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Abstract

The discovery of risks and opportunities, known collectively as chances, 

can have a significant impact on decision making. Chances (risks or 

opportunities) can be discovered from our daily observations and back­

ground knowledge. A person can easily identify chances in a news 

article. In doing so, the person combines the new information in the 

article with some background knowledge. Hence, we develop a deduc­

tive system to discover relative chances with respect to a particular 

chance seeker.

A chance discovery system th a t uses a general purpose knowledge 

base and specialized reasoning algorithms is proposed. The thesis eval­

uates the implementation of this chance discovery system and discusses 

the achievements and limitations of its elements, such as Natural Lan­

guage Processing Tool, Knowledge Entry  Tool, Inference Engine and 

Planner. Finally, A case study about a virtual transportation plan­

ning domain implemented using SHOP planner is presented. Example 

chances are detected in this domain.

iii
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Chapter 1

Introduction

1.1 W hat is Chance Discovery?

According to [40], a chance is a piece of information about an event 

or a situation with significant impact on decision-making of humans, 

agents, and robots. A chance is also a suitable tim e or occasion to 

do something. A chance may be either positive -an opportunity or 

negative -a risk. The discovery of a chance is to  become aware of 

it and to explain its significance. We promote desirable effects when 

a chance is a positive opportunity. On the other hand, we prepare 

preventive measures in case of a risk. For example, predicting a looming 

earthquake represents a chance discovery.

1.2 Philosophical C onsiderations in Chance D is­

covery

1.2.1 Open System

Prendinger and Ishizuka [44] propose th a t chance discovery best ap­

plies to open systems [47]. Open systems are abstractly modelled by

1
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C h ap ter 1 Change and P lanning in Chance D iscovery

cybernetics [6] and systems theory [7]. Examples of open systems in­

clude ‘living’ systems (such as human beings), scientific communities, 

companies, and artificial systems. There are two essential mechanisms 

in open system:

•  Regulatory mechanism of open systems can actively influence the 

evolution of the system and continuously counteract influences 

th a t move the system away from its ideal state.

•  Anticipation  mechanism is to deal with the complexities and in­

fluences of the environment. Anticipation  focuses on the creation 

of possible and desirable futures, and plans to bring them.

The im portant feature of open system which makes chance discovery 

possible is th a t the future is uncertain but is possible to influence.

1.2.2 M etacognition

In [35], Oehlmann argues th a t metacognition [9, 14, 16] is a necessary 

requirement in chance discovery. Metacognition refers to the active 

monitoring and consequent regulation of the agent’s own cognitive pro­

cesses. It can be simply defined as “thinking about thinking” and is a 

term  in educational psychology referring to achieving successful learn­

ing through strongly metacognitive controls, including planning how to 

approach a given learning task, monitoring comprehension and eval­

uating progress toward the completion of a task. Knowledge about 

cognition and the self-regulating mechanisms are necessary elements 

for chance discovery.

University of Windsor, 2005
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C h ap ter 1 Change and P lanning in  Chance D iscovery

Subprocess(3): evaluation]

Subprocess(2): concern

Subprocess(1): understanding

Subprocess(0): proposal

ActionSensing
+Mining Object data

+ Mining su b jec t data

Figure 1.1: The Subsumption Model of Chance Discovery [8]

1.2.3 M odel of Chance Discovery Process

Figure 1.1 shows the subsumption model of chance discovery which 

was first proposed by Brooks [8]. This model is similar to a robo t’s 

decision process. A robot (chance seeker) observes some information 

of the world, evaluates the information, understands the information, 

makes some proposals of actions according to the information, finally 

performs a real action which is supposed to  be taking advantage of the 

information (possible chances). Then new actions move the world to a 

different state. Afterwards, new observations become available as the 

system starts a new cycle.

University of Windsor, 2005 3
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C h ap ter 1 Change and P lanning in  Chance D iscovery

1.3 Knowledge Discovery from D ata Versus Chance 

Discovery

As a new research field, chance discovery (CD) has a ttracted  consider­

able interest. CD is usually confused with the more m ature concept of 

Knowledge Discovery from D ata (KDD). In the following section, we 

discuss the difference between KDD and CD.

KDD tries to discover most likely patterns in da ta  and assumes 

th a t these patterns will continue to be valid. However, CD tries to  find 

da ta  th a t represent chances. It may not m atch most likely trends but 

indicate interesting phenomena which were not exploited before and 

may lead to potential future trends.

The discovery goal in KDD can be divided into a descriptive and 

a predictive aspect [44]. The descriptive aspect is th a t the system 

searches for patterns (or models) in data. The predictive aspect is th a t 

the system predicts the future behavior of some entities by looking for 

similar patterns. There are many established data  mining methods to 

achieve those goals, such as classification, regression, clustering, sum­

marization, dependency modeling, and deviation detection [11, 57].

CD may use the knowledge extracted by data  mining methods. 

However, existing data-analysis and data-m ining methods cannot ex­

plain the significance of unobserved features not described in the given 

data, or rare events people seldom count as worthwhile predicting. For 

example, humans th a t are infected with plasmodium vivax are very 

likely to contract malaria. However, some people do not. In KDD, 

those people may be ignored since they do not follow the most likely

University of Windsor, 2005 4
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C h apter 1 Change and P lanning in  Chance D iscovery

case. However, in CD, the explanation of their resistance to m alaria 

represents a chance for a significant scientific discovery.

The prevalent process of KDD [12] is shown in Figure 1.2. Raw data  

are transformed into representations th a t can be mined. Data mining 

techniques are then applied to the data  resulting in the discovery of 

event relations, i.e. patterns. The patterns are then evaluated and 

interpreted by human beings to produce new knowledge.

Ohsawa [38] proposed a process for CD shown in Figure 1.3. In 

this process, the outputs of computers are evaluated and interpreted. 

These explanations serve as clues or chance candidates . These clues 

and candidates stimulate hum an’s thinking and help them  focus on cer­

tain  clues or candidates. This subset of clues becomes input again while 

others are discarded. Two cycles are formed. One cycle represents the 

computer analysis process. The other represents the  hum an’s thinking 

process. Knowledge flows from one cycle to the other. Chance is dis­

covered at some point of hum an’s thinking process. As we can see from 

Figure 1.3, CD focuses strongly on the interaction between human and 

computers.

In section 1.1, we stated th a t predicting a looming earthquake rep­

resents a “chance discovery” . To illustrate the  difference between d a ta  

mining and chance discovery, we consider the following cases of methods 

leading to this prediction.

First, there are some phenomena th a t usually precede an earth­

quake, such as large groups of animals migrating, volcano activities 

increasing etc.. W hen another earthquake occurs, all these phenomena 

may occur similarly. In other words, the phenomena form patterns or

University of Windsor, 2005 5
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S elected  data
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Figure 1.2: Fayyad’s Model of the  Knowledge-Discovery Process [12]
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Figure 1.3: Ohsawa’s Process of Chance Discovery [38]
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C h ap ter 1 Change and P lanning in Chance D iscovery

models. If we see the same patterns in the future, we may conclude tha t 

an earthquake is looming. Patterns (knowledge) are obtained by min­

ing the vast previous observations (data). This m ethod is essentially 

d a ta  mining.

The second m ethod can be regarded as a modified data  mining 

technique. The basic idea is tha t if rare events known to co-occur 

w ith im portant events (known patterns/m odels) may form a new part 

of patterns. For example, recent observations show that, besides the 

well known phenomena mentioned above, certain bird X always shouts 

strangely before an earthquake occurs. The phenomenon of X may only 

co-occurs with those known phenomena several times. In traditional 

da ta  mining, X may be regarded as a noise. However, if X is observed 

in a city with no volcano around and no large group of animals, i t ’s 

reasonable to  predict tha t an earthquake is approaching.

The th ird  m ethod is reasoning, It would be ideal if we could pre­

cisely predict an earthquake by exactly calculating the motion of the 

earth ’s crust. Many approaches have been applied to  this kind of pre­

diction, such as game theory, abductive analogical reasoning, etc. The 

second and th ird  methods are chance discovery methods. Chapter 2 

will discusses them  in details.

1.4 M otivation & O bjective

This thesis introduces a new approach of chance discovery. We focus 

on informing the right person the right known information at the right 

time. We evaluate why a piece of information is im portant to a par­

ticular chance seeker at a particular time by calculating the possible

University of Windsor, 2005 7
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C h apter 1 Change and P lanning in  Chance D iscovery

consequences in a virtual reality/model. For example, we know the 

rule th a t people may die in an earthquake. If a terrible earthquake 

looming on an isolated island in the Pacific ocean is correctly detected, 

most people except some scientists may not pay much attention to this 

information. However, local native tribes can save their lives by know­

ing this information. In modern society, we are in a sea of information. 

Timely disseminating the right information is im portant to us.

Incorporating the existing chance discovery theory and the aspects 

we proposed, we aim to achieve the following:

• Dem onstrate tha t chance discovery is a process th a t tries to iden­

tify possibly im portant consequences of information with respect 

to a particular person or organization at a particular time; Chance 

can be discovered from changes th a t are reported in text doc­

uments around the world; A chance discovery system, which is 

knowledge based and can evaluate change from the point of view 

of logic, is a viable technique for chance discovery.

• Present the theoretical aspects of the knowledge-based chance dis­

covery system.

•  Present and discuss the implementation of this chance discovery 

system.

1.5 C ontribution

•  A new knowledge-based framework and architecture for chance 

discovery [58].

University of Windsor, 2005 8
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• An implementation that shows the practicality of our system. It 

also demonstrates the features of our system compared to  the ex­

isting approaches, as well as its limitations.

1.6 Outline of the Thesis

In this chapter, we introduced the concept of chance discovery and the 

difference between knowledge discovery from data  and chance discovery. 

We also presented the motivation and contribution of this thesis. Chap­

ter 2 introduces the existing approaches for chance discovery. Chapter 

3 presents our knowledge-based chance discovery system. In C hapter 4, 

we discuss the implementation of our chance discovery system. Chapter 

5 concludes the thesis and discusses some future work.

University of Windsor, 2005 9
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Chapter 2 

Necessary Roles in Chance 

Discovery

As the personal computer pioneer Alan Kay said: “The best way to 

predict the future is to invent it” . An essential aspect of a chance is 

tha t it can be a new seed of significant future. To make inventing the 

significant future possible, we need timely identification of the chances 

as well as drawing hum ans’ attention to such chances and to knowl­

edge for dealing with them. Ohsawa [38] proposes three roles in chance 

discovery: Communication, Imagination and D ata Mining. Many ap­

proaches have been proposed around these roles and show how these 

roles contribute to chance discovery.

2.1 Com m unications

The emergence of new ideas in human-human, human-agent, and agent- 

agent communications in virtual or real communities may activate the 

process of chance discovery.

10
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2.1.1 Argumentation-Based Chance Discovery

McBurney and Parsons [30] propose an argum entation based communi­

cation approach for chance discovery in domains tha t have multi-agents. 

Each agent may only have a partial view of a problem and may have 

insufficient knowledge to prove particular hypotheses individually. For 

example, a river flows across several regions. If we have several com­

puter agents in each region, each agent only knows the weather in its 

own region over a period of time. If these agents talk with each other 

and report rain in their own regions, then a flood may be predicted.

Mcburney and Parsons [30] defines locutions and rules for this type 

of dialogues, called discovery dialogues. It is not one of the conventional 

six types. According to W alton and Krabbe [54], the six primary types 

of dialogue are: Information-seeking dialogues, Inquiry dialogues, Per­

suasion dialogues, Negotiation dialogues, Deliberation dialogues, Eris­

tic dialogues.

Discovery dialogues intend to  discover something not previously 

known. It means th a t discovery may only emerge in the course of the 

dialogue. Like most actual dialogues, discovery dialogues involve mix­

tures of those six dialogue types. Discovery dialogues may be viewed 

as

Inquiry dialogues-  The participants collaborate to answer some 

question or questions whose answers are not known to any one 

participant.

However, they are not disinterested in searching for tru th  like inquiries. 

Discovery dialogues may be only interested in chances. For example, a

University of Windsor, 2005 11
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discussion about possible risks of some system triggers a search not for 

all possible outcomes, but only for those with negative consequences.

W hen a chance is discovered, discovery dialogues are about what 

to do to prevent, or enhance a chance event. In this case, discovery 

dialogues may be viewed as

Deliberation dialogues- Collaborate to decide what action or 

course of action should be adopted in some situation.

Discovery dialogues need to be autom ated. A communication lan­

guage and a set of protocols are necessary for com putational entities 

involved. In [32], a set of five requirements for the design of languages 

and protocols for communications in chance discovery is derived as fol­

lows.

•  The language should transm it domain-specific information in an 

appropriate form between participants.

•  The participants have the ability to argue with each other con­

cerning the messages they transm it.

•  The communications protocol used by the agents must encode 

some theory of debate or argument, w hat is called a logic of argu­

m entation.

• Communications language should enable the participating agents 

to articulate relevant changes in their internal states, i.e., the ex­

pression of self-tranformation [15, 33].

•  It can enable an appropriate mechanism for resolution of differ­

ences of beliefs or intentions of the participants.

University of Windsor, 2005 12
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Generic Languages and dialogue game protocols are two proposals used 

in multi-agent systems community for agent communications [32]. FIPA 

ACL [13] stands for the Foundation for Intelligent Physical Agents’ 

Agent Communications Language. However, FIPA ACL is unsuitable 

as a protocol to support chance discovery because FIPA ACL doesn’t 

support Inquiries and deliberations. According to the five requirements, 

Dialogue game protocols [31] have greater potential capability to sup­

port chance discovery between autonomous agents, An example of for­

mal dialogue Game protocols is described in [31].

2.1.2 Concept Articulation

A good online shopping recommender system can exploit concept ar­

ticulation technique to be more profitable. Today’s society is a society 

with oversupply of merchandise. A product which only has the neces­

sary functions is not enough to satisfy customers. However, the same 

ordinary product can be sold at a high price by convincing customers 

tha t it matches their taste. Shoji and Hori [49, 48] propose tha t cre­

ative communications in real shopping behavior can lead to  a customer’s 

mental leap. The appropriate information provided by the clerk at the 

right tim e can change customers’ focus and lead to a successful sale.

Purchasing can be roughly divided into a problem-solving type and 

a concept-articulation type. Concept-articulation applies when cus­

tomers do not have clear requirements. Their requirements get grad­

ually clearer as information is provided as they examine various prod­

ucts and talk  with the sales clerks. Sales clerk’s communication p a t­

terns could be classified as expected reaction or unexpected reaction.

University of Windsor, 2005 13

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



C h ap ter 2 Change and P lanning in  Chance D iscovery

An expected reaction is to show customers what they want. Unexpected 

reactions present information from a different viewpoint than  the cus­

tom ers’ current thought. Let’s see the following examples:

• Example 1. Expected reaction:

— Customer: This cheese burger is too large for me. Do you 

have a small one?

-  Sales clerk: (smiling) How about this one (small burger)? But 

it is a garlic burger.

— Customer: Well, let me see ... Sorry, I got to go.

• Example 2. Unexpected reaction:

-  Customer: This cheese burger is too large for me. Do you 

have a small one?

-  Sales clerk: Cheese burger is the best burger in our restaurant. 

Our cheese burger is made from special low fat cheese. It just 

looks large but you will feel nothing.

— Customer: Oh, great! ... .

Example 1 leads to an unsuccessful sale and example 2 leads to a 

successful one. Figure 2.1 shows th a t, in case of the  unexpected reaction 

(example 2), a new focus (low fat) presented by the sales clerk triggers 

the customer’s mental leap. The a ttitude  of the customer about large 

cheese burger changes from ‘too large’ to  ‘excellent choice’.

In this kind of communication, the  customer may already have some 

opinions about what his or her needs. But the  product (potential 

chance) is not exactly like what he expects. The customer presents
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Too large Excellent choice

Size

Smaller

Ingredient

large burger but low fat

Large cheese burger

Goal

Evaluation

Viewpoint

Object

Figure 2.1: Changes Caused by the Unexpected Reaction

his comments about the product. By evaluating the comments, the 

unexpected reaction can change the custom er’s focus and convince the 

customer to accept some new viewpoints smoothly. According to this, 

Shoji and Hori [50] develope a system called S-Conart ( Concept Ar­

ticulator for Shoppers ) to support this type of communications.

2.1.3 Influence Diffusion M odel

In text-based communications, such as email, on-line forum, ... etc., 

people would join the discussion if a topic or comment sounds inter­

esting to them. M atsum ura [22] proposes the influence diffusion model 

(IDM) to find valuable information such as influential comments, opin­

ion leaders, and interesting term s form the archives of text-based com­

munications. For example, if Cy replies to Cx, the influence of Cx onto 

Cy, ix>y, is defined as
\wx f l  wy\ ^  1)ix,y — \Wr

where \wy\ denotes the count of term s in Cy and \wx f] w y \ denotes the 

count of propagated term s from Cx and Cy. If Cz replies to  Cy, the
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influence of Cx onto Cz via Cy, ixz is defined as

\W z\

There are three models included in the IDM [22]:

1. IDM for comments, the influence of a comment C* (DCi) can be 

described as

. _ Kn^n-n^n î „•
— \Wr\ ' H,q

h i  ~  ^i,j "P ^i,k T  ' ‘ ‘ T  t i ,y  T  H,z 

D C i =  hi

§i is the comment chain which starts from C{. hsi represent the sum 

of influences diffused from C* in §*, Ei is the set of all comments 

chains tha t sta rt from Q .

2. IDM for participants.

The influence of participant P will be the sum of the influence of 

P ’s comments. Let Dp be the influence of P, and kp be a collection 

of comments posted by P. Then, Dp is described as

Dp = E iatp Dc,

3. IDM for terms.

The influence of term  t (Dt) can be described as :

■?*>»•,*=  ‘ p>r ’
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J$i,t — ji,j,t +  ji,k,t +  ••• +  j i ,y,t +  j i ,Zjt 

= YltiZEt Jtut

E t represents the set of comment’s chains. Each comment in a 

chain contains term  t.

This algorithm can efficiently identify valuable topics or term s in text- 

based communications. However, It does not evaluate logical relation­

ships. Sometimes it may lead to  meaningless findings. For example, a 

virus may copy the topic and keep replying to  the same topic by pasting 

the same sentence.

2.1.4 Other Communication Approaches

Sumi and Mase [51] introduce two systems for enhancing daily conversa­

tion th a t can increase opportunities to encounter new ideas and future 

partners for collaboration. One is Augmented Informative Discussion 

Environment (AIDE). AIDE enhances online discussion with visualiza­

tion of the discussion structure and a virtual discussant. The users of 

AIDE can m utually notice the similarity and difference among their 

viewpoints with respect to common topics. The other is AgentSalon 

which enhances casual face-to-face chatting.

M cArthur and Bruza [28, 29] develop a m ethod for collecting and 

storing the utterances: a vector representation of words representing 

aspects of both presemantic and semantic context. They derived post- 

semantic context based on vector representations of words and pursued 

the vector representation to discover ebbs and flows of socio-cognitive
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‘m eaning’ within a online community and between communities. Perry 

[43] gives the distinction among presemantic, semantic and postseman- 

tic context. The presemantic context is what gives an ambiguous lin­

guistic meaning, for example, in the sentence “I saw her duck under 

the table” , whether “her” is a pronoun or an adjective is not clear. 

The postsemantic context represents some tacit knowledge. For exam­

ple, John says: “It is raining” . We assume th a t it is raining in John’s 

location.

2.2 Im agination

In the process of chance discovery, it is im portant to involve oneself in a 

new context where the current chance can be significant, i.e., hum an’s 

perception of chance. This might be an analogical matching of one’s 

own experience with the current rare situation, or an imagination of a 

scene or a story in the future situation. This subsection will investigates 

the theories and approaches for imagination in chance discovery.

2.2.1 Bayesian Chance Discovery

In [52], Tawfik proposes tha t chance discovery represents a dilemma for 

inductive reasoning from a reasoning point of view. The Bayesian ap­

proaches represent a potential solution. Traditionally, forecasting has 

relied on extrapolation. Extrapolation is a form of inductive reason­

ing th a t assumes th a t current trends would carry on into the  future. 

Finding the proper knowledge representation is of great importance for 

chance discovery. Conventional knowledge representation and reason­

ing frameworks will be likely to miss rare events because they favor
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“norm al” and “common” , rather than  “rare” and “exceptional” . The 

following paradox shows an example of the dilemma of induction.

The color of an emerald is “grue” (green then blue) if it is 

and has always been observed green until some future time 

(say year 2222) when it will turn  blue. This notion presents 

a paradox to inductive reasoning because our observations 

support the statem ent th a t emeralds are green as well as the 

claim tha t they are grue ( Goodman 1955 ).

The problem is caused by the inductive assumption which implies the 

future will look like the past.

The Bayesian approach is to explicitly explore all possibilities in­

cluding all alternative models (all possible worlds ), assess priors and 

conditional probabilities, and calculate posterior probabilities given all 

available observations for the different models under consideration. The 

probability of a statem ent S given some evidence E is given by (hj rep­

resents all possible models consistent w ith E):

P {S lE )  =  (2.3)
E j  P (E \h j)P {h j)

Tawfik suggests tha t a knowledge representation suitable for chance 

discovery should be able to concisely encode a possibly very large num­

ber of models (possible worlds). The chance discovery problem can be 

represented by a Kripke structure [19].

M  = (W, cf), 7T, R) (2.4)

W  denotes a set of worlds. Each world is described using tru th  assign­

ment 7r defined for a set of propostions </>. An accessibility relation R
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determines the set of worlds reachable from a particular world. Each 

world w (e  W) occurs with a probability p(w). The probability of a 

proposition p  is given by

(2-5)
w\=ip

We can evaluate whether ip is a chance or not based on P{p>)-

This deductive approach to chance discovery has some complexity 

and feasibility limitations. It is difficult to  encode all possible com­

binations of events, actions and assumptions and their consequences. 

Therefore, Backward chaining may be applied to achieve a more effi­

cient solution.

2.2.2 Abductive and Analogical Reasoning 

Abductive Reasoning

Peirce [42] characterized the definitions of abductive and inductive rea­

soning as:

abductive reasoning is an operation for adopting an explana­

tory hypothesis, which is subject to certain conditions, and 

th a t in pure abduction, there can never be justification for 

accepting the hypothesis, other than  through interrogation. 

Inductive reasoning is an operation for testing a hypothesis 

by experiment.

The following example shows the difference between inductive and ab­

ductive reasoning. W hen we find fossils of sea shells in T ibet highland, 

the conclusion form induction is th a t more fossils of sea shells will be

University of Windsor, 2005 20

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



C h ap ter 2 Change and P lanning in Chance D iscovery

found if we dig there. On the other hand, the result from abduction is 

th a t T ibet highland used to be under the sea.

The following formula shows how abductive reasoning works.

F is a set of facts,

H explains F (H is a hypothesis),

No other hypothesis explains F as well as H does.

Therefore, H is probably correct.

For example, since aliens can explain UFO, we conclude th a t there are 

aliens from outer space.

Analogical Reasoning

Analogical reasoning (analogy) [17] is a widely used reasoning tech­

nique. There are two main components of analogy: source and target. 

Source refers the knowledge we are familiar w ith and Target is the 

knowledge we attem pt to explain. Reasoning is achieved by analogical 

mapping from source to target. For example, if we know th a t human 

beings die someday, we can guess th a t aliens may die in the same way 

as human beings in outer space.

Russell [45] proposed DBAR (determination-based analogical rea­

soning). The determination rule (P determines Q ) is as follows:

P (x ,y )  >- Q (x ,y ) iff

V w yz[P(w , y) A Q (w , z) =4> Vx[P{x, y) => Q (x, z)]]

where x is a set of variables such as a, b, c, .... Then, the analogical 

mapping can be shown as follows:

( f  (S, V) A Q (x ,z )) , P( s ,  A ), P (T , A ), Q (S, B)
Q (T ,B )  { ■ ’
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The following shows an example of analogical reasoning, 

species (Penguin, bird), colour (Penguin,black-and-white)... 

species (dove,bird), instinct (dove,fly), ...

We have a determination rule as 

species(x,n ) >- in s tin c t(x , I) ,

By using the determination rule and knowledge regarding Penguin’s 

source knowledge, we can infer 

instinct (Penguin, fly).

Abductive Analogical Reasoning

Abduction requires a complete hypotheses set which contains all the 

necessary hypotheses. To explain an observation, a consistent hypothe­

ses subset is selected. In [3, 4], ABE proposes tha t a chance can be re­

garded as an unknown hypothesis. The conventional hypothetical rea­

soning system cannot generate new hypotheses. Abductive Analogical 

Reasoning (AAR) [2, 1] combining abduction and analogical mapping 

is an extension of hypothetical reasoning. AAR can lead to chance 

discovery because it can generate new hypotheses ( the missing knowl­

edge by imagination ). The following shows how AAR generate missing 

hypothesis to explain an observation.

Definition 1: Analogical clause: A is an analogical clause of B means 

that B is analogically mapped from A.

Definition 2: Analogical Transform: Let A be a set of clauses, A 

| > >  A ’ represents A ’ is analogically transform ed from A. i.e., A ’ 

is a set of clauses th a t can derive analogical clauses of the clauses
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derived from A.

O is an observation, AAR tries to explain it using clauses in the knowl­

edge base A. But

A ¥  O ( O cannot be explained by only A)

Then, AAR returns a set of minimal clauses S such tha t

A  \= S \ /  O ( S \ J O  can be explained by A  ),

A  ¥■ S  ( S cannot be explained by A ) .

Therefore, ->S is a missing clause set tha t is necessary to explain 0  

since (A S') and ( ->S $£ A ). We find clause set S’. S’ satisfies

S | > >  S’ ( S’ is analogically transformed from S ),

A  I= S ' (S’ can be explained by A  ).

If we perform another analogically transform, we get S” as follows,

S’ | »  S” ,

A  f= S” \/C>,

A k  S” .

Then, -iS” is a newly generated hypotheses clause set and can explain 

observation O. In AAR, A chance is regarded as a set of abductive 

hypotheses by performing AAR from the possible future observation.

2.2.3 Representational Change and Packing

Dietrich et al [10] proposed th a t representational change in humans 

and machines is a great source for chance discovery because it pro­

duces clues triggering chances. Dietrich gives the following example of

University of Windsor, 2005 23

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



C h ap ter 2 Change and P lanning in Chance D iscovery

representation change.

water f l ow s  from a place with greater pressure to a place with less pres­

sure.

If we change ‘flows’ to ‘move’,

water moves from a place with greater pressure to a place with less pres­

sure.

We know Planets, feet and money move. W hen ‘flow’ is abstracted to 

‘move’, this rule can be applied to more objects.

Packing is another process of representational change by suppress­

ing irrelevant information in a structured representation. This sup­

pression alters the structure of the representation by making irrelevant 

information between base and target less accessible. For example, if 

we consider two strings ‘abab’ and ‘efghefgh’, they looks different to 

each other. However, They are clearly similar since they both have 

the structure ‘xx’ ( repeating sequences ). By packing irrelevant infor­

mation, we can apply a well known world’s rule to an unknown world 

and discover chance from the unknown world. However, we need good 

packing algorithms.

2.3 D ata M ining

Data Mining techniques in chance discovery are different from the con­

ventional ones since we want to discover something different from the 

trend. Recent research shows th a t analysis on network structure of 

data has some promising results.
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2.3.1 Key Graph

KeyGraph [39] is a text indexing m ethod which extracts keywords th a t 

represent the main point of a document without relying on external 

devices such as document corpus or other natural language processing 

tools. KeyGraph can find im portant but rare keywords from a doc­

ument. The basic idea is th a t if a keyword links two basic keyword 

clusters ( set of keywords with high frequency ) together, it is regarded 

as im portant keyword even if its frequency is low.

Ohsawa outlines the KeyGraph algorithm by regarding a document 

as a building:

A building ( document ) has foundations ( statem ents for 

preparing basic concepts ),walls, doors and windows( orna­

m entation ). The roofs ( main ideas in the document ), which 

protect the building’s inhabitants against rains or sunshine, 

are considered to  be the most im portant. These roofs are 

supported by columns. KeyGraph algorithm finds the roofs.

The processes of KeyGraph are composed of four phases [39]:

1. Document(D) preparation:

Stop words which have little meaning are removed from D. Words 

and phrases are stemmed and identified.

2. Extracting foundations from D:

A graph G for document D is constructed of nodes representing 

terms, and links representing the co-occurrence (term-pairs which 

frequently occur in same sentences throughout D). Nodes and links 

in G are defined as follow:
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N o d e s -  Nodes in G represent high-frequency (HF) terms in D be­

cause term s might appear frequently for expressing typical basic 

concept.

Xmfes-Nodes in HF are linked if the association between the cor­

responding terms is strong. The association of term s W* and Wj 

in D are defined as

assoc(W i,W j) =  ^ T m in d W ils , \W j\8) (2.7)
s e D

where |X |S denotes the count of x in sentence s. Pairs of high- 

frequency term s in HF are sorted by assoc and the  pair above the 

((number of nodes in G)- 1) tightest association are represented in 

G by links between nodes.

3. Extracting columns from D:

The probability of term  w to appear is defined as key(w), and the 

key(w) is defined by

K e y (W) =  1 -  n < l  -  v E ‘g H M  ~\™ -9 \ ] <2'8)gQQ  2-/SE.D 2-^w €S I Is I 9 \S

Sorting term s in D by keys produces a list of term s ranked by their 

association with cluster, and the twelve (an estim ated number) top 

key term s are taken for high key terms.

4. Extracting roofs from D:

(a) Add all the high key term s as new nodes to G if they are not 

in G yet

(b) The strength of column between a high key term  Wi and a
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term 2
term 2

foundation ^  
(cluster)

term 3

term 1 term 1term 3

,cf term ff (roof)
\  dg column

Link
term 4

Node

termterm 5

a. Singly connected G b. M ultiply Connected G

Figure 2.2: An Example O utput of KeyGraph [39]

high frequency term  Wj ,  is expressed as

colum ns(W h W j) = ^ m m ( |k F * |s ,  \Wj\s) (2.9)
s e D

(c) Columns touching W) are sorted by c o lu m n { W Wj ) .  For each 

high key term  W), Columns with the highest column values 

connecting term  Wi to two or more clusters are selected to 

create new links in G representing columns by dotted line.

(d) Finally, nodes in G are sorted by the sum of column of touching 

columns. Terms represented by nodes of higher values of these 

sums than  a certain threshold are extracted as the keywords 

for document D.

Figure 2.2 shows an example output of keyGraph. Ga and Gb are 

foundations ( basic keywords ). The dotted line is columns. Roof (w) 

is supported by columns. Term w is considered to be a im portant 

keyword (chance).

University of Windsor, 2005 27

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



C h ap ter 2 Change and P lanning in  Chance D iscovery

2.3.2 Small World

W atts and Strogatz [55, 56] introduce a graph called small world which 

is neither completely regular nor completely random, bu t have instead 

a “small world” topology in which nodes are highly clustered yet the 

path  length between them  is small. According to W atts and Strogatz, 

a social graph (e.g. the collaboration graph of actors in feature films), 

a biological graph (e.g. the neural network of the nem atode worm C. 

elegans), and a manmade graph (e.g. the electrical power grid of the 

western United States) all have a small world topology. World W ide 

Web also forms a small world network [5].

The node’s contribution to make a graph becoming small world 

can be a measurement of its importance. Im portant nodes represent 

chances.

A small world graph is defined as one in which L >  L rand (or L 

— L ran(i) and C  A> Crand where L rand and Crand are the characteris­

tic path length and clustering coefficient of a random  graph w ith the 

same number of nodes and edges. The clustering coefficient and the 

characteristic path length are defined as:

• The characteristic path length (L) is the path  length averaged over 

all pairs of nodes. The path  length d(i, j) is the number of edges 

in the shortest path  between nodes i and j.

•  The clustering coefficient (C) is a measure of the cliqueness of the 

local neighbourhoods. For a node with k neighbours, then at most 

k(k  —1)/2 edges can exist between them. The clustering of a node 

is the fraction of these allowable edges th a t occur. The clustering
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R egular Small w orld Random

p=0   « P=1
In c rea sin g  randomness

Figure 2.3: Random Rewriting of a Regular Ring Lattice [55]

coefficient is the average clustering over all the nodes in the graph.

W atts and Strogatz propose a model of graph which is called /3-Graphs. 

S tarting from a regular graph, they introduce disorder into the graph 

by randomly rewiring each edge with probability p as shown in Figure 

2.3. The graph can be one of the following cases:

• If p =  0 then the graph is completely regular and ordered.

•  If p =  1 then the graph is completely random  and disordered.

•  Graphs with intermediate values of p are neither completely regu­

lar nor completely disordered. They are small worlds.

The following is how to  construct a small world from text da ta  (for 

example, an article ). This m ethod is similar to keygraph algorithm.

1. Document preparation (the same process as KeyGraph, see section 

2.3.1).

2. Frequent term s which appear over a user-given threshold are ex­

tracted and fixed as nodes.

3. For every pair of nodes, the co-occurrences are counted. An edge 

is added if Jaccard coefficient [18] exceeds a threshold (Jthre)• The
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d ' i h j )

Jaccard coefficient is simply the number of sentences tha t contain 

both term s divided by the number of sentences th a t contain either 

term.

Matsuo et al [27] proposed an algorithm to pick up rare but impor­

tan t terms ( chances ) by adm itting th a t a document is a small world, 

as follows:

•  Extended path  length 

d(i , j ) ,  if(i,j) connected,

the shortest path  between them;

W sum, otherwise,W sum is a constant

representing an estim ated length.

•  Extended characteristic path  length (L’) is the averaged extended 

path  length over all pairs of nodes.

•  L'v is an extended path  length averaged over all pairs of nodes 

except node v. L Gv is the extended characteristic path  length of 

the graph without node v.

•  The contribution C B V of the node v to make the world small is 

defined as C B V =  L Gv — L'v.

W hen a node v has a large C B V though its frequency is low, it was 

considered to be im portant. Because this term  helps to merge the 

structure of the document.

Small world is based on the similar idea as Key Graph: If a node 

(an event) shares an im portant position in a graph. It might have an 

impact even if the frequency of the event is low. In KeyGraph case, the 

importance is defined as co-occurrence in two or more big clusters. In
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small world case, contribution in making the graph highly connected is 

im portant.

2.3.3 Priming Activation Indexing

Priming Activation indexing ( PAI ) [25] is another m ethod for ex­

tracting the author’s main points from a document. PAI is similar to 

KeyGraph and Small World but employs another criterion for measur­

ing keyword importance: If the flow on the graph is through a certain 

node, the node is im portant. The algorithm of PAI consists of five 

phases:

1) Pre-processing: The same as keyGraph, see section 2.3.1.

2) Segmentation: A document is segmented into portions St (t= l,2 ,...,

n) based on a semantic coherence criterion.

3) Activation Network: For each segment St, term s are sorted by

their frequencies and top 20% term s are denoted by K(t) as funda­

m ental concepts. The association of term s Wi and W j (assoc(W i, Wj))  

is defined in equation 2.7. Pairs of terms in K (t) are sorted by assoc 

and the pair above the ((number of term s in K (t))- l ) th  tightest 

associations are linked. For links between W) and Wj, R( t ) i j  is 

defined as
=  ( 2 10)

hnks(W i)
Where links (Wi) denotes the number of links connected to Wi.

4) Spreading Activation: From S\ to Sn, activities are propagated

by iterating

A(t)  = ((1 -  7 ) /  +  aR( t ) )A ( t  -  1) (2.11)
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(1) Input sequence: Event sequence D

(2) Periods(’.’s): The moments of major changes

(3) Islands: Fundamental set of items, co-occurring frequently

(4) Bridges: Event-island co-occurrences representing causalities

(5) Hubs: potentially significant events connecting m ultiple islands

Table 2.1: Factors in KeyGraph [36]

where A(t) is a vector represents the activities of nodes at discrete 

step t = 1,2 ... n. Prim al activity of each term  before executing 

spreading activation is 1. I is an identity m atrix. The param eters 

7  and a  depend on the characteristics of documents.

5) Extract Keywords After spreading activation on all the segments 

in turn, highly activated term s are considered as the  author’s main 

point.

2.4 A pplications

2.4.1 Discover Active Faults from Earthquake-Sequences

Ohsawa [36, 37, 38] show the five m ajor components of KeyGraph and 

proposed th a t KeyGraph can be applied to various data, where the 

components (see table 2.1) correspond to  meaningful substances in the 

target world. The key Graph-based earthquake-data miner is called 

Fatal Fault Finder (F 3) is to extract active faults w ith risks of near­

future large earthquakes from earthquake-sequences. F 3 is composed 

of 3 steps.

• Get the following input data:
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time longitude latitude depth magnitude

1 85 01 01 01:17:52.24 142.804E 42.140N 10.2 2.1

2 85 01 01 01:30:49.92 139.523E 37.441N 158.7 3.1

3 85 01 01 01:52.24.20 146.804E 46.140N 230.2 4.2

N x x x x XXXX XXXX XXXX XXXX

Table 2.2: An Example of Earthquake Sequence (D ata 2) [38]

-  Data 1: Land-surface locations of faults, i.e. F = (a,b ) for 

every fault F where a and b represent the two-dimensional 

location of F.

— Data 2: A sequence of earthquakes, where each earthquake £) 

is given as (time*, longitudei, latitude^, depthi, m a g n itu d e^ . 

(,longitudei, latitude^), depthi, and m agnitudei denote the 

two-dimensional position, the depth, and the m agnitude of 

the ith  earthquake respectively. Table 2.2 show an example of 

da ta  2.

•  Make D: The distance from the epicenter x of each earthquake 

in data  2 to a fault F is computed. Then, F is regarded as the 

focal fault if it is the nearest to  x of all the faults in da ta  1. D is 

made as the sequence of these obtained focal faults. Each string in 

D implies an event. V is inserted after each earthquake stronger 

than  M q  (a fixed magnitude). Finally we can get D the following:

D=123#202#l#84#.7 6 # .216#1#202#84#. 249#84#. 76#249#. . .

(2 .12)

•  Obtain risky faults: O btain the events of the highest values of 
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Island,.
Bridges

Figure 2.4: An Example O utput for Earthquake Sequence [38]

key in D, and regard their focal faults as risky. For example, for 

Sequence 2.12, 249# is considered risky, see Figure 2.4.

The risky faults th a t are empirically obtained by keyGraph correspond 

closely to real earthquake occurrences and seismologists’ risk estima­

tion.

2.4.2 Chance Discovery from the W W W

M atsum ura et al [26, 24, 23] propose th a t revealing the structure of the 

W W W  will be a key to understand the real world. As a part of the hu­

man social network, the changes in the W W W  reflect the development 

in the real world quickly. A hyperlink is an implicit type of ‘endorse­

m ent’ of the page being pointed to. By analyzing those ‘endorsem ent’, 

we can decode the trends in the human society. The W W W  consists 

of an abundance of communities, each corresponds to  clusters of web 

pages sharing common interests [20]. A web page supported by mul­

tiple communities is considered to a popular source which can satisfy 

wide interests.

The web can be represented by a graph, by representing web pages 
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as nodes and the relation between web pages as links. There are two 

m ajor relations between a pair of web pages:

1. Direct relation: A node represents a web page and a link represents 

a hyperlink between two web pages.

2. Co-citation: A node represents a web page and a link is created by 

co-citation, co-citation refers to this kind of relation, for example, 

if page A points to  both page B and page C, B and C may be 

related.

Web pages in the same community may not frequently refer to  one 

another because of competitive relation. For example, an online shop 

may not have a link which points to its competitors. Therefore, co­

citation is better than  direct relation in reflecting the real world.

By doing analogical mapping, KeyGraph can be applied to  web 

pages. Table 2.3 shows the analogy between a document and a Web­

page set. Based on this analogy, a web-page set is considered as a 

document and can be applied to KeyGraph. Figure 2.5 shows an ex­

ample output of KeyGraph. Page 8 is considered to  be a newly growing 

im portant site. M atsum ura [24] applied this algorithm to  the set of 500 

popular web pages obtained by searching Google using the input query 

’human genome’ and discoverd www.celera.com as an growing impor­

tan t web site in the human genome research domain.
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Case of a document:

(1) Actions of the author, i.e. writing words

(2) Periods (Vs): the end of sentences

(3) basic concepts for the author

(4) the flow of content, connecting basic concepts and assertions

(5) the relations of asserted words to basic concepts
Case of a Web-page set

(1) web pages sequences

(2) the end of each web page

(3) most contributed or fundamental web page ( website ) about certain topic

(4) The relationship between web pages

(5) New growing web page (website)

Table 2.3: The Analogy between a Document and a Web-page Set [38]

page 5
page

'page 2

page 3

s page 4
page 1 page

page 7

Figure 2.5: An Example O utput of KeyG raph for Web-page Set [24]
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Chapter 3

Knowledge-based Chance 

Discovery System

In this chapter, we propose a new architecture for chance discovery. The 

new architecture has implications to  both the conception and discovery 

of chances tha t can be summarized as follows:

•  Chances are not necessarily unknown hypotheses. As we stated  in 

Chapter 2, some approaches focus on generating new unknown hy­

potheses and regarding them  as chances. However, many chances 

result from known events and rules. For example, applying for the 

right job at the right tim e represents a chance for an employment 

seeker as well as the employer. In this case, the goal is clear. How­

ever, chance discovery means th a t the employment seeker applies 

at the proper tim e and for the employer, it means to correctly 

project which applicant will be better for the job.

•  Inherently, chance discovery has a tem poral reasoning component. 

New risks and opportunities are typically associated with change. 

An invention, a new legislation, or a change in weather patterns
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may result in new chances. Incorporating chance discovery in a 

belief update process is fundamental to this work.

•  Chances are relative; someone’s trash may be another’s treasure. 

For example, finding a cure for a fatal disease represents more of 

a chance to  an individual suffering from this condition or at risk 

to  contact it.

•  To discover chances and take advantage of them, a system which 

can perform deductive reasoning is needed.

Therefore, we consider chance discovery as a process th a t tries to iden­

tify possibly im portant consequences of change with respect to a par­

ticular person or organization at a particular time. For this to  hap­

pen, a logical reasoning system th a t continuously updates its knowledge 

base, including its private model of chance seekers (CS) is necessary. 

A chance discovery process may act as an advisor who asks relevant 

“what i f ’ question in response to  a change and present significant con­

sequences much like seasoned parents advise their children. Such advice 

incorporates knowledge about the chance seekers, their capabilities, and 

preferences along with knowledge about the world and how it changes.

In a word, to discover chances, we need the followings:

•  First, a knowledge base which can infer and understand common- 

sense knowledge and th a t can incorporate a model of the chance 

seeker.

•  Second, we need a source for information about change in the 

world. Information about changes occurring in the world is usually 

documented in natural languages. For example, a newspaper can
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serve as a source for information about change. We need nature 

language processing (NLP) tools to understand this newspaper.

•  Third, we need a temporal projection system th a t would com­

bine information about change with the background knowledge 

and th a t would assess the magnitude of the change w ith respect 

to the knowledge seeker.

This thesis proposes an approach for assessing the implications of change 

to the chance seeker and bringing to the attention of the chance seeker 

significant risks or opportunities.

3.1 Chance and Change

Chance and change exist everywhere in our daily life. In general, 

changes are partially observable by a small subset of agents. Therefore, 

it is more likely to learn about changes happening in the world through 

others. For example, information about change could be deduced from 

conversations in chat rooms, newspapers, e-mail, news on the W W W , 

TV programs, new books and magazines, etc. In other words, change 

causing events occur daily around the world. The amount and rate  

of those events is very large. However, a relatively small portion of 

these changes represent risks or opportunities to  any particular chance 

seeker.

Initially, the system starts  with a stable knowledge base KB. The 

knowledge base represents the set of widely held knowledge. As part of 

KB's knowledge, each chance seeker m aintains its own private knowl­

edge th a t describes its current attributes. In addition to the KB, each
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chance seeker also maintains its private goals and plans leading to some 

of the  goals. If the chance seeker does not specify a set of goals, the 

system will use default goals that are widely accepted as common goals. 

For example, the system assumes tha t all people want to become more 

famous or richer, want their family members and relatives to be rich and 

healthy, etc. We assume th a t the chance seeker has already exploited 

the chances present in the current KB and th a t the current plans of 

chance seeker are the best according to current KB. However, current 

plans may only be able to achieve part of the goals. For example, the 

goal to  own a house in Mars is unachieved by current knowledge.

A chance seeker’s goal can be represented by a set of sentences 

describing a future status of chance seeker’s attributes. For example, 

if chance seeker set up the goal to be a famous scientist, the system 

can judge the achievement of the goal by measuring chance seeker’s 

current attributes, such as education, occupation, published papers, 

social class, etc. The system maintains an a ttribu te  framework for the 

chance seeker in KB. The attribu te  framework changes as if necessary. 

A goal can be considered as a future projection of current framework. 

On the other hand, a future set of attributes could satisfy many goals 

of chance seeker. Current plans of the chance seeker project current set 

of attributes to an achievable set of goals.

As new information B becomes available, an update operation is 

triggered. The update operation proceeds in two phases: a explanation 

phase and an projection phase. The explanation phase tries to revise 

current beliefs th a t may have been proven to be inaccurate by the 

occurrence of B. Similarly, the  projection phase, revises current beliefs
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to take into account the occurrence of B. A risk is detected if the 

occurrence of B results in a threat to the causal support for one of 

the  plans of the chance seeker. An opportunity is detected if B satisfies 

one of the followings: the occurrence of B makes more of the chance 

seeker’s goals achievable, or better plans can come up after B. In some 

cases, a particular piece of new information will result in both risks and 

opportunities.

3.2 Cyc K nowledge Base for Chance D iscovery

Cyc knowledge base [41] is supposed to  become the world’s largest and 

most complete general knowledge base and commonsense reasoning en­

gine and therefore represents a good candidate as a source for back­

ground knowledge. The Cyc knowledge base (KB) can be regarded 

as a formal system containing a vast quantity of fundam ental hum an 

knowledge: facts, rules of thumb, heuristics, and a reasoning system 

about objects and events of everyday life by using its own knowledge. 

The medium of representation is a formal language known as CycL 

[41]. CycL is essentially an augm entation of first-order predicate cal­

culus (FOPC), with extensions to handle equality, default reasoning, 

skolemization, and some second-order features. The following shows an 

example of CycL:

(#$forAll 7PERS0N1 
(#$implies
(#$isa 7PERS0N1 #$Person)
(#$thereExists 7PERS0N2
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(#$and

(# $ is a  7PERS0N2 #$Person)

(#$ loves 7PERS0N1 7PERS0N2))),

in English, means

"Everybody loves  somebody."

In Cyc, a collection means a group or class. Collections have instances. 

Each instance represents an individual. For examples,

(# $ is a  #$AbrahamLincoln, # $ P e rso n ) .

(# $ is a  # $ B illG a te s ,  #$Person).

Abraham  Lincoln and Bill Gates are individuals. Person is a collection. 

A collection could be an instance of another collection. For example,

(#$genls #$Dog, #$Mammal),

means “Collection Dog is an instance collection of collection Mammal” .

In other word, Dog is a specialization of Mammal. It can be said 

tha t every individual is an instance of Thing, which is the  most general 

collection in Cyc KB. Some individuals could be part of other individ­

uals. For example, Microsoft is an individual. Joe works for Microsoft. 

Joe is part of Microsoft.

Constants are the “vocabulary words” of the Cyc KB, standing for 

something or a concept in the world th a t many people could know 

about. For example, #$isa, #$Person and #$B illG ates are constants.

An assertion is the fundam ental unit of knowledge in the Cyc KB. 

According to [41], every assertion consists of:
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•  an expression in CycL language tha t makes some declarative state­

ment about the world.

• a tru th  value which indicates the assertion’s degree of tru th . There 

are five possible tru th  values, including monotonically true, default 

true, unknown, default false and monotonically false.

• A microtheory of which the assertion is part of. Section 3.2.1 gives 

a detailed explanation of microtheories.

•  A direction which determines whether inferences involving the as­

sertion are done at assert tim e or at ask time. There are three 

possible values for direction: forward (inferences done at assert 

time), backward (inferences done at ask time), and code (assertion 

not used in regular inference).

•  A justification which is the argument or set of arguments support­

ing the assertion’s having a particular tru th  value.

An assertion could be a rule or a Ground Atomic Formula (GAF). A 

rule is any CycL formula which begins with #$implies. A GAF is a 

CycL formula of the form, (predicate arg l [arg2 ...argn]), where the 

arguments are not variables.

In Cyc, time is part of the upper ontology. It is a physical quan­

tity. A tem poral object such as an event, a process, or any physical 

object has a tem poral extent. The tim e model is interval-based with 

support for points. Time Interval has dates, years, and so on, as its 

subcategories. An event is a set of assertions th a t describe a dynamic 

situation in which the sta te  of the world changes. An event has non­

empty space and time components. It may also have performer, bene-
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ficiaries, or victims. A script in CycL is a type of complex event with 

temporally-ordered sub-events. Applications can use script recognition 

- th a t allows them to identify a larger script from some stated events 

th a t are constituent parts of the script. Scripts can also be used for 

planning and for reading comprehension.

3.2.1 Microtheories

A microtheory (Mt) [41] is a bundle of assertions. The bundle of as­

sertions may be grouped based on shared assumptions, common topic 

(music, football, etc), or source (Newsweek, People’s Daily, etc). The 

assertions within a Mt must be m utually consistent. Assertions in dif­

ferent M ts may be inconsistent. For example,

MT1: Hu Jintao is the President of China 

MT2: Hu Jintao is a high school student

Microtheories are a good way to cope with global inconsistence in the 

KB, providing a natural way to  represent things like different points of 

views, or the change of scientific theories over time. M ts are one way 

of indexing all the assertions in Cyc KB.

There are two special Mts, one is #$BaseK B (always visible to all 

other M ts), the other one is #$EverythingPSC  (all other Mts are visible 

to this M t). #$EverythingPSC is a microtheory which has no logically 

consistent meaning but has a practical utility just because it is able to 

see the assertions in every microtheory.

The Cyc KB is the repository of Cyc’s knowledge. It consists of 

constants and assertions involving those constants. It could be regarded 

as a sea of assertions, see figure 3.1. Form ontology point of view, the
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m
: : 0 -

Figure 3.1: Cyc Knowledge Base as a Sea of Assertions

Cyc KB could also be thought of as made up of layers ordered by degree 

of generality.

3.2.2 Cyc Natural Language System  (Cyc-NL)

Cyc-NL [41] is the natural language processing system associated with 

the Cyc KB. It could translate  between natural language and CycL. 

Cyc-NL has three main components:

• a lexicon which is a generative morphology component generates 

part-of-speech assignments for words in a sentence.

• a syntactic parser which uses a gram m ar to generate all valid parses 

for the sentence.

•  a semantic interpreter which produces pure CycL equivalent for 

the input sentence.
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Newspaper
Magazine
WWW,

Network
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Public Knowledge Updai
RealCS

CS Private Knowledge Update

New Knowledge

Chance Visualiztum Plans & GoalsCD Module

Figure 3.2: Chance Discovery System

3.3 Overview o f K nowledge-based Chance D iscov­

ery System

Figure 3.2 shows the proposed framework for chance discovery. N atural 

Language Processing (NLP) modules analyze daily news and generate 

new knowledge which is represented in logic. The new knowledge is 

then integrated into public Cyc KB servers. The private Cyc KB server 

owned by the chance seeker will connect to public KB servers and up­

date its knowledge. On the other hand, the chance seeker updates its 

private a ttributes in the private Cyc KB. The knowledge about the 

chance seeker can be regarded as a virtual chance seeker living in Cyc 

KB. A chance seeker sets up its goals or uses default goals in the Goals 

& Plans Module. New knowledge triggers the CD modules th a t mea­

sure the relevance of the new knowledge to  the  chance seeker. The 

new knowledge is considered to be a chance candidate if the relevance
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score is above a certain threshold. By trying to revise current plans 

using the new knowledge, the magnitude of this chance candidate can 

be measured using a utility evaluation process. W hen the m agnitude of 

the  utility is above a specified threshold, a chance is detected. Finally, 

the system visualizes the chances to chance seeker, and revises current 

plans for future chance detections.

3.4 The Relevance of N ew  K nowledge

New knowledge is relevant to the chance seeker if it has an immediate 

impact on the seeker’s a ttributes or on the achievability of the chance 

seeker’s goals. For example, the new knowledge th a t shows th a t the 

chance seeker inherited a fortune is relevant as it changes the seeker’s 

wealth a ttribute. The new information can affect the achievability of 

goals in three ways:

• making new goals achievable,

• making some previously achievable goals unattainable, or

• changing the cost or reward of achieving some goals.

A goal is considered achievable if the system finds a plan to the goal 

from the current state. To impact the achievability of a plan, the new 

knowledge could affect the causal support for actions in the plan or the 

likelihood of success.

Testing the relevance of new information to the chance seeker is 

desirable to filter out irrelevant information. Fully testing the relevance 

of new information with respect to its impact on the  chance seeker’s
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attribu tes and plans could be computationally expensive. Therefore, we 

gradually apply a series of relevance tests with increasing computational 

cost. These tests are:

• testing if the new information is subsumed by existing knowledge,

•  testing for tem poral relevance,

•  testing for spatial relevance,

•  testing for impact on the chance seeker’s attributes, and

•  testing for impact on the chance seeker’s plans.

To verify th a t the new information is actually new, and is not subsumed 

by knowledge already in the KB, we test if it is entailed by existing 

knowledge. For example, if the KB contains assertions indicating th a t 

Paul M artin is the leader of the Liberal Party, th a t the Liberals won 

the largest number of seats in the parliam ent and th a t the leader of the 

party th a t wins the most seats becomes the Prim e Minister. It becomes 

redundant to add an assertion indicating th a t Paul M artin became the 

Prime Minister. Similarly, if KB contains a generalization of the new 

information, this information will be redundant.

The relevance of information in a dynamic stochastic system de­

generates gradually over time. The rate  of degeneration of information 

relevance with respect to a rational decision maker depends on the prob­

abilities of change as well as on the relative utilities [53]. Cyc supports 

a notion of possibility akin to probability. However, it is unlikely th a t 

the probabilistic knowledge in the  KB will be specified fully to con­

struct dynamic belief networks. Therefore, we rely on the intersection
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of the  tem poral extents associated with tem poral object in the KB to 

verify the m utual relevance of tem poral objects. Similarly, most spa­

tial effects also weaken with distance. Therefore, it is fair to filter out 

new knowledge whose spatial or tem poral effects lie outside the scope 

of interest.

New knowledge could be divided into rules and events (facts). We 

consider th a t the chance seeker relies on a rule if the chance seeker 

includes some actions tha t are causally supported by the consequences 

of the  rule into its plan. The impact of the rule measures the role 

of the rule in reaching the goals. It could be regarded as the utility 

changes th a t are credited to the rule B. If S represents the state of 

chance seeker’s attributes, then impact is given by:

Im pac ts = V (S B) -  V( S)  (3.1)

To assess V ( S B), we consider two cases: In one case, V ( S B) may al­

ready be stated  clearly in the rule. For example, the tim e saving from 

taking a newly built high speed train  to a certain destination will be 

clearly stated in the news. On the other hand, if V ( S B) is unclear, 

we can deduce a reasonable hypothesis by combining the new rule and 

existing rules in background KB. This hypothesis will not go beyond 

the known knowledge. For example, if there is an assertion in KB s ta t­

ing th a t all the people in the same country speak the same language, 

then communicating with all Brazilians will be the utility of learning 

Portuguese for a chance seeker who wants to  travel to  Brazil. Note 

that this utility could be inaccurate since it is based on a hypothesis. 

In general, Im pactB may act as a greedy measure of progress towards 

the goals but does not guarantee reaching these goals. An exogenous
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rule may undermine actions on the other part of chance seeker.

W hen new knowledge is an event, to determine the value of an 

event, we have to take other factors into account. An event could 

be composed by a bundle of assertions describing its features, such as 

actions, locations, time, physical object involved, etc. The impact of 

an event with respect to a particular chance seeker is based on the 

following features:

• Im portance of the entities involved in the event. To evaluate an 

event, we take the importance of those objects into account. For 

example, ’Microsoft’ may be considered to be a more im portant 

company than  other small companies. However, a small company 

currently working with Microsoft may be im portant.

•  The relationship between involved objects and the chance seeker 

needs to be taken into account. For example, a company owned 

by family members may mean a lot to  the chance seeker though 

it is a small company. On the other hand, the chance seeker may 

work for this small business. Generally, close relatives, friends, 

and acquaintances are more im portant than  strangers.

According to the above:

ImpactEvent — ^  VE(Size(O bjecti), R e la tio n s(O b jec ti , C S ) )  (3 .2)
i

Where Ve  is a value function th a t takes into account the  im portance/size 

of object, the a ttributes involved and the  relationships between objects 

and the chance seeker including spatio-tem poral relationships. Ve  tries 

to guess the potential change in the chance seeker’s attributes.
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A negative impact indicates tha t the new knowledge is a potential 

th rea t. In the case of irrelevant new knowledge, the impact will be 

inside the range of [negative threshold, positive threshold]. The new 

knowledge will be integrated into KB for future reference. However, the 

new knowledge will be considered as a chance candidate if the  impact 

is outside the range.

3.5 The M agnitude of Chance Candidate

Here, B is the set of new knowledge th a t passes the relevance tests, the 

system will try  to  revise current plans (CP) of the chance seeker using 

B. Partial Order Planning (POP) and SATplan algorithm [46] can be 

used to generate new plans (N P b ) by taking B into account. In our 

system, we use SHOP [34] planner to  generate the plans for the  chance 

seeker. SHOP is a domain-independent autom ated-planning system. 

Chapter 4 will give a detail description of SHOP.

By adopting N P b  instead of CP, the chance seeker may be able 

to achieve a different set of goals, or save tim e and /o r money while 

achieving the same goals. All these features can be reflected by a utility 

function mapping. The magnitude of B denoted by M g is represented 

as the utility difference between N P b  and CP.

There could be a gap between the goals of N P b and the goals of 

CS. As describing in section 3.1, a set of goals can be represented by 

a future sta tus of a ttributes im portant to the chance seeker. If we use 

a utility function (V) to map those a ttribu tes into real values and add 

them  together, we can represent a notion of preference. The change in
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the utilities could be represented as:

M b  =  Vn p b — V cp  (3.3)

M b  represents the difference between new plans and current plans. If 

M b  in the range of [negative threshold, positive threshold], it means 

th a t N P b and CP are roughly the same. The magnitude of B is low. 

W hether B is a chance or not, there are the following possible cases:

• Short-term setback: W hen B has negative effect on chance 

seeker’s a ttribu te  and no th reat to the current plans, B will be 

ignored.

• Potential risk: W hen B has negative effect on chance seeker, 

and threatens some of the current plans. However, repair plans 

can be found such tha t the new plans including the repair plans 

can achieve the same goal as before. This is considered a potential 

risk even though it is possible to repair the plans because if the 

chance seeker proceeds with the original plans the goals may not 

be reached.

•  Risk: Repair plans cannot be found, N P b  achieve fewer goals 

than  before. M b  is out of range. The system considers B to be is 

a risk.

• Short-term prosperity: W hen B has positive effect on chance 

seeker’s attribute, and no effect on the current plans.

•  Exploitable efficiency: N P p  can achieve the same goals as CP 

but in significantly shorter tim e or costs less. B is considered as a 

chance.
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• Improved reliability: N P b  can achieve the same goals as before 

for approximately the same cost but offer an alternative for some 

plan elements.

• Inefficient alternative: Exploiting B, N P b  can achieve fewer 

goals than  before or the same goals at a higher cost w ithout threat- 

ning CP. B is ignored.

• Opportunity: N P b  can achieve more goals than  before. M b  is 

significant and positive and B is considered a chance.

• Short-term gain long-term risk: W hen B has positive effect on 

chance seeker, threatens some of the current plans and the plans 

cannot be repaired.

• Short-term loss long-term gain: B results in an immediate 

loss but enables longer term  plans.

Finally, if a chance is detected, N P B will be set as CP.

3.6 V isualizing Chance

W hen a chance is detected, visualizing chances is im portant as the last 

step of chance discovery. Sometimes chance seekers may not under­

stand why chances returned by chance discovery system are chances. 

Visualization of chances could emphasize on the explanation and help 

chance seeker realize chances.

A detail visualization explanation including display of the future 

status of a ttributes of chance seeker, display of chance seeker’s current
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plans, etc, may be necessary. Kundu et al. [21] present a 3-D visualiza­

tion technique for hierarchical task network plans. Such visualizations 

will be useful for the chance seeker to understand the interactions be­

tween various elements in the plan.

3.7 Evaluation & Discussion

The evaluation of chance discovery (CD) systems could be based on 

precision, efficiency and chance management. As discussed in Chapter 

2, many previous CD approaches regard chances as unknown hypoth­

esises, focusing on techniques to derive common chances, i.e. chances 

for all people. Our approach focuses on knowledge management, find­

ing chances in known knowledge (news, W W W , etc) for a particular 

chance seeker by the support of a large and rich knowledge base. In 

the 2005 tsunam i tragedy, scientists correctly detected the occurrence 

of the tsunam i, but failed to warn the relevant people in South Asia in 

time to evacuate. Hence, chances are relative.

Key Graph, as introduced in chapter 2, is a widely used technique 

in CD research. In section 2.4.2, we introduce a m ethod proposed by 

M atsum ura and Ohsawa to detect emerging topic (web page as chance) 

by applying KeyGraph on web pages. A ” Human Genome project” ex­

ample was presented. Its benefits include finding cures to conquer fatal 

illness. Two sets of web pages (CA and CB), each containing 500 web 

pages, were obtained by searching ’’human genome” in Google. CA 

was obtained on Nov 26, 2000. CB was on Mar 11, 2001. In the out­

put of KeyGraph, Celera (www.celera.com), a growing Human Genome 

research website, was detected as a chance in CB because Celera co-
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occurred with the most im portant (foundation) websites in CB. The 

set of foundation websites of CA and CB, such as NCBI (the National 

Centre for Biotechnology Information), etc, is almost the same. The 

following events about Celera were reported in the meantime:

1. The Human Genome Project team  and Celera announced the com­

pletion of the draft sequence of the human genome in June, 2000.

2. Craig Venter, President and Chief Scientific Officer of Celera and 

Francis Collins, Director of the Human Genome Project, met Pres­

ident Bill Clinton and British Prime M inister Tony Blair for the 

progress of the human genome analysis.

3. Papers about the completion were published in Nature and Science 

in Feb, 2001.

For a researcher in medicine whose goals include finding a cure for 

genetic diseases, our CD system would report a chance after evaluating 

events 1&2 and would propose new plans. The system may draw the 

researcher’s attention to  the draft sequence as early as on Jun 27, 2000 

because Clinton and Blair are very im portant individuals. The degree 

of relevance will be high. The m agnitude of “the draft sequence” will 

be high since it makes the researcher’s unattainable goals achievable. 

Therefore, our approach could discover chances fast.
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Chapter 4

Im plem entation of the Chance 

Discovery System

Having presented the theoretical aspects of our knowledge-based chance 

discovery system in the previous chapter, we now shift our attention to 

the implementation of the system.

4.1 D iscussion on Im plem entation

To implement the chance discovery system, we need the support of the 

following essential elements:

• Natural Language Processing Tool: Translate knowledge be­

tween natural language text and logic representation.

• Knowledge Entry Tool: A utom atically integrate knowledge 

represented in logic language into knowledge base.

• Inference Engine: Efficient inference engine in KB can reason 

logical consistence and answer inquiry by the  point of view of logic.

• Planner: A planner generates a specific sequence of actions about
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how to achieve goal state from initial state  with respect to the 

knowledge defined in the knowledge base.

In the following sections, we will explore each element, present what 

we achieve and discuss the limitations.

4.1.1 Natural Language Processing Tools

The goal of the N atural Language Processing (NLP) is to  de­

sign and build software th a t will analyze, understand, and 

generate languages tha t humans use naturally, so th a t even­

tually you will be able to address your computer as though 

you were addressing another person.

(Microsoft NLP Research Group)

Large-scale natural language processing (NLP) is a famously difficult 

task for many reasons. NLP research includes syntactic parsing, lexi­

cal representation, semantic interpretation, pragm atic processing, and 

discourse management. A truly functional natural-language dialogue 

system can be produced by incorporating the above-mentioned areas. 

Although im portant progresses have been m ade in these areas, NLP 

technology available today still has big difficulty in translating  between 

nature language and logic language [41].

Cyc-NL [41], as introduced in section 3.2.2, is the natu ra l language 

processing system associated w ith the Cyc knowledge base. Although 

benefited from a broad and deep repository of commonsense knowledge 

(Cyc KB), the Cyc-NL system in OpenCyc v0.7 can only ‘speak En­

glish’ but don’t understand English well. Speaking English means th a t 

Cyc-NL can effectively translate  CycL expressions into English.
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Therefore, in the our system the translation is done manually.

4.1.2 Knowledge Entry in Cyc KB

There are several ways to integrate knowledge into Cyc KB. We can 

use web browser to access Cyc KB and add new knowledge by using:

• Assert tool: This tool can assert a formula w ritten in CycL lan­

guage into Cyc KB at one time. For example,

(#$ im p lies

(# $ isa  7S0ME0NE #$Person)

(# $ isa  7S0ME0NE #$P rim ate))

is a well-formed formula and can be asserted into KB. A well- 

formed formula is a formula w ritten with correct gram m ar of CycL.

• Compose tool: This tool allow users to  enter new knowledge into 

Cyc KB using KE tex t format (KE stands for knowledge entry). 

KE text let user inputting massive knowledge at one time become 

possible. The following example show an example of KE text:

D e fa u lt Mt: BaseKB.
C o n stan t: W indsorLifeM t. 
i s a :  F ic t io n a lC o n te x t . 
genlM t:H um anA ctiv itiesM t.

D e fa u lt Mt: W indsorL ifeM t.

C o n stan t: Canada, 
i s a :  C ountry.

C o n s ta n t: O n ta r io . 
i s a :  S ta te - G e o p o l i t ic a l .
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C onstan t: W indsorArea, 
i s a :  G eographicalR egion.

C o n s ta n t: JohnLambton. 
i s a :  ComputerProgrammer.

C onstan t: Java.
i s a : ComputerLanguage.

C o n s ta n t: L inux .
i s a :  ComputerProgram-CW.

C o n s ta n t: M aster-C om puterS cience. 
i s a :  A ttr ib u te V a lu e .

F : (knowsAbout JohnLambton J a v a ) .
F : (knowsAbout JohnLambton L in u x ) .
F : (re s id e s In R e g io n  JohnLambton W indsorA rea).
F : (h a s A ttr ib u te s  JohnLambton M aster-C om puterS cience).

This example builds a Microthieory ’W indsorLifeM t’ enters the 

following knowledge into ’W indsorLifeM t’:

John Lambton lives in W indsor area, Ontario, Canada.

He is a computer programmer, knowing about Java and 

Linux. John is holding M aster degree in com puter science.

Therefore, using KE text is good way to integrate new knowledge in 

our CD system.

4.1.3 Inference Engine in Cyc KB

Inference is the mechanism to conclude new facts from other existing 

facts and rules in the system [41]. The inference process is a deduction
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using facts and rules. Cyc uses two rules of inference in theorem prov­

ing, modus ponens and modus tollens. As we describe in chapter 3.2.1, 

Using microtheories (Mts) is a good way to incorporate local consis­

tency while coping with global inconsistency. Inference is performed 

within Mts. Cyc Inference Engine can perform the following functions:

• Answer Query: For example, if we ask 

(#$isa JohnLambton ?X),

Cyc KB will return the followings:

Answer ?X

* [E xp la in  #55] ComputerProgrammer 
* [E xp la in  #54] In d iv id u a l  
* [E xp la in  #53] Thing 
* [E xp la in  #52] ComputerUser 
♦ [E x p la in  #51] A gent-G eneric

♦ [E x p la in  #32] O rg an icS tu ff 
♦ [E xp la in  #31] N a tu ra lT a n g ib le S tu ff  
♦ [E x p la in  #30] E ukaryoticO rganism  
♦ [E xp la in  #29] Organism-Whole 
♦ [E xp la in  #28] H e te ro tro p h  
♦ [E xp la in  #27] P ercep tua lA gen t 
♦ [E xp la in  #26] In d iv id u a lA g en t 
♦ [E xp la in  #25] Agent

♦ [E xp la in  #1] LegalAgent 
♦ [E xp la in  #0] S oc ia lB eing

In previous example, we only asserted ‘JohnLam bton is computer 

program m er’. The inference engine can deduce the above knowl­

edge by using existing rules. JohnLam bton is an instance of the 

above collections.
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• Maintain Consistency: If we try  to assert a new assertion:

( i s a  JohnLambton Country) in  W indsorLifeM t

Beause John cannot be a person and country at the same time,

Cyc KB will return the following:

Agenda h a l te d  due to :  
sb h l c o n f l i c t :

( i s a  JohnLambton Country) :TRUE W indsorLifeM t

because: ( i s a  JohnLambton ComputerProgrammer)
T r u e - J u s t i f ic a t io n T ru th  

(g en ls  ComputerProgrammer Person) :TRUE 
(g en ls  P erson  Animal) :TRUE 
(g en ls  Animal AnimalBLO) :TRUE 
(g e n ls  AnimalBLO B io lo g ic a lL iv in g O b je c t)  :TRUE 
(g en ls  Inanim ateT hing-N onN atural Inanim ateT hing) :TRUE 
(g en ls  O rg a n iz a tio n  Inan im ateT hing-N onN atural) :TRUE 
(g en ls  G e o p o l i t ic a lE n t i ty  O rg an iza tio n ) :TRUE 
(g en ls  Country G e o p o l i t ic a lE n t i ty )  :TRUE

In this case, The new knowledge cannot be asserted into KB.

4.1.4 OpenCyc Java Application Programming Interface

OpenCyc Java Application Programming Interface (API) provide the 

middleware which allows Java applications to  connect to  Cyc KB and 

manipulate the knowledge in Cyc KB. Figure 4.1 shows the architec­

ture of OpenCyc Java API. Class CfaslInputStream  translate  the input 

stream. All Java native types are translated to  equivalent logical CycL 

language types. Class CfaslOutputStream  does the opposite job. Fig­

ure 4.2 shows an example about how to access Cyc KB by using Java
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Cyc Access

QasEjiputStream CfaslOuiput Stream

Figure 4.1: The OpenCyc Java API Architecture

application. In this example, the guid of constant is the unique iden­

tifier inside Cyc KB. We try  to print out all the person instances in 

OpenCyc KB. We only got three instances: Guest, CycAdm inistrator 

and JohnLambton. Therefore, the knowledge in OpenCyc current ver­

sion is very limited. All the examples about using OpenCyc Java API 

are available in Appendix A.

4.1.5 Planning

Since chance represents a new seed for a potentially significant future, 

we need an actual plan to show the potential way from current state 

to the significant future by taking advantage of the  chance, i.e., We 

need to generate an actual plan to evaluate the m agnitude of chance 

candidate. However, the OpenCyc planner does not work. Therefore, 

we implement our own planner outside the Cyc KB. This task was
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package cycTestPackage;

import org. opencyc. api. CycAccess; 
import org. opencyc. api. CycConnection; 
import org. opencyc. cycobject. *; 
import java. util.*;

public class Cyctest { 
public Cyctest() {
}

public static void main(String[] args) {

try {

CycAccess connect=new CycAccess ("localhost", 3601,1, true, 1);
CycConstant person=(CycConstant) (connect. getConstantByName("Person"));

CycList lis=connect. getAHIsa(person);
CycList lisl=connect. getAllInstances (person);

System, out. println (connect. baseKB. toXMLStringO);
System, out. println (person. getGuid(). toXMLStringO); 
for (Iterator it=lisl. iterator (); it. hasNextO ;) {
System, out. println ("Person isa "+((CycFort) (it. next())). toStringO);

}

} catch (Exception e)
{ System, out.println ("error happened");

}
}

}

The following will be returned when we run the program: 

<constant>
<guid>bd588111-9c29-llbl-9dad-c379636f7270</guid>
<name>BaseKB</name>
<id>184</id>

</constant>

<guid>bd588092-9c29-llbl-9dad-c379636f7270</guid>

Person isa Guest
Person isa CycAdministrator
Person isa JohnLambton

Figure 4.2: A Sample Java Program

University of Windsor, 2005 63

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



C h ap ter 4 Change and P lanning in Chance D iscovery

facilitated by the fact tha t the OpenCyc planner is a re-implementation 

of SHOP planner. In the following section, we will give a brief review 

about artificial intelligence planning.

Artificial Intelligence Planning Overview

In [46], the task of coming up with a sequence of actions th a t will 

achieve a goal is called planning. Planning includes classical planning 

and nonclassical planning. The classical planning environment are fully 

observable, deterministic, finite, static (change happens only when the 

agent acts), and discrete (in time, action, objects and effects). How­

ever, the nonclassical planning environments are partially observable 

or stochastic. In our chance discovery system, we use classical planning 

because we assume th a t our virtual society (KB) is fully observable and 

deterministic.

Hierarchical Task Network Planning

Complexity is a big issue when we do planning in such a vast knowl­

edge base like Cyc. Hierarchical decomposition [46] is one of the most 

popular ways to  deal with complexity. The key benefit of hierarchi­

cal decomposition is tha t, at each level of hierarchy, a com putational 

task is reduced to a small number of activities at the next lower level, 

so tha t the com putational cost of finding the plan for the problem is 

small. In non-hierarchical methods, it is completely impractical for 

large-planning problems because a task is reduced to a large number of 

individual actions. In Hierarchical Task Network (HTN) Planning, the 

initial plan is viewed as a very high level of description of the goal. Plans
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Land Build
House

T
House

decomposes to

Land
■̂FinishconstructionS ta r t

Mone; Hire Builder

Get Permit Pay
Builder

Figure 4.3: The One Possible Decomposition for the BuildHouse Action

are refined by applying action decompositions. Each action decomposi­

tion decomposes a high level action to a set of lower-level actions. This 

process embodies the knowledge about how to implement actions. It 

continues until only primitive actions remain in the plan. For example, 

figure 4.3 show the decomposition for the buildHouse action.

Simple Hierarchical Ordered Planner

SHOP (Simple Hierarchical Ordered Planner) [34] is a domain-independent 

autom ated-planning system. It is an ordered task decomposition plan­

ner which is a type of HTN planner and executes tasks in the same order 

as tasks appearing in plans. This reduces the complexity of reasoning 

by removing a great deal of uncertainty about the world and makes 

it easy to incorporate substantial expressive power into the planning 

algorithm.

SHOP is composed by the following elements [34]:

• States and operators: they represent knowledge about the status 

of domain and primitive actions agents can perform.

•  Task: a task is an expression of any of the  forms:
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(s ti t 2 ... tn)

(:task s t\ t2 ... tn)

where s is a task symbol and the arguments t x t2 ... tn are terms. 

The task atom  is

-  primitive: Tasks we know how to execute directly. Normally, 

the task symbol is an operator name.

-  nonprimitive: Tasks must be decomposed to subtasks using 

methods.

•  Methods: A m ethod is a list of the form

(m ethod  h [m] C\ Tx [n2\ C2 T2 ... [nk\ Ck Tk)

where

-  h is a task atom called the m ethod’s head.

-  Each Ci is a logical precondition.

-  Each Ti is a task list.

-  Each rii is the name for the succeeding Ci Ti pair.

A m ethod indicates th a t the task specified in the m ethod’s head 

h can be performed by performing T i  when Ci is satisfied. The 

preconditions are considered in the  given order, and a later precon­

dition is considered only if all of the  earlier preconditions are not 

satisfied. For example, C2 is considered only if C\ is not satisfied.

Figure 4.4 shows the basic elements of SHOP. A transport(packagel,x,y) 

task can be decomposed to  subtasks using two options: travel by train  

and by air.
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Task # • „
Method

TransByTrain(package1, loc1-1, loc2-4)

TransByAir(package1, loc1-1, loc2-4)

DriveTruck(package1, loc1-1, Airportl)

Fly(package1, Airport!, Airport2)

DriveTruck(package1, Airport2, loc2-4)

Trans(package1, loc!-1, loc2-4)

Figure 4.4: The Basic Elements of SHOP

To verify our theories, we have implemented a transportation do­

main and do planning by using SHOP planner, instead of using the 

planner of Cyc KB. Section 4.2 provides a detail case study about how 

chance is discovered in this transportation domain.

4.1.6 Limitations

From the above descriptions, we summarize th a t our theory is imple- 

mentable in OpenCyc KB. However, the current available version of 

OpenCyc (v0.7) has many limitations. They are:

•  It contains limited knowledge mostly describing about the upper 

level ontology.

•  Although the OpenCyc API in OpenCyc (v0.7) presents a frame­

work to m anipulate Cyc KB server by using applications. We 

encountered a lot of bugs and em pty m ethod bodies (methods 

without the concrete code to fulfill the function th a t is supposed 

to have).
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•  The planner available in OpenCyc (v0.7) does not work.

Hence, the current version of Cyc KB does not satisfy all the require­

m ents and the fact tha t it is a very large system makes attem pting to 

fix its bugs beyond the scope of this thesis. However, a new version 

of Cyc KB, Cyc KB vl.O, is currently under development. Over fifty 

employees in Cycorp are developing this new version. We anticipate 

th a t it will be able to make use of this tool in the future.

4.2 Case Study

In this section, we dem onstrate how example chances are detected in 

virtual transportation domain implemented by using SHOP. The Lisp 

code describing this domain along with its planning constraints is given 

in Appendix B.

4.2.1 Transportation Domain Description

This domain is based on logistic planning domain and talks about the 

transportation of package between cities, see Figure 4.5.

Due to the relative simplicity of the domain, chances we discover 

in this domain are not sophisticated and may seem trivial and simple. 

Another reason is tha t knowledge representation is not powerful enough 

in AI planners. SHOP planner does not have ontology hierarchy and 

does not support local consistency with global inconsistency. Therefore, 

‘chances’ discovered here may not be what the hum an commonsense will 

consider a chance. However, they may seem reasonable by considering 

that these chances are discovered automatically.
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Figure 4.5: The Transportation Domain

In the future, with the support of powerful tools described in pre­

vious section, our chance discovery system should be able to  discover 

valuable chance in the complex real world.

• Domain Description: Figure 4.5 shows A BC’s transportation 

domain. ABC is a transportation company th a t has branches in 

cities and initially own a certain amount of money and a number 

of trucks.

C ity l and city2 are connected by a railway and a highway. Both 

cities have airports and docks. Daily flights and ferries travel be­

tween the two cities.

City3, however, is located on an island and is only connected with 

other two cities only by ship.
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ABC aim at achieving a daily transportation service, i.e., all pack­

ages need to be transported from origin to destination in one day. 

This goal is achieveable between cityl and city2 because ABC 

can use its own trucks and public services to transport packages. 

However, the goal is not achieveable for goods leaving and going 

to  city3 due to  the long travel time of the journey using a ship.

• Goals: The goal is to keep ABC in business and bring ABC profits 

as much as possible.

• Chances: By comparing a new plan and the current plan, we 

evaluate if new knowledge about change in the world is a chance 

or not. Chance examples could be:

— A high speed train  will serve between city l and city2 soon.

— A new cheap red eye flight will become available soon

— Due to  a serious flood, the highway between cityl and city2 

will be closed for 2 months.

4.2.2 Chance Discovery Process

Stepl: Translate new knowledge from natural language into logic language

Since N atural Language Processing tools available today still have big 

difficulties, the translation is done manually. For example, if the fol­

lowing news items become available:

1. the movie ‘C rash’ was awarded as Best Film at C ity l Film Festival.

2. Due to a serious flood, the highway between c ity l and city2 will 

be closed for 2 months.
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3. a high speed cargo ship will serve between city l and city3 soon.

4. Eric Lambton was erected to be the president of University of 

city 2.

5. A new discovery shows that human being contacting virus X may 

die.

These news items represented in the logic language used in SHOP will 

be:

1.

2 .

3.

4.

5.

MOVIE crash)

AWARD bestFilm)

FESTIVAL citylFilmFestival)

AWARD-TO bestFilm  crash citylFilmFestival)

COST-AT highway-cost 9999999 aFutureDate)

COST-AT hs-ship 1200)

TIM E-COST hs-ship 5)

SERVE-AT hs-ship c ity l city3)

PERSON EricLambton)

UNIVERSITY universityOfCity2) 

PRESIDENT EricLambton universityOfCity2)

VIRUS X)

EFFECT-O N  X Person dead)

:operator (!CONTACT ?virus ?person)

(PERSON ?person)

(STATUS ?person alive)

(VIRUS ?virus)
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(EFFECT-ON ?virus Person ?status)

((STATUS ?person alive))

((STATUS ?person ?status) 0)

Step2: The Relevance Test of New Knowledge

The relevance test in our system is to filter out the less relevant or ir­

relevant new knowledge with respect to chance seeker. As discussed in 

section 3.4, we need a deep and broad knowledge base to  support this 

process. However, with the limited knowledge containing in OpenCyc 

(v0.7), this process can not be done. Therefore, the relevance test is 

also done manually. According to importance and relationship between 

these news items and ABC, the first, fourth and fifth news are consid­

ered as less relevant to the chance seeker(ABC). They may be filtered 

out in this step.

Step3: The Magnitude Test of Chance Candidates

News items th a t pass the relevance test are now considered as chance 

candidates and likely to become chances. In section 3.5, we have seen 

tha t there are ten possible cases when we use planning to  evaluate 

chance candidates. This section evaluates a bundle of chance candidates 

which include the second and th ird  news items in step l, describes how 

these candidates become real chances or ignored and sees how these 

candidates fit into one of the ten cases.

There is a plan called current plan (CP) which, according to  current 

KB, is the best plan. CP achieves all of the chance seeker’s goals or 

part of them. Initially, ABC only provides daily transporta tion  service
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between city l and city2, i.e., transports one package from abcl to abc2 

daily, see figure 4.5. Transporting by highway is the most economic 

way. The daily plan and quarter plan composed by daily plans are 

generated as follows:

•  Daily Plan:

( ( ! LOAD-TRUCK PACKAGE1 TRUCKA ABC1)
( ! DRIVE-TRUCK TRUCKA ABC1 L0C1-2)
( ! DRIVE-TRUCK-CITY TRUCKA L0C1-2 L0C2-2)
( ! DRIVE-TRUCK TRUCKA L0C2-2 ABC2)
(IUNLOAD-TRUCK PACKAGE1 TRUCKA ABC2) 
(IMONEY-TIME-BALANCE 3000 850 2150 7 ))

W here the last sentence means th a t in this plan, ABC earns 3000, 

spends 850, gains 2150 in profits; And it spends 7 hours in this 

journey.

•  Quarter Plan:

( ( ! WEEKDAY_EARNING_C0ST 3000 850)
( !WEEKDAY_EARNING_C0ST 3000 850)
( ! WEEKDAY_EARNING_C0ST 3000 850)
( !WEEKDAY_EARNING_C0ST 3000 850)
( ! WEEKDAY_EARNING_C0ST 3000 850)
( ! WEEKEND_EARNING_C0ST 3000 850)
( ! WEEKEND_EARNING_C0ST 3000 850)

(IMONEY-BALANCE ABC 210650 15000 91))

W here the last sentence means th a t after a 91 days’ operation, 

ABC will have 210650 in assets when it originally has 15000 in 

assets. Here, one quarter of a year contains 13 weeks (91 days).
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If no change occurs, ABC will follow the current plan to conduct 

its business. However, the environment is always changing and when a 

new chance candidate B becomes available, it may lead to one of the 

following cases:

• Short-term setback:

— Case 1 : Due to a terrorist threat, c ity l airport will be closed 

for some days. Since we will use the highway for transporta­

tion, B will be ignored.

— Case 2: Because of a serious flood, the highway between city l 

and city2 will be close for 2 hours. In this case, ABC can just 

waits 2 hours and transport its packages by highway. B will 

be ignored.

•  Potential risk: Because of a serious flood, the highway between 

city l and city2 will be closed for 2 months. However, the railway 

is still on service. The system needs to change the current plan 

to use railway transportation. In these two months ABC’s cost 

will rise a little bit. Although the M agnitude of B (Mb)  is in the 

range, the system needs to  inform ABC about the  change of the 

plan. P art of the plan is as following:

— Daily Plan (revised):

C( ! DRIVE-TRUCK TRUCKA L0C1-3 ABC1)
( ! LOAD-TRUCK PACKAGE1 TRUCKA ABC1)
( ! DRIVE-TRUCK TRUCKA ABC1 L0C1-3) 
(IUNLOAD-TRUCK PACKAGE1 TRUCKA L0C1-3)
( ! RAILWAY-TRANSPORT PACKAGE1 L0C1-3 L0C2-3) 
( ! DRIVE-TRUCK TRUCKB L0C2-1 L0C2-3)
( ! LOAD-TRUCK PACKAGE1 TRUCKB L0C2-3)
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('.DRIVE-TRUCK TRUCKB L0C2-3 ABC2) 
(IUNLOAD-TRUCK PACKAGE1 TRUCKB ABC2)
( ! MONEY-TIME-BALANCE 3000 1200 1800 7 .5 ) )

-  Quarter Plan (revised):

( (
(
(
(

(

WEEKDAY_EARNING_COST 3000 850) 
WEEKDAY_EARNING_COST 3000 850) 
WEEKDAY_EARNING_COST 3000 850) 
WEEKDAY_EARNING_COST 3000 850)

WEEKDAY_EARNIMG_COST 3000 1200)

( ! WEEKEND_EARNING_COST 3000 1200) 
( ! WEEKEND_EARNING_COST 3000 850)

(IMONEY-BALANCE ABC 189650 15000 91))

• Risk: City2 undergoes a serious strike. All public transits are out 

of service for 30 days. The transportation between cityl and city2 

has to be stopped for 30 days. B is considered as a risk.

• Short-term prosperity: Due to highway condition improve­

ments, the speed limit of the highway has been increased from 

lOOkm/h to  180km/h, which causes a considerable reduction in 

the travel tim e between cities. However, the tim e saved is not sig­

nificant enough for a better plan, the cost is roughly the same and 

the daily work for ABC has not changed. So B has no effect on 

current plan. B is ignored.

• Exploitable efficiency: New cheap red-eye flights are opening. 

The cost will be greatly reduced if we take the red-eye air transport 

option. B is considered as a chance.

• Improved reliability: New cheap red-eye flights are opening 
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but the cost of the new plan is roughly the same as the current 

plan. However, air transport option is more reliable and punctual 

when comparing to current plan using highway transport option. 

It could be regarded as a chance. However, currently B will be 

ignored.

• Inefficient alternative: A new cargo ship transit is opening but 

the ship travels at very slow speed. Although the cost is very 

low, it is not good for the transportation service ABC provide. 

Therefore, B will be ignored.

• Opportunity: Because of the long travel time, ABC currently has 

no transportation service to  city3. However, A high speed cargo 

ship is going to serve the public. The travel tim e is shortened 

significantly. In this case, the ABC’s transportation service to 

city3 becomes practical. Therefore, B is considered as a chance. 

We can have the following plans:

— Daily Plan (revised):

( ( ! LOAD-TRUCK PACKAGE1 TRUCKA ABC1)
( ! DRIVE-TRUCK TRUCKA ABC1 L0C1-1) 
(IUNLOAD-TRUCK PACKAGE1 TRUCKA L0C1-1)
( ! RED-AIR-TRANSPORT PACKAGE1 L0C1-1 L0C2-1)
( ! DRIVE-TRUCK TRUCKB ABC2 L0C2-1)
( ! LOAD-TRUCK PACKAGE1 TRUCKB L0C2-1)
( ! DRIVE-TRUCK TRUCKB L0C2-1 ABC2) 
(IUNLOAD-TRUCK PACKAGE1 TRUCKB ABC2)
( ! DRIVE-TRUCK TRUCKA L0C1-1 ABC1)
( ! LOAD-TRUCK PACKAGE2 TRUCKA ABC1)
( ! DRIVE-TRUCK TRUCKA ABC1 L0C1-4) 
(IUNLOAD-TRUCK PACKAGE2 TRUCKA L0C1-4) 
(IHS-SHIP-TRANSPORT PACKAGE2 L0C1-4 L0C3-1)
(IDRIVE-TRUCK TRUCKC ABC3 L0C3-1)
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( ! LOAD-TRUCK PACKAGE2 TRUCKC L0C3-1) 
( ! DRIVE-TRUCK TRUCKC L0C3-1 ABC3) 
(IUNLOAD-TRUCK PACKAGE2 TRUCKC ABC3) 
(IMONEY-BALANCE 5000 1670 3330 11))

Quarter Plan (revised):

( (
(
(
(

(

WEEKDAY_EARNING_COST 5000 1670) 
WEEKDAY_EARNING_COST 5000 1670) 
WEEKDAY_EARNING_COST 5000 1670) 
WEEKDAY_EARNING_COST 5000 1670)

MONEY-BALANCE ABC 318030 15000 91))

• Short-term gain long-term risk: A high-speed cargo ship is 

going to serve between cityl and city2 soon. The cost and travel 

time are very attractive. However, the docks of cityl and city2 

are far away from the city centers and the condition of the roads 

connecting them  is very poor. In the long run, the  maintenance 

cost of the trucks will be greatly raised. Therefore, it will not be 

a good deal to  take this option. B will be ignored.

• Short-term loss long-term gain: W hen the same chance can­

didate as above comes, different situations make things different. 

The current Plan uses red-eye air transport option. This high­

speed ship transport (hs-ship-transport) option cost more than 

red-eye transport option. Furthermore, the dock is far away from 

the city center. However, the docks and the city centers are con­

nected by good condition expressways. Comparing to the poor 

local traffic condition, the maintenance cost of the  trucks will be 

greatly reduced. Therefore, if we adopt hs-ship-transport option, 

we can get a be tter plan. B is regarded as a chance.
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Chapter 5

Conclusion & Future Work

• Conclusion:

In this thesis, we

— summarized and discussed the achievement and limitations in 

previous approaches of chance discovery; proposed th a t chance 

is not necessary as unknown hypothesis, chance is typically 

associated w ith change and chance is relative to  a person or 

an organization.

— proposed a knowledge-based chance discovery system by com­

bining the three necessary roles: communication, imagination 

and data  mining. A knowledge base works as a virtual real­

ity and simulates the development of real society by continu­

ously updating its knowledge. The knowledge includes pub­

lic knowledge and private knowledge about the  chance seeker. 

This process can be regarded as a virtual chance seeker lives in 

this virtual society. The new knowledge comes from newspa­

per, magazine, and W W W , etc. The chance discovery system 

searches chances in KB for on behalf of the virtual chance
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seekers. By assessing the relevance of new knowledge, the ir­

relevant knowledge to a chance seeker is ignored. Then chance 

in relevant knowledge is detected by considering its impact on 

the current plans and the possibility of new plans that are built 

based on the new knowledge. Finally, chance is visualized by 

displaying the future status of the chance seeker. Chance vi­

sualization helps the chance seeker to realize chance.

-  discussed and evaluated the implementation of the chance dis­

covery system. Example chances are detected in a virtual 

transportation domain implemented by using SHOP planner.

•  Limitation:

-  A full implementation of this knowledge-based chance discov­

ery is currently unachieveable due to the absence of powerful 

tools described in Chapter 4.

• Future Work:

-  W ith the release of Cyc KB vl.O, we will implement the whole 

system in the future. We will build a virtual chance seeker 

in Cyc KB on behalf of a real business company and detect 

chances for the company in the real complex world over a long 

period of time.
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Appendix A

1. An example to print out all the human instances in Cyc KB 
by using OpenCyc Java API.

package eyed;

/* *

* @author zhiwen wu
*

* This program will connect to OpenCyc server and print out all the instances o f  
*Person.
*/

import org.opencyc.api.CycAccess; 
import org.opencyc.api.CycConnection; 
import org.opencyc.cycobject.*; 
import java.util.*;

package eyed;
import org.opencyc.api.CycAccess; 
import org.opencyc.api.CycConnection; 
import org.opencyc.cycobject.*; 
import java.util.*;

public class Cyctestl {
public C yctestl() {
}

public static void main(String[] args) { 
try {
CycAccess cyc_a=new CycAccess(“localhost”,3601,l,ture,l);
CycConstant cyc_c;

CycConstant cyc_c=
(CycConstant)(cyc_a.getConstantByName("Person"));
CycList lisl=cyc_a.getAllInstances(cyc_c); 
for(lterator it=lisl .iterator();it.hasNext();) {

System.out.println("Person isa "+((CycFort)(it.next())).toString());
}

} catch (Exception e) {
System.out.println("error happened");

}
}

2. An example tries to integrate knowledge from an xml file 
released by Cycorp using OpenCyc Java API.

package eyed;

/* *

* @author zhiwen wu
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* The program try to integrate knowledge from an xm! file released by Cycorp.
* It works fine but very slow.
*/

import org.opencyc.api.*;
import java.io.*;
import java.lang.*;
import org.opencyc.cycobject.*;
importjava.net.*;
import java.text.SimpleDateFormat;
import java.util.*;
import org.opencyc.xml.*;
import org.xml.sax.*;
import com.hp.hpl.jena.rdf.arp.*;
import com.hp.hpl.mesa.rdf.jena.common.*;
import com.hp.hpl.mesa.rdf.jena.model.*;
import org.opencyc.cycobject.*;
import ViolinStrings.Strings;

public class Cyctest2 extends ImportDaml { 
public Cyctest2() {
}
public Cyctest2(String input, String mt, CycAccess wu) { 

try {
this.cycAccess = wu; 
importDaml(input, mt);

} catch (Exception e) {
System, out.println(" input fail"); 
e.printStackTrace();
//exit(l);

}
}
public void importDaml(

String damlOntologyDefmingURLString,
String importMtName)
throws IOException, CycApiException {
this.damlOntologyDefiningURLString = damlOntologyDefmingURLString; 
this.importMtName =  importMtName; 
this.characterEncoding =  null; 
i f  (verbosity > 0) {

if  (characterEncoding =  null)
System.out.println(

"\nImporting"
+ damlOntologyDefiningURLString 
+ "\ninto "
+ importMtName);

else
System.out.println(

"\nImporting"
+ damlOntologyDefiningURLString 
+ "  encoding"
+ characterEncoding 
+ "\ninto "
+ importMtName);

}
importMt = cycAccess.getKnownConstantByName(importMtName); 
damlOntologyDefiningURL = 

new CycNart(
cycAccess.getKnownConstantByName("URLFn"),
damlOntologyDefiningURLString);

System.out.println(
"Defining URL " + damlOntologyDefiningURL.cyclifyO);

CycList gaf = new CycList();
gaf.add(cycAccess.getKnownConstantByName("xmlNameSpace"));
String nickname = "wuzhiwen";
// (String) ontologyNicknames.get(damlOntologyDefiningURLString);
i f  (nickname == null)
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throw new RuntimeException(
"Nickname not found for " + damlOntologyDefmingURLString);

gaf.add(nickname); 
gaf.add(damlOntologyDefmingURL); 
cycAccess.assertGaf(gaf, importMt);
System, out.println( "\nStatements\n");
//cycAccess.traceOn();
InputStreamReader in;
URL url; 
try {

File f f  = new File(damlOntologyDefiningURLString); 
if  (characterEncoding == null)

in = new InputStreamReader(new FilelnputStream(ff));
else

in =
new InputStreamReader(

new FileInputStream(ff), 
characterEncoding);

url = ff.toURL();
System.out.println("url="+urI.toString());

} catch (Exception ignore) { 
try {

url = new URL(damlOntologyDeflningURLString); 
if  (characterEncoding == null)

in = new InputStreamReader(url.openStream());
else

in =
new InputStreamReader(

url.openStream(), 
characterEncoding);

} catch (Exception e) {
System.err.println(

"ARP: Failed to open: " + damlOntologyDefiningURLString); 
System.err.println(

" " + ParseException.formatMessage(ignore));
System.err.println(" " + ParseException.formatMessage(e)); 
return;

}
}
try {

System.out.println(url.toExtemalForm()+","+in.toString()); 
arp.load(in, url.toExternalForm());

} catch (IOException e) {
System.err.println(

"Error: "
+ damlOntologyDefiningURLString 
+ ": "

+ P arseException.formatMessage( e));
} catch (SAXException sax) {

System.err.println(
"Error: "

+ damlOntologyDefiningURLString 
+ "

+ ParseException.formatMessage(sax));
}
catch(Exception e){

System.out.println("something happened");
}
i f  (verbosity > 0)

System.out.println(
"\nDone importing " + damlOntologyDefiningURLString + "\n");

}
public static void main(String[] args) { 

try {
CycAccess wu=new CycAccess("localhost",3601,l,true,l);

/* a test to see if  connect is good */
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wu.makeCycConstant(" AB C");
wu.assertComment("ABC", "ABC is a good person", "BaseKB");

Cyctest2 know = new Cyctest2("H:/download/cycl.xml", "WindsorLifeMt", wu);

} catch (Exception e) {
System.out.println("error happened");

}
}

The following shows a part of the xml file:

<?xml v ers io n -'1.0" encoding="UTF-8"?>
<rdf:RDF xmlns="http://www.cyc.coni/2004/06/04/cyc#" 

xmlns;owl="http://www.w3.org/2002/07/owl#" 
xmlns:rdf=="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<owl:Ontology rdf;about="">

<owl:versionlnfo>$ld: ExportOwl.java,v 1.11 2004/06/15 20:27:31 
reed Exp $</owl:versionInfo>

<rdfs:comment>ResearchCyc Ontology OpenCyc License Information 
The contents o f  this file constitute portions o f The OpenCyc 
Knowledge Base. The OpenCyc Knowledge Base is protected 
under the following license and copyrights. This license and 
copyright information must be included with any copies or 
derivative works. Copyright Information OpenCyc Knowledge 
Base Copyright 2001-2004 Cycorp, Inc., Austin, TX, USA. All 
rights reserved. OpenCyc Knowledge Server Copyright 
2001-2004 Cycorp, Inc., Austin, TX, USA. All rights 
reserved. Other copyrights may be found in various files.
The OpenCyc Knowledge Base The OpenCyc Knowledge Base 
consists o f  code, written in the declarative language CycL, 
that represents or supports the representation o f  facts and 
rules pertaining to consensus reality. OpenCyc is licensed 
using the GNU Lesser General Public License, whose text can 
also be found on this volume. The OpenCyc CycL code base is 
the &quot;library&quot; referred to in the LGPL license. The 
terms o f  this license equally apply to renamings and other 
logically equivalent reformulations o f  the Knowledge Base 
(or portions thereof) in any natural or formal language.
See http://www.opencyc.org for more information. </rdfs:comment> 

</owl:Ontologyx/rdf:RDF>
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Appendix B

1. The Transportation Domain Description:
;;; Chance Discovery Transportation Domain -domain description, implemented by ZhiWen Wu, 2005

(defdomain Transportation 
(

;; basic operators
(:operator (lload-truck ?obj ?truck ?loc)

((total-cost abc ?cost)(assign ?cl (call + ?cost 5)))
((obj-at ?obj ?loc)(total-cost abc ?cost))
((in-truck ?obj ?truck)(total-cost abc ?cl)) 5)

(:operator (lunload-truck ?obj ?truck ?loc)
((total-cost abc ?cost)(assign ?cl (call + ?cost 5)))
((in-truck ?obj ?truck)(total-cost abc ?cost))
((obj-at ?obj ?loc)(total-cost abc ?cl)) 5)

(:operator (Idrive-truck ?truck ?loc-from ?loc-to)
((cost-local ?loc-from ?loc-to ?cost)(total-cost abc ?tc)(assign ?c l (call + ?tc ?cost))) 
((truck-at ?truck ?loc-from)(total-cost abc ?tc)(in-city ?loc- 

from ?city)(truck ?truck ?city))
((truck-at ?truck ?loc-to)(total-cost abc ?cl))

?cost)

(: operator (! drive-truck-city ?truck ?loc-from ?loc-to)
((TRUCK ?truck ?city-from)(IN-CITY ?loc-to ?city-to)

(cost-at highway-cost ?cost)(total-cost abc ?tc)(assign ?cl (call + ?tc ?cost))) 
((truck-at ?truck ?loc-from)(total-cost abc ?tc)(TRUCK ?truck ?city-from)) 
((TRUCK ?truck ?city-to)(truck-at ?truck ?loc-to)(total-cost abc ?cl))

?cost)

(:operator (lair-transport ?obj ?airport-from ?airport-to)
((cost-at air-cost ?cost)(total-cost abc ?tc)(assign ?cl (call + ?tc ?cost)))
((obj-at ?obj ?airport-from)(total-cost abc ?tc))
((obj-at ?obj ?airport-to)(total-cost abc ?cl))

?cost)

;; red eye flight
(:operator (!red-air-transport ?obj ?airport-from ?airport-to)

((cost-at red-air-cost ?cost)(total-cost abc ?tc)(assign ?cl (call + ?tc ?cost)))
((obj-at ?obj ?airport-from)(total-cost abc ?tc))
((obj-at ?obj ?airport-to)(total-cost abc ?cl))

?cost)

(:operator (Irailway-transport ?obj ?station-from ?station-to)
((cost-at railway-cost ?cost)(total-cost abc ?tc)(assign ?cl (call +  ?tc ?cost)))
((obj-at ?obj ?station-from)(total-cost abc ?tc))

((obj-at ?obj ?station-to)(total-cost abc ?c l))
?cost)

(:operator (Iship-transport ?obj ?dock-from ?dock-to)
((cost-at ship-cost ?cost)(total-cost abc ?tc)(assign ?cl (call + ?tc ?cost)))
((obj-at ?obj ?dock-from)(total-cost abc ?tc))

((obj-at ?obj ?dock-to)(total-cost abc ?cl))
?cost)
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(:operator (!hs-ship-transport ?obj ?dock-from ?dock-to)
((cost-at hs-ship-cost ?cost)(total-cost abc ?tc)(assign ?cl (call + ?tc ?cost))) 
((obj-at ?obj Tdock-from)(total-cost abc ?tc))

((obj-at ?obj ?dock-to)(total-cost abc ?cl))
?cost)

(:operator (Imoney-balance Teaming ?cost ?pure)
((total-cost abc ?cost)(assign ?pure (call - Teaming Tcost)))

0 
0  0)

(:operator (!add-protection Tg)
0
((:protection Tg))
0)

(■.operator (Idelete-protection Tg)
((protection Tg))
0
0)

;; actual AI planning methods

;; take the airline 
(m ethod (obj-at Tobj Tloc-goal) 

same-city-deliver 
((in-city Tloc-goal Tcity-goal)
(obj-at Tobj Tloc-now)
(in-city Tloc-now Tcity-goal)
(truck Ttruck Tcity-goal))

((:task in-city-delivery Ttruck Tobj Tloc-now Tloc-goal))

different-city-deliver
((in-city Tloc-goal Tcity-goal)
(obj-at Tobj Tloc-now)
(in-city Tloc-now Tcity-now)
(different Tcity-goal Tcity-now)
(eam-money Tobj Teaming)
(truck Ttruck-now Tcity-now)
(tmck Ttruck-goal Tcity-goal)
(airport Tairport-now) (in-city Tairport-now Tcity-now)(airport-open Tairport-now) 

(airport Tairport-goal) (in-city Tairport-goal Tcity-goal)(airport-open Tairport-goal)) 
(: ordered

(:task in-city-delivery Ttmck-now Tobj Tloc-now Tairport-now)
(:task air-transport-obj Tobj Tairport-now Tairport-goal)
(:task in-city-delivery Ttmck-goal Tobj Tairport-goal Tloc-goal)

(:task Imoney-balance Teaming Tcost Tpure)))

;; drive tmck cross town 
(m ethod (obj-at Tobj Tloc-goal) 

drive-truck-cross-town 
((in-city Tloc-goal Tcity-goal)
(obj-at Tobj Tloc-now)
(in-city Tloc-now Tcity-now)
(different Tcity-goal Tcity-now)
(eam-money Tobj Teaming)
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(truck ?truck ?city-now)
(highway-entrance ?highway-from)(in-city Thighway-from ?city-now) 
(highway-entrance ?highway-to)(in-city ?highway-to ?city-goal))

(: ordered
(:task immediate !load-truck ?obj ?truck ?loc-now)
(:task truck-at ?truck Thighway-from)
(:task !drive-truck-city ?truck ?highway-from ?highway-to)
(:task truck-at ?truck ?loc-goal)
(:task immediate !unload-truck ?obj ?truck ?loc-goal)
(:task Imoney-balance ?eaming ?cost ?pure)))

;;; go by train
(:method (obj-at ?obj ?loc-goal) 

transport-by-train 
((in-city ?loc-goal ?city-goal)
(obj-at ?obj ?loc-now)
(in-city ?loc-now ?city-now)
(different ?city-goal ?city-now)
(eam-money ?obj Teaming)
(truck ?tmck-now Tcity-now)

(truck Ttruck-goal Tcity-goal)
(railway-station Tstation-ffom)(in-city Tstation-from Tcity-now) 
(railway-station Tstation-to)(in-city Tstation-to Tcity-goal))

(: ordered
(:task in-city-delivery Ttruck-now Tobj Tloc-now Tstation-from) 
(:task Irailway-transport Tobj Tstation-from Tstation-to)
(:task in-city-delivery Ttruck-goal Tobj Tstation-to Tloc-goal)
(:task Imoney-balance Teaming Tcost Tpure)))

;;; transport by ship 
(m ethod (obj-at Tobj Tloc-goal) 

transport-by-ship-city 12 
((in-city Tloc-goal Tcity-goal)
(obj-at Tobj Tloc-now)
(in-city Tloc-now Tcity-now)
(different Tcity-goal Tcity-now)

(eam-money Tobj Teaming)
(tmck Ttruck-now Tcity-now)
(tmck Ttruck-goal Tcity-goal)
(dock Tdock-from)(in-city Tdock-from Tcity-now)
(dock Tdock-to)(in-city Tdock-to Tcity-goal)
(different Tcity-goal c ity3 ))

(: ordered
(:task in-city-delivery Ttruck-now Tobj Tloc-now Tdock-from)
(:task I ship-transport Tobj Tdock-from Tdock-to)
(:task in-city-delivery Ttruck-goal Tobj Tdock-to Tloc-goal)

(:task Imoney-balance Teaming Tcost Tpure)))

;;; transport by high speed ship, cityl -city3 
(m ethod (obj-at Tobj Tloc-goal) 

transport-by- ship-city 13 
((in-city Tloc-goal Tcity-goal)
(obj-at Tobj Tloc-now)
(in-city Tloc-now Tcity-now)
(different Tcity-goal Tcity-now)

(eam-money Tobj Teaming)
(tmck Ttmck-now Tcity-now)
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(truck ?truck-goal ?city-goal)
(dock ?dock-from)(in-city ?dock-from ?city-now)
(dock ?dock-to)(in-city ?dock-to ?city-goal)
(different ?city-goal c ity2 ))

(:ordered
(:task in-city-delivery ?truck-now ?obj ?loc-now ?dock-from) 
(:task !hs-ship-transport ?obj ?dock-ffom ?dock-to)
(:task in-city-delivery ?truck-goal ?obj ?dock-to ?loc-goal) 
(:task Imoney-balance Teaming Tcost Tpure)))

;;;---------------------------------support functions-----------------------------------------
1 >5

(m ethod (in-city-delivery Ttruck Tobj Tloc-from Tloc-to) 
package-already-there 
((same Tloc-from Tloc-to))
0

truck-across-town 
((in-city Tloc-from Tcity)
(tmck Ttruck Tcity))
(:ordered (:task truck-at Ttruck Tloc-from)

(:task immediate lload-tmck Tobj Ttruck Tloc-from)
(:task truck-at Ttmck Tloc-to)
(:task immediate lunload-tmck Tobj Ttruck Tloc-to)))

(m ethod (tmck-at Ttmck Tloc-to)

truck-in-right-location 
((tmck-at Ttmck Tloc-from)
(same Tloc-from Tloc-to))
0

tmck-not-in-right-location 
((tmck-at Ttmck Tloc-from)
(in-city Tloc-from Tcity)
(in-city Tloc-to Tcity)
(different Tloc-from Tloc-to))
((:task immediate Idrive-tmck Ttruck Tloc-from Tloc-to)))

(m ethod (air-transport-obj Tobj Tairport-from Tairport-to) 
take-off-and-fly-there
((obj-at Tobj Tairport-from)(airport Tairport-from)(airport Tairport-to)) 
(:ordered (:task lair-transport Tobj Tairport-from Tairport-to)))

(m ethod (air-transport-obj Tobj Tairport-from Tairport-to) 
red-eye-air-line
((obj-at Tobj Tairport-ffom)(airport Tairport-from)(airport Tairport-to)) 
(rordered (:task I red-air-transport Tobj Tairport-from Tairport-to)))

;; state axioms 

(:- (same Tx Tx) nil)
(:- (different Tx Ty) ((not (same Tx Ty)))) 

(:- (cost-local Tlocl Tloc2 Tnumber)
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((cost-c ?locl ?loc2 ?number)) 
((cost-c ?loc2 ?locl ?number)))

2. The Transportation Problem Description:

;;; Chance Discovery Transportation domain -problem description, implemented by ZhiWen Wu, 2005

(defproblem chanceDiscovery Transportation
(

; ; ----------- description about city 1-----------
(CITY cityl)
(LOCATION abcl)
(IN-CITY abcl cityl)
(AIRPORT LOC1-1)
(AIRPORT-OPEN LOC1-1)
(TRUCK truckA cityl)
(TRUCK-AT truckA abcl)
(LOCATION LOC1-1)
(IN-CITY LOC1-1 city l)
(LOCATION LOCI-2)
(HIGHWAY-ENTRANCE LOC1-2)
(IN-CITY LOCI-2 city l)
(RAILWAY-STATION LOC1-3)
(LOCATION LOC1-3)
(IN-CITY LOCI-3 city l)
(DOCK LOCI-4)
(LOCATION LOCI-4)
(IN-CITY LOCI-4 city l)

;;;-cost description- 
(cost-at air-cost 2000)
(cost-at railway-cost 1000)
(cost-at ship-cost 1100)
(cost-at hs-ship-cost 1200)
(cost-at highway-cost 800)
(cost-at red-air-cost 700)

(time-cost air 1.5)
(time-cost railway 5)
(time-cost ship 8)
(time-cost hs-ship 5)
(time-cost highway 6)
(time-cost red-air 1.5)

"—local cost based on distance and road condition- 
(cost-c abcl locl-1  60)
(cost-c abcl lo c i-2 20)
(cost-c abcl loc l-3  60)
(cost-c abcl lo c i-4 50)
(cost-c locl-1  lo c i-2 60)
(cost-c locl-1  locl-3  20)
(cost-c locl-1 loc l-4  110)
(cost-c loc l-2  loc l-3  60)
(cost-c loc l-2  lo c l-4  70)
(cost-c loc l-3  lo c l-4  110)
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; ;  description about city 2----------

(CITY city2)
(LOCATION abc2)
(IN-CITY abc2 city2)
(AIRPORT LOC2-1)
(AIRPORT-OPEN LOC2-1)
(TRUCK truckB city2)
(LOCATION LOC2-1)
(TRUCK-AT truckB abc2)
(IN-CITY LOC2-1 city2)
(LOCATION LOC2-2)
(HIGHWAY-ENTRANCE LOC2-2)
(IN-CITY LOC2-2 city2)
(RAILWAY-STATION LOC2-3)
(LOCATION LOC2-3)
(IN-CITY LOC2-3 city2)
(DOCK LOC2-4)
(LOCATION LOC2-4)
(IN-CITY LOC2-4 city2)

local cost based on distance and road condition- 
(cost-c abc2 loc2-l 60)
(cost-c abc2 loc2-2 20)
(cost-c abc2 loc2-3 60)
(cost-c abc2 loc2-4 50)
(cost-c loc2-l loc2-2 60)
(cost-c loc2-l loc2-3 20)
(cost-c loc2-l loc2-4 110)
(cost-c loc2-2 loc2-3 60)
(cost-c loc2-2 loc2-4 70)
(cost-c loc2-3 loc2-4 110)

;;Description about city 3

(CITY city3)
(LOCATION abc3) 
(IN-CITY abc3 city3) 
(LOCATION loc3-l) 
(DOCK loc3-l)
(IN-CITY loc3-l city3) 
(TRUCK truckC city3) 
(TRUCK-AT truckC abc3)

(cost-c abc3 loc3-l 20) 
(cost-at hs-ship-cost 600)

(eam-money package1 3000) 
(eam-money package2 2000)

;; —  money source—  
(total-cost abc 0)
(obj-at packagel abcl)
(obj-at package2 abcl)

)
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( : ordered
; ;  goal -
(:task obj-at packagel abc2)
(:task obj-at package2 abc3)

))
(find-plans 'chanceDiscovery :which rail rverbose 3) 
;; : shallowest

3. Long term planning in Transportation Domain
;; Chance Discovery Transportation Domain -long term planning domain and 
;; problem description, implemented by Zhiwen Wu, 2005.
;;; A quarter (1/4 year) plan is composed by Daily plans.

;;(:method (weekdaystransport ?num)

;; ((call <  ?num 5))
;; (: ordered
;; (rtask Iw eekdayeam ingcost)
;; (rtask weekdays transport (call + 1 ?num)))

Friday
;; ((call = ?num 5))
;; (: ordered
;; (rtask Iweekday eaming cost)))

(defdomain yeartransport 
(
(roperator (Iweekday eaming cost ?eam ?cost)

((cost-day-is ?cost)(eaming-is ?eam)(has-money ABC ?asset)
(assign ?al (call + ?asset (call - ?eam ?cost))))

((has-money ABC ?asset))
((has-money ABC ?al)) 0)

(roperator (!weekend_eaming_cost ?eam ?cost)
((cost-day-is ?cost)(eaming-is ?eam)(has-money ABC ?asset) 
(assign ?a2 (call + ?asset (call - ?eam ?cost))))
((has-money ABC ?asset))
((has-money ABC ?a2)) 0)

(roperator (lown-money abc ?num)
0 0 0 0)

(: method (year transport) 
weeks_transprot 
0
((rtask onequarterw ork  1)

;; (rtask one quarter work 1) 
;;(:task onequarterw ork  1) 

;; (rtask one quarter work 1) 
))

(rmethod (one_quarter_work ?num) 
final_week 

((call = ?num 13))
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(: ordered
(:task weekdays_transport 1)
(:task weekends_transport))

weeks_transprot 
((call < ?num 13))
(: ordered

(:task weekdays_transport 1)
(:task weekends_transport)
(:task onequarterw ork (call + 1 ?num))
))

(m ethod (weekdays_transport ?num)
0

(: ordered
(:task !weekday_eaming_cost ?eam ?cost) 
(:task Iweekday eaming cost ?eam ?cost) 
(rtask Iweekday eaming cost ?eam ?cost) 
(rtask Iweekday eaming cost ?eam ?cost) 
(rtask !weekday_eaming_cost ?eam ?cost)))

(: method (weekends_transport)
0

(: ordered
(rtask Iw eek en deam ingcost ?eam ?cost)
(rtask !weekend_eaming_cost ?eam ?cost)))

(rmethod (print-current-state) ((eval (print-current-state))) ())
(rmethod (print-current-tasks) ((eval (print-current-tasks))) ())
(rmethod (print-current-plan) ((eval (print-current-plan))) ())
(rmethod (print-asset) ((has-money abc ?asset)) (rordered (rtask !own-money abc ?asset)))

))

(defproblem year yeartransport 
(
(cost-day-is 1670)
(eaming-is 5000)
(has-money abc 15000)
)

(
(year_transport)
;;(print-current-state)
;; (print-current-tasks)
;; (print-current-plan)
(print-asset)

))

(find-plans 'year rwhich rfirst rverbose 2)
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