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ABSTRACT 

Recent research has shown that introducing mobile data collectors (MDC) can 

significantly improve the performance of wireless sensor networks. There are important 

design problems in this area, such as determining the number and positions of relay 

nodes, determining their buffer capacities to ensure there is no data loss, and calculating a 

suitable trajectory for MDC(s).  

In this thesis, we first propose an integrated integer linear program (ILP) 

formulation that calculates the optimal number and positions of the relay nodes with the 

requisite buffer capacities. We then present two algorithms for calculating the trajectory 

of the MDC, based on the locations and the load of each individual relay node, in a way 

that minimizes the energy dissipation of the relay nodes. Our simulation results 

demonstrate that our approach is feasible for networks with hundreds of sensor nodes and 

leads to significant improvements compared to conventional data communication 

strategies. 
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CHAPTER I 

INTRODUCTION 

1.1 Wireless Sensor Networks 

A basic wireless sensor network (WSN) consists of a number of sensor nodes 

(SN), which are usually deployed to measure/detect intended physical phenomena within 

a geographical area, and a base station (BS), which serves as a central repository to 

collect sensed data from all sensor nodes in the sensing area.  

Sensor nodes, which are tiny, low-cost, low-power, and multifunctional sensing 

devices, in wireless sensor networks combine technological advances in sensing, 

computation, communication and operate in a cooperative manner to achieve the 

objective of deployment. 

The base station is an access point, at which the user can access the data remotely, 

either directly or through internet. It is usually located at a fixed position and is not power 

constrained (e.g. plugged to a wall outlet). 

 

Figure 1. 1 A general layout of a wireless sensor network 

As shown in Figure1.1, a wireless sensor network is usually deployed within a 

geographical area (called sensing area shown as a rectangle border), where there are some 
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physical phenomena to be measured/monitored. Sensor nodes (shown as black dots) are 

distributed inside the sensing area in order to achieve the sensing task effectively and 

accurately. When sensor nodes obtain data from sensing their respective vicinities, they 

send the data continuously or periodically to the base station (shown as circle with 

antenna) directly or following an appropriate routing path (shown as solid lines). A base 

station, on the other hand, is responsible for processing, analyzing and extracting 

meaningful information from the collected data to provide an entire view of the sensing 

area being detected.  

Factors, such as tiny in dimension, unattended operation and cost concerns, pose 

restrictions in the designated capabilities of sensor nodes. Some major limitations that 

constrain the functionality of sensor nodes include [1], [2] and [3]: 

• Limited transmission range: The built-in communication unit of a sensor node 

has limited radio transmission range.  

• Limited power supply: A sensor node is usually powered by a small battery. In 

wireless sensor networks, recharging or exchanging the batteries of sensor nodes 

is generally considered too costly to carry out. Therefore, once the limited 

energy of the battery is completely dissipated, a sensing device will be out of 

operation and lose its functionality [1] and [3]. 

Presented with such challenges, two major concerns in the design of sensor 

networks are scalability and energy conservation [2]. Scalability requires sensor networks 

to be adaptive to frequent changes in operating conditions which include, for example, 

addition/removal of sensor nodes in a network or the scale variation of the sensing area. 

Given initial energy supply, a sensor node can only be functional for a fairly short period 
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of time if it is operating at a large data transmission rate over long distance. Therefore, an 

energy-aware network design is directly related to the lifetime of the network.  

1.1.1 Hierarchical Two-Tiered Wireless Sensor Networks 

To address the above mentioned issues, hierarchical two-tiered wireless sensor 

networks have been proposed in recent years. In traditional two-tiered architecture, as 

shown in Figure 1.2, individual sensor nodes (shown as green dots) are partitioned into 

clusters (enclosed in a dashed circle) and transmit their data to their respective cluster 

heads (shown as red squares). The cluster head collects data from all the sensor nodes in 

its own cluster and transmit the data to the base station [4] and [5], using an appropriate 

routing scheme (single-hop or multi-hop). Each sensor node belongs to only one cluster 

and sends sensed data directly to its cluster head instead of the base station [6].  

 

Figure 1. 2  General layout of a hierarchical sensor network. (a) The data routed by 

single-hop, (b) The data routed by multi-hop 

Since the cluster heads are required to transmit large amounts of data over longer 

distances, compared to individual sensor nodes, the use of specialized nodes for cluster 

heads has gained considerable support in recent years [2], [4], [7] and [8]. These 

specialized nodes, often called relay nodes (RN), are typically equipped with enhanced 

capabilities in terms of energy provisioning, buffer capacities and transmission ranges. 
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The resulting architecture, where a large number of low-power, sensor nodes with limited 

capabilities form the lower tier and relatively fewer relay nodes with enhanced 

capabilities form the upper tier, has been shown to improve network performance in a 

number of areas including network lifetime, load-balanced routing and fault-tolerance [2], 

[4], [5], [7],  [9] and [10]. 

The lifetime of the two-tier architecture network is primarily determined by the 

lifetime of the upper tier relay nodes network. Each relay node is responsible for 

receiving (and possibly aggregating) the data from all sensor nodes in its cluster and then 

transmitting the data to (or towards) the base station, using either single-hop or multi-hop 

paths [5], [6] and [8]. The energy dissipation of the relay nodes increases rapidly with the 

distance between the sender and the receiver, and has a significant impact on the lifetime 

of the network. A number of energy-aware routing strategies have been proposed to 

extend the lifetime of the relay node network [5], [6] and [8]. However, such strategies 

are of limited use for relay nodes that are far away from other nodes and must therefore 

transmit over a large distance, or for nodes near the base station that must transmit data 

from many other nodes, in case of multi-hop routing. In addition, for sparse networks it is 

even possible that no feasible routing scheme exists, since the distance to the nearest 

neighbour may be greater than the radio transmission range of a relay node. 

1.1.2 Hierarchical Three-Tier Architecture of WSNs 

A number of recent papers have shown that the use of some mobile nodes or 

mobile data collectors (MDC) can significantly improve the performance of a network in 

terms of lifetime, coverage, and connectivity [11], and techniques for effectively utilizing 

the unique capabilities of mobile nodes have been attracting increasing research attention 
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in the past few years [12], [13], [14], [15], [16], [17] and [18]. In this thesis, we consider 

a network model that extends the traditional two-tier architecture, as shown in Figure 1.3, 

by adding a third tier consisting of one (or possibly more) mobile data collector(s) 

(MDC), above the relay node network (which now constitutes the middle tier). The MDC, 

which is not power constrained, visits all relay nodes in the middle tier, following a fixed 

trajectory [11], collects data from them, and delivers the collected data to the base station. 

Thus, the relay nodes are relieved from the burden of “routing’’ data towards the base 

station, possibly over long distances, resulting in considerable energy savings at these 

nodes.  

 

Figure 1. 3 Logical topology of a three-tiered wireless sensor network [19] 

1.2 Motivation 

In three-tier wireless sensor networks, we assume that the lower-tier sensor nodes 

have already been deployed and the number and locations of these sensor nodes have 

been determined by the monitoring needs of the specific application.  Relay nodes are 

used as cluster heads to form the middle tier network, and MDC(s) and base station form 

the upper tier. There are two important issues in designing the middle and top tiers of the 

network, which need to be considered: 
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1. The placement strategy of relay nodes in the middle tier 

2. The computation of the trajectory for the MDC(s) in the top tier. 

The placement strategy is responsible for finding the locations of the relay nodes 

constituting the middle tier, such that each sensor node is covered by at least one relay 

node (i.e. there is at least one relay node within the transmission range of each sensor 

node), and the number of the relay nodes is minimized, known as relay node placement 

problem. It has been proven in [20] that finding the optimal placement of relay nodes in 

sensor networks is NP-hard. Since MDC periodically collects data from the relay nodes，

it is necessary to consider the buffer size of relay nodes, such that the data generated by 

the lower tier sensor nodes can be stored at the relay nodes and delivered to the MDC 

without any loss of data (i.e. without buffer overflow). 

The lifetime of a sensor network is typically determined by the battery power of 

the "critical node(s)" in the network [1] and [6]. Therefore, it is extremely important to 

devise strategies that extend the lifetime of the wireless sensor network as a whole. The 

relay nodes, although provisioned with higher power, are also battery operated. As the 

transmission energy dissipation increases rapidly with the distance between the source 

and the destination nodes [6], the suitable trajectory of MDC has a significant impact on 

the network lifetime. 

1.3 Objective of Study and Contribution 

When designing the middle tier of the network (consisting on relay nodes), it is 

essential to ensure that: 

 There is adequate coverage, i.e. each sensor node can communicate with at 

least one relay node. 
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 The overall cost (in terms of the number of nodes and the buffer 

requirements) is reduced as much as possible. 

Unlike previous approaches, in this thesis we present a technique for jointly 

optimizing both placement and buffer size of relay nodes in three-tier wireless sensor 

networks. The proposed approach not only designs a network that meets the coverage and 

connectivity requirements, but also minimizes the buffer size of relay nodes, such that 

there is no buffer overflow. Once the positions and loads of the relay nodes have been 

determined, the proposed algorithm is used for calculating the trajectory of the MDC, 

such that the energy dissipation of the relay nodes due to data transmission is minimized. 

The main contributions of this thesis are as follows: 

1. We propose an ILP formulation that, given a set of potential locations of 

relay nodes in a network, optimally solves the relay node placement 

problem. Our formulation also computes the buffer requirements for the 

relay nodes, so that data generated by the lower tier sensor nodes can be 

stored at the relay nodes and delivered to the MDC without any loss of data 

(i.e. without buffer overflow).  

2. We also provide a modification of our ILP that, given the maximum number 

of relay nodes to be used in the middle tier, finds the locations of the relay 

nodes and minimizes their buffer requirements.  

3. We present an algorithms for calculating the trajectory of the MDC (either 

along a straight line, or in a circular path), such that the energy dissipation 

of the relay nodes due to data transmission is minimized. 
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In our model, we have used a centralized approach for computing the optimal 

relay node positions and routing schedule. This is applicable for networks where the relay 

nodes can be positioned accurately and nodes are mostly stationary after deployment. A 

centralized approach has been adopted in a number of recent papers [10] and [21], and 

also can be used in different application areas, such as habitat monitoring, environment 

monitoring, building monitoring, or surveillance [22] and [23].  

1.4 Organization of Thesis 

The remainder of this thesis is organized as follows. In Chapter 2, we briefly 

review the basic architecture of sensor networks, and the use of node mobility in such 

networks. In Chapters 3 and 4, we present our ILP formulation for optimal relay node 

placement and the algorithms for trajectory computation respectively. We discuss and 

analyze our experimental results in Chapter 5, and conclude with a critical summary and 

some directions for future work in Chapter 6.  
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CHAPTER II 

REVIEW OF LITERATURE 

2.1 Sensor Nodes in Wireless Sensor Network(WSN) 

The research and development of wireless sensor networks were initially 

motivated by the military applications such as battlefield surveillance. The Distributed 

Sensor Network (DSN) program, initiated by the Defence Advanced Research Project 

Agency (DARPA) in the late 70's, symbolizes the modern research on sensor networks.  

Wireless sensor network is resultant of research advancements from various areas 

such as sensing, communication and computing (including both hardware and software). 

A wireless sensor network consists of spatially distributed sensor nodes to monitor 

physical or environmental conditions, such as temperature, sound, vibration, pressure, 

motion or pollutions [24] and [25], and to cooperatively transmit their data through the 

network to a central point, known a base station or a sink. From the base station users can 

access the data, possibly through the internet, for further processing of the data and to 

extract useful information, depending on the type and nature of the application [26]. The 

recent technological advances in the field of micro-electro-mechanical system (MEMS) 

have made the development of tiny, low-powered and multifunctional sensing devices 

technically and economically feasible [24] and [27]. The devices, known sensor nodes, 

are resource limited, such as limited energy, processing and memory capability, and 

transmission range. Although the capability of an individual sensor node is limited, 

sensor networks are able to perform complex sensing tasks through the collaborative 

effort of a large number of deployed sensor nodes. They have been widely employed in 

many monitoring-based applications. For example, a sensor network can be used for 
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measuring the humidity or the temperature of a certain region, for tracking some objects, 

as well as for monitoring habitats, battle fields, human health conditions or nuclear 

radiation levels [24]. 

2.1.1 Sensor Nodes and Deployment 

Sensor nodes are underlying building blocks of sensor networks. A typical sensor 

node, as shown in Figure 2.1, which is simplified from [24], is usually equipped with a 

sensing unit for measuring the intentional target (e.g. temperature, humidity, pressure and 

object- presence/absence etc.). After sensing its vicinity, the raw data generated by a 

sensing unit is generally in an analogous format which is not computer-readable; 

therefore, an analog-to-digital convertor (ADC) is normally required to transform the 

analog data into digital format which, in turn, is further processed by a processing unit. 

The resultant data from a processing unit is cached into the local memory and when it 

comes the turn for a sensor node to transmit, the cached data is sent out by the radio 

communication unit following a pre-established routing path to base station. 

 

Figure 2. 1 Components of a sensor node 
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Sensor nodes in the network are normally deployed inside or very close to the 

phenomenon, so that the sensing task can be carried out effectively. Positioning sensor 

nodes within a sensing field can be executed either in a pre-determined fashion or they 

can be randomly distributed. The pre-determined placement of sensor nodes applies to 

situations where it is possible to know the actual location of sensor nodes prior to the 

deployment of the network (e.g. deployment of sensor network in factories or in the 

bodies of human/animals). However, in certain cases, especially when working in hostile 

environment such as battle field or poisoned region, randomly deploying sensor nodes is 

more practical (e.g. deployment of sensor nodes by dropping them from 

helicopter/airplane or delivering them in artillery shell or missiles) [24] and [25]. The 

capability of random deployment requires self-organized routing schemes and 

distributed-network algorithms to be incorporated in sensor networks, which are 

relatively complex. However, it is the power of random deployment, which makes sensor 

networks suitable for applying in hostile territories as well as in disaster-relief operations. 

2.1.2 Model of Sensor Networks 

Sensor networks, according to their internal architecture, can be broadly classified 

into two categories known as flat sensor networks and hierarchical sensor networks 

respectively. In flat sensor networks, all sensor nodes are assigned the same roles. They 

are responsible for not only sensing the environment, but also forwarding the sensed data 

or relaying other sensor node’s data to the base station.  

Unlike flat sensor networks, hierarchical sensor networks (also known as two-

tiered sensor networks) separate sensing and routing tasks into two different tiers. As 

mentioned in Sec. 1.1.1, sensor nodes which are dedicated to the sensing task lie in the 
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lower tier and are grouped into various clusters identified by an assigned cluster head. 

Each sensor node usually belongs to only one cluster and communicates directly to its 

cluster head, instead of the base station. All cluster heads, lying in the upper tier, collect 

sensed data from their respective clusters and form a network among themselves in order 

to send the collected data to the base station. Compared to flat architecture, hierarchical 

model achieves advantages in various design objectives: energy conservation, data 

aggregation, load balancing and connectivity. For example, in two-tier hierarchical 

architecture, sensor nodes in the lower tier are relived from the burden of routing and 

forwarding, which reduces the energy consumption of these nodes. Because of these 

mentioned advantages, hierarchical architecture has gained increased popularity in the 

research and development of sensor networks. 

2.1.3 Power Model of Sensor Networks 

Energy is considered as one of the most precious resources since it is generally 

infeasible to recharge/replace batteries within sensor nodes. In order to deal with the 

energy consumption, it is necessary to have an approach so that the energy dissipated at 

each sensor node becomes measurable. In the literature [6], the most commonly 

employed approach is known as first-order radio model depicted in Figure 2.2, which is 

simplified from [6]. 

 

Figure 2. 2 First order radio model of a sensor node 
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According to this model, energy consumed at one sensor node, from receiving to 

transmitting b bit data over the distance d to next node, is divided into two parts: the 

receiver circuitry consumption and the transmitter circuitry consumption respectively. 

First part, in the Figure 2.2, Eelec is amount of energy consumed by the receiver circuitry 

for receiving per bit of data. The total amount of energy consumed in receiver circuitry is 

measured as (Eelec * b) joule for receiving a b-bit data. That is, ER (b) = Eelec * b, where 

ERx is the total energy consumed in receiver circuitry. 

Second part, energy consumed at the transmitter circuitry can be expressed in two 

terms. The first term is the amount of energy consumed by the transmitter, which is 

calculated similarly by the above expression, (Eelec * b) joule. The second term, however, 

is the amount of energy consumed by the amplifier for the signal transmission over space 

with distance d. εamp is the energy consumed by the amplifier for transmitting 1 bit of 

data over one unit distance. The energy loss over distance d is taken care by the term d
 q
, 

where q is the path loss exponent, 2 < q < 4, for free space and for short to medium-range 

radio communication [1]. The amount of data consumed in the amplifier is calculated as 

(εamp * b * d
 q
) joule to amplify b bit data over distance d. So the amount of total energy 

consumed in transmitter circuitry is calculated as (Eelec* b + εamp * b * d
q
) joule for 

transmitting a b bit data. That is, ET ( b, d ) = Eelec* b + εamp* b * d
q
, where  ET (b, d) is 

the total energy consumed in transmitter circuitry. 

As shown in Figure 2.2, by using first-radio model, the total energy consumption 

at a sensor node for communicating b bit data over distance d can be expressed as the 

following equation:  
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Etotal = ET (b, d) + ER (b) = Eelec* b + εamp* b * d
q
  

2.2 Relay Nodes in Sensor Networks 

In a sensor network, the main task of relay nodes is to relay data that they receive 

from other nodes (sensor nodes or relay nodes) in the network [28]. The introduction of a 

small number of relay nodes in a wireless sensor network can improve the network 

performance in a number of ways [29], [30], [31], [4], [1], [10], [32], [20]. Researchers 

have shown that the use of relay nodes lead to better performance of the network, in 

terms of the lifetime, data gathering, connectivity, and fault tolerance. 

2.2.1 Relay Nodes in Flat Sensor Networks 

Relay nodes have been proposed for the flat architecture as well as for the 

hierarchical architecture. Figure 2.3 gives an example showing how the appropriate 

deployment of relay nodes can reduce the burden from the sensor nodes that would 

otherwise be heavily loaded.  

 

Figure 2. 3 Use of relay nodes in flat sensor network architecture [28] 

In the flat sensor network architecture, shown in Figure 2.3, the sensor nodes 

located close to the base station are overloaded due to the data they receive from other 
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sensor nodes. After introducing three relay nodes in the same network, the burden of the 

overloaded nodes, which are located close to the base station, have been relieved. 

2.2.2 Relay Nodes in Hierarchical Sensor Networks 

In a hierarchical sensor network, shown in Figure 1.2, relay nodes were first 

considered in  [1] and [4]. In [1] , the authors consider a two-tiered sensor network 

model, where the sensor nodes form the lower-tier, the relay nodes plus the base stations 

form the upper-tier. They focus on maximizing the network lifetime by arranging the 

base station(s), and by optimal inter-aggregation node relaying. In their approach, the 

sensor nodes form clusters and send their readings directly to the respective relay nodes. 

In [4] , the authors address the issue of load balancing in an energy-constrained sensor 

network and propose an algorithm for clustering the sensor nodes around some relay 

nodes, which were equipped with higher energy and acted as cluster heads.   

The use of relay nodes in hierarchical sensor network architectures has also been 

proposed in a number of recent papers [10], [33], [34] and [35]. In [10], the authors 

consider the “geometric deficiencies” of the network and propose an approach for 

additional energy provisioning to the existing nodes and deploying relay nodes in a two-

tiered sensor network containing Aggregation and Forwarding Nodes and relay nodes. 

The objective is to prolong the lifetime of the network. In [33], energy-efficient storage 

architecture in multi-tier sensor networks is investigated. In [34], authors proposed a tenet 

architecture for tiered sensor networks that can be used to simplify application 

development and to reuse mote-tier software. In [35] a genetic algorithm is used to jointly 

solve a multi-objective problem: balanced energy consumption and minimized total 

energy consumption. 
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2.3 Relay Nodes Placement and Clustering 

The placement problem of relay nodes in flat architectures is considered in [29]， 

[31]， [32] and [36]. In [29] , the authors focus on placing a minimum number of relay 

nodes to ensure that the resulting network is connected. They consider a class of sensors, 

where the location of the sensor nodes are pre-determined, and modeled the problem 

based on the well known Steiner minimum tree with minimum number of Steiner points 

and bounded edge length [37] problem. They propose two approximation algorithms. In 

[31], the authors focus on maximizing the lifetime of a sensor network, under the 

constraint that each point in the sensing region is covered by at least one sensor node. In 

their model, any node can assume the role of a sensor node or a relay node. They propose 

an algorithm for finding the location of nodes, along with their roles, to achieve this 

objective. In [32], the authors address the placement problem of the sensor nodes, the 

relay nodes and the base stations, and propose a number of ILP formulations to achieve 

different objectives, such as: a) Minimizing the number of sensor nodes to be deployed 

while maintaining the coverage and the connectivity, b) minimizing the cost and the 

energy consumption, and c) maximizing the lifetime. In [36], the authors formulate the 

relay node placement problem, with the objective of maximizing the lifetime of the 

network, as a nonlinear program and propose an approximation algorithm. The general 

problem of finding an optimal placement of relay nodes is NP-hard,  even finding 

approximate solutions is NP-hard in some cases [20]. 

2.3.1 Relay Nodes Placement 

In wireless sensor networks using relay nodes as cluster heads, the location of a 

cluster head is the location of the corresponding relay node. The placement of the relay 
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nodes, in such a network, must ensure that each sensor node belonging to the network 

must be able to communicate with at least one relay node [28]. 

Since relay nodes are more powerful and expensive, compared to sensor nodes, it 

is desirable that the number of relay nodes be minimized, while ensuring that all the 

sensor nodes are covered by at least one relay node. The relay node placement problem is 

to find the minimum number of relay nodes and the locations of the relay nodes in a 

sensor network, so that each sensor node is covered by at least one relay node. Assuming 

omni-directional transmission by the sensor nodes, the placement can be seen as the 

problem of covering the area corresponding to the network, using a minimum number of 

discs having equal radius, where the radius of each disc is the transmission range of a 

sensor node, assuming that each sensor node has the same transmission range. This 

problem is similar to the well known Minimum Geometric Disk Cover problem which is 

known to be NP-hard [2] and [38]. 

Figure 2.4 shows the significance of the placement strategy of relay nodes in a 

network. Figure 2.4(a) shows that setting four relay nodes at locations A, B, C and D 

cannot cover all sensor nodes within the area bounded by the square ABCD ( it is obvious  

to leave some sensor node uncovered in the shaded region). The radius of the circle 

around the relay nodes (discs) are the transmission range of the sensor nodes. Hence, the 

discs area are covered by these relay nodes. On the other hand, Figure 2.4(b) shows how 

four relay nodes can be placed at locations w, x, y and z so that entire region can be 

covered. The same number of discs of same size can result in different amount of 

coverage depending on the placement of the relay nodes. That is why solving the problem 

of relay node placement is valuable. 
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Figure 2. 4 An example of the relay node placement problem [39] 

The problem of relay node placement in hierarchical sensor network architecture 

has been addressed in [1], [2] and [10]. Pan et al. [1] propose strategies that maximize the 

topological lifetime of a wireless sensor network by arranging the relay nodes, and 

finding the optimal location of the base station(s). Tang et al. [2] considered a 

hierarchical network architecture, where the entire region is divided into cells, and an 

optimal solution is determined for each cell. The authors consider relay node networks, 

with each cell having a length          , where l is an integer and rmax is the 

communication range of each sensor node. The P-positions for a pair of sensor nodes at 

locations x and y are defined as the point(s) of intersection (if any) of two circles of 

radius rmax with centers at x and y in the same cell. An optimal placement of relay nodes 

for each cell is computed from the set, P, of P-positions for all pairs of sensor nodes 

within the cell, by checking all subsets of P of size four or less. Their method requires 

that the transmission range of the relay nodes, dmax must be at least       . Hou et al. 

[10] spent their research effort in prolonging the lifetime of hierarchical, cluster-based 

sensor networks in which the upper tier contains relay nodes (refered to as Aggregation 

and Forwarding Nodes (AFN)). The authors focus on prolonging the lifetime of sensor 
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networks with energy provisioning to the existing nodes and deploying relay nodes 

within the networks. In the paper, a mixed integer linear program (MILP) formulation 

and a heuristic are proposed to solve the problem.  

2.3.2 Clustering in Wireless Sensor Networks 

Clustering in a sensor network deals with the problem of partitioning the entire 

network into a number of distinct clusters, such that each sensor node belongs to a single 

cluster and one node in each cluster is designated to act as the cluster head. Cluster heads 

are responsible for gathering the data from their own clusters and routing the collected 

data towards the base station [28]. Efficient clustering in sensor networks contributes to 

the improvement of overall system performance, including scalability, network lifetime, 

and efficient energy utilization [40]. 

 

Figure 2. 5 Sensor nodes in overlapping coverage area [28] 

The clustering problem for relay nodes is illustrated in Figure 2.5, where the 

sensor nodes in the shaded region, overlapping coverage area, can be assigned to any one 

of clusters A, B or C. Depending on the routing scheme of relay nodes A, B and C, one 

assignment may be more advantageous than the others. The goal of a load balanced 

clustering algorithm is to assign each sensor node to an appropriate cluster in a way that 

extends the lifetime of the network. 
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The clustering and the routing schemes are addressed for two-tiered networks in a 

number of recent papers, including those in [4], [5], [7], [8], [9] and [41]. Bari et al. [4] 

focus on load balanced clustering and propose a heuristic solution for the problem. Fault 

tolerant clustering is addressed in [9]. Yarvis et al. [41] investigate the problem of 

maximizing network lifetime by appropriately placing nodes which are not energy 

constrained (e.g., connected to a wall outlet). The works in [5], [7] and [8] focus on 

clustering and routing schemes that maximize the network lifetime. The aforementioned 

approaches assume that the number and positions of the relay nodes are given. 

2.4 Mobility in Wireless Sensor Networks 

Gandham et al. [12] first introduced the concept of using mobile sinks to balance 

the energy dissipation of all sensors by using multiple mobile base stations to prolong the 

lifetime of WSNs [12]. Their approach balances the energy dissipation of the sensors’ in 

the neighbourhood of the base station. Subsequent research also focuses on exploiting 

mobility to collect data in a sensor network for different kinds of purposes [13], [14], [15], 

[16], [17], [18], [42], [43], [44] and [45], such as maximizing lifetime of WSN, 

increasing connectivity of WSN and providing fault tolerance.  

The existing research can be classified into three categories in terms of the 

properties of mobile elements: mobile base station-based solutions, mobile data collector-

based solutions and rendezvous-based solutions [46]. 

2.4.1 Mobile Base Station-Based Solutions 

Heinzelman et al. [3] have demonstrated, through simulations on static WSN, that 

sensor nodes in the vicinity of a base station drain their energy faster than other nodes in 

a multi-hop network. Mobile base station (MBS) can be utilized to address this problem 
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of uneven energy consumption. Moreover, mobility can also be used to maintain the 

connectivity of the WSN. In this scheme, the base station in WSN changes its location to 

collect data from sensor nodes during their operational lifetime. Data are buffered at 

senor nodes before they are transferred to the mobile base station. 

The method proposed by Gandham et al. In [12] used Integer Linear Program 

(ILP) to determine new locations for base stations and ensured energy-efficient routing 

during each round, in which the lifetime is spit into equal periods of time. Since sensor 

nodes which are one-hop away from a base station are changed by moving base stations 

to new locations, balanced energy dissipation of sensors is achieved. Therefore, multiple 

mobile base stations, which might be required to move periodically, prolong the network 

lifetime. 

Considering that the complexity of the optimal ILP solution for multiple mobile 

base stations by Gandham et al. is high. Azad et al. [42]  proposed energy efficient low-

complexity algorithms to determine locations of the base station. These algorithms 

includes: 1) Top-Kmax algorithm, 2) algorithm of maximizing the minimum residual 

energy (Max-Min-RE), and 3) algorithm of Minimizing the Residual Energy Difference 

(MinDiff-RE). Unlike previous algorithms, where some nodes still have significant 

unutilized energy when the network dies, the proposed approach ensures balanced energy 

dissipation so that all nodes deplete their energy around the same time.  

Ma et al. [47] introduced the characteristic distance (dchar) for analyzing the 

optimization of sink velocity. They compromise between sink-sensor meeting delay and 

message delivery delay, which optimize the delay of message delivery and the energy 

consumption by increasing the number of mobile sinks with an optimal velocity. Mendis 
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et al. [48] applied Particle Swarm Optimization (PSO) for the placement of the sink and 

deriving the optimum movement path followed by sink node within the sensor field to 

achieve efficient energy management and longer lifetime of WSN with maximum field.  

In Jea et al. [13], multiple mobile base stations, which move in parallel straight 

paths, are considered, and it is shown that such mobility can achieve scalability and load-

balancing. In Luo et al. [14], the authors focus on optimal data collection, and propose a 

protocol that extends the lifetime of the network. Their approach takes into account both 

the base station mobility and the multi-hop routing. 

2.4.2 Mobile Data Collector-Based Solutions 

Sparse wireless sensor networks are used in some applications, such as 

monitoring a big battle area or habitat monitoring in large areas. In this situation, 

connectivity of networks is a critical problem. Deploying relay nodes with long 

transmission range to maintain network connectivity is not feasible due to economical 

reasons. The use of mobile data collector (MDC) is introduced to address this problem. In 

this kind of WSNs, sensor nodes generate data and store them in their buffers. When the 

MDC visits a sensors node and is in its direct transmission range, the sensor node can 

transmit the data in its buffers to the MDC. The MDC, in turn, relays the data to the base 

station. Existing MDC-based solutions can use random mobility, predictable mobility, 

and controlled mobility. 

In [16], a three-tiered network is considered where mobile data collectors, lie in 

the middle-tier, move randomly within the network and pick-up data from the sensor 

nodes. A sensor node transmits data only when a MDC enters the direct communication 

range of the node. A Partitioning Based Scheduling (PBS) heuristic for computing the 
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trajectory of the MDC is used in [18], where the focus is to reduce sensor buffer 

overflow. The authors have proposed a solution that has two parts. In the first part, nodes 

are partitioned into groups based on their locations and the data generation rates. Then, a 

node visiting schedule is generated within a group. Finally, the solutions of these groups 

are combined to obtain the final path of the MDC. In [17], the authors propose a queuing 

theory based mathematical model that analyzes the performance and trade-offs of the 

three-tier architecture. 

2.4.3 Rendezvous-Based Solutions 

Xing et al. [49] proposed two algorithms to find a set of rendezvous points (RPs) that can 

be visited by mobile elements (MEs) within a required delay, while the network energy 

consumed in transmitting data from sources to RPs is minimized. The first algorithm 

(Rendezvous Planning with Constrained ME Path) finds the optimal RPs when MEs 

move along the data routing tree. The second one (Rendezvous Planning with 

Unconstrained ME Path) finds RPs with good ratios of network energy saving to ME 

travel distance. They also designed the Rendezvous-based Data Collection (RDC) 

protocol which facilitates reliable data transfers at RPs.  

In rendezvous-based scenario, sensor nodes could send their data to rendezvous points, 

which are on the path of MDC or closer to the path. Once the MDC visits the rendezvous 

points (RPs), the corresponding sensor nodes send their data to the MDC. Therefore, 

rendezvous-based solutions lead to improvements in the performance of a wireless sensor 

network. 

In a hierarchical sensor network architecture, using higher powered relay nodes as 

cluster heads, which utilizes a MDC to collect data from the cluster heads has been 
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discussed in [44], [45]. The objective, in both works, is a new way to extend the overall 

lifetime of the network from rendezvous-based solution. Bari et al. [44] proposed an ILP 

formulation, which optimally selects the relay nodes, from a set of potential relay nodes 

positions, such that i) the number of relay nodes are minimal, and ii) the length of the 

trajectory of the MDC is as short as possible. Bari et al. [45] focus on reducing the length 

of the trajectory of the MDC, by allowing the MDC to visit the neighbourhood of each 

relay nodes, instead of visiting their exact locations.  
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CHAPTER III 

DESIGNING THE MIDDLE TIER OF THE SENSOR NETWORK 

3.1 Network Model 

We consider a three-tiered wireless sensor network, where the lower-tier consists 

of a set S of n sensor nodes, i.e.,| S | = n. We assume that the deployment of the sensor 

nodes has been implemented to ensure appropriate coverage of the sensing area, so the 

number and positions of the sensor nodes are known beforehand and given as input to our 

formulation.  

There are two possible scenarios for determining the positions of the relay nodes 

and the sensor nodes as follows: 

Case i) Nodes are either placed at specified locations (determined by a suitable 

placement strategy.  

Case ii) The locations of the nodes are determined after placement, e.g. using a 

GPS system.  

The average expected data rate for each relay node is assumed to be known in 

advance. The data rate need not be uniform, but can vary from node to node. 

We consider a set Rm of m potential locations of relay nodes, i.e., | Rm | = m. A 

subset R of Rm will constitute the middle-tier network. Each element of R would act as a 

cluster head. Let C
 j
 be the set of sensor nodes belonging to the cluster of relay node j. 

We also consider a MDC, lying in the upper-tier of the network. The MDC visits all relay 

nodes in R, collects their data, and delivers the data to the base station. Each relay node 

has a buffer size B. We assign, to each node, a unique label as follows: 

i) for each sensor node, a label i, 1  i  n, 
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ii) for each possible location of the relay nodes, a label j; n < j   n + m, and 

iii) for the MDC, a label n + m + 1. 

A sensor node i  S is said to be covered by a relay node at location j (we shall 

refer to such relay node as relay node j), if and only if i can transmit its data directly to j. 

A sensor node i may be covered by more than one relay node, however, our objective is 

to design the relay node network such that each sensor node belongs to exactly one 

cluster, C
 j
, corresponding to a relay node j.  In other words, 

                   and  

                 . 

Our proposed formulation determines the minimum number and the positions of 

the relay nodes, to be selected as the cluster heads, to form the middle tier network, and  

assign sensor nodes to clusters such that the relay nodes buffer requirements are 

minimized. 

We assume that the positions of the sensor nodes are known (or can be 

determined, e.g. using GPS), and the relay nodes can be placed at the computed locations. 

This approach is feasible for many applications (e.g., monitoring industrial environments, 

road condition, and habitat). We have used a grid based approach [50] to generate Rm, 

the set of potential relay node positions. However, our ILP formulation does not depend 

on how Rm is generated and other approaches such as approach given in [2] can easily be 

used. 

We consider that a sensor node i  S generates data at a rate of bi bits per unit 

time, and transmits to the corresponding cluster head. The value of bi; i  S can either 

be the same, or may vary. In our model, each relay node j, receives data from the sensor 
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nodes belonging to its own cluster C
 j
, and buffers them until j can transmit buffered data 

to the MDC, while it is visiting j. Data buffering is essential for applications where it is 

important not to lose any data generated by the sensor nodes. In our model, the MDC 

visits each relay node j, periodically, at fixed time intervals. Once a relay node j transmits 

its data to the MDC, its buffer is cleared and can be reused to store new data until the 

next visit by the MDC. A relay node j transmits its buffered data only when the MDC is 

closest to j, in its trajectory. The MDC traverses at a constant speed following a 

predetermined trajectory, and it needs Tr unit time to complete the trajectory. That is, the 

time interval between any two successive visits by a MDC to a relay node j is known and 

is equal to Tr. 

3.2 Network Power Model 

The power needed for data communication is the dominant factor in power 

consumption in wireless sensor networks. We consider the first-order radio model [6] to 

account for the energy consumption due to communication where the receive (transmit) 

circuitry consumes α1 nJ/bit (α2 nJ/bit) of energy since the power model works a sensor 

node as well as a relay node. 

The total energy needs to receive b bits is given by 

ERx (b) =  α1b , 

where α1 is the receive circuitry consumes (nJ/bit), 

The total energy needed to transmit b bits over a distance d is given by  

ETx (b, d) = α2b + βbd
q
,  

where  α2 is the transmit circuitry consumes ( nJ/bit), 

 q is the path loss exponent, 2 ≤ q ≤ 4 ,  
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β is the amplifier energy to transmit unit bit of data over unit distance (pJ/bit/m
2
).  

In our experiments, we have used α1  =  α2  = 50  nJ/bit,  β = 100  pJ/bit/m
2
 and the path-

loss exponent q = 2 [6].  

3.3 Network Lifetime  

A number of different metrics have been used in the literature to measure the 

lifetime of a sensor network. These are: 

 N-of-N lifetime: The mission fails if any relay/gateway node dies,  

 K-of-N lifetime: The mission survives if a minimum of K relay/gateway 

nodes are alive) and  

 m-in-K-of-N lifetime: The mission survives if all m supporting nodes and 

overall a minimum of K relay/gateway nodes are alive.   

For this thesis, we have used N-of-N lifetime in our experimental setup. 

Assuming equal initial energy provisioning in each relay node, the lifetime of the 

network is defined by the ratio of the initial energy (Einit) to the maximum energy (Emax) 

dissipated by any relay node in a round, i.e.:                       .  

In this situation, it is much more important to minimize the energy dissipation 

(Emax) of the most heavily loaded relay node, than to decrease the average energy 

dissipation. This is exactly the goal of our trajectory computation algorithm, discussed in 

Chapter 4. 

 

3.4 Notation Used for ILP Formulation 

In our formulation, we define the following constants as input: 
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 n: The total number of sensor nodes, with each sensor node having a unique 

label i, 1 ≤ i ≤ n. 

 m: The total number of possible positions of relay nodes, each position having a 

unique label j, n + 1 ≤  j ≤ n + m. 

 j: The relay node at location j, n + 1 ≤  j ≤ n + m. 

  n + m + 1: The label of the MDC. 

 rmax: The transmission range of each sensor node. 

 di,j : The Euclidean distance between node i and node j. 

 bi: Number of bits generated by sensor node i in unit time. 

  C
 j
: The set of sensor nodes belonging to the cluster of relay node j. 

 W1, W2: Positive constants that determine the relative importance of minimizing 

the number of relay nodes and the buffer size of relay nodes. 

 Tr: Time required by the MDC between two successive visits at any relay node j. 

 ymax: Maximum allowable number of relay nodes. 

 

We also define the following variables: 

 Xi,j : Binary variable defined as follows: 

      
                                                                 
                                                                                                      

  

  Yj : Binary variable defined as follows: 
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 Rj :  Continuous variable indicating the total number of bits generated (during    

the period Tr )   by the sensor nodes belonging to the cluster of the relay node j, 

C
 j
. 

 Bmax: A Continuous variable representing the maximum allowable buffer size, 

so that Rj ≤ Bmax,j, n+1≤  j ≤ n+m. 

3.5 ILP Formulation for Minimizing the Number of Relay Nodes (ILP1) 

In this section, we propose our ILP formulation. Our formulation 

i) ensures that each sensor node is covered by at least 1 relay node, 

ii) minimized the number of relay nodes, and 

iii) minimize the maximum buffer capacity of any relay node j, to be included in 

the middle tier, as a secondary objective. 

Using the notations discussed in section 3.3, we present our formulation as 

follows: 

                   

   

     

                                                                                    

Equation (1) is the objective function for the formulation, and consists of two 

terms. The primary goal (represented by the first term) is to minimize the total number of 

relay nodes used to form the middle-tier network. As mentioned earlier, a relay node j is 

included in the middle tier (i.e., Yj = 1), only if j selected as a cluster head by at least one 

sensor node i. Therefore, by counting the number of relay nodes selected to be the cluster 

heads, we can determine the number of relay nodes being used in the middle-tier network. 

This is exactly the value calculated by the first term in the objective function. The second 

term is used to minimize the maximum buffer capacity of the relay nodes, which are the 
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secondary objectives. By choosing appropriate values for W1 and W2, we can select the 

relative importance of the two objectives being minimized. For example, if we set W2 = 0, 

then the only parameter we are interested in minimizing is the number of relay nodes. 

                                                                  

Constraint (2) specifies that a sensor node can communicate with a relay node j, 

only if j is within the transmission range of the sensor node.  In other words, a sensor 

node i can transmit data to a relay node j, only if the distance between the sensor node i 

and the relay node j is less than the transmission range rmax of the sensor node i.     

                                                                      

The relay node at location j must be included in the middle tier network, if it is 

selected as a possible cluster head by at least one sensor node i. Constraint (3) ensures 

that if a relay node j is chosen as a cluster head by one or more sensor nodes, then the 

relay node j must be included in the set of relay nodes, selected to form the middle tier 

network. On the contrary, if a relay node j is not chosen as a cluster head by any sensor 

node, normally, it should not be included in the middle tier network. This is not 

specifically enforced by any constraint, but is taken care of by the objective function, 

which will set Yj = 0, if this does not violate any other constraints. 

                                    

   

     

                                                        

Constraint (4) requires that each sensor node belongs to exactly one cluster and 

transmits its data to the relay node that is selected to be the cluster head of its cluster. In 

other words, a sensor node can transmit data to exactly one relay node. 
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Constraint (5) calculates the total number of bits, Rj, buffered in relay node j 

during the interval Tr, by summing the data transmitted to it from all the sensor nodes 

belonging to the cluster C
 j
 and then multiplying this value by the interval Tr. If a relay 

node j is selected to be included in the middle tier and a sensor node i belongs to its 

cluster C
 j
, then Xi,j = 1, and the data from sensor i contributes to the total data collected at 

node j. 

                                                                                       

Constraint (6) ensures that if a relay node j is selected, then the total bits buffered 

at the relay node j during the interval Tr do not exceed the buffer size Bmax. Finally, the 

left hand side of constraint (6) is the total amount of bits buffered at the relay node j 

during the interval Tr. The right hand side Bmax, of constraint (6), must be greater than or 

equal to the maximum of the amount of bits buffered by the relay nodes. Since the 

objective function is to minimize Bmax, constraint (6) forces Bmax to be the maximum 

buffer capacity required by any relay node, that is, the total amount of data to be buffered 

by any relay node in one round of data gathering cannot exceed Bmax. 

 

3.6 ILP Formulation for Minimizing the Buffer Size of  Relay Nodes (ILP2) 

The ILP formulation given in Section 3.5 minimizes the total number of relay 

nodes required to form the upper-tier network, and considers the buffer size as a 

secondary objective. This gives the lower bound for the number of relay nodes. However, 

it some cases, the total number of relay nodes may be given, and the problem is to find 
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out the placement of the given number of relay nodes such that the maximum size of the 

buffer is minimized. This can be easily achieved by the following modification of the 

ILP1. 

                                                                                                                                 

Subject to: 

                                                                  

                                                                      

                                    

   

     

                                                         

              

 

   

                                            

                                                                                        

        

   

     

                                                                    

Equation (7) is the objective function that minimizes the maximum buffer 

capacity requirement of any relay node. Constraints (8) – (12) are analogous to the 

corresponding constraints in ILP1. Constraint (13) enforces the limit on the maximum 

number of relay nodes, that is, maximum number of relay nodes cannot exceeds ymax. 

3.7 Conclusions 

In this Chapter, we focus on a new formulation that, given a set of potential 

locations of relay nodes, optimally determines the number and locations of relay nodes 

that constitute the middle tier of the network. The relay node placement problem is 

solved in a way that ensures full coverage of the sensing are, with a minimum number of 
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nodes. Our formulation also determines the requisite buffer capacity needed at each node, 

so that data can be stored without buffer overflow, between successive visits by the 

MDC. We also present a modified ILP formulation that minimizes the maximum buffer 

size of the relay nodes, without exceeding the maximum allowable number of nodes. 
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CHAPTER IV 

TRAJECTORY COMPUTATION FOR THE MDC 

In this chapter, we present two heuristic approaches to compute the trajectory for 

the MDC, such that the maximum energy dissipated by any relay node is minimized. A 

number of papers have considered the use of complex trajectories, where the MDC visits 

each node individually [18], [44] and [45]. However, our goal is to use a very simple 

trajectory that can be easily traversed by the MDC. So, we consider the case where the 

MDC travels back and forth along a straight line, or along the circumference of a circle. 

A straight line trajectory has been shown to be a practical and useful option for mobile 

nodes in [13], and circular trajectories have been used to improve network lifetime in 

[51], [52]   

4.1 Linear Trajectory Computation 

Given the positions and the expected loads of the relay nodes, our approach finds 

a straight line which is followed by the MDC as the path to collect the data from the relay 

nodes, such that the energy dissipation by the relay nodes are minimized. We noted that 

the energy minimization can be accounted as the sum of the energy dissipated by the 

relay nodes. In such case, any standard weighted-regression analysis method can be 

applied to compute the best fitting trajectory. However, in our network model, if any 

relay node depletes power, then all sensor nodes belonging to the relay node become 

inaccessible, and the network may fail to meet the reliability standard. In this case, to 

extend the lifetime, it is important to minimize the maximum energy dissipated by any 

relay node in the network. We propose a simple approach that can be used to compute a 
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straight line trajectory that minimizes the maximum energy (Emax) dissipated by any relay 

node in the network. 

4.1.1 Find Optimal Horizontal Trajectory (Algorithm-I) 

Let R be the set of relay nodes, where each relay node is given a unique label j, 1 

 j  |R|. Also, let the coordinate (jx, jy) specify the position of relay node j, j R.  

 

Figure 4. 1 Computation of the (a) initial trajectory, (b) improved trajectory by 

rotating the orientation of the axis. 

We start by assuming that, given the area of the network, the trajectory is a 

horizontal line. Let the line be given by the equation y = c, where c is a constant. We set 

the initial value of c as the midpoint of the y-coordinate values of the uppermost and the 

lowermost relay nodes in the network. Since a relay node j transmits to the MDC when 

the MDC is closest to j, the transmission distance of j is the vertical distance (i.e., y-axis 

distance) of j, projected on the trajectory line y = c. Using this initial trajectory, we find 

the relay node p (q) that dissipates the maximum amount of energy by transmitting the 

data Bp(Bq) to MDC which is on the trajectory, among all nodes located in the above 

(below) the initial line. To minimize the maximum energy of the relay nodes, we need to 
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find a new value c’, qy  c’   py , for the constant c’, so that the energy dissipation of 

nodes p and q is balanced (Figure 4.1(a)). 

We achieve this by setting the energy dissipation of nodes p and q (computed 

using the model discussed in Section 3.2), corresponding to the trajectory y = c’ , as 

equal. Let the vertical distances of the node p and the node q, from the new trajectory y = 

c’ be dp and dq, respectively. Also, let the vertical distance between nodes p and q be . 

Then we have: 

  
     

                                                                          

                                                                                

where    
  

  
 , and    

 

 
             . The values of 1, 2 and  are obtained 

from network power model discussed in Section 3.2. We obtain the new value of 

           by solving the above two equations. 

Algorithm-I is to find optimal linear trajectory in original reference frame.  The 

pseudo code is showed on following steps: 

(1) Input R a set of relay node with coordinate (jx,  jy) and weight Bj  

(2) Set a line y = c, which c is midpoint of the uppermost and lowermost relay 

nodes position 

(3) Calculate and find the relay nodes p (q) with maximum amount of energy 

dissipating above (below) the line y = c. 

(4) Calculate y = c’ ,  qy ≤  c’ ≤ py   by solving below equations: 
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where    
  

  
 , and    

 

 
            . We obtain            

(5) Recheck if the relay nodes p (q) dissipates maximum amount of energy above 

(below) the line y = c’. If yes, the line y = c’ is the trajectory for MDC, otherwise, 

set some other relay node to p (q) which dissipates maximum amount of energy 

above (below) the line y = c’. Then go step (4) to re-calculate the new y = c’.  

(6) Output y = c’, which is the optimal linear trajectory of MDC in original 

reference frame. 

4.1.2 Find the Overall Optimal Linear Trajectory (Algorithm-II) 

Based on the actual layout of the networking area and the distribution of the 

sensor nodes, a different orientation, rather than strictly horizontal, for the trajectory may 

be beneficial. Once we obtain the initial trajectory, we compute the best orientation of the 

trajectory by rotating it in the range 0º~ 180º. We rotate the line by a small angle ψ, at a 

time, and get a new orientation, as shown in Figure 4.1(b). At each orientation, we 

recomputed the value of Emax, using the approach described above. After the rotation is 

complete, we select the orientation that gives the minimum among all orientations. As 

shown in the Section 5.2, this rotation can substantially improve the solution, based on 

the actual layout of the network. 

Algorithm-II is to find final optimal linear trajectory by rotating the reference 

frame from 0° to 180°.  The pseudo code is showed on following steps: 

(1)  Input R a set of relay node with coordinate (jx, jy) and weight Bj  

(2) Transfer the original coordinate system to new system by rotating each small 

angle   , which can be set any value depending on the computational precision  

(3) Call Algorithm-I to obtain y = c’. 



 

 

39 

(4) Add angle ψ, and repeat (2)~(3) to obtain minimum amount of energy 

dissipation for some Φ and corresponding line. 

(5) Convert the line y = c’ in the rotated coordinate system to the line y = a x + b in 

original coordinate system by calculating a and b. 

(6) Output y = a x + b which is the final optimal linear trajectory of MDC. 

4.2 Circular Trajectory Computation 

The linear trajectories of MDC are particularly useful for narrow, rectangular, or 

elongated sensing areas. However, in general, the sensing regions are often more 

accurately approximated by regular polygons, or circular areas. In such cases, a circular 

trajectory within the sensing area would lead to more energy-efficient implementations. 

In this section, we present our algorithm for computing a circular trajectory for the MDC 

that minimizes the maximum energy (Emax) of any relay node in the network, given the 

positions and the expected loads of the relay nodes. A circular trajectory is defined by the 

following two parameters:  

 The co-ordinates of the centre of the circle, and 

 The radius of the circle.  

In the remainder of this section, we first present a simplified heuristic, which 

assumes that the co-ordinates of the centre are given, and simply computes the radius of 

the circular trajectory to be followed by the MDC. Then, we present a more generalized 

algorithm that computes both the radius and the centre of the circular trajectory.  

4.2.1 Find Optimal Circular Trajectory with Fixed Center (Algorithm-C1)  

Let R be the set of relay nodes, where each relay node is given a unique label j, 1 

 j  |R|, and let the coordinate (jx, jy) specify the position of relay node j, j R.  
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Algorithm-C1 is a modification of Algorithm-I, where the MDC follows a circular 

trajectory expressed as (c (x0, y0), r). Here, c (x0, y0) is the center of the circle, which is 

already specified and r is the radius of the circle, which will be determined by the 

algorithm. Given a circle, center c (x0, y0) and an initial radius r0 in the network area, we 

find the relay node p (q) that dissipates the maximum amount of energy by transmitting 

the data Bp ( Bq ) to MDC which is on the trajectory, among all nodes located in the 

outside (inside) of the initial line. As in Algorithm-I, in order to minimize the maximum 

energy of the relay nodes, we need to find a new value r’, rq  r’   rp , for the r’, (as 

shown in Figure 4.2), so that the energy dissipation of nodes p and q is balanced. 

 

Figure 4. 2 Computing optimal circular trajectory with fixed center. 

We achieve this by setting the energy dissipation of nodes p and q corresponding 

to the circle (c (x0, y0), r’), as equal. Let the perpendicular distances of the node p and the 

node q, from the new circle (c (x0, y0), r’) be dp and dq, respectively, and dp + dq = . 

Then, we obtain the new value of            by solving the above equations (14) and 

(15).   

The pseudo code for Algorithm-C1is outlined below: 
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(1) Input R a set of relay node with coordinate (jx,  jy) and weight Bj , also c (x0, y0). 

(2) Set a circle (c (x0, y0), r0), where r0 is midpoint of the farthest and nearest relay 

nodes from center c (x0, y0). 

(3) Calculate and find the relay node p (q) with maximum amount of energy 

dissipating outside (inside) the line circle (c (x0, y0), r0). 

(4) Calculate the radius of the circle (c (x0, y0), r’),  rq ≤  r’ ≤ rp   by solving below 

equations: 

 
      

     
      

        
                                                                                     

where    
  

  
 , and    

 

 
            . We obtain            . 

(5) Check if the relay nodes p (q) dissipates maximum amount of energy outside 

(inside) the circle (c (x0, y0).  

a) If yes, the circle (c (x0, y0) r’) is the circular trajectory for MDC.  

b) Else, determine new relay node to p (q) which dissipates maximum amount of 

energy outside (inside) the updated circle (c (x0, y0), r’), and go back to step (4).  

(6) Output the circle (c (x0, y0), r’), which is the optimal circular trajectory of MDC 

with the center c (x0, y0), that minimizes Emax. 

4.2.2 Find  Optimal Circular Trajectory (Algorithm-C2) 

If the relay nodes are uniformly distributed in the sensing area, then a circular 

trajectory centred near the middle of the sensing field is usually a good choice. However, 

for uneven node distributions, or in cases where there is a relatively large variation in the 

loads of the relay nodes, it may be beneficial to select a different centre for the circular 

trajectory. Algorithm-C2 is is simply an iterative process that selects different potential 
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centres for the trajectory, and calculates the optimal radius (by calling Algorithm-C1) 

corresponding to each centre. Finally, it selects the trajectory that leads to the lowest 

value of Emax, among all the potential trajectories that have been examined.  

In order to determine the set of potential positions that can be used as the centres 

of circular paths in Algorithm-C2, we first divide the sensing area using horizontal and 

vertical grid lines. The intersection of the grid lines are then selected as potential centres, 

as shown in Figure 4.3. The size of grids can be set, based on the level of accuracy 

required by the user. A finer grid will result in more trajectories being examined, but will 

also require more computation. 

 

Figure 4. 3 Setting grids as potential center of optimal circular trajectory 

 A brief outline of Algorithm-C2 is given below: 

(1) Set grid size to create P intersection points. 

(2) Select each grid intersection point as the center c(xi, yi) of a potential circular 

trajectory. 
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(3) Call Algorithm-C1 to find radius ri, which results in minimum energy 

dissipation (    
 ) for a trajectory centred at (xi, yi)  . 

(4) Output the circular trajectory, (c (xk, yk), rk), such that     
  = Min{    

 | i = 1, 

2, … P}. 

4.3 Conclusions 

In this Chapter, we have presented two algorithms for calculating simple trajectories for a 

MDC. The goal in both cases is to minimize the maximum energy dissipation of any 

relay node, and consequently to extend the network lifetime as much as possible. The 

first algorithm computes a linear trajectory, where the MDC travels back and forth along 

a straight line. The second algorithm is an extension of the first one, that determines an 

appropriate circular trajectory for the MDC. The execution time is quite short (fraction of 

a second) for the networks we tested, and does not depend on the number of sensor nodes. 
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CHAPTER V 

EXPERIMENTAL RESULTS  

5.1 Simulation of ILP Formulation 

In this section, we present the simulation results of our formulation for selecting 

the relay nodes in the middle tier of the network. We have conducted different sets of 

experiments, by setting different values for the parameters in our formulation.  

In the first set of experiments, our objective is to jointly optimize the number of 

relay nodes required to form the middle tier relay node network, and the maximum buffer 

requirement by the relay nodes. The relative importance of each term is determined by 

the value of the constant W1 and W2, used in equation (1). Since our primary goal is to 

minimize the number of relay nodes, while the secondary objective is to reduce the buffer 

requirement of each node, we set W1 = 8000 and W2 = 0.1 for our simulations. We have 

used an experimental setup, where the sensor nodes are randomly distributed over a 

200×280 m
2
 area. We have assumed that the maximum transmission range of a sensor 

node, rmax = 40m. The results are obtained by CPLEX 9.1 solver. 

 

Figure 5. 1 Grid Sensor Network Model. (a) 48-Grid (b) 165-Grid 
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We have simulated our scheme with different number of sensor nodes, ranging 

from 100 – 600 nodes. For each size of the sensor node network, we randomly generate 

five different sets for the locations of the sensor nodes in the network, and compute the 

results using each set. The results reported in the tables and figures in this section reflect 

the averages of all the different runs for each network size. As in [50], we have used a 

grid based approach to compute the initial potential positions of the relay nodes. The 

number of potential relay node locations were set to 48 (for coarse grid) and to 165 (for 

fine grid), as shown in Figure 5.1. These two configurations are referred to as 48-Grid 

and 165-Grid respectively in the following discussions of our results. We have also 

assumed that each sensor node generates data at a rate of 100 bits/unit-time, i.e., bi = 100, 

i, 1  i  n. 

 

Figure 5. 2 The number of relay nodes required to form the middle-tier network for 

different number of sensor nodes 

Figure 5.2 shows the number of relay nodes needed in the middle tier for different 

number of sensor nodes distributions. We note that for the same distribution, using 165-
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grid (fine grid) consistently leads to better solutions compared to 48-grid. This is because 

the 165-grid configuration results in a much larger search space. This significantly 

increases the computational complexity, but also leads to better solutions. It is also 

interesting to note that, although the number of relay nodes required in the middle tier 

increases with the number of sensor nodes, the rate of increase is not very high. For 

example using the 165-grid only a few additional relay nodes are required to cover 600 

sensor nodes, as compared to 100 sensor nodes.  

 

Figure 5. 3 The maximum buffer capacity per node required for different number of 

sensor nodes 

Next we consider the buffer requirements of the relay nodes selected for the 

middle tier. Figure 5.3 shows the value of the maximum buffer size (Bmax) calculated by 

our ILP using 48-grid and 165-grid configurations. At first glance, the figure seems to 

indicate that 48-grid produces better results (i.e. lower buffer size) compared to 165-grid. 

However, we must remember that the 48-grid configuration requires a higher number of 

relay nodes. This means that the same amount of data is distributed over more relay 
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nodes, resulting in a lower buffer requirement per node. But, when we compare the total 

buffer requirements (as shown in Fig. 5.4), we see that the 165-grid generates better 

results, both in terms of the number of relay nodes and the total buffer size. 

 

Figure 5. 4 The maximum buffer capacity per node required for different number of 

sensor nodes 

5.2  Simulation of Trajectory Computation Algorithm  

The goal of our trajectory computation algorithm is to calculate the trajectory of 

the MDC (either along a straight line, or in a circular path), such that the maximum 

energy dissipation (Emax) of any relay node is minimized. Figure 5.5 shows the average 

value of Emax, for different size of sensor node networks, corresponding to a linear 

trajectory that minimizes the value of Emax, for each configuration. As before, we note 

that although the value of Emax appears to be lower for 48-grid, this is because it requires 

more relay nodes resulting in lower energy dissipation per node. As expected, the value 

of Emax increases steadily with the number of sensor nodes for 165-grid case. However, 

for the 48-grid case, we notice an anomalous case, where the value of Emax for 300 sensor 
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nodes is actually higher than that for both 400 and 500 sensor node distributions. This is 

because, the performance of coarse grid configurations is not always reliable and may 

sometimes fail to find a good solution (e.g. for the 48-grid and 300 sensor node case). On 

the other hand, when we use finer grids (e.g. 165-grid), the computational complexity 

increases, but we get more consistent and reliable solutions. 

 

Figure 5. 5 The minimum of the maximum energy dissipation by the relay nodes in 

the networks with different number of sensor nodes, for a linear trajectory 

Figure 5.6 shows how the value of Emax varies with the angle of the straight line 

trajectory for the MDC. In general, the angle at which the value of Emax is minimized will 

depend on the distribution of the sensor nodes and the shape of sensing area. In our 

experiments the sensing area was a rectangular shape (200m along x-axis and 280m along 

y-axis), and the sensor nodes were randomly distributed in the sensing field. Therefore, 

we can expect that the best trajectory will be a (nearly) vertical line. This is exactly what 

we find in Fig 5.6, where the minimum value of Emax is obtained at an angle of about 90º 
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for each sensor node distribution. We also note that the value of Emax varies widely with 

the angle for higher values of n, but as n decreases, these variations are greatly reduced. 

 

Figure 5. 6 Variation of the Emax with the rotation of the axis, in the networks with 

different number of sensor nodes with grid setting 165-Grid 

Figure 5.7 shows the average energy dissipations for 100~600 sensor nodes 

networks, using 165-grid configurations, using linear and circular trajectories. In general, 

the energy dissipation of relay nodes increases as with the number of sensor nodes, and 

the circular trajectories always result in lower energy dissipations.  This is because, 

although the sensing area was a rectangular shape (200m along x-axis and 280m along y-

axis), the area was not narrow enough to be appropriate for a linear trajectory. A circular 

path allowed the MDC to get closer to more relay nodes, and performed better overall. 

This seems to indicate that it would be beneficial to select the type of trajectory, based on 

the shape area of sensing area. We also note that the rate at which the maximum energy 

dissipation of relay nodes (Emax) increases with the number of sensor nodes, is lower for 
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circular trajectories compared to linear trajectories, for the rectangular area.  

 

Figure 5. 7  Comparison of the maximum energy dissipation of the relay node 

between straight and circular trajectories followed by MDC 

Finally, Figures 5.8 and 5.9 show the execution times for Algorithm I-II and 

Algorithm C1-C2 respectively. We can see that the execution time is not dependent on 

the number of sensor nodes, but does depend on the number of relay nodes.  Since the 48-

grid configuration results in a higher number of relay nodes, the solution time also 

increases compared to the 165-grid solutions.  
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Figure 5. 8 Executing time by Algorithm I-II  

 

 

Figure 5. 9 Executing time by Algorithm C1-C2 

0

5

10

15

20

25

30

35

40

45

100 200 300 400 500 600

Ex
e

cu
ti

n
g 

ti
m

e
 (

m
ili

se
co

n
d

e
)

Number of sensor nodes

48

165

0

5

10

15

20

25

30

35

40

45

50

100 200 300 400 500 600

Ex
e

cu
ti

n
g 

ti
m

e
 (

m
ili

se
co

n
d

e
)

Number of sensor nodes 

48

165



 

52 

CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

In this thesis, we have proposed a new ILP formulation that, given a set of 

potential locations of relay nodes, optimally determines the minimum number of relay 

nodes, along with their locations, in a hierarchical sensor network, which includes a 

MDC that travels along a fixed trajectory. The placement is done in such a way that 

i) each sensor node is covered by at least one relay node; 

ii)  no relay node suffers from the buffer overflow; 

iii)  maximum buffer requirement of the relay nodes are minimized.  

Our ILP is able to generate optimal solutions for networks with hundreds of 

sensor nodes.  

We have also proposed two heuristic algorithms for calculating the trajectory for 

the MDC that minimizes the maximum energy dissipation of the relay nodes. The first 

algorithm assumes that the MDC travels back and forth along a straight line, and is 

suitable for narrow, elongated sensing areas. The second algorithm extends this for 

circular trajectories. 

6.2 Future Work  

The work presented in this thesis can be extended in a number of ways. These 

include:  

 Developing alternative types of paths, such as rectangular or elliptical 

trajectories to be followed by the MDC to prolong the lifetime of wireless 

sensor network,  
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 Considering latency and fault tolerance, when designing the middle tier of the 

network, and  

 Extending the work to include multiple mobile elements, e.g. multiple MDCs 

travelling along parallels straight lines.  



 

53 

REFERENCES 

[1] J. Pan, Y. T. Hou, L. Cai, Y. Shi, and S. X. Shen, "Topology Control for Wireless 

Sensor Networks," in International Conference on Mobile Computing and 

Networking, 2003, pp. 286-299. 

[2] J. Tang, B. Hao, and A. Sen, "Relay Node Placement in Large Scale Wireless Sensor 

Networks," Computer Communications, vol. 29, no. 4, pp. 490-501, 2006. 

[3] W. Heinzelman, "Application-specific Protocol Architectures for Wireless 

Networks," Massachusetts Institute of Technology, PhD Thesis 2000. 

[4] G. Gupta and M. Younis, "Load-balanced clustering of wireless sensor networks," in 

2003. ICC'03. IEEE International Conference on Communications, vol. 3, 2003, pp. 

1848-1852. 

[5] A. Bari, A. Jaekel, and S. Bandyopadhyay, "Integrated Clustering and Routing 

Strategies for Large Scale Sensor Networks," NETWORKING 2007. Ad Hoc and 

Sensor Networks, Wireless Networks, Next Generation Interne, pp. 143-154, 2010. 

[6] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "Energy Efficient 

Communication Protocol for Wireless Microsensor Networks," in 2000. Proceedings 

of the 33rd Annual Hawaii International Conference on System Sciences, 2002, pp. 

3005-3014. 

[7] A. Bari, A. Jaekel, and S. Bandyopadhyay, "Clustering Strategies for Improving the 

Lifetime of Two-Tiered Sensor Networks," Computer Communication, vol. 31 (14), 

pp. 3451-3459, 2008. 

[8] A. Bari, A. Jaekel, and S. Bandyopadhyay, "Optimal placement and routing 



 

54 

strategies for resilient two-tiered sensor networks," in Wireless Communications and 

Mobile Computing, Wiley, 2008. 

[9] G. Gupta and M Younis, "Fault-tolerant clustering of wireless sensor networks," in 

Wireless Communications and Networking, 2003. WCNC 2003. 2003 IEEE, vol. 3, 

2003, pp. 1579-1584. 

[10] T. Y. Hou, Y. Shi, H. Sherali, and S. F. Midkiff, "On Energy Provisioning and Relay 

Node Placement for Wireless Sensor Networks," IEEE Transactions on Wireless 

Communications, vol. 4, no. 5, pp. 2579-2590, 2005. 

[11] A. Bari and A. Jaekel, "Techniques for exploiting mobility in wireless sensor 

networks," Handbook of Research on Mobile Business: Technical, Methodological 

and Social Perspective, 2nd ed., IGI Global, Information Science Reference, 

ISBN:978-1-60566, pp. 445-455, 2008. 

[12] S.R. Gandham, M. Dawande, R. Prakash, and S. Venkatesan, "Energy efficient 

schemes for wireless sensor networks with multiple mobile base stations," in Global 

Telecommunications Conference, 2003. GLOBECOM'03. IEEE, vol. 1, 2003, pp. 

377-381. 

[13] D. Jea, A. Somasundara, and M. Srivastava, "Multiple controlled mobile elements 

(Data Mules) for data collection in sensor networks.," in International Conference 

on Distributed Computing in Sensor Systems, vol. 3560, 2005, pp. 244--257. 

[14] J. Luo and J.P. Hubaux, "Joint mobility and routing for lifetime elongation in 

wireless sensor networks," in INFOCOM 2005. 24th Annual Joint Conference of the 

IEEE Computer and Communications Societies. Proceedings IEEE, vol. 3, 2005, pp. 



 

55 

1735-1746. 

[15] H. Nakayama, N. Ansari, A. Jamalipour, and N. Kato, "Fault-resilient sensing in 

wireless sensor networks," Computer Communications, vol. 30, no. 11-12, pp. 2375-

-2384, 2007. 

[16] R.C. Shah, S. Roy, S. Jain, and W. Brunette, "Modeling a Three-Tier Architecture 

For Sparse Sensor Networks.," Ad Hoc Networks, vol. 1, no. 2-3, pp. 215-233, 2003. 

[17] S. Jain, R.C. Shah, W. Brunette, G. Borriello, and S. Roy, "Exploiting Mobility for 

Energy Efficient Data Collection in Sensor Networks.," Mobile Networks and 

Applications, vol. 11, no. 3, pp. 327--339, 2006. 

[18] Y. Gu, D. Bozdag, E. Ekici, F. Ozguner, and C.G. Lee, "Partitioning-Based Mobile 

Element Scheduling in Wireless Sensor Networks," in IEEE Conf. Sensor and Ad 

Hoc Communication and Network, 2005, pp. 386-395. 

[19] Da Teng, "Design of Three-Tiered Sensor Networks with a Mobile Data Collector," 

University of Windsor, Windsor, Master Thesis 2009. 

[20] J. Suomela, "Computational Complexity of Relay Placement in Sensor Networks," 

SOFSEM 2006: Theory and Practice of Computer Science, pp. 521-529, 2006. 

[21] G. Lee, M. Lee, W. Seok, J. Kong, and O. Byeon, "A Base Station Centralized 

Simple Clustering Protocol for Sensor Networks," Embedded and Ubiquitous 

Compution, pp. 682-691, 2006. 

[22] A. Mainwarning, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, "Wireless 

Sensor Networks for Habitat Monitoring," in Proceedings of the 1st ACM 

international workshop on Wireless sensor networks and applications, 2002, pp. 88-



 

56 

97. 

[23] N. Xu et al., "A Wireless Sensor Network for Structural Monitoring," in 

Proceedings of the 2nd international conference on Embedded networked sensor 

systems, 2004, pp. 13-24. 

[24] Ian F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless Sensor 

Networks: A Survey," Computer Networks Elsevier Journal, Vol. 38, No 4, pp. 393-

422, March 2002. 

[25] Kay Romer and Friedemann Mattern, "The Design Space of Wireless Sensor 

Netwroks," IEEE Wireless Communications, vol. 11, no. 6, pp. 54-61, December 

2004. 

[26] Atual Bari, "Relay Nodes in Wireless Sensor Network: A Survey," Computer 

Science, University of Windsor, Windsor, 2005. 

[27] C. Y. Chong and S. P. Kumar, "Sensor Networks: Evolution, Opportunities, and 

Challenges," Proceedings of the IEEE, vol. 91, no. 8, pp. 1247-1256, 2003. 

[28] Ataul Bari, "Energy Aware Design Strategies for Heterogeneous Sensor Networks," 

University of Windsor, Windsor, PhD Thesis 2010. 

[29] X. Cheng, D-Z. Du, L. Wang, and B. B Xu, "Relay Sensor Placement in Wireless 

Sensor Networks," Wireless Networks, vol. 14, no. 3, pp. 347-355, 2008. 

[30] P. Cheng, C-N. Chuah, and X. Liu, "Energy0aware node placement in wireless 

sensor network.," in Proceeding of IEEE Global Telecommunications Conference, 

vol. 5, 2004, pp. 3210-3214. 

[31] K. Dasgupta, M. Kukreja, and K. Kalpaki, "Topology-avare placement and role 



 

57 

assignment for energy-efficient information gathering in sensor networks.," in 

Proceeding of Eighth IEEE International Symposium on Computer and 

Communication, 2003, pp. 341-348. 

[32] M. Patel, R. Chandraselkaran, and S. Venkatesan, "Energy Efficient Sensor, Relay 

and Base Station Placement for Coverage, Connectivity and Routing.," in 

Proceedings of 24th IEEE International Performance Computing and 

Communications Conference (IPCCC), 2005, pp. 581-586. 

[33] P. Desnoyers, D. Ganesan, and P. Shenoy, "TSAR: A two tier sensor storage 

architecture using interval skip graphs," in Proceeding of SenSys, 2003, pp. 39-50. 

[34] O. Gnawali et al., "Tenet Architechure for Tiered Sensor Networks," in Procedding 

of SenSys, 2006. 

[35] D. Lee, W. Lee, and J. Kim, "Genetic Algorithmic Topology Control for Two-Tiered 

Wireless Sensor Networks," in Proceedings of ICCS, LNCS 4490, 2007, pp. 385-

392. 

[36] S. C. Ergen and P. Varaiya, "Optimal placement of relay nodes for energy efficiency 

in sensor networks," in Proceeding of ICC, 2006. 

[37] G. Lin and G. Xue, "Steiner tree problem with minimum number of Steiner points an 

bounded edge-lenght.," Information Processing Letters, vol. 69, no. 2, pp. 53-57, 

1999. 

[38] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto, "Optimal packing and covering in 

the plane are NP-complete," Information Processing Letter, vol. 12, no. 3, pp. 133-

137, 1981. 



 

58 

[39] Ataul Bari, "Optimization Strategies for Two-tiered Sensor Networks," University of 

Windsor, Windsor, Master's Thesis 2006. 

[40] J. N. Al-Karaki and A. E. Kamal, "Routing techinques in wireless sensor networks:a 

survey," Wireless Communication, vol. 11, no. 6, pp. 6-28, 2004. 

[41] M. Yarvis et al., "Exploiting heterogeneity in sensor networks," in INFOCOM 2005, 

vol. 2, 2005, pp. 878-890. 

[42] A. P. Azad and A. Chockalinqam, "Mobile Base Station Plaement and Energy 

Aware Routing in Wireless Sensor Networks," in Wireless Communications and 

Networking Conference, WCNC. IEEE, 2006, pp. 264-269. 

[43] W. Alsalih, H. Hassanein, and S. Akl, "Placement of multiple mobile data collectors 

in underwater acoustic sensor networks," Wireless Communications and Mobile 

Computing, vol. 8, no. 8, pp. 1011-1022, 2008. 

[44] A. Bari, Y. Chen, A. Jaekel, and S. Bandyopadhyay, "A New Architecture for 

Hierarchical Sensor Networks with Mobile Data Collectors," Distributed Computing 

and Networking, pp. 116-127, 2010. 

[45] A. Bari, Y. Chen, D. Roy, A. Jaekel, and S. Bandyopadhyay, "Energy Avare 

Trajectory Commuptation of Mobile Data Collectors in Hierarchical Sensor 

Networks," in 2010 IEEE International Conference onCommunications (ICC)., 

2010, pp. 1-6. 

[46] E. Ekici, Y. Gu, and D. Bozdag, "Mobility-based Communication in Wireless 

Sensor Networks," Communications Magazine, IEEE, vol. 44, no. 7, pp. 56-62, 

2006. 



 

59 

[47] M. Ma and Y. Yang, "Data gathering in wireless sensor networks with mobile 

collectors," in International Symposium on Parallel and Distributed Processing 

IEEE, 2008, pp. 1-9. 

[48] C. Mendis, S. Guru, S. Halgamuge, and S. Fernando, "Optimized sink node path 

using particle swarm optimization," in International Conference on Advanced 

Information Networking and Applications, vol. 2, 2006. 

[49] G. Xing, T. Wang, Z. Xie, and W. Jia, "Rendesvous planning in wireless sensor 

networks with mobile elements," Transactions on Mobile Computing, vol. 7, no. 12, 

pp. 1430-1443, 2008. 

[50] A. Bari, A. Jaekel, and S. Bandyopadhyay, "Optimal Placement of Relay Nodes in 

Two-Tiered, Fault Tolerant Sensor Networks," in IEEE ICCCN, 2007. 

[51] Y. Yang, M.I. Fonoage, and M. Cardei, "Improving network lifetime with mobile 

wireless sensor networks," Computer Communications, vol. 33, no. 4, p. 409419, 

2010. 

[52] E. Tunstel, G. Anderson, and E. Wilson, "Motion trajectories for wide-area 

surveying with a rover-based distributed spectrometer," in Automation Congress, 

2006. WAC'06. World, 2006, pp. 1-8. 

 

 



 

60 

VITA AUCTORIS 

NAME:      Fangyun Luo 

 

EDUCATION:          Master of Science, Computer Science  

University of Windsor, Windsor, Canada  

2008-2011 

 

   Bachelor of Science, Computer Science  

University of Windsor, Windsor, Canada  

2007-2008 

 

Bachelor of Engineering, Electrical and Electronic Engineering  

Harbin Institute of Technology, Harbin, China 

1978-1982. 

 

 


	University of Windsor
	Scholarship at UWindsor
	2011

	Relay Node Placement and Trajectory Computation of Mobile Data Collectors in Wireless Sensor Networks
	Fangyun Luo
	Recommended Citation


	tmp.1351257124.pdf.X6af_

