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ABSTRACT 

Job scheduling for parallel processing typically makes scheduling decisions on a per-job 

basis due to the dynamic arrival of jobs. Such decision making provides limited options 

to find globally best schedules. Most research uses off-line optimization which is not 

realistic. We propose an optimization on the basis of limited-size dynamic job grouping 

per priority class. We apply heuristic domain-knowledge-based bi-level search and 

branch-and-bound methods to heavy workload traces to capture good schedules. Special 

plan-based conservative backfilling and shifting policies are used to augment the search. 

Our objective is to minimize average relative response times for long and medium job 

classes, while keeping utilization high. The scheduling algorithm is extended from the 

SCOJO-PECT coarse-grain pre-emptive time-sharing scheduler. The proposed scheduler 

was evaluated using real traces and Lublin-Feitelson synthetic workload model. The 

comparisons were made with the conservative SCOJO-PECT scheduler. The results are 

promising - the average relative response times were improved by 18-32% while still able 

to contain the loss of utilization within 2%. 
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1. Introduction 

Job scheduling in parallel systems (multi-processors and grids) [1][11][19] is a complex 

scenario because jobs can simultaneously occupy multiple heterogeneous resources at the 

same or distinct times. Being a dynamic system, scheduling is more challenging and 

generally comes with a cost of communication and network delays [31]. Parallel job 

scheduling problems can also be formulated with several constraints which make them 

candidates for constrained-based programming. An optimal solution for scheduling 

problems has been proven to be NP-Hard. With grids (interconnecting clusters and other 

computing devices through a high speed network) replacing clusters, scheduling demands 

a fault-tolerant virtual platform for running applications transparently. In addition, grids 

typically, comprise of multiple schedulers distributed geographically negotiating for 

different resources like CPU's, disks, licenses, memory etc. With the advent of 

information age, there has been increasing demand for high processing power. Clusters 

developed from off-the-shelf components are widely used to carry out data-intensive 

simulations and compute-intensive tasks. Optimization has a huge role to play in reducing 

this scheduling complexity. 

• From the system administrator's point of view, optimization increases overall 

system utilization and load balancing. 

• From the user's perspective, optimization alleviates excessive wait and faster 

response times for the submitted jobs. 

In parallel job scheduling, typically one employs scheduling in groups [6][16][18], 

approximation algorithms [23][37], search based methods [10][40][41], and heuristics 

[4][33] to address the issue of optimization. All these approaches have one thing in 
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common - they intelligently select optimum schedules within reasonable time. In this 

thesis, we undertake this task of selection using a combination of group interleaving, 

search methods and heuristics. 

The usual metrics for testing the worthiness of a scheduling algorithm are response times 

(sum of wait time and runtime of the job), runtimes, wait times (duration from job 

submittal to start time plus additional time spend in the queue when preempted) and 

system utilization (percentage of machine utilization). The majority of research work 

accounts overall benefit only viz. analyzing average values or makespan (the completion 

time of the last job). 

1.1 Optimization in Job Scheduling 

With the right motivation in hand, our scheduling approach interleaves job groups and 

individual job scheduling on a course-grained, time-sharing, preemptive scheduler. When 

a sufficient amount of workload gets accumulated in the waiting queue, jobs are grouped 

based on good packing heuristics. Optimization of job groups is achieved by 

implementing a tree search that returns an optimal schedule. Our goal is to reduce the 

average relative response times for medium and long jobs while also not compromising 

much on utilization and response times. We include the standard approach to backfill jobs 

from behind the queue which can be started immediately provided they do not delay the 

execution of grouped jobs. 

In the context of parallel job scheduling, proximity to the best solution can also be 

achieved using approximation methods, search methods, dynamic programming, and 

genetic programming. We shall discuss each one of them in detail laying emphasis on 

heuristics and search methodologies in Section 3.3. 
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2. Related Work 

Several approaches [16] [29] [36] address static (or offline) optimization where 

information about the jobs are known beforehand and do not consider dynamic 

submission. The approach in [40] (whose approximation is referred to as bottom-line 

approach in Section 9.5) optimizes for minimization of average relative response times 

(slowdown) and total excessive wait time, i.e. the approach considers both average and 

worst-case behavior as separate crisp criteria, with the worst-case behavior constituting 

the higher-ranked criterion. To find the best schedule according to this objective, they 

employ a special search technique based on the largest-slowdown-first heuristic and 

depth-bound discrepancy. The latter considers optimizing instantaneously by increasing 

numbers of discrepancies from the heuristic order and bounded by a certain depth. Such 

optimizations do not follow a plan based approach. Follow-up work [39] includes branch-

and-bound techniques and two-step optimization with additional reordering of the 

obtained schedule for minimizing excessive wait. In the context of job shop scheduling, 

Pape et.al [27] came up with an idea of combining preemptive scheduling strategies with 

heuristics to minimize makespan criteria. Basically jobs are divided into activities and 

each activity is processed by different machines. Priorities decide the activity order which 

can be formulated as a search tree. Combination of LDS heuristic and edge finding 

technique was found to provide better average results in terms of mean relative error. 

Closely related, optimization for backfilling was proposed in [33], considering a group of 

backfill candidates and using dynamic programming. The primary optimization criterion 

is utilization (in the space dimension), and the secondary one original queue order. 
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Among schedules with the same utilization, the one with jobs earlier in the queue is 

chosen. 

There exist a number of approaches which form groups of jobs and schedule them 

together. Some approaches in grid scheduling allocate jobs to sites according to cost 

criteria or processing capability and simply group the next jobs sent to a site to reduce 

transfer cost [25]. This implies that the decision for allocation to a specific site is then 

fixed for this group. The approach in [11] is slightly more advanced and combine jobs 

according to size for better fit (packing potential) within the groups that are allocated to 

each site but miss to consider the variations in runtime which significantly contribute to 

the packing problem. 

Our approach is built on top of the course-grain timesharing scheduler developed by 

Esbaugh and Sodan [7]. Varying time slices (resource allocation policies) are allotted to 

different job classes (long, medium and short) enabling multiple virtual machines to 

execute synchronously. Controlled preemption for long slices, suspending jobs to disk at 

the end of slice and smart backfilling from other slices resulted in 88% decrease in 

bounded slowdowns and 31% increase in average response times. Preemption can be 

approached in two major ways: (a) Migrating jobs to new resources (incurs 

communication and data transfer costs) was still found to fare well in giving benefits in 

utilization and response times [28]. However, migration is accompanied by the problem 

of check-pointing (which is application centric), (b) Secondly, gang scheduling creates 

global time slices and causes jobs to be preempted at the end of each slice. Gang 

scheduling has been investigated earlier to provide better average response times and 

bounded slowdown [22]. However, the drawback is that it requires preempted jobs to be 
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memory-resident during execution. Course-grain timesharing also provided similar 

benefits as shown in [31] and [42]. 

Dutot et. al [6] presents an approach for local job scheduling which constitutes a mix of 

static and dynamic scheduling. The approach additionally considers adaptive job sizes, 

i.e., jobs can be started with different job sizes which subsequently lead to different 

runtimes. The jobs that are initially in the waiting queue are grouped according to their 

runtimes being, under certain sizes, possible within increasingly long time frames. Next, 

the actual jobs for the next group and their sizes need to be determined. This decision is 

made by optimizing with objective of priority for maximum sizes (that still let the 

runtime fit into the interval) and of the best combination of jobs (treating the problem as a 

knapsack optimization and solving it via dynamic integer programming). Dynamically 

arriving jobs are considered in the next group to be optimized. However, scalability of 

jobs is not considered here. 

There are many approaches that optimize allocation of groups of serial jobs, e.g., taking 

the next set of jobs from a FIFO queue and allocating them to different nodes in a grid, 

while optimizing (via genetic algorithms) the makespan of the group [16] [19] [21] [26]. In 

[11], a weighted sum of makespan, excess wait time (over deadline), and utilization were 

used as the objective. In [20], genetic algorithms are combined with different local 

optimization approaches to optimize both makespan and wait time via Pareto fronts. In 

some cases, local time sharing per machine is considered. In [4], genetic algorithms 

applied to groups of jobs are compared to heuristics that make decision on a per-job 

basis. The relatively simple min-min heuristic (selecting a task-machine pair with the 

task being completed earliest among all tasks on that machine) was found to perform 
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almost as good (within 12% of the makespan) as the much more costly genetic 

algorithms. 

A different approach is to use heuristics for slack-based backfilling [35] which has the 

basic idea to permit that jobs are moved backward to some—controllable—extent. Jobs 

may be flexibly reordered during backfilling to improve utilization, while resulting delays 

for individual jobs are considered via their slack, i.e. maximum possible delay. However, 

only average wait time is considered and not the current load on the machine. 

In [2], a heuristic is proposed for adaptive size selection that considers the context of all 

currently waiting and future (predicted) jobs and determines a size that balances the 

interest of the candidate job with the interests of those other jobs by applying the same 

relative size modification to all jobs. However, the size decision is finalized only for the 

candidate job and is newly made for the other jobs when the scheduling decision is made 

for them. Similarly, [15] considers a balanced workload over all resources CPU, memory, 

and disk when deciding which job to schedule next and on which most underutilized 

resources. Other approaches simulate different schedules over all jobs that are currently 

in the waiting queue and then make the decision about job size, either based on the best 

response time for the candidate job [5] or the best average response time [30]. However, 

simulation cannot take future submissions of potentially higher priority jobs into account. 

Correspondingly, job sizes of running jobs may be adjusted at runtime if jobs are 

malleable by considering the context of all jobs and giving more resources to jobs with 

high efficiency [29]. 
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3. Parallel Job Scheduling Optimization Approaches 

This section focuses various optimization methodologies prevalent in literature. 

3.1 Approximation algorithms 

Approximation algorithms are solely designed to contain the time complexity of non-

polynomial time (NP-Hard) problems by mathematically proving that a solution close to 

optimal could be discovered in polynomial time. A performance guarantee (p) is always 

associated with such algorithms and is defined as the ratio of the approximated solution 

to the optimal one. Alternatively, they are expressed using bounded error (s > 0) if the 

approximated solution lies within bound. They are generally applied for optimizing 

problems where no polynomial time algorithms exist. Best examples are scheduling 

problems, vertex covering etc. Advantages of approximation algorithms are: 

• They are mathematically stable and can be verified 

• Such algorithms provide near-optimal (within a specific percentage of optimal) 

solutions in polynomial time 

Formulating a non-preemptive malleable parallel task scheduling (MPTS) as a linear 

program, Fishkin et.al [8] has shown a polynomial time approximation scheme (PTAS) to 

achieve a performance bound of 1+8 where (s > 0) for makespan. Mounie et.al [23] dealt 

the same problem using dual approximation techniques [6] for generating a non-

preemptive schedule. The main contribution of [23] was a worst-case performance 

guarantee of makespan to be 1.73 as against a guarantee of 2 for non-malleable parallel 

jobs in [37]. Interestingly, [8] discusses the idea of task grouping using special task 
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profiling and dynamic programming to develop an approximation scheme for unrelated 

parallel machines. 

3.2 Search Metrics 

Many search metrics have been proposed and developed for job scheduling. For instance, 

MET (Minimum Execution Time), MCT (Minimum Completion Time), Min-Min, Max-

Min, Suffrage and slack metric. Some of these (MET, MCT, Min-Min, Max-Min) are 

applied for independent task scheduling [4]. The following are some commonly used 

metrics: 

• Minimum Execution Time (MET) [4]: MET is a commonly used heuristic which 

assigns each job to the resource that gives the minimum expected execution time 

for the job, regardless of that machine's availability. Clearly, MET could give 

really bad wait times on heavy workloads. 

• Minimum Completion Time (MCT) [4]: Intuitively MCT performs better than 

MET and OLB as it strikes a balance between the above two heuristics. By 

preventing circumstances where OLB and MET are likely to. perform poor, MCT 

heuristic assigns jobs in arbitrary order to the resource with the minimum 

expected completion time for that job. 

• Min-Min [4]: The condition for min-min to work is to have a set of waiting jobs 

in the beginning. Unlike MCT, Min-Min considers the set of jobs and computes 

their completion times on all resources. The idea behind min-min is to schedule 

that job from the job set on the corresponding resource with the best minimum 

completion time. Eleven static scheduling heuristics using makespan criteria were 
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compared Braun et.al [4] proved Min-min metric to significantly perform better 

than others. 

• Suffrage: As the name suggests, Suffrage heuristic [18] prioritizes or schedules 

job based on the degree of disturbance caused on the job if its scheduling is 

delayed. The suffrage value is commonly chosen as the difference between the 

first and second MCT's. Jobs that suffer more get more priority. X-Suffrage is an 

extended version where suffrage value also accommodates the state of the system. 

• Slack metric: Here the term 'slack' means allowing some degree of compromise 

per job (measured in units of time) for it to be scheduled later. The slack measure 

attributed to a job is generally defined as a function of its priority and 

characteristics (j°b size, expected runtime, slowdown etc.). First introduced in 

slack based backfilling [35], the average wait times of priority scheduling were 

reduced by 15% relative to EASY backfilling. 

• Branch-and-Bound (BnB) metric [39]: A monotonically increasing function value 

is chosen as the upper bound for BnB metric. The metric chosen would be 

problem specific. Basically intended to prune search trees, BnB provides 

significant benefits depending on its formulation. 

3.3 Search based optimization methods 

Since scheduling problems are inherently NP-Hard, search based approaches in 

scheduling comes handy when search space can be reduced using high-quality problem 

specific heuristics. Basically, search algorithms can be divided into two: local search and 

complete (global) search. Local search algorithms foray within its specified neighborhood 
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to select a better solution and advance forward with this new solution. Hill climbing, 

simulated annealing (SA), ant-colony optimization (ACO), tabu search and iterated local 

search (ILS) etc. fall under this category. On the other hand, complete search algorithms 

generate the schedule corresponding to the goal node by a global search. Genetic 

algorithms, discrepancy search, evolutionary computation are some examples of complete 

search. Collectively they include (but not restricted to) what can be termed as 'meta-

heuristics'. Heuristics have emerged as a powerful strategy to partially circumvent the 

problems of complexity and intractability. Being intuitive, they have the ability to 

surpass, judge, predict, or compare different potential solutions. Heuristics in general 

must be robust, application specific and goal oriented in order to significantly prove 

beneficial for its purpose. Static scheduling heuristics basically takes scheduling 

decisions for job(s) after they have been submitted into the waiting queue. On the other 

hand, dynamic heuristics perform decisions about scheduling, load balancing and 

resource selection dynamically with no wait. Dynamic heuristics have to be efficient and 

less complicated to reduce the scheduling overhead. Employing more than one heuristic 

and dynamically swapping them based on current system states have received new 

attention recently due to scheduling applications on heterogeneous environments that are 

themselves dynamic. Some search based heuristics used in job scheduling are: 

3.3.1 A* Heuristic: 

A* [4] requires the problem to be formulated as a search tree with nodes having a cost 

function associated with them. Basically the cost function of node n is calculated as: 

f(n) = g(n) + h(n) 
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g(n) represents the cost of scheduling l..n-l jobs (node 0 being null) and h(n) 

represents a heuristic estimate of the cost of getting to the goal node. At times, h(n) can 

even be a set of heuristics. 

3.3.2 Global Search: Limited Discrepancy Search 

Discrepancy based search [40] [41] has been in the limelight for solving combinatorial 

optimization problems. The degree of optimality achieved however heavily depends on 

the selection of a high-quality heuristic. In its elementary form, discrepancy search can be 

visualized as taking place in a tree of permutations. Heuristics guide and perpetuate the 

search to prominent regions. In other words, heuristics bias the search pattern in the 

following ways: 

a) It provides a good initial solution 

b) Secondly, it allows some degree of flexibility (or discrepancies, as they are called) 

to explore other permutations that do not follow the heuristic. 

Limited Discrepancy Search (LDS) was first proposed in [10]. The scope of LDS is wide 

enough that its applications are not limited to scheduling problems. It explores those 

paths in the search tree that have the lowest discrepancies first. In other words, LDS 

explores all paths having k discrepancies in its tfh iteration. The heuristic always aligns 

the successors from left to right implying that the leftmost path from root to leaf will 

always completely follow the heuristic. Pseudo code for LDS [10]: 
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LDS-PKOBBlfwceie, Jb) 
1 if GoAL-P(noJe) retxirw, node 
2 s <~ SUCCESSORS (node) 
3 if N U L L ~ P ( S ) r e t u r n NIL 
4 if k - 0 r e t u r n L D S - P R O B E ( F I R S T { * ) , 0) 
5 e l se 
6 result * - L D S - P R O B E ( S B C O N D ( « ) , ft - 1) 
7 i f result ••£ NIL r e t u r n resuft 
8 r e t u r n LDS-PROBB(Fm5T(«), *) 

LDS(nc»afe) 
1 for sp <j~~ 0 t o maximum depth 
2 wsaft <- LDS-PROBB(node, x) 
3 if result / N I L r e t u r n result 
4 r e t u r n Kit 

Figure 1 - LDS Psuedocode [10] 

Another variant is called Depth-Bound Discrepancy Search (DDS) [41]. Unlike LDS, the 

tfh iteration in the DDS algorithm explores those paths that have a discrepancy at depth k. 

• 
2 
I 
3 

I 
4 

(a) (b) (c) 

Figure 2 - (a) LDS and DDS: 0th iteration (b) LDS: 1st iteration (c) LDS: 2nd iteration 
The paths traversed by the LDS algorithm in an arbitrary search tree for 3 successive iterations are 
shown in dark. [40] 

DDS has more built-in flexibility that it is depth-bounded and also simultaneously 

explores different directions through search space. LDS and DDS traversal paths are 

illustrated in the figure above. In 0th iteration, only the leftmost path is traversed. For the 

1st iteration, all paths having exactly one discrepancy are shown, and so on. A more 

qualified version of LDS is proposed in [13] called "Improved Limited Discrepancy 

Search" (ILDS). It is found to reduce the time complexity from 0((d+2)/d * 2d) to 0(2d), 
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where d is the depth of the uniform binary tree. This is achieved by eliminating redundant 

operation of generating leaf nodes in the tree. Nevertheless, ILDS is less efficient than 

DFS because it generates multiple interior nodes during its execution. The overhead is 

deduced to be d/(d-l), where d is the depth of the search tree. YIELDS [12] uses variable 

ordering scheme of LDS and constraint propagation techniques to solve constraint 

satisfaction problems. The idea reduces space complexity by minimizing the number of 

discrepancies to explore during the entire search. 

3.4 Knapsack based optimization 

Knapsack optimization can be dealt using dynamic programming approach wherein the 

original problem is sub-divided into sub-problems and then solving each sub-problem. 

Eventually the solutions are merged to obtain the solution for the original problem. 

Knapsack selection is largely used for dictating Quality of Service policies [38] and 

intelligent task selection [6][33]. For instance, [6] uses an intelligent selection of jobs 

offline using knapsack to form a batch (job group) using this approach. Firstly, the 

makespan of the current instance is calculated using a dual approximation algorithm. 

Secondly, jobs that are sufficiently short to be stacked one after the other are grouped into 

the plan. Lastly, remaining jobs are rightly placed using knapsack selection - we select 

that set of jobs that maximize their weights and reduce the cost while using at most m 

processors. 

W(i,j) = max (W (i-lj), W(i-1, j-allotJ + Wj) 

where W(i,j) recursively denotes the maximum weight of tasks 0..i being allotted toy 

processors and allott is the smallest allocation that fits into the batch. Shumeli et.al [33] 
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used knapsack to select backfilling order of jobs to maximize the machine utilization. The 

work proposed in [23] differs from the two-phase scheduling approach proposed in [37] 

in two aspects: (a) allotment selection is ameliorated using a knapsack (b) generating a 

non-preemptive schedule of non-malleable jobs using dual approximation technique. 

Turek et. al [37] addresses processor allocation of non-malleable parallel jobs for non-

fragmentable multi-processor systems employing shelving algorithms, while fragmented 

multi-processor systems are dealt separately using heuristics. Though this has been 

achieved, the significant effect on job scalability and machine utilization remains 

untouched. 

3.5 Genetic algorithms 

With their inherent nature to globally classify effective schedules, genetic and 

evolutionary algorithms are increasingly being applied to scheduling problems. It is more 

relevant to cite here attributing to its nature to optimize a group of elements. Generally, 

parallel job scheduling problems are formulated in two different ways to suit the genetic 

algorithm framework: (a) The jobs are encoded as chromosomes [21][26] (b) The 

resources are encoded as chromosomes [16]. People prefer (a) when the objective is to 

obtain a relatively efficient schedule of jobs in terms of response times, slowdown or 

utilization etc. while (b) is applied in cases where the aim is to maximize resource 

utilization, maximize throughput [19] or attain adaptation benefits. 

Evidently, from the works of [16] and [19], genetic algorithms have also forayed into grid 

scheduling. For instance in [16], Li et. al presents Predictable and Grouped Genetic 

Algorithm (PGGA) for m/n scheduling problem (ie. scheduling m jobs on n processors) 

using grouping and workload prediction. Workload, basically a function of job size, is 
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estimated using regression techniques from the job's execution history. The drawback is 

- the lesser the historical records of a job, the poorer would be its estimation accuracy. 

Unlike [19] where the encoding was (job, resource) pairs, [16] use resources to encode 

their chromosomes. Designing a proper fitness function is critical for the accuracy and 

efficiency of the GA. Using makespan as the fitness function, the evolution process of 

mutation and crossing over is again filtered with divisible load theory (DLT) which 

speeds up the convergence process by allowing populations having similar group finish 

times to evolve. At times additional heuristics for adaptation or load balancing can be 

imposed over the GA [26] to improve the solution quality. Meta-heuristics like GA's 

helps to explore solution spaces to be partially searched in polynomial time to obtain near 

optimal solutions. By applying evolutionary techniques like crossover and mutation from 

nature, GA's can prevent themselves from getting caught in local maximum. 
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4. SCOJO-PECT 

SCOJO-PECT [7] is a course-grain timesharing scheduler. The resource shares allocated 

(done by system administrators based on the ratios of job mix) can be explicitly 

controlled by setting the machine share distributions per job class for different times of 

the day. In other words, these shares determined by the share control object gives priority 

to certain job classes in accordance to the workload present in the waiting queues. The 

time slices are associated with a particular dominant job type. The scheduling order per 

slice type is FIFO. Using this approach, short and medium jobs are found to receive 

relatively good response times. The scheduler maintains separate queues for waiting and 

preempted jobs for individual job classes. When the allotted time slice gets over, the jobs 

move to disk and jobs from next job class is scheduled on the machine. This reduces 

memory pressure all keeps available memory for scheduling the next set of jobs. In brief, 

the approach entails the following characteristics: 

• controlled allocation of varying resource shares for different job classes, 

• backfill preempted and waiting jobs from different slices when sufficient nodes 

are available, 

• strictly controlled preemption to disk for jobs in select long-slices to improve 

response times for medium and short jobs, 

• uses a share-based control without priorities to drive the scheduling of jobs 

By limiting the time slices to be typically in the minute (or hour) range, the swapping 

overhead can be reduced. Fragmentation arising from preemption was overcome using 

smart backfilling techniques. Smart backfilling tries to backfill preempted and waiting 
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jobs of other slice types into the current slice. We shall describe the backfilling with an 

example. Consider a set of eight distinct jobs as shown in Table 1. 

Job ID 

Job 3 

Job 4 

Job 5 

Job 6 

Job 7 

Job 8 

Job 9 

Job 10 

Type 

MEDIUM 

MEDIUM 

SHORT 

SHORT 

SHORT 

LONG 

LONG 

MEDIUM 

Submit Time 

10 

35 

40 

41 

50 

75 

77 

90 

Runtime 

65 

34 

9 

5 

5 

98 

80 

40 

Size 

7 

3 

7 

2 

3 

4 

5 

6 

Table 1 - Jobs in a merged waiting queue 

In Figure 3, assume a smart-backfilled long job (Job 1) and a short job (Job 2) are 

running on a machine having a total capacity of 10 nodes (switching overhead between 

slices not shown). The waiting queue illustrates the job numbers, with their job types, 

runtimes and job sizes. For instance, Job 3 is a medium job having a runtime of 65 to be 

executed on 7 nodes. Job 3 is scheduled in the medium slice as neither other medium jobs 

nor potential backfill jobs are available at the moment. During the next long slice, the 

preempted long job, Job 1, is scheduled. The medium job, Job 3, is backfilled as other 

long jobs are currently unavailable. Upcoming short slice would start the short Jobs 5, 6 

and 7 to be since there is no room to accommodate non-type slice jobs. Preempted jobs 

are ensured to start off again on their initial nodes (no migration). 
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Waiting Queue 

Figure 3 - SCOJO-PECT time slice scheduling example 

In the next medium slice, medium preempted Job 3 is scheduled followed by medium job 

4. Job 8 starts immediately after job 4 is finished. Job 9 does not have to wait as enough 

processors are available. From the results in [7], smart-backfilling with the synthetic trace 

has been able to improve the average response times of short and medium jobs by 27%. 
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5. Our Approach 

We propose a group-based optimization approach for parallel job scheduling using 

heuristics. Among the different possible approaches for optimization, we have chosen to 

develop the search-based approach due to its suitability for domain knowledge based 

heuristics. Employing such optimization in a time-shared environment adds to its novelty. 

Other approaches mostly applied to parallel job scheduling problems demand formulating 

an appropriate objective or weighted function which is hard to tune properly. Our search 

essentially employs a hierarchical structure. We have decided to use high-quality domain 

knowledge-based heuristics to drive the search to promising regions and then combine 

the solution obtained from first level to derive a more meaningful second level solution. 

Integrating smart-backfilling is expected to bring about significant improvements. We 

make the following assumptions in our work: 

• Jobs are rigid (ie. their sizes remain the same as their user submitted size) 

• Actual job runtime information is available during job submission. Hence, we 

would not use user requested runtime estimates. 

• Group sizes are limited to a threshold value due to the following reasons: 

o To address the dynamic arrival of jobs 

o Possibility of excessive fragmentation arising from wide jobs 

• The size of the search tree is limited. We perform a complete search at the first 

level incorporating domain knowledge. Second level searching is designed to be 

partial towards the heuristic and hence would only parse a specific number of 

schedules as number of job permutations per group grows exponentially. 
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As workloads can have dynamic behavior, our scheduler is designed to switch between 

group and individual scheduling modes. 

5.1 Concepts Related to Our Work 

Explained below is the required conceptual framework behind the design of the 

scheduler. This is essential to understand the how our approach can really reach its 

objectives. 

5.1.1 Parallel Job Groups 

Jobs are classified into three different classes or types on the basis of their runtime 

information available at submission time: (a) Short, (b) Medium, and, (c) Long. 

Groups are formed by jobs of same class. Specifically, only groups of medium and long 

jobs are created with distinct grouping criteria. Though small jobs are relatively larger in 

number, from an optimization perspective, options are more for medium and long jobs as 

they contribute more towards fragmentation and variation in response times. Hence 

results from optimization would be more evident by focusing on medium and long jobs. 

We also foresee that backfilling on dynamic submission and smart-backfilling would 

contribute to bring about significant improvements especially for short jobs. 

5.1.2 Domain Knowledge Based Heuristics 

Selectively optimizing the long-wide jobs in the beginning is based on the domain-

knowledge that such jobs are instrumental in shifting the balance in the opposite 

direction. Secondly, an incomplete search should be augmented with some good quality 

heuristic. Goal-oriented heuristics like Largest Slowdown First (LSF) were chosen as 

jobs with higher slowdown would be scheduled first as such jobs would potentially have 
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to wait for long to get resources. LSF is expected to give an overall improvement in 

bounded slowdown (defined later in Section 5.1.5). Backfilling techniques, in general, 

also incorporate domain knowledge into the optimizer and scheduler to improve the 

results. 

5.1.3 Problem Formulation as Search Tree 

Consider an offline schedule of jobs. Our aim is to find an efficient scheduling order for 

these jobs. With the search based approach, the possible schedule orders is visualized as a 

search tree where a path from the root (excluding root) to leaf corresponds to a schedule. 

All but root node represent jobs. Each path would have a different job ordering from root 

to the leaf. At each node the successor ordering is done from left to right with only the 

left-most branch following the heuristic. A path that comprises a right child is considered 

as a discrepancy. In other words, it is likely that the best schedule may violate the 

heuristic and may be a path containing multiple discrepancies. A major bottleneck with 

tree based search is the tree size. Given n jobs, the number of possible schedules is n! and 

0(nn) nodes. The table below shows how the tree grows as the number of nodes (j°DS) 

increases. 

#Jobs 

4 

8 

10 

15 

#Paths 

24 

40K 

3,629K 

1,307,674M 

#Nodes 

64 

110K 

9,864K 

3,554,627M 

K= 1000; M= 1000,000 

Table 2 - Table showing the relationship of jobs in group and nodes generated in the search tree 
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As explained in Section 3.3, the widely known complete discrepancy search algorithms 

are: (i) Limited Discrepancy Search (LDS), and (ii) Depth-bound Discrepancy Search 

(DDS). 

5.1.4 Backfilling 

This is a space-sharing optimization strategy used to bypass the adherence to FCFS 
scheduling strategy. Backfilling allows a job with lower priority to be scheduled ahead of 
a job with higher priority if the former does not interfere with the start time of the latter. 
For EASY backfilling, the shadow time of a job would be the time taken for the first job 
in the queue to start execution. The idle nodes of the partition in which any job runs are 
called extra nodes. A job is EASY backfilled if the job size is less than or equal to the 
currently free nodes and will terminate by the shadow time. A job is conservatively 
backfilled if the job can be scheduled without delaying any other job in the queue. The 
graphic below demonstrates the idea of EASY and conservative backfilling. In (b) 
Figure 4(a), jobs J2 and J3 get EASY backfilled. In (b) 
Figure 4(b), job J2 is conservatively backfilled into the prepared plan. 

EASY Backfill 
Don't delay first iob 

Waiting Queue 
J5 J4 Jo ; J«d J1 

M 

• iliiS 
HE 

s L 

J* 

J 3 

J2 

Jl 

S 

(a) 
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Conservative Backfill 
Don't delay any plan jobs (Pt) 

Waitine Queue 
J5 1 J4 J3 J2 J1 

(b) 

Figure 4 - (a) EASY backfilling (b) Conservative backfilling 

Commonly employed in almost all schedulers, backfilling essentially tries to fill up an 

empty scheduling hole disregarding the specified scheduling order. In other words, 

backfilling selects jobs from behind the queue and schedules them if this action does not 

delay the start of other jobs. Different variants of backfilling exists like EASY or 

aggressive backfilling [34] (stipulates that a job can be backfilled if it does not delay the 

first job in the waiting queue), conservative backfilling (stipulates that a job can be 

backfilled if it does not delay any job in the waiting queue), slack-based backfilling 

(stipulates that a job can be backfilled as long as the other job's slack value remains less 

than its expected wait time) etc. Though both EASY and conservative approaches are 

found to produce the same utilization the latter removes the unbounded waiting time that 

may happen in case of the former. 

In our context, smart backfilling would mean scheduling non-type jobs (jobs not of the 

same type as currently executing slice type) into the current slice if sufficient nodes are 
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available. As the results from [7] prove, smart backfilling is expected to bring good 

improvements. 

5.1.5 Metrics 

• Average Response time: The time interval from the actual job submission by 

the user to the complete termination of the job is called the response time. 

Suppose there are N tasks and a task / is submitted on time tt and terminates on 

time hi. The response time for the task i is (tt + h,). The average response time 

would be the average of all the tasks. Mathematically, it can be written as UN 

(Z(tj + h,)), for i - 1..N. From the user's perspective, it is the response time 

that is crucial to be minimized. It is otherwise also called the flow time. 

• Bounded Slowdown: Bounded slowdown of a job is defined mathematically 

as: 

Bounded Slowdown = Ceil(Max(Response time/Max(Runtime,BOUND)),l) 

where, Response time is the sum of partial response times of a job (in case of 

preemption) or the normal response time and Max(Runtime, BOUND) returns 

the maximum among its two arguments. The second argument of Max is a 

threshold that is used to limit the influence of short jobs on the slowdown. 

Ceil would return the nearest integer greater than equal to the argument. 

• Makespan: In the context of groups, the finishing time of the last job or the 

total termination time of all jobs is called the makespan. Minimizing 

makespan may be an objective of scheduling depending on the domain we are 

working with. For instance, consider a set of N tasks. Finding a minimum 

makespan problem is NP-Hard. 
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• Utilization: The percentage of machine (a cluster in our case) that is involved 

in actual work is called utilization. Mathematically speaking, it is the ratio of 

work done to total work possible within a specified time interval is called 

utilization. Likely causes for low utilization are fragmentation and improper 

scheduling policy. 
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6. Scheduler Design 

The optimization module of the simulator has three main components - group creation 

module, job plan module and search tree creation module. The block diagram of the 

optimization module is shown below. In the following sub-sections we will be describing 

each of them in detail. 

Group 
Creation 
Module 

Group Scheduler 
Module 

Job Plan Search Tree 
Creation 
Module 

Virtual 
Scheduling 

Group 
Finish 
Time 

Permutation 
Generator 

Branch 
and 

Bound 

Figure 5 - Block Diagram of Group Scheduler 

6.1 Job Group Creation 

Limited size groups are allowed to form as the workload becomes heavy ie. when jobs 

begin to get accumulated in the waiting queue. The criterion for group formation is based 

on the work done by the jobs, their average runtime and total size. This makes sense as 

optimization can be more effective when we have sufficient number of jobs at hand. A 

group is said to have formed when the following criteria are satisfied: 

• Minimum number of jobs gets accumulated in the waiting queue. The number of 

jobs depends upon the type of currently running slice. 
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• The jobs are also required to occupy more than the machine size to ensure that 

there is room for optimization. 

• The ideal average runtime of the grouped jobs is lower than a factor times the set 

runtime for the type of current slice. 

6.2 Scheduling Algorithm 

The scheduling algorithm below (Figure 6) is straight forward and is implemented as part 

of the group scheduler object. The algorithm switches between groups and normal time 

shared SCOJO-PECT scheduling. The algorithm is framed such that no two groups of the 

same slice types can be formed simultaneously. Broadly the scheduling can be divided 

into two categories: scheduling within a group (ie. when a plan exists) and otherwise. In 

the former case, the algorithm does the following steps in the order specified: 

• Always starts the previously pre-empted jobs on the same nodes 

• Start the plan jobs when their schedule times are reached 

• Try backfilling pre-empted, waiting and plan jobs from other slices into the group 

When not in a group, the algorithm would follow the steps in the order specified: 

• Start the previously pre-empted jobs on the same nodes 

• Try backfilling jobs from plan into the current slice 

• Try backfilling pre-empted, waiting and plan jobs from other slices into the group 

An additional check for backfilling plan jobs has been implemented. The implementation 

details are specified in Section 7. 
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if(currentState ===== STATE.NONE) 
updateSliceTimes() //get new slice times from share controller 

if(SubmitEvent && inGroup(currentState)) 
try dynamicBackfill_intoPlan(job) //backfills job into current slice 

if(SubmitEvent && !inGroup(Med_OR_Long_State) || (FinishEvent && currentTime == 
plan[currentState].groupFinishTime) || plan[currentState].size == 0) { 

jobgroup = create JobGroup() 
if(jobgroup!=null) { 

plan = Optimize() 
if(plan!=null) inGroup(currentState) = true 

} 
} 
if(inGroup(currentState)) {// when executing inside a group 

if(BeginSliceEvent) { 

// start previously preempted jobs on the same nodes in current slice 
for(job : preemptedQueue[currentState]) 

schedule Job(job) 
} 

recalculate_plan() //recalculate the schedule times for jobs in plan 

planjobs = plan[currentState].getNextJobs(currentTime) 

/* start planjobs that start at current time */ 
for(job : planjobs) { 

if(schedulable Job(j ob)) 
schedule Job(job) 

else break 
} 

// try starting waiting jobs of same type 
for(job : waitingQueues[currentState]) { 

if(schedulable Job(j ob)) 
schedule Job(job) 

} 

// try to smart backfill preempted jobs on same nodes into the current plan slice 
for(queue : preemptionQueues) { 

if(!queue[currentState]) 
if(noConflictWithPlan()) 

backfillNonTypePreemptedJobs_intoPlan(jobPreemptionQueues[i]); 
} 
//tries backfill from plans of other slice 
backfillPlanjobs(plan); 

// try to smart backfill waiting jobs into the current plan slice 
for(queue : waitingQueues) { 

if(! queue [currentState]) 
if(noConflictWithPlan()) 

backfillNonTypeWaitingJobs_intoPlan(jobWaitingQueues[i]); 

- 2 8 -



else {// normal preemptive scheduling when not within a group 
if(BeginSliceEvent) { 

for(job : preemptedQueues[currentState]) // start previously preempted jobs 
if(schedulable Job(j ob)) 

scheduleJob(job) 
} 

for(job : waitingQueues[currentState]) // try starting jobs from waiting queue 
if(schedulableJob(job)) 

schedule Job(job) 

tryEasyBackfill(currentState) 

/* SMART backfilling */ 
for(queue in preemptionQueues) { // sorted by increasing runtime class 

for(job in queue) 
if(jobFits() && noCollisionwithCurrentSlice(job)) 

schedule Job(job) 

} 

for(job in other plan) { // try to backfill jobs from plan 
if(jobFits() && noCollisionwithCurrentSlice(job)) 

schedule Job(job) 
} 

for(queue in waitingQueues) { // sorted by increasing runtime class 
for(job in queue) 

if(jobFits() && noCollisionwithCurrentSlice(job)) 
schedule Job(job) 

} 
} 

Figure 6 - Scheduling algorithm 

6.3 Job Plan Creation 

A job plan (otherwise referred as 'plan') in our definition is a scheduling frame that 

essentially does a virtual mapping of jobs in the current group to the processors for the 

duration between group start and group finish times. Figure 7 illustrates the steps until 

this point. The region between the two dark arrows comprises the plan. Evidently, plan 

can consist of jobs in the current group as well as previously executing jobs. It is 

important to observe that group finish times could also coincide with the finish times of 
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previously running jobs. In order to account for this possibility, the running jobs are 

added to the plan and later removed after computing the group's finish time. Note that the 

figure shown below does not involve time sharing. Scheduling from plan in a time shared 

environment is performed using an additional step - recalculating the plan (see Section 

6.3.2). 

Waiting Selected Group Start Group Finish 
Queue Group Time Time 

J J i l l RiHioing Job 
HH Plan j o b 

Figure 7 - Group selection and mapping the plan 

6.3.1 Virtual Scheduling 

A virtual scheduling part is an important module of plan creation. Virtual scheduling is 

nothing but an intermediary scheduling step performed with a copy of running queues 

and other scheduling parameters like free nodes and current time. This helps in 

determining the schedule time (or start time) of individual jobs for each permutation in 

the group. Whenever the event corresponding to the group start time is encountered, we 

switch from normal scheduling to plan scheduling and jobs that have their schedule time 

set to the current time are scheduled. In order to avoid redundant execution of the same 

jobs, they are then removed from the waiting queue. 
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This also includes storing information about the unused nodes. The nodes as well as the 

duration for which they remain unused are saved in a vector. This information is useful 

for determining jobs eligible for backfilling. 

6.3.2 Plan recalculation 

In order to deal with intricacies within SCOJO-PECT (time sharing and smart-

backfilling), a recalculation of the plan is necessary. Recalculation is done at each point 

of time do update the schedule times of the jobs in the plan. These jobs are virtually 

scheduled again with the currently running jobs in the machine. Once the jobs are 

checked for successful execution until the end of slice they are started. This is essential as 

the smart backfilling can cause some jobs to finish early which in turn would affect the 

schedule times. A future option is to provide a re-optimization at this point of time. 

6.3.3 Determining Group Finish Times 

Setting group finish time is critical to the scheduling algorithm as certain schedules can 

MAXUTIL = Integer.MINVALUE; 
initialUtil = getCurrentGroupUtil(start, current); 
for each job scheduled in plan {/* jobs in plan ordered in ascending order of finish times */ 

util[i] = getCurrentGroupUtil(start, fmishTime); /""machine utilization after each job gets 
scheduled*/ 
} 
totalUtil = getCurrentGroupUtil(start, finish); /* utilization from group start to end */ 
for all values of util { 

if (minjobsO) { 
if(util[i] > MAXUTIL * ( 1 - delta)) { fallowing small variations in utilization*/ 

MAXUTIL = util[i]; 
set group finish time as current job finish time 

} 
else if (util[i] > getminUtil()) 

set group finish time as current job finish time /* ie. guarantee minimum jobs and good 
utilization*/ 

} 
} 

Figure 8 - Algorithm for computing group finish times 
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dramatically degrade the group's system utilization. We had to come up with a strategy 

that would ensure a minimum number of jobs get scheduled and utilization remains 

reasonably high within the group. The algorithm (Figure 8) takes these into consideration. 

In the first place, we sort the running and plan jobs according to their finish times. This 

helps us in calculating the utilization from the group start time to the finish time as a 

contribution of each job. 

In Figure 9, group finish time is set to be the termination time of job 5. This makes sense 

as the utilization is high enough within the group. The 'delta' value allows some degree 

of variation in utilization to happen as illustrated in Figure 9. The utilization plot in 

Figure 9(b) shows the utilization drop happening after job 5 has finished. This prompts us 

to decide job 5 to be group finish job. 

Group Start 
Time 

Group Finish 
Time 

Running Job 

Plan job 

Time 
Figure 9 - (a) A sample plan after each job is virtually scheduled (b) Plot of utilization for the plan 

- 3 2 -



If utilization decreases at a drastic rate, we check if the current value still remains above a 

certain threshold (minUtil). We eventually assign the current job termination time as the 

group finish time. In Figure 9, the sudden dip in the curve decreases the utilization 

drastically and hence we set the group finish to the termination of job 5. Though the 

group finish time is calculated, the actual job corresponding to the group finish may end 

earlier. If the group-finish job ends up completing its execution in a non-type slice, we 

assert that the group would be finished upon encountering the next finish event within the 

group slice. This was needed due to the following reasons: 

• The job corresponding to the group finish time may end up finishing in other 

slice. 

• Enable more groups to be formed as the algorithm without this condition would 

reduce duration of in-group execution. 

6.4 Search Tree Creation 

There are basically three core components in this module: (a) Group splitting (b) 

Scheduling order is created using a permutation generator, and (c) Branch-and-Bound 

design. 

6.4.1 Group Splitting 

Once the group is formed, long-wide jobs are optimized first. Long-wide jobs are 

specifically chosen as slowdown and utilization are likely worst affected by the 

contribution of these jobs. A group is equally split into limited size sub-groups if the 

original group size is equal to the maximum specified group size. These sub-groups are 

allowed to permute themselves and the different orderings create the search tree. As the 
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complexity of determining good global schedules is exponential in time, a hierarchical 

search would enable finding locally good schedules. These schedules are later on merged 

and optimized separately to form a globally good schedule based on the criteria described 

later in Section 6.4.4. 

6.4.2 Permutation Generator 

This module basically generates the permutation of the jobs (or job ordering) of the jobs 

in the group. The discrepancy is calculated apriori on each iteration. The discrepancy 

values and schedules follow a many-to-one relationship. The discrepancies are generated 

in the depth-first search order that that can be obtained from the search tree discussed in 

Section 3.3. The sequence follows the order of generating the discrepancy in a search 

tree. For instance, the discrepancy starts off with 0, 1, 1,2, 1,2, etc. The reason to have 

such a sequence of discrepancies was to allow sufficient re-orderings among the jobs so 

as to bring about significant differences between consecutively generated schedules. Only 

schedules that have discrepancy value above a threshold are virtually scheduled and 

inserted into the search tree. Furthermore we allow alternate schedules to be generated 

from the same discrepancy as a result of force-shifting (see Section 6.5). This can be 

visualized as a kind of force-backfilling where jobs in the virtual plan are backfilled even 

if the incoming job could not be accommodated within a hole. The criteria to decide 

shifting is based on the ratio of the length of the hole to the remaining runtime of the job. 

6.4.3 Branch-and-Bound design 

Branch-and-Bound has much significance owing to its ability to prune irrelevant regions 

(or sub-trees) during search. Moreover, pruning can reduce the amount of memory 
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required. In our optimization problem, discrepancy based search can be improved by 

devising a suitable metric to cut-off certain branches from exploring. A monotonically 

increasing function of the initial schedule can be used as the upper bound for branch-and-

bound metric. We explore paths that have total metric less than current best path. Total 

slowdown of jobs in group would be appropriate criteria that would match our objective. 

If the metric stays within the current best value, we virtually schedule each job after 

inserting them into their appropriate positions in the tree. Additional pruning can be made 

possible using slack. Slack value could be employed to discard certain schedules from the 

search tree. 

6.4.4 Best Schedule Selection 

Once all the different permutations have been successfully scheduled, they are sorted in 

increasing total slowdown order. The schedules having the least three slowdown values 

are selected. The best amongst the three is selected based on a weighted function. 

Consider two schedules 'a' and 'b'. Schedule 'a' would be chosen against 'b' if the 

following condition is satisfied. 

(Ma > a * Mb) && (U a > P * Ub) && (AvgRTa < y * AvgRTb ); where, 

Ma, Mb - Makespan of schedules 'a' and 'b ' , 

Ua>Ub - Utilization of schedules 'a' and 'b' , 

AvgRTa, AvgRTb - Average response times of schedules 'a' and 'b ' , and, 

a, p, y - constants (values are specified in Section 7.5) 
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6.5 Search Algorithm for Optimization 

The search takes place in two levels as shown in Figure 10 - (a) permuting all 

combinations of the selected long-wide jobs in group (b) searching a limited number of 

remaining jobs for sub-groups and finally when merged together. Long-wide jobs are 

limited in number so as to parse through all scheduling combinations. If sufficient 

numbers of long-wide jobs are not available, the algorithm proceeds to check whether the 

group is large enough to be equally partitioned. 

Level 1 -Optimize Long-wide jobs 
LWn are long-wide jobs in group, Jn are the remaining jobs 

LW1 
LW2 
LW3 
LW4 

Permutation 
Generator 

Virtually scheduled 
and inserted to search 

tree 

Level 2 - Heuristic based discrepancy search 
Splitting into sub-groups from initial schedule 

J1 LW1 L W 2 ! J2 LW3 J3 J4 J5 LW3 

Optimized using heuristic search and merged 

Figure 10 - Hierarchical search design 

The search algorithm starts off with the heuristic generating the initial schedule. The 

subsequent job orderings are created by the permutation generator. Splitting into sub­

groups would experience the heuristic based search. If all the jobs in a schedule are 

scheduled without branching, the schedule is added to a separate vector and is potential 

candidate for the best schedule. The search algorithm is shown below in Figure 11. 
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Sort the limited number of long-wide jobs 
Permute all combinations to find the best schedule of long-wide jobs 

for each job in the current group { 
for each job in the current group { 

Virtually schedule without updating freenodes and current time 

} 
Virtually schedule the next long-wide job from the best schedule without updating 
freenodes and current time 
nextJ[] = heuristic.getNextJob(); /""heuristic would return the next job*/ 
Virtually schedule the job 

} 

/*At this point, you have the initial job order from the heuristic saved in nextJ[]*/ 
if(nextJ.length == Constants.MAXGROUPSIZE) { 

Split the group equally to form sub-groups 
} 
else { 

The group itself is the sub-group 
Sort limited jobs according to secondary heuristic 

} 
for each sub-group { 

sTree = Create new Search Tree per sub-group 
Initialize the permutation generator with the sub-group job order 
while permutations does not exceed the maximum specified schedule limit { 

Compute the discrepancy of the next permutation 
Create new plan for new job ordering /*starts reordering from the first job*/ 
Generate the job permutation 
for job j in permutation { 

branched = Create tree nodes for j and insert them in the search tree 
/*the above step comprise of virtually scheduling the job into a temporary 
Plan and computing the schedule*/ 

} 
// try shifting jobs to form alternate schedule 
forjobj in permutation { 

if( tryForceShifting(j)) { 
newJobOrder = createNewJobOrder() 
restarts loop with the new shifted order 

} 
else { 

branched = Create nodes for each job and insert them in the search tree 
/*the above step comprise of virtually scheduling the job into a 
temporary plan, and computing the schedule*/ 

} 
} 
Count the total number of nodes pruned with BnB 

} 
} 

- 3 7 -



Bsched = sTree.getBestSchedule(); //selects the best schedule amongst the candidates 

for each job j in Bsched { 
Virtually schedule j into the plan 

} 
plan.computeGroupFinishTime(); // computes the group finish time of the current group 
return; 

Figure 11 - Search algorithm used for optimization 

Force-shifting plays an important role in generating alternate schedules. It works as 

depicted in Figure 12. Job J3, with a runtime 'x', is inserted into the hole, with a width 

'y', if the ratio of 'x' to 'y' is less than a threshold value. Job J3 would push other jobs 

scheduled after it to produce a new schedule. 

Time 

Figure 12 - Force-shifting plan jobs 

6.6 Backfilling 

We have used conservative backfilling within the group. Apart from these, smart 

backfilling is also used. Conservative backfilling has been implemented in different ways 

as described in the Sections 6.6.2 and 6.6.3. 
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6.6.1 Smart Backfilling within groups 

This feature has been integrated with the SCOJO-PECT scheduler. Its implementation 

deviates from the original when trying to smart backfill jobs within a group. Conflict 

resolution with the plan has to be checked before starting the jobs so that jobs to be 

scheduled from the plan remains undisturbed. The jobs are scheduled right away if 

sufficient nodes are free. While pre-empted jobs runs on the same nodes, waiting jobs 

start on excluded resources to make sure that they do not conflict with the resources of 

the preempted jobs of the same slice type. The latter condition is essential to maintain 

continuous execution of the jobs in pre-emption queue. 

Our search strategy combined with backfilling (whose implementation is discussed 

below) is designed to deliver good system utilization. Consider the set of eight distinct 

jobs in Table 3. 

Job ID/ Attributes 

Job 8 

Job 9 

Job 10 

Job 11 

Job 12 

Job 13 

Job 14 

Job 15 

Type 

MEDIUM 

MEDIUM 

MEDIUM 

MEDIUM 

MEDIUM 

SHORT 

LONG 

MEDIUM 

Submit Time 

10 

35 

40 

41 

50 

75 

77 

90 

Runtime 

65 

40 

30 

70 

50 

15 

80 

15 

Size 

5 

3 

6 

7 

5 

4 

3 

6 

Table 3 - A typical example of smart backfilling within group 
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Figure 13 demonstrates the scheduling happening within a group. As jobs can be 

backfilled into other slices, the possibility of jobs getting finished earlier is addressed by 

recalculating the plan on each event. For simplicity, let us assume that groups are formed 

when more than five jobs of same type are waiting in the queue. The events happen 

chronologically from left to right as shown by the time advancement below waiting 

queue. The letters 'L', 'S ' , 'M' denotes the long, short and medium slice respectively. 

The dotted line signifies the end of slice. The jobs of same job classes have similar 

shades. Normal SCOJO scheduling happens until the end of the second small slice. 

Though we have three medium jobs (Jobs 8,9 and 10) at time 41, Jobs 8 and 9 cannot be 

backfilled into the second long slice (even when sufficient nodes are available) as those 

nodes are occupied by Job 1. Newly scheduled job always starts in nodes not occupied by 

the pre-empted jobs of the same slice type. When the time advances to 41, we have five 

medium jobs (Jobs 8-12) which can be grouped together for optimization. Once the 

optimized scheduling order is generated, the jobs would try to stick to the plan unless 

backfilled. Say the group ends when job 15 gets finished. The case of jobs 1 and 14 are 

important to observe as they are getting backfilled into the group slice. In such a scenario, 

we have to ensure that the job starts on the same nodes and the optimized plan is not 

disturbed. Short job 13 is an example of dynamic arrival inside a group. As sufficient 

processors are available, it is backfilled and started immediately. 
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Waiting Queue 

Executing within a Group 
Figure 13 - Time slices and backfilling / scheduling within a group 

Job 11 despite being a medium job continues executing (smart backfilled) in the next 

long slice as nodes remain free after Job 1 terminates. The group finishes once Job 15 

gets terminated, and we begin normal SCOJO-PECT execution. 

From the above example, we see that backfilling is performed at the following instances: 

• Within a group until the end of current slice 

o Backfill preempted j obs of other slice types when no conflict with plan 

o Backfill plan jobs from other plans to the current slice 

o Backfill waiting jobs of other slice types when no conflict with plan 

• Outside a group 

o Backfill preempted jobs of other slice types 

o Backfill jobs from plan 

o Backfill waiting jobs of other slice types 
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6.6.2 Backfilling upon Dynamic Submission 

Irrespective of the currently running slice, individual dynamic job submission events 

within the group scheduling frame may have potential chances to be backfilled into the 

plan. If such jobs returns positive upon checking for conflict resolution with plan within 

the current slice, they are scheduled at the time when available resources are free. 

Dynamic jobs are guaranteed to run within the group only until the end of slice or until it 

finishes (whichever happens first). In the former case, the job would finish earlier and 

gets preempted to its respective preemption queue. This feature is particularly expected to 

enhance the response times of medium and short jobs as they are potential candidates to 

be plugged into a medium or long group. The backfilled job runs in excluded resources so 

that it does not conflict with the pre-empted jobs of its own slice type. 

6.6.3 Plan Backfilling 

Plan backfilling follows a conservative approach as discussed in Section 5.1.4. 

Without Plan 

After Plan 
Backfill' 

Figure 14 - Plan backfilling example 
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The backfilled job may alter the created plan which reflects the optimal schedule of jobs. 

This has been implemented to compensate the incomplete discrepancy tree search which 

may miss out good schedules. Plan backfilling intentionally deviates from the actual 

schedule order. An example is depicted in Figure 14 where darkened job is been 

backfilled into the plan without altering other jobs except the ones scheduled after them. 

As you can observe, the resulting schedule is more compact. Plan backfilling is also 

employed during recalculation. In this case, the earlier plan would comprise of pre­

empted and plan jobs. Pre-empted jobs are scheduled on the same nodes and new jobs try 

to occupy excluded nodes for the same reason explained for smart backfilling. 
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7. Implementation Details 

This section would comprise a detailed breakdown on the implementation aspects of the 

scheduler. Basically, the jobs are classified into three types based on runtime: 

• Short - those having runtime less than ten minutes 

• Medium - those having runtime greater than short and less than three hours 

• Long - those having runtime greater than medium but less than eight hours 

Slices are scheduled on the machine by the share control object (part of SCOJO-PECT). 

Slices are of three different types - short, medium and long. Ideally, jobs of one type are 

scheduled on identical slices. For instance, short jobs are only scheduled in short slice 

and so on. The switching overhead between slices is set to sixty seconds. 

During optimization, the response times of the virtually scheduled plan jobs were 

calculated as follows: 

For a longjob j : 

j .responseTime = actual current time - j.getSubmitTime() + (virtual 

current time + j.getRemainingRuntime() - actual current time)/0.73 

For a medium job j : 

j . responseTime = a c t u a l cu r ren t time - j .getSubmitTime() + ( v i r t u a l 

cur ren t time + j .getRemainingRuntime() - a c t u a l cu r r en t t ime) /0 .265 

This is done to simulate the real time sharing environment. The time shares are absent 

during optimization. In order to address this issue, the time within the optimization frame 

is expanded by those factors. Share controller allocates 73% of the machine for long 

slices and 26.5% are allotted for medium slice. The same factor is used to expand the 

time. 

- 4 4 -



7.1 Data Structures 

Listed below are the data structures used to develop the different modules of 

optimization. The code was written in Java (SDK 1.5.3) using NetBeans IDE. One 

external library (colt.jar) comprising the Lublin-Feitelson workload model [17] was used. 

The heuristic based search tree uses the following data structures: 

• Search Tree: The branch-and-bound tree was implemented using the tree data 

structure using arrays of nodes. 

• Priority Queue: Priority Queue for sorting best schedules based on branch-and-

bound criteria (total slowdown) is implemented. 

The optimizer uses the following data structures: 

• Unused nodes information: A vector of unused object stores information about the 

duration for which the nodes are available. This is implemented as part of the 

optimizer object and is later used for resolving conflict with the plan. 

• Plan object stores the jobs in a vector. Jobs are added into the vector upon virtual 

scheduling and removed once scheduled. Array Lists are also used. 

7.2 Group Creation 

The criteria for group formation comprise of minimum group size, minimum machine 

utilization and work done by the jobs. 

• The minimum number of jobs in a group is set to five for long jobs and ten for 

medium job class. The maximum number of jobs in a long group is set to 30 and 

in a medium group is set to 20. These values are based on the results provided in 

the Section 9.1. 
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• If the current slice is long, then the total job size of the waiting jobs should be 

greater than twice the machine size for long slice. On the other hand, for a 

medium slice, the total job size of the waiting jobs should be greater than 1.5 

times that of the machine size. 

• For a long slice, the ratio of total accumulated work to the machine size should be 

greater than the product of lambda (constant) and average runtime of the waiting 

jobs. Medium slice would have a different value for lambda. The average runtime 

for long jobs is set to 15000 and lambda is set to 1. For medium jobs, the average 

runtime is set to 800 and lambda is assigned the value 2. 

7.3 Search Module 

The search module encompasses the implementation of the search algorithm. Notable are 

the values of the parameters. The permutation generator is allowed to loop for a 

maximum of 10000 iterations, thus generating the same number of schedules. Assuming 

an average group size to be 20 in a workload of 10000 jobs and an average number of 

groups to be 50, approximately 1,000,000 nodes would be generated per group. Nodes are 

identified with four attributes: job number, count of current branches emanating from the 

node, maximum branch limit, and pointers to other nodes. 

We proceed through the first level of search only when the minimum number of long-

wide jobs is greater than 3. The criteria for selecting long-wide jobs differ according to 

the slice we are in. For a long slice, long-wide jobs are differentiated when the job has a 

minimum of one-fourth the size of the machine and having a runtime of 15000. 

Alternatively, for a medium slice, any job having a minimum size of one-tenth the 

machine size and runtime of 800. The maximum number of long-wide jobs permitted in a 
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group is 6 because we do a complete search for the best combination of jobs. Force-

shifting is performed when the remaining runtime of the plan job is at most one and a half 

times the length of the hole. If shifting has taken place, the jobs scheduled after the 

shifted job is removed and a new shifted order is generated and later scheduled. The best 

schedule is determined by the weighted function discussed in Section 6.4.4. The constants 

were set to the following values: a =1.1, p = 0.95, y = 1.1. 

7.4 Branch-and-Bound 

While LSF heuristic would determine the schedule ordering, total bounded slowdown of 

the jobs in the schedule would determine its efficiency. After each job is virtually 

scheduled in the permuted order, its slowdown is calculated based on estimated response 

times achieved (explained above). The number of pruned nodes was counted at the end of 

the iteration. Section 5.1.5 describes how to compute bounded slowdown. The value of 

BOUND was set to 600 seconds. 

7.5 Summary of Values Used 

The constants used for my implementation, initialized values of variables are shown in 

Table 4. 

Constants 

Minimum group size for long slice 

Minimum group size for medium slice 

Minimum long-wide jobs in group 

Values 

5 

10 

3 
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Maximum long-wide jobs in group 

Relative response time bound 

Iterations in search tree 

Threshold ratio for force-shifting job 

Avg. response time factor (a) 

Utilization factor (P) 

Makespan factor (y) 

Avg. runtime for long jobs 

Avg. runtime for medium jobs 

Limit on group size 

Slices switching overhead 

Number of kind of job classes 

Default machine size 

Number of jobs in workload 

Classification of short jobs 

Classification of medium jobs 

Classification of long jobs 

Classification of narrow 

Classification of medium size 

Classification of wide size 

Workload share allocated for long jobs 

6 

600 

10000 

1.50 

1.1 

0.95 

1.1 

15000 

800 

30 

60 sec 

3 classes: short, medium, long 

128 

10000 

runtime < 10 min 

60 sec < runtime < 3 hours 

runtime > 3 hours 

size < 10% of machine size 

10% of machine size < size < 50% of 

machine size 

Size > 50% of machine size 

73% 
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Workload share allocated for medium jobs 

Seeds tried for workload 

Real traces used for experiments 

26.5% 

71,31,35,73,7 

SDSC, LANL 

Table 4 - Implementation values 
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8. Experimental Setup 

In this section I would like to elaborate on my input dataset and evaluation plan. The 

results are obtained after executing the simulator on our Horus cluster, a 16 node 2-way 

machine with 512MB RAM. The Horus cluster runs Debian Linux with kernel version 

2.6.6. The only external library used is the Lublin-Feitelson model [17]. The cluster had 

JDK version 1.5.0_07 installed. 

8.1 Input Workload Specifications 

Input data is chosen to be of relatively heavy loaded (less inter-arrival times and good 

system utilization) as potential for group formation are higher and hence creating higher 

chances for optimization. The input workloads were generated from Lublin-Feitelson 

model. All workloads comprise of 10000 jobs. The following four traces (generated by 

using different seed values) were selected. NtyPe refers to the percentage of jobs that 

belongs to that type whereas, Wtype denotes the amount of work associated with the type. 

Table 5 describes the number of short, medium and long jobs in the workload, the amount 

of work done by them, average job sizes and average inter-arrival time of jobs. The 

model has generated workloads for default machine size of 128 processors. 

Work 
Load 

Seed 71 
Seed 31 
Seed 73 
Seed 35 
Seed 7 

% of Jobs 

Nshort 

64 
63 
64 
65 
64 

^med 

19 
20 
20 
19 
20 

J^long 

17 
17 
16 
16 
16 

% of Work 

W s h or t 

0.5 
0.5 
0.4 
0.5 
0.5 

" med 

26.5 
25 

26.5 
27 
26 

" long 

73 
74.5 
73.5 
72.5 
73.5 

Avg. Job Size 

Sshort 

9 
9 
9 
9 
8 

^med 

17 
16 
17 
18 
17 

^long 

19 
20 
21 
20 
21 

Avg. Inter-
Arrival 

Time (sec) 
808 
859 
797 
800 
839 

Table 5 - Characteristics of synthetic workloads 
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Table 6 describes the features of real workloads under consideration. Jobs having runtime 

greater than 8 hours and occupying at most 10% of the machine were considered long-

narrow jobs. The inter-arrival times for real traces were much higher than those used 

from the model. 

Work 
Load 

SDSC-
BLUE 
LANL 

% ofJobs 

N short 

73.7 

61.5 

i^med 

17.7 

34 

^ long 

8.6 

4.5 

% of Work 

W s hort 

1 

2 

" med 

15 

41 

" l o n g 

84 

57 

Avg. Job Size 

^short 

34 

74 

^med 

114 

92 

^long 

112 

244 

Ratio of 
long-

narrow to 
long jobs 

0.79 

0.52 

Table 6 - Characteristics of real workload traces 

The workload distribution is quite different and it is clear that long narrow jobs decrease 

the benefits from groups as they cannot be packed well to deliver good utilization. SDSC-

BLUE trace runs on 1152 processors while LANL runs on 1024 processors. All the above 

traces also had an equally good utilization (> 75%). We neglect those jobs which have 

negative runtimes or sizes as they represent either jobs that were terminated abnormally 

or dummy jobs inserted by system administrators. Observe that percentage of long 

narrow jobs in traces is 3-4 times higher than workloads generated by the model. This 

would mean that 70-75% of the long and medium groups are formed are narrow jobs. 

This would have implications as described later for worst cases in Section 9.4. 

8.2 Evaluation Plan 

In order to prove the efficiency of optimization, the following tests were used: 

1. Firstly, we determine the optimal group sizes for long and medium jobs that gives 

the best results for average relative response times. 
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2. As the number of groups formed would reflect the level of optimization, a table of 

groups of job types created would be included for each workload. 

3. For each workload, comparison curves for average relative response times and 

average response times, average wait times and machine utilization with and 

without optimization for conservative SCOJO-PECT would be plotted. 

4. The effect of dynamic backfilling upon submission on the wait times of jobs 

would be analyzed and interpreted. 

5. The efficiency of pruning achieved through branch-and-bound for the discrepancy 

search tree would to be ascertained by keeping track of the percentage of explored 

nodes. 

6. The gain achieved from the second level of hierarchical search can be plotted 

against the actual optimized results to understand the contribution of the second 

level search and branch-and-bound. 

7. Smart-backfilling is part of SCOJO-PECT. Its influence on the optimization 

would be studied. 

8. Finally to conclude, we have shown the results of our optimization relative to the 

bottom line approach. 
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9. Experimental Results 

9.1 Best group sizes 

The chart below indicates the variations in average relative response times for different 

group sizes for medium and long jobs. 

Variations in average relative response times with group sizes 

10 

I 

i 
> 
< 

• Medium 

I Long 

4.97 4.81 4.87 4.97 4.85 5.09 4.83 4.79 4.85 

8.48 8.14 7.69 7.98 9.03 8.51 7.46 8.47 9.03 8.29 7.46 8.47 9.03 8.29 7.46 8.47 

4.96 4.83 4.79 4.85 4.96 4.83 

I Medium 

I Long 

4.79 

Combinations of L and M group sizes 

Figure 15 - Relationship of avg. relative response times and group sizes 

The chart in Figure 15 shows the group sizes of 10, 20, 30 and 40 jobs. M10 L20 would 

mean a group of 10 jobs for medium and 20 for long jobs. As seen from Figure 15, the 

group size giving the best results was found to be L30 M20. This group size has been 

used for all the following tests. 

9.2 Groups formed 

The number of groups formed is critical to measure the effectiveness of optimization. 

More importantly, the percentage of jobs being optimized and the groups formed per job 
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class has to be tabulated. The groups formed for different workloads are displayed in 

Table 7. 

WORKLOAD 

SEED 71 

SEED 35 

SEED 31 

SEED 73 

SEED 7 

SEED 13 

SDSC 

LANL 

#M GROUPS 

24 

23 

20 

30 

37 

29 

9 

50 

#L GROUPS 

31 

38 

39 

29 

32 

27 

0 

11 

# GROUPS 

55 

61 

59 

59 

69 

56 

9 

61 

GROUPING% 

17% 

19% 

18% 

18% 

23% 

16.5% 

3% 

19% 

Table 7 - Number of groups formed per workload 

Notice that SDSC trace restricts groups to be formed due to its workload distribution 

which are also reflected in the number of days of workload creation. 

9.3 Efficiency of optimization 

In this section, we will compare the average slowdown, average response times, average 

wait times, utilization and gains from branch-and-bound and bi-level search. We shall 

discuss the results and implications of the synthetic workloads first followed by the real 

workloads. 

9.3.1 Average Bounded Slowdown 

Bounded slowdowns charts are displayed in the figures below. Clearly, the optimized 

version of the SCOJO-PECT scheduler has brought about an average of 9% (for medium) 
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and 15% (for long) improvements in average bounded slowdown. Notable are the 

improvements achieved using seed 31 (Figure 16) for individual classes are 49% for long 

narrow and medium and 26% for long job classes. 

A v e r a g e b o u n d e d s l o w d o w n ( s e e d 3 1 ) 

Wide 
All 

Medium 
Narrow 

14. 1 \17.8\4.42\5.08\9.24\ 10.4\20. 8\27.4 

A p p r o a c h e s 

Figure 16 - Comparison of average bounded slowdown (seed 31) 
Average bounded s lowdown (seed 71) 

Narrow 
i Medium 
\A8 

Wide 

5.65 

4.15 
4.26 

3.25 
12.7 \17.13\ 4.85 

2.44 

2.04 
2.51 

1.94 

5.29 

6.77 

5.5 
8.69 

3.82 
5.44 

4.59 

Long 
TSL 

13.21 

10.74 
10.3 \19.39\ 27.9 

Long 
0&-
3.93 
7.91 

6.77 

Wide 

M e d i u m ^ 
Narrow g> 

Approaches 

Figure 17 - Comparison of average bounded slowdown (seed 71) 
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In Figure 17, SCOJO-PECT had been outperformed by a maximum of 10% for short, 

21% for medium and 55%) for long job classes. Though the algorithm on the whole gives 

a fair advantage over SCOJO-PECT, it fails to optimize the wide jobs. In general, wide 

jobs cannot be packed well into groups. Another reason for this effect pertaining to our 

approach would be that optimizing once per group would disregard the updated partial 

runtimes of the preempted jobs. As jobs continue to be scheduled in the SCOJO-PECT 

fashion upon preemption, wide jobs are badly affected. This effect is also visible in all the 

subsequent graphics below. 

Average bounded s lowdown (seed 73) 

Figure 18 - Comparison of average bounded slowdown (seed 73) 

For seed 73 (Figure 18), long jobs display a maximum improvement of 40% while the 

medium jobs account for only 22% improvement. 
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Average bounded slowdown (seed 35) 
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Figure 19 - Comparison of average bounded slowdown (seed 35) 
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Figure 20 - Comparison of Average bounded slowdown (seed 7) 

Figure 19 (using seed 35) gives 30% optimized results for relative response times in the 

case of long jobs. On the other hand, short and medium jobs are addressed less than 10%. 
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Figure 20 illustrates a similar comparison chart for seed 7. If wide jobs remain scattered 

over the trace, optimization would not provide much benefit as seen for long and medium 

jobs. 
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Figure 21 - Comparison of average bounded slowdown for SDSC-BLUE trace 
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Figure 22 - Comparison of average bounded slowdown for LANL trace 
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The graphic shown in Figure 21 and Figure 22 illustrates the comparison of SCOJO-

PECT and optimized SCOJO-PECT for real workload traces. The traces have a different 

workload distribution as shown in Table 6. The results got from traces are less promising 

due to higher inter-arrival times of jobs leading to a poor utilization. 

9.3.2 Average Response Times 

The response times reflect the amount of time spent for a particular job in the system. 

Response times are affected by the percentage of long and wide jobs as they consume a 

large portion of the system leading to greater wait times for shorter jobs. However, our 

optimal scheduling scheme in the average has shown to provide improvements of over 

12% in average response times. 

Average response times 

Workloads 

Figure 23 - Comparison of average response times 
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It is observed that traces experience larger number of narrow jobs. Consequently, these 

jobs are pushed behind by the heuristic resulting in worsening the response times of these 

jobs as visible from Figure 23. 

9.3.3 Average Wait Times 

Wait times are straight forward to understand, and logically wide jobs incur large wait 

times especially during heavy workload times when other jobs occupy the resources most 

of the time. The wait times have got better by an average of 10%. The comparison of the 

average wait times with and without optimization is shown in Figure 24. 

Average wait times 
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I All Opt-TSL | 2:12:25 | 2:35:41 [2:17:32 | 2:45:13 | 2:40:55 | 0:17:06 | 1:14:54 

Workloads 

Figure 24 - Comparison of average wait times 

The influence of dynamic backfilling upon submission on wait times is illustrated in 

Figure 25. Evidently, dynamic backfill does account for an average of 5% improvements 

in average wait times. Medium and short jobs are best served using dynamic backfilling 

as they can be readily started within a plan until the end of slice if sufficient nodes are 
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free. This prevents such jobs from waiting even though the jobs are of a different slice 

type. 

Comparison without dynamic backfill 
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Figure 25 - Effect of dynamic backfilling upon submission on average wait times 

9.3.4 Utilization 

In our approach we have tried to contain the utilization by restricting the utilization 

within a group to fall below a minimum bound. As discussed in 6.3.3, group finish time 

calculation permits minor variations in utilization to occur. The comparison of the overall 

machine utilization achieved is shown in Figure 26. On the whole, the optimization has 

produced a utilization drops by 1-2% which is acceptable. 

Seed 71 Seed 31 Seed 35 Seed 73 Seed 7 

• NoDyn OptTSL 

• All Opt-TSL 
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Plot of Utilization 
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Figure 26- Utilization comparison (SCOJO-PECT against Optimized SCOJO-PECT) 

9.3.5 Gain from Branch-and-Bound pruning 

Though pruning occurs in two distinct levels of the search tree, we are interested in the 

second level search where more permutations are tried. In summary, it was observed that 

pruning is not very beneficial (see Table 8). This may be due to the fact that largest 

slowdown heuristic based discrepancy threshold discards majority of the search tree 

thereby only allowing branch-and-bound to only focus on a smaller search space. Branch 

and bound is expected to have done better in the absence of our hierarchical search. 
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Workload 

Seed 71 

Seed 31 

Seed 35 

Seed 73 

Seed 7 

#TotaI nodes 

1709500 

2308200 

2530702 

2115736 

2340981 

#Nodes pruned 

69916 

92806 

211552 

113981 

112341 

Pruning % 

4% 

4% 

9% 

5% 

5% 

Table 8 - Contribution of branch-and-bound in pruning 

9.3.6 Gain from second level search 

The following graphs would determine the degree of optimization contributed by the 

second level of our hierarchical search. 

Average bounded slowdown (Seed 31) 

Figure 27 - Influence of second level search on average slowdown (seed 31) 
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This search is performed after merging the fully optimized long-wide schedule to the 

remaining non-optimized one. Largest slowdown first is used as the heuristic in this level. 

The number of groups formed with and without second level search are the same. Figure 

27 (using seed 31) clearly projects that second level search contributes little to the 

optimization framework. To be stressed medium and long jobs are optimized fairly in the 

range of 2-6%. The wide jobs without second level are getting equally good 

improvements as these jobs are optimized thoroughly. However, in summary, the 

influence of the second level search is lower than expected. The graphs pertaining to the 

comparisons of average response times and average wait times would be able to give a 

more conclusive picture. 

Average response times 

I Sec All TSL 

I All Opt-TSL 

All Opt-TSL 1 6:21:11 | 7:09:43 | 6:29:58 | 7:26:00 7:17:53 1:51:27 3:28:05 

Work loads 

Figure 28 - Comparison of average response times (with and without second level search) 

From the comparison above (Figure 28), the search was able to deliver only a maximum 

of 10% improvement in average response times. The average wait time comparison 

(Figure 29) also supports the graph of average response times. 
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Average wait times 

I All Opt-TSL 

• No Sec TSL 
• All Opt-TSL 

2:12:25 2:35:41 2:17:32 2:45:13 2:40:55 0:17:06 1:14:54 

Workloads 

Figure 29 - Comparison of average wait times (with and without second level search) 

9.4 Effect of Smart-Backfilling 

Smart-backfilling is an important strategy that is dynamically invoked to schedule jobs 

from other slices into the currently running slice. This assumes a conservative approach 

when backfilling jobs within a group. In this section, we compare SCOJO-PECT and 

optimized SCOJO-PECT; both devoid of smart backfilling. Naturally, switching off 

smart backfilling has been able to increase to increase the number of groups formed due 

to more queue-up of jobs. This has been shown in Table 9. 
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Workload 

Seed 31 

Seed 35 

Seed 71 

Seed 73 

Seed 7 

SDSC 

LANL 

#Medium Groups 

35 

34 

39 

40 

41 

18 

81 

#Lone Groups 

46 

39 

33 

32 

32 

9 

14 

#TotaI Groups 

81 

73 

72 

72 

73 

27 

95 

% of jobs grouped 

30% 

26% 

25.5% 

25.5% 

26% 

8% 

36.5% 

Table 9 - Groups formed without non-type backfilling 

The results for average bounded slowdown values without non-type backfilling is 

illustrated in the following figures. The results emphasize the effectiveness of our 

optimization approach. Firstly, we have plotted the results running the synthetic 

workloads (Figure 30, Figure 31, Figure 32, Figure 33, and Figure 34), followed by the 

real traces (Figure 35 and Figure 36). 
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Average bounded slowdown (Seed 31) 
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Figure 30 - Comparison of average bounded slowdown without smart backfilling (Seed 31) 

Average bounded slowdown (Seed 35) 
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Figure 31 - Comparison of average slowdown without smart backfilling (Seed 35) 

-67 -



Average bounded slowdown (Seed 71) 
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Figure 32 - Comparison of average slowdown without smart backfilling (Seed 71) 

A v e r a g e b o u n d e d s l o w d o w n ( S e e d 7 3 ) 
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Figure 33 - Comparison of average slowdown without smart backfilling (Seed 73) 
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Average bounded slowdown (Seed 7) 

35n 

30 -

25 -

I 20-
•a 
| 15-

W 10-

5 -

0 -

• Narrow 

• Medium 

WAII 

m Wide 

All 
TSL 

5.6 

7.94 

6.53 

18.06 

All 
Opt-

3.98 

6.12 

4.96 

19.87 

Short 
TSL 

3.39 

3.37 

3.4 

4.95 

Short 
Opt-

3.04 

3.26 

3.1 

4.95 

Med 
TSL 

6.07 

7.56 

6.73 

10.31 

Approaches 

Med 
Opt-

5.24 

7.07 

6.09 

11.08 

Long 
TSL 

16.14 

21.6 

18.83 

28.6 

Long 
Opt-

7.07 

13.29 

11.02 

31.84 

•Bit ' 
I f r Me 
r Narrc 

Wide 
Ml 
dium^y 

Figure 34 - Comparison of average slowdown without smart backfilling (Seed 7) 
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Figure 35 - Comparison of average slowdown without smart backfilling (SDSC BLUE) 
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Average bounded slowdown (LANL Trace) 
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Figure 36 - Comparison of average slowdown without smart backfilling (LANL Trace) 
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Figure 37 - Comparison of average bounded slowdown without smart backfilling (worst case) 
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Though optimized scheduling has been able to deliver on the average 25% improvements 

for long jobs and 15% for medium jobs, the short jobs experience only little 

improvements. The worst case behavior for average bounded slowdown is shown in 

Figure 37. Medium jobs were found to be served relatively better than long jobs for worst 

cases. Long jobs on the other hand was seen considerably worse. 

Average response t imes 
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Figure 38 - Comparison of average response time without smar t backfilling 

The average response time and wait times without smart backfilling have been improved 

by more than 12%. The comparison graphs are shown in Figure 38 and 

Figure 39. 

- 7 1 -



Average wait times 

9:36:00 

8:24:00 

7:12:00 

6:00:00 H 

4:48:00 

3:36:00 -\ 

2:24:00 

1:12:00 

0:00:00 

IAI ITSL 

1 

Seed 71 Seed 31 Seed 35 

7:57:23 6:14:02 6:31:28 

I All Opt-TSL | 3:54:12 [4:18:34 | 4:00:31 | 5:13:19 | 4:01:17 | 0:54:37 [2:04:07 

Workloads 

Seed 73 Seed 7 

9:00:50 

u 
7:03:23 

a 
SDSC LANL 

1:02:10 2:27:41 

IAI ITSL 

I All Opt-TSL 

Figure 39 - Comparison of wait times without smart backfilling 

9.5 Comparison against bottom line approach 

To further emphasize the efficiency of our approach, we are showing a comparison of our 

results against an approximation of the approach formulated in [40]. 
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Figure 40 - Comparison of our optimized approach with bottom line approach 
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This makes sense as we have similar objectives of reducing the average relative response 

times using discrepancy search based approach. Our results have stood fairly well for 

narrow and medium jobs as illustrated in the comparison charts below (Figure 40 and 

Figure 41). As seen before, the wide jobs are suffering due to the lesser optimization 

options available with limited group sizes. 

Average bounded slowdown (Seed 31) 

Figure 41 - Comparison of our optimized approach with bottom line approach without smart 
backfilling 

Figure 40 shows the comparison including smart backfilling. On the other hand, smart 

backfilling is switched off in Figure 41. The results point out that we were able to 

outperform their approximate approach using our optimization methods. We were able to 

produce improvements resulting in an average 10% for all sizes (except wide) of long and 

medium jobs. 
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10 . Conclusion and Future work 

In our approach, we have presented a group-based optimization algorithm designed for 

parallel job scheduling systems for a pre-emptive time-shared environment. The focus of 

our framework was to achieve consistent improvement in average bounded slowdowns 

while also not compromising machine utilization. 

As expected, the search-based optimizer was able to churn out good schedules and 

branch-and-bound search. Searching hierarchically using heuristics and domain 

knowledge paved the way for efficient movement through search space. The idea of 

creating a plan of virtually scheduled jobs and its integration to a time sharing scheduler 

required recalculating the plan. Dynamic backfilling upon submission has proved to 

benefit the average wait times. Conservative backfilling has been used throughout the 

optimization framework so as not to alter the positions of the optimized plan jobs. 

Comparison against the bottom line approach further emphasized the efficiency of our 

approach. 

The experimental results are quite promising after integrating our approach to SCOJO-

PECT, a course-grain time-sharing scheduler. We were able to achieve an average of 

16% better results for slowdown while only compromising a little over 1% in utilization. 

Due to various backfilling policies, re-optimizing at a point where the schedule might go 

critical could be a future addition. We foresee situations where user submitted runtime 

over estimates can affect the optimized job ordering. Evaluating optimization benefits in 

such scenarios are also planned. Having an intelligent selection of certain jobs from the 

group and fixing their schedule times while permuting other jobs also seems promising. 
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