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Abstract

Non-determinism features make the testing o f a concurrent program not repeatable. 

Specification-based reproducible testing is a promising technique that may give the tester 

more control over the environment of concurrent testing. With a given test case, the 

crucial part of the test scenario which contributes to achieving the control on the 

execution path are input events and path constraints in terms of synchronization events. 

The problem considered in this thesis is to generate a significant set of path constraints 

automatically from the design specification in terms of design abstract under the 

assumption that monitors are the key mechanism to handle the synchronization events. In 

addition, as a considerable feature, formal methods have been applied in the 

implementation tool to construct the path constraints.

Keywords: Non-determinism, Reproducible testing, Path constraints, Formal methods,

Structural Operational Semantics, Labeled transition systems. Automata theory.
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Chapter 1 Motivation

With the growing complexity of computation, concurrent software systems are 

becoming more prevalent. While concurrent programming has brought with it the power 

of processing multiple tasks simultaneously, it also has presented a lot o f challenges to 

software developers. One particular challenge is testing.

Software testing is the process of checking the functionality o f system 

implementations by making them execute under certain conditions. Such a process is 

usually performed either to detect possible deficiencies or to measure the reliability of the 

given implementations. Testing plays a vital role in the procedure o f software 

development, and is an important means for us to gain confidence in the quality of a 

software product. A bundle of well-defined techniques has been widely used for 

developing traditional sequential programs. However, it is far from simple to deal with 

the concurrent systems. The major difficulty comes from the characteristic of non­

determinism that is inherited by all concurrent programs. In particular, while it can be 

guaranteed that with fixed input the same output will be produced in the sequential 

programs, users of concurrent programs may get different results in every run, even with 

the exact same feed-in data. One reason for such an outcome is the existence of race 

condition that is introduced by the unpredictable executing rates o f different processes. 

The concept of a process is analogous to a thread in a multithreaded system. Since the 

speeds of these processes are not determined, multiple executions of a concurrent 

program may exercise different sequences of visiting shared variables and exchanging 

messages. Consequently, this feature of non-determinism makes the testing of a 

concurrent program non-repeatable. In other words, the tester o f concurrent programs 

may not have the chance to observe a certain erroneous phenomenon that occurred 

before. In addition, the tested program may exercise some identical path many times or 

never exercise some other feasible paths.
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1.1 Techniques for concurrent system testing

To deal with the problem of non-determinism, a lot of techniques that intend to 

enforce the under-testing concurrent program to follow certain execution paths artificially 

in order to reproduce the same testing phenomenon were proposed in recent years [3, 5, 

10, 11, 13, 32, 41, 42]. These techniques generally fall into two categories: debugging- 

related techniques and specification-based testing techniques.

1.1.1 Debugging-related testing techniques

To achieve the control of deterministic execution over non-deterministic programs, 

special debugging techniques can be applied.

Software debugging is a process different from testing. It aims at locating the 

causes o f some observed errors in a software program. Debugging a sequential program 

usually involves multiple iterations of the executions of a program, and on purpose, pause 

the execution at certain well-chosen points according to the user’s experience, in order to 

examine the current state. Similarly, a primitive way to debug a concurrent system is to 

re-execute the traced computation in a controlled fashion. However, manually inserting 

the control mechanism is not an efficient solution due to the extreme complexity in most 

of the concurrent systems. Therefore, rather than using traditional debugging tools, some 

other more sophisticated techniques were introduced in the past decade. For instance, a 

predicate control mechanism that allows computations to be run based on added 

synchronizations is presented by [36]. The idea of predicate control is to manage the 

program execution by artificially inserting synchronizations that do not violate the 

functionalities of the underlying program. With such predicates, particular executing 

orders can be ensured so that the goal of replaying can be achieved. An event-based 

approach for debugging is reported in [3]. This approach accomplishes the debugging by 

creating models of desired program behaviours and comparing these models with the 

actual behaviour of under-debugging systems.
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1.1.2 Specification-based testing techniques

Generally, software testing may be divided into two basic approaches: program- 

based testing and specification-based testing.

Testing based on program code itself is conducted in an intuitive way, and studies 

of such approaches, which are performed to testing concurrent programs, can be found in 

[14, 26, 44, 52, 57].

Specification-based testing is a totally different case. We need to gather the test 

input from the specification of a software system. As the foundation for testing, these 

specifications must be complete, precise and unambiguous, otherwise misinterpretation 

may occur and even a disaster of testing failure can possibly take place. Furthermore, 

these specifications must contain the correctness criterion that describes the expected 

system behaviours under every possible circumstance, where system behaviours are any 

observable activities during a system execution. One of the advantages brought by 

specification-based testing is that we are able to perform tests before the implementation 

is finished; possible deficiencies of specification may be found early, and test data can be 

generated independently from the concrete implementation. As a consequence, the test 

cost will be significantly reduced in terms of time and money.

Some discussions on specification-based testing have been investigated in [1, 40]. 

More specifically, to test a concurrent program, instead of simply using the model such as 

finite state machine, certain control or guidance is also needed [10, 11,13, 41,42].

1.2 Our problem

Due to the non-determinism of concurrent systems, testing is not simple to perform. 

Specification-based reproducible testing is a promising technique that employs a set of 

predefined control points that can be used to automatically handle the order of executions 

of each process. To gain desired control for reproducible testing, certain information 

called a test scenario has to be provided. Usually, a test scenario must include not only a 

test case but also a path constraint for this test case. For the sake of simplicity, we only 

consider non-distributed concurrent systems in this thesis work. Thus, the test case refers 

to only a sequence of inputs and expected outputs. In the present work, the test case is
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assumed to be given. On the other hand, the path constraint, which is the crucial part of a 

test scenario and contributes to achieving the control on the execution path, can be 

expressed as an order among some specific internal events.

Before introducing path constraints, a set of interested events has to be pre-defined. 

Since the prominent task of testing is to consider possible deficiencies of the underijdng 

program, the path constraints are very often designed to disclose the representative 

scenarios that may likely contain the bugs or errors. Due to the characteristics of the 

concurrent system, the interested events will be focused on those related to 

synchronization activities, for instance, accessing shared objects and coordinating 

between different process, and more detailed discussion can be found in [11].

In fact, it is observed that these synchronization activities represent the origin or 

cause of non-deterministic behaviour such that different outputs are produced with the 

same inputs. There are a number of mechanisms available for accomplishing the 

synchronization, some well-known ones of which are busy-waiting protocols, semaphore 

and monitor [2], Busy-waiting is an implementation of synchronization in which a 

process repeatedly examines a certain condition until it becomes true. The downsides of 

using busy-waiting protocols include; most of such protocols are quite complex; there 

lacks clear distinction between variables that are employed for synchronization and those 

that are used for program computation; and it is inefficient to apply the busy-waiting in 

most concurrent programs. A semaphore is a special kind of shared variable that allows 

only two atomic operations, p  and v. The atomic operation refers to a unitary operation 

that is essentially indivisible and unchangeable. The p  operation is applied to ensure a 

process can proceed only if  an event has occurred, while such event occurrences can be 

signaled by perform the v operation. However, semaphores are also a low-level 

mechanism and may introduce some errors when it is being applied. A monitor is a 

program module where at most one client may execute a routine of it at any given time. 

In this thesis work, the monitor is considered as the key mechanism to handle the 

synchronization mechanisms since it is more structured and efficient than the others, and 

is made available in a variety of concurrent programming languages.

Another important factor that may yield notable influence over the synchronization 

events is the timing of the input, since it is most likely in concurrent programs a sequence
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of input will be used to supply more than one process. Thus, to achieve the control over 

execution of concurrent programs, we must be able to determine the time of occurrences 

of those events including not only synchronization events but also input events. 

Therefore, each path constraint is a sequence of synchronization events and input events, 

which corresponds to the control points in the PUT. Finally, the control over pro^am  

execution can be obtained by adjusting the order of these control points.

One testing approach concerned with how such a control mechanism forces the 

Program Under Test (PUT) to execute exactly as the desired path according to the given 

input and path constraints was discussed in [10]. In particular, such control is 

accomplished by placing the PUT into a well-designed testing environment, suspending 

the execution at certain control points, and enabling message exchanging between the 

control mechanism and all the processes in the PUT in order to determine if the specific 

process should continue or wait until some specific events occur. These control points are 

the moments that occur immediately prior to or subsequent to the synchronization events, 

and the moments that occur immediately prior to or subsequent to the input events. Other 

approaches dealt with controlling such forced execution of concurrent programs that, via 

managing the run-time scheduler or debugger, can be found in [11, 32].

However, generating path constraints is difficult, expensive, and tedious. First of 

all, the specification of a software system may be imprecise, incomplete, and 

inconsistent. Second, very often, there are lack of some efficient and effective ways for 

deriving a control model in which contains the information of all path constraints from 

the given design specification. Finally, since such control models are usually huge, an 

appropriate method is desired to simplifying them without loosing any necessary 

mformation.

1.3 Contribution of Thesis Work

This thesis work involves a framework for automatically generating significant sets 

of feasible path constraints for reproducible testing from the design specification and the 

given test case.
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As a considerable feature, formal methods will be applied to construct the path 

constraints. Formal methods refer to mathematical-based techniques that can be applied 

to specify, develop and verify not only software but also hardware systems, and will be 

ftirther discussed in Chapter 3.1. Also, by assumption, we consider the PUT of a static 

set of processes and the design abstract of the PUT is provided in terns o f formal 

specification language process terms [35], where the details of process terms will be 

given in Chapter 3.4. Formal modeling language Labelled Transition System (LTS) is 

explored; and Structural Operational Semantics is used to systematically and 

automatically produce such an LTS which include necessary information to retrieve all 

feasible path constraints (a detailed introduction to LTS can be found in Chapter 3.2). 

Trace equivalence, which is a kind of equivalence relation between different states in the 

program computation, will be chosen to simplify the labeled transition system by 

ignoring irrelevant internal events and reserving only those labels o f the synchronization 

events and input events, and the trace equivalence is going to be introduced in Chapter 

3.3.

By surveying various related works, critical reviews and comparisons between 

those techniques and the present work have been made by this thesis. Based on the 

process terms and LTS discussed in the previous researches of Dr. Jessica Chen, an 

algorithm for generating an LTS model from the given design abstract in terms of process 

terms has been provided in this thesis. Meanwhile, the algorithms for simplifying such an 

LTS have been constructed according to the theory of Finite Automata. Besides, this 

thesis also gives the algorithm of deriving the desired path constraints for gaining control 

o f reproducible testing. With these algorithms, a tool for automatically generating 

significant sets of feasible path constraints has been implemented. Afterwards, 

experiments have been done, and the results of which proves the feasibility and efficiency 

of the proposed framework.

1.4 Structure of the thesis

The remainder of the thesis is organized as follows: Chapter 2 gives the overview 

and comparison of related works. Chapter 3 introduces the background of the techniques
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and some previous work that are going to be used in the implementation. Chapter 4 

illustrates the generation of LTS by an example application: producer and consumer 

problem. Chapter 5 discusses the implementation details of the proposed framework. 

Chapter 6 displays the evaluation of this implementation. Chapter 7 provides a 

conclusion and offers a discussion of future work.
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Chapter 2 Related works

This chapter reviews some of the important related works and approaches that 

concern the problems with reproducible testing. Studies on testing concurrent systems 

have drawn more and more attention from researchers during the past few years. Most of 

their work has been focused on monitoring or controlling the execution of the system in 

terms ofthe nondeterministic behavior [3, 5, 8,10,11, 13,28, 31, 32, 41,42].

Reproducible testing is an effective technique to enable deterministic testing for 

concurrent programs, which allows a specific test scenario to be replayed [41, 42, 43]. 

Usually, two important issues are considered while performing the reproducible testing: 

generation of the test scenario and realization of the desired execution, the focus of this 

thesis work will be limited to the former.

The traditional replay control techniques used to be the hot spot of concurrent 

program testing, and some of them have been introduced in [11, 32, 36]. With these 

techniques, a certain mechanism will be applied to record the internal choices that are 

related to the nondeterministic behavior of the PUT when the PUT is running with some 

inputs. Afterwards, the replay control mechanism can be used to force the PUT to execute 

according to the recorded choices. Such replay techniques are crucial for regression 

testing which is a testing that intends to re-test the unmodified functionalities in case 

some corrections or modifications for the PUT have been made. In contrast, reproducible 

testing does not necessarily need the PUT to be executed first in order to record the 

relevant messages to construct the controlled execution sequence. In other words, such an 

execution sequence can be acquired from a number of other sources such as requirement 

documents, design documents, and program codes (except from recording in the previous 

execution of PUT).

It is commonly believed by most researchers that both test case and the sequence of 

execution of events, in terms of statements, are needed to be taken into account while 

performing reproducible testing. More specifically, the considerations o f such execution 

events are focused on the sequences of concurrency-related statements [3, 5 ,10,11, 13,
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32] and remote method invocation involved statements [8, 10, 41, 43]. However, since 

distributed concurrent systems are beyond the scope of the present research, the 

sequences o f statements will be concerned only with respect to concurrency control in 

this thesis work.

Current approaches suggested by researches in the area of reproducible testing 

include test case generation for traditional systems [20, 38, 56], CSPE-based testing [13], 

state-based testing for CORBA applications [41], techniques for integrating formal 

method into reproducible testing [8], applications of labeled transition system for 

concurrent systems [49, 51].

2.1 Test case generation for traditional systems

Creating test cases, is laborious, high-priced, and annoying. The traditional way is to 

build an automatic generating tool. Generally, there are two kinds o f approaches for 

generating test cases: code-based and specification-based.

Code-based test case generation derives test cases from the actual code. Some of 

the methodologies that are used with code-based testing include statement coverage that 

requires all the statements in the PUT to be covered at least once, and branch coverage 

that requires all the branches of conditional statements to be covered at least once. One 

classical example of the code-based tool for generating test cases is a tool called Godzilla 

[15, 16]. Although code-based test cases are effective due to the fact that they concern 

the way the software is actually written, code-based test case generation has a major 

disadvantage: the tests are based on the real implementation which may not be coherent 

with the specified requirements.

On the other hand, specification-based test case generation extracts test case based 

on the specification of what the software is supposed to do. Since specification-based 

testing only considers an external view of the software, it is not necessary to cover all of 

the statements of the PUT. Approaches of specification-based test case generation often 

fall into three groups: model-based, algebraic and finite state machines-based. The finite 

state machine (also known d& finite state automaton) is a computational model consisting 

of a set o f states which include a start state, an input alphabet, and a transition function
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which maps input symbols and current states to some succeeding states. To provide some 

more robust test case generation methodologies, combinations of these techniques are 

most likely applied simultaneously. For instance, approaches introduced in [20, 56] have 

used algebraic specifications, model-based specifications, and finite state machines. A 

method introduced in [56] was intended to derive a Finite State Model that can be used to 

control the test process from specifications which are written in Z language. An approach 

to class-level test case generation from formal object-oriented specifications has been 

discussed in [20]. This approach first extracts a test mode!, which is a representation 

containing all the information to generate test cases from the design specifications. Such 

specifications are written in a language which includes an algebraic specification that 

consists of a number of functional modules and a set o f object information that identifies 

the class name, invariants, historical constraints, and methods of each class. Thus, the test 

cases can be selected based on the partitioned input space from the test model. Another 

example concerns about generating test case automatically from design specification was 

described in [38]. This generating method is based on a formal specification language 

called Structured Object-Oriented Formal Language (SOFL).

However, the techniques and approaches illustrated above concerned only test cases 

for traditional non-concurrent systems, whereas the present work considers the testing 

over concurrent systems. Meanwhile, in the present work, the test case is assumed to be 

given instead of being generated from specification.

2.2 CSPE-based testing

A specification-based methodology which was designed for the purpose of testing 

concurrent programs based on sequencing constraints named CSPE was presented in 

[13].

Events of synchronization (or SYN-events) and the sequence of such events (or 

SYN-sequence) were thought to be the key when analyzing the behavior of concurrent 

programs. The feasibility and validity of a SYN-sequence depends on the acceptance 

from the implementation and specification of the underlying program, respectively. Thus,

a synchronization fault is defined as either a feasible SYN-sequence of program with a

10
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certain input considered to be invaiid or a valid SYN-sequence of program with a certain 

input considered to be infeasible. In order to specify the sequencing constraints which 

are in harmony with the feasible SYN-sequences of a concurrent program, Constraints on 

Succeeding and Preceding Events {CSPE) has been defined. A strategy of generating 

such CSPE constraints automatically was proposed in [7, 12, 31]. In order to achieve 

more flexibility and expressiveness, these CSPE constraints is further abstracted by using 

strategies of equivalence, and only those observable events of program execution will be 

considered. Hence, the testing methodology proposed in [13] can be described as follows: 

first, derive a set of validity constraints in terms of CSPE constraints from specification 

o f PUT; second, execute the PUT repeatedly with same input in order to collect the 

exercised SYN-sequence, by which coverage can be measured and violations of PUT’s 

validity constraints can be detected; third, the deterministic testing, which involves 

forcing the PUT to execute with a specific input in harmony with a SYN-sequence, can 

be performed with the above-generated SYN-sequence; finally, possible constraint 

violations can be exposed if  such deterministic testing cannot cover a constraint.

In essence, CSFA'-based testing is a testing based on the specification in terms of 

Finite State Machine (FSM). Usually, the test generation criterion for an FSM  makes use 

of transition coverage which requires every transition in the FSM to be covered at least 

once. However, transition coverage is not strong enough to detect certain error states. 

Therefore, instead of using transition coverage, the C5HE-icoveragae criterion which 

requires each constraint to be covered at least once is employed for CSFA-based test 

generation.

Based on such CSPE constraints, the sequence of the test can be either produced 

manually, or derived automatically from system specifications that are modeled with 

FSM. To automatically generate the test sequence, a strategy was presented in [31]. In 

particular, a weighted directed tree representation called a constraint tree is used in 

generating the test sequence. In the constraint tree, each node represents a constraint, and 

it is referred to as valid or invalid according to the validity of its labeled constraint. 

Directed edges between nodes denote the order of the corresponding constraint events. 

Hence, any path on the constraint tree indicates a test sequence. The step after the 

generation of the constraint tree is to select a minimum set of test sequences, in which
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the calculation upon every possible combination of nodes will be performed. This 

guarantees that every constraint is covered at least once in a test sequence. By marking ail 

the nodes in each combination and getting the maximum path which includes all the 

marked nodes and ends with a marked node, a set of test sequences which all confonn to 

the CSPE-1 coverage criterion wilt be produced.

There are a number of common features between such CSPE-hasQd testing and the 

present work. For example, both are specification-based and both take into account the 

synchronization events. However, significant differences also exist. Comparatively, the 

Labeled Transition System is used as the means to generate the path constraints in the 

present work while the constraint tree is employed to derive the test sequences in the 

work of [31]. Meanwhile, while the testers have to specify the restrictions on the allowed 

sequences of synchronization events with the testing methodology based on the use of 

CSPE constraints, the path constraints in the present work are derived directly from the 

given design abstract by generating a Labeled Transition System that contains all possible 

serialization of the synchronization events. Furthermore, applying the CSPE-1 coverage 

criterion in CSBE-based testing is due to the fact that a CSPE constraint contains only a 

temporal property and therefore lacks an efficient method to discover all possible 

serializations of the synchronization events that satisfy the given set of constraints. In the 

present work, some general coverage criteria such as state coverage criterion or edge 

coverage criterion can be applied to generate possible paths.

2.3 State-based testing for CORBA applications

Unlike the control structure based testing that was discussed in the last section, a 

state-based reproducible testing described in [30, 41, 42, 43] is capable o f handling the 

complexity caused by the introduction of object-oriented structure and middleware 

technologies in the component-based software.

A state machine model which is based on the formalism of statechart is presented 

as the basis of the approach in [41], The characteristics of statechart benefit this state 

machine model to deal with the concuixent, hierarchical and communicating problems of 

component-based distributed systems. One advantage of using statechart formalism is a
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MerarcMcai feature allowing a set of states, which has the same meaning, to be replaced 

by one new state with some related transitions that are possibly guarded by certain 

conditions. Therefore, the state number in the new derived state machine will be reduced 

dramatically. Essentially, during the concurrent execution of component-based software, 

each method in the components may non-deteoninistically alter the state of the system. 

There are two types of state machines that are used to model the behavior of the PUT. 

The first one is the atomic state machine (ASM) which is employed to describe the state 

behavior for a single shared variable. The second type is the composite state machine 

(CSM) that is used to characterize the situation whereby a program involves more than 

one shared variable. For the state dependent behavior of a concurrent CORBA (Common 

Object Request Broker Architecture) implementation, such a set offinite state machines 

is defined for a set of interesting shared variables which are conveyed either in IDL or in 

the global declaration part.

When the construction of a state machine (CSM) for modeling the PUT is 

completed, a set of test sequences can be generated by building the test tree [30, 43]. To 

generate the test tree, the set of initial states that comes from each ASM  in the CSM is 

used as the root node of the test tree. From the root node, a number o f branches can be 

added according to all the alternative transitions that are all valid outgoing transitions 

from the root. Afterwards, a replay mechanism is used for a selected test sequence of a 

CORBA implementation. This replay mechanism is designed to perform the deterministic 

execution of a CORBA program in order to test such program based on a specific 

expected state behavior of the program. Since the PUT is actually a distributed concurrent 

program, the generation of the alternation of remote method invocation has also been 

considered.

With such a state-based testing approach, a state behavior error of a component- 

based program can be examined dynamically and deterministically. However, this 

approach did not take formal methods into account, whereas the introduction of formal 

methods is one of the prominent features of the present work. Meanwhile, this approach 

did not consider the different serializations of program execution based on 

synchronization events. As for the distributed concurrent systems, this testing approach
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concerned remote method invocation activities in the mechanism of replay while the 

distributed characteristics are not considered in the present work.

2.4 Integration of formal method with reproducible testing

As mentioned in an earlier context, formal methods will be introduced as an 

important feature in the present work. In fact, the integration of formal methods with 

reproducible testing has also been explored by [8].

The PUTs considered in [8] are those middleware-based distributed concurrent 

systems. As discussed in Section 23 , unlike testing a non-distributed concurrent program 

where all the processes reside locally, the remote method calls of a distributed system 

bring the extra challenge to the control mechanism of testing. For instance, the 

middleware CORBA may use one of the following thread models to manage the 

incoming method call inside the server: (1) a specific thread will be created to deal with 

each single remote call; (2) a specific thread will be created to deal with a number of 

remote calls on one particular object; and (3) a pool of threads will be created to deal 

with all the incoming method calls. In this case, traditional test control techniques which 

only focus on the synchronization matters are not able to handle, and may even add the 

new deadlock into the execution of the PUT. Therefore, according to the features of the 

distributed system, not only the order of synchronization events and input events but also 

the order of remote method calls has to be taken into account for the test control 

mechanism.

A static analysis technique was proposed in [8] to construct a test model in terms of 

finite automata for the distributed concurrent PUTs. Such a test model considers two 

kinds of events: synchronization events and remote call events. For each kind of event, 

both request points and completing points will be examined. In particular, an event is 

represented in this test model by a 7-tuple which includes the information about the 

originate process, target process, the object on which the calling method resides, the type 

of the event, and so on. The test constraint is expressed by the happen-before relation, for 

instance, ei -> where ei, ea represent events. It is assumed that the test constraint 

which concerns these synchronization events and remote method call events is given in a
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formal presentation. Meanwhile, this given formal presentation provides a binary relation 

which describes not only the test constraints but also the relationship between each 

synchronization event and its corresponding remote method call events in case that 

CORBA middleware is used for the process coirammications, and a fimction for 

determining the maximum number of threads in the thread poo! of a specific process if 

the third thread model is used. Based on this information, finite automaton that contains 

all the possible execution paths of PUT can be defined. Since such automation 

constructed from test constraints most likely contains certain deadlock states, an 

algorithm is also given to derive the above automation to a new deadlock-free automation 

called test model by removing those states that may lead to the deadlock state. Thus, such 

a test model can be used by the test controller in reproducible testing for middleware- 

based PUTs to make a decision on whether or not to allow a request for remote method 

invocation or for shared object accessing. Moreover, this test model guarantees the test 

procedure will never introduce any new deadlock state.

The techniques presented in [8] appear in a lot of places similar to the present work. 

First of all, both of them utilize the formal methods. Second, constructing the test model 

in [8] and generating the control model in present work are all by performing the static 

analysis based on some given information, for instance, design abstracts in the present 

work. Finally, they both consider the synchronization events as the interested events. On 

the other hand, the major difference between them is that the main purpose of the test 

model in [8] is to force the PUT to execute according to the given test constraints (or path 

constraints) and guarantee that no new deadlock can be introduced; whereas the present 

work considers the generation of path constraints.

2.5 Applications of labeled transition system for concurrent systems

As mentioned in the first Chapter and Section 2.4, a labeled transition system (LTS) 

will be employed in the present work as the major means to generate the path constraint.

In fact, LTS has been applied as a well-defined model for concurrent systems over the 

past 20 years. Meanwhile, a great deal of formal literatures has taken into account the use 

(sfLTS to conduct testing; also, an annotated bibliography was presented in [6]
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Conformance testing involves systematically testing the behavior o f  a software 

system based on its specification while not having the knowledge of its internal structure. 

Traditionally, conformance testing is also called black box testing or fiinctionai testing. 

One example to demonstrate the integration of conformance testing and LTS  is given in 

[49, 51]. The ideas and experiences to support such integration are also presented in [25, 

46, 47, 50]. On the other hand, the testing theory of UTS's was not originated with the 

system specification before. In fact, testing with LTSs, used to be involved with modeling 

implementations to a transition system and determining the equivalence between the 

constructed model and the original implementation by examining whether the observation 

made by testing such a model with a set of given test cases is the same as the observation 

made by testing the real implementation. To fill such a gap, a framework for using formal 

methods in conformance testing was presented in [27, 49, 52]. A variety o f concepts used 

in the procedure of formal conformance testing were provided at a high level abstraction 

in this framework. At the same time, a formal structure was defined in such a framework 

that reasoning about the testing became possible. Essentially, such a framework enhanced 

the formalism of the testing process, and bridged the informal part of testing such as 

implementations with the formal part including specification and models. With this 

framework, the implementation relation is defined by using such an observational 

framework and instantiating it with LTS. Consequently, the functional behavior of an 

implementation can be tested with regard to a formal specification. For instance, an loco 

testing, which stands for input/output conformance testing, discussed in [46] requires the 

specifications to be given in terms of LTSs or other formal language with LTS  semantics. 

Meanwhile, it is assumed that the implementations can be modeled by so-called input- 

output transition systems in which the idea was inherited from Input/Output Automata 

[33], One test derivation algorithm introduced in [49, 51] was designed to derive the test 

cases from such formal specifications. The soundness of these derived test cases has been 

discussed in [48].

The LTSs in above-mentioned works are applied to express the allowed behavior of 

the system with possible inputs and outputs. Correspondingly, the labels in a LTS are 

grouped into two categories: labels concerned with inputs and labels concerned with

outputs. In this case, one classical assumption about complete testing, which considers all
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possible execEtion paths to a specific test case in the implementation will be exercised 

after performing the testing with such a test case a certain number o f times, are often 

applied. However, the situation is different in the present work since certain control 

mechanisms are used to gain control over the internal choice with reproducible testing 

rather than relying on the complete testing assumption. Furthermore, the LTS is employed 

in the present work to describe the allowed behavior with given input in order to derive 

the test model which contains all the path constraints instead of generating test cases.

17
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Chapter 3 Background and previous works

As mentioned in the first Chapter of this thesis, a variety of techniques are 

employed in the implementation for constructing the path constraints. Such techniques 

include formal methods, Labelled Transition System (LTS), and trace equivalence, ail of 

which are presented in detail in this Chapter. Furthermore, when applying such 

background knowledge to the work of implementing a tool for generating path 

constraints automatically, it is important to introduce some previous works that have 

been done by Dr. Jessica Chen [9]. These works include facilitating a specific format of 

process terms that will be used to construct the design abstract of the Program Under Test 

(PUT), giving a case of applying LTS, and defining a number o f rules for generating the 

LTS.

3.1 Formal Methods

A pplying/om a/ methods is one of the prominent features of this implementation. 

Since mathematics has been introduced as the major feature of formal methods, these 

methods are empowered to handle the complexity of various modelling tasks [25, 27, 45, 

50, 51],

Traditionally, specification of a software system is written in some natural 

languages such as the English language. As mentioned earlier in this Chapter, the 

specification can be used as the basis of testing. However, problems such as 

impreciseness, incompleteness, inconsistency and ambiguity of specification, which are 

caused by either human error or lack of experience, may occur frequently. These 

problems can not only impose such difficulties as being unable to determine the objective 

of underlying testing while generating the test case, but also render problematic task of 

analyzing the test result in terms of uncertainty of some particular issues, for example, 

suspected errors. Applying the formal methods to system specification brings an 

opportunity to figure out the above-mentioned problems. In a manner, the testing
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requirements and design intentions in a specification will no longer require abstrose 

interpretation since the formal expressions are precise and consistent enough to be 

understood without equivocality by both software developers and software testers.

Furthermore, the application of formal methods enables the specification to be 

conveyed in a more detailed manner. Since the preciseness and completeness of 

specification are ensured by using formal methods, the possible independent decisions 

made by programmers can be greatly minimized. Therefore, a common problem during 

the software development procedure that the implementations may be improper, 

inadequate and not harmonious with the original purpose of the designer can be solved. 

Due to such a fact, right after the process of software design in terms of specification is 

finishing, the activity of testing can start immediately at the same time of programming 

instead of being delayed until the actual implementation is completed. Consequently, 

possible ambiguity, inconsistency and incompleteness can be found early during the 

development process which is one o f major benefits of applying the formal methods and 

can greatly lower the developing cost.

Another fascinating advantage o f applying methods is that the automation of

testing can be accomplished. Testing in many cases is not simple due to the excessive 

complexity of real world applications. It is not surprising that testing may become a 

laborious, time-consuming and error-prone process in most situations. In fact, testing in 

the developing cycle always consumes a major portion of the funding. A sound solution 

to accommodate this problem is to introduce the automation into testing. It is not hard to 

imagine that by making the testing process automatic, the efficiency either on the issue of 

speed or resource consuming will highly enhanced. On the other hand, the error caused 

by human imperfection can be mainly eliminated by performing the testing routine 

automatically. Moreover, the testing process will become more reproducible if  it can be 

executed without human interference and interpretation. Since the preciseness, 

completeness and unambiguity of specification by using formal methods can be 

guaranteed, and formal language instead of natural language is employed to express the 

specification, the specification is qualified to be a good basis of testing and manageable 

by well-defined tools. As a consequence, more automation of testing can be brought out.
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Some good experiences of saccessMly using formal methods in software 

engineering are reported by [18,19, 24,29].

In recent years, formal methods were adopted more and more in software 

engineering. PROMELA is a formal language that is frequently used for communication 

protocol modelling which was introduced in [22]. Usually, PROMELA is ¥/orking with 

SPIN as its input language and tlie latter serves as a model-checking tool for the formal 

verification of distributed systems. Another important formal language is Z which is 

based on Zermelo-Fraenkel set theory and first order predicate logic [39]. These two 

languages are employed in the work of [18, 29] to describe the formal specifications.

Other formal methods have been developed including those for SDL (Specification 

and Description Language) [36], for Abstract Data Type specification [17], for FSM 

(Finite State Machines) [34], and for LOTOS (Language of Temporal Ordering 

Specifications) [4]. In this thesis work, the formal methods of choice are process algebra 

and Labeled Transition System which is going to be discussed in detail later on (see 

Section 3.2).

3.2 Labelled transition system

As one of the formal methods, the labelled transition system is an important 

modeling language [35,46,47, 53], and it is also used as the basic semantics for LOTOS.

A labelled transition system (LTS) is a quadruple <State, L a b e l , So>, where

- State is a set of states during the execution of the process;

- Label is a set of labels displaying the information about the state conversion;

- c  State X Label x State is a set of transitions that demonstrates the message of

system evolution.

- So e  State is the initial state of the process.

The behaviour of a process can be modelled by an LTS. Each LTS starts from an 

initial state which is a special state without any pre-state. Any states in the LTS can be 

reached from the initial state via a number o f transitions. Each transition consists of three 

factors: s and s ’ e  State which represents start state and end state o f the transition.
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respectively, and / e  Label which shows the information of the state change. Hence,
I

(s j.s ’) € -> (or expressed as 5 represents a transition in which the state of

process will evolve from state s to state s’, and the message involving such evolution is

contained in label I.

There are basically two types of transitions in the LTS: those introduced by visible 

actions and those introduced by invisible actions. The latter are actions occurring in the 

process computation and indeed lead to no state change or invisible state change. Such an 

action is also called internal action or silent action due to the fact that it is invisible to 

observers. A special symbol j  is given to represent this kind of actions. Although t  

actions are less significant factors in the LTS and finally the detail of such internal 

communications will be abstracted away, it is indispensable while a valid labelled 

transition system is being constituted.

Any transitions which are induced by the visible actions may be blocked by the 

execution environment whereas the invisible action x will never be blocked. The 

mechanism to achieve such controls will be discussed in later Chapters. Therefore, once 

the process has made a decision to choose a particular transition, whenever it is not 

blocked by the underlying environment, the process will be allowed to forward to another 

state. LTS can model the process computation as sequences of transitions. Most likely, the 

execution of a process may contain an infinite number of transitions.

Again, for simplicity, we only consider the finite execution, which means such an 

execution will always reach an end after a certain number of transitions. The LTS which 

models the behaviour of the processes can be represented as a graph. In such a graph, the 

nodes are used to represent states of the process, and the edges are used to represent 

events (or transitions). These events (or transitions) usually bring out the conversion of 

the states, and the names of events are labelled on the edges.

3.3 Equivalence relations

Since the transitions in the derived LTS may contain a large number of % transitions 

which are irrelevant to the desired control model, the LTS has to be further simplified by 

removing such t  transitions.
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To fulfill such simplification, an appropriate equivalence relation must be chosen. 

In fact, a lot of equivalence notations have been applied and can be found in the literature 

[21, 35, 37, 53, 54]. Such equivalence relations include trace equivalence, bisimilation, 

and testing equivalence. Bisimilation and testing equivalence are somewhat strict 

relations while determining the equivalence, and strong bisimilation which is one type of 

bisimilation even takes consideration of the interna! action % as other visible actions. Due 

to the purpose of our testing control tool, it is not necessary for such a tool to distinguish 

either the program state or the set of possible next actions of the program. Therefore, 

trace equivalence, which is considered as the simplest equivalence concept, is sufficient 

to perform the task of simplification.

Commonly, a trace of a process is referred to a sequence of actions that such a 

process can execute. Thus, two states p  and q in the program computation are considered 

to be trace equivalent if  for all sequences of actions w, the succeeding state of state p  is 

an accepting state if  and only if  the succeeding state o f state q is an accepting state, where 

the accepting state means the final state of the program computation [23].

(a)

Figure 1; Hlnstration of Trace Equivalence

To illustrate, we can consider the graphs in Figure 1. It is quite obvious that there 

are 2 traces (or sequences o f actions) (ab, ac} from the state represented by the top node 

to the accepting states in the (a) graph, whereas the traces from the top node of (b) graph 

to the accepting states are (ab, axe). Since the internal action x is not observable, such
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traces can be simply ignored. Hence, the traces of Figure 1 (b) are actually {ab, ac}, too. 

According to the definition, two states expressed by the top nodes in these two sub­

graphs are trace equivalent since for all traces ab and ac, both of these two states can 

reach the accepting states.

3.4 Process terms

Beyond such important background knowledge stated above, it is essential to 

introduce some previous works discussed in [9]. These works, which include facilitating 

a specific format of process tem s that will be mentioned in this section, giving a case o f 

LTS and defining a number of rules for generating the LTS that are going to be discussed 

in next section, are considered as the basis of the implementation provided in this thesis 

work.

To model the behaviour of PUT, an efficient and effective method is necessary. One 

specification language, process terms, is such a suitable candidate to express the design 

specification of a software system. In fact, such process terms are based on the process 

algebra which is an algebraic approach to the study of concurrent processes [35].

As mentioned earlier in Chapter 1, a process is conceptually equivalent to a thread 

in a multithreaded system. The executions inside a process are considered only to be 

sequential, and a set of these processes consists of the entire program. For simplicity, the 

implementation tool concerns only static processes. In other words, we do not consider 

the situation in which new processes will be produced dynamically during the execution 

of the program. A process term describes the state of the behavior of a process at one 

particular moment, and the combination of a set o f process terms is applied to express the 

state of the behavior o f the whole system.

Generally, two tjpes of synchronization controls are concerned in the concurrent 

systems: to guarantee the mutual exclusion and to realize the process coordination. The 

monitor is assumed as the key mechanism to handle the synchronization activities in this 

thesis, and each of which provides following functionality:

® Each monitor maintains a lock and a queue for this lock. The lock is used to 

ensure the exclusive access to the critical sections, and the lock queue is
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employed to contain a sequence of processes that intend to access the critical 

section protected by such a monitor.

® Two operations wait and notify can be performed on the monitors in order to 

accomplish the coordination and cooperation among various processes. Monitors 

may have condition variables, on which a process can execute wait to give up the 

lock and put itself into the waiting queue of this monitor if conditions are not right 

for it to continue executing. A process will not be able to continue its execution 

when it waits in the monitor-waiting queue. Later on, another process may 

execute notify to wake up and remove the first process in the waiting queue of a 

monitor if such a queue is not empty. The awakened process will be re-enabled 

for its execution and compete with others for the lock of this monitor. One 

additional operation notify All, which is a special case o f notify operation and 

wakes up all the waiting processes in the queue instead of only the first one, will 

also be considered here.

By assumption, it is given that a set V of variables, a set MID of monitor identifiers 

where MID c  N that indicates ail the monitor identifiers must be non-negative integers, 

and the same is true for a set PID of process identifiers where PID c  N.

The following BNF (or Backus Naur Form, which is a formal notation to describe 

the syntax of a given language) gives the structure of a process term p:

p = stop I s; p

s = X := e I if c then qi else qa j while c do q j input(x) | lock( m, q ) | 

wait ( mi, mi) | notify ( m ) | notifyAll( m )

q = s I s;q

where x € V indicates that x is one of the variables in the set V; m, mu m2 e  MID 

which indicates that m, M] and m2 are monitor identifiers; 5  represents a statement which 

indeed can be considered as a type of design abstract rather than the actual program code; 

q, qu and are intermediate sequence of statements; and c is a Boolean expression over 

V.

Intuitively, the first equation claims that a process term consists of either a stop, 

which is a special statement that indicates the action of ending the process execution, or a
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statement s followed by the rest of this process term p. In other words, a process terai is 

built up from a set of statements incliiding stop.

The second equation in the above BMP defines that a statement s may be one of the 

following eight formats:

- x:~e: is an arithmetic assignment operation, where e is an arithmetic expression 

over V which indicates that each variable must have already been defined in V if it 

appears in the e.

- i f  c then qi else qj-. is a two-armed conditional expression, which means as long as 

the condition c is satisfied, the statement segment qi will be executed; otherwise, 

the statement segment q2 will be executed. In particular, a one-armed conditional 

expression, in which the segment qi or q2 may be empty, is also a legal format of 

the statement.

- While c do q: is a. repetition structure, which means as long as the condition c is 

satisfied, the statement segment q will be executed repeatedly.

- Input(x): means to get the value from the sequence of input which will also be 

given, and assign this value to the variable x.

- Lock (m, q): means that the monitor m is applied to ensure the mutual exclusion of 

the execution of statement segment q of the process.

- Wait (mu m2): means the action of releasing the occupied lock on monitor mi and 

putting the current running process on the waiting queue of monitor m2 ; later on it 

will re-acquire the lock of monitor mj after it is woken up by another process.

- Notify (m): means the action of waking up and removing the first process on the

waiting queue of monitor m.

- NotifyAU( m ): means the action of waking up and removing all the processes on 

the waiting queue of monitor m.

The third equation in the above BNF indicates the structure o f segment q. The 

segment q can either be a statement or a statement followed by the rest o f segment q. In 

other words, the segment q is made up of a sequence of statements.
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3.5 Structural operational semantics and the structural rules

As mentioned earlier in Chapter J, the present work considers that the structural 

operational semantics is used to systematically and automatically produce the Labelled 

Transition System which includes necessary information to retrieve all feasible path 

constraints, and a brief introduction of LTS is given in Section 3.2. From the design 

abstracts, which are constructed by process terms introduced in last section, a specific 

case of LTS has to be applied, and certain rales are indispensable for generating such a 

LTS [9].

3.5.1 A case application of LTS

It has already been defined in Section 3.4 that Lis a set of variables, MID is a set of 

monitor identifiers, and PID is a set of process identifiers. Now, let I  represent the set of 

sequences o f input values, T  represent a combination of the set o f input values and the set 

of variable values, and P  represent the set of process terms over MID and V. This means 

such process terms will alter the state of PUT according to the status of certain monitors 

and variables. E c  V F indicates the mapping from variables defined in set V to their 

values contained in set F; L c  MID —» {true, false} indicates the set of monitors along 

with their lock status, where value true denotes that the lock of this monitor is occupied 

by a process, and value false denotes that the lock of this monitor is currently available; 

Q c  MID FID* indicates the mapping from the monitors to a sequence of processes 

that are currently waiting in the waiting queues of such monitors, where PID* represents 

a sequence of 0 or more process identifiers; and PR c  indicates the set o f states of

the process which possibly contains elements.

Thus, the definition of LTS specified in Section 3.2 can be applied as the following

case;

A labelled transition system {LTS} is a quadruple <State, L a b e l ,s O > , where
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" State c I x E x L x Q x PR, which means the state has to contain the inforaiation 

including a sequence of input values, the mapping from variables to their values, the 

locking status of all monitors, the status of monitor waiting queue, and the status of 

processes, from set I, E, L, Q, and PR, respectively;

- Label c (P ID  x (lock, wait, notify} xMID) u  (PID x {input}) u  {%}, which 

indicates only two types of events: synchronization events and input events, which 

are considered to be the content of a label as mentioned earlier, and internal events x 

in which is only used for the computation and will be removed afterward;

- — State X Label x State is a set of transitions with its actions described by

labels.

- sO £ State is the initial state of the processes.

By assumption, the test case will be given as mentioned in Chapter 1. Such a test 

case is made up of two parts: an input sequence and an expected output. Thus, the input 

sequence contained in the system states of LTS can be derived from the given test case by 

taking away the part of output. In fact, the input is one of the key points for constructing 

LTS and the control models since the latter ones will most likely differ from each other 

due to different inputs. Since the program may consist of more than one process, the 

status of all such processes must be included in the state of LTS, and each process has to 

be marked by its process identifier which uniquely distinguishes it from other processes 

in the program. In other words, every state which describes the behaviour of whole 

program system is made of different pieces of information that describe the behaviour o f 

every process and other type of information.

3.5.2 Structural rules

Based on the particular case described in Section 3.5J ,  the schema of structural 

rules and the details of such rules will be introduced as follows.
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3.5.2.1 Schema for structural rules

To construct the LTS, the transition relation -> is another key. There are always two 

states involved in such a transition; a start state and a next state. For the implementation 

in this thesis, a set of structural rules is defined for the transition relation The schema

ANTECEDENTfor such structural rules is ---------------- ^ , which is logically equivalent to
CONSEQUENT

V (ANTECEDENT CONSEQUENT) and can be paraphrased to indicate that for ail the 

relation of ANTECEDENT implying CONSEQUENT. Also, the ANTECEDENT and 

CONSEQUENT share free variables; thus they will he treated as true in case the 

ANTECEDENT is absent. On the other hand, the semantics considered by this LTS are 

interleaving, which means only one process among all the processes is allowed to 

perform one of its statements at a given time. The reason for following such interleaving 

semantics is not only that the semantics are very simple but also that the sequential 

control is actually the only control mechanism which can be accomplished by the current 

control tool. In fact, the control tool is not able to fire two events at the same time. 

Consequently, one important feature is shared by all these structural rules: the evolution 

of the system state only concerns the operation of one of the processes at one step 

whereas the others keep still.

According to their ftmctionalities, the structural rules can be grouped into four sets, 

and are illustrated below.

3.5.2.2 Structural rules for basic flow of controls

The first set of structural rules concerns the common flow of control and consists of 

the following 5 rules:

Assignment Rule:

( x , f ) e E
{ l,E ,L ,Q ,P \\p id :{x :-  e);p)- J, / EvaI{E, e ) l  L, Q, P  |  p id  : p)

Condition True Rule:
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Eval{E,c) = true
{E E ,L ,Q ,P \\p id  : iif{c )th en {p l)e lse (p 2 ));p i)-^ { l,E ,L ,Q ,P \\ pid  : pi;p3)

Condition False Rule:

Eval{E,c) = false
{l,E ,L ,Q ,P ll p id : (if(c)then(pl)eise(p2)); p3 > —^ ( l ,E ,L ,Q ,F l l  p id : p2;p3)

Loop Continue Rule:

Eval{E,c) — true
{ l ,E ,E Q ,P ^ p id : (while(c)do(pl));p2 > — —̂̂ {l,E ,L ,Q ,P \\ pid : pl;{while{c}do{pl)'); a)

Loop End Rule:

Evai{E, c) = false
il,E ,L ,Q ,P \\ p id : (while(c)do{pl));p2 > — E,L,Q ,P\\ p id : p i)

Figure 2: Structural rules for basic flow controls 

Since there will probably be a number of processes in the program, pidp.pl || 

pid2 '.p2  II — \\pid„:pn is used to denote each process which has a process identifier (pidi,

or pid}, or pidn) and is described by a process term (pi, or p2, —, or pn), and the 

symbol “| ” indicates that the processes separated by it exist simultaneously. In the 

notation of these rules, P  11 pid: a; p  represents a set of processes including process term 

a:p which has the process identifier pid  and some other processes expressed in P. 

Specifically, the process term a:p denotes a process term p which follows a statement a, 

where the statement is actually some kind of a design abstract rather than a program code 

and represents an assigommt, a choice, or a wMle-loop. The definitions of x, e, and c are 

given in Section 3.4, and Eval(E,e) and Eval(E,c) are used to represent the evaluation of e 

and c based on the variable to value mapping set E, respectively. Efx/vJ indicates that the 

value of the variable x is replaced by v in the variable to value mapping set E.

The first rule involves the system evolutions introduced by an assignment 

statement. According to the definition of LTS, each state in LTS consists o f the factors /,
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E, L, Q, and P, which have been described earlier. To apply the first rale, the start state 

has to meet certain criteria: a variable x and its value/are described in E, and the current 

statement is an assignment x:~e followed by a process term p  in the process that is 

identified by pid. Thus, by performing this assignment statement, the system can be 

moved to the next state. All the factors of this next state are exactly same as those of the 

start state except for the following changes: the value of variable x is replaced by v in E, 

and the current statement to be executed in the process pid  becomes the first statement of 

the process term p  (or say process term p  instead). The second and third rules concern the 

conditional statements. To apply the second rale, the start state has to meet certain 

criteria: a Boolean expression c over V is evaluated to be true based on E, and the current 

statement to be executed is a conditional statement, which is deteraiined by condition c 

and has two succeeding branches: process terms p i  and p2, and followed by another 

process term p3. Thus, by performing the conditional statement, the system can be moved 

to the next state. All the factors of this next state are exactly same as those of the start 

state except that the current statement of the process pid  becomes p i  followed by p3. In 

contrast, if  such a Boolean expression c over V is evaluated to be false based on E, the 

third rale can be used. By performing the conditional statement, the system can be moved 

to the next state in which the current statement of the process pid  is p2  followed by p3. 

The fourth and fifth rules concern the while-loop statements. To use the fourth rule, the 

start state must satisfy the prerequisite: a Boolean expression c over V is evaluated to be 

true based on E, and the current statement to be executed is a while-loop statement, 

which contains a process term p i  and will be ended whenever the condition c becomes 

false, followed by another process term p2. Thus, by performing the while-loop 

statement, the system can be moved to the next state. All the factors of this next state are 

exactly same as those of the start state except that the current statement o f process pid  is 

the process term p i  followed by such a while-loop statement that contains p i  and is 

determined by c, and in turn this while-loop statement is followed by p2. On the other 

hand, if  such a Boolean expression c is evaluated to be false, the fifth rule can be applied. 

By performing the while-loop statement, the system can be moved to the next state in 

which the current statement of process pid is the process term p2.
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In essence, this set of structural rules causes only the system evolutions which are 

not involved in producing the path constraints. In other words, these evolutions are 

invisible so each transition is labelled by a r.

3.5.2.3 Structural rules for input action

As mentioned earlier, the input action is one of the interesting points in the study of 

path constraints generation. The rale defined below involves the action o f input.

Input Receive Rule:

  ______________________________________

</,E ,L ,Q ,P II p id : i n p u t { x ) ; p ) E [ x I  firs t(I)lL ,Q ,P \\ p id : p)

Figure 3: Structural rule for input

The prerequisite for applying this input receive rule is that the input sequence 1

cannot be empty. Thus, if  the current statement to be executed is an input statement that 

reads a value into variable x, and this statement is followed by a process term p. the 

system state can be moved to the next state by performing the input action. All the factors 

of this next state are exactly same as those of the start state except that the value of

variable x in E is changed to the first data in I while the first data has been removed from 

I, the current statement of the process pid  becomes p. This transition is labelled by (pid, 

input) where the pid  is the identifier of the process which contains such an input 

statement.

3.5.2.4 Structural rules for mutual exclusion

Apart from the action of input, synchronization activities of the PUT are important 

places to be explored in generating path constraints, too. Such synchronization activities 

can be grouped into two aspects; those for mutual exclusion and those for process 

coordination. The set of structural rales involved with mutual exclusion will be discussed

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in this section, and the rules about process coordination will be addressed in the next 

section.

In order to describe the activities of the monitors and support the simulation of the 

computatioiial behaviour of PUT, it is necessary to introduce the following additional 

internal statements;

- lock_restart(m): means the action of a process to re-acquire the lock on the 

monitor m after this process is being notified by another process from its waiting 

status;

- lock_end(m): means the process completes a critical section which is controlled 

by monitor m;

- waiting(m): means the process remains in the waiting status on the waiting queue 

of monitor m.

Hence, to simulate the mutual exclusion in a process execution, the following set of 

rules is given.

Lock Begin Rule:

Eval(L,m) = false
i l ,E ,L ,Q ,P \l  pid : lock(m, pi); p i )  — / true], 2 ,  F  |  pid  : pi; lock _  end (m); p f )  

Lock Restart Rule:

Eval{L, m) = false
il, E, L, Q, P I pid : lock_ restart(m); p) — E, L[m / true], Q, P |  pid : p)

Lock End Rule:

Eval{L, m) = true
il, E, L, Q, P I pid : lo<^_ end(m); p) — E, L{m / false], Q,P% pid : p)

Figure 4; Structural rules for mutual exclusion

In the notation of these rules, Eval(L,m) denotes the evaluation of lock status on 

monitor m in L, where true indicates that the lock is currently occupied by another
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process and false indicates that the lock is available; L[m/v] denotes that the value of the 

lock status on the monitor m has been changed to v in L.

To apply the first rale in this set, the start state has to meet the criteria; the lock of 

m is available, the current statement to be executed is a lock statement that tries to 

execute a process term p i  in a critical section which is ensured by the lock of m, and this 

lock statement is followed by another process term p2. Thus, this start state can be moved 

to next state by performing the lock statement. All the factors of this next state are exactly 

same as those of the start state except that the lock status of m has been changed to true in 

L and the current statement of the process pid  becomes p i  followed by a lock-end 

statement which is inserted manually and followed by p2, in turn. The transitions 

following the Lock Begin Rule will be labelled by (pid, lock, m) where p id  is the 

identifier of the process that contains the lock statement and m is the identifier of the 

monitor that contains this lock. By artificially inserting this lock_end statement, the 

releasing of the lock becomes observable, which is necessary for the generating o f  LTS; 

otherwise, there is no way to detect such an activity. The Lock End Rule is defined to 

express the transitions moved by such a lock_end statement. In particular, if  the lock o f m 

is currently occupied, and the current statement to be executed is a lock_end statement 

that is going to release the lock on monitor m followed by another process term p, the 

system state can be moved by performing the lock_end statement to next state. All the 

factors of this next state are exactly same as those of the start state except that the lock 

status of m has been changed to false in L, and the current statement of the process pid  

becomes p. Since the lock_end statement is only used for the computation of generating 

the LTS, and such information has nothing to do with the path constraints, the transitions 

caused by the !ock_end statement will be labelled by a i.

The Lock Restart Rule is defined to express the transitions moved by another 

internal statement: the lock_restart statement. This rule indicates if  the lock of m is 

available, the system state, in which the current statement to be executed is a lock_restart 

statement that tries to regain the lock of m and is followed by the process term p, can be 

moved by performing the !ock_restart statement to the next state in which the lock status 

of m has been changed to true in L, and the current statement o f the process pid  is p.
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Similariy, since the lock^jestart infomation helps to build only the LTS, the transition 

caused by lock_restart statement will be labelled by a x.

3.5.2.5 Stractural rules for process coordination

The last but not least important set of structural rules deals with the coordination 

between different process, and is defined as follows.

W ait Rule:

{p id ,w a it,m2)i l ,  E, L, Q, P II pid : wait{mi, mi); p ) ■

where p ’=waiting (m2); lock_restart(ml); p.

Notify With Nonempty Queue Rule:

first{Q, m) = pid 2

false\,enqueue{Q ,m i,pid),P^ pid  : p ')

{ l ,  E ,L,  Q , P  II p i d i ; notify(jn); pi jj p i d 2 ; waiting(m); p l } -

Notify with Empty Queue Rule:

first{Q,m) = null

{ p id ,notify ̂ m) -^{l,E,L,dequeue{Q,m),P\\ p id i: pi || pi

(/, E, L, Q, P I p id i: notify{m); p)- {pid,notify,m) M l , E , L , Q , P \ \ p i d i :  p\ )

d i : pi)

Figure 5: Structural rule for processes coordination (a)

In these rales listed in Figure 5, enqueue(Q, m, pid) is used to express the set of 

waiting queues derived from the set Q which is the mapping from monitors to their 

waiting queues. These waiting queues contain the sequences of processes currently 

waiting for the locks on these monitors after adding pid  into the waiting queue of monitor 

m. Similarly, dequeue(Q,m) is used to express the set of waiting queues from Q by 

removing the first element from the waiting queue of m, and first(Q, m) is used to 

represent the first process on the waiting queue of m in Q.

To use the first rule in this set, the start state must satisfy the prerequisite: the 

current statement to be executed is a wait statement that is going to release the lock on 

monitor mi and put the current running process into the waiting queue of monitor m2, and
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this wait statement is followed by a process term p. Thus, by performing this wait 

statement, the system state can be moved to next state in which the lock status on mi has 

been changed to false in L, the set Q has been modified by adding pid  into the waiting 

queue of m2 , and the current statement of the process pid  becomes the statement 

waitingfmz) followed by the statement !ock_restart(mi) that is in turn followed by p. In 

particular, the waiting statement and the lock_restart statement axe artificially inserted for 

the purpose of constructing the LTS, where the definition of waiting statement and 

lock_restart statement can be found in Section 3.5.2,4. The statement Lock_restart is 

used after the waiting statement in order to enable the waiting process to regain the lock 

after it is notified by another process. The transitions evolved according to this rule are 

labelled by (pid, wait, m2).

The second rule is a special one which involves the actions o f two different 

processes. To apply this rule, the start state has to meet certain criteria: the waiting queue 

of the monitor m is not empty and the first process in this waiting queue in Q is the 

process pidf, the current statement to be executed is a notify statement in the process pidi 

that is going to inform the first process in the waiting queue of the monitor m; and there 

exists another process pid2 that is currently waiting as the first element in the waiting 

queue of the monitor m and has a succeeding process term p 2 . Thus, the system state can 

be moved by perfomiing the notify statement to next state in which the first element on 

the waiting queue of m has been removed, and the current statement of process pidi and 

pid2 become p i  and p2, respectively. The transitions moved by this rale are labelled by 

(pid, notify, m). This rule enables two processes to move to their next states 

simultaneously, which simulates the typical hand-shaking mechanism between 

synchronization processes in concurrent programs. However, since it is not necessary to 

pay more attention to control the statement waiting(m) due to the fact that it is not the 

event related to the path constraints generating, the notifying process can be considered 

as the only factor to cause the system evolution. Therefore, with such acknowledgement, 

there will be no contradiction between this notify rale and the test control mechanism 

expressed earlier which assures that the transitions in the LTS wit! not be stimulated by 

more than one event at one time.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The third rule actually deals with an extreme case when performing the notifying 

statement. The prerequisite for applying this rule is that the waiting queue o f monitor m is 

empty in Q, the current statement to be executed is a notify statement that is going to 

inform the first process in the waiting queue of m and is follow-ed by another process 

term p. Thus, the system state can be moved by performing the notify statement to next 

state in which the current statement of the process pidi becomes p. Indeed, such move has 

nothing to do with the change of system state. The transitions stimulated by this rule are 

labelled by (pid, notify, m), too.

3.5.2.6 Extension of structural rules for process coordination

Although two notify rales have been defined in [55], there is no such a structural 

rule to consider the more specific case of notify— notify All. To generate LTS for the 

PUT which contains the action of notifying ail the processes in the waiting queue of a 

monitor, additional structural rules are needed to be extended.

NotifyA1 with nonempty Queue Rule:

EvalEmptyiQ, m) = false
i l ,  E , L , Q, P II p i d i : notify{m)i p i  || p id 2 : waiting{m); /22  j| • • ■ pidn : w m tm g(m ); pn) —  

{ l,E ,L ,d e q u e u e A ll{0 , m ),P \\ p id i:  p \ ^ p i d i :  p i  \\ ■ ■ ■ \\l p idn : pr)

Notify All with Empty Queue Rule:

________________ EvalEmpty{Q, m) = true
i l , E , L ,  Q ,P \l p i d i : m tijyA ll{m ); p ) — ^----1—>(/^ £ ,  L , |  p i d i : p i)

Figure 6: Structural rule for processes coordination (b)

In the notation of these two rales in Figure 6, EvalEmpty(Q,m) is defined to express

the evaluation of the waiting queue status of m in Q where the value true indicates the 

queue is empty; and dequeueAl!(Q,m) is defined to express the set of waiting queues in 

Q after removing all elements from the waiting queue of m.
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To apply the first NotifyAll rule, the start state has to meet certain criteria; the 

waiting queue of the monitor m in Q is not empty; the current statement to he executed is 

a notijyAll statement of the process pidi that is going to inform all processes in the 

waiting queue of m; and there exist processes pid2 , —,pid„that ai*e currently waiting on 

monitor m and have succeeding process terms p 2, pn. Thus, the system state can be 

moved by performing the notijyAll statement to the next state in which all the elements 

on the waiting queue of m have been removed, and the current statements o f process pidi, 

pid2, —,pid„ become p i, p2, —, pn, respectively. The transitions moved by this rale will 

be labelled by (pid, notijyAll, m).

The second rule is analogous to the rule of notijy with empty queue. Similariy, the 

prerequisite to use this NotifyAll rale is that the waiting queue of monitor m in Q is 

empty, and the current statement to be executed is a notijyAll statement followed by 

another process term p. Thus, the system state can be moved by performing notijyAll 

statement to next state in which the current statement of process pidi is p. The transitions 

moved by this rule will be labelled by (pid, notijy, m).

So far, ail the stractural semantics rales have been introduced, which are sufficient 

to derive the LTS from the given design abstract. To demonstrate the procedure of LTS 

generating, an example will be given in Chapter 4.
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Chapter 4 Am Example

To better illustrate the domain of our specific problem on testing, one tj/picai 

concurrent example called producer consumer problem is provided in this Chapter. In 

such an example and others, it is assumed that the design abstract of the program in our 

test environment is given in terms of process terms which are presented in Chapter 3.4.

4.1 The problem of producer consumer

The producer consumer problem is a classic problem that concerns synchronization. 

There are two types of processes in such a problem: producer and consumer. The 

producer and consumer processes share a common bounded buffer. The producer 

executes an infinite loop where it puts new items into the buffer, whereas the consumer 

exercises an infinite loop where it removes items from the buffer.

To give the solution to the producer consumer problem, two important aspects have 

to be considered:

(1) mutual exclusion: at most one process that is either producer or consumer can 

access the shared buffer at one time;

(2) synchronization: the producer and consumer processes have to check the content 

of the buffer before performing the action of depositing and withdrawing; in 

particular, the producer can deposit only if  not all the slots of the buffer are full, and 

consumer can withdraw only if  not all the slots of the buffer are empty. Otherwise, 

the producer or consumer has to put itself into a waiting status until the condition is 

satisfied.

The concurrent programs normally consist of a number o f process types. For 

example, there are two types of processes which are producer and consumer in the 

producer consumer problem. However, each process type may have more than one 

instance. For example, there may exist two producers and three consumers in the 

producer consumer problem. In fact, it is important to determine the number of these 

instances. On one hand, it is difficult to handle large number of instances and perform the
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thorough test of a concurreiit program. On the other hand, these mimbers cannot he too 

small to avoid ail possible faults to be disclosed in the testing. Also, it is obviously not 

appropriate to allow the producer or consumer to loop infinitely for the purpose of testing 

since it is mentioned earlier in this thesis that our testing will only deal with programs 

that will terminate. Hence, for the sake of simplicity and without losing the generality, 

the producer consumer problem illustrated in this thesis will consider one instance of 

producer and two instances of consumer. Again, for simplicity reasons, it is assumed that 

the shared buffer can only contain two items, and the loop of the producer is limited up to 

3 times. Thus, upon execution, the producer will take three inputs of integer numbers and 

deposit them to a two-slot bounded buffer, and two consumers will withdraw these 

integer numbers from the bounded buffer.

4.2 Design abstract for one solution of producer consumer problem

The design abstract for our solution of producer consumer problem in this thesis is 

displayed in Figure 7. This design abstract code is given in terms of process terms.

* Producer&Consumer *
<variables> {{ x :in t},{ bufferOnnt},{bufferl:int},{ count :int } ,{times :in t}} 
<monitors> {m0,ml,m2}

<Process type>i Producer 
while ( times < 3 ) do { 

input ( X); 
lock (mO) {

while ( count =  2 ) do { 
wait ( mO , m l );

}
if ( bufferO == 0 ) then { 

b u f fe rO x ;
} else {

bufferl := x;
}

c o u n tc o u n t  + 1; 
times times + 1; 
notifyAll ( m2 );

}
lock_end ( mO); ___
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}
stop;

<Process type>: Consumer 
while (tru e) do { 

lock (mO) {
while ( count == 0 )  do { 

if  ( times == 3 ) then { 
lock_end ( mO ); 
stop;

}
wait ( mO , m2 );

}
if  ( bufferO != 0 )  then { 

bufferO := 0;
} else {

buffer! ;= 0;
}
count := count -1 ; 
notify ( m l );

}

}
lock_end ( mO);

<process> 1; Producer
<process> 2: Consumer 
<process> 3: Consumer

Figure 7: Design abstract for Producer Consumer problem

First o f ail, each design abstract will be given a name which is placed in the first 

line and specified between two in this case, Producer&Consumer s. The second thing 

in the design abstract is to provide the declarations of all the variables and monitors. The 

declaration of a variable consists of the variable name and its type, where the variable 

types considered in the scope of this thesis work are only integer numbers denoted by int, 

boolean which has value of true or false, and string which is a sequence of characters.

In general, since the program consists of processes, the design abstract may also 

have a number of modules and each one is used to describe the functionality o f a specific 

process type. Such a module starts with a signature <Frocess type> followed by a
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process type name. For simplicity, it is considered that the set of processes o f the PUT 

will be given statically in the design abstract. Even though there are three total processes 

(one producer and two consumers) in the current version of producer consumer problem, 

two process types - producer and consumer - will be described in the design abstract due 

to the fact that two consumer processes are indeed exactly same, except for the process 

identifiers. After giving the process types, the description of each process is provided in 

terms of these types.

The solution to the producer consumer problem described by this design abstract 

employs monitor mO for guaranteeing the mutual exclusion and monitors m lm d  m2 for 

achieving the process coordination. Specifically, mO ensures the exclusive access to the 

shared buffer and modification to the buffer count; producer checks the buffer count 

before producing data into the buffer, and releases the acquired lock on monitor mO and 

waits in the waiting queue of monitor m l if  all slots of the shared buffer are M l; 

consumer checks the buffer count before consuming data from the buffer, and releases 

the acquired lock on monitor mO and waits in the waiting queue of monitor m2 i f  all slots 

of the shared buffer are empty. Meanwhile, producer takes the responsibility to wake up 

all the consumers that are waiting in the queue of monitor m2 after it has produced data 

into the buffer; consumer is responsible to wake up the producer that is waiting in the 

queue of monitor m l after it has consumed data from the buffer. On the other hand, the 

variables used in this design abstract are: x  that is used to contain the input value; bufferO 

and bufferl that are used to contain the value of the buffer; count that is used to count the 

number of full slot of the buffer; and times that is used to count the times of producing 

the new data by the producer. The type of these variables is integer, and the initial value 

of each is 0.

4.3 Generation of LTS

According to the structural rules provided in Chapter 3.5 and a given initial state, 

the LTS can be constructed from the design abstract due to the fact that all the states in 

the LTS are reachable from the initial state via the transitions conducted by such rules.
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To illustrate the process of generating LTS, the design abstract given in Section 4.2 

will be used as an example. Assume that the initial state is SO: < I, E, L, Q, P >, where 

® I = < 1 , 3> that denotes there are totally three inputs; I, 2, and 5;

• E = {(x = 0), (bufferO = 0), (buffer! = 0), (count = 0), (times = 0) }, that denotes 

the variables used in this program are x, bufferO, bufferl. count, and times, and their 

initial values are 0, 0, 0, 0, 0, respectively;

• L = {(mO, false), {(ml, false), {(m2, false)} that denotes the monitor used in this 

program is mO, ml, and m2, and their locks are ail available initially;

® Q = {(mO,<>), (ml, <>), (m2,<>)} that denotes there exist three monitors mO, ml, 

and m2, and their waiting queues initially all contain no element;

® P consists of process terms for all the processes, in particular, process 1, process 2 

and process 3.

As mentioned earlier in Section 4.2, symbol “| ” is used to denote that all such 

processes exist and execute at the same time. Also, assume p i ,  p i  p2, p2 ’ are 

succeeding process terms after the current statement of process type producer and 

consumer, respectively. Thus, the partial results of deriving the LTS for the producer 

consumer program are as shown below.

SO: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times = 0) }, L = 

{(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,o), (ml, o ) ,  (m2,<>)}, 1 : while 

(times <3 ) do p i  ^2 : while ( true) do p2 || 3 ; while ( true) do p2>

X T (by performmg whUeJoop statement)

SI: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times = 0) }, L 

= {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,o), (ml, <>), (m2,<>)}, 1 : inpmt(x) ; plli 

2 : while ( true) do p2 |  3 : while ( true ) do p2>

•i (1, input) (by performing input statement)

S2: < I = <2, 3>, E = {(x = J), (bufferO = 0), (bufferl = 0), (count = 0), (times = 0) }, L = 

{(mO, false), {(ml, false), {(in2, false)}, Q = {(mO,<>), (ml, <>), (m2,<>)}, 1 : iock(m§) ; j?I| 2 
: while ( tme ) do p2 j| 3 : while ( true ) do p2>

■i (1, lock, m) (by performing lock statement)
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S3: < I = <2, 3>, E = {(x = 1), (bufFerO = 0), (buffer! = 0), (count = 0), (times = 0) }, L = 

{(mOf true), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, <>), (m2,o)}, 1 : while (count —  

2) do pl\\ 2 : while ( true) do p2 |  3 : while ( trae) do p2>

T (by performing whiie_Joop statement)
S4: < I = <2, 3>, E = {(x = 1), (bufferO = 0), (buffer! = 0), (count = 0), (times = 0) }, L = 

{(mO, true), {(ml, false), {(m2, false)}, Q = {(mO,o), (ml, <>), (m2,<>)}, 1 : i f  (bufferO —  0) 
then p i  ekepl% 2 : while ( trae ) do p2 || 3 : while ( trae ) do p2>

^  T (by performing conditional statement)
S5: < I = <2, 3>, E = {(x = 1), (buffeiO = 0), (buffer! = 0), (count = 0), (times = 0) }, L = 

{(mO, true), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, o ) ,  (m2,o)}, 1 : buffer& p i  |  

2 : while ( true ) do p2 |  3 : while ( trae ) do p2>

T (by performing assignment statement)
S6: < I = <2, 3>, E = {(x = 1), {bufferO = I), (bufferl = 0), (count = 0), (times = 0)}, L = 

{(mO, true), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, <>), (m2,o)}, 1 : count := count + 

1; pl \ \2:  while ( true ) do p2 || 3 : while ( true ) do p2>

T (by performing assignment statement)
S7: < I = <2, 3>, E = {(x = 1), (bufferO =1), (bufferl = 0), {count = i), (times = 0)}, L = 

{(mO, true), {(ml, false), {(m2, false)}, Q = {(mO,o), (ml, <>), (m2,o)}, 1 : times := times + 

1; p l \ \2:  while ( true ) do p2 || 3 : while ( true ) do p2>

X (by performing assignment statement)
S8: < I = <2, 3>, E = {(x = 1), (bufferO = 1), (bufferl = 0), (count = 1), {times = 1)}, L = 

{(mO, true), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, o ) ,  (m2,o)}, 1 : notifyAU(m2); p i  
II 2 : while ( true ) do p2 |  3 : while ( true ) do p2>

^  (1, notifyAU, m) (by performiiig notifyAll statement)
S9: <1 = <2, 3>, E = {(x = 1), (bufferO = 1), (bufferl = 0), (count = 1), (times = 1) }, L = 

{(mO, trae), {(ml, false), {(m2, false)}, Q = {(mO,o), (ml, o ) ,  (m2,o)}, 1 : lock_end(mO); 
i?i (12 : while ( trae ) do p2 |j 3 : while ( true ) do p2>

T (by performing hek_endstatement)
SIO: < I = <2, 3>, E = {(x = 1), (bufferO = 1), (bufferl = 0), (count = 1), (times = 1) }, L = 

{{mO, false), {(ml, false), {(m2, false)}, Q = {(mO,o), (ml, <>), (m2,o)}, 1: while (times <3) 

do # 1 1 2 : while ( true ) do p2 |j 3 : while ( true ) do p2

T (by performing whiie_ioop statement)
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SI 1: < I = <2, 3>, E = {(x = 1), (bufferO = 1), (bufferl = 0), (count = 1), (times = 1) }, L = 

{(mO, false), {(ml, false), {(ml, false)}, Q = {(mO,o), (ml, <>), (m2,o)}, 1 .■ mput(x) ;p l  |  2 

: while ( true) do p2 |j 3 : while ( true) do p2

X (1, input) (by performing input statement)

S12: < l - <  3>, E = {(x = 2), (bufferO = 1), (bufferl = 0), (count = 1), (times = 1) }, L = 

{(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,o), (ml, <>), (m2,o)}, 1 ; lock(mO) ;_pl|| 2 

: while ( trae) do p2 |  3 ; while ( trae) do p2>

i (1, lock, m) (by performing lock statement)

Figure 8: Trace of generating LTS by depth-first traversal strategy

The procedure in Figure 8 illustrates the generation of LTS by applying depth-first 

traversal strategy. Actually, such LTS constructed by this coarse method will be a tree in 

which the root is the initial state SO. This tree converted from Figure 8 will look like the 

shape in Figure 9.
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(1,input)

cK

SIO

Sl l

S12

Figure 9; Tree of LTS generated by depth-first traversal strategy

Similarly, the tree which illustrates LTS generating procedure by using width-first 

traversal strategy is shown in Figure 10.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(1,input}

(2,l&ck,m)

S12
(1, lock, mO)

SIO

S13

Figure 10; Tree of LTS generated by width-first traversal strategy

In Figure 10, the descriptions of each state are given as follows;

SO: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (coimt = 0), (times = 

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, o ) ,  (m 2,o)} , 1 : 

while (times <3 ) do p i || 2 : while ( true) do p2 {| 3 : while ( true) do p2>;

SI: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times = 

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, o ) ,  (m 2,o)} , 1 : 

input(x) ; p l \  2 : while ( true) do p2 || 3 : while ( true) do p2>;

82: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times = 

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (m l, <>), (m 2,o)} , 1 : 

while (times <3 ) do p i || 2 : hck(mO); p2\ \3 : while ( true) do p2>;

S3: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times = 

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, o ) ,  (m2,<>)}, 1 : 

while (times <3 ) do p i j| 2 : while ( true) do p2|| 3 : lock(mO); p2  >;

S4: < I = < J>, E= {(x = 1), (bufferO -  0), (bufferl = 0), (count = 0), (times = 0)

}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (m l, <>), (m 2,o)} , 1 : 

l0ck(m§); pl\\ 2 : while ( true) do p2 || 3 : while ( true) do p2>;
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S5; < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times = 

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, <>), (in2,<>)}, 1 : 

input(x); pljl 2 : l&ck(m§); 1 3 ; ¥/hile ( true) do p2>;

S6: < !  = <!, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times = 

0) }, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (m l, <>), (m2,<>)}, 1 : 

input(x); p l |  2 : while ( true) do p2 || 3 : iock(m&); p2  >;

S7: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times = 

0)}, L -  {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (m l, <>), (m2,<>)}, 1 : 

input(x); p i  l\2: lock(mO); p2 |j 3 ; while ( true) do p2>;

S8: < I == <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times = 

0)} , L = {(mO, true), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, <>), (m2,<>)}, 1 : 

while (times <3 ) do pi |  2 : while (count —  0) do p 2 \ 3 \  while ( trae ) do p2>;

S9: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times = 

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (m l, o ) ,  (m2,<>)}, 1 : 

while (times <3 ) do p i 1 2 : lock(mO); p2 || 3 : lock(m&); p2  >;

SIO: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times = 

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, o ) ,  (m 2,o)} , 1 : 

mput(x) ;p i  I 2 : while ( true) do p2|| 3 : lock(mO); p2 >;

S 11 :< I = <1,2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times = 

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q -  {(mO,<>), (m l, <>), (m 2,o)} , 1 : 

while (times <3 ) do p i || 2 : lock(mO); j?2 || 3 : lock(mO); p2 >;

S12: < I = <1, 2, 3>, E -  {(x = 0), (bufferO -  0), (bufferl = 0), (count = 0), (times = 

0)}, L = {{mO, true), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, <>), (m2,<>)}, 1 : 

while (times <3 ) do p i 1 2 : while ( trae ) do p2|| 3 : while (count —  0) dop2 >;

S13: < I = < 2, 3>, E -  {(x = 1), (bufferO = 0), (bufferl = 0), (count = 0), (times = 

0)}, L = {(m§, true), {(ml, false), {(m2, false)}, Q = ((mO,<>), (m l, <>), (m2,<>)}, 1 : 

while (count —  2) do |iJ || 2 : while ( trae ) do p2 1 3 : while ( true) do p2>;

Using either depth-first or width-first traversal strategy, and continuously applying 

the structural rules, the LTS will eventually be constructed. The resulting LTS will be a
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format of graph that consists of nodes that denote the states and edges that denote the 

transitions.

Moreover, such LTS needs to be further simplified by reducing the i-transitions. 

The techniques to Mfill the task of simplification will be discussed in detail along with 

the implementation of a path constraints generation too! in next Chapter.
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Chapter 5 Design and Implementation Detail

As mentioned in the previous chapters, the problem we consider in this thesis is to 

generate significant sets of path constraints automatically v/ith a given test case and a 

design abstract. In this chapter, design and implementation details of such a tool will be 

presented. This tool is implemented in Java programming language with approximately 

four thousand lines.

5.1 Fundamental architecture of design

First of all, it is considered that the testing in this thesis is the reproducible testing 

based on the specifications of underlying concurrent program systems. Such 

specifications will be expressed by applying a formal specification language which is 

based on process algebra.

Second, with a given design abstract in terms of process terms in the specification, 

a Labeled Transition System can be derived by applying a number o f structural rules 

which are defined in Chapter 3.5. Such a generation of LTS will be accomplished 

automatically by the implementation tool that will be discussed in this chapter. 

Meanwhile, this tool provides a certain mechanism to remove the duplicated states while 

constructing such a LTS.

Third, this tool also supports the further simplification of the constructed LTS. By 

performing such a simplification, those internal transitions which actually have nothing to 

do with the generation of path constraints can be ignored. In particular, this 

simplification will be based on the determinization and minimization algorithms in the 

theories of automata.

Finally, with the simplified LTS, which is also known as the control model, a 

variety of significant sets of executing path constraints which are denoted by the labels 

can be generated. Usually, there are some criteria, such as path coverage criterion, state 

coverage criterion and edge coverage criterion, available for such a generation. The state
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coverage guarantees that each state in the control model will be covered at least once, 

whereas the edge coverage ensures that each edge in the control model will be covered at 

least once. The path coverage is a much stronger criterion which requires each possible 

path is covered. Since the succeeding state yielded by a certain action from one specific 

state is not able to be determined in the control model, state coverage cannot be used 

here. In this case, the edge coverage criterion or the path coverage criterion may be 

considered for the path constraints generation.

5.2 Class Diagrams in the implementation tool

Major classes in this implementation tool include Stateltem, State, Label, Process, 

Variable and Monitor.

currentState: State 
labels: V ector of Label

addLabelQ: V oid 
getState: State 
setState: void

iltem

from StatelD : in t 
toStatelD: in t 
labelsStr. S trine

getFromStatelDO: int 
getLabelStrQ: String

Label

getStateID{): int
getProcStatesO: V ector o f  String
getInputSeq():Vector o f  String 
getVariablesQ: Vector of Variable 
getMonitorsO: V ector of Monitor

inputSeqnence: Vector of String 
variables: Vector of Variable 
monitors: Vector of Monitor 
procStates: Vector of Siring 
statelD: int

State

Figure 11; Class diagrams (I) for the implementation of path constraints generating tool
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As shown in Figure 11,

® Class Label is used to describe the labels in the LTS and is made of an attribute 

fromStatelD that denotes the identifier of its start state, an attribute toStatelD that 

denotes the identifier of its end state, and an attribute labelString that describes the 

action that stimulates such a transition.

• Class State is used to describe the states in the LTS and consists o f an attribute 

StatelD that uniquely identifies a particular state; an attribute inputSequence that 

contains a sequence of input data; an attribute variables which is a set o f instances 

of class Variable and contains information of all the variables that are used in the 

PUT along with their corresponding values; an attribute monitors that is a set of 

instances of class Monitor and contains information of all the monitors such as their 

lock status and contents of their waiting queues; and, an attribute procStates that 

describes the current status of each process, in particular, the current statement that 

each process is going to execute.

• Class Stateltem is constructed by an instance of class State and a set of instances

of class Labels that start from this state.

Also shown in Figure 12 are the class diagram of the main components of class 

State— classes Variable and Monitor.

• Class Variable is made of an attribute varName that denotes the name of this 

variable; an attribute varType that denotes the data type of this variable; an attribute 

varSize that denotes the size of this variable; and, an attribute value that denotes the 

value of this variable. For simplicity, the types of a variable considered in this thesis 

are limited to integer. Boolean, and String, even though this implementation tool is 

also able to handle the data type of integer array and String array. An instance of 

class Variable is employed to describe a variable used in the PUT.

• Class Monitor consists of an attribute mid that denotes the identifier of the 

monitor; an attribute mstatus that denotes the lock status of this monitor; and, an 

attribute waitingQueue that contains a set o f identifiers of processes that are
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currently waiting for the lock of this monitor. An instance of class Monitor is 

employed to describe a monitor used in the PUT.

Apart from class Variable and class Monitor, class Process is also described in 

Figure 12. Since the attribute procStates of class State contains the status of processes 

and the instance of class Process describes a process, class Process can be considered to 

be used by class State. Class Process contains an attribute processID that uniquely 

identifies a process, and an attribute statements that contains the design abstract of a 

process.

State

ProcessID; int 
statements: V ector o f  

String

addNewStatementC): voi 
resetProcess: void
getProcessIDO: int 
getNextStatementO: 

Vector of String

Process

mid: int
mStatus: Boolean 
w aitingQ ueue: V ector

of int

getID(): String 
getStatusr(): Boolean 
setStatus(); void 
enqueue(): void 
dequeue(): void 
getW aitingQueueO: 

Vector of int

Monitor

varName; String 
varType: String
varSize: int
value; Vector of String

;etName(); String 
;etTypeO:String 
:etSize():int 
etValueAt(): void 
;etValueAt(): String

Variabli

Figure 12: Class diagrams (II) for tie  implementation of path constraints generating tool
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Besides such attributes defined for these classes, a set of methods is also designed 

for modifying or retrieving information on these classes. For instance, the methods 

addLabel, getState and setState on class Stateltem are designed for inserting a new label 

to the instance of class Stateltem, retrieving the state information, and modifjdng the state 

information of the instance of class Stateltem, respectively.

5.3 Algoritiims used in the implementation tool

According to the design architecture introduced in Section 5.1 and based on the 

class diagrams discussed in the last section, three algorithms are used for accomplishing 

the path constraints generation. In particular, the algorithm for the LTS construction will 

be presented in Section 53.1, the algorithm for producing the control model will be 

expressed in Section 53.2, and the algorithm for the path constraints deriving will be 

discussed in Section 5 3 3 .

5.3.1 LTS generation

The fimdamental part of the path constraints generating tool is the LTS generation. 

The process of LTS generation is actually the process of analyzing the PUT in terms of 

the design abstract. By applying a set of structural semantics rules, the behavior of the 

PUT will be simulated. The algorithm used in this tool for producing LTS is presented in 

Figure 13.

Algoritiun for generating LTS;

Public Variables: 
statesOfSystem;

geaerattngflNP'UT: stateltem)
BEGIN:

<Stepl>
Retrieve the current state thisState from stateltem;
Retrieve the information of the input sequence, the current variables, the current monitors, 
and the current statuses of all the processes to inputSequence, variables, monitors, and 
procStates from thisState, respectively;

<Step2>
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For each item of procStates do
//such an item describes the status of a process 
Make copies of the state information into inputSequence_jtext, 
variables_next, monitors_next, and procStates_next for the succeeding 
sta te , respectively;
Set flag isDone to  false,

searchNext to true.
Set current label string thisLabelStr to empty;
Copy this item to thisProcState;
Retrieve the OHxent process identifier thisProcID from thisProcState;
Retrieve the current statement from thisProcState to currenStatement;
If currentStatement is a stop statement then

Remove the item corresponds to the current item from 
procStates_next;
IfprocStates_next contains no element then 

Assign "stop" to  thisLabelStr;
E lse

Assign T to thisLabelStr;
Endlf
Set isDone to “true”;

Else if currentStatement is an assignment statement then //”;=”
M o d ify  variables_next b y  e v a lu a tin g  the v a lu e  o f  th e  expression a t the 
right hand side of ’ and assigning this value to the variable at the 
left hand side of 
A ss ig n  rto  thisLabelStr;

E lse  i f  currentStatement is  a conditional statement th e n  ITif then e ls e ”
Set a point for succeeding statement in procStates_next by evaluating 
the condition; Hto denote the branch of “then ” or” else ” will be executed 
A ss ig n  X  to  thisLabelStr;

E lse  i f  currentStatement is  a while-loop s ta te m e n t th e n  ITwhile do”
Set a point for succeeding statement in the procStates_next by 
evaluating the condition; Hindicate the body of while-loop or statements

after while-loop will be executed
Assign I to thisLabelStr;

E lse  i f  currentStatement is  a input statement th e n  ITinput ()”
Assign "(" + thisProcID + ",input)" to thisLabelStr;
Assign first value of inputSequence to the variable indicated by input 
s ta te m e n t in  variables_next;
Remove the corresponding first data from inputSequence_next;

E lse  i f  currentStatement is  a lock s ta te m e n t th e n  m o ck  Q”
Retrieve the monitor identifier from currentStatement to mid;
Examine the lock status of monitor mid in monitors;
If the lock is occupied by another process then

Skip the remaining statements and proceed with next item;
Else

Set the lock status of the corresponding monitor in monitors_next 
to “ture”;
Assign "(" + thisProcID + ",lock, " + mid+”)" to thisLabelStr;

Endif
E lse  if currentStatement is a waiting statement th e n  irwaiting Q” ______
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Skip the remaimng statements and proceed with next item;
Else if currentStatement is a lock_restart statement then iriock_restart (9” 

Retrieve the monitor identifier form currentStatement to mid;
Examine the lock status of monitor mid in monitors;
If the lock is occupied by another process then

SMp the remaining statements and proceed with next item;
Else

Set the lock status of the corresponding monitor in monitors_next 
to “ture”;

Assign t  to thisLabelStr;
Endif

Else if currentStatement is a lock_end statement then H”lock_end O'”
Retrieve the monitor identifier form currentStatement to mid;
Set the lock status of the corresponding monitor in monltors_next to 
“false ”;
A ss ig n  X to thisLabelStr;

E ls e  i f  currentStatement is  a wait sta te m e n t th e n  ITwaitO”
Retrieve the leaving monitor identifier and the waiting monitor 
identifier form currentStatement to midi and midi, respectively; 
A ss ig n  "(" + thisProcID + ”,wait, " + mid2+")" to  thisLabelStr;
Set the lock status of the corresponding monitor for monitor midi in 
monitors_nextto “false”;
Add the current process identifier thisProcID into the waiting queue of 
the m o n ito r  midi in monitors_nexti 
Modify the succeeding statement of current process in the 
procStates_next to  a  waiting statement;
Set the value o f searchNext to “false ”;

E ls e  i f  currentStatement is  a notify s ta te m e n t th e n  irnotify
Retrieve the monitor identifier form currentStatement to mid;
Assign "(" + thisProcID +  " ,n o tify , " +  mid+")" to  thisLabelStr; 
Retrieve the first process identifier pid in the waiting queue of the 
monitor mid in monitors;
I f  the c u rre n t s ta te m en t o f  the process pid is  a  waiting statement a n d  
su c h  a  p ro c e ss  is  w a itin g  in  the w a itin g  q u e u e  o f  the m o n ito r  mid th e n

Set the succeeding statement of the process pid to a lock_restart 
statement inprocStates_next;
Remove pid from the waiting queue of the monitor that 
corresponds to the monitor mid in monitors_nexti 

E n d if
Else if currentStatement is a notifyAll statement then irnotify All (}”

Retrieve the monitor identifier form currentStatement to raid;
Assign "(" + thisProcID + ",notifyAll, " + mid+")" to thisLabelStr;
For each process identifier pid in the waiting queue of the monitor mid 
in monitors do

If the current statement of the process pid is a waiting statement 
AND such a process is waiting in the waiting queue of the monitor 
mid then

Set the succeeding statement of the process pid to a 
lock_restart statement inprocStates_next;
Remove pid fi~om the waiting queue of the monitor that
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corresponds to the monitor mid in monitors_nsxti 
Endif 

Endfor 
Endif

< S tep 3 >
If isDone is false AND searchNext is true then

Retrieve the succeeding statement of the current process to modify 
procStates_nexf,

Endif
<Step4>

Composite the succeeding state nextState by inputSequencejiext, 
variables_jiext, monitors_next, and procStates_next;
Generate a new labei thisLabel by the state identifier of thisState, state 
id e n tif ie r  o f  nextState, a n d  thisLabelStr;
If there exists a state identical with the nextState then

M o d ify  the toStatelD o f  thisLabel to  th e  s ta te  id e n tif ie r  o f  th is  s ta te ;
E lse

Generate a  n e w  stateltem nextStateltem b y  nextState;
A d d  nextStateltem to  statesOfSystem;
Generating {nextStateltem};

E n d if
A d d  thisLabel to  stateltem;

E n d fo r
<Step5>

Return;
END

Figure 13: Algorithm for generating LTS

In Figure 13, the variable statesOfSystem will contain all the generated instances 

of class Stateltem along with the LTS generating, and is maintained publicly which means 

it is defined out of the scope of the method generating and will continue to exist after 

generating terminates. In the first step, the information of the current state, including 

input sequence, variables, monitors, and current status of each process, is retrieved from 

the input stateltem that is an instance of class Stateltem. In the second step, a copy of 

such information is made for the purpose of generating the succeeding state. Meanwhile, 

a couple of binary flags are initialized; isDone that denotes if the current analyzing 

process terminates, and searchNext that denotes whether or not to retrieve the succeeding 

statement for the current process. As one important aspect o f the state information, the 

current status o f each process in terms of the current statement that is about to be 

executed is described by the variable procStates. The structural rales are applied

5 6
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according to these statements in the second step. In fact, each item in procStates 

expresses not only the current statement of one specific process but also a pointer that is 

used to search the succeeding statement. When the current statement is a lock statement 

or a lock_restart statement, and in case the lock of the monitor, for which such a 

statement is requesting, is cuirently occupied by another process, the strategy used by this 

algorithm is to skip analyzing the current process and consider other processes first. The 

same strategy is also used when the current statement of the analyzed process is a waiting 

statement. Another special strategy, which generates the succeeding state by artificiaily 

inserting a waiting statement instead of searching the succeeding statement of the current 

process, will be applied when the current statement is a wait statement. The action of 

searching the succeeding statement is performed in the third step of this algorithm. With 

the succeeding statement of the current process, the succeeding status o f variables in 

variables_next, the succeeding status of monitors in monitors_next, and the succeeding 

content of the input sequence in inputSequence_next, the succeeding state of the system 

can be generated in the fourth step. Meanwhile, according to the label string described by 

thisLabelStr and the identifier of the current state and the new generated state, a new 

label that expresses the evolution motivated by the current statement can be produced and 

added to stateltem. Finally, this algorithm generates a new instance of class Stateltem 

nextStateltem by the generated instance of class State nextState while there exists no 

duplicate to this new state, and recursively invoke the method generating with the 

parameter nextStateltem.

Basically, following such an algorithm, the included valid statement may lead the 

system into different states, and finther expansion can be carried out according to these 

states. Therefore, a critical problem of the state explosion v/ili occur sooner or later. To 

deal with such a problem, one strategy that considers ignoring all the irrelevant states and 

labels is described in the algorithm in Section 53.2. Another scheme considered in this 

algorithm also provides a big help to alleviate the state explosion. Such a scheme is based 

on the fact that it is most likely that a state led by performing a statement already existed 

in the LTS. In particular, two states can be considered as the same state in this thesis only 

if  the current statement of each process, the values of all the variables, the status of all the 

monitors, and the content of the input sequence of these two states are exactly same. In
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this case, the expansion will not be performed according to this statement execution since 

the expansion on the same state must have been performed and ail the post states of the 

current state can also be approached from the previous same state. The only thing needs 

to do under such a circumstance according to this algorithm is to produce a new label 

which denotes this evolution to that existed state.

5.3.2 Simplifying LTS to the control model

By performing the algorithm presented in the last section, an LTS can eventually be 

generated. Since the scheme for excluding the duplicated states has been taken into 

account of such an algorithm, the generated LTS is actually a graph instead of a tree. 

However, due to the fact that the generated LTS still contains a large number of irrelevant 

states and labels for deriving the path constraints, certain simplifications of the LTS have 

to be done. The algorithm provided in Figure 14 aims to perform such a task.

Algorithm for c o n s t r u c t in g  Control Model;

Public Variables: 
statesOfSystem, controIModel;

proiiiceCoffltroIMoielO
BEGIN:

< S te p l>
Initialize controIModel;

< S te p 2 >
For each item in statesOfSystem do

If this item contains the initial state of the LTS then
Search for ail the items in statesOfSystem that contain the 
states can be reached from this initial state via one or more 
labels which have label string i  (or x-label);
Put these states and the initial state together as a new item 
in controIModel;

Endif
Endfor
For each item in controIModel do 

Copy this item to thisNode;
For each state in thisNode do

Find the item in statesOfSystem which contains such a state; 
For each non-x label in this item do

If there is no label in thisNode has the same label string 
as this label then

Create a new item in controIModel to contain the 
end state of this label and all the states can be reached

5 8
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from this end state via one or more x-iabe!s;
Create and add to thisNode a new label with the identifier 
of thisNode, the identifier of the new generated item, and 
the label string of this label;

Else
Find the item in controIModel that is pointed by the label 
which has the same label string as this label;
Add the end state of this label and all the states can be 
reached from this end state via one or more x-iabels to this 
item;

Endif
Endfor

Endfor
For each label in thisNode do

If the state set of another item in controIModel is identical with the 
state set in the item that is pointed by this label then

Remove the i te m  th a t  is  p o in te d  b y  th is  la b e l from controIModel; 
Modify toStatelD o f  th is  la b e l b y  th e  identifier o f  su c h  a n  
identical item;

Endif
Endfor

E n d fo r
<Step3>

Initialize equivTable in which each item that is corresponding 
to the equivalence relation of each pair of state sets in controIModel;
In itia liz e  pairLists;!Icontaim pairs o f  s ta te  se ts  
For each item in controIModel do

For each o f  a ll o th e r  item s in  controIModel do  
Check equivTable;
If these two items have not proved to be distinguishable yet then 

If the label numbers in both items are equal AM) 
each label in one item has a corresponding label in the 
other item with same label string then

Add these tw o  items a s  a p a ir  to a  n e w  se t in  pairLists; 
C o n tin u e  to  check th e  equivalence re la tio n  o f  a ll th e  
succeeding pairs of items;

Else
Set the relation between these two items to distinguishable 
in equivTable;
Find the set of state pairs that contains these two items in 
pairLists, and set the relation between the two items of 
each pair to distinguishable in equivTable;

E n d if
Endif

Endfor
Endfor
F o r  each item in controIModel do  

Check equivTable;
For each equivalent item of this item in the controIModel do 

 ______ Remove such an equivalent item from controIModel;
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Modify all the labels pointed to the equivalent item to 
point to this item;

Endif
Endfor

< S tep 4 >
Return;

END

Figure 14: Algorithm for coastructtng Control Model

Essentially, the LTS can be considered as a sort of finite state automata (or finite 

automata). Therefore, most well-defined theories of finite automata are suitable to deal 

with the problems of LTS. Basically, there are two types offinite automata: Deterministic 

Finite Automata (DFA) and Nondeterministic Finite Automata (NFA) [23]. The major 

difference between DFA and NFA is that with an input, while a state must be moved to 

exactly one specific state in a DFA, the successor of a state can be a set o f  zero, one, or 

more states in an NFA. Since the focus of this thesis is concurrent system testing, the LTS 

generated by the algorithm discussed in the last section is indeed an NFA. For each DFA, 

an equivalent DFA that has minimum states can be found by grouping those states that 

are equivalent On the other hand, a DFA, which can do whatever an NFA can do, can 

always be constructed from such a given NFA. The process of constructing a DFA from 

an NFA is called determinization. Due to the fact that there is no way except a process of 

exhaustive enumeration to find a minimum-state NFA equivalent to a given NFA, it is 

necessary to perform the process of determinization before minimizing the state in an 

NFA. Considering our problem of simplifying the LTS, the determinization and 

minimization for such an LTS have to be applied. In fact, the algorithm provided in 

Figure 14 is based on the idea of automata determinization and minimization [23].

As shown in Figure 14, there are also two public variables used in this algorithm: 

variable statesOfSystem, defined the same way as in the LTS generating algorithm, and 

variable controIModel that contains the information of all significant sets of state 

identifiers and sets o f labels. In the second step of method produceControlModel, the 

LTS stored in statesOfSystem is determinized and stored in controIModel. Such a 

determinization involves constructing all subsets o f the set of states in the LTS. First of
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all, a subset that contains the initial state of the LTS and all states that can be reached 

from this initial state via one or more i-labeled transitions will be generated. Second, 

from these states and according to each possible visible action, a variety of new subsets, 

each of which contains the succeeding states of these states via one specific non-t label and all 

states that are reachable fi'om these succeeding states via one or more x-transitions, can be 

constructed. TMrd, we need to continuously construct such subsets from the existing state sets 
until all new constructed subsets are identical with other existing subsets or the states in the 

subset have no succeeding state. Finally, the determinized LTS has been generated in 

controIModel by considering each of these constructed state subsets as a new state. So far, all 

the x-tramitions in the LTS have also been eliminated. With such a deteraiinized LTS, the 

process of minimization will be accomplished in the third step of method 

produceControlModel. In essence, this process is performed by grouping those states 

that are equivalent in the above-determinized LTS. The equivalence relation considered 

here is trace equivalence. According to the definition of trace equivalence, each pair of 

states in this determinized LTS will be examined. Two states are marked distinguishable, 

if:

• exactly one of these states is the final state that has no outgoing label;

• one state can be moved to its succeeding state via a transition on one specific 

action, while the other state cannot;

•  the succeeding state pair of these two states via the transitions on corresponding 

action are found distinguishable.

The equivalence relation between any two states will be registered in a table that is 

described in the variable equivTable. Actually, only state distinguishablities can be 

determined by this algorithm. However, according to the theorem proved in [23], two 

states are indeed equivalent if  these states are not distinguished by such a state 

distinguishing process. With the equivalence relation table, states in the determinized LTS 

can be partitioned into different groups, so that all states in the same block are equivalent 

and no pair of states from different groups is equivalent. Again, by considering each 

group of states as a new state, a minimized and determinized LTS that is also known as 

the control model is constructed.
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5.3.3 Deriving the Path Constraints

With the control model constructed by the algorithm discussed in the last section, it 

is relatively simple to derive all significant sets of path constraints. Since the criterion of 

state coverage is not appropriate to be used in this case, as mentioned earlier, the path 

coverage criterion or the edge coverage criterion may be considered. The algorithm using 

the path coverage criterion for deriving the path constraints is provided in Figure 15, 

and the algorithm using the edge coverage criterion is presented in Figure 16.

Algorithm mmg path coverage for deriving the Path Constraints-.
Public variables: 
controIModel, pathConstraints;

generstePathConstraintslO
BEGIN

<Stepl>
Initialize pathConstraints-,

<Step2>
For each label from the initial state of controIModel do 

Copy this label to thisLabel-,
C o p y  th e  la b e l s tr in g  o f  thisLabel to  v a r ia b le  thisPathConstraint; 
//contains one set o f path constraints
^mWtACnmtxmatl{thisLabel, thisPathConstraint)-,

E n d fo r
END

finiNextContraintl(INPUT: thisLabel, thisPathConstraint)
B E G IN

<Stepl>
Search the item that contains this state pointed by thisLabel in controIModel; 

< S te p 2 >
If no label form this state then

Add thisPathConstraint to pathConstraints;
Else

For each label from this state do
Copy this label to currentLabet,
C o p y  a ll the items in  this Path Constraint to  a  n e w  v a r ia b le
nextPathConstraint;
Copy the label string of currentLabel to nextPathConstraint; 
^mSUextCmtxmmtl{currentLabel,nextPathConstraint)-,

Endfor
Endif

<Stq)3>
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END

Figure 15; Algorithm mm^path coverage for deriving the Path Constraints

In the algorithm shown in Figure 15, one public variable controIModel is defined 

as in the control model constructing algorithm, and another public variable 

pathConstraints is introduced to contain all sets of path constrains derived from the 

controIModel. In the method generatePathConstraintsl, the labels that start from the 

initial state are used to perform another method findNextComtraintl in order to generate 

different sets of path constraints. The end state o f each label will be examined in the 

method findNextContraintl, and such a method will be recursively invoked to process 

the labels from this end state until no label goes out from the current state. Eventually, all 

possible sets of path constraints can be registered in the variable path Constraints.

Algorithm using edge coverage for deriving the Path Constraints:
Public variables:
controIModel, pathConstraints, hasNewLabel;

generatePathConstraints20
BEGIN

<Stepl>
Initialize pathConstraints',

<Step2>
For each label from the ioitia! state of controIModel do 

If this label has not been covered yet then 
Mark this label to be covered;
Set hasNewLabel to be true;
Copy this label to thisLabel;
Copy the label string of thisLabel to variable thisPathConstraint; 
//contains one set o f path constraints 
findNextContraiiit2(iAfriahe/, thisPathConstraint);

Endif
Endfor

END

findNextCoiitraiiit2(INPUT: thisLabel, thisPathConstraint)
BEGIN

<Stepl>
Search the item that contains this state pointed by thisLabel in controIModel; 

<Step2> _______________________ _____________________ _____
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If no labei form this state then 
Set hasNewLabel to be false;

Add thisPathConstraint to pathConstraints;
Else

For each label from this state do
If this label has not been covered yet OR variable hasNevjLabel 
is true then

Mark this label to be covered;
Set hasNewLabel to be true;
Copy this label to currentLabel;
Copy all the items in thisPathConstraint to a new variable 
nextPath Constraint;
Copy the label string of currentLabel to nextPathConstraint; 
GmANextComtrmmtlicurrentLabehnextFathConstraint); 

Endif 
Endfor 

Endif 
<Step3>

Return;
END

Figure 16; Algorithm mingpath coverage for deriving the Path Constraints

One difference between the algorithms shown in Figure 15 and Figure 16 is that a 

new variable hasNewLabel is introduced in the latter to denote if  the current path contains 

at least one uncovered edge. Meanwhile, a Boolean value will be associated with each 

label to denote whether or not this label has been covered at least once. Thus, each time a 

label will be added to construct a new set of path constraints while either this label has 

not been covered yet or such a set contains at least one uncovered label. As a 

consequence, the algorithm in Figure 16 guarantees that each label in the control model 

must be covered at least once by the derived sets of path constraints.

Up to this point, the structure and the algorithms of the path constraints generating 

tool have been provided in detail. To illustrate the performance of this tool, the evaluation 

and some empirical results will be presented in Chapter 6.
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Chapter 6 Evaluation of the proposed framework

This Chapter discusses the evaluation of the proposed framework. This framework 

involves an implementation tool for deriving all significant sets of path constraints for 

reproducible testing. The algorithms used in such an implementation tool, which include 

generating the LTS, simplifying this LTS, and deriving path constraints, have been 

presented in Chapter 5. In the first section of this Chapter, some computational issues of 

the LTS generation will be considered. Then, the empirical results of deriving path 

constraints with the path coverage criterion will be investigated in the second section. 

Finally, in Section 63, the results of using the edge coverage criterion over a number of 

typical examples will be evaluated.

6.1 Computational issues

With the LTS generated by the algorithm presented in Chapter 5, the behaviour of

the PUT can be simulated. However, such an LTS suffers from the problem of state 

explosion. That is, the number of states in the LTS may increase exponentially as the 

number of processes in the PUT grows.

The number of states in the LTS is determined by a variety of factors. As mentioned 

in Chapter 3, each state in the LTS consists of a sequence of input values, the mapping 

from variables to their values, the locking status of all monitors, the status of monitor 

waiting queues, and the status of each process. Specifically, the number of states in the 

LTS is in a proportional order to the number of input values, the number of possible 

values of each variable, the number of monitors for its locking mechanism, and the 

number of statements in each process. In addition, the number of states in the LTS is 

exponential to the number of processes due to the fact that the number of states of each 

monitor’s waiting queue is the total number o f permutations of zero or more processes 

taken from the set o f processes.

Obviously, there will be a vast number of states in the LTS if  any of the above 

factors gets bigger. However, such a bad situation is unlikely to happen in practice. Our
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experiment actually provides some valuable data to show the scalability o f our approach. 

In particular, according to our experiment, the fonctionality of the simplification provided 

by this tool considerably reduces the number of states in the generated LTS. We show in 

the following, the empirical results on this issue.

6.2 Empirical results of deriving path constraints with path coverage criterion

The producer consumer problem is a classical concurrent example and has been 

illustrated in Chapter 4. Consider this example with one producer and two consumers, 

and alter the times of producing new data by the producer; the empirical results by 

performing the implementation tool with the path coverage criterion are shown in Table 

1.

Table 1 compares the number of states and labels in the LTS  and in its 

corresponding control model and records the number of derived paths and executing time 

while the producer performs its task a different number of times. The line chart in Figure 

17 demonstrates the relation between the number of derived paths and times of producing 

the new data by the producer. According to the empirical results shown in Table 1, it is 

obvious that the number of states and labels in the LTS has been reduced significantly in 

the control model with this implementation tool. However, a major deficiency, which is 

that the number of path constraint sets increases exponentially while the number of labels 

is getting bigger, comes from the application of the path coverage criterion as shown in 

Figure 17. Therefore, it can be concluded that with the path coverage criterion, the 

scalability problem may not be handled properly by the implementation tool. 

Consequently, another strategy - edge coverage criterion - will be considered for the task 

of path constraints generation in this implementation tool, and the empirical results of 

deriving path constraints with the edge coverage criterion will be provided in the next 

section.
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In LTS (Before Simplifyiiig) In Control Model 
(After Simplifring)

Producing
times

State N um ber Label Number States N um ber Label Number Path
Number

Time
(Sec)

1 5 3 T ~ ^ 1108 33 49 42 2

2 1388 2911 93 159 1776 10

3 2959 6235 193 345 78602 137

Table 1; Empirical results of producer consumer problem with path coverage criterion

100000 -

75000 -

I

50000

25000

Figure 17; Line chart of increasing path number with path coverage criterion

6.3 Empirical results of deriving path constraints with edge coverage criterion

Evaluation of this framework is complex as there are various circumstances in the

category of concurrent system testing. The experiments chosen to evaluate this 

framework should reflect the behaviour of the implementation tool in terms of significant 

reduction of state and label numbers from LTS to control model, the number of derived 

sets of path constraints, and the execution time. Evaluation of the above-mentioned 

testing method in experiments requires careful selection of typical examples that contain 

general scenarios in most concurrent systems. Hence, the producer consumer problem
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will be considered again in Section 63.1, and two other typical examples: Reader & 

Writer problem and the Sleeping Barber problem will be illustrated in Section 63.2  and 

Section 6 3 3 ,  respectively.

6.3.1 Reconsider producer consumer problem

To demonstrate the performance of the implementation tool by employing the edge 

coverage criterioii, the example of producer consumer problem is considered again first.

Since nothing else but the strategy of deriving sets of path constraints from the 

control model has been changed, only the results of path number and executing time are 

different in Table 2 from those in Table 1. It is not surprising that the number o f derived 

paths no longer explodes while the numbers of state and label are increasing since the 

edge coverage criterion is applied. In fact, the increase of path numbers will be linear as 

the line chart shown in Figure 18. Also, comparing Table 1 and Table 2, another major 

difference is that the growing rate of the execution time, along with the boost of valid 

number of states and labels by using the edge coverage criterion, is much lower than that 

obtained by using the path, coverage criterion.

In LTS (Before Simplifying) In  Control Model

(After Simplifying)

Producing

times

State Niunber Label Number States Number Label Number Path

Number

Time

(Sec)

1 5 3 1 1 1 0 8 3 3 4 9 18 1

2 1388 2 9 1 1 93 1 5 9 68 7

3 2 9 5 9 6 2 3 5 193 345 1 5 4 3 8

Table 2% EmpMeal results of producer consumer problem with edge coverage criterion
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Figore 18; Line chart of increasing path number with edge coverage criterion

6.3.2 The example of Reader & Writer problem

Reader & Writer problem is somewhat similar to producer consumer problem, and 

is a typical concurrent example, too. In such a problem, there exists a shared database, 

which can be queried by the reader processes and be examined and altered by the writer 

processes. Due to the characteristics o f the reader and writer, the database can be 

assessed concurrently by different readers, while writers require exclusive access o f the 

database.

The design abstract for the solution of Reader & Writer problem is presented in 

Figure 19. Two integer variables nr and nw are used in this solution to denote the 

numbers of readers and writers that are currently processing the database, respectively. 

Before operating the database, each process enters a critical section protected by monitor 

m l. The initial value of all these variables will be 0. If there is no any other process that 

either a reader or a writer currently accessing the database, a write process is allowed to 

alter the database, and increase the variable nw'hy 1; otherwise, this write process puts 

itself in the waiting queue of monitor m2. However, a reader process is allowed to query 

the database and increase the variable nr by 1 unless there is a writer process that is 

operating the database. A reader waits in the waiting queue of monitor m l if the number 

of writers nw is larger than 0. After operating the database, each process enters another 

critical section that is also protected by monitor m l. Either number of writers or number 

of readers will be decreased by 1; and, the write process will awaken the first writer

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



process that waits on monitor m2 and all reader processes that wait on the monitor ml, or 

the reader process will awaken the first writer process that waits on monitor m2 if no 

more readers are accessing the database.

* RemSer& Writer *
<variables> {{ n w :in t},{ da tarin t},{ n r : in t},{ dataOfReader :int }} 
<m onitors> {m0,in2,ml}

<process>;Wrlter 
lock ( m O) {

while ( n r > 0 I nw  > 0 )  do { 
wait ( mO , m2 );

}
nw := nw  + 1;

}
lock_end ( m O ); 
data := data + 1;
lock ( mO ) { 

nw := n w  -1 ; 
notify ( m2 ); 
notifyAll ( m l );

}
lock_end ( m O ); 
stop;
<procew>:Meader 
lock ( mO ) {

while ( nw > 0 ) do {
wait { mO , m l );

}
nr : = n r +  1;

}
lock_end ( mO);
dataO fR eaderl := data; 
lock ( mO ) { 

n r := nr -1 ; 
i f  ( nr —  0 ) then { 

notify (m2 );
}

}
iock_end ( m O ); 
stop;

Figure 19: Design abstract for the example of Reader & Writer

The results o f performing the implementation tool with this example o f Sleeping 

Reader & Writer problem are displayed in Table 3.
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N um ber In  LTS (B efore  S im plifying) In  Control Model 

(A fte r S im plify ing)

Readers/

W riters

State N um ber Label N um ber States N um ber Label N um ber P ath

Number

Time

(Sec)

2/1 779 1404 85 122 39 2

3/1 6443 14522 357 639 285 114

2/2 7013 15215 491 855 366 118

Table 3; Empirical results of Reader & Writer problem

6.3.3 The example of Sleeping Barber problem

Sleeping Barber problem is another classic synchronization problem, and also a 

representative of practical problems. The important client/server relationship that often 

exists between different processes is illustrated in this problem.

The situation described by Sleeping Barber problem is: There is a barber-shop in a 

small town. The shop has a barber, a barber chair, and a waiting room with several chairs. 

The barber spends his lifetime to serve customers, and sleeps in the barber’s chair when 

none are in the shop. When a customer arrives and finds the barber is sleeping, the 

customer awakens the barber, and sleeps in the barber’s chair while the barber cuts his 

hair. If the barber is busy when a customer arrives, the customer goes to sleep in the chair 

in the waiting room if at least one of such chairs is available; otherwise, the customer 

comes back later. After finished cutting, the barber awakens the customer who has 

received a haircut and lets him leave. If there are waiting customers, the barber then 

awakens one and gives another haircut; otherwise, the barber goes back to sleep until a 

new customer arrives.
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* sieepingBarber *
< v a ria b le s>  {{ niH n_ciist;iiit } ,{ to ta l : i n t}} 
< m o n ito rs>  { m l,m 2 ,m 3}

<proce§s>;Barber
w h ile  ( to ta l< 3  ) do  { 

lo c k  (  m l ) {
i f  ( nu iii_ cu st == 0 ) th e n  { 

w ait ( m l  , m 2  );
} e lse  {

}
n u m ^ o is t  :=  n u m _ c u s t - 1 ;  
n o tify  ( m 3 ) ;  
to ta l := to ta l +  1;

}
lo c k _ e n d  ( m l  );
n o tify A ll ( m l  );

}
s top ;
<process>s Customer 
lo c k  (  m l ) {

w h ile  (  n u m _ c u s t =  2  ) d o  { 
w a it ( m l  , m l  );

}
n u m _ c u s t := n iu n _ c u s t +  1; 
i f  ( n u m _ c u s t =  1 )  th e n  { 

n o tify  (  m 2  );
} e lse  {

}
w a it  (  m l  , m 3  );

}
lo c k _ e n d  ( m l );
s top ;

Figure 20; Design abstract for the example of Sleeping Barber

The design abstract for a solution of Sleeping Barber problem is given in Figure 

20. In this solution, three monitors, m l, m2, and m3, are employed. In particular, monitor 

m l is used to ensure the mutual exclusion of the barber’s cutting and the customer’s 

entering the barber-shop; monitor m2 is used to signal the barber that a new customer 

arrives; and monitor m3 is used to signal the customer that the barber has finished his 

cutting. Variable total is used to denote the total number of customs that have been 

served by the barber, and the initial value is 0. Besides, a variable num_cust denotes the 

available number of chairs in the barber’s waiting room, and the value will be given with
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m  initial state of this system. If a customer gains the lock of monitor m l and finds no 

chair in the waiting room is available, he gives up the lock and waits in the waiting queue 

of monitor ml. On the other hand, if  the barber gains the lock of monitor m l and finds no 

customer is waiting, he waits in the waiting queue of monitor m2; otherwise, he cuts one 

customer’s hair and wakes up customers that wait on the monitor m l if  there is any. 

Since only static processes will be consider as mentioned earlier, the number o f customer 

processes will be same as the number of customers that the barber is allowed to serve. In 

this case, it is not necessary for the customer process to examine if  the barber process is 

still nmning due to the fact that each customer will be eventually served.

Number In LTS (B efore

Simplifying)

In  Control Model 

(After Sim plifying)

Barber/Custom ers State

N um ber

Label

Number

States

Number

Label

Number

P ath

N um ber

Tim e

(Sec)

1/2 375 642 49 63 16 1

1/3 3175 6334 183 265 84 37

1/4 27963 62278 792 1274 484 4714

Table 4; Empirical results of Sleeping Barber problem

The results of performing the implementation tool with this example o f Sleeping 

Barber problem are listed in Table 4. According to this table, three points should be 

noticed:

- Although as the number of processes increases, the number of states and labels in 

the generated LTS rises remarkably, the numbers of states and labels in the control 

model that is simplified from the LTS by the implementation tool does not 

accumulate likewise;

- The number of derived sets of path constraints by applying the edge coverage 

criterion increases linearly while the number of processes grows;

- The execution time for deriving path constraints increases significantly as the 

number of processes increases.
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Chapter 7 Conclusion

In this thesis, a framework to automatically generate all significant sets of path 

constraints for reproducible testing has been proposed. The purpose o f these derived path 

constraints is to gain desired detenninistic control over the non-deterministic testing 

environment.

Formal methods process terms and Labelled Transition System (LTS) are 

introduced to specify the design abstract of the PUT and to construct the model for 

simulating the behaviour of such a PUT, respectively. Due to the fact that the LTS is 

indeed a sort of Nondeterministic Finite Automata, the algorithms of determinization and 

minimization in theories of automata are applied to simplify the LTS to the desired 

control model by reducing those internal transitions according to trace equivalence. The 

control model contains a minimum number of states and labels that are necessary for 

generating the path constraints. Finally, the edge coverage criterion which guarantees 

that each label in control model will be covered at least once is used to derive all 

significant sets of path constraints.

The experiments presented in Chapter 6 demonstrate that it is efficient and 

effective to construct the control model that is made up of only necessary information for 

deriving the path constraints by simplifying the LTS with this implementation tool. 

Further, with the edge coverage criterion, this implementation tool derives only 

significant sets of path constraints. Since the number of derived sets o f path constraints 

is manageable and the increase of such a number is linear as the size of the control model 

grows, the scalability problem can be handled properly by this tool.
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