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ABSTRACT 

This study examines the effect of heavy vehicles (trucks) on entry capacity of roundabouts. The 

movements of vehicles were observed at 11 roundabouts in Vermont, Ontario and Wisconsin. 

Gap-acceptance parameters were estimated for cars and trucks separately; consistent with 

previous studies, it was found that critical headway and follow-up time were longer for trucks 

than cars. Follow-up times for truck-involved vehicle-following cases were found to be 

associated with central island diameter and entry angle. Gap-acceptance parameters for all 

entering vehicles were adjusted to a volume-weighted average of the gap-acceptance parameters 

for cars and trucks. Entry capacity was estimated using existing capacity models with the 

adjusted gap-acceptance parameters, and compared with the observed capacity at three 

roundabouts. The capacity models with adjusted gap-acceptance parameters estimated capacity 

more accurately than the models with unadjusted parameters. Microscopic traffic simulation 

model was also effective in representing truck characteristics and their impact on roundabout 

operation.  
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1 INTRODUCTION 

1.1 Overview 

A roundabout is an unsignalized intersection with a circulating roadway and entry legs where 

entering vehicles must yield to the circulating vehicles. Currently, there are over 150 

roundabouts in Canada (Rasheed, 2010) and over 1600 in the United States (Kittleson & 

Associates, 2011). Roundabouts have positive effects on traffic operation, safety, environment 

and society. Since vehicles are not required to completely stop when there is no conflict, traffic 

delay is reduced. Due to a shorter queue at the entry, the vehicle storage space of approach 

roadways can be reduced. The reduction in delay and frequency of stop-and-go movements 

results in the reduced fuel consumption, air pollution, and noise. Also, the landscaping of a 

roundabout could improve aesthetics and increase property value of the surrounding area. The 

following empirical studies reported that roundabouts have particularly safety benefits and 

operational efficiency. 

 
For instance, total crashes were reduced by 35% and injury crashes were reduced by 76% for 

roundabouts compared to the other intersection types in the United States (Rodegerdts et al., 

2010). Similar results have also been found in Australia, France, Germany, Netherlands and the 

United Kingdom - crash and injury reduction by 61% and 87%, respectively (Rodegerdts et  al., 

2010).  

 

Crash reduction is mainly due to lower number of conflict points within the intersection. A 

conflict point is a point where paths of two vehicles diverge, merge or cross. For example, 

single-lane roundabouts reduce the number of conflict points from 32 to 8 as illustrated in Figure 
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1-1. Multi-lane roundabouts also reduce the total number of conflict points compared to the other 

multi-lane intersections. 

 

 

Figure 1-1. Comparison of Vehicle Conflict Points between Intersections and Single-lane 

Roundabouts  

 (Source: Rodegerdts  et  al., 2010) 

 

 

In addition to safety benefits, roundabouts also operate with lower delays compared to the other 

intersections. In practice, operational efficiency of roundabouts is evaluated based on the entry 

capacity. The entry capacity is defined as the maximum number of vehicles that can enter the 

roundabout in unit time (the entry flow) at a given entry leg for a given flow in a circulatory 

roadway (the circulating flow). In general, as the circulating (or conflicting) flow increases, the 

capacity decreases due to less opportunity for entry. Delay is estimated based on the capacity and 

the demand entry flow.  
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Table 1-1. Comparison of Delay between Signalized Intersection in 1999 and Roundabout 

in 2000 at Intersection of US-5, I-91 and VT-9  

(Source: Reddington, 2001) 

Peak Hour Signalized intersection (1999) Roundabout (2000) Change 

(sec) Delay (sec) Vehicles/hour Delay (sec) Vehicles/hour 

AM 44 1216 12 1870 -33 

PM 46 2764 26 2812 -20 

 

Reddington (2001) observed that after a signalized intersection was changed to a roundabout in 

Brattleboro, Vermont, delay was greatly reduced as shown in Table 1-1. Similarly, an annual 

reduction in delay by 5,000-10,000 hours was observed at a roundabout in Maine (Garder, 1998). 

This is mainly because vehicles are not required to completely stop when there is no conflict, and 

a long queue at the intersection can be avoided. Due to this reduction in delay and frequency of 

stop-and-go movements, roundabouts can also reduce fuel consumption, air pollution, and noise. 

 

As roundabouts have become more favourable, more roundabouts have been built on or near 

main highways with high truck volume. Statistics have shown that there are a large number of 

trucks and truck-involved crashes on Canadian roadways. In Canada, there are approximately 

18.6 million registered vehicles and 295,000 of the vehicles are heavy trucks (Natural Resources 

Canada, 2007). However, trucks travel longer distance than light vehicles; 66,640km/veh/year 

compared to 16,300km/veh/year (Statistics Canada, 2003). In particular, there is a large number 

of trucks in Windsor. In 2003, 6.3 million passenger vehicles and 1.6 million trucks crossed the 

Windsor-Detroit international crossing (Baldwin, 2005). Mayhew et al. (2004) reported that 

trucks account for almost 5% of all motor vehicle injuries, and 20% of deaths in Canada and 

trucks have higher rates of fatal crashes per vehicle, and per unit distance.  
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However, if the proportion of trucks is higher, traffic operation of the roundabouts is more likely 

to be influenced by trucks. Trucks have slower acceleration, require wider turning radius, and 

have larger blind spots of vision than passenger cars. They also obstruct the view of the other 

circulating/entering vehicles. Slower acceleration of trucks requires larger gaps to enter 

roundabout and results in a longer queue of trucks at the yield line. Wider turning radius requires 

larger space for truck turning movement and trucks are more likely to obstruct the circulating 

vehicles in adjacent lanes at a multi-lane roundabout. Obstructed view consequently reduces the 

speeds of the circulating vehicles. Thus, it is important to consider these effects of truck turning 

movement of efficiency and safety of roundabouts. For this research, a truck is defined as an 18-

wheeler. 

 

To account for the effect of trucks on the capacity, the capacity has been adjusted based on 

truck’s longer length and lower speed, and percentage of trucks. In conventional approach (TRB, 

2000), the capacity is adjusted for trucks by converting the number of vehicles to passenger car 

units (pcu). Since trucks are weighted higher than passenger cars, it is expected that capacity 

decreases more rapidly as the number of trucks in the circulating flow increases.  

 

However, this adjustment method does not capture the effect of trucks on driver’s gap-

acceptance behavior, which is essential to understand mechanism of roundabout operation 

affected by trucks (Troutbeck, 1993). Driver’s gap acceptance behavior is likely to differ 

between cars and trucks due to slower truck entry and longer gaps required by trucks.  
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Current roundabout capacity estimation models were developed based on the gap-acceptance 

theory which describes the capacity in a function of the circulating flow, the critical headway and 

the follow-up time. The critical headway is defined as the minimum time gap between the 

circulating vehicles accepted by the entering vehicles. The follow-up time is defined as the time 

gap between two queued vehicles that enter the roundabout using the same gap between the 

circulating vehicles. However, most past studies only assume single values of the critical 

headway and the follow-up time for cars and trucks. Thus, there is a need to incorporate the 

difference of car and truck gap-acceptance behaviour into a roundabout capacity model. 

 

1.2 Objectives of Thesis 

The objectives of this research are 1) to identify the limitations of the existing roundabout 

capacity estimation methods with respect to truck traffic, 2) to develop a method to take into 

account the effect of trucks on capacity and, 3) to evaluate the accuracy of capacity estimation 

using the proposed method by comparing with the observed capacity. 

 

1.3 Organization of Thesis 

This thesis is organized into six chapters. Chapter 2 reviews the literature on the capacity 

estimation models for roundabouts, and the methods of considering trucks in the estimation of 

the capacity. Chapter 3 describes the procedures of considering the effects of trucks on the 

capacity used in this study. Chapter 4 describes the data and collection methods used in this 

study. Chapter 5 presents the results and analysis of this study. Chapter 6 includes the 

conclusions and recommends future research. 
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2 LITERATURE REVIEW 

2.1 Gap Acceptance Capacity Models  

Roundabout capacity has been estimated using various capacity models developed based on the 

gap acceptance theory. The gap acceptance method estimates the capacity based on the 

distribution of headways within the circulating flow, the critical-headway and the follow-up time. 

 

2.1.1 Headway Distribution  

The gap acceptance models assume that the headways (i.e. the time between consecutive 

vehicles passing the conflict point) of the circulating flow follows a certain distribution. 

Typically, the distribution follows an M1 (negative exponential), M2 (shifted negative 

exponential), or M3 (bunched exponential) (Cowan, 1997). The distributions are expressed as 

follows: 

tetF 1)(  for t  0   (M1)      (2.1) 

)(1)(   tetF  for t  0  (M2)      (2.2) 

)(1)(   tetF  for t  0 (M3)      (2.3) 

where F(t) is the cumulative probability that the headway is less than or equal to t, Δ is the 

minimum headway between the circulating vehicles (sec), λ is the decay constant (sec
-1

), and α is 

the proportion of free vehicles (i.e. vehicle manoeuvre is not affected by the lead vehicle). The 

decay constant λ is calculated using the following expression (Cowan, 1997): 

 





c

c

q

q






1
          (2.4) 
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where qc is the circulating flow (pcu/h). All distributions were developed based on the 

assumption that the arrival of vehicles follows a Poission distribution. The M1 distribution is the 

simplest form but does not assume a minimum headway. The M2 distribution is the M1 

distribution with headways shifted by a minimum non-zero headway. The M3 distribution has 

additional assumption of ―bunching‖ of vehicles within the circulating flow in congested 

conditions. Troutbeck (1994) suggested that the proportion of free (unbunched) vehicles at a 

roundabout is dependent on the circulating flow as follows: 

)1(75.0 cq          (2.5) 

Alternatively, Akçelik (2003) suggested that α can be estimated using the following equation: 















 001.0,

)1(1

)1(
max

cd

c

qk

q


        (2.6) 

where kd is a constant (= 2.2 for roundabouts). Eq. 2.5 and 2.6 assume that the proportion of free 

vehicles decreases as the circulating flow increases due to shorter headways.  

 

The M1 and M2 distributions are often favoured due to their simplicity, and in some cases the 

M3 distribution provides more realistic results (Akçelik & Chung, 2003). More complex but less 

widely used distributions also exist to define headway distribution (Sullivan & Troutbeck, 1994; 

Akçelik & Chung, 2003). 
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2.1.2 Capacity Models 

The headway distribution functions can be used in conjunction with gap-acceptance parameters 

to derive the capacity estimation models.  These models are macroscopic analytical models 

which express the capacity in an exponential function of the circulating flow. The exponential 

function is reasonable because the rate of reduction in capacity generally decreases as the 

circulating flow increases and capacity never reaches zero (Polus et al., 2003). For example, the 

capacity model adapted in the Highway Capacity Manual (HCM) 2000 (TRB, 2000) assumes 

that headways follow an M1 distribution (Eq. 2.1), and is described as follows: 

fc

cc

tq

tq
c

e
e

eq
C










1

3600
         (2.7) 

where Ce is the entry capacity (pcu/h), tc is the critical headway (sec), and tf is the follow-up time 

(sec). This capacity model was revised in the HCM 2010 (TRB, 2010) as follows: 

 
c

fc
q

tt

f
e e

t
C










 



3600

5.0

3600
        (2.8)  

The above capacity model is an exponential regression model developed based on a gap-

acceptance theory (Akçelik, 2011). Unlike the HCM 2000, the critical headways were assumed 

to be different for different roundabout geometry. Geometry is classified in terms of the numbers 

of circulating lanes and entry lanes. In this model, shorter critical headways were used for a 

multi-lane roundabout (4.11 s for one lane entry; 4.11 s and 4.29 s for right and left entry lanes, 

respectively, in case of multi-lane entry) than a one-lane roundabout (5.19 s for all entry lanes). 

The follow-up time for all roundabout geometry is 3.19 s. 
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The capacity models were also derived using the M2 distribution (Eq. 2.2) and an M3 

distribution (Eq. 2.3) as shown in Eq. 2.9 and 2.10, respectively (Tanner, 1967; Troutbeck, 1986):  
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  (Troutbeck, 1986)    (2.10) 

Troutbeck (1999) suggested that although the entering vehicles must yield to the circulating 

vehicles at roundabouts, they occasionally violate this priority rule and enter the roundabout with 

insufficient time gap. This results in delay in the circulating flow to accommodate the entering 

vehicles. This system is called a ―limited priority system‖. Given that trucks require longer time 

gaps to enter and longer time gaps are less likely to occur in the circulating flow, it is expected 

that trucks are more likely to violate the priority rule. It was found that the limited priority merge 

can have significant effect on the entry capacity at two-lane roundabouts. The capacity is 

adjusted as follows (Troutbeck, 1999): 
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Tanyel et al. (2007) had tested the M1, M2 and M3 capacity models and found that the M3 

model performed best for the six roundabouts in Turkey. However, it was found that the M1 

model performed best for the roundabouts in the U.S. (TRB, 2000). 



10 

 

2.1.3 Critical Headway 

Critical headways are estimated using the distributions of gap acceptance and rejection data. 

Three methods are commonly used for estimating the critical headway: 1) the graphical method, 

2) the maximum likelihood method and 3) the probability equilibrium method (Wu, 2006). The 

graphical method determines the critical headway by using cumulative distributions of individual 

entry vehicles’ accepted and rejected gaps. A gap is considered accepted if the driver of the 

entering vehicle perceives that the gap is sufficiently long enough for them to enter the 

roundabout (as indicated by the vehicle entry). Otherwise, the gap is rejected. The critical 

headway is then determined at the point of intersection between the two cumulative distribution 

curves of the accepted gaps and rejected gaps plotted on the same graph; an example based on 

empirical data is shown in Figure 2-1. 

 

 

Figure 2-1. Determination of Critical Headway using Graphical Method.  

 (Source: Flannery and Datta, 1997) 
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The maximum likelihood method (Troutbeck, 1989), assumes that the probability distribution 

function (PDF) of the critical headway (Ftc(t)) follows a lognormal distribution. The parameters 

of this PDF are obtained by maximizing the following likelihood function: 

 ])()([
1





n

i

ra tFtFL

        (2.12)

 

where Fa(t) is the PDF of an accepted gap t and Fr(t) is the PDF of a maximum rejected gap tr 

However, this method only accounts for the maximum rejected gap, not all rejected gaps. Also, it 

requires iterative calculation to maximize the above likelihood function. 

 

To overcome these limitations, the probability equilibrium method assumes that the probability 

distribution function (PDF) of the critical headway is described as follows (Wu, 2006): 
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         (2.13) 

where Ftc(t) is the PDF of the critical headway. If a time gap t is sorted in an ascending order, j = 

1, 2, , N, the critical headway is calculated using the following expression: 

 
N

j

jjjtcc tttpt ]2/)()([ 1         (2.14) 

where ptc(tj) is the frequencies of the estimated critical headways between j and j-1. This method 

does not assume the distribution of gaps, and accounts for all relevant rejected gaps, not only the 

maximum rejected gaps unlike the maximum likelihood method. 
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The critical headway is negatively correlated with higher circulating flow and higher speed of the 

circulating flow (Xu and Tian, 2008). Also, the critical headway is affected by the waiting time 

of entrance vehicles (Polus et al., 2003). As waiting time increases, drivers will become more 

aggressive and will accept shorter gaps. Consequently, this will reduce the critical headway. This 

could lead to forced entry manoeuvre, also known as gap forcing. When vehicles accept gaps 

which are shorter than the gap required to enter, the speed of the circulating flow will decrease 

(Polus and Shmueli, 1997).  

 

2.1.4 Effects of Exiting Vehicles on Capacity 

For the estimation of the critical gap, gaps are measured by taking the difference in times when 

two successive circulating vehicles arrive the conflict point with the entering vehicle. However, 

if the following circulating vehicle exits before the conflict point, the gap cannot be measured 

although the gap could have been perceived by the driver of the entering vehicle. Thus, there 

may be discrepancy between the measured gap and the perceived gap. 

 

In this regard, Mereszczak et al. (2006) showed that the capacity at single-lane roundabouts was 

underestimated if the effect of exiting vehicles was not considered. Since an entering vehicle has 

no prior knowledge of the destinations of the circulating vehicle, the entering vehicle may yield 

to an exiting vehicle incorrectly assuming that they would have become in conflict. To capture 

the driver’s perceived gap, the measured gap is adjusted using the ―equivalent travel time‖ when 

the time gaps involve the exiting vehicles. The equivalent travel time is defined as the distance 

between the point of exit and the point of conflict, divided by the free-flow speed within the 

circulating roadway (Mereszczak et al., 2006). 
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To describe the method of considering the exiting vehicles, the following case is considered: 

Vehicle V is yielding to enter the roundabout, and Vehicles 1, 2 and 3 are the 1st, 2nd and 3rd 

vehicles, respectively, which travel along the circulatory roadway heading towards the leg where 

Vehicle V is yielding. Vehicles 1 and 3 cross the leg where Vehicle V is yielding, but Vehicle 2 

exits. Vehicle 1 crosses in front of Vehicle V at t1, Vehicle 2 exits at t2, and Vehicle 3 crosses in 

front of Vehicle V at t3. Figure 2-2 shows the sequential time instances of t1, t2 and t3 from left to 

right: 

 

Time instance t1                                Time instance t2                                 Time instance t3 

Figure 2-2. Position of Circulating Vehicles at Various Time Instances. 

 

When the exiting vehicles are not considered, the only time-gap in front of Vehicle V would be 

measured as t3-t1 since Vehicle 2 did not reach the point of conflict. When the exiting vehicles 

are considered, two gaps can be defined using the equivalent travel time (∆e) - the time it would 

have taken for Vehicle 2 to travel from the exiting leg to the point of conflict if it had not exit. 

Thus, the first gap is defined as (t2 - t1) + ∆e, and the second gap is defined as t3 - t2. Zheng et al. 

(2011) found that the critical headway and the follow-up time were reduced when the exiting 

vehicles were considered. 
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However, these studies assumed a single value of the equivalent travel time for all vehicle types. 

Since the term ∆e is based on the free-flow speed of the circulating vehicles, it depends on 

whether the exiting vehicle is a car or a truck.  

 

2.2 Empirical Capacity Models 

Empirical capacity models are the models developed using the data collected from the existing 

roundabouts. These models do not require gap-acceptance behavior parameters. Instead, they 

directly describe the entry capacity as a function of the circulating flow. Some models include 

factors associated with the geometry of the roundabout.  

 

Basic roundabout geometric features are shown in Figure 2-3. The main factors effecting 

capacity are the approach width, entry width and entry angle (Robinson et al., 2000). In general, 

wider entry width and approach width increase the entry capacity. The entry angle is related to 

the curvature of the approaching roadway, and a more direct path towards the circulating flow 

will increase the entry capacity. An inscribed circle diameter of 50m or less will have little effect 

on capacity (Robinson et al., 2000). Wider circulating road width will increase the capacity of 

the circulating flow. 
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Figure 2-3. Basic Elements of Roundabout 

(Source: Robinson et al., 2000) 

 

For example, the empirical capacity model was developed in the U.K. (Kimber, 1980; Kimber, 

1988) based on the data collected from 86 roundabouts. A linear relationship between the entry 

capacity and the circulating flow is described as follows: 

 cce qfFC 
         (2.15)

 

where F is a factor associated with the entry width, entry angle and width of the circulating flow, 

and fc is a constant that depends on the geometry of the circle (in particular, inscribed circle 

diameter). 
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A capacity model was also developed in Switzerland using the data collected from seven 

roundabouts (Simon, 1991) as follows: 

 

ge qC  888.01500
        (2.16)

 

where qg is a volume which depends on the circulating flow, the geometry of the circle and the 

geometry of the approaching legs. 

 

In Germany, the relationship between the entry capacity and the circulating flow was described 

in an exponential function based on the data collected from 10 roundabouts (Stuwe, 1991).  








 

 10000

cBq

e AeC
         (2.17)

 

where A and B are the parameters associated with geometric factors including the number of 

circulating lanes, and the number of entrance lanes. The model calibrated for single entry lane, 

single circulating lane roundabouts in the U.S. is as follows (NCHRP, 2007): 
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         (2.18) 

Figure 2-3 compares empirical capacity models among different countries. 
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Figure 2-4. Comparison of Empirical Roundabout Capacity Models.  
(Source: Polus and Shmueli, 1997) 

 

However, since empirical models are calibrated for local traffic conditions, they cannot be 

generally applicable to the other areas. Thus, the gap acceptance model was preferred since it can 

better describe driver behaviour and more logically determine the capacity than the empirical 

models. 

 

2.3 Microscopic Traffic Simulation Models 

In addition to gap-acceptance and empirical models, roundabout capacity can also be estimated 

using microscopic traffic simulation models. One of the advantages with simulation models, as 

opposed to the macroscopic analytical models is that the capacity can be estimated for closely 
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spaced roundabouts within road network (Qiu and Yin, 2011). In addition, the individual car and 

truck movements can be observed and how they come into conflict with other vehicles. The 

examples of microscopic traffic simulation models are VISSIM, PARAMICS and CORSIM. Of 

these, VISSIM (PTV AG, 2011) is the most commonly used for roundabout capacity analysis. 

 

There are two ways to model yielding of the entering vehicles within VISSIM: priority rules 

(Isebrands et al., 2011) and conflict areas (Fellendorf and Vortisch, 2010). Priority rules can be 

used to define the critical headway for the yielding vehicles. The vehicles yield until an 

appropriately sized gap is available in the circulating flow and only enter the roundabout if the 

available gap is longer than the critical headway. These priority rules are set by users for each 

entry lane and circulating lane (Trueblood and Dale, 2003). Alternatively, conflict areas can be 

used to define the area where the circulating and entering vehicles are in conflict. Acceptable 

gaps are determined based on the entering vehicle’s acceleration and the minimum headway 

between the entering vehicle and the circulating vehicles.  

  

The simulation models need to be calibrated and validated to ensure that the simulation reflects 

actual traffic conditions (Isebrands et. al., 2011). Conflict areas are more advantageous than 

priority rules since they are less complex to reflect the difference in car and truck driving 

behaviour. Wei et al. (2011) observed that the simulation using conflict areas displayed more 

realistic driver behaviour than priority rules. 
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2.4 Effect of Trucks on Capacity 

Some studies have considered the effects of trucks on roundabout capacity. The HCM 2000 

(TRB, 2000) and HCM 2010 (TRB, 2010) methods convert the number of vehicles into 

passenger car unit (pcu) using the following heavy vehicle factor: 

HVHV
HV

pe
f

)1(1

1


         (2.19) 

where eHV is the passenger car equivalent of a heavy vehicle (pcu/veh) (default value is 2.0), and 

pHV is the proportion of heavy vehicles in the traffic stream. The flow in veh/h is divided by fHV 

to calculate the flow in pcu/h. Although this method is simple, there is a lack of consideration of 

difference in driver gap-acceptance behavior between cars and trucks. 

 

In this regard, an Australian report (Troutbeck, 1993) suggested that the critical headway and the 

follow-up time are different for heavy vehicles and cars. It suggested that factors be included to 

take into account this difference as follows:  

CcGAHVc tft )()(  , CfGAHVf tft )()(        (2.20) 

where (tc)HV and (tc)C are the critical headways for heavy vehicles and cars (sec), respectively,  

(tf)HV and (tf)C are the follow-up time for heavy vehicles and cars (sec), respectively, and   

fGA is the gap-acceptance parameter factor. The factor fGA is greater than or equal to 1 to reflect 

longer critical headway and follow-up time for heavy vehicles than cars. However, the study 

found that there was no need to adjust gap-acceptance parameters for heavy vehicle (i.e. fGA = 1) 

based on the field data for one traffic circle. The study also suggested that the critical headway is 

longer when the driver enters in front of heavy vehicles than cars.  
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Zheng et al. (2011) empirically observed that the critical headway for trucks was longer than the 

critical headway for cars and motor cycles. Based on the data collected from one roundabout in 

Wisconsin, the critical headway for trucks and cars were 5.0 s and 4.1 s, respectively, in left lane 

and, they were 4.7 s and 3.3 s, respectively, in right lane. 

 

Arçelik & Associates Pty Ltd (2011) suggested the adjustment of the critical headway and the 

follow-up time for entire entry flow using the heavy vehicle factor as follows: 

HV
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f

t
t '          (2.21) 

where t'c and t'f are the critical headway and follow-up time adjusted for heavy vehicle effects in 

the entry flow. Similar to the method proposed by Troutbeck (1993), the critical headway and the 

follow-up time are equally adjusted by a single factor. Since the heavy vehicle factor decreases 

with higher truck percentage, Eq. 2.21 reflects that the critical headway and the follow-up time 

increase as truck percentage increase. 

 

However, there is a need to investigate the validity of the same adjustment factor for both critical 

headway and follow-up time. Although some studies (e.g. Troutbeck, 1993) reported the effect of 

the gap-acceptance parameters adjusted for heavy vehicles on the reduced capacity, there have 

been a few empirical studies to investigate this effect using more extensive field data. Thus, 

further studies are needed to examine the effect of trucks on driver gap-acceptance behavior and 

incorporate such effect into the capacity estimation of roundabouts.  
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3 PROCEDURE 

3.1 Capacity Model using Adjusted Gap-Acceptance Parameters 

In order to reflect the effect of trucks on capacity, gap-acceptance parameters should be 

determined for cars and trucks separately. Then the representative gap-acceptance parameters for 

entire entry flow can be calculated as a volume-weighted average of the parameters for cars and 

trucks. 

 

3.1.1 Adjusting Critical Headway 

The critical headways of cars and trucks are weighed in proportion to the percentage of cars and 

trucks within the entry flow. If the entry flow consists of cars and trucks only, the critical 

headway is calculated as follows: 

 trucktruckctruckcarcc ptptt  ,, )1('       (3.1) 

where  t'c is the adjusted critical headway (sec), ptruck is the percentage of trucks within the entry 

flow, and tc,car and tc,truck are the critical headways for cars and trucks, respectively (sec). The 

term (1 – ptruck) represents the percentage of cars within the entry flow. As ptruck increases, t'c is 

more influenced by tc,truck, and thus is expected to increase since tc,truck is generally longer than 

tc,car. 

 

Additionally, it is expected that trucks and cars may travel the circulatory roadway at different 

speed, the effects of the exiting vehicles by vehicle type will be taken into account when 

calculating the critical headway as described in Section 2.1.4. More specifically, the minimum 

headway (∆e) will be separately estimated for the exiting cars and trucks - ∆e,car and ∆e,truck, 

respectively. 
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3.1.2 Adjusting Follow-up Time 

Similar to the critical headway, the follow-up times of cars and trucks are weighed in proportion 

to the percentage of cars and trucks within the entry flow. However, since cars and trucks have 

different operational characteristics (e.g. acceleration, headway), the follow-up time varies by the 

type of two entering vehicles in a queue - the lead vehicle, and the following vehicle which 

enters the circulatory roadway using the same gap as the lead vehicle. Assuming that there are 

only cars and trucks, four cases of vehicle-following conditions are defined as follows:  

 

1) car followed by car (car/car) 

2) car followed by truck (car/truck) 

3) truck followed by car (truck/car), and 

4) truck followed by truck (truck/truck) 

 

Assuming that each vehicle type has equal chance of being the lead or following vehicle, the 

follow-up time can be calculated as follows: 

trucktruckttf

trucktrucktcftrucktruckctftrucktruckccff
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This equation can be re-written as follows: 

 
2

,,,

2

, )1()()1(' truckttftrucktrucktcfctftruckccff ptppttptt     (3.2) 

where t'f is the adjusted follow-up time (sec), and tf,cc, tf,ct, tf,tc, and tf,tt are follow-up times for a 

car following a car (car/car), a truck following a car (car/truck), a car following a truck 

(truck/car), and a truck following a truck (truck/truck), respectively (sec). The follow-up times 

for each vehicle-following case were weighted based on the probability of lead-vehicle and 
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following-vehicle combination. As ptruck increases, weights of the follow-up times associated 

with trucks (tf,ct, tf,tc, and tf,tt) increase. Since tf,ct, tf,tc, and tf,tt are generally longer than tf,cc due to 

truck’s lower acceleration, t'f is expected to increase as ptruck increases. 

 

3.1.3 Adjusting Capacity 

These adjusted gap-acceptance parameters (t'c, t'f) can then be used to estimate the capacity using 

the aforementioned macroscopic analytical capacity models by replacing the existing gap-

acceptance parameters (tc, tf)  (Eq. 2.7-2.10). Since these gap-acceptance parameters are sensitive 

to the percentage of trucks within the entry flow, the capacity will vary as the truck percentage 

changes. 

 

3.2 Capacity Estimation using Computerized Models 

In addition to the above analytical models, the roundabout capacity can also be estimated using 

two computerized models: SIDRA (Akçelik & Associates Pty Ltd., 2011) and VISSIM (PTV AG, 

2011). These are commercial software that has been widely used for the roundabout traffic 

analysis. SIDRA is a macroscopic analytical model which imports demand entry flows, turning 

movements and geometry, and estimates the capacity and delay. The model was developed based 

on the gap acceptance theory. Headways were assumed to follow the M3 distribution. The model 

also considers the effects of geometry on the gap acceptance parameters and the capacity. 

 

On the other hand, VISSIM is a microscopic simulation model which mimics individual vehicle 

movements considering various driving and vehicle performance conditions (such as vehicle 

speeds, acceleration/deceleration, lane change restrictions and right-of-way allocation). The 
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model does not require the assumed distribution of headways unlike the macroscopic analytical 

model. The capacity estimated using SIDRA and VISSIM will be compared to the capacity 

estimated using the adjusted gap-acceptance parameters.  
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4 DATA 

4.1 Studied Roundabouts 

To observe car and truck movements at roundabouts, video footage for 11 roundabouts in 

Vermont, Ontario and Wisconsin was obtained. The locations and dates of video footage are 

shown in Table 4-1. Some roundabouts were chosen since truck volumes were high. Dimensions 

of road geometry for each roundabout were manually measured from the geometric drawings. 

Table 4-2 shows a summary of the measured geometric features. 

 

TABLE 4-1. Location of Studied Roundabouts and Dates of Video Footage 

 

Roundabout Intersecting roads 
City, State or 

Province 

Date of video 

footage 

Time of Day 

Brattleboro Vermont Route 9 & US 

Route 5  

Brattleboro, VT Jul. 16th, 2003 Unknown 

Waterloo Arthur Street & Sawmill 

Road  

Waterloo, ON Jan. 13th, 2011 1:00PM – 

3:00PM 

32&57 STH 57 & STH 32 

(Broadway Street) 

De Pere, WI May 19th, 2010 11:17 AM – 

6:38 PM 

78&92 78/92/8th Street & CTH 

ID  

Madison, WI Apr. 8th, 2010 12:22 PM – 

6:22 PM 

42&43 STH 42 & IH 43 

Northbound off ramp 

(east)  

Sheboygan, WI Apr. 22nd, 

2010 

12:59 PM – 

5:59 PM 

Vanguard STH 42 & Vanguard 

Avenue  

Sheboygan, WI Apr. 23rd, 2010 11:37 PM – 

6:00 PM 

Bennett STH 18 & Bennett Road Dodgeville, WI Mar. 30th, 

2010 

1:00 PM –  

6:00 PM 

Moorland 

North 

Moorland Road & IH 43 

(north) 

New Berlin, WI May 5th, 2010 1:40 PM –  

6:04 PM 

Moorland 

South 

Moorland Road & IH 43 

(south) 

New Berlin, WI May 12th, 2010 11:45 PM – 

5:59 PM 

Thompson 

North 

Thompson Dr & STH 30 

Eastbound off-ramp 

Madison, WI Apr. 29th, 2010 1:06 PM –  

2:15 PM 

Thompson 

South 

Thompson Dr & 

Commercial Avenue 

Madison, WI Apr. 13th, 2010 12:02 PM – 

1:35 PM 
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Table 4-2. Geometric Factors of Roundabouts 

Roundabout 
No. of 

legs 

inscribed 

circle 

diameter 

(m) 

central 

island 

diameter 

(m) 

truck 

apron 

(m) 

entry 

width 

(m) 

exit 

width 

(m) 

circulatory 

roadway 

width (m) 

splitter 

island 

width 

(m) 

entry 

angle 

(deg) 

Brattleboro 4 56.0 32.4 2.4 9.7 9.7 12.2 5.0 30.0 

Waterloo 4 60.0 40.0 3.3 8.3 8.3 10.0 10.8 17.8 

32&57 4 53.3 22.9 3.8 9.1 9.1 11.4 9.0 23.8 

78&92 4 38.6 13.7 4.3 6.9 7.7 9.4 4.9 27.0 

42&43 4
a
 47.6 22.9 3.8 8.4 8.4 9.9 8.4 27.5 

Vanguard 4 61.0 25.9 4.6 7.6 9.1 9.1 12.4 20.6 

Bennett 4 57.0 29.0 3.8 9.9 8.4 10.7 13.9 24.4 

Moorland North 4
b
 50.0 31.2 1.9 6.7 6.7 7.2 10.3 27.5 

Moorland South 4
c
 37.0 19.2 1.9 5.8 5.3 6.3 8.8 21.9 

Thompson North 4 50.7 29.0 0.8 7.6 9.1 10.7 8.4 23.8 

Thompson South 3
c
 42.0 22.9 0.8 7.6 9.1 9.1 6.9 25.0 

a
 There is no exit at one leg and no entrance at another leg. 

b
 There is no exit at one leg and no entrance at another leg. There are also multiple bypass lanes. 

c
 There is no exit at one leg. 

  

 

All the geometric features except entry angle could be measured by scaling distances from the 

drawing. Entry angle is the angle between the entering roadway and the circulating roadway. The 

method of measuring this angle depends on the spacing between the adjacent entry legs as shown 

in Figure 4-1. Figure 4-1 (a) shows that for a roundabout with larger spacing between legs, the 

entry angle is the angle between the line BC tangent to the entry path (EF) at the point of entry 

(F), and the line tangent to the circulating path (AD) at the point which BC intersects (C). Figure 

4-1 (b) shows that for a roundabout with shorter spacing between legs, the entry angle is half of 

the angle between the line BC tangent to the entry path (EF) at the point of entry (F) and the line 

GH tangent to the exit path (JK) at the point of exit (K).  



27 

 

    

 (a) Long spaced entry      (b) Short spaced entry 

 

Figure 4-1. Measurement of Entry Angle.  

 (Source: The Highways Agency, 2007) 

Note: Since the figure is from a U.K. design guide, the direction of travel is clockwise and to the left. 

 

 

Sample screenshots of video footage and geometric drawings of the Brattleboro, Waterloo and 

32&57 roundabouts are shown in Figure 4-2. The geometric drawings and video footages for all 

roundabouts in larger scale are shown in Appendix A and Appendix B, respectively. In particular, 

the Brattleboro, Waterloo and 32&57 roundabouts are the busiest among the studied roundabouts 

due to high travel demand indicated by queued entering vehicles, with the observed truck 

percentage of 11%, 5% and 19% respectively. Thus the entry capacity can be observed from 

these roundabouts. Figure 4-3 shows the location of these roundabouts (marked in blue). These 

roundabouts are all located near major highways, where truck volumes are typically higher. 
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Roundabout Geometric drawing Video screenshot 

Brattleboro 

 

See notes 

below 

images for 

road names 
 

Top Left – Brattleboro State Highway (to I-91) 

Bottom Left – US Route 5 

Bottom Right – Vermont Route 9 

Top Right – US Route 5 

 
Bottom Left – Brattleboro State Highway 

Bottom Right – US Route 5 

Top Right – Vermont Route 9 

Top Left – US Route 5 

Waterloo 

 
Top Left & Bottom Right – Arthur Street 

Bottom Left & Top Right – Sawmill Road 
 

Top Left & Bottom Right – Arthur Street 

Bottom Left & Top Right – Sawmill Road 

32&57 

 
Top – Broadway/State Highway 57 

Left – State Highway 32 

Bottom – Broadway Avenue 

Right – Wisconsin Street 

 
Top Right – Broadway/State Highway 57 

Top Left – State Highway 32 

Bottom Left – Broadway Avenue 

Bottom Right – Wisconsin Street 

Figure 4-2. Geometric Drawings and Screenshots of Video Footage for the Brattleboro, 

Waterloo and 32&57 Roundabouts. 
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Roundabout Roundabout Location 

Brattleboro 

 

Intersection of US Route 5 

and VT Route 9. Interstate 

highway 91 to the West of 

roundabout. The city of 

Brattleboro to the south. The 

city of Keene to the east. 

 

Waterloo 

 

Intersection of Arthur (17) and 

Sawmill (85). To the south, 

Highway 85 turns into 

Conestoga Parkway which 

feeds into the Region of 

Waterloo and the City of 

Kitchener. Further south east, 

Highway 85 turns into 

Highway 7 and Highway 8 

which leads to Highway 401. 

8  

32&57 

 

Intersection of Highway 57 

(Broadway) and 32 

(Wisconsin/Main). Located in 

a downtown core between 

highway 172 and US Route 

41. Highway 57 and 32 both 

head north past Highway 172, 

and into the city of Green Bay. 

 

Figure 4-3. Locations of the Brattleboro, Waterloo and 32&57 Roundabouts. 

(Source: Google Map, 2011) 
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All of the roundabouts have full two circulatory lanes or partially one circulatory lane except for 

the Brattleboro and Thompson South roundabouts which have one circulatory lane only. 

Although the width of the circulatory lane at the Brattleboro and Thompson South roundabouts is 

wide enough for two lanes, there are no lane markings.  

 

4.2 Data Collection  

Gap acceptance/rejection, follow-up time and free-flow speed were collected from the video for 

the eleven roundabouts. Any unusual driver behaviour such as gap-forcing behavior, violation of 

the right-of-way, and unnecessarily tentative drivers was noted. All the data were collected 

manually, and they were kept for cars and trucks separately.  

 

A total of 2,790 gap acceptance/rejection data points, 275 follow-up time data points, and 482 

free-flow speed data points were recorded over 70 hours from video footage. Combined with the 

other data points collected for different analysis, 11,720 data points were collected over 200 

hours from video footage. 

 

4.2.1 Gap Acceptance/Rejection Data 

Gap data includes the time of entry, time gap (sec), vehicle type (car or truck), and gap condition 

(accepted or rejected) at all entry legs which were visible from the video. Gaps were measured 

by taking the difference in times when two consecutive circulating vehicles passed the point of 

conflict for a given entry leg. A sample sheet of the gap acceptance/rejection data collection is 

shown in Table 4-3, and a complete sample for the 32&57 roundabout is shown in Appendix C. 
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Table 4-3. Sample Data Sheet for Gap Acceptance/Rejection  

Time 

Entry leg 
Gap length 

(sec) 

Rejected/ 

Accepted 

Obstruction of 

circulating flow 
Additional notes 

0-TR 1-TL  

2-BL 3-BR 
Car Truck 

0-reject 

1-accept 
0-no 1-yes 

Queue/Flow/Driver 

Characteristics 

0m19s 0 3.5   0 0   

  0 3   0 0   

  0 4.2   0 0   

  0 2.5   0 0   

  0 8   1 1   

  0 8   1 1 multiple cars entering; both lanes 

0m38s 0   2.5 0 0   

  0   4.8 0 0   

  0   6.5 1 1 

circulating flow slowed down for 

truck 

0m50s 0 4.7   0 0 

entering truck on TL ramp also 

backed up circulating flow 

  0 9.5   1 0   

 

A total of 35 hours of video footage was viewed and 2,790 gap data points were collected from 

the eleven roundabouts. Approximately 5-10% of the gap data were influenced by the exiting 

vehicles. A minimum value of all of the time-gap data for each roundabout was taken as the 

minimum headway. 

 

The headways of the circulating flow were also collected in each lane of the circulatory roadway. 

These data were collected concurrently with the gap acceptance/rejection data because those 

gaps constitute the headway distribution of the circulating flow. In case of two-lane roundabouts, 

the distributions of headways in both lanes are assumed to be the same and the sum of flows in 

two lanes was used as one circulating flow (Akçelik et al., 2003; Troutbeck et al., 1999). 
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4.2.2 Follow-up Time Data 

The follow-up time data include the time of entry, follow-up times (sec), and the types of lead 

and following vehicles (car/car, car/truck, truck/car or truck/truck). Follow-up times were 

measured by taking the difference in times when two consecutive queued entering vehicles 

passed the entry point using the same gap between circulating vehicles for a given entry leg. If 

there are multiple entry lanes, follow-up times were measured in the lane(s) where the entering 

vehicles have conflict with the circulating vehicles. A sample sheet of the data collection is 

shown in Table 4-4. 

Table 4-4 Sample Follow-up Time Information Collection Spreadsheet 

Time 
Follow-up Time (sec) 

Car/Car Car/Truck Truck/Car Truck/Truck 

4m50s     5.4   

14m23s 2.3       

16m4s       9.5 

17m56s     5.7   

19m35s 2.3       

 

The size of sample follow-up times was insufficient for the Thompson North and Thompson 

South roundabouts due to a lack of queued vehicles at the entry legs. A total of 23 hours of video 

footage was viewed and 275 follow-up time data points were collected from 9 roundabouts.  

 

4.2.3 Free-flow Speed Data 

Free-flow speeds for all major movements of cars and trucks within a circulatory roadway were 

also collected. Distances of the movement paths were measured using the geometric drawings, 

and free-flow travel times to traverse these paths were recorded by timing free-flow vehicles in 

the video; a vehicle was considered to be free-flowing when it could enter the roundabout 

without having to yield or slow down at entry. Free-flow speed was calculated as the distance of 
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the path divided by the free-flow travel time. Free-flow speeds of cars and trucks were used to 

evaluate whether trucks generally obstructed the circulating flow due to their lower speed. Free-

flow speeds were also used to consider the effect of the exiting vehicles on gaps, as described in 

Sections 2.1.4 and 3.1.  

 

A sample sheet of the data collection is shown in Table 4-5. The two example paths are shown on 

a video screenshot in Figure 4-4. Eight hours of video footage was viewed and 482 data points 

were collected for free-flow speed from the 11 roundabouts. 

 

Table 4-5. Sample Data Sheet for Free-flow Speed  

 Time 

Travel Time (s) Speed (km/hr)  

Path1 

W to S 

Path2 

S to N 

Length of path1 = 

27.4 m 

Length of path2 = 

45.7 m 

Cars Trucks Cars Trucks Cars Trucks Cars Trucks 

0m20s 2.7 

 

  

 

36.5       

0m30s 2.8 

 

  

 

35.2       

1m25s   

 

5.8 

 

    28.4   

1m50s   

 

6.4 

 

    25.7   

3m55s   3.6   

 

  27.4     

4m15s   3.4   

 

  29.0     

5m00s       8       20.6 
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Figure 4-4. Example of Path for Estimation of Free-flow Speed. 

 

 

4.2.4 Entry Capacity and Turning Movement Data 

Finally, the entry capacity was observed at the Brattleboro, Waterloo and 32&57 roundabouts 

because regularly queued entering vehicles and saturated entry flows only occurred at these sites. 

The number of the entering vehicles at a given entry leg was recorded from the time when the 

first vehicle in a queue entered the roundabout to the time when the queue was cleared. The data 

were collected in one-minute intervals. During the same time period, the number of circulating 

vehicles that had conflicts with the entering vehicles from the given leg was also recorded. A 

sample sheet of the data collection is shown in Table 4-6. Seventy eight pairs of entering and 

circulating flows were taken. Total number of cars and trucks in each one minute interval was 

converted to total pcu. The passenger car equivalent (pce) for trucks was assumed to be 2.0, 

which is the commonly used value for trucks in roundabouts (Robinson at al., 2000). Although 

different pce values can also be assumed, this will only alter the total volume of vehicles, but not 

the gap-acceptance parameters. The one-minute entering and circulating flows were converted to 

hourly flows. 
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Table 4-6. Sample Data Sheet for Entry Capacity 

Time 

interval 

Entry leg Entering vehicle Circulating vehicle 

0-TR 1-TL 

2-BL 3-BR 
1-car 2-truck 3-other 

0:00-1:00      1 2   

 

    1 

      1 

      1 

      1 

      1 

      1 

      1 

      1 

      1 

      1 

      2 

    1   

      1 

      1 

    1   

    1   

    1   

    1   

Total number of vehicles  6  13 

Total pcu 7 14 

Total flow (pcu/h) 420 840 

 

The two computerized models (SIDRA and VISSIM) require the demand entry flow data in each 

approach (turning movement) rather than the data in each lane. To use these models, the turning 

movements for all vehicles were also collected from each leg in 5 minute intervals. Since it took 

a significant amount of time for tracing each individual vehicle’s turning movement, the data 

were only collected from the Brattleboro Roundabout for demonstration purpose. The data 

include the vehicle type, entry leg, and turning movement. A sample sheet of the data collection 

for 1 minute at one entry leg is shown in Table 4-7, and a summary of the demand flow for each 

approach is shown in Table 4-8. A total of 606 data points were collected.  
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Table 4-7. Sample Data Sheet for Turning Movements  

 Time 
Entry leg Vehicle Type Turning movement 

0-TR 1-TL 2-BL 3-BR  1-car 2-truck 1 - Right turn 2 - Straight 3 - Left turn 

2m3s 1 1 2 

  1 1 2 

  1 1 1 

  1 1 3 

2m13s 1 1 3 

2m18s 1 1 2 

  1 1 2 

  1 1 2 

  1 1 2 

2m40s 1 1 1 

2m50s 1 2 1 

  1 1 2 

2m58s 1 2 1 

 

Table 4-8. Fifteen Minute Demand Entry Flow for Brattleboro Roundabout  

Entry leg 

Number of Cars Number of Trucks 

Right 

Turn 
Through 

Left 

Turn 

U-

Turn 

Right 

Turn 
Through 

Left 

Turn 

U-

Turn 

US Route 5 (North) 24 81 21 0 7 1 1 0 

Vermont Route 9 27 45 39 0 0 4 1 0 

US Route 5 (South) 50 66 56 6 1 0 0 0 

Brattleboro State Highway 72 52 23 3 1 3 1 0 

 

4.2.5 Calibration of Computerized Models 

To collect the capacity and circulating flow data from SIDRA and VISSIM, the model 

parameters were selected such that the results reflect the actual geometry, traffic condition and 

driver behaviour at the Brattleboro roundabout. For SIDRA, the geometry of the roundabout was 

coded as shown in Figure 4-5 based on the values found in Table 4-2. The default value of the 

heavy vehicle factor (= 2.0) was used to consider the effect of trucks, and the default for 

including the effect of trucks only if truck volume percentage is over 5% was changed so that the 

effect of trucks can be considered for all percentages of trucks. Approach and exit speeds were 
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assumed to be 60 km/hr which is the speed limit of the approach roadways, and no pedestrian 

traffic was assumed to reflect the actual conditions. 

 
Figure 4-5. Geometric layout of Brattleboro Roundabout in SIDRA. 

 

The Brattleboro roundabout was also coded in VISSIM using conflict areas. The right of way 

was designated as shown in Figure 4-6. In the figure, green links denote the path of the vehicles 

with right-of-way and red links denote the path of yielding vehicles. The default values of three 

conflict area parameters - front gap, rear gap and safety distance factor - were used (0.5 s, 0.5 s 
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and 1.5, respectively). Front gap is the minimum time headway between the rear end of the 

circulating vehicle and the front end of the entering vehicle. Rear gap is the minimum time 

headway between the rear end of the entering vehicle (after it entered) and the front end of the 

following circulating vehicle. Safety distance factor defines the minimum distance headway 

between the circulating vehicle and the point of merge for the entering vehicles (PTV AG, 2011). 

Conflict areas will allow any vehicle within the conflict area to recognize any potential 

obstructions and adjust their speeds accordingly, even if they have priority on the circulatory 

roadway. This can reflect the obstruction of the circulating flow caused by the entering trucks 

within the roundabout. 

 

Figure 4-6. Designation of Right-of-way at Conflict Area in VISSIM. 
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Vehicles were classified into two vehicle types: cars and trucks. Large heavy duty trucks 

(AASHTO WB67, length of 22.42 m) were used rather than the default single unit trucks 

because they have a long pivoting trailer. This reflects that trucks require wider turns than cars. 

Figure 4-7 shows that a circulating truck occupies more space than cars as it negotiates the curve. 

In the figure, the shorter lines indicate passenger cars whereas the longer lines with deflection 

indicate trucks. Different colours represent the types of vehicles classified by their routes. The 

desired speeds for cars and trucks were set to the observed free-flow speeds, which will be 

discussed in Section 5.2. 

 

  

Figure 4-7. Simulation Screenshot of Brattleboro Roundabout in VISSIM. 
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Actual driving characteristics show that the circulating vehicles usually occupied one wide lane 

and did not travel in parallel with the other vehicles, particularly trucks. However, since 

connecting a two-lane entry leg to a single-lane circulatory roadway in VISSIM creates errors 

and merging problems, the circulatory roadway was assumed to be two lanes. Instead, minimum 

lateral distance to the vehicles on adjacent lanes was adjusted such that vehicles do not follow 

too close or travel in parallel with other vehicles on adjacent lanes. As the minimum lateral 

distance increases, vehicles are more likely to maintain longer distance with the vehicles on 

adjacent lanes. After the distance was adjusted to 15 m, the simulated circulating flow became 

similar to the observed circulating flow. 

 

Due to the restricted lane changes within the roundabout, the length of approaching roadways 

and the default value for lane change movements were both increased to 600 m and 800 m, 

respectively. This provided sufficient time for cars and trucks to choose the proper lane for their 

turning movements before entering the roundabout.  
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5 RESULTS AND DISCUSSION 

5.1 Headway Distribution 

Headway data for the Brattleboro roundabout were collected for 15 minutes at all entry legs, and 

separated into the four vehicle-following cases, as was described for the follow-up time in 

Section 3.1.2. It was assumed that the circulating traffic flow was a single flow, as described in 

Section 4.2.1. The cumulative probability of headways was then plotted and compared with the 

M1, M2 and M3 distributions. The purpose of comparison was to determine whether the 

headway distributions for different vehicle-following cases are similar or not. The headway 

distributions for the cases of a) car/car, b) car/truck, c) truck/car and d) combined (all data 

points) were plotted in Figure 5-1. There was an insufficient amount of data points for the 

truck/truck case. The minimum headway (∆) was assumed to be 0.3 s since this was the 

minimum headway observed from the video. The proportion of free vehicles (α) was assumed to 

be 0.75; and λ was calculated by using Equation 2.4, with qc assumed to be equal to 1440 pcu/hr. 

 

In general, all the headway distributions followed a similar trend. It should be noted that there 

was a higher proportion of longer headway (4-6 sec) for the car/truck case than the other cases. 

This suggests that trucks generally follow cars with longer time headway on the circulatory 

roadway due to their lower speed. On the other hand, the distribution for the car/car case (Figure 

5-1 (a)) was very similar to the distribution for the combined case (Figure 5-1 (d)). This is likely 

due to the fact that a majority (86%) of the observed headways was for the car/car case (417 

points compared to 17 for car/truck and 50 for truck/car). 
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(a) Car/car headways 

 

(b) Car/truck headways 

 

(c) Truck/car headways  

 

(d) Combined headways 

Figure 5-1. Headway Distributions at the Brattleboro Roundabout.  
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Although the headway distributions for the car/truck and truck/car cases were slightly different 

from the car/car case, they had a minimal effect on the combined headway distribution. Thus, the 

combined headway distributions were obtained (without considering vehicle types) for all other 

roundabouts where the car-car case was dominant. Headway distributions for all roundabouts are 

shown in Appendix D.  

 

It was found that the M2 distribution had the lowest root-mean-square error (RMSE) for the 

car/car, car/truck and combined cases, and the M1 distribution had the lowest RMSE for the 

truck/car case.  However, the distributions of the observed headways were generally similar to 

the M1, M2 and M3 distributions. This indicates that the assumptions of headway distribution in 

the existing capacity models (Equations 2.7 – 2.10) are valid.  

 

5.2 Free-flow Speed 

The average free-flow speeds for cars and trucks at each roundabout are shown in Table 5-1. For 

all the roundabouts, cars travelled at a higher free-flow speed than trucks. This is because trucks 

require a larger turning radius and they tend to travel slower along the curved path of a 

circulatory roadway. The truck’s slower free-flow speed than the car’s free-flow speed indicates 

that trucks are more likely to obstruct the circulating flow. This indicates that trucks tend to 

decrease the circulating flow and increases the likelihood of available gaps for the entering 

vehicles. In Table 5-1, the percentage of speed difference was calculated as follows: 

                   
                       

         
          (5.1) 

Truck’s free-flow speed was lower than car’s free-flow speed by 14-31% within roundabouts. 
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Table 5-1. Observed Average Free-flow Speed 

Roundabout 

Free-flow speed 

Car speed (km/hr) Truck speed (km/hr) 
Average % speed 

difference 

Brattleboro 29 20 30.1% 

Waterloo 39 30 22.8% 

32&57 31 24 21.9% 

78&92 33 23 30.8% 

42&43 33 25 24.3% 

Vanguard 33 25 24.4% 

Bennett 37 29 22.5% 

Moorland North 22 17 19.1% 

Moorland South 22 19 14.3% 

Thompson North 39 29 25.1% 

Thompson South 37 29 19.4% 

 

 

5.3 Critical Headway 

The gap acceptance/rejection data were collected for each entry leg separately first. However, it 

was found that the distributions of the accepted and rejected gaps were not significantly different 

among different entry legs. Thus, the gap data for each leg were combined for each roundabout. 

 

It was also observed that some vehicles, particularly trucks, aggressively entered the roundabout 

even when a sufficient gap was not available and forced the circulating vehicles to yield to the 

entering vehicle. This type of gap-forcing behavior obstructed the circulating flow. For the 

Brattleboro roundabout, it was found that during one 5-minute period, 5 out of 57 cars (9%) 

which entered the roundabout obstructed the circulating flow. During one 15-minute period, 26 

out of 52 trucks (50%) which entered the roundabout obstructed the circulating flow. This shows 

that trucks are more likely to obstruct the circulating flow than cars at this roundabout. This is 

because trucks need longer time gaps to enter a roundabout than cars, but longer time gaps are 
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less likely to be available in the circulating flow. Thus, truck drivers are more likely to be 

impatient as they wait for available gaps for longer period of time. This circumstance may have 

forced trucks to enter the roundabout even when sufficient gaps are not available. Similar truck 

gap-forcing behaviour was observed at all other roundabouts.  

 

The critical headway was estimated using the gap acceptance/rejection data and the methods 

discussed in Section 2.1.3. The results of the graphical method are shown in Appendix E. There 

was an insufficient amount of data points to determine the critical headways for trucks for the 

78&92, Thompson North and Thompson South roundabouts. 

 

However, determining the critical headway using the graphical method is highly subjective since 

the intersection point of the cumulative accepted and rejected gap curves depends on the selected 

time intervals of the gap. For more objective determination of the critical headway, an alternative 

mathematical method was used. In this regard, the critical headway was calculated using the 

probability equilibrium method. The calculation was performed in the Excel spreadsheet 

provided by Dr. Ning Wu – a developer of the method. A sample calculation of the critical 

headway for trucks at the 32&57 roundabout is shown in Appendix F. The maximum likelihood 

method was not used due to the limitations as explained in Section 2.1.3.  

 

The critical headways for all roundabouts are shown in Table 5-2. Generally, the critical 

headways estimated using the graphical and probability equilibrium methods were similar. An 

average of the two critical headways was used as a representative critical headway for each 
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roundabout. As expected, the critical headway for trucks was longer than of the critical headway 

for cars at all the roundabouts.  

 

Table 5-2. Observed Roundabout Critical Headways Summary 

Roundabout 
Graphical 

Probability 

Equilibrium 
Average 

tc,cars (s) tc,trucks (s) tc,cars (s) tc,trucks (s) tc,cars (s) tc,trucks (s) 

Brattleboro 3.8 5.2 3.9 5.3 3.9 5.3 

Waterloo 4.0 6.0 4.2 5.3 4.1 5.7 

32&57 3.2 4.2 3.7 4.7 3.5 4.5 

78&92 5.0 -* 5.4 - 5.2 - 

42&43 3.8 5.0 4.0 6.0 3.9 5.5 

Vanguard 4.1 4.5 4.0 4.6 4.1 4.6 

Bennett 4.4 6.6 5.1 5.6 4.8 6.1 

Moorland North 4.1 4.5 4.5 5.6 4.3 5.1 

Moorland South 4.1 4.5 4.5 4.7 4.3 4.6 

Thompson North 3.9 -* 4.4 - 4.2 - 

Thompson South 4.2 - 4.9 - 4.6 - 
*Due to lack of entering trucks, critical headways could not be estimated. 

 

In addition to the critical headway, the gap acceptance/rejection data were used to find the 

minimum headway for each roundabout. The minimum headway for each roundabout is shown 

in Table 5-3. All minimum headways was relatively short (shorter than 1 sec) because some 

headways were taken for the vehicle following the lead vehicle in the adjacent lane at two-lane 

roundabouts or one-lane roundabouts with larger width of circulatory roadway. 
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Table 5-3. Observed Roundabout Minimum Headways 

Roundabout Minimum headway (s) 

Brattleboro 0.3 

Waterloo 0.9 

32&57 0.3 

78&92 0.5 

42&43 0.5 

Vanguard 0.3 

Bennett 0.4 

Moorland North 0.3 

Moorland South 0.5 

Thompson North 0.5 

Thompson South 0.8 

 

 

5.4 Follow-up Time 

Follow-up times for different vehicle-following conditions are shown in Table 5-4.  Similar to 

the critical headway, there was not enough truck volume to collect the follow-up time for all 

vehicle-following cases at some roundabouts. It was found that the follow-up time was longer for 

the cases where a truck was the lead vehicle and/or the following vehicle. The follow-up time for 

the truck/car case was longer than the follow-up time for the car/truck case since it took longer 

time for the lead truck to enter the roundabout than the lead car. Although a truck could rarely 

follow another truck using the same gap at the entry leg of most roundabouts, it was found that 

the follow-up time for the truck-truck case was the longest due to the lead truck’s slow entry and 

the following truck’s low acceleration. 
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Table 5-4.  Observed Roundabout Follow-up Time 

Roundabout 
Follow-up time 

tf,cc (s) tf,ct (s) tf,tc (s) tf,tt (s) 

Brattleboro 2.1 4.2 5.3 8.5 

Waterloo 2.3 5.0 6.8 7.4 

32&57 2.1 3.3 5.3 - 

78&92 1.6 2.6 - - 

42&43 2.3 2.8 5.5 7.8 

Vanguard 2.2 2.7 5.4 - 

Bennett 2.2 3.5 5.5 5.7 

Moorland North 2.3 3.1 4.5 - 

Moorland South 2.0 3.5 5.2 - 

Thompson North -* - - - 

Thompson South - - - - 
*Due to lack of queued entering trucks, follow-up times could not be estimated. 

 

 

5.5 Geometric Factors 

To evaluate the effect of road geometry on driver gap-acceptance behaviour, critical headways 

and follow-up times were related to 8 geometric factors shown in Table 4-2 using a linear 

regression. Conventionally geometric factors were related to the entry capacity (e.g. Rodegerdts 

et al., 2007), but they have not been related to gap acceptance parameters. The correlation among 

the geometric factors was checked to avoid multicollinearity problem. The correlation analysis 

shows that some factors were highly correlated, as shown in Table 5-5. 
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Table 5-5.  Correlation among Geometric Factors 

  

inscribed 

circle 

diameter 

(m) 

inner 

island 

diameter 

(m) 

truck 

apron 

(m) 

entry 

width 

(m) 

exit 

width 

(m) 

circulatory 

roadway 

width (m) 

splitter 

island 

width 

(m) 

entry 

angle 

(deg) 

inscribed 

circle 

diameter 

(m) 

1               

inner 

island 

diameter 

(m) 

0.763 1             

truck 

apron (m) 
0.349 -0.164 1           

entry 

width (m) 
0.655 0.420 0.305 1         

exit width 

(m) 
0.569 0.283 0.111 0.727 1       

circulatory 

roadway 

width (m) 
0.537 0.294 0.216 0.879 0.865 1     

splitter 

island 

width (m) 
0.573 0.397 0.294 0.162 -0.101 -0.153 1   

entry 

angle 

(deg) 

-0.297 -0.269 -0.136 0.184 0.125 0.212 -0.571 1 

 

Many geometric factors were correlated with the inscribed circle diameter, because the inscribed 

circle diameter represents overall roundabout size. For example, the inscribed circle diameter is 

most highly correlated with the inner island diameter, because the difference between these two 

variables is the width of the circulatory roadway, which is normally constant for a given number 

of circulating lanes. Similarly, the inscribed circle diameter is correlated to the circulatory 

roadway width because larger roundabouts are more likely to have multiple lanes, and have 
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wider circulatory roadways. The same logic can be used to explain why entry width, exit width, 

and splitter island width are correlated with the inscribed circle diameter.  

Entry width, exit width and circulatory roadway width are all correlated with each other because 

all vehicles which enter a roundabout must also be able to exit it in similar geometric conditions 

(i.e. the same number of lanes). Splitter island width and entry angle are negatively correlated, 

because a wider splitter island forces vehicles to enter at a smaller entry angle.  

 

It was found that relationships between the critical headway and all geometric factors were not 

statistically significant at a 95% confidence level. However, relationships between the follow-up 

time and some geometric factors were statistically significant at a 95% confidence level (see 

Appendix G for linear regression results). For instance, the relationship between the follow-up 

time and the central island diameter was significant for the car/car and car/truck cases at a 95% 

confidence level. Figure 5-3 shows that as the central island diameter increases, the follow-up 

time increases. This is potentially because if the roundabout is larger, it takes longer for the 

driver to perceive how to navigate the roundabout (e.g. check which lane he/she should enter) 

(Rodegerdts et al., 2007). Thus, trucks tend to follow cars more slowly at a larger roundabout. 
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Figure 5-2. Relationships between Follow-up Times and Geometric Factors. 
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Given that sample size for these linear regression models was low (8 to 11 data points), some 

relationships that were significant at a 90% confidence level were also examined. As shown in 

Figure 5-3, car’s follow-up time decreases when it follows trucks as the entry angle increases. 

This indicates that when it takes longer for trucks to negotiate sharper curve to enter the 

roundabout, cars tend to follow trucks more closely. Finally, the car/car follow-up time increases 

as the width of splitter island increases. This shows that larger width of the splitter island 

significantly increases the car/car follow-up time. 

 

The regression models with multiple variables were also estimated but not all variables were 

statistically significant a 95% confidence level. Thus, these models were not considered further. 

 

5.6 Capacity Estimation for Existing Conditions 

Capacities of the Brattleboro, Waterloo and 32&57 roundabouts were estimated using the 

adjusted gap-acceptance parameters (Equations 3.1 and 3.2) and the existing macroscopic 

analytical capacity models. The percentage of trucks in each roundabout was calculated based on 

the car and truck counts in all entry legs. The percentages for the Brattleboro, Waterloo and 

32&57 roundabouts were 11%, 19% and 5%, respectively. Since the term tf,tt could not be 

determined for the 32&57 roundabout due to lack of data, it was assumed to be equal to tf,tc.  

 

Capacities were also estimated using the two computerized models, SIDRA and VISSIM. The 

SIDRA model was run using three sets of 5-minute entry flow for each approach (right turn, 

through, and left turn). After running the model, the circulating flows were collected for each 
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approach, and the per-lane capacity for each approach lane was averaged to determine the per-

approach capacity. The approach for northbound US Route 5 was not included since the entry 

flow did not have conflict with the circulating flow.  

 

In order to validate the VISSIM model, the free-flow times in the simulation were compared to 

the observed free-flow times for each approach. In general, average observed and simulated 

travel times for each approach were similar. However, due to low frequency of certain vehicle 

approach, the difference in standard deviation between the observed and simulated data was 

high. In general, standard deviations of travel time were lower in the simulated data than the 

observed data, especially for trucks. This is potentially because drivers choose the speed within a 

specified range of speed in the simulation, and their speeds in a give approach are less likely to 

vary than the actual conditions. Also, in reality, truck drivers are required to make a sharp turn to 

avoid various barriers such as a central island and a splitter island. Thus, some truck drivers are 

more cautious when they enter the roundabout regardless of traffic conditions. This will 

significantly increase their free-flow travel times and the variation in travel time will also 

increase. 
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 Table 5-6. Comparison of Observed and Simulated Free-flow Travel Times 

Approach Observed (s) Simulated (s) 

SE to NE (right turn) 

Cars 

Mean 3.1 3.3 

Standard deviation 0.51 0.51 

Number 14 28 

Trucks 

Mean 4.4 4.5 

Standard deviation 1.24 0.52 

Number 5 11 

NE to SW (through) 

Cars 

Mean 3.9 3.7 

Standard deviation 0.45 0.27 

Number 37 7 

Trucks 

Mean 5.7 5.6 

Standard deviation 0.93 0.67 

Number 9 6 

NE to SE (left turn) 

Cars 

Mean 9.2 8.5 

Standard deviation 0.50 0.30 

Number 6 6 

Trucks 

Mean 12.4 12.1 

Standard deviation 1.86 0.34 

Number 3 4 
 

 

 

The capacities were estimated for different circulating flows using various capacity models and 

compared with the observed capacity as shown in Figure 5-3. It was found that the observed 

capacity was lower for the roundabout with higher truck percentage. This is because vehicles are 

more likely to wait for longer gaps (i.e. longer critical headway) and it takes longer for two 

vehicles to enter the roundabout using the same gap (i.e. longer follow-up time).  

 

It should be noted that the observed capacity was less sensitive to the circulating flow at the 

Brattleboro and Waterloo roundabouts which have relatively higher truck percentages than the 

32&57 roundabout. This reflects that the rate of reduction in the number of the entering vehicles 

with an increase in the circulating flow is lower when there are more trucks. This finding is 
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intuitive in a sense that as available gaps approaches to the minimum acceptable gaps for trucks 

due to higher circulating flow, it becomes more difficult for trucks to enter the roundabout than 

cars. When gaps are shorter than the minimum acceptable gaps for trucks (but longer than the 

minimum acceptable gaps for cars), the number of entering trucks is less likely to be affected by 

an increase in the circulating flow than the number of entering cars.  

 

Most capacity models closely reflected this trend as shown in Figure 5-4. In particular, 

Troutbeck’s model estimated the capacity for the 32&57 roundabout most accurately by 

considering more sensitive change in the capacity to change in the circulating flow when truck 

percentage is lower.  
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Figure 5-3.  Comparison of Estimated Capacities for Three Roundabouts (capacity 

adjusted for trucks). 

 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

0 200 400 600 800 1000 1200 1400 1600 1800 

C
a
p

a
c
it

y
, 

C
e
 (

p
c

u
/h

) 

Circulating flow, qc (pcu/h) 

Brattleboro Roundabout 

Observed 

Tanner 

Troutbeck  

Akçelik 

HCM 2000 

HCM 2010 

SIDRA 

VISSIM 

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600 1800

C
a
p

a
c
it

y
, 

C
e

(p
c
u

/h
)

Circulating flow, qc (pcu/h)

Waterloo Roundabout

Observed

Tanner

Troutbeck 

Akçelik

HCM 2000

HCM 2010

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600 1800

C
a
p

a
c
it

y
, 

C
e

(p
c
u

/h
)

Circulating flow, qc (pcu/h)

32&57 Roundabout

Observed

Tanner

Troutbeck 

Akçelik

HCM 2000

HCM 2010



57 

 

The capacity estimated using SIDRA was slightly higher than the capacities estimated by the 

other models for the Brattleboro roundabout (Figure 5-3 (a)). This is likely because a single-lane 

roundabout with a wider circulating lane width was treated similar to a two-lane roundabout in 

the model. On the other hand, the capacity estimated using VISSIM was generally lower than the 

other models. This is likely because VISSIM reflects that the circulating vehicles slow down to 

avoid potential conflicts and this reduces gaps for the entering vehicles. This variation in speed 

of the circulating flow will ultimately lower the capacity. However, a large fluctuation in the 

capacity estimated by VISSIM for a given circulating flow was similar to the observed data. 

 

To evaluate the effectiveness of the adjusted gap-acceptance parameters, the capacities estimated 

using the adjusted and unadjusted parameters were compared with each other. Since cars are 

dominant in entry flow, if the difference in gap-acceptance behaviour between cars and trucks is 

not considered, the gap-acceptance parameters will be similar to the parameters for cars only. 

The accuracy of each capacity model was evaluated using the root-mean-square errors (RMSE) 

as shown in Figure 5-4. It was found that RMSE were lower for the capacity models with the 

adjusted parameters than the capacity models with the unadjusted parameters. It was also found 

that the percentage reduction in RMSE was greater for the roundabout with higher truck 

percentage. This indicates that gap-acceptance parameters need to be adjusted for trucks to 

estimate capacity for the roundabouts more accurately and the accuracy is more likely to be 

improved for the roundabouts with higher truck percentage. 
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Figure 5-4. Comparison of Estimation Errors for Three Roundabouts. 
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The capacity models derived from the M3 distribution (Troutbeck’s and Akçelik’s models) 

generally provided a good fit to the observed capacities for all three roundabouts. However, the 

accuracy of estimation mainly depends on the proportion of free vehicles () that is described in 

a function of the circulating flow. For instance, Akçelik’s function showed lower error for the 

roundabouts with higher truck percentage and Troutbeck’s function showed lower error for the 

roundabout with lower truck percentage. 

 

 

5.7 Capacity Estimation for Hypothetical Cases of Truck Percentage 

For demonstration purpose, Troutbeck’s model was applied to the Brattleboro, Waterloo and 

32&57 roundabouts to better understand the general trend of capacity affected by truck 

percentage. Troutbeck’s model was chosen due to relatively low RMSE of the estimated capacity 

for these roundabouts. Capacities were estimated with five hypothetical truck percentages (0, 5, 

10, 15 and 20%) and the circulating flow in the range of 0-1,800 pcu/h as shown in Figure 5-5.  

 

It was assumed that critical headways for cars and trucks, and follow-up times for all vehicle-

following cases are not affected by change in truck percentage. Thus, only the adjusted critical 

headways and follow-up times change as truck percentage changes.  

 

The results showed that capacity decreases as truck percentage increases, but the amount of 

capacity reduction is less at higher circulating flow. The results also show that the rate of 

capacity reduction with an increase in circulating flow is lower at higher truck percentage.  

 



60 

 

  

 

 
Figure 5-5. Change in Capacity with Various Truck Percentages. 
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This effect is most noticeable at the Waterloo roundabout which has longer adjusted critical 

headway and follow-up time, as shown in Figure 5-6. This indicates that change in the 

circulating flow is less likely to affect capacity as truck percentage increases when the adjusted 

gap-acceptance parameters are higher. 

 

Figure 5-6. Adjusted Gap-acceptance Parameters with Various Truck Percentages. 
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when truck percentage is low. This is because car and truck gap-acceptance parameters are 

higher for this roundabout.  

 
Figure 5-7. Change in Capacity due to Truck Percentage with Various Circulating 

Volumes. 
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6 CONCLUSIONS AND RECOMMENDATIONS 

As a growing number of roundabouts are built in the areas with high truck volume, a more 

accurate method of estimating the entry capacity is needed. In this regard, this study proposes the 

method of adjusting gap-acceptance parameters for trucks considering truck’s slower speed and 

larger radius required for turning. The study assumes that the ratio of truck-car critical headway 

is not always equal to the ratio of truck-car follow-up time unlike previous studies. Also, the 

follow-up time was assumed to be different for different vehicle-following cases.  

 

To investigate the difference in gap-acceptance behaviour between cars and trucks, the 

movements of vehicles were observed at 11 roundabouts in Vermont, Ontario, and Wisconsin. 

The critical headway and follow-up time were estimated for cars and trucks separately. Capacity 

was estimated using various capacity models with the adjusted gap-acceptance parameters and 

compared with actual capacity observed from the field. The findings of the study are summarized 

as follows: 

1. Critical headways were longer for trucks than cars. Follow-up times were longer in the order 

of a truck following a truck, a car following a truck, a truck following a car and a car 

following a car.  

2. Truck’s free-flow speed was lower than car’s free-flow speed in a circulatory roadway. Thus, 

truck’s entry caused obstruction of the circulating flow and had an effect on the likelihood of 

acceptable gaps for the entering vehicles on adjacent legs. It increases the likelihood of 

acceptable gaps in front of the truck but decreases the likelihood of acceptable gaps behind 

the truck. 
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3. Follow-up times for some truck-involved vehicle-following cases were associated with 

roundabout geometric factors. The follow-up time for a truck following a car increased as the 

central island diameter increased whereas the follow-up time for a car following a truck 

increased as the entry angle decreased.  

4. The rate of reduction in the observed capacity with an increase in the circulating flow was 

lower at the roundabout with higher truck percentage. It was found that even small 

percentages of trucks had an immediate effect on roundabout operation. 

5. The estimation errors of capacity were lower for the capacity models with the adjusted gap-

acceptance parameter than the models with the unadjusted gap-acceptance parameters. This 

indicates the adjusted gap-acceptance parameters improve the accuracy of capacity estimation 

particularly for the roundabouts with high truck volume. 

6. As truck percentage increased, the critical headway and the follow-up time for the roundabout 

increased and this resulted in lower capacities. The amount of reduction in capacity due to an 

increase in truck percentage helps improve the roundabout design in order to compensate for 

the loss of capacity. 

7. Microscopic traffic simulation models such as VISSIM can realistically represent the effect of 

trucks on the circulating flow, such as gap forcing and obstruction. VISSIM can also reflect 

large variation in capacity for a given circulating flow similar to the observed capacity. 

However, the calibration and validation of the model are time-consuming and very complex. 

Instead, the macroscopic analytical models using the adjusted gap acceptance parameter can 

estimate the capacity at a reasonable accuracy with relatively less effort of calibration and 

validation. 
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These findings indicate that the effect of trucks on roundabout capacity cannot be solely reflected 

by converting the number of vehicles to passenger car unit (pcu) as the conventional method 

suggested. Since truck drivers’ gap acceptance behavior is different from car drivers’ behavior, 

their likelihood of entering the roundabout for a given circulating flow must also be different. 

Thus, gap-acceptance parameters used for capacity estimation need to be adjusted to account for 

the difference.  

 

The capacity estimated using the adjusted gap-acceptance parameters can be effectively used for 

the design of roundabouts with high truck volume. The capacity can be estimated more 

accurately for a forecasted travel demand and percentage of trucks. Then the geometric factors 

can be determined such that they can accommodate travel demand. The adjusted gap-acceptance 

parameters can also be used to determine how to modify the existing roundabout design to 

increase the capacity. Since geometric factors affect truck’s gap-acceptance behavior, the design 

can be improved to reduce the entry time for trucks and ultimately increase the capacity. For 

instance, a truck apron can also be included outside of the circulatory roadway to provide more 

room for a truck’s wider turning and increase truck mobility. 

 

Finally, the adjusted gap-acceptance parameters can show the general relationship between the 

capacity and truck percentage using simple mathematical equations unlike microscopic traffic 

simulation. This relationship helps engineers understand the sensitivity of the capacity to truck 

percentage and determine the critical truck percentage that will cause a significant reduction in 

the capacity. To avoid such flow breakdown, the method of controlling truck traffic can be 

considered.  
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In spite of some promising results, there are some limitations in this study. Due to a lack of 

trucks in the entry flow, the gap-acceptance parameters for trucks could not be determined for 

some roundabouts. Also, it was assumed that individual driver’s gap-acceptance behaviour is 

independent from truck percentage change of the entire entry flow and the circulating flow. 

However, if they are correlated, the adjusted gap-acceptance parameters may provide the biased 

result. For instance, if truck percentage is high and the entering vehicles are required to wait 

longer, they are more likely to accept shorter gaps (Polus et al., 2003). Finally, the gap 

acceptance only depends on available gaps in the circulating flow. However, it’s possible that gap 

acceptance is also affected by driver’s sight and aggressiveness, and road surface conditions.    

 

In future studies, more data need to be collected from roundabouts with a wide range of truck 

percentages to better understand general effect of truck percentage on capacity. It is also 

recommended to observe how individual car drivers and truck drivers behave differently at 

roundabouts under various geometric, traffic and weather conditions. For instance, the variation 

in driver’s gap acceptance behaviour by time of day and driver’s cautious behaviour in adverse 

weather conditions needs to be considered.  The effects of other vehicle types (e.g. bus) on the 

capacity also need to be investigated. It is expected that the critical headway and follow-up time 

are different for different vehicle types and the entry capacity is affected by the vehicle 

composition. Finally, in spite of advantages of roundabouts, the construction of roundabouts is 

not always a feasible option to replace the existing intersections (e.g. signalized or stop-

controlled intersections) due to limited space. Thus, it is recommended traffic engineers evaluate 

differential effects of trucks on the capacity among different intersection types.  
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APPENDIX A – GEOMETRIC DRAWINGS 

 

 
Figure A-1. Brattleboro Roundabout Geometry  
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Figure A-2. Waterloo Roundabout Geometry  
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Figure A-3. 32 & 57 Roundabout Geometry  
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Figure A-4. 78 & 92 Roundabout Geometry  
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Figure A-5. 42 & 43 Roundabout Geometry  
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Figure A-6. Vanguard Roundabout Geometry  
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Figure A-7. Bennett Roundabout Geometry  
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Figure A-8. Moorland North Roundabout Geometry  
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Figure A-9. Moorland South Roundabout Geometry  
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Figure A-10. Thompson North Roundabout Geometry  
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Figure A-11. Thompson South Roundabout Geometry  
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APPENDIX B – VIDEO SCREENSHOTS 

 

 
Figure B-1. Brattleboro Roundabout Screenshot 

 

 

 
Figure B-2. Waterloo Roundabout Screenshot  
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Figure B-3. 32 & 57 Roundabout Screenshot 

 

 

 
Figure B-4. 78 & 92 Roundabout Screenshot  
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Figure B-5. 42 & 43 Roundabout Screenshot 

 

 

 
Figure B-6. Vanguard Roundabout Screenshot  
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Figure B-7. Bennett Roundabout Screenshot 

 

 

 
Figure B-8. Moorland North Roundabout Screenshot  
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Figure B-9. Moorland South Roundabout Screenshot 

 

 

 
Figure B-10. Thompson North Roundabout Screenshot  
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Figure B-11. Thompson South Roundabout Screenshot 

  



89 

 

APPENDIX C – GAP ACCEPTANCE DATA (32&57 Roundabout) 

 

Table C-1. Gap Acceptance Data 

Time Instance Start Direction 
Gap Length 

(sec) Accepted/Rejected Additional notes 

And disc 
number 

 0-BL 1-BR 2-TR 3-
TL Cars Trucks 0=reject 1=accept 

Queue/Flow/Driver 
Characteristics 

01-0100-08-48       
 

  

0m7s 0 8.8   1   

0m39s 0 4.2   0   

  0 7.5   1   

0m49s 0 3.4   1   

1m27s 0 2.3   0   

  0 1.1   0   

  0 0.8   0   

  0 2.2   0   

  0 4.2   0   

  0 5.5   1   

1m30s 0 5.5   1   

1m44s 0 11.1   1   

2m22s 0 0.9   0   

2m22s 0 0.9   0   

  0 7   1   

  0 7   1   

2m37s 0 4.7   1   

2m42s 0 1.6   0   

  0 2.4   0   

  0 2.9   0   

  0 2.7   0   

  0 1.6   0   

  0 23   1   

3m20s 0 4.3   1   

3m25s 0 17   1   

3m42s 0 2.9   0   

  0 1.6   0   

  0 5.8   1   

4m15s 0 9.5   1   

4m38s 0 0.8   0   

  0 1.6   0   

  0 2.3   1   

4m43s 0 2.5   0   

  0 4.6   1   

4m46s 0   4.4 0   
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Table C-1. Gap Acceptance Data (continued) 

Time Instance Start Direction 
Gap Length 

(sec) Accepted/Rejected Additional notes 

And disc 
number 

 0-BL 1-BR 2-TR 3-
TL Cars Trucks 0 reject 1 accept 

Queue/Flow/Driver 
Characteristics 

  0   0.6 0   

  0   14.8 1   

5m8s 0 7   0   

  0 7.5   1   

5m20s 0 3   0   

5m20s 0 3   1   

5m25s 0 3   1   

  0 1   0   

  0 2   0   

  0 1.2   0   

  0 0.8   0   

  0 0.7   0   

  0 1   0   

  0 2.4   0   

  0 0.3   0   

  0 2   0   

  0 0.9   0   

  0 2.3   0   

  0 3.5   0   

  0 1.2   0   

  0 1   0   

  0 3.2   0   

  0 6.9   1   

6m3s 0 5.8   1   

6m3s 0 5.8   1   

6m9s 0 5.8   1   

6m15s 0 4.3   0   

  0 1.1   0   

  0 3.6   1   

6m20s 0   0.8 0   

  0   3.6 0   

  0   9.9 1 Gap forcing 

6m40s 0 7.1   1   

6m50s 0 1.8   0   

  0 0.9   0   

  0 1.2   0   

  0 2.4   0   

  0 0.7   0   
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Table C-1. Gap Acceptance (continued) 

Time Instance Start Direction 
Gap Length 

(sec) Accepted/Rejected Additional notes 

And disc 
number 

 0-BL 1-BR 2-TR 3-
TL Cars Trucks 0 reject 1 accept 

Queue/Flow/Driver 
Characteristics 

  0 2.6   0   

  0 4.8   1   

7m 0 1.9   0   

  0 4.5   1   

7m7s 0 0.9   0   

7m7s 0 0.9   0   

  0 1.3   0   

  0 1.3   0   

  0 1   0   

  0 1   0   

  0 1.6   0   

  0 1.6   0   

  0 11   1   

  0 11   1   

7m47s 0 1.2   0   

  0 6.8   1   

8m19s 0 3.5   1   

8m24s 0 1.7   0   

8m24s 0 1.7   0   

  0 6.3   1   

  0 6.3   1   

8m32s 0 10.8   1   

8m32s 0 6.2   0   

  0 6.5   1   

8m58s 0 3.4   0   

8m58s 0 3.4   0   

  0 4.1   1   

  0 4.1   1   

9m33s 0 1.7   0   

  0 3.9   0   

  0 3   1   

9m41s 0 4.2   0   

9m41s 0 4.2   0   

  0 4.2   1   

  0 4.2   0   

  0 3.9   0   

  0 1.8   0   

  0 2.6   1   
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Table C-1. Gap Acceptance Data (continued) 

Time Instance Start Direction 
Gap Length 

(sec) Accepted/Rejected Additional notes 

And disc 
number 

 0-BL 1-BR 2-TR 3-
TL Cars Trucks 0 reject 1 accept 

Queue/Flow/Driver 
Characteristics 

9m47s 0 7.2   1   

9m55s 0 1.6   0   

  0 3.1   0   

  0 2.8   1   

0m38s 3 36.6   1   

1m15s 3   30 1   

1m15s 3 30   1   

2m5s 3 3.7   0   

  3 15.3   1   

2m12s 3 12   1   

2m25s 3 5.2   1   

2m25s 3 5.2   1   

2m31s 3 29   1   

2m31s 3 29   1   

4m31s 3 12   1   

4m31s 3 12   1   

4m45s 3 71   1   

5m56s 3   6.5 1   

5m56s 3 6.5   1   

6m3s 3 3.9   1   

6m3s 3 3.9   0   

  3 22.2   1   

6m8s 3 22.2   1   

6m40s 3 33   1   

6m40s 3 33   1   

7m16s 3 3   0   

7m16s 3 3   0   

  3 24   1   

  3 24   1   

7m51s 3 3.3   1   

7m55s 3 4.3   1   

8m 3 12.2   1   

8m12s 3 6.9   1   

8m12s 3 6.9   1   

8m19s 3 26   1   

8m19s 3 26   1   

1m 2 28   1   

1m27s 2 1.3   0   
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Table C-1. Gap Acceptance Data (continued) 

Time Instance Start Direction 
Gap Length 

(sec) Accepted/Rejected Additional notes 

And disc 
number 

 0-BL 1-BR 2-TR 3-
TL Cars Trucks 0 reject 1 accept 

Queue/Flow/Driver 
Characteristics 

  2 1.3   0   

  2 2.5   0   

  2 0.3   0   

  2 1.7   0   

  2 8.9   1   

1m34s 2 0.3   0   

  2 1.7   0   

  2 8.9   1   

1m50s 2 4   1   

1m54s 2 3.1   0   

  2 34   1   

2m43s 2 1.3   0   

  2 2   0   

  2 7   1 Rolling entrance 

3m7s 2 2.3   0   

  2 1   0   

  2 0.9   0   

  2 1.6   0   

  2 1.5   0   

  2 9.1   1   

4m5s 2   1.6 0   

  2   2.6 0   

  2   1.1 0   

  2   3.9 0   

  2   0.6 0   

  2   3.7 0   

  2   4.3 0   

  2   8 1   

4m32s 2 3.7   0   

  2 8.6   1   

4m45s 2 7.7   1   

4m53s 2 2.3   0   

  2 4.2   0   

  2 3.4   1   

5m2s 2 2.9   0   

  2 1.4   0   

  2 1   0   

  2 8.2   1   
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Table C-1. Gap Acceptance Data (continued) 

Time Instance Start Direction 
Gap Length 

(sec) Accepted/Rejected Additional notes 

And disc 
number 

 0-BL 1-BR 2-TR 3-
TL Cars Trucks 0 reject 1 accept 

Queue/Flow/Driver 
Characteristics 

5m22s 2 11.9   1   

5m35s 2 17.3   1   

5m52s 2 0.7   0   

  2 1.9   0   

  2 10.2   1   

6m45s 2 3.4   0   

  2 1.1   0   

  2 3.5   1   

6m58s 2   3.2 0   

  2   4.2 0   

  2   12.3 1   

6m58s 2 3.2   0   

  2 4.2   0   

  2 12.3   1   

7m18s 2 3.5   0   

  2 1.9   0   

  2 1.5   0   

  2 2.4   0   

  2 1   0   

  2 1   0   

  2 1.4   0   

  2 0.4   0   

  2 1.4   0   

  2 0.6   0   

  2 1.2   0   

  2 0.3   0   

  2 2   0   

  2 1   0   

  2 4.9   1   

7m23s 2 1.5   0   

  2 2.4   0   

  2 1   0   

  2 1   0   

  2 1.4   0   

  2 0.4   0   

  2 1.4   0   

  2 0.6   0   

  2 1.2   0   
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Table C-1. Gap Acceptance Data (continued) 

Time Instance Start Direction 
Gap Length 

(sec) Accepted/Rejected Additional notes 

And disc 
number 

 0-BL 1-BR 2-TR 3-
TL Cars Trucks 0 reject 1 accept 

Queue/Flow/Driver 
Characteristics 

  2 0.3   0   

  2 2   0   

  2 1   0   

  2 4.9   1   

7m57s 2 1.9   0   

  2 2.4   0   

  2 1.5   0   

  2 1.6   0   

  2 4   1   

8m10s 2 2   0   

  2 3.7   1   

8m31s 2 4.4   0   

  2 1.8   0   

  2 3.7   1   

8m49s 2 1.6   0   

  2 2.4   0   

  2 8.8   1   

8m54s 2 8.8   1   

9m31s 2 2.3   0   

  2 12.6   1   

10m37s 1 1.8   0   

  1 3.9   1   

17m18s 2   2.3 0   

  2   1.9 0   

  2   4 0   

  2   3.1 0   

  2   1.6 0   

  2   6.2 1 Gap forcing 

17m42s 2   12 1   

25m14s 0   3.8 0   

  0   9 1   

27m06s 0   5.3 0   

  0   9.7 1   

30m46s 0   0.7 0   

  0   3.3 0   

  0   2.5 0   

  0   2 0   

  0   1.8 0   
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Table C-1. Gap Acceptance Data (continued) 

Time Instance Start Direction 
Gap Length 

(sec) Accepted/Rejected Additional notes 

And disc 
number 

 0-BL 1-BR 2-TR 3-
TL Cars Trucks 0 reject 1 accept 

Queue/Flow/Driver 
Characteristics 

  0   6.6 1 Gap forcing 

31m3s 2   1.5 0   

  2   2 0   

  2   1.4 0   

  2   1.6 0   

  2   5.1 0   

  2   11.2 1   

36m02s 3   36 1   

43m33s 3   2.4 0   

  3   1.2 0   

  3   54 1   

54m45s 2   1.3 0   

  2   1.7 0   

  2   1.4 0   

  2   1 0   

  2   4 0   

  2   4.1 0   

  2   6.2 1   

56m17s 0   4.1 0   

  0   7.1 1 Gap forcing 

01-01-01-08-52       
 

  

5m45s 3   4.8 0   

  3   23 1   

11m6s 0   10.2 1   

11m13s 1   1.6 0   

  1   2.5 0   

  1   2.1 0   

  1   2.1 0   

  1   2 0   

  1   1.8 0   

  1   1.4 0   

  1   1.6 0   

  1   1 0   

  1   4.4 1   

16m14s 2   4.3 0   

  2   3.9 0   

  2   3.3 0   

  2   3.7 0   
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Table C-1. Gap Acceptance Data (continued) 

Time Instance Start Direction 
Gap Length 

(sec) Accepted/Rejected Additional notes 

And disc 
number 

 0-BL 1-BR 2-TR 3-
TL Cars Trucks 0 reject 1 accept 

Queue/Flow/Driver 
Characteristics 

  2   3.9 0   

  2   2.5 0   

  2   0.7 0   

  2   1.4 0   

  2   3.1 0   

  2   12.6 1 Gap forced 

16m48s 1   1.8 0   

  1   1.4 0   

  1   1.5 0   

  1   0.8 0   

  1   2.2 0   

  1   0.7 0   

  1   5.8 1   

17m10s 0   2.9 0   

  0   0.4 0   

  0   0.9 0   

  0   4 0   

  0   8.2 1 
Gap forced; multiple 
exiting vehicles 

18m9s 2   0.8 0   

  2   3.9 0   

  2   4.2 0   

  2   7.7 1   

22m18s 0   13.8 1   

26m26s 3   4.1 0   

  3   35 1   

Exit Conditions 
   

Minimum Headway 

Δcars Δtrucks 
   

0.3 

2.3 3 
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APPENDIX D – ROUNDABOUT HEADWAY DISTRIBUTIONS 

 

 
Figure D-1. Headway Distribution for Brattleboro Roundabout 

 
Figure D-2. Headway Distribution for Waterloo Roundabout 
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Figure D-3. Headway Distribution for 32&57 Roundabout 

 

 
Figure D-4. Headway Distribution for 78 & 92 Roundabout 
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Figure D-5. Headway Distribution for 42 & 43 Roundabout 

 
Figure D-6. Headway Distribution for Vanguard Roundabout 
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Figure D-7. Headway Distribution for Bennett Roundabout 

 
Figure D-8. Headway Distribution for Moorland North Roundabout 
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Figure D-9. Headway Distribution for Moorland South Roundabout

 
Figure D-10. Headway Distribution for Thompson North Roundabout 
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Figure D-11. Headway Distribution for Thompson South Roundabout 
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APPENDIX E  – CRITICAL HEADWAY GRAPHICAL METHOD 

 

 

 
Figure E-1. Critical Headways for Brattleboro Roundabout 

 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 2 4 6 8 10 12 

C
u

m
u

la
ti

ve
 P

e
rc

e
n

t 

Length of Gap (sec) 

Critical Headway - Cars 

Accepted Gaps 

Rejected Gaps 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 2 4 6 8 10 12 

C
u

m
u

la
ti

ve
 P

e
rc

e
n

t 

Length of Gap (sec) 

Critical Headway - Trucks 

Accepted Gaps 

Rejected Gaps 



105 

 

 

 
Figure E-2. Critical Headways for Waterloo Roundabout 

 

 

 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 2 4 6 8 10 12 

C
u

m
u

la
ti

ve
 P

e
rc

e
n

t 

Length of Gap (sec) 

Critical Headway - Cars 

Accepted Gaps 

Rejected Gaps 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 2 4 6 8 10 12 

C
u

m
u

la
ti

ve
 P

e
rc

e
n

t 

Length of Gap (sec) 

Critical Headway - Trucks 

Accepted Gaps 

Rejected Gaps 



106 

 

 

 
Figure E-3. Critical Headways for 32 & 57 Roundabout 
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Figure E-4. Critical Headway (Cars) for 78 & 92 Roundabout 
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Figure E-5. Critical Headways for 42 & 43 Roundabout 
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Figure E-6. Critical Headways for Vanguard Roundabout 
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Figure E-7. Critical Headways for Bennett Roundabout 
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Figure E-8. Critical Headways for Moorland North Roundabout 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 2 4 6 8 10 

C
u

m
u

la
ti

ve
 P

e
rc

e
n

ta
ge

 

Length of Gap (sec) 

Critical Headway - Cars 

Accepted Gaps 

Rejected Gaps 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 2 4 6 8 10 12 14 16 

C
u

m
u

la
ti

ve
 P

e
rc

e
n

ta
ge

 

Length of Gap (sec) 

Critical Headway - Trucks 

Accepted Gaps 

Rejected Gaps 



112 

 

 

 
Figure E-9. Critical Headways for Moorland South Roundabout 
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Figure E-10. Critical Headway (Cars) for Thompson North Roundabout 

 

 
Figure E-11. Critical Headway (Cars) for Thompson South Roundabout 
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APPENDIX F –PROBABILITY EQUILIBRIUM METHOD (32&57 Roundabout) 

 

Table F-1. Probability Equilibrium Method Information and Procedure 
Kombination von Nebenstrom und 
bevorrechtigten Strömen:   

 
Bad Nauheim 

(Nichtl
eere) 

 Knoten1 
  16/07/1997 
  15.00 
 

angen. Lücken 

18.00 
  betrachtete NS-Datei: 3rechts.d, Korrekturwert: 0 sec 

HS-Datei 1: Gerade2.d, Korrekturwert: 0,4 sec 

Die Spalten bedeuten der Reihe nach: 

Lücke (in Zehntelsek.) 
 

   procedure: 1 take the accepted gaps and mark them with "a" 

 
2 

take the (maximal) rejected gaps and mark them with 
"r" 

 
3 

put all r- and a-gaps into the same colume alone withe 
their marks in the second colume 

ohne lap 4 sort the gaps accently 

 
5 accumulating if(mark="r";nrj=nrj+1;nrj), nr0=0 

 
6 accumulating if(mark="a";naj=naj+1;naj), na0=0 

 
7 build F(r)=nrj/nrmax 

 
8 build F(a)=naj/namax 

 
9 calculating F(tg)=F(a)/(F(a)+1-F(r)) 

 
10 calculaton p(tg)=F(tg),j-F(tg),j-1 with dt=tj-tj-1 

 
11 tg,averge=sum(p(tg)*(t-dt/2)) 

   advantage: 
 

no assuption of distribution of for tc is required 

  
no consistent or homogen behavior is requird 

  
straightforeward calculation (no iteration is required) 

  
taking account all rejected gaps possible 

  
easier in datahandling 

 

 

 

Table F-2. Probability Equilibrium Method using Truck Gap Acceptance Data from 32&57 

      var 7.17   var 0.34   var 10.23   var 1.31 

    97 t(all) 5.26   tg(int) 4.71 25 t(a) 13.43 72 t(r) 2.42 

                            

 t   all all all macro macro macro a a a r r r 

x10 
 

N(all) F(all) f(all) Ftc Ftc ptc N(a) Fa Fa Fr Fr Fr 

                            

4 r 1 0.010 0.010 1 0 0 0 0 0 1 0.014 0.014 

6 r 2 0.021 0.010 1 0 0 0 0 0 2 0.028 0.014 

6 r 3 0.031 0.010 1 0 0 0 0 0 3 0.042 0.014 

7 r 4 0.041 0.010 1 0 0 0 0 0 4 0.056 0.014 

7 r 5 0.052 0.010 1 0 0 0 0 0 5 0.069 0.014 
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Table F-2. Probability Equilibrium Method using Truck Gap Acceptance Data from 32&57 

(continued) 

 t   all all all macro macro macro a a a r r r 

x10 
 

N(all) F(all) f(all) Ftc Ftc ptc N(a) Fa Fa Fr Fr Fr 

                            

7 r 6 0.062 0.010 1 0 0 0 0 0 6 0.083 0.014 

8 r 7 0.072 0.010 1 0 0 0 0 0 7 0.097 0.014 

8 r 8 0.082 0.010 1 0 0 0 0 0 8 0.111 0.014 

8 r 9 0.093 0.010 1 0 0 0 0 0 9 0.125 0.014 

9 r 10 0.103 0.010 1 0 0 0 0 0 10 0.139 0.014 

10 r 11 0.113 0.010 1 0 0 0 0 0 11 0.153 0.014 

10 r 12 0.124 0.010 1 0 0 0 0 0 12 0.167 0.014 

11 r 13 0.134 0.010 1 0 0 0 0 0 13 0.181 0.014 

12 r 14 0.144 0.010 1 0 0 0 0 0 14 0.194 0.014 

13 r 15 0.155 0.010 1 0 0 0 0 0 15 0.208 0.014 

14 r 16 0.165 0.010 1 0 0 0 0 0 16 0.222 0.014 

14 r 17 0.175 0.010 1 0 0 0 0 0 17 0.236 0.014 

14 r 18 0.186 0.010 1 0 0 0 0 0 18 0.250 0.014 

14 r 19 0.196 0.010 1 0 0 0 0 0 19 0.264 0.014 

14 r 20 0.206 0.010 1 0 0 0 0 0 20 0.278 0.014 

15 r 21 0.216 0.010 1 0 0 0 0 0 21 0.292 0.014 

15 r 22 0.227 0.010 1 0 0 0 0 0 22 0.306 0.014 

16 r 23 0.237 0.010 1 0 0 0 0 0 23 0.319 0.014 

16 r 24 0.247 0.010 1 0 0 0 0 0 24 0.333 0.014 

16 r 25 0.258 0.010 1 0 0 0 0 0 25 0.347 0.014 

16 r 26 0.268 0.010 1 0 0 0 0 0 26 0.361 0.014 

16 r 27 0.278 0.010 1 0 0 0 0 0 27 0.375 0.014 

17 r 28 0.289 0.010 1 0 0 0 0 0 28 0.389 0.014 

18 r 29 0.299 0.010 1 0 0 0 0 0 29 0.403 0.014 

18 r 30 0.309 0.010 1 0 0 0 0 0 30 0.417 0.014 

18 r 31 0.320 0.010 1 0 0 0 0 0 31 0.431 0.014 

19 r 32 0.330 0.010 1 0 0 0 0 0 32 0.444 0.014 

20 r 33 0.340 0.010 1 0 0 0 0 0 33 0.458 0.014 

20 r 34 0.351 0.010 1 0 0 0 0 0 34 0.472 0.014 

20 r 35 0.361 0.010 1 0 0 0 0 0 35 0.486 0.014 

21 r 36 0.371 0.010 1 0 0 0 0 0 36 0.500 0.014 

21 r 37 0.381 0.010 1 0 0 0 0 0 37 0.514 0.014 

22 r 38 0.392 0.010 1 0 0 0 0 0 38 0.528 0.014 

23 r 39 0.402 0.010 1 0 0 0 0 0 39 0.542 0.014 

24 r 40 0.412 0.010 1 0 0 0 0 0 40 0.556 0.014 

25 r 41 0.423 0.010 1 0 0 0 0 0 41 0.569 0.014 

25 r 42 0.433 0.010 1 0 0 0 0 0 42 0.583 0.014 

25 r 43 0.443 0.010 1 0 0 0 0 0 43 0.597 0.014 

26 r 44 0.454 0.010 1 0 0 0 0 0 44 0.611 0.014 

29 r 45 0.464 0.010 1 0 0 0 0 0 45 0.625 0.014 

31 r 46 0.474 0.010 1 0 0 0 0 0 46 0.639 0.014 

31 r 47 0.485 0.010 1 0 0 0 0 0 47 0.653 0.014 

32 r 48 0.495 0.010 1 0 0 0 0 0 48 0.667 0.014 

33 r 49 0.505 0.010 1 0 0 0 0 0 49 0.681 0.014 

33 r 50 0.515 0.010 1 0 0 0 0 0 50 0.694 0.014 
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Table F-2. Probability Equilibrium Method using Truck Gap Acceptance Data from 32&57 

(continued) 

 t   all all all macro macro macro a a a r r r 

x10 
 

N(all) F(all) f(all) Ftc Ftc ptc N(a) Fa Fa Fr Fr Fr 

                            

36 r 51 0.526 0.010 1 0 0 0 0 0 51 0.708 0.014 

37 r 52 0.536 0.010 1 0 0 0 0 0 52 0.722 0.014 

37 r 53 0.546 0.010 1 0 0 0 0 0 53 0.736 0.014 

38 r 54 0.557 0.010 1 0 0 0 0 0 54 0.750 0.014 

39 r 55 0.567 0.010 1 0 0 0 0 0 55 0.764 0.014 

39 r 56 0.577 0.010 1 0 0 0 0 0 56 0.778 0.014 

39 r 57 0.588 0.010 1 0 0 0 0 0 57 0.792 0.014 

39 r 58 0.598 0.010 1 0 0 0 0 0 58 0.806 0.014 

40 r 59 0.608 0.010 1 0 0 0 0 0 59 0.819 0.014 

40 r 60 0.619 0.010 1 0 0 0 0 0 60 0.833 0.014 

40 r 61 0.629 0.010 1 0 0 0 0 0 61 0.847 0.014 

41 r 62 0.639 0.010 1 0 0 0 0 0 62 0.861 0.014 

41 r 63 0.649 0.010 1 0 0 0 0 0 63 0.875 0.014 

41 r 64 0.660 0.010 1 0 0 0 0 0 64 0.889 0.014 

42 r 65 0.670 0.010 1 0 0 0 0 0 65 0.903 0.014 

42 r 66 0.680 0.010 1 0 0 0 0 0 66 0.917 0.014 

43 r 67 0.691 0.010 1 0 0 0 0 0 67 0.931 0.014 

43 r 68 0.701 0.010 1 0 0 0 0 0 68 0.944 0.014 

44 r 69 0.711 0.010 1 0 0 0 0 0 69 0.958 0.014 

44 a 70 0.722 0.010 0.510 0.490 0.490 1 0.04 0.04 69 0.958 0.000 

48 r 71 0.732 0.010 0.410 0.590 0.100 1 0.04 0.00 70 0.972 0.014 

51 r 72 0.742 0.010 0.258 0.742 0.152 1 0.04 0.00 71 0.986 0.014 

53 r 73 0.753 0.010 0 1 0.258 1 0.04 0.00 72 1.000 0.014 

58 a 74 0.763 0.010 0 1 0 2 0.08 0.04 72 1 0 

62 a 75 0.773 0.010 0 1 0 3 0.12 0.04 72 1 0 

62 a 76 0.784 0.010 0 1 0 4 0.16 0.04 72 1 0 

65 a 77 0.794 0.010 0 1 0 5 0.20 0.04 72 1 0 

66 a 78 0.804 0.010 0 1 0 6 0.24 0.04 72 1 0 

71 a 79 0.814 0.010 0 1 0 7 0.28 0.04 72 1 0 

77 a 80 0.825 0.010 0 1 0 8 0.32 0.04 72 1 0 

80 a 81 0.835 0.010 0 1 0 9 0.36 0.04 72 1 0 

82 a 82 0.845 0.010 0 1 0 10 0.40 0.04 72 1 0 

90 a 83 0.856 0.010 0 1 0 11 0.44 0.04 72 1 0 

97 a 84 0.866 0.010 0 1 0 12 0.48 0.04 72 1 0 

99 a 85 0.876 0.010 0 1 0 13 0.52 0.04 72 1 0 

102 a 86 0.887 0.010 0 1 0 14 0.56 0.04 72 1 0 

112 a 87 0.897 0.010 0 1 0 15 0.60 0.04 72 1 0 

120 a 88 0.907 0.010 0 1 0 16 0.64 0.04 72 1 0 

123 a 89 0.918 0.010 0 1 0 17 0.68 0.04 72 1 0 

126 a 90 0.928 0.010 0 1 0 18 0.72 0.04 72 1 0 

138 a 91 0.938 0.010 0 1 0 19 0.76 0.04 72 1 0 

148 a 92 0.948 0.010 0 1 0 20 0.80 0.04 72 1 0 

230 a 93 0.959 0.010 0 1 0 21 0.84 0.04 72 1 0 

300 a 94 0.969 0.010 0 1 0 22 0.88 0.04 72 1 0 

350 a 95 0.979 0.010 0 1 0 23 0.92 0.04 72 1 0 
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Table F-2. Probability Equilibrium Method using Truck Gap Acceptance Data from 32&57 

(continued) 

 t   all all all macro macro macro a a a r r r 

x10 
 

N(all) F(all) f(all) Ftc Ftc ptc N(a) Fa Fa Fr Fr Fr 

                            

360 a 96 0.990 0.010 0 1 0 24 0.96 0.04 72 1 0 

540 a 97 1.000 0.010 0 1 0 25 1.00 0.04 72 1 0 

 

      

tg(Ralf,Hart)=t(F(int)=0,5)=median 

       r 

class mean ptc*tdj 1-F(r) 

tdj     

0 0 0.986 

5 0 0.972 

6 0 0.958 

6.5 0 0.944 

7 0 0.931 

7 0 0.917 

7.5 0 0.903 

8 0 0.889 

8 0 0.875 

8.5 0 0.861 

9.5 0 0.847 

10 0 0.833 

10.5 0 0.819 

11.5 0 0.806 

12.5 0 0.792 

13.5 0 0.778 

14 0 0.764 

14 0 0.750 

14 0 0.736 

14 0 0.722 

14.5 0 0.708 

15 0 0.694 

15.5 0 0.681 

16 0 0.667 

16 0 0.653 

16 0 0.639 

16 0 0.625 

16.5 0 0.611 

17.5 0 0.597 

18 0 0.583 

18 0 0.569 

18.5 0 0.556 

19.5 0 0.542 

20 0 0.528 

20 0 0.514 
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Table F-2. Probability Equilibrium Method using Truck Gap Acceptance Data from 32&57 

(continued) 

    r 

class mean ptc*tdj 1-F(r) 

tdj     

20.5 0 0.500 

21 0 0.486 

21.5 0 0.472 

22.5 0 0.458 

23.5 0 0.444 

24.5 0 0.431 

25 0 0.417 

25 0 0.403 

25.5 0 0.389 

27.5 0 0.375 

30 0 0.361 

31 0 0.347 

31.5 0 0.333 

32.5 0 0.319 

33 0 0.306 

34.5 0 0.292 

36.5 0 0.278 

37 0 0.264 

37.5 0 0.250 

38.5 0 0.236 

39 0 0.222 

39 0 0.208 

39 0 0.194 

39.5 0 0.181 

40 0 0.167 

40 0 0.153 

40.5 0 0.139 

41 0 0.125 

41 0 0.111 

41.5 0 0.097 

42 0 0.083 

42.5 0 0.069 

43 0 0.056 

43.5 0 0.042 

44 21.55 0.042 

46 4.62 0.028 

49.5 7.53 0.014 

52 13.40 0 

55.5 0 0 

60 0 0 

62 0 0 

63.5 0 0 

65.5 0 0 

68.5 0 0 

74 0 0 
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Table F-2. Probability Equilibrium Method using Truck Gap Acceptance Data from 32&57 

(continued) 

    r 

class mean ptc*tdj 1-F(r) 

tdj     

78.5 0 0 

81 0 0 

86 0 0 

93.5 0 0 

98 0 0 

100.5 0 0 

107 0 0 

116 0 0 

121.5 0 0 

124.5 0 0 

132 0 0 

143 0 0 

189 0 0 

265 0 0 

325 0 0 

355 0 0 

450 0 0 

SUM 4.7 
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APPENDIX G  – LINEAR REGRESSION STATISTICS 

 

 

Table G-1. Follow-up Time (Car/Car) and Inner Island Diameter Regression 

 

SUMMARY OUTPUT 
    

      Regression Statistics 
    Multiple R 0.786 
    R Square 0.618 
    Adjusted R Square 0.564 
    Standard Error 0.150 
    Observations 9 
    

      ANOVA 
       df SS MS F Significance F 

Regression 1 0.255 0.255 11.347 0.012 

Residual 7 0.157 0.022 
  Total 8 0.413       

        Coefficients Standard Error t Stat P-value Lower 95% 

Intercept 1.518 0.186 8.174 7.94E-05 1.079 

inner island diameter (m) 0.023 0.007 3.368 0.012 0.007 

 

 

 

 

Upper 95% Lower 95.0% Upper 95.0% 

1.957 1.079 1.957 

0.039 0.007 0.039 
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Table G-2. Follow-up Time (Car/Car) and Splitter Island Width Regression 

 

SUMMARY OUTPUT 
    

      Regression Statistics 
    Multiple R 0.631 
    R Square 0.398 
    Adjusted R Square 0.313 
    Standard Error 0.188 
    Observations 9 
    

      ANOVA 
       df SS MS F Significance F 

Regression 1 0.164 0.164 4.637 0.068 

Residual 7 0.248 0.035 
  Total 8 0.413       

        Coefficients Standard Error t Stat P-value Lower 95% 

Intercept 1.680 0.214 7.853 0.000 1.174 

splitter island width (m) 0.047 0.022 2.153 0.068 -0.005 

 

 

 

 

Upper 95% Lower 95.0% Upper 95.0% 

2.185 1.174 2.185 

0.100 -0.005 0.100 
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Table G-3. Follow-up Time (Car/Truck) and Inner Island Diameter Regression 

 

SUMMARY OUTPUT 
    

      Regression Statistics 
    Multiple R 0.783 
    R Square 0.613 
    Adjusted R Square 0.558 
    Standard Error 0.515 
    Observations 9 
    

      ANOVA 
       df SS MS F Significance F 

Regression 1 2.934 2.934 11.081 0.013 

Residual 7 1.853 0.265 
  Total 8 4.787       

        Coefficients Standard Error t Stat P-value Lower 95% 

Intercept 1.361 0.637 2.136 0.070 -0.146 

inner island diameter (m) 0.077 0.023 3.329 0.013 0.022 

 

 

 

 

Upper 95% Lower 95.0% Upper 95.0% 

2.867 -0.146 2.867 

0.133 0.022 0.133 

 

 



123 

 

Table G-4. Follow-up Time (Truck/Car) and Entry Angle Regression 

 
    SUMMARY OUTPUT 

    

      Regression Statistics 
    Multiple R 0.634 
    R Square 0.402 
    Adjusted R Square 0.303 
    Standard Error 0.523 
    Observations 8 
    

      ANOVA 
       df SS MS F Significance F 

Regression 1 1.106 1.106 4.040 0.091 

Residual 6 1.642 0.274 
  Total 7 2.748       

        Coefficients Standard Error t Stat P-value Lower 95% 

Intercept 7.806 1.191 6.552 0.001 4.891 

entry angle (deg) -0.0979 0.049 -2.010 0.091 -0.217 

 

 

 

 

Upper 95% Lower 95.0% Upper 95.0% 

10.721 4.891 10.721 

0.0212 -0.217 0.021 
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