
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2008

Group-based optimization for parallel job scheduling in clusters Group-based optimization for parallel job scheduling in clusters

via heuristic search via heuristic search

Arun Kumar Kanavallil
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Kanavallil, Arun Kumar, "Group-based optimization for parallel job scheduling in clusters via heuristic
search" (2008). Electronic Theses and Dissertations. 2255.
https://scholar.uwindsor.ca/etd/2255

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2255?utm_source=scholar.uwindsor.ca%2Fetd%2F2255&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Group-based Optimization for Parallel Job Scheduling in Clusters via Heuristic Search

by

Arun Kumar Kanavallil

A Thesis
Submitted to the Faculty of Graduate Studies

through Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2007

© 2007 Arun Kumar Kanavallil

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-42265-6
Our file Notre reference
ISBN: 978-0-494-42265-6

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Job scheduling for parallel processing typically makes scheduling decisions on a per-job

basis due to the dynamic arrival of jobs. Such decision making provides limited options

to find globally best schedules. Most research uses off-line optimization which is not

realistic. We propose an optimization on the basis of limited-size dynamic job grouping

per priority class. We apply heuristic domain-knowledge-based bi-level search and

branch-and-bound methods to heavy workload traces to capture good schedules. Special

plan-based conservative backfilling and shifting policies are used to augment the search.

Our objective is to minimize average relative response times for long and medium job

classes, while keeping utilization high. The scheduling algorithm is extended from the

SCOJO-PECT coarse-grain pre-emptive time-sharing scheduler. The proposed scheduler

was evaluated using real traces and Lublin-Feitelson synthetic workload model. The

comparisons were made with the conservative SCOJO-PECT scheduler. The results are

promising - the average relative response times were improved by 18-32% while still able

to contain the loss of utilization within 2%.

Ill

DEDICATION

To

My parents and family members, who guided me through the right path,
And

Friends who gave continuous encouragement

IV

ACKNOWLEDGEMENTS

/ would like to express my sincere appreciation to my advisor, Dr. A. C. Sodan, for

giving me an opportunity to work in a very interesting area, and for her support,

guidance and encouragement throughout my graduate studies.

I would also like to thank my committee members, Dr. Chitra, Dr. Arunita and Dr.

Tsinfor their time and effort and their helpful comments and suggestions.

I would also like to thank my colleagues, Lawrence Barsanti and Bryan Esbaugh for

providing the discrete event simulator framework and SCOJO-PECTpre-emptive time

shared scheduler.

Debts of gratitude are also due to my uncle (Dr. Nandakumar) and aunt (Dr.

Sreekumari) for their constant encouragement. Above all, I thank my parents and my

brother Visakh Kanavallil, for their prayers and believing in me.

V

TABLE OF CONTENTS

ABSTRACT Ill

DEDICATION IV

ACKNOWLEDGEMENTS V

LIST OF FIGURES.. IX

LIST OF TABLES XI

1. INTRODUCTION - 1 -

1.1 OPTIMIZATION IN JOB SCHEDULING - 2 -

2. RELATED WORK - 3 -

3. PARALLEL JOB SCHEDULING OPTIMIZATION APPROACHES - 7 -

3.1 APPROXIMATION ALGORITHMS - 7 -

3.2 SEARCH METRICS - 8 -
3.3 SEARCH BASED OPTIMIZATION METHODS - 9 -

3.3.1 A* HEURISTIC: -10-

3.3.2 GLOBAL SEARCH: LIMITED DISCREPANCY SEARCH -11 -

3.4 KNAPSACK BASED OPTIMIZATION -13 -
3.5 GENETIC ALGORITHMS -14 -

4. SCOJO-PECT -16 -

5. OUR APPROACH - 19 -

5.1 CONCEPTS RELATED TO OUR WORK - 20 -

5.1.1 PARALLEL JOB GROUPS -20-

5.1.2 DOMAIN KNOWLEDGE BASED HEURISTICS -20-

5.1.3 PROBLEM FORMULATION AS SEARCH TREE -21 -

5.1.4 BACKFILLING -22-

5.1.5 METRICS -24-

6. SCHEDULER DESIGN - 26 -

6.1 JOB GROUP CREATION - 26 -
VI

6.2 SCHEDULING ALGORITHM - 27 -

6.3 JOB PLAN CREATION - 29 -

6.3.1 VIRTUAL SCHEDULING - 30 -

6.3.2 PLAN RECALCULATION -31 -

6.3.3 DETERMINING GROUP FINISH TIMES -31 -

6.4 SEARCH TREE CREATION - 33 -

6.4.1 GROUP SPLITTING - 33 -

6.4.2 PERMUTATION GENERATOR - 34 -

6.4.3 BRANCH-AND-BOUND DESIGN -34-

6.4.4 BEST SCHEDULE SELECTION - 35 -

6.5 SEARCH ALGORITHM FOR OPTIMIZATION - 36 -

6.6 BACKFILLING - 38 -

6.6.1 SMART BACKFILLING WITHIN GROUPS - 39 -

6.6.2 BACKFILLING UPON DYNAMIC SUBMISSION - 42 -

6.6.3 PLAN BACKFILLING -42-

7. IMPLEMENTATION DETAILS - 44 -

7.1 DATA STRUCTURES - 45 -
7.2 GROUP CREATION - 45 -
7.3 SEARCH MODULE - 46 -
7.4 BRANCH-AND-BOUND - 47 -
7.5 SUMMARY OF VALUES USED - 47 -

8. EXPERIMENTAL SETUP - 50 -

8.1 INPUT WORKLOAD SPECIFICATIONS - 50 -
8.2 EVALUATION PLAN - 51 -

9. EXPERIMENTAL RESULTS - 53 -

9.1 BEST GROUP SIZES - 53 -
9.2 GROUPS FORMED - 53 -
9.3 EFFICIENCY OF OPTIMIZATION - 54 -

9.3.1 AVERAGE BOUNDED SLOWDOWN -54-

9.3.2 AVERAGE RESPONSE TIMES -59-

9.3.3 AVERAGE WAIT TIMES -60-

9.3.4 UTILIZATION -61 -

9.3.5 GAIN FROM BRANCH-AND-BOUND PRUNING - 62 -

9.3.6 GAIN FROM SECOND LEVEL SEARCH - 63 -

9.4 EFFECT OF SMART-BACKFILLING - 65 -
9.5 COMPARISON AGAINST BOTTOM LINE APPROACH - 72 -

10. CONCLUSION AND FUTURE WORK - 74 -

VII

REFERENCES - 7 5 -

VITA AUCTORIS - 79 -

VIII

LIST OF FIGURES
FIGURE 1 - LDS PSUEDOCODE [10] -12 -

FIGURE 2 - (A) LDS AND DDS: 0TH ITERATION (B) LDS: 1ST ITERATION (C) LDS:

2ND ITERATION THE PATHS TRAVERSED BY THE LDS ALGORITHM IN AN

ARBITRARY SEARCH TREE FOR 3 SUCCESSIVE ITERATIONS ARE SHOWN IN DARK. [40] .. -

12-
FlGURE 3 - SCOJO-PECT TIME SLICE SCHEDULING EXAMPLE - 18 -

FIGURE 4 - (A) EASY BACKFILLING (B) CONSERVATIVE BACKFILLING - 23 -
FIGURE 5 - BLOCK DIAGRAM OF GROUP SCHEDULER - 26 -

FIGURE 6 - SCHEDULING ALGORITHM - 29 -

FIGURE 7 - GROUP SELECTION AND MAPPING THE PLAN - 30 -

FIGURE 8 - ALGORITHM FOR COMPUTING GROUP FINISH TIMES - 31 -

FIGURE 9 - (A) A SAMPLE PLAN AFTER EACH JOB IS VIRTUALLY SCHEDULED (B) PLOT OF

UTILIZATION FOR THE PLAN -32-

FIGURE 10 - HIERARCHICAL SEARCH DESIGN - 36 -

FIGURE 11 - SEARCH ALGORITHM USED FOR OPTIMIZATION - 38 -

FIGURE 12-FORCE-SHIFTING PLAN JOBS -38-

FIGURE 13 - TIME SLICES AND BACKFILLING / SCHEDULING WITHIN A GROUP - 41 -

FIGURE 14 - PLAN BACKFILLING EXAMPLE - 42 -

FIGURE 15 - RELATIONSHIP OF AVG. RELATIVE RESPONSE TIMES AND GROUP SIZES - 53 -

FIGURE 16 - COMPARISON OF AVERAGE BOUNDED SLOWDOWN (SEED 31) - 55 -

FIGURE 17 - COMPARISON OF AVERAGE BOUNDED SLOWDOWN (SEED 71) - 55 -

FIGURE 18 - COMPARISON OF AVERAGE BOUNDED SLOWDOWN (SEED 73) - 56 -

FIGURE 19 - COMPARISON OF AVERAGE BOUNDED SLOWDOWN (SEED 35) -57-

FIGURE 20 - COMPARISON OF AVERAGE BOUNDED SLOWDOWN (SEED 7) - 57 -

FIGURE 21 - COMPARISON OF AVERAGE BOUNDED SLOWDOWN FOR SDSC-BLUE TRACE ... -
58-

FIGURE 22 - COMPARISON OF AVERAGE BOUNDED SLOWDOWN FOR LANL TRACE - 58 -
FIGURE 23 - COMPARISON OF AVERAGE RESPONSE TIMES - 59 -

FIGURE 24 - COMPARISON OF AVERAGE WAIT TIMES - 60 -

FIGURE 25 - EFFECT OF DYNAMIC BACKFILLING UPON SUBMISSION ON AVERAGE WAIT

TIMES -61 -

FIGURE 26- UTILIZATION COMPARISON (SCOJO-PECT AGAINST OPTIMIZED SCOJO-
PECT) -62-

FIGURE 27 - INFLUENCE OF SECOND LEVEL SEARCH ON AVERAGE SLOWDOWN (SEED 31) - 63

FIGURE 28 - COMPARISON OF AVERAGE RESPONSE TIMES (WITH AND WITHOUT SECOND

LEVEL SEARCH) - 6 4 -

FIGURE 29 - COMPARISON OF AVERAGE WAIT TIMES (WITH AND WITHOUT SECOND LEVEL
SEARCH) -65 -

FIGURE 30 - COMPARISON OF AVERAGE BOUNDED SLOWDOWN WITHOUT SMART

BACKFILLING (SEED 31) -67-

FIGURE 31 - COMPARISON OF AVERAGE SLOWDOWN WITHOUT SMART BACKFILLING (SEED

35) -67-
FIGURE 32 - COMPARISON OF AVERAGE SLOWDOWN WITHOUT SMART BACKFILLING (SEED

71) -68-

IX

FIGURE 33 - COMPARISON OF AVERAGE SLOWDOWN WITHOUT SMART BACKFILLING (SEED

73) -68-
FIGURE 34 - COMPARISON OF AVERAGE SLOWDOWN WITHOUT SMART BACKFILLING (SEED

7) -69-
FIGURE 35 - COMPARISON OF AVERAGE SLOWDOWN WITHOUT SMART BACKFILLING (SDSC

BLUE) -69-
FIGURE 36 - COMPARISON OF AVERAGE SLOWDOWN WITHOUT SMART BACKFILLING (LANL

TRACE) -70-

FIGURE 37 - COMPARISON OF AVERAGE BOUNDED SLOWDOWN WITHOUT SMART

BACKFILLING (WORST CASE) -70-

FIGURE 38 - COMPARISON OF AVERAGE RESPONSE TIME WITHOUT SMART BACKFILLING. - 71

FIGURE 39 - COMPARISON OF WAIT TIMES WITHOUT SMART BACKFILLING - 72 -

FIGURE 40 - COMPARISON OF OUR OPTIMIZED APPROACH WITH BOTTOM LINE APPROACH- 72

FIGURE 41 - COMPARISON OF OUR OPTIMIZED APPROACH WITH BOTTOM LINE APPROACH

WITHOUT SMART BACKFILLING - 7 3 -

X

LIST OF TABLES
TABLE 1 - JOBS IN A MERGED WAITING QUEUE -17-

TABLE 2 - TABLE SHOWING THE RELATIONSHIP OF JOBS IN GROUP AND NODES GENERATED

IN THE SEARCH TREE - 2 1 -

TABLE 3 - A TYPICAL EXAMPLE OF SMART BACKFILLING WITHIN GROUP - 39 -

TABLE 4 - IMPLEMENTATION VALUES - 49 -

TABLE 5 - CHARACTERISTICS OF SYNTHETIC WORKLOADS - 50 -

TABLE 6 - CHARACTERISTICS OF REAL WORKLOAD TRACES - 51 -

TABLE 7 - NUMBER OF GROUPS FORMED PER WORKLOAD - 54 -

TABLE 8 - CONTRIBUTION OF BRANCH-AND-BOUND IN PRUNING - 63 -

TABLE 9 - GROUPS FORMED WITHOUT NON-TYPE BACKFILLING - 66 -

XI

1. Introduction

Job scheduling in parallel systems (multi-processors and grids) [1][11][19] is a complex

scenario because jobs can simultaneously occupy multiple heterogeneous resources at the

same or distinct times. Being a dynamic system, scheduling is more challenging and

generally comes with a cost of communication and network delays [31]. Parallel job

scheduling problems can also be formulated with several constraints which make them

candidates for constrained-based programming. An optimal solution for scheduling

problems has been proven to be NP-Hard. With grids (interconnecting clusters and other

computing devices through a high speed network) replacing clusters, scheduling demands

a fault-tolerant virtual platform for running applications transparently. In addition, grids

typically, comprise of multiple schedulers distributed geographically negotiating for

different resources like CPU's, disks, licenses, memory etc. With the advent of

information age, there has been increasing demand for high processing power. Clusters

developed from off-the-shelf components are widely used to carry out data-intensive

simulations and compute-intensive tasks. Optimization has a huge role to play in reducing

this scheduling complexity.

• From the system administrator's point of view, optimization increases overall

system utilization and load balancing.

• From the user's perspective, optimization alleviates excessive wait and faster

response times for the submitted jobs.

In parallel job scheduling, typically one employs scheduling in groups [6][16][18],

approximation algorithms [23][37], search based methods [10][40][41], and heuristics

[4][33] to address the issue of optimization. All these approaches have one thing in

-1 -

common - they intelligently select optimum schedules within reasonable time. In this

thesis, we undertake this task of selection using a combination of group interleaving,

search methods and heuristics.

The usual metrics for testing the worthiness of a scheduling algorithm are response times

(sum of wait time and runtime of the job), runtimes, wait times (duration from job

submittal to start time plus additional time spend in the queue when preempted) and

system utilization (percentage of machine utilization). The majority of research work

accounts overall benefit only viz. analyzing average values or makespan (the completion

time of the last job).

1.1 Optimization in Job Scheduling

With the right motivation in hand, our scheduling approach interleaves job groups and

individual job scheduling on a course-grained, time-sharing, preemptive scheduler. When

a sufficient amount of workload gets accumulated in the waiting queue, jobs are grouped

based on good packing heuristics. Optimization of job groups is achieved by

implementing a tree search that returns an optimal schedule. Our goal is to reduce the

average relative response times for medium and long jobs while also not compromising

much on utilization and response times. We include the standard approach to backfill jobs

from behind the queue which can be started immediately provided they do not delay the

execution of grouped jobs.

In the context of parallel job scheduling, proximity to the best solution can also be

achieved using approximation methods, search methods, dynamic programming, and

genetic programming. We shall discuss each one of them in detail laying emphasis on

heuristics and search methodologies in Section 3.3.

- 2 -

2. Related Work

Several approaches [16] [29] [36] address static (or offline) optimization where

information about the jobs are known beforehand and do not consider dynamic

submission. The approach in [40] (whose approximation is referred to as bottom-line

approach in Section 9.5) optimizes for minimization of average relative response times

(slowdown) and total excessive wait time, i.e. the approach considers both average and

worst-case behavior as separate crisp criteria, with the worst-case behavior constituting

the higher-ranked criterion. To find the best schedule according to this objective, they

employ a special search technique based on the largest-slowdown-first heuristic and

depth-bound discrepancy. The latter considers optimizing instantaneously by increasing

numbers of discrepancies from the heuristic order and bounded by a certain depth. Such

optimizations do not follow a plan based approach. Follow-up work [39] includes branch-

and-bound techniques and two-step optimization with additional reordering of the

obtained schedule for minimizing excessive wait. In the context of job shop scheduling,

Pape et.al [27] came up with an idea of combining preemptive scheduling strategies with

heuristics to minimize makespan criteria. Basically jobs are divided into activities and

each activity is processed by different machines. Priorities decide the activity order which

can be formulated as a search tree. Combination of LDS heuristic and edge finding

technique was found to provide better average results in terms of mean relative error.

Closely related, optimization for backfilling was proposed in [33], considering a group of

backfill candidates and using dynamic programming. The primary optimization criterion

is utilization (in the space dimension), and the secondary one original queue order.

- 3 -

Among schedules with the same utilization, the one with jobs earlier in the queue is

chosen.

There exist a number of approaches which form groups of jobs and schedule them

together. Some approaches in grid scheduling allocate jobs to sites according to cost

criteria or processing capability and simply group the next jobs sent to a site to reduce

transfer cost [25]. This implies that the decision for allocation to a specific site is then

fixed for this group. The approach in [11] is slightly more advanced and combine jobs

according to size for better fit (packing potential) within the groups that are allocated to

each site but miss to consider the variations in runtime which significantly contribute to

the packing problem.

Our approach is built on top of the course-grain timesharing scheduler developed by

Esbaugh and Sodan [7]. Varying time slices (resource allocation policies) are allotted to

different job classes (long, medium and short) enabling multiple virtual machines to

execute synchronously. Controlled preemption for long slices, suspending jobs to disk at

the end of slice and smart backfilling from other slices resulted in 88% decrease in

bounded slowdowns and 31% increase in average response times. Preemption can be

approached in two major ways: (a) Migrating jobs to new resources (incurs

communication and data transfer costs) was still found to fare well in giving benefits in

utilization and response times [28]. However, migration is accompanied by the problem

of check-pointing (which is application centric), (b) Secondly, gang scheduling creates

global time slices and causes jobs to be preempted at the end of each slice. Gang

scheduling has been investigated earlier to provide better average response times and

bounded slowdown [22]. However, the drawback is that it requires preempted jobs to be

- 4 -

memory-resident during execution. Course-grain timesharing also provided similar

benefits as shown in [31] and [42].

Dutot et. al [6] presents an approach for local job scheduling which constitutes a mix of

static and dynamic scheduling. The approach additionally considers adaptive job sizes,

i.e., jobs can be started with different job sizes which subsequently lead to different

runtimes. The jobs that are initially in the waiting queue are grouped according to their

runtimes being, under certain sizes, possible within increasingly long time frames. Next,

the actual jobs for the next group and their sizes need to be determined. This decision is

made by optimizing with objective of priority for maximum sizes (that still let the

runtime fit into the interval) and of the best combination of jobs (treating the problem as a

knapsack optimization and solving it via dynamic integer programming). Dynamically

arriving jobs are considered in the next group to be optimized. However, scalability of

jobs is not considered here.

There are many approaches that optimize allocation of groups of serial jobs, e.g., taking

the next set of jobs from a FIFO queue and allocating them to different nodes in a grid,

while optimizing (via genetic algorithms) the makespan of the group [16] [19] [21] [26]. In

[11], a weighted sum of makespan, excess wait time (over deadline), and utilization were

used as the objective. In [20], genetic algorithms are combined with different local

optimization approaches to optimize both makespan and wait time via Pareto fronts. In

some cases, local time sharing per machine is considered. In [4], genetic algorithms

applied to groups of jobs are compared to heuristics that make decision on a per-job

basis. The relatively simple min-min heuristic (selecting a task-machine pair with the

task being completed earliest among all tasks on that machine) was found to perform

- 5 -

almost as good (within 12% of the makespan) as the much more costly genetic

algorithms.

A different approach is to use heuristics for slack-based backfilling [35] which has the

basic idea to permit that jobs are moved backward to some—controllable—extent. Jobs

may be flexibly reordered during backfilling to improve utilization, while resulting delays

for individual jobs are considered via their slack, i.e. maximum possible delay. However,

only average wait time is considered and not the current load on the machine.

In [2], a heuristic is proposed for adaptive size selection that considers the context of all

currently waiting and future (predicted) jobs and determines a size that balances the

interest of the candidate job with the interests of those other jobs by applying the same

relative size modification to all jobs. However, the size decision is finalized only for the

candidate job and is newly made for the other jobs when the scheduling decision is made

for them. Similarly, [15] considers a balanced workload over all resources CPU, memory,

and disk when deciding which job to schedule next and on which most underutilized

resources. Other approaches simulate different schedules over all jobs that are currently

in the waiting queue and then make the decision about job size, either based on the best

response time for the candidate job [5] or the best average response time [30]. However,

simulation cannot take future submissions of potentially higher priority jobs into account.

Correspondingly, job sizes of running jobs may be adjusted at runtime if jobs are

malleable by considering the context of all jobs and giving more resources to jobs with

high efficiency [29].

- 6 -

3. Parallel Job Scheduling Optimization Approaches

This section focuses various optimization methodologies prevalent in literature.

3.1 Approximation algorithms

Approximation algorithms are solely designed to contain the time complexity of non-

polynomial time (NP-Hard) problems by mathematically proving that a solution close to

optimal could be discovered in polynomial time. A performance guarantee (p) is always

associated with such algorithms and is defined as the ratio of the approximated solution

to the optimal one. Alternatively, they are expressed using bounded error (s > 0) if the

approximated solution lies within bound. They are generally applied for optimizing

problems where no polynomial time algorithms exist. Best examples are scheduling

problems, vertex covering etc. Advantages of approximation algorithms are:

• They are mathematically stable and can be verified

• Such algorithms provide near-optimal (within a specific percentage of optimal)

solutions in polynomial time

Formulating a non-preemptive malleable parallel task scheduling (MPTS) as a linear

program, Fishkin et.al [8] has shown a polynomial time approximation scheme (PTAS) to

achieve a performance bound of 1+8 where (s > 0) for makespan. Mounie et.al [23] dealt

the same problem using dual approximation techniques [6] for generating a non-

preemptive schedule. The main contribution of [23] was a worst-case performance

guarantee of makespan to be 1.73 as against a guarantee of 2 for non-malleable parallel

jobs in [37]. Interestingly, [8] discusses the idea of task grouping using special task

- 7 -

profiling and dynamic programming to develop an approximation scheme for unrelated

parallel machines.

3.2 Search Metrics

Many search metrics have been proposed and developed for job scheduling. For instance,

MET (Minimum Execution Time), MCT (Minimum Completion Time), Min-Min, Max-

Min, Suffrage and slack metric. Some of these (MET, MCT, Min-Min, Max-Min) are

applied for independent task scheduling [4]. The following are some commonly used

metrics:

• Minimum Execution Time (MET) [4]: MET is a commonly used heuristic which

assigns each job to the resource that gives the minimum expected execution time

for the job, regardless of that machine's availability. Clearly, MET could give

really bad wait times on heavy workloads.

• Minimum Completion Time (MCT) [4]: Intuitively MCT performs better than

MET and OLB as it strikes a balance between the above two heuristics. By

preventing circumstances where OLB and MET are likely to. perform poor, MCT

heuristic assigns jobs in arbitrary order to the resource with the minimum

expected completion time for that job.

• Min-Min [4]: The condition for min-min to work is to have a set of waiting jobs

in the beginning. Unlike MCT, Min-Min considers the set of jobs and computes

their completion times on all resources. The idea behind min-min is to schedule

that job from the job set on the corresponding resource with the best minimum

completion time. Eleven static scheduling heuristics using makespan criteria were

- 8 -

compared Braun et.al [4] proved Min-min metric to significantly perform better

than others.

• Suffrage: As the name suggests, Suffrage heuristic [18] prioritizes or schedules

job based on the degree of disturbance caused on the job if its scheduling is

delayed. The suffrage value is commonly chosen as the difference between the

first and second MCT's. Jobs that suffer more get more priority. X-Suffrage is an

extended version where suffrage value also accommodates the state of the system.

• Slack metric: Here the term 'slack' means allowing some degree of compromise

per job (measured in units of time) for it to be scheduled later. The slack measure

attributed to a job is generally defined as a function of its priority and

characteristics (j°b size, expected runtime, slowdown etc.). First introduced in

slack based backfilling [35], the average wait times of priority scheduling were

reduced by 15% relative to EASY backfilling.

• Branch-and-Bound (BnB) metric [39]: A monotonically increasing function value

is chosen as the upper bound for BnB metric. The metric chosen would be

problem specific. Basically intended to prune search trees, BnB provides

significant benefits depending on its formulation.

3.3 Search based optimization methods

Since scheduling problems are inherently NP-Hard, search based approaches in

scheduling comes handy when search space can be reduced using high-quality problem

specific heuristics. Basically, search algorithms can be divided into two: local search and

complete (global) search. Local search algorithms foray within its specified neighborhood

- 9 -

to select a better solution and advance forward with this new solution. Hill climbing,

simulated annealing (SA), ant-colony optimization (ACO), tabu search and iterated local

search (ILS) etc. fall under this category. On the other hand, complete search algorithms

generate the schedule corresponding to the goal node by a global search. Genetic

algorithms, discrepancy search, evolutionary computation are some examples of complete

search. Collectively they include (but not restricted to) what can be termed as 'meta-

heuristics'. Heuristics have emerged as a powerful strategy to partially circumvent the

problems of complexity and intractability. Being intuitive, they have the ability to

surpass, judge, predict, or compare different potential solutions. Heuristics in general

must be robust, application specific and goal oriented in order to significantly prove

beneficial for its purpose. Static scheduling heuristics basically takes scheduling

decisions for job(s) after they have been submitted into the waiting queue. On the other

hand, dynamic heuristics perform decisions about scheduling, load balancing and

resource selection dynamically with no wait. Dynamic heuristics have to be efficient and

less complicated to reduce the scheduling overhead. Employing more than one heuristic

and dynamically swapping them based on current system states have received new

attention recently due to scheduling applications on heterogeneous environments that are

themselves dynamic. Some search based heuristics used in job scheduling are:

3.3.1 A* Heuristic:

A* [4] requires the problem to be formulated as a search tree with nodes having a cost

function associated with them. Basically the cost function of node n is calculated as:

f(n) = g(n) + h(n)

- 1 0 -

g(n) represents the cost of scheduling l..n-l jobs (node 0 being null) and h(n)

represents a heuristic estimate of the cost of getting to the goal node. At times, h(n) can

even be a set of heuristics.

3.3.2 Global Search: Limited Discrepancy Search

Discrepancy based search [40] [41] has been in the limelight for solving combinatorial

optimization problems. The degree of optimality achieved however heavily depends on

the selection of a high-quality heuristic. In its elementary form, discrepancy search can be

visualized as taking place in a tree of permutations. Heuristics guide and perpetuate the

search to prominent regions. In other words, heuristics bias the search pattern in the

following ways:

a) It provides a good initial solution

b) Secondly, it allows some degree of flexibility (or discrepancies, as they are called)

to explore other permutations that do not follow the heuristic.

Limited Discrepancy Search (LDS) was first proposed in [10]. The scope of LDS is wide

enough that its applications are not limited to scheduling problems. It explores those

paths in the search tree that have the lowest discrepancies first. In other words, LDS

explores all paths having k discrepancies in its tfh iteration. The heuristic always aligns

the successors from left to right implying that the leftmost path from root to leaf will

always completely follow the heuristic. Pseudo code for LDS [10]:

-11 -

LDS-PKOBBlfwceie, Jb)
1 if GoAL-P(noJe) retxirw, node
2 s <~ SUCCESSORS (node)
3 if N U L L ~ P (S) r e t u r n NIL
4 if k - 0 r e t u r n L D S - P R O B E (F I R S T { *) , 0)
5 e l se
6 result * - L D S - P R O B E (S B C O N D («) , ft - 1)
7 i f result ••£ NIL r e t u r n resuft
8 r e t u r n LDS-PROBB(Fm5T(«), *)

LDS(nc»afe)
1 for sp <j~~ 0 t o maximum depth
2 wsaft <- LDS-PROBB(node, x)
3 if result / N I L r e t u r n result
4 r e t u r n Kit

Figure 1 - LDS Psuedocode [10]

Another variant is called Depth-Bound Discrepancy Search (DDS) [41]. Unlike LDS, the

tfh iteration in the DDS algorithm explores those paths that have a discrepancy at depth k.

•
2
I
3

I
4

(a) (b) (c)

Figure 2 - (a) LDS and DDS: 0th iteration (b) LDS: 1st iteration (c) LDS: 2nd iteration
The paths traversed by the LDS algorithm in an arbitrary search tree for 3 successive iterations are
shown in dark. [40]

DDS has more built-in flexibility that it is depth-bounded and also simultaneously

explores different directions through search space. LDS and DDS traversal paths are

illustrated in the figure above. In 0th iteration, only the leftmost path is traversed. For the

1st iteration, all paths having exactly one discrepancy are shown, and so on. A more

qualified version of LDS is proposed in [13] called "Improved Limited Discrepancy

Search" (ILDS). It is found to reduce the time complexity from 0((d+2)/d * 2d) to 0(2d),

1 2

2 3 4 1

42] '}
I I I 1
34 3 4 '

3
/

\
t
1

1
4

4

1
I
2
1
3

1 2

N /ts
3 4 1 3 4

4 3 41 1

1 1 II 1
2 2 34 3

3

1 2 4
\t t
41 2

II 1
24 1

4

1 2 3

M /
31 1

II 1
23 2

- 12-

where d is the depth of the uniform binary tree. This is achieved by eliminating redundant

operation of generating leaf nodes in the tree. Nevertheless, ILDS is less efficient than

DFS because it generates multiple interior nodes during its execution. The overhead is

deduced to be d/(d-l), where d is the depth of the search tree. YIELDS [12] uses variable

ordering scheme of LDS and constraint propagation techniques to solve constraint

satisfaction problems. The idea reduces space complexity by minimizing the number of

discrepancies to explore during the entire search.

3.4 Knapsack based optimization

Knapsack optimization can be dealt using dynamic programming approach wherein the

original problem is sub-divided into sub-problems and then solving each sub-problem.

Eventually the solutions are merged to obtain the solution for the original problem.

Knapsack selection is largely used for dictating Quality of Service policies [38] and

intelligent task selection [6][33]. For instance, [6] uses an intelligent selection of jobs

offline using knapsack to form a batch (job group) using this approach. Firstly, the

makespan of the current instance is calculated using a dual approximation algorithm.

Secondly, jobs that are sufficiently short to be stacked one after the other are grouped into

the plan. Lastly, remaining jobs are rightly placed using knapsack selection - we select

that set of jobs that maximize their weights and reduce the cost while using at most m

processors.

W(i,j) = max (W (i-lj), W(i-1, j-allotJ + Wj)

where W(i,j) recursively denotes the maximum weight of tasks 0..i being allotted toy

processors and allott is the smallest allocation that fits into the batch. Shumeli et.al [33]

- 1 3 -

used knapsack to select backfilling order of jobs to maximize the machine utilization. The

work proposed in [23] differs from the two-phase scheduling approach proposed in [37]

in two aspects: (a) allotment selection is ameliorated using a knapsack (b) generating a

non-preemptive schedule of non-malleable jobs using dual approximation technique.

Turek et. al [37] addresses processor allocation of non-malleable parallel jobs for non-

fragmentable multi-processor systems employing shelving algorithms, while fragmented

multi-processor systems are dealt separately using heuristics. Though this has been

achieved, the significant effect on job scalability and machine utilization remains

untouched.

3.5 Genetic algorithms

With their inherent nature to globally classify effective schedules, genetic and

evolutionary algorithms are increasingly being applied to scheduling problems. It is more

relevant to cite here attributing to its nature to optimize a group of elements. Generally,

parallel job scheduling problems are formulated in two different ways to suit the genetic

algorithm framework: (a) The jobs are encoded as chromosomes [21][26] (b) The

resources are encoded as chromosomes [16]. People prefer (a) when the objective is to

obtain a relatively efficient schedule of jobs in terms of response times, slowdown or

utilization etc. while (b) is applied in cases where the aim is to maximize resource

utilization, maximize throughput [19] or attain adaptation benefits.

Evidently, from the works of [16] and [19], genetic algorithms have also forayed into grid

scheduling. For instance in [16], Li et. al presents Predictable and Grouped Genetic

Algorithm (PGGA) for m/n scheduling problem (ie. scheduling m jobs on n processors)

using grouping and workload prediction. Workload, basically a function of job size, is

- 1 4 -

estimated using regression techniques from the job's execution history. The drawback is

- the lesser the historical records of a job, the poorer would be its estimation accuracy.

Unlike [19] where the encoding was (job, resource) pairs, [16] use resources to encode

their chromosomes. Designing a proper fitness function is critical for the accuracy and

efficiency of the GA. Using makespan as the fitness function, the evolution process of

mutation and crossing over is again filtered with divisible load theory (DLT) which

speeds up the convergence process by allowing populations having similar group finish

times to evolve. At times additional heuristics for adaptation or load balancing can be

imposed over the GA [26] to improve the solution quality. Meta-heuristics like GA's

helps to explore solution spaces to be partially searched in polynomial time to obtain near

optimal solutions. By applying evolutionary techniques like crossover and mutation from

nature, GA's can prevent themselves from getting caught in local maximum.

- 1 5 -

4. SCOJO-PECT

SCOJO-PECT [7] is a course-grain timesharing scheduler. The resource shares allocated

(done by system administrators based on the ratios of job mix) can be explicitly

controlled by setting the machine share distributions per job class for different times of

the day. In other words, these shares determined by the share control object gives priority

to certain job classes in accordance to the workload present in the waiting queues. The

time slices are associated with a particular dominant job type. The scheduling order per

slice type is FIFO. Using this approach, short and medium jobs are found to receive

relatively good response times. The scheduler maintains separate queues for waiting and

preempted jobs for individual job classes. When the allotted time slice gets over, the jobs

move to disk and jobs from next job class is scheduled on the machine. This reduces

memory pressure all keeps available memory for scheduling the next set of jobs. In brief,

the approach entails the following characteristics:

• controlled allocation of varying resource shares for different job classes,

• backfill preempted and waiting jobs from different slices when sufficient nodes

are available,

• strictly controlled preemption to disk for jobs in select long-slices to improve

response times for medium and short jobs,

• uses a share-based control without priorities to drive the scheduling of jobs

By limiting the time slices to be typically in the minute (or hour) range, the swapping

overhead can be reduced. Fragmentation arising from preemption was overcome using

smart backfilling techniques. Smart backfilling tries to backfill preempted and waiting

- 1 6 -

jobs of other slice types into the current slice. We shall describe the backfilling with an

example. Consider a set of eight distinct jobs as shown in Table 1.

Job ID

Job 3

Job 4

Job 5

Job 6

Job 7

Job 8

Job 9

Job 10

Type

MEDIUM

MEDIUM

SHORT

SHORT

SHORT

LONG

LONG

MEDIUM

Submit Time

10

35

40

41

50

75

77

90

Runtime

65

34

9

5

5

98

80

40

Size

7

3

7

2

3

4

5

6

Table 1 - Jobs in a merged waiting queue

In Figure 3, assume a smart-backfilled long job (Job 1) and a short job (Job 2) are

running on a machine having a total capacity of 10 nodes (switching overhead between

slices not shown). The waiting queue illustrates the job numbers, with their job types,

runtimes and job sizes. For instance, Job 3 is a medium job having a runtime of 65 to be

executed on 7 nodes. Job 3 is scheduled in the medium slice as neither other medium jobs

nor potential backfill jobs are available at the moment. During the next long slice, the

preempted long job, Job 1, is scheduled. The medium job, Job 3, is backfilled as other

long jobs are currently unavailable. Upcoming short slice would start the short Jobs 5, 6

and 7 to be since there is no room to accommodate non-type slice jobs. Preempted jobs

are ensured to start off again on their initial nodes (no migration).

- 1 7 -

Waiting Queue

Figure 3 - SCOJO-PECT time slice scheduling example

In the next medium slice, medium preempted Job 3 is scheduled followed by medium job

4. Job 8 starts immediately after job 4 is finished. Job 9 does not have to wait as enough

processors are available. From the results in [7], smart-backfilling with the synthetic trace

has been able to improve the average response times of short and medium jobs by 27%.

- 1 8 -

5. Our Approach

We propose a group-based optimization approach for parallel job scheduling using

heuristics. Among the different possible approaches for optimization, we have chosen to

develop the search-based approach due to its suitability for domain knowledge based

heuristics. Employing such optimization in a time-shared environment adds to its novelty.

Other approaches mostly applied to parallel job scheduling problems demand formulating

an appropriate objective or weighted function which is hard to tune properly. Our search

essentially employs a hierarchical structure. We have decided to use high-quality domain

knowledge-based heuristics to drive the search to promising regions and then combine

the solution obtained from first level to derive a more meaningful second level solution.

Integrating smart-backfilling is expected to bring about significant improvements. We

make the following assumptions in our work:

• Jobs are rigid (ie. their sizes remain the same as their user submitted size)

• Actual job runtime information is available during job submission. Hence, we

would not use user requested runtime estimates.

• Group sizes are limited to a threshold value due to the following reasons:

o To address the dynamic arrival of jobs

o Possibility of excessive fragmentation arising from wide jobs

• The size of the search tree is limited. We perform a complete search at the first

level incorporating domain knowledge. Second level searching is designed to be

partial towards the heuristic and hence would only parse a specific number of

schedules as number of job permutations per group grows exponentially.

- 1 9 -

As workloads can have dynamic behavior, our scheduler is designed to switch between

group and individual scheduling modes.

5.1 Concepts Related to Our Work

Explained below is the required conceptual framework behind the design of the

scheduler. This is essential to understand the how our approach can really reach its

objectives.

5.1.1 Parallel Job Groups

Jobs are classified into three different classes or types on the basis of their runtime

information available at submission time: (a) Short, (b) Medium, and, (c) Long.

Groups are formed by jobs of same class. Specifically, only groups of medium and long

jobs are created with distinct grouping criteria. Though small jobs are relatively larger in

number, from an optimization perspective, options are more for medium and long jobs as

they contribute more towards fragmentation and variation in response times. Hence

results from optimization would be more evident by focusing on medium and long jobs.

We also foresee that backfilling on dynamic submission and smart-backfilling would

contribute to bring about significant improvements especially for short jobs.

5.1.2 Domain Knowledge Based Heuristics

Selectively optimizing the long-wide jobs in the beginning is based on the domain-

knowledge that such jobs are instrumental in shifting the balance in the opposite

direction. Secondly, an incomplete search should be augmented with some good quality

heuristic. Goal-oriented heuristics like Largest Slowdown First (LSF) were chosen as

jobs with higher slowdown would be scheduled first as such jobs would potentially have

- 2 0 -

to wait for long to get resources. LSF is expected to give an overall improvement in

bounded slowdown (defined later in Section 5.1.5). Backfilling techniques, in general,

also incorporate domain knowledge into the optimizer and scheduler to improve the

results.

5.1.3 Problem Formulation as Search Tree

Consider an offline schedule of jobs. Our aim is to find an efficient scheduling order for

these jobs. With the search based approach, the possible schedule orders is visualized as a

search tree where a path from the root (excluding root) to leaf corresponds to a schedule.

All but root node represent jobs. Each path would have a different job ordering from root

to the leaf. At each node the successor ordering is done from left to right with only the

left-most branch following the heuristic. A path that comprises a right child is considered

as a discrepancy. In other words, it is likely that the best schedule may violate the

heuristic and may be a path containing multiple discrepancies. A major bottleneck with

tree based search is the tree size. Given n jobs, the number of possible schedules is n! and

0(nn) nodes. The table below shows how the tree grows as the number of nodes (j°DS)

increases.

#Jobs

4

8

10

15

#Paths

24

40K

3,629K

1,307,674M

#Nodes

64

110K

9,864K

3,554,627M

K= 1000; M= 1000,000

Table 2 - Table showing the relationship of jobs in group and nodes generated in the search tree

-21 -

As explained in Section 3.3, the widely known complete discrepancy search algorithms

are: (i) Limited Discrepancy Search (LDS), and (ii) Depth-bound Discrepancy Search

(DDS).

5.1.4 Backfilling

This is a space-sharing optimization strategy used to bypass the adherence to FCFS
scheduling strategy. Backfilling allows a job with lower priority to be scheduled ahead of
a job with higher priority if the former does not interfere with the start time of the latter.
For EASY backfilling, the shadow time of a job would be the time taken for the first job
in the queue to start execution. The idle nodes of the partition in which any job runs are
called extra nodes. A job is EASY backfilled if the job size is less than or equal to the
currently free nodes and will terminate by the shadow time. A job is conservatively
backfilled if the job can be scheduled without delaying any other job in the queue. The
graphic below demonstrates the idea of EASY and conservative backfilling. In (b)
Figure 4(a), jobs J2 and J3 get EASY backfilled. In (b)
Figure 4(b), job J2 is conservatively backfilled into the prepared plan.

EASY Backfill
Don't delay first iob

Waiting Queue
J5 J4 Jo ; J«d J1

M

• iliiS
HE

s L

J*

J 3

J2

Jl

S

(a)

-22-

Conservative Backfill
Don't delay any plan jobs (Pt)

Waitine Queue
J5 1 J4 J3 J2 J1

(b)

Figure 4 - (a) EASY backfilling (b) Conservative backfilling

Commonly employed in almost all schedulers, backfilling essentially tries to fill up an

empty scheduling hole disregarding the specified scheduling order. In other words,

backfilling selects jobs from behind the queue and schedules them if this action does not

delay the start of other jobs. Different variants of backfilling exists like EASY or

aggressive backfilling [34] (stipulates that a job can be backfilled if it does not delay the

first job in the waiting queue), conservative backfilling (stipulates that a job can be

backfilled if it does not delay any job in the waiting queue), slack-based backfilling

(stipulates that a job can be backfilled as long as the other job's slack value remains less

than its expected wait time) etc. Though both EASY and conservative approaches are

found to produce the same utilization the latter removes the unbounded waiting time that

may happen in case of the former.

In our context, smart backfilling would mean scheduling non-type jobs (jobs not of the

same type as currently executing slice type) into the current slice if sufficient nodes are

- 2 3 -

available. As the results from [7] prove, smart backfilling is expected to bring good

improvements.

5.1.5 Metrics

• Average Response time: The time interval from the actual job submission by

the user to the complete termination of the job is called the response time.

Suppose there are N tasks and a task / is submitted on time tt and terminates on

time hi. The response time for the task i is (tt + h,). The average response time

would be the average of all the tasks. Mathematically, it can be written as UN

(Z(tj + h,)), for i - 1..N. From the user's perspective, it is the response time

that is crucial to be minimized. It is otherwise also called the flow time.

• Bounded Slowdown: Bounded slowdown of a job is defined mathematically

as:

Bounded Slowdown = Ceil(Max(Response time/Max(Runtime,BOUND)),l)

where, Response time is the sum of partial response times of a job (in case of

preemption) or the normal response time and Max(Runtime, BOUND) returns

the maximum among its two arguments. The second argument of Max is a

threshold that is used to limit the influence of short jobs on the slowdown.

Ceil would return the nearest integer greater than equal to the argument.

• Makespan: In the context of groups, the finishing time of the last job or the

total termination time of all jobs is called the makespan. Minimizing

makespan may be an objective of scheduling depending on the domain we are

working with. For instance, consider a set of N tasks. Finding a minimum

makespan problem is NP-Hard.

- 24 -

• Utilization: The percentage of machine (a cluster in our case) that is involved

in actual work is called utilization. Mathematically speaking, it is the ratio of

work done to total work possible within a specified time interval is called

utilization. Likely causes for low utilization are fragmentation and improper

scheduling policy.

- 2 5 -

6. Scheduler Design

The optimization module of the simulator has three main components - group creation

module, job plan module and search tree creation module. The block diagram of the

optimization module is shown below. In the following sub-sections we will be describing

each of them in detail.

Group
Creation
Module

Group Scheduler
Module

Job Plan Search Tree
Creation
Module

Virtual
Scheduling

Group
Finish
Time

Permutation
Generator

Branch
and

Bound

Figure 5 - Block Diagram of Group Scheduler

6.1 Job Group Creation

Limited size groups are allowed to form as the workload becomes heavy ie. when jobs

begin to get accumulated in the waiting queue. The criterion for group formation is based

on the work done by the jobs, their average runtime and total size. This makes sense as

optimization can be more effective when we have sufficient number of jobs at hand. A

group is said to have formed when the following criteria are satisfied:

• Minimum number of jobs gets accumulated in the waiting queue. The number of

jobs depends upon the type of currently running slice.

- 2 6 -

• The jobs are also required to occupy more than the machine size to ensure that

there is room for optimization.

• The ideal average runtime of the grouped jobs is lower than a factor times the set

runtime for the type of current slice.

6.2 Scheduling Algorithm

The scheduling algorithm below (Figure 6) is straight forward and is implemented as part

of the group scheduler object. The algorithm switches between groups and normal time

shared SCOJO-PECT scheduling. The algorithm is framed such that no two groups of the

same slice types can be formed simultaneously. Broadly the scheduling can be divided

into two categories: scheduling within a group (ie. when a plan exists) and otherwise. In

the former case, the algorithm does the following steps in the order specified:

• Always starts the previously pre-empted jobs on the same nodes

• Start the plan jobs when their schedule times are reached

• Try backfilling pre-empted, waiting and plan jobs from other slices into the group

When not in a group, the algorithm would follow the steps in the order specified:

• Start the previously pre-empted jobs on the same nodes

• Try backfilling jobs from plan into the current slice

• Try backfilling pre-empted, waiting and plan jobs from other slices into the group

An additional check for backfilling plan jobs has been implemented. The implementation

details are specified in Section 7.

- 2 7 -

if(currentState ===== STATE.NONE)
updateSliceTimes() //get new slice times from share controller

if(SubmitEvent && inGroup(currentState))
try dynamicBackfill_intoPlan(job) //backfills job into current slice

if(SubmitEvent && !inGroup(Med_OR_Long_State) || (FinishEvent && currentTime ==
plan[currentState].groupFinishTime) || plan[currentState].size == 0) {

jobgroup = create JobGroup()
if(jobgroup!=null) {

plan = Optimize()
if(plan!=null) inGroup(currentState) = true

}
}
if(inGroup(currentState)) {// when executing inside a group

if(BeginSliceEvent) {

// start previously preempted jobs on the same nodes in current slice
for(job : preemptedQueue[currentState])

schedule Job(job)
}

recalculate_plan() //recalculate the schedule times for jobs in plan

planjobs = plan[currentState].getNextJobs(currentTime)

/* start planjobs that start at current time */
for(job : planjobs) {

if(schedulable Job(j ob))
schedule Job(job)

else break
}

// try starting waiting jobs of same type
for(job : waitingQueues[currentState]) {

if(schedulable Job(j ob))
schedule Job(job)

}

// try to smart backfill preempted jobs on same nodes into the current plan slice
for(queue : preemptionQueues) {

if(!queue[currentState])
if(noConflictWithPlan())

backfillNonTypePreemptedJobs_intoPlan(jobPreemptionQueues[i]);
}
//tries backfill from plans of other slice
backfillPlanjobs(plan);

// try to smart backfill waiting jobs into the current plan slice
for(queue : waitingQueues) {

if(! queue [currentState])
if(noConflictWithPlan())

backfillNonTypeWaitingJobs_intoPlan(jobWaitingQueues[i]);

- 2 8 -

else {// normal preemptive scheduling when not within a group
if(BeginSliceEvent) {

for(job : preemptedQueues[currentState]) // start previously preempted jobs
if(schedulable Job(j ob))

scheduleJob(job)
}

for(job : waitingQueues[currentState]) // try starting jobs from waiting queue
if(schedulableJob(job))

schedule Job(job)

tryEasyBackfill(currentState)

/* SMART backfilling */
for(queue in preemptionQueues) { // sorted by increasing runtime class

for(job in queue)
if(jobFits() && noCollisionwithCurrentSlice(job))

schedule Job(job)

}

for(job in other plan) { // try to backfill jobs from plan
if(jobFits() && noCollisionwithCurrentSlice(job))

schedule Job(job)
}

for(queue in waitingQueues) { // sorted by increasing runtime class
for(job in queue)

if(jobFits() && noCollisionwithCurrentSlice(job))
schedule Job(job)

}
}

Figure 6 - Scheduling algorithm

6.3 Job Plan Creation

A job plan (otherwise referred as 'plan') in our definition is a scheduling frame that

essentially does a virtual mapping of jobs in the current group to the processors for the

duration between group start and group finish times. Figure 7 illustrates the steps until

this point. The region between the two dark arrows comprises the plan. Evidently, plan

can consist of jobs in the current group as well as previously executing jobs. It is

important to observe that group finish times could also coincide with the finish times of

- 2 9 -

previously running jobs. In order to account for this possibility, the running jobs are

added to the plan and later removed after computing the group's finish time. Note that the

figure shown below does not involve time sharing. Scheduling from plan in a time shared

environment is performed using an additional step - recalculating the plan (see Section

6.3.2).

Waiting Selected Group Start Group Finish
Queue Group Time Time

J J i l l RiHioing Job
HH Plan j o b

Figure 7 - Group selection and mapping the plan

6.3.1 Virtual Scheduling

A virtual scheduling part is an important module of plan creation. Virtual scheduling is

nothing but an intermediary scheduling step performed with a copy of running queues

and other scheduling parameters like free nodes and current time. This helps in

determining the schedule time (or start time) of individual jobs for each permutation in

the group. Whenever the event corresponding to the group start time is encountered, we

switch from normal scheduling to plan scheduling and jobs that have their schedule time

set to the current time are scheduled. In order to avoid redundant execution of the same

jobs, they are then removed from the waiting queue.

- 3 0 -

This also includes storing information about the unused nodes. The nodes as well as the

duration for which they remain unused are saved in a vector. This information is useful

for determining jobs eligible for backfilling.

6.3.2 Plan recalculation

In order to deal with intricacies within SCOJO-PECT (time sharing and smart-

backfilling), a recalculation of the plan is necessary. Recalculation is done at each point

of time do update the schedule times of the jobs in the plan. These jobs are virtually

scheduled again with the currently running jobs in the machine. Once the jobs are

checked for successful execution until the end of slice they are started. This is essential as

the smart backfilling can cause some jobs to finish early which in turn would affect the

schedule times. A future option is to provide a re-optimization at this point of time.

6.3.3 Determining Group Finish Times

Setting group finish time is critical to the scheduling algorithm as certain schedules can

MAXUTIL = Integer.MINVALUE;
initialUtil = getCurrentGroupUtil(start, current);
for each job scheduled in plan {/* jobs in plan ordered in ascending order of finish times */

util[i] = getCurrentGroupUtil(start, fmishTime); /""machine utilization after each job gets
scheduled*/
}
totalUtil = getCurrentGroupUtil(start, finish); /* utilization from group start to end */
for all values of util {

if (minjobsO) {
if(util[i] > MAXUTIL * (1 - delta)) { fallowing small variations in utilization*/

MAXUTIL = util[i];
set group finish time as current job finish time

}
else if (util[i] > getminUtil())

set group finish time as current job finish time /* ie. guarantee minimum jobs and good
utilization*/

}
}

Figure 8 - Algorithm for computing group finish times

- 3 1 -

dramatically degrade the group's system utilization. We had to come up with a strategy

that would ensure a minimum number of jobs get scheduled and utilization remains

reasonably high within the group. The algorithm (Figure 8) takes these into consideration.

In the first place, we sort the running and plan jobs according to their finish times. This

helps us in calculating the utilization from the group start time to the finish time as a

contribution of each job.

In Figure 9, group finish time is set to be the termination time of job 5. This makes sense

as the utilization is high enough within the group. The 'delta' value allows some degree

of variation in utilization to happen as illustrated in Figure 9. The utilization plot in

Figure 9(b) shows the utilization drop happening after job 5 has finished. This prompts us

to decide job 5 to be group finish job.

Group Start
Time

Group Finish
Time

Running Job

Plan job

Time
Figure 9 - (a) A sample plan after each job is virtually scheduled (b) Plot of utilization for the plan

- 3 2 -

If utilization decreases at a drastic rate, we check if the current value still remains above a

certain threshold (minUtil). We eventually assign the current job termination time as the

group finish time. In Figure 9, the sudden dip in the curve decreases the utilization

drastically and hence we set the group finish to the termination of job 5. Though the

group finish time is calculated, the actual job corresponding to the group finish may end

earlier. If the group-finish job ends up completing its execution in a non-type slice, we

assert that the group would be finished upon encountering the next finish event within the

group slice. This was needed due to the following reasons:

• The job corresponding to the group finish time may end up finishing in other

slice.

• Enable more groups to be formed as the algorithm without this condition would

reduce duration of in-group execution.

6.4 Search Tree Creation

There are basically three core components in this module: (a) Group splitting (b)

Scheduling order is created using a permutation generator, and (c) Branch-and-Bound

design.

6.4.1 Group Splitting

Once the group is formed, long-wide jobs are optimized first. Long-wide jobs are

specifically chosen as slowdown and utilization are likely worst affected by the

contribution of these jobs. A group is equally split into limited size sub-groups if the

original group size is equal to the maximum specified group size. These sub-groups are

allowed to permute themselves and the different orderings create the search tree. As the

- 3 3 -

complexity of determining good global schedules is exponential in time, a hierarchical

search would enable finding locally good schedules. These schedules are later on merged

and optimized separately to form a globally good schedule based on the criteria described

later in Section 6.4.4.

6.4.2 Permutation Generator

This module basically generates the permutation of the jobs (or job ordering) of the jobs

in the group. The discrepancy is calculated apriori on each iteration. The discrepancy

values and schedules follow a many-to-one relationship. The discrepancies are generated

in the depth-first search order that that can be obtained from the search tree discussed in

Section 3.3. The sequence follows the order of generating the discrepancy in a search

tree. For instance, the discrepancy starts off with 0, 1, 1,2, 1,2, etc. The reason to have

such a sequence of discrepancies was to allow sufficient re-orderings among the jobs so

as to bring about significant differences between consecutively generated schedules. Only

schedules that have discrepancy value above a threshold are virtually scheduled and

inserted into the search tree. Furthermore we allow alternate schedules to be generated

from the same discrepancy as a result of force-shifting (see Section 6.5). This can be

visualized as a kind of force-backfilling where jobs in the virtual plan are backfilled even

if the incoming job could not be accommodated within a hole. The criteria to decide

shifting is based on the ratio of the length of the hole to the remaining runtime of the job.

6.4.3 Branch-and-Bound design

Branch-and-Bound has much significance owing to its ability to prune irrelevant regions

(or sub-trees) during search. Moreover, pruning can reduce the amount of memory

- 34 -

required. In our optimization problem, discrepancy based search can be improved by

devising a suitable metric to cut-off certain branches from exploring. A monotonically

increasing function of the initial schedule can be used as the upper bound for branch-and-

bound metric. We explore paths that have total metric less than current best path. Total

slowdown of jobs in group would be appropriate criteria that would match our objective.

If the metric stays within the current best value, we virtually schedule each job after

inserting them into their appropriate positions in the tree. Additional pruning can be made

possible using slack. Slack value could be employed to discard certain schedules from the

search tree.

6.4.4 Best Schedule Selection

Once all the different permutations have been successfully scheduled, they are sorted in

increasing total slowdown order. The schedules having the least three slowdown values

are selected. The best amongst the three is selected based on a weighted function.

Consider two schedules 'a' and 'b'. Schedule 'a' would be chosen against 'b' if the

following condition is satisfied.

(Ma > a * Mb) && (U a > P * Ub) && (AvgRTa < y * AvgRTb); where,

Ma, Mb - Makespan of schedules 'a' and 'b ' ,

Ua>Ub - Utilization of schedules 'a' and 'b' ,

AvgRTa, AvgRTb - Average response times of schedules 'a' and 'b ' , and,

a, p, y - constants (values are specified in Section 7.5)

- 3 5 -

6.5 Search Algorithm for Optimization

The search takes place in two levels as shown in Figure 10 - (a) permuting all

combinations of the selected long-wide jobs in group (b) searching a limited number of

remaining jobs for sub-groups and finally when merged together. Long-wide jobs are

limited in number so as to parse through all scheduling combinations. If sufficient

numbers of long-wide jobs are not available, the algorithm proceeds to check whether the

group is large enough to be equally partitioned.

Level 1 -Optimize Long-wide jobs
LWn are long-wide jobs in group, Jn are the remaining jobs

LW1
LW2
LW3
LW4

Permutation
Generator

Virtually scheduled
and inserted to search

tree

Level 2 - Heuristic based discrepancy search
Splitting into sub-groups from initial schedule

J1 LW1 L W 2 ! J2 LW3 J3 J4 J5 LW3

Optimized using heuristic search and merged

Figure 10 - Hierarchical search design

The search algorithm starts off with the heuristic generating the initial schedule. The

subsequent job orderings are created by the permutation generator. Splitting into sub­

groups would experience the heuristic based search. If all the jobs in a schedule are

scheduled without branching, the schedule is added to a separate vector and is potential

candidate for the best schedule. The search algorithm is shown below in Figure 11.

-36-

Sort the limited number of long-wide jobs
Permute all combinations to find the best schedule of long-wide jobs

for each job in the current group {
for each job in the current group {

Virtually schedule without updating freenodes and current time

}
Virtually schedule the next long-wide job from the best schedule without updating
freenodes and current time
nextJ[] = heuristic.getNextJob(); /""heuristic would return the next job*/
Virtually schedule the job

}

/*At this point, you have the initial job order from the heuristic saved in nextJ[]*/
if(nextJ.length == Constants.MAXGROUPSIZE) {

Split the group equally to form sub-groups
}
else {

The group itself is the sub-group
Sort limited jobs according to secondary heuristic

}
for each sub-group {

sTree = Create new Search Tree per sub-group
Initialize the permutation generator with the sub-group job order
while permutations does not exceed the maximum specified schedule limit {

Compute the discrepancy of the next permutation
Create new plan for new job ordering /*starts reordering from the first job*/
Generate the job permutation
for job j in permutation {

branched = Create tree nodes for j and insert them in the search tree
/*the above step comprise of virtually scheduling the job into a temporary
Plan and computing the schedule*/

}
// try shifting jobs to form alternate schedule
forjobj in permutation {

if(tryForceShifting(j)) {
newJobOrder = createNewJobOrder()
restarts loop with the new shifted order

}
else {

branched = Create nodes for each job and insert them in the search tree
/*the above step comprise of virtually scheduling the job into a
temporary plan, and computing the schedule*/

}
}
Count the total number of nodes pruned with BnB

}
}

- 3 7 -

Bsched = sTree.getBestSchedule(); //selects the best schedule amongst the candidates

for each job j in Bsched {
Virtually schedule j into the plan

}
plan.computeGroupFinishTime(); // computes the group finish time of the current group
return;

Figure 11 - Search algorithm used for optimization

Force-shifting plays an important role in generating alternate schedules. It works as

depicted in Figure 12. Job J3, with a runtime 'x', is inserted into the hole, with a width

'y', if the ratio of 'x' to 'y' is less than a threshold value. Job J3 would push other jobs

scheduled after it to produce a new schedule.

Time

Figure 12 - Force-shifting plan jobs

6.6 Backfilling

We have used conservative backfilling within the group. Apart from these, smart

backfilling is also used. Conservative backfilling has been implemented in different ways

as described in the Sections 6.6.2 and 6.6.3.

- 3 8 -

6.6.1 Smart Backfilling within groups

This feature has been integrated with the SCOJO-PECT scheduler. Its implementation

deviates from the original when trying to smart backfill jobs within a group. Conflict

resolution with the plan has to be checked before starting the jobs so that jobs to be

scheduled from the plan remains undisturbed. The jobs are scheduled right away if

sufficient nodes are free. While pre-empted jobs runs on the same nodes, waiting jobs

start on excluded resources to make sure that they do not conflict with the resources of

the preempted jobs of the same slice type. The latter condition is essential to maintain

continuous execution of the jobs in pre-emption queue.

Our search strategy combined with backfilling (whose implementation is discussed

below) is designed to deliver good system utilization. Consider the set of eight distinct

jobs in Table 3.

Job ID/ Attributes

Job 8

Job 9

Job 10

Job 11

Job 12

Job 13

Job 14

Job 15

Type

MEDIUM

MEDIUM

MEDIUM

MEDIUM

MEDIUM

SHORT

LONG

MEDIUM

Submit Time

10

35

40

41

50

75

77

90

Runtime

65

40

30

70

50

15

80

15

Size

5

3

6

7

5

4

3

6

Table 3 - A typical example of smart backfilling within group

- 3 9 -

Figure 13 demonstrates the scheduling happening within a group. As jobs can be

backfilled into other slices, the possibility of jobs getting finished earlier is addressed by

recalculating the plan on each event. For simplicity, let us assume that groups are formed

when more than five jobs of same type are waiting in the queue. The events happen

chronologically from left to right as shown by the time advancement below waiting

queue. The letters 'L', 'S ' , 'M' denotes the long, short and medium slice respectively.

The dotted line signifies the end of slice. The jobs of same job classes have similar

shades. Normal SCOJO scheduling happens until the end of the second small slice.

Though we have three medium jobs (Jobs 8,9 and 10) at time 41, Jobs 8 and 9 cannot be

backfilled into the second long slice (even when sufficient nodes are available) as those

nodes are occupied by Job 1. Newly scheduled job always starts in nodes not occupied by

the pre-empted jobs of the same slice type. When the time advances to 41, we have five

medium jobs (Jobs 8-12) which can be grouped together for optimization. Once the

optimized scheduling order is generated, the jobs would try to stick to the plan unless

backfilled. Say the group ends when job 15 gets finished. The case of jobs 1 and 14 are

important to observe as they are getting backfilled into the group slice. In such a scenario,

we have to ensure that the job starts on the same nodes and the optimized plan is not

disturbed. Short job 13 is an example of dynamic arrival inside a group. As sufficient

processors are available, it is backfilled and started immediately.

- 4 0 -

Waiting Queue

Executing within a Group
Figure 13 - Time slices and backfilling / scheduling within a group

Job 11 despite being a medium job continues executing (smart backfilled) in the next

long slice as nodes remain free after Job 1 terminates. The group finishes once Job 15

gets terminated, and we begin normal SCOJO-PECT execution.

From the above example, we see that backfilling is performed at the following instances:

• Within a group until the end of current slice

o Backfill preempted j obs of other slice types when no conflict with plan

o Backfill plan jobs from other plans to the current slice

o Backfill waiting jobs of other slice types when no conflict with plan

• Outside a group

o Backfill preempted jobs of other slice types

o Backfill jobs from plan

o Backfill waiting jobs of other slice types

- 4 1 -

6.6.2 Backfilling upon Dynamic Submission

Irrespective of the currently running slice, individual dynamic job submission events

within the group scheduling frame may have potential chances to be backfilled into the

plan. If such jobs returns positive upon checking for conflict resolution with plan within

the current slice, they are scheduled at the time when available resources are free.

Dynamic jobs are guaranteed to run within the group only until the end of slice or until it

finishes (whichever happens first). In the former case, the job would finish earlier and

gets preempted to its respective preemption queue. This feature is particularly expected to

enhance the response times of medium and short jobs as they are potential candidates to

be plugged into a medium or long group. The backfilled job runs in excluded resources so

that it does not conflict with the pre-empted jobs of its own slice type.

6.6.3 Plan Backfilling

Plan backfilling follows a conservative approach as discussed in Section 5.1.4.

Without Plan

After Plan
Backfill'

Figure 14 - Plan backfilling example

- 4 2 -

The backfilled job may alter the created plan which reflects the optimal schedule of jobs.

This has been implemented to compensate the incomplete discrepancy tree search which

may miss out good schedules. Plan backfilling intentionally deviates from the actual

schedule order. An example is depicted in Figure 14 where darkened job is been

backfilled into the plan without altering other jobs except the ones scheduled after them.

As you can observe, the resulting schedule is more compact. Plan backfilling is also

employed during recalculation. In this case, the earlier plan would comprise of pre­

empted and plan jobs. Pre-empted jobs are scheduled on the same nodes and new jobs try

to occupy excluded nodes for the same reason explained for smart backfilling.

- 4 3 -

7. Implementation Details

This section would comprise a detailed breakdown on the implementation aspects of the

scheduler. Basically, the jobs are classified into three types based on runtime:

• Short - those having runtime less than ten minutes

• Medium - those having runtime greater than short and less than three hours

• Long - those having runtime greater than medium but less than eight hours

Slices are scheduled on the machine by the share control object (part of SCOJO-PECT).

Slices are of three different types - short, medium and long. Ideally, jobs of one type are

scheduled on identical slices. For instance, short jobs are only scheduled in short slice

and so on. The switching overhead between slices is set to sixty seconds.

During optimization, the response times of the virtually scheduled plan jobs were

calculated as follows:

For a longjob j :

j .responseTime = actual current time - j.getSubmitTime() + (virtual

current time + j.getRemainingRuntime() - actual current time)/0.73

For a medium job j :

j . responseTime = a c t u a l cu r ren t time - j .getSubmitTime() + (v i r t u a l

cur ren t time + j .getRemainingRuntime() - a c t u a l cu r r en t t ime) /0 .265

This is done to simulate the real time sharing environment. The time shares are absent

during optimization. In order to address this issue, the time within the optimization frame

is expanded by those factors. Share controller allocates 73% of the machine for long

slices and 26.5% are allotted for medium slice. The same factor is used to expand the

time.

- 4 4 -

7.1 Data Structures

Listed below are the data structures used to develop the different modules of

optimization. The code was written in Java (SDK 1.5.3) using NetBeans IDE. One

external library (colt.jar) comprising the Lublin-Feitelson workload model [17] was used.

The heuristic based search tree uses the following data structures:

• Search Tree: The branch-and-bound tree was implemented using the tree data

structure using arrays of nodes.

• Priority Queue: Priority Queue for sorting best schedules based on branch-and-

bound criteria (total slowdown) is implemented.

The optimizer uses the following data structures:

• Unused nodes information: A vector of unused object stores information about the

duration for which the nodes are available. This is implemented as part of the

optimizer object and is later used for resolving conflict with the plan.

• Plan object stores the jobs in a vector. Jobs are added into the vector upon virtual

scheduling and removed once scheduled. Array Lists are also used.

7.2 Group Creation

The criteria for group formation comprise of minimum group size, minimum machine

utilization and work done by the jobs.

• The minimum number of jobs in a group is set to five for long jobs and ten for

medium job class. The maximum number of jobs in a long group is set to 30 and

in a medium group is set to 20. These values are based on the results provided in

the Section 9.1.

- 4 5 -

• If the current slice is long, then the total job size of the waiting jobs should be

greater than twice the machine size for long slice. On the other hand, for a

medium slice, the total job size of the waiting jobs should be greater than 1.5

times that of the machine size.

• For a long slice, the ratio of total accumulated work to the machine size should be

greater than the product of lambda (constant) and average runtime of the waiting

jobs. Medium slice would have a different value for lambda. The average runtime

for long jobs is set to 15000 and lambda is set to 1. For medium jobs, the average

runtime is set to 800 and lambda is assigned the value 2.

7.3 Search Module

The search module encompasses the implementation of the search algorithm. Notable are

the values of the parameters. The permutation generator is allowed to loop for a

maximum of 10000 iterations, thus generating the same number of schedules. Assuming

an average group size to be 20 in a workload of 10000 jobs and an average number of

groups to be 50, approximately 1,000,000 nodes would be generated per group. Nodes are

identified with four attributes: job number, count of current branches emanating from the

node, maximum branch limit, and pointers to other nodes.

We proceed through the first level of search only when the minimum number of long-

wide jobs is greater than 3. The criteria for selecting long-wide jobs differ according to

the slice we are in. For a long slice, long-wide jobs are differentiated when the job has a

minimum of one-fourth the size of the machine and having a runtime of 15000.

Alternatively, for a medium slice, any job having a minimum size of one-tenth the

machine size and runtime of 800. The maximum number of long-wide jobs permitted in a

- 4 6 -

group is 6 because we do a complete search for the best combination of jobs. Force-

shifting is performed when the remaining runtime of the plan job is at most one and a half

times the length of the hole. If shifting has taken place, the jobs scheduled after the

shifted job is removed and a new shifted order is generated and later scheduled. The best

schedule is determined by the weighted function discussed in Section 6.4.4. The constants

were set to the following values: a =1.1, p = 0.95, y = 1.1.

7.4 Branch-and-Bound

While LSF heuristic would determine the schedule ordering, total bounded slowdown of

the jobs in the schedule would determine its efficiency. After each job is virtually

scheduled in the permuted order, its slowdown is calculated based on estimated response

times achieved (explained above). The number of pruned nodes was counted at the end of

the iteration. Section 5.1.5 describes how to compute bounded slowdown. The value of

BOUND was set to 600 seconds.

7.5 Summary of Values Used

The constants used for my implementation, initialized values of variables are shown in

Table 4.

Constants

Minimum group size for long slice

Minimum group size for medium slice

Minimum long-wide jobs in group

Values

5

10

3

- 4 7 -

Maximum long-wide jobs in group

Relative response time bound

Iterations in search tree

Threshold ratio for force-shifting job

Avg. response time factor (a)

Utilization factor (P)

Makespan factor (y)

Avg. runtime for long jobs

Avg. runtime for medium jobs

Limit on group size

Slices switching overhead

Number of kind of job classes

Default machine size

Number of jobs in workload

Classification of short jobs

Classification of medium jobs

Classification of long jobs

Classification of narrow

Classification of medium size

Classification of wide size

Workload share allocated for long jobs

6

600

10000

1.50

1.1

0.95

1.1

15000

800

30

60 sec

3 classes: short, medium, long

128

10000

runtime < 10 min

60 sec < runtime < 3 hours

runtime > 3 hours

size < 10% of machine size

10% of machine size < size < 50% of

machine size

Size > 50% of machine size

73%

- 4 8 -

Workload share allocated for medium jobs

Seeds tried for workload

Real traces used for experiments

26.5%

71,31,35,73,7

SDSC, LANL

Table 4 - Implementation values

- 4 9 -

8. Experimental Setup

In this section I would like to elaborate on my input dataset and evaluation plan. The

results are obtained after executing the simulator on our Horus cluster, a 16 node 2-way

machine with 512MB RAM. The Horus cluster runs Debian Linux with kernel version

2.6.6. The only external library used is the Lublin-Feitelson model [17]. The cluster had

JDK version 1.5.0_07 installed.

8.1 Input Workload Specifications

Input data is chosen to be of relatively heavy loaded (less inter-arrival times and good

system utilization) as potential for group formation are higher and hence creating higher

chances for optimization. The input workloads were generated from Lublin-Feitelson

model. All workloads comprise of 10000 jobs. The following four traces (generated by

using different seed values) were selected. NtyPe refers to the percentage of jobs that

belongs to that type whereas, Wtype denotes the amount of work associated with the type.

Table 5 describes the number of short, medium and long jobs in the workload, the amount

of work done by them, average job sizes and average inter-arrival time of jobs. The

model has generated workloads for default machine size of 128 processors.

Work
Load

Seed 71
Seed 31
Seed 73
Seed 35
Seed 7

% of Jobs

Nshort

64
63
64
65
64

^med

19
20
20
19
20

J^long

17
17
16
16
16

% of Work

W s h or t

0.5
0.5
0.4
0.5
0.5

" med

26.5
25

26.5
27
26

" long

73
74.5
73.5
72.5
73.5

Avg. Job Size

Sshort

9
9
9
9
8

^med

17
16
17
18
17

^long

19
20
21
20
21

Avg. Inter-
Arrival

Time (sec)
808
859
797
800
839

Table 5 - Characteristics of synthetic workloads

- 5 0 -

Table 6 describes the features of real workloads under consideration. Jobs having runtime

greater than 8 hours and occupying at most 10% of the machine were considered long-

narrow jobs. The inter-arrival times for real traces were much higher than those used

from the model.

Work
Load

SDSC-
BLUE
LANL

% ofJobs

N short

73.7

61.5

i^med

17.7

34

^ long

8.6

4.5

% of Work

W s hort

1

2

" med

15

41

" l o n g

84

57

Avg. Job Size

^short

34

74

^med

114

92

^long

112

244

Ratio of
long-

narrow to
long jobs

0.79

0.52

Table 6 - Characteristics of real workload traces

The workload distribution is quite different and it is clear that long narrow jobs decrease

the benefits from groups as they cannot be packed well to deliver good utilization. SDSC-

BLUE trace runs on 1152 processors while LANL runs on 1024 processors. All the above

traces also had an equally good utilization (> 75%). We neglect those jobs which have

negative runtimes or sizes as they represent either jobs that were terminated abnormally

or dummy jobs inserted by system administrators. Observe that percentage of long

narrow jobs in traces is 3-4 times higher than workloads generated by the model. This

would mean that 70-75% of the long and medium groups are formed are narrow jobs.

This would have implications as described later for worst cases in Section 9.4.

8.2 Evaluation Plan

In order to prove the efficiency of optimization, the following tests were used:

1. Firstly, we determine the optimal group sizes for long and medium jobs that gives

the best results for average relative response times.

- 5 1 -

2. As the number of groups formed would reflect the level of optimization, a table of

groups of job types created would be included for each workload.

3. For each workload, comparison curves for average relative response times and

average response times, average wait times and machine utilization with and

without optimization for conservative SCOJO-PECT would be plotted.

4. The effect of dynamic backfilling upon submission on the wait times of jobs

would be analyzed and interpreted.

5. The efficiency of pruning achieved through branch-and-bound for the discrepancy

search tree would to be ascertained by keeping track of the percentage of explored

nodes.

6. The gain achieved from the second level of hierarchical search can be plotted

against the actual optimized results to understand the contribution of the second

level search and branch-and-bound.

7. Smart-backfilling is part of SCOJO-PECT. Its influence on the optimization

would be studied.

8. Finally to conclude, we have shown the results of our optimization relative to the

bottom line approach.

- 5 2 -

9. Experimental Results

9.1 Best group sizes

The chart below indicates the variations in average relative response times for different

group sizes for medium and long jobs.

Variations in average relative response times with group sizes

10

I

i
>
<

• Medium

I Long

4.97 4.81 4.87 4.97 4.85 5.09 4.83 4.79 4.85

8.48 8.14 7.69 7.98 9.03 8.51 7.46 8.47 9.03 8.29 7.46 8.47 9.03 8.29 7.46 8.47

4.96 4.83 4.79 4.85 4.96 4.83

I Medium

I Long

4.79

Combinations of L and M group sizes

Figure 15 - Relationship of avg. relative response times and group sizes

The chart in Figure 15 shows the group sizes of 10, 20, 30 and 40 jobs. M10 L20 would

mean a group of 10 jobs for medium and 20 for long jobs. As seen from Figure 15, the

group size giving the best results was found to be L30 M20. This group size has been

used for all the following tests.

9.2 Groups formed

The number of groups formed is critical to measure the effectiveness of optimization.

More importantly, the percentage of jobs being optimized and the groups formed per job

- 5 3 -

class has to be tabulated. The groups formed for different workloads are displayed in

Table 7.

WORKLOAD

SEED 71

SEED 35

SEED 31

SEED 73

SEED 7

SEED 13

SDSC

LANL

#M GROUPS

24

23

20

30

37

29

9

50

#L GROUPS

31

38

39

29

32

27

0

11

GROUPS

55

61

59

59

69

56

9

61

GROUPING%

17%

19%

18%

18%

23%

16.5%

3%

19%

Table 7 - Number of groups formed per workload

Notice that SDSC trace restricts groups to be formed due to its workload distribution

which are also reflected in the number of days of workload creation.

9.3 Efficiency of optimization

In this section, we will compare the average slowdown, average response times, average

wait times, utilization and gains from branch-and-bound and bi-level search. We shall

discuss the results and implications of the synthetic workloads first followed by the real

workloads.

9.3.1 Average Bounded Slowdown

Bounded slowdowns charts are displayed in the figures below. Clearly, the optimized

version of the SCOJO-PECT scheduler has brought about an average of 9% (for medium)

- 5 4 -

and 15% (for long) improvements in average bounded slowdown. Notable are the

improvements achieved using seed 31 (Figure 16) for individual classes are 49% for long

narrow and medium and 26% for long job classes.

A v e r a g e b o u n d e d s l o w d o w n (s e e d 3 1)

Wide
All

Medium
Narrow

14. 1 \17.8\4.42\5.08\9.24\ 10.4\20. 8\27.4

A p p r o a c h e s

Figure 16 - Comparison of average bounded slowdown (seed 31)
Average bounded s lowdown (seed 71)

Narrow
i Medium
\A8

Wide

5.65

4.15
4.26

3.25
12.7 \17.13\ 4.85

2.44

2.04
2.51

1.94

5.29

6.77

5.5
8.69

3.82
5.44

4.59

Long
TSL

13.21

10.74
10.3 \19.39\ 27.9

Long
0&-
3.93
7.91

6.77

Wide

M e d i u m ^
Narrow g>

Approaches

Figure 17 - Comparison of average bounded slowdown (seed 71)

-55-

file:///17.8/4.42/5.08/9.24/

In Figure 17, SCOJO-PECT had been outperformed by a maximum of 10% for short,

21% for medium and 55%) for long job classes. Though the algorithm on the whole gives

a fair advantage over SCOJO-PECT, it fails to optimize the wide jobs. In general, wide

jobs cannot be packed well into groups. Another reason for this effect pertaining to our

approach would be that optimizing once per group would disregard the updated partial

runtimes of the preempted jobs. As jobs continue to be scheduled in the SCOJO-PECT

fashion upon preemption, wide jobs are badly affected. This effect is also visible in all the

subsequent graphics below.

Average bounded s lowdown (seed 73)

Figure 18 - Comparison of average bounded slowdown (seed 73)

For seed 73 (Figure 18), long jobs display a maximum improvement of 40% while the

medium jobs account for only 22% improvement.

- 5 6 -

Average bounded slowdown (seed 35)

2 5 -

2 0 -

| 1 5 -
o
•o

I 10-

5 -

0 -

• Narrow

• Medium

MAII

• Wide

All
TSL

3.29

5.43

4.1

13.22

All
Opt-

2.51

4.51

3.52

20.19

S hort
TSL

1.85

2.39

1.98

4

Short
Opt-

1.72

2.45

1.89

4.21

Med
TSL

5.66

8.35

6.94

14.16

Approaches

Med
Opt-

4.64

7.14

6.48

23.19

Long
TSL

7.4

11.1

9.13

15.22

Long
Opt-

3.78

7.6

6.47

22.54

• f Me
W~ Narrc

Wide
Ml
dium-^

Figure 19 - Comparison of average bounded slowdown (seed 35)

Average b o u n d e d s lowdown (seed 7)

3 0 -

2 5 -

c 2 0 -
5

1 -
o

<73 1 0 -

5 -

0 -
• Narrow

m Medium

m AII

m Wide

All
TSL

3.58

5.93
4.47
14.46

• ^ A

All
Opt-

2.61

4.65
3.53
17.4

m
Short
TSL

2.01
2.4

2.12
4.76

E U "I m

Short
Opt-

1.84

2.45
1.99
4.92

Med
TSL

4.61

6.72
5.46
9.08

Approaches

Med
Opt-

4.11

5.96
5.04
11.25

Long
TSL

10.09

15.23
12.64

21.98

Long
Opt-

4.52

9.54
7.86

26.42

BIHIf /
mjjF Me
T~ Narrc

Wide
Ml
diurr>#

Figure 20 - Comparison of Average bounded slowdown (seed 7)

Figure 19 (using seed 35) gives 30% optimized results for relative response times in the

case of long jobs. On the other hand, short and medium jobs are addressed less than 10%.

57

Figure 20 illustrates a similar comparison chart for seed 7. If wide jobs remain scattered

over the trace, optimization would not provide much benefit as seen for long and medium

jobs.

A v e r a g e b o u n d e d s l o w d o w n (S D S C B L U E)

9H
8 -

7 -

= 6 -

1 5-
I 4-
o
55 3 -

2 -
1 -
0 -

• Narrow

m Medium

MAII
m Wide

All
TSL

1.35

1.76

2.16

5.28

All
Opt-

1.35

1.78

2.17

5.25

Short
TSL

1.21

1.44

1.42

2.51

'-n
Short
Opt-

1.22

1.48

1.45

2.61

A p p r o

Med
TSL

2.51

3.24

5.48

8.93

a c h e s

'f^Bfll—

Med
Opt-

2.48

3.19

5.38

8.75

Long
TSL

2.15

2.27

2.37

2.54

Long
Opt-

2.15

2.29

2.39

2.58

Br Me

T~ Narrc

W i d e

diurrgp

Figure 21 - Comparison of average bounded slowdown for SDSC-BLUE trace

I

Narrow

Medium

)AII

Wide

Average bounded slowdown (LANL Trace)

3.89

5.3

9.86

3.85

5.22

3.15

4.43

9.71 10.56 11.15

3.55

4.86

5.36

5.93
7.4

4.46

5.16

6.68

12.83
6.94 14.56 12.89

4.42

11.03

Wide
All

Si Mediurrw
Narrow y

Approaches

Figure 22 - Comparison of average bounded slowdown for LANL trace

- 5 8 -

The graphic shown in Figure 21 and Figure 22 illustrates the comparison of SCOJO-

PECT and optimized SCOJO-PECT for real workload traces. The traces have a different

workload distribution as shown in Table 6. The results got from traces are less promising

due to higher inter-arrival times of jobs leading to a poor utilization.

9.3.2 Average Response Times

The response times reflect the amount of time spent for a particular job in the system.

Response times are affected by the percentage of long and wide jobs as they consume a

large portion of the system leading to greater wait times for shorter jobs. However, our

optimal scheduling scheme in the average has shown to provide improvements of over

12% in average response times.

Average response times

Workloads

Figure 23 - Comparison of average response times

- 5 9 -

It is observed that traces experience larger number of narrow jobs. Consequently, these

jobs are pushed behind by the heuristic resulting in worsening the response times of these

jobs as visible from Figure 23.

9.3.3 Average Wait Times

Wait times are straight forward to understand, and logically wide jobs incur large wait

times especially during heavy workload times when other jobs occupy the resources most

of the time. The wait times have got better by an average of 10%. The comparison of the

average wait times with and without optimization is shown in Figure 24.

Average wait times

6:00:00

4:48:00

E

I
I All TSL
lAIIOpt-TSL

I All Opt-TSL | 2:12:25 | 2:35:41 [2:17:32 | 2:45:13 | 2:40:55 | 0:17:06 | 1:14:54

Workloads

Figure 24 - Comparison of average wait times

The influence of dynamic backfilling upon submission on wait times is illustrated in

Figure 25. Evidently, dynamic backfill does account for an average of 5% improvements

in average wait times. Medium and short jobs are best served using dynamic backfilling

as they can be readily started within a plan until the end of slice if sufficient nodes are

- 6 0 -

free. This prevents such jobs from waiting even though the jobs are of a different slice

type.

Comparison without dynamic backfill

3:21:36 -

2:52:48 -

„ 2:24:00-
a
E 1:55:12 -

'5 1:26:24-

0:57:36 -

0:28:48 -

0:00:00 -

B NoDyn OptTSL

• All Opt-TSL

2:15:12

2:12:25

2:38:49

2:35:41

2:21:08

2:17:32

2:50:20

2:45:23

2:55:47

2:40:55

Workload

Figure 25 - Effect of dynamic backfilling upon submission on average wait times

9.3.4 Utilization

In our approach we have tried to contain the utilization by restricting the utilization

within a group to fall below a minimum bound. As discussed in 6.3.3, group finish time

calculation permits minor variations in utilization to occur. The comparison of the overall

machine utilization achieved is shown in Figure 26. On the whole, the optimization has

produced a utilization drops by 1-2% which is acceptable.

Seed 71 Seed 31 Seed 35 Seed 73 Seed 7

• NoDyn OptTSL

• All Opt-TSL

- 6 1 -

!

Plot of Utilization

82 -r

81 -

80 -

79 -

78

77

76

75

74

73

I All TSL

I All Opt-TSL

Seed 71

76.31

76.31

Seed 31

76.22

75.91

Seed 35

79.71

79.62

Seed 73

80.96

80.74

W o r k l o a d

Seed 7

79.63
79.76

I Al l TSL

I Al l Opt-TSL

Figure 26- Utilization comparison (SCOJO-PECT against Optimized SCOJO-PECT)

9.3.5 Gain from Branch-and-Bound pruning

Though pruning occurs in two distinct levels of the search tree, we are interested in the

second level search where more permutations are tried. In summary, it was observed that

pruning is not very beneficial (see Table 8). This may be due to the fact that largest

slowdown heuristic based discrepancy threshold discards majority of the search tree

thereby only allowing branch-and-bound to only focus on a smaller search space. Branch

and bound is expected to have done better in the absence of our hierarchical search.

-62-

Workload

Seed 71

Seed 31

Seed 35

Seed 73

Seed 7

#TotaI nodes

1709500

2308200

2530702

2115736

2340981

#Nodes pruned

69916

92806

211552

113981

112341

Pruning %

4%

4%

9%

5%

5%

Table 8 - Contribution of branch-and-bound in pruning

9.3.6 Gain from second level search

The following graphs would determine the degree of optimization contributed by the

second level of our hierarchical search.

Average bounded slowdown (Seed 31)

Figure 27 - Influence of second level search on average slowdown (seed 31)

- 6 3 -

This search is performed after merging the fully optimized long-wide schedule to the

remaining non-optimized one. Largest slowdown first is used as the heuristic in this level.

The number of groups formed with and without second level search are the same. Figure

27 (using seed 31) clearly projects that second level search contributes little to the

optimization framework. To be stressed medium and long jobs are optimized fairly in the

range of 2-6%. The wide jobs without second level are getting equally good

improvements as these jobs are optimized thoroughly. However, in summary, the

influence of the second level search is lower than expected. The graphs pertaining to the

comparisons of average response times and average wait times would be able to give a

more conclusive picture.

Average response times

I Sec All TSL

I All Opt-TSL

All Opt-TSL 1 6:21:11 | 7:09:43 | 6:29:58 | 7:26:00 7:17:53 1:51:27 3:28:05

Work loads

Figure 28 - Comparison of average response times (with and without second level search)

From the comparison above (Figure 28), the search was able to deliver only a maximum

of 10% improvement in average response times. The average wait time comparison

(Figure 29) also supports the graph of average response times.

-64

Average wait times

I All Opt-TSL

• No Sec TSL
• All Opt-TSL

2:12:25 2:35:41 2:17:32 2:45:13 2:40:55 0:17:06 1:14:54

Workloads

Figure 29 - Comparison of average wait times (with and without second level search)

9.4 Effect of Smart-Backfilling

Smart-backfilling is an important strategy that is dynamically invoked to schedule jobs

from other slices into the currently running slice. This assumes a conservative approach

when backfilling jobs within a group. In this section, we compare SCOJO-PECT and

optimized SCOJO-PECT; both devoid of smart backfilling. Naturally, switching off

smart backfilling has been able to increase to increase the number of groups formed due

to more queue-up of jobs. This has been shown in Table 9.

- 6 5 -

Workload

Seed 31

Seed 35

Seed 71

Seed 73

Seed 7

SDSC

LANL

#Medium Groups

35

34

39

40

41

18

81

#Lone Groups

46

39

33

32

32

9

14

#TotaI Groups

81

73

72

72

73

27

95

% of jobs grouped

30%

26%

25.5%

25.5%

26%

8%

36.5%

Table 9 - Groups formed without non-type backfilling

The results for average bounded slowdown values without non-type backfilling is

illustrated in the following figures. The results emphasize the effectiveness of our

optimization approach. Firstly, we have plotted the results running the synthetic

workloads (Figure 30, Figure 31, Figure 32, Figure 33, and Figure 34), followed by the

real traces (Figure 35 and Figure 36).

- 6 6 -

Average bounded slowdown (Seed 31)

35^

30-

25-

| 20-

i «-
10-

5-

0-

• Narrow
• Medium
MAII
m Wide

All
TSL

5.28
7.47
6.18
18.18

All
Opt-

3.96
6.68
5.12

21.25

Short
TSL

3.48
3.46
3.49
4.89

Short
Opt-

3.1

3.37
3.17
5.17

Med
TSL

5.49
7.04
6.19
10.39

Approaches

Med
Opt-

4.88
6.56
5.75
12.29

Long
TSL

13.47
19

16.34
28.3

Long
Opt-

6.83
15.93
11.7

33.13

WE Me
f Narrc

"Wide
Ml
diurrwy

Figure 30 - Comparison of average bounded slowdown without smart backfilling (Seed 31)

Average bounded slowdown (Seed 35)

Narrow
Medium

\AII
Wide

All
TSL

5.62

8.52

6.71

All
Opt-

3.97

6.85

5.16

Short Short Med Med
TSL Opt- TSL Opt-

3.41

3.47

3.43

3.35

3.09

18.64 20.75 4.68 4.68 16.46 18.76 24.72 27.3

7.92

12.08

9.63

5.87

9.77

7.77

Long
TSL

13.54

19.48

16.19

Long
Opt-

6.34

13.9

10.29

Wide
A" Mediurrwy

Narrow $

Approaches

Figure 31 - Comparison of average slowdown without smart backfilling (Seed 35)

-67 -

Average bounded slowdown (Seed 71)

35n

3 0 -

2 5 -
c
| 2 0 -

1 16-
W 10-1

5 -

0 -

• Narrow

• Medium

MAII

m Wide

All
TSL

6.11

8.87

7.07

17.57

All
Opt-

3.87

6.38

4.88

19.32

I f . ! mm

'**'- INMHi

Short
TSL

3.46

3.57

3.5

5.34

Ishort
Opt-

2.98

3.42

3.09

5.44

Med
TSL

6.5

8.76

7.31

10.28

Approaches

5.09

7.21

5.96

10.82

Long
TSL

18.24

23.45

20.55

28.87

Long
Opt-

6.64

13.6

10.51

32.36

• • I f /
l lrMe
Y~ Narrc

Wide
\\\
d i u m ^

Figure 32 - Comparison of average slowdown without smart backfilling (Seed 71)

A v e r a g e b o u n d e d s l o w d o w n (S e e d 7 3)

5
o

1
o

40

35

30

25

20

15

10

5

0

Narrow

I Medium

\AII

Wide

6.47

9.56

7.62

4.29

7.56

5.63

3.45

3.46

3.46

3.08

3^34

3.15

20.92\ 24.19 4.87 5.06 11.21 13.8 33.15 37.83

6.92

8.9

7.71

5.88

7.72

6.81

21.06

26.93

23.87

8.3

18.91

13.94

Approaches

Wide
All

Medium^?
Narrow $

Figure 33 - Comparison of average slowdown without smart backfilling (Seed 73)

- 6 8 -

Average bounded slowdown (Seed 7)

35n

30 -

25 -

I 20-
•a
| 15-

W 10-

5 -

0 -

• Narrow

• Medium

WAII

m Wide

All
TSL

5.6

7.94

6.53

18.06

All
Opt-

3.98

6.12

4.96

19.87

Short
TSL

3.39

3.37

3.4

4.95

Short
Opt-

3.04

3.26

3.1

4.95

Med
TSL

6.07

7.56

6.73

10.31

Approaches

Med
Opt-

5.24

7.07

6.09

11.08

Long
TSL

16.14

21.6

18.83

28.6

Long
Opt-

7.07

13.29

11.02

31.84

•Bit '
I f r Me
r Narrc

Wide
Ml
dium^y

Figure 34 - Comparison of average slowdown without smart backfilling (Seed 7)

Average bounded slowdown (SDSC BLUE)

1 4 -

1 2 -

1 0 -

1 *~
1 e -
W 4 1

2 -

o-

• Narrow

• Medium

a AII

• Wide

/ / /

//.^L fl Hflfli

6 S - |

/^^^^BI^^^^KJ^^I

All
TSL

3.6

3.91

4.44

7.99

Mil

Opt-

3.29

3.66

4.14

7.56

anon
TSL

3.45

3.58

3.59

4.39

•fifM 1 ifcinl^H

onorr
Opf-

3.76

3.43

3.38

4.35

iviea
TSL

5.03

5.86

8.47

12.47

Approaches

H'tfl ^^

Med
Opt-

4.67

5.15

7.78

11.63

v^^SHfl

*ijJ|B~

Long
TSL

3.05

3.89

4.29

5.1

Long
Opt-

2.59

3.48

3.91

4.78

I H l i r Wide
Br A" m/P Medium-^?"
r Narrow *>

T

Figure 35 - Comparison of average slowdown without smart backfilling (SDSC BLUE)

- 6 9 -

Average bounded slowdown (LANL Trace)

25- i

2 0 -

| 1 5 -
o
•o

o 10 -
tn

5 -

0 -

• Narrow

• Medium

MAII

• Wide

/ / C

All
TSL

6.36

7.84

12.64

- f | 1

>4//
Opt-

5.68

7.16

11.98

Short
TSL

5.39

6.59

12.31

r

f—i

~:+y-'- *--

Short
Opt-

5.31

6.5

12.23

t 2

Med
TSL

8.13

8.42

9.15

Approaches

H [i

.v. £ j j g |

Med
Opt-

6.33

7.02

8.79

--

W

^flrJiB

1

Long
TSL

13.75

21.38

23.53

Long
Opt-

9.42

17.81

20.18

Br Me

Y~ Narrc

Wide
Ml
dium-4?
3W $

•>

Figure 36 - Comparison of average slowdown without smart backfilling (LANL Trace)

A v e r a g e b o u n d e d s l o w d o w n (S e e d 7 3)

Wide
All a

Mediur
Narrow

Approaches

Figure 37 - Comparison of average bounded slowdown without smart backfilling (worst case)

- 7 0 -

Though optimized scheduling has been able to deliver on the average 25% improvements

for long jobs and 15% for medium jobs, the short jobs experience only little

improvements. The worst case behavior for average bounded slowdown is shown in

Figure 37. Medium jobs were found to be served relatively better than long jobs for worst

cases. Long jobs on the other hand was seen considerably worse.

Average response t imes

i
I

21:36:00

19:12:00

16:48:00

14:24:00

12:00:00

9:36:00

7:12:00

4:48:00

2:24:00

0:00:00

BAIITSL

lAI IOpt-TSL

IAIITSL

lAIIOpt-TSL

Seed 71 Seed 31 Seed 35 Seed 73 Seed 7 SDSC

18:10:56 14:47:11 15:20:33

10:06:45 10:57:47 10:18:05 12:42:47 10:17:55 3:32:01

20:16:40 16:21:19 3:47:38

Workloads

Figure 38 - Comparison of average response time without smar t backfilling

The average response time and wait times without smart backfilling have been improved

by more than 12%. The comparison graphs are shown in Figure 38 and

Figure 39.

- 7 1 -

Average wait times

9:36:00

8:24:00

7:12:00

6:00:00 H

4:48:00

3:36:00 -\

2:24:00

1:12:00

0:00:00

IAI ITSL

1

Seed 71 Seed 31 Seed 35

7:57:23 6:14:02 6:31:28

I All Opt-TSL | 3:54:12 [4:18:34 | 4:00:31 | 5:13:19 | 4:01:17 | 0:54:37 [2:04:07

Workloads

Seed 73 Seed 7

9:00:50

u
7:03:23

a
SDSC LANL

1:02:10 2:27:41

IAI ITSL

I All Opt-TSL

Figure 39 - Comparison of wait times without smart backfilling

9.5 Comparison against bottom line approach

To further emphasize the efficiency of our approach, we are showing a comparison of our

results against an approximation of the approach formulated in [40].

A v e r a g e b o u n d e d s l o w d o w n (S e e d 31)

6 0 -

5 0 -

= 4 0 -

-f 3 0 -
o

w 2 0 -

10-

0 -

• Narrow
m Medium
MAII
m Wide

Bline
TSL
3.32
5.42
4.14
14.11

All
Opt-
2.58
4.61
3.88
30.8

Bline
Short
1.Q3
2.53
2.08
4.42

Short
Opt-
1.78
2.47
1.95
4.61

Bline
Med
4.41
5.98
5.12
9.24

Approaches

Med
Opt-
3.77
5.15
4.77
15.22

fzm HI

£
L

F P

Mine
ong

8.47
12.71
10.75
20.84

Long
Opt-
4.81
9.84
10.07
50.12

•
A

• i f /
r Me

Narrc

Wide
01,1 » diurtgr

Figure 40 - Comparison of our optimized approach with bottom line approach

- 7 2 -

This makes sense as we have similar objectives of reducing the average relative response

times using discrepancy search based approach. Our results have stood fairly well for

narrow and medium jobs as illustrated in the comparison charts below (Figure 40 and

Figure 41). As seen before, the wide jobs are suffering due to the lesser optimization

options available with limited group sizes.

Average bounded slowdown (Seed 31)

Figure 41 - Comparison of our optimized approach with bottom line approach without smart
backfilling

Figure 40 shows the comparison including smart backfilling. On the other hand, smart

backfilling is switched off in Figure 41. The results point out that we were able to

outperform their approximate approach using our optimization methods. We were able to

produce improvements resulting in an average 10% for all sizes (except wide) of long and

medium jobs.

- 7 3 -

10 . Conclusion and Future work

In our approach, we have presented a group-based optimization algorithm designed for

parallel job scheduling systems for a pre-emptive time-shared environment. The focus of

our framework was to achieve consistent improvement in average bounded slowdowns

while also not compromising machine utilization.

As expected, the search-based optimizer was able to churn out good schedules and

branch-and-bound search. Searching hierarchically using heuristics and domain

knowledge paved the way for efficient movement through search space. The idea of

creating a plan of virtually scheduled jobs and its integration to a time sharing scheduler

required recalculating the plan. Dynamic backfilling upon submission has proved to

benefit the average wait times. Conservative backfilling has been used throughout the

optimization framework so as not to alter the positions of the optimized plan jobs.

Comparison against the bottom line approach further emphasized the efficiency of our

approach.

The experimental results are quite promising after integrating our approach to SCOJO-

PECT, a course-grain time-sharing scheduler. We were able to achieve an average of

16% better results for slowdown while only compromising a little over 1% in utilization.

Due to various backfilling policies, re-optimizing at a point where the schedule might go

critical could be a future addition. We foresee situations where user submitted runtime

over estimates can affect the optimized job ordering. Evaluating optimization benefits in

such scenarios are also planned. Having an intelligent selection of certain jobs from the

group and fixing their schedule times while permuting other jobs also seems promising.

- 7 4 -

References

[1] A. Anjum, R. McClatchey, H. Stockinger, A. Ali, et.al. "Bulk Scheduling with
DIANA Scheduler", IEEE Transactions on Nuclear Science, Vol. 53, No. 6, Dec
2006, pp. 3818-3829

[2] L. Barsanti, A.C. Sodan, "Adaptive Job Scheduling via Predictive Job Resource
Allocation", Twelfth Workshop on Job Scheduling Strategies for Parallel Processing
(JSSPP'06), Saint Malo, France, Jun 2006

[3] C. Blum, A. Roli, "Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison", ACM Computing Surveys (CSUR), Vol. 35, No. 3, Sep
2003

[4] T.D. Braun, H.J. Siegel, N. Beck, "A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing
Systems", Journal of Parallel and Distributed Computing, Vol. 61, No. 6, pp. 810-
837, 2001

[5] W. Cirne, F. Berman, "When the Herd is Smart: Aggregate Behavior in the
Selection of Job Request", IEEE Transactions on Parallel and Distributed Systems,
Vol. 14, No. 2, Feb 2003

[6] P. Dutot, G. Mounie, L. Eyraud, D. Trystram, "Bi-Criteria Algorithm for Scheduling
Jobs on Cluster Platforms", ACM Symposium on Parallel Algorithms and
Architectures (SPAA), Spain, Jun 2004, pp. 125-132

[7] B. Esbaugh, A.C. Sodan, "Preemption and Share Control in Parallel Grid Job
Scheduling", CoreGrid Workshop on Grid Middleware (in conjunction with ICS),
Dresden, Jun 2007, to appear in Springer

[8] A. V. Fishkin, K. Jansen and M. Mastrolilli, "Grouping techniques for scheduling
problems: Simpler and Faster", Proceedings 9th Annual European Symposium on
Algorithms, Lecture Notes in Computer Science, Vol. 2161, Springer-Verlag, 2001,
pp. 206-217

[9] D.G. Feitelson, "Parallel Workloads Archive", As retrieved on Dec 10th, 2007,
http://www.cs.huii.ac.il/labs/parallel/workload/

[10] W.D. Harvey, M.L. Ginsberg, "Limited Discrepancy Search", Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95), Vol.
1, Aug 1995, pp. 607-615

[11]L. He, S.A. Jarvis, D.P. Spooner, X. Chen, G.R. Nudd, "Dynamic Scheduling of
Parallel Jobs with QoS Demands in Multiclusters and Grids", Proceedings of the

- 7 5 -

http://www.cs.huii.ac.il/labs/parallel/workload/

Fifth IEEE/ACM International Workshop on Grid Computing (GRID'04), Nov 2004,
Pittsburgh, USA

[12] W. Karoui, M.J. Huguet, P. Lopez, W. Naanaa, "YIELDS: A Yet Another Improved
Discrepancy Search for CSP's", Fourth International Conference on Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, Brussels, May 2007, pp. 99-111

[13] R.E. Korf, "Improved Limited Discrepancy Search", Thirteenth National Conference
on Artificial Intelligence (AAAI), Volume 1, Portland, USA, Aug 1996, pp. 286-291

[14]B.G. Lawson, E. Smrini, "Multiple-Queue Backfilling Scheduling with Priorities and
Reservations for Parallel Systems", Lecture Notes in Computer Science, Vol. 2537,
2002

[15] W. Leinberger, G. Karypis, V. Kumar, "Job Scheduling in the presence of Multiple
Resource Requirements", Conference on High Performance Networking and
Computing, Proceedings of the 1999 ACM/IEEE Conference on Supercomputing,
Oregon, USA, 1999, pp. 47

[16] M. Li, B. Yu, M. Qi, "PGGA : A Predictable and Grouped Genetic Algorithm for
Job Scheduling", Future Generation Computer Systems, Vol. 22, No. 5, Apr 2006,
pp. 588-599

[17]U. Lublin, D.G. Feitelson, "The Workload on Parallel Supercomputers: Modeling the
Characteristics of Rigid Jobs", Journal of Parallel and Distributed Computing, Vol.
63, No. 11, Nov 2003, pp.1105-1122

[18]M. Maheswaran, H. Ali, H.J. Siegel, D. Hensgen, R.F. Freund, "Dynamic Matching
and Scheduling of a Class of Independent Tasks onto heterogeneous Computing
Systems", Journal of Parallel and Distributed Computing, Vol. 59, No. 2, Nov 1999,
pp. 107-131

[19] V.D. Martino, M. Mililotti, "Scheduling in a Grid computing environment using
Genetic Algorithms", Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS'02), Florida, Apr 2002

[20] M. Mezmaz, N. Melab, E-G. Talbi, "Using the Multi-Start and Island Models for
Parallel Multi-Objective Optimization on the Computational Grid", Proceedings of
the Second IEEE International Conference on e-Science and Grid Computing (e-
Science'06), Amsterdam, Dec 2006

[21]M. Moore, "An Accurate and Efficient Parallel Genetic Algorithm to Schedule Tasks
on Cluster", Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS'03), Nice, Apr 2003

- 7 6 -

[22] J.E. Moreira, W. Chan, L.L. Fong, H. Franke, M.A. Jette, "An Infrastructure for
Efficient Parallel Job Execution in Terascale Computing Environments",
Proceedings of ACM/IEEE Supercomputing (SC), Nov 1998

[23] G. Mounie, C. Rapine, and D. Trystram, "Efficient approximation algorithms for
scheduling malleable tasks", Proceedings of the ACM Symposium on Parallel
Algorithms and Architectures, 1999, pp. 23-32

[24] A.W Mu'alem, D.G. Feitelson, "Utilization, Predictability, Workloads, and User
Runtime Estimates in Scheduling the IBM SP2 with Backfilling", IEEE Transactions
on Parallel and Distributed Systems, Vol. 12, No. 6, 2001, pp. 529-543

[25] N. Muthuvelu, J. Liu, N.L. Soe, S. Venugopal, A. Sulistio, R. Buyya,"A Dynamic
Job Grouping-Based Scheduling for Deploying Applications with Fine-Grained
Tasks on Global Grids", Australasian Workshop on Grid Computing and e-Research
(AusGrid 2005), New Castle, Jan 2005, pp. 41-48

[26] A.J. Page, T.J. Naughton, "Dynamic Task Scheduling using Genetic Algorithms for
Heterogeneous Distributed Computing", Proceedings of the Nineteenth ACM/IEEE
International Parallel and Distributed Processing Symposium (IPDPS'05), Denver,
Apr 2005

[27]C.L. Pape, P. Baptiste, "Heuristic Control of Constraint-Based Algorithm for the
Preemptive Job-Shop Scheduling Problem", Journal of Heuristics, Vol. 5, 1999, pp.
305-325

[28]E.W. Parsons, K.C. Sevcik, "Implementing Multiprocessor Scheduling Disciplines",
Proceedings of IPPS Workshop on Job Scheduling Strategies for Parallel Processing
(JSSPP), April 1997, Lecture Notes in Computer Science, Vol.1291, Springer-Verlag

[29] B.G. Patrick , M. Jack, "Equi-partitioning versus Marginal Analysis for Parallel
Scheduling", Proceedings of the Fourth International Conference on Parallel And
Distributed Computing, Applications and Technologies (PDCAT'03), Chengdu,
China, Aug 2003

[30] G. Sabin, M. Lang, P. Sadayappan, "Moldable Parallel Job Scheduling using Job
Efficiency : An Iterative Approach", Twelfth Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP'06), Saint Malo, France, Jun 2006

[31] S. Setia, M. Squillante, V.K. Naik, "The Impact of job memory requirements on
gang-scheduling performance", Performance Evaluation Review, Vol. 26, No. 4,
1999, pp. 30-39

[32] C.Y. Shen, Y.H. Pao, P.P.C. Yip, "Scheduling Multiple Job Problems with Guided
Evolutionary Simulated Annealing Approach", International Conference on
Evolutionary Computation, Orlando, USA, Jun 1994, pp. 628-633

- 7 7 -

[33] E. Shumeli, D.G. Feitelson, "Backfilling with Lookahead to Optimize the
Performance of Parallel Job Scheduling", Job Scheduling Strategies for Parallel
Processing, Lecture Notes in Computer Science, Vol. 2862, 2003, pp. 228-251

[34] J. Skovira, W. Chan, H. Zhou, D.A. Lifka, "The EASY - Loadleveler API Project",
Lecture Notes in Computer Science; Vol.1162, pp. 41-47

[35] D. Talby, D.G. Feitelson, "Supporting Priorities and Improving Utilization of the
IBM SP Scheduler Using Slack-Based Backfilling", Thirteenth International Parallel
Processing Symposium and Tenth Symposium on Parallel and Distributed
Processing (IPPS/SPDP'99), 1999, Puerto Rico

[36] X. Tang, S.T. Chanson, "Optimizing static job scheduling in a network of
Heterogeneous Computers", Proceedings of 2000 International Conference on
Parallel Processing, Aug 2000, pp. 373 - 382

[37] J. Turek, J.L. Wolf, P.S. Yu, "Approximation Algorithms for Scheduling
Parallelizable Tasks", Proceedings of the Fourth Annual ACM Symposium on
Parallel Algorithms and Architectures, San Diego, 1992, pp. 323-332

[38]D.C. Vanderster, N.J. Dimopoulos, R.Parra-Hernandez, "Evaluation of Knapsack-
based Scheduling using the NCAPIJOBLOG", Proceedings of 20th International
Symposium on High-Performance Computing in an Advanced Collaborative
Environment (HPCS'06), St.John's, May 2006

[39] S. Vasupongayya, "Improving Search-based Parallel Job Scheduler", Parallel and
Distributed Processing Techniques and Applications (PDPTA'06), Las Vegas, Jun
2006

[40] S. Vasupongayya, S.-H. Chiang, B.Massey, "Search-based Job Scheduling for
Parallel Computer Workloads", IEEE International Conference on Cluster
Computing (Cluster 2005), Boston, Sep 2005

[41] T. Walsh, "Depth-Bound Discrepancy Search", International Joint Conference on
Artificial Intelligence (IJCAI-97), Nagoya, Japan, Aug 1997, pp. 1388-1395

[42] A.T. Wong, L. Oliker, W.T.C. Kramer, T.L. Kaltz, D.H. Bailey, "ESP: A System
Utilization Benchmark", Proceedings of ACM/IEEE Supercomputing Conference
(SC), Dallas, Texas, Nov 2000

- 7 8 -

Vita Auctoris

Name: Arun Kumar Kanavallil

Place of Birth: Ernakulam, India

Education:

2005-2007 M.Sc, Computer Science

University of Windsor

Windsor, Ontario, Canada

2000-2004 Bachelor of Technology in Computer Science
and Engineering (B.Tech)

University of Kerala

Trivandrum, India

Work Experience:

2004-2005 Project Staff

Center for Development of Advanced
Computing (C-DAC)

Pune, India

- 7 9 -

	Group-based optimization for parallel job scheduling in clusters via heuristic search
	Recommended Citation

	ProQuest Dissertations

