University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

2001

[nvestigation of real-time multi-user apphcation
development frameworks.

Harvinder S. Minhas
University of Windsor

Follow this and additional works at: http://scholaruwindsor.ca/etd

Recommended Citation

Minhas, Harvinder S., "Investigation of real-time multi-user application development frameworks." (2001). Electronic Theses and
Dissertations. Paper 2506.

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F2506&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2506&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2506&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/2506?utm_source=scholar.uwindsor.ca%2Fetd%2F2506&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fims
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charls) are reproduced by
sectioning the original, beginning at the upper left-hand comner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

INVESTIGATION OF REAL-TIME
MULTI-USER APPLICATION
DEVELOPMENT FRAMEWORKS

by
Harvinder S. Minhas
A thesis submitted to the Faculty of
Graduate Studies and Research through
the School of Computer Science in partial

fulfillment of the requirements for the
Master of Science degree.

University of Windsor

Windsor, Ontario, Canada

2000

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitionset
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ctawa ON K1A ON4
Canada Canada
Your N Votre réidrance
Our e Notre rélrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-62255-X

Canadi

ABSTRACT

The Intemet provides global connectivity and with it presents an enormous
potential for supporting real-time collaborative-work (RTCW) applications.
However, developing such applications from scratch is a complex and time-

consuming task.

In this thesis, we investigate the use of frameworks to develop such applications.
In particular we look at the Habanero framework that is designed for developing
real-time collaborative applications. We also discuss the Intemet from a real-time
communication perspective since the ultimate success of RTCW applications
would depend on the quality of service provided by the Intemet to the data that
flows through it.

ACKNOWLEDGMENTS

I would like to express my deepest thanks and apprediation to Dr. Richard Frost
who as my supervisor guided and motivated me through out this thesis work. I
would also like to thank Dr. Subir Bandyopadhyay and Dr. Cyril G. Rodrigues for
their valuable feedback.

I would also like to thank all the faculty members of School of Computer Science

for their support and encouragement through out my study period at University
of Windsor. Also many thanks to the wonderful secretaries Mary and Gloria for
their help.

Last but not the least I would like to thank all my friends for making my stay at

University of Windsor memorable.

s

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGMENTS

TABLE OF CONTENTS

LIST OF FIGURES

INTRODUCTION

1.1 PROBLEM SPECIFICATION
1.2 THESIS
1.3 WORK DONE..... .
1.4 SUMMARY OF CONCLUSIONS ..
1.5 SIGNIFICANCE OF THIS WORK
1.6 STRUCTURE OF THE THESIS

THE INTERNET FROM A REAL-TIME COMMUNICATIONS PERSPECTIVE........5

2.1 REAL-TIME COMMUNICATION: AN OVERVIEW
2.2 REAL-TIME APPLICATIONS........
2.2.1 Continuous-Media (CM) applications
222 Message-Oriemted Applications
2.3 SERVICEMODELS.cooverrrrerereeceee s
2.3.1 Quantitative Service Commitment
2.3.2 Qualitative Service Commitment
2.4 THE INTERNET
2.5 SERVICE MODELS FOR THE INTERNET
2.5.1 Integrated Services Model
2.6 CONCLUSION

COMPUTER-SUPPORTED COLLABORATIVE WORK

INTRODUCTION. .

3.2 CSCW - DIFFERENT VIEWS

3.3 GROUPWARE
3.3.1 Why Groupware?
3.3.2 Designing Groupware

3.3.3 Groupware Applications
3.3.3.1 E-mail Systems

3.3.3.2 Audia/Video Conferencing
3.3.3.3 Desktop Sharing
3.4 CONCLUSION

BUILDING REAL-TIME MULTI-USER APPLICATIONS
4.1 ESSENTIAL COMPONENTS OF ANY RTCW APPLICATION.

auu-—-—i— -— E < 2 E

O 000w INOND Wn

~
L=

—
—

-
~

—
~

—
~

—
w

~
LN

SS

~
[~

S

~
Y

- e
o o

—
o0

4.2 BUILDING RTCW APPLICATIONS FROM SCRATCH

4.2.1 Advaniages. 19

4.2.2 Disadvantages 20

4.2.3 Development of Real-time Collaborative Applications 20

4.3 BUILDING RTCW APPLICATIONS USING FRAMEWORKS .22
4.3.1 Frameworks 2

4.3.2 Frameworks and Design/Code Reuse 24
4.3.3 RTCW Frameworks 25
4.3.4 Benefits of using Frameworks 25
4.3.5 Drawbacks of using Frameworks. 26

4.4 CONCLUSION 27

A FRAMEWORK FOR INTEGRATED SYNCHRONOUS AND ASYNCHRONOUS
COLLABORATION (ISAAC) 28
5.1 INTRODUCTION 28
5.2 ISAAC COMPONENTS... 28
3.2.1 Support for Synchronous Collaboration 29

3.2.2 Support for Asynchronous Collaboration 29

3.2.3 Persistent Object Storage 29

3.2.4 Event Notification 31

5.3 CURRENT WORK IN PROGRESS 32
5.4 CONCLUSION 32
HABANERO k X)
6.1 INTRODUCTION..... reetisennen et es e i 33
6.2 THE HABANERO ENVIRONMENT .34
6.2.1 The Server 34

6.2.2 The Client 35

6.2.2 The Tools. 37

6.3 HABANERO FRAMEWORK................... 37
6.4 HABANERO API 38
6.4.1 MBONE. 39

6.4.2 GUI Components (AWT package) 39

6.4.3 Environment Manipulation (ENV package) 39

6.4.4 Collaboration API (habanero package) 40

6.5 THE HABANERO PORTING WIZARD 40
6.6 CONCLUSION 40
THE MULTI-USER TEXT EDITOR-IMPLEMENTATION 41
7.1 DESIGN REQUIREMENTS 42
7.2 ARCHITECTURE 2
7.2 IMPLEMENTATION 45
7.3 WORKING OF THE TEXT EDITOR 51
7.5 SCREEN SHOTS OF THE TEXT EDITOR 54
7.6 CONCLUSION 55
STATEMENT OF FACTS/OBSERVATIONS MADE DURING THE DEVELOPMENT
OF THE TEXT EDITOR 56
CONCLUSIONS 58

REFERENCES

APPENDIX A- PROGRAM LISTING

VITA AUCTORIS

LIST OF FIGURES

Number Page
Figure 5.1 3!
Figure 7.1 45
Figure 7.2 52
Figure 7.3 53
Figure 7.4 54

Chapter 1

INTRODUCTION

1.1 Problem Specification

Computer and network technologies have advanced tremendously over the last
few years. The potential for real-ime computer-assisted collaborative work over
the Intemet is huge. The benefits of such work are great — for example imagine
auto-designers from various companies being able to work together on a new

emission-control system over the Intemet.

However, this potential cannot be fully realized at present owing to the lack of
tools and infrastructure to assist the development of real-time collaborative work

(RTCW) applications.

1.2 Thesis
The thesis is that the development of real-time collaboration applications can be
facilitated through the use of frameworks.

1.3 Work Done
The thesis work involved analysis of technologies, which intend to provide tools
and infrastructure to support the development of RTCW applications.

In particular, the work involved a cnitical analysis of one of the most advanced,
yet still immature, software frameworks called Habanero. Habanero is an object-
oriented framework that assists in the development of RTCW applications. The

cnitical analysis of Habanero also involved the development of a collaborative text
editor using this framework.

1.4 Summary of Conclusions

The cntical analysis of Habanero showed that:

L

Habanero uses client/server architecture along with the concept of
replication to achieve collaboration. The information, in the form of data
objects, is replicated and sent to every interested participant. The server
opens a TCP/IP socket connection to each client to pass on this information.
This technique of opening a connection to each client would not scale well
when large number of clients are connected.

There is a lack of complete documentation about Habanero APL This

presents a serous impediment in developing quality collaborative
applications.

The Habanero framework is developed using Java and hence it only supports
development of applications that use Java as the programming language. This
senously limits the scope of the framework. The framework should be
integrated using technologies like XML and CORBA to interface the
Habanero applications with extemal systems or applications.

Habanero should be extended to take advantage of the new service models
that are being proposed for the Intemet. Currently, the Intemet only supports
the best-effort service model whereby no guarantees about the quality of
service are made by the network. The new service models being proposed are
the fair service, controlled-load service, predictive delay service and the
guaranteed service models. These models are discussed in detail in chapter
two.

5. The Habanero framework closely represents the black-box architecture.
Hence, the developers don’t need to know the insides of the framework in

order to plug-in their applications into the Habanero environment.

6. Habanero encourages code as well as design reuse. This results in applications
that are relatively easier to develop and maintain.

7. Habanero is a step in the rght direction for achieving true collaboration. It is
an excellent framework, which enables developers to build real-time multi-
user applications in relatively little time.

1.5 Significance of this work

Developing real-time collaborative applications is a very complicated task since it
involves programming at a very low-level. The Habanero provides us with a
sophisticated framework that claims to facilitate the development of Intemet-
based RTCW applications. The RTCW applications we believe will be the next
generation Intemet-based applications and frameworks like Habanero will play
big role in development of these applications. However, there is very litle work

done to investigate such frameworks.
This work carries out a critical analysis of Habanero.

The findings of this work demonstrate the need for Habanero to be made more
scalable and better documented.

The work has also illustrated the need in general for tools like Habanero.

The work also investigates the present and future of the Intemet, in terms of
supporting real-time communication.

The analysis provided in this work can be used as a yardstick for evaluating any
future similar frameworks

1.6 Structure of the thesis
The thesis is structured as follows:
1. The Intemet from a real-time communication perspective.

2. An overview of Computer-Supported Collaborative Work (CSCW) with

emphasis on groupware.
3. Investigation of different techniques to build RTCW applications.

4. Framework for Integrated Synchronous And Asynchronous Collaboration
(ISAAQ).

5. Detail discussion of Habanero.
6. 'The development of collaborative text editor using Habanero.
7. Statement of facts.

8. Conclusions.

Chapter 2

THE INTERNET FROM A REAL-TIME COMMUNICATIONS
PERSPECTIVE

The Intemet was initially designed to deliver low-bandwidth static-information
for the scientific community. However, in the past few years, the Intemet’s
populanty has exploded and it has become a global phenomenon. The Intemet’s
simplicity and ubiquitousness has stirred tendencies among different communities
to use the Intemet for their own purposes. One of the ideal uses of the Internet
would be to bridge the geographical distance between people without losing any
interactivity that people expenence when they communicate face-to-face.
However, in order to achieve this level of interaction it is imperative that the

Intemnet supports real-time communication.

This chapter takes a look at the Intemet from the real-ime communication
perspective.

2.1 Real-time Communication: An Overview
Real-ime communication is an "exchange of time-sensitive data between sender

and receiver in real-time over a network"[6).

Real-tme communication covers a wide vatiety of communication requirements
depending upon the characteristics of the application involved. These
communication requirements range from those needed by applications
exchanging continuous data like audio/video isochronously to those exchanging
signals in the control system applications [4]. These communication requirements
are referred to as Quality of Service (QOS) requirements [4] [2][3]. Applications

that involve real-time communication will be called real-time applications from
now on. All real-time applications require a desired QOS from the network that
supports them. This QOS can be measured in terms of upper bound on end-to-
end communication delay, minimum amount of bandwidth, data throughput etc.

2.2 Real-time Applications
Based upon their QOS requirements real-time applications can be categorized as

continuous-media or message-oriented applications.

2.2.1 Continuous-Media (CM) applications

These applications include the ones that generate data at regular intervals of time
and, which need to be delivered in real time. The data might contain time-based
information, like audio/video/animation, which should be played-back at a
predetermined time-instant or else the information looses fidelity. Therefore, the
network should preserve the playback or the display rate in order to conserve the
significance of the information being delivered. The major QOS requirements for
these kind of applications can be defined in terms of rate at which the data is
transmitted over the network. A better and broader way to define QOS
requirements of CM applications stated in [4] is that of "data stream abstraction,
that is a simplex, end to end, continuous, sequenced, periodic transfer of data "
[4] [2]. A more recognizable term for continuous-media applications is "Real-time
streaming” applications. There are a number of popular applications generating
rea-time streams on the Intemet These one-way streaming applications can
again be classified as either representing a pull model as in the case of one-to-one
applications or a push model as in the case of multicasting applications.
Applications like Intemnet telephony and audio/video conferencing in which the
interaction is two-way represent two-way streaming applications.

22.2 Message-Oriented Applications

Message-onented applications require block(s) of data to be delivered within a
deadline. The data could contain information like control signals, text, commands
etc. The nformation is time-based and is generated irregularly and in a limited
amount. Unlike continuous-media applications, there is no timing relationship
between the blocks of data being generated. These types of applications desire
QOS in terms of meeting a prefixed deadline for delivering the data An
interesting example of this type of applications would be remotely controlling a
robot.

2.3 Service Models
QOS is the quality of service provided by a network to the applications that it
supports. QOS is determined by the service model that the network implements.

The service model constitutes the service commitments that the network makes
to the data-flow. The service commitment describes the service provided by the
network in response to a particular request. Based upon the way a service is
charactenized, service commitments can be divided into quantitative or qualitative

commitment service [2] [1] [8).

2.3.1 Quantitative Service Commitment

A quantitative service commitment is an absolute assurance by the network that it
will meet or better the agreed-upon quantitative specification(s). The
commitments made by the network in this case are mostly in terms of minimum
bandwidth that will be available to the applications. This type of commitment
demands a certain type of admission control since bandwidth is always available
in finite amounts [2][1].

2.3.2 Qualitative Service Commitment

A qualitative service commitment is an assurance by the network to provide a
level of service to a particular flow, which is relative to the one provided to other
traffic flows. This type of commitment is discriminatory. Higher-priority flows
are given better quality of service as compared to the flows having lower
poontes. This kind of commitment does not call for any admission-control

mechanism unlike quantitative-service commitment. [2][1]

2.4 The Intemer

Unfortunately, the Intemet does not provide any kind of QOS guarantees to its
applications. The data from applications is routed in packets to the destination
through a number of routers. The Internet at present only provides best-effort
service. The routers determine the best path for the data and this service is
provided in first-in-first-out manner. However, there are no commitments or
guarantees made by this best-effort service model in terms of QOS parameters
such as delay, bandwidth etc [2){1].

The quality-of-service provided by this kind of uniform service to all, varies with
the network traffic. The rate at which data is delivered decreases and the number
of packets dropped increases directly with the rse in the network traffic.
Obwiously, this kind of service does not suit the real-time applications, which
require a consistent level of quality from the network. However, the "best-effort"

service model has served well in supporting applications which arte tolerant of
delay [2](1].

Recent advances in network technology have made the best-effort service model
substantally reliable. This, in addition to the invention of new concepts in
software technology like RMI, CORBA and data-streams have resulted in 2 surge

of real-time applications like delivering voice/video over IP, remote X-terminals,

data fusion etc. Tools like RMI and CORBA enable developers to distribute
software objects over networks efficiently. The result of these technologies is that
the Intemet is increasingly being used for real-time communication, though with

some compromises.

It is clear that a more sophisticated service model than the best-effort is required
to truly serve real-time applications over the Intemet. Any new model will have to
provide some control over end-to-end delay introduced by the Internet [2][1].

2.5 Service Models for the Internet

There is a strong feeling among the Intemet community that the current Intemet
infrastructure must be extended in order to support real-time applications. One
obvious way to deal with this problem is to lay a new parallel network, which can
support real-time services. However, this approach is not very feasible since it
would be complicated and expensive to build and maintin such a network.
Moreover, we will lose the advantage of statistical sharing between real and non-
real-time traffic on a common infrastructure. Another way would be to extend
the current Intemet infrastructure to serve an integrated suite of services rather
than just providing the "best-effort” service [1][2](3]. End-to-End delay is the
central quantitative measure to determine the quality of service offered by the

network.

IETF (Intenet Engineering Task Force) set up a working group called
"Integrated Service" to specify the enhanced service model and to define
standards and necessary requirements to implement the new service model. This
enhanced model, called the Integrated Services Model, defines five classes of
service: best-effort, fair, controlled load, predictive or controlled delay and
guaranteed service class. If supported by the Intemet, these classes will be able to
satisfy the requirements of a wide-variety of real-time applications.

2.5.1 Integrated Services Model
The five classes defined by this model are:

1. Best-Effort Service Class: As mentioned before, this class of service is already
being provided by the Intemet. The only guarantee that this class of service
makes is that it will do its best to deliver data reliably and without adding any
significant delay. This service-model serves the applications that are not delay-

sensitive well,

2. Fair Service Class: This is a further enhancement to the best-effort service
class. No requests for guarantees are made by the application but the network

tries to partition the resources in a fair way.

3. Controlled-Load Service Class: This type of service class provides a guarantee
to the user that it would appear to the user that there is a little traffic over the
network. So the performance of the application being served by this class will
approximate the performance with the best-effort service class under lightly-
loaded conditions. In this type of class a limited amount of traffic is admitted.
(19)

4. Predictive/Controlled Delay Service Class: This type of service class controls
the delay that is experienced by a data flow. The application requests that its

flow should not experience a delay greater than a specified maximum value.
The network can than accept or reject this request.

5. Guaranteed Service Class: This service class provides a guaranteed upper
bound on delay perceived by a particular data flow and an assured amount of
bandwidth to the flow. [16]

All the service classes discussed in the previous section with the exception of

best-effort, provide certain commitments to the conforming data flow. The best-

10

effort traffic entering the router will not receive any such service commitment but
will have to do with whatever resources are available. The level of service
provided by these QOS classes to the flows will be programmable on per-flow
basis according to the requests from the end applications. The requests by the
end applications can be passed on to the routers by the network management
procedures or by using the resource reservation protocols like RSVP
(ReSerVation Protocol) [35).

Implementation of these service classes requires the implementation of the
following set of methods. (1] [2] [8):

1. Admission Control: An admission control mechanism is required to refuse
service to applications if the requirements stated by them cannot be met by the
network.

2. Resource Reservation: A resource reservation mechanism is required to pass
the requirements specified by the end applications to the routers on the path to
be traversed by the flow. RSVP [35], ST-I and ST-II are some of the protocols
that implement resource reservation.

3. Policing: Policing is required to monitor the data flow in order to see that it
does not exceed what has been allocated to it and/or what can be supported by
the network.

2.6 Conclusion
The Intemet might not be fully ready yet but it can still support real-time
communication to some extent. Also there is lot of work being done on

developing service models to enable the Intemet to support real-time as well as
other applications.

11

Chapter 3

COMPUTER-SUPPORTED COLLABORATIVE WORK

“An identifiable research field focused on the role of computer in grosp work.” [22)

“An endeavor to understand the nature and characteristics of cogperative work with the obyective
of designing adequate computer-based technologres. "123)

“the design of computer-based technologies with explicit comcern for socially organived practices of
their intended users.” [24)

Introduction

As can be seen from the above definitions there is no one spedific description of
the term CSCW or Computer-Supported Collaborative Work. Since it was first
coined by Irene Greif and Paul Cashman in 1984, CSCW has rapidly gained both
populanty and notosiety because of its ambiguous and multi-faceted nature. The
field of CSCW covers wide ranging fields from computer science to social and
cultural studies and this has naturally brought together researchers from all these
fields under one umbrella. This multi-disciplinary nature of CSCW is probably
one of the reasons why there is no one agreed-upon definition.

3.2 CSCW - Different Views
There are four existing views about CSCW, which can be classified as follows
[18]:

12

1. CSCW as a concept that brings together researchers from varous fields to
discuss ideas that are concemed with people, computers and cooperation of

some sort.

2. CSCW as an opportunity for wnting new kind of fancy computer systems
that let people work in a group.

3. CSCW as a paradigm shift from the way the computer systems have
traditionally been designed.

4. CSCW is a field that involves understanding of how people cooperate in real
life and designing computer systems based on these understandings.

Howard in 1988 phrased the term “strict constructionist”[36), which refers to the
researchers that have the perspective number 2 about CSCW. The resulting
computer systems developed are referred to as groupware. Groupware is a short
term for group software and it represents development of software that supports
group work. Since the focus of this thesis’s work is designing and development of
real-time collaborative applications, we will take this “strict constructionist” view
of CSCW.

3.3 Groupware
“Tntentional growp processes pius software to support them.” Peter & Trudy Johnson-Lenz

(23]
“A co-evolving human-tool system.” Doug Englebert [25]
“Computer-mediated collaboration of person-to-person processes.” David Coleman [25]

Interestngly, although groupware is considered as just one perspective of CSCW,
the term groupware was coined much before the term CSCW came into

13

existence. However, with the introduction of the field CSCW, groupware became
just one aspect of CSCW.

Groupware is designed to support group work, in order to accomplish a
particular task. In essence, Groupware supports the way in which a team or a
group works.

Groupware computer systems can be classified into two categories based on the

type of collaboration they provide across time. These two categories are:

1. Groupware systems that support synchronous collaboration. This type of
groupware systems require that the user be present at the time of activity in
order to participate. For example, in order to participate in a video
conferencing session the participants have to be physically seated before the

video camera.

2. Groupware that supports asynchronous collaboration. Unlike synchronous
groupware systems, the user can participate in an activity any time he/she
feels like. For example in order to participate in an e-mail-based discussion
the participant can check his/her messages anytime he/she feels likes and
respond.

Designing groupware systems is altogether a different ball game than designing
single-user applications. We will get into some of the design issues later in this
chapter but before that let’s take a look at some of the reasons why we need
Groupware.

3.3.1 Why Groupware?
The advantages of multi-user applications or groupware are enormous. Some of
these advantages are histed below.

14

1. Groupware provides an infrastructure for interpersonal communication,
which may result in a better, effective and quick solution to a2 problem.

2 Enables people to work from anywhere on the Intemet/Intranet.

3. Groupware provides companies with a support base for interfacing with its
geographically dispersed workforce.

4. Groupware is environment-friendly since it results in less travel by group
members.

5. Owing to the fact that the intention of Groupware is to mimic human face-
to-face communication, it allows people with non-computer backgrounds to
participate in collaborative work easily.

6. It makes obsolete the need for all members to be present in the same room in
order to collaborate on something.

3.3.2 Designing Groupware
Even though groupware is perceived as a technology-rich solution to CSCW, it

still is very important to understand the social working of groups in order to
design effective groupware applications.

Successful groupware applications are complicated to design because it takes
more than just technology to do so. The ingredients to successful groupware are
technology and social and cultural understanding of how people communicate.

3.3.3 Groupware Applications
This section goes through some of the popular Intemet-based groupware
systems.

15

3.3.3.1 E-mail Systems

The most basic and traditional of all groupware applications is the electronic mail.
It facilitates asynchronous collaboration among team members. There are many
e-mail systems available in the market today like cc:Mail, Eudora, Microsoft
Exchange etc. The web-based e-mail systems like Hotmail have made it possible
to check or send messages from anywhere in the cyber world. However, e-mail
systems provide very limited collaboration. But, the e-mail system would stil
form an essential part of any groupware system. The success of e-mail systems
depends on how efficient 2 user is in reflecting his/her thoughts in his/her
messages.

3.3.3.2 Audio/Video Conferencing
Unlike e-mail systems audio/video conferencing supports collaboration in real-
time. The team members are able to listen and/or even to see each other using

these tools. The most important feature is that it all happens in real-time.

3.3.3.3 Desktop Sharing

Desktop sharing allows real-time data sharing among different machines. Two of
the well-known desktop-sharing groupware systems are MS NetMeeting and PC
Anywhere. Both of these applications let the user take control of a computer,
which is connected to the network and whose IP address or name is known.

These applications are useful for debugging systems remotely.

3.4 Conclusion
Groupware systems like e-mail, audio/video conferencing and remote desktop-
sharing support real-ime multi-user collaboration. However, none of the

example groupware systems discussed supports every aspect of collaborative
work. In addition, developing such a system from scratch would be 2 mammoth
if not an impossible task. The field of networks and CSCW is still evolving and

16

any system developed today might become obsolete in a short time as new
discoveries and inventions are made. What we need is a framework, which not
only supports quick and efficient development of multi-user tools but also hosts
these tools over a common platform. This will let us write new applications and
use them along with the already existing applications. In such a system, each
application added will result in a better collaboration among team members. The
ISAAC (Integraion of Synchronous and Asynchronous Collaboration)
framework, a project sponsored by Defense Advanced Research Projects Agency
(DARPA) [37], intends to achieve exactly thus.

17

Chapter 4

BUILDING REAL-TIME MULTI-USER APPLICATIONS

The Intemet provides a huge potential for supporting real-time collaborative
work (RTCW) applications. With the rapid growth of the Intemet, both
qualitatively and quantitatively, there is a strong future for such applications.

The choice of a tool for developing real-time collaborative applications would
prove crucial for the success of any application. A collaborative application can
be developed either from scratch or can be built-on a framework. In this chapter
we will look at both of these methods and see how these two compare. During
the course of this thesis wotk, we developed a collaborative text editor using the
Habanero framework. Habanero is part of the ISAAC project, which handles the
support for synchronous collaboration. Habanero provides developers with a
common platform for both development and deployment of collaborative
applications.

4.1 Essential Components of any RTCW application
Any real-time collaborative application should implemeat the following:
1. Support for synchronous collaboration.

2. Support for asynchronous collaboration where the collaboration is expected
to take place over a long timeframe.

3. 'The basic communication infrastructure.

18

4. Implementation of the rules of collaboration e.g. floor control mechanism to

force the participants to take tums.
5. A user interface that imposes minimum restriction on user activities.

6. Provision of hooks to extend the system.

~

Platform independence.

The task of developing real-time multi-user applications is far more complicated
than their single-user counterparts. The development of these applications
requires expertise in number of fields like networking, sociology, software

engneering etc.

4.2 Building RTCW applications from scratch

This is how most of us, software developers, are used to programming, This
method involves analysis of a problem, selection of the most appropriate tool,
development, and finally the deployment of the application. In addition, this
process is repeated for every problem.

4.2.1 Advantages

The major advantage of using this method is that it suits the traditional mindset
of most of the software developers. This results in minimal costs in terms of
training the developers.

Using this method the developer has complete control over the whole
development process of an application and uses his/her discretion to decide what
components to develop, how to develop them, and what would be the flow of
control.

19

The flexibility enjoyed by the developer over the design and code of the
application would most likely result in a code that is highly optimized and
efficient. The level of optimization and efficiency will, however, depend on the
amount of expertise and expenence of the developer.

4.2.2 Disadvantages
Building multi-user applications from scratch also has some drawbacks.

Developing real-ime collaborative applicaions from scratch means
implementation of the essential components by the developer. The developer
might be an expert in his/her own field but may not be very good at networking
or understanding human-behavior. Moreover, developing all these components
would prove to be a huge undertaking,

The collaborative applications developed using this method are not very
accommodating to the future advances in the fields related to CSCW.
Incorporating newly-discovered concepts into existing applications might result
in rewnting the whole application from scratch.

Adding new features to an existing application would mean modifying the
existing code, which means the developer should have extensive knowledge
about the previously written code.

Every application would require implementation of the essential components.
This result in reinventing and rediscovering the basics repeatedly, which
eventually adds-up in terms of costs. The development-cycle for collaborative
applications developed using this method is usually very long,

4.2.3 Development of Real-time Collaborative Applications
Developing complicated real-time collaborative applications from scratch is slow
and tedious. The implementation of the networking component is a complex task

20

in itself. The other tasks like distribution of information and providing some kind
of an arbitrator to ensure every participant follows some rules are again not very

easy.

However, recent advances in Java technology like object serialization, networking
and RMI (Remote Method Invocation)) have made some of the tasks involved in
building real-time collaborative applications easier. Java has extensive support for
networking where the developer does not have to worry about the underying
network architecture in order to write network-based applications. This makes
the implementation of the communication component of any real-time
collaborative application relatively easier. Java’s object senialization and RMI
technologies make it easier respectively, to add persistency into objects and
distribute them over a network respectively.

Although Java provides solutions to augment the drawbacks presented by
development of collaborative applications from scratch, this method is still only
suttable for developing small collaborative applications.

Moreover, building collaborative applications from scratch is fine if we are
developing an isolated application, which cannot be classified into any particular
domain of applications. The applications designed for a common environment or
domain, e.g. automotive and telecommunication applications, tend to share some
common core concepts and architecture. And, most of the cost and effort
mnvolved in developing these applications is a result of redesigning, reinventing
and re-implementation of these common concepts and design. And, in case of
complex applications which work across heterogencous hardware architecture,
operating systems and platforms, it becomes extremely “difficult to build correct,
poruable, efficient, and inexpensive applications from scratch [26]”. Hence it
becomes imperative to look for altemative methods that offer features like code
and design reuse.

21

The class libranies, which provide a set of already-implemented class objects,
offer an obvious altemative. The developers instantiate ready-made class objects
and extend their functionality by using either the process of inhesitance [33] or
delegation [33] to achieve the objective. Although class libraries provide a way to
reuse code, it still requires the developer to call individual class objects and
connect them together to perform a task. Thus the use of class libraries does not

provide a way to reuse designs and ideas.

With the use of class libraries, the developer is still responsible for the flow of
control that occurs in the application. The handling of flow of control becomes
complicated when dealing with collaborative applications. This is so because this
requires implementation of objects like observers and arbitrators, which decide
the events and the order of events that is shared among the participants of a

session.

The framewotks provide us with another altemative for developing real-time

collaborative applications without repeatedly reinventing the wheel.

4.3 Building RTCW applications using Frameworks

4.3.1 Frameworks

“A Framework helps developers provide solutions for problem domains and
better maintain those solutions. It provides a well-designed and thought out
infrastructure so that when new pieces are created, they can be substituted with
minimal impact on the other pieces in the framework.”[28)

Frameworks target a particular domain of applications. Frameworks are
implemented using a particular programming language and hence inhesit the
charactenstics of that language eg. object-otented(OO) frameworks support
concepts like code reuse, encapsulation etc. OO frameworks are more popular

2

because of the benefits that any OO programming language carries and from
hereon everything discussed about frameworks will be in the context of OO
frameworks.

Frameworks provide a set of components that are generic to the domain of
applications that is being targeted by the framework. The applications developed
using this framework are able to interconnect these components to perform a
particular task. Frameworks also provide an environment to develop new
components to extend their functionality. In fact frameworks can be classified as
being white-box or black-box according to the techniques used to extend them
[26]. White-box frameworks are more open whereby the developers are required
to know the inner implementation details. These frameworks are usually extended
by using OO concepts of inheritance and dynamic binding on the hook methods
provided by the frameworks. Black-box frameworks on the other hand
encapsulate their implementation details and provide a set of interfaces to be used
by the developers to plug-in their components [26).

In essence, a framework is a base-application that can be used by developers to
buld their applications upon. Frameworks provide an infrastructure that is
designed to support the development of a particular class of applications eg. a
framework for developing automotive applications or a framework that supports
telecommunication-related applications. Java’s RMI (Remote Method Invocation)
and the ORB (Object Resource Broker) frameworks support applications that
require distnbution of objects over a network. Java’s RMI provides an interface
that is used by objects to call other objects over a network. This interface hides
the details of the complexities of the undedying network communications
mechanism from the developer. This is where the real strength of frameworks
lies, encapsulating the generic components and providing a simple but stable
interface/hook methods to these components [26].

23

Frameworks are semi-implemented applications whose functionality can be
extended/specialized to create new applications [26](38](39).

Frameworks might be viewed as class libraries but at a lower level of abstraction
[27). This means frameworks provide objects that are more concrete unlike in the
case of class libraries. Frameworks can afford this lower level of abstraction since
they are designed to support a particular type of applications and hence they do
not need to be as general as class librasies, which try to accommodate wide variety
of application types.

Frameworks unlike class libraries not only contain class objects but also the
connections between these objects in order to perform a particular function.

Frameworks, unlike class libraries provide developers with an infrastructure to
build a particular type of application. By infrastructure, we mean actual
implementation of features or components that are common to the class of
applications being targeted by the framework.

4.3.2 Frameworks and Design/Code Reuse

“Frameworks are an object-oriented reuse technique.”[27)

The reuse can be in terms of both design and code. As already mentioned before,
frameworks provide a set of generic components. The use of these components
by other applications represents code-reuse whereas inter-connection of these

components to perform a particular function encourages design-reuse [28].

The use of class libraries unlike frameworks only encourages code-reuse and not
design reuse. A framework not only provides implemented class objects to be
reused but also acts as a template that can be used during the design phase of the
application.

24

The concept of code-reuse reduces the development time of an applation
considerably. Any well-implemented framework is designed using well-tested
techniques like design pattems [33). Therefore applications developed within the
frameworks inherit a good design along with the framework components for
code reuse.

The design reuse results in the development of components that are similar to
cach other since they use the same framework as a template. This uniformity [27]
results i applications with similar structure and hence makes the applications
easier to debug for the developers. And in case of a GUI framework it will help
to generate user interfaces with similar look and feel

Frameworks also encourage the reuse of domain-specific expertise [40]. The
domain-specific generic components provided by a framework are designed by
the developers who are experts in that particular field.

4.3.3 RTCW Frameworks

RTCW frameworks are the frameworks that facilitate the development of RTCW
applications. This type of framework provides us with an actual or partial
implementation of the components that are generic to any RTCW application.
Such a framework enables a developer to focus more on the actual application

than to worry about the lower-level intricacies of collaboration.

4.3.4 Benefits of using Frameworks
The use of frameworks provides the developers with the following benefits [26}:

1. Modularity: The frameworks provide a set of simple and stable interfaces to
its components, which are used by other components or objects to call the
services on these components. This ensures encapsulation of objects whereby

all the implementation details of the object are hidden by the interfaces. This
in tum results in modular objects that are easy to maintain [26).

2. Reusability: As discussed before, frameworks provide a set of implemented
components that are generic to the class of application that is being targeted
by a framework. These components are designed and coded only once and
use some time-tested techniques. This results in code-reuse and it drastically
reduces the implementation time of an application [26].

3. Extensibility: The frameworks provide hooks to its components, which can
be used by developers to extend the functionality of these obijects. Therefore,
the infrastructure provided by a framework is highly flexible and can be
extended if required by an application [26].

4. Inversion of Control: The framework itself executes the flow of control in
applications developed. This is a powerful feature of framewortks especially in
case of RTCW frameworks where correct flow of control is crucial and

complicated in order to make objects and actions shareable.

4.3.5 Drawbacks of using Frameworks

Frameworks enable us to develop applications that are modular, extensible and
are compatible with each other. However, there are a few drawbacks of using
frameworks some of which are listed below:

1. Developing a framework is very challenging and takes a lot of coding before
you can even start wnting an application [26). Hence, the benefits of using
frameworks are long term. This is not a problem with this thesis work
because an existing framework was used.

2. The developers need to change their mindset in order to use frameworks
because developing applications using frameworks is very different from

26

developing them from scratch. The major difference that should be noted is
that frameworks control the flow of the application, which is totally different
from the traditional style of programming where the application controls its
own flow. The framework, especially one that supports building of
collaborative applications, has objects like observers and arbitrators that
control the flow based on the events generated by the participating clients.

3. The developers need to familiarize themselves with the basic infrastructure
and hooks that a framework provides for them to start using it efficiently and
effectively.

4.4 Conclusion

Building applications ground-up gives more flexibility to the developer but, at the
same time, it does not encourage good programming practices. Frameworks, on
the other hand, provide us with an altemative where methods and properties
wherent to a particular domain of applications are already implemented. Using
frameworks can cut the time required to develop applications significanty.

27

Chapter 5

A FRAMEWORK FOR INTEGRATED SYNCHRONOUS AND
ASYNCHRONOUS COLLABORATION (ISAAC)

5.1 Introduction

ISAAC is a DARPA-funded project, whose main objective is to make
“computer-assisted collaboration in science, engineering, and real-time decision
support more natural, more powerful, and more responsive to the multi-modal
communication needs of users” [15). ISAAC also intends to make collaboration
possible across platforms and time. The collaboration across time enables people
to participate in a session synchronously or asynchronously. Moreover, platform

independence enables participants operating on different platforms to collaborate
with each other.

This system enables participants to work in a persistent-information immersion
environment. This information can be used and modified by a participant. The

information would always be persistent even if the original source is a temporary

one.
5.2 ISAAC Components

ISAAC s still work in progress. However, when finished it will consist of 1 5
1. Support for synchronous o real-time collaboration.

2 Support for asynchronous collaboration.

3. Persistent Object Store (POS) component.

28

4. Event notification and event/action services.

5.2.1 Support for Synchronous Collaboration
The synchronous collaboration requires each participant to be virtually present in
order to participate in a session. This component of ISAAC is built on Habanero
and will be covered in detail in the next chapter.

5.2.2 Support for Asynchronous Collaboration

The Habanero component will be extended to enable participants to participate
in 2 session at a time that is convenient to them. Already, Habanero enables
participants to record a session and play it back at a later tme. However, the
support for asynchronous collaboration would be extended further with
mechanisms like forwarding selected events to participant’s e-mail or maybe
something more advanced like an agent that responds back on behalf of the
participant [15].

The participant will be able to leave/join a session at his/her will and stll not
loose any information or events. This makes collaboration very natural and very
close to the way human beings collaborate in real life. This also gives the

participants the flexibility by not putting any restrictions on their activities.

5.2.3 Persistent Object Storage

The Persistent Object Storage or POS is required to store objects generated or
used by a Habanero session. This is required for the persistency of information in
order to support collaboration across time. The POS in ISAAC would provide
[15):

I. A place for storing objects mainly generated during a session. However, this
would also be used to store external objects like Lotus notes, database objects

3.

etc. This will enable participants to integrate their existing systems as a back-

end to a Habanero session.

A place to store object-metadata. The metadata stores information about the
objects, which can be used for retrieving these objects from a repository.

A faaility to search the POS.

The POS could also have an API (Application Programming Interface) to
perform the following functions [15):

5.

Connecting to a POS.
Add/Delete/Change/Get objects.
Getting object metadata.
Searching for objects.

Notification mechanism to notify of object changes to the concemed

participants.

Adding POS to the curent version of Habanero would extend its functionality to

provide the following additional features [15]:

1.

2.

3.

4.

A place to store sessions.
The object-metadata information can be used to replay sessions.
A facility to search session-archives.

Indexing and sorting objects retumed from a search.

5. Methods to create POS objects as well as use the existing ones

The following figure depicts how POS would fit in ISAAC along with Habanero.

POS
System

MIDDLEWARE

CLIENT API

API Arbitrators,
Tools like «— Logical < »
Chat, white- Noufication
board, text Servers,
editor etc. Habanero Server.

Figure 5.1

The POS at the back-end would let us include powerful information services in
the sessions. The POS would be accessed like a black box where a participant
would not need to know the types of POS's available to the session. The access
to a POS would be provided through a common APL This common interface to
all the POS would enable access to information, which is independent of the type
of POS being accessed.

5.2.4 Event Notification
The current Habanero event notification is restricted within the session in which
it was generated. However, it is planned to extend event notification across

sessions [15}.

31

The new notification mechanism would have the following features [15):

1. Timer-based action events. This feature can be used to automatically generate

an event at a particular time.

2. Broadcast of events to other sessions. This feature will enable collaboration

that across multiple-sessions.
goes p

3. Notification of change in a POS. This event will be generated when

something of interest to a participant or a session changes.

5.3 Current Work in Progress

ISAAC is in its final stages for its first public release sometime before the year
2000. The work is currenty to develop or acquire components to provide
integration of synchronous and asynchronous collaborations.

5.4 Conclusion
The ISAAC project intends to bring together asynchronous and synchronous

collaboration in an information-immersion environment. It would support

seamless collaboration across time, space and platform.

32

Chapter 6

HABANERO

6.1 Introduction

Habanero is a framework that supports the development of real-time
collaborative applications for the Intemet. Habanero was initially designed to
facilitate collaboration in the fields of science and education [13]. However, it has
the potential to be used in numerous other fields.

The Habanero framework is implemented using Java and it depends on sharing
of Java obijects in order to support collaboration. It is claimed by the Habanero
team that the applications developed using this framework are scalable to any
number of users. Moreover, since Habanero is implemented using Java, it is an
OO framework which is platform independent.

Habanero uses a client/server architecture and the concept of replication to
distribute information. All the information to be shared is represented in the
form of Java objects. Each collaborative session taking place within Habanero
has one server running and all the participants are connected to this server
through individual clients. An object received by the server from any client is
replicated and sent to each of the connected clients.

Habanero can be divided into two parts - the Habanero framework and the
Habanero environment. The Habanero framework supports the development of
real-time multi-user applications whereas the environment is responsible for

hosung these applications [9].

33

6.2 The Habanero Environment
The Habanero environment consists of a sezver, clients and a set of collaborative
tools. The client and server act as an infrastructure for hosting collaborative
sessions. The collaboration is accomplished by replicating the desired states of an
application among all of the clients.

6.2.1 The Server

The server consists of senalizers, arbitrators and routers. As already mentioned
before, the information in the Habanero framework is represented in the form of
Java objects. These objects are shared among the clients through a server in
response to an event that is designated as "to be shared”. When a new client joins
an ongoing session the server synchronizes it with the current state of the session.

This synchronization is done by replicating the session state on the client [13].

The events are generated in response to a client’s action. The actions are
considered to be the medium of exchange in Habanero [13]. When a "to be

shared” event occurs, it must be propagated to all the desired clients. The

sequence in which events occur must be tespected in order to have any kind of
meaningful collaboration. This sequence is maintained by the server with the use
of a component called an arbitrator. An arbitrator, implements the rules of a
multi-user application in terms of what and when anything is executed. The
server assigns an arbitrator to each application. This arbitrator can be extended
using the Habanero API to do all sorts of things like implementing rules speafic
to a particular applicaion. For example, in case the clients are connected at
different bandwidths than an arbitrator can set a maximum speed that is suitable
to the client connected at the lowest speed. A customized arbitrator can be used
to develop a multi-user game like checkerboard where the asbitrator forces rules
of this particular game on clients. The arbitrator can be considered as the central
point of control, which ensures each client plays by the rules. By default, the

34

arbitrator is responsible to see that events shared are in sync with the original
order of events [9].

Just simple sharing of events is not very useful without the ability to share
information among clients. Habanero uses serializers to achieve this sharing of
information or objects. Habanero uses Java’s object-serialization feature to
implement its senializers. The serializer seralizes and de-serializes objects to write
objects to the output stream and read objects from the input stream respectively

[9).

The router is responsible for channeling all the shared events and objects to the
desired clients. The router or the communication manager is implemented in the
Habanero server but it can also be programmed to work on the client side. This
gives the developers a flexibility to develop applications with their own

communication managers [9).

The arbitrator, serializer and the router are the most important components that
are provided by Habanero. In addition to these components, Habanero also
provides support for networking and security. Habanero only supports TCP/IP
communication at present, but this will probably be complemented with the
support for multicasting. The only level of security that Habanero provides

currently is that it does not let unauthorized clients to connect to a session [9).

6.2.2 The Client

The client interacts with a single server, which in tum communicates with all
other clients. The server communicates with an application on the client through
the application's proxy. There is a proxy for each application on every active
client. Moreover, all the proxies for the same application have identical names.
This allows the server to communicate with the correct application for sharing of
events and objects. It is interesting to note that clients also implement serializers,

35

arbitrators and routers. These components act as respective proxies for individual
applications and forward the events to their counterparts on the server [9].

The Habanero client provides a graphical interface to the Habanero environment.
The client lets the user select a session of his/her choice and connect to it. And
once connected the client synchronizes itself with the current state of the session.

The client provides the following features:

1. Lets the user create/edit a certificate for identifying himself/herself to other

connected users.

2. Provides the user with the powerful feature of capturing an ongoing session
for replaying later. Either the recorded session can be played locally or it
could be distributed. These sessions can be stored using the POS technique
discussed in the last chapter and can be played from there at any time.

3. Allows the user to notify other participants to join the session. This
notification can made either synchronously ie. through the client itself or
asynchronously i.e. through the e-mail.

4. Lets the user identify and locate the participants of the session.
5. Lets the user create his/her own session or join an existing session.

6. The client lets the user terminate a session in number of ways. The user has

option to do the following:

a) Terminate its own state without affecting the state of other
partcipants.

b) Kill the session totally.

) Leave the applications on but deactivate the session.

36

The client also provides the user with important session information like the list

of participants, network settings etc.

6.2.2 The Tools
Habanero comes with a set of pre-implemented tools kke a whiteboard, shared
browser, mpEdit editor, chat etc. The user can develop his/her own tools and

integrate them within the Habanero environment.

6.3 Habanero Framework

The Habanero framework consists of an API, which is used to wnte multi-user
real-time applications that run within the Habanero environment. Additionally,
this API also lets developers convert their existing single-user applications into
multi-user applications in a short time.

In additon to this API, the framework also includes pre-implemented arbitrators,
senalizers and network components. Therefore, the developer does not have to
leam or develop these components and he/she can focus on the actual
application. The developer only needs to implement four methods in order to
plug-in his/her applications into the Habanero environment. These methods are

responsible for:

1. Defining how the application is displayed when instantiated.

2. Processing events generated by clients.

3. Reading the current state of an application from the input stream.

4. Wnung the current state of the application to the output stream. This is called

marshalling.

37

The Habanero API also provides classes and methods to extend the functionality
of the components used by the Habanero environment like arbitrators and

routers.

The Habanero framework also includes a porting wizard that can be used to
rapudly convert single-user Java applications to multi-user applications. The
wizard is smart enough to extract components and events from a Java program
and make these components shared if asked to do so.

Habanero lets the developer decide what objects and events in an application are
to be shared. The obijects that are designed to be shared are required to
implement a particular interface. In addition to sharing of events, Habanero also
lets the developer write his/her own events and make them sharable. This is a
powerful feature for applications like a text editor where sharing every key press
event could easily overoad the system. Instead of sharing every key press, it
would be more efficient to share a block of text. In order to do so, the developer
can wnte an event that sends the block of text to the server. This event than

could be associated with a button press or a menu select action.

6.4 Habanero AP1
Habanero provides an extensive set of classes. These classes are divided into the
following packages.

1. Set of classes to connect to MBONE (Multicast Backbone).
2. Extended set of Java’s standard GUI component classes.
3. Set of classes to manipulate the environment in which a session takes place.

4. Set of classes that are used to develop collaborative applications.

38

3. Set of classes that support the use of different protocols like RTP (Real Time
Protocol). This package is not developed yet.

6.4.1 MBONE

MBONE is a virtual network that lies on top of the Intemet and serves as an
expenimental test-bed for applications using multicast IP (Intemet Protocol). The
multicast [P unlike the traditional unicast IP enables the data to be addressed and
transmitted to multiple recipients at the same time. This leads to substantial

savings in terms of consumption of bandwidth by Intemet-based multimedia
applications.

Habanero provides functionality to adverise a session to the MBONE
community and to connect to this multicast Intemet backbone. Unfortunately
like most of the other packages in the Habanero API, not much information is
available to fully understand this set of classes.

6.4.2 GUI Components (AWT package)

This package provides a set of GUI components, most of which are extended
versions of Java’s standard GUI components. Some of the components included
in this package are a color palette, extended version of Java’s standard buttons

with the ability to contain images, windows to display messages and a enhanced
list component.

6.4.3 Environment Manipulation (ENV package)

This package contains a set of classes that can be used to extract and manipulate
the information about the environment under which a Habanero session takes
place. The functionality provided by this package includes the ability to retrieve
the profile and other information about the participants and to add/remove the
tools from a session. The classes in this package can be used for the purposes of

39

making the participants aware of who they are collaborating with and how to

contact them.

6.4.4 Collaboration API (habanero package)
This package is the core of the Habanero APL This set of classes provides the
functionality to develop collaborative applications for the Habanero environment
and also to convert existing single-user applications into multi-user ones. Most of
the classes used during the development of the text editor developed dusing the
course of this thesis work are from this package.

6.5 The Habanero Porting Wizard

The Habanero porting wizard is designed to transform existing single-user Java
applets into collaborative applications that can be run within the Habanero
framework. The wizard takes the Java code as an input, recognizes all the objects
and events in that code and makes these entities shareable if desired by the
developer. The wizard is not powerful enough yet to work on complex applets.

However, it acts as a good starting point for developing collaborative
applications.

6.6 Conclusion

Habanero is a powerful tool that niot only supports development of collaborative
tools but also their deployment. The Habanero framework provides us with a
powerful API to write RTCW applications for the Intemet. Habanero is definitely

a step in the nght direction towards achieving a valuable framework for
constructing real-time collaboration application.

Chapter 7

THE MULTI-USER TEXT EDITOR-IMPLEMENTATION

Almost every profession requires the creation of text documents. The complexity
of these documents has increased significantly in recent years due to the rapid
redefining of how organizations work. Many documents are no longer authored
by a single person but are prepared by contrbutions from different areas of an
organization. This requires collaboration among a number of concemed
individuals to come up with the final document. Traditionally this collaboration
has been done by distributing the tasks associated with a particular job among the
individuals. This is a tedious way of collaborating and is prone to conflicts that
might anse from the lack of appropriate communication among the contributors.
Moreover, the globalization of organizations has resulted in a geographically
distributed workforce and this has resulted in demands for more sophisticated
collaboration [17].

There are some tools, ike MACE, GROVE, SASE, SASSE and Lotus Notes,
available that support collaboration for creating documents. As part of this thesis
work, a real-time collaborative text editor was developed using the Habanero
framework. The main objective behind developing this tool was to assess the
abilities of Habanero to develop real-ime multi-user applications and not to

create a better editor.

41

7.1 Design Requirements

We used the extensive set of requirements stated by Michael Koch in [17]. This
was done because we believe an extemal set of requirements was necessary for an
unbiased analysis of Habanero.

The requirements are as follows:

1. The text-editor should be able support collaboration in a multi-user
environment. However, the text-editor should also be usable by 2 single-user

without any restrictions.

2. The text editor should have a feature, which would let the users work on
his/her piece before sharing it with others.

3. The text editor should be able to store the history of updates to a particular

document.
4. A participant should be aware of the presence of other participants.

5. The text editor should provide some sort of communication among the

participants.

6. The text editor should be flexible enough to be integrated with extemal tools.

1.2 Architecture
The architecture of our text editor involved design and implementation of the
following components:

1. Asbitrator: Since our editor will be used by multiple users simultaneously we
would require to implement some rules in order to ensure constructive and
meaningful collaboration. In our editor we will only allow one person to edit

42

the document at a time. And to achieve this we need a mechanism that will
enforce the rules of collaboration and we do this by using an acbitrator that is
an extension of Limit Arbitrator that comes with Habanero. By default in the
Habanero framework when an event that is declared as shareable occurs it is
replicated and propagated to all the clients by the seever. The Limit Arbitrator
can be used by a participant to lock these events from being shared if they are
generated by other participants. In our editor we use this facility of locking to
make sure only one person edits a text document at a time.

Lock: The arbitrator uses this lock to make sure only one participant has the
control to the shared area of the text editor. The key to this lock acts as a
token, which can be grabbed by any participant as long as no one else owns
it All the participants are made aware of the identity of the current owner of
this key. The participants can then use one of the many Habanero tools like a
chat line to contact the owner to ask him/her to release the key.

. Customized Event. In order to collaborate over a text document we need to

generate an event in response to any one of the following actions.

a) A new file was opened.
b) A block of text was selected.
¢) The text was modified.
We designed a custom event that is generated in response to any of the
action
stated above. This event encompasses the type of the event and the

nformation to be shared in response to this event. The event when
generated
is sent to the server which replicates this event object and distributes it

among

43

all the clients.

4. GUI components: The GUI for our editor contains a shared text
component, button controls for obtaining/releasing the key, a scratch pad, a
list component displaying the names of all the participants and a label
displaying the current owner of the key to the lock held by the arbitrator. The
shared text component is the text area, which contains the document that is
being built collaboratively. Any modification done to the text contained by
this component is seen by every participant. The scratch pad is the text
component whose content is local to the participant. This area can be used by
the participants to work on a piece of text before they add it to the final
document. The list displaying the names of all the participants is an important
component, which helps developers to know about their team members. The
label showing the name of the current owner of the key helps other
participants to identify the person editing the document.

The following block diagram represents the architecture used to develop the
text-editor.

Custom

Event

Shared

Controls

HABANERO Like
Framework Get/release
lock

Scratch Pad

Figure 7.1

7.2 Implementation

The components discussed in the last section were developed using APIs
provided by Java and Habanero.

The shared text area and the scratch pad use the TextArea object of Java’'s AWT
AP The drawback of using TextArea object is its limited formatting ability.

We created a package called ‘CollabTextEditor” under which all our .java files are
located. In the directory where we installed Habanero there is a subdirectory
called apps. Under apps we create another subdirectory named

45

‘CollabTextEditor’ so that Habanero will be able to find all our code files when
we run our text editor within the Habanero framework.

Our main .java file is the TextEditortFrame which contains information that the
Habanero framework needs for initialization when our ‘hablet’ is run from the
framework. The term hablet means an applet that runs from the Habanero
framework.

public class TextEditorFrame extends Hablet

In this class we override Hablet’s startInFrame method mainly to declare the
window parameters like its size and title, and calls to the hablet’s init method, as

follows:

public vid startInFrame(MirrorErame f)
{

JfsetTitle("Text Editor);

Jadd("Center", this);

JsetSize(700,500);

JaddE ventCode(Event ACTION_EVENT);
J-setLayout(new Borderl ayout());

fsbow();

this.init();

Now when the client joins a session for the first time, the server copies the
current state of our text editor and passes it to the client. This is required to get
the client in sync with the curent state of an application. This is done by
implementing the methods readHablet and writeHablet.

The readHablet is used to get the current state of an application when the client
first starts. This method in our editor hablet reads the TextEditor obiect from the
input stream. This object contains the current state of all the GUI components of
our editor. The readHablet than extracts the current content of the text area
component and copies it to its local countetpart.

protected void readHables(MarshallnputS tream in) throws I0E xception,
ClassNotFoundE xception
{

/7 Read the Text Editor object
TextEditorObject = (TextEditor) in.readObject();
// Get the current content of the text component.
ixt = (String) (TextEditorObject. shared Area) get Text();
/7 Fill the local text component.
(TextE ditorObyect.controlArea). releaseLock. setE nabled(false);
intted = true;
}

The writeHablet method is used to write the current state of our editor to the

output stream.

protected void writeHablet(MarshallOusputS tream out) throws IOE xception

{
out.writeObject(TextEditorObject);

Another key method of our main class is the processEvent(AWTEvent e)
method. This method processes all the events received by our editor from the
server. For our editor we implemented a CustomEvent event class and this is the
only event processed by our processEvent method. This method processes an
event only if it is not generated by the participant. This is done because the server
sends an event to all the clients including the client that generated that event.

public void processEvent(AW TEvent ¢)
{

47

/7 Check if the event was of type CustomEvent
if{ ¢ instanceof CustomE vent)

{
/7 Check if the event was generated by the local copy of the editor.
if{! semByMe)
{

CustomEvent he = (CustomE vent) ¢&;
// New file was opened.
if{ he.getUniguel D() == OPEN_FILE_ACTION)
{

(TextEditorObject. shared Area). setTexct((String) he.getArg());

// A block of text was selected
else if{ he.getUniguelD() == SELECT_ACTION)
{

ObjectWrapper o = (ObjectWrapper) he.getArg();
(TextEditorObject. shared Area).select(0.getStartPos(), o.getEndPos());

/7 A request is made to the arbitrator to obtain the key to the lock
else if{ hegetUnigueID() == GET_KEY_ACTION)
{

System.out.printin("acting on GET KEy action.”);
(TextEditorObyect.gemeralArea).isKeyAvaslable = false;
((TextEditorObyect. shared Area).txtArea). setEdstable(false);

String name = (String) he getArg();
((TextEditorObject generalArea). lockInfo). sef Text(name + " has the lock.”);
((TextEditorObyect.controlArea). transfer).setE nabled(false);

}

//Key was released by the client.
else if{ he.getUniguelD() == RELEASE_KEY_ACTION)
{

System.out printin("acting on Release KEy action.”);
(TextEditorObject.gemeralArea).isKey Avaslable = false;
((TextEditorObject. shared Area).txctArea). setEditable(false);
((TextE ditorObyect.controlArea). transfer).setE nabled(true);

/7 Text was modified in the shared text area component.
else if{ hegetUnigueID() == KEY_TYPED_ACTION)
{

System.out printin("acting on Release KEy action.”);
ReoyWrapper o = (KyWrapper) be.getArg();
((TextEdstorObject. sharedArea).txctArea). setE ditable(true);
((TeatE ditorObject. sharedArea).txtArea). sefText(0.getKey());
of{ TextEditor.hasKey)
((TextEditorObyect. sharedArea). txt Area). setE dstable(false);

}
else

{
sentByMe = false;

Any event that is supposed to be shared among clients should be explicitly
declared as shareable during the initialization of the hablet. As shown in the code
smppet below we only declare the CustomEvent class as shareable for our editor.

public TextEditorFrame()
{

enableEvents(CustomEvent HAB_EVENT_MASK);

The CustomEvent class object is used to distribute data through the Habanero
server when the user performs a particular action. This event object identifies
iself to the event-handling routine with a unique identification number. This
event object also contains an object vanable, which stores the data to be shared
among the parucipants. The CustomEvent’s constructor takes the source, an id

49

and an object as input parameters. The CustomEvent instances will have unique
id’ for different actions. The ‘Object arg’ parameter contains an object that
contains information that is to be shared in response to a particular event
instance. The methods getArg and getUniquelD are used to retrieve the
corresponding entities.

public class CustomE vent extends AW TE vent implements StorageMode
{

public CustomEvent(Object source, int id, Object arg, int uniquelD)
{
super(source, id);

this.arg = arg
public Obyect getArg()
{

retum ary;

}
public int getUniquel D()
{

return uniguel D;

}

When a user selects a block of text and he/she holds the key to the arbitrator
lock then this select action should be replicated on all clients. So a select action
generates a CustomEvent instance with a unique identification number and an
object that contains the start and end position of the selected text block. We

designed a ObjectWrapper class shown below that generates an object that

contains the start and end positions.

]zublic class ObjectW'rapper implements Seriakzable

public ObjectWrapper(int start_pos, int end_pos, int action)
{

this.start_pos = start_pos;
this.end_pos = end_pos;
this.action = action;

}
public int getStartPos()
{

relum start_pos;

}
public int getEndPos()
{

return end_pos;
}
}

1.3 Working of the Text Editor
The block diagram below demonstrates the working of the text editor during an

active collaborative session.

51

Text

Text
Editor

Habanero

Editor
P Arbitrator
Habanero >
Client
Habanero Server
Figure 7.2

—p\ Client

The session begins when a user instantiates the Habanero server. The server’s IP

address or the name is used by other participants to join this session. When a

participant joins a session, he/she sees a window similar to the one shown in the

figure below.

52

Figure 7.3
Any paricipant can than start a text editor session by clicking on
CollabTextEditor” icon in the tools list. This will instantiate the editor for all the
clients on their respective machines. One of the participants can than grab the
key to start typing into the shared area. The key can be obtained by clicking on
the “Get Lock” button. He/She can later release the key for others by clicking on
another button labeled “Release Lock”.

53

7.5 Screen Shots of the text editor

Below is the screen shot of the text editor in action.

feniz 1k
o Fomt

Aon! 12, 1989

NCSA Hadanero v2.0

- inoes

inst -

oot - Hs0anero
metating Haoaner
Oeting » Session Staed

Con

Contacting the NCBA Hedenero Team

.

AL ITORD: ~ MM AN 55

Figure 7.4

The drop-down box shows that currendy there are two participants in the current
session: Kirk and Harv. A label in the bottom nght shows that Kirk currentdy
owns the key. Kick can then press the button “Release Lock” to release the key to
make it available for another panticipant to obtain it. The scratch pad is on the
rght side below the “Release Lock” and “Get Lock” buttons. The shared area is
the one on the left side with a white background. The scratch pad is next to the
shared area on its right side.

1.6 Conclusion

We were able to fulfill almost all the design requirements except for creating a
history for all the updates that happen to the text document. But we believe this
can be easily achieved when the Habanero is enhanced with a POS back-end
system. Moreover, the users can always use Habanero’s replay facility to view all
the updates. The text editor also does not contain powerful formatting features
like most of the commercial text editors available today. But this we believe will
not be a problem once Habanero fully evolves over a period of time and
becomes stable enough to support powerful Swing or any other third party GUI

components.

55

(S

Chapter 8

STATEMENT OF FACTS/OBSERVATIONS MADE DURING THE
DEVELOPMENT OF THE TEXT EDITOR

After we familianized ourselves with the Habanero framework, we were able
to develop our collaborative text editor in about ten days. We believe it would
have taken us at least four times longer if we had developed the editor from
scratch. Moreover, significant amount of time would have been spent
designing and developing non-text-editor related functionality like networking
and distribution of objects.

We believe using the Habanero framework resulted in a collaborative text
editor that is far more efficient and stable than it would have been in case it
was developed from scratch. This is because the framework provided us with
a solid infrastructure for performing collaboration.

Our text editor is able to work along with any other tool developed using the
Habanero framework. This eliminated the need for developing a secondary

tool like a chat application for our editor since some other developer had
already developed it.

Initally we developed a prototype for a single-user text-editor. The mntention
was to use the porting wizard to convert it into a multi-user text-editor. But,
the wizard failed to recognize the text components in the text editor.
However, the wizard restructured the code of our prototype that made it

easier for us to integrate it with the Habanero environment.

5. There is not enough documentation available on the Habanero API. We had
to go through a aumber of code examples to familiarize ourselves with most
of the packages used during the development of our text editor.

.6. We unsuccessfully tried to use the swing components [29] for the text-editor.
The swing components did not show up when we tred to run our editor
within the Habanero framework. Eventually we had to go with the Java's
simpler AWT (Abstract Window Toolkit) [30} components to implement our
text-editor.

7. The client, when joining a session, opens-up all the applications that are being
currently used in that particular session. We feel the user should have control
over what applications are initialized upon joining a session. This will enable a
user connected at low bandwidth to select only those applications he/she can
afford.

57

Chapter 9

CONCLUSIONS

The results of analysis and experimentation performed on Habanero during this
thesis work fully supports our view that frameworks can significantly reduce the
time and cost involved in developing quality collaborative applications. Habanero
provides a set of functionality that is necessary to accomplish collaboration.
Additionally, it also provides simple mechanisms to enable developers to integrate
this functionality into their applications. The Habanero framework can be
considered as being very close to the black-box architecture. Hence, it does not
require the developers to know the insides of the framework in order to plug-in
their applications into the Habanero environment. Since Habanero is
implemented purely using Java, it is a flexible framework whose functionality can
be extended and reused by using object-oniented techniques like inheritance and
delegation design pattems [33).

Habanero encourages design as well as code reuse. The concept of code-reuse
reduces the development time of an application and design-reuse adds uniformity
across all applications developed using the same framework. The result is a set of
applications that are easy to develop and maintan. Design-reuse also enables
developers to automatically inherit tme-tested design-techniques into their
applications.

Habanero is a step in the right direction. However, it lacks certain features as
discussed during the course of this work. As these features are added, we think
Habanero will evolve into a stable platform for the development of real-time
collaborative applications. However, it will be pertinent that the future releases of

58

Habanero are accompanied with a complete documentation of its APL. This will
help developers to fully exploit the power of Habanero in order to develop
enterpnse-level collaborative applications, which will also further the cause
behind providing such a complex framework.

Habanero uses client/server architecture and replication to achieve collaboration.
The information to be shared is distributed by the server, which opens a TCP/IP
socket connection to each client to pass on this information. This technique of
opening a connection to each client would not scale well in case of large number
of participants. However, Habanero provides the ability to use multicasting,
which can be used to send data to multiple clients at the same time and hence
opening only one connection at a time. But, in order to use multicasting the
participants have to be on a router that is connected to the multicast interet
backbone (MBone). And, unfortunately not everyone on the Intemet is on the
MBone.

Habanero uses Java’s object-senialization [31] technology to distribute objects.
This technology allows the object to be shared by any Java application. However,
we believe this distribution of objects can be enhanced if it is achieved by using
the XML (Extensible Markup Language) [32] technology. XML enables
developers to store data in form of a document. The data in 2 XML document is
represented by a set of user-defined tags, and this data can be extracted by any
application, irrespective of the programing language used to implement this
application, that has the ability to parse this document. In essence XML makes
data portable across platforms, environments and language of implementation.
And this provides an enormous opportunity to interface Habanero with external
systems.

The power of XML is being rapidly extended by projects like Castor [34], which

let developers store Java objects in an XML document and then reconstruct

59

these objects from these documents at a later time. This technology can be
ntegrated within the Habanero framework to add persistence to the objects
generated dunng a session. XML can be further used to provide a standard
interface to access data from back-end POS discussed previously.

The Habanero framework only supports applications that developed using Java.
However, this should be extended with the use of technologies like CORBA,

which enable communication between applications developed using different

programming languages.

A tremendous amount of work is being done to raise the level of service
provided by the Intemet to the data that flows through it. Several protocols have
been defined like the RTP (Real-Time Protocol) to achieve real-time
communication over the Intemet. The future releases of Habanero should try to
take advantage of the functionality provided by these protocols. The current
release includes an empty class package for these protocols, which demonstrates
that Habanero does intend to support these protocols in: the future.

The future-versions of Habanero intend to support collaboration across sessions,
where 2 paracipant will be able to seamlessly participate in number of sessions at
the same time. This ability to simultaneously participate in multiple sessions, the
back-end POS support and integration of asynchronous collaboration would
create an information-tich environment where collaboration is taking place

independent of any time, space or logistic constraints.

When fully developed, ISAAC intends to provide seamless collaboration, which
will be independent of time or space constraints. The participants will be able to
join a session at anytime from anywhere. By using a POS mechanism the
participants of a session will be able to connect to massive amounts of data from
which they will easily be able to extract any relevant information.

60

Habanero 1s a step in the rght direction for achieving true collaboration. It is an
excellent framework, which enables developers to build real-time multi-user
applications in no tme.

61

10.

11.

REFERENCES

[David D Clark, Scott Shenkar, Lixia Zhang] A Service Model for an
Integrated services Intemet -Intemet Draft 1994,

[D. Clack, R Braden, S. Shenker] Integrated Services in the Intemet
Architecture: An Overview .(sunsite.cnlab-switch.ch /ftp /doc/rfc/16xx/163
3).

[Domenico Ferrari] The Tenet Experience and the Design of Protocols for
Integrated Services: InternetWorks 1994,

[Pasquale D1 Genova and Giorgio Ventre] Efficiency Comparison of Real-
time Transport Protocols 1995.

[Paul P. White] RSVP and Integrated Services in the Intemet: A Tutorial. May
1997 IEEE Communication Magazine.

[Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker, and Daniel
Zappala] RSVP: A New Resource Reservation Protocol Sept 1993-IEEE
Network.

[C Partridge] A Proposed Flow Specification, Intemet RFC Sept 1992,

fJon Crowcroft, Ian Wakeman, Mark Handley, Stuart Clayman and Paul
White] Intemetworking Multimedia UCL Press, 1996.

Habanero web site: hup://havefun.acsauiuc.edu .
[Edward L. Peters and M. Pauline Baker]Comparing Middleware Support

Systems for Collaborative Visualizations.

[Jackson, L.] Java Collaborative Technology Selections in NCSA Habanero.
Concurrent Engineering in Construction -- Challenges for the New

62

12.

13.

14.

IS

16.

17.

19.

20.

2L

Millennium, Proceedings of the 2 Intemational Conference on Concurrent
Engineenng in Construction, 25-27 August 1999, CIB Publicaion 236,
Espoo, Finland, pp 37-46.

[Jackson, L., Grossman, E|] Integration of Synchronous and Asynchronous
Collaboration Activities. Computing Susveys, The Association for Computing
Machinery, New York, NY, USA, 1999.

[Chabert, A., Grossman, E., Jackson, L., Pietrowicz, S., Seguin, C] Java
Object-Shardng in Habanero. Communication of the ACM, The Association
for Computing Machinery, New York, NY, USA, Volume 41, Number 6,
June 1998, 69p.

Synchronous/Asynchronous Blending in Habanero Draft White Paper.
hap:// iuc.cdu/SDG/Proiects/ISAAC/ Blendinehem .

ISAAC web site. htp://www.ncsauiuc.edu./SDG /Projects/ISAAC .

[SShenker, C.Partridge and R. Guernn] Specification of Guaranteed
Quality of Service, Intemet Draft August 1996.

[Michael Koch] Design requirements of a Multi-User Text Editor.
fLiam j. Bannon] CSCW: An Initial Exploration. Scandinavian journal of

Information Systems, volume 5.

[. Wroclawski] Specification of the Controlled-Load Network Element
Service, Intemet Draft, August 1996.

[Liam j. Bannon] Issues in Computer-Supported Collaborative Leaming,
Chapter to appear in Proceedings of NATO Advanced
Workshop on Computer-Supported Collaborative Leaming
(Claire O’Malley, Editor) held in Maratea, Italy, Sept. 1989.

[Liam]. Bannon] The Context of CSCW. Report of COST14 “CoTech”
Working Group 4 (1991-1992), pp. 9-36 Feb 1993.

24,

25.

26.

27.

28

31

32

33

[Grexf, 1] Computer-Supported Cooperative Work: A Book of Readings. San
Mateo, CA: Morgan Kaufmann, 1988.

[Bowers S., Benford] CSCW: Four Characters in Search of a Context* In J.
(Eds.) Studies in Computer Supported Cooperative Work: Theory, Practice
and Design. Amsterdam North-Holland, 1991. pp 3 -16. (Initially appeared in
Proceedings of the First European Conference on CSCW, Sept. 1989,
Gatwick, UK.)

[Suchman, Lucy A]. "Office Procedures as Practical Action: Models of Work

and System Design," ACM ransactions on Office Information Systems, vol.
1, no. 4, October 1983, pp. 320-328.

Groupware: Collaborative Strategies for Corporate LANs and Intranets is
now available from Prentice Hall.

[Fayad, M.E., Schmidt, D.C] Object-oriented application frameworks,
Communications of the ACM, Oct 1997, vol 40, no. 10.

Johnson, Ralph E| Frameworks = Components + Pattems,
Communications of the ACM, Oct 1997, vol 40, no. 10.

[Codenie, W.M, Handit Koen D. Steyaort, Patrick, Verccammen, Arette]
From custom applications to domain-specific framework, Communications
of the ACM, Oct 1997, vol 40, no. 10.

- The Swing Connection, hutp://java.sun.com/products/ifc/tsc/indexheml

30.

The AWT in Java 1.0 and 1.1, hup://java.sun.com/products/idk/awt
Object ~ Senalization, hutp://javasun.com/products/jdk/1.1/docs/guide/

senialization/
[Freter, Todd] XML: Mastering Information on the Web,
[Grand, Mark] Pattems in Java, vol 1, Wiley Computer Publishing.

34.

35.

36.

37.

38.

39.

[Arkin, Assaf, Visco, Keith] Castor, Java OWReilly Conference.
[Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker, and Daniel
Zappala], RSVP: A New Resource Reservation Protocol Sept 1993-IEEE
Network.

[Howard, R] "CSCW: What does it mean?" Proceedings of CSCW'88, Portland,
September, 1998,

DARPA web site. http:// www.darpa.mil/

fohnson, RE. and Foote, B] Designing reusable classes, Object-Oriented
programming 1, Sjune/July, 1998.

[Fayad, M.E, Schmidt, D.C, Johnson, RE] Object-Oriented Application
Frameworks: Problems and Perspectives, Wiley, N, 1997

[Edward,]. Posnack, R. Greg Lavender Harric M) An Adaptive Framework for
Developing Multimedia Software Components. Communications of the ACM,
Oct 1997, vol 40, no. 10.

65

APPENDIX A- PROGRAM LISTING

TextEditorFrame.java

package CollabTextEditor;
import java.awt.*;

import java.io.*;

import java.awt.event.*;
import java.applet.*;
import ncsa.habanero.*;
import acsa.habanero.streams.*;
import java.io.*;

import java.awt.*;

import java.awt.event.*;
import java.awt.image.*;
import java.net.*;

import java.applet.*;

public class TextEditorFrame extends Hablet

{
int LOCAL_EVENT = 7777;
public static final int OPEN_FILE_ACTION = (;
public static final int SELECT_ACTION = 1;
public static final int GET_KEY_ACTION = 2;
public static final int RELEASE_KEY_ACTION = 3;
public static final int KEY_TYPED_ACTION = 4;
boolean inited = false;
boolean sentByMe = false;
TextEditor TextEditorObject;
public MirrorFrame mf;
public SessionParticipant sessionMe;
public Session session;
public String name;
String txt = "";
public TextEditorFrame()
{

super();
enableEvents(CustomEvent HAB_EVENT_MASK);

}
public void init()
{
TextEditorObject = new TextEditor(this, mf);

add("Center", TextEditorObject);
TextEditorObject.init();

//inited = false;
}

public void startinFrame(MirrorFrame f)
{
this.mf = f;
Key editorKey = Key.NoKey;
f.setTitle("Text Editor™);
f.add("Center", this);
f.setSize(700,500);
f.addEventCode(Event ACTION_EVENT);
f.setLayout(new BorderLayout();
f.show();
this.init();
if (linited)
{
System.out.println("Starting for the firset time");
EditorLock el = new EditorLock();

String id = Habanero.id();
ncsa.habanero.Collobject ¢ = f.getCollobject();
session = c.getSession();

sessionMe = session.getParticipant(id);

name = sesstonMe.getName();

inited = true;

else

{
(TextEditorObject.shared Area).setText(xt);
System.out.println("Starting again...");

}

67

validate();
}

protected void readHablet(MarshalllnputStream in) throws IOException,
ClassNotFoundException
{

TextEditorObject = (TextEditor) in.readObject();

txt = (String) (TextEditorObject.sharedArea).getText();
(TextEditorObject.control Area).releaseLock.setEnabled(false);
inited = true;

}

protected void writeHablet(MarshallOutputStream out) throws IOException

{
out.writeObject(TextEditorObject);

)
public void sendOpenFile()

System.out.println("Sending Open File Event ");

Habanero.sendEvent(new CustomEvent(this, 8889, (String)
(TextEditorObject.shared Area).getText(), OPEN_FILE_ACTION));

sentByMe = true;

System.out.printin("Finished sending Open File Event ");

public void sendInsertAction(int pos, String k)
{
KeyWrapper obj = new KeyWrapper(pos, k);
System.out.println("Sending insert text Event ");
sentByMe = true;
Habanero.sendEvent(new CustomEvent(this, 8889, obj,
KEY_TYPED_ACTION));

System.out.printin("Finished sending Open File Event ");

public void sendSelectAction(int start_pos, int end_pos, int action)

{
ObjectWrapper obj = new ObjectWrapper(start_pos, end_pos, action);
sentByMe = true;
Habanero.sendEvent(new CustomEvent(this, 8889, obj, action));

68

}
public void getKey()
{

System.out.printn("Sending Open File Event ");

((TextEditorObject.general Area).lockInfo).setText("™);
(TextEditorObject.generalArea).isKeyAvailable = true;
((TextEditorObject.shared Area).txtArea).setEditable(true);

sentByMe = true;
Habanero.sendEvent(new CustomEvent(this, 8889, name,
GET_KEY_ACTION));

System.out.println("Finished sending Get KeyEvent ");

public void releaseKey()

{
System.out.println("Sending Release Key Event ");
(TextEditorObject.general Area).isKeyAvailable = false;
((TextEditorObject.shared Area).txtArea).setEditable(false);

sentByMe = true;
Habanero.sendEvent(new CustomEvent(this, 8889, "0",
RELEASE_KEY_ACTION));

System.out.println("Finished Release Key KeyEvent ");

public void processEvent(AWTEvent e)

{
System.out.printdn("PROCESSING EVENT");

if(e instanceof CustomEvent)

{

System.out.println("The event was instance of CustomEvent");
if(! sentByMe)
{
CustomEvent he = (CustomEvent) ¢;
if(he.getUniqueID() == OPEN_FILE_ACTION)
{

(TextEditorObject.shared Area).setText((String) he.getArg());
}

69

else if(he.getUniquelD() == SELECT_ACTION)

ObjectWrapper o = (ObjectWrapper) he.getAsg();
(TextEditorObject.sharedArea).select(o.getStartPos(), o.getEadPos()

}
else if(he.getUniquelD() == GET_KEY_ACTION)

System.out.println("acting on GET KEy action.");
(TextEditorObject.generalArea).isKeyAvailable = false;
((TextEditorObject.shared Area).txtArea).setEditable(false);

String name = (String) he.getArg();
((TextEditorObject.general Atea).lockInfo).setText(name + " has the
lock.");

((TextEditorObject.controlArea).transfer).setEnabled(false);

}
else if{ he.getUniquelD() == RELEASE_KEY_ACTION)

System.out.pantin("acting on Release KEy action.”);
(TextEditorObject.generalArea).isKeyAvalable = false;
((TextEditorObject.shared Area).txtArea).setEditable(false);
((TextEditorObject.controlArea).transfer).setEnabled(true);

}

else if(he.getUniqueID() == KEY_TYPED_ACTION)

{

System.out.println("acting on Release KEy action.");
KeyWrapper o = (KeyWrapper) he.getArg();
((TextEditorObject.shared Area).txtArea).setEditable(true);
((TextEditorObiject.shared Area).txtArea).setText(o.getKey());
if(TextEditor.hasKey)

((TextEditorObject.shared Area).txtArea).setEditable(false);

}

else

{
sentByMe = false;

}

70

)

public void newBounds(int w, int h)

{
}

n

TextEditor.java

package CollabTextEditor;
import java.awt.*;

import java.io.*;

import java.awt.event.*;
import java.applet.*;
import ncsa.habanero.*;
import acsa.habanero.streams.*;
import java.io.*;

import java.awt.*;

import java.awt.event.*;
import java.awt.image.*;
import java.net.*;

import java.applet.*;

public class TextEditor extends Applet implements
WindowListener, ActionListener

{

public static boolean hasKey = false;
public SharedArea sharedArea;
public ControlArea controlArea;
public GeneralArea generalArea;

pavate MirrorFrame mf;

pnvate TextEditorFrame txtFrame;
public Frame f;
prvate Panel p1, p2;

public TextEditor(TextEditorFrame txtFrame, MirrotFrame f)

{

this.txtFrame = txtFrame;
this.mf = f;
}

public void init()
{
sharedArea = new SharedArea(txtFrame, "", 24, 60);
p2 = new Panel();
p2.add("Center", sharedArea);
controlArea = new ControlArea(txtFrame);
generalArea = new GeneralArea(mf, txtFrame, ™", 15, 30);

72

Marshallable,

pl1 = new Panel();

pl.setLayout(new BorderLayout());
pl.setBackground(Color.green);
pl.add("North", controlArea);
pl.add("Center", generalArea);
setupEditor();

}

public void start()

{

}

public void setupEditor()

{
Object parent = this.getParent();
while(!((Container)parent instanceof Frame))

parent = ((Container)parent).getParent();
}
f = (Frame) parent;
f.addWindowListener(this);
f.add("West", p2);
//f.setLayout(new BorderLayout());
f.add("East",pl);

MenuBar mBar = new MenuBar();

f.setMenuBar(mBar);

Menu file = new Menu("File");

Menu format = new Menu("Format”);

mBar.add(file);

mBar.add(format);

Menultem open = new Menultem("Open", new
MenuShortcut(KeyEvent.VK_O));

open.addActionListener(this);

open.setActionCommand("open");

file.add(open);

Menultem save = new Menultem("Save", new
MenuShortcut(KeyEvent. VK _S));

save.addActionListener(this);

save.setActionCommand("save");

file.add(save);

73

Menultem exit = new
MenuShortcut(KeyEvent. VK_E));
exit.addActionListener(this);
exit.setActionCommand("exit");
file.add(exit);
Menultem font = new
MenuShortcut(KeyEvent. VK_F));
font.addActionListenes(this);
font.setActionCommand("font");
format.add(font);
Menultem color = new
MenuShortcut(KeyEvent. VK_C));
color.addActionListener(this);
color.setActionCommand("color");
format.add(color);

}
public void openFile()

Menultem("Exit",

Menultem("Font",

Menultem("Color",

FileDialog fd = new FileDialog(f,"Open file", FileDialog. LOAD);

FileReader in = aull;

File file_read;

fd.show();

String dir = fd.getDirectory();
String file = fd.getFile();
System.out.println(file +", "+ dir);
i{f((file == aull) | | (dir == null))

fd.dispose();
return;

}
C
file_read = new File(dir, file);
in = new FileReader(file_read);
mtchars=0;
int size = (int) file_read.length();

char] data = new char[size];
while(chars < size)

System.out.println(chars);

chars += in.read(data, chars, size-chars);

}

74

new

new

new

}

sharedArea.setText(new String(data));
}
catch(IOException ¢)
System.out.println(e);

fd.dispose();

public void saveFile()

{

}

FileDialog fd = new FileDialog(f,"Save file", FileDialog. SAVE);
DataOutputStream out;
File file_wnrite;
fd.show();
Stning dir = fd.getDirectory();
String file = fd.getFile();
t{ry
file_write = new File(dir, file);
out = new DataOutputStream(new FileOutputStream(file_write));
out.writeBytes(sharedArea.getText());

catch(IOException e)
System.out.println(e);

)
fd.dispose();

public void actionPerformed(ActionEvent ¢)

{

String cmd = e.getActionCommand();
System.out.printin("The command is : "+ cmd);
if(cmd.equals("open™))
{
openFile();
wxtFrame.sendOpenFile();
}
else 1f(cmd.equals("exit™))

System.exit(0);

75

}
else if(cmd.equals(“save™))

saveFile();

}
}

public void windowClosing(WindowEvent ¢)

{
f.dispose();

}

public void windowOpened(WindowEvent €)

{
}

public void windowClosed(WindowEvent e)

{
}

public void windowlconifiedWindowEvent ¢)

{
}

public void windowDeiconified(WindowEvent e)

{
}

public void windowActivated(WindowEvent e)

{
}

public void windowDeactivated(WindowEvent e)

{
)

public void newBounds(int w, 1nt h)

{
}

public boolean isActive()
{

retumn true;

76

}

public void showStatus(String msg)

{

System.out.printin(msg);

public void play(URL utl, String name)
{

System.out.println("Unable to play” + name);

public void play(URL url)
{

System.out.printin("Unable to play” + url.getFile();

public AudioClip getAudioClip(URL utl)

return null;

)

public AudioClip getAudioClip(URL utl, String name)
{

return null;

public class TextAreaListener implements TextListener

{
public void textValueChanged(TextEvent e)

{
if(e.getSource() != null)
{
System.out.printin("The VALUE CHANGED------");

else

{
TextArea temp = (TextArea) Habanero.getSource();
sharedArea.setText(temp.getText());

}
}

}
public class TextAreaKeyListener implements KeyListener

7

public void keyPressed(KeyEvent)

{
‘
if(e.getSource() != null)
}
else
{
TextArea t = (TextArea) e.getSource();
System.out.println("---------- TExt is:" + t.getText();

sharedArea.setText(t.getText();
}

catch (ClassCastException evt)
{
System.out.printin("Error finding the class");
retumn;

!

}

public void keyTyped(KeyEvent €){}

public void keyReleased(KeyEvent ¢) {}

}

78

Textjava

package CollabTextEditor;
import ncsahabanero.*;
import java.awt.*;

import java.awt.event.*;

public class Text extends TextArea
{

public TextEditorFrame txtFrame;

public Text(Stnng txt, int rows, int cols, TextEditorFrame txtFrame)
{
super(txt, rows, cols);
this.txtFrame = xtFrame;
this.enableEvents(AWTEvent. TEXT_EVENT_MASK);
}
public void processTextEvent(TextEvent €)
{

System.out.printin("Processing Text");
if(TextEditor.hasKey)
txtFrame.sendInsertAction (0, getText();

79

SharedArea.java

package CollabTextEditor;
import java.awt.*;

import java.awt.event.*;
import ncsa.habanero.*;
import ncsa.awt.draw.*;

public class SharedArea extends Panel implements MouseListener
{

/ / public TextArea txtArea;

public Text txtArea;

public PaletteBox pb;

pavate TextEditorFrame txtFrame;

pnvate String txt;

prvate int rows;

prvate int cols;

public class ColorSelectionListener extends MouseAdapter

{
public void mouseClicked(MouseEvent e)

{
System.out.println("Color Selected” + pb.getSelectedColor());
xtArea.setColor(pb.getSelectedColor());

)
}

public SharedArea(TextEditorFrame wxtFrame, String txt, int rows, int cols)
{

this.txt = txt;

this.rows = rows;

this.cols = cols;

this.txtFrame = xtFrame;

setup();
public void setup()

txtArea = new Text(txt, rows, cols, txtFrame);
txtArea.addMouseListener(this);
pb = new PaletteBox(PaletteBox. HORIZONTAL);
pb.addMouseListener(new ColotSelectionListener());
setLayout(new BorderLayout());

this.add("North", xtArea);
this.add("South", pb);

}

public String getText()

{

return (String)txtArea.getText();

public void setText(Stang text)

{

txtAreasetText(text);

}

public void select(int start, int end)

{

wxtArea.select(start, end);

}
public void processTextEvent(TextEvent e)

{
if(Habanero.isLocalEvent())
Habanero.sendEvent(e);

}

public synchronized void mouseEntered(MouseEvent)

{

System.out.println("mouseEntered");

public synchronized void mouseExited(MouseEvent
€) {System.out.println("mouseExited");}
public synchronized void mousePressed(MouseEvent e)

{
System.out.prntin("PRessed");

public synchronized void mouseReleased(MouseEvent)
{
System.out.println("Released");
int start_pos = xtArea.getSelectionStart();
it end_pos = txtArea.getSelectionEnd();
System.out.println("The selection is : " + start_pos + " to " + end_pos);
txtFrame.sendSelectAction(start_pos, end_pos,
TextEditorFrame.SELECT_ACTION);

}
public synchronized void mouseClicked(MouseEvent ¢)

81

{
System.out.println("Clicked");

GeneralArea.java

package CollabTextEditor;
import java.awt.*;

import ncsa.habanero.*;

import ncsa.habanero.streams.*;
import java.util.*;

public class GeneralArea extends Panel
{
public TextArea txtArea;
prvate MirrorFrame f;
public Label atle, lockInfo;
pavate Choice participants;
prvate Panel p1;
povate TextEditorFrame txtFrame;
private String txt;
private int rows;
private int cols;
public boolean isKeyAvailable = false;
public GeneralArea(MirrorFrame f, TextEditorFrame txtFrame,String txt, int
rows, int cols)
{
this.txt = tx;
this.rows = rows;
this.cols = cols;
this.f = f;
setup();
}
public void setup()

xtArea = new TextArea(txt, rows, cols);
utle = new Label(" Lock Information ");
title.setBackground(Color.yellow);
lockInfo = new Label("");
lockInfo.setBackground(Color.white);
setLayout(new BorderLayout());
participants = new Choice();

Collobject cob = f.getCollobject();
Session session = cob.getSession();
Enumeration e = session.getParticipants();
while(e.hasMoreElements())

83

{

participants.add(((SessionParticipant)e.nextElement()).getName());

p! = new Panel();

pl.setLayout(new BorderLayout();
pl.add("North", atle);
pl.add("Center", participants);
pl.add("South", lockinfo);

add("North", rxtArea);

add("Center", p1);

ControlAreajava

package CollabTextEditor;
import java.awt.*;

import java.awt.event.*;
import ncsa.habanero.*;
import ncsa.awt.draw.*;

public class ControlArea extends Panel
{

public TextEditorFrame txtFrame;
public Button transfer;

public Button releaseLock;
Key editorKey = Key.NoKey;
PaletteBox p;

public class GetLockAction implements ActionListener

{
public void actionPerformed(ActionEvent ae)
{
System.out.pantln("Get Lock");
if(Habanero.isLocalEvent())
{
EditorLock el = new EditorLock();
editorKey = wxtFrame.mf.getCollobject().arbitrator().getLock(el,
editorKey);
System.out.printin("The key is:" + editorKey);
if(editorKey.equals(Key.NoKey))

return;

}

else

{
transfer.setEnabled(false);
releaseLock.setEnabled(true);
TextEditor.hasKey = true;
wxtFrame.getKey();

}

}
}

public class ReleaseLockAction implements ActionListener

85

{

public void actionPerformed(ActionEvent ac)
{
System.out.println("Release Lock™);
xtFrame.mf.getCollobject().arbitrator().releaseLock(editorKey);
editorKey = Key.NoKey;
TextEditor.hasKey = false;
releaseLock.setEnabled(false);
transfer.setEnabled(false);
txtFrame.releaseKey();

public ControlArea(TextEditorFrame txtFrame)
{
this.txtFrame = xtFrame;
this.setBackground(Color.red);
setup();

public void setup()

{
transfer = new Button(" Get Lock.");
transfer.addActionListener(new GetLockAction());
releaseLock = new Button("Release Lock");
releaseLock.addActionListener(new ReleaseLockAction());
this.add(transfer);
this.add(releaseLock);

J
public void setSize(int height, int width)
{

super.setSize(height, width);

ObjectWrapper.java
package CollabTextEditor;
import java.io.*;

public class ObjectWrapper implements Serializable
{

int start_pos, end_pos;
int action;

public ObjectWrapper(int start_pos, int end_pos, int action)
{
this.start_pos = start_pos;
this.end_pos = end_pos;
this.action = action;
)
public int getStartPos()

return start_pos;
]

f
public int getEndPos()
{

return end_pos;

}
}

87

CustomEvent.java

/i

* This class has been modified from HabEvent class which is
* part of mpEdit editor designed and implemented by John

*+ Jensen.

v/

package CollabTextEditor;
import java.awt.event.*;
impofrt java.awt.*;

import ncsa.habanero.db.*;

public class CustomEvent extends AWTEvent implements StorageMode

{
private static final long serialVersionUID = -3482600173282549405L;

protected Object arg;
protected int uniquelD;

public final static long HAB_EVENT_MASK = 0x4000;
public final static int OBJECT_SEND = 8889;
public CustomEvent(Obiject source, int id, Object arg)

{

super(source, id);
this.arg = arg;

public CustomEvent(Object source, int id, Object arg, int uniqueID)

{
super(source, 1d);
this.uniquelD = uniquelD;
this.arg = arg;

}

public Object getArg()
{

return arg;

}

public int getUniqueID()
{

return uniquelD;

)

public int getStorageMode()
{

char kc;

KeyEvent ke;

Obiect o;

//System.out.printin("In getStorageMode.");
o = this.getArg();

if(o instanceof KeyEvent)

{
ke = (KeyEvent)this.getArg();
kc = ke.getKeyChar();

if (ke =="\n")
{

//System.out.printin("Storing...");
return StorageMode. STORE;

}

else

{
/ / System.out.println(" Accumulating.");
return StorageMode. ACCUMULATE;

}

)

else
return StorageMode.STORE;
}
)

89

VITA AUCTORIS

NAME: Harvinder S. Minhas

YEAR OF BIRTH 1972

EDUCATIONS: Shivap University, India
1990-94 B. Engg (Computer)

University of Windsor,
Windsor, Ontatio
1996-2000 M.Sc.

	University of Windsor
	Scholarship at UWindsor
	2001

	Investigation of real-time multi-user application development frameworks.
	Harvinder S. Minhas
	Recommended Citation

	tmp.1363898525.pdf.Warue

