
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2013

An FPGA Based Controller for a MEMS Tri-mode
FMCW Radar
Sabrina Zereen
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Zereen, Sabrina, "An FPGA Based Controller for a MEMS Tri-mode FMCW Radar" (2013). Electronic Theses and Dissertations. Paper
4892.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F4892&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4892&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4892&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/4892?utm_source=scholar.uwindsor.ca%2Fetd%2F4892&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

An FPGA Based Controller for a MEMS

Tri-mode FMCW Radar

By

SABRINA ZEREEN

A Thesis

Submitted to the Faculty of Graduate Studies through Electrical and Computer

Engineering in partial fulfillment of the requirements for the Degree of Master of Applied

Science at the University of Windsor

Windsor, Ontario

2013

© 2013 Sabrina Zereen

An FPGA Based Controller for a MEMS Tri-mode FMCW Radar

By

Sabrina Zereen

Approved By:

Jessica Chen

School of Computer Science

Mohammed Khalid

Department of Electrical and Computer Engineering

Sazzadur Chowdhury, Advisor

Department of Electrical and Computer Engineering

May 17,2013

iii

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any

other material from the work of other people included in my thesis, published or otherwise, are

fully acknowledged in accordance with the standard referencing practices. Furthermore, to the

extent that I have included copyrighted material that surpasses the bounds of fair dealing within

the meaning of the Canada Copyright Act, I certify that I have obtained a written permission

from the copyright owner(s) to include such material(s) in my thesis and have included copies of

such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by

my thesis committee and the Graduate Studies office, and that this thesis has not been submitted

for a higher degree to any other University or Institution.

iv

Abstract

In this thesis a Xilinx Virtex 5 FPGA platform based signal processing algorithm has

been developed and experimentally verified for use in a MEMS based tri-mode 77GHz FMCW

automotive radar to determine range and velocity of targets in the vicinity of a host vehicle. The

Xilinx Virtex 5 FPGA based signal processing and control algorithm dynamically reconfigures a

MEMS based FMCW radar to provide a short, medium, and long-range coverage using the same

hardware. The MEMS radar comprises of MEMS SP3T RF switches, microfabricated Rotman

lens and a microstrip antenna embedded with MEMS SPST switches, in additional to other

microelectronic components. A CA-CFAR module has been used to eliminate false targets in a

multi target clutter affected scenario. The refresh rate for the current design is 2.048ms for each

mode of radar which is nearly 40 times lower than the BOSCH LRR3. The maximum percent

difference from analytical to HDL calculated range values was found to be 0.16% which can be

lowered with further refinement. The developed FPGA based radar signal processing algorithm

can be implemented as an ASIC which can be batch fabricated to lower down the production cost

so that automotive radars can become a standard item for all the vehicles on the road.

v

A Sincere Dedication

To mom, dad, Nowreen, Azad, Ayan, and my friends

without whom this endeavor would not have been possible

Bismillaahir Rahmaanir Raheem

In the name of Allah, The Beneficent The Merciful

vi

Acknowledgement

 Firstly, I would like to express my gratitude to the Almighty Allah, who blessed me with good

health and opportunity to finish my masters from a reputed University. He also helped my acquainting me

with some lovely people who have helped me in this endeavour.

 I would sincerely like to thank my advisor and my co-advisor Dr. Sazzadur Chowdhury and Dr.

Khalid, whose relentless support and guidance have helped me to finish my work. Also I would like to

express my appreciation to Dr. Jessica Chen who has agreed to become my committee member.

 I am especially grateful to Karl Leboeuf and Ahmed Ridwan for their knowledge of coding,

which has helped with me with the basic knowledge of Xilinx and also helped me to pull through from

several tight spots.

 One another person in the University of Windsor, who played a vital role in my masters and

without the help of whom things would have been really difficult, was Andria Ballo. She was always

there for all the engineering students with her sympathetic ears and helpful hand for every small problem.

Her miraculous ability to solve almost every problem and make life for an international student like

myself easy and fun is one of her most appreciative trait.

 I would also want to thank my MEMS team members, for creating such an entertaining and

enjoyable workplace.

 To conclude I would like to thank my parents, my sisters and the rest of my family whose

prayers, support, patience and never ending belief in me has helped to work through some exasperating

situations during the course of my research.

vii

Table of Contents

Author’s Declaration of Originality iii

Abstract iv

A Sincere Dedication v

Acknowledgement vi

List of Figures x

List of Tables xii

List of Abbreviations xiii

Nomenclature xv

1 CHAPTER 1: Introduction 1

1.1 Problem statement 1

1.2 Automotive Radar 3

1.3 The MEMS Radar 4

1.4 Operating principle of the MEMS Radar: 6

1.5 Research Hypothesis 7

1.6 Research Motivation 8

1.7 Principle Results 8

1.8 Thesis Organization 9

2 CHAPTER 2: 11

Literature Survey 11

2.1 Literature review 11

2.2 Pulse Doppler Radar 12

2.3 Continuous Wave Radar 14

2.4 Radar type preference for the designed project 15

2.5 Generating and tuning of the frequency 16

2.6 Selection of the Development Platform for the Tri-Mode Radar Signal Processing

System 17

2.7 State- of- the- art Automotive Radar 19

2.8 Work done in LFMCW Radar sensor design with FPGA-based platform 24

3 CHAPTER 3 26

Target FMCW Radar Design Specifications 26

viii

3.1 Identifying operating parameters for the system design 26

3.2 Allocation of the LFMCW Waveform 27

3.3 The Linear Frequency Modulated Continuous Wave (LFMCW) Radar 28

3.4 Derivation of equation for Range and Velocity 31

3.4.1 Instance One: For Stationary Target Situation 31

3.4.2 Instance two: Moving target situation 32

3.5 Generation of LFMCW radar signal using VCO 35

3.6 Modification of the Received signal 36

3.7 Digital Signal Processing for the Radar design 37

3.7.1 Windowing 38

3.7.2 Fast Fourier Transform (FFT) 44

3.7.3 Constant False Alarm Rate (CFAR) Processing unit 45

3.8 Multifarious Aspects Considered for the Radar Design 48

3.8.1 Radar Targets 48

3.8.2 Noise 49

3.8.3 Attenuation 50

3.8.4 Clutter and Jamming 51

4 Chapter 4 53

Signal Processing Algorithm and Control of the Radar System 53

4.1 Radar Transmitter Processing and Control Algorithm 54

4.2 Radar Receiver Processing and Control Algorithm 56

4.3 Radar Bandwidth Selection for the Tri-mode radar 58

4.4 Other System Components Configuration 61

4.5 Algorithm Summary 62

5 Chapter 5 65

Software Implementation of the Designed Project 65

5.1 Software Simulation of the Design System 66

5.2 Verification of the Test Scenario 75

5.3 Multiple target Test Scenario 77

5.4 Observation Summary 83

6 Chapter 6 84

ix

Hardware Implementation of the Tri-mode Radar Design 84

6.1 Hardware Implementation 84

6.2 Radar Signal Processing Algorithm 86

6.3 The Processing Blocks Used In the Design 87

6.4 The Hardware Simulation technique and the Individual Process Blocks 89

6.5 Range and Velocity Calculation Methodology 90

6.6 RTL Design View of the Process Blocks 90

6.7 Hardware Synthesis Results for the Radar design 99

6.8 Results Comparison between HDL implementation and MATLAB Simulation 101

7 Chapter 7 105

Conclusion and Future Work 105

7.1 Future work 105

References 107

APPENDIX-1 112

(a) MATLAB codes 112

(b) HDL codes 121

VITA AUCTORIS 190

x

List of Figures

FIGURE 1.1 BLOCK DIAGRAM OF THE WINDSOR AUTOMOTIVE .. 5

FIGURE 1.2 (A) THE BEAM COVERAGE OF THE TRI-MODE RADAR AND (B) THE DISTANCE COVERED IN METER 6

FIGURE 2.1 THE RADAR CLASSIFICATION ... 12

FIGURE 2.2 TIME DEPENDENT BEHAVIOR OF A) TRANSMITTED AND.. 13
FIGURE 2.3 TRANSMIT SIGNAL FREQUENCY OF (A) FSK AND (B) FREQUENCY MODULATION SHOWING A TRIANGULAR

WAVEFORM.. 14

FIGURE 2.4 VCO TRANSFER FUNCTION .. 17

FIGURE 2.5 DISTRONIC PLUS .. 20

FIGURE 2.6 RADAR APPLICATIONS OF THE SRR .. 20

FIGURE 2.7 FIELD OF VIEW AND RANGE COVERED FOR THREE FUNCTIONS .. 21

FIGURE 2.8 (A) BOSCH LRR3 SENSOR (B) BOSCH MRR SENSOR (C) CONTINENTAL ARS300 (D) IMST SRR SENSOR . 22

FIGURE 2.9 (A) 77GHZ 3D MILLIMETER WAVE RADAR,(B) 76-GHZ 2D MILLIMETER WAVE RADAR 23

FIGURE 2.10 LAYOUT OF THE NEXT GENERATION DRIVER ASSISTANCE APPLICATIONS .. 24

FIGURE2.11 (A) BOSCH 2ND GENERATION LRR (B) DENSO’S 77 GHZ LRR (C) TOYOTA CRDL 77 GHZ LRR 24

FIGURE 3.1 FMCW WAVEFORMS (A) SINE WAVE (B) SAW-TOOTH (C) TRIANGULAR ... 27
FIGURE 3.2 (A) TRANSMITTED WAVE AND RECEIVED LFMCW SIGNALS (B) BEAT FREQUENCY OR INTERMEDIATE

FREQUENCY FOR A STATIONARY TARGET... 29

FIGURE 3.3(A) TRANSMITTED WAVE AND RECEIVED LFMCW SIGNALS (B) BEAT FREQUENCY OR INTERMEDIATE

FREQUENCY FOR A MOVING TARGET ... 30

FIGURE 3. 4 FPGA BASED VOLTAGE TUNING TO GENERATE FREQUENCY CHIRPS BY THE VCO 35

FIGURE 3.5 TIME-DOMAIN RF SIGNAL FOR THE LMFCW RADAR DISPLAYING UP AND DOWN CHIRP 36

FIGURE 3.6 THE MIXING PROCESS OF AN RF SIGNAL .. 37

FIGURE 3.7 (A)SIGNAL UNDER INVESTIGATION WITH PERIOD T (B) SAMPLED SIGNAL CONVOLVED WITH A

RECTANGULAR WINDOW-FUNCTION AND, (C) SPECTRAL LEAKAGE DUE TO THE WINDOWING WHERE
TFN 1

.

 ... 39

FIGURE 3.8 FFT SINE WAVE WITH INTEGRAL NUMBER OF CYCLES IN THE DATA WINDOW... 40

FIGURE 3.9 FFT SINE WAVE WITH NON- INTEGRAL NUMBER OF CYCLES IN THE DATA WINDOW 41

FIGURE 3.10 TIME-DOMAIN AND FREQUENCY DOMAIN REPRESENTATION OF THE RECTANGULAR WINDOW FUNCTION.

 ... 42

FIGURE 3.11 TIME-DOMAIN AND FREQUENCY DOMAIN REPRESENTATION OF THE TRIANGULAR WINDOW FUNCTION. 42

FIGURE 3.12 TIME-DOMAIN AND FREQUENCY DOMAIN REPRESENTATION OF THE HANNING WINDOW FUNCTION....... 43

FIGURE 3.13 TIME-DOMAIN AND FREQUENCY DOMAIN REPRESENTATION OF THE HAMMING WINDOW FUNCTION...... 43

FIGURE 3.14 OS-CFAR ARCHITECTURE ... 46

FIGURE 3.15 CA-CFAR ARCHITECTURE USED IN THE THESIS .. 47

FIGURE 3.16 THE DIFFERENT SWERLINGFLUCTUATING MODELS .. 49

FIGURE 4 1 RADAR TRANSMITTING AND PROCESSING ALGORITHM .. 55

FIGURE 4.2 RADAR SIGNAL PROCESSING ALGORITHM OF THE DESIGN SYSTEM PORTRAYING THE HIERARCHY OF THE

TOTAL OPERATION ... 57
FIGURE 4.3 RESULTS FOR MAXIMUM IF AND RANGE RESOLUTION FOR DIFFERENT BANDWIDTH FOR (A) LRR (B)

MRR AND (C) SRR .. 60

FIGURE 5.1 TEST SITUATION SCENARIO FOR A SINGLE TARGET SITUATION ... 66

FIGURE 5.2 ADC SAMPLING AND WINDOWING OF IF FROM THE TARGET DETECTED IN THE LONG RANGE 68

FIGURE 5.3 TARGET DETECTION BY THE CFAR FROM THE FFT OUTPUT SHOWING FOR BOTH UP AND DOWN CHIRP .. 69

xi

FIGURE 5.4 (A) ADC SAMPLING FOR THE UP AND DOWN IF SIGNAL AND (B) THE SIGNAL AFTER BEING MULTIPLIED BY

THE HAMMING WINDOW FUNCTION .. 71

FIGURE 5.5 TARGET DETECTION IN THE MID-RANGE SHOWN FOR UP AND DOWN SWEEP .. 72
FIGURE 5.6 ADC SAMPLING OF THE UP AND DOWN SWEEP SIGNAL AND THE CORRESPONDING SIGNAL AFTER BEEN

MULTIPLIED BY THE HAMMING WINDOW FUNCTION .. 73

FIGURE 5.7 TARGET DETECTION WITHIN THE BEAM 3 REGION OF THE SHORT RANGE RADAR IS SHOWN AND VERIFIED

FOR THE UP AND DOWN SWEEP .. 75
FIGURE 5.8 CONCOCTED MULTIPLE TARGETS SCENARIO FOR OBSERVING THE TRI-MODE RADAR DETECTION

EFFICIENCY .. 77

FIGURE 5.9 MULTIPLE TARGETS DETECTED FROM THE HYPOTHETICAL SCENARIO IN THE LRR MODE 79

FIGURE 5.10 TARGETS DETECTED BY MRR IN THE MULTIPLE TARGETS SITUATION .. 80

FIGURE 5.11 TARGET DETECTED BY SRR SENSOR IN THE MULTIPLE TARGETS SCENARIO .. 81
FIGURE 6.1 THE VIRTEX-5 FPGA PLATFORM AND ADC PLATFORM USED IN THE DESIGN OF TRI-MODE RADAR SIGNAL

PROCESSING ... 86

FIGURE 6.2 BLOCK DIAGRAM SHOWING THE PROCESSING STAGES OF THE HDL ALGORITHM 88
FIGURE 6.3 BLACK BOX VIEW OF THE RADAR SIGNAL PROCESSING ALGORITHM. THE THICKER LINES INDICATES BUS

AND THE INPUTS LINES ARE ON THE LEFT AND THE OUTPUTS ARE ON THE RIGHT .. 89

FIGURE 6.4 THE TOP MODULE OF THE HDL ALGORITHM .. 90

FIGURE 6.5 THE RTL DESIGN VIEWER OF THE ADC COMPUTATION ... 92

FIGURE 6.6 RTL VIEW OF THE WINDOW PROCESSING BLOCK .. 93

FIGURE 6.7 RTL VIEW OF THE FFT PROCESS BLOCK ... 94

FIGURE 6.8 THE RTL DESIGN VIEW OF THE CA-CFAR PROCESS.. 95

FIGURE 6.9 PROCESS BLOCK SHOWING THE (A) PEAK PARING AND (B) RESULT COMPUTATION PROCESS 97

xii

List of Tables

TABLE 1.1 ROAD TRAFFIC DEATHS PER 100, 000 INHABITANTS / PER BILLION VEHICLE - KILOMETERS........................ 2

TABLE 1.2 RADAR SIMULATION RESULTS ... 9

TABLE 2.1 COMPARISONS BETWEEN EXISTING SENSORS IN THE CURRENT MARKET ... 22

TABLE 2.2 FORMER GENERATION RADARS HIGHLIGHTING SOME KEY FEATURES... 23

TABLE 3.1 SENSOR CLASSIFICATION FOR TRI-MODE RADAR SYSTEM ... 26

TABLE 3.2 COMPARISONS BETWEEN DIFFERENT WINDOW FUNCTIONS... 44

TABLE 3.3 ATTENUATION AT 70-80GHZ DUE TO ATMOSPHERIC CONDITIONS ... 51

TABLE 4.1 INTRODUCTORY SYSTEM SPECIFICATIONS ... 53

TABLE 4.2 SIGNAL PROCESSING UNIT FOR THE RADAR SYSTEM .. 62

TABLE 4.3 SPECIFICATION FOR THE LONG RANGE RADAR DESIGN .. 63

TABLE 4.4 SPECIFICATION FOR THE MEDIUM RANGE RADAR DESIGN .. 63

TABLE 4.5 SPECIFICATION FOR THE SHORT RANGE RADAR DESIGN... 64
TABLE 5.1 UP AND DOWN FREQUENCY VALUES CALCULATED FOR THE RANGE AND VELOCITY FOR SINGLE TARGET

SITUATION ... 75

TABLE 5.2 MATLAB RESULTS OF THE RANGE AND VELOCITY FOR SINGLE TARGET SITUATION 76

TABLE 5.3 DIFFERENCE BETWEEN MATLAB AND ACTUAL VALUES ... 77

TABLE 5.4 UP AND DOWN FREQUENCY SWEEP CALCULATED FOR THE HYPOTHETICAL SITUATION FOR THETRI-MODE

RADAR TEST SCENARIO ... 81

TABLE 5.5 RESULTS OBTAINED FROM THE MATLAB SIMULATION FOR THE GIVEN SITUATION 82

TABLE 5.6 ERROR CALCULATIONS BETWEEN THE ACTUAL VALUES AND THE SIMULATED VALUES 82

TABLE 6.1 DETAILS FOR THE PINS SHOWN IN THE TOP MODULE .. 91

TABLE 6.2 PINS CONFIGURATION OF THE ADC BLOCK ... 93

TABLE 6.3 PINS CONFIGURATIONS FOR THE WINDOW BLOCK .. 94

TABLE 6.4 TABLE SHOWING THE PIN CONFIGURATIONS ... 95

TABLE 6.5 HDL PORT CONFIGURATION .. 96

TABLE 6.6 PINS DESCRIPTION FOR THE PROCESS BLOCK GIVEN ABOVE .. 98

TABLE 6.7 RESOURCES USED FOR (A) SRR (B MRR) (C) LRR ... 99

TABLE 6.8 COMPARISON BETWEEN THE LRR DESIGNED IN THIS THESIS WITH A PREVIOUS VERSION OF LRR DESIGNED

IN THE UNIVERSITY OF WINDSOR [20]. .. 100

TABLE 6.9 PROCESSING TIME FOR EACH PROCESS BLOCK FOR (A) SRR (B) MRR AND (C) LRR 100

TABLE 6.10 RESULTS OBTAINED FROM THE MATLAB SIMULATIONS IS COMPARED AGAINST CALCULATED VALUES 102

TABLE 6.11 RESULTS OBTAINED FROM THE LCD DISPLAY AND COMPARED WITH THE CALCULATED VALUES 103

TABLE 6.12 ERROR PERCENTAGE BETWEEN THE MATLAB SIMULATED VALUES AND HDL VALUES 104

xiii

List of Abbreviations

MEMS – Microelectromechanical Systems

Radar – Radio Detection and Ranging

RF – Radio Frequency

SP3T – Single Pole Triple Throw

PRF – Pulse Repetition Frequency

DSP – Digital Signal Processor(-ing)

FPGA – Field Programmable Gate Array

DAC – Digital to Analog Converter

ADC – Analog to Digital Converter

FSK – Frequency Shift Keying

LFMCW – Linear Frequency Modulated Continuous Wave

HDL – Hardware Description Language

SARA - Strategic Automotive Radar Frequency Allocation

FFT – Fast Fourier Transform

DFT – Discrete Fourier Transform

DIT – Decimation In Time

DIF – Decimation In Frequency

CA (OS)-CFAR – Constant False(Ordered Statistics) Constant False Alarm Rate

RTL – Register Transfer Level

RCS – Radar Cross-Section

CPI – Coherent Processing Interval

VCO – Voltage Controlled Oscillator

LRR – Long Range Radar

MRR – Medium Range Radar

SRR – Short Range Radar

IF – Intermediate Frequency

MSPS – Mega-Samples Per Second

xiv

LUT – Look-Up Table

FF – Flip-Flop

BUFG – Global Buffer

BUFGCTLR – Global Clock Buffer

RAM – Random Access Memory

ROM – Read-Only Memory

DSP48E – Xilinx Digital Signal Processing Slice (5
th

 Generation)

ISE – Integrated System Environment

LPF – Low Pass Filter

AWGN – Additive White Gaussian Noise

EM – Electro-Magnetic

MMIC – Monolithic Microwave Integrated Circuits

xv

Nomenclature

r = target range

c = speed of RF waves through air

way-twoT = two-way travel time for RF wave from radar sensor to target and back

relv = relative velocity

targetv = target velocity

hostv = host vehicle velocity

df = Doppler frequency shift

 = radio wave wavelength

bf = beat frequency or instantaneous intermediate frequency

tf = transmit signal frequency

rf = received signal frequency

0 = travel time for RF wave from radar sensor to target

B = LFMCW sweep bandwidth

T = LFMCW sweep duration

k = rate of change of frequency in LFMCW sweep = TB /

kX = frequency domain sample

nx = time domain sample

f aP = probability of false alarm

AT = CFAR dynamic threshold

 = Radar Cross-Section of a target

ThN = thermal noise

QSNR = quantization signal-to-noise ratio

sf = sampling frequency

resf = frequency resolution of FFT

 1

1 CHAPTER 1:

Introduction

 In this chapter the research work is defined explicating the importance of active safety systems.

Some of the active safety systems include adaptive cruise control (ACC), collision warning systems

including automotive steering and braking intervention. Analyzing actual crash records form 2004-2008 it

has been found that a forward collision warning system, using radar sensors, will palliate crashes up to 1.2

million crashes per year [1]. Although it was found that the forward collision warning features are found

only in luxury vehicles because they are costly.

1.1 Problem statement

The objective of this thesis is to design a FPGA based controller for a 77GHz MEMS FMCW

automotive radar using three bandwidths, for covering long, medium and short range.

Road-accidents have played a major role for the loss of millions of lives every year. This

deplorable situation can be minimized by making use of a microelectromechanical (MEMS) system based

sensor technology to detect the propinquity of vehicles, pedestrians and other obstacles in the vicinity of a

host vehicle in real-time. Among the existing state of the art radars in the market are long range radar

(LRR) from BOSCH introduced in 2009, ARS 300 by Conti in 2009 and by Denso’s third generation long

range radar which was introduced a year before [2]. However the current technology in the market like

ultrasonic sensors and sensor arrays, lasers, cameras attached on the side mirrors and electromagnetic

radar units (which are only available with high-end vehicles) are not adequate to ensure complete safety

against accidents. This is because of their slow signal processing system and also for radars; they have to

scan the target area mechanically. The cost of such stand-alone devices is too high for the manufacturers

to integrate them in low-cost vehicles. As such the dilemma regarding road safety remains nearly same, in

spite of some vehicles being equipped with collision warning or pre-crash warning devices.

Strategic Analytics a market research firm has anticipated that within the period of 2006-2011

there would be an increase of the usage of the long-range distance radar for pre-collision warning will

increase by 65% annually, the demand reaching 3 million units in 2011, with 23 million of them using

radar sensors. By 2014, 7 percent of all new cars will include a distance warning system, mostly in

Europe and Japan [3].

 2

Table 1.1 is from IRTAD, an International Group and Database on Road Safety Data, shows the

statistics for death count per 100, 000 in habitants and per billion vehicles-km for a number of countries ,

which are members of IRTAD [4]. The Table shows a considerable amount of decrease in death counts

over the years 1970 to 2010, although there is an increase in count for some countries. The decrease can

be due to the effective safety measures that are being introduced into the vehicles now-a-days.

However, while high income countries are showing a major reduction in the death rate due to

road traffics, the same cannot be said for countries where there is a rapid increase in the number of

vehicles on the road. In 2010, 1.3 million people around the world died due to road crashes and more 50

million were injured. Of these death counts about 90% are in low-income and middle-income countries.

In May 2011, a Decade of Action for Road Safety was launched by the United Nations with an aspiration

to stabilize and then reduce the global road traffic deaths by 2020 [4].

Table 1.1 Road Traffic Deaths per 100, 000 Inhabitants / per billion vehicle - kilometers

Different

Country

Death per 100, 000 inhabitants Death per billion vehicle-kilometers

1970 1980 1990 2000 2010 1970 1980 1990 2000 2010

Australia 30.4 22.3 13.7 9.5 6.1 49.3 28.2 14.4 9.3 6.1

Austria 34.5 26.5 20.3 12.2 6.6 109 56.3 27.9 15.0 -

Belgium 31.8 24.3 19.9 14.4 8.8b 104.6 50 28.1 16.4 9.6b

Canada
a
 23.8 22.7 14.9 9.4 6.6b - - - 9.3 6.5b

Czech

Republic
20.2 12.2 12.5 14.5 7.6 - 53.9 48.3 36.7 16.2

Denmark 24.6 13.5 12.4 9.3 4.6 50.5 25 17.3 10.7 5.6

France 32.6 25.4 19.8 13.7 6.4 90.4 44 25.7 15.1 7.1

United

Kingdom
14.0 11.0 9.4 6.1 3.1 37.4c 21.9 c 12.7 c 7.3c 3.7c

United

States
25.7 22.5 17.9 15.3 10.6 29.6 20.9 12.9 9.5 6.8

Germany 27.3 19.3 14.0 9.1 4.5 - 37.3 20 11.3 5.2

Hungary 15.8 15.2 23.4 12.0 7.4 - - - - -

Israel 17.1 10.8 8.7 7.1 4.6 87.9 38.8 22.4 12.4 7.1

Italy 20.5 16.3 12.6 12.4 6.8 - - - - -

Japan 21 9.7 11.8 8.2 4.5 96.4 29.3 23.2 13.4 7.7b

Korea 11.0 17.0 33.1 21.8 11.3 - - - 49.5 18.7

Malaysia
a
 - - 22.7 25.9 23.8 - - - 26.3 16.2

 3

Poland 10.6 16.8 19.2 16.3 10.2 - - - - -

Spain 16.0 17.7 23.2 14.5 5.4 - - - - -

Death within 30 days. Data recorded by the police. a = accession country. b = 2009 c = Great Britain

“Radar technology is the key to building innovative driver assistance systems to help avoid

automobile accidents,” says Hans Adlkofer, VP and general manager of Infineon Technologies’ Sense

and Control business unit [3].

The radar technology initially came with the high-end luxury vehicles, but the cost has dropped

down and can be used in reasonably priced vehicles. Automotive industries all over the world are utilizing

the radar technology for a wide range of detection systems such as:

1. Adaptive Cruise Control with stop and go functionality.

2. Blind-spot detection.

3. Self-parking system.

4. Side-sensors for parking aids

5. Pre-crash warning system.

6. Lane Changing assistance to the driver.

7. Backup camera and sensor for impact warning.

8. Car to computer communication devices utilizing GPS tracking system.

9. Remote speed sensor.

The global economic cost for road crashes and injuries is estimated to be around US$ 518 billion

annually. Unless appropriate actions is taken road traffic injuries is predicted to become the third leading

contributing factor in the global burden of disease and injury. It cost European Union 180 billion euros

annually for road traffic injuries which is twice the annual budget for all other activities in these countries.

This huge public health and development problem kill almost 1.2 million people a year and cause injury

or disability to 20 to 50 million or more people. Data from World Bank and WHO show that unless

proper action is taken the injury count will increase drastically by 2020, especially in countries where

there is a rapid increase of motor vehicles [5] . Hence the multi-range radar technology is a constitutive

feature to enhance highway safety and mitigate loss of lives and property damage.

1.2 Automotive Radar

On 9th June, 1904 Christian Hülsmeyera German inventor was the first to use radar waves to

demonstrate his “anti-ship-colliding system” [6]. He got a German patent on 2
nd

 August, 1904 for the

 4

detection device and then later on in the same year he obtained another patent from UK for his complete

design of the Telemobiloskop, or Remote Object Viewing Device [6], [7].

The use of radar is more beneficial than devices like lasers and infrared visions equipment as

radar can function through bad weather condition like rain, snow or fog. The current market has radars

with frequencies of 24GHz and 77GHz. The choice of these frequencies is based on the requirement of

small antenna size, relative attenuation of spectrum and fast attenuation of radio signals [8]. Automotive

radars are used to calculate the target range, target velocity and azimuth angle in a short time for multiple

target situations.

1.3 The MEMS Radar

 Automotive radar application system is analyzed in accordance with the range it covers. Long

range radars (LRR) and medium range radars (MRR) are used in cruise control and collision avoidance

systems and short range radar (SRR) is used in collision avoidance, crash-prevention and parking-assist

systems.

 Previous discussion ascertained the importance of automotive radars in reducing the numbers of

road traffic accidents, however lower cost and reliable performance are also much needed to improve the

road conditions all over the world. The cost of the radars needs to be decreased to ensure cars at various

price levels can afford to be equipped with it in order to enhance road safety.

 MEMS based design offers the advantage of fabricating low cost, batch production of RF

components like RF switches, Rotman Lens that can be used to apprehend compact high performance

radar in a small form factor. Such a MEMS based radar system is being developed in the University Of

Windsor, Ontario, Canada. The block diagram shown is Fig 1 exhibits the major components of the

existing automotive radar system.

 5

Figure 1.1 Block Diagram of the Windsor Automotive

Radar System

The main components used in the Windsor Automotive Radar System are:

 FPGA/ ASIC implemented controller

 MEMS SP3T RF switches

 Microfabricated Rotman lens

 MEMS reconfigurable microstrip array antenna

 77GHz transceiver chipset

 MEMS SPST RF switch

 6

The tri-mode radar coverage of the current design in shown in Fig 2 (a) and (b)

SRRSRR MRR LRR

(a)

(b)

Figure 1.2 (a) The beam coverage of the Tri-mode radar and
(b) the distance covered in Meter

1.4 Operating principle of the MEMS Radar:

1. A voltage controlled oscillator (VCO) is attuned by an FPGA implemented control circuit which

generates a triangular signal (Vtune). The VCO then generates a linear frequency modulated

continuous wave (LFMCW) signal with a bandwidth of 800MHz, 1400MHz and 2000MHz

respectively for Long Range Radar (LRR), Medium Range Radar (MRR) and Short Range Radar

(SRR) with a center frequency of 77GHz.

2. The signal generated is then fed into a MEMS SP3T switch.

3. The SP3T switch regulated by an FPGA implemented control circuit sequentially switches the

LFMCW signals between the three beams of the Rotman lens.

4. The LFMCW signals after travelling through the Rotman lens cavity arrive at the array ports of

the Rotman lens. The time-delayed in-phase signals are then fed into a microstrip antenna array

which radiates the signal in a specific direction.

 7

5. The microstrip has SPST switches embedded into it. The scan area of the antenna array depends

on the antenna beamwidth, which in turn depends on the number of patches in the microstrip.

Increasing the no of patches makes the beam narrower.

6. The beam from the Rotman lens can be steered across the target area in steps determined by a

predefined angle. This steering can be done by the sequential switching of the input signal among

the beamports of the Rotman lens.

7. The existing Rotman lens can transmit and receive signals. An FPGA based control circuit

controls the operation of the receiver SPST switch so that the signal output at a specific beamport

of the receiver Rotman lens can be mixed with the corresponding transmit signal.

8. The received signals obtained from the SP3T switch are then fed into a mixer where it is mixed

with the transmitted signal to generate Intermediate Frequency (IF).

9. The IF generated are then passed into an Analog to Digital (ADC) converter, where they are

sampled and converted into digital signals.

10. Lastly the output from the ADC is then processed through an FPGA implemented algorithm to

calculate the range and velocity of the target detected.

The objective of this thesis is the development of an FPGA implemented algorithm to utilize a MEMS

Tri-mode Radar System to detect the range and velocity of targets for three different ranges. The designed

radar will certainly triumph over the use of three separate radars for long, medium and short range

existing in the current market.

1.5 Research Hypothesis

The FMCW radar requires a high chirp bandwidth to improve the resolution of range and velocity

and the bandwidths chosen for the design of the tri-mode radar ensures better results. Furthermore the

design of the FPGA based control and signal processing algorithm can be implemented as an ASIC which

offers batch fabrication of the system at a low production cost for high volume production. Accumulating

the rest of the MEMS components mentioned above the target system will offer a high performance

compact form of radar architecture. This will amend the highway safety situation and lower the number of

road collisions which will help save lives and avoid property damage.

 8

1.6 Research Motivation

It goes without saying that the idea of avoiding a collision is always preferable than crash

protection for automotive safety scheme. The introduction of radar in the automotive industry occurred in

the late 50’s. In the 70’s profound radar developments embarked starting at microwave frequencies.

However the use of radar in automotive market became possible in the 90’s where it used for safety and

security purpose for the driver [9].

Radar systems in the 77GHz frequency domain give good performance in range and azimuth angle

and hence can be used for several purposes to increase the efficiency of the safety system in a car [2]. It

can be applied for several automotive applications like:

 For ACC and Cut-in and Stop & Go situations the short range radars make use of wider

beam rather than the directive long range sensor.

 Parking assistant with more precision, longer range frequent update rates than the

conventional ultrasonic systems.

 Using for Blind Spot Detection with a low cost technology.

 Pre-crash detection with fast detection rates.

The aim of the thesis is to develop MEMS tri-mode FMCW radar for the detection of range and velocity

of targets for three ranges long, medium and short to enhance the automotive safety systems.

1.7 Principle Results

A LFMCW radar signal processing algorithm for FPGA/ASIC is created to control the operation of

a MEMS SPST switch to dynamically alter the beamwidth of the antenna array mentioned in the radar

system above to switch the radar constantly from SRR to MRR and then to LRR mode. The performance

specifications achieved from the developed system are tabulated below:

 9

Table 1.2 Radar Simulation results

Parameters SRR MRR LRR

Operating Frequency 77GHz 77GHz 77GHz

Bandwidth 2000MHz 1400MHz 800MHz

Maximum Distance 30m 100m 200m

Range Resolution 0.07m 0.11m 0.19m

Maximum target range error 2cm 4cm 5cm

Maximum relative velocity

(approaching and receding target)
300km/h 300km/h 300km/h

Velocity resolution 6.84km/h 6.84km/h 6.84km/h

Beam width (in degrees) 80 20 9

1.8 Thesis Organization

Chapter 1 emphasizes the importance of the work and result to this present day. It recapitulates the

significance of the radar technology and their function in the automotive industry. A report of the IRTAD

on road safety data is also given in this chapter in Table 1.1 tabulating the statistics of the fatality rate in

different regions.

Chapter 2 encapsulates the existing literature of the radar technology and its applications in the

automotive industry. The chapter also provides a good background of the proposed MEMS radar system.

Chapter 3 provides a profound mathematical and conceptual background of the radar technology,

emphasizing on the LFMCW radar theory. The concept of the Cell-Averaging Constant False Alarm Rate

and the digital signal processing tools used in the design is also discussed in this chapter.

Chapter 4 explicates the radar signal processing of the proposed design with block diagram and

design parameters. Short descriptions of the components used in the design are also provided here.

Chapter 5 comprises of MATLAB modeling and simulation of the design. Results from MATLAB

are given here with relevant graphs for single and multiple target situations for the three mode radars.

Chapter 6 constitutes the hardware implementation of the design with RTL schematics of the

blocks used and table comparing the results obtained from both MATLAB modeling and hardware

implementations.

 10

Lastly Chapter 7 contributes with ideas that can be worked upon in future for further improvement

of the tri-mode radar design and gives a conclusive summary of the project

 11

2 CHAPTER 2:

Literature Survey

○In this chapter the literature of the existing radar system will be reviewed with classification of

the different radar systems available. The chapter also comprises the study of the FMCW radar over other

radar types like pulsed Doppler and frequency shifting; establishing the reason for choosing FMCW radar

for the target automotive radar design. The chapter covers a survey of the platform chosen for the radar

design portraying its features and advantages. The state-of-the-art in the automotive radar system is also

discussed in the later part of this chapter.

2.1 Literature review

The principle of radar is based on the characteristics of electromagnetic waves and the reflections

properties from different materials [10]. Around 1987-88 Hienrich Hertz with his revolutionary

experiments, was able to exhibit that metals and dielectric objects can reflect electromagnetic waves. In

1922 Guglielmo Marconi gave a conceptual idea about detecting object using radio signals, although it

was in 1933 when he was able to demonstrate a working device [11]. Some of the applications of radar

systems in the modern world are satellite radar for altitude mapping and surveillance, weather detection,

synthetic aperture radar (SAR) and advanced moving target indicators (MTI) for automobiles [12]

The radar system classification can be best described using Figure 2.1

 12

Radar

Continuous Wave Pulsed

Linear Frequency
Modulated CW Noncoherent Coherent

Low Pulsed
Repetition

Frequency (PRF)

High Pulsed
Repetition

Frequency (PRF)

Medium Pulsed
Repetition

Frequency (PRF)

Frequency Shift
Keying

Figure 2.1 The Radar Classification

2.2 Pulse Doppler Radar

Pulsed radar transmits a high frequency modulated pulse of high power. The transmitter remains

inactive for a fixed period of time during which it awaits for the received signal from the target detected.

The range between the target and the radar can be calculated by measuring the round trip propagation

delay between the transmitted and the received signal. The relative velocity of the target with respect to

the radar can be determined from the Doppler shift frequency of the received signal. The Doppler shift

frequency fd is found by the difference between the received and the transmitted frequency. The Doppler

shift is used to describe the motion of the target relative to the source from which the transmitted signal is

being generated. An approaching target generates a positive frequency shift whereas the value becomes

negative for a receding target. The following equations are used to calculate the range and radial velocity

in a Pulsed Doppler Radar system [13], [10]:

Range :
2

cTp
R (2.1)

Radial Velocity :
t

d
r

f

cf
v

2
 (2.2)

where c is the speed of light

Tp is the pulse repetition rate

fd is the Doppler shift frequency

 13

ftis the transmitted frequency

The figure below shows the transmitted and received Pulse-Doppler radar signal where the distance to the

target is calculated to be Tp + Δt. Here Tp is the pulse repetition rate, τp is the pulse width and Δt is the

propagation delay.

Transmitted pulse-radar signals

Received pulse-radar signals

Tp

τp

Δt

a)

b)

t

t

Figure 2.2 Time dependent behavior of a) transmitted and

b) received signals in a pulse-radar system

 14

2.3 Continuous Wave Radar

Continuous Wave (CW) radar transmits a signal continuously with a selected frequency. The pure

sinusoidal signal can be represented by tfo2cos where the echo from the stationary target and the clutter

will concentrate at of . When a moving target is detected the echoes received from it will shift the center

frequency of by df , the Doppler frequency. The radial velocity of the target is then calculated by

measuring the difference between of and df . Due to the continual nature of the signal emission of CW it

is not possible to calculate the range unless modifications are made [13].Continuous wave can be

implemented in two ways: Frequency Shift Keying (FSK) and Frequency Modulated CW (FMCW).

Frequency Shift Keying modulation makes use of frequencies steps over Coherent Processing Interval

(CPI) of length TCPI to calculate the range. The Frequency Modulation on the other hand makes use of

frequency chirp in a sinusoidal, saw-tooth or triangular form to calculate the range and velocity which

will be discussed in detail in the next chapter [14]. The transmit waveforms for the two types of CW is

shown in Figure 2.3.

t

)(tfT

CPIT CPI2T

f2

f1

fstep

t

)(tfT

f2

f1

CPIT CPI2T

fsweep

(a) (b)

Figure 2.3 Transmit signal frequency of (a) FSK and

(b) Frequency Modulation showing a triangular waveform

The range and the radial velocity for the FSK is calculated using the following equation:

Range : stepf

c
R

4
 (2. 1)

 15

Radial Velocity : 2

 d

r

f
v

 (2. 2)

Here, Δϕ is the phase difference in the two frequency peaks 1f and 2f

 df is the Doppler Shift frequency and

 is the operating wavelength .

2.4 Radar type preference for the designed project

From the discussions above comprehended the two types of radar. The Pulsed Doppler, FSK and

FMCW are characterized by their waveform, power at which they operate, hardware required for

implementation, cost in the computation process and the applications in which they can be used. For this

project Linear Frequency Modulated Continuous Wave (LFMCW) radar has been chosen. The reason for

choosing this radar was reinforced by the list of disadvantages of the Pulse-Doppler Radar and the FSK

radar.

Disadvantages of the Pulsed Radar for automotive application:

 The velocity calculation gets constrained when the Doppler frequency becomes equal to a

multiple of the PRF causing blind speed situation.

 To avoid blind speed high PRF can be used but that results in range ambiguity.

 For selection of the PRF it has to be maintained so that blind speed is not created near the target’s

expected speed.

 For automotive application it requires relatively high power.

 Difficult to detect short range targets.

Disadvantages of FSK-CW radar:

 Does not allow any target resolution in range.

 It has phase discontinuities at the timings of frequency shifts which insinuate phase noise.

 Large Coherent Processing Interval (CPI) is needed to avoid range ambiguity.

 16

Advantages of LFMCW over these shortcomings from the two types of radar are:

 Precise target range calculation.

 Determination of the velocity of the selection target.

 Low measurement time and low computation complexity.

 Less affected by clutter and atmospheric conditions.

 Power rating is lower compared with that of Pulse Doppler.

 Continual results can be obtained as opposed to Pulse Doppler.

 Is not effected by blind speed situation.

 Can also be used to detect short range targets.

Evaluation of the above points elucidates the use of Linear Frequency Modulated CW for the current

design of the MEMS Tri-mode radar system.

2.5 Generating and tuning of the frequency

The RF radar signal is generating using a Voltage Control Oscillator (VCO).As it is in the case of

Pulse Doppler and FSK CW radar a constant frequency pulse and CPI respectively are generated whereas

for a LFMCW the VCO is attuned using a triangular modulating signal to output a frequency chirp. With

the generation of Linear FM rises the concern for non-linearity errors in the output signals. The quality of

the linear FM signals generated is extremely vital for radar purposes as it has influence on the radar range

resolution and its accuracy to a certain degree [15]. The following equation defines the FM linearity:

Linearity
B

tfe max
)(

 (2. 3)

Here)(tfe is the difference between the instantaneous frequency of the actual output of the VCO)(tfo

and the ideal linear instantaneous frequency)(tfi that is envisaged from the VCO (i.e

)()()(tftftf ioe). The term
max

)(tfe denotes the maximum absolute value of)(tfe . B is the

bandwidth of the linear FM signal.

 The non-linearity in the VCO also affects the performance of the system. Generally all analog

VCOs exhibit some non-linear attributes because of the varactor non-linearity. A varactor is a

 17

semiconductor device in which if a voltage is applied at the boundary of the semiconductor material and

an insulator the device capacitance is affected. The following equation defines the transfer function of the

VCO [16]:

 oK = Vtf e)((2. 4)

Where V is the change in the modulation voltage.

Frequency

Tuning Voltage

fe(t)

fo(t)

fi(t)

Figure 2.4 VCO Transfer function

2.6 Selection of the Development Platform for the Tri-Mode Radar Signal

Processing System

The Transmitter control aggregates the radar signal generation, tuning and linearity of the

waveform; attributes which are vital for the LFMCW radar as it needs linear frequency sweep. The

signal generation and sweep modulation is done using a digital approach. Previously analog Phased

Locked Loop (PLL) with a VCO was used for the chirp generation technique, but was replaced by

digital technology. The choice to adapt a digital approach is because for radar system designs digital

electronics vindicates better frequency response, excellent linearity in chirp generation and less

susceptible to noise [16].

In the digital implementation of the transmitter for the proposed design the signal processing

algorithm is based on Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA). The

DSP part comprises of the window function, FFT, CA-CFAR and the target information calculation.

 18

The analog portion of the design is done using the Analog to Digital Convertor (ADC) board

(AD7x76/77CBZ). The throughput rate of the device is 3MSPS (Mega sample per second) and is a 12-

bit 6-leadt TSOT package. It operates from a single 2.35 to 3.6V power supple. The ADC board has a

low power consumption rate and also the clock speed management is very flexible. In addition to this

the product comprises of a low noise, track-and-hold amplifier with a wide bandwidth which can handle

input frequencies up to 55MHz. The analog input range can vary from 0 to VDD and has no delay

during pipelining process. It can perform a standard successive approximation analog to digital

conversion with accurate control of the data sampling with the CS pin and the serial clock, allowing

the device to interface with microprocessors or DSPs [17].

A Field Programmable Gate Array (FPGA) is a semiconductor device encompassed of many

logic blocks with configurable interconnections between them. The firmware is a combination of

hardware and software of which the software implies to the data or program written into a ROM (Read

only Memory) needed to control the hardware. The programmable function logic of the FPGA can be

compiled to work as basic logic gates such as AND, OR, XOR or INVERT. It is also possible to

configure it for more complex functions such as decoders and simple mathematical functions. FPGAs

are capable to perform pipelining and parallelization process.

FPGA are becoming extremely popular for their exceptional performance in radar system

designs. Its ability to optimize intellectual property (IP) core implementations for acute compute-

intensive digital signal processing algorithms like FFT has made it become one of the building blocks in

advanced radar design [16], [18].

FPGA contributes in reducing implementation area and improve throughput by accepting no-

standard word-length sizes and semi- or full-parallel signal processing. In addition FPGA based

emulation platform can offer real-time prototyping of ASIC (Application Specific Integrated Circuits)

logic which helps with the implementation and verification of the designed system in an environment

related to the target system.

In DSP design, initially the development and analyzing of the algorithm is done in a floating-

point environment such as C/C++ or MATLAB. The algorithm is then converted to a fixed-point model

and the unison is verified. This is done because hardware specifications are based on fixed-point

representations and are also used to manually create RTL models and test benches. The RTL design

associates with the method of representing a sequential circuit as a set of registers and transfer functions

which describe the data flow in between the registers. The design is usually simulated at the RTL level

to confirm that it is functional. A complete design environment of FPGA is offered by Xilinx (ISE),

 19

Altera and Mentor Graphics. Currently the use of intellectual property (IP) cores and customizable

designware for common DSP functions like FIFO and FFT are available which helps to reduce

development time and makes the system design more efficient [19].

From the study above it can be confirmed that the FPGA development platform is optimal for the

radar design. A single mode radar sensor based on FPGA technology has already been designed by the

MEMS team in the University of Windsor [20].

2.7 State- of- the- art Automotive Radar

The automotive radar research first started in the late 50’s and by 70’s radar development started at

the microwave frequencies, however it wasn’t until in the 90’s commercialism of the automotive radars

began. The aim of the automotive industry is to configure sensor for comfort and safety purpose in terms

of operation, robustness, reliability and dependence on unpropitious weather conditions, cost etc.

Although passive safety systems like parking aid and airbag is very helpful in the reduction of road

accidents but the implementation of active safety systems like Adaptive Cruise Control (ACC) and

automotive braking system further mitigates the problem as they affect the vehicle dynamics directly.

Among the first warning systems was the parking aids, collision warning systems and ACC.

Greyhound installed more than 1600 24GHz radar sensors in their buses and experienced a 21% reduction

in the number of accidents in 1993 compared with that in the previous year. In 1995 Japan was the first

one to commercialize ACC where they favoured Lidar-ACC. In 1999 US Company Mercedes-Benz

introduced the 77GHz “Distronic” into the S-class which was followed by other preeminent models like

BMW 7 series, Jaguar (XKR, XK6), Cadillac (STS, XLR), Audi, A8 and Phaeton. In 2003 the Japanese

Companies Toyota and Honda introduced active braking assistance system for preventing collision based

on 77GHz Long Range Radar (LRR) technology. Mercedes-Benz improved their PRE-Safe break with

the introduction of DISTRONIC plus in 2006 which makes use of two Short Range Radar (SRR) sensors

behind the front bumper and a LRR sensor in the radiator grill to assist the driver to prevent collision by

providing collision-warnings and assistance with the braking system [21]. The following figure shows the

range covered by the DISTRONIC plus implemented in the new E-Class and model year 2009 S-Class

Mercedes-Benz. The radar covers 200m for the LRR instead of the 150m previously used; also the new

radar has Medium range coverage of 60m with 60 degree beam coverage. In addition to these the SRR

sensors are still used with coverage of 80 degree beam width and range of 30m [22].

 20

Short-range radar Range
of 0.2 m to 30 m

Mid-range radar
Range of 60 m

Long-range radar
Range of 200 m Camera Visual range

of up to 500 m

80° 60° 18° 35°

30 m
60 m

200 m

Figure 2.5 DISTRONIC Plus

 In 2004 the European Commission delineated the frequency 77GHz- 81GHz as the allocated

assigned frequency for the SRR [23] .However the use of 24GHz range for the SRR till 2018 has been

made official by the European Union on June, 2011 giving it time to transit it to 79GHz technology.

Studies by the automotive consortium SARA member showed that using radar-based brake assistance

reduced the rear-end collisions by 20 percent and a further 25 percent reduction can be seen in the

severity of the accidents [24]. The following figure shows the applications of SRR implemented in

Mercedes-Benz:

Figure 2.6 Radar applications of the SRR

 The transition to 77/79GHz technology for the SRR has prompted the German Federal Ministry

of Education and Research (BMBF) to fund projects KOKON (2004 to 2007) and RoCC (Radar- on-

 21

Chips) (2008-2011) to develop a cost efficient platform. The outcome of the research is the successful

development of a low cost and sturdy platform based in the SiGe technology although further technical

and operational studies need to be done to operate the sensor in real-time system [23].

 A crucial facet for the integration of the radar sensor in vehicles is the component size. The

dimension of the automotive radar is determined by the antenna aperture. For the 77GHz technology the

antenna size can be decreased for a given beamwidth requirement enabling it to achieve a better angular

resolution. On the other hand in order to achieve the same performance like that of the 77GHz

technology, the 24GHz technology needs to increase the antenna size by three times. In future the short

range radar will be designed with an absolute bandwidth of up to 4GHz, this renders to about 5% of the

relative bandwidth with the 77GHz whereas it is about 17% using the 24GHz, thus making the design of

antennas and wavelength related components easier. One other advantage for the choice of the 77GHz is

that it allows the combination of high transmission power (> -40 dBm/MHz) and high bandwidth (> 250

MHz) which yield long range operation together with high distance separability concurrently; whereas is

not possible at 24GHz technology [2].

With the increase in driver assistance systems in the current market more functions are being

insinuated like improvement in the ACC, where the speed can be automatically varied or brought to

complete zero depending on the situation. In addition to this other functions like lane changing assistance

(LCA) and cross traffic alert (CTA) are also being introduced. In order for these multifarious aspects to

functions the use of Medium range was announced in 2011 to be used in alliance with the LRR and SRR.

To specify the MRR is used for the LCA and CTA. The following figures portrait the use of the LRR and

MRR followed by illustrations of various technologies existing for driving assistance [2], [10].

ACC 250m

C
TA

 4
0

m

LC
A 7

0 m

Figure 2.7 Field of view and range covered for three functions

 22

 Table 2.1 gives a brief review of the existing radar sensors in the market with significant

differential factors in between them [2].

Table 2.1 Comparisons between existing sensors in the current market

Parameter Bosch

LRR3

Conti

ARS 300

Denso

DNMWR004

Dimensions 74x70x58 mm 120x90x49 mm 78x77x38 mm

Rmaxdetected 250 m 200 m 150 m

Horizontal Field of View 30° 58°/17° 20°

Number of beams 4 15/17 5

Beamsteering technique Fixed-beam Mechanical Electronic

Multirange capability Single Multiple Single

 The Bosch LRR3 [Figure 2.8(a)] sensor was in the market since 2009 with the features like

dielectric lens antenna providing high gain to achieve maximum distance of 250m. The device was the

first in the market to use SiGe integrated circuits at 77GHz. Bosch also launched the MRR sensor [Figure

2.8 (b)] using SiGe MMIC. Among the first radar sensors was the ARS300 [Figure 2.8 (c)] by

Continental, which was used by Mercedes. It key feature was the scanning antenna which was based on a

dielectric waveguide like a constant rotating drum with a special grating structure [25]. A SRR sensor

with an integrated planar antenna array was introduced by IMST in Low Temperature Cofired Ceramics

(LTCC) technology [Figure 2.9 (c)] operating at 24GHz [26].

(a)

(b)

(c)

(d)

Figure 2.8 (a) Bosch LRR3 sensor (b) Bosch MRR sensor (c) Continental ARS300 (d) IMST SRR

sensor

In Table 2.2 a brief overview of former generation radars are given with the name of their manufacturer

and some key features; a report from Fujitsu Ten Ltd [27].

 23

Table 2.2 Former generation radars highlighting some key features

 In a press release of October 2012 Fujitsu Ten Ltd declared about the development of compact

77GHz automotive radar with a 3D electronic scanning capability, which was a step up from the 2D

millimeter wave radar (Press release October, 2010). However the product will be commercialized in the

automotive market from 2014. The latest 3D automotive radar sensor will detect object in three

dimensions i.e. it will cover “elevation” range together with distance and azimuth angle [28] .

(a)

(b)

Figure 2.9 (a) 77GHz 3D Millimeter Wave Radar,(b) 76-GHz 2D Millimeter Wave Radar

 24

A next generation driver assist technology which the three range coverage ability for better safety

purpose in given the figure below:

Figure 2.10 Layout of the next generation driver assistance applications

2.8 Work done in LFMCW Radar sensor design with FPGA-based platform

Some the primary manufacturers of the 77 GHz LRR sensors are ADC, BOSCH, Delphi, Denso,

TRW (Autocruise), Fujitsu Ten and Hitachi. In Figure 2.11(a) a BOSCH LRR second generation radar

sensor is shown which uses an analog beamforming approach. The production of the sensor started from

2004 and uses a FMCW modulation with triangular waveform. Japanese companies introduced a radar

sensor with digital beamforming in 2003 (Figure 2.11 (b)). Toyota CRDL && GHz LRR sensor also

makes use of digital beamforming using nine digital receiver channels (Figure 2.11 (c)) [9].

(a)

(b)

(c)

Figure2.11 (a) BOSCH 2nd Generation LRR (b) Denso’s 77 GHz LRR (c) Toyota CRDL 77 GHz

LRR

 25

A prior study on FPGA-based LRR radar design using LFMCW radar signal processing algorithm

is done in the University of Windsor using Xilinx Virtex-5 FPGA at 100MHz. The sampling time of the

system was 6.78ms and the processing time of 211.63µs. From the resources used by the developer it was

seen that using Virtex-5 FPGA board only 4% of sliced registers, 23% slice LUTs, 6% of DSP48 slices

and 21% of the FPGA fabric area is used [20].

The aim of this thesis is to design a tri-mode radar sensor with a faster signal processing algorithm and

also optimize the accuracy of the results obtained from both the software and hardware simulations alike.

 26

3 CHAPTER 3

Target FMCW Radar Design Specifications

 In this chapter the mathematical models correlated with the FMCW radar is discussed in details

and the relevant equations and expressions required to calculate the range and velocity of the detected

targets are provided here. Detailed equation study for calculating range and velocity for both stationary

and moving target scenario is discussed here. The operating parameters for the design are also identified

from the mathematical studies done. A brief review is also done on additional concerns like atmospheric

attenuations, temperature effects, false rate alarm, clutter removal and radar types.

3.1 Identifying operating parameters for the system design

The state-of-the-art for automotive radar system requirements for long, medium and short range

radar is listed in Table 3.1 [2]. The parameters considered in this thesis are bandwidth, range coverage,

range resolution, range accuracy, velocity accuracy and velocity resolution.

Table 3.1 Sensor Classification for Tri-Mode Radar System

Type LRR MRR SRR

Maximum Transmit power (EIRP) 55dBm -9dBm/MHz -9dBm/MHz

Frequency Band 76-77GHz 77-81GHz 77-81GHz

Bandwidth 600MHz 600MHz 4GHz

Distance range Rmin..Rmax 10-250m 1-100m 0.15-30m

Distance Resolution ΔR 0.5m 0.5m 0.1m

Distance accuracy δR 0.1m 0.1m 0.02m

Velocity Resolution Δv 0.6m/s 06.m/s 0.6m/s

Velocity accuracy δv 0.1m/s 0.1m/s 0.1m/s

Angular accuracy δΦ 0.1º 0.5º 1º

3dB beamwidth in azimuth ±Φmax ±15º ±40º ±80º

3dB beamwidth in elevation vmax ±5º ±5º ±10º

Dimensions 74Χ77Χ58mm 50Χ50Χ50 mm 50Χ50Χ20 mm

 With regard to the above table and [20] the target tri-mode radar signal processing system is

required to correlate with at least the following performance:

 27

(a) Range: for LRR 200m, for MRR 100m and for SRR 30m

(b) Range Accuracy < 0.1m

(c) Relative velocity : -100 to 250 km/h

(d) Velocity accuracy : ± 0.1 m/s

(e) Cycle time < 6.78ms

3.2 Allocation of the LFMCW Waveform

After the detail discussion done in Chapter-2 the choice of FMCW radar was established. To be

more specific the radar system chosen for this design is LFMCW which is a class of FMCW where the

modulating waveform is linear. The FMCW radar however can implement other waveforms like

sinusoidal, triangular and saw-tooth. The different types of radar waveforms generated are illustrated in

Figure 3.1.

f2

f1

f2

f1

f2

f1

time

frequency frequency frequency

time

time

t

t t

(a) (b) (c)

Figure 3.1 FMCW waveforms (a) Sine wave (b) Saw-tooth (c) Triangular

 Sinusoidal waveform is rarely used for FMCW radar system because of the extra latency added in

the computing and adjusting the wave coefficients. In addition the sine wave has less tolerance for VCO

non-linearity when compared with the linear waveforms of FMCW. Although at lower operating

frequencies analog modulation is possible without the need for waveform generations using digital

approach.

 The saw-tooth (or ramp) waveform provides only positive frequency sweep, which makes the

control and electronic tuning uncomplicated. However for moving targets, the problem of range Doppler

coupling arises when using the saw-tooth modulation technique [29].

 28

 The approbate technique for the design was found to be triangular modulation as the range and

velocity could be calculated simultaneously. In the triangular waveform with the difference between the

two equal upslope and downslope linear sweeps tantamount to twice the Doppler shift of the detected

target, consequently allowing the calculation of both range and radial velocity. The other advantage of

using the triangular modulation is that the different sweep directions make the system better resistant to

stationary clutter and jamming signals as they have more dynamic instantaneous frequency.

3.3 The Linear Frequency Modulated Continuous Wave (LFMCW) Radar

The LFMCW technique permits the use of linear frequency sweeps (or chirp) over a selected

bandwidth and measure the range and velocity using the beat frequencies from all the targets detected

within the FoV (Field of View) of the radar beam. The beat frequency is the difference between the

transmitted and received radar signal:

)(tfb =)()(tftf rt (3. 1)

The chirp period and the bandwidth are key parameters for determining the refresh rate, range

resolution and velocity resolution of the system. Figure 3.2 and Figure 3.3 models the triangular LFM

waveform showing the beat frequency obtained from the up and down frequency sweep for a stationary

and moving target.

 29

Frequency

Time

Received Wave (Target
Echo)

Transmitted
Wave

T

IF

T

Beat Frequency

0f

Time

0

T TT

Bf 0

bf

(a)

(b)

Figure 3.2 (a) Transmitted wave and received LFMCW signals (b) Beat frequency or intermediate

frequency for a stationary target

 30

Frequency

Time

Received Wave (Target
Echo)

Transmitted
Wave

Beat Frequency

0f

Time

Bf 0

upbf _

downbf _

df2

(a)

(b)

Figure 3.3(a) Transmitted wave and received LFMCW signals (b) Beat frequency or intermediate

frequency for a moving target

Here,

b_upf = up sweep beat frequency

b_downf = down sweep beat frequency

bf = beat frequency or intermediate frequency (IF)

0 = round trip delay time for the signal to be received from the target

df = Doppler shift due to relative target velocity

0f = starting frequency for operation bandwidth

B = operation bandwidth

T = sweep duration (equal for both up and down sweep for this thesis)

 31

3.4 Derivation of equation for Range and Velocity

In this section a compendious derivation of the range and velocity equations of the LFMCW radar:

)(tf t = transmitted radar signal

)(tf r = received radar signal

T

B
k = rate of change of frequency over a single sweep

3.4.1 Instance One: For Stationary Target Situation

A stationary target is one which has zero radial velocity and hence has no contribution to the

Doppler shift of the received signal. The transmitted signal can be defined with equation [3.2] and using

the Euler’s formula the complex sinusoidal equation with a base frequency of of modulated over a

bandwidth of B Hz is given by equation (3.3) [30]:

 2

1 2cos)(t
T

B
tftv ot

 (3. 2)

 2

1
2

1
2exp)(kttfjtf ot

 (3. 3)

The received signal lagged by a round trip delay time of 0 is given by equation (3.4):

 2

000r1)(
2

1
)(2exp)(tktfjtf

 (3. 4)

Mixing or multiplying the transmitted and received signals (ignoring the high frequency

component) the beat frequency or intermediate frequency (IF) is obtained. When the target is stationary

the beat frequency obtained is found to be equal for both up and down sweep and is represented by

equation (3.5):

 32

 2

0000r1t1b1
2

1
2exp)()()(kktfjtftftf

 (3. 5)

Taking the derivative of the phase of equation (3.5) with respect to time the instantaneous beat

frequency is found which is proportional to the target range:

0

2
0000

up1

2

1

k
dt

kktfd

f

 (3. 6)

Hence for a stationary target with equal up and down seep the beat frequencies can be expressed

as:

c

r
kkff

2
0down1up1

 (3. 7)

Here r is the range of the target, c is the speed of the electromagnetic waves in air and k is rate of

change of frequency over a single sweep. The relative range of the stationary target is calculated by the

averaging the two up and down sweep instantaneous frequencies and is given equation (3.8):

k

cff
r

22

down1up1

(3. 8)

3.4.2 Instance two: Moving target situation

 For the second situation a moving target is considered with a velocity of
rv relative to the radar

sensor or host vehicle. This velocity is an additional parameter in the transmitted and received signals

which occurs due to the Doppler Shift. It is denoted by cvf /2 r0 [13]. The transmitted signal is

considered as the same as equation (3.3) but the received signal for the up sweep is affected by twice the

amount of Doppler shift due to the two-way travel and the round trip delay of the radar wave. The

resultant signal can be expressed as:

)(2)(

2

1
)(2exp)(0

r
0

2
000r2 t

c

v
ftktfjtf

(3. 9)

 33

Multiplication of the transmitted and received signals in time will give the up sweep beat

frequency which is denoted by equation (3.10):

2

2
r

r

2
0

r
0

r
0000

b_up

2

2

1
22

2exp)(

t
c

v
v

c

k

kt
c

v
k

c

v
fkf

jtf

 (3. 10)

Assuming a stable computation of the instantaneous up sweep by differentiating w.r.t. time the

second order and the constant terms are ignored. Hence the resultant up sweep frequency is found to be:

d0
r

0
r

00

r
0

r
00

up2 22

22

fk
c

v
k

c

v
fk

dt

t
c

v
k

c

v
fkd

f

(3. 11)

The approximation needed to reach the expression for 2upf is possible as

14
2

22
2

rrr
0

c

v
kr

c

v

c

r
k

c

v
k for bandwidths under 1GHz (LRR). The term will also produce

negligible frequency values for bandwidths in tens of GHz (MRR and SRR), hence this term can be safely

neglected for all the modes of radars used in this design.

For the down sweep, the Doppler shift evinces as a negative value due to the negative slope of the

modulating wave. Taking into account the fact that Bf d the beat frequency signal at the receiving end

of the radar is expressed as:

2

2
r

r

2
0

r
0

r
0000

b_down

2

2

1
22

2exp)(

t
c

v
v

c

k

kt
c

v
k

c

v
fkf

jtf

(3. 12)

Differentiation of this equation w.r.t. time the down sweep frequency for a moving target with relative

velocity rv is obtained.

 34

d0
r

0
r

00

r
0

r
00

down2 22

22

fk
c

v
k

c

v
fk

dt

t
c

v
k

c

v
fkd

f

(3. 13)

After studying the above dissection it can be found that the range of any target for the LFMCW

radar technique can be found by adding 2upf and 2downf :

c

r
kkfkfkff

)2(
22 0d0d0down2up2

 (3. 14)

Hence the range r can be expressed as:

k

cff
r

22

)(down2up2

 (3. 15)

This equation is found to be similar like equation (3.8) i.e. for a stationary target.

The relative velocity
rv can be found by subtracting 2upf and 2downf to extract the Doppler shift:

c

v
fffkfkff r
0dd0d0down2up2 42)(

 (3. 16])

Consequently the relative velocity
rv is given by:

0

down2up2
r

4

)(

f

cff
v

 (3. 17)

The actual target velocity relative to the host velocity hostv is thus found by:

rhosttarget vvv
 (3. 18)

 35

3.5 Generation of LFMCW radar signal using VCO

A kernel component of the state-of-the-art radar system is the use of Voltage Controlled Oscillator

(VCO) to generate the FM signal. The tuning element of the VCO is a varactor diode [31]. When the

VCO receives an input analog tuning voltage in the varactor diode it leads to the variation of the net

capacitance which in turn contributes in the generation of an output frequency. For the current design the

output frequency needs to a triangular up and down chirp for which a triangular modulating signal is

required. This modulating signal can be generated using the FPGA with relative ease.

An up/down counter is needed for the modulating unit that will feed the DAC, outputting the

tuning voltage to the VCO. The up and down counter is required for up sweep (zero to up) count and

down sweep (back to zero) count respectively. The resolution and the refresh rates of the DAC are crucial

parameters influencing the linearity of the frequency sweeps. Figure (3.4) illustrates the algorithm

employed to generate the signal using a digital counter implemented in the FPGA.

77 GHz
VCO

Counter DAC

0V

1V

statesofnon

n

n

012 :sweepDown

120 :sweep Up
Antenna

0f

1f

2 T 2 T

B

Voltage Frequency

Time

Voltage

Time

Figure 3. 4 FPGA Based Voltage Tuning To Generate Frequency Chirps By The VCO

 The modulation results in a time-domain chirp signal like that shown in the following figure. An

up sweep followed by an equal down sweep [20] .

 36

Figure 3.5 Time-domain RF signal for the LMFCW radar displaying up and down chirp

3.6 Modification of the Received signal

The echo signal received from the target needs to modified before it is passed to the digital signal

algorithm. The modification is usually an analog process and is described below:

1. Low Noise Amplifier: The received signal is augmented using a low noise amplifier to oppose

atmospheric and hardware attenuation.

2. Mixer: It is used to perform a time-domain multiplication of the transmitted and the received

signal and output the sum and differences of these frequencies. Considering the multiplication

between two signals tA rr cos and tA tt cos , the resultant IF obtained in displayed by

Figure (3.5):

 37

Mixer

rf

tf

Received Signal
from Antenna

Transmit Signal from
Local Oscillator / VCO

Intermediate
Frequency

(IF)

||

||

tr

tr

ff

ff

Figure 3.6 The Mixing Process of an RF Signal

3. Low Pass Filter: It filters out the higher frequency component to extract the desired beat

frequency (tr ff).

4. Analog to Digital Converter (ADC): The ADC samples the IF signal according to the Nyquist

Theorem to avoid aliasing. The efficiency and accuracy of the overall radar processing depends

on this ADC component. The output resolution of the ADC dictates the speed, accuracy of

range and velocity calculation and memory usage. High resolution of the ADC ensures better

accuracy, lower quantization noise and improves speed and memory requirement [32].

3.7 Digital Signal Processing for the Radar design

An outline of the cardinal digital signal processing steps needed for the system design:

1. Windowing

2. Fast Fourier Transform for the spectral analysis

3. Cell-Averaging Constant False Alarm Rate processing

 38

3.7.1 Windowing

The analog IF signal after is it was modified is sampled over a length of time by the ADC to

digitize it. The sampling is done over a certain period time, e.g. t seconds. Spectral analysis, an

application of window function, is used to break down a complex signal into simpler forms. This it does

using a FFT, which assumes that the signal data constitutes an integral number of cycles [33].However,

there is no assurance that the ADC will be sampling an integral number of wavelengths and the IF itself is

distorted from the interference of noise and microwave. Sampling of the signal corresponds to the

convolution with a rectangular-shaped window of uniform height. This causes spectral leakage. To avoid

spectral leakage the signal has to be sampled over an infinite period of time, which is not viable. When

the period of a signal is extended to a limit not equivalent to the natural period, discontinuities are

observed at the boundaries. These discontinuities give rise to power leakage into the neighboring

frequency bins. This can be explained using equation (3.19) and the total effect is illustration using Figure

(3.6) [34], [35], [20].

FFT

window

sample

in

N

N

f

f

 (3. 19)

The spectral leakage occurs when the above condition occurs, where inf is the input signal,

samplef is the sampling frequency, FFTN is the number of points in the FFT, windowN is the no of cycles in

the data window.

 39

Frequency domain
representation

Frequency

Intensity Frequency
of interest

Spectral
leakage (side

lobe)

NF

Amplitude

Time

Time domain signal

T

Amplitude

Time

T

Sampled signal

Fraction of wavelength
ignored by rectangular

sampling window

(a) (b) (c)

Figure 3.7 (a)Signal under investigation with period T (b) Sampled signal convolved with a

rectangular window-function and, (c) Spectral leakage due to the windowing where
TFN 1

.

A detail analysis is done to define the parameters and the characteristics of the different window

types in order to choose the befitting window function for downsizing the spectral leakage. The real-

frequency characteristics of a window is that is it a continuous spectrum consisting of a main lobe with

several side lobes on either side of it. The side lobes after an interval approaches to zero. For an ideal

window the ratio between the ratio between the sampling frequency and the input sinusoidal signal is

exactly equal to the integral number of cycles that are within the data window i.e. (taking reference from

equation (3.19)

FFT

window

sample

in

N

N

f

f

 (3. 20)

The FFT output for such condition will display a single lobe located at the input frequency [36]. The

following figure illustrates the condition described in the equation:

 40

Figure 3.8 FFT Sine Wave with integral number of cycles in the data window

 For situation where the sine waves do not have an integral number of cycles , discontinuities

occur at the endpoints which emanate leakage in the frequency domain because of the harmonics

generated. The resultant frequency spectrum will manifest side lobes with the main lobe, spread over the

adjacent frequency bins. The condition can be demonstrated using the following figure:

 41

Side Lobes

Main Lobe

Figure 3.9 FFT Sine Wave with non- integral number of cycles in the data window

The sidelobe spectral leakage can be minimized by selecting the appropriate window function.

The successive figures will elucidate four popular window functions with their respective equations and

frequency response. Here)(nw is the N time-domain window coefficient and the original N input signal

samples are multiplied by n where 10 Nn [37].

 42

Rectangular Window [38]

N

n
RECTnw

97.0
)((3. 21)

Figure 3.10 Time-domain and frequency domain representation of the Rectangular Window

Function.

Triangular Window [38]:

N

n
TRInw

2
)((3. 22)

Figure 3.11 Time-domain and frequency domain representation of the Triangular Window

Function.

-20 -15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rectangular Window

A
m

p
li
tu

d
e

Sample Count

0 200 400 600 800 1000 1200
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency Bin

M
a
g
n
it
u
d
e
 (

d
B

)

Spectral leakage in Rectangular Window

 -13dB

-20 -15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample Count

A
m

p
lit

u
d
e

Triangular Window

0 200 400 600 800 1000 1200
-180

-160

-140

-120

-100

-80

-60

-40

-20

0
Spectral leakage in Triangular Window

Frequency Bin

M
a
g
n
it
u
d
e
 (

d
B

)

 -27dB

 43

Hanning Window:

1

2
cos15.0)(

N

n
nw

 (3. 23)

Figure 3.12 Time-domain and frequency domain representation of the Hanning Window Function.

Hamming Window:

1

2
cos46.054.0)(

N

n
nw

 (3. 24)

Figure 3.13 Time-domain and frequency domain representation of the Hamming Window

Function.

Table 3.2 shows characteristics analysis between different window types. The ideal window is the

one having a single main lobe with low side lobes and steep roll-off.

-30 -20 -10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hann Window

Sample Count

A
m

p
lit

u
d
e

0 200 400 600 800 1000 1200
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0
Spectral leakage in Hann Window

Frequency Bin

M
a
g
n
it
u
d
e
 (

d
B

)

 -39dB

-30 -20 -10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hamming Window

A
m

p
lit

u
d
e

Sample Count
0 200 400 600 800 1000 1200

-150

-100

-50

0

M
a
g
n
it
u
d
e
 (

d
B

)

Frequency Bin

Spectral leakage in Hamming Window

 -43dB

 44

Table 3.2 Comparisons between different Window Functions

Window Width of Main lobe

(3dB)

(Frequency bins)

Highest Side lobe

(dB)

Side lobe Roll-off rate

(dB/Octave)

Rectangular 0.89 -12 -6

Hamming 1.36 -43 -6

Triangular 1.28 -27 -12

Hanning 1.64 -39 -18

Blackman 1.68 -58 -18

From the tabulated value it can be seen that Blackman has the best side lobe attenuation and roll-

off capability, although the width of the main-lobe is 1.68 indicated a wider energy spread compared with

others and may cause spectral leakage. The most commonly used window in the field of communication

is Hamming in spite of its roll-off rate being lower. For this project the Hamming window is being chosen

for the following reasons:

1. Excellent side-lobe attenuation.

2. Ensures better accuracy even after truncating to 5 decimal places in fixed-point

multiplication.

3. Favourable main-lobe width although has poor roll-off rate, but that can be attended using

CFAR processing.

3.7.2 Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) plays an important role in the digital signal processing routine.

The algorithm was first discovered in the 18
th
 century by Gauss and then again in the 1960s was

redeveloped by James W. Clooney and John W. Tukey [39]. The algorithm of FFT is formulated from the

principle of the decomposing of the DFT (Discrete Fourier Transform) computation into smaller

sequences of DFT. This algorithm is constructed by the butterfly structure.

A simple radix-2 FFT algorithm is discussed by Cooley and Tukey and is define by the given

equation:

 45

1,....1,0)()(
1

0

2

NkenxkX
N

n

nk
N

i

 (3. 25)

Here, 1i ,)(kX and.)(nx .are a series of complex numbers and N is the transform size. The

complex coefficient
nk

N
i

e

2

 is known as the twiddle factor. This algorithm expresses the
21NNN

size DFT into smaller sizes of
1N and

2N .

 The radix affects the speed and complexity of the FFT algorithm. Two of the most common

algorithms are the Radix-2 DIT and Radix-4 DIT. For a N-point Radix-2 decomposition the FFT consists

of N2log stages, where each stage has 2N butterflies. For the same N-point FFT the Radix-4 has

 N4log stages and each stage has 4N Radix-4 butterflies.

 The FFT core used in this thesis makes use of Radix-2 and Radix-4 algorithm for the DFT

computing. When using the Burst I/O algorithm the decimation-in-time (DIT) is used [40]. The Radix-2

DIT is a very simple and common Cooley-Tukey algorithm. In a Radix-4 DIT algorithm, the data

computation can increase up to 3 bits)242.5231() and for Radix-2 the growth factor is up to 2

bits)414.221(. In this project the FFT IP core makes use of Radix-2 Lite Burst I/O architecture

which is same as Radix-2 except it used shared adder/subtractor, reducing resources allocation in the

process [40].

3.7.3 Constant False Alarm Rate (CFAR) Processing unit

The received signals from any target detected are usually corrupted with noise interference,

clutter and effects of attenuation. Moreover, this noise-clutter is not analogous for every environment and

as such a fixed-threshold detection technique cannot be applied to identify the false targets. To overcome

this problem the Constant False Alarm Rate (CFAR) with an adaptive threshold process can be used.

Based on the local noise information this adaptive process can estimate the noise power by investigating a

number of reference cells. This technique of averaging a number of reference cells to detect false target is

known as Cell Averaging CFAR (CA-CFAR) [41] [42]. Several other CFAR architectures have been

investigated in [14]. Among the popular ones are OS-CFAR and CA-CFAR. Also further extensions for

these CFAR architectures were developed. Two of them are Greatest of Selection CA-CFAR or CAGO-

CFAR by Vilhelm G. Hansen and Greatest of Selection OS-CFAR or OSGO-CFAR which was developed

by He You. The design architecture for the OS-CFAR is shown in the figure below:

 46

Xn XM+1 X1XM
………….. …………..

.

Sort By Amplitude

Xn X(k) X1XM
………… …………..

.

CUT

………….. …………..

…………..…………..

X

Detection

Decision

K

Comparator

Range

Figure 3.14 OS-CFAR architecture

Here K is the threshold value, M is the number of cells CUT is the cell under test. The factor on which

the outcome is dependent is k . The samples of ranges are first arranged according to their magnitudes

and the statistic Z is considered to be kth largest sample. The term)(kX is defined as:

)()()2()1(, kn XZXXX
 (3. 26)

 For an environment where the noise-clutter interference is known, the target detection process

would have been a fairly easy method. In this case the spectral intensity of the received signals would

have been compared with a fixed threshold, calculated from the static noise and clutter background. If the

intensity of the target in question exhibit a higher value than the threshold value then the target is

considered as a valid one otherwise it is discarded as being a false one [14].

Although in real radar applications the noise-clutter interference always varies with different

situations which bring back to the adaptive threshold technique. The dynamic changing of the threshold

value helps the radar to be more vigilant in its detection process.

The CA-CFAR technique is the chosen CFAR technique for this design project. The operation

principle of the CA-CFAR technique is abridged below with a figure of the algorithm following it:

1. Output from the FFT undergoes a square law detection process which eliminates all the

negative terms, inherently computing the absolute value of the intensity of the frequency bin.

 47

2. Guard bands are placed on either side of the Cell Under Test (CUT) to overcome the problem

of spectral leakage from the CUT.

3. A total of M number of cells are considered for investigation, placing them on either side of

the CUT in equal numbers i.e. 2/M no of reference cells on the left (avgL) and right side (

avgR) of the CUT. Index k increments from 1 to 2/M .

4. The average of the cells avgLand avgR are calculated and then multiplied by a constant K,

a preordained value, and the adaptive threshold AT is computed. The value of the term K is

calculated using

1
1

MPK f a (3. 27)

Here faP is the Probability of False Alarm.

5. After the AT is determined the CUT is compared against this value and the decision for target

detected is made by the following condition [43]:

A

A

T

T
CUT

Target detected

False alarm

This detection process runs for all FFT outputs, investigating each cell for the target

detection. The CA-CFAR process can be done very fast using the FPGA as both of them can

perform parallel operations.Figure (3.13) shows the CA-CFAR architecture:

Square-law
Detector

2/

k

M

X
avgL

2

avgRavgL

2/

k

M

X
avgR

XK

CUT

Guard bands

(adaptive
threshold)

Detection

FFT input

AT

DecisionXn XM+1 X1XM
………….. …………...

avgL avgR

Comparator

Figure 3.15 CA-CFAR Architecture Used In The Thesis

 48

3.8 Multifarious Aspects Considered for the Radar Design

3.8.1 Radar Targets

A theory for the probability of target detection with constant target cross section or nonfluctuating

targets was first analyzed by J.I. Marcum [44] of RAND Corporation which was cultivated further by

another member of the corporation Peter Swerling. He elaborated the study for fluctuating targets [45]

developing mathematical models for four isolated cases based on the target cross-section. These models

are known as Swerling I, Swerling II, Swerling III and Swerling IV. The Swerling 0 and Swerling V is

based on Marcum’s Theroy as they are based on constant Radar Cross Section (RCS) case. The model

variations are formed according to the chi-square probability density function (pdf). The RCS vary

according to the target shape, size, dynamics and the relative motion with respect to the radar.

 For electromagnetic analysis the RCS is denoted by the equation below:

2

2
2

||

||
4lim

i

s

E

E
r

r

(3. 28)

Here sE is the scattered field intensity at distance r and iE is the incident electric field intensity.

The maximum unambiguous range covered by the radar is one of the factors which utilize the

RCS information.

The five Swerling models are classified as below [46], [47]:

Swerling 0 (also called Swerling V): The RCS is constant conducing to a non-fluctuating pulse amplitude

with constant peak-to-peak SNR (signal to noise ratio). The reception variable which is the initial phase

of each pulse is presumed to be uniformly and independently distributed in]2,0[.

Swerling I: The RCS varies according the chi-squared pdf with two degrees of freedom. It is applicable

for targets made up of independent scatters of nearly equal areas. Around 5 or more scattering surfaces

contributes to muster this distribution. This model delineates a target with constant RCS through a single

scan but differs independently from scan to scan. The pdf for this model is given as:

avg

avg

1
)(

 ep

 (3. 29)

 49

Here, is the RCS of the target and avg is the average value of all target RCS.

Swerling II: It is similar to Swerling I except the cross-section fluctuations are independent from pulse to

pulse.

Swerling III: In this model the RCS varies according to the chi-squared pdf but with 4 degree of freedom.

It assumes one scattering surface with additional insignificant smaller scattering surfaces. Like that is

Swerling I the RCS is also constant through a single scan and the pdf is expressed as:

avg

2

2
avg

4
)(

 ep

 (3. 30)

Swerling IV: The model is akin to Swerling II model except the fluctuation is from pulse t pulse. This

represents a more dynamic case of Swerling III model.

The models can be illustrated by the figure below [48]:

Swerling I Swerling II

Swerling III Swerling IV

Swerling 0 or V

Figure 3.16 The different Swerlingfluctuating models

3.8.2 Noise

Noises are random superfluous signals which affect the received echo signalfrom the target. The

sources of these noises can be from signal processing noise, RF circuits and antenna and atmospheric

noise. Some crucial sources of noise are:

 50

1. Thermal Noise: this is the noise generated by the thermal motion of the semiconductor charge

carriersin the ohmic portion of the electronic and RF circuitry. The noise signal can be

expressed by the following relation:

BkTN ATh (3. 31)

Here k is the Boltzmann’s constant in Joules/Kelvin, AT is the average absolute temperature in

Kelvin and B is the Bandwidth in Hertz [49].

2. Background Noise: This type of noise signal is generated from environmental noise such as

refection from buildings, clouds etc [42] or cosmic radiation. On other noise type is the

“white” noise where all the frequencies formed by combining sounds, have equal amplitudes.

It also has equal power with a fixed bandwidth at the center frequency [49].

3. “Pink” Noise: This unambiguous noise signal is also known as f1 noise and a decreasing

power spectral density [50]. For applications like radar where the frequency is high this type

of noise has minimal effect [51].

4. Quantization Noise: When an ADC samples the IF, they quantize the amplitude of the input

analog signal into binary output of finite length. This is approximately a non-linear process

which results in the formation of a wide-band noise in the ADC output known as quantization

noise. Two noted methods to overcome this noise effect is oversampling and dithering [52].

The signal-noise-ratio, in dB, for an ideal N-bit ADC is

)(log2077.402.6 rms10Q LNSNR

 (3. 32)

Here rmsL is the rms input voltage of the analog signal divided by the peak input voltage of the

ADC.

3.8.3 Attenuation

All types of radio signals on their course through the atmosphere suffer abatement of intensity

due to attenuation. The attenuation effect measured in dB/km is generally caused by the absorption or

scattering of the radio signals. The scattering characteristic of the waves is based predominantly on the

oxygen in the atmosphere, humidity, fog and rain. In the 70 and 80GHz bands the effect of atmospheric

oxygen is considered to be negligible. Water vapor depending on the absolute humidity causes a limited

loss of between 0 to 50% per km at very high humidity and temperature. Attenuation due to fog or cloud

 51

is similar to the humidity condition except it also depends on the quantity and size of liquid droplets. This

loss due humidity and fog seems momentous but compared with the attenuation due to rain it is

insignificant [53]. Some attenuation for different weather conditions are tabulated below [20]. In this

thesis 0.8dB/km is taken as the attenuation value which falls in between light and medium rain condition

with an SNR of 4.73dB.

Table 3.3 Attenuation at 70-80GHz due to atmospheric conditions

Condition Precipitation Rate (mm/hr) Attenuation (dB/km)

Clear, dry air 0.00 0.1

Drizzle 0.25 0.2

Light rain 1.25 0.5

Moderate rain 12.50 1.5

Heavy rain or snow 25.00 9.0

3.8.4 Clutter and Jamming

Clutter in context to the automotive scenario is associated with the scattering of radio beam due to

the reflection from objects like trees, water, buildings, sign posts, road surfaces, barriers or dividers and

also from the host’s bumper in addition to other sources. The target information might get obscure

because of this clutter as it takes a small fraction of the total beam area. However most of these clutter are

from stationary sources hence it remains fixed at a particular frequency bin over a scan sweep. It also has

a low power intensity and fixed RCS. Some of the methods that can be employed to reduce clutters are

narrow beamwidth, utilization of wider bandwidth, moving-target indication (MTI) etc. Although the

success of clutter reduction using these techniques depend on its characteristics, radar stability and

dynamic range and also on the signal processing technique utilized. Meanwhile the clutter information is

recently being utilized to detect stationary objects like road boundaries, utility poles etc and also human

presence for better mapping of the ambient environment. This will improve the road safety conditions by

providing a real-time automotive radar that has the ability to detect both stationary and moving objects

[54].

 Radar jamming occurs when the entire operational bandwidth is saturated with high-power

microwave signals. As a result it becomes impossible to differentiate between the real and false targets.

For automotive radars jamming may occur when adjacent or near-by radar systems operate at the same

 52

frequency at an instant of time or from broadband Pulse Doppler radar generating high-power microwave

signals. Noise jamming is either Spot jamming which relates to the narrowing of the jamming bandwidth

to cover the radar operating bandwidth and hence cloaking it altogether. The other type is call Barrage

jamming where a wide noise bandwidth is utilized to cover several radars simultaneously with one

jammer [55].

 53

4 Chapter 4

Signal Processing Algorithm and Control of the Radar System

 This chapter gives a comprehensive summary of the algorithm used in designing the tri-mode

automotive radar system. The system developed in the University of Windsor focalizes on calculating the

target range, target velocity and the target angle. This thesis develops a radar system to calculate the

target range and velocity using Rotman Lens, MEMS RF Switch and phased-array antenna as mentioned

in Chapter-1. The signals processing section of the design is responsible for the modulation of the

transmitted waves into frequency chirps and also processes the received waves after certain modification.

A detail discussion of the processing algorithm and the factors affecting the received echoes (noise,

attenuation etc) was discussed in the previous chapter.

 This chapter describes the reasons abetting the choices made for the radar process design and

elucidates individual block operation with reference to the specifications listed in Table 4.1 [20].

Table 4.1 Introductory System Specifications

Parameter LRR MRR SRR

Type of Radar LFMCW LFMCW LFMCW

Operating frequency 77GHz 77GHz 77GHz

VCO TLC77xs TLC77xs1 TLC77xs1

Target Fluctuating models

examined

Swerling I, II, V (or 0) Swerling I, II, V (or 0) Swerling I, II, V (or 0)

Beamformer Rotman lens Rotman lens Rotman lens

Beam numbers 3 3 3

Processing time per beam 2.048ms 2.048ms 2.048ms

Beam width ±4.5° ±10° ±40°

Antenna type Phased-array antenna Phased-array antenna Phased-array antenna

Radar processing unit (RPU)

platform

FPGA FPGA FPGA

 54

4.1 Radar Transmitter Processing and Control Algorithm

The transmission section of the radar design is liable for the following responsibilities:

1. Manipulating the DAC to generate frequency chirp by tuning the VCO

2. Chirp generation synchronization on the receiving end of the signal processing inducing delay

where necessary

3. Adjusting the MEMS Switch control to switch between the beam ports, changing the beam

direction in the process

4. Switching between the three beams of the Rotman lens.

The transmission operation algorithm is described using the flowchart in Figure 4.1. The system starts

with generation of the voltage range from
minV to maxV and then back to

minV which is tuned afterwards

by the VCO for the frequency chirps. The target sweep duration is 1.024ms for each up and down sweep.

 55

er

Decrementing counter by one

Adjust switch control bits to next

beam port of Rotman lens

Sojourn for the modulation Unit to
complete sampling and buffering

data

DAC converts binary input
into analog tuning voltage for

VCO

Up counter
reached

Max?

Counter starting from
zero to max

Initially start or
 restart

Start

NO

YES

NO

YES

Incrementing up
counter by one

77 GHz
VCO

Initialize down count

from max to zero

Down

counter

reached 0?

Figure 4 1 Radar Transmitting and Processing algorithm

 56

4.2 Radar Receiver Processing and Control Algorithm

Once the IF signals are generated the signal processing routine is performed which is the crucial part

of the radar design algorithm. The processing technique is described below followed by a block diagram

of the system:

1. The Hamming window is applied to the time-domain samples collected from the ADC.

2. FFT is performed on the windowed samples.

3. The magnitude square of the FFT samples are calculated.

4. CA-CFAR algorithm is executed to eliminate the false targets disregarding noise, clutter and

jamming.

5. After completion of the CFAR process peak pairing is done to calculate the target range and

velocity.

The process listed above is illustrated in the figure below:

 57

LPF

ADC

Window

function

FFT

Compute magnitude

squared

Rx in

Tx in

Mixer

FIFO

X
K

_
R

E

X
K

_
IM

CA-CFAR

Target frequency

segregation

(peak pairing)

Target Range and

Target Velocity

determined

Range Velocity

Figure 4.2 Radar Signal Processing algorithm of the design system portraying the hierarchy of the

total operation

 58

4.3 Radar Bandwidth Selection for the Tri-mode radar

The parameters chosen for the radar design is critical for improving the performance of the system.

One of the cardinal criterions is the range resolution or separability of speed and distance between two

targets [2]. The range resolution can be defined as the radar ability to demarcate between two or more

targets on the same bearing but are at different distance [56]. Selecting the bandwidths for the tri-mode

design was based on a trade-off decision between the system bandwidth and the non-linearity effects of

the VCO. In addition the effect of frequency estimate in relation with the error in the distance estimate is

investigated before the respective bandwidths were chosen [57]. The equations for calculating range and

velocity resolution and distance estimate is given below:

Range Resolution (m) : B

c
R

2

 (4. 1)

Velocity Resolution(m/s) : T
v

2
r

 (4. 2)

Distance estimate (m) : k

c
wR

2

 (4. 3)

Here, c is the speed of the EM wave in air, B is the bandwidth of the system, is the radar wavelength,

T is the sweep duration for up or down sweep, w is the absolute error and k is the sweep rate of the

system.

 Analyzing the equations is can be deduced that increasing the sweep rate gives a better estimation

of the range value and decreasing the sweep duration will improve the range resolution.

 The following graphs show the effects different bandwidths have on the maximum frequency and

the range resolution for the Tri-mode radar.

 59

(a)

(b)

 60

(c)

Figure 4.3 Results for Maximum IF and Range Resolution for Different Bandwidth for (a) LRR (b)

MRR and (c) SRR

Surveying the above graphs it can be observed that an increase in the bandwidth meliorates the

range resolution but also increases the maximum IF. However an increase in the IF means that the

sampling frequency needs to be increased according to the Nyquist theorem which will lead to a

compromise for the velocity resolution [equation (4.3)] and frequency resolution of the FFT [equation

(4.4)].

Frequency resolution of FFT : N

f
f s
res

 (4. 4)

Here sf is the sampling frequency and N is the FFT point size which is equal to no of time-domain

samples collected.

The frequency resolution is basically the minimum spacing between two frequency bins of the

FFT which relates to the range resolution of the system. Also increase in the bandwidth will lead to a

better estimate of the distance according to equation (4.3).

 61

After taking everything into consideration the bandwidths chosen for the system are 800MHz, 1400MHz

and 2000MHz respectively for the long, medium and short range radar. The sweep duration for each up

and down sweep is taken to be 1.024ms and the ADC sampling frequency is taken to be 2 MHz (Mega

Samples per Second) which would collect 2048 samples over each sweep duration. The sample count is

taken as a power of 2 as a Radix-2 FFT algorithm is used.

4.4 Other System Components Configuration

ADC

From the discussion in the previous chapter the bandwidth for the tri-mode radar system was

chosen to be 800MHz, 1400MHz and the 2000MHz. The sampling frequency for this thesis is kept to be

2MHz for all the bandwidths and with sweep duration of 1.024ms and exact number of 2048 samples can

be collected.

FFT

 For the 2048 samples collected over the given sweep rate from the ADC a Radix-2 algorithm is

used to perform the Fast Fourier Transform on the signal.

CA-CFAR

 The CFAR architect chosen for this design is Cell-Averaging process. The reason for the choice

was discussed in detail in chapter 3. The CFAR algorithm is used to detect the targets overcoming the

noise and clutter. The probability of the false alarm is 10
-6
 for this thesis and the total number reference

cells considered for averaging is eight with guard cells on either side of the CUT (cell under test). The

guard cells are placed to avoid spectral leakage from the CUT. The value of the constant K calculated to

be:

3714.11)10(1 82

1

6
2

1

fa

MPK

 (4. 5)

Peak Pairing

 After the targets were detected from the CFAR algorithm peak pairing is done according to two

rules:

 62

1. Power Intensity level: The peak intensity of the FFT output signifies the power level of the

detected target. Intensity level from a target further away will create a lower power compared

with a target near the host vehicle. This criterion is taken into account when pairing is done

between the target detected in the up sweep and the one detected in the down sweep. A small

difference in the value indicates the peak intensity is for the same target detected.

2. Spectral contiguity: With regards to the bandwidth selected and a relative velocity of 300km/h if

a target detected in the up and down sweep fall within 84 bins shift of each other it can be

considered to the same target. The shift in question occurs due to the Doppler shift. Hence pairing

is done when targets detected from the up sweep and down sweep fall within 84 bins of each

other.

4.5 Algorithm Summary

The parameters chosen in accordance with the decisions discussed so far are used to develop a

design algorithm in both Matlab and HDL alike. System design was done concurrently in both floating-

point (Matlab) and fixed-point (HDL) platform and simulations and performance was noted and

compared in the forthcoming chapters. Summary of the parameters chosen are given in the tables below:

Table 4.2 Signal Processing Unit for the Radar System

Processing Details Unit

DAC 16-bit, 200 MHz

ADC 12-bit, 3 MHz

Window Type/Length Hamming/2048

FFT Type Mixed Radix-2/4 DIT

FFT Length 2048

CFAR type Cell- Averaging (CA)

CFAR parameters Guard bands= 2, No of cells = 8, P
fa
 = 10

-6

 63

Table 4.3 Specification for the Long Range Radar Design

Parameters

Symbol Value Unit

Bandwidth B 800 MHz

Maximum IF IF 1.064 MHz

Beam Width Beam_Width 9 degrees

Chirp Time T
chirp

 1.024 ms

Maximum Theoretical Range

Resolution.

ΔR 0.1873 m

Maximum Theoretical

Velocity Resolution.

ΔV
r
 1.901 m/s

Sampling Frequency f
s
 2 MHz

FFT point size N 2048 Dimensionless

FFT Resolution Ω 520 Hz/bin

Table 4.4 Specification for the Medium Range Radar Design

Parameters Symbol Value Unit

Bandwidth B 1400 MHz

Maximum IF IF 325.53 MHz

Beam Width Beam_Width 20 degrees

Chirp Time T
chirp

 1.024 ms

Maximum Theoretical Range

Resolution.

ΔR 0.1070 m

Maximum Theoretical Velocity

Resolution.

ΔV
r
 1.9005 m/s

Sampling Frequency f
s
 2 MHz

FFT point size N 2048 Dimensionless

FFT Resolution Ω 318 Hz/bin

 64

Table 4.5 Specification for the Short Range Radar Design

Parameters Symbol Value Unit

Bandwidth B 2000 MHz

Maximum IF IF 86.57 MHz

Beam Width Beam_Width 80 degrees

Chirp Time T
chirp

 1.024 ms

Maximum Theoretical Range

Resolution.

ΔR 0.0749 m

Maximum Theoretical

Velocity Resolution.

ΔV
r
 0.3167 m/s

Sampling Frequency f
s
 2 MHz

FFT point size N 2048 Dimensionless

FFT Resolution Ω 85 Hz/bin

 65

5 Chapter 5

Software Implementation of the Designed Project

 The simulations for the thesis done in floating-point system in MATLAB platform are shown in

this chapter. Based on the parameters, target specifications, mathematical concept and the system

configuration a MATLAB simulation algorithm is developed and the simulated results are cumulated and

compared with the HDL implementation, which will be discussed in the next chapter. Some additional

toolbox were used to aid the MATLAB software e.g. Signal Processing Toolbox, DSP System Toolbox,

Fixed-point Toolbox and Phased-array Toolbox.

The total signal processing in the software simulation is done according to the following sequence:

1. The IF calculated from the received echo from the detected target is sampled using a 12-bit ADC.

2. The sampled data are then processed with a hamming window to minimize the spectral leakage.

3. The resultant windowed samples are then passed through a Radix-2 FFT processing algorithm.

4. A CA-CFAR algorithm identifies the false targets and a peak paring technique is used to

distinguish the relevant target signals from the up and down sweep.

5. From the information received from the peak-paring algorithm the range and velocity of the

targets are calculate using the equations (3.8), (3.15), (3.17) and (3.18).

The list of the complete MATLAB code is given in Appendix 1 (a).

As the chapter is progressed relevant figures and graphs are shown to portray the simulations from

each process stages described above.

 66

5.1 Software Simulation of the Design System

In accordance to the research methodology listed above the simulations were done in MATLAB

and the following results were observed. For the current situation single target detections were

considered. The test scenario with a single beam (from the 3-beam port of the Rotman lens mentioned in

Chapter 1) can be depicted by the figure below:

Target at Range
8m and Velocity

85 km/h

Target at
Range: 90 m and

Velocity: 100 km/h

Target at
Range: 120 m

Velocity: 140 km/h
HOST VEHICLE

Velocity: 70 km/h

Beam 1

Beam 2

Beam 3

Lane 1

Lane 3

SRR MRR LRR

9° 20° 80°

.

Figure 5.1 Test situation scenario for a single target situation

The intermediate frequencies collected from the echoes of the targets are sampled and windowed

using a 12-bit ADC and Hamming window function respectively. The target echoes are presumed to add

up at the receiving phased array antenna mentioned in chapter 1 as an important part in the total design of

the MEMS radar block. For this test scenario it is assumed that the target detected by the LRR falls

within beam 1, for MRR it falls within beam 2 and for SRR it is within beam 3. Simulations for the ADC

and window functions are given below for each mode of the radar range:

 67

Long Range Radar (LRR):

The figure below displays the ADC signal contaminated with arbitrary Additive White Noise

(AWN) and also after multiplying with the Hamming window function. The signal to noise ratio is found

to be 4.73dB in accordance with the attenuation scenario considered. The signal is shown for Beam 1, but

for Beam 2 and 3 the signal will be similar to this. The Up and Down sweep IF is shown in the figure:

Up sweep
IF

Down sweep IF

(a)

 68

Up Sweep IF

Down Sweep
IF

(b)

Figure 5.2 ADC Sampling and Windowing of IF from the target detected in the long range

Figure below shows the target detected in the Up and Down sweep within the beam 1 region. The

target is accepted to be a valid target as the two conditions for the peak-pairing criteria was fulfilled. The

Peak intensity between the two signals is 0.04984 10096.01508.0 DOWNUP YY and the target

signal is within the 84 bins shift 4112631304 UPDOWN XX . Here it is assumed that a positive

value of the relative velocity indicates that the target is moving away from the host vehicle. The target is

question is at a range of 120m and traveling with a velocity of 140 km/h.

 69

(a)

(b)

Figure 5.3 Target detection by the CFAR from the FFT output showing for both Up and Down

Chirp

 70

Mid-Range Radar (MRR):

With correspondence with the above test scenario the vehicle within the mid range is at 90m traveling

with a velocity of 100km/h. Here again the process for computing the information about the detected

target was done like those in LRR and the following simulation figures were obtained. The presence of

Gaussian White is also noted here.

Up Chirp IF Down Chirp IF

(a)

 71

Up Chirp IF

Down
Chirp IF

(b)

Figure 5.4 (a) ADC sampling for the Up and Down IF signal and (b) The signal after being

multiplied by the Hamming Window function

The vehicle detected within the beam 2 region is verified by satisfying the condition for peak

paring: the frequency bin shift and peak intensity was found to be 12 16781690 UPDOWN XX

and 0.055 1197.01747.0 DOWNUP YY respectively.

 72

(a)

(b)

Figure 5.5 Target detection in the Mid-range shown for Up and Down Sweep

 73

Short Range Radar (SRR):

Consistent with the test scenario shown in Figure 5.1 the target assumed with the short range is at

a range of 8m travelling with a velocity of 85 km/h.

Up Chirp IF Down Chirp IF

(a)

Up Chirp IF

Down
Chirp IF

(b)

Figure 5.6 ADC Sampling of the Up and Down sweep signal and the corresponding signal after

been multiplied by the Hamming Window function

 74

Target verification with regard to the frequency bin shift and the peak intensity is also done here

and found to be 9 211220 UPDOWN XX and 0.01165 24341.025506.0 DOWNUP YY

respectively.

(a)

 75

(b)

Figure 5.7 Target detection within the beam 3 region of the Short Range Radar is shown and

verified for the Up and Down Sweep

5.2 Verification of the Test Scenario

The results for range and velocity acquired from MATLAB for different situations in from the Tri-

mode radar detection was compared against calculated values using the equations given in chapter 3. The

table below provides with the assumed range and velocity values considered to verify against the

MATLAB calculated values for this scenario. The range and velocities can also be calculated using the

equations below which have been discussed in Chapter 3.

Table 5.1 Up and Down Frequency values calculated for the range and velocity for single target

situation

Modes of

Radar
UPf 1

(Hz) DOWNf
2
(Hz)

Range (r)
3

(m)

Velocity (rv)
4

(km/h)

LRR 661584 589647 120 70

MRR 836536 805705 90 30

SRR 111977 96562 8 15

 76

Equations used for calculating the parameters are:

1

c

22 r0

DRup

vf

c

kr
fff

2

c

vf

c

kr
fff r0

DRdown

22

3

k

cff
r

22

)(downup

4

0

downup

r
4

)(

f

cff
v

Here the relative velocity rv is found by calculating the difference between the target velocity and

the host velocity.

Table 5.2 shows the value of the range and velocity from MATLAB simulations with

corresponding Up and Down frequency sweep.

Table 5.2 MATLAB results of the range and velocity for single target situation

Modes of

Radar
Up_bins UPf 1

(Hz) Down_bins
DOWNf 2

(Hz)

Range_M

(r)
3
(m)

Velocity_M (

rv)
4

(km/h)

LRR 653 637695 633 618164 120.14 71.83

MRR 845 825195 839 819336 90.01 30.78

SRR 120 1171876 116 113281 8.84 13.68

1

2048

2
_up

MHz
binsupf

2

2048

2
_down

MHz
binsdownf

 77

Table 5.3 Difference between MATLAB and Actual values

Modes

of Radar

Range (r)
3

(m)

Velocity (rv)
4

(km/h)

Range_M

(r)
3
(m)

Velocity_M (

rv)
4

(km/h)

Error in

Range

Error in

Velocity

LRR 120 70 120.1 71.83 0.1 1.83

MRR 90 30 90.06 30.78 0.01 0.78

SRR 8 15 8.84 13.68 0.84 1.32

The SRR shows the maximum error for range calculation and LRR shows the maximum error in

calculating velocity.

5.3 Multiple target Test Scenario

In the multiple targets scenario multiple targets are being assumed at different range travelling with

different velocities and the signal detection at each mode of radar are being observed for both up and

down frequency sweep. The host vehicle velocity is again considered to be 70 km/h.

Target at Range 20 m
and Velocity 85 km/h

Target at
Range: 95 m and

Velocity: 100 km/h

Target at
Range: 140 m

Velocity: 125 km/h
HOST VEHICLE

Velocity: 70 km/h

Beam 1

Beam 2

Beam 3

Lane 1

Lane 3

SRR MRR LRR

Target at
Range: 50 m and

Velocity: 110 km/h

Target at
Range: 170 m and
Velocity: 110 km/h

Target at
Range: 120 m and
Velocity: 90 km/h

Figure 5.8 Concocted multiple targets scenario for observing the Tri-mode Radar detection

efficiency

 78

The results obtained from the CA-CFAR algorithm in the MATLAB simulation are again verified

against the calculated values as done in the previous section.

(a)

 79

(b)

Figure 5.9 Multiple targets detected from the hypothetical scenario in the LRR mode

(a)

 80

(b)

Figure 5.10 Targets detected by MRR in the multiple targets situation

(a)

 81

(b)

Figure 5.11 Target detected by SRR sensor in the multiple targets scenario

Table 5.4 shows the results calculated for each of the target detected by the Tri-mode radar. Here

again the relative velocity rv is the difference between the host velocity and the target velocity.

Table 5.4 Up and Down frequency sweep calculated for the hypothetical situation for theTri-mode

radar test scenario

Modes of Radar UPf 1
(Hz) DOWNf 2

(Hz) Range (r)
3
(m) Velocity (rv)

4
(km/h)

LRR

794115 665655 140 55

942811 829767 170 40

671861 579370 120 20

MRR
918122 815354 95 30

512700 399656 50 40

SRR 304350 216997 20 15

 82

The results obtained from the MATLAB simulations are tabulated below:

Table 5.5 Results obtained from the MATLAB simulation for the given situation

Modes of

Radar
Up_bins UPf 1

(Hz) Down_bins
DOWNf 2

(Hz)

Range_M

(r)
3
(m)

Velocity_M (

rv)
4

(km/h)

LRR

756 738281 740 722656 140.09 54.73

914 892578 903 881836 170.05 41.05

644 628906 639 624023 120.05 20.53

MRR

893 872070 894 873047 95.1 30.8

474 462891 462 451172 50.19 41.05

SRR 274 267578 270 263672 20.38 13.68

The difference in the values is shown in Table 5.6

Table 5.6 Error calculations between the actual values and the simulated values

Modes

of Radar

Range (r)
3

(m)

Velocity (rv)
4

(km/h)

Range_M

(r)
3
(m)

Velocity_M (

rv)
4

(km/h)

Error in

Range

(m)

Error in

Velocity

(km/h)

LRR

140 55 140.09 54.73 0.09 0.27

170 40 170.05 41.05 0.05 1.05

120 20 120.05 20.53 0.05 0.53

MRR
95 30 95.1 30.8 0.1 0.8

50 40 50.19 41.05 0.19 1.05

SRR 20 15 20.38 13.68 0.38 1.32

 The maximum error for both range and velocity was found for SRR.

 83

5.4 Observation Summary

The design algorithm of the Tri-mode radar was observed for both single target and multiple target

situations. The actual results were verified against the simulated results and the difference is calculated.

The maximum error for the range in both the situations was found in the SRR. The error in the velocity

was found higher in LRR for the single target situation but for the multiple targets SRR showed a higher

error. Although the error seem to be higher considering the situations, especially for SRR where precise

location and velocity of the target is highly needed, the values found using the IF received from the

targets have lower error percentage. This will be shown in the next chapter.

 84

6 Chapter 6

Hardware Implementation of the Tri-mode Radar Design

In this chapter the hardware implementation of the radar signal processing algorithm is discussed

highlighting the each process black discussed above. Simulations in the hardware are based on the fixed-

point system while the software simulations in MATALB were done using floating-point system. The

results obtained from the hardware and software simulations are tabulated and compared at the end of this

chapter.

6.1 Hardware Implementation

The radar signal processing was implemented on Xilinx FPGA Virtex 5 SX50T using Verilog HDL

(Hardware Descriptive Language). The IF signal from the received echoes was first passed through

another platform Analog to Digital Convertor (ADC) board (AD7x76/77CBZ). The Verilog code was

simulated using an ISIM simulator. The choice for the platform was discussed in detail in chapter- 2. The

aim of the MEMS automotive radar designed in University of Windsor is to have smaller computation

latency per sweep and also a smaller cycle time.

The Virtex-5 family provides many compelling features for advanced logic designs. The platform

used in this thesis SXT is efficient for signal processing applications with advanced serial connectivity.

Virtex-5 FPGAs contain many IP core blocks, enhanced clock management modules with integrated

DCM (digital clock manager) and phased-locked loop (PLL) clock generators among other prominent

features [58]. The device is built on a 65 nm tri-oxide technology reducing the core voltage to 1.0 V and

which improves the gate-level performance bu ensuring that all transistors in the FPGA are not switched

at maximum speed. Some prominent features of the Virtex-5 SXT family are:

1. Maximum Distributed RAM (in Kb) in the Configurable Logic block (CLB) - 788

2. DSP48E Slices – it has 288 slices, each slice contains a 25 x 18 multiplier, an adder and an

accumulator

3. Block RAM (BRAM) – 4752 Kb. The size of the BRAM has increased to 36 Kbits from the 18

Kbits of the Virtex-4 device, making it easier for larger memory arrays to be built. Also the

larger 36 Kbits can be used as independent blocks of 18 Kbits if necessary [59].

 85

4. Look Up Table (LUT) – It contains nearly 207,360 real 6-input LUTs with over that 13 million

total LUT bits [58].

5. Clock Management Tiles (CMT) – The Virtex-5 Clock is from CMT blocks which contains

two DCMs and on PLL. The DCM is for controlling delay and improves noise immunity and

the PLL helps to generate lower clock jitter and filter jitter. Each Virtex-5 device is provided

with six CMTs each of which is capable of generating clock frequency of 550 MHz.

6. SelectIO – Contains up to 1200 packaged I/Os which can be configured from 1.2V to 3.3V.

Detail about the ADC platform used in this thesis is given in chapter 2. The total system

configuration for the Tri-mode radar design using the Virtex-5 FPGA platform, ADC 7x76 evaluation

platform and other required components are shown in Figure 6.1:

 86

Figure 6.1 The Virtex-5 FPGA platform and ADC platform used in the design of Tri-mode radar

signal processing

6.2 Radar Signal Processing Algorithm

The radar signal processing algorithm using the fixed-point system is written in Verilog code using

Xilinx ISE 13.4 Design Suite. The HDL coding and processing are carried out according to the following

hierarchy algorithm:

1. The global clock 100 MHz is synchronized with the 48 MHz and 64 MHz clock which are

related to the ADC and DAC algorithm respectively.

 87

2. The 48 MHz clock frequency of the ADC is synchronized with the Built-in FIFO. This is done

because the ADC and FFT have different clock frequencies. The FIFO is acting as buffer

storage between the window functions and FFT. The read clock frequency for the FIFO is 100

MHz while the data is written into it at 48 MHz.

3. The ADC samples are multiplied by the Hamming window function and are then passed into

the FIFO. Data is written into the window multiplier at 48 MHz clock frequency analogous to

ADC clock. The window process is done using the Block Memory Generator [60] .

4. The windowed samples ate collected from the FIFO generator block and passed in the FFT

Core Generator at 100 MHz.

5. The FFT output (both real and imaginary) are then squared and the magnitudes of the samples

are obtained.

6. Output of the FFT is passed into the CA-CFAR algorithm where the relevant signals from the

detected targets are extracted from the noise and clutter.

7. The peak intensities of the CFAR outputs are then paired to match the affiliated targets from

the up and down sweep.

8. Once the target information is extracted using the peak-paring algorithm the range and velocity

is calculated and displayed in the LCD of the FPGA board.

The total Verilog code for the total algorithm is given in Appendix 1 (b)

6.3 The Processing Blocks Used In the Design

The block diagram for the total algorithm is given in Figure 6.2. All the process blocks are

instantiated in the top module. This process stages are similar with the algorithm used in MATLAB

simulation.

 88

ADC

Top Level Control

Sampling
Clock

Built-in FIFO

FFT Core
Generator

Multiplier Core
(24 x 24 Paraller

Multiplier)

Square Law
Detector

CA-CFAR
Processing

LFMCW Peak
Pairing

Target

 range

Target

Velocity

System
ENABLE

DAC Data Generator
(VCO Tuning Voltage –

Triangular Sweep)
DAC

Window Function
Coefficients

SP3T Switch ControlControl to MEMS
SP3T Switches

Top
Module

Figure 6.2 Block diagram showing the processing stages of the HDL algorithm

 89

6.4 The Hardware Simulation technique and the Individual Process Blocks

The hardware implementation of the radar signal processing designed in the University of Windsor

is shown in Figure 6.1. The signal generator is used to provide the IF from the targets detected. The

output from the signal generator goes into the ADC evaluation board where the signal is sampled. The

voltage source is used to provide the ADC with VDD. The ADC can sample up to a rate of 3 Msps as

mentioned in chapter 2. Sample data is passed into the FPGA through SDATA pin which serially streams

data out of the ADC. The connection between ADC and FPGA is established using SDATA, SCLK and

J10 , J11 pins of the ADC and the FPGA platforms respectively.

The end results i.e. target range and target velocity each are calculated using the fixed point system.

The advantage of using fixed-point over floating point is that results are most accurate for a given number

of bits per number and also it consumes less space. In the fixed-point algorithm a scaling factor and a

particular register width is assumed. These factors decide the position of the decimal point of the resultant

value.

The figure below shows a top level system block for the design.

Top level System

Design

12- bit ADC samples

16-bit Host
Vehicle Velocity

System Clock

System Enable

System Reset

28 -bit Target Range

16-bit Modulating Signal
Output to DAC

3-pin MEMS RF Switch
COntrol

DAC Clock

Sampling Clock to

ADC

28- bit Target Velocity

.

Figure 6.3 Black Box view of the Radar Signal processing algorithm. The thicker lines indicates bus

and the inputs lines are on the left and the outputs are on the right

 90

6.5 Range and Velocity Calculation Methodology

As describes above the results for target range and velocity are calculated using the fixed-point

system. The 28-bit range and velocity value is divided into 12 –bit from MSB for the integer part and

16-bit from LSB for the fractional part. This ensures a precision of 655361 in the calculated range and

velocity values of the HDL code.

6.6 RTL Design View of the Process Blocks

For each processing algorithm RTL design view is being generated showing the pin connectivity with the

corresponding bit size. To begin with the RTL view of the top module is generated and shown in Figure

(6.4):

Figure 6.4 The Top Module of the HDL algorithm

 91

Table 6.1 Details for the pins shown in the Top Module

HDL Pin I/O Description

ADC_MISO Input The ADC sampled data from the AD7x76/77CBZ)

EXT_CLK Input System clock at 550MHz from the ML506 board

EXT_RESET Input Global synchronize reset

BEAM_SHOW Input Displays the active beam number

ADC_LED Output The sampled value excluding the leading and trailing zeros

BEAM_SWITCH Output Controls pins to control switching between three beam ports to

control the radar beam direction

DAC_DATA Output The tuning voltage modulated by the up and down counter

DAC_CLK Output Clock frequency for the Digital to Analog convertor which is 64

MHz

ADC_CS Output Chip Select for the ADC initiates data conversion and also

manage the serial data transfer

ADC_SCLK Output The serial clock for the ADC which is 48 MHz

LCD_E Output Enabling the LCD display

LCD_RS Output Selecting the read enable pin of the LCD

LCD_RW Output Selecting the write enable pin of the LCD

STATUS_OK Output The input received is valid

The following figures and tables will show the RTL design view for the signal processing done to

obtain the target range and velocity results before they are displayed on the LCD.

 92

The ADC Processing:

Figure 6.5 The RTL design viewer of the ADC computation

 93

Table 6.2 Pins configuration of the ADC block

Pin name I/O Description

ADC_MISO Input The ADC sampled data from the AD7x76/77CBZ)

clk_48 Input The clock frequency for the ADC which is 48 MHz

ready Input ADC values are ready with valid data

reset Input Global synchronous reset

adc_sample Output The sampled data from the ADC

ADC_CS Output Chip Select for the ADC initiates data conversion and also

manage the serial data transfer

adc_valid Output The data received are valid

The Window Function:

Figure 6.6 RTL view of the Window Processing block

 94

Table 6.3 Pins configurations for the Window block

Pin name Direction Description

adc_sample Input The 11 bit sampled data from the ADC

adc_valid Input The data received are valid

clk_48 Input The clock frequency for the ADC which is 48 MHz

ready Input ADC values are ready with valid data for windowing

reset Input Global synchronous reset

window_sample Output The 11 bit sampled data after being multiplied by the

window function

Fast Fourier Transform processing:

Figure 6.7 RTL view of the FFT process block

 95

Table 6.4 Table showing the pin configurations

HDL port Direction Description

window_sample Input
The 11 bit sampled data after being multiplied by the window

function

adc_valid Input The data received are valid

clk_48 Input The clock frequency for the ADC which is 48 MHz

clk_100 Input Global clock for the system 100 MHz

dcm_ready Input Digital clock Manager ready for blocking zero delay

reset Input Global synchronous reset

xk_im Output
Output data bus. Imaginary component represented either in

two’s complement or single precision floating-point format [40]

xk_re Output
Output data bus. Real component represented either in two’s

complement or floating-point format [40]

xk_index Output Index of output data [40]

dv Output Active high when valid data is present at the output

fifo_ready Output
The FIFO is full and is ready to output data into the FFT core

Generator

The CA-CFAR process block:

Figure 6.8 The RTL design view of the CA-CFAR process

 96

Table 6.5 HDL port configuration

HDL port Direction Description

tarA Input Assumed detected target A

tarB Input Assumed detected target B

tarC Input Assumed detected target C

tarD Input Assumed detected target D

clk Input Global clock which is 100 MHz

reset Input Global synchronous reset

start Input A delayed version of the data is set up for using in the multiplier

clock enable and the load buffer enable

target_abs output Target peak intensity

target_pos output New target frequency bin number

complete Output When loading of all the squared data is complete

new_target Output New target data

start_cfar Output CFAR processing is start

 97

Peak-pairing and target information computation:

 The data received from the CA-CFAR is paired and the range and velocity value of the target is

computed using the process block shown below:

(a)

(b)

Figure 6.9 Process block showing the (a) peak paring and (b) result computation process

 98

Table 6.6 Pins description for the Process block given above

HDL port name I/O description

clk Input Global clock which is 100 MHz

reset Input Global synchronous reset

unit_vel Input Velocity of the host vehicle

target_abs Input Target peak intensity

target_pos Input New target frequency bin number

complete Input When loading of all the squared data is complete

new_target Input New target data

updown Input
Indicated the up and down sweep. Active High indicate up

sweep and low refers to a down sweep

valid_in Input
Valid input received after the info_valid is high in the pairing

block

max_bin Input The bin of the target received

clk_100 Input Global clock which is 100 MHz

bot_range/

b1t_range/

b2t_range

Output The value of range of the target detected

bot_speed/

b1t_speed/

b2t_speed

Output The value of the velocity of the target detected

b0t_dir/

b1t_dir/

b2t_dir

Output Holds the sign bit for the velocity

Each process blocks are simulated and the results for range and velocity was calculated and displayed in

the LCD in the FPGA platform.

 99

6.7 Hardware Synthesis Results for the Radar design

The resources used in the developing the algorithm is shown in the tables below:

Table 6.7 Resources used for (a) SRR (b MRR) (c) LRR

(a)

Resource Used Available Percentage Usage

Slice registers 2200 32640 6%

Slice LUTs 3692 32640 11%

DSP48E slices 8 288 2%

Fully used LUT-FF pairs 1397 4271 32%

BUFG/BUFGCTRLs 7 32 21%

(b)

Resource Used Available Percentage Usage

Slice registers 1753 32640 5%

Slice LUTs 2126 32640 6%

DSP48E slices 7 288 2%

Fully used LUT-FF pairs 876 3003 29%

BUFG/BUFGCTRLs 7 32 21%

(c)

Resource Used Available Percentage Usage

Slice registers 1634 32640 5%

Slice LUTs 2120 32640 6%

DSP48E slices 7 288 2%

Fully used LUT-FF pairs 875 2879 30%

BUFG/BUFGCTRLs 7 32 21%

 100

Table 6.8 Comparison between the LRR designed in this thesis with a previous version of LRR

designed in the University of Windsor [20].

Resource Percentage Usage Percentage Usage [21]

Slice registers 5% 4%

Slice LUTs 6% 23%

DSP48E slices 2% 6%

Fully used LUT-FF pairs 30% 9%

BUFG/BUFGCTRLs 21% 3%

It can be seen from the above table that the current design used less Slice LUTs and DSP48E slice

than the previous design which indicates that the Tri-mode radar can be implemented using a smaller area

compared with the LRR sensor designed previously. In addition to this the results obtained from the

current algorithm has greater accuracy than the previous design.

The processing time for each mode of radar are given in the tables below:

Table 6.9 Processing time for each process block for (a) SRR (b) MRR and (c) LRR

(a)

Processing Block Time (s)

ADC requires:
0.001487

Windowing requires:
0.000583

FFT requires:
0.000266

CA-CFAR requires:
0.00051

Signal Processing Latency
9.60E-09

Total Latency
0.002846

(b)

Processing Block Time (s)

ADC requires:
0.001582

Windowing requires:
0.000526

FFT requires:
0.000266

CA-CFAR requires:
0.000626

Signal Processing Latency
9.60E-09

Total Latency
0.003

(c)

 101

Processing Block Time (s)

ADC requires: 0.00146

Windowing requires: 0.000261

FFT requires: 0.000133

CA-CFAR requires: 0.00025

Signal Processing Latency 4.7E-09

Total Latency 0.00210

6.8 Results Comparison between HDL implementation and MATLAB

Simulation

The results obtained for different IF generated from the signal generator is obtained from the LCD display

after simulating in the HDL was compared against the values acquired from the MATLAB simulations.

The percentage error between the values was found to be very low which justifies a successful

implementation of the Tri-mode Radar. The cycle time for each mode was found to be 6.144ms where

each up and down sweep takes 1.024ms each.

 102

Table 6.10 Results obtained from the MATLAB simulations is compared against calculated values

 Target Range* (m)
IF(kHz)

Matlab Values of Range (m)

SRR MRR LRR SRR MRR LRR

6.14 8.77 15.34 80 6.14 8.77 15.35

9.21 13.15 23.02 120 9.22 13.16 23.03

12.28 17.54 30.69 160 12.29 17.55 30.71

15.34 21.92 38.36 200 15.36 21.94 38.39

18.41 26.31 46.03 240 18.43 26.32 46.07

21.48 30.69 53.70 280 21.50 30.72 53.75

26.08 37.27 65.22 340 26.07 37.24 65.18

30.69 43.84 76.72 400 30.72 43.88 76.79

 54.80 95.90 500 54.79 95.89

 65.76 115.09 600 65.71 114.99

 87.68 153.45 800 87.65 153.39

 98.64 172.63 900 98.68 172.68

 100.29 915 100.28

 186.06 970 185.98

 192.0 1001 191.59

 103

Table 6.11 Results obtained from the LCD display and Compared with the calculated values

Target Range* (m)

 IF(kHz)

HDL values from LCD Display Range

(m)

SRR MRR LRR SRR MRR LRR

6.14 8.77 15.34 80 6.14 8.78 15.36

9.21 13.15 23.02 120 9.21 13.16 23.04

12.28 17.54 30.69 160 12.28 17.55 30.71

15.34 21.92 38.36 200 15.35 21.94 38.39

18.41 26.31 46.03 240 18.43 26.33 46.07

21.48 30.69 53.70 280 21.50 30.72 53.75

26.08 37.27 65.22 340 26.07 37.24 65.18

30.69 43.84 76.72 400 30.72 43.88 76.79

 54.80 95.90 500 54.70 95.80

 65.76 115.09 600 65.70 115.10

 87.68 153.45 800 87.70 153.50

 98.64 172.63 900 98.60 172.70

 100.29 915 100.30

 186.06 970 186.10

 192.0 1001 191.50

 104

Table 6.12 Error percentage between the MATLAB Simulated values and HDL values

IF(kHz)
Error* between HDL and Matlab (%)

SRR MRR LRR

80 0.00 0.11 0.07

120 0.11 0.00 0.04

160 0.08 0.00 0.00

200 0.07 0.00 0.00

240 0.00 0.04 0.00

280 0.00 0.00 0.00

340 0.00 0.00 0.00

400 0.00 0.00 0.00

500 0.16 0.09

600 0.02 0.10

800 0.06 0.07

900 0.08 0.01

915 0.02

970 0.06

1001 0.05

 From the table above the average error percentage for the results obtained from MATLAB

modeling was found to be 0.015, 0.02 and 0.07 for SRR, MRR and LRR respectively. From HDL it was

found to be 0.01, 0.03 and 0.07 percent for SRR, MRR and LRR respectively.

 105

7 Chapter 7

Conclusion and Future Work

The drastic rise in the number of vehicles on the road every year has made the radar sensor a very

popular device parameter for the automotive industry due to the increase number of road accidents. The

Tri-mode Radar designed in this thesis has made an important contribution as this sensor can cover three

radar ranges, whereas in the current market has individual radars sensors for each range detection. The

ability to use one sensor device to cover three modes makes this a very compelling design. In addition the

developed Verilog HDL code can be used to fabricate ASCI which will enable to verify the design

efficiency and accuracy in a real-time environment. The mathematical modeling and the design approach

was based on a previous design [20] where a single mode radar sensor has been designed.

The Tri-mode Radar sensor designed in this thesis shows better performance than the previous

design in terms of refresh rate, resource usage and also result accuracy. In addition the ability to use one

sensor device for three range coverage make this design more preferable. The refresh rate of 6.144ms

accomplished in this thesis has also proved to be eight times faster than the BOSCH LRR3 radar sensor.

[61]

The design has been verified by both MATLAB and HDL modeling and the results were found to be

in excellent agreement. Also MATLAB modeling was done for multiple target situations ensuring that the

sensor can detect targets within the relevant beamwidth.

7.1 Future work

The current design has some scope for improvement. Currently the targets detected are considered to

be point sources which means that the IF received from a target is assumed to fall completely within a

beam. In reality a large truck may cover two beam width rather than one. Another scope is for the

consideration of RCS. At present it is assumed that all the targets give same return echoes which make it

difficult to differentiate between a motorcycle and a large cargo truck. The RCS calculation for different

targets will also help to detect the threat zone. For this thesis the sweep duration is kept same for the three

modes which can be varied to increase result accuracy. The OS-CFAR process can be implemented for

 106

better detection in a multiple target environment [14]. The use of a combined LFMCW and FSK

modulation technique will improve the measurement time. The clutter detection technique can be

improved by generating a road map using the sensor which will help to differentiate between fixed target

from a moving one [54].

 107

References

[1] S. Lal, R. Muscedere and S. Chowdhury, "An FPGA-Based signal processing system for a

77GHz MEMS Tri-mode Automative Radar," in Proceedings of the 2011 22nd IEEE

International Symposium on Rapid System Prototyping (RSP), Karlsruhe, Germany, 2011,

pp 2-8.

[2] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel and C. Waldschmidt, "Millimeter-

Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band,"

Microwave Theory and Techniques, vol. 60, no. 3, pp. 845-860, Mar, 2012.

[3] Infineon Technologies AG, "Infineon targets radar ICs at mid-range cars," INFINEON, 08

November 2007. [Online]. Available: http://www.semiconductor-

today.com/news_items/NEWS_2007/NOV_07/INFINEON_081107.htm. [Accessed 15

February 2013].

[4] Group, International Traffic Safety Data and Analysis, "Road Safety Annual Report 2011,"

OECD/ITF, 2012.

[5] Organization, World Health, "World report on Traffic Injury Prevention," World Health

Organization, Geneva, 2004.

[6] A. O. Bauer, "Christian Hülsmeyer and about the early days of radar inventions a survey,"

Diemen, The Nederlands, 2005.

[7] A. Douglas, "h2g2, The guide to life, the universe and everything," h2g2, 14 July 2003.

[Online]. Available: http://www.h2g2.com/approved_entry/A591545. [Accessed 15 Feb

2013].

[8] Altera Corporation, "Implementing Digital Processing for Automotive Radar Using SoC

FPGAs," Altera Corporation, San Jose, 2013.

[9] M. Schneider, "Automotive Radar – Status and Trends," in German Microwave Conference,

South German, 2005, pp 144-147.

[10] D. Kissinger, "Radar Fundamentals," in Millimeter-Wave Receiver Concepts for 77 GHz

Automotive Radar in Silicon-Germanium Technology, São Paulo, Springer

Science+Business Mídia Ltda., 2012, pp. 9-19.

[11] . A. Douglas, "The History of Radar," h2g2, 14 July 2003. [Online]. Available:

 108

http://www.h2g2.com/approved_entry/A591545. [Accessed 20 February 2013].

[12] J. Schneider, "History of Radar," TECH OPS, Arizona, 2003.

[13] R. B. Mahafza, Radar Systems Analysis and Design Using MATLAB, Florida: Chapman &

Hall/CRC, 2005.

[14] H. Rohling, "Some Radar Topics: Waveform Design, Range CFAR and Target

Recognition," in Advances in Sensing with Security Applications, Netherlands, Springer,

2006, p. 293–322.

[15] H. Shibing, W. Xuegang and S. Qiang, "Effects of FM Linearity of Linear FM Signals on

Pulse-Compression Performance," in Radar, 2006. CIE '06. International Conference,

Shanghai, 2006, pp 293-322.

[16] Y. K. Chan and S. Y. Lim, "Synthetic Aperture Radar (SAR) Signal Generation," Progress

In Electromagnetics Research B, vol. 1, no. 2008, pp. 269-290, 2008.

[17] Devices, Analog, "AD7276/AD7277/AD7278," One Technology Way, Massachusetts,

USA, 2005-2009, pp 1-28.

[18] C. Christopher, W. Christopher and F. Timothy, "Computing Performance Benchmarks

among CPU, GPU, and FPGA," Mathworks, Worcester, Massachusetts, 2012, pp 1-28.

[19] K. Banovic, M. A. Khalid and A.-R. Esam, "FPGA-Based Rapid Prototyping of Digital

SIgnal Processing Systems," in Circuits and Systems, 2005. 48th Midwest Symposium on,

Covington, KY, 2005, pp 647-650.

[20] S. Lal and S. Chowdhury, "AN FPGA-BASED 77 GHZ MEMS RADAR SIGNAL

PROCESSING SYSTEM FOR AUTOMOTIVE COLLISION AVOIDANCE," in Electrical

and Computer Engineering (CCECE), 2011 24th Canadian Conference on, Niagara Falls,

Canada, 2011, pp 1351-1356.

[21] Mercedes-Benz, "Mercedes-Benz Safety," Mercedes-Benz, April 2013. [Online]. Available:

http://www.mbusa.com/mercedes/benz/safety. [Accessed 1 March 2013].

[22] Mercedes-Benz, "Mercedes 500SEC.com," The Mercedes-Benz page, 3 Novenber 2013.

[Online]. Available: http://500sec.com/distronicdistronic-plus/. [Accessed 1 March 2013].

[23] H. L. Bloecher, M. Andres, C. Fisher, A. Sailer, M. Goppelt and J. Dickmann, "Impact of

system parameter selection on radar sensor performance in automotive applications,"

Advances in Radio Science, vol. 10, pp. 33-37, 2012.

 109

[24] G. Oberst, "Automotive Safety Development using radar spectrum," Hogan Lovells,

Washington, DC, 2011.

[25] W. Menzel, "Millimeter-Wave Radar for Civil Applications," in Proceedings of the 7th

European Radar Conference, Paris, France, 2010, pp 89-92.

[26] P. Uhlig, C. Gunner, S. Holzwarth, J. Kassner, R. Kulke, A. Lauer and M. Rittweger,

"LTCC Short Range Radar Sensor for Automotive Applications at 24GHz," in 37th IMAPS,

Long Beach, 2004, pp 1-5.

[27] S. Yamano, H. Higashida, M. Shono, S. Matsui, T. Tamaki, H. Yagi and H. Asanuma,

"MMIC, 76GHz Millimeter Wave Automobile Radar using Single Chip," FUJITSU TEN

TECH, Philippines, 2004, pp 12-19.

[28] LTD., Fujitsu Ten, "Automotive Compact 77GHz 3D Electronic Scan Millimeter Wave

Radar," FUJITSU TEN LIMITED, Kobe City, 2012.

[29] W. David and D. William, "FMCW MMW Radar for Automotive Longitudinal Control,"

California Path Program, California, 1997,pp 1-26.

[30] D. E. Barrick, "FM/CW Radar Signals and Digital Processing," Commerce Publication,

Boulder, COLORADO, 1973, pp 1-22.

[31] I. C. Purdle, "VOLTAGE CONTROLLED OSCILLATORS," WWW.ELECTRONICS-

TUTORIALS.COM, 8 May 2005. [Online]. Available: http://www.electronics-

tutorials.com/oscillators/voltage-controlled-oscillators.htm. [Accessed 5 February 2013].

[32] N. ". Gray, "ABCs of ADCs," National Semiconductor Corporation, Santa Clara, 2006, pp

1-22.

[33] Wikimedia Foundation, Inc., "Wikipedia," 22 April 2013. [Online]. Available:

http://en.wikipedia.org/wiki/Window_function. [Accessed 5 March 2013].

[34] M. Integrated, "Tutorial 729: Dynamic Testing of High-Speed ADCs, Part 2," 22 July 2002.

[Online]. Available: http://www.maximintegrated.com/app-notes/index.mvp/id/729.

[Accessed 5 March 2013].

[35] S. K. Mitra, "Digital Signal Processing Applications," The University of Vermont,

BURLINGTON, pp 1143-1243.

[36] W. Kester, "THE DISCRETE FOURIER TRANSFORM," Analog devices.

 110

[37] L. R.G., "WINDOWS," in Understanding Digital Signal Processing, Upper Saddle River,

New Jersey, Prentice Hall PTR, 2004, pp. 1-688.

[38] E. J. Roger L., "Window Functions," Chester F. Carlson Center for Imaging Science, 2010

2011. [Online]. Available:

http://www.cis.rit.edu/resources/software/sig_manual/windows.html. [Accessed 6 March

2013].

[39] Wang Yuke, T. Yiyan (Felix), J. Yingtao, J.-G. Chung, S. Sang-Seob and L. Myoung-Seob,

"Novel Memory Reference Reduction Methods for FFT Implementations on DSP

Processors," Digital Object Identifier, vol. 55, no. 5, pp. 2338-2347, 2007.

[40] Xilinx, "LogiCORE IP Fast Fourier Transform v7.1," Xilinx, 2011, pp 1-59.

[41] M. Mashade, "Analysis of CFAR Detection of Fluctuating Targets," Progress In

Electromagnetics Research C, vol. 2, pp. 65-94, 2008.

[42] S. R. Thamid, J. K. Ali and Z. T. Yassen, "An FPGA based Implemntation of CA-CFAR

Processor," Asian Journal of Information Technology, vol. 4, no. 6, pp. 511-514, 2007.

[43] V. Kyovtorov, H. Kabakchiev and G. Kuzmanov, "Parallel FPGA Design of CA CFAR

Algorithm," in Radar Symposium (IRS), 2010 11th International, Vilnius, Lithuania, 2010,

pp 1-4.

[44] J. Marcum, "A Statistical Theory of Target Detection by Pulsed Radar," The Rand

Corporation, Santa Monica, 1952, pp 1-81.

[45] P. Swerling, "Probability of Detection For Fluctuating Targets," The Rand Corporation,

Santa Monica, 1954, pp 1-45.

[46] A. Drosopoulos and G. Haslam, "PEAK DETECTION OF SWERLING TYPE TARGETS

Part 1: DETECTION PROBABILITIES IN WHITE NOISE," DEFENCE RESEARCH

ESTABLISHMENT OTTAWA, Ottawa, 1993, pp 1-37.

[47] Wikipedia, "Chi-squared target models," Wikipedia Foundation, Inc, 29 September 2011.

[Online]. Available: http://en.wikipedia.org/wiki/Chi-squared_target_models. [Accessed 15

March 2013].

[48] G. Brooker, "Chapter 10: Detection of Signals in Noise," University of Sydney, Sydney,

2002-2013.

[49] C. Wolff, "Noise," Radartutorial .eu, [Online]. Available:

 111

http://www.radartutorial.eu/18.explanations/ex08.en.html. [Accessed 20 March 2013].

[50] F. Merat, "Electrical Noise," Case Western Reserve University, Cleveland, 1988, pp 37-39.

[51] P. Bak, C. Tang and K. Wiesenfeld, "Self-Organized Criticality: An Explanation of 1/f

Noise," Physics Review Letters, vol. 59, no. 4, pp. 381-384, 1987.

[52] R. Y. Richard Lyons, "Reducing ADC Quantization Noise," Microwaves and RF, 17 June

2005. [Online]. Available: http://mwrf.com/components/reducing-adc-quantization-noise.

[Accessed 21 March 2013].

[53] P. Adhikari, "Understanding Millimeter Wave Wireless Communication," Loea

Corporation, San Diego, CA, 2008, pp 1-6.

[54] J. Silvious and D. Tahmoush, "Automotive GMTI radar for object and human avoidance,"

in Radar Conference (RADAR), 2011 IEEE, Kansas City, MO, 2011, pp 375-377.

[55] C. Wolf, "Concealment or Masking," Radartutorial.eu, [Online]. Available:

http://www.radartutorial.eu/16.eccm/ja09.en.html. [Accessed 22 March 2013].

[56] C. Wolff, "Range Resolution," radartutorial.eu, [Online]. Available:

http://www.radartutorial.eu/01.basics/rb18.en.html. [Accessed 23 March 2013].

[57] M. Pichler, . A. Stelzer, P. Gulden and M. Vossiek, "Influence of Systematic Frequency-

Sweep Non-Linearity on Object Distance Estimation in FMCW/FSCW Radar Systems," in

33rd European Microwave Conference, Munich, 2003, pp 1203-1206.

[58] Xilinx, "Virtex-5 Family Overview," Xilinx, 2009, pp 1-13.

[59] Xilinx, "Virtex-5 Platform FPGA Family Technical Backgrounder," Xilinx, 2006, pp 1-10.

[60] Xilinx, "LogiCORE IP Block Memory Generator V6.2," Xilinx, 2011, pp 1-119.

[61] J. Wenger, "RF-Applications in Vehicles – Today and Tomorrow – DaimlerChrysler,"

DaimlerChrysler AG, Ulm, Germany, 2006, pp 1-36.

 112

APPENDIX-1

(a) MATLAB codes

radar_gen_simdata.m

function [SIM_TIME, SIM_IF, SIM_ACTIVE_BEAM, SIM_ACTIVE_CHIRP] = ...
 radar_gen_simdata(SYSTEM_TCHIRP, ADC_SAMPLING_FREQ, SIM_FRAMES, ...
 RADAR_BEAMS, RADAR_BEAM_WIDTH, HOST_VELOCITY, TARGETS_INITIAL_POS_X,...
 TARGETS_INITIAL_POS_Y, TARGETS_VELOCITY, TARGETS_NUM, CONSTANT_C,...
 CONSTANT_SIGNAL_ATTEN, SYSTEM_SWEEP_RATE, SYSTEM_MAX_RANGE, ...
 HOST_INITIAL_POS_Y, SYSTEM_FC)
 t_index = 0;

 active_beam = 0; %0 to RADAR_BEAMS-1, 0 is the rightmost beam
 active_chirp = 0; %0 for the up-chirp, 1 for the down-chirp
 t_period = 1/ADC_SAMPLING_FREQ;
 t_max = SIM_FRAMES*2*SYSTEM_TCHIRP*RADAR_BEAMS - t_period;
 num_samples = (t_max + t_period) / t_period;
 SIM_IF = zeros(1,num_samples);
 SIM_ACTIVE_BEAM = zeros(1,num_samples);
 SIM_ACTIVE_CHIRP = zeros(1,num_samples);

 SIM_TIME = 0:t_period:t_max;
 disp('Generating simulation data...');
 disp('Simulation time is...');
 for t = 0:t_period:t_max
 t_index = t_index + 1; %increment the time index
 if(mod(t,2*SYSTEM_TCHIRP) == 0) %if two chirp periods have elapsed, switch to the next beam
 if(t_index ~=1) %don't switch the active beam on the very first sample active_beam = mod(active_beam + 1,
RADAR_BEAMS);
 end

 angle_lo = RADAR_BEAM_WIDTH*active_beam - RADAR_BEAM_WIDTH*RADAR_BEAMS/2;
 angle_hi = RADAR_BEAM_WIDTH*(active_beam+1) - RADAR_BEAM_WIDTH*RADAR_BEAMS/2;
 end
 if(mod(t,SYSTEM_TCHIRP) == 0 && t ~= 0) %keep track of the up/down chirp
 active_chirp = mod(active_chirp+1,2);
 end
 if(mod(t,1e-1) == 0)
 disp(t); %print the simulation time in tenths of second to get an idea of how much longer we need to wait

 end
 SIM_ACTIVE_BEAM(t_index) = active_beam;
 SIM_ACTIVE_CHIRP(t_index) = active_chirp;
 %update the x position of the host and targets
 host_x_pos = HOST_VELOCITY*t;
 targets_x_pos = TARGETS_INITIAL_POS_X + TARGETS_VELOCITY*t;
 %find relative distance between targets and host
 relative_x_pos = targets_x_pos - host_x_pos;

 relative_y_pos = TARGETS_INITIAL_POS_Y - HOST_INITIAL_POS_Y; %assume nobody is making any lane changes;
relative y position always the same
 relative_x_vel = TARGETS_VELOCITY - HOST_VELOCITY; %this model assumes all targets travel in parallel; no y
velocity
 relative_distance = sqrt(relative_x_pos.^2 + relative_y_pos.^2);
 %figure out what targets are in the active beam's coverage
 f = zeros(TARGETS_NUM,1);
 atten = zeros(TARGETS_NUM,1);

 for i=1:length(relative_distance)
 if(relative_distance(i) <= SYSTEM_MAX_RANGE) %first check to see what targets are 'in range'
 %if the target is in range, compute the vehicle/target angle of %incidence with respect to our x-axis
 angle = atan(relative_y_pos(i) / relative_x_pos(i));
 if(angle_lo <= angle && angle < angle_hi) %check to see if the angle is in the correct range for the active beam
 %target is in range and in our active beam
 %calculate the relative velocity in the radial direction

 113

 v_radial = relative_x_vel(i) * cos(angle);
at frequency this target will contribute to the IF
 if(active_chirp == 0) %upsweep
 f(i) = 2*SYSTEM_SWEEP_RATE*relative_distance(i)/CONSTANT_C +

2*SYSTEM_FC*v_radial/CONSTANT_C;
 elseif(active_chirp == 1) %downsweep
 f(i) = 2*SYSTEM_SWEEP_RATE*relative_distance(i)/CONSTANT_C -
2*SYSTEM_FC*v_radial/CONSTANT_C;
 end
 %compute the attenuation from this target
 atten(i) = 10^(-2*CONSTANT_SIGNAL_ATTEN*relative_distance(i)/1000);
 end

 end
 end
 %finally, add together the targets individual contributions to create
 %the instantaneous IF for this ADC sample
 for i=1:TARGETS_NUM
 if(f(i) ~= 0) %only add non-zero frequencies
 SIM_IF(t_index) = SIM_IF(t_index) + atten(i)*sin(2*pi*f(i)*t);
 end

 end
 end
 disp('Simulation data generation complete.');
end

radar_compute_adc.m

function [ADC_SAMPLES_HDL, ADC_SAMPLES_MATLAB] = radar_compute_adc(SIM_IF, ADC_DYNAMIC_RANGE,
ADC_BITS)

 range = max([abs(max(SIM_IF)) abs(min(SIM_IF))]);
 x = SIM_IF ./ (2*range);
 x = x .* ADC_DYNAMIC_RANGE;
 x = x + 0.5;
 %quantize raw ADC input data
 ADC_SAMPLES_HDL = fi(x, 0, ADC_BITS, ADC_BITS, ...
 'RoundMode', 'Floor', ...
 'OverflowMode', 'Saturate', ...

 'ProductMode', 'KeepMSB', ...
 'ProductWordLength', ADC_BITS, ...
 'SumMode', 'KeepMSB', ...
 'SumWordLength', ADC_BITS, ...
 'CastBeforeSum', true);

 %now convert to two's complement in range of -1 and 1 so matlab
 %interprets these numbers the way we need

 x = x - 0.5;
 x= x .* 2;
 %get quantized two's complement version of adc input
 ADC_SAMPLES_MATLAB = fi(x, 1, ADC_BITS, ADC_BITS-1, ...
 'RoundMode', 'Floor', ...
 'OverflowMode', 'Saturate', ...
 'ProductMode', 'KeepMSB', ...
 'ProductWordLength', ADC_BITS, ...
 'SumMode', 'KeepMSB', ...

 'SumWordLength', ADC_BITS, ...
 'CastBeforeSum', true);

 disp('ADC quantization complete.');
end

 114

radar_compute_window.m

function [WINDOW_SAMPLES, WINDOW_COEFFS] = radar_compute_window(ADC_SAMPLES, WINDOW_TYPE,
WINDOW_OUT_BITS, WINDOW_COEFF_BITS, FFT_POINTS, SIM_FRAMES, RADAR_BEAMS)
 disp('Computing windowed ADC samples...');

 batch_size = length(ADC_SAMPLES)/(RADAR_BEAMS * SIM_FRAMES * 2);
 %setup window
 window_handle = str2func(['@' WINDOW_TYPE]);
 w = window(window_handle, batch_size);
 for i = 1:1:(RADAR_BEAMS * SIM_FRAMES * 2)
 limit1 = batch_size*(i-1)+1;
 limit2 = batch_size*(i);
 %quantized versions of the window coefficients

 WINDOW_COEFFS = fi(w, 0, WINDOW_COEFF_BITS, WINDOW_COEFF_BITS, ...
 'RoundMode', 'Floor', ...
 'OverflowMode', 'Saturate', ...
 'ProductMode', 'KeepMSB', ...
 'ProductWordLength', WINDOW_COEFF_BITS, ...
 'SumMode', 'KeepMSB', ...
 'SumWordLength', WINDOW_COEFF_BITS, ...
 'CastBeforeSum', true);

 %windowed inputs
 WINDOW_SAMPLES(limit1:limit2) = fi(ADC_SAMPLES(limit1:limit2).* WINDOW_COEFFS', 1,
WINDOW_OUT_BITS, WINDOW_OUT_BITS-1, ...
 'RoundMode', 'Floor', ...
 'OverflowMode', 'Saturate', ...
 'ProductMode', 'KeepMSB', ...
 'ProductWordLength', WINDOW_OUT_BITS, ...
 'SumMode', 'KeepMSB', ...
 'SumWordLength', WINDOW_OUT_BITS, ...

 'CastBeforeSum', true);
 end
end

radar_compute_fft.m

function [XK_RE, XK_IM, XK_RE_SQ, XK_IM_SQ, FFT_OUTPUT_MAG_SQUARED] = radar_compute_fft(
WINDOW_SAMPLES, FFT_POINTS, XILINX_FFT_GENERICS, XILINX_FFT_SCALING_SCHEDULE, FFT_OUT_BITS,

SYSTEM_TCHIRP, ADC_SAMPLING_FREQ)
 f = ADC_SAMPLING_FREQ/2*linspace(0,1,FFT_POINTS/2+1);
 for i = 1:1:(length(WINDOW_SAMPLES)/(SYSTEM_TCHIRP * ADC_SAMPLING_FREQ))
 limit1 = SYSTEM_TCHIRP * ADC_SAMPLING_FREQ*(i-1)+1;
 limit2 = SYSTEM_TCHIRP * ADC_SAMPLING_FREQ*(i);

 zero_pad_amount = FFT_POINTS - SYSTEM_TCHIRP * ADC_SAMPLING_FREQ;
 samples = [WINDOW_SAMPLES(limit1:limit2) zeros(1,zero_pad_amount)];

 %compute the xilinx fft
 display('Ignore any warnings below regarding the input array being "real-only" numbers.');
 [FFT_OUTPUT(limit1+zero_pad_amount*(i-1):limit2+zero_pad_amount*i), BLKEXP, OVERFLOW_DETECT] = ...
 xfft_v7_1_bitacc_mex(XILINX_FFT_GENERICS, log2(FFT_POINTS), ...
 double(samples), XILINX_FFT_SCALING_SCHEDULE, 1);
 if(OVERFLOW_DETECT)
 disp('Error: FFT overflow detected.');
 end
 end

 %quantize the fft's output
 XK_RE = real(FFT_OUTPUT);
 XK_IM = imag(FFT_OUTPUT);
 XK_RE = fi(XK_RE, 1, FFT_OUT_BITS, (FFT_OUT_BITS/2-1), ...
 'RoundMode', 'Floor', ...
 'OverflowMode', 'Saturate', ...

 115

 'ProductMode', 'KeepMSB', ...
 'ProductWordLength', (FFT_OUT_BITS*2), ...
 'SumMode', 'KeepLSB', ...
 'SumWordLength', (FFT_OUT_BITS*2), ...

 'CastBeforeSum', true);
 XK_IM = fi(XK_IM, 1, FFT_OUT_BITS, (FFT_OUT_BITS/2-1), ...
 'RoundMode', 'Floor', ...
 'OverflowMode', 'Saturate', ...
 'ProductMode', 'KeepMSB', ...
 'ProductWordLength', (FFT_OUT_BITS*2), ...
 'SumMode', 'KeepLSB', ...
 'SumWordLength', (FFT_OUT_BITS*2), ...

 'CastBeforeSum', true);
 %now compute the squares of XK_RE and XK_IM; only use the first half
 %of each frame (because our fft inputs are real valued, the second half
 %is just a mirror of the first half)
 for i = 1:1:(length(FFT_OUTPUT)/FFT_POINTS)
 limit1 = FFT_POINTS*(i-1)+1;
 limit2 = limit1+FFT_POINTS/2 - 1;
 limit3 = FFT_POINTS/2*(i-1)+1;

 limit4 = FFT_POINTS/2*(i);
 XK_RE_SQ(limit3:limit4) = XK_RE(limit1:limit2) .* XK_RE(limit1:limit2);
 XK_IM_SQ(limit3:limit4) = XK_IM(limit1:limit2) .* XK_IM(limit1:limit2);
 end
 FFT_OUTPUT_MAG_SQUARED = XK_RE_SQ + XK_IM_SQ;
end

radar_ca_cfar.m

function [cfar] = radar_ca_cfar()

 radar_params;
radar_situation_params;
%UP_SWEEP
 K = CACFAR_PFA^(-1/(2*CACFAR_M)) - 1; % Cell averaging factor
tmpcfar = [0 0 0 0]'; % Initiate the cfar matrix
countup = 1;
countupfinal = 0;
 for CUT=2:TFFT_POINTS/2

 avgL = 0; % Average on left side of Cell-Under-Test
 avgR = 0; % Average on right side of Cell-Under-Test
 % The average of the cells on the right and left of CUT
 if(CUT<=CACFAR_M+CACFAR_GB)
 for i=1:CACFAR_M
 avgR = avgR + abs(Yup(CUT+i+CACFAR_GB));
 end
 avgR = avgR/CACFAR_M;

 elseif(CUT>=TFFT_POINTS/2-CACFAR_M-CACFAR_GB)
 for i=1:CACFAR_M
 avgL = avgL + abs(Yup(CUT-i-CACFAR_GB));
 end
 avgL = avgL/CACFAR_M;
 else
 for i=1:CACFAR_M
 avgL = avgL + abs(Yup(CUT-i-CACFAR_GB));
 avgR = avgR + abs(Yup(CUT+i+CACFAR_GB));

 end
 avgR = avgR/CACFAR_M;
 avgL = avgL/CACFAR_M;
 end
 % Computing threshold
 T = (avgR+avgL)/2 * K;
 % Checking for valid targets
 if(abs(Yup(CUT))>T)

 116

 countup = countup + 1;
 tmpcfar(1,countup) = abs(Yup(CUT));
 tmpcfar(2,countup) = CUT;
 end

end
tmpcfar(1,countup+1) = 0;
tmpcfar(2,countup+1) = 0;
j = 1;
for i=2:length(tmpcfar(1,:))-1
 if((tmpcfar(2,i)~=tmpcfar(2,i+1)-1)&&(tmpcfar(2,i)~=tmpcfar(2,i+1)))
 if((tmpcfar(2,i)==tmpcfar(2,i-1)+1)||(tmpcfar(2,i)==tmpcfar(2,i-1)))
 tmp1cfar(1,j) = max(tmpcfar(1,i-1),tmpcfar(1,i));

 tmp1cfar(2,j) = tmpcfar(2,i);
 j = j + 1;
 else
 tmp1cfar(1,j) = tmpcfar(1,i);
 tmp1cfar(2,j) = tmpcfar(2,i);
 j = j + 1;
 end
 end

end
 % Eliminating any residual false alarms
ST = 0.6 * mean(tmp1cfar(1,:));
j = 1;
for i=1:length(tmp1cfar(1,:))
 if(tmp1cfar(1,i)>ST)
 cfar(1,j) = tmp1cfar(1,i);
 cfar(2,j) = tmp1cfar(2,i); % * ADC_SAMPLING_FREQ/TFFT_POINTS;
 j = j + 1;

 countupfinal = countupfinal + 1;
 end
end
 % Ploting the targets detected
figure(5)
%subplot(2,1,1)
stem(cfar(2,:),cfar(1,:));
title('CFAR-detected targets for UP SWEEP for SRR')

xlabel('Frequency (Hz)')
ylabel('Peak Intensity')
 % Down_sweep
countdown = 1;
countdownfinal = 0;
 for CUT=2:TFFT_POINTS/2
 avgL = 0; % Average on left side of Cell-Under-Test
 avgR = 0; % Average on right side of Cell-Under-Test

 % The average of the cells on the right and left of CUT
 if(CUT<=CACFAR_M+CACFAR_GB)
 for i=1:CACFAR_M
 avgR = avgR + abs(Ydown(CUT+i+CACFAR_GB));
 end
 avgR = avgR/CACFAR_M;
 elseif(CUT>=TFFT_POINTS/2-CACFAR_M-CACFAR_GB)
 for i=1:CACFAR_M

 avgL = avgL + abs(Ydown(CUT-i-CACFAR_GB));
 end
 avgL = avgL/CACFAR_M;
 else
 for i=1:CACFAR_M
 avgL = avgL + abs(Ydown(CUT-i-CACFAR_GB));
 avgR = avgR + abs(Ydown(CUT+i+CACFAR_GB));
 end
 avgR = avgR/CACFAR_M;

 117

 avgL = avgL/CACFAR_M;
 end
 % threshold for down_sweep
 T = (avgR+avgL)/2 * K;

 if(abs(Ydown(CUT))>T)
 countdown = countdown + 1;
 tmpcfar(3,countdown) = abs(Ydown(CUT));
 tmpcfar(4,countdown) = CUT;
 end
end
tmpcfar(3,countdown+1) = 0;
tmpcfar(4,countdown+1) = 0;

 j = 1;
for i=2:length(tmpcfar(1,:))-1
 if((tmpcfar(4,i)~=tmpcfar(4,i+1)-1)&&(tmpcfar(4,i)~=tmpcfar(4,i+1)))
 if((tmpcfar(4,i)==tmpcfar(4,i-1)+1)||(tmpcfar(4,i)==tmpcfar(4,i-1)))
 tmp1cfar(3,j) = max(tmpcfar(3,i-1),tmpcfar(3,i));
 tmp1cfar(4,j) = tmpcfar(4,i);
 j = j + 1;
 else

 tmp1cfar(3,j) = tmpcfar(3,i);
 tmp1cfar(4,j) = tmpcfar(4,i);
 j = j + 1;
 end
 end
end
 ST = 0.6 * mean(tmp1cfar(3,:));
 j = 1;
for i=1:length(tmp1cfar(3,:))

 if(tmp1cfar(3,i)>ST)
 cfar(3,j) = tmp1cfar(3,i);
 cfar(4,j) = tmp1cfar(4,i);% * ADC_SAMPLING_FREQ/TFFT_POINTS;
 j = j + 1;
 countdownfinal = countdownfinal + 1;
 end
end
 % Ploting detected targets

figure(6);
stem(cfar(4,:),cfar(3,:));
title('CFAR-detected targets for DOWN SWEEP for SRR')
xlabel('Frequency (Hz)')
ylabel('Peak Intensity')

radar_compute_range_and_velocity.m

function [DETECTED_RANGE, DETECTED_VELOCITY] = radar_compute_range_and_velocity(
MAX_BIN,RADAR_BEAMS, SIM_FRAMES, CALC_RANGE_FACTOR_DEC, CALC_VELOCITY_FACTOR_DEC,
CALC_FACTOR_BITS)
%UNTITLED15 Summary of this function goes here
% Detailed explanation goes here
 up_bins = MAX_BIN(1:2:end);
 up_bins_sorted = reshape(up_bins, RADAR_BEAMS, SIM_FRAMES)';
 down_bins = MAX_BIN(2:2:end);

 down_bins_sorted = reshape(down_bins, RADAR_BEAMS,SIM_FRAMES)';
 bins_sum = up_bins_sorted + down_bins_sorted;
 bins_diff = up_bins_sorted - down_bins_sorted;
DETECTED_RANGE = bins_sum .* CALC_RANGE_FACTOR_DEC / 2^CALC_FACTOR_BITS;
DETECTED_VELOCITY = bins_diff .* CALC_VELOCITY_FACTOR_DEC / 2^CALC_FACTOR_BITS;
 end

 118

radar_main.m

clear all;
close all;
clc

radar_params;
radar_situation_params;

SIM_FRAMES = 2; %number of 2*SYSTEM_TCHIRP*RADAR_BEAMS*ADC_SAMPLING_FREQ samples to generate
data for
DUMP_TEXT = 0; %switch to turn text-file generation on or off
 %create simulation data based on our parameters

 [SIM_TIME, SIM_IF, SIM_ACTIVE_BEAM, SIM_ACTIVE_CHIRP] = ...
 radar_gen_simdata(SYSTEM_TCHIRP, ADC_SAMPLING_FREQ, SIM_FRAMES, ...
 RADAR_BEAMS, RADAR_BEAM_WIDTH, HOST_VELOCITY, TARGETS_INITIAL_POS_X,...
 TARGETS_INITIAL_POS_Y, TARGETS_VELOCITY, TARGETS_NUM, CONSTANT_C,...
 CONSTANT_SIGNAL_ATTEN, SYSTEM_SWEEP_RATE, SYSTEM_MAX_RANGE, ...
 HOST_INITIAL_POS_Y, SYSTEM_FC);
 %quantize the data
[ADC_SAMPLES, ADC_SAMPLES_MATLAB] = radar_compute_adc(SIM_IF,...

 ADC_DYNAMIC_RANGE, ADC_BITS);
 %window the quantized data
[WINDOW_SAMPLES, WINDOW_COEFFS] = radar_compute_window(ADC_SAMPLES_MATLAB, WINDOW_TYPE,...
 WINDOW_OUT_BITS, WINDOW_COEFF_BITS, FFT_POINTS, SIM_FRAMES, RADAR_BEAMS);
 %compute the fft
[XK_RE, XK_IM, XK_RE_SQ, XK_IM_SQ, FFT_OUTPUT_MAG_SQUARED] = radar_compute_fft(WINDOW_SAMPLES,
FFT_POINTS, XILINX_FFT_GENERICS, XILINX_FFT_SCALING_SCHEDULE, FFT_OUT_BITS, SYSTEM_TCHIRP,
ADC_SAMPLING_FREQ);
 %find the highest intensity peak

[MAX_MAG, MAX_BIN] = radar_compute_max(FFT_OUTPUT_MAG_SQUARED, FFT_POINTS);
 %ca-cfar calculation
[CMAX_BIN] = radar_ca_cfar();
 %compute the detected range and velocity
[DETECTED_RANGE, DETECTED_VELOCITY] = radar_compute_range_and_velocity(MAX_BIN, RADAR_BEAMS,
SIM_FRAMES, CALC_RANGE_FACTOR_DEC, CALC_VELOCITY_FACTOR_DEC, CALC_FACTOR_BITS);
 if(DUMP_TEXT == 1)
 %dump quantized data to text files

 radar_print_adc(ADC_SAMPLES);
 %dump the window data
 radar_print_window(WINDOW_SAMPLES, WINDOW_COEFFS);
 %dump the fft results
 radar_print_fft(XK_RE, XK_IM, XK_RE_SQ, XK_IM_SQ, FFT_OUTPUT_MAG_SQUARED);
 %dump the max bin / max magnitude results
 radar_print_max(MAX_MAG, MAX_BIN, FFT_OUTPUT_MAG_SQUARED, FFT_POINTS);
end

radar_situation_params.m

%this file contains situational data for use in the simulation data
%generator

%Lane parameters
LANE_WIDTH = 3.657; %simulated lane width in m
LANE_NUMBER = 16; %maximum number of lanes used for simulation
 %Radar parameters

RADAR_BEAMS = 3; %number of radar beams
RADAR_BEAM_WIDTH = 80 * pi /180; %radar beam width in radians
 %Host vehicle parameters
HOST_VELOCITY = 70/3.6; %host vehicle velocity in m/s
HOST_LANE = 2; %host vehicle lane 0 to SIM_NUM_LANES-1 (0 for bottom)
 %Target vehicle parameters

 119

TARGETS_NUM = 1;
TARGETS_LANE = [2]; %target vehicle lane 0 to SIM_NUM_LANES-1 (0 for bottom)
TARGETS_VELOCITY = [60] ./ 3.6; %target velocity in m/s
TARGETS_INITIAL_POS_X = [25]; %target initial x position in m (relative to host)

 %Derived parameters
HOST_INITIAL_POS_Y = HOST_LANE*LANE_WIDTH + ... %host initial y position
 LANE_WIDTH/2;
TARGETS_INITIAL_POS_Y = TARGETS_LANE*LANE_WIDTH + ... %target initial y position
 LANE_WIDTH/2;

%ERRORS
if(~all(TARGETS_LANE < LANE_NUMBER))

 disp('Error: Target in lane that does not exist');
end

if(length(TARGETS_LANE) ~= TARGETS_NUM || ...
 length(TARGETS_VELOCITY) ~= TARGETS_NUM || ...
 length(TARGETS_INITIAL_POS_X) ~= TARGETS_NUM)
 disp('Error: Dimensions of SIM_TARGETS_LANE, SIM_TARGETS_VELOCITY, and SIM_TARGETS_INITIAL_POS_X
do not match');

end

radar_params.m

%This file contains radar system parameters, physical constants and
%derived quantities

%Physical constants
CONSTANT_C = 299704764; %speed of light in m/s
CONSTANT_SIGNAL_ATTEN = 0.8; %radar signal attenuation in dB / km

%Radar system parameters
SYSTEM_BW = 2000e6; %sweep bandwidth in Hz
SYSTEM_TCHIRP = 1.024e-3; %chirp time (of an up or down sweep, not both) in s
SYSTEM_FC = 77e9; %centre frequency of radar system in GHz
SYSTEM_MAX_RANGE = 30; %maximum detection range in m
SYSTEM_MAX_VEL = 300/3.6; %maximum detectable relative velocity in m/s (around 83m/s)

%Radar system: derived parameters
SYSTEM_SWEEP_RATE = SYSTEM_BW / SYSTEM_TCHIRP; %the sweep rate
SYSTEM_MAX_IF = 2*SYSTEM_MAX_RANGE * SYSTEM_SWEEP_RATE/CONSTANT_C + ... %maximum

intermediate frequency
 SYSTEM_FC * SYSTEM_MAX_VEL / CONSTANT_C;
SYSTEM_RANGE_RES = CONSTANT_C / (2 * SYSTEM_BW); %best possible range resolution
SYSTEM_VEL_RES = CONSTANT_C / (2 * SYSTEM_TCHIRP * SYSTEM_FC); %best possible velocity

resolution
SYSTEM_MIN_SAMPLING_FREQ = 2 * SYSTEM_MAX_IF; %minimum required sampling

frequency

 %ADC parameters
ADC_DYNAMIC_RANGE = 0.9; %the fraction of ADC codes in use
ADC_BITS = 12; %the number of bits that the ADC uses
ADC_SAMPLING_FREQ = 2e6; %ADC samples per second
ADC_NOISE_AMPLITUDE = 1; %Amplitude of random noise added to the ADC

%Window parameters
WINDOW_COEFF_BITS = 12; %number of bits used for the window coefficients

 120

WINDOW_OUT_BITS = 12; %number of bits used for the window output
WINDOW_TYPE = 'hamming'; %the window type, see 'help window' for a full list

%FFT parameters
FFT_POINTS = 2048; %number of FFT points
FFT_OUT_BITS = 24; %number of output bits used in the FFT

%Xilinx FFT parameters
XILINX_FFT_GENERICS.C_NFFT_MAX = log2(FFT_POINTS); %number of fft bits
XILINX_FFT_GENERICS.C_ARCH = 4; %Xilinx fft architecture to use (see help file)
XILINX_FFT_GENERICS.C_HAS_NFFT = 0; %runtime reconfigurable transform length
XILINX_FFT_GENERICS.C_USE_FLT_PT = 0; %use floating point number representation
XILINX_FFT_GENERICS.C_INPUT_WIDTH = WINDOW_OUT_BITS; %number of bits used at the input to

the fft
XILINX_FFT_GENERICS.C_TWIDDLE_WIDTH = 16; %bits used for twiddle factors
XILINX_FFT_GENERICS.C_HAS_SCALING = 0; %type of scaling (0 for no scaling)
XILINX_FFT_GENERICS.C_HAS_BFP = 0; %block floating point
XILINX_FFT_GENERICS.C_HAS_ROUNDING = 0; %enable rounding
XILINX_FFT_SCALING_SCHEDULE = [0 0 0 0 0 0 0 0 0 0 0];

%CA-CFAR parameters
CACFAR_GB = 2; %total number of guard bands used in CA-CFAR
CACFAR_M = 8; %total number of cells used for averaging
CACFAR_PFA = 10e-6; %Probability of false alarm threshold paramter

%Range and velocity computation parameters
CALC_FACTOR_BITS = 16;
CALC_RANGE_FACTOR = ADC_SAMPLING_FREQ / FFT_POINTS * CONSTANT_C / 4 /

SYSTEM_SWEEP_RATE;
CALC_RANGE_FACTOR_BIN = dec2bin(CALC_RANGE_FACTOR *

2^CALC_FACTOR_BITS,2*CALC_FACTOR_BITS);
CALC_RANGE_FACTOR_DEC = bin2dec(CALC_RANGE_FACTOR_BIN);
CALC_VELOCITY_FACTOR = ADC_SAMPLING_FREQ / FFT_POINTS * CONSTANT_C / 4 / SYSTEM_FC

* 3.6; %3.6 converts m/s to km/h
CALC_VELOCITY_FACTOR_BIN = dec2bin(CALC_VELOCITY_FACTOR *

2^CALC_FACTOR_BITS,2*CALC_FACTOR_BITS);
CALC_VELOCITY_FACTOR_DEC = bin2dec(CALC_VELOCITY_FACTOR_BIN);

%WARNINGS
if(mod(SYSTEM_TCHIRP*ADC_SAMPLING_FREQ,1) ~= 0)
 disp('Warning, chirp time is not an integer multiple of the sampling frequency');
end

%ERRORS
if(ADC_SAMPLING_FREQ < SYSTEM_MIN_SAMPLING_FREQ)
 disp('Error, ADC sampling frequency too low.');
end

if(FFT_POINTS ~= SYSTEM_TCHIRP*ADC_SAMPLING_FREQ)
 disp('Error, number of samples and FFT size differ.');
end

if(mod(log2(FFT_POINTS),1) ~= 0)
 disp('Error, FFT point size not a power of two.');

 121

end

(b) HDL codes

adc_control.v

`timescale 1ns / 1ps
//
// Company: UWindsor
// Engineer: Sabrina
//

// Create Date: 17:24:40 08/18/2011
// Design Name:
// Module Name: adc_control
// Project Name: Tri-mode Radar Design
// //
//
module adc_control(
 input clk_48,

 input ADC_MISO,

 122

 input reset,
 input ready,
 output reg ADC_CS,
 output reg [11:0] adc_sample,

 output reg adc_valid
);

//CS counter -- goes low every 500 ns (2MHz) for 2 MSPS
//to adjust sampling rate, change number of delay cycles from 23 to something else
reg [4:0] cs_counter;
always @(posedge clk_48)
begin

 if(reset)
 begin
 ADC_CS <= 1'b1;
 cs_counter <= 5'd0;
 adc_valid <= 1'b0;
 end
 else if (ready)
 begin

 cs_counter <= cs_counter + 1;
 if(cs_counter < 5'd15)
 begin
 ADC_CS <= 1'b0;
 adc_valid <= 1'b0;
 end
 else if(cs_counter == 5'd15)
 begin
 ADC_CS <= 1'b1;

 adc_valid <= 1'b0;
 end
 else if(cs_counter == 5'd16)
 begin
 ADC_CS <= 1'b1;
 adc_valid <= 1'b1;
 end
 else if(cs_counter < 5'd23) //change this number to adjust sampling rate; 23 for 2 MSPS, probably 47 for 1

MSPS, etc.
 begin
 ADC_CS <= 1'b1;
 adc_valid <= 1'b0;
 end
 else if(cs_counter == 5'd23)
 begin
 ADC_CS <= 1'b1;

 adc_valid <= 1'b0;
 cs_counter <= 5'd0;
 end
 end
 else
 begin
 ADC_CS <= 1'b1;
 cs_counter <= 5'd0;

 adc_valid <= 1'b0;
 end
end

//serial-in parallel-out shift register
//positive edge triggered
//first bit is going to be a zero (that's how the AD7276 ADC works; see datasheet for more details)
reg [13:0] sipo;
always @(posedge clk_48)

 123

begin
 if(!ADC_CS)
 sipo <= {sipo[12:0], ADC_MISO};
 else

 sipo <= sipo;
end

//most significant bit of sipo is a zero
//two least significant bits of sipo are zero
//the rest of the bits make up the 12-bit sample
always @(posedge clk_48)

begin
 if(ADC_CS)
 adc_sample <= sipo[12:1]; //was 13:2; changed to 12:1 to fix a timing problem
 //note that this problem was
probably caused by a signal integrity issue
 //and that this will have to
be changed back when we're using proper wiring
end

endmodule

compute_window.v

`timescale 1ns / 1ps
//
// Company: UWindsor

// Engineer: Sabrina
//
// Create Date: 13:06:59 09/02/2011
// Design Name:
// Module Name: compute_window
// Project Name:
//
module compute_window(

 input adc_valid,
 input clk_48,
 input [11:0] adc_sample,
 input reset,
 input ready,
 output [11:0] window_sample
);

 //convert ADC input from 12-bit unsigned (range 0-->1) to
 //12-bit two's complement (range -1 --> +1) by inverting
 //the MSBwire [11:0] adc_sample_twos;
 wire [11:0] adc_sample_twos;
 assign adc_sample_twos = {~adc_sample[11],adc_sample[10:0]};

 //using the very slow (2MHz) adc_valid signal as a clock
 //although this was generated using a counter, skew won't be a problem because
 //the clock period is an incredibly generous 500 ns

 wire [9:0] lut_address;
 count10updown u0_window_lut_counter (
 .clk(clk_48),
 .reset(reset),
 .ready(ready),
 .en(adc_valid),
 .dout(lut_address)
);

 //lookup table ROM holding our window coefficients

 124

 wire [11:0] lut_out;
 window_lut u0_window_lut (
 .clka(clk_48), // input clka
 .addra(lut_address), // input [9 : 0] addra

 .douta(lut_out) // output [11 : 0] douta
);

 //fully combinational multiplier
 //should have no problems keeping up with our slow 2MHz clock
 window_mult u0_window_mult (
 .a(lut_out), // input [11 : 0] a (unsigned window coefficient)
 .b(adc_sample_twos), // input [11 : 0] b (signed ADC sample)

 .p(window_sample) // output [11 : 0] p (truncated output)
);
endmodule

compute_fft.v

`timescale 1ns / 1ps

//
// Company: UWindsor
// Engineer: Sabrina
//
// Create Date: 13:39:17 09/02/2011
// Design Name:
// Module Name: compute_fft
// Project Name:

// Target Devices:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created

// Additional Comments:
//
//
module compute_fft(
 input adc_valid,
 input clk_100,
 input clk_48,
 input [11:0] window_sample,

 input reset,
 input dcm_ready,
 output fifo_ready,
 output [10:0] xk_index,
 output [23:0] xk_re,
 output [23:0] xk_im,
 output dv
);

 wire rfd;
 wire [11:0] fifo_out_fft_in;
 wire prog_empty;
 wire start;
 assign start = ~prog_empty; //turn every 0 to 1 and every 1 to 0

 //this counter holds the fifo reset signal high for 256 clk_100 clock cycles after DCMs lock
 reg [7:0] fifo_wait;

 125

 always@(posedge clk_100)
 begin
 if(reset)
 fifo_wait <= 8'd0;

 else if(fifo_wait < 8'd255 && dcm_ready)
 fifo_wait <= fifo_wait + 1;
 else
 fifo_wait <= fifo_wait;
 end
 assign fifo_ready = &fifo_wait;

 window_to_fft_fifo u0_window_to_fft_fifo (

 .rst(reset), // input rst
 .wr_clk(clk_48), // input wr_clk
 .rd_clk(clk_100), // input rd_clk
 .din(window_sample), // input [11 : 0] din
 .wr_en(adc_valid), // input wr_en
 .rd_en(rfd), // input rd_en
 .dout(fifo_out_fft_in), // output [11 : 0] dout
 .full(), // output full

 .empty(), // output empty
 .prog_empty(prog_empty) // output prog_empty
);

 fft_2048 u0_fft (
 .clk(clk_100), // input clk
 .start(start), // input start
 .unload(1'b1), // input unload
 .xn_re(fifo_out_fft_in), // input [11 : 0] xn_re

 .xn_im(12'b0), // input [11 : 0] xn_im
 .fwd_inv(1'b1), // input fwd_inv
 .fwd_inv_we(1'b0), // input fwd_inv_we
 .rfd(rfd), // ouput rfd
 .xn_index(), // ouput [10 : 0] xn_index
 .busy(), // ouput busy
 .edone(), // ouput edone
 .done(), // ouput done

 .dv(dv), // ouput dv
 .xk_index(xk_index), // ouput [10 : 0] xk_index
 .xk_re(xk_re), // ouput [23 : 0] xk_re
 .xk_im(xk_im) // ouput [23 : 0] xk_im
);
endmodule

compute_mag_sq.v

`timescale 1ns / 1ps
//
// Company: UWindsor
// Engineer: Sabrina
//
// Create Date: 21:46:46 09/05/2011

// Design Name:
// Module Name: compute_mag_sq
// Project Name:
// //
module compute_mag_sq(
 input clk_100,
 input [23:0] xk_re,
 input [23:0] xk_im,

 input [10:0] xk_index,
 input dv,

 126

 output [47:0] mag_sq,
 output dv_delayed
);

 //setup a delayed version of the data valid signal for use in multiplier clock enables and
 //for the load buffer enable
 reg [4:0] delay;
 always @(posedge clk_100)
 delay <= {dv, delay[4:1]};

 assign dv_delayed = delay[0];

 //make a condition that checks to see if data is NOT valid, AND xk_index = 0
 //this keeps our mult_ce and buff_load signals from going high for several
 //cycles after dv goes low
 wire data_invalid;
 assign data_invalid = (!dv) && (xk_index == 0) ? 1'b1 : 1'b0;

 //setup two comparators; one for the multiplier clock enables, one for the buffer load enable
 //using 1029 = (FFT point size / 2) + (pipelined multiplier latency)

 // 1029 = 2048/2 + 5
 //add an extra delay for second comparator (buffer delay is 1)
 wire mult_compare, buff_compare;

 assign mult_compare = xk_index < 1028 ? 1'b1 : 1'b0;
 assign buff_compare = xk_index < 1029 ? 1'b1 : 1'b0;

 wire mult_ce, buff_load;
 assign mult_ce = mult_compare & (dv | (|delay[4:1])) & ~data_invalid;

 assign buff_load = buff_compare & delay[0] & ~data_invalid;

 //output of multipliers
 wire [47:0] xk_re_sq, xk_im_sq;

 //fft real output squarer
 mult_48 u0_mult_xk_re_sq (
 .clk(clk_100), // input clk

 .a(xk_re), // input [23 : 0] a
 .b(xk_re), // input [23 : 0] b
 .ce(mult_ce), // input ce
 .p(xk_re_sq) // output [47 : 0] p
);

 //fft imaginary output squarer
 mult_48 u0_mult_xk_im_sq (

 .clk(clk_100), // input clk
 .a(xk_im), // input [23 : 0] a
 .b(xk_im), // input [23 : 0] b
 .ce(mult_ce), // input ce
 .p(xk_im_sq) // output [47 : 0] p
);

 //output of adder that gives us (xk^2 + re^2) = |FFT_output|^2

 wire [47:0] mag_sq_add_out_buff_in;
 assign mag_sq_add_out_buff_in = xk_re_sq + xk_im_sq;

 reg [47:0] out_buff;
 always @(posedge clk_100)
 begin
 if(buff_load)
 out_buff <= mag_sq_add_out_buff_in;
 else

 127

 out_buff <= out_buff;
 end
 //assign the output to the module output
 assign mag_sq = out_buff;

endmodule

ca_cfar.v

`timescale 1ns / 1ps
//

// Company: UWindsor
// Engineer: Sabrina
//
// Create Date: 16:40:54 03/28/2013
// Design Name: CA_CFAR Design
// Module Name: ca_cfar
// Project Name:
//
// This module implements the CA-CFAR algorithm to identify valid targets from

// discrete frequency samples with noise and clutter. These samples are obtained
// by computing the peak intensity for every frequency bin as output from the FFT.
//
// - Sabrina Zereen -
//

module ca_cfar(
 input clk,

 input reset,
 input [47:0] inA,
 input [47:0] inB,
 input [47:0] inC,
 input [47:0] inD,
 input start,
 output [12:0] target_abs,
 output [15:0] target_pos,

 output new_target,
 output start_cfar,
 output complete
);

// Internal registers
reg [12:0] target_abs_reg; //[needs to be changed]
reg [15:0] target_pos_reg; //[needs to be changed]

reg new_target_reg;
reg start_cfar_reg;
reg complete_reg;

reg [12:0] buffer [31:0]; // store 32 cells for CFAR processing
reg [9:0] indexa; // used in buffering data
reg [4:0] indexb; // used in buffering data
reg [4:0] indexc; // for CFAR routine
(* KEEP = "TRUE"*) reg [14:0] avgL; // cell averaging to left of CUT

(* KEEP = "TRUE"*) reg [14:0] avgR; // cell averaging to right of CUT
reg [12:0] avg; // threshold average
reg cfar_done;
reg [1:0] st; // internal flag to sort CFAR stages
(* KEEP = "TRUE"*) reg [17:0] T; // dynamic threshold result from CFAR processing
reg [4:0] K; // 5-bit decimal constant for CFAR
reg [12:0] CUT;

assign target_abs = target_abs_reg[12:0]; /// [**** linking input with register]
assign target_pos = target_pos_reg[15:0]; /// [**** linking input with register]

 128

assign new_target = new_target_reg; /// [**** linking input with register]
assign start_cfar = start_cfar_reg; /// [**** linking input with register]
assign complete = complete_reg; /// [**** linking input with register]

integer file_hdl_Cfar;

initial begin
 file_hdl_Cfar = $fopen("./test_result/Cfar.txt","w");
end

always @ (posedge clk)
begin

 if(reset == 1)
 begin
 indexa <= 10'd0;
 indexb <= 5'd0;
 start_cfar_reg <= 1'b0;
 end

 else if(complete_reg == 1) // if all 1024 values have been processed

 begin
 indexa <= 10'd0;
 indexb <= 5'd0;
 start_cfar_reg <= 1'b0;
 end

 else if(start == 0 && start_cfar_reg == 1) // if CFAR processing is active
 begin
 if(cfar_done == 1)

 begin
 start_cfar_reg <= 1'b0; // clear signal, proceed with buffering
 indexb <= 5'd0; // reset for next 32 values
 end
 else
 begin
 start_cfar_reg <= 1'b1;
 indexb <= 5'd31; // to avoid truncation by Xilinx ISE

 end
 end

 else if(start == 1 && start_cfar_reg == 0) // if CFAR processing is not active
 begin
 buffer[indexb] <= inA;
 buffer[indexb+1] <= inB;
 buffer[indexb+2] <= inC;

 buffer[indexb+3] <= inD;

 if(indexa == 1020) // 1024 counter
 indexa <= 10'd1023; // avoid truncation and mark completion of all samples
 else
 indexa <= indexa + 4;

 if(indexb == 28)

 begin
 indexb <= 5'd0; // 32 counter
 start_cfar_reg <= 1'b1; // start CFAR routine
 end
 else
 indexb <= indexb + 4;
 end
end

 129

//--------------
// CFAR process
//--------------
always @ (posedge clk)

begin
 if(reset == 1)
 begin
 new_target_reg <= 1'b0;
 target_abs_reg <= 13'd0;
 target_pos_reg <= 16'd0;
 avg <= 13'd0;
 avgR <= 15'd0;

 avgL <= 15'd0;
 indexc <= 5'd0;
 cfar_done <= 1'b0;
 st <= 2'b00;
 K <= 5'b10011; // setting K = (11111) to avoid truncation
 // K = Pfa^(-1/(2*M)) - 1 ; e.g. Pfa=10^-6, M=8,
 // therefore K=4.63~(10011)
 // K has 3 integer bits, 2 fraction bits

 T <= 18'd0;
 CUT <= 13'd0;
 complete_reg <= 1'b0;
 end

 else if(complete_reg == 1)
 complete_reg <= 1'b0;

 // After every 32 values or valid target detection

 else if(cfar_done == 1 || new_target_reg == 1)
 begin
 cfar_done <= 1'b0; // reset flag, ready for next batch of 32 cells
 target_abs_reg <= 13'd0;
 target_pos_reg <= 16'd0;
 end

 // Get the averages for M=4

 else if(start_cfar_reg == 1 && cfar_done == 0 && st == 2'b00)
 begin
 new_target_reg <= 1'b0; // reset new valid target output signal

 if(indexa >= 10'd0 && indexa <= 10'd511)
 K <= 5'd20; // Pfa = 10^-6, min. K = 5.00
 else if(indexa >= 10'd512 && indexa <= 10'd851)
 K <= 5'd17; // Reduced K = 4.25 for attenuated medium range targets

 else if(indexa >= 10'd852)
 K <= 5'd16; // Reduced K = 4.00 for attenuated long range targets

 if(indexc < 6)
 begin
 avgR <= buffer[indexc+3] + buffer[indexc+4] + buffer[indexc+5] + buffer[indexc+6];
 avgL <= buffer[indexc+3] + buffer[indexc+4] + buffer[indexc+5] + buffer[indexc+6];
 end

 else if(indexc > 25)
 begin
 avgR <= buffer[indexc-3] + buffer[indexc-4] + buffer[indexc-5] + buffer[indexc-6];
 avgL <= buffer[indexc-3] + buffer[indexc-4] + buffer[indexc-5] + buffer[indexc-6];
 end
 else
 begin
 avgR <= buffer[indexc+3] + buffer[indexc+4] + buffer[indexc+5] + buffer[indexc+6];
 avgL <= buffer[indexc-3] + buffer[indexc-4] + buffer[indexc-5] + buffer[indexc-6];

 130

 end
 st <= 2'b01; // move to next CFAR stage
 end

 // Add the averages
 else if(start_cfar_reg == 1 && cfar_done == 0 && st == 2'b01)
 begin
 avg <= avgR[14:3] + avgL[14:3] + 1; // (avgR/4 + avgL/4)/2 + 1 (to avoid zero)
 st <= 2'b10;
 end

 // Compute the dynamic threshold

 else if(start_cfar_reg == 1 && cfar_done == 0 && st == 2'b10)
 begin
 T <= avg * K; // threshold value for current CFAR cells
 CUT <= buffer[indexc]; // CUT has equal word length as integer part of T
 st <= 2'b11;
 end

 // Decision to extract valid target from clutter

 else if(start_cfar_reg == 1 && cfar_done == 0 && st == 2'b11)
 begin //$display("%d %d",CUT,indexa+indexc-32);
 if(CUT > T[14:2] && CUT > 13'd7) // compare integer part and exclude FFT noise
 begin
 new_target_reg <= 1'b1; // assert new valid target signal to pairing module
 target_abs_reg <= CUT; // output target peak intensity
 target_pos_reg <= indexa + indexc - 30; // output target FFT bin number
 K <= 5'b00000; // temporary clear to avoid truncation
 end

 if(indexc == 31) // mark completion of CFAR processing on current 32 cells
 cfar_done <= 1'b1;
 if(indexc == 31 && indexa == 1023) // if all 1024 samples done
 complete_reg <= 1'b1; // send completion signal to pairing module
 indexc <= indexc + 1; // move to next cell for CFAR processing
 st <= 2'b00;
 end

 if(new_target_reg == 1)
 new_target_reg <= 1'b0; // reset new valid target signal

 if(target_abs_reg>0)
 begin
 $fwrite(file_hdl_Cfar,"target_abs_reg = %b, target_pos_reg = %b\n",target_abs_reg,target_pos_reg);
 $fwrite(file_hdl_Cfar,"target_abs_reg = %d, target_pos_reg = %d\n",target_abs_reg,target_pos_reg);
 end

end
endmodule

pairing.v

`timescale 1ns / 1ps
//

// Company: UWndisor
// Engineer: Sabrina
//
// Create Date: 17:55:05 04/01/2013
// Design Name:
// Module Name: pairing
// Project Name:
// //

//
// This module is responsible for pairing the peaks detected by the CFAR unit

 131

// and producing the target ranges and velocities for all detected targets.
//// - Sabrina Zereen -
//

module pairing(
 input clk,
 input reset,
 input new_target,
 input [12:0] target_abs,
 input [9:0] target_pos,
 input complete,
 input updown,

 input [7:0] unit_vel,
 output [19:0] target_info,
 output info_valid
);
/*
// Inputs to module
input clk; // system/global clock
input reset; // synchronous reset

input new_target; // new valid target from CFAR module
input [12:0] target_abs; // target peak intensity
input [9:0] target_pos; // target frequency bin number
input complete; // CFAR completion signal from CFAR module
input updown; ///* sweep direction, 1 for up, 0 for down
 // this signal is used inverted (0 for up, 1 for down) because..
 //..during down sweep sampling, up sweep processing is done and..
 //.. vice versa //
input [7:0] unit_vel; // radar unit's velocity / car's velocity

// Outputs from module
output [19:0] target_info; // 10 bits target velocity, 10 bits target distance
output info_valid; // signal to display module
*/
// Internal registers
reg [19:0] target_info_reg;
reg info_valid_reg;

wire updown_reg;

reg [12:0] abs_bufup [7:0]; // maximum 8 targets in up sweep
reg [9:0] pos_bufup [7:0];
reg upfill; // flag to mark fully filled up sweep buffers
reg [12:0] abs_bufdown [7:0]; // maximum 8 targets in down sweep
reg [9:0] pos_bufdown [7:0];
reg downfill; // flag to mark fully filled down sweep buffers

reg [2:0] count; // index for up sweep and down sweep buffers
reg [2:0] paircount; // final count of records accepted for pairing from CFAR
reg start_pairing; // flag to commence pairing and output process
reg pairing_done; // flag to mark completion of pairing process
reg [2:0] indexup; // counter to count through up sweep records while pairing
reg [2:0] indexdown; // counter to count through down sweep records while pairing
reg [2:0] tmpindex; // used to store the final matching pair index
reg [6:0] vel_fac; // multiplication constant for velocity calculation

(* KEEP = "TRUE"*) reg [17:0] velocity; // computed velocity - (13bits).(6bits)
reg [10:0] range_fac; // multiplication constant for range calculation
(* KEEP = "TRUE"*) reg [21:0] range; // computed range - (11bits).(11bits)
reg [1:0] st; // internal flag
reg stb; // internal flag
reg [9:0] posa, posb; // used to analyse spectral closeness during pairing
reg [13:0] absa, absb, absc; // used to analyse peak intensity closeness during pairing
reg [10:0] sum_pos, diff_pos; // sum for range, diff for velocity
reg faster; // 0 if target is slower, 1 is target is faster

 132

reg updone; // mark up sweep processing done

wire reset_n;
assign reset_n = ~reset;

assign target_info = target_info_reg[19:0]; /// [**** linking input with register]
assign info_valid = info_valid_reg; /// [**** linking input with register]
assign updown_reg = 0;

integer file_hdl_Pairing;

initial begin

 file_hdl_Pairing = $fopen("./test_result/Pairing.txt","w");
end

//--
// Accept data from CFAR module
// - spectral copies are ignored by this module
//--

always @ (posedge clk)
begin
$fwrite(file_hdl_Pairing,"Inside first always\n");

 if(reset_n == 1)
 begin
 $fwrite(file_hdl_Pairing,"Inside first reset_n ==1\n");
 count <= 3'd0;
 paircount <= 3'd0;

 abs_bufup[0] <= 13'd0;
 pos_bufup[0] <= 10'd0;
 abs_bufdown[0] <= 13'd0;
 pos_bufdown[0] <= 10'd0;
 upfill <= 1'b0;
 downfill <= 1'b0;
 start_pairing <= 1'b0;
 updone <= 1'b0;

 end

 // clear pairing process flags
 else if(reset_n == 0 && pairing_done == 1)
 begin
 $fwrite(file_hdl_Pairing,"Inside reset_n == 0 && pairing_done == 1\n");
 start_pairing <= 1'b0;
 paircount <= 3'd0;

 updone <= 1'b0;
 end

 // if CFAR processing for current sweep direction is complete
 else if(reset_n == 0 && complete == 1)
 begin
 if(updown_reg == 0) // if up sweep is done
 begin

 paircount <= count; // store the total number of targets for later use
 updone <= 1'b1;
 end

 count <= 3'd0; // reset_n counter to 0
 upfill <= 1'b0; // clear flags
 downfill <= 1'b0;

 if(updown_reg == 1 && updone == 1) // if the down sweep has been completely obtained

 133

 begin
 $fwrite(file_hdl_Pairing,"%d %d %d %d %d %d %d %d
%d",pos_bufup[0],pos_bufup[1],pos_bufup[2],pos_bufup[3],pos_bufup[4],pos_bufup[5],pos_bufup[6],pos_bufup[7],paircount);
 //$display("%d %d %d %d %d %d %d %d

%d",pos_bufdown[0],pos_bufdown[1],pos_bufdown[2],pos_bufdown[3],pos_bufdown[4],pos_bufdown[5],pos_bufdown[6],pos_
bufdown[7],count);
 start_pairing <= 1'b1;
 end
 end

 //----------
 // UP SWEEP

 //----------
 else if(reset_n == 0 && updown_reg == 0 && new_target == 1 && upfill == 0)
 begin //$display("up %d %d",target_abs,target_pos);
 $fwrite(file_hdl_Pairing,"up-sweep %d %d",target_abs,target_pos);
 // first valid target detection stored without 'spectral copy' checking
 if(count == 0 && target_pos > 4) // ignore DC values
 begin
 abs_bufup[count] <= target_abs;

 pos_bufup[count] <= target_pos;
 count <= count + 1;
 end

 // 'spectral copy' checking
 else if(count >= 1)
 begin
 // if new CFAR detection is a 'spectral copy' of previous target
 if(target_pos == pos_bufup[count-1] + 1)

 begin
 if(target_abs > abs_bufup[count-1]) // store larger peak intensity
 begin
 abs_bufup[count-1] <= target_abs; // update previous target record
 pos_bufup[count-1] <= target_pos;
 end
 end

 else
 begin
 abs_bufup[count] <= target_abs; // add new target record
 pos_bufup[count] <= target_pos;
 count <= count + 1; // increment counter
 if(count == 7)
 upfill <= 1'b1; // mark up sweep buffer filled
 end

 end

 end

 //------------
 // DOWN SWEEP
 //------------

 else if(reset_n == 0 && updown_reg == 1 && new_target == 1 && downfill == 0)
 begin //$display("down %d %d",target_abs,target_pos);
 $fwrite(file_hdl_Pairing,"down-sweep %d %d",target_abs,target_pos);
 // first valid target detection stored without 'spectral copy' checking
 if(count == 0 && target_pos > 4) // ignore DC values
 begin
 abs_bufdown[count] <= target_abs;
 pos_bufdown[count] <= target_pos;
 count <= count + 1;

 134

 end

 // 'spectral copy' checking
 else if(count > 0)

 begin
 // if new CFAR detection is a 'spectral copy' of previous target
 if(target_pos == pos_bufdown[count-1] + 1)
 begin
 if(target_abs > abs_bufdown[count-1]) // store larger peak intensity
 begin
 abs_bufdown[count-1] <= target_abs; // update previous target record
 pos_bufdown[count-1] <= target_pos;

 end
 end

 else
 begin
 abs_bufdown[count] <= target_abs; // add new target record
 pos_bufdown[count] <= target_pos;
 count <= count + 1; // increment counter

 if(count == 7)
 downfill <= 1'b1; // mark up sweep buffer filled
 end
 end

 end

 // clear the record from down buffer when a pair has been matched successfully
 if(st == 2'b10 && start_pairing == 1)

 begin
 abs_bufdown[tmpindex] <= 13'd0;
 pos_bufdown[tmpindex] <= 10'd0;
 end

end

//---

// Peak Pairing
// Criteria:
// (1) +-84 frequency bins
// (2) compare peak intensity
//---
always @ (posedge clk)
begin

 if(reset == 1)
 begin
 $fwrite(file_hdl_Pairing,"Peak pairing-1\n");
 target_info_reg <= 20'd0;
 info_valid_reg <= 1'b0;
 pairing_done <= 1'b0;
 indexup <= 3'd0;
 indexdown <= 3'd0;

 tmpindex <= 3'd0;
 vel_fac <= 7'b1101101; // (11.01101)binary = (3.40625)decimal
 range_fac <= 11'b00010111110; // (0.00010111110)binary = (0.0927734375)decimal
 /* these factors have been obtained by converting the equations into
 constants, saving hardware and making computation quicker:
 Fr = 4*Fsweep/Tsweep*range/c , Fd = 2*Ft*relative_velocity/c */
 st <= 2'b00;
 stb <= 1'b0;
 posa <= 10'd0;

 135

 posb <= 10'd0;
 absa <= 13'd0;
 absb <= 13'd0;
 absc <= 13'd0;

 sum_pos <= 11'd0;
 diff_pos <= 11'd0;
 faster <= 1'b0;
 velocity <= 18'd0;
 range <= 22'd0;
 end

 // if pairing is complete

 else if(reset == 0 && pairing_done == 1)
 begin
 $fwrite(file_hdl_Pairing,"Peak pairing-2\n");
 target_info_reg <= 20'd0;
 info_valid_reg <= 1'b0;
 pairing_done <= 1'b0;
 indexup <= 3'd0;
 indexdown <= 3'd0;

 tmpindex <= 3'd0;
 st <= 2'b00;
 stb <= 1'b0;
 posa <= 10'd0;
 posb <= 10'd0;
 absa <= 13'd0;
 absb <= 13'd0;
 absc <= 13'd0;
 sum_pos <= 11'd0;

 diff_pos <= 11'd0;
 faster <= 1'b0;
 velocity <= 18'd0;
 range <= 22'd0;
 end

 // pair target peaks from up and down sweeps
 else if(reset == 0 && start_pairing == 1 && indexdown <= paircount-1)

 begin
 $fwrite(file_hdl_Pairing,"Peak pairing-3\n");
 target_info_reg <= 20'd0;
 info_valid_reg <= 1'b0;

 if(st == 2'b00)
 begin

 // lower limit for criteria (1)
 if(pos_bufup[indexup] > pos_bufdown[indexdown])
 posa <= pos_bufup[indexup] - pos_bufdown[indexdown]; // limit to +-84 i.e. 300kmph
 else
 posa <= pos_bufdown[indexdown] - pos_bufup[indexup];

 /* calculate peak intensity difference between current up sweep value
 and current down sweep value */

 if(abs_bufup[indexup] > abs_bufdown[indexdown])
 absa <= abs_bufup[indexup] - abs_bufdown[indexdown];
 else
 absa <= abs_bufdown[indexdown] - abs_bufup[indexup];

 /* calculate peak intensity difference between current up sweep value
 and previously stored best match value */
 if(abs_bufup[indexup] > abs_bufdown[tmpindex])
 absb <= abs_bufup[indexup] - abs_bufdown[tmpindex];

 136

 else
 absb <= abs_bufdown[tmpindex] - abs_bufup[indexup];

 /* calculate peak intensity difference between next up sweep value

 and previously stored best match value for the current target */
 if(indexup < paircount - 1)
 begin
 if(abs_bufup[indexup+1] > abs_bufdown[tmpindex])
 absc <= abs_bufup[indexup+1] - abs_bufdown[tmpindex];
 else
 absc <= abs_bufdown[tmpindex] - abs_bufup[indexup-1];
 end

 else
 absc <= 13'd8191;

 // ensure next up sweep sample is within +-84 range of previous best match
 if(indexup < paircount - 1)
 begin
 if(pos_bufup[indexup+1] > pos_bufdown[indexdown])
 posb <= pos_bufup[indexup+1] - pos_bufdown[indexdown];

 else
 posb <= pos_bufdown[indexdown] - pos_bufup[indexup+1];
 end
 else
 posb <= 10'd1023;

 st <= 2'b01; // next stage
 end

//////// update best match according to criteria (1,2)
 else if(st == 2'b01)
 begin
 // if the peak in the down sweep is spectrally close to peak in up sweep
 if(posa < 84 && posa <= posb)
 begin
 // if current down sweep peak is closer in intensity
 if(absa <= absb && absa <= absc)

 tmpindex <= indexdown; // update best match index
 end

 if(indexdown == paircount-1) // if all down sweep peaks have been assessed
 st <= 2'b10; // next stage
 else
 begin
 indexdown <= indexdown + 1; // move to next down sweep peak

 st <= 2'b00; // return to re-compute new parameters
 end
 end

//////// obtain sum and difference of matched frequency bin indices
 else if(st == 2'b10)
 begin
 indexdown <= 3'd0; // clear index to restart from first record in down sweep

 sum_pos <= pos_bufup[indexup] + pos_bufdown[tmpindex]; // for target range

 if(pos_bufdown[tmpindex] > 0)
 begin
 // for target relative velocity
 if(pos_bufup[indexup] > pos_bufdown[tmpindex]) // slower target
 begin
 diff_pos <= pos_bufup[indexup] - pos_bufdown[tmpindex];
 faster <= 1'b0;

 137

 end
 else // faster target
 begin
 diff_pos <= pos_bufdown[tmpindex] - pos_bufup[indexup];

 faster <= 1'b1;
 end

 st <= 2'b11; // next stage
 end

 else
 begin

 if(indexup < paircount - 1)
 begin
 indexup <= indexup + 1;
 st <= 2'b00;
 end
 else
 pairing_done <= 1'b1;
 end

 end

//////// compute the velocity and range and output as single bus
 else if(st == 2'b11)
 begin
 if(stb == 0) // stage to compute velocity and range
 begin
 if(faster == 0) // if the target is not faster than own vehicle

 velocity <= vel_fac * diff_pos;
 else // if the target is faster than own vehicle
 velocity <= vel_fac * diff_pos;

 range <= range_fac * sum_pos;
 stb <= 1'b1;
 end

 else // final step: output target_info_reg, update indexup
 begin
 if(faster == 0) // extract (9bits).(0bit) velocity
 target_info_reg[19:11] <= unit_vel - velocity[13:5];
 else
 target_info_reg[19:11] <= unit_vel + velocity[13:5];

 target_info_reg[10] <= velocity[4]; // attach the fraction bit

 target_info_reg[9:0] <= range[18:9]; // extract (8bits).(2bits) range

 $fwrite(file_hdl_Pairing,"range = %d, speed =
%d\n",target_info_reg[9:0],target_info_reg[19:10]);

 info_valid_reg <= 1'b1; // alert display unit of valid target information
 tmpindex <= 3'd0;

 posa <= 10'd0;
 posb <= 10'd0;
 absa <= 13'd0;
 absb <= 13'd0;
 stb <= 1'b0;
 st <= 2'b00; // reset_n to first state
 indexup <= indexup + 1; // move to next record in up sweep buffer

 if(indexup == paircount) // if all records have been assessed

 138

 pairing_done <= 1'b1;
 end
 end
 end

end
endmodule

compute_target_info.v

`timescale 1ns / 1ps

//
// Company: UWindsor
// Engineer: Sabrina
//
// Create Date: 14:20:39 09/07/2011
// Design Name:
// Module Name: compute_target_info
// Project Name:
//

module compute_target_info(
 input clk_100,
 input reset,
 input [15:0] max_bin,/// [**** changed to 16bits from 11 bits]
 input valid_in,
 output [28:0] b0t_range,/// [**** changed to 29BITS from 16 bits]
 output [28:0] b1t_range,
 output [28:0] b2t_range,

 output [28:0] b0t_speed,
 output [28:0] b1t_speed,
 output [28:0] b2t_speed,
 output b0t_dir,
 output b1t_dir,
 output b2t_dir
);

 //3-bit up counter that resets after 5
 reg [2:0] count3;
 always @(posedge clk_100)
 begin
 if(reset)
 count3 <= 3'd0;
 else
 begin

 if(valid_in)
 begin
 if(count3 < 3'd5)
 count3 <= count3 + 1;
 else
 count3 <= 3'd0;
 end
 else
 count3 <= count3;

 end
 end

 //some control signals
 wire up_load, b0_load, b1_load, b2_load;
 assign up_load = (valid_in && (count3[0] == 1'b0)) ? 1'b1 : 1'b0;
 assign b0_load = valid_in & ~count3[2] & ~count3[1] & count3[0];
 assign b1_load = valid_in & ~count3[2] & count3[1] & count3[0];

 assign b2_load = valid_in & count3[2] & ~count3[1] & count3[0];

 139

 //buffer holds up-bin, load enable controlled by up_load
 reg [15:0] up_buff;/// [**** changed to 16bits from 11 bits]
 reg [15:0] dn_buff;/// [just testing.....]
 always @(posedge clk_100)

 begin
 if(reset)
 up_buff <= 16'd0; /// [**** changed to 16bits from 11 bits]
 else if(up_load)
 up_buff <= max_bin;
 else
 up_buff <= up_buff;
 end

 //bin_sum and bin_diff are the sum and difference of the up and down bins
 wire [15:0] bin_sum, bin_diff; /// [**** changed to 16bits from 11 bits]
 assign bin_sum = up_buff + max_bin;
 assign bin_diff = up_buff - max_bin;

 //MSB of bin_diff makes up the sign
 wire sign_bit;

 assign sign_bit = bin_diff[15]; //[CHANGED TO bin_diif[15] from [9]]

 //this block converts the two's complement bin_diff value to its absolute value
 reg [15:0] bin_diff_abs;/// [**** changed to 16bits from 10 bits]
 always @(bin_diff)
 begin
 if(bin_diff[15] == 1) //[**** changed]
 bin_diff_abs = ~bin_diff + 1;
 else

 bin_diff_abs = bin_diff;
 end

 wire [28:0] speed, range; //[**** changed to 29 drom 16bits]
 calc_range_mult u0_mult_range_calc (
 .a(bin_sum), // input [9 : 0] a
 .p(range) // output [15 : 0] p
);

 calc_speed_mult u0_mult_speed_calc (
 .a(bin_diff_abs), // input [9 : 0] a
 .p(speed) // output [15 : 0] p
);

 //output registers load enables controlled by previously defined signals

 reg [28:0] b0r_buff, b1r_buff, b2r_buff, b0s_buff, b1s_buff, b2s_buff; //[**** changed to 29 drom 16bits]
 reg b0d_buff, b1d_buff, b2d_buff;

 always @(posedge clk_100)
 begin
 if(reset) //[**** changed to 29 drom 16bits]
 begin
 b0r_buff <= 29'd0;

 b0s_buff <= 29'd0;
 b0d_buff <= 1'b0;
 end
 else if(b0_load)
 begin
 b0r_buff <= range;
 b0s_buff <= speed;
 b0d_buff <= sign_bit;
 end

 140

 else
 begin
 b0r_buff <= b0r_buff;
 b0s_buff <= b0s_buff;

 b0d_buff <= b0d_buff;
 end
 end

 always @(posedge clk_100)
 begin
 if(reset) //[**** changed to 29 drom 16bits]
 begin

 b1r_buff <= 29'd0;
 b1s_buff <= 29'd0;
 b1d_buff <= 1'b0;
 end
 else if(b1_load)
 begin
 b1r_buff <= range;
 b1s_buff <= speed;

 b1d_buff <= sign_bit;
 end
 else
 begin
 b1r_buff <= b1r_buff;
 b1s_buff <= b1s_buff;
 b1d_buff <= b1d_buff;
 end
 end

 always @(posedge clk_100)
 begin
 if(reset) //[**** changed to 29 drom 16bits]
 begin
 b2r_buff <= 29'd0;
 b2s_buff <= 29'd0;
 b2d_buff <= 1'b0;

 end
 else if(b2_load)
 begin
 b2r_buff <= range;
 b2s_buff <= speed;
 b2d_buff <= sign_bit;
 end
 else

 begin
 b2r_buff <= b2r_buff;
 b2s_buff <= b2s_buff;
 b2d_buff <= b2d_buff;
 end
 end

 assign b0t_range = b0r_buff;

 assign b1t_range = b1r_buff;
 assign b2t_range = b2r_buff;
 assign b0t_speed = b0s_buff;
 assign b1t_speed = b1s_buff;
 assign b2t_speed = b2s_buff;
 assign b0t_dir = b0d_buff;
 assign b1t_dir = b1d_buff;
 assign b2t_dir = b2d_buff;

 141

endmodule

lcd_driver.v

`timescale 1ns / 1ps
//
// Company: UWindsor
// Engineer: Sabrina
//
// Create Date: 20:12:14 08/15/2011

// Design Name:
// Module Name: lcd_driver
// Project Name:
// //
module lcd_driver(
 input clk_100,
 input reset,
 input ready,

 input [2:0] BEAM_SHOW, //now holds BEAM_SWITCH for LCD testing...
 input [28:0] b0t_range, //[** changed to 29 bits from 16 bit]
 input [28:0] b1t_range,
 input [28:0] b2t_range,
 input [28:0] b0t_speed,
 input b0t_dir,
 input [28:0] b1t_speed,
 input b1t_dir,

 input [28:0] b2t_speed,
 input b2t_dir,
 output reg LCD_E,
 output reg LCD_RS,
 output reg LCD_RW,
 output reg [3:0] LCD_OUT
);

//inverted reset signal
wire reset_n;
assign reset_n = ~reset;

//divider for 1 kHz clock
reg [16:0] clk_1k_ctr;
reg clk_1k;

always @(posedge clk_100)
begin
 if(reset)
 begin
 clk_1k <= 1'b0;
 clk_1k_ctr <= 17'd0;
 end

 else if(ready)
 begin
 if(clk_1k_ctr < 99998)
 begin
 clk_1k <= clk_1k;
 clk_1k_ctr <= clk_1k_ctr + 1;
 end
 else

 begin
 clk_1k <= ~clk_1k;

 142

 clk_1k_ctr <= 17'd0;
 end
 end
 else

 begin
 clk_1k <= clk_1k;
 clk_1k_ctr <= clk_1k_ctr;
 end
end

//registers to hold changing characters for LCD
reg [3:0] type, num, r100, r10, r1, rp1, rp01, s100, s10, s1, sp1, sp01, sign;

//latch data for display signals
reg [28:0] disp_rng; //[** changed to 29 bits from 16 bit]
reg [28:0] disp_spd;//[** changed to 29 bits from 16 bit]

//select which data to display

always @(posedge clk_1k or negedge reset_n)
begin
 if(!reset_n)
 begin
 disp_rng <= 29'd0; //[** changed to 29 bits from 16 bit]
 disp_spd <= 29'd0;
 type <= 4'b0010;
 num <= 4'b0000;
 sign <= 4'b0000;

 end
 else if(reset_n && BEAM_SHOW[0])
 begin
 disp_rng <= b0t_range;
 disp_spd <= b0t_speed;
 type <= 4'b0010;
 num <= 4'b0000;
 if(b0t_dir)

 sign <= 4'b1011;
 else
 sign <= 4'b1101;
 end
 else if(reset_n && BEAM_SHOW[1])
 begin
 disp_rng <= b1t_range;
 disp_spd <= b1t_speed;

 type <= 4'b0010;
 num <= 4'b0001;

 if(b1t_dir)
 sign <= 4'b1011;
 else
 sign <= 4'b1101;
 end

 else if(reset_n && BEAM_SHOW[2])
 begin
 disp_rng <= b2t_range;
 disp_spd <= b2t_speed;
 type <= 4'b0010;
 num <= 4'b0010;
 if(b2t_dir)
 sign <= 4'b1011;
 else

 143

 sign <= 4'b1101;
 end
 else
 begin

 disp_rng <= disp_rng; //chamged to b0t_range from disp_rng
 disp_spd <= disp_spd; //chamged to b0t_speed from disp_spd
 type <= type;
 num <= num;
 sign <= sign;
 end
end

//format the data for ascii
//upper bits is hard-coded into the lcd display routine
//only the lower bits get changed here
reg [28:0] hundreds, tens, tenths; //[** changed to 29 bits from 16 bit] removed 'ones'
reg [12:0] dbits;
reg [15:0] fbits;

always @(disp_rng, hundreds, tens, tenths)

begin

 dbits <= disp_rng[28:16];
 fbits <= disp_rng[15:0];

 //RANGE
 //first figure out the 100s

 if(dbits>=13'd200)

 begin
 r100<=4'd2;
 hundreds <= 8'd200;
 end

 else if(dbits >= 13'd100 && dbits <13'd200)
 begin
 r100 <= 4'd1;

 hundreds <= 7'd100;
 end
 else
 begin
 r100 <= 4'd0;
 hundreds <= 4'd0;
 end

 //now figure out the 10s
 if(((dbits-hundreds) >= 13'd90) && ((dbits-hundreds) < 13'd100)) //90
 begin
 r10 <= 4'd9;
 tens <= 7'd90;
 end
 else if(((dbits-hundreds) >= 13'd80) && ((dbits-hundreds) < 13'd90)) //80
 begin

 r10 <= 4'd8;
 tens <= 7'd80;
 end
 else if(((dbits-hundreds) >= 13'd70) && ((dbits-hundreds) < 13'd80)) //70
 begin
 r10 <= 4'd7;
 tens <= 7'd70;
 end
 else if(((dbits-hundreds) >= 13'd60) && ((dbits-hundreds) < 13'd70)) //60

 144

 begin
 r10 <= 4'd6;
 tens <= 6'd60;
 end

 else if(((dbits-hundreds) >= 13'd50) && ((dbits-hundreds) < 13'd60)) //50
 begin
 r10 <= 4'd5;
 tens <= 6'd50;
 end
 else if(((dbits-hundreds) >= 13'd40) && ((dbits-hundreds) < 13'd50)) //40
 begin
 r10 <= 4'd4;

 tens <= 6'd40;
 end
 else if(((dbits-hundreds) >= 13'd30) && ((dbits-hundreds) < 13'd40)) //30
 begin
 r10 <= 4'd3;
 tens <= 5'd30;
 end
 else if(((dbits-hundreds) >= 13'd20) && ((dbits-hundreds) < 13'd30)) //20

 begin
 r10 <= 4'd2;
 tens <= 5'd20;
 end
 else if(((dbits-hundreds) >= 13'd10) && ((dbits-hundreds) < 13'd20)) //10
 begin
 r10 <= 4'd1;
 tens <= 4'd10;
 end

 else
 begin
 r10 <= 4'd0;
 tens <= 4'd0;
 end

 //now the ones
 if(((dbits-hundreds-tens) >= 13'd9) && ((dbits-hundreds-tens) < 13'd10)) //9

 begin
 r1 <= 4'd9;
 end
 else if(((dbits-hundreds-tens) >= 13'd8) && ((dbits-hundreds-tens) < 13'd9)) //8
 begin
 r1 <= 4'd8;
 end
 else if(((dbits-hundreds-tens) >= 13'd7) && ((dbits-hundreds-tens) < 13'd8)) //7

 begin
 r1 <= 4'd7;
 end
 else if(((dbits-hundreds-tens) >= 13'd6) && ((dbits-hundreds-tens) < 13'd7)) //6
 begin
 r1 <= 4'd6;
 end
 else if(((dbits-hundreds-tens) >= 13'd5) && ((dbits-hundreds-tens) < 13'd6)) //5

 begin
 r1 <= 4'd5;
 end
 else if(((dbits-hundreds-tens) >= 13'd4) && ((dbits-hundreds-tens) < 13'd5)) //4
 begin
 r1 <= 4'd4;
 end
 else if(((dbits-hundreds-tens) >= 13'd3) && ((dbits-hundreds-tens) < 13'd4)) //3
 begin

 145

 r1 <= 4'd3;
 end
 else if(((dbits-hundreds-tens) >= 13'd2) && ((dbits-hundreds-tens) < 13'd3)) //2
 begin

 r1 <= 4'd2;
 end
 else if(((dbits-hundreds-tens) >= 13'd1) && ((dbits-hundreds-tens) < 13'd2)) //1
 begin
 r1 <= 4'd1;
 end
 else //0
 begin

 r1 <= 4'd0;
 end

 //now the tenths
 if(((fbits) >= 16'hE666) && ((fbits) < 16'hFFFF)) //.9
 begin
 rp1 <= 4'd9;
 tenths <= 16'hE666;

 end
 else if(((fbits) >= 16'hCCCD) && ((fbits) < 16'hE666)) //.8
 begin
 rp1 <= 4'd8;
 tenths <= 16'hCCCD;
 end
 else if(((fbits) >= 16'hB333) && ((fbits) < 16'hCCCD)) //.7
 begin
 rp1 <= 4'd7;

 tenths <= 16'hB333;
 end
 else if(((fbits) >= 16'h999A) && ((fbits) < 16'hB333)) //.6
 begin
 rp1 <= 4'd6;
 tenths <= 16'h999A;
 end
 else if(((fbits) >= 16'h8000) && ((fbits) < 16'h999A)) //.5

 begin
 rp1 <= 4'd5;
 tenths <= 16'h8000;
 end
 else if(((fbits) >= 16'h6666) && ((fbits) < 16'h8000)) //.4
 begin
 rp1 <= 4'd4;
 tenths <= 16'h6666;

 end
 else if(((fbits) >= 16'h4CCD) && ((fbits) < 16'h6666)) //.3
 begin
 rp1 <= 4'd3;
 tenths <= 16'h4CCD;
 end
 else if(((fbits) >= 16'h3333) && ((fbits) < 16'h4CCD)) //.2
 begin

 rp1 <= 4'd2;
 tenths <= 16'h3333;
 end
 else if(((fbits) >= 16'h199A) && ((fbits) < 16'h3333)) //.1
 begin
 rp1 <= 4'd1;
 tenths <= 16'h199A;
 end
 else//.0

 146

 begin
 rp1 <= 4'd0;
 tenths <= 16'h0000;
 end

 //finally the hundredths
 if(((fbits-tenths) >= 16'h170A) && ((fbits-tenths) < 16'h199A)) //.09
 begin
 rp01 <= 4'd9;
 end
 else if(((fbits-tenths) >= 16'h147B) && ((fbits-tenths) < 16'h170A)) //.08
 begin

 rp01 <= 4'd8;
 end
 else if(((fbits-tenths) >= 16'h11EC) && ((fbits-tenths) < 16'h147B)) //.07
 begin
 rp01 <= 4'd7;
 end
 else if(((fbits-tenths) >= 16'h0F5C) && ((fbits-tenths) < 16'h11EC)) //.06
 begin

 rp01 <= 4'd6;
 end
 else if(((fbits-tenths) >= 16'h0CCD) && ((fbits-tenths) < 16'h0F5C)) //.05
 begin
 rp01 <= 4'd5;
 end
 else if(((fbits-tenths) >= 16'h0A3D) && ((fbits-tenths) < 16'h0CCD)) //.04
 begin
 rp01 <= 4'd4;

 end
 else if(((fbits-tenths) >= 16'h07AE) && ((fbits-tenths) < 16'h0A3D)) //.03
 begin
 rp01 <= 4'd3;
 end
 else if(((fbits-tenths) >= 16'h051F) && ((fbits-tenths) < 16'h07AE)) //.02
 begin
 rp01 <= 4'd2;

 end
 else if(((fbits-tenths) >= 16'h028F) && ((fbits-tenths) < 16'h051F)) //.01
 begin
 rp01 <= 4'd1;
 end
 else //.00
 begin
 rp01 <= 4'd0;

 end
end

//get ascii values for the speed
//format the data for ascii
//upper bits is hard-coded into the lcd display routine
//only the lower bits get changed here
reg [15:0] s_hundreds, s_tens, s_ones, s_tenths;

always @(disp_spd, s_hundreds, s_tens, s_ones, s_tenths)

begin
 //SPEED
 //first figure out the 100s

 if((disp_spd >= 16'hC800) && (disp_spd <= 16'hFFFF))
 begin

 147

 s100 <= 4'd2;
 s_hundreds <= 16'hC800;
 end
 else if((disp_spd >= 16'h6400) && (disp_spd < 16'hC800))

 begin
 s100 <= 4'd1;
 s_hundreds <= 16'h6400;
 end
 else
 begin
 s100 <= 4'd0;
 s_hundreds <= 16'h0000;

 end

 //now figure out the 10s
 if(((disp_spd-s_hundreds) >= 16'h5A00) && ((disp_spd-s_hundreds) < 16'h6400)) //90
 begin
 s10 <= 4'd9;
 s_tens <= 16'h5A00;

 end
 else if(((disp_spd-s_hundreds) >= 16'h5000) && ((disp_spd-s_hundreds) < 16'h5A00)) //80
 begin
 s10 <= 4'd8;
 s_tens <= 16'h5000;
 end
 else if(((disp_spd-s_hundreds) >= 16'h4600) && ((disp_spd-s_hundreds) < 16'h5000)) //70
 begin
 s10 <= 4'd7;

 s_tens <= 16'h4600;
 end
 else if(((disp_spd-s_hundreds) >= 16'h3C00) && ((disp_spd-s_hundreds) < 16'h4600)) //60
 begin
 s10 <= 4'd6;
 s_tens <= 16'h3C00;
 end
 else if(((disp_spd-s_hundreds) >= 16'h3200) && ((disp_spd-s_hundreds) < 16'h3C00)) //50

 begin
 s10 <= 4'd5;
 s_tens <= 16'h3200;
 end
 else if(((disp_spd-s_hundreds) >= 16'h2800) && ((disp_spd-s_hundreds) < 16'h3200)) //40
 begin
 s10 <= 4'd4;
 s_tens <= 16'h2800;

 end
 else if(((disp_spd-s_hundreds) >= 16'h1E00) && ((disp_spd-s_hundreds) < 16'h2800)) //30
 begin
 s10 <= 4'd3;
 s_tens <= 16'h1E00;
 end
 else if(((disp_spd-s_hundreds) >= 16'h1400) && ((disp_spd-s_hundreds) < 16'h1E00)) //20
 begin

 s10 <= 4'd2;
 s_tens <= 16'h1400;
 end
 else if(((disp_spd-s_hundreds) >= 16'h0A00) && ((disp_spd-s_hundreds) < 16'h1400)) //10
 begin
 s10 <= 4'd1;
 s_tens <= 16'h0A00;
 end
 else

 148

 begin
 s10 <= 4'd0;
 s_tens <= 16'h0000;
 end

 //now the s_ones
 if(((disp_spd-s_hundreds-s_tens) >= 16'h0900) && ((disp_spd-s_hundreds-s_tens) < 16'h0A00)) //9
 begin
 s1 <= 4'd9;
 s_ones <= 16'h0900;
 end

 else if(((disp_spd-s_hundreds-s_tens) >= 16'h0800) && ((disp_spd-s_hundreds-s_tens) < 16'h0900)) //8
 begin
 s1 <= 4'd8;
 s_ones <= 16'h0800;
 end
 else if(((disp_spd-s_hundreds-s_tens) >= 16'h0700) && ((disp_spd-s_hundreds-s_tens) < 16'h0800)) //7
 begin
 s1 <= 4'd7;

 s_ones <= 16'h0700;
 end
 else if(((disp_spd-s_hundreds-s_tens) >= 16'h0600) && ((disp_spd-s_hundreds-s_tens) < 16'h0700)) //6
 begin
 s1 <= 4'd6;
 s_ones <= 16'h0600;
 end
 else if(((disp_spd-s_hundreds-s_tens) >= 16'h0500) && ((disp_spd-s_hundreds-s_tens) < 16'h0600)) //5
 begin

 s1 <= 4'd5;
 s_ones <= 16'h0500;
 end
 else if(((disp_spd-s_hundreds-s_tens) >= 16'h0400) && ((disp_spd-s_hundreds-s_tens) < 16'h0500)) //4
 begin
 s1 <= 4'd4;
 s_ones <= 16'h0400;
 end

 else if(((disp_spd-s_hundreds-s_tens) >= 16'h0300) && ((disp_spd-s_hundreds-s_tens) < 16'h0400)) //3
 begin
 s1 <= 4'd3;
 s_ones <= 16'h0300;
 end
 else if(((disp_spd-s_hundreds-s_tens) >= 16'h0200) && ((disp_spd-s_hundreds-s_tens) < 16'h0300)) //2
 begin
 s1 <= 4'd2;

 s_ones <= 16'h0200;
 end
 else if(((disp_spd-s_hundreds-s_tens) >= 16'h0100) && ((disp_spd-s_hundreds-s_tens) < 16'h0200)) //1
 begin
 s1 <= 4'd1;
 s_ones <= 16'h0100;
 end
 else //0

 begin
 s1 <= 4'd0;
 s_ones <= 16'h0000;
 end

 //now the s_tenths
 if(((disp_spd-s_hundreds-s_tens-s_ones) >= 16'h00E6) && ((disp_spd-s_hundreds-s_tens-s_ones) < 16'h0100)) //.9
 begin

 149

 sp1 <= 4'd9;
 s_tenths <= 16'h00E6;
 end
 else if(((disp_spd-s_hundreds-s_tens-s_ones) >= 16'h00CC) && ((disp_spd-s_hundreds-s_tens-s_ones) < 16'h00E6))

//.8
 begin
 sp1 <= 4'd8;
 s_tenths <= 16'h00CC;
 end
 else if(((disp_spd-s_hundreds-s_tens-s_ones) >= 16'h00B3) && ((disp_spd-s_hundreds-s_tens-s_ones) < 16'h00CC))
//.7
 begin

 sp1 <= 4'd7;
 s_tenths <= 16'h00B3;
 end
 else if(((disp_spd-s_hundreds-s_tens-s_ones) >= 16'h0099) && ((disp_spd-s_hundreds-s_tens-s_ones) < 16'h00B3))
//.6
 begin
 sp1 <= 4'd6;
 s_tenths <= 16'h0099;

 end
 else if(((disp_spd-s_hundreds-s_tens-s_ones) >= 16'h0080) && ((disp_spd-s_hundreds-s_tens-s_ones) < 16'h0099))
//.5
 begin
 sp1 <= 4'd5;
 s_tenths <= 16'h0080;
 end
 else if(((disp_spd-s_hundreds-s_tens-s_ones) >= 16'h0066) && ((disp_spd-s_hundreds-s_tens-s_ones) < 16'h0080))
//.4

 begin
 sp1 <= 4'd4;
 s_tenths <= 16'h0066;
 end
 else if(((disp_spd-s_hundreds-s_tens-s_ones) >= 16'h004C) && ((disp_spd-s_hundreds-s_tens-s_ones) < 16'h0066))
//.3
 begin
 sp1 <= 4'd3;

 s_tenths <= 16'h004C;
 end
 else if(((disp_spd-s_hundreds-s_tens-s_ones) >= 16'h0033) && ((disp_spd-s_hundreds-s_tens-s_ones) < 16'h004C))
//.2
 begin
 sp1 <= 4'd2;
 s_tenths <= 16'h0033;
 end

 else if(((disp_spd-s_hundreds-s_tens-s_ones) >= 16'h0019) && ((disp_spd-s_hundreds-s_tens-s_ones) < 16'h0033))
//.1
 begin
 sp1 <= 4'd1;
 s_tenths <= 16'h0019;
 end
 else//.0
 begin

 sp1 <= 4'd0;
 s_tenths <= 16'h0000;
 end

 //finally the s_hundredths
 if(((disp_spd-s_hundreds-s_tens-s_ones-s_tenths) >= 16'h0017) && ((disp_spd-s_hundreds-s_tens-s_ones-s_tenths) <
16'h0019)) //.09
 begin
 sp01 <= 4'd9;

 150

 //s_hundredths = 16'h0017;
 end
 else if(((disp_spd-s_hundreds-s_tens-s_ones-s_tenths) >= 16'h0014) && ((disp_spd-s_hundreds-s_tens-s_ones-
s_tenths) < 16'h0017)) //.08

 begin
 sp01 <= 4'd8;
 //s_hundredths = 16'h0014;
 end
 else if(((disp_spd-s_hundreds-s_tens-s_ones-s_tenths) >= 16'h0011) && ((disp_spd-s_hundreds-s_tens-s_ones-
s_tenths) < 16'h0014)) //.07
 begin
 sp01 <= 4'd7;

 //s_hundredths = 16'h0011;
 end
 else if(((disp_spd-s_hundreds-s_tens-s_ones-s_tenths) >= 16'h000F) && ((disp_spd-s_hundreds-s_tens-s_ones-
s_tenths) < 16'h0011)) //.06
 begin
 sp01 <= 4'd6;
 //s_hundredths = 16'h000F;
 end

 else if(((disp_spd-s_hundreds-s_tens-s_ones-s_tenths) >= 16'h000C) && ((disp_spd-s_hundreds-s_tens-s_ones-
s_tenths) < 16'h000F)) //.05
 begin
 sp01 <= 4'd5;
 //s_hundredths = 16'h000C;
 end
 else if(((disp_spd-s_hundreds-s_tens-s_ones-s_tenths) >= 16'h000A) && ((disp_spd-s_hundreds-s_tens-s_ones-
s_tenths) < 16'h000C)) //.04
 begin

 sp01 <= 4'd4;
 //s_hundredths = 16'h000A;
 end
 else if(((disp_spd-s_hundreds-s_tens-s_ones-s_tenths) >= 16'h0007) && ((disp_spd-s_hundreds-s_tens-s_ones-
s_tenths) < 16'h000A)) //.03
 begin
 sp01 <= 4'd3;
 //s_hundredths = 16'h0007;

 end
 else if(((disp_spd-s_hundreds-s_tens-s_ones-s_tenths) >= 16'h0005) && ((disp_spd-s_hundreds-s_tens-s_ones-
s_tenths) < 16'h0007)) //.02
 begin
 sp01 <= 4'd2;
 //s_hundredths = 16'h0005;
 end
 else if(((disp_spd-s_hundreds-s_tens-s_ones-s_tenths) >= 16'h0002) && ((disp_spd-s_hundreds-s_tens-s_ones-

s_tenths) < 16'h0005)) //.01
 begin
 sp01 <= 4'd1;
 //s_hundredths = 16'h0002;
 end
 else //.00
 begin
 sp01 <= 4'd0;

 //s_hundredths = 16'h0000;
 end
end

//setup program counter
reg [8:0] pc;
wire pause;
assign pause = 1'b0;
always @(posedge clk_1k or negedge reset_n)

 151

begin
 if(!reset_n)
 pc = 9'd0;
 else if(reset_n && pause)

 pc = pc;
 else if(reset_n && !pause && ready)
 begin
 if(pc == 9'd323)
 pc = 9'd48;
 else
 pc = pc + 1;
 end

 else
 pc = pc;
end

always @(pc, type, num, r100, r10, r1, rp1, rp01, sign, s100, s10, s1, sp1, sp01)
begin
 case(pc)
 //start function set

 0: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;
 end
 1: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;
 end
 2: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;
 LCD_E = 1'b0; //e-off

 end
 3: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;
 end
 4: begin

 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;
 end
 5: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;
 end
 6: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;
 LCD_E = 1'b0; //e-off
 end

 152

 7: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //hold data

 LCD_E = 1'b0;
 end
 //end function set
 //start display on/off
 8: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //load data

 LCD_E = 1'b0;
 end
 9: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;
 end

 10: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;
 LCD_E = 1'b0; //e-off
 end
 11: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;
 end
 12: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //load data
 LCD_E = 1'b0;

 end
 13: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //e on
 LCD_E = 1'b1;
 end
 14: begin

 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010;
 LCD_E = 1'b0; //e-off
 end
 15: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0010; //hold data
 LCD_E = 1'b0;
 end
 //end display on/off
 //start clear screen and return
 16: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //load data

 153

 LCD_E = 1'b0;
 end
 17: begin
 LCD_RS = 1'b0;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //e on
 LCD_E = 1'b1;
 end
 18: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010;

 LCD_E = 1'b0; //e-off
 end
 19: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //hold data
 LCD_E = 1'b0;
 end

 20: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1000; //load data
 LCD_E = 1'b0;
 end
 21: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b1000; //e on
 LCD_E = 1'b1;
 end
 22: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1000;
 LCD_E = 1'b0; //e-off

 end
 23: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1000; //hold data
 LCD_E = 1'b0;
 end
 //end clear screen and return

 //start entry mode set
 24: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //load data
 LCD_E = 1'b0;
 end
 25: begin

 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //e on
 LCD_E = 1'b1;
 end
 26: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000;

 154

 LCD_E = 1'b0; //e-off
 end
 27: begin
 LCD_RS = 1'b0;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //hold data
 LCD_E = 1'b0;
 end
 28: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0110; //load data

 LCD_E = 1'b0;
 end
 29: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0110; //e on
 LCD_E = 1'b1;
 end

 30: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0110;
 LCD_E = 1'b0; //e-off
 end
 31: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0110; //hold data
 LCD_E = 1'b0;
 end
 //end entry mode set

 //a
 32: begin

 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //load data
 LCD_E = 1'b0;
 end
 33: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0000; //e on
 LCD_E = 1'b1;
 end
 34: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000;
 LCD_E = 1'b0; //e-off

 end
 35: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //hold data
 LCD_E = 1'b0;
 end
 36: begin
 LCD_RS = 1'b0;

 155

 LCD_RW = 1'b0;
 LCD_OUT = 4'b1100; //load data
 LCD_E = 1'b0;
 end

 37: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1100; //e on
 LCD_E = 1'b1;
 end
 38: begin
 LCD_RS = 1'b0;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b1100;
 LCD_E = 1'b0; //e-off
 end
 39: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1100; //hold data

 LCD_E = 1'b0;
 end
 //end a
 //start b
 40: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //load data
 LCD_E = 1'b0;

 end
 41: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //e on
 LCD_E = 1'b1;
 end
 42: begin

 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000;
 LCD_E = 1'b0; //e-off
 end
 43: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0000; //hold data
 LCD_E = 1'b0;
 end
 44: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0001; //load data
 LCD_E = 1'b0;

 end
 45: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0001; //e on
 LCD_E = 1'b1;
 end
 46: begin
 LCD_RS = 1'b0;

 156

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0001;
 LCD_E = 1'b0; //e-off
 end

 47: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0001; //hold data
 LCD_E = 1'b0;
 end
 //end b

 //init done///

 //start of line 1//
 //start char 0
 48: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100; //load data

 LCD_E = 1'b0;
 end
 49: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100; //e on
 LCD_E = 1'b1;
 end
 50: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100;
 LCD_E = 1'b0; //e-off
 end
 51: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0100; //hold data
 LCD_E = 1'b0;
 end
 52: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = type;//4'b0000; //load data
 LCD_E = 1'b0;

 end
 53: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = type; //e on
 LCD_E = 1'b1;
 end
 54: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = type;
 LCD_E = 1'b0; //e-off
 end
 55: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = type; //hold data

 157

 LCD_E = 1'b0;
 end
 //end char 0
 //start char 1

 56: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;
 end
 57: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;
 end
 58: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;

 LCD_E = 1'b0; //e-off
 end
 59: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;
 end
 60: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = num; //load data
 LCD_E = 1'b0;
 end
 61: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = num; //e on
 LCD_E = 1'b1;
 end
 62: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = num;
 LCD_E = 1'b0; //e-off

 end
 63: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = num; //hold data
 LCD_E = 1'b0;
 end
 //end char 1

 //start char 2
 64: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;
 end
 65: begin
 LCD_RS = 1'b1;

 158

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;
 end

 66: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;
 LCD_E = 1'b0; //e-off
 end
 67: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;
 end
 68: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1010; //load data

 LCD_E = 1'b0;
 end
 69: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1010; //e on
 LCD_E = 1'b1;
 end
 70: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1010;
 LCD_E = 1'b0; //e-off
 end
 71: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b1010; //hold data
 LCD_E = 1'b0;
 end
 //end char 2
 //start char 3
 72: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0010; //load data
 LCD_E = 1'b0;
 end
 73: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //e on
 LCD_E = 1'b1;

 end
 74: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010;
 LCD_E = 1'b0; //e-off
 end
 75: begin
 LCD_RS = 1'b1;

 159

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //hold data
 LCD_E = 1'b0;
 end

 76: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //load data
 LCD_E = 1'b0;
 end
 77: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //e on
 LCD_E = 1'b1;
 end
 78: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000;

 LCD_E = 1'b0; //e-off
 end
 79: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //hold data
 LCD_E = 1'b0;
 end
 //end char 3

 //start char 4
 80: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //load data
 LCD_E = 1'b0;
 end
 81: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //e on
 LCD_E = 1'b1;
 end
 82: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0010;
 LCD_E = 1'b0; //e-off
 end
 83: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //hold data
 LCD_E = 1'b0;

 end
 84: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //load data
 LCD_E = 1'b0;
 end
 85: begin
 LCD_RS = 1'b1;

 160

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //e on
 LCD_E = 1'b1;
 end

 86: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000;
 LCD_E = 1'b0; //e-off
 end
 87: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //hold data
 LCD_E = 1'b0;
 end
 //end char 4
 //start char 5
 88: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0101; //load data
 LCD_E = 1'b0;
 end
 89: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0101; //e on
 LCD_E = 1'b1;

 end
 90: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0101;
 LCD_E = 1'b0; //e-off
 end
 91: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0101; //hold data
 LCD_E = 1'b0;
 end
 92: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0010; //load data
 LCD_E = 1'b0;
 end
 93: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //e on
 LCD_E = 1'b1;

 end
 94: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010;
 LCD_E = 1'b0; //e-off
 end
 95: begin
 LCD_RS = 1'b1;

 161

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //hold data
 LCD_E = 1'b0;
 end

 //end char 5
 //start char 6
 96: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100; //load data
 LCD_E = 1'b0;
 end

 97: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100; //e on
 LCD_E = 1'b1;
 end
 98: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100;
 LCD_E = 1'b0; //e-off
 end
 99: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100; //hold data
 LCD_E = 1'b0;

 end
 100: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1110; //load data
 LCD_E = 1'b0;
 end
 101: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1110; //e on
 LCD_E = 1'b1;
 end
 102: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b1110;
 LCD_E = 1'b0; //e-off
 end
 103: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1110; //hold data
 LCD_E = 1'b0;

 end
 //end char 6
 //start char 7
 104: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100; //load data
 LCD_E = 1'b0;
 end

 162

 105: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100; //e on

 LCD_E = 1'b1;
 end
 106: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100;
 LCD_E = 1'b0; //e-off
 end

 107: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100; //hold data
 LCD_E = 1'b0;
 end
 108: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0111; //load data
 LCD_E = 1'b0;
 end
 109: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0111; //e on
 LCD_E = 1'b1;

 end
 110: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0111;
 LCD_E = 1'b0; //e-off
 end
 111: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0111; //hold data
 LCD_E = 1'b0;
 end
 //end char 7
 //start char 8
 112: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;
 end
 113: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;
 end
 114: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;
 LCD_E = 1'b0; //e-off
 end

 163

 115: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //hold data

 LCD_E = 1'b0;
 end
 116: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101; //load data
 LCD_E = 1'b0;
 end

 117: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101; //e on
 LCD_E = 1'b1;
 end
 118: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101;
 LCD_E = 1'b0; //e-off
 end
 119: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101; //hold data
 LCD_E = 1'b0;

 end
 //end char 8
 //start char 9
 120: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;

 end
 121: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;
 end
 122: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;
 LCD_E = 1'b0; //e-off
 end
 123: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;
 end
 124: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = r100; //load data
 LCD_E = 1'b0;
 end

 164

 125: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = r100; //e on

 LCD_E = 1'b1;
 end
 126: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = r100;
 LCD_E = 1'b0; //e-off
 end

 127: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = r100; //hold data
 LCD_E = 1'b0;
 end
 //end char 9
 //start char 10

 128: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;
 end
 129: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;
 end
 130: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;
 LCD_E = 1'b0; //e-off

 end
 131: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;
 end
 132: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = r10; //load data
 LCD_E = 1'b0;
 end
 133: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = r10; //e on
 LCD_E = 1'b1;
 end
 134: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = r10;
 LCD_E = 1'b0; //e-off
 end

 165

 135: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = r10; //hold data

 LCD_E = 1'b0;
 end
 //end char 10
 //start char 11
 136: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //load data

 LCD_E = 1'b0;
 end
 137: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;
 end

 138: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;
 LCD_E = 1'b0; //e-off
 end
 139: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;
 end
 140: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = r1; //load data
 LCD_E = 1'b0;

 end
 141: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = r1; //e on
 LCD_E = 1'b1;
 end
 142: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = r1;
 LCD_E = 1'b0; //e-off
 end
 143: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = r1; //hold data
 LCD_E = 1'b0;
 end
 //end char 11
 //start char 12
 148: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //load data

 166

 LCD_E = 1'b0;
 end
 149: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //e on
 LCD_E = 1'b1;
 end
 150: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010;

 LCD_E = 1'b0; //e-off
 end
 151: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //hold data
 LCD_E = 1'b0;
 end

 152: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1110; //load data
 LCD_E = 1'b0;
 end
 153: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b1110; //e on
 LCD_E = 1'b1;
 end
 154: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1110;
 LCD_E = 1'b0; //e-off

 end
 155: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1110; //hold data
 LCD_E = 1'b0;
 end
 //end char 12

 //start char 13
 156: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;
 end
 157: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;
 end
 158: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;

 167

 LCD_E = 1'b0; //e-off
 end
 159: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;
 end
 160: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = rp1; //load data

 LCD_E = 1'b0;
 end
 161: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = rp1; //e on
 LCD_E = 1'b1;
 end

 162: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = rp1;
 LCD_E = 1'b0; //e-off
 end
 163: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = rp1; //hold data
 LCD_E = 1'b0;
 end
 //end char 13
 //start char 14
 164: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;
 end
 165: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;

 end
 166: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;
 LCD_E = 1'b0; //e-off
 end
 167: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;
 end
 168: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = rp01; //load data

 168

 LCD_E = 1'b0;
 end
 169: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = rp01; //e on
 LCD_E = 1'b1;
 end
 170: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = rp01;

 LCD_E = 1'b0; //e-off
 end
 171: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = rp01; //hold data
 LCD_E = 1'b0;
 end

 //end char 14
 //start char 15
 172: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0110; //load data
 LCD_E = 1'b0;
 end
 173: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0110; //e on
 LCD_E = 1'b1;
 end
 174: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0110;
 LCD_E = 1'b0; //e-off
 end
 175: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0110; //hold data
 LCD_E = 1'b0;

 end
 176: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101; //load data
 LCD_E = 1'b0;
 end
 177: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101; //e on
 LCD_E = 1'b1;
 end
 178: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101;

 169

 LCD_E = 1'b0; //e-off
 end
 179: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101; //hold data
 LCD_E = 1'b0;
 end
 //end char 15
 //end line 1/////////////

 //start go to line 2

 180: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1100; //load data
 LCD_E = 1'b0;
 end
 181: begin
 LCD_RS = 1'b0;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b1100; //e on
 LCD_E = 1'b1;
 end
 182: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1100;
 LCD_E = 1'b0; //e-off

 end
 183: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1100; //hold data
 LCD_E = 1'b0;
 end
 184: begin

 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //load data
 LCD_E = 1'b0;
 end
 185: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0000; //e on
 LCD_E = 1'b1;
 end
 186: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000;
 LCD_E = 1'b0; //e-off

 end
 187: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //hold data
 LCD_E = 1'b0;
 end
 //end go to line 2

 170

 //start of line 2/////////////////////////////////
 //start char 0
 188: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0101; //load data
 LCD_E = 1'b0;
 end
 189: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0101; //e on

 LCD_E = 1'b1;
 end
 190: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0101;
 LCD_E = 1'b0; //e-off
 end

 191: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0101; //hold data
 LCD_E = 1'b0;
 end
 192: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;
 end
 193: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;

 end
 194: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;
 LCD_E = 1'b0; //e-off
 end
 195: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;
 end
 //end char 0
 //start char 1
 196: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0101; //load data
 LCD_E = 1'b0;
 end
 197: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0101; //e on

 171

 LCD_E = 1'b1;
 end
 198: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0101;
 LCD_E = 1'b0; //e-off
 end
 199: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0101; //hold data

 LCD_E = 1'b0;
 end
 200: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //load data
 LCD_E = 1'b0;
 end

 201: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //e on
 LCD_E = 1'b1;
 end
 202: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0000;
 LCD_E = 1'b0; //e-off
 end
 203: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //hold data
 LCD_E = 1'b0;

 end
 //end char 1
 //start char 2
 204: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100; //load data
 LCD_E = 1'b0;

 end
 205: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100; //e on
 LCD_E = 1'b1;
 end
 206: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100;
 LCD_E = 1'b0; //e-off
 end
 207: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100; //hold data

 172

 LCD_E = 1'b0;
 end
 208: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100; //load data
 LCD_E = 1'b0;
 end
 209: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100; //e on

 LCD_E = 1'b1;
 end
 210: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100;
 LCD_E = 1'b0; //e-off
 end

 211: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0100; //hold data
 LCD_E = 1'b0;
 end
 //end char 2
 //start char 3
 212: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;
 end
 213: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;
 end
 214: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;
 LCD_E = 1'b0; //e-off

 end
 215: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;
 end
 216: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101; //load data
 LCD_E = 1'b0;
 end
 217: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101; //e on

 173

 LCD_E = 1'b1;
 end
 218: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101;
 LCD_E = 1'b0; //e-off
 end
 219: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101; //hold data

 LCD_E = 1'b0;
 end
 //end char 3
 //start char 4
 220: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //load data

 LCD_E = 1'b0;
 end
 221: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //e on
 LCD_E = 1'b1;
 end
 222: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010;
 LCD_E = 1'b0; //e-off
 end
 223: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0010; //hold data
 LCD_E = 1'b0;
 end
 224: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = sign; //load data
 LCD_E = 1'b0;

 end
 225: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = sign; //e on
 LCD_E = 1'b1;
 end
 226: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = sign;
 LCD_E = 1'b0; //e-off
 end
 227: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = sign; //hold data

 174

 LCD_E = 1'b0;
 end
 //end char 4
 //start char 5

 228: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;
 end
 229: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;
 end
 230: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;

 LCD_E = 1'b0; //e-off
 end
 231: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;
 end
 232: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = s100; //load data
 LCD_E = 1'b0;
 end
 233: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = s100; //e on
 LCD_E = 1'b1;
 end
 234: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = s100;
 LCD_E = 1'b0; //e-off

 end
 235: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = s100; //hold data
 LCD_E = 1'b0;
 end
 //end char 5

 //start char 6
 236: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;
 end
 237: begin
 LCD_RS = 1'b1;

 175

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;
 end

 238: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;
 LCD_E = 1'b0; //e-off
 end
 239: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;
 end
 240: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = s10; //load data

 LCD_E = 1'b0;
 end
 241: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = s10; //e on
 LCD_E = 1'b1;
 end
 242: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = s10;
 LCD_E = 1'b0; //e-off
 end
 243: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = s10; //hold data
 LCD_E = 1'b0;
 end
 //end char 6
 //start char 7
 244: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;
 end
 245: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;

 end
 246: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;
 LCD_E = 1'b0; //e-off
 end
 247: begin
 LCD_RS = 1'b1;

 176

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;
 end

 248: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = s1; //load data
 LCD_E = 1'b0;
 end
 249: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = s1; //e on
 LCD_E = 1'b1;
 end
 250: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = s1;

 LCD_E = 1'b0; //e-off
 end
 251: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = s1; //hold data
 LCD_E = 1'b0;
 end
 //end char 7

 //start char 8
 252: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //load data
 LCD_E = 1'b0;
 end
 253: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //e on
 LCD_E = 1'b1;
 end
 254: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0010;
 LCD_E = 1'b0; //e-off
 end
 255: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //hold data
 LCD_E = 1'b0;

 end
 256: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1110; //load data
 LCD_E = 1'b0;
 end
 257: begin
 LCD_RS = 1'b1;

 177

 LCD_RW = 1'b0;
 LCD_OUT = 4'b1110; //e on
 LCD_E = 1'b1;
 end

 258: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1110;
 LCD_E = 1'b0; //e-off
 end
 259: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b1110; //hold data
 LCD_E = 1'b0;
 end
 //end char 8
 //start char 9
 260: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;
 end
 261: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;

 end
 262: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;
 LCD_E = 1'b0; //e-off
 end
 263: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;
 end
 264: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = sp1; //load data
 LCD_E = 1'b0;
 end
 265: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = sp1; //e on
 LCD_E = 1'b1;

 end
 266: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = sp1;
 LCD_E = 1'b0; //e-off
 end
 267: begin
 LCD_RS = 1'b1;

 178

 LCD_RW = 1'b0;
 LCD_OUT = sp1; //hold data
 LCD_E = 1'b0;
 end

 //end char 9
 //start char 10
 268: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //load data
 LCD_E = 1'b0;
 end

 269: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //e on
 LCD_E = 1'b1;
 end
 270: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011;
 LCD_E = 1'b0; //e-off
 end
 271: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0011; //hold data
 LCD_E = 1'b0;

 end
 272: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = sp01; //load data
 LCD_E = 1'b0;
 end
 273: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = sp01; //e on
 LCD_E = 1'b1;
 end
 274: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = sp01;
 LCD_E = 1'b0; //e-off
 end
 275: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = sp01; //hold data
 LCD_E = 1'b0;

 end
 //end char 10
 //start char 11
 276: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //load data
 LCD_E = 1'b0;
 end

 179

 277: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //e on

 LCD_E = 1'b1;
 end
 278: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010;
 LCD_E = 1'b0; //e-off
 end

 279: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //hold data
 LCD_E = 1'b0;
 end
 280: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //load data
 LCD_E = 1'b0;
 end
 281: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //e on
 LCD_E = 1'b1;

 end
 282: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000;
 LCD_E = 1'b0; //e-off
 end
 283: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //hold data
 LCD_E = 1'b0;
 end
 //end char 11
 //start char 12
 284: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0110; //load data
 LCD_E = 1'b0;
 end
 285: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0110; //e on
 LCD_E = 1'b1;
 end
 286: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0110;
 LCD_E = 1'b0; //e-off
 end

 180

 287: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0110; //hold data

 LCD_E = 1'b0;
 end
 288: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1011; //load data
 LCD_E = 1'b0;
 end

 289: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1011; //e on
 LCD_E = 1'b1;
 end
 290: begin
 LCD_RS = 1'b1;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b1011;
 LCD_E = 1'b0; //e-off
 end
 291: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1011; //hold data
 LCD_E = 1'b0;

 end
 //end char 12
 //start char 13
 292: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0110; //load data
 LCD_E = 1'b0;

 end
 293: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0110; //e on
 LCD_E = 1'b1;
 end
 294: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0110;
 LCD_E = 1'b0; //e-off
 end
 295: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0110; //hold data
 LCD_E = 1'b0;
 end
 296: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101; //load data
 LCD_E = 1'b0;
 end

 181

 297: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101; //e on

 LCD_E = 1'b1;
 end
 298: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101;
 LCD_E = 1'b0; //e-off
 end

 299: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1101; //hold data
 LCD_E = 1'b0;
 end
 //end char 13
 //start char 14

 300: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //load data
 LCD_E = 1'b0;
 end
 301: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0010; //e on
 LCD_E = 1'b1;
 end
 302: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010;
 LCD_E = 1'b0; //e-off

 end
 303: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0010; //hold data
 LCD_E = 1'b0;
 end
 304: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1111; //load data
 LCD_E = 1'b0;
 end
 305: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b1111; //e on
 LCD_E = 1'b1;
 end
 306: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1111;
 LCD_E = 1'b0; //e-off
 end

 182

 307: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1111; //hold data

 LCD_E = 1'b0;
 end
 //end char 14
 //start char 15
 308: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0110; //load data

 LCD_E = 1'b0;
 end
 309: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0110; //e on
 LCD_E = 1'b1;
 end

 310: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0110;
 LCD_E = 1'b0; //e-off
 end
 311: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0110; //hold data
 LCD_E = 1'b0;
 end
 312: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1000; //load data
 LCD_E = 1'b0;

 end
 313: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1000; //e on
 LCD_E = 1'b1;
 end
 314: begin

 LCD_RS = 1'b1;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1000;
 LCD_E = 1'b0; //e-off
 end
 315: begin
 LCD_RS = 1'b1;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b1000; //hold data
 LCD_E = 1'b0;
 end
 //end char 15
 //end of line 2

 //start go to line 1
 316: begin
 LCD_RS = 1'b0;

 183

 LCD_RW = 1'b0;
 LCD_OUT = 4'b1000; //load data
 LCD_E = 1'b0;
 end

 317: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1000; //e on
 LCD_E = 1'b1;
 end
 318: begin
 LCD_RS = 1'b0;

 LCD_RW = 1'b0;
 LCD_OUT = 4'b1000;
 LCD_E = 1'b0; //e-off
 end
 319: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b1000; //hold data

 LCD_E = 1'b0;
 end
 320: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //load data
 LCD_E = 1'b0;
 end
 321: begin

 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //e on
 LCD_E = 1'b1;
 end
 322: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;

 LCD_OUT = 4'b0000;
 LCD_E = 1'b0; //e-off
 end
 323: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000; //hold data
 LCD_E = 1'b0;

 end
 //end go to line 1

 default: begin
 LCD_RS = 1'b0;
 LCD_RW = 1'b0;
 LCD_OUT = 4'b0000;

 LCD_E = 1'b0;
 end
 endcase
end

endmodule

top

 184

`timescale 1ns / 1ps
//
// Company: The University of Windsor
// Engineer (in training): Karl Leboeuf

//
// Create Date: 10:30:19 08/12/2011
// Design Name:
// Module Name: top
// Project Name: FMCW radar signal processing platform
// Target Devices: ML506 development board, MAX5885 EV DAC board, EVAL-AD7x76 ADC
// board; essentially the Xilinx Virtex 5, Maxim 5885 DAC, and
// Analog Devices 7276 ADC.

// Tool versions: Xilinx ISE 13.2
// Description: This design generates the beam switch control signals, DAC control,
// and captures data serially from the ADC. ADC data is windowed, run
// through an FFT, and analyzed to measure target velocity and range.
// This design supports three beams with exactly one target per beam.

//
// Dependencies: MATLAB code is used to generate a coefficients file for the

// window ROM; this 'coeffs.coe' file must be used by the core
// generator to setup the correct coefficients. Different windows
// can be used by changing these coefficients (as long as the window
// is symmetric).
//
// Revision 1.00 - (22/09/2011) Hardware tested and working with ADC board, unable
// to test with DAC board because the sub-1kHz sweep signal that
// must be generated cannot be measured on the DAC board's voltage
// output due to its transformer acting as a low-pass filter.

// Revision 0.90 - (01/09/2011) Design passes post-place-and-route simulation.
// Revision 0.01 - File Created
// Additional Comments: This version uses a 2048 point FFT and the Hamming window.
// Each beam has a cycle time of 2.048 ms, making for a total
// system cycle time of 3 x 2.048 = 6.144 ms. Data capture
// and data analysis is overlapped. This design uses a
// 100 MHz clock, however it may be possible to use a much
// slower clock if desired. Finally, it is important to note

// that the FFT does not make use of any scaling; full
// precision is preserved from the FFT on out. If some
// information regarding the signal's likely dynamic range is
// available this design could be scaled down radically by
// shortening many multipliers and registers from 24/48 bits
// down to perhaps as little as 8 or 10.
//
//

module top(
 input EXT_CLK,
 input EXT_RESET,
 input [2:0] BEAM_SHOW,
 input ADC_MISO,
 output [2:0] BEAM_SWITCH,
 output STATUS_OK, //status red LED; RED is GOOD in this case
 output [7:0] ADC_LED,

 output [3:0] LCD_OUT,
 output LCD_E,
 output LCD_RS,
 output LCD_RW,
 output [15:0] DAC_DATA,
 output DAC_CLK,
 output ADC_SCLK,
 output ADC_CS
);

 185

 //clock signals
 wire clk_100; //100 MHz clock, this is the buffered version of EXT_CLK
 wire clk_64; //64 MHz clock; output of DCM

 wire clk_64_inv; //inverted 64 MHz clock; output of DCM
 wire clk_48; //48 MHz clock; output of DCM

 //reset signals
 wire reset;
 wire secondary_reset; //this resets the circuits driven by the 64/48 MHz clocks; must be triggered after dcm lock
established
 wire reset_48; //reset signal synchronized to 48 MHz clock domain

 wire reset_64;

 //status signals
 wire dcm0_lock;
 wire dcm1_lock;
 wire dcm_ready;
 wire fifo_ready; //fifo ready comes on 256 clock cycles after dcm_ready
 wire ready_48; //fifo ready synced to 48 MHz clock

 wire ready_64;

 //other signals
 wire [11:0] adc_sample;
 wire adc_valid;
 wire [11:0] window_sample;
 wire [23:0] xk_re, xk_im;
 wire [10:0] xk_index;
 wire dv;

 wire [47:0] mag_sq;
 wire dv_delayed;
 wire max_valid;
 wire [19:0] max_bin; // [** CHANGED TO 16 BITS FROM 10 BITS]

 wire [12:0] target_abs;
 wire [15:0] target_pos; //changed to 10 bit from 16
 wire [7:0] unit_vel;

 wire [19:0] target_info;
 wire info_valid;
 wire valid_in;

 // [**** changed to 29bits from 16 bits]
 wire [28:0] b0t_range, b1t_range, b2t_range, b0t_speed, b1t_speed, b2t_speed;
 wire b0t_dir, b1t_dir, b2t_dir;

 //reset signal assignments
 assign reset = ~EXT_RESET; //my reset button is active-low, remove '~' if this is no longer the case
 assign secondary_reset = dcm_ready & ~fifo_ready; //secondary reset pulse is on while the fifo is resetting

 //ready signal assignemtns
 assign dcm_ready = dcm0_lock & dcm1_lock & ~reset;

 //output assignments
 assign STATUS_OK = fifo_ready;
 assign DAC_CLK = clk_64_inv;
 assign ADC_SCLK = clk_48;
 assign ADC_LED = adc_sample[11:4];

 //buffer the external clock input before sending it to the DCMs
 //this is also the source of our 100 MHz system clock

 186

 //note that this clock is not reset when the DCMs are reset
 IBUFG IBUFG_CLKIN (
 .O(clk_100), // 1-bit output Clock buffer output
 .I(EXT_CLK) // 1-bit input Clock buffer input

);

 //setup the 48 MHz clock for the ADC serial link
 clock_100_48 u0_clock_100_48 (
 .CLKIN_IN(clk_100),
 .RST_IN(reset),
 .CLKFX_OUT(clk_48),
 .CLK0_OUT(),

 .LOCKED_OUT(dcm0_lock)
);

 //setup the 64 MHz clock for the DAC interface
 clock_100_64 u0_clock_100_64 (
 .CLKIN_IN(clk_100),
 .RST_IN(reset),
 .CLKFX_OUT(clk_64),

 .CLKFX180_OUT(clk_64_inv),
 .CLK0_OUT(),
 .LOCKED_OUT(dcm1_lock)
);

 //syncrhonizer circuit takes the reset signal from the 100-MHz clock domain, and
 //synchronizes it to the 48 MHz domain; this is to avoid any metastability problems
 synchronizer u0_reset_48_synchronizer (
 .clk_in(clk_100),

 .clk_out(clk_48),
 .di(secondary_reset),
 .dout(reset_48)
);

 //synchronizer for the 48 MHz ready signal
 synchronizer u0_fifo_ready_48_synchronizer (
 .clk_in(clk_100),

 .clk_out(clk_48),
 .di(fifo_ready),
 .dout(ready_48)
);

 //syncrhonizer circuit takes the reset signal from the 100-MHz clock domain, and
 //synchronizes it to the 64 MHz domain; this is to avoid any metastability problems
 synchronizer u0_reset_64_synchronizer (

 .clk_in(clk_100),
 .clk_out(clk_64_inv),
 .di(secondary_reset),
 .dout(reset_64)
);

 //synchronizer for the 64 MHz ready signal
 synchronizer u0_fifo_ready_64_synchronizer (

 .clk_in(clk_100),
 .clk_out(clk_64_inv),
 .di(fifo_ready),
 .dout(ready_64)
);

 //instantiate the fft
 compute_fft u0_fft (
 .adc_valid(adc_valid),

 187

 .clk_100(clk_100),
 .clk_48(clk_48),
 .window_sample(window_sample),
 .reset(reset),

 .dcm_ready(dcm_ready),
 .fifo_ready(fifo_ready),
 .xk_index(xk_index),
 .xk_re(xk_re),
 .xk_im(xk_im),
 .dv(dv)
);

 //this module computes the magnitude squared output of the fft
 compute_mag_sq u0_compute_mag_sq(
 .clk_100(clk_100),
 .xk_re(xk_re),
 .xk_im(xk_im),
 .xk_index(xk_index),
 .dv(dv),
 .mag_sq(mag_sq),

 .dv_delayed(dv_delayed)
);

 //instantiate the CA_CFAR
 ca_cfar u0_cfar (
 .clk(clk_100),
 .reset(reset),
 .targA(mag_sq), // inA,inB, inC, inD are obtained from 4 different sqrt modules

 .targB(mag_sq),
 .targC(mag_sq),
 .targD(mag_sq),
 .start(dv_delayed),
 .target_abs(target_abs), // new target peak intensity
 .target_pos(target_pos), // new target frequency bin number
 .new_target(new_target),
 .start_cfar(start_cfar),

 .complete(complete)
);

 //instantiate the Peak_pairing procedure
 pairing u0_pairing(
 .clk(clk_100),
 .reset(reset),
 .new_target(new_target), // new target detected signal from CACFAR_32 module

 .target_abs(target_abs), // new target peak intensity
 .target_pos(target_pos), // new target frequency bin number
 .complete(complete), // CFAR completion signal
 .updown(updown), // updown = 1(0) during up(down) sweep sampling i.e. down(up) sweep processing
 .unit_vel(unit_vel), // vehicle velocity
 .target_info(target_info), // MSB -> 10 bits velocity, 10 bits range <- LSB
 .info_valid(info_valid) // target information valid signal to display unit
);

 //this module computes the range and velocity information for each beam
 compute_target_info u0_compute_target_info (
 .clk_100(clk_100),
 .reset(reset),
 .max_bin(target_info),
 .valid_in(info_valid),
 .b0t_range(b0t_range),
 .b1t_range(b1t_range),

 188

 .b2t_range(b2t_range),
 .b0t_speed(b0t_speed),
 .b1t_speed(b1t_speed),
 .b2t_speed(b2t_speed),

 .b0t_dir(b0t_dir),
 .b1t_dir(b1t_dir),
 .b2t_dir(b2t_dir)
);

 //instantiate the adc controller
 adc_control u0_adc (
 .clk_48(clk_48),

 .ADC_MISO(ADC_MISO),
 .reset(reset_48), //circuit has a synchronizer to bring the reset signal into its clock domain
 .ready(ready_48),
 .ADC_CS(ADC_CS),
 .adc_sample(adc_sample),
 .adc_valid(adc_valid)
);

 //instantiate the dac controller
 dac_control u0_dac (
 .clk_64(clk_64_inv), //inverted clock because the dac latches data on the rising edge
 .ready(ready_64),
 .reset(reset_64),
 .DAC_DATA(DAC_DATA)
);

 //instantiate the windowing circuit

 compute_window u0_window (
 .adc_valid(adc_valid),
 .clk_48(clk_48),
 .adc_sample(adc_sample),
 .reset(reset_48), //circuit has a synchronizer to bring the reset signal into its clock domain
 .ready(ready_48),
 .window_sample(window_sample)
);

 //instantiate the beam select controller
 beam_switch u0_beam_switch (
 .clk_48(clk_48),
 .reset(reset_48),
 .ready(ready_48),
 .BEAM_SWITCH(BEAM_SWITCH)
);

 //instantiate lcd driver
 lcd_driver u0_lcd (
 .clk_100(clk_100),
 .reset(reset),
 .ready(fifo_ready),
 .BEAM_SHOW(BEAM_SHOW),
 .b0t_range(b0t_range),

 .b1t_range(b1t_range),
 .b2t_range(b2t_range),
 .b0t_speed(b0t_speed),
 .b0t_dir(b0t_dir),
 .b1t_speed(b1t_speed),
 .b1t_dir(b1t_dir),
 .b2t_speed(b2t_speed),
 .b2t_dir(b2t_dir),
 .LCD_E(LCD_E),

 189

 .LCD_RS(LCD_RS),
 .LCD_RW(LCD_RW),
 .LCD_OUT(LCD_OUT)
);

endmodule

 190

VITA AUCTORIS

Sabrina Zereen was born in 1985 in Dhaka, Bangladesh. She passed her O’ Levels and A’ Levels from

Maple Leaf International School and worked there for a year as a teacher. She completed her Bachelors of

Science in Electrical and Electronic Engineering from American International University-Bangladesh

(AIUB) in 2008. She was employed as a lecturer in AIUB for two years before she applied for her

Masters in Applied Science at the University of Windsor. Her research interests include Field

programmable logic, Electronics, MicroelctromechanicalSystems (MEMS) and Digital signal processing.

Sabrina is a member of the MEMS Research Group, and a candidate for the degree of M. A. Sc. in

Electrical and Computer Engineering, under the supervision of Dr. Sazzadur Chowdhury, at the

University of Windsor (Ontario, Canada).

	University of Windsor
	Scholarship at UWindsor
	2013

	An FPGA Based Controller for a MEMS Tri-mode FMCW Radar
	Sabrina Zereen
	Recommended Citation

	tmp.1378733564.pdf.RVnpw

