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Abstract

Rapid advances of microarray technologies are making it possible to analyze and 

m anipulate large amounts of gene expression data. Clustering algorithms, such 

as hierarchical clustering, self-organizing maps, fc-means clustering and fuzzy k- 

means clustering, have become im portant tools for expression analysis of microarray 

data. However, the need of prior knowledge of the number of clusters, fc, and the 

fuzziness param eter, b, limits the usage of fuzzy clustering. Few approaches have 

been proposed for assigning best possible values for such parameters.

In this thesis, we use simulated annealing and fuzzy fc-means clustering to  deter­

mine the optim al parameters, namely the number of clusters, fc, and the fuzziness 

param eter, b. To assess the performance of our method, we have used synthetic and 

real gene experiment da ta  sets.

To improve our approach, two methods, searching with Tabu List and Shrinking 

the scope of randomization, are applied. Our results show th a t a nearly-optimal 

pair of fc and b can be obtained without exploring the entire search space.

iii
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Chapter 1

Introduction

1.1 Background

1.1.1 D N A , R N A  and cD N A

The genetic information of every organism is stored in the biopolymeric molecule 

known as Deoxyribonucleic acid (DNA) .

DNA is composed of a long string of nucleotides, each of which contains one of 

four based (A, G, C or T), a deoxyribose sugar and a phosphate group. Naturally 

occurring DNA molecules are double-stranded in which two DNA strands are held 

together by specific interactions between bases A and T and bases C and G, each 

base pairing occurs exclusively [29]. The structure of a DNA molecule is illustrated 

by a double helix (Fig. 1.1 left shows a segment of DNA double helix).

We can regard DNA as a book, or even a library, storing all the genetic informa­

tion for synthesizing protein or RNA. In the course of synthesizing proteins based 

on the genetic information on DNA, RNA is a molecular intermediary.

RNA is formed by a single strand, while the DNA consists of two complementary 

strands attached to one another, forming a double helix. The four bases in the DNA 

nucleotides are adenine (A), guanine (G), thymidine (T) and cytosine (C). In RNA

1
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2 1.1 Background

2z

Figure 1.1: The segments of DNA and RNA.

thymidine is replaced by uracil (U). A RNA segment is shown in Fig. 1.1 right. 

There are three major types of RNA:

1) mRNA, messenger-RNA, which transfers the genetic information about the 

aminoacid sequence from the DNA to the protein.

2) rRNA, ribosomal-RNA, which builds up the ribosome together with proteins.

3) tRNA, transfer-RNA, which transfer aminoacids to  the ribosome for protein 

synthesis.

Complementary DNA, also named cDNA, is a single-stranded DNA synthesized 

from a m ature mRNA tem plate which only has exons1 of genes. The property of 

lacking introns (A non-coding sequence of DNA) and only having exons makes cDNA 

widely used in gene function analysis.

1.1.2 G ene and G ene E xpression

The genetic information on DNA is divided into different segments named genes. 

Gene is the basic unit of genetic function. Genes are continuous segments of genomic 

DNA constructed from four nucleotide blocks, namely A, G, T, and C. Every gene 

composes of three kinds of segment: regulatory segment, which contains information

1The region of a gene that contains the code for producing the gene’s protein
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3 1.1 Background

Introns

. — P — .

Gene
Regulatory

Element Exons

mRNA

Figure 1.2: Gene with these three segments.

of initiation and regulating instructions, exon, which is the genetic coding region for 

mRNA, and intron, which is the non-coding part. Figure. 1.2 shows a gene with 

these segments.

A gene is a recipe for synthesizing particular protein (a large 3-dimensional 

molecule playing structural and functional role as the basic building block for or­

ganisms) or in some case RNA.

The process by which a gene is converted into functional proteins is known as 

gene expression. It has been argued th a t a gene is expressed, if the gene is used 

in the process. In most cases, the same gene is involved in the synthesis of many 

different proteins.

In gene expression, a cell functions by using its genes to produce proteins. At 

any rate, the mechanism by which genes are expressed is the same for all cells 

and involves the transcription of a gene into mRNA before being translated into a 

protein. The production of mRNA is a reflection of the activity of a gene under 

certain conditions, and a lot of genetic information can be extracted by studying it.

For many years, study of gene expression in this m anner had to  be done by
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4 1.2 W hat is a Microarray?

individually looking at whether a specific gene is expressed under certain conditions 

or not. During the last half of the 20th century, the analysis of the regulation and 

function of genes has largely driven step-by-step studies of individual genes and 

proteins.

1.2 W hat is a Microarray?

Since cells express their genes only when they are required for a cellular process 

under specific physiological conditions, how many genes are expressed under a given 

condition is an im portant clue to understand gene functions.

A microarray is such a device, a small analytical device th a t measures how genes 

are expressed in experiments, with such a speed and precision unprecedented in the 

history of biology.

A DNA microarray consists of an orderly arrangement of DNA fragments rep­

resenting the genes under study. Each DNA fragment representing a gene is dupli­

cated enough and assigned to a specific location on the microarray, usually a glass 

or nylon slide, and then “spotted” (<  1 m m ) to  th a t location. Through the use of 

highly accurate robotic spotters, over 30,000 spots can be placed on one slide, al­

lowing molecular biologists the possibility to analyze virtually every gene present in 

a genome [5].

The main use of microarrays is th a t the spots are single stranded DNA fragments 

th a t are strongly attached to the slide, allowing cellular DNA, which is fluorescently 

labeled, to lay on top of the microarray. Cellular DNA in the sample will stick 

through a chemical process (called hybridization), to complementary DNA on the 

microarray at a pre-specified position. T hat is, gene-A from cellular DNA will stick 

to a spot on microarray composed of a gene-A fragment. By exposing the microarray 

to a laser with a specific wavelength, we can inspect the intensity of fluorescence. The 

more fluorescently labeled cellular DNA are hybridized with the DNA fragments,
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5 1.3 Two Types o f Microarrays

the stronger the intensity is, which means the gene is more expressed under such 

specific conditions. Spots th a t have nothing hybridized to  them will not be visible.

1.3 Two Types of Microarrays

There are two main types of commercial arrays widely used in gene expression ex­

periments, oligonucleotide arrays (Affymetrix) and cDNA arrays. The basic idea of 

these arrays is similar. The difference is the way in which DNA fragments repre­

senting the genes are attached to  the array.

1.3.1 O ligonucleotide Arrays

An oligonucleotide array (also called GeneChip) uses small DNA fragments with 

25 base-pairs representing the genes to be spotted onto the array. These DNA 

fragments, called probes, are selected to have little cross-reactivity with other genes 

so th a t non-specific hybridization will be minimized [5].

Nevertheless, some non-specific hybridization will occur; to combat this, a second 

probe th a t is identical to the first, except for a  mismatched base a t its centre, is 

placed next to the first. This is called the Perfect M atch/M ism atch (PM /M M ) 

probe strategy. Any background hybridization with the MM probe is subtracted 

from the PM probe signal which results in perfect hybridization.

Fig.1.3 depicts an experiment using an oligonucleotide array involving the prepa­

ration of a cDNA sample for hybridization to  the array. This sample is prepared 

with mRNA being extracted from cells. Because cDNA is more stable than  mRNA 

in lab-environment, mRNA has to be reverse transcribed into cDNA. During the 

reverse-transcription step, a fluorescent dye is incorporated into the  newly formed 

cDNA. Then the sample is cut into small fragments and bound to  the probes on 

the array. By exposing the array to  a laser with a specific wavelength, two sets of
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6 1.3 Two Types o f Microarrays
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Figure 1.3: Procedure of an oligonucleotide Microarray.

intensities can be infered, one is from PM and other one is from MM. The difference 

between the two intensities is used to represent the level of gene expression. These 

data  are what will be analyzed by some microarray analysis techniques.

Compared with cDNA array, there are two benefits [19]: first, oligonucleotide ar­

rays are synthesized based on sequence information alone, i.e. w ithout the need for 

intermediates such as clones, PC R  products a cDNA; the other benifit is high con­

fidence on the intensity signals, because of the use of probe redundancy and the use 

of mismatch control probes. However, oligonucleotide arrays are more complicated 

than cDNA arrays, and it is more difficult to  analyze the d a ta  from the  experiments 

using oligonucleotide arrays [8].

1.3.2 c D N A  M icroarrays

cDNA microarrays are similar to  the oligonucleotide arrays. Instead of hybridizing 

short DNA fragments on the chips, each spot contains a cDNA clone from a known 

gene, usually with hundreds of bases. Nowadays, the cDNA clones for making the 

array can be generated from a commercially, available cDNA library ensuring a close
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7 1.3 Two Types o f Microarrays
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Figure 1.4: Procedure of a cDNA Microarray.

representation of the entire genome of an organism on the array [5].

Alternatively, polymerase chain reaction (PCA, which is a m ethod enabling the 

isolation, cloning and amplification of genes) using specific primers can be used to  

duplicate specific genes from genomic DNA in library to generate the cDNA clones. 

A separate PC R  must be performed for each gene, although these reactions can be 

done in parallel. These cDNA clones prepared can be mechanically spotted onto a 

glass slide.

Fig. 1.4 is an experiment using a cDNA microarray involving the preparation of 

two samples for hybridization to the array: a  control sample and an experimental 

sample. These samples are prepared as before with mRNA being extracted from 

cells and reverse-transcribed into cDNA, with one exception: during the reverse 

transcription step a fluorescent dye is incorporated into the newly formed cDNA. 

Here, an ingenious trick is used and a different dye employed to  label the different 

samples. For example, the control sample can be labeled with a green fluorescent 

dye called Cy3 and the experimental sample labeled with a red fluorescent dye called 

Cy5. Since the samples are labeled differently they can be combined and hybridized
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8 1.4 Microarray Analysis

to the microarray together (see Fig. 1.4). Then, two samples will competitively 

bind to  the  probes on the array and the sample containing more gene expression for 

a particular probe will win out. T hat is, if there is more of an mRNA transcript in 

the control sample than in the experimental sample (i.e., the gene is down-regulated 

in the experiment) then more Cy3 will bind to  the probe on the array and the spot 

will fluoresce green. As opposed to this, if there is more experimental transcript, 

the reverse will happen and the spot will fluoresce red. W hen the two samples have 

the same amount: of transcript, the dyes will cancel each other out and the spot 

will fluoresce yellow.

The experiments using cDNA arrays are comparative hybridization experiments. 

We compare the hybridization level in each spot to  the level of hybridization un­

der control conditions, so our results from cDNA array experiments contain more 

pertinent information than  th a t from oligonucleotide arrays.

Since the appearance of microarray technique, some applications acquired a 

brilliant achievement in gene research, human disease, drug discovery, and genetic 

screening and diagnostics.

1.4 Microarray Analysis

Microarray is now able to produce large amounts of da ta  about many genes in a 

highly parallelized manner and allows scientists to  study many, if not all, genes of an 

organism’s at once. This high throughput achievement allows for the global study 

of changes in gene expression, giving us a complete cellular snapshot. Analysis on 

microarray is unique in the history of biology. No other technology has ever involved 

so much technology and combined expertise from so many different disciplines, in­

cluding biology, chemistry, physics, engineering, mathematics and statistics, and 

computer science. Thus providing a quantitative and systematic view of a biological 

system.
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9 1.4 Microarray Analysis

Microarray differs from traditional research in a number of striking ways [32], one 

of which is the relationship between the amount of experimental time required and 

the am ount of da ta  obtained. Traditional experimental approaches based on gels 

and filter blots require a relatively large amount of experimental time to obtain a 

small volume of data, whereas microarray analysis offers vast quantities of data  with 

relatively little experimental time. Microarrays purchased commercially provide a 

clear example, allowing a single researcher to  generate large amounts of da ta  in a 

few weeks.

How can we understand the role of the genes as a whole in biological functions 

based on so large amount of data? In other words, how can we define the role of each 

gene (or sequence of genes) in some biological function and subsequently understand 

how the genes function as a whole?

The action of discovering patterns of gene expression is closely related to corre­

lating genes to  specific biological functions and thereby understanding the role of 

genes in biological functions on a genomic scale. In order to  properly comprehend 

and interpret expression data  produced by microarray technology to this relation­

ship, com putational and data  mining techniques are typically used to  interpret the 

meaning of microarray data. We discuss below a few of these techniques.

1.4.1 S catter  P lo ts

Scatter Plots [29] are one of the most useful representations of gene expression. A 

Scatter plot is a graphical 2D representation of microarray d a ta  in which the signal 

intensities of two samples under different conditions are plotted along the x- and y- 

axes respectively, and the ratio values are plotted on the view.

One of the most useful applications of scatter plots is the visualization of gene 

expressions obtained from cells under control condition and experimental condition, 

such as the conditions w ith /w ithout oxygen. Usually, the y-axis represents the
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Figure 1.5: Visualization of gene expressions using scatter plots.

signal intensities of control samples and the x-axis represents the signal intensities 

of experimental samples. The line such th a t the ratio is equal to  1, x =  y, is called 

the identity line. The genes with no changes of expression fall along the  identity 

line. Genes expressed at a high level or genes th a t are activated fall above the line. 

Genes expressed a t a low level or th a t are repressed fall below the line. Figure.

1.5 shows th a t two genes are expressed/repressed respectively as well as four genes 

are not. The scatter plot da ta  reveals a significant scattering above and below the 

identity line and indicates the differences in gene expression levels in two samples.

Another application of scatter plots is precision assessment in ratio calculations. 

The precision of ratio measurement can be assessed by using two identical samples. 

The ratio of signal intensities should yield 1.0 and all genes should fall along the 

identity line. Figure. 1.6 assess the precision by same vs. same comparison. The 

concordance of the da ta  along the identity line indicates the ratios are close to  1.

Usually time is involved as the th ird  dimension. This 3D scatter plot represents 

the variance of genes expression in a period. The analysis of gene expression is more 

precise, when using a 3D scatter plot.
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Figure 1.6: Same vs. same comparison for precision assessment using scatter plot.

1.4.2 P rincip al C om ponent A nalysis

Scatter plots visualize a comparison of two variables in 2D space, and a 3D scatter 

plot could be used for the comparison of three variables. In most microarray ex­

periments, multivariate da ta  are collected. The comparison of hundreds of variables 

means a scatter plot with hundreds of dimensions is needed. T ha t is an impossible 

task to  display multi-dimensional scatter plots. Alternately, by using a technique 

called dimensionality reduction, these hundreds of variables can be displayed into a 

2D/3D plot.

One of the most useful methods of dimensionality reduction is principal compo­

nent analysis (PCA) [35]. Principal component analysis transfers the  relationships 

among these variables th a t exist in high-dimension space into a low-dimension space.

Principal component analysis is also used in microarray analysis to  identify 

groups of genes in lower dimension of space. Principal component analysis is also 

used in reducing the noise in data.

Principal components analysis (PCA) is often used to  find a basis set which 

is determined by the dataset itself. The principal components are orthogonal and

sa m e  vs. sam e
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12 1.4 Microarray Analysis

projections of the data  onto them  are linearly uncorrelated. Independent compo­

nents analysis (ICA) [15] aims at a loftier goal: it seeks a linear transform ation 

(an unmixing matrix) to coordinates in which the da ta  are maximally statistically 

independent, not merely uncorrelated. Viewed from another perspective, ICA is 

a m ethod of separating independent variables, which have been linearly mixed to 

produce the data.

1.4 .3  C luster A nalysis

Another multivariate analysis method, developed in 1930’s, is known as cluster anal­

ysis, which is to  group the samples based on a similarity to  one another. Clustering 

places similar samples into the same cluster, so th a t similar samples are close to  each 

other and dissimilar samples are far away. In 1990’s, clustering was first introduced 

to microarray analysis and have been used widely till today.

There are two categories of classification: supervised tlassification and unsu­

pervised classification [29]. Supervised classification uses a trainer resulted from a 

subset of sample da ta  to  classify the rest of the data. Unsupervised clustering tries 

to  discover the natural groups inside a d a ta  set w ithout any input from a trainer. 

In this thesis, we focus on the m ethods of unsupervised clustering.

Many clustering methods have been used widely in microarray analysis. In 

this section, Hierarchical clustering algorithms, Self-Organizing Map,s and cluster­

ing affinity search techniques are introduced briefly. In the following chapters, k- 

means/fuzzy A;-means clustering algorithm and simulated annealing are introduced 

in detail.

Hierarchical C lustering

We consider the clustering problem as a sequence of partitions with n  samples into 

k clusters based on the similarity matrix. The basic idea of hierarchical clustering
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13 1.4 Microarray Analysis

algorithms [9], [34], is to build a tree as a sequence of partitions, by which the n 

samples are grouped into one cluster.

Depending on the way the tree is constructed, there are two kinds of hierarchical 

clustering algorithm: agglomerative and divisive hierarchical clustering.

In agglomerative hierarchical clustering, first, we suppose th a t there are n  clus­

ters initially using each sample as a cluster, and we calculate the similarity m atrix, 

which is an n-by-n m atrix usually containing the distance of each pair of clusters. 

Then, we merge a pair of cluster with most similarity into one cluster. A new simi­

larity m atrix of these clusters is calculated and the two clusters with most similarity 

are merged into one cluster again, and so on, until all clusters are grouped into 

one cluster. This algorithm is called agglomerative hierarchical clustering algorithm 

(or usually just called hierarchical clustering algorithm), because it builds a tree by 

combining similar clusters. This is a bottom -up approach.

Now, the problem is how to measure the similarity between two clusters. The 

term  distance is usually used as the  measure of similarity. The longer the distance 

is, the more dissimilar the two clusters are.

There are some variants of hierarchical clustering algorithms with different 

distances, including single-linkage clustering, complete-linkage clustering, average- 

linkage clustering, and centroid-linkage clustering [27].

Single-linkage clustering algorithms. The distance between two clusters is repre­

sented by the minimum  distance among the members of two clusters. This is also 

called nearest-neighbor clustering. The distance is defined as follows:

dmm (Di, Dj )  =  min ||x -  y \\, (1.1)
xeDi ,yeDj

where A  and Dj are the i th and ith clusters, x  and y  are samples in clusters D, and 

D j , ||-|| defines the distance function.

The problem is th a t a pair of clusters separated widely may be assigned as the
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14 1.4 Microarray Analysis

pair with best similarity, if there is a minimal distance existing among these two 

clusters.

Complete-linkage clustering algorithms. This algorithm uses maximum distance 

among the member of two clusters, and is also called furthest-neighbor algorithm. 

The distance is computed as follows:

where A  and Dj are the i th and j th clusters, x  and y are samples in clusters A  and 

D j , ||-|| is distance computation.

This algorithm still has the drawback th a t we may miss the pair of clusters with 

the most similarity, if only a pair of samples th a t is very far away from each other 

exists in the clusters.

Average-linkage clustering algorithms. The algorithm applies the average dis­

tance among the members of two clusters. This algorithm is more reasonable than 

the two algorithms based on the weakness of the two algorithms we mentioned above. 

The formula of the distance is given as:

where A  and D j are the ith and j th clusters, n* and rij are the numbers of samples 

th a t belong to the ith and j th clusters, and x  and y  are samples in clusters D, and

Centroid-linkage clustering algorithms. In this algorithm, the distance is rep­

resented by using the distance between the means of two clusters. The distance 

between two clusters is defined as follows:

dmax( D i , D j ) =  max ||a: — y\\xeDi.yeDj (1 .2 )

(1.3)

dc (Di, Dj)  =  d (x , y ) , (1.4)
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15 1.4 Microarray Analysis

where x  and y are the mean of clusters D t and Dj.

In divisive hierarchical clustering algorithm, first, we suppose th a t there is a 

single cluster initially containing all n  samples. We then split the cluster into 2 

clusters by any of a large number of non-hierarchical clustering algorithm. Subse­

quently, the  process is recursively repeated on these sub-cluster until each one has 

only one sample [8].

For its simplicity, hierarchical clustering becomes one of the most widely used 

algorithms on Microarray analysis. In [9], a hierarchical clustering algorithm was 

applied for the analysis on yeast microarray dataset. In [7], [13] and [26], the same 

algorithm was applied to analyze the microarray datasets on the molecular classifica­

tion of cancers and biological modeling. D. Eppstein [11] developed d a ta  structures 

to obtain a faster hierarchical clustering algorithm.

A problem th a t typically arises is how to use a tree th a t results from Hierarchical 

clustering algorithm, and how to determine if a  sub-tree is a  cluster instead of a part 

of a bigger cluster. We need additional algorithms to  interpret the tree into a form 

th a t can be understood by biologists.

In [16], an optim al leaf ordering algorithm was introduced. This algorithm makes 

the optimal leaf ordering maximize the sum of the similarity of adjacent elements in 

the ordering. This algorithm could also help users identify and in terpret the data.

Self-Organizing M aps

A self-organizing map (SOM) [17] is a clustering algorithm very similar to the k- 

means clustering algorithm. However, the SOM is a two-level clustering algorithm. 

First, SOM projects n  high-dimensional da ta  points onto a low-dimension map, 

instead of dividing the original da ta  points into the k clusters directly, and then to  

group the units on this map into k clusters. Usually, the map is a two-dimensional 

grid with M units, and each unit represents a vector, . . .  m uj) where
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16 1.4 Microarray Analysis

d is the dimension of original data.

W ith this 2-level approach, there are two benefits [31]: decreasing the cost of 

com putation and noise reduction.

The training of the SOM is iterative. At each step, a sample is randomly chosen. 

The distance between vectors represented by the unit is calculated and the best- 

matching unit m best is the nearest one to the sample x. The best-matching unit is 

computed as follows:

| | x - m test|| =  m i n { | | a ; (1.5)i

where rrii is i th unit and x  is a sample.

Then the neighbor units of the best-matching unit are moved towards the sample 

x based on the formula m i+i(t  +  1) =  mi(t) +  a(t)hbi(x — rrii), in which a(t)  is the 

learning ra te  decreasing with time, hbi{t) is a  neighborhood function, denoting how 

much the neighbor ith units is affected by the best-matching unit. The algorithm 

continues until reaching the desired numbers of iteration or the learning rate a(t)  is

0 .

In [30], Tamayo et al. employed a self-organizing maps clustering algorithm to 

interpret the patterns of the yeast microarray d a ta  set.

The SOM not only is a good m ethod to  cluster da ta  sets, also is a  good tool to 

show the cluster structure of microarray data. Lee [18] presented a m ethod to  reveal 

the gene expression profiles for more than  thousands of genes.

Clustering Affinity Search Technique

In this section, we discuss an algorithm, which does not require the prior knowledge 

of k, named clustering affinity search technique (CAST). In 1999, this algorithm 

was presented by Ben-Dor et al. first in Journal of Com putational Biology [3]. This 

algorithm groups data  points into clusters based on the average similarity (also called 

affinity), between the current cluster (open cluster) and un-clustered data  points.
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17 1.4 Microarray Analysis

CAST algorithm alternates between adding and removing a data  point into/from  a 

cluster.

51. Initialization Step

Initialize an affinity threshold t.

52. Generation Step

A blank cluster Cnew is opened.

R epeat until no changes occur:

Add a unsigned da ta  point x into Cnew. if their similarity greater than t. 

Remove a data  point y from Cnev,, if their similarity less than  t.

Close Cnew.

53. Judgement step

If no unsigned d a ta  point, stop.

Otherwise, go to Step 2 .

Many possible similarity measures can be used in CAST, such as typically used 

Euclidean distance.

So, at the end of the algorithm, there is always a ‘cleaning’ step to  make the 

affinity between data  points and the clusters as maximum as possible by adjusting 

the data  points among the clusters.

In CAST, we do not need the prior knowledge of k , but there is a serious draw­

back. T hat is, we have to  initialize a control param eter, the threshold t. This pa­

rameter affects the shape of the clustering structure. Bellaachia et al. [2] proposed 

an enhanced CAST algorithm, in which, there is a dynamic threshold t, instead of 

a fixed t. which is computed at the beginning of the generation of the new cluster.
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1.5 Conclusion

In this chapter, we introduced some biological knowledge about microarray and 

microarray analysis methods, which are typically used to  analyze the results from 

microarray experiments. In Chapter 2, two clustering algorithms, fc-means and fuzzy 

fc-means, will be introduced in detail. In Chapter 3, an optimization algorithm, 

simulated annealing, is introduced. The related works will be reviewed in Chapter 

4. Our approach to optimize the parameters of fuzzy fc-means will be proposed in 

Chapter 5. To prove the efficiency of our approach, some experiments are showed 

in Chapter 6 .
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Chapter 2

Clustering Algorithms for 

Microarray D ata

Clustering algorithms are a generic tool for pattern  recognition, grouping the  data- 

points into groups, also called clusters. The data-points in same groups are more 

similar to each other than  those in different groups.

2.1 k-M eans/F uzzy A;-M eans C lustering A lgorithm

Clustering algorithms are categorized as hierarchical and non-hierarchical. In the 

last section, the details of hierarchical clustering algorithms were already discussed. 

In non-hierarchical clustering algorithms, also called partitional clustering, each gene 

is assigned to a cluster based on the similarity between the gene expression and the 

expression of genes in the cluster.

In this thesis, we focus on a partitional clustering algorithms, namely fuzzy 

&-means clustering algorithm which is gaining wide use in microarray analysis. 

For simplicity of understanding of this algorithm, first, we introduce another non- 

hierarchical clustering algorithm, fc-means, which is very similar to  the fuzzy fc-means 

clustering algorithm.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20 2.1 k-Means/Fuzzy k-Means Clustering Algorithm

2.1.1 fc-Means

fc-Mean [23] is a clustering algorithm based on a mixture model [25].

In a m ixture model, the dataset is composed of a number of clusters, and there 

is a distribution associated with each cluster. fc-Means clustering algorithm splits 

each da ta  into these clusters. In Bayesian decision theory, the probability P(uj \ X j ) ,  

also named membership, of assigning the cluster u;* after observing the j th sample, 

Xj, is defined as:

(2 .i)

where p(xj \ u>i) can be seen as the distribution of the sample x2, which belongs 

to cluster cu*, P(wa) is the prior probability of coi: p(x2) =  E f= iP(x j I 

(which can be viewed as a scale factor th a t guarantees P(wj | x 2) sum to one) is the 

probability of sample Xj , and k is the number of clusters.

Here, we regard the  distribution p[x2 \ Ui) as the normal distribution, which is 

also called Gaussian distribution. In this case, the probability P(ui  | x2) can be 

expressed as:

p ( . i n I s * l~1/2 e x p t - l ^ -  -  pi)Y,~[l (Xj -  tn)]P{ui)

Ei=i I h 1/2 expI-Kx^- -  Hi)Z;l {Xj -  Mi)]^(wi) ’

where Pi is the centroid of the ith cluster, E, is the covariance m atrix  of the  ith 

cluster, and Xj is the j th sample, also called the j th data point.

From Equation 2.2, it is clear th a t the probability P(u>i \ Xj) is large when 

the squared Mahalanobis distance [21] (x2 — /z»)EJ l {Xj — is small. T hat is, the 

sample Xj belongs to  the cluster E, whose centroid p t is closest to  x2 and approximate 

P(u)i | x2) as

1, if Xj =  arg min^aq -  p i)Yl^l {xj -  Pi);
P{tOi | Xj) =  (2.3)

0 , otherwise,
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where
E"=i P (Ui I Xj ) Xj

E J - . / ’t w I . i ) ’ (24)

n is the number of samples in d a ta  set, Xj is the j th d a ta  point, and E =  I, which, 

for simplicity, is Euclidean distance.

The means clustering algorithm works as follows:

1. the algorithm initializes k (the number of clusters), and the centroid im of 

each cluster;

2 . the d a ta  points are placed into the nearest cluster to  get its new membership 

based on Equation (2.3).

3. by using the membership, the centroid of each cluster is updated using Equa­

tion 2.4.

4. If no changes in /i*, stop. Otherwise, go to  Step 2 .

2.1 .2  Fuzzy fc-Means

It is well known th a t a given gene is involved in the synthesis of many proteins, 

either directly or indirectly (via a network of gene expressions). Thus, the clusters 

of genes are not necessarily distinct and sharp.

A given cluster may represent a molecular function shared by its member, and a 

given gene can belong to this cluster with a certain degree of membership. In general, 

a gene may exhibit many functions. To understand the functions of genes better, 

we need another method th a t can assign each da ta  point into several clusters. From 

the discussion above, fc-means assigns each da ta  point to  be in exactly one cluster, 

as implied by Equation (2.3).

We can relax this condition and assume each d a ta  point has a fuzzy membership 

to a cluster. This means th a t each d a ta  point can be assigned into many clusters.

Fuzzy /c-means is based on the first-order differentiation aiming to  find a clus-
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tering structure th a t minimizes the sum of weighted within-cluster distance:

n k

J f  =  P ĵ0i I xi}bWxi ~  (2-5)
j= i *=i

where k is the number of clusters, n  is the number of d a ta  points, P{ui \ Xj) is the 

probability of the j th d a ta  point to  ith cluster, fa is the centroid of the i th cluster,

Xj is j th point in da ta  set, and b is a fuzzy control param eter whose value is usually

set to 1.25.

We have the following necessary conditions:

dJF/dfa  =  0 (2.6)

d J / d P  =  0, (2.7)

which lead to the solutions

and

P (uj- I x ■) -  X) (2 9)
( , l  ,) E L , d / i i )«*-'<’

in which =  \\xj — fa ||2. Since we used fa to compute P(ui \ Xj), and vice versa, 

(2.6) and (2.7) have no direct solution to  solve this system of algorithms. Fuzzy 

k-means is applied, which works as follows:

1. the algorithm initializes k (the number of clusters), and the centroid fa of 

each cluster;

2. the d a ta  points are moved into the nearest cluster to get his new membership 

based on Equation (2.9);

3. by using the membership, the centroid fa of each cluster is updated using
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23 2.2 Similarity Measures

(2 .8 );

4. If no changes in /r;, stop. Otherwise, go to  step 2.

2.1 .3  L im itations o f £;-Means

Although fc-means and fuzzy /c-means have been widely used for their simplicity, 

their critical weakness is their need for the correct value of k (the number of clusters). 

T hat is, which value of k yields the best result, where k is not know a priori.

One of the ways to get the best k known in entire search space is to  run fc-means 

clustering algorithm on all of possible values of fc, evaluate the result (for each k) 

and then select the value k which gives the best result. The evaluation of results is 

done through validity indices th a t will be discussed in later section.

Another way is to determine the number of clusters by the knowledge of biology. 

Unfortunately, this is not always possible since we only understand few of knowledge 

about genes.

For fuzzy fc-means clustering algorithm, the choice of the fuzziness param eter b 

is also a problem.

2.2 Sim ilarity M easures

As discussed earlier, the main idea of fc-means and fuzzy fc-means is to  distribute 

the data  points into clusters by measuring their similarity to  each other. Thus in 

fuzzy fc-means, we need measurements for the  similarity of the da ta  points. Many 

distance functions are used to measure similarity between two da ta  points, we briefly 

discuss the most well-known distance functions below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24 2.2 Similarity Measures

2.2.1 M ahalanobis D istan ce

Mahalanobis [21] distance was introduced first in 1936. The general multivariate 

normal probability density formula is written as

p ^  =  (2-Kyn\ E [1/2 exp[ - | ( ^  -  -  m)]. (2.10)

Samples drawn from a normal population tend to  fall in a single cluster, whose 

center is determined by /r and the shape of the cluster is determined by E, where x 

is the d a ta  point, /r is the centroid of cluster and E is the covariance matrix. The 

formula is written as

E =  — ^ ( X i - n Y -  (2-11)
Tt i- . 1i=l

The quantity r 2 =  (x — /a)tE~1(x -  p) is usually called the squared Mahalanobis 

distance from x to /_/. For the definition above, the M ahalanobis distance works 

well for correlated variables with different scales, and describes the shape of clusters 

more precisely, bu t increasing the computational complexity.

2.2.2 E uclidean  D istan ce

Euclidean distance can be seen as a special case of M ahalanobis distance, when the 

covariance m atrix E =  I  (i.e. the Identity matrix).

The Euclidean distance is supposed works best for un-correlated random vari­

ables and with same variance. Compared with the Mahalanobis distance, although 

the Euclidean distance gives a less precise description of the similarity of the data  

points, it is still used widely for its simplicity.
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2.2 .3  M inkow ski D istan ce  and C ity  B lock  D istan ce

Another general class of distances can also be used in clustering algorithms, the 

Minkowski distance. The Minkowski distance between the d-dimensional da ta  points 

is w ritten as:

The City Block distance is a special case of Minkowski distance when p  =  1. The 

City Block distance measure the shortest path between two points, each segment of 

which is parallel to a coordinate axis. It is also called M anhattan distance.

In fact, the Euclidean distance is also a special case of the Minkowski distance 

when p  =  2 .

2.2 .4  P ea rso n ’s C orrelation  C oefficient

Correlation is a  strong technique for measuring the relationship between two random 

variables, for example, the mileage of a used car and its resell price. Pearson’s cor­

relation coefficient is a quantitative measure of the strength of a linear relationship 

between two variables.

Suppose we have two random variables X  and Y  with means x and y. The 

Pearson’s correlation coefficient is computed as

where d is the number of observations, and yi is ith observation in variable X  and 

Y.

The Pearson’s correlation coefficient ranges from —1 to +1. A positive value 

is an evidence of tendency th a t this two variables are correlated; a  negative value 

of Pearson’s correlation coefficient represents the tendency th a t these two variables 

are negatively correlated. The closer the correlation coefficient is to  + /  — 1, the

d
(2 .12)

/  j  i  —  ^  \  Z /  \  v  *  t s  /

” [£ii(*i-z)2]1/2K ti  (^-y)2]1/2’

E tife  -x){yi -y) (2.13)
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stronger the  relationship is between these two variables. A value of zero indicates 

no correlation at all.

Fig.2.1 shows the linear relationship of a pair of variables. In Fig.2.1.a, the 

Pearson’s correlation coefficient is —0.0584 and in Fig.2.1 .b, the Pearson’s correlation 

coefficient is +0.9831.

Pearson’s correlation coefficient can also be applied to the similarity measure 

of tim e series microarray data. Here, we regard each gene as a variable, and the 

correlation coefficient between two genes are computed by Equation (2.13). If the 

correlation coefficient is close to + 1, the patterns of gene expressions are similar; if 

the value is close to 0 , the similarity of the patterns of gene expression is weak; and 

the patterns of gene expressions are reversed if the correlation coefficient is close to  

- 1.
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Figure 2.1: Two examples with different Pearson’s correlation coefficient.
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2.3 Clustering Validity Indices

Finding the optimal number of clusters is another im portant issue in clustering. For 

this purpose, validity indices are typically used to measure how good the result of 

clustering is. Broadly speaking, a clustering structure with minimal within-cluster 

distance and maximal between-cluster distance is the best one we seek. We discuss 

below the most well-known indices found in the literature [22].

The X B Index is a ratio of the compactness of the partition of the da ta  to  its 

separation. The expression for this index is w ritten as follows:

71 minmjn (J/iyn Mn||
X B  =  V3 ,1— q»!L (2.14)

where p,j is the mean of the j th cluster, u,.j is the degree of membership of the ith 

element to the j th cluster, and x.t is the ith point in the d a ta  set. The smaller the 

value of XB, the better the clustering structure, and thus, we seek to minimize XB. 

The I Index is defined as follows:

=  (2I5)

where Dk =  m a x ^ =1 1|//» -  p,j\\, Ek =  E "= i E jL i  un IIx* ~  Mill , k is the  number of 

clusters, and n is the number of d a ta  points. Ei  is a constant for a given d a ta  set, 

and p  is used to control the contrast between the different cluster configurations.

The term - ~ r  decreases with k, and D k increases with k. Thus, these two 

factors compete and balance each other in order to  obtain the optim al value of k. 

The value of k for which I(k)  is maximized is considered to  be the correct number 

of clusters.

The Calinski-Harabasz (CH) Index for n d a ta  points and k clusters is given
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by:
c u  [traceB/(k  — 1)]

[traceW/  (n -  fc)]
(2.16)

where traceB  =  n i IlMj — Ml|2> ni is the number of points in the j th cluster, ju 

is the mean of the entire da ta  set, fj,j is the mean of the j th cluster, and traceW  =  

Z o= i S "= i I\x i — Mjl|2- In this index, the number of clusters is considered as an 

im portant factor. The larger the value of CH is, the better the partition is, and 

hence we seek for maximizing CH.

The D avies-Bouldin (D B) Index is the ratio of the sum of within-cluster 

distance to  between-cluster separation, and is computed as follows:

Smaller values of DB represent better clustering, and the value th a t minimizes DB 

is the optimal number of clusters.

Although the above mentioned indices give good results, obtaining the optim al 

number of clusters is still an open problem. Clustering methods use a fixed param e­

ter, fc. as the number of clusters. Such param eter is determined by a trial-and-error 

procedure in order to  obtain a value th a t yields the best clustering results. In partic­

ular, for large data  sets, there is no evidence th a t the value of k obtained is optimal 

(unless one knows the correct number of clusters based on the nature of the data  

set).

2.4 Conclusion

In this chapter, we introduced fc-means/fuzzy fc-means clustering algorithms in de­

tail and we summarized the weakness in fc-means/fuzzy fc-means. Some similarity

(2.17)

where J% =  maxijV;i in which S) =  ^  Execy ll® -  Mill and di5 =  ||/i* -  Hj\\.
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measures and validity indices, which are widely used in clustering algorithms are 

also presented.
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Chapter 3

Simulated Annealing

In previous chapter, we mentioned a m ajor lim itation of fc-means clustering. T hat 

is, different initializations yield different results which are not necessarily optimal.

In this chapter, we will discuss an algorithm for searching (near) optimal cluster­

ing results given a well-defined objective function. We use a well-known optimization 

method, simulated annealing, which has been widely applied to many optimization 

problems.

3.1 The Basic Idea

As the name indicates, the main idea of the algorithm is derived from the analogy of 

thermodynamics with metal cooling and annealing. The amazing fact is th a t nature 

is able to  make metals stick at minimum energy state  by slow cooling. Along the 

way towards minimum energy state, atom s can not only move to the position with 

lower energy, but also move to higher energy with some probability.

Boltzmann factor P(T)  oc e x p ( = ^ )  describes exactly the probability of moving 

to a new state  in a therm al system contact a t tem perature T  based on the difference 

of energy, A E  . The probability of mobility of the atom s is decreased as the tem ­

perature T  cools down. In 1953, Metripolis et al. [24] first introduced this principle

30
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into numerical calculations.

To make a use of simulated annealing algorithm, there are three term s th a t have 

to be defined: configuration, objective function and energy. The aim of simulated 

annealing algorithm is to seek one configuration among all of possible configuration 

th a t makes an objective function best. Here, each configuration is a  possible solution, 

which contains one or many variables. For example, finding the minimal value 

of a function f ( x , y , z )  with three variables. A configuration is one of possible 

solutions with the values of x,y,z. In microarray analysis with simulated annealing, 

the configuration may be the membership matrix, the mean of the clusters, the 

number of clusters, k, or the fuzziness param eter, b.

The objective function is a function th a t measures the quality of the configu­

rations. As an example, Validity indices for clustering algorithms can be used as 

objective function.

Another term, energy, was introduced to simulated annealing algorithm. Energy 

is the value of quantizing an objective function for measuring the quality of the 

configuration.

The simulated annealing algorithm changes the current configuration to  a new 

one with the probability P  =  exp [ ~ ^ " e - ; usually called the Metropolis ac­

ceptance rule. Enew is the energy of the new configuration and Ecurrent is the energy 

of the current configuration, while T  is one value of a sequence of tem peratures, 

called annealing schedule. If Enew <  Ecurrent, the system moves to the new configu­

ration. Otherwise, the system moves to  the new configuration only with probability 

P. In other words, the system always moves downhill towards minimal energy while 

sometimes moving uphill with probability P. Based on the acceptance rule, T  is 

very high enough at the beginning to make sure th a t most of the moves will be 

accepted. However, as T  approaches 0, most of the uphill moves are rejected. The 

tem perature T  is updated to  be lower, another new configuration will be generated
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randomly, and its energy will be computed. The comparison will be done again until 

the tem perature T  is smaller than a threshold.

The simulated annealing algorithm works as follows:

51. Initialization Step 

Tem perature T0 is initialized.

A configuration is randomly chosen.

Ecurrent 1® calculated.

52. Generation Step

A new configuration is randomly generated.

The energy Enew is calculated

53. Selection Step

Accepted new configuration with the probability P  =  exp[ parent). j ̂  m w]pch

Enew and E current are the energies of the new configuration and current configuration. 

If the configuration is accepted, then E current is assigned to Enew.

54. Updating Step

The tem perature is updated.

If the tem perature is above the threshold, then go to  S2.

Otherwise, stop.

The computation tim e and quality of the result depend on the threshold. In 

the following section, we will discuss the annealing schedule T  and how it relates to 

quality of solution and execution time.

3.2 Annealing Schedule

Based on the previous description about simulated annealing algorithm, determin­

ing a good annealing schedule is one of the very im portant issues for the  efficiency 

of the simulated annealing algorithm. It is a sequence of the tem perature with a
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high value a t the beginning tha t decreases slowly. High tem perature values yield 

higher probability of acceptance, and the probability decreases as the tem perature 

decreases. Here, the tem perature is a param eter to control the probability of accept­

ing a move. There are two kinds of annealing schedules, based on fixed decrement 

rules and adaptive decrement rules.

The fixed decrement rule is independent of the algorithm itself. The tem perature 

is decreased proportionately to a constant over the course of the algorithm. There 

are several choices, such as the geometric cooling schedule (T(t) =  ô Tq) and the 

logarithmic cooling schedule (T(t) =  j ~ t ), where T0 is the initial tem perature, t  is 

the number of iterations, and a  is a param eter defined by users.

As an example, we have plotted the geometric cooling schedule and the loga­

rithmic cooling schedule, which are widely used in applications. Figure 3.1 shows 

the plot of the geometric cooling schedule, in which T0 =  10000, a  =  0.8 and t  is 

from 2 to 70 stepped up by 1. Figure 3.2 shows the plot of the logarithmic cooling 

schedule, in which T0 =  1 and t  is from 2 to  70 stepped up by 1.

7000 

6000 

5000 

4000 

3000 

2000 

1000 

0
0 10 20 30 40 50 60 70

Figure 3.1: Geometric cooling schedule

The second kind of schedules is based on adaptive decrement rules varying dy­

namically the proportional scale of the current configuration and the tem perature 

decrements over the course of the algorithm. Elmohamed et al. [10] introduced 

several adaptive annealing schedules.
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Figure 3.2: Logarithmic cooling schedule

For optimality criterion, there are, usually, several optim ization criteria, such 

as the probability to be in the ground state, the final energy regarding the last 

configuration as the final result, and the best-so-far energy representing the lowest 

energy found in the solution path, introduced by K.H. Hoffmann [14].

3.3 Conclusion

In the first section, simulated annealing was briefly introduced, and the  pseudo code 

was listed a t the end of this section. In the second and th ird  sections, the im portant 

issues, annealing schedule and optimality criterion, were also introduced.
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Chapter 4

R elated Work

Clustering approaches have been quite im portant tools for analyzing microarray 

data. Gasch et al. [12] used fuzzy fc-means clustering to  identify overlapping clusters 

of yeast genes by allowing genes to  belong to  more than  one cluster, because of the co­

regulation of genes. Using fuzzy fc-means clustering, they identified some previously 

unrecognized gene clusters and uncovered correlations between the environmental 

conditions.

In recent years, fuzzy fc-means has been widely used in many fields. As a result, 

the need to  solve the inherent weaknesses, the prior knowledge on the number of 

clusters fc and the fuzzy control param eter b, is arising.

Ray et al. [28] proposed a m ethod to  autom atically determine the number of 

clusters using a simple objective function. The m ethod obtains the best clustering 

by searching the entire searching space of fc based on the objective value.

Due to the large size of microarray data, the need to cluster such data  set into 

the ‘exact num ber’ of natural clusters becomes very im portant. Many approaches 

based on simulated annealing have been adopted in literature.

Lukashin et al. [20] proposed an algorithm to  determine the optimal number of 

clusters by applying SA to cluster microarray data. In their approach, the member­

ship matrix varies until the one minimizing the objective function, in this case, the

35
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sum of w ithin-cluster distance, is obtained. Then, the optimal number of clusters is 

the number of clusters obtained by SA.

Wang et al. [33] introduced a method to determine the number of clusters by 

simulated annealing. In each iteration step of SA, the new center of clusters is 

obtained by applying certain operations on the clusters, and using the XB index.

Another major problem in applying fuzzy fc-means clustering is the choice of the 

fuzziness param eter b. D. Dembele and P. Kastner [6], shows th a t a fixed value of b is 

not appropriate for some d a ta  sets and optimal value of b vary widely from one data  

set to  another. They also presented an empirical m ethod to determine an adequate 

value for the fuzziness param eter b. In th a t paper, the optimal number of clusters is 

obtained by the algorithm CLICK (Cluster Identification via Connectivity Kernels). 

To assess the quality of the clusters, the silhouette measure is used.

We propose a search method, which aims to  determine the optim al pair (fc, b), 

where fc is the number of clusters, and b is the fuzziness param eter, by combining sim­

ulated annealing and fuzzy fc-means. Table 4.1 presents a comparison between the 

proposed approach and the existing methods. The column “/i” shows the m ethod 

used to determine the means of the clusters. The column “P ” shows the methods 

used to  determine the probabilities th a t genes belong to  the clusters. The column 

“fc” shows the m ethod used to determine the number of clusters in the correspond­

ing approach, and the column “6” shows the m ethod used to  determine the fuzzy 

control param eter b. The column “ Validity Index” shows the validity indices used 

to measure the quality of the clusters.

For example, the fifth row shows the m ethod discussed in the approach proposed 

by Dembele et al., the means of the clusters and the probabilities th a t genes belong 

to a cluster are determined by fuzzy fc-means, the number of clusters fc is determined 

by CLICK, and the fuzzy param eter is determined by a bruce-force m ethod on the 

entire search space. Silhouette is used to  measure the quality of the clusters.
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Approach P fc b Validity Index
Gasch e t al. [12] FCM FCM - - -
Ray et al. [28] FCM FCM Bruce-force - in tra/in ter

Lukashin et al. [20] SA SA SA - J
Wang et al. [33] SA SA SA - XB

Dembele et al. [6] FCM FCM CLICK Bruce-force Silhouette
Proposed FCM FCM SA SA J, X B ,  CH, I, D B

Table 4.1: Comparison of the proposed m ethod with the existing methods.

In this chapter, some different methods, which are used to  determine the param ­

eters in fuzzy fc-means clustering algorithm, were listed. A comparison between our 

approach and these methods was given a t the end of this chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Approach for Optimizing 

Parameters

As we mentioned earlier, in fuzzy fc-means, there are limitations because of the 

need of the prior knowledge of param eters fc and b. In this chapter, we discuss our 

approach on optimizing the param eter fc and the  pair of (k,b) respectively in fuzzy 

fc-means.

5.1 Finding a O ptim al N um ber of C lusters

Our approach to find the optimal number of clusters, fc, was designed to  achieve a 

nearly-optimal value of fc by using simulated annealing. The simulated annealing 

algorithm selects a value fc according to  the Metropolis acceptance rule. This is 

repeated many times and the best value of fc, so far, is returned as the solution 

we seek. We use geometric cooling as our annealing schedule. The energy value 

associated with a given value fc (tha t is, the objective value th a t tells us how good 

the clustering result is, when fc is used as the current number of clusters), denoted

38
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39 5.1 Finding a Optimal Number o f Clusters

by E(k),  is simply1 XB(k) ,  CH(k) ,  I [k) or D B ( k ); where X B ,  CH,  I  and D B  are 

validity indices mentioned earlier in this thesis.

To determine the energy for k , E(k),  we apply the fuzzy fc-means clustering 

algorithm on the given data  set (where k is the number of clusters) and then apply 

one given validity index, e.g. if we use the index C H  to cluster, the value C H ( k ) is 

then returned as E(k).

The following pseudo code formalizes the procedure for finding a nearly opti­

mal number of clusters by using the simulated annealing approach. The algorithm 

receives the dataset D , and a threshold, 3, as parameters.

51. Initialization Step

Initialize the tem perature T  <— To.

Randomly choose a value of k0

Run the fuzzy fc0-means clustering algorithm

Obtain the initial energy, E(k0).

kcurrent * k()

52. Generation Step

Randomly choose knew, and run fuzzy fc„ew-means.

Calculate the energy E(kneu>) ■

53. Selection Step

If E{kn&ŵj E{kCurrent) 

h i h
f t 'current rx'new  •

else

Accept knew as current kcurrent with

1Note that the variables x  for the formula E{x)  are a full membership matrix, M  and the cluster 
centers, p, and s o i =  (p, M). In order to make the notation simpler, we commit some “abuse of 
notation ’’and use x = k, where k is the number of clusters. Note that this is a valid assumption if, 
for each k, a unique pair (p, M )  is returned by fuzzy fc-means, e.g. using an arbitrary initialization 
and a fixed value for b.
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'new  •

S4. Updating Step

U pdate tem perature T  based on the annealing schedule.

If T  is above the threshold 5, go to S2.

Otherwise, term inate

We have applied our approach to various d a ta  sets, and obtained quite good 

results. In the next chapter, we show the results on two of the datasets.

5.2 Finding a Optimal Pair (k,b)

In the last section, there is only one variable for simulated annealing, the number 

of clusters k. In this section, we apply the approach into a two-variable search, the 

number of cluster k and fuzziness param eter b.

In order to  apply the approach on this two-variable searching, three extensions 

to the approach originally presented in previous section were introduced.

In Initialization Step, ko and bo are randomly selected. The initial energy, 

E(k0,b0) is calculated.

The second extension is in Generation Step, knew and bnew are randomly chosen. 

The new energy, E(knew,bnew) is calculated.

The third extension is the calculation of the energy. In this subsection, the 

objective function is changed to

in which Jf is computed as in Equation (2.5), and I  is a validity index, which can 

be XB, I Index, CH, or DB. Thus, the algorithm seeks the minimum value of the 

function E(k,  b).

m m

m a x

(5.1)
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In Section 2.1.2, based on Equations (2.6) and (2.7), fuzzy fc-means finds a 

clustering structure whose means /r and the partition membership M  minimize J f  

(Equation (2.5)). A minimal value of J f  maps a clustering structure with its means 

Pj , j  =  1 , . . .  ,k,  and partition membership M.  In Section 2.3, we mentioned tha t 

validity indices are typically used to  determine the number of clusters, k. Thus, in 

our approach, to  determine the optimal pair (k,b), the energy E(k,b ) is calculated 

by using Equation (5.1).

SA aims to find a state  with minimum energy. To adopt an objective function, 

we use J f  I  for validity indices XB  and DB which are maximized, and for validity 

indices CH  and I Index, J f + 7  is used.

For this extension, normalization of J f  and I  is needed. In this case, the values of 

J F and I  are normalized respectively by {(Voriginal - / i s)/crs), in which Voriginai is the 

original values of J f  or I, jis is the mean of 1,000 seeds th a t are selected randomly 

from Voriginai, and as is the standard deviation of 1,000 seeds from Voruginai.

The following pseudo code formalizes the procedure for finding a  nearly optim al 

pair of k and b by using the simulated annealing approach. The algorithm receives 

a d a ta  set D, and a threshold <5, as parameters.

51. Initialization Step

Initialize the tem perature T  <— T0.

Randomly choose values of k0 and b0

Run fuzzy fc0-means

Obtain the initial energy, E(k0,b0).

kcurrent * k{) and bcurrent * 0̂

52. Generation Step

Randomly choose knew and bnew

Run fuzzy fc„eu,-means.

Calculate the energy E(knew,bnf.w) •
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42 5.3 Initialization of fuzzy k-means clustering

53. Selection Step

If E ( k  n e w )  ^  E ( k c u r r e n t )  

k c u r r e n t  * 5

^ c u r r e n t  * fn c jn

else

Accept and as current k CUr r e n t  and 

bcurrent with probability 

P  =  exp

54. Updating Step

U pdate tem perature T  based on the annealing schedule. 

If T  is above the threshold 5, go to  S2.

Otherwise, term inate.

(E (k n e w  ) E (k c u rr e n t c u r r e n t ))
T

5.3 Initialization of fuzzy £>means clustering

In k-means/fuzzy k-means clustering, there are two initialization m ethods based on 

which one, the means /./ or partition membership M , is randomly set in Initialization 

Step.

In the experiments of our approach, initializing the means n is adopted in the 

experiments to find the optimal pair (k,b) on yeast d a ta  set from Cho et al [4], and 

the rest of experiments randomly set the partition membership M  in Initialization 

Setp. The results of these experiments are discussed in the next chapter.

5.4 Conclusion

In this chapter, we proposed our optimization approach to  determ ine the param e­

ters of fuzzy /c-means clustering algorithm. Two applications using the approach,
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determining the optimal number of k and determining the optimal pair (k,b), were 

introduced. Two initialization methods in fuzzy k-means were presented, which will 

be used in the next chapter.
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Chapter 6

Experim ents and Discussions

To analyze the performance of our algorithms, we applied our approach on synthetic 

(i.e. artificial) da ta  sets as well as real-world d a ta  sets. The value of fi, the fuzziness 

param eter, is fixed to  1.25 for all experiments involving finding the best number of 

clusters, k, only.

6.1 Experim ents for Finding the B est N um ber of 

Clusters

To test our clustering method, we have implemented experiments on two different 

data  sets. One such d a ta  set is derived from time-series experiments of the yeast cell 

cycle1, which has 17 time points of expression d a ta  th a t correspond to  synchronized 

yeast cells over a period of two cell cycles with over 6,000 genes.

The other d a ta  set is a two-dimensional overlapping synthetic d a ta  set, which is 

generated using normal distribution with 1,000 d a ta  points grouped in 10 clusters. 

Fig.6.1 shows the da ta  set in a two dimensional plot. For each cluster, the identity 

m atrix is used as the covariance matrix.

1The data set can be obtained from http://arep.m ed.harvard.edu/ExpressDB/.

44
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45 6.1 Experiments for Finding the Best Number of Clusters

Figure 6.1: The synthetic da ta  set with 1,000 samples grouped into 10 clusters.

To see if SA is able to find (near) optimal solutions, we first ran a brute-force pro­

cedure to generate the validity values corresponding to all values of k =  2 , . . . ,  100. 

For each k , the clustering structure is obtained by fuzzy fc-means, and the validity 

value is calculated using the indices.

Figs. 6.2 to  6.5 show the curve of validity values on the real-life microarray data  

set. Figs. 6.6 to  6.9 show the curve of validity values on the synthetic data. The 

£-axis represents k, the number of clusters, while the y-axis is the validity value to 

assess the quality of the clustering structure obtained by fuzzy fc-means with the 

corresponding k, where b =  1.25.

Next, we applied SA on the same d a ta  sets, as above, to assess its ability to 

find the best value of k. If SA performs well, then it should find the optimal (or 

near optimal) values of k as illustrated on the validity curves. Then, by using 

simulated annealing on the curve of validity values, the algorithm is tested. In these 

experiments, kmin =  2, kmax =  100 and T0 =  10,000. The SA algorithm runs until 

the tem perature T  is below a threshold, 5 =  0.001.

By adjusting the param eters in the annealing schedule T(t)  =  a lT0, we tested 

the algorithm 11 times with different search iterations individually, 81, 68, 58, 51, 

45, 40, 36, 32, 29, 26 and 24. For example, 81 search iterations means th a t the 

algorithm searches 81 out of 100 optional configurations, in this case, to  find the
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Figure 6.2: The validity values of the CH index for fuzzy fc-means on the yeast 
microarray data  set.
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Figure 6.3: The validity values of the DB index for fuzzy fc-means on the yeast 
microarray d a ta  set.
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Figure 6.4: The validity values of the I Index for fuzzy A"-means, plotted for values 
of k =  2 , . . . ,  100, on the yeast microarray d a ta  set.
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Figure 6.5: The validity values of the XB index obtained by using fuzzy fc-means, 
corresponding to  k =  2 , . . . ,  100, on yeast microarray d a ta  set.
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Figure 6 .6 : The validity values of the DB index on the synthetic d a ta  set, where 
k =  2 , . . . ,  100.
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Figure 6.7: The validity values of the XB index on the synthetic d a ta  set, where 
k =  2 , . . . ,  100.
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k

Figure 6 .8 : The validity values of the I Index on the synthetic d a ta  set, where 
k =  2 , . . . ,  100.
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Figure 6.9: The validity values of the CH index on the synthetic d a ta  set, where 
fc =  2 , . . . , 1 0 0 .
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CH

# o f  Iterations

Figure 6.10: The quality of the CH validity values obtained by SA compared with 
the best value on the yeast microarray d a ta  set

optimal solution.

Figs. 6.10 to 6.13 show the quality of the validity value obtained compared with 

the best validity value on the real-life microarray da ta  set for the four indices; and 

Figs. 6.14 to  6.17 show the results on the synthetic d a ta  set. In these figures, 

the x-axis represents the different numbers of iterations and the y-axis represents 

Vnevj/Vopt, where Vopt is optimal evaluation value in the corresponding validity curve 

and Vnew is the average of the best validity values obtained by running this algorithm 

100 times. W hen the value of Vnew/Vopt is 1, it means th a t we obtain the optim al 

value.

We observe th a t the SA does a good job in obtaining values which are near to  

the optimal. In case of the I Index for yeast, Figure 6.12, it reaches a value of 0.987 

in 81 iterations, which means th a t the solution found by SA is almost optimal, as 

can also be observed in Table 6 .1. SA with the other indices also obtain high quality 

solution.

To demonstrate the power of our approach from another perspective, we show 

the results on real-life microarray data  in term s of numerical data. Table 6.1 shows
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Figure 6.11: The quality of the DB validity values obtained compared with the best 
value on the yeast microarray data  set

I Index
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Figure 6.12: The quality of the result obtained on I Index validity values of the 
yeast microarray da ta  set
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XB

# of Iterations

Figure 6.13: The quality of the XB validity values obtained by SA compared with 
the best value on the yeast microarray data  set

#  of itera DB index XB index IndexIindex CH index
H itR Solution HitR Solution H itR Solution HitR Solution

24 13 2.766 25 0.890 16 15.468 16 655.584
26 25 2.667 28 0.877 25 15.541 29 687.385
29 28 2.633 32 0.866 26 15.991 29 715.989
32 30 2.641 28 0.873 26 16.284 37 743.782
36 33 2.604 42 0.851 37 17.384 28 727.701
40 42 2.583 36 0.850 37 17.088 38 772.960
45 48 2.545 43 0.854 45 17.718 37 763.909
51 45 2.548 52 0.837 54 17.986 52 809.983
58 59 2.522 59 0.836 61 18.526 59 836.512
68 78 2.496 67 0.829 71 18.525 66 862.689
81 82 2.480 82 0.825 82 18.634 79 890.626

Optimal 2.460 0.824 18.879 929.199

Table 6.1: Search quality with four indices: DB, XB, I Index and CH, which were 
obtained by SA on yeast microarray data.
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#  of itera DB index XB index IndexIindex CH index
HitR Solution HitR Solution HitR Solution HitR Solution

24 25 0.4806 29 0.1524 28 7304936 33 11395.31
26 27 0.4521 29 0.1776 23 7172090 32 11410.52
29 35 0.4291 30 0.1362 34 7606400 26 11381.30
32 28 0.4442 26 0.1479 33 7750920 29 11392.85
36 41 0.3875 39 0.1034 35 7953000 36 11534.06
40 41 0.3897 49 0.0954 48 8404510 28 11590.92
45 42 0.3790 50 0.0799 48 8436748 41 11591.98
51 46 0.3711 50 0.0753 52 8675105 51 11769.39
58 52 0.3492 52 0.0698 56 8807824 59 11849.63
68 64 0.3221 70 0.0597 71 9201801 78 11977.92
81 86 0.2733 86 0.0436 84 9527548 85 12035.17

Optimal 0.2488 0.0365 9889376 12113.34

Table 6 .2 : Quality of the results obtained by SA on the synthetic d a ta  set.

the quality of the solution corresponding to  11 tests with different search iterations 

for each of the four indices on the yeast microarray da ta  set. Table 6.2 shows the 

quality of the solution corresponding to  the tests with different search iterations for 

each of the four indices on the synthetic d a ta  set. The column “#  of i tem " shows 

how many iterations the algorithm runs to  search the optim al value. “HitR" is the 

number of times SA reaches its optimal value in 100 runs. “Solution" is the value 

obtained by the algorithm. The last row contains the optimal value for each of the 

four indices. We observe th a t the value obtained by SA becomes close to  the optim al 

value gradually, while the number of iterations increases, and certainly the tim e to  

search the optim al value grows.

6.2 Experim ents for Finding the O ptim al Pair o f 

k and b

In these experiments, we seek the best pair of k and b using our SA approach. To 

test our approach, we have run experiments with two da ta  sets: one is the yeast
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Figure 6.14: The quality of the CH validity values obtained by SA on the synthetic 
da ta  set.

»Index

#  of iterations

Figure 6.15: The quality of the I Index validity values obtained by SA on the 
synthetic d a ta  set.
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Figure 6.16: The quality of the XB validity values obtained by SA on the synthetic 
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Figure 6.17: The quality of the DB validity values obtained by SA on the synthetic 
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microarray data  set, and the other is the serum data  set2, which contains 517 genes 

whose expression vary in response to serum concentration in human fibroblasts.

Again, we have run a brute-force procedure th a t generates the validity values for 

all pairs of values (k =  2 , . . . ,  100, and b =  1 .05, . . . ,  3.00, for the yeast microarray 

d a ta  set and k =  2 , . . . ,  60 and b =  1 .0 5 ,... ,3.00, for the serum microarray data  

set). For each pair of k and b, the corresponding clustering structure is obtained. 

In every iteration, the search m ethod simply accesses these values directly, instead 

of clustering the data  points.

Figs. 6.18 to 6.21 show the objective values on yeast with k =  2 , . . . ,  100 and 

b =  1.05, . . . ,  3.00. Figs. 6.22 to  6.25 show the values for each index on serum 

with k =  2 , . . . ,  60 and b =  1.05, . . . ,  3.00. The x-axis represents k, the  number 

of clusters, the y-axis represents the values of 6, and the 2-axis is the  value of the 

objective function which is used to  measure the quality of the clustering structure 

obtained by fuzzy /c-means with the corresponding values k and b.

The parameters for our SA algorithm were set to  kmin =  2, kmax =  100 (or kmax — 

60 for serum ) and T0 =  10000. The algorithm runs until the tem perature T  reaches 

the threshold a, set to  0.0005. By adjusting the param eter in the annealing schedule 

T ( t ) =  a lT0, we tested the algorithm 11 times with different search iterations for 

yeast and 9 times for serum. We note th a t for indices XB and DB the plots show 

highly peaked regions, this behavior cause some difficulties in finding the optim al 

parameters, as it will be discussed later. The plots for CH and I Index are smoother, 

and hence much easier to  explore using heuristics such as SA (see later discussions) 

Fig. 6.26 shows the quality of the results obtained compared with the best value 

on yeast, while Fig. 6.27 shows the results on serum. In these figures, the x-axis 

represents the number of iterations and the y-axis is Vnew/Vopt, where Vopt is the 

optimal validity value of the corresponding index and Vnew is the  average of the

2The data set can be downloaded from http://www.sciencemag.org/feature/data/984559.shl.
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Figure 6.18: The objective values of the I Index for seeking the optim al pair of k 
and b, on the yeast microarray d a ta  set.

Figure 6.19: The objective values of the DB index for seeking the optim al pair of k 
and b, on the yeast microarray d a ta  set.
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Figure 6.20: The objective values of the CH index for seeking the optim al pair of k 
and b, on the yeast microarray da ta  set.

Figure 6.21: The objective values of the XB index for seeking the optim al pair of k 
and b, on the yeast microarray da ta  set.
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Figure 6.22: The objective values of the I Index for seeking the optim al pair of k 
and b, on the serum da ta  set.
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Figure 6.23: The objective values of the CH index for seeking the optim al pair of k 
and b, on the serum da ta  set.
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Figure 6.24: The objective values of the XB index for seeking the optimal pair of k 
and b, on the serum da ta  set.

Figure 6.25: The objective values of the DB index for seeking the optim al pair of k 
and 5, on the serum data  set.
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Figure 6.26: Quality of the objective values obtained by SA on the yeast da ta  set, 
compared with the best values.

values obtained by running the algorithm 100 times. W hen the value of Vnew/Vopt 

is 1, it means th a t we obtained the optimal value.

To dem onstrate the results from another perspective, we show the results in 

terms of numerical data. Tables 6.3 and 6.4 show the number of tim es the optimal 

value was obtained by SA corresponding to  11 iterations for each of E (k ,b ) on the 

two d a ta  sets. The column “#  of it" shows how many iterations the algorithm runs 

to find the optimal value. “HitR" is the number of times SA reaches its optimal 

value in 100 runs. “Solution” is the value obtained by the algorithm. The last row 

contains the optimal value for each of E(k,b). The value obtained by SA becomes 

close to  the optimal value gradually, as the number of iterations increases, this 

reflects the efficiency of our SA approach in finding the optim al parameters.

6.3 Com parison w ith Pre-C lustered Y east D ata

Cho et al. [4] showed th a t there are 416 yeast genes th a t dem onstrate consistent 

periodic changes in transcript levels, and 232 functionally characterized genes whose 

transcripts display periodic fluctuation. The genes are listed based on their biological
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Figure 6.27: Quality of the objective values obtained by SA on the serum da ta  set, 
compared with the best values.

#  of it J+ D B  index J+ X B  index J+ IndexI index J+ C H  index
HitR Solution HitR Solution HitR Solution H itR Solution

722 20 -1.05946 20 -0.758778 15 -6.56859 24 -5.22239
925 16 -1.06156 18 -0.758789 22 -6.78657 18 -5.24081
1192 23 -1.06703 23 -0.758796 24 -6.84594 26 -5.46262
1519 26 -1.07202 32 -0.758812 33 -7.02020 35 -5.59476
1859 44 -1.08229 40 -0.758817 43 -7.22585 38 -5.78348
2092 49 -1.08435 37 -0.758819 46 -7.24943 36 -5.84386
2393 45 -1.08372 35 -0.758820 49 -7.29640 43 -5.90026
2577 46 -1.08354 54 -0.758828 44 -7.23825 52 -5.96485
2793 47 -1.08553 49 -0.758825 47 -7.28754 62 -6.03839
3048 64 -1.09149 55 -0.758826 56 -7.33337 57 -5.99178
3359 59 -1.08986 62 -0.758331 66 -7.39885 55 -6.00166

Optimal -1.10469 -0.758844 -7.59599 -6.32311

Table 6.3: The quality of results for the optim al pair of (k, b) on yeast da ta  set
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#  of it J+ D B  index J+ X B  index J+ IndexI index J+ C H  index
HitR Solution HitR Solution HitR Solution HitR Solution

336 12 -1.40325 8 -1.050922 9 -1.134337 11 -1.176123
424 14 -1.42105 10 -1.051390 11 -1.134425 19 -1.176223
553 19 -1.43414 27 -1.053334 13 -1.134472 18 -1.176263
724 17 -1.43501 21 -1.053439 23 -1.134523 23 -1.176312
927 36 -1.44848 30 -1.054667 28 -1.134562 25 -1.176339
1194 39 -1.45416 42 -1.055103 30 -1.134587 43 -1.176393
1521 50 -1.45813 47 -1.055562 37 -1.134605 43 -1.176397
1861 52 -1.46200 51 -1.055721 52 -1.134633 49 -1.176418
2094 53 -1.46313 66 -1.056294 58 -1.134642 59 -1.176426

Optimal -1.47094 -1.057468 -1.134682 -1.176462

Table 6.4: The quality of results for the optimal pair of (k, b) on serum da ta  set.

function under each phase in the yeast cell cycle.

In these experiments, we applied our SA approach to  seek the optim al pair of 

k and b on a subset of the yeast da ta  set consisting of 210 genes th a t Cho et al. 

grouped into 5 clusters based on their biological functionality. The clusters are 

denoted by ‘Early GT, ‘Late G l \  ‘S’, ‘G2’and ‘ML

The experiments are similar to  the experiments for finding the optim al pair 

of k and b, as detailed in Section 6.2, except kmm =  2 and kmax =  20, and the 

initialization of fuzzy /c-means was done in two different ways: one is th a t k samples 

are randomly selected as the means of the clusters, and the other is th a t 2k samples 

are selected, and the means the clusters were computed by taking k pairs of samples 

whose distances are the shortest.

The optimal pair (k,b) obtained by SA with the combined objective function JF 

and CH/I Index is (4, 1.05). Table 6.5 shows the clustering accuracy of the mem­

berships. Each cell in the table contains the number of genes in the  intersection 

of the 5 clusters categorized biologically and clusters obtained by our SA. We ob­

serve that, though unsupervised, the best assignment of biological clusters into the 

resulted clusters is th a t Early G1 into the 1st cluster, Late G l into the  2nd cluster,
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1st Cluster 2"dCluster 3rdCluster 44/iCluster
Early G1 26 4 0 0
Late G1 8 70 3 0

S 2 12 25 4
G2 1 2 10 13
M 4 1 1 24

Table 6.5: The clustering accuracy on Cho yeast d a ta  set with J  combined with the 
indices, Index and CH.

S into the 3rd cluster and G2 and M into the 4th cluster, whose accuracy is 75.23% 

3. We observed, on the other hand, tha t the clustering structures obtained by using 

the combined function JF and XB/D B are not stable, and the optim al pair of k and 

b is (20, 3.0), which is not reliable, since various experiments in the literature show 

th a t the best value of b is between 1.05 and 1.25. Such un-stability on DB and XB 

can be dem onstrated by observing figures 6.18 through 6.25. All figures associated 

with XB and DB show search landscape th a t contain highly peaked regions (with 

narrow peaks), whereas those associated with I Index and CH have no peaks and 

show a very smooth landscape. SA yields poor results on DB and XB because it 

is harder to find the top of the tallest peaks among many peaks w ith almost flat 

surrounding areas.

6.4 Experim ents w ith Tabu List

In this section, a  comparison between with and without Tabu list [1] is presented. 

First, a description about Tabu list is presented, and then the design of the experi­

ments is introduced. In the last part, the results are given.

3the accuracy is computed as follews: 26+70+ y + 13+24 =  75.23%, where n is the total number
of genes
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6.4 .1  W h at is Tabu List?

Tabu list is derived from another optimization method, Tabu search [1]. Tabu search 

th a t is an optimization technique th a t uses a form of short-term memory to keep a 

search from becoming trapped in a  local minimal value. This short-term  memory 

is named Tabu list th a t keeps track of recent solutions. At each iteration in the 

optim ization process, new solutions are checked against the Tabu list. The solutions 

th a t are in Tabu list will not be chosen for the next iteration.

6 .4 .2  D esign  o f E xp erim ents w ith  Tabu List

In these experiments, Tabu list is introduced into our search approach to  find the 

optimal value of k. In each iteration of searching process, a new configuration is 

checked first in Tabu list. If this configuration is in Tabu list, called hitting the 

time-consuming fuzzy /c-means clustering, will not be executed and the energy of 

this configuration is accessed directly from corresponding memory. Otherwise, fuzzy 

fc-means clustering will not be avoided and then the energy computed using validity 

indices is stored into a memory for the following iteration.

For the algorithm without Tabu list, the  com putation of clustering and energy 

for each configuration can not be avoided. Thus, the efficiency of the algorithm with 

Tabu list is measured by counting the average hitting rate  of the Tabu list. The 

more hitting rate  the Tabu list yields, the more com putation is avoided and more 

tim e is saved for the algorithm with Tabu list.

To obtain the average hitting rate  of Tabu list, the algorithm is run ten times and 

the average hitting rate is the ratio of the sum of h itting in this ten times running 

to the sum of the number of configurations totally.

In this section, to show the efficiency of the algorithm with Tabu list, 11 exper­

iments with different search iterations, 81, 68 , 58, 51, 45, 40, 36, 32, 29, 26 and 

24, were carried out. Figs. 6.28 to  6.31 show the average hitting rates for these 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66 6.4 Experiments with Tabu List

d> h it Rate

S'
X

#  of iterations

Figure 6.28: The curve of hitting rate of the DB index on the yeast microarray data  
set with different iterations.

experiments, in which, the energy was calculated with the four indices: CH, I Index, 

DB and XB. In these figures, the £-axis represents the different search iterations 

th a t the experiments has, while the y-axis represents the average h itting  rates.

To dem onstrate the results from another perspective, we show the results on real- 

life microarray da ta  in term s of numerical data. Table 6.6 shows the  hitting rate 

corresponding to 11 tests with different search iterations for each of the  four indices 

on the yeast microarray da ta  set. The column “#  of iterations11 shows how many 

iterations the algorithm runs to  search the optimal value. 11 CH index11, “IN Index11, 

aXB index11 and UDB index11 are the average hitting rates th a t configurations were 

found in Tabu List on the procedure to  the optimal solution in 10 runs.

Table. 6.6 and Figs. 6.28 to  6.31 show th a t with Tabu list, our SA algorithm 

can obtain over 30% hitting  rate under 81 search iterations. T ha t is, over 30% 

time-consuming fuzzy clustering will be saved. And the algorithm with Tabu list is 

faster than the  algorithm without Tabu list.
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Figure 6.29: The curve of hitting rate of the XB index on the yeast microarray data  
set with different iterations.
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Figure 6.30: The curve of hitting rate  of the CH index on the yeast microarray data  
set with different iteration numbers.
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Figure 6.31: The curve of hitting rate of the I Index on the yeast microarray data  
set with different iteration numbers.

#  of iterations CH index I Index XB Index DB index
24 10.83 13.75 13.75 12.91
26 11.15 10.77 13.07 12.30
29 11.72 11.72 9.65 10.68
32 15.00 14.37 16.25 16.56
36 18.33 15.55 12.77 14.16
40 18.25 20.50 18.75 17.00
45 18.44 19.77 18.00 18.66
51 20.19 22.15 20.78 22.54
58 24.65 26.55 25.00 26.37
68 26.32 29.55 25.00 24.55
81 30.86 31.72 32.46 31.72

Table 6 .6 : The H itting rate with Tabu List by using four indices.
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Figure 6.32: The procedure of SA using the DB index without shrinking the scope 
of randomization.
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of randomization.
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Figure 6.34: The procedure of SA using the CH index without shrinking the scope 
of randomization.
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6.5 Experim ents w ith £Shrinking' the Scope of 

R andom ization

As We mentioned earlier, annealing schedule controls the running of SA. SA will 

keep running until the tem perature reaches a certain threshold. The threshold 

determines the number of search iterations. One question th a t typically arises is 

how to determine the threshold. Smaller thresholds yield larger running time and 

larger thresholds yield weaker solutions.

Figs. 6.32 to 6.35 show the different kinds of configurations th a t are randomly 

selected during the procedure of SA running 10 times. ‘S ta r’ points present the 

better configurations accepted directly as current solutions, ‘cycle’ points present 

the worse configurations rejected with the probability, and ‘plus’ points present the 

configuration accepted with the probability. Based on these figures, we can find th a t 

the ‘s ta r’ points converge close to the final solution early, while the  ‘plus’ points 

increase rapidly.

There are two reasons th a t cause the unnecessary ex tra  running of SA: the thresh­

old is either too small, or the fixed range of randomly selecting a configuration.

In this experiment, We added a self-adjusted ending condition into SA algo­

rithm  to speed up the convergence toward optim al solution. The range of randomly 

selecting the configuration will shrink based on the following equation:

k new r a n d o m ^ R d o n m ,  R u p ) ,  ( h■ f )

where the upper bound of the range R up =  kcu„ent +  (50 — N B  x v) and the lower 

bound of the range Rdown =  kcurrent -  (50 -  N B  x v), N B  is the number of the 

configurations th a t are rejected with probability, showing as ‘plus’ points in these 

figures and v is the param eter to  control the scale of shrinking. For instance, v -  2 

means the range will be shrunk by 2 for each ‘plus’ point encountered.
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Figure 6.36: The procedure of SA using the CH index with shrinking the scope of 
randomization by 1.

Another contribution of this improvement is th a t the second ending condition is 

introduced into the SA: when Rup — Rdown <  1, th a t means th a t if there is no space 

for selecting, then the algorithm term inates.

Figs. 6.36 to 6.39 show the procedure of shrinking the range of randomization 

with the different scales by using CH index. In Fig. 6.36, we can see th a t although 

the computation is as much as th a t in SA without shrinking, the ‘plus’ points are 

converged to  the optimal solution and the intensity of ‘s ta r’ points is increased 

around the optimal values. Figs. 6.37 and 6.38 show th a t the com putation is less 

time consuming than th a t without shrinking the range even up to about 50%. Fig. 

6.39 shows less improvement than  Fig. 6.38, because of the fewer ‘plus’ points th a t 

can be used to shrink the range.

6.6 Conclusion

In this chapter, to verify the power of our approach, some experiments are presented, 

and to  enhance the efficiency of the approach, two m ethods are applied, searching 

with Tabu List and shrinking the scope of randomization.
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Figure 6.37: The procedure of SA using the CH index with shrinking the scope of 
randomization by 2 .

# sir

o a o  Tf &
©

(T) O *-*=>o ' Q .

o±o* +

Id- * gSd#*+ h r  * o ** © *%•*© .'%°* K %•: ^
d?

4 + 'W#* *a V ++±* * **

t  +4-

*t£>

s* .

%* £
*++$AA+

+ L+4 t^ t»

Figure 6.38: The procedure of SA using the CH index with shrinking the scope of 
randomization by 3.
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Figure 6.39: The procedure of SA using the CH index with shrinking the scope of 
randomization by 4.
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Chapter 7

Conclusions and Further Work

We have presented a new m ethod to optimize the number of clusters, k, and the 

fuzziness param eter, b, in fuzzy clustering microarray time-series data . A nearly 

optimal value for the pair of k and b can be reached using simulated annealing on 

gene expression data. Also two methods are applied to  improve our approach.

Based on the analysis of the figures and tables, our m ethod has been found to 

run very quickly and accurately by 88.7% computation tim e for up to  66% hitting 

rate on optimal value. The average of the values obtained is 99.88% closed to  the 

optimal value, which is showed for the combined function Jp  and X B  in Table 6.4. 

We have also validated our m ethod using well-known biological d a ta  analyzed by 

Cho et al.

These results have been attained on both real-life and synthetic data . Our future 

work focuses on analyzing our approach for other clustering algorithms, such as k- 

means and expectation-maximization, as well as utilizing other distance measures.
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Appendix-Source Code

Fuzzy /c-means and indices function

Fuzzy k -  m eans

f u n c t i o n  f u z z y k m e a n s ( S t a r t B , E n d B , S t a r t K , E n d K , C u t o f f , B S t e p , d a t a )  

°/„ B y  u s i n g  t h e  M a t L a b  b u i l d - i n  f u n c t i o n ,  f c m ,  t h i s  f u n c t i o n  

%  c l u s t e r s  t h e  d a t a  a n d  c o m p u t e  t h e  e v a l u a t i o n  v a l u e  b a s e d  o n  

%  t h e  i n d i c e s  C H ,  X B ,  I  I n d e x  a n d  D B .

% I N P U T

%  d a t a  i s  t h e  d a t a s e t  t o  c l u s t e r  

%  S t a r t B  a n d  E n d B  a r e  t h e  b o u n d a r y  o f  b

%  S t a r t K  a n d  E n d K  a r e  t h e  b o u n d a r y  o f  k

%  C u t o f f  i s  t h e  t h r e s h o l d  f o r  f u z z y  k - m e a n s  c l u s t e r i n g

I  B S t e p  i s  t h e  i n c r e a s i n g  s t e p  f o r  e a c h  i t e r a t i o n .

I t e r a  =  1 0 0 0 0 ;

f o r  i  =  S t a r t K : E n d K

f o r  j  =  S t a r t B : B S t e p : E n d B

[ c e n t e r , U , v ]  =  f c m ( d a t a , i , [ j  1 0 0 0 0  C U T O F F  0 ] ) ;

76
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c h f  =  C H ( U ’ , d a t a , c e n t e r , i )  ; 

x b f  =  X B ( U ’ , d a t a , c e n t e r , i ) ; 

i n d e x f  =  I N D E X ( U > , d a t a , c e n t e r , i ) ; 

d b f  =  D B ( U ’ , d a t a , c e n t e r , i )  ;

e n d

e n d

four ind ices function , X B ,C H ,IN D E X  and D B

f u n c t i o n  E = X B ( m e m , d a t a s e t , m u , K )

% I N P U T :

%  m e m  i s  t h e  m e m b e r s h i p  m a t r i x  

7 ,  d a t a s e t  i s  t h e  d a t a s e t  u s e d  t o  c l u s t e r  

%  m u  i s  t h e  m e a n s  o f  c l u s t e r s  

°/„ K  i s  t h e  n u m b e r  o f  k  

I  O U T P U T

%  e  i s  t h e  e v a l u a t i o n  v a l u e

[ M , N ] = s i z e ( d a t a s e t ) ; 

w = 0 ;

f o r  i = l : K

f o r  j = l : M

w = w + m e m ( j , i ) . * m e m ( j , i ) . * ( d a t a s e t ( j , : ) - m u ( i , : ) ) * ( d a t a s e t ( j , : ) - m u ( i

e n d

e n d

m i n _ m u = ( m u ( l , : ) - m u ( 2 , : ) ) * ( m u ( l , : ) - m u ( 2 , : ) ) ' ;  

f o r  i = 2 : K
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f o r  j = l : i - 1

d i s = ( m u ( i , : ) - m u ( j ,  : ) ) * ( m u ( i , : ) - m u ( j  

i f  d i s  < =  m i n _ m u  

m i n _ m u = d i s ;

e n d

e n d

e n d

E = w / ( M . * m i n _ m u ) ;

f u n c t i o n  E = I N D E X ( m e m , d a t a s e t , m u , K )

%  I N P U T

%  m e m  i s  m e m b e r s h i p  m a t r i x  

%  d a t a s e t  i s  t h e  d a t a s e t  u s e d  t o  c l u s t e r  

%  m u  i s  t h e  m e a n s  o f  c l u s t e r s  

7 ,  K  i s  t h e  n u m b e r  o f  c l u s t e r s  

% O U T P U T

7o E  i s  e v a l u a t i o n  v a l u e  

[ M , N ] = s i z e ( d a t a s e t ) ; 

p = 2 ; E k = 0 ; 

f o r  i = l : K

f o r  j = l : M

E k = E k + m e m ( j , i ) . * s q r t ( ( d a t a s e t ( j , : ) - m u ( i , : ) ) ( d a t a s e t ( j , : ) - m u ( i , : ) ) ’ ) ;

e n d

e n d
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m a x _ m u = ( m u ( l , : ) - m u ( 2 , : ) ) ( m u ( l , : ) - m u ( 2 , : ;  

f o r  i = 2 : K

f o r  j = l : i - 1

d i s = ( m u ( i , : ) - m u ( j , : ) ) ( m u ( i , : ) - m u ( j  

i f  d i s  > =  m a x _ m u  

m a x _ m u = d i s ;

e n d

e n d

e n d

D k = m a x _ m u ;

z m u = z e r o s ( l , N ) ; 

f o r  i = l : M

z m u = z m u + d a t a s e t ( i , : ) ;

e n d

z m u = z m u . / M ;

E 1 = 0 ; 

f o r  i = l : M

E l = E l + s q r t ( ( d a t a s e t ( i , : ) - z m u ) ( d a t a s e t ( i , : ) - z m u ) ’ ) ;

e n d

E = ( l . / K . * E 1 . / E k . * D k ) " p ;

f u n c t i o n  E = C H ( m e m , d a t a s e t , m u , K )

7. INPUT

7o m e m  i s  t h e  m e m b e r s h i p  m a t r i x
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%  d a t a s e t  i s  t h e  d a t a s e t  u s e d  t o  c l u s t e r  

% m u  i s  t h e  m e a n s  o f  c l u s t e r s  

7 ,  K  i s  t h e  n u m b e r  o f  c l u s t e r s  

I  O U T P U T

7 ,  E  i s  t h e  e v a l u a t i o n  v a l u e

[ M , N ] = s i z e ( d a t a s e t ) ;

z m u = z e r o s ( l , N ) ;

z m u  =  m e a n ( d a t a s e t ) ;

n u m = z e r o s ( l , K ) ;

n u m = s u m ( m e m ) ;

t r a c e b = 0 ;

f o r  i = l : K

t r a c e b = t r a c e b + n u m ( l , i ) . * ( ( m u ( i , : ) - z m u ) ( m u ( i , : ) - z m u ) ’ ) ;

e n d

t r a c e w = 0 ;  

f o r  i = l : K

f o r  j = l : M

t r a c e w = t r a c e w + m e m ( j , i ) . * ( ( d a t a s e t ( j , : ) - m u ( i , : )  ) ( d a t a s e t ( j , : ) - m u ( i , : ) ) ’ ) ;

e n d

e n d

E = t r a c e b . * ( M - K ) . / ( t r a c e w . * ( K - l ) ) ;

f u n c t i o n  E = D B ( m e m , d a t a s e t , m u , K )

7 ,  I N P U T

% m e m  i s  t h e  m e m b e r s h i p  m a t r i x  

7 .  d a t a s e t  i s  t h e  d a t a s e t  u s e d  t o  c l u s t e r
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"/» m u  t h e  m e a n s  o f  c l u s t e r s  

7 .  K  i s  t h e  n u m b e r  o f  c l u s t e r s  

"/„ O U T P U T

"/. E  i s  t h e  e v a l u a t i o n  o f  v a l u e  

[ M , N ] = s i z e ( d a t a s e t ) ;

W D = z e r o s ( l , K ) ;

" / . C o m p u t i n g  t h e  w i t h i n - d i s t a n c e  o f  c l u s t e r  

f o r  i  =  1 : K

C i = s u m ( m e m ( : , i ) ) ;  

f o r  j  =  1 : M

W D ( i )  =  W D ( i ) + p d i s t ( [ d a t a s e t C j , : ) ; m u ( i , : ) ] , ’ E u c l i d ’ ) . * m e m ( j , i ) ;

e n d

W D ( i )  =  W D ( i ) . / C i ;

e n d

" / . C o m p u t i n g  t h e  B e t w e e n - d i s t a n c e  o f  c l u s t e r  

B D = z e r o s ( K , K ) ; 

f o r  i  =  1 : K

f o r  j  =  1 : K  

i f  i  ~ =  j

B D ( i , j )  =  p d i s t C [ m u ( i , : ) ; m u ( j , : ) ] , ’ E u c l i d ’ )  ;

e n d

e n d

e n d

E = 0 ;
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f o r  i  =  1 : K  

M a x = 0 ; 

f o r  j  =  1 : K  

i f  i  ~ =  j

t e = ( W D ( i ) + W D ( j ) ) / B D ( i , j ) ; 

i f  t e > M a x ;

M a x = t e ;

e n d

e n d

e n d

E = E + M a x ;

e n d

E = E / K ;

SA to D eterm ine the N um ber of k

f u n c t i o n  [ B S F , B S F K ] = 0 p t i m a l K ( R e , R a n g e L o w , R a n g e U p , T O , T g , a l p h a )  

°L T h e  a l g o r i t h m  t o  d e t e r m i n e  t h e  n u m b e r  o f  k  

%  r a n d i n t  i s  a  M a t L a b  b u i l d - i n  f u n c t i o n  f o r  r a n d o m  i n t e g e r  

% I N P U T

%  R a n g e L o w  a n d  R a n g e U p  i s  t h e  s c o p e  o f  t h e  k

°/„ T O ,  T g  a n d  a l p h a  a r e  t h e  p a r a m e t e r s  o f  S A

%  R e  i s  t h e  e v a l u a t i o n  v a l u e s ,  a l s o  c a n  b e  s e e n  a s  t h e

%  f u n c t i o n  t o  c l u s t e r  t h e  d a t a s e t  a n d  r e t u r n  t h e  e n e r g y  i n

%  r e a l  c o m p u t a t i o n .

t  O U T P U T

%  B S F  i s  t h e  b e s t - s o - f a r  e n e r g y  o b t a i n e d  b y  S A
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%  B S F K  i s  t h e  b e s t - s o - f a r  k  o b t a i n e d  b y  S A  

7 .  t h e  r a n d o m  c u r r e n t  k

c u r r e n t  =  r a n d i n t ( 1 , 1 , [ R a n g e L o w  R a n g e U p ] ) ;

%  t h e  e n e r g y  o f  t h e  c u r r e n t  k  

c c o s t  =  R e ( l , c u r r e n t ) ;

7„ t h e  b e s t - s o - f a r  e n e r g y  a n d  t h e  k  

B S F  =  c c o s t ;  B S F K  =  c u r r e n t ;

t  =  0 ;

w h i l e  ( T g  >  0 . 0 0 1 )  

t  =  t  +  1 ;

n e w  =  r a n d i n t ( 1 , 1 ,  [ R a n g e L o w  R a n g e U p ] ) ;  7 .  a  r a n d o m  n e w  k

n c o s t  =  R e ( l , n e w ) ;

7« s t o r e  t h e  b e s t - s o - f a r  e n e r g y  a n d  t h e  c o r r e s p o n d i n g  k  

i f  ( n c o s t  >  B S F )

B S F K  =  n e w ;

B S F  =  n c o s t ;

e n d

7« a c c e p t  d i r e c t l y  t o w a r d  t o  t h e  n e x t  s t e p  

i f  ( ( n c o s t  -  c c o s t )  > =  0 )  

c u r r e n t  =  n e w ;  

c c o s t  =  n c o s t ;
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e l s e

7 .  a c c e p t  w i t h  t h e  p r o b a b i l i t y

i f ( e x p ( ( n c o s t - c c o s t ) . / T g ) > = ( r a n d i n t (1 ,1 ,[0 ,1 0 0 0 0 ])/1 0 0 0 0 )) 

c u r r e n t  =  n e w ;  

c c o s t  =  n c o s t ;

e n d

e n d

%  u p d a t e  t h e  t e m p e r a t u r e  

T g  =  T 0 * a l p h a . ~ t ;

e n d

SA to  determ ine the pair o f k and b

f u n c t i o n  [ B S F , B S F K , B S F B ] = 0 p t i m a l K B ( R e , R L o w K , R U p K , R L o w B , R U p k , T O , T g , a l p h a )  

7 .  T h e  a l g o r i t h m  t o  d e t e r m i n e  t h e  p a i r  o f  k  a n d  b  

7 .  r a n d i n t  i s  a  M a t L a b  b u i l d - i n  f u n c t i o n  f o r  r a n d o m  i n t e g e r  

7 .  I N P U T

°/« R L o w K  a n d  R U p K  a r e  t h e  s c o p e  o f  t h e  k  

°/0 R L o w B  a n d  R U p B  a r e  t h e  s c o p e  o f  t h e  b  

% T O ,  T g  a n d  a l p h a  a r e  t h e  p a r a m e t e r s  o f  S A  

%  R e  i s  a n  a r r a y  s t o r i n g  t h e  e v a l u a t i o n  v a l u e s ,  a l s o  c a n  b e  

%  s e e n  a s  t h e  f u n c t i o n  t o  c l u s t e r  t h e  d a t a s e t  a n d  r e t u r n  t h e  

7 .  e n e r g y  i n  r e a l  c o m p u t a t i o n .

7 .  O U T P U T

70 B S F  i s  t h e  b e s t - s o - f a r  e n e r g y  o b t a i n e d  b y  S A  

% B S F K  i s  t h e  b e s t - s o - f a r  k  o b t a i n e d  b y  S A  

7 ,  B S F B  i s  t h e  b e s t - s o - f a r  b  o b t a i n e d  b y  S A
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°/„ t h e  c u r r e n t  k  a n d  b  r a n d o m l y  s e l e c t e d  

k c  =  r a n d i n t ( 1 , 1 , [ R L o w K  R U p K ] ) ;  

b e  =  r a n d i n t ( 1 , 1 , [ R L o w B  R U p B ] ) ;

%  t h e  e n e r g y  o f  t h e  p a i r  o f  c u r r e n t  k  a n d  b  

c c o s t  =  R e ( k c , b c ) ;

%  t h e  v a r i a b l e s  f o r  b e s t - s o - f a r  e n e r g y  a n d  t h e  p a i r  o f  k  a n d  b  

B S F  =  c c o s t ;

B S F K  =  k c ;

B S F B  =  b e ;

t  =  0 ;

w h i l e  ( T g  >  0 . 0 0 0 5 )  

t  =  t  +  1 ;

% t h e  n e w  p a i r  o f  k  a n d  b

n e w k  =  r a n d i n t ( 1 , 1 , [ R L o w K  R U p K ] ) ;  

n e w b  =  r a n d i n t ( 1 , 1 , [ R L o w B  R U p B ] ) ;

n c o s t  =  R e ( n e w k , n e w b ) ;

% b e s t - s o - f a r  e n e r g y  a n d  t h e  p a i r  o f  k  a n d  b  

%  h e r e  i s  f o r  X B  a n d  D B  

i f  ( n c o s t  <  B S F )

B S F K  =  n e w k ;
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B S F B  =  n e w b ;

B S F  =  n c o s t ;

e n d

°/„ a c c e p t  d i r e c t l y  

i f  ( ( n c o s t  -  c c o s t )  < =  0 )  

k c  =  n e w k ;  

b e  =  n e w b ;  

c c o s t  =  n c o s t ;

e l s e

%  a c c e p t  w i t h  t h e  p r o b a b i l i t y

i f ( e x p ( - ( n c o s t - c c o s t ) * p O . / T g ) > = ( r a n d i n t ( 1 , 1 , [ 0 , 1 0 0 0 0 ] ) / 1 0 0 0 0 ) )  

k c  =  n e w k ;  

b e  =  n e w b ;  

c c o s t  =  n c o s t ;

e n d

°/0 u p d a t e  t h e  t e m p e r a t u r e  o f  S A  

T g  =  T 0 * a l p h a . ~ t ;

e n d

e n d

SA to D eterm ine the N um ber o f k w ith  Tabu List

f u n c t i o n  [ B S F , B S F K ] = 0 p t i m a l K T a b u ( R e , R L o w K , R U p K , T O , T g , a l p h a , T a b u L )

%  T h e  a l g o r i t h m  t o  d e t e r m i n e  t h e  n u m b e r  o f  k  w i t h  T a b u  L i s t  

7 ,  r a n d i n t  i s  a  M a t L a b  b u i l d - i n  f u n c t i o n  f o r  r a n d o m  i n t e g e r  

%  I N P U T

7 .  T a b u L  i s  t h e  l e n g t h  o f  t h e  T a b u  L i s t
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%  R a n g e L o w  a n d  R a n g e U p  i s  t h e  s c o p e  o f  t h e  k

%  T O ,  T g  a n d  a l p h a  a r e  t h e  p a r a m e t e r s  o f  S A

%  R e  i s  a n  a r r a y  s t o r i n g  t h e  e v a l u a t i o n  v a l u e s ,  a l s o  c a n  b e

%  s e e n  a s  t h e  f u n c t i o n  t o  c l u s t e r  t h e  d a t a s e t  a n d  r e t u r n  t h e

% e n e r g y  i n  r e a l  c o m p u t a t i o n .

%  O U T P U T

%  B S F  i s  t h e  b e s t - s o - f a r  e n e r g y  o b t a i n e d  b y  S A

%  B S F K  i s  t h e  b e s t - s o - f a r  k  o b t a i n e d  b y  S A

%  r a n d o m  c u r r e n t  k  a n d  i t s  e n e r g y  

c u r r e n t  =  r a n d i n t ( 1 , 1 , [ R L o w K  R U p K ] ) ;  

c c o s t  =  R e ( l , c u r r e n t ) ;

°/„ v a r i a b l e s  f o r  t h e  b e s t - s o - f a r  e n e r g y  a n d  k  

B S F  =  c c o s t ;

B S F K  =  c u r r e n t ;

%  i n i t i a l i z a t i o n  o f  T a b u  L i s t  

T a b u L i s t  =  z e r o s ( 1 . T a b u L ) ;

T a b u L i s t E n g e r g y  =  z e r o s ( 1 , T a b u L ) ;

T a b u L i s t ( 1 , 1 )  =  c u r r e n t ;

T a b u L i s t E n e r g y d ,  1 )  =  c c o s t ;

t  =  0 ;

w h i l e  ( T g  >  0 . 0 0 1 )

%  a  n e w  k  r a n d o m l y  s e l e c t e d

n e w  =  r a n d i n t ( 1 , 1 , [ R L o w K  R U p K ] ) ;
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t  =  t  +  1 ;

7. c h e c k  T a b u  L i s t ,

7 ,  i f  n o t  i n  t h e  l i s t ,  a d d e d  

7 o  o t h e r w i s e ,  r e s t o r e  t h e  v a l u e  t o  t h e  n e w  k  

i f  ( f i n d ( T a b u L i s t ( 1 , : )  = =  n e w )  = =  [ ]  )  

o f f s e t  =  F i n d E m p t y ( T a b u L i s t ) ;

T a b u L i s t ( 1 , o f f s e t )  =  n e w ;  

n c o s t  =  R e ( l , n e w ) ;

T a b u L i s t E n e r g y ( l , o f f s e t )  =  n c o s t ;

e l s e

n c o s t  =  T a b u L i s t E n e r g y ( 1 , f i n d ( T a b u L i s t ( 1 , : )  = =  n e w ) ) ;

e n d

7 .  t h e  b e s t - s o - f a r  e n e r g y  a n d  k  

i f  ( n c o s t  >  B S F )

B S F K  =  n e w ;

B S F  =  n c o s t ;

e n d

7 .  a c c e p t  d i r e c t l y  

i f  ( ( n c o s t  -  c c o s t )  > =  0 )  

c u r r e n t  =  n e w ;  

c c o s t  =  n c o s t ;

e l s e

7« a c c e p t  w i t h  t h e  p r o b a b i l i t y

i f ( e x p ( ( n c o s t - c c o s t ) * p O . / T g ) > = ( r a n d i n t ( 1 , 1 , [ 0 , 1 0 0 0 0 ] ) / 1 0 0 0 0 ) )  

c u r r e n t  =  n e w ;
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ccost = ncost;

end

end

% update the temperature of SA 

Tg = T0*alpha."t;

end

SA to  D eterm ine the Num ber of k w ith  ’shrinking’

function [BSF,BSFK]=0ptimalKShrink(Re,RLow,RUp,TO,Tg,alpha,rcf)

7, The algorithm to determine the number of k with 'shrinking’

% randint is a MatLab build-in function for random integer 

%  I N P U T

% ref is the shrink step

7, RLow and RUp is the scope of the k

7. TO, Tg and alpha are the parameters of SA

7« Re is an array storing the evaluation values, also can be

% seen as the function to cluster the dataset and return the

7. energy in real computation.

%  O U T P U T

7. B S F  is the best-so-far energy obtained by S A  

7. B S F K  is the best-so-far k obtained by S A

current =  randint ( 1 , 1 , [ R L o w  R U p ] ) ;  

ccost = R e (1,current);

B S F  =  c c o s t ;

BSFK = current;
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°/,  t h e  n u m b e r  o f  t h e  p o i n t s  r e j e c t e d  w i t h  t h e  p r o b a b i l i t y  

N R e j e c t e d  =  0 ;

t  =  0 ;

w h i l e  ( T g  >  0 . 0 0 1 )  

t  =  t  +  1 ;

n e w  =  r a n d i n t ( 1 , 1 , [ R L o w  R U p ] ) ;  

n c o s t  =  R e ( l , n e w ) ;

i f  ( n c o s t  >  B S F )  % f  o r  m a x  

B S F K  =  n e w ;

B S F  =  n c o s t ;

e n d

i f  ( ( n c o s t  -  c c o s t )  > =  0 )  %  f o r  m a x  

c u r r e n t  =  n e w ;  

c c o s t  =  n c o s t ;

e l s e

i f ( e x p ( ( n c o s t - c c o s t ) * p 0 . / T g ) > = ( r a n d i n t ( 1 , 1 ,  [ 0 , 1 0 0 0 0 ] ) / 1 0 0 0 0 ) )  

c u r r e n t  =  n e w ;  

c c o s t  =  n c o s t ;

e l s e

%  s h r i n k  t h e  s c o p e  o f  k

N R e j e c t e d  =  N R e j e c t e d  +  1 ;  

i f  ( N R e j e c t e d  >  3 )

R L o w  =  c u r r e n t  -  ( 5 0  -  N R e j e c t e d * r c f ) ;
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R U p  =  c u r r e n t  +  ( 5 0  -  N R e j e c t e d * r c f ) ;  

i f  ( R L o w  <  1 )

R L o w  =  1 ;

e n d

i f  ( R U p  >  9 9 )

R U p  =  9 9 ;

e n d

i f  ( r e f  = =  0 )

R U p  =  9 9 ;

R L o w  =  1 ;

e n d

%  t h e  s e c o n d  e n d  c o n d i t i o n  f o r  S A

7 .  e n d  t h e  l o o p s  w h e n  u p p e r  b o u n d  a n d  l o w e r  b o u n d  o v e r l a p  

i f  ( R L o w  > =  R U p )

T g  =  0 . 0 0 1 ;

e n d

e n d

e n d

e n d

°/„ u p d a t e  t h e  t e m p e r a t u r e  o f  S A  

T g  =  T 0 * a l p h a . ~ t ;

e n d
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