
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2013

Application of Neural Networks with CSD
Coefficients for Human Face Recognition
Ayesa Parvin

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Parvin, Ayesa, "Application of Neural Networks with CSD Coefficients for Human Face Recognition" (2013). Electronic Theses and
Dissertations. Paper 4746.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Scholarship at UWindsor

https://core.ac.uk/display/72778081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F4746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/4746?utm_source=scholar.uwindsor.ca%2Fetd%2F4746&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Application of Neural Networks with CSD Coefficients for Human Face Recognition

by

Ayesa Parvin

A Thesis

Submitted to the Faculty of Graduate Studies

through Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

© 2012 Ayesa Parvin

Application of Neural Networks with CSD Coefficients for Human Face Recognition

by

Ayesa Parvin

APPROVED BY:

__

Dr. David Ting, External Reader

Department of Mechanical, Automotive, and Materials Engineering

__

Dr. Huapeng Wu, Departmental Reader

Department of Electrical and Computer Engineering

__

Dr. Roberto Muscedere, Co-Advisor

Department of Electrical and Computer Engineering

__

Dr. Majid Ahmadi, Co-Advisor

Department of Electrical and Computer Engineering

__

Dr. Rashid Rashidzadeh, Chair of Defense

December 20, 2012

iii

DECLARATION OF ORIGINALITY

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any

other material from the work of other people included in my thesis, published or otherwise, are

fully acknowledged in accordance with the standard referencing practices. Furthermore, to the

extent that I have included copyrighted material that surpasses the bounds of fair dealing within

the meaning of the Canada Copyright Act, I certify that I have obtained a written permission

from the copyright owner(s) to include such material(s) in my thesis and have included copies of

such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

iv

ABSTRACT

 Face recognition is one of the most popular, reliable and widely used applications in real

world. It is the main biometric used by humans in many security, law enforcement and

commercial systems and high demand of this application attracts researchers from various fields

such as image processing, pattern recognition, neural network and computer vision etc. In a

Human Face Recognition Systems, we start with pre-processing of the data followed by feature

extraction for dimensionality reduction and then classification. In this thesis, neural network

classifier with CSD coefficients is used to make the area required for implementation of

recognition system more efficient. The FPGA implementation of the proposed technique

indicates almost 50% saving in the area required for face recognition application by using neural

network classifier with CSD coefficients while the processing speed is improved in comparison

to its binary counterpart. Extensive experimental results were conducted to show the utility of the

proposed technique.

v

DEDICATION

I would like to dedicate this thesis to my parents, grand-parents and Shifat.

vi

ACKNOWLEDGEMENTS

First of all, I want to give thank to the Almighty Allah for helping me through the research work.

Next, I am very thankful my honourable and knowledgeable advisors, Dr. Majid Ahmadi and Dr.

Roberto Muscedere for their constant support, guidance and constructive feedback. I would like

to give thanks my honourable committee members for their thoughtful modifications and inputs

regarding the thesis work during my first and second seminars. I want to thank departmental stuff

Andria Ballo for supporting me in many administrative ideas. Finally I want to thank my parents,

grandfather and Shifat for their constant support and help.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ABSTRACT ... iv

DEDICATION ...v

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES ...x

LIST OF ABBREVIATIONS .. xi

CHAPTER

I. INTRODUCTION

1.1 Motivation ...1

1.2 Proposed Work ...2

1.3 Thesis organization ...4

II. BACKGROUND STUDY AND REVIEW OF LITERATURE

2.1 Face recognition ..5

2.2 An Automatic face recognition system...7

2.3 Feature Extraction Method ..8

 2.3.1 Principle Component Analysis (PCA)8

 2.3.2 Linear Discriminant Analysis (LDA).................................9

2.4 Classification ..11

 2.4.1 Artificial Neural networks (ANN)14

 2.4.2 Model of a Neuron ...9

 2.4.2.1 CSD Coefficient System and Multiplier16

 2.4.3 Network Architecture ...19

 2.4.4 Training for Neural Networks ..21

 2.4.5 Learning Algorithm ..23

III. IMPLEMENTATION

3.1 System level Implementation ...27

3.2 hardware Implementation ...31

 3.2.1 Hidden Layer Design ...33

 3.2.2 Output Layer ..37

viii

IV. RESULTS AND DISCUSSION

4.1 Performance Analysis ..39

 4.1.1 Accuracy Analysis of System Level Implementation39

 4.1.2 Hardware Based Performance ..38

 4.1.2.1 Accuracy Realization of Designed System

 from simulation……….…………………….40

 4.1.2.2 Resources Requirements42

 4.1.2.3 Timing Performance45

 4.1.2.4 Comparison of Hardware Implemented CSD

 Based NN with Binary NN………………… .48

V. CONCLUSIONS AND FUTURE WORKS

5.1 Contribution of proposed work ...51

5.2 Future Work ..51

REFERENCES ...52

VITA AUCTORIS ...60

ix

LIST OF TABLES

2.1 Binary to CSD conversion table based on Reitwiesner’s right to left conversion algorithm 17

3.1 Variation in accuracy for different number of hidden neurons in Matlab 28

3.2 Effects of nonzero element reduction from 18 bit CSD weight (CSD weights are represented

in decimal format) 29

4.1 Accuracy and other parameter comparison using Matlab for face recognition 39

4.2 Accuracy comparison between hardware and software implementation of PCA-NN and

LDA-NN with CSD coefficients 41

4.3 Improvement in total recognition rate after considering maximum number of correct faces for

40 classes in hardware platform 42

4.4: Resource requirements for PCA and LDA network from Xilinx synthesis 43

4.5 Resources required by multipliers 43

 4.6 Time requirements for PCA-NN, LDA-NN with CSD and binary system from Xilinx

synthesis 45

4.7 Resource and time requirements for PCA-NN, LDA-NN with CSD and binary coefficient

system from Xilinx synthesis 48

x

LIST OF FIGURES

2.1 Samples of facial images from ORL database 6

2.2 Block diagram for NN based face recognition 7

2.3 Basic components of an artificial neuron 14

2.4 Hyperbolic Tangent and Sigmoid Activation Function 16

2.5 Fully connected feedforward neural network with single hidden layer and output layer 20

2.6 A taxonomy for learning process of neural network 21

2.7 Supervised training for NN 22

3.1 Working procedures in system level and hardware level 31

3.2 Top level block diagram of hidden layer and output layer 33

3.3 Block diagram of hidden layer of neural network in hardware implementation 35

3.4 Schematic diagram of a neuron in hidden layer 35

3.5 Block diagram for CSD multiplier 36

3.6 RTL schematic diagram of CSD multiplier 38

3.7 Block diagram of a neuron in output layer 37

4.1.a Number of nonzero elements reduction vs. slice registers requirement 44

4.1.b Number of nonzero elements reduction vs. slice LUTs requirement 45

4.2.a Nonzero elements reduction vs. minimum time requirement for PCA-NN 47

4.2.b Nonzero elements reduction vs. minimum time requirement for LDA-NN 47

xi

LIST OF ABBREVIATIONS

AF Activation Function

ANN Artificial Neural Networks

ASIC Application Specific Integrated Chip

CSD Canonical Signed Digit

DSP Digital Signal Processor

FFNN Feed Forward Neural Networks

FPGA Field Programmable Gate Array

LDA Linear Discriminant Analysis

LM Lavenberg-Marquardt

LUT Look Up Table

PCA Principle Component Analysis

RBF Radial Basis Function

ROM Read Only Memory

1

CHAPTER I

INTRODUCTION

Human face recognition is one of the active area of research and it is a preliminary step to a wide

range of practical applications which includes image processing, pattern recognition, personal

identity verification, video-surveillance, facial expression extraction, gender classification,

advanced human and computer interaction, computer vision [54]. Most of these methods are

using Artificial Neural Networks (ANN) classifiers approaches coupled with appropriate feature

extraction for recognition of human faces. ANN can learn from real time examples and it has the

ability to adapt with the changes in environment. It is widely used classifier for its fault tolerance

and robustness to noise which have opened the application of ANN in various fields of

engineering, science, economics, etc [4]-[6].

1.1 Motivation

Nowadays, face recognition is a hottest topic in the area of pattern recognition and image

processing since 1990 due to its vast demand in many real life applications and availability of

feasible technologies. All practical applications of face recognition require being very small in

size with high-speed recognition for controlling and accessing authorized systems. Therefore it is

necessary to use specialized hardware system for face recognition in order to meet real time

performance. ANN is a widely used and well- known classifier for human face recognition for

its robustness and good learning capability. It can be implemented in two ways: software

implementation and hardware implementation. The processing speed for face recognition in

software system is very slow which makes it quite impractical to implement the recognition

system in software. Moreover, the face database contains very large amount of data which

2

requires large memory space in software system. Therefore, to realize the full benefits of face

recognition application with neural network classifier, it is important to implement the system in

dedicated hardware system such as FPGA implementation which offers high space management

with good speed and recognition rate for this real time application by taking the full advantages

of inherent parallelism of ANN architecture [2]. Thus hardware based ANN for face recognition

application offers some levels of flexibility over software based system because it requires less

area with high- speed recognition rate in hardware platform than comparing to software system.

1.2 Proposed Work

This thesis presents specialized hardware implementation of human face recognition by

using ANN classifier to perform face recognition from large face database. This dedicated

hardware system requires very low-area which is more suitable for large face database in

practical system. The proposed architectures presented in this thesis can easily be applied to

other applications.

The preprocessed face images are applied to feature extractor for dimensionality

reduction and to get the important features for ANN classifier for recognition purpose. In

hardware platform, the area and speed are two important parameters and efficient design of ANN

is mostly depends on how to efficiently design a single neuron where the weights of the neuron

are saved. When feature vector of an face image are applied to the network, the feature elements

and corresponding synaptic weights are multiplied to get the weighted inputs and the summation

of all weighted inputs are added with bias before passing through the Activation Function (AF)

to get the final output of a neuron. AF is used to limit or squash the amplitude of a signal to some

finite value. The computation process in hardware platform is usually done by using binary

3

system. When binary coefficients are saved in the network, it consumes more area and the binary

multiplication process to get the weighted inputs consumes most of the processing time in a

single neuron which is a major problem of hardware based ANN. Therefore if it is possible to

reduce the size of single neurons with much not compromising the computation time for

multiplication process of neurons, then the size of whole neural network system will be small

and compact in comparing to binary network. As a result the network can also accommodate

more information about large face database.

In the proposed method, Canonical Signed Digit (CSD) coefficient is used instead of

binary coefficient in hardware platform to get weighted input by multiplying CSD coefficient

with corresponding binary input of neurons in ANN system. The advantage of CSD coefficient is

that the CSD weight contains smaller number of nonzero elements among all signed digit

number system and the number of maximum possible nonzero elements can never be greater

than the half of total number of bits in a CSD system. Thus the CSD coefficients requires less

area in a network and CSD multiplier also produces less partial products in comparison to binary

multiplier which means less area requirement with almost same level of accuracy and speed in

hardware based recognition system. Look up table (LUT) based Tangent-Sigmoid (TanSig) is

used to realize the activation function. After implementing the whole NN system, feature vectors

from two popular feature extraction method for face images were applied separately to test the

performance of the hardware implemented ANN system.

4

1.3 Thesis Organization

The rest of the thesis is organized as follows:

Chapter II contains a brief description on face recognition, its importance in today’s world and

application in real world, necessary steps and algorithms to complete the procedure of face

recognition for example PCA feature extraction, ANN for classification etc. Chapter III explains

the software and hardware implementation procedure of ANN classifier which is used to

recognize face images. The results found from these two types of implementation and their

comparison are describes in Chapter IV and the last chapter contains the conclusion and future

work.

5

CHAPTER II

BACKGROUND STUDY AND REVIEW OF LITERATURE

2.1 Face Recognition

An automatic face recognition system is used to recognize or identify a person

automatically in still or video images of a scene from a stored database for security,

authentication etc. It is one of most popular topic in the area of image processing and pattern

recognition since 1990 due to its increasing importance and application in many commercial

opportunities and security systems. Moreover, availability of feasible technologies and high

demand of this reliable method for law enforcement applications draw the attention of many

researchers from various fields such as pattern recognition, image processing, neural networks,

computer vision etc. to conduct research in this area.

But face recognition system is unique among other recognition systems such as

fingerprint and iris recognition system, where the sensor needs to touch the object directly or

laser beams require scanning a person’s eye directly which requires a great deal of human

participation. However, human face recognition is a non-invasive biometric method for

identification and recognition of a face image from the faces in a stored database of several

images [54]. This allows the processing for recognition without a person’s possible awareness.

There are some standard test databases for testing the performance of face recognition

system. There are many universities and institutions which have their own face databases; for

example, the Yale face database, AT&T "The database of faces" (also formerly known as "The

ORL database of faces"), FERET database, SCface - Surveillance Cameras face database, MIT-

CBCL face recognition database, NIST mugshot identification database, The AR face database

(of Purdue University) etc [7], [8]. Each database has its own characteristics, so it is necessary to

select appropriate one based on the application at hand. These databases deal with a set of data

containing, different illumination, facial expression, aging, occlusion, etc. In this research, ORL

face database [9] were selected for its some distinct advantages for example well organized

database, small size of the images, mono color etc. This database cont

person and all of these 10 images are identical to each other. There are total 40 classes. A dark

homogeneous background with an upright, frontal position was used for all these images and

they vary in rotation, expression, gray sca

different times with variation in lightings, facial details with facial expressions (like with or

without glasses, smiling or without smiling, closed or opened eyes) etc. The size of each image is

92x112 and the gray level per pixel varies from 0 to 255. Some sample images from this

database are shown in Figure 2.1.

Figure 2.1 Samples of facial images from ORL database

6

) etc [7], [8]. Each database has its own characteristics, so it is necessary to

e one based on the application at hand. These databases deal with a set of data

ning, different illumination, facial expression, aging, occlusion, etc. In this research, ORL

face database [9] were selected for its some distinct advantages for example well organized

database, small size of the images, mono color etc. This database contains 10 images for each

person and all of these 10 images are identical to each other. There are total 40 classes. A dark

homogeneous background with an upright, frontal position was used for all these images and

they vary in rotation, expression, gray scale, position etc. Some of the images were taken at

different times with variation in lightings, facial details with facial expressions (like with or

without glasses, smiling or without smiling, closed or opened eyes) etc. The size of each image is

nd the gray level per pixel varies from 0 to 255. Some sample images from this

database are shown in Figure 2.1.

Figure 2.1 Samples of facial images from ORL database

) etc [7], [8]. Each database has its own characteristics, so it is necessary to

e one based on the application at hand. These databases deal with a set of data

ning, different illumination, facial expression, aging, occlusion, etc. In this research, ORL

face database [9] were selected for its some distinct advantages for example well organized

ains 10 images for each

person and all of these 10 images are identical to each other. There are total 40 classes. A dark

homogeneous background with an upright, frontal position was used for all these images and

le, position etc. Some of the images were taken at

different times with variation in lightings, facial details with facial expressions (like with or

without glasses, smiling or without smiling, closed or opened eyes) etc. The size of each image is

nd the gray level per pixel varies from 0 to 255. Some sample images from this

7

2.2 An Automatic Face Recognition System

 There are some major steps need to be considered for performong an automatic face

recognition sytem namely preprocessing, feature extraction and classification. These steps are

shown by using a block diagram in figure 2.2. At first, the face images are collected together

which is known as face databese and then the next step is preprocessing step which allows to

enhance the image quality because the images may taken at different situations. Images may be

degraded with noise and poor illumination. So it is necessary remove the noise and normalize the

color of images. Among many other methods, histogram equalization method is a common

method to enhance the histogram of pixel intensities of images [48], thus the image quality

improves. The third and fourth steps are used to reduce the dimension and extract important

features from face images and save those features for classificatio purpose. The last step consists

of classification method which allows to recognize an unknown face image depending on the

extracted features of the database in previous step.

Figure 2.2 Block diagram for NN based face recognition

8

2.3 Feature Extraction Method

 Face recognition is a very high-dimensional and complex pattern recognition problem.

Therefore it is necessary to reduce the dimension and extract the necessary features of face

images before applying it to a classifier so that the recognition rate improves. Principle

Component Analysis (PCA) [23]-[27] and Linear Discriminant Analysis (LDA) [20] are two of

the widely used method for feature extraction and they are useful for large face databases [19],

[21], [22] .

2.3.1 Principle Component Analysis (PCA)

 Principle Component Analysis (PCA) is an effective feature extraction method based on

Eigenfaces [24], [26], [27] . It’s function is to extract less quantity of feature without missing

most important information and reduce the dimention of original face pattern which spans over

high dimension [25], [28]. Principal components or eigenfaces are known as a small set of

characteristic feature information of face images and these features are built from the variance

between training samples [24]. For M number of images with pixel size of ���	 ∗ 	���, the pixel

elements of each images of training set, �	 = [��		�� 	…	��] are alphabetically ordered. Then the

mean, � is taken for the vectors as shown in equation (2.1) and subtracted from ��	 to get the

mean subtracted images, Ф .

 �	 = �
��∑ ��		����� (2.1)

 �� =	��	 − 	� (2.2)

Then the covariance matrix, � is computed for the mean subtracted images:

 �	 = �
��� ��		�����

��� (2.3)

9

Here �	 is a high dimensional matrix for M images. Next eigenvectors of covariance matrix is

calculated from by solving (2.4) where λ is the eigenvalue.

 ��	 = 	�� (2.4)

Eigenvectors are a set of nonzero orthonormal vectors and when it operates on another vector

function, generates a scalar multiple result known as eigenvalues which describes best about the

distribution of that vector function [24]. Therefore, principal component, � can be obtained by

multiplying eigenvectors, � with matrix, �:

 �� 	= 	�	. �� (2.5)

Now PCA projection, � is used for both training and testing samples projection which results

corresponding set of weights, �� for each images as in (2.6). The arrangement of M set of

sample weights are expressed by in (2.7).

 �� =	��! . � = 	��!	. ��	 − 	�	� (2.6)

 = [��		�� 	…	��] (2.7)

2.3.2 Linear Discriminant Analysis (LDA)

 Linear Discriminant Analysis (LDA) is another popular and widely used feature

extraction method [19], [21]. PCA has a lack of discrimination ability and it may hold some

unwanted features from face images because of considering all variations across training samples

for example lighting variation, facial expressions [31] etc. PCA extracts features which are

important to represent a class [30], [31] and it might perform better for small number of samples

per class [30]. LDA extracts the most effective features for class separability [21] and for more

number of samples per class; LDA outperforms PCA [30]. But due to high computational cost of

LDA [32], it is not efficient to use LDA as feature extractor for high dimensional image.

Therefore, to get effective result, both PCA and LDA is used where PCA is used for dimension

10

reduction and LDA is used to extract features for class seperability from the reduced dimensional

images found from PCA [21].

 LDA is applied on the set of feature vectors found from principle component projections

of training samples in (2.7) which is used to find another subspace for second projection [22].

Therefore LDA requires two training samples to calculate scatter matrices. If i
th

class has qi

training samples and M is the total number of classes, then mean image per class, µ � and total

mean, µ" can be calculated by:

 µ � = �
#$∑ �#���� (2.8)

 µ" = �
��∑ ������ (2.9)

Above two equations are used to calculate within-class scatter matrix, Sw and between-class

scatter matrix, Sb where P(Ci) is the prior class probability:

 %& = ∑ '����(��� � 	 − µ ��. � − µ ��T
 (2.10)

 %) = ∑ '����(��� �µ � − µ"�. �µ � − µ"�!
 (2.11)

The advantage of applying LDA over PCA features is that it diminishes the complexity of

singular problem of Sw in (2.10) by creating another subspace to optimal project the data based

on Fisher Linear Discriminant criterion [31] as expressed in (2.12).

 * = |,-../.,|
|,-..0.,| (2.12)

 "1� = [�.*�…*�′] (2.13)

In (2.13), *"1�	is the final set of eigenvectors of %) ∗ 	%&2�		matrix for M largest eigenvalues.

11

2.4 Classification

When the feature extraction method is applied and feature vectors for training and testing

images are ready, then these vectors are sent to a classifier for recognization. There are different

types of classifier used such as k-Nearest Neighbors, Support Vector Machines (SVM) and

Artificial Neural Networks (ANN) etc.

 k-Nearest Neighbors is a simple algorithm used as a classifier where usually Euclidian

distance is used to calculate the distance between a test sample and training samples and the

object is assigned to the class which most frequently responds among the k nearest training

samples. It provides good performance for the optimal values of k [50].

 A Support Vector Machine (SVM) finds the hyperplane in the possible feature space and

tries to maximize the distance between hyperplane and data points by constructing two parallel

hyperplanes. The classification accuracy of a test sample increases with the larger distance

between these two parallel hyperplanes [29].

 Artificial Neural Networks (ANN) is one of the most popular and widely used classifier

to face recognition and other pattern recognition problem. Its massive architecture, potential to

fault tolerance and learning capability make it widely acceptable among other classifiers. In [50],

it has shown that ANN performs better than k-Nearest Neighbors. Moreover, ANN outer

performs SVM for larger training set size [51]. Following section contains the brief description

about ANN.

2.4.1 Artificial Neural Networks (ANN)

The biological operation of neural system has long been facinated by humans [1]. So it is highly

desirable to understand the operation performed by this biological neural system in order to

12

realize the closely related or same features and apply these features in real life practical

applications. Many research effort has been put to derive ideas from biological paradigms in

order to make efficient intelligent systems. The main objective of modern neural network

research is to realize ANN from understanding different aspects of the biological counterpart. An

ANN is a massive parallel distributed structure with a large number of nodes and

interconnections to store experimental knowledge through learning process and make it available

to use. So there are two key properties for information processing capabilities which make ANN

to solve complex face recognition and other pattern recognition problem by using its

computational power. The first one is the ANN potential to fault tolerance due to its massive

parallel interconnected architecture so that ANN continues to work even when a neuron ot its

connecting links is damaged or disconnected and secondly, the learning capability from real life

examples and generalize it where generalization refers to provide reasonable outputs for inputs

while testing even in degraded conditions [10].

Supervised learining is one of the popular learning paradigm. Here input-output mapping

is done which involves the modification of synaptic weights of NN by applying a whole set of

training examples in batch mode. Each example contains a unique set of inputs and desired

response which is represented to the network and the synaptic weights of NN are modified by

learning in an iterative manner to reduce the difference between desired and actual output. The

network reaches to a steady position when the inputs of whole training examples are presented to

the network and it is repeated for many times therefore no significant modification is required in

the synaptic weights after certain iterations [10]. The learning procedure of ANN is time

consuming. It requires many training samples for learning to get the network’s outputs similar to

13

desired responses. But after the network finishes learning, it requires small time for testing a

sample.

ANN is used as target classifier for face recognition system in this thesis because it

provides greater degree of fault tolerance or robustness and it has the capability to adapt with the

changes in image data. Depending on the implementation type of ANN, it can be divided in to

three categories: analog implementation, digital implementation and hybrid implementation.

Analog implementation is difficult to design, but it offers higher density and efficiency in circuit

level, area, power consumption and its resolution is better and requires fewer components than

digital implementation. However, analog implementation suffers from inaccurate results due to

offsets and mismatch. It is more sensitive to noise and it gains errors due to fabrication

difficulties. Another main problem of analog implementation is storage of weights which

requires initialization and periodic refreshment. But most of the real world applications of ANN

are embedded in digital system. Digital implementation is more perfect for the complexity of

larger ANN due to less sensitivity in noise and fabrication difficulties. Moreover, digital

implementation offers more flexibility over analog counterparts in terms of fabrication

technology, simulation because for any given time, digital system is always more desirable than

analog technology [52]. However, digital implementation suffers from slow computation and

requirement of large area because of the requirement of multiplication and accumulation

processes to get weighted inputs. Hybrid implementation takes the advantages of both analog and

digital system where most of the circuitry performs analog computation to gain more speed and

power efficiency but the synaptic weights are stored by using digital circuit for long term storage

in digital registers and better noise immunity. However, the objective of this thesis is to reduce

14

the area requirement of digital neural network as a classifier for face recognition application by

using CSD coefficients which will be described later.

2.4.2 Model of a Neuron

ANN has a fundamental and basic information processing unit which is known as neuron.

The operation of NN mainly depends on the functionality of neuron. A neuron model may

contain three basic elements, namely a set of synapses or connecting links, an adder and

activation function [10]. The first element is also known as strength or weight of a neuron. Adder

is used for summing the weighted inputs. Here weighted inputs refer to the inputs which are

weighted or multiplied by the corresponding synaptic weights. The structure of each neuron in

the network includes a nonlinear function at the output end. The relation between input and

output could be reduced if there is an absence of nonlinearities [10] and an activation function

(AF) is used to express this nonlinear properties. An AF limits or squashes the amplitude of the

output of a neuron to some finite value. A typical normalized range for the output of a neuron

can be varied from 0 to1 or -1 to 1 depending on the functionality of AF. Figure 2.3 represents

the basic components for the nonlinear model of a single neuron.

∑

××××

××××

××××

Figure 2.3 Basic components of an artificial neuron

15

Mathematically the input-output relationship of a neuron can be described by the

following equation (2.14) and (2.15) where 3 =	��, ��, … , �5 are the inputs to the neuron

and	* = 	6�, 6�, … , 65 are the corresponding synaptic weights of the neuron.

 7 = �8 69�9� + ;
5

9��
 (2.14)

 �	 = 	<�7� (2.15)

The bias, b is added with the summed result of weighted inputs as shown in (2.14) and passed

through activation function to get the final output of the neuron which is denoted by y in (2.15).

The vector notation for (2.14) can be expressed by:

 7	 = 	*!�	 + 	; (2.16)

One of the most important parts of a neuron is the activation function. It has the

capability of fault tolerance and it is used to force the final output of neuron according of activity

level at the input of that neuron [10]. This nonlinear excitation function can approximate almost

any complex function. Sigmoid, hyperbolic tangent activation functions are the most commonly

nonlinear activation functions [10], [11] and they are mathematically expressed by (2.17) and

(2.18) respectively and graphically shown in figure 2.4. For this thesis the hyperbolic tangent

activation function is used both for all layers in NN for better accuracy [12].

 %=>?@=A�7� = �
�BCDE (2.17)

 F7Gℎ�7� = 	 CE2CDECEBCDE (2.18)

16

The hyperbolic tangent AF is differentiable and it ranges from -1 to +1which means an

asymmetric form can be assumed by this function with respect to the origin. So this activation

function has some analytical benefits as it has the opportunity to assume both positive and

negative values [10] which makes the ANN learning faster. The nonlinear characteristic of

hyperbolic tangent AF makes the learning of ANN more powerful.

Figure 2.4 Hyperbolic Tangent and Sigmoid Activation Function

2.4.2.1 CSD Coefficient System and Multiplier

Recalling figure 2.3, in each neuron, inputs are multiplied with the corresponding

synaptic weights and these weighted inputs are added with bias before passing through AF.

Different types of multiplier are used in literature for input and coefficient multiplication for

example binary multiplier, booth multiplier etc. In this thesis, Canonical Signed Digit is used as

coefficient for multiplication.

-1.5

-1

-0.5

0

0.5

1

1.5

-6 -4 -2 0 2 4 6

T
an

h
(a

),
 S

ig
m

o
id

(a
)

a

Tanh

Sigmoid

17

Canonical Signed Digit (CSD) number system is a special type of redundant

representation of radix-2 Signed Digit (SD) number system with ternary coefficient set {-1, 0, 1}

to minimize the number of nonzero digits [33], [37], [57]-[60] . A two’s complement number can

be converted in to canonic vector by using Reitwiesner’s algorithm [56] where it has shown that

the CSD representation for a number is unique (canonic) if the binary expansion of that number

is padded with an initial zero. The conversion algorithm works from LSB to MSB means from

right to left. Table 1 represents Reitwiesner’s right to left conversion algorithm for 2’s

complement number to CSD number.

bi+1 bi ci yi ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 0 0

1 0 1 1J 1

1 1 0 1J 1

1 1 1 0 1

Table 1: Binary to CSD conversion table based on Reitwiesner’s right to left conversion

algorithm

In table 1, for any two’s complement number, b, the resulting CSD representation is y. It is

assumed that the initial auxiliary carry variable, c0 = 0 and for other steps, ci is the carry

generated in previous step i − 1 and ci+1 is the carry out at step i. For example, if b = 47810 =

01110111102, then after using table 1, converted CSD number, y = 10001J0001J0. From this

example, we can see that binary number, b contains seven nonzero elements but after converting

18

in to canonical form, the number contains three nonzero elements which mean nonzero elements

are reduced by four. Moreover, if we consider the original Booth algorithm [34], the Booth’s

representation for b is 1001J10001J0 which means the number of nonzero elements is four. So,

from the above example, it is obvious that, CSD representation of almost any number contains

fewest numbers of nonzero elements among all signed digit representations [35], [59].

 CSD representations have some unique properties which are given below:

a) Canonic representation is a non-redundant system which and there cannot be

any adjacent nonzero elements (yi*yi-1 = 0), which implies that there can be

maximum of [(y+1)/2] nonzero elements for any y bit CSD number [57].

b) Each number has a unique CSD representation.

c) For a y bit CSD number, the minimum number of nonzero digits is

y/3+1/9+O(2
-y

) which means on average, a CSD representation of a two’s

complement number consist of almost 33% fewer non-zero elements than its

binary counterpart [39], [58].

A neural network may have few thousands of weights. As canonic representation

contains minimum possible nonzero elements, thus neural network requires less space to save the

weights in hardware system in comparing to binary representation. Moreover, CSD coefficient

multiplier reduces the number of partial products hence allowing minimum number of addition,

subtraction and shift operations to generate the product in a hardware system [38]. It has shown

that for any n bit multiplication with CSD coefficient, the total number of addition, subtraction

and shift operations never exceed by n/2 [36]. There are different types of CSD multiplier is

designed in literature such as constant coefficient CSD multiplier [59], [63], low error fixed

19

width multiplier [61], [62] etc. In constant coefficient multiplier, the coefficient is constant

which provides the opportunity to design a system with low space and high speed. In fixed width

multiplier, a 2n bit product found from n bit multiplication is truncated to n bit product by

eliminating (n-1) least significant bits [61], [62]. Usually a NN system has large number of

weights. Therefore, it requires designing large number of constant coefficient multiplier for the

system. Moreover, the number of inputs of each image depends on the size of face database and

the size of face database is always changing in real time system for improving the recognition

rate which means the number of feature elements of each image also changes. As a result, the

network’s weights also changes. Therefore, constant coefficient multiplier is not considered for

the design of NN system. In fixed width array multiplier, an error compensation method is

required to use for reducing the truncation error produced by the multiplier. But in NN, the AF

has the greater degree of fault tolerance hence low error fixed width multiplier is not selected for

the design of NN. Therefore, a CSD multiplier which performs shift and addition or subtraction

operation is used in this project.

2.4.3 Network Architecture

 The architecture of ANN depends on the learning algorithm because the structure of a

neuron in the network is closely related to the learning algorithm used for training the network.

Feed forward neural networks (FFNN), radial basis function (RBF) networks, recurrent neural

networks are mostly used network architectures. Feedforward neural networks can be devided in

to two sub catagories: single-layer feedforward networks and multilayer feedforward neural

networks [10].

20

Single-layer feedforward networks can not map curve like problem due to its limited

mapping ability and it can learn linearly separable patterns only. So it can not solve nonlinear

problems where the inputs are not linearly seperable [13]. But multilayer feedforward neural

network has single or more hidden layer with hidden neurons which helps NN to get an extra set

of synaptic connections and adds extra dimention to the network. Multilayer feedforward neural

network gives NN the ability to extract higher order statistics which is important when the input

layer’s size is large [10]. So, multiplayer feedforward neural network is used in this thesis so that

it will be helpful to classify large and complex face data. Figure 2.5 illustrates the architecture of

fully connected feedforward neural network with single hidden layer and output layer. The input

feature vector, 3	 = 	 [��	�� 	…	�5] propagates through the network on a basis of forward

direction from input layer to hidden layer(s) and next to output layer. The final output, L	 =
	[��		�� 	…	�M] is produced by the neurons in output layer.

Figure 2.5 Fully connected feedforward neural network with single hidden layer and output layer

21

2.4.4 Training of Neural Networks

ANN has the ability to learn from surrounding environment. Thus the network can

improve the performance through learning which develops over time by following some

prescribed measure. Basically a network starts gaining more knowleadge about its own

environment after each iteration of the learning process by adjusting the synaptic weights and

biases. Figure 2.6 illustrates the a taxonomy of the learning process [10].

Figure 2.6 A taxonomy for learning process of neural network

The learning paradigm of NN can be divided in to three classes, namely supervised

learning, reinforcement learning and unsupervised learning or self-organized learning (Figure

2.6). The training process for FFNN is performed under supervised error correction learning.

This learning assumes that there is an availability of a set of training sample with N number of

22

input-output examples as expressed in (2.19) where xi is the input vector and A� is the desired

response of i
th

 example respectively in training set.

 F = {�O�. A��}���5 (2.19)

This learning is performed under the supervision of an external “teacher” where the

teacher has its own built-in knowledge about the surroundings. The environment of interest is

represented by a set of input-target examples which unknown to NN. The teacher knows about

the precise correctness required for the outputs which are assigned to the network during error

correction learning. Figure 2.7 illustrates the schematic diagram for supervised training process.

∑

Figure 2.7 Supervised training for NN

When both the teacher or modeled system and the NN are exposed to a set of training

sample, the teacher helps providing the instruction or guideline to the network to get closer to

desired response for a specific training vector by adapting the parameters of the network in a

step-by-step repetitive manner under the combined influence of the training vector and error

signal. Here error signal,	Q� 	= 	 A� 		− 	�� 	 refers to the difference between the desired response,

23

A� and actual response, �� 	 generated by the network in response to the training input, ��. In this

way, the teacher transfers own knowledge to the network as fully as possible and when the

network is fully learned, then it can deal with the environment by itself [10].

2.4.5 Learning Algorithm

 Learning algorithms are used to update the weights of the network. There are various

algorithms for learning among which Lavenberg-Marquardt (LM) [16], [17] is a simple, robust

and efficient learning algorithm (by realizing accuracy) for training feed forward neural networks

[15]. The main objective of LM is to minimize the difference between actual output, �� and

desired response, A� of the network [15] hence improving the performance index. So the

network’s performance parameters such as weights and biases are required to be adjusted

through the leaning procedure in order to reduce the index or error function. The sum of squares

function or error function of the network can be expressed by (2.20) where N is the number of

elements of	Q�6�.

 <	�6� 		= 	∑ �A� − ����5���	

 =	∑ Q��	�6�5���

 =	∑ Q	�6�	Q!	�6�5��� (2.20)

Now the weight update matrix equation from Newton’s method is

 6�B� =	6� −	[∇�	<	�6��]2�	∇<	�6�� (2.21)

Where ∇�	<	�6�� = Hessian matrix and ∇	<	�6�� =	Gradient of error function.

Now we have to calculate Hessian and gradient of error function. If we differentiate (2.21) with

respect to any weight, wj to find the j
th

 element of gradient ∆<�6�, we get

 [∇<�6�]T =	UV�&�U&W = 2	∑ Q��6� U	C$�&�U&W
5��� (2.22)

24

Equation (2.22) can be written in matrix form:

 ∇<�6� = 	2	Y!�6�<�6� (2.23)

Where Z�6� = 	 UC�&�U&- =	
[
[
[
[
\U	C]�&�U&]

U	C]�&�
U&^ …… . . U	C]�&�U&_

U	C^�&�
U&^

U	C^�&�
U&^ …… . . U	C^�&�U&_

U	C`�&�
U&^

U	C`�&�
U&^ …… . . U	C`�&�U&_ a

a
a
a
b
 (2.24)

Here Z�6� is the Jacobian matrix [15]. To calculate Z�6�, we need to find Marquardt sensitivity

using back propagation which is shown in [14].

Now the Hessain matrix can be found by differentiating (2.23) with respect to any weights wk

and wj :

 cd�<�6�e�T =	 	U
^V�&�

U&fU&W = 2	∑ gUC$�&�U&f . UC$�&�U&W +	Q��6� U
^C$�&�
UfU&W h

5��� (2.25)

The above equation can be written in matrix form:

 d�<�6� = 	2	Z!Z�6� + 2 %�6� (2.26)

 Where %�6� = 	∑ Q��6�d�Q��6�5��� (2.27)

Assuming %�6� is small, so approximate Hessain matrix is

 d�<�6� ≅ 		2	Z!�6�Z�6� (2.28)

Now substituting equation (2.23) and (2.28) in (2.29), we get:

 6�B� =	6� − [Z!	�6��	Z	�6��]2�Z!	Q�6�� (2.29)

25

In (2.29), j = 	 Z!Z may not be invertible which is a problem with Gauss-Newton and it can be

overcome by using LM modification [18] to Hessain matrix:

 k = 	 Z!Z + µ 	l

 = j + 	µ 	l (2.30)

Here l is the identity matrix. Therefore, equation (2.29) becomes

 6�B� =	6� −	mZ!�6��Z�6�� +	µ�	ln
2�	Z!	Q�6�� (2.31)

 ∆6� =	−	mZ!�6��Z�6�� +	µ�	ln
2�	Z!	Q�6�� (2.32)

Now if µ increases, for larger µ , equation (2.31) becomes

 6�B� ≅	6�2]
µfT

-	�&f�	C�&f�	

 =	6� −	 ��µf
	∇<�6� (2.33)

Now µ is multiplied by an adjacent factor, ß when <�6� increases in a step. But when <�6�
decreases in a step, µ is divided by ß. Usually µ = 0.01 at starting point with ß = 10. Now when

µ is large, LM becomes steepest decent algorithm with step 1/µ as shown in (2.32) but for

smaller µ , LM becomes Gauss-Newton thus providing nice comparison between these two

algorithms.

In general, the target of LM is to improve the performance by reducing the sum of

squared error as shown in (2.20) by solving from equation (2.21). So, each learning iteration

(epoch) of neural network with LM training is accomplished by following some basic steps [16],

[55] which are described below:

26

1. For initial step, setting k = 0 and presenting the training set to the network. Initializing

µ0 = 0.001, µmax = 10
10,

 ß = 10 and w0.

2. Computing Jacobian matrix, J(wk) and f(wk) by using (2.24) and (2.20) respectively.

Terminating the process if J(wk) or ∇<�6�� in (2.23) is less than predefined threshold

or if µk is equal or greater than µmax.

3. If µk < µmax., computing J(wk+1) and wk+1 from (2.24) and (2.31) respectively. If

J(wk+1) ≥ J(wk), setting µk = ßµk and computing this step again. Otherwise we have to

compute step 4. If J(wk+1) < J(wk),setting µk+1 = µk / ß, updating the weight, wk+1 and

computing step 2.

4. If µk ≥ µmax., completing the learning by terminating the process.

When the learning of NN is finished, the weights of the network are fixed and then the network

can be simulated with testing samples and the network can be retrained for unsatisfactory

performance.

27

CHAPTER III

IMPLEMENTATION

3.1 System Level Implementation

To evaluate the performance of ANN with CSD coefficient for human face recognition,

experimental studies were carried out on AT&T Laboratories Cambridge's Face Database [9].

To realize the performance evaluation in system level, neural network toolbox of Matlab was

used. The image database is equally divided in to training set and test set where each set contains

200 images. From each class, images are selected randomly for both sets. The training set of

image database was applied to PCA and LDA separately to extract important features from

images as discussed in section 2.3.1 and 2.3.2 respectively. After extracting features from PCA

and LDA, the feature vector produced by both methods contains 39 elements for each image. So

the total size of feature matrix was 39 x 200 both for training and test set. The test feature inputs

from PCA and LDA were applied separately to Matlab NN toolbox and FFNN with single

hidden and output layer was selected for classification purpose. The input layer contained 39

inputs and the output layer contained 6 output neurons for 200 samples. The optimum number of

neurons in hidden layer was selected 28 and 29 for PCA and LDA respectively. The number of

hidden layers can be varied but usually single hidden layer with non -linear neuron is sufficient

enough to provide good balance between complexity and accuracy for most of the applications

[40]. FFNN with LM training [15] algorithm (refer section 2.4.5) was used for training the neural

network. The training samples were applied in batch mode [14]. The number of neurons in

hidden layer was varied both for PCA-NN and LDA-NN to find out the optimum number of

hidden neurons for which the recognition rates were maximum and it was found that the network

28

performs best in terms of accuracy with 28 hidden neurons for PCA-NN and 29 hidden neurons

for LDA-NN. Table 3.1 represents the performance of the network in terms of accuracy (no CSD

multiplier was used) where the accuracies were started increase both for PCA-NN and LDA-NN

if the hidden neurons were increased up to certain number. But for 28 hidden neurons, the

recognition rate was 92% which the performance began to deteriorate if the neurons in hidden

layer are increased further more. The same characteristic was also observed for LDA-NN where

the recognition accuracy saturated after 29 hidden neurons. Therefore, 28 and 29 hidden neurons

were selected for PCA-NN and LDA-NN respectively.

Number of feature

elements from

each feature vector

Number of hidden

neurons

Classification accuracy

PCA-NN LDA-NN

39

23 86.0 88.5

24 88.0 90.0

25 90.5 90.0

26 91.0 91.5

27 91.0 92.0

28 92.0 93.5

29 92.0 94.0

30 91.5 94.0

31 92.0 93.5

Table 3.1: Variation in accuracy for different number of hidden neurons in Matlab

ANN training can be performed more efficiently if certain preprocessing steps are

performed on the inputs and desired responses of the nerwork before stating the training process

As a result, both inputs and targets are normalized and the actual outputs fall into a normalized

range. Normally inputs vectors and target vectors both are normalized between [0,1] which helps

to reduce possible noise and interference from the inputs and targets. Moreover, after using this

29

process, there is a transformation happens to the input images so that it becomes easier for NN to

classify the datas [14].

If the weights of NN are converted in to 18 bit CSD representation and the nonzero

elements of CSD weights are reduced by one, then these weights are not exactly same to the

original weights produced by the network. Therefore, some error was added to the network by

reducing the nonzero elements by different numbers from the coefficients and for each nonzero

elements reduction, the performance of the network was observed. This reduction procedure was

continued up to four nonzero elements both for PCA-NN and LDA-NN and for each nonzero

element reduction, the recognition accuracy was counted for both network. Table 3.2 presents

typical decimal weight examples produced by the network and how the weights are affected after

reducing the nonzero elements. The first column presents the actual weights in decimal number.

These actual weights were converted in to CSD format and after reducing nonzero elements,

weights were converted back in decimal format. Column 2 to 5 of table 3.2 present decimal

representations of nonzero element reduced CSD weights.

Original weights

produced by

network

Nonzero elements reduced by

1 2 3 4

22355 22356 22352 22336 22272

-7381 -7380 -7376 -7360 -7424

-3293 -3292 -3296 -3328 -3072

15164 15168 15104 15360 16384

15416 15424 15360 16384 0

2568 2560 2048 0 0

8064 8192 0 0 0

Table 3.2 Effects of nonzero element reduction from 18 bit CSD weight (CSD weights are

represented in decimal format)

30

In the training period, weights are produced and updated by the network during learning

iterations. These weights are multiplied by the corresponding input feature element to get the

weighted inputs. To observe the performance of NN with CSD coefficients in system level,

weights and inputs are converted in to 18 bit CSD and binary representation respectively. Then

both the CSD coefficients and binary multiplicand are applied to 18 bit CSD multiplier function

which was designed to provide the multiplication result in binary form in Matlab. Then all the

multipliers’ results and bias were summed together for each neuron and applied as input to tanh

AF to get the final output of a neuron.

 While training ANN, the nonzero bits of all weights were reduced by a number in all

iterations and these weights are applied as coefficients to CSD multiplier. When the network

completed learning for 200 face images, then the weights were used to test the performance of

network. The testing procedure was quite simple where the weights are fixed because they were

collected from training period. These weights and corresponding feature inputs from test sample

of faces were applied to 18 bit CSD multiplier as CSD coefficient and multiplicand respectively.

Then the weighted sums are added with bias (saved from training period) before applying to AF

to get the final output of each neuron. The result found from the neurons in output layer is the

final result for testing images. This above procedure was continued for different number of

nonzero reduction from the weights and for each reduction, accuracy was counted for test

images. Figure 3.1 represents a brief overview of the working procedure of NN for face

recognition in both system level and hardware level.

31

Figure 3.1 Working procedures in system level and hardware level

3.2 Hardware Implementation

 To realize the full benefit of face or any pattern recognition application by using ANN

classifier with CSD coefficients, it is important to implement ANN system in hardware level

because of slower execution time in software based ANN system. Any real time application of

face recognition requires consuming less area with high speed recognition rate. Therefore, NN

system was designed in hardware platform to outperform the software based system.

32

Digital hardware based implementation of ANN can be divided in three sub categories: a)

application specific integrated chip (ASIC) based implementations, b) field-programmable gate

array (FPGA) based implementations, and c) digital signal processor (DSP) based

implementations [43], [44]. The last type of implementation performs serial computation, thus it

cannot provide the opportunity to preserve the inherent parallel architecture of ANN. The ASIC

implementation suffers from non reconfigurability. Therefore the system cannot be reconfigured

again after loading a design once. But FPGA can fulfill above conditions because it can be

reconfigured and it is capable of performing parallel calculations. Thus FPGA implementation

was selected for this project.

 The hardware implementation of ANN was simulated by ModelSim simulator and then

synthesized by using Xilinx ISE. Then the design was implemented in XC6VLX550T FPGA

from Xilinx Vertex 6 family which contains 85,920 slices, 632 block RAM each with 36 Kbits in

size and each slice contains four LUTs and eight flip-flops where only some slices can use their

LUTs as distributed RAM [45]. The behavioral level design of ANN was done by using VHDL

language.

 In hardware implementation, the offline training of ANN was performed by using Matlab

and the inputs, weights and bias data required for the hardware platform were transferred from

Matlab as shown in figure 3.1. The whole ANN system in hardware was scaled by a factor of

10000 for the system’s simplicity because the inputs, weights and biases contain fractional parts.

Therefore, the fractional parts can be avoided by multiplying a scale factor, 10000 which causes

a shift in positions of all inputs, weights and up to four digits from fractional part were

considered. Only the integer parts of all data were considered after scaling. As a result, the

network also provided scaled outputs. So scaling the ANN makes easier to design the hardware

33

system as the system does not require dealing any data with fractional part. Figure 3.2 presents

the top level block diagram of hidden layer and output layer where the outputs of hidden layer

are used as inputs to output layer. Each element of feature vector is applied to all neurons in

hidden layer in serial and each hidden neuron provides output at same time which goes to every

neuron in output layer. Each neuron in output layer performs parallel computation to provide the

final output of the neural network.

Figure 3.2 Top level block diagram of hidden layer and output layer

3.2.1 Hidden Layer Design

Figure 3.3 represents the block diagram for hidden layer where both input and weights is

18 bit long. Each CSD weight contains positive and negative nonzero elements and these weights

are collected from Matlab system level simulation. Therefore, in Matlab, a piece of code is

written which allows splitting the positive and negative nonzero elements of CSD weights and

save these values in different places. These positive and negative nonzero elements for each

neuron are transferred and saved in two ROMs: Weight_pos and Weight_neg as mentioned in

figure 3.3. Therefore, each neuron has two weight ROMs associated with it which hold these two

types of nonzero elements of CSD weights and the size of the ROM depends on the number of

inputs of a neuron. The size of each weight ROM in hidden layer for both PCA and LDA

34

network is 39x18 as both networks has same number of inputs. Each neuron has a counter which

is responsible for this necessary synchronization. In Figure 3.3, when an input enters in hidden

layer, it goes to each neuron. Each hidden neuron contains a CSD multiplier which takes 18 bit

binary input and positive, negative elements of corresponding CSD coefficient from ROM, The

multiplier provides 36 bit multiplication result which is stored in a register. When new input is

applied to that hidden neuron, the multiplication result for that input is accumulated with

previously stored weighted input. The neuron provides the required address to the weight ROMs

for each input by using a counter so that ROMs provide required weights which are used as

coefficients of the multiplier. This procedure is continued until all inputs are applied in serial to

hidden layer to get the output of a neuron. After applying all inputs to a hidden neuron, the

result is forwarded to the tansig AF to get the final output of that neuron. A straight forward LUT

based array was used to realize the implementation of AF where each output value corresponds

to a unique input address from a series of uniformly spaced input-output values [46], [47]. LUT

is also a simple and faster way to realize AF and this method is used for high performance

hardware design though it consumes a lot of memory to store the look up table in hardware.

The number of hidden neurons for PCA-NN and LDA-NN was selected as 28 and 29

respectively which were found as optimal number of neurons for hidden layer from table 3.1.

Figure 3.4 represents the schematic diagram from Xilinx synthesis tool for a neuron in hidden

layer.

 Figure 3.5 presents the block diagram for performing CSD multiplication. The multiplier

receives three inputs: 18 bit binary multiplicand and positive, negative nonzero elements of CSD

weight which are stored in data and sign registers respectively. These data and sign values are

35

Neuron 1
Bias 0

Neuron 2

Neuron n

Weight 0_pos

Weight 0_neg

addr 1

Data_out 1

Clock
Load
Reset

Data_in

Neuron arrayWeight ROM array

Bias 1
Weight 1_pos

Weight 1_neg

Bias n
Weight n_pos

Weight n_neg

addr 2

Data_out 2

addr n

Data_out n

Figure 3.3 Block diagram of hidden layer of neural network in hardware implementation

Figure 3.4 Schematic diagram of a neuron in hidden layer

36

supplied to the multiplier by corresponding neuron and used to represent a CSD number. The

data register contains 1 for positive nonzero positions of weight element and the sign register

contains 1 for the negative positions of nonzero elements in CSD number. The shift1 and shift2

both are 32 bit signals in shown in figure 3.5. These signals are found from 18 bit binary

multiplicand where both signals are the 36 bit sign extended value of multiplicand and shift2 is

left shifted by 1. The signal din is generated initially which is the two’s complement value of

shift1 or shift2 depending on the first and second bit positions of sign and data. These four

signals shift1, shift2 and data, sign are used as inputs to shift and accumulator which performs

two operations: a) it performs left shift by 2 on shift1 and shift2 and right shift by 2 on data and

sign; b) next it performs addition or subtraction of shift1 or shift2 with din depending on the bit

position of data and sign to provide dout. As 18 bit CSD coefficient contains maximum of 9

nonzero elements, therefore there can be maximum of nine shift and addition or subtraction

operations are required for any 18 bit CSD multiplication and the final result is expressed as

Product in figure 3.5. Thus the number of partial products is reduced by half for any n bit

multiplier.

Figure 3.5 Block diagram for CSD multiplier

37

The RTL schematic diagram found from Xilinx synthesis tool for CSD multiplier is presented by

figure 3.6.

Figure 3.6 RTL schematic diagram of CSD multiplier

3.2.2 Output Layer

 The output layer contains total of 6 neurons for 200 test images. The architecture of this

layer is designed to work in fully parallel where each neuron has n number of multipliers

depending on the number of inputs to this layer. For PCA-NN, the number of hidden neurons is

selected as 28 from system level. Therefore each output neuron for PCA-NN contains 28

multipliers. Each output neuron has its own weight ROM of size 28x18 to hold the weights for

PCA-NN and 29x18 for LDA-NN. When all inputs enter in to output layer, they go to each

output neuron. Figure 3.7 presents the block diagram for a neuron in output layer where each

neuron contains n number of multipliers which is equal to the number of inputs. Therefore, all

multipliers of each output neuron perform parallel multiplications and provide the multiplication

outputs at same time. Again, each output neuron has its own bias associated with it. An adder

tree was used to add multiplication results and bias of a neuron in output layer. The final step

38

consists of applying the 32 bit output (produced by the adder tree) as input address to tansig

activation function to produce the final output of a neuron in output layer.

Figure 3.7 Block diagram of a neuron in output layer

39

CHAPTER IV

RESULTS AND DISCUSSION

4.1 Performance Analysis

 NN based face recognition with CSD coefficients were implemented where the NN

system was synthesized by using Xilinx ISE for a Xilinx FPGA device, XC6VLX550T. This

chapter contains the results found from system level implementation, hardware implementation,

comparison between system and hardware level results. The last part of this chapter contains the

comparison between NN with CSD multiplier and binary multiplier in hardware platform.

4.1.1 Accuracy Analysis of System Level Implementation

 In system level implementaiton, a multiplier was designed to perform CSD multiplication

in Matlab as discussed in section 3.1 and it helps to realize how the system may perform in

hardware platform. Then 39 input feature elements of test images were applied to the network

both for PCA and LDA. The results found from system level Implementation is represented in

table 4.1:

 Nonzero

elements

reduced by

PCA-NN LDA-NN

Classification

accuracy (%)

Epoch Classification

accuracy (%)

Epoch

With CSD

system

1 92.0 19 94.0 20

2 92.0 18 93.5 17

3 87.5 22 87.5 19

4 76.5 21 77.0 21

Without CSD

system

-- 92.0 18 94.0 19

Table 4.1: Accuracy and other parameter comparison using Matlab for face recognition

40

The last row of table 4.1 presents the results found from Matlab where CSD system was not used

and others contain the results when CSD coefficients and CSD multiplier were used. Here, the

nonzero elements from CSD coefficients were reduced from 1 to 4. Therefore these weigths were

not accurate because they are not exactly same to the original weights produced by network. For

each reduction, the recogntion accuracy were counted. From table 4.1, we can see that

classification accuracy for PCA-NN after reducing single nonzero element is 92% which is same

to the result found from if CSD system was not used. Moreover, the recognition rate started to

decrease gradually for both PCA-NN and LDA-NN when the number of nonzero elements of

CSD weights was reduced. The accuracy dropped by 16.8% for PCA-NN if nonzero elements

were reduced by 1 and 4. For LDA-NN, the recognition rate for both CSD and without CSD

system is same and here the accuracy also dropped 18.1% for 1 and 4 nonzero elements reduced

weights. In table 4.1, epoch mentions the number of iterations required for the network while

learning and we can see that it requires almost same learning iteration for the network to learn

for both PCA-NN and LDA-NN.

 4.1.2 Hardware Based Performance

 To realize the full benefit of any system, it is necessary to implement the system in

hardware level. NN with CSD coefficients for human face recognition was implemented in

hardware by using VHDL coding. A description of the implemented design was discussed in

chapter III.

4.1.2.1 Accuracy Realization of Designed System from Simulation

 ModelSim simulator was used to verify if the VHDL description of NN really performs

quite similar to system level performance. At first, the network was designed using VHDL and

41

then test images were used to test the accuracy of the designed system. Table 4.2 presents the

result in terms of accuracy for NN with CSD coefficients for face recognition:

Nonzero

elements of

CSD coefficient

reduced by

Accuracy for PCA-NN (%) Accuracy for LDA-NN (%)

 From simulation From system

level

From simulation From system

level

1 92.0 92.0 93.5 94.0

2 91.5 92.0 92.5 93.5

3 87.0 87.5 86.0 87.5

4 75.5 76.5 76.0 77.0

Table 4.2 Accuracy comparison between hardware and software implementation of PCA-NN and

LDA-NN with CSD coefficients

From table 4.2, we can see that the recognition accuracies for face images from

simulation are almost similar to the accuracy found from Matlab with using CSD multiplier. The

accuracies for PCA-NN and LDA-NN system from ModelSim simulation started to reduce

gradually with the reduction of nonzero elements from CSD coefficients. For PCA-NN, the

recognition accuracy dropped by 17.9% for 1 and 4 nonzero bit reduction from CSD coefficients

in ModelSim simulation and from system level, it was 16.8% for the same number of bit

reduction from coefficients. In table 4.2, for ModelSim simulation of LDA-NN, the accuracies

were found 93.5% and 76.0% for nonzero bits reduction from weights by 1 and 4 respectively

and the accuracy rate was fallen by 18.7% for the same number of bit reduction but in system

level simulation, it was 18.1%.

 There are 40 classes for face database and each class contains 10 identical face images. If

maximum number of corrected faces per class is considered for both PCA-NN and LDA-NN,

then the recognition accuracy started to increase. For example, if NN for PCA provides 8 correct

outputs for a class and NN for LDA provides 9 correct outputs for that same class, then

42

maximum correct images was considered as 9 for that specific class. In this way, for each class,

highest correct faces were counted and it was found that the total recognition rate improved by a

significant amount for both PCA and LDA network. Table 4.3 represents the final results for

maximum corrected images for 40 classes in hardware platform for the first nonzero element

reduction from coefficients where the total recognition rate for 40 classes is 95.2 which mean the

rate improves by 3.4% for PCA network and 1.8% for LDA network:

PCA-NN

(%)

LDA-NN

(%)

Maximum correct faces for 40

classes (%)

92.0 93.5 95.2

Table 4.3 Improvement in total recognition rate after considering maximum number of correct

faces for 40 classes in hardware platform

4.1.2.2 Resource Requirements

 XC6VLX550T FPGA device from Xilinx Virtex 6 family was used for implementation.

The use of CSD coefficients in NN reduces the area requirements of the network because CSD

coefficients contains maximum half nonzero elements of total bit width. If the nonzero bit is

reduced from the coefficients, the area requirement also started to reduce more. Table 4.4

represents the resources required for each nonzero bit reduction from coefficients of both PCA-

NN and LDA-NN. From this table, we can see that the number of slice registers and slice LUTS

are reduced by 19.47% and 51.86% respectively for nonzero elements of CSD coefficients

reduced by 1 and 4 of PCA-NN. For LDA-NN, the number of slice registers and LUTS are

reduced by 20.71% and 52.33% respectively for the same number of nonzero elements reduction

from the coefficients of this network.

43

Nonzero bits

reduced by

PCA-NN LDA-NN

of slice registers # of slice LUTs # of slice registers # of slice LUTs

1 7366 59964 7668 61818

2 6922 49373 7173 51134

3 6466 39189 6654 39851

1 5932 28862 6080 29466

Table 4.4: Resource requirements for PCA and LDA network from Xilinx synthesis

Therefore there is a great reduction of area with the reduction of nonzero elements from

network’s CSD coefficients but here we have to sacrifice the accuracy because the network’s

accuracy also starts to reduce with the reduction of nonzero elements from CSD weights. The

objective of this work is to reduce the area requirement of NN with CSD coefficients in

comparison to corresponding binary network for face recognition application. Therefore a signed

binary multiplier was used instead of CSD multiplier to observe the network performance. Both

CSD and binary multiplier were synthesized and the results are shown in following table where

we can see that CSD multiplier requires 0 slice registers and 19% less slice LUTs in comparing

to binary multiplier.

Type of multiplier # of slice registers # of slice LUTs

CSD 0 422

Binary 95 521

Table 4.5: Resources required by multipliers

Figure 4.1.a and 4.1.b show the graphical representations of table 4.4. From these figures,

we can see that the number of slice registers and slice LUTs reduces gradually and almost

44

linearly with the reduction of nonzero elements from CSD coefficients from both networks.

Moreover, the resource requirement for PCA-NN is less than LDA-NN because PCA network

has 28 neurons where as LDA network had 29 neurons in hidden layer. Therefore LDA network

requires more resources for saving the positive and negative nonzero elements of CSD

coefficients in ROM as discussed in previous chapter.

Figure 4.1.a Number of nonzero elements reduction vs. slice registers requirement

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4

#
 o

f
sl

ic
e

re
g
is

te
rs

 r
eq

u
ir

em
en

t

of nonzero element reduction from CSD coefficients

Number of slice registers for

PCA-NN

Number of slice registers for

LDA-NN

45

Figure 4.1.b Number of nonzero elements reduction vs. slice LUTs requirement

4.1.2.3 Timing Performance

 The time requirements for PCA-NN and LDA-NN are presented in table 4.6 where the

time started to reduce gradually with the reduction of nonzero elements from CSD coefficients.

Nonzero

elements reduced

by

PCA-NN LDA-NN

Minimum time

(ns)

Maximum

operating

frequency

(MHz)

Minimum time

(ns)

Maximum

operating

frequency

(MHz)

1 7.980 125.3 7.981 125.3

2 7.092 141.0 7.092 141.0

3 6.194 161.4 6.194 161.4

4 5.278 189.5 5.278 189.5

Table 4.6 Time requirements for PCA-NN and LDA-NN from Xilinx synthesis

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4

#
 o

f
sl

ic
e

re
g
is

te
rs

 r
eq

u
ir

em
en

t

of nonzero element reduction from CSD coefficients

Number of slice LUTS for

PCA-NN

Number of slice LUTS for

LDA-NN

46

From the above table, we can see that both network speed up by 33.9% for nonzero elements

reduction by 1 and 4. But here we have to sacrifice the accuracy of the network because from

table 4.2, the accuracy also started to decrease gradually with the reduction of nonzero bits from

CSD coefficients of PCA-NN and LDA-NN.

From table 4.6, we can see that that both PCA and LDA network require almost same

processing time. Recalling the architecture of hidden layer and output layer from chapter III,

hidden layer receives feature elements in serial but all hidden neurons perform computations in

parallel. The output neurons in output layer receive input at a same time and perform parallel

computations. As all neurons in both networks perform parallel computations and both of them

have same number of feature elements, therefore both networks require same processing speed.

The time requirements for PCA-NN and LDA-NN from table 4.3 are plotted in figure

4.2.a and 4.2.b respectively with the reduction of nonzero elements from PCA-NN and LDA-NN

where we can see that the processing time reduces almost linearly for each nonzero bit reduction

from CSD coefficients of both networks.

47

Figure 4.2.a Nonzero elements reduction vs. minimum time requirement for PCA-NN

Figure 4.2.b Nonzero elements reduction vs. minimum time requirement for LDA-NN

5

5.5

6

6.5

7

7.5

8

8.5

1 2 3 4

M
in

im
u
m

 t
im

e
re

q
u
ir

em
en

t

of nonzero element reduction of CSD coefficients from PCA-NN

PCA-NN

5

5.5

6

6.5

7

7.5

8

8.5

1 2 3 4

M
in

im
u
m

 t
im

e
re

q
u
ir

em
en

t

of nonzero element reduction of CSD coefficients from LDA-NN

LDA-NN

48

4.1.2.4 Comparison of Hardware Implemented CSD Based NN with Binary NN

To realize how the design of hardware based NN with CSD coefficients performs in

comparison to the network with binary system; NN with binary coefficients was used to compare

the results. Binary number system is widely used in most of the hardware based systems.

Therefore a signed binary multiplier was used instead of CSD multiplier where other network

parameters are kept same and the results for resource and time requirement are shown in table

4.7.

Coefficient

system

PCA-NN LDA-NN

Number of

slice

registers

Number of

slice LUTS

Required

time

(ns)

Number of

slice

registers

Number of

slice LUTS

Required

time

(ns)

CSD 7366 59964 7.980 7668 61818 7.981

Binary 21973 78205 5.456 22792 80262 5.456

Table 4.7 Resource and time requirements for PCA-NN, LDA-NN with CSD and binary

coefficient system from Xilinx synthesis

From the above table we can see that the number of required slice registers for PCA-NN

and LDA-NN are 66.4% and 66.3% respectively which shows that both networks require less

than half slice registers than corresponding binary network. For any hardware based system, the

number of required slice register is an important parameter and the low requirement of slice

registers indicates more compactness of the network. Therefore if the number of slice registers is

reduced, it implies significant reduction in area. Moreover CSD based PCA and LDA networks

require 23.3% and 22.9% less number of slice LUTs respectively than in comparison to

49

corresponding network with binary coefficients. But network with CSD coefficients requires

little bit more time than the time required for the network with binary coefficients. Though CSD

system requires some more time, but it helps to reduce the area of hardware based neural

network by almost half thus making the size of the network smaller which is the objective of this

thesis. In most real time application of neural network with face recognition, the size of face

database is very large and it requires large area for hardware based large NN system. Therefore

the advantage of NN with CSD coefficients in hardware platform is that it is more suitable for

large face database with size almost double than corresponding network with binary coefficients.

50

CHAPTER V

CONCLUSION AND FUTURE WORKS

In this thesis, neural network classifier with CSD coefficients was used for face recognition

application. Hardware implementation of this classifier was accomplished for realizing the full

benefits of this application. Area and time are two most important parameters in any hardware

design and binary system is widely used in designing hardware system. Thus CSD coefficients

were used instead of binary coefficients to minimize the area requirement of neural network to

make the network more compact because CSD contains minimum possible nonzero element

among all signed digit number system. As a result, when the weights of neural network are saved

by using CSD system for face recognition application, it consumes very low space and requires

performing lowest possible number of partial products and additions to get weighted input which

saves the area also. Therefore it was possible to reduce the area for PCA-NN and LDA-NN by

almost half than its binary counterpart while much not compromising the speed of overall

network in comparison to binary neural network system. The results from FPGA implementation

resemble a significant improvement in space requirement for the recognition of face images for

both PCA-NN and LDA-NN after using CSD coefficients than binary coefficients while both

PCA and LDA networks also maintained satisfactory accuracies almost similar to the system

level. Moreover, it was found that there was a significant improvement in recognition rate by

considering maximum number of correct faces from PCA-NN and LDA-NN for all classes. The

results also show that there was a gradual reduction in resources, time and recognition rate with

each nonzero element reduction from the coefficients of both networks.

51

5.1 Contribution of Proposed Work

 Nowadays, area and speed are two important issues in any hardware based systems of

almost any real life applications. Most of the recent technologies are very compact in terms of

space requirement. Face recognition is an advance technique with a very high demand in

numerous applications in real world and the size of neural networks classifier with face

recognition application become very large because of the large database of face images. Thus the

method proposed in this thesis is proven to be useful for neural networks with face recognition

application in real time hardware system as this method significantly reduce the size of the

required silicon area for NN. Therefore FPGA implementation of the proposed idea can be used

to generate a promising real time face recognition system by reducing the size of the network

while much not compromising the speed required of the system.

5.2 Future Work

 For further effectiveness of proposed work, the face recognition application can be

implemented with different types of neural network and activation functions to observe the

performance of the recognition system. The hardware system accuracy can also be improved by

using other effective feature extraction methods. The performance of the system can be observed

by using other standard face databases. Moreover, this recognition application can also be

implemented by using analog and hybrid neural network classifier which offers some level of

flexibility and takes some advantages of digital implementation.

52

REFERENCES

[1] M. Poliac, J. Zanetti, and D. Salerno, "Performance Measurements of Seismocardiogram

Interpretation Using Neural Networks, Computer in Cardiology," IEEE Computer Society, 1993,

pp. 573 - 576.

[2] U. Rucket, A. Funke, and C. Pintaske, "Accelerator board for Neural Associative Memories,"

IEEE Neurocomputing, Vol.5, No.1, 1993, pp. 39 - 49.

[3] B. Hassinbi, D. G. Stork, and G. J. Wolff, “Optimal brain surgeon and general network

pruning,” in Proc. IEEE Int. Joint Conf. Neural Netw., Vol. 2, 1992, pp. 441 – 444.

[4] B. Widrow and R. Winter, “Neural nets for adaptive filtering and adaptive pattern

recognition,” IEEE Computer, Vol. 21, no. 3, Mar. 1988, pp. 25 – 39.

[5] K. Fukushima, S. Miyake, and T. Ito, “Neocognitron: A neural network model for a

mechanism of visual pattern recognition,” IEEE Trans. Syst., Man, Cybern. , Vol. SMC-13, no.

5, 1983, pp. 826 – 834.

[6] S. Grossberg, E. Mingolla, and D. Todorovic, “A neural network architecture for preattentive

vision,” IEEE Trans. Biomed. Eng., Vol. 36, no.1, Jan. 1989, pp. 65 – 84.

[7] Ming-Hsuan Yang, D. J. Kriegman, and N. Ahuja, “Detecting Faces in Images: A Survey,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, Jan. 2002, pp. 34 - 58.

[8] http://www.face-rec.org/databases/, Last visited: October, 2012.

[9] http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html for downloading ORL

face database.

53

[10] S. Haykin, Neural networks: a comprehensive foundation, Prentice Hall, July, 1998.

[11] D. E. Rumelhart and J. L. McClelland and the PDP Research Group, Parallel Distributed

Processing, Vol. 1: Foundations, The MIT Press, July, 1987.

[12] B. Karlik and A. V. Olgac, “Performance Analysis of Various Activation Functions in

Generalized MLP Architectures of Neural Networks,” International Journal of Artificial

Intelligence and Expert Systems (IJAE), Volume (1): Issue (4), 2011.

[13] M. Marvin, and S. Papert, Perceptrons: An Introduction to Computational Geometry.

Cambridge, MA: MIT Press, 1969.

[14] M. T. Hagan, H. B. Demuth and M. H. Beale, Neural Network Design, Boston, MA: PWS

Publishing, 1996.

[15] M. T. Hagan and M. B. Menhaj, "Training Feed-forward Networks with the Marquardt

Algorithm," IEEE transactions on Neural Network, Vol. 5 No. 6, Nov. 1994, pp. 989 - 993.

[16] K. Levenberg, “A method for the solution of certain non-linear problems in least squares,”

The Quarterly of Applied Mathematics, Vol. 2, 1944, pp. 164 - 168.

[17] D. W. Marquardt, “An algorithm for least-square estimation of nonlinear parameters,”

SIAM Journal on Numerical Analysis, Vol. 11, no. 2, 1963, pp. 431 - 441.

[18] R. Battiti, “First- and second order methods for learning: Between steepest descent and

Newton’s method,” Neural Computation, Vol. 4, no. 2, 1992, pp. 141 - 166.

54

[19] Lih-Heng Chan, S. H. Salleh, and Chee-Ming Ting, “PCA, LDA and Neural Network for

Face Identification,” 4th IEEE Conference on Industrial Electronics and Applications, May.

2009, pp. 1256 - 1259.

[20] Y. Jiang and P. Guo, “Comparative Studies of Feature Extraction Methods with Application

to Face Recognition,” IEEE International Conference on Systems, Man and Cybernetics, Oct.

2007, pp. 3627 - 3632.

[21] H. Sahoolizadeh, and Y. A. Ghassabeh, “Face Recognition using Eigen-faces, Fisherfaces

and Neural Networks,” 7th IEEE International Conference on Cybernetic Intelligent Systems,

Sept. 2008, pp. 1 - 6.

[22] Lih-Heng Chan, S. Salleh, Chee-Ming Ting, and A. K. Ariff, “PCA AND LDA based face

verification using back-propagation neural network,” 10th IEEE International Conference on

Information Sciences Signal Processing and their Applications (ISSPA), May. 2010, pp. 728 -

732.

[23] W. Zhao, R. Chellappa, and A. Krishnaswamy, "Discriminant Analysis of Principal

Components for Face Recognition," 3rd IEEE International Conference on Automatic Face and

Gesture Recognition, Apr. 1998, pp. 336 - 341.

[24] M. A. Turk and A. P. Pentland, "Face Recognition Using Eigenfaces," IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, Jun. 1991, pp. 586 - 591.

[25] Zhujie, and Y. L. Yu, "Face Recognition with Eigenfaces," Proceedings of the IEEE

International Conference on Industrial Technology, Dec. 1994 pp. 434 - 438.

55

[26] M. Oravec, and J. Pavlovicova, "Face Recognition Methods Based on Principal Component

Analysis and Feedforward Neural Networks," IEEE International Joint Conference on Neural

Networks, Vol. 1, July. 2004.

[27] M. Agarwal, H. Agrawal, N. Jain, and M. Kumar, "Face Recognition using Principle

Component Analysis, Eigenface and Neural Network," International Conference on Signal

Acquisition and Processing, Feb. 2010, pp. 310 - 314.

[28] V. P. Kshirsagar, M. R. Baviskar, and M. E. Gaikwad, "Face Recognition Using

Eigenfaces," IEEE 3rd International Conference on Computer Research and Development

(ICCRD), Vol. 2, March 2011, pp. 302 - 306.

[29] J. Ruiz-del-Solar, and J. Quinteros, "Illumination Compensation and Normalization in

Eigenspace-based Face Recognition: A comparative study of different pre-processing

approaches," Pattern Recognition Letters, Vol. 29, No. 14, 2008, pp. 1966 - 1979.

[30] A. M. Martinez, and A. C. Kak, “PCA versus LDA,” IEEE Trans. Pattern Anal. Machine

Intel., Vol. 23, 2004, pp. 228 - 233.

[31] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigen faces vs. Fisher faces:

Recognition using class specific linear projection,” IEEE Trans. Pattern Anal. Machine Intel.

Vol. 19, May 1997, pp. 711 - 720.

[32] J. J. Weng, “Using discriminant eigen-features for image retrieval,” IEEE Trans. Pattern

Anal. Machine Intel., Vol. 18, No. 8, 1996, pp. 831 - 836.

56

[33] R. M. Hewlitt, and E. S. Swartzlantler, Jr., “Canonical signed digit representation for FIR

digital filters,” in Proc. of the IEEE workshop on Signal Processing Systems, 2000, pp. 416 -

426.

[34] A. D. Booth, “A Signed Binary Multiplication Technique,” Quarterly J. Mechanics and

Applied Math., Vol. 4, 1951, pp. 236 – 240.

[35] C. K. Koc, "Parallel canonical recoding," Electronics Letters, Vol. 32, 1996, pp. 2063 -

2065.

[36] G. K. Ma and F. J. Taylor, "Multiplier Policies For Digital Signal Processing," IEEE ASSP

Mag., Jan. 1990, pp. 6 - 20.

[37] L. Wanhammar, DSP Integrated Circuits, Academic Press, 1999.

[38] C. K. Koc, and Johnson, S., "Multiplication of signed-digit numbers," Electronics Letters,

Vol. 30, 1994, pp. 840 - 841.

[39] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John

Wiley, 1999.

[40] T. M. Mitchell, Machine Learning, McGraw Hill, 1997.

[41] L. M. Reyneri, “Implementation issues of neuro-fuzzy hardware: Going towards HW/SW

codesign,” IEEE Trans. Neural Netw., Vol. 14, no. 1, Jan. 2003, pp. 176–194.

[42] H. K. Kwan and C. Z., Tang, "A multilayer feedforward neural network model for digital

hardware implementation," Proc. IEEE International Symposium on Circuits and Systems,

Vo1.6, 1994, pp. 343 - 345.

57

[43] L. M. Reyneri, “Implementation issues of neuro-fuzzy hardware: Going towards HW/SW

codesign,” IEEE Trans. Neural Network, Vol. 14, no. 1, Jan. 2003, pp. 176 – 194.

[44] M. Cristea and A. Dinu, “A new neural network approach to induction motor speed

control,” in Proc. IEEE Power Electron. Specialist Conf., Vol. 2, 2001, pp. 784 – 788.

[45] http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf, Last visited: October,

2012.

[46] H. K. Kwan, "Simple sigmoid-like activation function suitable for digital hardware

implementation," Electronic Letters, Vol. 28, no. 15, July 1992, pp. 1379 - 1380.

[47] F. Piazza, A. Uncini, and M. Zenobi, "Neural networks with digital LUT activation

functions," Proceedings of 1993 International Joint Conference on Neural Networks, IJCNN,

Oct. 1993, pp. 1401 - 1404.

[48] R. C. Gonzalez, R. E. Woods, Digital Image Processing, second ed., Prentice Hall, 1992.

[49] S. Hariprasath, and T. N. Prabakar, “FPGA Implementation of Multilayer Feed Forward

Neural Network Architecture Using VHDL,” International Conference on Computing,

Communication and Application (ICCCA), Feb. 2012, pp. 1 - 6.

[50] http://content.imamu.edu.sa/Scholars/it/net/9114.pdf, Last visited: October, 2012.

[51] http://www.svms.org/finance/ShinLeeKim2005.pdf, Last visited: October, 2012.

[52] B. A. White, and M. I. Elmasry, "The Digi-Neocognitron: A Digital Neocognitron Neural

Network Model for VLSI," IEEE Transactions on Neural Networks, Vol. 3, No. 1, Jan. 1992, pp.

73 - 85.

58

[53] H. Djahanshahi, "A robust hybrid VLSI neural network architecture for a smart optical

sensor," PHD thesis, University of Windsor, 1998.

[54] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, "Face recognition: a literature

survey," ACM Computing Surveys, Vol. 35 No.4, 2003, pp. 339 - 458.

[55] A. Pukrittayakamee, "Fittinng functions and their derivatives with neural networks," PHD

thesis, Oklahoma State University, 2009.

[56] S. W. Reitwiesner, “Binary Arithmetic,” Advances in Computers, Academic Vol. 1, 1966,

pp. 231 - 308.

[57] Mi Lu., Arithmetic and Logic in Computer Systems, Wiley publishing, 2005, pp. 95 - 97.

[58] R. Guo and L. S. DeBrunner, "A Novel Fast Canonical-Signed-Digit Conversion Technique

for Multiplication," IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), May 2011, pp. 1637 - 1640.

[59] A. Hu, A. and J. Al-Khalili, "Comparison of Constant Coefficient Multipliers for CSD and

Booth Recoding," 14th International Conference on Microelectronics, Dec. 2002, pp. 66 - 69.

[60] L. Wanhammar, DSP Integrated Circuits, Academic Press, 1999, pp. 469 - 470.

[61] Sang-Min Kim, Jin-Gyun Chun, and K. K. Parhi, "Design of Low Error CSD Fixed-Width

Multiplier," IEEE International Symposium on Circuits and Systems, Vol.1, 2002, pp. 69 - 72.

[62] Sang-Min Kim, Jin-Gyun Chung, and K. K. Parhi, "Low Error Fixed-Width CSD Multiplier

With Efficient Sign Extension," IEEE Transactions on Circuits and Systems—II: Analog and

Digital Signal Processing, Vol. 50, No. 12, Dec. 2003, pp. 984- 992.

59

[63] Shyh-Jye Jou and Hui-Hsuan Wang, "Fixed-Width Multiplier for DSP Application,"

International Conference on Computer Design, 2000, pp. 318 – 322.

60

 VITA AUCTORIS

NAME: Ayesa Parvin

PLACE OF BIRTH: Dhaka, Bangladesh

YEAR OF BIRTH: 1986

EDUCATION: University of Windsor, Windsor, Ontario, Canada

M.A.Sc Electrical and Computer Engineering

2012

American International University-Bangladesh, Dhaka,

Bangladesh

B.Sc Electrical and Electronic Engineering

2009

Shiddeshwari Girls’ College, Dhaka, Bangladesh

2005

Khilgaon Girls’ High School, Dhaka, Bangladesh

2003

	University of Windsor
	Scholarship at UWindsor
	2013

	Application of Neural Networks with CSD Coefficients for Human Face Recognition
	Ayesa Parvin
	Recommended Citation

	Microsoft Word - Application of Neural Networks with CSD Coefficients for Human Face Recognition

