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ABSTRACT

In general, most ecologists envision the “niche” as a central organizing tenet, and that 

particular parameters of the niche help structure biogeographic patterns of diversity, 

distribution and abundance. The major emergent alternative to the niche concept requires 

the inference of background stochasticity, and its application through null models. For 

example, rather than competitive interactions of species shaping the coexistence of 

species, “historical accidents of dispersal” have been suggested. In this thesis I explore, in 

some detail, the concept of niche using of null models.

In this thesis, two detailed and quite different null models are presented. The first, based 

on the “Mid-Domain Effect” (MDE), explores the influence of continental geometry on 

patterns in species richness and range size frequency distributions. I compared the MDE 

predictions first to observations on tree species richness in continental North America (n 

= 417 species), and then to amphibian, bird and mammal species richness across North 

and South America (n = 2216, 3771 and 1605 species, respectively) contrasting the 

relative contributions of null model results and environmental correlates. I have 

developed a novel null methodology to predict the niche of a species, or a group of 

species; I applied this at local and regional scales to examine null spatial distribution 

predictions for a single, endangered species at the local scale (Opuntia humifusa at Point 

Pelee National Park), and for groups of rare species at a regional scale (based on reported 

occurrences across south-western Ontario).

m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Results can be regarded as representing intermediate states between the extremes of 

continua of which niche and neutral models form the ends. With respect to the relative 

strengths of stochastic and deterministic processes, this thesis has characterized the 

attributes of groups of species. For example, large-ranged NA tree species are influenced 

by the MDE more than small-ranged species; moreover, regional, null species 

distribution models performed best for birds, insects, reptiles, sedges, as well as for 

aquatic and terrestrial plants. It seems most likely that real species distributions are the 

product of variation in relative strength of stochastic and deterministic processes.
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Chapter 1 - General Introduction

Background

A foundation of landscape ecology, if not ecology in general, is that environmental 

patterns influence ecological processes, and so influence species distribution and 

abundance (Turner 1989). Ecological research in general has focussed on understanding 

how the environment (both directly and indirectly) influences the diversity, abundance 

and geographic distribution of organisms (Krebs 1972, Ricklefs 1979, Kearney and 

Porter 2004). Indeed, spatial patterns in species distributions have long intrigued 

ecologists (Brown and Lomolino 1998, Gaston 2003).

A common approach to studying the distribution of species is to quantitatively describe 

the environmental conditions where a species occurs, and derive statistical models of the 

probability of occurrence that can be interpolated to other parts of the landscape (e.g., 

Lindenmayer et al. 1991, Sykes et al. 1996, Peterson et al. 1999, Stockwell and Peters 

1999, Peterson 2001, Kearney and Moussalli 2003, Kearney et al. 2003). Such predictive 

modeling has gained prominence in conservation efforts as a decision support tool for 

assessing the impact of accelerated environmental change on the distribution of 

organisms across regional landscapes (e.g., Margules and Austin 1994).

The above approach (and indeed, most of the existing theories explaining patterns in 

species richness) is predicated upon a major assumption, that the patterns observed are 

due to some particular set of relevant biologically important drivers -  typically omitting 

the possibility that these patterns are, at least in part, due to random, stochastic elements
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in the absence of biological mechanisms. There is an increasing awareness, albeit 

contentious, that these stochastic factors can play an important role in defining species 

distributions from global to local scales. At the very least, these stochastic elements, as 

null models, offer a baseline for comparison with ‘real world’ patterns (Harvey et al.

1983, Colwell and Winkler 1984, Gotelli and Graves 1996, Gotelli 2001). According to 

Colwell et al. (2004), it is the simple deviation from null predictions that is arguably most 

interesting, and worthy of investigation.

Ecologists tend to work on the premise that the niche is a central organizing concept in 

ecology and that niche attributes structure biogeographic patterns of diversity, abundance 

and distribution (Gaston and Chown 2005). In this thesis I explore the concept of niche, 

first by examining the role of random, non-biological aspects in conjunction with 

environmental correlates of species distributions at a continental scale, and second, by 

examining the non-random, spatial clustering (deviation from random) of species 

occurrences at the regional scale for the null prediction of niche. For each approach, I 

develop novel methodology (building models) and using different biotic groups as test 

cases, explore the concept of species “neutrality” -  the assumption that all species can be 

considered as essentially equivalent (see below), as a kind of reciprocal, or “flip-side” of 

the requirements for the concept of niche.
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Niche

“most [ecologists] would agree that niche is a central concept of 

ecology, even though we do not know exactly what it means”...

Real and Levin (1991)

The term ‘niche’ has evolved over time from representing the habitat in which an 

organism resides (Grinnell 1917, 1924, 1928), to representing the ecological role an 

organism fills within a community (Elton 1927), to the intersection of ranges of 

tolerances for a set of resources utilized by an organism (Hutchinson 1957). Ricklefs 

(2001) defined habitat as the local place where a species lives and grows, characterized 

by, at least, the physical environment that surrounds, influences, and is utilized by a 

population of a particular species. Niche describes the relationship between a species and 

its area of inhabitation, in both physical and ecological terms. More specifically, it 

describes the unique position of the species in terms of the range of conditions it can 

tolerate and the characteristics that relate the geophysical environment of a species to its 

ecological functions -  its role in the ecological system (Ricklefs 2001).

Grinnell defined the niche as a spatial unit that represented the "concept of the ultimate 

distributional unit, within which each species is held by its structural and instinctive 

limitations." (Grinnell 1928); in other words, niche represented the actual physical 

distribution of an organism (Vandermeer 1972). He was interested in determining the 

physical or climatic factors of a species’ geographical distribution, ignoring relationships 

with other species such as predation and competition (Leibold 1995). Two important

3
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elements of Grinnell’s niche were that he envisioned species as having evolved to fill a 

niche, and the assumption that no two species could occupy the same niche.

At nearly the same time, Elton (1927) proposed a definition of niche that differed from 

Grinnell’s, in that niche was defined as an organism’s “place in the biotic environment, 

its relations to food and enemies.” In other words, an organism’s niche was defined by its 

ecological role in the community rather than its geographic location. The Eltonian view 

of niche delimited niches based on the size of an organism (as this influenced the type 

and amount of resources consumed, and influenced the potential number of predators) 

and its food habits (Elton 1927, Leibold 1995).

Hutchinson (1951) defined niche as an abstract multi-dimensional space, an "n- 

dimensional hypervolume," defining the environmental limits within which an organism 

is able to survive and reproduce. The limits were in terms of abiotic environmental 

tolerances (e.g., climatic, geophysical) and biological functions, such as in competitive 

effects and predation (extending beyond Elton’s more limited biotic criteria of organism 

size and food habit).

The key difference between Hutchinson’s concept of niche and those of Elton and 

Grinnell was that Hutchinson (1957) used the niche to represent the environmental 

requirements of a species rather than a place or “recess” in the environment that has the 

potential to support a species (Schoener 1989, Colwell 1992) -  thus Hutchinson (1957) 

emphasised attributes of the species, not the environment (Pulliam 2000).
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Hutchinson’s hypervolume could include any number of dimensions or environmental 

axes (Holt et al. 2005). As the response of an organism to all possible environmental 

factors is difficult to determine, most ecologists limit investigation to a smaller set of 

“major”, plausible factors. The “fundamental” niche was thus defined as the hypervolume 

created in the absence of relations with other species, and so it represents a species' 

potential to use available resources (Holt et al. 2005). While some have suggested that a 

species’ geographic range represents a spatial expression of its fundamental niche 

(Peterson et al. 1999, Peterson 2001), many other factors such as competition, predation 

or dispersal limitations may influence the “realized” niche (Hutchinson 1957, Holt et al. 

2005). As the fundamental niche is determined largely by the species’ physiological 

tolerances, it is the niche that would be observed in the absence of predators and 

competitors (a rare and unlikely event).

Competitive interactions between species can affect the breadth of a species' niche along 

one or several niche axes. For example, predation could decrease the breadth of a species' 

food niche axis if the probability of being preyed upon increased if the species were 

searching for certain kinds of food items. Realistically, a niche is limited in extent by the 

presence of interactions with other species; this is regarded as the realized niche. The 

realized niche of a species may vary from location to location because of the presence of 

different sets of predators, and competitors (Leibold 1995, Pulliam 2000).
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The niche concept is often emphasized as a term in the domain of community ecology 

(see e.g., Begon et al. 1990, Pianka 1994, Ricklefs 2001). However, the concept is used 

for studies at most levels of ecological organisation (Liebold 1995). For example, 

identifying environmental conditions limiting an organism’s performance or fitness is 

often done by physiologists (e.g., Anthony and Connolly 2004, Ochocinska and Taylor 

2005, Welsh et al. 2005); population biologists examine the limiting factors that alter 

population dynamics (e.g., Halpem et al. 2005, Lohmus and Remm 2005); 

biogeographers examine the environmental constraints limiting species distributions (e.g., 

Peterson et al. 1999, Peterson 2001); and ecosystem ecologists examine how the 

functional traits of taxa alter ecosystem structure and process (e.g., Hunter and Simons 

2004). Thus, moving towards larger scales, one can examine an organism’s niche, a 

population’s niche, a species’ niche, and the niche of a taxon or group of species.

Occurrence of a species at a location represents the expression of its ecology and 

evolutionary history (Brown 1995). It is a combination of different factors at different 

scales (Gaston 2003, Pearson and Dawson 2003). Soberon and Peterson (2005) suggested 

that there are four classes of factors influencing distribution of species:

1. Abiotic conditions that impose physiological limits on a species, such as climate, 

physical environment, etc.

2. Biotic factors that describe the interactions, either positive or negative, with other 

species that affect distributions.
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3. Areas accessible to dispersal from currently occupied areas, distinguishing a 

species’ actual distribution from its potential (fundamental) distribution based on 

dispersal abilities and landscape composition/configuration.

4. The evolutionary capacity of a species to adapt to new conditions.

There is an ongoing debate over the relative importance of niche-assembly vs. dispersal- 

assembly theories of species coexistence (Potts et al. 2004). Niche-assembly theories 

posit that biological interactions and environmental heterogeneity are the processes 

underlying species coexistence and community structure (Tilman 1982, Lieberman et al. 

1985, Hubbell and Foster 1986, Denslow 1987, Kohyama 1994, Terborgh et al. 1996, 

Clark et al. 1998). It is believed that species can only coexist when they differ from each 

other in the resources they use most efficiently, or in their adaptation to the local 

environmental conditions (Ostling 2005). This theory makes the assumption that 

coexisting species must have different niches.

In contrast, chance, history, and dispersal explain species coexistence in dispersal- 

assembly theories (Hubbell 1997, Bell 2001, Hubbell 2001). These theories suggest that 

"historical accidents of dispersal," rather than competitive interactions of species shape 

the coexistence of species (Ostling 2005). Rather than being quickly out-competed, it is 

suggested that species that are less efficient at using a resource evolve to be as efficient as 

their competitors. Dispersal to the same habitable region is the main criterion for 

coexistence (Ostling 2005).
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Classical niche-assembly theory implies that species diversity should vary 

geographically, in concert with biotic or abiotic gradients (Murphy et al. 2006). The 

assumption that species richness should be spatially uniform in the absence of these 

gradients has prevailed for a long time (Colwell et al. 2004). Conversely, under the 

assumptions of theories of dispersal limitation and chance, most species are able to grow 

at most sites, so that community composition is determined largely by the accidents of 

dispersal, and local diversity is strongly influenced by the composition of the regional 

species pool (Hubbell et al. 1999, Bell 2001). Null models have recently emerged from 

dispersal-assembly theories as a mathematical framework (Ostling 2005), that can 

generate patterns that resemble those of real distribution data, without a need to 

incorporate data on biologically important factors.

As ecological communities are undoubtedly a product of both niche- and dispersal- 

assembly rules (Hubbell 2001), the question that should be posed is what is the relative 

importance of each?

Null models

There is increasing recognition that stochasticity may play an important role in defining 

species distributions. Gotelli and Graves (1996) defined a null model as a “pattern- 

generating model that is based on randomization of ecological data or random sampling 

from a known or imagined distribution”. Contrary to most other modeling approaches, 

null models attempt to predict patterns similar to those of empirical patterns by 

deliberately excluding a mechanism of interest (Gotelli 2001, Colwell et al. 2004) -  in
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other words, with respect to ecological applications, they explore whether a simple, 

stochastic model can reproduce patterns in real data, without incorporating biologically 

important mechanisms.

There is a large body of literature that attempts to interpret patterns of species 

distribution, abundance and diversity in terms of ecological processes (Bell 2001). 

However, there is often a lack of well-understood expected values within which to 

interpret empirical studies. As it is often difficult to infer the process generating a pattern, 

the interpretation of observed patterns is also difficult (Cale et al. 1989, Moloney et al. 

1991).

While analytical and simulation models attempt to mimic reality, null models exclude the 

mechanism or factor of interest, offering a baseline for comparison (Harvey et al. 1983, 

Colwell and Winkler 1984, Gotelli and Graves 1996, Gotelli 2001). The deviation from 

null thus describes the influence of the factor or mechanism of interest (Colwell et al. 

2004). The ‘ideal’ null model only excludes the single factor of interest and incorporates, 

as realistically as possible, all other potential influences (Colwell and Winkler 1984, and 

see examples in Gotelli and Graves 1996). As with any model, null models are 

abstractions of reality. Such models should therefore not be taken to be free from bias; all 

models make assumptions and simplifications of reality and these assumptions must be 

considered when interpreting the model results and model utility (Gotelli 2001, Colwell 

et al. 2004).
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Neutral theory

Neutral models are a specialized subset of null models. Null models often do not specify 

demographic processes of species, assuming demographic processes and parameters are 

randomly distributed among taxa. In contrast, neutral models assume demographic 

processes are equal for all individuals across taxa (Enquist et al. 2002). First proposed 

and debated within population genetics (e.g., King and Jukes 1969, Lewontin 1974), 

Hubbell (2001) proposed a unified neutral theory of biodiversity for community ecology 

and macroecology.

General patterns such as log-normal or geometric range size frequency distributions, 

relationship between range and abundance, etc. are often examined using complex niche- 

assembly models (Hubbell 2005). These models tend to incorporate as many details as 

possible about the species and their biotic and abiotic environment, assuming each 

species is unique. However, such patterns can actually be generated from neutral models 

that assume a per capita functional equivalence of all species (Hubbell 2001, 2005, Bell 

2001, Ricklefs 2003). This idea of ‘neutrality’ or ‘per capita functional equivalence’ 

means that while species can differ in many ways (size, shape, color, etc.), they are 

assumed to be demographically identical with respect to vital rates of birth, death, 

dispersal and speciation. While all species violate this assumption to some degree, the 

question posed by neutral models is, how good is this approximation? It is indeed the 

assumption of per capita functional equivalence that has proven controversial (see 

discussions in e.g., Zhang and Lin 1997, Yu et al. 1998, Hubbell 2001, Enquist et al.

10
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2002, Chase and Leibold 2003, Hubbell and Lake 2003, Ricklefs 2003, Chave 2004, 

Poulin 2004, Hubbell 2005).

The fundamental question of neutral models (and null models in general) is: to what 

extent do these approaches (theories) capture the mechanism behind the structuring of the 

patterns being tested? Gaston and Chown (2005) suggest there are three possible 

conclusions to the controversy of neutral- vs. niche-theories. The first is that the neutral 

approach is wrong, in that it fails to account for the patterns observed. While the 

correlation between observed and predicted patterns may be quite similar, correlation 

does not represent causation. Thus these approaches often start with assumptions that are 

wrong but may end up with patterns that happen to match empirical patterns.

Alternatively, niche theory could be wrong. This would be contrary to many ecological 

beliefs. Indeed, ecologists tend to work on the premise that the niche is a central 

organizing concept in ecology and that attributes of niche structure biogeographic 

patterns of diversity, abundance and distribution (Gaston and Chown 2005). The third 

perspective would recognize some truth in both theories. Ecological systems may operate 

on gradients, or continua of stochastic (null or neutral) to non-stochastic forces. It is with 

this point of view that I approach this thesis. I would expect that both stochastic and 

deterministic forces drive the distribution of species and for that reason I will examine 

how the deviation from randomness may provide a starting point for investigation of our 

understanding of the ecological niche.

11
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Mid-domain effect

Null models have been a useful tool for describing patterns in community ecology and 

biogeography (Gotelli and Graves 1996) and now are being applied in macroecology (see 

e.g., Colwell and Lees 2000, Gotelli 2001, Colwell et al. 2004). In macroecology, such 

approaches (in the form of theoretical null models that assume no direct effects of 

environmental gradients) have shown that observed geographic patterns of species 

richness can be produced through stochastic processes combined with geometric 

constraints on species ranges. In this thesis, I use a null model, the “mid-domain effect” 

(MDE) of Colwell and Hurtt (1994), to examine continental patterns in species richness. 

The results are interpreted, describing the relative influences of stochasticity and 

environmental correlates on empirical observations of patterns of species richness.

Colwell and Hurtt (1994) proposed that latitudinal gradients in species richness could be 

explained by stochastic processes acting within the geometric constraints (or edges) of a 

domain. Later, this came to be known as the mid-domain effect. The MDE is observed as 

a mid-domain peak or plateau in species richness, for theoretical or actual species ranges, 

when ranges are placed randomly within a bounded geographic domain (Colwell and 

Lees 2000). Predictions of MDE models have been powerful in elucidating patterns of 

species richness along gradients of latitude, longitude and altitude (reviewed in Zapata et 

al. 2003, Colwell et al. 2004; and see Chapters 3 and 4 of this thesis).

Mid-domain models are null models that simulate the random spatial arrangement of 

species ranges, within a bounded domain such as a continent, assuming no direct effects

12
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of environmental gradients on patterns of species richness (Colwell et al. 2004). Colwell 

and Hurtt (1994) first proposed MDE as an alternative hypothesis to latitudinal and 

altitudinal gradients as factors determining species richness. Previously Stevens (1989, 

1992) had suggested these were due to a biological effect of environmental gradients, 

which he labeled Rapoport’s rule (and see Rapoport 1982). The “rule” denotes an 

apparent latitudinal gradient in which species richness increased while mean range size 

decreased, with decreasing latitude; in other words, species richness decreases towards 

the poles. The MDE models of Colwell and Hurtt (1994) predicted gradients in species 

richness, similar to Rapoport’s rule, peaking at mid latitude (or altitudes) simply from the 

random placement of ranges in a bounded domain, without any invocation of and given 

the absence of any biological effects.

To envision the mid-domain effect, consider the random placement of line segments of 

random length between domain limits of 0 to 1, as depicted in Fig. 1.1. The line segments 

represent species ranges placed randomly within the limits of some geographical uni

dimensional domain (latitude, longitude, altitude). At any point within the domain, the 

number of species (overlapping line segments) can be counted, (as initially proposed by 

Colwell and Hurtt, 1994). Mean range size (mean line segment size) and its associated 

variance and skewness in range size can also be calculated (Arita 2005). The random 

placement of ranges (niches) was first described with MacArthur’s two-hit broken stick 

model (MacArthur 1957), a random, “overlapping niche” model. MacArthur was 

interested in the distribution of niche sizes, not the patterns of overlap among them. 

However, if the number of overlapping species ranges is plotted for all points within the

13
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limits of the domain, a mid-domain effect is observed as a parabolic or quasi-parabolic 

curve, peaking at 0.5 times the total number of species, over the center of the domain 

(Colwell and Hurtt 1994, Willig and Lyons 1998, Colwell and Lees 2000, Arita 2005).

Null models are controversial in that they take no consideration of bological features of 

the species (Connolly 2005) and MDE models are no exception (see e.g., Colwell et al. 

2004, Hawkins et al. 2005, Zapata et al. 2005, Colwell et al. 2005). MDE effectively 

ignores spatial environmental gradients when placing species within the bounds of a 

domain; it assumes that “environmental conditions vary but that species’ responses to 

environmental conditions would be sufficiently individualistic that, in the aggregate, no 

part of the domain would be more hospitable to species than any other part” (Connolly 

2005). The main point of contention involves range cohesion. In the absence of 

environmental gradients, it would be reasonable to ask why all species are not distributed 

throughout the entire domain (Diniz-Filho et al. 2002, Hawkins and Diniz-Filho 2002, 

Zapata et al. 2003, Hawkins et al. 2005, Zapata et al. 2005).

Colwell et al. (2005) responded that this is not a shortcoming of MDE models. MDE 

modelers do believe actual range size frequency distributions (RSFD) are shaped and 

limited by environmental factors, historical effects, and dispersal limitation. They seek to 

determine what ‘real world’ patterns would arise in the absence of any direct effects of 

environmental gradients on species richness patterns. By randomly placing species ranges 

within a bounded domain and comparing predicted and actual patterns of species 

richness, the question being asked is not “what constrains the range of a species” but

14
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rather, “to what degree would stochastic processes be sufficient to explain actual species 

richness patterns?” The most complete studies of MDE models examine, in a multivariate 

context, the influence of both stochasticity under geometric constraints (MDE), and the 

direct effects of both biotic and abiotic environmental gradients -  exploring the 

covariation of the two sets of factors (Colwell et al. 2004).

The major focus of MDE models has been on predicting species richness gradients as a 

function of a single dimension, primarily latitude and altitude (Arita 2005). Colwell et al. 

(2004) reviewed the MDE literature and showed that 19 of the 21 empirical MDE studies 

were one-dimensional, with 47% examining latitudinal gradients, 10% longitudinal 

gradients, and 52% altitudinal (or depth) gradients (some studies evaluated multiple 

single dimensions). While uni-dimensional models explained, on average, 54% (± 4.9 SE, 

range 0 - 96%, based on the R2 for ordinary least squares regression) of the variance in 

empirical patterns of species richness, it has been suggested the lack of consistent model 

fit may be due to: (1) the method for selection of range sizes (the RSFD of ranges being 

placed)(Willig and Lyons 1998, Colwell and Lees 2000, Colwell et al. 2004); (2) a failure 

to control for spatial autocorrelation, as measures of fit were based on simple correlations 

between predicted and empirical results (see too Jetz and Rahbek 2002, Diniz-Filho et al. 

2002, Colwell et al. 2004); and/or (3) the variation in relative strength of stochasticity 

(MDE) and the direct effects of both biotic and abiotic environmental gradients on range 

location and overlap (Colwell et al. 2004, 2005, Rangel and Diniz-Filho 2005).

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bokma and Monkkonen (2000) suggested MDE models may be limited in predictive 

power and applicability by their lack of multi-dimensionality, and that a move from one

dimensional to two-dimensional MDE models was the next logical step. A few studies 

have proposed two-dimensional models (longitude x latitude or latitude x altitude; see 

e.g. Bokma et al. 2001, Arita 2005, Rangel and Diniz-Filho 2005) but none have yet 

proposed a three-dimensional model. In this thesis, a method for the stochastic creation 

and placement of ranges within a three-dimensional (longitude, latitude and altitude), 

irregularly shaped domain is developed (Chapter 2). The predicted patterns in species 

richness and range-size frequency distribution (RSFD) in each of a series of one

dimensional, two-dimensional, and three-dimensional MDE models are presented, 

followed by discussion of the effects of domain shape on the predicted patterns.

There are two general types of MDE models; those which randomly create and place 

species ranges within a domain (a “fully stochastic” model) and those that place ranges 

“re-sampled” from a real world RSFDs. While fully stochastic MDE models produce 

theoretical RSFDs that are biologically realistic (a log-normal curve; Colwell and Lees 

2000), it may differ from that of the actual RSFD. Thus, differences between actual and 

MDE-predicted species richness patterns may be a product of either the non-random 

placement of species within the domain, or the differences in RSFD, or a combination of 

both. All these potentially underestimate the MDE (McCain 2003, Colwell et al. 2004).

Random placement of ranges resampled from a range-size frequency distribution based 

on empirical data may incorporate taxon-specific biological characteristics, which are

16
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independent of patterns of species richness (Lees et al. 1999, Colwell and Lees 2000, 

Hawkins and Diniz-Filho 2002, Jetz and Rahbek 2001, 2002, McCain 2004, Colwell et 

al. 2004). Such niche-based attributes could include speciation and extinction potential, 

population density, body size, etc. As others have noted, these may not be independent of 

spatial patterns of species richness; moreover the use of a purely theoretical RSFD is less 

subject to biological assumptions, and thus more representative of a null conceptual 

model (see e.g., Kollef and Gaston 2001, Hawkins and Diniz-Filho 2002, Laurie and 

Silander 2002). The use of a theoretical RSFD permits the comparison of richness 

patterns of multiple groups of species to that predicted by one MDE, allowing one to 

probe the “neutrality” (equivalence) of groups of species with respect to the variation in 

relative strength of stochastic (MDE) forces and environmental correlates on range 

location and overlap (as in Chapter 4).

Mapping the niche

Understanding that a species’ range is not homogeneously suitable throughout, finer- 

scale habitat suitability mapping, quantitative habitat models and predictive distribution 

maps (of a species’ niche) all are potentially important tools to guide management and 

restoration as approaches to conservation of rare species (Guisan and Zimmerman 2000, 

Johnson et al. 2004). Application of such tools is a function of advances in geographical 

information systems (GIS), availability of geo-referenced databases (such as species 

distributions, topographical, climatic and landuse information) and the ability to utilize 

computationally intensive numerical techniques (Rushton et al. 2004).

17
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The concept of the niche provides a useful starting point for understanding the 

distribution of species (Kearney and Porter 2004). With GIS technology, a common 

approach to defining a species’ geographic distribution is first to characterize, 

quantitatively, a suite of environmental conditions for known occurrences of the species 

(Peterson 2001, Kearney and Porter 2004). Then statistical models of the probability of 

occurrence are derived, that can be interpolated to other parts of the landscape (e.g., 

Lindenmayer et al. 1991, Sykes et al. 1996, Peterson et al. 1999, Peterson 2001, Kearney 

and Moussalli 2003, Kearney et al. 2003).

There are two general methods whereby the fundamental niche of a species has been 

estimated (Soberon and Peterson 2005). The first is by the direct measurement of 

responses of organisms to abiotic environmental conditions (e.g., gradients of 

temperature, humidity) and inferring fitness from combinations of these conditions. Then 

the investigator can map areas of positive fitness using GIS technology (see e.g., Porter et 

al. 2000, Porter et al. 2002).

It can be argued that, in nature, only the realized niche can be observed. However it has 

been suggested that, if the distribution of a species in the context of varied biotic 

backgrounds can be observed, the composite fundamental niche can be described 

(Peterson et al. 1999, Peterson 2001). It is upon this premise that the second method for 

estimating a species’ fundamental niche relates species’ occurrences with geo-referenced 

databases (e.g., GIS layers of climate, topography, soil characteristics). Combinations of 

abiotic conditions that best describe occurrences are projected across the landscape to
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describe the limits of the fundamental niche of a species (e.g., Lindenmayer et al. 1991, 

Sykes et al. 1996, Peterson et al. 1999, Peterson 2001, Kearney and Moussalli 2003, 

Kearney et al. 2003). This simple ‘correlative approach’ provides insight into the 

fundamental niche of a species (Peterson et al. 1999, Peterson 2001, Peterson and Holt 

2003, Soberon and Peterson 2005). The inclusion of biotic environmental variables 

(landuse, dominant vegetation, etc.) with abiotic variables provides a powerful tool for 

predicting species occurrences elsewhere on a landscape (Kearney and Porter 2004, 

Sanchez-Cordero et al. 2005, Soberon and Peterson 2005).

Information about species distributions is often based on known occurrences of the 

species -  “presence only” data (Pearce and Boyce 2005). Different approaches for 

statistically modeling species occurrences have been proposed that can interpolate the 

probability of occurrence in other parts of the landscape. When using presence-only data, 

the most common and simplest approach involves tallying the limits of each 

environmental dimension and defining the suitability of an area based on the intersection 

of the apparent environmental tolerances (see e.g., Pearce and Lindenmayer 1998, 

Walther et al 2004). BIOCLEM (Nix 1986) is a program that uses such “environmental 

envelopes” (i.e., If X > x l and X <= x2 then ...), trimming arbitrarily, 5% off the limits to 

map either the fundamental niche (if only abiotic environmental envelopes are use), or 

the realized niche (areas of suitable habitat if both biotic and abiotic envelopes are used) 

of a species or group of species.
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Many studies have applied techniques that can be applied to presence-absence data by 

generating pseudo-absences, representing the background areas where species data are 

missing (Pearce and Boyce 2005). Algorithms such as logistic regression (see Keating 

and Cherry 2004), generalized linear models (e.g. Ferrier et al 2002), classification and 

regression trees (e.g., Breiman et al. 1984, Bourg et al. 2005), genetic algorithms (e.g., 

Stockwell and Peters 1999, Peterson 2001) and Bayesian logic (e.g., Bayliss et al. 2005, 

Mac Nally 2005) have all been used to determine the unique attributes of locations where 

a species occurs, relative to places where it has not been reported (pseudo-absences).

The method for selecting pseudo-absences is often to choose sites at random from within 

the study area (Stockwell and Peterson 2002). Such spatial randomness is a null 

hypothesis used in many tests to detect spatial patterns (e.g., point clustering, spatial 

autocorrelation). Often, such a null hypothesis is not really relevant for complex 

ecological systems (Sokal et al. 1998, Fortin and Jacquez 2000), so rejection of the null 

hypothesis may represent little scientific value. For example, when testing spatial patterns 

of fish occurrences, it would be unrealistic and unhelpful to randomly place pseudo

absences in the terrestrial environment. The appropriate null model is that which captures 

the notion of a plausible system state (as in Chapter 5).

Two general types of error are generated with predictive niche models: errors of omission 

and commission (Fielding and Bell 1997) akin to false negatives and false positives of a 

contingency table. The first, a false negative, or the omission of areas where the species 

occurs represents a failure of the model to include the full realized ecological niche of a
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species. The second, false positive or commission, represents areas that are recognized as 

suitable but where there is no occurrence. There are two aspects to the error of 

commission: the model may have failed, and incorrectly predicted areas that are not part 

of the species’ niche; or the area is part of the species’ niche but either the species is there 

but has not been reported or the species does not occur there due to historical factors 

(dispersal limitation, local extinction, etc.) or interspecific interactions (competition, 

predation, etc.) (Peterson et al. 1999).

Analysis of spatial datasets

Within ecology, many theories and models assumed environmental homogeneity; this is 

not a valid assumption (Weins 1989). In acknowledging heterogeneity, the importance of 

spatial pattern and scale change the way studies are designed, analyzed and interpreted 

(Allen and Hoekstra 1992). Over the last decade, analysis of landscape to regional level 

correlates of species distribution and abundance patterns has increased with increased 

availability of spatially explicit data from geographical information systems (Turner et al. 

2001, Bullock et al. 2002). With such tools, vast amounts of spatially explicit data can be 

extracted; the limitation is determining which data should be considered, and selecting 

the appropriate analysis tools.

Spatial autocorrelation of ecological data is common, with many ecological theories 

assuming an underlying spatial pattern in species distributions and their environments 

(Legendre and Fortin 1989). Typically, nearby points sampled for species abundance or 

occurrence have similar values, more frequently than expected by chance (Lichstein et al.
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2002). While this is ecologically significant (in terms of demography, dispersal 

limitation, competition, etc.), it is problematic for standard parametric tests, such as 

analysis of variance (ANOVA) and ordinary least squares (OLS) regression (Anselin 

1992, Legendre 1993). These tests assume independently distributed errors; however, the 

assumption of independence is invalid when the response and the effect of the covariates 

are spatially autocorrelated (Gumpertz et al. 1997).

Spatial autocorrelation estimates the similarity between samples of a given variable at 

varying spatial distances (Sokal and Oden 1978a,b, Legendre 1993, Rossi and 

Queneherve 1998). While many methods have been proposed, it is most frequently 

assessed in univariate analysis using Moran’s I (a standardized measure of correlation 

between neighboring observations; Diniz-Filho et al. 2003). Non-zero values of Moran’s 

I indicate that pairs of values at a given geographical distance are more similar (positive 

autocorrelation, max of 1) or less similar (negative autocorrelation, max of -1) than 

expected for randomly associated pairs (Diniz-Filho et al. 2003). The geographical 

distances are often “binned” or categorized into discrete classes for which different 

Moran’s I -values are calculated for the same variable, permitting the evaluation of 

autocorrelation as a function of spatial distance. The values are plotted against distance to 

produce a plot termed a “spatial correlogram” (Diniz-Filho et al. 2003).

While many different correlogram profiles are possible (Legendre and Fortin 1989, Rossi 

and Queneherve 1998), Diniz-Filho et al. 2003 describe three basic correlogram profiles 

usually found in ecological data. The first shows positive autocorrelation in short distance
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classes, shifting to negative autocorrelation at larger distance classes. This profile can be 

interpreted as characterizing a linear gradient at macro-scales. The second profile occurs 

when only short distance autocorrelation is found, indicating that spatial variation is 

structured in patches. The distance up to which spatial autocorrelation is observed has 

been interpreted as the average patch size for that specific variable (see Diniz- Filho and 

Telles 2002). The third profile is flat with Moran’s I coefficients at or near 0 for all bin 

classes indicating no spatial pattern in the data. If no Moran’s I coefficients significantly 

differ from 0, there is no spatial pattern in the data.

If Moran’s I, or other similar statistics such as Geary's c (Geary, 1954), G statistics (Getis 

and Ord 1992), etc., show spatial autocorrelation, Type I errors may be inflated when 

testing statistical hypotheses using standard methods (ANOVA, correlation or regression; 

Legendre 1993). OLS regression is commonly used to assess the distribution of species 

without assessing or discussing spatial autocorrelation (Stohlgren et al. 1999, Harrison et 

al. 2000, McKinney 2002, Dark 2004). However, spatial autoregressive (SAR) models 

modify OLS to incorporate spatial dependence (Anselin 1998, Dark 2004)

Spatial autoregressive models

There are different SAR models that depend upon the nature of the spatial dependence 

(for example, error or lag dependence; Anselin 1995, Dark 2004). The OLS regression 

model may be written as:

y = XP + e
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where y is the dependent variable, X is the independent variable, P is the regression 

coefficient, and e is the error term assumed to be normally and independently distributed 

(Anselin and Rey 1991). When errors can no longer be assumed independent and 

identically distributed, the error SAR model is used. The spatial dependence influences 

the error term only. This model is expressed as:

y = Xp + XW e + x

where X is the spatial autoregression coefficient, W is a spatial weights matrix, and x is 

the spatially-dependent error term.

If the dependent variable at a particular location is autocorrelated with values at other 

locations, OLS estimation is no longer consistent and a spatial lag SAR model should be 

used (Anselin & Rey 1991). In the spatial lag model, the standard regression equation 

may be rewritten as:

y = yWy + Xp + x

where y is the spatial autoregression coefficient. Maximum likelihood estimations are 

used for both the lag and error models (Anselin 1995).
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The SAR model includes a spatially dependent variable in the regression equation; thus, a 

spatial weights matrix is necessary. The simplest is one where adjacent values of 

empirical species diversity are given a value of 1 in the weight matrix and a value of 0 is 

applied to values that are not adjacent. Each non-zero element in the matrix represents 

potential spatial interaction between two observations.

' j

The traditional R measure of fit, based on the decomposition of total sum of squares into 

explained and residual sum of squares, is not applicable to the SAR model. Instead, a 

“pseudo R2 measure (ratio of the variance of the predicted values over the variance of 

the observed values for the dependent variable) is often reported (Anselin 1995). 

However, to compare measures of fit between OLS and SAR, it is inappropriate to 

compare the traditional R2 with the pseudo R2 (Anselin 1995). SAR models are based on 

maximum likelihood estimations; the proper measures for goodness-of-fit for the SAR 

are based on the likelihood function, which can also be calculated for OLS. In order to 

correct the log likelihood for overfitting due to unequal number of variables among 

regressions, information criteria (IC) such as the Akaike Information Criterion (AIC) and 

the Schwartz Criterion (SC) have been proposed (Anselin 1988). These information 

criteria adjust the log likelihood values such that, in general they can be described by:

IC = -2LL + f(K,N)

where LL is the maximized log likelihood, K is the number of variables and N is the 

number of observations in the model; the function f(K,N) represents 2K for AIC and K
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ln(N) for SC (Anselin 1995). The best model is the one with the lowest AIC and/or SC 

value.

With respect to null model predictions, there are well-documented problems with 

assessing the fit of models using correlation coefficients, due to the fact that absolute 

differences in magnitude are obscured (Zapata et al. 2003, Colwell et al. 2004, Romdal et 

al. 2005). As recommended by several authors (Colwell et al. 2004, Zapata et al. 2005), t- 

tests can be used to examine deviation of the slope from unity and intercept from zero, 

for regressions between predicted and observed patterns. These tests provide an 

indication of deviation in both shape and magnitude between predicted and actual data.

Thesis objectives

In this thesis, I investigate observed deviations from randomness, using spatial analysis at 

both regional and continental scales, to clarify the concept of niche within the context of 

biogeography. I also explore applications of the assumption that species can be described 

by models that are ecologically neutral, assuming that all species have equivalent life 

histories.

Following a review of the literature, I derive, first, a GIS-based null model, specifically a 

MDE model exploring the influence of continental geometry on patterns in species 

richness and range size frequency distributions. I compare the MDE predictions first to 

observations on tree species richness in continental North America, and then to 

amphibian, bird and mammal species richness across the continents of North and South

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



America contrasting the relative inputs of null and niche-assembly theories. I then 

develop a novel methodology for a null model predicting the niche of a species or a group 

of species. I apply this approach at local to regional scales, using environmental 

correlates of non-random clusters of species occurrences. I used the methodology for null 

prediction of the niche of a single, endangered species at the local scale (Opuntia 

humifusa at Point Pelee National Park, ON) and for groups of species at a regional scale 

(groups of rare and common species, based on reported occurrences across South- 

Western Ontario).

Throughout the thesis, I examine the applicability of the model and methodology with 

respect to particular species or groups of species, using the “null” approach that niche- 

based attributes of a species are excluded from the analysis or are assumed to be 

ecologically equivalent. I discuss the implications of these results and show how use of 

the null model as a baseline allows development of a better understanding of niche, with 

the opportunity to quantify niche more precisely across multiple scales.

Thesis structure

This chapter (Chapter 1), provides a general introduction and overview of the thesis.

Chapter 2 presents a null model based upon the ‘mid-domain effect’, first described by 

Colwell and Hurtt (1994). The model is used to predict patterns of species richness, and 

range size frequency distributions of species. It is based on a stochastic placement of 

ranges (niche limits in latitude, longitude and/or altitude), within a bounded domain. I
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review current models and discuss their advantages and limitations, and then argue for a 

modification of these models to extend predictions beyond one- and two- dimensional 

space, to three-dimensional space, while accounting for the fact that domains are often 

irregularly shaped. I introduce this model as a “six-hit”, three dimensional model (based 

upon existing “two-hit”, uni-dimensional models); I discuss the predicted species 

richness and RSFD patterns with respect to domain shape. The homogeneity and 

concordance of predictions are clarified in regard to varying domain shape by comparing 

predictions of the model for three different domains (a square-based pyramid, continental 

North America and Australia).

In Chapter 3, predicted patterns of species richness were created for continental North 

America, using the “six-hit” mid-domain model. These predictions, along with GIS-based 

environmental gradients in climate and topography were compared to observed tree 

species richness, using spatial autoregressive models. In this analysis the relative 

contributions of each of the stochastic range placement (i.e., the null, mid-domain effect) 

and environmental gradients (e.g., niche-assembly theory) are separately examined and 

discussed with respect to tree species richness in continental North America. Similarly, in 

Chapter 4 ,1 determine the relative explanatory power of stochastic range placement and 

environmental gradients separately and combined to account for patterns of species 

richness and range-size frequency distributions for each of three species groups 

(amphibian, avian and mammal) across North and South America, using spatial 

autoregressive models. In this chapter, I discuss the assumption that each group of
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species may be considered as equivalent with respect to the predictions of the mid

domain model; in other words, “does one model fit all?”

In Chapter 5 ,1 introduce a methodology for null prediction of the niche at local to 

regional scales. I first review the literature and outline the theoretical background to this 

approach. It links theories and frameworks of landscape ecology with computational 

sciences and eco-informatics. The procedure first determines the scale of each 

environmental parameter that best distinguishes the clustering of species occurrences 

from what would be expected based on spatial randomness; then it uses the minimum 

number of environmental parameters necessary to develop an accurate predictive model; 

and finally it applies the model over a selected landscape. This assesses the probability 

that a specific location is part of the species’ niche. As this prediction of niche ignores 

species-specific attributes, it can be regarded as a null model in which deviation of 

observed occurrences from the predicted areas are discussed with respect to species- 

specific attributes and potential biotic interactions. I apply this method spatially, from 

local to regional scales, and ecologically, from individuals to populations and using 

single species to groups of species. I demonstrate the approach using Opuntia humifusa in 

Point Pelee National Park, ON. In this site, plant distribution, habitat attributes and 

habitat qualities have been closely studied.

I then extend the approach to the larger grouping of rare species across south-western 

Ontario. Neutral approaches assume species are equivalent with respect to probabilities of 

birth, death, dispersal and speciation, and that species are able to grow at all sites (i.e. that
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they have no habitat preference)(Gaston and Chown 2005). I test these assumptions using 

null models of the species’ niche and different subsets of species occurrence data for 

southern Ontario, comparing outcomes using spatial correlations. In Chapter 6 ,1 develop 

a gradient-based niche model first, for each of four groups of rare biota (birds, insects, 

plants and reptiles), based on occurrences of rare species (S-rank 1-3) in SW Ontario, and 

report patterns of landcover, soil types, and elevation and climate. I then further model 

distributions of rare rare plants by grouping them into: trees, shrubs, herbs, grasses, and 

sedges; SI, S2, S3 plants and herbs separately; and into terrestrial and aquatic 

classifications. The models for each of the various groups of rare species were used to 

test the efficacy of the ecological equivalence assumption. Further, spatial predictions of 

groups of species were examined with respect to determining if some groups of species 

can be more accurately modelled than others. Finally, the implications in an applied 

conservation perspective are discussed, as this approach could be used for potential 

prioritization of areas of potential niche for conservation / restoration efforts for groups 

of rare species rather than for single species.

Chapter 7 is a general discussion, where the major results of the thesis are discussed in 

the context of traditional and current theories that seek to explain patterns of species 

distributions across scales from local to continental. It also addresses the contribution of 

null models toward a better understanding of niche. I propose a framework that allows 

current null and niche-assembly theories to be used in combination to further our 

understanding of the stochastic and biological processes influencing species niche and 

distributions.
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Figure 1.1. Illustration of the rationale of the mid-domain models. Fifty species ranges 

were randomly placed within the domain limits (0-1)  based on the random selection of 

range endpoints from a uniform distribution of all potential points with the limits of the 

domain. The horizontal lines in the left panel depict the size and placement within the 

domain for the 50 theoretical species. The overlapping species ranges produce a pattern 

of species richness shown in the right panel. While this single simulation produces a mid

domain peak of 0.6 x number of species, replicating the simulation multiple times would 

produce a mean peak of approx. 0.5 as predicted by Colwell and Hurtt (1994), Willig and 

Lyons (1998) and Colwell and Lees (2000).
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Chapter 2 - Species richness and range size predictions of mid-domain 

models -  now in 3-D!

Summary

The mid-domain effect (MDE) proposes that gradients in species richness arise due to 

stochasticity and geometric domain boundaries. Thus far null patterns in species richness 

have been predicted mostly using random range placements within the limits of a single 

dimension (e.g., latitude), with a few models exploring two-dimensional or irregularly 

shaped domains. Here I present a modified, fully stochastic, three-dimensional MDE 

model, using a “six-hit” approach that builds from an established two-hit, one

dimensional model. Thus, the model randomly selects the extent (minimum and 

maximum range endpoints) for each of the three dimensions of longitude (X), latitude (Y) 

and altitude (Z), such that the size of a theoretical species’ range, R, is the area 

represented by Rx H RY fl Rz. Existing one- and two-dimensional MDE models are 

improved upon by having range endpoints drawn from a distribution which takes into 

account the proportion of the domain in each unit of a particular dimension. This chapter 

explores predictions for species richness and range-size frequency distribution (RSFD) 

patterns, examining effects of domain shape using three different domains (a square- 

based pyramid, continental North America, and Australia) within the simulations.

Several general results occurred independent of domain shape: (1) mean range size at any 

point in the domain was relatively constant at nearly 50% of the domain for single 

dimensions individually, at c. 25% for two-dimension combinations, and at c. 13% for
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the three-dimension combination; (2) variance in range size decreased from domain 

edges (areas of lowest species richness) toward the center of the domain (highest 

richness); and (3) the RSFD was always right-skewed, with skewness increasing with the 

number of dimensions being resolved. Effects of domain shape were greatest in regard to 

elevation, with a shift of peak richness to lower altitudes rather than mid altitudes. The 

model provides explicit one-, two- and three-dimensional baselines against which 

empirical data can be compared, deriving contributions of multi-dimensional geometric 

factors upon the stochastic arrangement of species ranges.

Introduction

Colwell and Hurtt (1994) proposed that latitudinal gradients in species richness could be 

explained by stochastic processes acting within the geometric constraints (or edges) of a 

domain; later this came to be known as the mid-domain effect (MDE). The MDE is 

observed as a mid-domain peak or plateau in species richness, for theoretical or empirical 

ranges, when placed randomly within a bounded geographic domain (Colwell and Lees 

2000). Predictions of MDE models have been used to examine patterns of species 

richness in gradients of latitude, longitude and altitude (reviewed in Zapata et al. 2003, 

Colwell et al. 2004).

Mid-domain models are null models that simulate the random spatial arrangement of 

species ranges, within a bounded domain (such as a continent), and assuming no direct 

effects of environmental gradients on species richness (Colwell et al. 2004). Colwell and 

Hurtt (1994) first proposed MDE as an alternate hypothesis explaining latitudinal and
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altitudinal gradients in species richness. Previously, Stevens (1989, 1992) had suggested 

such richness gradients were due to environmental gradients, which he labeled 

Rapoport’s rule (and see Rapoport 1982: the “rule” denotes an apparent latitudinal 

gradient in which species richness increased and mean range size decreased, with 

decreasing latitude). MDE models of Colwell and Hurtt (1994) predicted gradients in 

species diversity, similar to Rapoport’s rule, peaking at mid latitude (or altitudes) simply 

from the random placement of ranges in a bounded domain, and in the absence of any 

direct biological effects.

Null models have proven controversial for their non-biological basis (Connolly 2005), 

and MDE models are no exception (see e.g., Colwell et al. 2004, Hawkins et al. 2005, 

Zapata et al. 2005, Colwell et al. 2005). This chapter will not reiterate the arguments, but 

will present, with a MDE model, the effects of geometric constraints (domain limits) on 

species ranges as a driver of spatial richness patterns. Elsewhere, in Chapters 2 and 3 ,1 

show that actual patterns in species richness are influenced by factors of both geometric 

constraints and environment (including topography, climatic patterns and biotic factors). 

My interest in this chapter is to extend the theoretical predictions of MDE to three 

dimensions, and to probe the geometry of real domains.

To date, the major focus of MDE models has been on predicting gradients in species 

richness as a function of a single dimension, primarily latitude (Arita 2005). Bokma and 

Monkkonen (2000) suggested MDE models may be limited in predictive power and 

applicability by their lack of multi-dimensionality. Here I propose a method for the
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stochastic creation and placement of ranges within a bounded domain. Patterns are 

predicted in species richness and range-size frequency distribution (RSFD) in each of a 

series of one-dimensional, two-dimensional, and three-dimensional MDE models.

Finally, effects of domain shape are tested by applying the model first to a square-based, 

pyramidal domain, and then to continental North American- and Australian-shaped 

domains, respectively.

Mid-domain models

Consider the random placement of line segments of random length between domain 

limits of 0 to 1. The line segments represent species ranges placed randomly within the 

limits of a geographic uni-dimensional domain (latitude, longitude, altitude). At any point 

within the domain the number of species (overlapping line segments) can be counted, 

along with mean range size (mean line segment size) and its associated variance and 

skewness in range size can be calculated (Arita 2005). The random placement of 

ecological ranges (niches) was first described with Mac Arthur’s two-hit broken stick 

model (Mac Arthur 1957), a random, “overlapping niche” model. Mac Arthur was 

interested in the distribution of niche sizes, rather than the patterns of overlap among 

them. However, if number of overlapping species ranges is plotted for all points within 

the limits of the domain, a mid-domain effect is observed as a parabolic or quasi

parabolic curve, peaking at 0.5 times the total number of species, over the center of the 

domain (Colwell and Hurtt 1994, Willig and Lyons 1998, Colwell and Lees 2000, Arita 

2005).
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There are two general types of MDE models: those which randomly create and place 

species ranges within a domain (“fully stochastic” models) and those which place ranges 

“re-sampled” from real world RSFDs (Zapata et al. 2003, Colwell et al. 2004). While 

fully stochastic MDE models produce a theoretical RSFD that is biologically realistic 

(Colwell and Lees 2000), it may differ from that of the actual RSFD. Thus, differences 

between actual and MDE-predicted species richness patterns may be a product of either 

the non-random placement of species within the domain, or the differences in RSFD, or a 

combination of both. All this potentially underestimates the MDE (McCain 2003,

Colwell et al. 2004).

Random placement of ranges re-sampled from a RSFD based on observed data could 

incorporate taxon-specific biological characteristics, and these may be independent of 

patterns of species richness (Lees et al. 1999, Colwell 2000, Hawkins and Diniz-Filho 

2002, Jetz and Rahbek 2001, 2002, McCain 2004, Colwell et al. 2004). Such niche-based 

attributes could include speciation and extinction potential, population density, body size, 

etc. However, as others have noted, it may be that use of a purely theoretical RSFD is less 

subject to biological assumptions, and thus more “null,” (see e.g., Koleff and Gaston 

2001, Hawkins and Diniz-Filho 2002, Laurie and Silander 2002).

Further, the random placement of ranges (based on either theoretical or empirical RSFDs) 

permits the tracking and hence prediction of RSFD characteristics at particular locations 

or points within the domain. Arita (2005) explored exact RSFDs for species at different 

latitudinal positions, under assumptions of a fully stochastic one-dimensional MDE
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model. Arita (2005) found three major RSFD generalizations: 1) MDE models predict no 

gradient in mean range size (~ 0.5 x the extent of the domain); 2) variance in range size 

decreases from the edge to the center of the domain; and 3) while the RSFD is right- 

skewed at any point in the domain, the skewness increases with decreasing species 

diversity (moving from center to edge of the domain).

Modeling in 3-D -  true domain geometry

Here I extend predictions of MDE to three dimensions using a modified, fully stochastic 

MDE model. Mid-domain models assume that spatial richness patterns are constrained by 

the geometry of the domain. Yet the true geometry of any domain is not solely in a single 

dimension or even in two, but in three -  latitude, longitude and altitude.

With one-dimensional MDE models, two methods dominate creation and placement of 

randomly generated ranges within a domain. The first, proposed by Colwell and Hurtt 

(1994), selects range midpoints and range size randomly from all possible combinations 

of values. The presumption was, because the domain is bounded, as range midpoints 

approach the domain limits, ranges are constrained to be progressively smaller. Thus 

while small-range midpoints may be located throughout the domain, large-range 

midpoints are constrained to be nearer the center (Zapata et al. 2003). The alternative 

approach is to define a range by selecting endpoints from a uniform distribution of 

possible points within the domain (e.g., MacArthur’s 1957 two-hit broken stick model, 

the binomial model of Willig and Lyons 1998, and the fully stochastic model of Colwell 

and Lees 2000).
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Underlying all one-dimensional MDE models is the assumption that the domain of 

interest is linear (i.e., shapeless beyond the focal dimension), with the only limits to 

species placement being the extent of the domain. Thus, for a single dimension, it is 

assumed a species cannot occur outside the “hard” limits (0 and 1) of any domain, and so 

a species range can be defined by its limits Li and L2 where 0 < Li, L2 < 1 and L2 > Li 

(Willig and Lyons 1998, Arita 2005). To generate a species range, two random points 

within the range are randomly placed within the domain (i.e., for longitude Xi and X2) 

where Li = MIN(Xi, X2) and L2 = MAX(Xi, X2). The range size Rx is a function of Xi 

and X2 and can be represented as Rx = |Xi - X2 I, such that 0 < R < 1.

Arita (2005) extended this to two dimensions (longitude x latitude). Thus, for a square

shaped continent, the range could be defined as a rectangle with limits in longitude of Xi 

and X2 , and for latitude, Yi and Y2 . The values Xi, X2 , Yi and Y2 are selected at random 

within the limits of the domain. For each single dimension, the size of the range can be 

represented by Rx = |Xi - X2 I and R y  = |Y 1 - Y2|. The area of the rectangle that represents 

the range in two-dimensions can be defined as R  = Rx * Ry or = |Xi - X2 I * |Yi - Y2 I.

I propose we can further extend Arita’s (2005) two-dimensional concept to three 

dimensions; I suggest that a range can be defined by its limits in longitude (Xi, X2), 

latitude (Yi, Y2) and altitude (Zu Z2). As the universe of possible values for two 

dimensions is a unit square, the universe of possible values for all three dimensions can 

be represented by a unit cube. In this case, the species range, R, could be defined as a
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volume Rx * Ry * Rz or |Xi - X2 I * |Y 1 - Y2 I * |Zi - Z2I While this would be suitable for 

developing a model for three-dimensional domains such as ocean or lake basins, such 

volumetric measurements are not suitable for terrestrial models.

In terrestrial environments, the range limits represent the surface of the domain in 

longitude and latitude between some altitudinal range; the species range, R, is the area 

delimited in longitude and latitude that can be represented by Rx H Ry fl Rz where Rx,

R y  and R z  are defined by their limits Xiand X2 , Yi and Y2 , and Z\ and Z2 , respectively. 

Given that the universe of possible values for Xi, X2 , Yi, Y2 , Z\ and Z2 is represented by 

a unit cube, the random selection of endpoints may create a range where R  = 0 (i.e., when 

Rx H R y  but does not intersect R z ) . As actual domains are irregularly shaped surfaces 

(rather than a cube), the probability of creating theoretical species ranges where R =  0 

increased when calculating the size of the range in three dimensions, where R  is defined 

as the area represented by R x  D R y  fl R z . For this model, where R  = 0 the theoretical 

species was discarded and a new one was created, with six new, randomly selected 

endpoints.

While the move from one-dimensional to two-dimensional MDE models is the next 

logical step (Bokma and Monkkdnen 2000), some of the appealing simplicity of one

dimensional MDE models is lost. Indeed, accounting for three dimensions is even more 

complex. Beyond the single dimension, irregularly shaped domains have been 

problematic as MDE models often assume a rectangular or square domain (Bokma et al. 

2001, Hawkins and Diniz-Filho 2002, Arita 2005; but see e.g., Bokma et al. 2001, Jetz
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and Rahbek 2001, 2002, Diniz-Filho et al. 2002, Hawkins and Diniz-Filho 2002, Rangel 

and Diniz-Filho 2005a, b).

Rather than selecting endpoints from a uniform distribution of potential points within the 

domain (as done by e.g., Willig and Lyons 1998, Colwell and Lees 2000, Arita 2005), I 

suggest the irregular shapes of domains may be better accounted for by selecting 

endpoints from non-uniform distributions, based on the proportion of the domain 

represented by single points in (or for each measured unit of) one dimension. Thus, with 

respect to latitude and longitude, and given that peninsular proportions of a domain are 

typically small compared to the entire domain, the probability of selecting range 

endpoints within the peninsula is relatively small.

Simulations

To examine predictions of this modified, fully stochastic MDE model, 100 simulations 

were mn in which 500 theoretical species ranges (defined as the intersection of Rx fl RY 

D Rz) were randomly placed within each of three domains (Fig. 2.1). The first domain 

was geometrically regular, a square-based pyramid, used for comparisons with 

predictions of other models with respect to longitude x latitude interactions. The 

pyramidal shape also permits examination of effects of elevation. The other two domains 

were irregularly shaped domains, namely continental North America and Australia. 

Perimeters of these domains were extracted from “World Countries 1992” base map, 

supplied with ArcView 3.2 (ESRI, California, USA); altitudes were obtained from the 

GLOBE project (GLOBE 1999). Australia was used as an approximately “regular”
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shaped domain with respect to longitude and latitude, with irregularity in elevation; while 

North America is a domain that is irregularly shaped in all three dimensions.

Each domain was gridded with 20 x 20 km cells in longitude and latitude, while mean 

altitude was estimated in metres above sea level for each cell. Thus the pyramid domain 

was 300 x 300 cells in longitude and latitude, and peaked at 300m above sea level in 

altitude. The maximum extents of the North American domain were 309 x 366 cells in 

longitude and latitude, and peaked at 3644m above sea level. The extents of the 

Australian domain were 243 x 197 cells in longitude and latitude, and peaked at 1441m 

ASL.

From the 100 simulations, mean values of predicted species richness and range size were 

used, along with measures of associated standard deviation and skewness in range size, 

for further analysis. In effect, 50,000 species were placed within each domain whose 

ranges were randomly created using the “six-hit” approach. Range limits for each of 

longitude, latitude and altitude (i.e., two endpoints for each dimension) were selected at 

random from the non-uniform distributions of possible endpoints. Distributions of 

possible endpoints were, again, based on the proportion of the particular domain 

represented by individual points in any one dimension. For example, based on the 

proportionate area within the square-based pyramid domain, the probability of selecting 

any point for latitude and longitude is uniform and equally likely (~ 0.02; Fig. 2.2a,b); 

however for elevation, the probability of selecting any point decreases with increasing 

elevation (from ~ 0.04 at low elevations, approaching 0 at higher elevations; Fig. 2.2c).
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The theoretical ranges created were often irregularly shaped and could be discontinuous, 

similar to actual ranges. Additionally, the extents of the theoretical ranges in longitude, 

latitude and altitude were often smaller than those defined by randomly selected 

endpoints. For example, Xmax for range R, where R is a function of Rx fl RY fl Rz, was 

less than the randomly selected LX 2 where LX 2 = MAX(Xi, X2), and thus Rx < |Xj - X2 I. 

When this occurred, the maximum and minimum extents of the range were defined by the 

limits of R rather than the randomly selected endpoints.

To examine RSFD for the theoretical species, range sizes for each of the single 

dimensions and combinations of dimensions were calculated as proportions of the 

domain within the limits of the range. In other words the proportion of the domain within 

the extent of the range limits, in each of the one-, two- and three-dimensions, was 

calculated. From the species extents and corresponding range sizes, species richness, 

mean range size, and standard deviation and skewness in range size were calculated for 

each 20 x 20 km cell, in each individual dimension and combination of dimensions, 

within each domain.

Results

Theoretical range-size frequency distribution

Proportionate area frequencies for the pyramidal-, the North American-, and the 

Australian domains are shown in Fig. 2.2a,b,c with respect to longitude, latitude and 

altitude, respectively. The square-based pyramid domain shows a nearly uniform
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distribution of proportionate frequencies for longitude and latitude. However, for 

elevation lower altitudes comprise a greater proportion of the domain, and thus this 

should be reflected in the distribution of potential endpoints. With respect to the North 

American and Australian domains, in both cases the proportion of the domain represented 

by longitude and latitude provide a normal distribution (Fig. 2.2d,e), while elevation 

shows a significantly right-skewed distribution (Fig. 2.2f).

The RSFD of the theoretical species shows, in general, a monotonically decreasing 

frequency of range sizes, with the maximum range size equaling that of the full breadth 

of the single domain, in each of the unitary dimensions (Fig. 2.3, top panels).

Furthermore, this model shows decreased mean range size and increased skewness with 

increasing dimensionality (Fig. 2.3, middle and lower panels).

Patterns in species richness and range-size frequency distribution 

An average peak of 47.3 % (± 0.82 SE) was predicted for individual dimensions, similar 

to that of other one-dimensional models (Fig. 2.2 d,e,f; and see Colwell and Hurtt 1994, 

Willig and Lyons 1998, Colwell and Lees 2000, Arita 2005). In all three domains, the 

predicted species richness peaks ranged from 0.22 to 0.28 x number of species for the 

two-dimension combinations, and ranged between 0.10 and 0.14 x number of species, 

when accounting for all three dimensions.

With respect to the patterns in RSFD, and with the exception of very low species 

richness, the following general trends were noted. First, all dimensions and combinations
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of dimensions predict a relatively constant mean range size of 0.450 (± 0.0001), 0.244 (± 

0.0001) and 0.130 (± 0.0001) for one-, two- and three-dimensions respectively, 

independent of location within the domain (Fig. 2.4, top panels). Second, variance in 

mean range size decreased from edge to center (i.e., low-to-high predicted species 

richness; Fig. 2.4, middle panels). Finally, while the RSFD is right-skewed at any point 

of the domain, skewness was in general relatively constant across the domain, increasing 

with increasing dimensionality (Fig. 2.4, lower panels). The exception for skewness was 

with respect to longitude and latitude of the square-based pyramid, where skewness 

increased with decreasing species diversity (moving from center to edge).

Domain shape

Patterns in predicted species richness are shown in Fig. 2.5, becoming increasingly 

complex with increasing number of dimensions, and differing greatly depending on the 

dimensions examined. This is exemplified with respect to the pyramidal domain, where 

there was a shift in the richness center, in comparing longitude x latitude predictions with 

those of longitude x altitude, or latitude x altitude. While the single dimensions of 

longitude and latitude both show a distinct mid-domain peak in species richness, the 

elevational peak was shifted toward lower altitudes (Fig. 2.2 d,e,f). This was evidently a 

function of the greater proportionate representation of lower altitudes within the domain 

(see above).

Extending the MDE beyond one-dimension increases the complexity of both the model 

and its predictions. For the simplest domain, the pyramid, species richness peaks at 0.5 in
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each dimension for longitude and latitude, i.e., at the center of the square domain (Fig.

2.5, left panels). However, the two-dimensional predictions of longitude x altitude or 

latitude x altitude show species richness peaks located where longitude (or latitude) is at 

position 0.5 of the domain and altitude is at 0.34 -  two major and two minor peaks in 

species richness. With respect to the three-dimensional predictions, four peaks occurred 

(Fig. 2.5, lower left panel).

Within the empirical domains, the two-dimensional prediction of species richness for 

longitude x latitude appears in the center of the domain, with a single peak. By including 

altitude in the mid-domain model presented here, multiple peaks in species richness 

become apparent, especially with respect to combinations including altitude. For both the 

North American and Australian domains, there was a single dominant peak in species 

richness. However, there was no gradual decrease in species richness from those peaks, 

unlike the situation for longitude x latitude predictions (Fig. 2.5, center and right panels).

Discussion

Theoretical range-size frequency distribution

The predictions presented here are most appropriately tested against empirical species 

having RSFD matching that of the theoretical species RSFD. Theoretical RSFDs created 

by the present model are similar to those of other fully stochastic models, monotonically 

decreasing the frequency of range size, and with the maximum range size equaling the 

full breadth of the domain in each dimension (Fig. 2.3, top panels). This is similar to what 

was observed for the fully stochastic one-dimensional models of Colwell and Hurtt
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(1994), Willig and Lyons (1998) and Colwell and Lees (2000). One could expect that as 

conditions of range size became more stringent (increasing the number of dimensions to 

be accounted for), mean range size should decrease and become more right-skewed. For 

example, if a species range is defined as 0.2 to 0.8 for each of the longitude and latitude 

dimensions within a domain having limits of 0 and 1, the range size for that species in 

either single dimension should be limited to (0.8-0.2)/l = 0.6 of the domain. When 

accounting for both dimensions, range size is limited to 60% of each dimension, or just 

36% of the total domain. Indeed this model demonstrates decreased mean range size and 

increased skewness, with increasing dimensionality (Fig. 2.3).

The log-normal RSFD curve is biologically realistic (Anderson 1985, Brown et al. 1996, 

Colwell and Lees 2000), and is a theoretical standard to which empirical RSFD patterns 

have been compared (Gaston et al. 2005; and see e.g., Pagel et al. 1991, Blackburn and 

Gaston 1996, Gaston 1998, Macpherson 2003). The differences between empirical and 

MDE-predicted patterns, in species richness and in RSFD, may be due to the non-random 

placement of species within the domain or to the differences in species RSFD, or a 

combination of both -  potentially underestimating, or overestimating, the MDE (McCain 

2003, Colwell et al. 2004, Arita 2005).

Patterns in species richness and range-size frequency distribution

Independent of domain shape, the stochastic model presented here further confirmed 

previously reported predictions of species richness patterns (suggested by Colwell and 

Hurtt 1994, Willig and Lyons 1998, Colwell and Lees 2000, Arita 2005) and patterns of
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RSFD (Arita 2005). The models presented here confirmed the predictions of MDE 

models showing peak richness to be 0.5 x the number of species in one-dimensional 

predictions, 0.25 (= 0.52) for two-dimensional prediction (Colwell and Hurtt 1994, Willig 

and Lyons 1998, Colwell and Lees 2000, Arita 2005) and then, extending this to three 

dimensions, 0.13 (= 0.53) x the number of species.

Arita (2005) was the first to address patterns in RSFD at different latitudes, under the 

assumption of a fully stochastic one-dimensional MDE model, and extended the 

predictions into two-dimensions. Because Arita’s (2005) theoretical domain was square, 

in order to make direct comparison with my irregularly-shaped domains, I attempted to 

remove the influence of shape by using the assumption that the predicted species richness 

was greatest at mid-domain and lowest at the limits of the domain.

Arita’s first generalization was that MDE models predict no gradient in mean range size, 

with a mean of 0.5 x the extent of the domain for any single dimension or 0.25 x the 

extents for two dimensional combinations. Extending this to three dimensions, mean 

range size should be 0.13 x the extent. For the model presented here, all predictions fit 

this generalization, except in areas of very low species richness. All dimensions and 

combinations of dimensions predicted a relatively constant mean range size for the one-, 

two- and three-dimensional predictions, in line with Arita (2005), across all domains 

(Fig. 2.4, top panels). Small ranges can be located throughout the domain and large 

ranges are constrained to be nearer the center of the domain (Zapata et al. 2003), so it
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seems not unrealistic to expect that species at the limits of the domain exhibit smaller 

mean range sizes.

Arita’s second MDE generalization was “variance in range size is lowest at the middle of 

the continent and highest near the comers of a square-shaped continent”. Put simply, 

variance in range size should decrease from low species richness (at the limits of the 

domain) to high species richness (center of the domain). My results also support this (Fig. 

2.4, middle panels). With the exception of extremely low species richnesses, variance in 

mean range size decreased from edge to center of domains. Arita’s third generalization 

was that, while RSFD is right-skewed at any point of the domain, the skewness increases 

with decreasing species diversity (moving from the center to the edge of the domain).

This was only observed with respect to longitude and latitude of the square-based 

pyramid -  a square domain as used by Arita (2005), suggesting domain shape is 

important here (Fig. 2.4, lower panels). With the exception of the above-mentioned 

square-based pyramid domain, the predictions suggested that skewness was relatively 

constant at any point within the domains and that skewness increased with increasing 

dimensionality.

Domain shape

Few have attempted to modify MDE models to account for irregularly-shaped domains. 

The basic Bokma et al. (2001) model has been modified by using proportionate distance 

from domain edge for the exact latitudinal and longitudinal extent at each point in the 

domain (Diniz-Filho et al. 2002, Hawkins and Diniz-Filho 2002) or by taking the
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distance to the absolute edge of the domain for any point and deriving the proportionate 

distance as a measure of the maximum domain size in each dimension (Hawkins and 

Diniz-Filho 2002). However, these methods can still show anomalous secondary peaks in 

peninsulas (Hawkins and Diniz-Filho 2002).

While attempting to account for irregularly-shaped domains, the developments of Bokma 

et al. (2001) models do not speak to the RSFD patterns. Two further methods exist, based 

again on the random placement of ranges within the domain, for prediction of both 

species richness and location-specific RSFD within irregularly shaped domains. The first 

uses a “spreading dye” algorithm (Jetz and Rahbek 2001, 2002). The model re-samples 

range sizes in two dimensions (area) from an empirical RSFD. These are randomly 

placed by first selecting a cell within a gridded domain and “growing” the species range 

to the selected size by adding adjacent cells chosen at random -  creating irregularly 

shaped ranges. While range size in area is maintained from an empirical RSFD, range 

size in either single dimension is not (Zapata et al. 2003).

The second method is a process-based, evolutionary MDE model. Initially proposed by 

Bokma et al. (2001), this approach differs from others in that it considers the evolutionary 

and biotic processes of speciation, extinction and dispersal in defining species ranges -  

suggesting an ecological basis for MDE. Species are randomly placed in a single cell of a 

gridded domain and with successive generations they may speciate, go extinct or 

disperse. If rates of speciation and extinction are equal, species richness becomes driven 

by dispersal, and since dispersal at the edge of the domain is lower (due to fewer shared
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cell edges), a mid-domain peak in species richness is again predicted. Recently, several 

other process-based approaches have been proposed that further support MDE predictions 

(see e.g., Connolly 2005, Rangel and Diniz-Filho 2005a, b). These models are limited by 

the need to estimate parameters such as rates of speciation, extinction and dispersal.

While the model presented here makes predictions of species richness peaks and patterns 

of RSFD independent of shape similar to other models, it predicts complex gradients in 

species richness that increase with increasing complexity of the domain being examined. 

The procedure used for stochastically creating and placing theoretical species ranges 

generates a pattern of richness values that peaks mid-domain for longitude and latitude, 

as previously reported (Colwell and Hurtt 1994, Willig and Lyons 1998, Colwell and 

Lees 2000). However, the richness peak for elevation is shifted toward lower altitudes. In 

general, species richness tends to decrease with elevation (e.g., Stevens 1992, Brown and 

Lomolino 1998). Indeed Rahbek (1995) reviewed 97 studies on elevational gradients in 

species diversity and found most studies showed greatest diversity at lower altitudes, but 

nearly half the studies exhibited a mid-domain peak. It is unclear where within the 

domain the peak occurred (shifted from the middle of the domain toward higher or lower 

elevations) and to what degree the richness peak corresponded to the proportional area of 

the domain (per unit of elevation).

Sanders (2002) showed that peaks in species richness corresponded with the area in 

elevational bands, for ant richness in three U.S. states. Similarly, Carpenter (2005) 

showed that for trees and understory plants in the Himalayas, peaks in species richness
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were not centered over the mid-domain for an elevational gradient, but were shifted to the 

left. This corresponds to a greater proportion of the domain being represented by lower 

elevations. The “mid-domain” elevational peaks Rahbek (1995) noted may indeed be 

shifted to the left (not immediately over the middle of the domain), as with my 

observations. Sanders (2002) stated that “species richness peaked at mid-elevations”, yet 

in one of that paper’s figures (Sanders 2002: Fig. 1), the mid-domain peak was not 

immediately over the mid-domain but shifted toward the lower elevations, for each of 

three domains examined.

While the shift in elevational richness toward lower altitudes seems empirically 

justifiable, it can also be demonstrated geometrically. Fig. 2.6 depicts each possible two- 

dimensional combination for the pyramid domain. In looking explicitly at longitude x 

latitude (Fig. 2.6, left panel), a “mid-domain” peak is expected at the geometric center of 

the square domain, thus predicting richness peaks for both longitude and latitude at the 

midpoint of each dimension. However, when examining longitude x altitude or latitude x 

altitude (Fig. 2.6, center and right panels), the domain becomes triangular in shape, not 

square. Geometric centers can be found by connecting the vertices of the triangle to the 

opposite midpoints. The center of the triangle (peak in species richness) continues to 

correspond to the 0.5 x domain extent for longitude and latitude, but the peak is shifted 

toward lower altitudes, to 0.34 (within domain extents of 0 and 1) -  the same as what was 

predicted for the pyramid-shaped domain by selecting range endpoints based on the 

proportionate area frequencies.
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The novelty of the model proposed here is that it can be applied to irregularly-shaped 

domains, in the three dimensions that make up a domain. However, this increases the 

complexity of both the model and the predictions. Single-dimension models predicted 

that in any of the three dimensions, mid-domain peaks at 0.5 (in a domain of 0 to 1) 

should be observed (Colwell and Hurtt 1994, Willig and Lyons 1998, Colwell and Lees 

2000, Arita 2005), with the shifting of the peak in elevation toward lower altitudes 

already discussed with respect to domain shape and proportionate area. Given that peak 

richness occurs at position 0.5 for both latitude and longitude, and at 0.34 for altitude, 

peak domain richness should occur where all conditions are met in any of the two- or 

three-dimension combinations. Indeed, with the simplest of domains, the pyramid (Fig. 

2.5, left panels), the longitude x latitude pattern of species richness, peaking at the center 

of the square domain, is arguably the most intuitive and recognizable pattern, extending 

MDE beyond a single dimension (see e.g., Willig and Lyons 1998, Arita 2005, Rangel 

and Diniz-Filho 2005a).

Application of two-dimensional MDE models has been limited, due to the limited ability 

to account for the irregular shape of empirical domains. Within the domains examined 

here, the two-dimensional prediction of species richness for longitude x latitude is 

intuitively in the center of the domain with a single peak. However, by including altitude 

in the mid-domain model presented here, multiple peaks in species richness become 

apparent, especially with respect to longitude x altitude and latitude x altitude 

combinations.
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The two-dimensional predictions of longitude x altitude, and latitude x altitude for the 

pyramid domain, although not as intuitive, resulted in two major and two minor peaks in 

species richness, located where longitude (or latitude) occurred at position 0.5 on the 

domain and where altitude occurred at 0.34. Extending this to include all three 

dimensions, peak species richness should be seen at the position where longitude and 

latitude equal 0.5 and altitude is 0.34. As these conditions do not occur within the 

pyramidal domain, four peaks in species richness are observed, each with a peak height 

lower than expected.

With respect to the two- and three-dimensional predictions for both the North American 

and Australian domains, a single dominant peak in species richness occurred; however, 

there was no gradual decrease in species richness from that peak (unlike longitude x 

latitude predictions; Fig. 2.5, center and right panels). Secondary peaks in the two- and 

three- dimensional models are not anomalies as found by Hawkins and Diniz-Filho 

(2002) but rather show the major effect of including elevation in the model. Indeed, 

multiple richness peaks and non-uniform gradients in species richness are seen in 

empirical data (see e.g., Hawkins and Diniz-Filho 2002, Rangel and Diniz-Filho 2005a, 

Murphy et al. 2006) and may be due to multi-dimensional MDE rather than 

environmental gradients.

Hawkins and Diniz-Filho (2002) concluded that a two-dimensional MDE model 

(longitude x latitude) could not be used to explain the diversity gradient in North 

American Nearctic birds. Colwell et al. (2004) later noted there is a clear latitudinal
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gradient in bird richness, and suggested the lack of a longitudinal gradient may be due to 

pooling of avian data from longitudinally distinct biomes -  i.e., an environmental 

gradient. While an environmental gradient may influence species richness patterns, I 

suggest the observed species richness pattern in Nearctic birds resembles the predicted 

gradient for latitude x altitude, and support Colwell et al.’s (2004) suggestion that all 

possible combinations of dimensions should be used to examine MDE.

In recognizing that irregular shape of domains may be important, some caution is needed 

when defining a domain. As maps are abstract representations of the earth, the transition 

from a sphere to flat surface distorts the true dimensions of a domain in shape, area 

and/or direction (Brainerd and Pang 2001). The problem of conversion of a sphere to a 

planar surface has interested cartographers, mathematicians and navigators for nearly 

2500 years (Snyder and Voxland 1989); hundreds of such projections are used -  each 

with tradeoffs in maintaining distance, direction, size, area, etc. Given the basic 

assumption of MDE that geometry, or shape of a domain, drives distributions, domains 

should use projections that best maintain the original shape of the domain. In doing so, 

they should also minimize distortions in area (Bokma et al. 2001). This becomes more 

important with larger domains as distortion generally increases with increasing domain 

size (Brainerd and Pang 2001).
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3000 km

Square-based pyramid North America Australia

Figure 2.1. Illustration of the three domains: a square-based pyramid, continental North 

America, and Australia. Perimeters of the continental domains were extracted from 

“World Countries 1992” base map supplied with ArcView 3.2 (ESRI, California, USA) 

and altitudes were obtained from the GLOBE project (GLOBE 1999). Lighter areas 

represent higher elevations, reported in metres above sea level.
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Figure 2.5. Patterns of species richness as predicted by a modified, fully stochastic, three 

dimensional MDE model for each of a square-based pyramid, North American and 

Australian continental domains. One-dimensional (Longitude, Latitude and Altitude) and 

multi-dimensional (Long x Lat, Long x Alt, Lat x Alt and Long x Lat x Alt) predictions 

are shown. Equal interval classification is shown with color ramps indicating minimum 

(dark, bottom of legend) to maximum (light, top of legend) predicted species richness. 

The color ramp represents 0 - 0.5 x total number of species for the uni-dimensional 

predictions, 0 - 0.28 for the two-dimensional, and 0 -0 .14  for the three-dimensional 

model.
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Figure 2.6. Illustration of the rationale of predicting location of peak species richness. 

Mid-domain models predict a peak in species richness at the geometric center of a 

domain. The intersection of the dotted lines represents the center of the domain for each 

two-dimensional combination for a square-based pyramid domain. The axis represents 

the proportionate distance across the domain in each of longitude, latitude and altitude. 

For both longitude and latitude, species richness peaks at the domain mid point (0.5) 

while for altitude, species richness peaks at lower altitudes at position 0.34.
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Chapter 3 - Incorporating three-dimensional geographic range 

geometry in mid-domain models: geometric constraints and 

environmental correlates of North American tree species richness.

Summary

The ‘mid-domain effect’ (MDE) has received much attention recently as a candidate 

explanation for patterns in species richness over large geographic areas. Mid-domain 

models generate a central peak in richness, in the absence of environmental gradients, 

when species ranges are randomly placed within a bounded geographic area (i.e., the 

domain). Until now, domain limits have been described mostly in one dimension, usually 

latitude or altitude, and only occasionally in two dimensions. Here, one-, two- and, for 

the first time, three-dimensional mid-domain models are tested and the independent and 

concurrent effects of geometric constraints and environmental variables on species 

richness of 417 North American tree species are assessed.

For species with large ranges, MDE alone explained between 69% and 98% of the 

variation in species richness. For these species, MDE also substantially improved the fit 

(by up to 21%) of multiple regression models which also included environmental 

variables. The largest difference in fit between models with and without MDE was for the 

two-dimensional (latitude x altitude) model for all ranges, with an improvement of 23% 

when MDE was included in the model. For medium- and small-range species, geometric
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constraints have little influence on patterns of species richness and environmental 

parameters are much more important.

The analysis addresses many of the recent methodological criticisms directed at studies 

testing the MDE, and the results support the hypothesis that species richness patterns may 

be influenced by geometric constraints. I suggest few good arguments remain for why 

geometric constraints should not be considered alongside more traditional environmental 

correlates in understanding patterns of species richness.

Introduction

Ecologists and biogeographers for over two centuries have hotly debated the mechanisms 

underlying geographic gradients in species richness, without an emergent consensus (e.g., 

Rhode 1992; Willig et al. 2003; Hawkins et al. 2003). Biogeographic patterns in species 

richness have traditionally been seen as reflecting underlying geographical gradients in a 

variety of ecological and evolutionary factors (see e.g., Currie and Paquin 1987; Stevens 

1989; Grytnes and Vetaas 2002; Hawkins et al. 2003; Willig et al. 2003; Zapata et al. 

2003). In principle, if classical niche-assembly theory prevails, species richness should 

vary geographically in concert with biotic or abiotic gradients. For the longest time, 

biologists worked under the assumption that species richness should be spatially uniform 

in the absence of these gradients (Colwell et al. 2004).

Recently, using null models, Colwell and Hurtt (1994) showed that ‘nonbiological’ 

gradients in species richness arise from the assumption of a random one-dimensional

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



association between the size and placement of species’ ranges. A central peak in species 

richness is generated in the absence of a direct effect of environmental gradients, when 

ranges (empirical or theoretical) are randomly placed within a geographic area bounded 

by features that limit dispersal (i.e., the domain). Colwell and Lees (2000) labeled the 

geometric theory of species richness gradients the “mid-domain effect” (MDE) and 

defined it as “the increasing overlap of species ranges towards the centre of a shared 

geographic domain due to geometric boundary constraints in relation to the distribution 

of species’ range sizes and midpoints.” Mid-domain models view the real-world 

distribution of species within a geographic domain as a statistical aggregate of 

deterministic factors acting at more local scales (Colwell et al. 2004). The MDE focuses 

on the emergent, macroecological pattern that geometric constraints predict, rather than 

on the effects of constraints on individual ranges (Colwell and Lees 2000).

Most studies of the MDE have used one-dimensional models to study patterns of species 

richness, in either a latitudinal (e.g., Willig and Lyons 1998; Koleff and Gaston 2001; 

McCain 2003; Mora and Robertson 2005) or altitudinal dimension (e.g., Bachman et al. 

2004; Gryntes and Vetaas 2002; Sanders 2002). Only a few studies have used two- 

dimensional models (e.g., Bokma et al. 2001; Jetz and Rahbek 2001; Diniz-Filho et al. 

2002; Hawkins and Diniz-Filho 2002), and none that have modeled species richness with 

an MDE model in three dimensions (but see Chapter 2). Three-dimensional models in 

terrestrial systems would explicitly include the vertical altitudinal dimension as well as 

the two horizontal dimensions of latitude and longitude. One-dimensional (usually 

latitudinal) mid-domain models are criticized as simplistic and unrealistic because natural
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ranges are always constrained in at least two horizontal axes (Bokma et al. 2001; Zapata 

et al. 2003; Hawkins 2004). Moreover, analysis solely of one-dimensional patterns 

restricts explanations to mechanisms that vary in that dimension and ignores mechanisms 

having more complex spatial patterns (Hawkins 2004). Colwell et al. (2004) counter 

these arguments by noting that neither is the world two-dimensional, yet a reduction in 

dimensionality is a commonly used strategy for studying complex patterns in statistics 

and science. Yet, as Colwell et al. suggest, where possible, presenting both one- and two- 

dimensional analyses (in the absence at that time of any methodology for evaluating 

three-dimensional models) of the same data set seems the strongest approach.

Small-ranged species are less likely to experience ‘hard’ boundaries than large-range 

species, and thus the impact of boundaries on their richness patterns should be smaller 

(Jetz and Rahbek 2002), and more likely to reflect environmental and historical factors 

(Colwell and Lees 2000). Larger-ranged species are much more likely to be affected by 

continental geometry and are also more likely to occupy the centre of the bounded area 

(Colwell and Lees 2000). As predicted by MDE, where ranges are small relative to the 

extent of the domain, MDE tends to be weaker (Laurie and Silander 2002), and where 

ranges are large relative to the extent of the domain, MDE is usually stronger (McCain 

2003). Similarly, studies that have partitioned datasets into range size categories have 

consistently found stronger support for MDE among large-ranged species than among the 

smaller range species in the dataset (Hawkins and Diniz-Filho 2002; Jetz and Rahbek 

2002; Vetaas and Grytnes 2002; Mora and Robertson 2005). Mora and Robertson (2005) 

found habitat features had a much greater influence on gradients in species richness of
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narrow-ranging tropical eastern Pacific fishes, whereas the mid-domain effect had a 

significant influence on species richness of large-ranged species (though they only tested 

a one-dimensional MDE model).

Several recent reviews provide a good background to the development of various types of 

MDE models and their progression from one- to two-dimensional (see in particular 

Zapata et al. 2003; Colwell et al. 2004). These will not be summarized in this chapter. 

Provided here is the first empirical test of a novel methodology for incorporating a third 

dimension to a modified, fully stochastic MDE model. The aim of this chapter is to 

determine whether patterns of North American tree species richness are driven primarily 

by ‘non-biological’ geometric constraints (whether one-, two-or three-dimensional), or by 

environmental drivers. Spatial linear regression models are used to determine the relative 

contribution of a number of potential casual agents (MDE, climate, topography, habitat 

diversity) to observed patterns of richness of 417 tree species. Furthermore, how these 

relationships vary for species having small-, medium- and large-range sizes (relative to 

the domain) are examined.

Methods 

Species ranges

Between 1971 and 1977, Elbert Little, Chief Dendrologist with the U.S.D.A. Forest 

Service published a series of maps of tree species ranges based on inventory lists, 

detailed forest surveys, field notes and herbarium specimens (Prasad and Iverson 2003). 

These published (and now digitized) maps have become the standard reference for most
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U.S. and Canadian tree species ranges. The database currently includes range maps for 

431 species (see Appendix 3A). Fourteen species ranges were excluded from the analysis, 

either because their ranges extended beyond the hard boundary of the domain or their 

range was smaller than one 20 km x 20 km cell. Empirical range sizes were defined by 

their limits in each of the dimensions, latitude, longitude and altitude, as measured from 

their range maps.

Mid-domain models

Continental North America was divided into 20 km x 20 km grid cells. Cells not part of 

the continental land mass or which formed small peninsulas (size = 1 cell) were excluded 

from the analysis, giving a total of 49,323 cells within the domain. The relationships of 

the main effects (one-dimensional) and interaction effects (two- and three-dimensional) 

of latitude, longitude and altitude were explored on species richness across the domain (a 

total of seven models) using a modified, fully stochastic mid-domain model (described in 

Chapter 2). For this type of model, ranges are usually generated by selecting range 

endpoints or midpoints randomly from a uniform distribution of possible values, or by 

sampling from permissible range-size mid-point location pairs (Colwell and Lees 2000; 

Arita 2005). As a result, fully stochastic models are sometimes criticized because the 

range-size frequency distribution (RSFD) of the simulated species differs from the 

empirical data and thus may produce different patterns of richness when ranges are 

placed randomly on a domain.
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Building on the ‘two-hit’ model of Arita (2005) I created 417 theoretical species ranges 

by randomly selecting the endpoints of a range in each of the three dimensions, 

employing in effect a ‘six-hit’ model (Chapter 2). For any single dimension, it is assumed 

a species cannot occur outside the “hard” limits (0 and 1) of the domain and thus, a 

species range can be defined by its limits Li and L2 where 0 < Li, L2 > 1 and L2 > Li 

(Willig and Lyons 1998; Arita 2005). To generate a species range, two random points 

within the range are randomly placed within the domain (i.e., for longitude Xi and X2) 

where Li = MIN(Xi, X2) and L2 = MAX(Xi, X2). The range size R is a function of Xi 

and X2 and can be represented as R = |Xi - X2|, such that 0 < R < 1. Extending this 

beyond the single dimension, a range can be defined by its limits in longitude (Xi, X2), 

latitude (Yi, Y2) and altitude (Zu Z2).

For the three-dimensional model, the extent of possible values for Xi, X2, Yi, Y2, Zi and 

Z2 is represented by a unit cube. However, because of the irregularly shaped surface of 

North America, the random selection of endpoints may create a range where R = 0 (i.e. 

when Rx Pi RY but does not intersect Rz) in the three-dimensional model. When this 

occurred the theoretical species was discarded and a new one was created, with six new 

endpoints. In addition, the extents of the theoretical ranges in longitude, latitude and 

altitude may be smaller than that defined by its randomly selected endpoints. For 

example, if Xmax for range R, where R is a function of Rx fl RY D Rz, was less than the 

randomly selected Lx2 where Lx2 = MAX(Xi, X2) then Rx < |Xi - X2|). In this case, the 

maximum and minimum extents of the range were defined by the limits of R rather than 

the randomly selected endpoints.
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In Chapter 2 I have shown how domain shape can influence MDE model predictions and 

proposed modifying the fully stochastic model to account for the proportion of the 

domain in each unit of a particular dimension. For the irregularly-shaped North American 

domain, the proportion of the domain represented by latitude and longitude represent a 

nearly normal distribution while altitude shows a right-skewed distribution (Chapter 2). 

Thus, much more of the domain in the altitudinal dimension occurs at low altitudes than 

at high altitudes. In the model used here, range limits for each of longitude, latitude and 

altitude (i.e., two endpoints for each dimension -  six hits) were selected at random from 

the non-uniform distributions of possible endpoints based on the proportion of the 

domain represented by a single point (or for each measured unit) in each dimension.

All analyses shown here compare the mean species richness generated by 100 runs (each 

run creating a new set of 417 theoretical species ranges) of the mid-domain model with 

the empirical species richness across the domain. The theoretical and empirical species 

ranges were mapped and species richness in each cell across the domain was calculated. 

Both empirical and theoretical species range sizes were further broken into small (<10% 

of the domain, n = 240), medium (between 10-30% of the domain, n = 137) and large 

range sizes (>30% of the domain, n = 40), and mapped for comparisons of species 

richness within each group.
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Environmental variables

Climatic data layers included in the analysis were sourced from WorldClim Version 1.3 

(Hijmans et al. 2004). WorldClim includes 19 interpolated global climate layers on a 

square kilometer grid. Many of these layers are highly correlated; variables included in 

the analysis were ones with greatest correlation to the dependent variable while any 

variables correlated at >75% to the independent variable were exclued. Three layers 

remained in the analysis: (1) mean annual temperature, (2) mean temperature of the 

wettest annual quarter, (3) precipitation seasonality (coefficient of variation). Landcover 

data was extracted from the AVHRR Global Landcover Classification (Hansen et al. 

1998). The diversity of landcover was calculated in each 20 x 20 km cell of the domain as

Landcover diversity = -£(Pi *ln Pi)

where Pi = proportion of the landscape occupied by patch type (class) i.

Topographic parameters were extracted from the USGS HYDRO lk  dataset (USGS 2005) 

and the mean for each 20 x 20 km cell in the domain was calculated. Variables extracted 

from this dataset were: (1) flow accumulation -  the amount of upstream area flowing into 

each cell; (2) slope; and (3) aspect.

Statistical analysis

Spatial linear regression analyses using spatial autoregressive (SAR) models was used to 

determine the effect of geometric constraints predicted by the MDE models and
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environmental variables on the empirical pattern of richness (Lichstein et al. 2002). In 

each regression, the dependent variable was the rounded empirical value (x 1000) of 

species richness, while the independent variables represent the mean value of that 

variable for each value of the dependent. This methodology avoids collapsing the results 

of two- and three-dimensional MDE models into one dimension for analysis (e.g., using 

latitudinal bands). Single SAR models were first applied to each of the eight independent 

variables. Each of the variables was then included in a multiple SAR model and, finally, 

ran the multiple SAR model again but without the MDE variable.

The SAR model includes a spatially lagged dependent variable in the regression equation; 

thus, a spatial weights matrix was generated where adjacent values of empirical species 

richness are given a value of 1 in the weight matrix and a value of 0 is applied to values 

that are not adjacent. Each non-zero element in the matrix represents potential spatial 

interaction between two observations. The traditional R2 measure of fit, based on the 

decomposition of total sum of squares into explained and residual sum of squares, is not 

applicable to the SAR model. Instead, a pseudo R2 measure (ratio of the variance of the 

predicted values over the variance of the observed values for the dependent variable) is 

reported here (Anselin 1995).

There are well documented problems with assessing the fit of MDE models using 

correlation coefficients, due to the fact that absolute differences in magnitude are 

obscured (Zapata et al. 2003; Colwell et al. 2004; Romdal et al. 2005). As recommended 

by several authors (Colwell et al. 2004; Zapata et al. 2005), t-tests were used to examine
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deviation of the slope from unity and intercept from zero, for the regressions between 

predicted MDE species richness and empirical species richness. Together, these tests 

provide an indication of deviation in both shape and magnitude between predicted and 

empirical species richness.

Spatial statistics were done using SpaceStat (Anselin 1995). All data extraction, modeling 

and mapping was done in ArcGIS 9.0 (ESRI, Redlands CA).

Results

One-, two- and three-dimensional patterns of species richness

As expected, the latitudinal MDE models generally predict species richness to peak in the 

centre of the domain (see Fig. 3.1), at between 45°N and 58°N. The empirical species 

richness peak was higher (65% of species compared with 48% for the MDE model) and 

offset to the south of the centre of the domain, at around 35°N. The peak of empirical 

species richness for large-range species alone was close to the MDE peak, at 43 °N, but 

becomes more offset (moving southerly) from the MDE peak with decreasing range size.

MDE model species richness is predicted generally down the longitudinal centre of the 

continent, between 103°W and 105° W (Fig. 3.2). However, empirical species richness 

across longitude shows a peak to the east of the centre at 85°W. For small-range species, 

there is a second, smaller peak in richness at 133°W.
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All MDE models show a peak in species richness at low altitudes, between approximately 

400-500 metres (Fig. 3.3). Empirical species richness for all ranges, large- and medium- 

ranges also show a peak in species richness at low altitudes. Small-range empirical 

species show a bimodal distribution of species richness with a strong peak at the lowest 

altitudes (0 - 300 m) and a second, comparably-sized peak at mid-altitudes (1700-2000 

m) (Fig. 3.3).

Figure 3.4 illustrates geographically where the MDE model for different range sizes 

predicts richness peaks for the combinations of mid-domain for latitude and low altitude. 

Similarly, Figure 3.5 illustrates the MDE model predictions for mid-domain longitude 

and low altitude, the intersection of which is predicted to result in high species richness. 

The three-dimensional pattern of species richness predicted by the MDE model is shown 

in Figure 3.6. As expected, the three-dimensional MDE model generally predicts a peak 

in species richness at mid latitudes and longitudes in the domain. The two-dimensional 

(lat-long) predicted patterns are relatively similar (and not shown here) but show a 

stronger ‘bull’s-eye’ effect; whereas, the addition of the third (altitudinal) dimension to 

the model adds complexity to the predicted three-dimensional pattern. When all species 

were combined, the empirical North American tree species show a peak in species 

richness in the south-eastern region of the continent. However species with large ranges 

(>30% of the domain) peak at the approximate centre of the domain.
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One-, two- and three-dimensional predictors of species richness

The one-dimensional latitudinal model shows MDE as a significant predictor of species 

richness for all species, and for large-range species only (Table 3.1). The fit of the 

multiple regressions for all species, large- and small-range species was improved by the 

inclusion of MDE in the model (Table 3.1). In the one-dimensional longitudinal 

dimension, MDE was also independently significant in predicting species richness for all 

species and for large-range species but only improved the fit of the multiple regression 

model for large-range species (Table 3.1). MDE was a significant predictor of species 

richness in the one-dimensional altitude model for all range size classifications, however, 

the maximum improvement in fit of the multiple regression models was only 3% for the 

small-range species.

As an independent predictor of species richness, MDE was significant (p < 0.05) in 18 of 

the 28 models (Table 3.1). MDE was the most significant single predictor of species 

richness in 11 of the 28 models (the highest of any of the variables), including all seven 

of the large-range models (explaining between 69% [one-dimensional altitude] and 98% 

[two-dimensional lat-long] of the variation, Table 3.2) and two of the all-range models 

(two-dimensional lat-alt and one-dimensional altitude). MDE was also the most 

significant predictor of species richness for the three-dimensional and two-dimensional 

(lat-long) small-range models, however, the relationship was negative for these models. 

Table 3.1 clearly demonstrates the contrasting influence of MDE on species with 

different range sizes. Species richness generated by the mid-domain models is correlated 

significantly and positively for species with large ranges; the correlation is generally
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weak but positive for species with medium ranges; and for species with small ranges the 

correlation is generally negative and sometimes significantly so (except for in the one

dimensional altitudinal dimension where the relationship is strongly positive). Figures 

3.4, 3.5 and 3.6 ([d] and [h]) also clearly show the contrasting pattern in MDE small- 

range species richness versus the empirical pattern.

The three-dimensional MDE model was not a significant predictor of species richness 

when all ranges were combined, probably because the strong positive effect of the large- 

range species and the strong negative effect of the small-range species serve to cancel 

each other out (Table 3.1). In the multiple SAR models, MDE substantially improved the 

fit of the regressions for large range species in all but the one-dimensional altitude model, 

by between 6% (one-dimensional latitude) and 21% (two-dimensional lat-long). The 

largest difference in fit between models with and without MDE was for the two- 

dimensional (lat-alt) model for all ranges, with an improvement of 23% (Table 3.1) with 

MDE included in the model.

The relative importance of the environmental factors varied between models. In the 

single spatial regressions, slope was a significant predictor of species richness in 26 of 

the 28 models (Table 3.1). In 21 of the 28 single spatial regression models, precipitation 

seasonality was significant. Of the environmental variables, precipitation seasonality and 

slope appeared most often as the strongest single predictors of species richness (8 of 28 

models and 5 of 28 models, respectively) (Table 3.1).
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MDE models consistently under-predicted empirical species richness (Table 3.2 and see 

Figs. 3.1 through 3.6), particularly for large-range species. Only one model, the two- 

dimensional lat-alt model for all species, predicted both shape and magnitude of the 

empirical species richness pattern well. Three of the one-dimensional altitudinal models 

predicted shape (i.e., slope not significantly different from 1) for the empirical species 

richness curve, but magnitude was under-predicted; the exception was the model for 

small-range species. The two-dimensional lat-alt model for all species and the one

dimensional longitude model for large-range species also had significant regressions, and 

slope not different from unity (Table 3.2).

Discussion

Latitudinal gradients in species richness have been widely documented, and have usually 

been explained by a monotonic relationship with climatic, environmental and/or energy- 

related factors (Currie and Paquin 1987; Grytnes and Vetaas 2002; Hawkins et al. 2003). 

When all range sizes are considered, the results presented here show latitudinal gradients 

in species richness were best explained by geometric constraints, precipitation seasonality 

and slope, none of which showed a monotonic decline with latitude (Table 3.1). For 

example, precipitation seasonality had a U-shaped pattern across the latitudinal extent of 

the domain (see Appendix B), with the greatest values at both low and high latitudes. 

However, with decreasing range size, geometric constraints became unimportant and 

monotonically declining mean temperatures became significant predictors of species 

richness.
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Very few studies have examined patterns of species richness across the longitudinal 

dimension in North America. Though there are not necessarily expected linear gradients 

of environmental variables across the longitudinal dimension, in theory, species richness 

can be expected to vary in concert with the same environmental variables that influence 

its variation in the latitudinal dimension, and the results presented here generally support 

this. Geometric constraints, mean temperatures, precipitation seasonality and slope were 

the most significant predictors of species richness across the longitudinal dimension 

(Table 3.1). Precipitation seasonality and slope tended to be higher in western longitudes 

where species richness was lower; mean temperatures tended to be higher in these areas. 

Again geometric constraints became less important with decreasing range size.

The relationship between species richness and altitude is often assumed to mirror the 

latitudinal gradient, resulting in a monotonic decline with increasing altitude (Rahbek 

1995; Givnish 1999; Grytnes and Vetaas 2002) and several studies have reported such a 

pattern for plants (Leathwick et al. 1998; Ohlemiiller and Wilson 2003). However,

Rahbek (1995; 2005) reviewed species richness patterns in relation to altitude and found 

that the most common pattern, representing approximately half of the studies, was a mid- 

altitudinal peak in richness. As described in Chapter 2, the low altitude peak in species 

richness shown here is due to the non-uniform distribution of altitude across the domain; 

disproportionately more of the North American continent occurs at low to mid altitudes 

than at high. Thus when the MDE model draws randomly from allowable range endpoints 

in the altitudinal dimension, low altitudes are much more likely to be drawn. This results 

in a MDE model that predicts a peak at low- rather than mid-altitudes (Fig. 3.3).

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bachman et al. (2004) found that area alone accounted for around half of the variance in 

observed species richness patterns of New Guinea palms along an elevational gradient. 

Without accounting for area, species and genus richness of New Guinea palms decreased 

monotonically with elevation. However, when the effect of area was removed (by using 

equal-area bands instead of equal-elevation bands) a mid-elevational peak in both species 

and genus richness was observed. Other researchers have also shown the strong effects of 

area in mid-domain analyses of species richness with altitude (Lawton et al. 1987;

Sanders 2002).

Grytnes and Vetaas (2002) showed that the observed asymmetric hump in plant species 

richness along a Himalayan altitude gradient could arise from the effect of geometric 

constraints, in combination with an underlying linearly decreasing trend in species 

richness with altitude. Thus, geometric constraints and monotonically decreasing (or 

increasing) environmental variables in combination were needed to best predict changes 

in species richness with altitude. The results of this study suggest geometric constraints 

alone can explain much of the variation in species richness with altitude, however added 

little explanatory power to a model which included environmental variables.

As expected, geometric constraints have greatest predictive power on the distribution of 

species richness for species having ranges that are large relative to the domain (Table 

3.1). For species with large ranges, MDE alone often explained more of the variation in 

species richness than all of the environmental variables combined (Tables 3.1 and 3.2). 

For medium- and small-range species, geometric constraints clearly have little influence
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on patterns of species richness and, as expected, environmental parameters are much 

more important (Table 3.1). None of the MDE models alone was able to capture the 

empirical peak in tree species richness in the southeastern part of the US. When MDE 

was combined with environmental variables, particularly precipitation seasonality and 

slope, the percent of variation in species richness explained was often greater than 90%, 

and did capture this natural peak. Species richness is generally higher in regions where 

precipitation seasonality and slope are low. The fact that these two environmental 

parameters are consistently significant in predicting species richness, in both one

dimensional latitudinal, longitudinal and altitudinal models as well as two- and three- 

dimensional models, points to their considerable importance in structuring tree species 

richness. However, alone these two variables were also not able to capture the peak in 

species richness in the southeastern comer of the continent (see Appendix 3B).

Inclusion of longitude and altitude in analyses of patterns in species richness clearly 

better reflects real patterns, particularly over large geographic areas. In a large and 

heterogeneous domain such as North America, analysis of patterns of species richness 

and environmental gradients as mean values in one-dimensional latitudinal, longitudinal 

or altitudinal bands obscures much of the detail in spatial structure of these variables. For 

example, latitudinal patterns of species richness are strongly influenced by the peak 

between 30 and 40°N; but this peak occurs primarily in a 10° longitudinal band (between 

70-80°W) and species richness declines significantly to the west between 80-90°W.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Jetz and Rahbek (2001) found that the predictive power of geometric constraints was 

weaker in their two-dimensional model of species richness in African birds compared 

with the one-dimensional model, and suggested that perhaps ecological and 

physiographical factors manifest themselves more in two dimensions than simply in 

latitude or longitude. In this chapter, the results in this respect varied. Inclusion of 

elevation in the two-dimensional models generally improved the match in shape of the 

predicted species richness curve over one-dimensional models that included latitude or 

longitude alone (Table 3.2). However, of all the models, elevation by itself (in the one

dimensional model) proved closest to matching both shape and magnitude of the 

empirical species richness curve (Table 3.2). The complexity in the patterns of species 

richness predicted with the three-dimensional model also demonstrates the major effect 

of including elevation in the model. Rather than the single peak in species richness in the 

centre of the domain, predicted by the two-dimensional lat-long model, inclusion of 

elevation results in multiple richness peaks and non-uniform gradients in species richness 

due to the non-uniform distribution of elevation across the domain. Future development 

and analysis of MDE models will benefit from the inclusion of multidimensional effects 

that take into consideration the proportion of each dimension in the domain of interest.

There is no doubt that geometric constraints result in non-uniform patterns of species 

richness in the absence of environmental gradients. Large-range tree species richness 

patterns generated by geometric constraints alone often have as much, if not more, 

predictive power than those generated by environmental gradients alone. However, as 

Colwell et al. (2005; and see Colwell and Lees 2000) state, the question is not whether
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geometry affects patterns of species richness, but what the magnitude of the contribution 

is. The results presented here show that the magnitude of the contribution can be quite 

substantial. However, they further demonstrate the importance of considering a number 

of statistical tests when evaluating the predictions of MDE models. Although MDE 

models often explained much of the variation in species richness across the domain, they 

generally did not predict either the magnitude or shape of the empirical species richness 

curve well. In 21 of the 28 models curve shapes were displaced on both the ordinate and 

the abscissa (Table 3.2). Currently, use of correlation values are the only way of 

assessing the contribution of MDE to species richness patterns on an equal footing with 

environmental variables (since environmental variables do not yield predictions in units 

of species, and so cannot be tested using the slope and intercept approach) (Zapata et al. 

2005). Thus, though the limitations should be noted, the approach is valid.

Many of the methodological criticisms directed at studies testing MDE models recently 

have been avoided in the chapter; namely the lack of realistic geometry in range shapes 

(Bokma et al. 2001; Zapata et al. 2003) and of the domain itself (Bokma and Mdnkkonen 

2000), use of unrealistic RSFDs (Hawkins et al. 2005), and uncontrolled spatial 

autocorrelation in statistical analyses (Zapata et al. 2003; Colwell et al. 2004; Zapata et 

al. 2005). Some authors (Zapata et al. 2003; Connolly 2005) have noted that MDE 

randomization models that use a RSFD that mimics that of the empirical RSFD may 

inadvertently ‘smuggle in’ effects of environmental gradients and overestimate the 

contribution of MDE. In this study the direct effects of geometric constraints in addition 

to, and concurrently with, the indirect effects of environmental gradients expressed
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through the use of the empirically realistic RSFD have been analyzed. However, as noted 

recently by Colwell et al. (2005) and Connolly (2005), in the future a process-based 

framework, which mechanistically integrates geometric constraints with environmental 

gradients as well as evolutionary processes, may usefully complement traditional 

regression and randomization approaches for modeling species distributions in a bounded 

domain.
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Figure 3.1. Species richness (mean proportion of species) at l°latitudinal bands across the 

domain for (a) all empirical species, (b) all species MDE, (c) large-range empirical, (d) 

large-range MDE, (e) medium-range empirical, (f) medium-range MDE, (g) small-range 

empirical and (h) small-range MDE. Lines represent MDE models for three-dimensional 

(------- ), two-dimensional-lat-long (........... ), two-dimensional lat-alt (-------- ), and one

dimensional latitude ( ).
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Figure 3.2. Species richness (mean proportion of species) at 1 “longitudinal bands across 

the domain for (a) all empirical species, (b) all species MDE, (c) large-range empirical, 

(d) large-range MDE, (e) medium-range empirical, (f) medium-range MDE, (g) small- 

range empirical and (h) small-range MDE. Lines represent MDE models for three-

dimensional (------- ), two-dimensional lat-long (...........), two-dimensional lat-alt (--------

), and one-dimensional latitude (---------- ).
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Figure 3.3. Species richness (mean proportion of species) at 100 metre altitudinal bands 

across the domain for (a) all empirical species, (b) all species MDE, (c) large-range 

empirical, (d) large-range MDE, (e) medium-range empirical, (f) medium-range MDE,

(g) small-range empirical and (h) small-range MDE. Lines represent MDE models for

three-dimensional (--------), two-dimensional lat-long (........... ), two-dimensional lat-alt (-

 ), and one-dimensional latitude (-----------).
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Figure 3.4. Two-dimensional (latitude-altitude) patterns of species richness (proportion of total species) (a) all species 

empirical, (b) large-ranges empirical, (c) medium-ranges empirical, (d) small-ranges empirical, (e) all species MDE, (f) large- 

ranges MDE, (g) medium-ranges MDE, and (h) small-ranges MDE. Equal interval classification is shown, with darker shading 

indicating areas of higher species richness.
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Figure 3.5. Two-dimensional (longitude-altitude) patterns of species richness (proportion of total species) (a) all species 

empirical, (b) large-ranges empirical, (c) medium-ranges empirical, (d) small-ranges empirical, (e) all species MDE, (f) large- 

ranges MDE, (g) medium-ranges MDE, and (h) small-ranges MDE. Equal interval classification is shown, with darker shading 

indicating areas of higher species richness.
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Figure 3.6. Three-dimensional patterns of species richness (proportion of total species) (a) all species empirical, (b) large- 

ranges empirical, (c) medium-ranges empirical, (d) small-ranges empirical, (e) all species MDE, (f) large-ranges MDE, (g) 

medium-ranges MDE, and (h) small-ranges MDE. Equal interval classification is shown, with darker shading indicating areas 

of higher species richness.
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Table 3.1. Results of spatial linear regression analyses for predictors of empirical species 

richness for all species, and species having large-, medium- and small-ranges. Shown are the z- 

values (bold represents the strongest single predictor) of the single spatial linear regressions 

and significance (* p<0.05, ** p <0.01, *** p<0.001 after sequential Bonferroni adjustment). 

Also shown are the pseudo R2 values for multiple spatial linear regression (MSL) with MDE 

and without MDE as a predictor variable.

Y = latitude, X = longitude, Z = altitude, 1-D = one-dimensional, 2-D = two-dimensional, 3-D 

= three-dimensional

All ranges Y
1-D m odels 

X Z XY
2-D m odels 

YZ XZ
3-D model 

XYZ
MDE 4.96*** 5.07*** 14.57*** -0.80 6.72*** 9.38*** 0.79
Mean temp. 1 .0 1 8.25*** -11.78*** 11.30*** 1 .2 2 2 .2 0 * 8.71 ***
Mean temp, (wet) 1.51 8 .2 0 *** -5.16*** 6.79*** 5.62*** -5.16*** 6.76***
Precip. seasonality -4.41 *** -3.59*** -14.36*** -18.36*** -12.89*** -2.71 ** -23.07***
Landcover
diversity -0.30 -0.28 -2.50* 8.33*** 3.27*** 3.26** 4.88 ***
How accumulation 3.35** 2.50* 7.49*** 2.50* 5.52*** -2.84** 4.68***
Slope -5.17*** _y 21  *** -8.29*** -6.48*** -11.57*** 3.13** -1 0 .8 6 ***
Aspect -1.91 -2 .1 2 -4 .5 4 *** 4.39*** -0.24 9.20*** 4.46***

MSL R2 0.77 0.85 0.94 0.93 0.84 0.85 0.93
MSL w/o MDE R2 0.72 0.84 0.93 0.91 0.84 0.62 0.93
Large ranges 
MDE 13.56*** 6.81 *** 5.17*** 23.72*** 11.27*** 10.01 *** 21.60 ***
Mean temp. -0.61 4.52*** 0.41 -0 .0 2 1 .0 2 2.26 -0 .0 1
Mean temp, (wet) -1.49 3.56*** 1.13 0.71 0.52 2 .8 6 * 1.95
Precip. seasonality -6.76*** 0.05 1.87 -0.80 -5.82*** 1.46 -0 .8 6
Landcover
diversity 0.91 -0.83 -5.08*** -3.24** -0.06 -1.80 -4.90***
Flow accumulation 1.47 -0.09 3.99*** 1.36 2 .2 0 * 0.18 1 .0 2
Slope -2.62* -2.53 -3.44** -4.04*** -3.19** -2.35 -5.86***
Aspect -1.04 -1.55 -1.87 -2 .2 1 -1.52 -2 .0 0 0 .0 1

M SLR 2 0.97 0.92 0.93 0.99 0.95 0.93 0.98
MSL w/o MDE R2 0.91 0.84 0.93 0.78 0.89 0.75 0.87
Medium ranges 
MDE 1.94 2.14 6.18*** -1.81 6.70*** 2.07 -0.28
Mean temp. 3.75*** 3.10** -0.91 7.62*** 7.17*** 1.78 6.38 ***
Mean temp, (wet) 2.06 4.25*** 3.93*** 0.52 9.32 *** 4.02*** 1.47
Precip. seasonality -4.69*** -3.58*** 0.47 -13.33*** -7.04*** -5.62*** -12.89 ***
Landcover 2.87* -0.59 -3.10** 10.90*** 1.74 -1.93 7.50***
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diversity
Flow accumulation 3.00* 1.43 4.81 *** 6.52*** 3.86*** 0.82 5.75
Slope -4.31 *** -7.01 *** -6.26 *** -3.13** -9.08 *** -6.99*** -4.94
Aspect 0.69 -1.79 -2.15 6.84*** -0 .6 6 -2 .0 2 3.08

M SLR 2 0.93 0 .8 6 0.94 0.93 0 .8 8 0.81 0.94
MSL w/o MDE R2 0.92 0 .8 6 0.92 0.93 0.87 0.79 0.94
Small ranges 
MDE -0.34 1 .2 1 11.49*** -8.91 *** -1.70 -3.28** -14.01
Mean temp. 5.96 *** 6.03*** 0.24 5.25*** 10.32*** 7.03*** 10.09
Mean temp, (wet) 5.02*** 2.59* 6.23*** -0.53 4.96*** 2.14 7.19
Precip. seasonality -2.71 * -5.12*** -0.33 -7.73*** -17.94*** -8.99*** -8 .6 6
Landcover
diversity 3.44** -1.03 -10.07*** 7.37*** 13.86*** 2.77* 5.47
Flow accumulation 4.70*** 0.55 8.46*** 0.25 3.73*** -0.65 0 .1 0
Slope -5.23*** -4.56*** -15.73*** -8 .2 1  *** -1 0 .8 6 *** -4.05 *** -11.39
Aspect 0.49 -1.73 -2.34 3.01 ** 7.77*** 0.67 1.73

M SLR 2 0.97 0.81 0.96 0.97 0.97 0.85 0.96
MSL w/o MDE R2 0.92 0.81 0.93 0.95 0.96 0.85 0.92
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Table 3.2. Results for t-test of the hypotheses (a) slope = 1 and (b) intercept = 0, for 

spatial linear regression models of MDE predicted species richness against empirical 

species richness, t-values in bold are not significant at the p<0.05 level. Also shown 

are the pseudo R values for the single spatial regression of MDE and empirical 

species richness.

Y = latitude, X = longitude, Z = altitude, 1-D = one-dimensional, 2-D = two- 

dimensional, 3-D = three-dimensional

1-D models 2-D models 3-D model

y X z xy yz xz xyz
All ranges
slope -13.94 -9.75 0.67 -7.94 -0.04 2.17 -2.11
intercept 2.59 6.47 13.45 4.31 0.88 5.38 3.08
R2 62.70 58.70 80.60 63.40 59.20 41.60 56.00
Large ranges
slope 2.90 -0.22 1.28 16.38 7.70 5.53 17.97
intercept 4.95 5.24 6.31 6.72 5.83 7.75 7.09
R2 94.50 85.60 69.20 97.80 91.00 90.20 96.10
Medium ranges
slope -6.92 -7.83 1.34 -3.33 3.58 -2.52 -1.31
intercept 2.29 2.76 3.45 3.43 1.64 2.81 2.50
R2 60.00 58.90 79.70 44.10 56.90 53.80 57.90
Small ranges
slope -13.72 -12.14 -3.96 -13.20 -6.09 -9.05 -16.62
intercept 3.82 3.94 5.96 9.92 2.83 5.34 14.35
R2 55.50 32.60 77.90 78.90 50.20 22.00 82.20
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Chapter 4 - Geometric constraints and environmental correlates of 

amphibian, avian and mammal richness across the Americas.

Summary

The mid-domain effect (MDE) proposes that geographic gradients in species richness can 

be accounted for by stochastic processes and geometric constraints of a domain.

Predicting a mid-domain peak in species richness that arises simply from the random 

placement of ranges within a domain, MDE has been used as a null model to accurately 

predict species richness gradients in one-, two- and, more recently, three-dimensional 

domains. In this chapter, one-, two- and three-dimensional predictions of a modified, 

fully-stochastic, three-dimensional MDE model are compared to the natural species 

richness patterns for amphibians, birds and mammals across continental North, Central 

and South America. The model was used initially as an operational approach to generate 

null expectations of stochastic processes under geometric constraints; then, the 

predictions were invoked as an additional explanatory variable to account for patterns of 

species richness, separately with climatic variables. Species richness for each group of 

species was measured for each 20 x 20 km cell within the domain and compared using 

spatial autoregressive models, with mean species richness of 100 simulations in which 

2000 theoretical species ranges were randomly placed within the domain.

The MDE alone accounted for a great proportion of the variability in empirical species 

richness, explaining some 73%, 77% and 84% of the variation in amphibian, mammal 

and avian species richness gradients, respectively. However, it generally underestimated
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species richness for avian and mammal species, while over-estimating richness for 

amphibians.

As an additional variable together with climatic variables, MDE added little to the 

explanatory power of the analysis. On average, MDE explained an additional 1.1%, 0.5% 

and 6.9% of the variation in amphibian, avian and mammal species richness, respectively. 

Although environmental correlates provide equal or better explanatory value than that 

from MDE predictions, the principle of parsimony suggests that random placement of 

ranges within the limits of a domain should be used. This correlative approach suggests, 

with respect to the predictive power of MDE, species are randomly placed with the 

domain limits, or the richness pattern appears random but is a consequence of some 

larger set of interacting factors. Most likely, richness patterns are the product of variation 

in relative strength of stochastic and ecological processes.

Introduction

One of the newest and more controversial theories explaining broad-scale patterns in 

biological richness is the mid-domain effect (MDE), proposed by Colwell and Hurtt 

(1994). It proposes that stochastic processes and geometric constraints of a domain 

produce species richness gradients that are similar to ‘real world’ gradients. Mid-domain 

models are null models that simulate the random spatial arrangement of species ranges, 

within a bounded domain such as a continent, assuming no direct effects of 

environmental gradients (Colwell et al. 2004). Beyond offering a null expectation, MDE 

predictions could be used with other environmental or historical factors as explanatory
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variables for patterns in species richness (Colwell et al. 2005, Rangel and Diniz-Filho 

2005).

MDE models have been the subject of some controversy (see e.g., Colwell et al. 2004, 

Hawkins et al. 2005, Zapata et al. 2005, Colwell et al. 2005). A major point of contention 

involves range cohesion. In the absence of environmental gradients, why are not all 

species distributed throughout the entire domain (Diniz-Filho et al. 2002, Hawkins and 

Diniz-Filho 2002, Zapata et al. 2003, 2005, Hawkins et al. 2005).

Colwell et al. (2005) proposes that the range cohesion argument is not a shortcoming of 

MDE models. While it is generally accepted that a species range size is shaped and 

limited by environmental factors, historical effects, and dispersal limitation, MDE models 

seek to determine what ‘real world’ patterns would arise in the absence of any direct 

effects of environmental gradients on species richness patterns. By randomly placing 

species ranges within a bounded domain and comparing predicted and actual patterns of 

species richness, the question being asked is not “what constrains the range of a species” 

but rather, to what degree do actual species richness patterns arise from stochastic 

processes? The most complete studies of MDE models examine, in a multivariate 

context, the influence of both stochasticity under geometric constraints (MDE), and the 

direct effects of both biotic and abiotic environmental gradients. Such studies explore the 

covariation of the two sets of factors (Colwell et al. 2004).
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Fully stochastic MDE models have been criticized because the range size frequency 

distributions (RSFD) of the theoretical species may differ from the empirical, ‘real world’ 

data and thus potentially underestimating or overestimating the MDE (McCain 2003, 

Colwell et al. 2004). The alternative is to randomly place ranges resampled from an 

actual RSFD. This may produce species richness peaks similar in magnitude to that of 

actual richness peaks (Zapata et al. 2003, Colwell et al. 2004), and can incorporate taxon- 

specific biological characteristics (e.g., speciation and extinction potential, population 

density, body size) which may be independent of species richness patterns (Lees et al. 

1999, Colwell and Lees 2000, Hawkins and Diniz-Filho 2002, Jetz and Rahbek 2001, 

2002, McCain 2004, Colwell et al. 2004). As others have noted, these may not be 

independent of spatial patterns of species richness; moreover the use of a purely 

theoretical RSFD is less subject to biological assumptions, and thus more representative 

of a null conceptual model (see e.g., Kollef and Gaston 2001, Hawkins and Diniz-Filho 

2002, Laurie and Silander 2002).

In this chapter, I examine the applicability of using a modified, fully stochastic, three 

dimensional MDE model, comparing model predictions with empirical data for each of 

three groups of biota (amphibians, birds, mammals) across the continental landmass of 

North, Central and South America. I first use the predicted patterns, operationally, to 

generate null expectations of stochastic patterns under geometric constraints. I then use 

the predictions as an additional explanatory variable to explain patterns of species 

richness together with climatic variables. Finally, I discuss the relative contributions of
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stochastic processes and environmental correlates influencing the observed patterns of 

species richness in these animal groups.

Methods 

Species ranges

Digital distribution maps of the terrestrial ranges of birds and mammals for the Western 

Hemisphere (continental North, Central, and South America and associated islands) have 

been developed by a group of conservation organizations (NatureServe, the Center for 

Applied Biodiversity Science within Conservation International, the Migratory Bird 

Program within The Nature Conservancy, the US branch of the World Wildlife Fund and 

the WILDSPACE program within Environment Canada) to aid conservation planners and 

other interested users (Patterson et al. 2003, Ridgely et al. 2003). IUCN et al. (2004) 

further produced a series of digital distribution maps of the amphibians of the Western 

Hemisphere as part of the Global Amphibian Assessment project. All of these maps have 

been made available through NatureServe (www.natureserve.org). These digital 

distribution maps include 3019 amphibian species, 4247 avian species and 1786 mammal 

species. Of these, only 2216 amphibian, 3771 avian and 1605 mammal distributions were 

used, as I excluded non-indigenous species (MDE assumes species are indigenous), or the 

species ranges extended beyond the boundary of the domain, or were smaller than one 20 

x 20 km cell.
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Mid-domain models

Continental North America, Central, and South America was the domain used in this 

study (Fig. 4.1). The perimeter of the domain was extracted from “World Countries 

1992” base map, supplied with ArcView 3.2 (ESRI, California, USA) and altitudes were 

obtained from the GLOBE project (GLOBE 1999). The domain was gridded with 20 x 20 

km cells in longitude and latitude, while mean altitude was estimated in metres above sea 

level for each cell. Cells not part of the continental land mass (i.e., islands) or which 

formed small peninsulas (size = 1 cell) were excluded from the analysis, giving a total of 

94,078 cells within the domain.

A modified, fully stochastic, three dimensional MDE model as described in Chapter 2 

was implemented to explore the relationships of the main effects (one-dimensional) and 

interaction effects (two- and three dimensional) of longitude, latitude and altitude on 

species richness across the domain. For any single dimension, it is assumed a species 

cannot occur outside the “hard” limits (0 and 1) of the domain and thus, a species range 

can be defined by its limits h\ and L2 where 0 < Li, L2 > 1 and L2 > Li (Willig and Lyons 

1998; Arita 2005). To generate a species range, two random points within the range are 

randomly placed within the domain (i.e., for longitude Xi and X2) where Li = MIN(X|, 

X2) and L2 = MAX(Xi, X2). The range size Rx is a function of Xi and X2 and can be 

represented as Rx = |Xi - X2|, such that 0 < Rx < 1 • Extending this beyond the single 

dimension, a range can be defined by its limits in longitude (Xi, X2), latitude (Yi, Y2) and 

altitude (Zi, Z2).
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Thus, a theoretical species range, R, is the area delimited in longitude and latitude that 

can be represented by Rx fl Ry fl Rz where Rx, Ry and Rz are defined by their limits in 

longitude (X), latitude (Y) and altitude (Z), respectively. Because of the irregularly 

shaped surface of the domain used here, the random selection of endpoints may create a 

range where R = 0 (e.g., when Rx fl RY but does not intersect Rz). When this occurred 

the theoretical species was discarded and a new one was created, with six new endpoints. 

The theoretical ranges created were often irregularly shaped and could be discontinuous, 

similar to actual ranges. Additionally, the extents of the theoretical ranges in longitude, 

latitude and altitude were often smaller than those defined by randomly selected 

endpoints. For example, Xmax for range R, where R is a function of Rx fl RY fl Rz, was 

less than the randomly selected LX 2 where LX 2 = MAX(Xi, X2), and thus Rx < |Xi - X2 I. 

When this occurred, the maximum and minimum extents of the range were defined by the 

limits of R rather than the randomly selected endpoints.

I have shown, in Chapter 2, how domain shape can influence MDE model predictions, 

and proposed modifying the fully stochastic model to account for the proportion of the 

domain in each unit of a particular dimension. For this model, range limits for each of 

longitude, latitude and altitude were selected at random from the non-uniform 

distributions of possible endpoints based on the proportion of the domain represented by 

a single point (or for each measured unit) in each dimension (see Chapter 2). For this 

domain, there is a gradual increase in proportion of the domain represented in longitude, 

peaking at approximately 0.75 within domain limits of 0 to 1 (western limit to eastern 

limit; Fig. 2). Thus the probability of selecting a range endpoint representing 0.75 of the
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domain is ~ 0.025, while the probability of selecting a point representing 0 or 1 is nearly 

0. There is a bimodal peak in latitude (from north to south) with the valley representing 

the smaller proportion of the domain that is Central America. Altitude shows a right- 

skewed distribution (from low to high), in that much more of the domain occurs at lower 

altitudes than at high.

The null model consisted of the mean species richness of 100 simulations in which 2000 

theoretical species ranges were randomly placed within the domain. In effect, 200,000 

theoretical species were placed within the domain whose ranges were randomly created 

using the modified, fully-stochastic, three dimensional MDE model. Actual species 

ranges were defined by their limits in each dimension, as measured from their range maps 

to permit direct comparison of the theoretical and empirical species. The theoretical and 

empirical species ranges were mapped and species richness in each cell was calculated 

across the domain.

Statistical analysis

All data extraction, modeling and mapping was done in Visual Basic (VB.NET,

Microsoft Corporation, Redmond, WA) and ArcGIS 9.0 (ESRI, Redlands, CA). Spatial 

statistics were done using SpaceStat (Anselin 1995). I used spatial autoregressive (SAR) 

models rather than ordinary least squared regression to account for spatial 

autocorrelation. SAR models were used to determine the effect of geometric constraints 

predicted by the MDE models and environmental variables on empirical richness 

patterns. As few software packages can store and handle analysis for such large amounts
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of data (e.g., 940782 as would be needed for the weight matrix), the data was summarized 

such that, for each SAR model, the dependent variable was the rounded empirical value 

(x 1000) of species richness, while the independent variables represent the mean value of 

that variable for each value of the dependent values. This avoids the alternative 

methodology of collapsing the results of two- and three-dimension MDE models into one 

dimension for analysis (e.g., using latitudinal bands).

WorldClim Version 1.3 (Hijmans et al. 2005) consists of 19 interpolated global climate 

layers on a square kilometer grid (listed in Appendix 4A). Upon examining the 

correlations of the environmental layers with each other, for each dependent variable, it 

was noted that many of these layers were highly correlated (using spatial correlation). 

Thus I excluded non-independent variables (correlated at >75%) from the analysis. All 

SAR models used a unique subset (5-6 variables) of the 19 climatic variables; the subsets 

are listed in Appendix 4B. The most commonly used climatic variables were related to 

precipitation seasonality (coefficient of variation) and isothermality (mean diurnal 

temperature range / mean annual temperature range).

A spatial weights matrix was generated for the SAR model as they included a spatially 

lagged dependent variable in the regression equation. The spatial weights matrix was 

generated such that adjacent values of empirical species richness were given a value of 1, 

and a value of 0 was applied to values that are not adjacent. Each value of 1 represents a 

potential spatial interaction between the two observations.
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SAR models were first applied to MDE predictions alone, then to the environmental 

variables alone and lastly, a multiple SAR was run including both the environmental 

variables and MDE independent variables. The traditional R2 measure of fit is not 

applicable to the SAR model. Instead, a pseudo R2 measure (ratio of the variance of the 

predicted values over the variance of the observed values for the dependent variable) is 

reported here (Anselin 1995).

Assessing the fit of MDE models using correlation coefficients is problematic since 

absolute differences in magnitude are obscured (Zapata et al. 2003, Colwell et al. 2004, 

Romdal et al. 2005). t-tests were used to examine deviation of the slope from unity and 

intercept from zero for the regressions between predicted MDE species richness and 

empirical species richness (as suggested by Colwell et al. 2004, Zapata et al. 2005).

These tests provide an indication of deviation in both shape and magnitude between 

predicted and empirical species richness.

Results

Range size frequency distribution

There was approximately a two-fold increase in mean range size for each group of 

species examined when ranges were defined by their extents in longitude, latitude and 

altitude rather than by polygons defined by NatureServe and IUCN et al. (2004). For 

amphibians, mean range size increased from 1.1 (± 0.07 SE) to 2.1 (± 0.12 SE) percent of 

the domain area; avian mean range size increased from 6.7 (± 0.18 SE) to 14.3 (± 0.23 

SE) percent; and mammal mean range size increased from 5.0 (± 0.23 SE) to 8.6 (± 0.34
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SE) percent. The theoretical species had a mean range size of 4.1 (± 0.02 SE) percent of 

the domain area.

The RSFD for each of the three empirical biotic, and the theoretical species are presented 

in Figure 3. RSFD of the theoretical species most closely represents the middle of a 

gradient between the amphibian and mammal RSFDs; it is most dissimilar from that of 

the birds. Amphibians have the greatest proportion of small ranges, with 83% of the 

ranges < 2.5% of the domain area. Mammals and the theoretical species had 53% and 

59%, respectively, of the ranges < 2.5% of the domain area, while the avian species had 

only 34%.

Species richness patterns

Richness peaks of the theoretical species were from 0.46 to 0.50 x the number of 

theoretical species for individual dimensions, 0.24 to 0.28 for the two dimension 

combinations and 0.14 for the three dimension combination. However, the richness peaks 

were shifted from over the middle of the domain (0.5 in a domain with limits of 0 and 1), 

toward more eastern longitudes (0.6 to 0.75, with western edge of the domain being 0 and 

the eastern edge 1), more northern latitudes (0.2 to 0.6, with the northern edge being 0 

and the southern edge 1), and towards lower altitudes (~ 0.06, with 0 m ASL represented 

by 0 and 6499m ASL by 1; Fig. 4.4).

For longitude, biotic groups showed a shift in species richness toward the more eastern 

longitudes, similar to that of the null predictions (Fig. 4.4, top panel). However, only the
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birds had a similar peak height of 0.5 x the number of avian species (Table 4.1). The 

mammals peaked at 0.34 x the number of mammal species and the amphibians peaked at 

0.19 x the number of amphibian species. Likewise, in altitude the three groups of species 

showed a similar shift in species richness toward lower elevations (Fig. 4.4, bottom 

panel). The null model predicted a species richness that was lower than that of all three 

groups; the theoretical species peak was 0.5 x the number of species whereas the peak for 

amphibian, avian and mammal richness was 0.62, 0.94, 0.86, respectively. Indeed the 

predicted elevational richness was lower than that of the three groups of species across 

the entire altitudinal range.

In regard to latitude, all three groups of species showed similar patterns in species 

richness, that differed from the predicted. While the null model predicted a peak that 

ranged from 0.2 to 0.6, the three biotic groups had peaks ranging from 0.5 to 0.7 (Fig.

4.4, middle panel). As for longitude-based results, the peak heights of the theoretical and 

avian species were approximately equal (0.46 and 0.43 x the number of species, 

respectively), with mammal peak height being lower at 0.26, and amphibians at 0.14.

Figure 4.5 illustrates geographically where the predicted and empirical species richness 

peaks were for each one-, two- and three-dimensional model. The two-dimensional 

longitude x latitude pattern shows, as expected, a ‘bull’s-eye’ effect centred over the open 

water between North and South America. Adding effects of altitude adds complexity to 

the three-dimensional pattern. The three-dimensional MDE model predicts greatest
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species richness at lower elevations across northern South American and the southeast 

portion of North America.

Independent of the particular dimension or combination of dimensions being accounted 

for, similar patterns of species richness are evident for the amphibians, birds and 

mammals such that species richness peaked in the north western portion of South 

America, in accounting for all three dimensions. Only the predicted species richness 

patterns in longitude and longitude x altitude MDE models appear visually similar to the 

empirical patterns.

Deviations from the three-dimensional models for each group of species are shown in 

Figures 4.6, 4.7 and 4.8. For all groups lowest to negative deviation (observed - expected) 

in terms of the proportion of total species richness was observed in SE North America; 

greatest positive deviation was in general over NW South America.

Predictors of species richness

SAR showed that MDE was a significant (p < 0.05) independent predictor of species 

richness in general for all models, but in the one-dimensional model of altitude for both 

amphibians and mammals; only the two-dimension model of longitude x latitude, and the 

three-dimensional model were significant for avian species (Table 4.2). For amphibians, 

MDE accounted for between 54.3% (one-dimensional latitude) and 86.3% (two- 

dimensional long x lat) of the variation in species richness (mean pseudo R2 = 0.727 ± 

0.0476 SE). A similar range was observed for mammals (52.6% in the single dimension
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of latitude to 87.1% in the single dimension of longitude; mean pseudo R2 = 0.767 ± 

0.0529 SE). Moreover, MDE explained 88.5% and 80.1% (two-dimensional longitude x 

latitude, and three-dimensional models, respectively) of variation in avian species 

richness (mean pseudo R2 = 0.843 ± 0.0476 SE).

Only two models for mammals (the multi-dimensional models of longitude x altitude and 

longitude x latitude x altitude) predicted the shape of the empirical richness pattern (i.e., 

slope did not differ significantly from 1; Table 4.2).

In the multiple SAR models, environmental parameters could significantly (p < 0.05) 

explain between 88.3 and 98.3% of the variation in amphibian species richness, between 

87.6 and 98.8% of the variation in avian species richness, and between 74.5 and 95.9 % 

of the variation in mammal species richness (Table 4.3). Little improvement in model fit 

was evident following the inclusion of MDE into the multiple SAR models for all groups. 

The one-dimension model of longitude and two-dimension model of longitude x latitude 

for mammals were the exceptions in that MDE improved the fit of the regressions by 23.1 

and 12.3%, respectively.

Discussion

The general applicability of a modified, fully stochastic, three dimensional MDE model, 

both as a null prediction, and then as a separate explanatory variable of species richness 

for three different groups of biota were examined in this chapter. Results indicate that 

stochastic processes and geometric constraints can explain much of the variation in
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amphibian and mammal species richness patterns, independent of the number of 

dimensions being accounted for, and in avian richness patterns for the two-dimensional 

(longitude x latitude), and three dimensional models (see Table 4.1). This, in principle, 

suggests that either these species are randomly placed with the limits of the domain or 

that the richness pattern appears random but is a consequence of some set of interacting 

factors (Bokma et al. 2001) -  reflecting the multitude of ecological and evolutionary 

processes that have adapted species to respond to the environment in many ways (Lyons 

and Willig 1997).

The MDE tends to be weaker where ranges are small relative to the domain extent 

(Laurie and Silander 2002), and stronger where ranges are large relative to the extent of 

the domain (McCain 2003). Small-ranged species are less likely to experience ‘hard’ 

boundaries than large-range species, and thus the impact of boundaries on their richness 

patterns should be smaller (Jetz and Rahbek 2002), and more likely to reflect 

environmental and historical factors (Colwell and Lees 2000). Colwell and Lees (2000) 

further noted that large-ranged species are more likely to be affected by continental 

geometry and to occupy the centre of the bounded area. Here, a similar gradient was 

observed with MDE accounting for some 73%, 77% and 84% of the variation in 

amphibian (smallest average range size), mammal (mid average range size) and avian 

(largest species range size) species richness gradients, respectively (see Table 4.1).

Studies that have partitioned datasets into range size categories have consistently found 

stronger support for MDE among large-ranged species than among the smaller range
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species in the dataset (Hawkins and Diniz-Filho 2002; Jetz and Rahbek 2002; Vetaas and 

Grytnes 2002; Mora and Robertson 2005, Murphy et al. 2006). In Chapter 3, it was 

shown that geometric constraints had greatest predictive power on the richness patterns of 

North America tree species having ranges that are large relative to the domain. For these 

large-ranged species, MDE alone often explained more of the variation in species 

richness than all of the environmental variables combined. However, for medium- and 

small-range species, environmental parameters were much more important. Furthermore, 

Mora and Robertson (2005) found habitat features had a much greater influence on 

gradients in species richness of small-range tropical eastern Pacific fishes, whereas a one- 

dimension mid-domain effect had a significant influence on species richness of large- 

ranged species.

While the use of modified, fully stochastic MDE models, as used here, have been 

criticized because the RSFD of the theoretical species may differ from the actual data, 

altering the fit of the MDE (McCain 2003, Colwell et al. 2004), the alternative (random 

placement of ranges resampled from an actual RSFD) may inadvertently ‘smuggle in’ 

effects of environmental gradients and overestimate the contribution of MDE (Zapata et 

al. 2003, Connolly 2005). Here, the theoretical RSFD produced by the modified, fully 

stochastic, three dimensional MDE model represents a log-normal RSFD. The log-normal 

RSFD curve is biologically realistic (Anderson 1985, Brown et al. 1996, Colwell and 

Lees 2000), and is a theoretical standard to which observed RSFD patterns have been 

compared (Gaston et al. 2005; and see e.g., Pagel et al. 1991, Blackburn and Gaston 

1996, Gaston 1998, Macpherson 2003). While the theoretical RSFD is most similar to
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that of the amphibian and mammal species and least similar to that of the avian RSFD, 

the RSFD did differ from all three groups in both shape and mean range size. The 

differences in RSFD may account the inability of the model to accurately predict the 

shape and magnitude of species richness (see Tables 4.1 and 4.2). In general, amphibian 

richness was less than predicted (corresponding to lower mean range size than the 

theoretical species) and avian and mammal richness were greater than predicted 

(corresponding to greater mean range size). Even if the theoretical and actual RSFDs 

differ, MDE may show a high coefficient of determination (R2), but the differences may 

be seen in the shape and magnitude of the richness prediction; if RSFD are resampled 

from actual data or the theoretical and actual RSFD are do not differ, MDE is more likely 

to accurately predict fit and magnitude of the actual species richness (Zapata et al. 2003, 

2005, Colwell et al. 2004, 2005)

The lack of significant fit in five of the seven MDE models for avian species richness 

may be due to the differences in RSFD (Colwell et al. 2004), or may be due to the 

variation in relative strength of stochastic (MDE) and the effects of both biotic and 

abiotic environmental gradients (Colwell et al. 2005, Rangel and Diniz-Filho 2005). 

Climatic variables significantly predicted avian richness five of the seven SAR models. 

Indeed, for amphibian and mammals, the climatic variables significantly accounted for 

much of the variation in species richness. For all groups, precipitation seasonality and 

isothermality were the most commonly used predictors of species richness. It could be 

hypothesized that the patterns of species richness examined here were due, to some 

degree, to environmental stability or predictability (see e.g., Thiery 1982, Begon et al.
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1986). These hypotheses are generally accepted as unsupported (Rohde 1992, Willig et 

al. 2003) and testing these potential hypotheses is beyond the scope of the chapter.

Currie et al. (2004) note that the statistical relationship between climate and broad-scale 

species richness is one of the strongest patterns in ecology. Climate-based theories of 

species richness abound, and offer a large body of tests of model fit, assumptions and 

secondary predictions (Zapata et al. 2005), however, these still have far to go to 

identifying causality of species richness gradients (Currie et al. 2004).

Strong correlations between dependent and independent variables do not imply a causal 

link. While correlative studies often lead to the best descriptor of an observed pattern (not 

necessarily the primary cause), the falsification of potential predictors is valuable (Bokma 

et al. 2001). Although I have shown here that environmental correlates provide equal or 

better explanatory value than that of the MDE predictions (see Table 4.3), the principle of 

parsimony (Occam’s razor) suggests that the alternative with the least assumptions 

should be selected. In this study, random placement of ranges within the limits of a 

domain would be the simplest explanation. It seems most likely that real species 

distributions are the product of variation in relative strength of stochastic and ecological 

processes (Bokma et al. 2001, Colwell et al. 2005, Rangel and Diniz-Filho 2005).
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I Kilo m eters

Figure 4.1. Illustration of the domain, Continental North America, Central, and South 

America, used in this study. The perimeter of the domain was extracted from “World 

Countries 1992” base map, supplied with ArcView 3.2 (ESRI, California, USA) and 

altitudes were obtained from the GLOBE project (GLOBE, 1999). Lighter areas represent 

higher elevations, reported in metres above sea level.
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Figure 4.2. For each single dimension, longitude, latitude and altitude, the relationship 

between proportionate area and position within the domain is depicted.
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Figure 4.3. Range size frequency distributions for each of three biotic groups (amphibian, 

bird, mammal) and for the theoretical species created by a modified, fully stochastic 

MDE model.
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Figure 4.5. Patterns of species richness for each of three biotic groups (amphibians, birds 

and mammals) as predicted by a modified, fully stochastic, three dimensional MDE 

model. One-dimensional (Longitude, Latitude and Altitude) and multi-dimensional (Long 

x Lat, Long x Alt, Lat x Alt and Long x Lat x Alt) predictions are shown. Equal interval 

classification is shown with color ramps indicating minimum (dark, bottom of legend) to 

maximum (light, top of legend) predicted species richness.
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Figure 4.6. Deviation (observed - expected) from three dimensional MDE predictions for 

empirical amphibian richness. Values represent deviation in proportion of total species 

richness.
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Figure 4.7. Deviation (observed - expected) from three dimensional MDE predictions for 

empirical bird richness. Values represent deviation in proportion of total species richness.
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Figure 4.8. Deviation (observed - expected) from three dimensional MDE predictions for 

empirical mammal richness. Values represent deviation in proportion of total species 

richness.
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Table 4.1. Maximum species richness noted for each of three biotic groups 

(amphibians, birds and mammals) and as predicted by a modified, fully stochastic, 

three dimensional MDE model. One-dimensional (Longitude, Latitude and Altitude) 

and multi-dimensional (Long x Lat, Long x Alt, Lat x Alt and Long x Lat x Alt) 

richness values are shown.

Longitude Latitude Altitude

Am phibians 0.19 0.14 0.62
Birds 0.50 0.43 0.94
Mammals 0.34 0.26 0.86
Null 0.50 0.46 0.50

Long x Lat Long x Alt Lat x Alt Long x Lat 
x Alt

0.08 0.17 0.12 0.08
0.35 0.49 0.42 0.35
0.20 0.33 0.25 0.20
0.28 0.26 0.24 0.14
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Table 4.2. Results for spatial autoregressive models of MDE predicted species richness against empirical species richness of 

amphibians, birds and mammals. Significant (p < 0.05) pseudo R values are bolded. Also shown are the t-test results of the 

hypotheses that slope = 1 and intercept = 0; bolded values are not significant at the p < 0.05 level.

Amphibian

Bird

Mammal

Longitude Latitude Altitude Long x Lat Long x Alt Lat x Alt Long x Lat 
x Alt

intercept
slope
R2

1.414
-57.702
0.752

1.814
-48.196
0.543

32.532
-9.690
0.759

-6.126
-36.602
0.863

2.839
-18.559
0.808

-2.339
-13.526
0.638

-4.345
-4.355
0.756

intercept
slope
R2

13.264
-13.069
0.813

6.797
-25.740
0.519

38.180
-8.225
0.536

3.304
-8.378
0.885

31.248
-4.398
0.761

14.067
-9.646
0.789

7.503
3.010
0.801

intercept
slope
R2

18.510
-27.203
0.871

6.480
-33.033
0.526

44.881
-9.190
0.617

2.706
-23.963
0.837

27.153
-0.323
0.865

6.675
-13.887
0.740

2.192
-1.356
0.763
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Table 4.3. Results of spatial linear regression analysis for predictors of amphibian, avian and mammal richness. Shown are the 

pseudo R2 values for separate analyses of MDE and the environmental variables, and then the analysis with MDE and 

environmental variables together. Significant (p < 0.05) values are bolded.

Amphibian

Longitude Latitude Altitude Long x Lat Long x Alt Lat x Alt Long x L 
x Alt

MDE 0.752 0.543 0.759 0.863 0.808 0.638 0.756
Environmental 0.894 0.933 0.775 0.983 0.883 0.967 0.987
MDE +
1_1 T T4 M ^ 1

0.912 0.937 0.867 0.984 0.918 0.972 0.989

Bird
MDE 0.813 0.519 0.536 0.885 0.761 0.789 0.801
Environmental 0.824 0.876 0.669 0.982 0.881 0.895 0.988
MDE +
1_j m * 4^ A 44 r rt 1 0.968 0.877 0.707 0.990 0.927 0.913 0.991

Mammal
MDE
Environmental 
MDE + 
Environmental

0.871 0.526 0.617 0.837 0.865 0.740 0.763
0.745 0.907 0.678 0.919 0.768 0.959 0.915

0.975 0.909 0.753 0.944 0.891 0.961 0.944
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Chapter 5 -  A Bayesian decision approach for the null prediction of a 

species’ ecological niche

Summary

Species distribution models attempt to determine the non-random associations between 

environmental attributes associated with known occurrences and absences. Since most 

species surveys only record occurrences, pseudo-absences have been used in place of true 

absences. Pseudo-absences are randomly chosen locations where the species has not been 

reported and thus maybe assumed to be absent. Here, a methodological framework is 

presented whereby the species-environment relationship can be examined, in essence, 

providing a null model of a species niche. Recognizing that the species-environment 

relationship may be scale-dependent, logistic regressions are conducted between the 

environmental variable and occurrence / pseudo-absence data using spatially independent 

subsets, to determine the spatial scale at which the species-environment relationship is 

best fitted. The most significant (best fit) independent environmental attributes and 100 

spatially independent subsets of a training dataset (a randomly drawn 50% of the 

occurrence / pseudo-absence data) were used to train a naive Bayesian algorithm. The a 

priori and a posteriori probabilities from the Bayesian algorithm were used as a ruleset 

that was first evaluated using the training, testing (the remaining data not used for 

training) and entire occurrence / pseudo-absence data datasets. The algorithm was then 

applied throughout a landscape, generating predictions as to the probability that any 

locality is part of a species’ niche.
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The methodology was applied to occurrences of Opuntia humifusa at Point Pelee 

National Park, SW Ontario. The derived model accurately predicted species occurrences 

97.1% of the time using the landuse category of the location of interest and the 

proportions of the surrounding landscape with respect to beach (at 50m radius), human 

use (at 500m), ponds (at 700m) and roads/parking (at 700m). This technique should be 

useful for a wide variety of studies including those examining the distribution of multiple 

species.

Introduction

The study of how organisms are distributed in space and time has long interested 

ecologists and inspired many modeling approaches that quantify the species-environment 

relationship (e.g., Rushton et al. 2004, Guisan and Thuiller 2005). Such species 

distribution models (SDMs) have also been referred to as habitat suitability mapping, 

quantitative habitat models, ecological niche models and predictive distribution maps, 

and all are potentially important tools to guide management and restoration approaches 

with respect to conservation of rare species and/or environmental change (land 

fragmentation, climate change, etc.) (Guisan and Zimmerman 2000, Johnson et al. 2004, 

Guisan and Thuiller 2005). Application of such tools is a function of advances in 

geographical information systems (GIS), availability of geo-referenced databases (such as 

species distributions, topographical, climatic and landuse information), and the ability to 

utilize computationally intensive numerical techniques (Rushton et al. 2004).
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Kearney and Porter (2004) suggested that the concept of the niche provides a useful 

starting point for understanding the distribution of species. Indeed, many SDMs assume 

an underlying niche concept (Guisan and Zimmermann 2000, Guisan and Thuiller 2005, 

Soberon and Peterson 2005). The unique attributes of locations where a species occurs 

are often inferred as characteristics of a species niche, and thus a common approach used 

to determine the extent of a species’ geographic distribution(definine limits of a species’ 

niche) is to characterize, quantitatively, a suite of environmental conditions for known 

occurrences of the species (Peterson 2001, Kearney and Porter 2004).

Surveys of species often report only occurrences of species; rarely are absences recorded 

and thus the methods for modelling species distributions are limited (Pearce and Boyce 

2005). One way to model presence-only data is to use pseudo-absences. Pseudo-absences 

are assumed to be true absences but may represent presence locations that have not been 

reported (Graham et al. 2004). Often the pseudo-absences are chosen at random to 

represent the background set of environmental attributes of the study area (Pearce and 

Boyce 2005, Soberon and Peterson 2005). Statistical models of the probability of 

occurrence can be derived for the species-environment relationship using occurrence / 

pseudo-absence data and then these models can be interpolated to other parts of the 

landscape, potentially under differing environmental conditions (see e.g., Lindenmayer et 

al. 1991, Sykes et al. 1996, Peterson et al. 1999, Peterson 2001, Kearney and Moussalli 

2003, Kearney et al. 2003).
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In this chapter I develop a method, and associated software, that uses species occurrences 

(ignoring species-specific life history attributes) such that the deviation from randomly 

placed pseudo-absences with respect to environmental attributes, effectively 

parameterizes a null model for a species’ distribution. Thus the model created is a more 

appropriate null model (than the null assumption of complete spatial randomness) 

describing the niche of a single species. Deviations from this null niche model would 

represent greater scientific value than a null hypothesis of complete spatial randomness 

(Goovaerts et al. 2004, Goovaerts and Jacquez 2004) and suggest which species-specific 

attributes or biotic interactions are important factors defining a species’ distributions.

Species niche modelling

Species distribution models have been used in a wide variety of applications from 

quantifying the niche of a species, to identification of sites with high potential of 

occurrence or high value for restoration, to assessing impact of environmental change 

(e.g., climate or landuse change) on species distributions (see reviews in Rushton et al. 

2004, Guisan and Thuiller 2005). While such modelling efforts have been useful tools 

with respect to applications in ecology and conservation biology, common to many of 

these models is a pseudo-equilibrium assumption (Guisan and Theurillat 2000) and a 

reliance on the niche concept (Guisan and Zimmermann 2000).

Species and environmental data are often sampled during a limited time and thus the 

models produced often represent only a snapshot of the species-environment relationship. 

Assuming pseudo-equilibrium is a convenient postulate for projecting future distributions
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but the validity of the assumption is questioned in situations where systems are not in 

equilibrium (e.g., dispersal-limited range expansion, invasive species spread) (Guisan and 

Thuiller 2005).

Nearly all species distribution models rely on assumptions underlying the niche concept; 

it is assumed that a species is affected by its environmental requirements and/or itself 

affects the environment in which it occurs (Liebold 1995, Guisan and Zimmermann 

2000). By quantifying where a species occurs, it is typically assumed that the distribution 

is constrained by biotic interactions; such models are de facto describing the realized 

niche (sensu Hutchinson 1957). In modelling a species’ niche and its distribution with 

respect to potential change in climate, landuse, etc., one must assume a pseudo

equilibrium and that the realized niche, in terms of the abiotic characteristics, is a good 

approximation of the fundamental niche (sensu Hutchinson 1957) (Vetaas 2002). It has 

been suggested that, if the distribution of a species in the context of varied biotic 

backgrounds can be observed, then the composite fundamental niche can be described 

(Peterson et al. 1999, Peterson 2001). However, many species are able to survive Outside 

their current distribution provided dispersal barriers are overcome (i.e., outside their 

realized niche; Vetaas 2002). One only has to examine the invasive species literature to 

see examples of species thriving outside their “realized niche” (Jesche and Strayer 2005, 

Murphy et al. 2006). Ackerly (2003) proposed an alternative to the classical concepts of 

niche by proposing the potential niche. The potential niche is that part of the fundamental 

niche, not yet recognized as part of the realized niche, but condition mimic that of the
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realized environment (the environmental attributes of the realized niche); hence 

predictive SDM’s are, indeed, often exploring the potential niche of a species.

The species distribution modelling program

Three basic inputs are needed for the methodology described here: species occurrence 

data, environmental data and a specified set of buffer distances. The environmental data 

must be in raster format, with a minimum cell size less than or equal to the minimum 

buffer distance. Using the input data, the program goes through a series of calculations 

and user interactions to create the species distribution model describing the realized niche 

of a species, predicting the potential niche.

The first step involves the creation of pseudo-absences. Pseudo-absences, equal in 

number to that of occurrences, are randomly placed within the domain bounded by the 

extent of the environmental data. From this, a presence-absence (PA) database is created. 

The attributes of the environment at each PA locality are recorded. In adition to the 

environmental data of the specific raster cell in which the PA is located, environmental 

data is also recorded at a number of buffer distances; in other words, the environmental 

conditions are quantified at the specific PA location and for the surrounding landscape at 

the specified buffered sizes. The surrounding landscapes are treated as square 

delineations where the size is defined by the buffer distance (e.g., a buffer size of lm  on a 

grid with a resolution of lm  would describe a 3x3 cell area in which the edges are 

defined as lm  from the focal cell in the cardinal directions).
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Quantifying the environment at the various buffer distances differs depending on the type 

of data used. For categorical environmental datasets (e.g., landcover, soil type), the point 

value at the PA location and the proportion of the surrounding landscape at each buffer 

distance for each category is recorded. With respect to continuous data, the point value at 

the PA location and the mean and standard error of the values representing the 

surrounding landscape at each buffer distance is recorded.

To determine the scale (buffer distance) that is the best predictor of a species occurrence, 

multiple single logistic regressions are performed on the PA data with each 

environmental parameter. At each buffer distance and for each environmental parameter, 

spatially independent subsets of the data are used. The subsets are selected by:

1. First, a PA location, ni, is randomly selected from all PA locations, ni.

2. A second site, n2 , is selected that satisfies the criteria of spatial independence. The 

condition of spatial independence here refers to the criteria set that areas within 

which the predictor variable is measured may not overlap; in other words, for the 

case considered here, the distance between ni and n2 must be greater than two 

times the radius (buffer size).

3. Random PA locations are added to the subset until the spatial independence 

criteria can no longer be met.

4. Since the dependent variable is binary (presence or absence), logistic regression is 

used to determine the fit of the environmental data with the selected PA points. 

The significance and Nagelkerke's R2, among other statistics are recorded.
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5. Steps 1-4 are repeated for 100 different spatially independent subsets of the data 

such that the distribution of the model fit and effect size can be examined.

The sampling includes replacement of data between subsets. However, the spatial 

independence criterion excludes replacement within subsets and thus this technique 

differs from a bootstrapping procedure. The mean and SE of the regression statistics (log- 

likelihood and Nagelkerke's R2) for each environmental attribute at each buffer distance 

are used such that the optimal buffer size for each environmental parameter can be 

determined based on significant (p<0.05 level) model fit.

A list of the environmental predictors at the optimal buffer size, based on greatest model 

fit, is created; often these are not independent of each other. By examining a correlation 

matrix that reports r (Pearson correlation coefficient), one can select the environmental 

predictors based on logistic regression model fit and independence of predictors. These 

predictors are then input into a naive Bayesian algorithm for modelling the species niche.

Naive Bayesian classifiers are simple Bayesian networks (Bayesian classification 

systems) in which there is only one class variable (dependent variable) with all other 

variables considered as attributes of the class variable (independent variables) (Porwal et 

al. 2006). The class variable is the root of the network with each attribute as a child of the 

parent (the class variable). Although the attribute variables can act as parents to other 

variables, here we assume attribute variables do not act as parents and thus, the 

environmental attributes are assumed to be independent of each other.
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Class variables are categorical variables with two or more states. In this application of a 

naive Bayesian classifier, the class variable of occurrence data has two states, species 

present or absent. The naive Bayesian classifier here uses the following algorithms 

(Porwal 2006). Given C as a class variable in this case with two states = {0, 1} 

(representing species absent or present) and X is a vector of attributes in which X = {xi, 

X2 , X3 ,.. .Xd}, then the Bayesian algorithm can be written as:

Naive Bayesian algorithms assume the conditional probabilities of the attribute variables 

are independent, thus:

k=1

This means that a posteriori probability of class membership can be estimated as:

p{Ct \ Xj,x2 ,x 3 ,.. .x d)= p(x l5 x 2 ,x 3 ,...x d| C;)p(C,) 

where p {c \  x x,x 2, x 3 , .. .x d) is the a posteriori probability of class membership.x 1 ,x 2 ,x 3,...x

p (Q\X)= p(Ci| X!, x 2, x 3,... xd) = p(C, p(xk \Ct)

Given that p(c = l |x )+  p(c = 0|X) must equal 1, the probability of an occurrence can be 

estimated as:

PM *)=------- — ------f -------- 3—------ -
P{ c = D n  p(xk \ c = i ) + P{ c = o n  p(xk i c = o)
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As one of the advantages of using naive Bayesian classifiers is the ability to include both 

continuous and categorical variables, assuming a normal distribution, the a posteriori 

probabilities are calculated for continuous attributes as:

where juki is the mean and <Jki is the standard deviation of the attribute; and for 

categorical attributes as:

in other words, as the proportion of each category of the attribute, with respect to species 

presence or absence.

Input into the naive Bayesian classifier is 50% of the PA data (a training dataset selected 

at random from all occurrence and pseudo-absence points) and the environmental data at 

the scale that best distinguishes occurrences from pseudo-absences (again, using multiple 

single logistic regressions). One hundred spatially independent subsets of the training 

data (created using the procedure described above) are used to train the naive Bayesian 

classifier. The subsets are spatially independent at the largest scale (buffer size) of the 

environmental attributes input into the Bayesian classifier. The output of the training is 

the mean and associated variance of a set of rules describing the a priori probability of an 

occurrence or pseudo-absence, the a posteriori probability that x belongs to Q  (= {0, 1} 

where 0 is an absence and 1 is an occurrence) for categorical variables and the mean and 

standard deviation to calculate the a posterior probability for continuous variables.

“ OO < X <  0 0 , - 0 0  <  H ki  <  OO, <J ki >  0

count
coum
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The training, testing and overall datasets (testing dataset is the 50% of the data not used 

to train the naive Bayesian classifier, and overall is both training and testing datasets 

together) are then used to numerically validate the model. The output is a contingency 

table whereby the number of true positives (predicted and actual occurrence), true 

negatives (predicted absence and actual pseudo-absence), false positives (predicted 

occurrence and actual pseudo-absence) and false negatives (predicted absence and actual 

occurrence) are tallied and the percent accuracy is calculated (see e.g., Brown 1994, 

Guisan and Zimmerman 2000). The ruleset is then applied to the environmental databases 

in a GIS environment to predict the probability that any location within the landscape is 

part of the species potential niche. This is done such that each location (cell) within the 

landscape is treated as an occurrence or pseudo-absence in the PA database, calculating 

the environmental attributes at their “optimal” scale and then applying the naive Bayesian 

ruleset to calculate the probability.

M ethods

Environmental attributes and species occurrence data

To validate the model with empirical species data, occurrences of individuals of Opuntia 

humifusa., eastern prickly pear cactus at Point Pelee National Park (PPNP) in SW Ontario 

were used. Opuntia humifusa is listed by COSEWIC as Endangered in Canada 

(Klinkenberg and Klinkenberg 1985). It is a low, spreading succulent plant having 

jointed, circular-to-subovate flattened green stems. This species occurs in prairie and 

deciduous forest habitats, ranging from southwestern Ontario and Wisconsin, south to 

eastern Texas and along the gulf and Atlantic coasts from Florida to Massachusetts
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(Whitehead 1995). Many of the individual plants at PPNP are being subjected to intense 

biotic and abiotic selection pressures, including competition from exotic introduced 

weeds, successional competition from native grasses, forbs and shrubs which may 

displace the cactus, physical wave and storm action along coastal areas, as well as 

impacts from trampling, collecting, and other human activities. All of this threatens the 

existence of O. humifusa at PPNP (Kraus 1991).

An intensive field survey for O. humifusa individuals was undertaken in July-August 

2004, in which GPS locations of the individuals were recorded using a Trimble AG 132 

backpack GPS (see VanDerWal et al. 2005a). In total, 345 individuals were located. The 

environmental attribute data sets were made available by PPNP staff (landuse and aerial 

photos; both from 2000) and through the Ontario Geospatial Data Exchange 

(http://www.lio.mnr.gov.on.ca/ogdedescription.cfm; digital elevation model or DEM).

All environmental data was rasterized or resampled to lm  resolution. Although climatic 

variables are often included in species distribution modelling, it was not considered that 

climate was a limiting factor in the relatively small region being modelled.

Species distribution model

Models of O. humifusa’s potential niche were developed based on 345 occurrences and 

an equal number of pseudo-absences randomly placed within the limits of PPNP. The 

environmental attributes used were landuse, DEM and aerial photo geospatial databases. 

The landuse database included 11 classes: beach, primary and secondary successional 

savanna, wet meadow, marsh, pond, juniper stand, forest, roads / parking, trails and
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human use / park infrastructure (Fig. 5.1). The aerial photo was included as a surrogate 

for canopy openness (since lighter greyscale values typically represented more open 

areas). The buffer zones used ranged from 10 to 2500m (10, 20, 30, 40, 50, 60, 80, 100, 

120, 150, 200, 300, 400, 500, 700, 900, 1100, 1500, 2000, 2500).

The modelling software was developed using Visual Basic (VB.NET, Microsoft 

Corporation, Redmond, WA) and the libraries / functionality of ArcGIS 9.0 (ESRI, 

Redlands, CA). The occurrence / pseudo-absences, environmental data and buffer 

distances were put into the model. The first set of outputs was a list of spatially 

independent subsets and analysis of the logistic regressions of each subset with respect to 

each environmental attribute at the different buffer distances. A Pearson correlation 

matrix was also output. Included in the matrix was each environmental attribute at the 

scale with the greatest significant model fit (based on the multiple single logistic 

regressions). Five of the “best fitted”, independent environmental attributes were 

included in the naive Bayesian algorithm. The naive Bayesian algorithm was trained 

using 100 subsets of a training dataset (a randomly drawn 50% of the entire occurrence / 

pseudo-absence dataset). A composite ruleset was derived, tested with the training, 

testing and overall occurrence / pseudo-absence dataset, and then applied to PPNP as a 

whole to map potential niche of the species.

Results

The modelling method proposed here first used logistic regression to examine the optimal 

scale of each environmental parameter by quantifying the environmental parameter at
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each of a set number of buffer distances that best distinguishes between occurrences and 

pseudo-absences. The optimal buffer distances ranged from Om (or point values, as with 

landuse and elevation) to 700m (as with the proportion of the buffer zone that was ponds 

and roads/parking) (Table 5.1). The model fit ranged from 1.3% (Nagelkerke's R2; 

proportion of the buffer zone that is juniper stand) to 50.6% (proportion of the buffer 

zone that is roads or parking). The landuse point values (the landuse category in which 

the occurrence or pseudo-absence occurred) explained only 42.5% of the variation, 

however it was the dominant classifier in the naive Bayesian algorithm.

Results of the ruleset derived by training the naive Bayesian algorithm with 100 spatially 

independent subsets are shown in Table 5.2. Only landuse attributes, point values and the 

proportion of the surrounding buffer zone with respect to beach, human use, ponds and 

roads/parking, were used to train the naive Bayesian classifier as these were independent 

environmental attributes with the greatest model fit (as determined by examining Pearson 

correlation coefficients and Nagelkerke's R ). The a posteriori probability of occurrence 

was greatest when locations were within primary or secondary successional savannas (p = 

0.568 and 0.425, respectively; Table 5.2). The a posteriori probability of an absence was 

greatest when locations were within marsh, pond or forest classifications (p = 0.502,

0.198 and 0.163, respectively).

The accuracy of the model with the training dataset was 93.1% overall, with 3.3% false 

negatives and 11.5% false positives (Table 5.3). The testing dataset had a little higher 

accuracy, 94% overall, 3.5% false negatives and 8.5% false positives. As expected, when
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both training and testing datasets are put together, the composite contingency table shows 

an overall accuracy of 93.6%, with 3.9% false negatives and 9.8% false positives.

The model was applied to the entirety of PPNP (Fig. 5.2). The highest probability that 

any location was part of the species’ potential niche occurred in the primary and 

secondary successional savannas. Within these landuse classifications, the probability of 

potential niche decreased with increasing proportion of the surrounding landscape 

(attribute specific buffer zone) that was classified as ponds and decreasing proportion 

comprised of beach, human use and roads / parking (Table 5.2).

D iscussion

The framework for modelling species distributions presented here, in essence, describes 

aspects of a species’ distribution in the Hutchinsonian n-dimensional niche space 

(Hutchinson 1957). Here, environmental attributes of the realized niche were 

quantitatively characterized, and then for any location within PPNP, the probability that 

the location is part of the species potential niche was estimated.

In modelling a species’ niche and its distribution with respect to future environmental 

change (climate, habitat fragmentation, etc.), besides assuming a pseudo-equilibrium, it is 

often assumed that the realized niche, in terms of its abiotic characteristics, is a good 

approximation of the fundamental niche (Vetaas 2002). This assumption may not be 

valid. Indeed, it has been suggested that the “true” way to determine a species 

fundamental niche is through direct measurement of physiological responses of
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organisms to abiotic environmental conditions (e.g., gradients of temperature, humidity) 

and inferring fitness from combinations of these conditions (Soberon and Peterson 2005). 

Then the investigator can map areas of positive fitness using GIS technology (see e.g., 

Porter et al. 2000, Porter et al. 2002).

Soberon and Peterson (2005) proposed that a second method for estimation of a species’ 

fundamental niche is to relate species occurrences with geo-referenced databases (e.g., 

GIS layers of climate, topography, soil characteristics). Combinations of abiotic 

conditions that best describe occurrences are projected across the landscape to describe 

the limits of the fundamental niche of a species (e.g., Lindenmayer et al. 1991, Sykes et 

al. 1996, Peterson et al. 1999, Peterson 2001, Kearney and Moussalli 2003, Kearney et al. 

2003). This simple ‘correlative approach’ is argued to provide insight into the 

fundamental niche of a species (Peterson et al. 1999, Peterson 2001, Peterson and Holt 

2003, Soberon and Peterson 2005). It has been suggested that, if the distribution of a 

species in the context of varied biotic backgrounds can be observed, the composite 

fundamental niche can thereby be described (Peterson et al. 1999, Peterson 2001).

Opuntia humifusa is used here as an example to demonstrate and validate the 

applicability of the SDM methodology presented. While this method could be used to 

examine the fundamental niche of a species, that was not the intended purpose here. 

Rather, this application was used to describe the realized niche and delineate the potential 

niche, suggesting unsurveyed sites with high potential of occurrence and identifying 

suitable sites for re-introduction. The potential niche of O. humifusa was accurately
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predicted (Table 5.3) using single logistic regressions to identify the most significant 

predictors of species occurrences (based on regression fit), followed by modelling using a 

naive Bayesian classifier.

Many different methods have been proposed to model species distributions: expert 

opinion models (e.g., Burgman et al. 2001, Kuhnert et al. 2005), bioclimatic envelopes 

(e.g., Nix 1986, Walther et al. 2004), algorithms such as logistic regression (see Keating 

and Cherry 2004), generalized linear models (e.g., Ferrier et al. 2002), classification and 

regression trees (e.g., Breiman et al. 1984, Bourg et al. 2005), genetic algorithms (e.g., 

Stockwell and Peters 1999, Peterson 2001) and Bayesian logic (e.g., Bayliss et al. 2005, 

Mac Nally 2005). They have all been used to determine the unique attributes of locations 

where a species occurs and have particular benefits and limitations. Many of the 

statistical methods (e.g., generalized linear models) are restricted by parametric 

assumptions and linear interactions (Bourg et al. 2005), while bioclimatic envelopes and 

machine learning techniques (e.g., Bayesian classifiers, genetic algorithms) can 

overestimate a species niche (Peterson 2001).

Logistic regression has become increasingly popular for modelling species distributions 

(Keating and Cherry 2004). However, Keating and Cherry (2004) note that such models 

may be limited in appropriateness of the interpretations due to the choice of sampling 

design, underlying probability model and associated assumptions. The methodology 

proposed here first uses logistic regression to examine the optimal scale of each 

environmental parameter. It does this by quantifying the environmental attributes of a
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location at each of a set number of buffer distances; logistice regression was used to 

determine the buffer distance that best distinguishes the environmental attributes of an 

occurrence from a pseudo-absence. Logistic regression was not used to examine the 

probability of occurrence (or of potential niche) with respect to the multiple 

environmental attributes (each at the optimal buffer size) as the assumption of 

randomness may not be valid, and also due to the difficulty of integrating the results of 

multiple logistic regression analyses based on different subsets of the data. Many species 

occurrences are gathered in areas traversed by people; the distribution of occurrences 

may not be a random sample of all possible habitats. Furthermore, using multiple logistic 

regressions with spatially independent subsets of the data will yield a unique set of 

models equal in number to that of the spatially independent subsets used. Integration of 

the models into one would be difficult to justify. Thus, a naive Bayesian algorithm was 

used such that the prediction of the probability of a location being part of a species’ niche 

could be made without the limitations of the logistic regression.

Naive Bayesian classifiers have been used in a wide variety of ecological / environmental 

applications, such as species niche modelling (e.g., Milne et al. 1989, Kuhnert et al.

2005), landcover and soil classifications (e.g., Mac Nally 2005, Porwal et al. 2006), 

reconstructing ancestral genealogies (e.g., Smith et al. 2005, Hardy 2006) and in other 

applications such as spam filtering (e.g., Delany et al 2005). A major advantage of 

Bayesian classifiers is that the attribute variables may be binary or multistate categorical 

or continuous, essentially including all quantitative or qualitative information (Ames 

2002, Sadoddin et al. 2005). This is especially useful for resource management and
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species distribution models in that quantitative and qualitative (e.g., expert opinion, social 

views) can be incorporated into the classifier in its application as a decision support 

system (Sadoddin et al. 2005).

Many SDMs, especially bioclimatic envelope models, have no formal means of 

representing uncertainty (Burgman et al. 2005). However, Bayesian classifiers are 

capable of representing and considering uncertainty (Saddodin et al. 2005). Bayesian 

classifiers provide a formal reasoning about partial beliefs under conditions of 

uncertainty and conditional probabilities between different knowledge components 

represent uncertainty (Varis and Kuikka 1999). In the present application, the model 

provides the probability that a specified location is within the potential niche of O. 

humifusa. By applying probability theory (in using a Bayesian classifier), uncertainty is 

represented by the probability.

Recognition that species perceive different environmental cues at different resolutions 

and that the species-environment relationship is best observed at different scales has 

become increasingly important concept in much of landscape ecology (Turner et al. 2001, 

Holland et al. 2004, Guisan and Thuiller 2005). The method presented here is not limited 

to examining the species-environment relationship at a single scale. Many SDMs are 

limited in that quantification of the species-environment relationship is done at the scale 

of the patch, or some arbitrary buffer distance from where the species occurs (Holland et 

al. 2004). It is difficult to determine the appropriate scale at which the species- 

environment relationship occurs; different environmental attributes of species
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occurrences may be best observed at different scales (at different grain or extent) (Turner 

et al. 2001). For example, Holland et al. (2004) examined the species-environment 

relationship with respect to 12 cerambycid beetle species and found that abundance was 

correlated to the amount of forest cover at different buffer distances from 20 to 2000m, 

depending on the species. The method presented here examines the species-environment 

relationship at multiple scales (grains or buffer distance) to determine the “optimal” scale 

distinguishing a species occurrence from absence.

The methodology presented here further uses multiple subsets of spatially independent 

data in both the logistic regression and naive Bayesian training. Holland et al. (2004) 

noted that this type of procedure (multiple single analyses of subsets of the data) have, in 

general, four advantages over random selection of a single set of independent sites (in 

this application, occurrence / pseudo-absence locations). These include:

1. due to the multiple regressions, the sites included in the subset are not affected by 

the first site chosen;

2. because different buffer sizes use different subsets of the possible sites, sites at 

different buffer sizes are not nested;

3. it increases the power of the analysis since this method uses multiple estimates of 

the regression (using different subsets of the data); and

4. it maximizes the use of the available data.

Two general types of error are generated with predictive niche models: errors of omission 

and commission (Fielding and Bell 1997), akin to false positive and false negatives of a
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contingency table. The first, a false negative, or the omission of areas where the species 

occurs represents a failure of the model to include the full realized ecological niche of a 

species. Here, the contingency table showed 3.9% of the occurrences were predicted to be 

absent (false negatives; Table 5.3). The areas in which these 10 (out of 345) individual 

plants are found are secondary successional savannas close to the ponds, or with few 

roads. The deviation from the model potentially represents a uniqueness of these 

individuals with respect to some biotic interactions. Indeed, six of the 10 individuals, 

although believed to be natural, are located in an area that was previously an orchard.

The second type of error, false positives or errors of commission, represents areas that are 

recognized as suitable but where there is no occurrence. There are two aspects to the error 

of commission: the model may have failed, and incorrectly predicted areas that are not 

part of the species’ niche; or the area is part of the species’ niche (within its potential 

niche) but either the species is there and has not been reported, or the species does not 

occur there due to historical factors (dispersal limitation, local extinction, etc.) or 

interspecific interactions (competition, predation, etc.) (Peterson et al. 1999). With 

respect to the O. humifusa model, 34 of the 345 pseudo-absences were predicted as part 

of the species niche. They all occurred within primary and secondary successional 

savannas. Ideally, these false positives are potential habitat of the species and thus the 

accuracy of the model could be reported as 97.1% (rather than 93.6% accounting for false 

positives). Indeed, some of the predicted niche is presently used at PPNP to “farm” O. 

humifusa for restoration projects (VanDerWal et al. 2005a,b).
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The modeling methodology presented here allows one to examine aspects of a species 

niche by creating a null distribution model. The framework searches for non-random 

associations between environmental attributes (at different scales) of known occurrences 

compared with those of the study areas (pseudo-absences). The deviation from the null 

predictions (based on occurrences in the absence of life history information) may 

represent important factors (biotic interactions, niche limitations, etc.) defining species 

distributions. Inference with respect to deviation from the null may be more useful in 

multi-species applications.

Guissan and Thuiller (2005) suggest that one future challenge for SDM is to examine 

applications with respect to groups or guilds of species. Limiting such research may be 

the niche assumption underlying many SDMs. Assuming each species has its own 

“niche”, models are often only built for single species, not groups or guilds of species 

since there is no ecologically justifiable hypothesis for modeling groups (Guissan and 

Thuiller 2005; but see Hubbel 2001, 2005). Each species is assumed to have its own 

“niche”. Spatial predictions of groups of species could be examined with respect to 

determining whether one group of species can be better modelled than others (Boone and 

Krohn 2002, Huntly et al. 2004) and the likely ecological reasons for such patterns 

(Guissan and Thuiller 2005). From an applied conservation perspective, this approach 

could be used for potential prioritization of areas (potential niche) for groups of rare 

species rather than simply for single species.
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Figure 5.1. Landuse classification of Point Pelee National Park, Ontario, supplied by park

staff.
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Figure 5.2. Potential niche map for Opuntia humifusa at Point Pelee National Park,

Ontario. The predicted potential niche is based upon a naive Bayesian classifier using

occurrence information and relating it to environmental attributes.
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Table 5.1. Logistic regression results describing the species-environment relationship 

at the buffer distance that best distinguishes occurrences from pseudo-absences. 

Landuse attributes includes both the point values as well as the results based on the 

proportion of the buffer zone that is each landuse category. With respect to DEM and 

the aerial photo, the means and associated variance for the buffer zones were 

regressed against the occurrence information from an intensive field survey for 

Opuntia humifusa individuals in July-August 2004 (VanDerWal et al. 2005a).

Buffer
distance

(m)
Landuse beach 50

forest 300
human use 500
juniper stand 1 0

marsh 300
ponds 700
primary successional ^
savanna
road and parking 700
secondary
successional savanna 
trails 300
wet meadow 150
beach 50

DEM mean 0
SD 50

Aerial mean 200
photo SD 40

Nagelkerke's R2 Sig.

Mean SE mean SE

0.272 0.0286 <0 . 0 0 1 <0 . 0 0 0 1

0.398 0.0006 0 . 0 0 1 <0 . 0 0 0 1

0.412 0.0044 0.041 0.0014
0.013 <0 . 0 0 1 0.046 <0 . 0 0 0 1

0.416 0.0034 0 . 0 0 1 <0 . 0 0 0 1

0.389 0.0028 0.040 0 . 0 0 0 2

0.428 <0 . 0 0 1 <0 . 0 0 1 <0 . 0 0 0 1

0.506 0.0058 0.047 0.0014

0.369 0 . 0 0 2 1 0 . 0 2 2 0 . 0 0 0 2

0.272 0.0004 0.006 0 . 0 0 0 1

0.091 0.0007 0.008 <0 . 0 0 0 1

0.272 0.0286 <0 . 0 0 1 <0 . 0 0 0 1

0 . 1 1 1 0 . 0 0 0 1 <0 . 0 0 1 <0 . 0 0 0 1

0.253 0 . 0 0 0 0 <0 . 0 0 1 <0 . 0 0 0 1

0.184 0 . 0 0 0 2 0 . 0 0 2 <0 . 0 0 0 1

0.245 0 . 0 0 0 0 <0 . 0 0 1 <0 . 0 0 0 1
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Table 5.2. The ruleset derived by training a naive Bayesian algorithm using the 

independent environmental attributes. Only landuse attributes were used; these 

included both the point values as well as the proportion of the buffer zone that is 

beach, human use, ponds and roads / parking at the appropriate buffer size listed in 

Table 5.1. The point values are conditional probabilities while proportionate landuse 

attributes report the mean and SD (in brackets) used to calculate the condition 

probabilities.

Probability of

a priori probability
occurrence

0.15
absence

0.85

Point values beach 0 0

forest 0 0.163
human use 0.007 0

juniper stand 0 0.006
marsh 0 0.502
ponds 0 0.198
primary successional 0.568 0 . 0 0 1savanna
road and parking 0 0 . 0 0 1

secondary 0.425 0.037successional savanna 
trails 0 0.016
wet meadow 0 0.078

Proportion of the buffer beach 11.55 (11.374) 0.88 (3.084)
zone human use 1.65 (0.843) 0.26 (0.502)

ponds 1.51 (2.338) 21.27 (18.470)
roads / parking 2.15 (0.723) 0.66 (0.772)
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Table 5.3. Contingency tables describing the accuracy of the 

modelling using the training, testing and overall (training and 

testing) datasets. For actual and expected values, 1 represents 

an occurrence and 0  an absence.

Training dataset

Actual 1
0

Overall %

Expected 
1 0

170 4
18 139

% correct 
97.7% 
88.5% 
93.1%

Testing dataset

Actual 1

0

Overall %

Expected 
1 0

165 6

16 173

% correct 
96.5% 
91.5% 
94.0%

Total dataset

Actual

Overall %

Expected
1 0 % correct

1 335 1 0 97.1%
0 34 312 90.2%

93.6%
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Chapter 6 -  Applying a species distribution model testing the 

“neutrality” of rare species within southwestern Ontario, Canada.

Sum m ary

The concept of the niche exists as a part of the underlying paradigm in most species 

distribution models. In general, quantifed environmental correlates of species occurrences 

have been taken to characterize a species’ niche. If each species is assumed to have its 

own unique niche, modeling the distribution of groups of ecologically similar species is 

ecologically unjustifiable. The “null” alternative to the niche concept presumes that all 

species are functionally equivalent (e.g., have the same niche and the same demographic 

rates, etc.). Given this assumption, distribution models can be developed for groups of 

species such that deviations from such a null model could be used to describe the 

potential niche differentiation within the group of species.

Species distribution models were created for each of four broad groups of rare biota 

(birds, insects, plants and reptiles). Subsequently, the rare plants were further subdivided: 

first into trees, shrubs, herbs, grasses, and sedges; then (to examine aspects of biological 

rarity) the rare plants were grouped based upon their designated species rarity 

(subnational rank = SI, S2 and S3). The rare herbs were also grouped in this way, based 

upon rarity; finally, rare plants were grouped into aquatic and terrestrial categories. The 

models pertaining to each of these groups were created using a Bayesian analystic 

approach (as described in Chapter 5). Inputs included occurrence / pseudo-absence 

information, and environmental attributes (slope, aspect, elevation, distance-to-road,
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building density, land classification for agriculture, soil texture and landcover). The 

species-environment relationship was examined at a series of buffer distances (or scales), 

ranging from 30m to c. 10 km. Despite large species-specific differences in life history, 

resource utilization, etc., in the broad distinctions of biotic groupings, distribution models 

performed relatively well for birds, insects, reptiles, sedges, aquatic and terrestrial plants 

(< 27% false negatives). Dominating all of the models was the immediate landcover type 

and the proportion of the surrounding landscape that was cropland. The probability of 

occurrence decreased with increasing cropland in the area surrounding, and the 

probability of an absence at a location that was cropland was approximately two times 

more likely than an occurrence.

These results provide support for the neutral assumption. Implications of such results are 

discussed in an applied conservation perspective, since such an approach could be used in 

potential prioritization of areas for conservation / restoration of groups of rare biota rather 

than for single species. For example, results suggest that by conserving a selected 21% of 

the regional landscape, one would be conserving the potential niche of both 77% of rare 

aquatic plants and 74.5% of rare terrestrial plants of SW Ontario. While these results 

supported the neutral assumption, it was not completely supported by any biotic group. 

Deviations from the null model potentially describe the niche differentiation within a 

group (e.g., aquatic vs. terrestrial, open field vs. closed forest). Finer scale studies, both in 

terms of biotic groups and study area, may further clarify the relative importance of niche 

differentiation and its null alternative in determining the distribution of species.
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Introduction

Species distribution models (SDM) often attempt to determine the non-random 

associations between environmental attributes of known occurrences and those of 

absences (Pearce and Boyce 2005). Kearney and Porter (2004) suggested that the concept 

of the niche provides an important and useful starting point for understanding the 

distribution of species. Indeed, many SDMs assume an underlying niche concept (Guisan 

and Thuiller 2005). The unique attributes of locations where a species occurs are often 

inferred as characteristics of a species’ niche and, thus a common approach used to 

determine the extent of a species niche (a species’ geographic distribution) is to 

characterize, quantitatively, a suite of environmental conditions for known occurrences of 

the species (Peterson 2001, Kearney and Porter 2004).

Surveys of species often only report occurrences of species; rarely are absences recorded 

and thus the methods for modelling species distributions are limited (Pearce and Boyce 

2005). One way to model presence-only data is to use pseudo-absences (locations not 

sampled in which species are assumed to be absent). Although pseudo-absences are 

assumed to be true absences (locations where the species does not occur), they may 

represent presence locations (occurrence at that location has not been reported) (Graham 

et al. 2004). In some models, pseudo-absences are chosen at random to represent the 

background set of environmental attributes of the study area (Pearce and Boyce 2005, 

Soberon and Peterson 2005). Statistical models of the probability of occurrence can be 

derived for the species-environment relationship using occurrence / pseudo-absence; and 

then these models can be interpolated to other parts of the landscape, potentially under
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differing environmental conditions (see e.g., Lindenmayer et al. 1991, Sykes et al. 1996, 

Peterson et al. 1999, Peterson 2001, Kearney and Moussalli 2003, Kearney et al. 2003).

Guissan and Thuiller (2005) suggest that one challenge for SDMs is to examine 

applications with respect to larger groups of taxa or guilds of species. Limiting such 

research may be the underlying niche assumption of many of SDMs. A problem with 

assuming an underlying niche concept is that no ecologically justifiable hypothesis 

emerges for modeling groups of species, since each species is assumed to have its own 

“niche”. Neutral theories such as MacArthur and Wilson’s (1967) theory of island 

biogeography and Hubbell’s (2001) neutral theory of macroecology may offer a 

justifiable assumption to model distributions of groups of species.

MacArthur and Wilson (1967) assumed island species richness was a function of the 

mainland richness, the size of the island and distance from the mainland; species niche 

requirements and life history characteristics were ignored. More recently, Hubbell (2001) 

proposed that “ecologically similar” species can be assumed functionally equivalent. 

Ecologically similar species are those in which the individuals may potentially compete 

with one another, not accounting for trophic interactions (Bell 2001).

Hubbell’s neutral theory assumes that individuals, independent of species, may differ in 

many ways (size, shape, color, etc.), but they do no differ demographically with respect 

to vital rates of birth, death, dispersal and speciation, or in the way they interact with their 

environment (no habitat specificity -  all have the same niche requirements) (Hubbell
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2001, 2005, Bell 2001, Ricklefs 2003). While all species violate this assumption to some 

degree, the question posed by neutral models is, how good is this approximation? This 

counter-intuitive assumption has proven controversial (see discussions in e.g., Zhang and 

Lin 1997, Yu et al. 1998, Hubbell 2001, Enquist et al. 2002, Chase and Leibold 2003, 

Hubbell and Lake 2003, Ricklefs 2003, Chave 2004, Poulin 2004, Hubbell 2005), 

however, community assemblages and species distributions have been accurately 

modelled based on this assumption (see review in Chave 2004, and see e.g., Dolman and 

Blackburn 2004, Tilman 2004, Bell 2005, He 2005, Rangel and Diniz-Filho 2005).

In this chapter, species distribution models were created for various groups of rare 

species such that the efficacy of the ecological equivalence assumption could be tested, 

specifically in the way species interact with their environment. Further, spatial 

predictions of groups of species were examined with respect to determining if some 

groups of species can be more accurately modelled than others. Finally, the implications 

in an applied conservation perspective are discussed, as this approach could be used for 

potential prioritization of areas of potential niche for conservation / restoration efforts for 

groups of rare species rather than for single species.

Methods

Environmental attributes and species occurrence data

Species occurrences, in the form of a location representing the centroid of a population, 

were provided by the Natural Heritage Information Center (NHIC; 

http://nhic.mnr.gov.on.ca/) for south-western Ontario. NHIC is a branch of the Ontario
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Ministry of Natural Resources that compiles, maintains and provides information on 

species in Ontario that are threatened, endangered or of special concern (further described 

here as rare species). The rare species are prioritized using subnational ranks (S-rank), 

where by S1 species are extremely rare (with usually 5 or fewer occurrences in the 

province); S2 are very rare (with usually between 5 and 20 occurrences); S3 are rare to 

uncommon (with between 20 and 100 occurrences); S4 are common and apparently 

secure (with usually with more than 100 occurrences); and S5 are very common and 

demonstrably secure in Ontario (Master 1991). NHIC tracks rare species ranked S1-S3.

Environmental information was provided through Ontario Geospatial Data Exchange 

(OGDE; http://www.lio.mnr.gov.on.ca/ogdedescription.cfm)(digital elevation model 

[DEM], landcover, road and building locations) and Ontario Ministry of Food,

Agriculture and Rural Affairs (soils; http://www.omafra.gov.on.ca/). In total, seven 

environmental attributes were used for the SDM: slope, aspect, elevation, distance-to- 

road, building density, land classification for agriculture, soil texture and landcover.

Slope and aspect were calculated from the DEM. Distance to a road was the straight line 

distance from any location within the study area to the nearest road. Building density was 

the density of buildings per square kilometre.

The landcover classifications included water, freshwater marsh, deciduous swamp, 

coniferous swamp, open fen, dense deciduous forest, dense coniferous forest, coniferous 

plantation, deciduous mixed forest, coniferous mixed forest, sparse deciduous forest, 

bedrock outcrops (this included clearings for mining activity, aggregate quarries and
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bedrock outcrops), developed land (this included clearings for human settlement and 

economic activity, as well as major transportation routes), pasture (and abandoned fields), 

cropland and unclassified. The land classification for agriculture included seven classes: 

Class 0 are organic soils and were not classified for agriculture; Class 1 soils have no 

significant limitation in use for crops; Class 2 soils have moderate limitation that restrict 

the types of crops grown or require moderate conservation practices; Class 3 soils have 

moderately severe limitations that restrict the range of crops or require special 

conservation practices; Class 4 soils have severe limitations that restrict the range of 

crops or require special conservation practices, or both; Class 5 soils have very severe 

limitations that restrict their capability to producing perennial forage crops, and 

improvement practices are feasible; and Class 7 soils have no capability for arable culture 

or permanent pasture. Soil texture classes included water, bedrock, gravel, sand, sandy 

loam, silt loam, silt clay loam, silty clay, clay, mixed fluvial deposits and organic 

classifications.

All environmental data was rasterized or resampled to 30m resolution.

Species distribution model

Models of rare species occurrences were created for several groups of species. Broad 

taxonomic differences were first examined by grouping occurrences into birds (274 

occurrences of some 75 species), insects (232 occurrences of some 146 species), plants 

(2904 occurrences of some 79 species) and reptiles (200 occurrences of some 20 species). 

While the occurrences were within the SW Ontario study area, not all species (e.g., insect
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species) were found within the study area. The rare plants were further subdivided: first 

into trees, shrubs, herbs, grasses and sedges; then to examine aspects of rarity, the rare 

plants were grouped by S-rank (SI, S2 and S3; n = 422, 1095 and 1356 occurrences, 

respectively) and the rare herbs were grouped by S-rank (SI, S2 and S3; n = 234, 740 and 

564 occurrences, respectively); and finally, rare plants were grouped into aquatic and 

terrestrial categories (n = 304 and 514 occurrences, respectively).

Models of the niche of each biotic group were created using a Bayesian analysis 

approach, as described in Chapter 5. Input into the models included occurrence / pseudo

absence information, the environmental attributes (slope, aspect, elevation, distance-to- 

road, building density, CLI, soil texture and landcover), and a series of buffer distances 

ranging from 30m to nearly 10km (30, 60, 90, 150, 300, 450, 600, 900, 1200, 2400, 4800, 

7200, 9600m). Here, pseudo-absences were sites randomly drawn from within the 

geographic limits of SW Ontario such that the number of pseudo-absences equalled that 

of occurrences of the group of species being modelled.

Recognizing that species may perceive different environmental cues at different scale 

resolutions, and that the species-environment relationship is best observed at different 

scales has become increasingly important concept in much of landscape ecology (Turner 

et al. 2001, Holland et al. 2004, Guisan and Thuiller 2005). Thus the method used here 

was not limited to examining the species-environment relationship at a single scale. The 

environmental attributes at each occurrence / pseudo-absence location were recorded; 

however, rather than only using the environmental data of the specific raster cell in which
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the occurrence / pseudo-absence is located, environmental data were also recorded at 

each buffer distance. In other words, the environmental conditions were quantified at the 

specific occurrence / pseudo-absence location and for the surrounding landscape, at the 

specified buffered sizes. Surrounding landscapes were treated as square delineations 

where the size was defined by the buffer distance (e.g., a buffer size of lm  on a grid with 

a resolution of lm  would describe a 3x3 cell area in which the edges are defined as lm 

from the focal cell in the cardinal directions).

Quantification of the environmental attributes varied depending upon the type of data 

used. For categorical datasets (e.g., landcover, soil type), the point value at the 

occurrence / pseudo-absence location and the proportion of the surrounding landscape at 

each buffer distance for each category was recorded. With respect to continuous data, the 

point value at the occurrence / pseudo-absence location and the mean and standard error 

of the values representing the surrounding landscape was recorded for each buffer 

distance.

To determine the scale (buffer distance) that was the best predictor of a species 

occurrence, a series of multiple single logistic regressions was carried out on the 

occurrence data with each environmental parameter. At each buffer distance and for each 

environmental parameter, 100 spatially independent subsets of the data were used. Spatial 

independence here refers to the criterion that areas within which the predictor variable 

was measured may not overlap; in other words, the distance between any two points in a 

subset must be at least two times the radius (or buffer size). The mean and SE of the
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regression statistics (log-likelihood and Nagelkerke's R ) for each environmental attribute 

at each buffer distance were used such that the optimal buffer size for each environmental 

parameter was determined based on significant model fit.

Based on fit of the logistic regressions and independence of predictors (determined by 

Pearson’s correlation), five to six environmental attributes were then used in a naive 

Bayesian algorithm (Porwal et al. 2006) to model the species distribution for each biotic 

group. The naive Bayesian algorithm was trained using 100 subsets of a training dataset 

(a randomly drawn 50% of the entire occurrence / pseudo-absence dataset). A composite 

ruleset (i.e., a list of the a priori and a posteriori probabilities) was derived, tested with 

the training, testing and overall occurrence / pseudo-absence datasets, and then applied to 

SW Ontario as a whole to map the potential niche of the particular biotic group.

All modelling was done using Visual Basic (VB.NET, Microsoft Corporation, Redmond, 

WA) and the developer libraries / functionality of ArcGIS 9.0 (ESRI, Redlands, CA).

Results

Models were first constructed for the broad taxonomic groups of rare species of birds, 

insects, plants and reptiles. The model inputs varied for each group, but common to all 

models were the environmental attributes of proportion of the surrounding landscape that 

was cropland and the immediate landcover type (Table 6.1). The proportion of the 

surrounding landscape that was cropland was the greatest single predictor of occurrences, 

with respect to the multiple single logistic regression results (Table 6.1), such that
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probability of occurrence decreased with increasing cropland in the area surrounding an 

occurrence. Differences in the use of this attribute occurred in regard to the buffer 

distance that was most significant (300 - 9600m). Furthermore, the immediate landcover 

types for cropland dominated the a posteriori probabilities of the Bayesian classifier, 

with the probability of an absence at a location that was cropland being approximately 

two times more likely than an occurrence. Given that a particular location is classified as 

cropland, the average probability of absence was 91.1% (± 2.20 SE), whereas the average 

probability of an occurrence was 45.8% (± 6.58 SE) (Appendix 6.1 - 6.4).

Table 6.2 describes the accuracy of the four biotically-based models. Despite the 

diversity of life histories within each group, overall modeling accuracy for the groups 

was on average 80.8% with the greatest accuracy recorded for the birds (86.4%), 

followed by insects (83.3%), reptiles (81.1%) and plants (72.3%). More importantly, with 

respect to the proportion of false negatives (i.e., predicted absence but actual occurrence), 

models performed relatively well for the birds (17.4% false negatives), reptiles (24.5%) 

and insects (27.2%). However, 42.4% of predicted values proved to be false negatives for 

the plants.

The models created to examine aspects of rarity and life-form within the rare plants all 

included, as with the broad taxonomic groups, the proportion of the surrounding 

landscape that was cropland and immediate landcover types (see Tables 6.3 - 6.5). For all 

these models, the proportion of the surrounding landscape that was cropland was again 

the greatest single predictor of occurrences with respect to the multiple single logistic
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regressions (Tables 6.3 - 6.5). Based on the a posteriori probabilities, the probability of 

occurrence decreased with increasing cropland, in the area surrounding an occurrence 

(Appendix 6.5 - 6.17). The buffer distance used to describe this differed depending on the 

model, ranging from 90 - 4800m (Tables 6.3 - 6.5). Thus for example, the proportion of 

the surrounding landscape that was cropland within a 300m buffer distance was used for 

further modeling of S2 plants and herbs, and rare terrestrial plants, whereas a buffer 

distance of 4800m was used for modeling S3 plants. Again as with the models for the 

major taxonomic groups, the a posteriori probability of a specific location being cropland 

dominated the Bayesian classifier with respect to the immediate landcover types. Given a 

location is classified as cropland, the average probability of absence was 88.7% (± 0.55 

SE), whereas the average probability of an occurrence was 46.6% (± 1.96 SE) (Appendix 

6.5-6.17).

With respect to grouping the plants into trees, shrubs, herbs, grasses and sedges, besides 

landcover and cropland, distance to a road was an important environmental attribute used 

in four of the five models (Table 6.3). In three of these models, the mean distance to a 

road at 7200m buffer distance was used. Overall model accuracy was greatest for the 

sedges (81.1%) and did not differ much for the remaining groups, with accuracy ranging 

from 72.1 to 74.4% (Table 6 .6 ). Differences in model accuracy were noted with respect 

to the number of false negatives. Sedges had the lowest proportion of false negatives at 

21.1%, with trees, shrubs and grasses ranging from 32.7 to 35% and the herbs with 

40.4%.
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Common in five of the six models that examined levels of rarity in the plants was the use 

of the proportion of the surrounding landscape with sandy soil, at buffer distances 

between 4800 to 9600m (Table 6.4). Overall model accuracy ranged from 71.7 to 74.4% 

with respect to plant rarity rankings (SI, S2 or S3) and ranged from 74.9 to 78.1% with 

respect to herb rarity rankings (SI, S2 or S3). Similarly with the proportion of false 

negatives, the models for herb rarity showed greater accuracy, having, on average, 33.4% 

(± 0.81 SE), compared with the models for plant rarity which had, on average, 37.7% (± 

2.81 SE).

The models built based on the broad “habitat” classification of aquatic or terrestrial 

differed in model inputs with respect to the buffer distance used for deciduous swamp, 

dense deciduous forest and cropland (Table 6.5). Included in the aquatic plant model was 

class 7 of the land classification for agriculture and included in the terrestrial plant model 

was the proportion of the surrounding landscape that was bedrock outcrop. Model 

accuracy for these models was relatively high at 79.4% (± 0.45 SE; Table 6 .8 ), similar to 

that of the models for birds, insects, reptiles and herbs (Tables 6.2, 6 .6 ). The proportion 

of false negatives was 23% for the aquatic plant model and 25.5% for the terrestrial plant 

model. The SDM was applied to the SW Ontario study area and the potential niche of the 

rare aquatic and terrestrial plants was mapped and is shown in Figs. 6 .1 and 6.2. The 

overlapping potential niche of the two biotic groups is shown in Fig. 6.3.
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Discussion

Examining the environmental correlates of distributions of groups or guilds of species is 

not uncommon in the literature (see e.g., Steger 1987, Marone 1991, Lovett-Doust and 

Kuntz 2001, Lovett-Doust et al. 2003, Fernandez-Juricic 2004, Segurado and Araujo

2004). While such studies describe the correlative relationship, often it is not used as a 

predictive model of the potential niche for the group of species. Species distribution 

models have been further limited to modeling distributions of single species, not groups 

of species (Guisan and Thuiller 2005). Here, the applicability of a Bayesian SDM 

methodology applied to groups of rare species in SW Ontario was demonstrated. Despite 

the species-specific differences in life history, resource utilization, etc. in the broad 

distinctions of species groupings, distribution models performed relatively well for birds, 

insects, reptiles, sedges, aquatic and terrestrial plants (less than 27% false negatives).

Rabinowitz (1981) suggested that rare species can be classified into rarity levels based on 

three factors: habitat specificity, local population abundances and range size. In the 

absence of such information about each and every species, subnational ranks specify 

species rarity based primarily on the number of populations (occurrences) (Master 1991). 

The distribution of the number of occurrences within a study area occupied by species 

follows a “hollow curve” (log-normal) distribution (Brown et al. 1996) -  in other words, 

many rare species with few common ones. Mechanisms underpinning such patterns are 

believed to be due to attributes of the landscape (e.g., habitat availability), of the species 

(e.g., habitat generality, breadth of environmental tolerances and dispersal ability) or both 

(Gaston 1994, 1996). In contrast, Hubbell’s (2001) neutral theory suggests that rare
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species are not rare due to some niche-based attributes of the species but rather due to 

chance (and see Bell 2001, Chave 2004).

The per capita equivalence assumption of Hubbell’s neutral theory suggests that, 

independent of the species, each individual in the study area is identical with respect to 

basic demographic parameters, including probability of dying, reproducing, speciating 

and dispersing. In other words, for example, each individual has the same probability of 

dying independent of species or its biotic and abiotic environment. Examining these 

probabilities at the species level, species which are rare (defined by a small number of 

individuals), have a higher probability to remain rare simply because the overall 

probability of reproduction and dispersal is lower, and the probability of extinction is 

higher, than that of a species with a greater number of individuals (Bell 2001, Maurer and 

McGill 2004). If neutral theory’s oversimplifying assumption is correct, all species, 

independent of whether it is rare or common, should have no habitat preferences (the 

same niche requirements).

While all species clearly violate this assumption to some degree, the question posed by 

neutral models is, how good is this approximation? It is the deviation from this neutral 

assumption that is most interesting. In the present study, the deviation, in terms of false 

negatives, ranged from 17.4 to 42.4% (Tables 6.2, 6 . 6  - 6 .8 ). Hubbell (2005) suggested 

the assumption would hold best for sessile organisms, such as plants, and least for more 

mobile animals. Here, the opposite was observed for the four broad taxonomic categories 

(birds, insects, plants and reptiles). Rare birds showed fewest false negatives and plants
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showed the greatest number (Table 6.2). The relatively low proportion of false negatives 

for bird, insect and reptile SDMs were unexpected, since these included mobile species 

with varied life histories that included differences in broad habitat classifications such as 

aquatic and terrestrial species. While the poor accuracy with respect to plant model was 

unexpected (compared to other taxonomic groups), the rare plants were potentially too 

broad of a group and thus were further reclassified by taxonomic and rarity 

classifications.

In examining the finer taxonomic and rarity grouping of rare plants, little improvement in 

model accuracy with respect to the number of false-negatives was observed, except with 

respect to the sedges. Improvement in model accuracy (reduction in the number of false 

negatives) was observed when rare plants were reclassified into aquatic or terrestrial 

groups (Tables 6.2, 6 . 6  - 6 .8 ).

The framework used here for modelling species distributions, in essence, describes 

aspects of a species’ distribution in a Hutchinsonian n-dimensional niche space 

(Hutchinson 1957). Here, environmental attributes of the realized niche for groups of rare 

species were quantitatively characterized and then, given a set of environmental attributes 

for any location, the probability that the location was part of the species potential niche 

was estimated. Many different methods have been proposed to model species 

distributions: expert opinion models (e.g., Burgman et al. 2001, Kuhnert et al. 2005), 

bioclimatic envelopes (e.g., Nix 1986, Walther et al. 2004), algorithms such as logistic 

regression (see Keating and Cherry 2004), generalized linear models (e.g., Ferrier et al.
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2002), classification and regression trees (e.g., Breiman et al. 1984, Bourg et al. 2005), 

genetic algorithms (e.g., Stockwell and Peters 1999, Peterson 2001) and Bayesian logic 

(e.g., Bayliss et al. 2005, Mac Nally 2005). They have all been used to determine the 

unique attributes of locations where a species occurs and all have particular benefits and 

limitations. Many of the statistical methods (e.g., generalized linear models) are restricted 

by parametric assumptions and linear interactions (Bourg et al. 2005), while bioclimatic 

envelopes and machine learning techniques (e.g., genetic algorithms) can overestimate a 

species niche (Peterson 2001).

While logistic regression has become increasingly popular for modelling species 

distributions, such models may be limited in their suitability (Keating and Cherry 2004). 

The SDM methodology employed here first uses logistic regression to examine the 

species-environment relationship at each of a set number of buffer distances. From this, 

the scale at which the species-environment relationship can be best observed is 

determined. Logistic regression was not used to examine the probability of occurrence (or 

of potential niche) with respect to the multiple environmental attributes as the logistic 

regression assumption of randomness may not be valid, and also due to the difficulty of 

integrating the results of multiple logistic regression analyses based on different subsets 

of the data. Many species occurrences are gathered in areas traversed by people and thus 

the distribution of occurrences may not be a random sample of all possible habitats. 

Further, using multiple logistic regression with spatially independent subsets of the data 

will yield a unique set of models (unique dependent variables, coefficients, etc.), one 

model for each of the spatially independent subsets used. Integration of the unique
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models into a single composite model would be difficult to justify. Thus, a naive 

Bayesian algorithm was used such that the prediction of the probability of a location 

being part of a species niche could be made without the limitations of the logistic 

regression.

Naive Bayesian (NB) classifiers have been used in a wide variety of ecological / 

environmental applications (e.g., species niche modelling, landcover and soil 

classifications, reconstructing ancestral genealogies). A major advantage of Bayesian 

classifiers is that the attribute variables may be binary or multistate categorical or 

continuous, but also quantitative or qualitative information (Ames 2002, Sadoddin et al. 

2005). This is especially useful for resource management and species distribution models, 

in that both quantitative and qualitative (e.g., expert opinion, social views) can be 

incorporated into the classifier in its application as a discussion support system (Sadoddin 

et al. 2005).

While many SDMs have no formal means of representing uncertainty (Burgman et al.

2005), Bayesian classifiers are capable of representing and considering uncertainty 

(Saddodin et al. 2005). Bayesian classifiers provide a formal reasoning about partial 

beliefs under conditions of uncertainty; conditional probabilities between different 

knowledge components represent uncertainty (Varis and Kuikka 1999). In the present 

application, the model provides the probability that a specified location is within the 

potential niche of the biotic group of interest. By applying probability theory (in using a 

Bayesian classifier), uncertainty is represented by that probability.
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Furthermore, while many SDMs are limited in that quantification of the species- 

environment relationship is done at the scale of the patch or some arbitrary buffer 

distance from where the species occurs (Holland et al. 2004), the SDM methodology used 

here was not. It is difficult to determine the appropriate scale at which the species- 

environment relationship can be best observed; different environmental attributes of 

species occurrences may be best observed at different scales (at different grain or extent) 

(Turner et al. 2001, Holland et al. 2004, Guisan and Thuiller 2005). The method used 

here examines the species-environment relationship at multiple scales (grains or buffer 

distances) to determine the “optimal” scale distinguishing a species occurrence from 

absence.

Furthermore, the methodology employed here uses multiple subsets of spatially 

independent data in both the logistic regression and naive Bayesian training. This type of 

procedure ensures that the sites included in the subset is not affected by the first site 

chosen and sites at different buffer sizes are not nested (Holland et al. 2004). The use of 

spatially independent subsets also increases the power of the analysis and maximizes the 

use of the data (Holland et al. 2004).

Turner et al. (2001) warn that modellers should “know thy model”. Indeed, limiting 

assumptions of the model may be present and errors in the data may propagate. Here, the 

proportion of false positives ranged from 6.3 to 22.2% (Tables 6.2, 6 . 6  - 6 .8 ). If pseudo

absences, as assumed, represent the study area with respect to all environmental
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conditions, this would suggest that 6.3 to 22.2% of SW Ontario would be the potential 

niche of these rare biotic groups. For example, with the rare birds, 9.7% of SW Ontario is 

suitable habitat for 82.6% of the occurrences (Table 6.2). The model developed for the 

birds used landcover information. The landcover classification was noted to be accurate 

80-95% of the time (depending on the landcover class; Ontario Geospatial Data 

Exchange metadata) and NHIC occurrence locations were, in general, accurate to within 

100m. This may explain why 38% of occurrences were recorded in cropland (Appendix 

6.1 - 6.17). The benefit of a Bayesian algorithm is that such errors can be accounted.

With the immediate lancover type defined as cropland, although the location has a 38% 

chance of being part of the rare bird species’ potential niche, it is more than twice as 

likely (some 92%) chance of not. Defining the cropland as part of the biota’s potential 

niche would be mitigated by the other environmental attributes.

Kerr and Cihlar (2004) examined the patterns and causes of species endangerment in 

Canada. The authors noted that the greatest proportion of rare species could be found in 

areas with greatest amount of agriculture. Indeed, they noted that SW Ontario was a 

hotspot for rare species and agriculture. SW Ontario is the most densely populated, 

urbanized, and intensively farmed area in Canada (Allen et al. 1990). The remnant natural 

areas have become highly fragmented and dominated by agriculture (Freisen et al. 1999, 

Henson et al. 2005); there remains less than 11% forest cover (Riley & Mohr 1994) and 

less than 10% and 3% of presettlement wetlands and prairie cover, respectively (Henson 

et al. 2005).
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While Kerr and Cihlar (2004) discussed landscape fragmentation and agricultural 

intensity as the greatest causes of species endangerment, this study was aimed at 

examining attributes of the species-environment relationship to describe where rare 

species may occur in such an agriculturally dominated landscape. Indeed, in all models, 

as the proportion of landscape that was cropland increased, the probability of that 

location was part of the biota’s potential niche decreased (Appendix 6.1 - 6.17). From an 

applied conservation perspective, this suggests, perhaps unsurprisingly, that agriculture 

negatively impacts native species and that larger parcels of natural areas should be 

maintained to minimize the agricultural impact.

There are further potential implications from an applied conservation perspective, 

specifically with respect to conservation reserve design. Soule and Simberloff (1986) 

suggest that conservation reserves are typically developed with one or more of three 

primary biological motivations. The first is preservation of large, intact ecosystems such 

that ecosystem functioning is preserved (e.g., watersheds for flood control); this is 

difficult to do since most of the earth’s surface is heavily influenced by humans (Meffe et 

al. 1997). The second motivation for conservation reserves is to preserve biodiversity.

The focus of this is to protect areas of high species diversity. The third motivation is to 

protect particular species or groups of species (e.g., endangered or highly visible species). 

The second and third of these motivations are not obviously independent of each other. 

Often areas of highest species richness include many rare species (Meffe et al. 1997; and 

see log-normal relative abundance curves, e.g., Brown et al. 1996, Hubbell 2001).
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The use of SDMs, as applied here, not only supports Hubbell’s functional equivalence 

assumption but also may help in defining areas with the greatest probability of containing 

rare species of wide biotic groups. Meffe et al. (1997) note that a species-by-species 

approach to conservation can only secure a miniscule fraction of overall biological 

diversity; it may be more appropriate to take a larger-scale approach. Georgiadis and 

Balmford (1992) discussed how a systematic approach whereby examining the non- 

random clustering of species occurrences, the identification of biodiversity “hotspots” 

could be used for conservation prioritization. They authors describe how, for example, 

16% of South Africa’s land area (if selected properly) could conserve 95% of the 

vascular plants, and how conservation of 14 of 90 studied locations in Thailand could 

conserve all hawkmoth species in that country. In the present context, one could suggest 

that by conserving a selected 17.6% of the landscape, one would be conserving the 

potential niche of 77% of the rare aquatic plants; and by conserving a selected 16.4% of 

the landscape, one would be conserving the potential niche of 74.5% of the rare terrestrial 

plants in SW Ontario. However these areas are not exclusive. Indeed much of the 

predicted potential niche of rare aquatic and terrestrial plants overlaps (Fig. 6.3), such 

that by conserving a selected 2 1 % of the landscape, one would be conserving the 

potential niche of both 77% of rare aquatic plants and 74.5% of rare terrestrial plants of 

SW Ontario.
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Figure 6.1. Potential niche map for rare aquatic plants in SW Ontario. The predicted 

potential niche is based upon a naive Bayesian classifier using population occurrence 

information and relating it to environmental attributes. A probability of 1 represents a 

high likelihood that a specified location is part of the biota’s potential niche.
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Figure 6.2. Potential niche map for rare terrestrial plants in SW Ontario. The predicted 

potential niche is based upon a naive Bayesian classifier using population occurrence 

information and relating it to environmental attributes. A probability of 1 represents a 

high likelihood of a specified location is part of the biota’s potential niche.
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Figure 6.3. Potential niche map for both rare aquatic and terrestrial plants in SW Ontario. 

Lighter areas represent limited-to-no potential of the location as potential niche, and the 

darkest areas represent areas that have been defined as having high probability as 

potential niche for both aquatic and terrestrial plants. The light grey shading represents 

areas that are potential niche for either aquatic or terrestrial plants.
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Table 6.1. Results of multiple single logistic regressions between occurrences and 

pseudo-absences of different groups of biota (birds, insects, plants and reptiles). 

Reported is the model fit (Nagelkerke's R2) and buffer distance (scale) at which the 

environmental attribute had the greatest model fit. All regression results shown were 

significant at the 0.05 level. Bolded values represent environmental attributes included 

in subsequent models and empty values represent no significant regression results.

Bird Insect Plant Reptile
Scale R2 Scale R2 Scale R2 Scale R2(m) (m) (m) (m)

Aspect mean
SE

600 0.024 900
30

0.037
0 . 0 1 1

2400
150

0.017
0.005

4800 0.038

Building mean 2400 0.019 4800 0.053 0 0.091 0 0.043
density SE 300 0.017 4800 0.038 300 0.023

Land Class 0 9600 0.305 7200 0.209 9600 0.14 4800 0.262
classification Class 1 7200 0.082 4800 0.034 4800 0.04
for
agriculture

Class 2 
Class 3 
Class 4

9600
900

0.172
0.016

600
30

2400

0.183
0.041
0.028

4800 0.054 9600 0.181

Class 5 1 2 0 0 0.046 2400 0.032 30 0.037
Class 7 450 0.254 9600 0.196 9600 0.116 9600 0.235
Point
values 0 0.301 0 0.232 0 0.07 0 0.222

Elevation mean 0 0.053 30 0.073 0 0.084 0 0.099
SE 2400 0.054 300 0.135 150 0.059 150 0.044

Landcover Water 9600 0.331 900 0.321 9600 0.18 4800 0.312
Freshwater
marsh 450 0.177 7200 0.104 2400 0 . 0 1 1 150 0.089

Deciduous
swamp 600 0.153 900 0.135 9600 0.128 900 0.204
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Distance to a 
road

Slope

Soil Texture

Conifer
swamp 7200 0 . 1 2400

Open fen 900 0 . 0 1 2 30
Dense
deciduous 150 0.224 300
forest

Dense
coniferous 4800 0 . 1 2400
forest

Coniferous
plantation

Deciduous
mixed 450 0.068 900
forest

Coniferous
mixed 4800 0.056 600
forest

Sparse
deciduous 150 0.037 600
forest
Bedrock
outcrop 4800 0.207 7200

Developed
land 2400 0.042 4800

Pasture 900 0.014 900
Cropland 300 0.616 4800
Point
values 0 0.482 0

mean 9600 0.377 7200
SE 9600 0.378 7200

mean 2400 0.052 300
SE 1 2 0 0 0.069 300

Gravel 2400 0.085 1200
Sand 7200 0 . 1 1 1 300
Sandy
loam 4800 0.105 2400

Clay loam 300
Silty clay 4800

0.03 2400 0.013 2400 0.053

0 . 0 1 1

0.163 2400 0.023 450 0.152

0.106 2400 0 . 0 2 2400 0.066

900 0.027

0.116 2400 0.018 600 0.076

0.092 2400 0 . 0 1 1 4800 0.054

0.047 300 0.039

0.181 9600 0.098 7200 0.126

0.06 4800 0.044 1 2 0 0 0.042

0.044 2400 0.041 2400 0.044
0.417 9600 0.229 600 0.445

0.287 0 0.216 0 0.24

0.344 9600 0.194 9600 0.368
0.336 9600 0.191 9600 0.342

0.147 150 0.063 150 0.04
0.175 150 0.078 150 0.057

0.199 4800 0.052 4800 0.115
0 . 1 1 2 7200 0.119 7200 0 . 1 1 1

0.037 4800 0.034

0.013
0.046
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Clay 2400 0.146 300 0.136 4800 0.054
Organics 4800 0.142 7200 0.14 9600 0.147

P°mt 0 0.082 0 0.23 0 0.093 0 0.095
values
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Table 6.2. Accuracy of models built for rare birds, insects, 

plants and reptiles. The percentage of pseudo-absences 

and occurrences predicted correctly are reported for each 

of a training, testing and overall (training + testing) 

datasets. The overall column represents the percentage of 

correct predictions independent of occurrence or absence.

Datasets Occurrence Pseudo
absence Overall

Birds Training 84.4 92.9 88.7
Testing 80.3 8 8 . 1 84.2
Overall 82.6 90.3 86.4

Insects Training 70.3 95.0 82.7
Testing 76.0 92.8 84.4
Overall 72.8 93.7 83.3

plants Training 58.3 87.1 72.7
Testing 56.9 86.7 71.8
Overall 57.6 86.9 72.3

reptiles Training 72.2 88.9 80.6
Testing 81.1 85.1 83.1
Overall 75.5 86.7 81.1
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Table 6.3. Results of multiple single logistic regressions between occurrences and pseudo-absences of 

different groups of rare plants (trees, shrubs, herbs, grasses and sedges). Reported is the model fit 

(Nagelkerke's R2) and buffer distance (scale) at which the environmental attribute had the greatest 

model fit. All regression results shown were significant at the 0.05 level. Bolded values represent 

environmental attributes included in subsequent models and empty values represent no significant 

regression results.

Trees Shrubs Herbs Grasses Sedges

Scale Scale R2 Scale R2 Scale R2 Scale R2
(m)

ix
(m)

IX
(m)

IX (m) IX (m) IX

Aspect mean 600 0.014 7200 0 .089 2400 0.013
SE 300 0.009 450 0.011

Building mean 150 0.013 7200 0.124 0 0.067 30 0.041 60 0.046
density SE 30 0.013 7200 0.115 60 0.039 30 0.041 30 0.046

Land Class 0 4800 0.074 2400 0.109 48 0 0 0 .16 7200 0.098 4800 0.154
classification Class 1 7200 0.073 2400 0.036 7200 0.11
for Class 2 30 0.025 7200 0.071 4800 0.071
agriculture Class 3 60 0.017 30 0.016

Class 5 2400 0.036 2400 0.023
Class 7 900 0.027 7200 0.098 7200 0.116 7200 0.082

Point values 0 0.052 0 0.058 0 0.091 0 0.057

Elevation mean 7200 0.065 0 0.056 0 0.091 150 0.007 0 0.085
SE 300 0.069 300 0.05 300 0.037 300 0.091
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Landcover Water
Deciduous
swamp
Conifer
swamp
Open fen

Dense

4800

600

900

0.082

0.041

0.011

7200

450

deciduous
forest

Dense

150 0.283 60

coniferous
forest

Deciduous

600 0.03 90

mixed
forest

Coniferous

300 0.044 900

mixed
forest

Sparse

450 0.023 1200

deciduous
forest

Bedrock
outcrop
Developed
land

900

900

0.055

0.074

900

1200

7200

Pasture 2400 0.071 900
Cropland 90 0 .305 60

Point values 0 0 .226 0

Distance to a mean 7200 0 .089 7200
road SE 4800 0.081 7200

Slope mean 150 0.083 300
SE 600 0 .098 300

0.104 4800 0.188 7200 0.134 4800 0.199

0.072 9600 0.108 7200 0.115 7200 0.102

2400 0.014 2400 0.022 900

300

0.01

0.009

0.209 2400 0.03 450 0 .137 90 0 .251

0.016 2400 0.027 2400 0.082 450 0.034

0.05 2400 0.025 1200 0.041 900 0.026

0.026 2400 0.018 1200 0.063 300 0.008

0.038 900 0.026 600 0.032

0.03 7200 0 .114 9600 0.145 1200 0.096

0 .119 2400 0.019 2400 0.029 2400 0.037

0 .096
0 .26

2400
4800

0.046
0 .254

2400
600

0.037
0 .269

900
300

0.043
0 .389

0 .155 0 0 .182 0 0.11 0 0 .261

0 .124
0.114

7200
4800

0.189
0.198

7200
7200

0 .177
0.169

9600
4800

0.231
0 .222

0.019
0.04

300
300

0.054
0.067

600
600

0.043
0.054

150
150

0.099
0 .114
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Table 6.4. Results of multiple single logistic regressions between occurrences and pseudo-absences of different groups 

of rare plants based on rarity (subnational rarity ranks of SI, S2 and S3 for all rare plants and for rare herbs). Reported 

is the model fit (Nagelkerke's R2) and buffer distance (scale) at which the environmental attribute had the greatest 

model fit. All regression results shown were significant at the 0.05 level. Bolded values represent environmental 

attributes included in subsequent models and empty values represent no significant regression results.

SI
Rare plants 

S2 S3 SI
Rare herbs 

S2 S3
Scale R 2 Scale R2 Scale n 2 Scale R 2 Scale R2 Scale R 2
(m)

Jx.
(m) IS. (m) Ja (m) JX (m) I \ (m) A

Aspect mean 900 0.005 2400 0.014 1200 0.019 1200 0.006 4800 0.036
SE 300 0.005 300 0.008

Building mean 0 0.105 0 0.056 0 0.041 0 0.136 0 0.074 0 0.033
density SE 30 0.075 60 0.036 90 0.029 30 0.089 60 0.047 60 0.023

Land Class 0 4800 0.103 4800 0.136 4800 0.154 2400 0 .223 4800 0.149 480 0 0 .175
classification Class 1 4800 0.048 4800 0.04 4800 0.043 7200 0.105
for Class 2 4800 0.036 7200 0.066 4800 0.044 150 0.039 7200 0.081 4800 0.081
agriculture Class 4 900 0.008 1200 0.006

Class 5 2400 0.026 2400 0.029 90 0.048 2400 0.017 2400 0.031
Class 7 9600 0 .133 7200 0.103 7200 0.074 4800 0.084 9600 0.134 4800 0.078
Point
values 0 0.049 0 0.06 0 0.053 0 0.044 0 0.057 0 0.068

Elevation mean 0 0.047 0 0.109 0 0.051 90 0.083 0 0.136 0 0.048
SE 2400 0.022 300 0.03 150 0.092 300 0.015 300 0.023 300 0.107

Landcover Water 9600 0.146 4800 0.161 4800 0.181 9600 0.21 4800 0.181 4800 0.203
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Deciduous
swamp 9600 0.128 9600

Conifer
swamp 900 0.008 2400

Open fen 900 0.008
Dense
deciduous 300 0.131 90
forest

Dense
coniferous 2400 0.038 450
forest

Deciduous
mixed 2400 0.018 2400
forest

Coniferous
mixed 2400 0.021 450
forest

Sparse
deciduous 300 0.023 300
forest
Bedrock
outcrop 7200 0.079 7200

Developed
land

4800 0.044 2400

Pasture 900 0.046 900
Cropland 600 0 .229 300
Point
values 0 0 .135 0

Distance to a mean 9600 0.191 9600
road SE 9600 0.161 7200

Slope mean 2400 0.022 300
SE 2400 0.029 300

Soil Texture Gravel 4800 0.07 4800

0.112 7200 0.074 2400 0.1 9600 0.126 7200 0 .113

0.02 2400 0.014 900 0.015 900 0.01

1200 0.005

0.186 2400 0.038 150 0.171 150 0 .165 2400 0.057

0.052 2400 0.031 2400 0.049 450 0.042 2400 0.032

0.033 2400 0.027 900 0.06 1200 0.033 2400 0.031

0.041 2400 0.021 2400 0.039 450 0.039 2400 0.022

0.035 2400 0.013 900 0.03 300 0.034

0 .122 2400 0.089 2400 0.115 7200 0.119 7200 0.109

0.026 4800 0.038 4800 0.052 2400 0.025 2400 0.018

0.051 2400 0.054 900 0.067 900 0.054 2400 0.052
0.293 4800 0 .255 2400 0 .309 300 0 .276 2400 0 .295

0 .157 0 0 .247 0 0 .138 0 0 .143 0 0.271

0 .188 7200 0.191 9600 0.26 960 0 0 .215 7200 0.213
0.174 4800 0.199 9600 0.237 7200 0.2 4800 0.223

0.034 150 0.102 2400 0.03 300 0.026 300 0.116
0.045 150 0.12 2400 0.054 300 0.035 150 0.141

0.082 24 0 0 0 .094 2400 0.122 4800 0.084 2400 0.091
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Table 6.5. Results of multiple single logistic regressions between 

occurrences and pseudo-absences of different groups of rare plants based 

on broad description of aquatic and terrestrial plants. Reported is the 

model fit (Nagelkerke’s R2) and buffer distance (scale) at which the 

environmental attribute had the greatest model fit. All regression results 

were shown significant at the 0.05 level. Bolded values represent 

environmental attributes included in subsequent models and empty values 

represent no significant regression results.

Aquatic plants Terrestrial plants
Scale (m) R2 Scale (m) R2

Aspect mean 2400 0.0157

Building mean 0 0.0523 90 0.0581
density SE 60 0.0452 30 0.0613

Land Class 0 4800 0.2045 7200 0.1245
classification Class 1 7200 0.0947 7200 0.1273
for Class 2 7200 0.0779
agriculture Class 7 9600 0.126 9600 0.1242

Point
values 0 0.0735 0 0.0738

Elevation mean 0 0.1082 0 0 . 1 1 0 1

SE 300 0.0531 300 0.0677

Landcover Water
Freshwater
marsh

2400

2400

0.2857

0.0257

7200 0.1688

Deciduous
swamp 7200 0.1192 9600 0.1397

Conifer
swamp 450 0.0079 2400 0.0265

Open fen 2400 0.0134 450 0.0067
Dense
deciduous 90 0.1233 300 0.2772
forest
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Dense
coniferous 450 0.0259 450 0.052
forest
Deciduous
mixed 150 0 . 0 1 1 1 900 0.068
forest
Coniferous
mixed 900 0.0543
forest
Sparse
deciduous 900 0.0158 300 0.0545
forest
Bedrock
outcrop 1 2 0 0 0.0843 7200 0.1303

Developed
land 2400 0.0261 2400 0.0381

Pasture 2400 0.0471 2400 0.0517
Cropland 450 0.3751 300 0.3644
Point
values 0 0.2228 0 0.2365

Distance to a mean 9600 0.3029 9600 0.2216
road SE 4800 0.2998 7200 0.1955

Slope mean 150 0.055 300 0.0742
SE 150 0.0748 300 0.0879

Soil Texture Gravel 4800 0.087
Sand 4800 0.0822 7200 0.1463
Sandy
loam 4800 0.0469

Clay 4800 0.0371
Organics 7200 0.0974
Point
uolllflp

0 0.0738 0 0.1109
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Table 6 .6 . Accuracy of models built for rare trees, shrubs,

herbs, grasses and sedges. The percentage of pseudo-absences 

and occurrences predicted correctly are reported for each of a 

training, testing and overall (training + testing) datasets. The 

overall column represents the percentage of correct predictions 

independent of occurrence or absence.

Datasets Occurrence Pseudo
absence Overall

Trees Training 6 6 . 2 79.1 72.6
Testing 69.0 76.8 72.9
Overall 67.3 77.8 72.6

Shrubs Training 63.3 83.3 73.3
Testing 67.2 82.7 74.9
Overall 65.0 83.0 74.0

Herbs Training 58.9 84.4 71.7
Testing 60.1 84.6 72.4
Overall 59.6 84.5 72.1

Grasses Training 6 6 . 2 85.2 75.7
Testing 65.3 81.4 73.4
Overall 65.9 83.0 74.4

Sedges Training 77.8 85.7 81.7
Testing 80.0 81.5 80.8
Overall 78.9 83.4 81.1
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Table 6.7. Accuracy of models built for rarity groupings in plants 

and herbs separately. The rarity groupings are based on the 

subnational rarity rankings of SI, S2 and S3. The percentage of 

pseudo-absences and occurrences predicted correctly are reported for 

each of a training, testing and overall (training + testing) datasets. 

The overall column represents the percentage of correct predictions 

independent of occurrence or absence.

plants

Rare
herbs

Datasets Occurrence Pseudo
absence Overall

SI Training 62.5 84.9 73.7
Testing 62.6 85.8 74.2
Overall 62.6 85.4 74.0

S2 Training 65.5 83.6 74.6
Testing 6 6 . 8 81.5 74.2
Overall 6 6 . 2 82.6 74.4

S3 Training 58.2 83.6 70.9
Testing 58.3 87.6 72.9
Overall 58.3 85.2 71.7

SI Training 65.0 91.8 78.4
Testing 67.9 86.7 77.3
Overall 66.7 89.5 78.1

S2 Training 65.1 85.5 75.3
Testing 71.2 83.4 77.3
Overall 67.7 84.3 76.0

S3 Training 65.7 85.2 75.4
Testing 65.2 83.5 74.4
Overall 65.4 84.4 74.9
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Table 6.8. Accuracy of models built for rare aquatic and 

terrestrial plants. The percentage of pseudo-absences and 

occurrences predicted correctly are reported for each of a 

training, testing and overall (training + testing) datasets. The 

overall column represents the percentage of correct predictions 

independent of occurrence or absence.

Datasets Occurrence Pseudo
absence Overall

Aquatic Training 75.2
plants Testing 80.4

Overall 77.0

83.7
81.5
82.4

79.5
81.0
79.7

Terrestrial Training 72.2
plants Testing 76.8

Overall 74.5

85.5
81.6 
83.6

78.8
79.2
79.1
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Chapter 7 - The niche and its alternatives: a continuum?

“And NUH is the letter I use to spell Nutches,
Who live in small caves, known as Niches, for Nutches.
These Nutches have troubles, the biggest of which is 
The fact there are many more Nutches than Niches.
Each Nutch in a Nich knows that some other Nutch 
Would like to move into his Nich very much.
So each Nutch in a Nich has to watch that small Nich 
Or Nutches who haven't got Niches will snitch.”

Dr. Seuss (1955)

Introduction

Hutchinson (1957) provided a formalized concept of the niche (an n-dimensional 

hypervolume) which has become a central organizing tenet of modern ecology (Leibold 

1995, Pulliam 2000). While the notion of the niche is often emphasized as a concept from 

the domain of community ecology (see, e.g., Begon et al. 1990, Pianka 1994, Ricklefs 

2001), it can and has been applied with respect to studies at most levels of ecological 

organisation (Liebold 1995). For example, identifying environmental conditions limiting 

an organism’s performance or fitness is often the analytical path taken by physiologists 

(e.g., Anthony and Connolly 2004, Ochocinska and Taylor 2005, Welsh et al. 2005); 

population biologists examine the limiting factors that alter population dynamics (e.g., 

Halpem et al. 2005, Lohmus and Remm 2005); biogeographers examine the 

environmental constraints limiting species distributions (e.g., Peterson et al. 1999, 

Peterson 2001); and ecosystem ecologists seek to determine how the functional traits of 

taxa alter ecosystem structure and process (e.g., Hunter and Simons 2004). Thus, moving 

towards larger scales, one can examine an organism’s niche, a population’s niche, a 

species’ niche, and the niche of a taxon or group of species.
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The study of how organisms are distributed in space and time has long interested 

ecologists and has inspired many modeling approaches that quantify the species- 

environment relationship (e.g., Rushton et al. 2004, Guisan and Thuiller 2005). Kearney 

and Porter (2004) suggested that the concept of the niche provides a useful starting point 

for understanding the distribution of species. Indeed, many models examining 

distributions of species assume an underlying niche concept (Guisan and Zimmermann 

2000, Guisan and Thuiller 2005, Soberon and Peterson 2005). Traditional explanations 

for patterns of species distribution, abundance and coexistence have all argued that each 

species evolves adaptations for niche exploitation (Whitfield 2002).

In general, ecologists work from the premise that the niche is a central organizing tenet in 

ecology and that attributes of the niche structure biogeographic patterns of diversity, 

abundance and distribution (Gaston and Chown 2005). One major emergent alternative to 

the niche concept is the inference of stochasticity, and its application through null 

models. For example, rather than competitive interactions of species shaping the 

coexistence of species, “historical accidents of dispersal” have been suggested (Ostling

2005).

In this thesis I explored the concept of niche through the use of null models. While 

analytical and simulation models attempt to mimic reality, null models exclude the 

mechanism or factor of interest, offering a baseline for comparison (Harvey et al. 1983, 

Colwell and Winkler 1984, Gotelli and Graves 1996, Gotelli 2001). The deviation from
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null thus describes the influence of the factor or mechanism of interest (Colwell et al.

2004). Here I have tried to exclude niche-based attributes of species in order to determine 

the relative influence of such attributes in examining species distributions.

Continental to global patterns of species distributions

Broad scale patterns in species richness have long intrigued ecologists (e.g., Brown and 

Lomolino 1998, Gaston 2003). The study of latitudinal gradients in species richness is 

one of the oldest and most fundamental patterns, whereby richness increases from the 

earth’s poles to the equator (Willig et al. 2003). Proposed mechanisms for broad-scale 

patterns in species richness have been abundant (see reviews in Rohde 1992, Rahbek 

1995, Willig et al. 2003, Currie et al. 2004). Most of the proposed mechanisms require or 

at least imply that the biota respond to environmental gradients, and are influenced by 

different biotic and abiotic interactions.

Willig et al. (2003) reviewed more than 30 proposed mechanisms of broad-scale patterns 

in species richness and noted that many of them were too specific to be generally 

applicable; that they were tightly interlinked, insufficiently supported and/or circular. 

They further proposed six hypotheses that have the most support, potential and/or 

generality; for each the authors reviewed the evidence supporting and refuting the 

hypotheses. These included the geographic-area hypothesis, productivity hypothesis, 

ambient-energy hypothesis, Rapoport-rescue hypothesis, evolutionary-speed hypothesis 

and geometric-constraints hypothesis (also known as the mid-domain effect).

254

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The first five of these six hypotheses postulate mechanisms whereby the species respond 

to particular biotic or abiotic environmental gradients. The geographic-area hypothesis 

proposes that since the tropics have greater area (due to the fact that equatorial latitudinal 

parallels are larger than those at temperate or polar latitudes, and that N and S tropics are 

adjacent while N and S temperate or polar regions are separated), they are assumed to 

have greater habitat heterogeneity facilitating specialization, adaptation and speciation - 

thus greater species richness. The productivity hypothesis assumes that the annual input 

of solar radiation describes the available energy which in turn influences the productivity 

and biomass of biota; greater productivity is assumed to be correlated with greater 

species richness. The ambient-energy hypothesis is essentially an “umbrella” hypothesis 

that includes other explanations (such as seasonality, harshness, and environmental 

stability / predictability); species richness is assumed to be lower in unstable, 

unpredictable and “harsh” environments. Rapoport’s-rescue hypothesis combines aspects 

of other hypotheses in suggesting that in more stable environments (e.g., tropical zones, 

lower elevations), species ranges should be smaller (greater adaptation for the local 

environment), and thus a greater number of species creating greater habitat heterogeneity 

should be observed; overall species richness is further supplemented by dispersal of 

organisms from favorable areas to areas where the species would not normally persist. 

The evolutionary-speed hypothesis suggests that areas of increased energy (e.g., 

temperature) should have increased rates of adaptation and speciation due to shorter 

generation times (induced by greater available energy); shorter generation times, 

increased mutation and selection pressures are assumed to increase speciation and thus,
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for example tropical zones would be evolutionary older than temperate or polar zones 

(Rohde 1992, Willig et al. 2003).

The final hypothesis which Willig et al (2003) proposed to show promise was the 

geometric-constraints hypothesis. This is best known as the mid-domain effect (MDE). 

The MDE, as discussed in Chapters 2-4, proposes that non-biological gradients in species 

richness occur as a consequence of random placement of species ranges within a bounded 

domain (Colwell and Hurtt 1994). Not only are predictions of MDE models powerful in 

elucidating patterns of species richness along gradients of latitude, longitude and altitude 

(reviewed in Zapata et al. 2003, Colwell et al. 2004; and see Chapters 3 and 4 of this 

thesis), but they also speak to the relative importance of the niche concept influencing 

such patterns.

In Chapter 3, geometric constraints were shown to have greatest predictive power on the 

distribution of North American tree species richness for species having ranges that are 

large relative to the domain (ranges < 30% of NA, Table 3.1). For species with large 

ranges, MDE alone often explained more of the variation in species richness than all of 

the environmental variables combined (Tables 3.1 and 3.2). For medium- and small-range 

species, geometric constraints clearly have little influence on patterns of species richness 

and, as expected, environmental parameters are much more important (Table 3.1). None 

of the MDE models alone was able to capture the empirical peak in tree species richness 

in the southeastern part of the US. When MDE was combined with environmental 

variables, particularly precipitation seasonality and slope, the percent of variation in
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species richness explained was often > 90%, and did capture this natural peak. Species 

richness is generally higher in regions where precipitation seasonality and slope are low.

Large-range tree species richness patterns generated by geometric constraints alone often 

have as much, if not more, predictive power than those generated by environmental 

gradients alone (see Table 3.1). Colwell et al. (2005; and see Colwell and Lees 2000) 

stated that the question is not whether geometry affects patterns of species richness, but 

what the magnitude of the contribution is. The results presented here show that the 

magnitude of the contribution can be quite substantial, especially for large ranged tree 

species. For medium- and small-range species, geometric constraints had little influence 

on patterns of species richness and environmental parameters were much more important.

The fact that precipitation seasonality and slope were consistently significant in 

predicting species richness, in both one-dimensional latitudinal, longitudinal and 

altitudinal models as well as two- and three-dimensional models, points to their 

considerable importance in structuring tree species richness. The inclusion of 

precipitation seasonality may support the ambient energy hypothesis. However alone, 

neither precipitation seasonality nor slope were able to capture the peak in species 

richness in the southeastern corner of the continent (see Appendix 3B).

The MDE tends to be weaker where ranges are small relative to the domain extent 

(Laurie and Silander 2002), and stronger where ranges are large relative to the extent of 

the domain (McCain 2003). Small-ranged species are less likely to experience ‘hard’
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boundaries than large-range species, and thus the impact of boundaries on their richness 

patterns should be smaller (Jetz and Rahbek 2002), and more likely to reflect 

environmental and historical factors (Colwell and Lees 2000). Colwell and Lees (2000) 

further noted that large-ranged species are more likely to be affected by continental 

geometry and to occupy the centre of the bounded area. This was supported by the results 

of both Chapters 3 and 4.

In Chapter 4, the effects of MDE increased with increasing range size; MDE accounted 

for some 73%, 77% and 84% of the variation in amphibian (smallest average range size), 

mammal (mid-average range size) and avian (largest average range size) species richness 

gradients, respectively (see Table 4.1) across North, Central and South America.

Studies that have partitioned datasets into range size categories have found consistently 

stronger support for MDE among large-ranged species than among the smaller-range 

species in the dataset (Hawkins and Diniz-Filho 2002, Jetz and Rahbek 2002, Vetaas and 

Grytnes 2002, Mora and Robertson 2005, Murphy et al. 2006).

As an additional variable together with climatic variables, MDE added little to the 

explanatory power of the analysis. On average, MDE explained an additional 1.1%, 0.5% 

and 6.9% of the variation in amphibian, avian and mammal species richness, respectively. 

For all groups, precipitation seasonality and isothermality were the most commonly used 

predictors of species richness. It could be hypothesized that the patterns of species 

richness examined here may provide further support to the ambient energy hypothesis
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(environmental stability or predictability hypotheses) (see e.g., Thiery 1982, Begon et al. 

1990, Willig et al. 2003). These climatic correlates of species richness could not alone 

explain the observed patterns. In addition, these hypotheses are generally accepted as 

unsupported (Rohde 1992, Willig et al. 2003) and testing these potential hypotheses is 

beyond the scope of this thesis.

Although in Chapters 3 and 4, MDE and environmental correlates provided nearly equal 

explanatory value, the principle of parsimony suggests that random placement of ranges 

within the limits of a domain should be used. Thus, this correlative approach suggests, 

with respect to the predictive power of MDE, species are randomly placed with the 

domain limits, or the richness pattern appears random but is a consequence of some 

larger set of interacting factors. Most likely, richness patterns are the product of variation 

in relative strength of stochastic and ecological (niche-based) processes. The relative 

strength is partially determined by the range size of the species and vice versa, the range 

size itself may be partially determined by the ecological processes.

MDE effectively ignores spatial environmental gradients when placing species within the 

bounds of a domain; it assumes that “environmental conditions vary but that species’ 

responses to environmental conditions would be sufficiently individualistic that, in the 

aggregate, no part of the domain would be more hospitable to species than any other part” 

(Connolly 2005). The question being asked by the MDE paradigm seems to be not “what 

constrains the distribution of a species” but rather, to what degree would stochastic 

processes be sufficient to explain actual species richness patterns? The second section of
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this thesis does examine some of the factors potentially constraining the distribution of a

species.

Local to regional scale mapping of the niche

Understanding that a species’ range is not homogeneously and uniformly suitable 

throughout, finer-scale habitat suitability mapping, quantitative habitat models and 

predictive distribution maps (of a species’ niche) are all potentially important tools to 

guide management and restoration as approaches to conservation of rare species (Guisan 

and Zimmerman 2000, Johnson et al. 2004).

Spatial randomness is a null hypothesis used in many tests to detect spatial patterns (e.g., 

point clustering, spatial autocorrelation), including clustering of species occurrences (e.g., 

Peterson et al. 1999, Peterson 2001). Often, such a null hypothesis is not really relevant 

for complex ecological systems (Sokal et al. 1998, Fortin and Jacquez 2000), so rejection 

of the null hypothesis may represent little scientific value. For example, when testing 

spatial patterns of fish occurrences, it would be unrealistic and unhelpful to use a null 

distribution pattern that included random locations within the terrestrial environment. The 

appropriate null model is that which captures the notion of a plausible system state, as in 

Chapter 5.

While the species distribution model in Chapter 5 was created to present a plausible 

system state (a null model of the spatial clustering of the species), it also describes the 

niche of a species with respect to attributes of its environment. Deviation from such a null
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model would describe potential biotic / abiotic interactions that further influence the 

niche of a species. The null species distribution model created for Opuntia humifusa at 

Point Pelee National Park, SW Ontario demonstrated the methodology. The derived 

model accurately predicted species occurrences 9.36% of the time, using the landuse 

category at the location of interest and the proportions of the surrounding landscape with 

respect to beach (at 50m radius), human use (at 500m), ponds (at 700m) and 

roads/parking (at 700m). Deviations from this null model (2.9%) may be attributed to 

biotic interactions. Indeed, six of the 10 individuals, although believed to be natural, are 

located in an area that was previously an orchard.

Hutchinson (1957) formalization of the concept of the niche has become a central 

organizing tenet of modern ecology (Leibold 1995, Pulliam 2000). The key difference 

between Hutchinson’s concept of niche and that of earlier definitions (i.e., Grinned’s 

[1917,1924, 1928] definition as the habitat in which an organism resides, or Elton’s 

[1927] definition as the ecological role an organism fills within a community) was that 

Hutchinson (1957) used the niche to represent the environmental requirements of a 

species rather than a place in the environment that has the potential to support a species 

(Schoener 1989, Colwell 1992) - thus Hutchinson (1957) emphasised attributes of the 

species, not the environment (Pulliam 2000). With the emphasis on attributes of the 

species, each species is thought to have a unique niche (Gravel et al. 2006, Tuomisto

2006).
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There is ongoing debate over the relative importance of niche-assembly vs. dispersal- 

assembly theories of species coexistence (see Potts et al. 2004). Niche-assembly theories 

posit that biological interactions and environmental heterogeneity are the processes 

underlying species coexistence and community structure (Tilman 1982, Lieberman et al. 

1985, Hubbell and Foster 1986, Denslow 1987, Kohyama 1994, Terborgh et al. 1996, 

Clark et al. 1998). It is believed that species can only coexist when they differ from each 

other in the resources they use most efficiently, or in their adaptation to the local 

environmental conditions (Ostling 2005). This theory makes the assumption that 

coexisting species must have different niches.

In contrast, chance, history, and dispersal explain species coexistence in dispersal- 

assembly theories (Hubbell 1997, 2001, Bell 2001). These theories suggest that 

"historical accidents of dispersal," rather than competitive interactions of species shape 

the coexistence of species (Ostling 2005). Rather than being quickly out-competed, it is 

suggested that species that are less efficient at using a resource evolve to be as efficient as 

their competitors. Dispersal to the same habitable region is the main criterion for 

coexistence (Ostling 2005); thus ecologically similar species need not have unique 

niches.

If indeed ecologically similar species need not have a unique niche, they can be assumed 

equivalent with respect to their interactions with their environment and therefore show no 

habitat preference (Hubbell 2001, 2005). In chapter 6 ,1 test the validity of this
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assumption by creating null species distribution models for groups of rare species in SW 

Ontario.

Intuitively, all species violate this assumption to some degree, the question posed by 

Hubbell’s neutral models is, how good is this approximation? It is the deviation from this 

neutral assumption that is most interesting. Here the deviation, in terms of false 

negatives, ranged from 17.4 to 42.4% (accuracy ranged from 82.6 to 57.6%; Table 6.2,

6.6-6.8). Hubbell (2005) suggested the assumption should hold best for sessile organisms, 

such as plants, and least for more mobile animals. In Chapter 6, the opposite was 

observed upon examining the four broad taxonomic categories (birds, insects, plants and 

reptiles). The rare birds showed the fewest false negatives and plants showed the greatest 

number of false negatives (Table 6.2). The relatively low proportion of false negatives for 

bird, insect and reptile species distribution models was unexpected since these included 

mobile species having varied life histories that included differences in broad habitat 

classifications such as aquatic and terrestrial species. While the poor accuracy with 

respect to the plant model was unexpected (compared to other taxonomic groups), the 

rare plants were potentially too broad of a group and thus were further reclassified by 

taxonomic and rarity classifications. Little improvement with respect to the number of 

false-negatives was observed, except with respect to the rare sedges in reclassifying rare 

plants into finer taxonomic and rarity based groups. Improvement in model accuracy 

(reduction in the number of false negatives) was observed when rare plants were 

reclassified into aquatic or terrestrial groups (Tables 6.2, 6.6 - 6.8).
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Despite the species-specific differences in life history, resource utilization, etc. (niche 

differences) in the broad distinctions of species groupings, distribution models performed 

relatively well for birds, insects, reptiles, sedges, aquatic and terrestrial plants (less than 

27% false negatives). Results for these groups of species lend support to Hubbell’s 

neutral assumption.

Reconciling stocasticity and the niche

Models and their underlying assumptions are in the end only abstractions of reality. As 

such, even null models should therefore not be taken to be free from bias; all models 

make assumptions and simplifications of reality and these assumptions must be 

considered when interpreting the model results and utility (Gotelli 2001, Colwell et al.

2004). In this thesis, two detailed and quite different null models were presented, each 

with assumptions that countered conventional ideas of the niche (the niche of a species 

influences richness patterns at the continental scale and each species has a unique niche at 

a more local scale). While both null models were supported, neither was supported in its 

entirety.

The mid-domain models explained more of the variation in species richness with larger 

ranged species, and the regional, null species distribution models performed best for 

birds, insects, reptiles, sedges, and aquatic and terrestrial plants. It seems most likely that 

real species distributions are the product of variation in relative strength of stochastic and 

ecological processes (Bokma et al. 2001, Colwell et al. 2005, Rangel and Diniz-Filho

2005). Gravel et al. (2006) reviewed the literature and proposed ways of reconciling the
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niche and neutral concepts (or null alternatives to the niche concept). The authors suggest 

that niche and neutral models form the ends, the extremes of a continuum of events, from 

deterministic to stochastic processes.

Gravel et al. (2006) noted that while some studies support either niche or neutral models, 

most studies reported results that were intermediate between the two. Indeed, the present 

thesis similarly reports results intermediate (often toward the null) between the extremes 

of the continuum. Thus, in supporting such a “continuum hypothesis”, this thesis has 

started by characterizing the attributes of groups of species (e.g., large-ranged species are 

influenced by the MDE more than small-ranged species) that will determine where on the 

continuum, from niche to null alternatives, a particular species or group of species will 

lie.
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Appendix 3A. List of the 431 tree species from the USDA forest database: species with *

have been excluded from the analyses.

Scientific name Common name
Abies amabilis Pacific silver fir
Abies balsam ea Balsam fir
Abies concolor White fir
Abies grandis Grand fir
Abies lasiocarpa Subalpine fir
Abies magnified California red fir
Abies procera Noble fir
Acacia greggii Catclaw acacia
Acer barbatum Florida maple
Acer circinatum Vine maple
A cer glabrum Rocky Mountain maple
Acer grandidentatum Bigtooth maple
A cer leucoderme Chalk maple
Acer macrophyllum Bigleaf maple
Acer negundo Boxelder
Acer nigrum Black maple
Acer pensylvanicum Striped maple
Acer rubrum Red maple
Acer saccharinum Silver maple
Acer saccharum Sugar maple
Acer spicatum Mountain maple
Aesculus glabra Ohio buckeye
Aesculus octandra Yellow buckeye
Aesculus parviflora Bottlebrush buckeye
Aesculus pavia Red buckeye
Aesculus sylvatica Painted buckeye
Alnus oblongifolia Arizona alder
Alnus rhombifolia White alder
Alnus rubra Red alder
Alnus serrulata Hazel alder
Alnus sinuata Sitka alder
Alnus tenuifolia Thinleaf alder
Amelanchier alnifolia Western serviceberry
Amelanchier arborea Downy serviceberry
Amelanchier interior Inland serviceberry
Amelanchier sanguinea Roundleaf serviceberry
Amelanchier utahensis Utah serviceberry
Aralia spinosa Devils-walkingstick
Arbutus arizonica Arizona madrone
Arbutus menziesii Pacific madrone
Artemisia tridentata Big sagebrush
Asimina triloba Pawpaw
Betula alleghaniensis Yellow birch
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Betula lenta Sweet birch
Betula nigra River birch
Betula occidentalis Water birch
Betula papyrifera Paper birch
Bumelia lanuginosa Gum bumelia
Bumelia lycioides Buckthorn bumelia
Bumelia tenax Tough bumelia
Carpinus caroliniana American hornbeam
Carya aquatica Water hickory
Cary a cordiformis Bitternut hickory
Carya glabra Pignut hickory
Carya illinoensis Pecan
Carya laciniosa Shellbark hickory
Carya ovata Shagbark hickory
Carya pallida Sand hickory
Carya tomentosa Mockernut hickory
Castanea alnifolia Florida chinkapin
Castanopsis chrysophylla Golden chinkapin
Castanea dentata American chestnut
Castanea ozarkensis Ozark chinkapin
Castanea pumila Allegheny chinkapin
Catalpa bignonioides Southern catalpa
Ceanothus thyrsiflorus Blueblossom
Celtis laevigata Sugarberry
Celtis occidentalis Hackberry
Celtis reticulata Netleaf hackberry
Celtis tenuifolia Georgia hackberry
Cephalanthus occidentalis Common buttonbush
Cercocarpus betuloides Birchleaf cercocarpus
Cercocarpus breviflorus Hairy cercocarpus
Cercis canadensis Eastern redbud
Cercocarpus ledifolius Curlleaf cercocarpus
Cercidium microphyllum Yellow palo verde
Cercis occidentalis California redbud
Cercocarpus traskiae* Catalina cercocarpus
Cereus giganteus Saguaro
Chamaecyparis lawsoniana Port-Orford-cedar
Chamaecyparis nootkatensis Alaska-cedar
Chamaecyparis thyoides Atlantic white-cedar
Chionanthus virginicus Fringetree
Cladrastis kentukea Yellow wood
Clethra acuminata Cinnamon clethra
Cliftonia monophylla Buckwheat-tree
Cornus alternifolia Alternate-leaf dogwood
Cornus drummondii Roughleaf dogwood
Cornus florida Flowering dogwood
Cornus glabrata Brown dogwood
Cornus nuttallii Pacific dogwood

277

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cornus occidentalis Western dogwood
Cornus stolonifera Red-osier dogwood
Cornus stricta Stiffcornel dogwood
Corylus com uta Beaked hazel
Cotinus obovatus American smoketree
Cowania mexicana Cliffrose
Crataegus columbiana Columbia hawthorn
Crataegus douglasii Black hawthorn
Cupressus arizonica Arizona cypress
Cupressus bakeri Modoc cypress
Cyrilla racemiflora Swamp cyrilla
D iospyros virginiana Common persimmon
Elliottia racemosa Elliottia
Erythrina flabelliform is Southwestern coralbean
Euonymus atropurpureus Eastern wahoo
Euonymus occidentalis Western wahoo
Fagus grandifolia American beech
Forestiera acuminata Swamp-privet
Forestiera angustifolia Texas forestiera
Forestiera phillyreoides Desert-olive forestiera
Forestiera segregata Florida-privet
Franklinia alatamaha* Franklinia
Fraxinus americana White ash
Fraxinus anomala Singleleaf ash
Fraxinus berlandieriana Berlandier ash
Fraxinus caroliniana Carolina ash
Fraxinus cuspidata Fragrant ash
Fraxinus dipetala Two-petal ash
Fraxinus gooddingii Goodding ash
Fraxinus greggii Gregg ash
Fraxinus latifolia Oregon ash
Fraxinus nigra Black ash
Fraxinus papillosa Chihuahua ash
Fraxinus pennsylvanica Green ash
Fraxinus pro funda Pumpkin ash
Fraxinus quadrangulata Blue ash
Fraxinus texensis Texas ash
Fraxinus velutina Velvet ash
Garrya elliptica Wavyleaf silktassel
Gleditsia aquatica Waterlocust
Gleditsia triacanthos Honeylocust
Gordonia lasianthus Loblolly-bay
Halesia Carolina Carolina silverbell
Halesia diptera Two-wing silverbell
Halesia parviflora Little silverbell
Hamamelis virginiana Witch-hazel
Ilex ambigua Carolina holly
Ilex amelanchier Sarvis holly
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Ilex cassine Dahoon
Ilex coriacea Large gallberry
Ilex decidua Possumhaw
Ilex longipes Georgia holly
Ilex montana Mountain winterberry
Ilex myrtifolia Myrtle dahoon
Ilex opaca American holly
Ilex verticillata Common winterberry
Ilex vomitoria Yaupon
Illicium floridanum Florida anise-tree
Juglans cinerea Butternut
Juglans m ajor Arizona walnut
Juglans nigra Black walnut
Juniperus ashei Ashe juniper
Juniperus californica California juniper
Juniperus communis Common juniper
Juniperus deppeana Alligator juniper
Juniperus flaccida Drooping juniper
Juniperus horizontalis Creeping juniper
Juniperus monosperma One-seed juniper
Juniperus occidentalis Western juniper
Juniperus osteosperma Utah juniper
Juniperus pinchotii Pinchot juniper
Juniperus scopulorum Rocky Mountain juniper
Juniperus silicicola Southern redcedar
Juniperus virginiana Eastern redcedar
Kalmia latifolia Mountain-laurel
Larix laricina Tamarack
Larix lyallii Subalpine larch
Larix occidentalis Western larch
Leitneria floridana Corkwood
Libocedrus decurrens Incense-cedar
Liquidambar styraciflua Sweetgum
Liriodendron tulipifera Yellow-poplar
Lithocarpus densiflorus Tanoak
Lyonothamnus floribundus * Lyontree
M agnolia acuminata Cucumbertree
M agnolia fraseri Fraser magnolia
M agnolia macrophylla Bigleaf magnolia
M agnolia pyramidata Pyramid magnolia
M agnolia tripetala Umbrella magnolia
M agnolia virginiana Sweetbay
Malus angustifolia Southern crab apple
M alus coronaria Sweet crab apple
M alus diversifolia Oregon crab apple
Malus ioensis Prairie crab apple
Morus microphylla Texas mulberry
Morus rubra Red mulberry
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M yrica californica Pacific bayberry
M yrica cerifera Southern bayberry
M yrica heterophylla Evergreen bayberry
M yrica inodora Odorless bayberry
Nyssa aquatica Water tupelo
Nyssa ogeche Ogeechee tupelo
Nyssa sylvatica Black tupelo, blackgum
Osmanthus americanus Devilwood
Ostrya knowltonii Knowlton hophornbeam
Ostrya virginiana Eastern hophornbeam
Oxydendrum arboreum Sourwood
Persea borbonia Redbay
Picea breweriana Brewer spruce
Picea chihuahuana Chihuahua spruce
Picea engelmannii Engelmann spruce
Picea glauca White spruce
Picea mariana Black spruce
Picea pungens Blue spruce
Picea rubens Red spruce
Picea sitchensis* Sitka spruce
Pinckneya pubens Pinckneya
Pinus albicaulis Whitebark pine
Pinus aristata Bristlecone pine
Pinus attenuata Knobcone pine
Pinus ayacahuite Mexican white pine
Pinus balfouriana Foxtail pine
Pinus banksiana Jack pine
Pinus caribaea* Caribbean pine
Pinus cembroides Mexican pinyon
Pinus clausa Sand pine
Pinus contorta Lodgepole pine
Pinus cooperi Cooper pine
Pinus coulteri Coulter pine
Pinus cubensis* Cuban pine
Pinus culminicola Potosi pinyon
Pinus douglasiana Douglas pine
Pinus durangensis Durango pine
Pinus echinata Shortleaf pine
Pinus edulis Pinyon
Pinus elliottii Slash pine
Pinus engelmannii Apache pine
Pinus flexilis Limber pine
Pinus glabra Spruce pine
Pinus greggii Gregg pine
Pinus hartwegii Hartweg pine
Pinus jeffreyi Jeffrey pine
Pinus lambertiana Sugar pine
Pinus lawsonii Lawson pine
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Pinus leiophylla Chihuahua pine
Pinus longaeva Intermountain bristlecone pine
Pinus lumholtzii Lumholtz pine
Pinus maximartinezii Martinez pinyon
Pinus michoacana Michoacan pine
Pinus monophylla Singleleaf pinyon
Pinus monticola Western white pine
Pinus montezumae Montezuma pine
Pinus muricata Bishop pine
Pinus nelsonii Nelson pinyon
Pinus occidentalis* West Indian pine

Pinus oocarpa
Nicaraguan pitch pine; ocote 
pine

Pinus palustris Longleaf pine
Pinus patula Mexican weeping pine
Pinus pinceana Pince pinyon
Pinus ponderosa Ponderosa pine
Pinus pringlei Pringle pine
Pinus pseudostrobus False Weymouth pine
Pinus pungens Table-Mountain pine
Pinus quadrifolia Parry pinyon
Pinus radiata Monterey pine
Pinus resinosa Red pine
Pinus rigida Pitch pine
Pinus sabiniana Digger pine
Pinus serotina Pond pine
Pinus strobus Eastern white pine
Pinus strobiformis Southwestern white pine
Pinus taeda Loblolly pine

Pinus teocote
Twisted -leaves pine; Aztec 
pine

Pinus torreyana* Torrey pine
Pinus tropicalis* Tropical pine
Pinus virginiana Virginia pine
Pinus washoensis Washoe pine
Planera aquatica Planertree
Platanus occidentalis American sycamore
Platanus wrightii Arizona sycamore
Populus angustifolia Narrowleaf cottonwood
Populus balsamifera Balsam poplar
Populus deltoides Eastern cottonwood
Populus fremontii Fremont cottonwood
Populus grandidentata Bigtooth aspen
Populus heterophylla Swamp cottonwood
Populus tremuloides Quaking aspen
Populus trichocarpa Black cottonwood
Prosopis juliflora Mesquite
Prosopis pubescens Screwbean mesquite
Prunus alleghaniensis Allegheny plum
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Prunus americana American plum
Prunus angustifolia Chickasaw plum
Prunus caroliniana Carolina laurelcherry
Prunus emarginata Bitter cherry
Prunus fremontii Desert apricot
Prunus hortulana Hortulan plum
Prunus ilicifolia Hollyleaf cherry
Prunus lyonii* Catalina cherry
Prunus mexicana Mexican plum
Prunus munsoniana Wildgoose plum
Prunus myrtifolia West Indies cherry
Prunus nigra Canada plum
Prunus pensylvanica Pin cherry
Prunus serotina Black cherry
Prunus subcordata Klamath plum
Prunus umbellata Flatwoods plum
Prunus virginiana Common chokecherry
Pseudotsuga menziesii Douglas-fir
Ptelea trifoliata Common hoptree
Quercus agrifolia California live oak
Quercus ajoensis Ajo oak
Quercus alba White oak
Quercus arizonica Arizona white oak
Quercus arkansana Arkansas oak
Quercus bicolor Swamp white oak
Quercus chapmanii Chapman oak
Quercus chrysolepis Canyon live oak
Quercus coccinea Scarlet oak
Quercus douglasii Blue oak
Quercus dunnii Dunn oak
Quercus durandii Durand oak
Quercus ellipsoidalis Northern pin oak
Quercus emoryi Emory oak
Quercus engelmannii Engelmann oak
Quercus falcata Southern red oak
Quercus gam belii Gambel oak
Quercus garryana Oregon white oak
Quercus georgiana Georgia oak
Quercus glaucoides Lacey oak
Quercus graciliformis Chisos oak

Quercus gravesii
Graves oak incl. Q. tardifolia 
(Muller) lateleaf oak

Quercus grisea gray oak
Quercus havardii Havard oak
Quercus hypoleucoides Silverleaf oak
Quercus ilicifolia Bear oak
Quercus imbricaria Shingle oak
Quercus incana Blue jack oak
Quercus kelloggii California black oak
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Quercus laevis Turkey oak
Quercus laurifolia Laurel oak
Quercus lobata California white oak
Quercus lyrata Overcup oak
Quercus macdonaldii* McDonald oak
Quercus macrocarpa Bur oak
Quercus marilandica Blackjack oak
Quercus michauxii Swamp chestnut oak
Quercus mohriana Mohrs oak
Quercus muehlenbergii Chinkapin oak
Quercus myrtifolia Myrtle oak
Quercus nigra Water oak
Quercus nuttallii Nuttall oak
Quercus oblongifolia Mexican blue oak
Quercus oglethorpensis Oglethorpe oak
Quercus palustris Pin oak
Quercus phellos Willow oak
Quercus prinus Chestnut oak
Quercus pungens Sandpaper oak
Quercus rubra Northern red oak
Quercus rugosa Netleaf oak
Quercus shumardii Shumard oak
Quercus stellata Post oak
Quercus tomentella* Island live oak
Quercus toumeyi Toumey oak
Quercus turbinella Shrub live oak
Quercus velutina Black oak
Quercus virginiana Live oak
Quercus wislizeni Interior live oak
Rhamnus betulaefolia Birchleaf buckthorn
Rhamnus califom ica California buckthorn
Rhamnus caroliniana Carolina buckthorn
Rhamnus purshiana Cascara buckthorn
Rhododendron catawbiense Catawba rhododendron
Rhododendron macrophyllum Pacific rhododendron
Rhus copallina Shining sumac
Rhus glabra Smooth sumac
Rhus typhina Staghorn sumac
Robinia neomexicana New Mexican locust
Robinia pseudoacacia Black locust
Sabal palmetto Cabbage palmetto
Salix am ygdaloides Peachleaf willow
Salix bebbiana Bebb willow
Salix caroliniana Coastal Plain willow
Salix exigua Coyote willow
Salix floridana Florida willow
Salix geyeriana Geyer willow
Salix hindsiana Hinds willow

283

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Salix hookeriana Hooker willow
Salix lasiolepis Arroyo willow
Salix lucida Shining willow
Salix mackenzieana Mackenzie willow
Salix nigra Black willow
Salix scouleriana Scouler willow
Salix sericea Silky willow
Salix sessilifolia Northwest willow
Salix sitchensis Sitka willow
Sambucus callicarpa Pacific red elder
Sambucus canadensis American elder
Sambucus glauca Blueberry elder
Sambucus melanocarpa Blackhead elder
Sapindus saponaria Wingleaf soapberry
Sassafras albidum Sassafras
Sequoia sempervirens Redwood
Shepherdia argentea Silver buffaloberry
Sorbus americana American mountain-ash
Sorbus decora Showy mountain-ash
Sorbus scopulina Greene mountain-ash
Sorbus sitchensis Sitka mountain-ash
Staphylea trifolia American bladdernut
Stewartia malacodendron Virginia stewartia
Stewartia ovata Mountain stewartia
Styrax americana American snowbell
Styrax grandifolia Bigleaf snowbell
Symplocos tinctoria Common sweetleaf
Taxodium distichum Baldcypress
Taxus brevifolia Pacific yew
Thuja occidentalis Northern white-cedar
Thuja p licata Western redcedar
Tilia americana American basswood
Torreya taxifolia Florida torreya
Toxicodendron vernix Poison-sumac
Tsuga canadensis Eastern hemlock
Tsuga caroliniana Carolina hemlock
Tsuga heterophylla Western hemlock
Tsuga mertensiana Mountain hemlock
Ulmus alata Winged elm
Ulmus americana American elm
Ulmus rubra Slippery elm
Ulmus serotina September elm
Umbellularia califom ica California-laurel
Vaccinium arboreum Tree sparkleberry
Vauquelinia californica Torrey vauquelinia
Vauquelinia pauciflora  * Fewflower vauquelinia
Viburnum nudum Possumhaw viburnum
Viburnum obovatum Walter viburnum
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Viburnum prunifolium Blackhaw
Viburnum rufidulum Rusty blackhaw
Yucca brevifolia Joshua-tree
Zanthoxylum americanum Common prickly-ash

Zanthoxylum clava-herculis Hercules-club
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Appendix 3B. Map of precipitation seasonality and slope

Appendix 3B.1. Patterns of variation in (a) precipitation seasonality (lighter shading 

indicates lower seasonality) and (b) slope (lighter shading indicates less slope) across 

North America
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Appendix 4A. A list of the 19 interpolated global climate layers WorldClim Version 

1.3 (Hijmans et al. 2005), the variable name used to represent each and the number of 

times they were used in the spatial regression models used to examine patterns of 

species richness for each of three groups of species (amphibians, birds and mammals).

Annual Mean Temperature

Mean Diurnal Range (Mean of 
monthly (max temp - min 
temp))
Isothermality (Bio02 / Bio07) 
(* 100)
Temperature Seasonality 
(standard deviation)

Max Temperature of Warmest 
Month
Min Temperature of Coldest 
Month
Temperature Annual Range 
(Bio05-Bio06)
Mean Temperature of Wettest 
Quarter
Mean Temperature of Driest 
Quarter
Mean Temperature of Warmest 
Quarter
Mean Temperature of Coldest 
Quarter
Annual Precipitation 

Precipitation of Wettest Month

Precipitation of Driest Month Bio 14

Precipitation Seasonality 
(Coefficient of Variation)

variable
ID all Amphibian Bird Mammal

BioOl 2 0 1 1

Bio02 7 4 1 2

Bio03 1 1 5 5 1

Bio04 7 2 4 1

Bio05 7 2 2 3

Bio06 3 0 3 0

Bio07 4 2 1 1

Bio08 6 0 2 4

Bio09 3 0 1 2

BiolO 8 2 2 4

Bio 11 3 0 2 1

Biol2 8 4 3 1

Bio 13 4 3 0 1

Biol4 2 1 1 0

Bio 15 13 4 4 5
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Precipitation of Wettest Bio 16 1 1 4 2 5Quarter

Precipitation of Driest Quarter Bio 17 1 0 2 3 5
Precipitation of Warmest 
Quarter Bio 18 9 4 3 2

Precipitation of Coldest 
Quarter Biol9 5 3 1 1
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Appendix 4B. A list of the climatic variables of the 19 interpolated global climate 

layers WorldClim Version 1.3 (Hijmans et al. 2005) used in the spatial regression 

models examining patterns of species richness for each of three groups of species 

(amphibians, birds and mammals). See Appendix 4A for a description of variables.

Amphibian

Bird

Mammal

ongitude Latitude Altitude Lat

Bio02 Bio02 Bio03 Bio02
Biol5 Bio03 Bio04 Bio03
Bio 16 Bio05 Bio05 Bio 12
Biol7 BiolO Bio07 Bio 13
Bio 18 Biol5 BiolO Bio 16
Biol9 Bio 19 Biol5 Bio 18

Bio03 Bio02 Bio04 Bio03
Bio08 Bio03 Bio05 Bio04
BiolO Bio05 Bio07 Bio06
Biol2 Bio 15 Bio08 Bio 16
Bio 15 Bio 17 BiolO Bio 18
Biol7 Biol5 Biol9

Bio03 Bio02 Bio04 Bio02
Bio08 BiolO Bio05 Bio05
Biol5 Biol5 Bio07 BiolO
Bio 16 B iol6 Bio08 Bio 15
Biol7 Biol7 BiolO Bio 16
Bio 19 Bio 15 Biol7

Alt

Bio 12 
Bio 14 
Biol5 
Biol7 
Bio 18 
Biol9

Bio03 
Biol2 
Biol4 
Bio 15 
Biol7 
Bio 18

Bio 12 
Bio 15 
Bio 16 
Biol7 
Bio 18

Lat x Long x
Alt Lat x Alt

Bio03 Bio02
Bio04 Bio03
Bio07 Bio 12
Biol2 Bio 13
Bio 13 Bio 16
Bio 16 Bio 18

BioOl Bio03
Bio04 Bio04
Bio06 Bio06
Bio09 B io ll
B ioll Bio 12
Bio 16 Bio 18

BioOl Bio05
Bio08 Bio08
Bio09 Bio09
B ioll BiolO
Bio 13 Bio 16
Bio 18 Biol7
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Appendix 6 A. The a priori and a posteriori probabilities derived from a naive Bayesian 

classifier, used for modeling probability of occurrence of groups of rare species. First the 

a priori probability is reported, followed by the a posteriori probabilities. For point 

values (PV), the a posteriori probability (conditional probability) is reported, whereas for 

all others, the mean and SD for the environmental attribute is reported such that the 

probability can be calculated.
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Appendix 6A.1. The a priori and a posteriori probabilities derived for rare bird species.

a priori 

Landcover

Scale
(m)

Absence
Mean or 

conditional 
probability

SD

Presence
Mean or 

conditional SD 
probability

Bedrock outcrop

Cropland

Deciduous 
mixed forest 
Deciduous 
swamp
Dense deciduous 
forest
Developed land
Freshwater
marsh
Pasture
Sparse
deciduous forest 
Water

4800
PV
300
PV

PV

600
PV
150
PV
PV

PV

PV

PV

PV

0.6122

0.0085
0 . 0 0 0 0

92.0114
0.9504

0.0021

0.0700
0 . 0 0 0 0

2.9074
0.0191
0 . 0 0 0 0

0 . 0 0 0 0

0.0167

0 . 0 0 0 0

0.0118

0.0592

14.1795

0.2813

8.5594

0.3878

0.2995
0.0130
37.5868
0.2844

0 . 0 0 0 0

1.5887
0.0189
35.8857
0.4499
0.0499

0.0546

0.0140

0.0073

0.1079

0.6420

31.3582

5.3411

36.6207
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Appendix 6A.2. The a priori and a posteriori probabilities derived for rare insect species.

a priori 

Land
classification
for
agriculture

Landcover

Soil texture

Scale
(m)

Absence
Mean or 

conditional 
probability

SD

Presence
Mean or 

conditional SD 
probability

0.5984 0.4016

Class 1 
Class 2

Class 3 
Class 4 
Class 5 
Class 7
Bedrock outcrop 
Coniferous 
mixed forest 
Cropland

Deciduous
mixed forest
Deciduous
swamp
Dense
coniferous
forest
Dense
deciduous forest
Developed land
Freshwater
marsh
Open fen
Pasture
Sparse
deciduous forest 
Water

Clay
Clay loam 
Fluvial deposits 
Gravel

PV
600
PV
PV
PV
PV
PV
PV

PV

4800
PV

PV

PV

PV

PV

PV

PV

PV
PV

PV

900
PV
PV
PV
PV
1200

0.0659
80.4892
0.8398
0.0701
0.0000
0.0143
0.0098
0.0000

0.0000

89.2228
0.9222

0.0000

0 . 0 0 0 0

0 . 0 0 0 0

0.0452

0.0182

0 . 0 0 0 0

0 . 0 0 0 0

0 . 0 0 0 0

0.0143

0.2646
0 . 0 0 0 0

0.4116
0.0524
0.0143
0.8256

29.4326

7.9175

1.0242

3.5348

0.1249
51.6618
0.4566
0.2280
0.0055
0.0179
0.1671
0.0199

0.0024

63.5910
0.5778

0 . 0 0 0 0

0.0598

0.0089

0.1789

0.0506

0.0107

0.0062
0.0067

0.0052

12.7828
0.0730
0.1837
0 . 0 0 0 0

0 . 0 0 0 0

11.3370

41.5331

25.3000

21.1178

21.0516

292

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PV 0.0000 . 0.1967
Organics PV 0.0000 . 0.0473
Sand PV 0.0416 . 0.0702
Sandy loam PV 0.2029 . 0.2267
Silt PV 0.0000 . 0.0199
Silt loam PV 0.1064 . 0.0504
Silty clay PV 0.1707 . 0.1654
Water PV 0.0000 . 0.0397
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Appendix 6A.3. The a priori and a posteriori probabilities derived for rare plant species.

a priori 

Land
classification
for
agriculture

Landcover

Soil texture

Scale
(m)

Absence
Mean or 

conditional SD 
probability

Presence
Mean or 

conditional SD 
probability

0.6154 0.3846

Class 0 
Class 1 
Class 2 
Class 3 
Class 4 
Class 5 
Class 7
Bedrock outcrop
Conifer swamp
Coniferous
mixed forest
Coniferous
plantation
Cropland

Deciduous 
mixed forest 
Deciduous 
swamp
Dense
coniferous
forest
Dense
deciduous forest
Developed land
Freshwater
marsh
Open fen
Pasture
Sparse
deciduous forest 
Unclassified 
Water 
Bedrock

PV
PV
PV
PV
PV
PV
PV
PV
PV

PV

PV

9600
PV

PV

9600
PV

PV

PV

PV

PV

PV
PV

PV

PV
PV
PV

0.0122
0.1668
0.6639
0.1013
0.0022
0.0165
0.0371
0 . 0 0 0 0

0 . 0 0 0 0

0 . 0 0 0 0

0.0007

80.3891
0.8482

0.0023

0.1172
0 . 0 0 0 0

0.0018

0.0808

0.0081

0.0048

0 . 0 0 0 0

0.0122

0.0113

0 . 0 0 0 0

0.0299
0.0004

14.6131

0.1440

0.0016
0.1138
0.5523
0.1342
0.0042
0.0319
0.1621
0.0174
0.0006

0 . 0 0 0 0

0.0011

63.9057
0.4290

0.0047

0.2448
0.0253

0.0090

0.3080

0.0327

0.0116

0.0037
0.0321

0.0120

0.0016
0.1114
0.0016

23.3579

0.2840

294

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Clay PV 0.3743 0.1775
Clay loam PV , 0.0672
Fluvial deposits PV 0.0014 0.0080
Gravel PV 0.0254 . 0.0618
Organics PV 0.0104 0.0487
Sand 7200 1.7787 3.8205 5.7691

PV 0.0106 0.0953
Sandy loam PV 0 . 2 0 0 0 , 0.2679
Silt PV 0.0059 0.0258
Silt loam PV 0.0932 0.0316
Silty clay PV 0.1437 . 0.1485
Water PV 0 . 0 2 0 1 0.0661

9.0028
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Appendix 6A.4. The a priori and a posteriori probabilities derived for rare reptile

species.

Absence Presence
, Mean or Mean or

,C .e conditional SD conditional SD 
probability probability

a priori 0.5000 0.5000

Land Class 0 PV 0 . 0 0 0 0 0.0365
classification Class 1 PV 0.1061 0.0737
for
agriculture

Class 2 
Class 3

PV
PV

0.8484
0.0337

0.5665
0.0977

Class 5 PV 0.0039 0.0309
Class 7 9600

PV
1.8189
0.0079

4.1613 8.5433
0.1946

Landcover Coniferous 
mixed forest PV 0 . 0 0 0 0 0 . 0 0 0 0

Coniferous
plantation
Cropland

PV

600
PV

0 . 0 0 0 0

89.6395
0.9249

12.5130

0.0038

49.4691
0.5399

Deciduous 
mixed forest PV 0 . 0 0 0 0 0.0161

Deciduous 900 0.0350 0.1793 1.2786
swamp PV 0 . 0 0 0 0 0.0349
Dense
deciduous forest PV 0.0493 0.1306

Developed land PV 0.0124 0.0642
Freshwater
marsh PV 0 . 0 0 0 0 0.0453

Open fen PV 0 . 0 0 0 0 0.0091
Pasture PV 0 . 0 0 0 0 0.0365
Sparse
deciduous forest PV 0.0134 0.0204

Water 4800
PV

2.3270
0 . 0 0 0 0

5.2189 25.3645
0.0992
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Appendix 6A.5. The a priori and a posteriori probabilities derived for rare tree species.

a priori 

Landcover

Distance-
to-roads
Slope
Soil
texture

Absence Presence

Scale
(m)

Mean or Mean or
conditional SD conditional SD
probability

0.5922

probability

0.4078

Bedrock outcrop PV 0 . 0 0 0 0 0 . 0 0 2 1

Conifer swamp PV 0 . 0 0 0 0 0.0015
Cropland 90

PV
87.6856
0.9083

26.4828 48.7803
0.4737

35.7744

Deciduous 
mixed forest PV 0 . 0 0 0 0 • 0.0181

Deciduous
swamp
Dense
coniferous forest

PV

PV

0 . 0 0 0 0

0 . 0 0 0 0

• 0.0050

0.0077

•

Dense deciduous 
forest PV 0.0645 0.3933

Developed land PV 0.0058 0.0040 .
Freshwater
marsh PV 0.0070 • 0.0133 '
Pasture PV 0.0018 0.0514
Sparse
deciduous forest PV 0 . 0 0 0 0 0.0069 *
Water PV 0.0126 • 0.0231

Mean 7200 338.7711 323.4827 645.8037 719.7808

SE 600 0.6177 0.8180 1.0470 1.1800
Clay PV 0.3648 . 0.2271 .
Clay loam PV 0.1050 0.0562 .
Fluvial deposits PV 0.0051 0.0171 .
Gravel PV 0.0232 0.0399
Organics PV 0.0178 0.0275
Sand 7200

PV
1.8485
0.0354

3.7604 5.7101
0.1114

8.4532

Sandy loam PV 0.1950 0.2933
Silt PV 0.0028 0.0168
Silt loam PV 0.0730 . 0.0237
Silty clay PV 0.1688 0.1518 .
Water PV 0.0091 0.0351
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Appendix 6A.6. The a priori and a posteriori probabilities derived for rare shrub species.

a priori

Aspect
Landcover

Distance-
to-roads

Scale
(m)

Absence
Mean or 

conditional 
probability

SD

Presence
Mean or 

conditional 
probability

SD

0.6364 0.3636

Mean
Cropland

Deciduous 
mixed forest 
Deciduous 
swamp
Dense deciduous 
forest
Developed land

Freshwater
marsh
Pasture

Sparse
deciduous forest 
Water

Mean

7200
60
PV

PV

PV

PV

7200
PV

PV

900
PV

PV

PV

7200

196.2710
85.0116
0.8989

0 . 0 0 0 0  

0 . 0 0 0 0

0.0475

1.1490
0.0036

0.0267

1.3262
0.0100

16.2678
29.6315

3.5280

1.6113

0 . 0 0 0 0

0.0133

360.8836 349.8311

190.7824
49.5345
0.4907

0.0040

0.0000

0.3476

3.7022
0.0241

0.0149

3.4750
0.0476

0.0067

0.0643

699.6482

16.0159
42.8580

7.9092

4.0078

781.5955
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Appendix 6A.7. The a priori and a posteriori probabilities derived for rare herb species.

a priori 

Land
classification
for
agriculture
Landcover

Soil texture

Absence Presence
, , Mean or>cale . . .  ., . conditional

probability

0.5556

Class 0 4800 2 . 0 2 0 2

Bedrock outcrop 7200 0.0414
PV 0 . 0 0 0 0

Conifer swamp PV 0 . 0 0 0 0

Coniferous PVmixed forest
Coniferous
plantation PV 0 . 0 0 0 0

Cropland 4800 84.1299
PV 0.8854

Deciduous PV 0 . 0 0 0 0mixed forest
Deciduous 9600 0.1235
swamp PV 0 . 0 0 2 0

Dense
coniferous PV 0 . 0 0 0 0

forest
Dense
deciduous forest PV 0.0679

Developed land PV 0.0160
Freshwater
marsh PV 0.0029

Open fen PV 0 . 0 0 0 0

Pasture PV 0.0086
Sparse
deciduous forest PV 0.0008

Unclassified PV 0 . 0 0 0 0

Water PV 0.0163
Sand 7200 1.8428

Mean or 
SD conditional SD 

probability

0.4444

6.2190 12.5717 19.2857

0.1317 0.1842 0.3870
0.0119 
0.0009

0.0037

0.0016

14.3109 62.4430 27.4496
0.4760

0.0069

0.1647 0.2496 0.2822
0.0221

0.0066

0.2929

0.0321

0.0139

0.0069
0.0177

0.0112

0.0019
0.0937

3.8970 5.9743 9.1378
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Appendix 6A.8. The a priori and a posteriori probabilities derived for rare grass species.

a priori 

Landcover

Distance-
to-roads
Soil
texture

Absence Presence

Scale
(m)

Mean or Mean or
conditional SD conditional SD
probability

0.5735

probability

0.4265

Bedrock outcrop 9600
PV

0.0419
0 . 0 0 0 0

0.1167 0.1667
0.0270

0.2947

Conifer swamp PV 0 . 0 0 0 0 0.0037
Coniferous 
mixed forest PV 0 . 0 0 0 0 0.0059 •
Cropland 600

PV
88.2884
0.8851

15.9600 55.7214
0.5234

33.4230

Deciduous
swamp PV 0.0035 • 0.0347

Dense
coniferous forest PV 0 . 0 0 0 0 • 0.0079

Dense deciduous 450 6.1050 9.4218 17.3534 20.8114
forest PV 0.0611 0.1899
Developed land PV 0.0155 0.0641
Freshwater
marsh PV 0.0016 0.0124

Pasture PV 0.0233 0.0203
Sparse
deciduous forest PV 0 . 0 0 0 0 0.0254

Unclassified PV 0 . 0 0 0 0 0 . 0 0 0 0

Water PV 0.0099 0.0854

Mean 7200 364.4151 345.2124 783.7989 831.0342

Clay PV 0.4654 0.0949
Clay loam PV 0.0720 0.0922
Fluvial deposits PV 0 . 0 0 1 2 0.0019
Gravel PV 0.0073 0.0655
Organics PV 0.0082 0.0729
Sand PV 0.0284 0 . 1 2 2 1

Sandy loam PV 0.1656 0.3552
Silt PV 0.0027 0.0284
Silt loam PV 0.0947 0.0311
Silty clay PV 0.1339 0.0976
Water PV 0.0206 0.0382

300

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix 6A.9. The a priori and a posteriori probabilities derived for rare sedge species.

Absence Presence

a priori 

Landcover

Distance-
to-roads
Slope
Soil
texture

Scale
(m)

Mean or Mean or
conditional SD conditional SD
probability

0.6359

probability

0.3641

Bedrock outcrop PV 0 . 0 0 0 0 0.0167
Conifer swamp PV 0 . 0 0 0 0 0 . 0 0 0 0

Coniferous
plantation PV 0 . 0 0 0 0 0 . 0 0 0 0 •
Cropland 300

PV
87.9985
0.9069

19.8070 44.8118
0.3597

29.1154

Deciduous 
mixed forest PV 0 . 0 0 0 0 0.0042 •
Deciduous
swamp PV 0.0018 0.0074 •
Dense
coniferous forest PV 0 . 0 0 0 0 0.0029

Dense deciduous 90 5.0048 14.6777 40.3087 38.3197
forest PV 0.0493 0.4050
Developed land PV 0.0151 0 . 0 2 1 2

Freshwater
marsh PV 0.0067 0 . 0 2 0 2

Open fen PV 0 . 0 0 0 0 0.0028
Pasture PV 0.0060 0.0187
Sparse
deciduous forest PV 0 . 0 0 0 0 0.0035

Water PV 0.0142 0.1377

SE 4800 253.7167 247.4097 629.5783 625.6881

SE 150 0.4777 0.8165 1.1125 1.4931

Sand 4800 1.8795 4.6875 6.9734 11.5486
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Appendix 6A.10. The a priori and a posteriori probabilities derived for rare plant species

with a subnational rarity rank of S1.

a priori 

Land
classification
for
agriculture

Landcover

Distance-to-
roads

Scale
(m)

Absence
Mean or 

conditional SD 
probability

Presence
Mean or 

conditional SD 
probability

0.6615 0.3385

Class 7 9600 2.7036 5.4252 8.7154 14.2093

Bedrock 
outcrop 
Coniferous 
mixed forest 
Cropland

Deciduous 
mixed forest 
Deciduous 
swamp
Dense
coniferous
forest
Dense
deciduous
forest
Developed
land
Freshwater
marsh
Pasture
Sparse
deciduous
forest
Unclassified
Water

PV 0.0000 . 0.0078

PV 0.0000 . 0.0088

600 85.7912 18.8269 58.5522
PV 0.8529 . 0.5435

PV 0.0000 . 0.0091

9600 0.1280 0.1650 0.2729
PV 0.0101 . 0.0131

PV 0.0000 . 0.0103

300 8.7581 14.9993 20.5369

PV 0.0831 . 0.2223

PV 0.0192 . 0.0360

PV 0.0016 . 0.0160

PV 0.0113 . 0.0196

PV 0.0000 . 0.0134

PV 0.0000 . 0.0098
PV 0.0218 . 0.0904

33.4095

0.2966

25.5282

Mean 9600 470.7072 500.3790 1262.1028 1384.3600
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Appendix 6A. 11. The a priori and a posteriori probabilities derived for rare plant species

with a subnational rarity rank of S2.

a priori 

Landcover

Distance-
to-roads
Soil
texture

Absence Presence

Scale
(m)

Mean or Mean or
conditional SD conditional SD
probability

0.5570

probability

0.4430

Bedrock outcrop 7200
PV

0.0437
0 . 0 0 0 0

0.1332 0.1747
0.0193

0.3767

Conifer swamp PV 0 . 0 0 0 0 0.0015 ,
Coniferous 
mixed forest PV 0 . 0 0 0 0 • 0.0042 •
Coniferous
plantation PV 0 . 0 0 0 0 0 . 0 0 0 0

Cropland 300
PV

87.3552
0.8657

20.6816 53.4868
0.5106

35.1467

Deciduous 
mixed forest PV 0 . 0 0 0 0 0.0097

Deciduous
swamp PV 0 . 0 0 0 0 0.0151 •
Dense
coniferous forest PV 0 . 0 0 0 0 0.0157 •

Dense deciduous 90 8.6228 21.7043 27.2443 35.0037
forest PV 0.0855 0.2656 .
Developed land PV 0.0179 0.0320
Freshwater
marsh PV 0.0065 0.0099 •

Open fen PV 0 . 0 0 0 0 0.0070 .
Pasture PV 0.0153 0.0174
Sparse
deciduous forest PV 0 . 0 0 2 1 0.0083

Water PV 0.0069 • 0.0836

Mean 9600 456.2549 469.6473 1172.2800 1271.7911

Sand 7200 1.9122 3.9985 5.9050 9.3068
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Appendix 6A.12. The a priori and a posteriori probabilities derived for rare plant species

with a subnational rarity rank of S3.

Absence Presence

a priori 

Land
classification
for
agriculture
Landcover

Slope
Soil texture

Scale
(m)

Mean or Mean or
conditional SD conditional SD
probability

0.6708

probability

0.3292

Class 0 4800 1.9347 6.6725 11.6316 17.6547

Bedrock outcrop PV 0 . 0 0 0 0 0 . 0 2 0 1

Conifer swamp PV 0 . 0 0 0 0 0 . 0 0 2 0

Coniferous 
mixed forest PV 0 . 0 0 0 0 • 0 . 0 0 0 0

Coniferous
plantation PV 0 . 0 0 0 0 0 . 0 0 0 0 •
Cropland 4800

PV
84.6975
0.8665

13.7837 64.9958
0.3978

26.1526

Deciduous 
mixed forest PV 0 . 0 0 0 0 0.0037

Deciduous
swamp PV 0.0014 0 . 0 2 0 0

Dense
coniferous PV 0 . 0 0 0 0 0.0106
forest
Dense
deciduous forest PV 0.0755 0.3716

Developed land PV 0.0149 0.0192
Freshwater
marsh PV 0.0080 0.0055

Open fen PV 0 . 0 0 0 0 0 . 0 0 0 0

Pasture PV 0.0154 0.0332
Sparse
deciduous forest PV 0 . 0 0 0 0 0.0052

Unclassified PV 0 . 0 0 0 0 0 . 0 0 0 0

Water PV 0.0183 0.1113
SE 150 0.3922 0.6657 1.1437 1.3914
Gravel 2400 1.7051 4.6235 5.9561 10.8769
Sand 4800 1.6986 4.4717 6.3802 10.8478
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Appendix 6A.13. The a priori and a posteriori probabilities derived for rare herb species

with a subnational rarity rank of SI.

Absence Presence

a priori 

Land
classification
for
agriculture
Landcover

Soil texture

Scale
(m)

Mean or Mean or
conditional SD conditional SD
probability

0.6346

probability

0.3654 •

Class 0 2400 0.3111 1.3183 5.9548 10.7674

Bedrock outcrop PV 0 . 0 0 0 0 0 . 0 0 0 0

Cropland 2400
PV

84.9392
0.8917

17.3905 59.2296
0.5500

28.2845

Deciduous 
mixed forest PV 0 . 0 0 0 0 0.0166

Deciduous
swamp PV 0 . 0 0 0 0 0.0097

Dense
coniferous PV 0 . 0 0 0 0 0.0156
forest
Dense 150 9.4423 19.1697 18.2705 30.4934
deciduous forest PV 0.0639 0.1762
Developed land PV 0 . 0 0 0 0 0.0691
Freshwater
marsh PV 0.0094 0 . 0 0 0 0

Pasture PV 0 . 0 0 0 0 0.0170
Sparse
deciduous forest PV 0 . 0 0 0 0 0.0028

Water 9600
PV

10.5148
0.0349

16.4815 20.8607
0.1428

20.8478

Clay PV 0.3970 0.1432
Clay loam PV 0.0815 0.1074
Fluvial deposits PV 0.0082 0 . 0 0 0 0 ,
Gravel PV 0.0492 . 0.1312
Organics PV 0.0364 0.0554 .
Sand 9600

PV
2.4184
0.0375

4.3339 5.9506
0.1174

7.0532

Sandy loam PV 0.1940 0.2390
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Silt loam PV 0.0457 0 . 0 0 0 0

Silty clay PV 0.1400 0.1547
Water PV 0.0104 0.0518
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Appendix 6A.14. The a priori and a posteriori probabilities derived for rare herb species

with a subnational rarity rank of S2.

a priori

Elevation
Landcover

Distance-
to-roads
Soil
texture

Scale
(m)

Absence
Mean or 

conditional 
probability

SD

Presence
Mean or 

conditional SD 
probability

0.6125 0.3875

Mean
Bedrock outcrop 
Coniferous 
mixed forest 
Cropland

Deciduous 
mixed forest 
Deciduous 
swamp 
Dense
coniferous forest 
Dense deciduous 
forest
Developed land
Freshwater
marsh
Open fen
Pasture
Sparse
deciduous forest 
Water

Mean

0 210.2204 32.0899 194.0221 24.2603
PV 0.0000 0.0103

PV 0.0000 0.0078

300 87.4828 19.9662 54.5959 34.7476
PV 0.8801 . 0.5270

PV 0.0000 0.0064

PV 0.0006 . 0.0182

PV 0.0000 . 0.0183

150 8.1507 18.0178 24.0576 30.3476
PV 0.0773 . 0.2218
PV 0.0138 . 0.0493

PV 0.0059 . 0.0131

PV 0.0000 . 0.0153
PV 0.0145 . 0.0224

PV 0.0006 . 0.0132

PV 0.0072 . 0.0769

9600 474.8483 547.0297 1155.9813 1153.7045

Sand 4800 1.7397 4.4140 7.8233 13.5172
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Appendix 6A.15. The a priori and a posteriori probabilities derived for rare herb species

with a subnational rarity rank of S3.

Absence Presence

a priori 

Land
classification
for
agriculture
Landcover

Slope
Soil texture

Scale
(m)

Mean or Mean or
conditional SD conditional SD
probability

0.6182

probability

0.3818 •

Class 0 4800 1.9161 6.1377 11.4157 17.8684

Bedrock outcrop PV 0 . 0 0 0 0 0.0238
Conifer swamp PV 0 . 0 0 0 0 0 . 0 0 0 0

Coniferous
plantation PV 0 . 0 0 0 0 0.0018 •
Cropland 2400

PV
86.5641
0.9078

13.5479 61.6414
0.3448

28.0311

Deciduous 
mixed forest PV 0 . 0 0 0 0 0.0085 •
Deciduous 7200 0.1345 0.2105 0.3479 0.4714
swamp PV 0.0028 0.0228
Dense
coniferous PV 0 . 0 0 0 0 0.0199
forest
Dense
deciduous forest PV 0.0534 0.4196

Developed land PV 0.0123 0.0282
Freshwater
marsh PV 0.0080 0.0070

Open fen PV 0 . 0 0 0 0 0 . 0 0 0 0

Pasture PV 0.0063 0.0163
Sparse
deciduous forest PV 0.0014 0.0074

Unclassified PV 0 . 0 0 0 0 0.0064
Water PV 0.0080 0.0936
SE 150 0.3437 0.6179 1.1892 1.4879
Sand 4800 2.2789 5.4937 7.7037 13.2102
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Appendix 6A.16. The a priori and a posteriori probabilities derived for rare aquatic plant

species.

a priori 

Land
classification
for
agriculture

Landcover

Distance-to-
roads

Scale
(m)

Absence
Mean or 

conditional SD 
probability

Presence
Mean or 

conditional SD 
probability

0.6029 0.3971

Class 7 9600 2.3565 4.8231 6.2670 9.6625

Bedrock
outcrop
Conifer
swamp
Cropland

Deciduous 
mixed forest 
Deciduous 
swamp
Dense
coniferous
forest
Dense
deciduous
forest
Developed
land
Freshwater
marsh
Open fen
Pasture
Sparse
deciduous
forest
Water

Mean

PV 0.0000 . 0.0051

PV 0.0000 0.0057

450 88.9912 16.2757 51.1343 30.3393
PV 0.9145 . 0.4727

PV 0.0000 0.0059

7200 0.1138 0.1837 0.3266 0.4498
PV 0.0009 . 0.0227

PV 0.0000 . 0.0261

90 6.7540 18.7510 26.0399 35.1898

PV 0.0508 0.2509

PV 0.0098 0.0296

PV 0.0021 0.0164

PV 0.0000 0.0042
PV 0.0115 . 0.0155

PV 0.0009 0.0034

PV 0.0095 0.1416

9600 423.8681 422.8946 1278.3169 1129 0468
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Appendix 6A.17. The a priori and a posteriori probabilities derived for rare terrestrial

plant species.

a priori 

Landcover

Distance-
to-roads

Absence Presence

Scale
(m)

Mean or Mean or
conditional SD conditional SD
probability

0.6087

probability

0.3913

Bedrock outcrop 7200
PV

0.0409
0 . 0 0 0 0

0.1287 0.2106
0.0155

0.4105

Coniferous 
mixed forest PV 0 . 0 0 0 0 0 . 0 0 0 0 •
Coniferous
plantation PV 0 . 0 0 0 0 0 . 0 0 0 0 •
Cropland 300

PV
87.5913
0.8645

20.1405 47.4179
0.3862

34.8286

Deciduous 
mixed forest PV 0 . 0 0 0 0 0.0080

Deciduous 9600 0.1267 0.1636 0.2721 0.2955
swamp PV 0 . 0 0 0 0 0.0145
Dense
coniferous forest PV 0 . 0 0 0 0 0.0189

Dense deciduous 300 6.7646 12.2675 29.0499 27.7431
forest PV 0.0776 0.3959
Developed land PV 0.0169 0.0553
Freshwater
marsh PV 0.0072 0.0071

Open fen PV 0 . 0 0 0 0 0 . 0 0 0 0

Pasture PV 0.0079 0.0099
Sparse
deciduous forest PV 0.0009 0.0089

Unclassified PV 0 . 0 0 0 0 0 . 0 0 0 0

Water PV 0.0249 0.0797

Mean 9600 454.9936 480.9138 1098.7791 1086.8535
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