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ABSTRACT 

 Face recognition is one of the most popular, reliable and widely used applications in real 

world. It is the main biometric used by humans in many security, law enforcement and 

commercial systems and high demand of this application attracts researchers from various fields 

such as image processing, pattern recognition, neural network and computer vision etc. In a 

Human Face Recognition Systems, we start with pre-processing of the data followed by feature 

extraction for dimensionality reduction and then classification. In this thesis, neural network 

classifier with CSD coefficients is used to make the area required for implementation of 

recognition system more efficient. The FPGA implementation of the proposed technique 

indicates almost 50% saving in the area required for face recognition application by using neural 

network classifier with CSD coefficients while the processing speed is improved in comparison 

to its binary counterpart. Extensive experimental results were conducted to show the utility of the 

proposed technique. 
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CHAPTER I 

INTRODUCTION 

 

Human face recognition is one of the active area of research and it is a preliminary step to a wide 

range of practical applications which includes image processing, pattern recognition, personal 

identity verification, video-surveillance, facial expression extraction, gender classification, 

advanced human and computer interaction, computer vision [54]. Most of these methods are 

using Artificial Neural Networks (ANN) classifiers approaches coupled with appropriate feature 

extraction for recognition of human faces. ANN can learn from real time examples and it has the 

ability to adapt with the changes in environment. It is widely used classifier for its fault tolerance 

and robustness to noise which have opened the application of ANN in various fields of 

engineering, science, economics, etc [4]-[6]. 

1.1 Motivation 

Nowadays, face recognition is a hottest topic in the area of pattern recognition and image 

processing since 1990 due to its vast demand in many real life applications and availability of 

feasible technologies. All practical applications of face recognition require being very small in 

size with high-speed recognition for controlling and accessing authorized systems. Therefore it is 

necessary to use specialized hardware system for face recognition in order to meet real time 

performance.  ANN is a widely used and well- known classifier for human face recognition for 

its robustness and good learning capability. It can be implemented in two ways: software 

implementation and hardware implementation. The processing speed for face recognition in 

software system is very slow which makes it quite impractical to implement the recognition 

system in software. Moreover, the face database contains very large amount of data which 
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requires large memory space in software system. Therefore, to realize the full benefits of face 

recognition application with neural network classifier, it is important to implement the system in 

dedicated hardware system such as FPGA implementation which offers high space management 

with good speed and recognition rate for this real time application by taking the full advantages 

of inherent parallelism of ANN architecture [2]. Thus hardware based ANN for face recognition 

application offers some levels of flexibility over software based system because it requires less 

area with high- speed recognition rate in hardware platform than comparing to software system. 

1.2 Proposed Work 

This thesis presents specialized hardware implementation of human face recognition by 

using ANN classifier to perform face recognition from large face database. This dedicated 

hardware system requires very low-area which is more suitable for large face database in 

practical system. The proposed architectures presented in this thesis can easily be applied to 

other applications.  

The preprocessed face images are applied to feature extractor for dimensionality 

reduction and to get the important features for ANN classifier for recognition purpose.  In 

hardware platform, the area and speed are two important parameters and efficient design of ANN 

is mostly depends on how to efficiently design a single neuron where the weights of the neuron 

are saved. When feature vector of an face image are applied to the network, the feature elements 

and corresponding synaptic weights are multiplied to get the weighted inputs and the summation 

of all weighted inputs are added with bias before passing through the Activation Function (AF) 

to get the final output of a neuron. AF is used to limit or squash the amplitude of a signal to some 

finite value. The computation process in hardware platform is usually done by using binary 
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system. When binary coefficients are saved in the network, it consumes more area and the binary 

multiplication process to get the weighted inputs consumes most of the processing time in a 

single neuron which is a major problem of hardware based ANN. Therefore if it is possible to 

reduce the size of single neurons with much not compromising the computation time for 

multiplication process of neurons, then the size of whole neural network system will be small 

and compact in comparing to binary network. As a result the network can also accommodate 

more information about large face database. 

In the proposed method, Canonical Signed Digit (CSD) coefficient is used instead of 

binary coefficient in hardware platform to get weighted input by multiplying CSD coefficient 

with corresponding binary input of neurons in ANN system. The advantage of CSD coefficient is 

that the CSD weight contains smaller number of nonzero elements among all signed digit 

number system and the number of maximum possible nonzero elements can never be greater 

than the half of total number of bits in a CSD system. Thus the CSD coefficients requires less 

area in a network and CSD multiplier also produces less partial products in comparison to binary 

multiplier which means less area requirement with almost same level of accuracy and speed in 

hardware based recognition system. Look up table (LUT) based Tangent-Sigmoid (TanSig) is 

used to realize the activation function. After implementing the whole NN system, feature vectors 

from two popular feature extraction method for face images were applied separately to test the 

performance of the hardware implemented ANN system. 
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1.3 Thesis Organization 

The rest of the thesis is organized as follows: 

Chapter II contains a brief description on face recognition, its importance in today’s world and 

application in real world, necessary steps and algorithms to complete the procedure of face 

recognition for example PCA feature extraction, ANN for classification etc. Chapter III explains 

the software and hardware implementation procedure of ANN classifier which is used to 

recognize face images. The results found from these two types of implementation and their 

comparison are describes in Chapter IV and the last chapter contains the conclusion and future 

work.  
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CHAPTER II 

BACKGROUND STUDY AND REVIEW OF LITERATURE 

 

2.1 Face Recognition 

An automatic face recognition system is used to recognize or identify a person 

automatically in still or video images of a scene from a stored database for security, 

authentication etc. It is one of most popular topic in the area of image processing and pattern 

recognition since 1990 due to its increasing importance and application in many commercial 

opportunities and security systems. Moreover, availability of feasible technologies and high 

demand of this reliable method for law enforcement applications draw the attention of many 

researchers from various fields such as pattern recognition, image processing, neural networks, 

computer vision etc. to conduct research in this area. 

But face recognition system is unique among other recognition systems such as 

fingerprint and iris recognition system, where the sensor needs to touch the object directly or 

laser beams require scanning a person’s eye directly which requires a great deal of human 

participation. However, human face recognition is a non-invasive biometric method for 

identification and recognition of a face image from the faces in a stored database of several 

images [54].  This allows the processing for recognition without a person’s possible awareness.  

There are some standard test databases for testing the performance of face recognition 

system. There are many universities and institutions which have their own face databases; for 

example, the Yale face database, AT&T "The database of faces" (also formerly known as "The 

ORL database of faces"), FERET database, SCface - Surveillance Cameras face database, MIT-

CBCL face recognition database, NIST mugshot identification database, The AR face database 



(of Purdue University) etc [7], [8]. Each database has its own characteristics, so it is necessary to 

select appropriate one based on the application at hand. These databases deal with a set of data 

containing, different illumination, facial expression, aging, occlusion, etc. In this research, ORL 

face database [9] were selected for its some distinct advantages for example well organized 

database, small size of the images, mono color etc. This database cont

person and all of these 10 images are identical to each other. There are total 40 classes. A dark 

homogeneous background with an upright, frontal position was used for all these images and 

they vary in rotation, expression, gray sca

different times with variation in lightings, facial details with facial expressions (like with or 

without glasses, smiling or without smiling, closed or opened eyes) etc. The size of each image is 

92x112 and the gray level per pixel varies from 0 to 255. Some sample images from this 

database are shown in Figure 2.1. 

Figure 2.1 Samples of facial images from ORL database
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2.2 An Automatic Face Recognition System  

 There are some major steps need to be considered for performong an automatic face 

recognition sytem namely preprocessing, feature extraction and classification. These steps are 

shown by using a block diagram in figure 2.2. At first, the face images are collected together 

which is known as face databese and then the next step is preprocessing step which allows to 

enhance the image quality because the images may taken at different situations.  Images may be 

degraded with noise and poor illumination. So it is necessary remove the noise and normalize the 

color of images. Among many other methods, histogram equalization method is a common 

method to enhance the histogram of pixel intensities of images [48], thus the image quality 

improves. The third and fourth steps are used to reduce the dimension and extract important 

features from face images and save those features for classificatio purpose. The last step consists 

of classification method which allows to recognize an unknown face image depending on the 

extracted features of the database in previous step.  

 

Figure 2.2 Block diagram for NN based face recognition 
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2.3 Feature Extraction Method   

 Face recognition is a very high-dimensional and complex pattern recognition problem. 

Therefore it is necessary to reduce the dimension and extract the necessary features of face 

images before applying it to a classifier so that the recognition rate improves. Principle 

Component Analysis (PCA) [23]-[27] and Linear Discriminant Analysis (LDA) [20] are two of 

the widely used method for feature extraction and they are useful for large face databases [19], 

[21], [22] . 

 

2.3.1 Principle Component Analysis (PCA) 

 Principle Component Analysis (PCA) is an effective feature extraction method based on 

Eigenfaces [24], [26], [27] . It’s function is to extract less quantity of feature without missing 

most important information and reduce the dimention of original face pattern which spans over 

high dimension [25], [28]. Principal components or eigenfaces are known as a small set of 

characteristic feature information of face images and these features are built from the variance 

between training samples [24]. For M number of images with pixel size of ���	 ∗ 	���, the pixel 

elements of each images of training set, �	 = [��		�� 	…	��]  are alphabetically ordered. Then the 

mean, � is taken for the vectors as shown in equation (2.1) and subtracted from ��	 to get the 

mean subtracted images, Ф .  

     �	 = �
��∑ ��		�����       (2.1) 

     �� =	��	 − 	�       (2.2) 

Then the covariance matrix, �  is computed for the mean subtracted images:  

    �	 = �
��� ��		�����

���        (2.3) 
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Here �	 is a high dimensional matrix for M images. Next eigenvectors of covariance matrix is 

calculated from by solving (2.4) where λ is the eigenvalue. 

                                                          ��	 = 	��                                                    (2.4)         

Eigenvectors are a set of nonzero orthonormal vectors and when it operates on another vector 

function, generates a scalar multiple result known as eigenvalues which describes best about the 

distribution of that vector function [24]. Therefore, principal component, � can be obtained by 

multiplying eigenvectors, � with matrix, �: 

     �� 	= 	�	. ��       (2.5) 

Now PCA projection, � is used for both training and testing samples projection which results 

corresponding set of weights, �� for each images as in (2.6).  The arrangement of M set of 

sample weights are expressed by   in (2.7).  

    �� =	��! . � = 	��!	. ��	 − 	�	�     (2.6) 

     = [��		�� 	…	��]       (2.7) 

2.3.2 Linear Discriminant Analysis (LDA) 

 Linear Discriminant Analysis (LDA) is another popular and widely used feature 

extraction method [19], [21]. PCA has a lack of discrimination ability and it may hold some 

unwanted features from face images because of considering all variations across training samples 

for example lighting variation, facial expressions [31] etc. PCA extracts features which are 

important to represent a class [30], [31] and it might perform better for small number of samples 

per class [30]. LDA extracts the most effective features for class separability [21] and for more 

number of samples per class; LDA outperforms PCA [30]. But due to high computational cost of 

LDA [32], it is not efficient to use LDA as feature extractor for high dimensional image. 

Therefore, to get effective result, both PCA and LDA is used where PCA is used for dimension 
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reduction and LDA is used to extract features for class seperability from the reduced dimensional 

images found from PCA [21]. 

 LDA is applied on the set of feature vectors found from principle component projections 

of training samples in (2.7) which is used to find another subspace for second projection [22]. 

Therefore LDA requires two training samples to calculate scatter matrices. If i
th 

class has qi 

training samples and M is the total number of classes, then mean image per class, µ � and total 

mean, µ" can be calculated by: 

     µ � = �
#$∑  �#����          (2.8) 

     µ" = �
��∑  ������       (2.9) 

Above two equations are used to calculate within-class scatter matrix, Sw and between-class 

scatter matrix, Sb where P(Ci) is the prior class probability:      

    %& = ∑ '����(��� � 	 − µ ��. � − µ ��T                  
  (2.10) 

    %) = ∑ '����(��� �µ � − µ"�. �µ � − µ"�!  
   (2.11) 

The advantage of applying LDA over PCA features is that it diminishes the complexity of 

singular problem of Sw in (2.10) by creating another subspace to optimal project the data based 

on Fisher Linear Discriminant criterion [31] as expressed in (2.12).  

    * = |,-../.,|
|,-..0.,|        (2.12) 

    *"1� = [*�.*�…*�′]      (2.13) 

In (2.13), *"1�	is the final set of eigenvectors of %) ∗ 	%&2�		matrix for M largest eigenvalues.  
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2.4 Classification 

When the feature extraction method is applied and feature vectors for training and testing 

images are ready, then these vectors are sent to a classifier for recognization. There are different 

types of classifier used such as k-Nearest Neighbors, Support Vector Machines (SVM) and 

Artificial Neural Networks (ANN) etc.  

 k-Nearest Neighbors is a simple algorithm used as a classifier where usually Euclidian 

distance is used to calculate the distance between a test sample and training samples and the 

object is assigned to the class which most frequently responds among the k nearest training 

samples. It provides good performance for the optimal values of k [50].   

 A Support Vector Machine (SVM) finds the hyperplane in the possible feature space and 

tries to maximize the distance between hyperplane and data points by constructing two parallel 

hyperplanes. The classification accuracy of a test sample increases with the larger distance 

between these two parallel hyperplanes [29]. 

 Artificial Neural Networks (ANN) is one of the most popular and widely used classifier 

to face recognition and other pattern recognition problem. Its massive architecture, potential to 

fault tolerance and learning capability make it widely acceptable among other classifiers. In [50], 

it has shown that ANN performs better than k-Nearest Neighbors. Moreover, ANN outer 

performs SVM for larger training set size [51]. Following section contains the brief description 

about ANN. 

2.4.1 Artificial Neural Networks (ANN) 

The biological operation of neural system has long been facinated by humans [1]. So it is highly 

desirable to understand the operation performed by this biological neural system in order to 
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realize the closely related or same features and apply these features in real life practical 

applications. Many research effort has been put to derive ideas from biological paradigms in 

order to make efficient intelligent systems. The main objective of modern neural network 

research is to realize ANN from understanding different aspects of the biological counterpart. An 

ANN is a massive parallel distributed structure with a large number of nodes and 

interconnections to store experimental knowledge through learning process and make it available 

to use. So there are two key properties for information processing capabilities which make ANN 

to solve complex face recognition and other pattern recognition problem by using its 

computational power. The first one is the ANN potential to fault tolerance due to its massive 

parallel interconnected architecture so that ANN continues to work even when a neuron ot its 

connecting links is damaged or disconnected and secondly, the learning capability from real life 

examples and generalize it where generalization refers to provide reasonable outputs for inputs 

while testing even in degraded conditions [10]. 

Supervised learining is one of the popular learning paradigm. Here input-output mapping 

is done which involves the modification of synaptic weights of NN by applying a whole set of 

training examples in batch mode. Each example contains a unique set of inputs and desired 

response which is represented to the network and the synaptic weights of NN are modified by 

learning in an iterative manner to reduce the difference between desired and actual output. The 

network reaches to a steady position when the inputs of whole training examples are presented to 

the network and it is repeated for many times therefore no significant modification is required in 

the synaptic weights after certain iterations [10]. The learning procedure of ANN is time 

consuming. It requires many training samples for learning to get the network’s outputs similar to 
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desired responses. But after the network finishes learning, it requires small time for testing a 

sample. 

ANN is used as target classifier for face recognition system in this thesis because it 

provides greater degree of fault tolerance or robustness and it has the capability to adapt with the 

changes in image data. Depending on the implementation type of ANN, it can be divided in to 

three categories: analog implementation, digital implementation and hybrid implementation. 

Analog implementation is difficult to design, but it offers higher density and efficiency in circuit 

level, area, power consumption and its resolution is better and requires fewer components than 

digital implementation. However, analog implementation suffers from inaccurate results due to 

offsets and mismatch. It is more sensitive to noise and it gains errors due to fabrication 

difficulties. Another main problem of analog implementation is storage of weights which 

requires initialization and periodic refreshment. But most of the real world applications of ANN 

are embedded in digital system. Digital implementation is more perfect for the complexity of 

larger ANN due to less sensitivity in noise and fabrication difficulties. Moreover, digital 

implementation offers more flexibility over analog counterparts in terms of fabrication 

technology, simulation because for any given time, digital system is always more desirable than 

analog technology [52]. However, digital implementation suffers from slow computation and 

requirement of large area because of the requirement of multiplication and accumulation 

processes to get weighted inputs. Hybrid implementation takes the advantages of both analog and 

digital system where most of the circuitry performs analog computation to gain more speed and 

power efficiency but the synaptic weights are stored by using digital circuit for long term storage 

in digital registers and better noise immunity. However, the objective of this thesis is to reduce 
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the area requirement of digital neural network as a classifier for face recognition application by 

using CSD coefficients which will be described later. 

2.4.2  Model of a Neuron 

ANN has a fundamental and basic information processing unit which is known as neuron. 

The operation of NN mainly depends on the functionality of neuron. A neuron model may 

contain three basic elements, namely a set of synapses or connecting links, an adder and 

activation function [10]. The first element is also known as strength or weight of a neuron. Adder 

is used for summing the weighted inputs. Here weighted inputs refer to the inputs which are 

weighted or multiplied by the corresponding synaptic weights. The structure of each neuron in 

the network includes a nonlinear function at the output end. The relation between input and 

output could be reduced if there is an absence of nonlinearities [10] and an activation function 

(AF) is used to express this nonlinear properties. An AF limits or squashes the amplitude of the 

output of a neuron to some finite value. A typical normalized range for the output of a neuron 

can be varied from 0 to1 or -1 to 1 depending on the functionality of AF. Figure 2.3 represents 

the basic components for the nonlinear model of a single neuron. 

∑

××××

××××

××××

 

Figure 2.3 Basic components of an artificial neuron 
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Mathematically the input-output relationship of a neuron can be described by the 

following equation (2.14) and (2.15) where 3 =	��, ��, … , �5 are the inputs to the neuron 

and	* = 	6�, 6�, … , 65 are the corresponding synaptic weights of the neuron. 

  7 = �8 69�9� + ;
5

9��
     (2.14) 

     �	 = 	<�7�          (2.15) 

The bias, b is added with the summed result of weighted inputs as shown in (2.14) and passed 

through activation function to get the final output of the neuron which is denoted by y in (2.15). 

The vector notation for (2.14) can be expressed by: 

     7	 = 	*!�	 + 	;      (2.16)    

One of the most important parts of a neuron is the activation function. It has the 

capability of fault tolerance and it is used to force the final output of neuron according of activity 

level at the input of that neuron [10]. This nonlinear excitation function can approximate almost 

any complex function. Sigmoid, hyperbolic tangent activation functions are the most commonly 

nonlinear activation functions [10], [11] and they are mathematically expressed by (2.17) and 

(2.18) respectively and graphically shown in figure 2.4. For this thesis the hyperbolic tangent 

activation function is used both for all layers in NN for better accuracy [12]. 

   %=>?@=A�7� = �
�BCDE       (2.17) 

   F7Gℎ�7� = 	 CE2CDECEBCDE       (2.18) 
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The hyperbolic tangent AF is differentiable and it ranges from -1 to +1which means an 

asymmetric form can be assumed by this function with respect to the origin. So this activation 

function has some analytical benefits as it has the opportunity to assume both positive and 

negative values [10] which makes the ANN learning faster. The nonlinear characteristic of 

hyperbolic tangent AF makes the learning of ANN more powerful. 

 

Figure 2.4 Hyperbolic Tangent and Sigmoid Activation Function 

 

2.4.2.1  CSD Coefficient System and Multiplier  

Recalling figure 2.3, in each neuron, inputs are multiplied with the corresponding 

synaptic weights and these weighted inputs are added with bias before passing through AF. 

Different types of multiplier are used in literature for input and coefficient multiplication for 

example binary multiplier, booth multiplier etc. In this thesis, Canonical Signed Digit is used as 

coefficient for multiplication.   
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Canonical Signed Digit (CSD) number system is a special type of redundant 

representation of radix-2 Signed Digit (SD) number system with ternary coefficient set {-1, 0, 1} 

to minimize the number of nonzero digits [33], [37], [57]-[60] . A two’s complement number can 

be converted in to canonic vector by using Reitwiesner’s algorithm [56] where it has shown that 

the CSD representation for a number is unique (canonic) if the binary expansion of that number 

is padded with an initial zero. The conversion algorithm works from LSB to MSB means from 

right to left. Table 1 represents Reitwiesner’s right to left conversion algorithm for 2’s 

complement number to CSD number. 

bi+1 bi ci yi ci+1 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 0 0 

1 0 1 1J 1 

1 1 0 1J 1 

1 1 1 0 1 

Table 1: Binary to CSD conversion table based on Reitwiesner’s right to left conversion 

algorithm 

 

In table 1, for any two’s complement number, b, the resulting CSD representation is y. It is 

assumed that the initial auxiliary carry variable, c0 = 0 and for other steps, ci is the carry 

generated in previous step i − 1 and ci+1 is the carry out at step i. For example, if b = 47810 = 

01110111102, then after using table 1, converted CSD number, y = 10001J0001J0. From this 

example, we can see that binary number, b contains seven nonzero elements but after converting 
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in to canonical form, the number contains three nonzero elements which mean nonzero elements 

are reduced by four. Moreover, if we consider the original Booth algorithm [34], the Booth’s 

representation for b is 1001J10001J0 which means the number of nonzero elements is four. So, 

from the above example, it is obvious that, CSD representation of almost any number contains 

fewest numbers of nonzero elements among all signed digit representations [35], [59].  

 CSD representations have some unique properties which are given below: 

a) Canonic representation is a non-redundant system which and there cannot be 

any adjacent nonzero elements (yi*yi-1 = 0), which implies that there can be 

maximum of [(y+1)/2] nonzero elements for any y bit CSD number [57]. 

b) Each number has a unique CSD representation. 

c) For a y bit CSD number, the minimum number of nonzero digits is 

y/3+1/9+O(2
-y

) which means on average, a CSD representation of a two’s 

complement number consist of almost 33% fewer non-zero elements than its 

binary counterpart [39], [58]. 

A neural network may have few thousands of weights. As canonic representation 

contains minimum possible nonzero elements, thus neural network requires less space to save the 

weights in hardware system in comparing to binary representation. Moreover, CSD coefficient 

multiplier reduces the number of partial products hence allowing minimum number of addition, 

subtraction and shift operations to generate the product in a hardware system [38]. It has shown 

that for any n bit multiplication with CSD coefficient, the total number of addition, subtraction 

and shift operations never exceed by n/2 [36]. There are different types of CSD multiplier is 

designed in literature such as constant coefficient CSD multiplier [59], [63], low error fixed 
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width multiplier [61], [62] etc. In constant coefficient multiplier, the coefficient is constant 

which provides the opportunity to design a system with low space and high speed. In fixed width 

multiplier, a 2n bit product found from n bit multiplication is truncated to n bit product by 

eliminating (n-1) least significant bits [61], [62]. Usually a NN system has large number of 

weights. Therefore, it requires designing large number of constant coefficient multiplier for the 

system.  Moreover, the number of inputs of each image depends on the size of face database and 

the size of face database is always changing in real time system for improving the recognition 

rate which means the number of feature elements of each image also changes. As a result, the 

network’s weights also changes. Therefore, constant coefficient multiplier is not considered for 

the design of NN system. In fixed width array multiplier, an error compensation method is 

required to use for reducing the truncation error produced by the multiplier. But in NN, the AF 

has the greater degree of fault tolerance hence low error fixed width multiplier is not selected for 

the design of NN. Therefore, a CSD multiplier which performs shift and addition or subtraction 

operation is used in this project. 

2.4.3 Network Architecture   

 The architecture of ANN depends on the learning algorithm because the structure of a 

neuron in the network is closely related to the learning algorithm used for training the network. 

Feed forward neural networks (FFNN), radial basis function (RBF) networks, recurrent neural 

networks are mostly used network architectures. Feedforward neural networks can be devided in 

to two sub catagories: single-layer feedforward networks and multilayer feedforward neural 

networks [10]. 
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Single-layer feedforward networks can not map curve like problem due to its limited 

mapping ability and it can learn linearly separable patterns only. So it can not solve nonlinear 

problems where the inputs are not linearly seperable [13]. But multilayer feedforward neural 

network has single or more hidden layer with hidden neurons which helps NN to get an extra set 

of synaptic connections and adds extra dimention to the network. Multilayer feedforward neural 

network gives NN the ability to extract higher order statistics which is important when the input 

layer’s size is large [10]. So, multiplayer feedforward neural network is used in this thesis so that 

it will be helpful to classify large and complex face data. Figure 2.5 illustrates the architecture of 

fully connected feedforward neural network with single hidden layer and output layer. The input 

feature vector, 3	 = 	 [��	�� 	…	�5] propagates through the network on a basis of forward 

direction from input layer to hidden layer(s) and next to output layer. The final output, L	 =
	[��		�� 	…	�M] is produced by the neurons in output layer.  

 

Figure 2.5 Fully connected feedforward neural network with single hidden layer and output layer 
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2.4.4 Training of Neural Networks  

ANN has the ability to learn from surrounding environment. Thus the network can 

improve the performance through learning which develops over time by following some 

prescribed measure. Basically a network starts gaining more knowleadge about its own 

environment after each iteration of the learning process by adjusting the synaptic weights and 

biases. Figure 2.6 illustrates the a taxonomy of the learning process [10]. 

 

Figure 2.6 A taxonomy for learning process of neural network 

 

The learning paradigm of NN can be divided in to three classes, namely supervised 

learning, reinforcement learning and unsupervised learning or self-organized learning (Figure 

2.6). The training process for FFNN is performed under supervised error correction learning. 

This learning assumes that there is an availability of a set of training sample with N number of 
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input-output examples as expressed in (2.19) where xi is the input vector and A� is the desired 

response of i
th

 example respectively in training set.  

     F = {�O�. A��}���5        (2.19) 

This learning is performed under the supervision of an external “teacher” where the 

teacher has its own built-in knowledge about the surroundings. The environment of interest is 

represented by a set of input-target examples which unknown to NN. The teacher knows about 

the precise correctness required for the outputs which are assigned to the network during error 

correction learning. Figure 2.7 illustrates the schematic diagram for supervised training process. 

∑

 

Figure 2.7 Supervised training for NN 

 

When both the teacher or modeled system and the NN are exposed to a set of training 

sample, the teacher helps providing the instruction or guideline to the network to get closer to 

desired response for a specific training vector by adapting the parameters of the network in a 

step-by-step repetitive manner under the combined influence of the training vector and error 

signal. Here error signal,	Q� 	= 	 A� 		− 	�� 	 refers to the difference between the desired response, 
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A� and actual response, �� 	 generated by the network in response to the training input, ��. In this 

way, the teacher transfers own knowledge to the network as fully as possible and when the 

network is fully learned, then it can deal with the environment by itself [10].  

2.4.5 Learning Algorithm  

 Learning algorithms are used to update the weights of the network. There are various 

algorithms for learning among which Lavenberg-Marquardt (LM) [16], [17] is a simple, robust 

and efficient learning algorithm (by realizing accuracy) for training feed forward neural networks 

[15]. The main objective of LM is to minimize the difference between actual output, �� and 

desired response, A� of the network [15] hence improving the performance index. So the 

network’s performance parameters such as weights and biases are required to be adjusted 

through the leaning procedure in order to reduce the index or error function. The sum of squares 

function or error function of the network can be expressed by (2.20) where N is the number of 

elements of	Q�6�. 

    <	�6� 		= 	∑ �A� − ����5���	   

                                                     =	∑ Q��	�6�5���  

                                                     =	∑ Q	�6�	Q!	�6�5���     (2.20)   

Now the weight update matrix equation from Newton’s method is 

    6�B� =	6� −	[∇�	<	�6��]2�	∇<	�6��           (2.21)  

Where ∇�	<	�6�� = Hessian matrix and ∇	<	�6�� =	Gradient of error function. 

Now we have to calculate Hessian and gradient of error function. If we differentiate (2.21) with 

respect to any weight, wj to find the j
th

 element of gradient ∆<�6�, we get 

   [∇<�6�]T =	UV�&�U&W = 2	∑ Q��6� U	C$�&�U&W
5���         (2.22) 
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Equation (2.22) can be written in matrix form: 

     ∇<�6� = 	2	Y!�6�<�6�    (2.23)  

 

Where   Z�6� = 	 UC�&�U&- =	
[
[
[
[
\U	C]�&�U&]

U	C]�&�
U&^ …… . . U	C]�&�U&_

U	C^�&�
U&^

U	C^�&�
U&^ …… . . U	C^�&�U&_

U	C`�&�
U&^

U	C`�&�
U&^ …… . . U	C`�&�U&_ a

a
a
a
b
     (2.24)  

Here Z�6� is the Jacobian matrix [15]. To calculate Z�6�, we need to find Marquardt sensitivity 

using back propagation which is shown in [14]. 

Now the Hessain matrix can be found by differentiating (2.23) with respect to any weights wk 

and wj : 

                cd�<�6�e�T =	 	U
^V�&�

U&fU&W = 2	∑ gUC$�&�U&f . UC$�&�U&W +	Q��6� U
^C$�&�
UfU&W h

5���     (2.25)  

The above equation can be written in matrix form: 

     d�<�6� = 	2	Z!Z�6� + 2 %�6�   (2.26)   

   Where   %�6� = 	∑ Q��6�d�Q��6�5���     (2.27)   

Assuming %�6� is small, so approximate Hessain matrix is 

     d�<�6� ≅ 		2	Z!�6�Z�6�    (2.28)   

Now substituting equation (2.23) and (2.28) in (2.29), we get: 

   6�B� =	6� − [Z!	�6��	Z	�6��]2�Z!	Q�6��               (2.29)  
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In (2.29),  j = 	 Z!Z may not be invertible which is a problem with Gauss-Newton and it can be 

overcome by using LM modification [18] to Hessain matrix: 

     k = 	 Z!Z + µ 	l       

        = j + 	µ 	l                                      (2.30)   

Here l is the identity matrix. Therefore, equation (2.29) becomes 

   6�B� =	6� −	mZ!�6��Z�6�� +	µ�	ln
2�	Z!	Q�6��      (2.31)  

   ∆6� =	−	mZ!�6��Z�6�� +	µ�	ln
2�	Z!	Q�6��   (2.32) 

Now if µ  increases, for larger µ , equation (2.31) becomes  

                                                 6�B� ≅	6�2	 ]
µfT

-	�&f�	C�&f�	     

      =	6� −	 ��µf
	∇<�6�     (2.33)   

Now µ  is multiplied by an adjacent factor, ß when <�6� increases in a step. But when <�6� 
decreases in a step, µ  is divided by ß.  Usually µ  = 0.01 at starting point with  ß = 10. Now when 

µ is large, LM becomes steepest decent algorithm with step 1/µ  as shown in (2.32) but for 

smaller µ , LM becomes Gauss-Newton thus providing nice comparison between these two 

algorithms.   

In general, the target of LM is to improve the performance by reducing the sum of 

squared error as shown in (2.20) by solving from equation (2.21). So, each learning iteration 

(epoch) of neural network with LM training is accomplished by following some basic steps [16], 

[55] which are described below:  
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1. For initial step, setting k = 0 and presenting the training set to the network. Initializing 

µ0 = 0.001, µmax = 10
10, 

 ß = 10 and w0.  

2. Computing Jacobian matrix, J(wk) and f(wk) by using (2.24) and (2.20) respectively. 

Terminating the process if J(wk) or ∇<�6�� in (2.23) is less than predefined threshold 

or if µk is equal or greater than µmax. 

3.  If µk < µmax., computing J(wk+1) and wk+1 from (2.24) and (2.31) respectively. If 

J(wk+1) ≥ J(wk), setting µk = ßµk and computing this step again. Otherwise we have to 

compute step 4. If J(wk+1) < J(wk),setting µk+1 = µk / ß, updating the weight, wk+1 and 

computing step 2. 

4. If µk ≥ µmax., completing the learning by terminating the process. 

When the learning of NN is finished, the weights of the network are fixed and then the network 

can be simulated with testing samples and the network can be retrained for unsatisfactory 

performance. 
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CHAPTER III 

IMPLEMENTATION 

3.1 System Level Implementation 

To evaluate the performance of ANN with CSD coefficient for human face recognition, 

experimental studies were carried out on AT&T Laboratories Cambridge's Face Database [9].  

To realize the performance evaluation in system level, neural network toolbox of Matlab was 

used. The image database is equally divided in to training set and test set where each set contains 

200 images. From each class, images are selected randomly for both sets. The training set of 

image database was applied to PCA and LDA separately to extract important features from 

images as discussed in section 2.3.1 and 2.3.2 respectively. After extracting features from PCA 

and LDA, the feature vector produced by both methods contains 39 elements for each image. So 

the total size of feature matrix was 39 x 200 both for training and test set. The test feature inputs 

from PCA and LDA were applied separately to Matlab NN toolbox and FFNN with single 

hidden and output layer was selected for classification purpose. The input layer contained 39 

inputs and the output layer contained 6 output neurons for 200 samples. The optimum number of 

neurons in hidden layer was selected 28 and 29 for PCA and LDA respectively.  The number of 

hidden layers can be varied but usually single hidden layer with non -linear neuron is sufficient 

enough to provide good balance between complexity and accuracy for most of the applications 

[40]. FFNN with LM training [15] algorithm (refer section 2.4.5) was used for training the neural 

network. The training samples were applied in batch mode [14]. The number of neurons in 

hidden layer was varied both for PCA-NN and LDA-NN to find out the optimum number of 

hidden neurons for which the recognition rates were maximum and it was found that the network 
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performs best in terms of accuracy with 28 hidden neurons for PCA-NN and 29 hidden neurons 

for LDA-NN. Table 3.1 represents the performance of the network in terms of accuracy (no CSD 

multiplier was used) where the accuracies were started increase both for PCA-NN and LDA-NN 

if the hidden neurons were increased up to certain number. But for 28 hidden neurons, the 

recognition rate was 92% which the performance began to deteriorate if the neurons in hidden 

layer are increased further more. The same characteristic was also observed for LDA-NN where 

the recognition accuracy saturated after 29 hidden neurons. Therefore, 28 and 29 hidden neurons 

were selected for PCA-NN and LDA-NN respectively. 

Number of feature 

elements from 

each feature vector 

Number of hidden 

neurons 

Classification accuracy 

PCA-NN LDA-NN 

 

 

 

 

 

 

39 

23 86.0 88.5 

24 88.0 90.0 

25 90.5 90.0 

26 91.0 91.5 

27 91.0 92.0 

28 92.0 93.5 

29 92.0 94.0 

30 91.5 94.0 

31 92.0 93.5 

Table 3.1: Variation in accuracy for different number of hidden neurons in Matlab 

 

ANN training can be performed more efficiently if certain preprocessing steps are 

performed on the inputs and desired responses of the nerwork before stating the training process 

As a result, both inputs and targets are normalized and the actual outputs fall into a normalized 

range. Normally inputs vectors and target vectors both are normalized between [0,1] which helps 

to reduce possible noise and interference from the inputs and targets. Moreover, after using this 



29 

 

process, there is a transformation happens to the input images so that it becomes easier for NN to 

classify the datas [14]. 

If the weights of NN are converted in to 18 bit CSD representation and the nonzero 

elements of CSD weights are reduced by one, then these weights are not exactly same to the 

original weights produced by the network. Therefore, some error was added to the network by 

reducing the nonzero elements by different numbers from the coefficients and for each nonzero 

elements reduction, the performance of the network was observed. This reduction procedure was 

continued up to four nonzero elements both for PCA-NN and LDA-NN and for each nonzero 

element reduction, the recognition accuracy was counted for both network. Table 3.2 presents 

typical decimal weight examples produced by the network and how the weights are affected after 

reducing the nonzero elements. The first column presents the actual weights in decimal number. 

These actual weights were converted in to CSD format and after reducing nonzero elements, 

weights were converted back in decimal format. Column 2 to 5 of table 3.2 present decimal 

representations of nonzero element reduced CSD weights.  

Original weights 

produced by 

network 

Nonzero elements reduced by 

1 2 3 4 

22355 22356 22352 22336 22272 

-7381 -7380 -7376 -7360 -7424 

-3293 -3292 -3296 -3328 -3072 

15164 15168 15104 15360 16384 

15416 15424 15360 16384 0 

2568 2560 2048 0 0 

8064 8192 0 0 0 

Table 3.2 Effects of nonzero element reduction from 18 bit CSD weight (CSD weights are 

represented in decimal format) 
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In the training period, weights are produced and updated by the network during learning 

iterations. These weights are multiplied by the corresponding input feature element to get the 

weighted inputs. To observe the performance of NN with CSD coefficients in system level, 

weights and inputs are converted in to 18 bit CSD and binary representation respectively. Then 

both the CSD coefficients and binary multiplicand are applied to 18 bit CSD multiplier function 

which was designed to provide the multiplication result in binary form in Matlab. Then all the 

multipliers’ results and bias were summed together for each neuron and applied as input to tanh 

AF to get the final output of a neuron.   

 While training ANN, the nonzero bits of all weights were reduced by a number in all 

iterations and these weights are applied as coefficients to CSD multiplier. When the network 

completed learning for 200 face images, then the weights were used to test the performance of 

network. The testing procedure was quite simple where the weights are fixed because they were 

collected from training period. These weights and corresponding feature inputs from test sample 

of faces were applied to 18 bit CSD multiplier as CSD coefficient and multiplicand respectively. 

Then the weighted sums are added with bias (saved from training period) before applying to AF 

to get the final output of each neuron. The result found from the neurons in output layer is the 

final result for testing images.  This above procedure was continued for different number of 

nonzero reduction from the weights and for each reduction, accuracy was counted for test 

images. Figure 3.1 represents a brief overview of the working procedure of NN for face 

recognition in both system level and hardware level.   
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Figure 3.1 Working procedures in system level and hardware level 

 

3.2 Hardware Implementation 

 To realize the full benefit of face or any pattern recognition application by using ANN 

classifier with CSD coefficients, it is important to implement ANN system in hardware level 

because of slower execution time in software based ANN system. Any real time application of 

face recognition requires consuming less area with high speed recognition rate.  Therefore, NN 

system was designed in hardware platform to outperform the software based system.  
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Digital hardware based implementation of ANN can be divided in three sub categories: a) 

application specific integrated chip (ASIC) based implementations, b) field-programmable gate 

array (FPGA) based implementations, and c) digital signal processor (DSP) based 

implementations [43], [44]. The last type of implementation performs serial computation, thus it 

cannot provide the opportunity to preserve the inherent parallel architecture of ANN. The ASIC 

implementation suffers from non reconfigurability. Therefore the system cannot be reconfigured 

again after loading a design once. But FPGA can fulfill above conditions because it can be 

reconfigured and it is capable of performing parallel calculations. Thus FPGA implementation 

was selected for this project. 

 The hardware implementation of ANN was simulated by ModelSim simulator and then 

synthesized by using Xilinx ISE. Then the design was implemented in XC6VLX550T FPGA 

from Xilinx Vertex 6 family which contains 85,920 slices, 632 block RAM each with 36 Kbits in 

size and each slice contains four LUTs and eight flip-flops where only some slices can use their 

LUTs as distributed RAM [45]. The behavioral level design of ANN was done by using VHDL 

language.  

 In hardware implementation, the offline training of ANN was performed by using Matlab 

and the inputs, weights and bias data required for the hardware platform were transferred from 

Matlab as shown in figure 3.1. The whole ANN system in hardware was scaled by a factor of 

10000 for the system’s simplicity because the inputs, weights and biases contain fractional parts. 

Therefore, the fractional parts can be avoided by multiplying a scale factor, 10000 which causes 

a shift in positions of all inputs, weights and up to four digits from fractional part were 

considered. Only the integer parts of all data were considered after scaling. As a result, the 

network also provided scaled outputs. So scaling the ANN makes easier to design the hardware 
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system as the system does not require dealing any data with fractional part. Figure 3.2 presents 

the top level block diagram of hidden layer and output layer where the outputs of hidden layer 

are used as inputs to output layer. Each element of feature vector is applied to all neurons in 

hidden layer in serial and each hidden neuron provides output at same time which goes to every 

neuron in output layer. Each neuron in output layer performs parallel computation to provide the 

final output of the neural network. 

 

Figure 3.2 Top level block diagram of hidden layer and output layer 

 

3.2.1 Hidden Layer Design 

Figure 3.3 represents the block diagram for hidden layer where both input and weights is 

18 bit long. Each CSD weight contains positive and negative nonzero elements and these weights 

are collected from Matlab system level simulation. Therefore, in Matlab, a piece of code is 

written which allows splitting the positive and negative nonzero elements of CSD weights and 

save these values in different places. These positive and negative nonzero elements for each 

neuron are transferred and saved in two ROMs: Weight_pos and Weight_neg as mentioned in 

figure 3.3. Therefore, each neuron has two weight ROMs associated with it which hold these two 

types of nonzero elements of CSD weights and the size of the ROM depends on the number of 

inputs of a neuron. The size of each weight ROM in hidden layer for both PCA and LDA 
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network is 39x18 as both networks has same number of inputs. Each neuron has a counter which 

is responsible for this necessary synchronization. In Figure 3.3, when an input enters in hidden 

layer, it goes to each neuron. Each hidden neuron contains a CSD multiplier which takes 18 bit 

binary input and positive, negative elements of corresponding CSD coefficient from ROM, The 

multiplier provides 36 bit multiplication result which is stored in a register. When new input is 

applied to that hidden neuron, the multiplication result for that input is accumulated with 

previously stored weighted input. The neuron provides the required address to the weight ROMs 

for each input by using a counter so that ROMs provide required weights which are used as 

coefficients of the multiplier.  This procedure is continued until all inputs are applied in serial to 

hidden layer to get the output of a neuron.   After applying all inputs to a hidden neuron, the 

result is forwarded to the tansig AF to get the final output of that neuron. A straight forward LUT 

based array was used to realize the implementation of AF where each output value corresponds 

to a unique input address from a series of uniformly spaced input-output values [46], [47]. LUT 

is also a simple and faster way to realize AF and this method is used for high performance 

hardware design though it consumes a lot of memory to store the look up table in hardware.  

The number of hidden neurons for PCA-NN and LDA-NN was selected as 28 and 29 

respectively which were found as optimal number of neurons for hidden layer from table 3.1. 

Figure 3.4 represents the schematic diagram from Xilinx synthesis tool for a neuron in hidden 

layer. 

 Figure 3.5 presents the block diagram for performing CSD multiplication. The multiplier 

receives three inputs: 18 bit binary multiplicand and positive, negative nonzero elements of CSD 

weight which are stored in data and sign registers respectively. These data and sign values are  
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Neuron 1
Bias 0

Neuron 2

Neuron n

Weight 0_pos

Weight 0_neg

addr 1

Data_out 1

Clock
Load
Reset

Data_in

Neuron arrayWeight ROM array

Bias 1
Weight 1_pos

Weight 1_neg

Bias n
Weight n_pos

Weight n_neg

addr 2

Data_out 2

addr n

Data_out n

 

Figure 3.3 Block diagram of hidden layer of neural network in hardware implementation 

 

 

Figure 3.4 Schematic diagram of a neuron in hidden layer 
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supplied to the multiplier by corresponding neuron and used to represent a CSD number. The 

data register contains 1 for positive nonzero positions of weight element and the sign register 

contains 1 for the negative positions of nonzero elements in CSD number. The shift1 and shift2 

both are 32 bit signals in shown in figure 3.5. These signals are found from 18 bit binary 

multiplicand where both signals are the 36 bit sign extended value of multiplicand and shift2 is 

left shifted by 1. The signal din is generated initially which is the two’s complement value of 

shift1 or shift2 depending on the first and second bit positions of sign and data. These four 

signals shift1, shift2 and data, sign are used as inputs to shift and accumulator which performs 

two operations: a) it performs left shift by 2 on shift1 and shift2 and right shift by 2 on data and 

sign; b) next it performs addition or subtraction of shift1 or shift2 with din depending on the bit 

position of data and sign to provide dout. As 18 bit CSD coefficient contains maximum of 9 

nonzero elements, therefore there can be maximum of nine shift and addition or subtraction 

operations are required for any 18 bit CSD multiplication and the final result is expressed as 

Product in figure 3.5. Thus the number of partial products is reduced by half for any n bit 

multiplier. 

 

Figure 3.5 Block diagram for CSD multiplier 
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The RTL schematic diagram found from Xilinx synthesis tool for CSD multiplier is presented by 

figure 3.6.

 

Figure 3.6 RTL schematic diagram of CSD multiplier 

 

3.2.2 Output Layer 

 The output layer contains total of 6 neurons for 200 test images. The architecture of this 

layer is designed to work in fully parallel where each neuron has n number of multipliers 

depending on the number of inputs to this layer. For PCA-NN, the number of hidden neurons is 

selected as 28 from system level. Therefore each output neuron for PCA-NN contains 28 

multipliers. Each output neuron has its own weight ROM of size 28x18 to hold the weights for 

PCA-NN and 29x18 for LDA-NN. When all inputs enter in to output layer, they go to each 

output neuron. Figure 3.7 presents the block diagram for a neuron in output layer where each 

neuron contains n number of multipliers which is equal to the number of inputs. Therefore, all 

multipliers of each output neuron perform parallel multiplications and provide the multiplication 

outputs at same time. Again, each output neuron has its own bias associated with it. An adder 

tree was used to add multiplication results and bias of a neuron in output layer. The final step 
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consists of applying the 32 bit output (produced by the adder tree) as input address to tansig 

activation function to produce the final output of a neuron in output layer.  

 

Figure 3.7 Block diagram of a neuron in output layer 
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1 Performance Analysis 

 NN based face recognition with CSD coefficients were implemented where the NN 

system was synthesized by using Xilinx ISE for a Xilinx FPGA device, XC6VLX550T. This 

chapter contains the results found from system level implementation, hardware implementation, 

comparison between system and hardware level results. The last part of this chapter contains the 

comparison between NN with CSD multiplier and binary multiplier in hardware platform. 

4.1.1 Accuracy Analysis of System Level Implementation  

 In system level implementaiton, a multiplier was designed to perform CSD multiplication 

in Matlab as discussed in section 3.1 and it helps to realize how the system may perform in 

hardware platform. Then 39 input feature elements of test images were applied to the network 

both for PCA and LDA.  The results found from system level Implementation is represented in 

table 4.1: 

 Nonzero 

elements 

reduced by 

PCA-NN LDA-NN 

Classification 

accuracy (%) 

Epoch Classification 

accuracy (%) 

Epoch 

With CSD 

system 

 

1 92.0 19 94.0 20 

2 92.0 18 93.5 17 

3 87.5 22 87.5 19 

4 76.5 21 77.0 21 

Without CSD 

system 

-- 92.0 18 94.0 19 

Table 4.1: Accuracy and other parameter comparison using Matlab for face recognition 
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The last row of table 4.1 presents the results found from Matlab where CSD system was not used 

and others contain the results when CSD coefficients and CSD multiplier were used. Here, the 

nonzero elements from CSD coefficients were reduced from 1 to 4. Therefore these weigths were 

not accurate because they are not exactly same to the original weights produced by network. For 

each reduction, the recogntion accuracy were counted. From table 4.1, we can see that 

classification accuracy for PCA-NN after reducing single nonzero element is 92% which is same 

to the result found from if CSD system was not used. Moreover, the recognition rate started to 

decrease gradually for both PCA-NN and LDA-NN when the number of nonzero elements of 

CSD weights was reduced. The accuracy dropped by 16.8% for PCA-NN if nonzero elements 

were reduced by 1 and 4. For LDA-NN, the recognition rate for both CSD and without CSD 

system is same and here the accuracy also dropped 18.1% for 1 and 4 nonzero elements reduced 

weights. In table 4.1, epoch mentions the number of iterations required for the network while 

learning and we can see that it requires almost same learning iteration for the network to learn 

for both PCA-NN and LDA-NN.   

   4.1.2 Hardware Based Performance 

 To realize the full benefit of any system, it is necessary to implement the system in 

hardware level. NN with CSD coefficients for human face recognition was implemented in 

hardware by using VHDL coding. A description of the implemented design was discussed in 

chapter III.  

4.1.2.1 Accuracy Realization of Designed System from Simulation 

 ModelSim simulator was used to verify if the VHDL description of NN really performs 

quite similar to system level performance. At first, the network was designed using VHDL and 
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then test images were used to test the accuracy of the designed system. Table 4.2 presents the 

result in terms of accuracy for NN with CSD coefficients for face recognition: 

Nonzero 

elements of 

CSD coefficient 

reduced by 

Accuracy for PCA-NN (%) Accuracy for LDA-NN (%) 

 From simulation  From system 

level 

  

From simulation  From system 

level 

1 92.0 92.0 93.5 94.0 

2 91.5 92.0 92.5   93.5 

3 87.0 87.5 86.0 87.5 

4 75.5 76.5 76.0 77.0 

Table 4.2 Accuracy comparison between hardware and software implementation of PCA-NN and 

LDA-NN with CSD coefficients 

From table 4.2, we can see that the recognition accuracies for face images from 

simulation are almost similar to the accuracy found from Matlab with using CSD multiplier. The 

accuracies for PCA-NN and LDA-NN system from ModelSim simulation started to reduce 

gradually with the reduction of nonzero elements from CSD coefficients. For PCA-NN, the 

recognition accuracy dropped by 17.9% for 1 and 4 nonzero bit reduction from CSD coefficients 

in ModelSim simulation and from system level, it was 16.8% for the same number of bit 

reduction from coefficients. In table 4.2, for ModelSim simulation of LDA-NN, the accuracies 

were found 93.5% and 76.0% for nonzero bits reduction from weights by 1 and 4 respectively 

and the accuracy rate was fallen by 18.7% for the same number of bit reduction but in system 

level simulation, it was 18.1%.  

 There are 40 classes for face database and each class contains 10 identical face images. If 

maximum number of corrected faces per class is considered for both PCA-NN and LDA-NN, 

then the recognition accuracy started to increase. For example, if NN for PCA provides 8 correct 

outputs for a class and NN for LDA provides 9 correct outputs for that same class, then 
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maximum correct images was considered as 9 for that specific class. In this way, for each class, 

highest correct faces were counted and it was found that the total recognition rate improved by a 

significant amount for both PCA and LDA network. Table 4.3 represents the final results for 

maximum corrected images for 40 classes in hardware platform for the first nonzero element 

reduction from coefficients where the total recognition rate for 40 classes is 95.2 which mean the 

rate improves by 3.4% for PCA network and 1.8% for LDA network: 

PCA-NN 

(%) 

LDA-NN 

(%) 

Maximum correct faces for 40 

classes (%) 

92.0 93.5 95.2 

Table 4.3 Improvement in total recognition rate after considering maximum number of correct 

faces for 40 classes in hardware platform 

4.1.2.2 Resource Requirements   

 XC6VLX550T FPGA device from Xilinx Virtex 6 family was used for implementation. 

The use of CSD coefficients in NN reduces the area requirements of the network because CSD 

coefficients contains maximum half nonzero elements of total bit width. If the nonzero bit is 

reduced from the coefficients, the area requirement also started to reduce more.  Table 4.4 

represents the resources required for each nonzero bit reduction from coefficients of both PCA-

NN and LDA-NN. From this table, we can see that the number of slice registers and slice LUTS 

are reduced by 19.47% and 51.86% respectively for nonzero elements of CSD coefficients 

reduced by 1 and 4 of PCA-NN. For LDA-NN, the number of slice registers and LUTS are 

reduced by 20.71% and 52.33% respectively for the same number of nonzero elements reduction 

from the coefficients of this network.  
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Nonzero bits 

reduced by 

PCA-NN LDA-NN 

# of slice registers # of slice LUTs # of slice registers # of slice LUTs 

1 7366  59964  7668  61818  

2 6922  49373  7173  51134  

3 6466  39189  6654  39851  

1 5932  28862  6080  29466  

Table 4.4: Resource requirements for PCA and LDA network from Xilinx synthesis 

Therefore there is a great reduction of area with the reduction of nonzero elements from 

network’s CSD coefficients but here we have to sacrifice the accuracy because the network’s 

accuracy also starts to reduce with the reduction of nonzero elements from CSD weights. The 

objective of this work is to reduce the area requirement of NN with CSD coefficients in 

comparison to corresponding binary network for face recognition application. Therefore a signed 

binary multiplier was used instead of CSD multiplier to observe the network performance. Both 

CSD and binary multiplier were synthesized and the results are shown in following table where 

we can see that CSD multiplier requires 0 slice registers and 19% less slice LUTs in comparing 

to binary multiplier. 

Type of multiplier # of slice registers # of slice LUTs 

CSD 0 422 

Binary 95 521 

Table 4.5: Resources required by multipliers 

Figure 4.1.a and 4.1.b show the graphical representations of table 4.4. From these figures, 

we can see that the number of slice registers and slice LUTs reduces gradually and almost 
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linearly with the reduction of nonzero elements from CSD coefficients from both networks. 

Moreover, the resource requirement for PCA-NN is less than LDA-NN because PCA network 

has 28 neurons where as LDA network had 29 neurons in hidden layer. Therefore LDA network 

requires more resources for saving the positive and negative nonzero elements of CSD 

coefficients in ROM as discussed in previous chapter.   

 

 

Figure 4.1.a Number of nonzero elements reduction vs. slice registers requirement  
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Figure 4.1.b Number of nonzero elements reduction vs. slice LUTs requirement  

  

4.1.2.3 Timing Performance  

 The time requirements for PCA-NN and LDA-NN are presented in table 4.6 where the 

time started to reduce gradually with the reduction of nonzero elements from CSD coefficients.  

 

Nonzero 

elements reduced 

by 

PCA-NN LDA-NN 

Minimum time 

(ns) 

 

Maximum 

operating 

frequency 

(MHz) 

Minimum time 

(ns) 

 

Maximum 

operating 

frequency 

(MHz) 

1 7.980 125.3 7.981 125.3 

2 7.092 141.0 7.092 141.0 

3 6.194  161.4 6.194  161.4 

4 5.278  189.5 5.278  189.5 

Table 4.6 Time requirements for PCA-NN and LDA-NN from Xilinx synthesis 
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From the above table, we can see that both network speed up by 33.9% for nonzero elements 

reduction by 1 and 4. But here we have to sacrifice the accuracy of the network because from 

table 4.2, the accuracy also started to decrease gradually with the reduction of nonzero bits from 

CSD coefficients of PCA-NN and LDA-NN. 

From table 4.6, we can see that that both PCA and LDA network require almost same 

processing time. Recalling the architecture of hidden layer and output layer from chapter III, 

hidden layer receives feature elements in serial but all hidden neurons perform computations in 

parallel. The output neurons in output layer receive input at a same time and perform parallel 

computations. As all neurons in both networks perform parallel computations and both of them 

have same number of feature elements, therefore both networks require same processing speed.  

The time requirements for PCA-NN and LDA-NN from table 4.3 are plotted in figure 

4.2.a and 4.2.b respectively with the reduction of nonzero elements from PCA-NN and LDA-NN 

where we can see that the processing time reduces almost linearly for each nonzero bit reduction 

from CSD coefficients of both networks.  
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Figure 4.2.a Nonzero elements reduction vs. minimum time requirement for PCA-NN 

 

 

Figure 4.2.b Nonzero elements reduction vs. minimum time requirement for LDA-NN 
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4.1.2.4 Comparison of Hardware Implemented CSD Based NN with Binary NN   

To realize how the design of hardware based NN with CSD coefficients performs in 

comparison to the network with binary system; NN with binary coefficients was used to compare 

the results. Binary number system is widely used in most of the hardware based systems. 

Therefore a signed binary multiplier was used instead of CSD multiplier where other network 

parameters are kept same and the results for resource and time requirement are shown in table 

4.7.  

 

Coefficient 

system 

PCA-NN LDA-NN 

Number of 

slice 

registers 

Number of 

slice LUTS 

Required 

time 

(ns) 

Number of 

slice 

registers 

Number of 

slice LUTS 

Required 

time 

(ns) 

CSD  7366  59964  7.980 7668  61818  7.981 

Binary  21973  78205  5.456 22792  80262  5.456 

Table 4.7 Resource and time requirements for PCA-NN, LDA-NN with CSD and binary 

coefficient system from Xilinx synthesis 

From the above table we can see that the number of required slice registers for PCA-NN 

and LDA-NN are 66.4% and 66.3% respectively which shows that both networks require less 

than half slice registers than corresponding binary network. For any hardware based system, the 

number of required slice register is an important parameter and the low requirement of slice 

registers indicates more compactness of the network. Therefore if the number of slice registers is 

reduced, it implies significant reduction in area. Moreover CSD based PCA and LDA networks 

require 23.3% and 22.9% less number of slice LUTs respectively than in comparison to 
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corresponding network with binary coefficients. But network with CSD coefficients requires 

little bit more time than the time required for the network with binary coefficients. Though CSD 

system requires some more time, but it helps to reduce the area of hardware based neural 

network by almost half thus making the size of the network smaller which is the objective of this 

thesis. In most real time application of neural network with face recognition, the size of face 

database is very large and it requires large area for hardware based large NN system. Therefore 

the advantage of NN with CSD coefficients in hardware platform is that it is more suitable for 

large face database with size almost double than corresponding network with binary coefficients.  
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CHAPTER V 

CONCLUSION AND FUTURE WORKS 

In this thesis, neural network classifier with CSD coefficients was used for face recognition 

application. Hardware implementation of this classifier was accomplished for realizing the full 

benefits of this application. Area and time are two most important parameters in any hardware 

design and binary system is widely used in designing hardware system. Thus CSD coefficients 

were used instead of binary coefficients to minimize the area requirement of neural network to 

make the network more compact because CSD contains minimum possible nonzero element 

among all signed digit number system. As a result, when the weights of neural network are saved 

by using CSD system for face recognition application, it consumes very low space and requires 

performing lowest possible number of partial products and additions to get weighted input which 

saves the area also. Therefore it was possible to reduce the area for PCA-NN and LDA-NN by 

almost half than its binary counterpart while much not compromising the speed of overall 

network in comparison to binary neural network system. The results from FPGA implementation 

resemble a significant improvement in space requirement for the recognition of face images for 

both PCA-NN and LDA-NN after using CSD coefficients than binary coefficients while both 

PCA and LDA networks also maintained satisfactory accuracies almost similar to the system 

level. Moreover, it was found that there was a significant improvement in recognition rate by 

considering maximum number of correct faces from PCA-NN and LDA-NN for all classes. The 

results also show that there was a gradual reduction in resources, time and recognition rate with 

each nonzero element reduction from the coefficients of both networks. 
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5.1 Contribution of Proposed Work 

 Nowadays, area and speed are two important issues in any hardware based systems of 

almost any real life applications. Most of the recent technologies are very compact in terms of 

space requirement. Face recognition is an advance technique with a very high demand in 

numerous applications in real world and the size of neural networks classifier with face 

recognition application become very large because of the large database of face images. Thus the 

method proposed in this thesis is proven to be useful for neural networks with face recognition 

application in real time hardware system as this method significantly reduce the size of the 

required silicon area for NN. Therefore FPGA implementation of the proposed idea can be used 

to generate a promising real time face recognition system by reducing the size of the network 

while much not compromising the speed required of the system.  

5.2 Future Work 

 For further effectiveness of proposed work, the face recognition application can be 

implemented with different types of neural network and activation functions to observe the 

performance of the recognition system. The hardware system accuracy can also be improved by 

using other effective feature extraction methods. The performance of the system can be observed 

by using other standard face databases. Moreover, this recognition application can also be 

implemented by using analog and hybrid neural network classifier which offers some level of 

flexibility and takes some advantages of digital implementation.  
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