
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2000 

Multimedia applications of three-dimensional digital filters. Multimedia applications of three-dimensional digital filters. 

Steven Bruce McFadden 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
McFadden, Steven Bruce, "Multimedia applications of three-dimensional digital filters." (2000). Electronic 
Theses and Dissertations. 2801. 
https://scholar.uwindsor.ca/etd/2801 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2801&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2801?utm_source=scholar.uwindsor.ca%2Fetd%2F2801&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 
the text directly from the original or copy submitted. Thus, some thesis and 
dissertation copies are in typewriter face, while others may be from any type of 
computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality illustrations 
and photographs, print bleedthrough, substandard margins, and improper 
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript 
and there are missing pages, these will be noted. Also, if unauthorized 
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand comer and continuing 
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6” x 9” black and white 
photographic prints are available for any photographs or illustrations appearing 
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning 
300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NOTE TO USERS

The diskette is not included in this original 
manuscript. It is available for consultation at the 

author’s graduate school library.

This reproduction is the best copy available.

UMI*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MULTIMEDIA APPLICATIONS OF 

THREE-DIMENSIONAL 

DIGITAL FILTERS

by

Steven B. McFadden

A Thesis
Submitted to the College of Graduate Studies and Research 

through Electrical Engineering 
in Partial Fulfillment of the Requirements for 

the Degree of Master of Applied Science at the 
University of Windsor

Windsor, Ontario, Canada 

April 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



■♦I National Library 
of Canada

Acquisitions and 
Bibliographic Services
385 Waffngtoo Street 
Ottawa ON K1A0N4 
Canada

Biblioth&que nationals 
du Canada

Acquisitions et 
sendees bibliographiques
395, rue Wettington 
Ottawa ON K1A0N4 
Canada

Your Urn VovoM tm nct 

Our Urn N onrtM nneo

The author has granted a non­
exclusive licence allowing the 
National Libraiy of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats.

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author’s 
permission.

L’auteur a accorde une licence non 
exclusive pennettant a la 
Bibliotheque nationale du Canada de 
reproduire, prefer, distribuer ou 
vendre des copies de cette these sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
electronique.

L’auteur conserve la propriete du 
droit d’auteur qui protege cette these. 
Ni la these ni des extraits substantiels 
de celle-ci ne doivent etre imprimes 
ou autrement reproduits sans son 
autorisation.

0-612-65382-X

Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



q W at

©2000 Steven B. McFadden

All Rights Reserved. No part o f this document may be 

reproduced, stored or otherwise retained in a retrieval 

system, transmitted in any form, on any medium, or by any 

means without the prior written permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPROVED BY:

Dr/M. A. Sid-Ahmed (Supervisor) 
Department o f Electrical Engineering

. J. J. sphfs 
Department o f Electrical Engineering

Dr. k . G. Gaspar 
Department o f Mechanical Engineering

t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Digital signal processing has long been an extremely important field of study. One­

dimensional and two-dimensional filters have applications in areas such as audio filtering 

or image processing respectively. As VLSI technology continues to increase, higher­

dimensional digital filters are becoming more practical. This thesis investigates the 

application of Three-Dimensional (3-D) Digital Filters to the area o f multimedia. 

Specifically, it investigates the use of 3-D Interpolation filters to increase the horizontal, 

vertical, and temporal resolution, or frame rate, of a moving image sequence.

The thesis begins by presenting the theory of digital interpolation in one dimension, and 

then extends that theory to three dimensions. Next the theory is presented for the design 

of a filter with appropriate characteristics for filtering a video image; i.e. near-linear phase 

and a steep transition band. After the basic theory is presented, a plan for implementing 

the filtering of a video image in software is presented along with the relevant file format 

information. Results from this implementation are shown next, and the thesis ends with a 

summary and conclusions

iv
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Chapter 1: Introduction

1.1 Introduction

The purpose o f this thesis is to investigate the multimedia application o f three-dimensional 

(3-D) digital filters. Specifically, a digital 3-D interpolation filter is to be designed which 

performs inter-pixel and inter-frame interpolation, resulting in increased horizontal 

resolution, vertical resolution, and temporal resolution (frame rate) of a moving image 

sequence.

Digital video is a very common example of a moving digital image sequence, with each 

frame of video representing a separate two-dimensional (2-D) digital image. These images 

change as a function of time, and it is this temporal variation which represents the third 

dimension in digital video. This representation o f digital video is depicted in Figure 1.1. In 

this figure, ‘x’ represents the horizontal axis, ‘y’ represents the vertical axis, and‘t ’ 

represents the time axis. The term dt represents the inverse of the frame rate. The axis is 

drawn for the purpose o f clarity, and the directions o f positive and negative are arbitrary.

Though digital video signals such as the one shown in Figure 1.1 are inherently three- 

dimensional, 2-D digital filters are often used to filter such signals by processing each 

frame separately. This method is very practical since 2-D filters are less complex and 

require much less hardware than equivalent order 3-D filters. This complexity and 

hardware saving becomes more pronounced as the order of the filter increases. With

1
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Figure 1.1: Representation of moving images
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improvements in digital technology, 3-D filters are becoming more reasonable in terms of 

cost, and their benefits over 2-D filters are becoming more attractive. The particular 

benefit of interest in this thesis is the 3-D filter’s ability to process temporal information in 

a moving picture sequence.

1.2 Digital Interpolation

Digital interpolation is a process by which a digital signal with a specific sampling rate is 

altered such that the frequency content o f the signal remains unchanged while the sampling 

rate is increased. Subject to limitations specified in the Sampling Theorem, presented in 

Chapter 2, the sampling rate o f a digital signal can be increased to any desired degree. This 

means that the original continuous signal is recoverable from the sampled signal. 

Interpolation has many applications in one-dimensional (1-D), 2-D, and 3-D digital signal 

processing. For example, it can be used as a method of data compression or used to 

improve the resolution o f a signal. It may also be used to change the sampling rate of a 

signal for the purpose of scaling[l]. It is the improvement of signal resolution that this 

thesis is concerned with.

For an application such as digital audio, a 1-D digital interpolator can be used to increase 

the resolution of the signal, making it more closely represent the original continuous 

signal. In image processing applications, a 2-D digital interpolator can be used to increase 

the pixel resolution of a digital image in either, or both of, the horizontal and vertical 

directions (inter-pixel interpolation^ ]. This has the effect of making a digital image more

3
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closely approximate the original image. The process o f using digital interpolators to 

increase signal resolution can be extended to three dimensions. In the case o f a digital 

video signal, the resolution of each frame can be increased in the ‘x’ and ‘y’ directions just 

as if  it was processed using a 2-D interpolator. The 3-D interpolator has the added 

advantage o f being capable of increasing the resolution along the time axis (the third 

dimension). This means that in addition to increased resolution in each frame of video, a 3- 

D interpolator can also increase the number of frames present in a video sequence (inter­

frame interpolation). This three-dimensional interpolation of digital video is the primary 

goal o f this thesis.

13  Three-Dimensional Digital Filters

A digital filter is a system that, when given a sequence o f input numbers, produces a 

sequence of output numbers subject to a specified set of rules. Accordingly, a 3-D digital 

filter produces a three-dimensional array of numbers when given a three-dimensional input 

array. For example, when a 3-D filter is given the luminance values of a digital video 

sequence as an input, the output is usually an altered form of that digital video sequence. 

Filters of any dimension are traditionally divided into two categories: non-recursive filters 

and recursive filters. Non-recursive filters, also known as Finite Impulse Response (FIR) 

filters, produce an output which is a weighted average o f present and previous input 

values. Recursive filters, also known as Infinite Impulse Response (UR) filters, produce an 

output that is a weighted average of present and past input values as well as past output 

values. Each type o f filter has its own advantages and disadvantages and these must be

4
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weighed according to the individual application.

13.1 Three-Dimensional FIR Filters

If a causal 3-D FIR filter of order NxNxN is given an input x(n l,n2,n 3'), the output

y {n x,n l ,n 3') can be expressed as

N  N  N

y i n } = X  Z  Z  ~ “  J>*h “  * )  0 - 0
,=0 j = 0  k=0

Examination of Equation 1.1 shows that the filter’s output is a weighted function of past 

input values. The term h{n^,n2,n 3') is known as the impulse response of the filter. The

transfer function of the above filter is obtained by taking the z-transform of Equation 1.1 

and is given as

AT N N
H (z „ z 2,z 3) = Z  Z  Z  k (nt in2in3)z l~‘z 2~Jz 3~k (1.2)

,=0 y=0 k=0

Equation 1.2 can also be written as

Z  £  Z
i t / ,  „ x ««o >0 *-0______________________  (13)" ( 2 i,Z2,Z3) “ v yv AT

Z1 Z2 3

Equation 1.3 shows that all poles o f this filter are located at the origin. As a result of this 

constraint on pole placement the stability of the filter is guaranteed. Therefore, no design

5
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effort is required to ensure the stability of an FIR filter.

Another advantage o f FIR filters is the ease with which they can be designed to have linear 

phase response, and therefore constant group delays, over the entire baseband[2].

The main disadvantage of FIR filters is directly related to their inherent stability. As 

mentioned, non-recursive filters are always stable because the poles are constrained to the 

origin. However, this constraint also reduces the possible steepness of the transition band. 

As a result, higher order filters are required to obtain specified transition specifications. 

These higher order translate into a higher implementation cost for the filter.

1.3.2 Three-Dimensional IIR Filters

If a causal 3-D IIR filter of order NxNxN is given an input , the output

y{n x,n 1,n i ) can be expressed as

N  N  N  (1.4)
y(n 1>*2.»3) = Z  Z  Z  a{i j ,k )x(nx -  /,«2 -  y,#i3 -  k)

/=0  y=0 4=0 

N N N
~ Z  Z  Z  bdJ*k)y{nx - i , ^  -  y,/i3 -  k)

i=0 7=0 4=0 

(/+j+k)*Q

As Equation 1.4 shows, the present value of the output is a function of the present and 

past values of the input, as well as past values of the output. Note that FIR filters are 

actually a subset o f IIR filters where all b(i,j, k) coefficients are equal to zero. By

taking the z-transform of Equation 1.4 and setting 6(0,0,0) equal to one, the transfer

function of a 3-D IIR digital filter is obtained as

6
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N  N  N

Z  Z  Z  o(i, j ,  k)zl~'z2~Jz3~k
r r f  .  _  <=0 7=0 *=0____________________________**\.ZltZ2,Z3) -  N N N

1 + Z  Z  Z  hOJ, k}z;lz-TJz { k 
,=0 7=0 *=0 
(i+7+*)#0

As Equation 1.5 shows, 3-D OR filters do not have their poles constrained to the origin. 

This gives DR filters a degree of design flexibility not available in FIR filters. A transition 

band specification that requires a high order FIR filter can be obtained using a much lower 

order UR filter. The required order of an FIR design can be as much as five to ten times 

higher than that of an IIR filter satisfying the same specifications^]. These lower orders 

can translate into lower implementation costs, and the cost difference is even more 

pronounced in the design of 3-D filters. This extra cost difference is a result o f the fact 

that the number of coefficients in a 3-D filter is exponentially (by a power o f three) higher 

than the number of coefficients in a 1-D filter design.

Despite its advantages, the IIR filter has a significant disadvantage compared to the FIR 

filter. This disadvantage is the IIR filter’s lack of inherent stability. Since the filter output 

is dependent on past output values, it can grow to infinity even though the filter is given 

finite input values. This presents a challenge in designing these filters to be stable.

Another disadvantage of recursive filters is their inherent non-linear phase response. 

Designing a filter with a constant delay and prescribed loss specifications is usually very 

difficult to do[3]. In general, if an application requires constant delay characteristics, these

7
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characteristics are achieved by cascading a filter that satisfies the magnitude response with 

a delay equalizer. In some applications, linear phase may not be o f great importance. In 

image processing however, two-dimensional images are very sensitive to phase 

distortion[3]. By extension, since each frame of a video sequence can be look upon as a 

two-dimensional image, linear phase is very important in video processing.

1 3 3  3-D FIR Filter Design Methods

1.3.3.1 Design Using Integration

The design of 3-D FIR filters using integration is very simple and straight-forward. Given 

the filter’s frequency response H{taX9a 2i(02) , the impulse response h{nx,n 1,n 3') can

be obtained as

| K K K
K n l,n 29n3) = j ^ T J J / « ( • .  , a 2,a 3)eAw'n'+ŵ +‘û )d6)lda)2d a 3 (1.6)

~  X — 1t~  1C

In general, calculation of this triple integral may be very difficult analytically. Therefore, 

Equation 1.6 is often calculated using numerical integration. This eliminates the need for 

an analytical solution, and it lends itself well to computer-aided analysis[l].

1.3.3.2 Design Using FFT and Window Functions

This design method is very similar to the one given in Section 1.3.3.1. Given a desired 

frequency response of a filter, the impulse response h(nx,n 2,n 3') can be obtained by use

of the Three-Dimensional Inverse Discrete Fourier Transform (IDFT). The IDFT is 

discussed in Chapter 3. While simple and straight-forward, this design method is sub-

8
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optimal due to the occurrence of Gibb’s Oscillations in which ripples appear in the 

passband and stop-band of the filter's magnitude response. These ripples can be reduced 

by applying a window function to the impulse response. The most common window 

functions are Hann and Hamming windows, Blackman windows, and Kaiser windows. 

These are 1-D windows that can easily be extended to two and three dimensions for 

application to two- and three-dimensional impulse responses [1][4][5][6].

1.3.3.3 McClellan Transformation

Another technique for designing 3-D FIR filters is obtained by extending the McClellan 

Transformation to three dimensions. This technique involves determ ining transformation 

coefficients, and then designing a 1-D FIR filter to be transformed using these coefficients. 

A large number of coefficients may result from this method, but this number can be 

reduced by imposing symmetry constraints [6].

1.3.3.4 Linear Programming

Linear Programming is a popular method for designing multidimensional filters. It is an 

iterative process that measures the difference between the desired and designed frequency 

responses, often as a sum-of-square-error, and minimizes this difference. Linear 

programming is a computationally expensive design method, but is becoming more 

practical as processing power becomes more easily available. More is said about linear 

programming in the next section.

9
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13.4 3-D IIR Filter Design Methods

1.3.4.1 Linear Programming [2][6][9]

The design of 3-D IIR filters using linear programming involves calculation of the filter's 

numerator coefficients a (i, J , k )  and denominator coefficients b(i, j ,  k ) such that the

magnitude response and/or phase response o f the designed filter approximates a desired 

response while maintaining stability in the filter. The transfer function given in Equation 

1.5 can involve two subclasses: the separable product transfer function and the separable 

denominator, non-separable numerator transfer function. These transfer functions are 

given in Equation 1.7 and 1.8 respectively.

H (z x,z 2,z 3) = H x (z, )H 2 ( z 2 )H 3 ( z 3 )  ( 1 ? )

(  N  \

X * i < » r  
1=0

(  N  \

X a zU )z2 ~ J
y=0

(  N  \

X ° ^ k ) z i k
k - 0

X b x( i ) z C
^  1=0 1

X b2U ) z 2 J
\  7=0

S
^  k =0 '

The separable product transfer function allows the filter to be designed as a cascade 

arrangement of three 1-D filters. In this way, stability is guaranteed by designing the 1-D 

filters to be stable. The major drawback of this design method lies in the tact that a 

spherical-symmetric specification cannot be obtained. A filter with a separable product 

transfer function will always have a cubic shaped magnitude response.

N  N  N

X X X  a ( i , j , k ) z x % -Jz2
i=Q 7=0 *=0_____________________

-k

-k
( 1.8)H { z x, Z 2 , Z 3)  = . N \ (  N V  N

Xm*>" Z*20>~y X b3( k ) z
>• 1=0 /  \  j=0 /  >■ k=0

The separable denominator, non-separable numerator transfer function has a denominator

10
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like that of the separable product transfer function. As a result o f this, the stability problem 

is reduced to that of the 1-D case. A filter having this transfer function can be designed by 

cascading a 3-D FIR filter with three 1-D all-pole DR filters. The separable denominator, 

non-separable numerator transfer function is more flexible than the separable product 

transfer function and can be used to design filters with spherical-symmetric 

specifications[7][8].

The general transfer function of Equation 1.5 gives the most flexible results since the 

constraints of Equation 1.7 and 1.8 are removed. Unfortunately this design method does 

not share the ease in designing for stability that the other methods do.

1.3.4.2 Bilinear Transformation

Another method of designing 3-D digital UR filters involves assigning a stable 3-variable 

polynomial in the denominator of an analog transfer function and applying the triple 

bilinear transformation. Unfortunately, not all analog filters will yield a stable digital filter 

upon application of the bilinear transformation 10]. There is a specific class of analog 

filters that will yield stable digital filters, and these analog filters have Very Strictly 

Hurwitz Polynomials (VSHP) as their denominators[11]. The use of VSHP denominators 

is used in the design o f both 2-D filters and 3-D filters[6]

1.3.4.3 Modified Shank’s Method

The final design method to be discussed here is another extension of a 2-D method. This

11
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2-D method is known as Shank’s Method[12] and is modified in [1] to provide a near- 

linear phase response. It uses a weighted error function that measures the difference 

between the desired magnitude response and the designed magnitude response. This error 

function is then minimized by taking the derivative with respect to each of the {a} and {b} 

coefficients and equating to zero. The resulting linear equations are then solved to obtain 

an ideal impulse response. This ideal impulse response is utilized in such a manner as to 

obtain a near-linear phase response for the filter. As a result of the advantages of HR 

filters over FIR filters, and the obtainable near-linear phase characteristic, the Modified 

Shank’s Method is used in this thesis. It is discussed in detail in Chapter 3.

1.4 Video Formats

The moving image sequences used in this thesis are found in digital video files. This 

section briefly discusses some of the digital video formats in common use today.

1.4.1 IL263 Video Standard

The H.263 standard is a video coding standard published by the International Telecom 

Union (ITU). It is specifically designed to accommodate low bit-rate applications where 

bandwidth is limited. In particular, this video format has become standard in the field of 

video telephony. The coding algorithm is a hybrid of inter-picture prediction, transform 

coding, and motion compensation. In essence, this standard is primarily a compression 

algorithm designed to allow higher flame rate video to be sent over low-bandwidth 

channels. The ITU H.263 Recommendation is available from the International Telecom 

Union.

12
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1.4.2 MPEG Video Standard

The MPEG-1 video standard is officially known as ISO/IEC Standard, Coded 

Representation o f Picture, Audio and Multimedia/hypermedia Information, ISO 11172. 

MPEG-2 is a related standard and since this discussion relates equally to both, they will be 

commonly referred to as the MPEG video standard. The MPEG video standard is the 

adopted standard for the emerging application of High Definition Television (HDTV). It 

has three types of frames: I-Frames, P-Frames, and B-Frames. I-Frames, or Intra-picture 

frames, are coded only using information present in the picture itself. P-Frames, or 

Predicted frames, are coded using the nearest previous I-Frame or P-Frame. B-Frames, or 

Bidirectional frames, are frames that use both a past and future frame as a reference. 

[http://www.c-cube.eom/technology/mpeg.html#MPEG Overview] Like the H.263 

standard, MPEG is primarily a compression algorithm. The MPEG standards are available 

from the International Standards Organization.

1.43 Microsoft Windows AVI Standard

The Microsoft Windows Audio Video Interleaved (AVI) format is a common video file 

format used to hold video sequences on Personal Computers (PCs) running the Microsoft 

Windows operating system. Unlike the H.263 and MPEG formats, the AVI is unsuitable 

for transmitting video data, and is not used in applications such as video-telephony or 

HDTV. It is a very simple video format which can often be found in an uncompressed 

form. The Microsoft Windows Application Program Interface (API) contains numerous 

functions for the manipulation of AVI files, and is well documented, allowing easy access

13
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and manipulation of the raw video data.

1.4.4 Comparison

Since this thesis is concerned with applications o f 3-D filters, one may at first assume that 

either the H.263 or MPEG standards would be an appropriate choice to use, since both 

are commonly used in real-world applications. However, as mentioned earlier, these 

formats are essentially compression standards. The application of using 3-D filters to 

increase video resolution is concerned not with compressed data, but rather with raw data. 

Any filtering algorithms developed to work on the raw data should also work with 

compressed formats. One need only decompress the data before filtering. For this reason, 

plus the wide availability of AVI files and AVI tools, the AVI format is preferable for the 

purposes of this thesis, since the raw data is more easily accessible than in the other 

formats. An added advantage to using this format arises from the fact that any PC running 

Microsoft Windows is capable o f playing an AVI file.

1.5 Current Applications o f 3-D Filters

Digital filters are widely used in the processing of 1-D and multidimensional signals. 1-D 

digital filters are commonly used in the area of speech or music processing. Other 

examples can be found in[13][14]. Due to the increased complexity and hardware cost of 

2-D filters, they are not used as often as 1-D filters. Some applications of 2-D filters 

include image processing and seismic signal processing[15]. Three-dimensional filters are 

even more complex and expensive than 2-D filters, and are therefore even less used. Their

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



use is becoming more practical as VLSI technology continues to improve. These filters are 

currently used in the field of geophysics[6].

1.6 Thesis Organization

This thesis is divided into six chapters. Chapter 2 discusses the process of digital 

interpolation. It begins with an introduction to the sampling theorem, and then gives an 

explanation o f interpolation in one dimension. Two methods of interpolation are 

discussed: interpolation using zero-padding, and interpolation using sample replication. 

These methods are then extended to three dimensions.

In Chapter 3 o f this thesis, recursive filter design using the Modified Shank’s method is 

discussed in detail. The three-dimensional Fast Fourier Transform is also developed.

The theory discussed in chapters two and three is tied together in Chapter 4 to outline the 

process used to create a three-dimensional digital interpolator (in software). The process 

of using this interpolator to increase the horizontal resolution, vertical resolution, and 

frame rate of an AVI video file is also given. Relevant details of the AVI format and the 

related BMP file format are provided.

The results o f the thesis are given in Chapter 5. Plots are provided showing the 

characteristics of the designed 3-D filter, and frames of the filtered AVI file are shown 

side-by-side with frames from the original file to compare the resolution and quality.

15
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A summary and conclusions are provided in the final chapter. A computer program written 

in Microsoft Visual C++ was used to test the theory o f this thesis and produce the results 

found in Chapter S. The source code for this thesis is found in Appendix A.

16
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Chapter 2: Digital Interpolation

2.1 The Sampling Theorem

The sampling theorem states that any bandlimited continuous signal x(t) with frequency 

spectrum X ( ja )  ) = 0 for \(o\ > , where 0 )s = 2x/ r  and T is the sampling period,

can be uniquely determined from its discrete values x(nT), where n is an integer[3]. This 

means that any signal sampled at greater than twice its highest frequency component can 

be reconstructed to any desired degree of accuracy.

A graphical description of the sampling theorem is given in Figure 2.1 and Figure 2.2.

1 ►
o  t

Figure 2.1(a): Continuous time signal x(t)

Figure 2.1(a) shows a one-dimensional continuous time signal denoted as x(t). If this

signal is now sampled by multiplying it with the unit pulse train p(nT) shown in Figure

2.1(b), then the discrete time signal x(nT) shown in Figure 2.1(c) is obtained.

17
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p(nT) A

1

0 T 2T 3T 4T 5T nT

Figure 2.1(b): Unit pulse train p(nT)

x(nT) ^

0 2T nT

Figure 2.1(c): Discrete time signal x(nT)
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X(iG>)A

>
0 Qb Qs Q

Figure 2.2(a): Frequency spectrum o f continuous time signal x(t)

P C e**)

-4ti/T -2tc/T 0 27C/T 4ic/T a)

Figure 2.2(b): Frequency spectrum of unit pulse train p(t)
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AAAAA
-4ic/T -27t/T 0 2n/T 4 n / T  co

Figure 2.2(c): Frequency spectrum of discrete time signal x(nT)

Figure 2.2 illustrates this process in the frequency domain. Figure 2.2(a) shows the 

frequency spectrum X(jto) o f the continuous time signal x(t). Figure 2.2(b) shows the 

frequency spectrum P(ejuT) o f the unit pulse train p(nT). The frequency spectrum X(e*"T) 

of the discrete time signal x(nT) is shown in Figure 2.2(c). The spectrum X(e*"T) is 

obtained by convolving X(jo>) with P(e*"T), since multiplication in the time domain is 

equivalent to convolution in the frequency domain. By examination of Figure 2.2(c), it can 

be seen that as long as o>s is greater than twice there will be no overlap between the 

frequency spectrum “images”. Therefore the original spectrum of the continuous time 

signal has not been distorted by sampling, and all the information about the signal is 

retained.

2.2 One-Dimensional Interpolation

Digital interpolation in one dimension can be achieved by combining an upsampler with a

20
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x [n iy  a T jJnT/L]
X(e*“T) _ _  Xu(ei"T/L) K } Y(e*“T/L)

—  ̂t L i—>
Upsam pler - inserts L-l samples between each pair o f  

samples x[nT] and x[nT+l]

H(e*“T/L)
Low Pass Filter - transition band centered about it/L

Figure 23: Block diagram of digital interpolation system 

lowpass filter as shown in Figure 2.3. [3][16] First consider the operation of the 

upsampler. If an upsampler using zero-padding is given an input x(nT), then its output 

x„(nT') can be expressed as

xCVl) foTn=0,±L,±2L,... 
where T  = t/ l  (2.1) 0 otherwise

which can also be written as

C O

x .inT) = £  x(kT)S(nT -  kLT) (2 J )
k=-
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By applying the z-transfoim to Equation 2.2 and substituting z  = e 1037 , Equation 2.3 is

obtained.

2  x(kT)S(nT -k L T )
_ i= -a o  J

00 OD

= 1 1
fc=-<c n=-®

O P

= £  x(kT)e-,‘*T

S(nT — kLT)e '  L
cmT

oo

(2J)

Equation 2.3 shows that the frequency spectrum of xK(nT') is identical to the frequency 

spectrum of x ( n T ) . Since T ' = T/ ,  o)' = £ 0 , and therefore the location of the

sampling frequency has been changed. Now in the range -  “A  < 0  < “A  there are L

x(nT) A

0 T 2T 3T 4T 5T nT

Figure 2.4(a): Discrete time signal x(nT)
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images o f X^e*0*7 ) . An interpolated signal jcj(«7v) with an increased sampling rate can 

be obtained from xu{nT) by using a lowpass filter to remove the extra images. The

0 T  2T' 3T' 4T' 5T’ 6T' 7T 8T’ 9T 10T’ 11T n T

Figure 2.4(b): Discrete time signal x(nT) with zero padding

y C u T 1)  A

0 r  2T 3 ?  4T' 5T' 6T 7T 8T' 9T' 10T' I IT' n T

Figure 2.4(c): Interpolator output y(nT) 
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combination o f the upsampler with the lowpass filter is called an interpolator. The 

interpolation process is shown graphically in Figure 2.4.

The method presented above will theoretically yield a perfect reconstruction o f the original 

signal, assuming an ideal low-pass filter is used. There is a variation of the above method 

which does not yield a perfect reconstruction, but is better suited to a hardware 

implementation. In this variation, the upsampler uses sample replication instead of zero 

padding. Now if the upsampler is given an input x(nT), and L is assumed to be equal to 

two, then the output xu(nT’) can be expressed as

qp qp

xu(n T )  = ^ x ( k T ) S (n T -  2kT)+ ^ x ( k T ) S ( n T -  (2k + I)T) (2.4)
k = -o d  t = —ao

Examination of Equation 2.4 shows that the upsampled signal consists of the original 

signal added to a time-shifted image o f itself. Application of the z-transform to the original 

and time-shifted signals gives

Aru( ^ <ur) = X ( e joiT) + e~Jm̂ X ( e J0,T) W >

By evaluating Equation 2.5 at various values of o), it can be noted that this modified 

upsampler using sample replication has a slight low-pass filtering effect on the signal. The 

justification for this slight distortion lies in the hardware implementation o f the upsampler. 

To use the zero- padding method, the original signal must be fed into the upsampler and a 

zero sample must be explicitly inserted between each sample. With the sample replication, 

the upsampling process is much easier as it only requires the filter to run at twice the 

speed, or sample rate, of the incoming signal.
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23 Three-Dimensional Interpolation

The procedure described in Section 2.2 will interpolate a one-dimensional signal such as 

an audio signal. To interpolate a three-dimensional video file, the procedure must be 

extended to three dimensions. Following the same method as before, the output o f the 

upsampler jru(n,7jr, n2T2, n3T3) can be expressed as

« x x 

l|*-« *2»—« t)«-C

For simplicity, let L=L,=L2=L3 and T=T,=T2=T3. Application of the z-transform and 

substitution of z x = eJa>'r  ,z 2 -  e y®z r ,z 3 = ej0>iT gives

X .(eJ~'T,e~'-T, e ~ T) = j  j  m  j  £  x ik ,T ,k2T ,k ,T )S in ,T - k . L T ^ T -  k1LT,nlT -  k,L T )

= I  I  I  I  t  I

= f  i  £  oc(i,7", k,T,k,T)e~'m'‘'re~ '^‘:re 

= X{ei*r,e”rieim'T)

(2.7)

As in the one-dimensional case, the frequency spectrum of the upsampled signal is 

identical to that of the original signal, while the sampling rates have been increased in each 

of the three dimensions. Now in the range

( -  m'A  < 0JX< “"A), ( -  <eo2 < A ), ( -  “'A  <oj3 < -’A )  there are L3 images o f the
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original spectrum. The three-dimensional interpolated signal x ,(« ,r ',n^T '^ T ')  with an

increased sampling rate in each dimension can be recovered by applying a lowpass filter 

with a cubic response to remove the unnecessary images.

As in the one dimensional case, there is the option of using sample (pixel) replication 

instead of zero-padding. In this case, the output of the upsampler will be

The output of the three-dimensional upsampler is the input added to a shifted version of 

itself. Transforming Equation 2.8 to the frequency domain gives

The result of Equation 2.9 shows that there is again a slight low-pass filtering effect on 

the signal when pixel replication is used. The justification for this method again lies in the 

hardware implementation. By using pixel replication, there is no zero-insertion required 

between each pixel, line, and frame. Instead, the result can be obtained by running the 

filter at eight times the original speed (a factor of two for each dimension).

(2.8)« ao ae
E E 'Z x(.kiT̂ kz ^ k 1T3)S(niri - (2 k l + l)Tl,n1T2-(2 k2 + l)T1,nJTJ-(2 k 3*l)T,)

A|«-e !)■-«

(2.9)
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Chapter 3: Filter Design

3.1 Introduction

As mentioned in the introduction, one of the goals o f this thesis involves the design o f a 

stable recursive filter with a near-linear phase response. A method for designing such 

filters already exists in two dimensions. This method will now be extended to three 

dimensions.

The following three-dimensional method for designing stable recursive filters with near- 

linear phase response is based on the filter design technique known as Shank’s 

Method[12]. Although this method is a spatial design method, or a space-time design 

method once extended to three dimensions, the derivation is given in the frequency 

domain for purposes o f clarity.

As given in Chapter 1, the transfer function of a three-dimensional recursive filter is 

described by

Note that is arbitrarily set to equal 1. By substituting z x — e im'T, z 2 = e jahiT,

27

3.2 Modified Shank’s Method for 2-D Filter Design[l]

N  N  N

t f ( z „ z 2,z 3) =
1=0 7=0 k=0

N  N  N (3.1)

i=o y=o *=o
(i + j  + k) * 0
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and z 3 = e j0h,T, the frequency response of the filter is obtained as

1T,  . A{(Qx,G)i ,(Oi )
H (0 „ 0 2,0 3) = (3.2)

where

A(6flta 2t0f3) = e j ^ r r e ja>2JTe ja>,kT ( J J )

,=0 y = o  *=0

and

N  N  N

B{0„02,0,) = 1 + 1 1  Z  (3.4)
i= o  y = o  *=0

(1 0

By now letting H d (tf>,,ty2,<0 3) represent the desired frequency response of the filter, an 

error function can be defined as

f(t»„© 2,©3)=  H d(a>x,G)2,6>3) -  " a (3.5)
" ( .^ 1 . ^ 2  > 3 )

When transformed back to the space-time domain, Equation 3.5 becomes

e (n l tn2,n 3)=  h d( t h { n i9n2, ni ') (3.6)

where hd is the desired impulse response and h(jiX9n2ini ') represents the
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impulse response of the designed filter. /r(/r,,« 2 ,« 3) is described by

V N  N  I t  N  N

h(n,,/**,/^) = X  Z  Z  a,jk#(ni ~ iyth -  j\rtj -  k ) - Z  Z  Z  bgMn\ ~ * * " 2  ~ J’n3 "  *)(3.7)
t>0 ;* 0  k m 0  tm 0  J m Q  4*0

Forming the Lj norm using the error function in Equation 3.6 gives

M-l M-1 M-1
0 = 1 1 1  e 2(,rh>niSh) (3.8)

#ti=0#i2=0nr3=0

where Af x Af x Af points are taken from the impulse response for this computation. 

The design o f the filter now consists of determining the values of the {a } and {b}

coefficients such that the expression in Equation 3.8 is minimized. This is done by taking 

the derivative of Q  with respect to each coefficient and equating the resulting equations

to zero. This results in Equation 3.9 and Equation 3.10.

dQ 2y  y  y  ,
a a xyz n,=0n2=0/i3=0 a a xys (3 *^)

and

xyz n,=0n2=0/i3=0 ( 3 .1 0 )

x ,y ,z  = 0,1,2,.. . ,N  (x + y  + z ) * 0
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Equation 3.9 generates ( N  + 1) x ( jV + 1) x ( N  + 1) nonlinear equations in {a} , while 

Equation 3.10 generates ( N  + 1) x ( N  + 1) x ( Af + 1 ) — 1 nonlinear equations in {6}. 

There are 2 {N  + 1) x (Af + 1) x (Af + 1) — 1 filter coefficients, and these generated

equations form a complete set from which the coefficients can be solved.

While solvable, the above system of equations is highly nonlinear. To avoid this non- 

linearity, reconsider the error equation of Equation 3.5 in the following form

£ ( f i> „ f i> 2 , r » 3 )  =  i ? ( f i> , ,© 2 , a)2 ,a>3 ) ~  A ( 0 l9 0 2 , 0 3 )  ( 3 .1 1 )

where e ( a x,d)2, 0)3 )B(Q)x,(0 2,(D3) has been replace by a “weighted” error term 

£{co^,(Q2,Q)3) . Now transformation of Equation 3.11 to the space-time domain results in 

the error equation

N  S  N  N  N  N

/ ( n , , ^ , / ^ )  =  X  Z  Z  bvkh d ( " i  -  -  h n 3 -  * ) -  Z  Z  Z  I -  -  * ) ( 3 . 1 2 )
1*0 y*0 k m 0 1*0 7*0 1*0

Forming the norm again, but now using the modified error term results in

M-\ M-1 M—\
Q =  E  X  X  £ 2 ( » , , « 2 . * % )  ( 3 .1 3 )

n,=0n,=0n3=0

It should now be clear why this derivation began in the frequency domain, despite the fact 

that it is a space-time design method. By beginning the derivation in the frequency domain, 

it is clearly shown that the error being minimized in Equation 3.13 is a “weighted” error,
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and not the true error.

This new error Q  can be minimized by differentiating with respect to each o f the filter 

coefficients, and setting the resulting equations equal to zero. Differentiating Q  with

respect to the {a} coefficients gives

SQ_ M - l k i - l M - l T  f t  H  N  N  N  N  1

= 2Z  Z  Z I Z Z Z a * g ( n \ - - y.«3- *) - Z Z Z -/,«3-*)po»t- - y ,< h - z> = o ,
« ,a 0 « .a 0 l l3 * 0 |_  1 * 0  /a O  H O  /aQ  ;a O  t « 0  J  I 14)

X , y , 2  = 0,1,2 yv

This reduces to

V  N  N

= X  Z  X  ^  -  *)i=0 y=0 *=0
«1, «2, «3 = 0,1,2,..., N

(3.15)

As aresult of Equation 3.15, Equation 3.13 can be rewritten as

M —l A/-1 M -\

Q = z z z
/il=Af-*-l n2=N+\ «3=JV+l

N  N  N 12

Z Z Z v A<,("i -  *»'*! -  . / ’ " j  -  * )
1=0 7=0 jfc=0

(3.16)

since a rt|*2,,3 = 0 for N  + 1 < , «2, « 3  < M - l .  Now m inim ize by differentiating

with respect to the {6} coefficients and equating the resulting equations to zero. This

gives

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



> 1  M -l M - 1  A f - I

J 2- 2 !  I  x^ ^ jy z  r^mN+l « j * A T + l

x,y,z = 0,lA —,TV

N  N N

Z  Z  Z  -  '»«z -  /.« j -  *)
__ /*0 y«0 **0

^(n , -  x,/ij -  ̂ ,n, -  z) = 0(3.17)

which reduces to

v  Af v  U - l  A / - I  a / - i    _  .

ZZZ*# Z Z = - Z Z Z ̂ d(>h^,h ’fb ) ^ ( n i ~ x <nz ~  1111
<•0 j-Q  A -0  « , . A » l i , a .V » l a , * A » l

t f - l  A / - I  A / - 1  A / - I  M . |  u . |

These equations generate (TV + 1) x (TV + 1) x (TV' + 1) linear equations in {a} and 

( N  + 1) x (TV + 1 ) x (TV +1) — 1 linear equations in {b}. This set of linear equations 

can easily be solved for the filter coefficients.

33  Designing the 3-D Recursive Filter[l]

Once the desired impulse response is generated, a decision must be made as to how this 

response should be utilized. There are four possible options for the utilization o f the 

impulse response:

1. Use the eight cubes of the impulse response (entire large cube shown in Figure 

3.1) with the origin being at the center of the array.

2. Shift the axis such that the entire impulse response is in the cube where 

n „ « 2,«3 > 0 .

3. Take the impulse response from only one cube of the array where w3 > 0

(only utilize 1/8 of the impulse response). This option is depicted by the dotted
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cube in Figure 3.1.

Figure 3.1: Utilization of Impulse Response 

4. Shift the axes by an amount that is large enough to include the largest components 

of the impulse response in the cube « ,,n 2, «3 > 0 and use this cube. This option is

depicted by the dashed line in Figure 3.1.

The first option cannot be used since a filter's impulse response must be zero in the range 

(/i, < 0 ) , (« 2 < 0 ) , and < 0) for the filter to be causal.

The second option will provide a causal filter, but the order of the filter will need to be at 

least {MAX MAX MA) • The need for such a high order is a result o f the large delay of the
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impulse response in all directions. The third option will also provide a causal filter since 

values o f are only used when (« , > 0 ) ,  > 0 ) , and («3 > 0 ) . Due to

symmetry, the complete magnitude spectrum can be obtained by using only the one cube. 

However, while the magnitude spectrum will be preserved, the phase characteristic will 

not be preserved. Since linear phase is very important in video processing applications, this 

method is unsatisfactory.

In the fourth option, two characteristics o f the impulse response are made use o f :

i) The impulse response decays rapidly away from the origin.

ii) A shift in the impulse response in the space-time domain corresponds to the addition o f 
a linear phase to the frequency domain.

Since the larger values of the impulse response (shown as the sphere in the middle o f cube

of Figure 3.1) are being used (which have the largest influence on the magnitude and

phase response), and a linear shift is being added to a filter originally specified as zero-

phase, this method can be used to design filters with near-linear phase characteristics. By

using this method, most of the characteristics of the original desired frequency response

are preserved without the large delay that would exist if  the entire impulse response were

used. It has been found[l] that the “shift” specified in Option 4 is best set to N -l in each

dimension.

3.4 Three-Dimensional Inverse Fast Fourier Transform

Since the method discussed above is spatio-temporal, it requires the ideal impulse 

response before the error function can be formed. Usually however, a filter's specification
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is given in terms of its frequency response. Therefore a method of transforming the 

frequency response into the impulse response is required. The most straight-forward way 

of doing this is through the use of the Three-Dimensional Inverse Discrete Fourier 

Transform (IDFT), given by

N i- lN 2- W 3- l

x(k^k2,k3) = W|A);W] £  £  £  x { « , , , « 3y (3.19)
/ii=0 r2=0r3=0

If a filter with a cubic response is used, then the assignment N,=N2=N3=N can be made for 

simplicity and Equation 3.19 can be rewritten as

x{k„k2,k3)
nl=0n2=0

A f-1

7TX  x(n l ,n2,n 3)eJ* n3k3
n3=0

yj^s\n2̂ 2 +n3*3 ) (3 20)

Now let

N - \

G(/j,,n2,Ar3)= x(n1,R2,«3)eJ*"A
n3=0 (3*21>

fo r  w, , « 2  = 0 ,1 ,2 , - 1

Equation 3.21 is essentially the one-dimensional IDFT of the n2rt row of the n /A “frame’ 

This is shown graphically in Figure 3.2(a). Using Equation 3.21, the following can be 

stated
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, Ar2 , A:3 )  =  j f Y ,  C ? ( « 1 ,K 2 ,A r3 ) e J,^ n2*2
« j= 0  <*»>

fo r  «i , ^ 3 = 0 ,1 ,2 , " ,  AT- 1

Equation 3.22 is the one-dimensional IDFT of the resulting k3'* column of the n,'* “ftame”. 

This is shown graphically in Figure 3.2(b). Now consider the following

X ( k x , k 2 , k 3 ) =  H (n x, k 2 , k 3 )eJ^ nA
n,=0

f o r  k 2 , k 3  = 0 , 1 ,2 , - - - ,AT-  1

Equation 3.23 is essentially the one-dimensional IDFT o f each resulting “depth vector” of 

the array. This is shown graphically in Figure 3.2(c). What has been accomplished above is 

the breakdown of the Three-Dimensional Inverse Discrete Fourier Transform into multiple 

One-Dimensional Inverse Discrete Fourier Transforms. This method can be used to take 

advantage of the computational efficiency of the One-Dimensional Fast Fourier Transform 

when the desired impulse response is formed for the modified Shank’s method presented 

earlier.
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Figure 3 J : Three-Dimensional Fast Fourier Transform
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Chapter 4: Implementation

4.1 Introduction

With the basic theory presented, the actual process of using a three-dimensional filter to 

improve video resolution is now tested. This is done by extracting the raw data from the 

video file, filtering it, and reconstructing the file for playback comparison. This process is 

illustrated in Figure 4.1. As mentioned in the introduction of this thesis, there are many 

functions available in the Microsoft SDK to modify AVI files. These functions are 

grouped under the AVIFile library. One particular function o f interest extracts an 

individual frame of video as a Microsoft BMP bitmap image. Since four of the six steps (as 

outlined in Figure 4.1) involve AVI or BMP file manipulation, this chapter begins with an 

overview of the AVI and BMP file formats. The rest of the chapter discusses each step of 

the flowchart in Figure 4.1. Code snippets used in the Filter3D program dealing with the 

AVI codec are given at the end of the chapter, and described throughout the chapter.

4.2 AVI and BMP File Formats 

4.2.1 AVI File Format

The AVI format is a sub-format of the Microsoft Resource Interchange File Format 

(RIFF). This format is based on the Electronic Arts Interchange File Format (IFF)[17] 

which is a general purpose data storage format for associating and storing multiple types 

o f data. As the name implies, an Audio Visual Interleaved (AVI) file can contain both 

Audio and Video data.
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While the IFF format uses tagged blocks of data called chunks, the AVI format handles its 

information as data streams. Data streams broadly refer to the components o f a time-based 

file, either audio or video in the case of AVI files. This thesis is concerned only with the 

video stream of a file, and audio streams are ignored when reading the AVI files. Each 

AVI file consists of one file header, one or more stream headers, and the file data. The 

structures AV1F1LEINFO and AVISTREAMINFO hold the file header and stream header 

respectively. The following structure definitions are taken directly from the Microsoft 

Developer Studio help files.

The AVIFILEINFO structure contains global information for an entire
AVI file.

t y p e d e f  s t r u c t  {
DWORD d w M a x B y t e s P e r S e c ;
DWORD d w F l a g s ;
DWORD d w C a p s ;
DWORD d w S t r e a m s ;
DWORD d w S u g g e s t e d B u f f e r S i z e ;
DWORD d w W i d t h ;
DWORD d w H e i g h t ;
DWORD d w S c a l e ;
DWORD d w R a t e ;
DWORD d w L e n g t h ;
DWORD d w E d i t C o u n t ;
c h a r  s z F i l e T y p e [ 6 4 ] ;

} A V I F I L E I N F O ;

Members
dwMaxBytesPerSec

Approximate maximum data rate of the AVI file. 

dwFlags

Applicable flags. The following flags are defined: 

AVIFILEINFOHASINDEX

The AVI file has an index at the end of the file. For good performance, all 
AVI files should contain an index.
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AVIFELEINFOMU STU SEINDEX

The file index contains the playback order for the chunks in the file. Use 
the index rather than the physical ordering of the chunks when playing back 
the data. This could be used for creating a list of frames for editing.

AVIFILEINFOJSINTERLEAVED

The AVI file is interleaved.

AVTFILEINFOWASCAPTUREFILE

The AVI file is a specially allocated file used for capturing real-time video. 
Applications should warn the user before writing over a file with this flag 
set because the user probably defragmented this file.

AVTFILEINFOCOPYRIGHTED

The AVI file contains copyrighted data and software. When this flag is 
used, software should not permit the data to be duplicated.

dwCaps

Capability flags. The following flags are defined: 

AVIFILECAPSCANREAD

An application can open the AVI file with with the read privilege. 

AVEFILECAPSCANWRITE

An application can open the AVI file with the write privilege.

AVIFILECAPSALLKEYFRAMES

Every frame in the AVI file is a key frame.

AVIFILECAPSNOCOMPRESSION

The AVI file does not use a compression method.

dwStreams

Number of streams in the file. For example, a file with audio and video has 
at least two streams.

dwSuggestedBufferSize

Suggested buffer size, in bytes, for reading the file. Generally, this size
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should be large enough to contain the largest chunk in the file. For an 
interleaved file, this size should be large enough to read an entire record, 
not just a chunk.

If the buffer size is too small or is set to zero, the playback software will 
have to reallocate memory during playback, reducing performance.

dwWidth

Width, in pixels, of the AVI file. 

dwHeight

Height, in pixels, of the AVI file. 

dwScale

Time scale applicable for the entire file. Dividing dwRate by dwScale 
gives the number of samples per second.

Any stream can define its own time scale to supersede the file time scale. 

dwLength

Length of the AVI file. The units are defined by dwRate and dwScale. 

dwEditCount

Number of streams that have been added to or deleted from the AVI file. 

szFileType

Null-terminated string containing descriptive information for the file type.

The AVISTREAMINFO structure contains information for a single 
stream.
t y p e d e f  s t r u c t  {

DWORD f c c T y p e ;
DWORD f c c H a n d l e r ;
DWORD d w F l a g s ;
DWORD d w C a p s ;
WORD w P r i o r i t y ;
WORD w L a n g u a g e ;
DWORD d w S c a l e ;
DWORD d w R a t e ;
DWORD d w S t a r t ;
DWORD d w L e n g t h ;
DWORD d w I n i t i a l F r a m e s ;
DWORD d w S u g g e s t e d B u f f e r S i z e ;
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DWORD d w Q u a l i t y ;
DWORD d w S a m p l e S i z e ;
R E C T  r c F r a m e ;
DWORD d w E d i t C o u n t ;
DWORD d w F o r m a t C h a n g e C o u n t ;  
c h a r  s z N a m e [ 6 4 ] ;

} A V IS T R E A M IN F O ;

Members
fccType

Four-character code indicating the stream type. The following constants 
have been defined for the data commonly found in AVI streams:

streamtypeAUDIO Indicates an audio stream.
streamtypeMIDI Indicates a MIDI stream.
streamtypeTEXT Indicates a text stream,
streamtypeVIDEO Indicates a video stream.

fccHandler

Four-character code of the compressor handler that will compress this 
video stream when it is saved (for example,
mmioFOURCCC'MysyvyC')). This member is not used for audio 
streams.

dwFlags

Applicable flags for the stream. The bits in the high-order word of these 
flags are specific to the type of data contained in the stream. The following 
flags are defined:

AVISTREAMINFODISABLED

Indicates this stream should be rendered when explicitly enabled by the 
user.

AVISTREAMINFOFORMATCHANGES

Indicates this video stream contains palette changes. This flag warns the 
playback software that it will need to animate the palette.

dwCaps

Capability flags; currently unused.
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wPriority

Priority of the stream. 

wLanguage 

Language o f the stream. 

dwScale

Time scale applicable for the stream. Dividing dwRate by dwScale gives 
the playback rate in number o f samples per second.

For video streams, this rate should be the frame rate. For audio streams, 
this rate should correspond to the audio block size (the nBlockAlign 
member of the WAVEFORMAT or PCMWAVEFORMAT structure), 
which for PCM (Pulse Code Modulation) audio reduces to the sample 
rate.

dwRate

See dwScale.

dwStart

Sample number of the first frame o f the AVI file. The units are defined by 
dwRate and dwScale. Normally, this is zero, but it can specify a delay time 
for a stream that does not start concurrently with the file.

The 1.0 release of the AVI tools does not support a nonzero starting time.

dwLength

Length of this stream. The units are defined by dwRate and dwScale. 

dwInitialF rames

Audio skew. This member specifies how much to skew the audio data 
ahead of the video frames in interleaved files. Typically, this is about 0.7S 
seconds.

dwSuggestcdBufferSize

Recommended buffer size, in bytes, for the stream. Typically, this member 
contains a value corresponding to the largest chunk in the stream. Using 
the correct buffer size makes playback more efficient Use zero if you do 
not know the correct buffer size.
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dwQuality

Quality indicator of the video data in the stream. Quality is represented as a 
number between 0 and 10,000. For compressed data, this typically 
represents the value of the quality parameter passed to the compression 
software. If set to -  1, drivers use the default quality value.

dwSampleSize

Size, in bytes, o f a single data sample. If the value of this member is zero, 
the samples can vary in size and each data sample (such as a video frame) 
must be in a separate chunk. A nonzero value indicates that multiple 
samples of data can be grouped into a single chunk within the file.

For video streams, this number is typically zero, although it can be nonzero 
if all video frames are the same size. For audio streams, this number should 
be the same as the nBlockAlign member of the WAVEFORMAT or 
WAVEFORMATEX structure describing the audio.

rcFrame

Dimensions o f the video destination rectangle. The values represent the 
coordinates of upper left comer, the height, and the width o f the rectangle.

dwEditCount

Number of times the stream has been edited. The stream handler maintains 
this count

dwFonnatChangeCount

Number of times the stream format has changed. The stream handler 
maintains this count.

szName

Null-terminated string containing a description of the stream.

4.2.2 BMP File Format

The Microsoft BMP file format is the native bitmap format of the Microsoft Windows 

operating environment and is used to store virtually any type of bitmap data[17]. BMP
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files consist o f a file header, bitmap header, optional colour palette, and the bitmap data.

All BMP files contain a file header and bitmap header (older bitmap files may only contain

a file header, but those older formats are not discussed here). The colour palette exists if

the number o f bits constituting each pixel is eight or less (<= 8bpp). Since greyscale

images are 8bpp, the BMP files examined here all have a colour palette. The structures

BITMAPFILEHEADER and BITMAPINFOHEADER hold the file header and bitmap

header respectively. The following definitions are taken directly from the Microsoft

Developer Studio help files.

The BITMAPFILEHEADER structure contains information about the 
type, size, and layout of a file that contains a device-independent bitmap 
(DIB).
t y p e d e f  s t r u c t  ta g B IT M A P F IL E H E A D E R  { / /  b m f h

WORD b f T y p e ;
DWORD b f S i z e ;
WORD b f R e s e r v e d l ;
WORD b f R e s e r v e d 2 ;
DWORD b f O f f B i t s ;

} B IT M A P F IL E H E A D E R ;

Members
bfType

Specifies the file type. It must be BM. 

bfSize

Specifies the size, in bytes, of the bitmap file.

bfReservedl

Reserved; must be zero.

bfReserved2

Reserved; must be zero.

bfOflBits
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Specifies the offset, in bytes, from the BITMAPFILEHEADER structure 
to the bitmap bits.

The BITMAPINFOHEADER structure contains information about the 
dimensions and color format of a device-independent bitmap (DIB).

t y p e d e f  s t r u c t  ta g B IT M A P IN F O H E A D E R f  / /  b m i h
DWORD b i S i z e ;
LONG b i W i d t h ;
LONG b i H e i g h t ;
WORD b i P l a n e s ;
WORD b i B i t C o u n t
DWORD b i C o m p r e s s i o n ;
DWORD b i S i z e I m a g e ;
LONG b i X P e l s P e r M e t e r ;
LONG b i Y P e l s P e r M e t e r ;
DWORD b i C l r U s e d ;
DWORD b i C l r l m p o r t a n t ;

} B IT M A P IN F O H E A D E R ;

Members
biSize

Specifies the number o f bytes required by the structure. 

biWidth

Specifies the width o f the bitmap, in pixels. 

biHeight

Specifies the height of the bitmap, in pixels. If biHeight is positive, the 
bitmap is a bottom-up DIB and its origin is the lower left comer. If 
biHeight is negative, the bitmap is a top-down DIB and its origin is the 
upper left comer.

biPlanes

Specifies the number of planes for the target device. This value must be set 
to 1.

biBHCount

Specifies the number o f bits per pixel. This value must be 1, 4, 8, 16,24, or 
32.
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biComprcssion

Specifies the type o f compression for a compressed bottom-up bitmap 
(top-down DIBs cannot be compressed). It can be one of the following 
values:
biXPebPerMeter

Specifies the horizontal resolution, in pixels per meter, of the target device 
for the bitmap. An application can use this value to select a bitmap from a 
resource group that best matches the characteristics of the current device.

biYPebPerMeter

Specifies the vertical resolution, in pixels per meter, of the target device for 
the bitmap.

biClrUsed

Specifies the number of color indices in the color table that are actually 
used by the bitmap. If this value is zero, the bitmap uses the maximum 
number of colors corresponding to the value of the biBitCount member 
for the compression mode specified by biComprcssion.

If biClrUsed is nonzero and the biBitCount member is less than 16, the 
biClrUsed member specifies the actual number of colors the graphics 
engine or device driver accesses. If biBitCount is 16 or greater, then 
biClrUsed member specifies the size of the color table used to optimize 
performance of Windows color palettes. If biBitCount equals 16 or 32, 
the optimal color palette starts immediately following the three doubleword 
masks.

If the bitmap is a packed bitmap (a bitmap in which the bitmap array 
immediately follows the BITMAPINFO header and which is referenced 
by a single pointer), the biClrUsed member must be either 0 or the actual 
size of the color table.

biClrlmportant

Specifies the number of color indices that are considered important for 
displaying the bitmap. If this value is zero, all colors are important.
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43 Obtain Standard AVI File

The first step o f the flowchart, obtaining a standard AVI file, is very simple. There are 

many AVI files readily available on the Internet. For this thesis, certain considerations are 

made in the selection o f suitable AVI files. First, to simulate the type of video typical of a 

common application such as video-telephony, AVI files with frame rates o f approximately 

10-15 frames per second are selected. Another consideration that must be made in the 

selection o f AVI files for the “Proof-of-Concept” in this thesis involves the subject of 

colour. Only grayscale video files are used in this thesis. The reasoning behind this relates 

to the fact that filtering pixels with colour is a straight-forward extension o f the method 

used to grayscale pixels. There are two methods for performing this filtering: filtering the 

three primaries separately, and filtering only the luminance values. Both o f the methods 

are discussed in detail in [1].

4.4 Extract Individual Frames

The next step in the implementation involves extracting each frame of video from the file. 

Refer to the code supplied at the end of this chapter for the actual code used in this and 

subsequent AVI-related steps. As mentioned in the introduction, the Microsoft SDK has 

many functions for manipulating AVI files. To use these functions, the AVIFile library 

must be initialized using AVIFilelnit. The AVI file is then opened using AVIFileOpen. 

This function can also be used to create new AVI files for writing. The next step is to 

obtain the video stream using AVIFileGetStream. As mentioned, AVI files can contain 

multiple streams, where one stream may be video and the others audio. The audio stream
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is ignored in this step. With the video stream extracted, die original AVI file can now be 

closed using AVIFileClose. By using the functions AVTStreamStart and AVIStreamEnd, 

the original number o f frames can be calculated. The use of AVIStreamGetFrameOpen is 

used to prepare for the extraction o f a frame from the stream. Then the function 

AVIStreamGetFrame is called. This function returns a pointer to a  specified frame of 

video as a Device Independent Bitmap (DIB). The DIB format is also commonly known 

as the Microsoft Bitmap (BMP) format, which was discussed in the introduction of this 

chapter.

4.5 Extract Raw Pixel Data from Frames

The BMP file format is a very simple format to extract data from. Since only grayscale 

(8bpp) images are used, each entry in the bitmap data is an index to the Red-Green-Blue 

(RGB) value stored in the palette. The fact that the images are grayscale means that 

R=G=B. If the images were not grayscale, luminance (grayscale) values could still be 

obtained from the RGB colour values using the following equation[l].

Y  = 03 R  + 0 5 9 G  + 0.1 IB  (5.1)

Equation 5.1 is based on the relative sensitivity of the human eye to the different primary 

colours. By using Equation 5.1, pixel data can be extracted from either a colour or 

grayscale palette.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.6 Apply 3-D Filter to Raw Data

This section comprises the central part of the thesis. The previous steps in the

implementation are primarily for the purpose of accessing the raw video data. The

following algorithm explains the process involved in filtering a sequence o f images with a

three-dimensional filter. Refer to Figure 4.2 for a graphical representation of the process.

Clear wx and wy
For n=0,1,2,... ,image_depth-1
{

Transfer nth frame of video to 1st frame of wx 
wx[0][j][k] = video[n][j][k] for j=0,1,2,...,image_height-l,

k=0,1,2,... ,image_width-1

For ml=0,l,2,...,image_height-l
{

For m2=0,1,2,.. .,image_width-1
{

V N N
wy[0H/wJtmJ = Z  Z  Z  -  k]

/= 0  j =0 *= 0

N  N  N

-  Z  Z  Z  bak^yiQif"i ~ 2 -  k]
(=0 7=0 k=0  

(« + j  + k  *  0)

}
}

Transfer 1st frame of wy into output video
Output[n]jj][k]=wy[0]li]M forj=0,l,2,...,image_height-l,

k=0,1,2,...,image_width-1

Shift frames of wx and wy 
fram eM -  fra m et

}
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4.7 Reconstruct Frames

With the data filtered, each frame is placed back in BMP format to prepare for insertion 

into the AVI format. This is a simple task which involves re-attaching the file and bitmap 

headers to the new raw data. Since the data is entirely 8-bit luminance values, they already 

act as indexes into a linear colour palette ranging from zero to 255 with each R, G, and B 

entry equal. If the original image was grayscale, this palette already exists. If the original 

image had been colour and was converted to grayscale for processing then the old colour 

palette must be replaced with the linear grayscale palette mentioned above. The original 

file header remains unchanged, while the only fields of the original bitmap header that 

differ after the filtering are biWidth, biHeight, and biSizelmage. The width and height 

fields will each be double the original value, while the image-size field will be four times 

larger.

4.8 Reconstruct AVI File

The final step of the flowchart of Figure 4.1 is the reconstruction of the AVI file. Like the 

extraction of frames from the file, this step involves using specific functions in the AVIFile 

library. Similar to the reconstruction of the BMP frames where the original headers are 

reused with only slight modifications, much of the stream header information can be 

reused from the original. In this case, the following fields of the header are changed: 

dwRate is doubled, dwLength is doubled, dwSuggestedBufferSize is quadrupled, and the 

length and width of rcFrame are each doubled. Using the modified header, a new stream 

can be created by using the function AVIFileCreateStream. The format of the stream is
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then set using AVIStreamSetFormat. With this done, the stream is now ready to have a 

filtered frame inserted by using AVIStreamWrite. These steps are required for writing the 

first frame of filtered video data to the file. Now as each subsequent frame o f filtered 

video is obtained, it can be added to the stream using AVIStreamWrite. The resources 

from decompressing the frame then need to be released by using 

AVIStreamGetFrameClose. Both streams, old and new, are closed using 

AVTStreamClose, and AVIFileClose is used to close the new AVI file. The function 

AVIFileExit is then used to exit the AVIFile library.
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Figure 4 i(a ): Original moving image sequence.
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Figure 4.2(b): Wx image buffer. 
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FLOAT
Wy

2*image_height

2*image_width 

Figure 4.2(c): Wy image buffer.

2 * image_depth

BYTE

2* image_height

2*image_width

Figure 4.2(d): Filtered moving image sequence.
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4.9 Sample AVI Code

// Initialize AVIFile library 
AVIFilelnitO;

// Open AVI file for reading
hr = AVIFileOpen(&pFilejn_lpstrFileName,OF_READ,NULL); 
if(hr!=AVIERR_OK)
{

AfxMessageBox("An Error Occurred Opening the Input File.”); 
return FALSE;

}

// Create new AVI file for writing
hr = AVIFileOpen(&pFileNew^nJpstrNewFileName,OF_WRITE|OF_CREATE,NULL); 
ifthr!=AVIERR_OK)
{

AfxMessageBox("An Error Occurred Creating the Output File.”); 
return FALSE;

}

// Open AVI stream for reading
hr = AVIFiIeGetStream(pFile,&pStream,streaintypeVIDEO,0); 
if(hr!=AVIERR_OK)
{

AfxMessageBox(” An Error Occurred Opening the Input Stream.”); 
return FALSE;

}

// Close original AVI file 
AVIFileClose(pFile);

// Calculate number o f frames in stream
numFrames = AVIStreamEnd(pStream)-AVIStreamStart(pStream);

// Prepare to decompress video frames from stream 
getFrameObj = AVIStreamGetFrameOpen(pStream,NULL);

// Obtain address o f first decompressed video frame 
tempFramePtr = (BYTE *)AVIStreamGetFrame(getFrameObj,0);

// Get header from old stream
hr -  AVIStreamInfo( pStream, AstrHdrOld, sizeof(strHdrOld) );
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iffhr != AVIERROK)
{

AfxMessageBox("An Error Occurred Reading Old Stream Header."); 
return FALSE;

}

// Fill in the header for the new video stream
memset(&strHdrNew,0^izeof(strHdrNew));// Set strHdrNew to zero
strHdrNew.fccType = streamtypeVIDEO; // stream type
strHdrNew.fccHandler = 0; //Compressor Code
strHdrNew.dwScale = strHdrOld.dwScale; // Time Scale
strHdrNew.dwRate = 2*strHdrOld.dwRate; II Frames per second
strHdrNew.dwLength = 2*strHdrOld.dwLength; //N um ber o f frames
strHdrNew.dwSuggestedBufferSize = 4*bmiHeader.biSizehnage; // buffer size
SetRect(&strHdrNew.rcFrame,0,0,2*bmiHeader.biWidttt2*bmiHeader.biHeight); // rectangle for

stream

// Create the new stream
hr = AVIFileCreateStream(pFileNew,&pStreamNew,&strHdrNew); 
if(hr != AVIERROK)
{

AfxMessageBox("An Error Occurred Creating the Output Stream."); 
return FALSE;

}

// Set format o f new stream
hr = AVIStreamSetFormat(pStreamNew,0,framePtr,

bmiHeader.biSize +
bmiHeader.biClrUsed*sizeof(RGBQUAD));

if(hr != AVIERR OK)
{

AfxMessageBox("An Error Occurred Setting the Output Stream Format"); 
return FALSE;

}

// Write frame to new stream
hr = A VIStream Write(pStreamNew,0,1,

framePtr + imageOffset,
4*bmiHeader.biSizeImage,
AVIIFKEYFRAME, NULL, NULL);

if(hr != AVIERRjOK)
{

AfxMessageBox("An Error Occurred Writing to the Output Stream."); 
return FALSE;

}

// Write frame to new stream
hr = A VIStream Write(pStreamNew,frame, 1,
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framePtr+ imageOffset,
4*bmiHeader.biSizeImage,
AVIIFKEYFRAME, NULL, NULL);

ifl[hr != AVIERR_OK)
{

AfxMessageBox(”An Error Occurred Writing to the Output Stream."); 
return FALSE;

}

// Close the files and streams
AVIStreamGetFrameClose(getFrameObj);
AVIStreamClose(pStream);
AVIStreamClose(pStreamNew);
AVIFileCloseCpFileNew);

AVIFileExitO;
return TRUE; // function completed successfully

}
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Chapter 5: Results

5.1 Introduction

All results given in this chapter except plotting, which is done using MATLAB, are 

generated using a computer program developed using Microsoft Visual C++. This 

program designs a 3-D HR filter using the Modified Shank’s Method of Chapter 3, and 

uses it to perform filtering o f an AVI file using the process given in Chapter 4. This 

software implementation of a 3-D filter provides a basis for forming conclusions about the 

validity of the theory given in the preceding chapters. These conclusions are provided in 

Chapter 6.

5.2 Filter Design Results

After starting the program Filter3D, selecting ‘New’ from the toolbar or the File menu 

presents a dialog box requesting parameters for the design of the 3D filter. Figure 5.1 

shows this dialog box. The values given in Figure 5.1 are the default values for the filter. 

The results in this chapter are generated using a value of 32 as the number of samples. The 

default values are used for the other design options. By clicking the OK button, the filter is 

designed using the Modified Shank’s Method discussed earlier in the thesis. The resulting 

filter coefficients are given in Figure 5.2.
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Figure 5.1: Filter Settings Dialog Box

0.03194
0.04542
0 .02(72

(a) Coefficients:
0.04542
0.06459
0.03800

0.02672
0.03800
0.02236

1.00000
-0.25231
0.25913

(b) Coefficients: 
- 0.25231 0.25913
0 .0(366

- 0.06538
- 0 .0(538
0.06715

0.04542 0.0(459 0.03800
0.06459 0.09185 0.05404
0.03800 0.05404 0.03180

•0.25231 0.0(366  - 0.06538
0 .0(366 - 0.01606 0.01650

- 0.06538 0.01650 - 0.01694

0.02672 0.03800 0.02236
0.03800 0.05404 0.03180
0.02236 0.03180 0.01871

0.25913 - 0.06538 0.06715
- 0.06538 0.01650 - 0 .01(94
0.06715 - 0.01694 0.01740

Figure 5.2: Coefficients o f designed 3-D filter
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Figure S.3 shows the magnitude response of the designed filter when col is held constant 

at zero radians/sec. Note that col is within the passband of the filter, and the 

characteristics of the filter are acceptable. Figure 5.4 shows the magnitude response when 

col is held constant at 0.98 radians/sec. The value of col is still within the passband of the 

filter and the characteristics are again acceptable. Figure 5.5 shows the magnitude 

response when col is held constant at 2.16 radians/sec. This value of col is outside the 

passband, and therefore the magnitude response is very nearly zero. Figure 5.6 shows the 

magnitude response when col is held constant at pi radians/sec. The value of col is again 

outside the passband, and the magnitude response is again very nearly zero.
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Low-Pass Flier wflh Cutoff =  pi/2 (w l = 2.16 rad^ec)

w3 OadAjrtt) - 4 - 4  w2 frad/iril)

Figure 5.5: Magnitude response with co, = 2.16 rad/sec

Low-Pass Flier with Cutoff = pi/2 (wl = pi radfcec)

1 -

w3 (Jad/tnit) - 4 - 4  w2 (tad/Lntt)

Figure 5.6: Magnitude response with w, = it rad/sec
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The plots o f Figures 5.3 through 5.6 show that the filter design method used yields an 

acceptable magnitude response. However, as stated earlier in the thesis, it is also very 

important to have linear or near-linear phase in the passband of the filter. Figure 5.7 shows 

the phase response of the filter when to 1=0 rad/sec. Note that the response appears 

moderately flat within the passband region. Figure 5.8 shows an approximation to the 

group delay of the filter with respect to u>3. It is only an approximation since the 

resolution between points is finite, but it is sufficient to give an idea of the linearity of the 

phase response. Note that for values of 0)3 within the passband, there is very little 

deviation in the phase response. All significant deviation lies outside the passband, so any 

distortion is attenuated. Figure 5.9 and 5.10 show the same thing except with col at a 

value of 0.98 rad/sec. Figure 5.11 shows the phase response of the filter when oil is fixed 

at 2.16 rad/sec. Note that the phase response at this value of wl is non-linear. However, 

by examination of Figure 5.12 it can be seen that the non-linearity occurs outside the 

passband of the filter. Therefore, any resulting phase distortion will be attenuated.
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Figure 5.7: Phase response with co, = 0 rad/sec

Low-Pass Filer win Cutoff = pt/2 (w3=0 radians teec)
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Figure 5.8: Group delay with co, = 0 rad/sec
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Low-Pass Filer wflh Cutotl = pi >2 (w3 = 0 5 8  radians Asec)
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Figure 5.9: Phase response with &>, = 0.98 rad/sec

Low-Pass Flier win CutofT = pi/2 (w3=0.96 radians&ec)

w1 (TadiansAjniT)

Figure 5.10: Group delay with co, = 0.98 rad/sec
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Low-Pass Flier wlti Cutofl = pifi (w3 = 2.16 radians ŝec)

£

w2 QradansAjnil)
-4 w l (radansAjnit)

Figure 5.11: Phase response with Q), = 2.16 rad/sec

Low-Pass Flier with Cuton = pi/2 (w3 = 2.16 radians/sec)
25

20

0 -

-10

w l (TadansAjnil)

Figure 5.12: Group delay with a), = 2.16 rad/sec
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5 3  Video Filtering Results

While it is gratifying to see that the 3D filter design method given in this thesis is effective, 

it is not the primary goal of this investigation. The main purpose is to verify that these 

filters can be effectively used to increase the resolution o f moving images. By following 

the implementation algorithm given in the previous chapter, various AVI video files were 

interpolated using the above 3D filter. The following figures show the results from one of 

these files.

First let us demonstrate that the number of samples has been increased. Figure 5.13 shows 

the file properties of the original AVI file compared with the file properties of the filtered 

AVI file. Note that the width and height are both doubled, and the number of frames is

Figure 5.13: Comparison of File Properties dialog boxes.
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also doubled. This shows that there is indeed eight times more samples in the filtered video 

than in the original, but it gives no indication of the quality o f this new video.

Figure 5.14 shows a frame of the original video file compared with its equivalent filtered 

frame. Note that the filtered image is double the width and height o f the original.

Figure 5.14: Video single frame comparison.

Now examine Figure 5.15. It also shows a frame o f the original video sequence compared 

with a frame from the filtered video sequence, but this time both frames are zoomed in to

show the resolution difference.
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Figure 5.1S: Video single frame zoomed comparison.

The filtered frame is on the left, and the original frame is on the right. Note that for every 

one pixel in the original image, the filtered image has four pixels. Also note the improved 

definition of features such as the nose, eyes, and ears. The pixelation effect along the edge 

of the collar is also greatly reduced.

While Figure 5.14 and Figure 5.15 show an impressive increase of resolution in the 

individual frames of the video sequence, these results could have been obtained by using a 

2D filter. The advantage of the 3D filter in this application lies in its ability to also increase 

the resolution along the time axis by interpolating frames. The result of this can be seen in 

Figure 5.16. The top two images are equivalent frames from the original and filtered video
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sequences respectively (left to right). The bottom left image is the next frame of the 

original sequence, and the frame to its right is the equivalent frame of the filtered 

sequence. The frame between the two filtered frames is an interpolated frame that does 

not exist in the original sequence. Note the mouth is open in the first frame, and is closed 

in the next frame of the original sequence. Now examine the filtered sequence and note 

that the mouth is first open (as in the original), then the mouth is partially open, and then 

the mouth is closed (as in the original). The frame with the mouth partially open did not 

exist in the original sequence. This frame was successfully interpolated and shows detail 

that is not visible in the original sequence. These results show that the 3D filter 

successfully increased the resolution of the video sequence in all three dimensions.
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Figure S. 16(a): Original Sequence (time = T) Figure 5.16(c): Interpolated Sequence (time = T)
(Mouth is open) (Mouth is open)

Figure 5.16(d): Interpolated Sequence (time = T+dt/2) 

(Mouth is partially open)

Figure 5.16(b): Original Sequence (time = T+dt) Figure 5.16(e): Interpolated Sequence (time = T+dt) 
(Mouth is closed) (Mouth is closed)
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Chapter 6: Summary and Conclusions

6.1 Summary

Chapter 1 of this thesis began by introducing the concept of moving images and giving an 

overview of various types of digital filters and their design methodologies. It finished by 

comparing some popular video formats, and giving some examples of the current 

applications o f digital filters.

Chapter 2 began by discussing the Sampling Theorem, which is central to the 

understanding of digital interpolation. It then explored two methods of one-dimensional 

interpolation: zero-padding and sample replication. The chapter concluded by extending 

these concepts to three dimensions for use with three-dimensional digital signals.

The procedure of designing three-dimensional EIR filters using the Modified Shank’s 

Method was presented in detail in Chapter 3. The two-dimensional spatial method was 

extended to the three-dimensional space-time domain. The chapter concluded by deriving 

the three-dimensional Fast Fourier Transform (FFT).

Chapter 4 tied all the theory together from the previous chapters to provide an 

implementation method by which a moving image sequence could be interpolated with a 

three-dimensional digital filter. It began by giving a description of the AVI and BMP file 

formats, and then describing how the raw pixel data could be extracted from these
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formats. A scheme for applying the 3-D filter was given next, followed by a method to 

reinsert the raw filtered data back into an AVI file.

Chapter 5 provided results to demonstrate the validity o f the theory in Chapter 2 and 

Chapter 3, and the validity of the implementation method in Chapter 4.

6.2 Conclusions

This thesis is concerned with the use o f 3-D digital filters in multimedia applications. 

Specifically, it is interested in using three-dimensional digital interpolation filters to 

increase the resolution of moving image sequences in three dimensions. By examination of 

the results given in Chapter 5, it is clear that both the theory and the proposed 

implementation given in the thesis are sound. The designed 3-D UR filter possesses a steep 

transition band and has near-linear phase response in the passband. After applying the 

filtering algorithm given in Chapter 4, the video file’s resolution is increased by a factor of 

two in each dimension for a total resolution improvement by a factor of eight. In Chapter 

1, the purpose of the thesis was given as: “... a digital 3-D interpolation filter is to be 

designed which performs inter-pixel and inter-frame interpolation, resulting in increased 

horizontal resolution, vertical resolution, and temporal resolution (frame rate) of a moving 

image sequence.” The results of Chapter 5 clearly demonstrate that the goal of this thesis 

has been achieved, and that 3-D filters have application to the field of multimedia.
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Appendix A 

Source Code for Filter3D Program
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// ChildFrm.cpp: implementation of the CChildFrame class
//

# include ”stdafx.h"
^include "Filter3D.h"

# include "ChildFrm.h"

#ifdef .DEBUG
#define new DEBUG.NEW
#undef THISFILE
static char THIS FILEQ = _F IL E _;
#endif

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
//CChildFrame

IMPLEMENT_DYNCREATE(CChiIdFrame, CMDIChildWnd)

BEGIN_MESSAGE_MAP(CChildFrame, CMDIChildWnd)
//{{AFX_MSG_MAP(CChildFramc)

// NOTE • the Class Wizard will add and remove mapping macros here. 
// DO NOT EDIT what you see in these blocks of generated code !

//}} AFXM SG.MAP 
END.MESSAGE.MAPO

/////////////////////////////////////////////////////////////////////////////
// CChildFrame construction/destruction

CChildFrame::CChildFrameO
{

// TODO: add member initialization code here

}

CChildFrame::~CChildFrameO
{
>
BOOL CChildFrame::PreCreateWindow(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying 
// the CREATESTRUCT cs

return CMDIChildWnd::PreCreateWindow(cs);
}

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
II CChildFrame diagnostics

#ifdef .DEBUG
void CChildFrame:iAssertValidO const 
<

CMDIChildWnd: :AssertValidO; 

void CChildFrame::Dump(CDumpContext& dc) const
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{
CMDIChiIdWnd::Dump(dc);

}

#endlf//_DEBUG

iiiim iiiiiiiiiiniiiiituiiiiiiiiiiiiiiiiiiM iiiiiiiiiiiiiiiiiiiiiiiiiiiii
// CChildFrame message handlers
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iiiiiiiiifiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiniiiiiiiiiiiiiiiii
I I Complex.cpp: implementation of the COMPLEX class
//

#include "stdafxii"
# include "Filter3D.h"

# include "Complexh"

COMPLEX::COMPLEX0
{

Real = 0.0;
Imag = 0.0;

>
COMPLEX::COMPLEX(double real, double imag)
{

Real = real;
Imag -  imag;

}
double COMPLEX::GetRea!(void) const 
{

return Real;
}
double COMPLEX::GetImag(void) const 
{

return Imag;
}
double COMPLEX::Magnitude(void)

retum(sqrt(Real*Real + Imag*Imag»;
)
double COMPLEX::Phase(void)
{

retum(atan2(Imag,Real)>;
)
COMPLEX operatorK COMPLEX A. COMPLEX B )
{

return COMPLEX( A.Real + B.Real,
A.Imag + B.Imag);

)
COMPLEX operator^ COMPLEX A, COMPLEX B )
{

return COMPLEX! A.Real - B.Real,
A.lmag - B.Imag);

)
COMPLEX operator*! COMPLEX A, COMPLEX B )
{

return COMPLEX! A. Real * B.Real - A.Imag * B.Imag,
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A.Real * B.Imag + A.Imag * B.Real);
>
COMPLEX operator^ COMPLEX A, double B )
{

return COMPLEX( A.Real * B , A.Imag • B );
>
COMPLEX operator^ COMPLEX A. double B )
{

return COMPLEX( A.Real /  B , A.Imag / B );
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II Filtcr3D.cpp : Defines the class behaviors for the application.
//
# include "stdafxJT
# include "FiIter3D.h"

# include "MainFrm.h"
#include "ChildFraUi”
#include "FilteriDDoc.h"
#include "Filtet3DView.h"

#ifdef_DEBUG
#define new DEBUGNEW
#undefTHIS_FILE
static char THIS_FILE[] = FILE ;
#endif

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II CFilter3DApp

BEGIN_MESSAGE_MAP(CFiltcr3DApp, CWinApp)
//{{AFX_MSG_MAP(CFilter3DApp)
ON_COMMAND(ID_APP_ABOUT, OnAppAbout)

// NOTE - the Class Wizard will add and remove mapping macros here. 
// DO NOT EDIT what you see in these blocks of generated code!

//}} AFXMSGMAP 
// Standard file based document commands 
ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew) 
ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
// Standard prim setup command
ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup) 

ENDMESSAGEMAPO

tllllltllllllllllllllllllllllllllllllllllllllltllllllllllllllllllllllllllllll 
II CFilter3DApp construction

CFilter3DApp::CFilter3DAppO
{

// TODO: add construction code here,
// Place all significant initialization in Initlnstance

)
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
// The one and only CFilter3DApp object

CFilter3DApp theApp;

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II CFilter3DApp initialization

BOOL CFilter3DApp::InitInstanceO
{

// Standard initialization
// If you are not using these features and wish to reduce the size 
// of your final executable, you should remove from the following 
// the specific initialization routines you do not need.
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#ifdef_AFXDLL
Enablc3dControlsO; // Call this when using MFC in a shared DLL

#else
Enablc3dControlsStaticO; // Call this when linking to MFC statically

tfendif

// Change the registry key under which our settings are stored.
// You should modify this string to be something appropriate 
/ / such as the name of your company or organization.
SetRegisayKeyCTCSteve McFadden - 1998"));

LoadStdProfileSettingsO; // Load standard INI file options (including MRU)

// Register the application's document templates. Document templates 
// serve as the connection between documents, frame windows and views.

CMultiDocTemplate* pDocTemplafe; 
pDocTemplate = new CMuhiDocTemplale(

IDRJTLTERTYPE,
RUNTIME_CLASS(CFilter3DDoc),
RUNTIME_CLASS(CChildFrame), // custom MDI child frame 
RUNTIME_CLASS(CFilter3DView));

AddDocTcmplate(pDocTemplate);

// create main MDI Frame window 
CMainFrame* pMainFrame = new CMainFrame; 
if (!pMainFrame->LoadFrame(IDR_MAINFRAME)) 

return FALSE; 
m_pMainWnd = pMainFrame;

// Parse command line for standard shell commands, DDE. file open 
CCommandLinelnfo cmdlnfo;
ParseCommandLine(cmdInfo);

// Dispatch commands specified on the command line 
// if (!ProcessShel!Command(cind!nfo))
// return FALSE;

// The main window has been initialized, so show and update it.
pMainFrame>>ShowWindow(m_nCmdShow);
pMainFrame*>UpdateWindow();

return TRUE;

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II CAboutDIg dialog used for App About

class CAboutDIg: public CDialog 
{
public:

CAboutDlgO;

// Dialog Data
//{{AFX_DATA(CAboutDlg) 
enum { IDD = IDD_ABOUTBOX 
//} }AFX_DATA
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U Class Wizard generated virtual function overrides
//{{AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support 
//}} AFX_VIRTUAL

// Implementation 
protected:

//{{AFX_MSG(CAboutDlg)
// No message handlers 

//}} AFXMSG
DECLAREMESSAGEMAPO

};
CAboutDlg::CAboutDlgO: CDialog(CAboutDlg::IDD)
{

//{{AFX_DATA_INIT(CAboutDlg)
//} }AFX_DATA_INIT

)
void CAboutDig::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDlg)
//}} AFXDATAMAP

BEGIN_MESSAGE_MAP(CAboutDlg, CDiaJog)
//{ (AFX_MSG_MAP(CAboutDlg)

// No message handlers 
//}} AFXMSGMAP 

END_MESSAGE_MAPO

// App command to run the dialog 
void CFilter3DApp::OnAppAbout()
{

CAboutDIg aboutDIg; 
aboutDlg.DoModalO;

J

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
// CFilter3DApp commands
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// Filter3DDoc.cpp: implementation of the CFilter3DDoc class
//
^include "stdafx-h"
#include "Fllter3D.h"

#include "Filter3DDoc.h"
^include "Filter3DSeningsDlg.h"
^include "ProcessingDlg.h"
#include <fstream.h>
^include "vfw.h"

#ifdef_DEBUG 
ftdefine new DEBUGNEW 
#undef THIS_FILE
static char THIS_FILEQ = FILE ;
#endif

llllllllllllllllllllllllllllllllllltlllllllllllllllllllllllllllllllllllllllll 
II CFilter3DDoc

lMPLEMENT_DYNCREATE(CFilter3DDoc, CDocument)

BEGFN_MESSAGE_MAP(CFilter3DDoc, CDocument)
//{{AFX_MSG_MAP(CFilter3DDoc)

II ON_COMMAND(IDVIDEO_PLAY, OnVideoPlay)
II ON_COMMAND(ID_VIDEO_FILTER, OnVideoFilter)

//} } AFXMSGMAP 
END_MESSAGE_MAPO

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II CFilter3DDoc construction/destruction

CFilter3DDoc::CFiiter3DDocO
{

pi =4.0*atan(1.0); 
m_dCutoffFreq = 1.5708; 
m_nNum Samples = 16; 
m_nOrder = 2; 
m_nOffset = m_nOrder-1;

CFilter3DDoc::-CFilter3DDocO
{
>
BOOL CFilter3DDoc::OnNcwDocument0 
{

if (!CDocument::OnNew Document!)) 
return FALSE;

unsigned ij;

// Obtain filter settings 
CFilter3DSettingsDlg dig; 
dlg.m_dCutoffFieq = m_dCutoffFreq; 
dlg.m_nNum Samples = mnNumSamplcs;
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dlgjnjnOrder= mnOrder, 
dIg.m_nOfFset = m_nOffset; 
if( dlg.DoModalO =  IDOK )
{

mdCutoffFreq = dlgjndCutoffFrcq; 
mnNum Samples = dlg.m_nNum Samples; 
m_nOrder = dlg-mnOrder; 
mnOfTsct = dlg-mnOfTset;

// Allocate memory for impulse response
m_pImpulseResponse = new double ••[m nNumSamples/2 + mnOfTsct]; 
for(i=0;i<(m_nNumSamples/2-*-m_nOfTset);t-t-*-)
{

m_pImpulseResponse[i] = new double *[m_nNumSamples/2 + m_nOfTset]; 
for(j=0;j<(m_nNum Samples/2 + m_nOffset)j-t-+)

m_pImpulseResponse[i][j] = new double [m nNumSampics/2 + m nOfTsct];
>
// Allocate memory for magnitude and phase response 
m_pMagnitudeResponse = new double ••[m_nNumSamples-*-1 ]; 
m_pPhaseResponse = new double ••[m_nNumSamplcs-*-l]; 
for(i=0;i<(m_nNum Samples-*-1 );i++)
{

m__pMagnitudeResponse[i] = new double *[m_nNurn Samples-*-1); 
m_pPhaseResponse[i] = new double •[m_nNumSamples-t-l]; 
for(j=OJ<(mnNum Samples-*-1 )y-*-*-)
{

m_pMagnitudeResponse[i][j] = new double [m_nNumSamples-*-l]; 
m_pPhaseResponse[i][j] = new double [m_nNumSamples+1 ];

}
// Allocate memory for frequency axis 
m_pdFreqAxis = new double [m_nNumSamples+l];

// Allocate memory for impulse axis
m_pdImpulseAxis = new double [m_nNumSamplcs/2-*-m_nOfFset];

// Allocate memory for {a} and {b} coefficients 
m_pACoefTAiTay = new double **[m_nOrder-*-|]; 
m_pBCoeffArray = new double **[m_nOrder*-l J; 
for(i=0;i<(m_nOrder+1 );i++)
{

m_pACoeffArray[i] = new double •[m_nOrder+-l ]; 
m_pBCocfTArray[i] = new double •[m nOrdcr+1]; 
for(j=Oy<(m_nOidet+l)a++)
{

m_pACoeffAnay[i][j] -  new double [m_nOrder-*-l]; 
m_pBCoefrArray[i][j] = new double [m_nOtder*-lJ;

>
ComputeCoefficientsO;

>
else
{

return FALSE;
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return TRUE;
}

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
II CFilter3DDoc serialization
void CFilter3DDoc::SeriaIize(CArchive& ar)
{

unsigned i j,k; 
if (ar.IsStoringO)
(

ar «  mnNum Samples «  mdCutofTFreq «  mnOrder «  mnOfTsct;

fi*<i=0;i<(m_nOrdert-l);i++)
fbf{j=OJ <(m_nOrdcr*-1 )J++)

for(k=0; k<(m_nOrdert-1 );k++)
ar «  m_pACoeftArray [i] [j] [k];

for(i=0;i<(n»_nOrdei+1 );i++)
for(j=0y<(m_nOrder+1 )y'++)

for(k=0;k<(m_nOrder+-1 );k++)
ar «  m_pBCoefTArTay[i][j][k];

forfi=0;i<(m_nNumSamples/2+m_nOfTsct);i-t-t-)
fof0=0u<(n>_iiNumSamples/2+m_nOffset)y+-t-)

for(k=0;k<(m_nNumSamples/2+m_nOfTset);k-t-t-) 
ar «  m_pImpulseRcsponse[i][j][k];

for{i=0;i<(m_nNumSamples+1 );i++)
for(j=Ou<(m_nNumSamples+1 )y++)

for(k=0;k<(m_nNum Samples-*-1 );k++)
ar «  m_pMagnhudeResponse[i][j][k];

forii=0;i<(ni_nNumSamples+1 );i++)
fortj^U^mnNum Samples-*-1 )J++)

for(k=0;k<(m_nNum Samples-*-1 );k++)
ar «  m_pPhascResponse[i][j][k];

forii=0;i<(ni_nNumSamples+l);i++) 
ar «  m_pdFreqAxis[i];

for(i=0;i<(m_nNumSamples/2+mnOfTset);i++) 
ar «  m_pdImpulseAxis[i];

}
else
{

ar »  mnNum Samples »  m_dCutoffFreq »  m_nOrder »  mnOffset;

// Allocate memory for impulse response
m_pImpulseResponse = new double ••[m nNumSamples/2 + m nOffset]; 
for(i;*0;i<(m_nNumSamples/2+m_nOfrset);i++)
{

m_pImpulseResponse[i] = new double *[m_nNumSamples/2 + m_nOffset]; 
fof(j=0y<{m_nNumSamplcs/2 + m_nOffsct)J++)

m_plmpuIseResponse[i][j] = new double [m_nNumSamples/2 + m_nOffset];
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i

// Allocate memory for magnitude and phase response 
m_pMagnftudeResponse = new double ••[m nNumSamples+l]; 
m_pPhaseResponse = new double **[m_nNumSamples+l]; 
for(i=K);i<(m_nNumSamplcs-t-l );i++)
{

m_pMagnitudeResponse[i] = new double *[m_nNumSamples+1 ]; 
m_pPhaseResponse[i] = new double •[m_nNumSamples+l]; 
foi<j=Oa<(m_nNumSamplcs+l )y++)
{

m_pMagnitudeResponse[i]Ql — new double [m_nNumSampies+l]; 
m_pPhaseR.esponse[i][j] = new double [m_nNumSamples+l];

}
}
// Allocate memory for frequency axis 
m_pdFreqAxis = new double [m_nNumSamples+1];

// Allocate memory for impulse axis
m_pdlmpulseAxis = new double [m_nNumSamples/2+m_nOfFset];

// Allocate memory for {a} and {b} coefficients 
m_pACoeffArray = new double ••[m_nOrder+l]; 
m_pBCoeffArray = new double ••[m_nOrder+l J; 
fbr(i=0;i<(m_nOrder+-1 );H-+)
{

m_pACoefFArray[i] = new double •[m_nOrdet+l]; 
m_pBCoefFArray[i] = new double •[m_nOrder+l]; 
for(j=Oy<(m_nOrderi-l )y++)
{

m_pACoeffArray[i][j] = new double [m_nOrder*-I]; 
m_pBCoeffArray[i][j] = new double [m_nOrder+l];

}
}
for( i=0; i<( m_nOrdcr+-1 );i-H-)

forfj=Oy<(m_nOrder^ 1 )y++)
forfk=0;k<(m_nOrder+-1 );k++)

ar »  m_pACoefrArray[i][j][k];

for(i=0;i<(m_nOrder+l );i++)
for(j=Oy<(m_nOrdert-1 )y++)

forfk=0;k<(m_nOrder+1 );k++)
ar »  m_pBCoeflfArray[i][j][k];

for(i=0;i<(m_nNumSamples/2+m_nOffset);i++)
for(j=OJ<(m_nNumSamples/2+m_nOffset)y-t-t-)

forfk=0;k<(m_nNumSamples/2+m_nOffset);k+-t-) 
ar »  m_pImpulseResponse[i][j][k];

for<i=0;i<(m_nNumSamples+1 );i++)
for(j=Oy<(m_nNumSamples+1 )y++)

for(k=0;k<(m_nNumSamples+1 );k++)
ar »  m_pMagnitudeResponse[i][j][k];

for(i=0;i<(m_nNumSamples+1 );i++)
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for(j=03<(in_nNuinSamples+l)3++)
for{k=0;k<(iii_iiNuinSainples+1 );k++)

ar »  m_pPhascRcsponse[i][j][k];

for{r»0;i<(ni_nNuinSainpies+1 );t++) 
ar »  m_pdFreqAxis[i];

for(i=,0;i<(m_nNumSamplcs/2+m_nOfFset);i-t-t-) 
ar »  m_pdImpulseAxis[i] ;

}
}

lllllllllllllllllllllllllllllllllllllllllllllltllllllllllllllllllllllllllllll
II CFilter3DDoc diagnostics
#ifdef_DEBUG
void CFiiter3DDoc::AssertValidO const 
{

CDocument::AssertValidO;
}
void CFilter3DDoc::Dump(CDumpContcxt& dc) const 
{

CDocument::Dump(dc);
}
#endif //DEBUG

iiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiiitiniiiiiiiiniiiiiiiiiiiiiitiiiiiiiiiiiii 
II CFilter3DDoc commands
BOOL CFilter3DDoc::Simq(double **matrix, unsigned nEquations)
{

unsigned ijjc,l; 
double Big,temp;
for<j=Oy<nEqiiationsy-t-t-) II pass #
{

//Find Big
Big = fabs(matrix[j][j]);
i = j ;
fot(i=j+1 ;i<nEquations;i++)
{

if(Big<fabs(matrix[i]0]))
{

Big -  fabs(matrix[i][)]>; 
l = i;

)
)
H Check that Big not equal to zero 
if(Big< 1.0e-7)
{

AfxMessageBox(”Unab!e to Solve Set of Equations"); 
return FALSE;

}
// Switch Rows
m  I-j)
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{
for(k=0;k<nEquations+1 ;k++)
{

temp -  matrix[j][k]; 
matrix[j][k] = mamx[I][k]; 
matrix[I][k] =temp;

}
>
// Normalization
for(k=j+1 ;k<nEquations+1 ;k++)

matrix[fl[k] t= matrixQIQ];
matrixDJD]=

// Elimination 
for(i=0;i<nEquations;i++)
{

if(i =  j) continue;
for(k=j+1 ;k<nEquations+1 ;k++)

matrix[i][k] -= matrix[j][k] * matrix[i][j]; 
matrix[i][j] = 0.0;

}
} //End of Pass 
return TRUE;

}

void CFilter3DDoc::BitReversal(unsigned *L, unsigned N)
{

// Sub-program developed by M.A. Sid-Ahmed 
// Routine for generating LUT for bit reversal.
// Note: N=(2 to the power of m).
//LUT will reside in L0

unsigned MASK,C^AJJc,i,m;

m = (intXlog 10((double)N)/log 10(2.0));

for<k=0;k<N;k-M-)
{

MASK = 1;
C = 0;
for<i=0 j=m-l ;i<m;i++j—)
{

A=(k&MASK)»i;
A «=j;
C[=A;
MASK=MASK«1;

>
L[k]=C;

)
)

void CFilter3DDoc::FFT3D(COMPLEX •••X, unsigned N, unsigned fit) 
{

unsigned i j  Jc;
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COMPLEX temp;

foKi=0;i<N;H-+)
{

foi(j=Oy<Ny++)
{

FFTI D(X[i][j],N,fft); II FFT of each row (of each frame)
>

}
II Take transpose of each frame of X array 
fbr(i=0;i<N;t-M-)
{

fa(j=Oa<Na++)
{

for(k=0;k<N;k-H-)
{

if(j=k) break; 
temp = X[i]B][k];
X[i]DlM = X[i][k]Q];
X[i][k][]] = temp;

}
)

>
fbi(i=0;i<N;i++)
{

fot(j=Oa<Ny++)
{

FFTlD(X[i][j],N,fft); // FFT of each row (of each frame) after transpose
)

)
II Take transpose of each ‘row’ of X matrix 
for(j=Oy<Ny++) // for each row 
{

for(i=0;i<N;i++)
{

foKk=0;k<N;k++)
{

if(i=k) break; 
temp = X[i][j]lkl;
X[i]DlM = X[k]Q][i];
X[k][j][i] =temp;

>
}

}
foi(i=0;i<N;i++)
{

foi(j»Oy<Ny++)
{

FFT 1 D(X[i]Q],N,fft); II FFT of each row (of each frame) after 2nd transpose
}

// Take transpose of each 'row1 of X matrix
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for(j=Oy<Na++) // for each row 
{

fbr(i=,0;i<N;i+-t-)
{

for<k=0;k<N;k++)
{

iffi=k) break; 
temp = X[ilO][k];
X[i][j]M = X[k]0][i]; 
X[k][j][i] = temp;

>
>

}
// Take transpose of each frame of X matrix 
// Take transpose of each frame of X array
for(i=0;i<N;i++)
{

fot(j=Oy<Na++)
{

for(k=0;k<N;k-M-)
{

ifO=k) break; 
temp = X[i][j][k];
X[i]DlM = X[i][k]D]; 
XplPcJDl= temp;

>
}

)
}
// computes the one-dimensional fft of an array o f values
// XQ holds the values o f the array
// N is number of values
//fft = 1 -> ffi
// fft = 2 —> ifll
// WQ holds the twiddle factors
void CFilter3DDoc::FFTlD(COMPLEX *X, unsigned N, unsigned fft) 
{

unsigned ij,k;
unsigned incr.n,ip,group,stage,m; 
unsigned int *L;
COMPLEX T,*W,*Temp;

m = (intXlogl0((double)NVlogl0(2.0»; 
incr = 2; / /distance between groups 
n = (int)pow(2,(m-1 ));
ip = incr/2; // distance between butterfly inputs

// Allocate memory for twiddle factors 
W = new COMPLEX [N/2J;

// Allocate memory for bit-reversed LUT 
L = new unsigned int [N];

// Allocate memory for temporary array 
Temp = new COMPLEX [N];
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// Generate bit-reversed LUT 
BitReversal(L^N);

// Rearrange order in FFT input array 
fot(i=0;i<N;i++)

Temp[i] = X[iJ; 
for(i=0;i<N;i++)

X[L[i]] = Tcmp[i]; 
delete Temp;

// Generate twiddle factor LUT
for(i=0;i<N/2;H-+)
{

if im =  i)
W[i] = COMPLEX( cos((2.0*pi/(float)N)*double(i)),

-sin((2.0*pi/({loat)N)*double(i)));
else

W[i] = COMPLEX( cos((2.0*pi/(fIoat)N)*doublc(i)),
sin((2.0*pi/(float)N)*double(i)));

}
// Algorithm for first stage with all weights equal to 1
II---------------------------------------
for(group=0;group<N ;group += incr)
{

j = group + ip;
T = X0];
XD] = X[group]-T;
X[group] = X[group] + T;

>
incr = incr *2; 
n = n/2; 
ip = incr/2;

// Algorithm for remaining stages with weights not always equal to I
//------------------------------------------------
for(stage=l;stage<m;stage++) // N = 2 to the power (m)
{

for(group=0;group<N;groufrt-=incr)
{

fbr(kr=0;k<(N/(2*n));k++)
{

j = k+ip;
T = Xfgroup + j] • W[n*k];
X[group+j] = X[group + k] - T;
X [group + k] = Xfgroup + k] + T;

>
}
incr = incr • 2; 
n = n/2; 
ip = incr/2;

}
if( fft “  2 )

for(i=0;i<N;i-H-)
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}

{
X[i] — X[i] / double(N);

)

void CFilter3DDoc::ComputeCoefficientsO 
{

unsigned ij,k; 
unsigned kl Jc2Jc3,Nl;
COMPLEX •••H;

N1 = m_nNumSamples/2;

// Convert cutoff frequency to samples number 
mjdCutoffFreq *= double(m_nNum Samples )/(2.0*pi);

// Allocate memory for Desired Magnitude Response 
H = new COMPLEX **[m_nNumSamples]; 
for(i=0;i<m_nNumSamples;H-+)
{

H[i] = new COMPLEX *[m_nNumSamples]; 
for(j=Oy<m_nNum Samples j++)

H[i][j] = new COMPLEX [m nNumSamples];
}
II Form Desired Magnitude Response 
foKklsO;kl<m_itNumSamples;kl-H-)
{

for(k2=0;k2<m_nNumSamples;k2++)
{

for(k3=0;lc3<m nNumSamples;k3+-t-)
{

iff(abs(k 1 -NI )<m_dCutof!Freq)&&(abs(k2-N 1 )<m_dCutof!Freq)&&(abs(k3-N I )<m_dCutoffFreq»
H[kl][k2][k3] = COMPLEX( 1.0,0.0);

else
H[kl][k2][k3] = COMPLEX(0.0,0.0);

}
}

}
// Apply shift in Frequency Domain 
forfk 1 =0;kl <m_nNumSamples;k I ++)
{

for(k2=0;k2<m_nNumSamples;k2++)
{

for(k3=0;k3<m_nNurn Samples ;k3++)
H[kl][k2][k3] = H[kl][k2][k3] • pow(-l,(kl+k2+k3));

>
>
FFT3D(H,m_nNumSamples^); // 3-D IFFT of Desired Magnitude Response

II Apply shift in Time Domain 
for(kl=0;kl<m_nNumSamples;kl++)
{
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for(k2=<);k2<m_nNiimSamplesdc2++)
{

for<k3=0;k3<m_nNuni Samples ;k3+-t-)
H[kl][k2][k3] = H[kl][k2][k3] • pow(-l,(kl+lc2+k3));

>
}
/ / ----------------------------------------------------------
// Shank’s method begins here
//
unsigned x,y,z,n I .n2,n3,M,M 1 ; 
double **A;

M = m_nNum Samples/2 + m_nOffset;
Ml = m_nNumSamples/2 - m_r»OfFset;

// Trim impulse response 
for(i=M 1 ;i<m_nNumSampics;i++)

for(j=M I j<m_nNumSamplesy-*-i-)
{

foi(k=M 1 ;k<m_nNumSamplcs;k++)
m_pImpulseResponse[i-Ml]0*MI][k>MI] = H[i][j][k].GetReal();

>

>
// Set values of Impulse Axis 
fbr(p,0;i<(m_nNumSamples/2+m_nOffset);i++) 

m_pdImpulseAxis[i] = double(i);

#ifdef_DEBUG

// Write impulse response to file for debugging 
fstream impulse("lmpulse.dbg",ios::out); 
forin l=0;n 1 <M,*nl++)
{

for(n2=0;n2<M;n2++)
{

for(n3=0;n3<M;n3++)
impulse «  m_pImpulseResponse[nl][n2][n3] «  "\t"; 

impulse «  endl;
}
impulse «  endl«  endl;

>
impulse.closc();

#endif

II Dc-allocate memory for Desired Magnitude Response 
for(i=0;i<m_nNumSamples;i++)
{

for<j“OJ<m_nNumSamplesy-H-) 
delete Q H[i][j]; 

delete D H[i|;
}
delete Q H;
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ft Allocate memory for A matrix
A = new double *[(m_nOrdert-1 )*(m_nOrderH )*(m_nOrder+1)-1 ]; 
fo»(i=0; i<((m_nOrder+-1 )*(m_nOrder*-1 )*(m_nOrdert-1 }-1 );i++)

A[i] = new double [(m_nOidei+l)*(m_nOrderH)*(m_nOidet+I)];

// Forming the A matrix 
unsigned row.col; 
row = 0;
for(x=0;x<=m_nOrdcnx++)
{

foify=0;y<=m_nOnieny+-t-)
{

fot(z=0;z<=m_nOrder^+)
{

ifl[(x+y+z)=0) continue; 
col = 0;
fot(i=0;i<=in_nOrder;i++)
{

foi(j=Oy<=m_nOrdeni++)
{

m_pImpulscResponse[nl>i][n2-j][n3-k] *

m_p!mpulseResponse[n 1 -x][n2-y][n3-z];

for(k=0;k<=ni_nOrdcr;k++)
{

ifl[(i+j+k)=0) continue;
A[row][col] = 0.0;
for(n 1 =(m_nOrdei+1 );n 1 <M;n 1++)
{

fbr(n2=(m_nOrdei+1 );n2<M;n2++)
{

for(n3=(m_nOrder+1 );n3<M;n3++) 
A[row][col] +=

}
row-t-f-;

}
col++;

>

row=0;
for(x=0;x<=m_nOrder,x-t-+)
{

for(y=0;y<*m_nC)rdeny++)
{

for(z=0;z<” m_nC>rder t̂-t-)
{

if((x+y+z)=0) continue;
A[row][((m_nOrder+-1 )*(m_nOrder -̂1 )*(m_nOrdert-1)-1 )J = 0.0; 
forfn I =(m_nOrdeH-1 );n 1 <M;n 1++)
{

for(n2=Km_nOrder+l );n2<M;n2++) 
{
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foi<n3={m_nOrder+1 );n3<M;n3++)
A[rowl[((m_nOidei+l)*(m_nOrderH)*(in_nOrderHM)]

m_pImpulseRcsponse[n 1 ] [n2] [n3 ] *
m_pImpulseResponse[n 1 -xj [n2-y] [n3-zj;

>

}
row++;

}
}

}
Simq(A,(m_nOrder*-1 )*(m_nOrdcrt-1 )*(m_nOrdert-1)-1); 

row=0:
m_pBCoefEAiray [0] [0] [0] = 1.0; 
forfi=0;i<=m_nOrder;i++)
i

for(j=Oa<=in_nOrdera++)
{

for(k=0;k<=ninOrder,k++)
{

if((i+j+k)=0) continue;
m_pBCoefFArray[i][j][k] = A [row] [(mnOrder*-1 )*(mnOrder*-1 )*(m_nOrder+1>■1 ]; 
row++;

>

}
}

for(n 1 =0;n 1 <=m_nOrder;n 1 ++)
{

fof(n2=0;n2<=m_nOiderni2++)
{

for(n3=0;n3<=in_nOnier;n3+-t-)
{

m_pACoefFArray [n 1 ] [n2] [n3 ] = 0.0; 
foi(i=0;i<=ni_nOrder;i++)
{

if(int(nl-i)<0) continue; 
foi(j=Oa<=m_nOrdera++)
{

ifl[int(n2*j)<0) continue;
for(k=0;k<-in_nOrder;k++)
{

if(int(n3-k)<0) continue;
m_pACoefFArray [n I ] [n2] [n3 ] += m_pBCocfFArray[i][j][k] 

m_pImpulseResponse[n I -i][n2-j][n3-k];

)

// De*alk>cate memory for A matrix 
foKi“0;i<((m_nOrden-l), (m_nOrdeH-l)*(m_nOrdert-l)-l);i++)
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delete DA[il;
delete 0  A;

#ifdef_DEBUG

// Write coefficients to file for debugging 
fstream coefff"Coefficients.dbg",ios::out);
foi<i=0;i<=ni_nOfder;i++)
{

foid=Oy<=m_nOrdery++)
{

For(k=0;k<=m_nOrder;k++)
coeff«  m_pBCoeffAnay[i][j][k]«  "\t"; 

coeff «  endl;
}
coefF«  endl«  endl;

}
coeff«  endl«  endl; 
for(i=0;i<=m_nOrder;i++)
{

forC=Oy<=nt_nOrdery++)
{

for(lc=0;k<=ni_nOrdenlc++)
coefF«  m_pACoefFArray[i][j][k] «  "\t"; 

coefF «  endl;
)
coeff«  endl«  end!;

}

coeff.closeO;

#endiF

// Computing Magnitude and Phase Response 
double dW;
COMPLEX num,den;

// Compute frequency arrays
m_pdFreqAxis[0] = -pi;
dW = 2.0*pi/double(m_nNum Samples);
For(i=l ;i<(m_nNumSamples+l );i++)

m_pdFreqAxis[i] = m_pdFreqAxis[i-1 ] + dW;

Forfn 1 =0;n 1 <(m_nNumSamples+1 );n I ++)
{

for(n2=0;n2<(m_nNumSamples+1 );n2-*-+)
{

For(n3=0;n3<(m_nNumSamples+1 );n3++)
{

num = COMPLEX(0.0,0.0);
den = COMPLEX(0.0,0.0);
For(i=0;i<=m nOrdeni++)
{

foi(j*Oy<=m_nOrdery-H-)
{

for(lF=0;k<=m_nOrder;k++)
{
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nun -  nun +■ COMPLEX(m_pACoeffArray[i][j][k],0.0) *

COMPLEX(cos(i*m_jx!FrcqAxis[nI}+j*in_pdFreqAxis[n2}+k*in_pdFreqAxi5[n3]),-sin(i*in_pdFreqAxis[nl}+j*rn_pdFreqAxi 
s[n2J+k*m_pdFreqAxis[n3]));

den *  den + COMPLEX(m_pBCocfFArray[i][j][k),0.0) *

COMPLEX(cos(i*m_pdFrcqAxis[nl J+j*m_jxlFreqAxis[n2}+k*m_pdFreqAxis[n3]),-5in(i*in_pdFrcqAxis(nl]+j*fn_pdFreqAxi 
s[n2J+k*m_pdFreqAxis[n3]));

}
}

}
m_pMagnltudeResponse[nl][n2][n3] = nuni.Magnitude()/dcn.Magnitude(); 
m_pPhaseResponse[n 1 ][n2][n3] = nun.PhaseO • den.Phase();

}
}

}
#ifdef_DEBUG

// Write magnitude and phase response to file for debugging 
fstream magnitude(”Magnitude.dbg",ios::out); 
fstream phase("Phase.dbg",ios::out);

for<n 1 =*0;n 1 <(m_nN umSamples-t-1 );n 1 ++)
{

magnitude «  m_pdFreqAxis[nl]«  
phase «  m_pdFreqAxis[n 1 ] «  "\nP=["; 
for(n2=*0;n2<(m_iiNumSamples+1 );n2+-*-)
{

forin3=O;n3<0n_nNumSamples+l );n3++)
{

magnitude «  m_pMagnitudeResponse[nl][n2][n3]«  "\t"; 
phase «  m_pPhaseResponse[nl][n2][n3]«  "\t";

)
magnitude « «  endl; 
phase « * ;* «  endl;

}
magnitude «  endl ^  endl; 
phase «  endl«  endl;

}
magnitudc.closeO;
phase.closeO;

#endif
}

double*** CFiIter3DDoc:KjetACoefficientsO 
{ return m_pACoefFArray; }

double*** CFilter3DDoc:K3etBCoefficients() 
{ return m_pBCoefFArray; }

unsigned CFiIter3DDoc::GetNumCoefficientsO 
{ return (m_nOrderH); }
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double*** CFilter3DDoc::GetImpulseResponse() 
{ return m_pImpulseResponse; }

unsigned CFilter3DDoc::GetImpulseResponseSizeO 
{ return (m_nNumSamples/2 + mnOffset); }

double*** CFilter3DDoc::GetMagnitudeResponseO 
{ return m_pMagnitudcResponsc; }

unsigned CFilter3DDoc::GetMagnitudeResponseSizeO 
{ return (mjnNumSamples +1); }

double*** CFilter3DDoc::GetPhaseResponseO 
{ return m_pPhaseResponse; }

unsigned CFilter3DDoc::GetPhaseResponseSizeO
{ return (m_nNumSamples + 1); }

double* CFiiter3DDoc::GetFreqAxisO 
{ return m_pdFreqAxi s; }

double* CFilter3DDoc::GetImpulseAxisO 
{ return m_pdImpulseAxis; }

BOOL CFilter3DDoc::FilterMovieO
{

unsigned ij,k,ii2,n3,fraine;
AVISTREAMINFO strHdiOld, strHdrNew;
PAVIFILE pFile=NULL,pFileNew=NULL;
PAVISTREAM pStream=NULL,pStreamNew=NULL;
HRESULT hr; // handle for error checking
BITMAPINFOHEAOER bmiHeader; 
unsigned numFrames;
IGetFrame* getFrameObj = NULL;
BYTE *tempFramePtr = NULL;
BYTE •framePtr = NULL;
DWORD imageOffset,paletteOffset;
BYTE *palette = NULL, pixelValue; 
double maxVal.minVal; 
double **aviFrame;

// Check to ensure version of Video for Windows is up-to-date 
WORD wVer= HI WORD(VideoForWindowsVersionO); 
ifl[wVcr < 0x010a)
{

AfxMessageBox("Video for Windows version is too old.”); 
return FALSE;

>
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// Initialize AVIFile libraiy 
AVIFilelnitO;

// Open AVI file for reacting
hr*=AVIFileOpen(&pFilejn_lpstrFiIeNanie,OF READ.NULL); 
if(hr!=AVIERR_OK)
{

AfxMessageBox("An Error Occurred Opening the Input File.'); 
return FALSE;

>
// Create new AVI file for writing
hr= AVIFiIeOpen(&pFileNewjnJpstrNewFileName.OF_WRITE!OF_CREATEtNULL); 
if(hr!=AVIERR_OK)
{

AfxMcssageBox("An Error Occurred Creating the Output File.”); 
return FALSE;

}
// Open AVI stream for reading
hr= AVIFileGetStrcam(pFilc,&pStrcain,streaxntypeVIDEO,0); 
if(hr!=AVIERR_OK)
{

AfxMessageBoxf”An Error Occurred Opening the Input Stream.”); 
return FALSE;

// Close original AVI file 
AVIFileClosefpFile);

// Calculate number of frames in stream
numFrames -  AVlStreamEnd(pStream)>AVIStreamStart(pStream);

// Create modeless Processing Dialog Box and display to user 
CProcessingDIg dig;
dlg.m_jnogressCtrl.SetRange(0,int(2*nutnFrames));
dIg.m_progrcssCtrl.SetStep(l);

II Prepare to decompress video frames from stream 
getFrameObj = AVIStreamGetFrameOpen(pStream,NULL);

// Obtain address of first decompressed video frame 
tempFramePtr= (BYTE *)AVIStreamGetFrame(getFtameObj,0);

// Extract BITMAPINFOHEADER from first decompressed video frame 
ExtractBMPHeadeKbmiHeader,tempFiamePtr);

U Calculate palette offset and image offset 
palctteOffset = bmiHeader.biSize;
imageOffset = bmiHeader.biSize(-bmiHeader.biCIrUsed*sizeofrRGBQUAD);

// Allocate memory for input buffer 
inputBuffer= new BYTE ••[m_nOrderH];
foi<i!»0;i<(m_nOrdeH-l);i++)
{

inputBufferfi] = new BYTE *[(2*bmiHeader.biHeight)]; 
for(js0J<(unsignedX2*bmiHeader.biHeight)J-M-)
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inputBuffer(i][j] = new BYTE [(2*bmiHeader.biWidth)];
>
// Allocate memory for output buffer 
outputBuffer *  new double **[m_nOrderH]; 
for(i=0;i<(in_nOrderH);i+-r)
{

outputBufferfi] = new double *[(2*bmiHeader.biHeight)]; 
for(j=Oy<(unsignedX2, bmiHeader.biHeight)y+-t-)

outputBufferfi][j] = new double [(2*bmiHeadcr.biWidth)];
)
// Allocate memoiy for aviFrame
aviFnune = new double *[(2*bmiHeader.biHeight)];
for(i=0;i<(unsignedX2, bmiHeader.biHeight);i-t-+)

aviFramep] = new double [(2*bmiHeader.biWidth)];

// Allocate memory for fiamePtr
framePtr= new BYTE [bmiHeader.biSize+bmiHeader.biClrUsed*sizeof(RGBQUAD)+4*bmiHeader.biSizelmage);

// Clear input and output buffers 
for(i=0;i<=m_nOrder;i++)
{

for(j=0a<(unsignedX2*bmiHeader.biHeight)a+-t-)
{

for(k=0;k<(unsignedX2*bmiHeader.b!Width);k++)
{

inputBuffer[i][j][k] =0; 
outputBufTer(i][j][k] = 0.0;

}
}

}
// Allocate memory for palette and fill it in 
palette = new BYTE [bmiHeader.biClrUsed*sizeof(RGBQUAD)]; 
foKi=0;i<(bmiHeader.biClrUsed»sizeof(RGBQUAD));i-M-) 

palette[i] = tempFramePtr[paletteOfTset+i];

// Get header from old stream
hr = AVISfreamInfo( pStream, &strHdr01d, sizeofl[strHdrOld) ); 
ifthr!-AVIERR_OK)
{

A fxMessageBox(" An Error Occurred Reading Old Stream Header."); 
return FALSE;

)
II Fill in the header for the new video stream
memset(&strHdiNew,0,sizeof(strHdrNew)); II Set strHdrNew to zero
strHdrNew.fccType = streamtypeVIDEO; // stream type
strHdrNew.fccHandler=0; / /Compressor Code
strHdrNew.dwScale * strHdrOld.dwScale; // Time Scale
strHdrNew.dwRate = 2*strHdrOld.dwRate; II Frames per second
strHdrNew.dwLength = 2*strHdrOld.dwLength; // Number of frames
strHdrNew.dwSuggestcdBufferSize = 4*bmiHeader.biSizeImage; // buffer size
SetRecf(&strHdiNewjcFrame,0,0^*bmiHeader.biWidth^*bmiHeader.biHeight); // rectangle for stream

// Create the new stream
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hr= AVIFileCreateStreain(pFileNew,&pStreainNew,&strHdrNew); 
if(hr !=*= AVIERROK)
{

AfxMessageBox("An Error Occurred Creating the Output Stream."); 
return FALSE;

)
bool zerojnd;
ift(bmiHeader.biWidth%2)!=0)zero_pad=true; 
else zero_pad=false;

int x=0,y=l.z=2;

// transfer first decompressed frame (BMP) to input buffer (RAW) 
for(j=0;j<(unsignedX2*bmiHeader.biHeight);j++)
{

fot(k=0;k<(unsignedX2*btniHeader.biWidth);k++)
{

ift(j%2)!=0) // Odd row => Copy pixel from previous row
inputBufTer[0](j][k] = inputB ufFer[0] [j-I ][k;J;

else if((k%2)!=0) // Odd pixel => Copy pixel from previous column 
inputBuffer[0]G][k] = inputBufTer[0]D][k-l);

else

// Even row. Even pixel => Transfer new pixel
pixelValue = tempFramePtr[(bmiHcader.biWidtfr+zero_pad)*j/2 +

imageOffset + k/2]
inputBuffcr{0][j][k] = (unsigned 

charX(03*(double)palette[pixelValue*sizeof(RGBQUAD>«-x]
+0.59*(double)palette[pixclVaJue*sizeof(RGBQUAD>+y]
+0.11 *(double)palette[pixelValue*sizeof(RGBQUAD)t-z])H).5);

>
}

)
// initialize max and min values for scaling 
maxVal = -10000.0; 
minVal = 10000.0;

// filter input buffer and store result in output buffer (RAW) 
for(n2=0;n2<(unsignedX2*bmiHeader.biHeight);n2-M-)
{

for(n3=0;n3<(unsignedX2*bmiHeader.biWidth);n3++)
(

outputBuffer[0][n2][n3] = 0.0; 
for(i=0;i<=m_nOrder;i++)
{

for(j*0a<=m_nOrdery++)
{

fijt(k=0;k<=m_nOrder;k++)
{

if((int(n2-j)<0)|Kint(n3-k)<0)) continue; 
outputBuffer(0][n2][n3] +=

m_pACoefTArray [i] [j] [lc]*inputB ufferfi] [n2-j) [n3-k];
if[(i+j+k)=*0) continue; 
outputBuffer[0][n2][n3] -=

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



m_j>BCoeffAnay[i][j][k]*outputBufrer[n[n2-j][ii3-k];
}

)
II Store max and min values for scaling 
// Exclude edges from consideration
ifl[(n2>=(m_nOrder-t-l))&&(n2<=2, bmiHcader.biHeight-(iii_nOrder+1)))
{

if((n3>=(m_nOrderH ))&&(n3<=2*bmiHeader.biWidth-(m_nOrdert-1))) 
{

maxVal = max(maxVal,outputBuffer[0][n2][n3]); 
minVal = min(minVal,outputBuffer[0][n2][n3]);

}
}
// Fill frame that will be converted back to BMP format 
aviFrame[n2][n3] = outputBuffer{0][n2][n3];

}
}

// Scale Frame so values lie between 0 and 255
fbr(i=0;i<(unsignedX2*bmiHeader.biHeight);i+-t-)
{

for(j=0y<(unsignedX2*bfniHcader.biWidth)J++)
{

aviFrame[i][j] = (aviFrame[i]G]-minVal)*255.0 / (maxVal-min Val)+0.5; 
ifl[aviFrame[i]0]>255.0) aviFrame[i](j] = 255.0; 
iftaviFrame[i][jj<0.0) aviFrame[i][j j = 0.0;

}

// Insert header into framcPtr 
lnsertHeadei<bmiHeader,framePtr,tempFramePtr);

// Create new palette
InsertPalette(bmiHcader,framePtr,paletteOfFset):

// Insert image data
for(i=0;i<(unsignedX2*bmiHeader.biHeight);i-t-+)
{

for(j=Oy<(unsignedX2, bmiHeader.biWidth);j+-t-)
framePtr{bmiHeader.biSize+bmiHeader.biClrUsed*sizeof(RGBQUAD)+ 

i*(2*bmiHeader.biWidth+zero_pad>+J] = (BYTE)aviFrame[i][j];
}
II Set format of new stream
hr -  AVIStreamSctForniat(pStreamNew,0,franiePtr,

bmiHeader.biSize +
bmiHeader.biClrUsed*sizeof(RGBQUAD));

ifl̂ hr != AVIERROK)
{

AfxMessageBox("An Error Occurred Setting the Output Stream Format-"); 
return FALSE;

// Write frame to new stream
hr = AVI Stream Write(pStrcamNew,0,1,
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framePtr-t- imageOfiset, 
4*bmiHeader.biSi2eImagc. 
AVIIFKEYFRAME, NULL, NULL);

iflhr != AVIERROK)
{

AfxMessageBoxfAn Error Occurred Writing to the Output Stream.”); 
return FALSE;

}
// Shift Frames in Input and Output Buffer 
for(i=0;i<m_nOrder;i+-t-)
{

fo»fj=0u<(unsignedX2*biniHeader.biHcight)y+-t-)
{

fotfk=0;k<(unsignedX2*biniHeader.biWidth);k++)
{

inputBufier[m_nOrder-i]D][k] = inputBuffer[m_nOrder-1 -i][j][k); 
outputBuffer[m_nOtder-i]Q]Pc] = outputBufFer[m_nOrder>l>i]Q][k];

>
>

)
// Advance the current position of the progress bar 
dlg.m_progressCtri.StepIt();

// Main Frame filtering loop---------------------------------
for(frame=l ;ftame<(2*numFrames);framef+)
{

if((framc%2)!=0) // Obtain address o f first decompressed video frame
tempFramePtr = (BYTE •)AVIStreamGetFrame(getFraineObj,frame/2);

// transfer decompressed frame (BMP) to input buffer (RAW) 
for(j=,=0y<(unsignedX2*bmiHcader.biHeight)y+-t-)
{

for(k=0;k<(unsignedX2*bmiHeader.biWidth);k+-t-)
{

ifl[(frame%2)!=0) // Odd frame => Copy pixel from previous frame 
inputBufFer[0]Q][k] = inputBuffer[l]Q][k];

else if((j%2)!=0) // Odd line => Copy pixel from previous line 
inputBuffer[0]Q][k] = inputBuffer[0][j-l][k);

else if((k%2)!=0) // Odd pixel => Copy pixel from previous column 
inputBuffer[0][j][k] = inputBuffer[0][j][k-l];

else
{

// Even frame. Even line. Even pixel => Transfer new pixel 
pixelValue “  tempFramcPtr[bmiHeader.bi Width*j/2 + imageOffset + k/2); 
inputBuffer(0][j][k] = (unsigned 

charX(0.3*(double)palette[pixelValuc*sizcof(RGBQL)AD)-t-x]
+0.59*(double)palette(pixelValue*sizeof(RGBQUADyt-y]
-K). 11 *(doublc)palette[pixelValue*sizeof(RGBQUAD)4-z])+0.5);

}
)

)
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// fiher input buffer and store result in output buffer (RAW) 
for(n2”Opi2<(unsignedX2, btniHeader.biHeight);n2++)
{

foffn3=0;n3<(iinsignedX2*bfmHeader.biWidth);n3++)
{

outputBuffcr[0][n2][n3] = 0.0; 
for(i=0;i<=m_nOrder;i++)
{

for(j=Oa<=ni_nOrdery-t-+)
{

for(k=0;k<=in_nOrder;k++)
{

if((int(n2-j)<0)|Kint(n3-k)<0» continue; 
outputBuffer[0][n2][n3] +=

m_pACoeffArray[i][j][k]*inputBuffer(i][n2-j][n3-kJ;
if((i+j+k)=0) continue; 
outputBuffer[0][n2][n3] -=

m_pBCoeffArray[i][j][k]*outputBuffer(i][n2-j][n3-k];
}

>
)
// Store max and min values for scaling 
// Exclude edges from consideration
if((n2>=2*(m_nOrder+-l))&&(n2<=2, btniHeader.biHeight-2, (innOrderH)))
{

if((n3>=2*(m_nOrder+1 ))&&(n3<=2, bmiHeader.biWidth-2, (m_nOrderf-1))) 
{

maxVal = max(maxVal,outputBuffcr[0][n2][n3]); 
minVal = min(minVai,outputBuffer[0][n2][n3]);

}
}
// Fill frame that will be converted back to BMP format 
aviFrame[n2][n3] = outputBuffer[0][n2][n3];

}
>

// Scale Frame so values lie between 0 and 255
for(i=0;i<(unsignedX2*bmiHeader.biHeight);i-t-t-)
{

for(j=0y<(unsignedX2*bmiHeader.biWidth)y-M-)
{

aviFrame[i]D] = (aviFrame(ilD]-minVal)*255.0 / (maxVaMninVal) + 0.5; 
if(aviFrame[i][j]>255.0) aviFrame[i][j] = 255.0; 
if(aviFrame[i]G]<0.0) aviFrame[i]D] = 0.0;

}
)

II Insert header into framePtr
InsertHeader(bmiHeader,fnunePtr,tempFrainePtr);
// Create new palette
InsertPalettefbmiHcader,framePtr,paletteOffset);

// Insert image data
for(is 0;i<(unsignedX2*bmiHeader.biHeight);i++)
{

for(j:,=0y<(unsignedX2*bmiHeader.biWidth)a+-t-)
fTamePtr(bfniHcader.biSize+btniHeader.biClrUsed*sizeof(RGBQUAD>+
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i*(2*bniiHcader.biWidth+2cro_pad>+j] =
(BYTE)aviFrame[i][j];

}
// Write frame to new stream
hr= AVIStreamWrite(pStreamNew,frame, I,

frame Ptr+ imageOffset, 
4*bmiHcader.biSizeImage, 
AVIIF_KEYFRAME» NULL, NULL);

iflhr != AVIERROK)
{

AfxMessageBox("An Error Occurred Writing to the Output Stream.”); 
return FALSE;

}
// Shift Frames in Input and Output Buffer 
for(i=0;i<m_nOrder;i++)
{

for(j=0 J<( unsign edX2*bmiHeadcr.biHeight)y++)
{

for(kN);k<(tinsignedX2*bmiHeader.biWidth);k++)
{

inputBuffer[m_nOrdcr-i][j][k] = inputBuffer(m_nOrder-l-i][j][k]; 
outputBuffer[m_nOrder-i][j][k] =outputBufTer[m_nOrder-l-i][j][k];

}
}
// Advance the current position o f the progress bar
dlg.m_progressCtrl.Stcp!tO;

} // End of main Frame filtering loop

// Close dialog box 
dlg.DestroyWindow();

// Close the files and streams
AVI StreamGetFrameC lose(getFrameObj);
AVIStrcamClose(pStream);
AVIStrcamClosefpStreamNew);
AVIFileClose(pFileNew);

AVIFileExitO;
return TRUE; // function completed successfully

}
void CFilter3DDoc::ExtractBMPHeader<BITMAPINFOHEADER&bmpHdr, BYTE *tempFramePtr)

// Store BITMAPINFOHEADER information------------------
bmpHdr.biSize = tempFramePtr(0x001+(tempFramePtr(0x0I]«8>+-

(tempFramePtr(0x02]« 16)+(tempFramePtr(0x03]«24); 
bmpHdr.bi Width = tempFramePtr(0x04]+(tempFramePtr(0x05]«8)-t-

(tempFramePtr[0x06]«16>KtempFramePtr[0x07]«24); 
bmpHdr.biHeight = tempFramePtr(Ox08]+(tempFramePtrfOx09]«8Ft-

(tempFramePtr[0x0A]«l6MtcmpFiamePtr(0x0B]«24);
bmpHdr.biPlanes = 1;
bmpHdr.biBitCount = tempFramePtr[0x0E}+(tempFramePtr[0x0F]«8);
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bmpHdr.biComprcssior= tempFramePtr(Ox 10]-KtempFramePtr(Ox 1 1]«8>+-
(tempFramePtr(Ox 12]« 16)+(tempFramePtr(0x 13]«24); 

bmpHdr.biSizelmage -  tempFramePtrfOx 14}+(tempFramePtr(0x 15]«8>+
(ternpFramePtr[0xl6]«l6)+(tenipFramePtr[0xl 7]«24); 

bmpHdr.biXPelsPerMeter= tempFramePtr[0xl8]+(teinpFraniePtr[0xl9]«8)+
(tempFramePtifOx 1 A ]«  16)+(tenipFramePtrfOx 1 B}«24); 

bmpHdr.biYPelsPerMeter = tempFramePtrJOx 1 C]+(tempFraiiiePtr(Ox 1 D]<<8}+-
(tempFramePtrf0xlE]«16>HtempFrainePtr(0xlF]«24); 

bmpHdr.biClrUsed = tempFramePtr(0x20]+(tempFramePtrf0x21 ]«*>+-
(tempFrainePtr[0x22]«16)+(tempFramePtr(0x23]«24); 

bmpHdr.biClrlmportant = tempFramePtifOx24]+(tempFramePtr(Ox25]«8>t-
(tempFramcPof0x26]« 16)+(tcmpFramePtrf0x27]«24); 

// Done Storing BITMAPINFOHEADER info ■ ■ ■ ■ ■

BOOL CFilter3DDoc:.-OnOpenDocument(LPCTSTR IpszPalhNamc) 
{

if (!CDocument::OnOpenDocument(lpszPathName)) 
return FALSE;

return TRUE;
>

void CFilter3DDoc::InsertHeader(BITMAPINFOHEADER bmiHeader, 

{
BYTE *framePtr, BYTE •tempFramePtr)

unsigned i;
for{i=0;i<bmiHeader.biSize;i++)
{

framePtr[i] = tempFramePtrfi]; // Copy Header
fhunePtr[0x04] = (BYTEX2*bmiHeader.bi Width); // double Width
framePtr[OxOS] = (BYTEX(2*bmiHeader.biWidth)»8); 
framePtr[0x06] = (BYTEX(2*bmiHeader.biWidth)»16); 
framePtr[0x07] = (BYTEX(2*bmiHeader.biWidth)»24);

framePtr[0x08] = (BYTEX2*bmiHeader.biHeight); // double Height
framePtr[0x09] = (BYTEX(2*bmiHeader.biHeight)»8); 
framePtrJOxOA] = (BYTEX(2*bmiHeadcr.biHeight)»16); 
frame PtrfOxOB] = (BYTEX(2*bmiHeader.biHeight)»24);

ftamePtr[0xl4] = (BYTEX4*bmiHeader.biSizeImage); // change size 
framePtr[0xl5] = (BYTEX(4*bmiHeader.biSizelmage)»8); 
framePtr[0xl6] = (BYTEX(4*bmiHeader.biSizelmage)»l6); 
framePtr(0xl7] = (BYTEX(4*bmiHeader.biSizelmage)»24);

}
}

void CFilter3DDoc::InsertPalette(BITMAPINFOHEADER bmiHeader,
BYTE •framePtr.DWORD palettcOfTset)

{
unsigned i;
for(i=0;i<bmiHeader.biClrUsed;i-M-)
{

frame Ptr[paletteOffset+4*i] = (BYTE)i;
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framePtrfpaIetteOfFset+4*H-1 ] = (BYTE)i; 
framcPtr(paietteOffsct+4, i+2] = (BYTE)i; 
fhttnePtrfpaJetteOfFset+4*B-3] — (BYTE)0;

)
)

void CFiltcr3DDoc::SetOpenFiIeName(LPTSTR IpstrFile) 
{

m_lpstrFiicName = IpstrFile;

void CFilter3DDoc;:SetSaveRleName(LPTSTR IpstrFile)
{

m_lpstrNewFileName = IpstrFile;
)
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// Filter3dSettingsDlg.cpp: implementation file
//
^include "stdafx.h"
^include "Filter3D.h"
#include "Filter3dSctlingsDlg-h"

#ifdef_DEBUG 
^define new DEBUGNEW 
#undef THISFILE
static char THIS_FILEQ = FILE ;
#endif

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
// CFilter3DSettingsDlg dialog

CFilter3DSettingsDlg::CFilter3DSettingsDlg(CWnd* pParent /^NULL*/) 
: CDialog(CFilter3DSettingsDlg::IDD, pParent)

{
//{{AFX_DATA_INIT(CFilter3DSettingsDlg)
m_dCutofIFrcq = 0.0;
m_nOffset = 0;
mnOrder=0;
m_nNum Samples = 0;
//}} AFX_DATA_INIT

>

void CFilter3DSettingsDlg::DoDataExchange(CDataExchange* pDX) 
{

CDia)og::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CFilter3DSettingsDlg) 
DDXTextfpDX, IDC_CUTOFF, m dCutofiFreq); 
DDX_Text(pDX, IDC_OFFSET, mjtOffset); 
DDX_Text(pDX, IDC_OROER, m_nOrder); 
DDX_Text(pDX, IDCSAMPLES, m_nNum Samples);
//]} AF X_DATA MAP

}

B EG IN_MESSAGE_MAP(CFi Iter3 DSettingsDIg, CDialog)
//{{AFX_MSG_MAP(CFilter3DScttingsDlg)

// NOTE: the Class Wizard will add message map macros here 
//)} AFXMSGMAP 

END_MESSAGE_MAP()

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
// CFilter3DSettingsDlg message handlers
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// Filter3DView.cpp: implementation of the CFilter3DView class
//
# include "stdafxJi”
#include "Filter3D.h"

# include "Filter3DDoc.h“
# include "Filter3DView.h"
#include "vfwJi”
#include <fstream.h>
//iinclude <commdlg.h>

#define IMPULSE 
#define MAGNITUDE 
#define PHASE 
#define COEFFICIENTS 
^define VIDEO

#ifdef .DEBUG 
^define new DEBUG.NEW 
#undef THIS.FILE 
static char THIS.FILEf] = _F IL E _;
#endif

iiiiiiiiiiim iiiiiiiiim iiiiiiim iiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
II CFilter3DView

IMPLEMENT_DYNCREATE(CFilter3DView, CView)

BEGIN_MESSAGE_MAP(CFilter3DView, CView)
//{{AFX_MSG_MAP(CFilter3DView)
ON_COMMAND(ID_DISPLAY_COEFFICIENTS, OnDisplayCoefficients) 
ON_COMMAND(ID_DISPLAY_IMPULSE, OnDisplaylmpulse)
ON _COMMAND(ID_DISPLAY_MAGNITUDE, OnDisplayMagnitudc) 
ON_COMMAND(ID_DISPLAY_PHASE, OnDisplayPhase) 
ON_COMMAND(ID_VIDEO_OPEN, On VideoOpen) 
ON_COMMAND(ID_VIDEO_PLAY, OnVidcoPlay) 
ON_COMMAND(ID_VIDEO FILTER, OnVideoFilter) 
ON_COMMAND(ID_VIDEO“oPENOUTPUT, OnVideoOpenOutput)
//}} AFX.MSG.MAP 
// Standard printing commands 
ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint) 
ON_COMMAND(ID_FILEPRINTDIRECT, CView:OnFilePrint) 
ON_COMMAND(ID_FILEPRINT_PREVIEW, CView::OnFilePrintPreview) 

END.MESSAGE.MAPO

lllllllllllllflllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II CFilter3DView construction/destruction

CFilter3DVicw::CFilter3DView()

pi = 4.0*atan(1.0); 
m_nN umDataPoints = 0; 
m.nDisplay -  COEFFICIENTS;

m.dRotationX -  0.0; 
mdRotationY = -38.0*(pi/180);
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mdRotationZ = 0.0;

mhwndOriginalAVI = NULL; 
m_hwndFilteredAVI= NULL;

)
CFilter3DView::~CFilter3DVicwO
{
}
BOOL CFiltcr3DView::PrcCreateWindow(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying 
// the CREATESTRUCT cs

return CVicw::PreCreaieWindow(cs);
}
iniiiiiiiiiiiiiuniitiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiii
II CFilter3DView drawing

void CFilter3DView:;OnDraw(CDC* pDC)
{

CFilter3DDoc* pDoc = GetDocumentO; 
ASSERT_VALID(pDoc);

switch(m_nOisplay)
{
case COEFFICIENTS:

DrawCoefIicients(pDC);
break;

case IMPULSE: 
case MAGNITUDE: 
case PHASE:

PlotPoints(pDC);
break;

case VIDEO:

break;
}

}
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
// CFilter3DView printing

BOOL CFilter3DView::OnPreparePrinting(CPrintInfo* plnfo)
{

// default preparation
return DoPreparePrinting(pInfb);

)

void CFilter3DVicw::OnBeginPrinting(CDC* /*pDC*/, CPrintlnfo* /*pInfo*/)
{

// TODO: add extra initialization before printing
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)

void CFilter3DView::OnEndPrinting(CDC* /*pDC*/, CPrintlnfo* /*plnfo*/) 
{

// TODO: add cleanup after printing
}
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
// CFilter3DView diagnostics

#ifdef_DEBUG
void CFilter3DView::AsscrtValid{) const 
{

CView::AsscrtValidO;
>

void CFilter3DView::DumpCCDumpContext& dc) const 
{

CView::Dump(dc);
>

CFilter3DDoc* CFiller3DView::GetDocument() // non-debug version is inline 
{

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CFilter3DDoc))); 
return (CFilter3DDoc*)m_j>Docunient;

>
#endif//.DEBUG

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
// CFilter3DView message handlers

void CFilter3DView::OnUpdate(CView* pSender, LPARAM IHint, CObject* pHint) 
{

CFilter3DDoc* pDoc = GetDocumentO;
ASSERT_VALID(pDoc);

unsigned ijjc; 
switch(m_nDisplay)
{
case VIDEO:

break;

case IMPULSE:
// If MCI windows exist, remove them 
iftm_hwndOriginalAVI!=NULL)
{

MCIWndDestroy(m_hwndOriginalAVI); 
mhwndOriginalAVI = NULL;

i ftm_hwndFi IteredA VI !=NULL)
{

MCIWndDestroyfmhwndFilteredAVI); 
m.hwndFilteredAVI = NULL;

>
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>
if(m_nNumDataPoints) // if  array already exists, de-allocate
{

fotti=0;i<m_nNiimDataPoints;i+-t-)
delete Q m_pDisplayPointArray [i]; 

delete Q m_pDisplayPointAn«y;
}
m_pDataPointArray= pDoc->GetImpulseResponseO; 
m_nNumDataPoints -  pDoc->GetImpul3eResponseSizeO;

// Allocate display point memory
m_pDisplayPointArray = new CPoint *[m_nNumDataPoints]; 
for{i=0;i<m_nNumDataPoints;i++)

m_pDisplayPointArray[i] = new CPoint [m_nNumDataPoints];

m_pdAxisX = pDoc->GetImpulseAxis(); 
m_pdAxisZ = pDoc->GetImpulseAxisO; 
fbr(j=Oa<ni_nNiimDataPointsa+-t-)
{

for(k=0;k<mnNumDataPoints;k++)
m_pDisplayPointArray(j][k] = ConvertToScreen(m_pdAxisX[k],m_pDataPointArTay[S 

/*(tmsigned)m_dConstAxisFreq */][j][k],m_pdAxisZ[j]);
}
MakePlotFitWindowO;
break;

case MAGNITUDE;
// If MCI windows exist, remove them 
if{m_hwndOriginalAVI!=NULL)
{

MCIWndDestroy(m_hwndOriginalAVI); 
mhwndOriginalAVI = NULL;

ifl[m_hwndFilteredAVI!=NULL)
{

MCIWndDestroy(mhwndFiltcredAVI); 
mJiwndFilteredAVI = NULL;

}
)
ifl[m_nNiimDataPoints) // if array already exists, de-allocate
{

for(i=0;i<m_nNumDataPoints;i++)
delete Q m_pDisplayPointArray[i]; 

delete Q m_pDisplayPointArray;
)
m_pDataPointArray = pDoc->GetMagnitudeResponseO; 
m_nNumDataPoints = pDoc->GetMagnitudeResponseSize(); 
mjpDisplayPointAnay = new CPoint *[m_nNumDataPoints]; 
for(i=K);i<m_nNumDataPoims;i-t-t-)

m_pDisplayPointArrey[i] = new CPoint [m_nNumDataPoints];

m_pdAxisX -  pDoc->GetFreqAxisO; 
m_pdAxisZ = pDoc->GetFreqAxis();
fof(i*Oa<»n_nNumDataPointsa++)
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{
for(k=0;k<m_nNiiniDataPoints;k++)

m_pDisplayPointArray[fl[k] = ConvcrtToScncen(m_pdAxisX[k]jn_pDalaPointArray[8 
/*(unsigned)m_dConstAxisFreq */][j][k],m_pdAxisZ[j]);

}
MakePlotFitWindowO;
break;

case PHASE:
// If MCI windows exist, remove them 
if(m_hwndOriginalAVI!=NULL)
{

MCIWndDestroy(m_hwndOriginalAVI); 
mhwndOriginalAVI = NULL;

if(m_hwndFilteredAVI!=NULL)
{

MCIWndDestrpy(m_hwndFilteredAVI); 
mhwndFilteredAVI = NULL;

>
>
if(m_nNumOataPoints) // if array already exists, de-allocate 
<

for(i=0;i<m_nNumDataPoints;i-t-+)
delete Q m_pDispIayPointArray[i]; 

delete Q m_pDispiayPointArray;
i
m_pDataPointArray = pDoc->GetPhaseRcsponscO; 
mnNumDataPoints= pDoc->GetPhaseResponseSizeO; 
m_pDisplayPointArray = new CPoint •[m nNumDataPoints]; 
for(i=0;i<m_nNumDataPoints;i++)

m_pDisplayPointAnay[i] = new CPoint [m_nNumDataPoints];

m_pdAxisX = pDoc->GetFreqAxisO; 
mjpdAxisZ = pDoc->GetFreqAxisO; 
forfj=Oy<m_nNumDataPointsy++)
{

for(k=0;k<m_nNumDataPoints;k-t-+)
m_pDisplayPointArray[j][k] = ConvertToScreen(m_pdAxisX[k],m_pDataPointArray[8 

/*(unsigned)m_dConstAxisFreq */][j][k],in_pdAxisZ[j]);
>
MakePlotFitWindowO;
break;

case COEFFICIENTS:
// If MCI windows exist, remove them 
iflm_hwndOriginalAVI!=NULL)
{

MCIWndDestroy(m_hwndOriginalAVI); 
m_hwndOriginalAVI = NULL;

if(m_hwndFilteredA VIS-NULL)
{

MCIWndDestroy(m hwndFilteredAVI); 
m hwndFiltcredAvf = NULL;
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>
m_pACoeffArray = pDoc->GctACoeflficicntsO; 
m_pBCoeifAiTBy = pDoc->GetBCoeflicientsO; 
mnNumCoefficients = pDoc->GetNimiCoefficients(); 
break;

}
Redraw WindowO;

i

void CFilter3DView::DrawCoefficients(CDC *pDC)
{

CFont fontCur;
ifl[fontCur.CreatePointFont(100, "Roman”, pDC))
{

CFont* pOldFont = pDC->SelectObject(&fontCur);

char ch_bufTer[10]; 
unsigned ij.k;
CRectlRect;
CString A_coefF= "{a} Cocfficients:\n";
CString B_coefF = "{bj Coefiicients:\n”;

GetClientRect(lRect);
IRcct.right /= 2;

for(i=0;i<iii_nNumCoefficients;i-M-)
{

for<j=Oy<m_nNumCoefTicients
{

for(lc=0;k<m nNumCoefficients;k++)
{

sprintf(ch_bufFer,"%.5r,m_pACoeffArray[i]DlIkl); 
A_coefF += ch_buffer;
A_coefF+="

}
A_coeff+= "\n";

>
A_coefF+= "\n\n";

>
pDC->DrawText( AcoefF, IRect, DT_CENTER);

for(i=0;i<m_nNumCoefficients;i++)
{

for(j=Ou<m_nNumCoefficientsy++)
{

for(k=,0;k<iTi nNumCoefficients;k++)
{

sprintf(ch_bufrer,"%.Sryn_pBCoefFAm^[i](j]{k]);
B_coefF+= ch_buffer;
B_coeff+="

)
Bjcoeff += "\n";

>
B coeff += "\n\n";

)
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IRectleft= lRcct-right;
IRecuight *= 2;

pDC->DrawTcxt(B_cocff, IRect, DTjCENTER); 

pDC->SelectObject(pOldFont);
>
fbntCur.DeleteObject();

}

void CFilter3DView::PlotPoints(CDC *pDC)
{

int ij;
CPoint points[4];
for(i=m_nNuinOataPoints-l ;i>0;i—)
{

fofO=0;(unsigncd)j<m_nNumDataPoints-l y++)
{

points[0] = CPoint(long(ni_pDisplayPointArray[i][j].x),long(m_pDisplayPointArray[i][jl.y)); 
points[l] -  CPoint(long(m_pDisplayPointArray[i][j+l].x),long(m_pDisplayPointArray[i][j+l].y)); 
points[2] *

CPoint(long(m_pDisplay PointArrayfi-I ] [j+1 ].x),long(m_pDisplayPointArray[i- I][j+1 J.y));
points[3] = CPoint(long(m_pDisplayPointArray[i-I][j].x),long(m_pDisplayPointArray[i-l ][j].y));

pDC->Polygon(points,4);
}

}
>

void CFilter3DView::OnDisplayCoefficients()
{ mnDisplay = COEFFICIENTS;

OnUpdate(NULU OL, NULL); }

void CFilter3DView::OnDisplayImpulse()
{ mnDisplay = IMPULSE;

OnUpdale(NULL, OL, NULL); }

void CFilter3DView::OnDisplayMagnitudeO 
{ m_nDisplay = MAGNITUDE;

OnUpdate(NULL, OL, NULL); }

void CFilter3DView::OnDisplayPhascO 
{ m_nDisplay = PHASE;

OnUpdatcfNULL, OL, NULL); }

POINT CFilter3DView::ConvenToScreen(double x, double y, double z)
{

POINT point;
float xp = 0, yp=0.5, zp = I; / / Perspective vector

TrnnsformPoints(x,y,z);
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x*= 1000; 
z*= 1000; 
switch(in_nDisplay)
{
case IMPULSE:

y*= 7000000; 
break; 

case MAGNITUDE: 
y •= 300000; 
break; 

case PHASE:
y *= 1000; 
break;

}
pointx = Iong((4.0/3.0)*(x + z*(xp/zp))); 
pointy = long(-<y+z*(yp/zp))); 
return point;

void CFilter3DView::MakePlotFitWindow0 
{

// Scale and center the plot so it fits the window 
// with a margin on all sides 
unsigned i j ;
int max_x = m_pDisplay PointArray [0] [0] .x; 
int minx = m_pDisplay PointArray [0] [0] .x; 
int max_y = m_pDisplayPointAiray(0][0].y; 
int min_y = m_pDisplayPointArray[0J[0].y; 
int margin = 50;
CRect IpRect;

// Get max and min values of points 
for(i=0;i<m_nNumDataPoints;i++)
{

for(j=Oy<m_nNumDataPointsy++)
{

max_x = max(max_x,m_pDisplayPointAiray[i][j].x); 
max_y = maxfmax_y,m_pDisplayPointArray[i][j].y); 
min_x = min(min_x,m_pDisplayPointAiray[i][j].x); 
min_y = min(min_y,m_pDisplayPointArray[i][)].y);

>
}
GetClientRect( IpRect);
if( (IpRectright < (2*margin+50)) || (IpRect bottom < (2*margin+50))) 

IpRect = CRect(0,0,(2*margin+50),(2*margin+50»;

lpRectDeflateRect(margin,margin);

double xScale = double(lpRectright-lpRectleftVdouble(max_x-min_x); 
double yScale = double(lpRectbottom-lpRecttop)/double(max_y-min_y);

for(i=0;i<m_nNumDataPoims;i++)
{

for(j”OJ<m_nNumDataPointsy++)
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{
m_pDisplayPointArray[i]D].x -  long((doubIe)in_pDisplayPointArTay{i][j].x * xScale); 
m_pDisplayPointArTay[i][j].y = long((doubIe)m_pDisplayPointArray[i][j].y * yScale);

>
}
// adjust minlmums and maxim urns to reflect scaling effects
min_x = kmg(min_x*xScalc);
maxjt = long(max_x*xScale);
min_y = iong(min_y*yScaIe);
max_y = long(max_y*yScale);

// Center plot in window 
int dx = IpRectleft - min_x; 
int dy -  IpRect.bottom • max_y;

for(i=0;i<m_nNuinDataPoints;i++)
{

for(j=Oy<m_nNumDataPointsj++)
{

mj)DisplayPointAtTay[i][j].Offsct(dx.dy);
)

)
)

void CFilter3DView::TransformPoints(doubie &x, double &y, double &z)
{

double xtemp = x; 
double ytemp = y; 
double ztemp = z;

// Rotation about x-axis
y = float(ytemp*cos(m_dRotationX) • ztemp*sin(m_dRotationX»; 
z = float(ytemp*sin(m_dRotationX) + ztemp*cos(m_dRotationX»;

xtemp = x; 
ytemp = y; 
ztemp = z;

// Rotation about y-axis
x = float(xtemp*cos(m_dRotationY) + ztemp*sin(m_dRotationY)); 
z = float(>xtemp*sin(m_dRotationY) + ztemp*cos(m_dRotatioriY));

xtemp = x; 
ytemp=y; 
ztemp = z;

// Rotation about z-axis
x = float(xtemp*cos(m_dRotationZ) • ytemp*sin(m_dRotationZ»; 
y = float(xtemp*sin(m_dRotationZ) + ytemp*cos(m_dRotationZ));

void CFilter3DView::OnVideoOpen() 

m_nDisplay * VIDEO;
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OnUpdate(NULL, OL, NULL);

CFiher3DDoc* pDoc = GetOocumentO;
ASSERT_VALID(pDoc);

char buffer{256]; 
buffer[0] = NULL;

OPENFILENAME opfn; 
opfti.lStructSizc = sizeoffOPENFlLENAME); 
opfn.hwndOwncr = mhWnd; 
opfiuhlnstance = 0; 
opfhJpsfrFilter = NULL; 
opfn.IpstrCustomFiltcr = NULL; 
opfiuiMaxCustFilter=0; 
opfh.nFilterlndex = 0;
opfh.lpstrFilc = buffer; // File name to open
opfiunMaxFile = 2S6;
opfn.lpstrFileTitle = NULL;
opfn.nMaxFi leTitle = 0;
opfh.lpstrlnitialDir = NULL;
opfti.lpstrTitle = NULL;
opfh.Flags = OFNFILEMUSTEXIST | OFN_HIDEREADONLY |

OFNNONETWORKBUTTON | OFNPATHMUSTEXIST;
opfn.nFileOffset = 0; 
opfiunFileExtension = 0; 
opfhJpstrDefExt -  NULL; 
ophulCustData=0; 
opfh.lpfnHook = 0; 
opfh.lpTemplateName -  0;

BOOL error = GetOpenFileName(&opfh);
ifl[*opfh.lpstrFile=NULL) // // If the user did not specify a file name 

return;

if(m_hwndOriginalAVI!=NULL)
{

MCIWndDestroy(m_hwndOriginalAVI); 
m_hwndOriginalAVI = NULL;

}
pDoc->SetOpenFileName(opfh.lpstrFile); // Set file to open

if(*opfh.lpstrFile!=NULL) // If the user specified a file name
{

if«mhwndOriginalAVI=NULL))
// If no MCI window exists create it and open file 
m hwndOriginalAVI = MCIWndCreate(m hWmLA6cGetInstanceHandleO, 

MCIWNDF SHOWNAME |
MCIWNDFJSHOWMODE |
WS_V1SIBLE |
WS_BORDER |
WS_CHILD,
opfn.lpstrFile);

)
}

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



void CF i lter3 DView: :OnVideoPlayO 
{

MCIWndPlayfmhwndOriginalAVI);
MCIWndPlay(ni_hwndFiheredAVI);

}

void CF1Iter3DView::OnVideoFilterO 
{

CFiltcr3DDoc* pDoc = GetDocumentO;
ASSERT_VALID(pDoc);

char buffer(256], dlgTitleQ = "Save Filtered Movie As"; 
bufferfO] = NULL;

OPENFILENAME opfn; 
opfn.IStructSizc = sizeof(OPENFILENAME); 
opfahwndOwner = m_h Wnd; 
opfnJiInstance = 0; 
opfn.lpstrFilter= NULL; 
opfh.IpstrCustomFilter = NULL; 
opfn.nMaxCustFilter=0; 
opfh.nFilterlndex = 0;
opfh.lpstrFile = buffer; //File name to open
opfanMaxFile = 256; 
opfn.lpstrFileTitle = NULL; 
opfanMaxFileTitle = 0; 
opfn.IpstrlnitialDir= NULL; 
opfh.lpstrTitle = dlgTitle;
opfn.Flags = OFNHIDEREADONLY | OFNNONETWORKBUTTON;
opfn.nFileOfFset = 0;
opfn.nFileExtension = 0;
opfnJpstrDefExt = NULL;
opfn.lCustOata = 0;
opfh.IpfhHook = 0;
opfh.IpTemplateName = 0;

BOOL error = GetSaveFiIeName(&opfh);

pDoc->SetSaveFileName(opfh.lpstrFile); // Set filename to save as

ift*opfn.lpstrFile=NULL) // If the user did not specify a file name
{

RcdrawWindowO; // Redraw MCI Window toolbar 
return;

}

pDoc->FilterMovieO; U Filter AVI file

iftm_hwndFilteredAVI!-NULL)
(

MCIWndDestrpy(m_hwndOriginalAVI); 
m_hwndFilteredAVI -  NULL;

>
m_hwndFilteredAVI = MCIWndCreate(m_hWn<LAfxGetInstanceHaiidle(). 

MCIWNDF SHOWNAME |
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MCIWNDFSHOWMODE |
WS_V1SIBLE |
WS_BORDER |
WSCHILD,
opfnJpstrFile);

RECT rC intent;
::GetWindowRect(m_hwndFilteredAVI,&rCintent);

“MoveWindow(m_hwndFiIteredAVLrCinTent.right.O/*rCintent, top*/,
(rCurtent.right-rCurTcnt.lcft), (rC intent. bottom-rCurtcnt. top), TRUE);

void CFiltcr3DView:OnVideoOpenOutputO
{

char bufFer[2S6],digTitleO -  "Open Filtered Movie”; 
bufFerfOl = NULL;

OPENFILENAME opfh; 
opfn.lStructSize = sizeoffOPENFILENAME); 
opfn.hwndOwner = m_hWnd; 
opfn.hlnstance = 0; 
opfhJpstrFilter = NULL; 
opfh.IpstrCustomFilter = NULL; 
opfh.nMaxCustFilter = 0; 
opfh.nFilterindex = 0;
opfh.IpstrFilc = buffer, // File name to open 
opfn.nMaxFile = 256; 
opfh.lpstrFileTitle = NULL; 
opfiuiMaxFileTitle = 0; 
opfn.IpstrlnitialDir = NULL; 
opfh.lpstrTitle = dlgTitle;
opfn.Flags = OFNFILEMUSTEXIST | OFNHIDEREADONLY |

OFN_NONETWORKBUTTON | OFNPATHMUSTEXIST;
opfh.nFileOffset = 0; 
opfn.nFileExtension = 0; 
opfn.lpstrDefExt = NULL; 
opfh.lCustData = 0; 
opfn.IpfnHook = 0; 
opfh.lpTemplateName -  0;

BOOL error = GetOpenFileNamc(&opfn);
if(*opfh.lpstrFile=NULL) // // If the user did not specify a file name 

return;

if(m_hwndFilteredAVI!=NULL)
{

MCIWndDestroy(m_hwndFilteredAVI); 
m_hwndFiltetedAVI = NULL;

if(*opfn.lpstrFiIe!=NULL) // If the user specified a file name
{

i f((m_hwndFi ItetedA VI=NULL))
// If no MCI window exists create it and open file
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mJiwndFilteredAVI = MCIWndCreae(in_hWnd^\fxGetInslanccHandlc(), 
MCIWNDF SHOWNAME |
MCIWNDF_SHOWMODE |
WS_VISIBLE |
WSBORDER |
WS_CHILD,
opfh.lpstrFilc);

}

RECT rCuirent;
::GctWindowRect(m_hwndFiltcredAVl,&rCuiTent);

::MoveWindow(m_hwndFilteredAVUCunent.right,0/*iCurrent.top*/,
(rCurrem.right-rCurrcnt.left), (rCurrcnt.bottont-rCurrcnt.top), TRUE);
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/ /  M a in F rm .cp p : implementation o f the CMainFrame class
//

#inciude "stdafxJi”
# include "Filter3D.h"

^include "MainFrm-h"

#ifdef_DEBUG
#define new DEBUGNEW
#undcfTHIS_FILE
static char THIS_FILEO =  FILE ;
#endif

iiiitiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiniiiiiiiiiiiiiiiiiiiiiii
//CMainFrame

IMPLEMENTDYNAMICfCMainFrame, CMDIFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd)
//{{AFX_MSG_MAP(CMainFrame)

// NOTE - the Class Wizard will add and remove mapping macros here. 
// DO NOT EDIT what you see in these blocks of generated code! 

ON_WM_CREATE0 
//}} AFX_MSG_MAP 

END_MESSAGE_MAPO

static UINT indicators!] =
{

IDJSEPARATOR, // status line indicator
IDINDICATORCAPS,
IDIND1CATORNUM,
IDiNDICATORSCRL,

};
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiii 
// CMainFrame construction/destruction

CMainFrame::CMainFrameO
{

// TODO: add member initialization code here

>

CMainFrame::~CMainFrameO

)

int CMainFrame:K)nCreate(LPCREATESTRUCT IpCreateStruct)
{

if (CMDIFrameWnd::OnCreate(!pCreateStruct) =  -1) 
return-1;

if (!m_wndToolBar.Create(this> ||
!m_wndToolBar.LoadToolBar(IDR_MAINFRAME))

{
TRACEOCFailed to create toolbar\n");
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return-1; // fail to create
}
if (!m_wnd Status Bar.Create(this) ||

!m_wndStatusBar.SctIndicators( indicators, 
sizeof(indicatora)/sizBof(UINT)))

{
TRACEOCFailed to create status barta”); 
return-1; // fail to create

}

// TODO: Remove this if you don't want tool tips or a resizeable toolbar 
m_wndToolBar.SetBarStyle(m_wndToolBar.GctBarStyle() |

CBRSTOOLTIPS | CBRSFLYBY | CBRS_SIZE_DYNAMIC);

// TODO: Delete these three lines if you don't want the toolbar to 
// be dockable
m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
EnableDocking(CBRS_ALIGN_ANY);
DockControlBar(&m_wndToolBar);

return 0;
>

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying 
// the CREATESTRUCT cs

cs Jt = 0; 
cs.y = 0;
cs.cy = ::GetSystemMetrics(SM_CYSCREEN)-30; 

cs.cx = ::GetSystemMetrics(SMjCXSCREEN);

return CMDIFrameWnd::PreCreateWindow(cs);
>

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II CMainFrame diagnostics

#ifdef_DEBUG
void CMainFrame:^ssertValidO const 
{

CMDIFrameWnd::AssertValidO;
}

void CMainFrame::Dump(CDumpContext& dc) const 
{

CMDIFrameWnd::Dump(dc);

#endif//_DEBUG

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II CMainFrame message handlers
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// ProcessingDlg.cpp: implementation file
//

iinclude "stdafx.h"
^include "Filter3D.h"
^include " Process ingDlg.h"

#ifdef_DEBUG
ftdefine new DEBUGNEW
#undef THISFILE
static char THIS_FILE[] = _FIL E _;
ffendif

IIIIIIIIIIIIIIIIII1HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
II CProcessingDIg dialog

CProcessingDlg::CProcessingDlg(CWnd* pParent /*=NULL*/)
: CDialog(CProcessingDlg::IDD, pParent)

{
// Create a modeless dialog box 
Crcate(IDD_PROCESSING.NULL);
//{{AFX_DATAINIT(CProcessingDIg)

// NOTE: the Class Wizard will add member initialization here 
//} }AFX_DATA_INIT

}

void CProcessingDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CProcessingDlg)
DDX Control(pDX, IDC_PROGRESS, m_progressCtrl); 
//}} AFX_DAT AMAP

BEGIN_MESSACE_MAP(CProcessingDlg, CDialog)
//{{AFX_MSG_MAP(CProcessingDlg)

// NOTE: the Class Wizard will add message map macros here 
//} }AFX_MSG_MAP 

END_MESSAGE_MAP()

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
// CProcessingDIg message handlers
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// ChildFrm.h: interface of the CChildFrame class
//
iiim iniiim iiiiiiitiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiniim ii

#if !defined(AFX_CHILDFRM_H_C8CEC46B_8DFA_l 1 D2_9E39_0020AFDA97B0_INCLUDED_)
# define AFX_CHILDFRM_H_C8CEC46B_8DFA_1 ID2_9E39_0020AFDA97B0_INCLUDED_

#if_MSC_VER»= 1000 
#pragmaonce
#endif // _MSC_VER >= 1000

class CChildFrame: public CMDIChildWnd
{

DECLAREDYNCREATE(CChildFrame)
public:

CChildFrameO;

//Attributes
public:

// Operations 
public:

// Overrides
// Class Wizard generated virtual function overrides
//{{AFX_VIRTU AL(CChildFrame)
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
//}} AFXVIRTUAL

// Implementation 
public:

virtual -CChildFrameO;
#ifdef_DEBUG

virtual void AssertValidO const;
virtual void Dump(CDumpContext& dc) const;

#endif

// Generated message map functions 
protected:

//{{AFX_MSG(CChildFrame)
// NOTE - the Class Wizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code!

//} }AFX_MSG
DECLARE_MESSAGE_MAP0

);

iiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiini 

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line. 

#endif//!defined(AFX_CHILDFRM_H_C8CEC46B_8DFA_llD2_9E39 0020AFDA97B0_INCLUDEDJ
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iiiiiiim niim m iim iiuiiiniitiiiiiiiim uiim iiiiiiiiiiiiiiiinii
//CotnplexJi: interface of the Complex class
//

#if_MSC_VER>= 1000 
#pragmaonce
#endif//_MSC_VER>= 1000

#include<math.h>

class COMPLEX 
{
protected:

double Real,Imag;

public:
COMPLEXO;
COMPLEX(double,double); 
double GetReal(void) const; 
double GetImag(void) const; 
double Magnitude(void); 
double Phase(void);

friend COMPLEX operator^ COMPLEX, COMPLEX ); 
friend COMPLEX operator^ COMPLEX, COMPLEX ); 
friend COMPLEX operator^ COMPLEX, COMPLEX); 
friend COMPLEX operator^ COMPLEX double ); 
friend COMPLEX operator/( COMPLEX double );

};
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// Filtcr3D.h: main header file for the FILTER3D application
//

#if !defined(AFX_FILTER3D_H_C8CEC465_8DFA_l I D2_9E39 0020AFDA97B0_INCLUDEDJ 
#define AFXFILTER3 D_H_C8CEC465_8DFA_ 11D2_9E39_0020AFDA97B0_JNCLUDED_

#if_MSC_VER >= 1000 
#pragmaoncc
#endif // MSC VER >= 1000

#iftidef AFXWINH_
#error include ’stdaix.h’ before including this file for PCH

#endif

#include "resource.h" // main symbols

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIlltlllllllllll 
// CFilter3DApp:
// See Filter3D.cpp for the implementation of this class
//

class CFilter3DApp: public CWinApp 
{
public:

CFilter3DAppO;

//Overrides
// Class Wizard generated virtual function overrides
//{{AFX_VIRTUAL(CFilter3DApp)
public:
virtual BOOL InitlnstanceO;
//} JAFXVIRTUAL

// Implementation

//{{AFX_MSG(CFilter3DApp) 
afxmsg void OnAppAboutO;

// NOTE - the Class Wizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !

//>} AFX_MSG
DECLARE_MESSAGEMAP()

>;

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiim iiiii 

U {  {AFX_INSERT_LOCATION} >
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif// !defined(AFX_FILTER3D_H_C8CEC465_8DFA_l 1D2_9E39_0020AFDA97B0_INCLUDED_>
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// Filter3DDocJi: interface of the CFiiter3DDoc class
//
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

#if 'defined/AFX_FILTER3DDOC_H C8CEC46D8DFA11 D2_9E39_0020AFDA97B0_INCLUDEDJ
#definc AFX_FILTER3DDOC_H_C8CEC46D_8DFA_l 1 D2_9E39_0020AFDA97B0_INCLUDED_

#if_MSC_VER>= 1000 
#pragmaonce
#endif// _MSC_VER >= 1000 

^include "Complex.h"

class CFilter3DDoc: public C Document
{
protected: // create from serialization only 

CFilter3DDoc();
DECLARE_DYNCREATE(CFilter3DDoc)

//Attributes
public:

//Operations
public:

//Overrides
// Class Wizard generated virtual function overrides
//{{AFX_VIRTUAL/CFilter3DDoc)
public:
virtual BOOL OnNewDocumentO;
virtual void Serialize(CArchive& ar);
virtual BOOL OnOpenDocument(LPCTSTR IpszPathName);
//} }AFX_VIRTUAL

// Implementation 
public:

void SetSaveFileName(LPTSTR); 
void SetOpenFileName(LPTSTR); 
double* GetImpulseAxis(void); 
double* GetFreqAxis(void); 
unsigned GetPhaseResponseSize( void); 
double*** GetPhaseResponsef void ); 
unsigned GetMagnitudeResponseSize( void); 
double*** GetMagnitudeResponse( void); 
unsigned GetImpulseResponseSize( void); 
double*** GetlmpulseResponse( void); 
unsigned GetNumCoefFicients( void ); 
double*** GetB Coefficients/ void); 
double *** GetACoefficicnts/ void );
BOOL FilterMovie(void); 
virtual ~CFilter3DDocO;

#ifdef_DEBUG
virtual void AssertValidO const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected:

1 3 0
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// Generated message map functions 
protected:

CString m_lpstiNewFileName;
CString mJpstrFileName;
void InsertPalette(BITMAPINFOHEADER3YTE *,DWORD); 
void InsertHeadet(BITMAPINFOHEADER3YTE *,BYTE •); 
double outputBuffer;
BYTE ••• inputBuffer;
void ExtractBMPHeader(BITMAPINFOHEADER &. BYTE •); 
double* m_pdImpulseAxis; 
double* m_pdFreqAxis; 
double pi;
void FFTID(COMPLEX *,unsigned, unsigned); 
void FFT3D(COMPLEX ***,unsigned,unsigned); 
void BitReveisaK unsigned*,unsigned);
BOOL Simq(doubie **, unsigned); 
void ComputeCoefficients(void); 
double*** m_pBCocffArray; 
double*** m_pACocfFArray; 
double*** m_pPhaseResponse; 
double*** m_pMagnitudeResponse; 
double*** m_pImpulscRcsponse; 
unsigned m_nOffset; 
unsigned m_nOrden 
unsigned m_nNum Samples; 
double mdCutoffFreq;
//{{AFX_MSG(CFilter3DDoc)
//> }AFX_MSG
DECLARE_MESSAGEMAP()

};

iiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinii 

//{{AFX_INSERT_LOCATION>}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // !defined( AFX_FILTER3DDOC_H_C8CEC46D_8DFA_l 1 D2_9E39_0020AFDA97B0_INCLUDED_)
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#if '.defined/AFX_FILTER3 DSETTINGSDLG_H_C6B545E I _8E8C_I I D2_9E39_0020AFDA97B0_INCLUDEDJ
#define AFX_FILTER3DSETTINGSDLG_H_C6B545E1_8E8C_11 D2_9E39 0020AFDA97BO_INCLUDED_

#if_MSC_VER >= 1000 
#pragmaonce
#endif//_MSC_VER>= 1000 
// Filtcr3DSettingsDlgJi: header file
//

iiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
// CFilter3DSettingsDlg dialog

class CFilter3DSettingsDlg: public CDialog 
{
// Construction 
public:

CFilter3DSettingsDlg(CWnd* pParent= NULL); // standard constructor

// Dialog Data
//{{AFX_DATA(CFilter3DSettingsDlg) 
entim { IDD = IDD SETTINGS ); 
double mjdCutoffFreq;
UINT m_nOfiset;
UINT m_nOrder;
UINT m nNurn Samples;
//}} AFX_DATA

//Overrides
// Class Wizard generated virtual function overrides 
//{(AFX_VIRTUAL(CFilter3DSettingsDlg) 
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support 
//}} AFX_VIRTUAL

// Implementation 
protected:

// Generated message map functions 
//{{AFX_MSG(CFilter3DSettingsDlg)

// NOTE: the Class Wizard will add member functions here 
//} }AFX_MSG
DECLAREVfESSAGEMAPQ

U
//[ {AFX_INSERT_LOC ATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // !defined(AFX_FILTER3DSETTlNGSDLG_H_C6B545El_8E8C_l 1D2_9E39_0020AFDA97B0 INCLUDED_)
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// Filter3DView.h: interface of the CFilter3DView class
//
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

#if !defined(AFX_FILTER3DVIEWH_C8CEC46F_8DFA_l 1 D2_9E39_0020AFDA97B0_INCLUDED_J 
#define AFX_FILTER3DVIEW_H_C8CEC46F_8DFA_11 D2_9E39_0020AFDA97B0_INCLUDED_

#if _MSC_VER >= 1000 
#pragmaonce
#endif//_MSC_VER >= 1000

class CFilter3DView: public CView 
{
protected: // create from serialization only 

CFilter3DViewO;
DECLARE_DYNCREATE(CFilter3DView)

// Attributes 
public:

CFilter3DDoc* GetDocumcnt();

// Operations 
public:

// Overrides
// Class Wizard generated virtual function overrides
//{{AFX_VIRTUAL(CFilter3DView)
public:
virtual void OnDrawfCDC* pDC); // overridden to draw this view 
virtual BOOL PreCreateWindow(CREATESTRUCT& cs); 
protected:
virtual BOOL OnPreparePrintingfCPrintlnfb* plnfo);
virtual void OnBeginPrintingfCDC* pDC, CPrintlnfo* plnfo);
virtual void OnEndPrinting(CDC* pDC, CPrintlnfo* plnfo);
virtual void OnUpdate(CView* pSender, LPARAM IHint, CObject* pHint);
//} }AFX_VIRTUAL

// Implementation 
public:

virtual ~CFilter3DViewO;
#ifdef_DEBUG

virtual void AssertValidO const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected:

// Generated message map functions 
protected:

HWND mhwndFilteredAVI;
HWND mhwndOriginalAVI; 
double mdRotationZ; 
double m_dRotationY; 
double m_dRotationX;
void TransformPoints( double &,double &.doublc &); 
void MakePlotFitWindowO;
POINT ConvertToScrccn( doublc,doubie,double);
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double pi;
double m_dConstAxisFreq; 
double* m_pdAxisZ; 
double* m_pdAxisX; 
unsigned mnNumDaiaPoints;
CPoint** m_pDisplayPointArray; 
double*** m_pDataPointArray; 
unsigned m_nNumCoefficients; 
double*** m_pBCoefJArray; 
double*** m_pACocfFArray; 
unsigned m nDisplay; 
void PlotPoints( CDC *); 
void DrawCoefficients( CDC * );
//{(AFX_MSG(CFiher3DView) 
afx_msg void OnDispiayCoefficientsO; 
afx_msg void OnDisplaybnpulseO; 
afx_msg void OnDisplayMagnitude();
afx_msg void OnDisplayPhaseO; 
afxjnsg void OnVideoOpenO; 
afx_msg void OnVideoPlayO; 
afx_msg void OnVideoFilteiO; 
afxmsg void OnVideoOpcnOutput();
//}}AFX_MSG
DECLAREMESSAGE_MAP()

};

#ifhdef_DEBUG // debug version in Filter3DView.cpp 
inline CFilter3DDoc* CFilter3DView::GetDocumentO 

{ return (CFilter3DDoc*)m_pDocument;}
#endif

/////////////////////////////////////////////////////////////////////////////

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

ffendif // !defined(AFX_FILTER3DVIEW_H_C8CEC46F_8DFA_l ID2_9E39_0020AFDA97B0_1NCLUDEDJ
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// MafnFrmJi: interface of the CMainFrame class
//
iiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiniim iiiiiiiiiiiiiiiiiiii

#if !defined(AFX_MAINFRM_H C8CEC469 8DFA11 D2_9E39JX)20AFDA97B0_INCLUDEDJ
#define AFX_MAINFRM_H_C8CEC469_8DFA_I ID2_9E39_0020AFDA97BO_INCLUDED_

#if _MSC_VER >= 1000 
#pragmaonce
#endif // _MSC_VER >= 1000

class CMainFrame: public CMDIFrameWnd 
{

DECLARE_DYNAMIC(CMainFrame)
public:

CMainFrameO;

// Attributes 
public:

//Operations
public:

// Overrides
// Class Wizard generated virtual function overrides
//{{AFX_VIRTUAL(CMainFrame)
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
//} }AFX_VIRTUAL

// Implementation 
public:

virtual -CMainFrameO;
#ifdef_DEBUG

virtual void AssertValidO const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected: // control bar embedded members 
CStatusBar m_wndStatusBar;
CToolBar mwndToolBar;

// Generated message map functions 
protected:

//{{AFX_MSG(CMainFrame)
afk_msg int OnCreate(LPCREATESTRUCT IpCreateStruct);

// NOTE - the Class Wizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code!

//} 1AFX_MSG
DECLAREMESSAGEMAPO

>;

iiiiiiiiiiiiiiiiiiiiiiiiiiliiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiii 

//{{AFX_INSERT_LOCATION} >
// Microsoft Developer Studio will insert additional declarations immediately before the previous line. 

#endif// !defined(AFX_MAINFRM_H_C8CEC469_8DFA_11D2_9E39_0020AFDA97BO_INCLUDEDJ
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#if !dcfincd( AFX_PROCESSINGDLG_H_C49A1 CO 1 _94F8l1 D2_9E39 0020AFDA97B0_INCLUDEDJ
#define AFX_PROCESSINGDLG_H_C49A 1C0194F811 D2_9E39_0020AFDA97B0_INCLUDED_

#lf_MSC_VER>= 1000 
#pragmaonce
#endif// _MSC_VER >= 1000 
// ProccssingDlg.h: header file
//

tlllllltllltllllllllllltltllltlllllllllllllllllllllltlllllU llltlllllllllllll 
II CProcessingDIg dialog

class CProcessingDIg: public CDialog
{
// Construction 
public:

CProcessingDlg(C Wnd* pParent= NULL); II standard constructor

// Dialog Data
//{{AFX_DATA(CProcessingDlg) 
enum { IDD = IDDPROCESSING };
CProgressCtrl m_progressCtrl;
//}} AFX_DATA

II Overrides
// Class Wizard generated virtual function overrides 
//{{AFX_VIRTUAL(CProcessingDlg) 
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support 
//} }AFX_VIRTUAL

II Implementation 
protected:

II Generated message map functions 
//{{AFX_MSG(CProccssingDlg)

II NOTE: the Class Wizard will add member functions here 
//} }AFX_MSG
DECLARE_MESSAGE_MAP()

};

//{{AFX_INSERT_LOCAT10N}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

tfendif // !defined(AFX_PROCESSINGDLG_H__C49AlCOl_94F8_l 1D2_9E39_0020AFDA97B0_INCLUDED_)
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//{{NODEPENDENCIES}}
// Microsoft Developer Studio generated include file.
// Used by Filter3D.rc
//
#define IDD_ABOUTBOX 
#define IDR_MAINFRAME 
#definc IDR_FILTERTYPE 
^define IDDSETTINGS 
^define IDD_PROCESSING 
^define IDC_SAMPLES 
#define IDCCUTOFF 
#define IDC_PROGRESS 
#definc IDCORDER 
^define IDC_OFFSET 
^define ID_DISPLAY_IMPULSE 32771
^define IDDISPLAYMAGNITUDE 32772
#define ID_DISPLAYPHASE 32773
#define ID_DISPLAY_COEFFICIENTS 32774
#define ID_VIDEOOPEN 32776
#define IDVIDEOFILTER 32777
#define ID_VIDEO_PLAY 32779
^define ID_VIDEO_OPENOUTPUTDEMO 32783 
#define ID_VIDEOOPENOUTPUT 32784

// Next default values for new objects
//
#ifdef APSTUDIOINVOKED 
#ifndcf APSTUDIO_READONLY_SYMBOLS 
#define_APS_3D_CONTROLS 1
#define _APS_NEXT_RESOURCE_VALUE 134
#definc_APS_NEXT_COMMAND_VALUE 32786 
ftdefine _APS_NEXT_CONTROL_VALUE 1002
#define _APSNEXT_SYMED_VALUE 101
#endif 
ftendif

100
128

129
131

133
1000

1001
1001

1002
1003
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//Microsoft Developer Studio generated resource script
//
#includc "resourceJi”

#define APSTUDIO_READONLY_SYMBOLS
iiiiiiiiiiiiiiiiiiifiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiiitiini
u
II Generated from the TEXTINCLUDE 2 resource.
II
^include "afxres.h"

iiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinini 
#undef APSTUDIO_READONLY_SYMBOLS

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllltlllll 
// English (U.S.) resources

#if !defined{AFX_RESOURCE_DLL) || defined/AFXTARGENU) 
#ifdef_WIN32
LANGUAGE LANG_ENGLISH, SUBLANGENGLISHUS 
#pragma code_page( 1252) 
tfendif //WIN32

#ifdef APSTUDIOINVOKED
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
II
//TEXTINCLUDE
II

1 TEXTINCLUDE DISCARDABLE 
BEGIN

"resource.h\0"
END

2 TEXTINCLUDE DISCARDABLE 
BEGIN

"//include ""afxres.h"’Vn"
" \0"

END

3 TEXTINCLUDE DISCARDABLE 
BEGIN

"//define _AFX_NO_SPLITTER_RESOURCES\r\n"
"//define _AFX_NO_OLE_RESOURCES\r\n"
"//define _AFX_NO_TRACKER_RESOURCES\r\n"
"#define _AFX_NO_PROPERTY_RESOURCES\r\n"
"\r\n"
"//if !defined(AFX_RESOURCE_DLL) || defined/AFX_TARG_ENU)\r\n" 
"//ifdef_WIN32\r\n"
"LANGUAGE 9, l\r\n"
"#pragma code_page( 1252)\r\n"
"#endif\r\n"
”#include ”"res\\Fiiter3D.rc2”” // non-Microsoft Visual C++ edited resources\r\n” 
"//include ""afxres.rc"" // Standard components^"
"//include ""afxprintrc"" II printing/print preview resources\r\n"
"//endif\0"

END
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tfendif //APSTUDIO INVOKED

IlltllllUIIIIIIIIIIIIIIIIIIIIIIIIIIIItllllltllllllllllllllllllllllllllllllll
II
//Icon
//

// Icon with lowest ID value placed first to ensure application icon 
// remains consistent on all systems.
IDR_MAINFRAME ICON DISCARDABLE "rcs\\Filter3D.ico"
IDRFILTERTYPE ICON DISCARDABLE "res\\Filter3DDoc.ico"

II1IIIII1IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1IIIIIIIIIIIIII
II
II Bitmap
//

IDRMA INFRAME BITMAP MOVEABLE PURE "res\\mainfiam.bmp"

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllltlllltllllllllll
II
II Toolbar
//

IDR_MAINFRAME TOOLBAR DISCARDABLE 16,15 
BEGIN 

BUTTON IDFILENEW 
BUTTON IDFILEOPEN 
BUTTON ID_FILESAVE 
SEPARATOR
BUTTON IDEDITCUT 
BUTTON ID_EDIT_COPY 
BUTTON ID_EDIT_PASTE 
SEPARATOR
BUTTON ID_FILE_PRINT 
BUTTON IDAPPABOUT 
SEPARATOR
BUTTON ID_DISPLAY_IMPULSE 
BUTTON IDDISPLAYMAGNITUDE 
BUTTON ID_DISPLAY_PHASE 
BUTTON ID_DISPLAY_COEFFICIENTS 
SEPARATOR
BUTTON ID_VIDEO_OPEN 
BUTTON IDVIDEOFILTER 
BUTTON IDVIDEOPLAY 

END

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
II
//Menu
//

IDR_MAINFRAME MENU PRELOAD DISCARDABLE 
BEGIN 

POPUP "AFile"
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BEGIN
MENUITEM "&New\tCtri+N", 
MENUITEM "&0pcn...\tCtrI+0’\  
MENUITEM SEPARATOR 
MENUITEM "P&rint Setup...", 
MENUITEM SEPARATOR 
MENUITEM "Recent Hie", 
MENUITEM SEPARATOR 
MENUITEM "E&xit",

END
POPUP "&View"
BEGIN 

MENUITEM "&Toolbar", 
MENUITEM "&Status Bar",

END
POPUP "&Help"
BEGIN

MENUITEM "&About Filter3D...", 
END 

END

ID_FILE_NEW
IDFILEOPEN

ID_FILE_PRINT_SETUP

IDFILEMRUFILEI. GRAYED

IDAPPEXIT

IDVIEWTOOLBAR
IDVIEWSTATUSBAR

ID APP ABOUT

IDR FILTERTYPE MENU PRELOAD DISCARDABLE
BEGIN 

POPUP "&File"
BEGIN

MENUITEM "&New\tCtrl+N", 
MENUITEM "&Open...\tCtri+0", 
MENUITEM "&Close", 
MENUITEM "&Save\tCtrl+S", 
MENUITEM "Save &As...", 
MENUITEM SEPARATOR 
MENUITEM "&Print...\tCtrl+P", 
MENUITEM "Print Pre&view", 
MENUITEM "P&rint Setup...", 
MENUITEM SEPARATOR 
MENUITEM "Recent File", 
MENUITEM SEPARATOR 
MENUITEM "E&xit",

END
POPUP "&Edit"
BEGIN

MENUITEM "&Undo\tCtrI+Z", 
MENUITEM SEPARATOR 
MENUITEM "Cu&t\tCtrl+X”, 
MENUITEM "&Copy\tCtrl+C", 
MENUITEM "&Paste\tCtrl+V", 

END
POPUP "&Vicw"
BEGIN 

MENUITEM "&Toolbar", 
MENUITEM "&Status Bar”,

END
POPUP "& Window"
BEGIN

MENUITEM "&New Window", 
MENUITEM "&Cascade", 
MENUITEM "&Tile",

IDFILENEW 
IDFILEOPEN 

ID FILE_CLOSE 
Td_file_save

IDFILESAVEAS

IDFILEPRINT 
ID FILE PRINT PREVIEW 

IDFILEPRINTSETUP

ID_FILE_MRU_FILE I, GRAYED

ID APP EXIT

IDEDITUNDO

ID_EDIT_CUT
ID_EDIT_COPY
ID_EDIT_PASTE

IDVIEWTOOLBAR
ID_VIEW_STATUS_BAR

ID_WINDOW_NEW 
IDWINDOWCASCADE 

ID WINDOW TILE HORZ
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MENUITEM "&Arrange Icons”.
END
POPUP "AHelp"
BEGIN

MENUITEM "&About FiIter3D... 
END
POPUP ”&Display”
BEGIN 

MENUITEM "&Impulse”, 
MENUITEM "&Magnitude", 
MENUITEM "APhase",
MENUITEM "&Coefificients\

END
POPUP "&Video"
BEGIN 

MENUITEM "&Open",
MENUITEM "&Filter",
MENUITEM ”&Play Both", 
MENUITEM SEPARATOR 
MENUITEM "O&pen Output (Demo)' 

END 
END

ID WINDOW ARRANGE

ID APP ABOUT

IDDISPLAYIMPULSE 
IDDISPLAYMAGNITUDE 

ID_DISPLAY_PHASE 
ID DISPLAY COEFFICIENTS

IDVIDEOOPEN
ID_VIDEO_FILTER

IDVIDEOPLAY

ID VIDEO OPENOUTPUT

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIillllllllllllllllllllllllllllllHIII
II
// Accelerator
//

IDR_MAINFRAME ACCELERATORS PRELOAD MOVEABLE PURE 
BEGIN

"N\ ID_FILE_NEW,
"O", ID_FILE_OPEN,
”S”. ID_FILE_SAVE,
"P". ID_FILE_PRINT,
”Z", IDEDITUNDO,
”X", ID_EDIT_CUT,
"C". ID_EDIT_COPY,
"V", ID_EDIT_PASTE,
VKBACK, IDEDITUNDO, 
VK_DELETE, ID_EDIT_CUT, 
VK_INSERT, ID_EDIT_COPY, 
VK_INSERT, IDEDITPASTE, 
VK_F6, ID_NEXT_PANE,
VK_F6, ID_PREV_PANE,

END

VIRTKEY. CONTROL 
VIRTKEY, CONTROL 
VIRTKEY, CONTROL 
VIRTKEY, CONTROL 
VIRTKEY, CONTROL 

VIRTKEY, CONTROL 
VIRTKEY, CONTROL 
VIRTKEY, CONTROL 

VIRTKEY, ALT 
VIRTKEY, SHIFT 
VIRTKEY, CONTROL 
VIRTKEY, SHIFT 

VIRTKEY 
VIRTKEY, SHIFT

iiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiH iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!
II
II Dialog
II

IDD_ABOUTBOX DIALOG DISCARDABLE 0,0,217,55
STYLE DS MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "About Filter3D"
FONT 8, "MS Sans Serif
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BEGIN
ICON IDR_MAINFRAME,IDC_STATIC, 11,17.20,20
LTEXT “Filtcr3D Version 1.0".IDC_STATIC,40.10,119,8.

SSNOPREFIX 
LTEXT "Copyright (C) 1998",IDC_STATIC,40,25.119,8
DEFPUSHBUTTON "OKMDOK.178,732,14, WS GROUP 

END

IDDSETTINGS DIALOG DISCARDABLE 0,0,174,72
STYLE DSMODALFRAME | WS_POPUP | WS_CAPTION | WSSYSMENU
CAPTION "Settings"
FONT 8, "MS Sans SeriF 
BEGIN

EDITTEXT IDC_SAMPLES,45,5,35,12,ES_AUTOHSCROLL 
EDITTEXT IDC_CUTOFF,45,20,35,12,ES AUTOHSCROLL 
EDITTEXT IDC_ORDER,45,35,35,12.ES_AUTOHSCROLL 
EDITTEXT IDC_OFFSET,45,50,35,12,ES_AUTOHSCROLL 
DEFPUSHBUTTON "OK",IDOK,112,11,50,14 
PUSHBUTTON "Cancel", IDCANCEL, 112^8,50,14 
LTEXT "Samples:",IDC_STATIC.9,7,35,I0
LTEXT "Cutoff:\IDC_STATIC,9,22,35,10
LTEXT "Order.",IDC_STATIC,9,37,35,10
LTEXT "OfTset:",IDC_STATIC,9,52,35,10

END

IDDPROCESSING DIALOG DISCARDABLE 0,0,137,46
STYLE DS MODALFRAME | DS_3DLOOK | DS CENTER | WS POPUP | WS_VISIBLE
FONT 8, "MSSansSenT
BEGIN

CONTROL "Progress 1 ",IDC_PROGRESS,"msctls_progress32", WS_BORDER,
12,25,113,14

CTEXT "Piocessing...",IDC_STATlC,45,7,48,10
END

#ifndef_MAC
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
//
// Version
//

VSVERSIONINFO VERSIONINFO 
RLE VERSION l,0,0,l 
PRODUCTVERSION 1,0,0,1 
FILEFLAGSMASK 0x3 fL 

#ifdef_DEBUG 
FILEFLAGS 0x1 L 

#else
FILEFLAGS OxOL 
#endif
FILEOS 0x4L 
FILETYPE OxlL 
FILESUBTYPE OxOL 
BEGIN 

BLOCK "StringFtlelnfo"
BEGIN 

BLOCK "040904B0"
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BEGIN
VALUE "CompanyName". "VO"
VALUE "FileDescription", "Filter3D MFC Application\0" 
VALUE "FileVerston", "1,0,0, I\0"
VALUE "IntemalName", ”Fiher3D\0”
VALUE "LegalCopyright", -Copyright (C) 1998X0“ 
VALUE "LegalTradetnarks", "\0"
VALUE "OriginalFileiiaine”, "Filter3D.EXE\0"
VALUE "ProductName”, ”Filter3D Application^" 
VALUE "ProductVersion", "1 ,0 ,0 ,1\0"

END
END
BLOCK "VarFilelnfo"
BEGIN

VALUE "Translation", 0x409, 1200 
END 

END

#endif //! MAC

iiiiiiiiiiiiiiiiw iiiiiiiiiiiiiiiiiiiiiiiiiiiituiriiiiiiiiiiiiitiiiiiiriiii 
n
// DESIGNINFO
//

#ifdef APSTUDIOINVOKED 
GUIDELINES DESIGNINFO DISCARDABLE 
BEGIN

IDDABOUTBOX, DIALOG 
BEGIN 

LEFTMARGIN, 7 
RIGHTMARGIN, 210 
TOPMARGIN, 7 
BOTTOMMARGIN, 48 

END

IDD_SETTTNGS, DIALOG 
BEGIN 

LEFTMARGIN, 7 
RIGHTMARGIN, 167 
TOPMARGIN, 7 
BOTTOMMARGIN, 65 

END

IDD_PROCESSING, DIALOG 
BEGIN 

LEFTMARGIN. 7 
RIGHTMARGIN, 130 
TOPMARGIN, 7 
BOTTOMMARGIN, 39 

END 
END
#endif // APSTUDIOJNVOKED

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
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//
//String Table
//

STRINGTABLE PRELOAD DISCARDABLE 
BEGIN

IDRMAINFRAME "Filter3D"
IDR_FILTERTYPE "\nFilter\nFilter\nFilter Files (*.0d)\n.I3dVnFilter3D.Document\nFilter Document” 

END

STRINGTABLE PRELOAD DISCARDABLE 
BEGIN

AFXIDSAPPTITLE "FiIter3D" 
AFX_IDS_IDLEMESSAGE "Ready" 

END

STRINGTABLE DISCARDABLE 
BEGIN

IDINDICATOREXT "EXT" 
IDINDICATORCAPS "CAP" 
ID_INDICATOR_NUM "NUM" 
IDINDICATORSCRL "SCRL" 
I D_INDICATOR_0 VR "OVR"
ID_INDICATOR_REC "REC" 

END

STRINGTABLE DISCARDABLE 
BEGIN

ID_FILE_NEW "Create a new document\nNew”
ID FILE OPEN "Open an existing document\nOpen”
ID_FILE_CLOSE "Close the active document\nClose”
ID_FILE_SAVE "Save the active document\nSave"
ID_FILE_SAVE_AS "Save the active document with a new name\nSave As"
ID_FILE_PAGE_SETUP "Change the printing options\nPage Setup” 
ID_FILE_PRINT_SETUP "Change the printer and printing options\nPrint Setup” 
ID_FILE_PRINT "Print the active document\nPrint"
ID_FILE_PRINT_PREVIEW "Display full pages\nPrint Preview"

END

STRINGTABLE DISCARDABLE 
BEGIN

ID_APP_ABOUT "Display program information, version number and copyrightVnAbout” 
ID_APP_EXIT "Quit the application; prompts to save doc uments\n Exit"

END

STRINGTABLE DISCARDABLE
BEGIN 

ID_FILE_MRU_FILE I 
ID_FILE MRU_FILE2 
ID_FILE_MRU_FILE3 
ID_FILE_MRU_FILE4 
ID_F1LE MRU_FILE5 
ID_FILE_MRU_FILE6 
ID_FILE_MRU_FILE7 
ID_FILE_MRU_FILE8 
ID_FILE_MRU_FILE9 
ID_FILE_MRU FILE 10

"Open this document" 
"Open this document” 
"Open this document” 
"Open this document” 
"Open this document" 
"Open this document" 
"Open this document” 
"Open this document" 
"Open this document" 
"Open this document”
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IDFILEMRUFILE11 
[D FIL E M R U FIL E 12 
IDFILEMRU_FILE 13 
ID_FILE_MRU_F1LE 14 
[ D F I L E M R U F I L E  15 
ID_nLE_MRU_FILE 16 

END

"Open this document” 
"Open this document" 
"Open this document" 
"Open this document” 
"Open this document” 
"Open this document”

STRINGTABLE DISCARDABLE 
BEGIN

ID N E X T PA N E  "Switch to the next window paneVnNext Pane”
ID_PREV_PANE "Switch back to the previous window pane\nPrevious Pane"

END

STRINGTABLE DISCARDABLE 
BEGIN

I D_ WINDO W_NEW "Open another window for the active document\nNew Window”
IDWINDOWARRANGE "Arrange icons at the bottom o f  the windowVnAnange Icons"
lD_WINDOW_CASCADE "Arrange windows so they overlapVnCascade Windows”
ID_WINDOW_TILE_HORZ "Arrange windows as non-overlapping tiles\nTile Windows"
ID_WIN DO W_TI L E_VE RT "Arrange windows as non-overlapping tiles\nTile Windows"
ID_WINDOW_SPLIT "Split the active window into panes\nSplit”

END

STRINGTABLE DISCARDABLE 
BEGIN

ID_EDIT_CLEAR "Erase the selectionVnErase”
ID_EDIT_CLEAR_ALL "Erase eveiything\nErase AH"
ID E DIT COPY "Copy the selection and put it on the Clipboard\nCopy"
ID E D IT C U T  "Cut the selection and put it on the Clipboard\nCut”
ID_EDIT_FIND "Find the specified text\nFind"
ID_EDIT_PASTE "Insert Clipboard contents\nPaste"
ID EDIT REPEAT "Repeat the last action\nRepeat”
ID_EDIT_REPLACE "Replace specific text with different textVnReplace" 
ID EDIT SELECT ALL "Select the entire document\nSelect AH"
ID_EDIT_UNDO "Undo the last action\nUndo”
ID_EDIT_REDO "Redo the previously undone actionVnRedo”

END

STRINGTABLE DISCARDABLE 
BEGIN

ID_VIEW_TOOLBAR "Show or hide the toolbar\nToggle ToolBar"
ID VIEW STATUS BAR "Show or hide the status bar\nToggIe StatusBar” 

END

STRINGTABLE DISCARDABLE 
BEGIN

AFX_IDS_SCSIZE "Change the window size"
AFX_!DS_SCMOVE "Change the window position"
AFX_IDS_SCMINIMIZE "Reduce the window to an icon"
AFX_IDS_SCMAXIMIZE "Enlarge the window to foil size”
AFX_IDS_SCNEXTWINDOW "Switch to the next document window" 
AFX_IDS_SCPREVWINDOW "Switch to the previous document window" 
AFX_IDS_SCCLOSE "Close the active window and prompts to save the documents"

END

STRINGTABLE DISCARDABLE
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BEGIN
AFX_IDS_SCRESTORE “Restore the window to normal size"
AFX IDS SCTASKLIST "Activate Task List"
AFXIDSMDICHILD "Activate this window”

END

STRINGTABLE DISCARDABLE 
BEGIN

AFX_IDS_PREVIEW_CLOSE "Close print preview mode\nCanceI Preview"
END

STRINGTABLE DISCARDABLE 
BEGIN

ID_DISPLAY_IMPULSE "Plot Impulse Response\nImpulseResponse" 
1D_DISPLAY_MAGNITUDE "Plot Magnitude Response\nMagnitude Response" 
IDDISPLAYPHASE "Plot Phase ResponseVnPhase Response” 
ID_DISPLAY_COEFFICIENTS "Display Coefficients\nCoefficients”
ID_VIDEO_OPEN "Open a Video File for FilteringVnOpen Movie"
ID_VIDEO_FILTER "Filter Video Clip\nFilter Movie"
ID_VIDEO_PLAY "Play Both Video Clips at the Same TimeNnPlay Both Clips”
ID_VIDEO_OPENOUTPUTDEMO "Open a Second Video Clip for ComparisonVnOpen Output” 

END

tfendif // English (U.S.) resources
iiiiiiiiiiim iiiiitiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiini

#ifndef APSTUDIOINVOKED
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
II
// Generated from the TEXTINCLUDE 3 resource.
//
#define _AFX_NO_SPLITTER_RESOURCES 
#define _AFX_NO_OLE_RESOURCES 
#define AFX NO TRACKER RESOURCES 
#define _AFX_NO_PROPERTY_RESOURCES

#if !defined(AFX_RESOURCE_DLL) || defined(AFX_TARG_ENU)
#ifdef_WIN32
LANGUAGE 9,1
#pragma code_page(1252)
#endif
#include "res\Filter3D.rc2" // non-Microsoft Visual C++ edited resources 
^include "afxres.rc" // Standard components
#include "afxprinLrc" // printing/print preview resources
#endif
iiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiii 
# end if / / not APSTUDIO INVOKED
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// stdafxii: include file for standard system include files,
// or project specific include files that are used frequently, but 
// are changed infrequently
//

#if !defined(AFX_STDAFX_H_C8CEC467_8DFA_l 1D2_9E39_0020AFDA97B0_INCLUDEDJ 
#define AFX_STDAFX_H_C8CEC467_8DFA_I1D2_9E39_0020AFDA97B0_INCLUDED_

#if_MSC_VER >= 1000 
tfpragmaonce
#endif // _MSC_VER >= 1000

#define VCEXI RALEAN // Exclude rarely-used stufT from Windows headers

^include <afxwin.h> // MFC core and standard components 
#include <afxext.h> // MFC extensions 
#ifndef_AFX_NO_AFXCMN_SUPPORT
^include <afxcmn.h> // MFC support for Windows Common Controls
#endif // _AFX_NO_AFXCMNSUPPORT

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insen additional declarations immediately before the previous line. 

#endif // !defined(AFX_STDAFX_H__C8CEC467_8DFA_l 1D2_9E39_0020AFDA97B0_INCLUDED_)
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Appendix B 

Matlab Source Code for Generating Magnitude Response, 
Phase Response, and Group Delay Plots
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% t h e s i s _ m a g n i t u d e . m  -  G e n e r a t e s  p l o t s  o f  3 - D  f i l t e r  m a g n i t u d e  r e s p o n s e  
% R e s p o n s e s  w e r e  g e n e r a t e d  b y  F i l t e r 3 D . e x e  a n d  a r e
% n o t  i n c l u d e d  d u e  t o  e x c e s s i v e  l e n g t h

% w 3  =  0 . 0  
H = [  . . .  ] ;

[ w l , w 2 ]  =  f r e q s p a c e ( l e n g t h ( H ) ) ;  
w l  =  w l . * p i ;  
w 2  =  w l ;

f i g u r e
m e s h ( w l , w 2 , H ) , r o t a t e 3 d  o n
t i t l e ( ' L o w - P a s s  F i l t e r  w i t h  C u t o f f  =  p i / 2  ( w l  =  0  r a d / s e c ) ' )
x l a b e l ( ' w 2  ( r a d / u n i t ) ' ) ,  y l a b e l ( ' w 3  ( r a d / u n i t ) ' ) ,  z l a b e l ( ' M a g n i t u d e  R e s p o n s e ' )  
a x i s  ( [ - 4  4 - 4  4  0  1 . 2 ] )

% w 3  =  0 . 9 8  
H = [  . . .  ] ;

f i g u r e
m e s h ( w l ,  w 2 , H ) , r o t a t e 3 d  o n
t i t l e ( ' L o w - P a s s  F i l t e r  w i t h  C u t o f f  =  p i / 2  ( w l  =  0 . 9 8  r a d / s e c ) ' )
x l a b e l ( ' w 2  ( r a d / u n i t ) ' ) ,  y l a b e l ( ' w 3  ( r a d / u n i t ) ’ ) ,  z l a b e l ( ' M a g n i t u d e  R e s p o n s e ' )
a x i s  ( [ - 4  4  - 4  4 0  1 . 2 ] )

% w 3  =  2 . 1 6  
H = [ . . .  ] ;

f i g u r e
m e s h ( w l , w 2 , H ) , r o t a t e 3 d  o n
t i t l e ( ' L o w - P a s s  F i l t e r  w i t h  C u t o f f  =  p i / 2  ( w l  =  2 . 1 6  r a d / s e c ) ' )
x l a b e l ( ' w 2  ( r a d / u n i t ) ' ) ,  y l a b e l ( ' w 3  ( r a d / u n i t ) ' ) ,  z l a b e l ( ' M a g n i t u d e  R e s p o n s e ' )
a x i s ( [ - 4  4 - 4 4 0  1 . 2 ] )

% w 3  =  p i  
H = [  . . .  ] ;

f i g u r e ,
m e s h ( w l , w 2 , H ) , r o t a t e 3 d  o n
t i t l e ( ' L o w - P a s s  F i l t e r  w i t h  C u t o f f  =  p i / 2  ( w l  =  p i  r a d / s e c ) ' )
x l a b e l ( ' w 2  ( r a d / u n i t ) ' ) ,  y l a b e l ( ' w 3  ( r a d / u n i t ) ' ) ,  z l a b e l ( ' M a g n i t u d e  R e s p o n s e ' )  
a x i s ( [ - 4  4 - 4 4 0  1 . 2 ] )
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% t h e s i s _ p h a s e . m  -  G e n e r a t e s  p l o t s  o f  3 - D  f i l t e r  p h a s e  r e s p o n s e
% a n d  g r o u p  d e l a y
% R e s p o n s e s  w e r e  g e n e r a t e d  b y  F i l t e r 3 D . e x e  a n d  a r e
% n o t  i n c l u d e d  d u e  t o  e x c e s s i v e  l e n g t h

% w 3  =  0 . 0
p=[  . . .  ] ;

[ w l , w 2 ]  =  f r e q s p a c e ( l e n g t h ( P ) ) ;  
w l  =  w l . * p i ;  
w 2  =  w l ;
w i n e  =  w 2 ( 2 ) - w 2 { 1 ) ;

P  =  u n w r a p ( P ) ;  
f i g u r e
m e s h ( w l , w 2 ,  P ) , r o t a t e 3 d  o n
t i t l e  ( ' L o w - P a s s  F i l t e r  w i t h  C u t o f f  =  p i / 2  ( w 3  =  0  r a d i a n s / s e c )  ' )  
x l a b e l ( ' w l  ( r a d i a n s / u n i t )  ’ ) ,  y l a b e l ( *w 2  ( r a d i a n s / u n i t )  ' ) ,  z l a b e l ( ' P h a s e  
R e s p o n s e  ( r a d i a n s ) ' )  
v i e w ( - 2 0 ,  6 0 )

f o r  1 = 1 : l e n g t h ( P )
f o r  k = l : l e n g t h ( P ) - 1

i f  a b s ( P ( l , k + l ) - P ( l , k )  ) <  5
G d ( l , k )  =  - ( P ( l , k + 1 ) - P ( l , k ) ) / w i n e ;  

e l s e
i f  P ( 1 , k + 1 ) - P ( 1 , k )  <  0

G d ( l , k )  =  - ( P ( l , k + 1 ) - ( P ( l ,  k ) - 2 * p i ) ) / w i n e ;  
e l s e

G d ( l ,  k )  =  - ( P ( l , k + 1 ) - ( P ( 1 ,  k ) + 2 * p i ) ) / w i n e ;
e n d

e n d
e n d
G d ( 1 , l e n g t h ( P ) ) =  - ( P ( 1 , l e n g t h ( P ) ) - P ( 1 , l e n g t h ( P ) - 1 ) )  / w i n e ;

e n d

f i g u r e ,
m e s h ( w l , w 2 , G d ) , r o t a t e 3 d  o n
t i t l e ( ' L o w - P a s s  F i l t e r  w i t h  C u t o f f  =  p i / 2  ( w 3 = 0  r a d i a n s / s e c )  ' )  
x l a b e l { ' w l  ( r a d i a n s / u n i t ) ' ) ,  y l a b e l ( ' w 2  ( r a d i a n s / u n i t ) ' )  
z l a b e l ( ’ G r o u p  D e l a y  w i t h  R e s p e c t  t o  w 2 ' )  
v i e w ( 0 , 0 )

% w 3  =  0 . 9 8  
P = [  . . .  ] ;

P  =  u n w r a p ( P ) ;

f i g u r e
m e s h ( w l , w 2 , P ) , r o t a t e 3 d  o n
t i t l e ( ' L o w - P a s s  F i l t e r  w i t h  C u t o f f  =  p i / 2  ( w 3  =  0 . 9 8  r a d i a n s / s e c ) ' )  
x l a b e l ( ' w l  ( r a d i a n s / u n i t ) ' ) ,  y l a b e l ( ' w 2  ( r a d i a n s / u n i t ) ' )  
z l a b e l { ' G r o u p  D e l a y  w i t h  R e s p e c t  t o  w 2 ' )  
v i e w ( - 2 0 , 6 0 )
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f o r  1 = 1 : l e n g t h ( P )
f o r  k = l : l e n g t h ( P ) - l

i f  a b s ( P ( 1 , k + 1 ) - P ( 1 , k ) ) <  5
G d ( l , k )  =  - ( P ( l , k + 1 ) - P ( 1 , k ) ) / w i n e ;  

e l s e
i f  P C I , k + 1 ) - P ( 1 , k )  <  0

G d ( l , k )  =  - ( P ( l , k + 1 ) - ( P C I , k ) - 2 * p i ) ) / w i n e ;  
e l s e

G d ( l , k )  =  - ( P ( 1 , k + 1 ) - ( P ( 1 , k ) + 2 * p i ) ) / w i n e ;
e n d

e n d
e n d
G d ( 1 , l e n g t h ( P ) ) =  - ( P ( 1 , l e n g t h ( P ) ) - P ( 1 ,  l e n g t h ( P ) - 1 ) ) / w i n e ;

e n d

f i g u r e
m e s h ( w l , w 2 , G d ) , r o t a t e 3 d  o n
t i t l e ( ' L o w - P a s s  F i l t e r  w i t h  C u t o f f  =  p i / 2  ( w 3 = 0 . 9 8  r a d i a n s / s e c ) ' )  
x l a b e l ( ' w l  ( r a d i a n s / u n i t ) ' ) ,  y l a b e l ( ' w 2  ( r a d i a n s / u n i t ) ' )  
z l a b e l ( ' G r o u p  D e l a y  w i t h  R e s p e c t  t o  w l ' )  
v i e w ( 0 , 0 )

% w 3  =  2 . 1 6  
P = [  . . .  ] ;

P  =  u n w r a p ( P ) ;  
f i g u r e
m e s h ( w l , w 2 , P ) , r o t a t e 3 d  o n
t i t l e ( ' L o w - P a s s  F i l t e r  w i t h  C u t o f f  =  p i / 2  ( w 3  =  2 . 1 6  r a d i a n s / s e c )  
x l a b e l ( ' w l  ( r a d i a n s / u n i t ) ' ) ,  y l a b e l ( ' w 2  ( r a d i a n s / u n i t ) ' )  
z l a b e l ( ' G r o u p  D e l a y  w i t h  R e s p e c t  t o  w 2 ' )  
v i e w ( - 2 0 , 6 0 )

f o r  1 = 1 : l e n g t h ( P )
f o r  k = l : l e n g t h ( P ) - 1

i f  a b s ( P ( 1 , k + 1 ) - P ( 1 , k ) ) <  5
G d ( 1 , k )  =  - ( P ( l , k + 1 ) - P ( 1 , k ) ) / w i n e ;  

e l s e
i f  P ( 1 , k + 1 ) - P ( 1 , k )  <  0

G d ( 1 , k )  =  - ( P ( 1 , k + 1 ) - ( P ( 1 , k ) - 2 * p i ) ) / w i n e ;  
e l s e

G d ( 1 , k )  =  - ( P ( l , k + l ) - ( P ( l , k ) + 2 * p i ) ) / w i n e ;
e n d

e n d
e n d
i f  a b s ( P ( l , l e n g t h ( P ) ) - P ( l , l e n g t h ( P ) - 1 )  ) <  5

G d ( l , l e n g t h ( P ) ) =  - ( P ( 1 , l e n g t h ( P ) ) - P ( 1 ,  l e n g t h ( P ) - 1 ) ) / w i n e ;
e n d

e n d

f i g u r e
m e s h ( w l , w 2 , G d ) , r o t a t e 3 d  o n
t i t l e ( ' L o w - P a s s  F i l t e r  w i t h  C u t o f f  =  p i / 2  (w 3  =  2 . 1 6  r a d i a n s / s e c )  
x l a b e l ( ' w l  ( r a d i a n s / u n i t ) ' ) ,  y l a b e l ( *w2 ( r a d i a n s / u n i t ) ' )  
z l a b e l ( ' G r o u p  D e l a y  w i t h  R e s p e c t  t o  w l • )  
v i e w ( 0 , 0 )
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% w 3  =  p i
p = [  . . .  ] ;

P  =  u n w r a p ( P ) ;  
f i g u r e
m e s h ( w l , w 2 , P ) , r o t a t e 3 d  o n
t i t l e ( ' L o w - P a s s  F i l t e r  w i t h  C u t o f f  =  p i / 2  ( w 3  =  p i  r a d i a n s / s e c ) ' )  
x l a b e l ( ' w l  ( r a d i a n s / u n i t ) ' } ,  y l a b e l ( * w 2  ( r a d i a n s / u n i t ) ' )  
z l a b e l ( ' G r o u p  D e l a y  w i t h  R e s p e c t  t o  w 2 ' )  
v i e w ( - 2 0 , 6 0 )

f o r  1 = 1 : l e n g t h ( P )
f o r  k = l : l e n g t h ( P ) - l

i f  a b s ( P ( 1 , k + 1 ) - P ( 1 , k ) ) <  5
G d ( l , J c )  =  -  ( P ( l ,  k + 1 )  - P  ( 1 ,  k )  ) / w i n e ;  

e l s e
i f  P ( 1 , k + 1 ) - P ( 1 , k )  <  0

G d ( l , J c )  =  -  ( P { 1 ,  k + 1 )  -  ( P ( 1 ,  k ) - 2 * p i )  ) / w i n e ;  
e l s e

G d  ( 1 ,  k )  =  -  ( P  ( 1 ,  k + 1 )  -  ( P  ( 1 ,  k )  + 2 * p i )  ) / w i n e ;
e n d

e n d
e n d
i f  a b s ( P ( 1 , l e n g t h ( P ) ) - P ( 1 , l e n g t h ( P ) - 1 ) )  <  5

G d ( 1 , l e n g t h ( P ) ) =  - ( P ( 1 , l e n g t h ( P ) ) - P ( 1 , l e n g t h ( P ) - 1 ) ) / w i n e ;
e n d

e n d

f i g u r e
m e s h ( w l , w 2 , G d ) , r o t a t e 3 d  o n
t i t l e ( ' L o w - P a s s  F i l t e r  w i t h  C u t o f f  =  p i / 2  ( w 3  =  p i  r a d i a n s / s e c ) ' )  
x l a b e l ( ' w l  ( r a d i a n s / u n i t ) ' ) ,  y l a b e l ( ' w 2  ( r a d i a n s / u n i t ) ' )  
z l a b e l ( ' G r o u p  D e l a y  w i t h  R e s p e c t  t o  w l ' )  
v i e w ( 0 , 0 )
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