
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2004 

Role of mitochondria in neuronal cell death induced by oxidative Role of mitochondria in neuronal cell death induced by oxidative 

stress: Neuroprotection by coenzyme Q(10). stress: Neuroprotection by coenzyme Q(10). 

Mallika Somayajulu 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Somayajulu, Mallika, "Role of mitochondria in neuronal cell death induced by oxidative stress: 
Neuroprotection by coenzyme Q(10)." (2004). Electronic Theses and Dissertations. 3362. 
https://scholar.uwindsor.ca/etd/3362 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/3362?utm_source=scholar.uwindsor.ca%2Fetd%2F3362&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


ROLE OF MITOCHONDRIA IN NEURONAL CELL DEATH 

INDUCED BY OXIDATIVE STRESS; NEUROPROTECTION

BY COENZYME Qi0.

By Mallika Somayajulu

A Thesis Submitted to the Faculty of Graduate Studies and Research through the 

Department of Chemistry and Biochemistry in Partial 

Fulfillment of the Requirements for 

The Degree of Master of Science at

The University of Windsor

Windsor, Ontario, Canada 

2004

©  2004 Mallika Somavaiuiu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 * 1
National Library 
of Canada

Acquisitions and 
Bibliographic Services

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Bibliotheque nationale 
du Canada

Acquisisitons et 
services bibliographiques

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 0-612-92504-8 
Our file Notre reference 
ISBN: 0-612-92504-8

The author has granted a non
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats.

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur a accorde une licence non 
exclusive permettant a la 
Bibliotheque nationale du Canada de 
reproduire, preter, distribuer ou 
vendre des copies de cette these sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
electronique.

L'auteur conserve la propriete du 
droit d'auteur qui protege cette these. 
Ni la these ni des extraits substantiels 
de celle-ci ne doivent etre imprimes 
ou aturement reproduits sans son 
autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this dissertation.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
dissertation.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de ce manuscrit.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

ROLE OF MITOCHONDRIA IN NEURONAL CELL DEATH INDUCED BY
OXIDATIVE STRESS; NEUROPROTECTION BY COENZYME Q10

In past research, oxidative stress has been implicated in aging and age 

related disorders. Cell death caused by oxidative stress has been shown to play 

an important role in neuro-degenerative diseases. We used differentiated Human 

Neuroblastoma (SH-SY5Y) and Teratocarcinoma (NT2N) cells as models to 

study the mechanism of cell death induced by oxidative stress. We observed that 

differentiated NT2N AND SH-SY5Y cells underwent apoptosis following oxidative 

stress induced by direct hydrogen peroxide treatment. Morphological, apoptotic 

features including nuclear condensation and membrane blebbing and 

biochemical changes including DNA fragmentation and caspase and proteasome 

activation were evident following oxidative stress. We further investigated the 

production of Reactive oxygen species and mitochondrial dysfunction in the cell 

under oxidative stress. There was an increase in total ROS produced by the cells 

after H2O2 treatment. Furthermore, there was a decrease in the mitochondrial 

membrane potential and an increase in mitochondrial ROS generation.

C0 Q10 has been shown to be a potent anti-oxidant and an important 

component of the mitochondrial respiratory chain. In order to study the effects of 

C0 Q10 on neuronal oxidative stress, we pre-treated differentiated NT2 and SH- 

SY5Y cells with CoO10 for 24 hours prior to H20 2 treatment. Our results indeed 

indicated that pre-treatment with CoQ10 inhibited total ROS production and

i
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reduced caspase-3 activity and proteasome activity considerably. Moreover, 

C0 Q10 maintained a mitochondrial membrane potential even following oxidative 

stress and reduced the amount of ROS produced by mitochondria. My study 

suggests that water soluble C0 G10 not only acts as an anti-oxidant but also 

stabilizes the mitochondrial membrane during oxidative stress. We found that 

C0 G10 also offered neuroprotection when neuronal cells were subjected to 

oxidative stress induced using environmental toxin paraquat. Taken together, the 

results of this study suggested that water soluble C0 G10 can prevent 

mitochondrial collapse and block neuronal apoptosis. Thus C0 Q10 has a great 

potential for chemotherapeutic intervention in neurodegenerative diseases.

ii
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INTRODUCTION

Excessive loss of neuronal cells due to programmed cell death has been 

reported in several neurodegenerative diseases like Alzheimer’s disease, 

Parkinson’s disease, ischemia and amyotrophic lateral sclerosis (Beal 1999, Beh! 

1999, Fiskum et al., 1999, Piantadosi et a i, 1996, Coyle et a!., 1993, Siesjo et 

al., 1993, Traystman et a i, 1991). In most of these diseases, oxidative stress has 

been implicated to cause apoptosis. Neuronal cells are very sensitive to free 

radicals partly due to the high rate of oxygen consumption. Neurons are post 

mitotic tissues and hence once lost, cannot be re generated. A severe loss in 

neurons could lead to impaired brain function and affect memory and cognition.

1.1 Apoptosis

Cell d eath plays a significant role not only i n the d evelopment o f multi-cellular 

organisms, but also in maintaining tissue homeostasis. Kerr et al. proposed that 

there are two distinct cell death pathways that celis may undergo: one 

pathological and the other physiological. They recognized these two distinct 

morphological forms of cell death and coined the terms ‘necrosis’ for the 

accidental cell death and ‘apoptosis’ for the programmed cel! death (Kerr et a!., 

1972). Necrotic cell death is an uncontrolled process, which may be induced by 

factors such as physical damage, injury, toxic agents, extreme heat and 

pressure. Some of the prominent morphological features of necrosis include an 

increase in cell volume, causing ceils to rupture and releasing cellular contents 

such as enzymes into the intercellular milieu (Gores et al., 1990).

- 1 -
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This can further cause tissue damage by affecting neighbouring cells or by 

attracting proinflammatory cells to the affected area and causing necrotic cells to 

be engulfed (HasSett 1992). The biochemical characteristics of necrosis are 

random degradation of DNA and random proteolysis of proteins.

Apoptosis differs from necrosis in that it is a highly orchestrated form of 

cell death (Figure 1). Physiological stimuli such as lack o f growth factor and 

hormones, or oxidative stress DNA damaging agents (such as ultra-violet 

radiation), chemotherapeutic drugs may induce the apoptotic cell death pathway. 

Cells have a withered and shrunken appearance and they do not adhere to the 

neighbouring cells. Nuclear condensation is simultaneously followed by 

membrane blebbing and formation of apoptotic bodies occurs. Neighbouring 

cells then phagocytose these apoptotic cells. As the plasma membrane remains 

intact when the cell dies, there is no inflammation. DNA degradation of cells 

undergoing apoptosis also tends to be very systematic. In addition, there is a 

rapid alteration in the organization of phospholipids in most cell types leading to 

the exposure of phosphatidyl serine on the cell surface.

Apoptosis plays an important role in embryo development and in the adult 

animal during tissue turnover or at the end of an immune response (Ashkenazi et 

ai., 1998). It also acts as a safe guard against growth of cells carrying mutations 

and which are potentially capable of becoming cancerous. T he significance of 

apoptosis in maintaining the normal functioning of the body is demonstrated 

when it malfunctions. If there is decreased apoptosis, it results in autoimmune 

diseases and cancers, causing cells to grow uncontrollably. On the other hand,

- 2 -
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Figure 1. The two different forms of cell death: Apoptosis and Necrosis
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Ceil death can be of two types: apoptosis and necrosis. Apoptosis is marked by

nuclear condensation, ceil shrinkage, membrane blebbing and formation of 

apoptotic bodies which are engulfed by neighbouring cells. Necrosis is 

accompanied by random DNA degradation and an increase in ceil volume 

ultimately causing the cell to burst, spilling its contents into the inter-cellular 

milieu.
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excessive cell death may result in stroke damage and neurodegenerative 

diseases and AIDS.

1.2. The biochemical mechanism of apoptosis

Two pathways causing apoptosis have been well established. The 

extrinsic pathway employs the death ligand induced activation of death receptors 

resulting in the activation of initiator caspases (Ashkenazi et al., 1 998). In the 

intrinsic pathway, apoptotic signals affect the mitochondria such that apoptogenic 

factors are released into the cytoplasm.

1.2.1. The extrinsic pathway

Death receptors are cell surface receptors belonging to the tumour 

necrosis factor receptor (TNF) family. Death receptors contain a homologous 

cytoplasmic sequence called the death domain (DD) (Tartaglia et al., 1997). 

These DD are responsible for recruiting adapter molecules, which in turn recruit 

caspases to the receptor complex (Figure 2). In most cases, caspase-8 is 

recruited. Once activated, caspase-8 activates effector caspase, caspase-3. 

Caspase-8 can also cleave Bid, a pro-apoptotic protein, which translocates to the 

mitochondria and affects the mitochondria! membrane potential by having 

pronounced effects on the other pro-apoptotic proteins.

1.2.2. The intrinsic pathway

This pathway is also known as the mitochondrial pathway. The role of 

mitochondria in the activation of caspases is implicated in various studies (Zou et 

al., 1999, Li et al., 1997, Zou et al., 1997). Different types of stress such as 

oxidative stress, DNA damage, etc. can result in the leaking of cytochrome c

- 4 -
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Figure 2. The extrinsic pathway in apoptosis
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APOPTOSIS

The binding to the ligands to the death receptors causes the recruitment of 

adapter molecules via death domains (DD). These adapters in turn recruit 

initiator caspases such as caspase-8 via death effector domains (DED). Upon 

activation of caspase-8, effector caspases like caspase-3 are activated. 

Activation of effector caspases ultimately leads to apoptosis.

- 5
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from the inner membrane space of the mitochondria into the cytoplasm (Kroemer 

et al., 1997). Cytochrome c binds to Apaf-1 in the presence of ATP causing a 

conformational change in Apaf-1 allowing it to bind to procaspase-0 via the 

caspase recruitment domains (CARD) present in both the molecules. 

Aggregation of procaspase-9 leads to auto-proteolysis and activation of 

downstream caspases I ike caspases-3 (Figure 3). The role o f mitochondria in 

apoptosis is described in detail in the later section.

1.3. Proteases involved in apoptosis

There exists a special machinery to execute apoptotic cell death. The 

central component of this machinery is a proteolytic system called caspases. 

Recent studies have shown the activation of another enzyme pathway called the 

ubiquitin-proteasome pathway that mediates protein degradation is activated 

during apoptosis.

Caspases are a very important component of the apoptotic pathway. 

Enzymes belong to a family of cysteine specific proteases (Thornberry et al., 

1998). These enzymes use cysteine as the nucleophilic group for substrate 

cleavage and cleave peptide bonds on the carboxyl side of aspartic acid residue 

(Earnshaw et al., 1999, Nicholson 1999, Cohen 1997, Villa et ai., 1997). At least 

14 caspases have been identified in mammals. They are expressed as 

zymogens and require proteolytic processing between domains to form the 

mature protein. Upon initiation of an apoptotic signal, multiple caspases are 

activated via caspase cascades in the cell (Macfarlane et al., 1997, Casciola-

- 6 -
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Figure 3. The intrinsic pathway in apoptosis

Death signals

m m Apaf-1

Apoptosis ♦

Release of apoptogenic factors such as cytochrome c from the mitochondria 

leads to the activation of initiator caspases. Apaf-1 undergoes a conformational 

change upon cytochrome c binding and binds to procaspase-9, and activates it. 

Caspase-9 then causes the activation of effector caspases such as caspase-3. 

Caspase-3 inactivates important proteins ultimately leading to the apoptosis.

-7 -
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Rosen et al., 1996, Casciola-Rosen et al., 1994), Caspases can be divided into 

two categories depending on their order of activation, The caspases that are 

activated first in the cascade are called initiator caspases such as caspase-8. 

Upon activation, these initiator caspases activate the effector caspases like 

caspase-3 that execute the apoptotic program.

One of the major roles of caspases is to inactivate the proteins that protect 

cells from apoptosis like the cleavage of the inhibitor of caspase activated DNase 

(ICAD) (Enari et al., 1998, Liu et al., 1997), ICAD is an inhibitor of a nuclease 

responsible for DNA degradation called Caspase activated DNase (CAD). 

Cleavage of ICAD results in the activation of CAD, which enters the nucleus and 

degrades the DNA. Some of the other functions of caspases include disassembly 

of cell structures like destruction of nuclear lamina (Takahashi et al., 1996, Orth 

et al., 1996), reorganizing proteins such as gelosin (Kothakota et a!., 1997), focal 

adhesion kinase (FAK) (Wen et al., 1997), etc. which are involved in cytoskeleton 

leading to deregulation of their activity, inactivation of proteins involved in DNA 

repair and replication and rmRNA splicing (Cryns et al., 1998, Enari et al., 1998).

Recent studies have shown protein degradation by the ubiquitin- 

proteasome pathway during apoptosis. The proteasome pathway is involved in 

the general degradation of damaged, non-functional and unwanted proteins in 

the cells (Rodgers et al., 2002). Activation of proteasome has been observed 

during serum deprivation-induced apoptosis (Pandey et al., 2003).

-  8 -
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1.4. Role of mitochondria in apoptosis

Mitochondria play a very important role in apoptosis (Desagher et ai., 

2000 Green et al., 1998). Mitochondria control apoptosis at various levels, 

including maintenance of ATP production (Leist et a i, 1997), mitochondrial 

membrane potential and mitochondrial membrane permeability for the release of 

apoptogenic factors from the inter membrane space of the mitochondria into the 

cytoso! (Kroemer et al., 2000, Vayssiere et al., 1994, Zoratti et al., 1995). During 

apoptosis, the changes in the mitochondrial membrane potential have been 

associated with the opening of the mitochondrial permeability transition pore 

(MPTP) (Haiestrap et al., 2000, Lemasters et al., 1998).

The permeability transition pore is a large multi protein complex that spans 

the mitochondrial membranes, creating a channel between the cytosol and the 

mitochondrial matrix (Harris et al., 2000, Zoratti et al., 1995). The components of 

this channel include a voltage dependent anionic channel (VDAC), adenosine 

nucleotide transporter (ANT), the benzodiazapine receptor, hexokinase (HK), 

creatine kinase (CK) and cyclophilin D (Zoratti et al., 1995) (Figure 4). The 

opening of the permeability transition pore (PIP) depends on the mitochondrial 

membrane potential and the binding of different molecules. Marked increase in 

the intra mitochondrial Ca+2 levels, increased oxidative radical levels, partial 

failure of respiratory complexes, either individually or together can produce a fall 

in mitochondrial membrane potential (ATm) (Richter 1993).

The opening of the FTP dissipates remaining proton gradient across the 

mitochondria! membrane and further reduces ATV Several factors have been

-9 -
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Figure 4. Components of the permeability transition pore

HK HK
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The permeability transition pore is a channel between the cytosol and the 

mitochondrial matrix. The components of this channel include a voltage 

dependent anionic channel (VDAC), adenosine nucleotide transporter (ANT), the 

benzodiazapine receptor, hexokinase (HK), creatine kinase (CK) and cyclophilin 

D. The opening of the pore causes a loss in the potential and allows the release 

of apoptogenic substances from the mitochondria into the cytoplasm.
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shown to influence the opening or the closure of PIP. Pore opening is favoured 

by events which include cross linking of protein thiols by oxidative agents, high 

levels of intracellular Ca+2, release of glutathione from the mitochondria (Hirsch et 

ai., 1997) and increased ROS levels in the mitochondrial matrix (Chernyak et ai., 

1996). However, binding of Bci-2 to the PIP favours P IP  closure.

1.5. The Bcl-2 family: activators and inhibitors of apoptosis

The Bcl-2 family of proteins plays an important role in regulating apoptosis. This 

family of proteins can be d ivided into two functional groups: the a nti-apoptotic 

(Bcl-2, Bcl-xl, Bcl-w) and pro-apoptotic group (Bax, Bid, Bak, Bim). One of the 

key features of this family is that the members share sequence homology (Hunter 

et al., 1996, Chittenden et al., 1995, Yin et al., 1 994). Upon a poptotic stimuli, 

many pro-apoptotic proteins tanslocate from the cytoplasm to the mitochondria 

(Gross et al., 1999, Huang et al., 1998), undergo a conformational change and 

oligomerize within the mitochondrial membranes (Leist et al., 2001, Gross et al., 

1999, Goping et al., 1998). The pro and anti-apoptotic proteins can interact with 

each other to form homodimers and heterodimers. The anti-apoptotic members 

of the Bcl-2 family can inhibit the translocation and homodimerization of pro- 

apoptotic Bcl-2 family members. For example Bcl-2 forms heterodimers with Bax, 

preventing the formation of Bax: Bax homodimers thereby interfering with the 

ability of Bax to increase MMP (Benedict et al., 2000). The anti-apoptotic 

members of the Bcl-2 family shut off the apoptotic signal cascade upstream of 

effector caspase activation by preventing the release of cytochrome c from the
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mitochondria (Boulakia et al., 1996, Chinnaiyan et a/., 1996, Shimizu et a!., A, 

1996, Shimizu et a!., B, 1996).

1,6. Oxidative stress

Oxidative stress refers to the undue oxidation of biomoiecuies leading to cellular 

damage, and it is carried out by reactive oxygen species (ROS). Various 

neurodegenerative disorders and syndromes are associated with oxidative stress 

(Behl 2002).

ROS include a number of reactive molecules derived from oxygen and are 

generated during normal metabolic processes and in response to various stimuli 

(Fleury et al., 2002, Frodovich 1978). Mitochondria are the major source of ROS 

in the cell. Levels of ROS generated during leaky' mitochondrial respiration are 

not negligible: the amount of H20 2 and other ROS produced by brain 

mitochondria can reach 5% of 0 2 metabolized (Arnaiz et al., 1999, Chance et al., 

1979).The mitochondrial electron transport chain produces ROS at Complex-! 

and Complex- 111.

Much o f the d ata a re in a greement w ith t he h ypothesis t hat i ncrease i n 

ROS is a consequence of the impairment of mitochondrial respiratory chain 

(Fleury et al., 2002). Stepwise reduction of molecular oxygen occurs via one 

electron transfer leading to the formation of ROS like superoxide and hydrogen 

peroxide (see below). H20 2 is not a free radical but can penetrate cell 

membranes making it very toxic to the cell. It acts as an intracellular signaling 

molecule (Rhee 1999, Sunderesan et al., 1995). H20 2 can give rise to an OH *
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radical which is probably capable of causing more damage than any other ROS 

(Betteridge 2000, Halliwell 1987). The superoxide radical can also react with 

nitric oxide (NO) to form peroxynitrite, which is highly reactive and cytotoxic.

ROS can react with different biomolecules like proteins, DNA and lipids. In vitro 

studies have revealed that ROS can react with several amino acid residues 

leading to less active enzymes and malfunction of proteins (Butterfield et al., 

1998, Steinberg 1997). ROS can cause modifications in DNA leading to 

mutagenesis. Studies have shown a high prevalence of cancer in individuals 

exposed to  oxidative stress ( Marnett 2000, Mates et al., 1 999). ROS has also 

been shown to target mitochondrial DNA (Shoji et a l, 1995). In many cases 

apoptosis is mediated by ROS (Kamata et al., 1999). Recent studies have 

indicated that ROS could be responsible for decrease in Bcl-xl mRNA (Carmody 

et al., 2000). Moreover ROS can also lead to the activation of cell death 

mediators (Burdon 1996, Burdon 1995) and also cause lipid peroxidation 

(Butterfield et a I., 1998, Steinberg 1997).

U .  O x id a t iv e  s t r e s s  b y  neurotoxins

Paraquat (1, 1 d imethyl-4, 4’ bipyridinium) is a non selective herbicide 

widely used for broad leaf weed control (Suntres 2002) has been found to 

selectively kill nigrostriatal dopaminergic neurons in animal models. Paraquat is
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very toxic and can be lethal to both animals and humans upon acute exposure 

(Onyon et al.., 1987). The structure of paraquat resembles closely to the structure 

of N Methyl, 4-phenyl pyridinium (MPP+), which is a dopaminergic neurotoxin 

(Shimizu et al., 2001). Due to the similarity in structure with MPP+ (Figure 5), 

there may be a possible role of paraquat exposure in the development of 

neurodegenerative disease {Corasoniti et al., 1998). Moreover, studies have 

revealed a strong co relation between the amount of paraquat used and 

Parkinson’s disease (Liou et al., 1997, Liou et al., 1996, Morano et al., 1994). 

Though research has shown that paraquat can cause oxidative stress, the 

mechanism by which paraquat induces ceil death is still not clearly understood. 

Further studies are essential in order to determine the mechanism of paraquat 

induced cell death.

1.8. Anti-oxldants

Oxidative metabolism in brain tissue as in all cells occurs in mitochondria. 

During oxidative phosphorylation, a finite amount of 0 2 is left partially reduced as 

the superoxide anion (0 2*'). ROS emanating from within the cell can threaten 

homeostasis if they are not appropriately resolved. Local levels of ROS at any 

given time will depend not only on the rate of generation, but also on the efficacy 

of the antioxidant network. Neuroprotective antioxidants are considered a 

promising approach to slowing the progression and limiting the extent of neuronal 

cell loss in neurodegenerative disorders.
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Figure 5. Structural similarities between paraquat and MPP+
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The structure of paraquat resembles that of N methyl, 4-phenyl pyridinium 

(MPP+). MPP+ is a dopaminergic neurotoxin. Paraquat exposure has been linked 

to Parkinson’s disease.
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Under normal physiological conditions, free radicals are countered by various 

antioxidant defenses; enzymatic and non-enzymatic. Superoxide dismutase 

(SOD), glutathione peroxidase (GPx), and cataiase (CAT) are among the first line 

of defense against oxygen toxicity. SOD converts 0 2*- to H20 2, which is further 

converted to H20  with the help of GPx and CAT. SOD inhibits 

*OH production, it is considered to be the first line of defense against 0 2 toxicity 

(Ray et al., 2002).

The non-enzymatic antioxidants like glutathione (GSH) are essential for 

the cellular detoxification of reactive oxygen species in brain cells. A 

compromised GSH system in the brain has been connected with the oxidative 

stress (Drsngen et al., 2003). As an antioxidant, GSH metabolizes ROS and 

peroxides primarily by serving as a cofactor for GSH-dependent enzymes such 

as GSH peroxidase. In addition, antioxidants such as the lipophilic free radical 

scavenger a-tocopherol (vitamin E), or the hydrophilic compound ascorbate 

(vitamin C), the two most prominent antioxidants of their class, can directly 

interact with ROS at the molecular level (Finkel et al., 2000, Halliweii 1996, Sies 

1993). Studies in perfused rat liver (Vails et al., 1994) and isolated rat 

hepatocytes (Beyer et al., 1996) have shown that exogenously added CoG10 can 

act as an antioxidant.

1.8.1. C0 Q10

C0 G10 or ubiquinone (2,3 di methoxy-Smethyl 6 multi-prenyl-1, 4, 

benzoquinone) exerts its main natural function in mitochondria as a part of the
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electron transport chain, but is also present in low concentrations in plasma and 

in cell membranes where it functions as an antioxidant by preventing lipid 

peroxidation (Ernster et a!., 1995). It is a highly lipophilic compound which carries 

electrons from complex-l and complex-ll to complex-ill. C0 Q10 can accept one 

electron and get converted to an intermediate semi-ubiquinone which then can 

accept one electron to get converted to its reduced form called ubiquinoi (Figure 

6). However, due to its insoluble nature, to study the mechanism by which C0 Q10 

offers protection is difficult. Recently, a water soluble formulation of C0 Q10 was 

prepared by using a patented protocol, at the National Research Council, 

Ottawa, by Dr. Marianna Sikorska and Dr. Henryk Borowy-Borowski. The water 

soluble formulation is readily taken up by cells in culture thereby enabling further 

studies to exemplify its anti-oxidant capabilities.

1.9. Cell lines

It is difficult to study the biochemical mechanisms of neurodegenerative diseases 

due to the lack of availability of human neurons because neurons are post-mitotic 

tissues. Human teratocarcinoma (NT2N) and Human Neuroblastoma (SH-SY5Y) 

cells have been used as neuronal models to study neuronal functions.

1.9.1. Human teratocarcinoma cells

NT2 cells can be differentiated into neuronal phenotypes by exposing them with 

retinoic acid. Upon the exposure to RA, the use of differential adhesion matrices
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Figure 6. The different forms of C0Q10
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Oxidized C0 G10 or ubiquinone can accept one electron and form an intermediate 

semiubiquinone radical. This radical can then accept one more electron to form 

the reduced form also known as ubiquinol.
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and mitotic inhibitors, the cells develop morphological and cytoskeletal 

characteristics of postmitotic central nervous system neurons. They resemble 

human primary neurons and like them, elaborate processes that differentiate into 

dendrites (Pleasure et al., 1992, Pleasure et al., 1993). Commitment of NT2 cells 

to a stable neuronal phenotype is irreversible.

1.9.2. Human neuroblastoma cells (SH-SY5Y)

SH-SY5Y ceils can be differentiated into human neuron like ceils by treating 

them with retinolc acid and are dependent on brain derived neurotrophic factor 

(BDNF).This treatment with RA and BDNF causes expression of neuron specific 

markers like neurofilaments and withdrawal from ceil cycle differentiation 

(Encinas et a!., 2000). Differentiation of neuroblasts occurs once they are 

arrested in the G0 phase of the cell cycle (Encinas et al., 2000). Removal of 

BDNF makes the cells to re-enter S phase, leading to apoptosis due to 

unscheduled entry into the S phase {Encinas et al., 2000).
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Objectives

1. To differentiate NT2 and SH-SY5Y ceiis into neuronal ceils in order to use 

them as a model to study oxidative stress induced neuronal cell death.

2. To investigate if direct oxidative stress causes apoptotic cel! death.

3. To examine if water soluble CoGio can offer neuroprotection against 

oxidative stress and prevent apoptosis.

4. To study the mechanism of neuroprotection by CoQi0:

1. As an antioxidant

2. Restoring mitochondrial function.

5. To study the effect of environmental toxin: paraquat, an herbicide on 

neuronal cells and determine if water soluble CoQ10 can offer protection.
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CHAPTER 2 

MATERIALS AND METHODS

2.1. Chemical and supplies

2.1.1. Cell Lines

Human Neuroblastoma (SH-SY5Y) cells were purchased from the 

American Type Culture Collection (ATCC), Manassas, VA, USA. The Human 

Teratocarcinoma (NT2) cells were purchased from Stratagene cloning systems, 

La Jolla, CA, USA.

2.1.2. Media

DMEM F12, L-Glutamine and Gentamycin were purchased from Gibco 

BRL, VWR, Mississauga, ON, Canada. Fetal bovine serum was purchased from 

Winsent Inc, Quebec, Canada. Matrigel matrix was purchased from Becton- 

Dickinson, CA, USA. Recombinant hBDNF was purchased from Almone Labs, 

Israel. Uridine, fluorodeoxyuridine, cytosine arabinoside, retinoic acid and 

collagen were purchased from Sigma Chemical Company, Mississauga, ON, 

Canada.

2.1.3. Coenzyme Qiq

Water-soluble C0 Q10 was formulated in the National Research Council 

(NRC), Ottawa, Canada by a patented protocol developed by Dr. Marianna 

Sikorska and Dr. Henryk Borowy-Borowski (US Patent No. 6,045, 826).
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2,1.4. Other chemicals

Most of the chemicals including ATP, BSA, CHAPS, DTT, DTNB, EDTA, 

EGTA, GSH, GSH Reductase, HEPES, hydrogen peroxide, HRP, luciferin- 

luciferase, low melting point agarose, HEPES, MDA, MgCI2, NADPH, Na2EDTA, 

parahydroxyphenyiaceticacid, paraquat, succinate, thiobarbituric acid, 

trichloroacetic acid and trypsin were purchased from Sigma Chemical Company, 

Mississauga, ON, Canada. Triton X -100 was obtained from Gibco BRL, VWR, 

Mississauga, ON, Canada. DMSO, NaOH, NaCI, NaHCOs and sucrose were 

purchased from BDH Inc., Toronto, Canada. Glycine and agarose were 

purchased from EM Sciences, NJ, USA. DCFDA, DEVD-AMC Hoechst, LLVY- 

AMC and mitotracker Red CM-H2XR0 S were obtained from Molecular Probes, 

Eugene, OR, USA. Protein assay reagent was purchased from Bio Rad, Ontario, 

Canada.

2.2. Apparatus and instrumentation

Fluorescent and phase contrast pictures were taken using a fluorescent 

microscope (Leica DM IRB, Germany). Fluorescence measurements were 

conducted in multiwell plate reader with the help of Spectra Max Gemini XS 

(Molecular Devices, Sunnyvale, California). Absorbance was measured by a UV- 

Visible Spectrophotometer (Agilent Technologies). Absorbances in 96 well micro

titer plates were measured using a Bio-tek ELx 808ru Ultra Microplate Reader.

Cell culture was conducted under sterile conditions in the class-il type 

A/B3 Biosafety cabinet (Nuaire), and all cultures were maintained in a C 02
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incubator containing a HEPA filter (Thermo Forma). Centrifugation was done 

using iow speed centrifuge (Jouan) and DESAGA (Sarstedt-Gruppe). Other 

general laboratory equipment used included the following:

A pH Meter (VWR, Model 8100) with buffer solutions from VWR, an 

Adventurer ™ balance (OHAUS), Vortex Jr. Mixer from Scientific Industries Inc, 

1296-002 DELFIA R plate shaker from Wallac, a heat block (Gibco BRL, VWR, 

Canada) Rocking platform model 200 from VWR, a Corning stirrer from Fisher 

Scientific (Toronto, Ontario), a Dounce homogenizer from Kontes Glass 

Company (NJ, USA), freezer vials (VWR) and Eppendorf pipettes (Fisher 

Scientific).

2.3. Cell Culture

2.3.1. Human Teratocarcinoma Cells

Cells were grown and differentiated using a slight modification of the 

manufacturer’s protocol. NT2 cells were grown in D-MEM/F-12 growth medium 

supplemented with 10% (v/v) Fetal Bovine Serum (FBS), 2 mM L-glutamine and 

20 pg/mL gentamycin at 37°C at 5% CO2 . The cells were sub cultured by splitting 

1:5 twice a week. For differentiation, cells were seeded in a 25m2 flask and 

treated with normal growth medium containing 10 pM retinoic acid twice weekly 

for 5 weeks. The cells were then sub cultured 1:3 and replated in complete D- 

MEM/F-12 media for one day. Next day, the cells were put in serum free media 

for 5 minutes and differentiated neuronal cells were mechanically dislodged by 

gently striking the flasks. Then the cells were replated in 60x15mm petri-plates,
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which were pre-coated with Matrige! Matrix and maintained in norma! growth 

media containing mitotic inhibitors (1 \M  cytosine arabinoside {araC), 10 jiM 

fiuorodeoxyuridine (FrdU) and 10 |o.M uridine (Urd)) for at least 3 weeks. Over the 

weeks, half of the medium was changed twice a week. Differentiated neurons 

(NT2N) were obtained 3-4 weeks after treatment with mitotic inhibitors. A mixed 

culture containing both neurons a nd astrocytes (NT2N/A) was obtained during 

some experiments.

2.3.2. Human Neuroblastoma Cells

SH-SY5Y cells were grown in Ham's F12 medium with 2 mM L-glutamine that 

was modified to contain 1.5 g/L sodium carbonate, 10% Fetal Bovine Serum and 

10 pg/mL gentamycin at 37°C at 5% CO2 . Differentiation of these cells was 

carried out using a previously desribed method (Encinas et al., 2000). Cells were 

plated in 60x15mm petri-plates, which were pre-coated with 0.05% collagen. On 

the day after plating the cells, All-trans Retinoic acid was added to a final 

concentration of 10 pM in F12 medium containing 15% Fetal Bovine Serum for 5 

days. After 5 days in the presence of RA, the cells were washed twice with F12 

medium and incubated with 50 ng/m l brain derived neurotrophic factor (BDNF) 

in Serum Free Media (F12 medium without FBS) for 7 days.

2.4. Experimental treatments

2.4.1. Oxidative Stress
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2.4.1.1. H20 2 Treatment

Differentiated MT2N and SH-SY5Y ceils were either pre-treated with 30 pg/m l 

Coenzyme G io (CoQio)for24 hours prior to treatment o r directly subjected to 

oxidative stress by incubation with 100 «iM H 2O2 for 1 hour at 37°C. Then the 

media was replaced with fresh complete media without H2O2 , with or without 30 

fig/mL C0 G10 and experiments were carried out at various time intervals as 

indicated in the figures.

2.4.1.2. Paraquat Treatment

Differentiated SH-SY5Y cells were either pre-treated with 30 pg/mL water-soluble 

Coenzyme Q10 (C0 Q10) for 24 hours or directly subjected to paraquat treatment 

by incubation with 100 pM paraquat in complete media for 48 hours at 37°C.

2.5. Cellular Staining and Microscopy

In order to study the morphology, NT2N and SH-SY5Y cells were grown, 

differentiated and treated as mentioned above. After 6 hours of treating both NT2 

and SH-SY5Y cells with H2O2 , and 48 hours of treating SH-SY5Y cells with 

paraquat, the cells were stained with Hoechst 33342 (10 pM final concentration) 

for 10 minutes. The media containing excess Hoechst dye was removed by 

aspiration and replaced with 2 m l of 1X PBS. The cells were then examined 

under a fluorescent microscope, and phase contrast and fluorescence pictures 

were taken. These pictures were processed using Adobe Photoshop 7.0 

software.
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2.6. Comet Assay

The comet assay was performed using a slight modification of a previously 

described method (Gajendran et al., 2000). NT2N cells were treated with 

hydrogen peroxide and SH-SY5Y cells were treated with paraquat as mentioned 

above. After 3 hours (for H2O2) and 48 hours (for paraquat) of treatment 

respectively, the cells were incubated with 0.1% trypsin for about 5 minutes. The 

ceils were harvested by mechanical dislodging. 10 p i  of cells (about 10,000 

cells) from the controi and treated samples were mixed with 80 p i of warm low- 

melting point agarose (IMP) (0.75%, 37°C) in a microfuge tube and spread on a 

glass slide pre-coated with 200 pL of 0.1 % agarose in such a way that half of the 

gel was on the coarse surface and the other half on the smooth, transparent 

surface (agarose gel tends to slide away from the smooth surface during 

processing). The slides were incubated at 4°C for about 15 minutes. Slides were 

then immersed immediately in a tray containing a freshly prepared cold lysis 

buffer (2.5 mM NaCl, 100 mM EDTA, 10 mM Tris, pH 10, 1% Triton X-1Q0 and 

10% DMSO). The slides were incubated in the dark for 1 hour at 4°C. Slides 

were then washed in freshly prepared alkaline electrophoresis buffer (0.3 M 

NaOH, 1 mM Na2EDTA, pH>13). The DNA was electrophoresed at 300 mA 

(G.8V/cm), washed twice in a neutralizing buffer (0.4 M Tris, pH 7.5) and stained 

with Hoechst 33342 (10 pM). The cells were photographed under a fluorescent 

microscope (Zeiss, Axiovert 200), and phase contrast and fluorescence pictures 

were processed using Adobe Photoshop 7.0 software.
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The cells were harvested by mechanical dislodging using a rubber policeman. 

Cells were then centrifuged at 500xg for 5 minutes. The supernatant was 

removed and the pellet was then washed twice with 1X PBS pH 7.4 and 

centrifuged again at 50Gxg for 5 minutes. The supernatant was removed and the 

pellet was resuspended in 0.4 m l of extraction buffer (25 mM HEPES pH 7.25, 5 

mM MgCI2, 1 mM EGTA, 0.1% Triton X 100). The re suspension in the buffer was 

transferred into a cell homogenizer. Cells were homogenized with 20 strokes to 

produce the total cell lysate.

2.8. Protein Estimation

The concentration of proteins present in the total cel! lysate sample was 

estimated using the protocol from BioRad Laboratories. The protein estimation 

was carried out by taking 10 yL aliquots of each total cell lysate sample, 790 p i 

of water and 200 jiL of BioRad protein assay reagent to a total volume of 1 m l in 

plastic cuvettes. The mixtures were vortexed and allowed to stand for 10 minutes 

at room temperature. The absorbance was then taken using a UV-Visible 

Spectrophotometer and analyzed at 595 nm. The standard curve was prepared 

by using various amounts of a standard protein solution and recording the 

absorbance in identical condition.

2.9. Proteasome and Gaspase-3 Activity
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Proteasome and caspase-3 assays were performed using a previously published 

method (Naders et al, 2003). Total NT2N and SH-SY5Yce!l lysates were obtained 

as mentioned earlier. The proteasome assay was performed in a Sarstedt 96 well 

plate. 20 pL of total cell lysate was incubated with 50 u t LLVY-AMC fluorogenic 

peptide substrate in a 1X LLVYase buffer (0.1 M Tris-HCI, pH 8.0, 5 mM MgCh) 

for 1 hour at 37°C. The total volume of the reaction mixture was made to 100 p i 

with distilled water. After incubation for 1 hour, fluorescence was measured at an 

excitation and emission wavelengths of 370 nm and 440 nm respectively, using 

the Spectra Max Gemini XS. For the caspase-3 assay, 20 pL of total cell lysate 

was incubated with 200 pL DEVD-AMC fluorogenic peptide substrate in a 1X 

DEVDase buffer (0.1 M HEPES, pH 7.4, 2 mM DTT, 0.1% CHAPS, 1% Sucrose) 

for 1 hour at 37°C. After incubation for 1 hour, fluorescence was measured in a 

96 well micro-titer plate at an excitation and emission wavelengths of 400 nm and 

505 nm respectively, using the Spectra Max Gemini XS. The Caspase-3 and 

proteasome activity were expressed per microgram of protein. Protein 

concentration was measured using the Bio Rad protein assay reagent, and 

bovine serum albumin was used as a standard. Microsoft Excel version 6.0 

software was used for data representation and statistical analysis.

2.10. Reduced Glutathione (GSH) Measurements

GSH assay was performed using a previously published method (Baker et al., 

2003). NT2 cells were grown, differentiated and treated with 100 pM H20 2. GSH 

levels were measured in cells 24 hours after H2O2 treatment. The total cell
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extract was obtained as mentioned above. 50 pL of the total ceil lysate was 

incubated with 100DL of reaction mixture containing 1 mM NADPH, 100 mM 

Na2HP04, 100 units GSH reductase and 1 mM DTNB for 5 minutes. The 

absorbance was measured at 412nm in a 96 well micro-titer plate using Bio-tek 

ELx 808ru Ultra Micro plate Reader. GSH levels were measured by running 

internal standards of GSH. Results were expressed per microgram of protein. 

Protein concentration was measured using the Bio Rad protein assay reagent 

and bovine serum albumin was used as a standard as mentioned above. 

Microsoft Excel version 6.0 software was used for data representation and 

statistical analysis.

2.11. Lipid Peroxidation Assay

Lipid peroxidation was performed using a previously described method (Cereser 

et al., 2001). SH-SY5Y cells were grown, differentiated and treated for 24 hours 

with H20 2 as mentioned earlier. The total cell lysate was obtained as mentioned 

earlier and then centrifuged at 500xg for 5 minutes and the supernatant was 

removed. The pellets were re suspended in 0.25 m l of extraction buffer. 100 pL 

of cell membrane sample was incubated with 1ml of thiobarbituric acid on a 

10GX heatblock for 15 minutes. After cooling, absorbance at 535 nm was 

measured using a spectrophotometer. Lipid peroxidation levels were determined 

running internal standards of Malonaidehyde (MDA). Results were calculated per 

microgram of protein. Protein concentration was measured using the Bio Rad 

protein assay reagent with bovine serum albumin as a standard (mentioned
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earlier). Microsoft Excel 8.0 software was used for data representation and 

statistical analysis.

2.12, Measurement o f Total ROS

Production of total ROS was measured after 6 hours and 24 hours of H20 2 

treatment in NT2N cells, while total ROS production was monitored after 48 

hours of paraquat treatment in SH-SY5Y cells. The membrane permeable dye 2', 

7' - dichlorofluorescein diacetate (DCFDA) was used to detect ROS production 

using a modification of a previously published procedure (Siraki et al., 2002). 

Briefly, at various time points after treatment, the cells were incubated with 

DCFDA to a final concentration of 10 pM for 10 minutes at 37°C. Cells were 

harvested by mechanical dislodging using a rubber policeman and centrifuged at 

500xg for 5 minutes. The pellet was washed and re suspended in PBS, and 

fluorescence (excitation 500 nm and emission at 520 nm) was measured using a 

Spectra Max Gemini XS multi-well plate fluorescence reader (Molecular Device, 

Sunnyvale, California). Protein concentration was measured using the Bio Rad 

protein assay reagent a nd results were s hown per m icrogram o f protein using 

bovine serum albumin as a standard. Microsoft Excel version 6.0 software was 

used for data representation and statistical analysis.

2.13. Measurement o f ROS Production from Isolated M itochondria 

SH-SY5Y cells were grown, differentiated and treated for 24 hours with H2C>2 as 

mentioned above and intact mitochondria were isolated using a previously
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published method (Li et al., 2003). Cells were harvested by mechanical 

dislodging using a rubber policeman and centrifuged at 500xg for 5 minutes. 

They were washed twice with ice cold PBS and centrifuged at 250xg, the cells 

were re suspended in isolation buffer containing 1 mM EDTA, 10 mM HEPES 

(pH 7.4) and 250mM sucrose. Cells were homogenized by a Dounce 

homogenizer with 20 strokes. The disrupted cells were centrifuged for 5 minutes 

at 600xg at 4°C. The supernatant was collected and centrifuged at 15,000xg at 

4°C for 5 minutes and the resulting pellet was mitochondria. The pellet was re

suspended in buffer without EDTA. Mitochondrial suspensions were kept on ice 

and all the experiments were performed within 5 hours.

Mitochondrial hydrogen peroxide was measured using p-hydroxy phenyl 

acetic acid (PHPA) by an increase in the fluorescence due to oxidized p~ 

hydroxyphenylacetate fluorescence by horseradish peroxidase as previously 

described (Li et al., 2003). 0.25 mg of mitochondrial suspension was added to a 

100pl reaction mixture containing 0.25 M Sucrose, 1 mM MgCI2, 10 mM HEPES 

0.5 mg/mL PH PA and 0.4 units of HRP per well. 100 mM succinate was added 

and the contents were mixed. After 30 minutes of incubation, the fluorescence of 

oxidized PH PA (excitation 320 nm, emission 400 nm) was measured in a 96 well 

micro-titer plate using the Spectra Max Gemini XS. Mitochondrial hydrogen 

peroxide production was determined by interpolation from the standard curve 

generated by reagent hydrogen peroxide. Total mitochondrial protein was 

estimated using BioRad with bovine serum albumin as a standard and the results
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were expressed per microgram of protein. Microsoft Excel version 6.0 software 

was used for data representation and statistical analysis.

2.14. Mitochondrial Membrane Potential

NT2 and SH-SY5Y cells were grown and treated with H2O2 as mentioned above. 

Mitochondrial membrane potential was measured using Mitotracker CM-XH2-Ros 

dye. The cells were treated with 0.5 pM of the dye and incubated for 15 minutes. 

Media containing the dye was removed and replaced by 3 m l 1X PBS. The cells 

were observed under a fluorescent microscope, and phase contrast and 

fluorescence pictures were processed using Adobe Photoshop 7.0 software.

2.15. ATP Determination

ATP was measured from isolated mitochondria. SH-SY5Y cells were grown and 

treated as mentioned above and intact mitochondria were isolated as mentioned 

previously (Li et al., 2003). Isolated mitochondria were re-suspended in a 

reaction mixture containing 0.25 M sucrose, 1 mM MgCl2, 10 mM HEPES and 1 

mM EDTA. This suspension was briefly sonicated and centrifuged at 5000xg for 

5 minutes. 100 pL of this supernatant was incubated with 100 p i Suciferin- 

iuciferase (5 mg/mL) and bioluminescence was measured using the Spectra Max 

Gemini XS. Mitochondrial ATP levels were determined by running internal 

standards. Total mitochondrial protein was estimated using Bio Rad method with 

bovine serum albumin as a standard and the results were expressed as ATP 

amount per microgram of protein. Microsoft Excel version 6.0 software was used 

for data representation and statistical analysis.
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CHAPTER 3 
RESULTS 

3.1.1. Differentiation of NT2 and SH-SY5Y Cells

Human Teratocarcinoma cells and Human Neuroblastoma cells were used 

to study oxidative stress caused by hydrogen peroxide treatment. Previous 

studies have revealed that upon differentiation these cells behave similar to the 

neurons of the Central Nervous System (CNS) (Sandhu et al., 2003, Guillemain 

et al., 2 000). U ndifferentiated NT2 ceils (Figure 7 A) were treated with retinoic 

acid (RA) for 5 weeks. Ceils appeared to form a dense, multilayer culture in 

which it is impossible to visualize any structure using phase-contrast microscopy 

(Figure 7B). After evenly replating the cells in media containing mitotic inhibitors, 

the cells came together to form cellular aggregates within 2 weeks. Moreover an 

extensive network of neurites developed and eventually formed clusters, which 

were connected to one another by large bundles of processes (Figure 7C).

Undifferentiated SH-SY5Y cells (Figure 7D) were treated with RA for 5 

days during which some cells differentiated to a more neuronal phenotype by 

extending neuritic processes. Then the cells were incubated with hBDNF for 5 

days. After the first day, some cells displayed neuritic processes and eventually 

formed aggregates (Figure 7E).

3.1.2. Oxidative Stress Caused by Hydrogen Peroxide Induces Apoptosis in 

Differentiated Neuronal Cells

Cells were grown and differentiated as described in Materials and Methods. The 

differentiated neuronal cells were exposed briefly to 100 uM H2G2 (1 hour) in 

complete media, and then they were washed and incubated at 37°C in complete
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Figure 7. Morphology of NT2 cells during differentiation

Undifferentiated RA treatment

c

M itotic
inhibitors

Undifferentiated NT2 cells (A) were treated with Retinoic acid (RA) for 5 weeks in 

order to introduce differentiation. After 5 weeks the cells were incubated with 

media containing mitotic inhibitors for about 3 weeks. Phase contrast pictures 

were taken at the end of RA treatment (B) and after 3 weeks of incubation with 

mitotic inhibitors (C) at 400X using a Leica DM IRB microscope.
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Figure 7. Morphology of SH-SY5Y cells during differentiation
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Undifferentiated SH-SY5Y cells (D) were treated with RA for 5 days and with 

BDNF for 7 days. After 7 days of hBDNF treatment (E), phase contrast pictures 

were taken at 400X using a Leica DM IRB microscope.
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media. Various characteristics including cellular morphology and biochemical 

changes were monitored at various time intervals. Results (Figure 8B) indicated 

changes in morphology such as beading in the neuronal processes 6 hours after 

hydrogen peroxide treatment. The neurites appeared weakened, and the cells 

eventually I ifted off from t he s ubstratum 24 hours after t reatment (Figure 8 E). 

Figures 8 A & 8 D show the morphology o f differentiated neuronal cells without 

H2O2 treatment.

Nuclear condensation and DNA fragmentation are major characteristic 

features of apoptosis. Control and treated neuronal cells were stained with cell- 

permeable Hoechst dye to assess the nuclear morphology. The results shown in 

figure 9B & 9E showed nuclear condensation in treated cells (Figure 9A & 9D 

represents the control cells), indicating that oxidative stress induced by H2O2 

treatment caused apoptosis in the neuronal cells. When the numbers of apoptotic 

nuclei were counted for the treated and untreated cells, an increase of about 

35% (in the case of NT2N cells) and 25% (in the case of SH-SY5Y cells) was 

observed after treatment when compared to control (Figure 10). In order to 

assess the DNA degradation during apoptosis of neurons following oxidative 

stress, a comet assay was performed on the treated and control NT2N cells. The 

cells treated with hydrogen peroxide showed comet images indicating DNA 

damage ( Figure 11B), while the control cells d id not show any comet images 

(Figure 11 A). These results indicated that the differentiated neuronal cells 

undergo apoptosis displaying all the characteristic apoptotic features following 

hydrogen peroxide treatment.

-36-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 8. Morphology of NT2N cel! clusters following hydrogen peroxide

treatment

Control

Differentiated NT2 were treated with 100 pM hydrogen peroxide in presence (C) 

and absence (B) of C0 G10 as described in the Materials and Methods. Figure A 

represents control cells which were not treated with hydrogen peroxide. After 6 

hours of treatment, phase contrast pictures of NT2N were taken at magnifications 

of 400 X, using a Leica DM IRB microscope. Arrows in B indicate beading in the 

neuronal processes.
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Figure 8. Morphology of SH-SY5Y cells following hydrogen peroxide

treatment

D E F

1

Control H 2O2 - C0 Q10 H2O2 + C0 Q10

Differentiated SH-SY5Y cells were treated with 100 pM hydrogen peroxide in 

presence (F) and absence (E) of C o Q-iq as described in the Materials and 

Methods section. Figure D represents control neuronal cells which were not 

treated with hydrogen peroxide. Phase contrast pictures for SH-SY5Y cells were 

taken 24 hours after treatment at a magnification of 400X.
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Figure 9 . Nuclear morphology of NT2N cells after hydrogen peroxide

treatment

Control H2O2 - C0Q10 H 2O2 + CoQio

After treating NT2N cells for 6 hours with hydrogen peroxide in the presence and 

absence of CoG-m, Hoechst 33342 dye was added to the ceils to study nuclear 

morphology. Nuclear condensation is clearly observed in cells treated with H2O2 , 

in the absence of C0 G10. The arrows indicate bright, condensed and rounded 

nuclei (B). Fluorescent pictures were taken at magnification of 400X using Leica 

DM IRB microscope. Figure C indicates cells treated with H20 2 in the presence of 

CoQ10, while figure A represents control cells.
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Figure 9. Nuclear morphology of SH-SY5Y cells after hydrogen peroxide

treatment

■p

Control H20 2 - C0 Q10 H 2O2 + C0 Q10

After treating SH-SY5Y cells for 24 hours., Hoechst 33342 dye was added to the 

cells to study nuclear morphology. Nuclear condensation is clearly observed in 

cells treated with H202, in the absence of CoQ10. Arrows indicate bright, 

condensed and rounded nuclei (E). Fluorescent pictures were taken at 

magnification of 400X using Leica DM IRB microscope. Cells that were pre

treated with CoQ10 prior to H20 2 treatment are represented in figure F. Figure D 

represents control cells which were not treated with hydrogen peroxide.
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Figure 10, C0 Q10 rescues cells from undergoing apoptosis after hydrogen

peroxide treatment

60

IDNT2N Cells 

IOSH-SY5Y Cells,

Control H202 - CoQ10 H 202  + CoQ10

SH-SY5Y and NT2N cells were treated with 100 pM H2O2 for 1 hour in absence 

and presence of C0 Q10. After 6 hours, they were stained with Hoechst 33324 and 

apoptotic nuclei were counted using Leica DM IRB microscope. Standard errors 

were calculated using d ata from three sets o f separate experiments, M icrosoft 

excel version 6.0 was used for data representation and statistical analysis.
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Figure 11. DNA fragmentation during apoptosis induced by hydrogen

peroxide treatment

A B C

Control H2O2 - C0Q10 H 2O2 + C0 Q10

Differentiated NT2 cells were treated with 100 pM H2O2 in the absence (B) and 

presence (C) of CoQ10- A comet assay was conducted 3 hours after treatment. 

Figure A represents the control cells. Pictures of cells were taken under 

fluorescent light after staining with Hoechst 33342 dye, at a magnification of 400 

X, using a Leica DM IRB microscope. DNA degradation is shown by comet-like 

images.
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3.1.3. Generation of ROS by NT2N Cells following Oxidative Stress

Several studies have shown that H20 2 treatment causes oxidative stress 

(Chang et a/., 2003, Ratan et a/., 1994, Enokido et aL, 1990). In order to 

determine whether the brief exposure to H2O2 caused oxidative stress on Human 

Teratocarcinoma (NT2N) cells, the production of reactive oxygen species was 

monitored during the early and late phases of apoptosis using a redox sensitive 

dye 2’, 7’-  dichlorofluorescein diacetate (DCFDA). Results shown in figure 4 

indicated a considerable increase in generation of ROS at intervals of 6 hours 

and 24 hours after hydrogen peroxide treatment. This indicated that H2O2 

treatment led to oxidative stress in differentiated neuronal cells (Figure 12 A & 

12 B).

3.1.4. Neuroprotective Effect of Water Soluble Coenzyme Qto on Neuronal 

Cells after Hydrogen Peroxide Treatment.

CoQ-io is not only an important component of the mitochondrial electron 

transport chain but is also a potent anti-oxidant. To evaluate its role in protection 

against oxidative stress induced by hydrogen peroxide, a water-soluble 

formulation containing both oxidized and reduced forms of C0 Q10 was used 

(Borowy-Borowski H, US Patent No. 6,045, 826). Cells were pre-treated with 

C0 Q10 24 hours prior to inducing oxidative stress by hydrogen peroxide treatment 

as described in materials and methods. We observed that C0 Q10 pre-treated 

cells were resistant to apoptosis following treatment. The percentage of apoptotic 

nuclei were less in the presence of C0 G10 (Figure 9C & 9F) as compared to
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Figure 12.A. Production of total reactive oxygen species in NT2N ceils after

hydrogen peroxide treatment
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NT2N cells were treated with 100 pM H20 2 for 1 hour in absence or presence of 

C0 G10, after which cells were washed with fresh media and incubated at 37°C. 

ROS was measured following 6 hours and 24 hours of treatment using T  

dihydrofluorescein diacetate (DCFDA) Microsoft excel version 6.0 software was 

used to represent data and calculate standard deviation. Standard errors were 

calculated using data from three sets of separate experiments.
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Figure 12.B. Production of total reactive oxygen species in differentiated 

SH-SY5Y ceils after hydrogen peroxide treatment.
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SH-SY5Y cells were treated with 100 pM H2Q2 for 1 hour in absence or presence 

of C0 Q10, after which cells were washed with fresh media and incubated at 37°C. 

ROS was measured following 24 hours of treatment using 2\ 7’-

dihydrofluorescein diacetate (DCFDA) Microsoft excel version 6.0 software was 

used to represent data and calculate standard deviation. Standard errors were 

calculated using data from three sets of separate
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those treated in the absence of C0 G10 (Figure 3B, 9E). The ceils 

appeared to have healthier neuronal processes as compared to the cells treated 

with peroxide in the absence of C0 G10, and apoptotic features like nuclear 

condensation and DNA fragmentation were considerably inhibited in C0 G10 pre

treated cells (Figure 8C & 8F) and the neuronal processes showed less beading. 

The percentage of cells undergoing apoptosis after hydrogen peroxide treatment 

was significantly reduced in C0 Q10 pre-treated cells (Figure 10). Similarly, DNA 

degradation was inhibited by CoQ10 pre-treatment (Figure 11C).

In order to determine whether or not C0 Q10 reduced the amount of ROS 

generated, NT2N cells were treated as mentioned earlier, and ROS levels were 

monitored 6 hours and 24 hours after treatment. Results indicated that CoQ10 

pre-treatment was able to bring down the level of ROS at all time points after 

treatment. (Figure 12A). Similar results were seen when ROS measurements 

were made after SHSY-5Y cells were treated for 24 hours (Figure 12 B).

3.1.5. Oxidative Stress Causes an Increase in Lipid Peroxidation which is 

decreased in the Presence of CoQ10.

An increase in lipid peroxidation production is a characteristic feature of cellular 

oxidative stress. Malonaidehyde (MDA), a bi-product of lipid peroxidation (LPO), 

is involved in DNA adduct formations, which can be responsible for 

carcinogenesis (Ray et at., 2002).

In order to determine whether H20 2 treatment increased lipid peroxidation 

in SH-SY5Y cells, a lipid peroxidation assay was conducted. Levels of MDA were
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assessed in order to study lipid peroxidation. After 24 hours of H2O2 treatment, 

cells showed a considerable increase in lipid peroxidation production compared 

to control cells or cells pre-treated with C0 Q10 (Figure 13). These results 

demonstrate that treatment with H2O2 induced oxidative stress on SH-SY5Y 

ceils, resulting in an increased measurement of lipid peroxidation which was 

inhibited by C0 Q10.

3.1.6. C0 Q10 Pre-treatment Results in Maintaining GSH Levels following 

Oxidative Stress

Reduced GSH has an anti-oxidative effect against oxidative stress. In cells 

under oxidative stress, reduced glutathione (GSH) levels are decreased. In order 

to determine if GSH levels change following H2O2 stress. NT2N cells were 

treated with H2O2 in the presence and absence of C0 Q10. After 24 hours of 

treatment, the GSH levels were monitored by using DTNB as described in 

Materials and Methods. Results indicated a decrease in the GSH levels after 

oxidative stress. However, in the cells pre-treated with C0 G10, the cellular levels 

of GSH were higher (Figure 14). These results show that CoQ10 pre-treatment 

helped ceils maintain the GSH levels during oxidative stress.
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Figure 13. Lipid peroxidation in differentiated SH-SY5Y cells after

hydrogen peroxide treatment
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Differentiated SHSY-5Y ceils were exposed to 24 hours of H2O2 treatment in the 

presence and absence of C0 Q10, followed by a lipid peroxidation assay. 

Malonaldehyde was measured using thiobarbituric acid as mentioned in 

Materials and Methods. Microsoft Excel Version 6.0 software was used to 

represent data and calculate standard deviation. Results were calculated using 

internal standards of Malonaldehyde and expressed per microgram of protein. 

Standard errors were calculated using data from three separate sets of 

experiments.
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Figure 14. GSH levels in NT2N cells after hydrogen peroxide treatment
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After 24 hours of H2O2 treatment, NT2N cells were subjected to a GSH assay as 

mentioned in Materials and Methods. Microsoft Excel Version 6.0 software was 

used to represent data and calculate standard deviation. Results were 

calculated per microgram of protein and standard errors were calculated using 

data from three separate sets of experiments. (p<0.05)
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3.1.7. CoQio reduces the activity of caspase-3 and proteasome

Proteases play a very essential role in apoptotic cell death. They are 

activated during apoptosis in many systems. Caspase-3 is a cysteine protease, 

generally thought to be involved in the execution phase of apoptosis. Similarly, 

proteasome proteases have also shown to be involved in apoptosis. We 

investigated if these proteases are activated in the cells challenged with oxidative 

stress.

Caspase-3 activity was measured 24 hours after treating NT2N cells with H2O2 . 

There was a significant increase in caspase-3 activity following oxidative stress 

as compared to the control. Cells pre-treated with C0 Q10 showed lowered 

caspase-3 activity as compared to oxidatively stressed cells that were not pre

treated with C0 Q10 (Figure 15A). Proteasome activation was observed 24 hours 

after oxidative stress was induced in NT2N cells (Figure 15B). The results 

indicated an increase in activity of proteases upon hydrogen peroxide treatment, 

in the absence of C0 Q10. But C0 G10 pre-treatment reduced the proteasome 

activity after oxidative stress.

3.1.8. Oxidative stress causes mitochondrial dysfunction and increased 

hydrogen peroxide generation from mitochondria; inhibition by Coenzyme

Q10-

Mitochondrial dysfunction leads to the increase in the production of ROS. To 

investigate whether hydrogen peroxide treatment caused mitochondrial 

dysfunction, we monitored the production of ROS from the mitochondria. It has
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Figure 15. A. Caspase-3 activity following hydrogen peroxide treatment
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Caspase-3 assay was performed employing cell extracts from control and treated 

NT2N cells 24 hours after hydrogen peroxide treatment in the absence and 

presence of CoQio- Activity of Caspase-3 was expressed per pg protein. Note

that the caspase-3 activity in the extract from control cells is taken as 100%. 

Standard errors were calculated using data from three sets of separate 

experiments. Microsoft excel version 6.0 software was used to represent data 

and calculate standard deviation.
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Figure 15. B. Proteosome activity after hydrogen peroxide treatment

e

o
fc .a
o
£m
S ’
0
1
®
a
$
c
3
fflOc@a»
©
k .o
3

3500

3000

2500

2000

1500

1000

500

0
Control H2Q2 -CoQ10 H202 + CoQ1G

Proteasome assay was performed employing cell extracts from control and 

treated N T2N c ells a fter 24 hours a sm  entioned e arlier a nd expressed per pg

protein. Standard errors were calculated using data from three sets of separate 

experiments. Microsoft excel version 6.0 software was used to represent data 

and calculate standard deviation. (p< 0.05)
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been shown previously that H20 2 produced in the mitochondria can be measured 

spectrofluorometrscaSly by using the PHPA method (Li et a!., 2003).

We monitored H2G2 production from mitochondria isolated from control 

and treated SH-SY5Y cells 24 hours after inducing oxidative stress as described 

in Materials and Methods. Results obtained indicated that mitochondria isolated 

from treated cells generated more H20 2 as compared to untreated cells. 

Furthermore, we observed that the increase in the production of ROS from the 

mitochondria after inducing oxidative stress was inhibited by C0 Q10 pre-treatment 

(Figure 16).

3.1.9. C0 Q10 prevents the coiiapse of mitochondria! membrane potential

It has been established that cells are capable of C0 G10 internalization 

when CoGiois added to tissue culture media in an aqueous solution. Increase in 

C0 Q10 content in the mitochondria as well as in membranes has been reported 

(Sandhu et aL, 2003). Since C0 Q10 is present in the mitochondrial membrane, it 

may stabilize the mitochondrial membrane and prevent it from collapsing under 

oxidative stress. In order to evaluate this possibility, mitochondrial membrane 

potential was studied using Mitotracker Red dye. Mitotracker Red is a membrane 

permeable dye and fluoresces brightly once it enters the mitochondria. If the 

mitochondrial membrane potential is decreased then the fluorescence
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Figure 16. Production of mitochondrial reactive oxygen species after

hydrogen peroxide treatment
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Mitochondria were isolated from SH-SY5Y cells after 24 hours of H20 2 treatment 

in presence and absence of CoQ10. Hydrogen peroxide generated by the 

mitochondria was measured using PHPA as mentioned in Materials and 

Methods. Hydrogen peroxide production was expressed per pg of total 

mitochondria! protein. Microsoft exce! version 6.0 software was used to represent 

data and calculate standard deviation. Standard errors were calculated using 

data from three sets of separate experiments.
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is diffused. SH-SY5Y cells were stained with Mitotracker Red 24 hours after 

treatment, as described previously. As shown in figure 17.B, a decrease in the 

mitochondrial membrane potential after treatment was evident, But CoQ10 

prevented the mitochondrial membrane potential collapse after induction of 

oxidative stress (Figure 17C), suggesting that C0 Q10 stabilizes the mitochondrial 

membrane. Control cells are seen in figure 17A. Similar results were obtained 

using NT2 astrocytes (Figures 17D, 17E & 17F).

3.1.10. C0 Q10 restores ATP production in cells under oxidative stress 

Neurons depend on oxidative phosphorylation in the mitochondria in order to 

generate ATP. To determine the ATP content following oxidative stress, SH- 

SY5Y cells were grown, differentiated and treated with H20 2 as described in 

materials and methods. Mitochondria were isolated from SH-SY5Y cells 24 hours 

after treatment and luciferin-luciferase assay was used to measure ATP 

production. Results showed that there was a decrease in the ATP levels 

following oxidative stress. However, CoQ10 pretreatment prevented the loss in 

ATP production following oxidative stress significantly (Figure 18). Each of the 

iast three experiments- inhibition of ROS production from isolated mitochondria, 

restoration of mitochondrial membrane potential and ATP production from 

isolated mitochondria suggested that C0 Q10 functions at the mitochondrial level, 

to protect neuronal cell death due to oxidative stress.
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Figure 17. Mitochondria! membrane potential in differentiated SH-SY5Y

cells following hydrogen peroxide treatment

Control H 2O2 - C0Q10 H2O2 + CoQio

SH-SY5Ycells were treated with H2O2 for 1 hour in absence or presence of 

C0 Q10, after which ceils were washed with fresh media and incubated at 37°C for 

24 hours and then stained with Mitotracker Red dye as mentioned in materials 

and methods. Pictures were taken at a magnification of 400 X using Leica DM 

IRB microscope. Figure A represents control cells while B represents H20 2 

treated cells in the absence of CoQto while C represents cells treated in the 

presence of C0 Q10.
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Figure 17. Mitochondrial membrane potential in differentiated NT2 

astrocytes following hydrogen peroxide treatment

D E F

C ontrol H2O2 - C0 Q10 H 2O2 + C0 Q 10

NT2 astrocytes were treated with H2O2 for 1 hour in absence or presence of 

C0 Q10, after which cells were washed with fresh media and incubated at 37°C for 

24 hours and then stained with Mitotracker Red dye as mentioned in Materials 

and Methods. Pictures were taken at a magnification of 400 X using Leica DM 

IRB microscope. Figure D represents untreated cells while E represents H2O2 

treated cells in the absence of C0 Q10 while F represents cells treated in the 

presence of C0 Q10.
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Figure 18. Mitochondrial ATP production in SH-SY5Y cells after hydrogen

peroxide treatment
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SH-SY5Y cells were treated with H2O2 for 24 hours in the presence and absence 

of C0 Q10 and mitochondria were isolated. Luciferin -  Luciferase was used to 

measure ATP production. An internal ATP standard was used and ATP 

production was expressed per pg of total mitochondrial protein. Microsoft excel 

version 6.0 software was used to represent data and calculate standard 

deviation. Standard errors were calculated using data from three sets of separate 

experiments. (p< 0.05}
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3.2.1. Paraquat induces Oxidative Stress that can induce apoptosis in

differentiated neuronal SH-SY5Y ceils

Paraquat is a herbicide that has been shown to be related to development 

of Parkinson’s disease. The structure of paraquat resembles that of MPP+ and 

cell death induced by paraquat has been reported.

In order to study the effects of paraquat on neuronal cells, SH-SY5Y ceils 

were grown, differentiated and treated as previously described. Cellular 

morphology was observed after 48 hours of paraquat treatment. Morphological 

changes were evident, including beading on neurites and rounding up of the 

cells, after 4 8 hours o f paraquat treatment (Figure 19B). Control cells did not 

have evident morphological changes as indicated by figure 19A. Nuclear 

condensation, a characteristic feature of apoptosis was clearly observed after 

treatment as shown in figure 20B, whereas the nuclei of control cells did not 

show nuclear condensation (Figure 20A). DNA degradation is also a 

characteristic feature o f a poptotic cell death. A comet assay was employed to 

examine DNA degradation changes after treatment with paraquat. The cells 

treated with paraquat showed comet-like images (Figure 21B), indicating DNA 

damage, whereas control cells did not (Figure 21 A). All these results to strongly 

indicate that SHSY-5Y cells undergo apoptosis after paraquat treatment induced 

oxidative stress.
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Figure 19. Morphology of SH-SY5Y cells after paraquat treatment

Control Paraquat - C0 Q10 Paraquat + CoQio

Differentiated SH-SY5Y cells were treated with 100 pM paraquat in presence (C) 

and absence (B) of C0 Q10 as described in Materials and Methods. Figure A 

depicts control neuronal cells which were not treated with paraquat. After 48 

hours of treatment, pictures were taken at 400X magnification using a Leica DM 

IRB microscope. Arrows indicate rounding up of cells.
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Figure 20. Nuclear morphology of SH-SY5Y cells after paraquat treatment

Control Paraquat - CoQio Paraquat + C0 Q10

As described in methods, differentiated SH-SY5Y cells were treated with 100 p,M 

paraquat in presence (C) and absence (B) of C0 G10 as mentioned in Materials 

and Methods. Figure A depicts control neuronal cells which were not treated with 

paraquat. After 48 hours of treatment, Hoechst 33342 dye was applied to the 

cells to examine nuclear morphology. Pictures were taken at 400X magnification 

using a Leica DM IRB microscope. Nuclear condensation is evident in cells with 

bright, condensed and rounded nuclei and indicated by arrows.
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Figure 21, DNA degradation after paraquat treatment

A B C

Control Paraquat - CoQi© Paraquat + C0 Q10

Differentiated SH-SY5Y cells were treated with 100 jiM paraquat in presence (C) 

and absence (B) of CoQ10 as previously described. Figure A depicts neuronal 

cells which were not treated with paraquat. After 48 hours of treatment, a comet 

assay was conducted, as described in Materials and Methods. Pictures were 

taken at 400X magnification using a Leica DM IRB microscope. DN A  degradation 

is indicated by comet-like images due to migration of damaged DNA during 

electrophoresis.
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3.2.2. Pre-treatment with water-soluble C0 G10 protects cells from paraquat- 

induced apoptosis

SH-SY5Y cells were grown, differentiated and treated as described in the 

materials and methods section, followed by observation of the cellular 

morphology. After 24 hours of pre-treatment with C0 Q10 and 48 hours of 

paraquat treatment, SH-SY5Y cells did not show any apoptotic morphology 

(Figure 19C). Similarly the nuclear morphology (Figure 20C) indicated that the 

nuclear chromatin condensation was inhibited in cells pre-treated with C0 G10. 

Pre-treatment with C0 Q10 also resulted in fewer number of comet-like images 

(Figure 21C) as cells treated with paraquat alone, indicating less DNA damage. 

All these results taken together suggest that C0 Q10 protects SH-SY5Y cells from 

undergoing apoptosis.

3.2.3. Paraquat induces oxidative stress in differentiated SH-SY5Y ceils and 

C0 Q10 offers protection

In order to determine whether paraquat treatment caused oxidative stress 

on SH-SY5Y cells, the production of ROS was measured. ROS measurements 

were collected after treatment of SH-SY5Y cells as previously described. After 48 

hours of paraquat treatment, cells showed a considerable raise in ROS 

production compared to control cells or cells pre-treated with C0 Q10 as indicated 

by figure 22. Results have been expressed as percentage of control.
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Figure 22. Generation o f reactive oxygen species after paraquat treatment
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After 48 hours of paraquat treatment with differentiated SHSY-5Y cells in the 

absence and presence of C0 Q10, DCFDA was used to measure total cell ROS

generation, as described in Materials and Methods. Microsoft Excel Version 6.0 

software was used to represent data and calculate standard deviation. Results 

were calculated per microgram of protein and expressed in percentage of control. 

Standard errors were calculated using data from three separate sets of 

experiments (p<G.05).
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CHAPTER 4 

DISCUSSION

Oxidative stress induced apoptosis has been implicated with several 

neurodegenerative diseases. !n the present study, we have investigated the roie 

of oxidative stress on neuronal cel! death and neuro-protecfion by water soluble 

C0 G10 following H20 2 and paraquat induced oxidative stress.

4.1. NT2 and SH-SY5Y cells as neuronal models

Neurons are post-mitotic tissues, it is difficult to study the biochemical 

mechanisms of neurodegenerative diseases due to the Sack of availability of 

human neurons. Human teratocarcinoma (NT2N) and Human Neuroblastoma 

(SH-SY5Y) cells have been used as neuronal models to study neuronal 

functions. Previous studies have shown that NT2 cells can be differentiated into 

neurons and astrocytes, and the commitment of these cells to a stable phenotype 

is irreversible (Sandhu et a/., 2003, Guiliemain et a i, 2000). NT2-N cells have 

also been shown to survive and integrate within the host brain after 

transplantation and help in function recovery in animal models of stroke, 

Parkinson’s and Huntington’s disease (Sandhu et ai., 2003, Hartley et a i, 1999, 

Borlongan et ai., 1998). SH-SY5Y cells can be differentiated into human neuron 

like cells, but the survival of these cells is dependent on BDNF and removal of 

BDNF leads to apoptosis in these cells. Differentiated cells express neuronal 

markers (Leypoldt et a i, 2002, Encinas et a i, 2000). Therefore the results
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obtained using the choice of these two these cel! lines for the study of neuronal 

cell death would be more relevant to human neurodegenerative diseases.

4.2. Induction of apoptosis by external oxidative stress

It has been shown that oxidative stress such as H2O2 can induce 

apoptosis in cells and cultured neurons (Chang et ai., 2003, Ratan et a i, 1994, 

Enokido et a i, 1990). We subjected the differentiated neuronal cells to direct 

oxidative stress by a brief H2O2 treatment. We have demonstrated that 

differentiated neuronal cells are very sensitive and undergo apoptosis following 

direct oxidative stress by H20 2 treatment, as clearly indicated by cellular 

morphology, nuclear condensation and DNA fragmentation-the characteristics 

features of apoptosis. It has been observed that undifferentiated NT2 or SH- 

SY5Y cells are not sensitive to oxidative stress induced by similar concentration 

of hydrogen peroxide. Although 100 DM H2O2 is not a physiological 

concentration during any disease, but for in vitro models, a brief exposure to100 

H2O2 causes oxidative stress.

Our results showed that indeed there was increase in ROS production 

after H20 2 treatment, a decrease in GSH level and increased lipid peroxidation. A 

decreased GSH levels and an affiliated increase in ROS during apoptosis have 

been reported in previous studies (Tan et a i, 1998). Moreover, lipid peroxidation 

is also a direct measure of oxidative stress. Our data showed an increase in lipid 

peroxidation upon treatment with H2O2 . All these results taken together suggest 

that cells were under oxidative stress which in turn led to apoptotic cell death.
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4.3. Oxidative stress causes mitochondrial dysfunction

Mitochondria have been shown to play a key role in the apoptotic 

process. Mitochondrial control of apoptosis can be described at two important 

levels; one is the maintenance of ATP production. The other is mitochondrial 

membrane potential and mitochondrial membrane permeability for the release of 

certain apoptogenic factors such as cytochrome C into the cytoplasm. 

Cytochrome C can bind to pro-caspase-9 and Apaf-1 to form the apoptosome, 

further causing the activation caspase-3. Treatment with H20 2 has been shown 

to cause mitochondrial dysfunction (Leducq et a i, 2003, Tsutsumi et a i, 2002). 

Disruption of the mitochondrial respiratory chain can not only result in over 

production of ROS leading to oxidative stress, but also activation of apoptotic 

mediators (Bortner et a i, 2002). Mitochondria actively generate ROS such as 

super oxide anions and hydrogen peroxide (Kannan et a i, 2000). When we 

monitored the ROS production from mitochondria isolated from differentiated 

NT2N and SH-SY5Y cells after inducing oxidative stress, an increase in ROS 

production by after treatment occurred. Each of these experiments confirmed that 

oxidative stress was induced by hydrogen peroxide treatment. Increased 

mitochondrial ROS and caspase-3 activation also suggested mitochondrial 

dysfunction, following oxidative stress.
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4.4. Neuroprotection offered by C0 Q10 prevents mitochondrial dysfunction

and rescues cells from oxidative stress

Coenzyme Qi0 is hydrophobic and localized in the inner mitochondrial 

membrane. Previous studies have used oil formulations of CoQi0. Since CoG-io is 

very hydrophobic, cells cannot take it up easily. Recently water soluble CoQ-to 

containing both the oxidized and reduced forms was formulated (Borowy- 

Borovski, US Patent No. 6,045, 826). Water-soluble formulations of C0 Q10 are 

readily taken up by the cells, when added to tissue culture media, making it 

possible to study the mechanism by which C0 G10 offers protection against 

oxidative stress. An increase in C0 Q10 content in the mitochondria! membranes 

and cell membranes has been observed in cells pre-treated with C0 Q10 (Sandhu 

et a!., 2003). Our data have shown that water soluble CoQ10 can provide 

protection by functioning as an antioxidant against oxidative stress indicated by 

high ROS levels, elevated lipid peroxidation and decreased levels of GSH.

Coenzyme G i0 carries electrons from Complex-I and Complex-ll to 

Complex-Ill. Since it is a component of the electron transport chain, we were 

interested to see whether an extra amount of CoQ-to would help restore 

mitochondrial functions during oxidative stress. Our study has indicated C oG iq 

protection at the mitochondrial level. Firstly, in the cells pre-treated with C0 Q10 

before H20 2 treatment, the mitochondrial ROS was significantly low when 

compared to those isolated from the cells that had not been pre-treated with 

CoQ-io before H20 2 treatment. Furthermore, we observed that mitochondria 

maintained the membrane potential in presence of CoQ10 (figures 17C, 17F).
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These observations strongly suggest that G0 Q10 can act not only as an anti

oxidant but also to stabilize the mitochondrial membrane during oxidative stress, 

Another interesting observation was that mitochondria in cells treated with 

hydrogen peroxide in the presence of C0 Q10 remained functional and maintained 

ATP production at almost a normal levei, led us to believe that C0 G10 may have 

enhanced the electron transport from compiex-l and compiex-ll to complex-ill. 

We have demonstrated C0 Q10 protects cells at all the different levels in the 

apoptotic pathway both morphologically and biochemically.

Our study demonstrates that C0 G10 can prevent mitochondrial dysfunction 

during oxidative stress. Results in our lab have also shown that Bax induced 

ROS generation from mitochondria can be prevented by C0 Q10 (Pandey et al., 

unpublished data).

Recent studies have focused on designing new therapeutics for protection 

against neurodegeneration. These include the investigation of the role of 

microglial activation as a target for neuro-protection (Dommergues et al., 2003), 

testing neuro-protective agents such as docosahexaenoic acid, nimodipine and 

citicoline (Hogyes et al., 2003, Sobrado et al., 2003) and using anti-oxidants like 

estradiol, (Marin et al., 2003) melatonin (Erol et al., 2003) and vitamin E (Garcia- 

Estrada et al., 2003). However, Vitamin E cannot prevent mitochondrial 

depolarization, cytochrome c release and caspase-9 activation induced by 

apoptotic stimuli (Papucci et al., 2003). It is not clearly known how hydrogen 

peroxide causes mitochondrial dysfunction. One of the hypotheses is that it may
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cause distinct changes including lipid peroxidation and these changes may 

trigger a cascade.

4.5. Mechanism of C0 Q10 neuroprotection

Recent reports have suggested that the permeability transition pore (PIP) 

in the mitochondria harbors a ubiquinone binding site and is regulated by 

complex-! of the mitochondrial respiratory chain (Papucci et al., 2003, Walter et 

al., 2002, Petronilli et al., 2001, Walter L et al., 2000, Fontaine E et al., 1999, 

Fontaine E et al., 1998). Our next steps would include considering whether P IP 

are involved in the pathway by using PTP inhibitors and also to see how C0 Q10 

interferes at PTP level. It will also be important to see if there is any competition 

between Bax and C0 G10 at the PTP binding sites and whether oxidatively 

modified protein can cause the opening of the PTP.

4.6. Neuroprotection by CoQi0 against paraquat toxicity

Paraquat, a non-selective herbicide which is still used in some countries, 

has been found to selectively kill nigrostriatal dopaminergic neurons in animal 

models (McCormack et al., 2002). Several investigations have revealed that 

environmental toxins, including paraquat, are responsible for the development of 

sporadic age-related Parkinsonism (Di Monte, 2002). A strong association 

between paraquat exposure and risk of Parkinson’s disease has been reported in 

farmers in Taiwan where paraquat is frequently sprayed in rice fields (Liou et al., 

1997). Paraquat induced cell death has been reported in lung epithelial cells and

- 70-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



rat PC12 cells (Capelletti et al., 1998, Fabisiak eta!., 1998). One of the problems 

with previous animal models of paraquat-induced Parkinsonism has been its 

direct toxicity to the lung and liver before the behavioral symptoms of the disease 

appear (Onyon et ai., 1987). it has been postulated that paraquat is structurally 

similar to M P P \ the active metabolite of MTPT, therefore the mechanism of 

paraquat neurotoxicity h as been assumed to be similar (Shimizu e t a I., 2001). 

MPP+ has been shown to cause cell death in a nigral dopaminergic cell line due 

to increased oxidative stress (Chun et ai., 2001). Previous reports have shown 

that paraquat mediates its genotoxic effect, partly via its capacity to generate 

ROS (Suntres 2002). Our results are in agreement with these reports. We have 

observed an increase in the total ROS production as well as mitochondrial ROS 

production confirming that paraquat can generate ROS.

Although vitamin E confers protection against paraquat-induced injuries in 

vitamin E-deficient animals, normal animals receive little benefit from additional 

pharmacologic supplementation with vitamin E. In a study investigating the 

presence of lipid peroxidation as a potential marker of sub acute toxic reaction, it 

was shown that vitamin E supplementation to humans (100-900 mg per day) 

was i neffective i n p rotecting a gainst p araquat p oisoning a nd d id not a ffect t he 

levels of lipid peroxidation (Yasaka et ai., 1986).

In conclusion, our results clearly indicate that CoQ-io offers neuroprotection 

at all the stages in the apoptotic pathway against oxidative stress induced by 

hydrogen peroxide and paraquat. Therefore, water-soluble C0 Q10 is a potential
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therapeutic agent for the treatment of neurodegenerative diseases should be 

further explored.
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FUTURE PROSPECTIVES

How external oxidative stress causes mitochondrial dysfunction is still not 

clearly understood. Further investigation is required in order to establish the 

mechanism by which externa! oxidative stress causes the ioss of mitochondrial 

function.

It would also be interesting to find out which proteins are modified by 

ROS. Proteomics can aid in finding the proteins modified during oxidative stress. 

Oxy blot analysis using mass spectrometry can be used to identify proteins that 

are oxidatively modified.

Water soluble C0 Q10 has shown to prevent isolated mitochondria from 

oxidative stress. However, the mechanism by which C0 Q10 offers neuro 

protection by preventing mitochondrial damage is still not clear. The mechanism 

by which C0 Q10 prevents mitochondrial dysfunction will be extremely interesting. 

Whether C0 Q10 can bind to PTP and thereby affect the opening and closing the 

pore will be a very important step in understanding the mechanism of C0 G10 

neuro protection.

It would also be fascinating to study the differences in the mechanism of 

protection offered by C0 G10 and other anti-oxidants like Vitamin E.

All the experiments mentioned here have been performed at the cellular 

level. It is very essential to see how C0 G10 functions in vivo brain level. 

Preliminary results in our lab showed that normal rats fed with water soluble
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CgGio showed a systematic reduction in oxidative stress in the brain and liver as 

shown by higher GSH ieveis and lower levels of lipid peroxidation as compared 

to rats that were not fed with CoGi0. However, further investigation is required to 

study the properties of water soluble C0 G10 as a neuro-protective agent. 

Moreover it will be very interesting to see the effect of oxidative stress and 

inhibition by wafer soluble C0 Q10 on behaviour of these animals.
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