
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2013

Improving Retrieval of Information from the
Internet
Ruoxuan Zhao

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Zhao, Ruoxuan, "Improving Retrieval of Information from the Internet" (2013). Electronic Theses and Dissertations. Paper 4766.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/72778263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F4766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/4766?utm_source=scholar.uwindsor.ca%2Fetd%2F4766&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Improving Retrieval of Information from the Internet

By

Ruoxuan Zhao

A Thesis

Submitted to the Faculty of Graduate Studies

through Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Computer Science

 at the University of Windsor

Windsor, Ontario, Canada

2012

© 2012 Ruoxuan Zhao

Improving Retrieval of Information from the Internet

by

Ruoxuan Zhao

APPROVED BY:

__

Dr. Jianguo Lu, Department of Computer Science

__

Dr. Rupp Carriveau, Department of Civil and Environmental Engineering

__

Dr. Joan Morrissey, Advisor

__

Dr. Alioune Ngom, Chair of Defense

18/01/2013

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any

other material from the work of other people included in my thesis, published or otherwise, are

fully acknowledged in accordance with the standard referencing practices. Furthermore, to the

extent that I have included copyrighted material that surpasses the bounds of fair dealing within

the meaning of the Canada Copyright Act, I certify that I have obtained a written permission from

the copyright owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by

my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

iv

ABSTRACT

To improve the quality of the search result returned by the internet which makes users

have to look through a huge amount of links for the real answers, we utilized the high

quality links Google produces and the Information Retrieval technology to implement a

Question Answering (QA) system. This system analyzes and downloads the text contents

from the relevant web pages Google searches based on the users’ questions to build a

dynamic knowledge collection; retrieves the relevant passages from the collection and

sends the ranked passages back. The users can further refine their questions in the query

refinement step for the better answers. A novel search strategy was designed to detect the

semantic connections between the question and the documents. This answer retrieval also

involves the TF-IDF algorithm and Vector Space Model for the document indexing. We

have modified the original Cosine Coefficient Similarity Measurement to rank the

candidate answers.

v

DEDICATION

To my parents who always fully support my decisions and taught me how to be an

optimistic, responsible and kind person.

vi

ACKNOWLEDGEMENTS

Great thanks to my supervisor Dr. Joan Morrissey. Thanks for your support, suggestions

and most of all, the encouragements you have offered me for the past two years.

Thanks to my thesis internal and external readers: Dr. Jianguo Lu and Dr. Rupp Carriveau.

Much appreciate your suggestions and recommendations about my research.

Thanks to people who kindly helped me during my study. Your kindnesses will never be

forgotten by me.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ABSTRACT ... iv

DEDICATION ...v

ACKNOWLEDGEMENTS ... vi

LIST OF APPENDICES .. ix

CHAPTER 1 A Survey on Question Answering System ..1

Introduction ... 1

Section A. Methodologies and Technologies Implemented in QA Systems 2

1. Question Analysis ... 3

2. Answer Matching ... 18

3. Answer Validation .. 30

Section B Presentations of QA Systems ... 32

1. Biology QA System ... 32

2. Monolingual and Multilingual QA Systems .. 33

3. Medical QA System .. 41

4. QA Systems on Mobile Devices .. 45

5. Ontology Based QA System .. 45

6. User Interactive QA System ... 47

7. Other QA Systems .. 49

Summary .. 56

CHAPTER 2 ..58

My work ...58

1. Introduction ... 58

2. Related Works .. 64

2.1 Document Retrieval Strategy ... 64

2.2 Related QA Systems ... 72

viii

3. System Diagram ... 77

4. Google Search Engine .. 83

5. Document Indexing .. 89

6. Term Weighting ... 91

7. Answer Retrieval .. 95

8. Candidate Answer Ranking .. 102

9. Query Refinement .. 109

10. Implementation ... 113

11. Evaluations ... 121

11.1 Evaluation on Document Retrieval Strategy .. 121

11.2 Evaluation on Overall Performance ... 132

12. Conclusion .. 136

REFERENCES ..148

APPENDICES ...154

Appendix A ... 154

Appendix B ... 155

VITA AUCTORIS ...158

ix

LIST OF APPENDICES

Appendix A: a report on Google search engine……………………………………….154

Appendix B: a report on searching “How to” questions with Google search engine…155

1

CHAPTER 1

A Survey on Question Answering System

Introduction

As the internet is no longer an information search tool just for the researchers to search

for the academic information, more and more casual users prefer to use web search

engines to find the information they need in their daily life. Moreover, due to the fully

accelerated technology development, both the professional researchers and the casual

computer users are seeking for the answers which have the higher qualities but cost less

efforts. However, the ordinary and traditional online web search engines are only able to

offer the relevant and ranked webpage links as their search results to the users. The users

then have to spend the extra time on browsing the related web pages these links lead to

until they find the expected information. For example, if a user types the question “who is

the current president of Canada” into Google, Google will give back about 318,000,000

links in 0.32 seconds. This user is then overwhelmed by the huge number of links. The

user will also be more confused because the top five pages do not offer the correct answer

but first educate the user with the fact that there is no President but a Prime Minister in

Canada. Base on this constantly happened example, a better answer search engine or

system is highly needed to improve the users’ information searching experience.

A Question Answering (QA) system is designed based on this motivation. Instead of

feeding back the relevant web page links or the searched complete documents which

require a deeper answer search to the users, an ideal QA system is able to answer the

questions with the direct and correct answers. For the example mentioned above, the

ideal QA system is expected to give back the answer which is similar to “Canada does

2

not have a President. The current leader of Canada, who is called the Prime Minister, is

Stephen Harper”. The users then will be corrected and answered at the same time by this

answer.

There are basically three main components a QA system is usually comprised with. The

first one is called question processing model. It is supposed to help the QA systems to

“understand” the users’ questions. The second model is an answer matching model. The

QA systems need it to retrieve the potential candidate answers according to the processed

search queries produced by the first model. The last model is an answer validation model.

This model should validate and rank those retrieved candidate answers and send parts of

them back to the users in a certain order as the quality answers which will likely answer

their questions. Those three models cooperate together by exchanging their internal

process results to support a functioning QA system.

This survey collects, organizes and summarizes the newest technologies and approaches

from 60 published papers in the QA area in the last five year (2008-2012). The section A

focuses about the new methodologies and technologies which improve the performances

of the QA systems’ different components. The section B is introducing the different QA

systems in the different fields with a more general view of each system’s overall

performance.

Section A. Methodologies and Technologies Implemented in QA Systems

In this section, some of the updated methodologies and technologies which are

introduced in the papers published in the last five years are summarized. Each of them is

presented with the structure as the motivation, explanation and evaluation. Also, the

3

section A is distributed into three parts based on the three main tasks of QA systems: the

question analysis, answer matching and answer validation. However, there are not

perfectly clear boundaries among them because those three main system’s components

which are sending and receiving some intermediate information with each other are

highly integrated. Some algorithms and strategies the writers came up with serve more

than one components. But we still tried to classify them as much as possible in this

survey to present a clear and organized structure to our readers.

1. Question Analysis

For the QA systems, the very first task they should accomplish with is to understand what

their users are asking about. The traditional way the systems offer to the users to express

their questions is giving them some limited choices of the question expressions. Some of

the systems allow the users typing terms with the logic operators: “AND”, “OR” and

“NOT”. This kind of questions then will be analyzed by the logical algorithms to form

the binary search queries for the QA systems to retrieve the answers. The researchers

describe this procedural as a question processing. They claimed that unless the QA

systems can successfully deal with the users’ questions in natural languages, they are still

just processing them rather than understanding them. That is why Natural Language

Processing (NLP) is the most popular technology in not only the QA systems but also

other areas like the mobile phones, the artificial intelligence, etc which need to interact

with human beings.

The algorithms and strategies are introduced in this part in the order of first some newly

updated approaches of the syntactic analysis and then the higher level theories such as the

semantic analysis and other new strategies in the NLP area.

4

1.1 Noise Reduction and Keyword Searching

A QA system named Short Messaging Service (SMS) is introduced by the authors in

paper [1].The users can ask their questions by using their cell phone to send a short text

message to the SMS server. This server then automatically analyzes the users’ questions

and extracts the proper answers to send back to the users’ cell phone.

Two steps of the query analysis are emphasized in this paper. One is based on reducing

the “noise” existing in the users’ questions since the users type the message in natural

languages. Once the server receives a query, it distributes each sentence into the different

query tokens. Thus, the useless terms which are the noises in the sentences will be

detected and eliminated. Furthermore, an algorithm called Longest Common

Subsequence is used to make sure the noise reduction process is qualified and efficient

while it is converting an original sentence into a noise-free search query. In other words,

no valuable information should be missing after the noise reduction.

Also, the traditional keyword matching is involved into the answer locating of this

system. The SMS uses a link parser to extract the key words from the processed queries.

Those key words are going to help the system find the relevant answers in the correct

category from the document collection which has been properly classified already.

1.2 WHY Questions

Dealing the different types of questions with the appropriate strategies is a big challenge

in the question analysis area. Among the different types of questions, the WHY questions

are especially unique: they usually do not contain a formal definition or tractable

keywords such as “name”,” date”, “located” which can be found in the WHAT, WHEN

5

and WHERE questions. Secondly, the answers to the WHY questions are usually

distributed wider in the relevant documents than the HOW answers are. It is because the

expected HOW questions’ answers are the instructions in the related documents. They are

better organized and easier to be located than the WHY answers which are the

explanations. Therefore, searching for the WHY answers requires the QA systems to be

implemented with some more sensitive and critical algorithms.

Unfortunately, most of the current QA systems do not perform well on the WHY

questions based on the evaluations. Only the parts of the WHY answers can be

recognized by the helps of some typical and mark-able key phrases such as: “the reason

of”, “therefore”, “because of” in the document. The more causal and more implicit

answers are unfortunately missed by the traditional answer retrieval strategies. Here, the

traditional way to search for the WHY answers is manually pre-installing some typical

question patterns to be prepared for the future questions’ processing. The relevant

information from the database then is extracted and collected to form the final answers

based on the matched and filled question pattern. However, the hand-craft question

patterns do not cover all the questions the users are going to ask. Moreover, the ideal

WHY answers the system need to produce should contain the expected causes required in

the users’ questions. These are the challenges in WHY question answering.

In paper [2], the authors present a corpus-based approach to improve the quality of the

WHY answers. The more general and causal expression collection of the WHY questions

were built based on an existing corpora. Each piece of expression was also marked for a

better recognition. That was how these causal expressions of the WHY questions are

automatically learnt and prepared by the system.

6

Moreover, the researchers were using the existing thesauri to measure the similarities

between the question and the answers. Thus, the useful answers which contain some

untypical keywords which are similar to the tracking terms are not missed anymore. The

researchers also pre-set the pairs of standard expressions stores the causes and the

corresponding effects which are the core elements in the WHY answers. If a pair of a

query and a candidate answer does not have a high similarity measurement value but they

are detected that they share the same pair of cause-effect expression, they are considered

as holding a causal and valuable WHY question-answer relation between each other. And

this answer definitely needs to be retrieved back to this question.

Another approach the writers made was creating an answer ranking scheme for the

system. This ranking scheme had been trained to be able to recognize the potential WHY

answers. The training process starts with asking the scheme a testing question. The IR

engine then is executed to retrieve a few relevant documents back based on the received

question. The last step of this training is manually selecting all the correct answers among

the retrieved documents. The selected answers then will be stored with the corresponding

questions as the answering experiences which can be used in the real question answering.

1.3 List Question

Among the various types of questions the QA systems deal with, another unusual

question type is the list question. The list questions request the QA systems feeding back

a list of different and valid components to perform a complete answer. For example, the

question “who were the prime ministers of Canada” apparently needs a list prime

7

ministers’ names as an ideal answer. Therefore, we define this kind of questions as the

list questions.

However, the list questions are usually not answered completely and efficiently in the QA

system due the lack of the NLP ability. The users have to find the complete answer by

manually collecting some valuable segments from not only the first retrieved candidate

answers but also the multiple searching results if it is necessary. Base on this situation, a

number of approaches including a website called Google Sets have been made by the

researchers for intending to solve this problem. One of them is called Set Expander for

Any Language (SEAL). SEAL is an expansion of the QA systems which works after the

systems searches back the candidate answers. SEAL helps the systems produce a more

complete answer for the users by further analyzing the original candidate answers.

During this analysis, SEAL acquires more keywords from the answers and executes

another answer search base on those new key words in order to search more information

to complete the original answer.

In paper [3], writers present some approaches based on SEAL. They have built up a

component called Aggressive Fetcher (AF). AF receives the new key words talked above

from the QA system’s first searching result and sets each two of them as a team to form

some new search queries. Thus, if SEAL extracts n number of new key words from the

original candidate answers, AF then produces n*(n-1)/2 new search queries to make sure

each keyword will be retrieved equally for building a more complete answer.

The researchers also came up a lenient extractor for SEAL. A lenient extractor only asks

the system to search at least one new query at a time from the new query collection AF

8

produced. It avoids the situation that there are not enough sentences are retrieved leaded

by searching the new formed queries together. It makes sure this advanced answer search

retrieves more useful information that the system did not acquire at the first time.

At last, the researchers found the key words which can be extracted from the original

questions are also able to raise the quality of the SEAL search results. Thus, they created

the Hinted Expansion (HE) to send the original key words from the users’ questions to

SEAL. Those original key words will work as the hints with the new search queries

produced by SEAL for a better context acquiring result.

In their evaluation of using the SEAL expansion to answer a number of list questions

from TREC 13, 14, 15, the targeted QA system’ list answers were 55% improved.

According to this, they claimed that their approaches were useful for improving the

quality of the list answers for the QA systems.

1.4 Question Classification

To correctly recognize the questions’ types, one of the most important components of the

QA systems is the Question Classifier which conducts the task to classify the various

questions into the different categories. It helps the QA systems produce the related

answers by narrowing down the possible knowledge areas those candidate answers

should be extracted from. However, it is also a big risk for the QA systems to take while

classifying the questions. Once the received question is classified into a wrong category,

it can be sure that the coming extracted answers will be totally irrelevant. Therefore,

building up the explicit knowledge categories for successfully recognizing and

9

classifying the different questions is crucial for the QA systems before mapping the

correct answers to the questions.

In paper [4], the writers come up a “stand-alone rule-based” question classifier which

detects the headword of a question and maps it into the corresponding knowledge

category by using the WordNet. The WordNet stores abundant English terms and groups

the terms which have the similar meaning. The detected headwords are not only those

typical words such as “who”, “where” and “when” but also some identical terms which

will help the systems have a clearer idea of which topics the received question describes

about. Two main components were designed and implemented in this question classifier.

A question pattern matcher is used to locate some specific questions. For example: the

question “who is Benjamin Franklin” is mapped into the category of Human: Description.

A rule-based question parser is another component to identify the headwords of the

questions and maps them into the question classification based on the WordNet. For

example: “Which counties produce Avocado” The word “Avocado” is detected and the

system is then going to search the relevant information from the category of fruit.

The researchers in this paper also use 60 rules to accomplish this question classifier.

Those 60 rules help the classifier assign different questions into the correct categories.

During the evaluation, the researchers found this question classifier provided an 87%

precision by using the breadth-search strategy. Since the headword location was

integrated with the pattern matcher and the question parser with the 60 advanced rules, it

therefore performed better than the simple WordNet word mapping which offered 86.4%

accuracy and 78.5% accuracy respectively.

10

1.5 Semantic Analysis

As the development of the question analysis technology in the QA system, the syntactic

analysis is not helpful enough anymore for producing the accurate answers. It is because

the surface pattern which is another name of the syntactic pattern only connects the key

words in the question and the answers. For example: the surface patterns such as

“<NAME> invented <INVENTION> on <DATE>” is a query which needs to be

answered by the sentence in a pattern structure of “<SCIENTIST> <INVENTION>

<DATE>”.

Although it has been approved that the surface patterns are effective and accurate, they

still have a few of disadvantages. First of all, only the limited numbers of the question

patterns have been stored into the QA systems. More various and specific patterns are

needed to deal with the unpredicted human questions, even though this also leads to the

result of increasing the processing time of the question analysis. For example,

<PHYSICAL INVENTIONS> offers more information than the simple pattern

<INVENTIONS>.

Secondly, a syntactic pattern can only match to one of the topics of a received question

due to its designed structure. For example, the question “who published the paper with

the scientist invented the telephone” can only be matched with either the pattern

<SCIENTIST> <PUBLICATIONS> or the pattern <SCIENTIST> <INVENTIONS>.

Thus, the traditional pattern matching method cannot deal with the high distribution of

the valid information in the question or the relevant documents. Moreover, if there are

11

multiple languages involved in the questions, the QA system is only able to deal with the

one which is used in its question patterns.

Therefore, in paper [5] and [6], the writers introduce their approaches which are aimed to

solve some of these problems above. They imported the semantic information into the

syntactic patterns in order to perform the semantic analysis to increase the accuracy of the

questions analysis and the answer extraction. Thus, the labels in the question patterns also

carry the semantic information with the machine-understandable format. Rather than

concentrating on identifying the question types without using the question classifications,

the researchers are focusing on generating the relations between the different semantic

patterns to represent more questions’ meanings. They also came up the rule that “the

instantiation level of a semantic label determines the semantic capacity of the patterns”.

In other words, more specific a semantic label is, the more semantic information it holds.

The syntactic patterns which contain the semantic labels must also be supported by the

hierarchy concept structures. The basic hierarchy structures mean a group of similar

words is represented together by a father (super) term. Thus, the semantic labels can

match more relevant terms and information eventually based on their similar labels

acquired from the hierarchy structure. Those supported patterns help the answer

extraction by mapping the similar semantic content from the documents base on the

semantic labels. The researchers in the paper [6] claim that the semantic patterns work in

both the automatic and interactive QA systems. And they have built up a user interactive

QA system to implement their approach as well.

12

Furthermore, the implemented user interactive QA system assigns the semantic

information to the syntactic patterns manually by the users. In order to ask the qualified

questions in this system, the users need to firstly choose the questions patterns offered by

the system which usually starts with choosing the question types. The users can even

create their own question patterns by following the instruction in case of they cannot find

the ideal patterns to express their questions.

Furthermore, based on the patterns the users chose, they will be asked to fill the blanks of

the chosen patterns’ labels with the semantic information. After they create and submit

their questions, the system locates the relevant answers according to those manually

created semantic patterns and presents them back to users.

Another similar question analysis strategy called question reformulation is represented in

paper [7]. It is the core strategy of a reformulation-based QA system. It is about using the

semantic constrains to increase the efficiency and accuracy of the answer searching.

The reformulation-based QA system converts the questions into the system-

understandable queries. That is reason it is also called as a surface-pattern method. The

semantic-based reformulation algorithm is about pre-processing the knowledge

documents which were downloaded from the web pages and converting them into the

pattern-based formats attached with some certain questions types. For example, the

sentence “Ontario is the largest province population wise in Canada, and as of July 2009,

the population of the whole province was 13,250,000 folks living there.” is processed by

the system and a new pattern will be produced as <PROVINCE> <POPULATION>

attached with the question type “How many”. Those question types are assigned by a

13

training corpus which contains the pairs of the typical questions and answers. Those pre-

processed knowledge is then stored in the database and waiting for the future matching to

the new questions. If a question “how many people live in Ontario” is submitted by a

user, this question will be analyzed and the key words “how many” will be detected to

confirm the question type it is. The key words “people” and “Ontario” will also be

matched to the knowledge pattern <PROVINCE> <POPULATION>. Thus, the processed

knowledge mentioned above will be retrieved as a candidate answer to this question since

they share the same pattern.

Another problem is, due to the term weighting strategy and other basic information

retrieval techniques used in the QA systems, the text terms in the documents and

questions are processed and distributed separately. Thus, the question “Who is the first

person invented cars?” never gets the answers which contain the word “vehicle”. This

situation has been found as quite normal in the existing QA systems.

In paper [8], the researchers come up with a new strategy by using the Language

Modeling (LM) technique to improve the situation talked above. The LM technique aims

at analyzing the syntactic and semantic meaning of each term and clustering them to form

a better retrieval result. The original approach had been made for years by other

scientists. But the researchers in this paper claim that it was difficult to estimate the

relations between the different terms and use those relations into the term weighting

scheme.

14

Therefore, they made some experiments to compare their new model to the original

model and the result showed their model could help the sentence retrieval get a precision

of 23.62% to 29.91% which was better than the original one did.

In paper [9], a new Question Answering System which is named as Question Answering

for Automatic Learning (QAAL) system is developed and introduced by the writers. This

QA system is ontology-based system which means the information in the database is pre-

processed and stored with a highly structured format. It provides the answers to the users

from the semantic view.

Since the ontology methodology is used in the closed-domain QA systems in most of the

cases, the writers in this paper believe the knowledge representation and the logic

inference techniques are crucial to the efficiency of their QA system. Three main steps

are explained in this paper: question analyzing, information retrieving and answer

extracting. Among those steps, the question formalization is emphasized that this

technique is based on a conversion mechanism for the usage of the ontology

methodology.

The first step of formalizing the questions written in a natural language is to collect some

existing questions in different knowledge areas. These collected natural language

questions then will be labeled with the annotations indicating the different categories they

belong to. Thus, the QA system is able to create the different question patterns according

to the collected and processed questions. The researchers made this achievement with the

help of the Word Segmentation Process. This process can be also seen as the knowledge

training process. Moreover, the QAAL system uses the Resource Description Framework

15

(RDF) data structure which helps the system work with the ontology methodology. Since

the SPARQL is one of the RDF query languages, those question patterns the system

created need to be transformed into the SPARQL form for the future question matching.

During the evaluation of this QAAL system, the writers found this system worked well

only with the predicated questions. This was not a surprising result since the question

patterns are created based on the collected and prepared questions. The various natural

language questions certainly need more flexible patterns to be processed with. As the

result, the researchers claimed this was the disadvantage of their QA system which

needed to be improved in the future.

In paper [10], the writers are also focusing on utilizing the category information to match

the queries to the relevant answers. For accomplishing that, several algorithms are

involved to convert the questions which are written in the natural language format into

some formal search queries which work well with a traditional IR model. The basic

process steps of their QA system are introduced below:

1. Receive a question written in a natural language from a user.

2. Analyze all the sentences in this question and convert them into the predicate logic

sentences.

3. Convert those predicate logic sentences into a clause form.

4. Base on the results generated by the step 2 and 3, acquire the useful semantic

information from them.

16

5. Use the resolution and unification algorithm to retrieve the relevant documents stored

in the database base on the extracted semantic information from the question.

6. Measure the similarity between the query and those retrieved documents to evaluate

the best answer.

7. Feed those qualified candidates answers back to users.

There are some important details need to be mentioned among those steps. For the step 2,

the predicate logic converting algorithm identifies the subjects by removing all the

unnecessary and disturbing terms such as “and”, “for” and “in” from the question

sentences. The clause forming in the step 3 is aimed at converting the targeted question

into a logic based chain structure for the further document retrieval.

1.6 Question Templates

Unfortunately, the technique which is dealing with the natural language questions the

users type into the QA system has not been fully developed yet. There are still many

misunderstandings about the users’ requests. The users’ satisfaction about the answers

given back from the QA systems is still very low. While other researchers are keeping

developing some better approaches of the NLP technology, the writers in paper [11] are

trying to solve this problem by a novel strategy. Instead of using the syntactic and

semantic analysis to understand the questions, they came up with a question template

which was used to match the new questions.

The question template was created based on a few close-domain QA systems. Those

systems store the pairs of questions and the corresponding correct answers in some

17

specific areas based on their question answering experiences. The researchers then

collected and imported them into their own open-domain QA system and pre-organized

them into the relevant question categories. Once there is a new question asked by a user,

the system automatically maps this question to some of those stored question templates

and calculates the similarities between the received question and the mapped similar

temples. The question template with the highest similarity score then will be picked up

and its corresponding correct answer will be given back to the user as the answer to the

question.

The writers also installed this application into the mobile devices to test it in some

specific consulting areas. The result was very outstanding: this QA system could

“understand” 97.8% of questions it dealt with and the answers it gave back offered the

accuracy of 82.4%.

As a matter of fact, these figures were quite predictable since the prepared questions were

stored with their correct answers in the system earlier before the test. In most of the cases,

the correct answers were given back only when their corresponding question templates

matched to the test questions. In other words, it made sure the system’s answers were

perfectly correct as long as it marched the truly relevant question templates to the test

questions. That is why the accuracy was higher than usual.

However, with a long-term vision to consider this case, it actually did not solve the basic

problem of the QA systems which is dealing with the variant and random questions

written in natural languages. It still prepares a limited and static knowledge source for

answering the users’ unlimited questions. Eventually, this system will be either having an

18

unacceptable long processing time with a huge question-answer collection or confused by

more and more questions they have not been prepared before.

2. Answer Matching

In this part, the techniques about matching the relevant documents from the local

document collections or online web pages and extracting the more specific candidate

answers from those searched documents are represented. As a matter of fact, the answer

matching techniques are not working as an independent component in the QA systems.

Other components such as the query formalization which is also called the question

processing and the answer ranking also cooperate with the answering matching

component deeply. In other words, the answer matching model can receive the relevant

information and produce more accurate answers if and only if other related QA systems’

components accomplish their tasks. Therefore, in this part of the answering matching,

there are still some other components involved and mentioned to offer a clearer view of

the answer matching process.

2.1 Ontology Methodology

For a better understanding of the natural language written questions and a higher quality

of the candidate answers, the ontology methodology is used widely in the different QA

systems as the core strategy for analyzing the questions and searching the correct

answers. There are basically two types of the ontology: domain ontology and upper

ontology. The domain ontology which is also named as domain-specific ontology only

offers a specific domain which contains limited topics or classes and the relations among

those classes to represent the stored knowledge. For example: the scientific publication

19

domain may have several classes such as the name of the paper, the scientist’s

information, the institutions’ names, etc. Those different classes work together to store

the relevant information to present a complete scientific publication information

database. The domain ontology is usually used as storing the annotations of the terms in a

specific field and then analyzing the natural language written questions based on those

annotations. The Upper ontology such as WordNet and OpenCyc focuses on some

concepts in the unlimited areas. Thus, the upper ontology covers more topics than the

domain ontology does.

Overall, the objectives of using the ontology in the QA systems are creating a practical

dictionary for each certain domain and mapping the questions to the relevant answers

together based on that dictionary.

In paper [12], the writers introduce a special ontology called QALL-ME ontology which

is about the tourism domain. Specifically, it focuses on the static tourism information like

the hotel reservation and the event promotion rather than the dynamic information such

as the trip scheduling. Moreover, QALL-ME is claimed has a larger coverage which

means it contains more tourism websites’ and festival events’ information than others

systems do. Since it deals with the online information of the hotels and flights websites, it

was designed with the Web Ontology Language (OWL) which is the most recently

updated ontology language. Therefore, more classes and relations are involved to

represent the valuable information and they make this QA system more complicated.

Furthermore, the QALL-ME ontology is also mapped to some upper ontology to

exchange the information for a broader coverage. The traditional similarity measurements

20

are used to locate the relevant words between those two types of ontology to accomplish

this mapping process.

Overall, the QA systems are able to easily match the analyzed questions and answers

together according to the definition of the ontology: it formally creates the conceptual

representations of some relevant knowledge and their relations in a specific domain.

However, the biggest problem which has been slowing down the development of the QA

systems is the various natural languages the users use to express their demands.

Understanding and translating those questions are very difficult and complicated. In

paper [13], the writers present some approaches to reduce the gap between the questions

and the knowledge.

User Query Formulation (UQF) database is one of their main approaches. The

researchers analyzed some existing questions by collecting and clustering them together

into the same domains before receiving the users’ questions. Having those clustered

questions in the database helps to deal with the new coming questions by matching them

with the stored questions. During the question matching, if there are two questions

sharing the same topic but they are written in different expressions, the system is able to

detect the common topic and use this captured domain information in the coming answer

extraction. The last step of the matching process is a semantic deduction between the new

received question and the similar one stored in the database.

After an ontology-based QA system finishes analyzing the natural language questions,

there will be more than one model in the system working on the next answer mapping

process. Especially in the open-domain QA systems, more models are applied to be used

21

for attracting the better answers from the large knowledge domains. In most of cases, the

multiple-model processing strategy is used to execute those models separately and

receive back the different analyzed results. The QA systems then combine those internal

results carefully to form the retrieved candidate answers.

In paper [14], the writers claim that this multiple-model processing strategy sometimes is

not efficient since some straight forward questions such as “who is Barack Obama” do

not need a complete and sophisticated answer retrieval process to get the correct answer.

Furthermore, for some QA systems which are manually applied with some models still

require the developers to have a deep understanding of the targeted knowledge area to be

able to tune these models later. Therefore, those QA systems should only be the closed-

domain systems to avoid of dealing with the overwhelming great amount of information

with several sophisticated processing models. Also, manually applied models require

another huge amount of efforts for the updating or maintaining. Therefore the writers in

paper [14] present some approaches to invoke each model in a QA system separately and

conditionally. They found their strategy which routes queries with the chosen models

saved their QA system 27.2% efficiency and improved 10.5% effectiveness.

The Business Intelligence (BI) applications allow users using their queries to acquire

some valuable information to help themselves make their business decisions. All the

information is analyzed and stored in a Data Warehouse (DW). The DW combines the

information from the different databases and the business data with the various formats.

Nowadays, a new type of data which is described as the unstructured data is becoming

the main data we process with. It is a new challenge because the DW used to utilize the

traditional IR technique to only deal with the structured data. Since the IR techniques

22

only search back the related documents, using the m to process the unstructured data will

lead the result that the users will have to spend more time on reading the retrieved

documents which contain the unstructured data and finding the expected answers.

Clearly, the unstructured data requires the system be updated some new IR strategies.

In paper [15], the researchers integrated their QA system with the DW to produce a better

search result on the unstructured data. To accomplish their goal, they chose the ontology

methodology. Not like other approaches which use the ontology only for understanding

the users’ questions and extracting the relevant information from the database, the

researchers used the information from both the DW and the received questions to label

some extra concepts to serve for the detected domain searching. For example: the users

use a BI application to search for the lowest price of a flight with a certain departure date.

The QA system will search the weather temperature on that specific day and the BI will

analyze this weather information with the regular prices and the sales in different

companies from different database to predict the lowest price the users can get. Thus, the

weather information, the deals of the flights is the extra information serving for the

prediction of the future fight.

2.2 User Interactive Answer Matching

One of the development branches of the NLP technology in the QA area is the Interactive

Question Answering (IQA) development. The IQA conducts some text dialogues to

enable the users getting more involved with the query forming and the answer mapping

processes. The users can set more search constrains to their queries by answering some

instructive questions asked by the QA systems. Thus, the dialogue designing is very

23

crucial to the IQA systems. Nowadays, the IQA technique is more likely being used in

some online self-service websites such as the flights booking and restaurants searching

websites.

One of the most important issues the IQA technique faces is how many questions a QA

system should ask to its users to get enough search constraints for constructing the valid

and robust queries. Clearly, the number of questions which are asked during the users’

searching experience affects the answer search efficiency and the quality of candidate

answers [16].

This considered fact is also affected by the different devices which are integrated with the

IQA technique. As the mobile devices are becoming more and more popular and smaller,

embedding the IQA system into the different mobile devices depends on different

situations. For the GPS service in the vehicles, the writers of paper [16] noticed that it

always involved a lot of the users’ input noises and this service should not over disturb

the drivers while they are driving. Therefore, the IQA on the GPS should be simplified on

its interaction step. It should also be able to eliminate the unintentional input noises from

the users. On another hand, the personal computers or other devices at home are assumed

with the larger screens and the better user interfaces. The IQA technique in those devices

can be optimized and allowed to have more dialogue models to deeper process the users’

queries.

However, one of the problems the different IQA techniques are having in common is that

their users sometimes are confused by the query refinement step. They are overwhelmed

that they have to consider both the refinement decisions and the ultimate results to make

24

the appropriate revisions. This situation usually leads to a result that the users set too

many constraints that the searching results are either too small or not even existing.

In paper [17], the writers tend to perform a relaxation process on the searching queries

which has been attached with the customized constrains by utilizing a content optimizer.

The content optimizer accomplishes the relaxation task by modifying the values of the

constraints. Sometimes it even just eliminates one of constrains in order to help the

system retrieve more candidate answers to the users. As a matter of fact, this constrain

relaxation is made based on the ontological relationships. For example, relaxing “the

brand of Benz” restraint on a query means to delete it or replace it with its super class

such as “German cars” which is stored in the vehicle-brand concept of the domain

ontology.

Moreover, a linear constraint can be relaxed by adjusting its variables’ values.

Specifically, the content optimizer relaxes a binary constraint by reassigning it with a

reverse value. For example, the binary search query “cook AND pizza NOT Italian” may

not retrieve enough information about how to cook a pizza. It is because the most of

pizza recipes are involved with the term “Italian”. Therefore, the content optimizer can

relax this binary constrain by replacing the operator “NOT” with the “AND” in order to

help the query retrieve more pizza recipes.

The another job of the content optimizer is counting the amount of retrieved candidate

answers and producing a proper threshold to only show a reasonable number of results to

the users to view. For example, if a user searched for a Spanish restaurant for a dinner,

25

the system will only show the top 10 restaurants which are qualified to user’s constraints

instead of feeding back all of the qualified restaurants’ information.

2.3 Conceptual Graph Formalism

In paper [18], the writers present their QA system which is the implementation of a novel

strategy called Conceptual Graph Formalism (CGF) to match the relevant answers to the

users’ “What”, “When”, “Where”, “Who” and “How” questions. Similar with other QA

systems which were designed in the last 5 years, this QA system is also accomplished

with the syntactic and semantic analysis based on the VerbNet and the WordNet.

In the CGF theory, the Authors believe that each pair of question and the correct answer

has its own conceptual graph representation. Those conceptual graphs are generated by

some carefully designed formulas and will be used into the question answer matching

process by a projection operator.

For the details, this QA system firstly splits the potential documents into the sentences

and uses the NLP technique to parse those sentences in to several tokens. For each

sentence, the system maps its each token to the different concepts categories using the

WordNet ontology. Then, it creates the conceptual relations between each mapped token

according to their syntactical relations to get a conceptual graph for the whole sentence.

Furthermore, this QA system uses the sentence connector to also build up the conceptual

relations between the different sentences and produce the ultimate conceptual graph of a

whole document eventually. This ultimate conceptual graph is the result of the document

analysis. It represents the information contained by each document and will help the

projection operator match the users’ questions to the related document.

26

The result the researchers received from their experiments in this paper emphasizes the

importance of the syntactic and semantic relations between each sentence for the answer

retrieval. They have been proved that their approach works better than the key word

matching. They have helped the QA system understand and map the better answers to the

questions.

2.4 Reasoning

In paper [19], the QA system is built base on a strategy called Case-Based Reasoning

(CBR). The CBR is about answering the users’ questions by searching the similar

questions which have already been solved and stored with the corresponding answers in

the database before. Thus, the CBR technique requires a large scale of the historical case

database. Also, the techniques such as the automatic segmentation, the question similarity

calculation are still the main procedurals in this system. The writers claim in the paper

that their system has higher accuracy and efficiency based on their experiments.

As introduced above, the CBR as the core technology mainly depends on the experiences

of the QA systems. Therefore, each solved case is stored into the corresponding

categories based on the domain analysis. The basic procedurals of this QA system are

shown below:

a. Input the query.

b. Analyze the queries: parse the questions, locate their key words.

c. Use the keyword search strategy to match some solved cases in the database to the

received query.

27

d. Rank the candidate solved cases by calculating the similarities between the query and

those cases.

f. Determine the value of the calculated similarity of each candidate case with a certain

threshold indicating whether those existing cases are qualified to be shown back to the

users.

g. If there are qualified cases, then show them to users. Otherwise, execute the full-text

search module which performs a basic keyword search based on the original query.

This backup plan makes sure the system always answers the users’ questions.

2.5 Data Region Matching

For neither the open-domain nor the close-domain QA systems, building up an answer

catalogue to store some existing correct answers is not easy. The way that distributes the

different knowledge into the different categories affects the systems efficiency and

answer accuracy directly. In other words, if the catalogue is not well designed or the

distribution process is not perfectly correct, the QA systems will match some completely

wrong answers to the questions. Thus, in paper [20], the authors present an open-domain

QA system based on the catalogue of Wikipedia which is the largest online

encyclopaedic question answering community. Furthermore, the writers also invented a

dialog-based user interface as a virtual agent to interact with the users in Germany.

Their evaluations showed that their QA system provided 44% accuracy which proved that

the catalogue created based on Wikipedia is useful and accurate. This catalogue improved

the performing of this QA system.

28

Another data region marching QA system is the computer-based system in paper [21]. It

is because this system is able to identify the regions of the data set based on the regions’

annotations. Once the targeted data region is located in the database base on the users’

queries, the system shows the details of this region to the users and also some potential

answers from the same region. The users will also be asked to give the feedbacks to the

system for helping it change or narrow down the searching regions.

2.6 Data Template Matching

Resource Description Framework (RDF) is a standard and popular model for the data

interchange through the Web. The RDF merges the different data together without

considering whether their underlying schemas are different or not. The merged data set is

named as the RDF data. In paper [22], the writers come up a new way to retrieve the RDF

data using data templates.

Comparing with the current QA Systems in the whole industry, most of them utilize the

similarity measurements to process the users’ questions and distribute those questions

into the different question patterns. Then they match those patterns with the related

documents stored in the database to retrieval the expected RDF data stored in those

searched documents. However, due to complexity of natural languages, the question

patterns in some cases do not work well to represent the meaning the users are trying to

express. Some regular questions like “which city is the capital of Canada” works fine

with the pattern representation. Other “non-traditional” questions like “which university

has more than three presidents coming from” confuse the systems and they will probably

be distributed into the wrong patterns. Clearly, the more restrictions involved into a

29

question, a higher intelligent processing method is needed for the question analysis.

Therefore, the authors were trying to solve this problem by designing a template called

SPARQL template. They claimed this data template can directly indicate the internal

structure of the users’ natural language questions. In this paper, they claim that their

approach decreases the users’ answer searching time. The users do not have to pay the

extra attentions on the grammars and vocabularies used in their questions. It has also

been proved that this data template improves the quality of the retrieved answers.

2.7 Passage Retrieval

Passage retrieval is an important step of the QA systems. The systems use the input

questions as the search queries to search the relevant passages in the stored documents

and send the qualified passages back to the users as the candidate answers. However, in

most of the cases, lots of the irrelevant paragraphs are also sent back to the users because

they contain the common words which occur in the questions as well.

This result is the side effect of simply using the key word search strategy to retrieve the

related answers. The QA systems retrieve the passages without checking the syntactic

structure and the expected topic between the received question and the searched answers.

For example, when users are asking the question “who is Jason Mraz”, they expect some

answers whose topic is an introduction of a person. Thus, the expected topic the QA

system needs to use to determine the relevant passages is <person>.

In paper [23], the researchers implement this topic retrieval approach in their QA system.

The questions’ syntactic and semantic structures are analyzed in order to acquire the

correct topics. Unfortunately, instead of getting an expected high precision from the

30

searching results, they found their approach did not extraordinarily improve the search

results. Due to the immaturity of the syntactic and semantic analysis, there were still

some misunderstandings on the topic extractions. But the researchers still believe this

approach theoretically works well. As long as they have a better strategy of the topic

location, they will have a better answer retrieval result.

3. Answer Validation

The quality of the answers the QA systems produce is the most crucial factor which

affects the users’ answer searching experience. The question validation is the last

procedural to evaluate the candidate answers which are about to send back to the users.

Therefore, the question validation is getting more and more attentions in the QA system

development. However, there is still not a mature and efficient strategy to check the

retrieved answers especially in the open-domain QA systems. This is because an open-

domain QA system usually has a larger knowledge database and deal with more

information during the answer retrieval. Moreover, for the systems which classify the

potential knowledge into the different categories, it is impossible to accomplish this

knowledge classification perfectly. Thus, we need a more dynamic answer validation

strategy to determine the real potential answers.

In paper [24], the researchers are trying to combine three different answer validation

methods together to get the better search results. The first method is utilizing a static way

to check the question type on those potential answers. Only the answers which are the

same type with the question will be considered as qualified. For example: for the “WHO”

questions, it is clear that only the answers which describe persons are the expected

answers the systems should look for. And those answers should be the only qualified

31

candidates pass the validation procedural. The second method is also a static method

which compares the topics between the question and the retrieved answers. After

successfully locating the main topic in the question, the method calculates the

occurrences of the detected topic in each candidate answer. A higher occurrence of the

topic in a detected answer indicates a better answer quality this answer serves. The last

method relies on Wikipedia. Wikipedia offers a classic and sophisticated strategy to

determine the answers type. Researchers used this feature to help their system identify the

correct answers.

Furthermore, the researchers combined the evaluation values produced from those three

methods to have a complete view about each candidate answer. They claimed that their

strategy gave back a satisfied result. However, this approach only collaborates with other

answer validation techniques. It is not able to locate a correct answer by itself.

In paper [25], the researchers compare two different classification methods of the answer

validation. One is bases on a traditional way which is using the precision and the recall

formulas together to formulate a new answer quality measurement called F-measure.

Another one is using the analysis of Receiver Operation Characteristic (ROC) space

summarized in Area under the Curve (AUC) scalar value measurement.

Both of those two measurements are based on the binary classification which means there

is only one value indicating the status of a candidate answer: correct or incorrect. In this

paper, the writers compare those two measurements and the result is quite successful.

They found the F-measure worked more stable than the AUC measurement during the

experiments. Also, the F-measure was more discriminative for detecting the correct

32

answers. However, the authors indicated that those results did not prove that F-measure

was a complete better choice. It still depends on the different QA systems and the users it

is tested with. If the users are looking for a measurement with a stable processing ability

which produces some obvious results, then they will feel more comfortable using the F-

measure. However, there are still some extraordinary futures of the AUC measurement. It

is less sensitive to the changes of the answer collection. Thus, the AUC measurement is

more useful to acknowledge in the same way with both the correct and the incorrect

answers.

Section B Presentations of QA Systems

In section B, more than 30 new QA systems are introduced. The papers presenting those

QA systems are more concentrating on the overall performance of a complete QA system

than the system core strategies and the new approaches. This is also the main difference

between the section A and B. Here, the QA systems are summarized and organized as

much as possible based on their different device environments, processing languages and

various usages. The last part of this section is named as “other QA systems” which is

representing some valuable and interesting ideas in the QA area. They are hard to be

classified into any categories but still worthy to be viewed.

1. Biology QA System

In paper [26], the writers present a survey about the biomedical information QA systems.

Due to the great developments and demands in the biomedical area, research in the

corresponding domain QA systems has never been this popular. However, answering the

correct answers to the questions is even more crucial than other QA systems since the

questions seek the academic knowledge in the health care area.

33

Therefore, the researchers in this paper point out there are quite a few differences

between the close-domain QA system and the open-domain QA system which affect the

design of the biomedical QA systems. They found that the close-domain QA systems

better deal with some specified knowledge areas and retrieve the deeper information for

the knowledge resource than the open-domain QA systems do.

Another fact needs to be considered in the system designing is the special characteristic

of the biomedical-domain QA systems. This kind of systems more likely receive some

un-professional questions for their users than other systems do since the biomedical

knowledge is more professional and difficult to understand. Thus, dealing with the bigger

gap between the non-expert users’ questions and the professional documents is the

biggest challenge of developing such systems. Unfortunately, besides the ordinary

techniques such as the NLP and the IR technologies, the important utilities of the logic

representation and the inference mechanism have not attracted more attentions from the

researchers in this area.

2. Monolingual and Multilingual QA Systems

The languages are the key points to a QA system. The questions asked by the users, the

documents stored in the database and the retrieved answers sent back to the users are all

written in one or more particular languages. Furthermore, the different branches of the

languages have their own features that only the corresponding professional language

users are able to process with. Therefore, the researchers from different countries are

making their own efforts in their QA systems using their own languages. Some

multilingual QA systems are also designed for sharing the knowledge written in the

different languages due to the information globalization.

34

2.1 English Language QA System

In paper [27], the writers introduce a QA system developed by them which focuses on an

approach of extracting the exact answers from some relevant documents to the questions.

The language they were dealing with is natural English. The core technique which is used

in their system is called pattern learning. More details of it will be explained below.

First of all, the input question is separated into several independent terms. Those terms

are then stored into an array and will be processed base on their original order. By the

help of this term order, the QA system is able to detect the different syntactic components

in this question. For example: if the system detects a subject component in the question,

then the next following component will probably be a verb or an adjective. In the

meantime, all those high-frequency words such as “in”, “at”, “on”, etc. will be eliminated

from the term array because they are useless for understanding this question.

Before the processed term array is converted into a clause in which the detected syntactic

components will be connected with some logic operators, there is one more algorithm

called Unification algorithm to further process this sentence. This algorithm finds the

simplest substitution to convert two similar terms into one. This step simplifies the term

array before the answer matching. Thus, this term array is carefully simplified and

converted into a logic clause. The QA system uses this formal query to match the relevant

information from the database separately to each component in the clause. Then those

retrieved information segments will be combined together based on the question’s

analyzed syntactic structure to form an exact and complete answer to the users.

2.2 Chinese Language QA System

35

In paper [28], a closed-domain Chinese cuisine QA system is introduced. It uses the

question classification technique to narrow down the relevant candidate answers. It also

determines the appropriate strategy to extract the answers from the documents. In this QA

system, the researchers also designed a question catalogue based on the core information

the users’ questions carries. It is similar with the document classification technique.

Without having the situations that the QA system is confused by the questions due to the

lack of context information, this restricted-domain system has been successfully designed

debased on the Chinese cuisine. The input question is first determined as which question

type it is by the production rules. Then it is matched with the filtering rules according to

its domain attribute. If the matching is not successful, a deeper secondary classification

will be executed base on the machine learning method. The designers of this QA system

found that building up the question taxonomy and setting up the question classification

rules are the most challenging parts of their works due to the features involved in the

cooking area.

2.3 Germany Language QA System

The authors in paper [29] design a QA system named LogAnswer. LogAnswer is an

Internet-based German language system. This means LogAnswer acquires the necessary

knowledge from the Internet. The writers claimed that they had successfully integrated

the AI, NLP, machine learning, knowledge representation and automated theorem

proving techniques in their system. Moreover, they came up a machine learning approach

which deals with Wrong Answer Avoidance (WAA) problem. They have accomplished

this approach by adding a term-based classifier and a dictionary which stores all WAA

featured terms in their system. Once there is a wrong answer which is accidently searched

36

based on a question, the classifier will be able to detect this answer and its identical terms

by the help of the WAA dictionary and stop it from being presented back to the users.

The InSicht in paper [30] is a another German language question answering system

which has been updated and integrated with several new techniques including a deep

answer producer, a shallow question producer and a logical answer validator. It has also

been implemented with a parser to analyze the natural langue questions. This parser

firstly processes questions based on a semantic representation. Later on, it gives the

inferences and attaches them on those representations. Those representations then are

ready to be matched with the relevant answers. Furthermore, InSlicht is not only able to

search for the knowledge written in Germany; it also has been proved that it works with

English and Spanish documents in the database as well.

2.4 Arabic Language QA system

As one of the written languages in the knowledge resources and the search queries,

Arabic language is not popular in neither the NLP technique nor the QA areas. However,

in paper [31], the researchers are highly emphasizing the significant influence of the

Arabic QA techniques’ developments. They introduced a system called DefArabicQA.

This system answers the definition questions which are also known as the “What”

questions in Arabic.

Here are the basic steps of DefArabicQA: analyze the questions by using the question

patterns; retrieve the relevant passages from the web resource; identify the candidate

answers with some pre-learned answer patterns; rank those potential answers and feed

them back to the users. Apparently, both the question and answer patterns are made based

37

on Arabic. They contain some special features comparing with the English patterns to

better detect Arabic.

2.5 Slovene Language QA System

In paper [32] a close-domain QA system with the knowledge written in Slovenian is

presented by the writers who developed this system. Like other languages in the world,

Slovenian language’s features gave a hard time to the researchers to process the questions

and retrieve the answers. Therefore, the writers claimed that their system is able to only

partly solve some language difficulties of Slovenian. Moreover, this QA system was

designed for the students to ask their academic schedule questions. It was aimed at

releasing some pressures of the campus faculties.

Moreover, this QA system has a local knowledge database in which a small amount of

knowledge has been pre-processed with the knowledge representation methodology. It

also keeps an access to the internet to acquire the information from the semantic web

pages. The writers mentioned that their system was capable for adding a dialog user

interaction component for a better answer quality. Specially, they have set up two

separate interfaces for both the users and the administrators. This allows the developers

porting and training the new knowledge and the patterns without editing the code.

2.6 French Language QA system

Finding in Documents Justifications and Inference (FIDJI) is an open-domain QA system

in French. The researchers who created FIDJI have integrated the syntactic analysis and

the traditional QA techniques in this system. For the details, the named entity recognition

and the term weighting strategy are the traditional technologies talked here. The writers

38

in paper [33] introduce their approach which is aimed at accomplishing the same task

FIDJI originally does but without accomplishing the heavy knowledge pre-processing

task with a huge document collection.

In FIDJI, the question written in French is firstly analyzed and decomposed into the

keywords, answer type and extended answer type by the syntactic analysis. The keywords

then are used to locate 100 relevant documents in the database. Those 100 documents

then are processed into the syntactic analysis and the named entity tagging until they are

distributed as separate targeted sentences. Those sentences should contain the highest

number of the common keywords with the questions. Then they are uniformed according

to the syntactic relations and transformed into the candidate answers. Finally, an

evaluation is executed according to the answer type acquired from the question at first

step to determine if those candidate answers are valid or not. Only qualified answers are

sent back to the users to be viewed.

2.7 Macedonian Language QA System

In paper [34], the researchers focus on a particular language: Macedonian in the QA

systems. Since they believe that the different languages have their own features which

should be fully aware in the system development, they have carefully created an

appropriate test collection for evaluating the performance of the Macedonian QA

systems.

They used their test collection to test the vector space model, a traditional model works

for the similarity measurement, with the pivoted document length normalization. The

39

results showed that this text collection is able to properly evaluate the performances of

the Macedonian QA systems with the multiple test questions.

2.8 Romanian Language QA System

For Romanian language, there is a QA system called RACAI’s QA system which is

introduced and explained in paper [35]. It is a pattern-based system with a Boolean

searching engine. The document collection is from Wikipedia in Romanian. Those

documents have been pre-processed by decomposing them into the different tokens and

tags. RACAI has two sub-systems. Sub-system A utilizes some traditional strategies to

analyze the questions and convert them into the formal search queries. It distinguishes the

noun phrases which create the content words and the noun phrases which follow after the

content words. Different from the sub-system A, the sub-system B uses the Lex-Par [36]

to acquire a dependency linkage which determines the topic of a question. This

procedural is based on the grammatical patterns which form a dependency chain to

represent the meaning of the processed question. The writers of this paper claim that

RACAI with these two subsystems performs overall 30% accuracy and they find it was

working well particularly for answering the definition questions.

2.9 Dutch Language QA System

A close-domain Dutch language QA system called Joost is introduced in paper [37]. Joost

answers the questions in the topics of navigations and pictures. It deals with monolingual

Dutch and multilingual English to Dutch questions. For analyzing the questions, it has

been attached with a question parser called Alpino [38]. Alpino is designed for parsing

the documents and sentences particularly in Dutch. The answers are then mapped by the

40

question patterns produced by Alpino with the syntactic dependency relations. The

syntactic similarity is also calculated between the question and the potential sentences to

rank the candidate answers. Another special function Joost has is saving the correct

answer and question pairs off-line for the future similar questions.

More specifically, the XML-version Wikipedia in Dutch is pre-processed and stored as

the documents collection. During the document processing, the researchers only saved

the documents which were about the navigations and the pictures into its database and

distributed those documents into the title, main body and list for building up the

information retrieval index.

For query formalization, Joost utilizes two strategies to deal with the natural language

questions. It firstly converts the questions into the search queries based on their key

words. Those keywords will also be weighted with a genetic algorithm. Secondly, there is

a procedure called query expansion. It is executed for constructing a more robust query.

During this step, two methods: global method and local method are used to find the

relevant terms for expanding the question. In the last, at most 10 new keywords will be

added on the original question to retrieve less but more correct answers.

2.10 Multilingual QA System

In paper [39], the writers test their Basque QA system Ihardetsi with three different

languages: Basque, English and Spanish. They first used a machine translation system to

translate the English and Spanish questions into Basque and then tried to answer them.

For the question analysis, the writers utilized the question classification strategy to locate

the keywords and the time information in the users’ questions. As a cross-lingual system,

41

Ihardesti did not perform well enough answering the test questions in different languages

other than Basque. It is because some valuable information was lost during the machine

translation step due to the different language structures.

In paper [40], an open-domain system called PowerAnswer QA system is integrated with

a static machine translation engine for the multilingual question answering. As a qualified

QA system which is capable for integrating and managing with different processing

models, PowerAnswer is claimed as a fully-modular and distributed multi-strategy QA

system. It has been attached with several powerful components such as: semantic

relations, inference abilities and syntactically constrained lexical chains. In the meantime,

the translation engine was defined as the open-source Phramer system [41]. It exploits a

phrase-based machine translation algorithm for dealing the questions in different

languages.

When PowerAnswer is dealing with the questions in English, French and Portuguese, it

translates the input queries into English and matches the relevant English passages to this

translated query. Then those English passages are retrieved back to the source documents

and search the final answers for the users.

3. Medical QA System

In paper [42], the authors claim that dude to the requirement of the high quality medical

topic information, the clinic-domain question answering systems need to be

accomplished with the higher level techniques rather than the simple syntactic analysis.

Thus, the semantic information should be imported carefully into those systems. Based

42

on this realization, they presented a question classification strategy for the clinic domain

QA systems.

Different from the ordinary question classification strategies, the researchers used a

semantic categorization scheme to determine the questions’ type again after the questions

are simply classified based on their key words such as “HOW”, “WHY”, etc. They

created four levels of the questions categories. The first level is based on the semantic

relations detected in the questions. For example: the keyword “symptom” will lead the

detected question to a specific category. The second level of the question classification

focuses on the semantic classes’ types. For example: the key word “transfusion”. The

third level depends on how specific the question is. It has only one logical factor with the

value of yes or no as the indicator of the analysis result. The fourth level determines

whether this question considers a particular situation. Thus, it is either general or

contextual. This re-classification procedural performs a better questions analysis

specifically on the close-domain knowledge such as the clinical questions in our case.

Another clinic question answering system is made and introduced in paper [43]. The

writers named their system as AskHERMES. The main task of AskHERMES is

semantically analyzing the complicated and professional clinical questions and giving

back the correct and summarized answers.

A few professional document collections are involved: MEDLINE abstracts, PubMED

Central full-text articles, eMedicine documents, clinical guidelines and Wikipedia

articles. They are the knowledge resource of AskHERMES and providing the correct and

professional information to the users.

43

As the evaluation of their clinic-domain QA system, the writers compared AskHERMES

with the Google search engine and the UPTODate clinical database system based on the

quality of the produced candidate answers, the system processing time and the users’

using experience. The result of this comparison showed that AskHERMES offered an

overall satisfied performance. It apparently had its advantages when dealing with the

complicated clinical questions. AskHERMES gave the better answers to those questions.

Furthermore, in paper [44], the researchers presented a system which offers the decision

supports for the doctors’ medical diagnosis and treatments based on the medical

knowledge. This system is mainly made of three models: an input model, an output

model and a question answering model. The input is the description of patient’s

individual situation. This information will be converted into the formal search queries to

seek for the possible medical diagnosis or treatments prepared in the database. The

system then calculates the medical evidences detected in those queries and assigns a

confidence value to each potential diagnosis or treatment by the help of the output model.

Those candidate answers are then ranked based on their confidence values and sent back

to the doctors as some appropriate suggestions.

Another Clinical QA system is introduced in paper [45]. It is named as Multi-source

Integrated Platform for Answering Clinic Questions (MiPACQ). It accepts the free-

format clinical questions and returns the answers based on its multiple knowledge

sources. The word “integrated” in its name indicates that it combines both the IR and the

NLP techniques together.

44

The basic steps involved in MiPACQ are: expected answer type annotation, questions

semantic annotation, query term expansion, information retrieval, result set semantic

annotation and answers re-ranking.

The researchers evaluated MiPACQ with a human-annotated evaluation database which

is based on Medpedia health and medical encyclopedia. It has been observed and proved

that MiPACQ performs 84% improvement in the precision value. Here, the evaluation

indicator “precision” is defined as the proportion of the number of relevant documents

retrieved by the system among the number of documents this system actually retrieved

based on one test question.

Another significant factor in the medical information is the time factor. When did this

record of a patient with the epidemic bronchitis stored into the system? When was the

first case of the epidemic bronchitis being reported? The temporal information matters

very much in the clinical research and the evidence-based applications. It determines how

long a disease lasts, which season is a popular season for an allergic symptom, etc.

However, extracting and annotating the temporal information from the stored medical

records are still the challenges for the current techniques. In some cases, the temporal

information was not explicitly described in the original documents. It needs to be inferred

in order to acquire a correct date. Not mention this time factor is also hard to be described

in the search queries to retrieve the relevant and sophisticated documents in the database.

Based on this challenge, in paper [46] the writers come up with a clinic time-oriented QA

system. They utilized a semantic web which is edited in Web Ontology Language (OWL)

to offer a suitable environment for acquiring the temporal information. By accomplishing

45

this goal, the researchers stored the temporal information into some related triples by

using the clinic-domain ontology. The QA system then matches them to the related the

queries and rank the candidate answers based on those time-oriented triples.

4. QA Systems on Mobile Devices

In paper [47], a new QA system whose name is Qme! is introduced and explained.

Because of the strongly increased mobile device users, the novel feature of Qme! is that it

is built on the mobile devices with a spoken language processing technique. Although

there are still limits and disadvantages such as the small screens, inconvenient keyboards

and weak signals sometimes, Qme! still successfully solves a part of the challenges by

allowing the users use it outdoor without typing the questions by their hands.

Moreover, Qme! re-defines the questions’ type by two terms: static and dynamic. The

static questions are the questions that the system can retrieve the answers directly from

the pre-generated answers. Apparently, the static questions can easily get the more

accurate answers. For the dynamic questions, the system has to look for its relevant

information from the related web pages. Unfortunately, the semantic web retrieval does

not give back the better results to the dynamic questions.

5. Ontology Based QA System

In paper [48], the writers present their QA system which is named SemanticQA. It is a

web-based QA system using the ontology as its main methodology. Especially, its

ontology component is changeable with any other ontology for the different developing

strategies. The writers also introduced their user interactive user interface in SemantiQA.

When the users are typing their questions term by term, the system dynamically suggests

46

some of the related worlds to the users to put into their questions. Those suggestions are

made based on the entities’ names the user just typed. For example, a user typed the word

“professor” and the entity “professor” in the system’s ontology database is connected

with “faculty” and “department”. Thus, these two words “faculty” and “department” will

be shown under the question window immediately to help this user to form a more

explicit question. In this way, the more formal questions with higher qualities are created

by the cooperation between the users and the system. It helps the system to analyze the

natural language questions and retrieve the better answers.

In paper [49], the writers introduce a close-domain QA system called AQUA. AQUA

involves the technologies including the NLP, the ontology methodology, the logic

interfering and the IR techniques in a uniformed frame work. The researchers took the

great advantages of the ontology methodology to reform questions, map them with the

relevant answers and measure the similarities between the questions and the candidate

answers. Moreover, the answer similarity this QA system measures helps with the

concept re-changing process for the better answers. It also helps with a logic formula to

further evaluate those candidate answers.

Since the semantic web annotates the web resource with the semantic information, this

type of annotations can be used by any other intelligent systems to perform a better

semantic analysis. AQUA is then expected to be able to play a more important role in the

process of annotating some home pages.

Sbuqa question answering system is another ontology-based QA system in paper [50].

The researchers designed this system with a Lexical Functional Grammar (LFG) for a

47

deeper question analysis. The LFG is a meaning based grammar which analyzes the

sentences at the semantic level instead of the syntactic parsing level. The difference

between those two levels is that the semantic level contains more abstractive

representations than a syntactic parser tree which only focuses on the relations between

each entity. Therefore, the LFG is able to locate the topics of users’ questions. Moreover,

the LFG deals with the longer sentences which contain more details of the question

topics. It is also capable to work with the multi-language situation and multilingual

question answering systems.

6. User Interactive QA System

The QA systems are not only classified by the different software environments they are

embedded into, they also can be distinguished from their different user interactive

interfaces. In paper [51], the authors present a system named as NPCEditor. This open-

domain QA system supports the users interacting function and creates the users’ own

assistances individually with the users’ different preferences and demands.

The core algorithm of NPCEditor is a static text classification algorithm which helps the

system mapping the questions to the related answers. It makes the system not over

relying on the knowledge pre-training process of a huge amount of raw information. Thus

means the new and random question which is a big challenge to the QA systems are no

longer be replied by the low quality answers. The reason the writers are confident about

this algorithm is the interactive dialogue the users use to communicate with the system.

This strategy helps the system narrow down the relevant topics and the correct answers

with more explicit details acquired from the user-system conversations.

48

Another paper [52] introduces two different user interfaces which allow the users

interacting with the system. The clear and straight instructions are offered to the users

during the interaction. Based on that, users can easily customize their own questions with

some given semantic patterns. Therefore, the authors implemented their system with a

Guide-Based User Interface (GBUI). Apparently, this system is not an open-domain

system. It limits some certain knowledge areas so that the users can have a limited

number of semantic patterns as the options to create their queries.

For the details of this GBUI, there are only 3 steps for the users to follow before they get

the relevant answers back.

Step 1: Category Selection. As it was talked above, this system is a close-domain system.

The users are only allowed to ask the questions in some certain fields. This step makes

sure the users understand this feature and have their first chance to narrow down the

question domain. Two levels of concepts are offered to the users to choose. For example,

if users first choose the class of “natural”, then they may choose the next level of concept

as “animals” or “plants”.

Step 2: Pattern Selection. Since the users have made their decisions about which area of

knowledge they are interested about. Step two shows some question patterns they may

use to form their questions. In this step, “What” and “How” question patterns are both

listed. However, the users have only few options to choose.

Step 3: Question Formulation. In the last step, the question patterns the users picked up

before are showing the main subjects the users can fill their own words in. For example:

for the pattern “How long will [entity\event] last?” the users are allowed to fill one

49

specific entity or event name in the square bracket to complete this question. Once they

have finished filling with their own words, the system automatically formulates the

question the users formed up and submits them to the system to search the related

information.

This Guided-Based User Interface is certainly better than the traditional UI while

working with a close-domain QA system. The users have a clear understand in each

question forming step and they are sure about which type of questions they can ask to get

an expected answer. A simple way to raise the satisfaction of the users’ experience is that

offering more question patterns in the second step above to allow the users have more

options to customize their questions. However, it will also increase the complexity of the

coming information retrieval and the total searching efforts.

7. Other QA Systems

7.1 Online Store QA System

As the online commercial websites have been developed and increased extraordinarily

those days. The users who are seeking or shopping for some products online get more and

more options than before. Thus, they have to compare the prices and the specifications of

the products not only from one website but also throughout the whole internet. According

to this fact, the researchers in paper [53] designed a close-domain QA system which

helps the users acquire the best deal of the products they are looking for from all the B2C

commercial websites.

Basically, this QA system uses two agents to accomplish this goal. The user negotiation

agent deals with the natural language questions receive from the users. It analyzes the

50

users’ questions or demands, extracts the keywords and helps the users setting up the

specific constraints for their ideal products. Then a web crawler as another agent crawls

the necessary information from the targeted websites based on those key words and

constraints. Finally, the user negotiation agent displays those useful and qualified product

information based on users’ requirements. For example, it displays the products from

lowest price to highest ones to help the users finding the cheapest deal.

7.2 Academia Sinica QA System

The Authors in paper [54] represent a QA system called Academia Sinica QA system

(ASQA). Five models were built up and used in ASQA. After the users submit their

questions, the question processing model first analyzes the question by extracting its

keywords and the topic. Those keywords and topic will help the document retrieval

model to pick up some relevant documents throughout the corpus. However, as an

intelligent QA system, feeding back just the original documents to the users is not the

ultimate task. That is why the sentence selection model then retrieves and evaluates each

sentence from those relevant documents. Only the qualified sentences whose evaluation

marks are higher than a certain threshold will be ranked and sent back to the users as the

candidate answers. Additionally, another model named redundant removal model is

attached in ASQA as well. It detects those qualified sentences and checks if they are

similar with others. Thus, the redundancy in those potential sentences will be eliminated

and the system efficiency is then increased.

7.3 Music Knowledge QA System

51

For the close-domain QA systems, a special member of them is a music knowledge

domain QA system [55]. It is an ontology-based system which deals with the music

knowledge. It also works with a collection of Frequently Asked Questions (FAQ) for an

efficient question process. This FAQ collection stores some popular music-domain

questions and each question has already been answered. Those answers are also stored in

the database along with their corresponding questions. The Music Knowledge Question

Answering (MKQA) is composed with six basic models including the question classifier,

FAQ question matcher, question analyzer and answers extraction. The users first type in

their music-topic questions, those questions are then converted into eight general classes

and forty-six children classes to match with the information stored in the FAQ. If the

original question matches some questions in the FAQ collection, then the answers of

matched questions in the FAQ collection are sent back to the users as the candidate

answers without the further evaluations. If this is the first time MKQA system deals with

some questions, it means those questions cannot be matched with the stored questions in

the FAQ collection. Then the ontology analysis is executed to form some new answers to

those new questions. Those new answers will be evaluated with some evaluation

algorithms before being fed back to the users.

7.4 LogAnswer QA System

In paper [56], the writers introduce LogAnswer. LogAnswer is an open-domain QA

system. It is different because of an automated theorem prover which restricts the

candidate answers. This prover retrieves the answers from a logical knowledge

representation by using the inference technology. It also considers the total time cost and

52

the answer qualification for the whole system. Thus, the researchers set three main

constraints for this prover to optimize its performance.

First of all, since LogAnbswer is an open-domain system, a qualified prover has to be

able to deal with a large knowledge collection so that the prover can answer the questions

on the wider topics. Secondly, since the prover controls the constraints of picking up the

candidate answers, it must be also attached with a constraint relaxation loop to deal with

the situation of no answer is retrieved. Another purpose of installing this relaxation loop

is stopping and releasing the prover when it is processing some imperfect documents with

an unaccepted time spent. The last requirement of the prover is supporting the answer

extraction procedural. It needs to claim the answer substitutions to help the topic

expansion for extracting the more relevant answers.

According to those three requirements, the writers designed two provers for LogAnswer

system. One is called the MultiNet Prover which proves a question from a passage in less

than 20ms on average. Another one is named as the E-KRHyper Prover. It participates in

the reasoning procedure in LogAnswer.

7.5 Photo-based QA System

In paper [57], a very unique and experimental QA system is represented by the

researchers. It is a photo-based QA system. For the users who use text-based QA system

to ask questions about some subjects with the physical specifications, for example “How

big is a 3kg watermelon”, they are expecting more than some words describing the 3kg

watermelon. Therefore, the researchers came up with this photo-based QA system. By

using the updated image matching technology, it is able to match a query photo with

53

some photos online and acquire the internal semantic information from those online

pictures. This semantic information will be fed back to the users along with those

corresponding online pictures. For example, the users can upload a celebrity photo and

ask who he is. The photo-based QA system will then match this photo with some similar

photos online based on the question type “WHO”. It will give back a few celebrities’

names to the users by acquiring the text information from those matched photos.

However, if we use an ordinary text-based QA system to deal with this users’ demand,

the results will be empty since the users do not know any details of this person and it is

hard to describe him or her with words. Even for some extreme cases where some photo-

based questions cannot be answered, the researchers designed an expert community to

answer some of those questions manually. This photo-based QA system is not only a

novel multimedia information QA system; it also efficiently explores the usage of the

online multimedia data resource.

7.6 Pythia QA System

In paper [58], a new QA system named Pythia is presented. The researchers who

designed and implemented Pythia claimed that they had accomplished it mainly with two

general ideas. First of all, they came up with a general meaning representation which can

be converted into the formal queries for the system to understand. In order to conduct this

conversion, they used the principle linguistic analysis.

The second idea their system uses is a new designed user interface which is based on the

lexicon ontology. It means this UI requires the users to decide an explicit area of

knowledge to help the system narrow down the number of retrieved documents.

54

7.7 Explanation QA System

In paper [59], the writers implement their theories with an open-domain QA system. The

reasons that this system is different from others are: it feeds back the explanations of the

candidate answers to the users as the references; its core theory is about the semantic

graphs. First of all, the explanations of answers are comprised by three parts: a visual

representation of documents, a fact list which is stored with the format as subject-verb-

object corresponding to the documents, a summary for each document. Moreover, the

fact of each document is created based on each sentence with the help of the Penn

Treebank parse tree [60].

However, this system is not a complete open-domain system. The researchers who

designed it claimed that not all of the question types can be understood by the system. To

avoid this situation, they used a predetermined template to restrict the users’ input.

Furthermore, the documents in the database are stored with the semantic representations

and graphs. The candidate answers are mapped based on those two data structures and the

information on the document fact list.

7.8 True Knowledge QA System

In paper [61], an open-domain QA system called True Knowledge is created by the

writers. Its database was built with both the static and dynamic knowledge with a

structured knowledge representation. The natural language questions written by the users

are converted into the language-independent queries. Then, the True Knowledge QA

system uses these queries with the knowledge representation and a general interference

model to map the candidate answers.

55

The knowledge representation helps the QA system analyze and store knowledge with an

appropriate and efficient structure. For example, Enteritis 1: Big Ben, Relation: is

located, Enteritis 2: London. This kind of structure performs a better understanding of the

stored information for the relevant document retrievals.

7.9 Survey Research

In the survey [62], the writers compare some popular QA systems with their

performances and some new updated technologies involved in this area. The writers did

not include Google and MSN search engines due to their limited answering capabilities.

Google only correctly answers some geography-topic question such as “how many

provinces does Spain have”. Meanwhile, MSN search engine is only based on the

Encyclopedia Encata as the knowledge source to answer the limited number of questions.

Therefore, the researchers have compared six QA systems and they have achieved some

quite different results from each of them. The QA system called AskJeeves answers

questions with its manually created database. Thus, the questions’ topics are also

narrowed only by the encyclopedic requests. Ask.com which is an online open-domain

QA system works with a keyword search engine called Teoma. Due to this fact,

answering each test question with the up to two-hundred candidate answers does not offer

a satisfied precision even though those answers are ranked for the users.

Moreover, only two of those six evaluated QA systems deal with multilingual languages.

They are AskJeeves and AnswerBus. AskJeeves is also the only system which crawl the

entire web. Others only acquire the knowledge from some particular websites or directly

from some knowledge sources.

56

The writers explained those observations as the different purposes of the different QA

system. The commercial QA systems are particularly interested in increasing their

popularity for getting more advertising opportunities. The research-based QA systems

which are not competing with the commercial systems are interested in exploring the

newer and better algorithms on the academic purpose.

Summary

In this survey, the Question Answering (QA) systems and their involved technologies are

introduced and summarized based on the latest sixty papers in this area. It is very clear

that the QA technology is the most popular and developing technology recent years due

to the high demand of the high quality answer searching experience. The new approaches

made in this area are mainly following the trends which are Natural Language Processing

(NLP), Semantic Information Crawling and Ontology methodology. However, the NLP

technique is still the hottest topic among all of them. It is because understanding what the

users are trying to ask is still the biggest challenge in QA systems. It is the key point to

the QA systems to offer the high quality answers back to the users. Moreover, the

popularity of NLP technique is also because it is highly needed in other areas which

involve the user interactivities.

Furthermore, the Semantic Web Crawling has also been given more attentions than

before since the questions are more needed being processed with the semantic patterns

instead of the traditional syntactic patterns. Thus, these semantic-based queries need to be

matched with the documents which contain more semantic information. In other words,

the document collections should be pre-processed to be prepared for the semantic

57

information matching. Thus, more correct answers are formed from the highly distributed

passages.

The ontology methodology is another efficient choice for the document preparations. The

relevant information is organized into the same class with the different level and also

connected with others to represent its internal structure. This high structured database

then raises the accuracy and efficiency of the whole performance of QA systems.

However, there is still not a perfect and mature strategy or system which is able to solve

all the challenges and problems in this area. It leaves more spaces to the researchers to

improve their approaches. We are looking forward to hearing more breaking news

because they will change everyone’s life by answering their questions faster and better.

58

CHAPTER 2

My work

1. Introduction

As the Internet has become an important part of our lives. People are now more likely to

search for the answers to their questions by using online search engines like Google,

Bing, Yahoo, etc. However, the search results users get back are just links to web pages.

Users have to look through a huge amount of links for the real answers they need.

In most cases, if a user types in their question as “What are the top five longest rivers in

the world?” They will get about 5,890,000 links in 0.32 seconds. But all they need is a

list of the names, locations and lengths of those five rivers.

During our initial research on the Google search engine, we used a number of “how-to”

questions to test the quality of Google’s search results. Here are the results of our

experiments: the average time Google used to retrieve and send back ranked links as the

responses to the test questions was less than one second. Using Google the answers could

be found among four of the top five links, on average. However, more links in the top

five web pages may need to be followed by the users. More importantly, almost three of

the top five links, on average, offered the direct answers.

Based on the results of our experiment above, we have designed a Question Answering

(QA) system which improves the search results from Google by analyzing the searched

web pages first and answering the users’ questions directly. Due to the high quality of the

top links Google offers, the QA system uses Google as its search engine to perform an

open-domain question answering service. It extracts text documents from the top links

59

from Google, retrieves the relevant passages from these documents and sends the ranked

passages as the candidate answers back to the users.

In the research area of the QA systems, they are defined as the systems which are able to

automatically and directly answer users’ questions. Researchers in the QA area have been

trying to develop a system which can perfectly understand and answer users’ questions

submitted in natural language for the past fifty years. There are different kinds of QA

systems which have different functions and features: biology QA systems; medical QA

systems; interactive QA systems and so on. Those QA systems can also be classified into

two general categories: closed-domain QA systems and open-domain QA systems. The

closed-domain QA systems only answer questions in some certain topics such as the

biology QA systems and the medical QA systems. The open-domain QA systems like our

system, on the contrary, cover more general topics to answer more questions.

There are two main technologies involved into the QA systems: Natural Language

Processing (NLP) and Information Retrieval (IR). NLP technology supports the systems

for better understanding the users’ questions. It usually contains the syntactic and

semantic question analysis to properly convert the questions into the format that the

machines understand. After acquiring the searching queries from the users, the IR

technology makes sure the systems are able to retrieve the relevant and correct

documents as the answers to the users’ questions. Since the Google search engine has

been comprised with a high-functioning NLP component for analyzing the search queries

from the users, our QA system which improves the search results from Google mainly

focuses on the IR improvements.

60

To generally introduce our QA system in this section, the system firstly offers a simple

and friendly user interface to receive users’ questions written in natural English. These

submitted questions then are sent to the Google search engine by our system to acquire

the corresponding Google search results including the ranked links of the related web

pages.

Furthermore, a web crawler of our system analyzes the received Google search results

and downloads those searched web pages into our local machine. Once the system

receives those web pages, it will execute the document preparation. The first step of

document preparation is to build a new document collection for the submitted question.

Our system firstly detects the text contents on those downloaded web pages. The detected

text contents will then be divided into several documents based on their original

paragraph structure. Thus, each related web page is converted into several independent

documents which contain one of its paragraphs.

The second step of the document preparation is indexing the entire document collection.

Each term is indexed by our system with the document information of which it occurs.

Moreover, the values of the Term Frequency (TF) and Inverse Document Frequency

(IDF) are also calculated and attached to each indexed term. The TF value indicates the

number of times a specific term appears in a particular document and the IDF value

denotes how many documents this term occurs in the entire collection. Therefore, the

term indexing helps the system not only locating the target words faster but also

estimating how important they are individually in the different documents better. We use

the Vector Space Model to build up an indexed term matrix for storing those term

locations and their TF-IDF values for the document retrieval step coming next.

61

Our QA system has also been implemented with two strategies to increase the efficiency

of the document indexing. The first one is about eliminating high-frequency terms such

as “it”, “in”, “to”, etc. in the index. Those terms will disturb the document retrieval of our

QA system by retrieving more irrelevant documents for the questions. Therefore, our

system ignores those terms during the indexing based on a list of the high-frequency

terms. The next strategy is called term stemming. To make sure the terms which share the

same meaning but different formats are treated as the same word during the document

retrieval, our system first stems each indexed term before it is saved into the index

matrix. Thus, a group of terms such as “know”, “knew” and “known” will be indexed as

the same term and detected in the document retrieval while one of them appears in the

users’ questions. These two strategies involved into the document indexing makes sure

our system to retrieve more relevant documents and less irrelevant ones.

The questions users submitted will be processed by the system as well. To be able to

detect the semantic connection each time between the received question and one of the

documents which do not share a common term in the collection, our system utilizes the

searched web page snippets from the Google search engine to expanse the question. The

question then is expanded by some high related terms offered by the snippets of the

searched web pages. The expanded question will helps our system retrieve more relevant

documents as the candidate answers to the users.

Based on the same high-frequency word list and the term stemming strategy used in the

document indexing, the expanded questions are also processed before the document

retrieval. The high-frequency words will be eliminated from the questions. For example,

in the question mentioned above, “What are the top five longest rivers in the world?” will

62

be processed and only “top five longest rivers world” will be left for the answer retrieval.

The left terms will also be stemmed by the system to match more indexed and stemmed

term in the document collection.

By using the indexed term matrix and the expanded questions from users, our QA system

will then be able to match the relevant documents to the questions. It utilizes the

traditional term-based document retrieval strategy to detect the common terms shared by

the documents with the questions. Thus, as long as a document contains at least one

common term with the expanded question, it will be retrieved back to the users as one of

the candidate answers.

To rank the retrieved candidate answers for the users to view, we have also modified the

measurement called Cosine Coefficient Similarity Measure (CCSM) to evaluate how

relevant each candidate answer is to the question. The modifications we made are

importing both the document length information and the resource web pages’ ranks into

the CCSM based on the features of the documents in our collection. Since the documents

our system deals with used to be the paragraphs in the web pages, the longer documents

more likely contain the expected answers for the users. Also, the searched web pages’

ranks from the Google search engine offer some general ideas of the qualities of the text

contents each of them contain. Thus, the documents extracted from the web pages which

received higher ranks from Google probably contain the information with the higher

quality. Overall, a retrieved document with a higher modified CCSM value has a higher

possibility of containing the answer users are looking for. Our system then presented

those ranked candidate answers in inverse order based on their modified CCSM values.

Thus, the users are able to view the more potential documents first.

63

Our QA system also offers a novel step called question refinement as an advanced search

to the users. After users go through the candidate answers for the first time, they will be

asked if they have found the ideal answers they need in an accepted time. If their answers

are no, there will be another search step asking users to refine their questions for the

better results. The first step of this refinement is query reformulation. Users may find that

some key words are missing and need to be added to the queries, or that some misleading

words need to be eliminated. This decision is made by the users themselves based on the

previews search result shown beside as the reference of their refinements. If the users

create a new question, the system will send the new question to the Google search again

to create a complete new document collection. The question revision changes the

members of the candidate answers next round.

The second step of the query refinement is query weighting. Users will be asked to give a

numeric value to each word in their queries to emphasize some key words in the next

document retrieval. The higher value a word gets, the more important it will be treated

during the next document ranking. The query term weighting affects the ranks of the

future candidate answers.

The last step is about building a Boolean “NOT” query and bind it to the text question for

a stronger restriction in the next document retrieval. The users can add some terms they

do not expect to see in their future candidate answers. A document in the collection

which contains some of the terms in the Boolean query will not be retrieved back no

matter how many common terms it shares with the question. Same with the query

revision, the Boolean query also has the power to change the constitution of the coming

retrieved documents.

64

Thus, a new revised query which carries more useful information for the next document

retrieval will be sent to the Google search engine again to get the new related web pages

if needed. The whole process of document preparation, question processing, passage

ranking and query refinement will be executed again until the users find the expected

answers.

Overall, our QA system aims to utilize the results of the Google search engine and

information retrieval technology to improve the quality of answers returned by the

internet. In the following section 2, some related research works are discussed for the

originality and improvements of our work. The sections 3 to 9 represent the details of

each component of our system and the involved algorithms and strategies. The section 10

introduces the completely implemented system. We also discuss evaluation results of our

improved algorithm and strategy in the section 11. The last section is the summary of our

work.

2. Related Works

In this section, a novel document retrieval strategy is firstly introduced. The motivation,

process details and advantages of this strategy are explained. The disadvantages are also

discussed to indicate the differences between the original strategy and our improved

retrieval strategy. Moreover, some related QA systems are also explained. We are

discussing their specialties and shortages to emphasize the originality of our QA system.

2.1 Document Retrieval Strategy

Since our QA system first utilized the traditional term-based document retrieval strategy

to match some relevant documents in the collection to the received users’ question, only

65

a document which shares at least one common term with a user’s question can be

retrieved by our system. For example, if a user type in a question as “what is AI”, the

document “Artificial intelligence is the intelligence of machines and the branch

of computer science that aims to create it” will never be retrieved by our QA system. It is

because this document shares no common term with the user’s question. However, this

document is highly related to the question and can be the best answer to help the user

understand this concept. It should be retrieved and sent back to the user to be viewed.

This is how we miss the valuable semantic connection between “AI” and “Artificial

Intelligence” by simply using term-based document retrieval strategy to search for the

related documents as the candidate answers. It clearly decreases the answer quality our

QA system produces.

For avoiding this situation that some important and related documents are not retrieved

by our QA system, we have made great efforts on researching and experimenting

different algorithms and strategies. We have first utilized a traditional strategy called

term stemming which helps our system detects more common terms without being

distracted by the different term suffixes and prefixes. But we have also noticed that the

term stemming still did not change the fact that the semantic information was missing

during the retrieval. Because of the variety of information from the Internet and the

unlimited questions we are dealing with. This was a big challenge to our system to

dynamically detect the semantic connection between a question and one of the documents

in the collection. Not only us, as it was talked in the chapter 1, other researchers in this

area have also realized the affection of this fact and utilized different strategies such as

the syntactic and semantic analysis on the document collection to fill the semantic gap

66

between queries and documents. Among them, Mehran and Timothy [63] designed a

novel and powerful strategy to try to solve this problem without integrating the systems

with the complicated and expensive semantic analysis.

In their research, they claimed that in order to match two semantically connected

documents together such as “AI” and “Artificial Intelligence” which do not share any

common terms, a practical option is expanding each of them with some corresponding

relevant terms. Apparently it has been proved that those two documents have a zero

possibility of sharing common terms. With the two new expansions, they will definitely

have a higher possibility to share one or more overlapping terms. Therefore, a QA system

can combine the straightforward and affordable term-based document search strategy

with the new document expansions to accomplish the retrieval without losing the

semantic information.

Then how to expand two “irrelevant” documents became the most important topic in

Mehran and Timothy’s research. They needed to carefully choose some qualified and

related terms to expand each document in the collection with the consideration of the

processing time. Clearly, using a collection of synonyms to attach the related terms to the

documents is an option. However, the synonym collection can be out of date; some

unimportant terms in the document have also been attached with their synonyms. Those

disadvantages affect the quality of the expansions and the retrieved answer quality of the

QA systems eventually.

Therefore, instead of using a synonym collection, Mehran and Timothy utilized the

search results of the Google search engine. They first send the two “irrelevant”

67

documents as two independent search queries to the Google search engine separately.

Then, they will get back a few searched related web pages for each of the original

document. The text contents on those web pages will be saved as the expansion resource

of the corresponding original document for the next process. Apparently, simply using

those text contents to expand the two original documents is not efficient. Each of the

original documents will be expanded into a large text document. The system processing

time will correspondingly be increased since more terms in each of the expanded

documents will be checked during the document retrieval. The document collection of the

QA system will be sharply expanded as well. Therefore, Mehran and Timothy first

calculate the TF-IDF value for each term in the searched web pages from Google. Only

the top 50 TF-IDF value highest terms in each searched web page will be saved to expand

the original document. Thus, if a QA system uses the top 10 searched web pages from the

Google search engine to expand a document in the collection, the original document will

be expanded with 500 new relevant terms.

Moreover, Mehran and Timothy found out instead of using the complete searched web

pages as the expanding materials, they could just use the web page snippets which are

shown under the searched links on the Google search result page. When users use the

Google search engine to search for some information, Google shows a web page snippet

under each searched link to offer a quick view of each web page to the users. Those

snippets are comprised by a few sentences which contain some common words with the

search query. For example, the web page snippet of the first searched link corresponding

to the query “what is AI” is “WHAT IS ARTIFICIAL INTELLIGENCE… This article

for the layman answers basic questions about artificial intelligence. The opinions

68

expressed here are not”. Thus, if we follow the Mehran and Timothy’s strategy to expand

the document “what is AI”, it will then be expanded with the terms such as

“ARTIFICIAL” and “INTELLIGENCE”. Therefore, after the expansion, the similarity

between the two documents “what is AI” and “Artificial intelligence is the intelligence of

machines and the branch of computer science that aims to create It.” will become higher

than zero as it was before. This is how the semantic connection between “AI” and

“artificial intelligence” are detected based on the document expansions. Figure 1 further

expansions the general Mehran and Timothy’s expansion process.

69

Figure 1

Related but share no common term

similarity = 0

send to the Google search

engine as a search query

send to the Google search

engine as a search query

searched a number of web

page snippets S { , …. }

searched a number of web

page snippets S { , …. }

save the top 50 TF-IDF

highest terms in (1≤ i ≥ n)

save the top 50 TF-IDF

highest terms in (1≤ i ≥ n)

expand with the 50*n new

terms

expand with the 50*n new

terms

Expanded

Expanded

possibly share some common terms

similarity ≥ 0

70

Since the Google search engine offers a better search result with a smaller text query,

each document we send to Google to acquire some relevant web page snippets for the

future expansion should be small as well. This was the reason Mehran and Timothy

claimed in their paper that their retrieval strategy only works for the short queries and the

small documents. However, this fact does not affect the testing result of their work.

Based on their evaluations, this snippet search strategy remarkably raises the similarity

between the traditionally “irrelevant” documents. Comparing with using a synonym

collection as the expansion material, the web page snippets help the system detect more

semantic connections between two sentences or two small passages. For example: the

new search strategy is able to show out the semantic connection between “java

programming” and “applet development” by the helps of their corresponding web page

snippets from the Google search engine. But the experiment showed that using the

synonym collection failed in this case.

Mehran and Timothy also explained in their paper that their search strategy is suitable for

the query suggestion systems. As a query suggestion system, it offers users some similar

and more valuable queries based on users’ own queries to assistant them acquiring the

information they are looking for. For example, if a user type in a question “which laptop

should I buy”, the query suggestion system will then show the user some similar but more

specific queries such as “2012 best selling laptops” to suggest the user to use. Hopefully,

the new suggested query will offer the user a better search result than the user’s original

question. In the query suggestion system which is using Mehran and Timothy’s

expansion strategy, there is a local pre-processed query collection in which each query

has been expanded by their web page snippets and stored. Thus, more relevant prepared

71

queries can be matched to the users’ question as the suggestions. Every time a user type

in a new query, the query suggestion system sends only this piece of original query to the

Google search engine to get expanded. The new expanded query will then be matched

with some of the prepared queries in the local collection. Even though the pre-processed

query collection may be large, each query of this collection needs only one time

expansion. The future query expansion will only make on the received users’ questions.

Therefore, Mehran and Timothy defined their new snippet search strategy as a lazy

strategy which means the document expansions only be executed when they are

necessary.

However, even though Mehran and Timothy claimed that their snippet search strategy

works with different term-based similarity measurements, it is not practical and efficient

to directly embed this strategy into some QA systems which perform the term-based

document retrieval on some dynamically updated document collections like our QA

system does. Those QA systems initialize a complete new document collection based on

the new question they receive each time. In our QA system, each time a new question is

submitted from the users, the system sends the question to the Google search engine to

search for the top 10 web pages back. Then a new document collection for answering this

question is set up by distributing each text paragraph in each searched web page and

storing them as independent documents in the collection. This means if we directly utilize

Mehran and Timothy’s search strategy to detect the semantic connections between the

received query and the corresponding document collection which usually owns more than

200 documents, we have to send more than 200 text queries to the Google search engine

to expand the documents and the users’ question with more than 2000 web page snippets.

72

Our QA system clearly cannot afford this expensive search strategy. In the section 7, we

will explain how we have modified and improved Mehran and Timothy’s strategy to

embed it into the dynamic term-based QA systems like ours. We used their strategy as the

basic concept and inspiration to develop a new document search strategy.

2.2 Related QA Systems

Moreover, our QA system is not the first QA system which keeps the access to the

information from the internet to answer users’ natural language questions on the open

topics. Other researchers have also noticed the great value of the information online.

Comparing with the building up a knowledge database by acquiring the necessary

information from some particular existing knowledge resources, using various online web

pages to extract the useful knowledge for answering users’ questions certainly has a few

advantages. First of all, the information from the Internet enables the QA systems

answering more questions on more topics. Especially for the open-domain QA systems,

the topics of the users’ questions are not limited. To guarantee this service, the open-

domain QA systems need to have more general knowledge databases which cover more

topics. Certainly, there are no other information sources better than the web pages on the

Internet to supply this demand of those QA systems. Secondly, due to the dynamism of

the Internet, the online information the QA systems collect is more up to date. The QA

systems then are able to answer some users’ questions with the information extracted

from the daily news and newest research approaches. The last, the users some time more

prefer being answered by some informal but experiential answers which are usually from

some online forums where discussions and communications are made. For example, the

query “Need some Italy travel tips” expects some answers from the people who traveled

73

in Italy before, professional and formal information such as “Rome is the capital of

Italy”, “The population of Italy is 60,626,442” is not the ideal answer to this question.

Thus, the QA systems which acquire its knowledge from the Internet are more capable to

answer the users’ unlimited both casual and personal questions.

As one of the open-domain QA systems which connect to the Internet talked above,

Valentin and Maarten [64] represent their QA system which has been developed to

answer users’ natural language questions on the unlimited topics. This system

concentrates on extracting the knowledge from a particular kind of web pages: Frequently

Asked Questions (FAQ) web pages. On the Internet, there are a huge number of questions

which have been frequently asked by the Internet users. The FAQ web pages collect

those high-frequency questions with their best answers and show the pairs of questions

and answers to the users for saving their time asking the same questions again online.

Valentin and Maarten noticed this huge value of the FAQ web pages and decided to

utilize it as the knowledge resource of their own QA system. They first visited a number

of the FAQ web pages and properly analyzed those web pages so that they can extract the

pairs of answers and questions correctly. Those downloaded pairs of questions and

answers then were saved into the data base together to complete the knowledge collection

of the system. Once a user asks a question to this QA system, the stored high-frequency

questions will be compared with this received question. The similar stored questions then

will be matched and ranked based on the similarities between the question and

themselves. At last, those marched high-frequency questions will be sent back to users

with their corresponding answers as the potential answers to the user’s question. Based

on Valentin and Maarten’s evaluation of their QA system, 3.6 GB of text data have been

74

downloaded from 293,000 FAQ web pages. By using this huge question-answer database,

this QA system successfully answered 36% of tested questions with the top 20 candidate

answers.

However, the variety of the questions’ topics on the FAQ web pages is still limited. Only

the questions which have been asked frequently will be able to be collected on the web

page and downloaded into Valentin and Maarten’s QA system eventually. This fact

decreases the ability of their QA system to answer users’ open-domain questions. Thus, it

explains the evaluation result that more than half of the tested questions were not

answered. However, as it was explained in the introduction, our QA system is

dynamically connected with the Google search engine. Each time our QA system

receives a new question from a user, it sends the question to the Google search engine to

get the different related web pages for the future retrieval. It means not only the topics of

users’ questions but also the retrieved answers are not limited by our system. As long as

the Internet contains uses’ expected answers, our QA system is able to detect them and

represent them back to the users. This is the major difference between Valentin and

Maarten’s system and ours. This difference leads the fact that our system can answer all

the questions Valentin and Maarten’s system answered since we also have the access to

the FAQ web pages by the help of the Google search engine. Our QA system also covers

more questions’ topics than Valentin and Maarten’s system does.

Another related work in the QA area was made by Jimmy and Boris [65]. They designed

and implemented a QA system called Aranea. Aranea is a web-based QA system. Jimmy

and Boris claimed and explained in their paper that due to the huge amount of

information on the Internet, accessing a web search engine to retrieve the potential

75

answers works better than having a local corpus to answer users’ questions. Thus, we

share the same system designing motivation with Jimmy and Boris. Moreover, they also

explained in their paper that due to the special feature of the Internet: data redundancy

[66], only one retrieved candidate answer which was extracted from the Internet may not

fully answer a received question. A group of related candidate answers offers a better

result. Therefore, this theory supports our QA system’s search strategy from another side

as well. Our QA system answers the users’ question with a list of ranked passages. Those

retrieved passages are originally from the different web pages of the Internet. Based on

Jimmy and Boris’ theory, this list of ranked passages performs a more complete answer

to the users’ question.

However, there are some major differences between Aranea and our QA system. First of

all, Jimmy and Boris used two different strategies to prepare their dynamic document

collection for each of the users’ queries. Unlike our QA system, Aranea saves the text

content on each searched web page as an independent document after it sends the users’

question to a web search engine as a search query. However, these searched web pages in

our QA system are just treated as the intermediate materials. Our QA system distributes

each text paragraph on each web page and stores them separately in our document

collection. Thus, our document collection contains the smaller independent passages

which use to be the text paragraphs in the web pages. The two document collections are

prepared with two different ways.

Secondly, after finishing preparing its document collection, Aranea utilizes the basic and

traditional pattern matching strategy to map some related sentences in the downloaded

documents to the query. For example, to retrieve the candidate answers to the question

76

“who invented the telephone”, Aranea extracts the query pattern “invented the telephone”

from the question and matches the similar sentences in the document collection.

Therefore, only the sentences which contain the exact same pattern with the query will be

retrieved. Some valuable sentences such as “Alexander Graham Bell and Thomas A.

Watson successful made the experiments with the fist electronic telephone device in the

late 19th century” are missed during the retrieval. However, our QA system has been

integrated with the term-based document search strategy to retrieve the potential answers

to the questions. It means, with the help of this search strategy, documents are able to be

searched by our QA system as long as they share the common terms with the query. To

the same query and document exampled above, since this document share the common

term “telephone” with the query, our QA system is able to retrieved it and send back to

the user as one of the candidate answers. In other words, the term-based document

retrieval strategy helps our system break the limitation of the traditional pattern search

strategy. No existing solid pattern which stops us retrieving the potential answers with

various formats is used into our search strategy.

Moreover, as it was explained at the beginning of this section, we have modified and

embedded a snippet search strategy into our QA system. This improved strategy allows

our QA system to detect the semantic connection between the query and each document

which does not share the common terms with the query. It remarkably raises the answer

quality of our QA system. However, like other traditional QA systems, Aranea misses the

semantic information during the answer retrieval. The original users’ questions are the

only references Aranea has to search the potential answers. Apparently, the implicit

information in the document collection is missed.

77

To the best of our knowledge, our QA system is a complete and unique QA system in this

research area. Its originality is guaranteed by its concentration and the integrations of

carefully improved retrieval and ranking strategies. The coming up sections will fully

explain the algorithms and performance of this system to further prove this fact.

3. System Diagram

Before going further to the details of each component and strategy integrated in our QA

system, the system diagram should be first introduced to offer the general ideas of what

the input and output of our QA system are; how different components are cooperating

and working together to produce the expected results. This section will help us explain

the each system processing steps in the following sections by showing a clear system

structure first.

Figure 2

78

In Figure 2, the complete process of the answer retrieval is described. The independent

objects involved into the retrieval are in the rectangles. The diamonds indicate the system

intermediate and final text productions. All executed steps are presented in the rounded

rectangles. Arrows in Figure 2 denote the directions of the data flow.

The first main task of our QA system is building a knowledge resource which is a

document collection for each of the users’ question. According to Figure 2, the user

interface of our QA system firstly receives a text question written in natural English from

a user. At this point, our QA system does not pre-process this piece of question. The

system simply saves the question and directly sends it to the Google search engine. It is

because the Google search engine does the query processing itself before searching the

relevant web pages. After receive the question, the Google search engine uses it as a

search query to retrieve the top 10 to 20 related web pages. It then sends those searched

and ranked relevant web page links back to our QA system. Those web page links are

exactly the same links the Google search engine shows to other Google users who type in

the same question. Furthermore, those links are sent back in a text package which has its

own data structure to our system. In this text package, there is other information of the

related web pages such as: the titles, web page snippets, web page types, etc. A web

crawler of our QA system then will be executed to extract the pure web links from this

package and use them to visit the searched web pages. After the link extraction, the

crawler visits each of the searched web pages, detects their text contents and downloads

them into the local machine. However, the web crawler does not just simply save the

complete text content on each web page as a text document. It analyzes the natural

paragraph structure of the text content and saves each paragraph separately into our

79

initialized document collection. Thus, our paragraph-based document collection is

created exclusively based this received question.

Before our QA system starts to retrieve the relevant documents as the candidate answers

to the question. There are two major steps need to be followed to pre-process the local

document collection and users’ query for a better search result. The first step is the

document preparation. The paragraphs which have been separately stored in the

document collection are first named with some identical digits to indicate not only their

identities but also the source web pages they were extracted from. The reason of naming

them in this way is that the Google search engine sends us a list of ranked web links to

denote the quality of each web page. The higher rank a web link got, the better

information this web page stores. Our QA system should not miss this important

information during the next answer retrieval. Therefore, in this step, the system numbers

each web page link with its own rank. For example, the top 1 web page link gets the

number of 1 showing it is the best web page based on the Google’s opinion. Then all the

paragraphs extracted from this web page get the suffix of “1” in their own identical file

names. Thus, our document collection classifies different documents based on their

source web pages.

However, this is not the whole process of the document preparation. More valuable

information will be analyzed and extracted from the documents in the next step of

document preparation: document indexing. For each document, each term it contains is

detected and evaluated during this step. The detection helps our system save the locations

of different terms from the different documents. Those term locations compose the index

of this document collection. With the help of this index, the system is able to search for a

80

particular document or term faster and more accurate. Also, during the document

indexing, a list of words such as “is”, “in”, “at”, etc. which are named as stop words is

used. The stop words on this list are the words occur frequently in the general English

documents. Those terms do not help our system distinguish each document but decrease

the indexing efficiency and retrieval accuracy eventually. Thus, those high-frequency

terms are not indexed by our system. Moreover, our QA system evaluates how important

each term is in each document and saves the term evaluation results along with the term

location in the index. This evaluation involves a few of term-based algorithms which will

be explained in the section 6. The term evaluation result is that each term in each

document is assigned with a numeric value indicates how important it is not only in a

specific document but also in the whole collection. With these values, our QA system is

able to “understand” the documents and find the more relevant ones based on the users’

questions.

To decrease the sensitivity of the term-based document retrieval strategy our system is

going to use to retrieve the related documents for the users’ questions, we also imported

the term stemming strategy into our document indexing process. The term-based

document retrieval our system conducts only match the exact same terms in the

documents to the users’ question. Those documents which contain the searched common

terms then will be considered as the related documents with the questions. Thus, fewer

related documents will be searched due to the sensitivity of this term matching process.

The imported term stemming strategy strips each term of their prefixes and suffixes

before indexing them. Therefore, terms which share the same stems will be treated as the

81

same terms during the indexing. Our system then is able to match the common terms

without being disturbed by the term tenses, numbers and different formats.

Another preparation before the document retrieval is the question processing. Our QA

system simply detects and eliminates the high-frequency terms in the users’ questions

based on the same list of stop words used in the document indexing. This step did not

executed at the first time when our system receives users’ questions because the Google

search engine also deletes the high-frequency words in the questions. Thus, our local

stop-word elimination does not affect the Google search results. For matching with the

documents which have been indexed with their stemmed terms, each term in the users’

question will also be stemmed in the same way with the terms in the document collection.

After those two steps, the users’ questions will become the “pure” search queries and

ready to be answered.

At this point, our QA system has the indexed and evaluated documents in its collection

and the “pure” question. Before it is ready to match the relevant documents to the query,

one more important step is needed. Our QA system needs to extract the snippets of the

searched related web pages in the text package the Google search engine sent back. As it

was mentioned in the related works and will be completely discussed in the section 7, the

web page snippets describe the connection between the search query and the web pages.

They explain the reason why those web pages are searched to the query by the Google

search engine. In other words, these snippets are highly related with the query which is

the users’ question in our case. Our QA system utilizes this special characteristic of the

snippets to expand our received question before the answer retrieval. With the help of this

82

query expansion, our QA system is able to detect more semantic connections between the

documents and the questions.

Following up is the core step of the system: the answer retrieval. Based on the important

preparations made above, our system is able to go through each document in the

collection and match the related ones to the expanded query. As long as a document

shares a common term with the expanded query, it will be searched by our QA system.

Furthermore, the searched documents are not sent back to the users directly as the

candidate answers to be viewed. To reduce the users’ efforts searching for the best

answers among the entire searched documents, our QA system ranks the candidate

answers based on how similar they are individually with the question and presents them

in the descending order based on their similarities. Thus, lists of retrieved and ranked

candidate answers are presented to the users to answer their corresponding questions.

This last step in Figure 2 is the query refinement. It is an optional step which only

depends on users’ opinions of the candidate answers they just received. Users will be

asked whether the retrieved documents have answered their questions or not. If their

answers are no, the option of the query refinement will be offered to them to help them

modify their questions. In the query refinement, users need to follow the three steps to

optimize their queries. The first step is reediting their questions by adding or deleting

terms if necessary. Secondly, they can also assign different numeric values to each of the

terms in their questions to emphasize some key words. If a term in the question gets the

highest value among others, this term will be treated as the key word during the next

answer retrieval. The last refinement is combining the existing term-based query with a

Boolean query. Users have this opportunity to bind a Boolean “NOT” query to their text

83

query. Any words assigned to the “NOT” query will lead the result that no documents

which contain those particular terms are shown in the next search result. Thus, this

Boolean query offers a strong restriction to narrow down the candidate answers next

time. Moreover, those three refinement steps are optional to the users to choose. If a user

skips the first step reediting the question, our QA system will not send the same question

to the Google search engine but use the same document collection during the next answer

retrieval. If the user changes the terms in the query, the new query will be sent to the

Google search engine to retrieve the new relevant web pages as the materials for building

up a completely new document collection. As it has been seen in Figure 2, the whole

answer retrieval circulation will be executed again and again until the users are satisfied

with the answers they received last time.

4. Google Search Engine

Since our ultimate goal is improving the retrieval of information from the Internet, our

QA system uses the web pages on the Internet as our original information resource to

process. On the other hand, to build up an open-domain QA system, we do need to have

an access to a large knowledge source where the information on different topics is stored.

By the help of the variety of the large knowledge source, our QA system will be able to

deal with the questions in unlimited areas and answer them properly. Based on this

system demand, the Internet is clearly the best choice for us. There are no other sources

or databases work better than the Internet to offer our system the unlimited and up-to-date

knowledge to process and retrieve. Moreover, the Internet contains the information in not

only different domains but also different types. Besides the professional and formal

knowledge such as the research articles and daily news, there is also the casual but

84

experiential information which usually can be found in the online forums and question

and answer communities. Thus, if a user asks the question “can you show me some Spain

travel tips”, our system is able to answer it with the information extracted from some

Spain travel forums where other tourists share their experiences and recommendations at.

Therefore, those are the two other main reasons we chose the Internet as the knowledge

resource of our QA system.

At the system designing phase, we had two options to design our system: a static system

or a dynamic system. In our research, the static QA system is defined as the system which

is attached with a solid and pre-process database. It largely predicts and imports the

knowledge before it receives the questions from the users and may update its database

occasionally. In most cases, the static QA systems are the close-domain QA systems. It is

because they have to limit the topics of the users’ questions so that they can import the

useful information in those limited areas for only once while they are preparing their

knowledge databases. In other words, they have to make sure they only receive the

questions which can be more likely answered by using their prepared database. The

advantage of the closed-domain QA systems is that they can be better prepared for the

questions since the knowledge are only needed from the limited areas. On the contrary,

the dynamic QA systems do not fully prepare their knowledge databases before receiving

the questions. They only import the knowledge purposefully when they know which field

of information they need to answer a specific question. In other words, the dynamic QA

systems treat the questions individually as the references of their knowledge importation.

Thus, some of the open-domain QA systems can be classified into the dynamic QA

system category. Based on our system demand discussed above, it was an easy decision

85

to make to build our QA system as an Internet-connected dynamic open-domain QA

system. By following this system designing direction, our system was designed to be able

to answer users’ questions in different and unlimited areas with the appropriate and up-

to-date information from the Internet.

In order to keep a permanent access to the Internet and download the necessary

information dynamically, our QA system needs to choose and connect to a web page

search engine. There are three main facts to evaluate a web page search engine: coverage,

efficiency and accuracy. An ideal web page search engine which reaches all the

requirement of our QA system has to be able to visit all the web pages on the Internet;

search an great amount of the pages in an acceptable time and retrieve only the relevant

ones based on the search queries. Therefore, according to Appendix A and Appendix B,

the Google search engine was the best choice for our system. Connecting to the Google

search engine is helping us not only retrieve the huge amount of information online, but

also analyze the users’ natural language questions without implementing the expensive

and sophisticated NLP techniques. As the matter of fact, the Google search engine offers

users a free access to connect with itself. Users can acquire the search results by sending

the text queries to the Google search engine. By the help of this service, our QA system

has been successfully connected with the Google search engine and utilizing its search

results as our knowledge resource.

The information communications between our system and the Google search engine are

based on the search queries and text packages. Each time our QA system receives a text

question from a user, it saves the original question in the local machine and send the

question to the Google search engine as a piece of search query without any further

86

modifications. The Google search engine then will receive the query and search for the

relevant web pages on the Internet based on it. The search result of Google is a list of

searched links which are the addresses of the relevant web pages. After the Google search

engine successfully produces this search result, it will comprise the result in a text

package with a specific data structure. In this text package, there are not only the web

page links the Google search engine searched, but also the valuable information such as:

the titles of the searched web pages, the web page snippets which describe the connection

between the search query and the corresponding web page, the total time the search

process cost, etc. Therefore, we have designed a special web crawler in our QA system

which is used for detecting and extracting the web page links from the text package. After

the detection and extraction, the web crawler visits each searched web page and

downloads the necessary information into our local machine. Moreover, those links are

not the only information our system needs in the text package from the Google search

engine. It also needs the web page snippets mentioned before. The web crawler also

extracts and saves them into our system. The purpose of this step will be explained later

in the section 7. So far, the web page links and snippets have been saved into our system

for the answer retrieval.

Furthermore, the main tasks of this web crawler of our QA system are visiting each

corresponding web page based on the list of links it just saved and extracting the valuable

and useful text information from them. Since the text contents on the web pages are

mostly the main components on the Internet, our system only processes the text

information as the knowledge resource to the users’ question. There are also a few facts

affect the web crawler downloading the text information. Firstly, as it will be fully

87

explained in the following sections, our QA system is going to use the term-based

document retrieval strategy to search for the potential answers in the document

collection. This strategy only detects and determines which independent documents are

qualified to answer the received question. Our system does not further extract a specific

sentence from a particular document as a candidate answers.

Moreover, as long as an independent document shares at least one common term with the

question, this document will be matched to the question and completely presented to the

users. Thus, the retrieved documents determine the readings the users have to make to

find the expected answer. Thus, there were considerations about the size of each

individual document in the collection. If the web crawler simply saves the searched web

pages into our document collection completely as the separate text documents, since

those pages have been approved by the Google search engine that they share the common

words with the users’ question, they will all be matched by our QA system’s answer

retrieval strategy and sent back to the users. Then there is no difference of the search

results to the users between our QA system and the Google search engine. In other words,

no improvement would have been made by our system. On the other hand, if the web

crawler exacts each sentence from the searched web pages and store them separately as

the independent documents, some important sentences which do not contain the common

terms with the question may not be retrieved by our QA system. This is not acceptable

neither since missing those sentences decreases the answer qualities of our QA system.

Therefore, comparing with these two extreme cases above, our QA system makes a

compromise between those two document downloading strategies: it saves the text

information from the web pages based on their natural paragraph structures. Thus, the

88

text paragraphs on the web pages are distributed and stored separately into our collection

as some independent documents. Since only a few of paragraphs will be sent back as the

candidate answers, our system then has successfully narrowed down the useful

information for the users and improved the retrieval results from the Google search

engine. Because of the matched paragraphs also carry some other sentences which do not

share the common terms with the questions but may be valuable, our system can also

present an acceptable amount of extra related information along with the matched

documents to expand and complete the potential answers.

While the different paragraphs are downloading from the web pages, an efficient strategy

to store them into our document collection is needed. First of all, as a dynamic QA

system, our system initializes a complete new document collection each time it receives a

new questions in order to keep the knowledge related and up to date. Therefore, before

the new paragraphs are saved into the collection, the previews stored documents will be

eliminated completely to initialize the whole document collection. Moreover, to identify

the paragraphs correctly, the system names each text document with five digits

exclusively. The first two digits specify the web page this document was extracted from.

The Google search engine has ranked those searched web pages based on their relevance

with the query. Theoretically, a higher rank a web page got, a bigger possibility this web

page contains the correct answers. Thus, the ranks of the web pages denote the quality of

their paragraphs. Therefore, our QA system uses the first two digits of each document’s

name to store the rank information of its corresponding web page. During the future

candidate answer ranking, these ranks will be considered as the references to evaluate the

documents. The last three digits in the documents’ names are the identical information to

89

distinguish them individually. Thus, the dynamic document collection has been carefully

built up and ready for the next process.

5. Document Indexing

After all the text contents from the searched web pages have been downloaded and stored

properly into the document collection by our QA system, there are a few more steps to

prepare the documents before the system starts to match some of them to the received

question. The first step is to completely index all the documents. As our QA system deals

with a text-based document collection, it needs to locate each term in the documents

correctly and efficiently in order to match the common terms between the question and

the documents. This is the reason our QA system stores each identical term in the index

with the documents’ IDs of which the term occurs. For example, if the term “mobile”

appears in the document number 01011 and 05059, our QA system will attach those two

document IDs to the word “mobile” in the index. In the answer retrieval coming next, if

the term “mobile” is also found in the received question, our QA system then is able to

match the document 01011 and 05059 to this question since they are related according to

this common term.

However, not every single term in the document collection should be indexed. The high-

frequency terms in the documents such as “in”, “to”, “at” do not need to be matched to

the question since they do not represent the semantic meaning of each document and the

question. Using those high-frequency terms in the document indexing and retrieval will

decrease the quality of the candidate answers eventually. It is because more irrelevant

documents which share some common but useless terms with the questions are retrieved

by our system as well. Therefore, during the document indexing, our QA system ignores

90

all the high-frequency terms based on a list of stop words [67]. The words on the list will

not be recorded with their occurrences so that the system will no check them during the

common term matching. Based on the same purpose, our system also eliminates all the

high-frequency terms in the users’ questions. Thus, no such terms appear and disturb the

document retrieval.

There is also another retrieval situation our QA system should avoid of. When a user ask

the question “who sponsored the first Olympic Game”, the document “Evangelos Zappas,

a wealthy Greek-Romanian philanthropist, was the sponsor of this event in 1856” which

is the perfect answer to this question will not be retrieved. It is because this document

does not share a common term with the question. To our QA system which indexes its

document collection by using the spelling to identify each word, the terms “sponsor” and

“sponsored” as two completely different terms to our system. Thus, the groups of English

terms which share the common stems are not treated as common terms. It leads us to the

result that valuable documents are missed during the answer retrieval like the situation

mentioned above. To avoid it, our QA system conducts a process called term stemming.

During the document indexing, while the system are recognizing and recording the each

term, the term it is dealing with firstly is stripped of its suffix and prefix in order to be

saved only with its stem. For example, the terms “sponsor”, “sponsored”, “sponsorship”

will be stemmed and only the stem “spons” will be stored. The documents all those three

terms appear will be recorded under the stem “sponsor”. Thus, our QA system will treats

those three terms as the same term during the next common term matching. Same with

the document term stemming, after the system receives a question from a user, each term

in the question besides the high-frequency terms will be stemmed as well. Thus, the

91

question and documents from the example talked above will be match together based on

the stemmed term “sponsor”. Therefore, the term stemming strategy helps our QA system

match more relevant answers.

This document indexing strategy makes sure our QA system locate the related documents

for the users’ questions correctly and efficiently. The involved high-frequency word

elimination and term stemming help the document retrieval match less irrelevant

passages and more relevant candidate answers respectively.

6. Term Weighting

If more than one relevant document is retrieved by our QA system based on the received

question, the system ranks those candidate answers in descending order based on their

similarities to the question. Since the documents with higher ranks carry more valuable

information, the ranking will save the users’ efforts of searching the expected answers

among the entire retrieved documents. The document similarities are the standard to

evaluate how similar a searched document is to the question. The document which is

more similar with the received question is more likely containing the expected answer. It

then should get higher rank among the retrieved documents so that it will be viewed by

the users earlier. However, the number of common terms each retrieved document shares

with the question is not the only information we use to measure the document similarity.

Our system also considers how important each matched common term is in both the

question and a specific document to determine how relevant this document is to the

question. We define the term importance here as the term weight and calculate this factor

for the each term during the indexing.

92

Since each document in the collection is comprised by a number of terms, those terms

then express the ideas and the details of the document they belong to. Therefore,

understanding those terms helps us determine which documents are similar and how

similar to the users’ questions. In other words, they affect the similarity between the

documents they are contained by and the questions users asked. The way our QA system

understands each document during the document indexing is firstly calculating the

number of times each term occurs in a particular document. For example, if the term

“lion” occurs 5 times in the document 06087 and 2 times in the document 03027, then to

our QA system, the first document carries more information about lion than the second

document. Furthermore, if a user asks the question “where do lions live”, the first

document will be considered as more relevant to this question than the second one. It will

certainly be ranked higher based on this fact. Therefore, the Term Frequency (TF) [68] of

each term in the different documents is one of the facts our QA system considers to

understand the documents and determine how relevant they are with the users’ questions.

There is another factor term our system considers during the term weighting. It is called

Inverse Document Frequency (IDF) [68]. Here is the formula of IDF:

In this formula, the represents the total number of documents the collection contains.

The indicates the number of documents a specific term occurs. Therefore, as long as

our system has built up a document collection based on a particular received question, the

 becomes a constant number. The only variable in this IDF formula is the which

depends on the term it represents for. For example, in a document collection which

93

contains 500 independent documents, if the term “lion” occurs in 233 documents, the IDF

value of the term “lion” will be around 0.3316 based on the formula. Thus, the IDF value

indicates only the document occurrences of a term in the whole collection. If the term

“lion” occurs multiple times in one document, the IDF formula still only treats this fact as

one time occurrence in that document. Therefore, the IDF value offers us a different and

wider view of how important a specific term is in our document collection.

Furthermore, there is the major difference between the TF value and the IDF value. a

term has a higher TF value other terms’ in a specific document when it occurs more times

than others terms in this document. On the contrary, since the variable is the

denominator of the constant in the IDF formula, the IDF value goes lower if the

corresponding term occurs in more documents in the collection than others. Thus, the

variable and the IDF value share an inverse ratio growth.

Therefore, our system utilizes the combination of the TF and IDF weighting formulas

which is called TF-IDF [68] to evaluate each term in the different document. The TD-

IDF weighting strategy helps the system understand how important a term is in not only

one particular document but also the whole collection. Here is the formula of the TF-IDF

weighting strategy:

TF-IDF=

Based on this formula, a term in a particular document gets a higher TF-IDF value means

it occurs frequently in this document but not frequently in the whole collection. For the

example talked above, the term “lion” occurs in 233 documents of a collection which

contains 500 documents in toal and this term appears17 times in the particular document

94

05100, then the TF-IDF value of this term in the document 05100 is 17 * 0.3316 which is

about 5.6372. Apparently, this TF-IDF value only indicates the weight of this specific

term in this particular document. The same term in different documents may have

different TF-IDF values.

While Our QA system is indexing the document collection, it is evaluating each term in

the different documents with the TF-IDF weighting strategy. Therefore, two kinds of

information of each term are extracted from the documents during the indexing: the term

location and the term weight. As it was explained before, the term stemming strategy and

the high-frequency term elimination are also used during this process. Terms with the

same stem are located and weighted as the same term and the high-frequency words on

the list are ignored.

To store the term locations and weights together for the coming process, our QA system

uses the Vector Space Model (VSM) [68] as the matrix to save the index results. As it is

shown in Figure 3, the x coordinate axis represents the identical terms in the whole

document collection and the y coordinate axis specifies the document IDs. Each term’s

weight in each document is saved as the value of each tuple in the matrix. For example,

the is the TF-IDF weight of term n in the document m.

Figure 3

95

Finishing building up this indexed term matrix means this end of the document

preparation. Thus, our QA system has successfully extracted and stored all the necessary

information from newly created document collection. The information will be fully used

in the next answer retrieval and ranking steps.

7. Answer Retrieval

After all the meaningful terms in the document collection have been successfully indexed

and weighted, our QA system is ready to match some relevant documents to the received

question. Certainly, as it was mentioned in the last section, the users’ questions also need

to be stemmed and striped off the high-frequency terms in order to match to the potential

documents which have been processed in the same way. During the answer retrieval, the

qualified documents which are related to the received question should be searched and

sent back to the users as a group of candidate answers.

There are different strategies for searching the related documents. Using the traditional

term-based document retrieval, some systems firstly distribute each term in the processed

question. Each isolated term then is used as an independent token to match the same term

stored in the document index. Since each term in the index has been attached with some

document IDs as the term location, if a term marches with the token the system is holding

with, all the documents which contain this term will be detected and sent back to the

users. In other words, as long as a document shares at least one common term with the

question, it will be searched as a relevant document. For example, for the question “who

was the first American President”, it is firstly pre-processed by the system and only “first

American President” will be left. These three terms then will be used as three different

tokens in the document retrieval. If a document contains the same term with the first

96

token “President”, this document will be located and extracted from the collection. This

process is repeated until all the text tokens in the received question have been matched

separately. The entire matched documents will be treated as the related documents which

have the potentials to answer the question.

This traditional term-based document retrieval strategy has its own advantages and

disadvantages. Comparing with the expensive and sophisticated pattern learning strategy

and semantic analysis introduced in the literature survey, term-based document retrieval

is more straightforward. It only requires the system to check the existences of the

common terms between the question and each document. Also, it works great in the case

of which the ideal answer in the collection does share the common terms with the

question. This strategy makes sure the system does not miss this expected answer during

common term matching. However, its disadvantages are also conspicuous. This strategy

is apparently too sensitive to search for the real potential document. A document which

only shares one common term with the received question will definitely be searched

during the retrieval. Comparing with other searched documents which share more terms

with the question, the quality of this document is lower. In other words, it has a lower

ability to completely answer the question. Having this kind of documents in our candidate

answers wastes users time and decreases the answer quality. Also, as the side effect of

our term stemming process of the document indexing, more documents are able to be

matched to the questions. Even a document which shares just a common stem instead of a

complete common term with the question will still be searched and treated as a potential

answer. For example: the document “He answered the phone as quick as he could” will

be matched with the question “what is a question answering system” due to the common

97

stem “answer”. Clearly, this document does not answer this question at all. Therefore, our

QA system which utilizes this answer retrieval strategy has also been integrated with

another process to solve the sensitivity discussed here. The process will be explained in

the next section.

Another disadvantage of the term-based document retrieval is the semantic information

missing. The strategy is too arbitrarily to determine which documents are related to the

questions. Again, only the documents which share the common terms with the questions

can be retrieved. For the documents which contain the important information for

answering the question but did not qualified to this comment-term requirement will be

missed during the retrieval. This disadvantage predictably decreases the quality of the

candidate answers as well. For example, the document “Artificial intelligence is the

intelligence of machines and robots and the branch of computer science that aims to

create it” is the ideal answer to the question “What is the AI”. However, since this

document does not share any common terms or stems with the question, it will not be

matched as the candidate answer. Therefore, to avoid the missing of the semantic

information, the improvements are needed to our term-based document retrieval strategy.

Based on the Mehran and Timothy’s work [63] introduced in the related work, they have

designed and implemented a simple but powerful retrieval strategy to detect the existence

of the semantic connection between the question and each of the documents. Specifically,

they took the advantage of the search results from the Google search engine to

accomplish this task. In the search results of Google, there is a special type of

information called web page snippet. Each web page snippet is shown under the web

page link in the search result page. It describes the reason that the corresponding web

98

page was matched to the search query. It contains the web page sentences’ segments

which share the common terms with the query. For example, if a user searches the

question “what is the AI” with the Google search engine, the first web page snippet under

the first matched web page is “WHAT IS ARTIFICIAL INTELLIGENCE (AI)? ... This

article for the layman answers basic questions about artificial intelligence. The opinions

expressed here are not”. This snippet implicitly explains the reason that this web page

matched with the search query since they share the common term “AI”.

Furthermore, the snippets retrieved during the webpage searching contain not only the

common terms matched with the question, but also the extra terms which are highly

related to the question. Mehran and Timothy utilized this feature to expand the received

question with the more related terms from the snippets to retrieve more related

documents in the collection. Based on the example talked above, with the help of the

snippet “WHAT IS ARTIFICIAL INTELLIGENCE ... This article for the layman

answers basic questions about artificial intelligence… The opinions expressed here are

not”, the question “what is the AI” is expanded with the phrase “artificial intelligence”.

Therefore, the document “Artificial intelligence is the intelligence of machines and robots

and the branch of computer science that aims to create it” now shares this common

phrase with the expanded question. It will then be successfully retrieved by the improved

term-based answer retrieval strategy.

Furthermore, Mehran and Timothy expanded not only the questions but also each

document in the database with their corresponding web page snippets from the Google

search engine. Each question and document is sent to the Google search engine separately

as a piece of search query to acquire the snippets from the matched web pages. After

99

receiving the snippets for a specific document or question, only top 50 terms which have

the highest TF-IDF values will be saved to expand this document or question. Thus, the

question and documents are all expanded with 50 related terms individually. After the

expansions, more useful documents which originally did not share any common terms

with the question then have a higher possibility to contain some common terms and be

matched to the question.

Mehran and Timothy’s snippet search strategy is simple and powerful. Because without

requiring the system to be integrated with the expansive and complicated semantic

analysis, it still is able to catch the semantic connection between the documents and the

question. This was the reason their work came to our attention at the first place. Since our

QA system missed the semantic information by only using the traditional term-based

search strategy and also the system has been receiving the text packages which contain

the web page snippets from the Google search engine, it was a certain decision for us to

embed Mehran and Timothy’s snippet searching strategy into our QA system.

However, there is a major limitation of this strategy. Mehran and Timothy claimed that

their snippet searching strategy works for the query suggestion system. In the query

suggestion system, a query collection is prepared before the system receives a new query.

Each existing query in the collection will be sent to the Google search engine to get the

web page snippets as its expansion materials and be expanded by those snippets. When a

user submits a new query to this system, the expanded and related queries in the

collection will be matched to the user’s query and shown as some suggestions to the user

for a better search result. Therefore, the query suggestion system only needs to expand

their query collection once during the preparation. However, as a dynamic QA system,

100

our system initializes the document collection each time it receives a new query. In most

cases, there are more than 200 documents in the collection each time. It means if our

system completely follows Mehran and Timothy’s retrieval strategy, it has to send more

than 200 queries to the Google search engine to expand the new received question and

the new collected documents every time it answers the question. The time spent on this

document preparation will be expectedly long and unaffordable to the users and our

system. Also, those 200 documents will be expanded with the new related 50 terms

individually. It means there are 10,000 new words adding into our document collection.

Our QA system will have to spend more time on document retrieval and ranking in the

next steps.

Therefore, we have modified and improved Mehran and Timothy’s searching strategy in

order to embed it into the dynamic QA systems like ours. We keep the step which is

expanding the users’ questions by the web page snippets. Since our system has been

designed to send the received questions to the Google search engine as the search queries,

those questions then will be expanded by the corresponding web page snippets extracted

from the text packages the Google search engine sends back.

Furthermore, there are two main reasons we do not further expand the documents in our

collection after the question expansion. First of all, as it was explained above, our QA

system cannot afford to send more than 200 documents to the Google search engine every

time in order to answer a particular question. The time complexity is too big to be

accepted. Secondly, the query suggestion system which Mehran and Timothy’s strategy

works well with collects the queries from different resources and builds up its own query

collection before receiving any questions from the users. Thus, the queries the query

101

suggestion system collects originally have no connections between each other or with the

future users’ own queries. On the contrary, the documents stored in our QA system are

collected based on each question the system receives. Our QA system finds those

documents only because the Google search engine searched them from the Internet based

on the specific question. These documents were the paragraphs on the searched web

pages. Thus, the documents and the question are implicitly connected in our QA system

at the beginning. If our system also sends those documents to the Google search engine as

the search queries to expand them with their web pages snippets. Most of the document

including some irrelevant ones will be matched to the users’ question at the end due to

their new expansions. For example: in Figure 4 the document which was a paragraph

from the web page is actually not related to the question q. The web page was

searched by the Google search engine based on the question q. Therefore, the question q

will get expanded as the strategy by the snippet from the web page . If we also

expand the document by sending it back to the Google search engine to search for the

related web pages and the web page snippets, the web page to which the document

 belongs will definitely be searched again. Then the document will get expanded by

the snippet from the same web page . Thus, there is a high possibility that the

snippets and share some common terms since they are all from web page . And

the expanded irrelevant document will possibly be matched to the expanded question

q by the term-based document retrieval strategy.

102

Figure 4

Based on those two reasons, our QA system only expand the users’ questions by the web

page snippets extracted from the text package the Google search engine sends back. No

documents in the document collection are expanded. After the question expansion, the

traditional term-based answer retrieval strategy will be executed as being explained at the

first section. In the evaluation section, the remarkable improvement made by our

modified snippet search strategy will be shown to prove its ability.

8. Candidate Answer Ranking

Our QA system also ranks the retrieved the documents which share one or more common

terms with the expanded question. The ranking process is based on the similarity between

each retrieved document and the question. After the ranking, each retrieved document has

been evaluated and assigned with a numeric value indicating how similar and related it is

to the question. The ranking result is presented back to the users in descending order of

Web Page

Document

Snippet Snippet

Question

 + +

A paragraph of The search query of offers

to expand to expand

is expanded into is expanded into

do not share the common terms

possibly share the common terms

103

the retrieved documents’ similarity values. Thus, a document which is more similar to a

user’s question gets a higher rank. The documents with the higher ranks are expected to

have stronger abilities to answer the question and will be viewed earlier by the users.

There are two reasons of using ranking strategy after the document retrieval. First of all,

the ranking process helps the users find their answers with fewer efforts. In most cases,

users do not need to go though the entire retrieved documents. They will find the

expected answers among the top 10 to 20 retrieved documents. But without the ranking

process, our QA system will only send the searched documents to the users in a random

order. The worst case then will be the users find the correct answer at the last document

they are viewing with. Moreover, the ranking process also solves the sensitivity of the

term-based document retrieval strategy. As it was explained in the last section, as long as

a document shares at least one common term with the question, it will be considered as a

related document with the question and sent back to the users. Therefore, the users of our

QA system receive the searched documents more than they need. It is not efficient to

them to go through all of the retrieved documents looking for the best answer. It is

neither the satisfied result our system can accept. Therefore, as it was talked before, the

system has been integrated with a list of stop words to prevent the document search

strategy from matching too many irrelevant documents to the questions. The high-

frequency terms on the list such like “what”, “here”, “and”, etc. are not treated as the

useful common terms and will not be able to largely raise the number of retrieved

documents. Here, the ranking strategy is another important way to narrow down the

number of retrieved documents the users need to go through and improve the sensitivity

of the term-based document retrieval eventually. The irrelevant ones and less related ones

104

among all the retrieved documents will be ranked at the lower positions in the list. Before

the users go through them, the users have probably found the answer they need.

The Cosine Coefficient Similarity Measure (CCSM) [68] is one of the traditional

measures to evaluate the similarity between two text documents. In our case, the

questions from the users are treated as the short documents to compare the similarities

with the searched documents from our collection. The CCSM utilizes the TF-IDF term

weighting value to determine how similar two documents are. Here is the formula of the

CCSM:

similarity (j, q) =
∑

√∑

 √∑

In the formula, the q represents the question; the j is the index of the searched document.

Moreover, the i indicates the index of the common term which is shared by the document

j and the question q. There are n common terms between the document j and the question

q. Therefore, the is the weighting value of the term i in the document j; the is the

weight of the term i in the question q. In our QA system, the TF-IDF weight of each term

in the different documents has been evaluated and stored during the document indexing.

Each weight of the term in the question has been initialized with the weight value 1 in

order to treat them equally during the initial candidate answer ranking. The users later

will be asked about their personal opinions about each term weight in their questions

during the question refinement step. The new weights will be attached to the questions’

terms after the users finish that step. And a new similarity measurements and ranking

result should be made based on the new weights the question terms got. This extra step

105

will be fully explained in the next section. Here, in the initial searched document

similarity measurement, the prepared term weights of the common terms will be used to

calculate the similarity between each document and the question. Here is an example in

Figure 5 to better explain this calculation. In this example, the similarity value between

the question Q and the document is measured by using the CCSM. The similarity is

about 0.9973. Since the similarity value range of the CCSM is from 0 to 1, the document

 then is considered as highly similar to the question Q.

Figure 5

Q: who is the Prime Minister of Canada?

 Q: Prime Minister Canada

Term Weight: 1 1 1

 : Stephen Harper is the Prime Minister of Canada

Question Process

Document Indexing and Term Weighting

 : Stephen Harper Prime Minister Canada

Term Weight: 4 5 6 6 7

The Common Terms: Prime Minister Canada

similarity (, Q) =

√ √
 ≈ 0.9973

Document

Matching

Cosine Coefficient Similarity Measure

106

That is how Our QA system utilizes the original CCSM to measure the similarities

between the expanded question and the retrieved documents and rank those documents

based on their similarity values. However, our system is not just dealing with some

general text documents in its collection, it actually retrieves and ranks some carefully

collected and prepared documents. Those documents used to be the paragraphs in the

related web pages searched by the Google search engine with the users’ question.

Therefore, we have also modified the original CCSM to adjust it to work better with our

special documents for not missing their specialties.

First of all, the quality of the web page each document was downloaded from is treated as

an important factor in our Modified Cosine Coefficient Similarity Measure (MCCSM).

Since our system receives a list of ranked links from the Google search engine each time,

it treats the rank information as the indicator of the corresponding web page quality. A

web page link gets a higher rank means this web page has more related text content to the

search query which is the users’ question. Therefore, the documents in our collection are

firstly grouped by their original web pages’ ranks. It is because the text content on each

web page is distributed by our system based on its natural paragraph structure. Thus, if

our system receives the top 10 web page links from the Google search engine, then there

will be 10 groups of paragraphs saved in to our document collections. Those 10 groups of

documents have different qualities based on the list of ranked links. Our system stores the

corresponding the web page’s rank information into a document’s name during the

document preparation. While a retrieved document is evaluated for the similarity with the

question, this quality information will be exacted from its file name and used into the

107

similarity measurement. The formula below describes the MCCSM which has been

adjusted by the information of the web page ranks.

similarity (j, q) =
∑

√∑

 √∑

*

√

In the formula, besides the variables introduced above, the new variable is the rank of

the web page the document j was downloaded from. Because the range of original CCSM

is from 0 to 1, the rank information is first normalized as

√
. It is also because our QA

system treats this factor as just one of the references to calculate the document similarity.

It is supposed to be working with other factors to determine the similarity result. For

example, if the document j is from the web page which is the second one on the ranked

list, then the original similarity between the document j and the question q will be

multiplied with the value of 0.87. However, if the web page is the first one on the list,

then the similarity of the document j will be multiplied by the value of 1. Thus, the rank

is higher; the similarity of the document gets bigger. This example is also explained in

Figure 6.

108

Figure 6

Moreover, since the documents were the paragraphs on the web pages, the length of each

retrieved document is also being considered into our similarity measurement. Based on

our observation, a longer paragraph on a web page mostly contains more valuable

information. Again, like the rank information of the searched web pages, the length of a

specific retrieved document is only one of the factors which are affecting the similarity

....

.

CCSM*1

.

.

.

.

.

.

.

.

.

....

.
CCSM*0.87

....

.

CCSM*

√

.

A
 list o

f ra
n

k
ed

w
eb

 p
a

g
e lin

k
s

C
o

rresp
o

n
d

in
g

 w
eb

 p
ages

D
o

cu
m

e
n

ts

M
o

d
ified

S
im

ila
rity

L
ea

d
s to

a
re

 d
istrib

u
ted

 in
to

109

result. When we were embedding this factor into our MCCSM formula, we carefully used

the normalization to allow it only genteelly affect our result. The formula is shown

below.

 similarity (j, q) =
∑

√∑

 √∑

*

√
*(1-

)

The in the formula is the length of the document j. It denotes the number of identical

terms in the document j. The high-frequency terms have been eliminated from the

document j. And the repeating terms in the document j are counted as one term in this

formula.

Thus, the formula below is the ultimate MCCSM our QA system uses to calculate the

similarity between each retrieved document and the question. It has been carefully

integrated with the web page rank information and the document length based on the

special features of our document collection. The improvement of these two modifications

will be presented in the evaluation section.

similarity (j, q) =
 ∑

√∑

 √∑

 √

9. Query Refinement

In our QA system, after the users receive and go through a list of ranked candidate

answers, they will be asked for their opinions about the quality of those answers by the

question “Did those documents answer your question”. If the answer is yes, that means

110

the users have been satisfied with the search results and they have found the useful

answers in an acceptable time. If the answer is no, it means either our QA system have

not successfully retrieved the expected answer for the users or the users did not find it

among as many candidate answers as they can go through. The users then will be offered

an opportunity to refine the query by giving more explicit and useful search clues to our

system to change the components and the ranks of the next search result. The next

retrieved candidate answers are expected to have more correct answers with the higher

ranks.

There are three steps in the query refinement for the users to follow. The first one is

asking the users to reedit their text questions. The users can add and eliminate some

necessary and useless terms respectively in their questions. Different from those popular

web page search engines’ advance search pages, the users in our QA system have the

previews search results on the same page with the refinement as their references of

making changes to their queries. We believe this special improvement helps our users

better understand the influence of each term they typed in their questions last time and

make better questions this time. For example, if a user who is seeking for the information

that the population of London in Ontario asked the question “what is the population of

London” at the first time, the most of the candidate answers this user got for the first time

is the population of the city London in United Kingdom. By using this search result as the

reference of the query refinement, this user will learn to specify the city into the province

of Ontario. And he or she will probably get the expected information next time. However,

this step is not mandatory to the users to follow. They can skip this one and make the

changes in the next two steps. Therefore, if the query has not been revised at all, our QA

111

system will not send it to the Google search engine again as a new search query. Because

the new Google search result would still be the same if our system did. And the new

prepared document collection would be the same with the last collection. Therefore, the

previews document collection and the index will be kept in our system to avoid

downloading the same related web pages again and save the answer retrieval time

eventually. If the users did make some changes to their queries, then the new queries will

be sent to the Google search engine to acquire the new related web pages as the new

knowledge source. Then both the previews document collection and the index will be

replaced by the new ones. At last, the new candidate answers will be searched from the

new document collection based on the new question. Therefore, the query reediting

completely affects the entire search result including the members of the candidate

answers and their ranks.

The second step in the query refinement is letting the users evaluate each term in their

questions and assign a numeric value from 1 to 10 to it. The users can attach the different

values to the different terms in the questions based on their opinions of how important

those terms are in their queries respectively. In other words, the new term values of the

questions’ terms will be treated as the new term weights in the next candidate answer

ranking process. As it was mentioned before, our QA system initializes the weight of

each term in the question with the value of 1 in order to treat them equally in the first

candidate answer ranking with the MCCSM. In this query refinement, the users can

emphasized some important terms by attaching some bigger term weights to those terms.

Our system will use these new weights to list the documents which are more related to

those emphasized terms with the higher ranks. For example, the question “who is the first

112

President of America to visit Europe” retrieves also some documents which introduce the

Presidents in Europe. If the user who asked this question attached a bigger weight to the

term “America” than “Europe”, the documents which contain the information about the

President of America will be ranked higher than the documents which introduce the

Presidents in Europe. The user then can find some useful retrieved documents with less

time spent. Thus, the question term weighting does not change the members of the

candidate answers but the ranks of them.

The last step of the query refinement is binding a Boolean query with the term-based

query. As the disadvantage of the traditional term-based document search strategy our

QA system uses, the strategy does not offer the function as the Boolean operator “NOT”

does. It only searches the documents which the users are willing to read. It does not filter

the documents which the users do not expect to see specifically. That is why we can

utilize the function of the Boolean operator “NOT” to help the users indicate one or more

terms which are not expected to be seen in the retrieval result. In other words, as long as a

document which contains one of the terms mentioned in the Boolean query, this

document should not be retrieved even if it also shares some common terms with the

question. The users in this step can build up their own Boolean queries with the

unwelcomed terms. For example, a user asked the question “how to cook some sweet

corns” in our QA system. Our system then sends this question to the Google search

engine to search for some relevant web pages. During the Google search process, some

web pages which contain the recipe of cooking the salty corns are considered as the

related web pages to the query and will be shown in the Google search result. Our QA

system then will download those web pages and save their text contents into our

113

document collection. Thus, since some documents which came from the salty corn web

pages share the common terms “cook” and “corns” with the question, they will definitely

be retrieved by the system and presented to the user. However, they are clearly not the

recipes the user is looking for and their existences in the candidate answers may disturb

the user’s answer searching. Therefore, the user can use the Boolean query “NOT” to

restrict those documents showing in the candidate answers. For doing it, the user can

simply add the term “salty” in the Boolean “NOT” query. In the next answer retrieve

process, as long as a document which contains the term “salty”, it will not be retrieved by

our QA system or shown back to the user. Thus, same with the question reediting but

different from the question term weighting, the Boolean query changes the members of

the candidate answers.

Again, same with the first step in this query refinement, the second and third step are also

not mandatory to the users to finish. Those three steps are all independent and affect the

future search result separately. This query refinement will be executed repeatedly until

the users find their expected answers.

10. Implementation

In order to test and make use of the MCCSM algorithm and the modified and improved

term-based document search strategy, we have successfully implemented them together

as a complete and functioning QA system. This QA system is dynamically connected

with the Google search engine to access the abundant and up-to-date online information.

Users can ask their questions in natural English on the unlimited topics to our system.

Based their questions, our system is able to answer them with numbers of related and

ranked documents as the candidate answers. Thus, the users can find the needed and

114

correct information among those retrieved documents with less time spent. The QA

system then is able to improve the quality of the online information retrieval eventually.

During the implementation, we used Java with the NetBeans IDE 7.0.1 as our

programming language and the coding environment. NetBeans offered us a visualized

coding environment so that we could program and design the User Interface at the same

time with a more straightforward view. The class-based and object-oriented features of

Java programming language offered us an ideal programming structure to use to

implement our algorithms and strategies. We were able to code the different steps of the

process as the different classes in the separate objects. Thus, it is easier and clearer to

monitor and test their functions and performance individually. It will be also easier to

control the affections of the future modifications. Furthermore, the various useful code

libraries of Java were the great helps to us during the coding. We could utilize the

different libraries’ existing functions into our program to be more efficient.

Lucene [69] is the main code library we used in our program. It is an information

retrieval library that helps different applications with their local document searching

functions. There were two reasons we chose Lucene to be one of our external code

libraries. Firstly, it is easy to be embedded into most of the projects. The coding package

of Lucene is only around 11 MB large. As long as it has been imported into a program,

the basic searching functions can be implemented with just several lines. Also, Lucene

offers the profession users to overwrite some of its main classes including the document

ranking class. Researchers like us are able to implement their own document retrieval and

ranking algorithms by overwriting them on the Lucene’s corresponding classes.

115

Therefore, in our QA system, we have imported Lucene into our document indexing

process and overwritten it with our own strategy. We use Lucene to index the text

documents once they are downloaded into our collection. Lucene is able to locate each

identical text term in each document and store their locations into the index file which is

saved as a local file for the future process. Instead of using the standard analyzer of

Lucene to detect the term while indexing, we imported a new analyzer to stem each term

and eliminate the high-frequency words as the same time. Thus, the terms indexed by our

system have been stemmed as we explained in the document indexing section.

Meanwhile, there are no high-frequency terms such as “in”, “I”, “it”, etc. existing in the

index. Furthermore, we utilized a special feature of Lucene to save the rank of the web

page each document was extracted from. The web pages’ ranks, as we explained in the

document preparation section, have been saved into the documents’ file names. During

the document indexing, this information is extracted from the documents’ names again

and saved into the index file indicating how potential those documents may be

individually. It is prepared for the future candidate answer ranking process.

Our system also utilized Lucene in the document searching and ranking process. The

received question is saved as the search query. Apparently, the search query should be

processed firstly with the stemming strategy and the list of high-frequency words before

the document matching. It is because the indexed terms stored in the documents have

been stemmed in the same way. The search query can only match them if it is stemmed as

well. Moreover, we delete the high-frequency words from the query for retrieving less

irrelevant documents. Our system then goes through the index files to match the common

stems between a document and the processed search query. After all the documents

116

which share as least one common term with the search query have been retrieved by our

system, they will be scored and ranked based on how similar they are to the query.

Lucene has its own similarity measure algorithm which was originally developed from

the CCSM. However, it also offers an option to the professional users to overwrite their

different similarity measure algorithms on the existing class. Therefore, our system has

overwritten the default similarity measurement with the MCCSM to rank the candidate

answers based on our own algorithm. Specifically, as it was explained in section of the

candidate answer ranking, there are four variables in our MCCSM: TF, IDF, the web

page rank and the document length. We use Lucene to calculate the values of TF and

IDF. The web page rank and the document length of each document were prepared

additionally during the document indexing. Thus, our QA system can use the values of

those four variables in the MCCSM to calculate the documents’ similarities and rank

those documents for the users to view.

Our QA system does not have to set up a formal database based on the system demands:

all the local files created during the process need to be initialized every time our system

receives a new query; usually only 350 documents are processed by the system at a time.

The user’s inputs, the intermediate products and the final outputs are saved separately in

the different text files. In the document collection, the extracted documents from the web

pages are named with the five identical digits. The document index information is saved

in the index files. There are also a few more text documents created by our system to save

the users’ questions, the web page snippets and the information of the query refinement.

Their purposes and usages will be explained below.

117

As it was mentioned above, we used the NetBeans IDE 7.0.1 as a Graphic User Interface

(GUI) builder to design the UI of our QA system. The first original search page is shown

in Figure 7. It is the first page our system shows to the users for interacting with them.

They can type in their text questions in the search box. The unnecessary symbols such as

“!”, “?” and “.”, etc. in the questions will be eliminated before they are sent to the Google

search engine. Our system also converts the users’ questions into the formal search

queries which the Google search engine reads only. The whole searching process is

started once the users click on the search button. After our system receives the Google’s

search result back, the complete documents preparation, document retrieval and candidate

answer ranking are going to be accomplished one by one. The ranked candidate answers

then will be shown in the text box for the users to view. Moreover, the question “did the

result answer your question” shows up along with the candidate answers, the users can

answer it with the yes or no bottoms. If they click on yes bottom, a small new window

will pop out welcoming them to go back and search more questions in our system. The

users can then use the reset button to clean the previews question and candidate answers.

If they choose no, the advanced search page for the query refinement will be shown to

them. The current original search window will be closed automatically. Last, the users

can end their search process by clicking on the exit bottom.

118

Figure 7

While the users are asking and searching their questions in the original search page, there

are different documents created to serve the different functions. The query document

saves the current original question from a user. This document will be read again in the

advanced search page to show the user’s original question and let him or her revise it. A

document called Google feedback will be created for saving the text package which

includes the relevant web page links from the Google search engine. After the system

detects and extracts the needed information from this document: a list of ranked web page

links and the web page snippets, those two types of information will be saved into two

documents for the next process. Furthermore, our QA system reads and presents the

candidate answers which are retrieved based on a user’s question and saved in the result

document.

119

In the advanced search page shown in Figure 8, the users who were not satisfied by the

previews candidate answers will have a simple and straight forward instruction to help

them modify their questions on this page. They will be asked to reedit their question first.

Their original question has been shown in the text box once this page is popped out so

that the users do not have to remember what exactly they asked before. After they finish

editing the terms in their queries, they can click on the done bottom to execute the next

step. The second step of query refinement is assigning different numeric weights to each

term of the users’ newly revised questions. By following the instruction, the users will be

informed that for typing the term weights in the text box each term weight should be in

the range of 1 to 10 and connected by the “+” operator. Their inputs of this step will be

checked by our system in case some terms have not received the proper wrights. The

users will be notified if there are some illegal inputs. They can only see the done bottom

when their inputs have been checked and successfully qualified. The last step of this page

is binding an extra Boolean “NOT” query with the text question. As it was explained in

the section of query refinement, the users can type in the term they do not expect to see in

the future candidate answers. While the users are refining their questions on this page,

they also have the previews search result shown on the right side of the window. By

having it as a reference, the users will better understand the power of their words during

the answer retrieval and carefully submit a more robust question next time. Those three

steps of the refinement are all optional. The users can simply skip some of them by

clicking the skip bottoms under each text box.

120

Figure 8

On this advanced search page, at most three new documents are created during the users’

refinement. The revised new query will be still saved into the same query document to

replace the previews one. This document will be read again when the new query is ready

to be search. If a user chooses to skip this step, a new document indicating that there is no

change for the last query will be created and saved. Our QA system then will be informed

by this document that no new query needs to be sent to the Google search engine again.

Then the answer retrieval will be executed based on the same document collection

extracted last time. Moreover, the new term weights created in the second step will be

saved into the document called query weights for the usage of the next document

retrieval. Similarly, the terms which are going to compose the Boolean “NOT” query are

stored in the NOT document.

121

After the users finished all three steps on the refinement page, the newly initialized

original search page will replace this page and the new or old question will be shown in

the search box. The users only need to click to the search bottom to execute a new answer

search process. All the new made modifications, query term weights and the Boolean

“NOT” query will be involved during the next retrieval for the better candidate answers.

The users can keep refining their questions by clicking the no bottom to call the advanced

search page several times. We have designed the exit bottom and the window close

bottom to help them halt the searching circulation.

11. Evaluations

Since we have modified both the traditional term-based document search strategy by

expanding the search queries and the CCSM algorithm to calculate the similarity of the

retrieved documents from the web pages, we needed to design two evaluation schemes to

test those two modified algorithms separately. Instead of having subjective surveys

collecting the users’ experiences and opinions of our system, we preferred to evaluate

them with some scalable and objective evaluations. Only the figures can prove the

improvements and the performances of those two modified algorithms.

11.1 Evaluation on Document Retrieval Strategy

To evaluate our modified and improved document retrieval strategy which expands the

received questions in our QA system, there are two factors need to be considered. First of

all, one of them is how many relevant documents our system is able to retrieve from the

document collection based on a question. The purpose of designing the search query

expansion which is about adding the web page snippets to the query is helping our system

retrieve more semantically related documents from the collection. Therefore, we are

122

expecting our system is able to retrieve more relevant documents with the modified

document retrieval strategy than using the traditional strategy. Another factor to consider

the improvement is the number of irrelevant documents our system searches back. Since

the raise of the number of the retrieved documents is not avoidable in our strategy, we

need to calculate how many irrelevant documents are also sent back to the users which

will disturb them searching their ideal answers.

Therefore, we utilized two evaluation formulas to scale the performance and the

improvement of our new document search strategy. The first formula is called recall [68].

It is shown below.

recall =

Thus, in our case, recall is the proportion of the relevant documents retrieved by our QA

system among all the relevant documents in the local collection based on a specific

question. It scales our QA system’s searching ability. As a QA system, our system is

supposed to retrieve the related documents to the question as many as possible to fully

answer the question. As it has been seen in the formula, the higher the value of recall is;

the stronger searching ability our system performs.

The second formula involved in our evaluation is called precision [68]. The formula is

shown below.

precision=

123

Thus, the precision indicates the ratio of retrieved relevant documents to the entire

retrieved documents of our system. It scales the how precise our QA system is able to

search for the useful documents based on a question. The value of the precision is higher

means the system can retrieve more relevant documents and less irrelevant ones. Since

there is no document retrieval strategy can perfectly retrieve the entire relevant

documents without also retrieving some irrelevant ones at the same time, an information

system which tries to retrieve more documents to raise the proportion of retrieved

relevant documents gets a higher recall value but lower precision. It means the more

relevant documents it retrieves, the more irrelevant documents it gets as well. Therefore,

the precision evaluation value shares an inverse ratio growth with the recall value. We

used both of the recall and precision formulas to evaluate our new document search

strategy to have a more general view of its performance.

In order to evaluate our document retrieval strategy with the recall and precision

introduced above, we need to go through the retrieved candidate answers each time we

are testing our system with a question. However, our QA system builds up a temporary

document collection ever time for each testing question. That means we have to go

through each document in the collection to determine whether it is related to a specific

question and supposed to be retrieved. If we test our system with 50 questions, we will

have to evaluate 50 document collections with around 350 documents in each of them.

Therefore, we needed a group of carefully collected documents as our local document

collection and some designed questions based on those documents. Each question’s

relevant documents in the collection should be already known before the answer retrieval.

Then we are able to scale how many relevant documents our system retrieved by

124

comparing with a standard answer list of each question to calculate the value of recall and

precision. Furthermore, building up such a document collection with some answered

questions is difficult and expensive. It involves a number of professional researchers to

completely understand and correctly evaluate each document in the collection several

times in order to determine whether it is related to each designed question.

Therefore, we were using a document collection and some questions from SMART
1
.

SMART have designed six groups of text articles and corresponding questions for the

researchers to test their document retrieval systems. It also offers the relations between

each document and each question in each group. The relations indicate the relevant

documents to the different questions. We imported one group of articles as our local

document collection and the corresponding questions as the search queries. In this

document collection, there are 82 documents with total 2402 terms, SMART have

designed 35 testing questions and their document relations in this collection. SMART

defines a relevant document to a specific questions not based on the number of common

terms they share together. A document is only related to a question if it is semantically

relevant to the question. We used our QA system to answer each of the questions based

on this document collection and compared the retrieved documents with its document

relation. For comparing the different results between our new document search strategy

and the traditional strategy, we answered each question twice. At the first time we simply

used the testing questions as the search queries. It was the way of the traditional

document retrieval strategy. At the second time we sent each question to the Google

search engine to receive the snippets of its related web pages. Then we expanded the

1
 ftp://ftp.cs.cornell.edu/pub/smart/

125

question with the received snippets and used the expanded question as the search query to

retrieve the documents. Each time, we recorded the total number of documents the

system retrieved and the number of relevant documents retrieved based on the question

document relations SMART offered us. Therefore, we were able to calculate the values

recall and precision after answering each question with the two different strategies. Here

are the evaluation results we acquired.

Figure 9

Figure 9 shown above is comprised by two groups of recall values. The dotted line with

the triangle markers represents the 35 recall values produced by the traditional document

retrieval strategy which only searches the documents with the original queries. The real

line with the diamond markers denotes another 35 recalls which were calculated for our

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

Recall
expanded query
search
original query search

126

new retrieval strategy which uses the expanded queries. The X axis is the recall range

from 0 to 1. The Y axis represents the index of each question our system answered. As it

has been seen in Figure 9, to each question, the recall of the new retrieval strategy was

equal or bigger than the recall of the traditional strategy. When the new strategy’s recall

was higher than the traditional one’s, it means our system retrieved more relevant

documents by using the new strategy than the traditional strategy. When the two recalls

were the same, it means expanding the question did not help our system retrieve more

relevant documents. In other words, expanding the question was either not necessary

since the traditional strategy had retrieved all the relevant documents based on a testing

question or not helpful to our system to retrieve more relevant documents in the

collection when the traditional strategy did not retrieved them all. As a matter of fact,

over the 35 designed questions, the average recall of the new strategy is approximate

0.80. But the average recall of the traditional strategy is around 0.56. Thus, our new

document retrieval strategy helped the system retrieve 1.4 times more relevant documents

from the collection than the traditional strategy did.

We have also calculated the 35 pairs of precision values by answering each question with

those two retrieval strategies. In Figure 10, the real line with the diamond markers

represents the recalls of new retrieval strategy and the dotted line with the triangle

markers denotes the recalls of the traditional strategy. The X axis denotes the value of

each precision and the Y axis indicates the index of each question. Each time, the new

strategy’s precision was really close but still higher than the precision of the traditional

strategy. For answering all 35 questions, the average precision of the new strategy was

about 0.050 and the traditional one’s was around 0.048. It means our new document

127

retrieval strategy helped our system retrieve less irrelevant documents than the original

strategy did.

Figure 10

Comparing with the two averages of recalls and precisions, we found some unexpected

results. Since the new retrieval strategy offered our system a 1.4 times higher average

recall than the traditional strategy did, it means the new strategy helped our system

retrieve more relevant documents. Based on the theory, the new strategy was also

supposed to bring the system the side-effect that more irrelevant documents were

retrieved at the same time. In other words, the new retrieval strategy was theoretically

expected to perform an obvious lower precision value than the traditional strategy did.

However, the evaluation results were in the contrary situation: the average precision of

the new strategy was even slightly higher than the precision of the traditional strategy. It

was because during the experiment, our system retrieved 0 relevant documents for some

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35 40

Precision
expanded query
search
orginal query search

128

questions by using the traditional strategy. It means the traditional strategy performed 0

precision values while answering those questions. These situations then remarkably

decreased the traditional strategy’s average precision value. However, even if the new

retrieval strategy leaded our system retrieved more not only the relevant documents but

also the irrelevant ones; it still made sure there were at least some relevant documents

retrieved so that the most precision values were bigger than 0. This was the reason our

new document retrieval strategy performed a better recall value without losing the

precision value comparing with the traditional strategy. Overall, our new document

retrieval strategy helps our QA system retrieve more relevant documents to the question

and same or less irrelevant documents than the traditional strategy dose.

As our QA system not only retrieves related documents but also ranks them for the users,

it is not fair to evaluate it with the precision formula explained above. In the traditional

precision formula, the number of retrieved relevant documents is divided by the total

number of retrieved documents. From the uses’ perspective, this precision describes the

users’ efforts which are spent on finding all the relevant documents among the entire

retrieved documents. The users spend fewer efforts if the precision is higher. To the

systems which do not rank the retrieved documents, the traditional precision formula is

the proper way to evaluate the systems’ precisions since the total number of entire

retrieved documents is the number of documents the users have to go through to make

sure they have viewed all the relevant documents. But for the systems like ours which

presents the ranked retrieved documents in a descending order based on their similarities

to the users’ questions, users stop reading the retrieved documents after they have found

the last relevant document. Thus, they only need to read parts of the retrieved documents

129

in the ranked order to get the answers they need. Therefore, based on April and Scott’s

work [70], we have designed a new strategy to calculate the precision which also

considers the ranks of the retrieved relevant documents from the users’ perspective.

This new precision calculation strategy makes sure our system get a higher precision if

and only if our system have successfully retrieved all the relevant documents it is

supposed to retrieve. When it retrieves all the relevant documents, the number of

retrieved documents the users have to go through is equal to the lowest rank of the

New Strategy of Calculating Precision

 IF : all the relevant documents in the collection have been retrieved by the

system

 THEN:

o Save the lowest rank of the relevant documents in the retrieved

documents

o Calculate the precision of the retrieval as:

precision=

 ELSE:

o Calculate the precision of the retrieval as:

precision=

130

relevant documents. If the system only retrieves parts of the relevant documents, the

users have to read the entire retrieved documents to realize that some relevant documents

are missing. Then we use the original precision formula to calculate the precision value

of this case.

Based on the new strategy for calculating the precision, we have had a group of new

precision values shown in Figure 11. Same with the two figures introduced above, the

real line with diamond markers represents the new precisions of the new retrieval strategy

which carefully expands the question; the dotted line with triangle markers denotes the

precisions of the traditional strategy which searches the documents with the original

query. The average of the new precisions of our new strategy was about 0.081. The

average of the new precisions produced by the traditional retrieval strategy was around

0.07. There was an obvious increase from the original average precisions to the new

calculated average precisions. It was because when our system had successfully retrieved

all of relevant documents in the collection for some questions; it also ranked them with

the higher ranks. The users then did not need to go through the entire retrieved documents

to read all the relevant documents. They stopped checking the documents at the lowest

rank of the relevant documents. Thus, the new precision should be higher since the

number of retrieved documents the users read was less than the total number of retrieved

documents.

131

Figure 11

Based on the recalls and the new precisions we calculated while answering those 35

questions with the local document collection. Our new document retrieval strategy which

expands the search queries with the snippets of their related web pages performed

remarkably better retrieval results than the traditional document retrieval strategy did.

The new strategy’s expected lower precision as the trade-off of its higher recall did not

appear since it made sure the system retrieve at least parts of the relevant documents back

to the users. On the contrary, the traditional document strategy made the system to be

over precise during the retrieval that none of relevant documents were searched in some

cases. Furthermore, as both of the document retrieval strategies are the term-based search

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

New Precision
expanded query
search
original query search

132

strategies which means as long as a document shares at least one common term with the

question it will be retrieved, the higher recalls and the lower precisions are expected [70].

For the users who search a particular type of information such as the medical knowledge

and the law cases in our system, the higher recall helps them find what they need

eventually. The lower precision does not bother them much since they have to find the

information they need no matter how long it takes.

Furthermore, we designed and conducted this evaluation to test the improvement of our

new document retrieval strategy. During the ranking process, we did not use the MCCSM

since the documents in the collection were not extracted from the related web pages.

There were no corresponding web pages’ ranks to use to estimate the qualities of the

local documents. We could not use the documents’ length as one of the factors to rank the

retrieved documents since they did not use to be the paragraphs on some web pages.

Thus, the evaluation results discussed above only describe the retrieval ability and

improvement of our new document search strategy.

11.2 Evaluation on Overall Performance

Therefore, we have also designed another evaluation to test the whole performance of our

QA system with the new retrieval and ranking strategies. There were two reasons we did

not test the ranking algorithm MCCSM alone and compare the result with the CCSM’s.

First of all, it is because of the two modifications made in the MCCSM. One of them is

adding their corresponding web pages’ ranks into the similarity measurement to rank the

retrieved documents. Another one is considering the length of each document during the

ranking. As they were explained in the candidate answer ranking section, we treat those

two new factors: web page rank and document length as two necessary but not the most

133

important factors while calculating and ranking the similarity between each retrieved

document and the question. The common terms and their weights shared by the retrieved

documents with the question are still the key indicators determining the similarities.

Therefore, in the new MCCSM formula, we carefully added those two new factors with

the reductions of their powers to let them not affecting the similarity value dramatically.

Because of these power reductions, the affections of those two new factors are harder to

be detected separately during the evaluation to compare to the original CCSM’s result.

Another reason we did not test the improvements of MCCSM separately in the next

evaluation is the redundancy of the Internet [66]. As our system sends the users’

questions to the Google search engine to acquire their related web pages as our

knowledge resource, there is not only one correct answer extracted from the web pages.

All the similar and correct answers are distributed into the different documents in our

collection. Even though our new MCCSM produces the same candidate answers with the

different ranks comparing with the traditional CCSM, it is possible that the MCCSM’s

correct answers’ highest rank is equal to the highest rank produced by the CCSM. This

possibility will lead us an inconspicuous evaluation result between the MCCSM and

CCSM.

Therefore, we decided to evaluate the overall performance of our QA system instead.

However, it does not mean we were denying the improvement of the MCCSM. On the

contrary, we believe our QA system could produce the evaluation results below mostly

because of the contribution of the MCCSM.

134

We submitted 50 questions which are written in natural English from the Text REtrieval

Conference
2
 (TREC) to our QA system in order to evaluate its overall performance.

TREC offers numbers of different workshops to help researchers evaluate their

information retrieval systems and compare the results with others’. There are professional

scientists in the TREC who carefully design some different document collections and

questions for the different research areas of information retrieval. Since we were going to

evaluate our QA system’s ability of improving the retrieval of information on the

Internet, in other words, the ability of answering questions with the online information,

we only used the questions and their standard answers from the TREC. We did not import

the corresponding document collection into the system as the knowledge resource. To

answer each question, our system dynamically built the document collection, retrieved

and ranked the relevant documents from the collection. During the evaluation, we

manually went through each group of the retrieved documents that our system produced.

We searched the documents which contained the correct answer and recorded the highest

rank those documents had for each question. The result is shown in Figure 12.

2
 http://trec.nist.gov/

135

Figure 12

In Figure, the X axis represents the index of each question. The Y axis denotes each

highest rank of the correct documents in the candidate answer to the each question.

Apparently, most of the highest ranks were around 1 to 2. The average of the highest rank

was 2.18. That means we usually found the first correct answer to the question in the top

2 to 3 documents after we submitted the question to our system.

Based on the result of this evaluation, it has been proved that the users who ask questions

to our system will find the correct answers after they read the top 2 to 3 candidate

answers provided by our system. In other words, our system is able to answer the users’

questions in the top 2 to 3 candidate answers it retrieved back. As it was explained in the

document preparation section, each document in our collection contains one text

paragraph extracted from its related web page. It means the top 2 to 3 candidate answers

the users need to go through to find their expected answers were the 2 to 3 paragraphs on

the corresponding web pages. Comparing to the users who directly use the web page

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Highest Answer Rank
Highest Answer Rank

136

search engines to search their questions and go though several web pages to look for the

answers, our QA system’s users usually need to read only 2 to 3 paragraphs of texts to

find the expected answers. Thus, our QA system has successfully improved the retrieval

of the online information by reducing the users’ searching efforts. This result also proves

Jimmy and Boris’ opinion [65] that to improve the search result of the web search

engines, we can use some simple and affordable information retrieval techniques to

produce a better search result. This evaluation result will help us set a threshold on the

candidate answers for further reducing the users’ reading and raising the quality of the

users’ experience eventually.

Finally, the reason we did not set an evaluation for our novel query refinement is that the

improvements made by this step mostly depends on the users’ knowledge. These are their

choices to refine their queries for a better search results. An objective evaluation is not

suitable for this subjective refinement.

12. Conclusion

In this paper, we have introduced and explained our QA system which was designed for

improving the retrieval of information on the Internet. Several modified and improved

algorithms were embedded into this system in order to attain this goal. In this section, we

are going to summary the functions and the performances of the main components in our

system and also have an overall conclusion of this complete system.

The initial motivation of our QA system was based on the web search engines’ search

process and results. The users submit their questions to those web search engines in order

to search some useful answers. The search results they receive are mostly the lists of

137

ranked links which lead them to some related web pages according to their questions. The

users then have to click on those links and go through the corresponding web pages until

they find the answers they need. In some worse cases, they even have to follow more

links on the related web pages to track the answer. Based on the evaluation we made on

the Google search engine, three of the top five web pages on the average directly

answered our test questions. That means the users need to go into average two web pages

to find the expected answers. Thus, the users are required to pay more efforts on the

answer searching. And these web page link following and web page browsing reduce the

quality of the users’ answer searching experiences.

To improve these online information retrieval results, we have designed a QA system

which directly represents the answers to the users based on the questions they ask. In

order to deal with the users’ questions written in natural English on the unlimited topics,

our QA system dynamically connects to the Google search engine to access the abundant

online information. Specifically, it receives a question from a user and sends it to the

Google search engine as a piece of web search query each time. The Google search

engine helps the system search for some related web pages based on the received search

query and sends their links back. Based on those searched web links, our QA system

visits each corresponding web page and extracts its text content. During the text

extraction, the texts are downloaded based on their original paragraph structure on each

web page. In other words, our system downloads all the text paragraphs on the related

web pages to build up a temporary document collection as the knowledge resource for the

received question. Furthermore, the system utilizes the Information Retrieval technology

to retrieve parts of the documents in the collection which are relevant to the question and

138

presents them back to the users as the candidate answers. During the document retrieval

process, each document in the collection is determined by our system based on the

common terms it shares with the question. If a document shares at least one common

word with the question, it will be treated as a relevant document and sent back to the user

as one of the candidate answers.

In order to efficiently locate and detect the terms contained by each documents in the

collection during the common term matching process, our system indexes the entire

document collection after they were extracted from the related web pages. During the

indexing process, the system creates the term vectors to store the identical terms and the

documents in which they appear individually. By the help of this index, the system does

not have to go through entire collection each time to find the documents which contain

the one or more common terms with the question. It simply checks the index terms at

once, as long as there is a term matches with the term in the user’s question, the

documents’ information of which this term occurs in will be detected and those

documents then will be easily retrieved back.

During the term matching talked above, to avoid the type of situations which our system

treats the terms “walk” and “walked” as two different terms, we have implemented the

term stemming strategy into the document indexing process. Each detected term in the

document will be first stemmed based on a list of English stems. For example, the term

“knowledge” will be stemmed as “know” and saved as the same stem with the other

terms such as “knew”, “knowing”, “known”, etc. The information of the documents

which contain all those terms will be saved together under the stem “know”. Same with

the document term stemming, the users’ questions are also processed by the stemming

139

strategy before the common term matching. Thus, the term “known” in the use’s question

can be matched with the documents which contain the terms “knew”, “knowing”, etc.

Therefore, our system is able to retrieve more relevant documents to the question.

However, matching more documents is not the ultimate goal of our system, matching the

proper documents to the questions is. Based on the document retrieval strategy our QA

system used, as long as a document shares one common term with the question, it will

definitely be retrieved back to the user as a member of the candidate answers. Even the

documents which only share the high-frequency terms such as “in”, “of”, “at”, etc. with

the questions will still be treated as the relevant documents during the retrieval.

Therefore, to reduce the disturbances of those high-frequency terms, our system ignores

them during the document indexing based on a list of English high-frequency terms.

Thus, even if the users’ questions still include those terms, they will not be matched since

there are not such terms existing in the document index. This step was designed to solve

the sensitivity of the original document retrieval strategy so that our system is able to

retrieve less irrelevant documents back to the users.

By the help of our term-based document retrieve strategy which has been integrated with

the term stemming algorithm and the high-frequency term elimination, our QA system is

able to narrow down the Google search results for the users based on their questions.

Instead of visiting and viewing several web pages to search for the useful information,

the users who use our system only need to read a small number of retrieved documents

which used to be the paragraphs on the corresponding web pages. Thus, our QA system

carefully selects parts of the text contents from the related web pages and presents them

to the users to reduce their readings.

140

Moreover, we have also noticed that the semantic information was unacceptably missing

during the document retrieval process. For example: our system could not retrieve the

document “Artificial intelligence is the intelligence of machines and robots and the

branch of computer science that aims to create it” to the question “what is AI” since there

is no common term shared by those two documents. Therefore, we have designed and

embedded a new search strategy based on Mehran and Timothy’s document retrieval

strategy [63] into our system.

We first proved that Mehran and Timothy’s strategy is not suitable for the systems which

deal with the dynamic document collections. Based on their theory, to detect the semantic

connection between two documents which do not share the common terms together, a

system needs to expanse those two documents first with more related terms. Thus, the

possibility of sharing the common terms will be remarkably increased from the value of 0

since more terms are added into those two documents. The two expansions of those two

documents are made by sending them to the Google search engine separately and

searching for their related web pages as the expansion materials. Because of the Google

search engine offers the searched web page snippets which contain several segments

matched to the search query, Mehran and Timothy use those snippets to expanse the

documents. Thus, those two documents will be added with some high related terms

coming from their related web page snippets. After the expansions, those two documents

may share a few common terms and be matched during the document retrieval.

Therefore, Mehran and Timothy’s theory solves the semantic information missing

situation of the traditional term-based document retrieval strategy with the simple but

powerful expansions. However, it requires the systems expanse each documents in their

141

collections for matching with the future questions. They have to send each document in

their collection to the Google search engine to acquire the web page snippets as the

expansion materials. For the systems which deal with the static document collections,

they can follow this scenario and expand their documents at once before the answer

retrieval. Then they only need to expanse the coming questions with the Google search

engine each time before they are retrieving the related documents. But for the systems

which are implemented with the dynamic document collections like ours, this search

strategy is not affordable. Since a dynamic document collection constantly updates its

document members, the new imported documents have to be expanded before matching

with the new search queries. In our case, the system builds a completely new document

collection based on each new question it receives. The average number of documents

saved in our collection each time is around 350. It means our system has to send 350

documents to the Google search engine as the search queries to expanse each of them for

the new question. Apparently, it is too expensive to accept. We also have proved the

expansion of our document collection may lead the result that more irrelevant documents

are retrieved since there are implicit connections between the question and our original

documents in the collection.

Based on these two proves, we decided to only expand the users’ questions each time

since our system sends them to the Google search engine and receives their related web

page snippets based on our original strategy. Based on the new expanded questions, the

system then is able to retrieve the more relevant documents in the collection. Based on

our evaluations, by using this new modified and improved document retrieval strategy,

142

our QA system is able to produce a 1.5 times better candidate answers than the traditional

strategy is.

We have also successfully implemented a new candidate answer ranking strategy in our

system. In most cases, the users who submitted their questions to our QA system will

receive a group of candidate answers back. They have to review each of the candidate

answers until they find their expected information. Those candidate answers were

retrieved by the system based on the common terms they share with the corresponding

questions. Some of them contain much more related information with the question, others

contain less. Our system ranks them based on the similarity between each of them and the

received question. The ranked candidate answers will be presented to the users in the

descending order of their similarity. The users then are able to view the answers with the

better qualities first and find the correct answer earlier than going through the entire

unranked candidate answers.

To implement this document similarity calculation, we first utilized the original CCSM

formula which involves two main variables: the Term Frequency and the Inverse

Document Frequency. Those two factors describe each term in the document index as

how important it is not only in a specific document but also in the whole collection. We

defined the described importance of a term as the weight of this term. Based on the

combination of those two factors, the same term can have different weights in different

documents since it occurs different times in each of them. An important term described

by both of the factors should appear more in a particular document but less in the entire

collection. Therefore, a retrieved potential document is evaluated by our system based on

the common terms it contains with the question and the weights of those terms. A higher

143

similarity value a document gets means this document is more related to the question. It

then should be ranked higher in the candidate answer list to help the user find the

expected answer as soon as possible.

Furthermore, based on the specialty of the documents in our collection, we have modified

the original CCSM with two more variables. Since the documents were extracted from

the web pages which were searched and ranked by the Google search engine based on the

users’ questions, the rank information then indicates the quality of both the web pages

and the text contents they contain. The Google search engine gives a higher rank to a web

page means this web page is more related to the search question. Thus, the text content in

this web page is supposed to be more relevant to the question as well and has a bigger

possibility to answer it. Therefore, our system saves the ranks of the searched web pages

each document was downloaded from and used them into the similarity evaluation. A

document, which came from a web page which got higher rank from the Google search

engine based on the question, will be evaluated with a bigger similarity value. Moreover,

our system predicts the qualities of the candidate answers in the way that a bigger

document contains more relevant information. It is because the documents in our

collection used to be the text paragraphs on the web pages. Based the feature of the

online web pages, a longer paragraph has a bigger possibility to contain more important

information to the search query. Therefore, the bigger documents will be attached with a

higher similarity value and shown with a higher rank in the candidate answer list. Finally,

since these two new variables are not the key factors affect the documents’ similarities,

we have reduced their affect abilities in the modified CCSM.

144

With the help of the similarity evaluations, the users receive a list of ranked candidate

answers each time after they submit a question. They are expected to find the correct and

useful information as early as possible. Our system then can be defined as reducing more

readings of the users after narrowing the web pages reading into the paragraphs reading.

Based on the evaluation of the system’s overall performance, our QA system is able to

answer the test questions with the top 2 to 3 retrieved documents on the average. That

means only two to three paragraphs are needed to be viewed by the users who are looking

for their answers. The conclusion has been easily made that our QA system has

remarkably improved the retrieval of the information on the Internet.

To further improve the quality of the online information retrieval and the users’ search

experience, we have also expanded our QA system with a novel query refinement

component. It offers the users an opportunity to refine their queries in three simple steps

to receive the better search results. Comparing to the Google search engine’s advanced

search, there are a few improvements made. First of all, our system shows the users their

previews search results while they are following the first step of the query refinement:

reediting the question. From the previews search result, the users will have the deeper

understandings about the powers of the terms in their original questions and make clearer

and stronger questions this time. The users can also emphasize some of the terms in their

questions which they think are more important during the retrieval by assigning numeric

weights to them from 1 to 10. A term which is attached with a higher weight in the

question will give the higher ranks to the documents which are related to it. The question

term weighting refinement does not change the members of the candidate answers but

their ranks. The last step of the query refinement is the Boolean query binding. The users

145

can create a Boolean “NOT” query and bind it to the question for restricting the search

result. The terms which are added in the Boolean “NOT” query will lead the result that

the documents which contain some of those terms will not be shown in the ranked

candidate answers. It is a powerful binding query the users can use to further filter the

search results.

Those three steps of the query refinement effectively affect the members and the ranks of

the future candidate answers. However, they are not mandatory to the users to use.

Different combinations of them lead the users to the different search results. Since the

refinement is mainly based on the users’ subjective opinions, we did not design and

accomplish an objective evaluation on it. But we still strongly believe the specialty and

the affectivity of this query refinement.

Thus, comparing to the Google search result which is a group of ranked web page links,

our QA system has successfully helped the users narrow down the answer result into

fewer related documents which used to be the parts of the paragraphs on the

corresponding web pages. The users do not have to follow the web page links and browse

the web pages in order to find the expected answers. Instead, they only need to directly

read some retrieved documents. Furthermore, by ranking the similarity of the retrieved

documents with the users’ questions, our system has further reduced the users’ readings

into a small number of paragraphs. The improvement of the Internet information retrieval

made by our system is clearly remarkable.

During the system designing, we have also modified and improved two traditional

algorithms in the information retrieval area based on our case. We utilized Mehran and

146

Timothy’s simple and powerful document retrieval strategy as the basic concept and

designed our own strategy to detect the semantic information in the document collection.

The modified and improved strategy helps our system retrieve more semantically relevant

documents with an acceptable time cost. With the deep understanding of the documents

in our collection, we have also imported two new factors into the traditional CCSM to

better rank the retrieved relevant documents for the users to view. Finally, the designing

of the advanced search in our QA system based on the users’ perspectives helps them

build the more robust search queries to retrieve the better groups of candidate answers.

Our system is a complete and functioning QA system. But there are still some spaces for

us to improve in the future. So far, our system has been able to locate the correct answers

in some retrieved short documents. As one of the future works, those retrieved documents

can be broke down into sentences and only potential sentences will be combined together

to compose the only one formal answer the users receive. Theoretically, this approach

will involve the document clustering technique which is able to detect the qualified

documents in the database and carefully combine them into a more complete answer

based on the search question. It will help to further reduce the users’ readings and raise

the precision of the system eventually.

Since our system connects the Google search engine to receive and improve its search

result. More search options such as the specific web site search can be offered to the

users in the future. Our system can be designed to restrict the Google search engine to

only search the information in some specified web pages based on the users’ choices.

Thus, the relevant documents extracted from a small number of web pages instead of the

147

whole internet will increase the relevance of the future retrieved documents to the users’

questions.

148

REFERENCES

[1] Gaurav Batra, Mansi Goel. An improved answer retrieval system taping the linkage structure

for noisy SMS queries. International Journal of Computer Applications, 2012.

[2] Ryuichiro Higashinaka, Hideki Isozaki. Corpus-based question answering for why-questions.

International Joint Conference on Natural Language Processing, 2008.

[3] Richard C. Wang, Nico Schlaefer, WilliamW. Cohen, Eric Nyberg. Automatic set expansion

for list Question Answering. EMNLP '08 Proceedings of the Conference on Empirical

Methods in Natural Language Processing Pages 947-954, 2008.

[4] João Silva, Luísa Coheur, Ana Cristina Mendes, AndreasWichert. From symbolic to sub-

symbolic information in question classification. Artificial Intelligence Review, Volume 35

Issue 2, Pages 137-154, February 2011.

[5] Cheng-Lung Sung, Cheng-Wei Lee, Hsu-Chun Yen, Wen-Lian Hsu. An alignment-based

surface pattern for a Question Answering system. Integrated Computer-Aided Engineering -

Selected papers from the IEEE Conference on Information Reuse and Integration (IRI), July

13-15, 2008, Volume 16 Issue 3, Pages 259-269, August 2009.

[6] Tianyong Hao, Dawei Hu1, Liu Wenyin and Qingtian Zeng. Semantic patterns for user-

interactive question answering. Semantics, Knowledge and Grid, 2006. SKG '06. Second

International Conference, 2006.

[7] Leila Kosseim , Jamileh Yousefi. Improving the performance of Question Answering with

semantically equivalent answer patterns. Journal: Data & Knowledge Engineering, Volume 66

Issue 1, Pages 53-67, July, 2008.

[8] Saeedeh Momtazi, Dietrich Klakow. A word clustering approach for language model-based

sentence retrieval in Question Answering systems. CIKM '09 Proceedings of the 18th ACM

Conference on Information and Knowledge Management, Pages 1911-1914, 2009.

[9] S. Kalaivani, K. Duraiswamy. Methodology for converting question to query form in

Question Answering for automatic learning system. European Journal of Scientific Research,

2012.

[10] Raju Barskar, Gulfishan Firdose Ahmed, Nepal Barskar. An Approach for extracting exact

answers to Question Answering (QA) system for english sentences. International Conference

on Communication Technology and System Design, 2011.

[11] D.S. Wang. A domain-specific Question Answering system based on ontology and question

templates. Software Engineering Artificial Intelligence Networking and Parallel/Distributed

Computing (SNPD), 11th ACIS International Conference, 2010.

[12] Shiyan Ou, Viktor Pekar, Constantin Orasan, Christian Spurk, Matteo Negri. Development

and alignment of a domain-specific ontology for Question Answering. In Proceedings of the

6th Edition of the Language Resources and Evaluation Conference (LREC-08), 2008.

149

[13] Óscar Ferrández, Rubén Izquierdo, Sergio Ferrández, José Luis Vicedo. Addressing

ontology-based Question Answering with collections of user queries. Lexical and Syntactic

Knowledge For Information Retrieval, 2011.

[14] Hyo-Jung Oh, Sung Hyon Myaeng, and Myung-Gil Jang. Enhancing performance with a

learnable strategy for Multiple Question Answering Modules. ETRI Journal, Volume 31,

Page 419-428, August, 2009.

[15] Antonio Ferrández, Jesús Peral. The benefits of the interaction between data warehouses and

Question Answering. EDBT '10 Proceedings of the 2010 EDBT/ICDT Workshops, Article

No. 15, 2010.

[16] V. Rieser, O. Lemon. Does this list contain what you were searching for learning adaptive

dialogue strategies for Interactive Question Answering. Natural Language Engineering

archive, Volume 15 Issue 1, Pages 55-72, January 2009.

[17] Sebastian Varges, Fuliang Weng, Heather Pon-Barry. Interactive Question Answering and

constraint relaxation in spoken dialogue system. Natural Language Engineering, Volume 15

Issue 1, Pages 9-30, January 2009.

[18] Wael Salloum. A Question Answering system based on Conceptual Graph Formalism. KAM

'09 Proceedings of the 2009 Second International Symposium on Knowledge Acquisition

and Modeling, Volume 03, Pages 383-386, 2009.

[19] Liang Zhenqiu. Design of automatic Question Answering system Base on CBR. 2012

International Workshop on Information and Electronics Engineering, 2012.

[20] Ulli Waltinger, Alexa Breuing, IpkeWachsmuth. Interfacing virtual agents with collaborative

knowledge open domain Question Answering using wikipedia-based topic models. In

proceeding of IJCAI 2011, Proceedings of the 22nd International Joint Conference on

Artificial Intelligence, 2011.

[21] Detle Koll, Thomas Polzin. Providing computable guidance to releevant evidence in

Question-Ansering system. Application Number: 13/025,051, Publication Number: US

2012/0041950 A1, Filing Date: Feb 10, 2011.

[22] Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, Daniel

Gerber, Philipp Cimiano. Template-based Question Answering over RDF Data. WWW '12

Proceedings of the 21st International Conference on World Wide Web, Pages 639-648,

2012.

[23] Elif Aktolga, James Allan, David A. Smith. Passage reranking for Question Answering using

syntactic structures and answer types. ECIR'11 Proceedings of the 33rd European

Conference on Advances in Information Retrieval, Pages 617-628, 2011.

[24] Arnaud Grappy, Brigitte Grau. Answer type validation in Question Answering Systems.

RIAO '10 Adaptivity, Personalization and Fusion of Heterogeneous Information, Pages 9-15,

2010.

150

[25] Álvaro Rodrigo, Anselmo Peñas, Felisa Verdejo. Evaluating Question Answering validation

as a classification problem. Language Resources And Evaluation, Volume 46, Issue 3, Page

493-501, 2012.

[26] Sofia J. Athenikosa, Hyoil Han. Biomedical Question Answering: a survey. Computer

Methods and Programs in Biomedicine, Volume 99 Issue 1, Pages 1-24, 2010.

 [27] Raju Barskar, Gulfishan Firdose Ahmed, Nepal Barskar. An approach for extracting exact

answers to Question Answering (QA) system for English sentences. International

Conference on Communication Technology and System Design, 2011.

[28] Ling Xia, Zhi Teng, Fuji Ren. Question classification for Chinese cuisine Question

Answering system. IEEJ Transactions on Electrical and Electronic Engineering, Volume 4,

Issue 6, pages 689–695, November 2009.

[29] Tiansi Dong, Ulrich Furbach, Ingo Glöckner, Björn Pelzer. A natural language Question

Answering system as a participant in human Q&A portals. In proceeding of: IJCAI 2011,

Proceedings of the 22nd International Joint Conference on Artificial Intelligence, 2011.

[30] Sven Hartrumpf, Ingo Glöckner, Johannes Leveling. Efficient Question Answering with

question decomposition and multiple answer streams. CLEF'08 Proceedings of the 9th

Cross-language Evaluation Forum Conference on Evaluating Systems for Multilingual and

Multimodal Information Access, Pages 421-428, 2009.

 [31] Omar Trigui, Lamia Hadrich Belguith, Paolo Rosso. DefArabic QA arabic definition

Question Answering system. In Proceeding of Workshop on LR & HLT for Semitic

Languages, 2011.

[32] Ines Čeh, Milan Ojsteršek. Developing a Question Answering system for the Slovene

language. WSEAS Transactions on Information Science and Applications, Volume 6 Issue 9,

Pages 1533-1543, September 2009.

 [33] Xavier Tannier, Véronique Moriceau. FIDJIWeb Question-Answering at Quaero 2009.

European Language Resources Association, 2010.

[34] Jasmina Armenska, Aleksandar Tomovski, Katerina Zdravkova, Jovan Pehcevski.

Information Retrieval using a Macedonian test collection of Question Answering. Second

International Conference, ICT Innovations 2010, September 12-15, 2010.

[35] Dan Tufiş, Dan Ştefănescu, Radu Ion, Alexandru Ceauşu. RACAI’s Question Answering

system at QA@CLEF2007. Cross-Language Evaluation Forum - CLEF, Page 284-291,

2007.

[36] Bob Coyne, Owen Rambow. LexPar: a freely available English paraphrase lexicon

automatically extracted from FrameNet. Semantic Computing, 2009.

151

[37] Gosse Bouma, Geert Kloosterman, Jori Mur, Gertjan van Noord, Lonneke van der Plas, Jörg

Tiedemann. Question Answering with Joost at CLEF 2007. Advances in Multilingual and

Multimodal Information Retrieval, Page 257-260, 2008.

[38] Gosse Bouma, Gertjan van Noord, and Robert Malouf. Alpino: wide-coverage

computational analysis of Dutch. Computational Linguistics in the Netherlands - CLIN,

2001.

[39] Olatz Ansa, Xabier Arregi, Arantxa Otegi, and Ander Soraluze. Ihardetsi a Basque Question

Answering system at QA @CLEF 2008. CLEF'08 Proceedings of the 9th Cross-language

Evaluation Forum Conference on Evaluating Systems for Multilingual and Multimodal

Information Access, Pages 369-376, 2009.

 [40] Mitchell Bowden, Marian Olteanu, Pasin Suriyentrakorn, Thomas D’Silva, and Dan

Moldovan. Multilingual Question Answering through intermediate translation LCC’s

PowerAnswer at QA @CLEF 2007. Advances in Multilingual and Multimodal Information

Retrieval, Pages 273 – 283, 2008.

[41] Marian Olteanu, Chris Davis, Ionut Volosen and Dan Moldovan. Phramer - An open source

statistical phrase-based translator. Workshop on Statistical Machine Translation, 2006.

[42] Sofia J. Athenikos, Hyoil Han, Ari D. Brooks. A framework of a logic-based Question-

Answering system for the medical domain (LOQAS-Med). SAC '09 Proceedings of the 2009

ACM symposium on Applied Computing, Pages 847-851, 2009.

[43] YongGang Cao, Feifan Liu, Pippa Simpson, Lamont Antieau, Andrew Bennett, James.

Cimino, John Ely, Hong Yu. AskHERMES An online Question Answering system for

complex clinical questions. Journal of Biomedical Informatics, Volume 44 Issue 2, Pages

277-288, April, 2011.

[44] Chuan Liang. Improved intelligent answering system research and design. Advanced

Technology in Teaching - Proceedings of the 2009 3rd International Conference on Teaching

and Computational Science (WTCS 2009), Page 583-589, 2009.

[45] Brian L. Cairns, Rodney D. Nielsen, James J. Masanz, James H. Martin, Martha S. Palmer,

Wayne H. Ward, Guergana K. Savova. The MiPACQ clinical Question Answering system.

In Proceeding of AMIA Annu Symp, Page 171–180, 2011.

[46] Cui Tao, Harold R. Solbrig, Deepak K. Sharma, Wei-Qi Wei, Guergana K. Savova, and

Christopher G. Chute. Time-Oriented Question Answering from clinical narratives using

semantic-web techniques. ISWC'10 Proceedings of the 9th International Semantic Web

Conference on the Semantic Web, Volume Part II, Pages 241-256, 2010.

[47] Taniya Mishra, Srinivas Bangalore. Qme! A speech-based Question-Answering system on

mobile devices. HLT '10 Human Language Technologies: The 2010 Annual Conference of

the North American Chapter of the Association for Computational Linguistics, Pages 55-63,

2010.

152

[48] Samir Tartir, Bobby McKnight, I. Budak Arpinar. SemanticQA web-based ontology-driven

Question Answering. SAC '09 Proceedings of the 2009 ACM symposium on Applied

Computing, Pages 1275-1276, 2009.

[49] Maria Vargas-Vera, Miltiadis D. Lytras. AQUA: a closed-domain Question Answering

system. Information Systems Management, Volume 27 Issue 3, Pages 217-225, 2010.

[50] Mahsa A. Yarmohammadi, Mehrnoush Shamsfard, Mahshid . Yarmohammadi, Masoud

Rouhizadeh. SBUQA Question Answering system. Advances in Computer Science and

Engineering, Page316-323, 2008.

[51] Anton Leuski, David Traum. NPCEditor: a tool for building Question-Answering characters.

In Proceeding of Irec Conference, 2010.

[52] Tianyong Hao, Wenyin Liu, Chunshen Zhu. Semantic pattern-based User Interactive

Question Answering User Interface design and evaluation. ICIC'11 Proceedings of the 7th

International Conference on Advanced Intelligent Computing Theories and Applications:

with Aspects of Artificial Intelligence, Pages 363-370, 2012.

[53] Ali Ghobadi Tapeh, Maseud Rahgozar. A knowledge-based Question Answering system for

B2C eCommerce. Information Technology: New Generations, 2008. ITNG 2008. Fifth

International Conference, 2008.

[54] Yi-Hsun Lee, Cheng-Wei Lee, Cheng-Lung Sung, Mon-Tin Tzou, Chih-Chien Wang, Shih-

Hung Liu, Cheng-Wei Shih, Pei-Yin Yang, Wen-Lian Hsu. Complex Question Answering

with ASQA at NTCIR 7 ACLIA. Technologies: Information Retrieval, Question Answering

and Cross-Lingual Information Access, NII, Page70-76, 2008.

[55] Jibin Fu, Jinzhong Xu, Keliang Jia. Domain ontology based automatic Question Answering.

Computer Engineering and Technology, 2009. ICCET '09. International Conference, 2009.

[56] Ulrich Furbach, Ingo Glöckner, Hermann Helbig, Björn Pelzer. LogAnswer - a deduction-

based Question Answering system. 4th International Joint Conference, IJCAR, 2008.

[57] Tom Yeh, John J. Lee, Trevor Darrell. Photo-based Question Answering. MM '08

Proceedings of the 16th ACM International Conference on Multimedia, Pages 389-398,

2008.

[58] Christina Unger and Philipp Cimiano Pythia. Pythia: compositional meaning construction for

ontology-based Question Answering on the semantic web. Proceedings of the 16th

International Conference on Applications of Natural Language to Information Systems, Page

153-160, 2011.

[59] Lorand Dali, Delia Rusu, Blaž Fortuna, Dunja Mladenić, Marko Grobelnik. Question

Answering based on semantic graphs. 2009.

[60] Ann Taylor, Mitchell Marcus, Beatrice Santorini. The Penn Treebank: an overview. 2003.

153

[61] William Tunstall-Pedoe. True knowledge open-domain Question Answering using structured

knowledge and inference. AI Magazine, Volume 31 Issue 3, Page 80, 2010.

[62] Dmitri Roussinov, Weiguo Fan, Jose Antonio Robles-Flores. Beyond keywords automated

Question Answering on the web. Communications of the ACM - Enterprise Information

Integration: and Other Tools for Merging Data, Volume 51 Issue 9, Pages 60-65, 2008.

[63] Mehran Sahami, Timothy D. Heilman. A web-based kernel function for measuring the

similarity of short text snippets. WWW '06 Proceedings of the 15th International Conference

on World Wide Web, Pages 377-386, 2006.

[64] Valentin Jijkoun, Maarten de Rijke. Retrieving answers from frequently asked questions

pages on the web. CIKM '05 Proceedings of the 14th ACM International Conference on

Information and Knowledge Management, Pages 76-83, 2005.

[65] Jimmy Lin, Boris Katz. Aranea: mining answers from the World Wide Web.

[66] Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais, Andrew Ng. Data-intensive question

answering. In Proceedings of the 2001 Text REtrieval Conference (TREC 2001), 2001.

[67] C.J van Rijsbergen. Information retrieval (2nd edition). 1979.

[68] Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze. An introduction to

information retrieval. 2008.

[69] Erik Hatcher, Otis Gospodnetic. Lucene in action (2nd edition). 2010.

[70] April Kontostathis, Scott Kulp. The effect of normalization when recall really matters. In

proceeding of: Proceedings of the 2008 International Conference on Information and

Knowledge Engineering, IKE 2008, July 14-17, 2008.

154

APPENDICES

Appendix A

A Report on Google Search Engine

Google as the most popular web searching engine is helping millions of users everyday with their

various questions and interests. This report represents how Google search engine works based on

three main tasks it accomplishes of. Unfortunately, core algorithms Google is utilizing with still

understandingly are business secrets. Therefore, this report only refers to the general ideas and

principles those algorithms are created based on.

1. Web Crawling

For the huge number of web pages on the Internet, Google needs to download every single one in

term of covering all information users may need of. The procedural of downloading pages in a

certain order in case of missing some of them is called web crawling. And the software that does

this job is called web crawler. Since most of the web pages connect with others, this web crawler

can be imagined as a spider walking on the spider web while collecting the information in the

same time.

As matter of fact, Googlebot is the web crawler robot Google is using. It comprised of lots of

computers to request and fetch different web pages simultaneously. This is how Google detects

and saves documents through millions of web pages efficiently. Furthermore, Googlebot also

considers about the visiting capacity of a web server. It usually sends requests to a server more

slowly than its limit speed in case of the server is overwhelmed and dead for that.

As mentioned above, web crawler works like a spider though each page. Those web pages can be

thought as different nodes which are highly connected. Therefore, mapping an efficient route

through all web pages is crucial to a web crawler. Googlebot crawls with URLs and internal links.

URLs usually indicate front pages and internal links help crawler find subpages. Googlebot is not

a text based web crawler. Thus, there is no depth search or width search strategy. Instead, it more

considers about how to keep data fresh (up to date).

Updating database is another biggest challenge Google deals with. The engineer in Google found

that completely updating the database once a while does not work with the high speed of

information growth. Therefore, they only update popular websites like news website constantly

based on how often they get changed; there are more documents which works permanently are

only saved once in the database of Google without updating again in a near future. They call this

strategy as a fresh crawling.

2. Document Indexing

Google indexes downloaded documents from web crawler. This indexing process is seen as

inversing the format of a document. Each word of documents is marked with the documents

names. Therefore, a word may have different document numbers indicating different documents it

belongs to. For example, the name: Bill Gates are indexed separately in different documents.

155

When Google receives a query asking about Bill Gates, it go though two indexing catalogues: Bill

and Gates and compares the documents number in those two catalogues. Only documents with

the number appearing both in Bill and Gates stack will be returned to users.

There are also certain words Google does not index with. Words which do not have a “real”

meaning like: what, the, in, with, or are defined as stop words. Those stop words are not indexed

by Google because they do not help with future searching.

3. Keyword Searching

Yes, Google still uses keyword searching. And Google has its own trademarked page ranker to

rank the relevant pages for users. Unfortunately, no deeper details of core algorithms Google uses

to deal with questions with nature language format and mapping them into documents are

searchable through the internet. They are understandingly high business secrets of Google.

However, it is known that there are around 200 factors involved into Googles’s algorithms. Those

facts showing below are considered by google:

• Popularity of the page: how many links it is linked by other pages and how many links it

link to others.

• The position, size and distance of the searching terms in the page: more close those key

words are set a document, this document is more likely being placed in the top of the list.

• How long the Web page has existed: a newer (more updated) web page is more desirable

than elder web pages.

Google also applies machine-learning techniques to improve its performance automatically by

learning relationships and associations within stored data.

Since Google indexes HTML code rather than the text on the page, users can restrict searches on

the basis of where query words appear. This function is included in Google advanced search.

Once users get their first searching results back, they will have more chances to narrow the results

based on the facts like: language, region, file type, etc.

Appendix B

A Report on Searching “How-To” Questions with Google Searching Engine

BACKGROUND

Nowadays, web search engines have been developed into some quick, accurate and powerful

tools for people to search their interested topics. Google search engine is probably the most

popular search engine in the last 5 years. As the influence of Google, users are used to search

their varied questions with it and eager to find the best answers in a shortest time.

EXPERIMENT PURPOSE

Acquiring a general idea about how accurate and direct the searching results which are given by

Google search engine are and which facts affect the quality of answers.

156

PROCESS

In this experiment, we used 20 “how-to” questions and searched the answers of them on Google

Search engine. We only check top 5 web pages showing on the list. The pages were classified

into two types: useful answers and direct answers. Useful answers are web pages which give

users the answers eventually. However, users may need to click and go through several more

links from there. Direct answers are answers users can find directly from the first page they

entered in. No more links and searching needed.

Also, as a profit aspect, Google pops up some websites in the top of the searching list as

advertisements. Those websites may not be the best match of the queries users just typed in. They

are shown in the top of the list only because those websites pay Google for this position for

gaining more attentions.

We considerate this situation in our results since most of users may not distinguish those

commercial websites and regard them as the best match. This certainly affects the efficiency they

are getting the answers.

Figure 1 showing below is the experiment result:

Question

Searching

Time

Number of

Results

Ad

Pages

Useful

Answers

Direct

Answers

How to tie a tie? 0.34 sec 262,000,000 0 5 3

How to write a cover letter? 0.26 sec 65,200,000 1 5 2

How to download YouTube

Videos? 0.27 sec 3,850,000,000 0 5 5

How to ride a hose? 0.26 sec 43,800,000 2 3 3

How to kiss? 0.28 sec 672,000,000 0 5 3

How to apply for OSAP? 0.39 sec 138,000 0 4 3

How to value a business? 0.35 sec 955,000,000 3 3 3

How to use Siri? 0.25 sec 53,800,000 0 4 3

How to eat healthy? 0.37 sec 105,000,000 3 3 2

How to overcome shyness? 0.19 sec 518,000 2 3 3

How to open RAR files? 0.26 sec 11,200,000 1 5 3

How to quit smoking? 0.35 sec 42,100,000 3 5 1

How to lose weight? 0.42 sec 233,000,000 3 3 2

How to poach an egg? 0.27 sec 1,130,000 1 5 4

How to love? 0.27 sec 5,680,000,000 0 1 1

How to negotiate salary? 0.26 sec 12,300,000 0 5 5

How to draw? 0.29 sec 742,000,000 0 5 0

How to flirt? 0.24 sec 96,100,000 0 4 4

How to increase metabolism? 0.28 sec 39,800,000 0 5 5

How to memorise spellings? 0.35 sec 2,440,000 0 5 4

Average 0.29 sec 643,376,300 0.95 4.15 2.95

Figure 1

* A webpage gives a direct answer is considered as a useful webpage as well.

157

* Advertisements in the top of the searching results are counted as top 5 web pages in our

experiments.

RESULTS

In the general case, we found 3 pages (60%) giving the direct answers in the top 5 pages showing

in the searching results. 4 pages (80%) give useful information about the question users ask. Also,

the number of advertisement webpage being popped up at the top of the results by Google is 1.

During the whole experiment, we found there were several facts affect the quality of answers

users get.

1. If the subject users ask for is more “instruct-able”, they probably get more specific answers or

steps of instructions. For example, question “how to tie a tie” gets more direct answers from

Google than question “how to love” since love is not a skill to learn.

2. If the subject is more specific, there is a bigger possibility for users to get direct answers. For

example, question “how to poach an egg” has more direct answers than question “how to draw”.

We need to make more choices in the web pages about painting to narrow the results of which

kinds of picture you want to draw.

3. If the subject is more popular recently, users will get more useful web pages than some

unpopular questions. For example: question “how to write a cover letter” gets more useful web

pages than question “how to value business”.

4. The advertisement web pages affect the quality of answers a lot. Most of users do not know

they are just some advertisements and regard them as the best match for their answers. Thus, this

kind of websites gets more visitations. But the truth is, most of them are only relevant with the

quires and they cannot offer user a direct answer.

Additionally, even the web pages give direct answers. Most of them have a few distracting

advertisements in the middle of the answers. It is not easy and efficient for users to follow the

instructions. Most of users describe this situation as “annoying”.

158

VITA AUCTORIS

NAME: Ruoxuan Zhao

PLACE OF BIRTH:

Wulumuqi, Xinjiang, China

YEAR OF BIRTH:

1988

EDUCATION:

Wulumuqi No.1 middle school, Wulumuqi,

Xinjiang,China, 2003-2006

Tianjin University of Finance and Economics, B.MIS,

Tianjin, China, 2006-2010

University of Windsor, M.Sc., Windsor, ON, 2010-

2012

	University of Windsor
	Scholarship at UWindsor
	2013

	Improving Retrieval of Information from the Internet
	Ruoxuan Zhao
	Recommended Citation

	tmp.1372947483.pdf.Jlx1R

