
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2004

Efficient algorithms for the optical multi-trees (OMULT) Efficient algorithms for the optical multi-trees (OMULT)

architecture. architecture.

Mohammad Rabiul Islam
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Islam, Mohammad Rabiul, "Efficient algorithms for the optical multi-trees (OMULT) architecture." (2004).
Electronic Theses and Dissertations. 1879.
https://scholar.uwindsor.ca/etd/1879

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1879?utm_source=scholar.uwindsor.ca%2Fetd%2F1879&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Efficient Algorithms for the Optical Multi-
Trees (OMULT) Architecture

by
Mohammad Rabiul Islam

A Thesis

Submitted to the Faculty of Graduate Studies and Research through the School of

Computer Science in Partial Fulfillment o f the Requirements for the Degree of

Master of Science at the University of Windsor

Windsor, Ontario, Canada

2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-00125-9
Our file Notre reference
ISBN: 0-494-00125-9

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mohammad Rabiul Islam 2004

© All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Efficient Algorithms for the Optical Multi-Trees (OMULT)
Architecture

by
Mohammad Rabiul Islam

APPROVED BY:

H. External Examiner, ~"
Department of Electrical and Computer Engineering

A. Aggarwal, Internal Examiner,
School of Computer Science

S. Bandyopa*lii/ay, Sug£rviso‘r,
School of Computer Science

D. Wu, Supervisor, Chair
School of Computer Science

Date: June 14,2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

In this thesis, we have reported our investigations on efficiently implementing algorithms

on the recently proposed Optical Multi-Trees (OMULT) multi-processors interconnection

architecture that uses both electronic and optical links among processors. We have

investigated algorithms for matrix multiplication of two matrices of size n2 x n2 and two

matrices of arbitrary size, the prefix-sum of a series and some fundamental computational

geometry problems. We show that some common algorithms for computational geometry

- finding the convex hull, the smallest enclosing box, the empirical cumulative

distribution function and the all-nearest neighbor problems of n data points can be

computed on the OMULT network in 0(log n) time, compared to 0(^1 n) algorithms on

the Optical Transpose Interconnection System (OTIS) mesh for each of these problems.

Finally we have implemented our algorithm for matrix multiplication using the Sim Java

simulation tool and feel that this is a convenient environment for testing such parallel

algorithms.

Keywords: Optical Interconnect systems, OTIS-Mesh, Optical Multi-Trees (OMULT),

Matrix Multiplication, Prefix-Sum, Convex Hull, Smallest Enclosing Box, Empirical

Cumulative Distribution Function, All-Nearest Neighbor.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

One of the great pleasures of conducting this thesis work is acknowledging the efforts of

many people whose names may not appear on the cover, but whose hard work,

cooperation, advice, friendship and understanding were crucial to the production of the

thesis. I am fortunate to have been able to work with the talented and dedicated team- Dr.

Bhabani P. Sinha and Dr. Subir Bandyopadhyay. I first wish to thank both Dr. Bhabani

P. Sinha and Dr. Subir Bandyopadhyay for their notable and original contributions to my

research work.

My special thank to my respected supervisor Dr. Subir Bandyopadhyay for his loving

support, encouragement, useful comments, direction and patience with my long hour and

funny schedule. I would like to take this opportunity to thank Dr. Huapeng Wu and Dr.

Akshai Aggarwal for their helpful suggestions, time and cooperation.

Thanks to all of my friends for sharing their experience and suggestions. I am also

grateful to Mrs. Bharati Bandyopadhyay for her inspiration and loving support.

Finally, I want to express my gratitude to my mother, brothers and sisters for their

constant encouragement and support. The sparkling smile of my child Sindeed Islam is

the source of my main inspiration. Special thank to my wife Nahid Afroz who

participated in producing of this thesis in more ways. Their support and understanding

was a fantastic help when I disappeared to my computer for many long hours. Without

their backing this task would never have been completed.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract...iv

Acknowledgements..v

List of Figures...ix

List of Tables...x

Chapter 1: Introduction...1

1.1 Preamble.. 1
1.2 Work reported in this thesis..2

1.2.1 Matrix multiplication...3
1.2.2 Prefix-sum computation...4
1.2.3 Computational geometry problem..5

1.3 Implementation of matrix multiplication algorithm on OMULT..............................5

1.4 Organization of the thesis..6

Chapter 2: Review of Literature..7
2.1 Introduction...7

2.2 Parallel computers...7

2.3 Interconnection Architecture...9
2.4 Interconnection technologies...9
2.5 Simple Interconnection Architecture.. 11

2.5.1 Linear Array...11
2.5.2 Tree Interconnections..11
2.5.3 2D-Mesh Interconnection... 12

2.6 Interconnection architecture based on opto-electronic technology........................ 13
2.6.1 OTIS Mesh architecture... 13
2.6.2 OMULT Architecture... 16

2.7 Some Important Properties of the OMULT Network... 18
2.8 Algorithms for the OMULT Architecture... 18

2.8.1 Row/column group broadcast.. 19

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.8.2 Data Broadcast...20
2.8.3 Complete Group-Broadcast..21
2.8.4 Sorting..22
2.8.5 Matrix Multiplication...23
2.8.6 Prefix-sum..25
2.8.7 Computational Geometry Problems...26

2.8.7.1 Convex Hull..26
2.8.7.2 Smallest Enclosing Box (SEB)...29
2.8.7.3 Empirical Cumulative Distribution Function (ECDF)..............................31
2.8.7.4 All-Nearest Neighbor..33

Chapter 3: Algorithms in Matrix Multiplication and Prefix Sum on OMULT
Network..35

3.1 Introduction...35

3.2 Matrix Multiplication: Two square Matrices of size n2 x n2..................................35

3.3 Matrix Multiplication where the two operands may have any size.........................42

3.4 Prefix Sum for n2 data elements..45

3.5 Prefix Sum for n data elements..53

Chapter 4: Algorithms in Computational Geometry on OMULT............................. 55
4.1 Introduction.. 55
4.2 Convex Hull..55

4.3 Smallest Enclosing Box..64

4.4 Empirical Cumulative Distribution Function (ECDF)..67
4.5 All-Nearest Neighbor..69

Chapter 5: Network Simulation...71
5.1 Purpose of the Simulation...71
5.2 SimJav Simulation...72

5.3 Problem Simulated..72

5.4 Modeling of the System..73
5.4.1 The nodes of the trees..73
5.4.2 Connecting nodes...76
5.4.3 Communication between the nodes...76

5.5 Simulation Result..81
5.6 Critical review of the Simulation..81

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Conclusions and Future Work...83
6.1 Conclusions...83

6.2 Future Works...85

Appendix A: List of symbols..86

Appendix B: Glossary of important terms..87

Appendix C: Simulation...89

Appendix D: References...112

VITA AUCTORIS...127

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

FIGURE 2.1: 2D MESH INTERCONNECTION NETWORK...8
FIGURE 2.2: LINEAR ARRAY INTERCONNECTION..11
FIGURE 2.3: TREE INTERCONNECTION.. 12
FIGURE 2.4: 2D-MESH INTERCONNECTION..13
FIGURE 2.5: OTIS-MESH NETWORK...15
FIGURE 2.6: OMULT NETWORK..17
FIGURE 2.7(A): SET OF POINTS ..27
FIGURE 2.7(B): CONVEX HULL OF S ..27
FIGURE 2.8: POLAR ANGLE..27
FIGURE 2.9(A): SET OF POINTS..27
FIGURE 2.9(B): E IS AN EXTREME POINT...28
FIGURE 2.9(C): C IS AN EXTREME POINT...28
FIGURE 2.10: SMALLEST ENCLOSING B O X ..31
FIGURE 2.11: SET OF POINTS...32
FIGURE 3.1: MATRIX X WITH SIZE N2 ><N2, WITH N = 4 ...35
FIGURE 3.2: MATRIX Y WITH SIZE N2 X N2, WITH N = 4...36
FIGURE 3:3 BLOCK OF SUBMATRICES OF MATRIX X ..37
FIGURE 3.4: DIVISION OF MATRICES INTO SUBMATRICES...43
FIGURE 3.5: DATA ARE STORED AT THE LEAF NODES OF THE TREES.................................49
FIGURE 3.6: THE DISTRIBUTION OF DATA AFTER STEP 2 ...50
FIGURE 3.7: AFTER STEP 3 .. 50
FIGURE 3.8: AFTER STEP 4 ...51
FIGURE 3.9: AFTER STEP 5 ..51
FIGURE 3.10: AFTER STEP 6 ...52
FIGURE 3.11: AFTER STEP 7 ..52
FIGURE 4.1: SET OF POINTS ..58
FIGURE 4.2: POINTS ARE STROED AT THE LEAF NODE..59
FIGURE 4:3 AFTER STEP 2 .3 ...59
FIGURE 4.4: AFTER STEP 3.3...60
FIGURE 4.5: AFTER STEP 4 ..60
FIGURE 4.6: AFTER STEP 5 ..61
FIGURE 4.7: AFTER STEP 6 ..61
FIGURE 4.8: AFTER STEP 8 ..62
FIGURE 5.1: A SIMULATION LAYOUT...62

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

TABLE 5.1: SUBCLASSES OF SIM ENTITY... 74
t a b l e 6.1: P e r f o r m a n c e o f a l g o r it h m s o n t h e o m u l t ... 84

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction

1.1 Preamble

In late 1940 Dr John von Neumann formulated the classical computer architecture, based

on a single central processing unit, to execute machine instructions [1]. The control unit

of such machines fetches the instruction to be executed and its operands from memory,

sends this instruction and its operands to the central processing unit where the instruction

is executed. The design objective from the very beginning was to build faster and more

efficient processors to build a faster computer. The modem computers are many orders of

magnitude faster and more powerful compared to earlier machines.

A different approach to designing faster computers is to use a number of processors

working together to achieve a better performance. A parallel computer (also called a

multi-processor machine) is a machine that consists of a collection of processing units, or

processors that cooperate, to solve a problem, by working simultaneously on different

parts of that problem [1], The idea is that, if several operations are done in parallel,

significant improvement of computer performance can be achieved through exploitation

of parallelism [22]. One crucial issue in the design of multi-processor machines is to

decide how the processors should communicate with each other. An interconnection

network is used to provide connection among processors so that data can be transferred

quickly between processors that need to share data. In order to achieve better execution

performance of computer systems through parallelization, there have been considerable

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

efforts in designing interconnection network for parallel computers [12], [21] over the

last few decades.

When fabricating multi-processor systems, the standard approach is to use copper lines to

realize links between processors. One major problem in this approach is the speed and

other technological limitations of copper based connections. Optical technology has been

proposed as a solution to this problem. One of the recent architectures partially based on

the optical technology is the Optical Transpose Interconnect System (OTIS) [25], [12],

[40] in which the processors are partitioned into groups so that processors within each

group are interconnected by electronic links and processors in different groups are

interconnected by optical links. The OTIS-Mesh optoelectronic computer is a class of

OTIS computers on which various fundamental algorithms have been conveniently

mapped [27], [29], [35] - [39]. Very recently, Sinha and Bandyopadhyay [31] have

introduced another opto-electronic computer system, called the Optical Multi-Trees

(OMULT). The OMULT architecture uses, n2 complete binary trees of processors, each

having n leaf nodes and n - 1 internal nodes.

1.2 Work reported in this thesis

In this thesis we are reporting our work in developing some efficient algorithms for the

OMULT architecture. The algorithms reported in this thesis include-

1) matrix multiplication of two matrices of size n2 x n2,

2) matrix multiplication of two matrices of any arbitrary size,

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3) computing the prefix-sum of n2 data elements,

4) computing the prefix-sum of any arbitrary number of data elements,

5) computational geometry algorithms to find the

a. convex hull,

b. the smallest enclosing box,

c. the empirical cumulative distribution function and

d. all-nearest neighbor.

1.2.1 Matrix multiplication

Matrix multiplication is commonly used in the areas of graph theory, numerical

algorithms, digital control, and signal processing [41]. Multiplication of large matrices

requires a lot of computation time as its complexity is O (n), where the size of the matrix

is n x n. Because most current applications require higher computational throughput,

many researchers have tried to improve the performance of matrix multiplication [41].

Since there is little scope to improve sequential matrix multiplication algorithm, parallel

algorithms for matrix multiplication have been proposed [41]. These algorithms use

matrix decomposition based on the number of processors available and include the

systolic algorithm [24], Cannon's algorithm [2], Fox and Otto's algorithm [8], PUMMA

(Parallel Universal Matrix Multiplication Algorithm) [3], SUMMA (Scalable Universal

Matrix Multiplication Algorithm) [11], and DIMM A (Distribution Independent Matrix

Multiplication Algorithm) [3]. In these algorithms, a processor calculates a partial result

using the sub-matrices of the supplied matrices and successively performs the same

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

calculation on new sub-matrices, adding the new results to the previous results. When all

multiplication is complete, the root processor assembles the partial results and generates

the product matrix. We have shown that the OMULT architecture is well-suited for

matrix multiplication.

1.2.2 Prefix-sum computation

Prefix sum is very useful in scheduling and constraint satisfaction problems [1]. The

problem descriptions are given below:

• We are given a series aj, a2 , aw

• The prefix sum problem is to compute the following sums

> ay

> a; + a2

5* a j + a 2 + CI3

>

^ a/ + ci2 + + a/v

In summary, the prefix sum problem is to compute for all i, 1 < i < n. We have
/

developed an efficient algorithm to compute these sums using the OMULT architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2.3 Computational geometry problem

Computational geometry problem deals with algorithms that create, modify or describe

geometric objects using computers [1]. It is very useful in designing 3D-graphics. In the

past it was not possible to generate fully rendered movies due to lack of availability of

sufficiently powerful computers. However, over the last two decades, it has become

possible to develop parallel algorithms for computational geometry problems [1]. This

thesis investigates parallel algorithms for some basic computational geometry problems

using the OMULT architecture. The details of the relevant computational geometry (CG)

problems are described in chapter 2. In chapter 4 we will show that the CG problems we

studied can be solved using the OMULT network [31] more quickly than the recently

introduced OTIS-Mesh network [37].

1.3 Implementation of matrix multiplication algorithm on OMULT

We have simulated the algorithm for matrix multiplication of two n x n matrices on an

OMULT architecture using the SIMJAVA package. The SIMJAVA package is a process

based simulation tool based on Java. A SIMJAVA simulation is a collection of entities

each running on its own thread. These entities are connected together by ports and can

communicate with each other by sending and receiving event objects. A central system

class controls all the threads, advances the simulation time, and delivers the events [42].

The SIMJAVA package is useful for a distributed memory systems, since it provides a

widely used standard of message passing program and provides a portable, efficient, and

flexible standard for message passing. Our simulation result shows that the SIMJAVA

package is suitable for implementing the parallel algorithms for OMULT architecture.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 Organization of the thesis

We organize the rest of the thesis as follows: In chapter 2, we give an overview of

multiprocessors, interconnection architecture, the OTIS-mesh, the OMULT network and

algorithms for the matrix multiplication, prefix-sum and computational geometry

problems. In chapter 3 we provide several new matrix multiplication and prefix-sum

algorithms and time analysis on the OMULT system. We present and analyze the

algorithms for computational geometry problems on the OMULT network in Chapter 4.

Chapter 5 contains the detailed discussions on the simulation of the OMULT network and

a critical summary of this work. Chapter 6 describes the fixture trends and finally the

conclusions of the thesis. Appendix A through D contains the list of symbols used,

glossary of the terms used, SimJava program for Simulation and the list of references.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

Chapter 2: Review of Literature

2.1 Introduction

In this section we will review briefly the topics that are immediately relevant to this

thesis. These include the following topics on parallel computers, interconnection

architectures and the algorithms we have studied in this investigation:

> Parallel Computers

> Interconnection Architecture

o Interconnection Technologies

o Simple Interconnection Architecture

o Complex Opto-electronic Architecture

> Implementation of some algorithms on the OMULT Architecture

> Fundamental algorithms relevant to the work

o Matrix multiplication

o Prefix sum

o Computational Geometry

2.2 Parallel computers

A parallel computer is one that consists of a collection of processing units, or processors,

that cooperate to solve a problem by working simultaneously on different parts of that

problem [1]. A stream of instructions indicates, to the computer, what to do at each step

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and a stream of data is affected by these instructions. With the recent advances in VLSI

technology, it is possible to have a computer that contains many processors that

communicate each other using either shared memory or an interconnection network.

Figure 2.1 shows a static interconnection network using the single instruction multiple

data (SIMD) model. Each rectangle in the figure 2.1 represents a processor and every

edge connecting two rectangles represents a bi-directional link connecting the pair of

processors corresponding to the two rectangles.

In order to use such a parallel computer to solve a problem, the problem is decomposed

into a number of sub-problems, each of which may be solved somewhat independently of

one another. The sub-problems are assigned to different processors of the parallel

machine. These processors work simultaneously to solve the sub-problem assigned to it

and interact with other processors as needed to exchange data/ results. Finally the results

of individual processors are combined to produce an answer to the original problem.

Processor

h - m

Links

F ig u r e 2 .1: 2D M e s h In t e r c o n n e c t io n N e t w o r k

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Interconnection Architecture

The rules used to connect two processors are critically important. Interconnection

architecture defines the way processors are connected to each other in a parallel

computer. The interconnection architecture defines how any processor may transfer data

from/to any other processors) in the network as needed to implement an algorithm. In

recent years there has been a lot of investigation in designing interconnection architecture

for parallel computer system [10, 34, 20]. The shortest path between two processors Pi

and Pj is the smallest number of links that have to be used from one processor to

communicate with the other. An important aspect, used to evaluate an interconnection

network is the diameter, defined as the largest possible value of the shortest path between

any two processors in an interconnection network[30].

2.4 Interconnection technologies

In this section we will discuss the two basic interconnection technologies that we use -

electrical interconnections and optical interconnections. Traditional interconnection

technology uses copper to get an electrical connection. Using VLSI, connecting two

processors using copper is very straightforward and is traditionally done by embedding

all processors on the same layout where the link is in the form of a via connection

between metal layers [4]. Copper based interconnection system uses electronics signals

for communication and the system works well when interconnection distances less than 1

millimeter [4, 23]. It is well known that the VLSI layout of many popular communication

architectures is complicated and the size of such VLSI arrays as well as the physical

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

length of the longest link increase exponentially with the number of processors in the

network [21]. This is a major problem since a longer copper line dramatically increases

the delay on the line.

An optical network is a digital communication system that uses light waves as the

medium for transmission of data. Optical technology has made significant contributions

to the state of the art for long distance communication. Advantages of optical technology

include high reliability, low interference, security benefits and (most important) very high

bandwidth [4].

In recent years, the idea of replacing electrical connections by optical connection in an

interconnection network has been drawing much attention among researchers [22],

Besides the advantages of high bandwidth and low wire density, optical communication

supports high data rate communication with lower power requirements than electric

interconnects [10], high bandwidth and high reliability. A major advantage is that, except

for the speed of light limitation, there is no capacitive delay for a longer physical

connection realized using optical technology [4]. For this reason, researchers are

investigating the use of optical links rather than electronic links when the interconnection

distance is more than a few millimeters [7, 16].

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Simple Interconnection Architecture

In this sub-section we will present some examples of basic interconnection networks and

configurations.

2.5.1 Linear Array

The simplest way to connect nodes is in the form of a linear array. If we have N

processors Po, P , ... Pn-i to be interconnected in a linear array, processor Pt has a link to

processor Pt.i and a link to processor Pi+i [1], for all i, 0 < i <N. The processor Po and

Pn-i have only one link to processor Pi and Pn-2 respectively. We show a linear array in

Figure 2.2. Linear arrays have a simple architecture and have been used in some SIMD

machines [5]. Linear arrays have a poor diameter.

F ig u r e 2.2: L in e a r a r r a y in t e r c o n n e c t io n

2.5.2 Tree Interconnections

In this network the processors form the binary tree. The binary tree has a diameter as the

0(log N) where N is the number of nodes in the network assuming that each node has the

same number of incoming and outgoing links [5]. The important advantage of the

topology is that it is suitable for many parallel algorithms. The main drawback of the

binary tree network is poor bisection width and arc connectivity [30].

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F ig u r e 2 .3: T r e e In t e r c o n n e c t io n

In general, such a tree has d levels, numbered 0 (for leaf nodes) to d - 1 (for the node at

the root of the tree), and N = 2d - 1 nodes each of which is a processor. Figure 2.3

[15] shows a tree uses d - 4 and N = 15. The root node at level d - 1 has no parent and

leaf nodes at level 0 have no children. Each node at level i, is connected to its root node

at level i + 1 and to its two leave nodes at level i - 1.

2.5.3 2D-Mesh Interconnection

Mesh (figure 2.4 [5]) is one of the most popular interconnection network. This is the

interconnection we used in Figure 2.1. In an n x n 2D mesh, the processors are arranged

in n rows and n columns in a square grid. The processor in row j and column k is denoted

by P (j, k), where 0 <j, k< m - l . There are links connectingP (j, k) to processors P (j +1,

k), P 0 ~ 1, k), P (j, k+1) and P (j, k-1). There are 4(n-2) processors on the four outer

boundaries of the grid, each of which has three processors with which it is connected by a

link. There are four comer processors that have only two other processors with which it is

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

connected by a link. Each of the remaining (n-2)2 processors have four other processors

with which it is connected by a link.

F ig u r e 2 .4 : 2 d - m e s h In t e r c o n n e c t io n

There are many others proposed interconnection architectures [10] that we will not

review due to lack of space.

2.6 Interconnection architecture based on opto-electronic technology

2.6.1 OTIS Mesh architecture

We have already mentioned the advantages of optical communication when the physical

distance between two processors exceed a certain limit. One of the recent architectures

that take advantage of the optical technology is the Optical Transpose Interconnect

System (OTIS) [25], [12], [40]. The OTIS is an example of a hybrid architecture in

which the processors are partitioned into groups of the same size.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.5 shows a 16-processor OTIS-Mesh where squares with solid lines denote a

processor and a rectangle with dashed lines denote a group of 4 processors. The groups

are arranged in the form of a two-dimensional array and specifying the group the

processor belongs to and the address of the processor within the group identifies each

processor. Wang and Sahni [35]-[39] used the form (G, P) where G identifies the group

and P identifies the processor within the group. Since specifying its row index and its

column index may identify a group, G is specified by the pair (gXi gy), Similarly a

processor within a given group may be uniquely specified by it’s row index px and

column index py. Thus the address of a processor is the 4-tuple (gXi gy, px, py). The

interconnections of the network are as follows:

(1) Electronic links are used to connect processors within the group so that processor

P(gx,gy.px ± l ,p y) has an electronic link with processor P(gx,gy,Px,Py ± 1)-

(2) Optical interconnections are used in different group so that (Git Pj) connect to (Pj,

Gi) where i ^ j so that processor P(gx,gy, p x ± 1, py) is connected to processor

P(px,py, gx, gy ± 1) by an optical link.

Krishnamoorthy et al. [17] have shown that, when the number of processors in each

group is equal to the total number of groups, then the bandwidth and power efficiency are

maximized, and system area and volume are minimized. The OTIS-Mesh opto-electronic

computer is a class of OTIS computers on which various fundamental algorithms have

been conveniently mapped [29], [33], [35] - [39].

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Group 1Group 0

Group 2 Group 3

F ig u r e 2 .5 : o t is -m e s h n e t w o r k

Wang and Sahni [37] have developed algorithms such as the convex hull, the smallest

enclosing box, two-set dominance, maximal points, all-nearest neighbor and closest-pair

on OTIS-Mesh. Rajasekaran and Sahni [29] have developed algorithms for packet

routing, sorting and selection on OTIS-Mesh. The investigations of these algorithms

using this network show that all those problems can be solved in OfV N) time even with

N2 inputs, whereas most of those problems takes O(N) time for multi-mesh [6] and 0(N2)

time for mesh.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6.2 OMULT Architecture

Sinha and Bandyopadhyay have recently proposed a new hybrid interconnection system

called the Optical Multi-Trees (OMULT) which uses binary trees as the basic building

blocks[31]. The OMULT network o f order n consists of n complete binary trees Tfs , 1 <
{

i, j < n, arranged in the form of an n x n array, each tree having n leaf nodes and n-1

internal nodes. Each node in a tree is a processor. The nodes within each tree are

interconnected by usual electronic links, while the leaf nodes of different trees are

interconnected by optical links according to some rules discussed in this section. The

nodes in each tree Tip 1 < i, j < n, are given distinct integers from 1 to 2n-l in reverse

level order, i.e., the leaf nodes in each tree are numbered from 1 to n, in order from left to

right, and the internal nodes are also numbered from left to right in successive lower

levels (the root node being at the lowest level - level 0). Thus, the root node in each tree

is given the node number 2n-l, and the node k in a tree Ty will be referred to by the

processor node P(i,j, k), 1 < i , j < n, 1 < k < 2n-l. The total number of nodes in the

system \sN = n2 (2n-l) - 2n3- n2. The optical links interconnected only the leaf nodes in

different trees as follows:

1) Processor P(i, j, k), 1 < i . j < n, 1 < k < n, j * k, is connected to processor

P(i, k, j) by a bi-directional (full-duplex) optical link (horizontal inter-tree link),

2) Processor P(i, j, k), 1 < i , j < n, 1 < k < n, i ^ k, is connected to processor

P(k,j, i) by a bi-directional optical link (vertical inter-tree link),

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3) For i = k and/or j = k, processor P(i, j, k), 1 < i, j < n, 1 < k < n, is

connected to processor P(i, j, 2n-l) by a bi-directional optical link.

An example for the OMULT topology for n = 4 is shown in Fig. 2.6. These rules for

interconnecting the leaf nodes in different trees have some similarities with those for

interconnecting boundary/comer nodes in different meshes of the Multi-Mesh topology

[6]. It follows from the above interconnection scheme that each of the leaf nodes P(i, j,

k), 1 < i ,j < n, 1 < k < n, excepting those of the form P(i, i, i), has 2 optical links

and one electronic link connected to it, while each of the leaf nodes P(i, i, i), 1 < i < n,

has only one optical link and one electronic link connected to it. All non-root internal

nodes in a tree have 3 electronic links each, while each root node of the form P(i, i, 2n-l),

Optical WWtl-Trees (OMULT) I»terc€»»ectie« System
(All optical. kteKOffliectioa (inks ate not shown)

F ig u r e 2 .6: o m u l t n e t w o r k

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has one optical link and two electronic links All remaining root nodes has two optical

links and two electronic links. The total number of optical links in the network is equal to

2(n3 -n) + n + n + 2(n2 -n) = 2(n3 + n2 - n).

In the algorithms described in [31] and in our algorithms that we will describe later, we

assume that a processor P (i, j, k) in an OMULT architecture has three registers A(i, j, k),

B(i, j, k) and C(i, j, k).

2.7 Some Important Properties of the OMULT Network

Property 1: The diameter of the OMULT topology is 6 log n + 2 = 0 (log N), with 6

log n electronic links and 2 optical links.

Property 2: The node connectivity of the OMULT topology is two.

Property 3: The diameter of the OMULT topology under single node/link failure is

equal to 8 log n + 6.

These properties are discussed in [31].

2.8 Algorithms for the OMULT Architecture

Sinha and Bandyopadhyay [31] have considered the following basic operations on the

OMULT architecture: a) Data Broadcast, b) Row/Column Group-Broadcast, c) Complete

Group-Broadcast, d) Summation/Average/Maximum/Minimum, e) Prefix Computation,

f) Matrix Transpose, g) Matrix Multiplication and h) Sorting algorithms. These

algorithms can be very efficiently solved on the OMULT topology with lesser time

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complexities than those on the OTIS mesh. For example, summation/ average/ maximum/

minimum of n3 elements and prefix computation of n elements can be computed on this

network in Oflog n) time, two n x n matrices can be multiplied in 0(log n) time, and n

elements can be sorted in 0(log2n) time. These time complexities may be compared to

O(n) time for finding summation/maximum/minimum and prefix computation of n

elements, 0(n4) time for multiplying two n4 x n4 matrices, and O(n) time for sorting n4

elements on the OTIS mesh with n processors. In this section, we briefly review the

mapping of two fundamental algorithms on the OMULT topology as proposed in [31]

since we will refer to them later on in this thesis.

2.8.1 Row/column group broadcast

Only the leaf nodes in a tree are used for performing input/output operations. Assuming

that there have n data elements dj, d2, ..., dn in the n leaf nodes in a tree Ty, for different

applications, we may need to broadcast all these n data elements to the respective leaf

nodes in all trees in the same column (row). We can be performed this operation in two

phases. In phase 1, the group of data elements is distributed over all trees in the same row

i (column j). In phase 2, broadcast them to all trees in column j (row i). We may perform

the whole process in 0(log n) time as follows.

Without loss of generality, we assume that, initially, the n data elements dj, d2, dn are

stored in the leaf nodes of the tree Tu, data dk, 1 < k < n, is stored in the processor

node P(l, 1, h), and we want to broadcast these to all trees in the first column. First, using

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the horizontal optical links, we move data element dk to P(l, k, 1) for all k, 1 < k < n.

We then broadcast data dk to all nodes in the tree Tjk, 1 < k < n, which needs 2 log n

steps along electronic links. This completes phase 1 of distributing the n data elements to

all trees in the same row (row 1).

In phase 2, for broadcasting the data elements to all trees in the same column (column 1),

we take the data dj , 1 < j < n, now stored in the processors P (l,j, k), 1 < k < n, and

send dj to the processors P(k, j, 1) using the vertical optical links. Using the horizontal

optical links once again, we move data dj to the processors P(l, j, k). If the data elements

were initially stored in any other tree Ty, we may use the same method to broadcast them

to all trees in ith row and j ih column. It follows from above that the total number of

communication steps needed for the whole process is 2 log n (electronic links) + 3

(optical links).

2.8.2 Data Broadcast

To broadcast a data d residing in a processor P(i, j, k), we need to broadcast d to all nodes

in the tree Ty in a maximum of 2 log n communication steps using all electronic links.

Once all the leaf nodes in Ty receive the data d, we may use the optical links in the

horizontal direction from each of these nodes to send the data to a leaf node in each of

the remaining (n - 1) trees in the ith row. This requires just one communication step

through optical links. We then broadcast this data reaching a leaf node in a tree Tim, 1 <

m < n, to all nodes in Tim in 2 log n communication steps through the electronic links.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The leaf nodes in all the trees in ith row will then send the data to one leaf node of each of

the remaining (n - n) trees of the network using the vertical optical links. Finally, we

can broadcast this data to all nodes in each of these (n - n) trees in another 2 log n steps

through electronic links. Thus, the broadcast operation needs a total of 6 log n

(electronic) + 2 (optical) communication steps (0(log N) time).

2.8.3 Complete Group-Broadcast

In a complete group broadcast, the group of n data elements d\, d2, dn initially stored

in the n leaf nodes in a tree, say Tj/, may be communicated to the respective leaf nodes in

all trees by modifying the phase 2 of the above operation of row/column group-broadcast.

First, we distribute the data elements over all trees in row 1, as in phase 1 of the

row/column group-broadcast. In the second phase, we send the data dj , 1 < j < n, now

stored in the processors P(l, j, k), 1 < k < n, to the processors P(k, j, 1) using the

vertical optical links. We now broadcast this data element dj, 1 < j < n, to all the leaf

nodes in the trees 7#, 1 < k < n. This needs 2 log n steps along electronic links. Using

the bi-directional horizontal optical links, we move the data element dj now stored in

P(k, j, I), 1 < j , k , l < n, to P(k, I, j). Thus, we send data dj to the j th leaf node of all the

trees, and hence, we execute the broadcast operation correctly. The total number of steps

needed for the whole operation is 4 log n (electronic links) + 3 (optical links).

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.8.4 Sorting

Suppose there have a set of n elements {ai, ci2, . . a„} stored in the leaf nodes of the

tree Tjj. We assume that there is a total ordering defined on this set of elements. These

elements can be sorted in the following algorithm[31] by finding the rank of each

elementjoxcfklfhlerdfkg hdfitygh . Thus, if the rank of an element a;- is r, then after

sorting, the element a, will be placed in the processor P(l, 1, r). For the sake of

explaining the basic idea, we assume that the given elements are all distinct.

Algorithm SORT :

Step 1 : We broadcast the given set of n elements to all trees 7};, 1 < j < n, in the first

column.

Step 2 : For all j, 1 < j < n, we broadcast aj to all the leaf nodes in the tree 7}/, compare

it with all other elements and find its rank. We store the rank value in the root of the tree

Tji- Also, in this process of computing the rank, we eventually move the element aj to the

root of the tree Tji-

Step 3 : If the rank of aj is r, then we move the element aj to the node P(j, 1, r).

Step 4 : P(r, 1, j) *- P(j, 1, r); /* using the vertical optical link */

Step 5: P(r,l, 1) <- P(r, l,j);

Step 6 : P(l, 1, r) <- P(r, 1, 1); /* using the vertical optical link */

It was shown that the overall sorting can be completed in O{log n) time[31].

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.8.5 Matrix Multiplication

We give below the well-known algorithm for matrix multiplication of a matrix A of size

M x K and a matrix B of size K * N giving a matrix C of size M x N. We will use apq (bpq

and cpq) to denote the element in row p and column q of A (respectively B and C) and

will use the notation A = [apqJ (respectively B = [bpq] and C = [cpq]). The following

pseudo-code gives a simple sequential algorithm for matrix multiplication.

for all i, 1 < i< M
for all j, 1 < j < N
{ cy = 0;

for all k, 1 < k< K
Cy — Cy + Clik * b/g,'

}
We may easily convert the above sequential algorithm to multiply two n x n matrices A

= [ciij] and B = [bij to form the product matrix C = [cij to a parallel algorithm for an

OMULT network of order n.

The above sequential algorithm is obviously equivalent to the following pseudo-code for

a parallel algorithm:

for all i, 1 < i< n do in parallel
for all j, 1 < j < n do in parallel
{ CH = 0’

for all k, 1 < k < n do in parallel
{

Cij — Cy + O-ik * bjg,'
}

}

Initially we store the matrix elements in the leaf nodes of the diagonal trees To, 1 < i <

n, such that the elements an, at2 , . . ain of row i of the matrix A are stored in A(i, i, 1),

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Aft, i, 2) ,.. Aft, i, n), respectively, and the elements bn, b2u . . ., b„i of column i of the

matrix B are stored in Bft, i, 1), Bft, i, 2), . . ., B(i, i, n), respectively. Algorithm M [31]

for the OMULT topology ensures that the elements of the row i of the product matrix C

remain in the leaf nodes of the diagonal tree To, 1 < i < n when the algorithm

terminates.

Algorithm M:

Step 1: For all i, 1 < i < n, broadcast the elements of row i of the matrix A to the A-

registers of the leaf nodes of all trees Ty, 1 < j < n in the same row (using the

above row/column group-broadcast algorithm).

Step 2: For all j , 1 < j < n, broadcast the elements of column j of the matrix B to the B-

registers of the leaf nodes of all trees Ty, 1 < i < n, in the same column.

/* The leaf nodes of the tree Ty, 1 < i, j < n, now contains the elements of row i of A

and column j of B */

Step 3: For all i,j, k, 1 < i,j, k < n, do in parallel

Begin /* product element cy is now computed in the tree Ty */

A(i,j, k) *- A(i,j, k) * Bft, j, k);

A(i,j, 2n-l) <- A(i,j, 1) + Aft, j, 2) + . . . + Aft,j, n);

Aft, j, i) *- A(i,j, 2n-l);

end;

/* cy values are moved to the diagonal tree Tu*/

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 4: For all i, j , 1 < i , j < n, do in parallel

A(i, i , j) *- A(i,j, i); /* using the horizontal optical links */

2.8.6 Prefix-sum

Prefix sum is very useful in scheduling and constraint satisfaction problems [1]. The

problem description is given below:

• We are considering a series ai, ci2 ,

• We need to compute

> a,

> aj + a2

^ a i + a2+ Os

>

^ Oj + 02 + + On

• we can write the general form as follows:

• aj + 0 2 + + at, 1 < i < N whereN= n3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

2.8.7 Computational Geometry Problems

Computational Geometry (CG) deals with algorithms that create, modify or describe

geometric objects using computers and is an important field in computer graphics,

robotics etc. Important classes of computational geometry problems [1] include:

(1) Inclusion problems such as
a. locating a point in a planar subdivision,
b. reporting which points among a given set are contained in a specified

domain.
(2) Intersection problems such as finding intersections of

a. line segments,
b. polygons,
c. circles,
d. rectangles,
e. half spaces

(3) Proximity problems such as
a. determining the closest pair among a set of given points or among the

vertices of a polygon,
b. computing the smallest distance from one set of points to another

(4) Construction problems such as
a. identifying the convex hull of a polygon,
b. obtaining the smallest box that includes a set of points.

We now briefly describe some CG algorithms that we will use later on in this thesis.

2.8.7.1 Convex Hull

The convex hull problem [28] is to find a hull that surrounds and encloses a given set of

points. To find the convex hull for a given set of points S on a plane (/ S / = n), we need

to identify the extreme points. We assume that no three points in S are collinear. Fig.

2.7(A) shows an example for the set of points S and Fig. 2.7(B) shows the corresponding

convex hull of S. Corresponding to a point pt C S, let pw, p u ,. . pi,n -2 be the points in S

- {pt}, (i.e., pik 2 pi for 0 < k < n-2), sorted by the polar angle made by the vector, 0 <

k < n-2. Then, by the results shown in [37], p,- is an extreme point of S if the

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

counterclockwise angle between any pair of consecutive vectors PiPik and

PiPi,(k+\) modn -i is more than jv. For example, for S = {a , b, c}, if the counter-clockwise

angle (polar angle) between the vectors ab and ac, as shown in Fig. 2.8, is greater than

k, then point a is an extreme point.

* .* *♦ # * • • •
♦

F ig u r e 2 .7 (a): S e t o f p o in t s

• * •

F ig u r e 2 .7 (b): C o n v e x h u l l o f S

*r-:m
a

F ig u r e 2 .8: P o l a r a n g l e

“-v:: -V
 ̂ • 7 C

7' h

d
:*• ■■

V;-.V

f U -

g

F ig u r e 2 .9 (a): S e t o f P o in t s

Figure 2.9(A) shows a set of points S = {a, b, c, d, e, f g}, for which an extreme point is

illustrated in Figure 2.9(B). The counterclockwise angle between the vectors ea and eg

is more than %, so e is an extreme point, whereas c is not an extreme point shown in

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

figure 2.9(c) because the counterclockwise angle between no two consecutive vectors

(sorted by their polar angles) originating at the point c is more than n. In chapter 4, we

have used the above property to find the convex hull for a set S of points on OMULT

network and the algorithm proposed by [37] for solving the Convex Hull problem on the

OTIS mesh is given below:

e is an extreme point c is not an extreme point

F ig u r e 2 .9 (b): e is a n e x t r e m e p o in t F ig u r e 2 .9 (c): c is a n e x t r e m e p o in t

Wang and Sahni [37] have proposed the following algorithm to find the Convex Hull

using the OTIS mesh.

Algorithm Convex Hull:

Step 1: Perform an OTIS move of the points in group 0.

Step 2: Processor 0 of group i , 0 < i < N broadcasts the point it received in step 1 to all

processors in its group. All processors in a group now have the same point in their A

registers.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 3: Perform an OTIS move on the points in the A registers. The data is received into

B registers. Now, each group i processor has the point p t in it’s A register and a point of S

- { P i } in its B register.

Step 4: Each processor computes the polar angle of the vector defined by the points in its

A and B registers.

Step 5: Each group sorts, into snake-like order, the angles computed by its processors.

Step 6: Each processor in a group checks the condition of computing the angle between

the vectors defined by the point in its B register, and the point in the B register of the

next processor in the snake like order.

Step 7: Processor 0 of each group is notified by group processors that conclude a point pi

is an extreme point.

Step 8: The points that pass the test of Theorem 1 [37] are transmitted to group 0 via an

OTIS move.

Step 9: The extreme points accumulated by group 0 are sorted by polar angle order.

2.8.7.2 Smallest Enclosing Box (SEB)

Given a set S of coplanar points, the smallest enclosing box (SEB) problem [37] is to find

the rectangle with the minimum area that encloses all the points in S. Freeman and

Shapira showed [9] that the SEB of S has one side that is collinear with an edge of the

convex hull of S and that the remaining three sides of the SEB pass through at least one

convex hull vertex each. Figure 2.10 shows a rectangle of SEB that encloses all the

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

points. The algorithm proposed by Wang and Sahni [37] for solving the SEB problem on

the OTIS mesh is given below:

Algorithm SEB:

Step 1: Compute the convex hull as in Section 2.8.7.1.

Step 2: Broadcast the hull vertices from group 0 to all remaining groups.

Step 3: Group i determines the ith hull edge (pi, p r) and broadcasts this to all processors

within the group, for all i, 1 < i < n.

Step 4: Each group i processor determines the distance h between its hull vertex q (if

any) and the ith hull edge (pi, pr) as well as the distance w to the perpendicular bisector

L of the ith hull edge. If q and pi are on the same side of L, set I = -w and r = 0;

otherwise, set 1 = 0 and r = w.

Step 5: Processor 0 of each group i compute the maximum of the h ’s and r ’s in its group

and the minimum of the I ’s in its group. The area of the SEB that has one side collinear

with (pi, pr) is Ai - hmax * (rmax — Imin).

Step 6: Perform an OTIS move on the A i’s. Now all Ai’s are in the group 0 processors.

Step 7: Processor 0 of group 0 determines the minimum Ai.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F ig u r e 2 .1 0 : S m a l l e s t E n c l o s in g B o x

2.8.7.3 Empirical Cumulative Distribution Function (ECDF)

The Empirical Cumulative Distribution Function (ECDF) problem [37] is to find the

number of points dominated by each point p t € S. Any point dominates another point if

and only if both coordinate values of the first point is greater than those of the second

point. In other words, a point p t = (xt , y j, p t € S dominates another point pj = (x)■, yj), pj

€ S if and only if x; > Xj and y, >; yj [37]. For example, Figure 2.11 shows four points pi,

P2, P3 and p 4 . Point p 4 dominates all other points whereas p 2 dominates only pi, but not pj

or p 4 . An algorithm proposed by [37] for solving the ECDF problem on the OTIS mesh is

given below:

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F ig u r e 2.11: S e t o f P oints

Algorithm ECDF:

Step 1: Perform an OTIS move on the points initially in group 0. Now processor (i , 0)

has point p t.

Step 2: Processor (i , 0) broadcasts point p t to the remaining processors in its group. Each

processor saves its point in register A as well as register B.

Step 3: Perform an OTIS move on the register B data. Now, processor (i , j) has point p t

in register A and point pj in register B.

Step 4: Each processor sets its C register to 1 if its A register point dominates its B

register point; the C register is set to 0 otherwise.

Step 5: Processor (i , 0) computes the sum of the C values in its group.

Step 6: Perform an OTIS move on the sums computed in Step 5.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.8.7.4 All-Nearest Neighbor

All nearest neighbor problem is to find the minimum distance between any two points.

We are considering a set of points (figure 2.11) S = {pi, P 2 , • ■ ■, P n}, the All-Nearest

Neighbor problem deals with finding a point q € S corresponding to every point p € S,

such that q £ p and q is nearest to p among all other points in S [14]. Without loss of

generality, we assume that all points of S are distinct. The algorithm proposed by [37] for

solving the ANN problem on the OTIS mesh is given below:

Algorithm ANN:

Step 1: Perform an OTIS move on the points initially in group 0. Now processor (i , 0)

has point p t.

Step 2: Processor (i , 0) broadcasts point p, to the remaining processors in its group. Each

processor saves its point in register A as well as register B.

Step 3: Perform an OTIS move on the register B data. Now, processor (i , j) has point pi

in register A and point pj in register B.

Step 4: Each processor sets its C register to the distance between the points in its A and B

registers (if the points are the same, the C register is set to).

Step 5: Processor (i , 0) computes the minimum of the C values in its group and thereby

identifies the nearest neighbor of the point in the group’s A registers.

Step 6: Perform an OTIS move on the nearest neighbors computed in the (i , 0)

processors.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Wang and Sahni [37] have efficiently mapped the above computational geometry

problems for finding

i) the convex hull,

ii) the smallest enclosing box (SEB),

iii) the empirical cumulative distribution function (ECDF) and

iv) all-nearest neighbor(ANN) problem on an OTIS-Mesh in 0(^n) time for n

data inputs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Chapter 3: Algorithms in Matrix Multiplication and Prefix Sum on

OMULT Network

3.1 Introduction
In chapter 2 we already explained the basic algorithms for matrix multiplication, prefix-

sum on the OMULT architecture [1]. In this chapter we will present an algorithm for:

1) matrix multiplication of two matrices of size n2 x n2,

2) matrix multiplication of two matrices of any arbitrary size,

3) computing the prefix-sum of rt2 data elements,

4) computing the prefix-sum of n3 data elements.

After describing each algorithm we will analyze it and, whenever possible, compare our

results with those for other topologies.

3.2 M atrix M ultiplication: Tw o square M atrices o f size n2 x n2

In this sub-section we’re considering the multiplication of two square matrices X and Y

each of size n2 x n2. Figures 3.1 and 3.2 shows two such matrices with n = 4.

XI ,2 XI,2 X13

X2.1 X2.2 X23

X I .5,1 X 15 ,2 X i 5 ,3

xi 6,1 Xiea X l6s3

F ig u r e 3 .1: M a t r ix X w it h s iz e n 2 x n 2, w it h n = 4

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y u y u y uy i ,i«

>r2 ,l Y2.2 Y2 3 y i , u

y i 5,i y i s a y u ?y i5.i6

y i« ,i y i u y i uy ie .16

F ig u r e 3 .2 : M a t r ix Y w it h s iz e n 2 x n 2, w it h n = 4

To describe our algorithm, it is convenient to visualize X as consisting of rows and

columns of sub-matrices with n sub-matrices in each row and each column. For this

reason we divide the X and Y matrices into blocks of sub-matrices, each of size n x n, so

that each of the matrices X and Y are divided into n2 blocks of sub-matrices. In Figure 3.3

we show how we divide a 16 x 16 matrix X. This division helps us to ensure that each

sub-matrix of X and Y have exactly n rows and n columns so the multiplication of such

sub-matrices may be carried out using the algorithm for matrix multiplication given in

chapter 2.

In general, when we consider X (Y) as consisting of n rows and n columns of sub­

matrices, we will denote the sub-matrix in row r and column 5 by X s (Ts). Each sub­

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

matrix X s (Ts) contains n rows and n columns of data elements. We will use X s y (Tsij) to

denote the element in row i and column j of X s (Ys). As in chapter 2, we assume that the

OMULT network contains n2 trees with n leaf nodes in each tree and that the leaf nodes

of each tree can handle input/output operations. It may be readily verified that X s ij = xpq

where p = (r - 1) x « + / and q - (s — 1) x n +j.

XI ,1 XI ,2 XI ,3 *1,4

*2,1 X2,2 *2,3 X2.4

*3,1 X3.2 *3,3 X3,4

X4,l X4s2 X4,3 X4,4

a t a • a a

• m m m m m

a a a a a a X I,13 X I4.4 X I,15 X ljfi.

*2,13 X2J.4 X2.I5 X2J 6

XS.13 X33.4 X3,i5 X3,i«

X4,13 X4ji4 X4,15 X4 3 6

• ■ a B a a a a a • a

• ••• '• • • * » ■

■ a s a a a

m « a • m a

a a a a a a

• a • • ■ •

i i i a a a • • a a a a

• • • • * • * t

• » • » ■ »

■ • * ” - ’ --- -

X13.1 XJ3J. S J J3 Xi3;4

XI4,1 X141 X14.3 X14.4

*15,1 *152 *15,3 X153

*15,1 X162 *16,3 XM;4

i l l a a a

a • • a a •

a a a a a a

a a a a a a

X U ,13 *13,14 X i ^ u X u t i5

X14,13 X1414 X.14J5 XM.16

*15,13 *15,14 *15,15 *15,16

X16^3 *16^14 X16,15 *16^.6

F ig u r e 3 .3: B l o c k s o f s u b -m a t r ic e s o f m a t r ix X

To describe our algorithm, we start with the pseudo-code for the well-known sequential

algorithm, we presented in chapter 2 for multiplying two matrices of size n2 x n2.

for all i, 1 < i < n2

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for all j, 1 < j < n2
{ ztj = 0;

for all k, 1 < k< n2
Zij ~ Zy + Xik *ykj>

}

This is obviously equivalent to the following pseudo-code:

for all ii, 1 < ij < n
for all i2, 1 < i2 < n
{ i = (ii - 1) n + i2;

for all ju 1 < j i < n
for all j 2, 1 < j 2 < n
{ j = 0'i ~ !) n +j2!

{ zy = 0;
for all kj, 1 < kj < n
for all k2, 1 < k2 < n
{

k = (kj - 1) n + k2;
Zij Zy "I" Xik *ykj,

}
}

}

This is equivalent to the following pseudocode:

for all r, 1 < r < n
for all s, 1 < s < n
for all t, 1 < t < n
{

for all i, 1 < i< n
for all j, 1 < j < n

{ ̂ j = 0;
for all k, 1 <k< n
{

z ^ - Zy + Xik *ykj,

}
}

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To multiply the sub-matrix X k by Y®, we can implement the following sequential

algorithm by the OMULT network contains n2 trees with n leaf nodes using the OMULT

algorithm for matrix multiplication described in chapter 2.

for all i, 1 < i < n do in parallel
for all j, 1 < j < n do in parallel
{ zij = 0;

for a\\k, 1 < k < n do in parallel
{

Zij ~ + Xik * y kJ;

}
}

In other words, the three innermost for loops may be replaced as follows:

for all r, 1 < r < n
for all s, 1 < s < n
for all t, 1 < t < n
{

multiply the sub-matrix X k by Xj using the OMULT algorithm for matrix
multiplication

}
We recall from chapter 2 that each processor P(i, j, k) in the OMULT system has three

registers A, B and C which we denoted by A(i, j, k), Bft, j, k) and Cft, j, k). We will use

the ^-register and the 5-register for data movement. In our algorithm, we carry out all

input/output operations only using the trees of processors Tt ,, 1 <i <n.

We slightly modify the algorithm for multiplying two matrices A and B on the OMULT

network described in chapter 2 as follows:

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Modified Algorithm M:

Step 1 : For all i, 1 < i < n, broadcast the elements of row i of the matrix A to the A-

registers of the leaf nodes of all trees Ty, 1 < j < n in the same row (using the

row/column group-broadcast algorithm described in chapter 2).

Step 2 : For all j , 1 < j < n, broadcast the elements of column j of the matrix B to the

5-registers of the leaf nodes of all trees Ty, 1 < i < n, in the same column.

/* The leaf nodes of the tree Tip 1 < i, j < n, now contains the elements of row / of A

and column j of B */

Step 3 : For all i, j, k, 1 < i, j, k < n, do in parallel

Begin /* product element cy is now computed in the tree Ty */

A(i,j, k) A(i,j, k) * B(i,j, k);

A(i,j, 2n-l) <- A(i,j, 1) + Aft, j, 2) + . . . + Aft,j, n);

Cft.j, 2n-l) <- C(i,j, 2n-l) + A(i,j, 2n-l);

End

Time Complexity of Modified Algorithm M:

Steps 1 and 2 require 2 log n + 3 time units each. Step 3 needs log n + 2 time units.

Hence, the overall time required 5 log n + 8 time units.

We describe below the algorithm A for multiplying X and Y matrices on the OMULT

topology.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm A for Matrix Multiplication:

Step 1: Repeat steps 2 - 9 for all r, 1 <r <n

Step 2: Repeat steps 3 - 9 for all s, 1 <s <n

Step 3: Initialize all registers in the OMULT network to 0

Step 4: Repeat steps 5 - 6 for all t, 1 < t < n

Step 5: Load the OMULT array with X ' and Ts

Step 6: Compute the product X ‘ x Ys using the modified algorithm M described above,

generating a partial product in the C-registers in the root processors of all the trees of the

OMULT network.

Step 7: For all i, j, 1 < i, j < n do in parallel

A (i,j, 2n - 1) <~C (i,j, 2n —I)

A (i, j, i) <~A (i,j, 2n -1)

Step 8: For all i, j, 1 <i , j <n do in parallel

A (i, i,j) A (i, j, i)

Step 9: Output the values of Z" stored in the processors lying on the diagonal of the

OMULT tree.

Time complexity for Algorithm A:

We are ignoring the input and output time in this analysis so that we ignore the time

needed in steps 5 and 9. As discussed earlier, step 6 requires 5 log n + 8 time units. We

repeat steps 5 - 6 n times so that the steps 4 - 6 takes n(5 log n + 8) time. Step 3 needs 1

time unit and step 7 requires 1 + log n time units. Step 8 needs one step of data

movement — one unit time. So steps 3 - 8 requires n(5 log n + 8) + log n + 2 time units.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Steps 1 - 9 is repeated n times and steps 2 - 9 are repeated n times. So we require

n2{n(5log n + 8) + log n + 2} time units for multiplying two matrices of size n2x n2. This

may be compared to 0(n6) time needed in a sequential implementation.

Theorem 1: Algorithm A takes 0 (n3log n) time for multiplying two matrices of size n2

x n2.

3.3 Matrix Multiplication where the two operands may have any size

We will now discuss how to multiply two square matrices X and Y of any sizes by using

the OMULT network. We’re considering two matrices X and Y of size M x P and Px Q

where M, P, Q > n. To simplify our algorithm, we first divide the matrices X and Y into

sub-matrices of size n x n each. In the previous section we did the same when M - P —

Q = n2 as shown in figure 3.3 for n = 4. Let X(Y) consist of m rows and p columns

(respectively p rows and q columns) of sub-matrices. We will denote the sub-matrix in

row r and column 5 of X(Y) by A” (respectively Vs), 1 <r <m, 1 <s <p (respectively 1 <

r <p, 1 <s <q). Each sub-matrix X s (Ys) 1 <r <m, 1 <s <p (respectively 1 <r <p, 1 <

s < q) contains exactly n rows and n columns of data elements. We will use XPy (Yrsij) to

denote the element in row i and column j of Xre (Yre). We note that the last sub-matrix in

each row or column has a size less than or equal to n as shown in figure 3.4. For the sub­

matrices X1™ (respectively Yms), 1 < r < m (respectively 1 < s < q), we will fill the

remaining rows and columns of sub-matrices X m (respectively Y™5) with 0.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x i , 1 X I ,2 x i ,3 X I ,4

X 2 ,l X2 ,2 X2 J X2,4

X 3 ,l X3,2 X3 3 X3,4

X4 . I X4 2 X4 3 X4 4

.................

X I ,13 X1,J4 X l , l5

X2,13 X2,14 X2,15

X3.13 X3 4 4 X3,15

X4,13 X4j14 X4,13

.................

...

X l3,2 XJ3,2 X J3 ^ X i3,4

X l 4,1 X l4 ,2 X14.3 X l4,4

X l 5,1 X l5 ,2 X 15 3 X l5 ,4

X13,13 XJ3.14 X i3 ,i3

X l4,13 Xl4,14 X 14,15

X l5 ,13 X1J,14 X15,15

f ig u r e 3 .4 : D iv is io n o f m a t r ic e s in t o s u b -m a t r ic e s

We recall, from chapter 2, that each processor P(i, j, k) in the OMULT system has three

registers A, B and C which we denoted by A(i,j, k), B(i,j, k) and C(i,j, k). As before, we

use the ^-register and the 5-register for data movement and we carry out all input/output

operations only using the trees of processors Th , 1 < i <n. We describe below the

algorithm B for multiplying X and Y matrices on the OMULT topology.

Algorithm B for Matrix Multiplication:

Step 1: Repeat steps 2 - 9 for all r, 1 <r <m

Step 2: Repeat steps 3 - 9 for all s, 1 <s <q

Step 3: Initialize all registers in the OMULT network to 0

Step 4: Repeat steps 5 - 6 for all t, 1 < t<p

Step 5: Load the OMULT array with X ‘ and Ys

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 6: Compute the product X ‘ x Ts using the modified algorithm M described above,

generating a partial product in the C-registers in the root processors of all the trees of the

OMULT network.

Step 7: For all i, j, 1 <i , j <n do in parallel

A (i, j, 2n - 1) C (i j , 2n -1)

A (i, j, i) A (i,j, 2n -1)

Step 8: For all i, j, 1 < i, j < n do in parallel

A (i, i,j) A (i, j, i)

Step 9: Output the values of Z s stored in the processors lying on the diagonal of the

OMULT tree.

Time complexity:

In this algorithm we are ignoring the input and output time in this analysis so that we

ignore the time needed in steps 5 and 9. Step 3 requires 1 time unit. Steps 5 - 6 require

the same time as the modified algorithm M. Therefore steps 4 - 6 requires p(5 log n + 8)

time units. Step 7 requires 1 + log n time unit. Step 8 requires one step. Ignoring the

input output time in step 9, the time for steps 3 - 9 is 1 + p(5 log n + 8) + 1 + log n time

units. Steps 3 - 9 is repeated q times and steps 2 - 9 are repeated m times. So the required

time for multiplying a matrix of size M x P by a matrix of size P x Q is mq(p(5 log n +

8) + log n + 2) time units.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Prefix Sum for n2 data elements

Before this computation, we assume we have n2 data elements, a,, a2, ... an, stored in the

n2 leaf nodes of the Tu trees of the OMULT system, for all i, 1 < i < n . We recall, from

chapter 2, that in order to compute the prefix-sum, each processor P (i, j, k) has three

registers A(i, j, k), B(i, j, k) and C(i, j, k). Initially all the data elements a,, a2, ... an, are

stored in the yl-resisters of the leaf nodes of the trees in column 1 or the OMULT

architecture. We assume that the A -registers of the leaf nodes P(i, 1, k) of the tree Tu, 1 <

i, k < n, initially store the data values . When the process is over, the final prefix-

sum values will also be stored in the leaf nodes of the trees Tu. The algorithm PS1 for

prefix-sum on the OMULT system is given below.

In order to carry out the process of computing the prefix sums, we describe the two

algorithms- algorithm I and algorithm II modified from data broadcast algorithms we

described in chapter 2.

Algorithm I:

The purpose of this algorithm is to send data in registers A(i, 1, I), A(i, 1, 2), ..., A(i, l , j)

to registers A(i,j, I), A(i,j, 2), ..., A (i,j,j), for all i,j, 1 < i,j < n.

Step 1: /* using horizontal optical links, move data from Tu to Ty, 1 <i , j<n */

For all i,j, k, 1 < i ,j < n, do in parallel

A(i,j, 1) <- A(i, 1, j);

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 2: /* broadcast data within each tree 7/,- */

V i, k, 1 < i, k < n, do in parallel

A(i,j, k) <~A(i,j, 1);

Step 3: /* using horizontal optical links, move data across trees */

For all i,j, k, 1 < i , j < n, j < k < n do in parallel

A(i, k,j) <- A(i,j, k);

/*After step 3 we assume processor P(i, j, 1) will have first data element, P(i, j, 2) first

two data element P(i, j, 3) first three data element, ... , P(i,j, n) all n data element */

Time complexity: Step 1 and 3 takes 1 time unit each. Step 2 requires 2 log n time unit.

Algorithm II:

This algorithm is used to broadcast data from register^ ', n, i) in tree Tin to register A(k,

j, i) in all other trees 7*7 for all i,j, k, i < k < n, I < j < n.

Step 1: /*broadcast content within trees Tin where i <n*/

V i, j, k, 1 < i, j, k < n, do in parallel

A(i, n , k) 4~A(i, n, i);

Step 2: /* using horizontal optical links, move data across trees Ty ’s, 1 < i, j <n *1

V i, j , k, 1 < i, j, k < n, do in parallel

A(i, k, n) <~A(i, n, k);

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 3: /*broadcast content within trees Ty*/

V i,j, k, 1 < i, j, k < n, do in parallel

A (i,j ,k) <~A(i,j,n);

Step 4: /* using vertical optical links, move data across trees Tyl < i, j < n */

V i, j, 1 < i, j < n, i < k < n do in parallel

A (k ,j , i) <~A(i,j, k);

/*After step 4 the A-register Aft, j, i), of tree 7# will receive the data Ti n , for all i, 1 < i,

< n, i < j <n using ̂ -register */

Time Complexity: Step 1 and 3 each require 2 log n time units. Step 2 and 4 need 1 time

unit each.

Before the algorithm starts we assume that register C in all processors contain 0.

Algorithm PS1 for n2 elements:

Step 1: Initialize registers A and B of all trees to 0.

Step2: Using the algorithm I, broadcast selected data in the ^-registers of the tree Tu to

the ^-registers of the tree Tijf, so that A(i, 1, 1), Aft, 1, 2), Aft, l , j) is sent to registers

Aft, j, 1), A(i,j, 2), ..., A (i,j,j), for all i,j, 1 < i, j < n. After the broadcast, processors Pft,

1,1) will have data element aj in it’s A-register, Pft, 2, 1) will have data element a/, Pft,

2, 2) will have data element a2, Pft, j, 1) will have data element a/, Pft, j, 2) will

have data element 0 2 , ... Pft, j, 2) will have data element aj. All other processors will

have a value of 0 in their A-registers.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 3: /*Compute the sum of each tree and store it in ̂ -register A(k, j, 2n-l). */

For all i, j, k, 1 < i, j, k < n, do in parallel

A(i,j, 2n-l) <- A(i,j, 1)+A(i,j, 2)+ . . . + A(i,j, n);

Step 4: /*Move contents from A(i,j, 2n-l) to A(i,j, i) and copy to 5-register*/

For all i, j, k, 1 < i,j, k < n, do in parallel

A(i,j, i) <- A(i,j, 2n - 1);

B(i, j, i) A(i,j, i) + C(i,j, i);

Step 5: For all i,j, k, i < k < n, 1 < j < n using the ̂ -register, broadcast data from

register^/if, n, i) in tree Tin to registers/^, j, i) in all other trees 7/y using the

algorithm described above.

Step 6: For all i, j, k, 1 < i,j, k < n, do in parallel

A(i,j, 2n-l) <- A(i,j, 1) + A(i,j, 2) + . . . + A(i,j, n);

A(i,j, 1) f- A(i,j, 2n - 1);

Step 7: For all i, j, k, 1 < i,j, k < n, do in parallel

A(i,j, 2n-l) <- A(i,j, 1) + B(i,j, i)

A(i,j, 1) <- A(i,j, 2n-l)

Step 8: /*Move data from A(i, j, 1) to A(i, 1, k)*/

Foralli,j, 1< i,j < n, do in parallel

A(i, 1, j) <- A(i, j, 1);

Step 9: Output the prefix-sum stored at S-register in the processors lying on the Tu of the

OMULT tree.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the algorithm PS1, the contents of register C used in step 4 plays no role since the

value was assumed to be 0. In the next algorithm, this register will play an important role.

Example: We consider algorithm PS1 where we have to compute the prefix-sum for n2

data elements.

1. Before the algorithm starts, the data elements are stored in the ̂ -registers of the leaf

nodes of the tree Tu (figure 3.5).

XX
1 2 3 4

XX
5 6 7 8

XX XX XX
xX XX XX

XX XX XX xX
9 1011 12

XX xX XX XX
13 14 15 16

f ig u r e 3 .5: D a t a a r e s t o r e d a t t h e l e a f n o d e s o f t h e t r e e s

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. After step 2, data in the network are as shown in Figure 3.6

/ C l . i C K
1 1 2 1 2 3 1 2 3 4

5 5 6 5 6 7 5 6 7 8

13 1314 13 14 15 13 14 15 16
F ig u r e 3.6: T h e d is t r ib u t io n o f d a t a a f t e r s t e p 2

3. After step 3, content in the network are as shown in Figure 3.7

5 5-6 5-7 5-8

/ C l . / C l . . C i .

9 9-10 9-11 9-12

j C k / C k / C k / C k

13 13-14 13-15 13-16

A A A A
F ig u r e 3.7: A f t e r s t e p 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. After step 4, content in the network are as shown in Figure 3.8

AX AX AX XX
1 1-2 1-3 1-4

AX AX AX AX
5 5-6 5-7 5-8

AX AX AX AX
9 9-10 9-11 9-12

AX AX AX AX
13 13-14 13-15 13-16

F ig u r e 3 .8: A f t e r s t e p 4

5. After step 5, content in the network are as shown in Figure 3.9

xX AX AX AX
AX AX AX AX
X X x x

AX AX AX AX
x y x y x y x y

AX AX AX AX
x y z x y z x y z x y z

Where, x= l-4, y=5-8, z=9-12

F ig u r e 3 .9: A f t e r s t e p 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. After step 6, content in the network are as shown in Figure 3.10

AX aX / X aX
/ X aX AX AX

1-4 1-4 1-4 1-4

/ X v C f r , AX AX
1 - 8

001 1-8 1-8

AX aX AX
1-12 1-12 1-12 1-12

F ig u r e 3 .1 0 : A f t e r s t e p 6

7. Now from the algorithm we will sum of the content, stored at the leaf nodes of the A-
registers and 5-registers. And we will get the final result as shown in figure 3.11.

1 1-2 1-3 1-4

1-5 1-6 1-7 1-8

aX / X / X / X
1-9 1-10 1-11 1-12

/ X / X / X aX
1-13 1-14 1-15 1-16

F ig u r e 3 .11 : A f t e r s t e p 7

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Time Complexity:

Step 1, step 8 and step 9 takes 1 unit time. Step 2 will need 2 log n + 2 as algorithm I

need. Step 3 need log n time and step 4 takes 2 units time. Step 5 will need 4 log n + 2

time units as algorithm II need. Step 6 need log n + 1 time unit. Step 7 required 2 log n

units time. So time required for computing n2 data elements 10 log n + 10 time units.

Theorem 1: Algorithm PS1 computes the prefix sum of n2 data elements of 0(log n)

time.

3.5 Prefix Sum for n3 data elements

We now describe the case where we have X = n data elements. We first divide the data

elements into blocks of n2 elements. The prefix-sums for a block of n2 elements may be

carried out using the algorithm for prefix-sum given in section 3.4. The algorithm PS2 for

n3 on the OMULT system is given below.

Algorithm PS2 for n3 data elements:

Step 1: Initialize all the C registers in the OMULT network to 0.

Step 2: Repeat steps 3 - 6 for all r, 1 <r <n.

Step 3: Using the algorithm for data broadcasting, broadcast the data in C(n, 1, n) to all

the C-registers in the entire network.

Step 4: Read the next block of n2 elements.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 5: Compute the prefix-sum of the current block of n2 elements using algorithm PS1,

generating a partial sum in the ^-registers in the root processors of all the trees of the

OMULT network.

Step 6: Copy the sum C (n, 1, n) <— A (n, 1, n) in tree T„j.

Time Complexity:

Step 1 -8 is repeated n times. Step 2, step 3 and 6 need 1 time unit each. Step 4 required

10 log n + 6 time units (algorithm PS1). Step 7 will need 4 log n + 2 time units as

algorithm II need. Step 5 needs 2log n + 1 time. Now step 2 to 7 needs 16 log n + 12. So

time required for computing n3 data elements n (16 log n + 12) time units.

Theorem 1: Algorithm PS2 computes the prefix sum of n3 data element of 0(n(log n))

time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Chapter 4: Algorithms in Computational Geometry on

OMULT

4.1 Introduction

In this section, we show how some of the common algorithms in computational geometry

can be mapped on the OMULT system. We have reviewed, in chapter 2, the algorithms

we will study in this chapter.

4.2 Convex Hull

Based on the property explained in chapter 2, we describe below our algorithm for

finding the convex hull for a set of points S = {pi, p 2, • ■ p n}, where we assume that no

three of these points are collinear. We recall that each processor P(i, j, k) in the OMULT

system has three registers A(i, j, k), B(i, j, k), C(i, j, k). In implementing this algorithm

we use the ^-register and the B-register for data movement operations. When the

algorithm starts, the coordinates of all data points are stores in the A-registers of the leaf

nodes of tree T u .

Algorithm CH_OMULT:

Step 1: copy all the points from A-register to B-register of Tu tree

Step 2: /* using A-register move data from Tu to Ty */

Step 2.1: /* using vertical optical links, move data from T u to Tu, 1 < i <n */

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vi, 1 < i < n, do in parallel

A(i, 1, 1) <-A(l, 1, i);

Step 2.2: /* broadcast data in the A-register of P(z, 1, 1) within each tree 7 / */

Vi, k, 1 < i, k < n, do in parallel

A(i, 1, k) <~A(i, 1, 1);

Step 2.3: /* using horizontal optical links, move data from Tu to Ty, 1 < i, j < n */

V i,j, 1 < i, j < n, do in parallel

A (i,j, 1) <~A(i, l,j);

/* After step 2.3, all /?, values, 1 < i, j < n, are stored at A-registers of the processors P(i, j,

the leaf nodes of each tree */

Step 3: /* using B-register move data from Tu to Ty */

Step 3.1: /* using horizontal optical links, move data from Tu to Tu, 1 < i < n */

Vi, 1 < i < n, do in parallel

B(l, i , 1) <-B(l, 1, i);

Step 3.2: /* broadcast data within each tree7/, */

V i, k, 1 < i, k < n, do in parallel

B(l, i, k) <~B(1, i, 1);

Step 3.3: /* using vertical optical links, move data from Tu to Ty, 1 < i, j < n */

V i, j, 1 < i, j < n, do in parallel

B (j,i, 1) <~B(l,i, j);

/* After step 3.3, all pj values, 1 < i, j < n, are stored at B-registers of the processors P(i,j,

the leaf nodes of each tree */

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 4 : Vi, j, 1 < i, j < n, compute the vector p tPj in the tree Ty, and store it in the

register A (i, j, 1) o f the respective root node. (Note that for i =j, a 0 value will be

stored for the vector).

Step 5 : Sort, in ascending order, the n vectors p tPj (including the zero vector) stored

in the leaf nodes of the trees Tu , 1 < i < n in the order of their polar angles by

rank computation, in a manner similar to that described in the algorithm SORT in

[31]. We will use p f l j to denote the vector in processor P(i, l , j) after the sorting

is over. The ^-register in each processor will still be used for data movements

across different processors needed for this rank computation.

Step 6: /* using A-register move points within tree in Tu, 1 < i, */

V i, i < n, do in parallel

A(i, 1, 1) Aft, 1, n);

Step 7: /* copy the sorted list from A-register to B-register of Tu tree where 1 < i < n. */

V i, j, i < n, j < n, do in parallel

B(i, 1 ,j) <~A(i, l,j);

Step 8: Again sort, in ascending sequence, the new list of n vectors p tq„ , p tqx, p tq2 ...

, p tqn stored in the leaf nodes P(i, 1, 1), Pft, 1, 2), Pft, 1, 3), ... , Pft, 1, n) of

the trees Tu, 1 <i <n in the order of their polar angles by rank computation, in a

manner similar to that described in the algorithm SORT in [31]. The ̂ -register in

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each processor will still be used for data movements across different processors needed

for this rank computation.

Step 9: Compute the polar angle between vectors P flj and PiQ{j+1) in the tree leaf

node of the Tu and store it in the respective leaf node.

Step 10 : If the polar angle computed in any processor P(i, 1, j) in Tu is more than n,

then point p t is an extreme point (since the polar angle between the sides p f i j

and Pi<l{j+1) is more than it). Convey this information to the processor P(i, 1, 2n

-1) in Tu by setting an appropriate tag bit (tag = 1, if p t is an extreme point, and 0

otherwise).

Step 11 : Move the information regarding all such convex hull points to the leaf nodes of

the processors P (l,l, k), 1 < k < n, in the tree Tu using the vertical optical links.

Example: We consider a situation where we have 4 data points as shown in figure 4.1

• p3

Pi*

P 4

F ig u r e 4 .1 : S e t o f p o in t s

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Before the algorithm starts, the coordinates of these four points are stored in the

registers of the leaf nodes of the tree Tu (figure 4.2).

v C h *
P i P 2 P 3 P 4

aX aX aX aX
aX aX aX aX
aX aX aX AX

F i g u r e 4 .2 : a l l t h e p o i n t s a r e s t o r e d a t t h e l e a f n o d e o f t h e t r e e T u

2. After step 2.3 the points in the network are as shown in Figure 4.3

p i p i p i p i

aX aX aX aX
P 2 P i P i P i

aX aX aX aX
P3 P3 P3 P3

aX AX AX aX
P 4 P 4 P 4 P 4

F i g u r e 4 .3 : A f t e r s t e p 2 .3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. After step 3.3 the points in the network are as shown in Figure 4.4

j C k
P i P i P 1P 2 P 1P 3 P 1P 4

P 2P 1 P 2P 2 P 2P 3 P2P 4

P 3 P l p 3p 2 P 3P 3 P 3P 4

P 4 P l P 4P 2 P 4 P 3 P4P4

F i g u r e 4 .4 : A f t e r s t e p 3 .3

4. After step 4 the data in the network are as shown in Figure 4.5

0 plp2 P1?5 plp4

j C k j C k

p2pl 0 p2p3 p2p4

/ X
p3pl p3p2 0 p3p4

j C k

p4pl p4p2 p4p3

F i g u r e 4 .5 : A f t e r s t e p 4

■—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. After step 5 the data in the network are as shown in Figure 4.6

0 plpfi plp3 plp4

j C k / C h
0 P2p3 p2pl p2p4

j C k j C k

0 p3pl p3p2 p3p4

aX^aX aX aX
 > —»

0 p4p2 p4p3 p4pl

F i g u r e 4 .6 : A f t e r s t e p 5

6. After step 6 the data in the network are as shown in Figure 5.7

s C k j C k
plp4plp2 plp3 plp4

AX. A A A
p2p4 p2p3 p2pl p2p4

aX .aX AX aX*"
p3p4 p3pt p3p2 p3|>4

aX aX aX aX
 S O ----- 2-

p4pl p4p2 p4p3 p4pl

F i g u r e 4 .7 : A f t e r s t e p 6

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. After step 8, the data points are as shown in Figure 4.8. We note that the values of the
vectors are now in the ^-registers and in step 7 we have saved one copy in 5-register
those are not shown in figure for the next steps.

AX aX
plp2 plp3 p|p4 pljM

aX_AX a x aX
........ 'HP*' wm yfm »iniiiijpB 111111 Jp "

p2p3 p2pl. p2p4 p2p4

AX_aX .AX aX
p3pl p3p2 p3p4 p3j>4

aX .aX
p4p2 p4p3 p4pl p4pl

Fig u r e 4.8: A f t e r st e p 8

8. Now from the algorithm and with the above example, in step 7 we have saved one

copy of vectors in 5-register and after step 8 we have a sorted list of vectors in A-

registers. So we can easily compute the extreme points using vectors p tq and

PS{j+\) stored in the leaf nodes of the tree Tu by setting an appropriate tag bit (tag = 1,

if pi is an extreme point, and 0 otherwise).

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Time Complexity:

Step 2 and 3 need 2 log n + 2 data transfer steps each. Step 1, step 7 and 9 need 1 time

unit to copy data and step 4 require 1 time unit to compute vectors. Step 5 and 8 will

require 3 log n + 2 time units [31]. Step 6 needs 2log n time units. Step 11 will need log n

+ 1 time units each. Step 10 requires log n time units (assuming that setting the tag bit

and related information about an extreme point requires one time unit). Hence, we have

the following result.

Theorem 1: Algorithm CH_OMULT computes the convex hull of n points in 0(log n)

time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

4.3 Smallest Enclosing Box

In the smallest enclosing box (SEB) problem, first of all we need to find the convex hull

vertices that we can get by invoking the algorithm in section 4.2. The algorithm to solve

the SEB problem on the OMULT system is given below.

Algorithm SEBOM ULT:

Step 1 : /* compute the convex hull vertices and store the corresponding information in

the leaf nodes of the tree Tu- We assume there are m convex hull vertices. We

will refer to the successive vertices, which define the convex hull, as vi,v 2, ... vOT.

*/

Vi, 1 < i < n, do in parallel

if (point pi is a convex hull vertex) then P(1, 1, i) v,

else P(1, 1, i) 0;

Step 2: Sort, in descending order, the m convex hull vertices (including the zero vertices)

stored in the leaf nodes of the tree Tu , in the order of their polar angles by rank

computation, in a manner similar to that described in the algorithm SORT in [31].

The .4-register in each processor will still be used for data movements across

different processors needed for this rank computation.

Step 3 : Broadcast the information about the convex hull vertices vt, V2, ... vm from Tu

to all trees 7}/, 1 < i < m.

Step 4 : /* copy the sorted list from ̂ -register to R-register of Tu tree where 1 < i < n. */

V i, j, i < n, j < n, do in parallel

B(i, 1 , j) * -A (i,l,j);

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 5 : Vi, 1 < i < m, compute the ilh hull edge (v,-, m0dm) in tree Tn and

broadcast this edge to the leaf nodes 1 ,2 ,. . . , n of the same tree Tn .

Step 6 : Vi, j, 1 < i, j < m, using ^-register and 5-register, compute in the leaf node

P (i, 1, j), the height d l between the hull vertex Vj and the hull edge (v,-, V(i+i) mod

m).

Step 7 : Vi, j, 1 < i, j < m, compute, in the same leaf node P(i , 1, j), the

perpendicular bisector L of the hull edge (v,-, V(i+i)modm)■

Step 8 : Vi, j, 1 < i, j < m, compute, in the node P (i, 1, j) the distance d2 from the

vertex pj to the perpendicular bisector L of the hull edge (v,-, V(i+i)modm)-

Step 9 : Vi, j, 1 < i, j < m, in the node P (i, 1, j) check if v; and vj are on the same

side of L. If so, set in the node P (i, 1, j), left d2 and right 0; otherwise P (i,

1, j) sets left 0 and right d2.

Step 10 : Vi, 1 < i < m, determine the following:

> hmax _ the maximum of all height values stored in processor P (i, 1,

j), Vj, 1 < j < m,

> rmax, the maximum of all the right values stored in processor P (i,

I j) , Vj, 1 < j < m,

> lmin , the minimum of all left values stored in processor P (i, 1, j),

Vj, 1 < j < m.

/* hmax. rmax and /mi„ are respectively the farthest, rightmost and leftmost points, from the

vertex v,- and are saved in P(i, 1, 2n - 1) .*/

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 1 1 : Vi, 1 < i < m, compute in processor P(i, 1, 2n-l) the area Aj = hmax (rmax - Lin)-

Step 12 i Vi, 1 < i < n, move the value of the area A, from P(i, 1, 2n -1) to the leaf

node P(l, 1 , i) . (This is done by first moving At to P(i, 1, 1) in log n steps and

then to P(l, 1, i) in one step).

Step 13 : Find the minimum Ai of all area values in the leaf nodes of the tree Tn along

with the relevant information regarding the bounding edges.

After step 9 is over, P(l, 1, 2n-l) has the smallest enclosing box.

Time Complexity

Each of steps 1, 4 and 6-10 needs constant time. Step 2 will require 3 log n + 2 time units

[31] and step 3 needs 2 log n +2 time unit. Step 5 takes 2 log n+ 1 time units and each of

the remaining steps needs 0(log n) time. Hence, we have the following result.

Theorem 2 : Algorithm SEB computes the smallest enclosing box of a given set of n

points in 0(log n) time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

4.4 Empirical Cumulative Distribution Function (ECDF)

We describe below the algorithm for finding the ECDF for a given set of points S - {pi,

P2 , . . p„}. We assume that the coordinates of all the n points are initially stored in the

leaf nodes A(1, 1, 1),A(1, 1, 2), ..., A(l, 1, n) of the tree Tn.

Algorithm ECDF OMULT

Step 1 : Broadcast the coordinates of all the points from the leaf nodes of Tn to the leaf

nodes of all trees Tu, VI, 1 < i < n, by using the algorithm for row/column

group-broadcast in [31].

Step 2 : Vi, 1 < i< n, do in parallel

B(i, 1, i) <rA(i, 1, i)

Step 3 : Vi, j, 1 < i, j < n, do in parallel

A(i,j, 1) <~A(i, l , j)

/* At this point, the ̂ -registers in P(i, j, 1) contain pv */

Step 4 : /* broadcast data using 5-register within each tree!}/ */

V i, k, 1 < i, k < n, do in parallel

B(i , 1, k) ^ B (i, 1, i);

Step 5 : V i, k, 1 < i, k < n, do in parallel

B(i , k , 1) <~B(i, 1, k);

/* At this point, the B-registers in P(i, j, 1) contain pi */

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 6 : Vi, j, 1 < i, j < n, do in parallel

Processor P(i, j, 1) of Ty tests if p t dominates p j ;

if (pi dominates pj) then C(i, j, 1) 1

else C(i,j, 1) <-0;

Step 7 : Vi, j, 1 < i, j < n, do in parallel

C(i, 1, j) C(i,j, 1)

Step 8: Vi, 1 < i < n, do in parallel /* in the tree T,i */

compute the sum C(i, 1, 2n- 1) = C(i, 1, 1) + C(i, 1,2) + . . . + C(i, 1, n);

Step 9 : move C(i, 1, 2n - 1) from P(i, 1, 2n-l) to the node P(l, 1, i) in T u ;

/* leaf node P(l, 1, i) in Tu stores the number of points dominated by p, */

Time Complexity

Each of steps 2, 3 and 5-7 needs constant time. Step 1 require 2 log n + 2 time units and

step 4 needs 2 log n time units. Step 8 takes log n time units and the remaining step 9

needs log n + 1 time. Hence, we have the following result.

Theorem 3 : Algorithm ECDF computes the empirical cumulative distribution function

of a given set of n points in 0(log n) time.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 All-Nearest Neighbor

Assuming that the coordinates of all the n points are initially stored in the leaf nodes of

the tree Tn, we describe below the algorithm for finding the all-nearest neighbor for the

given set of points S.

Algorithm ANNOMULT

Step 1 : Broadcast the coordinates of all the points from the leaf nodes of 77/ to the leaf

nodes of all trees Tn, VI, 1 < i < n, by using the algorithm for column group-

broadcast in [31].

Step 2 : Vi, 1 < i < n, do in parallel

B(i, 1, i) <~A(i, 1, i)

Step 3 : Vi, j, 1 < i, j < n, do in parallel

A(i,j, 1) <-A(i, l , j)

/* At this point, the ̂ -registers in P(i,j, 1) contain p7 */

Step 4 : /* broadcast data within each tree 77/ */

Vi, k, 1 < i, k < n, do in parallel

B(i, 1, k) <-B(i, 1, i);

Step 5 : Vi, k, 1 < i, k < n, do in parallel

B(i , k , 1) <-B(i, 1, k);

/* At this point, the 5-registers in P(i, j, 1) contain p, */

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 6 : /*Compute the distance between p t and pj of processor P(i, j, 1) in Ty and store in C(i, j, 1)*/

V i, j, 1 < i, j < n, do in parallel

C(i, j, 1) distance between pt and pj

Step 7 : Vi, j, 1 < i, j < n, do in parallel

C(i, 1, j) C(i,j, 1)

Step 8 : Vi, j, 1 < i, j < n, find the minimum D(i) of all C(i, 1, j) and store it in C(i, 1, 2n- 1)

Step 9 : move C(i, 1, 2n -1) from P(i, 1, 2n-l) to the node P(l, 1, i) in T n ;

/*leaf node P(l, 1, i) in Tn stores the closest points and the corresponding distance from the

point pi */

Time Complexity

Each of steps 2, 3 and 5-7 needs constant time. Step 1 require 2 log n + 2 time units and

step 4 needs 2 log n time units. Step 8 takes log n time units and the remaining step 9

needs log n + 1 time. Hence, we have the following result.

Theorem 4: Algorithm ANN computes the all-nearest neighbor of a given set of n points

in 0(log n) time.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Network Simulation

5.1 Purpose of the Simulation

The purpose of our simulation was to see how difficult it is to use a simulator to

> define the OMULT architecture

> understand the behavior of a large complex OMULT network, and

> analyze network performance

The simulation for multiprocessor systems is complicated because of the difficulty of

mapping the hardware with its high degree of parallelism within the frame work of

existing simulation software. There are an increasing number of tools available to

simulate the parallel and distribution systems and it was quite difficult to select the

correct tools for simulating the application. We chose the Sim Java simulation tool

because it has an extremely powerful technique for evaluating performance of parallel

and distribution systems. SimJava is a process based discrete event simulation package

based on the Java programming language. By using the SimJava package we were able to

represent the OMULT architecture in a realistic manner.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 SimJava

A SimJava simulation is a collection of entities (sim_entity class) each of which runs in

its own thread [43]. These entities are connected together by ports (sim_port class) and

can communicate with each other by sending and receiving event objects (sim_event

class) through these ports. A static Sim_system class controls all the threads, advances

the simulation time, and maintains the event queues [43]. The progress of the simulation

is recorded through trace messages produced by the entities, and saved in a file.

5.3 Problem simulated

We considered the problem of simulating the algorithm M for matrix multiplication

described in chapter 2 on the OMULT network. We recall that this algorithm multiplies a

matrix A of size n x n and a matrix B of size n x n giving a matrix C of size n x n. In

chapter 2, we have described how we initially store the matrix elements in the leaf nodes

of the diagonal trees Tu, 1 < i < n, such that the elements an, ai2, . . ., ain of row i of the

matrix A are stored in A(i, i, 1), A(i, i, 2), . . ., A(i, i, n), respectively, and the elements

bn, b2i, .. ., bni of column i of the matrix B are stored in B(i, i, 1), B(i, i, 2), .. ., B(i, i, n),

respectively. As in chapter 2, we assume that the OMULT network contains n2 trees with

n leaf nodes in each tree and that the leaf nodes of each tree can handle input/output

operations. Our simulation considered the case where n = 4.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Modeling of the system

In order to model the OMULT architecture we need to represent the followings-

• the nodes of the trees

• interconnection between nodes within a tree

• interconnection leaf nodes of different trees (Horizontal and Vertical links)

• communication between the nodes

We have modeled the OMULT system by using the SimJava in a following way-

5.4.1 The nodes of the trees
The nodes of the trees are represented by using the entities of a SimJava where each node

is an individual potential entity. In order to do this we need to extend the standard

Sim_entity class and override the body () method. The entities are added by using the

Sim_system.add(entity) method. In this model the main entities are Nodes and the ports

connect them to each other. They communicate with each other by sending and receiving

information to corresponding Node.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Entities of a Tree:

As an example a simulation layout in a tree T11 are given in Figure 5.1:

Port

Link

Figure 5.1: A simulation layout

We used the following subclasses of Sim_entity:

Table 5.1: subclasses of Sim_entity

Subclass name Purpose
RootNodeTl 1A to represent the Root node of each tree

IntNodeTllB to represent the left intermediate node of each tree

IntNodeTllC to represent the right intermediate node of each tree

LeafNodeTlll to represent the leftmost leaf node of each tree

LeafNodeT112 to represent the second leftmost leaf node of each tree

LeafNodeT113 to represent the second rightmost node of each tree

LeafNodeT114 to represent the rightmost node of each tree

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After deciding which objects of each of the above classes are to be present for the

simulation, we have to specify their behavior [43] by defining appropriate methods

within each class. These objects interact with each other by sending them messages -

each corresponding to an event. This means that some objects generate events which

trigger methods in the object receiving the message. We need to override the body()

method of the class Sim_entity to provide the subclass objects the needed behavior. In the

OMULT architecture the following tasks are done by each individual nodes-

Root node:

The role of a root node is to send/receive data to/from its intermediate nodes. For

instance, in our case, it sums the partial results during the multiplication of matrix

elements, when it will receive the partial content of the matrix elements from the

intermediate nodes.

Intermediate nodes:

The role of an intermediate node, is to send/ receive data to/from it’s root node as well as

its leaf nodes. Another most important task is to compute the sum of the results of the

matrix elements from the partial results from the leaf nodes and send this partial result to

the root node.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Leaf nodes:

The role of a leaf node is to send/receive data to the intermediate nodes in the same tree

as well as to the leaf nodes of the different trees to which it is connected by an inter block

link. After the broadcast of all the matrix elements to all the leaf nodes, then each leaf

node carries out the requisite multiplication on the appropriate elements of the A and B

matrices. After multiplying the elements, the results are sent to the intermediate nodes.

5.4.2 Connecting nodes
Connecting nodes within a tree and as well as the leaf nodes of different trees

(Horizontal and Vertical links) are represented by linking the ports by using the method-

Sim_system.link_ports() available from the Sim-Java package, where the ports are used

for linking the nodes[43].

5.4.3 Communication between the nodes
The nodes that are connected by ports can communicate by using the built-in methods

sim_schedule (Sim_port port, int tag, Integer data) available from the Sim-Java package.

The following examples of a simulation show how SimJava works.

Example 1:

1. import eduni.simjava.*;
2. public class Simulation
3. { public static void main(String args[])
4- {
5. Sim_system.initialise();
6. System.out.println("Start time" + Sim_system.clock());

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. /* nodes are added by adding entities to the Sim_system */
8. Sim_system.add (new RootNode ("Tll(A)"));
9. Sim_system.add(new IntNodeTl 1B("T11 (B)"));
10. Sim_system.add(new IntNodeTl 1C("T11(C)"));
11. Sim_system.add(new LeafNodeTl 11("T11(1)"));
12. Sim_system.add(new LeafNodeTl 12("T11(2)"));
13. Sim_system.add(new LeafNodeTl 13("T11(3)"));
14. Sim_system.add(new LeafNodeTl 14("T11(4)"));
15. // nodes are connected by linking entities using port to the Sim_system
16. Sim_system.link_ports("Tl 1(A)", "lTllAPort", "Tll(B)", "iTllBPort");
17. Sim_system.link_ports("Tl 1(A)", "rTllAPort", "Tll(C)", "iTllCPort");
18. Sim_system.link_ports("Tl 1(B)", "ITllBPort", "Tll(l)", "iTlllPort");
19. Sim_system.link_ports("Tl 1(B)", "rTllBPort", "Tll(2)", "iT112Port");
20. Sim_system.link_j)orts("Tl 1(C)", "ITllCPort", "Tll(3)", "iT113Port");
21. Sim_system.link_ports("Tl 1(C)", "rTllCPort", "Tll(4)", "iT114Port");
22. Sim_system.link_j)orts("Tl 1(2)", "hT112Port", "T12(l)", "hT121Port");
23. Sim_system.link_ports("Tl 1(2)", "vT112Port", "T21(l)", "vT211Port");
24. Sim_system.link_ports("Tl 1(3)", "hT113Port", "T13(l)", "hT131Port");
25. Sim_system.link_j)orts("Tl 1(3)", "hT113Port", "T13(l)", "hlT131Port");
26. Sim_system.link_jports("Tl 1(3)", "vT113Port", "T31(l)", "vT311Port");
27. Sim_system.link_j)orts("Tl 1(3)", "vT113Port", "T31(l)", "vlT311Port");
28. Sim_system.link_ports("Tl 1(4)", "hT114Port", "T14(l)", "hT141Port");
29. Sim_system.linkjx>rts("Tl 1(4)", "vT114Port", "T41(l)", "vT411Port");
30. Sim_system.run ();
31. System.out.println("End time" + Sim_system.clock());
32. } // main close
33. }// class close

In this simple simulation four steps are required [42] -

• Initialise sim_system.

• Make an instance for each entity

• Link the entities ports

• Run the simulation

The first line imports all the requisite classes in the SimJava package. The Sim_system

object is initialized done, at the start of simulation, in line 5 by invoking the

Sim_system.initialise() method. The objects are then created in line 8-14 by using the

Sim_system.add() method. These entities are linked together by invoking the

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sim_system.link_j)ort() method in lines 16-29. Finally the simulation is run by calling

the Sim_system.run() method in line 30.

The classes for the entities are derived from the Sim_entity class. The code for the node

T112 is given below with example 2. Rest of the classes are similar and given in

appendix D.

Example 2:

1. class LeafNodeT 112 extends Sim_entity
2 . {
3. private Sim_port iTl 12Port, hT 112Port, vT 112Port;
4. int al 2=2, b21=21;
5. int x=0, y=0, z=0;
6. public LeafNodeTl 12(String name)
7- {
8. super(name);
9. iT112Port=new Sim_port("iT112Port");
10. add_port(iTl 12Port);
11. hTl 12Port=new Sim_port("hTl 12Port");
12. add_port(hT 112Port);
13. vTl 12Port=new Sim_port("vTl 12Port");
14. add_port(vTl 12Port)
15. }
16. public void body()
17. {
18. Integer il = new lnteger(0);
19. Integer i2 = new lnteger(0);
20. Integer i3 = new lnteger(0);
21. Integer i4 = new lnteger(0);

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22. sim_schedule("vTl 12Port", 0.01,2, new Integer(al2));
23. sim_trace(l, "leafNodeT221");
24. sim_hold(0.01);
25. sim_schedule("hTl 12Port", 0.04, 21, new Integer(b21));
26. sim_trace(l, "leafNodeT112");
27. sim_hold(0.01);
28. Sim_event ev= new Sim_event();
29. {
30. z=al2*b21;
31. if (z>0)
32. {
33. System.out.println("T112 z-> " + z);
34. sim_schedule("iTl 12Port", 0.16,112, new Integer(z));
3 5. sim_trace(1, "leafNodeT 112");
36. sim_hold(0.01);
37. }
38. }
39. while(true)
40. {
41. sim_wait(ev);
42. if(ev.get_tag() == 18)
43. {
44. i4=(Integer)ev.get_data();
45. System.out.println("Tll(2)bl2-> " + i4);
46. sim_schedule("hT 112Port", 0.1,18, i4);
47. sim_trace(l, "leafNodeT112");
48. sim_hold(0.01);
49. }
50. if(ev.get_tag() == 17)
51. {
52. i2=(Integer)ev.get_data();
53. System.out.println("Tl 1 (2)b 11 -> " + i2);
54. sim_schedule("vT112Port", 0.09, 17, i2);
55. sim_trace(l, "leafNodeT112");
56. sim_hold(0.01);
57. }
58. if(ev.get_tag() == 5)
59. {
60. i3=(Integer)ev.get_data();
61. System.out.println("T 11 (2)a21 -> " + i3);
62. sim_schedule("vT 112Port", 0.06, 5, i3); //.07
63. sim_trace(l, "leafNodeT112");
64. sim_hold(0.01);
65. }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66 .

67.
68 .

69.
70.
71.
72.
73.
74.

}
}//while close

if(ev.get_tag() = 1)
{

i 1 =(Integer)ev.get_data();
sim_schedule("hTl 12Port", 0.06,1, i 1); //.06
sim_trace(l, "leafNodeT112");
sim_hold(0.01);
System.out.println("Tl 1 (2)al 1 -> " + i 1);

75. } // body close

76. } //class close

The constructor method in line 6 first calls the Sim_entity’s constructor, super(name) in

order to invoke the superclass constructor. Then it creates ports (line 9-14) iT112Port,

hTl 12Port, vTl 12Port and adds the ports to its list of ports. These ports are linked to the

appropriate objects through their requisite ports in the main() function as shown in

example 1.

The body() of the T112 entity includes the following the most important methods of

SimJava [43]:

sim_schedule(Sim_port portName, int tag, Integer data) - send data to the entity

connected to the port with the given tag.

sim_hold(double d) -hold the data for d simulation time units.

sim_trace(int level, String msg) - adds the message msg to the trace file

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Simulation Result

We have successfully simulated OMULT network and broadcast data elements for matrix

A of size 4 x 4 and a matrix B of size 4 x 4 over the leaf nodes of the OMULT trees.

Multiplying matrix A and matrix B we have got the product matrix C of size 4x4 .

The simulation time required for getting the product matrix C of size 4 x 4 is - 0.88 time

units.

5.6 Critical Review of the Simulation

In this thesis, we have theoretically investigated the following algorithms for efficient

implementation on the OMULT architecture:

> matrix multiplication of two matrices having fixed size,

> matrix multiplication of two matrices having arbitrary sizes,

> computing the prefix-sum of a series containing n2 integers,

> computing the prefix-sum of a series containing n3 integers

> number of fundamental computational geometry problems.

We have indicated, in chapter 3 and 4, that these algorithms are efficient with respect to

the implementations of some of these algorithms on the OTIS mesh - a comparable

architecture based on the same idea of opto-electronic technology.

We have successfully used the SimJava simulation tool to support the model and to

understand the behaviors of an OMULT network.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The simulation for multiprocessor systems was complicated because of so many

interactions between parallel software and hardware. There are an increasing number of

tools available to simulate the parallel and distribution systems and it is very difficult to

select the correct tools for simulating the application. By using the SimJava package we

were able to represent the OMULT architecture in a realistic manner. One crucial issue in

the designing of multi-processor simulation was to decide how the processors should

communicate with each other. SimJava simulation tool provides efficient methods to

produce ports to provide connections among processors so that data can be transferred

quickly between processors that need to share data.

The SimJava simulator we wrote is included as an appendix(Appendix C).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

Chapter 6: Conclusions and Future Work

6.1 Conclusions

In this thesis, we have investigated the following algorithms for efficient implementation

on the OMULT architecture:

> matrix multiplication of two matrices having fixed size,

> matrix multiplication of two matrices having as arbitrary sizes,

> computing the prefix-sum of a series containing n integers,

> computing the prefix-sum of a series containing n3 integers

> a number of fundamental computational geometry problems.

These problems have not been studied in the literature. It is interesting to note from Table

6.1 given below that our algorithms are efficient with respect to recent implementations

of some of these algorithms on the OTIS mesh - a comparable architecture based on the

same idea of opto-electronic technology.

Finally we have implemented our algorithm for matrix multiplication using the SimJava

simulation tool. In our experience SimJava is a convenient environment for testing such

parallel algorithms.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.1: Performance of algorithms on the OMULT

A summary of the performances of some algorithms, along with the topological

properties of the OTIS mesh and the OMULT network has been given in table 6.1. In the

table Electronic links are identified by E and optical links by O.

Table 6.1: Comparisons between OTIS-Mesh and OMULT Network

OTIS-Mesh OMULT

Number of Nodes (N) N ~ n4 N = 2n3 - n2

Diameter 4 n - 3 6 log n + 2

Broadcast time 4n - 1 (E) + 1 (0) 6log n (E) + 2 (0)

Prefix Sum time 7 n -1 (E)+ 2 (0) 1 Ologn(E) + 10(0)

(# of elements) (for n elements) (for n elements)

Matrix multiplication 0(n4) 0(n3 log n)

Time (size of matix) (n4 x n4 matrices) (n2 x n2 matrices)

Convex hull 18^n(E) +3(0) 14 log n(E) + 10(0)

Smallest enclosing box 26<n(E) +3(6) 18logn(E) +16(0)

ECDF 4(^n -1) (E) +3(0) 6logn(E)+ 3(0)

All-nearest Neighbor 4(yln-l)(E) +3(0) 6logn(E)+3(0)

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Future Works

We are studying the implementation of a number of other algorithms on the OMULT

architecture. Algorithm mapping for the common basic operations involved in real-life

applications for numerical and scientific processing, image and signal processing can be

more efficiently done using the OMULT network than on the OTIS-Mesh, with

comparable investments on establishing optical links among the processor nodes, and

lesser cost for the electronic links. Also, the topology of the proposed OMULT network

is very simple, making it particularly attractive for parallel computing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

Appendix A: List of symbols

A, B, C- registers

ai, ci2, . . . , cin - values in a series for computing the prefix sum

a, b, c, d, e , f g - set of points

an, at2 , . . ain - elements of row i of the matrix A

aik- elements of matrix B

bkj - elements of matrix A

bn, b2i , . . bni - elements of column i of the matrix B

Cy - elements of matrix C

d;, d2, dn - data elements

(G, P) - G identifies the group and P identifies the processor within the group

K y~N- size of matrix B

M x K-size of matrix A

M x N - size of matrix C

n x n- array of tree of the OMULT system

N- total number of nodes of the OMULT network

n - number of leaf nodes in a tree within the network

n-1 - internal nodes

Po, P , ... Pn-i - series of processors

Pw, P u , ■ ■ Pi,n-2 -set of points(S)

Pi, P2 , • • -,pn~ set of points

(xi, yt)- coordinate of points p;

(pi, p r)~ hull edge

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B: Glossary of important terms

Arc connectivity: the minimum number of arcs that have to be removed from the

network to cut it into two disconnected networks. Higher connectivity is better since it

reduces the contention for links.

All nearest neighbor problem: is to find the minimum distance between any two points.

Bisection width: the minimum number of links that need to be removed to break the

network into two equal halves.

Cost: the number communication links required by the network.

Convex hull: problem is to find a hull that surrounds and encloses a given set of points.

Diameter: largest possible value of the shortest path between any two processors in an

interconnection network.

Extreme point: if the counterclockwise angle between any pair of consecutive vectors is

more than then the 180° then the point is called extreme point.

Empirical Cumulative Distribution Function: problem is to find the number of points

dominated by each point

Interconnection network is used to provide connections among processors so that data

can be transferred between processors.

Optical network: is a digital communication system that uses light waves as the medium

for transmits data.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parallel computer: (also called a multi-processor machine) is a machine that consists of

a collection of processors or processing units, that cooperate, to solve a problem, by

working simultaneously on different parts of that problem .

Polar angle: is the counterclockwise angle between two vectors.

Shortest path: is the smallest number of links needed to communicate between two

processors.

SIMJAVA package: is a process based simulation tool based on Java. A SIMJAVA

simulation is a collection of entities each running on its own thread.

SIMD (Single instruction multiple data): is a parallel computer consists of a number of

processors that operate under the control of a single instruction issued by a central control

unit.

Smallest enclosing box: problem is to find the rectangle with the minimum area that
encloses all the points

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

Appendix C: Simulation

/*
* Simulation of Matrix Multiplication on OMULT architecture
*Using SimJava simulation package
*/

import java.awt.*;
import eduni.simjava.*;
import javax.swing.*;
import java.awt.event.*;

/ % % sjc sjc sjc s|c He H* H* Hi ̂ % >|e He He He ̂er J J He He He He He He He He He He He He He He He /

/He He He He He He He He He He He He He He He He ^̂ Q̂ Ĥe He He He He He He He He He He He He He He/

class RootNodeTl 1A extends Sim_entity
{
private Sim_port 1T11 APort, rTl 1 APort;
int x=0, y=0, z=0;
public RootNodeTl 1 A(String name)
{

super(name);
1T11 APort=new Sim__port("lTl 1 APort");

add_port(lTl 1 APort);
rTl 1 APort=new Sim_port("rTH APort");
add_port(rTl 1 APort);

}

public void body()
{

Integer il = new lnteger(0);
Integer i2 = new Integer(O);
Integer xl = new Integer(O);
Integer x2 = new Integer(O);
Sim_event ev= new Sim_event();

while (tme)
{
sim_wait(ev);
if(ev.get_tag() == 1)
{
i 1 =(Integer)ev.get_dataO;
sim_schedule("rTl 1 APort", 0.04, 1, il);
sim_trace(l, "leafNodeTl 1 A");
sim_hold(0.01);

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
if(ev.get_tag() == 17)
{
i2=(Integer)ev.get_data();
sim_schedule("rTl 1 APort", 0.07,17, i2); //.07
sim_trace(l, "leafNodeTllA");
sim_hold(0.01);

}

if(ev.get_tag() = 100) xl=(Integer)ev.get_data();
if(ev.get_tag() == 200) x2=(Integer)ev.get_data();
x= xl .intValue();
if (x>0)

y= x2.intValue();
if (y>0)

z= X + y;
if (z>0)

System.out.println("Tl 1A z -> " + z);
}//while close

}// body close
} //class close

îjojC}jC9|ofCSjC9j()|C9|C9|o{ofojCSiSSj(2jgsjC2iC9lcs|CSj{

class IntNodeTl IB extends Sim_entity
{
private Sim_port iTl lBPort, 1T1 lBPort,rTl lBPort, rlT l lBPort;
int x=0, y=0, z=0;

public IntNodeTl IB (String name)
{
super(name);
iTl lBPort=new Sim_port("iTl lBPort");
add_port(iTl lBPort);
ITl lBPort=new Sim_port("lTl lBPort");
add_port(lTl lBPort);
rTl lBPort=new Sim__port("rTl lBPort");
add_port(rTl lBPort);
rlT l lBPort=new Sim_j)ort("rlTl lBPort");
add_port(rlTl lBPort);
}

public void body()
{
Integer il = new lnteger(0);
Integer i2 = new lnteger(0);
Integer xl = new lnteger(0);
Integer x2 = new lnteger(0);

Sim_event ev= new Sim_event();
while(true)
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sim_wait(ev);
if(ev.get_tag() == 1)
{

il=(Integer)ev.get_data();
sim_schedule("iTl lBPort", 0.03,1, il);
sim_trace(l, "leafNodeTllB");
sim_hold(0.01);
sim_schedule("r 1T1 lBPort", 0.05, 1, il); //.05
sim_trace(l, "leafNodeTllB");
sim_hold(0.01);

}
if(ev.get_tag() == 17)

{
i2=(Integer)ev.get_data();
sim_schedule("iTl lBPort", 0.06,17, i2);
sim_trace(l, "leafNodeTllB");
sim_hold(0.01); //
sim_schedule("rT 1 lBPort", 0.06,17, i2); //.08
sim_trace(l, "leafNodeTllB");
sim_hold(0.01);
}

if(ev.get_tag() == 111) xl=(Integer)ev.get_data();
if(ev.get_tag() == 112) x2=(Integer)ev.get_data();

x= xl .intValue();
if (x>0)

y= x2.intValue();
if (y>0)

z= x + y;
if (z>0)

{
System.out.println("Tl IB z -> " + z);
sim_schedule("iTl lBPort", 0.17,100, new Integer(z));
sim_trace(l, "leafNodeTllB");
sim_hold(0.01);
}
}//while close
}//body close

}//class close

class IntNodeTl 1C extends Sim_entity
{
private Sim_port iTl lCPort, ITl lCPort, rTl lCPort;
int x=0, y=0, z=0;

public IntNodeTl 1C (String name)
{
super(name);
iTl lCPort=new Sim_port("iTl lCPort");
add_port(iTl lCPort);
ITl lCPort=new Sim_port("lTl lCPort");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

add_port(lTl lCPort);
rTl lCPort=new Sinu>ort("rTl lCPort");
add_port(rTl 1 CPort);

}

public void body()
{

Integer il = new Integer(O);
Integer i2 = new Integer(O);
Integer xl = new Integer(O);
Integer x2 = new Integer(O);
Sim_event ev= new Sim_event();

while(true)
{
sim_wait(ev);

if(ev.get_tag() == 1)
{
i 1 =(Integer)ev.get_data();
sim_schedule("lTl lCPort", 0.05,1, il);
sim_trace(l, "leafNodeTllC");
sim_hold(0.01);
sim_schedule("rTl lCPort", 0.05, 1, il);
sim_trace(l, "leafNodeTllC");
sim_hold(0.01);
}

if(ev.get_tag() == 17)
{
i2=(Integer)ev.get_data();
sim_schedule("lTl lCPort", 0.08,17, i2);
sim_trace(l, "leafNodeTllC");
sim_hold(0.01);
sim_schedule("rTl lCPort", 0.08,17, i2);
sim_trace(l, "leafNodeTllC");
sim_hold(0.01);
}

if(ev.get_tag() ==113) xl=(Integer)ev.get_data();
if(ev.get_tag() ==114) x2=(Integer)ev.get_dataO;
x= xl .intValue();
if (x>0)

y= x2.intValue();
if (y>0)

z= x + y;
if (z>0)
{
System.out.println("Tl 1C z -> " + z);
sim_schedule("iTl lCPort", 0.17, 200, new Integer(z));
sim_trace(l, "leafNodeTllC");
sim_hold(0.01);
}

}//while close

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}//body close
}//class close

class LeafNodeTl 11 extends Sim_entity
{
private Sim_port iTl 1 lPort, hTl 1 lPort, vTl 1 lPort;
int al 1=1, bl 1=17 ;
int x=0, y=0, z=0;
public LeafNodeTl 11 (String name)
{
super(name);
iTl 1 lPort=new Sim_port("iTl 1 lPort");
add_port(iTl 1 lPort);
hTl 1 lPort=new Sim_port("hTl 1 lPort");
add_port(hTl 1 lPort);
vTl 1 lPort=new Sim_port("vTl 1 lPort");
add_port(vTl 1 lPort);

}
public void body()
{
sim_schedule("iTl 1 lPort", 0.02, 1, new Integer(al 1));
sim_trace(l, "leafNodeTl 11");
sim_hold(0.01);
sim_schedule("iTlllPort", 0.05,17, new Integer(bll));
sim_trace(l, "leafNodeTl 11");
sim_hold(0.01);
{

z= all * bl 1;
if (z>0)
{
System.out.println("Tl 11 z -> " + z);
sim_schedule("iTlllPort", 0.15, 111, new Integer(z));
sim_trace(l, "leafNodeTl 11");
sim_hold(0.01);
}

}
}

}
class LeafNodeTl 12 extends Sim_entity
{
private Sim_port iTl 12Port, hTl 12Port,vTl 12Port;
int a 12=2, b21=21;
int x=0, y=0, z=0;
public LeafNodeTl 12(String name)
{
super(name);
iT112Port=new Sim_port("iT112Port");
add_port(iTl 12Port);
hTl 12Port=new Sim_port("hTl 12Port");
add_port(hTl 12Port);
vTl 12Port=new Sim_port("vTl 12Port");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

add_port(vTl 12Port);
}

public void body()
{
Integer il = new Integer(O);
Integer i2 = new lnteger(0);
Integer i3 = new lnteger(0);
Integer i4 = new lnteger(0);
sim_schedule("vT112Port", 0.01, 2, new Integer(al2));
sim_trace(l, "leafNodeT221");
sim_hold(0.01);
sim_schedule("hT112Port", 0.04, 21, new Integer(b21));
sim_trace(l, "leafNodeTl 12");
sim_hold(0.01);

Sim_event ev= new Sim_event();
{
z= al2 * b21;
if (z>0)
{
System.out.println("T112 z -> " + z);
sim_schedule("iTl 12Port", 0.16,112, new Integer(z));
sim_trace(l, "leafNodeTl 12");
sim_hold(0.01);
}

}

while(true)
{
sim_wait(ev);
if(ev.get_tag() == 18)
{
i4=(Integer)ev.get_data();
sim_schedule("hT112Port", 0.1,18, i4);
sim_trace(l, "leafNodeTl 12");
sim_hold(0.01);

}
if(ev.get_tag() == 17)
{
i2=(Integer)ev.get_data();
sim_schedule("vTl 12Port", 0.09,17, i2); //check print out
sim_trace(l, "leafNodeTl 12");
sim_hold(0.01);
}

if(ev.get_tag() == 5)
{
i3=(Integer)ev.get_data();

sim_schedule("vT 112Port", 0.06, 5, i3); //.07
sim_trace(l, "leafNodeTl 12");
sim_hold(0.01);
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if(ev.get_tag() == 1)
{
i 1 =(Integer)ev.get_data();
sim_schedule("hTl 12Port", 0.06,1, il); II.06
sim_trace(l, "leafNodeTl 12");
sim_hold(0.01);

}
}//while close

}
}

class LeafNodeTl 13 extends Sim_entity
{
private Sim_jx>rt iTl 13Port, hTl 13Port, vTl 13Port, ilTl 13Port, hlTl 13Port,
vlTl 13Port,v2Tl 13Port;
int al3 = 3, b31=25;
int x=0, y=0, z=0;
public LeafNodeTl 13(String name)
{
super(name);
iTl 13Port=new Sim_port("iTl 13Port");
add_port(iTl 13Port);
hTl 13Port=new Sim_port("hTl 13Port");
add_port(hTl 13Port);
vT113Port=new Sim_port("vTl 13Port");
add_j)ort(vTl 13Port);
ilTl 13Port=new Sim_port("ilTl 13Port");
add_port(ilTl 13Port);
hlTl 13Port=new Sim_port("hlTl 13Port");
add_port(hlTl 13Port); •
vl T113Port=new Sim_port("vl T113Port");
add_port(vlTl 13Port);
v2Tl 13Port=new Sim_port("v2Tl 13Port");
add_port(v2Tl 13Port);

}

public void body()
{

Integer il = new lnteger(0);
Integer i2 = new Integer(O);
Integer i3 = new Integer(O);
Integer i4 = new Integer(O);
sim_schedule("vT113Port", 0.01, 3, new Integer(al3));
sim_trace(l, "leafNodeTl 13");
sim_hold(0.01);
sim_schedule("hT113Port", 0.04, 25, new Integer(b31));
sim_trace(l, "leafNodeTl 13");
sim_hold(0.01);
Sim_event ev= new Sim_event();

while(true)
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sim_wait(ev);
if(ev.get_tag() == 1)
{
il =(Integer)ev.get_data();
sim_schedule("hT113Port", 0.06,1, il); //.06
sim_trace(l, "leafNodeTl 13");
sim_hold(0.01);

}
if(ev.get_tag() == 19)
{
i2=(Integer)ev.get_data();
sim_schedule("hTl 13Port", 0.1,19, i2); //.06
sim_trace(l, "leafNodeTl 13");
sim_hold(0.01);

}
if(ev.get_tag() == 9)
{
i3=(Integer)ev.get_data();
sim_schedule("vTl 13Port", 0.06, 9, i3); //.07
sim_trace(l, "leafNodeTl 13");
sim_hold(0.01);
}

if(ev.get_tag() == 17)
{
i4=(Integer)ev.get_data();
sim_schedule("vT113Port", 0.09, 17, i4);
sim_trace(l, "leafNodeTl 12");
sim_hold(0.01);
}
z= al3 * b31;
if (z>0)
{
System.out.println("T113 z-> " + z);
sim_schedule("iT113Port", 0.15,113, new Integer(z));
sim_trace(l, "leafNodeTl 13");
sim_hold(0.01);
}

}//while close
}

class LeafNodeTl 14 extends Sim_entity
{
private Sim_port iTl 14Port, hTl 14Port, vTl 14Port,vlTl 14Port;
int a 14= 4, b41=29;
int x=0, y=0, z=0;
public LeafNodeTl 14(String name)

{
super(name);
iT114Port=new Sim_port("iT114Port");
add_port(iTl 14Port);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hTl 14Port=new Sim_port("hTl 14Port");
add_port(hT114Port);
vTl 14Port=new Sim_port("vTl 14Port");
add_port(vTl 14Port);
vlTl 14Port=new Sim_port("vlTl 14Port");
add_port(vlTl 14Port);
}

public void body()
{
Integer il = new Integer(O);
Integer i2 = new Integer(O);
Integer i3 = new lnteger(0);
Integer i4 = new lnteger(0);
sim_schedule("vTl 14Port", 0.01,4, new Integer(al4));
sim_trace(l, "leafNodeTl 14");
sim_hold(0.01);
sim_schedule("hTl 14Port", 0.02, 29, new Integer(b41)); //.04
sim_trace(l, "leafNodeTl 14");
sim_hold(0.01);
Sim_event ev= new Sim_event();

while(true)
{
sim_wait(ev);
if(ev.get_tag() == 1)
{
i 1 =(Integer)ev.get_data();
sim_schedule("hT114Port", 0.06,1, il); //.06
sim_trace(l, "leafNodeTl 14");
sim_hold(0.01);

}
if(ev.get_tag() == 20)
{
i2=(Integer)ev.get_dataO;
sim_schedule("hTl 14Port", 0.1, 20, i2);
sim_trace(l, "leafNodeTl 14");
sim_hold(0.01);

}
if(ev.get_tag() == 13)
{
i3=(Integer)ev.get_data();
sim_schedule("vlT114Port", 0.07, 13, i3);
sim_trace(l, "leafNodeTl 14");
sim_hold(0.01);

}

if(ev.get_tag() == 17)
{
i4=(biteger)ev.get_data();
sim_schedule("vT114Port", 0.09,17, i4); //.09

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sim_trace(l, "leafNodeTl 12");
sim_hold(0.01);
}
z= al4 * b41;
if (z>0)
{
System.out.println("T114 z -> " + z);
sim_schedule("iT114Port", 0.15, 114, new Integer(z));
sim_trace(l, "leafNodeTl 14");
sim_hold(0.01);

}
}//while close
}

}

'̂T'rcc * A'

y}|<9i(9|ojc9joioiojc9ic9jc9{c9{c9|c9jc9|c

class RootNodeT12A extends Sim_entity
{
private Sim_port lT12APort, rT12APort;
int x=0, y=0, z=0;

public RootNodeT12A(String name)
{
super(name);
lT12APort=new Sim_port("lT12APort");
add_port(lT 12 APort);
rT12APort=new Sim_port("rT12APort");
add_port(rT 12 APort);
}

public void body()
{

Integer il = new lnteger(0);
Integer i2 = new Integer(O);
Integer xl = new Integer(O);
Integer x2 = new Integer(O);
Sim_event ev= new Sim_event();

while(true)
{
sim_wait(ev);
if(ev.get_tag() ==21)
{
i2=(Integer)ev.get_data();
sim_schedule("rT 12APort", 0.07, 21, i2);
sim_trace(l, "leafNodeTl2A");
sim_hold(0.01);

}
if(ev.get_tag() == 5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
i 1 =(Integer)ev.get_data();
sim_schedule("rT12APort", 0.04, 5, il);
sim_trace(l, "leafNodeTl2A");
sim_hold(0.01);
}

if(ev.get_tag() == 100) xl=(Integer)ev.get_data();
if(ev.get_tag() == 200) x2=(Integer)ev.get_data();
x= xl .intValue();
if (x>0)

y= x2.intValue();
if (y>0)
z=x + y;
if (z>0)

System.out.println("T12A z -> " + z);
}

}//while close
}// body close

}//class close

class IntNodeTl2B extends Sim_entity
{
private Sim_port iT12BPort, lT12BPort, rT12BPort;
int x=0, y=0, z=0;
public IntNodeT12B (String name)
{
super(name);
iT12BPort=new Sim_port("iT12BPort");
add_port(iTl 2BPort);
lT12BPort=new Sim_port("lT12BPort");
add_port(lTl 2BPort);
rT 12BPort=new Sim_port("rT 12BPort");
add_port(rTl 2BPort);

}
public void body()
{
Integer i2 - new lnteger(0);
Integer i3 = new Integer(O);
Integer xl = new Integer(O);
Integer x2 = new Integer(O);
Sim_event ev= new Sim_event();
while (true)
{
sim_wait(ev);
if(ev.get_tag() == 5)
{
i3=(Integer)ev.get_data();

sim_schedule("iT12BPort", 0.03, 5, i3);
sim_trace(l, "leafNodeT12B");
sim_hold(0.01);
sim_schedule("lT 12BPort", 0.05, 5, i3); II.05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sim_trace(l, "leafNodeT12B");
sim_hold(0.01);
}

if(ev.get_tag() == 21)
{
i2=(Integer)ev.get_data();
sim_schedule("iT12BPort", 0.06, 21, i2);
sim_trace(l, "leafNodeTl2B");
sim_hold(0.01);
sim_schedule("rT12BPort", 0.08, 21, i2);
sim_trace(l, "leafNodeT12B");
sim_hold(0.01);
}

if(ev.get_tag() == 121) xl=(Integer)ev.get_dataO;
if(ev.get_tag() == 122) x2=(Integer)ev.get_data();
x= xl .intValue();
if (x>0)
y= x2.intValue();
if (y>0)
z= x + y;
if (z>0)
{
System.out.println("T12B z -> " + z);
sim_schedule("iT12BPort", 0.17,100, new Integer(z));
sim_trace(l, "leafNodeT12B");
sim_hold(0.01);

}
}//while close

}//body close
}//class close

class IntNodeTl2C extends Sim_entity
{
private Sim_port iT12CPort, lT12CPort, rT12CPort;
int x=0, y=0, z=0;

public IntNodeTl2C (String name)
{
super(name);
iT 12CPort=new Sim_port("iTl 2CPort");
add_port(iT 12CPort);
ITl2CPort=new Sim_port("lT 12CPort");
add_port(lT 12CPort);
rT12CPort=new Sim_port("rT12CPort");
add_port(rT 12CPort);

}

public void body()
{
Integer i2 = new lnteger(0);
Integer i3 = new lnteger(0);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Integer yl = new Integer(O);
Integer y2 = new Integer(O);
Sim_event ev= new Sim_event();
while (true)
{
sim_wait(ev);
if(ev.get_tag() == 5)
{
i3=(Integer)ev.get_data();
sim_schedule("lT12CPort", 0.05, 5, i3);
sim_trace(l, "leafNodeTl2C");
sim_hold(0.01);
sim_schedule("rT12CPort", 0.06, 5, i3); //.05
sim_trace(l, "leafNodeTl2C");
sim_hold(0.01);
}

if(ev.get_tag() ==21)
{
i2=(Integer)ev.get_data();
sim_schedule("lT 12CPort", 0.08, 21, i2);
sim_trace(l, "leafNodeT12C");
sim_hold(0.01);
sim_schedule("rT12CPort", 0.08, 21, i2);
sim_trace(l, "leafNodeT12C");
sim_hold(0.01);
}

if(ev.get_tag() == 123) yl=(Integer)ev.get_data();
if(ev.get_tag() == 124) y2=(Integer)ev.get_data();
x= yl .intValue();

if(x>0) y= y2.intValueO;
if (y>0) z= x + y;
if (z>0)
{
sim_schedule("iT12CPort", 0.17, 200, new Integer(z));
sim_trace(l, "leafNodeTl2C");
sim_hold(0.01);
}

}//while close
}//body close

}//class close

class LeafNodeT121 extends Sim_entity
{
private Sim__port iT121Port, hi T121 Port, hT121Port, vT121Port;
int x=0, y=0, z=0;

public LeafNodeTl21 (String name)
{
super(name);
iT 121 Port=new Sim_port("iT 121 Port");
add_port(iT 121 Port);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hT121Port=new Sim_port("hT121Port");
add_port(hT 121 Port);
hi T121 Port=new Sim_port("hl T121 Port");
add_jport(h 1T121 Port);
vT 121 Port=new Sim_port("vT 121 Port");
add_port(vT 121 Port);

}
public void body()
{
biteger il = new lnteger(0);
Integer i2 = new lnteger(0);
Integer i3 = new lnteger(0);
Integer i4 = new Integer(O);
Sim_event ev= new Sim_event();

while(true)
{
sim_wait(ev);
if(ev.get_tag() = 5)
{
i3=(Integer)ev.get_data();
sbn_schedule("hlT121Port", 0.06, 5, i3);
sim_trace(l, "leafNodeT121");
}

if(ev.get_tag() == 1) il=(Integer)ev.get_data();
if(ev.get_tag() == 18) i4=(Integer)ev.get_dataO;
if(ev.get_tag() = 21)

{
i2=(Integer)ev.get_dataO;
sim_schedule("iT 121 Port", 0.05, 21, i2);
sim_trace(l, "leafNodeT121");
sim_hold(0.01);
}

x= i4.intValue();
if (x>0) y= il .intValue();
if (y>0) z= x * y;
if (z>0)

{
sim_schedule("iT121Port", 0.15,121, new Integer(z));
sim_trace(l, "leafNodeT121");
sim_hold(0.01);
}
}//while close

}
}

class LeafNodeTl22 extends Sim_entity
{
private Sim_port iT122Port, vT122Port;
int x=0, y=0, z=0;

public LeafNodeTl 22(String name)

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
super(name);
iT 122Port=new Sim_port("iT 122Port");
add_port(iT122Port);
vTl22Port=new Sim_port("vT 122Port");
add_port(vT 122Port);

}

public void body()
{
Integer il = new Integer(O);
Integer i2 = new lnteger(0);
Integer i3 = new lnteger(0);
Integer i4 = new Integer(O);
Sim_event ev= new Sim_event();

while(true)
{
sim_wait(ev);
if(ev.get_tag() == 2) i2=(Integer)ev.get_data();
if(ev.get_tag() == 21) il=(Integer)ev.get_data();
sim_schedule("vT122Port", 0.09, 21, il);
sim_trace(l, "leafNodeT122");
sim_hold(0.01);
}

if(ev.get_tag() = 22) i4=(Integer)ev.get_data();
if(ev.get_tag() == 5) i3=(Integer)ev.get_data();

sim_scliedule("iT122Port", 0.02, 5, i3);
sim_trace(l, "leafNodeT122");
sim_hold(0.01);

x= i2.intValue();
if (x>0) y= i4.intValue();
if (y>0) z= x * y;
if (z>0)

{
sim_schedule("iT122Port", 0.15,122, new Integer(z));
sim_trace(l, "leafNodeT122");
sim_hold(0.01);
}
}//while close

}
}

class LeafNodeTl23 extends Sim_entity
{
private Sim_port iT123Port, hT123Port, vT123Port;
int x=0, y=0, z=0;
public LeafNodeT123(String name)

{
super(name);
iT 123Port=new Sim_port("iTl 23Port");
add_port(iT 123Port);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hT 123Port=new Sim_port("hT 123Port");
add_jport(hT 123Port);
vT 123Port=new Sim_port("vT 123Port");
add_port(vT 123Port);
}
public void body()
{
Integer il = new Integer(O);
Integer i2 = new Integer(O);
Integer i3 = new Integer(O);
Integer i4 = new lnteger(0);
Integer i5 = new lnteger(0);
Integer i6 = new lnteger(0);
Sim_event ev= new Sim_event();
while(true)
{
sim_wait(ev);
if(ev.get_tag() == 3) il=(Integer)ev.get_dataO;
if(ev.get_tag() == 23) i2=(Integer)ev.get_data();
sim_schedule("hT123Port", 0.1, 23, i2);
sim_trace(l, "lea£NodeT123");
sim_hold(0.01);
}
if(ev.get_tag() == 5)
{
i3=(Integer)ev.get_data();
sim_schedule("hT123Port", 0.06, 5, i3);
sim_trace(l, "leafNodeTl23");
sim_hold(0.01);
}

if(ev.get_tag() == 26) i4=(Integer)ev.get_dataO;
if(ev.get_tag() == 9) i5=(Integer)ev.get_dataO;
sim_schedule("vT123Port", 0.07, 9, i5);
sim_trace(l, "leafNodeTl23");
sim_hold(0.01);
if(ev.get_tag() ==21)
{

i6=(Integer)ev.get_data();
sim_schedule("vT 123Port", 0.09,21, i6);
sim_trace(l, "leafNodeTl22");
sim_hold(0.01);

}
x= il.intValueO;
if (x>0) y= i4.intValue();
if (y>0) z= x * y;
if (z>0)

{
sim_schedule("iT123Port", 0.15, 123, new Integer(z));
sim_trace(l, "leafNodeT123");
sim_hold(0.01);
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}//while close
}

}

class LeafNodeTl 24 extends Sim_entity
{
private Sim_port iT124Port, hT124Port, vT124Port;
int x=0, y=0, z-0;

public LeafNodeT124(String name)
{
super(name);
iT 124Port=new Sim_port("iT 124Port");
add_port(iT 124Port);
hT 124Port=new Sim_port("hT 124Port");
add_port(hTl 24Port);
vT 124Port=new Sim_port("vT 124Port");
add_port(vT 124Port);
}

public void body()
{
Integer il = new Integer(O);
Integer i2 = new Integer(O);
Integer i3 = new lnteger(0);
Integer i4 = new lnteger(0);
Integer i5 = new lnteger(0);
Integer i6= new Integer(O);
Sim_event ev= new Sim_event();

while(true)
{
sim_wait(ev);
if(ev.get_tag() == 5)
{
il=(Integer)ev.get_data();
sim_schedule("hT124Port", 0.06, 5, il);
sim_trace(l, "leafNodeTl24");
sim_hold(0.01);
}
if(ev.get_tag() == 4) i2=(Integer)ev.get_data();
if(ev.get_tag() — 24) i3=(Integer)ev.get_data();
sim_schedule("hT 124Port", 0.1, 24, i3);
sim_trace(l, "leafNodeT124");
sim_hold(0.01);

if(ev.get_tag() == 30) i4=(Integer)ev.get_data();
if(ev.get_tag() == 13)
{

i5=(Integer)ev.get_data();
sim_schedule("vT 124Port", 0.05, 13, i5); //.07
sim_trace(l, "leafNodeTl24");
sim_hold(0.01);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if(ev.get_tag() == 21)
{
i6=(Integer)ev.get_data();
sim_schedule("vT124Port", 0.09,21, i6);
sim_trace(l, "leafNodeT122");
sim_hold(0.01);
}

x= i2.intValue();
if (x>0) y= i4.intValue();
if (y>0) z= x * y;
if (z>0)

{
sim_schedule("iT124Port", 0.15,124, new Integer(z));
sim_trace(l, "leafNodeT124");
sim_hold(0.01);
}

}//while close
}

/********Codmg of Tree T13 to Tree T43 are similar (not shown here)***************/

class RootNodeT44A extends Sim_entity
{
private Sim_port lT44APort, rT44APort;
int x=0, y=0, z=0;

public RootNodeT44A(String name)
{
super(name);
lT44APort=new Sim_port("lT44APort");
add_port(lT44 APort);
rT44APort=new Sim_port("rT44APort");
add_port(rT 44 APort);
}
public void body()
{

Integer il = new Integer(O);
Integer i2 = new Integer(O);
Integer i3 = new lnteger(0);
Integer i4 = new lnteger(0);
Integer xl = new lnteger(0);
Integer x2 = new Integer(O);
Sim_event ev= new Sim_event();

while (true)

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
sim_wait(ev);
if(ev.get_tag() == 16)
{
il=(Integer)ev.get_data();
sim_schedule("lT44APort", 0.04,16, il);
sim_trace(l, "leafNodeT44A");
sim_hold(0.01);
}

if(ev.get_tag() == 32)
{
i2=(Integer)ev.get_data();
sim_schedule("lT44APort", 0.07, 32, i2);
sim_trace(l, "leafNodeT44A");
sim_hold(0.01);
}

if(ev.get_tag() == 100) xl=(Integer)ev.get_data();
if(ev.get_tag() == 200) x2=(Integer)ev.get_data();
x= xl.intValueO;
if (x>0) y= x2.intValue();
if (y>0) z= x + y;
if (z>0) System.out.println("T44A z -> " + z);

}//while close
}// body close
} //class

class IntNodeT44B extends Sim_entity
{
private Sim_port iT44BPort, lT44BPort, rT44BPort;
int x=0, y=0, z=0;

public IntNodeT44B (String name)
{
super(name);
iT44BPort=new Sim_port("iT44BPort");
add_port(iT44BPort);
lT44BPort=new Sim_port("lT44BPort");
add_port(lT44BPort);
rT44BPort=new Sim_port("rT44BPort");
add_port(rT44BPort);
}
public void body()
{

Integer il = new Integer(O);
Integer i2 = new lnteger(0);
Integer i3 = new Integer(O);
Integer i4 = new Integer(O);
Integer xl = new Integer(O);
Integer x2 = new Integer(O);

Sim_event ev= new Sim_event();
while (true)
{

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sim_wait(ev);
if(ev.get_tag() == 16)
{
i 1 =(Integer)ev.get_data();
sim_schedule("lT44BPort", 0.05, 16, il);
sim_trace(l, "leafNodeT44B");
sim_hold(0.01);
sim_schedule("rT44BPort", 0.07,16, il);
sim_trace(l, "leafNodeT44B");
sim_hold(0.01);
}
if(ev.get_tag() == 32)
{

i2=(Integer)ev.get_data();
sim_schedule("lT44BPort", 0.08, 32, i2);
sim_trace(l, "leafNodeT44B");
sim_hold(0.01);
sim_schedule("rT44BPort", 0.08, 32, i2);
sim_trace(l, "leafNodeT44B");
sim_hold(0.01);
}

if(ev.get_tag() == 441)
{
xl =(Integer)ev.get_dataO;
System.out.println("T44B xl-> " + xl);
}

if(ev.get_tag() == 442) x2=(Integer)ev.get_data();
x= xl .intValue();
if (x>0) y= x2.intValue();
if (y>0) z= x + y;
if (z>0)
{
System.out.println("T44B z -> " + z);
sim_schedule("iT44BPort", 0.17,100, new Integer(z));
sim_trace(l, "leafNodeT44B");
sim_hold(0.01);
}
}//while close

}//body close
}//class close

class IntNodeT44C extends Sim_entity
{
private Sim_port iT44CPort, lT44CPort, rT44CPort;
int x=0, y=0, z=0;

public IntNodeT44C (String name)
{
super(name);
iT44CPort=new Sim_port("iT44CPort");
add_port(iT44CPort);
IT44CPort=new Sim__port("lT44CPort");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

add_port(lT44CPort);
rT44CPort=new Sim_port("rT44CPort");
add_port(rT 44CPort);
}
public void body()
{

Integer il = new Integer(O);
Integer i2 = new lnteger(0);
Integer i3 = new Integer(O);
Integer i4 = new Integer(O);
Integer xl = new Integer(O);
Integer x2 = new lnteger(0);
Sim_event ev= new Sim_event();

while(true)
{
sim_wait(ev);
if(ev.get_tag() == 16)
{
i2=(Integer)ev.get_data();
sim_schedule("iT44CPort", 0.03,16, i2);
sim_trace(l, "leafNodeT44C");
sim_hold(0.01);
sim_schedule("lT44CPort", 0.05,16, i2);
sim_trace(l, "leafNodeT44C");
sim_hold(0.01);
}

if(ev.get_tag() == 32)
{
il=(Integer)ev.get_data();
sim_schedule("iT44CPort", 0.06, 32, il);
sim_trace(l, "leafNodeT44C");
sim_hold(0.01);
sim_schedule("lT44CPort", 0.06, 32, il); //.08
sim_trace(l, "leafNodeT44C");
sim_hold(0.01);
}

if(ev.get_tag() == 443) xl=(Integer)ev.get_data();
if(ev.get_tag() == 444) x2=(Integer)ev.get_data();

{
x= xl .intValue();
if (x>0)
y= x2.intValue();
if (y>0)
z= x + y;
if (z>0)
{
System.out.println("T44C z -> " + z);
sim_schedule("iT44CPort", 0.17, 200, new Integer(z));
sim_trace(l, "leafNodeT44C");
sim_hold(0.01);
}

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
}//while
}//body close
}//class close

class LeafNodeT441 extends Sim_entity
{
private Sim_port iT441Port, hT441Port, vT441Port;
int a41=13, bl4=20;
int x=0, y=0, z=0;

public LeafNodeT441 (String name)
{
super(name);
iT441 Port=new Sim_port("iT441 Port");
add_port(iT441 Port);
hT441 Port=new Sim_port("hT441 Port");
add_port(hT 441 Port);
vT441 Port=new Sim_port("vT441 Port");
add_port(vT 441 Port);
}

public void body()
{
Integer il = new lnteger(0);
Integer i2 = new Integer(O);
Integer i3 = new lnteger(0);
Integer i4 = new lnteger(0);
Integer i5 = new Integer(O);
Sim_event ev= new Sim_event();
sim_schedule("vT441Port", 0.01,13, new Integer(a41)); //.01
sim_trace(l, "leafNodeT441");
sim_hold(0.01);
sim_schedule("hT441Port", 0.02, 20, new Integer(bl4)); //.04
sim_trace(l, "leafNodeT441");
sim_hold(0.01);
{
z= a41 * bl4;
if (z>0)
{
System.out.println("T441 z -> " + z);
sim_schedule("iT441Port", 0.15, 441, new Integer(z));
sim_trace(1, "leafNodeT441");
sim_hold(0.01);
}
}

while(true)
{
sim_wait(ev);
if(ev.get_tag() == 16)
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i 1 =(Integer)ev.get_data();
sim_schedule("hT441Port", 0.06, 16, il);
sim_trace(l, "leafNodeT441");
sim_hold(0.01);
}
if(ev.get_tag() == 4)
{
i2=(Integer)ev.get_data();
sim_schedule("vT44lPort", 0.07,4, i2);
sim_trace(l, "leafNodeT441");
sim_hold(0.01);
}

if(ev.get_tag() == 32)
{
i3=(Integer)ev.get_data();
sim_schedule("vT441Port", 0.09, 32, i3);
sim_trace(l, "leafNodeT441");
sim_hold(0.01);
}

if(ev.get_tag() == 29)
{
i4=(Integer)ev.get_data();
sim_schedule("hT441Port", 0.10, 29, i4);
sim_trace(1, "leafNodeT441");
sim_hold(0.01);
}
}//while close

}
}

class LeafNodeT442 extends Sim_entity
{
private Sim_port iT442Port, hT442Port, vT442Port;
int x=0, y=0, z=0;
int a42=14, b24=24;

public LeafNodeT442(String name)
{
super(name);
iT442Port=new Sim_port("iT442Port");
add_port(iT442Port);
hT442Port=new Sim_port("hT442Port");
add_port(hT442Port);
vT442Port=new Sim_port("vT442Port");
add_port(vT442Port);
}
public void body()
{
Integer il = new Integer(O);
Integer i2 = new Integer(O);
Integer i3 = new lnteger(0);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Integer i4 = new Integer(O);
Sim_event ev= new Sim_event();
sim_schedule("vT442Port", 0.01,14, new Integer(a42));
sim_trace(l, "leafNodeT442");
sim_hold(0.01);
sim_schedule("hT442Port", 0.04, 24, new Integer(b24));
sim_trace(l, "leafNodeT442");
sim_hold(0.01);
{
z= a42 * b24;
if (z>0)
{
System.out.println("T442 z -> " + z);
sim_schedule("iT442Port", 0.14, 442, new Integer(z));
sim_trace(l, "leafNodeT442");
sim_hold(0.01);

}
}

while(true)
{
sim_wait(ev);
if(ev.get_tag() == 16)
{
i 1 =(Integer)ev.get_data();
sim_schedule("hT442Port", 0.06,16, il);
sim_trace(l, "leafNodeT442");
sim_hold(0.01);
}

if(ev.get_tag() == 8)
{

i2=(Integer)ev.get_data();
sim_schedule("vT442Port", 0.07, 8, i2);
sim_trace(l, "leafNodeT442");
sim_hold(0.01);

}
if(ev.get_tag() == 30)
{

i3=(Integer)ev.get_data();
sim_schedule("hT442Port", 0.10, 30, i3);
sim_trace(l, "leafNodeT442");
sim_hold(0.01);
}

if(ev.get_tag() == 32)
{
i4=(Integer)ev.get_data();
sim_schedule("vT442Port", 0.09, 32, i4);
sim_trace(l, "leafNodeT442");
sim_hold(0.01);
}
}//while close

}

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
class LeafNodeT443 extends Sim_entity
{
private Sim_port iT443Port, hT443Port, vT443Port, vlT443Port;
int x=0, y=0, z=0;
int a43=15, b34=28;

public LeafNodeT443(String name)
{
super(name);
iT443Port=new Sim_port("iT443Port");
add_port(iT443Port);
hT443Port=new Sim_port("hT443Port");
add_port(hT443Port);
vT443Port=new Sim_port("vT443Port");
add_port(vT443Port);
vl T443Port=new Sim_port("vl T443Port");
add_port(vl T443Port);
}

public void body()
{
Integer il = new Integer(O);
Integer i2 = new Integer(O);
Integer i3 = new lnteger(0);
Integer i4 = new Integer(O);
Sim_event ev= new Sim_event();
sim_schedule("vT443Port", 0.01, 15, new Integer(a43));
sim_trace(l, "leafNodeT443");
sim_hold(0.01);
sim_schedule("hT443Port", 0.04, 28, new Integer(b34));
sim_trace(l, "leafNodeT443");
sim_hold(0.01);
{
z= a43 * b34;
if (z>0)
{
System.out.println("T443 z -> " + z);
sim_schedule("iT443Port", 0.15, 443, new Integer(z));
sim_trace(l, "leafNodeT443");
sim_hold(0.01);
}
}

while(true)
{
sim_wait(ev);
if(ev.get_tag() == 16)
{
i 1 =(Integer)ev.get_data();
sim_schedule("hT443Port", 0.06, 16, il);
sim_trace(l, "leafNodeT443");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sim_hold(0.01);
}

if(ev.get_tag() == 12)
{
i2=(Integer)ev.get_dataO;
sim_schedule("vlT443Port", 0.08, 12, i2); //.07
sim_trace(l, "leafNodeT443");
sim_hold(0.01);
}

if(ev.get_tag() ==31)
{
i3=(Integer)ev.get_data();
sim_schedule("hT443Port", 0.1, 31, i3);
sim_trace(l, "leafNodeT443");
sim_hold(0.01);
}
if(ev.get_tag() == 32)
{
i4=(Integer)ev.get_data();
sim_schedule("vT443Port", 0.09, 32, i4);
sim_trace(l, "leafNodeT443");
sim_hold(0.01);
}
}//while close

}
}

class LeafNodeT444 extends Sim_entity
{
private Sim_port iT444Port, hT444Port, vT444Port;
int a44=16, b44=32;
int x=0, y=0, z=0;
public LeafNodeT444(String name)
{
super(name);
iT444Port=new Sim_port("iT444Port");
add_port(iT444Port);
hx444Port=new Sim_port("hT444Port");
add_port(hT444Port);
vT444Port=new Sim_port("vT444Port");
add_port(vT444Port);
}
public void body()
{
sim_schedule("iT444Port", 0.02, 16, new Integer(a44));
sim_trace(l, "leafNodeT444");
sim_hold(0.01);
sim_schedule("iT444Port", 0.05, 32, new Integer(b44));
sim_trace(l, "leafNodeT444");
sim_hold(0.01);
{

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

z= a44 * b44;
if (z>0)
{
System.out.println("T444 z -> " + z);
sim_schedule("iT444Port", 0.17, 444, new Integer(z));
sim_trace(l, "leafNodeT444");
sim_hold(0.01);
}

}
}

public class Simulation
{
public static void main(String args[])
{
Sim_system.initialise();

//Til
Sim_system.add(new RootNodeTl 1 A("T11(A)"));
Sim_system.add(new IntNodeTl 1B("T 11(B)"));
Sim_system.add(new IntNodeTl 1C("T11(C)"));
Sim_system.add(new LeafNodeTl 11("T11(1)"));
Sim_system.add(new LeafNodeTl 12("T11(2)"));
Sim_system.add(new LeafNodeTl 13 ("Tl 1(3)"));
Sim_system.add(new LeafNodeTl 14("T11(4)"));

//T12
Sim_system.add(new RootNodeT12A("T12(A)"));
Sim_system.add(new IntNodeT12B("T12(B)"));
Sim_system.add(new IntNodeT 12C("T 12(C)"));
Sim_system.add(new LeafNodeT 121 ("T12(1)"));
Sim_system.add(new LeafNodeT122("T12(2)"));
Sim_system.add(new LeafNodeT 123 ("T12(3)"));
Sim_system.add(new LeafNodeT124("T12(4)"));

//T13
Sim_system.add(new RootNodeT 13 A("T13(A)"));
Sim_system.add(new IntNodeTl 3B("T13(B)"));
Sim_system.add(new IntNodeTl 3C("T13(C)"));
Sim_system.add(new LeafNodeTl 31 ("T13(1)"));
Sim_system.add(new LeafNodeTl 32("T13(2)"));
Sim_system.add(new LeafNodeTl 33("T13(3)"));
Sim_system.add(new LeafNodeTl 34("T13(4)"));

//T14
Sim_system.add(new RootNodeT14A("T14(A)"));
Sim_system.add(new IntNodeT14B("T14(B)"));
Sim_system.add(new IntNodeT 14C("T 14(C)"));
Sim_system.add(new LeafNodeT 141 ("T14(1)"));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sim_system.add(new LeafNodeT142("T14(2)"));
Sim_system.add(new LeafNodeTl 43 ("T14(3)"));
Sim_system.add(new LeafNodeT 144("T 14(4)"));

//T21
Sim_system.add(new RootNodeT21 A("T21 (A)"));
Sim_system.add(new IntNodeT21 B("T21 (B)"));
Sim_system.add(new IntNodeT21 C("T21 (C)"));
Sim_system.add(new LeafNodeT211("T21(1)"));
Sim_system.add(new LeafNodeT212("T21 (2)"));
Sim_system.add(new LeafNodeT213("T21 (3)"));
Sim_system.add(new LeafNodeT214("T21 (4)"));

//T22
Sim_system.add(new RootNodeT22A("T22(A)"));
Sim_system.add(new IntNodeT22B("T22(B)"));
Sim_system.add(new IntNodeT22C("T22(C)"));
Sim_system.add(new LeafNodeT221("T22(l)"));
Sim_system.add(new LeafNodeT222("T22(2)"));
Sim_system.add(new LeafNodeT223("T22(3)"));
Sim_system.add(new LeafNodeT224("T22(4)"));

//T23
Sim_system.add(new RootNodeT23A("T23(A)"));
Sim_system.add(new IntNodeT23B("T23(B)"));
Sim_system.add(newIntNodeT23C("T23(C)"));
Sim_system.add(new LeafNodeT231 ("T23(l)"));
Sim_system.add(new LeafNodeT232("T23(2)"));
Sim_system.add(new LeafNodeT233("T23(3)"));
Sim_system.add(new LeafNodeT234("T23(4)"));

//T24
Sim_system.add(newRootNodeT24A("T24(A)"));
Sim_system.add(new IntNodeT24B("T24(B)"));
Sim_system.add(new IritNodeT24C("T24(C)"));
Sim_system.add(new LeafNodeT241("T24(l)"));
Sim_system.add(new LeafNodeT242("T24(2)"));
Sim_system.add(new LeafNodeT243("T24(3)"));
Sim_system.add(new LeafNodeT244("T24(4)"));

//T31
Sim_system.add(new RootNodeT31 A("T31 (A)"));
Sim_system.add(new IntNodeT31 B("T31 (B)"));
Sim_system.add(new IntNodeT31 C("T31 (C)"));
Sim_system.add(new LeafNodeT311("T31(1)"));
Sim_system.add(new LeafNodeT312("T31 (2)"));
Sim_system.add(new LeafNodeT313("T31 (3)"));
Sim_system.add(new LeafNodeT314("T31 (4)"));

//T32
Sim_system.add(newRootNodeT32A("T32(A)"));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sim_system.add(new IntNodeT32B("T32(B)"));
Sim_system.add(new IntNodeT32C("T32(C)"));
Sim_system.add(new LeafNodeT321 ("T32(1)"));
Sim_system.add(new LeafNodeT322("T32(2)"));
Sim_system.add(new LeafNodeT323("T32(3)"));
Sim_system.add(new LeafNodeT324("T32(4)"));

//T33
Sim_system.add(new RootNodeT33A("T33(A)"));
Sim_system.add(new IntNodeT3 3B("T3 3 (B)"));
Sim_system.add(new IntNodeT33C("T33(C)"));
Sim_system.add(new LeafNodeT331("T33(l)"));
Sim_system.add(new LeafNodeT332("T33(2)"));
Sim_system.add(new LeafNodeT333("T33(3)"));
Sim_system.add(new LeafNodeT334("T33(4)"));

//T34
Sim_system.add(new RootNodeT34A("T34(A)"));
Sim_system.add(new IntNodeT34B("T34(B)"));
Sim_system.add(newIntNodeT34C("T34(C)"));
Sim_system.add(new LeafNodeT341("T34(l)"));
Sim_system.add(new LeafNodeT342("T34(2)"));
Sim_system.add(new LeafNodeT343("T34(3)"));
Sim_system.add(new LeafNodeT344("T34(4)"));

//T41
Sim_system.add(newRootNodeT41A("T41(A)"));
Sim_system.add(new IntNodeT 41 B("T41 (B)"));
Sim_system.add(new IntNodeT41 C("T41 (C)"));
Sim_system.add(new LeafNodeT411("T41(1)"));
Sim_system.add(new LeafNodeT412("T41 (2)"));
Sim_system.add(new LeafNodeT413("T41 (3)"));
Sim_system.add(new LeafNodeT414("T41(4)"));

//T42
Sim_system.add(new RootNodeT42A("T42(A)"));
Sim_system.add(new IntNodeT42B("T42(B)"));
Sim_system.add(new IntNodeT42C("T42(C)"));
Sim_system.add(new LeafNodeT421("T42(l)"));
Sim_system.add(new LeafNodeT422("T42(2)"));
Sim_system.add(new LeafNodeT423("T42(3)"));
Sim_system.add(new Lea£NodeT424("T42(4)"));

//T43
Sim_system.add(newRootNodeT43A("T43(A)"));
Sim_system.add(new IntNodeT43B("T43(B)"));
Sim_system.add(new IntNodeT43C("T43(C)"));
Sim_system.add(new LeafNodeT431 ("T43(l)"));
Sim_system.add(new LeafNodeT432("T43(2)"));
Sim_system.add(new LeafNodeT433("T43(3)"));
Sim_system.add(new LeafNodeT434("T43(4)"));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//T44
Sim_system.add(new RootNodeT44A("T44(A)"));
Sim_system.add(new IntNodeT44B("T44(B)"));
Sim_system.add(new IntNodeT44C("T44(C)"));
Sim_system.add(new LeafNodeT441("T44(l)"));
Sim_system.add(new LeafNodeT442("T44(2)"));
Sim_system.add(new LeafNodeT443("T44(3)"));
Sim_system.add(new LeafNodeT444("T44(4)"));

//Link entities using port

//Til
Sim_system.link_4)orts("Tl 1(A)", "lTllAPort", "Tll(B)n, "iTllBPort");
Sim_system.link_ports("Tl 1(A)", "rTllAPort", "Tll(C)", "iTllCPort");
Sim_system.link_ports("Tl 1(B)", "ITllBPort", "Tll(l)", "iTlllPort");
Sim_system.link_ports("Tl 1(B)", "rTllBPort", "Tll(2)", "iT112Port");
Sim_system.link_45orts("Tl 1(C)", "ITllCPort", "T11(3)M, "iT113Port");
Sim_system.linkj>orts("Tl 1(C)", "rTllCPort", "T11(4)M, "iT114Port");
Sim_system.link_ports("Tl 1(2)", "hT112Port", "T12(l)", "hT121Port");
Sim_system.link_ports("Tl 1 (2)", "vT112Port", "T21(l)", "vT211Port");
Sim_system.link_ports("Tl 1 (3)", "hT113Port", "T13(1)M, "hT131Port");
Sim_system.link_j5orts("Tl 1(3)", "hT113Port", "T13(l)", "hlT131Port");
Sim_system.link_j)orts("Tl 1 (3)", "vT113Port", "T31(l)", "vT311Port");
Sim_system.link_ports("Tl 1 (3)", "vT113Port", "T31(l)", "vlT311Port");
Sim_system.link_j?orts("Tl 1(4)", "hT114Port", "T14(l)", "hT141Port");
Sim_system.link_ports("Tl 1 (4)", "vT114Port", "T41(l)", "vT411Port");
//T12
Sim_system.link_ports("T12(A)", "lT12APort", "T12(B)", "iT12BPort");
Sim_system.link_ports("T12(A)", "rT12APort", "T12(C)", "iT12CPort");
Sim_system.link_j)orts("T12(B)", "lT12BPort", "T12(1)M, "iT121Port");
Sim_system.link_ports("T 12(B)", "rT12BPort", "T12(2)", "iT122Port");
Sim_system.link_ports("T 12(C)", "lT12CPort", "T12(3)", "iT123Port");
Sim_system.link_ports("T 12(C)", "rT12CPort", "T12(4)M, "iT124Port");
Sim_system.link_ports("T12(l)", "hlT121Port", "Tll(2)", "hlT112Port");
Sim_system.link_ports("T12(2)", "vT122Port", "T22(l)", "vT221Port");
Sim_system.link_ports("T12(3)", "hT123Port", "T13(2)", "hT132Port");
Sim_system.link_j)orts("T 12(3)", "vT123Port", "T32(l)", "vT321Port");
Sim_system.link_ports("T 12(4)", "hT124Port", "T14(2)", "hT142Port");
Sim_system.link_j)orts("T12(4)", "vT124Port", "T42(l)", "vT421Port");

//T13
Sim_system.linkj)orts("T13(A)", "lT13APort", "T13(B)", "iT13BPort");
Sim_system.link_ports("Tl3(A)", "rT13APort", "T13(C)M, "iT13CPort");
Sim_system.link_j)orts("Tl3(B)", "lT13BPort", "T13(l)", "iT131Port");
Sim_system.linkj5orts("T13(B)", "rT13BPort", "T13(2)", "iT132Port");
Sim_system.link_ports("T13(C)", "lT13CPort", "T13(3)", "iT133Port");
Sim_system.link_ports("T 13(C)", "rT13CPort", "T13(4)", "iT134Port");
Sim_system.link_ports("Tl3(2)", "vT132Port", "T23(l)", "vT231Port");
Sim_system.link_ports("Tl3(2)", "vlT132Port", "T23(l)", "vT231Port");
Sim_system.linkj)orts("T13(3)", "vT133Port", "T33(l)", "vT331Port");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sim_system.lmk_ports("T13(4)", "hT134Port", "T14(3)M, "hT143Port");
Sim_system.link_ports("Tl3(4)", "hT134Port", ”T14(3)", "hlT143Port");
Sim_system.link_ports("Tl3(4)", "vT134Port", "T43(l)", "vT431Port");

//T14
Sim_system.link_ports("T 14(A)", "lT14APort", "T14(B)", "iT14BPort");
Sim_system.link_ports("T14(A)", "rT14APort", "T14(C)M, "iT14CPort");
Sim_system.link_ports("T 14(B)", "lT14BPort", "T14(l)", "iT141Port");
Sim_system.link_ports("T 14(B)", "rT14BPort", "T14(2)", "iT142Port");
Sim_system.link_ports("T 14(C)", "lT14CPort", "T14(3)", "iT143Port");
Sim_system.link_4)orts("T 14(C)", "rT14CPort", "T14(4)", "iT144Port");
Sim_system.link_4)orts("T14(2)", "vT142Port", "T24(1)M, "vT241Port");
Sim_system.link_ports("T14(2)", "vlT142Port", "T24(l)", "vlT241Port");
Sim_system.link_ports("T 14(3)", "vT143Port", "T34(l)", "vT341Port");
Sim_system.link_ports("T14(3)", "vT143Port", "T34(l)", "vlT341Port");
Sim_system.link_j)orts("T14(4)", "vT144Port", "T44(1)M, "vT441Port");

//T21
Sim_system.link_ports("T21 (A)", "lT21APort", "T21(B)", "iT21BPort");
Sim_system.link_ports("T21 (A)", "rT21APort", "T21(C)", "iT21CPort");
Sim_system.link_ports("T21 (B)", "lT21BPort", ”T21(1)", "iT211Port");
Sim_system.link_ports("T21(B)", "rT21BPort", "T21(2)", "iT212Port");
Sim_system.link_ports("T21 (C)", "lT21CPort", ”T21(3)", "iT213Port");
Sim_system.link_j)orts("T21 (C)", "rT21CPort", "T21(4)M, "iT214Port");
Sim_system.linkj)orts("T21(2)", "hT212Port", "T22(l)", "hT221Port");
Sim_system.link_43orts("T21 (3)", "hT213Port", "T23(1)M, "hT231Port");
Sim_system.link_ports("T21 (3)", "vT213Port", "T31(2)", "vT312Port");
Sim_system.link_ports("T21 (3)", "vlT213Port", "T31(2)", "vT312Port");
Sim_system.link_ports("T21 (4)", "hT214Port", "T24(l)", "hT241 Port");
Sim_system.link_ports("T21 (4)", "vT214Port", "T41(2)", "vT412Port");
Sim_system.link_ports("T21 (4)", "vlT214Port", "T41(2)", "vlT412Port");

1/122
Sim_system.link_j3orts("T22(A)", "lT22APort", "T22(B)", "iT22BPort");
Sim_system.link_ports("T22(A)", "rT22APort", "T22(C)", "iT22CPort");
Sim_system.link_ports("T22(B)", "lT22BPort", "T22(l)", "iT221Port");
Sim_system.link_ports("T22(B)", "rT22BPort", "T22(2)", "iT222Port");
Sim_system.link_ports("T22(C)", "lT22CPort", "T22(3)", "iT223Port");
Sim_system.link_ports("T22(C)", "rT22CPort", "T22(4)", "iT224Port");
Sim_system.link_ports("T22(3)", "hT223Port", ”T23(2)", "hT232Port");
Sim_system.link_ports("T22(3)", "vT223Port", ”T32(2)", "vT322Port");
Sim_system.link_ports("T22(4)", "hT224Port", ”T24(2)", "hT242Port");
Sim_system.link_ports("T22(4)", "vT224Port", "T42(2)M, "vT422Port");

//T23
Sim_system.link_ports("T23(A)", "lT23APort", ”T23(B)", "iT23BPort");
Sim_system.link_4)orts("T23(A)", "rT23APort", "T23(C)", "iT23CPort");
Sim_system.link_ports("T23(B)", "lT23BPort", "T23(l)", "iT231Port");
Sim_system.link_ports("T23(B)", "rT23BPort", "T23(2)", "iT232Port");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sim_system.linkj)orts("T23(C)", "lT23CPort", "T23(3)", "iT233Port");
Sim_system.link_ports("T23(C)", "rT23CPort", "T23(4)M, MiT234Port");
Sim_system.link_ports("T23(3)", "vT233Port", MT33(2)", "vT332Port");
Sim_system.link_ports("T23(4)", "hT234Port", "T24(3)", "hT243Port");
Sim_system.linkj>orts("T23(4)", "vT234Port", "T43(2)", ”vT432Port");

//T24
Sim_system.link_ports("T24(A)", "lT24APort", "T24(B)M, "iT24BPort");
Sim_system.link_j?orts("T24(A)", "rT24APort", "T24(C)", MiT24CPort");
Sim_system.link_ports("T24(B)", "lT24BPort", "T24(1)M, "iT241Port");
Sim_system.link_ports("T24(B)", "rT24BPort", ”T24(2)", "iT242Port");
Sim_system.link_ports("T24(C)", "lT24CPort", "T24(3)'\ "iT243Port");
Sim_system.link_ports("T24(C)", "rT24CPort", "T24(4)", "iT244Port");
Sim_system.lmk_j)orts("T24(3)", "vT243Port", "T34(2)M, "vT342Port");
Sim_system.link_ports("T24(4)", "vT244Port", "T44(2)'\ "vT442Port");

//T31
Sim_system.link_ports("T31 (A)", "lT31APort", "T31(B)", "iT31BPort");
Sim_system.link_ports("T31 (A)", ”rT31APort”, ”T31(C)”, "iT31CPort");
Sim_system.link_ports("T31 (B)", "lT31BPort", "T31(l)'\ "iT311Port");
Sim_system.link_ports("T31 (B)", "rT31BPort", "T31(2)", "iT312Port");
Sim_system.link_ports("T31(C)", "lT31CPort", "T31(3)", "iT313Port");
Sim_system.link_43orts("T31 (C)", "rT31CPort", "T31(4)”, "iT314Port");
Sim_system.link_ports("T31 (2)", "hT312Port", "T32(l)", "hT321Port");
Sim_system.link_ports("T31 (3)", "hT313Port", "T33(1)M, ”hT331PortM);
Sim_system.link_4)orts("T31 (4)", "hT314Port", "T34(l)", "hT341Port");
Sim_system.link_ports("T31 (4)", "vT314Port", "T41(3)", "vT413Port");

//T32
Sim_system.link_ports("T32(A)", "lT32APort", "T32(B)", "iT32BPort");
Sim_system.link_ports("T32(A)", "rT32APort", "T32(C)", "iT32CPort");
Sim_system.link_ports("T32(B)", "lT32BPort", ”T32(1)", "iT321Port");
Sim_system.link_4)orts("T32(B)", "rT32BPort", "T32(2)”, "iT322Port");
Sim_system.linkj)orts("T32(C)", "lT32CPort", "T32(3)M, "iT323Port");
Sim_system.link_ports(''T32(C)M, "rT32CPort", "T32(4)M, "iT324Port");
Sim_system.link_ports("T32(3)", "hT323Port", "T33(2)", "hT332Port");
Sim_system.link_j)orts("T32(4)", "hT324Port", "T34(2)", "hT342Port");
Sim_system.link_ports("T32(4)", "vT324Port", "T42(3)", "vT423Port");

//T33
Sim_system.link_4)orts("T33(A)", "lT33APort", "T33(B)M, "iT33BPort");
Sim_system.link_ports("T33(A)", "rT33APort", "T33(C)", "iT33CPort");
Sim_system.link_ports("T33(B)", "lT33BPort", "T33(l)"; "iT331Port");
Sim_system.link_4)orts("T33(B)", "rT33BPort", "T33(2)", "iT332Port");
Sim_system.link_ports("T33(C)", "lT33CPort", ”T33(3)", "iT333Port");
Sim_system.link_ports("T33(C)", "rT33CPort", "T33(4)M, "iT334Port");
Sim_system.link_ports("T33(4)", "hT334Port", "T34(3)", "hT343Port");
Sim_system.link_j)orts("T33(4)", "hlT334Port", "T34(3)", "hlT343Port");
Sim_system.link_ports("T33(4)", "vT334Port", "T43(3)", "vT433Port");
Sim_system.link_ports("T33(4)", "vlT334Port", "T43(3)M, "vlT433Port");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//T34
Sim_system.link_ports("T34(A)", "lT34APort", "T34(B)M, "iT34BPort");
Sim_system.link_j)orts("T34(A)", "rT34APort", "T34(C)'\ "iT34CPort");
Sim_system.link_ports("T34(B)", "lT34BPort", "T34(1)M, "iT341Port");
Sim_system.link_ports("T34(B)", "rT34BPort", "T34(2)M, "iT342Port");
Sim_system.link_ports("T34(C)", "lT34CPort", ”T34(3)", "iT343Port");
Sim_system.link_ports("T34(C)", "rT34CPort", "T34(4)", "iT344Port");
Sim_system.link_ports("T34(4)", "vT344Port", "T44(3)", "vT443Port");

//T41
Sim_system.link_4)orts("T41 (A)", "lT41APort", "T41(B)", "iT41BPort");
Sim_system.link_ports("T41 (A)", "rT41APort", "T41(C)", "iT41CPort");
Sim_system.link_ports("T41 (B)", "lT41BPort", "T41(l)", "iT411Port");
Sim_system.linkj)orts("T41 (B)", "rT41BPort", "T41(2)", "iT412Port");
Sim_system.link_43orts("T41 (C)", "lT41CPort", "T41(3)M, "iT413Port");
Sim_system.link_ports("T41 (C)", "rT41CPort", "T41(4)M, "iT414Port");
Sim_system.link_ports("T41 (2)", "hT412Port", "T42(l)", "hT421Port");
Sim_system.lmk_ports("T41(3)", "hT413Port", ”T43(1)", "hT431Port");
Sim_system.link_ports("T41 (4)", "hT414Port", "T44(l)", "hT441Port");

//T42
Sim_system.link_ports("T42(A)", "lT42APort", "T42(B)", "iT42BPort");
Sim_system.link_ports("T42(A)", "rT42APort", "T42(C)M, "iT42CPort");
Sim_system.link_ports("T42(B)", "lT42BPort", "T42(l)", "iT421Port");
Sim_system.link_ports("T42(B)", "rT42BPort", ”T42(2)", "iT422Port");
Sim_system.link_j)orts("T42(C)", "lT42CPort", "T42(3)M, "iT423Port");
Sim_system.link_j)orts("T42(C)", "rT42CPort", ”T42(4)", "iT424Port");
Sim_system.link_ports("T42(3)", "hT423Port", MT43(2)", "hT432Port");
Sim_system.link_ports("T42(4)", "hT424Port", "T44(2)", "hT442Port");

//T43
Sim_system.linkj)orts("T43(A)", "lT43APort", ”T43(B)", "iT43BPort");
Sim_system.link_ports("T43(A)", "rT43APort", "T43(C)n, "iT43CPort");
Sim_system.link_ports("T43(B)", "lT43BPort", ”T43(1)", "iT431Port");
Sim_system.link_ports("T43(B)", "rT43BPort", ”T43(2)", "iT432Port");
Sim_system.link_ports("T43(C)", "lT43CPort", "T43(3)M, "iT433Port");
Sim_system.link_ports("T43(C)", MrT43CPort", "T43(4)M, "iT434Port");
Sim_system.link_4)orts("T43(4)", "hT434Port", "T44(3)'\ "hT443Port");

//T44
Sim_system.link_ports("T44(A)", "lT44APort", "T44(B)M, "iT44BPort");
Sim_system.link_ports("T44(A)", "rT44APort", "T44(C)", "iT44CPort");
Sim_system.link_ports("T44(B)", "lT44BPort", "T44(l)", "iT441Port");
Sim_system.link_ports("T44(B)", "rT44BPort", MT44(2)", "iT442Port");
Sim_system.link_ports("T44(C)", "lT44CPort", "T44(3)n, "iT443Port");
Sim_system.link_ports("T44(C)", "rT44CPort", "T44(4)", "iT444Port");
Sim_system.run();
System.out.println("End time " + Sim_system.clock());
System. exit(O);
}

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D: References

[1] Selim G. AM, “The Design and Analysis of Parallel Algorithms”, The Prentice-Hall Inc.,
1989

[2] L.Cannon, Ph.D. thesis, Montana State University, Roseman, MN, 1969

[3] j. Choi, "A New Parallel Matrix Multiplication Algorithm on Distributed - Memeory
Concurrent Computers"

[4] R.D Chamberlain and R.R Krchnavek, “Topologies and technologies for optically
interconnected multicomputers using inverted graphs”, Proceedings of the First International
Workshop on Massively Parallel Processing Using Optical nterconnections, pp. Page(s): 255 -
265, 26-27 April 1994

[5] D. Crawley, “An Analysis of MIMD Processor Interconnection Networks for Nanoelectronic
Systems”, Survey Report, March 1998

[6] D. Das, M. De and B. P. Sinha, “A new network topology with multiple meshes”, IEEE
Transactions on Computers, Vol. 48, No. 5, pp. 536-551, May 1999.

[7] M. Feldman, S. Esener, C. Guest, and S. Lee, “Comparison between Electrical and Free-Space
Optical Interconnects Based on Power and Speed Considerations”, Applied Optics, vol. 27, no. 9,
pp. 1,742±1,751, May 1988

[8] G. Fox, S. Otto, and A. Hey, "Matrix algorithms on a hypercube I: matrix multiplication,"
Parallel Computing 3(1987) ppl7-31

[9] H. Freeman and R. Shapira,"Determining the minimal-area encasing rectangle for an arbitrary
closed curve", Communications of ACM, 18:409 413, 1975.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[10] J. W. Goodman, F. J. Leonbergr, S. Y. Kung, and R. A. Athale, “Optical interconnections for
VLSI systems”, Proceeding IEEE, vol. 72, pp. 850-866, July 1984

[11] R. van de Geijin and J. Watts SUMMA: Scalable Universal Matrix Multiplication
Algorithm” LAPACK Working Note 99, Technical Report CS-95-286, University of Tennessee,
1995

[12] W. Hendrick, O Kibar, P. Marchand, C. Fan, D. V. Blerkom, F. McCormick, I. Cokgor, M.
Hansen and S. Esener, “Modeling and optimization of the optical transpose interconnection
system” in Optoelectronic Technology Center, Program Review, Cornell University, Sept. 1995.

[13] K. Hwang, “Advanced computer Architecture: Parallelism, Scalability, Programmability”,
New York: McGraw-Hill, 1993.

[14] J-W. Jang, M. Nigam, V.K. Prasanna, S. Sahni, “Constant time algorithms for
computational geometry on the reconfigurable mesh”, IEEE Transactions on Parallel and
Distributed Systems, Vol: 8, Iss: 1 , pp: 1 -12, Jan. 1997.

[15] E. John, F. Hudson and L.K. John, “Hybrid tree: a scalable optoelectronic interconnection
network for parallel computing”, Proceedings of the Thirty-First Hawaii International
Conference on System Sciences, vol. 7, pp. 466 -474, 6-9 Jan. 1998

[16] F. Kiamilev, P. Marchand, A.V. Krishnamoorthy, S.C. Esener and S.H. Lee,“Performance
comparison between optoelectronic and VLSI multistage interconnection networks”, Journal of
Lightwave Technology, vol. 9 Iss. 12, pp. 1674 -1692 Dec. 1991

[17] A. Krishnamoorthy, P. Marchand, F. Kiamilev and S. Esener, “Grain-size considerations for
optoelectronic multistage interconnection networks”, Applied Optics, Vol. 31, No. 26, pp. 5480-
5507, September 1992.

[18] F. T. Leighton, Introduction to Parallel Algorithms and Architectures. San Mateo, CA :
Morgan Kaufmann.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[19] Louri and K. Hwang, “A bit-plane architecture for optical computing with two-dimensional
symbolic substitution”, Conference Proceedings. 15th Annual International Symposium on
Computer Architecture, pp. 18 -27, June 1988

[20] Louri, “Design of an optical content-addressable parallel processor with applications to fast
searching and information retrieval”, Proc. Fifth International Parallel Processing Symposium,
pp. 234 -239, 30 April-2 May 1991

[21] Louri and H. Sung, “A hypercube-based optical interconnection network: a solution to the
scalability requirements for massively parallel computers”, Proc. of the First International
Workshop on Massively Parallel Processing Using Optical Interconnections, pp. 81 -93, 26-27
April 1994

[22] A. Louri and H. Sung, “An optical multi-mesh hypercube: a scalable optical
interconnection network for massively parallel computing”, Journal of Lightwave Technology,
Vol: 12, Iss: 4 , pp: 704 -716, April 1994

[23] Louri and H. Sung, “3D Optical Interconnects for high-speed interchip and interboard
communications”, Comput., vol. 27, pp. 27-37, Oct. 1994.

[24] K. Mathur and S.L. Johnsson "Multiplication of Matrices of Arbitrary Shape on a Data
Parallel Computer", Parallel Computing 20, 919-952

[25] G. C. Marsden, P. J. Marchand, P. Harvey and S. C. Esener, “Optical transpose
interconnection system architectures”, Optical Letters, Vol. 18, No. 13, pp. 1083-1085, July
1993.

[26] B. Mukheijee, “Optical Communication Networks”, McGraw-Hill, ISBN 0-07-044435-8,
1997

[27] A. Osterloh, “Sorting on the OTIS-Mesh”, Proceeding 14th International Parallel and
Distributed Processing Symposium (IPDPS 2000), pp. 269-274, 2000.

[28] F. P. Preparata and M. I. Shamos, “Computational geometry an introduction”, Springer-
Verlag, 1985.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[29] S. Rajasekaran and S. Sahni, “Randomized routing, selection and sorting on the OTIS-Mesh
optoelectronic computer”, IEEE Transactions on Parallel and Distributed Systems, Vol. 9, No. 9,
pp. 833-840,1998.

[30] D. Sima, T. Fountain and P. Kacsuk, “Advanced Computer Architectures”, Addision Wesley
Longman Limited, 1997

[31] B.P Sinha and S. Bandyopadhyay,” OMULT: An Optical Interconnection System for
Parallel Computing”, communicated.

[32] I. D. Scherson and S. Sen, “Parallel sorting in two-dimensional VLSI models of
computation”, IEEE Transactions on Computers, Vol. 38, No. 2, pp. 238-249, February 1989.

[33] S. Sahni and C.-F. Wang, “BPC permutations on the OTIS-Mesh optoelectronic computer”,
Proc. of the 4th International Conference on Massively Parallel Processing using Optical
Interconnections (MPPOI ’97), Montreal, Canada, pp. 130-135, 1997.

[34] T. S. Wailes and D. G. Meyer, “Multiple Channel Architecture: A New Optical
Interconnection Strategy for Massively Parallel Computers”, IEEE Journal of Lightwave
Thechnology, vol. 9, pp. 1702-1716, Dec 1991

[35] C.-F. Wang and S. Sahni, “Image processing on the OTIS-Mesh optoelectronic computer”,
IEEE Transactions on Parallel and Distributed Systems, Vol. 11, No. 2, pp. 97-109, 2000.

[36] C.-F. Wang and S. Sahni, “Matrix multiplication on the OTIS-Mesh optoelectronic
computer”, IEEE Transactions on Computers, Vol. 50, No. 7, pp. 635-646, 2001.

[37] C-F Wang and S. Sahni, “Computational geometry on the OTIS-Mesh opto-electronic
computer”, Proceedings International Conference on Parallel Processing, pp: 501 -507,18- 21
Aug. 2002,

[38] C.-F. Wang and S. Sahni, “Basic operations on the OTIS-Mesh optoelectronic computer”,
IEEE Transactions on Parallel and Distributed Systems, Vol. 9, No. 12, pp. 1226-1236, 1998.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[39] C-F. Wang and S. Sahni, “Matrix multiplication on the OTIS-Mesh optoelectronic
computer”, Proceedings, The 6th International Conference on Parallel Interconnects, pp. 131 -
138,17-19 Oct. 1999

[40] F. Zane, P. Marchand, R. Paturi and S. Esener, “Scalable network architectures using the
optical transpose interconnection system (OTIS)”, Journal of Parallel and Distributed
Computing, Vol. 60, No. 5, pp. 521-538, 2000.

[41] http://www.cs.rit.edu/~nyj4905/project/first-part.doc

r 421 http://www. dcs. ed. ac. uk/home/hase/Simiava \SimJava. htm

[43] http://www.dcs.ed.ac.Uk/home/hase/simiava/simiava-l.2/doc/simiava guide/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

http://www.cs.rit.edu/~nyj4905/project/first-part.doc
http://www
http://www.dcs.ed.ac.Uk/home/hase/simiava/simiava-l.2/doc/simiava

VITA AUCTORIS

Name

Place of Birth

Education

Mohammad Rabiul Islam

Narail, Bangladesh

Khulna University of Engineering and Technology (KUET),
Khulna, Bangladesh
1987-1991 B.E (Mechanical)

University of Windsor, Windsor, Ontario
2000-2001 B. Sc (Computer)

University of Windsor, Windsor, Ontario
2002-2004 M. Sc (Computer)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

	Efficient algorithms for the optical multi-trees (OMULT) architecture.
	Recommended Citation

	tmp.1615935428.pdf.4OV_y

