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A bstract

The aim of this dissertation is to obtain the distributions of matrix quadratic forms 

(MQFs) in a normal random matrix and some extensions of Cochran’s theorem. The 

main contribution of this dissertation consists of the following two parts.

1. Let Y  be an n x p multivariate normal random matrix with mean /i and 

general covariance Ey. In this dissertation, a general covariance Ey of Y  means that 

the collection of all np elements in Y  has an arbitrary np x np covariance matrix. For 

the symmetric matrix IT, a set of general necessary and sufficient conditions is derived 

for the matrix quadratic form Y 'W Y  to have a noncentral Wishart distribution. Then 

a multivariate version of Cochran’s theorem concerning the noncentral Wishartness 

and independence of matrix quadratic forms is obtained. Some examples and the 

usual versions of Cochran’s theorem are presented as special cases of this result.

2. Let Y  be an n x p multivariate normal random matrix with mean fj, and gen­

eral covariance matrix Ey. For the symmetric matrix W, a set of general necessary 

and sufficient conditions is derived for a matrix quadratic form to be distributed as a 

difference of independent noncentral Wishart random matrices (DINWRM). A multi­

variate version of Cochran’s theorem concerning differences of independent noncentral 

Wishart random matrices (DINWRMs) is obtained. Two usual versions of Cochran’s 

theorem concerning differences of independent noncentral Wishart random matrices 

are presented as special cases of our result.

In addition to the above contribution, for the first part, we use a matrix approach
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to present the proven result for the zero mean 0 case. This case has been solved 

by Masaro and Wong (2004a). They used Jordan algebra representations to obtain 

a general multivariate version of Cochran’s theorem concerning Wishartness and in­

dependence. Their result and proof is more mathematically involved. Further, we 

provide a discrete representation version of Cochran’s theorem.

For the second part, we use a matrix approach to present the proven result for 

the mean zero case. This case has been solved by Masaro and Wong (2004b). They 

used Jordan algebra homomorphisms to obtain the necessary and sufficient conditions 

for the matrix quadratic forms Y 'W iY ,  Y 'W 2Y. . . . ,  Y 'W fY  to be an independent 

family of random matrices distributed as differences of independent Wishart random 

matrices (DIWRMs). Their result and proof is more mathematically involved. Our 

presentation provides a discrete representation version of Cochran’s theorem concern­

ing DIWRMs.
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List of Nom enclature

R : the real number set

W  : the Euclidean space of dimension p consisting p x 1 real vectors

|A| : the determinant of square matrix A

tr(A) : the trace of matrix A .

Mnxp : the set of n x p matrices over real set R

<, >: trace inner product

< S  >: the linear span of a given set S'

||A|| : the trace norm of matrix A

§p : the set of symmetric matrices of order p

Ip : the identity matrix of order p

A+ : the Moore-Penrose inverse of matrix A

sr(s) : the spectral radius of square matrix s

Np : the set of nonnegative definite matrices of order p over real set R

n.n.d. : nonnegative definite

jVo : the neighborhood of 0

Aa : the ath  n.n.d. root of A for a > 0

A~a : the ath  n.n.d. root of A+ for a > 0

vec( ) : vec operator

(x; : the Kronecker product

Knp : the commutation matrix of order np

Eij : the symmetric matrix of order p whose ijth  entry and jith  entry

both are 1 and all other entries 0
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viii

Ep :

Ko

K

MP(H, E) :

• ^ /n x p ( /b  E y )

Wp(m, S ) :

Wp(ro, E, A) :

M q ( s ) ,  M ( s )  

M QF : 

MQFs : 

D IW R M  : 

D IW RM s  : 

D IN W R M  : 

D IN W RM s

the set of matrices , 1 < i < j  < p, called the basic basis 

of the set Sp

the set of matrices HEijH', 1 < i < j  < p, for E e Np, where

H  is an orthogonal matrix such that H'YjII is diagonal and

Hp = {HEijH' : Eij € Ep}, called the similar basis (of the Sp)

associated with E.

set ( t : AtA = 0, t  £ Ep}

set {h : EhE = 0, h e  Hp}

multivariate normal distribution with mean vector 

H and covariance matrix S

multivariate normal distribution with mean matrix 

fj, and covariance matrix Ey 

Wishart distribution with m degrees of freedom 

and covariance matrix E of order p

noncentral Wishart distribution with m degrees of freedom, 

covariance matrix E of order p and non-centrality matrix A 

the moment generating function of matrix quadratic form Q 

matrix quadratic form 

matrix quadratic forms

difference of independent Wishart random matrices 

differences of independent Wishart random matrices 

difference of independent noncentral Wishart random matrices 

differences of independent noncentral Wishart random matrices
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C hapter 1

Introduction  and L iterature

1.1 Cochran’s Theorem

It is well-known that Cochran’s theorem plays an important role in the distribution 

theory for (matrix) quadratic forms in normal random variables and in the application 

of the theory of statistics, such as the theory of least squares, variance component 

analysis, estimation including MINQUE theory and testing of hypothesis and time se­

ries analysis. This has attracted many scholars to research and develop the extensions 

of Cochran’s theorem for over seventy years.

In general, for a set of symmetric matrices Wi, W 2 , ■ ■ ■, W i  of order n, the nec­

essary and sufficient algebraic conditions are expected to characterize the probability 

statement that a set of matrix quadratic forms Y 'W \Y , Y 'W ^Y . . . . ,  Y 'W iY , where 

Y  is an n x p normally distributed random matrix, is an independent family of cen­

tral or noncentral Wishart random matrices. This is one problem that extensions 

of Cochran’s theorem intend to solve. For convenience of statement, it is called th e

1
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Chapter 1. Introduction and Literature 2

original problem in this dissertation.

The property of a matrix quadratic form being distributed as a (noncentral) 

Wishart random matrix is called the (noncentral) Wishartness of the matrix quadratic 

form. The property that a quadratic form in a normal random vector is distributed 

as a (noncentral) chi-square random variable is called the (noncentral) chi-squareness 

of the quadratic form.

Note that, in the original problem, the symmetric matrices W \. W 2 , . . . ,  IT; do not 

need to be nonnegative definite, then, it is quite natural for statisticians to discuss 

whether a matrix quadratic form is distributed as a difference of two independent 

(noncentral) Wishart random matrices. This is called the extended problem in 

this dissertation for the sake of differentiating from the original problem.

The extended problem is formally stated as follows: For the symmetric matrices 

W\, IT2 , • ■ ■, Wi of order n, the necessary and sufficient algebraic conditions are 

expected to characterize the probability statement that a set of matrix quadratic 

forms Y 'W iY ,  Y'W-jY, . . . ,  Y 'W iY,  where Y  is an n x p normally distributed random 

matrix, is an independent family of random matrices distributed as differences of 

independent (noncentral) Wishart random matrices. The extended problem is also 

one problem that the extensions of Cochran’s theorem intend to solve.

Although the extended problem is different from the original problem, a new 

theorem stating the necessary and sufficient algebraic conditions to characterize the 

original problem or the extended problem is called a new version or an extension of 

Cochran’s theorem. So far, many versions of Cochran’s theorem concerning the orig­

inal problem have been obtained and some versions of Cochran’s theorem concerning

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1. Introduction and Literature 3

the extended problem have been developed.

In the next section, we shall review the literature for the original problem and the 

extended problem.

1.2 Literature R eview

Cochran investigated the distribution of quadratic forms in a normal random vector. 

His well-known result of the algebraic characterization of the chi-squareness and inde­

pendence of quadratic forms in a normal random vector was published in Proceedings 

of the Combridge Philosophical Society in 1934. Cochran (1934) proved that the sum 

of ranks r\, r2, ■ ■ ■, r; of the symmetric matrices W\, W2, ■ ■ ■, ll7/ being their order 

n is a necessary and sufficient algebraic condition for the quadratic forms y'H^y, 

y'W 2y, .. •, y'Wiy, where y is an n-variate normally distributed random vector with 

mean vector 0 and population covariance matrix to be an independent family of 

chi-square random variables with ri, r2, ■ ■ ■, 0 degrees of freedom, respectively. This 

is the well-known Cochran’s theorem in statistics.

Since 1934, Cochran’s result has become a cornerstone of the theory of analysis 

of variance in experimental designs, regression analysis and data analysis. Many 

scholars have been attracted to generalize Cochran’s result in the univariate normal 

system. Madow (1940) generalized the result for y with nonzero mean vector fj, while 

Chipman and Rao (1964) extended Cochran’s theorem to y with positive definite 

population covariance matrix S. Various extensions of Cochran’s result and their 

interrelationships were given by Ogasawara and Takahashi (1951), James (1952),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1. Introduction and Literature 4

Graybill and Marsaglia (1957), Khatri (1963, 1968), Banerjee (1964), Chipman and 

Rao (1964), Rayner and Livingst (1965), Loynes (1966), Shanbhag (1966, 1968), 

Banerjee and Nagase(1976), Good (1969), Styan (1970) and Anderson and Styan 

(1982).

The independence of two quadratic forms with the case S  — In were investi­

gated by Craig (1943) and Sakamoto (1944). Parallel results were then obtained and 

extended to the singular case by Ogasawara and Takahashi (1951), and by Khatri 

(1963), for nonzero mean, and by Good (1963) and Shanbhag (1966) for zero mean 

only. The corresponding results for the independence of two second degree polynomial 

quadratic expressions were established by Laha (1956).

The interested reader can further refer to Johnson and Kotz (1970), Styan (1970), 

Rao and Mitra (1971), Searle (1971), Rao (1973), Khatri (1980), Driscoll and Gund- 

berg (1986) and the references therein for various univariate versions of Cochran’s 

theorem and their interrelationships.

In the earlier 60’s, Khatri (1962, 1963) extended Cochran’s theorem from the 

univariate case to the multivariate case. With the development and applications of 

statistics, matrix quadratic forms have extensive applications in multivariate analysis 

of dispersion and in multiple regression in time series analysis, see Anderson (1971) 

and Rao (1973) for several examples. It was also noted that the covariance matrix 

of the normal random matrix Y  is the structure of a Kronecker product in those 

applications. For example, the asymptotic distribution of some maximum likelihood 

estimates in linear stochastic models is normal with dispersion matrix of the form of 

a Kronecker product, see Anderson (1971).
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Chapter 1, Introduction and Literature 5

Thus, there are numerous papers developing some extensions of Cochran’s theorem 

concerning the Wishartness and independence of matrix quadratic forms in a normal 

random matrix with the covariance structure of a Kronecker product. Namely, the 

various necessary and sufficient conditions for the matrix quadratic forms Y 'W iY ,  

Y'W YY, , Y 'W iY  to be an independent family of (noncentral) Wishart random

matrices were established for situations where the covariance matrix of K is the Kro­

necker product A 0  E of the design covariance A  and the population covariance E. 

We refer the interested reader to  Rao and Mitra (1971), Khatri (1980), Fang and 

Wu (1984), Siotani et al. (1985), Fan (1986), de Gunst (1987), Mathai and Provost 

(1992), Baksalary et al. (1994), Vaish and Chaganty (2004), Tian and Styan (2005) 

and the reference therein.

Since the application of matrix quadratic forms is more and more extensive there 

are also a number of important instances where the covariance matrix Ey of Y  cannot 

be represented as the form of the Kronecker product A  0  E of the design covariance A  

and the population covariance E, see Anderson et al. (1986), Pavur (1987), Rao and 

Kleffe (1988), Mathew (1989) and Wong et al. (1995). So scholars started to extend 

Cochran’s theorem to the cases that the covariance of the normal random matrix Y  

is a general nonnegative definite matrix Ey, namely, the collection of all np elements 

in Y  has an arbitrary np x np covariance matrix.

Pavur (1987) obtained the distribution of matrix quadratic forms on condition 

that the underlying matrix W  is nonnegative definite, the population covariance E 

is nonsingular and the covariance structure of Y  does not need to be the form of a 

Kronecker product. Wong et al. (1991) obtained a set of necessary and sufficient
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Chapter!. Introduction and Literature 6

conditions for the general case except for placing restrictions on the column space of 

Ey, extending Pavur’s results. A verifiable version of Cochran’s theorem was also 

obtained by Wong and Wang (1993) for the case where the underlying matrices are 

nonnegative definite. Later, refinements and simpler proofs of the main result in 

Wong and Wang (1993) were obtained by Mathew and Nordstrom (1997) and Wong 

et al. (1999). Wang ef al. (1996) obtained a version of Cochran’s theorem for 

multivariate components of variance models, where the covariance Ey is the sum of a

series Kronecker products and underlying matrices Vv\, W2, . . . ,  Wi are normegative

definite. They extended the result of Wong and Wang (1993) to the case of matrix 

quadratic expressions. Wang (1997) still obtained versions of Cochran’s theorem 

for matrix quadratic express. Wong (2000) collects these necessary and sufficient 

algebraic conditions developed in the 90’s. Also see Dumais and Styan (1998) for an 

extensive bibliography on Cochran’s theorem prior to 1998.

The underlying matrices W\, W2, . . ., Wi associated with the matrix quadratic 

forms Y 'W iY ,  Y 'W 2Y, . ■ ■, Y'W[Y  are symmetric rather than nonnegative definite. 

This was a condition assumed in Cochran’s univariate version in 1934. So it is our 

motivation to obtain a fully general multivariate version of Cochran’s theorem. Under 

the condition that the underlying matrices Wi’s associated with matrix quadratic 

forms Y 'W iY ’s are symmetric, the original problem becomes much harder, because 

the matrices W*’s can no longer be factorized into square roots as can be done in the 

case of nonnegative definite matrices.

Masaro and Wong (2003) obtained a set of verifiable, but cumbersome, necessary 

and sufficient conditions about the Wishartness of the matrix quadratic form Y 'W Y
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Chapter 1. Introduction and Literature 7

with the symmetric matrix W  in a normal random matrix Y  with mean 0 and general 

covariance Ey.

Recently, Masaro and Wong (2004a) used Jordan algebra homomorphisms to fur­

ther obtained a quite generalized extension of Cochran’s theorem. They extended the 

problem to the case of the Up-valued matrix quadratic forms in a real, complex or 

quaternionic normal random matrix Y  with zero mean and general covariance, where 

Hp denotes the family of n x n Hermitian matrices over A^. Here Aj is R (the set 

of real numbers), C (the set of complex numbers) or H (the set of the division ring 

of quarternions) according to d = 1,2 or 4. However, their generalization is far away 

from the topic with which some statisticians are concerned.

In addition, Cochran’s theorem has been extended and generalized in other direc­

tions. It was noted that Cochran’s theorem on the distributions of quadratic forms in 

normal random variables can be equivalently formulated as a rank additivity result 

for symmetric idempotent matrices. The various generalizations of Cochran’s theo­

rem regarding the underlying matrices W\, IT2 , . . . ,  Wi with certain properties were 

obtained by Anderson and Styan (1982), Styan and Takemura (1983), Baksalary and 

Hauke (1990), S'emrl (1996), Behboodian (2001), Waterhouse (2001), Lesnjak (2004) 

and Tian and Styan (2005). Anderson and Fang (1987) extended Cochran’s theo­

rem from normal distributions to elliptical contoured distributions including the case 

of tripotent matrices and left-special distributions. An interested reader can find 

the further extensions of Cochran’s theorem in elliptically contoured distributions in 

Zhang (1989), Anderson and Fang (1990), Fang and Zhang (1990), Wang and Wong 

(1995), Wong and Cheng (1998, 1999).
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Chapter 1. Introduction and Literature 8

Another important extension of Cochran’s theorem is one called the extended 

problem in Section 1.1. Luther (1965) established the equivalence between a quadratic 

form distributed as the unique difference of two independent chi-square random vari­

ables and the tripotency of the underlying matrix of this quadratic form. The other 

discussion and corresponding results concerning a difference of two independent chi- 

square random variables and the tripotency of the underlying matrix can be found in 

Graybill (1969), Rao and Mitra (1971) and Anderson and Styan (1982). More gener­

ally, Baldessari (1967) obtained the necessary and sufficient conditions for a quadratic 

form, in normal random variables, to be distributed as a given linear combination of 

independent chi-square random variables, generalizing the results of Graybill and 

Marsaglia (1957) and Luther (1965). Later, Tan (1977) extended Baldessari’s result 

to singular normal random variables. Khatri (1977) further extended the result of 

Baldessari (1967) to a singular covariance matrix, to a quadratic form family and to 

a quadratic expression family.

Tan (1975) extended the extended problem from univariate case to multivariate 

case. He gave a set of necessary and sufficient conditions for matrix quadratic expres­

sions, in a normal random matrix with a Kronecker product A 0  £  covariance matrix, 

to be independent family of random matrices distributed as differences of independent 

noncentral Wishart random matrices. Mathai (1993) introduced the noncentral gen­

eralized Laplacian distribution and obtained some univariate versions of Cochran’s 

theorem. The distribution considered in Mathai (1993) is, with a change of scale, 

one considered in Graybill (1969). Wong and Wang (1995) extended Tan’s results to 

the case of a general covariance matrix. They gave a set of necessary and sufficient
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Chapter 1. Introduction and Literature 9

conditions for matrix quadratic expressions to be an independent family of random 

matrices distributed as differences of independent noncentral Wishart random matri­

ces.

Recently, Masaro and Wong (2004b) obtained a set of verifiable, but cumbersome, 

necessary and sufficient conditions for a matrix quadratic form, in a normal random 

matrix Y  with zero mean and general covariance, to be distributed as a difference 

of two independent Wishart random matrices with a diagonal common covariance A. 

Further, they used certain Jordan algebra homomorphisms to derive a set of general 

necessary and sufficient conditions for matrix quadratic forms, in a normal random 

matrix Y  with zero mean and general covariance, to be an independent family of 

random matrices distributed as differences of independent Wishart random matrices.

1.3 Our M otivation and Research R esults

The underlying matrices associated with matrix quadratic forms are symmetric rather 

than nonnegative definite. This was a condition assumed in Cochran’s univariate ver­

sion in 1934. So, differentiating from the existing research results, it has been our 

motivation and goal to use a m atrix approach to establish a fully general mul­

tivariate version of Cochran’s theorem  concerning the (noncentral) Wishartness 

and independence of matrix quadratic forms under the quit general conditions. For 

instance, the underlying matrices of matrix quadratic forms are symmetric, not neces­

sarily nonnegative definite, and the random matrix Y  has a normal distribution with 

general covariance structure, not necessarily Kronecker product nor positive definite.
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Chapter 1. Introduction and Literature 10

Moreover, our motivation and goal also include the developm ent of a fully general 

m ultivariate version o f Cochran’s theorem  concerning differences of indepen­

dent (noncentral) Wishart random matrices under the same conditions via a matrix 

approach.

This dissertation will focus its attention on our goals: 1) to develop the multivari­

ate versions of Cochran’s theorem concerning the central or noncentral Wishartness 

and independence of matrix quadratic forms; 2) to develop the multivariate versions 

of Cochran’s theorem concerning thc indcpcndence and the differences of independent 

central or noncentral Wishart distributions.

Our research results consist of the following two parts.

1. Let Y  be an n x p multivariate normal random matrix with mean p, and general 

covariance Ey. In the dissertation, the general covariance Ey of Y  means that the 

collection of all np elements in Y  has an arbitrary np x np covariance matrix. For the 

symmetric matrix W , a set of general necessary and sufficient conditions is derived for 

the matrix quadratic form Y 'W Y  to have a noncentral Wishart distribution. Then 

a multivariate version of Cochran’s theorem concerning the noncentral Wishartness 

and independence of matrix quadratic forms is obtained. Some examples and the 

usual versions of Cochran’s theorem are presented as special cases of this result.

2. Let Y  be an n x p multivariate normal random matrix with mean p  and gen­

eral covariance matrix Ey. For the symmetric matrix IV, a set of general necessary 

and sufficient conditions is derived for a matrix quadratic form to-be distributed as a 

difference of independent noncentral Wishart, random, matrices (DINWRM). A multi­
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Chapter 1. Introduction and Literature 11

variate version of Cochran’s theorem concerning differences of independent noncentral 

Wishart random matrices (DINWRMs) is obtained. Two usual versions of Cochran’s 

theorem concerning differences of independent noncentral Wishart random matrices 

are presented as special cases of our result.

In addition, for the first part, we use a matrix approach to present the proven 

result for the zero mean case. This case has been solved by Masaro and Wong (2004a). 

They used Jordan algebra representations to obtain a general multivariate version of 

Cochran’s theorem concerning Wishartness and independence. Their result and proof 

is more mathematically involved. Our presentation provides a discrete representation 

version of Cochran’s theorem.

For the second part, we use a matrix approach to present the proven result for the 

mean zero case. This case has also been solved by Masaro and Wong (2004b). They 

used Jordan algebra homomorphisms to obtain the necessary and sufficient conditions 

for the matrix quadratic forms Y 'W {Y, Y'WffY, . . . ,  Y 'W fY  to be an independent 

family of random matrices distributed as differences of independent Wishart random 

matrices (DIWRMs). Their result and proof is also more mathematically involved. 

Our presentation provides a discrete representation version of Cochran’s theorem 

concerning DIWRMs.

1.4 The Organization of this D issertation

This dissertation falls into five chapters. Chapter 1 introduces Cochran’s theorem, 

follows the track of its development and reviews the literature on various versions of
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Cochran’s theorem during several decades. Chapter one also states our motivation 

and research results which are some extensions of Cochran’s theorem.

Chapter 2 deals with the notations and preliminaries which are useful to the sub­

sequent chapters. It includes matrix algebra, e.g. Kronecker products, the Moore- 

Penrose inverse. It introduces Wishart distributions, noncentral Wishart distribu­

tions, matrix quadratic forms and the moment generating functions. It also states 

some useful lemmas which are used in the derivation of our main results.

Chapter 3 is entirely devoted to the development of the multivariate version of 

Cochran’s theorem concerning the central or noncentral Wishartness and indepen­

dence of matrix quadratic forms in normal random matrix Y  with mean // and gen­

eral covariance £y. For the symmetric matrix W, a set of general necessary and 

sufficient conditions (Theorem 3.3.1) is derived for the matrix quadratic form Y 'W Y  

to be distributed as a noncentral Wishart random matrix. For the symmetric matri­

ces VFi, W2: ...., Wi, a set of general necessary and sufficient conditions (Theorem 

3.4.2) is obtained for the matrix quadratic forms Y 'W iY ,  Y 'W -iY , . . .  ,Y 'W {Y  to be 

an independent family of Wishart random matrices. Some examples and applications 

are presented. The usual versions of Cochran’s theorem are presented as special cases 

of these results (from Corollary 3.3.4 to Corollary 3.4.5). As the intermediate result, 

we use a matrix approach to obtain a discrete representation version of Masaro and 

Wong’s recent result (2004a). Namely, a set of succinct and verifiable necessary and 

sufficient conditions is established for the matrix quadratic form Y 'W Y  with the sym­

metric matrix W  to be distributed as a Wishart random matrix (Theorem 3.1.3 and 

Theorem 3.1.1 for a special case). Then a set of succinct and verifiable necessary and
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sufficient conditions is developed for the matrix quadratic forms Y 'W {Y, Y 'W 2Y. 

Y 'W iY  with the symmetric matrices Wi, W2, Wi to be an independent family

of Wishart random matrices (Theorem 3.2.4 and Theorem 3.2.3 for a special case). 

Some examples and applications are presented. Also, we use the matrix approach to 

present the main result (Theorem 3.2.9) obtained by Masaro and Wong (2004a).

Chapter 4 is devoted to the multivariate version of Cochran’s theorem concerning 

differences of independent central or noncentral Wishart random matrices. Let Y  be 

normal random matrix with mean p  and general covariance Ey. For the symmetric 

matrix W ,  a set of general necessary and sufficient conditions (Theorem 4.3.1) is de­

rived for the matrix quadratic form Y 'W Y  to be distributed as a difference of two 

independent noncentral Wishart random matrices. For the symmetric matrices Wi, 

W2. • • -, Wi of order n, a set of general necessary and sufficient conditions (Theorem 

4.4.1) is obtained for the matrix quadratic forms Y'W {Y, Y 'W 2Y,  . . . ,  Y 'W iY  to be 

an independent family of random matrices distributed as differences of independent 

noncentral Wishart random matrices. Some special cases are presented (from Corol­

lary 4.4.2 to Corollary 4.4.4). As an intermediate result, we use a matrix approach to 

obtain a refined and improved version of Masaro and Wong’s recent result (2004b). 

Namely, a set of succinct and verifiable necessary and sufficient conditions is estab­

lished for the matrix quadratic form Y 'W Y  with the symmetric matrices W  to be 

distributed as a difference of two independent Wishart random matrices (Theorem

4.1.2 and Theorem 4.1,1 for a special case). Then a set of succinct and verifiable nec­

essary and sufficient conditions is developed for the matrix quadratic forms Y 'W {Y , 

Y 'W 2Y,  . . . ,  Y 'W \Y  with the symmetric matrices W\, IT2 , , . . ,  Wi to be an inde­
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pendent family of random matrices distributed as differences of independent Wishart 

random matrices (Theorem 4.2.2 and Theorem 4.2.1 for a special case). Some special 

cases are presented (from Corollary 4.2.3 to Corollary 4.2.6). Also, we use the matrix 

approach to present the main result (Theorem 4.1.8) obtained by Masaro and Wong 

(2004b).

Chapter 5 outlines some considerable topics and ideas on the problems discussed 

in above chapters for the future research.

The appendix attaches the proof of a set of necessary and sufficient conditions, 

obtained by Masaro and Wong (2004b), for a matrix quadratic form, in a normal 

random matrix with zero mean 0 and general covariance Ey, to be distributed as 

a difference of two independent Wishart random matrices with a diagonal common 

covariance A.

Finally, the index of symbols lists the common symbols used in this dissertation.
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C hapter 2

N otation s and Prelim inaries

Chapter 2 will deal with the notations and preliminaries which are useful to the sub­

sequent chapters. It includes some concepts of matrix algebra, e.g. the trace inner 

product, the Cartesian product, Kronecker Products, the Moore-Penrose inverse, the 

idempotency, the tripotency and the commutation matrix. It defines Wishart distri­

butions and noncentral Wishart distributions, and matrix quadratic forms and their 

moment generating functions. It also states some useful lemmas which are used in 

the derivation of our main results in the subsequent chapters.

2.1 M atrix Algebra

In this dissertation, we shall use Mnxp to denote the set of n x p matrices over the

real set R. The trace inner product <, > equipped in M„xp is defined as

< A ,B  >= tr(AB ')  for all A, B  G M„Xp, (2.1)

15
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where B' is the transpose of B. We shall use ||.|| to denote the trace norm in the

matrices set M nxp, defined as |j.4||2 = <  A, A  >. We shall use Sp to denote the set

of symmetric matrices of order p over the real set R and use Ili= i ^p 1° denote the

Cartesian product of the symmetric matrices set §p equipped with the trace inner

product < ,>  defined as 

/

< (s.i), (§;) > =  ^ 2  < Si, §i > for all s i; S; € Sp, i — 1, 2, . . . ,  I. (2.2)
i—1

We shall use r(A) to denote the rank of matrix A  and use A + to denote the 

Moore-Penrose inverse of matrix A  if, for the matrix A, there exists a matrix A + 

such that A +A A + = A +, A A +A = A , \ A A +)' = A A + and (A+A)' =  A +A. When 

A  is nonnegative definite (n.n.d.) and a > 0, A a will denote the a th  n.n.d. root 

of A, A~a will denote the a th  n.n.d root of A +. and A 0 will denote A +A; thus 

A 0 = A aA~a= A~aA a.

We shall use bold-face lower case symbols or light-face upper case symbols to 

denote matrices or vectors. We shall use Np to denote the set of nonnegative definite 

matrices of order p over the real set R.

We shall use ey to denote the matrix whose i j th  entry is 1 and all other entries 0 

and Eij to denote the symmetric matrix of order p whose i j th  entry and j i th  entry 

both are 1 and all other entries 0. Write

Ep =  {E ^  : 1 < i < j  < p}.

We shall call Ep th e  basic basis of the set §p.

We shall use sr(A) to denote the spectral radius of the square matrix A. i.e. 

sr(.A) =  ma.x'{JA : A is an eigenvalue of square matrix A }.
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The square matrix A  is said to be idempotent if A 2 =  A, to be tripotent if 

A 3 =  A. The matrices A  and B  are said to be orthogonal if A 'B  — 0, and A  is said 

to be primitive in a family if A  is non-zero and can not be written as the sum of two

nonzero orthogonal idempotent elements in the family.

For the nonnegative definite matrix £  of order p, there exists an orthogonal matrix 

H, i.e. H 'H  =  Ip where Ip denotes the identity matrix of order p. such that H 'Y H  — 

diag[cri,0 2 , ■ ■ • ,&P\- Write

Hp =  { H i j  =  H E i j H  : 1 < i  < j  < p ,  E i j  £  Ep}.

We shall call Hp the similar basis (of the set Sp) associated with £ . The “similar” 

is due to the similarity between the matrix Ilij in Hp and the matrix E ^  in E.p.

Lemma 2.1.1. I f  A  is a nonnegative definite matrix of order np with rankr(A) = q,

then there exists a q x np matrix L of rank q such that

A  = L'L, L = [Li, L 2, L p). (2.3)

with Li  G Mqxn-

For the n x p  matrix Y,  we shall write Y  into Y  =  [yi,ya, • ,y n],i Yi € where 

Rp is the p dimensional real space, and use vec(Y) to denote the np dimensional vector 

[yi', y2' , . . . ,  ynT- Here the vec operator transforms a matrix into a vector by stacking 

the rows of the matrix one underneath the other. For A  in M„,xr; and B  in Mpxr, 

we shall define the Kronecker product of matrices A  and B, denoted by A  <g> B, as 

A ®  B  = [aijB]. The Kronecker product is also often called the direct product or 

the tensor product. The connection between the Kronecker product and the vec of 

matrices is often used in the calculations of our results.
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Lemma 2.1.2. I f  A £ M„xg, B £ Mpxr and C £ Mgxr then

(A® B)vec(C ) = vec{ACB'). (2.4)

Moreover, the Kronecker product ® also has the following properties, see Rao and 

Mitra (1971), Chapter 1, Kruskal (1975) and Muirhead (1982), Chapter 2.

X A ® C )(B ® D )  =■ (A B )® (C D ), (A ®  B)' = A '®  B', (2.5)

tr (A ®  B) =  t r (A ) t r (B ) , (A ®  B )+ = A + ® 5 +. (2.6)

The following lemma will be often used in the proofs of our results in the subse­

quent chapters.

Lemma 2.1.3. For A, B  and C , A B 'B  = C B 'B  is equivalent to A B '  =  CB', and 

B 'B A =  B 'B C  is equivalent to B A  — BC.

Proof. For A, B  and C, multiplying both sides of the equation A B 1 — CB'  on the 

right by B  yields equation A B 'B  = CB'B .

Conversely, multiplying both sides of the equation A B 'B  — C B 'B  on the right, 

respectively, by A' and C' yields equations A B 'B  A' = C B 'B  A' and A B 'B C '  =  

C B 'B C '. It follows that

\\AB' -  C B ' | |2 ==< AB' -  C B ', A B ' -  CB' > =  tr((AB ' -  CB ')(AB ' -  CB')') 

-  tr{AB'BA! -  A B 'B C ' -  C B 'B  A' +  CB'BC')  =  0, 

i.e. AB ' = CB'.

Similarly, it is easy to prove the equivalence between B A  — B C  and B 'B A  = 

B 'B C .  □
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The following lemma is due to Masaro and Wong (2004a).

Lemma 2.1.4. Suppose A  and, B  are symmetric matrices of order p with A 2 = A  

and A B  ! BA = 2/1. Then A B  -= BA.

The vectors vec(Y) and vec(Y') clearly contain the same np components, but in 

a different order. We shall define the commutation matrix K np of order np as follows

K npvec(Y') = vec(Y), Y  e  M„xp.

Note the fact that the commutation matrix K np is the unique np X np permutation 

matrix which transforms vec(Y') into vec(Y). The commutation matrix K nyp has 

the following properties, see Magnus and Neudecker (1975) or Magnus and Neudecker 

(1991), Chapter 2.

h~np — Tfpn and LCnpK pn tn (4■ 7)

The key property of the commutation matrix K nyp enables us to interchange the two 

matrices of a Kronecker product .

Lemma 2.1.5. Let A be a p x q matrix and B  an n  x r matrix. Then

K np(A <g> B )K qr = B ® A ,  Kpn(B <g> A )K rq = A ®  B. (2.8)

With the commutation matrix K nxp, the relation of the covariance matrix Ey of 

Y  and the covariance matrix Ey< of Y '  can be easily expressed as

Ey =  E vec(Y) E KnpVeC(Y') LCnpB  Y'LCnp OI Sy' WjjpEy K np. (2'9)

(2.9) implies that the covariance matrix Ey/ and the covariance matrix Ey are similar.
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Lemma 2.1.6. Let Ey and S be nonnegative definite matrices of order np and p, 

respectively, W  be a symmetric matrix of order n  and s, s be symmetric matrices of 

order p. Let

F ( s ,  S , W, E y )  =  E y ( J T  0  s ) E y ( l T  0  I ) E y

and

0(s, s, W ,L )  =  L(s 0 W )L 'L (s  0 W)L',

Then

E y [ t L 0 ( s E s  + s E s ) ] E y  =  F (S, S, IT, E y )  +  F(§, S, IT,  E y )  (2.10)

w equivalent to

L[(sEs -I- iS s) 0  W]L' =  0(s, s, W, L) +  0(s, s, W, L) (2.11)

where Ey/ =  L ' L ,L = ' [ L U L2, ■ ■ ■, Lp\, q = ra n k (Ey), L, e  M ,xn, i = 1 ,2 ,. . .  ,p.

Proof. There is a q x np  matrix L  with q =  rank(H Y') such that Ey/ =  L'L  from 

Lemma 2.1.1. Since by (2.7)-(2.9)

E y , ( s S §  0  W ) Z Y' =K'npT YK npK'np{W  0  s E s )K npK'npT YK np 

- A ' ' „ E y ( l V  X sSsjEy/f,,,,.

and

E y ' ( s  0  I T ) E y ' ( s  0  I T ) S y /

=  K'npTiYK npK'np(W  0  s ) K npK'npT,Y x K npK'np(W  0  s ) K npK'npT,YK np 

— K'npT,Y {W  0 s ) S y ( V L  0  s ) E y i L rip.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2. Notations and Preliminaries 21

(2 .1 0 ) is equivalent to

£y/[(s£s +  sEs) 0  VUjEy/ =  ©(s, S, W, Ey/) +  @(s, S, W, Ey/). (2.12)

Using L'L  to replace Ey/ in Eq. (2.12) above equation and then by Lemma 2.1.3, we 

have completed the proof of the desired result. □

We shall repeatedly use (2.11) to replace (2.10) in the proofs of the results in the 

subsequent chapters.

The following property is useful when we focus our attention on the set §p.

Lemma 2.1.7. The following statements (a) and (b) are equivalent.

(a) For any s G §>p,

E y ( w  <g> s E s ) E y  =  £ y ( t U 0 s ) E y ( W 0 s ) £ y ;  ( 2 . 1 3 )

(b) For any s, s G Sp,

Ey[W «>(sEs +  sEs)]Sy =  F (s ,s ,W ,E y ) +  F (s ,s ,W ,S y ). (2.14)

Proof. Since

E y ( W ® s E s ) E y  =  i [ E y ( W ® s £ s ) E y  +  E y ( W  ® s Es ) Ey] ,

it suffices to show that (a) =>  (b). Note that for s, s G Sp,

Sy[fU 0  (sEs +  s£s)]£y  =  -E y  (W 0  [(s +  s)S(s +  s) — (s — s)E(s — s)]) Ey.

Since s +  s ,s  — s G Sp, with (a) and simple operations, we obtain (2.14) and that 

completes the proof. □
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We  shall use < S > to denote the linear span of a given set S. The following 

lemma is due to Wong and Wang (1995).

Lemma 2.1.8. Let E G Np, then the following conditions are equivalent.

(a) E ±  0 ;

(b) <  { ( sE)”s : s G Sp} >='Sp for positive integer n.

Lemma 2.1.9. The following conditions are equivalent.

(a) <  {sEaS  ; s G Sp} > =  §p for any Eu G 1EP, i — 1 , 2 , . . .  .p;

(b) <  {sEusEjjS : s G Sp} > =  §p for  any i , j  G {1 ,2 ,. . .  ,p } .

2.2 Central and N oncentral W ishart D istributions

Let y be a p  x 1 real random vector with mean vector p  and covariance matrix E. 

Namely,

H = E{y); E  = Cov(y) = E (y -  E(y))(y -  E{y))',

where E  denotes the expected value. If y is a multivariate normal distribution then we 

write y ~  J\fp(p. E) where ~  means distributed as. In the case of E being nonsingular 

the density function of y is given by

/(y )  =  ( 2 n ) ^ \ Z \ ^ eXp{~ l  d  >*■ (2-15)

In the case of S being singular, there exists a p x q matrix L of rank q (< p) such 

that

y -  n  -- Lz.
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Then

E(y) = + LE(z),  E =  Cov(y) = LCov(z)L',

implying that there exists a q x 1  vector z such that z ~  Af(0, Iq) and z has its density 

function. See Mathai et al. (1995), Chapter 1, and Muirhead (1982), Chapter 1, for 

more details about the multivariate normal distribution.

The n x p random matrix Y  taking the real values in set Mnxp is said to have 

a real multivariate normal distribution with mean (matrix) n Y G Mnxp and covari­

ance (matrix) Ey G Nnp if the vector vec(Y)  has a multivariate normal distribution 

A/*„p('wec(/Xy), Ey). In this case we write Y  ~  Afnxp(fi, Ey). Afpxi (/•*>£) is nothing, 

else but Nfp(p, E).

Definition 2.2.1. If A  — X ' X ,  where X  is an m  x p  random matrix normally 

distributed as A/’mxp(0, Im ® E) with E € Np, then A is said to have the (central) 

W ishart distribution with m  degrees of freedom and covariance matrix E.

We shall use W p(m, E) to denote the Wishart distribution with m degrees of free­

dom and covariance E of order p, and write A  ~  W p(rn, E) if A has this distribution, 

where the subscript on W  denotes the size of the matrix A. A  is also said to be a 

Wishart random matrix.

When m  > p, A — X ' X  is nonsingular and then the Wishart distribution 

W p(m , E) has a density function. When m  < p, A = X ' X  is singular and the 

Wishart distribution Wp(m, E) does not have a density function, see the references 

Muirhead (1982), Chapter 3 and Chapter 10, Eaton (1983), Chapter 8 , and Srivastava 

(2003) for more details.
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The Wishart distribution generalizes the chi-square distribution.

We shall use Y ' W Y  ~  Wp(m i,E ) — Wp(m2 ,S ) to denote that Y ' W Y  has the 

distribution of the difference of two independent Wishart random matrices with dis­

tribution W p(m i,  E) and Wp(m2 , S). In this case, Y 'W Y  is said to be distributed as 

a difference of independent W ishart random matrices (DIW RM ). 

Properties of Wishart distributions are given in the following two lemma.

Lemma 2.2.1. If Y ' W Y  ~  W p(m, E) and H  is a p  x k matrix of rank k, then 

( Y I i y W ( Y I i )  -  VVj.(m. II ' YJI ) .

Lemma 2.2.2. If Y ' W Y  ~  Wp(mi, E) — Wp(m2 , E) and H  is a p x k  matrix of rank 

k, then (Y H ) 'W (Y H )  ~  W p{m u H 'Y H )  -  W p(m 2,H 'Y H ).

Definition 2.2.2. If A  — X ' X ,  where X  is an m  x p random matrix normally 

distributed as A/"mxp(/i, Im <2> E) with E € Np, then A  is said to have the noncentral 

W ishart distribution with m  degrees of freedom, covariance matrix  E and non­

centrality matrix  A =  n'fi.

We shall write that A  is Wp(m, E, A) or A  ~  Wp(m, S, A). A  is also said to be a 

noncentral Wishart random matrix

The noncentral Wishart distribution generalizes the noncentral chi-square dis­

tribution in the same way that the Wishart distribution generalizes the chi-square 

distribution. The Wishart distribution is one special noncentral Wishart distribution 

with n  =  0 and then A =  0.

We shall use Y ' W Y  ~  Wp(mi, E, Ai) — Wp(m2, E,A2) to denote that Y ' W Y  

has the distribution of the difference of two independent noncentral Wishart random
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matrices with Wp(mi, E, Ax) and Wp(m2, E, A2). In this case, Y ' W Y  is said to be dis­

tributed as a difference of independent noncentral W ishart random m atrices 

(D IN W R M ).

The properties of noncentral Wishart distributions are given in the following two 

lemma.

Lemma 2.2.3. If Y ' W Y  ~  Wp(m, E, A) and H  is a p  x k matrix of rank k, then 

(Y J I ) 'W (Y H )  -  II'YJI. II'XU).

Lemma 2.2.4. If Y ' W Y  ~  Wp(mi, E, Ai) — Wp(to2 , E, A2) and H  is a p  x k matrix  

of rank k, then (Y H ) ' W ( Y H ) ~  Wp(mi, H"ZH, H 'XiH ) -  W p(m 2,H 'E H ,H 'X 2H ).

Above lemmas will be used repeatedly in the subsequent chapters.

2.3 M atrix Quadratic Forms (M QFs) and M om ent 

Generating Functions

Let y be a p  x 1 real normal random vector. Then for the symmetric matrix W  of order 

p, y'W'y is called a quadratic form in a normal random vector y. Theoretical results 

on y ' W y  as well as applications and generalizations are available from Mathai and 

Provost (1992). To distinguish it from the quadratic form, we shall call y ' W y + a ! y + d  

a quadratic expression in y where a is a p  x 1 vector and d is a real number. Regarding 

quadratic forms and quadratic expressions we refer the interested reader to Mathai 

et al. (1995), Chapter 2, for more details.

For the symmetric matrix W  of order n, we shall call Y ' W Y  a m atrix quadratic
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form (M QF) in a normal random matrix Y  and call Y 'W Y  +  B 'Y  +  Y 'B  +  C  a 

m atrix quadratic expression in a normal random matrix Y  where B  is a p x n 

matrix and C  is a symmetric matrix of order p. In this dissertation, we shall focus our 

attention on the matrix quadratic form Y 'W Y  as well as a family of matrix quadratic 

forms Y 'W \Y , Y 'W 2Y ,  . . . ,  Y'W{Y. We shall use Q  to denote Y 'W Y  as well as 

Y 'W Y  +  B 'Y  +  Y 'B  +  C  without distinction.

We are interested in whether the matrix quadratic form Y 'W Y  is distributed as 

a Wishart random matrix in the case p, — 0  or a noncentral Wishart random matrix 

in the case ^  0. Necessary and sufficient conditions for the matrix quadratic form 

Y 'W Y  to have a Wishart distribution W p(m, E) or a noncentral Wishart distribution 

W p(m, E, A) will be investigated. The property of the matrix quadratic form Y 'W Y  

distributed as a Wishart random matrix is called its W ishartness. In the similar 

way, the property of the matrix quadratic form Y 'W Y  distributed as a noncentral 

Wishart random matrix is called its noncentral W ishartness. For a set of sym­

metric matrices W\, W 2 , ■ ■ ■, Wi of order n, we are interested in the independence as 

well as Wishartness or noncentral Wishartness of the matrix quadratic forms Y 'W \Y , 

Y 'W 2Y,  . . . ,  Y 'W iY . We are also interested whether a set of matrix quadratic forms 

is an independent family of random matrices distributed as differences of independent 

(noncentral) Wishart random matrices.

Definition 2.3.1. If Q is a matrix quadratic form, the moment generating function, 

denoted by M q( s), of Q is defined as

M q (s ) =  E (e <s’Q>), s G S„. (2.16)
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We often write M(s) instead of M q (s) for short.

For the symmetric matrices Wi, W2, . . . ,  Wi of order n, we have a set of matrix 

quadratic expressions {Qi}li=1, where Q, = Y 'W iY  + B 'Y  +  Y 'B  +  C, Bt G MrtXp'> 

Ci G Sp, i — 1 , 2 The following lemma, due to Wong et al. (1991), gives 

the joint moment generating function M(s)  of a set of matrix quadratic expressions

mu-
Lem m a 2.3.1. Let Y  be an n x p  random matrix normally distributed as Afnxp(n,.Ey) 

and Wi, W2, ■ ■ ■, Wi be symmetric matrices of order n. Then the joint moment 

generating function M (s) of matrix quadratic expressions Qi, Q2) ■..,  Qi is given by

M (s) =  1 — 2S*|~1/2exp{< s, A > +2 < pP,S^/2 (/„p -2 E * )” 1 S^/2 p* >} (2.17)

where S =  Sp x Sp x • • ■ x Sp (I times), s =  (s*) 6 S, S* =  2E L i( ^ /* ® si)]^y 2>

p* =  Yli=i vecijWipiSi +  BiSi), A* =  p'W^p +  B[p  +  p'Bi  +  C* G S p , A  =  ( A , )  G §  

and sr(E*) < | .  . •

Proof. Let Q =  (Qi), then for s G Sp,

i
< S, Q > =  < (Sj), (Qi) > =  ^   ̂ < Si, Qi >

i=l
I

=  Si ,  Y 'W iY  >  +  <  s  i ,  B(Y > + <  Si,  Y'Bi >  +  <  s { , Ci > }

>■ l 
i

=  Y, WiTsi > +2 < Y, BiSi > +  < Si, Ci >}
i=l
I

= E «  uec(y), (Wi 0 si)vec(Y) > +2 < vec(Y),vec(BiSi) > + < s*, Ci >}.
i= 1

(2.18)
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Let vec(Z) ~  J\fnp(0, I), then v e c (Y ) =  vec(fi) + Y yvec(Z )  ~  NnP(vec((i) , Ey) and

(2.18) becomes

< s, Q  > = <  vec(Z), E*vec(Z) > +2 < vec(Z), E y 2pi* > +  < s, A > .

Thus by (2.16)

M (s)  = E ( e x p { <  s, Q  > }

1
, , '/ e x p {—- < v e c ( z ) , v e c ( z ) > + < v e c ( z ) , ' E * v e c ( z ) >(2tr)np/2 ^  2 V v w

+  2 < uec(z), Sy 2 /it* > +  < s, A >}dz .

I f  1

yE/2 J n p e x p { ~ 2  < vec(z) “  “  2E*)(uec(z) -  a )  >(27T
1

2
+ < s, A > + -  < (/np -  2 E*)o!, a  >}dz.

where a  =  2(Inp -  2E*) ^ y V * .  Therefore, for sr(E*) < 1/2,

M(s) = |/„p — 2E*|~1/2 ea;p{< s, A > + -  < (Inp — 2E*)a:, a  >}

=  |Inp -  2 E*\-1/2e x p {<  s, A > + 2  < pi*, Sy/2|/„p -  2E*|~1 Ey/V  >}.

□

Let us discuss the moment generating functions of some special and useful matrix 

quadratic forms. The following two corollaries are the immediate consequences from 

Lemma 2.3.1.

Corollary 2.3.2. Let Y  be a n n x p  random matrix normally distributed asJ\fnxp(pt, In& 

E), then, the moment generating function M(s) o f Y ' Y  is given by

M(s) =  \Ip - 2 Z 1/2s Z 1/2\~n/2e x p {<  s, A > +2 < A, sS 1/2 ( /p -2 E 1/2 sE 1/2 )- 1 S 1/2s >}

(2.19)
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for all s € §p such that s r (S 1/2 sS 1,/2) < 1/2 with A =  p!pi.

Proof. In Lemma 2.3.1, taking Ey =  In <g» E, I =  1, ICi =  In and s =  Si € Sp. for all

s € Sp such that s r (E 1/2 sE 1/2) < 1/2, we obtain from (2.5)

E* =  E^ { W t  ® Sl)Ey/ 2  =  (In ® E1/2)(/n ® s)(/„ ® E1//2) =  In ® S 1/2 sS 1/2.

So

|/„p -  2 S " r 1/ 2 =|7„ ® /p -  2 /„ ® E ^ s E ^ r 1/ 2

= ( |/„ |p|/p -  2E1/ 2sE 1 / 2 | " ) - 1 /2  =  j/p -  2E1/2 sE 1/2|~n/2,

and

E^/2 (7„p -  2S*)_1 E y 2 = (/„  0  S 1/2) ^  -  2/p ® E ^ s E 1/.2) - ^  ® E1/2)

=7n ® [E1/2(/p -  2E1/2sE1/2)“1E1/2].

Thus

<  (**,Ey/2 (/„p -  2 E * ) -1Ey/ V  > =  <  uec(/is), u ec(/x sE 1/2(Ip -  2 S 1/2s E 1/2) - 1E 1/2) >

=  < pi'pi, sS 1/2(/p -  2E1/2 sE 1/2 ) - 1 E 1/2s >, 

implying that (2.19) holds. □

By Definition 2.2.2, (2.19) is the moment generating function of a random matrix 

distributed as the noncentral Wishart distribution W p(n, E, A) with A =  pi'pi. For 

convenience, we can use (2.19) to extend Wp(n, E, A) so that the case n =  0 or E =  0 

is included.

Corollary 2.3.3. Let y  he a p x 1 random vector normally distributed as J\fp(0, E). 

Then the moment generating function M  (s) of yy' is given by

M(s) =  | i p 2 E 1/2 sE 1/2 r 1 /2

for all s £ Sp such that s r(E 1//2 sE 1//2) < 1/2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2. Notations and Preliminaries 30

The following corollary follows from Lemma 2.3.1, Corollary 2.3.2 and indepen­

dence.

C orollary  2.3.4. Let Q i and Q2 be independent symmetric matrices of order p dis­

tributed, respectively, as Wp(mi, E, Ai) and Wp(m2, E, A2 ). Then the moment gener­

ating function M(s) of Q — Q\ — Q 2  is given by

M(s) =  |/p- 2 E 1/2 sE 1/2|^mi/2|/p +  2S 1/2 sE 1/2 |“m2 /2 exp{< s, A i-A 2 > +24>i+2$2}

( 2 .20 )

for alls e  Sp such that s r(E 1//2 sE 1//2) < 1/2, where $  1 = <  A i,sE 1 '/2 (/p—2Ei/2 sE 1/ 2 ) - 1  

S 1/2s > and $ 2 = <  A2 ,sE  1/2(/p +  2 E 1/2 sE 1/2 ) - i s 1/2 s >.

In fact, (2.20) is the moment generating function of a random matrix distributed as 

a difference of two independent noncentral Wishart random matrices with Wp(toi, E, A/) 

and Wp(m2, E, A2). For convenience, we can use (2.20) to extend W p(rni, E, A/)- 

Wp(m2, E, A2) s o  that the case mi =  0 or m 2 or E =  0 is included.

The following lemma is useful in studying a difference of two independent Wishart 

random matrices. It can be obtained by imitating the proof of Theorem 2.3 in Wong 

et al. (1991).

Lem m a 2.3.5. Let Y  be ann  x p  random matrix normally distributed as A/’nxp(0, Ey) 

and S £ Np. Then the following statements are equivalent propositions.

( a ) Y ' W Y ~ W P{m 1 , E) -  Wp(m2, E);

(b) For any s € Sp,

\Inp -  2Ey/2(W <g> s)Sy/2| =  \IP -  2E1/2 sE 1/2 r i |/p + 2E1/2 sE 1/2|m2;
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(c) The matrix Y,y2 (W (%)s)Tiy2 and the diagonal matrix diag[Imi®Yill2sYill2, —/ m2 <g> 

E 1 2̂ sE 1/2 ,0] G §np have the same characteristic polynomial for all s € §p; and

(d) For any positive integer k and any s £ § p,

tr(£y(VR (g> s))fe — [mi +  (—l) fcm 2 ]tr(Es)fc.

Proof. By Corollary 2.3.4 and analytic continuation, (a) and (b) are equivalent. Note 

that (b) amounts to

(b') \Inp ~  E y 2( W  0> s )£ y 2| =  |/p — E1//2sE 1/2|mi|/p +  E1/2sS 1/2|"12.

Replacing s with s/A (A € R) in (6 '), we have

|A/np -  Ey 2{W  ® s)Sy/2| =  |A/p -  E 1/2 sE 1/2 |mi|A/p + E ^ s E ^ H A / {„_TOl_m2)p -  0 |,

implying that (c) holds and vice versa, (c) means that E y 2{W ® s)£y 2 and diag[Imi 0  

E ^ s E 1/2, - I m2 ® E 1/2 sE 1/ 2 , 0] in §.np have the same spectrum {A ^}^, equivalently, 

for any positive integer k  and any s G Sp.

tr (E \!2(W  0  s)Sy/2) fc =  tr {diag[Imi 0  E 1/2 sE 1/2, ~ / m 2 ® E 1/2 sE 1/2 , 0])*

namely,

tr  (Ey/2(W  0  s)Ey/2) fe =  tr  (diag[Imi 0  (E1/2 sE 1/2)fc, - / m 2  0  ( E ^ s E 1/2)*, 0])

=  [tr(Imi) +  ( —l) fct r ( /m2 )]tr(E 1/2 s £ 1/2)fe,

which proves the equivalence between (c) and (d). □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 3 

A M ultivariate Version of 

C ochran’s T heorem  on N oncentral 

W ishartness and Independence

Let Y  be an n  x p multivariate normal random matrix with mean fj, and general co- 

variance £ y . The expression “general covariance” Ey of Y  implies that the collection 

of all np elements in Y  has an arbitrary np x np covariance matrix. For a set of 

nonzero symmetric matrices Wi, FF2, . . . ,  Wj of order n, we shall discuss necessary 

and sufficient conditions for matrix quadratic forms Y 'W {Y , 'Y'W-YY, . . . ,  Y 'W iY  to 

be an independent family of noncentral Wishart random matrices with some integers 

m  1 , m2, . . . ,  mi and non-centrality matrices Ay Ay . . . ,  A;.

For the symmetric matrix W  of order n. a set of necessary and sufficient conditions 

is derived for the noncentral Wishartness of matrix quadratic form Y 'W Y  (Theorem 

3.3.1) in Section 3.3. For a set of symmetric matrices W\, IF2 , . . . ,  IF) of order n,

32
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a set of necessary and sufficient conditions is obtained for matrix quadratic forms 

Y 'W iY , Y'W^Y. . . . ,  Y 'W iY  to be an independent family of noncentral Wishart 

random matrices (Theorem 3.4.2) in Section 3.4. An example and the usual versions 

of Cochran’s theorem are presented as the special cases of our result.

In addition, as the intermediate result, we use a matrix approach to present the 

proven result for the mean 0 case. This case has been solved by Masaro and Wong 

(2004a), They used Jordan algebra representations to obtain a general multivariate 

version of Cochran’s theorem concerning Wishartness and independence. Their re­

sult and proof is more mathematically involved. In our presentation, we provide a 

discrete representation version of Cochran’s theorem in Section 3.1-3.2. For details, 

in Section 3.1, we shall establish a set of succinct necessary and sufficient conditions, 

in terms of verifiable matrix equations, for the matrix quadratic form Y 'W Y  with 

the symmetric matrix W  to have a Wishart distribution. In Section 3.2, we shall 

develop a set of succinct necessary and sufficient conditions for the matrix quadratic 

forms Y 'W iY ,  Y'W-2Y, . . . ,  Y'W{Y  with the symmetric matrices W\, W 2 , . . . ,  W; to 

be an independent family of Wishart random matrices. In addition some examples 

and applications or corollaries are discussed.

3.1 W ishartness o f a M atrix Quadratic Form (M QF)

First let us consider the simple case where the covariance S of the Wishart distribution 

is a diagonal matrix. In this dissertation, without a special claim, we shall use A to
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denote a diagonal matrix of order p in the following form.

A =  diag[cri, o2, ■ ■■, crr, 0 , 0 ] ,  r  =  r(A), cr* > 0 (i = 1 , 2 , r).

The following theorem provides us with the necessary and sufficient conditions for a 

matrix quadratic form to have a Wishart distribution W p(m, A).

T heorem  3.1.1. Let Y  be a n n x p  random matrix normally distributed asAfnxp(0, Ey) 

with general covariance Ey and W  be a symmetric matrix of order n. Then the ma­

trix quadratic form Y 'W Y  has a Wishart distribution W p{m, A )  for a nonnegative 

integer m  if and only if there exists a A in N p such that for any elements t , t  in the 

basic base E/(.

E y [ W ®  ( t A t  +  t A t ) ] E y  =  F ( t , t , W , E y )  +  F ( t , t , W , E y )  (3.1)

where F ( t , t ,  W, E y )  =  E y ( W  <8> t ) E y ( W  t ) E y  with

. { t  : E  Y(W  < g ) t ) E y  =  0, t  €  E p } =  { t  : A t  A  =  0, t  €  E p } (3.2)

and

m  = tr (Y Y {W ® A +))/r(A). (3.3)

Proof. By Lemma 2.1.1, decompose Ey/ as

E y /  =  L'L, L — [L\, L 2 , . . . ,  Lp]

with Li G MgXn (i =  1 , 2 , . . . ,p) and r(Ey/) < q <  np.

Let

Bij = (LiWL'j +  LjWL'i)/2^/oiOj, i , j  < r.
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Then Theorem 2.1 of Masaro and Wong (2003) tells us that (3.1)-(3.3) are equivalent 

to the following conditions:

(Al) r(LiWL') = m  > 0 (* =  1,2, . r);

(A2) tr(LfWL-) =  mai (i = 1,2, . . . ,  r); ■

(A3) LiWL'j +  LjW Ll = 0 for i or j  > r;

(Bl) B \  — Bu;

(B2) 4Bfj = Bu + Bjj i -/ j:

(B4) BuBij T BijBu B%j i 7  ̂ and

(B5) Bij = 2(BikBjk +  BjkBik) for distinct i , j ,  k.

Note that from (B1)-(B5), we also obtain

B ^ — BijBjjBjj +  BjjBjjB,,. i /  j  (3.4)

and then

BuBjk = 0, BijBki = 0 for distinct i , j ,  k, I. (3.5)

First of all, suppose conditions (A1)-(A3) and (B1)-(B5) hold. We shall show that 

(3.1 )-(3.3) hold.

For convenience, we shall use the 4-dimensional subscript to represent a pair of 

elements in the basic base E;). For example, if t  = Eu and t  = Eij, 1 < i < j  < r, 

we use ( i i , i j ) to represent ( t , t ) .  By the structure of A  and (A3), we only need to 

consider these elements E^, 1 < i < j  < r, in the basic base Ep. Then we divided all 

4-dimensional subscripts from these elements £'{), 1 < i < j  < r into the following
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seven classes. Let

Ci =  {(*M*) : 1  <' * .<

C2 - { ( i j , i j ) -  1 < i < j < r } ,

Cs =  {( i i , j j )  : 1 < i,  j  < r;i ^  j} ,

C4  =  {{ii;ij) U : 1 < / < . / '  < /'}•

C5 =  {(ik ,jk )  : 1 < i , j  < k < r\i,.j distinct},

C6 =  {(zz, z'j') U ii) : 1 < z, z' < j ' <  r; z, z ' , /  distinct}; and

C7 =  {(zj, z'j') : 1 < z < j  < r, 1 < i’ < f  < r; i , j , z',/  distinct}.

Then
7

I j Q  =  {(zj,z '/) : 1  < z < j  < r, 1  < z ' < / <  r}.
i~l

Write Q =  { :  1  < z < j  < r}. Then Q =  L)J_1Ci. So any 4-dimensional subscript 

(*j, i ' f )  must be the element of one and only one set of Ci, C2, . . . ,  C7.

From Lemma 2.1.6, to prove (3.1), it is equivalent to show that for any pair of 

elements in the basic base Ep, we have

L [ ( t A t  + t A t )  ® W]L’ =  © ( t ,  t ,  W, L) +  0 ( t ,  t ,  W, L ). (3.6)

Eq. (3.6) follows from (B1)-(B5) and (3.4) with simple matrix calculations.

Exactly as in the proof of Lemma 2.1.6, (3.2) is equivalent to Eq. (3.7). So, 

proving (3.2) is equivalent to showing that for any element t  in the basic base Ep,

{ t : i ( t ( g W ) L ' = - 0 }  =  K o  ( 3 . 7 )

where K 0  =  ( t  : A t  A  =  0 , t  £ Ep}.
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Since

Ko =  {t : AtA =  0 } =  {Etj : i or j  > r}

and from (A3)

{t  : L(t  0 W )L'  =  0} =  {Eij : i or j  > r},

This means that Eq. (3.7) holds.

By (2.8), (2.9), (Al) and (A2), .

t r (£ y (VE 0  A+)j =  tr(L(A+ 0  W)L') = tr(Ldiag[-  0  W, -  0  W ,. . . ,  -  0  W\L')
(71 (j 2 (71

r
■- ^ /./•(/.,H 7 .')/a , -  mi.

i—l

which proves (3.3).

Next, suppose (3.1), (3.2) and (3.3) hold, we shall show that (A1)-(A3) and (Bl)- 

(B5) hold.

Taking G C\, the left side value of (3.6) is

2/.((/•;,',• A/•;•,) x \ V ) L '  2crfB„.

while the right side value of (3.6) is 2afBaBu .  Eq. (3.6) implies that (Bl)holds. 

Taking G C2 , the left side value of of (3.6) is

2L((EijAEij) 0  W )L ' — 2cr,(jj(Bjj +  Bjj),

while the right side value of (3.6) is 8 (JiCTjBijBij. Eq. (3.6) means that (B2) holds. 

Taking G G3, the left side of (3.6) is

A((£'mAEjj +  EjjAEa) 0  W )L'  =  0,
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while the right side of (3.6) is

cj % (J j  (13  j j B j j  ~\~ B j j  B  n ) •

Eq. (3.6) implies that BuBjj = - B tlB:j]. or BuBjj is skew-symmetric. Then

\\BuBjjW = <  BuBjj, BuBjj >= tr(BuBjj(BuBjj)') = tr (BuBjj) = 0 ,

so BuBjj = 0, thus (B3) holds.

Taking (ij, i’j')  G C4 , the left side of Eq. (3,6) is

L(EuAEij 0  W )L' +  L(EijAEu ® W )L '  =  2^/OiOjOiBip

while the right side of Eq. (3.6) is

2  (jj fj'i (Bu Bjj T Bjj Bu) -

(B4) follows from Eq. (3.6) and equivalently from (3.1).

Taking (ij, i 'j ')  G C5 , the left side of Eq. (3.6) is

L(EikAEjk <8 > W )L' + L(EjkAEik 0  W )L' = 2yto^aJakB ij,

while the right side of Eq. (3.6) is

4 \/o",o~jo~k(BucBjk T BjkB ik).

Eq. (3.6) implies that (B5) holds.

As above discussed, (B1)-(B5) follow from (3.1).

By eq. (3.7),

{t : L(t 0  W )L' — 0} fl Ep =  {t : At A =  0} fl Ep =  {Eij : i or j  > r},
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that implies

L(Eij 0  W )L' = 0 for i or j  > r, i.e. E W L j  + LjWL'{ =  0 for i or j  > r.

So (A3) follows.

Let

Sa = {S  = L(s* 0  W )L'  : s* -

then we define the operation o on §a as

a  0  

0  0

, a  € Sr},

Si o S2 = - ( S 1 S 2  +  S2Si) for any S lt S 2 G Sa.

Note that By =  L( 1  By 0  W )L' € § « ( ! < * <  j  <  r). By (3.1), the set §a is 

closed under the operation o. From the above proofs of (B1)-(B5), we have obtained 

these facts that under the operation o, {By : 1 < i < j  < r} is a basis of the set §„,. 

only if B ii,B 22, •. ■, Brr and Bhil +  Bhi2 + ■■■ + Bikik ({ ii,i2, . . .  ,4 }  C { l',2 ,. . .  ,r}) 

are idempotent elements of §„. Moreover, B n , B22, . . . ,  Brr are nonzero, orthogonal. 

They can not be written as the sum of two non-zero orthogonal idempotent elements 

of §a. So each of B u, B22, . . . ,  B rr is a primitive idempotent of SQ and therefore each 

of them has same rank, say (c > 0), i.e. 'r(Bu) = r(LjWL^) =  c, z =  1,2, . . .  , r,  (see 

for example, Jacobson (1968)). Moreover, by (3.3),
r r

m  = tr(Ey(VF 0 A+))/r(A ) =  tr(L(A+ <&W)L')/r = 2 > ( B « ) / r  =  £ r ( a () / r  = c,
i—1

which proves condition (Al).

And since

triLiWL'i) =  (Titr(Bu) = . a i r ( B i i ) =  ^ ^ ( L j V F L ' )  =  aim,

»=i

(A2) holds and, therefore, the proof is complete. □
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Note that (3.1) and (3.2) determine the Wishartness of the matrix quadratic 

forms Y 'W Y  while (3.3) determines its m  degrees of freedom if Y 'W Y  has a Wishart 

distribution.

We provide an example to illustrate the application of Theorem 3.1.1. This ex­

ample was discussed in Masaro and Wong (2003).

E xam ples 3.1.2. L e tY  =  (y*j)3 x2 ~  AA3 x2 (0 ,Y,y ) with

£ v  =

12 02x2 A

0 2 x2 0 2 x2 0 2 x2

A! 02x2 h

where A  —
0  1 

0  0

and

1  a 0

W  = a b e , a, b ,c€

0  c 0

Then, we discuss the Wishartness of the matrix quadratic form Y 'W Y  and determine 

its degrees of freedom if  Y 'W Y  has a Wishart distribution.

Proof. The basic base is

E 2 E 1 1 —
1  0  

0  0

, E\2 —
0  1 

1  0

> E 2 2  —
0  0  

0  1

For the diagonal matrix A =
1  0

0  1

to determine the Wishartness of the matrix

quadratic form Y 'W Y , by Theorem 3.1.1, it suffices to verify (3.1)-(3.2).
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Taking (t,t)  = (En, E 12), we have

Ey[W <8 > (En AEi2 +  E i2-AEii)]'Ey  —

41

E n 0 0 B

0 0 0 0

B 0 0 0

where B
II 0

0  1

and

F{En, E \ 2 , W, Ey) +  F(Ei2, Ell, W, Ey)

•12 0 0 B

0 0 0 0

B 0  0  0

So (3.1) holds for (t,t)  = (E u ,E i2). Similarly, when (t,t) =  ( E u ,E n ), (Ei2,E i2)., 

(E u ,E 2 2 ), (Ei2 , E 2 2 ), (E22 ■ E 2 2 ), respectively, (3.1) also holds. Here we can use a 

Matlab programming to do these computations.

Obviously, K0 =  0 Let t  =
h  h

G Hp. Then E y

h  t2

h ati +  ct$ at 3 +  cf 2 0 0

h at 3 at2 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 cti ct3 0 0

h ati +  ctg at3 + ct2 0 0

ti =  t 2  = ts = 0. We obtain

{ t E Y(yV ® t ) S y  =  0 ,  t  G E p }

=  0 ,
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which implies that (3.2) holds.

So (3.1) and (3.2) imply that the matrix quadratic form Y 'W Y  has a Wishart 

distribution.

Finally, its degrees of freedom are given by (3.3). We have

/
h 0 A h al2 0

\

1
m =  - t r  

2
0 0 0 al2 bl2 c h

V A' 0 h 0 d 2 0

-tr

f ~ ' \
h a l2 +  cA 0

0 0 0

\
A' aA' + cl2 0 /

= 2 i r (J2) =  L

Hence, it follows from Theorem 3.1.1 that Y 'W Y  ~  W2 (m, / 2 ) with m =  1. □

Now we shall discuss the general case, where the covariance E of the Wishart 

distribution Wp(m, E) is a general nonnegative definite matrix of order p.

T heorem  3.1.3. Let Y  be an n x p  random matrix normally distributed as A/’nxp(0, Ey) 

and W  be a symmetric matrix of order n. Then the matrix quadratic form Y 'W Y  has 

a Wishart distribution Wp(m, E) for a nonnegative integer m  if and only if there ex­

ists a matrix E in Np such that for any elements h, h in the similar base Hp associated 

with E.

Ey[W <g> (hEh +  hEh)]Sy =  F (h, h, W, Ey) +  F (h , h, W, S> (3.8)

with

{h : E y (W®  h)Ey =  0 } =  K (3.9)
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where K =  {h : EhE =  0, h  € Hp} and

m  =  t r ( £ y ( W ® E + ) ) / r ( E ) .  ( 3 . 1 0 )

Proof. Since £  € by lemma 2.1.1, there is an orthogonal matrix H  of order p such 

that H 'H  = Ip and

H"EH =  diag[ai, a2, . . . , ar, 0 , . . . ,  0] =  A, r = r(£ ), <r* > 0, f = l , 2 ,  . . . , r .

And Y H  ~  Mnxp(0, where Eyh  =  ( /  ® H')T,y(I <g> H), follows from Lemma

2 .1 . 2  and Y  -^nxp(0 , S y ).

Let

t  =  H 'hH  for any h € Hp.

The function t  =  H 'hH  is a one to one map from the similar base Hp associated with 

S onto the basic base Ep. By replacing h, h, E and Ey, respectively, with H tH ' . 

H tH ', H AH ' and (I<g>H)Y,YH(I®H') in (3.8)-(3.10), we obtain that for any elements 

t  and t  in the basic base Ep,

E y tf[ ir® (tA t +  tAt)]EyH =  F (t,t,tT ,E y tf)  +  F (t,t,tT ,E y ff) , (3.11)

{t : Ey/r(W  0  t)E y #  =  0} = 'K 0 and (3.12)

m =  fr(Eyi/(VL 0  A+))/r(A ). (3.13)

By Theorem 3.1.1, (3.ll)-(3 .13) are the necessary and sufficient conditions for H 'Y 'W Y H  

to have a Wishart distribution Wp(m , A). So Y 'W Y  ~  Wp(rn. E) follows from Lemma 

2.2.1. The equivalence between (3.11)-(3.13) and (3.8)-(3.10) tells us that the converse 

holds as well. □
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R em ark  3.1.4. Note that, given the covariance matrix E, (3.8) and (3.9) deter­

mine the Wishartness of the matrix quadratic form Y 'W Y  while (3.10) determines 

its degrees of freedom if  Y 'W Y  has a Wishart distribution.

Theorem 3.1.3 is an important result of this chapter. Now let us discuss an 

example and some corollaries as special cases of Theorem 3.1.3.

E xam ples 3.1.5. Let Y  — (Yij)3 x2  ^  ^ 3 x2 (0 , Yy) with

4  0  0  

0 0 0 

0 0 B

1 1 1 1

where A  = 2 2 and B  = 2 2

l  1 1 1
2 2 2 2

and

4 2 2

W  = 2 - 1 0  S S3

2  0  1

then, we discuss the Wishartness of the matrix quadratic form Y 'W Y  and determine 

its degrees of freedom if  Y 'W Y  has a Wishart distribution.

Proof. Consider the covariance E
5 3
2 2

3 5
2 2

Y2
2

Y2
2 such that H 'Y I l  =

1  0

V2
2

v/ 2
2 0 4

H'=

ated with E is given by

Hu  =

. There exists an orthogonal matrix

Then the similar base H 2 associ-

, ^ 1 2  =
1

1

O

, # 2 2  =
1
2

1
2

1
O

1
r-H1 1

2
1
2
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To determine the Wishartness of the matrix quadratic form Y ' W Y , by Theorem 3.1.3, 

it suffices to verify (3.8) and (3.9).

Taking ( h ,  h )  = (Hu, Hu),  we have

S y [ W  0  {HnAHu +  HuAHn )}EY =

0  0  2 AHUB

0  0  0

2BH12A  0  0

and

F(Hn , H12, W, E y )  +  F(H12, Hn , W, E y )  =

0  0  2AHu H\\B

0  0  0

2BHn BHuA  0  0

Since

2AH12B =  2AH12Hn B  and 2BH12A =  2BHn BH12A,

(3.8) holds for ( h ,  h )  = (Hn ,H u )• Similarly, when

(h,h) =  (Hn ,H n ),(Hn ,H22} , (H u ,H u ) , {H u ,H 22),(H22,H22),

respectively, (3.8) holds for them. Here we also use a Matlab programming for this 

algebraic computation.

h i />•!
G H2- Then E y (W  0  h ) E y  =  0  orObviously, K =  0. Let h  =

h  hz 

hz h2

AAhA 0  2AhB 

0  0  0

2BhA  0  BhB

=  0 ,
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i.e. hi +  h2  T 2 /1 3  -—- 0, h\ — h2 , h\ +  /12 — 2,h  ̂ — 0 =£■ h\ — /12 — ^ 3  — O’ It means 

that { h  : E y ( W  ® h ) E y  — 0, h  € H 2 } =  0j which (3.9) holds.

So (3.8) and (3.9) imply that matrix quadratic form Y 'W Y  has a Wishart distri­

bution.

Finally, its degrees of freedom are given by (3.10). We have 

m =  fr(E y (W ® E +))/r(S )

/
A 0 0 4 E + 2 E + 2 E +

\

1

2tr 0 0 0 2 E + -E + 0

\ 0 0 B 2 E + : 0 E +

f
4 A E + 2 A E + 2 2 1 E +

\

1
- t r
2

0 0 0

\
2 H E + 0 H E + /

-  ~[tr(4AT+) +  tr(B E +)] = 1 .

Hence, it follows from Theorem 3.1.1 that the matrix quadratic form Y 'W Y  has a 

Wishart distribution W2 (l, S )f □

In Theorem 3.1.3, if the covariance Ey of Y  is replaced with the Kronecker product 

A  <g> S where A  is a nonnegative definite matrix of order n, Theorem 3.1.3 is reduced 

to the following corollary which was proved by Khatri (1963) and de Gunst (1987).

C orollary  3.1.6. Let Y  be a n n x p  random matrix normally distributed as J\fnxp(0, A<g> 

E) for some A £ N„. Then, for W  6  §n> the matrix quadratic form Y 'W Y  has a 

Wishart distribution W p(m, E) for some m € {0,1,2, . . .  } if and only if

A W  A W  A  =  A W  A; (3.14)
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A W A ±  0 ; and (3.15)

m=r(AW). (3.16)

Proof. Using A  <g> E to replace Ey in (3.8) and (3.9), by (2.5), we obtain (3.14) and 

(3.15). By (2.5), (2.6) and (3.10),

m = tr ( (A  <g> E)(W  <g> E+))/r(E ) =  tr{AW  ® E E +)/r(E ) 

=tr(AW)tr(T,0)/r{Y) = tr{AW), 

so (3.16) holds and the desired result has been obtained. □

In Theorem 3.1.3, if we replace the covariance Ey of Y  with the sum of spe­

cial Kronecker products, we have the following corollary which was also discussed in 

Masaro and Wong (2004a).

C orollary  3.1.7. Let Y  be an n x p  random matrix normally distributed a s f fnxp(0, Ey).
r

Suppose E y = 'Ŝ2 ,A i (g> Eu, r < p, A* € 'N„, i — 1,2, . . . , r ,  and W  6  S„. 

Then the matrix quadratic form Y 'W Y  has a Wishart distribution W p(m, E), where
r

E = 'Y^aiEu, for some m  € {0,1,2, . . . }  if and only if there exist real numbers
i—l

<Jk > 0 , k =  1 , 2 , . . .  ,r, such that for all i , j , k  < r ,

A iW A kW A j = cFkAfW  A  (3.17)

AfW Aj ^  0 ; and (3.18)

m = - i r —tr(AiW). (3.19)r ^ J rr-r cfi 
2 = 1
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Proof. Prom (3.1), (3.2) and (3.3), replacing E y  and E  with ^  A t 0 Eu and Y ^  o-tEu ,
i=l

respectively, we obtain that for any t  =  {Uj),t =  (Uj) €  E p ,

' r
Y  ((TkAjWAj -  AjWAkWAj) ® EujtEkkt  +  tE kkt)Ej:j =  0

i,j,k=1

or

r
Y  {vkAjWAj -  A jW A kW Aj)  ® (tiktkj + U k i^ e ^  = 0,
i,j,k= 1

t : Y  A iW A j  <8> E u tE jj  =  0 j  =  < t : Y  EntE jj =  0  [ '
k *0= 1  )  V *0 = 1  J

Namely,

t  : Y AiWAj <g> EutEjj =  0  > =  
* o = i  J

t  : t  =
Or Yr *

*  *

e e k

and

(3.20)

(3.21)

m tr I Y  A iw  ® j  / r  (E) = ~ Y  tr(A iW )tr(EuX+).
. i - 1 i=l

(3.22)

Note that tiktkj +  Uktkj can take the value 0 or 1 or 2 for any i, k . j  < r. So (3.20) is 

equivalent to (3.17) and (3.21) is equivalent to (3.18). Since

s + =  Y  ~ Eii> 
r r CT'

(3.22) becomes

m = \ i p t r ( W ) t r  ) =  I ' b f t r f A W ) ,
i= 1 \  j=l k )  i=1 1

therefore, we have completed the proof of the desired result. □
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In Theorem 3.1.3, if y is an n x 1  normal random vector with mean vector 0 and

covariance C, (3.8)-(3.10) are reduced to the familiar conditions which were shown

by many scholars in the sixties.

Corollary 3.1.8. Let y be an n x  1  random vector normally distributed as A/"n(0, C ) 

and W  be a symmetric matrix of order n. Then the quadratic form  y W y  has a 

Wishart distribution Wi(m, 1), that is, a chi-square distribution with m  degrees of 

freedom for a nonnegative integer m  if and only if

C W C W C  = CWC; and (3.23)

m -r(C W ).  (3.24)

Proof. In the univariate case p = 1, Ey — C . E -  1 (if Q ~  Wi(m, a), then Q /a  ~  

y 2 (m)) and h =  1. (3.8) is reduced to (3.23), (3.9) is reduced to an identity and

(3.10) is reduced to (3.24). □

In fact, (3.23) and (3.24) imply that m  — r(CW C),  see Styan (1970).

In Theorem 3 . 1 . 3 ,  if the covariance E y  of Y  is nonsingular, Theorem 3 . 1 . 3  reduces 

to the following corollary.

Corollary 3.1.9. In Theorem 3.1.3, suppose Ey is nonsingular. Then the matrix 

quadratic Y ’W Y  follows a Wishart distribution Wp(tr(W), E) if and only if there 

exists a matrix E E Np such that

W ® Y  = ( W ® I ) E y ( W ® I ) .
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Proof. Since Ey is nonsingular, E must be nonsingular from (3.9). The desired con­

dition follows from (3.8). Since

E ^ 2( l f  C E ')Ey/2 E^’'2(lT *  E - 1  )E y 2

E ‘./2(1 x S ' ' ) ( i r  : /)E y(U ' < /) ( /  >: E~‘)E } / 2  

-  S ‘./2(/ K E - ‘)(1T *  >:)(! >: E~ ‘)E ’ / 2 

-E { /2(IT X E  ') S ^ 2,

£ y 2(tT E _1 )E y 2 is idempotent. So by (3.10),

m  =  t r (Ey(lT <E> E+))/r(E) =  r ( £ y 2(W (g> E_1)S y 2)/r(E) 

r(U' X E' ' ) / r (E)  -  r(U').

□

With some matrix operations, the following sufficient condition is easily derived 

from Corollary 3.1.9.

Corollary 3.1.10. In Theorem 3.1.3, if  E y  is nonsingular and Y 'W Y  ~  W p(m, E ) ,  

then E  is  a nonsingular covariance matrix and the W  is a nonnegative definite matrix.

Corollary 3.1.10 tells us that the algebraic conditions obtained in Theorem 3.1.3 do 

determine not only the distribution of a matrix quadratic form but also the property 

of the underlying matrix W  being nonnegative definite in the case of nonsingular E y .  

So when E y  is nonsingular and W  is symmetric rather than nonnegative definite, 

the matrix quadratic form Y 'W Y  does not have any Wishart distribution. When W  

is symmetric rather than nonnegative definite and the Wishartness of Y 'W Y  holds, 

then E y  must be a singular matrix. In addition, when £  is singular and Y 'W Y  has 

a Wishart distribution Wp(m, E ) ,  then E y  must be a singular matrix.
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If we use the set §p to replace the similar base Hp in Theorem 3.1.3, we can easily 

obtain the following result.

Theorem  3.1.11. L e tY  be a n n x p  random matrix normally distributed as Afnxp(0, T<Y) 

and W  be a symmetric matrix of order n. Then matrix quadratic form Y 'W Y  has a 

Wishart distribution W p(m, S) for some m  G { 0 ,1 ,2 ,...}  if and only if there exists 

a £  € Np such that for any s G §p,

£ y ( V E  ® s £ s ) £ y  =  F(s, S, W, E y )

with

{s : Yy (W ®s)Yy = 0} =  { s  : EsS = 0}

and

m  =  fr(£y(VE ® S +))/r’(E).

Proof. By Lemma 2.1.7, (3.25) is equivalent to that for any s, s G Sp,

£ y [ V E ®  ( s £ i  +  i £ s ) ] £ y  =  F ( s , s , W , £ y )  +  F ( S , s , V F , E y ) .  ( 3 . 2 7 )

Since it is obvious to prove Eq. (3.8) from Eq. (3.27), it suffices to show that Eq.

(3.27) follows from Eq. (3.8) and condition (3.26) is equivalent to condition (3.9).

Assume that Eq. (3.8) holds. For any s, s in set §p, s and s can be expressed as

the linear combinations of h^ G Hp, 1 < i < j  < p, i.e.

S  —  ^  ^  S j j  h i j ,  S i j  G M

and

s =  Sfc/hfej, sM G M.
1 <k<l<p

(3.25)

(3.26)
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Then we have 

-Ey[W.<S> (sEs +  sEs)]Ey

= E  E  SijSkiT ,Y[W <g> ( h ^ E h f c ,  +  h w E h y ) ] E y

l<i<j<pl<k<l<p

=  E  E  SijSki[F(hij, h fci, W, E y )  +  F(hki, h y ,  W, E y ) ]

~  -f1( ^   ̂ ^ W , S y )  +  i ^ (  ^  ^ ^  ^ ^ i j h y , TV, S y )

-  F (s .s jr .E y )-/-(s ..s .!V '.E y ).

that implies that Eq. (3.27) holds.

Note that (3.26) is equivalent to

{s : ^ y h (W  <S> s ) S yh  =  0} =  {s : AsA =  0} (3.28)

where H  is an orthogonal matrix such that

H'T,H — A =  diag[<Ti, <j2, . . . ,  oy, 0 , . . . ,  0], r =  r(S), with cy > 0, i — 1, 2 , . . . ,  r.

And (3,9) is equivalent to (3.12). So it suffices to show that (3.12) is equivalent to

(3.28).

Suppose condition (3.12) holds. Let T =  {ty € Ep : Ey#(lT  <g)ty)Eytf ^  0}, a

subset of Ep. Then the set < T > is a subset of Sp and, for any nonzero s £ <  T >,

we have

Sy//(ll a s )S y // 7  ̂0.

It implies that

{s : Ey#(VL ® s)Ey# =  0} = <  {t : Sy//(1T £*5t)Syh  — Oj t  £ Ep} > .
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Since

{s : AsA =  0} = <  {t : At A =  0, t e Ep} > = <  K0 >,

Eq. (3.28) holds from (3.12).

Conversely, suppose Eq. (3.28) holds. Since

{t : At A =  0, t £ Ep} =  {s : AsA — 0} PI Ep,

. and

{t ; Yi y h ( W  ® t )Y^y h  =  0, t G Ep} =  {s : Ey h ( W  s )T*y h  — 0} H Ep, 

condition (3.12) holds. So the proof is complete. □

Masaro and Wong (2004a) essentially obtained Theorem 3.1.11 as the special case 

of their main result by using Jordan algebra homomorphisms in their technical report. 

Their result was obtained for very general case and the proof is more mathematically 

involved. In this thesis, we consider the set Sp and use a matrix approach stated in 

this section to obtain the same result as Masaro and Wong. So, the result given in 

Theorem 3.1.11 has the advantage to be less mathematically involved while it gives 

the same result as in Masaro and Wong (2004a).

Putting Theorem 3.1.3, Theorem 3.1.11 and Corollary 2.3.1 of Wong et al: (1991) 

together, we obtain the following corollary.

Corollary 3.1.12. Let Y  be a n n x p  random matrix normally distributed as Afnxp(0,T,Y) 

and W  be a symmetric matrix of order n. Suppose P  is an idempotent square matrix 

of order p. Then the following statements (a)-(g) are equivalent.
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(a) Y 'W Y  has a Wishart distribution W p(m ,Y ) with m degrees of freedom and 

covariance matrix E.

(b) There exists a £  € Np such that for any s £ §p,

|/np -  Y ^ { W  0  S)Sy/2 | = |/p -  E 1/2 s £ 1/2r

fc) ITiere em fs a E £ Np such that for any s £ §p,

|/„„ - Y\{2(W  >; s)Ej/2| -  /> «  (E1/2sE l/2)l.

(d) There exists a E £ Np such that for any s £ §p,

E y 2(VF <8 > s)E y 2 and P  0  ( E ^ s E 1/2) are similar.

(e) There exists a Y £ Np such that for any s £  §p,

fr(Ey/2(VF 0  s)Ey/2)fc =  m ir(E 1/2 sE 1/2)fe, k = 1 ,2 ,. . . .

(f) There exists a E £ Np such that for any s £ §p,

Sy(VF 0  sEs)Sy =  F(s, S ,  VF, Ey)

with {s : Sy(VF 0  s)Ey =  0} = {s : EsS =  0} and m  = tr{Yy{W  0  E+))/r(E );

(g) There exists a E £ Np such that for any h, h  in the similar base Hp associated

with Y.

Y y \w- 0  ( h E h  +  h E h ) l  E y  -  F ( h ,  h ,  I F ,  E y )  +  F{h ,  h ,  W, E y )  

with { h  : E y ( V F  0  h ) E y  -  0} =  { h  : S h E  =  0} and m  =  tr{Yy {W  0  E+))/r(E ).

It is seen that (g) of Corollary 3.1.9 is easy to verify, compared to the rest.
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3.2 W ishartness and Independence of M QFs

We have studied the Wishartness of a matrix quadratic form in a normal random 

matrix in Section 3.1. In this section we focus our attention on the Wishartness and 

independence of a set of matrix quadratic forms.

Before establishing our succinct and verifiable multivariate version of Cochran’s 

Theorenp we give the following necessary and sufficient condition for the independence 

of a set of matrix quadratic forms. The more general result refers to Lemma 3.4.1 in 

Section 3.4.

L em m a 3.2.1. Let Y  be an n x p  random matrix normally distributed as J\fnxp(0, Ey) 

and W\, W 2 , . . . ,  Wi be symmetric matrices of order n. Then the matrix quadratic 

forms Y 'W fY , Y'W -W , . . . ,  Y 'W fY  are independent if and only if for any distinct 

i , j  € { 1 ,2 ,.. . ,  1} and any t* ,tj in the basic base Ep,

E y (W i® ti)Ey.(Wf ® tj )Ily =  0 . (3.29)

Proof. Suppose the matrix quadratic forms Y'W fY., Y 'W fY , . . . ,  Y 'W fY  are inde­

pendent. For distinct i , j  and any t,, t j  € Ep, the trace inner products < tj, Y 'W jY  > 

and < t j, Y 'W jY  > are independent. Since

< t  u Y 'W fY ) > - <  vec(Y), {Wi <g> t  fv e c fY )  >= vec{Y)'{Wi ® t  i)vec(Y)

and vec(Y ) has multivariate normal distribution A/’„Xp(0, Ey), we obtain

Ey(Wj <8> tj)Sy  {Wj ® tj)Sy = 0

from Theorem 4s of Searle (1971), which (3.29) holds.
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Conversely, suppose that for any distinct i, j  £ { 1 ,2 ,...,  1} and any tj, t̂ - € Ep, 

condition (3.29) holds. Then for any distinct i, j  6  {1 , 2 , . . . ,  /} and any s,, Sj £ Sp, 

condition (3.29) still holds, namely, for any Sj, sj £ Sp,

Ev(VV,' :x 0  S j p w  -  o. (3.30)

Let Y 'W Y  = (Y 'W iY). To show that the matrix quadratic forms Y 'W \Y , Y 'W 2Y ,

. . . ,  Y 'W iY  are independent, it suffices to show that

i
My'Wy (s) — W_MY>WiY{Si)

i=1

for s =  (s,) in A/"o where A/"o is a neighborhood of 0  in § =  §p x Sp x . . .  x Sp (/ times). 

Now, !

M y ,w y {s) =  E(exp  < (si), (Y 'W iY) >) =  E  l e x p ^  < si X W V  >
V »=i /

= E  ^exp < vec(Y), ’̂ 2 (W i 0 si)vec(Y)

=  E  I exp < vec(Y)vec(Y)',

By Corollary 2.3.3,
- 1 / 2

I n ®  I p -  2£  Y  ( ^ 2 { W i  0  Sj) El
Ki=1

M Y‘w y { s )  =

Then by condition (3.30),

i i
( I n  0  I p  — 2Ey ^^(hbi 0  Sj)Ey) =  JJ[/n ®  Ip  ~  2£y(l/bj 0  Sj)Ey],

i=l i=1

Thus
1 1

M y ’W y ( s )  =  \ In  0  Ip  — 2£y(bbj 0  S j ) E y | _ 1 /2  =  M y ' i y y ( S j )

i=1 i=1

and the proof is complete. □
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If E y  =  A  <g) E  for some A  G N„ and E  G Np, Lemma 3.2.1 is reduced to the 

following well known result.

C oro llary  3.2.2. In Lemma 3.2.1, suppose E y  = A<g)£ for some A  G N„ and £  G Np, 

then the matrix quadratic forms Y 'W iY , Y 'W 2Y . . . . ,  Y 'W fY  are independent i f  and 

only i f  AW iAW jA — 0 for all distinct i , j  G { 1 ,2 ,... ,1}.

Based on Theorem 3.1.1, Theorem 3.1.3 and Lemma 3.2.1, we shall develop a suc­

cinct and verifiable multivariate version of Cochran’s theorem concerning the Wishart­

ness and independence of matrix quadratic forms in a normal random matrix Y  with 

mean 0 and covariance matrix E y .

First, we focus our attention on the case where the common covariance of Wishart 

Wp{nii, A )  random matrices is a diagonal matrix A .

T heorem  3.2.3. Suppose that Y  is an n x p random matrix normally distributed as 

A/"„Xp(0, E y )  and W \, W2, . . . ,  Wi are symmetric matrices of order n. Then a set 

of matrix quadratic forms Y 'W fY , Y 'W ^Y , . . . ,  Y 'W iY  is an independent family of 

Wishart W p(mi, A )  random matrices for some mi G { 0 , 1 , 2 , . . . }  if  and only if there 

exists a A  G such that the following statements (a) and (b) hold.

. (a) For any i G { 1 ,2 ,.. . ,  /} and any elements t ,  and t* in the basic base Ep,

■ Ey [Wi 0  ( t i A t <  +  t j A t j ) ]  Ey =  F ( t i , t i ,  W i^Ey)+ ' F ( t i , t i ,  W j,Ey) . 

where F ( t * ,  t j ,  W<, E y )  = E y ( W j  ® t * ) E y ( W *  <g> t j ) E y  with { t j  : E y ( W j  <g> t , ) E y  — 

0} =  Ko and mi — f r ( E y ( W j  ®'^E+ ) ) / r ( E ) ;  and

(b) For any distinct i , j  G {1, 2 , . . . ,  I},

. E y ( W i ® A + ) £ y ( W i ® A + ) E y  =  0 .. ( 3 .3 1 )
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Proof. Let {Y 'W T.jY} - = 1  be an independent family of Wishart A) random ma­

trices. Then statements (a) and (b) follow from Theorem 3.1.1 and Lemma 3.2.1.

Conversely, suppose (a) and (b) hold. For i =  1 , 2 , . . . . / ,  the matrix quadratic 

form Y 'W iY  has a Wishart distribution Wp(roj, S) from Theorem 3.1.1. To complete 

the proof, it suffices to show that condition (3.29) holds from statements (a) and (b).

Since (3.29) is equivalent to

L ( s f  ®Wi)L'L(sj  ®  W f)L' =  0  where L'L — £ y> and Sj, s j  E § p (3.32)

and (3.31) amounts to

L(A +  :< Wi) L 'L ( \+ ®  Wj)L' = 0 , (3.33)

we only need to prove (3.32) from statements (a) and (3.33). 

For Sj in set Sp, s* can be written as

S, :  = ■

Write

a  *

* *

a  0  

0  0

where a  E § r.

px p

where a  E Sr .

pxp
By (Al) of Theorem 3.1.1, for any s*, sj E Sp,

L(si  ®  W^L'L is j  ®  Wj)L'  =  L(s* ®  Wi)L'L(s* ® W j)L ' . (3.34)

By Lemma 2.1.6 and Lemma 2.1.7, we can obtain from statement (a) that for s* E Sp

L{s*hs*i ® W )L ' = ©(s*, s*, VFj, L)
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and

' 1
L (s* ® W i)U  =L  

1

^ (A+As* +  s*AA+) <g) Wi L'

[0(A+, s*, Wi, L)  + ©(s*, A+,Wi, L)\

(3.35)

2

where 0(A +, s*, Wi, L) = L(A+ <g> Wj)L'L(s* ® Wi)Lf. In particular,

L(A+ ® Wi)L' — 0(A +, A+, Wi, L). (3.36)

With (3.35), (3.36) and by Lemma 2.1.4,

L(s* ® W i)L 'L (h+ ® Wi)U  = 0(A +, s*, Wi, L). (3.37)

So, from (3.35) and (3.37)

L(s* 0  Wi)L' = 0(s*, A+, Wi,L).  (3.38)

Similarly,

L(s* <g) Wj)Lr = 0(A +, s*, Wj, L). (3.39)

Thus, by (3.34), (3.38) and (3.39), for any Si,Sj G Sp,

L { s i® W i)L 'L ^ W j) ] , '  = L(sI, ®lLi)L'L(A+®lLi)L'L(A+ ®lLi )L'L(t*®iyi )L' =  0, 

that completes the proof. □

Next, we shall extend Theorem 3.2.3 from the diagonal covariance A to the general 

nonnegative definite covariance S.

T heorem  3.2.4. Suppose that Y  has a normal distribution Mnxp(0, Ey) and W\, 

W 2 , ■ ■ ■, Wi are symmetric matrices of order n. Then a set of matrix quadratic forms
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Y ' W i Y ,  Y ' W i Y ,  Y ’ W i Y  i s  an independent family of Wishart Wp(r7ij,E) random 

matrices for some m* € { 0 ,1 ,2 ,...}  if  and only if there exists a E € Np such that the 

following statements (a) and (b) hold.

(a) For any i C { 1 ,2 ... .,/}  and any elements hi, hi in the similar base Hp asso­

ciated with E,

Proof. Since E G Np, by Lemma 2.1.1, there is an orthogonal matrix H  of order p 

such that H 'H  — Ip and

And Y H  ~  A/’„Xp(0, Ey h ) ,  where Ey h  = {I 0  H ' ) Y y { I  0  H), follows from Lemma 

2 .1 . 2  and Y  ,r*J -V;x„(0 .E r ).

E y  Wi®  ( h j E h *  +  h j E h i )  E y  =  - F ( h , ,  h j ,  Wi, E y )  +  i } ( h j ,  h ^ ,  Wi, E y )  (3.40)

with

{ h j  : E y ( W *  0  h , ) E y  =  0 }  =  K (3.41)

and

— tr{Yy(W i 0  E+))/r(E ); (3.42)

and

(b) For any distinct i , j  G { 1 ,2 ,.. . , /}

E y ( W i  0 E + ) E y ( f f }  0 E + ) E y  =  0 . (3.43)

Defining

tj =  H 'hiH  for any h; G Hp, * =  1 ,2 , . . . , / ,
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for any i — 1 ,2 ,...  ,1, the function tj =  H 'hHI is a 1 - 1  map from the similar base Hp 

associated with E onto the basic base Ep. By replacing hj, h,. E and Ey, respectively, 

with H tiH ', H tiH ', H A H ' and ( /  ® H )Y y h {I ® H') in (3.40)-(3.43), we obtain

Eyh  [W <S> (tjAtj +  tjAtj)] Ey# .= F (ti, tj, Wi, Ey#) + F (tj, tj, Ey#) (3.44)

{tj : Ey#(W  ® tj)E y/j =  0, tj G Ep} =  Ko, (3.45)

nii = tr(T,YH(W  ® A+))/r(A ) (3.46)

and

>:Yn(\ \ )  x  A • ) S y / / ( U i  % A ' )Ey // -  0  (3 .4 7 )

which are equivalent to (3.40)-(3.43), respectively. By Theorem 3.2.3, (3-44)-(3.47) are 

the necessary and sufficient conditions for the matrix quadratic forms H 'Y 'W i Y H ’s 

to be an independent family of Wishart Wp{rrii,A) random matrices for some mj € 

{ 1 ,2 ,...} . By Lemma 2.2.1, (3.40)-(3.43) are the necessary and sufficient condi­

tions for matrix quadratic forms Y 'W i Y ’s to be an independent family of Wishart 

Wp(mj, E) random matrices for some m, G {1 , 2 , . . . }  and vice versa. So we have 

completed the proof of the desired result. □

Theorem 3.2.4 is the core result which we intend to establish for the model stated 

in this Chapter.

Now, let us present its special cases.

In Theorem 3.2.4, if the covariance Ey of Y  is replaced with the Kronecker product 

A  @ E where A  € Nn, we have the following corollary which was obtained by Khatri 

(1963).
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Corollary 3.2.5. Let Y  ~  J\fnxp(0 ,A  <g> E), A <g> E ^  0, Wi  £  i =  1 ,2 ,...  ,1. 

Then {Y 'WiY}\=l is an independent family of Wishart Wp(m j,E) random matrices 

for some m* 6  ( 0 , 1 , 2 , . . .}  if and only if for distinct i , j  6  {1 , 2 , . . .  ,1},

AW iAW iA = AWiA; (3,48)

\;AWiA f  0 ;  ( 3 .4 9 )

nii = tr(AWi); and ( 3 .5 0 )

AW,AWjA -  0 .  ( 3 .5 1 )

Proof. Use A  <g> E  to replace E y  in ( 3 . 4 0 ) - ( 3 . 4 3 ) .  The desired results ( 3 . 4 8 ) - ( 3 . 5 1 )  

follow from ( 3 . 4 0 ) - ( 3 . 4 3 ) ,  respectively, in Theorem 3 . 2 .4 .  □

In Theorem 3 . 2 . 4 ,  if we replace the covariance E y  of Y  with the sum of special 

Kronecker products, Theorem 3 . 2 . 4  is reduced to the following corollary which is an 

extension of Corollary 3 .1 .7 .

r
Corollary 3.2.6. L e tY  ~  Afnxp{ 0, E y )  with E y  = r  < p, where A, G Mn

. i= 1

and Wi E §n, * =  1 , 2 , . . .  rl. Then {Y 'W iY } 1̂  is an independent family of Wishart
r

W p(ma, E )  random matrices, where S  = y ^  &iEq, for some m a E { 0 , 1 , 2 , . . . }  if
i— 1

and only if there exist real numbers a\ > 0 ,a2 > 0 ,...,< rr > 0  such that for all 

i, j , k  £ { 1 ,2 ,...  ,r}  and a,b € { 1 ,2 ,.. .  ,1},

A iWaA kW aAj = okAiW aAr, ( 3 .5 2 )

AiW aAj 0: ( 3 .5 3 )

I ■" j
m a =  — y " '—tr(A iW a)‘, and ( 3 .5 4 )

r <r ,l—l
Ai WaAi WbAi = Q. ( 3 . 5 5 )
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Proof. Prom (3.43), replacing Ey and E with A.: Y) Eu and iEu, respectively,
i=1 i=1

we obtain,
r

AiWaAkWpAj <8> E^+EjjX+Ekk =  0 .

Namely, yljVPaAjVPgA, =  0 . Relations (3.52)-(3.54) follow immediately from Corol­

lary 3.1.9 and the proof is completed. □

In Theorem 3.2.4, if y  is an n x 1 random normal vector with mean vector 0 and 

covariance C, (3.40)-(3.43) are reduced to the following familiar result which were 

shown by Khatri (1963), Rayner and Livingstone (1965), Shanbhag (1968) and Styan 

(1970).

Corollary 3.2.7. Let y  be a random vector normally distributed as J\fn(0. C) and 

Wi € i — 1 , 2 , . . . , ! .  Then {y 'Wiy} li=1 is an independent family of chi-square 

X2 (mi) random variables with mi degrees of freedom for mi G {0 , 1 , 2 , . . . }  i f  and only 

if  for any distinct i , j  £ { 1 ,2 ,...  ,1},

CW.CWiC = CW iC ; (3.56)

mj =  r(CWj); and (3.57)

CWiCWjC = 0. (3.58)

Proof. In the univariate case p — 1, Ey =  C,  S =  1 without loss of generality (if 

Q  /v W i(m ,a), then Q /a  ~  X2 (m)). Then, (3.43) is reduced to (3.58). The rest 

follows from Corollary 3.1.8. □

In Theorem 3 . 2 . 4 ,  if the covariance E y  of Y  is nonsingular, Theorem 3 . 2 . 4  is 

reduced to the following corollary.
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C oro llary  3.2.8. In Theorem 3.2.4, suppose Ey is nonsingular. Then {Y 'W iY } \=l

is an independent family of Wishart Wp(tr(Wi), E) random matrices if and only if

there exists a E € Np such that for any distinct i, j  € {1, 2 , . . . ,  /} ,

(a) (Wi 0  /p)Ey(W:j . 0  Ip) — Wi 0  E; and

(b); (Wi ® Ip )^Y (Wj 0  Ip) =  0 .

From Corollary 3.2.8, we can infer the fact that the underlying matrices Wj’s are 

nonnegative definite if matrix quadratic forms are Wishartness.

Putting Theorem 3.1.11 and Theorem 3.2.4 together, we can obtain the following

T heo rem  3.2.9. Suppose that random matrix Y  is normally distributed as W"nXp(0, E y )  

and {Wi} is a family of symmetric matrices of order n. Then matrix quadratic forms 

{Y 'WiY}  is an independent family of Wishart Wp(m,, E) random matrices for some 

rrii € {0,1 , 2 , ...}  if and only if there exists a E  £ Np such that the following state­

ments (a) and (b) hold.

(a) For i e {1, 2 and s* e  Sp,

result.

Ey [Wj SjESj] Ey =  Ey(Wi <8>'Sj)Ey(Wj 0  Sj)Ey (3 .5 9 )

with

{ S j  : S y ( W j . 0  S j ) E y  = 0} =  {sj : EsjE = 0} (3 .6 0 )

and

=  f r [ S y ( W j  0  S + ) ] / r ( S ) . (3 .6 1 )
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(b) For any distinct i , j  £ {1 ,2 ,.. .  ,1},

E y(ll) y c )^ r ( \V j  :< Y': )E>- -= 0. (3.62)

Theorem 3.2.9 gives a matrix presentation of a similar result obtained by Masaro 

and Wong (2004a) through Jordan algebra homomorphisms.

3.3 N oncentral W ishartness of a MQF

In this section, we shall use the moment generating function o lY 'W Y  to study the 

noncentral Wishartness of a matrix form in a normal random matrix. The following 

theorem is the main result of this section.

T heorem  3.3.1. Let Y  ~  Afnxp((J,, Ey) and W  be a symmetric matrix of order 

n. Then the matrix quadratic form Y 'W Y  has a noncentral Wishart distribution 

W p(m, E, A) for some matrix A G Mpxp and some m  G {0,1,2 , . . . }  i f  and only if  

there exists « S g N p such that (a) and (b) hold.

(a) For any elements h, h in the similar base Hp associated with E,

Ey \w  <8 > (hS h  +  h £ h )l £ y  =  F (h , h, W, Ey) +  F (h, h, W, Ey ) (3.63)

with

{h : £ y (W ®  h)Ey =  0} =  K and (3.64)

m =  tr(E y (W ® E +))/r(E ). (3.65)

(b) For any s in a neighborhood A/"o of 0 in Sp and n — 1 ,2 ,. . . ,

tr(A(sE)ns) =  tr(vec(/j,)vec(n)'[(W  ® s)Ey]"(W  0  s)) (3.66)
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with .

A  -  n 'W fi. (3.67)

Proof, Prom Lemma 2.3.1, the moment generating function M(s) of Y 'W Y  is given 

by

M (s) -  IInp -  2Zy/2(W  <g> s )Hl/2\ - ^ 2exp{< s , p 'W p  > + 2$0} (3.68)

for any s ~  Sp such that sr(Y,y2(W  <g> s )E y 2) < 1/2 where

$o = <  vec{p)vec{p)', (W  ® s)S y /2 [ /  -  2 E ^ 2{W  <8> s)E ^ /2] - 1E^/2 (VP ® s) >  .

Comparing the moment generating function Mi(s) of the Wishart distribution 

stated in Corollary 2.3.2 with M(s) given in (3.68), we obtain that Y 'W Y  ~  W p(m, E, A) 

if and only if for any symmetric matrix s of order p in a neighborhood J\fQ of 0 in Sp,

| /  -2 E y /2 (VK®s)Sy/2 r 1 /2  =  |7 -  2E1/2 sE 1/2 r m / 2  (3.69)

and

< A ,sE l/2 ( / p - 2 E 1/2 sS 1/2 ) - 1 E 1/ 2s>=d>o (3.70)

with A  =  n'W fi.

Since, from Lemma 2.3.1, the moment generating function, M0 (s), of matrix 

quadratic form (Y  — p ) 'W (Y  — p) is given by

Af0 (s) =  | /  -  2Ey/2(iy  ®s)Ey/2| - 1/2, for any s G Sp nA f0, (3.71)

(3.69) amounts to (Y  — p )'W  (Y  — p) ~  Wp(m, E). By Theorem 3.1.3, (3.69) amounts 

to (3.63)-(3.6f>).
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Moreover,

< A , s S 1/ 2 ( / p -  2 £ 1/2 s £ 1/2 ) - 1 E1/2s > =  tr  ( A s E  1 /2 ( / p -  2 E 1/2s E 1/ 2) - 1E 1/ 2s )

=  tr j^AsE V2[IP +  ^ ( 2 E 1/2s E 1/2) n ] E 1/ 2s j  =  tr ^ A [ s E  +  ^ ( 2 s E ) ’' " ' ] s ^  .

$o =  tr yvec{n)vec(n)' ® s)Ey +  - '^ J I2(W  ® s)Ey]"+1J  (W  <g> s)

and

. . . .  . A
\  n—1

Thus, (3.70) is equivalent to

1 r  ^A [sE  • i f j T s S r ' J s )

-  tr  ^uec(n)vec(n)' ^(W  ® s)S y +  ^ f ] [ 2 (W ® s)S y ] n + 1  j  ( W ® s ) ^  (3-72) 

for s C §p fl A/"0.

We arbitrarily choose s in Mo- Replacing s in (3.72) by as with very small positive 

number a, two sides of (3,72) are two power series with respect to a. Comparing 

two power series implies that (3.72) amounts to (3.66), and that proves the desired 

result. □

From the proof in Theorem 3.3.1, we obtain the following relation between Y 'W Y  

and (Y  — pt)'W (Y — fi).

C orollary  3.3.2. Let Y  ~  Mnxp(ht, Ey) and W  be a symmetric matrix of order 

n. Then Y 'W Y  ~  Wp(m, E, p!W p) for some matrix A € Mpxp and some m  € 

{0,1,2, . . . }  if and only if there exists a E €= Np such that

(a) (Y  — p )'W {Y  — fi) ~  Wp(m, E) and
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(b) for any s in a neighborhood J\fo ° f  0  and n — 1 ,2 ,. . . ,

t r l f z 'W / j i f s Y i^ s )  — tr (vec(/j,)vec(iJ,y[(W s)T,Y]n { W  &  s ) ) .

The following example gives an application of Theorem 3.3.1 and also provides an 

illustration of a quadratic form Y 'W Y  which is a noncentral Wishart but where W  

is not nonnegative definite.

E xam ples 3.3.3. L e tY  ~  A^x2(^, Ey) with

0 0 A 0 0

fl = 0 0 and 'Ey 0 0 0

0 1 0 0 B

where

A =
1 0 0  0

and B  =
0 0 0  1

G S3 , a, b, c G

and

2 a a / 2

W  = a 5  c

y/2 c 1

Then, we discuss the noncentral Wishartness of the matrix quadratic form Y 'W Y  and 

determine its degrees if Y 'W Y  has a noncentral Wishart distribution.

2 0 

0  1

Proof. Consider £  = . In this case

1  0 0  1 0  0

ii m •B II II , E\2 — , E 2 2  — >
0  0 1  0 0  1 y
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With necessary matrix operations, (4.1) holds for all element pairs (-Ear, -Eii), (£qi> ^ 1 2 ),

(En, E22), (Ei 2, E i2), (E\2, E22) and (E22, E22).

hi /13

Obviously, IK =  0. Let h
h3 h2

£ H2- Then

Ey(W ® h)Ey

:.!//, 0  0  0  0  V2h3

0  0  0  0  0  0

0  0  0  0  0  0

0 0 0 0 0 0

0 0 0 0 0 0

V2hs 0 0 0 0 h2

h  =  0 , implying that (3.64) holds. And

/ A O  0 2 S+ «>.: • v^s'+
\

m — tr 0 0 0 aE+ EE+ cS+

V 1

cq00
1

>/2E+ cE+ E+

/r (S )

/
2 A E + * * \

1
2tr 0 0 0

\
* * £ E + /

=  ~[tr(2AZ+) + tr (B Z +)\ =  1.

To verify (3.66), we write

C* =  (W  ® s)vec(fj,)vec(fj,y =

0  0  \ / 2 sB  

0 0 csB 

0 0 s  B
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and

£>, =  ( W ® s ) E y  =

Note that E — 2A + B. We have

2 s.A 0  V2sB  

as A  0 csB 

\/2sA  0 sB

for s € So

D n+i

0

0 for n =  0 , 1 , 2 , . . . .

s /2 ( s>: )"sA  0 ( s S f s B

We shall use mathematical induction to prove (3.73) as follows:

For n =  0, (3.73) is reduced to the trivial case. Suppose (3.73) holds for n — 

Then

* 0 * 2s,-l 0 y/2sB

* 0  *

V 2(sS )fc- 1s,4 0  .(sE)fc_1sB

* 0  *

* 0  *

V2(sTl)k~1s(2A + B )sA +  0 (sE)fc- 1s(2^1 +  B )sB

asA 0 csB  

\/2sA  0 sB

\/2(sE )fcs^4 0 (sE)fcsB  

It follows from (3.73) that n — 0,1,2, . . .

tr(C *£>?) =  tr (2sB{sE)n- 1sA  +  s ^ s E f ^ s # )  =  tr (sB (sZ)n)

(3.73)

fc > 1 .
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And

A  =  n'Wfi
0  0  

0  1

B.

So (3.66) holds. Hence, it follows from Theorem 3.3.1 that Y ' W Y  has a Wishart

2 0
distribution W 2 (m, E, A ) with m  — 1  degree of freedom, covariance E

' 0  1

and non-centrality matrix A
0  0  

0  1

□

Assume that the covariance Ey of Y  is a Kronecker product covariance structure 

A<g>E with non-negative definite matrix A, Theorem 3.3.1 is reduced to the following 

corollary which was essentially obtained by Khatri (1963) and De Gunst (1987).

C oro llary  3.3.4. In Theorem 3.3.1, supposed that Ey =  A ® E for some A  € Nn. 

Then, for the symmetric matrix W  of order n, the matrix quadratic form Y 'W Y  has 

a noncentral Wishart distribution Wp(r(AW ), E, p!Wpt) if and only if

(a) A W  A W  A = A W  A  •/ 0. and

(b) n 'W A W A W n  = n 'W A W n  = p!Wp,

Proof, (a) follows from Corollary 3.1.6. Replacing Ey with A  ® E in (3.66), we 

obtain that for any symmetric matrix s of order p in a neighborhood Mo of 0 in Sp 

and n = 1 , 2 , . . . ,

tr (A(sE)"s) =  tr  (vec{pL)'[{W ®s) (A® E)]"(W ® s)vec(fT))

= tr (yec(n)'[(W A)nW  0  (sE)”s]uec(^t))

= tr{vec(pt)'vec[{WA)nWpi{sY,)ns\) = tr{r f(W A )nWpi{si:)ns).
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By Lemma 2.1.8, for n = l , 2,...

p,'(W A)v W fi = A. : (3.74)

(3.74) is equivalent to, under (a),

p 'W A W A W p  -  p 'W A W p  -  p 'W p .

so the desired result follows from Theorem 3.3.1. □

Moreover, taking Ey — In 0  E in Theorem 3.3.1, we have the following corollary, 

which was proved earlier by Khatri (1959).

Corollary 3.3.5. Let Y  ~  Afnxp(p, In 0  E) and W  be a symmetric matrix of order 

n. Then a necessary and sufficient condition for the m,atrix quadratic form Y 'W Y  to 

have a noncentral Wishart distribution W p(tr(W ), E, p 'W p ) is that W  is idempotent. 

This distribution is central when W p  = 0 .

The following result is due to Eaton (1983).

C oro llary  3.3.6. Let Y  ~  JYnxp(p, A  0  H) and W  be a symmetric nonnegative 

definite matrix of order n. Write W  — V 2, where V  is nonnegative definite. I f  

V A V  is an orthogonal projection of rank m  and V A W p  .= V p , then Y 'W Y  ~  

Wp(m, £, p 'W p ).

Assume that IT is a symmetric matrix such that tr(A W ) = r(A) and E =  A 0  E, 

we get the following result, due to Vaish and Chaganty (2004).

Corollary 3.3.7. Let Y  ~  Afnyp(p, A®E)  and W  be a symmetric matrix of order n. 

Then a necessary and sufficient condition for matrix quadratic form Y 'W Y  to have 

a noncentral Wishart distribution W p(r(A), S, p 'W p ) is that W A W  — W .
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In Theorem 3 .3 .1 , if we replace the covariance E y  of Y  with the sum of special 

Kronecker products, Theorem 3 .3 .1  is reduced to the following corollary, another 

extension of Corollary 3 .1 .7 .

r
C orollary  3.3.8. Let Y  ~  MnxP(p,  E y )  with E y  =  ' ^ A i ^ E u ,  r < p, where

i—1
A i G N„. Then, for W  G §n; the matrix quadratic form Y 'W Y  has a noncentral

Wishart distribution V V p (m , E ,  p 'W p ) for some nonnegative integer m, where
r

1

if and only if there exist real numbers oi > 0, I — 1 ,2 , . . . ,  r such that for all i , j , k G 

' { 1 , 2 , . . . , *} ,  .

A iW A kW A j = akA iW A j A 0 , m = - ^ 2 - t r ( A iW ) (3.75)
T ' i ai

and

Oip'W p  — p 'W  AjW p,  0,03p 'W p  =  p 'W AjW AjWp.  (3.76)
r

Proof. (3 .7 5 )  follows from Corollary 3 .1 .7 . Replacing E y  and E  with ^  A , 0  Eit
/-Ir

and QjEjj, respectively, in (3.66), we obtain that for any symmetric matrix s in a
i= 1

neighborhood Mo of 0  in and n = 1 , 2 , . . . ,

tr ( A(s ^ 2  °iEu)ns ) =  tr  ( vec(p)'
i=1

{W  0  s) ^ ( > h  0  Eu)
i—l

(W  0 s)vec(p) J  , 

(3.77)

where A =  p 'W p .

When n =  1, (3.77) is reduced to

^ t r ( A ( ( 7is£ ’iis)) =  ' y j r ( p ' W A iW p (sE iis)), for s G Mo n S p.
i—l i=l
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Lemma 2.1.9 and the arbitrariness of s imply that for i — 1, 2 , . . . ,  r

Uin'W ii = p 'W  A iW  pi. (3.78)

In a similar way, for n =  2, (3.77) is equivalent to

cji(jjp'W p  =  fx 'W A iW A jW p, for any i, j  — 1, 2, . . .  ,r. (3.79)

The results of n  > 2 in (3.77) can be obtained from (3.77)-(3.79). So the desired 

result follows immediately from Theorem 3.3.1. □

In Theorem 3.3.1, if y is n x 1 random normal vector with mean vector p  and 

covariance C  of order n, (3.63)-(3.67) are reduced to the following familiar result 

which were shown in the sixties.

C oro llary  3.3.9. Let y  be a random vector normally distributed as J\fn(p ,C ) and 

W  be a symmetric matrix of order n. Then the quadratic form y 'W y  has a noncen­

tral Wishart W \(r (C W ),l, p 'W p ) or chi-square distribution with r(C W ) degrees of 

freedom and parameter S2 =  p 'W p  if  and only if

C W C W C  =  CW C, and (3.80)

p 'W C W C W p  = p 'W C W p  = p 'W p . (3.81)

Proof. In the univariate case p = 1, (3.80) follows from Corollary 3.1.8. Replacing 

£y  with C and £  with 1 (if Q ~  Wi(m, a), then Q /a  ~  X2 (ui)), (3.66) is reduced to

' p 'W p sn+1 = p '(W C )nW p sn+\  for n = 1 ,2 , . . . ,

which is equivalent to (3.81) under (3.80). So the desired result follows from Theorem

3.3.1. □
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Suppose that E y  is nonsingular in Theorem 3.3.1 we get the following corollary.

C oro llary  3.3.10. In Theorem 3.3.1, suppose E y  is nonsingular, then the matrix

quadratic form Y 'W Y  has a noncentral Wishart distribution W p(tr(W ),,Y, pi'Wpi) if 

and only if there exists some E e  Np such that

(a) If >: E -  (U x / ) Ev ( i r  X ./): and

(b) for any symmetric matrix s of order p in a neighborhood A/o of 0  in Sp and 

n = 1 , 2 , , . . ,

tr  (/x'W pi(sY)ns) =  tr  (vec(pt)vec(pi)'[(W <g> s)Ey]"(W  0  s ) ) .

Proof, (a) follows from Corollary 3.1.9 and (b) follows from Theorem 3.3.1. □

3.4 N oncentral W ishartness and Independence of  

M atrix Quadratic Forms

Although the following result and its proof imitate Theorem 2.2 and its proof of Wong 

et al. (1991), some modifications have been made so that the corresponding necessary 

and sufficient conditions can be verified.

Lem m a 3.4.1. Let Y  ~  E y )  and {W»}t=i be symmetric matrices in §„.

Then a set of matrix quadratic forms Y 'W iY ’s is independent if and only if for any 

distinct i , j  £ {1, 2 , . . . ,  1} and any h,, hj £ Hp, where EIP is a similar base associated 

with any given E £ Np

(a) Sy(Wj h i)Sy (W7- <S> h j)E y =  0,
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(b) Ey(Wi 8  hj)Ey(W J- 8 h j)vec(pL) = 0 , and

(c)vec(ti)'(W i® hi)T lY {W jl8ihj)vec(ii) = 0.

Proof. Suppose {YW ,Y } - = 1  is an independent family. Let i ^  j  and h*,hj € Hp, 

then < h it Y 'W iY  > and < h .j,Y ’W jY  > are independent. Since

< hj, Y 'W fY ) >—< vec(Y), (14} 8  h i)vec{Y) >— vec(Y)'(Wi 8  h i)vec(Y)

and vec(Y ) has a normal distribution N nxp{jJ,. Ey). it follows from Theorem 4s of 

Searle (1971) that (a), (b) and (e) hold.

Conversely, assume that for any distinct i , j  E {1,2, . . . , / }  and any h,, hj G Hp

(a), (b) and (c) hold. Then for any distinct i , j  £ {1,2, . . . , / }  and any s,,Sj G §p, 

s* =  ski^u  (Ski S M and h ki G Hp) and ^  s*klh ki (skl G K). With
1 <k<l<p 1 <k<l<p

simple operations, we have

(fl;) Ey(W} 8  S,)Ey(Wj 8  Sj,)Sy =  0,

(b') Ey(Wj 8  Sj)Ey(Wj 8  sj)vec(ph) =  0 , and

(c;) nec(/i,)/(Wi ( 8  Sj)Ey(W7-® Sj)uec(/i) =  0 .

Recall that the family Y 'W Y  = (Y 'W iY) is independent if and only if

i
M y 'Wy (s ) ~  J jM y w iy(Sj)

i=l

for s =  (s,) in Ao, where A/"o is a neighborhood of 0  in § =  Sp x Sp x . . .  §p (1 times).

So by Lemma 2.3.1, the family {Y 'W jY }^ is independent if and only if

i i
(i) \I -  2 Ey/2(W  8  Si)Ey/2| =  J J  |/  -  2E\!2{Wi 8  Si)E^/2|, and

i= 1 i—l
I I

(ii) < ^ 2 vec(WiHSi), Ey/2(/np -  2E*)“ 1 Ey/ 2  >
i=l j'=l
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-<1/2'  1

=  £  <  vec(WiHSi),  Ey/2[/ -  2EY (Wi 0  s i )Ey/2] ' 1Ey/2?;ec(V^/xsi) >  . 
i-.-i

where E* = Ey/2 ^  Wt 0 s,:j  Ey/2. By (a'), £y(VF; 0 8 ^ ( 1 ^  0Sy)Ey = 0 for all 

distinct i , j  G {1, 2,..., Z}. So (i) follows. For the same reasons,

i
( I -  2ST1 = II (J -  2Sy2(Wj 0 Sj)Ey

i 1

Let Dij =< (VF, 0  Si)vec(fi), Ey2(/ — 2E*)_1Ey 2(VF,- <8 Sj)vec(pi) >, then for (ii), 

it suffices to show that

Dij — 0 for / /  j  and (3.82)

Du =< vec(fi), (Wi 0 Sj)Ey/2 -  2Ey 2(IF, <8> s;)Sy/2j Ey/2(W; 0Sj)uec(/z) > .

(3.83)

From (a'), for i ^  j ,

I Z oo .
(/-2E*)-1 = fj(/-2S^/2(fF^si)Ê /2) -n ^ (2 E ^ /2(fFy®si)Sl/2)

i=l i=1 & = 0

I oo
= ^ +  £  £  ( 2 4 /2( ^ .®  s*)Ey/2)

1 = 1  fc=l

And for any i , j  G {1,2, . . . , / }

I  OO

Di j  = <{Wi® si)vec(pL), Ey/2 2Ey/2(tFi 0  Si)Sy/2)  ) Ey/2(tFj 0  s> e c ( /x )
\  t=l k=l /

(
OO j \

1 +  £  ( 2 S r / 2 ( ^  ®  Si ) s y 2)  J  S y / 2 ( l ^  0  Sj)vec(iJi) > 

— <  v e c ( j i ) ,  (Wi  0  S i ) E y  2 (V F j. 0  Sj)vec(pL)  >  4-

OO ^

< vec(fj.), (Wi 0  Sj)Ey 2 ^  ĵ 2 Ey 2 (VFj 0  Sj)Ey 2^ E y :2(Wj 0  sj)vec(fi) > .
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(3.84)

By (c'), for distinct i, j  6  {1,2, . . . , /},

< vec{p),  (Wi  ® s,)Sy (Wj  ® Sj)vec(fT) >= vec{p) '{Wi  <g> s,)Ey {Wj ® sj )vec{p)  — 0 

and by (b'), for distinct i, j  E {1, 2 , . . . ,  /}
OO £

<  vec(ic),(Wi ® si)Z1Y/2J ^  (2E1Y/2(Wj ® s j )E1y/2)  Zy/2(Wj ® Sj)vec(p) >
' f c = : 1

oc k
= vec(n)'(Wi ® £  ( 2 z \ / 2{Wj ® s.dSy72) ^ y \ W j  ® Sj)vec(n) ■■= 0.

A' -I

So Dij =  0 for i =f j ,  proving (3.82). Using (3.84) again

( OO j \

I  +  5 3  ( 2Sv/2(Wi ® S i)sj/2)  j  Ey \ W i  ® Si)ucc(/4)

= < vec(n), {Wi®  Sj)Sy2 ( i  -  2 T ^ 2{Wi ® s^Sy7 2 ) ” 1 £y7 2 (W< ® si)vec{p) >, 

that proves (3.83). (ii) follows from (i) and the proof is completed. □

Replacing Hp with Ep is a usual usage in Lemma 3.4.1 while replacing Up with 

Sp is the result of Wong et al. (1991). Suppose that p  = 0 in Theorem 3.4.2, it is 

reduced to Lemma 3.2.1 stated in Section 3.2.

Combining Theorem 3.3.1 with Lemma 3.4.1, we obtain the following multivariate 

version of Cochran’s theorem.

T heorem  3.4.2. Suppose that Y  ~  N nxp{p,Y,Y) and {1T, } ( = 1  is a family of sym­

metric matrices of order n. Then a set of matrix quadratic forms {Y 'W iY } 1̂  is an 

independent family of noncentral Wishart Wp(roj, E, Aj) random matrices for some 

mi € {0,1 , 2 , . ..} and some matrix A; € Mpxp if  and only if there exists some E £ Np 

such that the following statements (a), (h) and (c) hold.
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(a) For i G {1 , 2 , ,  1} and any elements h,, hj in the similar base associated 

with E,

Ey [wi ® (hjEh, +  hjEhj)] Ey =  F.(hj, hi, Wi, Ey) +  F ( hi, hi, Wj, Ey) (3.85)

with

{hj : Ey(H/j 0  h,)Ey =  0 } =  K and m, =  tr(Ey(W i 0  E+))/r(E).  (3.86)

(b) For anyi G {1,2, . . . , /} ,  any symmetric matrix s, of order p in a neighborhood 

Afo of 0 in Sp and n = 1 , 2 , ,

tr  (A(sjE)"sj) =  tr (vec(n)vec(fx)'[(Wi 0  Sj)Ey]n(Wj ® Sj)) (3.87)

with A, =  n'Wjfi.

(c) For any distinct i, j  G {1,2, . . . , /}  and t j , t j  G Ep

Sy(Wj ® E+)Ey(W j ® S+)Ey -  0, (3.88)

Ey(Wj <g) ti)T,y(W j <g> tj)vec{fFj — 0, and (3.89)

vec(fi)'(Wi ® t i)Ey(Wrj <8 > tj)vec(n) = 0. (3.90)

Proof. Let {Y 'W ,Y  }li=1 be an independent family of noncentral Wishart Wpim,, E, Aj) 

random matrices. Then statements (a)-(c) follow from Theorem 3.3.1 and Lemma

3.4.1.

Conversely, suppose statements (a).-(c) hold. Since (a) and (b), from Theorem

3.3.1, for any i =  1,2, . . .  ,/, Y 'W iY  ~  W p ( m j ,  E, A j) .
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To prove the independence of matrix quadratic forms Y 'W iY 's, it suffices to show

that for any i , j  G {1,2,.... ,1} and any t , , t j  G Ep, we have

Ey(U) X t,-)Ey(U j >: t/)E y  -  0. (3.91)

First, assume E is diagonal matrix, namely, E =  A =  diag[ai, <x2, ... ',  crr, 0 . . . ,  0]. 

Due to the structure of A, we only need to consider elements E^,  1 < i < j  < r, in 

the basic base Ep for (3.91).

Exactly as in the proof of Lemma 2.1.6, we can prove that (3.88) is equivalent to

L(A+ ® Wi)L'L{K+ ® W j)L ' = 0 where L'L  =  Ey/ (3.92)

and (3.91) is equivalent to

L(tj'<8 > Wi)L'L(tj & Wj)L' = 0, t i , t j  G {Eij : 1 < i < j  < r}. (3.93)

^  1
So it suffices to show (3.93). Since A+ =  \  —Eu, by (3.85) or its corresponding

* J  rr -

Lemma 2.1.6,

L ( k + ®Wi)L'  = L(A+AA+® =  0(A +, A+,M^,L). (3.94)

Also by (3.85) or its corresponding Lemma 2.1.6,

L(ti®Wi)L' = L ^(A+At< +  t;AA+) ® Wi L'  =  ^[©(A+, Wi, L)+&(ti,  A+, Wi,L)\.

(3.95)

With (3.94) and (3.95), we obtain from Lemma 2.1.4

L( t i® W i)L 'L (A+ ®Wi)L’ = G(A+,t i ,Wi,L).  (3.96)
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Thus, (3.95) and (3.96) give

X ( t j  0  Wi)L' — 0 ( t j ,  A + , Wi, L). ( 3 . 9 7 )

In a similar way, we get

/ , ( t 7 >: I F / ) / /  • © ( A ' . t j .  I I j . L). ( 3 . 9 8 )

Hence, (3.93) follows from (3.97), (3.98) and (3.88), which equivalently proved (3.91).

Next, for the nonnegative definite £ , there exists an orthogonal matrix H  such 

that H'Y,H = A .  Then (3.88) can be written as

£ Y H  ( W  <g> A + ) ^ Y H ( W j  0  A '  ) E v 7 /  =  0

where S y #  — ( /  0  7 X ) £ y ( J  0  7 7 ) .  Also, (3.85) can be written as

E yh \Wi 0  ( t j A t j  +  t j A t j ) ]  E yh =  F(ti,  t , ,  W j ,  E y/*-)  +  X ( t j ,  t j ,  W j ,  E y # ) .

The first equation of (3.86) can be written as

{tj : Eŷ f(Wj 0 tj)Eyjj = 0} = Ko.

From the proof of the previous special case, for any tj, t j  G Ep,

S y / f ( W j  0  t j ) E y # ( W j  0  t j ) E y #  =  0,

equivalently, for any h , . tr, G Mp, £ y ( W j  0  h j ) S y ( W j  0  h j ) E y  =  0. Thus, (3.91) 

follows from the fact that each t  G Ep is the linear combination of elements in the 

similar base Hp associated with E ,  that completes the proof. □

Theorem 3.4.2 is reduced to Theorem 3.2.4 when n  — 0.

In Theorem 3.4.2, suppose E y  is nonsingular, we have the following corollary.
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Corollary 3.4.3. In Theorem 3-4-2, suppose Ey is nonsingular, then {Y 'W iY } li=1 is 

a,n independent family of noncentral Wishart W p(tr(Wi),T,, pt'WifT) random matrices 

i f  and only i f  there exists some S  e  Np such that

(a) IF, C E -  (Wi x  /)E y(lF , X /):

b) for any i £ {1 , 2 , . . . ,  I}, any symmetric matrix S; of order p in a neighborhood 

■A/'t) of 0 in Sp and n = 1 , 2 , ,

tr (pt'Wipt(SiT,)nSi) — tr (vec(pt)vec(fj,y[(Wi ® Sj)Ey]n(VFj <g> s,:) ) ; and

(c) for any distinct i, j  £ {1 , 2 , . . .  ,1},

(IF,- x  Jl, )T .y (  W j  x  /,,) -  0.

Proof. The proof follows immediately from Corollary 3.3.2 and Corollary 3.2.5. □

If Ey is a Kronecker product structure A <S> S  for some A  £ N„, Theorem 3.4.2 is 

reduced to the following familiar result.

Corollary 3.4.4. In Theorem 3.4-2, suppose Ey =  A  E for some A  £ Nn, then 

{Y 'W fY } - = 1  is an independent family of noncentral Wishart W p{tr{AWi),Yl,plWipL) 

random matrices if and only if for any distinct i , j  £ {1 , 2 , . . . ,  I},

' (a) AWiAWiA = AWiA  0;

(b) fi'WiAWiAWipt = n'WiAWiH = pt'Wn;

(c) AW iAW jA =  0;

(d) AWiAWjfJt — 0 ; and

(e) n 'W iA W jn  = 0 .
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Note that when p — 1. Theorem 3.4.2 is reduced to the chi-square version of 

Cochran’s theorem obtained in the sixties.

C oro llary  3.4.5. Let y  ~  C) and {Wi} be a set of symmetric matrices of

order n. Then a set of quadratic forms y'Vlqy’s is an independent family of noncentral 

chi-square y 2 (r(CWj), n'Wiii) random variables if and only if  for any distinct i , j  € 

{ 1) 2 , . . . ,  I},

(a) CWiCWiC = CWiC ^  0; .

(b) fi'WiCWiCWifx = n'WiCWifx, pICii; and

(cJ CWiCWjC = 0 , CWiCWjH =  0, p'WiCWjH = 0.
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C hapter 4 

A  M ultivariate Version o f  

C ochran’s T heorem  C oncerning  

D IN W R M s

In this Chapter we shall discuss the extended problem stated in Section 1.1. Let Y  be 

an n x p multivariate normal random matrix with mean fi  and general covariance E y .  

In Section 4.3, we give a set of necessary and sufficient conditions (Theorem 4.3.1) 

for the matrix quadratic form Y 'W Y  with the symmetric matrix W  to be distributed 

as differences of independent noncentral Wishart random matrices (DINWRMs). In 

Section 4.4, we consider the symmetric matrices Wi, W 2 , . . . ,  IT;. Then we develop 

a set of necessary and sufficient conditions (Theorem 4.4.1) for the matrix quadratic 

forms Y 'W iY ,  Y 'W fY ,  . . . ,  Y 'W iY  to be an independent family of random matrices 

distributed as differences of independent noncentral Wishart random matrices.

In this Chapter, as the intermediate result, we also use a matrix approach to

84
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present the proven result for the mean zero case. This case has been solved by 

Masaro and Wong (2004b). They used Jordan algebra homomorphisms to obtain the 

necessary and sufficient conditions for the matrix quadratic forms Y 'W \Y ,  Y'WifY \

. . . ,  Y 'W iY  to be an independent family of random matrices distributed as differences 

of independent Wishart random matrices (DIWRMs). Their result and proof is more 

mathematically involved. Our presentation provides a discrete representation version 

of Cochran’s theorem concerning DIWRMs. For details, in Section 4.1 a set of neces­

sary and sufficient conditions (Theorem 4.1.2 and Theorem 4.1.1 for a special case) 

is established for the matrix quadratic form Y 'W Y  with the symmetric matrices W  

to be distributed as a difference of independent Wishart random matrices (DIWRM). 

In Section 4.2, we consider symmetric matrices W\, Wi, . . . ,  Wi and develop a set 

of necessary and sufficient conditions (Theorem 4.2.2) for the matrix quadratic forms 

Y 'W \Y , Y'W-fY, . . . ,  Y 'W iY  to be an independent family of random matrices dis­

tributed as differences of independent Wishart random matrices. Some special cases 

are presented. Also, we use a matrix approach to present the result (Theorem 4.1.8) 

obtained by Masaro and Wong (2004b).

4.1 Conditions for a M QF to be D istributed as a 

D IW R M

The following theorem gives a set of condition for the matrix quadratic form Y 'W Y  

to be distributed as a difference of independent Wishart random matrices, where the 

Wishart distributions Wp(mi, A) and Wp(to2 , A) have a diagonal common covariance
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A.

T heorem  4.1.1. L e tY  be a n n x p  random matrix normally distributed as Mnxp(0,Y,y) 

and W  be a symmetric matrix of order n. Then Y 'W Y  ~  Wp(mi, A) — Wp(m2, A) for 

some nonnegative integers rrq and m 2  i f  and only i f  there exists a diagonal A € Np 

such that for any elements t, t in the basic base Ep,

Ey [ W 0 ( t A t  +  t A t ) ]E y = -G ( t , t ,A ,E y )  +  G (t ,t ,A ,E y )  (4.1)

where G(t, t, A, Ey) = S Y (W  0 t)E y(lE  0“A+yEy(tE 0  t)Ey and

S y{W  0 A~*~)S(VF 0 t ) S y . =  S y (W  0 t)Ey(VE 0 A"*")Sy (4-2)

with

{t : S y (V F 0 t )E y  =  0} =  K0 (4.3)

where IKo =  {t : AtA = 0 , t  e Ep} and

tr(Y,y(W  0  A+)Ey(VE 0 1)) +  tr (Y y (W  0 1)) =  2 m itr(A t) (4.4)

tr (Y y (W  0  A+)Ey(VF 0 1)) — tr{Yy{W  0 1)) = 2 m 2 tr(At). (4.5)

Proof. By Lemma 2.1.1, decompose the nonnegative definite matrix Ey; as

Ey  = L'L, L — [L\, L 2 , ■ ■ ■, Lp]

with Li 6  M.qxn (i — 1 ,2 ,. . . ,  p) and r(Ey/) < q < np.

Exactly as in the proof of Lemma 2.1.6, we obtain the following equivalent relations 

of (4.1)-(4.5), respectively,
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(a) L[(tAt +  tA t) 0  W]L' =  r ( t ,  t, A, L) + T (t, t, A, L);

(b)L(A+ 0  W )L 'L (t  0  W)L' = L(t  0  W )L'L(A+ 0  W)L'-

(c) {t :■L(t  0  W ) V  = 0} =  K0;

(d) tr(L(A+ 0  W )L ’L( t  0  W)L')  +  tr{L{t  0  W)L') =  2m2 tr(A t); and

(e) tr(L(A+ 0  W )L'L(t 0  W)L') -  tr(L (t 0  W)L') =  2m2 fr(At) 

where T(t, t, A, L) =  L ( t  0  W)L'L(A+  0  W )7 'L (t 0  W)L'.

Let

.. /Ju -  ;[/.(i r / ' ,  I i . j  <  r.

Then from the Theorem of the Appendix, we only show that (a) — (e) are equivalent 

to the following conditions (C1 )-(C6 ).

(Gl) LiWL'j +  7,117.' -  0  for i or j  > r;

(C2) B l  = Bu , tr{Bu) = mi -  m2, tr^B^) = mi +  m2;

(C3) BuBjj — 0, i 7  ̂j] 

(CM) 4B?:j -  Bf, -  B'jj. i /  J,:

(C5) BjiBjj — BijBjj, i j , and

(C6 ) 2(Bu +  Bj j )(BikBjk +  BjkB ik) =  Bij for all distinct i, j, k.

First of all, suppose conditions (C1)-(C6) hold. We show that (4.1)-(4.5) hold. 

Let

r

7=1

and use (ij, i ' f )  to represent combination (t, t) from the basic base Ep. Then by (Cl) 

we only consider these combinations (ij, i'j'), 1 < i < j  < r, 1 < i' < j '  < r. Write

Q — {(ij, i'j') : 1  < i < j  < r, 1 < i! < j '  < r}. Divide the index set fl into the
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following seven index subsets:

£>i =  {(ii, ii) : 1 < i < r};

B 2 =  {(LMj) : 1  < * < J < r};

D3 = { ( i i , j j )  : 1  < i . j  < r .i  ^

Da = {{n, ij)  U (ij, ii) : 1 < i < j  < r};

D^ — { ( ik , jk ) :  1 < i , j  < k < r; i , j  distinct};

£ > 6  =  {(ii, i'j') U (i'j', ii) : 1 < i, i' , j '  < r; £ z7, j 7 distinct, z7 < j 7}; and

D7 = {(ij, i ' f )  : 1  < i < j < r ,  1 < i' < j '  < ryi,j, i ' , f  distinct}.

Note that by (C3), (C4) and Lemma 2.1.3,

BijBkk = 0 for distinct i, j, k. (4.7)

For (ij,i 'j ')  G D\, (a) is reduced to ai(jj(Bu +  Bjj) = afBuBBu,  which follows

from (C2) and (C3).

For (ij ,i 'j ')  G D2, (a) is reduced to ai(Tj(Bu + Bjj) = AcJiCJjBijBBij, which is

derived from (C5) and (4.7).

For (ij, i'j') G £>3 , (a) is reduced to OiGj(BuBBjj + B jjBBu) = 0, which is 

obtained from (C3).

For (ij,i 'j ')  G D 4 , (a) is reduced to

2 \J GjOj o j Bjj — 2 y/ Oj (jj (Ji (Bn B  Bjj 4“ BjjBBu),

which'follows from (C5), (C6 ) .and (4.7).

For (ij, i'j') G D5, (a) is reduced to

2y / o j O j C T k B i j  —  Ay/(J j(7 j(7k ( B j j , - B B j k  ~\~ B j k B B i k ) ,
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which follows from (C5), (C6 ) and (4.7).

For (ij,i 'j ')  G Df, U D7, (a) is reduced to

4 g  j(7jOij o j ' ( B j j B B j / j /  -\- B i i f B B i j )  0 ,

which follows from (4.7), that proves that (a) holds.

For G fi, (b) or B B i j  = B i j B  follows from (4.7) and (C5).

Further, let

t  — ^   ̂ t j jE j j ,  t j j  — 0 Or 1, i  ^  i J „  p ‘
1<i<j<p

Then, by (Cl)

T
L(t  0 W )L' — L( ^ 2  t i j W ) L '  — y ^tuCTiBu +  ^  tu ^/aJa]Bij.

1 <i<j<p i=l 1 <i<j<r

Since t  G {t : L (t 0  VF)I/ =  0 }, we get

r
^  ( tjj(TjBjj T  ^   ̂ t i j^/OjOjBi j  0.

1 <i<j<p

From (C2) and (C5), ^  0, 1 < i < j  < r, 1 < i' < f  < r. So = 0 for

i , j  =  1 , 2 , . . . ,  r, which is equivalent to (c).

Finally, taking t  — Eu,  by (C2) and (C3),

tr(L(A+ 0  W)L'L{Eu  0  W)L') +  tr{L{Eu 0  VF)L')

=  aitr(BBu  +  Bu) =  +  f r ^ ) ]  =  27^1^ =  2m1 tr(A.Eii)

and similarly,

tr{L{K+®W)L'L{Eii®W)L,)- tr{L {E ii®W)L') = o f t r ^ - t ^ B * ) ]  =  2m2 ir(A£7«).
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Taking t  =  Ejj i ^  j ,  tr(AEij) — 0. By (C2) and (C3), there exists an orthogonal 

matrix H, which does not depend on i, such that

Bn = H(Eu  0  Au)H' (4.8)

where Au — diag[Imi, — / m2 , 0]. By (C3)-(C5) and (4.8) we obtain

2Bij =  ii(ey  :X A ;j -I cji > .4j,) II' (4.9)

where Aij — di(ig\LJ{j, 0] G IVIInxn, U-ij G hd[m i X m i 7  V̂ j G ^ m 2  and A — Aji- 

UijU-j =  ImiyVtjV-j = Irm- S o

tr{L{k+ ® W )L 'L (E i j ® W )L ')± t r (L { E ij® W )L ')

= 2^yaiaj [tr(BBij) ±  tr(B^)] =  2^/aiaj tr[(Bu +  B:jl ±  I )B i:j\

— \ J crj£Tjtr((Gji Go T Qjj Go A j j  i  /)(ey GO T &ji GO A j i )) — 0, 

which proves (d) and (e).

Conversely, suppose (4.1)-(4.5) hold and, equivalently, (a)-(e) hold. We show that 

conditions (C1)-(C6) hold.

(Cl) follows from (c), i.e. L(Eij  0  W)L' — 0, for i or j  > 0.

Fixing (1 < i < j  < r) and taking t =  t =  Eu in (a)-(b), we have

Bn — Bj/BBjj. BjjB -  BBu (4.10)

and tr(BBu + B&) =  2mi, tr(BBu — Bu) = 2m,2 or

tr(Bu) = m i -  m 2, tr{B B u) = mi + m 2. (4.11)

Taking t = Eu and t = Ejj in (a) gives

BuBBjj  +  BjjBBu — 0. (4-12)
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By (4.10) and (4.12), we have \\BuBjj ±  B jjB u \\2 — 0, i.e. BllB]j =-0, which proves

(C3). Also by (4.10) and (4.12), we obtain

B 3 = B, (4.13)

and then

£« =  £«, (4.14)

so tr(Bfj) — tr(BuBiiBBu) = tr(Bf,B) = tr(BuB) = m\  +  m2, which proves (C2). 

Taking t = E i% and t = E,^ in (a) gives

Bij = BuBBij +  BijBBu- (4.15)

Taking t =  Eij and t = Erj in (a) and (b) gives

Bij = BijBBjj  +  BjjBBij  (4.16)

and

B B tj =  BijB. (4.17)

So BuBij — BuBijBBjj  and B ^ B ^  = B llB B l3B:u, which proves (C5).

Taking t = t = EtJ in (a) gives

4B ^ B  B^  — Bn +  Bjj. (4.18)

From (C3), (C5) and (4.16)-(4.18), we obtain 4Bfj =  B \  +  Bjj, which proves (C4). 

From (4.9), (4.15), (4.16) and (C3), we obtain that for distinct i , j ,  k,

BijBkk =  0 (4.19)
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Taking t  =  Eik and t  =  E]k for distinct i , j , k  in (a) gives

Bij — 2 B ikB B jk +  2BjkB B ik. (4.20)

So from (4.20), (4.19)and (C5)

B ^  — 2 B j kB kk B j k -(- 2 B lk B kkB jk — 2 I hr/ B lkB j k 2 B jj B j k B lk

—  2(Bu + Bjj)(BikBjk + 2BjkBik), 

which proves (C6 ) and then the proof is completed. □

Theorem 4.1.1 provides us the equivalent matrix algebraic conditions of Y 'Y /Y  ~  

Wp(mi, A) — VVp(m2 , A). Here the covariance A is a diagonal matrix. Based on 

Theorem 4.1.1, we establish the matrix algebraic conditions equivalent to Y 'W Y  ~  

Wp(m 1 ,H) — W p(m 2 , H) with a common covariance E. The following theorem is 

for the case of a common covariance matrix E € N p instead of a diagonal common 

covariance A.

T heo rem  4.1.2. Suppose that Y  ~  Afnxp(0, E y )  and W  is a symmetric matrix of 

order n. Then Y 'W Y  ~  Wp(mi, E )  — Wp(m2, E )  for nonnegative integers irq and m 2 

i f  and only if there exists some E e l p such that for any elements h ,  h  in the similar 

base Up associated with E,

Ey W ®  ( h E h  +  h E h )  E y  — G ( h , h ,  E , S y )  +  G ( h , h , E , E y ) (4.21)

and

Y y ( W  ®  Y + ) Y y { W  0 h ) E y  = . E y ( W  0 h ) S y ( l H  0 S + ) E y (4.22)

with

{ h  : E y ( l T 0 h ) E y  =  0 }  =  K (4.23)
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where K. =  {h : EhE =  0, h G Hp} and,

fr(E y (VL ® E+)Ey (VL ® h)) +  tr (ZY (W  ® h)) =  2roifr(Eh) (4.24)

tr(EY (W  <g> E+)Sy (VF ,<g> h)) -  t r { t Y (W. ® h)) =  2m2fr(Eh). (4.25)

Proof. Since E G Np, there is an orthogonal matrix H  of order p such that

H'HH  =  diag[oi, ct2, . . . ,  oy, 0 , . ,  0] =  A, r  =  r(E), o-j > 0, * =  1 ,2 , . . . ,  r,

and Y H  has a normal distribution Afnxp{0, Ey#) where Ey# — ( /  ® i7/)E y (/ ® if)). 

Assume (4.21)-(4.25) hold. Let

t  =  H'hll.

then the function t  =  H 'hH  is a one to one map from the similar base Up associated 

with E onto the basic base Ep. By replacing h, h and E, respectively, with H tH ',  

H tH '  and H AH '  in (4.21)-(4.25), with (2.5) and necessary tensor calculations, (4.21)- 

(4.25) are, respectively, expressed as, for any t , t  in the basic base Ep.

Eyh  [W <S> (tA t +  tA t)] Eyh  = G(h, h, A, Ey h ) +  Cr(h, h, A, Eyh )

Ey h (W  ® A+)Ey#(VL ® t)E yh  =  Ey h (W ® t)Eyff (W  <£> A+)Ey//,

{t : Ey h (W  ® t)E y #  =  0 } =  Ko, 

tr(T,YH(W  ® A+)Y>y h {W <S> t)) +  fr(Ey#(VF ® t)) =  2mifr(At),

and

tr(E y #  (VL (g> A+)Ey h {W  <8 > t)) — tr(E y jy(VL <S> t)) =  2 m 2 £r(At).
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By Theorem 4.1.1, H 'Y 'W Y H  ~  Wp(m1, A)-yVp(m2, A). Hence Y 'W Y  ~  Wp(m i,E ) -  

W p(rri2 , A) follows from Lemma 2 .2 .2 .

The converse can be shown by following the above steps backwards. □

R em ark  4.1.3. In fact, whenever Y 'W Y  ~  Wp(mi, E) — Wp(m2, A), the degrees of 

freedom m i and m 2 can be given by

mi = 2 ^ S ) [tr(YY (W  ® E+ ) ) 2 +  ir(E y(W  <g> S +))] ,

m 2 .= [fr(Ey(W  ® E+ ) ) 2 -  <r(Ey (W O £+ ))],

Next we shall discuss the applications of Theorem 4.1.2 and Theorem 4.1.1.

In Theorem 4.1.2, suppose that the covariance Ey is the Kronecker product A Y  E 

for nonnegative definite A  of order n. Theorem 4.1.2 is reduced to the following 

corollary, which was obtained by Tan (1975).

C oro llary  4.1.4. Let W  be a symmetric matrix of order n and Y  ~  A/"nxp(0, A  ® E) 

with A  6  and E € Np. Then, Y 'W Y  ~  Wp(mi, E) — ’Wp(m2, E) for nonnegative 

integers and m 2  i f  and only if

(1)AWA = A W  A W  A W  A ^  0 ; and

(2) tr (A W )2 + tr(AW ) = 2mu tr (A W )2 -  tr(AW ) = 2 m2.

Proof. Replace A  <g) E with Ey in (4.21)-(4.25). With (2.5) and some calculations, 

we prove (4.23). Then, (1) follows from (4.21) and (4.22); and (2) follows from (4.24) 

and (4.25), which proves the desired result. □

In Theorem 4.1.2, if y is an n x 1  random normal vector with mean vector 0 and 

covariance C of order n, (4.21)-(4.25) are reduced to the familiar conditions which 

were showed by Tan (1975).
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Corollary 4.1.5. Let y ~  Afn(0, C) and W  be a symmetric matrix of order n. Then 

y 'lKy ~  x 2 (toi) — x 2(m 2 ) for nonnegative integers m± and m 2  if  and only if

C W C  = C W C W C W C  ^ 0 ;  and (4.26)

tr{C W )2 + tr{CW )  =  2m1; tr (C W )2 - t r { C W )  =  2m2- (4.27)

Proof. In the univariate case p = 1, Ey =  C. Using Theorem 4.1.2, we get Corollary 

4.1.5. □

If C=I in Corollary 4.1.5, (4.26)_is reduced to the well-known condition, W 3 — W, 

if and only if the quadratic form y 'W y  is distributed as a difference of two independent 

chi-square random variables, see Luther (1965) and Graybill (1969).

In Theorem 4.1.2, if we replace the covariance Ey of Y  with the sum of special 

Kronecker products, we have the following corollary.
r

Corollary 4.1.6. Let Y  ~  J\fnXp(0,Y,Y) with Ey =  ® Eu , r < p, € Nn.
; = 1 r

Then, for W  £ Y 'W Y  ~  Wp(m i,E ) — Wp(m2 ,E ), where E =  ŷ a iEu, for
i=1

nonnegative integers m \ and m 2  if  and only if there exist real numbers Ok > 0 , k = 

1 , 2 , . . .  , r  such that for all i , j , k  < r,

(1) A iW AkW AkW Aj  =  a lA iW A j  ±  0 ;

(2) a jA iW A iW A j = a iA iW AjW A j; and

(3) -K tr(AiW )2 +  — tr(AiW)  =  2m y - \ t r (A iW )2 — - tr (A iW )  — 2m2- 
erf crj of Oi

r r
Proof. Replace Ey and E with A%Oi,Etl and otE,i, respectively, in (4.21)-(4.25).

2 = 1  2—1

(4.21)-(4.25), respectively, become

'■ |
y  ] { c k A i W A j  A f W A / c W A f c W A j )  ® E n ( t E / - k i  T  t E k k t ) E j j  — 0,
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j^ i -A iW A iW A j  -  —AiWAjWAj)  ®  EutEjj  =  0 , 

■ij=i ^

ir  ^  ^-<4, 1 IVl, lb  > f ’,t j  -  tr ( j 2 t r { A iW ) t r ( E ut)^j = 2m2t r { f ^  a ^ t ) .

The desired results follow from the above equations by the arbitrariness of t  € Ep. □

C oro llary  4.1.7. In Theorem 4-1-2, suppose Ey is nonsingular. Then Y 'W Y  ~  

W p ( m i , E )  — W p ( t o 2 , E )  for nonnegative integers m \ and m 2  i f  and only i f  there 

exists some E  € N p such that for any element h  in the similar base H p associated 

with E,

VF <g> E  =  ( W  <g> 7 ) E y ( W  <8> E - 1 ) E y ( I F  <g> / )  ( 4 . 2 8 )

and

(VF ® E _ 1 ) E y ( l F  0  h) =  (W  ® h ) E y ( J F  <8 > E - 1 ) ( 4 . 2 9 )

with

t r ( E y ( f F ® S - 1) S y ( f F ® h ) )  +  t r ( S y ( l F ® h ) )  =  2 m i i r ( E h )  (4.30)

t r ( E y ( t F < g > E ~ 1) S y O F ®  h ) )  — f r ( E y (V F ®  h ) )  =  2 m 2t r ( E h ) .  (4.31)

Proof. Note that if Ey is nonsingular, then E - 1  exists from (4.23) in Theorem 4.1.2. 

The desired results are obtained from Theorem 4.1.2 with routine tensor operations.

□
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Considering the symmetric matrix set §p rather than the similar base set Hp, the 

following theorem can be obtained from Theorem 4.1.2.

T heorem  4.1.8. Let Y  a n n x p  random matrix normally distributed withNnxp{t), Ey) 

and W  be a symmetric matrix of order n. Then Y 'W Y  ~  Wp(mi, E) — W p(m2, S) 

for nonnegative integers m \ and m 2 if and only if  there exists some E € Np such that 

for any matrix s in §p,

Ey(Vb ® sEs)Ey == Ey (W  ® s)£y(fT  ® E+)£y(lT  ® s)£ y  (4.32)

and

Ey(VF ® E+)E(VF ® s)Ey =  £y(fT  ® s)£y(JT ®  £+ )£y  (4.33)

with

{s: Ey {W  ® s)Ey =  0} =  {s : EsE =  0} (4.34)

and

ir[(Ey(Vb ® E+)Ey +  I )Y y (W  ® s)Ey] =  2m1 tr(Es) (4.35)

fr[(Ey(W  ® E+)Ey — I)Yjy{W  ® s)Ey] =  2m2 tr(Es). (4.36)

Proof. (4.22) <£=> (4.33), (4.24) <t=> (4.35) and (4.25) <t=>- (4.36) are trivial by the 

linearity of these conditions. And the equivalence between (4.23) and (4.34) can be 

shown by using the same way in the proof of Theorem 3.1.11.

Since for any  e lem ents s, s  in  th e  sim ilar base  § p,

E y[ir® (sSs+ sE s)]E y  =  ^ £ y  (W  ® [(s +  s)£(s +  s) -  (s -  s)£ (s -  §)]) Ey, (4.37)
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(4.32) is equivalent to

Ey [W ® (sE s+  sEs)] Ey =  G(s, s, E, Ey) +  G(s, s, E, E y )  for s, s e  Sp. (4.38)

Obviously, (4.38) implies (4.21) and hence (4.32) =4* (4.21).

Further, assume that (4.21) holds. For any s, s in the set Sp, s and s can be 

expressed as the linear combinations of h y- £ Hp, 1 < i < j  < p. Let

s =  £  Sijhij, Sij £ R  and s =  ^  skihki, ski € R.

Then we have

Ey [IF x  (sEs +  sEs)]Ey

=  ^ y T < i < j < p  ^  SjjSfciEylbF 0  (hyEhfc; +  h wEhy)]Ey
1 < k < l < p

=  ^  ^   ̂ SjjSfcj(G(hy, hi,/, S , ' S y )  +  G(hfe;, h y , E, Ey)]

~  ^   ̂ ^   ̂ X], X]ŷ  -f-  ̂ ^   ̂ X], X]y)
l<«<j<p l<A;</<p KKKp

=  G(s, s, E, Ey) +  G(s, S, E, Ey), 

that proves that (4.21) implies (4.38), which implies (4.32), and that completes the 

proof. □

Masaro and Wong (2004b) essentially obtained Theorem 4.1.8 as the special case 

of their main result by using Jordan algebra homomorphisms in their technical report. 

Their result was obtained for very general case and its proof was quite technical. In 

this thesis, we use a matrix approach to obtain the same result as Masaro and Wong. 

Thus, our approach has advantage to be simple for applications while providing the 

same result as in Masaro and Wong (2004b).
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Putting Theorem 4.1.2, Theorem 4.1.8 and Lemma 2.3.5 together, we have the 

following corollary.

C orollary  4.1.9. Let Y  ~  J\fnXp{0, Ey) and E G Np. T/ien the following statements 

are equivalent.

(a) Y 'W Y  ~  Wp(mi, E) — Wp(m.2 , E) for nonnegative integers mi and m^;

(b) There exists some E G Np such that for any s G Sp,

|Inp -  2 Ey/2(VF <g> s)Sy/2| -  |/p -  2E1/ 2 sE 1/2 r i |/P +  2 E 1/2 sE 1/2 jra2;

(c) There exists some E G Np such that the matrix E y 2(lT <g> s)Ey 2 and the

diagonal matrix diag[Imi 0 E 1 2̂ sE 1//2, — Im2 0 E 1/,2 sE 1,/2, 0] G Snp have the same char­

acteristic polynomial for all s G §p; and

(d) There exists some E G Np such that for any positive integer k and any s G §p,

tr(Y,y(W 0 s ) ) k = [mi +  (—l) fcm 2]fr(Es)fe.

(e) There exists some E G Np such that for any matrix s in Sp;

Y y (W  0  sSs)Sy  =  G(s, s, S, Ey)

and

Yy{W  0  E + ) E ( V K  <g> s ) E y  -  Ey{W 0  s ) E y ( l T  0  S + ) S y

with {s : Ey{W  <g>s)Ey =  0} — {s : EsE =  0} and

tr[(Y,y(W 0 E+)Ey +  7)Ey(W  0 s)Ey] =  2 m ifr(Es) 

tr[(Yy(W  0 E+)EY ~  I )Y y (W  0 s)Ey] =  2m2 tr(Es).
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(f) There exists some E € Np such that for any elements h, h in the similar base 

Hp associated with E,

and

IT® (hEh +  hEh) Er =  G(h, h, S ,E y) +  G(h, h, E, Ey)

Ey (W  <g> E+)Ey(IT ® h)Ey =  T y (W  ® h)E y (IT <g> E+)Ey 

with {h : E y iW  ® h)Ey =  0} =  K and

tr(EY {W 0  E+)Ey(IT ® h)) +  tr (E y(W  <8 > h)) — 2m itr(Eh) 

tr(EY (W  ® E +)Ey (W  ® h)) -  tr(EY (W  <g> hj) =■2m2 fr(Eh). .

It is seen that (f) of Corollary 4.1.9 is easy to verify, compared to the rest.

4.2 Conditions for M QFs to  be an Independent 

Family o f Random  M atrices D istributed as DI- 

W R M s

Replacing Hp with Ep and applying Theorem 4.1.1 and Lemma 3.4.1, we establish a 

multivariate version of Cochran’s theorem. Namely, we prove a result concerning dif­

ferences of independent Wishart random matrices with a common diagonal covariance 

A-

T heo rem  4.2.1. Suppose that Y  ~  Afnyp(0, Ey) and W i’s are symmetric matrices 

of order n. Then {Y 'W fY } * = 1  is independent and, for i = 1 ,2 , . . . ,  I, Y 'W fY  ~  

■Wp(mii, A) — W p(m 2 i, A) for nonnegative integers m u and m ; 2 i f  and only if there
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exists some A € Np such that for any distinct i, j  € {1,2 , . . . ,  1} and t i, ti in the basic 

base Ep,

(b) E y ( V F j  0  A + ) E y ( V F j  <S> t j ) £ y  — E y ( W j  0  t j ) E y ( W )  <8> A + ) E y /

(c) { t j  : Ey(W j ®  t j ) E y  =  0 }  =  .{t* : A t j A  =  0 } ;

(d) f r ( E y ( W j  <g> A + ) E y ( W j  ®  t j ) )  +  t r ( E y ( W j  ®  t * ) )  =  2 m i i t r ( A t i ) ,

t r ( E y ( W i ®  A + ) E y ( W j  ®  t j ) )  -  £ r ( E y ( W j  ®  t j ) )  =  2 m 2j f r ( A t j ) ;  a n d  

/e ;  E y ( W <  ®  A + ) E y ( W )- ®  A + ) E y .= 0  

where G j ( t j ,  t j ,  A ,  E y )  =  E y ( W ,  ®  t i ) E y ( W i <g) A + ) E y ( V L j  <g> t * ) E y .  .

Proof. Let {Y 'W iY } li=1 be an independent family of random matrices distributed 

as the differences of independent Wishart random matrices. Then (a)-(e) hold by 

Theorem 4.1.1 and Lemma 3.2.1.

Conversely, suppose (a)-(e) hold. For i = 1 ,2 , . . . ,  I,

family, by Lemma 3.2.1, it suffices to show condition (3.29) or condition (3.30), from 

conditions (a)-(e).

Exactly as in the proof of Lemma 2.1.6, (3.30) is equivalent to

Y ’W iY  ~  Wp(mu , A) -  Wp(m2i, A)

follows from Theorem 4.1.1. Thus, to prove the independence of the matrix quadratic

L(si -<S> Wi)L'L(s.j ® Wj)L' — 0  where L'L = Ey> s*, Sj G Sp (4.39)

and (e) amounts to

L(A+ <8 > Wi)L'L(A+ <g> Wj)L'-= 0 . (4.40)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4. Cochran’s Theorem Concerning DINWRMs 102

Namely, we only need to obtain (4.39) from statements (a)-(e). 

For any s* in the set Sp, sj can be written as

s  i =

Write

a * 

* *

a 0 

0  0

where a E Sr .

pxp

where a € Sr

pxp

By (c), for any si ;sj E Sp,

L(Si®.Wi)L'L(8j.® Wj)L' =  L(s' ® Wr)L'L{s* <g> Wj)L'. (4.41)

Since, by (a) and (b),

L (s l® W i)L r =L

1

-(A+As* +  s*AA+) ® Wi L'

= -  ([L(A+ ® W i)L 'fL {s* ® Wi)L' + L{s* ® Wi)L'[L{K+ ® W ^ L 'f]

~-L{s* ®Wi)L'[L{A+ ®Wi)L'}n2

(4.42)

similarly,

L(s* ® Wj)L'  = [L(A+ ® Wj)L')2L{s* ®  Wj)L\  (4.43)

we obtain (4.39) from (4.41), (4.42) and (4.43), so the proof is complete. □

Based on Theorem 4.2.1, we obtain a multivariate version of Cochran’s theorem 

concerning differences of independent Wishart random matrices with a common co- 

variance S rather than a diagonal common covariance A. Exactly as in the proof
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of Theorem 4.1.2, we derive the following theorem from Theorem 4.2.1 and (1) of 

Lemma 3.4.1.

T heorem  4.2.2. Suppose that Y  and W i’s are symmetric matrices

of order n. Then {Y 'W iY } li=1 is independent and, for i = 1 , 2 , . . . , I, Y 'W i Y . ~  

Wp(mu,Y) — YVp(m 2 i,Y,) for nonnegative integers m u and if and only if there 

exists some E £ Np such that for any i £ { 1 ,2 ,.. ., /}  and any elements hj and hj in 

the similar base 0 p associated with £,

(a) Ey W* ® (hiShj +  hjShj) Ey =  Gj(hj, hj, E, E y ) '+ Gj(hj, hj, E, Ey);

(b) £y(W j 0 £+)E(Wj (g> hj)Ey =  £y(W j 0 hj)Ey(Wj 0 S+)Ey;

(a) {li, : Ey(U', 0  h,)Ey =  0} -  X:

(d) tr (Y Y (Wi 0 E+)Ey(Wj 0 hj)) +  fr(Ey(W j 0 hj)) =  2mutr(T,hi)! 

tr(Ey(W j ® E+)Ey(VFj 0  hj)) — fr(£y(W j 0  hj)). =  2 m 2jfr(£h j); and

(e) for any distinct i , j  £ {1 , 2 , . . .  ,1},

Ey(Wj ' 0  E+)Ey(VLj 0  E+)Ey =  0. (4.44)

Proof. Since E £ Np, by Lemma 2.1.1, there is an orthogonal matrix H  of order p. 

such that H 'H  —■ Ip and

H 'Y H  = diag[oi, (72,... ,<rr,0 , . . . ,  0 ] s A ,  r =  r(£ ), > 0, i = 1 ,2 , . . .  ,r.

And Y H  ~  A4xP(0, EYH), where Y yh  =  (7 0  H ')Y y {I 0 H).

Defining

tj =  H'hiH  for any hj € Hp, * =  1 , 2 , . . . , / .

for any i — 1,2, . . . , / ,  the function tj =  H 'hiH  is a one to one map from the similar 

base Hp associated with E onto the basic base Ep. By replacing hj, hj, £  and Ey,
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respectively, with T f t j H 7 , HtiH ', H AH '  and ( / 0 i / ) E y # ( / C H r) in (a)-(e), we obtain 

E y #  \Wi <g> ( t j A t j  — t ,A t - , ) J  E y #  — G j ( h j ,  h j ,  A ,  Eyh ) +  G j ( h j ,  h j ,  A ,  Ey h ) (4.45)

£ y # ( W j  ® ®  t j ) E y #  =  E y # ( W j  C  t j ) E y # ( W j  &  A + ) E y # ,  ( 4 . 4 6 )

{ t ,  : E y # ( W )  < 8 > t j ) E y #  = 0 , t j  €  Ep} =  K0, (4.47)

tr(EYH(Wi E + ) E y # ( W j  C hj)) +  tr(E y#(Wj <g> hj)) =  2mijfr(Ehj),
(4.48)

tr{EYH{Wi ® E + ) S y # ( W j  ® hj)) -  /r(E y„(U ) x  hj)) =  2 m2 i/r(E h ;) 

and -

E y # ( l l )  X  A "  ) E y / / ( U  j  A ~ ) E V //  -  0 .  ( 4 .4 9 )

By Theorem 4.2.1, (4.50)-(4.49) are the necessary and sufficient conditions for ma­

trix quadratic forms H 'Y 'W iY  H ’s to be an independent family of random matrices 

distributed as differences of independent Wishart random matrices with >Vp(mij, A )  

and Wp(m2j, A ) .  Then {Y 'W lY y i=x is an independent family of random matrices 

distributed as differences of independent Wishart random matrices with Wp(mij, E) 

andT % ( m 2j, E) from Lemma 2.2.2 and vice versa, so the proof is completed. □

Theorem 4,2.2 is the core result in this chapter. In the sequence, we discuss its 

special cases and applications.

C oro llary  4.2.3. In Theorem 4-2.2, suppose E y  is nonsingular. Then {Y 'W iY } li=1 

is independent and, for i = 1 ,2 ,. . .  ,1, Y 'W fY  ~  Wp(mu, E) — Wp(m2 j, E) for non- 

negative integers m u and mj2 if and only if there exists some E £ Np such that for 

any distinct i , j  £ {1 , 2 , . . . ,  1} and any element hj £ Hp,

(1) Wi <8 E  =  ( W j  ®  / ) E y ( W j  <g> E - 1) E y ( W j  ®  I);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4. Cochran’s Theorem Concerning DINWRMs 105

(2) (Wi 0  E - 1 ) E y ( W j  0  =  (Wi 0  h j ) S y ( W j  0  E - 1 ) ;

(3) tr(T,Y {Wi 0  E - 1 )Ey(Wj 0  hj)) +  tr(Ey(W j 0  hj)) = 2mutr(EYii), 

tr(Y,Y (Wi 0  E_1 )Sy(Wj 0  hj)) — tr(T,Y (Wi 0  hj)) =  2m2jtr(S h j); and

(J,) (II) >; I)Y .y (\V;i a  /) -  0.

Proof. Note that if Ey is nonsingular, then E _ 1  exists from (c) in Theorem 4.2.2. (4) 

follows from (e) of Theorem 4.2.2. With routine tensor product calculations, the rest 

follows from Corollary 4.1.7. □

In Theorem 4.2.2, suppose that the covariance Ey of Y  is the Kronecker product 

j4 0 E  for nonnegative definite A  of order n. Theorem 4.2.2 is reduced to the following 

corollary, which was shown by Tan (1975) and Wong and Wang (1995).

C orollary  4.2.4. Let W\, W 2 , ■ ■ ■, Wi be symmetric matrices of order n and Y  

A/"nxP(0, A 0  E) with and S  6  Np. Then, {Y 'W iY } li=1 is independent with for

i — 1 ,2 ,. . .  ,1, Y 'W fY  ~  Wp(mij, E) — W p(ni2 i, S) for nonnegative integers m u  and 

m *2 if and only if any distinct i , j  £ {1 , 2 , . . . . /} ,

(1)AWiA = AWiAWiAWiA ± 0 ;

(2) tr(AWi)2 +  tr(AWi) = 2mu, tr(AWi)2 — tr{AWf) = 2ni2i; and

(3) AW iAW jA = 0.

Proof. (3) is obtained by replacing A  0  E with Ey in (4.50) in Theorem 4.2.2. (1) 

and (2) follow from Corollary 4.1.4; that proves the desired result. □

In particular, if y is an n x 1 random normal vector with mean vector 0 and 

covariance C  of order n, Theorem 4.2.2 is reduced to the familiar conditions which 

were shown by Tan (1977).
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C oro llary  4.2.5. Let y ~  A/"n(0 , S ) and W\, W2, . . . ,  Wi be symmetric matri­

ces of order n. Then {y'W jy}-^ is independent and, for i = 1 , 2 y 'W i j  ~  

X2{m u) — X2(m 2 i) for nonnegative integers m u  and m i2 if and only if any distinct 

i - j  C' {1, 2,. . . .  /}

(1) CWiC ^C W iC W iC W iC  ^  0 ;

(g jir (C W ) 2 +  tr{CW)  =  2m i, tr(C l¥ ) 2 -  tr(CW ) =  2to2; and 

CU'/Cll / : '  =  0 .

In Theorem 4.2.2, if we replace the covariance Ey of T with the sum of special 

Kronecker products, we have the following corollary.
r

C oro llary  4.2.6. Let Y '~  Afnxp(0, Ey) with Ey —^ ^ A a <8 > E aa, r < p, A a £ Nn
a=l

and Wi € §„, * =  1 ,2 ,. ..  ,1. Then {Y 'W iY } 1̂  is independent and, for i = 1, 2 , . . . ,  I,
r

Y 'W fY  ~  Wp(m u,Y )  — Wp(m2i,Y,), where E =  ^ < r bEbb, for nonnegative integers
b— 1

mi* and ma if and only if there exist real numbers ac > 0 , c =  1 , 2 , . . . ,  r, such that

for all a, b, c G {1 , 2 , . . . ,  < r} and any distinct i , j  € {1 , 2 , . . . ,  /},

(1) A aWiAcWiAcWiAb = a2cA aWiAb;

(2) AaWiAb A 0 ;

. (3) abA aWiAaWiAb =  aaAaWiAbWiAb;

(4) A aWiAaW jAa =  0; and .

(5) - ^ t r (A aWi)2 +  — tr (AaWi) =  2 m u , \ t r ( A aWi ) 2 -  — fr(AaWj) =  2m2j.
n7, K  oa

r  t

Proof. We use (4.50) by replacing Ey and E with ^  Aa 0  Ert and ^  abEbb respec-
a—1 b=1

tively. Then, (4.50) becomes
r

^  A f Y A bW jAc 0  EaaY +EbbY +Ecc = 0,
a,6,c= 1
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hence, A aWiA„W:iAa =  0, which proves (4). The other conditions follow from Corol­

lary 4.1.6. D

Putting Theorem 4.1.8 and Theorem 4.2.2 together, we obtain the following result.

T heorem  4.2.7. Suppose that Y  ~  AfnxP(0, Ey) and W i’s are symmetric matrices 

of order n. Then {YW iY } ( = 1  is independent and, for i = 1, 2 , . . . ,  I, Y 'W fY  ~  

>Vp(mij,S) — W p(m 2 i , Y ) for nonnegative integers m u and if and only if  there 

exists some E £ Np such that for any i £ {1, 2 , . . . ,  1} and any elements s* in Sp,

(aj Ey[W*<g) (SiESi)]£y- =  Gi(Si,Si,S,Sy)

(b) Y Y {Wt ® Y+)Y(Wi ® Si)Yy  =  Y Y(Wi ® si)Ey (Wi ® S +)Ey;

■(c) {s, : Ey (11 ® Sj)Ey =  0} =  {s : E E  =  0};

'(d) tr{YY (Wi <g> E+)Ey(lTi <8 > Sj)) +  fr(E y (W* <8 > s*)) =  2mutr('Esi), 

tr(Ey(W j ® E+)Ey(VFi (E> s,)) -  fr(Ey(W i <g> s*)) =  2m2itr(Ysi); and

(e) for any distinct i , j  £ {1 , 2 , . . .  ,1},

E y  ( 11 ; S ~  ) E y  ( I Vj 'X E ^ E y  -  0 . (4 .5 0 )

Theorem 4.2.7 was essentially obtained by Masaro and Wong (2004b) through 

Jordan algebra homomorphisms.

4.3 Conditions for a M QF to be D istributed as a 

D IN W R M

In this section, we extend Theorem 4.1.2 to the case where Y  ~  A/’„xp(/x, Ey) with 

nonzero mean matrix fx.
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T h e o r e m  4 . 3 . 1 .  Suppose that Y  ~  Mnxp(p, E y )  and W  is a symmetric matrix of 

order n. Then Y 'W Y  ~  W p(mi, E, Ai) — W p(m2,Y,  A2) for some matrices Ay A2 £

M p Xp and nonnegative integers m 1; m 2 if and only if there exists some E €  Np such

that the following statements (a) and (b) hold.

(a) For any elements h ,  h  in the similar base Hp associated withY,

Ey \w® ( h E h  +  h E h ) l  E y  =  G ( h ,  h ,  E ,  E y )  +  G ( h ,  h ,  E ,  E y )  . ( 4 .5 1 )

such that

E y ;( W ® - E + ) E ( V F ® h ) S y  =  E y ( I T 0 h ) E y ( V F 0  E + ) S y  ( 4 . 5 2 )

with

{ h  : E y ( i r  ;< h ) E y  : 0} = IK ( 4 .5 3 )

and

ir(E y(W  0  S + ) E y ( l T  &  h ) )  +  tr(.Ey(W  &  h ) )  =  2m1tr(Zh)  (4.54)

t r ( E y ( t T 0 E + ) E y ( W ® h ) )  - t r ( Z Y (W ® h)) =  2 m 2t r ( E h ) ;  ( 4 .5 5 )

(b) For any s in a neighborhood J\f0 of 0 in §p and k — 1 , 2 , ,

tr  ((Ai +  A2 )s(Es)2fc_1) =  tr (vec{fj,)vec(fx)'(W 0  s)[Ey(W- 0  s)]2*-1) ( 4 . 5 6 )

tr((A i — A2 )s(Es)2fc) == tr {yec(fF)vec(fj,y(W 0  s)[Ey(VK 0  s)]2fe) ( 4 . 5 7 )

with

Ai -  A2 -  fi 'Wfi. ( 4 . 5 8 )
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Proof. By Lemma 2.3.1, the moment generating function M (s) of Y 'W Y  is given by 

M(s) =  \ I - 2 T ^ 2(W O s)E 1J 2\-1/2exp{< s ,n 'W fj ,>  + 2^0} (4.59)

where s r (S y 2(IU £5 s )E y 2) < 1/2 and 4>0 = <  vec{fj,)vec(fj,)', (W  <g> s)E y 2[i —

2 Ey/2(IU ® s)Ey/2 ] - 1 Sy/2(VL ® s) >}.

Recall that Y 'W Y  ~  Wp(mi, E, Ai) — Wp(m2, .E, A2) means that U'VUF can be 

expressed as a difference of two independent random matrices D\ and D2 with D i ~  

Wp(mi, E, Ai) and D 2 ~  Wp(m2, E, A2). By Corollary 2.3.2, the moment generating 

function Mi(s) of D\ and the moment generating function M2 (s) of —D2, respectively, 

are given by

Mj(s) =  | / - 2 E 1/2 sE 1/2 r mi/2 exp{< s. Ax > +24>i} (4.60)

and

M2 (s) H /  +  2E1/ 2 sE 1/2 r m2/2 e x p { < -s ,A 2 > + 2 $ 2} (4-61)

where 4>x = <  Al5 sE 1̂ / -  2E1/2sE 1/2 )~1 E1/2s >, <f>2 = <  A2, sE 1̂ /  +  2 E1/2s 

S 1/2 )“ 1 S 1,/2s > and s e  Sp such that s r(E 1-/2 sE 1/2) < 1 / 2 .

Independence implies that for s in a neighborhood Mo of 0 in §p,

M{s).=  E(e<s,D>) =  E(e<s,DlD2>) = E(e<s’Dl>)E{e<s’̂ D2>) = M 1 (s)M 2 (s).

Using (4.59)-(4.61) and comparing the same items in both sides of M (s) =  M i(s)M 2 (s),. 

we obtain the following conditions:

(i) | /  -  2Ey/2(IU <g> s)Ey/ 2 | - 1/ 2 =  1I  -  2E1/2sE 1/ 2 | - mi/2 |/ +  2 S 1/2 sE 1/2 |-™2 /2 .

(ii) for any symmetric matrix s in a neighborhood A// of 0  in §p

4>o =  4*i +  4>2; and (4.62)
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(iii) Ai — X 2  = pi'W pi, which proves (4.58).

By Lemma 2.3.5, (i) is equivalent to (Y  — pi)'W (Y  — pi) ~  W p(m  1 , E) — Wp(mi, E). 

(4.51)-(4.55) follow from Theorem 4.1.2.

For any s in a neighborhood A/o of 0 in §p, we have

$ 1 - t r ( A 1[sEs +  2s(Es) 2 +  22 s(Ss)3 +  ...] ) , (4.63)

$ 2  =  fr(A2[sEs — 2s(Es ) 2 +  22 s(E s ) 3 +  . . .] )  (4.64)

and

$ 0  =  tr{vec{pf)vec{pi)'{{W ® s)E ^T  +  2(W  <8 > s)T 2 +  22(W ® s)T 3 +  . . . ) ) '  (4.65)

where T =  E y (W  0  s).

We arbitrarily choose s in jV0. Replacing s in (4.63)-(4.65) by as  with very small 

positive number a  and putting (4.63)-(4.65) into (4.62), two sides of (4.62) are two 

power series with respect to a. Comparing two power series implies that (4.62)

amounts to (4.56) and (4.57), and that proves the desired result. □

In fact, we have obtained the following relation between Y 'W Y  and {Y —fx)'W (Y — 

pi) in the proof of Theorem 4.3.1.

C oro llary  4.3.2. Let Y  ~  A/"nxp(At) ^v) and W  be a symmetric matrix of order 

n. Then Y 'W Y  ~  LVp(mi, S, Ai) — Wp(m 2 , E, A2) for matrices Ai, A2 €  Mpxp and 

nonnegative integers m i, m 2  if  and only if there exists some E € Np such that

(1) ( Y -  pi)'W (Y -  pi) ~ W p(m 1 ,E ) - W p(m2 ,E ); and
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(2 ) for any s in a neighborhood A/o of 0  G §p and k — 1 , 2 , . . . ,

tr ((Aj +  A2 )s(Ss)2A_1) =tr ( u e c ^ u e c ^ ^ f 'T  0  s)fEy(fU 0  s)]2fc_1) , 

tr ((Ai — A2 )s(£s)2fe) =tr (vec(fj,)vec(p,)'(W 0  s)[£y(VK 0  s)]2fe) ; 

with Ai — A2 — (i 'W /a.

Suppose that Ey is the Kronecker product covariance structures A  0  £  for A  € Nn 

Theorem 4.3.1 is reduced to the following corollary.

C orollary  4.3.3. Let Y  ~  A/"nXp(At; ^40£) with and W  be a symmetric matrix

of order n. Then Y 'W Y  ~  Wp(toi, £, A i)—Wp(m2, £ , A2 ) for matrices Ai, A2 E MpXp 

and nonnegative integers m i, m 2  if  and only if the following statements ( l) - ( f)  hold.

(1) A W  A W  A W  A -  A W  A  ^  0;

(2 ) tr (A W ) 2  + tr(A W )  =  2m\, tr (A W ) 2  — tr(A W ) = 2 m2;

Ai +  A2 =  ii 'W A W fi = n 'W  A W  A W  A W  n; and

(4) Ai -  A2 =  n 'W n  =■ pi'W A W  A W  pi.

Proof. (1) and (2) follow from Corollary 4.1.4. Use A 0 E to replace Ey in (4.56) and 

(4.57) of Theorem 4.3.1. By (2.5) and (2.6), (4.56) and (4.57) are expressed as, for 

k = 1 , 2 , . . . ,

tr (f Ai +  A2 )s(£s)2fe~1) — tr (vec(fj,)vec(p,)'(W  0  s)[£y(VU 0  s)]2k-1)

-  tr  (uec(/i)'uec(lK(>HU)2^ V s ( S s ) 2fc- 1))

=  tr  (AtlU(AlT)2fc-V s(E s)2fc- 1)

and

tr  ((Ax — A2 )s(Es)2fc) =  tr (fxW (AW )2 kfxs(Es)2k)  .
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By Lemma 2.1.8, we have

X i+  A2 =  n 'W { A W fk~l and (4.66)

Aj -  A2 .= ix’W { A W fk (4.67)

for k — 1 ,2 ,___ (3) and (4) are equivalent to (4.66) and (4.67) from (1), and so the

The following corollary is for the special case p = 1  of Theorem 4.3.1.

C oro llary  4.3.4. Let y  ~  Afn(p,,C) with C  E N„ and W  be a symmetric matrix

of order n. Then y 'W y  ~  x 2 (toi,<52) — y 2 (m2 ,<52) for some numbers 5f, and 

nonnegative integers m \, m 2 if  and only if the following statements (l)-( 4 ) hold.

(1) C W C W C W C  = C W C  j. 0.

(2) tr { C W f + tr(C W ) = 2 m u tr { C W f  -  tr(C W ) = 2 m2;

(3) 8 j + S f = ii'W CW fji = v 'W C W C W C W n ; and

(4 ) 5 j - 5% = fx'W fi =  plW C W C W p..

4.4 Conditions for M QFs to  be an Independent 

Family of Random  M atrices D istributed as D IN -

In this section, we shall extend Theorem 4.2.2 to the case where Y  ~  A/’nxp(/x, Sy)  

with nonzero mean matrix fi.

proof is completed. □

W D s
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Exactly as in the proofs of Theorem 4.2.2 and Theorem 4.3.1, we only need to 

put them with Lemma 3.4.1 together and obtain the following multivariate version of 

Cochran’s theorem concerning differences of independent noncentral Wishart random 

matrices.

T heorem  4.4.1. Let Y  ~  Afnxp(n, Ey) and W\, W?, . . . ,  Wi be symmetric matrices 

of order n. Then {Y 'W iY } 1̂  is independent and, for i = 1 ,2 , . . . , / ,  Y 'W iY  ~  

W p(mu ,Y , Xu) — W p{m 2 i,Y , \ 2 i) for some matrices Ai,-,A2; of order p and some 

nonnegative integers m u, m 2, if and only if  there exists some E 6  such that the 

following statements (a), (b) and (c) hold.

(a) For any i € { 1 ,2 ,.. . , /}  and any elements hi, hi in the similar baseMp asso­

ciated with E,

■‘Y

such that

W  <g> (hjEhj +  hjShj) Ey =' Gj(hi ,h i , E, Ey) +  G,(hi, hi; E, Ey) (4.68)

EY (W  <8> E+)E (W  ® h^)Ey =  EY (W  <E> hi)Ey(W  0  E+)Ey (4.69)

with

{ h ^  £ y ( W ® h i ) £ y  =  0,}  =  K' (4.70)

and

f r ( £ y ( W  0  S + ) E y ( V E  <8> h j ) )  +  t r ( £ y ( V K  C> h j ) )  =  2 m l i t r ( S h i ) ( 4 .7 1 )

t r ( E y ( W  ®  S + ) S y ( W  ®  h i ) ) '  -  f r ( £ y ( W  ®  h * ) )  =  2 m 2if r ( E h i );  ( 4 . 7 2 )

with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4. Cochran’s Theorem Concerning DINWRMs 114

(b)For any distinct i , j  £ {1 , 2 , . . . , ! }  and h,, h^ £ Hp

Ey(JTi.0 E +) E y ( l^ ® E +)Ey =  0, (4.73)

EY (Wi ® h i )hY{Wj:® h j )vec{ti)  =  0 (4.74)

vec(n)'{Wi 0  hj)2y(W} ;<8 > hj)vec(fx) — 0; (4.75)

and

(c) For any s in a neighborhood Nq of 0 in Sp and k = 1 , 2 , ,

tr  ((Ai +  A2 )s(Es)2fc~1) =  tr  {yec{n)vec{n)'(W  0  s)[Ey(W  0  s)]2/c_1) (4,76)

tr  ((Ai — A2 )s(Es)2fc) =  tr  {vec{p,)vec{fj,)' {W  0  s)[Ey(W  0  s)]2fe) (4.77)

with

A, -  A2 (4.78)

Theorem 4.4.1 is the core result in this chapter. Now, let us discuss its special 

cases.

Corollary 4.4.2. In Theorem 4-4-F suppose Ey is nonsingular. Then {Y ' W i Y } li=1 

independent and, for i =  1 , 2 , . . . ,  I, Y ' W f Y  ~  W p{mu,  E, Ah) — Wp(m2i, E, A2«) for 

matrices Xu,  A2« of order p and some nonnegative integers m u, rn2i if and only if 

there exists some E £ Np such that for distinct i , j  £ { 1 ,2 ,.. . ,  1} and any element h, 

in the similar base Hp associate w ith® ,

(1) {Wi®  E) =  {Wi 0  I )T Y {Wi 0  E '^ 'E  Y{Wi 0  I);

(2)  {Wi  0  E - 1 )Ey ( ^  0  h*) =  {Wi  0  hi)Sy(W i 0  E -1);

(3) tr{TY {Wi 0  E + )E y (^ i 0  hi)) + tr{TY {Wi 0  hi)) =  2mlitr(E h i),
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tr(T,Y (Wi ® £  1 )Sy(W i <g> h^) — fr(£y(W ; <g> h*)) = '2m2if r (£ h i);

( 4 )  (11; *  /)> :V-(U^ x  I )  — 0;

(5) for any s in a neighborhood No of 0 G Sp and k = 1 , 2 , ,

tr  ((Ai +  A2 )s(£s)2fc-1) =  tr (vec(n)vec(fj,)'(W <S) s)[£y(W  <g> s)]2fc_1) ,

tr  ((Ai -  A2 )s(£s)2fc) =  tr  (vec(tT)vec(fj,Y(W <8 > s)[£y(lT  <8 > s)]2fc) ; and 

with A] — A2 — n 'W n .

Proof. Conditions (l)-(4) follow from Corollary 4.2.3 while conditions (5) follows from 

Theorem 4.4.1. □

C orollary  4.4.3. In Theorem 4-4-1> suppose £y  =  A  <g> £  for some A  G N„. Then 

{Y 'W iY } \ = 1  is independent and, for i = 1,2, . . .  ,1,

Y 'W iY  ~  W p{mlu £ , Ah ) -  Wp(m2i, £, A2i)

for matrices An, A2i of order p and nonnegative integers m u, m 2% if  and only if  for 

any distinct i , j  G {1,2, . . .  ,1},

(1) AWiAWiAWiA = AWiA +  0;

(2) tr(A W i ) 2  +  tr(AW i) = 2 m u , tr(A W i ) 2  -  tr{AW i) = 2 m 2i;

(3 )X li + \ 2i = p.,WiAW ipL= fi'W iAW iAW iAW ipi,

An -  A2i =  n 'W m  = ix'WiAWiAWiH;

(4 ) AW iAW jA  =  0 ;

(5) AWiAWj/J, = 0/ and

(6) n 'W iA W jti =  0 .

Proof. (l)-(3) follow from Corollary 4.4.2. (4)-(6) follow from Corollary 3.4.4. □
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Let us look the special case p =  1 of Theorem 4.4.1.

C oro llary  4.4.4. Let y  ~  A/’n(At , C) with C E Nn andW i, W2 , . . . ,  Wi be symmetric 

matrices of order n. Then {y'lTty },-= 1  is independent and, for i =  1,2, . . . ,

y'Wiy ~  X2 (mu, Sfi) -  x 2 (m2i, 8 22 f)

for some numbers 8u, ^  and nonnegative integers m u, m 2i i f  and only i f  for any 

distinct i, j  E {1,2,. . . ,1}

(1) CWiCWiCWiC = CWiC f t  0 ;  .

(2 )tr(C W i ) 2  + tr(C W i) = 2mu, tr(C W i)2 - tr (C W i)  ^ 2 m 2 i;

(;)) 6 1  +  <5* ~  i i ' W j C W i f x  - i j / W S ’W i C W i C W . i i ;

U ) S i  -  4  =  v 'W iii  =  n'W iC W iC W ipt;

(5) CW iCW jC — 0;

(6) C W iC W jn = 0: and

(7) n'W iCW jH  =  0.

These special cases stated in Corollary 4.4.3 and Corollary 4.4.4 were also discussed 

in Tan (1975), Tan (1977) and Wong and Wang (1995).
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C onclusions and Future R esearch

5.1 M odel One

The case discussed in Chapter 3 is called model one. In model one assume that Y  

is an n x p multivariate normal random matrix with nonzero mean fj, and general 

covariance Ey and W , W i . W2, ■ ■ ■, Wi are symmetric matrices of order n. We 

have derived a set the general necessary and sufficient conditions (Theorem 3.3.1 and 

Theorem 3.1.1, Theorem 3.1.3 for special cases) for matrix quadratic form Y 'W Y  to 

have a noncentral Wishart distribution and then obtained a set of general necessary 

and sufficient conditions (Theorem 3.4.2 and Theorem 3.2.3, Theorem 3.2.4 for special 

cases) for matrix quadratic forms Y 'W {Y , Y 'W 2 Y . . . . ,  Y 'W iY  to be an independent 

family of noncentral Wishart random matrices.

Now, let W  = X )*= 1  Wi. Consider the following propositions;

(Bi) The matrix quadratic form Y 'W Y  has a Wp(m , E, /x'VV'p.) distribution.

(B2) The matrix quadratic form Y 'W iY  has a Wp(m,;, E, n 'W ,n)  distribution (i =

117
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1 , 2 . . . . . / ) .

(B3) Y 'W iY  and Y 'W jY  are independent (i ^  j; i , j  — 1 ,2 , . . . .  / ) .

The interrelationship of propositions (Bi), (B2) and (B^) will be the first topic 

of interest. Proposition (Bi) follows from propositions (B2) and (BA) by Theorem

10.3.4 of Muirhead (1982). We are wondering if the other two implications hold. That 

is, (Bi) and (B:i) imply (B2) ; (S i) and (B 2 ) imply (BA). Then, we shall study the 

interrelationship of propositions {By), (B2) and (BA) with some imposing conditions, 

for example, nonsingular covariance Ey or nonnegative definite matrices Wy, W2, . . . ,

l b / .

The second topic will be to study new propositions or conditions, denoted as (B 4 ), 

(B 5 ), . . . ,  (Bk), and then discuss the interrelationship of (By), (B2), . . . ,  (By.), also 

see Vaish and Chaganty (2004) and Tian and Styan (2005).

Although we have established a general multivariate version of Cochran’s theo­

rem stated in Theorem 3.4.2, the improvement of condition (b) in Theorem 3.4.2 is 

required. Then whether there exists some verifiable condition equivalent to condi­

tion (b) will be one of our interested topics. Other topics of future research on this 

model will include the refinement, simplification of Theorem 3.4.2 and the extension 

of Theorem 3.4.2 to more general matrix quadratic expressions.

5.2 M odel Two

The case discussed in Chapter 4 is called model two. Model two involves the prob­

lem that asks what are the equivalent conditions for matrix quadratic forms to be an
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independent family of random matrices distributed as differences of independent non­

central Wishart random matrices. We have established a set of general necessary and 

sufficient conditions (Theorem 4.3.1 and Theorem 4.1.1 or Theorem 4.1.2 for special 

cases) for the matrix quadratic form Y 'W Y  to be distributed as differences of inde­

pendent noncentral Wishart random matrices and then we obtained a set of general 

necessary and sufficient conditions (Theorem 4.4.1 and Theorem 4.2.1 or Theorem 

4.2.2 for special cases) for matrix quadratic forms Y 'W \Y ,  Y 'W 2Y,  . . . ,  Y 'W iY  to be 

an independent family of random matrices distributed as differences of independent 

noncentral Wishart random matrices.

Now suppose W  — Xw=i W*- Consider the following propositions:

(/; ,)  W i n -  ~  Wp(in,. E, A,) -  W„(n/2. E, A ,) .

(D2) For i = 1, 2 , . . . ,  I, Y 'W iY  ~  Wp(mlh E, AH) -  Wp(m2i, S, A*).

(£>3 ) Y 'W iY  and Y 'W jY  are independently (i ^ i , j  =  1,2, . . . , / ) .

The interrelationship of propositions (Di), (D2) and (D3) will be the first topic 

of interest. Proposition (D \ ) follows from propositions (D2) and (D3) by Theorem

10.3.4 of Muirhead (1982) and Lemma 2.2.4. We are wondering if the other two 

implications hold. That is, (D \) and (D:i) imply (D2); (Di) and (D2) imply (Du). 

We may investigate the interrelationship of (A), (B) and (C) with some imposing 

conditions, for example, nonsingular covariance Ey or nonnegative definite matrices 

U';. U , .......... U).

The second topic will study new propositions or conditions, denoted as (D 4), 

(D5 ), . . . ,  (Dk), and study the interrelationship of (I?i), (D2), . . . ,  (D *,), also see Tan

(1975).
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Moreover, we are wondering if its condition (4.67) and (4.68) can be replaced with 

the following conditions

; fr(Ey(li;- X X • ) ) 2 - /r(Xy(U', X X ’)) =  2///lir(>7:) 

ri ' (Ey(Ui X >-;+))- -  X X4 )) -  2n/o,r(S).

The examples and applications of Theorem 4.4.1 or Theorem 4.2.2 should be 

investigated. Other topics of future research on this model will include the refinement, 

simplification of Theorem 4.4.1 and the extension of Theorem 4.4.1 to more general 

matrix quadratic expressions. Tan (1975) and Wong and Wang (1995) obtained their 

results for matrix quadratic expressions.
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Appendix: 

N ecessary and Sufficient Conditions for a M QF to  

be D istributed as a D IW R M

The following result and its proof are due of Masaro and Wong (2004b). 

T heorem  Let Y  and W  € DecomposeYjy as

Y y  = L'L, L - \ L u L> L„\ : (1)

with Li E MgXn andr(Ey' )  q < np. Assume (without loss of generality) that L fW L ^ ^  

0 (i < r). Let A = diag[ai, cr2, . . . ,  o>, 0 , . . . ,  0] (<r, > 0 , i < r) and define

Bij =  [LiWL'j + LjW L'd/ 2 i , j  < r.

Then Y 'W Y  ~  Wp(mi, A) — Wp(TO2, A) with the common covariance A /o r nonnega­

tive integers m \ and m 2  if and only if

(C l) LiWL'j +  LjWL'i =  0  fo r i  or j  > r

(C2) B l = Bn, tr(Bn) =  mi -  m2, tr(B^) = mj +  m 2

(C3) BjjBjj — 0. / •/ j

(C-l)

(C5) BnBij = B ijB jj, i j

(C 6 ) 2(Bjj +  Bjj )(BikBjk +  BjkB ik) =  Z% for all distinct i , j ,

Proof. First note that in (1) we may, without loss of generality, assume q — np (or 

just replace L' by [Z/, 0] G Mnpyrtp). This will simplify the notation later on in our 

proof (see (7)-(9)).
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First assume that conditions (CT)-(C6 ) hold. By Lemma 2.3.5 we must show that 

for A: — 1.2. . . .

i r (S y 2(W (8 >s)Sy2)fc =  [vn\ +  ( - l ) fcm 2 ]tr(A 1/2 sA1//2)fc , s — (sy) € Sp (2 ) 

Using (2.7) - (2.8) we obtain

(  r \ k / r
J 2  SijLiW L ' =  tr  I ^  y/WjSijB'i.

* 0  = 1 /  V* 0 = 1

Note that tr(A 1 2̂ sA1/2)fe =  tr ( ^ d ria]sij) k. Thus since s € Sp is arbitrary we must 

show that

//• |  "i j t i i j j  = [m i + { - l ) km 2 \trUk, U =  [Uy] € §r , A — 1,2, . . .  (3)
V*o=i /

Now from condition (C2) it follows that

B t2 fc+ 1 =  Bii, tr(B^k+1) = m i -  m 2  k =  1,2, . . .  and (4)

=  #«, t r { B f)  =  mi +  m2, A — 1 , 2 , ---

Thus using (C4), (C3) and (4) it is easily shown that for i ^  j ,  ||By — 4BfJ | | 2 =  0

and so

B iJ = iB fj . i ^ j  (5)

Combining (C4) with (5) we get that, for i ^  j ,  (B ,2 +  B ^ B y  =  4B42By =  By. The

symmetry of By then yields

B y - ( B 2 +  / 4 ) B y ( B 2 = B-j:j). i / - j  (6 )

Now by (4) and (C’3) we may choose an orthogonal matrix H  which does not depend

on i and such that

Bu = H 'B a B  =  eu <g> An (7)
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where An =  diag[Uu, 1 4 ,0 ] € Mnxn and Uu =  Imi,Vu =  - / m2.

For i A j ,  let Btj = H 'BijH . Then using (6 ), (C5) and (CA) with B n,B jj and 

Bij replaced by Bvl, Bjj and B ^  we obtain

B{j — ~ A  Aij T &ji ^  A ji) (8 )

where A^j — didg^Ujj. Vij. 0 ] £ h/Hnxn; fAj ^ Vij € Ad m2 x m2 and

A,-*, UijU-j =  / TOl, =  /m2. Thus from (7) and (8 ) we have

7 / I ^   ̂ UijBij j H. — dia,g[\uijAij] , 0]. (9)
\*,j=i /

We now claim that for alii ,  j,  k

UikUkj — Uij, VfcVkj A.ij. (10)

Indeed (10) is clear if k — i or j  (since Un =  Imi and Vti =  —Im2) or if i = j  (since 

= / mi and Vt] V(j =  / TO2). The remaining case (i.e. when i , j  and k are distinct) 

is obtained by substituting the matrix representations B ^  given in (8 ) into (C 6 ). 

Now from (10) it easily follows that for all i , j ,k ,£

Aa-'h-rAfj — Ajj. (1 1 )

Finally, by (9), we have 

tr I ’y  ̂UijBy J =  tr(uijAij)

r r
=  * k E  E  uu 1 uh (.2 . . . u t.kr_2 ik_1 ue,k_liAu 1 A tie2 ...Ae,k_2 ik_lA th_1 i)

1 = 1  €i/2 v/fc-l=l 
r r

= m E  E  iWi£2 • • • ̂ 4-24-1^4-1* '̂)
i = 1 4  , 4 , . . . , 4 ^  =  1
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where '
diag\Im, 0 ], if k is even;

C (by (11))
diag[Imi 0 ], if k is odd.V

r I k
Thus Y%j=i uijBij =  [m i +  (—1 )km 2 \trU k, which proves (3) as required.

Conversely assume Y 'W Y  ~  W p(rnx, A) -  yVp(m2., A). We show that conditions 

(Cl)-(CG) hold.

Using (2) and (2.7)-(2.8) and arguing as before we have that for k — 1,2 . . .

f \  \ k
t r  ( y ^  S j j L jW L' j  |  =  [mi +  ( -1  )km 2\tr{^<Tia j s ij ) k , s =  (s^) € §p. (12)

Fixing u and v with u or v > r and letting suv =  svu — 1 and all other s,j = 0 we see

that condition (C l) then follows from (3.13) since cq =  0 for * > r.

Now setting Uij — *JOiOjSij, i, j  < r ,  we obtain from (12) and (C l) that

tr  ( =  Im i +  (_ 1 )km 2 \trUk , U = [ui3] € §r , k =  1,2, (13)
\ i , j =i /

Fixing i and letting Uu =  1 and all other u^e =  0 in (13) yields

t r ( B ^  = m 1+ ( ~ l ) km 2, ■ fc =  1,2, . (14)

which proves (C2).

Also, fixing i ^  j  and letting u,,j — Uji — 1 and all other Uki — 0 in (13) gives

!
0 , if k is odd;

(15)

2 (mi +  m2), if fc is even.

Now from (13) we get for i j ^ j

tr(aBu + bBjj +  2 cBij) 4  — (mi +  m2) (a4 +  6 4  +  2c4  +  4a2 c2 +  462c2 +  4a6c2). (16)
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By comparing the coefficients of a2 b2  on the left and right sides of equation (16) we 

find that

2 tr{B lB 2j j ) + tr(B iiB jj ) 2  = Q, i + j  (17)

Now since \tr(B uBjj)2\ = \ < BnB:i:j. B ^B u  > \ < \\BaBjjW2  = t r ^ ^ B ^ ) ,  (17) 

implies that 0 =  tr{B%B^) = \\BuBjj \ \ 2  which proves (C3).

Comparing the coefficients of abc2  on the left and right sides of equation (16) and 

using (C3) we obtain

U riBuBijB jjB ij) =  m x +  m2, i ^ j  (18)

Thus, by (C3), (14), (15)) and (18)

tr{4B% -  {B l +  B % )f =  M lG B tj + B& +  B% -  8 5 ? - (^  +  B%))

=  4:(mi +  m 2 ) — &[\\BaBij\\2 WBijBjjW2]

< 4(mi +  m2) -  16\\BiiBij\\\\BijBjj\\ < 4(mi +  m 2) -  16 < BuBij, BijB jj >

. =  4(mi +  m2) — 16(mi +  m2)/4  =  0

which proves (C4).

Also using (C4), (C3), (14) and (18), a straightforward calculation shows that

||B uB ^  — B ijB jj | | 2 =  0 which proves (C5).

Finally, to prove (C 6 ), note first that (C 6 )' | ^  Btj
v,i= 1

is a consequence of setting all ui:i — 1 in (13). Also note that since we have shown 

that (C'1)-(C'5) hold, we may use the matrix representation given by (7)-(9). Using 

this representation in (C 6 )' gives

r2[A,,] =  [A,,]3 (19)

= r 2 ^  Bij. Indeed this
7=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix 126

where A^j — d/uKj^P ĵ. 0] G Wln^ni F>ij G Alnlxm- Pij = Pji■ PijPij Fn■ rn ~  uq G-m -̂ 

We claim that for all i , j , k , l

An-A^Afj —  A;j . ( 20 )

Indeed by (19) we have
r r

r*Pij l)k l }k(l}fj-
fc=1 t 1

Hence,

r r v r

*jiPikPkiPij E E  F u  , F u  — Pj iPikPktPt j-  (21)
A-- 1 (-1 fe=l £=1

Now since Fj^ is orthogonal,

tr(Fke) = <  -Ffĉ , 7m > <  |.|-F]w||||/m|| =  (22)

Thus from (21) and (22) we have

r r
m r 2  = E E  tr{Fke) < m r2. (23)

At- 1 A 1

Now (23) shows that the Cauchy-Schwarz inequality in (22) must be an equality. Thus 

Fki is a scalar multiple of Im and since tr(Fu) =  to, Fu — Im. Hence P^PikP uP ^  =  

Im or PikPHPfj = P :, which proves (20).

Now taking k — i in (20) yields A u A ^A ^  — Aij or

AuAtf — AijAji. (24)

Equation (C 6 ) can now be verified by replacing the B uv in that equation by their 

matrix representations given in (7) and (8 ) and using (24). □
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