
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2004

An implementation of feasible path constraints generation for An implementation of feasible path constraints generation for

reproducible testing. reproducible testing.

Jun Li
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Li, Jun, "An implementation of feasible path constraints generation for reproducible testing." (2004).
Electronic Theses and Dissertations. 1087.
https://scholar.uwindsor.ca/etd/1087

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1087?utm_source=scholar.uwindsor.ca%2Fetd%2F1087&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

An Implementation of Feasible Path Constraints
Generation for Reproducible Testing

By

Jun Li

A Thesis
Submitted to the Faculty of Graduate Studies and Research

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada
March, 2004

2004 Jun Li

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1^1 National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque nationals
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-92498-X
Our file Notre reference
ISBN: 0-612-92498-X

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de ce manuscrit.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
dissertation.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Non-determinism features make the testing o f a concurrent program not repeatable.

Specification-based reproducible testing is a promising technique that may give the tester

more control over the environment of concurrent testing. With a given test case, the

crucial part of the test scenario which contributes to achieving the control on the

execution path are input events and path constraints in terms of synchronization events.

The problem considered in this thesis is to generate a significant set of path constraints

automatically from the design specification in terms of design abstract under the

assumption that monitors are the key mechanism to handle the synchronization events. In

addition, as a considerable feature, formal methods have been applied in the

implementation tool to construct the path constraints.

Keywords: Non-determinism, Reproducible testing, Path constraints, Formal methods,

Structural Operational Semantics, Labeled transition systems. Automata theory.

Ill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

I would like to take this opportunity to thank my supervisor, Dr. Jessica Chen, for

her invaluable guidance and advices, for her enthusiastic encouragement and her great

patience to me. I specially thank my committee members, Dr. CMstie Ezeife, Dr Zhiguo

Hu and Dr. Joan Morrissey for spending their precious time to read this thesis and for

their suggestions on the thesis work. I would also like to thank my wife, Xiying Sheng,

for her understanding, patience and support, and thank my whole family, and my friends,

especially Mrs. Madeleine Godwin, for supporting me in so many ways during my study

period at the University of Windsor.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

BaaoQOeeaaao®®ee0 00«®e'eeaaoo«e®eB0Baooo0e0caoaoa®0eaoffiB®ffl0*e®oeo0fflseo®®!!®9ao0e0OBasaoee0®aBoe00a«o««aeee0®aoo®B®0a©ffi®a®a0e9 III

Acknowledgement a B B a . . ® ® r V

List of T a M e S . . .® B . 0. , . .® .0. ® ® 0. .B , . ,B ® ® , . .® ®®0aB ® ...aa ..® .® .0. .. .a .. .®® ..® .. VII

List of Figures a ® VIII

Chapter 1 Motivation..... a® ® ® ® a1

1.1 Techniques for concurrent system testing... 2
1.1.1 Debugging-related testing techniques........................ 2
L I .2 Specification-based testing techniques....... 3

1.2 Our problem...... 3
1.3 Contribution of Thesis W ork5
1.4 Structure of the thesis..6

Chapter 2 Related works . . . 00...®..®.®®®..®,...®..®.®®®.®®......®.®.......®.®®....®.®......=...®®..®.....®®.....®®.®.... 8

2.1 Test case generation for traditional systems 9
2.2 CSPE-based testing 10
2.3 State-based testing for CORBA applications........................... 12

- 2.4 Integration of formal method with reproducible testing... 14
2.5 Applications of labeled transition system for concurrent systems.......................... 15

Chapter 3 Background and previous works 18

3.1 Formal Methods.. 18
3.2 Labelled transition system. 20
3.3 Equivalence relations 21
3.4 Process terms...23
3.5 Structural operational semantics and the structural rules..26

3.5.1 A case application ofLTS... 26
3.5.2 Structural rules................... 27

3.5.2.1 Schema for structural rules.... 28
3.5.2.2 Structural rales for basic flow of controls... 28
3.5.2.3 Structural rales for input action... 31
3.5.2.4 Structural rales for mutual exclusion.. 31
3.5.2.5 Structural rules for process coordination ..34
3.5.2.6 Extension of structural rules for process coordination..... 36

Chapter 4 An Exam ple a . . ® . . . ® a®®.®®........38

4.1 The problem of producer consumer 38
4.2 Design abstract for one solution of producer consumer problem........................... 39
4.3 Generation of LTS... 41

Chapter 5 Design and Implementation Detail a®®®®®.®®®®...... 49

5.1 Fundamental architecture of design..49

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Class Diagrams in the implementation tool 50
5.3 Aigorithms used in the impiementation tool... 53

5.3.1 LTS generation 53
5.3.2 Simplifying LTS to the control model 58
5.3.3 Deriving the Path Constraints 62

Chapter 6 Evaluation of the proposed franaework ... 65

6.1 Computational issues... 65
6.2 Empirical results of deriving path constraints with path coverage criterion........... 66
6.3 Empirical results of deriving path constraints with edge coverage criterion.......... 67

6.3.1 Reconsider producer consumer problem 68
6.3.2 The example o f Reader & Writer problem 69
6.3.3 The example o f Sleeping Barber problem 71

Chapter 7 Conclusion 74

VITA 80

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 1: Empirical results of producer consumer problem with path coverage criterion 67
Table 2: Empirical results of producer consumer problem with edge coverage criterion 68
Table 3: Empirical results o f Reader &. Writer problem... 71
Table 4: Empirical results o f Sleeping Barber problem.. 73

VII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1: Illustration of Trace Equivalence...22
Figure 2: Structural rules for basic flow controls................. 29
Figure 3: Structural rule for input... 31
Figure 4: Structural rales for mutual exclusion. ..32
Figure 5: Structural rale for processes coordination (a)................................ 34
Figure 6; Stnictiiral rule for processes coordination (b) 36
Figure 7: Design abstract for Producer Consumer problem 40
Figure 8; Trace of generating LTS by depth-first traversal strategy........................... 44
Figure 9: Tree o f LTS generated by depth-first traversal strategy.....................................45
Figure 10: Tree of LTS generated by width-first traversal strategy46
Figure 11: Class diagrams (I) for the implementation ofpath constraints generating tool

50
Figure 12: Class diagrams (II) for the implementation of path constraints generating tool

52
Figure 13: Algorithm for generating LIS'..56
Figure 14: Algorithm for constructing Control Model................... 60
Figure 15: Algorithm using path coverage for deriving the Path Constraints................. 63
Figure 16: Algorithm using path coverage for deriving the Path Constraints................. 64
Figure 17: Line chart of increasing path number with path coverage criterion.... 67
Figure 18: Line chart of increasing path number with edge coverage criterion............... 69
Figure 19: Design abstract for the example of Reader & WriterIQ
Figure 20: Design abstract for the example of Sleeping Barber....................................... 72

VIII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1 Motivation

With the growing complexity of computation, concurrent software systems are

becoming more prevalent. While concurrent programming has brought with it the power

of processing multiple tasks simultaneously, it also has presented a lot o f challenges to

software developers. One particular challenge is testing.

Software testing is the process of checking the functionality o f system

implementations by making them execute under certain conditions. Such a process is

usually performed either to detect possible deficiencies or to measure the reliability of the

given implementations. Testing plays a vital role in the procedure o f software

development, and is an important means for us to gain confidence in the quality of a

software product. A bundle of well-defined techniques has been widely used for

developing traditional sequential programs. However, it is far from simple to deal with

the concurrent systems. The major difficulty comes from the characteristic of non

determinism that is inherited by all concurrent programs. In particular, while it can be

guaranteed that with fixed input the same output will be produced in the sequential

programs, users of concurrent programs may get different results in every run, even with

the exact same feed-in data. One reason for such an outcome is the existence of race

condition that is introduced by the unpredictable executing rates o f different processes.

The concept of a process is analogous to a thread in a multithreaded system. Since the

speeds of these processes are not determined, multiple executions of a concurrent

program may exercise different sequences of visiting shared variables and exchanging

messages. Consequently, this feature of non-determinism makes the testing of a

concurrent program non-repeatable. In other words, the tester o f concurrent programs

may not have the chance to observe a certain erroneous phenomenon that occurred

before. In addition, the tested program may exercise some identical path many times or

never exercise some other feasible paths.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Techniques for concurrent system testing

To deal with the problem of non-determinism, a lot of techniques that intend to

enforce the under-testing concurrent program to follow certain execution paths artificially

in order to reproduce the same testing phenomenon were proposed in recent years [3, 5,

10, 11, 13, 32, 41, 42]. These techniques generally fall into two categories: debugging-

related techniques and specification-based testing techniques.

1.1.1 Debugging-related testing techniques

To achieve the control of deterministic execution over non-deterministic programs,

special debugging techniques can be applied.

Software debugging is a process different from testing. It aims at locating the

causes o f some observed errors in a software program. Debugging a sequential program

usually involves multiple iterations of the executions of a program, and on purpose, pause

the execution at certain well-chosen points according to the user’s experience, in order to

examine the current state. Similarly, a primitive way to debug a concurrent system is to

re-execute the traced computation in a controlled fashion. However, manually inserting

the control mechanism is not an efficient solution due to the extreme complexity in most

of the concurrent systems. Therefore, rather than using traditional debugging tools, some

other more sophisticated techniques were introduced in the past decade. For instance, a

predicate control mechanism that allows computations to be run based on added

synchronizations is presented by [36]. The idea of predicate control is to manage the

program execution by artificially inserting synchronizations that do not violate the

functionalities of the underlying program. With such predicates, particular executing

orders can be ensured so that the goal of replaying can be achieved. An event-based

approach for debugging is reported in [3]. This approach accomplishes the debugging by

creating models of desired program behaviours and comparing these models with the

actual behaviour of under-debugging systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1.2 Specification-based testing techniques

Generally, software testing may be divided into two basic approaches: program-

based testing and specification-based testing.

Testing based on program code itself is conducted in an intuitive way, and studies

of such approaches, which are performed to testing concurrent programs, can be found in

[14, 26, 44, 52, 57].

Specification-based testing is a totally different case. We need to gather the test

input from the specification of a software system. As the foundation for testing, these

specifications must be complete, precise and unambiguous, otherwise misinterpretation

may occur and even a disaster of testing failure can possibly take place. Furthermore,

these specifications must contain the correctness criterion that describes the expected

system behaviours under every possible circumstance, where system behaviours are any

observable activities during a system execution. One of the advantages brought by

specification-based testing is that we are able to perform tests before the implementation

is finished; possible deficiencies of specification may be found early, and test data can be

generated independently from the concrete implementation. As a consequence, the test

cost will be significantly reduced in terms of time and money.

Some discussions on specification-based testing have been investigated in [1, 40].

More specifically, to test a concurrent program, instead of simply using the model such as

finite state machine, certain control or guidance is also needed [10, 11,13, 41,42].

1.2 Our problem

Due to the non-determinism of concurrent systems, testing is not simple to perform.

Specification-based reproducible testing is a promising technique that employs a set of

predefined control points that can be used to automatically handle the order of executions

of each process. To gain desired control for reproducible testing, certain information

called a test scenario has to be provided. Usually, a test scenario must include not only a

test case but also a path constraint for this test case. For the sake of simplicity, we only

consider non-distributed concurrent systems in this thesis work. Thus, the test case refers

to only a sequence of inputs and expected outputs. In the present work, the test case is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assumed to be given. On the other hand, the path constraint, which is the crucial part of a

test scenario and contributes to achieving the control on the execution path, can be

expressed as an order among some specific internal events.

Before introducing path constraints, a set of interested events has to be pre-defined.

Since the prominent task of testing is to consider possible deficiencies of the underijdng

program, the path constraints are very often designed to disclose the representative

scenarios that may likely contain the bugs or errors. Due to the characteristics of the

concurrent system, the interested events will be focused on those related to

synchronization activities, for instance, accessing shared objects and coordinating

between different process, and more detailed discussion can be found in [11].

In fact, it is observed that these synchronization activities represent the origin or

cause of non-deterministic behaviour such that different outputs are produced with the

same inputs. There are a number of mechanisms available for accomplishing the

synchronization, some well-known ones of which are busy-waiting protocols, semaphore

and monitor [2], Busy-waiting is an implementation of synchronization in which a

process repeatedly examines a certain condition until it becomes true. The downsides of

using busy-waiting protocols include; most of such protocols are quite complex; there

lacks clear distinction between variables that are employed for synchronization and those

that are used for program computation; and it is inefficient to apply the busy-waiting in

most concurrent programs. A semaphore is a special kind of shared variable that allows

only two atomic operations, p and v. The atomic operation refers to a unitary operation

that is essentially indivisible and unchangeable. The p operation is applied to ensure a

process can proceed only if an event has occurred, while such event occurrences can be

signaled by perform the v operation. However, semaphores are also a low-level

mechanism and may introduce some errors when it is being applied. A monitor is a

program module where at most one client may execute a routine of it at any given time.

In this thesis work, the monitor is considered as the key mechanism to handle the

synchronization mechanisms since it is more structured and efficient than the others, and

is made available in a variety of concurrent programming languages.

Another important factor that may yield notable influence over the synchronization

events is the timing of the input, since it is most likely in concurrent programs a sequence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of input will be used to supply more than one process. Thus, to achieve the control over

execution of concurrent programs, we must be able to determine the time of occurrences

of those events including not only synchronization events but also input events.

Therefore, each path constraint is a sequence of synchronization events and input events,

which corresponds to the control points in the PUT. Finally, the control over pro^am

execution can be obtained by adjusting the order of these control points.

One testing approach concerned with how such a control mechanism forces the

Program Under Test (PUT) to execute exactly as the desired path according to the given

input and path constraints was discussed in [10]. In particular, such control is

accomplished by placing the PUT into a well-designed testing environment, suspending

the execution at certain control points, and enabling message exchanging between the

control mechanism and all the processes in the PUT in order to determine if the specific

process should continue or wait until some specific events occur. These control points are

the moments that occur immediately prior to or subsequent to the synchronization events,

and the moments that occur immediately prior to or subsequent to the input events. Other

approaches dealt with controlling such forced execution of concurrent programs that, via

managing the run-time scheduler or debugger, can be found in [11, 32].

However, generating path constraints is difficult, expensive, and tedious. First of

all, the specification of a software system may be imprecise, incomplete, and

inconsistent. Second, very often, there are lack of some efficient and effective ways for

deriving a control model in which contains the information of all path constraints from

the given design specification. Finally, since such control models are usually huge, an

appropriate method is desired to simplifying them without loosing any necessary

mformation.

1.3 Contribution of Thesis Work

This thesis work involves a framework for automatically generating significant sets

of feasible path constraints for reproducible testing from the design specification and the

given test case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As a considerable feature, formal methods will be applied to construct the path

constraints. Formal methods refer to mathematical-based techniques that can be applied

to specify, develop and verify not only software but also hardware systems, and will be

ftirther discussed in Chapter 3.1. Also, by assumption, we consider the PUT of a static

set of processes and the design abstract of the PUT is provided in terns o f formal

specification language process terms [35], where the details of process terms will be

given in Chapter 3.4. Formal modeling language Labelled Transition System (LTS) is

explored; and Structural Operational Semantics is used to systematically and

automatically produce such an LTS which include necessary information to retrieve all

feasible path constraints (a detailed introduction to LTS can be found in Chapter 3.2).

Trace equivalence, which is a kind of equivalence relation between different states in the

program computation, will be chosen to simplify the labeled transition system by

ignoring irrelevant internal events and reserving only those labels o f the synchronization

events and input events, and the trace equivalence is going to be introduced in Chapter

3.3.

By surveying various related works, critical reviews and comparisons between

those techniques and the present work have been made by this thesis. Based on the

process terms and LTS discussed in the previous researches of Dr. Jessica Chen, an

algorithm for generating an LTS model from the given design abstract in terms of process

terms has been provided in this thesis. Meanwhile, the algorithms for simplifying such an

LTS have been constructed according to the theory of Finite Automata. Besides, this

thesis also gives the algorithm of deriving the desired path constraints for gaining control

o f reproducible testing. With these algorithms, a tool for automatically generating

significant sets of feasible path constraints has been implemented. Afterwards,

experiments have been done, and the results of which proves the feasibility and efficiency

of the proposed framework.

1.4 Structure of the thesis

The remainder of the thesis is organized as follows: Chapter 2 gives the overview

and comparison of related works. Chapter 3 introduces the background of the techniques

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and some previous work that are going to be used in the implementation. Chapter 4

illustrates the generation of LTS by an example application: producer and consumer

problem. Chapter 5 discusses the implementation details of the proposed framework.

Chapter 6 displays the evaluation of this implementation. Chapter 7 provides a

conclusion and offers a discussion of future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 Related works

This chapter reviews some of the important related works and approaches that

concern the problems with reproducible testing. Studies on testing concurrent systems

have drawn more and more attention from researchers during the past few years. Most of

their work has been focused on monitoring or controlling the execution of the system in

terms ofthe nondeterministic behavior [3, 5, 8,10,11, 13,28, 31, 32, 41,42].

Reproducible testing is an effective technique to enable deterministic testing for

concurrent programs, which allows a specific test scenario to be replayed [41, 42, 43].

Usually, two important issues are considered while performing the reproducible testing:

generation of the test scenario and realization of the desired execution, the focus of this

thesis work will be limited to the former.

The traditional replay control techniques used to be the hot spot of concurrent

program testing, and some of them have been introduced in [11, 32, 36]. With these

techniques, a certain mechanism will be applied to record the internal choices that are

related to the nondeterministic behavior of the PUT when the PUT is running with some

inputs. Afterwards, the replay control mechanism can be used to force the PUT to execute

according to the recorded choices. Such replay techniques are crucial for regression

testing which is a testing that intends to re-test the unmodified functionalities in case

some corrections or modifications for the PUT have been made. In contrast, reproducible

testing does not necessarily need the PUT to be executed first in order to record the

relevant messages to construct the controlled execution sequence. In other words, such an

execution sequence can be acquired from a number of other sources such as requirement

documents, design documents, and program codes (except from recording in the previous

execution of PUT).

It is commonly believed by most researchers that both test case and the sequence of

execution of events, in terms of statements, are needed to be taken into account while

performing reproducible testing. More specifically, the considerations o f such execution

events are focused on the sequences of concurrency-related statements [3, 5 ,10,11, 13,

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

32] and remote method invocation involved statements [8, 10, 41, 43]. However, since

distributed concurrent systems are beyond the scope of the present research, the

sequences o f statements will be concerned only with respect to concurrency control in

this thesis work.

Current approaches suggested by researches in the area of reproducible testing

include test case generation for traditional systems [20, 38, 56], CSPE-based testing [13],

state-based testing for CORBA applications [41], techniques for integrating formal

method into reproducible testing [8], applications of labeled transition system for

concurrent systems [49, 51].

2.1 Test case generation for traditional systems

Creating test cases, is laborious, high-priced, and annoying. The traditional way is to

build an automatic generating tool. Generally, there are two kinds o f approaches for

generating test cases: code-based and specification-based.

Code-based test case generation derives test cases from the actual code. Some of

the methodologies that are used with code-based testing include statement coverage that

requires all the statements in the PUT to be covered at least once, and branch coverage

that requires all the branches of conditional statements to be covered at least once. One

classical example of the code-based tool for generating test cases is a tool called Godzilla

[15, 16]. Although code-based test cases are effective due to the fact that they concern

the way the software is actually written, code-based test case generation has a major

disadvantage: the tests are based on the real implementation which may not be coherent

with the specified requirements.

On the other hand, specification-based test case generation extracts test case based

on the specification of what the software is supposed to do. Since specification-based

testing only considers an external view of the software, it is not necessary to cover all of

the statements of the PUT. Approaches of specification-based test case generation often

fall into three groups: model-based, algebraic and finite state machines-based. The finite

state machine (also known d& finite state automaton) is a computational model consisting

of a set o f states which include a start state, an input alphabet, and a transition function

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

which maps input symbols and current states to some succeeding states. To provide some

more robust test case generation methodologies, combinations of these techniques are

most likely applied simultaneously. For instance, approaches introduced in [20, 56] have

used algebraic specifications, model-based specifications, and finite state machines. A

method introduced in [56] was intended to derive a Finite State Model that can be used to

control the test process from specifications which are written in Z language. An approach

to class-level test case generation from formal object-oriented specifications has been

discussed in [20]. This approach first extracts a test mode!, which is a representation

containing all the information to generate test cases from the design specifications. Such

specifications are written in a language which includes an algebraic specification that

consists of a number of functional modules and a set o f object information that identifies

the class name, invariants, historical constraints, and methods of each class. Thus, the test

cases can be selected based on the partitioned input space from the test model. Another

example concerns about generating test case automatically from design specification was

described in [38]. This generating method is based on a formal specification language

called Structured Object-Oriented Formal Language (SOFL).

However, the techniques and approaches illustrated above concerned only test cases

for traditional non-concurrent systems, whereas the present work considers the testing

over concurrent systems. Meanwhile, in the present work, the test case is assumed to be

given instead of being generated from specification.

2.2 CSPE-based testing

A specification-based methodology which was designed for the purpose of testing

concurrent programs based on sequencing constraints named CSPE was presented in

[13].

Events of synchronization (or SYN-events) and the sequence of such events (or

SYN-sequence) were thought to be the key when analyzing the behavior of concurrent

programs. The feasibility and validity of a SYN-sequence depends on the acceptance

from the implementation and specification of the underlying program, respectively. Thus,

a synchronization fault is defined as either a feasible SYN-sequence of program with a

10

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

certain input considered to be invaiid or a valid SYN-sequence of program with a certain

input considered to be infeasible. In order to specify the sequencing constraints which

are in harmony with the feasible SYN-sequences of a concurrent program, Constraints on

Succeeding and Preceding Events {CSPE) has been defined. A strategy of generating

such CSPE constraints automatically was proposed in [7, 12, 31]. In order to achieve

more flexibility and expressiveness, these CSPE constraints is further abstracted by using

strategies of equivalence, and only those observable events of program execution will be

considered. Hence, the testing methodology proposed in [13] can be described as follows:

first, derive a set of validity constraints in terms of CSPE constraints from specification

o f PUT; second, execute the PUT repeatedly with same input in order to collect the

exercised SYN-sequence, by which coverage can be measured and violations of PUT’s

validity constraints can be detected; third, the deterministic testing, which involves

forcing the PUT to execute with a specific input in harmony with a SYN-sequence, can

be performed with the above-generated SYN-sequence; finally, possible constraint

violations can be exposed if such deterministic testing cannot cover a constraint.

In essence, CSFA'-based testing is a testing based on the specification in terms of

Finite State Machine (FSM). Usually, the test generation criterion for an FSM makes use

of transition coverage which requires every transition in the FSM to be covered at least

once. However, transition coverage is not strong enough to detect certain error states.

Therefore, instead of using transition coverage, the C5HE-icoveragae criterion which

requires each constraint to be covered at least once is employed for CSFA-based test

generation.

Based on such CSPE constraints, the sequence of the test can be either produced

manually, or derived automatically from system specifications that are modeled with

FSM. To automatically generate the test sequence, a strategy was presented in [31]. In

particular, a weighted directed tree representation called a constraint tree is used in

generating the test sequence. In the constraint tree, each node represents a constraint, and

it is referred to as valid or invalid according to the validity of its labeled constraint.

Directed edges between nodes denote the order of the corresponding constraint events.

Hence, any path on the constraint tree indicates a test sequence. The step after the

generation of the constraint tree is to select a minimum set of test sequences, in which

11

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

the calculation upon every possible combination of nodes will be performed. This

guarantees that every constraint is covered at least once in a test sequence. By marking ail

the nodes in each combination and getting the maximum path which includes all the

marked nodes and ends with a marked node, a set of test sequences which all confonn to

the CSPE-1 coverage criterion wilt be produced.

There are a number of common features between such CSPE-hasQd testing and the

present work. For example, both are specification-based and both take into account the

synchronization events. However, significant differences also exist. Comparatively, the

Labeled Transition System is used as the means to generate the path constraints in the

present work while the constraint tree is employed to derive the test sequences in the

work of [31]. Meanwhile, while the testers have to specify the restrictions on the allowed

sequences of synchronization events with the testing methodology based on the use of

CSPE constraints, the path constraints in the present work are derived directly from the

given design abstract by generating a Labeled Transition System that contains all possible

serialization of the synchronization events. Furthermore, applying the CSPE-1 coverage

criterion in CSBE-based testing is due to the fact that a CSPE constraint contains only a

temporal property and therefore lacks an efficient method to discover all possible

serializations of the synchronization events that satisfy the given set of constraints. In the

present work, some general coverage criteria such as state coverage criterion or edge

coverage criterion can be applied to generate possible paths.

2.3 State-based testing for CORBA applications

Unlike the control structure based testing that was discussed in the last section, a

state-based reproducible testing described in [30, 41, 42, 43] is capable o f handling the

complexity caused by the introduction of object-oriented structure and middleware

technologies in the component-based software.

A state machine model which is based on the formalism of statechart is presented

as the basis of the approach in [41], The characteristics of statechart benefit this state

machine model to deal with the concuixent, hierarchical and communicating problems of

component-based distributed systems. One advantage of using statechart formalism is a

12

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

MerarcMcai feature allowing a set of states, which has the same meaning, to be replaced

by one new state with some related transitions that are possibly guarded by certain

conditions. Therefore, the state number in the new derived state machine will be reduced

dramatically. Essentially, during the concurrent execution of component-based software,

each method in the components may non-deteoninistically alter the state of the system.

There are two types of state machines that are used to model the behavior of the PUT.

The first one is the atomic state machine (ASM) which is employed to describe the state

behavior for a single shared variable. The second type is the composite state machine

(CSM) that is used to characterize the situation whereby a program involves more than

one shared variable. For the state dependent behavior of a concurrent CORBA (Common

Object Request Broker Architecture) implementation, such a set offinite state machines

is defined for a set of interesting shared variables which are conveyed either in IDL or in

the global declaration part.

When the construction of a state machine (CSM) for modeling the PUT is

completed, a set of test sequences can be generated by building the test tree [30, 43]. To

generate the test tree, the set of initial states that comes from each ASM in the CSM is

used as the root node of the test tree. From the root node, a number o f branches can be

added according to all the alternative transitions that are all valid outgoing transitions

from the root. Afterwards, a replay mechanism is used for a selected test sequence of a

CORBA implementation. This replay mechanism is designed to perform the deterministic

execution of a CORBA program in order to test such program based on a specific

expected state behavior of the program. Since the PUT is actually a distributed concurrent

program, the generation of the alternation of remote method invocation has also been

considered.

With such a state-based testing approach, a state behavior error of a component-

based program can be examined dynamically and deterministically. However, this

approach did not take formal methods into account, whereas the introduction of formal

methods is one of the prominent features of the present work. Meanwhile, this approach

did not consider the different serializations of program execution based on

synchronization events. As for the distributed concurrent systems, this testing approach

13

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

concerned remote method invocation activities in the mechanism of replay while the

distributed characteristics are not considered in the present work.

2.4 Integration of formal method with reproducible testing

As mentioned in an earlier context, formal methods will be introduced as an

important feature in the present work. In fact, the integration of formal methods with

reproducible testing has also been explored by [8].

The PUTs considered in [8] are those middleware-based distributed concurrent

systems. As discussed in Section 23 , unlike testing a non-distributed concurrent program

where all the processes reside locally, the remote method calls of a distributed system

bring the extra challenge to the control mechanism of testing. For instance, the

middleware CORBA may use one of the following thread models to manage the

incoming method call inside the server: (1) a specific thread will be created to deal with

each single remote call; (2) a specific thread will be created to deal with a number of

remote calls on one particular object; and (3) a pool of threads will be created to deal

with all the incoming method calls. In this case, traditional test control techniques which

only focus on the synchronization matters are not able to handle, and may even add the

new deadlock into the execution of the PUT. Therefore, according to the features of the

distributed system, not only the order of synchronization events and input events but also

the order of remote method calls has to be taken into account for the test control

mechanism.

A static analysis technique was proposed in [8] to construct a test model in terms of

finite automata for the distributed concurrent PUTs. Such a test model considers two

kinds of events: synchronization events and remote call events. For each kind of event,

both request points and completing points will be examined. In particular, an event is

represented in this test model by a 7-tuple which includes the information about the

originate process, target process, the object on which the calling method resides, the type

of the event, and so on. The test constraint is expressed by the happen-before relation, for

instance, ei -> where ei, ea represent events. It is assumed that the test constraint

which concerns these synchronization events and remote method call events is given in a

14

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

formal presentation. Meanwhile, this given formal presentation provides a binary relation

which describes not only the test constraints but also the relationship between each

synchronization event and its corresponding remote method call events in case that

CORBA middleware is used for the process coirammications, and a fimction for

determining the maximum number of threads in the thread poo! of a specific process if

the third thread model is used. Based on this information, finite automaton that contains

all the possible execution paths of PUT can be defined. Since such automation

constructed from test constraints most likely contains certain deadlock states, an

algorithm is also given to derive the above automation to a new deadlock-free automation

called test model by removing those states that may lead to the deadlock state. Thus, such

a test model can be used by the test controller in reproducible testing for middleware-

based PUTs to make a decision on whether or not to allow a request for remote method

invocation or for shared object accessing. Moreover, this test model guarantees the test

procedure will never introduce any new deadlock state.

The techniques presented in [8] appear in a lot of places similar to the present work.

First of all, both of them utilize the formal methods. Second, constructing the test model

in [8] and generating the control model in present work are all by performing the static

analysis based on some given information, for instance, design abstracts in the present

work. Finally, they both consider the synchronization events as the interested events. On

the other hand, the major difference between them is that the main purpose of the test

model in [8] is to force the PUT to execute according to the given test constraints (or path

constraints) and guarantee that no new deadlock can be introduced; whereas the present

work considers the generation of path constraints.

2.5 Applications of labeled transition system for concurrent systems

As mentioned in the first Chapter and Section 2.4, a labeled transition system (LTS)

will be employed in the present work as the major means to generate the path constraint.

In fact, LTS has been applied as a well-defined model for concurrent systems over the

past 20 years. Meanwhile, a great deal of formal literatures has taken into account the use

(sfLTS to conduct testing; also, an annotated bibliography was presented in [6]

15

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

Conformance testing involves systematically testing the behavior o f a software

system based on its specification while not having the knowledge of its internal structure.

Traditionally, conformance testing is also called black box testing or fiinctionai testing.

One example to demonstrate the integration of conformance testing and LTS is given in

[49, 51]. The ideas and experiences to support such integration are also presented in [25,

46, 47, 50]. On the other hand, the testing theory of UTS's was not originated with the

system specification before. In fact, testing with LTSs, used to be involved with modeling

implementations to a transition system and determining the equivalence between the

constructed model and the original implementation by examining whether the observation

made by testing such a model with a set of given test cases is the same as the observation

made by testing the real implementation. To fill such a gap, a framework for using formal

methods in conformance testing was presented in [27, 49, 52]. A variety o f concepts used

in the procedure of formal conformance testing were provided at a high level abstraction

in this framework. At the same time, a formal structure was defined in such a framework

that reasoning about the testing became possible. Essentially, such a framework enhanced

the formalism of the testing process, and bridged the informal part of testing such as

implementations with the formal part including specification and models. With this

framework, the implementation relation is defined by using such an observational

framework and instantiating it with LTS. Consequently, the functional behavior of an

implementation can be tested with regard to a formal specification. For instance, an loco

testing, which stands for input/output conformance testing, discussed in [46] requires the

specifications to be given in terms of LTSs or other formal language with LTS semantics.

Meanwhile, it is assumed that the implementations can be modeled by so-called input-

output transition systems in which the idea was inherited from Input/Output Automata

[33], One test derivation algorithm introduced in [49, 51] was designed to derive the test

cases from such formal specifications. The soundness of these derived test cases has been

discussed in [48].

The LTSs in above-mentioned works are applied to express the allowed behavior of

the system with possible inputs and outputs. Correspondingly, the labels in a LTS are

grouped into two categories: labels concerned with inputs and labels concerned with

outputs. In this case, one classical assumption about complete testing, which considers all

16

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

possible execEtion paths to a specific test case in the implementation will be exercised

after performing the testing with such a test case a certain number o f times, are often

applied. However, the situation is different in the present work since certain control

mechanisms are used to gain control over the internal choice with reproducible testing

rather than relying on the complete testing assumption. Furthermore, the LTS is employed

in the present work to describe the allowed behavior with given input in order to derive

the test model which contains all the path constraints instead of generating test cases.

17

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

Chapter 3 Background and previous works

As mentioned in the first Chapter of this thesis, a variety of techniques are

employed in the implementation for constructing the path constraints. Such techniques

include formal methods, Labelled Transition System (LTS), and trace equivalence, ail of

which are presented in detail in this Chapter. Furthermore, when applying such

background knowledge to the work of implementing a tool for generating path

constraints automatically, it is important to introduce some previous works that have

been done by Dr. Jessica Chen [9]. These works include facilitating a specific format of

process terms that will be used to construct the design abstract of the Program Under Test

(PUT), giving a case of applying LTS, and defining a number o f rules for generating the

LTS.

3.1 Formal Methods

A pplying/om a/ methods is one of the prominent features of this implementation.

Since mathematics has been introduced as the major feature of formal methods, these

methods are empowered to handle the complexity of various modelling tasks [25, 27, 45,

50, 51],

Traditionally, specification of a software system is written in some natural

languages such as the English language. As mentioned earlier in this Chapter, the

specification can be used as the basis of testing. However, problems such as

impreciseness, incompleteness, inconsistency and ambiguity of specification, which are

caused by either human error or lack of experience, may occur frequently. These

problems can not only impose such difficulties as being unable to determine the objective

of underlying testing while generating the test case, but also render problematic task of

analyzing the test result in terms of uncertainty of some particular issues, for example,

suspected errors. Applying the formal methods to system specification brings an

opportunity to figure out the above-mentioned problems. In a manner, the testing

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

requirements and design intentions in a specification will no longer require abstrose

interpretation since the formal expressions are precise and consistent enough to be

understood without equivocality by both software developers and software testers.

Furthermore, the application of formal methods enables the specification to be

conveyed in a more detailed manner. Since the preciseness and completeness of

specification are ensured by using formal methods, the possible independent decisions

made by programmers can be greatly minimized. Therefore, a common problem during

the software development procedure that the implementations may be improper,

inadequate and not harmonious with the original purpose of the designer can be solved.

Due to such a fact, right after the process of software design in terms of specification is

finishing, the activity of testing can start immediately at the same time of programming

instead of being delayed until the actual implementation is completed. Consequently,

possible ambiguity, inconsistency and incompleteness can be found early during the

development process which is one o f major benefits of applying the formal methods and

can greatly lower the developing cost.

Another fascinating advantage o f applying methods is that the automation of

testing can be accomplished. Testing in many cases is not simple due to the excessive

complexity of real world applications. It is not surprising that testing may become a

laborious, time-consuming and error-prone process in most situations. In fact, testing in

the developing cycle always consumes a major portion of the funding. A sound solution

to accommodate this problem is to introduce the automation into testing. It is not hard to

imagine that by making the testing process automatic, the efficiency either on the issue of

speed or resource consuming will highly enhanced. On the other hand, the error caused

by human imperfection can be mainly eliminated by performing the testing routine

automatically. Moreover, the testing process will become more reproducible if it can be

executed without human interference and interpretation. Since the preciseness,

completeness and unambiguity of specification by using formal methods can be

guaranteed, and formal language instead of natural language is employed to express the

specification, the specification is qualified to be a good basis of testing and manageable

by well-defined tools. As a consequence, more automation of testing can be brought out.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Some good experiences of saccessMly using formal methods in software

engineering are reported by [18,19, 24,29].

In recent years, formal methods were adopted more and more in software

engineering. PROMELA is a formal language that is frequently used for communication

protocol modelling which was introduced in [22]. Usually, PROMELA is ¥/orking with

SPIN as its input language and tlie latter serves as a model-checking tool for the formal

verification of distributed systems. Another important formal language is Z which is

based on Zermelo-Fraenkel set theory and first order predicate logic [39]. These two

languages are employed in the work of [18, 29] to describe the formal specifications.

Other formal methods have been developed including those for SDL (Specification

and Description Language) [36], for Abstract Data Type specification [17], for FSM

(Finite State Machines) [34], and for LOTOS (Language of Temporal Ordering

Specifications) [4]. In this thesis work, the formal methods of choice are process algebra

and Labeled Transition System which is going to be discussed in detail later on (see

Section 3.2).

3.2 Labelled transition system

As one of the formal methods, the labelled transition system is an important

modeling language [35,46,47, 53], and it is also used as the basic semantics for LOTOS.

A labelled transition system (LTS) is a quadruple <State, L a b e l , So>, where

- State is a set of states during the execution of the process;

- Label is a set of labels displaying the information about the state conversion;

- c State X Label x State is a set of transitions that demonstrates the message of

system evolution.

- So e State is the initial state of the process.

The behaviour of a process can be modelled by an LTS. Each LTS starts from an

initial state which is a special state without any pre-state. Any states in the LTS can be

reached from the initial state via a number o f transitions. Each transition consists of three

factors: s and s ’ e State which represents start state and end state o f the transition.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

respectively, and / e Label which shows the information of the state change. Hence,
I

(s j.s ’) € -> (or expressed as 5 represents a transition in which the state of

process will evolve from state s to state s’, and the message involving such evolution is

contained in label I.

There are basically two types of transitions in the LTS: those introduced by visible

actions and those introduced by invisible actions. The latter are actions occurring in the

process computation and indeed lead to no state change or invisible state change. Such an

action is also called internal action or silent action due to the fact that it is invisible to

observers. A special symbol j is given to represent this kind of actions. Although t

actions are less significant factors in the LTS and finally the detail of such internal

communications will be abstracted away, it is indispensable while a valid labelled

transition system is being constituted.

Any transitions which are induced by the visible actions may be blocked by the

execution environment whereas the invisible action x will never be blocked. The

mechanism to achieve such controls will be discussed in later Chapters. Therefore, once

the process has made a decision to choose a particular transition, whenever it is not

blocked by the underlying environment, the process will be allowed to forward to another

state. LTS can model the process computation as sequences of transitions. Most likely, the

execution of a process may contain an infinite number of transitions.

Again, for simplicity, we only consider the finite execution, which means such an

execution will always reach an end after a certain number of transitions. The LTS which

models the behaviour of the processes can be represented as a graph. In such a graph, the

nodes are used to represent states of the process, and the edges are used to represent

events (or transitions). These events (or transitions) usually bring out the conversion of

the states, and the names of events are labelled on the edges.

3.3 Equivalence relations

Since the transitions in the derived LTS may contain a large number of % transitions

which are irrelevant to the desired control model, the LTS has to be further simplified by

removing such t transitions.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To fulfill such simplification, an appropriate equivalence relation must be chosen.

In fact, a lot of equivalence notations have been applied and can be found in the literature

[21, 35, 37, 53, 54]. Such equivalence relations include trace equivalence, bisimilation,

and testing equivalence. Bisimilation and testing equivalence are somewhat strict

relations while determining the equivalence, and strong bisimilation which is one type of

bisimilation even takes consideration of the interna! action % as other visible actions. Due

to the purpose of our testing control tool, it is not necessary for such a tool to distinguish

either the program state or the set of possible next actions of the program. Therefore,

trace equivalence, which is considered as the simplest equivalence concept, is sufficient

to perform the task of simplification.

Commonly, a trace of a process is referred to a sequence of actions that such a

process can execute. Thus, two states p and q in the program computation are considered

to be trace equivalent if for all sequences of actions w, the succeeding state of state p is

an accepting state if and only if the succeeding state o f state q is an accepting state, where

the accepting state means the final state of the program computation [23].

(a)

Figure 1; Hlnstration of Trace Equivalence

To illustrate, we can consider the graphs in Figure 1. It is quite obvious that there

are 2 traces (or sequences o f actions) (ab, ac} from the state represented by the top node

to the accepting states in the (a) graph, whereas the traces from the top node of (b) graph

to the accepting states are (ab, axe). Since the internal action x is not observable, such

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

traces can be simply ignored. Hence, the traces of Figure 1 (b) are actually {ab, ac}, too.

According to the definition, two states expressed by the top nodes in these two sub

graphs are trace equivalent since for all traces ab and ac, both of these two states can

reach the accepting states.

3.4 Process terms

Beyond such important background knowledge stated above, it is essential to

introduce some previous works discussed in [9]. These works, which include facilitating

a specific format of process tem s that will be mentioned in this section, giving a case o f

LTS and defining a number of rules for generating the LTS that are going to be discussed

in next section, are considered as the basis of the implementation provided in this thesis

work.

To model the behaviour of PUT, an efficient and effective method is necessary. One

specification language, process terms, is such a suitable candidate to express the design

specification of a software system. In fact, such process terms are based on the process

algebra which is an algebraic approach to the study of concurrent processes [35].

As mentioned earlier in Chapter 1, a process is conceptually equivalent to a thread

in a multithreaded system. The executions inside a process are considered only to be

sequential, and a set of these processes consists of the entire program. For simplicity, the

implementation tool concerns only static processes. In other words, we do not consider

the situation in which new processes will be produced dynamically during the execution

of the program. A process term describes the state of the behavior of a process at one

particular moment, and the combination of a set o f process terms is applied to express the

state of the behavior o f the whole system.

Generally, two tjpes of synchronization controls are concerned in the concurrent

systems: to guarantee the mutual exclusion and to realize the process coordination. The

monitor is assumed as the key mechanism to handle the synchronization activities in this

thesis, and each of which provides following functionality:

® Each monitor maintains a lock and a queue for this lock. The lock is used to

ensure the exclusive access to the critical sections, and the lock queue is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

employed to contain a sequence of processes that intend to access the critical

section protected by such a monitor.

® Two operations wait and notify can be performed on the monitors in order to

accomplish the coordination and cooperation among various processes. Monitors

may have condition variables, on which a process can execute wait to give up the

lock and put itself into the waiting queue of this monitor if conditions are not right

for it to continue executing. A process will not be able to continue its execution

when it waits in the monitor-waiting queue. Later on, another process may

execute notify to wake up and remove the first process in the waiting queue of a

monitor if such a queue is not empty. The awakened process will be re-enabled

for its execution and compete with others for the lock of this monitor. One

additional operation notify All, which is a special case o f notify operation and

wakes up all the waiting processes in the queue instead of only the first one, will

also be considered here.

By assumption, it is given that a set V of variables, a set MID of monitor identifiers

where MID c N that indicates ail the monitor identifiers must be non-negative integers,

and the same is true for a set PID of process identifiers where PID c N.

The following BNF (or Backus Naur Form, which is a formal notation to describe

the syntax of a given language) gives the structure of a process term p:

p = stop I s; p

s = X := e I if c then qi else qa j while c do q j input(x) | lock(m, q) |

wait (mi, mi) | notify (m) | notifyAll(m)

q = s I s;q

where x € V indicates that x is one of the variables in the set V; m, mu m2 e MID

which indicates that m, M] and m2 are monitor identifiers; 5 represents a statement which

indeed can be considered as a type of design abstract rather than the actual program code;

q, qu and are intermediate sequence of statements; and c is a Boolean expression over

V.

Intuitively, the first equation claims that a process term consists of either a stop,

which is a special statement that indicates the action of ending the process execution, or a

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

statement s followed by the rest of this process term p. In other words, a process terai is

built up from a set of statements incliiding stop.

The second equation in the above BMP defines that a statement s may be one of the

following eight formats:

- x:~e: is an arithmetic assignment operation, where e is an arithmetic expression

over V which indicates that each variable must have already been defined in V if it

appears in the e.

- i f c then qi else qj-. is a two-armed conditional expression, which means as long as

the condition c is satisfied, the statement segment qi will be executed; otherwise,

the statement segment q2 will be executed. In particular, a one-armed conditional

expression, in which the segment qi or q2 may be empty, is also a legal format of

the statement.

- While c do q: is a. repetition structure, which means as long as the condition c is

satisfied, the statement segment q will be executed repeatedly.

- Input(x): means to get the value from the sequence of input which will also be

given, and assign this value to the variable x.

- Lock (m, q): means that the monitor m is applied to ensure the mutual exclusion of

the execution of statement segment q of the process.

- Wait (mu m2): means the action of releasing the occupied lock on monitor mi and

putting the current running process on the waiting queue of monitor m2 ; later on it

will re-acquire the lock of monitor mj after it is woken up by another process.

- Notify (m): means the action of waking up and removing the first process on the

waiting queue of monitor m.

- NotifyAU(m): means the action of waking up and removing all the processes on

the waiting queue of monitor m.

The third equation in the above BNF indicates the structure o f segment q. The

segment q can either be a statement or a statement followed by the rest o f segment q. In

other words, the segment q is made up of a sequence of statements.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Structural operational semantics and the structural rules

As mentioned earlier in Chapter J, the present work considers that the structural

operational semantics is used to systematically and automatically produce the Labelled

Transition System which includes necessary information to retrieve all feasible path

constraints, and a brief introduction of LTS is given in Section 3.2. From the design

abstracts, which are constructed by process terms introduced in last section, a specific

case of LTS has to be applied, and certain rales are indispensable for generating such a

LTS [9].

3.5.1 A case application of LTS

It has already been defined in Section 3.4 that Lis a set of variables, MID is a set of

monitor identifiers, and PID is a set of process identifiers. Now, let I represent the set of

sequences o f input values, T represent a combination of the set o f input values and the set

of variable values, and P represent the set of process terms over MID and V. This means

such process terms will alter the state of PUT according to the status of certain monitors

and variables. E c V F indicates the mapping from variables defined in set V to their

values contained in set F; L c MID —» {true, false} indicates the set of monitors along

with their lock status, where value true denotes that the lock of this monitor is occupied

by a process, and value false denotes that the lock of this monitor is currently available;

Q c MID FID* indicates the mapping from the monitors to a sequence of processes

that are currently waiting in the waiting queues of such monitors, where PID* represents

a sequence of 0 or more process identifiers; and PR c indicates the set o f states of

the process which possibly contains elements.

Thus, the definition of LTS specified in Section 3.2 can be applied as the following

case;

A labelled transition system {LTS} is a quadruple <State, L a b e l ,s O > , where

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

" State c I x E x L x Q x PR, which means the state has to contain the inforaiation

including a sequence of input values, the mapping from variables to their values, the

locking status of all monitors, the status of monitor waiting queue, and the status of

processes, from set I, E, L, Q, and PR, respectively;

- Label c (P ID x (lock, wait, notify} xMID) u (PID x {input}) u {%}, which

indicates only two types of events: synchronization events and input events, which

are considered to be the content of a label as mentioned earlier, and internal events x

in which is only used for the computation and will be removed afterward;

- — State X Label x State is a set of transitions with its actions described by

labels.

- sO £ State is the initial state of the processes.

By assumption, the test case will be given as mentioned in Chapter 1. Such a test

case is made up of two parts: an input sequence and an expected output. Thus, the input

sequence contained in the system states of LTS can be derived from the given test case by

taking away the part of output. In fact, the input is one of the key points for constructing

LTS and the control models since the latter ones will most likely differ from each other

due to different inputs. Since the program may consist of more than one process, the

status of all such processes must be included in the state of LTS, and each process has to

be marked by its process identifier which uniquely distinguishes it from other processes

in the program. In other words, every state which describes the behaviour of whole

program system is made of different pieces of information that describe the behaviour o f

every process and other type of information.

3.5.2 Structural rules

Based on the particular case described in Section 3.5J , the schema of structural

rules and the details of such rules will be introduced as follows.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.2.1 Schema for structural rules

To construct the LTS, the transition relation -> is another key. There are always two

states involved in such a transition; a start state and a next state. For the implementation

in this thesis, a set of structural rules is defined for the transition relation The schema

ANTECEDENTfor such structural rules is ---------------- ^ , which is logically equivalent to
CONSEQUENT

V (ANTECEDENT CONSEQUENT) and can be paraphrased to indicate that for ail the

relation of ANTECEDENT implying CONSEQUENT. Also, the ANTECEDENT and

CONSEQUENT share free variables; thus they will he treated as true in case the

ANTECEDENT is absent. On the other hand, the semantics considered by this LTS are

interleaving, which means only one process among all the processes is allowed to

perform one of its statements at a given time. The reason for following such interleaving

semantics is not only that the semantics are very simple but also that the sequential

control is actually the only control mechanism which can be accomplished by the current

control tool. In fact, the control tool is not able to fire two events at the same time.

Consequently, one important feature is shared by all these structural rules: the evolution

of the system state only concerns the operation of one of the processes at one step

whereas the others keep still.

According to their ftmctionalities, the structural rules can be grouped into four sets,

and are illustrated below.

3.5.2.2 Structural rules for basic flow of controls

The first set of structural rules concerns the common flow of control and consists of

the following 5 rules:

Assignment Rule:

(x , f) e E
{ l,E ,L ,Q ,P \\p id :{x :- e);p)- J, / EvaI{E, e) l L, Q, P | p id : p)

Condition True Rule:

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Eval{E,c) = true
{E E ,L ,Q ,P \\p id : iif{c)th en {p l)e lse (p 2));p i)-^ { l,E ,L ,Q ,P \\ pid : pi;p3)

Condition False Rule:

Eval{E,c) = false
{l,E ,L ,Q ,P ll p id : (if(c)then(pl)eise(p2)); p3 > —^ (l ,E ,L ,Q ,F l l p id : p2;p3)

Loop Continue Rule:

Eval{E,c) — true
{ l ,E ,E Q ,P ^ p id : (while(c)do(pl));p2 > — —̂̂ {l,E ,L ,Q ,P \\ pid : pl;{while{c}do{pl)'); a)

Loop End Rule:

Evai{E, c) = false
il,E ,L ,Q ,P \\ p id : (while(c)do{pl));p2 > — E,L,Q ,P\\ p id : p i)

Figure 2: Structural rules for basic flow controls

Since there will probably be a number of processes in the program, pidp.pl ||

pid2 '.p2 II — \\pid„:pn is used to denote each process which has a process identifier (pidi,

or pid}, or pidn) and is described by a process term (pi, or p2, —, or pn), and the

symbol “| ” indicates that the processes separated by it exist simultaneously. In the

notation of these rules, P 11 pid: a; p represents a set of processes including process term

a:p which has the process identifier pid and some other processes expressed in P.

Specifically, the process term a:p denotes a process term p which follows a statement a,

where the statement is actually some kind of a design abstract rather than a program code

and represents an assigommt, a choice, or a wMle-loop. The definitions of x, e, and c are

given in Section 3.4, and Eval(E,e) and Eval(E,c) are used to represent the evaluation of e

and c based on the variable to value mapping set E, respectively. Efx/vJ indicates that the

value of the variable x is replaced by v in the variable to value mapping set E.

The first rule involves the system evolutions introduced by an assignment

statement. According to the definition of LTS, each state in LTS consists o f the factors /,

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E, L, Q, and P, which have been described earlier. To apply the first rale, the start state

has to meet certain criteria: a variable x and its value/are described in E, and the current

statement is an assignment x:~e followed by a process term p in the process that is

identified by pid. Thus, by performing this assignment statement, the system can be

moved to the next state. All the factors of this next state are exactly same as those of the

start state except for the following changes: the value of variable x is replaced by v in E,

and the current statement to be executed in the process pid becomes the first statement of

the process term p (or say process term p instead). The second and third rules concern the

conditional statements. To apply the second rale, the start state has to meet certain

criteria: a Boolean expression c over V is evaluated to be true based on E, and the current

statement to be executed is a conditional statement, which is deteraiined by condition c

and has two succeeding branches: process terms p i and p2, and followed by another

process term p3. Thus, by performing the conditional statement, the system can be moved

to the next state. All the factors of this next state are exactly same as those of the start

state except that the current statement of the process pid becomes p i followed by p3. In

contrast, if such a Boolean expression c over V is evaluated to be false based on E, the

third rale can be used. By performing the conditional statement, the system can be moved

to the next state in which the current statement of the process pid is p2 followed by p3.

The fourth and fifth rules concern the while-loop statements. To use the fourth rule, the

start state must satisfy the prerequisite: a Boolean expression c over V is evaluated to be

true based on E, and the current statement to be executed is a while-loop statement,

which contains a process term p i and will be ended whenever the condition c becomes

false, followed by another process term p2. Thus, by performing the while-loop

statement, the system can be moved to the next state. All the factors of this next state are

exactly same as those of the start state except that the current statement o f process pid is

the process term p i followed by such a while-loop statement that contains p i and is

determined by c, and in turn this while-loop statement is followed by p2. On the other

hand, if such a Boolean expression c is evaluated to be false, the fifth rule can be applied.

By performing the while-loop statement, the system can be moved to the next state in

which the current statement of process pid is the process term p2.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In essence, this set of structural rules causes only the system evolutions which are

not involved in producing the path constraints. In other words, these evolutions are

invisible so each transition is labelled by a r.

3.5.2.3 Structural rules for input action

As mentioned earlier, the input action is one of the interesting points in the study of

path constraints generation. The rale defined below involves the action o f input.

Input Receive Rule:

</,E ,L ,Q ,P II p id : i n p u t { x) ; p) E [x I firs t(I)lL ,Q ,P \\ p id : p)

Figure 3: Structural rule for input

The prerequisite for applying this input receive rule is that the input sequence 1

cannot be empty. Thus, if the current statement to be executed is an input statement that

reads a value into variable x, and this statement is followed by a process term p. the

system state can be moved to the next state by performing the input action. All the factors

of this next state are exactly same as those of the start state except that the value of

variable x in E is changed to the first data in I while the first data has been removed from

I, the current statement of the process pid becomes p. This transition is labelled by (pid,

input) where the pid is the identifier of the process which contains such an input

statement.

3.5.2.4 Structural rules for mutual exclusion

Apart from the action of input, synchronization activities of the PUT are important

places to be explored in generating path constraints, too. Such synchronization activities

can be grouped into two aspects; those for mutual exclusion and those for process

coordination. The set of structural rales involved with mutual exclusion will be discussed

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in this section, and the rules about process coordination will be addressed in the next

section.

In order to describe the activities of the monitors and support the simulation of the

computatioiial behaviour of PUT, it is necessary to introduce the following additional

internal statements;

- lock_restart(m): means the action of a process to re-acquire the lock on the

monitor m after this process is being notified by another process from its waiting

status;

- lock_end(m): means the process completes a critical section which is controlled

by monitor m;

- waiting(m): means the process remains in the waiting status on the waiting queue

of monitor m.

Hence, to simulate the mutual exclusion in a process execution, the following set of

rules is given.

Lock Begin Rule:

Eval(L,m) = false
i l ,E ,L ,Q ,P \l pid : lock(m, pi); p i) — / true], 2 , F | pid : pi; lock _ end (m); p f)

Lock Restart Rule:

Eval{L, m) = false
il, E, L, Q, P I pid : lock_ restart(m); p) — E, L[m / true], Q, P | pid : p)

Lock End Rule:

Eval{L, m) = true
il, E, L, Q, P I pid : lo<^_ end(m); p) — E, L{m / false], Q,P% pid : p)

Figure 4; Structural rules for mutual exclusion

In the notation of these rules, Eval(L,m) denotes the evaluation of lock status on

monitor m in L, where true indicates that the lock is currently occupied by another

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process and false indicates that the lock is available; L[m/v] denotes that the value of the

lock status on the monitor m has been changed to v in L.

To apply the first rale in this set, the start state has to meet the criteria; the lock of

m is available, the current statement to be executed is a lock statement that tries to

execute a process term p i in a critical section which is ensured by the lock of m, and this

lock statement is followed by another process term p2. Thus, this start state can be moved

to next state by performing the lock statement. All the factors of this next state are exactly

same as those of the start state except that the lock status of m has been changed to true in

L and the current statement of the process pid becomes p i followed by a lock-end

statement which is inserted manually and followed by p2, in turn. The transitions

following the Lock Begin Rule will be labelled by (pid, lock, m) where p id is the

identifier of the process that contains the lock statement and m is the identifier of the

monitor that contains this lock. By artificially inserting this lock_end statement, the

releasing of the lock becomes observable, which is necessary for the generating o f LTS;

otherwise, there is no way to detect such an activity. The Lock End Rule is defined to

express the transitions moved by such a lock_end statement. In particular, if the lock o f m

is currently occupied, and the current statement to be executed is a lock_end statement

that is going to release the lock on monitor m followed by another process term p, the

system state can be moved by performing the lock_end statement to next state. All the

factors of this next state are exactly same as those of the start state except that the lock

status of m has been changed to false in L, and the current statement of the process pid

becomes p. Since the lock_end statement is only used for the computation of generating

the LTS, and such information has nothing to do with the path constraints, the transitions

caused by the !ock_end statement will be labelled by a i.

The Lock Restart Rule is defined to express the transitions moved by another

internal statement: the lock_restart statement. This rule indicates if the lock of m is

available, the system state, in which the current statement to be executed is a lock_restart

statement that tries to regain the lock of m and is followed by the process term p, can be

moved by performing the !ock_restart statement to the next state in which the lock status

of m has been changed to true in L, and the current statement o f the process pid is p.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similariy, since the lock^jestart infomation helps to build only the LTS, the transition

caused by lock_restart statement will be labelled by a x.

3.5.2.5 Stractural rules for process coordination

The last but not least important set of structural rules deals with the coordination

between different process, and is defined as follows.

W ait Rule:

{p id ,w a it,m2)i l , E, L, Q, P II pid : wait{mi, mi); p) ■

where p ’=waiting (m2); lock_restart(ml); p.

Notify With Nonempty Queue Rule:

first{Q, m) = pid 2

false\,enqueue{Q ,m i,pid),P^ pid : p ')

{ l , E ,L, Q , P II p i d i ; notify(jn); pi jj p i d 2 ; waiting(m); p l } -

Notify with Empty Queue Rule:

first{Q,m) = null

{ p id ,notify ̂ m) -^{l,E,L,dequeue{Q,m),P\\ p id i: pi || pi

(/, E, L, Q, P I p id i: notify{m); p)- {pid,notify,m) M l , E , L , Q , P \ \ p i d i : p\)

d i : pi)

Figure 5: Structural rule for processes coordination (a)

In these rales listed in Figure 5, enqueue(Q, m, pid) is used to express the set of

waiting queues derived from the set Q which is the mapping from monitors to their

waiting queues. These waiting queues contain the sequences of processes currently

waiting for the locks on these monitors after adding pid into the waiting queue of monitor

m. Similarly, dequeue(Q,m) is used to express the set of waiting queues from Q by

removing the first element from the waiting queue of m, and first(Q, m) is used to

represent the first process on the waiting queue of m in Q.

To use the first rule in this set, the start state must satisfy the prerequisite: the

current statement to be executed is a wait statement that is going to release the lock on

monitor mi and put the current running process into the waiting queue of monitor m2, and

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this wait statement is followed by a process term p. Thus, by performing this wait

statement, the system state can be moved to next state in which the lock status on mi has

been changed to false in L, the set Q has been modified by adding pid into the waiting

queue of m2 , and the current statement of the process pid becomes the statement

waitingfmz) followed by the statement !ock_restart(mi) that is in turn followed by p. In

particular, the waiting statement and the lock_restart statement axe artificially inserted for

the purpose of constructing the LTS, where the definition of waiting statement and

lock_restart statement can be found in Section 3.5.2,4. The statement Lock_restart is

used after the waiting statement in order to enable the waiting process to regain the lock

after it is notified by another process. The transitions evolved according to this rule are

labelled by (pid, wait, m2).

The second rule is a special one which involves the actions o f two different

processes. To apply this rule, the start state has to meet certain criteria: the waiting queue

of the monitor m is not empty and the first process in this waiting queue in Q is the

process pidf, the current statement to be executed is a notify statement in the process pidi

that is going to inform the first process in the waiting queue of the monitor m; and there

exists another process pid2 that is currently waiting as the first element in the waiting

queue of the monitor m and has a succeeding process term p 2 . Thus, the system state can

be moved by perfomiing the notify statement to next state in which the first element on

the waiting queue of m has been removed, and the current statement of process pidi and

pid2 become p i and p2, respectively. The transitions moved by this rale are labelled by

(pid, notify, m). This rule enables two processes to move to their next states

simultaneously, which simulates the typical hand-shaking mechanism between

synchronization processes in concurrent programs. However, since it is not necessary to

pay more attention to control the statement waiting(m) due to the fact that it is not the

event related to the path constraints generating, the notifying process can be considered

as the only factor to cause the system evolution. Therefore, with such acknowledgement,

there will be no contradiction between this notify rale and the test control mechanism

expressed earlier which assures that the transitions in the LTS wit! not be stimulated by

more than one event at one time.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The third rule actually deals with an extreme case when performing the notifying

statement. The prerequisite for applying this rule is that the waiting queue o f monitor m is

empty in Q, the current statement to be executed is a notify statement that is going to

inform the first process in the waiting queue of m and is follow-ed by another process

term p. Thus, the system state can be moved by performing the notify statement to next

state in which the current statement of the process pidi becomes p. Indeed, such move has

nothing to do with the change of system state. The transitions stimulated by this rule are

labelled by (pid, notify, m), too.

3.5.2.6 Extension of structural rules for process coordination

Although two notify rales have been defined in [55], there is no such a structural

rule to consider the more specific case of notify— notify All. To generate LTS for the

PUT which contains the action of notifying ail the processes in the waiting queue of a

monitor, additional structural rules are needed to be extended.

NotifyA1 with nonempty Queue Rule:

EvalEmptyiQ, m) = false
i l , E , L , Q, P II p i d i : notify{m)i p i || p id 2 : waiting{m); /22 j| • • ■ pidn : w m tm g(m); pn) —

{ l,E ,L ,d e q u e u e A ll{0 , m),P \\ p id i: p \ ^ p i d i : p i \\ ■ ■ ■ \\l p idn : pr)

Notify All with Empty Queue Rule:

________________ EvalEmpty{Q, m) = true
i l , E , L , Q ,P \l p i d i : m tijyA ll{m); p) — ^----1—>(/^ £ , L , | p i d i : p i)

Figure 6: Structural rule for processes coordination (b)

In the notation of these two rales in Figure 6, EvalEmpty(Q,m) is defined to express

the evaluation of the waiting queue status of m in Q where the value true indicates the

queue is empty; and dequeueAl!(Q,m) is defined to express the set of waiting queues in

Q after removing all elements from the waiting queue of m.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To apply the first NotifyAll rule, the start state has to meet certain criteria; the

waiting queue of the monitor m in Q is not empty; the current statement to he executed is

a notijyAll statement of the process pidi that is going to inform all processes in the

waiting queue of m; and there exist processes pid2 , —,pid„that ai*e currently waiting on

monitor m and have succeeding process terms p 2, pn. Thus, the system state can be

moved by performing the notijyAll statement to the next state in which all the elements

on the waiting queue of m have been removed, and the current statements o f process pidi,

pid2, —,pid„ become p i, p2, —, pn, respectively. The transitions moved by this rale will

be labelled by (pid, notijyAll, m).

The second rule is analogous to the rule of notijy with empty queue. Similariy, the

prerequisite to use this NotifyAll rale is that the waiting queue of monitor m in Q is

empty, and the current statement to be executed is a notijyAll statement followed by

another process term p. Thus, the system state can be moved by performing notijyAll

statement to next state in which the current statement of process pidi is p. The transitions

moved by this rule will be labelled by (pid, notijy, m).

So far, ail the stractural semantics rales have been introduced, which are sufficient

to derive the LTS from the given design abstract. To demonstrate the procedure of LTS

generating, an example will be given in Chapter 4.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 Am Example

To better illustrate the domain of our specific problem on testing, one tj/picai

concurrent example called producer consumer problem is provided in this Chapter. In

such an example and others, it is assumed that the design abstract of the program in our

test environment is given in terms of process terms which are presented in Chapter 3.4.

4.1 The problem of producer consumer

The producer consumer problem is a classic problem that concerns synchronization.

There are two types of processes in such a problem: producer and consumer. The

producer and consumer processes share a common bounded buffer. The producer

executes an infinite loop where it puts new items into the buffer, whereas the consumer

exercises an infinite loop where it removes items from the buffer.

To give the solution to the producer consumer problem, two important aspects have

to be considered:

(1) mutual exclusion: at most one process that is either producer or consumer can

access the shared buffer at one time;

(2) synchronization: the producer and consumer processes have to check the content

of the buffer before performing the action of depositing and withdrawing; in

particular, the producer can deposit only if not all the slots of the buffer are full, and

consumer can withdraw only if not all the slots of the buffer are empty. Otherwise,

the producer or consumer has to put itself into a waiting status until the condition is

satisfied.

The concurrent programs normally consist of a number o f process types. For

example, there are two types of processes which are producer and consumer in the

producer consumer problem. However, each process type may have more than one

instance. For example, there may exist two producers and three consumers in the

producer consumer problem. In fact, it is important to determine the number of these

instances. On one hand, it is difficult to handle large number of instances and perform the

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

thorough test of a concurreiit program. On the other hand, these mimbers cannot he too

small to avoid ail possible faults to be disclosed in the testing. Also, it is obviously not

appropriate to allow the producer or consumer to loop infinitely for the purpose of testing

since it is mentioned earlier in this thesis that our testing will only deal with programs

that will terminate. Hence, for the sake of simplicity and without losing the generality,

the producer consumer problem illustrated in this thesis will consider one instance of

producer and two instances of consumer. Again, for simplicity reasons, it is assumed that

the shared buffer can only contain two items, and the loop of the producer is limited up to

3 times. Thus, upon execution, the producer will take three inputs of integer numbers and

deposit them to a two-slot bounded buffer, and two consumers will withdraw these

integer numbers from the bounded buffer.

4.2 Design abstract for one solution of producer consumer problem

The design abstract for our solution of producer consumer problem in this thesis is

displayed in Figure 7. This design abstract code is given in terms of process terms.

* Producer&Consumer *
<variables> {{ x :in t},{ bufferOnnt},{bufferl:int},{ count :int } ,{times :in t}}
<monitors> {m0,ml,m2}

<Process type>i Producer
while (times < 3) do {

input (X);
lock (mO) {

while (count = 2) do {
wait (mO , m l);

}
if (bufferO == 0) then {

b u f fe rO x ;
} else {

bufferl := x;
}

c o u n tc o u n t + 1;
times times + 1;
notifyAll (m2);

}
lock_end (mO); ___

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
stop;

<Process type>: Consumer
while (tru e) do {

lock (mO) {
while (count == 0) do {

if (times == 3) then {
lock_end (mO);
stop;

}
wait (mO , m2);

}
if (bufferO != 0) then {

bufferO := 0;
} else {

buffer! ;= 0;
}
count := count -1 ;
notify (m l);

}

}
lock_end (mO);

<process> 1; Producer
<process> 2: Consumer
<process> 3: Consumer

Figure 7: Design abstract for Producer Consumer problem

First o f ail, each design abstract will be given a name which is placed in the first

line and specified between two in this case, Producer&Consumer s. The second thing

in the design abstract is to provide the declarations of all the variables and monitors. The

declaration of a variable consists of the variable name and its type, where the variable

types considered in the scope of this thesis work are only integer numbers denoted by int,

boolean which has value of true or false, and string which is a sequence of characters.

In general, since the program consists of processes, the design abstract may also

have a number of modules and each one is used to describe the functionality o f a specific

process type. Such a module starts with a signature <Frocess type> followed by a

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process type name. For simplicity, it is considered that the set of processes o f the PUT

will be given statically in the design abstract. Even though there are three total processes

(one producer and two consumers) in the current version of producer consumer problem,

two process types - producer and consumer - will be described in the design abstract due

to the fact that two consumer processes are indeed exactly same, except for the process

identifiers. After giving the process types, the description of each process is provided in

terms of these types.

The solution to the producer consumer problem described by this design abstract

employs monitor mO for guaranteeing the mutual exclusion and monitors m lm d m2 for

achieving the process coordination. Specifically, mO ensures the exclusive access to the

shared buffer and modification to the buffer count; producer checks the buffer count

before producing data into the buffer, and releases the acquired lock on monitor mO and

waits in the waiting queue of monitor m l if all slots of the shared buffer are M l;

consumer checks the buffer count before consuming data from the buffer, and releases

the acquired lock on monitor mO and waits in the waiting queue of monitor m2 i f all slots

of the shared buffer are empty. Meanwhile, producer takes the responsibility to wake up

all the consumers that are waiting in the queue of monitor m2 after it has produced data

into the buffer; consumer is responsible to wake up the producer that is waiting in the

queue of monitor m l after it has consumed data from the buffer. On the other hand, the

variables used in this design abstract are: x that is used to contain the input value; bufferO

and bufferl that are used to contain the value of the buffer; count that is used to count the

number of full slot of the buffer; and times that is used to count the times of producing

the new data by the producer. The type of these variables is integer, and the initial value

of each is 0.

4.3 Generation of LTS

According to the structural rules provided in Chapter 3.5 and a given initial state,

the LTS can be constructed from the design abstract due to the fact that all the states in

the LTS are reachable from the initial state via the transitions conducted by such rules.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To illustrate the process of generating LTS, the design abstract given in Section 4.2

will be used as an example. Assume that the initial state is SO: < I, E, L, Q, P >, where

® I = < 1 , 3> that denotes there are totally three inputs; I, 2, and 5;

• E = {(x = 0), (bufferO = 0), (buffer! = 0), (count = 0), (times = 0) }, that denotes

the variables used in this program are x, bufferO, bufferl. count, and times, and their

initial values are 0, 0, 0, 0, 0, respectively;

• L = {(mO, false), {(ml, false), {(m2, false)} that denotes the monitor used in this

program is mO, ml, and m2, and their locks are ail available initially;

® Q = {(mO,<>), (ml, <>), (m2,<>)} that denotes there exist three monitors mO, ml,

and m2, and their waiting queues initially all contain no element;

® P consists of process terms for all the processes, in particular, process 1, process 2

and process 3.

As mentioned earlier in Section 4.2, symbol “| ” is used to denote that all such

processes exist and execute at the same time. Also, assume p i , p i p2, p2 ’ are

succeeding process terms after the current statement of process type producer and

consumer, respectively. Thus, the partial results of deriving the LTS for the producer

consumer program are as shown below.

SO: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times = 0) }, L =

{(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,o), (ml, o) , (m2,<>)}, 1 : while

(times <3) do p i ^2 : while (true) do p2 || 3 ; while (true) do p2>

X T (by performmg whUeJoop statement)

SI: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times = 0) }, L

= {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,o), (ml, <>), (m2,<>)}, 1 : inpmt(x) ; plli

2 : while (true) do p2 | 3 : while (true) do p2>

•i (1, input) (by performing input statement)

S2: < I = <2, 3>, E = {(x = J), (bufferO = 0), (bufferl = 0), (count = 0), (times = 0) }, L =

{(mO, false), {(ml, false), {(in2, false)}, Q = {(mO,<>), (ml, <>), (m2,<>)}, 1 : iock(m§) ; j?I| 2
: while (tme) do p2 j| 3 : while (true) do p2>

■i (1, lock, m) (by performing lock statement)

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S3: < I = <2, 3>, E = {(x = 1), (bufFerO = 0), (buffer! = 0), (count = 0), (times = 0) }, L =

{(mOf true), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, <>), (m2,o)}, 1 : while (count —

2) do pl\\ 2 : while (true) do p2 | 3 : while (trae) do p2>

T (by performing whiie_Joop statement)
S4: < I = <2, 3>, E = {(x = 1), (bufferO = 0), (buffer! = 0), (count = 0), (times = 0) }, L =

{(mO, true), {(ml, false), {(m2, false)}, Q = {(mO,o), (ml, <>), (m2,<>)}, 1 : i f (bufferO — 0)
then p i ekepl% 2 : while (trae) do p2 || 3 : while (trae) do p2>

^ T (by performing conditional statement)
S5: < I = <2, 3>, E = {(x = 1), (buffeiO = 0), (buffer! = 0), (count = 0), (times = 0) }, L =

{(mO, true), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, o) , (m2,o)}, 1 : buffer& p i |

2 : while (true) do p2 | 3 : while (trae) do p2>

T (by performing assignment statement)
S6: < I = <2, 3>, E = {(x = 1), {bufferO = I), (bufferl = 0), (count = 0), (times = 0)}, L =

{(mO, true), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, <>), (m2,o)}, 1 : count := count +

1; pl \ \2: while (true) do p2 || 3 : while (true) do p2>

T (by performing assignment statement)
S7: < I = <2, 3>, E = {(x = 1), (bufferO =1), (bufferl = 0), {count = i), (times = 0)}, L =

{(mO, true), {(ml, false), {(m2, false)}, Q = {(mO,o), (ml, <>), (m2,o)}, 1 : times := times +

1; p l \ \2: while (true) do p2 || 3 : while (true) do p2>

X (by performing assignment statement)
S8: < I = <2, 3>, E = {(x = 1), (bufferO = 1), (bufferl = 0), (count = 1), {times = 1)}, L =

{(mO, true), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, o) , (m2,o)}, 1 : notifyAU(m2); p i
II 2 : while (true) do p2 | 3 : while (true) do p2>

^ (1, notifyAU, m) (by performiiig notifyAll statement)
S9: <1 = <2, 3>, E = {(x = 1), (bufferO = 1), (bufferl = 0), (count = 1), (times = 1) }, L =

{(mO, trae), {(ml, false), {(m2, false)}, Q = {(mO,o), (ml, o) , (m2,o)}, 1 : lock_end(mO);
i?i (12 : while (trae) do p2 |j 3 : while (true) do p2>

T (by performing hek_endstatement)
SIO: < I = <2, 3>, E = {(x = 1), (bufferO = 1), (bufferl = 0), (count = 1), (times = 1) }, L =

{{mO, false), {(ml, false), {(m2, false)}, Q = {(mO,o), (ml, <>), (m2,o)}, 1: while (times <3)

do # 1 1 2 : while (true) do p2 |j 3 : while (true) do p2

T (by performing whiie_ioop statement)

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SI 1: < I = <2, 3>, E = {(x = 1), (bufferO = 1), (bufferl = 0), (count = 1), (times = 1) }, L =

{(mO, false), {(ml, false), {(ml, false)}, Q = {(mO,o), (ml, <>), (m2,o)}, 1 .■ mput(x) ;p l | 2

: while (true) do p2 |j 3 : while (true) do p2

X (1, input) (by performing input statement)

S12: < l - < 3>, E = {(x = 2), (bufferO = 1), (bufferl = 0), (count = 1), (times = 1) }, L =

{(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,o), (ml, <>), (m2,o)}, 1 ; lock(mO) ;_pl|| 2

: while (trae) do p2 | 3 ; while (trae) do p2>

i (1, lock, m) (by performing lock statement)

Figure 8: Trace of generating LTS by depth-first traversal strategy

The procedure in Figure 8 illustrates the generation of LTS by applying depth-first

traversal strategy. Actually, such LTS constructed by this coarse method will be a tree in

which the root is the initial state SO. This tree converted from Figure 8 will look like the

shape in Figure 9.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1,input)

cK

SIO

Sl l

S12

Figure 9; Tree of LTS generated by depth-first traversal strategy

Similarly, the tree which illustrates LTS generating procedure by using width-first

traversal strategy is shown in Figure 10.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1,input}

(2,l&ck,m)

S12
(1, lock, mO)

SIO

S13

Figure 10; Tree of LTS generated by width-first traversal strategy

In Figure 10, the descriptions of each state are given as follows;

SO: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (coimt = 0), (times =

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, o) , (m 2,o)} , 1 :

while (times <3) do p i || 2 : while (true) do p2 {| 3 : while (true) do p2>;

SI: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times =

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, o) , (m 2,o)} , 1 :

input(x) ; p l \ 2 : while (true) do p2 || 3 : while (true) do p2>;

82: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times =

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (m l, <>), (m 2,o)} , 1 :

while (times <3) do p i || 2 : hck(mO); p2\ \3 : while (true) do p2>;

S3: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times =

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, o) , (m2,<>)}, 1 :

while (times <3) do p i j| 2 : while (true) do p2|| 3 : lock(mO); p2 >;

S4: < I = < J>, E= {(x = 1), (bufferO - 0), (bufferl = 0), (count = 0), (times = 0)

}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (m l, <>), (m 2,o)} , 1 :

l0ck(m§); pl\\ 2 : while (true) do p2 || 3 : while (true) do p2>;

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S5; < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times =

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, <>), (in2,<>)}, 1 :

input(x); pljl 2 : l&ck(m§); 1 3 ; ¥/hile (true) do p2>;

S6: < ! = <!, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times =

0) }, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (m l, <>), (m2,<>)}, 1 :

input(x); p l | 2 : while (true) do p2 || 3 : iock(m&); p2 >;

S7: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times =

0)}, L - {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (m l, <>), (m2,<>)}, 1 :

input(x); p i l\2: lock(mO); p2 |j 3 ; while (true) do p2>;

S8: < I == <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times =

0)} , L = {(mO, true), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, <>), (m2,<>)}, 1 :

while (times <3) do pi | 2 : while (count — 0) do p 2 \ 3 \ while (trae) do p2>;

S9: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times =

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (m l, o) , (m2,<>)}, 1 :

while (times <3) do p i 1 2 : lock(mO); p2 || 3 : lock(m&); p2 >;

SIO: < I = <1, 2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times =

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, o) , (m 2,o)} , 1 :

mput(x) ;p i I 2 : while (true) do p2|| 3 : lock(mO); p2 >;

S 11 :< I = <1,2, 3>, E = {(x = 0), (bufferO = 0), (bufferl = 0), (count = 0), (times =

0)}, L = {(mO, false), {(ml, false), {(m2, false)}, Q - {(mO,<>), (m l, <>), (m 2,o)} , 1 :

while (times <3) do p i || 2 : lock(mO); j?2 || 3 : lock(mO); p2 >;

S12: < I = <1, 2, 3>, E - {(x = 0), (bufferO - 0), (bufferl = 0), (count = 0), (times =

0)}, L = {{mO, true), {(ml, false), {(m2, false)}, Q = {(mO,<>), (ml, <>), (m2,<>)}, 1 :

while (times <3) do p i 1 2 : while (trae) do p2|| 3 : while (count — 0) dop2 >;

S13: < I = < 2, 3>, E - {(x = 1), (bufferO = 0), (bufferl = 0), (count = 0), (times =

0)}, L = {(m§, true), {(ml, false), {(m2, false)}, Q = ((mO,<>), (m l, <>), (m2,<>)}, 1 :

while (count — 2) do |iJ || 2 : while (trae) do p2 1 3 : while (true) do p2>;

Using either depth-first or width-first traversal strategy, and continuously applying

the structural rules, the LTS will eventually be constructed. The resulting LTS will be a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

format of graph that consists of nodes that denote the states and edges that denote the

transitions.

Moreover, such LTS needs to be further simplified by reducing the i-transitions.

The techniques to Mfill the task of simplification will be discussed in detail along with

the implementation of a path constraints generation too! in next Chapter.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 Design and Implementation Detail

As mentioned in the previous chapters, the problem we consider in this thesis is to

generate significant sets of path constraints automatically v/ith a given test case and a

design abstract. In this chapter, design and implementation details of such a tool will be

presented. This tool is implemented in Java programming language with approximately

four thousand lines.

5.1 Fundamental architecture of design

First of all, it is considered that the testing in this thesis is the reproducible testing

based on the specifications of underlying concurrent program systems. Such

specifications will be expressed by applying a formal specification language which is

based on process algebra.

Second, with a given design abstract in terms of process terms in the specification,

a Labeled Transition System can be derived by applying a number o f structural rules

which are defined in Chapter 3.5. Such a generation of LTS will be accomplished

automatically by the implementation tool that will be discussed in this chapter.

Meanwhile, this tool provides a certain mechanism to remove the duplicated states while

constructing such a LTS.

Third, this tool also supports the further simplification of the constructed LTS. By

performing such a simplification, those internal transitions which actually have nothing to

do with the generation of path constraints can be ignored. In particular, this

simplification will be based on the determinization and minimization algorithms in the

theories of automata.

Finally, with the simplified LTS, which is also known as the control model, a

variety of significant sets of executing path constraints which are denoted by the labels

can be generated. Usually, there are some criteria, such as path coverage criterion, state

coverage criterion and edge coverage criterion, available for such a generation. The state

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coverage guarantees that each state in the control model will be covered at least once,

whereas the edge coverage ensures that each edge in the control model will be covered at

least once. The path coverage is a much stronger criterion which requires each possible

path is covered. Since the succeeding state yielded by a certain action from one specific

state is not able to be determined in the control model, state coverage cannot be used

here. In this case, the edge coverage criterion or the path coverage criterion may be

considered for the path constraints generation.

5.2 Class Diagrams in the implementation tool

Major classes in this implementation tool include Stateltem, State, Label, Process,

Variable and Monitor.

currentState: State
labels: V ector of Label

addLabelQ: V oid
getState: State
setState: void

iltem

from StatelD : in t
toStatelD: in t
labelsStr. S trine

getFromStatelDO: int
getLabelStrQ: String

Label

getStateID{): int
getProcStatesO: V ector o f String
getInputSeq():Vector o f String
getVariablesQ: Vector of Variable
getMonitorsO: V ector of Monitor

inputSeqnence: Vector of String
variables: Vector of Variable
monitors: Vector of Monitor
procStates: Vector of Siring
statelD: int

State

Figure 11; Class diagrams (I) for the implementation of path constraints generating tool

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As shown in Figure 11,

® Class Label is used to describe the labels in the LTS and is made of an attribute

fromStatelD that denotes the identifier of its start state, an attribute toStatelD that

denotes the identifier of its end state, and an attribute labelString that describes the

action that stimulates such a transition.

• Class State is used to describe the states in the LTS and consists o f an attribute

StatelD that uniquely identifies a particular state; an attribute inputSequence that

contains a sequence of input data; an attribute variables which is a set o f instances

of class Variable and contains information of all the variables that are used in the

PUT along with their corresponding values; an attribute monitors that is a set of

instances of class Monitor and contains information of all the monitors such as their

lock status and contents of their waiting queues; and, an attribute procStates that

describes the current status of each process, in particular, the current statement that

each process is going to execute.

• Class Stateltem is constructed by an instance of class State and a set of instances

of class Labels that start from this state.

Also shown in Figure 12 are the class diagram of the main components of class

State— classes Variable and Monitor.

• Class Variable is made of an attribute varName that denotes the name of this

variable; an attribute varType that denotes the data type of this variable; an attribute

varSize that denotes the size of this variable; and, an attribute value that denotes the

value of this variable. For simplicity, the types of a variable considered in this thesis

are limited to integer. Boolean, and String, even though this implementation tool is

also able to handle the data type of integer array and String array. An instance of

class Variable is employed to describe a variable used in the PUT.

• Class Monitor consists of an attribute mid that denotes the identifier of the

monitor; an attribute mstatus that denotes the lock status of this monitor; and, an

attribute waitingQueue that contains a set o f identifiers of processes that are

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

currently waiting for the lock of this monitor. An instance of class Monitor is

employed to describe a monitor used in the PUT.

Apart from class Variable and class Monitor, class Process is also described in

Figure 12. Since the attribute procStates of class State contains the status of processes

and the instance of class Process describes a process, class Process can be considered to

be used by class State. Class Process contains an attribute processID that uniquely

identifies a process, and an attribute statements that contains the design abstract of a

process.

State

ProcessID; int
statements: V ector o f

String

addNewStatementC): voi
resetProcess: void
getProcessIDO: int
getNextStatementO:

Vector of String

Process

mid: int
mStatus: Boolean
w aitingQ ueue: V ector

of int

getID(): String
getStatusr(): Boolean
setStatus(); void
enqueue(): void
dequeue(): void
getW aitingQueueO:

Vector of int

Monitor

varName; String
varType: String
varSize: int
value; Vector of String

;etName(); String
;etTypeO:String
:etSize():int
etValueAt(): void
;etValueAt(): String

Variabli

Figure 12: Class diagrams (II) for tie implementation of path constraints generating tool

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Besides such attributes defined for these classes, a set of methods is also designed

for modifying or retrieving information on these classes. For instance, the methods

addLabel, getState and setState on class Stateltem are designed for inserting a new label

to the instance of class Stateltem, retrieving the state information, and modifjdng the state

information of the instance of class Stateltem, respectively.

5.3 Algoritiims used in the implementation tool

According to the design architecture introduced in Section 5.1 and based on the

class diagrams discussed in the last section, three algorithms are used for accomplishing

the path constraints generation. In particular, the algorithm for the LTS construction will

be presented in Section 53.1, the algorithm for producing the control model will be

expressed in Section 53.2, and the algorithm for the path constraints deriving will be

discussed in Section 5 3 3 .

5.3.1 LTS generation

The fimdamental part of the path constraints generating tool is the LTS generation.

The process of LTS generation is actually the process of analyzing the PUT in terms of

the design abstract. By applying a set of structural semantics rules, the behavior of the

PUT will be simulated. The algorithm used in this tool for producing LTS is presented in

Figure 13.

Algoritiun for generating LTS;

Public Variables:
statesOfSystem;

geaerattngflNP'UT: stateltem)
BEGIN:

<Stepl>
Retrieve the current state thisState from stateltem;
Retrieve the information of the input sequence, the current variables, the current monitors,
and the current statuses of all the processes to inputSequence, variables, monitors, and
procStates from thisState, respectively;

<Step2>

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For each item of procStates do
//such an item describes the status of a process
Make copies of the state information into inputSequence_jtext,
variables_next, monitors_next, and procStates_next for the succeeding
sta te , respectively;
Set flag isDone to false,

searchNext to true.
Set current label string thisLabelStr to empty;
Copy this item to thisProcState;
Retrieve the OHxent process identifier thisProcID from thisProcState;
Retrieve the current statement from thisProcState to currenStatement;
If currentStatement is a stop statement then

Remove the item corresponds to the current item from
procStates_next;
IfprocStates_next contains no element then

Assign "stop" to thisLabelStr;
E lse

Assign T to thisLabelStr;
Endlf
Set isDone to “true”;

Else if currentStatement is an assignment statement then //”;=”
M o d ify variables_next b y e v a lu a tin g the v a lu e o f th e expression a t the
right hand side of ’ and assigning this value to the variable at the
left hand side of
A ss ig n rto thisLabelStr;

E lse i f currentStatement is a conditional statement th e n ITif then e ls e ”
Set a point for succeeding statement in procStates_next by evaluating
the condition; Hto denote the branch of “then ” or” else ” will be executed
A ss ig n X to thisLabelStr;

E lse i f currentStatement is a while-loop s ta te m e n t th e n ITwhile do”
Set a point for succeeding statement in the procStates_next by
evaluating the condition; Hindicate the body of while-loop or statements

after while-loop will be executed
Assign I to thisLabelStr;

E lse i f currentStatement is a input statement th e n ITinput ()”
Assign "(" + thisProcID + ",input)" to thisLabelStr;
Assign first value of inputSequence to the variable indicated by input
s ta te m e n t in variables_next;
Remove the corresponding first data from inputSequence_next;

E lse i f currentStatement is a lock s ta te m e n t th e n m o ck Q”
Retrieve the monitor identifier from currentStatement to mid;
Examine the lock status of monitor mid in monitors;
If the lock is occupied by another process then

Skip the remaining statements and proceed with next item;
Else

Set the lock status of the corresponding monitor in monitors_next
to “ture”;
Assign "(" + thisProcID + ",lock, " + mid+”)" to thisLabelStr;

Endif
E lse if currentStatement is a waiting statement th e n irwaiting Q” ______

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Skip the remaimng statements and proceed with next item;
Else if currentStatement is a lock_restart statement then iriock_restart (9”

Retrieve the monitor identifier form currentStatement to mid;
Examine the lock status of monitor mid in monitors;
If the lock is occupied by another process then

SMp the remaining statements and proceed with next item;
Else

Set the lock status of the corresponding monitor in monitors_next
to “ture”;

Assign t to thisLabelStr;
Endif

Else if currentStatement is a lock_end statement then H”lock_end O'”
Retrieve the monitor identifier form currentStatement to mid;
Set the lock status of the corresponding monitor in monltors_next to
“false ”;
A ss ig n X to thisLabelStr;

E ls e i f currentStatement is a wait sta te m e n t th e n ITwaitO”
Retrieve the leaving monitor identifier and the waiting monitor
identifier form currentStatement to midi and midi, respectively;
A ss ig n "(" + thisProcID + ”,wait, " + mid2+")" to thisLabelStr;
Set the lock status of the corresponding monitor for monitor midi in
monitors_nextto “false”;
Add the current process identifier thisProcID into the waiting queue of
the m o n ito r midi in monitors_nexti
Modify the succeeding statement of current process in the
procStates_next to a waiting statement;
Set the value o f searchNext to “false ”;

E ls e i f currentStatement is a notify s ta te m e n t th e n irnotify
Retrieve the monitor identifier form currentStatement to mid;
Assign "(" + thisProcID + " ,n o tify , " + mid+")" to thisLabelStr;
Retrieve the first process identifier pid in the waiting queue of the
monitor mid in monitors;
I f the c u rre n t s ta te m en t o f the process pid is a waiting statement a n d
su c h a p ro c e ss is w a itin g in the w a itin g q u e u e o f the m o n ito r mid th e n

Set the succeeding statement of the process pid to a lock_restart
statement inprocStates_next;
Remove pid from the waiting queue of the monitor that
corresponds to the monitor mid in monitors_nexti

E n d if
Else if currentStatement is a notifyAll statement then irnotify All (}”

Retrieve the monitor identifier form currentStatement to raid;
Assign "(" + thisProcID + ",notifyAll, " + mid+")" to thisLabelStr;
For each process identifier pid in the waiting queue of the monitor mid
in monitors do

If the current statement of the process pid is a waiting statement
AND such a process is waiting in the waiting queue of the monitor
mid then

Set the succeeding statement of the process pid to a
lock_restart statement inprocStates_next;
Remove pid fi~om the waiting queue of the monitor that

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

corresponds to the monitor mid in monitors_nsxti
Endif

Endfor
Endif

< S tep 3 >
If isDone is false AND searchNext is true then

Retrieve the succeeding statement of the current process to modify
procStates_nexf,

Endif
<Step4>

Composite the succeeding state nextState by inputSequencejiext,
variables_jiext, monitors_next, and procStates_next;
Generate a new labei thisLabel by the state identifier of thisState, state
id e n tif ie r o f nextState, a n d thisLabelStr;
If there exists a state identical with the nextState then

M o d ify the toStatelD o f thisLabel to th e s ta te id e n tif ie r o f th is s ta te ;
E lse

Generate a n e w stateltem nextStateltem b y nextState;
A d d nextStateltem to statesOfSystem;
Generating {nextStateltem};

E n d if
A d d thisLabel to stateltem;

E n d fo r
<Step5>

Return;
END

Figure 13: Algorithm for generating LTS

In Figure 13, the variable statesOfSystem will contain all the generated instances

of class Stateltem along with the LTS generating, and is maintained publicly which means

it is defined out of the scope of the method generating and will continue to exist after

generating terminates. In the first step, the information of the current state, including

input sequence, variables, monitors, and current status of each process, is retrieved from

the input stateltem that is an instance of class Stateltem. In the second step, a copy of

such information is made for the purpose of generating the succeeding state. Meanwhile,

a couple of binary flags are initialized; isDone that denotes if the current analyzing

process terminates, and searchNext that denotes whether or not to retrieve the succeeding

statement for the current process. As one important aspect o f the state information, the

current status o f each process in terms of the current statement that is about to be

executed is described by the variable procStates. The structural rales are applied

5 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

according to these statements in the second step. In fact, each item in procStates

expresses not only the current statement of one specific process but also a pointer that is

used to search the succeeding statement. When the current statement is a lock statement

or a lock_restart statement, and in case the lock of the monitor, for which such a

statement is requesting, is cuirently occupied by another process, the strategy used by this

algorithm is to skip analyzing the current process and consider other processes first. The

same strategy is also used when the current statement of the analyzed process is a waiting

statement. Another special strategy, which generates the succeeding state by artificiaily

inserting a waiting statement instead of searching the succeeding statement of the current

process, will be applied when the current statement is a wait statement. The action of

searching the succeeding statement is performed in the third step of this algorithm. With

the succeeding statement of the current process, the succeeding status o f variables in

variables_next, the succeeding status of monitors in monitors_next, and the succeeding

content of the input sequence in inputSequence_next, the succeeding state of the system

can be generated in the fourth step. Meanwhile, according to the label string described by

thisLabelStr and the identifier of the current state and the new generated state, a new

label that expresses the evolution motivated by the current statement can be produced and

added to stateltem. Finally, this algorithm generates a new instance of class Stateltem

nextStateltem by the generated instance of class State nextState while there exists no

duplicate to this new state, and recursively invoke the method generating with the

parameter nextStateltem.

Basically, following such an algorithm, the included valid statement may lead the

system into different states, and finther expansion can be carried out according to these

states. Therefore, a critical problem of the state explosion v/ili occur sooner or later. To

deal with such a problem, one strategy that considers ignoring all the irrelevant states and

labels is described in the algorithm in Section 53.2. Another scheme considered in this

algorithm also provides a big help to alleviate the state explosion. Such a scheme is based

on the fact that it is most likely that a state led by performing a statement already existed

in the LTS. In particular, two states can be considered as the same state in this thesis only

if the current statement of each process, the values of all the variables, the status of all the

monitors, and the content of the input sequence of these two states are exactly same. In

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this case, the expansion will not be performed according to this statement execution since

the expansion on the same state must have been performed and ail the post states of the

current state can also be approached from the previous same state. The only thing needs

to do under such a circumstance according to this algorithm is to produce a new label

which denotes this evolution to that existed state.

5.3.2 Simplifying LTS to the control model

By performing the algorithm presented in the last section, an LTS can eventually be

generated. Since the scheme for excluding the duplicated states has been taken into

account of such an algorithm, the generated LTS is actually a graph instead of a tree.

However, due to the fact that the generated LTS still contains a large number of irrelevant

states and labels for deriving the path constraints, certain simplifications of the LTS have

to be done. The algorithm provided in Figure 14 aims to perform such a task.

Algorithm for c o n s t r u c t in g Control Model;

Public Variables:
statesOfSystem, controIModel;

proiiiceCoffltroIMoielO
BEGIN:

< S te p l>
Initialize controIModel;

< S te p 2 >
For each item in statesOfSystem do

If this item contains the initial state of the LTS then
Search for ail the items in statesOfSystem that contain the
states can be reached from this initial state via one or more
labels which have label string i (or x-label);
Put these states and the initial state together as a new item
in controIModel;

Endif
Endfor
For each item in controIModel do

Copy this item to thisNode;
For each state in thisNode do

Find the item in statesOfSystem which contains such a state;
For each non-x label in this item do

If there is no label in thisNode has the same label string
as this label then

Create a new item in controIModel to contain the
end state of this label and all the states can be reached

5 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from this end state via one or more x-iabe!s;
Create and add to thisNode a new label with the identifier
of thisNode, the identifier of the new generated item, and
the label string of this label;

Else
Find the item in controIModel that is pointed by the label
which has the same label string as this label;
Add the end state of this label and all the states can be
reached from this end state via one or more x-iabels to this
item;

Endif
Endfor

Endfor
For each label in thisNode do

If the state set of another item in controIModel is identical with the
state set in the item that is pointed by this label then

Remove the i te m th a t is p o in te d b y th is la b e l from controIModel;
Modify toStatelD o f th is la b e l b y th e identifier o f su c h a n
identical item;

Endif
Endfor

E n d fo r
<Step3>

Initialize equivTable in which each item that is corresponding
to the equivalence relation of each pair of state sets in controIModel;
In itia liz e pairLists;!Icontaim pairs o f s ta te se ts
For each item in controIModel do

For each o f a ll o th e r item s in controIModel do
Check equivTable;
If these two items have not proved to be distinguishable yet then

If the label numbers in both items are equal AM)
each label in one item has a corresponding label in the
other item with same label string then

Add these tw o items a s a p a ir to a n e w se t in pairLists;
C o n tin u e to check th e equivalence re la tio n o f a ll th e
succeeding pairs of items;

Else
Set the relation between these two items to distinguishable
in equivTable;
Find the set of state pairs that contains these two items in
pairLists, and set the relation between the two items of
each pair to distinguishable in equivTable;

E n d if
Endif

Endfor
Endfor
F o r each item in controIModel do

Check equivTable;
For each equivalent item of this item in the controIModel do

 ______ Remove such an equivalent item from controIModel;

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Modify all the labels pointed to the equivalent item to
point to this item;

Endif
Endfor

< S tep 4 >
Return;

END

Figure 14: Algorithm for coastructtng Control Model

Essentially, the LTS can be considered as a sort of finite state automata (or finite

automata). Therefore, most well-defined theories of finite automata are suitable to deal

with the problems of LTS. Basically, there are two types offinite automata: Deterministic

Finite Automata (DFA) and Nondeterministic Finite Automata (NFA) [23]. The major

difference between DFA and NFA is that with an input, while a state must be moved to

exactly one specific state in a DFA, the successor of a state can be a set o f zero, one, or

more states in an NFA. Since the focus of this thesis is concurrent system testing, the LTS

generated by the algorithm discussed in the last section is indeed an NFA. For each DFA,

an equivalent DFA that has minimum states can be found by grouping those states that

are equivalent On the other hand, a DFA, which can do whatever an NFA can do, can

always be constructed from such a given NFA. The process of constructing a DFA from

an NFA is called determinization. Due to the fact that there is no way except a process of

exhaustive enumeration to find a minimum-state NFA equivalent to a given NFA, it is

necessary to perform the process of determinization before minimizing the state in an

NFA. Considering our problem of simplifying the LTS, the determinization and

minimization for such an LTS have to be applied. In fact, the algorithm provided in

Figure 14 is based on the idea of automata determinization and minimization [23].

As shown in Figure 14, there are also two public variables used in this algorithm:

variable statesOfSystem, defined the same way as in the LTS generating algorithm, and

variable controIModel that contains the information of all significant sets of state

identifiers and sets o f labels. In the second step of method produceControlModel, the

LTS stored in statesOfSystem is determinized and stored in controIModel. Such a

determinization involves constructing all subsets o f the set of states in the LTS. First of

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all, a subset that contains the initial state of the LTS and all states that can be reached

from this initial state via one or more i-labeled transitions will be generated. Second,

from these states and according to each possible visible action, a variety of new subsets,

each of which contains the succeeding states of these states via one specific non-t label and all

states that are reachable fi'om these succeeding states via one or more x-transitions, can be

constructed. TMrd, we need to continuously construct such subsets from the existing state sets
until all new constructed subsets are identical with other existing subsets or the states in the

subset have no succeeding state. Finally, the determinized LTS has been generated in

controIModel by considering each of these constructed state subsets as a new state. So far, all

the x-tramitions in the LTS have also been eliminated. With such a deteraiinized LTS, the

process of minimization will be accomplished in the third step of method

produceControlModel. In essence, this process is performed by grouping those states

that are equivalent in the above-determinized LTS. The equivalence relation considered

here is trace equivalence. According to the definition of trace equivalence, each pair of

states in this determinized LTS will be examined. Two states are marked distinguishable,

if:

• exactly one of these states is the final state that has no outgoing label;

• one state can be moved to its succeeding state via a transition on one specific

action, while the other state cannot;

• the succeeding state pair of these two states via the transitions on corresponding

action are found distinguishable.

The equivalence relation between any two states will be registered in a table that is

described in the variable equivTable. Actually, only state distinguishablities can be

determined by this algorithm. However, according to the theorem proved in [23], two

states are indeed equivalent if these states are not distinguished by such a state

distinguishing process. With the equivalence relation table, states in the determinized LTS

can be partitioned into different groups, so that all states in the same block are equivalent

and no pair of states from different groups is equivalent. Again, by considering each

group of states as a new state, a minimized and determinized LTS that is also known as

the control model is constructed.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.3 Deriving the Path Constraints

With the control model constructed by the algorithm discussed in the last section, it

is relatively simple to derive all significant sets of path constraints. Since the criterion of

state coverage is not appropriate to be used in this case, as mentioned earlier, the path

coverage criterion or the edge coverage criterion may be considered. The algorithm using

the path coverage criterion for deriving the path constraints is provided in Figure 15,

and the algorithm using the edge coverage criterion is presented in Figure 16.

Algorithm mmg path coverage for deriving the Path Constraints-.
Public variables:
controIModel, pathConstraints;

generstePathConstraintslO
BEGIN

<Stepl>
Initialize pathConstraints-,

<Step2>
For each label from the initial state of controIModel do

Copy this label to thisLabel-,
C o p y th e la b e l s tr in g o f thisLabel to v a r ia b le thisPathConstraint;
//contains one set o f path constraints
^mWtACnmtxmatl{thisLabel, thisPathConstraint)-,

E n d fo r
END

finiNextContraintl(INPUT: thisLabel, thisPathConstraint)
B E G IN

<Stepl>
Search the item that contains this state pointed by thisLabel in controIModel;

< S te p 2 >
If no label form this state then

Add thisPathConstraint to pathConstraints;
Else

For each label from this state do
Copy this label to currentLabet,
C o p y a ll the items in this Path Constraint to a n e w v a r ia b le
nextPathConstraint;
Copy the label string of currentLabel to nextPathConstraint;
^mSUextCmtxmmtl{currentLabel,nextPathConstraint)-,

Endfor
Endif

<Stq)3>

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

END

Figure 15; Algorithm mm^path coverage for deriving the Path Constraints

In the algorithm shown in Figure 15, one public variable controIModel is defined

as in the control model constructing algorithm, and another public variable

pathConstraints is introduced to contain all sets of path constrains derived from the

controIModel. In the method generatePathConstraintsl, the labels that start from the

initial state are used to perform another method findNextComtraintl in order to generate

different sets of path constraints. The end state o f each label will be examined in the

method findNextContraintl, and such a method will be recursively invoked to process

the labels from this end state until no label goes out from the current state. Eventually, all

possible sets of path constraints can be registered in the variable path Constraints.

Algorithm using edge coverage for deriving the Path Constraints:
Public variables:
controIModel, pathConstraints, hasNewLabel;

generatePathConstraints20
BEGIN

<Stepl>
Initialize pathConstraints',

<Step2>
For each label from the ioitia! state of controIModel do

If this label has not been covered yet then
Mark this label to be covered;
Set hasNewLabel to be true;
Copy this label to thisLabel;
Copy the label string of thisLabel to variable thisPathConstraint;
//contains one set o f path constraints
findNextContraiiit2(iAfriahe/, thisPathConstraint);

Endif
Endfor

END

findNextCoiitraiiit2(INPUT: thisLabel, thisPathConstraint)
BEGIN

<Stepl>
Search the item that contains this state pointed by thisLabel in controIModel;

<Step2> _______________________ _____________________ _____

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If no labei form this state then
Set hasNewLabel to be false;

Add thisPathConstraint to pathConstraints;
Else

For each label from this state do
If this label has not been covered yet OR variable hasNevjLabel
is true then

Mark this label to be covered;
Set hasNewLabel to be true;
Copy this label to currentLabel;
Copy all the items in thisPathConstraint to a new variable
nextPath Constraint;
Copy the label string of currentLabel to nextPathConstraint;
GmANextComtrmmtlicurrentLabehnextFathConstraint);

Endif
Endfor

Endif
<Step3>

Return;
END

Figure 16; Algorithm mingpath coverage for deriving the Path Constraints

One difference between the algorithms shown in Figure 15 and Figure 16 is that a

new variable hasNewLabel is introduced in the latter to denote if the current path contains

at least one uncovered edge. Meanwhile, a Boolean value will be associated with each

label to denote whether or not this label has been covered at least once. Thus, each time a

label will be added to construct a new set of path constraints while either this label has

not been covered yet or such a set contains at least one uncovered label. As a

consequence, the algorithm in Figure 16 guarantees that each label in the control model

must be covered at least once by the derived sets of path constraints.

Up to this point, the structure and the algorithms of the path constraints generating

tool have been provided in detail. To illustrate the performance of this tool, the evaluation

and some empirical results will be presented in Chapter 6.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6 Evaluation of the proposed framework

This Chapter discusses the evaluation of the proposed framework. This framework

involves an implementation tool for deriving all significant sets of path constraints for

reproducible testing. The algorithms used in such an implementation tool, which include

generating the LTS, simplifying this LTS, and deriving path constraints, have been

presented in Chapter 5. In the first section of this Chapter, some computational issues of

the LTS generation will be considered. Then, the empirical results of deriving path

constraints with the path coverage criterion will be investigated in the second section.

Finally, in Section 63, the results of using the edge coverage criterion over a number of

typical examples will be evaluated.

6.1 Computational issues

With the LTS generated by the algorithm presented in Chapter 5, the behaviour of

the PUT can be simulated. However, such an LTS suffers from the problem of state

explosion. That is, the number of states in the LTS may increase exponentially as the

number of processes in the PUT grows.

The number of states in the LTS is determined by a variety of factors. As mentioned

in Chapter 3, each state in the LTS consists of a sequence of input values, the mapping

from variables to their values, the locking status of all monitors, the status of monitor

waiting queues, and the status of each process. Specifically, the number of states in the

LTS is in a proportional order to the number of input values, the number of possible

values of each variable, the number of monitors for its locking mechanism, and the

number of statements in each process. In addition, the number of states in the LTS is

exponential to the number of processes due to the fact that the number of states of each

monitor’s waiting queue is the total number o f permutations of zero or more processes

taken from the set o f processes.

Obviously, there will be a vast number of states in the LTS if any of the above

factors gets bigger. However, such a bad situation is unlikely to happen in practice. Our

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

experiment actually provides some valuable data to show the scalability o f our approach.

In particular, according to our experiment, the fonctionality of the simplification provided

by this tool considerably reduces the number of states in the generated LTS. We show in

the following, the empirical results on this issue.

6.2 Empirical results of deriving path constraints with path coverage criterion

The producer consumer problem is a classical concurrent example and has been

illustrated in Chapter 4. Consider this example with one producer and two consumers,

and alter the times of producing new data by the producer; the empirical results by

performing the implementation tool with the path coverage criterion are shown in Table

1.

Table 1 compares the number of states and labels in the LTS and in its

corresponding control model and records the number of derived paths and executing time

while the producer performs its task a different number of times. The line chart in Figure

17 demonstrates the relation between the number of derived paths and times of producing

the new data by the producer. According to the empirical results shown in Table 1, it is

obvious that the number of states and labels in the LTS has been reduced significantly in

the control model with this implementation tool. However, a major deficiency, which is

that the number of path constraint sets increases exponentially while the number of labels

is getting bigger, comes from the application of the path coverage criterion as shown in

Figure 17. Therefore, it can be concluded that with the path coverage criterion, the

scalability problem may not be handled properly by the implementation tool.

Consequently, another strategy - edge coverage criterion - will be considered for the task

of path constraints generation in this implementation tool, and the empirical results of

deriving path constraints with the edge coverage criterion will be provided in the next

section.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In LTS (Before Simplifyiiig) In Control Model
(After Simplifring)

Producing
times

State N um ber Label Number States N um ber Label Number Path
Number

Time
(Sec)

1 5 3 T ~ ^ 1108 33 49 42 2

2 1388 2911 93 159 1776 10

3 2959 6235 193 345 78602 137

Table 1; Empirical results of producer consumer problem with path coverage criterion

100000 -

75000 -

I

50000

25000

Figure 17; Line chart of increasing path number with path coverage criterion

6.3 Empirical results of deriving path constraints with edge coverage criterion

Evaluation of this framework is complex as there are various circumstances in the

category of concurrent system testing. The experiments chosen to evaluate this

framework should reflect the behaviour of the implementation tool in terms of significant

reduction of state and label numbers from LTS to control model, the number of derived

sets of path constraints, and the execution time. Evaluation of the above-mentioned

testing method in experiments requires careful selection of typical examples that contain

general scenarios in most concurrent systems. Hence, the producer consumer problem

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

will be considered again in Section 63.1, and two other typical examples: Reader &

Writer problem and the Sleeping Barber problem will be illustrated in Section 63.2 and

Section 6 3 3 , respectively.

6.3.1 Reconsider producer consumer problem

To demonstrate the performance of the implementation tool by employing the edge

coverage criterioii, the example of producer consumer problem is considered again first.

Since nothing else but the strategy of deriving sets of path constraints from the

control model has been changed, only the results of path number and executing time are

different in Table 2 from those in Table 1. It is not surprising that the number o f derived

paths no longer explodes while the numbers of state and label are increasing since the

edge coverage criterion is applied. In fact, the increase of path numbers will be linear as

the line chart shown in Figure 18. Also, comparing Table 1 and Table 2, another major

difference is that the growing rate of the execution time, along with the boost of valid

number of states and labels by using the edge coverage criterion, is much lower than that

obtained by using the path, coverage criterion.

In LTS (Before Simplifying) In Control Model

(After Simplifying)

Producing

times

State Niunber Label Number States Number Label Number Path

Number

Time

(Sec)

1 5 3 1 1 1 0 8 3 3 4 9 18 1

2 1388 2 9 1 1 93 1 5 9 68 7

3 2 9 5 9 6 2 3 5 193 345 1 5 4 3 8

Table 2% EmpMeal results of producer consumer problem with edge coverage criterion

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

300 •

2 0 0 -

150 -

1 00 -

50 -

0
1 2 3

Figore 18; Line chart of increasing path number with edge coverage criterion

6.3.2 The example of Reader & Writer problem

Reader & Writer problem is somewhat similar to producer consumer problem, and

is a typical concurrent example, too. In such a problem, there exists a shared database,

which can be queried by the reader processes and be examined and altered by the writer

processes. Due to the characteristics o f the reader and writer, the database can be

assessed concurrently by different readers, while writers require exclusive access o f the

database.

The design abstract for the solution of Reader & Writer problem is presented in

Figure 19. Two integer variables nr and nw are used in this solution to denote the

numbers of readers and writers that are currently processing the database, respectively.

Before operating the database, each process enters a critical section protected by monitor

m l. The initial value of all these variables will be 0. If there is no any other process that

either a reader or a writer currently accessing the database, a write process is allowed to

alter the database, and increase the variable nw'hy 1; otherwise, this write process puts

itself in the waiting queue of monitor m2. However, a reader process is allowed to query

the database and increase the variable nr by 1 unless there is a writer process that is

operating the database. A reader waits in the waiting queue of monitor m l if the number

of writers nw is larger than 0. After operating the database, each process enters another

critical section that is also protected by monitor m l. Either number of writers or number

of readers will be decreased by 1; and, the write process will awaken the first writer

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process that waits on monitor m2 and all reader processes that wait on the monitor ml, or

the reader process will awaken the first writer process that waits on monitor m2 if no

more readers are accessing the database.

* RemSer& Writer *
<variables> {{ n w :in t},{ da tarin t},{ n r : in t},{ dataOfReader :int }}
<m onitors> {m0,in2,ml}

<process>;Wrlter
lock (m O) {

while (n r > 0 I nw > 0) do {
wait (mO , m2);

}
nw := nw + 1;

}
lock_end (m O);
data := data + 1;
lock (mO) {

nw := n w -1 ;
notify (m2);
notifyAll (m l);

}
lock_end (m O);
stop;
<procew>:Meader
lock (mO) {

while (nw > 0) do {
wait { mO , m l);

}
nr : = n r + 1;

}
lock_end (mO);
dataO fR eaderl := data;
lock (mO) {

n r := nr -1 ;
i f (nr — 0) then {

notify (m2);
}

}
iock_end (m O);
stop;

Figure 19: Design abstract for the example of Reader & Writer

The results o f performing the implementation tool with this example o f Sleeping

Reader & Writer problem are displayed in Table 3.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N um ber In LTS (B efore S im plifying) In Control Model

(A fte r S im plify ing)

Readers/

W riters

State N um ber Label N um ber States N um ber Label N um ber P ath

Number

Time

(Sec)

2/1 779 1404 85 122 39 2

3/1 6443 14522 357 639 285 114

2/2 7013 15215 491 855 366 118

Table 3; Empirical results of Reader & Writer problem

6.3.3 The example of Sleeping Barber problem

Sleeping Barber problem is another classic synchronization problem, and also a

representative of practical problems. The important client/server relationship that often

exists between different processes is illustrated in this problem.

The situation described by Sleeping Barber problem is: There is a barber-shop in a

small town. The shop has a barber, a barber chair, and a waiting room with several chairs.

The barber spends his lifetime to serve customers, and sleeps in the barber’s chair when

none are in the shop. When a customer arrives and finds the barber is sleeping, the

customer awakens the barber, and sleeps in the barber’s chair while the barber cuts his

hair. If the barber is busy when a customer arrives, the customer goes to sleep in the chair

in the waiting room if at least one of such chairs is available; otherwise, the customer

comes back later. After finished cutting, the barber awakens the customer who has

received a haircut and lets him leave. If there are waiting customers, the barber then

awakens one and gives another haircut; otherwise, the barber goes back to sleep until a

new customer arrives.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* sieepingBarber *
< v a ria b le s> {{ niH n_ciist;iiit } ,{ to ta l : i n t}}
< m o n ito rs> { m l,m 2 ,m 3}

<proce§s>;Barber
w h ile (to ta l< 3) do {

lo c k (m l) {
i f (nu iii_ cu st == 0) th e n {

w ait (m l , m 2);
} e lse {

}
n u m ^ o is t := n u m _ c u s t - 1 ;
n o tify (m 3) ;
to ta l := to ta l + 1;

}
lo c k _ e n d (m l);
n o tify A ll (m l);

}
s top ;
<process>s Customer
lo c k (m l) {

w h ile (n u m _ c u s t = 2) d o {
w a it (m l , m l);

}
n u m _ c u s t := n iu n _ c u s t + 1;
i f (n u m _ c u s t = 1) th e n {

n o tify (m 2);
} e lse {

}
w a it (m l , m 3);

}
lo c k _ e n d (m l);
s top ;

Figure 20; Design abstract for the example of Sleeping Barber

The design abstract for a solution of Sleeping Barber problem is given in Figure

20. In this solution, three monitors, m l, m2, and m3, are employed. In particular, monitor

m l is used to ensure the mutual exclusion of the barber’s cutting and the customer’s

entering the barber-shop; monitor m2 is used to signal the barber that a new customer

arrives; and monitor m3 is used to signal the customer that the barber has finished his

cutting. Variable total is used to denote the total number of customs that have been

served by the barber, and the initial value is 0. Besides, a variable num_cust denotes the

available number of chairs in the barber’s waiting room, and the value will be given with

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m initial state of this system. If a customer gains the lock of monitor m l and finds no

chair in the waiting room is available, he gives up the lock and waits in the waiting queue

of monitor ml. On the other hand, if the barber gains the lock of monitor m l and finds no

customer is waiting, he waits in the waiting queue of monitor m2; otherwise, he cuts one

customer’s hair and wakes up customers that wait on the monitor m l if there is any.

Since only static processes will be consider as mentioned earlier, the number o f customer

processes will be same as the number of customers that the barber is allowed to serve. In

this case, it is not necessary for the customer process to examine if the barber process is

still nmning due to the fact that each customer will be eventually served.

Number In LTS (B efore

Simplifying)

In Control Model

(After Sim plifying)

Barber/Custom ers State

N um ber

Label

Number

States

Number

Label

Number

P ath

N um ber

Tim e

(Sec)

1/2 375 642 49 63 16 1

1/3 3175 6334 183 265 84 37

1/4 27963 62278 792 1274 484 4714

Table 4; Empirical results of Sleeping Barber problem

The results of performing the implementation tool with this example o f Sleeping

Barber problem are listed in Table 4. According to this table, three points should be

noticed:

- Although as the number of processes increases, the number of states and labels in

the generated LTS rises remarkably, the numbers of states and labels in the control

model that is simplified from the LTS by the implementation tool does not

accumulate likewise;

- The number of derived sets of path constraints by applying the edge coverage

criterion increases linearly while the number of processes grows;

- The execution time for deriving path constraints increases significantly as the

number of processes increases.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7 Conclusion

In this thesis, a framework to automatically generate all significant sets of path

constraints for reproducible testing has been proposed. The purpose o f these derived path

constraints is to gain desired detenninistic control over the non-deterministic testing

environment.

Formal methods process terms and Labelled Transition System (LTS) are

introduced to specify the design abstract of the PUT and to construct the model for

simulating the behaviour of such a PUT, respectively. Due to the fact that the LTS is

indeed a sort of Nondeterministic Finite Automata, the algorithms of determinization and

minimization in theories of automata are applied to simplify the LTS to the desired

control model by reducing those internal transitions according to trace equivalence. The

control model contains a minimum number of states and labels that are necessary for

generating the path constraints. Finally, the edge coverage criterion which guarantees

that each label in control model will be covered at least once is used to derive all

significant sets of path constraints.

The experiments presented in Chapter 6 demonstrate that it is efficient and

effective to construct the control model that is made up of only necessary information for

deriving the path constraints by simplifying the LTS with this implementation tool.

Further, with the edge coverage criterion, this implementation tool derives only

significant sets of path constraints. Since the number of derived sets o f path constraints

is manageable and the increase of such a number is linear as the size of the control model

grows, the scalability problem can be handled properly by this tool.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] A. Abdurazik, P. Ammann, D. Wei and J. Offutt. Evaluation of three specification-
based testing criteria. Engineering of Complex Computer Systems, ICECCS 2000. In
Proc. OF Sixth IEEE International Conference, pages: 179 -187, Sept. 2000.

[2] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Distributed
Programming. Addison Wesley, Inc. 2000.

[3] P. C. Bates. Debugging heterogeneous distributed systems using event-based models
of behavior. ACM Transactions on Computer Systems (TOCS), Volume 13 Issue,
February. 1995.

[4] E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. Sabnani,
editors, Protocol Specification, Testing, and Verification VIII, pages 63- 74,
NorthHolland, 1988.

[5] A. Bechini and K.-C. Tai. Design of a toolset for dynamic analysis of concurrent Java
programs. In Proc. of the 6th International Workshop on Program Comprehension,
Italy, Pages: 190 -197, 24-26 June 1998.

[6] E. Brinksma and J. Tretmans. Testing transition systems: An annotated bibliography.
In Lecture Notes in computer science Vol. 1067, pages 187-195, Springer-Verlag, 2001.

[7] R.H. Carver. Testing Abstract Distributed Programs and Their Implementations. J.
System and Software, special issue on Software Engineering for Distributed Computing,
pages. 223-237, June 1996.

[8] J. Chen. On using static analysis in distributed system testing. In proc, of the 2”̂
International Workshop on Engineering Distributed Objects (EDO 2000). Lecture Notes
in Computer Science Vol. 1999, pages 145-162, Springer- Verlag, 2000.

[9] J. Chen. Working on Scenarios for Reproducible Testing. The 5th International
Conference on Formal Engineering Methods (ICFEM 2003). Lecture Notes in Computer
Science Vol 2885, pages 34-47, Springer-Verlag, 2003.

[10] X. Cai and J. Chen. Control o f nondeterminism in testing distributed multi-threaded
programs. In Proc. of the First Asia-Pacific Conference on Quality Software (AFAQS
2000), pages 29-38. IEEE Computer Society Press, 2000.

[11] R.Carver and K.-C. Tai. Replay and testing for concurrent programs. IEEE Software,
pages 66-74, Mar. 1991.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[12] R.Carver and K.-C. Tai. Static analysis o f concurrent software for deriving
synchronization constraints. In proc. Of IEEE International conference, Distributed
Computer System, pages. 544-551, May 1991.

[13] R.Carver and K.-C. Tai. Use of sequencing constraints for specification-based
testing of concurrent programs. IEEE Transitions on Software Engineering, 24(6):471-
490, June 1998.

[14] S.K. Damodaran-Kamal and J.M. Francioni. Nondeterminancy: Testing and
Debugging in Message Passing Parallel Programs. Proc. ACM/ONR Workshop Parallel
and Distributed Debugging, ACM SIGPLAN Notices, vol. 28, no. 12, pages 118-128,
Dec. 1993.

[15] R. A. DeMillo and A. J. Offiitt, Constraint-Based Automatic Test Data
Generation. IEEE Trans on Software Eng, Vol 17, No. 9, pages 900-91, Sept. 1991.

[16] R. A. DeMillo and A. J. Offutt, Experimental Results from an Automatic Test Case
Generator. ACM Trans on Software Eng. and Method, Vol 2, No. 2, pages 109-127,
April 1993.

[17] M.-C. Gaudel. Testing can be formal, too. In P.D. Mosses, M. Nielsen, and M.I.
Schewartzbach, editors, TAPSOFT 95: Theory and Practice of Software Development,
pages 82-96. Lecture Notes in Computer Science 915, Springer-Verlag, 1995.

[18] W. Geurts, K. Wijbrans, and J. Tretmans. Testing and formal methods—BOS project
case study. In EuroSTAR’98; 6th European Int. Conference on Software Testing,
Analysis & Review, pages 215-229, Munich, Germany, November 30- December 1 1998.

[19] A. Hall. Seven myths of formal methods. IEEE Software, 6(9): 11-19, 1990.

[20] R. M. Hierons, "Testing from a Z Specification". Software Testing, Verification and
Reliability, Vol. 7. pages 19-33,1997.

[21] C. Hoare. A calculus of total correctness for communicating process. Science of
Computer Programming, 1:49- 72, 1981

[22] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall Inc.,
1991.

[23] John E. Hopcroft, Rajeev Motwani, and Jeffery D. Ullman. Introduction to automata
theory, language, and computation. Addison-Wesley, 2nd edition, 2001.

[24] D.J. Hatley and LA. Pirbhai. Strategies for Real-Time System Specification. Dorset
House, 1987.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[25] L. Heerink and J. Tretmans. Formal methods in conformance testing: A probabilistic
refinement. In B. Banmgarten, H.-J. Burkhardt, and A. Giessier, editors, Int. workshop
on Testing of Conummicating systems 9, pages 261-276. Chapman & Hall, 1997.

[26] G.H. Hwang, K,C. Tai, and T.L. Hnang. Reachability Testing: An Approach to
Testing Concurrent Software. Proc. IntT J. Software Eng. and Knowledge Eng., vol. 5,
no. 4, pages 493-510, Dec. 1995.

[27] ISO/IEO JTC1/SC21 WG7, ITU-T SG 10/Q.8. Inforaiation Retrieval, Transfer and
Management for OSI; Framework: Formal Methods in Conformance Testing Committee
Draft CD 13245-1, ITU-T proposed recommendation Z.500. ISO-ITU-T, Geneve, 1996.

[28] E. Itoh, Z. Furukawa, and K. Ushijima. A prototype of a concurrent behaviour
monitoring tool for testing concurrent programs. In proc of Asia- Pacific Software
Engineering Conference (APSEC’ 96), pages 345-354, 1996.

[29] P. Kars. Formal Methods in the Design of a Storm Surge Barrier Control System. In
G. Rozenberg and F. W. Vaandrager, editors, Lectures on Embedded Systems, pages
353-367. Lecture Notes in Computer Science 1494, Springer-Verlag, 1998.

[30] D. Kung, N. Suchak, P. Hsia, Y. Toyoshima, and C. Chen. On object state testing. In
proc. Of the 18*̂ International computer software and applications conference: COMP-
SAC ’94, pages 222-227, IEEE Computer Society Press, 1994.

[31] B. Karacaii and K. Tai. Automated test sequence generation using sequencing
constraints for concurrent programs. In proc. Of the International Symposium on
Software Engineering for Parallel and Distributed Systems, pages 97-106, IEEE
Computer Society Press, 1999.

[32] T. Leblanc and J. Mellor-Crummey. Debugging parallel programs with instant
replay. IEEE Transitions on Computers, 36(4):471-482, Apr. 1987.

[33] N.A. Lynch and M. R. Tuttle. An introduction to Input/Output Automata. CWI
Quarterly, 2(3) :219-246,1989.

[34] D. Lee and M. Yannakakis. Principles and methods for testing finite state machines.
The Preceedings of the IEEE, August 1996.

[35] R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.

[36] N. Mittal and V. K. Garg. Debugging Distributed Programs Using Controlled Re-
execution. In Proc. of the 19th Annual ACM Symposium on Principles of Distributed
Computing (PODC-OO), 2000.

[37] R. Nicola and M. Hennessy. Testing equivalence for processes. Theoretical
Commputer Science, 34:83- 133,1984.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[38] A. J. Offktt and S. Liu. Generating Test Data from SOFL Specifications. Technical
Report lSSE-TR-97-02. Department o f Information and Softvmre Systems Engineering,
George Mason University, Fairfax VA, pages 1-24, 1997.
http://www.isse.gmu.edu/faculty/ofiit''rsrch/papers/soflsp.ps

[39] J.M. Spivey. The Z Notation: a Reference Manual (2*“* edition). Prentice Hall, 1992.

[40] P. Stocks and D. Carrington. A framework for specification-based testing. Software
Engineering, IEEE Transactions, Volume: 22 Issue: 11, pages: 777 -793 Nov. 1996.

[41] H. Sohn, D. Kung and P. Hsia. State-based reproducible testing for CORBA
applications. In Proc. of IEEE International Symposium on software Engineering for
Parallel and Distributed Systems (FDSE’99), pages 24-35, LA, USA, May 1999.

[42] H. Sohn, D. Kung, P. Hsia. Y. Toyoshima, and C. Chen. Reproducible testing for
distributed programs. In Proc. of the 4* International Conference on Telecommunication
Systems, Modeling and Analysis, pages 172-179, Nashiville, Tennessee, Mar. 1996.

[43] H. Sohn, D. Kung, P. Hsia, Y. Toyoshima and C. Chen. Reproducible Testing of
Distributed and Concurrent Programs. 12th International Society for Computers and
Their Applications, Sanfransisco, CA, March 7 -10,1996.

[44] K.C. Tai. Reachability Testing of Asynchronous Message-Passing Programs. Free.
IEEE In ti Workshop Software Eng. for Parallel and Distributed Systems, pages 50-61,
May 1997.

[45] J. Tretmans. A Formal Approach to Conformance Testing. PhD thesis, University of
Twente, Enschede, The Netherlands, 1992.

[46] J. Tretmans. Testing labelled transition systems with inputs and outputs.
In A. Cavalli and S. Budkowski, editors, Participants Proceedings o f the Int. Workshop
on Protocol Test Systems VIII — COST 247 Session, pages 461-476, Evry, France,
September 4-6 1995.

[47] J. Tretmans. Conformance Testing with Labelled Transition Systems:
Implementation Relations and Test Generation. Computer Networks and ISDN Systems,
Vol. 29, pages: 49 - 79,1996

[48] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
So^'axe- concepts and tools, 17(3): 103-120, 1996.

[49] J. Tretmans. Testing transition system: A Forma! Approach. In proc. Of the 10^
International Conference on concurrency theory. Lecture Notes in Computer Science Vol.
1664, pages 46-65, Springer-Verlag, 1999.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.isse.gmu.edu/faculty/ofiit''rsrch/papers/soflsp.ps

[50] J. Tretmans. Specification Based Testing with Formal Methods: From Theor>' via
Tools to Applications. la A. FantecM, editor, FORTE / PSTV 2000 Tutorial Notes, Pisa,
Italy, October 10 2000.

[51] J. Tretmans and A. Belinfante. Automatic testing with formal methods. In
EuroSTAR’99: 7th European Int. Conference on Software Testing, Analysis & Review,
Barcelona, Spain, November 8-12, 1999. EuroStar Conferences, Galway, Ireland.

[52] R.N. Taylor, D.L. Levine, and C.D. Kelly. Structural Testing of Concurrent
Programs. IEEE Trans. Software Eng., vol. 18, no. 3, pages 206-215, Mar. 1992.

[53] Q. M. Tan, A. Petrenko, G. V. Bochmann and G. Luo. Testing Trace Equivalence
for Labeled Transition Systems. Departement IRO, Universite de Montreal, May 1995.

[54] Q.M. Tan, A, Petrenko, G.v.Bochmann. Checking experiments with labeled
transition systems for trace equivalence. In the proc of IFIF 10th International Workshop
on Testing of Commnication Systems (IWTCS'97), Korea, 1997.

[55] Q.M. Tan, A, Petrenko, G.v.Bochmann. Deriving specifications in the form of
labeled transition systems. Departement IRO, Universite de Montreal, June 1997.

[56] T. H. Tse and Z. Xu. Test Case Generation for Class-Level Object-Oriented
Testing. Quality Process Convergence: Proceedings of 9th International Software
Quality Week (QW ’96), San Francisco, California, pages 4T4.0-4T4.12 (1996).
http://www.cs.liku.hk/~tse/Papers/xqwps.zip.

[57] R.D. Yang and C.G. Chung. Path Analysis Testing of Concurrent Programs.
Information and Software Technology, vol. 34. no. 1, pages 43-56, Jan. 1992.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.liku.hk/~tse/Papers/xqwps.zip

VITA AUCTORIS

NAME: Jun Li

PLACE OF BIRTH: Shanghai, China

YEAR OF BIRTH: 1972

WORKING EXPERIENCE; Shanghai Waigaoqiao Free Trade Zone Xin Developing

Co., Ltd, Shanghai, China

1994- 1996 Programmer

1997- 1999 System Analyst

Shanghai Dong Lian software Co., Ltd, Shanghai, China

2000- 2001 System Analyst

EDUCATION: ChengZhong High School, Shanghai, China

1984-1990

University of Shanghai

(Former named University of Shanghai Science and

Technology), Shanghai, China

1990- 1994 B.Sc.

University of Windsor, Windsor, Ontario, Canada

2001-2004 M.Sc.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	An implementation of feasible path constraints generation for reproducible testing.
	Recommended Citation

	ProQuest Dissertations

