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Abstract

In this thesis, we have reported our investigations on efficiently implementing algorithms 

on the recently proposed Optical Multi-Trees (OMULT) multi-processors interconnection 

architecture that uses both electronic and optical links among processors. We have 

investigated algorithms for matrix multiplication of two matrices of size n2 x n2 and two 

matrices of arbitrary size, the prefix-sum of a series and some fundamental computational 

geometry problems. We show that some common algorithms for computational geometry 

-  finding the convex hull, the smallest enclosing box, the empirical cumulative 

distribution function and the all-nearest neighbor problems of n data points can be 

computed on the OMULT network in 0(log n) time, compared to 0(^1 n) algorithms on 

the Optical Transpose Interconnection System (OTIS) mesh for each of these problems.

Finally we have implemented our algorithm for matrix multiplication using the Sim Java 

simulation tool and feel that this is a convenient environment for testing such parallel 

algorithms.

Keywords: Optical Interconnect systems, OTIS-Mesh, Optical Multi-Trees (OMULT), 

Matrix Multiplication, Prefix-Sum, Convex Hull, Smallest Enclosing Box, Empirical 

Cumulative Distribution Function, All-Nearest Neighbor.
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Chapter 1: Introduction

1.1 Preamble

In late 1940 Dr John von Neumann formulated the classical computer architecture, based 

on a single central processing unit, to execute machine instructions [1]. The control unit 

of such machines fetches the instruction to be executed and its operands from memory, 

sends this instruction and its operands to the central processing unit where the instruction 

is executed. The design objective from the very beginning was to build faster and more 

efficient processors to build a faster computer. The modem computers are many orders of 

magnitude faster and more powerful compared to earlier machines.

A different approach to designing faster computers is to use a number of processors 

working together to achieve a better performance. A parallel computer (also called a 

multi-processor machine) is a machine that consists of a collection of processing units, or 

processors that cooperate, to solve a problem, by working simultaneously on different 

parts of that problem [1], The idea is that, if several operations are done in parallel, 

significant improvement of computer performance can be achieved through exploitation 

of parallelism [22]. One crucial issue in the design of multi-processor machines is to 

decide how the processors should communicate with each other. An interconnection 

network is used to provide connection among processors so that data can be transferred 

quickly between processors that need to share data. In order to achieve better execution 

performance of computer systems through parallelization, there have been considerable

1
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efforts in designing interconnection network for parallel computers [12], [21] over the 

last few decades.

When fabricating multi-processor systems, the standard approach is to use copper lines to 

realize links between processors. One major problem in this approach is the speed and 

other technological limitations of copper based connections. Optical technology has been 

proposed as a solution to this problem. One of the recent architectures partially based on 

the optical technology is the Optical Transpose Interconnect System (OTIS) [25], [12], 

[40] in which the processors are partitioned into groups so that processors within each 

group are interconnected by electronic links and processors in different groups are 

interconnected by optical links. The OTIS-Mesh optoelectronic computer is a class of 

OTIS computers on which various fundamental algorithms have been conveniently 

mapped [27], [29], [35] -  [39]. Very recently, Sinha and Bandyopadhyay [31] have 

introduced another opto-electronic computer system, called the Optical Multi-Trees 

(OMULT). The OMULT architecture uses, n2 complete binary trees of processors, each 

having n leaf nodes and n - 1 internal nodes.

1.2 Work reported in this thesis

In this thesis we are reporting our work in developing some efficient algorithms for the 

OMULT architecture. The algorithms reported in this thesis include-

1) matrix multiplication of two matrices of size n2 x n2,

2) matrix multiplication of two matrices of any arbitrary size,

2
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3) computing the prefix-sum of n2 data elements,

4) computing the prefix-sum of any arbitrary number of data elements,

5) computational geometry algorithms to find the

a. convex hull,

b. the smallest enclosing box,

c. the empirical cumulative distribution function and

d. all-nearest neighbor.

1.2.1 Matrix multiplication

Matrix multiplication is commonly used in the areas of graph theory, numerical 

algorithms, digital control, and signal processing [41]. Multiplication of large matrices 

requires a lot of computation time as its complexity is O (n),  where the size of the matrix 

is n x n. Because most current applications require higher computational throughput, 

many researchers have tried to improve the performance of matrix multiplication [41]. 

Since there is little scope to improve sequential matrix multiplication algorithm, parallel 

algorithms for matrix multiplication have been proposed [41]. These algorithms use 

matrix decomposition based on the number of processors available and include the 

systolic algorithm [24], Cannon's algorithm [2], Fox and Otto's algorithm [8], PUMMA 

(Parallel Universal Matrix Multiplication Algorithm) [3], SUMMA (Scalable Universal 

Matrix Multiplication Algorithm) [11], and DIMM A (Distribution Independent Matrix 

Multiplication Algorithm) [3]. In these algorithms, a processor calculates a partial result 

using the sub-matrices of the supplied matrices and successively performs the same

3
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calculation on new sub-matrices, adding the new results to the previous results. When all 

multiplication is complete, the root processor assembles the partial results and generates 

the product matrix. We have shown that the OMULT architecture is well-suited for 

matrix multiplication.

1.2.2 Prefix-sum computation

Prefix sum is very useful in scheduling and constraint satisfaction problems [1]. The 

problem descriptions are given below:

• We are given a series aj, a2 , ...... aw

• The prefix sum problem is to compute the following sums

> ay

> a; + a2

5* a j  +  a 2 +  CI3

> ....................

^ a/ + ci2 + .... + a/v

In summary, the prefix sum problem is to compute for all i, 1 < i < n. We have
/

developed an efficient algorithm to compute these sums using the OMULT architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.2.3 Computational geometry problem

Computational geometry problem deals with algorithms that create, modify or describe 

geometric objects using computers [1]. It is very useful in designing 3D-graphics. In the 

past it was not possible to generate fully rendered movies due to lack of availability of 

sufficiently powerful computers. However, over the last two decades, it has become 

possible to develop parallel algorithms for computational geometry problems [1]. This 

thesis investigates parallel algorithms for some basic computational geometry problems 

using the OMULT architecture. The details of the relevant computational geometry (CG) 

problems are described in chapter 2. In chapter 4 we will show that the CG problems we 

studied can be solved using the OMULT network [31] more quickly than the recently 

introduced OTIS-Mesh network [37].

1.3 Implementation of matrix multiplication algorithm on OMULT

We have simulated the algorithm for matrix multiplication of two n x n matrices on an 

OMULT architecture using the SIMJAVA package. The SIMJAVA package is a process 

based simulation tool based on Java. A SIMJAVA simulation is a collection of entities 

each running on its own thread. These entities are connected together by ports and can 

communicate with each other by sending and receiving event objects. A central system 

class controls all the threads, advances the simulation time, and delivers the events [42]. 

The SIMJAVA package is useful for a distributed memory systems, since it provides a 

widely used standard of message passing program and provides a portable, efficient, and 

flexible standard for message passing. Our simulation result shows that the SIMJAVA 

package is suitable for implementing the parallel algorithms for OMULT architecture.

5
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1.4 Organization of the thesis

We organize the rest of the thesis as follows: In chapter 2, we give an overview of 

multiprocessors, interconnection architecture, the OTIS-mesh, the OMULT network and 

algorithms for the matrix multiplication, prefix-sum and computational geometry 

problems. In chapter 3 we provide several new matrix multiplication and prefix-sum 

algorithms and time analysis on the OMULT system. We present and analyze the 

algorithms for computational geometry problems on the OMULT network in Chapter 4. 

Chapter 5 contains the detailed discussions on the simulation of the OMULT network and 

a critical summary of this work. Chapter 6 describes the fixture trends and finally the 

conclusions of the thesis. Appendix A through D contains the list of symbols used, 

glossary of the terms used, SimJava program for Simulation and the list of references.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Chapter 2: Review of Literature

2.1 Introduction

In this section we will review briefly the topics that are immediately relevant to this 

thesis. These include the following topics on parallel computers, interconnection 

architectures and the algorithms we have studied in this investigation:

> Parallel Computers

> Interconnection Architecture

o Interconnection Technologies 

o Simple Interconnection Architecture 

o Complex Opto-electronic Architecture

> Implementation of some algorithms on the OMULT Architecture

>  Fundamental algorithms relevant to the work

o Matrix multiplication 

o Prefix sum

o Computational Geometry

2.2 Parallel computers

A parallel computer is one that consists of a collection of processing units, or processors, 

that cooperate to solve a problem by working simultaneously on different parts of that 

problem [1]. A stream of instructions indicates, to the computer, what to do at each step

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and a stream of data is affected by these instructions. With the recent advances in VLSI 

technology, it is possible to have a computer that contains many processors that 

communicate each other using either shared memory or an interconnection network. 

Figure 2.1 shows a static interconnection network using the single instruction multiple 

data (SIMD) model. Each rectangle in the figure 2.1 represents a processor and every 

edge connecting two rectangles represents a bi-directional link connecting the pair of 

processors corresponding to the two rectangles.

In order to use such a parallel computer to solve a problem, the problem is decomposed 

into a number of sub-problems, each of which may be solved somewhat independently of 

one another. The sub-problems are assigned to different processors of the parallel 

machine. These processors work simultaneously to solve the sub-problem assigned to it 

and interact with other processors as needed to exchange data/ results. Finally the results 

of individual processors are combined to produce an answer to the original problem.

Processor

h - m

Links

F ig u r e  2 .1: 2D  M e s h  In t e r c o n n e c t io n  N e t w o r k

8
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2.3 Interconnection Architecture

The rules used to connect two processors are critically important. Interconnection 

architecture defines the way processors are connected to each other in a parallel 

computer. The interconnection architecture defines how any processor may transfer data 

from/to any other processors) in the network as needed to implement an algorithm. In 

recent years there has been a lot of investigation in designing interconnection architecture 

for parallel computer system [10, 34, 20]. The shortest path between two processors Pi 

and Pj is the smallest number of links that have to be used from one processor to 

communicate with the other. An important aspect, used to evaluate an interconnection 

network is the diameter, defined as the largest possible value of the shortest path between 

any two processors in an interconnection network[30].

2.4 Interconnection technologies

In this section we will discuss the two basic interconnection technologies that we use - 

electrical interconnections and optical interconnections. Traditional interconnection 

technology uses copper to get an electrical connection. Using VLSI, connecting two 

processors using copper is very straightforward and is traditionally done by embedding 

all processors on the same layout where the link is in the form of a via connection 

between metal layers [4]. Copper based interconnection system uses electronics signals 

for communication and the system works well when interconnection distances less than 1 

millimeter [4, 23]. It is well known that the VLSI layout of many popular communication 

architectures is complicated and the size of such VLSI arrays as well as the physical

9
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length of the longest link increase exponentially with the number of processors in the 

network [21]. This is a major problem since a longer copper line dramatically increases 

the delay on the line.

An optical network is a digital communication system that uses light waves as the 

medium for transmission of data. Optical technology has made significant contributions 

to the state of the art for long distance communication. Advantages of optical technology 

include high reliability, low interference, security benefits and (most important) very high 

bandwidth [4].

In recent years, the idea of replacing electrical connections by optical connection in an 

interconnection network has been drawing much attention among researchers [22], 

Besides the advantages of high bandwidth and low wire density, optical communication 

supports high data rate communication with lower power requirements than electric 

interconnects [10], high bandwidth and high reliability. A major advantage is that, except 

for the speed of light limitation, there is no capacitive delay for a longer physical 

connection realized using optical technology [4]. For this reason, researchers are 

investigating the use of optical links rather than electronic links when the interconnection 

distance is more than a few millimeters [7, 16].

10
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2.5 Simple Interconnection Architecture

In this sub-section we will present some examples of basic interconnection networks and 

configurations.

2.5.1 Linear Array

The simplest way to connect nodes is in the form of a linear array. If we have N  

processors Po, P , ... Pn-i to be interconnected in a linear array, processor Pt has a link to 

processor Pt.i and a link to processor Pi+i [1], for all i, 0 < i <N. The processor Po and 

Pn-i have only one link to processor Pi and Pn-2 respectively. We show a linear array in 

Figure 2.2. Linear arrays have a simple architecture and have been used in some SIMD 

machines [5]. Linear arrays have a poor diameter.

F ig u r e  2.2: L in e a r  a r r a y  in t e r c o n n e c t io n  

2.5.2 Tree Interconnections

In this network the processors form the binary tree. The binary tree has a diameter as the 

0(log N) where N  is the number of nodes in the network assuming that each node has the 

same number of incoming and outgoing links [5]. The important advantage of the 

topology is that it is suitable for many parallel algorithms. The main drawback of the 

binary tree network is poor bisection width and arc connectivity [30].

11
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F ig u r e  2 .3: T r e e  In t e r c o n n e c t io n

In general, such a tree has d levels, numbered 0 (for leaf nodes) to d -  1 (for the node at 

the root of the tree), and N  = 2d -  1 nodes each of which is a processor. Figure 2.3 

[15] shows a tree uses d -  4 and N  = 15. The root node at level d -  1 has no parent and 

leaf nodes at level 0 have no children. Each node at level i, is connected to its root node 

at level i + 1 and to its two leave nodes at level i - 1.

2.5.3 2D-Mesh Interconnection

Mesh (figure 2.4 [5]) is one of the most popular interconnection network. This is the 

interconnection we used in Figure 2.1. In an n x n 2D mesh, the processors are arranged 

in n rows and n columns in a square grid. The processor in row j  and column k is denoted 

by P (j, k), where 0 <j, k< m - l .  There are links connectingP (j, k) to processors P (j +1, 

k), P 0 ~ 1, k), P (j, k+1) and P (j, k-1). There are 4(n-2) processors on the four outer 

boundaries of the grid, each of which has three processors with which it is connected by a 

link. There are four comer processors that have only two other processors with which it is

12
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connected by a link. Each of the remaining (n-2)2 processors have four other processors 

with which it is connected by a link.

F ig u r e  2 .4 : 2 d - m e s h  In t e r c o n n e c t io n

There are many others proposed interconnection architectures [10] that we will not 

review due to lack of space.

2.6 Interconnection architecture based on opto-electronic technology

2.6.1 OTIS Mesh architecture

We have already mentioned the advantages of optical communication when the physical 

distance between two processors exceed a certain limit. One of the recent architectures 

that take advantage of the optical technology is the Optical Transpose Interconnect 

System (OTIS) [25], [12], [40]. The OTIS is an example of a hybrid architecture in 

which the processors are partitioned into groups of the same size.

13
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Figure 2.5 shows a 16-processor OTIS-Mesh where squares with solid lines denote a 

processor and a rectangle with dashed lines denote a group of 4 processors. The groups 

are arranged in the form of a two-dimensional array and specifying the group the 

processor belongs to and the address of the processor within the group identifies each 

processor. Wang and Sahni [35]-[39] used the form (G, P) where G identifies the group 

and P  identifies the processor within the group. Since specifying its row index and its 

column index may identify a group, G is specified by the pair (gXi gy), Similarly a 

processor within a given group may be uniquely specified by it’s row index px and 

column index py. Thus the address of a processor is the 4-tuple (gXi gy, px, py). The 

interconnections of the network are as follows:

(1) Electronic links are used to connect processors within the group so that processor 

P(gx,gy.px ±  l ,p y)  has an electronic link with processor P(gx,gy,Px,Py ± 1)-

(2) Optical interconnections are used in different group so that (Git Pj) connect to (Pj, 

Gi) where i ^ j  so that processor P(gx,gy, p x ± 1, py)  is connected to processor 

P(px,py, gx, gy ± 1) by an optical link.

Krishnamoorthy et al. [17] have shown that, when the number of processors in each 

group is equal to the total number of groups, then the bandwidth and power efficiency are 

maximized, and system area and volume are minimized. The OTIS-Mesh opto-electronic 

computer is a class of OTIS computers on which various fundamental algorithms have 

been conveniently mapped [29], [33], [35] -  [39].

14
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F ig u r e  2 .5 : o t is -m e s h  n e t w o r k

Wang and Sahni [37] have developed algorithms such as the convex hull, the smallest 

enclosing box, two-set dominance, maximal points, all-nearest neighbor and closest-pair 

on OTIS-Mesh. Rajasekaran and Sahni [29] have developed algorithms for packet 

routing, sorting and selection on OTIS-Mesh. The investigations of these algorithms 

using this network show that all those problems can be solved in OfV N) time even with 

N2 inputs, whereas most of those problems takes O(N) time for multi-mesh [6] and 0(N2) 

time for mesh.

15
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2.6.2 OMULT Architecture

Sinha and Bandyopadhyay have recently proposed a new hybrid interconnection system 

called the Optical Multi-Trees (OMULT) which uses binary trees as the basic building

blocks[31]. The OMULT network o f order n consists of n complete binary trees Tfs ,  1 <
{

i, j  < n, arranged in the form of an n x n array, each tree having n leaf nodes and n-1 

internal nodes. Each node in a tree is a processor. The nodes within each tree are 

interconnected by usual electronic links, while the leaf nodes of different trees are 

interconnected by optical links according to some rules discussed in this section. The 

nodes in each tree Tip 1 < i, j  < n, are given distinct integers from 1 to 2n-l in reverse 

level order, i.e., the leaf nodes in each tree are numbered from 1 to n, in order from left to 

right, and the internal nodes are also numbered from left to right in successive lower 

levels (the root node being at the lowest level - level 0). Thus, the root node in each tree 

is given the node number 2n-l, and the node k in a tree Ty will be referred to by the 

processor node P(i,j, k), 1 < i , j  < n, 1 < k < 2n-l. The total number of nodes in the 

system \sN  = n2 (2n-l) -  2n3- n2. The optical links interconnected only the leaf nodes in 

different trees as follows:

1) Processor P(i, j, k), 1 < i . j  < n, 1 < k < n, j  *  k, is connected to processor

P(i, k, j)  by a bi-directional (full-duplex) optical link (horizontal inter-tree link),

2) Processor P(i, j, k), 1 < i , j  < n, 1 < k < n, i ^  k, is connected to processor 

P(k,j, i) by a bi-directional optical link (vertical inter-tree link),

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3) For i = k  and/or j  = k, processor P(i, j, k), 1 < i, j  < n, 1 < k < n, is 

connected to processor P(i, j, 2n-l) by a bi-directional optical link.

An example for the OMULT topology for n = 4 is shown in Fig. 2.6. These rules for 

interconnecting the leaf nodes in different trees have some similarities with those for 

interconnecting boundary/comer nodes in different meshes of the Multi-Mesh topology 

[6]. It follows from the above interconnection scheme that each of the leaf nodes P(i, j, 

k), 1 < i ,j  < n, 1 < k < n, excepting those of the form P(i, i, i), has 2 optical links 

and one electronic link connected to it, while each of the leaf nodes P(i, i, i), 1 < i < n, 

has only one optical link and one electronic link connected to it. All non-root internal 

nodes in a tree have 3 electronic links each, while each root node of the form P(i, i, 2n-l),

Optical WWtl-Trees (OMULT) I»terc€»»ectie« System 
(All optical. kteKOffliectioa (inks ate not shown)

F ig u r e  2 .6: o m u l t  n e t w o r k
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has one optical link and two electronic links All remaining root nodes has two optical 

links and two electronic links. The total number of optical links in the network is equal to 

2(n3 -n) + n + n + 2(n2 -n) = 2(n3 + n2 - n).

In the algorithms described in [31] and in our algorithms that we will describe later, we 

assume that a processor P (i, j, k) in an OMULT architecture has three registers A(i, j, k), 

B(i, j, k) and C(i, j, k).

2.7 Some Important Properties of the OMULT Network

Property 1: The diameter of the OMULT topology is 6 log n + 2 = 0 (  log N), with 6 

log n electronic links and 2 optical links.

Property 2: The node connectivity of the OMULT topology is two.

Property 3: The diameter of the OMULT topology under single node/link failure is 

equal to 8 log n + 6.

These properties are discussed in [31 ].

2.8 Algorithms for the OMULT Architecture

Sinha and Bandyopadhyay [31] have considered the following basic operations on the 

OMULT architecture: a) Data Broadcast, b) Row/Column Group-Broadcast, c) Complete 

Group-Broadcast, d) Summation/Average/Maximum/Minimum, e) Prefix Computation, 

f) Matrix Transpose, g) Matrix Multiplication and h) Sorting algorithms. These 

algorithms can be very efficiently solved on the OMULT topology with lesser time

18
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complexities than those on the OTIS mesh. For example, summation/ average/ maximum/ 

minimum of n3 elements and prefix computation of n elements can be computed on this 

network in Oflog n) time, two n x n matrices can be multiplied in 0(log n) time, and n 

elements can be sorted in 0(log2n) time. These time complexities may be compared to 

O(n) time for finding summation/maximum/minimum and prefix computation of n 

elements, 0(n4) time for multiplying two n4 x n4 matrices, and O(n) time for sorting n4 

elements on the OTIS mesh with n processors. In this section, we briefly review the 

mapping of two fundamental algorithms on the OMULT topology as proposed in [31] 

since we will refer to them later on in this thesis.

2.8.1 Row/column group broadcast

Only the leaf nodes in a tree are used for performing input/output operations. Assuming 

that there have n data elements dj, d2, ..., dn in the n leaf nodes in a tree Ty, for different 

applications, we may need to broadcast all these n data elements to the respective leaf 

nodes in all trees in the same column (row). We can be performed this operation in two 

phases. In phase 1, the group of data elements is distributed over all trees in the same row 

i (column j). In phase 2, broadcast them to all trees in column j  (row i). We may perform 

the whole process in 0(log n) time as follows.

Without loss of generality, we assume that, initially, the n data elements dj, d2, dn are 

stored in the leaf nodes of the tree Tu, data dk, 1 < k < n, is stored in the processor 

node P(l, 1, h), and we want to broadcast these to all trees in the first column. First, using
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the horizontal optical links, we move data element dk to P(l, k, 1) for all k, 1 < k < n. 

We then broadcast data dk to all nodes in the tree Tjk, 1 < k < n, which needs 2 log n 

steps along electronic links. This completes phase 1 of distributing the n data elements to 

all trees in the same row (row 1).

In phase 2, for broadcasting the data elements to all trees in the same column (column 1), 

we take the data dj , 1 < j  < n, now stored in the processors P (l,j, k), 1 < k < n, and 

send dj to the processors P(k, j, 1) using the vertical optical links. Using the horizontal 

optical links once again, we move data dj to the processors P(l, j, k). If the data elements 

were initially stored in any other tree Ty, we may use the same method to broadcast them 

to all trees in ith row and j ih column. It follows from above that the total number of 

communication steps needed for the whole process is 2 log n (electronic links) + 3 

(optical links).

2.8.2 Data Broadcast

To broadcast a data d residing in a processor P(i, j, k), we need to broadcast d to all nodes 

in the tree Ty in a maximum of 2 log n communication steps using all electronic links. 

Once all the leaf nodes in Ty receive the data d, we may use the optical links in the 

horizontal direction from each of these nodes to send the data to a leaf node in each of 

the remaining (n - 1) trees in the ith row. This requires just one communication step 

through optical links. We then broadcast this data reaching a leaf node in a tree Tim, 1 < 

m < n, to all nodes in Tim in 2 log n communication steps through the electronic links.

20
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The leaf nodes in all the trees in ith row will then send the data to one leaf node of each of 

the remaining (n - n) trees of the network using the vertical optical links. Finally, we 

can broadcast this data to all nodes in each of these (n - n) trees in another 2 log n steps 

through electronic links. Thus, the broadcast operation needs a total of 6 log n 

(electronic) + 2 (optical) communication steps (0(log N) time).

2.8.3 Complete Group-Broadcast

In a complete group broadcast, the group of n data elements d\, d2, dn initially stored 

in the n leaf nodes in a tree, say Tj/, may be communicated to the respective leaf nodes in 

all trees by modifying the phase 2 of the above operation of row/column group-broadcast. 

First, we distribute the data elements over all trees in row 1, as in phase 1 of the 

row/column group-broadcast. In the second phase, we send the data dj , 1 < j  < n, now 

stored in the processors P(l, j, k), 1 < k < n, to the processors P(k, j, 1) using the 

vertical optical links. We now broadcast this data element dj, 1 < j  < n, to all the leaf 

nodes in the trees 7#, 1 < k < n. This needs 2 log n steps along electronic links. Using 

the bi-directional horizontal optical links, we move the data element dj now stored in 

P(k, j, I), 1 < j , k , l  < n, to P(k, I, j). Thus, we send data dj to the j th leaf node of all the 

trees, and hence, we execute the broadcast operation correctly. The total number of steps 

needed for the whole operation is 4 log n (electronic links) + 3 (optical links).

21
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2.8.4 Sorting

Suppose there have a set of n elements {ai, ci2, . . a„} stored in the leaf nodes of the

tree Tjj. We assume that there is a total ordering defined on this set of elements. These 

elements can be sorted in the following algorithm[31] by finding the rank of each 

elementjoxcfklfhlerdfkg hdfitygh . Thus, if the rank of an element a;- is r, then after 

sorting, the element a, will be placed in the processor P(l, 1, r). For the sake of 

explaining the basic idea, we assume that the given elements are all distinct.

Algorithm SORT :

Step 1 : We broadcast the given set of n elements to all trees 7};, 1 < j  < n, in the first 

column.

Step 2 : For all j, 1 < j  < n, we broadcast aj to all the leaf nodes in the tree 7}/, compare 

it with all other elements and find its rank. We store the rank value in the root of the tree 

Tji- Also, in this process of computing the rank, we eventually move the element aj to the 

root of the tree Tji-

Step 3 : If the rank of aj is r, then we move the element aj to the node P(j, 1, r).

Step 4 : P(r, 1, j)  *- P(j, 1, r); /* using the vertical optical link */

Step 5: P(r,l, 1) <- P(r, l,j);

Step 6 : P(l, 1, r) <- P(r, 1, 1); /* using the vertical optical link */

It was shown that the overall sorting can be completed in O{log n) time[31].

22
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2.8.5 Matrix Multiplication

We give below the well-known algorithm for matrix multiplication of a matrix A of size

M  x K  and a matrix B of size K * N  giving a matrix C of size M  x N. We will use apq (bpq

and cpq ) to denote the element in row p  and column q of A (respectively B and C) and

will use the notation A = [apqJ (respectively B = [bpq] and C = [cpq]). The following

pseudo-code gives a simple sequential algorithm for matrix multiplication.

for all i, 1 < i< M  
for all j, 1 < j  < N  
{  cy  =  0; 

for all k, 1 < k< K
Cy — Cy + Clik * b/g,'

}
We may easily convert the above sequential algorithm to multiply two n x n matrices A 

= [ciij] and B = [bij to form the product matrix C = [cij to a parallel algorithm for an 

OMULT network of order n.

The above sequential algorithm is obviously equivalent to the following pseudo-code for

a parallel algorithm:

for all i, 1 < i< n do in parallel
for all j, 1 < j  < n do in parallel 
{ CH = 0’

for all k, 1 < k < n do in parallel
{

Cij — Cy + O-ik * bjg,'
}

}

Initially we store the matrix elements in the leaf nodes of the diagonal trees To, 1 < i < 

n, such that the elements an, at2 , . . ain of row i of the matrix A are stored in A(i, i, 1),
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Aft, i, 2 ) ,.. Aft, i, n), respectively, and the elements bn, b2u . . ., b„i of column i of the 

matrix B are stored in Bft, i, 1), Bft, i, 2), . . ., B(i, i, n), respectively. Algorithm M  [31] 

for the OMULT topology ensures that the elements of the row i of the product matrix C 

remain in the leaf nodes of the diagonal tree To, 1 < i < n when the algorithm 

terminates.

Algorithm M:

Step 1: For all i, 1 < i < n, broadcast the elements of row i of the matrix A to the A- 

registers of the leaf nodes of all trees Ty, 1 < j  < n in the same row (using the 

above row/column group-broadcast algorithm).

Step 2: For all j ,  1 < j  < n, broadcast the elements of column j  of the matrix B to the B- 

registers of the leaf nodes of all trees Ty, 1 < i < n, in the same column.

/* The leaf nodes of the tree Ty, 1 < i, j  < n, now contains the elements of row i of A 

and column j  of B */

Step 3: For all i,j, k, 1 < i,j, k < n, do in parallel

Begin /* product element cy is now computed in the tree Ty */

A(i,j, k) *- A(i,j, k) * Bft, j, k);

A(i,j, 2n-l) <- A(i,j, 1) + Aft, j, 2) + . . .  + Aft,j, n);

Aft, j, i) *- A(i,j, 2n-l);

end;

/* cy values are moved to the diagonal tree Tu*/
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Step 4: For all i, j ,  1 < i , j  < n, do in parallel

A(i, i , j)  *- A(i,j, i); /* using the horizontal optical links */

2.8.6 Prefix-sum

Prefix sum is very useful in scheduling and constraint satisfaction problems [1]. The 

problem description is given below:

• We are considering a series ai, ci2 , .... ..

• We need to compute

> a,

> aj + a2

^  a i + a2+ Os

>  ....................

^  Oj + 02 + ....  + On

• we can write the general form as follows:

• aj + 0 2  +  + at, 1 < i < N whereN=  n3.
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2.8.7 Computational Geometry Problems

Computational Geometry (CG) deals with algorithms that create, modify or describe 

geometric objects using computers and is an important field in computer graphics, 

robotics etc. Important classes of computational geometry problems [1] include:

(1) Inclusion problems such as
a. locating a point in a planar subdivision,
b. reporting which points among a given set are contained in a specified 

domain.
(2) Intersection problems such as finding intersections of

a. line segments,
b. polygons,
c. circles,
d. rectangles,
e. half spaces

(3) Proximity problems such as
a. determining the closest pair among a set of given points or among the 

vertices of a polygon,
b. computing the smallest distance from one set of points to another

(4) Construction problems such as
a. identifying the convex hull of a polygon,
b. obtaining the smallest box that includes a set of points.

We now briefly describe some CG algorithms that we will use later on in this thesis.

2.8.7.1 Convex Hull

The convex hull problem [28] is to find a hull that surrounds and encloses a given set of 

points. To find the convex hull for a given set of points S on a plane (/ S /  = n), we need 

to identify the extreme points. We assume that no three points in S are collinear. Fig. 

2.7(A) shows an example for the set of points S and Fig. 2.7(B) shows the corresponding 

convex hull of S. Corresponding to a point pt C S, let pw, p u ,. . pi,n -2 be the points in S 

-  {pt}, (i.e., pik 2 pi for 0 < k < n-2), sorted by the polar angle made by the vector, 0 < 

k < n-2. Then, by the results shown in [37], p,- is an extreme point of S if the
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counterclockwise angle between any pair of consecutive vectors PiPik and

PiPi,(k+\) modn -i is more than jv. For example, for S = {a , b, c}, if the counter-clockwise

angle (polar angle) between the vectors ab and ac, as shown in Fig. 2.8, is greater than 

k, then point a is an extreme point.

*  .*  *♦ # * •  • •
♦

F ig u r e  2 .7 (a ): S e t  o f  p o in t s

•  * •

F ig u r e  2 .7 (b): C o n v e x  h u l l  o f  S
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a

F ig u r e  2 .8: P o l a r  a n g l e
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 ̂ •  7 C
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F ig u r e  2 .9 (a): S e t  o f  P o in t s

Figure 2.9(A) shows a set of points S = {a, b, c, d, e, f  g}, for which an extreme point is

illustrated in Figure 2.9(B). The counterclockwise angle between the vectors ea and eg 

is more than %, so e is an extreme point, whereas c is not an extreme point shown in
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figure 2.9(c) because the counterclockwise angle between no two consecutive vectors 

(sorted by their polar angles) originating at the point c is more than n. In chapter 4, we 

have used the above property to find the convex hull for a set S of points on OMULT 

network and the algorithm proposed by [37] for solving the Convex Hull problem on the 

OTIS mesh is given below:

e is an extreme point c is not an extreme point

F ig u r e  2 .9 (b ): e  is  a n  e x t r e m e  p o in t  F ig u r e  2 .9 (c ): c  is  a n  e x t r e m e  p o in t

Wang and Sahni [37] have proposed the following algorithm to find the Convex Hull 

using the OTIS mesh.

Algorithm Convex Hull:

Step 1: Perform an OTIS move of the points in group 0.

Step 2: Processor 0 of group i , 0 < i < N  broadcasts the point it received in step 1 to all 

processors in its group. All processors in a group now have the same point in their A 

registers.
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Step 3: Perform an OTIS move on the points in the A registers. The data is received into 

B registers. Now, each group i processor has the point p t in it’s A register and a point of S 

- { P i }  in its B register.

Step 4: Each processor computes the polar angle of the vector defined by the points in its 

A and B registers.

Step 5: Each group sorts, into snake-like order, the angles computed by its processors. 

Step 6: Each processor in a group checks the condition of computing the angle between 

the vectors defined by the point in its B register, and the point in the B register of the 

next processor in the snake like order.

Step 7: Processor 0 of each group is notified by group processors that conclude a point pi 

is an extreme point.

Step 8: The points that pass the test of Theorem 1 [37] are transmitted to group 0 via an 

OTIS move.

Step 9: The extreme points accumulated by group 0 are sorted by polar angle order.

2.8.7.2 Smallest Enclosing Box (SEB)

Given a set S of coplanar points, the smallest enclosing box (SEB) problem [37] is to find 

the rectangle with the minimum area that encloses all the points in S. Freeman and 

Shapira showed [9] that the SEB of S has one side that is collinear with an edge of the 

convex hull of S and that the remaining three sides of the SEB pass through at least one 

convex hull vertex each. Figure 2.10 shows a rectangle of SEB that encloses all the
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points. The algorithm proposed by Wang and Sahni [37] for solving the SEB problem on 

the OTIS mesh is given below:

Algorithm SEB:

Step 1: Compute the convex hull as in Section 2.8.7.1.

Step 2: Broadcast the hull vertices from group 0 to all remaining groups.

Step 3: Group i determines the ith hull edge (pi, p r)  and broadcasts this to all processors 

within the group, for all i, 1 < i < n.

Step 4: Each group i processor determines the distance h between its hull vertex q (if 

any) and the ith hull edge (pi, pr)  as well as the distance w to the perpendicular bisector 

L of the ith hull edge. If q and pi are on the same side of L, set I = -w and r = 0; 

otherwise, set 1 = 0 and r = w.

Step 5: Processor 0 of each group i compute the maximum of the h ’s and r ’s in its group 

and the minimum of the I ’s in its group. The area of the SEB that has one side collinear 

with (pi, pr)  is Ai -  hmax * (rmax — Imin).

Step 6: Perform an OTIS move on the A i’s. Now all Ai’s are in the group 0 processors. 

Step 7: Processor 0 of group 0 determines the minimum Ai.
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F ig u r e  2 .1 0 : S m a l l e s t  E n c l o s in g  B o x

2.8.7.3 Empirical Cumulative Distribution Function (ECDF)

The Empirical Cumulative Distribution Function (ECDF) problem [37] is to find the 

number of points dominated by each point p t €  S. Any point dominates another point if 

and only if both coordinate values of the first point is greater than those of the second 

point. In other words, a point p t = (xt , y j, p t €  S dominates another point pj = (x)■, yj), pj 

€  S if and only if x; > Xj and y, >; yj [37]. For example, Figure 2.11 shows four points pi, 

P2, P3 and p 4 . Point p 4 dominates all other points whereas p 2 dominates only pi, but not pj 

or p 4 . An algorithm proposed by [37] for solving the ECDF problem on the OTIS mesh is 

given below:
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F ig u r e  2.11: S e t  o f  P oints

Algorithm ECDF:

Step 1: Perform an OTIS move on the points initially in group 0. Now processor ( i , 0) 

has point p t.

Step 2: Processor ( i , 0) broadcasts point p t to the remaining processors in its group. Each 

processor saves its point in register A as well as register B.

Step 3: Perform an OTIS move on the register B data. Now, processor ( i , j) has point p t 

in register A and point pj in register B.

Step 4: Each processor sets its C register to 1 if its A register point dominates its B 

register point; the C register is set to 0 otherwise.

Step 5: Processor ( i , 0) computes the sum of the C values in its group.

Step 6: Perform an OTIS move on the sums computed in Step 5.
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2.8.7.4 All-Nearest Neighbor

All nearest neighbor problem is to find the minimum distance between any two points. 

We are considering a set of points (figure 2.11) S = {pi, P 2 , • ■ ■, P n}, the All-Nearest 

Neighbor problem deals with finding a point q €  S  corresponding to every point p  €  S, 

such that q £ p  and q is nearest to p  among all other points in S [14]. Without loss of 

generality, we assume that all points of S are distinct. The algorithm proposed by [37] for 

solving the ANN problem on the OTIS mesh is given below:

Algorithm ANN:

Step 1: Perform an OTIS move on the points initially in group 0. Now processor ( i , 0) 

has point p t.

Step 2: Processor ( i , 0) broadcasts point p, to the remaining processors in its group. Each 

processor saves its point in register A as well as register B.

Step 3: Perform an OTIS move on the register B data. Now, processor ( i , j)  has point pi 

in register A and point pj in register B.

Step 4: Each processor sets its C register to the distance between the points in its A and B 

registers (if the points are the same, the C register is set to).

Step 5: Processor ( i , 0) computes the minimum of the C values in its group and thereby 

identifies the nearest neighbor of the point in the group’s A registers.

Step 6: Perform an OTIS move on the nearest neighbors computed in the (i , 0) 

processors.
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Wang and Sahni [37] have efficiently mapped the above computational geometry 

problems for finding

i) the convex hull,

ii) the smallest enclosing box (SEB),

iii) the empirical cumulative distribution function (ECDF) and

iv) all-nearest neighbor(ANN) problem on an OTIS-Mesh in 0(^n) time for n

data inputs.
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Chapter 3: Algorithms in Matrix Multiplication and Prefix Sum on

OMULT Network

3.1 Introduction
In chapter 2 we already explained the basic algorithms for matrix multiplication, prefix- 

sum on the OMULT architecture [1]. In this chapter we will present an algorithm for:

1) matrix multiplication of two matrices of size n2 x n2,

2) matrix multiplication of two matrices of any arbitrary size,

3) computing the prefix-sum of rt2 data elements,

4) computing the prefix-sum of n3 data elements.

After describing each algorithm we will analyze it and, whenever possible, compare our

results with those for other topologies.

3.2 M atrix M ultiplication: Tw o square M atrices o f  size n2 x n2

In this sub-section we’re considering the multiplication of two square matrices X  and Y 

each of size n2 x n2. Figures 3.1 and 3.2 shows two such matrices with n = 4.

XI ,2 XI,2 X13

X2.1 X2.2 X23

X I .5,1 X 15 ,2  X i  5 ,3

xi 6,1 Xiea X l6s3

F ig u r e  3 .1: M a t r ix  X  w it h  s iz e  n 2 x n 2, w it h  n  =  4
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y u y u y u ..................... ......................y i ,i«

>r2 ,l Y2.2 Y2 3 ...................... ........................ y i , u

y i 5,i y i s a y u ? ..................... ........................y i5.i6

y i« ,i y i u y i u ..................... ........................y ie .16

F ig u r e  3 .2 : M a t r ix  Y  w it h  s iz e  n 2 x  n 2, w it h  n  =  4

To describe our algorithm, it is convenient to visualize X  as consisting of rows and 

columns of sub-matrices with n sub-matrices in each row and each column. For this 

reason we divide the X  and Y matrices into blocks of sub-matrices, each of size n x n, so 

that each of the matrices X  and Y are divided into n2 blocks of sub-matrices. In Figure 3.3 

we show how we divide a 16 x 16 matrix X. This division helps us to ensure that each 

sub-matrix of X  and Y have exactly n rows and n columns so the multiplication of such 

sub-matrices may be carried out using the algorithm for matrix multiplication given in 

chapter 2.

In general, when we consider X  (Y) as consisting of n rows and n columns of sub­

matrices, we will denote the sub-matrix in row r and column 5 by X s (Ts). Each sub­
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matrix X s (Ts)  contains n rows and n columns of data elements. We will use X s y (Tsij) to 

denote the element in row i and column j  of X s (Ys). As in chapter 2, we assume that the 

OMULT network contains n2 trees with n leaf nodes in each tree and that the leaf nodes 

of each tree can handle input/output operations. It may be readily verified that X s ij =  xpq 

where p  = ( r - 1) x « + / and q -  (s — 1) x n +j.

XI ,1 XI ,2 XI ,3  *1,4 

*2,1 X2,2 *2,3 X2.4 

*3,1 X3.2 *3,3 X3,4 

X4,l X4s2 X4,3 X4,4

a  t  a • a  a

•  m m m m m

a a a  a a a X I,13 X I4.4 X I,15 X ljfi. 

*2,13 X2J.4 X2.I5 X2J 6

XS.13 X33.4 X3,i5 X3,i« 

X4,13 X4ji4  X4,15 X4 3 6

•  ■ a  B a  a  a a  a  • a

• ••• '• • • * » ■

■  a s  a  a  a

m  « a •  m a

a a  a a  a a  

• a  •  •  ■ •

i i i  a a a  • • a  a  a a

•  • •  •  *  •  * t

•  » •  »  ■ »

■ • *  ” - ’ .............. --- - ...........................

X13.1 XJ3J. S J J3  Xi3;4 

XI4,1 X141 X14.3 X14.4 

*15,1 *152 *15,3 X153 

*15,1 X162 *16,3 XM;4

i l l  a  a  a  

a  •  •  a a  •

a  a  a  a  a  a  

a  a  a  a  a a

X U ,13 *13,14 X i ^ u  X u t i5 

X14,13 X1414 X.14J5 XM.16

*15,13 *15,14 *15,15 *15,16 

X16^3 *16^14 X16,15 *16^.6

F ig u r e  3 .3: B l o c k s  o f  s u b -m a t r ic e s  o f  m a t r ix  X

To describe our algorithm, we start with the pseudo-code for the well-known sequential 

algorithm, we presented in chapter 2 for multiplying two matrices of size n2 x n2.

for all i, 1 < i < n2
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for all j, 1 < j  < n2
{ ztj = 0;

for all k, 1 < k<  n2
Zij ~  Zy +  Xik *ykj>

}

This is obviously equivalent to the following pseudo-code:

for all ii, 1 < ij < n
for all i2, 1 < i2 < n
{ i = (ii - 1 )  n + i2;

for all ju  1 < j i  < n 
for all j 2, 1 < j 2 < n 
{ j  = 0'i ~ ! ) n +j2!

{  zy = 0;
for all kj, 1 < kj < n
for all k2, 1 < k2 < n
{

k  = (kj -  1) n + k2;
Zij Zy "I" Xik *ykj,

}
}

}

This is equivalent to the following pseudocode:

for all r, 1 < r < n 
for all s, 1 < s < n 
for all t, 1 < t < n
{

for all i, 1 < i<  n 
for all j, 1 < j  < n

{  ̂ j =  0;
for all k, 1 <k< n
{

z ^  -  Zy  +  Xik *ykj,

}
}

}
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To multiply the sub-matrix X k by Y®, we can implement the following sequential

algorithm by the OMULT network contains n2 trees with n leaf nodes using the OMULT

algorithm for matrix multiplication described in chapter 2.

for all i, 1 < i < n do in parallel
for all j, 1 < j  < n do in parallel 
{ zij = 0;

for a\\k, 1 < k < n do in parallel
{

Zij ~  +  Xik * y kJ;

}
}

In other words, the three innermost for loops may be replaced as follows:

for all r, 1 < r < n 
for all s, 1 < s < n 
for all t, 1 < t < n
{

multiply the sub-matrix X k by Xj using the OMULT algorithm for matrix 
multiplication

}
We recall from chapter 2 that each processor P(i, j, k) in the OMULT system has three 

registers A, B and C which we denoted by A(i, j, k), Bft, j, k) and Cft, j, k). We will use 

the ^-register and the 5-register for data movement. In our algorithm, we carry out all 

input/output operations only using the trees of processors Tt ,, 1 <i <n.

We slightly modify the algorithm for multiplying two matrices A and B on the OMULT 

network described in chapter 2 as follows:
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Modified Algorithm M:

Step 1 : For all i, 1 < i < n, broadcast the elements of row i of the matrix A to the A-

registers of the leaf nodes of all trees Ty, 1 < j  < n in the same row (using the

row/column group-broadcast algorithm described in chapter 2).

Step 2 : For all j ,  1 < j  < n, broadcast the elements of column j  of the matrix B to the 

5-registers of the leaf nodes of all trees Ty, 1 < i < n, in the same column.

/* The leaf nodes of the tree Tip 1 < i, j  < n, now contains the elements of row / of A

and column j  of B */

Step 3 : For all i, j, k, 1 < i, j, k < n, do in parallel

Begin /* product element cy is now computed in the tree Ty */

A(i,j, k) A(i,j, k) * B(i,j, k);

A(i,j, 2n-l) <- A(i,j, 1) + Aft, j, 2) + . . .  + Aft,j, n);

Cft.j, 2n-l) <- C(i,j, 2n-l) + A(i,j, 2n-l);

End

Time Complexity of Modified Algorithm M:

Steps 1 and 2 require 2 log n + 3 time units each. Step 3 needs log n + 2 time units. 

Hence, the overall time required 5 log n + 8 time units.

We describe below the algorithm A for multiplying X  and Y matrices on the OMULT 

topology.
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Algorithm A for Matrix Multiplication:

Step 1: Repeat steps 2 -  9 for all r, 1 <r <n

Step 2: Repeat steps 3 -  9 for all s, 1 <s <n

Step 3: Initialize all registers in the OMULT network to 0

Step 4: Repeat steps 5 -  6 for all t, 1 < t < n

Step 5: Load the OMULT array with X ' and Ts

Step 6: Compute the product X ‘ x Ys using the modified algorithm M  described above, 

generating a partial product in the C-registers in the root processors of all the trees of the 

OMULT network.

Step 7: For all i, j, 1 < i, j  < n do in parallel 

A (i,j, 2n - 1) <~C (i,j, 2n —I)

A (i, j, i) <~A (i,j, 2n -1)

Step 8: For all i, j, 1 <i , j  <n do in parallel

A (i, i,j) A (i, j, i)

Step 9: Output the values of Z" stored in the processors lying on the diagonal of the 

OMULT tree.

Time complexity for Algorithm A:

We are ignoring the input and output time in this analysis so that we ignore the time 

needed in steps 5 and 9. As discussed earlier, step 6 requires 5 log n + 8 time units. We 

repeat steps 5 -  6 n times so that the steps 4 - 6  takes n(5 log n + 8) time. Step 3 needs 1 

time unit and step 7 requires 1 + log n time units. Step 8 needs one step of data 

movement — one unit time. So steps 3 - 8  requires n(5 log n + 8) + log n + 2 time units.
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Steps 1 - 9 is repeated n times and steps 2 -  9 are repeated n times. So we require 

n2{n(5log n + 8) + log n + 2} time units for multiplying two matrices of size n2x n2. This 

may be compared to 0(n6)  time needed in a sequential implementation.

Theorem 1: Algorithm A takes 0 (  n3log n) time for multiplying two matrices of size n2 

x n2.

3.3 Matrix Multiplication where the two operands may have any size

We will now discuss how to multiply two square matrices X  and Y of any sizes by using 

the OMULT network. We’re considering two matrices X  and Y of size M  x P  and Px Q 

where M, P, Q > n. To simplify our algorithm, we first divide the matrices X  and Y into 

sub-matrices of size n x n each. In the previous section we did the same when M  -  P — 

Q = n2 as shown in figure 3.3 for n = 4. Let X(Y) consist of m rows and p  columns 

(respectively p  rows and q columns) of sub-matrices. We will denote the sub-matrix in 

row r and column 5 of X(Y) by A”  (respectively Vs), 1 <r <m, 1 <s <p (respectively 1 < 

r <p, 1 <s <q). Each sub-matrix X s (Ys) 1 <r <m, 1 <s <p  (respectively 1 <r <p, 1 < 

s < q) contains exactly n rows and n columns of data elements. We will use XPy (Yrsij) to 

denote the element in row i and column j  of Xre (Yre). We note that the last sub-matrix in 

each row or column has a size less than or equal to n as shown in figure 3.4. For the sub­

matrices X1™ (respectively Yms), 1 < r < m (respectively 1 < s < q), we will fill the 

remaining rows and columns of sub-matrices X m (respectively Y™5) with 0.
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x i , 1 X I ,2  x i ,3 X I ,4 

X 2 ,l X2 ,2  X2 J  X2,4 

X 3 ,l X3,2 X3 3  X3,4 

X4 . I  X4  2  X4 3  X4 4

.................

X I ,13 X1,J4 X l , l5  

X2,13 X2,14 X2,15 

X3.13 X3 4 4  X3,15 

X4,13 X4j14 X4,13

.................  ................. ................. ........................................

......................................... ................. ........................................

X l3,2 XJ3,2  X J3 ^  X i3,4 

X l 4,1 X l4 ,2  X14.3 X l4,4 

X l 5,1 X l5 ,2  X 15 3  X l5 ,4 .................

X13,13 XJ3.14 X i3 ,i3  

X l4,13 Xl4,14 X 14,15 

X l5 ,13  X1J,14 X15,15

f ig u r e  3 .4 : D iv is io n  o f  m a t r ic e s  in t o  s u b -m a t r ic e s  

We recall, from chapter 2, that each processor P(i, j, k) in the OMULT system has three 

registers A, B and C which we denoted by A(i,j, k), B(i,j, k) and C(i,j, k). As before, we 

use the ^-register and the 5-register for data movement and we carry out all input/output 

operations only using the trees of processors Th , 1 < i <n. We describe below the 

algorithm B for multiplying X  and Y matrices on the OMULT topology.

Algorithm B for Matrix Multiplication:

Step 1: Repeat steps 2 -  9 for all r, 1 <r <m

Step 2: Repeat steps 3 -  9 for all s, 1 <s <q

Step 3: Initialize all registers in the OMULT network to 0

Step 4: Repeat steps 5 -  6 for all t, 1 < t<p

Step 5: Load the OMULT array with X ‘ and Ys
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Step 6: Compute the product X ‘ x Ts using the modified algorithm M described above, 

generating a partial product in the C-registers in the root processors of all the trees of the 

OMULT network.

Step 7: For all i, j, 1 <i , j  <n do in parallel

A (i, j, 2n - 1) C ( i j ,  2n -1)

A (i, j, i) A (i,j, 2n -1)

Step 8: For all i, j, 1 < i, j  < n do in parallel

A (i, i,j) A (i, j, i)

Step 9: Output the values of Z s stored in the processors lying on the diagonal of the 

OMULT tree.

Time complexity:

In this algorithm we are ignoring the input and output time in this analysis so that we 

ignore the time needed in steps 5 and 9. Step 3 requires 1 time unit. Steps 5 - 6  require 

the same time as the modified algorithm M. Therefore steps 4 - 6  requires p(5 log n + 8) 

time units. Step 7 requires 1 + log n time unit. Step 8 requires one step. Ignoring the 

input output time in step 9, the time for steps 3 - 9 is 1 + p(5 log n + 8) + 1 + log n time 

units. Steps 3 -  9 is repeated q times and steps 2 -  9 are repeated m times. So the required 

time for multiplying a matrix of size M  x P by a matrix of size P x Q is mq(p(5 log n + 

8) + log n + 2) time units.
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3.4 Prefix Sum for n2 data elements

Before this computation, we assume we have n2 data elements, a,, a2, ... an, stored in the 

n2 leaf nodes of the Tu trees of the OMULT system, for all i, 1 < i < n . We recall, from 

chapter 2, that in order to compute the prefix-sum, each processor P (i, j, k) has three 

registers A(i, j, k), B(i, j, k) and C(i, j, k). Initially all the data elements a,, a2, ... an, are 

stored in the yl-resisters of the leaf nodes of the trees in column 1 or the OMULT 

architecture. We assume that the A -registers of the leaf nodes P(i, 1, k) of the tree Tu, 1 < 

i, k < n, initially store the data values . When the process is over, the final prefix-

sum values will also be stored in the leaf nodes of the trees Tu. The algorithm PS1 for 

prefix-sum on the OMULT system is given below.

In order to carry out the process of computing the prefix sums, we describe the two 

algorithms- algorithm I and algorithm II modified from data broadcast algorithms we 

described in chapter 2.

Algorithm I:

The purpose of this algorithm is to send data in registers A(i, 1, I), A(i, 1, 2), ..., A(i, l , j )  

to registers A(i,j, I), A(i,j, 2), ..., A (i,j,j), for all i,j, 1 < i,j  < n.

Step 1: /* using horizontal optical links, move data from Tu to Ty, 1 <i , j<n  */

For all i,j, k, 1 < i ,j  < n, do in parallel 

A(i,j, 1) <- A(i, 1, j);
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Step 2: /* broadcast data within each tree 7/,- */

V i, k, 1 < i, k < n, do in parallel 

A(i,j, k) <~A(i,j, 1);

Step 3: /* using horizontal optical links, move data across trees */

For all i,j, k, 1 < i , j  < n, j  < k < n do in parallel 

A(i, k,j) <- A(i,j, k);

/*After step 3 we assume processor P(i, j, 1) will have first data element, P(i, j, 2) first

two data element P(i, j, 3) first three data element, ... , P(i,j, n) all n data element */

Time complexity: Step 1 and 3 takes 1 time unit each. Step 2 requires 2 log n time unit.

Algorithm II:

This algorithm is used to broadcast data from register^ ', n, i) in tree Tin to register A(k, 

j, i) in all other trees 7*7 for all i,j, k, i < k < n, I < j  < n.

Step 1: /*broadcast content within trees Tin where i <n*/

V i, j, k, 1 < i, j, k < n, do in parallel 

A(i, n , k) 4~A(i, n, i);

Step 2: /* using horizontal optical links, move data across trees Ty ’s, 1 < i, j  <n *1

V i, j , k, 1 < i, j, k < n, do in parallel 

A(i, k, n) <~A(i, n, k);
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Step 3: /*broadcast content within trees Ty*/

V i,j, k, 1 < i, j, k < n, do in parallel 

A (i,j ,k ) <~A(i,j,n);

Step 4: /* using vertical optical links, move data across trees Tyl < i, j  < n */

V i, j, 1 < i, j  < n, i < k < n do in parallel 

A (k ,j , i) <~A(i,j, k);

/*After step 4 the A-register Aft, j, i), of tree 7# will receive the data Ti n , for all i, 1 < i, 

< n, i < j <n using ̂ -register */

Time Complexity: Step 1 and 3 each require 2 log n time units. Step 2 and 4 need 1 time 

unit each.

Before the algorithm starts we assume that register C in all processors contain 0.

Algorithm PS1 for n2 elements:

Step 1: Initialize registers A and B of all trees to 0.

Step2: Using the algorithm I, broadcast selected data in the ^-registers of the tree Tu to 

the ^-registers of the tree Tijf, so that A(i, 1, 1), Aft, 1, 2), Aft, l , j )  is sent to registers 

Aft, j, 1), A(i,j, 2), ..., A (i,j,j), for all i,j, 1 < i, j  < n. After the broadcast, processors Pft, 

1,1) will have data element aj in it’s A-register, Pft, 2, 1) will have data element a/, Pft, 

2, 2) will have data element a2, .... Pft, j, 1) will have data element a/, Pft, j, 2) will 

have data element 0 2 , ... Pft, j, 2) will have data element aj. All other processors will 

have a value of 0 in their A-registers.
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Step 3: /*Compute the sum of each tree and store it in ̂ -register A(k, j, 2n-l). */

For all i, j, k, 1 < i, j, k < n, do in parallel 

A(i,j, 2n-l) <- A(i,j, 1)+A(i,j, 2)+ . . .  + A(i,j, n);

Step 4: /*Move contents from A(i,j, 2n-l) to A(i,j, i) and copy to 5-register*/

For all i, j, k, 1 < i,j, k < n, do in parallel 

A(i,j, i) <- A(i,j, 2n - 1);

B(i, j, i) A(i,j, i) + C(i,j, i);

Step 5: For all i,j, k, i < k < n, 1 < j  < n using the ̂ -register, broadcast data from 

register^/if, n, i) in tree Tin to registers/^, j, i) in all other trees 7/y using the 

algorithm described above.

Step 6: For all i, j, k, 1 < i,j, k < n, do in parallel

A(i,j, 2n-l) <- A(i,j, 1) + A(i,j, 2) + . . .  + A(i,j, n);

A(i,j, 1) f- A(i,j, 2n - 1);

Step 7: For all i, j, k, 1 < i,j, k < n, do in parallel 

A(i,j, 2n-l) <- A(i,j, 1) + B(i,j, i)

A(i,j, 1) <- A(i,j, 2n-l)

Step 8: /*Move data from A(i, j, 1) to A(i, 1, k)*/

Foralli,j, 1< i,j < n, do in parallel 

A(i, 1, j) <- A(i, j, 1);

Step 9: Output the prefix-sum stored at S-register in the processors lying on the Tu of the

OMULT tree.
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In the algorithm PS1, the contents of register C used in step 4 plays no role since the 

value was assumed to be 0. In the next algorithm, this register will play an important role.

Example: We consider algorithm PS1 where we have to compute the prefix-sum for n2 

data elements.

1. Before the algorithm starts, the data elements are stored in the ̂ -registers of the leaf 

nodes of the tree Tu (figure 3.5).

XX
1 2  3 4

XX
5 6 7 8

XX XX XX
xX XX XX

XX XX XX xX
9 1011 12

XX xX XX XX
13 14 15 16

f ig u r e  3 .5: D a t a  a r e  s t o r e d  a t  t h e  l e a f  n o d e s  o f  t h e  t r e e s
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2. After step 2, data in the network are as shown in Figure 3.6

/ C l .  i C K
1 1 2 1 2 3 1 2 3 4

5 5 6  5 6 7  5 6 7 8

13 1314  13 14 15 13 14 15 16
F ig u r e  3.6: T h e  d is t r ib u t io n  o f  d a t a  a f t e r  s t e p  2 

3. After step 3, content in the network are as shown in Figure 3.7

5 5-6 5-7 5-8

/ C l .  / C l .  . C i .

9 9-10 9-11 9-12

j C k  / C k  / C k  / C k

13 13-14 13-15 13-16

A  A  A  A
F ig u r e  3.7: A f t e r  s t e p  3.
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4. After step 4, content in the network are as shown in Figure 3.8

AX AX AX XX
1 1-2 1-3 1-4

AX AX AX AX
5 5-6 5-7 5-8

AX AX AX AX
9 9-10 9-11 9-12

AX AX AX AX
13 13-14 13-15 13-16

F ig u r e  3 .8: A f t e r  s t e p  4

5. After step 5, content in the network are as shown in Figure 3.9

xX AX AX AX 
AX AX AX AX
X X x x

AX AX AX AX
x y  x y  x y  x y

AX AX AX AX
x y z x y z  x y z  x y z

Where, x= l-4, y=5-8, z=9-12

F ig u r e  3 .9: A f t e r  s t e p  5
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6. After step 6, content in the network are as shown in Figure 3.10

AX aX  / X  aX
/ X aX AX AX

1-4 1-4 1-4 1-4

/ X v C f r , AX AX
1 - 8

001 1-8 1-8

AX aX AX
1-12 1-12 1-12 1-12

F ig u r e  3 .1 0 : A f t e r  s t e p  6

7. Now from the algorithm we will sum of the content, stored at the leaf nodes of the A- 
registers and 5-registers. And we will get the final result as shown in figure 3.11.

1 1-2 1-3 1-4

1-5 1-6 1-7 1-8

aX  / X  / X  / X
1-9 1-10 1-11 1-12

/ X  / X  / X  aX
1-13 1-14 1-15 1-16

F ig u r e  3 .11 : A f t e r  s t e p  7
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Time Complexity:

Step 1, step 8 and step 9 takes 1 unit time. Step 2 will need 2 log n + 2 as algorithm I 

need. Step 3 need log n time and step 4 takes 2 units time. Step 5 will need 4 log n + 2 

time units as algorithm II need. Step 6 need log n + 1 time unit. Step 7 required 2 log n 

units time. So time required for computing n2 data elements 10 log n + 10 time units.

Theorem 1: Algorithm PS1 computes the prefix sum of n2 data elements of 0(log n)

time.

3.5 Prefix Sum for n3 data elements

We now describe the case where we have X  = n data elements. We first divide the data 

elements into blocks of n2 elements. The prefix-sums for a block of n2 elements may be 

carried out using the algorithm for prefix-sum given in section 3.4. The algorithm PS2 for 

n3 on the OMULT system is given below.

Algorithm PS2 for n3 data elements:

Step 1: Initialize all the C registers in the OMULT network to 0.

Step 2: Repeat steps 3 -  6 for all r, 1 <r <n.

Step 3: Using the algorithm for data broadcasting, broadcast the data in C(n, 1, n) to all 

the C-registers in the entire network.

Step 4: Read the next block of n2 elements.
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Step 5: Compute the prefix-sum of the current block of n2 elements using algorithm PS1, 

generating a partial sum in the ^-registers in the root processors of all the trees of the 

OMULT network.

Step 6: Copy the sum C (n, 1, n) <— A (n, 1, n) in tree T„j.

Time Complexity:

Step 1 -8 is repeated n times. Step 2, step 3 and 6 need 1 time unit each. Step 4 required 

10 log n + 6 time units (algorithm PS1). Step 7 will need 4 log n + 2 time units as 

algorithm II need. Step 5 needs 2log n + 1 time. Now step 2 to 7 needs 16 log n + 12. So 

time required for computing n3 data elements n (16 log n + 12) time units.

Theorem 1: Algorithm PS2 computes the prefix sum of n3 data element of 0(n(log n))  

time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54



Chapter 4: Algorithms in Computational Geometry on

OMULT

4.1 Introduction

In this section, we show how some of the common algorithms in computational geometry 

can be mapped on the OMULT system. We have reviewed, in chapter 2, the algorithms 

we will study in this chapter.

4.2 Convex Hull

Based on the property explained in chapter 2, we describe below our algorithm for 

finding the convex hull for a set of points S = {pi, p 2, • ■ p n}, where we assume that no 

three of these points are collinear. We recall that each processor P(i, j, k) in the OMULT 

system has three registers A( i, j, k), B( i, j, k), C( i, j, k). In implementing this algorithm 

we use the ^-register and the B-register for data movement operations. When the 

algorithm starts, the coordinates of all data points are stores in the A-registers of the leaf 

nodes of tree T u .

Algorithm CH_OMULT:

Step 1: copy all the points from A-register to B-register of Tu tree 

Step 2: /* using A-register move data from Tu to Ty */

Step 2.1: /* using vertical optical links, move data from T u  to Tu, 1 < i <n */
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Vi, 1 < i < n, do in parallel

A(i, 1, 1) <-A(l, 1, i);

Step 2.2: /* broadcast data in the A-register of P(z, 1, 1) within each tree 7 / */

Vi, k, 1 < i, k < n, do in parallel 

A(i, 1, k) <~A(i, 1, 1);

Step 2.3: /* using horizontal optical links, move data from Tu to Ty, 1 < i, j  < n */

V i,j, 1 < i, j  < n, do in parallel 

A (i,j, 1) <~A(i, l,j);

/* After step 2.3, all /?, values, 1 < i, j  < n, are stored at A-registers of the processors P(i, j, 

the leaf nodes of each tree */

Step 3: /* using B-register move data from Tu to Ty */

Step 3.1: /* using horizontal optical links, move data from Tu to Tu, 1 < i < n */

Vi, 1 < i < n, do in parallel 

B(l, i , 1) <-B(l, 1, i);

Step 3.2: /* broadcast data within each tree7/, */

V i, k, 1 < i, k < n, do in parallel 

B(l, i, k) <~B(1, i, 1);

Step 3.3: /* using vertical optical links, move data from Tu to Ty, 1 < i, j  < n */

V i, j, 1 < i, j  < n, do in parallel 

B (j,i, 1) <~B(l,i, j);

/* After step 3.3, all pj values, 1 < i, j  < n, are stored at B-registers of the processors P(i,j, 

the leaf nodes of each tree */
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Step 4 : Vi, j, 1 < i, j  < n, compute the vector p tPj in the tree Ty, and store it in the

register A ( i, j, 1) o f the respective root node. (Note that for i =j, a 0 value will be 

stored for the vector).

Step 5 : Sort, in ascending order, the n vectors p tPj (including the zero vector) stored

in the leaf nodes of the trees Tu , 1 < i < n in the order of their polar angles by 

rank computation, in a manner similar to that described in the algorithm SORT in

[31]. We will use p f l j  to denote the vector in processor P(i, l , j )  after the sorting

is over. The ^-register in each processor will still be used for data movements 

across different processors needed for this rank computation.

Step 6: /* using A-register move points within tree in Tu, 1 < i, */

V i, i < n, do in parallel 

A(i, 1, 1) Aft, 1, n);

Step 7: /* copy the sorted list from A-register to B-register of Tu tree where 1 < i < n. */

V i, j, i < n, j  < n, do in parallel 

B(i, 1 ,j)  <~A(i, l,j);

Step 8: Again sort, in ascending sequence, the new list of n vectors p tq„ , p tqx, p tq2 ...

, p tqn stored in the leaf nodes P(i, 1, 1), Pft, 1, 2), Pft, 1, 3), ... , Pft, 1, n) of 

the trees Tu, 1 <i <n in the order of their polar angles by rank computation, in a 

manner similar to that described in the algorithm SORT in [31]. The ̂ -register in

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



each processor will still be used for data movements across different processors needed 

for this rank computation.

Step 9: Compute the polar angle between vectors P flj  and PiQ{j+1) in the tree leaf

node of the Tu and store it in the respective leaf node.

Step 10 : If the polar angle computed in any processor P(i, 1, j)  in Tu is more than n,

then point p t is an extreme point (since the polar angle between the sides p f i j

and Pi<l{j+1) is more than it). Convey this information to the processor P(i, 1, 2n 

-1) in Tu by setting an appropriate tag bit (tag = 1, if p t is an extreme point, and 0 

otherwise).

Step 11 : Move the information regarding all such convex hull points to the leaf nodes of 

the processors P (l,l, k), 1 < k < n, in the tree Tu using the vertical optical links.

Example: We consider a situation where we have 4 data points as shown in figure 4.1

• p3

Pi*

P 4

F ig u r e  4 .1 : S e t  o f  p o in t s
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1. Before the algorithm starts, the coordinates of these four points are stored in the 

registers of the leaf nodes of the tree Tu (figure 4.2).

v C h *
P i  P 2 P 3  P 4

aX  aX  aX  aX  
aX  aX  aX  aX  
aX  aX  aX  AX

F i g u r e  4 .2 :  a l l  t h e  p o i n t s  a r e  s t o r e d  a t  t h e  l e a f  n o d e  o f  t h e  t r e e  T u

2. After step 2.3 the points in the network are as shown in Figure 4.3

p i  p i  p i  p i

aX  aX  aX  aX
P 2  P i  P i  P i

aX  aX  aX  aX
P3 P3 P3 P3

aX  AX AX aX
P 4  P 4  P 4  P 4

F i g u r e  4 .3 :  A f t e r  s t e p  2 .3
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3. After step 3.3 the points in the network are as shown in Figure 4.4

j C k
P i P i  P 1P 2 P 1P 3 P 1P 4

P 2P 1 P 2P 2 P 2P 3 P2P 4

P 3 P l p 3p 2 P 3P 3  P 3P 4

P 4 P l P 4P 2 P 4 P 3  P4P4

F i g u r e  4 .4 :  A f t e r  s t e p  3 .3

4. After step 4 the data in the network are as shown in Figure 4.5

0 plp2 P1?5 plp4

j C k  j C k

p2pl 0 p2p3 p2p4

/ X
p3pl p3p2 0 p3p4

j C k

p4pl p4p2 p4p3

F i g u r e  4 .5 :  A f t e r  s t e p  4

■—
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5. After step 5 the data in the network are as shown in Figure 4.6

0 plpfi plp3 plp4

j C k  / C h
0 P2p3 p2pl p2p4

j C k  j C k

0 p3pl p3p2 p3p4

aX^aX  aX  aX
  >  —»

0 p4p2 p4p3 p4pl

F i g u r e  4 .6 :  A f t e r  s t e p  5

6. After step 6 the data in the network are as shown in Figure 5.7

s C k  j C k
plp4plp2 plp3 plp4

AX. A A A
p2p4 p2p3 p2pl p2p4

aX .aX  AX aX*"
p3p4 p3pt p3p2 p3|>4

aX  aX  aX  aX
 S O   ----- 2-

p4pl p4p2 p4p3 p4pl

F i g u r e  4 .7 :  A f t e r  s t e p  6
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7. After step 8, the data points are as shown in Figure 4.8. We note that the values of the 
vectors are now in the ^-registers and in step 7 we have saved one copy in 5-register 
those are not shown in figure for the next steps.

AX aX
plp2 plp3 p|p4 pljM

aX_AX a x aX
........ 'HP*' wm yfm  »iniiiijpB 111111 Jp "

p2p3 p2pl. p2p4 p2p4

AX_aX .AX aX
p3pl p3p2 p3p4 p3j>4

aX .aX
p4p2 p4p3 p4pl p4pl

Fig u r e  4.8: A f t e r  st e p  8

8. Now from the algorithm and with the above example, in step 7 we have saved one 

copy of vectors in 5-register and after step 8 we have a sorted list of vectors in A-

registers. So we can easily compute the extreme points using vectors p tq and

PS{j+\) stored in the leaf nodes of the tree Tu by setting an appropriate tag bit (tag = 1, 

if pi is an extreme point, and 0 otherwise).
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Time Complexity:

Step 2 and 3 need 2 log n + 2 data transfer steps each. Step 1, step 7 and 9 need 1 time 

unit to copy data and step 4 require 1 time unit to compute vectors. Step 5 and 8 will 

require 3 log n + 2 time units [31]. Step 6 needs 2log n time units. Step 11 will need log n 

+ 1 time units each. Step 10 requires log n time units (assuming that setting the tag bit 

and related information about an extreme point requires one time unit). Hence, we have 

the following result.

Theorem 1: Algorithm CH_OMULT computes the convex hull of n points in 0(log n) 

time.
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4.3 Smallest Enclosing Box

In the smallest enclosing box (SEB) problem, first of all we need to find the convex hull

vertices that we can get by invoking the algorithm in section 4.2. The algorithm to solve

the SEB problem on the OMULT system is given below.

Algorithm SEBOM ULT:

Step 1 : /* compute the convex hull vertices and store the corresponding information in 

the leaf nodes of the tree Tu- We assume there are m convex hull vertices. We 

will refer to the successive vertices, which define the convex hull, as vi,v 2, ... vOT.

*/

Vi, 1 < i < n, do in parallel

if (point pi is a convex hull vertex) then P( 1, 1, i) v, 

else P( 1, 1, i) 0;

Step 2: Sort, in descending order, the m convex hull vertices (including the zero vertices) 

stored in the leaf nodes of the tree Tu , in the order of their polar angles by rank 

computation, in a manner similar to that described in the algorithm SORT in [31]. 

The .4-register in each processor will still be used for data movements across 

different processors needed for this rank computation.

Step 3 : Broadcast the information about the convex hull vertices vt, V2, ... vm from Tu 

to all trees 7}/, 1 < i < m.

Step 4 : /* copy the sorted list from ̂ -register to R-register of Tu tree where 1 < i < n. */ 

V i, j, i < n, j  < n, do in parallel 

B(i, 1 , j) * -A (i,l,j);
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Step 5 : Vi, 1 < i < m, compute the ilh hull edge (v,-, m0dm) in tree Tn and 

broadcast this edge to the leaf nodes 1 ,2 ,. . . ,  n of the same tree Tn .

Step 6 : Vi, j, 1 < i, j  < m, using ^-register and 5-register, compute in the leaf node 

P (i, 1, j), the height d l between the hull vertex Vj and the hull edge (v,-, V(i+i) mod

m).

Step 7 : Vi, j, 1 < i, j  < m, compute, in the same leaf node P(i , 1, j), the 

perpendicular bisector L of the hull edge (v,-, V(i+i)modm )■

Step 8 : Vi, j, 1 < i, j  < m, compute, in the node P (i, 1, j)  the distance d2 from the 

vertex pj to the perpendicular bisector L of the hull edge (v,-, V(i+i)modm)- 

Step 9 : Vi, j, 1 < i, j  < m, in the node P (i, 1, j)  check if v; and vj are on the same 

side of L. If so, set in the node P (i, 1, j), left d2 and right 0; otherwise P (i, 

1, j)  sets left 0 and right d2.

Step 10 : Vi, 1 < i < m, determine the following:

> hmax _ the maximum of all height values stored in processor P (i, 1, 

j), Vj, 1 < j  < m,

> rmax, the maximum of all the right values stored in processor P (i, 

I j ) ,  Vj, 1 < j  < m,

> lmin , the minimum of all left values stored in processor P (i, 1, j), 

Vj, 1 < j  < m.

/* hmax. rmax and /mi„ are respectively the farthest, rightmost and leftmost points, from the 

vertex v,- and are saved in P( i, 1, 2n -  1) .*/
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Step 1 1 : Vi, 1 < i < m, compute in processor P(i, 1, 2n-l) the area Aj = hmax (rmax -  Lin)- 

Step 12 i Vi, 1 < i < n, move the value of the area A, from P( i, 1, 2n -1) to the leaf 

node P(l, 1 , i) . (This is done by first moving At to P( i, 1, 1) in log n steps and 

then to P(l, 1, i) in one step).

Step 13 : Find the minimum Ai of all area values in the leaf nodes of the tree Tn along 

with the relevant information regarding the bounding edges.

After step 9 is over, P(l, 1, 2n-l) has the smallest enclosing box.

Time Complexity

Each of steps 1, 4 and 6-10 needs constant time. Step 2 will require 3 log n + 2 time units 

[31] and step 3 needs 2 log n +2 time unit. Step 5 takes 2 log n+  1 time units and each of 

the remaining steps needs 0(log n) time. Hence, we have the following result.

Theorem 2 : Algorithm SEB computes the smallest enclosing box of a given set of n 

points in 0(log n) time.
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4.4 Empirical Cumulative Distribution Function (ECDF)

We describe below the algorithm for finding the ECDF for a given set of points S -  {pi, 

P2 , . . p„}. We assume that the coordinates of all the n points are initially stored in the

leaf nodes A(1, 1, 1),A(1, 1, 2), ..., A(l, 1, n) of the tree Tn.

Algorithm ECDF OMULT

Step 1 : Broadcast the coordinates of all the points from the leaf nodes of Tn to the leaf 

nodes of all trees Tu, VI, 1 < i < n, by using the algorithm for row/column 

group-broadcast in [31 ].

Step 2 : Vi, 1 < i<  n, do in parallel 

B(i, 1, i) <rA(i, 1, i)

Step 3 : Vi, j, 1 < i, j  < n, do in parallel 

A(i,j, 1) <~A(i, l , j )

/* At this point, the ̂ -registers in P(i, j, 1) contain pv */

Step 4 : /* broadcast data using 5-register within each tree!}/ */

V i, k, 1 < i, k < n, do in parallel 

B( i ,  1, k) ^ B (i, 1, i);

Step 5 : V i, k, 1 < i, k < n, do in parallel 

B( i , k ,  1) <~B(i, 1, k);

/* At this point, the B-registers in P(i, j, 1) contain pi */
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Step 6 : Vi, j, 1 < i, j  < n, do in parallel

Processor P(i, j, 1) of Ty tests if p t dominates p j ; 

if (pi dominates pj ) then C(i, j, 1) 1

else C(i,j, 1) <-0;

Step 7 : Vi, j, 1 < i, j  < n, do in parallel 

C(i, 1, j)  C(i,j, 1)

Step 8: Vi, 1 < i < n, do in parallel /* in the tree T,i */

compute the sum C(i, 1, 2n- 1) = C(i, 1, 1) + C(i, 1,2) + . . . +  C(i, 1, n);

Step 9 : move C(i, 1, 2n - 1) from P(i, 1, 2n-l) to the node P(l, 1, i) in T u ;

/* leaf node P(l, 1, i) in Tu stores the number of points dominated by p, */

Time Complexity

Each of steps 2, 3 and 5-7 needs constant time. Step 1 require 2 log n + 2 time units and 

step 4 needs 2 log n time units. Step 8 takes log n time units and the remaining step 9 

needs log n + 1 time. Hence, we have the following result.

Theorem 3 : Algorithm ECDF computes the empirical cumulative distribution function 

of a given set of n points in 0(log n) time.
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4.5 All-Nearest Neighbor

Assuming that the coordinates of all the n points are initially stored in the leaf nodes of 

the tree Tn, we describe below the algorithm for finding the all-nearest neighbor for the 

given set of points S.

Algorithm ANNOMULT

Step 1 : Broadcast the coordinates of all the points from the leaf nodes of 77/ to the leaf

nodes of all trees Tn, VI, 1 < i < n, by using the algorithm for column group-

broadcast in [31].

Step 2 : Vi, 1 < i < n, do in parallel

B(i, 1, i) <~A(i, 1, i)

Step 3 : Vi, j, 1 < i, j  < n, do in parallel 

A(i,j, 1) <-A(i, l , j )

/* At this point, the ̂ -registers in P(i,j, 1) contain p7 */

Step 4 : /* broadcast data within each tree 77/ */

Vi, k, 1 < i, k < n, do in parallel 

B( i, 1, k) <-B( i, 1, i);

Step 5 : Vi, k, 1 < i, k < n, do in parallel

B(i , k ,  1) <-B(i, 1, k);

/* At this point, the 5-registers in P(i, j, 1) contain p, */
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Step 6 : /*Compute the distance between p t and pj of processor P(i, j, 1) in Ty and store in C(i, j, 1)*/ 

V i, j, 1 < i, j  < n, do in parallel 

C(i, j, 1) distance between pt and pj

Step 7 : Vi, j, 1 < i, j  < n, do in parallel

C(i, 1, j)  C(i,j, 1)

Step 8 : Vi, j, 1 < i, j  < n, find the minimum D(i) of all C(i, 1, j)  and store it in C(i, 1, 2n- 1)

Step 9 : move C(i, 1, 2n -1) from P(i, 1, 2n-l) to the node P(l, 1, i) in T n ;

/*leaf node P(l, 1, i) in Tn stores the closest points and the corresponding distance from the

point pi */

Time Complexity

Each of steps 2, 3 and 5-7 needs constant time. Step 1 require 2 log n + 2 time units and 

step 4 needs 2 log n time units. Step 8 takes log n time units and the remaining step 9 

needs log n + 1 time. Hence, we have the following result.

Theorem 4: Algorithm ANN computes the all-nearest neighbor of a given set of n points 

in 0(log n) time.
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Chapter 5: Network Simulation

5.1 Purpose of the Simulation

The purpose of our simulation was to see how difficult it is to use a simulator to

> define the OMULT architecture

> understand the behavior of a large complex OMULT network, and

> analyze network performance

The simulation for multiprocessor systems is complicated because of the difficulty of 

mapping the hardware with its high degree of parallelism within the frame work of 

existing simulation software. There are an increasing number of tools available to 

simulate the parallel and distribution systems and it was quite difficult to select the 

correct tools for simulating the application. We chose the Sim Java simulation tool 

because it has an extremely powerful technique for evaluating performance of parallel 

and distribution systems. SimJava is a process based discrete event simulation package 

based on the Java programming language. By using the SimJava package we were able to 

represent the OMULT architecture in a realistic manner.
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5.2 SimJava

A SimJava simulation is a collection of entities (sim_entity class) each of which runs in 

its own thread [43]. These entities are connected together by ports (sim_port class) and 

can communicate with each other by sending and receiving event objects (sim_event 

class) through these ports. A static Sim_system class controls all the threads, advances 

the simulation time, and maintains the event queues [43]. The progress of the simulation 

is recorded through trace messages produced by the entities, and saved in a file.

5.3 Problem simulated

We considered the problem of simulating the algorithm M for matrix multiplication 

described in chapter 2 on the OMULT network. We recall that this algorithm multiplies a 

matrix A of size n x n and a matrix B of size n x n giving a matrix C of size n x n. In 

chapter 2, we have described how we initially store the matrix elements in the leaf nodes 

of the diagonal trees Tu, 1 < i < n, such that the elements an, ai2, . . ., ain of row i of the 

matrix A are stored in A(i, i, 1), A(i, i, 2), . . ., A(i, i, n), respectively, and the elements 

bn, b2i, .. ., bni of column i of the matrix B are stored in B(i, i, 1), B(i, i, 2), .. ., B(i, i, n), 

respectively. As in chapter 2, we assume that the OMULT network contains n2 trees with 

n leaf nodes in each tree and that the leaf nodes of each tree can handle input/output 

operations. Our simulation considered the case where n = 4.
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5.4 Modeling of the system

In order to model the OMULT architecture we need to represent the followings-

• the nodes of the trees

• interconnection between nodes within a tree

• interconnection leaf nodes of different trees (Horizontal and Vertical links)

• communication between the nodes

We have modeled the OMULT system by using the SimJava in a following way- 

5.4.1 The nodes of the trees
The nodes of the trees are represented by using the entities of a SimJava where each node 

is an individual potential entity. In order to do this we need to extend the standard 

Sim_entity class and override the body () method. The entities are added by using the 

Sim_system.add(entity) method. In this model the main entities are Nodes and the ports 

connect them to each other. They communicate with each other by sending and receiving 

information to corresponding Node.
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Entities of a Tree:

As an example a simulation layout in a tree T11 are given in Figure 5.1:

Port

Link

Figure 5.1: A simulation layout

We used the following subclasses of Sim_entity:

Table 5.1: subclasses of Sim_entity

Subclass name Purpose
RootNodeTl 1A to represent the Root node of each tree

IntNodeTllB to represent the left intermediate node of each tree

IntNodeTllC to represent the right intermediate node of each tree

LeafNodeTlll to represent the leftmost leaf node of each tree

LeafNodeT112 to represent the second leftmost leaf node of each tree

LeafNodeT113 to represent the second rightmost node of each tree

LeafNodeT114 to represent the rightmost node of each tree
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After deciding which objects of each of the above classes are to be present for the 

simulation, we have to specify their behavior [43] by defining appropriate methods 

within each class. These objects interact with each other by sending them messages -  

each corresponding to an event. This means that some objects generate events which 

trigger methods in the object receiving the message. We need to override the body() 

method of the class Sim_entity to provide the subclass objects the needed behavior. In the 

OMULT architecture the following tasks are done by each individual nodes-

Root node:

The role of a root node is to send/receive data to/from its intermediate nodes. For 

instance, in our case, it sums the partial results during the multiplication of matrix 

elements, when it will receive the partial content of the matrix elements from the 

intermediate nodes.

Intermediate nodes:

The role of an intermediate node, is to send/ receive data to/from it’s root node as well as 

its leaf nodes. Another most important task is to compute the sum of the results of the 

matrix elements from the partial results from the leaf nodes and send this partial result to 

the root node.
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Leaf nodes:

The role of a leaf node is to send/receive data to the intermediate nodes in the same tree 

as well as to the leaf nodes of the different trees to which it is connected by an inter block 

link. After the broadcast of all the matrix elements to all the leaf nodes, then each leaf 

node carries out the requisite multiplication on the appropriate elements of the A and B 

matrices. After multiplying the elements, the results are sent to the intermediate nodes.

5.4.2 Connecting nodes
Connecting nodes within a tree and as well as the leaf nodes of different trees 

(Horizontal and Vertical links) are represented by linking the ports by using the method- 

Sim_system.link_ports() available from the Sim-Java package, where the ports are used 

for linking the nodes[43].

5.4.3 Communication between the nodes
The nodes that are connected by ports can communicate by using the built-in methods 

sim_schedule ( Sim_port port, int tag, Integer data) available from the Sim-Java package.

The following examples of a simulation show how SimJava works.

Example 1:

1. import eduni.simjava.*;
2. public class Simulation
3. { public static void main(String args[])
4- {
5. Sim_system.initialise();
6. System.out.println("Start time" + Sim_system.clock());
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7. /* nodes are added by adding entities to the Sim_system */
8. Sim_system.add (new RootNode ("Tll(A)"));
9. Sim_system.add(new IntNodeTl 1B("T11 (B)"));
10. Sim_system.add(new IntNodeTl 1C("T11(C)"));
11. Sim_system.add(new LeafNodeTl 11("T11(1)"));
12. Sim_system.add(new LeafNodeTl 12("T11(2)"));
13. Sim_system.add(new LeafNodeTl 13("T11(3)"));
14. Sim_system.add(new LeafNodeTl 14("T11(4)"));
15. // nodes are connected by linking entities using port to the Sim_system
16. Sim_system.link_ports("Tl 1(A)", "lTllAPort", "Tll(B)", "iTllBPort");
17. Sim_system.link_ports("Tl 1(A)", "rTllAPort", "Tll(C)", "iTllCPort");
18. Sim_system.link_ports("Tl 1(B)", "ITllBPort", "Tll(l)", "iTlllPort");
19. Sim_system.link_ports("Tl 1(B)", "rTllBPort", "Tll(2)", "iT112Port");
20. Sim_system.link_j)orts("Tl 1(C)", "ITllCPort", "Tll(3)", "iT113Port");
21. Sim_system.link_ports("Tl 1(C)", "rTllCPort", "Tll(4)", "iT114Port");
22. Sim_system.link_j)orts("Tl 1(2)", "hT112Port", "T12(l)", "hT121Port");
23. Sim_system.link_ports("Tl 1(2)", "vT112Port", "T21(l)", "vT211Port");
24. Sim_system.link_ports("Tl 1(3)", "hT113Port", "T13(l)", "hT131Port");
25. Sim_system.link_j)orts("Tl 1(3)", "hT113Port", "T13(l)", "hlT131Port");
26. Sim_system.link_jports("Tl 1(3)", "vT113Port", "T31(l)", "vT311Port");
27. Sim_system.link_j)orts("Tl 1(3)", "vT113Port", "T31(l)", "vlT311Port");
28. Sim_system.link_ports("Tl 1(4)", "hT114Port", "T14(l)", "hT141Port");
29. Sim_system.linkjx>rts("Tl 1(4)", "vT114Port", "T41(l)", "vT411Port");
30. Sim_system.run ();
31. System.out.println("End time" + Sim_system.clock());
32. } // main close
33. }// class close

In this simple simulation four steps are required [42] -

• Initialise sim_system.

• Make an instance for each entity

• Link the entities ports

• Run the simulation

The first line imports all the requisite classes in the SimJava package. The Sim_system

object is initialized done, at the start of simulation, in line 5 by invoking the 

Sim_system.initialise() method. The objects are then created in line 8-14 by using the 

Sim_system.add() method. These entities are linked together by invoking the
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Sim_system.link_j)ort() method in lines 16-29. Finally the simulation is run by calling 

the Sim_system.run() method in line 30.

The classes for the entities are derived from the Sim_entity class. The code for the node 

T112 is given below with example 2. Rest of the classes are similar and given in 

appendix D.

Example 2:

1. class LeafNodeT 112 extends Sim_entity
2 . {
3. private Sim_port iTl 12Port, hT 112Port, vT 112Port;
4. int al 2=2, b21=21;
5. int x=0, y=0, z=0;
6. public LeafNodeTl 12(String name)
7- {
8. super(name);
9. iT112Port=new Sim_port("iT112Port");
10. add_port(iTl 12Port);
11. hTl 12Port=new Sim_port("hTl 12Port");
12. add_port(hT 112Port);
13. vTl 12Port=new Sim_port("vTl 12Port");
14. add_port(vTl 12Port)
15. }
16. public void body()
17. {
18. Integer il = new lnteger(0);
19. Integer i2 = new lnteger(0);
20. Integer i3 = new lnteger(0);
21. Integer i4 = new lnteger(0);
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22. sim_schedule("vTl 12Port", 0.01,2, new Integer(al2));
23. sim_trace(l, "leafNodeT221");
24. sim_hold(0.01);
25. sim_schedule("hTl 12Port", 0.04, 21, new Integer(b21));
26. sim_trace(l, "leafNodeT112");
27. sim_hold(0.01);
28. Sim_event ev= new Sim_event();
29. {
30. z=al2*b21;
31. if (z>0)
32. {
33. System.out.println("T112 z-> " + z);
34. sim_schedule("iTl 12Port", 0.16,112, new Integer(z));
3 5. sim_trace( 1, "leafNodeT 112");
36. sim_hold(0.01);
37. }
38. }
39. while(true)
40. {
41. sim_wait(ev);
42. if(ev.get_tag() == 18)
43. {
44. i4=(Integer)ev.get_data();
45. System.out.println("Tll(2)bl2-> " + i4);
46. sim_schedule("hT 112Port", 0.1,18, i4);
47. sim_trace(l, "leafNodeT112");
48. sim_hold(0.01);
49. }
50. if(ev.get_tag() == 17)
51. {
52. i2=(Integer)ev.get_data();
53. System.out.println("Tl 1 (2)b 11 -> " + i2);
54. sim_schedule("vT112Port", 0.09, 17, i2);
55. sim_trace(l, "leafNodeT112");
56. sim_hold(0.01);
57. }
58. if(ev.get_tag() == 5)
59. {
60. i3=(Integer)ev.get_data();
61. System.out.println("T 11 (2)a21 -> " + i3);
62. sim_schedule("vT 112Port", 0.06, 5, i3); //.07
63. sim_trace(l, "leafNodeT112");
64. sim_hold(0.01);
65. }
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66 .

67.
68 .

69.
70.
71.
72.
73.
74.

}
}//while close

if(ev.get_tag() =  1)
{

i 1 =(Integer)ev.get_data(); 
sim_schedule("hTl 12Port", 0.06,1, i 1); //.06 
sim_trace(l, "leafNodeT112"); 
sim_hold(0.01);
System.out.println("Tl 1 (2)al 1 -> " + i 1);

75. } // body close

76. } //class close

The constructor method in line 6 first calls the Sim_entity’s constructor, super(name) in 

order to invoke the superclass constructor. Then it creates ports (line 9-14) iT112Port, 

hTl 12Port, vTl 12Port and adds the ports to its list of ports. These ports are linked to the 

appropriate objects through their requisite ports in the main() function as shown in 

example 1.

The body() of the T112 entity includes the following the most important methods of 

SimJava [43]:

sim_schedule(Sim_port portName, int tag, Integer data) - send data to the entity

connected to the port with the given tag.

sim_hold( double d) -hold the data for d simulation time units.

sim_trace( int level, String msg) - adds the message msg to the trace file
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5.5 Simulation Result

We have successfully simulated OMULT network and broadcast data elements for matrix 

A of size 4 x 4  and a matrix B of size 4 x 4  over the leaf nodes of the OMULT trees. 

Multiplying matrix A and matrix B we have got the product matrix C of size 4x4 .

The simulation time required for getting the product matrix C of size 4 x 4 is - 0.88 time 

units.

5.6 Critical Review of the Simulation

In this thesis, we have theoretically investigated the following algorithms for efficient 

implementation on the OMULT architecture:

> matrix multiplication of two matrices having fixed size,

> matrix multiplication of two matrices having arbitrary sizes,

> computing the prefix-sum of a series containing n2 integers,

> computing the prefix-sum of a series containing n3 integers

> number of fundamental computational geometry problems.

We have indicated, in chapter 3 and 4, that these algorithms are efficient with respect to 

the implementations of some of these algorithms on the OTIS mesh -  a comparable 

architecture based on the same idea of opto-electronic technology.

We have successfully used the SimJava simulation tool to support the model and to 

understand the behaviors of an OMULT network.
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The simulation for multiprocessor systems was complicated because of so many 

interactions between parallel software and hardware. There are an increasing number of 

tools available to simulate the parallel and distribution systems and it is very difficult to 

select the correct tools for simulating the application. By using the SimJava package we 

were able to represent the OMULT architecture in a realistic manner. One crucial issue in 

the designing of multi-processor simulation was to decide how the processors should 

communicate with each other. SimJava simulation tool provides efficient methods to 

produce ports to provide connections among processors so that data can be transferred 

quickly between processors that need to share data.

The SimJava simulator we wrote is included as an appendix(Appendix C).
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Chapter 6: Conclusions and Future Work

6.1 Conclusions

In this thesis, we have investigated the following algorithms for efficient implementation 

on the OMULT architecture:

> matrix multiplication of two matrices having fixed size,

> matrix multiplication of two matrices having as arbitrary sizes,

> computing the prefix-sum of a series containing n integers,

> computing the prefix-sum of a series containing n3 integers

> a number of fundamental computational geometry problems.

These problems have not been studied in the literature. It is interesting to note from Table

6.1 given below that our algorithms are efficient with respect to recent implementations 

of some of these algorithms on the OTIS mesh -  a comparable architecture based on the 

same idea of opto-electronic technology.

Finally we have implemented our algorithm for matrix multiplication using the SimJava 

simulation tool. In our experience SimJava is a convenient environment for testing such 

parallel algorithms.
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Table 6.1: Performance of algorithms on the OMULT

A summary of the performances of some algorithms, along with the topological 

properties of the OTIS mesh and the OMULT network has been given in table 6.1. In the 

table Electronic links are identified by E and optical links by O.

Table 6.1: Comparisons between OTIS-Mesh and OMULT Network

OTIS-Mesh OMULT

Number of Nodes (N) N  ~ n4 N  = 2n3 - n2

Diameter 4 n -  3 6 log n + 2

Broadcast time 4n -  1 (E) + 1 (0) 6log n (E) + 2 (0 )

Prefix Sum time 7 n -1 (E )+ 2 (0) 1 Ologn(E) + 10(0)

(# of elements) (for n elements) ( for n elements)

Matrix multiplication 0(n4) 0(n3 log n)

Time (size of matix) ( n4 x n4 matrices) (n2 x n2 matrices)

Convex hull 18^n(E) +3(0) 14 log n(E) + 10(0)

Smallest enclosing box 26<n(E) +3(6) 18logn(E) +16(0)

ECDF 4(^n -1) (E) +3(0) 6logn(E)+ 3(0)

All-nearest Neighbor 4(yln-l)(E) +3(0) 6logn(E)+3(0)
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6.2 Future Works

We are studying the implementation of a number of other algorithms on the OMULT 

architecture. Algorithm mapping for the common basic operations involved in real-life 

applications for numerical and scientific processing, image and signal processing can be 

more efficiently done using the OMULT network than on the OTIS-Mesh, with 

comparable investments on establishing optical links among the processor nodes, and 

lesser cost for the electronic links. Also, the topology of the proposed OMULT network 

is very simple, making it particularly attractive for parallel computing.
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Appendix A: List of symbols

A, B, C- registers

ai, ci2, . . . , cin - values in a series for computing the prefix sum

a, b, c, d, e , f  g -  set of points

an, at2 , . . ain -  elements of row i of the matrix A

aik- elements of matrix B

bkj - elements of matrix A

bn, b2i , . . bni -  elements of column i of the matrix B 

Cy - elements of matrix C 

d;, d2, dn - data elements

(G, P) - G identifies the group and P  identifies the processor within the group

K y~N- size of matrix B

M  x K-size of matrix A

M  x N  - size of matrix C

n x n- array of tree of the OMULT system

N- total number of nodes of the OMULT network

n - number of leaf nodes in a tree within the network

n-1 -  internal nodes

Po, P , ... Pn-i - series of processors

Pw, P u , ■ ■ Pi,n-2 -set of points(S)

Pi, P2 , • • -,pn~ set of points 

(xi, yt)- coordinate of points p;

(pi, p r)~ hull edge
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Appendix B: Glossary of important terms

Arc connectivity: the minimum number of arcs that have to be removed from the 

network to cut it into two disconnected networks. Higher connectivity is better since it 

reduces the contention for links.

All nearest neighbor problem: is to find the minimum distance between any two points. 

Bisection width: the minimum number of links that need to be removed to break the 

network into two equal halves.

Cost: the number communication links required by the network.

Convex hull: problem is to find a hull that surrounds and encloses a given set of points. 

Diameter: largest possible value of the shortest path between any two processors in an 

interconnection network.

Extreme point: if the counterclockwise angle between any pair of consecutive vectors is 

more than then the 180° then the point is called extreme point.

Empirical Cumulative Distribution Function: problem is to find the number of points 

dominated by each point

Interconnection network is used to provide connections among processors so that data 

can be transferred between processors.

Optical network: is a digital communication system that uses light waves as the medium 

for transmits data.
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Parallel computer: (also called a multi-processor machine) is a machine that consists of 

a collection of processors or processing units, that cooperate, to solve a problem, by 

working simultaneously on different parts of that problem .

Polar angle: is the counterclockwise angle between two vectors.

Shortest path: is the smallest number of links needed to communicate between two 

processors.

SIMJAVA package: is a process based simulation tool based on Java. A SIMJAVA 

simulation is a collection of entities each running on its own thread.

SIMD (Single instruction multiple data): is a parallel computer consists of a number of 

processors that operate under the control of a single instruction issued by a central control 

unit.

Smallest enclosing box: problem is to find the rectangle with the minimum area that 
encloses all the points

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88



Appendix C: Simulation

/*
* Simulation of Matrix Multiplication on OMULT architecture 
*Using SimJava simulation package
*/

import java.awt.*; 
import eduni.simjava.*; 
import javax.swing.*; 
import java.awt.event.*;

/ % % sjc sjc sjc s|c He H* H* Hi ̂  % >|e He He He ̂er J J He He He He He He He He He He He He He He He /

/He He He He He He He He He He He He He He He He ^̂ Q̂ Ĥe He He He He He He He He He He He He He He/

class RootNodeTl 1A extends Sim_entity 
{
private Sim_port 1T11 APort, rTl 1 APort; 
int x=0, y=0, z=0;
public RootNodeTl 1 A(String name)
{

super(name);
1T11 APort=new Sim__port("lTl 1 APort"); 

add_port(lTl 1 APort); 
rTl 1 APort=new Sim_port("rTH APort"); 
add_port(rTl 1 APort);

}

public void body()
{

Integer il = new lnteger(0);
Integer i2 = new Integer(O);
Integer xl = new Integer(O);
Integer x2 = new Integer(O);
Sim_event ev= new Sim_event();

while (tme)
{
sim_wait(ev); 
if(ev.get_tag() == 1)
{
i 1 =(Integer)ev.get_dataO; 
sim_schedule("rTl 1 APort", 0.04, 1, il); 
sim_trace(l, "leafNodeTl 1 A"); 
sim_hold(0.01);
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}
if(ev.get_tag() == 17)
{
i2=(Integer)ev.get_data(); 
sim_schedule("rTl 1 APort", 0.07,17, i2); //.07 
sim_trace(l, "leafNodeTllA"); 
sim_hold(0.01);

}

if(ev.get_tag() =  100) xl=(Integer)ev.get_data(); 
if(ev.get_tag() == 200) x2=(Integer)ev.get_data(); 
x= xl .intValue(); 
if (x>0) 

y= x2.intValue(); 
if (y>0)

z= X + y; 
if (z>0)

System.out.println("Tl 1A z -> " + z);
}//while close 

}// body close 
} //class close

îjojC}jC9|ofCSjC9j()|C9|C9|o{ofojCSiSSj(2jgsjC2iC9lcs|CSj{

class IntNodeTl IB extends Sim_entity 
{
private Sim_port iTl lBPort, 1T1 lBPort,rTl lBPort, rlT l lBPort; 
int x=0, y=0, z=0;

public IntNodeTl IB (String name)
{
super(name);
iTl lBPort=new Sim_port("iTl lBPort"); 
add_port(iTl lBPort);
ITl lBPort=new Sim_port("lTl lBPort"); 
add_port(lTl lBPort); 
rTl lBPort=new Sim__port("rTl lBPort"); 
add_port(rTl lBPort);
rlT l lBPort=new Sim_j)ort("rlTl lBPort"); 
add_port(rlTl lBPort);
}

public void body()
{
Integer il = new lnteger(0);
Integer i2 = new lnteger(0);
Integer xl = new lnteger(0);
Integer x2 = new lnteger(0);

Sim_event ev= new Sim_event(); 
while(true)
{
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sim_wait(ev); 
if(ev.get_tag() == 1)
{

il=(Integer)ev.get_data(); 
sim_schedule("iTl lBPort", 0.03,1, il); 
sim_trace(l, "leafNodeTllB"); 
sim_hold(0.01);
sim_schedule("r 1T1 lBPort", 0.05, 1, il); //.05 
sim_trace(l, "leafNodeTllB"); 
sim_hold(0.01);

}
if(ev.get_tag() == 17)

{
i2=(Integer)ev.get_data(); 
sim_schedule("iTl lBPort", 0.06,17, i2); 
sim_trace(l, "leafNodeTllB"); 
sim_hold(0.01); //
sim_schedule("rT 1 lBPort", 0.06,17, i2); //.08 
sim_trace(l, "leafNodeTllB"); 
sim_hold(0.01);
}

if(ev.get_tag() == 111) xl=(Integer)ev.get_data(); 
if(ev.get_tag() == 112) x2=(Integer)ev.get_data();

x= xl .intValue(); 
if (x>0) 

y= x2.intValue(); 
if (y>0)

z= x + y; 
if (z>0)

{
System.out.println("Tl IB z -> " + z);
sim_schedule("iTl lBPort", 0.17,100, new Integer(z)); 
sim_trace(l, "leafNodeTllB"); 
sim_hold(0.01);
}
}//while close 
}//body close 

}//class close

class IntNodeTl 1C extends Sim_entity 
{
private Sim_port iTl lCPort, ITl lCPort, rTl lCPort; 
int x=0, y=0, z=0;

public IntNodeTl 1C (String name)
{
super(name);
iTl lCPort=new Sim_port("iTl lCPort"); 
add_port(iTl lCPort);
ITl lCPort=new Sim_port("lTl lCPort");
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add_port(lTl lCPort);
rTl lCPort=new Sinu>ort("rTl lCPort");
add_port(rTl 1 CPort);

}

public void body()
{

Integer il = new Integer(O);
Integer i2 = new Integer(O);
Integer xl = new Integer(O);
Integer x2 = new Integer(O);
Sim_event ev= new Sim_event();

while(true)
{
sim_wait(ev); 

if(ev.get_tag() == 1)
{
i 1 =(Integer)ev.get_data(); 
sim_schedule("lTl lCPort", 0.05,1, il); 
sim_trace(l, "leafNodeTllC"); 
sim_hold(0.01);
sim_schedule("rTl lCPort", 0.05, 1, il); 
sim_trace(l, "leafNodeTllC"); 
sim_hold(0.01);
}

if(ev.get_tag() == 17)
{
i2=(Integer)ev.get_data(); 
sim_schedule("lTl lCPort", 0.08,17, i2); 
sim_trace(l, "leafNodeTllC"); 
sim_hold(0.01);
sim_schedule("rTl lCPort", 0.08,17, i2); 
sim_trace(l, "leafNodeTllC"); 
sim_hold(0.01);
}

if(ev.get_tag() ==113) xl=(Integer)ev.get_data(); 
if(ev.get_tag() ==114) x2=(Integer)ev.get_dataO; 
x= xl .intValue(); 
if (x>0) 

y= x2.intValue(); 
if (y>0)

z= x + y; 
if (z>0)
{
System.out.println("Tl 1C z -> " + z);
sim_schedule("iTl lCPort", 0.17, 200, new Integer(z)); 
sim_trace(l, "leafNodeTllC"); 
sim_hold(0.01);
}

}//while close
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}//body close 
}//class close

class LeafNodeTl 11 extends Sim_entity 
{
private Sim_port iTl 1 lPort, hTl 1 lPort, vTl 1 lPort; 
int al 1=1, bl 1=17 ; 
int x=0, y=0, z=0;
public LeafNodeTl 11 (String name)
{
super(name);
iTl 1 lPort=new Sim_port("iTl 1 lPort");
add_port(iTl 1 lPort);
hTl 1 lPort=new Sim_port("hTl 1 lPort");
add_port(hTl 1 lPort);
vTl 1 lPort=new Sim_port("vTl 1 lPort");
add_port(vTl 1 lPort);

}
public void body()
{
sim_schedule("iTl 1 lPort", 0.02, 1, new Integer(al 1));
sim_trace(l, "leafNodeTl 11");
sim_hold(0.01);
sim_schedule("iTlllPort", 0.05,17, new Integer(bll));
sim_trace(l, "leafNodeTl 11");
sim_hold(0.01);
{

z= all * bl 1; 
if (z>0)
{
System.out.println("Tl 11 z -> " + z);
sim_schedule("iTlllPort", 0.15, 111, new Integer(z)); 
sim_trace(l, "leafNodeTl 11"); 
sim_hold(0.01);
}

}
}

}
class LeafNodeTl 12 extends Sim_entity 
{
private Sim_port iTl 12Port, hTl 12Port,vTl 12Port; 
int a 12=2, b21=21; 
int x=0, y=0, z=0;
public LeafNodeTl 12(String name)
{
super(name);
iT112Port=new Sim_port("iT112Port"); 
add_port(iTl 12Port); 
hTl 12Port=new Sim_port("hTl 12Port"); 
add_port(hTl 12Port); 
vTl 12Port=new Sim_port("vTl 12Port");
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add_port(vTl 12Port);
}

public void body()
{
Integer il = new Integer(O);
Integer i2 = new lnteger(0);
Integer i3 = new lnteger(0);
Integer i4 = new lnteger(0);
sim_schedule("vT112Port", 0.01, 2, new Integer(al2));
sim_trace(l, "leafNodeT221");
sim_hold(0.01);
sim_schedule("hT112Port", 0.04, 21, new Integer(b21));
sim_trace(l, "leafNodeTl 12");
sim_hold(0.01);

Sim_event ev= new Sim_event();
{
z= al2 * b21; 
if (z>0)
{
System.out.println("T112 z -> " + z);
sim_schedule("iTl 12Port", 0.16,112, new Integer(z)); 
sim_trace(l, "leafNodeTl 12"); 
sim_hold(0.01);
}

}

while(true)
{
sim_wait(ev); 
if(ev.get_tag() == 18)
{
i4=(Integer)ev.get_data(); 
sim_schedule("hT112Port", 0.1,18, i4); 
sim_trace(l, "leafNodeTl 12"); 
sim_hold(0.01);

}
if(ev.get_tag() == 17)
{
i2=(Integer)ev.get_data();
sim_schedule("vTl 12Port", 0.09,17, i2); //check print out
sim_trace(l, "leafNodeTl 12");
sim_hold(0.01);
}

if(ev.get_tag() == 5)
{
i3=(Integer)ev.get_data(); 

sim_schedule("vT 112Port", 0.06, 5, i3); //.07 
sim_trace(l, "leafNodeTl 12"); 
sim_hold(0.01);
}
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if(ev.get_tag() == 1)
{
i 1 =(Integer)ev.get_data(); 
sim_schedule("hTl 12Port", 0.06,1, il); II.06 
sim_trace(l, "leafNodeTl 12"); 
sim_hold(0.01);

}
}//while close 

}
}

class LeafNodeTl 13 extends Sim_entity 
{
private Sim_jx>rt iTl 13Port, hTl 13Port, vTl 13Port, ilTl 13Port, hlTl 13Port, 
vlTl 13Port,v2Tl 13Port; 
int al3 = 3, b31=25; 
int x=0, y=0, z=0;
public LeafNodeTl 13(String name)
{
super(name);
iTl 13Port=new Sim_port("iTl 13Port");
add_port(iTl 13Port);
hTl 13Port=new Sim_port("hTl 13Port");
add_port(hTl 13Port);
vT113Port=new Sim_port("vTl 13Port");
add_j)ort(vTl 13Port);
ilTl 13Port=new Sim_port("ilTl 13Port");
add_port(ilTl 13Port);
hlTl 13Port=new Sim_port("hlTl 13Port");
add_port(hlTl 13Port); •
vl T113Port=new Sim_port("vl T113Port");
add_port(vlTl 13Port);
v2Tl 13Port=new Sim_port("v2Tl 13Port");
add_port(v2Tl 13Port);

}

public void body()
{

Integer il = new lnteger(0);
Integer i2 = new Integer(O);
Integer i3 = new Integer(O);
Integer i4 = new Integer(O);
sim_schedule("vT113Port", 0.01, 3, new Integer(al3));
sim_trace(l, "leafNodeTl 13");
sim_hold(0.01);
sim_schedule("hT113Port", 0.04, 25, new Integer(b31)); 
sim_trace(l, "leafNodeTl 13"); 
sim_hold(0.01);
Sim_event ev= new Sim_event(); 

while(true)
{
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sim_wait(ev); 
if(ev.get_tag() == 1)
{
il =(Integer)ev.get_data(); 
sim_schedule("hT113Port", 0.06,1, il); //.06 
sim_trace(l, "leafNodeTl 13"); 
sim_hold(0.01);

}
if(ev.get_tag() == 19)
{
i2=(Integer)ev.get_data(); 
sim_schedule("hTl 13Port", 0.1,19, i2); //.06 
sim_trace(l, "leafNodeTl 13"); 
sim_hold(0.01);

}
if(ev.get_tag() == 9)
{
i3=(Integer)ev.get_data(); 
sim_schedule("vTl 13Port", 0.06, 9, i3); //.07 
sim_trace(l, "leafNodeTl 13"); 
sim_hold(0.01);
}

if(ev.get_tag() == 17)
{
i4=(Integer)ev.get_data(); 
sim_schedule("vT113Port", 0.09, 17, i4); 
sim_trace(l, "leafNodeTl 12"); 
sim_hold(0.01);
}
z= al3 * b31; 
if (z>0)
{
System.out.println("T113 z-> " + z);
sim_schedule("iT113Port", 0.15,113, new Integer(z)); 
sim_trace(l, "leafNodeTl 13"); 
sim_hold(0.01);
}

}//while close 
}

class LeafNodeTl 14 extends Sim_entity 
{
private Sim_port iTl 14Port, hTl 14Port, vTl 14Port,vlTl 14Port; 
int a 14= 4, b41=29; 
int x=0, y=0, z=0;
public LeafNodeTl 14(String name)

{
super(name);
iT114Port=new Sim_port("iT114Port"); 
add_port(iTl 14Port);
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hTl 14Port=new Sim_port("hTl 14Port");
add_port(hT114Port);
vTl 14Port=new Sim_port("vTl 14Port");
add_port(vTl 14Port);
vlTl 14Port=new Sim_port("vlTl 14Port"); 
add_port(vlTl 14Port);
}

public void body()
{
Integer il = new Integer(O);
Integer i2 = new Integer(O);
Integer i3 = new lnteger(0);
Integer i4 = new lnteger(0);
sim_schedule("vTl 14Port", 0.01,4, new Integer(al4));
sim_trace(l, "leafNodeTl 14");
sim_hold(0.01);
sim_schedule("hTl 14Port", 0.02, 29, new Integer(b41)); //.04
sim_trace(l, "leafNodeTl 14");
sim_hold(0.01);
Sim_event ev= new Sim_event();

while(true)
{
sim_wait(ev); 
if(ev.get_tag() == 1)
{
i 1 =(Integer)ev.get_data(); 
sim_schedule("hT114Port", 0.06,1, il); //.06 
sim_trace(l, "leafNodeTl 14"); 
sim_hold(0.01);

}
if(ev.get_tag() == 20)
{
i2=(Integer)ev.get_dataO; 
sim_schedule("hTl 14Port", 0.1, 20, i2); 
sim_trace(l, "leafNodeTl 14"); 
sim_hold(0.01);

}
if(ev.get_tag() == 13)
{
i3=(Integer)ev.get_data(); 
sim_schedule("vlT114Port", 0.07, 13, i3); 
sim_trace(l, "leafNodeTl 14"); 
sim_hold(0.01);

}

if(ev.get_tag() == 17)
{
i4=(biteger)ev.get_data(); 
sim_schedule("vT114Port", 0.09,17, i4); //.09
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sim_trace(l, "leafNodeTl 12"); 
sim_hold(0.01);
}
z= al4 * b41; 
if (z>0)
{
System.out.println("T114 z -> " + z);
sim_schedule("iT114Port", 0.15, 114, new Integer(z)); 
sim_trace(l, "leafNodeTl 14"); 
sim_hold(0.01);

}
}//while close 
}

}

'̂T'rcc * A'

y}|<9i(9|ojc9joioiojc9ic9jc9{c9{c9|c9jc9|c

class RootNodeT12A extends Sim_entity
{
private Sim_port lT12APort, rT12APort; 
int x=0, y=0, z=0;

public RootNodeT12A(String name)
{
super(name);
lT12APort=new Sim_port("lT12APort"); 
add_port(lT 12 APort); 
rT12APort=new Sim_port("rT12APort"); 
add_port(rT 12 APort);
}

public void body()
{

Integer il = new lnteger(0);
Integer i2 = new Integer(O);
Integer xl = new Integer(O);
Integer x2 = new Integer(O);
Sim_event ev= new Sim_event();

while(true)
{
sim_wait(ev); 
if(ev.get_tag() ==21)
{
i2=(Integer)ev.get_data(); 
sim_schedule("rT 12APort", 0.07, 21, i2); 
sim_trace(l, "leafNodeTl2A"); 
sim_hold(0.01);

}
if(ev.get_tag() == 5)
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{
i 1 =(Integer)ev.get_data(); 
sim_schedule("rT12APort", 0.04, 5, il); 
sim_trace(l, "leafNodeTl2A"); 
sim_hold(0.01);
}

if(ev.get_tag() == 100) xl=(Integer)ev.get_data(); 
if(ev.get_tag() == 200) x2=(Integer)ev.get_data(); 
x= xl .intValue(); 
if (x>0) 

y= x2.intValue(); 
if (y>0)
z=x + y; 
if (z>0)

System.out.println("T12A z -> " + z);
}

}//while close 
}// body close 

}//class close

class IntNodeTl2B extends Sim_entity 
{
private Sim_port iT12BPort, lT12BPort, rT12BPort;
int x=0, y=0, z=0;
public IntNodeT12B (String name)
{
super(name);
iT12BPort=new Sim_port("iT12BPort"); 
add_port(iTl 2BPort); 
lT12BPort=new Sim_port("lT12BPort"); 
add_port(lTl 2BPort); 
rT 12BPort=new Sim_port("rT 12BPort"); 
add_port(rTl 2BPort);

}
public void body()
{
Integer i2 -  new lnteger(0);
Integer i3 = new Integer(O);
Integer xl = new Integer(O);
Integer x2 = new Integer(O);
Sim_event ev= new Sim_event(); 
while (true)
{
sim_wait(ev); 
if(ev.get_tag() == 5)
{
i3=(Integer)ev.get_data(); 

sim_schedule("iT12BPort", 0.03, 5, i3); 
sim_trace(l, "leafNodeT12B"); 
sim_hold(0.01);
sim_schedule("lT 12BPort", 0.05, 5, i3); II.05
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sim_trace(l, "leafNodeT12B"); 
sim_hold(0.01);
}

if(ev.get_tag() == 21)
{
i2=(Integer)ev.get_data(); 
sim_schedule("iT12BPort", 0.06, 21, i2); 
sim_trace(l, "leafNodeTl2B"); 
sim_hold(0.01);
sim_schedule("rT12BPort", 0.08, 21, i2); 
sim_trace(l, "leafNodeT12B"); 
sim_hold(0.01);
}

if(ev.get_tag() == 121) xl=(Integer)ev.get_dataO; 
if(ev.get_tag() == 122) x2=(Integer)ev.get_data(); 
x= xl .intValue(); 
if (x>0)
y= x2.intValue(); 
if (y>0) 
z= x + y; 
if (z>0)
{
System.out.println("T12B z -> " + z);
sim_schedule("iT12BPort", 0.17,100, new Integer(z)); 
sim_trace(l, "leafNodeT12B"); 
sim_hold(0.01);

}
}//while close 

}//body close 
}//class close

class IntNodeTl2C extends Sim_entity 
{
private Sim_port iT12CPort, lT12CPort, rT12CPort; 
int x=0, y=0, z=0;

public IntNodeTl2C (String name)
{
super(name);
iT 12CPort=new Sim_port("iTl 2CPort"); 
add_port(iT 12CPort);
ITl2CPort=new Sim_port("lT 12CPort"); 
add_port(lT 12CPort); 
rT12CPort=new Sim_port("rT12CPort"); 
add_port(rT 12CPort);

}

public void body()
{
Integer i2 = new lnteger(0);
Integer i3 = new lnteger(0);
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Integer yl = new Integer(O);
Integer y2 = new Integer(O);
Sim_event ev= new Sim_event(); 
while (true)
{
sim_wait(ev); 
if(ev.get_tag() == 5)
{
i3=(Integer)ev.get_data(); 
sim_schedule("lT12CPort", 0.05, 5, i3); 
sim_trace(l, "leafNodeTl2C"); 
sim_hold(0.01);
sim_schedule("rT12CPort", 0.06, 5, i3); //.05 
sim_trace(l, "leafNodeTl2C"); 
sim_hold(0.01);
}

if(ev.get_tag() ==21)
{
i2=(Integer)ev.get_data(); 
sim_schedule("lT 12CPort", 0.08, 21, i2); 
sim_trace(l, "leafNodeT12C"); 
sim_hold(0.01);
sim_schedule("rT12CPort", 0.08, 21, i2); 
sim_trace(l, "leafNodeT12C"); 
sim_hold(0.01);
}

if(ev.get_tag() == 123) yl=(Integer)ev.get_data(); 
if(ev.get_tag() == 124) y2=(Integer)ev.get_data(); 
x= yl .intValue(); 

if(x>0) y= y2.intValueO; 
if (y>0) z= x + y; 
if (z>0)
{
sim_schedule("iT12CPort", 0.17, 200, new Integer(z));
sim_trace(l, "leafNodeTl2C");
sim_hold(0.01);
}

}//while close 
}//body close 

}//class close

class LeafNodeT121 extends Sim_entity 
{
private Sim__port iT121Port, hi T121 Port, hT121Port, vT121Port; 
int x=0, y=0, z=0;

public LeafNodeTl21 (String name)
{
super(name);
iT 121 Port=new Sim_port("iT 121 Port"); 
add_port(iT 121 Port);
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hT121Port=new Sim_port("hT121Port");
add_port(hT 121 Port);
hi T121 Port=new Sim_port("hl T121 Port");
add_jport(h 1T121 Port);
vT 121 Port=new Sim_port("vT 121 Port");
add_port(vT 121 Port);

}
public void body()
{
biteger il = new lnteger(0);
Integer i2 = new lnteger(0);
Integer i3 = new lnteger(0);
Integer i4 = new Integer(O);
Sim_event ev= new Sim_event(); 

while(true)
{
sim_wait(ev);
if(ev.get_tag() =  5)
{
i3=(Integer)ev.get_data(); 
sbn_schedule("hlT121Port", 0.06, 5, i3); 
sim_trace(l, "leafNodeT121");
}

if(ev.get_tag() == 1) il=(Integer)ev.get_data(); 
if(ev.get_tag() == 18) i4=(Integer)ev.get_dataO; 
if(ev.get_tag() =  21)

{
i2=(Integer)ev.get_dataO; 
sim_schedule("iT 121 Port", 0.05, 21, i2); 
sim_trace(l, "leafNodeT121"); 
sim_hold(0.01);
}

x= i4.intValue(); 
if (x>0) y= il .intValue(); 
if (y>0) z= x * y; 
if (z>0)

{
sim_schedule("iT121Port", 0.15,121, new Integer(z));
sim_trace(l, "leafNodeT121");
sim_hold(0.01);
}
}//while close

}
}

class LeafNodeTl22 extends Sim_entity 
{
private Sim_port iT122Port, vT122Port; 
int x=0, y=0, z=0;

public LeafNodeTl 22(String name)
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{
super(name);
iT 122Port=new Sim_port("iT 122Port");
add_port(iT122Port);
vTl22Port=new Sim_port("vT 122Port");
add_port(vT 122Port);

}

public void body()
{
Integer il = new Integer(O);
Integer i2 = new lnteger(0);
Integer i3 = new lnteger(0);
Integer i4 = new Integer(O);
Sim_event ev= new Sim_event(); 

while(true)
{
sim_wait(ev);
if(ev.get_tag() == 2) i2=(Integer)ev.get_data(); 
if(ev.get_tag() == 21) il=(Integer)ev.get_data(); 
sim_schedule("vT122Port", 0.09, 21, il); 
sim_trace(l, "leafNodeT122"); 
sim_hold(0.01);
}

if(ev.get_tag() =  22) i4=(Integer)ev.get_data(); 
if(ev.get_tag() == 5) i3=(Integer)ev.get_data(); 

sim_scliedule("iT122Port", 0.02, 5, i3); 
sim_trace(l, "leafNodeT122"); 
sim_hold(0.01); 

x= i2.intValue(); 
if (x>0) y= i4.intValue(); 
if (y>0) z= x * y; 
if (z>0)

{
sim_schedule("iT122Port", 0.15,122, new Integer(z));
sim_trace(l, "leafNodeT122");
sim_hold(0.01);
}
}//while close

}
}

class LeafNodeTl23 extends Sim_entity 
{
private Sim_port iT123Port, hT123Port, vT123Port;
int x=0, y=0, z=0;
public LeafNodeT123(String name)

{
super(name);
iT 123Port=new Sim_port("iTl 23Port"); 
add_port(iT 123Port);
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hT 123Port=new Sim_port("hT 123Port"); 
add_jport(hT 123Port); 
vT 123Port=new Sim_port("vT 123Port"); 
add_port(vT 123Port);
}
public void body()
{
Integer il = new Integer(O);
Integer i2 = new Integer(O);
Integer i3 = new Integer(O);
Integer i4 = new lnteger(0);
Integer i5 = new lnteger(0);
Integer i6 = new lnteger(0);
Sim_event ev= new Sim_event(); 
while(true)
{
sim_wait(ev);
if(ev.get_tag() == 3) il=(Integer)ev.get_dataO; 
if(ev.get_tag() == 23) i2=(Integer)ev.get_data(); 
sim_schedule("hT123Port", 0.1, 23, i2); 
sim_trace(l, "lea£NodeT123"); 
sim_hold(0.01);
}
if(ev.get_tag() == 5)
{
i3=(Integer)ev.get_data(); 
sim_schedule("hT123Port", 0.06, 5, i3); 
sim_trace(l, "leafNodeTl23"); 
sim_hold(0.01);
}

if(ev.get_tag() == 26) i4=(Integer)ev.get_dataO; 
if(ev.get_tag() == 9) i5=(Integer)ev.get_dataO; 
sim_schedule("vT123Port", 0.07, 9, i5); 
sim_trace(l, "leafNodeTl23"); 
sim_hold(0.01); 
if(ev.get_tag() ==21)
{

i6=(Integer)ev.get_data(); 
sim_schedule("vT 123Port", 0.09,21, i6); 
sim_trace(l, "leafNodeTl22"); 
sim_hold(0.01);

}
x= il.intValueO; 
if (x>0) y= i4.intValue(); 
if (y>0) z= x * y; 
if (z>0)

{
sim_schedule("iT123Port", 0.15, 123, new Integer(z));
sim_trace(l, "leafNodeT123");
sim_hold(0.01);
}
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}//while close
}

}

class LeafNodeTl 24 extends Sim_entity 
{
private Sim_port iT124Port, hT124Port, vT124Port; 
int x=0, y=0, z-0;

public LeafNodeT124(String name)
{
super(name);
iT 124Port=new Sim_port("iT 124Port");
add_port(iT 124Port);
hT 124Port=new Sim_port("hT 124Port");
add_port(hTl 24Port);
vT 124Port=new Sim_port("vT 124Port");
add_port(vT 124Port);
}

public void body()
{
Integer il = new Integer(O);
Integer i2 = new Integer(O);
Integer i3 = new lnteger(0);
Integer i4 = new lnteger(0);
Integer i5 = new lnteger(0);
Integer i6= new Integer(O);
Sim_event ev= new Sim_event(); 

while(true)
{
sim_wait(ev); 
if(ev.get_tag() == 5)
{
il=(Integer)ev.get_data(); 
sim_schedule("hT124Port", 0.06, 5, il); 
sim_trace(l, "leafNodeTl24"); 
sim_hold(0.01);
}
if(ev.get_tag() == 4) i2=(Integer)ev.get_data(); 
if(ev.get_tag() — 24) i3=(Integer)ev.get_data(); 
sim_schedule("hT 124Port", 0.1, 24, i3); 
sim_trace(l, "leafNodeT124"); 
sim_hold(0.01);

if(ev.get_tag() == 30) i4=(Integer)ev.get_data(); 
if(ev.get_tag() == 13)
{

i5=(Integer)ev.get_data();
sim_schedule("vT 124Port", 0.05, 13, i5); //.07
sim_trace(l, "leafNodeTl24");
sim_hold(0.01);
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if(ev.get_tag() == 21)
{
i6=(Integer)ev.get_data(); 
sim_schedule("vT124Port", 0.09,21, i6); 
sim_trace(l, "leafNodeT122"); 
sim_hold(0.01);
}

x= i2.intValue(); 
if (x>0) y= i4.intValue(); 
if (y>0) z= x * y; 
if (z>0)

{
sim_schedule("iT124Port", 0.15,124, new Integer(z));
sim_trace(l, "leafNodeT124");
sim_hold(0.01);
}

}//while close
}

/********Codmg of Tree T13 to Tree T43 are similar (not shown here)***************/

class RootNodeT44A extends Sim_entity 
{
private Sim_port lT44APort, rT44APort; 
int x=0, y=0, z=0;

public RootNodeT44A(String name)
{
super(name);
lT44APort=new Sim_port("lT44APort"); 
add_port(lT44 APort); 
rT44APort=new Sim_port("rT44APort"); 
add_port(rT 44 APort);
}
public void body()
{

Integer il = new Integer(O);
Integer i2 = new Integer(O);
Integer i3 = new lnteger(0);
Integer i4 = new lnteger(0);
Integer xl = new lnteger(0);
Integer x2 = new Integer(O);
Sim_event ev= new Sim_event(); 

while (true)
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{
sim_wait(ev); 
if(ev.get_tag() == 16)
{
il=(Integer)ev.get_data(); 
sim_schedule("lT44APort", 0.04,16, il); 
sim_trace(l, "leafNodeT44A"); 
sim_hold(0.01);
}

if(ev.get_tag() == 32)
{
i2=(Integer)ev.get_data(); 
sim_schedule("lT44APort", 0.07, 32, i2); 
sim_trace(l, "leafNodeT44A"); 
sim_hold(0.01);
}

if(ev.get_tag() == 100) xl=(Integer)ev.get_data(); 
if(ev.get_tag() == 200) x2=(Integer)ev.get_data(); 
x= xl.intValueO; 
if (x>0) y= x2.intValue(); 
if (y>0) z= x + y;
if (z>0) System.out.println("T44A z -> " + z);

}//while close 
}// body close 
} //class

class IntNodeT44B extends Sim_entity 
{
private Sim_port iT44BPort, lT44BPort, rT44BPort; 
int x=0, y=0, z=0; 

public IntNodeT44B (String name)
{
super(name);
iT44BPort=new Sim_port("iT44BPort");
add_port(iT44BPort);
lT44BPort=new Sim_port("lT44BPort");
add_port(lT44BPort);
rT44BPort=new Sim_port("rT44BPort");
add_port(rT44BPort);
}
public void body()
{

Integer il = new Integer(O);
Integer i2 = new lnteger(0);
Integer i3 = new Integer(O);
Integer i4 = new Integer(O);
Integer xl = new Integer(O);
Integer x2 = new Integer(O);

Sim_event ev= new Sim_event(); 
while (true)
{
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sim_wait(ev); 
if(ev.get_tag() == 16)
{
i 1 =(Integer)ev.get_data(); 
sim_schedule("lT44BPort", 0.05, 16, il); 
sim_trace(l, "leafNodeT44B"); 
sim_hold(0.01);
sim_schedule("rT44BPort", 0.07,16, il); 
sim_trace(l, "leafNodeT44B"); 
sim_hold(0.01);
}
if(ev.get_tag() == 32)
{

i2=(Integer)ev.get_data(); 
sim_schedule("lT44BPort", 0.08, 32, i2); 
sim_trace(l, "leafNodeT44B"); 
sim_hold(0.01);
sim_schedule("rT44BPort", 0.08, 32, i2); 
sim_trace(l, "leafNodeT44B"); 
sim_hold(0.01);
}

if(ev.get_tag() == 441)
{
xl =(Integer)ev.get_dataO;
System.out.println("T44B xl-> " + xl);
}

if(ev.get_tag() == 442) x2=(Integer)ev.get_data(); 
x= xl .intValue(); 
if (x>0) y= x2.intValue(); 
if (y>0) z= x + y; 
if (z>0)
{
System.out.println("T44B z -> " + z);
sim_schedule("iT44BPort", 0.17,100, new Integer(z)); 
sim_trace(l, "leafNodeT44B"); 
sim_hold(0.01);
}
}//while close 

}//body close 
}//class close

class IntNodeT44C extends Sim_entity 
{
private Sim_port iT44CPort, lT44CPort, rT44CPort; 
int x=0, y=0, z=0; 

public IntNodeT44C (String name)
{
super(name);
iT44CPort=new Sim_port("iT44CPort"); 
add_port(iT44CPort);
IT44CPort=new Sim__port("lT44CPort");
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add_port(lT44CPort);
rT44CPort=new Sim_port("rT44CPort");
add_port(rT 44CPort);
}
public void body()
{

Integer il = new Integer(O);
Integer i2 = new lnteger(0);
Integer i3 = new Integer(O);
Integer i4 = new Integer(O);
Integer xl = new Integer(O);
Integer x2 = new lnteger(0);
Sim_event ev= new Sim_event(); 

while(true)
{
sim_wait(ev); 
if(ev.get_tag() == 16)
{
i2=(Integer)ev.get_data(); 
sim_schedule("iT44CPort", 0.03,16, i2); 
sim_trace(l, "leafNodeT44C"); 
sim_hold(0.01);
sim_schedule("lT44CPort", 0.05,16, i2); 
sim_trace(l, "leafNodeT44C"); 
sim_hold(0.01);
}

if(ev.get_tag() == 32)
{
il=(Integer)ev.get_data(); 
sim_schedule("iT44CPort", 0.06, 32, il); 
sim_trace(l, "leafNodeT44C"); 
sim_hold(0.01);
sim_schedule("lT44CPort", 0.06, 32, il); //.08 
sim_trace(l, "leafNodeT44C"); 
sim_hold(0.01);
}

if(ev.get_tag() == 443) xl=(Integer)ev.get_data(); 
if(ev.get_tag() == 444) x2=(Integer)ev.get_data();

{
x= xl .intValue(); 
if (x>0) 
y= x2.intValue(); 
if (y>0) 
z= x + y; 
if (z>0)
{
System.out.println("T44C z -> " + z);
sim_schedule("iT44CPort", 0.17, 200, new Integer(z)); 
sim_trace(l, "leafNodeT44C"); 
sim_hold(0.01);
}
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}
}//while 
}//body close 
}//class close

class LeafNodeT441 extends Sim_entity 
{
private Sim_port iT441Port, hT441Port, vT441Port; 
int a41=13, bl4=20; 
int x=0, y=0, z=0;

public LeafNodeT441 (String name)
{
super(name);
iT441 Port=new Sim_port("iT441 Port");
add_port(iT441 Port);
hT441 Port=new Sim_port("hT441 Port");
add_port(hT 441 Port);
vT441 Port=new Sim_port("vT441 Port");
add_port(vT 441 Port);
}

public void body()
{
Integer il = new lnteger(0);
Integer i2 = new Integer(O);
Integer i3 = new lnteger(0);
Integer i4 = new lnteger(0);
Integer i5 = new Integer(O);
Sim_event ev= new Sim_event();
sim_schedule("vT441Port", 0.01,13, new Integer(a41)); //.01
sim_trace(l, "leafNodeT441");
sim_hold(0.01);
sim_schedule("hT441Port", 0.02, 20, new Integer(bl4)); //.04
sim_trace(l, "leafNodeT441");
sim_hold(0.01);
{
z= a41 * bl4; 
if (z>0)
{
System.out.println("T441 z -> " + z);
sim_schedule("iT441Port", 0.15, 441, new Integer(z)); 
sim_trace( 1, "leafNodeT441"); 
sim_hold(0.01);
}
}

while(true)
{
sim_wait(ev); 
if(ev.get_tag() == 16)
{
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i 1 =(Integer)ev.get_data(); 
sim_schedule("hT441Port", 0.06, 16, il); 
sim_trace(l, "leafNodeT441"); 
sim_hold(0.01);
}
if(ev.get_tag() == 4)
{
i2=(Integer)ev.get_data(); 
sim_schedule("vT44lPort", 0.07,4, i2); 
sim_trace(l, "leafNodeT441"); 
sim_hold(0.01);
}

if(ev.get_tag() == 32)
{
i3=(Integer)ev.get_data(); 
sim_schedule("vT441Port", 0.09, 32, i3); 
sim_trace(l, "leafNodeT441"); 
sim_hold(0.01);
}

if(ev.get_tag() == 29)
{
i4=(Integer)ev.get_data(); 
sim_schedule("hT441Port", 0.10, 29, i4); 
sim_trace( 1, "leafNodeT441"); 
sim_hold(0.01);
}
}//while close 

}
}

class LeafNodeT442 extends Sim_entity 
{
private Sim_port iT442Port, hT442Port, vT442Port; 
int x=0, y=0, z=0; 
int a42=14, b24=24;

public LeafNodeT442(String name)
{
super(name);
iT442Port=new Sim_port("iT442Port");
add_port(iT442Port);
hT442Port=new Sim_port("hT442Port");
add_port(hT442Port);
vT442Port=new Sim_port("vT442Port");
add_port(vT442Port);
}
public void body()
{
Integer il = new Integer(O);
Integer i2 = new Integer(O);
Integer i3 = new lnteger(0);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Integer i4 = new Integer(O);
Sim_event ev= new Sim_event(); 
sim_schedule("vT442Port", 0.01,14, new Integer(a42)); 
sim_trace(l, "leafNodeT442"); 
sim_hold(0.01);
sim_schedule("hT442Port", 0.04, 24, new Integer(b24));
sim_trace(l, "leafNodeT442");
sim_hold(0.01);
{
z= a42 * b24; 
if (z>0)
{
System.out.println("T442 z -> " + z);
sim_schedule("iT442Port", 0.14, 442, new Integer(z)); 
sim_trace(l, "leafNodeT442"); 
sim_hold(0.01);

}
}

while(true)
{
sim_wait(ev); 
if(ev.get_tag() == 16)
{
i 1 =(Integer)ev.get_data(); 
sim_schedule("hT442Port", 0.06,16, il); 
sim_trace(l, "leafNodeT442"); 
sim_hold(0.01);
}

if(ev.get_tag() == 8)
{

i2=(Integer)ev.get_data(); 
sim_schedule("vT442Port", 0.07, 8, i2); 
sim_trace(l, "leafNodeT442"); 
sim_hold(0.01);

}
if(ev.get_tag() == 30)
{

i3=(Integer)ev.get_data(); 
sim_schedule("hT442Port", 0.10, 30, i3); 
sim_trace(l, "leafNodeT442"); 
sim_hold(0.01);
}

if(ev.get_tag() == 32)
{
i4=(Integer)ev.get_data(); 
sim_schedule("vT442Port", 0.09, 32, i4); 
sim_trace(l, "leafNodeT442"); 
sim_hold(0.01);
}
}//while close

}
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}
class LeafNodeT443 extends Sim_entity 
{
private Sim_port iT443Port, hT443Port, vT443Port, vlT443Port; 
int x=0, y=0, z=0; 
int a43=15, b34=28;

public LeafNodeT443(String name)
{
super(name);
iT443Port=new Sim_port("iT443Port");
add_port(iT443Port);
hT443Port=new Sim_port("hT443Port");
add_port(hT443Port);
vT443Port=new Sim_port("vT443Port");
add_port(vT443Port);
vl T443Port=new Sim_port("vl T443Port"); 
add_port(vl T443Port);
}

public void body()
{
Integer il = new Integer(O);
Integer i2 = new Integer(O);
Integer i3 = new lnteger(0);
Integer i4 = new Integer(O);
Sim_event ev= new Sim_event(); 
sim_schedule("vT443Port", 0.01, 15, new Integer(a43)); 
sim_trace(l, "leafNodeT443"); 
sim_hold(0.01);
sim_schedule("hT443Port", 0.04, 28, new Integer(b34));
sim_trace(l, "leafNodeT443");
sim_hold(0.01);
{
z= a43 * b34; 
if (z>0)
{
System.out.println("T443 z -> " + z);
sim_schedule("iT443Port", 0.15, 443, new Integer(z)); 
sim_trace(l, "leafNodeT443"); 
sim_hold(0.01);
}
}

while(true)
{
sim_wait(ev); 
if(ev.get_tag() == 16)
{
i 1 =(Integer)ev.get_data(); 
sim_schedule("hT443Port", 0.06, 16, il); 
sim_trace(l, "leafNodeT443");
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sim_hold(0.01);
}

if(ev.get_tag() == 12)
{
i2=(Integer)ev.get_dataO; 
sim_schedule("vlT443Port", 0.08, 12, i2); //.07 
sim_trace(l, "leafNodeT443"); 
sim_hold(0.01);
}

if(ev.get_tag() ==31)
{
i3=(Integer)ev.get_data(); 
sim_schedule("hT443Port", 0.1, 31, i3); 
sim_trace(l, "leafNodeT443"); 
sim_hold(0.01);
}
if(ev.get_tag() == 32)
{
i4=(Integer)ev.get_data(); 
sim_schedule("vT443Port", 0.09, 32, i4); 
sim_trace(l, "leafNodeT443"); 
sim_hold(0.01);
}
}//while close

}
}

class LeafNodeT444 extends Sim_entity
{
private Sim_port iT444Port, hT444Port, vT444Port; 
int a44=16, b44=32; 
int x=0, y=0, z=0;
public LeafNodeT444(String name)
{
super(name);
iT444Port=new Sim_port("iT444Port");
add_port(iT444Port);
hx444Port=new Sim_port("hT444Port");
add_port(hT444Port);
vT444Port=new Sim_port("vT444Port");
add_port(vT444Port);
}
public void body()
{
sim_schedule("iT444Port", 0.02, 16, new Integer(a44));
sim_trace(l, "leafNodeT444");
sim_hold(0.01);
sim_schedule("iT444Port", 0.05, 32, new Integer(b44));
sim_trace(l, "leafNodeT444");
sim_hold(0.01);
{

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



z= a44 * b44; 
if (z>0)
{
System.out.println("T444 z -> " + z);
sim_schedule("iT444Port", 0.17, 444, new Integer(z)); 
sim_trace(l, "leafNodeT444"); 
sim_hold(0.01);
}

}
}

public class Simulation 
{
public static void main(String args[])
{
Sim_system.initialise();

//Til
Sim_system.add(new RootNodeTl 1 A("T11(A)")); 
Sim_system.add(new IntNodeTl 1B("T 11(B)")); 
Sim_system.add(new IntNodeTl 1C("T11(C)")); 
Sim_system.add(new LeafNodeTl 11("T11(1)")); 
Sim_system.add(new LeafNodeTl 12("T11(2)")); 
Sim_system.add(new LeafNodeTl 13 ("Tl 1(3)")); 
Sim_system.add(new LeafNodeTl 14("T11(4)"));

//T12
Sim_system.add(new RootNodeT12A("T12(A)")); 
Sim_system.add(new IntNodeT12B("T12(B)")); 
Sim_system.add(new IntNodeT 12C("T 12(C)")); 
Sim_system.add(new LeafNodeT 121 ("T12( 1)")); 
Sim_system.add(new LeafNodeT122("T12(2)")); 
Sim_system.add(new LeafNodeT 123 ("T12(3)")); 
Sim_system.add(new LeafNodeT124("T12(4)"));

//T13
Sim_system.add(new RootNodeT 13 A("T13(A)")); 
Sim_system.add(new IntNodeTl 3B("T13(B)")); 
Sim_system.add(new IntNodeTl 3C("T13(C)")); 
Sim_system.add(new LeafNodeTl 31 ("T13(1)")); 
Sim_system.add(new LeafNodeTl 32("T13(2)")); 
Sim_system.add(new LeafNodeTl 33("T13(3)")); 
Sim_system.add(new LeafNodeTl 34("T13(4)"));

//T14
Sim_system.add(new RootNodeT14A("T14(A)")); 
Sim_system.add(new IntNodeT14B("T14(B)")); 
Sim_system.add(new IntNodeT 14C("T 14(C)")); 
Sim_system.add(new LeafNodeT 141 ("T14( 1)"));
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Sim_system.add(new LeafNodeT142("T14(2)")); 
Sim_system.add(new LeafNodeTl 43 ("T14(3)")); 
Sim_system.add(new LeafNodeT 144("T 14(4)"));

//T21
Sim_system.add(new RootNodeT21 A("T21 (A)")); 
Sim_system.add(new IntNodeT21 B("T21 (B)")); 
Sim_system.add(new IntNodeT21 C("T21 (C)")); 
Sim_system.add(new LeafNodeT211("T21(1)")); 
Sim_system.add(new LeafNodeT212("T21 (2)")); 
Sim_system.add(new LeafNodeT213("T21 (3)")); 
Sim_system.add(new LeafNodeT214("T21 (4)"));

//T22
Sim_system.add(new RootNodeT22A("T22(A)")); 
Sim_system.add(new IntNodeT22B("T22(B)")); 
Sim_system.add(new IntNodeT22C("T22(C)")); 
Sim_system.add(new LeafNodeT221("T22(l)")); 
Sim_system.add(new LeafNodeT222("T22(2)")); 
Sim_system.add(new LeafNodeT223("T22(3)")); 
Sim_system.add(new LeafNodeT224("T22(4)"));

//T23
Sim_system.add(new RootNodeT23A("T23(A)")); 
Sim_system.add(new IntNodeT23B("T23(B)"));
Sim_system.add(newIntNodeT23C("T23(C)"));
Sim_system.add(new LeafNodeT231 ("T23(l)")); 
Sim_system.add(new LeafNodeT232("T23(2)")); 
Sim_system.add(new LeafNodeT233("T23(3)")); 
Sim_system.add(new LeafNodeT234("T23(4)"));

//T24
Sim_system.add(newRootNodeT24A("T24(A)")); 
Sim_system.add(new IntNodeT24B("T24(B)")); 
Sim_system.add(new IritNodeT24C("T24(C)")); 
Sim_system.add(new LeafNodeT241("T24(l)")); 
Sim_system.add(new LeafNodeT242("T24(2)")); 
Sim_system.add(new LeafNodeT243("T24(3)")); 
Sim_system.add(new LeafNodeT244("T24(4)"));

//T31
Sim_system.add(new RootNodeT31 A("T31 (A)")); 
Sim_system.add(new IntNodeT31 B("T31 (B)")); 
Sim_system.add(new IntNodeT31 C("T31 (C)")); 
Sim_system.add(new LeafNodeT311("T31(1)")); 
Sim_system.add(new LeafNodeT312("T31 (2)")); 
Sim_system.add(new LeafNodeT313("T31 (3)")); 
Sim_system.add(new LeafNodeT314("T31 (4)"));

//T32
Sim_system.add(newRootNodeT32A("T32(A)"));
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Sim_system.add(new IntNodeT32B("T32(B)")); 
Sim_system.add(new IntNodeT32C("T32(C)")); 
Sim_system.add(new LeafNodeT321 ("T32( 1)")); 
Sim_system.add(new LeafNodeT322("T32(2)")); 
Sim_system.add(new LeafNodeT323("T32(3)")); 
Sim_system.add(new LeafNodeT324("T32(4)"));

//T33
Sim_system.add(new RootNodeT33A("T33(A)")); 
Sim_system.add(new IntNodeT3 3B("T3 3 (B)")); 
Sim_system.add(new IntNodeT33C("T33(C)")); 
Sim_system.add(new LeafNodeT331("T33(l)")); 
Sim_system.add(new LeafNodeT332("T33(2)")); 
Sim_system.add(new LeafNodeT333("T33(3)")); 
Sim_system.add(new LeafNodeT334("T33(4)"));

//T34
Sim_system.add(new RootNodeT34A("T34(A)")); 
Sim_system.add(new IntNodeT34B("T34(B)")); 
Sim_system.add(newIntNodeT34C("T34(C)")); 
Sim_system.add(new LeafNodeT341("T34(l)")); 
Sim_system.add(new LeafNodeT342("T34(2)")); 
Sim_system.add(new LeafNodeT343("T34(3)")); 
Sim_system.add(new LeafNodeT344("T34(4)"));

//T41
Sim_system.add(newRootNodeT41A("T41(A)")); 
Sim_system.add(new IntNodeT 41 B("T41 (B)")); 
Sim_system.add(new IntNodeT41 C("T41 (C)")); 
Sim_system.add(new LeafNodeT411("T41(1)")); 
Sim_system.add(new LeafNodeT412("T41 (2)")); 
Sim_system.add(new LeafNodeT413("T41 (3)")); 
Sim_system.add(new LeafNodeT414("T41(4)"));

//T42
Sim_system.add(new RootNodeT42A("T42(A)")); 
Sim_system.add(new IntNodeT42B("T42(B)")); 
Sim_system.add(new IntNodeT42C("T42(C)")); 
Sim_system.add(new LeafNodeT421("T42(l)")); 
Sim_system.add(new LeafNodeT422("T42(2)")); 
Sim_system.add(new LeafNodeT423("T42(3)")); 
Sim_system.add(new Lea£NodeT424("T42(4)"));

//T43
Sim_system.add(newRootNodeT43A("T43(A)")); 
Sim_system.add(new IntNodeT43B("T43(B)")); 
Sim_system.add(new IntNodeT43C("T43(C)")); 
Sim_system.add(new LeafNodeT431 ("T43(l)")); 
Sim_system.add(new LeafNodeT432("T43(2)")); 
Sim_system.add(new LeafNodeT433("T43(3)")); 
Sim_system.add(new LeafNodeT434("T43(4)"));
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//T44
Sim_system.add(new RootNodeT44A("T44(A)"));
Sim_system.add(new IntNodeT44B("T44(B)"));
Sim_system.add(new IntNodeT44C("T44(C)"));
Sim_system.add(new LeafNodeT441("T44(l)"));
Sim_system.add(new LeafNodeT442("T44(2)"));
Sim_system.add(new LeafNodeT443("T44(3)"));
Sim_system.add(new LeafNodeT444("T44(4)"));

//Link entities using port

//Til
Sim_system.link_4)orts("Tl 1(A)", "lTllAPort", "Tll(B)n, "iTllBPort"); 
Sim_system.link_ports("Tl 1(A)", "rTllAPort", "Tll(C)", "iTllCPort"); 
Sim_system.link_ports("Tl 1(B)", "ITllBPort", "Tll(l)", "iTlllPort"); 
Sim_system.link_ports("Tl 1(B)", "rTllBPort", "Tll(2)", "iT112Port"); 
Sim_system.link_45orts("Tl 1(C)", "ITllCPort", "T11(3)M, "iT113Port"); 
Sim_system.linkj>orts("Tl 1(C)", "rTllCPort", "T11(4)M, "iT114Port"); 
Sim_system.link_ports("Tl 1(2)", "hT112Port", "T12(l)", "hT121Port"); 
Sim_system.link_ports("Tl 1 (2)", "vT112Port", "T21(l)", "vT211Port"); 
Sim_system.link_ports("Tl 1 (3)", "hT113Port", "T13(1)M, "hT131Port"); 
Sim_system.link_j5orts("Tl 1(3)", "hT113Port", "T13(l)", "hlT131Port"); 
Sim_system.link_j)orts("Tl 1 (3)", "vT113Port", "T31(l)", "vT311Port"); 
Sim_system.link_ports("Tl 1 (3)", "vT113Port", "T31(l)", "vlT311Port"); 
Sim_system.link_j?orts("Tl 1(4)", "hT114Port", "T14(l)", "hT141Port"); 
Sim_system.link_ports("Tl 1 (4)", "vT114Port", "T41(l)", "vT411Port"); 
//T12
Sim_system.link_ports("T12(A)", "lT12APort", "T12(B)", "iT12BPort"); 
Sim_system.link_ports("T12(A)", "rT12APort", "T12(C)", "iT12CPort"); 
Sim_system.link_j)orts("T12(B)", "lT12BPort", "T12(1)M, "iT121Port"); 
Sim_system.link_ports("T 12(B)", "rT12BPort", "T12(2)", "iT122Port"); 
Sim_system.link_ports("T 12(C)", "lT12CPort", "T12(3)", "iT123Port"); 
Sim_system.link_ports("T 12(C)", "rT12CPort", "T12(4)M, "iT124Port"); 
Sim_system.link_ports("T12(l)", "hlT121Port", "Tll(2)", "hlT112Port"); 
Sim_system.link_ports("T12(2)", "vT122Port", "T22(l)", "vT221Port"); 
Sim_system.link_ports("T12(3)", "hT123Port", "T13(2)", "hT132Port"); 
Sim_system.link_j)orts("T 12(3)", "vT123Port", "T32(l)", "vT321Port"); 
Sim_system.link_ports("T 12(4)", "hT124Port", "T14(2)", "hT142Port"); 
Sim_system.link_j)orts("T12(4)", "vT124Port", "T42(l)", "vT421Port");

//T13
Sim_system.linkj)orts("T13(A)", "lT13APort", "T13(B)", "iT13BPort"); 
Sim_system.link_ports("Tl3(A)", "rT13APort", "T13(C)M, "iT13CPort"); 
Sim_system.link_j)orts("Tl3(B)", "lT13BPort", "T13(l)", "iT131Port"); 
Sim_system.linkj5orts("T13(B)", "rT13BPort", "T13(2)", "iT132Port"); 
Sim_system.link_ports("T13(C)", "lT13CPort", "T13(3)", "iT133Port"); 
Sim_system.link_ports("T 13(C)", "rT13CPort", "T13(4)", "iT134Port"); 
Sim_system.link_ports("Tl3(2)", "vT132Port", "T23(l)", "vT231Port"); 
Sim_system.link_ports("Tl3(2)", "vlT132Port", "T23(l)", "vT231Port"); 
Sim_system.linkj)orts("T13(3)", "vT133Port", "T33(l)", "vT331Port");
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Sim_system.lmk_ports("T13(4)", "hT134Port", "T14(3)M, "hT143Port"); 
Sim_system.link_ports("Tl3(4)", "hT134Port", ”T14(3)", "hlT143Port"); 
Sim_system.link_ports("Tl3(4)", "vT134Port", "T43(l)", "vT431Port");

//T14
Sim_system.link_ports("T 14(A)", "lT14APort", "T14(B)", "iT14BPort"); 
Sim_system.link_ports("T14(A)", "rT14APort", "T14(C)M, "iT14CPort"); 
Sim_system.link_ports("T 14(B)", "lT14BPort", "T14(l)", "iT141Port"); 
Sim_system.link_ports("T 14(B)", "rT14BPort", "T14(2)", "iT142Port"); 
Sim_system.link_ports("T 14(C)", "lT14CPort", "T14(3)", "iT143Port"); 
Sim_system.link_4)orts("T 14(C)", "rT14CPort", "T14(4)", "iT144Port"); 
Sim_system.link_4)orts("T14(2)", "vT142Port", "T24(1)M, "vT241Port"); 
Sim_system.link_ports("T14(2)", "vlT142Port", "T24(l)", "vlT241Port"); 
Sim_system.link_ports("T 14(3)", "vT143Port", "T34(l)", "vT341Port"); 
Sim_system.link_ports("T14(3)", "vT143Port", "T34(l)", "vlT341Port"); 
Sim_system.link_j)orts("T14(4)", "vT144Port", "T44(1)M, "vT441Port");

//T21
Sim_system.link_ports("T21 (A)", "lT21APort", "T21(B)", "iT21BPort"); 
Sim_system.link_ports("T21 (A)", "rT21APort", "T21(C)", "iT21CPort"); 
Sim_system.link_ports("T21 (B)", "lT21BPort", ”T21(1)", "iT211Port"); 
Sim_system.link_ports("T21(B)", "rT21BPort", "T21(2)", "iT212Port"); 
Sim_system.link_ports("T21 (C)", "lT21CPort", ”T21(3)", "iT213Port"); 
Sim_system.link_j)orts("T21 (C)", "rT21CPort", "T21(4)M, "iT214Port"); 
Sim_system.linkj)orts("T21(2)", "hT212Port", "T22(l)", "hT221Port"); 
Sim_system.link_43orts("T21 (3)", "hT213Port", "T23(1)M, "hT231Port"); 
Sim_system.link_ports("T21 (3)", "vT213Port", "T31(2)", "vT312Port"); 
Sim_system.link_ports("T21 (3)", "vlT213Port", "T31(2)", "vT312Port"); 
Sim_system.link_ports("T21 (4)", "hT214Port", "T24(l)", "hT241 Port"); 
Sim_system.link_ports("T21 (4)", "vT214Port", "T41(2)", "vT412Port"); 
Sim_system.link_ports("T21 (4)", "vlT214Port", "T41(2)", "vlT412Port");

1/122
Sim_system.link_j3orts("T22(A)", "lT22APort", "T22(B)", "iT22BPort"); 
Sim_system.link_ports("T22(A)", "rT22APort", "T22(C)", "iT22CPort"); 
Sim_system.link_ports("T22(B)", "lT22BPort", "T22(l)", "iT221Port"); 
Sim_system.link_ports("T22(B)", "rT22BPort", "T22(2)", "iT222Port"); 
Sim_system.link_ports("T22(C)", "lT22CPort", "T22(3)", "iT223Port"); 
Sim_system.link_ports("T22(C)", "rT22CPort", "T22(4)", "iT224Port"); 
Sim_system.link_ports("T22(3)", "hT223Port", ”T23(2)", "hT232Port"); 
Sim_system.link_ports("T22(3)", "vT223Port", ”T32(2)", "vT322Port"); 
Sim_system.link_ports("T22(4)", "hT224Port", ”T24(2)", "hT242Port"); 
Sim_system.link_ports("T22(4)", "vT224Port", "T42(2)M, "vT422Port");

//T23
Sim_system.link_ports("T23(A)", "lT23APort", ”T23(B)", "iT23BPort"); 
Sim_system.link_4)orts("T23(A)", "rT23APort", "T23(C)", "iT23CPort"); 
Sim_system.link_ports("T23(B)", "lT23BPort", "T23(l)", "iT231Port"); 
Sim_system.link_ports("T23(B)", "rT23BPort", "T23(2)", "iT232Port");
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Sim_system.linkj)orts("T23(C)", "lT23CPort", "T23(3)", "iT233Port"); 
Sim_system.link_ports("T23(C)", "rT23CPort", "T23(4)M, MiT234Port"); 
Sim_system.link_ports("T23(3)", "vT233Port", MT33(2)", "vT332Port"); 
Sim_system.link_ports("T23(4)", "hT234Port", "T24(3)", "hT243Port"); 
Sim_system.linkj>orts("T23(4)", "vT234Port", "T43(2)", ”vT432Port");

//T24
Sim_system.link_ports("T24(A)", "lT24APort", "T24(B)M, "iT24BPort"); 
Sim_system.link_j?orts("T24(A)", "rT24APort", "T24(C)", MiT24CPort"); 
Sim_system.link_ports("T24(B)", "lT24BPort", "T24(1)M, "iT241Port"); 
Sim_system.link_ports("T24(B)", "rT24BPort", ”T24(2)", "iT242Port"); 
Sim_system.link_ports("T24(C)", "lT24CPort", "T24(3)'\ "iT243Port"); 
Sim_system.link_ports("T24(C)", "rT24CPort", "T24(4)", "iT244Port"); 
Sim_system.lmk_j)orts("T24(3)", "vT243Port", "T34(2)M, "vT342Port"); 
Sim_system.link_ports("T24(4)", "vT244Port", "T44(2)'\ "vT442Port");

//T31
Sim_system.link_ports("T31 (A)", "lT31APort", "T31(B)", "iT31BPort"); 
Sim_system.link_ports("T31 (A)", ”rT31APort”, ”T31(C)”, "iT31CPort"); 
Sim_system.link_ports("T31 (B)", "lT31BPort", "T31(l)'\ "iT311Port"); 
Sim_system.link_ports("T31 (B)", "rT31BPort", "T31(2)", "iT312Port"); 
Sim_system.link_ports("T31(C)", "lT31CPort", "T31(3)", "iT313Port"); 
Sim_system.link_43orts("T31 (C)", "rT31CPort", "T31(4)”, "iT314Port"); 
Sim_system.link_ports("T31 (2)", "hT312Port", "T32(l)", "hT321Port"); 
Sim_system.link_ports("T31 (3)", "hT313Port", "T33(1)M, ”hT331PortM); 
Sim_system.link_4)orts("T31 (4)", "hT314Port", "T34(l)", "hT341Port"); 
Sim_system.link_ports("T31 (4)", "vT314Port", "T41(3)", "vT413Port");

//T32
Sim_system.link_ports("T32(A)", "lT32APort", "T32(B)", "iT32BPort"); 
Sim_system.link_ports("T32(A)", "rT32APort", "T32(C)", "iT32CPort"); 
Sim_system.link_ports("T32(B)", "lT32BPort", ”T32(1)", "iT321Port"); 
Sim_system.link_4)orts("T32(B)", "rT32BPort", "T32(2)”, "iT322Port"); 
Sim_system.linkj)orts("T32(C)", "lT32CPort", "T32(3)M, "iT323Port"); 
Sim_system.link_ports(''T32(C)M, "rT32CPort", "T32(4)M, "iT324Port"); 
Sim_system.link_ports("T32(3)", "hT323Port", "T33(2)", "hT332Port"); 
Sim_system.link_j)orts("T32(4)", "hT324Port", "T34(2)", "hT342Port"); 
Sim_system.link_ports("T32(4)", "vT324Port", "T42(3)", "vT423Port");

//T33
Sim_system.link_4)orts("T33(A)", "lT33APort", "T33(B)M, "iT33BPort"); 
Sim_system.link_ports("T33(A)", "rT33APort", "T33(C)", "iT33CPort"); 
Sim_system.link_ports("T33(B)", "lT33BPort", "T33(l)"; "iT331Port"); 
Sim_system.link_4)orts("T33(B)", "rT33BPort", "T33(2)", "iT332Port"); 
Sim_system.link_ports("T33(C)", "lT33CPort", ”T33(3)", "iT333Port"); 
Sim_system.link_ports("T33(C)", "rT33CPort", "T33(4)M, "iT334Port"); 
Sim_system.link_ports("T33(4)", "hT334Port", "T34(3)", "hT343Port"); 
Sim_system.link_j)orts("T33(4)", "hlT334Port", "T34(3)", "hlT343Port"); 
Sim_system.link_ports("T33(4)", "vT334Port", "T43(3)", "vT433Port"); 
Sim_system.link_ports("T33(4)", "vlT334Port", "T43(3)M, "vlT433Port");
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//T34
Sim_system.link_ports("T34(A)", "lT34APort", "T34(B)M, "iT34BPort"); 
Sim_system.link_j)orts("T34(A)", "rT34APort", "T34(C)'\ "iT34CPort"); 
Sim_system.link_ports("T34(B)", "lT34BPort", "T34(1)M, "iT341Port"); 
Sim_system.link_ports("T34(B)", "rT34BPort", "T34(2)M, "iT342Port"); 
Sim_system.link_ports("T34(C)", "lT34CPort", ”T34(3)", "iT343Port"); 
Sim_system.link_ports("T34(C)", "rT34CPort", "T34(4)", "iT344Port"); 
Sim_system.link_ports("T34(4)", "vT344Port", "T44(3)", "vT443Port");

//T41
Sim_system.link_4)orts("T41 (A)", "lT41APort", "T41(B)", "iT41BPort"); 
Sim_system.link_ports("T41 (A)", "rT41APort", "T41(C)", "iT41CPort"); 
Sim_system.link_ports("T41 (B)", "lT41BPort", "T41(l)", "iT411Port"); 
Sim_system.linkj)orts("T41 (B)", "rT41BPort", "T41(2)", "iT412Port"); 
Sim_system.link_43orts("T41 (C)", "lT41CPort", "T41(3)M, "iT413Port"); 
Sim_system.link_ports("T41 (C)", "rT41CPort", "T41(4)M, "iT414Port"); 
Sim_system.link_ports("T41 (2)", "hT412Port", "T42(l)", "hT421Port"); 
Sim_system.lmk_ports("T41(3)", "hT413Port", ”T43(1)", "hT431Port"); 
Sim_system.link_ports("T41 (4)", "hT414Port", "T44(l)", "hT441Port");

//T42
Sim_system.link_ports("T42(A)", "lT42APort", "T42(B)", "iT42BPort"); 
Sim_system.link_ports("T42(A)", "rT42APort", "T42(C)M, "iT42CPort"); 
Sim_system.link_ports("T42(B)", "lT42BPort", "T42(l)", "iT421Port"); 
Sim_system.link_ports("T42(B)", "rT42BPort", ”T42(2)", "iT422Port"); 
Sim_system.link_j)orts("T42(C)", "lT42CPort", "T42(3)M, "iT423Port"); 
Sim_system.link_j)orts("T42(C)", "rT42CPort", ”T42(4)", "iT424Port"); 
Sim_system.link_ports("T42(3)", "hT423Port", MT43(2)", "hT432Port"); 
Sim_system.link_ports("T42(4)", "hT424Port", "T44(2)", "hT442Port");

//T43
Sim_system.linkj)orts("T43(A)", "lT43APort", ”T43(B)", "iT43BPort"); 
Sim_system.link_ports("T43(A)", "rT43APort", "T43(C)n, "iT43CPort"); 
Sim_system.link_ports("T43(B)", "lT43BPort", ”T43(1)", "iT431Port"); 
Sim_system.link_ports("T43(B)", "rT43BPort", ”T43(2)", "iT432Port"); 
Sim_system.link_ports("T43(C)", "lT43CPort", "T43(3)M, "iT433Port"); 
Sim_system.link_ports("T43(C)", MrT43CPort", "T43(4)M, "iT434Port"); 
Sim_system.link_4)orts("T43(4)", "hT434Port", "T44(3)'\ "hT443Port");

//T44
Sim_system.link_ports("T44(A)", "lT44APort", "T44(B)M, "iT44BPort"); 
Sim_system.link_ports("T44(A)", "rT44APort", "T44(C)", "iT44CPort"); 
Sim_system.link_ports("T44(B)", "lT44BPort", "T44(l)", "iT441Port"); 
Sim_system.link_ports("T44(B)", "rT44BPort", MT44(2)", "iT442Port"); 
Sim_system.link_ports("T44(C)", "lT44CPort", "T44(3)n, "iT443Port"); 
Sim_system.link_ports("T44(C)", "rT44CPort", "T44(4)", "iT444Port"); 
Sim_system.run();
System.out.println("End time " + Sim_system.clock());
System. exit(O);
}

}
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