University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2000

Multimedia applications of three-dimensional digital filters.

Steven Bruce McFadden
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

McFadden, Steven Bruce, "Multimedia applications of three-dimensional digital filters." (2000). Electronic
Theses and Dissertations. 2801.
https://scholar.uwindsor.ca/etd/2801

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2801&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2801?utm_source=scholar.uwindsor.ca%2Fetd%2F2801&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UM! directly to order.

ProQuest information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

The diskette is not included in this original
manuscript. It is available for consultation at the
author’s graduate school library.

This reproduction is the best copy available.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MULTIMEDIA APPLICATIONS OF

THREE-DIMENSIONAL

DIGITAL FILTERS

by

Steven B. McFadden

A Thesis
Submitted to the College of Graduate Studies and Research
through Electrical Engineering
in Partial Fulfillment of the Requirements for
the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada

April 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibtographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4

Canada
Your Sle Votre réédrence

Our g Notre réidrence

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permeitant a la

National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission, autorisation.

Canadi

0-612-65382-X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

q1(34es

©2 ven B. McF:

All Rights Reserved. No part of this document may be
reproduced, stored or otherwise retained in a retrieval
system, transmitted in any form, on any medium, or by any

means without the prior written permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVED BY:

Dr/M. A. Sid-Ahmed (Supervisor)
Department of Electrical Engineering

Dr. K. G. Gaspit /
Department of Mechanical Engineering

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Digital signal processing has long been an extremely important field of study. One-
dimensional and two-dimensional filters have applications in areas such as audio filtering
or image processing respectively. As VLSI technology continues to increase, higher-
dimensional digital filters are becoming more practical. This thesis investigates the
application of Three-Dimensional (3-D) Digital Filters to the area of multimedia.
Specifically, it investigates the use of 3-D Interpolation filters to increase the horizontal,
vertical, and temporal resolution, or frame rate, of a moving image sequence.

The thesis begins by presenting the theory of digital interpolation in one dimension, and
then extends that theory to three dimensions. Next the theory is presented for the design
of a filter with appropriate characteristics for filtering a video image; i.e. near-linear phase
and a steep transition band. After the basic theory is presented, a plan for implementing
the filtering of a video image in software is presented along with the relevant file format
information. Results from this implementation are shown next, and the thesis ends with a

summary and conclusions

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I wish to extend my thanks to my supervisor Dr. Sid-Ahmed, who planted the idea for me
to pursue this degree, and then encouraged me throughout. I also wish to acknowledge
my thesis committee members, Dr. Soltis, and Dr Gaspar, for their comments and advice
on the thesis. Last but not least, I would like to thank my parents for their constant

support of my continuing education.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract
Acknowledgements
Table of Contents
List of Figures

Chapter 1: Introduction
1.1 Introduction
1.2 Digital Interpolation
1.3 Three-Dimensional Digital Filters
1.3.1 Three-Dimensional FIR Filters
1.3.2 Three-Dimensional IIR Filters
1.3.3 3-D FIR Filter Design Methods
1.3.3.1 Design Using Integration
1.3.3.2 Design Using FFT and Window Functions
1.3.3.3 McClellan Transformation
1.3.3.4 Linear Programming
1.3.4 3-D IIR Filter Design Methods
1.3.4.1 Linear Programming
1.3.4.2 Bilinear Transformation
1.3.4.3 Modified Shank’s Method
1.4 Video Formats
1.4.1 H.263 Video Standard

1.4.2 MPEG Video Standard

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv

<

10
10
11
11
12
12

13

1.4.3 Microsoft Windows AVI Standard
1.4.4 Comparison

1.5 Current Applications of 3-D Filters

1.6 Thesis Organization

Chapter 2: Digital Interpolation

2.1 The Sampling Theorem

2.2 One-Dimensional Interpolation

2.3 Three-Dimensional Interpolation

Chapter 3: Filter Design

3.1 Introduction

3.2 Modified Shank’s Method for 2-D Filter Design
3.3 Designing the 3-D Recursive Filter

3.4 Three-Dimensional Inverse Fast Fourier Transform

Chapter 4: Implementation

4.1 Introduction

4.2 AVI and BMP File Formats
4.2.1 AVI File Format
4.2.2 BMP File Format

4.3 Obtain Standard AVI File

4.4 Extract Individual Frames

4.5 Extract Raw Pixel Data from Frames

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

14

14

15

17

20

25

27

27

32

38

38

45

49

49

4.6 Apply 3-D Filter to Raw Data 51

4.7 Reconstruct Frames 52
4.8 Reconstruct AVI File 52
4.9 Sample AVI Code 56
Chapter S: Results

5.1 Introduction 59
5.2 Filter Design Results 59
5.3 Video Filtering Results 68

Chapter 6: Summary and Conclusions

6.1 Summary 73
6.2 Conclusions 74
References 75

Appendix A: Source Code for Filter3D Program
Appendix A 77

Appendix B: Matlab Source Code for Generating Magnitude
Response, Phase Response, and Group Delay Plots

Appendix B 148

Vita Auctoris 153

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures
1.1: Representation of moving images
2.1(a): Continuous time signal x(t)
2.1(b): Unit pulse train p(nT)
2.1(c): Discrete time signal x(nT)
2.2(a): Frequency spectrum of continuous time signal x(t)
2.2(b): Frequency spectrum of unit pulse train p(t)
2.2(c): Frequency spectrum of discrete time signal x(nT)
2.3: Block diagram of digital interpolation system
2.4(a): Discrete time signal x(nT)
2.4(b): Discrete time signal x(nT) with zero padding
2.4(c): Interpolator output y(nT)
3.1: Utilization of impulse response
3.2: Three-Dimensional Fast Fourier Transform
4.1: Implementation
4.2(a): Original moving image sequence
4.2(b): Wx image buffer

4.2(c): Wy image buffer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

18

18

19

19

20

21

22

23

23

33

37

4.2(d): Filtered moving image sequence

5.1: Filter settings dialog box

5.2: CoefTicients of designed 3-D filter

5.3: Magnitude response with w1=0 rad/sec
5.4: Magnitude response with ©1=0.98 rad/sec
5.5: Magnitude response with ©1=2.16 rad/sec
5.6: Magnitude response with w1=pi rad/sec
5.7: Phase response with ©1=0 rad/sec

5.8: Group delay with ®1=0 rad/sec

5.9: Phase response with ©1=0.98 rad/sec
5.10: Group delay with ©1=0.98 rad/sec

5.11: Phase response with ©®1=2.16 rad/sec
5.12: Group delay with w1=2.16 rad/sec

5.13: Comparison of File Properties dialog boxes
5.14: Video single frame comparison

5.15: Video single frame zoomed comparison

5.16: Video multi-frame comparison

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SH)

60

62

62

63

63

65

65

66

67

67

68

69

70

72

Chapter 1: Introduction

1.1 Introduction

The purpose of this thesis is to investigate the multimedia application of three-dimensional
(3-D) digital filters. Specifically, a digital 3-D interpolation filter is to be designed which
performs inter-pixel and inter-frame interpolation, resulting in increased horizontal
resolution, vertical resolution, and temporal resolution (frame rate) of a moving image

sequence.

Digital video is a very common example of a moving digital image sequence, with each
frame of video representing a separate two-dimensional (2-D) digital image. These images
change as a function of time, and it is this temporal variation which represents the third
dimension in digital video. This representation of digital video is depicted in Figure 1.1. In
this figure, ‘x’ represents the horizontal axis, ‘y’ represents the vertical axis, and ‘t’
represents the time axis. The term dt represents the inverse of the frame rate. The axis is

drawn for the purpose of clarity, and the directions of positive and negative are arbitrary.

Though digital video signals such as the one shown in Figure 1.1 are inherently three-
dimensional, 2-D digital filters are often used to filter such signals by processing each
frame separately. This method is very practical since 2-D filters are less complex and

require much less hardware than equivalent order 3-D filters. This complexity and

hardware saving becomes more pronounced as the order of the filter increases. With

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R

i

! X

| |

é i |
i [

I ; fix,y. T+3dt) g

! ; —

i } fix,y,T+2d1)

‘ ‘ fix,y.T+dt) f

| —_—

. fixy.D

y 4 fx.y,t)

Figure 1.1: Representation of moving images

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

improvements in digital technology, 3-D filters are becoming more reasonable in terms of
cost, and their benefits over 2-D filters are becoming more attractive. The particular
benefit of interest in this thesis is the 3-D filter’s ability to process temporal information in

a moving picture sequence.

1.2 Digital Interpolation

Digital interpolation is a process by which a digital signal with a specific sampling rate is
altered such that the frequency content of the signal remains unchanged while the sampling
rate is increased. Subject to limitations specified in the Sampling Theorem, presented in
Chapter 2, the sampling rate of a digital signal can be increased to any desired degree. This
means that the original continuous signal is recoverable from the sampled signal.
Interpolation has many applications in one-dimensional (1-D), 2-D, and 3-D digital signal
processing. For example, it can be used as a method of data compression or used to
improve the resolution of a signal. It may also be used to change the sampling rate of a
signal for the purpose of scaling[1]. It is the improvement of signal resolution that this

thesis is concerned with.

For an application such as digital audio, a 1-D digital interpolator can be used to increase
the resolution of the signal, making it more closely represent the original continuous
signal. In image processing applications, a 2-D digital interpolator can be used to increase
the pixel resolution of a digital image in either, or both of, the horizontal and vertical

directions (inter-pixel interpolation)[1]. This has the effect of making a digital image more

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

closely approximate the original image. The process of using digital interpolators to
increase signal resolution can be extended to three dimensions. In the case of a digital
video signal, the resolution of each frame can be increased in the ‘x’ and ‘y’ directions just
as if it was processed using a 2-D interpolator. The 3-D interpolator has the added
advantage of being capable of increasing the resolution along the time axis (the third
dimension). This means that in addition to increased resolution in each frame of video, a 3-
D interpolator can also increase the number of frames present in a video sequence (inter-
frame interpolation). This three-dimensional interpolation of digital video is the primary

goal of this thesis.

1.3 Three-Dimensional Digital Filters

A digital filter is a system that, when given a sequence of input numbers, produces a
sequence of output numbers subject to a specified set of rules. Accordingly, a 3-D digital
filter produces a three-dimensional array of numbers when given a three-dimensional input
array. For example, when a 3-D filter is given the luminance values of a digital video
sequence as an input, the output is usually an altered form of that digital video sequence.
Filters of any dimension are traditionally divided into two categories: non-recursive filters
and recursive filters. Non-recursive filters, also known as Finite Impulse Response (FIR)
filters, produce an output which is a weighted average of present and previous input
values. Recursive filters, also known as Infinite Impulse Response (IIR) filters, produce an
output that is a weighted average of present and past input values as well as past output
values. Each type of filter has its own advantages and disadvantages and these must be

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

weighed according to the individual application.
1.3.1 Three-Dimensional FIR Filters

If a causal 3-D FIR filter of order NxNxN is given an input x(»n,,7,,7;) , the output

y(n,,n,,n,;) can be expressed as

N N
Y'Y h(r,ny m)x(my - iy, - jomy - k) (L1

j=0 k=0

[V]z

y(n,n,,m)=

Il
o

i

Examination of Equation 1.1 shows that the filter’s output is a weighted function of past

input values. The term A(n,,n,,n,) is known as the impulse response of the filter. The

transfer function of the above filter is obtained by taking the z-transform of Equation 1.1

and is given as

N N N
H(z),2,,2;) = Z Z Z h(n,,n, ’ns)zl-izz_jzs—k (1.2)

i=0 j=0 k=0

Equation 1.2 can also be written as

N N N . ‘
Z z Z h(n,,n,,n,)z, N-lzzlvﬂzs”—k
i=0 j=0 k=0 (1.3)
H(z,,z,,2,) = N N, N
1 22 23

Equation 1.3 shows that all poles of this filter are located at the origin. As a result of this

constraint on pole placement the stability of the filter is guaranteed. Therefore, no design

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

effort is required to ensure the stability of an FIR filter.

Another advantage of FIR filters is the ease with which they can be designed to have linear
phase response, and therefore constant group delays, over the entire baseband[2].

The main disadvantage of FIR filters is directly related to their inherent stability. As
mentioned, non-recursive filters are always stable because the poles are constrained to the
origin. However, this constraint also reduces the possible steepness of the transition band.
As a result, higher order filters are required to obtain specified transition specifications.

These higher order translate into a higher implementation cost for the filter.

1.3.2 Three-Dimensional IIR Filters

If a causal 3-D IR filter of order NxNxN is given an input x(n,,n,,n;) , the output

Y(n,,n,,n;) can be expressed as

1.4)

M=
M=

J’(nla"z n3)= a(’u]sk)x(nl ’”2 -j9n3— k)

M=

b(i, j,k)y(n, - i,n, = j,n; - k)

rE
M= I
M= M=

0

°
-

i

°
t
)

°

(i+j+k)=0

As Equation 1.4 shows, the present value of the output is a function of the present and

past values of the input, as well as past values of the output. Note that FIR filters are

actually a subset of IR filters where all b(i, j, k) coefficients are equal to zero. By
taking the z-transform of Equation 1.4 and setting 5(0,0,0) equal to one, the transfer

function of a 3-D IIR digital filter is obtained as

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N N
z Z a(i,j,k)z, "z, z,7*

=0 j=0 k=0

N N)) (l 5)
1+ 3 Y b6, j, k)22, 2 ‘
J=0 k=0
(i+j+k)=0

M=

-,

H(z,,2,,2;) =

i=

o

As Equation 1.5 shows, 3-D IIR filters do not have their poles constrained to the origin.
This gives IIR filters a degree of design flexibility not available in FIR filters. A transition
band specification that requires a high order FIR filter can be obtained using a much lower
order IIR filter. The required order of an FIR design can be as much as five to ten times
higher than that of an IIR filter satisfying the same specifications{3]. These lower orders
can translate into lower implementation costs, and the cost difference is even more
pronounced in the design of 3-D filters. This extra cost difference is a result of the fact
that the number of coefficients in a 3-D filter is exponentially (by a power of three) higher

than the number of coefficients in a 1-D filter design.

Despite its advantages, the IIR filter has a significant disadvantage compared to the FIR
filter. This disadvantage is the IIR filter’s lack of inherent stability. Since the filter output
is dependent on past output values, it can grow to infinity even though the filter is given

finite input values. This presents a challenge in designing these filters to be stable.
Another disadvantage of recursive filters is their inherent non-linear phase response.

Designing a filter with a constant delay and prescribed loss specifications is usually very

difficult to do[3]. In general, if an application requires constant delay characteristics, these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

characteristics are achieved by cascading a filter that satisfies the magnitude response with
a delay equalizer. In some applications, linear phase may not be of great importance. In
image processing however, two-dimensional images are very sensitive to phase
distortion{3]. By extension, since each frame of a video sequence can be look upon as a

two-dimensional image, linear phase is very important in video processing.

1.3.3 3-D FIR Filter Design Methods
1.3.3.1 Design Using Integration
The design of 3-D FIR filters using integration is very simple and straight-forward. Given

the filter’s frequency response H(®w,,®,,®,), the impulse response h(n,,n,,n,) can

be obtained as
h(nyny,m) = —s | | [H@,,0,,0,)¢" > dp do,do (1.6)
19 27%3 8”3____x 19293 1 2 3

In general, calculation of this triple integral may be very difficult analytically. Therefore,
Equation 1.6 is often calculated using numerical integration. This eliminates the need for

an analytical solution, and it lends itself well to computer-aided analysis[1].

1.3.3.2 Design Using FFT and Window Functions

This design method is very similar to the one given in Section 1.3.3.1. Given a desired

frequency response of a filter, the impulse response A(n,,n,,n;) can be obtained by use

of the Three-Dimensional Inverse Discrete Fourier Transform (IDFT). The IDFT is

discussed in Chapter 3. While simple and straight-forward, this design method is sub-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

optimal due to the occurrence of Gibb’s Oscillations in which ripples appear in the
passband and stop-band of the filter’s magnitude response. These ripples can be reduced
by applying a window function to the impuilse response. The most common window
functions are Hann and Hamming windows, Blackman windows, and Kaiser windows.
These are 1-D windows that can easily be extended to two and three dimensions for

application to two- and three-dimensional impulse responses [1][4][5][6].

1.3.3.3 McClellan Transformation
Another technique for designing 3-D FIR filters is obtained by extending the McClellan

Transformation to three dimensions. This technique involves determining transformation

coefficients, and then designing a 1-D FIR filter to be transformed using these coefficients.

A large number of coefficients may result from this method, but this number can be

reduced by imposing symmetry constraints[6].

1.3.3.4 Linear Programming

Linear Programming is a popular method for designing multidimensional filters. It is an
iterative process that measures the difference between the desired and designed frequency
responses, often as a sum-of-square-error, and minimizes this difference. Linear
programming is a computationally expensive design method, but is becoming more
practical as processing power becomes more easily available. More is said about linear

programming in the next section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3.4 3-D IIR Filter Design Methods
1.3.4.1 Linear Programming [2][6][9]

The design of 3-D IR filters using linear programming involves calculation of the filter's

numerator coefficients a(i, j,k) and denominator coefficients b(i, j, k) such that the

magnitude response and/or phase response of the designed filter approximates a desired
response while maintaining stability in the filter. The transfer function given in Equation
1.5 can involve two subclasses: the separable product transfer function and the separable
denominator, non-separable numerator transfer function. These transfer functions are

given in Equation 1.7 and 1.8 respectively.

H(z,z,,2,) = H\(2,)H,(2,)H,(2;)

2 a()z” Z 6z || Y aythyz,

i=0 k=0

N N
Y bz~ Z b, Nz || X b(k)z,™*
i=0 j=0 k=0

The separable product transfer function allows the filter to be designed as a cascade

1.7

arrangement of three 1-D filters. In this way, stability is guaranteed by designing the 1-D
filters to be stable. The major drawback of this design method lies in the fact that a
spherical-symmetric specification cannot be obtained. A filter with a separable product
transfer function will always have a cubic shaped magnitude response.

N N N))
Y XY al,j.k)z 7z, 72"

i=0 j=0 k=0

k=
(2 n0= (b (j)z"‘)(g b(o)

i=0
The separable denominator, non-separable numerator transfer function has a denominator

H(z,2,,2;) = (1.8)

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

like that of the separable product transfer function. As a result of this, the stability problem
is reduced to that of the 1-D case. A filter having this transfer function can be designed by
cascading a 3-D FIR filter with three 1-D all-pole IIR filters. The separable denominator,
non-separable numerator transfer function is more flexible than the separable product

transfer function and can be used to design filters with spherical-symmetric

specifications[7][8].

The general transfer function of Equation 1.5 gives the most flexible results since the
constraints of Equation 1.7 and 1.8 are removed. Unfortunately this design method does

not share the ease in designing for stability that the other methods do.

1.3.4.2 Bilinear Transformation

Another method of designing 3-D digital [IR filters involves assigning a stable 3-variable
polynomial in the denominator of an analog transfer function and applying the triple
bilinear transformation. Unfortunately, not all analog filters will yield a stable digital filter
upon application of the bilinear transformation[10]. There is a specific class of analog
filters that will yield stable digital filters, and these analog filters have Very Strictly
Hurwitz Polynomials (VSHP) as their denominators[11]. The use of VSHP denominators

is used in the design of both 2-D filters and 3-D filters[6]

1.3.4.3 Modified Shank’s Method

The final design method to be discussed here is another extension of a 2-D method. This

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2-D method is known as Shank’s Method[12] and is modified in [1] to provide a near-
linear phase response. It uses a weighted error function that measures the difference
between the desired magnitude response and the designed magnitude response. This error
function is then minimized by taking the derivative with respect to each of the {a} and {b}
coefficients and equating to zero. The resulting linear equations are then solved to obtain
an ideal impulse response. This ideal impulse response is utilized in such a manner as to
obtain a near-linear phase response for the filter. As a result of the advantages of [IR
filters over FIR filters, and the obtainable near-linear phase characteristic, the Modified

Shank’s Method is used in this thesis. It is discussed in detail in Chapter 3.

1.4 Video Formats

The moving image sequences used in this thesis are found in digital video files. This
section briefly discusses some of the digital video formats in common use today.

1.4.1 H.263 Video Standard

The H.263 standard is a video coding standard published by the International Telecom
Union (ITU). It is specifically designed to accommodate low bit-rate applications where
bandwidth is limited. In particular, this video format has become standard in the field of
video telephony. The coding algorithm is a hybrid of inter-picture prediction, transform
coding, and motion compensation. In essence, this standard is primarily a compression
algorithm designed to allow higher frame rate video to be sent over low-bandwidth
channels. The ITU H.263 Recommendation is available from the International Telecom

Union.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4.2 MPEG Video Standard

The MPEG-1 video standard is officially known as ISO/IEC Standard, Coded
Representation of Picture, Audio and Multimedia/hypermedia Information, ISO 11172.
MPEG-2 is a related standard and since this discussion relates equally to both, they will be
commonly referred to as the MPEG video standard. The MPEG video standard is the
adopted standard for the emerging application of High Definition TeleVision (HDTV). It
has three types of frames: I-Frames, P-Frames, and B-Frames. I-Frames, or Intra-picture
frames, are coded only using information present in the picture itself. P-Frames, or
Predicted frames, are coded using the nearest previous [-Frame or P-Frame. B-Frames, or
Bidirectional frames, are frames that use both a past and future frame as a reference.
[http://www.c-cube.com/technology/mpeg.html#MPEG Overview] Like the H.263
standard, MPEG is primarily a compression algorithm. The MPEG standards are available

from the International Standards Organization.

1.4.3 Microsoft Windows AVI Standard

The Microsoft Windows Audio Video Interleaved (AVI) format is a common video file
format used to hold video sequences on Personal Computers (PCs) running the Microsoft
Windows operating system. Unlike the H.263 and MPEG formats, the AVI is unsuitable
for transmitting video data, and is not used in applications such as video-telephony or
HDTV. It is a very simple video format which can often be found in an uncompressed
form. The Microsoft Windows Application Program Interface (API) contains numerous

functions for the manipulation of AVI files, and is well documented, allowing easy access

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.c-cube.eom/technology/mpeg.html%23MPEG

and manipulation of the raw video data.

1.4.4 Comparison

Since this thesis is concerned with applications of 3-D filters, one may at first assume that
either the H.263 or MPEG standards would be an appropriate choice to use, since both
are commonly used in real-world applications. However, as mentioned earlier, these
formats are essentially compression standards. The application of using 3-D filters to
increase video resolution is concerned not with compressed data, but rather with raw data.
Any filtering algorithms developed to work on the raw data should also work with
compressed formats. One need only decompress the data before filtering. For this reason,
plus the wide availability of AVI files and AVI tools, the AVI format is preferable for the
purposes of this thesis, since the raw data is more easily accessible than in the other
formats. An added advantage to using this format arises from the fact that any PC running

Microsoft Windows is capable of playing an AVI file.

1.5 Current Applications of 3-D Filters

Digital filters are widely used in the processing of 1-D and multidimensional signals. 1-D
digital filters are commonly used in the area of speech or music processing. Other
examples can be found in[13][14]. Due to the increased complexity and hardware cost of
2-D filters, they are not used as often as 1-D filters. Some applications of 2-D filters
include image processing and seismic signal processing{15]. Three-dimensional filters are

even more complex and expensive than 2-D filters, and are therefore even less used. Their

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

use is becoming more practical as VLSI technology continues to improve. These filters are

currently used in the field of geophysics[6].

1.6 Thesis Organization

This thesis is divided into six chapters. Chapter 2 discusses the process of digital
interpolation. It begins with an introduction to the sampling theorem, and then gives an
explanation of interpolation in one dimension. Two methods of interpolation are
discussed: interpolation using zero-padding, and interpolation using sample replication.

These methods are then extended to three dimensions.

In Chapter 3 of this thesis, recursive filter design using the Modified Shank’s method is

discussed in detail. The three-dimensional Fast Fourier Transform is also developed.

The theory discussed in chapters two and three is tied together in Chapter 4 to outline the
process used to create a three-dimensional digital interpolator (in software). The process
of using this interpolator to increase the horizontal resolution, vertical resolution, and
frame rate of an AVI video file is also given. Relevant details of the AVI format and the

related BMP file format are provided.

The results of the thesis are given in Chapter 5. Plots are provided showing the
characteristics of the designed 3-D filter, and frames of the filtered A V1 file are shown

side-by-side with frames from the original file to compare the resolution and quality.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A summary and conclusions are provided in the final chapter. A computer program written
in Microsoft Visual C++ was used to test the theory of this thesis and produce the results

found in Chapter S. The source code for this thesis is found in Appendix A.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Digital Interpolation

2.1 The Sampling Theorem

The sampling theorem states that any bandlimited continuous signal x(t) with frequency
spectrum X(j®)= 0 for || 2 “4 , where @, = 2% and T is the sampling period,
can be uniquely determined from its discrete values x(nT), where n is an integer[3]. This
means that any signal sampled at greater than twice its highest frequency component can

be reconstructed to any desired degree of accuracy.

A graphical description of the sampling theorem is given in Figure 2.1 and Figure 2.2.

x(H) A

I
|
|

L 4,
0 t

Figure 2.1(a): Continuous time signal x(t)
Figure 2.1(a) shows a one-dimensional continuous time signal denoted as x(t). If this

signal is now sampled by multiplying it with the unit pulse train p(nT) shown in Figure

2.1(b), then the discrete time signal x(nT) shown in Figure 2.1(c) is obtained.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p(nT) A

>
0 T 2T 3T 4T ST nT

Figure 2.1(b): Unit pulse train p(nT)

>
0 T 2T 3T 4T ST nT

Figure 2.1(¢c): Discrete time signal x(nT)

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A

0 Qb Qs Q

Figure 2.2(a): Frequency spectrum of continuous time signal x(t)

P(eiT

t

I T

“4n/T -2n/T 0 27/T 4n/T w

Figure 2.2(b): Frequency spectrum of unit pulse train p(t)

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X(e*T)%

/\/\/\/\/\

4n/T -2n/T 27/T 4n/T w

Figure 2.2(c): Frequency spectrum of discrete time signal x(nT)
Figure 2.2 illustrates this process in the frequency domain. Figure 2.2(a) shows the
frequency spectrum X(jw) of the continuous time signal x(t). Figure 2.2(b) shows the
frequency spectrum P(e") of the unit pulse train p(nT). The frequency spectrum X(e™*T)
of the discrete time signal x(nT) is shown in Figure 2.2(c). The spectrum X(e*“") is
obtained by convolving X(jw) with P(e*“T), since multiplication in the time domain is
equivalent to convolution in the frequency domain. By examination of Figure 2.2(c), it can
be seen that as long as w, is greater than twice w, there will be no overlap between the
frequency spectrum “images™. Therefore the original spectrum of the continuous time
signal has not been distorted by sampling, and all the information about the signal is

retained.

2.2 One-Dimensional Interpolation
Digital interpolation in one dimension can be achieved by combining an upsampler with a

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x[nT] | xu[nT/L] . y[nT/L]
X(e""T)' 'L “xgeemy M). Y(“™)

Upsampler - inserts L-1 samples between each pair of
samples x[nT] and x[nT+1]

Low Pass Filter - transition band centered about /L

Figure 2.3: Block diagram of digital interpolation system
lowpass filter as shown in Figure 2.3. [3][16] First consider the operation of the
upsampler. If an upsampler using zero-padding is given an input x(nT), then its output
x,(nT') can be expressed as

x("/) forn=0,+L,+2L...

! - T,
0 otherwise where 7' = 7/ .1

x,(nT')= {

which can also be written as
x,(nT)= Y x(kT)6(nT - kLT) 22

=D

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By applying the z-transform to Equation 2.2 and substituting z = e’ of" | Equation 2.3 is

obtained.

Xu(ejaﬂ") = Z

n=-wo

® -] _ m_T
=Y ¥ x(kT)[é‘(nT—kLT)e 7L]

k=-w p=—o

) [f: x(kKT)o(nT - kLT) |e™ ™"

k=-a

= D, x(kT)e ™"

k:-@

= X(e"”T) 2.3)

Equation 2.3 shows that the frequency spectrum of x,(nT") is identical to the frequency

spectrum of x(nT). Since T' =7, @/ = Lw, and therefore the location of the

sampling frequency has been changed. Now in the range - *4 < @ <*/4 thereare L

' >
0 T 2T 3T 4T ST nT

Figure 2.4(a): Discrete time signal x(nT)
22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

images of X(e’®"). An interpolated signal x,(n7") with an increased sampling rate can

be obtained from x,(n7"’) by using a lowpass filter to remove the extra images. The

x(nT") A

L o
0 T 2T 3T 4T ST'6T' 7T 8T' 9T 10T 11T nT'

Figure 2.4(b): Discrete time signal x(nT) with zero padding

y(T) A

0 T 2T 3T 4T 5T 6T 7T' 8T 9T' 10T 11T’

Figure 2.4(c): Interpolator output y(nT)
23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

combination of the upsampler with the lowpass filter is called an interpolator. The
interpolation process is shown graphically in Figure 2.4.
The method presented above will theoretically yield a perfect reconstruction of the original
signal, assuming an ideal low-pass filter is used. There is a variation of the above method
which does not yield a perfect reconstruction, but is better suited to a hardware
implementation. In this variation, the upsampler uses sample replication instead of zero
padding. Now if the upsampler is given an input x(nT), and L is assumed to be equal to
two, then the output x (nT’) can be expressed as

x,(nT") = ki x(kT)o(nT - 2kT) + ki x(kT)o(nT - (2k+ 1)T) 249
Examination of Equation 2.4 shows that the upsampled signal consists of the original
signal added to a time-shifted image of itself. Application of the z-transform to the original

and time-shifted signals gives
s
X, ()= X(T)+e T X(eT) @5

By evaluating Equation 2.5 at various values of w, it can be noted that this modified
upsampler using sample replication has a slight low-pass filtering effect on the signal. The
justification for this slight distortion lies in the hardware implementation of the upsampler.
To use the zero- padding method, the original signal must be fed into the upsampler and a
zero sample must be explicitly inserted between each sample. With the sample replication,
the upsampling process is much easier as it only requires the filter to run at twice the

speed, or sample rate, of the incoming signal.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Three-Dimensional Interpolation

The procedure described in Section 2.2 will interpolate a one-dimensional signal such as
an audio signal. To interpolate a three-dimensional video file, the procedure must be

extended to three dimensions. Following the same method as before, the output of the

upsampler x_(n,7}, n,T;, n,T;) can be expressed as

ac ac a0

x,(nTnThnT)= Y Y ¥ x(kT, kT, kT)S(nT, - kLT, nT, - kLT, nT, - k,L,T) (2.6)

kym—an kym—xc kym—~a

For simplicity, let L=L,=L,=L, and T=T,=T,=T,. Application of the z-transform and

substitution of 2, = ¢/*7 ,z, = &’*" ,z, = &’ gives

X (™ e Ty = 3

.

e [

S L _,-_z-_f]
«

o
o

IM' aM" '
-

Z Z x(k, T, k,T.k,1V6(n,T - & LT,n,T -k, LT.n,T- k. Ln},-,mr S

L]
aM‘

Z f 3 Z x(k,T,k,T,k,T{J(n,T—k,LT.n,T-k:L,T.n,T-k,LT)e e e
- =) -
T

LY

n
lM'

Y Xk T.k,T kD >4 e 1ot g robT

dym-n

= (eM e

Q.7

As in the one-dimensional case, the frequency spectrum of the upsampled signal is
identical to that of the original signal, while the sampling rates have been increased in each

of the three dimensions. Now in the range
(-4 < 0, <*A4),(-*%4 < @, S “4), (- % < @, < *%) there are L’ images of the

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

original spectrum. The three-dimensional interpolated signal x,(n,T',n,T',n,T’') with an

increased sampling rate in each dimension can be recovered by applying a lowpass filter

with a cubic response to remove the unnecessary images.

As in the one dimensional case, there is the option of using sample (pixel) replication

instead of zero-padding. In this case, the output of the upsampler will be

L3 ® L3

L) =Y Y Y x(kT, kT, k65T, - 25T,,n,T; - 2k, T, mT; - 2k,T;)
hrmtirehe 2.8)

t Y Y N xeT AT ET\SaT OOk AT T L A NT a T -k 2T
+ Y T Y xhTL.kL LTS - (2k + DT, mT, - (2k; + DT,,n,T; - (2k, + IT;)

The output of the three-dimensional upsampler is the input added to a shifted version of

itself. Transforming Equation 2.8 to the frequency domain gives

Xu (ejwnﬂ',ejszz' ’efwsTs') = X(ej'”'r' ,ejszz , e’/)

o1 o (2.9)
(_5'L+222'T1*'}2'T1) X(ejqux , e’ " , ejwsTa)

+e’

The result of Equation 2.9 shows that there is again a slight low-pass filtering effect on
the signal when pixel replication is used. The justification for this method again lies in the
hardware implementation. By using pixel replication, there is no zero-insertion required
between each pixel, line, and frame. Instead, the result can be obtained by running the

filter at eight times the original speed (a factor of two for each dimension).

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Filter Design

3.1 Introduction

As mentioned in the introduction, one of the goals of this thesis involves the design of a
stable recursive filter with a near-linear phase response. A method for designing such
filters already exists in two dimensions. This method will now be extended to three

dimensions.

3.2 Modified Shank’s Method for 2-D Filter Design[1]

The following three-dimensional method for designing stable recursive filters with near-
linear phase response is based on the filter design technique known as Shank’s
Method[12]. Although this method is a spatial design method, or a space-time design
method once extended to three dimensions, the derivation is given in the frequency
domain for purposes of clarity.

As given in Chapter 1, the transfer function of a three-dimensional recursive filter is

described by

G.1)

Note that by, is arbitrarily set to equal 1. By substituting z, = &’*", z, = /%7,

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and z, = e’*", the frequency response of the filter is obtained as

A9, 0,,0;)
B(w,,®,,0,)

H(®,,0,,0;) = 32)

where

4

\d
a, e’ e/ /AT 33)

N
y
=0 k=0

A(@,,0,,0,) = Z

4

M=

J

1]
(]

and

N N N
B(0,,0,,05)= 1+ 3, D,) bye’™ el e/)
i=0 j=0 k=0)
(iv ye k)= 0

By now letting H "(a), ,@,,@;) represent the desired frequency response of the filter, an

error function can be defined as

Alo,,0,,0,)
&(w,,0,,0,)= H (0,,0,,0,) - L2 3 3.5
1> @2, @3 1202%)" Bla,0,,0,) 3.5)
When transformed back to the space-time domain, Equation 3.5 becomes
&(m,ny,m;) = h*(m,ny, 1)~ h(ny,my, m3) 36)

where 47 (n,,n,,n,) is the desired impulse response and 4(#,,n,,n,) represents the

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

impulse response of the designed filter. 2(n,,n,,n,) is described by

N N N N N
h(n,,n,,n;) = Z 2 Y a,8(m-in - jn-k)-2 Y Y b h(n —in - jn, - k)(3.7)
=0 y=0 k=0 1=0 y=0 k=0

Forming the L, norm using the error function in Equation 3.6 gives

M-1 M-1 M-1

0= Y &(mnn) 3.8)

m=0n,=0n,=0

where M x M x M points are taken from the impulse response for this computation.

The design of the filter now consists of determining the values of the {a} and {b}

coefficients such that the expression in Equation 3.8 is minimized. This is done by taking

the derivative of () with respect to each coefficient and equating the resulting equations

to zero. This results in Equation 3.9 and Equation 3.10.

20 M-1 M-1 M-1 ”"5(”1 n,,n,)
. &
da,, n.z_ogo",z.o (7> 1,7%) da,, 3.9)
x,y,z2=012,....N
and
M-1 M-1 M-1 de(n,ny,m;)
=2 e(ny,ny,ny) —
xy: n,z.ozo:.,z.o (723, ﬂ’,y,- (3.10)

x,y,z=0L2,....N (x+y+2z)20

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Equation 3.9 generates (N + 1) x (N + 1) x (N + 1) nonlinear equations in{a} , while
Equation 3.10 generates (N + 1) x (N + 1) x (N + 1) — 1 nonlinear equations in {b}.
There are 2(N + 1) x (N +1)x (N + 1) -1 filter coefficients, and these generated

equations form a complete set from which the coefficients can be solved.
While solvable, the above system of equations is highly nonlinear. To avoid this non-

linearity, reconsider the error equation of Equation 3.5 in the following form

E(@,,@,,0,) = B(w,,0,,0;)H (0,,0,,0,)- A(0,,0,,0;) (3.11)

where ¢(w,,®,,®;)B(®,,®,,,) has been replace by a “weighted” error term
&(@,,®,, ;) . Now transformation of Equation 3.11 to the space-time domain results in

the error equation

N N N N N N
é(n,ny,n) = Z‘;Z:,);) .,;h‘("\-i’na-j,n;-k)-zoz;,;’a,,.ﬁ(n,-i,nz-j,n;-k)(s.lz)
= J= - = J= =

Forming the L, norm again, but now using the modified error term results in

M-1M-1 M-1
ZZZ (m,ny,m3) 3.13)
oy Yo Yot

It should now be clear why this derivation began in the frequency domain, despite the fact
that it is a space-time design method. By beginning the derivation in the frequency domain,

it is clearly shown that the error being minimized in Equation 3.13 is a “weighted” error,

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and not the true error.

This new error O can be minimized by differentiating with respect to each of the filter
coefficients, and setting the resulting equations equal to zero. Differentiating O with

respect to the {a} coefficients gives

M-IM-IM-I| N N N

X _ 23¥ Y ZZZG,.J(":"'v"z‘jv"s‘k)'gi

m 20n, =0n3<0{ 120 ;=0 k=0 =0

xyz-Ol,Z. N

Mz

bﬁh‘("l - i,ﬂ‘ - j-’ﬁ - k)}i("l =X = y,n - 2)= 0(3014)

-

This reduces to

N N
"l"z": = ZZ ykhd(nl-i9n2-j’n3-k)

Jj= k=

nl,n2,n3=0,1,2,....N

EM%

(-]

3.15)

(-]

As a result of Equation 3.15, Equation 3.13 can be rewritten as

M-1 M-1 M-1 2

Z Z z Zzzb,-jkhd(n,-i,nz—j,%-k) (3.16)

nl=N+1n2=N+1n3=N+1| i=0 j=0 k=0

since a,,, =0 for N+1< n,n,,n; < M —1.Now minimize Q by differentiating

with respect to the {b} coefficients and equating the resulting equations to zero. This

gives

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@ M-1 M-1 M-l N N N
222 2 XXX bk (m-im - jon - B) (1 - x,my - y,m - 2)= 0
ax_w: m=N+1maN+imaN+l| =0 j=0 k=0 (3-17)

x,y,z2=012,....N

which reduces to

& NN M-t M~ M-l A~ M-l M-l
Y336, Y THGM-im-jin-bHm-xn-ym-2)=- 3 X Y K(mma(n-xn -y -(3.18)
100 20 8e0 meNolmeNolaaNel HeNolnaNelmeNel .

-

1010800

These equations generate (N + 1) x (N + 1) x (N + 1) linear equations in {@} and
(N +1)x (N +1)x (N +1)-1 linear equations in {b}. This set of linear equations

can easily be solved for the filter coefficients.

3.3 Designing the 3-D Recursive Filter[1]

Once the desired impulse response is generated, a decision must be made as to how this

response should be utilized. There are four possible options for the utilization of the

impulse response:

1. Use the eight cubes of the impulse response (entire large cube shown in Figure
3.1) with the origin being at the center of the array.

2, Shift the axis such that the entire impulse response is in the cube where

n,n,,n,20.
3. Take the impulse response from only one cube of the array where n,,7n,,7, 2 0

(only utilize 1/8 of the impulse response). This option is depicted by the dotted

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cube in Figure 3.1.

............................

|
|
|
|
|
|
|
.

Figure 3.1: Utilization of Impulse Response

4. Shift the axes by an amount that is large enough to include the largest components

of the impulse response in the cube n,,n,, 7, > 0 and use this cube. This option is

depicted by the dashed line in Figure 3.1.

The first option cannot be used since a filter’s impulse response must be zero in the range

(n,<0), (n,<0),and (n, < 0) for the filter to be causal.

The second option will provide a causal filter, but the order of the filter will need to be at

least (M4 x M4 x M4) . The need for such a high order is a result of the large delay of the

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

impulse response in all directions. The third option will also provide a causal filter since

values of A(n,,n,,n,) are only used when (n, > 0), (n, 2 0),and (n; 2 0).Dueto

symmetry, the complete magnitude spectrum can be obtained by using only the one cube.
However, while the magnitude spectrum will be preserved, the phase characteristic will

not be preserved. Since linear phase is very important in video processing applications, this
method is unsatisfactory.

In the fourth option, two characteristics of the impulse response are made use of :

i) The impulse response decays rapidly away from the origin.

ii) A shift in the impulse response in the space-time domain corresponds to the addition of
a linear phase to the frequency domain.

Since the larger values of the impulse response (shown as the sphere in the middle of cube
of Figure 3.1) are being used (which have the largest influence on the magnitude and
phase response), and a linear shift is being added to a filter originally specified as zero-
phase, this method can be used to design filters with near-linear phase characteristics. By
using this method, most of the characteristics of the original desired frequency response
are preserved without the large delay that would exist if the entire impulse response were
used. It has been found[1] that the “shift™ specified in Option 4 is best set to N-1 in each

dimension.

3.4 Three-Dimensional Inverse Fast Fourier Transform
Since the method discussed above is spatio-temporal, it requires the ideal impulse

response before the error function can be formed. Usually however, a filter’s specification

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is given in terms of its frequency response. Therefore a method of transforming the
frequency response into the impulse response is required. The most straight-forward way
of doing this is through the use of the Three-Dimensional Inverse Discrete Fourier

Transform (IDFT), given by

N,=1N,-1N;-1

X(kl s k2 ’ k3) = N.N+2N3 Z Z z x(n, 9n2’n3kj;vl mh +n2k2+n3k3)(3-l9)

n=0 n,=0n;=0

If a filter with a cubic response is used, then the assignment N,=N,=N,=N can be made for

simplicity and Equation 3.19 can be rewritten as

N-1N-1 N-1

X (k,,kz,k3) =LY YI(EY x(nl,nz,rg)ejz“"{""‘3 Sk ensks) (3 20)

m=0n,=0 n;=0

Now let

1 28 nyk
G(nl,nz,k3)= FZ x(nl,nz,n3)ean3 3

3.21)

|
=
R
N
Z

|
[o—

Jor n,,n, =

Equation 3.21 is essentially the one-dimensional IDFT of the n,” row of the n,” “frame™.
This is shown graphically in Figure 3.2(a). Using Equation 3.21, the following can be
stated

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

H(n,ky k)= %) % G(nl n,, k, Je ¥k

ny=0
forn ,k,=012,--- N-1

Equation 3.22 is the one-dimensional IDFT of the resulting k,” column of the n,” “frame”.

3.22)

This is shown graphically in Figure 3.2(b). Now consider the following

N-1

X(kl’k2’k3) =¥ H(nl,kz,k3)ej27x"""

nl =0

for k,,k;=0,12,--- , N-1

3.23)

Equation 3.23 is essentially the one-dimensional IDFT of each resulting “depth vector” of
the array. This is shown graphically in Figure 3.2(c). What has been accomplished above is
the breakdown of the Three-Dimensional Inverse Discrete Fourier Transform into multiple
One-Dimensional Inverse Discrete Fourier Transforms. This method can be used to take
advantage of the computational efficiency of the One-Dimensional Fast Fourier Transform
when the desired impulse response is formed for the modified Shank’s method presented

earlier.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ta = Ta Ll T

S = R N N AR

=
@ ®)

Figure 3.2: Three-Dimensional Fast Fourier Transform

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Implementation

4.1 Introduction

With the basic theory presented, the actual process of using a three-dimensional filter to
improve video resolution is now tested. This is done by extracting the raw data from the
video file, filtering it, and reconstructing the file for playback comparison. This process is
illustrated in Figure 4.1. As mentioned in the introduction of this thesis, there are many
functions available in the Microsoft SDK to modify AVI files. These functions are
grouped under the AVIFile library. One particular function of interest extracts an
individual frame of video as a Microsoft BMP bitmap image. Since four of the six steps (as
outlined in Figure 4.1) involve AVI or BMP file manipulation, this chapter begins with an
overview of the AVI and BMP file formats. The rest of the chapter discusses each step of
the flowchart in Figure 4.1. Code snippets used in the Filter3D program dealing with the

AVI codec are given at the end of the chapter, and described throughout the chapter.

4.2 AVI and BMP File Formats

4.2.1 AVI File Format

The AVI format is a sub-format of the Microsoft Resource Interchange File Format
(RIFF). This format is based on the Electronic Arts Interchange File Format (IFF){17]
which is a general purpose data storage format for associating and storing multiple types
of data. As the name implies, an Audio Visual Interleaved (AVI) file can contain both

Audio and Video data.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Obtain Standard AV!
File

l

Extract Individual
Frames (BMP
Format)

l

Extract Raw Video
Data from Each
Frame

l

Apply 3-D Filter to
Raw Data

Reconstruct
Individual Frames

(BMP Format) from
Filtered Raw Data

l

Reconstruct AVI File
from Fiiltered Frames

Figure 4.1: Implementation
39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While the IFF format uses tagged blocks of data called chunks, the AVI format handles its

information as data streams. Data streams broadly refer to the components of a time-based

file, either audio or video in the case of AVI files. This thesis is concemned only with the

video stream of a file, and audio streams are ignored when reading the AVI files. Each

AVI file consists of one file header, one or more stream headers, and the file data. The

structures AVIFILEINFO and AVISTREAMINFO hold the file header and stream header

respectively. The following structure definitions are taken directly from the Microsoft

Developer Studio help files.

The AVIFILEINFO structure contains global information for an entire

AVl file.

typedef struct {

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
char

dwMaxBytesPerSec;
dwFlags:;

dwCaps:;
dwStreams;
dwSuggestedBufferSize;
dwWidth;
dwHeight;
dwScale;

dwRate;

dwLength;
dwEditCount;
szFileType([64];

} AVIFILEINFO;

Members
dwMaxBytesPerSec

Approximate maximum data rate of the AVI file.

dwFlags

Applicable flags. The following flags are defined:
AVIFILEINFO_HASINDEX

The AV file has an index at the end of the file. For good performance, all
AVT files should contain an index.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AVIFILEINFO_MUSTUSEINDEX

The file index contains the playback order for the chunks in the file. Use
the index rather than the physical ordering of the chunks when playing back
the data. This could be used for creating a list of frames for editing.

AVIFILEINFO_ISINTERLEAVED
The AVI file is interleaved.
AVIFILEINFO_WASCAPTUREFILE

The AVI file is a specially allocated file used for capturing real-time video.
Applications should warn the user before writing over a file with this flag
set because the user probably defragmented this file.

AVIFILEINFO_COPYRIGHTED

The AVI file contains copyrighted data and software. When this flag is
used, software should not permit the data to be duplicated.

dwCaps

Capability flags. The following flags are defined:
AVIFILECAPS_CANREAD

An application can open the AVI file with with the read privilege.
AVIFILECAPS_CANWRITE

An application can open the AVI file with the write privilege.
AVIFILECAPS_ALLKEYFRAMES

Every frame in the AVI file is a key frame.
AVIFILECAPS_NOCOMPRESSION

The AVI file does not use a compression method.
dwStreams

Number of streams in the file. For example, a file with audio and video has
at least two streams.

dwSuggestedBufferSize
Suggested buffer size, in bytes, for reading the file. Generally, this size

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

should be large enough to contain the largest chunk in the file. For an
interleaved file, this size should be large enough to read an entire record,
not just a chunk.

If the buffer size is too small or is set to zero, the playback software will
have to reallocate memory during playback, reducing performance.

dwWidth

Width, in pixels, of the AVI file.
dwHeight

Height, in pixels, of the AVI file.
dwScale

Time scale applicable for the entire file. Dividing dwRate by dwScale
gives the number of samples per second.

Any stream can define its own time scale to supersede the file time scale.
dwLength
Length of the AVI file. The units are defined by dwRate and dwScale.

dwEditCount
Number of streams that have been added to or deleted from the AVI file.

szFileType
Null-terminated string containing descriptive information for the file type.

The AVISTREAMINFO structure contains information for a single

stream.
typedef struct {
DWORD fccType:;
DWORD fccHandler;
DWORD dwFlags:;
DWORD dwCaps:
WORD wPriority;
WORD wLanguage;
DWORD dwScale;
DWORD dwRate;
DWORD dwStart;
DWORD dwLength:;
DWORD dwInitialFrames:;
DWORD dwSuggestedBufferSize;

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DWORD dwQuality:
DWORD dwSampleSize;
RECT rcFrame:
DWORD dwEditCount;
DWORD dwFormatChangeCount;
char szName[64]:;
} AVISTREAMINFO;

Members

fecType

Four-character code indicating the stream type. The following constants
have been defined for the data commonly found in AVI streams:

streamtypeAUDIO Indicates an audio stream.
streamtypeMIDI Indicates a MIDI stream.
streamtypeTEXT Iindicates a text stream.
streamtypeVIDEO Indicates a video stream.
fccHandler

Four-character code of the compressor handler that will compress this
video stream when it is saved (for example,
mmioFOURCC('M','S','V*,'C")). This member is not used for audio
streams.

dwFlags

Applicable flags for the stream. The bits in the high-order word of these
flags are specific to the type of data contained in the stream. The following
flags are defined:

AVISTREAMINFO_DISABLED

Indicates this stream should be rendered when explicitly enabled by the
user.

AVISTREAMINFO_FORMATCHANGES

Indicates this video stream contains palette changes. This flag warns the
playback software that it will need to animate the palette.

dwCaps
Capability flags; currently unused.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

wPriority

Priority of the stream.
wLanguage

Language of the stream.
dwScale

Time scale applicable for the stream. Dividing dwRate by dwScale gives
the playback rate in number of samples per second.

For video streams, this rate should be the frame rate. For audio streams,
this rate should correspond to the audio block size (the nBlockAlign
member of the WAVEFORMAT or PCMWAVEFORMAT structure),
which for PCM (Pulse Code Modulation) audio reduces to the sample
rate.

dwRate
See dwScale.
dwStart

Sample number of the first frame of the AVI file. The units are defined by
dwRate and dwScale. Normally, this is zero, but it can specify a delay time
for a stream that does not start concurrently with the file.

The 1.0 release of the AVI tools does not support a nonzero starting time.
dwLength

Length of this stream. The units are defined by dwRate and dwScale.
dwinitialFrames

Audio skew. This member specifies how much to skew the audio data
ahead of the video frames in interleaved files. Typically, this is about 0.75
seconds.

dwSuggestedBufferSize

Recommended buffer size, in bytes, for the stream. Typically, this member
contains a value corresponding to the largest chunk in the stream. Using
the correct buffer size makes playback more efficient. Use zero if you do
not know the correct buffer size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dwQuality

Quality indicator of the video data in the stream. Quality is represented as a
number between 0 and 10,000. For compressed data, this typically
represents the value of the quality parameter passed to the compression
software. If set to — 1, drivers use the default quality value.

dwSampleSize

Size, in bytes, of a single data sample. If the value of this member is zero,
the samples can vary in size and each data sample (such as a video frame)
must be in a separate chunk. A nonzero value indicates that multiple
samples of data can be grouped into a single chunk within the file.

For video streams, this number is typically zero, although it can be nonzero
if all video frames are the same size. For audio streams, this number should
be the same as the nBlockAlign member of the WAVEFORMAT or
WAVEFORMATEX structure describing the audio.

rcFrame

Dimensions of the video destination rectangle. The values represent the
coordinates of upper left corner, the height, and the width of the rectangle.

dwEditCount

Number of times the stream has been edited. The stream handler maintains
this count.

dwFormatChangeCount

Number of times the stream format has changed. The stream handler
maintains this count.

szName

Null-terminated string containing a description of the stream.

4.2.2 BMP File Format

The Microsoft BMP file format is the native bitmap format of the Microsoft Windows

operating environment and is used to store virtually any type of bitmap data[17]. BMP

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

files consist of a file header, bitmap header, optional colour palette, and the bitmap data.
All BMP files contain a file header and bitmap header (older bitmap files may only contain
a file header, but those older formats are not discussed here). The colour palette exists if
the number of bits constituting each pixel is eight or less (<= 8bpp). Since greyscale
images are 8bpp, the BMP files examined here all have a colour palette. The structures
BITMAPFILEHEADER and BITMAPINFOHEADER hold the file header and bitmap
header respectively. The following definitions are taken directly from the Microsoft
Developer Studio help files.

The BITMAPFILEHEADER structure contains information about the
type, size, and layout of a file that contains a device-independent bitmap

(DIB).
typedef struct tagBITMAPFILEHEADER { // bmfh
WORD bfType;
DWORD bfSize;
WORD bfReservedl;
WORD bfReserved?2;
DWORD bfOffBits;
} BITMAPFILEHEADER;

Members

bfType

Specifies the file type. It must be BM.

bfSize

Specifies the size, in bytes, of the bitmap file.
bfReservedl

Reserved; must be zero.

bfReserved2

Reserved; must be zero.

bfOfIBits

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Specifies the offset, in bytes, from the BITMAPFILEHEADER structure
to the bitmap bits.

The BITMAPINFOHEADER structure contains information about the
dimensions and color format of a device-independent bitmap (DIB).

typedef struct tagBITMAPINFOHEADER{ // bmih
DWORD biSize;
LONG biWidth;
LONG biHeight;
WORD biPlanes:;
WORD biBitCount
DWORD biCompression;
DWORD biSizeImage:
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrImportant;
} BITMAPINFOHEADER;

Members

biSize

Specifies the number of bytes required by the structure.
biWidth

Specifies the width of the bitmap, in pixels.

biHeight

Specifies the height of the bitmap, in pixels. If biHeight is positive, the
bitmap is a bottom-up DIB and its origin is the lower left corner. If
biHeight is negative, the bitinap is a top-down DIB and its origin is the
upper left corner.

biPlanes

Specifies the number of planes for the target device. This value must be set
to 1.

biBitCount

Specifies the number of bits per pixel. This value must be 1, 4, 8, 16, 24, or
32.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

biCompression

Specifies the type of compression for a compressed bottom-up bitmap
(top-down DIBs cannot be compressed). It can be one of the following
values:

biXPelsPerMeter

Specifies the horizontal resolution, in pixels per meter, of the target device
for the bitmap. An application can use this value to select a bitmap from a
resource group that best matches the characteristics of the current device.

biYPelsPerMeter

Specifies the vertical resolution, in pixels per meter, of the target device for
the bitmap.

biClrUsed

Specifies the number of color indices in the color table that are actually
used by the bitmap. If this value is zero, the bitmap uses the maximum
number of colors corresponding to the value of the biBitCount member
for the compression mode specified by biCompression.

If biClrUsed is nonzero and the biBitCount member is less than 16, the
biCirUsed member specifies the actual number of colors the graphics
engine or device driver accesses. If biBitCount is 16 or greater, then
biClrUsed member specifies the size of the color table used to optimize
performance of Windows color palettes. If biBitCount equals 16 or 32,

the optimal color palette starts immediately following the three doubleword
masks.

If the bitmap is a packed bitmap (a bitmap in which the bitmap array
immediately follows the BITMAPINFO header and which is referenced
by a single pointer), the biClrUsed member must be either O or the actual
size of the color table.

biClrimportant

Specifies the number of color indices that are considered important for
displaying the bitmap. If this value is zero, all colors are important.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Obtain Standard AVI File

The first step of the flowchart, obtaining a standard AVI file, is very simple. There are
many AVI files readily available on the Internet. For this thesis, certain considerations are
made in the selection of suitable AVI files. First, to simulate the type of video typical of a
common application such as video-telephony, AVI files with frame rates of approximately
10-15 frames per second are selected. Another consideration that must be made in the
selection of AVI files for the “Proof-of-Concept” in this thesis involves the subject of
colour. Only grayscale video files are used in this thesis. The reasoning behind this relates
to the fact that filtering pixels with colour is a straight-forward extension of the method
used to grayscale pixels. There are two methods for performing this filtering: filtering the
three primaries separately, and filtering only the luminance values. Both of the methods

are discussed in detail in [1].

4.4 Extract Individual Frames

The next step in the implementation involves extracting each frame of video from the file.
Refer to the code supplied at the end of this chapter for the actual code used in this and
subsequent AVI-related steps. As mentioned in the introduction, the Microsoft SDK has
many functions for manipulating AVI files. To use these functions, the AVIFile library
must be initialized using A VIFilelnit. The AVI file is then opened using AVIFileOpen.
This function can also be used to create new AVI files for writing. The next step is to
obtain the video stream using AVIFileGetStream. As mentioned, AVI files can contain
multiple streams, where one stream may be video and the others audio. The audio stream

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is ignored in this step. With the video stream extracted, the original AVI file can now be
closed using AVIFileClose. By using the functions AVIStreamStart and AVIStreamEnd,
the original number of frames can be calculated. The use of AVIStreamGetFrameOpen is
used to prepare for the extraction of a frame from the stream. Then the function
AVIStreamGetFrame is called. This function returns a pointer to a specified frame of
video as a Device Independent Bitmap (DIB). The DIB format is also commonly known
as the Microsoft Bitmap (BMP) format, which was discussed in the introduction of this

chapter.

4.5 Extract Raw Pixel Data from Frames

The BMP file format is a very simple format to extract data from. Since only grayscale
(8bpp) images are used, each entry in the bitmap data is an index to the Red-Green-Blue
(RGB) value stored in the palette. The fact that the images are grayscale means that
R=G=B. If the images were not grayscale, luminance (grayscale) values could still be
obtained from the RGB colour values using the following equation[1).

Y=03R+ 059G+ 0.11B ;.1
Equation 5.1 is based on the relative sensitivity of the human eye to the different primary

colours. By using Equation 5.1, pixel data can be extracted from either a colour or

grayscale palette.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Apply 3-D Filter to Raw Data

This section comprises the central part of the thesis. The previous steps in the

implementation are primarily for the purpose of accessing the raw video data. The

following algorithm explains the process involved in filtering a sequence of images with a

three-dimensional filter. Refer to Figure 4.2 for a graphical representation of the process.
Clear wx and wy

For n=0,1,2,....image_depth-1

{
Transfer nth frame of video to 1* frame of wx

wx[0}{j]{k] = video[n][j}{k] for j=0,1,2,...,image_height-1,
k=0,1,2,....image_width-1

For m1=0,1,2,...,image height-1

{ For{m2=0,l,2,...,image_width-l
w0][m,][m,] = i::.) ggagkwi][m - jlim, - k]
2121 ZN: by wylillm, - jlim, - k]
| } (v rek0)

Transfer 1* frame of wy into output video
Output[n][j]l[k]=wy[0]{j]{k] for j=0,1,2,....image height-1,
k=0,1,2,....image width-1

Shift frames of wx and wy

ﬁ ame, 1+l ﬁ amei

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.7 Reconstruct Frames

With the data filtered, each frame is placed back in BMP format to prepare for insertion
into the AVI format. This is a simple task which involves re-attaching the file and bitmap
headers to the new raw data. Since the data is entirely 8-bit luminance values, they already
act as indexes into a linear colour palette ranging from zero to 255 with each R, G, and B
entry equal. If the original image was grayscale, this palette already exists. If the original
image had been colour and was converted to grayscale for processing then the old colour
palette must be replaced with the linear grayscale palette mentioned above. The original
file header remains unchanged, while the only fields of the original bitmap header that
differ after the filtering are biWidth, biHeight, and biSizeImage. The width and height

fields will each be double the original value, while the image-size field will be four times

larger.

4.8 Reconstruct AVI File

The final step of the flowchart of Figure 4.1 is the reconstruction of the AVI file. Like the
extraction of frames from the file, this step involves using specific functions in the AVIFile
library. Similar to the reconstruction of the BMP frames where the original headers are
reused with only slight modifications, much of the stream header information can be
reused from the original. In this case, the following fields of the header are changed:
dwRate is doubled, dwLength is doubled, dwSuggestedBufferSize is quadrupled, and the
length and width of rcFrame are each doubled. Using the modified header, a new stream
can be created by using the function A VIFileCreateStream. The format of the stream is

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

then set using AVIStreamSetFormat. With this done, the stream is now ready to have a
filtered frame inserted by using A VIStreamWrite. These steps are required for writing the
first frame of filtered video data to the file. Now as each subsequent frame of filtered
video is obtained, it can be added to the stream using AVIStreamWrite. The resources
from decompressing the frame then need to be released by using
AVIStreamGetFrameClose. Both streams, old and new, are closed using
AVIStreamClose, and AVIFileClose is used to close the new AVI file. The function

AVTFileExit is then used to exit the AVIFile library.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

image depth : :

image_ height : BYTE

st -
image width

Figure 4.2(a): Original moving image sequence.

N-’.l/ -

A -
; BYTE -
Wx ,
| -

2*image_hcight | '

: oo
x L
| -

v ! L
- >

2%image_width
Figure 4.2(b): Wx image buffer.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N+1

4+ FLOAT
t wy
2%image_height
| ; ;
v | ;
- >
2*image width
Figure 4.2(c): Wy image buffer.
?
2*image_depth R '
: BYTE | |
| |
2*image_height f o
! f I .
i : i
| | b
I Lo
| oo T
¢ : o
o= .
2*image_width

Figure 4.2(d): Filtered moving image sequence.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.9 Sample AVI Code

// Initialize A VIFile library
AVTFilelnit(Q;

/1 Open AV1 file for reading
hr = AVIFileOpen(&pFile,m_IpstrFileName,OF_READ,NULL);
if(hri=AVIERR_OK)
{
AfxMessageBox("An Error Occurred Opening the Input File.");
retumn FALSE;
}

// Create new AVI file for writing
hr = AVIFileOpen(&pFileNew,m_IpstrNewFileName,OF _WRITE|OF_CREATE,NULL);
ifthr'=AVIERR_OK)
{
AfxMessageBox("An Error Occurred Creating the Output File.");
return FALSE;
}

// Open A VI stream for reading
hr = AVIFileGetStream(pFile,&pStream,streamtype VIDEO,0);
iffhr'=AVIERR_OK)
{
AfxMessageBox("An Error Occurred Opening the Input Stream.");
return FALSE;
}

// Close original A VI file
AVTFileClose(pFile);

// Calculate number of frames in stream
numFrames = AVIStreamEnd(pStream)-A VIStreamStart(pStream);

// Prepare to decompress video frames from stream
getFrameObj = A VIStreamGetFrameOpen(pStream, NULL);

// Obtain address of first decompressed video frame
tempFramePtr = (BYTE *)A VIStreamGetFrame(getFrameObj,0);

// Get header from old stream
hr = AVIStreaminfo(pStream, &strHdrOld, sizeof{strHdrOId));

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if{hr != AVIERR_OK)

{
AfxMessageBox("An Error Occurred Reading Old Stream Header.”);
retumn FALSE;

}

// Fill in the header for the new video stream

memset(&strHdrNew,0,sizeof{strHdrNew)): // Set strHdrNew to zero

strHdrNew.fccType = streamtypeVIDEO; // stream type

strHdrNew.fccHandler = 0; {/ Compressor Code

strHdrNew.dwScale = strHdrOld.dwScale; // Time Scale

strHdrNew.dwRate = 2*strHdrOld.dwRate; // Frames per second

strHdrNew.dwLength = 2*strHdrOld.dwLength; // Number of frames
strHdrNew.dwSuggestedBufferSize = 4*bmiHeader.biSizelmage; // buffer size
SetRect(&strHdrNew.rcFrame,0,0,2*bmiHeader.biWidth,2*bmiHeader.biHeight); // rectangle for

// Create the new stream

hr = AVIFileCreateStream(pFileNew,&pStreamNew,&strHdrNew);

ifthr '= AVIERR_OK)

{
AfxMessageBox("An Error Occurred Creating the Output Stream.");
retum FALSE;

// Set format of new stream
hr = AVIStreamSetFormat(pStreamNew,0,framePtr,
bmiHeader.biSize +
bmiHeader.biClrUsed*sizeoffRGBQUAD));
ifthr = AVIERR_OK)
{
AfxMessageBox("An Error Occurred Setting the Output Stream Format.");
return FALSE;

}

// Write frame to new stream
hr = AVIStreamWrite(pStreamNew,0, 1,
framePtr + imageOffset,
4*bmiHeader.biSizelmage,
AVIIF_KEYFRAME, NULL, NULL);
ifthr = AVIERR_OK)
{
AfxMessageBox("An Error Occurred Writing to the Output Stream.");
return FALSE;

// Write frame to new stream
hr = AVIStreamWrite(pStreamNew, frame, 1,

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

framePtr + imageOffset,
4*bmiHeader.biSizelmage,
AVIIF_KEYFRAME, NULL, NULL);
if{hr '= AVIERR_OK)
{
AfxMessageBox("An Ermror Occurred Writing to the Output Stream.");
return FALSE;

/! Close the files and streams
AVIStreamGetFrameClose(getFrameObj);
AVIStreamClose(pStream);
AVIStreamClose(pStreamNew);
AVTFileClose(pFileNew);

AVIFileExit();
return TRUE; // function completed successfully

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Results

5.1 Introduction

All results given in this chapter except plotting, which is done using MATLAB, are
generated using a computer program developed using Microsoft Visual C++. This
program designs a 3-D IIR filter using the Modified Shank’s Method of Chapter 3, and
uses it to perform filtering of an AVI file using the process given in Chapter 4. This
software implementation of a 3-D filter provides a basis for forming conclusions about the

validity of the theory given in the preceding chapters. These conclusions are provided in
Chapter 6.

5.2 Filter Design Results

After starting the program Filter3D, selecting ‘New’ from the toolbar or the File menu
presents a dialog box requesting parameters for the design of the 3D filter. Figure 5.1
shows this dialog box. The values given in Figure 5.1 are the default values for the filter.
The results in this chapter are generated using a value of 32 as the number of samples. The
default values are used for the other design options. By clicking the OK button, the filter is
designed using the Modified Shank’s Method discussed earlier in the thesis. The resulting

filter coefficients are given in Figure 5.2.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

: } ients:
0.03194 0.04542 0.02672 100000 -0.25231 0.25913
0.04542 0.06453 0.03800 -0.25231 0.06366 -0.06538
0.02672 0.03800 0.02236 0.25913 -0.06538 0.06715

004542 006459 0.03800 -0.25231 006366 -0.06538
0.06459 009185 0.05404 0.06366 -0.01606 0.01650
0.03800 0.05404 0.03180 -0.06538 0.01650 -0.01694
0.02672 0.03800 0.02236 0.25913 -0.06538 0.06715 'I
0.03800 005404 0.03180 -0.06538 001650 -0.01694

0.0223¢ 003180 0.01871 0.06715

-0.01694

Flgure 5.2: Coefﬁcnents of desngned 3-D filter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.3 shows the magnitude response of the designed filter when w1 is held constant
at zero radians/sec. Note that w1 is within the passband of the filter, and the
characteristics of the filter are acceptable. Figure 5.4 shows the magnitude response when
w! is held constant at 0.98 radians/sec. The value of w1 is still within the passband of the
filter and the characteristics are again acceptable. Figure 5.5 shows the magnitude
response when w1 is held constant at 2.16 radians/sec. This value of w1 is outside the
passband, and therefore the magnitude response is very nearly zero. Figure 5.6 shows the
magnitude response when w1 is held constant at pi radians/sec. The value of w1 is again

outside the passband, and the magnitude response is again very nearly zero.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Low-Pass Fliter with Cutofl = pif2 (w1 = 2.16 rad/sec)

w3 (radAnit) 4 4 w2 (radAnit)

Figure 5.5: Magnitude response with @, =2.16 rad/sec

Low-Pass Fitter with Cutoff = pi’2 (w1 = pi rad/sec)

w3 radAnit 4 4 w2 (radAni

Figure 5.6: Magnitude response with w, = & rad/sec

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The plots of Figures 5.3 through 5.6 show that the filter design method used yields an
acceptable magnitude response. However, as stated earlier in the thesis, it is also very
important to have linear or near-linear phase in the passband of the filter. Figure 5.7 shows
the phase response of the filter when w1=0 rad/sec. Note that the response appears
moderately flat within the passband region. Figure 5.8 shows an approximation to the
group delay of the filter with respect to 3. It is only an approximation since the
resolution between points is finite, but it is sufficient to give an idea of the linearity of the
phase response. Note that for values of @3 within the passband, there is very little
deviation in the phase response. All significant deviation lies outside the passband, so any
distortion is attenuated. Figure 5.9 and 5.10 show the same thing except with w1l ata
value of 0.98 rad/sec. Figure 5.11 shows the phase response of the filter when w1 is fixed
at 2.16 rad/sec. Note that the phase response at this value of w1 is non-linear. However,
by examination of Figure 5.12 it can be seen that the non-linearity occurs outside the

passband of the filter. Therefore, any resulting phase distortion will be attenuated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Low-Pass Fller with Cutofl = pi2 (w3 =0 rar.la'lslsec)

o L]

ponse (adans)

a

Phase Fes
o

-t

-4

-4 w1 adiansAanit)

Figure 5.7: Phase response with w, = 0 rad/sec

Low-Pass Fitter with Cutoff = pi2 (w3=0 radas!sec)

...

Group Delay wih Respect b w2
S

I Y S L R R L R LR R LR CE R TR Bevoosnoonstoadhoecenesonarsoroad
B N S AP JU S e
10 ; ; ; H i ; ; ;
-3 2 -1 1] 1 2 3 4

w1 (radiansunif)

Figure 5.8: Group delay with @, =0 rad/sec

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Low-Pass Filter with Cutofl = pi’2 (w3 = 0.98 rada'lslsec)

o

(=)

'
wh
- o

Goup Delay wih Respect o w2
L)

o
-4 w1 radiansAni)

Figure 5.9: Phase response with o, = 0.98 rad/sec

Low-Pass Fiiter with Cutof! = pif2 (w3=ose raaans:sec)

Group Delay wih Respectio wi

b

[

a

P R R R AR R R R D L N T I T T FE e .
[$1 8

W

H

_10 ; i ; E i
-4 o
w1 radiansAmnil)
Figure 5.10: Group delay with w, = 0.98 rad/sec

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Low-Pass Fiter with Cutofl = pi2 (w3 =2.16 raaa'ssec)

Y
Q

(=]

]
o=

Group Delay wih Respeci b w2

-4 w1 radiansAni)

Figure 5.11: Phase response with @, = 2.16 rad/sec

Low-Pass Filler with Cutofl = p“2 (WS =2.16 ma'lslSec)

e R LR AR L L L R R R R AR R L L Y R e L DR -

8 &

T T . Y T R

]
H
.
.
.
.
.
.
.
.
«
.
.
.
.
.
.
.
'
.
.
.
.
.
'
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

iy
(=)
T
.
'
3
'
A3
.

w
T

(=)

...

Group Deiay wih Respect b wi

Y S, T A SR e SO S T .

10 i i i 0 i i i i
w1 (radiansinit)
Figure 5.12: Group delay with w, =2.16 rad/sec

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Video Filtering Resuits

While it is gratifying to see that the 3D filter design method given in this thesis is effective,
it is not the primary goal of this investigation. The main purpose is to verify that these
filters can be effectively used to increase the resolution of moving images. By following
the implementation algorithm given in the previous chapter, various AVI video files were
interpolated using the above 3D filter. The following figures show the results from one of
these files.

First let us demonst-ate that the number of samples has been increased. Figure 5.13 shows
the file properties of the original AVI file compared with the file properties of the filtered
AVI file. Note that the width and height are both doubled, and the number of frames is

Figure 5.13: Comparison of File Properties dialog boxes.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also doubled. This shows that there is indeed eight times more samples in the filtered video
than in the original, but it gives no indication of the quality of this new video.

Figure 5.14 shows a frame of the original video file compared with its equivalent filtered

frame. Note that the filtered image is double the width and height of the original.

L T e e eyt aries K . v ateeme
: T TSR AT s L~

igure 5.14: Video single frame m B

Now examine Figure 5.15. It also shows a frame of the original video sequence compared
with a frame from the filtered video sequence, but this time both frames are zoomed in to

show the resolution difference.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.15: Video single frame zoomed comparison.

The filtered frame is on the left, and the original frame is on the right. Note that for every
one pixel in the original image, the filtered image has four pixels. Also note the improved
definition of features such as the nose, eyes, and ears. The pixelation effect along the edge
of the collar is also greatly reduced.

While Figure 5.14 and Figure 5.15 show an impressive increase of resolution in the
individual frames of the video sequence, these results could have been obtained by using a
2D filter. The advantage of the 3D filter in this application lies in its ability to also increase
the resolution along the time axis by interpolating frames. The result of this can be seen in

Figure 5.16. The top two images are equivalent frames from the original and filtered video

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sequences respectively (left to right). The bottom left image is the next frame of the
original sequence, and the frame to its right is the equivalent frame of the filtered
sequence. The frame between the two filtered frames is an interpolated frame that does
not exist in the original sequence. Note the mouth is open in the first frame, and is closed
in the next frame of the original sequence. Now examine the filtered sequence and note
that the mouth is first open (as in the original), then the mouth is partially open, and then
the mouth is closed (as in the original). The frame with the mouth partially open did not
exist in the original sequence. This frame was successfully interpolated and shows detail
that is not visible in the original sequence. These results show that the 3D filter

successfully increased the resolution of the video sequence in all three dimensions.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.16(a): Original Sequence (time = T) Figure 5.16(c): Interpolated Sequence (time = T)
(Mouth is open) (Mouth is open)

Figure 5.16(d): Interpolated Sequence (time = T+dt/2)
{(Mouth is partially open)

Figure 5.16(b): Original Sequence (time = T+dt) Figure 5.16(e): Interpolated Sequence (time = T+dt)
(Mouth is closed) (Mouth is closed)

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Summary and Conclusions

6.1 Summary

Chapter 1 of this thesis began by introducing the concept of moving images and giving an
overview of various types of digital filters and their design methodologies. It finished by
comparing some popular video formats, and giving some examples of the current

applications of digital filters.

Chapter 2 began by discussing the Sampling Theorem, which is central to the
understanding of digital interpolation. It then explored two methods of one-dimensional
interpolation: zero-padding and sample replication. The chapter concluded by extending

these concepts to three dimensions for use with three-dimensional digital signals.

The procedure of designing three-dimensional IIR filters using the Modified Shank’s
Method was presented in detail in Chapter 3. The two-dimensional spatial method was
extended to the three-dimensional space-time domain. The chapter concluded by deriving

the three-dimensional Fast Fourier Transform (FFT).

Chapter 4 tied all the theory together from the previous chapters to provide an
implementation method by which a moving image sequence could be interpolated with a
three-dimensional digital filter. It began by giving a description of the AVI and BMP file

formats, and then describing how the raw pixel data could be extracted from these

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

formats. A scheme for applying the 3-D filter was given next, followed by a method to

reinsert the raw filtered data back into an AVI file.

Chapter 5 provided results to demonstrate the validity of the theory in Chapter 2 and

Chapter 3, and the validity of the implementation method in Chapter 4.

6.2 Conclusions

This thesis is concerned with the use of 3-D digital filters in multimedia applications.
Specifically, it is interested in using three-dimensional digital interpolation filters to
increase the resolution of moving image sequences in three dimensions. By examination of
the results given in Chapter §, it is clear that both the theory and the proposed
implementation given in the thesis are sound. The designed 3-D IIR filter possesses a steep
transition band and has near-linear phase response in the passband. After applying the
filtering algorithm given in Chapter 4, the video file’s resolution is increased by a factor of
two in each dimension for a total resolution improvement by a factor of eight. In Chapter
1, the purpose of the thesis was given as: “... a digital 3-D interpolation filter is to be
designed which performs inter-pixel and inter-frame interpolation, resulting in increased
horizontal resolution, vertical resolution, and temporal resolution (frame rate) of a moving
image sequence.” The results of Chapter 5 clearly demonstrate that the goal of this thesis

has been achieved, and that 3-D filters have application to the field of multimedia.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1]

{2

31

(4]

(5]

(6]

Y|

(8]

[9]

[10]

(11]

References

M. A. Sid-Ahmed, “Image Processing: Theory, Algorithms, and Applications,”
McGraw Hill, New York, 1994.

R. King, M. Ahmadi, R. Gorgui-Naguib, A. Kwabwe, M. Azimi-Sadjadi, “Digital
Filtering in One and Two Dimensions: Design and Applications,” Plenum Press,
New York, 1989.

A. Antoniou, “Digital Filters: Analysis, Design, and Applications,” McGraw Hill,
Toronto, 1993.

T. S. Huang, “Two Dimensional Windows,” IEEE Trans. Audio and
Electroacoustics, AU-20, no. 1, March 1972, pp 88-90.

T. C. Speake and R. M. Mersereau, “A Note on the Use of Windows for Two
Dimensional FIR Filter Design,” IEEE Trans. Acoustics, Speech, and Signal
Processing, ASSP-29, no. 1, Feb. 1981, pp 125-127.

L. S. El-Feghi, “Design of Three Dimensional Digital Filters,” MASc Thesis,
University of Windsor, Windsor, 1999.

C. Charalambous, “Design of 2-Dimensional Circularly-Symmetric Digital Filters,”
IEEE Proc. 129, Part G, no. 2, pp 47-54, 1982.

K. Rajan and M. N. S. Swamy, “Design of Separable Denominator 2-Dimensional
Digital Filters Possessing Real Circularly Symmetric Frequency Responses,” IEEE
Proc. 129, Part G, no. 2, pp 235-240, 1982.

T. Hinmoto and K. Harada, “Design of 3-D Separable Denominator Digital Filters
Using Minimal Decomposiiion and Balanced Realization,” Electronics and
Communications in Japan, Part 3, Vol 77, no. 10, 1994.

D. Goodman, “Some Difficulties with Double Bilinear Transformation in 2-D Digital
Filter Design Transfer Function,” JEEE Trans. On Circuits and Systems, Vol. CAS-
25, no. 6, pp 340-343, June 1978.

P. K. Rajan, H. C. Reddy, M. N. S. Swamy, and V. Ramchandran, “Generation of
Two Dimensional Digital Function Without Nonessential Singularities of the Second
Kind,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. ASSP-28, no.

2, pp 216-223, April 1980.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[12] J. L. Shanks, S. Treitel, and J. H. Justice, “Stability and Sythesis of Two
Dimensional Recursive Filters,” IEEE Trans. Audio and Electroacoustics, AU-20,
no. 2, June 1962, pp 115-128.

{13] H.C. Andrews and B. R. Hunt, “Digital Image Restoration,” Prentice-Hall,
Englewood Cliffs, NJ, 1977.

[14] W.K. Pratt, “Digital Image Processing,” John Wiley and Sons, New York, 1978.

[15]) J. W. Tukey, “Exploratory Data Analysis,” Addison-Wesley, Reading,
Massachusetts, 1971.

[16] R.E. Crochiere and L. R. Rabiner, “Multirate Digital Signal Processing,” Prentice-
Hall, Englewood Cliffs, NJ, 1983.

[17] J. D. Murray and W. vanRyper, “Encyclopedia of Graphics File Formats,” O’Reilly
& Associates, Sebastopol, 1996.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A
Source Code for Filter3D Program

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// ChildFrm.cpp : implementation of the CChildFrame class
1/

#include "stdafi.h"
#include "Filter3D.h"

#include "ChildFrm.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE()=_ FILE _;
#endif

T T T LT T TTIT T T T T T T
// CChildFrame

IMPLEMENT_DYNCREATE(CChildFrame, CMDIChildWnd)

BEGIN_MESSAGE_MAP(CChildFrame, CMDIChildWnd)
II{{ AFX_MSG_MAP(CChildFrame)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you sec in these blocks of generated code !
1} YAFX_MSG_MAP
END_MESSAGE_MAPQ

I TTETTEE T T T T T LT I T L T R e T
// CChildFrame construction/destruction

CChildFrame::CChildFrame()

{
/f TODO: add member initialization code here

}

CChildFrame::~CChildFrame()

{
H

BOOL CChildFrame::PreCreate Window(CREATESTRUCT& cs)

{
/1 TODO: Modify the Window class or styles here by modifying
/! the CREATESTRUCT cs
return CMDIChildWnd::PreCreate Window(cs);

}

L i

/1 CChildFrame diagnostics

#ifdef _DEBUG
void CChildFrame::AssertValid() const
{

}
void CChildFrame::Dump(CDumpContext& dc) const

CMDIChildWnd::AssertValid();

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{

}
#endif /_zDEBUG

CMDIChildWnd::Dump(dc);

I T T T T T e
// CChildFrame message handlers

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T T T T T T
// Complex.cpp : implementation of the COMPLEX class
/4

#include "stdafic.h”
#include "Filter3D.h"

#include "Complex.h"

COMPLEX::COMPLEX()

{
Real =0.0;
Imag =0.0;
}
COMPLEX::COMPLEX(double real, double imag)
{
Real = real;
Imag = imag;
H

double COMPLEX::GetReal(void) const
{

}

double COMPLEX::Getimag(void) const
{

}

double COMPLEX::Magnitude(void)
{

}

double COMPLEX::Phase(void)
{

}

COMPLEX operator+(COMPLEX A. COMPLEX B)
{

return Real;

return Imag;

return(sqrt(Real*Real + Imag®*Imag));

return(atan2(Imag,Real));

return COMPLEX(A.Real + B.Real,

A.Imag + B.Imag);
H

COMPLEX operator(COMPLEX A, COMPLEXB)

{
return COMPLEX(A.Real - B.Real,

A.lmag - B.Imag);
H
COMPLEX operator®*(COMPLEX A, COMPLEXB)

{
retum COMPLEX(A.Real * B.Real - A.Imag * B.Imag,

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.Real ®* B.Imag + A.Imag ® B.Real);
}

COMPLEX operator®(COMPLEX A, double B)
{

H

COMPLEX operator/(COMPLEX A, double B)
{

}

retum COMPLEX(A.Real * B, A.lmag* B);

return COMPLEX(A.Real /B, A.lmag /B);

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Filter3D.cpp : Defines the class behaviors for the application.
i

#include "stdafx.h”
#include "Filter3D.h"

#include "MainFrm.h"
#include "ChildFrm.h"
#include “Filter3DDoc.h"
#include "Filter3DView.h"”

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[]=_ FILE_ ;
#endif

M T T e T e e iy
// CFilter3DApp

BEGIN_MESSAGE_MAP(CFilter3DApp, CWinApp)
II{{AFX_MSG_MAP(CFilter3DApp)
ON_COMMANID(ID_APP_ABOUT, OnAppAbout)
// NOTE - the ClassWizard will add and remove mapping macros here.
/I DO NOT EDIT what you see in these blocks of generated code!
/1Y YAFX_MSG_MAP
// Standard file based document commands
ON_COMMAND(D_FILE_NEW, CWinApp::OnFilcNew)
ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
// Standard print setup command
ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)
END_MESSAGE_MAP(Q

JHTHITTT T T T T T T T T
/I CFilter3DApp construction

CFilter3DApp::CFilter3DApPpQ

// TODO: add construction code here,
/I Place all significant initialization in InitInstance
}

i
/I The one and only CFilter3DApp object

CFilter3DApp theApp;

TR T T T T T T LT T
// CFilter3DApp initialization

BOOL CFilter3DApp::Initinstance()

{
// Standard initialization
// If you are not using these features and wish to reduce the size
/I of your final executable, you should remove from the following
/! the specific initialization routines you do not need.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#ifdef _AFXDLL

Enable3dControis(); /1 Call this when using MFC in a shared DLL
#else

Enable3dControlsStatic(); /7 Call this when linking to MFC statically
#endif

// Change the registry key under which our settings are stored.
1/ You should modify this string to be something appropriate
// such as the name of your company or izati
SetRegistryKey(_ T("Steve McFadden - 19987));

LoadStdProfileSettings(); // Load standard INI file options (including MRU)

// Register the application’s document templates. Document templates
// serve as the connection between documents, frame windows and views.

CMultiDocTemplate® pDocTemplate;
pDocTemplate = new CMultiDocTemplate(
IDR_FILTERTYPE,
RUNTIME_CLASS(CFilter3DDoc),
RUNTIME_CLASS(CChildFrame), // custom MDI child frame
RUNTIME_CLASS(CFilter3DView));
AddDocTemplate(pDocTemplate);

// create main MDI Frame window

CMainFrame® pMainFrame = new CMainFrame;

if ({pMainFrame->LoadFrame(IDR_MAINFRAME))
return FALSE;

m_pMainWnd = pMainFrame;

// Parse command line for standard shell commands, DDE. file open
CCommandLinelnfo cmdinfo;
ParseCommandLine(cmdinfo);

// Dispatch commands specified on the command line
! if (!ProcessShellCommand(cmdinfo))
1/ retumn FALSE;

// The main window has been initialized, so show and update it.
pMainFrame->Show Window(m_nCmdShow);
pMainFrame->Update Window();

returmn TRUE;
H

TN T T LT T T T T T T
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog

{
public:
CAboutDlg();
// Dialog Data
11{{ AFX_DATA(CAboutDlg)

enum { IDD = IDD_ABOUTBOX };
I[}}AFX_DATA

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// ClassWizard generated virtual function overrides
I1{{AFX_VIRTUAL(CAboutDig)

protected:
virtual void DoDataExchange(CDataExchange® pDX); // DDX/DDV support
II}}AFX_VIRTUAL

// Implementation
HH{{AFX_MSG(CAboutDlg)
{/ No message handlers
11} }AFX_MSG
DECLARE_MESSAGE_MAP(
HH

CAboutDig::CAboutDig() : CDialog(CAboutDig::IDD)
{

I1{{AFX_DATA_INIT(CAboutDlg)
/1}}AFX_DATA_INIT
}

void CAboutDig::DoDataExchange(CDataExchange® pDX)

CDialog::DoDataExchange(pDX);
II{{AFX_DATA_MAP(CAboutDIig)
/1}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDIlg, CDialog)
II{{AFX_MSG_MAP(CAboutDIg)
// No message handlers
IIYYAFX_MSG_MAP
END_MESSAGE_MAP(Q

{l App command to run the dialog
void CFilter3DApp::OnAppAbout()
{
CAboutDig aboutDig;
aboutDig.DoModal();
}

HHTTTHTT i i T T T T T T
/! CFilter3DApp commands

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Filter3DDoc.cpp : implementation of the CFilter3DDoc class
/"

#include "stdafx.h”
#include "Filter3D.h"

#include "Filter3DDoc.h"”
#include "Filter3DSettingsDlg.h"
#include "ProcessingDig.h”
#include <fstream.h>

#include "vfw.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[]=_ FILE_ ;
#endif

i
/I CFilter3DDoc

IMPLEMENT_DYNCREATE(CFilter3DDoc, CDocument)

BEGIN_MESSAGE_MAP(CFilter3DDoc, CDocument)
/I{{AFX_MSG_MAP(CFilter3DDoc)

Yy ON_COMMAND(ID_VIDEO_PLAY, OnVideoPlay)

Vi ON_COMMAND(ID_VIDEO_FILTER, OnVideoFilter)
I} YAFX_MSG_MAP

END_MESSAGE_MAP(

T T THETTT T LT LTI R T LT LT T T
// CFilter3DDoc construction/destruction

CFilter3DDoc::CFilter3DDoc()

{
pi = 4.0%atan(1.0);
m_dCutoffFreq = 1.5708;
m_nNumSamples = 16;
m_nOrder = 2;
m_nOffset = m_nOrder-1;
}

CFilter3DDoc::~CFilter3DDoc()

{
}

BOOL CFiiter3DDoc::OnNewDocument()

if (!CDocument::OnNewDocument())
return FALSE;

unsigned ij;
/7 Obeain filter settings
CFilter3DSettingsDig dig;

dig.m_dCutoffFreq = m_dCutofiFreq;
dig.m_nNumSamples = m_nNumSampies;

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m_dCutoffFreq = dig.m_dCutoffFreq;
m_nNumSamples = dig.m_nNumSamples;
m_nOrder = dlg.m_nOrder;

m_nOffset =dig.m_nOfTset;

/! Allocate memory for impulse response
m_pimpuiseResponse = new double **{m_nNumSamples/2 + m_nOffset];
for(i=0;i<(m_nNumSamples/2+m_nOffset);i++)
{

m_pimpulscResponsefi] = new double *[m_nNumSamples/2 + m_nOffset);

for(5=0;j<(m_nNumSamples/2 + m_nOffset);j++)

m_pImpulseResponse[i][j] = new double [m_nNumSamples/2 + m_nOffset);

H

// Allocate memory for magnitude and phase response
m_pMagnitudeResponse = new double **{m_nNumSamples+1];
m_pPhascResponse = new double **[m_nNumSamples+1];
for(i=0;i<(m_nNumSamples+1);i++)
{
m_pMagnitudeResponse[i] = new double *[m_nNumSamples+1];
m_pPhaseResponse(i] = new double *{m_nNumSamples+1];
for(5=0;j<(m_nNumSamples+1);j++)
{
m_pMagnitudeResponsef{i]{j] = new double [m_nNumSamples+1];
m_pPhaseResponsefi][j] = new double f[m_nNumSamples+1];

}

/! Allocate memory for frequency axis
m_pdFreqAxis = new double [m_nNumSamples+1];

// Allocate memory for impulse axis
m_pdimpulseAxis = new double [m_nNumSamples/2+m_nOffset);

// Allocate memory for {a} and {b} coefficients
m_pACoeffArray = new double **[m_nOrder+1];
m_pBCocffArray = new double **[m_nOrder+1};
for(i=0;i<(m_nOrder+1);i++)
{
m_pACocffArray[i] = new double *[m_nOrder+1];
m_pBCocfYfArray([i] = new double *[m_nOrder+1];
for(j=0zj<(m_nOrder+1);j++)
£
m_pACoefYArray(i][j] = new doubie [m_nOrder+1];
m_pBCoeffArray[i}(j] = new double [m_nOrder+1};

}
ComputeCoefTicients();

retumm FALSE;

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return TRUE;
}
I T T T T LT T T TR T T T T T
/! CFilter3DDeoc serialization
void CFilter3DDoc::Serialize(CArchive& ar)
{
unsigned i,j,k;
if (ar.IsStoring())
{

ar << m_nNumSamples << m_dCutoffFreq << m_nOrder << m_nOffset;

for(i=0;i<(m_nOrder+1);i++)
for(=0;j<(m_nOrder+1);j++)
for(k=0;k<(m_nOrder+1);k++)
ar << m_pACoeffAmay[i](j][k];

for(i=0;i<(m_nOrder+1);i++)
for(G=0;j<(m_nOrder+1);j++)
for(k=0;k<(m_nOrder+1);k++)
ar <<m_pBCoeffAmayfi]lj}ik};

for(i=0;i<(m_nNumSamples/2+m_nOfTset);i++)
for(j=0;j<(m_nNumSamples/2+m_nOffset);j++)
for(k=0;k<(m_nNumSamples/2+m_nOfiset);k++)
ar << m_pimpuiseResponsefi]{j}ik}:

for(i=0;i<(m_nNumSamples+1);i++)
for(5=0;j<(m_nNumSamples+1);j++)
for(k=0;k<(m_nNumSamples+1);k++)
ar << m_pMagnitudeResponse[i](j}[k];

for(i=0;i<(m_nNumSamples+1);i++)
for(=0;j<(m_nNumSamples+1);j++)
for(k=0;k<(m_nNumSamples+1);k++)
ar << m_pPhaseResponse{i]{i}{k};

for(i=0;i<(m_nNumSamples+1);i++)
ar << m_pdFreqAxis(i];

for(i=0;i<(m_nNumSamples/2+m_nOffset);i++)
ar << m_pdimpulseAxis(i];

else
ar >> m_nNumSamples >> m_dCutoffFreq >> m_nOrder >> m_nOffset;

/1 Allocate memory for impulse response
m_plmpuiseResponse = new double **{m_nNumSamples/2 + m_nOffset];
for(i=0;i<(m_nNumSamples/2+m_nOffset);i++)
{
m_pimpulseResponse(i] = new double *[m_nNumSamples’2 + m_nOf¥set];
for(5=0;j<(m_nNumSamples/2 + m_nOffset);j++)
m_plimpulseResponse(i][j] = new double [m_nNumSamples/2 + m_nOf¥set);

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

/1 Allocate memory for magnitude and phase response
m_pMagnitudeResponse = new double **[m_nNumSamples+1];
m_pPhaseResponse = new double **[m_nNumSamples+1];
for(i=0;i<(m_nNumSamples+1);i++)
(
m_pMagnitudeResponse[i] = new double *[m_nNumSamples+1];
m_pPhaseResponsefi) = new double *[m_nNumSamples+1];
forG=0;j<(m_nNumSamples+1);j++)
{
m_pMagnitudeResponse[i](j] = new double [m_nNumSamples+1];
m_pPhaseResponse[i][j] = new double [m_nNumSamples+1];

}

/1 Allocate memory for frequency axis
m_pdFreqAxis = new double [m_nNumSamples+1];

/I Allocate memory for impulse axis
m_pdimpulseAxis = new double [m_nNumSamples/2+m_nOffset);

/1 Allocate memory for {a} and (b} coefficients
m_pACoeffArray = new double **[m_nOrder+1];
m_pBCocffArray = new double **[m_nOrder+1];
for(i=0;i<(m_nOrder+1);i++)
{
m_pACocffArmay[i] = new double *[m_nOrder+1];
m_pBCoeffArray[i] = new double *[m_nOrder+1];
:‘or(i=0;i<(m_n0:der+l Yi+)

m_pACaoeffArray[i]{j] = new double [m_nOrder+1];
m_pBCocffArray[i]{j] = new double [m_nOrder+1};

}

for(i=0;i<(m_nOrder+1);i++)
for(=05j<(m_nOrder+1);++)
for(k=0;k<(m_nOrder+1);k++)
ar >> m_pACoefTArray[i](](k};

for(i=0;i<(m_nOrder+1);i++)
for(=0;j<(m_nOrder+1);++)
for(k=0;k<(m_nOrder+1):k++)
ar >>m_pBCoecffArray(i]{jlik};

for(i=0;i<(m_nNumSamples/2+m_nOffset);i++)
for(=0;<(m_nNumSamples/2+m_nOffset);j++)
for(k=0;k<(m_nNumSamples/2+m_nOffset);k++)
ar >> m_pimpulscResponsefi](jl[k];
for(i=0;i<(m_nNumSamples+1);i++)
for(j7=0;j<(m_nNumSamples+1);j++)
for(k=0;k<(m_nNumSamplies+1);k++)
ar >>m_pMagnitudeResponse[i](j}[k];

for(i=0;i<(m_nNumSamples+1);i++)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(7=0;j<(m_nNumSamples+1);j++)
for(k=0;k<(m_nNumSamples+1);k++)
ar >>m_pPhaseResponseli][j)Ik]:

for(i=0;i<(m_nNumSamples+1);i++)
ar >> m_pdFreqAxis(i];

for(i=0;i<(m_nNumSamples/2+m_nOfTset);i++)
ar >>m_pdimpulseAxis|i];

W T TTTE T L LT T T LT T
/! CFilter3DDoc diagnostics

#ifdef _DEBUG

void CFiiter3DDoc::AssertValid() const

{
CDocument::AssertValid();
}
void CFilter3DDoc::Dump(CDumpContext& dc) const
{
CDocument::Dump(dc);
}

#endif //_DEBUG

iuugigaiiiguuuoauaniois
/! CFilter3DDoc commands
BOOL CFilter3DDoc::Simq(double **matrix, unsigned nEquations)

{
unsigned ij.k,l;
double Big.temp;
for(7=0;j<nEquations;j++) // pass#
{
// Find Big
Fiz_= fabs(matrix[j]{i]);
for(i=j+1;i<nEquations;i++)
{
if{Big<fabs(matrix[i]iD))
{
:35; = fabs(matrix[i}[j]);
=1;

H

/1 Check that Big not equal to zero
ifiBig < 1.0e-7)
{

AfxMessageBox("Unable to Solve Set of Equations”);

retum FALSE;
}

/I Switch Rows
il '=j)

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(k=0;k<nEquations+1;k++)

{
temp = matrix{j](k];
matrix(j}{k] = marrix{i}{k]);
matrix[I]{k] = temp;

}

// Normalization
for(k=j+1;k<nEquations+ | ;k++)

matrix(j][k] /= matrix{§1G1;
matrix[j]{j] = 1.0;

/! Elimination
for(i=0;i<nEquations;i++)
{
if(i =j) continue;
for(k=j+1;k<nEquations+l;k-++)
matrix[i][k] -= matrix[j}{k] * matrix[i]{i};
matrix{i]{j} = 0.0;
}
} // End of Pass
retumn TRUE;

void CFilter3DDoc::BitReversal(unsigned *L, unsigned N)
{
// Sub-program developed by M.A. Sid-Ahmed
{// Routine for generating LUT for bit reversal.
/1 Note: N=(2 to the power of m).
// LUT will reside in L]

unsigned MASK,C,A,j.k.i,m;
m = (int)(log10((double)N)log10(2.0));

for(k=0;k<N;k++)
{
MASK =1;
C=0;
for(i=0 j=m-1;i<m;i++j-)
{
A=(k&MASK)>>i;
A<<=j;
CFA;
MASK=MASK<<];

}
Lk} =C;

void CFilter3DDoc::FFT3D(COMPLEX ***X, unsigned N, unsigned fft)
{
unsigned i,j.k;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COMPLEX temp;

for(i=0;i<N;i++)
{
:‘0'0='0;i<N:i++)
FFTID(X[](5).N.fR); /I FFT of each row (of each frame)
}
}
// Take transpose of each frame of X array
for(i=0;i<N;i++)
{
:'Of(i=0;i<N:i++)
for(k=0;k<N;k++)
{
if{=k) break;
temp = X[i][)k);
X[i)G1k] = XEIk]G)
: X[i}k]5] = temp;
}
}
for(i=0;i<N;i++)
for(=0;j<N;j++)
{
FFTID(X[i][j1N,); /I FFT of each row (of each frame) after transpose
}
}

// Take transpose of each ‘row’ of X matrix
for(j=0;j<N;j++) // for cach row
{

for(i=0;i<N;i++)
{

for(k=0;k<N;k++)

{
if{i=k) break;
temp = X[ij}{k};
X[)G)IK] = XkIGICGD:
Xk]IG)i] = temp;

}
}
}
for(i=0;i<N;i++)
{
for(j=0;j<N;j++)
{

FFTID(X[i][j}.N.fR); /I FFT of each row (of each frame) after 2nd transpose

H
/I Take transpose of each 'row’ of X matrix

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(7=03j<N;j++) // for cach row
{

for(i=0;i<N;i++)
{
for(k=0;k<N;k++)

{
ifli=k) break;
temp = X[ilG)k];
X[ilG1k] = Xik]G1i);
XIKID](i] = temp;

}

// Take transpose of cach frame of X matrix
// Take transpose of each frame of X array
for(i=0;i<N;i++)

forG=03j<N;j++)
{

for(k=0;k<N;k++)

{
if(=k) break;
temp = X[i][j}{k];
XflGlik] = XG)kIo):
X[ik1G] = temp;

}

/! computes the one-dimensional fft of an array of values

/1 X[] holds the values of the array

/I'N is number of values

IIfR=1->fR

1 fR=2->ifft

// W[holds the twiddle factors

void CFilter3DDoc::FFTID{(COMPLEX *X, unsigned N, unsigned fft)

{
unsigned ij.k;
unsigned incr.n,ip,group,stage,m;
unsigned int *L;
COMPLEX T,*W,*Temp;
m = (int)(log10((double)N)log10(2.0));
incr = 2; // distance between groups
n = (int)pow(2,(m-1));
ip = inct/2; // distance between butterfly inputs

/1 Allocate memory for twiddle factors
W = new COMPLEX [N/2);

// Allocate memory for bit-reversed LUT
L = new unsigned int [N];

// Allocate memory for temporary array
Temp = new COMPLEX [N];

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Generate bit-reversed LUT
BitReversal(L,N);

// Rearrenge order in FFT input array
for(i=0;i<N;i++)

Temp(i] = X[i);
for(i=0;i<N;i++)

XIL{i]] = Templi);
delete Temp;

// Generate twiddle factor LUT
for(i=0;i<N/2;i++)
{
ififi=1)
W(i] = COMPLEX(cos((2.0*pi/(float)N)*double(i)),
-sin((2.0*pi/(float)N)*double(i)));

W(i] = COMPLEX(cos((2.0*pi/(float)N)*double(i)),
sin((2.0*pi/(float)N)*double()));

else

}

/I Algorithm for first stage with all weights equal to |
"
for(group=0;group<N;group += incr)
{

j=group +ip;
T=X@);
X[i]l = X[group] - T;
, X[group] = X[group] + T;

incr =incr *2;
n=n/2;
ip=incr/2;

// Algorithm for remaining stages with weights not always equal to 1
/4

for(stage=1;stage<m;stage++) // N =2 to the power (m)
{ for(group=0;group<N;group+=incr)
{ for(k=0:;k<(N/(2*n));k++)
{ j=k+ip;

T = X{[group + j] * W[n*k];
X{group + j] = X[group + k] - T;
X[group + k] = X([group + k] + T;

}
}
incr=incr* 2;
n=n/2;
ip = incr/2;
}
iRfR==2)
for(i=0;i<N;i++)

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Xfi} = X{i} / double(N);

void CFilter3DDoc::ComputeCoefTicients()

{
unsigned i,j.k;
unsigned k1,k2,k3,N1;
COMPLEX ***H;

N1 =m_nNumSamples/2;

/] Convert cutoff frequency to samples number
m_dCutofiFreq *= double(m_nNumSamples)/(2.0*pi);

// Allocate memory for Desired Magnitude Response
H =new COMPLEX **[m_nNumSamples};
for(i=0;i<m_nNumSamples;i++)
{

H{i} = new COMPLEX *[m_nNumSamples};

for(j=0;j<m_nNumSamples;j++)

H[i](] = new COMPLEX [m_nNumSamples];

}

// Form Desired Magnitude Response
for(k1=0;k1<m_nNumSamples:;kl++)
{
for(k2=0;k2<m_nNumSamples:k2++)
{
for(k3=0;k3<m_nNumSamples;k3++)
{

if{(abs(k1-N1)<m_dCutoffFreq)& & (abs(k2-N1)<m_dCutoffFreq)&&(abs(k3-N1)<m_dCutoffFreq))
Hlk1])[k2][k3] = COMPLEX(1.0,0.0);
else
H[k1][k2]{k3] = COMPLEX(0.0,0.0);

}

/! Apply shift in Frequency Domain
for(k1=0;k1 <m_nNumSamples;k1++)
{
for(k2=0;k2<m_nNumSamples;k2++)
{
for(k3=0;k3<m_nNumSamples;k3++)
H{k1]{k2]{k3] = H{k1][k2][k3] * pow(-1,(k1+k2+k3));

}
FFT3D(H,m_nNumSamples,2); /1 3-D IFFT of Desired Magnitude Response
/1 Apply shift in Time Domain

for(k1=0;k1 <m_nNumSamples:;ki++)
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(k2=0;k2<m_nNumSamples;k2++)
{
for(k3=0;k3<m_nNumSamples;k3++)
Hik1][k2](k3] = H[k1][k2]{k3] * pow(-1.(k1+k2+k3));

}

Vi
// Shank's method begins here
/4

unsigned x,y,.z,nl.n2,n3 M,M1|;
double **A;

M = m_nNumSamples/2 + m_nOffset;
M1 = m_nNumSamples/2 - m_nOffset;

// Trim impulse response
for(=M1;i<m_nNumSampies;i++)
{

for(5=M1;j<m_nNumSamples;j++)

for(k=M 1 ;k<m_nNumSamples;k++)
m_plmpulseResponse[i-M1]{j-M1]{k-M1] = H[i](j]){k]). GetReal();

H

// Set values of Impulse Axis
for(i=0;i<(m_nNumSamples/2+m_nOffset);i++)
m_pdImpulscAxis[i} = double(i);

#ifdef _DEBUG
n"
// Write impulse response to file for debugging
fstream impulse("Impuise.dbg” ios::out);
for(nl=0;n1<M;nl++)
{

for(n2=0;n2<M;n2++)
{

for(n3=0;n3<M;n3++)
impulse << m_pimpulseResponse[ni][n2][n3] << "\t";
impulse << endl;
}
impulse << endl << endl;
}
impulse.close();
/"

#endif

/1 De-allocate memory for Desired Magnitude Response
for(i=0;i<m_nNumSamples;i++)

for(7=0;j<m_nNumSamples;j++)
delete [} HIiI():
delete [} H[i);
}
delete [] H;

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1/ Allocate memory for A matrix
A = new double *[(m_nOrder+1)*(m_nOrder+1)*(m_nOrder+1)-1];
for(i=0;i<((m_nOrder+1)*(m_nOrder+1)*(m_nOsder+1)-1);i++)

A[i] = new double [(m_nOrder+1)*(m_nOrder+1)*(m_nOrder+1)];

// Forming the A matrix
unsigned row,col;
row =0;

for(x=0;x<=m_nOrder;x++)
{
t{’m(y=0;y<m_n0deny++)

for(z=0;z<=m_nOrder;z++)
{
ifR(x+y+2)==0) continue;
col=0;
for(i=0;i<=m_nOrder;i++)
{
for(=0;j<=m_nOrder;j++)
{

for(k=0;k<=m_nOrder;k++)

{
iR(i+j+k)—0) continue;
Alrow][col] =0.0;
for(n1=(m_nOrder+1);ni<M;nl++)

{
for(n2=<(m_nOrder+1);n2<M;n2++)
{
for(n3=(m_nOrder+1);n3<M;n3++)
Alrow][col] +=
m_plmpulscResponse[nl-i}{n2-j)[n3-k] *
m_pIimpulseResponse[n1-x][n2-y}{n3-z);
}
}
col++;

}

row=0;
for(x=0;x<=m_nOrder;x++)

{
:‘or(y=0;y<=m_n0rder;y++)

for(z=0;z<=m_nOrder;z++)
{
if{(x+y+z)==0) continue;
A[row][((m_nOrder+1)*(m_nOrder+1)*(m_nOrder+1)-1)] = 0.0;
for(nl=(m_nOrder+1);nl<M;nl++)
{
for(n2=(m_nOrder+1);n2<M;n2++)
{

9%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(n3=(m_nOrder+1);n3<M;n3++)
A[row][((m_nOrder+1)*(m_nOrder+1)*(m_nOrder+1)-1))

m_pimpulseResponse{n1]{n2][n3] *
m_pimpulseResponse(nl-x][n2-y]{n3-z];
}
}
ow++;
}
}
}
Simq(A,(m_nOrder+1)*(m_nOrder+1)*(m_nOrder+1)-1);
row=0:
m_pBCoeffArray[0][0]{0] = 1.0;
for(i=0;i<=m_nOrder;i++)
{
for(j=0;j<=m_nOrder;j++)
{
for(k=0;k<=m_nOrder;k++)
{
if{(i+j+k)y=0) continue;
m_pBCoeffArray[i}(jl[k] = A[row][(m_nOrder+1)*(m_nOrder+1)*(m_nOrder+1)-1];
rowt+;
}
}
}
for(n1=0;nl<=m_nOrder;nl++)
{
for(n2=0;n2<=m_nOrder;n2++)
{
for(n3=0;n3<=m_nOrder;n3++)
{
m_pACoeffArray[n1](n2]{n3] = 0.0;
for(i=0;i<=m_nOrder;i++)
{
if{int(nl-1)<0) continue;
for(j=0;j<=m_nOrder;j++)
{
i{int(n2-j)<0) continue;
for(k=0;k<=m_nOrder;k++)
{
iRint(n3-k)<0) continue;
. m_pACocffArray[ni}[n2](n3] += m_pBCoeffArray{ilj](k]
m_pimpulseResponse[nl-i][n2-j){n3-k];
}
}
}
}
}
}
/l De-allocate memory for A matrix

for(i=0;i<((m_nOrder+1)*(m_nOrder+1)*(m_nOrder+1)-1);i++)

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

delete [] A[i];
delete [] A;

#ifdef _DEBUG
1/
// Write coefficients to file for debugging
fstream coefR"Coeflicients.dbg".ios::out);
for(i=0;i<=m_nOrder;i++)

for(j7=0;j<=m_nOrder;j++)
{
for(k=0;k<=m_nOrder;k++)
coeff << m_pBCoeffAmay[i][j}k] << "1";
coeff << endl;
}
coeff << endl << endl;
}

coeff << endl << endl;
for(i=0;i<=m_nOrder;i++)

for(j=0<=m_nOrder:j++)
{
for(k=0;k<=m_nOrder;k++)
coeff << m_pACoeftArray[i][j}[k] << ™«";
coeff << endl;

coeff << endl << engi;
}
coeff.close();

n"
Hendif

// Computing Magnitude and Phase Response
double dW;
COMPLEX num,den;

// Compute frequency arrays
m_pdFreqAxisf0] = -pi;
dW = 2.0%pi/double(m_nNumSamples);
for(i=1;i<(m_nNumSamples+1);i++)
m_pdFreqAxis[i] = m_pdFreqAxisfi-1] + dW;

for(n1=0;n1<(m_nNumSamples+1);nl++)

for(n2=0;n2<(m_nNumSamples+1);n2++)
{
for(n3=0;n3<(m_nNumSamples+1);n3++)
£
num = COMPLEX(0.0,0.0);
den = COMPLEX(0.0,0.0);
for(i=0;i<=m_nOrder;i++)
{
for(j7=0;j<=m_nOrder;j++)
{

for(k=0;k<=m_nOrder;k-++)
{

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

num = num + COMPLEX(m_pACoeffArray{i][j]{k].0.0) *
COMPLEX(cos(i*m_pdFreqAxis[n1]+j*m_pdFreqAxis{n2}+k*m_pdFreqAxis{n3]),-sin(i®m_pdFreqAxisfni}+j*m_pdFreqAxi
s[n2]+k*m_pdFreqAxis[n3]));

den = den + COMPLEX(m_pBCoeffArray{i](j](k).0.0) *
COMPLEX(cos(i®m_pdFreqAxis[n1}+j*m_pdFreqAxis[n2}+k*m_pdFreqAxis[n3]),-sin(i®m_pdFreqAxisin1]+j*m_pdFreqAxi
s[n2}+k*m_pdFreqAxis[n3]))); }

} }
m_pMagnitudeResponse[n1}]{n2){n3] = num.Magnitude()/den.Magnitude();
m_pPhaseResponse[n1][n2][n3] = num.Phase() - den.Phase();

}

#ifdef DEBUG
/4
// Write magnitude and phase response to file for debugging
fstream magnitude("Magnitude.dbg",ios::out);
fstream phase("Phase.dbg" ios::out);

for(n1=0;n1<(m_nNumSamples+1);nl++)
{
magnitude << m_pdFreqAxis[n1] << "\nH={";
phase << m_pdFregAxis[nl] << "\nP=[";
for(n2=0;n2<(m_nNumSamples+1);n2++)
{
for(n3=0;n3<(m_nNumSamples+1);n3++)
{
magnitude << m_pMagnitudeResponse[n1][n2][n3] << "¢";
phase << m_pPhaseResponse{nl][n2]{n3] << "t";
}
magnitude <<';’ << endl;
phas¢ << << endl;
H
magnitude << endl << endl;
phase << endl << endl;

}
magnitude.close();
phase.close();

/l

#endif

double*** CFilter3DDoc::GetACoefficients()
{ retum m_pACoeffArray; }

double®*** CFilter3DDoc::GetBCoefTicients()
{ return m_pBCoeffArray; }

unsigned CFilter3DDoc::GetNumCoefTicients()
{ retum (m_nOrder+1); }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

double®*** CFilter3DDoc°’GetlmpulseRaponse()
{ retum m_plmpulseResponse;

unsigned CFilter3DDoc::GetlmpulseResponseSizeQ
{ retumn (m_nNumSamples/2 + m_nOfiset); }

double*** CFilter3DDoc::GetMagnitudeResponse()
{ return m_pMagnitudeResponse; }

unsigned CFilter3DDoc: ‘GetMagmmchupomeSmO
£ retumn (m_nNumSamples + 1);

double*** CFilter3DDoc::GetPhaseResponse()
{ retum m_pPhascResponse; }

unsigned CFilter3DDoc::GetPhascResponseSize()
{ return (m_nNumSamples + 1); }

double® CFiiter3DDoc::GetFreqAxis()
{ return m_pdFregAxis; }

double® CFilter3DDoc::GetimpulseAxis()
{ retumn m_pdimpulseAxis; }

BOOL CFilter3DDoc::FilterMovieQ

{
unsigned iyj,k.n2,n3,frame;
AVISTREAMINFO strHdrOld, strtHdrNew;
PAVIFILE pFile=NULL,pFileNew=NULL;
PAVISTREAM pStream=NULL,pStreamNew=NULL;
HRESULT hr; // handle for error checking
BITMAPINFOHEADER bmiHeader;
unsigned numFrames;
IGetFrame® getFrameObj = NULL;
BYTE *tempFramePtr = NULL;
BYTE *framePtr = NULL;
DWORD imageOffset,paletteOffset;
BYTE *palette = NULL, pixelValue;
double maxVal,minVal;
double **aviFrame;

/1 Check to ensure version of Video for Windows is up-to-date
WORD wVer = HIWORD(VideoForWindowsVersion());
iffwVer < 0x010a)
{
AfxMessageBox("Video for Windows version is too old.”);
return FALSE;

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Initialize AVTFile library
AVTFilelnitQ;

/1 Open AVI1 file for reading
hr = AVIFileOpen(&pFile,m_IpstrFileName,OF_READ,NULL);
ifthr'=AVIERR_OK)
{
AfxMessageBox("An Error Occurred Opening the Input File.™);
return FALSE;
}

// Create new AV file for writing
hr = AVIFileOpen(&pFileNew,m_IpstrNewFileName,OF_WRITE|OF_CREATE,NULL);
iftlhr'=AVIERR_OK)
{
AfxMessageBox("An Error Occurred Creating the Output File.");
return FALSE;
}

// Open AV1 stream for reading
hr = AVIFileGetStream(pFile.&pStream,streamtype VIDEO,0);
ifthr'=AVIERR_OK)
{
AfxMessageBox("An Error Occurred Opening the Input Stream.”);
return FALSE;
}

// Close original AVI file
AVTFileClose(pFile);

// Calculate number of frames in stream
numFrames = AVIStreamEnd(pStream)-A VIStreamStart(pStream);

// Create modeless Processing Dialog Box and display to user
CProcessingDlg dig;
dig.m_progressCtrl.SetRange(0,int(2*numFrames));
dig.m_progressCtrl.SetStep(1);

/! Prepare to decompress video frames from stream
getFrameObj = AVIStreamGetFrameOpen(pStream,NULL);

// Obtain address of first decompressed video frame
tempFramePtr = (BYTE *)A VIStreamGetFrame(getFrameObj.0);

/! Extract BITMAPINFOHEADER from first decompressed video frame
ExtractBMPHeader(bmiHeader,tempFramePtr);

// Calculate palette offset and image offset
paletteOffset = bmiHeader.biSize;
imageOffset = bmiHeader.biSize+bmiHeader.biClrUsed*sizcofRGBQUAD);

/1 Allocate memory for input buffer
inputBuffer = new BYTE **[m_nOrder+1];
for(i=0;i<(m_nOrder+1);i++)
{
inputBuffer{i] = new BYTE *[(2*bmiHeader.biHeight)];
for(7=0;j<(unsigned)(2*bmiHcader.biHeight);j++)

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inputBufYer{i](j] = new BYTE [(2*bmiHcader.biWidth)];
}
// Allocate memory for output buffer

outputBuffer = new double **[m_nOrder+1];
for(i=0;i<(m_nOrder+1);i++)

{
outputBuffer{i] = new double *[(2*bmiHeader.biHeight)];
for(=0;j<(unsigned)(2*bmiHeader.biHeight);j++)
outputBufTer{i]{j] = new double [(2*bmiHeader.biWidth)];
}
/1 Allocate memory for aviFrame

aviFrame = new double *[(2*bmiHeader.biHeight));
for(i=0;i<(unsigned)(2*bmiHecader.biHeight);i++)
aviFrame{i] = new double [(2*bmiHeader.biWidth)];

// Allocate memory for framePtr
framePtr = new BYTE [bmiHeader.biSize+bmiHeader.biClrUsed*sizeoRRGBQUAD)+4*bmiHeader.biSizelmage];

// Clear input and output buffers

for(i=0;i<=m_nOrder;i++)

{
for(j=0;j<(unsigned)(2*bmiHeader.biHeight);j++)
{

for(k=0;k<(unsigned)(2*bmiHeader.biWidth);k++)
{

inputBuffer{i][j][k] = 0;
outputBuffer{i]{j1(k] = 0.0;

}

/1 Allocate memory for palette and fill it in

palette = new BYTE [bmiHeader.biClrUsed®*sizeof RGBQUAD)};

for(i=0;i<(bmiHcader.biClrUsed®*sizeof{fRGBQUAD));i++)
palettefi] = tempFramePtr{palettcOffset+i];

/! Get header from old stream

hr = AVIStreaminfo(pStream, &strHdrOld, sizeof(strHdrOId));

ifthr != AVIERR_OK)

{
AfxMessageBox("An Error Occurred Reading Old Stream Header.");
return FALSE;

}

/! Fill in the header for the new video stream

memset(&strHdrNew,0,sizeof{strHdrNew)); 1/ Set strHdrNew to zero

strHdrNew.fccType = streamtype VIDEO; // stream type

strHdrNew.fccHandler =0; // Compressor Code

strHdrNew.dwScale = strHdrOld.dwScale; // Time Scale

strHdrNew.dwRate = 2*strHdrOld.dwRate; /! Frames per second

strHdrNew.dwLength = 2¢strHdrOld.dwLength; // Number of frames
strHdrNew.dwSuggestedBufferSize = 4*bmiHeader.biSizelmage; // buffer size
SetRect(&strHdrNew.rcFrame,0,0,2*bmiHeader.biWidth,2*bmiHeader.biHeight); // rectangle for stream

// Create the new stream

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hr = AVIFileCreateStream(pFileNew, & pStreamNew & strHdrNew);

if(hr '= AVIERR _OK)

{
AfiMessageBox("An Error Occurred Creating the Output Stream.”);
retum FALSE;

}

bool zero_pad;
if{(bmiHeader.biWidth%2)!=0)zero_pad=true;
else zero_pad=false;

int x=0,y=1,2=2;

// transfer first decompressed frame (BMP) to input buffer (RAW)
for(j=0;j<(unsigned)2*bmiHeader.biHeight);j++)
{

for(k=0:k<(unsigned)2*bmiHeader.bi Width);k++)
{
if{(j%2)!=0) // Odd row => Copy pixel from previous row
inputBuffer{0][j][k] = inputBuffer{0][j- 1] (k};

else if{(k%2)!=0) // Odd pixel => Copy pixel from previous column
inputBuffer{0]{j}[k] = inputBuffer{0] (] [k-1];

else

/! Even row, Even pixel => Transfer new pixel
pixelValue = tempFramePtr{(bmiHeader.bi Width+zero_pad)*j/2 +

imageOffset + k/2];
inputBuffer{0](j}{k] = (unsigned
char)((0.3%(double)palette[pixel Value®*sizeofRGBQUAD)+x]
+0.59*(double)palette[pixclValue*sizcoRRGBQUAD)+y]
+0.11*(double)palette[pixel Value*sizeoRfRGBQUAD)+z])+0.5);

// initialize max and min values for scaling
maxVal = -10000.0;
minVal = 10000.0;

/1 filter input buffer and store result in output buffer (RAW)
for(n2=0;n2<(unsigned)(2*bmiHeader.biHeight);n2++)
{

for(n3=0;n3<(unsigned)(2*bmiHcader.biWidth);n3++)

{
outputBuffer{0][n2][n3] = 0.0;
for(i=0si<=m_nOrder;i++)
{
for(j=0;j<=m_nOrder;j++)
{

for(k=0;k<=m_nOrder;k++)

{
if{(int(n2-§)<0)ji(int(n3-k)<0)) continue;
outputBuffer{0])[n2][n3) +=

if{(i+j+k)==0) continuc;
outputBuffer{0][n2]{n3) =

m_pACocffArray(i]{j][k]*inputBuffer{i][n2-j){n3-k};

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m_pBCoeffArray{i](j}{k]*outputBuffer{i)[n2-j}in3-k};
}

}

// Store max and min values for scaling

/] Exclude edges from consideration
ifi(n2>=<(m_nOrder+1))&&(n2<=2*bmiHcader.biHeight-(m_nOrder+1)))

ifi(n3>=(m_nOrder+1))&&(n3<=2*bmiHeader.biWidth-(m_nOrder+1)))
{

maxVal = max(maxVal,outputBuffer{0])[{n2][n3]);

minVal = min(minVal,outputBuffer{0][n2}{n3]);
}

}
// Fill frame that will be converted back to BMP format
aviFrame{n2][n3] = outputBuffer{0][n2]{n3];

}

// Scale Frame so values lie between 0 and 255
for(i=0;i<(unsigned)(2*bmiHeader.biHeight);i++)
{
for(j=0;j<(unsigned)(2*bmiHeader.bi Width);j++)
{

aviFramef{i}[j] = (aviFrame[i][j]-minVal)*255.0 / (maxVal-minVal)+0.5;
iflaviFrame[i][j]}>255.0) aviFrame{i](j] = 255.0;
if(aviFramel[i][j]<0.0) aviFrame[i][j} = 0.0;

}

/I Insert header into framePtr
InsertHeader(bmiHeader, framePtr,tempFramePtr);

/I Create new palette
InsertPalette(bmiHeader, framePtr,paletteOfTset);

// Insert image data
for(i=0;i<(unsigned)(2*bmiHeader.biHeight);i++)
{
for(7=0;j<(unsigned)(2*bmiHeader.bi Width);j++)
framePtr{bmiHeader.biSize-+bmiHeader.biClrUsed*sizecoRRGBQUAD)+
i*(2*°bmiHeader.biWidth+zero_pad)+j] = (BYTE)aviFrameli][j};
}

// Set format of new stream
hr = AVIStreamSetFormat(pStreamNew,0,framePtr,
bmiHeader.biSize +
bmiHeader.biClrUsed®*sizeoRRGBQUAD));
ifthr '= AVIERR_OK)

{
AfxMessageBox("An Error Occurred Setting the Output Stream Format.™);
retum FALSE;

}

/1 Write frame to new stream

hr = AVIStreamWrite(pStreamNew,0, 1,

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

framePtr + imageOffset,

4°bmiHeader.biSizelmage,

AVIIF_KEYFRAME, NULL, NULL);
iflhr I= AVIERR_OK)

{
AfxMessageBox("An Error Occurred Writing to the Output Stream.”);
return FALSE;

}

// Shift Frames in Input and Output Buffer
for(i=0;i<m_nOrder;i++)
{
for(=0;j<(unsigned)(2*bmiHcader.biHeight);j++)
{
for(k=0;k<(unsigned)(2*bmiHeader.bi Width);k++)

{
inputBufferfm_nOrder-i}{j](k] = inputBuffer{m_nOrder-1-i]1[k);
outputBuffer{m_nOrder-i](j]{k] = outputBuffer{m_nOrder-1-i][j](k};

}

// Advance the current position of the progress bar
dig.m_progressCtri.Steplt();

// Main Frame filtering loop
for(frame=1;frame<(2*numFrames); frame++)
{

ifl(frame%2)!=0) // Obtain address of first decompressed video frame
tempFramePtr = (BYTE *)A VIStreamGetFrame(getFrameObj, frame/2);

/I transfer decompressed frame (BMP) to input buffer (RAW)
for(j7=0;j<(unsigned)(2*bmiHecader.biHeight);j++)
{

for(k=0;k<(unsigned(2*bmiHeader.bi Width);k++)
{
if{(frame%2)!=0) // Odd frame => Copy pixel from previous frame
inputBuffer{0}(i](k] = inputBuffer{ 1][j](k];

clse if{(j%2)!=0) // Odd line => Copy pixel from previous line
inputBuffer{0](j}[k] = inputBuffer{0]{j-1}[k]);

clse if((k%2)!=0) /7 Odd pixel => Copy pixel from previous column
e inputBuffer{0])(j)(k] = inputBuffer[0][j}(k-1];

[

{

// Even frame, Even line, Even pixel => Transfer new pixel
pixelValue = tempFramePtr{bmiHeader.biWidth*j/2 + imageOffset + k/2);
inputBuffer{0}[j}{k] = (unsigned
char)((0.3*%(double)palette{pixel Value®*sizeoRRGBQUAD)+x]
+0.59*(double)paletic[pixel Value*sizecofRGBQUAD)+y]
+0.1 1*(double)paletic[pixelValue*sizecofRGBQUAD)+2])+0.5);

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ filter input buffer and store result in output buffer (RAW)
for(n2=0;n2<(unsigned)(2*bmiHeader.biHeight);n2++)
{

for(n3=0;n3<(unsigned)(2*bmiHeader.biWidth);n3++)
{

outputBuffer{0][n2][n3] = 0.0;
for(i=0;i<=m_nOrder;i++)
{
for(7=0;j<=m_nOrder;j++)
{
for(k=0;k<=m_nOrder;k++)
{
iR(int(n2-j)<0)(int(n3-k)<0)) continue;
outputBuffer{0][n2]{n3] +=

if{(i+j+k)==0) continuc;
outputBuffer{0][n2]{n3] =

m_pACoeffArray[i](j][k]*inputBuffer{i]{n2-j][n3-k];

m_pBCocffArray(i](j}{k]*outputBuffer{i){n2-j){n3-k];
’ }
// Store max and min values for scaling
// Exclude edges from consideration
i(n2>=2%(m_nOrder+1))&&(n2<=2*bmiHeader.biHeight-2*(m_nOrder+1)))
if{(n3>=2*(m_nOrder+1))&&(n3<=2*bmiHeader.biWidth-2*(m_nOrder+1)))

t
maxVal = max(maxVal.outputBuffer{0][n2]{n3));
minVal = min(minVal,outputBuffer{0][{n2])[n3]);

}

}
// Fill frame that will be converted back to BMP format
aviFrame[n2][n3] = outputBuffer{0][n2]{n3);

}

// Scale Frame so values lie between 0 and 255
for(i=0;i<(unsigned)2*bmiHeader.biHeight);i++)
{

for(j=0;j<(unsigned)(2*bmiHeader.biWidth);j++)
{
aviFrame[i][j] = (aviFrame{i][j}-minVal)*255.0 / (maxVal-minVal) + 0.5;

if(aviFrame[i][j]>255.0) aviFrame{i](j] = 255.0;
if{aviFrameli](j]<0.0) aviFramefi][j] = 0.0;

}
// Insert header into framePtr
InsertHeader(bmiHeader, framePtr,tempFramePtr);
// Create new palette
InsertPalette(bmiHeader, framePtr,paletteOfTset);

// Insert image data
for(i=0;i<(unsigned)(2*bmiHeader.biHeight);i++)
{
for(j=0;j<(unsigned)2*bmiHeader.biWidth);j++)
framePtrfbmiHeader.biSize+bmiHeader.biClrUsed*sizcoRRGBQUAD)+

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i*(2*bmiHeader.biWidth+zero_pad)+j] =

(BYTE)aviFrame{i][j);
}
/I Write frame to new stream
hr = AVIStream Write(pStreamNew. frame, 1,
framePtr + imageOffset,
4*bmiHeader.biSizelmage,

AVIIF_KEYFRAME, NULL, NULL);
if(hr = AVIERR_OK)
{
AfxMessageBox("An Error Occurred Writing to the Output Stream.”);
return FALSE;
}

// Shift Frames in Input and Output Buffer
for(i=0;i<m_nOrder;i++)
{
for(j=0;j<(unsigned)(2*bmiHeader.biHeight);j++)
{

for(k=0;k<(unsigned)(2*bmiHeader.biWidth);k++)

{
inputBuffer{m_nOrder-i}[jl{k] = inputBuffer{m_nOrder-1-i]{jl[k];
outputBuffer{m_nOrder-i}{j][(k] = outputBuffer{m_nOrder-1-i}fjllk];

}

// Advance the current position of the progress bar

dlg.m_progressCitrl.Steplt();
} // End of main Frame filtering loop

// Close dialog box
dig.Destroy Window();

// Close the files and streams
AVIStreamGetFrameClose(getFrameObj);
AVIStreamClose(pStream);
AViStreamClose(pStreamNew);
AVTFileClose(pFileNew);

AVTFileExit(Q;
return TRUE; // function completed successfully
}

void CFilter3DDoc::ExtractBMPHeader(BITMAPINFOHEADER &bmpHdr, BYTE *tempFramePtr)
{
// Store BITMAPINFOHEADER information —e——ee——eeeeeee
bmpHdr.biSize = tempFramePtr{0x00]+(tempFramePtr{0x01 }<<8)+
(tempFramePtr{0x02)<<16)+(tempFramePtr{0x03])<<24);
bmpHdr.bi Width = tempFramePtr{0x04])+(tcmpFramePtr{0x05]<<8)+
(tempFramePtr{0x06)<<16)+(tcmpFramePtr{0x07)<<24);
bmpHdr.biHeight = tempFramePtr{0x08]+-(tempFramePt{0x09)<<8)+
(tempFramePtr{0x0A]<<16)+(tempFramePu{0x0B}<<24);
bmpHdr.biPlanes = 1;
bmpHdr.biBitCount = tempFramePtr{Ox0E}+(tempFramePtr{0x0F}<<8);

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bmpHdr.biCompression = tempFramePur{Ox10}+(1tempFramePir{Ox1 1 J<<8)+
(tempFramePtr{0x12]<<16)+(tempFramePtr{0x13]<<24);
bmpHdr.biSizelmage = tempFramePtr{0x 14}+-(tempFramePtr{0x15)<<8)+
(tempFramePtr{0x16]<<16)+(tempFramePtr{0x | 7)<<24);
bmpHdr.biXPelsPerMeter = tempFramePtr{0x 18]+ (tempFramePtr{0x19]<<8)+
(tempFramePur{0x1 A}<<16)+(tempFramePtr{0x 1B}<<24);
bmpHdr.biYPelsPerMeter = tempFramePtr{0x 1 CJ+(tempFramePtr{0x 1 D}<<8)+
(tempFramePtr{0x 1 E}<<16)+(tempFramePtr{0x 1 F}<<24);
bmpHdr.biClrUsed = tempFramePtr{0x20]+(tempFramePtr{0x2 1] <<8)+
(tempFramePtr{0x22]<<16)+(tempFramePtr{0x23])<<24);
bmpHdr.biClrimportant = tempFramePtr{0x24]+(tempFramePtr{0x25]<<8)+
(tempFramePtr{0x26]<<16)+(tempFramePtr{0x27]<<24);
// Done Storing BITMAPINFOHEADER info

BOOL CFiiter3DDoc::0OnOpenDocument(LPCTSTR IpszPathNamc)

{
if (!CDocument::OnOpenDocument(lpszPathName))
retum FALSE;

retum TRUE;

void CFilter3DDoc::InsertHeader(BITMAPINFOHEADER bmiHeader,

{

BYTE *framePtr, BYTE *tempFramePtr)

unsigned i;
for(i=0;i<bmiHeader.biSize;i++)
{
framePtr{i] = tempFramePtr{i}); /1 Copy Header
framePtr{0x04] = (BY TE)2*bmiHeader.biWidth); // double Width

framePtr{0x05) = (BY TEX(2*bmiHeader.biWidth)>>8);
framePtr{0x06] = (BYTEX(2*bmiHeader.biWidth)>>16);
framePtr{0x07] = (BYTE)X(2*bmiHeader.biWidth)>>24);

framePtr{0x08] = (BY TEX2*bmiHecader.biHeight); // double Height
framePtr{0x09] = (BYTEX(2*bmiHcader.biHeight)>>8);

framePtr{0x0A] = (BYTEX(2*bmiHeader.biHeight)>>16);
framePtr{0x0B] = (BYTE)X(2*bmiHeader.biHeight)>>24);

framePtr{0x14]) = (BYTE)X4*bmiHeader.biSizelmage); // change size
framePtr{0x15) = (BYTE)(4*bmiHeader.biSizelmage)>>8);
framePtr{0x16] = (BYTE)X(4*bmiHcader.biSizeimage)>>16);
framePtr{0x17] = (BY TEX(4*bmiHecader.biSizelmage)>>24);

void CFilter3DDoc::InsertPalette(BITMAPINFOHEADER bmiHeader,
BYTE *framePtir, DWORD paletteOffset)
{
unsigned i;
for(i=0;i<bmiHeader.biClrUsed;i++)

framePtripaletteOffset+4%i] = (BYTE)i;

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

framePtr{paletteOffset+4%i+1] = (BYTE)i;
framePtr{paletteOffset+4%i+2] = (BYTE)i;
framePtr{paletteOffset+4%i+3] = (BYTE)0;

void CFilter3DDoc::SetOpenFileName(LPTSTR IpstrFile)

{
m_lpstrFileName = IpstrFile;
}
void CFilter3DDoc::SetSaveFileName(LPTSTR lpstrFile)
{
m_IpstrNewFileName = IpstrFile;
}

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Filter3dSettingsDig.cpp : implementation file
/

#include "stdafi.h”
#include "Filter3D.h"
#include "Filter3dScningsDig.h"

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[]=__FILE_ ;
#endif

T T T TN T e e T
// CFilter3DSettingsDlg dialog

CFilter3DSettingsDig::CFilter3DSettingsDig(CWnd*® pParent /#<=NULL®/)
: CDialog(CFilter3DSettingsDig::IDD, pParent)
{
/1{{ AFX_DATA_INIT(CFilter3DSettingsDlg)
m_dCutoffFreq = 0.0;
m_nOffset=0;
m_nOrder=0;
m_nNumSamples = 0;
/13 }AFX_DATA_INIT

void CFilter3DSettingsDig::DoDataExchange(CDataExchange® pDX)

{
CDialog::DoDataExchange(pDX);
II{{AFX_DATA_MAP(CFilter3DSettingsDlg)
DDX_Text(pDX, IDC_CUTOFF, m_dCutoffFreq);
DDX_Text(pDX, IDC_OFFSET, m_nOffset);
DDX_Texi(pDX, IDC_ORDER, m_nOrder);
DDX_Text(pDX, IDC_SAMPLES, m_nNumSamples);
/IV}AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CFilter3DSettingsDlg, CDialog)
/I{{ AFX_MSG_MAP(CFilter3DSecttingsDig)
// NOTE: the ClassWizard will add message map macros here
/1}}AFX_MSG_MAP
END_MESSAGE_MAP()

U T T T T T T T
// CFilter3DSettingsDlig message handlers

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I Filter3DView.cpp : implementation of the CFilter3DView class
!

#include "stdafich”
#inciude "Filter3D.h"

#include “Filter3DDoc.h”

#include "Filter3DView.h”

#include "vfw.h"

#include <fstream.h> // For debugging purposes
//#include <commdig.h> // For open and save dialog boxes

#define IMPULSE 0
#define MAGNITUDE 1

#define PHASE 2

#define COEFFICIENTS 3

#define VIDEO 4

#ifdef DEBUG

#idefine new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[}=_ FILE_ ;
#endif

TR T T i i g
// CFilter3DView

IMPLEMENT_DYNCREATE(CFilter3DView, CView)

BEGIN_MESSAGE_MAP(CFilter3DView, CView)
I{{AFX_MSG_MAP(CFilter3DView)
ON_COMMANID(ID_DISPLAY_COEFFICIENTS, OnDisplayCoefficients)
ON_COMMANIDX(ID_DISPLAY_IMPULSE, OnDisplayimpulse)
ON_COMMAND(ID_DISPLAY_MAGNITUDE, OnDisplayMagnitude)
ON_COMMAND(ID_DISPLAY_PHASE, OnDisplayPhase)
ON_COMMANIXID_VIDEO_OPEN, OnVideoOpen)
ON_COMMANIXID_VIDEO_PLAY, OnVideoPlay)
ON_COMMANID(ID_VIDEO_FILTER, OnVideoFilter)
ON_COMMAND(ID_VIDEO_OPENOUTPUT, OnVideoOpenOutput)

1} }AFX_MSG_MAP

// Standard printing commands

ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)

ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint)

ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)
END_MESSAGE_MAP()

i
// CFilter3DView construction/destruction

CFilter3DView::CFilter3DView()

{
pi = 4.0%tan(1.0);
m_nNumDataPoints = 0;
m_nDisplay = COEFFICIENTS;

m_dRotationX = 0.0;
m_dRotationY = -38.0%(pi/180);

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m_dRotationZ = 0.0;

m_hwndOriginalAVI =NULL;

m_hwndFilteredAVI =NULL;
}

CFilter3DView::~CFilter3DView()

{
H

BOOL. CFilter3DView::PreCreate Window(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying
/I the CREATESTRUCT cs

return CView::PreCreateWindow(cs);
}

W T T T T T el
// CFilter3DView drawing

void CFilter3DView::OnDraw(CDC* pDC)

{
CFilter3DDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

switch(m_nDisplay)

{

case COEFFICIENTS:
DrawCocfTicients(pDC);
break;

case IMPULSE:
case MAGNITUDE:

case PHASE:
PlotPoints(pDC);

ad

case VIDEO:
break;
}

TN
// CFilter3DView printing

BOOL CFiiter3DView::OnPreparePrinting(CPrintinfo® pinfo)
{

// default preparation
retum DoPreparePrinting(pinfo);

void CFilter3DView::OnBeginPrinting(CDC* /*pDC*/, CPrintinfo*® /*pinfo®/)

// TODO: add extra initialization before printing

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

void CFilter3DView::OnEndPrinting(CDC® /*pDC*/, CPrintinfo* /*pinfo*/)

// TODO: add cleanup after printing
}

g
// CFilter3DView diagnostics

#ifdef DEBUG
void CFilter3DView::AssertValid() const

{
CView::AssenValid();
}
void CFilter3DView::Dump(CDumpContext& dc) const
{
CView::Dump(dc);
}

CFilter3DDoc* CFilter3DView::GetDocument() // non-debug version is inline

ASSERT(m_pDocument->IsKindOfRUNTIME_CLASS(CFilter3DDoc)));
retumn (CFilter3DDoc*)m_pDocument;

}
#endif //_DEBUG

NI T T T LEEEE TR T TR LT
// CFilter3DView message handlers

void CFilter3DView::OnUpdate(CView* pSender, LPARAM IHint, CObject* pHint)
{

CFilter3DDoc* pDoc = GetDocument();

ASSERT_VALID(pDoc);

unsigned i,j,k;
switch(m_nDisplay)
{
case VIDEO:

break;

case IMPULSE:
/1 If MCI windows exist, remove them
iftm_hwndOriginalA VI!=NULL)
{
MClWndDestroy(m_hwndOriginalA VI);
m_hwndOriginalAVI =NULL;

ifilm_hwndFilteredAVI!=NULL)
{

MCIWndDestroy(m_hwndFiltered A V1);
m_hwndFilteredAVI =NULL;

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
iflm_nNumbDataPoints) // if array already exists, de-allocate
{

for(i=0;i<m_nNumDataPoints;i++)
delete [} m_pDisplayPointArray[i];
delete [] m_pDisplayPointArray;

}
m_pDataPointArray = pDoc->GetIlmpulseResponse();
m_nNumbDataPoints = pDoc->GetimpulseResponseSize();

1/ Allocate display point memory
m_pDisplayPointArmray = new CPoint *[m_nNumbDataPoints];
for(i=0;i<m_nNumDataPoints;i++)

m_pDisplayPointArray{i] = new CPoint {[m_nNumDataPoints};

m_pdAxisX = pDoc->GetimpulseAxis();
m_pdAxisZ = pDoc->GetimpulseAxis();
for(G=0;j<m_nNumDataPoints;j++)

{

for(k=0;k<m_nNumDataPoints;k++)
m_pDisplayPointArray(j][k] = ConvertToScreen(m_pdAxisX[k),m_pDataPointArray[S
/*(unsigned)m_dConstAxisFreq */][j](k].m_pdAxisZ{j]);

}
MakePlotFitWindow();
break;

case MAGNITUDE:
{1 1If MCI windows exist, remove them
ifilm_hwndOriginalAVI!=NULL)
{
MCIWndDestroy(m_hwndOriginalA VI);
m_hwndOriginalAVI = NULL;

iflm_hwndFilteredAVI!=NULL)

{
MCIWndDestroy(m_hwndFilteredA VI);
m_hwndFilteredAVI =NULL;

}
ifilm_nNumDataPoints) // if array already exists, de-allocate

for(i=0;i<m_nNumDataPoints;i++)
delete [} m_pDispiayPointArray(i};
delete [} m_pDisplayPointArray;
}

m_pDataPointArray = pDoc->GetMagnitudeResponse();
m_nNumDataPoints = pDoc->GetMagnitudeResponseSize();
m_pDisplayPointArray = new CPoint *[m_nNumDataPoints});
for(i=0;i<m_nNumDataPoints;i++)

m_pDisplayPointArray[i] = new CPoint {m_nNumDataPoints];

m_pdAxisX = pDoc->GetFreqAxis();
m_pdAxisZ = pDoc->GetFreqAxis();
for(7=0;j<m_nNumDataPoints;j++)

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(k=0;k<m_nNumDataPoints;k++)
m_pDisplayPointArray(jl{k] = ConverntToScreen(m_pdAxisX[k},m_pDataPointArray[8
/‘(mismd)m_dCot;stAxisqu *16}k}.m_pdAxisZ{[j]);

MakePlotFitWindow();
break;

case PHASE:
/1 If MCI windows exist, remove them
iflm_hwndOriginal AVI!=NULL)
{

MCIWndDestroy(m_hwndOriginalAVI);
m_hwndOriginalAVI = NULL;

ifilm_hwndFilteredAVI!'=NULL)

MCIWndDestroy(m_hwndFilteredA VI);
m_hwndFilteredA VI = NULL;

}
ifilm_nNumDataPoints) /I if array already exists, de-allocate
{

for(i=0;i<m_nNumDataPoints;i++)
delete [] m_pDisplayPointArray(i];

delete [) m_pDisplayPointArray;
}
m_pDataPointArray = pDoc->GetPhaseResponse();
m_nNumDataPoints = pDoc->GetPhaseResponseSize();
m_pDisplayPointArray = new CPoint *[m_nNumDataPoints];
for(i=0;i<m_nNumDataPoints;i++)

m_pDisplayPointArray[i] = new CPoint [m_nNumDataPoints};

m_pdAxisX = pDoc->GetFreqAxis();
m_pdAxisZ = pDoc->GetFreqAxis();
for(j=0;j<m_nNumDataPoints;j++)

for(k=0;k<m_nNumDataPoints;k++)
m_pDisplayPointArray[j][k] = ConvertToScreen(m_pdAxisX[k]),m_pDataPointArray[8
/*(unsigned)m_dConstAxisFreq */](j)(k].m_pdAxisZ[j]);
}

MakePlotFitWindow();
break;

case COEFFICIENTS:
/1 1If MCI windows exist, remove them
iflm_hwndOriginalAVI!'=NULL)
{
MCIWndDestroy(m_hwndOriginalAVI);
m_hwndOriginalAVI = NULL;

ifim_hwndFilteredA VI!=NULL)

{
MCIWndDestroy(m_hwndFilteredA V1),
m_hwndFilteredAV] =NULL;

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

m_pACocffArray = pDoc->GetACoefficients();
m_pBCoeffArray = pDoc->GetBCoefTicients();
m_nNumCoefficients = pDoc->GetNumCocfTicients();
break;

}

RedrawWindow();

void CFilter3DView::DrawCoefficients(CDC *pDC)
{
CFont fontCur;
iR fontCur.CreatePointFont(100, "Roman”, pDC))

{
CFont* pOidFont = pDC->SelectObject(&fontCur);

char ch_buffer{10});

unsigned ij.k;

CRect IRect;

CString A_coeff = "{a} CoefTicients:\n";
CSitring B_coeff = "{b} Coefficients:\n";

GetClientRect(IRect);
IRect.right /= 2;

for(i=0;i<m_nNumCoefTicients;i++)

{
for(j=0;j<m_nNumCoefTicients;j++)
{

for(k=0;k<m_nNumCoefficients;k-++)
{
sprimtfich_buffer,"%.5f",m_pACoeffArray[i]]I[k]);
A_coeff += ch_buffer;
A_coeff +=" "
}
A_coeff +="n";
}
A_coeff += "\n\n";
}
pDC->DrawText(A_coef, IRect, DT_CENTER);

for(i=0;i<m_nNumCoefficients;i++)

{
for(G=0:j<m_nNumCoefTicients;j++)
{

for(k=0;k<m_nNumCoefficients;k++)
{
sprintfich_buffer,"%.5f".m_pBCoefTArray[i]{jl[k]);
B_coeff += ch_butler;
B_coeff +=" i
}
B_coeff +="\n";
}
B_coeff += "n\n";

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pDC->DrawText(B_coeff, IRect, DT_CENTER);

pDC->SelectObject(pOidFont);
}
fontCur.DeleteObject();
}
void CFilter3DView::PlotPoints(CDC *pDC)
{
intij;
CPoint points[4];

for(i=m_nNumDataPoints-1;i>0;i-)

{
for(j7=0;(unsigned)j<m_nNumbDataPoints-1;j++)
{

points{0] = CPoint(long(m_pDisplayPointArray(i](j].x),long(m_pDisplayPointArray(i](31.y));

points{1] = CPoint(long(m_pDisplayPointArray{i]{j+1].x),long(m_pDisplayPointArray[i}{j+1].y)):

points[2] =
CPoint(long(m_pDisplayPointArray[i-1][j+1].x),long(m_pDisplayPointArray[i-1][i+1].y)):

points[3] = CPoint(long(m_pDisplayPointArray(i-1][j}.x).long(m_pDisplayPointAmay{i-1]{j}.y));

pDC->Polygon(points,4);

void CFilter3DView::OnDisplayCoefficients()
{ m_nDisplay = COEFFICIENTS;
OnUpdate(NULL, OL, NULL); }

void CFilter3DView::OnDisplaylmpulse()
{ m_nDisplay = IMPULSE;
OnUpdate(NULL, OL, NULL); }

void CFiiter3DView::OnDisplayMagnitudeQ
{ m_nDisplay = MAGNITUDE;
OnUpdate(NULL, OL, NULL); H

void CFilter3DView::OnDisplayPhase()
{ m_nDisplay = PHASE;
OnUpdate(NULL, OL, NULL); }

POINT CFilter3DView::ConvertToScreen(double x, double y, double 2)

{
POINT point;
float xp=0,yp=0.5,2p=1; // Perspective vector

TransformPoints(x,y,z);

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x *= 1000;
z *= 1000;
switch(m_nDisplay)

{

case IMPULSE:
y *= 7000000;
break;

case MAGNITUDE:
y *=300000;
break;

case PHASE:
y *=1000;
break;

}

point.x = long((4.0/3.0)*(x + z*(xp/zp)));
point.y = long(-(y+z*(yp/2p)));
return point;

void CFilter3DView::MakePlotFitWindow()

{
// Scale and center the plot so it fits the window
// with a margin on all sides
unsigned ij;
int max_x = m_pDisplayPointArray[0][0].x;
int min_x = m_pDisplayPointArray[0][0].x;
int max_y = m_pDisplayPointArray(0][0].y;
int min_y = m_pDisplayPointArray[0][0]).y;
int margin = 50;
CRect IpRect;

// Get max and min values of points
for(i=0;i<m_nNumDataPoints;i++)

for(7=0;j<m_nNumDataPoints;j++)

{
max_x = max(max_x,m_pDisplayPointArray{i][j].x);
max_y = max(max_y,m_pDisplayPointArray[i][j].y);
min_x = min(min_x,m_pDisplayPointArray({i](].x);
min_y = min(min_y,m_pDisplayPointArray[i](jl.y);

}

GetClientRect(IpRect);

if{ (IpRect.right < (2*margin+50)) || (ipRect.bottom < (2*margin+50)))
ipRect = CRect(0,0,(2*margin+50),(2*margin+50));

ipRect.DeflateRect(margin,margin);

double xScale = double(lpRect.right-IpRect.leftydouble(max_x-min_x);
double yScale = double(lpRect.bottom-ipRect.top)/double(max_y-min_y);

for(i=0;i<m_nNumbDataPoints;i++)
(
for(j=0;j<m_nNumDataPoints;j++)

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m_pDisplayPointArray[i][j]-x = long((double)m_pDisplayPointArray{i](j].x ® xScale);
m_pDisplayPointArray{i](j].y = long((double)m_pDisplayPointArray{i](j}.y ® yScale);

}

// adjust minimums and maximums to reflect scaling effects
min_x = long(min_x*xScalc);

max_x = long(max_x*xScale);

min_y = long(min_y*yScale);

max_y = long(max_y*yScale);

/[Center plot in window
int dx = IpRect.left - min_x;
int dy = IpRect.bottom - max_y;

for(i=0;i<m_nNumDataPoints;i++)
{
for(G=0;j<m_nNumDataPoints;j++)

{
m_pDisplayPointArray[i] j).Offset(dx.dy);
}

void CFilter3DView::TransformPoints(double &x, double &y, double &2)
{

double xtemp =x;

double ytemp =y;

double ztemp = z;

// Rotation about x-axis
y = float(ytemp®cos(m_dRotationX) - ztemp*sin(m_dRotationX));
z = float(ytemp®sin(m_dRotationX) + ztemp®*cos(m_dRotationX));

xtemp = x;
ytemp =y;
zemp = z;

// Rotation about y-axis
x = float(xtemp®cos(m_dRotationY) + ztemp®*sin{im_dRotationY));
z = float(-xtemp*sin(m_dRotationY) + ztemp*cos(m_dRotationY));

xtemp = x;
ytemp =y;
acmp=1z;

// Rotation about z-axis
x = float(xtemp®cos(m_dRotationZ) - ytemp®sin(m_dRotationZ));
y = float(xtemp*sin(m_dRotationZ) + ytemp®cos(m_dRotationZ));

void CFilter3DView::OnVideoOpen()

{
m_nDisplay = VIDEO;

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OnUpdate(NULL, OL, NULL);

CFilter3DDoc*® pDoc = GetDocument();
ASSERT_VALID(pDoc);

char buffer{256];
buffer{0]) = NULL;

OPENFILENAME opfn;

opfn.IStructSize = sizeoffOPENFILENAME);

opfn.hwndOwner = m_hWnd;

opfn.hinstance = 0;

opfin.ipstrFilter = NULL;

opfin.lpstrCustomFilter = NULL;

opfn.nMaxCustFilter =0;

opfn.nFilterindex = 0;

opfin.lpstrFile = buffer; / File name to open

opfn.nMaxFile = 256;

opf.lpstrFileTitle = NULL;

opfn.nMaxFileTitle = 0;

opfn.lpstrinitialDir = NULL;

opfn.IpstrTitle =NULL;

opfn.Flags = OFN_FILEMUSTEXIST | OFN_HIDEREADONLY |
OFN_NONETWORKBUTTON | OFN_PATHMUSTEXIST;

opfn.nFileOffset = 0;

opfn.nFileExtension = 0;

opfn.lpstrDefExt = NULL;

opfn.iCustData = 0;

opfn.lpfmHook = 0;

opfn.lpTemplateName = 0;

BOOL error = GetOpenFileName(&opfn);
if(*opfn.lpstrFile=NULL) // // If the user did not specify a file name
retum;

ifilm_hwndOriginalAVI!=NULL)
{
MCIWndDestroy(m_hwndOriginalA VI);
m_hwndOriginalAVI = NULL;
H

pDoc->SetOpenFileName(opfn.lpstrFile); // Set file to open

if(*opfn.lpstrFile!=NULL) // If the user specified a file name
{
if{(m_hwndOriginalAVI=NULL))
// If no MCI window exists create it and open file
m_hwndOriginalA VI = MCIWndCreate(m_hWnd,A fxGetinstanceHandle(),
MCIWNDF_SHOWNAME |
MCIWNDF_SHOWMODE |
WS_VISIBLE i
WS_BORDER |
WS_CHILD,

opfn.lpstrFile);

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

void CFilter3DView::OnVideoPlay()

MCIWndPlay(m_hwndOriginal AVI);
MCIWndPlay(m_hwndFilteredA VI);

void CFilter3DView::OnVideoFilterQ

{
CFilter3DDoc*® pDoc = GetDocument();
ASSERT_VALID(pDoc);

char buffer{256], digTitle[] = "Save Filtered Movie As";
buffer{0] = NULL;

OPENFILENAME opfn;

opfn.IStructSize = sizcof OPENFILENAME);
opfn.hwndOwner = m_hWnd;

opfi.hinstance = 0;

opfu.ipstrFilter = NULL;
opfi.lpstrCustomFilter = NULL;
opfn.nMaxCustFilter = 0;

opfn.nFilterindex = 0;

opfi.lpstrFile = buffer; // File name to open
opfn.nMaxFile = 256;

opfn.lpstrFileTitle = NULL;
opfn.nMaxFileTitle = 0;

opfn.lpstrinitialDir = NULL;

opfn.lpstrTitle = digTitle;

opfn.Flags = OFN_HIDEREADONLY | OFN_NONETWORKBUTTON;
opfn.nFileOffset = 0;

opfn.nFileExtension = 0;

opfn.lpstrDefExt = NULL;

opfi.ICustData = 0;

opfn.lpfnHook = 0;

opfn.lpTemplateName = 0;

BOOL error = GetSaveFileName(&opfn);
pDoc->SetSaveFileName(opfn.lpstrFile); /7 Set filename to save as
if(*opfn.lpstFile==NULL) // If the user did not specify a file name

{ RedrawWindow(); // Redraw MCIWindow toolbar

return;
}

pDoc->FiiterMovie(); /I Filter AVI file
iflm_hwndFilteredAVI'=NULL)
{

MCIWndDestroy(m_hwndOriginalA VI);

m_hwndFilteredAV] = NULL;
}

m_hwndFilteredA VI = MCIWndCreate(m_hWnd,A fxGetinstanceHandle(),
MCIWNDF_SHOWNAME |

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MCIWNDF_SHOWMODE |
WS_VISIBLE |
WS_BORDER |
WS_CHILD,

opfn.ipstrFile);

RECT rCurrent;
::GetWindowRect(m_hwndFilteredA VL &rCurrent);

::MoveWindow(m_hwndFilteredA V1,rCurrent.right.0/*rCurrent.top®/,
(rCurrent.right-rCurrent.left), (rCurrent.bottom-rCurrent.top), TRUE);

void CFilter3DView::0nVideoOpenOutput()

{
char buffer[256]),digTitlc[] = "Open Filtered Movic";
buffer[0] = NULL;

OPENFILENAME opfn;

opfn.IStructSize = sizeof{ OPENFILENAME);

opfn.hwndOwner = m_hWnd;

opfn.hinstance = 0;

opfn.ipstrFilter = NULL;

opfn.lpstrCustomFilter = NULL;

opfn.nMaxCustFilter = 0;

opfi.nFilterindex = 0;

opfi.lpstrFile = buffer; // File name to open

opfn.nMaxFile = 256;

opfi.lpstrFileTitle = NULL;

opfn.nMaxFileTitle = 0;

opfn.lpstrinitialDir = NULL;

opfi.lpstrTitle = digTitle;

opfin.Flags = OFN_FILEMUSTEXIST | OFN_HIDEREADONLY |
OFN_NONETWORKBUTTON | OFN_PATHMUSTEXIST;

opfn.nFileOffset = 0;

opfn.nFileExtension = 0;

opfn.lpstrDefExt = NULL;

opfn.lCustData = 0;

opfn.lpfnHook = 0;

opfn.lpTemplateName = 0;

BOOL error = GetOpenFileName(&opfn);
if{(*opfn.lpstrFile==NULL) //// If the user did not specify a file name
return;

iflm_hwndFilteredAVI!=NULL)

MCIWndDestroy(m_hwndFilteredAVI);
m_hwndFilteredAVI = NULL;
}
if{*opfn.IpstrFile!=NULL) / If the user specified a file name
{

ifi(m_hwndFilteredA VI=NULL))
// If no MCI window exists create it and open file

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m_hwndFilteredA VI = MCIWndCreate(m_hWnd,A fxGetinstanceHandle(),
MCIWNDF_SHOWNAME |
MCIWNDF_SHOWMODE |

WS_VISIBLE]
WS_BORDER |
WS_CHILD,
opfn.lpstrFile);

}

RECT rCurrent;

::GetWindowRect(m_hwndFilteredA V1,&rCurrent);

::MoveWindow(m_hwndFilteredA VL rCurrent.right,0/*rCurrent.top®/,
(rCurrent.right-rCurrent.left), (rCurrent.bottom-rCurrent.top), TRUE):

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// MainFrm.cpp : implementation of the CMainFrame class
"

#include "stdafi.h”
#include "Filter3D.h"

#include "MainFrm.h"”

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[]=_ FILE_;
#endif

T T T T T T T LT T T T T
// CMainFrame

IMPLEMENT_DYNAMIC(CMainFrame, CMDIFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd)
H1{{AFX_MSG_MAP(CMainFrame)
{// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code !
ON_WM_CREATE(Q
/I}}AFX_MSG_MAP
END_MESSAGE_MAP()

static UINT indicators[] =

{
ID_SEPARATOR, // status line indicator
ID_INDICATOR_CAPS,
ID_INDICATOR_NUM,
ID_INDICATOR_SCRL,

14

oo
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
// TODO: add member initialization code here
}
CMainFrame::~CMainFrame()
§
int CMainFrame::OnCreate(LPCREATESTRUCT IpCreateStruct)
{ if (CMDIFrameWnd::OnCreate(IpCreateStruct) == -1)
return -1;

if (!m_wndToolBar.Create(this) ||
!m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
{
TRACEO("Failed to create toolbar\n");

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

retum -1; // fail to create
}

if (!m_wndStatusBar.Create(this) ||
!m_wndStatusBar.Setindicators(indicators,
sizeof{indicators)/sizeof{UINT)))

TRACEO("Failed to create status bar\n");
retum -1; // fail to create
}

// TODO: Remove this if you don't want tool tips or a resizeable toolbar
m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle() |
CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC);

// TODO: Delete these three lines if you don't want the toolbar to
// be dockable
m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
EnableDocking(CBRS_ALIGN_ANY);
DockControlBar(&m_wndToolBar);

return 0;
}

BOOL CMainFrame::PreCreate Window(CREATESTRUCT& cs)

/1 TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs

csx=0;

cs.y=0;

cs.cy = ::GetSystemMetrics(SM_CYSCREEN)-30;
cs.cx = ::GetSystemMetrics(SM_CXSCREEN);

retumn CMDIFrameWnd::PreCreate Window(¢s);
}

T T T T T T T T T
/l CMainFrame diagnostics

#ifdef DEBUG
void CMainFrame::AssertValid() const
{

}

void CMainFrame::Dump(CDumpContext& dc) const
{

}
#endif //_DEBUG

CMDIiFrameWnd::AssertValid();

CMDIFrameWnd::Dump(dc);

T T T T T T T
{/ CMainFrame message handlers

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// ProcessingDlg.cpp : implementation file
/4

#include "stdafx.h”
#include "Filter3D.h"
#include "ProcessingDlg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[}=__FILE_ ;
#endif

L g i
/1 CProcessingDig dialog

CProcessingDlg::CProcessingDIg(CWnd* pParent /*=NULL*/)
: CDialog(CProcessingDlg::IDD, pParent)
{
// Create a modeless dialog box
Create(IDD_PROCESSING,NULL);
/I{{AFX_DATA_INIT(CProcessingDig)
// NOTE: the ClassWizard will add member initialization here
I/}}AFX_DATA_INIT

void CProcessingDig::DoDataExchange(CDataExchange® pDX)

{
CDialog::DoDataExchange(pDX);
I {AFX_DATA_MAP(CProcessingDig)
DDX_Control(pDX, IDC_PROGRESS, m_progressCrrl);
/1Y 3AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CProcessingDlg, CDialog)
/I {AFX_MSG_MAP(CProcessingDlg)
// NOTE: the ClassWizard will add message map macros here
/1}}AFX_MSG_MAP
END_MESSAGE_MAP()

W T T T T T T T
/1 CProcessingDlg message handlers

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// ChildFrm.h : interface of the CChildFrame class
I
T TTT I T T L T T T LT e T T

#if !defined(AFX_CHILDFRM_H__CSCEC46B_8DFA_11D2_9E39_0020AFDA97B0__INCLUDED_)
#define AFX_CHILDFRM_H__C8CEC46B_8DFA_11D2_9E39_0020AFDA97B0__ INCLUDED_

#if_MSC_VER >= 1000
once
#endif / _MSC_VER >= 1000

class CChildFrame : public CMDIChildWnd

DECLARE_DYNCREATE(CChildFrame)
public:
CChildFrame();

/! Attributes
public:

// Operations
public:

/I Overrides
// ClassWizard generated virtual function overrides
I{{AFX_VIRTUAL(CChildFrame)
virtuai BOOL PreCreateWindow(CREATESTRUCT& cs);
I1}}AFX_VIRTUAL

// Implementation
public:
virtual ~CChildFrame();
#ifdef DEBUG
virtual void AssertValid(const;
virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions
protected:
I1{{ AFX_MSG(CChildFrame)
// NOTE - the ClassWizard will add and remove member functions here.
/! DO NOT EDIT what you see in these blocks of generated code!
II}}AFX_MSG
DECLARE_MESSAGE_MAP()
b

KT T i

II{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // 'defined(AFX_CHILDFRM_H__ C8CEC46B_8DFA_11D2_9E39_0020AFDA97B0__INCLUDED)

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HITTTTHTHTTTT T R T LT T T TTTT T T e e i
// Complex.h : interface of the Complex class
1/

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#include<math.h>

class COMPLEX
{

double Real,Imag;

public:
COMPLEX();
COMPLEX(double,double);
double GetReal(void) const;
double Getlmag(void) const;
double Magnitude(void);
double Phase(void);

friend COMPLEX operator+(COMPLEX, COMPLEX);
friend COMPLEX operator< COMPLEX, COMPLEX);
friend COMPLEX operator®*(COMPLEX, COMPLEX);
friend COMPLEX operator®*(COMPLEX, double);
friend COMPLEX operator/(COMPLEX, double);

5

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Filter3D.h : main header file for the FILTER3D application
/]

#if 1defined(AFX_FILTER3D_H__CSCEC465_SDFA_11D2_9E39_0020AFDA97B0__INCLUDED_)
#define AFX_FILTER3D_H__CSCEC465_8DFA_11D2_9E39_0020AFDA97B0__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#ifndef __ AFXWIN_H__
#error include 'stdafx.h’ before including this file for PCH
#endif

#include "resource.h” // main symbols

U T e L e et
/1 CFilter3DApp:

// See Filter3D.cpp for the implementation of this class
/]

class CFilter3DApp : public CWinApp

{
public:
CFilter3DApp();

// Overrides
// ClassWizard gencrated virtual function overrides
II{{AFX_VIRTUAL(CFilter3DApp)
public:
virtual BOOL Initinstance();
1} }AFX_VIRTUAL

// Implementation

/II{{AFX_MSG(CFilter3DApp)
afx_msg void OnAppAbout();
/I'NOTE - the ClassWizard will add and remove member functions here.
//' DO NOT EDIT what you see in these blocks of generated code !
I} }AFX_MSG
DECLARE_MESSAGE_MAP()
o

TN T T T e e e e e i

/I{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // !defined(AFX_FILTER3D_H__C8CECA465_SDFA_11D2_9E39_0020AFDA97B0__INCLUDED_)

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/I Filter3DDoc.h : interface of the CFilter3DDoc class
i
g

#if 'defined(AFX_FILTER3DDOC_H__ C8CEC46D_8DFA_11D2_9E39_0020AFDA97B0__INCLUDED)
#define AFX_FILTER3DDOC_H__CS8CEC46D_8DFA_11D2_9E39_0020AFDAS7B0__INCLUDED_

#if _MSC_VER >= 1000

#pragma once
#endif // _MSC_VER >= 1000

#include "Complex.h”

class CFilter3DDoc : public CDocument

{

protected: // create from serialization only
CFilter3DDoc();
DECLARE_DYNCREATE(CFilter3DDoc)

/I Attributes
public:

// Operations
public:

/I Overrides
// ClassWizard generated virtual function overrides
/I{{AFX_VIRTUAL(CFilter3DDoc)
public:
virtual BOOL OnNewDocument();
virtual void Serialize(CArchive& ar);
virtual BOOL OnOpenDocument(LPCTSTR IpszPathName);
/I}3AFX_VIRTUAL

// Implementation

public:
void SetSaveFileName(LPTSTR);
void SetOpenFileName(LPTSTR);
double* GetlmpuilseAxis(void);
double® GetFreqAxis(void);

unsigned GetPhaseResponseSize(void);
double®*** GetPhaseResponse(void);
unsigned GetMagnitudeResponseSize(void);
double*** GetMagnitudeResponse(void);
unsigned GetimpulseResponseSize(void);
double®*** GetilmpulseResponse(void);
unsigned GetNumCoefficients(void);
double*** GetBCoefTicients(void);
double ***® GetACoefTicients(void);
BOOL FilterMovie(void);
virtual ~CFilter3DDoc();
#ifdef _DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;
#endif

protected:

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Generated message map functions
protected:
CString m_lpstrNewFileName;

CString m_lpstrFileName;

void InsertPalette(BITMAPINFOHEADER,BYTE *,DWORD);

void InsertHeader(BITMAPINFOHEADER,BYTE *,BYTE *);

double *** outputBuffer;

BYTE *** inputBuffer;

void ExtractBMPHeader(BITMAPINFOHEADER &, BYTE *);

double* m_pdimpulseAxis;

double* m_pdFreqAxis;

double pi;

void FFTID(COMPLEX *,unsigned,unsigned);

void FFT3D(COMPLEX ***, unsigned,unsigned);

void BitReversal(unsigned®,unsigned);

BOOL Simq(double **, unsigned);

void ComputeCoefficients(void);

double*** m_pBCocffArray;

double®**®* m_pACocfTArray;

double*** m_pPhaseResponse;

double®*** m_pMagnitudeResponse;

double*** m_pimpulscResponse;

unsigned m_nOffset;

unsigned m_nOrder;

unsigned m_nNumSamples;

double m_dCutoffFreq;

/1{ { AFX_MSG(CFilter3DDoc)

11} }AFX_MSG

DECLARE_MESSAGE_MAP()
5

HHTHTTTTETETTEETT T T T T T e

H{{AFX_INSERT_LOCATION}}
/I Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // 'defined(AFX_FILTER3DDOC_H__CS8CEC46D_8DFA_11D2_9E39_0020AFDA97B0__INCLUDED_)

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#if 1defined(AFX_FILTER3DSETTINGSDLG_H__C6BS4SE!_SESC_11D2_9E39_0020AFDA97B0__INCLUDED_)
#define AFX_FILTER3DSETTINGSDLG_H__C6BS45E1_SESC_11D2_9E39_0020AFDA97BO0__INCLUDED_

#if _MSC_VER >= 1000

#pragma once

#endif // _MSC_VER >= 1000

/! Filter3DSettingsDig.h : header file
4

T anininn i T e
/1 CFilter3DSettingsDig dialog

class CFilter3DSettingsDlg : public CDialog
{
/I Construction
public:
CFilter3DSettingsDIg(CWnd* pParent =NULL); // standard constructor

// Dialog Data
I1{{ AFX_DATA(CFilter3DSettingsDlg)
enum { IDD =IDD_SETTINGS };
double m_dCutoffFreqg;
UINT m_nOffset;
UINT m_nOrder;
UINT m_nNumSamples;
I/} }AFX_DATA

// Overrides
// ClassWizard generated virtual function overrides
II{{AFX_VIRTUAL(CFilter3DSettingsDIg)

protected:
virtual void DoDataExchange(CDataExchange® pDX); // DDX/DDV support
I1}3AFX_VIRTUAL

// Implementation
protected:

/1 Generated message map functions
1§ {AFX_MSG(CFilter3DSettingsDlg)
// NOTE: the ClassWizard will add member functions here
I} }AFX_MSG
DECLARE_MESSAGE_MAP()
h
II{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // !defined(AFX_FILTER3DSETTINGSDLG_H__C6BS4SE1_SESC_11D2_9E39_0020AFDA97B0__INCLUDED)

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Filter3DView.h : interface of the CFilter3DView class
1/
Y i

#if !defined(AFX_FILTER3DVIEW_H__C8CEC46F_8DFA_11D2_9E39_0020AFDA97B0__INCLUDED_)
#definc AFX_FILTER3DVIEW_H__CS8CEC46F_8DFA_11D2_9E39_0020AFDA97B0__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

class CFilter3DView : public CView

{

protected: // create from serialization only
CFilter3DView();
DECLARE_DYNCREATE(CFilter3DView)

// Attributes
public:
CFilter3DDoc® GetDocument();

// Operations
public:

/! Overrides
// ClassWizard generated vinual function overrides
/I{{AFX_VIRTUAL(CFilter3DView)
public:
virtual void OnDraw(CDC* pDC); // overridden to draw this view
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
protected:
virtual BOOL OnPreparePrinting(CPrintinfo* pinfo);
virtual void OnBeginPrinting(CDC* pDC, CPrintinfo® pinfo);
virtual void OnEndPrinting(CDC* pDC, CPrintinfo*® pinfo);
virtual void OnUpdate(CView® pSender, LPARAM IHint, CObject® pHint);
/1}}AFX_VIRTUAL

// Implementation
public:
virtual ~CFilter3DView();
#ifdef _DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;
#endif

protected:

/1 Generated message map functions
protected:
HWND m_hwndFilteredA VI;

HWND m_hwndOriginalAVI;

double m_dRotationZ;

double m_dRotationY;

double m_dRotationX;

void TransformPoints(double &,double &,double &);
void MakePlotFitWindow();

POINT ConvertToScreen(double,double,double);

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

double pi;
double m_dConstAxisFreq;
double® m_pdAxisZ;
double® m_pdAxisX;
unsigned m_nNumDataPoints;
CPoint** m_pDisplayPointArray;
double®*** m_pDataPointArray;
unsigned m_nNumCoefficients;
double*** m_pBCoeffArray;
doubie*** m_pACocffArray;
unsigned m_nDisplay;
void PlotPoints(CDC *);
void DrawCoefficients(CDC *);
I1{{AFX_MSG(CFilter3DView)
afx_msg void OnDispiayCoefTicients();
afx_msg void OnDisplaylmpulse();
afx_msg void OnDisplayMagnitude();
afx_msg void OnDisplayPhase();
afx_msg void OnVideoOpen();
afx_msg void OnVideoPlay();
afx_msg void OnVideoFilter();
afx_msg void OnVideoOpenOutput();
1} }AFX_MSG
DECLARE_MESSAGE_MAP(
b
#ifndef _DEBUG // debug version in Filter3DView.cpp
inline CFilter3DDoc* CFilter3DView::GetDocument()
{ return (CFilter3DDoc*)m_pDocument; }
#endif
I LT TTET T L TR T T LT T

II{{AFX_INSERT_LOCATION}}
{/ Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // 'defined(AFX_FILTER3DVIEW_H__CS8CEC46F_8DFA_11D2_9E39_0020AFDA97B0__INCLUDED_)

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// MainFrm.h : interface of the CMainFrame class
/4
THHTHTTTITTIETTIT T TT T T T T T T LT R T T

#if tdefined(AFX_MAINFRM_H__C8CEC469_8DFA_11D2_9E39_0020AFDA97B0__INCLUDED_)
#define AFX_MAINFRM_H__CS8CEC469_8DFA_11D2_9E39_0020AFDA97B0__INCLUDED_

#if_MSC_VER >= 1000

#pragma once
#endif // _MSC_VER >= 1000

class CMainFrame : public CMDIFrameWnd

DECLARE_DYNAMIC(CMainFrame)
public:
CMainFrame();

// Attributes
public:

/1 Operations
public:

// Overrides
/I ClassWizard generated virtual function overrides
I{{AFX_VIRTUAL(CMainFrame)
virtual BOOL PreCreate Window(CREATESTRUCT& cs);
/I}}AFX_VIRTUAL

// implementation
public:
virtual ~CMainFrame();
#ifdef DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;
#endif

protected: // control bar embedded members
CStatusBar m_wndStatusBar;
CToolBar m_wndToolBar;

/I Generated message map functions
protected:
II{{ AFX_MSG(CMainFrame)
afx_msg int OnCreate(LPCREATESTRUCT IpCreateStruct);
// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code!
I}AFX_MSG
DECLARE_MESSAGE_MAPQ
h

HHIHTHTIRTTTITTHEEET T R T T T

1{{AFX_INSERT_LOCATION}}
/1 Microsoft Developer Studio will insert additional deciarations immediately before the previous line.

#endif // defined(AFX_MAINFRM_H__ C8CEC469_8DFA_11D2_9E39_0020AFDA97B0__ INCLUDED)

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#if tdefined(AFX_PROCESSINGDLG_H__C49A1C01_94F8_11D2_9E39_0020AFDA97B0__INCLUDED_)
#definc AFX_PROCESSINGDLG_H__C49A1C01_94F8_11D2_9E39_0020AFDA97B0__INCLUDED_

#if _MSC_VER >= 1000
#pragma once

#endif // _MSC_VER >= 1000
/1 ProcessingDlg.h : header file
/i

g s
/I CProcessingDlig dialog

class CProcessingDlg : public CDialog
{
// Construction
public:
CProcessingDig(CWnd* pParent =NULL); // standard constructor

// Dialog Data
I1{{AFX_DATA(CProcessingDig)
enum { IDD = IDD_PROCESSING };
CProgressCrrl m_progressCtrl;
/I}}AFX_DATA

// Overrides
// ClassWizard generated virtual function overrides
/1§ { AFX_VIRTUAL(CProcessingDlg)
protected:
virtual void DoDataExchange(CDataExchange®* pDX); // DDX/DDV support
1} }AFX_VIRTUAL

// Implementation
protected:

/I Generated message map functions
1{{ AFX_MSG(CProcessingDig)
// NOTE: the ClassWizard will add member functions here
I1}}AFX_MSG
DECLARE_MESSAGE_MAP()
5

/I{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // 'defined(AFX_PROCESSINGDLG_H__C49A1CO01_94F8_11D2_9E39_0020AFDA97B0__INCLUDED)

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//{{NO_DEPENDENCIES}}
/f Miicrosoft Developer Studio generated include file.

/I Used by Filter3D.rc

/4

#definc IDD_ABOUTBOX 100

#define IDR_MAINFRAME 128
#definc IDR_FILTERTYPE 129

#define IDD_SETTINGS 131

#define IDD_PROCESSING 133

#definc IDC_SAMPLES 1000

#define IDC_CUTOFF 1001

#define IDC_PROGRESS 1001

#define IDC_ORDER 1002

#define IDC_OFFSET 1003

#define ID_DISPLAY_IMPULSE 32771
#define ID_DISPLAY_MAGNITUDE 32172
#define ID_DISPLAY_PHASE 32773
#define ID_DISPLAY_COEFFICIENTS 32774
#define ID_VIDEO_OPEN 32776
#define ID_VIDEO_FILTER 32777
#definc ID_VIDEO_PLAY 32779
#define ID_VIDEO_OPENOUTPUTDEMO 32783
#define ID_VIDEO_OPENOUTPUT 32784

// Next default values for new objects

1/

#ifdef APSTUDIO_INVOKED

#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_3D_CONTROLS 1
#define _APS_NEXT_RESOURCE_VALUE 134
#define _APS_NEXT_COMMAND_VALUE 32786
#idefine _APS_NEXT_CONTROL_VALUE 1002
#define _APS_NEXT_SYMED_VALUE 101
#endif

#endif

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/Microsoft Developer Studio generated resource script.
/"
#include "resource.h”

#define APSTUDIO_READONLY_SYMBOLS
T T T T T T T T T L L T T T
1/

// Generated from the TEXTINCLUDE 2 resource.
/I

#include "afxres.h”

T ITETTTT T T T T T R e e
#undef APSTUDIO_READONLY_SYMBOLS

W ETT T T LR T
// English (U.S.) resources

#if 'defined(AFX_RESOURCE_DLL) || defined(AFX_TARG_ENU)
#ifdef WIN32

LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
#pragma code_page(1252)

#endif //_WIN32

#ifdef APSTUDIO_INVOKED
s
/"

// TEXTINCLUDE

n"

1 TEXTINCLUDE DISCARDABLE
BEGIN

"resource.h\0"
END

2 TEXTINCLUDE DISCARDABLE
BEGIN

"#include ""afxres.h""\r\n"

0"
END

3 TEXTINCLUDE DISCARDABLE
BEGIN
"#define _AFX_NO_SPLITTER_RESOURCES\r\n"
"#define _AFX_NO_OLE_RESOURCES\r\n"
"#define _AFX_NO_TRACKER_RESOURCES\r\n"
"#define _AFX_NO_PROPERTY_RESOURCES\r\n"
"r\n"
"#if 'defined(AFX_RESOURCE_DLL) || defined(AFX_TARG_ENU)\r\n"
"#ifdef _WIN32\r\n"
"LANGUAGE 9, 1\r\n"
“#pragma code_page(1252)\r\n"
“#endif\\n"
"#include ""res\\Filter3D.rc2"" // non-Microsoft Visual C++ edited resources\s\n”
"#include ""afxres.rc"” // Standard components\rin”
"#include ""afxprint.rc™ // printing/print preview resources\r\n”
"#endif\0"
END

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#endif // APSTUDIO_INVOKED

WU TR T T T T
1/

// Icon

!

// Icon with lowest ID value piaced first to ensure application icon

// remains consistent on all systems.

IDR_MAINFRAME ICON DISCARDABLE ‘res\\Filter3D.ico"
IDR_FILTERTYPE ICON DISCARDABLE ‘res\\Filter3DDoc.ico”

T T T LT T T T T T T T
/"

// Bitmap

/"

IDR_MAINFRAME BITMAP MOVEABLE PURE "res\\mainfram.bmp"

I e e N
/"

// Toolbar

/"

IDR_MAINFRAME TOOLBAR DISCARDABLE 16, 15
BEGIN
BUTTON ID_FILE_NEW
BUTTON [D_FILE_OPEN
BUTTON ID_FILE_SAVE
SEPARATOR
BUTTON ID_EDIT_CUT
BUTTON ID_EDIT_COPY
BUTTON ID_EDIT_PASTE
SEPARATOR
BUTTON ID_FILE_PRINT
BUTTON ID_APP_ABOUT
SEPARATOR
BUTTON ID_DISPLAY_IMPULSE
BUTTON ID_DISPLAY_MAGNITUDE
BUTTON ID_DISPLAY_PHASE
BUTTON ID_DISPLAY_COEFFICIENTS
SEPARATOR
BUTTON ID_VIDEO_OPEN
BUTTON ID_VIDEO_FILTER
BUTTON ID_VIDEO PLAY
END

T T TR T T T T T LT T T e T
1/}

// Menu

/4

IDR_MAINFRAME MENU PRELOAD DISCARDABLE
BEGIN
POPUP "&File"

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BEGIN
MENUITEM "&NewiCtr+N",
MENUITEM "&Open.. \Ctr+O",
MENUITEM SEPARATOR
MENUITEM "P&srint Setup...”,
MENUITEM SEPARATOR
MENUITEM "Recent File",
MENUITEM SEPARATOR
MENUITEM "E&xit",

END

POPUP "& View"

BEGIN
MENUITEM "&Toolbar”,
MENUITEM "&Status Bar”,

END

POPUP "&Help"

BEGIN
MENUITEM "&About Filter3D...",

END

END

ID_FILE_NEW
ID_FILE_OPEN

ID_FILE_PRINT_SETUP
ID_FILE_MRU_FILEI. GRAYED

ID_APP_EXIT

ID_VIEW_TOOLBAR
ID_VIEW_STATUS_BAR

ID_APP_ABOUT

IDR_FILTERTYPE MENU PRELOAD DISCARDABLE

BEGIN

POPUP "&File"

BEGIN
MENUITEM "&New\tCtrl+N",
MENUITEM "&Open.. tCtrl+O",
MENUITEM "&Close”,
MENUITEM "&Save\tCurl+S",
MENUITEM "Save &As...",
MENUITEM SEPARATOR
MENUITEM "&Print...Ctri+P",
MENUITEM "Print Pre&view",
MENUITEM "P&rint Setup...”,
MENUITEM SEPARATOR
MENUITEM "Recent File",
MENUITEM SEPARATOR
MENUITEM "E&xit",

END

POPUP "&Edit"

BEGIN
MENUITEM "&UndoMCtri+Z",
MENUITEM SEPARATOR
MENUITEM "Cu&MCrri+X",
MENUITEM "&Copy\tCtri+C",
MENUITEM "&Paste\tCtrl+V",

END

POPUP "&View"

BEGIN
MENUITEM "&Toolbar",
MENUITEM "&Status Bar”,

END

POPUP "& Window"

BEGIN
MENUITEM "&New Window",
MENUITEM "&Cascade”,
MENUITEM "&Tile",

ID_FILE_NEW
ID_FILE_OPEN
ID_FILE_CLOSE
ID_FILE_SAVE
ID_FILE_SAVE_AS

ID_FILE_PRINT
ID_FILE_PRINT_PREVIEW
ID_FILE_PRINT_SETUP
ID_FILE_MRU_FILE], GRAYED

ID_APP_EXIT

ID_EDIT_UNDO

ID_EDIT_CUT
ID_EDIT_COPY
ID_EDIT_PASTE

ID_VIEW_TOOLBAR
ID_VIEW_STATUS_BAR

ID_WINDOW_NEW
ID_WINDOW_CASCADE
ID_WINDOW_TILE_HORZ

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MENUITEM "&Arrange Icons”, ID_WINDOW_ARRANGE

END

POPUP "&Help"

BEGIN
MENUITEM "&About Filter3D...", ID_APP_ABOUT

END

POPUP "&Display”

BEGIN
MENUITEM "&Impuise”, ID_DISPLAY_IMPULSE
MENUITEM "&Magnitude”, ID_DISPLAY_MAGNITUDE
MENUITEM "&Phase”, ID_DISPLAY_PHASE
MENUITEM "&Coefficients", ID_DISPLAY_COEFFICIENTS

END

POPUP "&Video”

BEGIN
MENUITEM "&Open", ID_VIDEO_OPEN
MENUITEM "&Filter”, ID_VIDEO_FILTER
MENUITEM "&Play Both", ID_VIDEO_PLAY
MENUITEM SEPARATOR
MENUITEM "Oé&pen Output (Demo)”, ID_VIDEO_OPENOUTPUT

END

END

I T T T T LT T T
/i

// Accelerator

/I

IDR_MAINFRAME ACCELERATORS PRELOAD MOVEABLE PURE

BEGIN
~N", ID_FILE_NEW, VIRTKEY, CONTROL
"o", ID_FILE_OPEN, VIRTKEY, CONTROL
"S", ID_FILE_SAVE, VIRTKEY, CONTROL
"pn, ID_FILE_PRINT, VIRTKEY, CONTROL
"Z", ID_EDIT_UNDO, VIRTKEY, CONTROL
X", ID_EDIT_CUT, VIRTKEY, CONTROL
"C", ID_EDIT_COPY, VIRTKEY, CONTROL
"V, ID_EDIT_PASTE, VIRTKEY, CONTROL
VK_BACK, _ ID_EDIT_UNDO, VIRTKEY, ALT
VK_DELETE, ID_EDIT_CUT, VIRTKEY, SHIFT
VK_INSERT, ID_EDIT_COPY, VIRTKEY, CONTROL
VK_INSERT, ID_EDIT PASTE, VIRTKEY, SHIFT
VK_F6, ID_NEXT_PANE, VIRTKEY
VK_F6, ID_PREV_PANE, VIRTKEY, SHIFT

END

U I LT

"

// Dialog

"
IDD_ABOUTBOX DIALOG DISCARDABLE 0, 0, 217, 55
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU

CAPTION "About Filter3D"
FONT 8, "MS Sans Serif”

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BEGIN
ICON IDR_MAINFRAME,IDC_STATIC,11,17,20,20
LTEXT *Filter3D Version 1.0"JDC_STATIC,40,10,119,8,

SS_NOPREFIX
LTEXT "Copyright (C) 1998",IDC_STATIC,40,25,119,8
DEFPUSHBUTTON "OK",IDOK,178,7,32,14,WS_GROUP
END

IDD_SETTINGS DIALOG DISCARDABLE 0,0, 174, 72
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Settings”
FONT 8, "MS Sans Serif"
BEGIN
EDITTEXT IDC_SAMPLES,45,5,35,12,ES_AUTOHSCROLL
EDITTEXT IDC_CUTOFF,45,20,35,12,ES_AUTOHSCROLL
EDITTEXT IDC_ORDER45,35,35,12,ES_AUTOHSCROLL
EDITTEXT IDC_OFFSET,45,50,35,12,ES_AUTOHSCROLL
DEFPUSHBUTTON "OK",IDOK,112,11,50,14
PUSHBUTTON "Cancel",IDCANCEL,112,28,50,14
LTEXT “Samples:",IDC_STATIC.9,7,35,10
LTEXT "CutofFf:".IDC_STATIC,9,22,35,10
LTEXT "Order:",IDC_STATIC,9,37,35,10
LTEXT "Offset:",IDC_STATIC,9,52,35,10
END

IDD_PROCESSING DIALOG DISCARDABLE 0,0, 137,46
STYLE DS_MODALFRAME | DS_3DLOOK | DS_CENTER | WS_POPUP | WS_VISIBLE
FONT 8, "MS Sans Serif”

BEGIN
CONTROL "Progress1”,IDC_PROGRESS, "msctls_progress32",WS_BORDER,
12,25,113,14
CTEXT "Processing...",IDC_STATIC,45,7,48,10
END
#ifndef _MAC
T T T T T T T LT T
/4
// Version

14

VS_VERSION_INFO VERSIONINFO
FILEVERSION 1,0,0,1
PRODUCTVERSION 1,0,0,1
FILEFLAGSMASK 0x3fL

#ifdef _DEBUG
FILEFLAGS 0xIL

flelse
FILEFLAGS 0x0L

#endif
FILEOS 0x4L
FILETYPE OxIL
FILESUBTYPE 0x0L

BEGIN

BLOCK "StringFilelnfo”
BEGIN
BLOCK "040904B0"

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BEGIN
VALUE "CompanyName”, "\0"
VALUE "FileDescription”, "Filter3D MFC Application\0"
VALUE "FileVersion”, "1, 0, 0, 1\0"
VALUE "InternalName", "Filter3D\0”
VALUE "LegalCopyright”, "Copyright (C) 1998\0"
VALUE "LegalTrademarks”, "\0"
VALUE "OriginalFilename”, "Filter3D.EXE\0"
VALUE "ProductName”, “Filter3D Application\0”
VALUE "ProductVersion”, "1, 0, 0, 1\0"
END
END
BLOCK "VarFilelnfo”
BEGIN
VALUE "Transiation”, 0x409, 1200
END
END

#endif //'_MAC

I e T e e o]
i

/f DESIGNINFO

1/

#ifdef APSTUDIO_INVOKED
GUIDELINES DESIGNINFO DISCARDABLE
BEGIN
IDD_ABOUTBOX, DIALOG
BEGIN
LEFTMARGIN, 7
RIGHTMARGIN, 210
TOPMARGIN, 7
BOTTOMMARGIN, 48
END

IDD_SETTINGS, DIALOG
BEGIN
LEFTMARGIN, 7
RIGHTMARGIN, 167
TOPMARGIN, 7
BOTTOMMARGIN, 65
END

IDD_PROCESSING, DIALOG
BEGIN
LEFTMARGIN, 7
RIGHTMARGIN, 130
TOPMARGIN, 7
BOTTOMMARGIN, 39
END
END
#endif // APSTUDIO_INVOKED

L

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/"
// String Table
/4

STRINGTABLE PRELOAD DISCARDABLE
BEGIN

IDR_MAINFRAME *Filter3D"

IDR_FILTERTYPE "nFilter\nFilter\nFilter Files (*.f3d)\n.f3d\nFilter3D.Document\nFilter Document”
END

STRINGTABLE PRELOAD DISCARDABLE
BEGIN
AFX_IDS_APP_TITLE "Filter3D"
AFX_IDS_IDLEMESSAGE "Ready”
END

STRINGTABLE DISCARDABLE

BEGIN
ID_INDICATOR_EXT "EXT"
ID_INDICATOR_CAPS "CAP"
ID_INDICATOR NUM "NUM"
ID_INDICATOR_SCRL "SCRL"
ID_INDICATOR_ OVR "OVR"
ID_INDICATOR_REC "REC"

END

STRINGTABLE DISCARDABLE

BEGIN
ID_FILE_NEW "Create a new document\nNew”
ID_FILE_OPEN "Open an existing document\nOpen”
ID_FILE_CLOSE "Close the active document\nClose”
ID_FILE_SAVE "Save the active document\nSave”

ID_FILE_SAVE_AS "Save the active document with a new name\nSave As"
ID_FILE_PAGE_SETUP "Change the printing options\nPage Setup”
ID_FILE_PRINT_SETUP "Change the printer and printing options\nPrint Setup”
ID_FILE_PRINT “Print the active document\nPrint"
ID_FILE_PRINT_PREVIEW "Display full pages\nPrint Preview”

END

STRINGTABLE DISCARDABLE

BEGIN
ID_APP_ABOUT "Display program information, version number and copyright\nAbout”
ID_APP_EXIT "Quit the application; prompts to save documents\nExit"

END

STRINGTABLE DISCARDABLE

BEGIN

ID_FILE_MRU_FILE! "Open this document”
ID_FILE_MRU_FILE2 "Open this document”
ID_FILE MRU_FILE3 "Open this document”
ID_FILE_MRU_FILE4 "Open this document”
ID_FILE_MRU_FILES "Open this document”
ID_FILE_MRU_FILE6 "Open this document”
ID_FILE_MRU_FILE7 "Open this document”
ID_FILE_MRU_FILE8 "Open this document”
ID_FILE_MRU_FILE9 "Open this document”
ID_FILE_MRU_FILEI0 "Open this document”

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ID_FILE_MRU_FILEIl "Open this document”
ID_FILE_MRU FILEI2 "Open this document”
ID_FILE_MRU_FILEI3 "Open this document”
ID_FILE_MRU FILE14 "Open this document”
ID_FILE_MRU FILEIS "Open this document”
ID_FILE_MRU FILEI6 "Open this document”

END

STRINGTABLE DISCARDABLE

BEGIN
ID_NEXT_PANE "Switch to the next window pane\nNext Pane”
ID_PREV_PANE "Switch back to the previous window pane\nPrevious Pane”

END

STRINGTABLE DISCARDABLE

BEGIN

ID_WINDOW_NEW "Open another window for the active document\nNew Window”
ID_WINDOW_ARRANGE "Arrange icons at the bottomn of the window\nArrange Icons”
ID_WINDOW_CASCADE "Arrange windows so they overlap\nCascade Windows"
ID_WINDOW_TILE_HORZ “Arrange windows as non-overlapping tiles\nTile Windows"
ID_WINDOW _TILE_VERT "Arrange windows as non-overlapping tiles\nTile Windows”
ID_WINDOW_SPLIT "Split the active window into panes\nSplit”

END

STRINGTABLE DISCARDABLE

BEGIN
ID_EDIT_CLEAR "Erase the selection\nErase”
ID_EDIT_CLEAR_ALL "Erase everything\nErase All"

ID_EDIT_COPY "Copy the sclection and put it on the Clipboard\nCopy"
ID_EDIT_CUT "Cut the selection and put it on the Clipboard\nCut”
ID_EDIT_FIND "Find the specified text\nFind"

ID_EDIT_PASTE *Insert Clipboard contents\nPastc"
ID_EDIT_REPEAT "Repeat the fast action\nRepeat”
ID_EDIT_REPLACE "Replace specific text with different text\nReplace”
ID_EDIT_SELECT_ALL "Select the entire document\nSelect All"

ID_EDIT_UNDO "Undo the last action\nUndo”
ID_EDIT_REDO "Redo the previously undone action\nRedo”
END
STRINGTABLE DISCARDABLE
BEGIN

ID_VIEW_TOOLBAR "Show or hide the toolbar\nToggle ToolBar"
ID_VIEW_STATUS_BAR "Show or hide the status barnToggle StatusBar"
END

STRINGTABLE DISCARDABLE
BEGIN
AFX_IDS_SCSIZE "Change the window size”
AFX_IDS_SCMOVE "Change the window position”
AFX_IDS_SCMINIMIZE “Reduce the window to an icon”
AFX_IDS_SCMAXIMIZE “Enlarge the window to full size”
AFX_IDS_SCNEXTWINDOW "Switch to the next document window"
AFX_IDS_SCPREVWINDOW "Switch to the previous document window"
AFX_IDS_SCCLOSE "Close the active window and prompts to save the documents”
END

STRINGTABLE DISCARDABLE

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BEGIN
AFX_IDS_SCRESTORE "Restore the window to normal size”
AFX_IDS_SCTASKLIST "Activate Task List”
AFX_IDS_MDICHILD "Activate this window"

END

STRINGTABLE DISCARDABLE
BEGIN

AFX_IDS_PREVIEW_CLOSE "Close print preview mode\nCancel Preview”
END

STRINGTABLE DISCARDABLE

BEGIN
ID_DISPLAY_IMPULSE "Plot Impulse Response\nlmpuiseResponse”
ID_DISPLAY_MAGNITUDE "Plot Magnitude Response\nMagnitude Response”
ID_DISPLAY_PHASE "Plot Phase Response\nPhase Response™
ID_DISPLAY_COEFFICIENTS "Display CoefTicients\nCoefficients”
ID_VIDEO_OPEN "Open a Video File for Filtering\nOpen Movie”
ID_VIDEO_FILTER "Filter Video Clip\nFilter Movie”
ID_VIDEO PLAY "Play Both Video Clips at the Same Time\nPlay Both Clips”
ID_VIDEO_OPENOUTPUTDEMO "QGpen a Second Video Clip for Comparison\nOpen Output”

END

#endif // English (U.S.) resources
W T T LT LT LT T T

#ifndef APSTUDIO_INVOKED

I T T T T T LT LT T T T T T T T
/4

// Generated from the TEXTINCLUDE 3 resource.

Vi

#define _AFX_NO_SPLITTER_RESOURCES
#idefine _AFX_NO_OLE_RESOURCES

#define _AFX_NO_TRACKER_RESOURCES
#define _AFX_NO_PROPERTY_RESOURCES

#if !defined(AFX_RESOURCE_DLL) || defined(AFX_TARG_ENU)
#ifdef _WIN32

LANGUAGE, 1

#pragma code_page(1252)

#endif

#include "res\Filter3D.rc2" // non-Microsoft Visual C++ edited resources
#include "afxres.rc” // Standard components

#include "afxprint.rc” // printing/print preview resources

#endif

HTTTHTTHRH i i i i i T T T T T

#endif // not APSTUDIO_INVOKED

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// stdafich : include file for standard system include files,
/I or project specific include files that are used frequently, but

// are changed infrequently
/7

#if 'defined(AFX_STDAFX_H__C8CEC467_SDFA_11D2_9E39_0020AFDA97B0__INCLUDED)
#define AFX_STDAFX_H__CSCEC467_SDFA_11D2_9E39_0020AFDA97B0__INCLUDED_

#if _MSC_VER >= 1000

fipragma once

#endif / _MSC_VER >= 1000

#define VC_EXTRALEAN // Exclude rarely-used stuff from Windows headers
#include <afxwin.h> // MFC core and standard components

#include <afxext.h> /I MFC extensions

#ifndef AFX_NO_AFXCMN_SUPPORT

#include <afxcmn.h> // MFC support for Windows Common Controls
#endif // _AFX_NO_AFXCMN_SUPPORT

/I{{AFX_INSERT_LOCATION}}
/] Microsoft Developer Studio will insert additional declarations immediately before the previous line.

#endif // 'defined(AFX_STDAFX_H__C8CEC467_8DFA_11D2_9E39_0020AFDA97B0__INCLUDED)

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Matlab Source Code for Generating Magnitude Response,
Phase Response, and Group Delay Plots

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% thesis_magnitude.m - Generates plots of 3-D filter magnitude response

% Responses were generated by Filter3D.exe and are
% not included due to excessive length

$ w3 = 0.0

H=[... 1:

[wl,w2] = fregspace(length(H)):;
wl = wl.*pi;
w2 = wl;

figure

mesh (wl,w2,H), rotate3d on

title('Low-Pass Filter with Cutoff = pi/2 (wl = 0 rad/sec)')

xlabel ('w2 (rad/unit)'), ylabel('w3 (rad/unit)'), zlabel('Magnitude Response')
axis([-4 4 -4 4 0 1.2])

$ w3 =0.98
H=[... 1:

figure

mesh (wl,w2,H), rotate3d on

title('Low-Pass Filter with Cutoff = pi/2 (wl = 0.98 rad/sec)')

xlabel ('w2 (rad/unit)'), ylabel(‘'w3 (rad/unit)‘'), zlabel ('Magnitude Response')
axis([-4 4 -4 4 0 1.2])

$ w3 =2.16
H=[... 12

figure

mesh (wl,w2,H), rotate3d on

title('Low-Pass Filter with Cutoff = pi/2 (wl = 2.16 rad/sec)')

xlabel ('w2 (rad/unit)'), ylabel('w3 (rad/unit)'), zlabel ('Magnitude Response')
axis([-4 4 -4 4 0 1.2})

figure,

mesh (wl,w2,H), rotate3d on

title('Low-Pass Filter with Cutoff = pi/2 (wl = pi rad/sec)')

xlabel ('w2 (rad/unit)'), ylabel('w3 (rad/unit)'), zlabel('Magnitude Response')
axis([-4 4 -4 4 0 1.2}])

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% thesis_phase.m - Generates plots of 3-D filter phase response

% and group delay

% Responses were generated by Filter3D.exe and are
% not included due to excessive length

% w3 = 0.0

P=[... 1;

[wl,w2] = fregspace(length(P)):
wl = wl.*pi;

w2 = wl;

winc = w2 (2)-w2(1);

P = unwrap(P);

figure

mesh (wl,w2,P), rotate3d on

title('Low-Pass Filter with Cutoff = pi/2 (w3 = 0 radians/sec)')

xlabel ('wl (radians/unit)‘'), ylabel('w2 (radians/unit)'), zlabel{‘'Phase
Response (radians)')

view(-20,60)

for 1=l:length(P)
for k=1l:length(P)-1
if abs(P(1,k+1)-P(1l,k)) < 5
Gd(l,k) = -(P(l,k+1)-P(1l,k))/winc;
else
if P(l,k+1)-P(1,k) < O
Gd(l,k) = =-(P(1l,k+1)-(P(1,k)=-2*pi)) /winc;

else
Gd(l,k) = -(P(1l,k+1)=-(P(1,k)+2*pi)) /winc;
end
end
end
Gd (1, length(P)) = -(P(1l,length(P))-P(1l,length(P)-1))/winc;
end
figure,

mesh (wl,w2,Gd), rotate3d on

title('Low-Pass Filter with Cutoff = pi/2 (w3=0 radians/sec)')
xlabel ('wl (radians/unit)'), ylabel('w2 (radians/unit)')
zlabel ('Group Delay with Respect to w2')

view(0,0)

% w3 = 0.98
P=[... 1s

P = unwrap(P);

figure

mesh (wl,w2,P), rotate3d on

title('Low-Pass Filter with Cutoff = pi/2 (w3 = 0.98 radians/sec)')
xlabel ('wl (radians/unit)'), ylabel('w2 (radians/unit)?*)

zlabel ('Group Delay with Respect to w2')

view(-20,60)

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for 1l=1:length(P)
for k=l:1length(P)-1
if abs(P(1,k+1)-P(l,k)) < 5

Gd(l,k) = -(P(1,k+1)-P(1,k))/winc;
else
if P(1,k+1)-P(1,k) < O
Gd(l,k) = -(P(1,k+1)-(P(l,k)=-2*pi)) /winc;
else
Gd(l,k) = =(P(1,k+1)-(P(1l,k)+2*pi)) /winc;
end
end
end
Gd(1l,length(P)) = -(P(1,length(P))-P(1,length(P)-1))/winc;
end
figure

mesh (wl,w2,Gd), rotate3d on

title('Low-Pass Filter with Cutoff = pi/2 (w3=0.98 radians/sec)')
xlabel('wl (radians/unit)'), ylabel('w2 (radians/unit)"')

zlabel ('Group Delay with Respect to wl')

view(0,0)

$ w3 = 2,16
P=[...]:

P = unwrap(P):;

figure

mesh (wl,w2, P), rotate3d on

title('Low~-Pass Filter with Cutoff = pi/2 (w3 = 2.16 radians/sec)')
xlabel('wl (radians/unit)'), ylabel('w2 (radians/unit)"')

zlabel ('Group Delay with Respect to w2')

view(-20,60)

for 1=1l:length(P)
for k=1l:length(P)-1
if abs(P(1l,k+1)-P(1l,k)) < 5

Gd(l,k) = -(P(1,k+1)-P(1l,k))/winc;
else
if pP(1,k+1)-P(1l,k) < O
Gd(1l,k) = -(P(1,k+1)~-(P(1l,k)=-2*pi)) /winc;
else
Gd(l,k) = -(P(l,k+1)-(P(1l,k)+2*pi)) /winc;
end
end
end
if abs(P(l,length(P))-P(1l,length(P)~-1)) < 5
Gd(l,length(P)) = -(P(1,length(P))-P(l,length(P)-1))/winc;
end
end
figure

mesh (wl,w2,Gd), rotate3d on

title('Low-Pass Filter with Cutoff = pi/2 (w3 = 2.16 radians/sec)"')
xlabel ('wl (radians/unit)'), ylabel('w2 (radians/unit)')

zlabel ('Group Delay with Respect to wl')

view(0,0)

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% w3 = pi
P=[... 1:

P = unwrap(P):

figure

mesh (wl,w2,P), rotate3d on

title('Low-Pass Filter with Cutoff = pi/2 (w3 = pi radians/sec)')
xlabel ('wl (radians/unit)'), ylabel('w2 (radians/unit)')

zlabel ('Group Delay with Respect to w2')

view(-20,60)

for 1=1:length(P)
for k=l:length(P)~-1
if abs(P(l1,k+1)~-P(1l,k)) < 5

Gd(l,k) = -(P(1,k+1)-P(1,k))/winc;
else
if P(1l,k+1)-P(l,k) < O
Gd(l,k) = -(P(1,k+1)-(P(l,k)~-2*pi)) /winc;
else
Gd(1l,k) = =(P(1l,k+1)=-(P(1,k)+2*pi))/winc;
end
end
end
if abs(P(1l,length(P))-P(1l,length(P)-1)) < 5
Gd(1l,length(P)) = -(P(1l,length(P))-P(l,length(P)-1))/winc;
end
end
figure

mesh (wl,w2,Gd), rotate3d on
title('Low-Pass Filter with Cutoff = pi/2 (w3 = pi radians/sec) ')

xlabel ('wl (radians/unit)'), ylabel('w2 (radians/unit)?')
zlabel ('Group Delay with Respect to wl')
view(0,0)

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita Auctoris
Steven Bruce McFadden
1974 Bom October 19" in Lindsay, Ontario, Canada

1993 High School Diploma from I. E. Weldon Secondary School, Lindsay, Ontario,
Canada

1997 Bachelor of Applied Science in Electrical Engineering from University of Windsor,
Windsor, Ontario, Canada

2000 Candidate for Master of Applied Science in Electrical Engineering from University
of Windsor, Windsor, Ontario, Canada

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Multimedia applications of three-dimensional digital filters.
	Recommended Citation

	tmp.1618001122.pdf.NWwVH

