .. ;,,l}‘ |

(1) CW,CW,CW,C = CW,;C #0;

(2) tr(CW;)? + tr(CW;) = 2my;, tr(CW:)? = tr(CW;) = 2mai;

(3) &+ 8 = WW,CWip = WW,CW,CW,CWip;

(4) 63 — ng = p'Wip = M;WiCmCWilL;‘

- (5) CW,CW;C = 0;
(6) CW,CW,u = 0; and

(7) WW,CW;p = 0.

These special cases stated in Corollary 4.4.3 and Corollary 4.4.4 were also discussed

in. Tan (1975), Tan (1977) and Wong and'Wang (1995).
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Chapter 5

Conclusions and Future Reséarch'

5.1 Model One

The case discussed.in Chapter 3 is called model one. Iﬁ model one assume that Y
is an n x’p multivariate normal random matrix with nonzero mean 1 and general
covariance Xy and W, Wi, Wy, ..., W, are symmetric matrices of order n. - We
have derived a set the general necessary and sufficient conditions (Theérem 3.3.1 andb
Theorem 3.1.1, Theorem 3.1.3 for special cases) for matrix quadratic form YWY to
have a noncentral Wishart distributiqn and then obtained a set of general necessary
and sufficient conditions (Theorem 3.4.2 and Theorem 3.2.3, Theorem 3.2.4 for special
cases) for matrix quadratic forms YW Y, YWY, ..., YWY to be an independent
family of noncentral Wishart random matrices.

Now, let W = Zizkl W;. Consider the following propositions:

(B1) The matrix quadratic form Y'WY has a W,(m, %, u’Wu,) distribution.

(Bz2) The matrix quadratic form Y'W;Y has a Wy(m;, &, p'W;u) distribution (i =

117
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1;2,.;.,l),.
(Bs) Y'W;Y and Y'ij’Y are independent (i # ‘j;’i,j =1,2,....0).
Thev interrelationship of propositions (B1), (Bz) and (Bs) will be the first topic
; of interesf. Proposition (Bj) follows from propositions (Bz) and (Bs) by Theorem
10.3_.4 of Muirhead (1982v). We are wondering if the other two implications hold. That
is, (Bl) and (Bs) imply (BQ); (B1) and (By) imply (B3) Then, we shall study the
 interrelationship of propositions (By), (B;) and (Bj3) with some imposing conditions,
for example, nonsingular covariance Sy or nonnegative definite matrices Wy, W, ...,
/A
The second topic will be to‘study new propositions or conditions, denoted as (By),
(Bs), ..., (Bx), and then discuss the interrélationship of (B1), (Ba), ..., (Bx), also
see'Vaish and Chaganfy (2004) and Tian and Styan (2005).
| Although we have established a general multivariate version of Cochran’s theo-
rem stated in Theorem 3.4.2, the improvement of condition (b) in Theorem 3.4.2 is
k required. Then whether there exists some verifiable condition equivalent to condi-
tion (b) will be one of our interested tobics. Other tbpics of future research on this

model will include the refinement, simpliﬁcation of Theorem 3.4.2 and the extension

of Theorem 3.4.2 to more general matrix quadratic expressions.

5.2 Modelk Two

The case discussed in Chapter 4 is called model two. Model two involves the prob-

lem that asks what are the equivalent conditions for matrix quadratic forms to be an
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independeﬁt family of random matrices distributed as differences of indvependen‘t non-
central Wishart random matricés. We have established a set of general necessary dnd- '
suﬂicienf éonditions (Theorem 4.3.1 and Theorem 4.1.1 or Theorem 4.1.2 for spécial
cases) for the matrix quadratic form Y'WY to be distributed as differences of,‘inde-
pendent noncentral Wishart random métrices and then we obtained a set of general
necessary and sufficient conditions (Theorem 4.4.1 and Theorem 4.2.1» or. Theorem
4.2.2 for special cases) for matrix quédratic forms Y’ WlY, v WoY,...,. YWY to be ,
an independent family of random métrices distributed as differenices of independent -
noncentral'Wishar‘p random:matrices.’ | |

"Now suppose W = Zizl W;. Consider the following propositions: v

(D7) YWY ~ W, (my, 8, A1) = Wy(ma, Z, Ag).

(Dﬂ%M:LZHWLWMYNMMmm&AM—MMm%&&J

(D3) Y'W;Y and Y'W,Y are independently (¢ # j; 4,5 = 1,2,...,1).

The interrelationship of propositions (D1), (D2) and (Ds) will be the first topic.
of interest. Proposition (D) follows from propositions (D) and (D3) by Theorem
10.3.4 ‘of Muirhead (1982) and Lemma 2.2.4. We are wondering if the otherkktwo
implications hold. That is, (D1) and (Ds) imply (D2); (D1) and (Dz) imply (D3).
We may investigate the interrelationship of (A), (B) and (C) with some imposing
conditions, for example, nonsingular coﬂrariance Yy -or nonnegative deﬁnitev matrices

Wi, Wa, o, W |

The second topic will study new propositions or conditions, denoted. as (D‘4)7

(Ds), ..., (Dg), and study the interrelationship of (D1), (D3), ..., (Dg), also see Tan

(1975).
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Moréoyer, We are wondering if its condition (4.67) and (4.68) can be replaced with
.- the following conditions | | |
br (S (W, 8 ) 4 175 (W © 5)) = 2mygr(5)
(S (W ® L)) —tr(Sy(W; ® ) _ 2mgir ().
The examples and applications ’of Theorem 4.4.l or Theorem 4.2.2 should be
investigated. Other topics of future research on this mpdel will include the refinement,
‘ Sinlpliﬁcalcionv of Theorem 4.4.1 and the extension of Theorem 4.4.1 to more general

matrix quadratic expressions. Tan (1975) and Wong and Wang (1995) obtained their

results for matrix quadratic expressions.
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Appendix: .
Necessary and Sufficient Conditions for a MQF to
be Dlstrlbuted as a DIWRM

The following result and its proof are due of Masaro and Wong (2004b).

Theorem Let Y ~ N, x,(0,2y) and W € S,. Decompose Ly as
Sy =L'L, L=(Li,La,..., L | (1)

with L; € Myxyn and m(Ey+) ¢ < np. Assume (’without loss of generality) that LW L] #

0 (i <r). Let A = diagloy, 09;...,0,,0,...,0] (0; >0, 1 < r)kand‘dkeﬁne
By = [LW L, + L;WL})/2/Gig;, i, < 7.

Then Y'WY ~ W,(mq, A) — Wy(ma, A) with ihe'common covariance ’A for nonnega-
tive integers my and mo if avnd only .if

(C1) LWL+ LWL, =0 fori orj>r

(C2) B} = By, tr(By) = my —my, tr(B}) =my +my

(C3) ByBj; =0,i#3j

(C4) 4B}, = B + B;, i # j

(C5) BBy = ByByj, i # j

C6) 2(By; + Bj:Y(By B + B Bi) = By; for all distinct 1,7, k.
i ] J J

~ Proof. First note that in (1) we may, without loss of generality, assume ¢ = np (or
just replace L' by [L,0] "€ Mypynp). This will simplify the notation later on in our

proof (see (7)-(9)).
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* First assume that conditions (C'1)-(C6) hold. By Lemma 2.3.5 we must show that

fork=1,2,...
tr(Sy (W ®@8) S0 = [my + (~1)Fmoftr(AY2AY2E | s = (s;5) €S, (2)

* Using (2.7) - (2.8) we obtain

: ‘ r : k r ; k
tr(SYA(Wes)SYA)E = tr(L(s@W)L')* = tr (Z sijLiWL;> =tr (Z ,/—aiajsijBi,-> :

4,y=1 t,J=1

- Note that tr(AY2sAY2)% = tr(,/5;0;8;;)F. Thus since s € S, is arbitrary we must

show that

o &
tr (Z uijBij) = [m1 + (—1)km2]trUk, U= [’U,,J] S Sr , k= 1,2, NN (3)

3,J=1

Now from condition (C2) it follows that
B2 = By, tr(B¥Y=mi—-my k=1,2,... and (4)

B2 — g2

(i3]

t?"(Blzlk) = my + Mma, k= 1,2, Feen
Thus using (C4), (C3) and (4) it is easily shown that for i # j, || By — 4B} =
and so

Bij = ABY. i# ] (5)
Combining (C4) with (5) we get that; for i # j, (B} + B;)By; = 4B};By; = By;. The
symmetrybf B;; then yields

Bij = (Bi+ B3)Bij(Bi+ B3). i#j (6)
Now by (4) and (C3) we may choose an orthogonal matrix H which does not depend

on i and such that

By = H'ByH = e; @ Au (7)
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where Am = diag[Uiia V;uo] € Mnxn and Uy; = Imla Vie = _Imz‘

For i # j, let By = H'B;;H. Then using (6), (C5) and (C4) with Bj;, Bj; and
Bi;; replaced by B, Bjj and Bij we obtain |

Bz'j = §(eij ® Aij + € X A]z) . v (8)

where Ay = diag[Uij, Vij, 0] € Musn, Ui; € My xmy, Vij € Mg xm, and A =
Aji, UyUL = Iy, VijVi; = Ip,. Thus from (7) and (8) we have
o' (Z Uisz'j> H = diagl[ui; Al, 0]. o (9)
ij=1 v _

We now claim that for all ¢, 5,k

UiUkj = Usj, VieVij = =Vi5. | ‘ (10)

Indeed (10) is clear if k =i or j (since Uy = I, and Vj; = —Ipn,) or if ¢ = j (since
UiUy; = Imy and Vi;V}; = I,,). The remaining case (i.e. when 1, j and k are distinct)
is obtained by substitﬁting'the matrix representations éij given in (8) into (C6).

Now from (10) it eaé.ily follows that for all 4,7, k, ¢
Auhiey = Ay (1)

Finally, by (9), we have

o k
br (Z ”isz'j> = tr(uijAis)*

t,g=1

r r
= tT(E : E : Uipy Uy by - - ufkvszAU‘fk—ﬂAi&Aflfz P Aek—2ek—1Alk—1i)

i=1_ fy1,€2,.fk_1=1

T r .
= tT( E : § Uipy Upy 4y - - - ufk—2£k—1uék—1ic)

=1l Lo,y 1 =1
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Wheré
' diag[l,,, 0], if k is even;
C= ' ~(by (11))
diag[Ln;, —Imy, 0], if k is odd.

Thus [Z;Fl uijBij] = [my + (=1)Fmg]trU*, which proves (3) as required.

Conversely assume Y'WY ~ W, (my, A) - W,(m2, A). We show that conditions
(C1)-(C6) hold.

Using (2) and (2.7)-(2.8) and arguing as before we have that for £ =1,2...

» k
tr (Z Sz]L1WL;> = [m1 + (—1)km2]tr(,/aiajsij)’" , S= (Sl‘j) E Sp. (12)

' 1,j=1 : ,

Fixing u and v with « or v > r and letting s,, = 8, = 1 and all other s;; = 0 we see

that condition (C'1) then follows from (3.13) since o; = 0 for i > 7.

Now setting u;; = ,/5;0;85, 4,5 < r, we obtain from (12) and (C1) that

, k .
tr (Z uijB,-j> =[my + (—1)kmg]trU’c ,U=lu;j]l € Sy, k= 1,2, 7(13)

g,j=1

Fixing ¢ and letting u; =1 and all other Ukg = 0 in (13) ’yields
tr(BE) = mi+ (=1)fmy, k=12, | (14)
which proyeé (02’). |
Also, fixing ¢ 7éj and letting u;; = uj =1 and all other uy = 0 in (13) gives
0, | if k is odd;

tr(2B;;)F = (15)
2(my + me), ifk is even.

Now from (13) we get for i # j

tr(aBj; +bBj; +2cBy)* = (mq +ma)(a* +b* +2¢* + da’c® +4b°c® + 4abc®).  (16)
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By comparing the coefficients of a®b? on the left and right sides of equation (16) we
find that

2tT(B§BJ2]) + tT‘(Bn'Bjj)z =0,1 75] . (17)
Now since ItT(BiiBjj)2l = l < BiiBjjy BjjBii > | < HBuB]JHQ = (B%B?J) (17)

implies that 0 = ¢tr(B2B?%;) = || BiiBj;|[* which proves (C3).
Comparing the coefficients of abc? on the left and right sides of equation (16)’ and

using (C'3) we obtain
4tT(BiiBiijjBij) =my + mo, 1 7é 7 . . (18) ‘
Thus, by (03), (14), (15)) and (18)
tr(4B}, — (B2, + B},))* = tr(16Bj; + Bj; + Bj; —8B}(B + B})))
= 4(ma +my) — 8[| BisBy|” + || Bis Byl I”]
< 4(m1 +mg) — 16||BiiBinHBiijj” < 4(my + m2) - 16 < ByB;j, Bi;Bj; >
= 4(777,1 + m2) - 16(m1 -+ 777@)/4 =0
which proves (C4).
Also using (C4), (C3), (14) and (18), a straightforward calculation shows that

||Bi;Bij — BijBjj||* = 0 which proves (C5).

Finally, to prove (C6), note first that (C6)’ (Z Bu) =72 Z B;;. Indeed this

tj=1
is a consequence of setting all u;; = 1 in (13). Also note that since we have shown

1,5=1

that (C1)-(C5) hold, we may use the matrix representation given by (7)-(9). Using

this representation in (C6)’ gives

Ay = [Ag)> / | (19)
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where A;; = diag[P;j,0] € Myxn, Pij € My, P, = Py, PP} = I, m=my +ma.

We claim that for all 4, j, k, ¢

- ApAreAy = Aij. o (20)

Indeed by (19) we have

r’Pyj =Y PxPuPy.

k=1 ¢=1
Hence,
Do T T r T :
rLy =" " PiPuPuly =YY Fu , Fu=PiPiPuPy. (21)
k=1 f=1 k=1 €=1

Now since Fjy is orthogonal,

tr(Fee) =< Fig, Im >< |Filll|lm]] = 0. - (22)
Thus from (21) and (22) we have

mi‘2 = Z Zt’f‘(Fkg) S m’f'2. (23)

k=1 ¢=1
Now (23) shows that the Cauchy-Schwarz inequality in (22) must be an equality. Thus
Fip is akscalar multiple of I, and since tr(Fye) =m, Fyp = I,. Hence Pj; Py PPy =
L, or Py Py Py = P;; which proves (20).

Now taking k = i in (20) yields AiiAieAsj = A;j or
AyAy = AijAj. : (24)

Equation (C6) can now be verified by replacing the B,, in that equation by their

matrix representations given in (7) and (8) and using (24). O
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