
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2000

Multimedia applications of three-dimensional digital filters. Multimedia applications of three-dimensional digital filters.

Steven Bruce McFadden
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
McFadden, Steven Bruce, "Multimedia applications of three-dimensional digital filters." (2000). Electronic
Theses and Dissertations. 2801.
https://scholar.uwindsor.ca/etd/2801

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2801&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2801?utm_source=scholar.uwindsor.ca%2Fetd%2F2801&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

The diskette is not included in this original
manuscript. It is available for consultation at the

author’s graduate school library.

This reproduction is the best copy available.

UMI*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MULTIMEDIA APPLICATIONS OF

THREE-DIMENSIONAL

DIGITAL FILTERS

by

Steven B. McFadden

A Thesis
Submitted to the College of Graduate Studies and Research

through Electrical Engineering
in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada

April 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■♦I National Library
of Canada

Acquisitions and
Bibliographic Services
385 Waffngtoo Street
Ottawa ON K1A0N4
Canada

Biblioth&que nationals
du Canada

Acquisitions et
sendees bibliographiques
395, rue Wettington
Ottawa ON K1A0N4
Canada

Your Urn VovoM tm nct

Our Urn N onrtM nneo

The author has granted a non­
exclusive licence allowing the
National Libraiy of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accorde une licence non
exclusive pennettant a la
Bibliotheque nationale du Canada de
reproduire, prefer, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-65382-X

Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

q W at

©2000 Steven B. McFadden

All Rights Reserved. No part o f this document may be

reproduced, stored or otherwise retained in a retrieval

system, transmitted in any form, on any medium, or by any

means without the prior written permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVED BY:

Dr/M. A. Sid-Ahmed (Supervisor)
Department o f Electrical Engineering

. J. J. sphfs
Department o f Electrical Engineering

Dr. k . G. Gaspar
Department o f Mechanical Engineering

t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Digital signal processing has long been an extremely important field of study. One­

dimensional and two-dimensional filters have applications in areas such as audio filtering

or image processing respectively. As VLSI technology continues to increase, higher­

dimensional digital filters are becoming more practical. This thesis investigates the

application of Three-Dimensional (3-D) Digital Filters to the area o f multimedia.

Specifically, it investigates the use of 3-D Interpolation filters to increase the horizontal,

vertical, and temporal resolution, or frame rate, of a moving image sequence.

The thesis begins by presenting the theory of digital interpolation in one dimension, and

then extends that theory to three dimensions. Next the theory is presented for the design

of a filter with appropriate characteristics for filtering a video image; i.e. near-linear phase

and a steep transition band. After the basic theory is presented, a plan for implementing

the filtering of a video image in software is presented along with the relevant file format

information. Results from this implementation are shown next, and the thesis ends with a

summary and conclusions

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I wish to extend my thanks to my supervisor Dr. Sid-Ahmed, who planted the idea for me

to pursue this degree, and then encouraged me throughout. I also wish to acknowledge

my thesis committee members, Dr. Soltis, and Dr Gaspar, for their comments and advice

on the thesis. Last but not least, I would like to thank my parents for their constant

support of my continuing education.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract iv
Acknowledgements v
Table o f Contents vi
List o f Figures ix

Chapter 1: Introduction

1.1 Introduction 1

1.2 Digital Interpolation 3

13 Three-Dimensional Digital Filters 4

13.1 Three-Dimensional FIR Filters 5

1.3.2 Three-Dimensional IIR Filters 6

1 3 3 3-D FIR Filter Design Methods 8

133.1 Design Using Integration 8

1 3 3 3 Design Using FFT and Window Functions 8

1 3 3 3 McClellan Transformation 9

133.4 Linear Programming 9

13.4 3-D IIR Filter Design Methods 10

13.4.1 Linear Programming 10

13.43 Bilinear Transformation 11

13.43 Modified Shank's Method 11

1.4 Video Formats 12

1.4.1 H363 Video Standard 12

1.43 MPEG Video Standard 13

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.43 Microsoft Windows AVI Standard 13

1.4.4 Comparison 14

1.5 Current Applications of 3-D Filters 14

1.6 Thesis Organization 15

Chapter 2: Digital Interpolation

2.1 The Sampling Theorem 17

2.2 One-Dimensional Interpolation 20

23 Three-Dimensional Interpolation 25

Chapter 3: Filter Design

3.1 Introduction 27

33 Modified Shank’s Method for 2-D Filter Design 27

33 Designing the 3-D Recursive Filter 32

3.4 Three-Dimensional Inverse Fast Fourier Transform 34

Chapter 4: Implementation

4.1 Introduction 38

4.2 AVI and BMP File Formats 38

43.1 AVI File Format 38

4 3 3 BMP File Format 45

43 Obtain Standard AVI File 49

4.4 Extract Individual Frames 49

43 Extract Raw Pixel Data from Frames 50

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Apply 3-D Filter to Raw Data 51

4.7 Reconstruct Frames 52

4.8 Reconstruct AVI File 52

4.9 Sample AVI Code 56

Chapter 5: Results

5.1 Introduction 59

5.2 Filter Design Results 59

S3 Video Filtering Results 68

Chapter 6: Summary and Conclusions

6.1 Summary 73

€ 3 Conclusions 74

References 75

Appendix A: Source Code for Fflter3D Program

Appendix A 77

Appendix B: Matlab Source Code for Generating Magnitude
Response, Phase Response, and Group Delay Plots

Appendix B 148

Vita Auctoris 153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1: Representation of moving images 2

2.1(a): Continuous time signal x(t) 17

2.1(b): Unit pulse train p(nT) 18

2.1(c): Discrete time signal x(nT) 18

2.2(a): Frequency spectrum of continuous time signal x(t) 19

2.2(b): Frequency spectrum of unit pulse train p(t) 19

2.2(c): Frequency spectrum of discrete time signal x(nT) 20

2.3: Block diagram of digital interpolation system 21

2.4(a): Discrete time signal x(nT) 22

2.4(b): Discrete time signal x(nT) with zero padding 23

2.4(c): Interpolator output y(nT) 23

3.1: Utilization of impulse response 33

3.2: Three-Dimensional Fast Fourier Transform 37

4.1: Implementation 39

4.2(a): Original moving image sequence 54

4.2(b): Wx image buffer 54

4.2(c): Wy image buffer 55

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2(d): Filtered moving image sequence 55

5.1: Filter settings dialog box 60

5.2: Coefficients of designed 3-D filter 60

5.3: Magnitude response with 0)1=0 rad/sec 62

5.4: Magnitude response with 0)1=0.98 rad/sec 62

5.5: Magnitude response with 0)1=2.16 rad/sec 63

5.6: Magnitude response with o)l=pi rad/sec 63

5.7: Phase response with 0)1=0 rad/sec 65

5.8: Group delay with c*)l=0 rad/sec 65

5.9: Phase response with 0)1=0.98 rad/sec 66

5.10: Group delay with 0)1=0.98 rad/sec 66

5.11: Phase response with 0)1=2.16 rad/sec 67

5.12: Group delay with 0)1=2.16 rad/sec 67

5.13: Comparison of File Properties dialog boxes 68

5.14: Video single frame comparison 69

5.15: Video single frame zoomed comparison 70

5.16: Video multi-frame comparison 72

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction

1.1 Introduction

The purpose o f this thesis is to investigate the multimedia application o f three-dimensional

(3-D) digital filters. Specifically, a digital 3-D interpolation filter is to be designed which

performs inter-pixel and inter-frame interpolation, resulting in increased horizontal

resolution, vertical resolution, and temporal resolution (frame rate) of a moving image

sequence.

Digital video is a very common example of a moving digital image sequence, with each

frame of video representing a separate two-dimensional (2-D) digital image. These images

change as a function of time, and it is this temporal variation which represents the third

dimension in digital video. This representation o f digital video is depicted in Figure 1.1. In

this figure, ‘x’ represents the horizontal axis, ‘y’ represents the vertical axis, and‘t ’

represents the time axis. The term dt represents the inverse of the frame rate. The axis is

drawn for the purpose o f clarity, and the directions o f positive and negative are arbitrary.

Though digital video signals such as the one shown in Figure 1.1 are inherently three-

dimensional, 2-D digital filters are often used to filter such signals by processing each

frame separately. This method is very practical since 2-D filters are less complex and

require much less hardware than equivalent order 3-D filters. This complexity and

hardware saving becomes more pronounced as the order of the filter increases. With

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

«x.y.T+3dt) j

i H*.y,T+2dt) i

! fl!*.y.T+dt)

f(x,y.T)

Figure 1.1: Representation of moving images

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

improvements in digital technology, 3-D filters are becoming more reasonable in terms of

cost, and their benefits over 2-D filters are becoming more attractive. The particular

benefit of interest in this thesis is the 3-D filter’s ability to process temporal information in

a moving picture sequence.

1.2 Digital Interpolation

Digital interpolation is a process by which a digital signal with a specific sampling rate is

altered such that the frequency content o f the signal remains unchanged while the sampling

rate is increased. Subject to limitations specified in the Sampling Theorem, presented in

Chapter 2, the sampling rate o f a digital signal can be increased to any desired degree. This

means that the original continuous signal is recoverable from the sampled signal.

Interpolation has many applications in one-dimensional (1-D), 2-D, and 3-D digital signal

processing. For example, it can be used as a method of data compression or used to

improve the resolution o f a signal. It may also be used to change the sampling rate of a

signal for the purpose of scaling[l]. It is the improvement of signal resolution that this

thesis is concerned with.

For an application such as digital audio, a 1-D digital interpolator can be used to increase

the resolution of the signal, making it more closely represent the original continuous

signal. In image processing applications, a 2-D digital interpolator can be used to increase

the pixel resolution of a digital image in either, or both of, the horizontal and vertical

directions (inter-pixel interpolation^]. This has the effect of making a digital image more

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

closely approximate the original image. The process o f using digital interpolators to

increase signal resolution can be extended to three dimensions. In the case o f a digital

video signal, the resolution of each frame can be increased in the ‘x’ and ‘y’ directions just

as if it was processed using a 2-D interpolator. The 3-D interpolator has the added

advantage o f being capable of increasing the resolution along the time axis (the third

dimension). This means that in addition to increased resolution in each frame of video, a 3-

D interpolator can also increase the number of frames present in a video sequence (inter­

frame interpolation). This three-dimensional interpolation of digital video is the primary

goal o f this thesis.

13 Three-Dimensional Digital Filters

A digital filter is a system that, when given a sequence o f input numbers, produces a

sequence of output numbers subject to a specified set of rules. Accordingly, a 3-D digital

filter produces a three-dimensional array of numbers when given a three-dimensional input

array. For example, when a 3-D filter is given the luminance values of a digital video

sequence as an input, the output is usually an altered form of that digital video sequence.

Filters of any dimension are traditionally divided into two categories: non-recursive filters

and recursive filters. Non-recursive filters, also known as Finite Impulse Response (FIR)

filters, produce an output which is a weighted average o f present and previous input

values. Recursive filters, also known as Infinite Impulse Response (UR) filters, produce an

output that is a weighted average of present and past input values as well as past output

values. Each type o f filter has its own advantages and disadvantages and these must be

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

weighed according to the individual application.

13.1 Three-Dimensional FIR Filters

If a causal 3-D FIR filter of order NxNxN is given an input x(n l,n2,n 3'), the output

y {n x,n l ,n 3') can be expressed as

N N N

y i n } = X Z Z ~ “ J>*h “ *) 0 - 0
,=0 j = 0 k=0

Examination of Equation 1.1 shows that the filter’s output is a weighted function of past

input values. The term h{n^,n2,n 3') is known as the impulse response of the filter. The

transfer function of the above filter is obtained by taking the z-transform of Equation 1.1

and is given as

AT N N
H (z „ z 2,z 3) = Z Z Z k (nt in2in3)z l~‘z 2~Jz 3~k (1.2)

,=0 y=0 k=0

Equation 1.2 can also be written as

Z £ Z
i t / , „ x ««o >0 *-0______________________ (13)" (2 i,Z2,Z3) “ v yv AT

Z1 Z2 3

Equation 1.3 shows that all poles o f this filter are located at the origin. As a result of this

constraint on pole placement the stability of the filter is guaranteed. Therefore, no design

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

effort is required to ensure the stability of an FIR filter.

Another advantage o f FIR filters is the ease with which they can be designed to have linear

phase response, and therefore constant group delays, over the entire baseband[2].

The main disadvantage of FIR filters is directly related to their inherent stability. As

mentioned, non-recursive filters are always stable because the poles are constrained to the

origin. However, this constraint also reduces the possible steepness of the transition band.

As a result, higher order filters are required to obtain specified transition specifications.

These higher order translate into a higher implementation cost for the filter.

1.3.2 Three-Dimensional IIR Filters

If a causal 3-D IIR filter of order NxNxN is given an input , the output

y{n x,n 1,n i) can be expressed as

N N N (1.4)
y(n 1>*2.»3) = Z Z Z a{i j ,k)x(nx - /,«2 - y,#i3 - k)

/=0 y=0 4=0

N N N
~ Z Z Z bdJ*k)y{nx - i , ^ - y,/i3 - k)

i=0 7=0 4=0

(/+j+k)*Q

As Equation 1.4 shows, the present value of the output is a function of the present and

past values of the input, as well as past values of the output. Note that FIR filters are

actually a subset o f IIR filters where all b(i,j, k) coefficients are equal to zero. By

taking the z-transform of Equation 1.4 and setting 6(0,0,0) equal to one, the transfer

function of a 3-D IIR digital filter is obtained as

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N N N

Z Z Z o(i, j , k)zl~'z2~Jz3~k
r r f . _ <=0 7=0 *=0____________________________**\.ZltZ2,Z3) - N N N

1 + Z Z Z hOJ, k}z;lz-TJz { k
,=0 7=0 *=0
(i+7+*)#0

As Equation 1.5 shows, 3-D OR filters do not have their poles constrained to the origin.

This gives DR filters a degree of design flexibility not available in FIR filters. A transition

band specification that requires a high order FIR filter can be obtained using a much lower

order UR filter. The required order of an FIR design can be as much as five to ten times

higher than that of an IIR filter satisfying the same specifications^]. These lower orders

can translate into lower implementation costs, and the cost difference is even more

pronounced in the design of 3-D filters. This extra cost difference is a result o f the fact

that the number of coefficients in a 3-D filter is exponentially (by a power o f three) higher

than the number of coefficients in a 1-D filter design.

Despite its advantages, the IIR filter has a significant disadvantage compared to the FIR

filter. This disadvantage is the IIR filter’s lack of inherent stability. Since the filter output

is dependent on past output values, it can grow to infinity even though the filter is given

finite input values. This presents a challenge in designing these filters to be stable.

Another disadvantage of recursive filters is their inherent non-linear phase response.

Designing a filter with a constant delay and prescribed loss specifications is usually very

difficult to do[3]. In general, if an application requires constant delay characteristics, these

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

characteristics are achieved by cascading a filter that satisfies the magnitude response with

a delay equalizer. In some applications, linear phase may not be o f great importance. In

image processing however, two-dimensional images are very sensitive to phase

distortion[3]. By extension, since each frame of a video sequence can be look upon as a

two-dimensional image, linear phase is very important in video processing.

1 3 3 3-D FIR Filter Design Methods

1.3.3.1 Design Using Integration

The design of 3-D FIR filters using integration is very simple and straight-forward. Given

the filter’s frequency response H{taX9a 2i(02) , the impulse response h{nx,n 1,n 3') can

be obtained as

| K K K
K n l,n 29n3) = j ^ T J J / « (• . , a 2,a 3)eAw'n'+ŵ +‘û)d6)lda)2d a 3 (1.6)

~ X — 1t~ 1C

In general, calculation of this triple integral may be very difficult analytically. Therefore,

Equation 1.6 is often calculated using numerical integration. This eliminates the need for

an analytical solution, and it lends itself well to computer-aided analysis[l].

1.3.3.2 Design Using FFT and Window Functions

This design method is very similar to the one given in Section 1.3.3.1. Given a desired

frequency response of a filter, the impulse response h(nx,n 2,n 3') can be obtained by use

of the Three-Dimensional Inverse Discrete Fourier Transform (IDFT). The IDFT is

discussed in Chapter 3. While simple and straight-forward, this design method is sub-

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

optimal due to the occurrence of Gibb’s Oscillations in which ripples appear in the

passband and stop-band of the filter's magnitude response. These ripples can be reduced

by applying a window function to the impulse response. The most common window

functions are Hann and Hamming windows, Blackman windows, and Kaiser windows.

These are 1-D windows that can easily be extended to two and three dimensions for

application to two- and three-dimensional impulse responses [1][4][5][6].

1.3.3.3 McClellan Transformation

Another technique for designing 3-D FIR filters is obtained by extending the McClellan

Transformation to three dimensions. This technique involves determ ining transformation

coefficients, and then designing a 1-D FIR filter to be transformed using these coefficients.

A large number of coefficients may result from this method, but this number can be

reduced by imposing symmetry constraints [6].

1.3.3.4 Linear Programming

Linear Programming is a popular method for designing multidimensional filters. It is an

iterative process that measures the difference between the desired and designed frequency

responses, often as a sum-of-square-error, and minimizes this difference. Linear

programming is a computationally expensive design method, but is becoming more

practical as processing power becomes more easily available. More is said about linear

programming in the next section.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13.4 3-D IIR Filter Design Methods

1.3.4.1 Linear Programming [2][6][9]

The design of 3-D IIR filters using linear programming involves calculation of the filter's

numerator coefficients a (i, J , k) and denominator coefficients b(i, j , k) such that the

magnitude response and/or phase response o f the designed filter approximates a desired

response while maintaining stability in the filter. The transfer function given in Equation

1.5 can involve two subclasses: the separable product transfer function and the separable

denominator, non-separable numerator transfer function. These transfer functions are

given in Equation 1.7 and 1.8 respectively.

H (z x,z 2,z 3) = H x (z,)H 2 (z 2)H 3 (z 3) (1 ?)

(N \

X * i < » r
1=0

(N \

X a zU)z2 ~ J
y=0

(N \

X ° ^ k) z i k
k - 0

X b x(i) z C
^ 1=0 1

X b2U) z 2 J
\ 7=0

S
^ k =0 '

The separable product transfer function allows the filter to be designed as a cascade

arrangement of three 1-D filters. In this way, stability is guaranteed by designing the 1-D

filters to be stable. The major drawback of this design method lies in the tact that a

spherical-symmetric specification cannot be obtained. A filter with a separable product

transfer function will always have a cubic shaped magnitude response.

N N N

X X X a (i , j , k) z x % -Jz2
i=Q 7=0 *=0_____________________

-k

-k
(1.8)H { z x, Z 2 , Z 3) = . N \ (N V N

Xm*>" Z*20>~y X b3(k) z
>• 1=0 / \ j=0 / >■ k=0

The separable denominator, non-separable numerator transfer function has a denominator

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

like that of the separable product transfer function. As a result o f this, the stability problem

is reduced to that of the 1-D case. A filter having this transfer function can be designed by

cascading a 3-D FIR filter with three 1-D all-pole DR filters. The separable denominator,

non-separable numerator transfer function is more flexible than the separable product

transfer function and can be used to design filters with spherical-symmetric

specifications[7][8].

The general transfer function of Equation 1.5 gives the most flexible results since the

constraints of Equation 1.7 and 1.8 are removed. Unfortunately this design method does

not share the ease in designing for stability that the other methods do.

1.3.4.2 Bilinear Transformation

Another method of designing 3-D digital UR filters involves assigning a stable 3-variable

polynomial in the denominator of an analog transfer function and applying the triple

bilinear transformation. Unfortunately, not all analog filters will yield a stable digital filter

upon application of the bilinear transformation 10]. There is a specific class of analog

filters that will yield stable digital filters, and these analog filters have Very Strictly

Hurwitz Polynomials (VSHP) as their denominators[11]. The use of VSHP denominators

is used in the design o f both 2-D filters and 3-D filters[6]

1.3.4.3 Modified Shank’s Method

The final design method to be discussed here is another extension of a 2-D method. This

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2-D method is known as Shank’s Method[12] and is modified in [1] to provide a near-

linear phase response. It uses a weighted error function that measures the difference

between the desired magnitude response and the designed magnitude response. This error

function is then minimized by taking the derivative with respect to each of the {a} and {b}

coefficients and equating to zero. The resulting linear equations are then solved to obtain

an ideal impulse response. This ideal impulse response is utilized in such a manner as to

obtain a near-linear phase response for the filter. As a result of the advantages of HR

filters over FIR filters, and the obtainable near-linear phase characteristic, the Modified

Shank’s Method is used in this thesis. It is discussed in detail in Chapter 3.

1.4 Video Formats

The moving image sequences used in this thesis are found in digital video files. This

section briefly discusses some of the digital video formats in common use today.

1.4.1 IL263 Video Standard

The H.263 standard is a video coding standard published by the International Telecom

Union (ITU). It is specifically designed to accommodate low bit-rate applications where

bandwidth is limited. In particular, this video format has become standard in the field of

video telephony. The coding algorithm is a hybrid of inter-picture prediction, transform

coding, and motion compensation. In essence, this standard is primarily a compression

algorithm designed to allow higher flame rate video to be sent over low-bandwidth

channels. The ITU H.263 Recommendation is available from the International Telecom

Union.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4.2 MPEG Video Standard

The MPEG-1 video standard is officially known as ISO/IEC Standard, Coded

Representation o f Picture, Audio and Multimedia/hypermedia Information, ISO 11172.

MPEG-2 is a related standard and since this discussion relates equally to both, they will be

commonly referred to as the MPEG video standard. The MPEG video standard is the

adopted standard for the emerging application of High Definition Television (HDTV). It

has three types of frames: I-Frames, P-Frames, and B-Frames. I-Frames, or Intra-picture

frames, are coded only using information present in the picture itself. P-Frames, or

Predicted frames, are coded using the nearest previous I-Frame or P-Frame. B-Frames, or

Bidirectional frames, are frames that use both a past and future frame as a reference.

[http://www.c-cube.eom/technology/mpeg.html#MPEG Overview] Like the H.263

standard, MPEG is primarily a compression algorithm. The MPEG standards are available

from the International Standards Organization.

1.43 Microsoft Windows AVI Standard

The Microsoft Windows Audio Video Interleaved (AVI) format is a common video file

format used to hold video sequences on Personal Computers (PCs) running the Microsoft

Windows operating system. Unlike the H.263 and MPEG formats, the AVI is unsuitable

for transmitting video data, and is not used in applications such as video-telephony or

HDTV. It is a very simple video format which can often be found in an uncompressed

form. The Microsoft Windows Application Program Interface (API) contains numerous

functions for the manipulation of AVI files, and is well documented, allowing easy access

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.c-cube.eom/technology/mpeg.html%23MPEG

and manipulation of the raw video data.

1.4.4 Comparison

Since this thesis is concerned with applications o f 3-D filters, one may at first assume that

either the H.263 or MPEG standards would be an appropriate choice to use, since both

are commonly used in real-world applications. However, as mentioned earlier, these

formats are essentially compression standards. The application of using 3-D filters to

increase video resolution is concerned not with compressed data, but rather with raw data.

Any filtering algorithms developed to work on the raw data should also work with

compressed formats. One need only decompress the data before filtering. For this reason,

plus the wide availability of AVI files and AVI tools, the AVI format is preferable for the

purposes of this thesis, since the raw data is more easily accessible than in the other

formats. An added advantage to using this format arises from the fact that any PC running

Microsoft Windows is capable o f playing an AVI file.

1.5 Current Applications o f 3-D Filters

Digital filters are widely used in the processing of 1-D and multidimensional signals. 1-D

digital filters are commonly used in the area of speech or music processing. Other

examples can be found in[13][14]. Due to the increased complexity and hardware cost of

2-D filters, they are not used as often as 1-D filters. Some applications of 2-D filters

include image processing and seismic signal processing[15]. Three-dimensional filters are

even more complex and expensive than 2-D filters, and are therefore even less used. Their

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

use is becoming more practical as VLSI technology continues to improve. These filters are

currently used in the field of geophysics[6].

1.6 Thesis Organization

This thesis is divided into six chapters. Chapter 2 discusses the process of digital

interpolation. It begins with an introduction to the sampling theorem, and then gives an

explanation o f interpolation in one dimension. Two methods of interpolation are

discussed: interpolation using zero-padding, and interpolation using sample replication.

These methods are then extended to three dimensions.

In Chapter 3 o f this thesis, recursive filter design using the Modified Shank’s method is

discussed in detail. The three-dimensional Fast Fourier Transform is also developed.

The theory discussed in chapters two and three is tied together in Chapter 4 to outline the

process used to create a three-dimensional digital interpolator (in software). The process

of using this interpolator to increase the horizontal resolution, vertical resolution, and

frame rate of an AVI video file is also given. Relevant details of the AVI format and the

related BMP file format are provided.

The results o f the thesis are given in Chapter 5. Plots are provided showing the

characteristics of the designed 3-D filter, and frames of the filtered AVI file are shown

side-by-side with frames from the original file to compare the resolution and quality.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A summary and conclusions are provided in the final chapter. A computer program written

in Microsoft Visual C++ was used to test the theory o f this thesis and produce the results

found in Chapter S. The source code for this thesis is found in Appendix A.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Digital Interpolation

2.1 The Sampling Theorem

The sampling theorem states that any bandlimited continuous signal x(t) with frequency

spectrum X (ja)) = 0 for \(o\ > , where 0)s = 2x/ r and T is the sampling period,

can be uniquely determined from its discrete values x(nT), where n is an integer[3]. This

means that any signal sampled at greater than twice its highest frequency component can

be reconstructed to any desired degree of accuracy.

A graphical description of the sampling theorem is given in Figure 2.1 and Figure 2.2.

1 ►
o t

Figure 2.1(a): Continuous time signal x(t)

Figure 2.1(a) shows a one-dimensional continuous time signal denoted as x(t). If this

signal is now sampled by multiplying it with the unit pulse train p(nT) shown in Figure

2.1(b), then the discrete time signal x(nT) shown in Figure 2.1(c) is obtained.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p(nT) A

1

0 T 2T 3T 4T 5T nT

Figure 2.1(b): Unit pulse train p(nT)

x(nT) ^

0 2T nT

Figure 2.1(c): Discrete time signal x(nT)

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X(iG>)A

>
0 Qb Qs Q

Figure 2.2(a): Frequency spectrum o f continuous time signal x(t)

P C e**)

-4ti/T -2tc/T 0 27C/T 4ic/T a)

Figure 2.2(b): Frequency spectrum of unit pulse train p(t)

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AAAAA
-4ic/T -27t/T 0 2n/T 4 n / T co

Figure 2.2(c): Frequency spectrum of discrete time signal x(nT)

Figure 2.2 illustrates this process in the frequency domain. Figure 2.2(a) shows the

frequency spectrum X(jto) o f the continuous time signal x(t). Figure 2.2(b) shows the

frequency spectrum P(ejuT) o f the unit pulse train p(nT). The frequency spectrum X(e*"T)

of the discrete time signal x(nT) is shown in Figure 2.2(c). The spectrum X(e*"T) is

obtained by convolving X(jo>) with P(e*"T), since multiplication in the time domain is

equivalent to convolution in the frequency domain. By examination of Figure 2.2(c), it can

be seen that as long as o>s is greater than twice there will be no overlap between the

frequency spectrum “images”. Therefore the original spectrum of the continuous time

signal has not been distorted by sampling, and all the information about the signal is

retained.

2.2 One-Dimensional Interpolation

Digital interpolation in one dimension can be achieved by combining an upsampler with a

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x [n iy a T jJnT/L]
X(e*“T) _ _ Xu(ei"T/L) K } Y(e*“T/L)

— ̂t L i—>
Upsam pler - inserts L-l samples between each pair o f

samples x[nT] and x[nT+l]

H(e*“T/L)
Low Pass Filter - transition band centered about it/L

Figure 23: Block diagram of digital interpolation system

lowpass filter as shown in Figure 2.3. [3][16] First consider the operation of the

upsampler. If an upsampler using zero-padding is given an input x(nT), then its output

x„(nT') can be expressed as

xCVl) foTn=0,±L,±2L,...
where T = t/ l (2.1) 0 otherwise

which can also be written as

C O

x .inT) = £ x(kT)S(nT - kLT) (2 J)
k=-

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By applying the z-transfoim to Equation 2.2 and substituting z = e 1037 , Equation 2.3 is

obtained.

2 x(kT)S(nT -k L T)
_ i= -a o J

00 OD

= 1 1
fc=-<c n=-®

O P

= £ x(kT)e-,‘*T

S(nT — kLT)e ' L
cmT

oo

(2J)

Equation 2.3 shows that the frequency spectrum of xK(nT') is identical to the frequency

spectrum of x (n T) . Since T ' = T/ , o)' = £ 0 , and therefore the location of the

sampling frequency has been changed. Now in the range - “A < 0 < “A there are L

x(nT) A

0 T 2T 3T 4T 5T nT

Figure 2.4(a): Discrete time signal x(nT)

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

images o f X^e*0*7) . An interpolated signal jcj(«7v) with an increased sampling rate can

be obtained from xu{nT) by using a lowpass filter to remove the extra images. The

0 T 2T' 3T' 4T' 5T’ 6T' 7T 8T’ 9T 10T’ 11T n T

Figure 2.4(b): Discrete time signal x(nT) with zero padding

y C u T 1) A

0 r 2T 3 ? 4T' 5T' 6T 7T 8T' 9T' 10T' I IT' n T

Figure 2.4(c): Interpolator output y(nT)

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

combination o f the upsampler with the lowpass filter is called an interpolator. The

interpolation process is shown graphically in Figure 2.4.

The method presented above will theoretically yield a perfect reconstruction o f the original

signal, assuming an ideal low-pass filter is used. There is a variation of the above method

which does not yield a perfect reconstruction, but is better suited to a hardware

implementation. In this variation, the upsampler uses sample replication instead of zero

padding. Now if the upsampler is given an input x(nT), and L is assumed to be equal to

two, then the output xu(nT’) can be expressed as

qp qp

xu(n T) = ^ x (k T) S (n T - 2kT)+ ^ x (k T) S (n T - (2k + I)T) (2.4)
k = -o d t = —ao

Examination of Equation 2.4 shows that the upsampled signal consists of the original

signal added to a time-shifted image o f itself. Application of the z-transform to the original

and time-shifted signals gives

Aru(^ <ur) = X (e joiT) + e~Jm̂ X (e J0,T) W >

By evaluating Equation 2.5 at various values of o), it can be noted that this modified

upsampler using sample replication has a slight low-pass filtering effect on the signal. The

justification for this slight distortion lies in the hardware implementation o f the upsampler.

To use the zero- padding method, the original signal must be fed into the upsampler and a

zero sample must be explicitly inserted between each sample. With the sample replication,

the upsampling process is much easier as it only requires the filter to run at twice the

speed, or sample rate, of the incoming signal.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23 Three-Dimensional Interpolation

The procedure described in Section 2.2 will interpolate a one-dimensional signal such as

an audio signal. To interpolate a three-dimensional video file, the procedure must be

extended to three dimensions. Following the same method as before, the output o f the

upsampler jru(n,7jr, n2T2, n3T3) can be expressed as

« x x

l|*-« *2»—« t)«-C

For simplicity, let L=L,=L2=L3 and T=T,=T2=T3. Application of the z-transform and

substitution of z x = eJa>'r ,z 2 - e y®z r ,z 3 = ej0>iT gives

X .(eJ~'T,e~'-T, e ~ T) = j j m j £ x ik ,T ,k2T ,k ,T)S in ,T - k . L T ^ T - k1LT,nlT - k,L T)

= I I I I t I

= f i £ oc(i,7", k,T,k,T)e~'m'‘'re~ '^‘:re

= X{ei*r,e”rieim'T)

(2.7)

As in the one-dimensional case, the frequency spectrum of the upsampled signal is

identical to that of the original signal, while the sampling rates have been increased in each

of the three dimensions. Now in the range

(- m'A < 0JX< “"A), (- <eo2 < A), (- “'A <oj3 < -’A) there are L3 images o f the

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

original spectrum. The three-dimensional interpolated signal x ,(« ,r ',n^T '^ T ') with an

increased sampling rate in each dimension can be recovered by applying a lowpass filter

with a cubic response to remove the unnecessary images.

As in the one dimensional case, there is the option of using sample (pixel) replication

instead of zero-padding. In this case, the output of the upsampler will be

The output of the three-dimensional upsampler is the input added to a shifted version of

itself. Transforming Equation 2.8 to the frequency domain gives

The result of Equation 2.9 shows that there is again a slight low-pass filtering effect on

the signal when pixel replication is used. The justification for this method again lies in the

hardware implementation. By using pixel replication, there is no zero-insertion required

between each pixel, line, and frame. Instead, the result can be obtained by running the

filter at eight times the original speed (a factor of two for each dimension).

(2.8)« ao ae
E E 'Z x(.kiT̂ kz ^ k 1T3)S(niri - (2 k l + l)Tl,n1T2-(2 k2 + l)T1,nJTJ-(2 k 3*l)T,)

A|«-e !)■-«

(2.9)

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Filter Design

3.1 Introduction

As mentioned in the introduction, one of the goals o f this thesis involves the design o f a

stable recursive filter with a near-linear phase response. A method for designing such

filters already exists in two dimensions. This method will now be extended to three

dimensions.

The following three-dimensional method for designing stable recursive filters with near-

linear phase response is based on the filter design technique known as Shank’s

Method[12]. Although this method is a spatial design method, or a space-time design

method once extended to three dimensions, the derivation is given in the frequency

domain for purposes o f clarity.

As given in Chapter 1, the transfer function of a three-dimensional recursive filter is

described by

Note that is arbitrarily set to equal 1. By substituting z x — e im'T, z 2 = e jahiT,

27

3.2 Modified Shank’s Method for 2-D Filter Design[l]

N N N

t f (z „ z 2,z 3) =
1=0 7=0 k=0

N N N (3.1)

i=o y=o *=o
(i + j + k) * 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and z 3 = e j0h,T, the frequency response of the filter is obtained as

1T, . A{(Qx,G)i ,(Oi)
H (0 „ 0 2,0 3) = (3.2)

where

A(6flta 2t0f3) = e j ^ r r e ja>2JTe ja>,kT (J J)

,=0 y = o *=0

and

N N N

B{0„02,0,) = 1 + 1 1 Z (3.4)
i= o y = o *=0

(1 0

By now letting H d (tf>,,ty2,<0 3) represent the desired frequency response of the filter, an

error function can be defined as

f(t»„© 2,©3)= H d(a>x,G)2,6>3) - " a (3.5)
" (.^ 1 . ^ 2 > 3)

When transformed back to the space-time domain, Equation 3.5 becomes

e (n l tn2,n 3)= h d(t h { n i9n2, ni ') (3.6)

where hd is the desired impulse response and h(jiX9n2ini ') represents the

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

impulse response of the designed filter. /r(/r,,« 2 ,« 3) is described by

V N N I t N N

h(n,,/**,/^) = X Z Z a,jk#(ni ~ iyth - j\rtj - k) - Z Z Z bgMn\ ~ * * " 2 ~ J’n3 " *)(3.7)
t>0 ;* 0 k m 0 tm 0 J m Q 4*0

Forming the Lj norm using the error function in Equation 3.6 gives

M-l M-1 M-1
0 = 1 1 1 e 2(,rh>niSh) (3.8)

#ti=0#i2=0nr3=0

where Af x Af x Af points are taken from the impulse response for this computation.

The design o f the filter now consists of determining the values of the {a } and {b}

coefficients such that the expression in Equation 3.8 is minimized. This is done by taking

the derivative of Q with respect to each coefficient and equating the resulting equations

to zero. This results in Equation 3.9 and Equation 3.10.

dQ 2y y y ,
a a xyz n,=0n2=0/i3=0 a a xys (3 *^)

and

xyz n,=0n2=0/i3=0 (3 .1 0)

x ,y ,z = 0,1,2,.. . ,N (x + y + z) * 0

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Equation 3.9 generates (N + 1) x (jV + 1) x (N + 1) nonlinear equations in {a} , while

Equation 3.10 generates (N + 1) x (N + 1) x (Af + 1) — 1 nonlinear equations in {6}.

There are 2 {N + 1) x (Af + 1) x (Af + 1) — 1 filter coefficients, and these generated

equations form a complete set from which the coefficients can be solved.

While solvable, the above system of equations is highly nonlinear. To avoid this non-

linearity, reconsider the error equation of Equation 3.5 in the following form

£ (f i> „ f i> 2 , r » 3) = i ? (f i> , ,© 2 , a)2 ,a>3) ~ A (0 l9 0 2 , 0 3) (3 .1 1)

where e (a x,d)2, 0)3)B(Q)x,(0 2,(D3) has been replace by a “weighted” error term

£{co^,(Q2,Q)3) . Now transformation of Equation 3.11 to the space-time domain results in

the error equation

N S N N N N

/ (n , , ^ , / ^) = X Z Z bvkh d (" i - - h n 3 - *) - Z Z Z I - - *) (3 . 1 2)
1*0 y*0 k m 0 1*0 7*0 1*0

Forming the norm again, but now using the modified error term results in

M-\ M-1 M—\
Q = E X X £ 2 (» , , « 2 . * %) (3 .1 3)

n,=0n,=0n3=0

It should now be clear why this derivation began in the frequency domain, despite the fact

that it is a space-time design method. By beginning the derivation in the frequency domain,

it is clearly shown that the error being minimized in Equation 3.13 is a “weighted” error,

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and not the true error.

This new error Q can be minimized by differentiating with respect to each o f the filter

coefficients, and setting the resulting equations equal to zero. Differentiating Q with

respect to the {a} coefficients gives

SQ_ M - l k i - l M - l T f t H N N N N 1

= 2Z Z Z I Z Z Z a * g (n \ - - y.«3- *) - Z Z Z -/,«3-*)po»t- - y ,< h - z> = o ,
« ,a 0 « .a 0 l l3 * 0 |_ 1 * 0 /a O H O /aQ ;a O t « 0 J I 14)

X , y , 2 = 0,1,2 yv

This reduces to

V N N

= X Z X ^ - *)i=0 y=0 *=0
«1, «2, «3 = 0,1,2,..., N

(3.15)

As aresult of Equation 3.15, Equation 3.13 can be rewritten as

M —l A/-1 M -\

Q = z z z
/il=Af-*-l n2=N+\ «3=JV+l

N N N 12

Z Z Z v A<,("i - *»'*! - . / ’ " j - *)
1=0 7=0 jfc=0

(3.16)

since a rt|*2,,3 = 0 for N + 1 < , «2, « 3 < M - l . Now m inim ize by differentiating

with respect to the {6} coefficients and equating the resulting equations to zero. This

gives

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

> 1 M -l M - 1 A f - I

J 2- 2 ! I x^ ^ jy z r^mN+l « j * A T + l

x,y,z = 0,lA —,TV

N N N

Z Z Z - '»«z - /.« j - *)
__ /*0 y«0 **0

^(n , - x,/ij - ̂ ,n, - z) = 0(3.17)

which reduces to

v Af v U - l A / - I a / - i _ .

ZZZ*# Z Z = - Z Z Z ̂ d(>h^,h ’fb) ^ (n i ~ x <nz ~ 1111
<•0 j-Q A -0 « , . A » l i , a .V » l a , * A » l

t f - l A / - I A / - 1 A / - I M . | u . |

These equations generate (TV + 1) x (TV + 1) x (TV' + 1) linear equations in {a} and

(N + 1) x (TV + 1) x (TV +1) — 1 linear equations in {b}. This set of linear equations

can easily be solved for the filter coefficients.

33 Designing the 3-D Recursive Filter[l]

Once the desired impulse response is generated, a decision must be made as to how this

response should be utilized. There are four possible options for the utilization o f the

impulse response:

1. Use the eight cubes of the impulse response (entire large cube shown in Figure

3.1) with the origin being at the center of the array.

2. Shift the axis such that the entire impulse response is in the cube where

n „ « 2,«3 > 0 .

3. Take the impulse response from only one cube of the array where w3 > 0

(only utilize 1/8 of the impulse response). This option is depicted by the dotted

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cube in Figure 3.1.

Figure 3.1: Utilization of Impulse Response

4. Shift the axes by an amount that is large enough to include the largest components

of the impulse response in the cube « ,,n 2, «3 > 0 and use this cube. This option is

depicted by the dashed line in Figure 3.1.

The first option cannot be used since a filter's impulse response must be zero in the range

(/i, < 0) , (« 2 < 0) , and < 0) for the filter to be causal.

The second option will provide a causal filter, but the order of the filter will need to be at

least {MAX MAX MA) • The need for such a high order is a result o f the large delay of the

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

impulse response in all directions. The third option will also provide a causal filter since

values o f are only used when (« , > 0) , > 0) , and («3 > 0) . Due to

symmetry, the complete magnitude spectrum can be obtained by using only the one cube.

However, while the magnitude spectrum will be preserved, the phase characteristic will

not be preserved. Since linear phase is very important in video processing applications, this

method is unsatisfactory.

In the fourth option, two characteristics o f the impulse response are made use o f :

i) The impulse response decays rapidly away from the origin.

ii) A shift in the impulse response in the space-time domain corresponds to the addition o f
a linear phase to the frequency domain.

Since the larger values of the impulse response (shown as the sphere in the middle o f cube

of Figure 3.1) are being used (which have the largest influence on the magnitude and

phase response), and a linear shift is being added to a filter originally specified as zero-

phase, this method can be used to design filters with near-linear phase characteristics. By

using this method, most of the characteristics of the original desired frequency response

are preserved without the large delay that would exist if the entire impulse response were

used. It has been found[l] that the “shift” specified in Option 4 is best set to N -l in each

dimension.

3.4 Three-Dimensional Inverse Fast Fourier Transform

Since the method discussed above is spatio-temporal, it requires the ideal impulse

response before the error function can be formed. Usually however, a filter's specification

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is given in terms of its frequency response. Therefore a method of transforming the

frequency response into the impulse response is required. The most straight-forward way

of doing this is through the use of the Three-Dimensional Inverse Discrete Fourier

Transform (IDFT), given by

N i- lN 2- W 3- l

x(k^k2,k3) = W|A);W] £ £ £ x { « , , , « 3y (3.19)
/ii=0 r2=0r3=0

If a filter with a cubic response is used, then the assignment N,=N2=N3=N can be made for

simplicity and Equation 3.19 can be rewritten as

x{k„k2,k3)
nl=0n2=0

A f-1

7TX x(n l ,n2,n 3)eJ* n3k3
n3=0

yj^s\n2̂ 2 +n3*3) (3 20)

Now let

N - \

G(/j,,n2,Ar3)= x(n1,R2,«3)eJ*"A
n3=0 (3*21>

fo r w, , « 2 = 0 ,1 ,2 , - 1

Equation 3.21 is essentially the one-dimensional IDFT of the n2rt row of the n /A “frame’

This is shown graphically in Figure 3.2(a). Using Equation 3.21, the following can be

stated

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

, Ar2 , A:3) = j f Y , C ? (« 1 ,K 2 ,A r3) e J,^ n2*2
« j= 0 <*»>

fo r «i , ^ 3 = 0 ,1 ,2 , " , AT- 1

Equation 3.22 is the one-dimensional IDFT of the resulting k3'* column of the n,'* “ftame”.

This is shown graphically in Figure 3.2(b). Now consider the following

X (k x , k 2 , k 3) = H (n x, k 2 , k 3)eJ^ nA
n,=0

f o r k 2 , k 3 = 0 , 1 ,2 , - - - ,AT- 1

Equation 3.23 is essentially the one-dimensional IDFT o f each resulting “depth vector” of

the array. This is shown graphically in Figure 3.2(c). What has been accomplished above is

the breakdown of the Three-Dimensional Inverse Discrete Fourier Transform into multiple

One-Dimensional Inverse Discrete Fourier Transforms. This method can be used to take

advantage of the computational efficiency of the One-Dimensional Fast Fourier Transform

when the desired impulse response is formed for the modified Shank’s method presented

earlier.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V i

(*)

vilff

m 2 ;
l I

i l l
-l 1 l

i l l
(b)

j > / V ' I

! / w i
| ;

(C)

Figure 3 J : Three-Dimensional Fast Fourier Transform

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Implementation

4.1 Introduction

With the basic theory presented, the actual process of using a three-dimensional filter to

improve video resolution is now tested. This is done by extracting the raw data from the

video file, filtering it, and reconstructing the file for playback comparison. This process is

illustrated in Figure 4.1. As mentioned in the introduction of this thesis, there are many

functions available in the Microsoft SDK to modify AVI files. These functions are

grouped under the AVIFile library. One particular function o f interest extracts an

individual frame of video as a Microsoft BMP bitmap image. Since four of the six steps (as

outlined in Figure 4.1) involve AVI or BMP file manipulation, this chapter begins with an

overview of the AVI and BMP file formats. The rest of the chapter discusses each step of

the flowchart in Figure 4.1. Code snippets used in the Filter3D program dealing with the

AVI codec are given at the end of the chapter, and described throughout the chapter.

4.2 AVI and BMP File Formats

4.2.1 AVI File Format

The AVI format is a sub-format of the Microsoft Resource Interchange File Format

(RIFF). This format is based on the Electronic Arts Interchange File Format (IFF)[17]

which is a general purpose data storage format for associating and storing multiple types

o f data. As the name implies, an Audio Visual Interleaved (AVI) file can contain both

Audio and Video data.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Start

End

Apply 3-D Filter to
Raw Data

Reconstruct AVI File
from Filtered Frames

Obtain Standard AVI
File

Reconstruct
Individual Frames

(BMP Format) from
Filtered Raw Data

Extract Individual
Frames (BMP

Format)

Extract Raw Video
Data from Each

Frame

Figure 4.1: Implementation

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While the IFF format uses tagged blocks of data called chunks, the AVI format handles its

information as data streams. Data streams broadly refer to the components o f a time-based

file, either audio or video in the case of AVI files. This thesis is concerned only with the

video stream of a file, and audio streams are ignored when reading the AVI files. Each

AVI file consists of one file header, one or more stream headers, and the file data. The

structures AV1F1LEINFO and AVISTREAMINFO hold the file header and stream header

respectively. The following structure definitions are taken directly from the Microsoft

Developer Studio help files.

The AVIFILEINFO structure contains global information for an entire
AVI file.

t y p e d e f s t r u c t {
DWORD d w M a x B y t e s P e r S e c ;
DWORD d w F l a g s ;
DWORD d w C a p s ;
DWORD d w S t r e a m s ;
DWORD d w S u g g e s t e d B u f f e r S i z e ;
DWORD d w W i d t h ;
DWORD d w H e i g h t ;
DWORD d w S c a l e ;
DWORD d w R a t e ;
DWORD d w L e n g t h ;
DWORD d w E d i t C o u n t ;
c h a r s z F i l e T y p e [6 4] ;

} A V I F I L E I N F O ;

Members
dwMaxBytesPerSec

Approximate maximum data rate of the AVI file.

dwFlags

Applicable flags. The following flags are defined:

AVIFILEINFOHASINDEX

The AVI file has an index at the end of the file. For good performance, all
AVI files should contain an index.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AVIFELEINFOMU STU SEINDEX

The file index contains the playback order for the chunks in the file. Use
the index rather than the physical ordering of the chunks when playing back
the data. This could be used for creating a list of frames for editing.

AVIFILEINFOJSINTERLEAVED

The AVI file is interleaved.

AVTFILEINFOWASCAPTUREFILE

The AVI file is a specially allocated file used for capturing real-time video.
Applications should warn the user before writing over a file with this flag
set because the user probably defragmented this file.

AVTFILEINFOCOPYRIGHTED

The AVI file contains copyrighted data and software. When this flag is
used, software should not permit the data to be duplicated.

dwCaps

Capability flags. The following flags are defined:

AVIFILECAPSCANREAD

An application can open the AVI file with with the read privilege.

AVEFILECAPSCANWRITE

An application can open the AVI file with the write privilege.

AVIFILECAPSALLKEYFRAMES

Every frame in the AVI file is a key frame.

AVIFILECAPSNOCOMPRESSION

The AVI file does not use a compression method.

dwStreams

Number of streams in the file. For example, a file with audio and video has
at least two streams.

dwSuggestedBufferSize

Suggested buffer size, in bytes, for reading the file. Generally, this size

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

should be large enough to contain the largest chunk in the file. For an
interleaved file, this size should be large enough to read an entire record,
not just a chunk.

If the buffer size is too small or is set to zero, the playback software will
have to reallocate memory during playback, reducing performance.

dwWidth

Width, in pixels, of the AVI file.

dwHeight

Height, in pixels, of the AVI file.

dwScale

Time scale applicable for the entire file. Dividing dwRate by dwScale
gives the number of samples per second.

Any stream can define its own time scale to supersede the file time scale.

dwLength

Length of the AVI file. The units are defined by dwRate and dwScale.

dwEditCount

Number of streams that have been added to or deleted from the AVI file.

szFileType

Null-terminated string containing descriptive information for the file type.

The AVISTREAMINFO structure contains information for a single
stream.
t y p e d e f s t r u c t {

DWORD f c c T y p e ;
DWORD f c c H a n d l e r ;
DWORD d w F l a g s ;
DWORD d w C a p s ;
WORD w P r i o r i t y ;
WORD w L a n g u a g e ;
DWORD d w S c a l e ;
DWORD d w R a t e ;
DWORD d w S t a r t ;
DWORD d w L e n g t h ;
DWORD d w I n i t i a l F r a m e s ;
DWORD d w S u g g e s t e d B u f f e r S i z e ;

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DWORD d w Q u a l i t y ;
DWORD d w S a m p l e S i z e ;
R E C T r c F r a m e ;
DWORD d w E d i t C o u n t ;
DWORD d w F o r m a t C h a n g e C o u n t ;
c h a r s z N a m e [6 4] ;

} A V IS T R E A M IN F O ;

Members
fccType

Four-character code indicating the stream type. The following constants
have been defined for the data commonly found in AVI streams:

streamtypeAUDIO Indicates an audio stream.
streamtypeMIDI Indicates a MIDI stream.
streamtypeTEXT Indicates a text stream,
streamtypeVIDEO Indicates a video stream.

fccHandler

Four-character code of the compressor handler that will compress this
video stream when it is saved (for example,
mmioFOURCCC'MysyvyC')). This member is not used for audio
streams.

dwFlags

Applicable flags for the stream. The bits in the high-order word of these
flags are specific to the type of data contained in the stream. The following
flags are defined:

AVISTREAMINFODISABLED

Indicates this stream should be rendered when explicitly enabled by the
user.

AVISTREAMINFOFORMATCHANGES

Indicates this video stream contains palette changes. This flag warns the
playback software that it will need to animate the palette.

dwCaps

Capability flags; currently unused.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

wPriority

Priority of the stream.

wLanguage

Language o f the stream.

dwScale

Time scale applicable for the stream. Dividing dwRate by dwScale gives
the playback rate in number o f samples per second.

For video streams, this rate should be the frame rate. For audio streams,
this rate should correspond to the audio block size (the nBlockAlign
member of the WAVEFORMAT or PCMWAVEFORMAT structure),
which for PCM (Pulse Code Modulation) audio reduces to the sample
rate.

dwRate

See dwScale.

dwStart

Sample number of the first frame o f the AVI file. The units are defined by
dwRate and dwScale. Normally, this is zero, but it can specify a delay time
for a stream that does not start concurrently with the file.

The 1.0 release of the AVI tools does not support a nonzero starting time.

dwLength

Length of this stream. The units are defined by dwRate and dwScale.

dwInitialF rames

Audio skew. This member specifies how much to skew the audio data
ahead of the video frames in interleaved files. Typically, this is about 0.7S
seconds.

dwSuggestcdBufferSize

Recommended buffer size, in bytes, for the stream. Typically, this member
contains a value corresponding to the largest chunk in the stream. Using
the correct buffer size makes playback more efficient Use zero if you do
not know the correct buffer size.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dwQuality

Quality indicator of the video data in the stream. Quality is represented as a
number between 0 and 10,000. For compressed data, this typically
represents the value of the quality parameter passed to the compression
software. If set to - 1, drivers use the default quality value.

dwSampleSize

Size, in bytes, o f a single data sample. If the value of this member is zero,
the samples can vary in size and each data sample (such as a video frame)
must be in a separate chunk. A nonzero value indicates that multiple
samples of data can be grouped into a single chunk within the file.

For video streams, this number is typically zero, although it can be nonzero
if all video frames are the same size. For audio streams, this number should
be the same as the nBlockAlign member of the WAVEFORMAT or
WAVEFORMATEX structure describing the audio.

rcFrame

Dimensions o f the video destination rectangle. The values represent the
coordinates of upper left comer, the height, and the width o f the rectangle.

dwEditCount

Number of times the stream has been edited. The stream handler maintains
this count

dwFonnatChangeCount

Number of times the stream format has changed. The stream handler
maintains this count.

szName

Null-terminated string containing a description of the stream.

4.2.2 BMP File Format

The Microsoft BMP file format is the native bitmap format of the Microsoft Windows

operating environment and is used to store virtually any type of bitmap data[17]. BMP

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

files consist o f a file header, bitmap header, optional colour palette, and the bitmap data.

All BMP files contain a file header and bitmap header (older bitmap files may only contain

a file header, but those older formats are not discussed here). The colour palette exists if

the number o f bits constituting each pixel is eight or less (<= 8bpp). Since greyscale

images are 8bpp, the BMP files examined here all have a colour palette. The structures

BITMAPFILEHEADER and BITMAPINFOHEADER hold the file header and bitmap

header respectively. The following definitions are taken directly from the Microsoft

Developer Studio help files.

The BITMAPFILEHEADER structure contains information about the
type, size, and layout of a file that contains a device-independent bitmap
(DIB).
t y p e d e f s t r u c t ta g B IT M A P F IL E H E A D E R { / / b m f h

WORD b f T y p e ;
DWORD b f S i z e ;
WORD b f R e s e r v e d l ;
WORD b f R e s e r v e d 2 ;
DWORD b f O f f B i t s ;

} B IT M A P F IL E H E A D E R ;

Members
bfType

Specifies the file type. It must be BM.

bfSize

Specifies the size, in bytes, of the bitmap file.

bfReservedl

Reserved; must be zero.

bfReserved2

Reserved; must be zero.

bfOflBits

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Specifies the offset, in bytes, from the BITMAPFILEHEADER structure
to the bitmap bits.

The BITMAPINFOHEADER structure contains information about the
dimensions and color format of a device-independent bitmap (DIB).

t y p e d e f s t r u c t ta g B IT M A P IN F O H E A D E R f / / b m i h
DWORD b i S i z e ;
LONG b i W i d t h ;
LONG b i H e i g h t ;
WORD b i P l a n e s ;
WORD b i B i t C o u n t
DWORD b i C o m p r e s s i o n ;
DWORD b i S i z e I m a g e ;
LONG b i X P e l s P e r M e t e r ;
LONG b i Y P e l s P e r M e t e r ;
DWORD b i C l r U s e d ;
DWORD b i C l r l m p o r t a n t ;

} B IT M A P IN F O H E A D E R ;

Members
biSize

Specifies the number o f bytes required by the structure.

biWidth

Specifies the width o f the bitmap, in pixels.

biHeight

Specifies the height of the bitmap, in pixels. If biHeight is positive, the
bitmap is a bottom-up DIB and its origin is the lower left comer. If
biHeight is negative, the bitmap is a top-down DIB and its origin is the
upper left comer.

biPlanes

Specifies the number of planes for the target device. This value must be set
to 1.

biBHCount

Specifies the number o f bits per pixel. This value must be 1, 4, 8, 16,24, or
32.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

biComprcssion

Specifies the type o f compression for a compressed bottom-up bitmap
(top-down DIBs cannot be compressed). It can be one of the following
values:
biXPebPerMeter

Specifies the horizontal resolution, in pixels per meter, of the target device
for the bitmap. An application can use this value to select a bitmap from a
resource group that best matches the characteristics of the current device.

biYPebPerMeter

Specifies the vertical resolution, in pixels per meter, of the target device for
the bitmap.

biClrUsed

Specifies the number of color indices in the color table that are actually
used by the bitmap. If this value is zero, the bitmap uses the maximum
number of colors corresponding to the value of the biBitCount member
for the compression mode specified by biComprcssion.

If biClrUsed is nonzero and the biBitCount member is less than 16, the
biClrUsed member specifies the actual number of colors the graphics
engine or device driver accesses. If biBitCount is 16 or greater, then
biClrUsed member specifies the size of the color table used to optimize
performance of Windows color palettes. If biBitCount equals 16 or 32,
the optimal color palette starts immediately following the three doubleword
masks.

If the bitmap is a packed bitmap (a bitmap in which the bitmap array
immediately follows the BITMAPINFO header and which is referenced
by a single pointer), the biClrUsed member must be either 0 or the actual
size of the color table.

biClrlmportant

Specifies the number of color indices that are considered important for
displaying the bitmap. If this value is zero, all colors are important.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43 Obtain Standard AVI File

The first step o f the flowchart, obtaining a standard AVI file, is very simple. There are

many AVI files readily available on the Internet. For this thesis, certain considerations are

made in the selection o f suitable AVI files. First, to simulate the type of video typical of a

common application such as video-telephony, AVI files with frame rates o f approximately

10-15 frames per second are selected. Another consideration that must be made in the

selection o f AVI files for the “Proof-of-Concept” in this thesis involves the subject of

colour. Only grayscale video files are used in this thesis. The reasoning behind this relates

to the fact that filtering pixels with colour is a straight-forward extension o f the method

used to grayscale pixels. There are two methods for performing this filtering: filtering the

three primaries separately, and filtering only the luminance values. Both o f the methods

are discussed in detail in [1].

4.4 Extract Individual Frames

The next step in the implementation involves extracting each frame of video from the file.

Refer to the code supplied at the end of this chapter for the actual code used in this and

subsequent AVI-related steps. As mentioned in the introduction, the Microsoft SDK has

many functions for manipulating AVI files. To use these functions, the AVIFile library

must be initialized using AVIFilelnit. The AVI file is then opened using AVIFileOpen.

This function can also be used to create new AVI files for writing. The next step is to

obtain the video stream using AVIFileGetStream. As mentioned, AVI files can contain

multiple streams, where one stream may be video and the others audio. The audio stream

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is ignored in this step. With the video stream extracted, die original AVI file can now be

closed using AVIFileClose. By using the functions AVTStreamStart and AVIStreamEnd,

the original number o f frames can be calculated. The use of AVIStreamGetFrameOpen is

used to prepare for the extraction o f a frame from the stream. Then the function

AVIStreamGetFrame is called. This function returns a pointer to a specified frame of

video as a Device Independent Bitmap (DIB). The DIB format is also commonly known

as the Microsoft Bitmap (BMP) format, which was discussed in the introduction of this

chapter.

4.5 Extract Raw Pixel Data from Frames

The BMP file format is a very simple format to extract data from. Since only grayscale

(8bpp) images are used, each entry in the bitmap data is an index to the Red-Green-Blue

(RGB) value stored in the palette. The fact that the images are grayscale means that

R=G=B. If the images were not grayscale, luminance (grayscale) values could still be

obtained from the RGB colour values using the following equation[l].

Y = 03 R + 0 5 9 G + 0.1 IB (5.1)

Equation 5.1 is based on the relative sensitivity of the human eye to the different primary

colours. By using Equation 5.1, pixel data can be extracted from either a colour or

grayscale palette.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Apply 3-D Filter to Raw Data

This section comprises the central part of the thesis. The previous steps in the

implementation are primarily for the purpose of accessing the raw video data. The

following algorithm explains the process involved in filtering a sequence o f images with a

three-dimensional filter. Refer to Figure 4.2 for a graphical representation of the process.

Clear wx and wy
For n=0,1,2,... ,image_depth-1
{

Transfer nth frame of video to 1st frame of wx
wx[0][j][k] = video[n][j][k] for j=0,1,2,...,image_height-l,

k=0,1,2,... ,image_width-1

For ml=0,l,2,...,image_height-l
{

For m2=0,1,2,.. .,image_width-1
{

V N N
wy[0H/wJtmJ = Z Z Z - k]

/= 0 j =0 *= 0

N N N

- Z Z Z bak^yiQif"i ~ 2 - k]
(=0 7=0 k=0

(« + j + k * 0)

}
}

Transfer 1st frame of wy into output video
Output[n]jj][k]=wy[0]li]M forj=0,l,2,...,image_height-l,

k=0,1,2,...,image_width-1

Shift frames of wx and wy
fram eM - fra m et

}

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.7 Reconstruct Frames

With the data filtered, each frame is placed back in BMP format to prepare for insertion

into the AVI format. This is a simple task which involves re-attaching the file and bitmap

headers to the new raw data. Since the data is entirely 8-bit luminance values, they already

act as indexes into a linear colour palette ranging from zero to 255 with each R, G, and B

entry equal. If the original image was grayscale, this palette already exists. If the original

image had been colour and was converted to grayscale for processing then the old colour

palette must be replaced with the linear grayscale palette mentioned above. The original

file header remains unchanged, while the only fields of the original bitmap header that

differ after the filtering are biWidth, biHeight, and biSizelmage. The width and height

fields will each be double the original value, while the image-size field will be four times

larger.

4.8 Reconstruct AVI File

The final step of the flowchart of Figure 4.1 is the reconstruction of the AVI file. Like the

extraction of frames from the file, this step involves using specific functions in the AVIFile

library. Similar to the reconstruction of the BMP frames where the original headers are

reused with only slight modifications, much of the stream header information can be

reused from the original. In this case, the following fields of the header are changed:

dwRate is doubled, dwLength is doubled, dwSuggestedBufferSize is quadrupled, and the

length and width of rcFrame are each doubled. Using the modified header, a new stream

can be created by using the function AVIFileCreateStream. The format of the stream is

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

then set using AVIStreamSetFormat. With this done, the stream is now ready to have a

filtered frame inserted by using AVIStreamWrite. These steps are required for writing the

first frame of filtered video data to the file. Now as each subsequent frame o f filtered

video is obtained, it can be added to the stream using AVIStreamWrite. The resources

from decompressing the frame then need to be released by using

AVIStreamGetFrameClose. Both streams, old and new, are closed using

AVTStreamClose, and AVIFileClose is used to close the new AVI file. The function

AVIFileExit is then used to exit the AVIFile library.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

image he BYTE

image width

Figure 4 i(a): Original moving image sequence.

N+l

BYTE
Wx

2*imagejheight

4
2*immge_width

Figure 4.2(b): Wx image buffer.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FLOAT
Wy

2*image_height

2*image_width

Figure 4.2(c): Wy image buffer.

2 * image_depth

BYTE

2* image_height

2*image_width

Figure 4.2(d): Filtered moving image sequence.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.9 Sample AVI Code

// Initialize AVIFile library
AVIFilelnitO;

// Open AVI file for reading
hr = AVIFileOpen(&pFilejn_lpstrFileName,OF_READ,NULL);
if(hr!=AVIERR_OK)
{

AfxMessageBox("An Error Occurred Opening the Input File.”);
return FALSE;

}

// Create new AVI file for writing
hr = AVIFileOpen(&pFileNew^nJpstrNewFileName,OF_WRITE|OF_CREATE,NULL);
ifthr!=AVIERR_OK)
{

AfxMessageBox("An Error Occurred Creating the Output File.”);
return FALSE;

}

// Open AVI stream for reading
hr = AVIFiIeGetStream(pFile,&pStream,streaintypeVIDEO,0);
if(hr!=AVIERR_OK)
{

AfxMessageBox(” An Error Occurred Opening the Input Stream.”);
return FALSE;

}

// Close original AVI file
AVIFileClose(pFile);

// Calculate number o f frames in stream
numFrames = AVIStreamEnd(pStream)-AVIStreamStart(pStream);

// Prepare to decompress video frames from stream
getFrameObj = AVIStreamGetFrameOpen(pStream,NULL);

// Obtain address o f first decompressed video frame
tempFramePtr = (BYTE *)AVIStreamGetFrame(getFrameObj,0);

// Get header from old stream
hr - AVIStreamInfo(pStream, AstrHdrOld, sizeof(strHdrOld));

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iffhr != AVIERROK)
{

AfxMessageBox("An Error Occurred Reading Old Stream Header.");
return FALSE;

}

// Fill in the header for the new video stream
memset(&strHdrNew,0^izeof(strHdrNew));// Set strHdrNew to zero
strHdrNew.fccType = streamtypeVIDEO; // stream type
strHdrNew.fccHandler = 0; //Compressor Code
strHdrNew.dwScale = strHdrOld.dwScale; // Time Scale
strHdrNew.dwRate = 2*strHdrOld.dwRate; II Frames per second
strHdrNew.dwLength = 2*strHdrOld.dwLength; //N um ber o f frames
strHdrNew.dwSuggestedBufferSize = 4*bmiHeader.biSizehnage; // buffer size
SetRect(&strHdrNew.rcFrame,0,0,2*bmiHeader.biWidttt2*bmiHeader.biHeight); // rectangle for

stream

// Create the new stream
hr = AVIFileCreateStream(pFileNew,&pStreamNew,&strHdrNew);
if(hr != AVIERROK)
{

AfxMessageBox("An Error Occurred Creating the Output Stream.");
return FALSE;

}

// Set format o f new stream
hr = AVIStreamSetFormat(pStreamNew,0,framePtr,

bmiHeader.biSize +
bmiHeader.biClrUsed*sizeof(RGBQUAD));

if(hr != AVIERR OK)
{

AfxMessageBox("An Error Occurred Setting the Output Stream Format");
return FALSE;

}

// Write frame to new stream
hr = A VIStream Write(pStreamNew,0,1,

framePtr + imageOffset,
4*bmiHeader.biSizeImage,
AVIIFKEYFRAME, NULL, NULL);

if(hr != AVIERRjOK)
{

AfxMessageBox("An Error Occurred Writing to the Output Stream.");
return FALSE;

}

// Write frame to new stream
hr = A VIStream Write(pStreamNew,frame, 1,

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

framePtr+ imageOffset,
4*bmiHeader.biSizeImage,
AVIIFKEYFRAME, NULL, NULL);

ifl[hr != AVIERR_OK)
{

AfxMessageBox(”An Error Occurred Writing to the Output Stream.");
return FALSE;

}

// Close the files and streams
AVIStreamGetFrameClose(getFrameObj);
AVIStreamClose(pStream);
AVIStreamClose(pStreamNew);
AVIFileCloseCpFileNew);

AVIFileExitO;
return TRUE; // function completed successfully

}

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Results

5.1 Introduction

All results given in this chapter except plotting, which is done using MATLAB, are

generated using a computer program developed using Microsoft Visual C++. This

program designs a 3-D HR filter using the Modified Shank’s Method of Chapter 3, and

uses it to perform filtering o f an AVI file using the process given in Chapter 4. This

software implementation of a 3-D filter provides a basis for forming conclusions about the

validity of the theory given in the preceding chapters. These conclusions are provided in

Chapter 6.

5.2 Filter Design Results

After starting the program Filter3D, selecting ‘New’ from the toolbar or the File menu

presents a dialog box requesting parameters for the design of the 3D filter. Figure 5.1

shows this dialog box. The values given in Figure 5.1 are the default values for the filter.

The results in this chapter are generated using a value of 32 as the number of samples. The

default values are used for the other design options. By clicking the OK button, the filter is

designed using the Modified Shank’s Method discussed earlier in the thesis. The resulting

filter coefficients are given in Figure 5.2.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.1: Filter Settings Dialog Box

0.03194
0.04542
0 .02(72

(a) Coefficients:
0.04542
0.06459
0.03800

0.02672
0.03800
0.02236

1.00000
-0.25231
0.25913

(b) Coefficients:
- 0.25231 0.25913
0 .0(366

- 0.06538
- 0 .0(538
0.06715

0.04542 0.0(459 0.03800
0.06459 0.09185 0.05404
0.03800 0.05404 0.03180

•0.25231 0.0(366 - 0.06538
0 .0(366 - 0.01606 0.01650

- 0.06538 0.01650 - 0.01694

0.02672 0.03800 0.02236
0.03800 0.05404 0.03180
0.02236 0.03180 0.01871

0.25913 - 0.06538 0.06715
- 0.06538 0.01650 - 0 .01(94
0.06715 - 0.01694 0.01740

Figure 5.2: Coefficients o f designed 3-D filter

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure S.3 shows the magnitude response of the designed filter when col is held constant

at zero radians/sec. Note that col is within the passband of the filter, and the

characteristics of the filter are acceptable. Figure 5.4 shows the magnitude response when

col is held constant at 0.98 radians/sec. The value of col is still within the passband of the

filter and the characteristics are again acceptable. Figure 5.5 shows the magnitude

response when col is held constant at 2.16 radians/sec. This value of col is outside the

passband, and therefore the magnitude response is very nearly zero. Figure 5.6 shows the

magnitude response when col is held constant at pi radians/sec. The value of col is again

outside the passband, and the magnitude response is again very nearly zero.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fHS*
>*3'

VP

c*v
09* <&0i&

. • ■ ■ ■ ■ v - W i r ^ , ^ ,

ipe^0'
, 6 ^tfv’P1le'C

,\0̂ o ^ e
=oV;̂\Q̂ 3^® *

fVVA"ev
<e^0<

i\o ̂'P'
ftW0',v>V?.ev

.wS\0®-tC\'sS

Low-Pass Flier wflh Cutoff = pi/2 (w l = 2.16 rad^ec)

w3 OadAjrtt) - 4 - 4 w2 frad/iril)

Figure 5.5: Magnitude response with co, = 2.16 rad/sec

Low-Pass Flier with Cutoff = pi/2 (wl = pi radfcec)

1 -

w3 (Jad/tnit) - 4 - 4 w2 (tad/Lntt)

Figure 5.6: Magnitude response with w, = it rad/sec

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The plots o f Figures 5.3 through 5.6 show that the filter design method used yields an

acceptable magnitude response. However, as stated earlier in the thesis, it is also very

important to have linear or near-linear phase in the passband of the filter. Figure 5.7 shows

the phase response of the filter when to 1=0 rad/sec. Note that the response appears

moderately flat within the passband region. Figure 5.8 shows an approximation to the

group delay of the filter with respect to u>3. It is only an approximation since the

resolution between points is finite, but it is sufficient to give an idea of the linearity of the

phase response. Note that for values of 0)3 within the passband, there is very little

deviation in the phase response. All significant deviation lies outside the passband, so any

distortion is attenuated. Figure 5.9 and 5.10 show the same thing except with col at a

value of 0.98 rad/sec. Figure 5.11 shows the phase response of the filter when oil is fixed

at 2.16 rad/sec. Note that the phase response at this value of wl is non-linear. However,

by examination of Figure 5.12 it can be seen that the non-linearity occurs outside the

passband of the filter. Therefore, any resulting phase distortion will be attenuated.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.7: Phase response with co, = 0 rad/sec

Low-Pass Filer win Cutoff = pt/2 (w3=0 radians teec)

£
£
C Os

2

0

-2

-4

-6

-8

-10 32 4-3 •2 -1 0 1-4
w l (TaeflansAjnit)

Figure 5.8: Group delay with co, = 0 rad/sec

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Low-Pass Filer wflh Cutotl = pi >2 (w3 = 0 5 8 radians Asec)

5
£ r
£

-5>
s -o.

10^
4

w2 (radansAjnit)
•4 w l (tacSansAjnit)

Figure 5.9: Phase response with &>, = 0.98 rad/sec

Low-Pass Flier win CutofT = pi/2 (w3=0.96 radians&ec)

w1 (TadiansAjniT)

Figure 5.10: Group delay with co, = 0.98 rad/sec

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Low-Pass Flier wlti Cutofl = pifi (w3 = 2.16 radians ŝec)

£

w2 QradansAjnil)
-4 w l (radansAjnit)

Figure 5.11: Phase response with Q), = 2.16 rad/sec

Low-Pass Flier with Cuton = pi/2 (w3 = 2.16 radians/sec)
25

20

0 -

-10

w l (TadansAjnil)

Figure 5.12: Group delay with a), = 2.16 rad/sec

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 3 Video Filtering Results

While it is gratifying to see that the 3D filter design method given in this thesis is effective,

it is not the primary goal of this investigation. The main purpose is to verify that these

filters can be effectively used to increase the resolution o f moving images. By following

the implementation algorithm given in the previous chapter, various AVI video files were

interpolated using the above 3D filter. The following figures show the results from one of

these files.

First let us demonstrate that the number of samples has been increased. Figure 5.13 shows

the file properties of the original AVI file compared with the file properties of the filtered

AVI file. Note that the width and height are both doubled, and the number of frames is

Figure 5.13: Comparison of File Properties dialog boxes.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also doubled. This shows that there is indeed eight times more samples in the filtered video

than in the original, but it gives no indication of the quality o f this new video.

Figure 5.14 shows a frame of the original video file compared with its equivalent filtered

frame. Note that the filtered image is double the width and height o f the original.

Figure 5.14: Video single frame comparison.

Now examine Figure 5.15. It also shows a frame o f the original video sequence compared

with a frame from the filtered video sequence, but this time both frames are zoomed in to

show the resolution difference.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.1S: Video single frame zoomed comparison.

The filtered frame is on the left, and the original frame is on the right. Note that for every

one pixel in the original image, the filtered image has four pixels. Also note the improved

definition of features such as the nose, eyes, and ears. The pixelation effect along the edge

of the collar is also greatly reduced.

While Figure 5.14 and Figure 5.15 show an impressive increase of resolution in the

individual frames of the video sequence, these results could have been obtained by using a

2D filter. The advantage of the 3D filter in this application lies in its ability to also increase

the resolution along the time axis by interpolating frames. The result of this can be seen in

Figure 5.16. The top two images are equivalent frames from the original and filtered video

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sequences respectively (left to right). The bottom left image is the next frame of the

original sequence, and the frame to its right is the equivalent frame of the filtered

sequence. The frame between the two filtered frames is an interpolated frame that does

not exist in the original sequence. Note the mouth is open in the first frame, and is closed

in the next frame of the original sequence. Now examine the filtered sequence and note

that the mouth is first open (as in the original), then the mouth is partially open, and then

the mouth is closed (as in the original). The frame with the mouth partially open did not

exist in the original sequence. This frame was successfully interpolated and shows detail

that is not visible in the original sequence. These results show that the 3D filter

successfully increased the resolution of the video sequence in all three dimensions.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure S. 16(a): Original Sequence (time = T) Figure 5.16(c): Interpolated Sequence (time = T)
(Mouth is open) (Mouth is open)

Figure 5.16(d): Interpolated Sequence (time = T+dt/2)

(Mouth is partially open)

Figure 5.16(b): Original Sequence (time = T+dt) Figure 5.16(e): Interpolated Sequence (time = T+dt)
(Mouth is closed) (Mouth is closed)

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Summary and Conclusions

6.1 Summary

Chapter 1 of this thesis began by introducing the concept of moving images and giving an

overview of various types of digital filters and their design methodologies. It finished by

comparing some popular video formats, and giving some examples of the current

applications o f digital filters.

Chapter 2 began by discussing the Sampling Theorem, which is central to the

understanding of digital interpolation. It then explored two methods of one-dimensional

interpolation: zero-padding and sample replication. The chapter concluded by extending

these concepts to three dimensions for use with three-dimensional digital signals.

The procedure of designing three-dimensional EIR filters using the Modified Shank’s

Method was presented in detail in Chapter 3. The two-dimensional spatial method was

extended to the three-dimensional space-time domain. The chapter concluded by deriving

the three-dimensional Fast Fourier Transform (FFT).

Chapter 4 tied all the theory together from the previous chapters to provide an

implementation method by which a moving image sequence could be interpolated with a

three-dimensional digital filter. It began by giving a description of the AVI and BMP file

formats, and then describing how the raw pixel data could be extracted from these

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

formats. A scheme for applying the 3-D filter was given next, followed by a method to

reinsert the raw filtered data back into an AVI file.

Chapter 5 provided results to demonstrate the validity o f the theory in Chapter 2 and

Chapter 3, and the validity of the implementation method in Chapter 4.

6.2 Conclusions

This thesis is concerned with the use o f 3-D digital filters in multimedia applications.

Specifically, it is interested in using three-dimensional digital interpolation filters to

increase the resolution of moving image sequences in three dimensions. By examination of

the results given in Chapter 5, it is clear that both the theory and the proposed

implementation given in the thesis are sound. The designed 3-D UR filter possesses a steep

transition band and has near-linear phase response in the passband. After applying the

filtering algorithm given in Chapter 4, the video file’s resolution is increased by a factor of

two in each dimension for a total resolution improvement by a factor of eight. In Chapter

1, the purpose of the thesis was given as: “... a digital 3-D interpolation filter is to be

designed which performs inter-pixel and inter-frame interpolation, resulting in increased

horizontal resolution, vertical resolution, and temporal resolution (frame rate) of a moving

image sequence.” The results of Chapter 5 clearly demonstrate that the goal of this thesis

has been achieved, and that 3-D filters have application to the field of multimedia.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] M. A. Sid-Ahmed, “Image Processing: Theory, Algorithms, and Applications,”
McGraw Hill, New York, 1994.

[2] R. King, M. Ahmadi, R. Gorgui-Naguib, A. Kwabwe, M. Azimi-Sadjadi, “Digital
Filtering in One and Two Dimensions: Design and Applications,” Plenum Press,
New York, 1989.

[3] A. Antoniou, “Digital Filters: Analysis, Design, and Applications,” McGraw Hill,
Toronto, 1993.

[4] T. S. Huang, “Two Dimensional Windows,” IEEE Trans. Audio and
Electroacoustics, AU-20, no. 1, March 1972, pp 88-90.

[5] T. C. Speake and R. M. Mersereau, “A Note on the Use o f Windows for Two
Dimensional FIR Filter Design,” IEEE Trans. Acoustics, Speech and Signal
Processing, ASSP-29, no. 1, Feb. 1981, pp 125-127.

[6] I. S. El-Feghi, “Design o f Three Dimensional Digital Filters,” MASc Thesis,
University o f Windsor, Windsor, 1999.

[7] C. Charalambous, “Design of 2-Dimensional Circularly-Symmetric Digital Filters,”
IEEE Proc. 129, Part G, no. 2, pp 47-54,1982.

[8] K. Rajan and M. N. S. Swamy, “Design of Separable Denominator 2-Dimensional
Digital Filters Possessing Real Circularly Symmetric Frequency Responses,” IEEE
Proc. 129, Part G, no. 2, pp 235-240, 1982.

[9] T. Hinmoto and K. Harada, “Design of 3-D Separable Denominator Digital Filters
Using Minimal Decomposition and Balanced Realization,” Electronics and
Communications in Japan, Part 3, Vol 77, no. 10, 1994.

[10] D. Goodman, “Some Difficulties with Double Bilinear Transformation in 2-D Digital
Filter Design Transfer Function,” IEEE Trans. On Circuits and Systems, Vol. CAS-
25, no. 6, pp 340-343, June 1978.

[11] P. K. Rajan, H. C. Reddy, M. N. S. Swamy, and V. Ramchandran, “Generation of
Two Dimensional Digital Function Without Nonessential Singularities of the Second
Kind,” IEEE Trans. Acoustics, Speech and Signal Processing, Vol. ASSP-28, no.
2, pp 216-223, April 1980.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[12] J. L. Shanks, S. Treitel, and J. H. Justice, “Stability and Sythesis o f Two
Dimensional Recursive Filters,” IEEE Trans. Audio and Electroacoustics, AU-20,
no. 2, June 1962, pp US-128.

[13] H. C. Andrews and B. R. Hunt, “Digital Image Restoration,” Prentice-Hall,
Englewood Cliffs, NJ, 1977.

[14] W. K. Pratt, “Digital Image Processing,” John Wiley and Sons, New York, 1978.

[15] J. W. Tukey, “Exploratory Data Analysis,” Addison-Wesley, Reading,
Massachusetts, 1971.

[16] R. E. Crochiere and L. R. Rabiner, “Multirate Digital Signal Processing,” Prentice-
Hall, Englewood Cliffs, NJ, 1983.

[17] J. D. Murray and W. vanRyper, “Encyclopedia of Graphics File Formats,” O’Reilly
& Associates, Sebastopol, 1996.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Source Code for Filter3D Program

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// ChildFrm.cpp: implementation of the CChildFrame class
//

include ”stdafx.h"
^include "Filter3D.h"

include "ChildFrm.h"

#ifdef .DEBUG
#define new DEBUG.NEW
#undef THISFILE
static char THIS FILEQ = _F IL E _;
#endif

lll
//CChildFrame

IMPLEMENT_DYNCREATE(CChiIdFrame, CMDIChildWnd)

BEGIN_MESSAGE_MAP(CChildFrame, CMDIChildWnd)
//{{AFX_MSG_MAP(CChildFramc)

// NOTE • the Class Wizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code !

//}} AFXM SG.MAP
END.MESSAGE.MAPO

///
// CChildFrame construction/destruction

CChildFrame::CChildFrameO
{

// TODO: add member initialization code here

}

CChildFrame::~CChildFrameO
{
>
BOOL CChildFrame::PreCreateWindow(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs

return CMDIChildWnd::PreCreateWindow(cs);
}

III
II CChildFrame diagnostics

#ifdef .DEBUG
void CChildFrame:iAssertValidO const
<

CMDIChildWnd: :AssertValidO;

void CChildFrame::Dump(CDumpContext& dc) const

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
CMDIChiIdWnd::Dump(dc);

}

#endlf//_DEBUG

iiiim iiiiiiiiiiniiiiituiiiiiiiiiiiiiiiiiiM iiiiiiiiiiiiiiiiiiiiiiiiiiiii
// CChildFrame message handlers

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iiiiiiiiifiniiniiiniiiiiiiiiiiiiiiii
I I Complex.cpp: implementation of the COMPLEX class
//

#include "stdafxii"
include "Filter3D.h"

include "Complexh"

COMPLEX::COMPLEX0
{

Real = 0.0;
Imag = 0.0;

>
COMPLEX::COMPLEX(double real, double imag)
{

Real = real;
Imag - imag;

}
double COMPLEX::GetRea!(void) const
{

return Real;
}
double COMPLEX::GetImag(void) const
{

return Imag;
}
double COMPLEX::Magnitude(void)

retum(sqrt(Real*Real + Imag*Imag»;
)
double COMPLEX::Phase(void)
{

retum(atan2(Imag,Real)>;
)
COMPLEX operatorK COMPLEX A. COMPLEX B)
{

return COMPLEX(A.Real + B.Real,
A.Imag + B.Imag);

)
COMPLEX operator^ COMPLEX A, COMPLEX B)
{

return COMPLEX! A.Real - B.Real,
A.lmag - B.Imag);

)
COMPLEX operator*! COMPLEX A, COMPLEX B)
{

return COMPLEX! A. Real * B.Real - A.Imag * B.Imag,

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.Real * B.Imag + A.Imag * B.Real);
>
COMPLEX operator^ COMPLEX A, double B)
{

return COMPLEX(A.Real * B , A.Imag • B);
>
COMPLEX operator^ COMPLEX A. double B)
{

return COMPLEX(A.Real / B , A.Imag / B);

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

II Filtcr3D.cpp : Defines the class behaviors for the application.
//
include "stdafxJT
include "FiIter3D.h"

include "MainFrm.h"
#include "ChildFraUi”
#include "FilteriDDoc.h"
#include "Filtet3DView.h"

#ifdef_DEBUG
#define new DEBUGNEW
#undefTHIS_FILE
static char THIS_FILE[] = FILE ;
#endif

lll
II CFilter3DApp

BEGIN_MESSAGE_MAP(CFiltcr3DApp, CWinApp)
//{{AFX_MSG_MAP(CFilter3DApp)
ON_COMMAND(ID_APP_ABOUT, OnAppAbout)

// NOTE - the Class Wizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

//}} AFXMSGMAP
// Standard file based document commands
ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
// Standard prim setup command
ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)

ENDMESSAGEMAPO

tllllltllllllllllllllllllllllllllllllllllllllltllllllllllllllllllllllllllllll
II CFilter3DApp construction

CFilter3DApp::CFilter3DAppO
{

// TODO: add construction code here,
// Place all significant initialization in Initlnstance

)
lll
// The one and only CFilter3DApp object

CFilter3DApp theApp;

lll
II CFilter3DApp initialization

BOOL CFilter3DApp::InitInstanceO
{

// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#ifdef_AFXDLL
Enablc3dControlsO; // Call this when using MFC in a shared DLL

#else
Enablc3dControlsStaticO; // Call this when linking to MFC statically

tfendif

// Change the registry key under which our settings are stored.
// You should modify this string to be something appropriate
/ / such as the name of your company or organization.
SetRegisayKeyCTCSteve McFadden - 1998"));

LoadStdProfileSettingsO; // Load standard INI file options (including MRU)

// Register the application's document templates. Document templates
// serve as the connection between documents, frame windows and views.

CMultiDocTemplate* pDocTemplafe;
pDocTemplate = new CMuhiDocTemplale(

IDRJTLTERTYPE,
RUNTIME_CLASS(CFilter3DDoc),
RUNTIME_CLASS(CChildFrame), // custom MDI child frame
RUNTIME_CLASS(CFilter3DView));

AddDocTcmplate(pDocTemplate);

// create main MDI Frame window
CMainFrame* pMainFrame = new CMainFrame;
if (!pMainFrame->LoadFrame(IDR_MAINFRAME))

return FALSE;
m_pMainWnd = pMainFrame;

// Parse command line for standard shell commands, DDE. file open
CCommandLinelnfo cmdlnfo;
ParseCommandLine(cmdInfo);

// Dispatch commands specified on the command line
// if (!ProcessShel!Command(cind!nfo))
// return FALSE;

// The main window has been initialized, so show and update it.
pMainFrame>>ShowWindow(m_nCmdShow);
pMainFrame*>UpdateWindow();

return TRUE;

lll
II CAboutDIg dialog used for App About

class CAboutDIg: public CDialog
{
public:

CAboutDlgO;

// Dialog Data
//{{AFX_DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX
//} }AFX_DATA

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U Class Wizard generated virtual function overrides
//{{AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}} AFX_VIRTUAL

// Implementation
protected:

//{{AFX_MSG(CAboutDlg)
// No message handlers

//}} AFXMSG
DECLAREMESSAGEMAPO

};
CAboutDlg::CAboutDlgO: CDialog(CAboutDlg::IDD)
{

//{{AFX_DATA_INIT(CAboutDlg)
//} }AFX_DATA_INIT

)
void CAboutDig::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDlg)
//}} AFXDATAMAP

BEGIN_MESSAGE_MAP(CAboutDlg, CDiaJog)
//{ (AFX_MSG_MAP(CAboutDlg)

// No message handlers
//}} AFXMSGMAP

END_MESSAGE_MAPO

// App command to run the dialog
void CFilter3DApp::OnAppAbout()
{

CAboutDIg aboutDIg;
aboutDlg.DoModalO;

J

III
// CFilter3DApp commands

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Filter3DDoc.cpp: implementation of the CFilter3DDoc class
//
^include "stdafx-h"
#include "Fllter3D.h"

#include "Filter3DDoc.h"
^include "Filter3DSeningsDlg.h"
^include "ProcessingDlg.h"
#include <fstream.h>
^include "vfw.h"

#ifdef_DEBUG
ftdefine new DEBUGNEW
#undef THIS_FILE
static char THIS_FILEQ = FILE ;
#endif

llllllllllllllllllllllllllllllllllltlll
II CFilter3DDoc

lMPLEMENT_DYNCREATE(CFilter3DDoc, CDocument)

BEGFN_MESSAGE_MAP(CFilter3DDoc, CDocument)
//{{AFX_MSG_MAP(CFilter3DDoc)

II ON_COMMAND(IDVIDEO_PLAY, OnVideoPlay)
II ON_COMMAND(ID_VIDEO_FILTER, OnVideoFilter)

//} } AFXMSGMAP
END_MESSAGE_MAPO

lll
II CFilter3DDoc construction/destruction

CFilter3DDoc::CFiiter3DDocO
{

pi =4.0*atan(1.0);
m_dCutoffFreq = 1.5708;
m_nNum Samples = 16;
m_nOrder = 2;
m_nOffset = m_nOrder-1;

CFilter3DDoc::-CFilter3DDocO
{
>
BOOL CFilter3DDoc::OnNcwDocument0
{

if (!CDocument::OnNew Document!))
return FALSE;

unsigned ij;

// Obtain filter settings
CFilter3DSettingsDlg dig;
dlg.m_dCutoffFieq = m_dCutoffFreq;
dlg.m_nNum Samples = mnNumSamplcs;

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dlgjnjnOrder= mnOrder,
dIg.m_nOfFset = m_nOffset;
if(dlg.DoModalO = IDOK)
{

mdCutoffFreq = dlgjndCutoffFrcq;
mnNum Samples = dlg.m_nNum Samples;
m_nOrder = dlg-mnOrder;
mnOfTsct = dlg-mnOfTset;

// Allocate memory for impulse response
m_pImpulseResponse = new double ••[m nNumSamples/2 + mnOfTsct];
for(i=0;i<(m_nNumSamples/2-*-m_nOfTset);t-t-*-)
{

m_pImpulseResponse[i] = new double *[m_nNumSamples/2 + m_nOfTset];
for(j=0;j<(m_nNum Samples/2 + m_nOffset)j-t-+)

m_pImpulseResponse[i][j] = new double [m nNumSampics/2 + m nOfTsct];
>
// Allocate memory for magnitude and phase response
m_pMagnitudeResponse = new double ••[m_nNumSamples-*-1];
m_pPhaseResponse = new double ••[m_nNumSamplcs-*-l];
for(i=0;i<(m_nNum Samples-*-1);i++)
{

m__pMagnitudeResponse[i] = new double *[m_nNurn Samples-*-1);
m_pPhaseResponse[i] = new double •[m_nNumSamples-t-l];
for(j=OJ<(mnNum Samples-*-1)y-*-*-)
{

m_pMagnitudeResponse[i][j] = new double [m_nNumSamples-*-l];
m_pPhaseResponse[i][j] = new double [m_nNumSamples+1];

}
// Allocate memory for frequency axis
m_pdFreqAxis = new double [m_nNumSamples+l];

// Allocate memory for impulse axis
m_pdImpulseAxis = new double [m_nNumSamplcs/2-*-m_nOfFset];

// Allocate memory for {a} and {b} coefficients
m_pACoefTAiTay = new double **[m_nOrder-*-|];
m_pBCoeffArray = new double **[m_nOrder*-l J;
for(i=0;i<(m_nOrder+1);i++)
{

m_pACoeffArray[i] = new double •[m_nOrder+-l];
m_pBCocfTArray[i] = new double •[m nOrdcr+1];
for(j=Oy<(m_nOidet+l)a++)
{

m_pACoeffAnay[i][j] - new double [m_nOrder-*-l];
m_pBCoefrArray[i][j] = new double [m_nOtder*-lJ;

>
ComputeCoefficientsO;

>
else
{

return FALSE;

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return TRUE;
}

lll
II CFilter3DDoc serialization
void CFilter3DDoc::SeriaIize(CArchive& ar)
{

unsigned i j,k;
if (ar.IsStoringO)
(

ar « mnNum Samples « mdCutofTFreq « mnOrder « mnOfTsct;

fi*<i=0;i<(m_nOrdert-l);i++)
fbf{j=OJ <(m_nOrdcr*-1)J++)

for(k=0; k<(m_nOrdert-1);k++)
ar « m_pACoeftArray [i] [j] [k];

for(i=0;i<(n»_nOrdei+1);i++)
for(j=0y<(m_nOrder+1)y'++)

for(k=0;k<(m_nOrder+-1);k++)
ar « m_pBCoefTArTay[i][j][k];

forfi=0;i<(m_nNumSamples/2+m_nOfTsct);i-t-t-)
fof0=0u<(n>_iiNumSamples/2+m_nOffset)y+-t-)

for(k=0;k<(m_nNumSamples/2+m_nOfTset);k-t-t-)
ar « m_pImpulseRcsponse[i][j][k];

for{i=0;i<(m_nNumSamples+1);i++)
for(j=Ou<(m_nNumSamples+1)y++)

for(k=0;k<(m_nNum Samples-*-1);k++)
ar « m_pMagnhudeResponse[i][j][k];

forii=0;i<(ni_nNumSamples+1);i++)
fortj^U^mnNum Samples-*-1)J++)

for(k=0;k<(m_nNum Samples-*-1);k++)
ar « m_pPhascResponse[i][j][k];

forii=0;i<(ni_nNumSamples+l);i++)
ar « m_pdFreqAxis[i];

for(i=0;i<(m_nNumSamples/2+mnOfTset);i++)
ar « m_pdImpulseAxis[i];

}
else
{

ar » mnNum Samples » m_dCutoffFreq » m_nOrder » mnOffset;

// Allocate memory for impulse response
m_pImpulseResponse = new double ••[m nNumSamples/2 + m nOffset];
for(i;*0;i<(m_nNumSamples/2+m_nOfrset);i++)
{

m_pImpulseResponse[i] = new double *[m_nNumSamples/2 + m_nOffset];
fof(j=0y<{m_nNumSamplcs/2 + m_nOffsct)J++)

m_plmpuIseResponse[i][j] = new double [m_nNumSamples/2 + m_nOffset];

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

// Allocate memory for magnitude and phase response
m_pMagnftudeResponse = new double ••[m nNumSamples+l];
m_pPhaseResponse = new double **[m_nNumSamples+l];
for(i=K);i<(m_nNumSamplcs-t-l);i++)
{

m_pMagnitudeResponse[i] = new double *[m_nNumSamples+1];
m_pPhaseResponse[i] = new double •[m_nNumSamples+l];
foi<j=Oa<(m_nNumSamplcs+l)y++)
{

m_pMagnitudeResponse[i]Ql — new double [m_nNumSampies+l];
m_pPhaseR.esponse[i][j] = new double [m_nNumSamples+l];

}
}
// Allocate memory for frequency axis
m_pdFreqAxis = new double [m_nNumSamples+1];

// Allocate memory for impulse axis
m_pdlmpulseAxis = new double [m_nNumSamples/2+m_nOfFset];

// Allocate memory for {a} and {b} coefficients
m_pACoeffArray = new double ••[m_nOrder+l];
m_pBCoeffArray = new double ••[m_nOrder+l J;
fbr(i=0;i<(m_nOrder+-1);H-+)
{

m_pACoefFArray[i] = new double •[m_nOrdet+l];
m_pBCoefFArray[i] = new double •[m_nOrder+l];
for(j=Oy<(m_nOrderi-l)y++)
{

m_pACoeffArray[i][j] = new double [m_nOrder*-I];
m_pBCoeffArray[i][j] = new double [m_nOrder+l];

}
}
for(i=0; i<(m_nOrdcr+-1);i-H-)

forfj=Oy<(m_nOrder^ 1)y++)
forfk=0;k<(m_nOrder+-1);k++)

ar » m_pACoefrArray[i][j][k];

for(i=0;i<(m_nOrder+l);i++)
for(j=Oy<(m_nOrdert-1)y++)

forfk=0;k<(m_nOrder+1);k++)
ar » m_pBCoeflfArray[i][j][k];

for(i=0;i<(m_nNumSamples/2+m_nOffset);i++)
for(j=OJ<(m_nNumSamples/2+m_nOffset)y-t-t-)

forfk=0;k<(m_nNumSamples/2+m_nOffset);k+-t-)
ar » m_pImpulseResponse[i][j][k];

for<i=0;i<(m_nNumSamples+1);i++)
for(j=Oy<(m_nNumSamples+1)y++)

for(k=0;k<(m_nNumSamples+1);k++)
ar » m_pMagnitudeResponse[i][j][k];

for(i=0;i<(m_nNumSamples+1);i++)

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(j=03<(in_nNuinSamples+l)3++)
for{k=0;k<(iii_iiNuinSainples+1);k++)

ar » m_pPhascRcsponse[i][j][k];

for{r»0;i<(ni_nNuinSainpies+1);t++)
ar » m_pdFreqAxis[i];

for(i=,0;i<(m_nNumSamplcs/2+m_nOfFset);i-t-t-)
ar » m_pdImpulseAxis[i] ;

}
}

lltllllllllllllllllllllllllllllll
II CFilter3DDoc diagnostics
#ifdef_DEBUG
void CFiiter3DDoc::AssertValidO const
{

CDocument::AssertValidO;
}
void CFilter3DDoc::Dump(CDumpContcxt& dc) const
{

CDocument::Dump(dc);
}
#endif //DEBUG

iiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiiitiniiiiiiiiniiiiiiiiiiiiiitiiiiiiiiiiiii
II CFilter3DDoc commands
BOOL CFilter3DDoc::Simq(double **matrix, unsigned nEquations)
{

unsigned ijjc,l;
double Big,temp;
for<j=Oy<nEqiiationsy-t-t-) II pass #
{

//Find Big
Big = fabs(matrix[j][j]);
i = j ;
fot(i=j+1 ;i<nEquations;i++)
{

if(Big<fabs(matrix[i]0]))
{

Big - fabs(matrix[i][)]>;
l = i;

)
)
H Check that Big not equal to zero
if(Big< 1.0e-7)
{

AfxMessageBox(”Unab!e to Solve Set of Equations");
return FALSE;

}
// Switch Rows
m I-j)

8 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
for(k=0;k<nEquations+1 ;k++)
{

temp - matrix[j][k];
matrix[j][k] = mamx[I][k];
matrix[I][k] =temp;

}
>
// Normalization
for(k=j+1 ;k<nEquations+1 ;k++)

matrix[fl[k] t= matrixQIQ];
matrixDJD]=

// Elimination
for(i=0;i<nEquations;i++)
{

if(i = j) continue;
for(k=j+1 ;k<nEquations+1 ;k++)

matrix[i][k] -= matrix[j][k] * matrix[i][j];
matrix[i][j] = 0.0;

}
} //End of Pass
return TRUE;

}

void CFilter3DDoc::BitReversal(unsigned *L, unsigned N)
{

// Sub-program developed by M.A. Sid-Ahmed
// Routine for generating LUT for bit reversal.
// Note: N=(2 to the power of m).
//LUT will reside in L0

unsigned MASK,C^AJJc,i,m;

m = (intXlog 10((double)N)/log 10(2.0));

for<k=0;k<N;k-M-)
{

MASK = 1;
C = 0;
for<i=0 j=m-l ;i<m;i++j—)
{

A=(k&MASK)»i;
A «=j;
C[=A;
MASK=MASK«1;

>
L[k]=C;

)
)

void CFilter3DDoc::FFT3D(COMPLEX •••X, unsigned N, unsigned fit)
{

unsigned i j Jc;

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COMPLEX temp;

foKi=0;i<N;H-+)
{

foi(j=Oy<Ny++)
{

FFTI D(X[i][j],N,fft); II FFT of each row (of each frame)
>

}
II Take transpose of each frame of X array
fbr(i=0;i<N;t-M-)
{

fa(j=Oa<Na++)
{

for(k=0;k<N;k-H-)
{

if(j=k) break;
temp = X[i]B][k];
X[i]DlM = X[i][k]Q];
X[i][k][]] = temp;

}
)

>
fbi(i=0;i<N;i++)
{

fot(j=Oa<Ny++)
{

FFTlD(X[i][j],N,fft); // FFT of each row (of each frame) after transpose
)

)
II Take transpose of each ‘row’ of X matrix
for(j=Oy<Ny++) // for each row
{

for(i=0;i<N;i++)
{

foKk=0;k<N;k++)
{

if(i=k) break;
temp = X[i][j]lkl;
X[i]DlM = X[k]Q][i];
X[k][j][i] =temp;

>
}

}
foi(i=0;i<N;i++)
{

foi(j»Oy<Ny++)
{

FFT 1 D(X[i]Q],N,fft); II FFT of each row (of each frame) after 2nd transpose
}

// Take transpose of each 'row1 of X matrix

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(j=Oy<Na++) // for each row
{

fbr(i=,0;i<N;i+-t-)
{

for<k=0;k<N;k++)
{

iffi=k) break;
temp = X[ilO][k];
X[i][j]M = X[k]0][i];
X[k][j][i] = temp;

>
>

}
// Take transpose of each frame of X matrix
// Take transpose of each frame of X array
for(i=0;i<N;i++)
{

fot(j=Oy<Na++)
{

for(k=0;k<N;k-M-)
{

ifO=k) break;
temp = X[i][j][k];
X[i]DlM = X[i][k]D];
XplPcJDl= temp;

>
}

)
}
// computes the one-dimensional fft of an array o f values
// XQ holds the values o f the array
// N is number of values
//fft = 1 -> ffi
// fft = 2 —> ifll
// WQ holds the twiddle factors
void CFilter3DDoc::FFTlD(COMPLEX *X, unsigned N, unsigned fft)
{

unsigned ij,k;
unsigned incr.n,ip,group,stage,m;
unsigned int *L;
COMPLEX T,*W,*Temp;

m = (intXlogl0((double)NVlogl0(2.0»;
incr = 2; / /distance between groups
n = (int)pow(2,(m-1));
ip = incr/2; // distance between butterfly inputs

// Allocate memory for twiddle factors
W = new COMPLEX [N/2J;

// Allocate memory for bit-reversed LUT
L = new unsigned int [N];

// Allocate memory for temporary array
Temp = new COMPLEX [N];

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Generate bit-reversed LUT
BitReversal(L^N);

// Rearrange order in FFT input array
fot(i=0;i<N;i++)

Temp[i] = X[iJ;
for(i=0;i<N;i++)

X[L[i]] = Tcmp[i];
delete Temp;

// Generate twiddle factor LUT
for(i=0;i<N/2;H-+)
{

if im = i)
W[i] = COMPLEX(cos((2.0*pi/(float)N)*double(i)),

-sin((2.0*pi/({loat)N)*double(i)));
else

W[i] = COMPLEX(cos((2.0*pi/(fIoat)N)*doublc(i)),
sin((2.0*pi/(float)N)*double(i)));

}
// Algorithm for first stage with all weights equal to 1
II---------------------------------------
for(group=0;group<N ;group += incr)
{

j = group + ip;
T = X0];
XD] = X[group]-T;
X[group] = X[group] + T;

>
incr = incr *2;
n = n/2;
ip = incr/2;

// Algorithm for remaining stages with weights not always equal to I
//--
for(stage=l;stage<m;stage++) // N = 2 to the power (m)
{

for(group=0;group<N;groufrt-=incr)
{

fbr(kr=0;k<(N/(2*n));k++)
{

j = k+ip;
T = Xfgroup + j] • W[n*k];
X[group+j] = X[group + k] - T;
X [group + k] = Xfgroup + k] + T;

>
}
incr = incr • 2;
n = n/2;
ip = incr/2;

}
if(fft “ 2)

for(i=0;i<N;i-H-)

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

{
X[i] — X[i] / double(N);

)

void CFilter3DDoc::ComputeCoefficientsO
{

unsigned ij,k;
unsigned kl Jc2Jc3,Nl;
COMPLEX •••H;

N1 = m_nNumSamples/2;

// Convert cutoff frequency to samples number
mjdCutoffFreq *= double(m_nNum Samples)/(2.0*pi);

// Allocate memory for Desired Magnitude Response
H = new COMPLEX **[m_nNumSamples];
for(i=0;i<m_nNumSamples;H-+)
{

H[i] = new COMPLEX *[m_nNumSamples];
for(j=Oy<m_nNum Samples j++)

H[i][j] = new COMPLEX [m nNumSamples];
}
II Form Desired Magnitude Response
foKklsO;kl<m_itNumSamples;kl-H-)
{

for(k2=0;k2<m_nNumSamples;k2++)
{

for(k3=0;lc3<m nNumSamples;k3+-t-)
{

iff(abs(k 1 -NI)<m_dCutof!Freq)&&(abs(k2-N 1)<m_dCutof!Freq)&&(abs(k3-N I)<m_dCutoffFreq»
H[kl][k2][k3] = COMPLEX(1.0,0.0);

else
H[kl][k2][k3] = COMPLEX(0.0,0.0);

}
}

}
// Apply shift in Frequency Domain
forfk 1 =0;kl <m_nNumSamples;k I ++)
{

for(k2=0;k2<m_nNumSamples;k2++)
{

for(k3=0;k3<m_nNurn Samples ;k3++)
H[kl][k2][k3] = H[kl][k2][k3] • pow(-l,(kl+k2+k3));

>
>
FFT3D(H,m_nNumSamples^); // 3-D IFFT of Desired Magnitude Response

II Apply shift in Time Domain
for(kl=0;kl<m_nNumSamples;kl++)
{

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(k2=<);k2<m_nNiimSamplesdc2++)
{

for<k3=0;k3<m_nNuni Samples ;k3+-t-)
H[kl][k2][k3] = H[kl][k2][k3] • pow(-l,(kl+lc2+k3));

>
}
/ / --
// Shank’s method begins here
//
unsigned x,y,z,n I .n2,n3,M,M 1 ;
double **A;

M = m_nNum Samples/2 + m_nOffset;
Ml = m_nNumSamples/2 - m_r»OfFset;

// Trim impulse response
for(i=M 1 ;i<m_nNumSampics;i++)

for(j=M I j<m_nNumSamplesy-*-i-)
{

foi(k=M 1 ;k<m_nNumSamplcs;k++)
m_pImpulseResponse[i-Ml]0*MI][k>MI] = H[i][j][k].GetReal();

>

>
// Set values of Impulse Axis
fbr(p,0;i<(m_nNumSamples/2+m_nOffset);i++)

m_pdImpulseAxis[i] = double(i);

#ifdef_DEBUG

// Write impulse response to file for debugging
fstream impulse("lmpulse.dbg",ios::out);
forin l=0;n 1 <M,*nl++)
{

for(n2=0;n2<M;n2++)
{

for(n3=0;n3<M;n3++)
impulse « m_pImpulseResponse[nl][n2][n3] « "\t";

impulse « endl;
}
impulse « endl« endl;

>
impulse.closc();

#endif

II Dc-allocate memory for Desired Magnitude Response
for(i=0;i<m_nNumSamples;i++)
{

for<j“OJ<m_nNumSamplesy-H-)
delete Q H[i][j];

delete D H[i|;
}
delete Q H;

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ft Allocate memory for A matrix
A = new double *[(m_nOrdert-1)*(m_nOrderH)*(m_nOrder+1)-1];
fo»(i=0; i<((m_nOrder+-1)*(m_nOrder*-1)*(m_nOrdert-1 }-1);i++)

A[i] = new double [(m_nOidei+l)*(m_nOrderH)*(m_nOidet+I)];

// Forming the A matrix
unsigned row.col;
row = 0;
for(x=0;x<=m_nOrdcnx++)
{

foify=0;y<=m_nOnieny+-t-)
{

fot(z=0;z<=m_nOrder^+)
{

ifl[(x+y+z)=0) continue;
col = 0;
fot(i=0;i<=in_nOrder;i++)
{

foi(j=Oy<=m_nOrdeni++)
{

m_pImpulscResponse[nl>i][n2-j][n3-k] *

m_p!mpulseResponse[n 1 -x][n2-y][n3-z];

for(k=0;k<=ni_nOrdcr;k++)
{

ifl[(i+j+k)=0) continue;
A[row][col] = 0.0;
for(n 1 =(m_nOrdei+1);n 1 <M;n 1++)
{

fbr(n2=(m_nOrdei+1);n2<M;n2++)
{

for(n3=(m_nOrder+1);n3<M;n3++)
A[row][col] +=

}
row-t-f-;

}
col++;

>

row=0;
for(x=0;x<=m_nOrder,x-t-+)
{

for(y=0;y<*m_nC)rdeny++)
{

for(z=0;z<” m_nC>rder t̂-t-)
{

if((x+y+z)=0) continue;
A[row][((m_nOrder+-1)*(m_nOrder -̂1)*(m_nOrdert-1)-1)J = 0.0;
forfn I =(m_nOrdeH-1);n 1 <M;n 1++)
{

for(n2=Km_nOrder+l);n2<M;n2++)
{

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

foi<n3={m_nOrder+1);n3<M;n3++)
A[rowl[((m_nOidei+l)*(m_nOrderH)*(in_nOrderHM)]

m_pImpulseRcsponse[n 1] [n2] [n3] *
m_pImpulseResponse[n 1 -xj [n2-y] [n3-zj;

>

}
row++;

}
}

}
Simq(A,(m_nOrder*-1)*(m_nOrdcrt-1)*(m_nOrdert-1)-1);

row=0:
m_pBCoefEAiray [0] [0] [0] = 1.0;
forfi=0;i<=m_nOrder;i++)
i

for(j=Oa<=in_nOrdera++)
{

for(k=0;k<=ninOrder,k++)
{

if((i+j+k)=0) continue;
m_pBCoefFArray[i][j][k] = A [row] [(mnOrder*-1)*(mnOrder*-1)*(m_nOrder+1>■1];
row++;

>

}
}

for(n 1 =0;n 1 <=m_nOrder;n 1 ++)
{

fof(n2=0;n2<=m_nOiderni2++)
{

for(n3=0;n3<=in_nOnier;n3+-t-)
{

m_pACoefFArray [n 1] [n2] [n3] = 0.0;
foi(i=0;i<=ni_nOrder;i++)
{

if(int(nl-i)<0) continue;
foi(j=Oa<=m_nOrdera++)
{

ifl[int(n2*j)<0) continue;
for(k=0;k<-in_nOrder;k++)
{

if(int(n3-k)<0) continue;
m_pACoefFArray [n I] [n2] [n3] += m_pBCocfFArray[i][j][k]

m_pImpulseResponse[n I -i][n2-j][n3-k];

)

// De*alk>cate memory for A matrix
foKi“0;i<((m_nOrden-l), (m_nOrdeH-l)*(m_nOrdert-l)-l);i++)

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

delete DA[il;
delete 0 A;

#ifdef_DEBUG

// Write coefficients to file for debugging
fstream coefff"Coefficients.dbg",ios::out);
foi<i=0;i<=ni_nOfder;i++)
{

foid=Oy<=m_nOrdery++)
{

For(k=0;k<=m_nOrder;k++)
coeff« m_pBCoeffAnay[i][j][k]« "\t";

coeff « endl;
}
coefF« endl« endl;

}
coeff« endl« endl;
for(i=0;i<=m_nOrder;i++)
{

forC=Oy<=nt_nOrdery++)
{

for(lc=0;k<=ni_nOrdenlc++)
coefF« m_pACoefFArray[i][j][k] « "\t";

coefF « endl;
)
coeff« endl« end!;

}

coeff.closeO;

#endiF

// Computing Magnitude and Phase Response
double dW;
COMPLEX num,den;

// Compute frequency arrays
m_pdFreqAxis[0] = -pi;
dW = 2.0*pi/double(m_nNum Samples);
For(i=l ;i<(m_nNumSamples+l);i++)

m_pdFreqAxis[i] = m_pdFreqAxis[i-1] + dW;

Forfn 1 =0;n 1 <(m_nNumSamples+1);n I ++)
{

for(n2=0;n2<(m_nNumSamples+1);n2-*-+)
{

For(n3=0;n3<(m_nNumSamples+1);n3++)
{

num = COMPLEX(0.0,0.0);
den = COMPLEX(0.0,0.0);
For(i=0;i<=m nOrdeni++)
{

foi(j*Oy<=m_nOrdery-H-)
{

for(lF=0;k<=m_nOrder;k++)
{

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nun - nun +■ COMPLEX(m_pACoeffArray[i][j][k],0.0) *

COMPLEX(cos(i*m_jx!FrcqAxis[nI}+j*in_pdFreqAxis[n2}+k*in_pdFreqAxi5[n3]),-sin(i*in_pdFreqAxis[nl}+j*rn_pdFreqAxi
s[n2J+k*m_pdFreqAxis[n3]));

den * den + COMPLEX(m_pBCocfFArray[i][j][k),0.0) *

COMPLEX(cos(i*m_pdFrcqAxis[nl J+j*m_jxlFreqAxis[n2}+k*m_pdFreqAxis[n3]),-5in(i*in_pdFrcqAxis(nl]+j*fn_pdFreqAxi
s[n2J+k*m_pdFreqAxis[n3]));

}
}

}
m_pMagnltudeResponse[nl][n2][n3] = nuni.Magnitude()/dcn.Magnitude();
m_pPhaseResponse[n 1][n2][n3] = nun.PhaseO • den.Phase();

}
}

}
#ifdef_DEBUG

// Write magnitude and phase response to file for debugging
fstream magnitude(”Magnitude.dbg",ios::out);
fstream phase("Phase.dbg",ios::out);

for<n 1 =*0;n 1 <(m_nN umSamples-t-1);n 1 ++)
{

magnitude « m_pdFreqAxis[nl]«
phase « m_pdFreqAxis[n 1] « "\nP=[";
for(n2=*0;n2<(m_iiNumSamples+1);n2+-*-)
{

forin3=O;n3<0n_nNumSamples+l);n3++)
{

magnitude « m_pMagnitudeResponse[nl][n2][n3]« "\t";
phase « m_pPhaseResponse[nl][n2][n3]« "\t";

)
magnitude « « endl;
phase « * ;* « endl;

}
magnitude « endl ^ endl;
phase « endl« endl;

}
magnitudc.closeO;
phase.closeO;

#endif
}

double*** CFiIter3DDoc:KjetACoefficientsO
{ return m_pACoefFArray; }

double*** CFilter3DDoc:K3etBCoefficients()
{ return m_pBCoefFArray; }

unsigned CFiIter3DDoc::GetNumCoefficientsO
{ return (m_nOrderH); }

9 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

double*** CFilter3DDoc::GetImpulseResponse()
{ return m_pImpulseResponse; }

unsigned CFilter3DDoc::GetImpulseResponseSizeO
{ return (m_nNumSamples/2 + mnOffset); }

double*** CFilter3DDoc::GetMagnitudeResponseO
{ return m_pMagnitudcResponsc; }

unsigned CFilter3DDoc::GetMagnitudeResponseSizeO
{ return (mjnNumSamples +1); }

double*** CFilter3DDoc::GetPhaseResponseO
{ return m_pPhaseResponse; }

unsigned CFilter3DDoc::GetPhaseResponseSizeO
{ return (m_nNumSamples + 1); }

double* CFiiter3DDoc::GetFreqAxisO
{ return m_pdFreqAxi s; }

double* CFilter3DDoc::GetImpulseAxisO
{ return m_pdImpulseAxis; }

BOOL CFilter3DDoc::FilterMovieO
{

unsigned ij,k,ii2,n3,fraine;
AVISTREAMINFO strHdiOld, strHdrNew;
PAVIFILE pFile=NULL,pFileNew=NULL;
PAVISTREAM pStream=NULL,pStreamNew=NULL;
HRESULT hr; // handle for error checking
BITMAPINFOHEAOER bmiHeader;
unsigned numFrames;
IGetFrame* getFrameObj = NULL;
BYTE *tempFramePtr = NULL;
BYTE •framePtr = NULL;
DWORD imageOffset,paletteOffset;
BYTE *palette = NULL, pixelValue;
double maxVal.minVal;
double **aviFrame;

// Check to ensure version of Video for Windows is up-to-date
WORD wVer= HI WORD(VideoForWindowsVersionO);
ifl[wVcr < 0x010a)
{

AfxMessageBox("Video for Windows version is too old.”);
return FALSE;

>

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Initialize AVIFile libraiy
AVIFilelnitO;

// Open AVI file for reacting
hr*=AVIFileOpen(&pFilejn_lpstrFiIeNanie,OF READ.NULL);
if(hr!=AVIERR_OK)
{

AfxMessageBox("An Error Occurred Opening the Input File.');
return FALSE;

>
// Create new AVI file for writing
hr= AVIFiIeOpen(&pFileNewjnJpstrNewFileName.OF_WRITE!OF_CREATEtNULL);
if(hr!=AVIERR_OK)
{

AfxMcssageBox("An Error Occurred Creating the Output File.”);
return FALSE;

}
// Open AVI stream for reading
hr= AVIFileGetStrcam(pFilc,&pStrcain,streaxntypeVIDEO,0);
if(hr!=AVIERR_OK)
{

AfxMessageBoxf”An Error Occurred Opening the Input Stream.”);
return FALSE;

// Close original AVI file
AVIFileClosefpFile);

// Calculate number of frames in stream
numFrames - AVlStreamEnd(pStream)>AVIStreamStart(pStream);

// Create modeless Processing Dialog Box and display to user
CProcessingDIg dig;
dlg.m_jnogressCtrl.SetRange(0,int(2*nutnFrames));
dIg.m_progrcssCtrl.SetStep(l);

II Prepare to decompress video frames from stream
getFrameObj = AVIStreamGetFrameOpen(pStream,NULL);

// Obtain address of first decompressed video frame
tempFramePtr= (BYTE *)AVIStreamGetFrame(getFtameObj,0);

// Extract BITMAPINFOHEADER from first decompressed video frame
ExtractBMPHeadeKbmiHeader,tempFiamePtr);

U Calculate palette offset and image offset
palctteOffset = bmiHeader.biSize;
imageOffset = bmiHeader.biSize(-bmiHeader.biCIrUsed*sizeofrRGBQUAD);

// Allocate memory for input buffer
inputBuffer= new BYTE ••[m_nOrderH];
foi<i!»0;i<(m_nOrdeH-l);i++)
{

inputBufferfi] = new BYTE *[(2*bmiHeader.biHeight)];
for(js0J<(unsignedX2*bmiHeader.biHeight)J-M-)

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inputBuffer(i][j] = new BYTE [(2*bmiHeader.biWidth)];
>
// Allocate memory for output buffer
outputBuffer * new double **[m_nOrderH];
for(i=0;i<(in_nOrderH);i+-r)
{

outputBufferfi] = new double *[(2*bmiHeader.biHeight)];
for(j=Oy<(unsignedX2, bmiHeader.biHeight)y+-t-)

outputBufferfi][j] = new double [(2*bmiHeadcr.biWidth)];
)
// Allocate memoiy for aviFrame
aviFnune = new double *[(2*bmiHeader.biHeight)];
for(i=0;i<(unsignedX2, bmiHeader.biHeight);i-t-+)

aviFramep] = new double [(2*bmiHeader.biWidth)];

// Allocate memory for fiamePtr
framePtr= new BYTE [bmiHeader.biSize+bmiHeader.biClrUsed*sizeof(RGBQUAD)+4*bmiHeader.biSizelmage);

// Clear input and output buffers
for(i=0;i<=m_nOrder;i++)
{

for(j=0a<(unsignedX2*bmiHeader.biHeight)a+-t-)
{

for(k=0;k<(unsignedX2*bmiHeader.b!Width);k++)
{

inputBuffer[i][j][k] =0;
outputBufTer(i][j][k] = 0.0;

}
}

}
// Allocate memory for palette and fill it in
palette = new BYTE [bmiHeader.biClrUsed*sizeof(RGBQUAD)];
foKi=0;i<(bmiHeader.biClrUsed»sizeof(RGBQUAD));i-M-)

palette[i] = tempFramePtr[paletteOfTset+i];

// Get header from old stream
hr = AVISfreamInfo(pStream, &strHdr01d, sizeofl[strHdrOld));
ifthr!-AVIERR_OK)
{

A fxMessageBox(" An Error Occurred Reading Old Stream Header.");
return FALSE;

)
II Fill in the header for the new video stream
memset(&strHdiNew,0,sizeof(strHdrNew)); II Set strHdrNew to zero
strHdrNew.fccType = streamtypeVIDEO; // stream type
strHdrNew.fccHandler=0; / /Compressor Code
strHdrNew.dwScale * strHdrOld.dwScale; // Time Scale
strHdrNew.dwRate = 2*strHdrOld.dwRate; II Frames per second
strHdrNew.dwLength = 2*strHdrOld.dwLength; // Number of frames
strHdrNew.dwSuggestcdBufferSize = 4*bmiHeader.biSizeImage; // buffer size
SetRecf(&strHdiNewjcFrame,0,0^*bmiHeader.biWidth^*bmiHeader.biHeight); // rectangle for stream

// Create the new stream

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hr= AVIFileCreateStreain(pFileNew,&pStreainNew,&strHdrNew);
if(hr !=*= AVIERROK)
{

AfxMessageBox("An Error Occurred Creating the Output Stream.");
return FALSE;

)
bool zerojnd;
ift(bmiHeader.biWidth%2)!=0)zero_pad=true;
else zero_pad=false;

int x=0,y=l.z=2;

// transfer first decompressed frame (BMP) to input buffer (RAW)
for(j=0;j<(unsignedX2*bmiHeader.biHeight);j++)
{

fot(k=0;k<(unsignedX2*btniHeader.biWidth);k++)
{

ift(j%2)!=0) // Odd row => Copy pixel from previous row
inputBufTer[0](j][k] = inputB ufFer[0] [j-I][k;J;

else if((k%2)!=0) // Odd pixel => Copy pixel from previous column
inputBuffer[0]G][k] = inputBufTer[0]D][k-l);

else

// Even row. Even pixel => Transfer new pixel
pixelValue = tempFramePtr[(bmiHcader.biWidtfr+zero_pad)*j/2 +

imageOffset + k/2]
inputBuffcr{0][j][k] = (unsigned

charX(03*(double)palette[pixelValue*sizeof(RGBQUAD>«-x]
+0.59*(double)palette[pixclVaJue*sizeof(RGBQUAD>+y]
+0.11 *(double)palette[pixelValue*sizeof(RGBQUAD)t-z])H).5);

>
}

)
// initialize max and min values for scaling
maxVal = -10000.0;
minVal = 10000.0;

// filter input buffer and store result in output buffer (RAW)
for(n2=0;n2<(unsignedX2*bmiHeader.biHeight);n2-M-)
{

for(n3=0;n3<(unsignedX2*bmiHeader.biWidth);n3++)
(

outputBuffer[0][n2][n3] = 0.0;
for(i=0;i<=m_nOrder;i++)
{

for(j*0a<=m_nOrdery++)
{

fijt(k=0;k<=m_nOrder;k++)
{

if((int(n2-j)<0)|Kint(n3-k)<0)) continue;
outputBuffer(0][n2][n3] +=

m_pACoefTArray [i] [j] [lc]*inputB ufferfi] [n2-j) [n3-k];
if[(i+j+k)=*0) continue;
outputBuffer[0][n2][n3] -=

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m_j>BCoeffAnay[i][j][k]*outputBufrer[n[n2-j][ii3-k];
}

)
II Store max and min values for scaling
// Exclude edges from consideration
ifl[(n2>=(m_nOrder-t-l))&&(n2<=2, bmiHcader.biHeight-(iii_nOrder+1)))
{

if((n3>=(m_nOrderH))&&(n3<=2*bmiHeader.biWidth-(m_nOrdert-1)))
{

maxVal = max(maxVal,outputBuffer[0][n2][n3]);
minVal = min(minVal,outputBuffer[0][n2][n3]);

}
}
// Fill frame that will be converted back to BMP format
aviFrame[n2][n3] = outputBuffer{0][n2][n3];

}
}

// Scale Frame so values lie between 0 and 255
fbr(i=0;i<(unsignedX2*bmiHeader.biHeight);i+-t-)
{

for(j=0y<(unsignedX2*bfniHcader.biWidth)J++)
{

aviFrame[i][j] = (aviFrame[i]G]-minVal)*255.0 / (maxVal-min Val)+0.5;
ifl[aviFrame[i]0]>255.0) aviFrame[i](j] = 255.0;
iftaviFrame[i][jj<0.0) aviFrame[i][j j = 0.0;

}

// Insert header into framcPtr
lnsertHeadei<bmiHeader,framePtr,tempFramePtr);

// Create new palette
InsertPalette(bmiHcader,framePtr,paletteOfFset):

// Insert image data
for(i=0;i<(unsignedX2*bmiHeader.biHeight);i-t-+)
{

for(j=Oy<(unsignedX2, bmiHeader.biWidth);j+-t-)
framePtr{bmiHeader.biSize+bmiHeader.biClrUsed*sizeof(RGBQUAD)+

i*(2*bmiHeader.biWidth+zero_pad>+J] = (BYTE)aviFrame[i][j];
}
II Set format of new stream
hr - AVIStreamSctForniat(pStreamNew,0,franiePtr,

bmiHeader.biSize +
bmiHeader.biClrUsed*sizeof(RGBQUAD));

ifl̂ hr != AVIERROK)
{

AfxMessageBox("An Error Occurred Setting the Output Stream Format-");
return FALSE;

// Write frame to new stream
hr = AVI Stream Write(pStrcamNew,0,1,

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

framePtr-t- imageOfiset,
4*bmiHeader.biSi2eImagc.
AVIIFKEYFRAME, NULL, NULL);

iflhr != AVIERROK)
{

AfxMessageBoxfAn Error Occurred Writing to the Output Stream.”);
return FALSE;

}
// Shift Frames in Input and Output Buffer
for(i=0;i<m_nOrder;i+-t-)
{

fo»fj=0u<(unsignedX2*biniHeader.biHcight)y+-t-)
{

fotfk=0;k<(unsignedX2*biniHeader.biWidth);k++)
{

inputBufier[m_nOrder-i]D][k] = inputBuffer[m_nOrder-1 -i][j][k);
outputBuffer[m_nOtder-i]Q]Pc] = outputBufFer[m_nOrder>l>i]Q][k];

>
>

)
// Advance the current position of the progress bar
dlg.m_progressCtri.StepIt();

// Main Frame filtering loop---------------------------------
for(frame=l ;ftame<(2*numFrames);framef+)
{

if((framc%2)!=0) // Obtain address o f first decompressed video frame
tempFramePtr = (BYTE •)AVIStreamGetFrame(getFraineObj,frame/2);

// transfer decompressed frame (BMP) to input buffer (RAW)
for(j=,=0y<(unsignedX2*bmiHcader.biHeight)y+-t-)
{

for(k=0;k<(unsignedX2*bmiHeader.biWidth);k+-t-)
{

ifl[(frame%2)!=0) // Odd frame => Copy pixel from previous frame
inputBufFer[0]Q][k] = inputBuffer[l]Q][k];

else if((j%2)!=0) // Odd line => Copy pixel from previous line
inputBuffer[0]Q][k] = inputBuffer[0][j-l][k);

else if((k%2)!=0) // Odd pixel => Copy pixel from previous column
inputBuffer[0][j][k] = inputBuffer[0][j][k-l];

else
{

// Even frame. Even line. Even pixel => Transfer new pixel
pixelValue “ tempFramcPtr[bmiHeader.bi Width*j/2 + imageOffset + k/2);
inputBuffer(0][j][k] = (unsigned

charX(0.3*(double)palette[pixelValuc*sizcof(RGBQL)AD)-t-x]
+0.59*(double)palette(pixelValue*sizeof(RGBQUADyt-y]
-K). 11 *(doublc)palette[pixelValue*sizeof(RGBQUAD)4-z])+0.5);

}
)

)

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// fiher input buffer and store result in output buffer (RAW)
for(n2”Opi2<(unsignedX2, btniHeader.biHeight);n2++)
{

foffn3=0;n3<(iinsignedX2*bfmHeader.biWidth);n3++)
{

outputBuffcr[0][n2][n3] = 0.0;
for(i=0;i<=m_nOrder;i++)
{

for(j=Oa<=ni_nOrdery-t-+)
{

for(k=0;k<=in_nOrder;k++)
{

if((int(n2-j)<0)|Kint(n3-k)<0» continue;
outputBuffer[0][n2][n3] +=

m_pACoeffArray[i][j][k]*inputBuffer(i][n2-j][n3-kJ;
if((i+j+k)=0) continue;
outputBuffer[0][n2][n3] -=

m_pBCoeffArray[i][j][k]*outputBuffer(i][n2-j][n3-k];
}

>
)
// Store max and min values for scaling
// Exclude edges from consideration
if((n2>=2*(m_nOrder+-l))&&(n2<=2, btniHeader.biHeight-2, (innOrderH)))
{

if((n3>=2*(m_nOrder+1))&&(n3<=2, bmiHeader.biWidth-2, (m_nOrderf-1)))
{

maxVal = max(maxVal,outputBuffcr[0][n2][n3]);
minVal = min(minVai,outputBuffer[0][n2][n3]);

}
}
// Fill frame that will be converted back to BMP format
aviFrame[n2][n3] = outputBuffer[0][n2][n3];

}
>

// Scale Frame so values lie between 0 and 255
for(i=0;i<(unsignedX2*bmiHeader.biHeight);i-t-t-)
{

for(j=0y<(unsignedX2*bmiHeader.biWidth)y-M-)
{

aviFrame[i]D] = (aviFrame(ilD]-minVal)*255.0 / (maxVaMninVal) + 0.5;
if(aviFrame[i][j]>255.0) aviFrame[i][j] = 255.0;
if(aviFrame[i]G]<0.0) aviFrame[i]D] = 0.0;

}
)

II Insert header into framePtr
InsertHeader(bmiHeader,fnunePtr,tempFrainePtr);
// Create new palette
InsertPalettefbmiHcader,framePtr,paletteOffset);

// Insert image data
for(is 0;i<(unsignedX2*bmiHeader.biHeight);i++)
{

for(j:,=0y<(unsignedX2*bmiHeader.biWidth)a+-t-)
fTamePtr(bfniHcader.biSize+btniHeader.biClrUsed*sizeof(RGBQUAD>+

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i*(2*bniiHcader.biWidth+2cro_pad>+j] =
(BYTE)aviFrame[i][j];

}
// Write frame to new stream
hr= AVIStreamWrite(pStreamNew,frame, I,

frame Ptr+ imageOffset,
4*bmiHcader.biSizeImage,
AVIIF_KEYFRAME» NULL, NULL);

iflhr != AVIERROK)
{

AfxMessageBox("An Error Occurred Writing to the Output Stream.”);
return FALSE;

}
// Shift Frames in Input and Output Buffer
for(i=0;i<m_nOrder;i++)
{

for(j=0 J<(unsign edX2*bmiHeadcr.biHeight)y++)
{

for(kN);k<(tinsignedX2*bmiHeader.biWidth);k++)
{

inputBuffer[m_nOrdcr-i][j][k] = inputBuffer(m_nOrder-l-i][j][k];
outputBuffer[m_nOrder-i][j][k] =outputBufTer[m_nOrder-l-i][j][k];

}
}
// Advance the current position o f the progress bar
dlg.m_progressCtrl.Stcp!tO;

} // End of main Frame filtering loop

// Close dialog box
dlg.DestroyWindow();

// Close the files and streams
AVI StreamGetFrameC lose(getFrameObj);
AVIStrcamClose(pStream);
AVIStrcamClosefpStreamNew);
AVIFileClose(pFileNew);

AVIFileExitO;
return TRUE; // function completed successfully

}
void CFilter3DDoc::ExtractBMPHeader<BITMAPINFOHEADER&bmpHdr, BYTE *tempFramePtr)

// Store BITMAPINFOHEADER information------------------
bmpHdr.biSize = tempFramePtr(0x001+(tempFramePtr(0x0I]«8>+-

(tempFramePtr(0x02]« 16)+(tempFramePtr(0x03]«24);
bmpHdr.bi Width = tempFramePtr(0x04]+(tempFramePtr(0x05]«8)-t-

(tempFramePtr[0x06]«16>KtempFramePtr[0x07]«24);
bmpHdr.biHeight = tempFramePtr(Ox08]+(tempFramePtrfOx09]«8Ft-

(tempFramePtr[0x0A]«l6MtcmpFiamePtr(0x0B]«24);
bmpHdr.biPlanes = 1;
bmpHdr.biBitCount = tempFramePtr[0x0E}+(tempFramePtr[0x0F]«8);

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bmpHdr.biComprcssior= tempFramePtr(Ox 10]-KtempFramePtr(Ox 1 1]«8>+-
(tempFramePtr(Ox 12]« 16)+(tempFramePtr(0x 13]«24);

bmpHdr.biSizelmage - tempFramePtrfOx 14}+(tempFramePtr(0x 15]«8>+
(ternpFramePtr[0xl6]«l6)+(tenipFramePtr[0xl 7]«24);

bmpHdr.biXPelsPerMeter= tempFramePtr[0xl8]+(teinpFraniePtr[0xl9]«8)+
(tempFramePtifOx 1 A]« 16)+(tenipFramePtrfOx 1 B}«24);

bmpHdr.biYPelsPerMeter = tempFramePtrJOx 1 C]+(tempFraiiiePtr(Ox 1 D]<<8}+-
(tempFramePtrf0xlE]«16>HtempFrainePtr(0xlF]«24);

bmpHdr.biClrUsed = tempFramePtr(0x20]+(tempFramePtrf0x21]«*>+-
(tempFrainePtr[0x22]«16)+(tempFramePtr(0x23]«24);

bmpHdr.biClrlmportant = tempFramePtifOx24]+(tempFramePtr(Ox25]«8>t-
(tempFramcPof0x26]« 16)+(tcmpFramePtrf0x27]«24);

// Done Storing BITMAPINFOHEADER info ■ ■ ■ ■ ■

BOOL CFilter3DDoc:.-OnOpenDocument(LPCTSTR IpszPalhNamc)
{

if (!CDocument::OnOpenDocument(lpszPathName))
return FALSE;

return TRUE;
>

void CFilter3DDoc::InsertHeader(BITMAPINFOHEADER bmiHeader,

{
BYTE *framePtr, BYTE •tempFramePtr)

unsigned i;
for{i=0;i<bmiHeader.biSize;i++)
{

framePtr[i] = tempFramePtrfi]; // Copy Header
fhunePtr[0x04] = (BYTEX2*bmiHeader.bi Width); // double Width
framePtr[OxOS] = (BYTEX(2*bmiHeader.biWidth)»8);
framePtr[0x06] = (BYTEX(2*bmiHeader.biWidth)»16);
framePtr[0x07] = (BYTEX(2*bmiHeader.biWidth)»24);

framePtr[0x08] = (BYTEX2*bmiHeader.biHeight); // double Height
framePtr[0x09] = (BYTEX(2*bmiHeader.biHeight)»8);
framePtrJOxOA] = (BYTEX(2*bmiHeadcr.biHeight)»16);
frame PtrfOxOB] = (BYTEX(2*bmiHeader.biHeight)»24);

ftamePtr[0xl4] = (BYTEX4*bmiHeader.biSizeImage); // change size
framePtr[0xl5] = (BYTEX(4*bmiHeader.biSizelmage)»8);
framePtr[0xl6] = (BYTEX(4*bmiHeader.biSizelmage)»l6);
framePtr(0xl7] = (BYTEX(4*bmiHeader.biSizelmage)»24);

}
}

void CFilter3DDoc::InsertPalette(BITMAPINFOHEADER bmiHeader,
BYTE •framePtr.DWORD palettcOfTset)

{
unsigned i;
for(i=0;i<bmiHeader.biClrUsed;i-M-)
{

frame Ptr[paletteOffset+4*i] = (BYTE)i;

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

framePtrfpaIetteOfFset+4*H-1] = (BYTE)i;
framcPtr(paietteOffsct+4, i+2] = (BYTE)i;
fhttnePtrfpaJetteOfFset+4*B-3] — (BYTE)0;

)
)

void CFiltcr3DDoc::SetOpenFiIeName(LPTSTR IpstrFile)
{

m_lpstrFiicName = IpstrFile;

void CFilter3DDoc;:SetSaveRleName(LPTSTR IpstrFile)
{

m_lpstrNewFileName = IpstrFile;
)

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Filter3dSettingsDlg.cpp: implementation file
//
^include "stdafx.h"
^include "Filter3D.h"
#include "Filter3dSctlingsDlg-h"

#ifdef_DEBUG
^define new DEBUGNEW
#undef THISFILE
static char THIS_FILEQ = FILE ;
#endif

III
// CFilter3DSettingsDlg dialog

CFilter3DSettingsDlg::CFilter3DSettingsDlg(CWnd* pParent /^NULL*/)
: CDialog(CFilter3DSettingsDlg::IDD, pParent)

{
//{{AFX_DATA_INIT(CFilter3DSettingsDlg)
m_dCutofIFrcq = 0.0;
m_nOffset = 0;
mnOrder=0;
m_nNum Samples = 0;
//}} AFX_DATA_INIT

>

void CFilter3DSettingsDlg::DoDataExchange(CDataExchange* pDX)
{

CDia)og::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CFilter3DSettingsDlg)
DDXTextfpDX, IDC_CUTOFF, m dCutofiFreq);
DDX_Text(pDX, IDC_OFFSET, mjtOffset);
DDX_Text(pDX, IDC_OROER, m_nOrder);
DDX_Text(pDX, IDCSAMPLES, m_nNum Samples);
//]} AF X_DATA MAP

}

B EG IN_MESSAGE_MAP(CFi Iter3 DSettingsDIg, CDialog)
//{{AFX_MSG_MAP(CFilter3DScttingsDlg)

// NOTE: the Class Wizard will add message map macros here
//)} AFXMSGMAP

END_MESSAGE_MAP()

lll
// CFilter3DSettingsDlg message handlers

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Filter3DView.cpp: implementation of the CFilter3DView class
//
include "stdafxJi”
#include "Filter3D.h"

include "Filter3DDoc.h“
include "Filter3DView.h"
#include "vfwJi”
#include <fstream.h>
//iinclude <commdlg.h>

#define IMPULSE
#define MAGNITUDE
#define PHASE
#define COEFFICIENTS
^define VIDEO

#ifdef .DEBUG
^define new DEBUG.NEW
#undef THIS.FILE
static char THIS.FILEf] = _F IL E _;
#endif

iiiiiiiiiiim iiiiiiiiim iiiiiiim iiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
II CFilter3DView

IMPLEMENT_DYNCREATE(CFilter3DView, CView)

BEGIN_MESSAGE_MAP(CFilter3DView, CView)
//{{AFX_MSG_MAP(CFilter3DView)
ON_COMMAND(ID_DISPLAY_COEFFICIENTS, OnDisplayCoefficients)
ON_COMMAND(ID_DISPLAY_IMPULSE, OnDisplaylmpulse)
ON _COMMAND(ID_DISPLAY_MAGNITUDE, OnDisplayMagnitudc)
ON_COMMAND(ID_DISPLAY_PHASE, OnDisplayPhase)
ON_COMMAND(ID_VIDEO_OPEN, On VideoOpen)
ON_COMMAND(ID_VIDEO_PLAY, OnVidcoPlay)
ON_COMMAND(ID_VIDEO FILTER, OnVideoFilter)
ON_COMMAND(ID_VIDEO“oPENOUTPUT, OnVideoOpenOutput)
//}} AFX.MSG.MAP
// Standard printing commands
ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
ON_COMMAND(ID_FILEPRINTDIRECT, CView:OnFilePrint)
ON_COMMAND(ID_FILEPRINT_PREVIEW, CView::OnFilePrintPreview)

END.MESSAGE.MAPO

lllllllllllllflll
II CFilter3DView construction/destruction

CFilter3DVicw::CFilter3DView()

pi = 4.0*atan(1.0);
m_nN umDataPoints = 0;
m.nDisplay - COEFFICIENTS;

m.dRotationX - 0.0;
mdRotationY = -38.0*(pi/180);

111

// For debugging purposes
II For open and save dialog boxes

0
1
2

3
4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mdRotationZ = 0.0;

mhwndOriginalAVI = NULL;
m_hwndFilteredAVI= NULL;

)
CFilter3DView::~CFilter3DVicwO
{
}
BOOL CFiltcr3DView::PrcCreateWindow(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs

return CVicw::PreCreaieWindow(cs);
}
iniiiiiiiiiiiiiuniitiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiii
II CFilter3DView drawing

void CFilter3DView:;OnDraw(CDC* pDC)
{

CFilter3DDoc* pDoc = GetDocumentO;
ASSERT_VALID(pDoc);

switch(m_nOisplay)
{
case COEFFICIENTS:

DrawCoefIicients(pDC);
break;

case IMPULSE:
case MAGNITUDE:
case PHASE:

PlotPoints(pDC);
break;

case VIDEO:

break;
}

}
lll
// CFilter3DView printing

BOOL CFilter3DView::OnPreparePrinting(CPrintInfo* plnfo)
{

// default preparation
return DoPreparePrinting(pInfb);

)

void CFilter3DVicw::OnBeginPrinting(CDC* /*pDC*/, CPrintlnfo* /*pInfo*/)
{

// TODO: add extra initialization before printing

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

)

void CFilter3DView::OnEndPrinting(CDC* /*pDC*/, CPrintlnfo* /*plnfo*/)
{

// TODO: add cleanup after printing
}
lll
// CFilter3DView diagnostics

#ifdef_DEBUG
void CFilter3DView::AsscrtValid{) const
{

CView::AsscrtValidO;
>

void CFilter3DView::DumpCCDumpContext& dc) const
{

CView::Dump(dc);
>

CFilter3DDoc* CFiller3DView::GetDocument() // non-debug version is inline
{

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CFilter3DDoc)));
return (CFilter3DDoc*)m_j>Docunient;

>
#endif//.DEBUG

lll
// CFilter3DView message handlers

void CFilter3DView::OnUpdate(CView* pSender, LPARAM IHint, CObject* pHint)
{

CFilter3DDoc* pDoc = GetDocumentO;
ASSERT_VALID(pDoc);

unsigned ijjc;
switch(m_nDisplay)
{
case VIDEO:

break;

case IMPULSE:
// If MCI windows exist, remove them
iftm_hwndOriginalAVI!=NULL)
{

MCIWndDestroy(m_hwndOriginalAVI);
mhwndOriginalAVI = NULL;

i ftm_hwndFi IteredA VI !=NULL)
{

MCIWndDestroyfmhwndFilteredAVI);
m.hwndFilteredAVI = NULL;

>

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>
if(m_nNumDataPoints) // if array already exists, de-allocate
{

fotti=0;i<m_nNiimDataPoints;i+-t-)
delete Q m_pDisplayPointArray [i];

delete Q m_pDisplayPointAn«y;
}
m_pDataPointArray= pDoc->GetImpulseResponseO;
m_nNumDataPoints - pDoc->GetImpul3eResponseSizeO;

// Allocate display point memory
m_pDisplayPointArray = new CPoint *[m_nNumDataPoints];
for{i=0;i<m_nNumDataPoints;i++)

m_pDisplayPointArray[i] = new CPoint [m_nNumDataPoints];

m_pdAxisX = pDoc->GetImpulseAxis();
m_pdAxisZ = pDoc->GetImpulseAxisO;
fbr(j=Oa<ni_nNiimDataPointsa+-t-)
{

for(k=0;k<mnNumDataPoints;k++)
m_pDisplayPointArray(j][k] = ConvertToScreen(m_pdAxisX[k],m_pDataPointArTay[S

/*(tmsigned)m_dConstAxisFreq */][j][k],m_pdAxisZ[j]);
}
MakePlotFitWindowO;
break;

case MAGNITUDE;
// If MCI windows exist, remove them
if{m_hwndOriginalAVI!=NULL)
{

MCIWndDestroy(m_hwndOriginalAVI);
mhwndOriginalAVI = NULL;

ifl[m_hwndFilteredAVI!=NULL)
{

MCIWndDestroy(mhwndFiltcredAVI);
mJiwndFilteredAVI = NULL;

}
)
ifl[m_nNiimDataPoints) // if array already exists, de-allocate
{

for(i=0;i<m_nNumDataPoints;i++)
delete Q m_pDisplayPointArray[i];

delete Q m_pDisplayPointArray;
)
m_pDataPointArray = pDoc->GetMagnitudeResponseO;
m_nNumDataPoints = pDoc->GetMagnitudeResponseSize();
mjpDisplayPointAnay = new CPoint *[m_nNumDataPoints];
for(i=K);i<m_nNumDataPoims;i-t-t-)

m_pDisplayPointArrey[i] = new CPoint [m_nNumDataPoints];

m_pdAxisX - pDoc->GetFreqAxisO;
m_pdAxisZ = pDoc->GetFreqAxis();
fof(i*Oa<»n_nNumDataPointsa++)

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
for(k=0;k<m_nNiiniDataPoints;k++)

m_pDisplayPointArray[fl[k] = ConvcrtToScncen(m_pdAxisX[k]jn_pDalaPointArray[8
/*(unsigned)m_dConstAxisFreq */][j][k],m_pdAxisZ[j]);

}
MakePlotFitWindowO;
break;

case PHASE:
// If MCI windows exist, remove them
if(m_hwndOriginalAVI!=NULL)
{

MCIWndDestroy(m_hwndOriginalAVI);
mhwndOriginalAVI = NULL;

if(m_hwndFilteredAVI!=NULL)
{

MCIWndDestrpy(m_hwndFilteredAVI);
mhwndFilteredAVI = NULL;

>
>
if(m_nNumOataPoints) // if array already exists, de-allocate
<

for(i=0;i<m_nNumDataPoints;i-t-+)
delete Q m_pDispIayPointArray[i];

delete Q m_pDispiayPointArray;
i
m_pDataPointArray = pDoc->GetPhaseRcsponscO;
mnNumDataPoints= pDoc->GetPhaseResponseSizeO;
m_pDisplayPointArray = new CPoint •[m nNumDataPoints];
for(i=0;i<m_nNumDataPoints;i++)

m_pDisplayPointAnay[i] = new CPoint [m_nNumDataPoints];

m_pdAxisX = pDoc->GetFreqAxisO;
mjpdAxisZ = pDoc->GetFreqAxisO;
forfj=Oy<m_nNumDataPointsy++)
{

for(k=0;k<m_nNumDataPoints;k-t-+)
m_pDisplayPointArray[j][k] = ConvertToScreen(m_pdAxisX[k],m_pDataPointArray[8

/*(unsigned)m_dConstAxisFreq */][j][k],in_pdAxisZ[j]);
>
MakePlotFitWindowO;
break;

case COEFFICIENTS:
// If MCI windows exist, remove them
iflm_hwndOriginalAVI!=NULL)
{

MCIWndDestroy(m_hwndOriginalAVI);
m_hwndOriginalAVI = NULL;

if(m_hwndFilteredA VIS-NULL)
{

MCIWndDestroy(m hwndFilteredAVI);
m hwndFiltcredAvf = NULL;

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>
m_pACoeffArray = pDoc->GctACoeflficicntsO;
m_pBCoeifAiTBy = pDoc->GetBCoeflicientsO;
mnNumCoefficients = pDoc->GetNimiCoefficients();
break;

}
Redraw WindowO;

i

void CFilter3DView::DrawCoefficients(CDC *pDC)
{

CFont fontCur;
ifl[fontCur.CreatePointFont(100, "Roman”, pDC))
{

CFont* pOldFont = pDC->SelectObject(&fontCur);

char ch_bufTer[10];
unsigned ij.k;
CRectlRect;
CString A_coefF= "{a} Cocfficients:\n";
CString B_coefF = "{bj Coefiicients:\n”;

GetClientRect(lRect);
IRcct.right /= 2;

for(i=0;i<iii_nNumCoefficients;i-M-)
{

for<j=Oy<m_nNumCoefTicients
{

for(lc=0;k<m nNumCoefficients;k++)
{

sprintf(ch_bufFer,"%.5r,m_pACoeffArray[i]DlIkl);
A_coefF += ch_buffer;
A_coefF+="

}
A_coeff+= "\n";

>
A_coefF+= "\n\n";

>
pDC->DrawText(AcoefF, IRect, DT_CENTER);

for(i=0;i<m_nNumCoefficients;i++)
{

for(j=Ou<m_nNumCoefficientsy++)
{

for(k=,0;k<iTi nNumCoefficients;k++)
{

sprintf(ch_bufrer,"%.Sryn_pBCoefFAm^[i](j]{k]);
B_coefF+= ch_buffer;
B_coeff+="

)
Bjcoeff += "\n";

>
B coeff += "\n\n";

)

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IRectleft= lRcct-right;
IRecuight *= 2;

pDC->DrawTcxt(B_cocff, IRect, DTjCENTER);

pDC->SelectObject(pOldFont);
>
fbntCur.DeleteObject();

}

void CFilter3DView::PlotPoints(CDC *pDC)
{

int ij;
CPoint points[4];
for(i=m_nNuinOataPoints-l ;i>0;i—)
{

fofO=0;(unsigncd)j<m_nNumDataPoints-l y++)
{

points[0] = CPoint(long(ni_pDisplayPointArray[i][j].x),long(m_pDisplayPointArray[i][jl.y));
points[l] - CPoint(long(m_pDisplayPointArray[i][j+l].x),long(m_pDisplayPointArray[i][j+l].y));
points[2] *

CPoint(long(m_pDisplay PointArrayfi-I] [j+1].x),long(m_pDisplayPointArray[i- I][j+1 J.y));
points[3] = CPoint(long(m_pDisplayPointArray[i-I][j].x),long(m_pDisplayPointArray[i-l][j].y));

pDC->Polygon(points,4);
}

}
>

void CFilter3DView::OnDisplayCoefficients()
{ mnDisplay = COEFFICIENTS;

OnUpdate(NULU OL, NULL); }

void CFilter3DView::OnDisplayImpulse()
{ mnDisplay = IMPULSE;

OnUpdale(NULL, OL, NULL); }

void CFilter3DView::OnDisplayMagnitudeO
{ m_nDisplay = MAGNITUDE;

OnUpdate(NULL, OL, NULL); }

void CFilter3DView::OnDisplayPhascO
{ m_nDisplay = PHASE;

OnUpdatcfNULL, OL, NULL); }

POINT CFilter3DView::ConvenToScreen(double x, double y, double z)
{

POINT point;
float xp = 0, yp=0.5, zp = I; / / Perspective vector

TrnnsformPoints(x,y,z);

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x*= 1000;
z*= 1000;
switch(in_nDisplay)
{
case IMPULSE:

y*= 7000000;
break;

case MAGNITUDE:
y •= 300000;
break;

case PHASE:
y *= 1000;
break;

}
pointx = Iong((4.0/3.0)*(x + z*(xp/zp)));
pointy = long(-<y+z*(yp/zp)));
return point;

void CFilter3DView::MakePlotFitWindow0
{

// Scale and center the plot so it fits the window
// with a margin on all sides
unsigned i j ;
int max_x = m_pDisplay PointArray [0] [0] .x;
int minx = m_pDisplay PointArray [0] [0] .x;
int max_y = m_pDisplayPointAiray(0][0].y;
int min_y = m_pDisplayPointArray[0J[0].y;
int margin = 50;
CRect IpRect;

// Get max and min values of points
for(i=0;i<m_nNumDataPoints;i++)
{

for(j=Oy<m_nNumDataPointsy++)
{

max_x = max(max_x,m_pDisplayPointAiray[i][j].x);
max_y = maxfmax_y,m_pDisplayPointArray[i][j].y);
min_x = min(min_x,m_pDisplayPointAiray[i][j].x);
min_y = min(min_y,m_pDisplayPointArray[i][)].y);

>
}
GetClientRect(IpRect);
if((IpRectright < (2*margin+50)) || (IpRect bottom < (2*margin+50)))

IpRect = CRect(0,0,(2*margin+50),(2*margin+50»;

lpRectDeflateRect(margin,margin);

double xScale = double(lpRectright-lpRectleftVdouble(max_x-min_x);
double yScale = double(lpRectbottom-lpRecttop)/double(max_y-min_y);

for(i=0;i<m_nNumDataPoims;i++)
{

for(j”OJ<m_nNumDataPointsy++)

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
m_pDisplayPointArray[i]D].x - long((doubIe)in_pDisplayPointArTay{i][j].x * xScale);
m_pDisplayPointArTay[i][j].y = long((doubIe)m_pDisplayPointArray[i][j].y * yScale);

>
}
// adjust minlmums and maxim urns to reflect scaling effects
min_x = kmg(min_x*xScalc);
maxjt = long(max_x*xScale);
min_y = iong(min_y*yScaIe);
max_y = long(max_y*yScale);

// Center plot in window
int dx = IpRectleft - min_x;
int dy - IpRect.bottom • max_y;

for(i=0;i<m_nNuinDataPoints;i++)
{

for(j=Oy<m_nNumDataPointsj++)
{

mj)DisplayPointAtTay[i][j].Offsct(dx.dy);
)

)
)

void CFilter3DView::TransformPoints(doubie &x, double &y, double &z)
{

double xtemp = x;
double ytemp = y;
double ztemp = z;

// Rotation about x-axis
y = float(ytemp*cos(m_dRotationX) • ztemp*sin(m_dRotationX»;
z = float(ytemp*sin(m_dRotationX) + ztemp*cos(m_dRotationX»;

xtemp = x;
ytemp = y;
ztemp = z;

// Rotation about y-axis
x = float(xtemp*cos(m_dRotationY) + ztemp*sin(m_dRotationY));
z = float(>xtemp*sin(m_dRotationY) + ztemp*cos(m_dRotatioriY));

xtemp = x;
ytemp=y;
ztemp = z;

// Rotation about z-axis
x = float(xtemp*cos(m_dRotationZ) • ytemp*sin(m_dRotationZ»;
y = float(xtemp*sin(m_dRotationZ) + ytemp*cos(m_dRotationZ));

void CFilter3DView::OnVideoOpen()

m_nDisplay * VIDEO;

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OnUpdate(NULL, OL, NULL);

CFiher3DDoc* pDoc = GetOocumentO;
ASSERT_VALID(pDoc);

char buffer{256];
buffer[0] = NULL;

OPENFILENAME opfn;
opfti.lStructSizc = sizeoffOPENFlLENAME);
opfn.hwndOwncr = mhWnd;
opfiuhlnstance = 0;
opfhJpsfrFilter = NULL;
opfn.IpstrCustomFiltcr = NULL;
opfiuiMaxCustFilter=0;
opfh.nFilterlndex = 0;
opfh.lpstrFilc = buffer; // File name to open
opfiunMaxFile = 2S6;
opfn.lpstrFileTitle = NULL;
opfn.nMaxFi leTitle = 0;
opfh.lpstrlnitialDir = NULL;
opfti.lpstrTitle = NULL;
opfh.Flags = OFNFILEMUSTEXIST | OFN_HIDEREADONLY |

OFNNONETWORKBUTTON | OFNPATHMUSTEXIST;
opfn.nFileOffset = 0;
opfiunFileExtension = 0;
opfhJpstrDefExt - NULL;
ophulCustData=0;
opfh.lpfnHook = 0;
opfh.lpTemplateName - 0;

BOOL error = GetOpenFileName(&opfh);
ifl[*opfh.lpstrFile=NULL) // // If the user did not specify a file name

return;

if(m_hwndOriginalAVI!=NULL)
{

MCIWndDestroy(m_hwndOriginalAVI);
m_hwndOriginalAVI = NULL;

}
pDoc->SetOpenFileName(opfh.lpstrFile); // Set file to open

if(*opfh.lpstrFile!=NULL) // If the user specified a file name
{

if«mhwndOriginalAVI=NULL))
// If no MCI window exists create it and open file
m hwndOriginalAVI = MCIWndCreate(m hWmLA6cGetInstanceHandleO,

MCIWNDF SHOWNAME |
MCIWNDFJSHOWMODE |
WS_V1SIBLE |
WS_BORDER |
WS_CHILD,
opfn.lpstrFile);

)
}

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

void CF i lter3 DView: :OnVideoPlayO
{

MCIWndPlayfmhwndOriginalAVI);
MCIWndPlay(ni_hwndFiheredAVI);

}

void CF1Iter3DView::OnVideoFilterO
{

CFiltcr3DDoc* pDoc = GetDocumentO;
ASSERT_VALID(pDoc);

char buffer(256], dlgTitleQ = "Save Filtered Movie As";
bufferfO] = NULL;

OPENFILENAME opfn;
opfn.IStructSizc = sizeof(OPENFILENAME);
opfahwndOwner = m_h Wnd;
opfnJiInstance = 0;
opfn.lpstrFilter= NULL;
opfh.IpstrCustomFilter = NULL;
opfn.nMaxCustFilter=0;
opfh.nFilterlndex = 0;
opfh.lpstrFile = buffer; //File name to open
opfanMaxFile = 256;
opfn.lpstrFileTitle = NULL;
opfanMaxFileTitle = 0;
opfn.IpstrlnitialDir= NULL;
opfh.lpstrTitle = dlgTitle;
opfn.Flags = OFNHIDEREADONLY | OFNNONETWORKBUTTON;
opfn.nFileOfFset = 0;
opfn.nFileExtension = 0;
opfnJpstrDefExt = NULL;
opfn.lCustOata = 0;
opfh.IpfhHook = 0;
opfh.IpTemplateName = 0;

BOOL error = GetSaveFiIeName(&opfh);

pDoc->SetSaveFileName(opfh.lpstrFile); // Set filename to save as

ift*opfn.lpstrFile=NULL) // If the user did not specify a file name
{

RcdrawWindowO; // Redraw MCI Window toolbar
return;

}

pDoc->FilterMovieO; U Filter AVI file

iftm_hwndFilteredAVI!-NULL)
(

MCIWndDestrpy(m_hwndOriginalAVI);
m_hwndFilteredAVI - NULL;

>
m_hwndFilteredAVI = MCIWndCreate(m_hWn<LAfxGetInstanceHaiidle().

MCIWNDF SHOWNAME |

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MCIWNDFSHOWMODE |
WS_V1SIBLE |
WS_BORDER |
WSCHILD,
opfnJpstrFile);

RECT rC intent;
::GetWindowRect(m_hwndFilteredAVI,&rCintent);

“MoveWindow(m_hwndFiIteredAVLrCinTent.right.O/*rCintent, top*/,
(rCurtent.right-rCurTcnt.lcft), (rC intent. bottom-rCurtcnt. top), TRUE);

void CFiltcr3DView:OnVideoOpenOutputO
{

char bufFer[2S6],digTitleO - "Open Filtered Movie”;
bufFerfOl = NULL;

OPENFILENAME opfh;
opfn.lStructSize = sizeoffOPENFILENAME);
opfn.hwndOwner = m_hWnd;
opfn.hlnstance = 0;
opfhJpstrFilter = NULL;
opfh.IpstrCustomFilter = NULL;
opfh.nMaxCustFilter = 0;
opfh.nFilterindex = 0;
opfh.IpstrFilc = buffer, // File name to open
opfn.nMaxFile = 256;
opfh.lpstrFileTitle = NULL;
opfiuiMaxFileTitle = 0;
opfn.IpstrlnitialDir = NULL;
opfh.lpstrTitle = dlgTitle;
opfn.Flags = OFNFILEMUSTEXIST | OFNHIDEREADONLY |

OFN_NONETWORKBUTTON | OFNPATHMUSTEXIST;
opfh.nFileOffset = 0;
opfn.nFileExtension = 0;
opfn.lpstrDefExt = NULL;
opfh.lCustData = 0;
opfn.IpfnHook = 0;
opfh.lpTemplateName - 0;

BOOL error = GetOpenFileNamc(&opfn);
if(*opfh.lpstrFile=NULL) // // If the user did not specify a file name

return;

if(m_hwndFilteredAVI!=NULL)
{

MCIWndDestroy(m_hwndFilteredAVI);
m_hwndFiltetedAVI = NULL;

if(*opfn.lpstrFiIe!=NULL) // If the user specified a file name
{

i f((m_hwndFi ItetedA VI=NULL))
// If no MCI window exists create it and open file

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mJiwndFilteredAVI = MCIWndCreae(in_hWnd^\fxGetInslanccHandlc(),
MCIWNDF SHOWNAME |
MCIWNDF_SHOWMODE |
WS_VISIBLE |
WSBORDER |
WS_CHILD,
opfh.lpstrFilc);

}

RECT rCuirent;
::GctWindowRect(m_hwndFiltcredAVl,&rCuiTent);

::MoveWindow(m_hwndFilteredAVUCunent.right,0/*iCurrent.top*/,
(rCurrem.right-rCurrcnt.left), (rCurrcnt.bottont-rCurrcnt.top), TRUE);

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / M a in F rm .cp p : implementation o f the CMainFrame class
//

#inciude "stdafxJi”
include "Filter3D.h"

^include "MainFrm-h"

#ifdef_DEBUG
#define new DEBUGNEW
#undcfTHIS_FILE
static char THIS_FILEO = FILE ;
#endif

iiiitiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiniiiiiiiiiiiiiiiiiiiiiii
//CMainFrame

IMPLEMENTDYNAMICfCMainFrame, CMDIFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd)
//{{AFX_MSG_MAP(CMainFrame)

// NOTE - the Class Wizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

ON_WM_CREATE0
//}} AFX_MSG_MAP

END_MESSAGE_MAPO

static UINT indicators!] =
{

IDJSEPARATOR, // status line indicator
IDINDICATORCAPS,
IDIND1CATORNUM,
IDiNDICATORSCRL,

};
iiniiiiiiiiiii
// CMainFrame construction/destruction

CMainFrame::CMainFrameO
{

// TODO: add member initialization code here

>

CMainFrame::~CMainFrameO

)

int CMainFrame:K)nCreate(LPCREATESTRUCT IpCreateStruct)
{

if (CMDIFrameWnd::OnCreate(!pCreateStruct) = -1)
return-1;

if (!m_wndToolBar.Create(this> ||
!m_wndToolBar.LoadToolBar(IDR_MAINFRAME))

{
TRACEOCFailed to create toolbar\n");

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return-1; // fail to create
}
if (!m_wnd Status Bar.Create(this) ||

!m_wndStatusBar.SctIndicators(indicators,
sizeof(indicatora)/sizBof(UINT)))

{
TRACEOCFailed to create status barta”);
return-1; // fail to create

}

// TODO: Remove this if you don't want tool tips or a resizeable toolbar
m_wndToolBar.SetBarStyle(m_wndToolBar.GctBarStyle() |

CBRSTOOLTIPS | CBRSFLYBY | CBRS_SIZE_DYNAMIC);

// TODO: Delete these three lines if you don't want the toolbar to
// be dockable
m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
EnableDocking(CBRS_ALIGN_ANY);
DockControlBar(&m_wndToolBar);

return 0;
>

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs

cs Jt = 0;
cs.y = 0;
cs.cy = ::GetSystemMetrics(SM_CYSCREEN)-30;

cs.cx = ::GetSystemMetrics(SMjCXSCREEN);

return CMDIFrameWnd::PreCreateWindow(cs);
>

lll
II CMainFrame diagnostics

#ifdef_DEBUG
void CMainFrame:^ssertValidO const
{

CMDIFrameWnd::AssertValidO;
}

void CMainFrame::Dump(CDumpContext& dc) const
{

CMDIFrameWnd::Dump(dc);

#endif//_DEBUG

lll
II CMainFrame message handlers

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// ProcessingDlg.cpp: implementation file
//

iinclude "stdafx.h"
^include "Filter3D.h"
^include " Process ingDlg.h"

#ifdef_DEBUG
ftdefine new DEBUGNEW
#undef THISFILE
static char THIS_FILE[] = _FIL E _;
ffendif

IIIIIIIIIIIIIIIIII1HII
II CProcessingDIg dialog

CProcessingDlg::CProcessingDlg(CWnd* pParent /*=NULL*/)
: CDialog(CProcessingDlg::IDD, pParent)

{
// Create a modeless dialog box
Crcate(IDD_PROCESSING.NULL);
//{{AFX_DATAINIT(CProcessingDIg)

// NOTE: the Class Wizard will add member initialization here
//} }AFX_DATA_INIT

}

void CProcessingDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CProcessingDlg)
DDX Control(pDX, IDC_PROGRESS, m_progressCtrl);
//}} AFX_DAT AMAP

BEGIN_MESSACE_MAP(CProcessingDlg, CDialog)
//{{AFX_MSG_MAP(CProcessingDlg)

// NOTE: the Class Wizard will add message map macros here
//} }AFX_MSG_MAP

END_MESSAGE_MAP()

lll
// CProcessingDIg message handlers

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// ChildFrm.h: interface of the CChildFrame class
//
iiim iniiim iiiiiiitiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiniim ii

#if !defined(AFX_CHILDFRM_H_C8CEC46B_8DFA_l 1 D2_9E39_0020AFDA97B0_INCLUDED_)
define AFX_CHILDFRM_H_C8CEC46B_8DFA_1 ID2_9E39_0020AFDA97B0_INCLUDED_

#if_MSC_VER»= 1000
#pragmaonce
#endif // _MSC_VER >= 1000

class CChildFrame: public CMDIChildWnd
{

DECLAREDYNCREATE(CChildFrame)
public:

CChildFrameO;

//Attributes
public:

// Operations
public:

// Overrides
// Class Wizard generated virtual function overrides
//{{AFX_VIRTU AL(CChildFrame)
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
//}} AFXVIRTUAL

// Implementation
public:

virtual -CChildFrameO;
#ifdef_DEBUG

virtual void AssertValidO const;
virtual void Dump(CDumpContext& dc) const;

#endif

// Generated message map functions
protected:

//{{AFX_MSG(CChildFrame)
// NOTE - the Class Wizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code!

//} }AFX_MSG
DECLARE_MESSAGE_MAP0

);

iiiiiiiiiiiiiiiniiini

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif//!defined(AFX_CHILDFRM_H_C8CEC46B_8DFA_llD2_9E39 0020AFDA97B0_INCLUDEDJ

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iiiiiiim niim m iim iiuiiiniitiiiiiiiim uiim iiiiiiiiiiiiiiiinii
//CotnplexJi: interface of the Complex class
//

#if_MSC_VER>= 1000
#pragmaonce
#endif//_MSC_VER>= 1000

#include<math.h>

class COMPLEX
{
protected:

double Real,Imag;

public:
COMPLEXO;
COMPLEX(double,double);
double GetReal(void) const;
double GetImag(void) const;
double Magnitude(void);
double Phase(void);

friend COMPLEX operator^ COMPLEX, COMPLEX);
friend COMPLEX operator^ COMPLEX, COMPLEX);
friend COMPLEX operator^ COMPLEX, COMPLEX);
friend COMPLEX operator^ COMPLEX double);
friend COMPLEX operator/(COMPLEX double);

};

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Filtcr3D.h: main header file for the FILTER3D application
//

#if !defined(AFX_FILTER3D_H_C8CEC465_8DFA_l I D2_9E39 0020AFDA97B0_INCLUDEDJ
#define AFXFILTER3 D_H_C8CEC465_8DFA_ 11D2_9E39_0020AFDA97B0_JNCLUDED_

#if_MSC_VER >= 1000
#pragmaoncc
#endif // MSC VER >= 1000

#iftidef AFXWINH_
#error include ’stdaix.h’ before including this file for PCH

#endif

#include "resource.h" // main symbols

IIIHIIIIIIlltlllllllllll
// CFilter3DApp:
// See Filter3D.cpp for the implementation of this class
//

class CFilter3DApp: public CWinApp
{
public:

CFilter3DAppO;

//Overrides
// Class Wizard generated virtual function overrides
//{{AFX_VIRTUAL(CFilter3DApp)
public:
virtual BOOL InitlnstanceO;
//} JAFXVIRTUAL

// Implementation

//{{AFX_MSG(CFilter3DApp)
afxmsg void OnAppAboutO;

// NOTE - the Class Wizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !

//>} AFX_MSG
DECLARE_MESSAGEMAP()

>;

iiim iiiii

U { {AFX_INSERT_LOCATION} >
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif// !defined(AFX_FILTER3D_H_C8CEC465_8DFA_l 1D2_9E39_0020AFDA97B0_INCLUDED_>

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Filter3DDocJi: interface of the CFiiter3DDoc class
//
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

#if 'defined/AFX_FILTER3DDOC_H C8CEC46D8DFA11 D2_9E39_0020AFDA97B0_INCLUDEDJ
#definc AFX_FILTER3DDOC_H_C8CEC46D_8DFA_l 1 D2_9E39_0020AFDA97B0_INCLUDED_

#if_MSC_VER>= 1000
#pragmaonce
#endif// _MSC_VER >= 1000

^include "Complex.h"

class CFilter3DDoc: public C Document
{
protected: // create from serialization only

CFilter3DDoc();
DECLARE_DYNCREATE(CFilter3DDoc)

//Attributes
public:

//Operations
public:

//Overrides
// Class Wizard generated virtual function overrides
//{{AFX_VIRTUAL/CFilter3DDoc)
public:
virtual BOOL OnNewDocumentO;
virtual void Serialize(CArchive& ar);
virtual BOOL OnOpenDocument(LPCTSTR IpszPathName);
//} }AFX_VIRTUAL

// Implementation
public:

void SetSaveFileName(LPTSTR);
void SetOpenFileName(LPTSTR);
double* GetImpulseAxis(void);
double* GetFreqAxis(void);
unsigned GetPhaseResponseSize(void);
double*** GetPhaseResponsef void);
unsigned GetMagnitudeResponseSize(void);
double*** GetMagnitudeResponse(void);
unsigned GetImpulseResponseSize(void);
double*** GetlmpulseResponse(void);
unsigned GetNumCoefFicients(void);
double*** GetB Coefficients/ void);
double *** GetACoefficicnts/ void);
BOOL FilterMovie(void);
virtual ~CFilter3DDocO;

#ifdef_DEBUG
virtual void AssertValidO const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected:

1 3 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Generated message map functions
protected:

CString m_lpstiNewFileName;
CString mJpstrFileName;
void InsertPalette(BITMAPINFOHEADER3YTE *,DWORD);
void InsertHeadet(BITMAPINFOHEADER3YTE *,BYTE •);
double outputBuffer;
BYTE ••• inputBuffer;
void ExtractBMPHeader(BITMAPINFOHEADER &. BYTE •);
double* m_pdImpulseAxis;
double* m_pdFreqAxis;
double pi;
void FFTID(COMPLEX *,unsigned, unsigned);
void FFT3D(COMPLEX ***,unsigned,unsigned);
void BitReveisaK unsigned*,unsigned);
BOOL Simq(doubie **, unsigned);
void ComputeCoefficients(void);
double*** m_pBCocffArray;
double*** m_pACocfFArray;
double*** m_pPhaseResponse;
double*** m_pMagnitudeResponse;
double*** m_pImpulscRcsponse;
unsigned m_nOffset;
unsigned m_nOrden
unsigned m_nNum Samples;
double mdCutoffFreq;
//{{AFX_MSG(CFilter3DDoc)
//> }AFX_MSG
DECLARE_MESSAGEMAP()

};

iiiiiiniiinii

//{{AFX_INSERT_LOCATION>}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // !defined(AFX_FILTER3DDOC_H_C8CEC46D_8DFA_l 1 D2_9E39_0020AFDA97B0_INCLUDED_)

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#if '.defined/AFX_FILTER3 DSETTINGSDLG_H_C6B545E I _8E8C_I I D2_9E39_0020AFDA97B0_INCLUDEDJ
#define AFX_FILTER3DSETTINGSDLG_H_C6B545E1_8E8C_11 D2_9E39 0020AFDA97BO_INCLUDED_

#if_MSC_VER >= 1000
#pragmaonce
#endif//_MSC_VER>= 1000
// Filtcr3DSettingsDlgJi: header file
//

iiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
// CFilter3DSettingsDlg dialog

class CFilter3DSettingsDlg: public CDialog
{
// Construction
public:

CFilter3DSettingsDlg(CWnd* pParent= NULL); // standard constructor

// Dialog Data
//{{AFX_DATA(CFilter3DSettingsDlg)
entim { IDD = IDD SETTINGS);
double mjdCutoffFreq;
UINT m_nOfiset;
UINT m_nOrder;
UINT m nNurn Samples;
//}} AFX_DATA

//Overrides
// Class Wizard generated virtual function overrides
//{(AFX_VIRTUAL(CFilter3DSettingsDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}} AFX_VIRTUAL

// Implementation
protected:

// Generated message map functions
//{{AFX_MSG(CFilter3DSettingsDlg)

// NOTE: the Class Wizard will add member functions here
//} }AFX_MSG
DECLAREVfESSAGEMAPQ

U
//[{AFX_INSERT_LOC ATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // !defined(AFX_FILTER3DSETTlNGSDLG_H_C6B545El_8E8C_l 1D2_9E39_0020AFDA97B0 INCLUDED_)

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Filter3DView.h: interface of the CFilter3DView class
//
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

#if !defined(AFX_FILTER3DVIEWH_C8CEC46F_8DFA_l 1 D2_9E39_0020AFDA97B0_INCLUDED_J
#define AFX_FILTER3DVIEW_H_C8CEC46F_8DFA_11 D2_9E39_0020AFDA97B0_INCLUDED_

#if _MSC_VER >= 1000
#pragmaonce
#endif//_MSC_VER >= 1000

class CFilter3DView: public CView
{
protected: // create from serialization only

CFilter3DViewO;
DECLARE_DYNCREATE(CFilter3DView)

// Attributes
public:

CFilter3DDoc* GetDocumcnt();

// Operations
public:

// Overrides
// Class Wizard generated virtual function overrides
//{{AFX_VIRTUAL(CFilter3DView)
public:
virtual void OnDrawfCDC* pDC); // overridden to draw this view
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
protected:
virtual BOOL OnPreparePrintingfCPrintlnfb* plnfo);
virtual void OnBeginPrintingfCDC* pDC, CPrintlnfo* plnfo);
virtual void OnEndPrinting(CDC* pDC, CPrintlnfo* plnfo);
virtual void OnUpdate(CView* pSender, LPARAM IHint, CObject* pHint);
//} }AFX_VIRTUAL

// Implementation
public:

virtual ~CFilter3DViewO;
#ifdef_DEBUG

virtual void AssertValidO const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected:

// Generated message map functions
protected:

HWND mhwndFilteredAVI;
HWND mhwndOriginalAVI;
double mdRotationZ;
double m_dRotationY;
double m_dRotationX;
void TransformPoints(double &,double &.doublc &);
void MakePlotFitWindowO;
POINT ConvertToScrccn(doublc,doubie,double);

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

double pi;
double m_dConstAxisFreq;
double* m_pdAxisZ;
double* m_pdAxisX;
unsigned mnNumDaiaPoints;
CPoint** m_pDisplayPointArray;
double*** m_pDataPointArray;
unsigned m_nNumCoefficients;
double*** m_pBCoefJArray;
double*** m_pACocfFArray;
unsigned m nDisplay;
void PlotPoints(CDC *);
void DrawCoefficients(CDC *);
//{(AFX_MSG(CFiher3DView)
afx_msg void OnDispiayCoefficientsO;
afx_msg void OnDisplaybnpulseO;
afx_msg void OnDisplayMagnitude();
afx_msg void OnDisplayPhaseO;
afxjnsg void OnVideoOpenO;
afx_msg void OnVideoPlayO;
afx_msg void OnVideoFilteiO;
afxmsg void OnVideoOpcnOutput();
//}}AFX_MSG
DECLAREMESSAGE_MAP()

};

#ifhdef_DEBUG // debug version in Filter3DView.cpp
inline CFilter3DDoc* CFilter3DView::GetDocumentO

{ return (CFilter3DDoc*)m_pDocument;}
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

ffendif // !defined(AFX_FILTER3DVIEW_H_C8CEC46F_8DFA_l ID2_9E39_0020AFDA97B0_1NCLUDEDJ

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// MafnFrmJi: interface of the CMainFrame class
//
iiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiniim iiiiiiiiiiiiiiiiiiii

#if !defined(AFX_MAINFRM_H C8CEC469 8DFA11 D2_9E39JX)20AFDA97B0_INCLUDEDJ
#define AFX_MAINFRM_H_C8CEC469_8DFA_I ID2_9E39_0020AFDA97BO_INCLUDED_

#if _MSC_VER >= 1000
#pragmaonce
#endif // _MSC_VER >= 1000

class CMainFrame: public CMDIFrameWnd
{

DECLARE_DYNAMIC(CMainFrame)
public:

CMainFrameO;

// Attributes
public:

//Operations
public:

// Overrides
// Class Wizard generated virtual function overrides
//{{AFX_VIRTUAL(CMainFrame)
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
//} }AFX_VIRTUAL

// Implementation
public:

virtual -CMainFrameO;
#ifdef_DEBUG

virtual void AssertValidO const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected: // control bar embedded members
CStatusBar m_wndStatusBar;
CToolBar mwndToolBar;

// Generated message map functions
protected:

//{{AFX_MSG(CMainFrame)
afk_msg int OnCreate(LPCREATESTRUCT IpCreateStruct);

// NOTE - the Class Wizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code!

//} 1AFX_MSG
DECLAREMESSAGEMAPO

>;

iiiiiiiiiiiiiiiiiiiiiiiiiiliiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiii

//{{AFX_INSERT_LOCATION} >
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif// !defined(AFX_MAINFRM_H_C8CEC469_8DFA_11D2_9E39_0020AFDA97BO_INCLUDEDJ

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#if !dcfincd(AFX_PROCESSINGDLG_H_C49A1 CO 1 _94F8l1 D2_9E39 0020AFDA97B0_INCLUDEDJ
#define AFX_PROCESSINGDLG_H_C49A 1C0194F811 D2_9E39_0020AFDA97B0_INCLUDED_

#lf_MSC_VER>= 1000
#pragmaonce
#endif// _MSC_VER >= 1000
// ProccssingDlg.h: header file
//

tlllllltllltllllllllllltltllltlllllllllllllllllllllltlllllU llltlllllllllllll
II CProcessingDIg dialog

class CProcessingDIg: public CDialog
{
// Construction
public:

CProcessingDlg(C Wnd* pParent= NULL); II standard constructor

// Dialog Data
//{{AFX_DATA(CProcessingDlg)
enum { IDD = IDDPROCESSING };
CProgressCtrl m_progressCtrl;
//}} AFX_DATA

II Overrides
// Class Wizard generated virtual function overrides
//{{AFX_VIRTUAL(CProcessingDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//} }AFX_VIRTUAL

II Implementation
protected:

II Generated message map functions
//{{AFX_MSG(CProccssingDlg)

II NOTE: the Class Wizard will add member functions here
//} }AFX_MSG
DECLARE_MESSAGE_MAP()

};

//{{AFX_INSERT_LOCAT10N}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

tfendif // !defined(AFX_PROCESSINGDLG_H__C49AlCOl_94F8_l 1D2_9E39_0020AFDA97B0_INCLUDED_)

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//{{NODEPENDENCIES}}
// Microsoft Developer Studio generated include file.
// Used by Filter3D.rc
//
#define IDD_ABOUTBOX
#define IDR_MAINFRAME
#definc IDR_FILTERTYPE
^define IDDSETTINGS
^define IDD_PROCESSING
^define IDC_SAMPLES
#define IDCCUTOFF
#define IDC_PROGRESS
#definc IDCORDER
^define IDC_OFFSET
^define ID_DISPLAY_IMPULSE 32771
^define IDDISPLAYMAGNITUDE 32772
#define ID_DISPLAYPHASE 32773
#define ID_DISPLAY_COEFFICIENTS 32774
#define ID_VIDEOOPEN 32776
#define IDVIDEOFILTER 32777
#define ID_VIDEO_PLAY 32779
^define ID_VIDEO_OPENOUTPUTDEMO 32783
#define ID_VIDEOOPENOUTPUT 32784

// Next default values for new objects
//
#ifdef APSTUDIOINVOKED
#ifndcf APSTUDIO_READONLY_SYMBOLS
#define_APS_3D_CONTROLS 1
#define _APS_NEXT_RESOURCE_VALUE 134
#definc_APS_NEXT_COMMAND_VALUE 32786
ftdefine _APS_NEXT_CONTROL_VALUE 1002
#define _APSNEXT_SYMED_VALUE 101
#endif
ftendif

100
128

129
131

133
1000

1001
1001

1002
1003

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//Microsoft Developer Studio generated resource script
//
#includc "resourceJi”

#define APSTUDIO_READONLY_SYMBOLS
iiiiiiiiiiiiiiiiiiifiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiiitiini
u
II Generated from the TEXTINCLUDE 2 resource.
II
^include "afxres.h"

iiiiiiiiiiiiiiiiiniinini
#undef APSTUDIO_READONLY_SYMBOLS

llltlllll
// English (U.S.) resources

#if !defined{AFX_RESOURCE_DLL) || defined/AFXTARGENU)
#ifdef_WIN32
LANGUAGE LANG_ENGLISH, SUBLANGENGLISHUS
#pragma code_page(1252)
tfendif //WIN32

#ifdef APSTUDIOINVOKED
lll
II
//TEXTINCLUDE
II

1 TEXTINCLUDE DISCARDABLE
BEGIN

"resource.h\0"
END

2 TEXTINCLUDE DISCARDABLE
BEGIN

"//include ""afxres.h"’Vn"
" \0"

END

3 TEXTINCLUDE DISCARDABLE
BEGIN

"//define _AFX_NO_SPLITTER_RESOURCES\r\n"
"//define _AFX_NO_OLE_RESOURCES\r\n"
"//define _AFX_NO_TRACKER_RESOURCES\r\n"
"#define _AFX_NO_PROPERTY_RESOURCES\r\n"
"\r\n"
"//if !defined(AFX_RESOURCE_DLL) || defined/AFX_TARG_ENU)\r\n"
"//ifdef_WIN32\r\n"
"LANGUAGE 9, l\r\n"
"#pragma code_page(1252)\r\n"
"#endif\r\n"
”#include ”"res\\Fiiter3D.rc2”” // non-Microsoft Visual C++ edited resources\r\n”
"//include ""afxres.rc"" // Standard components^"
"//include ""afxprintrc"" II printing/print preview resources\r\n"
"//endif\0"

END

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tfendif //APSTUDIO INVOKED

IlltllllUIIIIIIIIIIIIIIIIIIIIIIIIIIIItllllltllllllllllllllllllllllllllllllll
II
//Icon
//

// Icon with lowest ID value placed first to ensure application icon
// remains consistent on all systems.
IDR_MAINFRAME ICON DISCARDABLE "rcs\\Filter3D.ico"
IDRFILTERTYPE ICON DISCARDABLE "res\\Filter3DDoc.ico"

II1IIIII1III1IIIIIIIIIIIIII
II
II Bitmap
//

IDRMA INFRAME BITMAP MOVEABLE PURE "res\\mainfiam.bmp"

llltlllltllllllllll
II
II Toolbar
//

IDR_MAINFRAME TOOLBAR DISCARDABLE 16,15
BEGIN

BUTTON IDFILENEW
BUTTON IDFILEOPEN
BUTTON ID_FILESAVE
SEPARATOR
BUTTON IDEDITCUT
BUTTON ID_EDIT_COPY
BUTTON ID_EDIT_PASTE
SEPARATOR
BUTTON ID_FILE_PRINT
BUTTON IDAPPABOUT
SEPARATOR
BUTTON ID_DISPLAY_IMPULSE
BUTTON IDDISPLAYMAGNITUDE
BUTTON ID_DISPLAY_PHASE
BUTTON ID_DISPLAY_COEFFICIENTS
SEPARATOR
BUTTON ID_VIDEO_OPEN
BUTTON IDVIDEOFILTER
BUTTON IDVIDEOPLAY

END

lll
II
//Menu
//

IDR_MAINFRAME MENU PRELOAD DISCARDABLE
BEGIN

POPUP "AFile"

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BEGIN
MENUITEM "&New\tCtri+N",
MENUITEM "&0pcn...\tCtrI+0’\
MENUITEM SEPARATOR
MENUITEM "P&rint Setup...",
MENUITEM SEPARATOR
MENUITEM "Recent Hie",
MENUITEM SEPARATOR
MENUITEM "E&xit",

END
POPUP "&View"
BEGIN

MENUITEM "&Toolbar",
MENUITEM "&Status Bar",

END
POPUP "&Help"
BEGIN

MENUITEM "&About Filter3D...",
END

END

ID_FILE_NEW
IDFILEOPEN

ID_FILE_PRINT_SETUP

IDFILEMRUFILEI. GRAYED

IDAPPEXIT

IDVIEWTOOLBAR
IDVIEWSTATUSBAR

ID APP ABOUT

IDR FILTERTYPE MENU PRELOAD DISCARDABLE
BEGIN

POPUP "&File"
BEGIN

MENUITEM "&New\tCtrl+N",
MENUITEM "&Open...\tCtri+0",
MENUITEM "&Close",
MENUITEM "&Save\tCtrl+S",
MENUITEM "Save &As...",
MENUITEM SEPARATOR
MENUITEM "&Print...\tCtrl+P",
MENUITEM "Print Pre&view",
MENUITEM "P&rint Setup...",
MENUITEM SEPARATOR
MENUITEM "Recent File",
MENUITEM SEPARATOR
MENUITEM "E&xit",

END
POPUP "&Edit"
BEGIN

MENUITEM "&Undo\tCtrI+Z",
MENUITEM SEPARATOR
MENUITEM "Cu&t\tCtrl+X”,
MENUITEM "&Copy\tCtrl+C",
MENUITEM "&Paste\tCtrl+V",

END
POPUP "&Vicw"
BEGIN

MENUITEM "&Toolbar",
MENUITEM "&Status Bar”,

END
POPUP "& Window"
BEGIN

MENUITEM "&New Window",
MENUITEM "&Cascade",
MENUITEM "&Tile",

IDFILENEW
IDFILEOPEN

ID FILE_CLOSE
Td_file_save

IDFILESAVEAS

IDFILEPRINT
ID FILE PRINT PREVIEW

IDFILEPRINTSETUP

ID_FILE_MRU_FILE I, GRAYED

ID APP EXIT

IDEDITUNDO

ID_EDIT_CUT
ID_EDIT_COPY
ID_EDIT_PASTE

IDVIEWTOOLBAR
ID_VIEW_STATUS_BAR

ID_WINDOW_NEW
IDWINDOWCASCADE

ID WINDOW TILE HORZ

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MENUITEM "&Arrange Icons”.
END
POPUP "AHelp"
BEGIN

MENUITEM "&About FiIter3D...
END
POPUP ”&Display”
BEGIN

MENUITEM "&Impulse”,
MENUITEM "&Magnitude",
MENUITEM "APhase",
MENUITEM "&Coefificients\

END
POPUP "&Video"
BEGIN

MENUITEM "&Open",
MENUITEM "&Filter",
MENUITEM ”&Play Both",
MENUITEM SEPARATOR
MENUITEM "O&pen Output (Demo)'

END
END

ID WINDOW ARRANGE

ID APP ABOUT

IDDISPLAYIMPULSE
IDDISPLAYMAGNITUDE

ID_DISPLAY_PHASE
ID DISPLAY COEFFICIENTS

IDVIDEOOPEN
ID_VIDEO_FILTER

IDVIDEOPLAY

ID VIDEO OPENOUTPUT

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIillllllllllllllllllllllllllllllHIII
II
// Accelerator
//

IDR_MAINFRAME ACCELERATORS PRELOAD MOVEABLE PURE
BEGIN

"N\ ID_FILE_NEW,
"O", ID_FILE_OPEN,
”S”. ID_FILE_SAVE,
"P". ID_FILE_PRINT,
”Z", IDEDITUNDO,
”X", ID_EDIT_CUT,
"C". ID_EDIT_COPY,
"V", ID_EDIT_PASTE,
VKBACK, IDEDITUNDO,
VK_DELETE, ID_EDIT_CUT,
VK_INSERT, ID_EDIT_COPY,
VK_INSERT, IDEDITPASTE,
VK_F6, ID_NEXT_PANE,
VK_F6, ID_PREV_PANE,

END

VIRTKEY. CONTROL
VIRTKEY, CONTROL
VIRTKEY, CONTROL
VIRTKEY, CONTROL
VIRTKEY, CONTROL

VIRTKEY, CONTROL
VIRTKEY, CONTROL
VIRTKEY, CONTROL

VIRTKEY, ALT
VIRTKEY, SHIFT
VIRTKEY, CONTROL
VIRTKEY, SHIFT

VIRTKEY
VIRTKEY, SHIFT

iiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiH iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!
II
II Dialog
II

IDD_ABOUTBOX DIALOG DISCARDABLE 0,0,217,55
STYLE DS MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "About Filter3D"
FONT 8, "MS Sans Serif

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BEGIN
ICON IDR_MAINFRAME,IDC_STATIC, 11,17.20,20
LTEXT “Filtcr3D Version 1.0".IDC_STATIC,40.10,119,8.

SSNOPREFIX
LTEXT "Copyright (C) 1998",IDC_STATIC,40,25.119,8
DEFPUSHBUTTON "OKMDOK.178,732,14, WS GROUP

END

IDDSETTINGS DIALOG DISCARDABLE 0,0,174,72
STYLE DSMODALFRAME | WS_POPUP | WS_CAPTION | WSSYSMENU
CAPTION "Settings"
FONT 8, "MS Sans SeriF
BEGIN

EDITTEXT IDC_SAMPLES,45,5,35,12,ES_AUTOHSCROLL
EDITTEXT IDC_CUTOFF,45,20,35,12,ES AUTOHSCROLL
EDITTEXT IDC_ORDER,45,35,35,12.ES_AUTOHSCROLL
EDITTEXT IDC_OFFSET,45,50,35,12,ES_AUTOHSCROLL
DEFPUSHBUTTON "OK",IDOK,112,11,50,14
PUSHBUTTON "Cancel", IDCANCEL, 112^8,50,14
LTEXT "Samples:",IDC_STATIC.9,7,35,I0
LTEXT "Cutoff:\IDC_STATIC,9,22,35,10
LTEXT "Order.",IDC_STATIC,9,37,35,10
LTEXT "OfTset:",IDC_STATIC,9,52,35,10

END

IDDPROCESSING DIALOG DISCARDABLE 0,0,137,46
STYLE DS MODALFRAME | DS_3DLOOK | DS CENTER | WS POPUP | WS_VISIBLE
FONT 8, "MSSansSenT
BEGIN

CONTROL "Progress 1 ",IDC_PROGRESS,"msctls_progress32", WS_BORDER,
12,25,113,14

CTEXT "Piocessing...",IDC_STATlC,45,7,48,10
END

#ifndef_MAC
lll
//
// Version
//

VSVERSIONINFO VERSIONINFO
RLE VERSION l,0,0,l
PRODUCTVERSION 1,0,0,1
FILEFLAGSMASK 0x3 fL

#ifdef_DEBUG
FILEFLAGS 0x1 L

#else
FILEFLAGS OxOL
#endif
FILEOS 0x4L
FILETYPE OxlL
FILESUBTYPE OxOL
BEGIN

BLOCK "StringFtlelnfo"
BEGIN

BLOCK "040904B0"

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BEGIN
VALUE "CompanyName". "VO"
VALUE "FileDescription", "Filter3D MFC Application\0"
VALUE "FileVerston", "1,0,0, I\0"
VALUE "IntemalName", ”Fiher3D\0”
VALUE "LegalCopyright", -Copyright (C) 1998X0“
VALUE "LegalTradetnarks", "\0"
VALUE "OriginalFileiiaine”, "Filter3D.EXE\0"
VALUE "ProductName”, ”Filter3D Application^"
VALUE "ProductVersion", "1 ,0 ,0 ,1\0"

END
END
BLOCK "VarFilelnfo"
BEGIN

VALUE "Translation", 0x409, 1200
END

END

#endif //! MAC

iiiiiiiiiiiiiiiiw iiiiiiiiiiiiiiiiiiiiiiiiiiiituiriiiiiiiiiiiiitiiiiiiriiii
n
// DESIGNINFO
//

#ifdef APSTUDIOINVOKED
GUIDELINES DESIGNINFO DISCARDABLE
BEGIN

IDDABOUTBOX, DIALOG
BEGIN

LEFTMARGIN, 7
RIGHTMARGIN, 210
TOPMARGIN, 7
BOTTOMMARGIN, 48

END

IDD_SETTTNGS, DIALOG
BEGIN

LEFTMARGIN, 7
RIGHTMARGIN, 167
TOPMARGIN, 7
BOTTOMMARGIN, 65

END

IDD_PROCESSING, DIALOG
BEGIN

LEFTMARGIN. 7
RIGHTMARGIN, 130
TOPMARGIN, 7
BOTTOMMARGIN, 39

END
END
#endif // APSTUDIOJNVOKED

lll

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//
//String Table
//

STRINGTABLE PRELOAD DISCARDABLE
BEGIN

IDRMAINFRAME "Filter3D"
IDR_FILTERTYPE "\nFilter\nFilter\nFilter Files (*.0d)\n.I3dVnFilter3D.Document\nFilter Document”

END

STRINGTABLE PRELOAD DISCARDABLE
BEGIN

AFXIDSAPPTITLE "FiIter3D"
AFX_IDS_IDLEMESSAGE "Ready"

END

STRINGTABLE DISCARDABLE
BEGIN

IDINDICATOREXT "EXT"
IDINDICATORCAPS "CAP"
ID_INDICATOR_NUM "NUM"
IDINDICATORSCRL "SCRL"
I D_INDICATOR_0 VR "OVR"
ID_INDICATOR_REC "REC"

END

STRINGTABLE DISCARDABLE
BEGIN

ID_FILE_NEW "Create a new document\nNew”
ID FILE OPEN "Open an existing document\nOpen”
ID_FILE_CLOSE "Close the active document\nClose”
ID_FILE_SAVE "Save the active document\nSave"
ID_FILE_SAVE_AS "Save the active document with a new name\nSave As"
ID_FILE_PAGE_SETUP "Change the printing options\nPage Setup”
ID_FILE_PRINT_SETUP "Change the printer and printing options\nPrint Setup”
ID_FILE_PRINT "Print the active document\nPrint"
ID_FILE_PRINT_PREVIEW "Display full pages\nPrint Preview"

END

STRINGTABLE DISCARDABLE
BEGIN

ID_APP_ABOUT "Display program information, version number and copyrightVnAbout”
ID_APP_EXIT "Quit the application; prompts to save doc uments\n Exit"

END

STRINGTABLE DISCARDABLE
BEGIN

ID_FILE_MRU_FILE I
ID_FILE MRU_FILE2
ID_FILE_MRU_FILE3
ID_FILE_MRU_FILE4
ID_F1LE MRU_FILE5
ID_FILE_MRU_FILE6
ID_FILE_MRU_FILE7
ID_FILE_MRU_FILE8
ID_FILE_MRU_FILE9
ID_FILE_MRU FILE 10

"Open this document"
"Open this document”
"Open this document”
"Open this document”
"Open this document"
"Open this document"
"Open this document”
"Open this document"
"Open this document"
"Open this document”

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IDFILEMRUFILE11
[D FIL E M R U FIL E 12
IDFILEMRU_FILE 13
ID_FILE_MRU_F1LE 14
[D F I L E M R U F I L E 15
ID_nLE_MRU_FILE 16

END

"Open this document”
"Open this document"
"Open this document"
"Open this document”
"Open this document”
"Open this document”

STRINGTABLE DISCARDABLE
BEGIN

ID N E X T PA N E "Switch to the next window paneVnNext Pane”
ID_PREV_PANE "Switch back to the previous window pane\nPrevious Pane"

END

STRINGTABLE DISCARDABLE
BEGIN

I D_ WINDO W_NEW "Open another window for the active document\nNew Window”
IDWINDOWARRANGE "Arrange icons at the bottom o f the windowVnAnange Icons"
lD_WINDOW_CASCADE "Arrange windows so they overlapVnCascade Windows”
ID_WINDOW_TILE_HORZ "Arrange windows as non-overlapping tiles\nTile Windows"
ID_WIN DO W_TI L E_VE RT "Arrange windows as non-overlapping tiles\nTile Windows"
ID_WINDOW_SPLIT "Split the active window into panes\nSplit”

END

STRINGTABLE DISCARDABLE
BEGIN

ID_EDIT_CLEAR "Erase the selectionVnErase”
ID_EDIT_CLEAR_ALL "Erase eveiything\nErase AH"
ID E DIT COPY "Copy the selection and put it on the Clipboard\nCopy"
ID E D IT C U T "Cut the selection and put it on the Clipboard\nCut”
ID_EDIT_FIND "Find the specified text\nFind"
ID_EDIT_PASTE "Insert Clipboard contents\nPaste"
ID EDIT REPEAT "Repeat the last action\nRepeat”
ID_EDIT_REPLACE "Replace specific text with different textVnReplace"
ID EDIT SELECT ALL "Select the entire document\nSelect AH"
ID_EDIT_UNDO "Undo the last action\nUndo”
ID_EDIT_REDO "Redo the previously undone actionVnRedo”

END

STRINGTABLE DISCARDABLE
BEGIN

ID_VIEW_TOOLBAR "Show or hide the toolbar\nToggle ToolBar"
ID VIEW STATUS BAR "Show or hide the status bar\nToggIe StatusBar”

END

STRINGTABLE DISCARDABLE
BEGIN

AFX_IDS_SCSIZE "Change the window size"
AFX_!DS_SCMOVE "Change the window position"
AFX_IDS_SCMINIMIZE "Reduce the window to an icon"
AFX_IDS_SCMAXIMIZE "Enlarge the window to foil size”
AFX_IDS_SCNEXTWINDOW "Switch to the next document window"
AFX_IDS_SCPREVWINDOW "Switch to the previous document window"
AFX_IDS_SCCLOSE "Close the active window and prompts to save the documents"

END

STRINGTABLE DISCARDABLE

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BEGIN
AFX_IDS_SCRESTORE “Restore the window to normal size"
AFX IDS SCTASKLIST "Activate Task List"
AFXIDSMDICHILD "Activate this window”

END

STRINGTABLE DISCARDABLE
BEGIN

AFX_IDS_PREVIEW_CLOSE "Close print preview mode\nCanceI Preview"
END

STRINGTABLE DISCARDABLE
BEGIN

ID_DISPLAY_IMPULSE "Plot Impulse Response\nImpulseResponse"
1D_DISPLAY_MAGNITUDE "Plot Magnitude Response\nMagnitude Response"
IDDISPLAYPHASE "Plot Phase ResponseVnPhase Response”
ID_DISPLAY_COEFFICIENTS "Display Coefficients\nCoefficients”
ID_VIDEO_OPEN "Open a Video File for FilteringVnOpen Movie"
ID_VIDEO_FILTER "Filter Video Clip\nFilter Movie"
ID_VIDEO_PLAY "Play Both Video Clips at the Same TimeNnPlay Both Clips”
ID_VIDEO_OPENOUTPUTDEMO "Open a Second Video Clip for ComparisonVnOpen Output”

END

tfendif // English (U.S.) resources
iiiiiiiiiiim iiiiitiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiini

#ifndef APSTUDIOINVOKED
lll
II
// Generated from the TEXTINCLUDE 3 resource.
//
#define _AFX_NO_SPLITTER_RESOURCES
#define _AFX_NO_OLE_RESOURCES
#define AFX NO TRACKER RESOURCES
#define _AFX_NO_PROPERTY_RESOURCES

#if !defined(AFX_RESOURCE_DLL) || defined(AFX_TARG_ENU)
#ifdef_WIN32
LANGUAGE 9,1
#pragma code_page(1252)
#endif
#include "res\Filter3D.rc2" // non-Microsoft Visual C++ edited resources
^include "afxres.rc" // Standard components
#include "afxprinLrc" // printing/print preview resources
#endif
iiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiii
end if / / not APSTUDIO INVOKED

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// stdafxii: include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
//

#if !defined(AFX_STDAFX_H_C8CEC467_8DFA_l 1D2_9E39_0020AFDA97B0_INCLUDEDJ
#define AFX_STDAFX_H_C8CEC467_8DFA_I1D2_9E39_0020AFDA97B0_INCLUDED_

#if_MSC_VER >= 1000
tfpragmaonce
#endif // _MSC_VER >= 1000

#define VCEXI RALEAN // Exclude rarely-used stufT from Windows headers

^include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions
#ifndef_AFX_NO_AFXCMN_SUPPORT
^include <afxcmn.h> // MFC support for Windows Common Controls
#endif // _AFX_NO_AFXCMNSUPPORT

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insen additional declarations immediately before the previous line.

#endif // !defined(AFX_STDAFX_H__C8CEC467_8DFA_l 1D2_9E39_0020AFDA97B0_INCLUDED_)

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Matlab Source Code for Generating Magnitude Response,
Phase Response, and Group Delay Plots

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% t h e s i s _ m a g n i t u d e . m - G e n e r a t e s p l o t s o f 3 - D f i l t e r m a g n i t u d e r e s p o n s e
% R e s p o n s e s w e r e g e n e r a t e d b y F i l t e r 3 D . e x e a n d a r e
% n o t i n c l u d e d d u e t o e x c e s s i v e l e n g t h

% w 3 = 0 . 0
H = [. . .] ;

[w l , w 2] = f r e q s p a c e (l e n g t h (H)) ;
w l = w l . * p i ;
w 2 = w l ;

f i g u r e
m e s h (w l , w 2 , H) , r o t a t e 3 d o n
t i t l e (' L o w - P a s s F i l t e r w i t h C u t o f f = p i / 2 (w l = 0 r a d / s e c) ')
x l a b e l (' w 2 (r a d / u n i t) ') , y l a b e l (' w 3 (r a d / u n i t) ') , z l a b e l (' M a g n i t u d e R e s p o n s e ')
a x i s ([- 4 4 - 4 4 0 1 . 2])

% w 3 = 0 . 9 8
H = [. . .] ;

f i g u r e
m e s h (w l , w 2 , H) , r o t a t e 3 d o n
t i t l e (' L o w - P a s s F i l t e r w i t h C u t o f f = p i / 2 (w l = 0 . 9 8 r a d / s e c) ')
x l a b e l (' w 2 (r a d / u n i t) ') , y l a b e l (' w 3 (r a d / u n i t) ’) , z l a b e l (' M a g n i t u d e R e s p o n s e ')
a x i s ([- 4 4 - 4 4 0 1 . 2])

% w 3 = 2 . 1 6
H = [. . .] ;

f i g u r e
m e s h (w l , w 2 , H) , r o t a t e 3 d o n
t i t l e (' L o w - P a s s F i l t e r w i t h C u t o f f = p i / 2 (w l = 2 . 1 6 r a d / s e c) ')
x l a b e l (' w 2 (r a d / u n i t) ') , y l a b e l (' w 3 (r a d / u n i t) ') , z l a b e l (' M a g n i t u d e R e s p o n s e ')
a x i s ([- 4 4 - 4 4 0 1 . 2])

% w 3 = p i
H = [. . .] ;

f i g u r e ,
m e s h (w l , w 2 , H) , r o t a t e 3 d o n
t i t l e (' L o w - P a s s F i l t e r w i t h C u t o f f = p i / 2 (w l = p i r a d / s e c) ')
x l a b e l (' w 2 (r a d / u n i t) ') , y l a b e l (' w 3 (r a d / u n i t) ') , z l a b e l (' M a g n i t u d e R e s p o n s e ')
a x i s ([- 4 4 - 4 4 0 1 . 2])

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% t h e s i s _ p h a s e . m - G e n e r a t e s p l o t s o f 3 - D f i l t e r p h a s e r e s p o n s e
% a n d g r o u p d e l a y
% R e s p o n s e s w e r e g e n e r a t e d b y F i l t e r 3 D . e x e a n d a r e
% n o t i n c l u d e d d u e t o e x c e s s i v e l e n g t h

% w 3 = 0 . 0
p=[. . .] ;

[w l , w 2] = f r e q s p a c e (l e n g t h (P)) ;
w l = w l . * p i ;
w 2 = w l ;
w i n e = w 2 (2) - w 2 { 1) ;

P = u n w r a p (P) ;
f i g u r e
m e s h (w l , w 2 , P) , r o t a t e 3 d o n
t i t l e (' L o w - P a s s F i l t e r w i t h C u t o f f = p i / 2 (w 3 = 0 r a d i a n s / s e c) ')
x l a b e l (' w l (r a d i a n s / u n i t) ’) , y l a b e l (*w 2 (r a d i a n s / u n i t) ') , z l a b e l (' P h a s e
R e s p o n s e (r a d i a n s) ')
v i e w (- 2 0 , 6 0)

f o r 1 = 1 : l e n g t h (P)
f o r k = l : l e n g t h (P) - 1

i f a b s (P (l , k + l) - P (l , k)) < 5
G d (l , k) = - (P (l , k + 1) - P (l , k)) / w i n e ;

e l s e
i f P (1 , k + 1) - P (1 , k) < 0

G d (l , k) = - (P (l , k + 1) - (P (l , k) - 2 * p i)) / w i n e ;
e l s e

G d (l , k) = - (P (l , k + 1) - (P (1 , k) + 2 * p i)) / w i n e ;
e n d

e n d
e n d
G d (1 , l e n g t h (P)) = - (P (1 , l e n g t h (P)) - P (1 , l e n g t h (P) - 1)) / w i n e ;

e n d

f i g u r e ,
m e s h (w l , w 2 , G d) , r o t a t e 3 d o n
t i t l e (' L o w - P a s s F i l t e r w i t h C u t o f f = p i / 2 (w 3 = 0 r a d i a n s / s e c) ')
x l a b e l { ' w l (r a d i a n s / u n i t) ') , y l a b e l (' w 2 (r a d i a n s / u n i t) ')
z l a b e l (’ G r o u p D e l a y w i t h R e s p e c t t o w 2 ')
v i e w (0 , 0)

% w 3 = 0 . 9 8
P = [. . .] ;

P = u n w r a p (P) ;

f i g u r e
m e s h (w l , w 2 , P) , r o t a t e 3 d o n
t i t l e (' L o w - P a s s F i l t e r w i t h C u t o f f = p i / 2 (w 3 = 0 . 9 8 r a d i a n s / s e c) ')
x l a b e l (' w l (r a d i a n s / u n i t) ') , y l a b e l (' w 2 (r a d i a n s / u n i t) ')
z l a b e l { ' G r o u p D e l a y w i t h R e s p e c t t o w 2 ')
v i e w (- 2 0 , 6 0)

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f o r 1 = 1 : l e n g t h (P)
f o r k = l : l e n g t h (P) - l

i f a b s (P (1 , k + 1) - P (1 , k)) < 5
G d (l , k) = - (P (l , k + 1) - P (1 , k)) / w i n e ;

e l s e
i f P C I , k + 1) - P (1 , k) < 0

G d (l , k) = - (P (l , k + 1) - (P C I , k) - 2 * p i)) / w i n e ;
e l s e

G d (l , k) = - (P (1 , k + 1) - (P (1 , k) + 2 * p i)) / w i n e ;
e n d

e n d
e n d
G d (1 , l e n g t h (P)) = - (P (1 , l e n g t h (P)) - P (1 , l e n g t h (P) - 1)) / w i n e ;

e n d

f i g u r e
m e s h (w l , w 2 , G d) , r o t a t e 3 d o n
t i t l e (' L o w - P a s s F i l t e r w i t h C u t o f f = p i / 2 (w 3 = 0 . 9 8 r a d i a n s / s e c) ')
x l a b e l (' w l (r a d i a n s / u n i t) ') , y l a b e l (' w 2 (r a d i a n s / u n i t) ')
z l a b e l (' G r o u p D e l a y w i t h R e s p e c t t o w l ')
v i e w (0 , 0)

% w 3 = 2 . 1 6
P = [. . .] ;

P = u n w r a p (P) ;
f i g u r e
m e s h (w l , w 2 , P) , r o t a t e 3 d o n
t i t l e (' L o w - P a s s F i l t e r w i t h C u t o f f = p i / 2 (w 3 = 2 . 1 6 r a d i a n s / s e c)
x l a b e l (' w l (r a d i a n s / u n i t) ') , y l a b e l (' w 2 (r a d i a n s / u n i t) ')
z l a b e l (' G r o u p D e l a y w i t h R e s p e c t t o w 2 ')
v i e w (- 2 0 , 6 0)

f o r 1 = 1 : l e n g t h (P)
f o r k = l : l e n g t h (P) - 1

i f a b s (P (1 , k + 1) - P (1 , k)) < 5
G d (1 , k) = - (P (l , k + 1) - P (1 , k)) / w i n e ;

e l s e
i f P (1 , k + 1) - P (1 , k) < 0

G d (1 , k) = - (P (1 , k + 1) - (P (1 , k) - 2 * p i)) / w i n e ;
e l s e

G d (1 , k) = - (P (l , k + l) - (P (l , k) + 2 * p i)) / w i n e ;
e n d

e n d
e n d
i f a b s (P (l , l e n g t h (P)) - P (l , l e n g t h (P) - 1)) < 5

G d (l , l e n g t h (P)) = - (P (1 , l e n g t h (P)) - P (1 , l e n g t h (P) - 1)) / w i n e ;
e n d

e n d

f i g u r e
m e s h (w l , w 2 , G d) , r o t a t e 3 d o n
t i t l e (' L o w - P a s s F i l t e r w i t h C u t o f f = p i / 2 (w 3 = 2 . 1 6 r a d i a n s / s e c)
x l a b e l (' w l (r a d i a n s / u n i t) ') , y l a b e l (*w2 (r a d i a n s / u n i t) ')
z l a b e l (' G r o u p D e l a y w i t h R e s p e c t t o w l •)
v i e w (0 , 0)

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% w 3 = p i
p = [. . .] ;

P = u n w r a p (P) ;
f i g u r e
m e s h (w l , w 2 , P) , r o t a t e 3 d o n
t i t l e (' L o w - P a s s F i l t e r w i t h C u t o f f = p i / 2 (w 3 = p i r a d i a n s / s e c) ')
x l a b e l (' w l (r a d i a n s / u n i t) ' } , y l a b e l (* w 2 (r a d i a n s / u n i t) ')
z l a b e l (' G r o u p D e l a y w i t h R e s p e c t t o w 2 ')
v i e w (- 2 0 , 6 0)

f o r 1 = 1 : l e n g t h (P)
f o r k = l : l e n g t h (P) - l

i f a b s (P (1 , k + 1) - P (1 , k)) < 5
G d (l , J c) = - (P (l , k + 1) - P (1 , k)) / w i n e ;

e l s e
i f P (1 , k + 1) - P (1 , k) < 0

G d (l , J c) = - (P { 1 , k + 1) - (P (1 , k) - 2 * p i)) / w i n e ;
e l s e

G d (1 , k) = - (P (1 , k + 1) - (P (1 , k) + 2 * p i)) / w i n e ;
e n d

e n d
e n d
i f a b s (P (1 , l e n g t h (P)) - P (1 , l e n g t h (P) - 1)) < 5

G d (1 , l e n g t h (P)) = - (P (1 , l e n g t h (P)) - P (1 , l e n g t h (P) - 1)) / w i n e ;
e n d

e n d

f i g u r e
m e s h (w l , w 2 , G d) , r o t a t e 3 d o n
t i t l e (' L o w - P a s s F i l t e r w i t h C u t o f f = p i / 2 (w 3 = p i r a d i a n s / s e c) ')
x l a b e l (' w l (r a d i a n s / u n i t) ') , y l a b e l (' w 2 (r a d i a n s / u n i t) ')
z l a b e l (' G r o u p D e l a y w i t h R e s p e c t t o w l ')
v i e w (0 , 0)

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita Auctoris
Steven Brace McFadden

1974 Bom October 19th in Lindsay, Ontario, Canada

1993 High School Diploma from I. E. Weldon Secondary School, Lindsay, Ontario,
C anada

1997 Bachelor of Applied Science in Electrical Engineering from University of Windsor,
Windsor, Ontario, Canada

2000 Candidate for Master of Applied Science in Electrical Engineering from University
o f Windsor, Windsor, Ontario, Canada

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Multimedia applications of three-dimensional digital filters.
	Recommended Citation

	tmp.1618001122.pdf.NWwVH

