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Abstract

I t  is known tha t every torsion free Cn-module o f fin ite  degree is completely reducible. 

In  th is thesis, we provide a form ula for the decomposition o f the tensor product o f 

any simple torsion free Cn-module o f fin ite  degree w ith  any simple fin ite  dimensional 

C„-module.
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1 Introduction

Let L  be a fin ite  dimensional simple Lie algebra over the complex numbers C, and 

let H  be a Cartan subalgebra o f L . A n  L-m odule V  is said to  be a weight module i f  

and only i f  V  =  ® Ae# . V\, where

V\ =  {v  € V  | hv =  \ (h )v  fo r a ll h € H }

Every simple fin ite  dimensional L-m odule is a weight module and is completely de­

term ined by its  highest weight. However, in  the case of simple in fin ite  dimensional 

L-modules, the story is quite different. In  fact Lemire [13] showed the existence o f 

simple in fin ite  dimensional modules which are not weight modules and due to  this, the 

classification o f a rb itra ry  simple modules seems unreachable. Therefore, the theory 

has focused on the classification o f simple weight L-modules having fin ite  dimensional 

weight spaces.

Early  work by Lem ire [12], Lem ire and Pap [14], and B ritte n  and Lemire [3], [4] 

classifies a ll simple in fin ite  dimensional modules having at least one 1-dimensional 

weight space.

A  big break through in  the general problem of classifying a ll simple L-modules 

having fin ite  dimensional weight spaces came when Suren Fernando [7] reduced the 

classification to  classifying all simple torsion free modules o f fin ite  degree. A  weight 

L-m odule is torsion free provided a ll roo t vectors in  L  act in jective ly  on V. Such 

a module has, as its  set o f weights, a complete integral roo t la ttice  coset, and each 

weight space has the same dimension, called the degree o f the module. Fernando goes 

on to  show th a t the only simple Lie algebras over C adm itting  torsion free modules 

are those o f type A  and C.

M athieu [15] classifies and provides a realization of a ll simple torsion free weight 

modules o f fin ite  degree. However, encouraged by M athieu, B ritte n  and Lem ire con­

tinued on to  obta in  an elementary and exp lic it realization o f simple torsion free mod­

ules using the notion o f tensor products. Georgia Benkart, in  a private communica­

tion, showed th a t the tensor product of any torsion free module o f fin ite  degree and 

a fin ite  dimensional module produces a torsion free module. M otivated by this, and

1
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the ir own result th a t e xp lic itly  constructs a ll simple torsion free modules o f degree 

1, B ritte n  and Lemire [5] used the machinery established by M athieu to  prove tha t 

every simple torsion free module o f fin ite  degree is a submodule o f the tensor product 

of a simple degree 1 torsion free module and a fin ite  dimensional module.

The proof of th is  result was complicated by the fact th a t torsion free A„-m odules 

are not, in  general, completely reducible. However, B ritten , Khomenko, Lemire, and 

M arzorchuk [2] established the complete reduc ib ility  o f torsion free Cn-modules o f 

fin ite  degree. The tragic flaw o f the ir theorem is th a t they d id  not give the constituents 

o f the decomposition. In  th is  thesis, we help d im in ish th is  gap by g iving the actual 

tensor product decomposition when a simple torsion free Cn-module o f fin ite  degree 

is tensored w ith  a simple fin ite  dimensional module.

We begin by reviewing several known concepts tha t w ill be used throughout th is 

thesis. In  sections 2 and 3, we provide some general properties o f associative algebras 

and Lie algebras, in  particu lar, we give a more detailed illus tra tio n  o f semisimple Lie 

algebras. The work in  section 3 largely follows Humphreys [8 ].

Continuing w ith  a review o f known concepts, sections 4 and 5 give an overview o f 

the representation theory concepts used in  th is  thesis. In  particu la r, we give several 

results (most o f which are found in  [8 ]), re la ting to  the specific types o f modules o f 

interest, those being fin ite  dimensional modules, admissible modules, Verma modules, 

and torsion free modules. Also in  section 5, we introduce the m ain tools used in  

obta in ing the tensor product decomposition formulas given in  sections 8  and 9, in  

particu lar, the form al character and the central character.

The crucial result used in  obta in ing the form ula in  section 9 is M ath ieu ’s classi­

fication o f simple torsion free modules o f fin ite  degree [15]. In  sections 6  and 7, we 

review M ath ieu ’s construction, g iving his results in  the setting needed in  th is  thesis.

In  section 8 , in  particu la r 8.3, we give our firs t previously unpublished results. 

Theorem 8.2 gives a form ula for the decomposition o f the tensor product o f any sim­

ple admissible highest weight C „-m odule and any simple fin ite  dimensional module. 

Finally, in  section 9, we give Theorem 9.1, which is the m ain result o f th is thesis. 

This theorem provides a form ula for the decomposition of any simple torsion free

2
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C„-m odule o f fin ite  degree and any fin ite  dimensional C^-module.

2 Algebras

In  th is section, the algebraic structures and basic results th a t w ill be studied in  th is 

thesis are b rie fly  reviewed. I t  is assumed th a t the reader is fam ilia r w ith  vector space 

theory, linear algebra, and some concepts from  group theory.

2.1 A ssociative A lgebras

D efinition 2.1. A n  associative algebra A  is a vector space over a fie ld  F endowed 

with an operation *  : A  x  A  —» A  having the fo llow ing properties:

i)  There exists 1 € A  such that a — a * l  =  l * a  fo r  a ll a € A

i i )  (ax  +  by) *  z =  a (x  * z) +  b(y * z), x  * (ay +  bz) =  a(x  * y )  +  b(x * z)

H i) x  * (y  * z) =  (x  * y) * z

fo r  a ll a,b E F, and x ,y ,z  E A. A  m ultiplicative subset o f A  is a subset S C A

with the property that x * y  € S fo r  a ll x ,y  E S. A  subalgebra B  <  A  is a sub-vector 

space o f A  w ith the property that 1 E B  and x  * y  E B  fo r  a ll x ,y  E B .

Definition 2.2. Let A  and B  be associative algebras, w ith products * and ★ re­

spectively. Let : A  —> B  be a linear map from  A  to B  w ith the property that 

ip(x * y) =  (p(x) *  ip(y) fo r  a ll x ,y  E A. Then </? is called an algebra hom om or­

phism. I f  (p is bijective then <p is called an isom orphism . In  this case, A  and B  

are said to be isom orphic, denoted A  =  B . When tp is bijective, and A  =  B , we call 

p  an autom orphism .

Definition 2.3. Let A  be an associative algebra, and I  C A  be a sub-vector space of 

A. Then I  is a left ideal of A  provided y * x E I  fo r  all x  E I  and y E A. I  is a 

right ideal of A  provided x * y  E I  fo r  all x  E I  and y E A. I  is a tw o sided ideal 

i f  I  is both a left and right ideal.

3
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D efinition 2.4. Let A  be an associative algebra, and S C A. Let 

X  =  { I  C A  | I  is an ideal o f A  and S C / }

Then H /e i  ^ ideal generated by S.

D efinition 2.5. Let A  be an associative algebra, and I  be a two sided ideal o f A . The 

quotient algebra is the associative algebra A /1  =  { x  +  I  \ x  E A }  w ith addition  

and scalar m ultip lica tion  given by

a(x  +  I )  +  b(y +  I )  =  (ax +  by) + 1

and product

(x  +  I )  * (y +  I )  =  x  * y +  I  

fo r  any x ,y  E A  and a, b G F.

Definition 2.6. Let A  be an associative algebra. Then

Z (A )  =  { x  € A  | xa =  ax f o r  a ll a € ^4} 

is called the centre o f A.

Z (A )  is a commutative subalgebra o f A.

2.2 Localization o f A lgebras

D efinition 2.7. Let A  be an associative algebra, and S C A  be a m ultip licative subset 

o f A. Then S satisfies Ore’s localizability condition provided

i ) l e S

i i )  S does not contain any zero divisors in  A

H i) F o r any s € S and a E A  there exist s' E S and a' E A  such that 

as1 =  sa1

iv )  Fo r any s E S and a E A  there exist s" E S and a" E A  such that 

s"a  =  a" s

4
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We call conditions in )  and iv )  the righ t and respectively le ft Ore conditions. 

Further, i f  S  C A  is a m u ltip lica tive  subset o f A, then an element s G S  is said 

to satisfy the righ t Ore condition provided for any a G A  there exist s' G S  and 

a1 G A  such th a t as1 =  sa'. Likewise for the le ft Ore condition. Thus a m u ltip lica tive  

subset containing 1, and not containing any zero divisors, satisfies Ore’s loca lizab ility  

condition provided a ll o f its  elements satisfy both  the le ft and righ t Ore conditions.

We now show th a t i f  two elements satisfy the le ft and righ t Ore conditions, then 

the ir product also satisfies the le ft and righ t Ore conditions.

Property 2.1. Let A  be an associative algebra, and S C A  be a m ultip licative subset 

of A . Let Si,S2 G S be two elements w ith the property that fo r  any a G A , there 

exist s 'j, s2 G S and a[ , a'2 G A  such that as\ =  S'iOj and as'2 =  S2 a’2. Then fo r  any 

a € A  there exist s' G S and a' € A  such that as’ =  S i^ a '.  Likewise, i f  Si,S2 £ S 

have the property that fo r  any a G A, there exist s", s2 G S and a", a2 G A  such that 

s‘[a  =  a "s i and s2a — a2s2- Then fo r  any a € A  there exist s" G S and a"  G A  such 

that s"a  =  a"s\S2 .

Proof. We prove only the statement about the righ t Ore condition, since proof for 

the le ft Ore condition is sim ilar. Let a £ A, and choose G S  and a\ G A  such tha t 

as[ — S \a \. Next, choose s2 G S and a2 G A  such th a t a[s2 =  S2 a2. Then

CIŜ S2 =  S\(l^S2 =

setting a' =  a2 and s' — s'jSj gives the desired result. □

In  particu lar, the previous property implies th a t i f  S C A  is a set o f vectors satis­

fying the le ft and righ t Ore conditions, which doesn’t  contain any zero divisors, then 

the m u ltip lica tive  subset generated by {1 }  U S satisfies Ore’s loca lizab ility  condition.

Theorem  2.1. Let A  be an associative algebra, and S C A  be a m ultip licative sub­

set o f A . I f  S satisfies O re’s localizability condition, then there exists an associative 

algebra B  w ith the fo llow ing properties:

5
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i)  There exists an injective algebra homomorphism <p: A  —» B .

i i )  I f  s E S then (p(s) is invertible in  B .

H i) I f  b E B  then b =  cp(s)~1(p(a) fo r  some s E S and a E A.

Proof. (See 3.6.2 and 3.6.4 in  [6 ]) □

The follow ing shows th a t such an algebra is unique.

P ro p o s it io n  2.1. Let A  be an associative algebra, and S C A  be a m ultip licative  

subset o f A  satisfying O re ’s localizability condition. I f  B \ and B 2  are associative 

algebras satisfying properties i ), i i )  and H i) in  the above theorem, then B \ =  B 2.

Proof. Let (pi : A  —> B i and <p2 : A  —> B 2 be in jective homomorphisms o f A  in to  B \ 

and B 2 respectively. Define ip : B i  —> B 2 by

(̂&(s)-Vi(a)) =
by property in ) ,  <p is surjective. We claim  th a t for i  =  1,2, we have

=  ‘M 5 2 ) _1<Ma2) i f  and only i f  there exist x  E S and y E A  such tha t 

xa\ =  ya2 and xs\ =  ys2, and hence th a t ip is both  well defined, and injective. Indeed, 

i f  there exist such and x  and y, then

<Msi)-1<Mai) = 0t(si)-ViO»O-10t(aO0i(ai)
=  (p i(xs i)~ l (p i{xai)

=  <Pi{ys2Yl 4>i{ya’i )

=  <pi(s2)~1(pi(y)~l <pi{y)<pi {a2)

Conversely, i f  (pi{s\)~l  (pi{a\) =  <pi{s2)~ 14>i(a2), then since S satisfies Ore’s localizabil­

ity  condition, we can choose x  E S  and y E A  such th a t x s i — ys2. Therefore,

(pi{xax) =  <pi{x)<pi(a 1) =  0 i ( x ) ^ i( s i ) 0 i ( s i ) _V j( a i)

=  ^(a;)(/» i(si)0 j(s 2) _V i( a 2 )

=  <i>i{y)<Pi{s2)<Pi{s2)~l(pi{a2)

=  M y ) M a 2) =  <t>i{ya-2 )

6
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Since fa is in jective, we have xa \ — ya2, which proves our claim. I t  remains to  

show tha t ip is linear, and a homomorphism. Let 6 1 ,6 2  £ B i,  we w ill show tha t 

ip(bi +  62) =  ip(bi) +  ip(62), and ip{b\b2) =  '0(6 i)'^(62). To th is  end, choose s i,s 2 € S 

and a i , a2 E A  such tha t

61 =  0 i ( s i ) _V i ( o i )  and h  =  fa {s 2)~ l fa {a 2)

A pp ly ing  Ore’s loca lizab ility  condition, choose t  E S and c E A  such th a t ts \ =  cs2, 

set s =  ts i =  cs2. Then,

ip ih  +  62) =  ip ( fa (s i)~ 1fa (a 1) +  fa (s 2)~ 1fa (a 2))

=  ( t ) fa (a i)  +  fa (c )fa {a 2)))

=  'lp (fa(s)~1((f>1(ta i +  ca2 )))

=  4>2 {s)~l (0 2( ^ i  +  ca2))

=  ^ 2 (5 ) 1{(p2{t)(p2{a \) +  <p2{c)(p2{a2))

=  < M s i)- V 2 (a i)  +  0 2 (s2) _V 2 (n2)

=  -0 (6 i )  +  ^ ( 62)

Next, choose u E S and d E A  such th a t ua\ — ds2. Therefore

<M ai)< M 52) _1 =  fa {u )~ l fa{d)  and =  f a iu ) -1 fa (d )

The follow ing calculation completes the proof:

^ ( 6 i 62) =  i p i f a i s i ^ f a i a ^ f a i s ^ f a i a ^ )

=  '0 (</>i(si)“ V i ( « ) _V i( d ) 0 i(a 2))

=  ip {fa (us i)~1fa (d a2))

=  f a iu s iy ' f a id a ^

=  0 2 ( s i) - 1<M ai)<M s2) ~ V 2 (n2)

=  'ip(fa{si y 1fa {a l )) ip {fa {s2)~ 1fa (a 2))

=  ip(bi)ip(b2)

□

7
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In  practice, when A  is embedded in  B , we w ill sim ply denote the image o f an 

element a G A  by a itself, thus considering A  as a subalgebra of B . Therefore, for an 

associative algebra A, and a m u ltip lica tive  subset S satisfying Ore’s condition, i f  B  

is an associative algebra satisfying properties i )  i i )  and in )  in  Theorem 2.1, we w ill 

consider A  as a subalgebra o f B , and denote the elements o f B  by s- 1a, w ith  a G A  

and s € S.

D efinition 2.8. Let A  be an associative algebra, and S C A  be a m ultip licative subset 

o f A , satisfying O re’s localizability condition. The localization o f A  relative to S is 

the unique associative algebra, denoted As, satisfying

i)  A  <  A s ­

t i)  Every element o f S is invertib le in  As- 

H i) Every element o f A s can be w ritten  in  the fo rm  

s_1a fo r  some s G S and a € A.

2.3 Lie Algebras

The follow ing sections review the structure o f Lie algebras, and in  particu la r semisim­

ple Lie algebras. The m a jo rity  o f results in  th is section are taken from  [8 ], generally 

follow ing the nota tion  o f tha t source.

Definition 2.9. A  Lie algebra L  is a vector space over a fie ld  F endowed w ith an 

operation [•, •] : L  x  L  —> L  having the fo llow ing  properties:

i)  [ax +  by, z] =  a[x, z] +  b[y, z] , [x, ay +  bz] =  a[x, y ] +  b[x, z]

i i )  [x, x] =  0

H i) [x, [y, z]] +  [y, [z, x]\ +  [z, [x, y]] =  0

fo r  a ll a, b € F, and x ,y ,z  € L . A  Lie subalgebra K  <  L  is a sub-vector space o f 

L  w ith the property that [x ,y ] € K  fo r  a ll x ,y  €  K .

8
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Notice th a t conditions i )  and i i )  give us 0 =  [x — y ,x  — y] =  [x, x] — [y, x\ — [x , y\ +  

[y, y] =  — [y, x] — [x. y], and hence [x ,y \  =  — [y, x] for a ll x ,y  £ L . Also, notice th a t 

given any associative algebra A, we can create a Lie algebra A ' by setting A  =  A ' as 

vector spaces, and defining [•, •] : A ' x  A ' —> A ' by [x, y] =  x * y — y  *  x  for a ll x, y €  A '.

For an example o f a Lie algebra, le t F b e a  vector space over a fie ld F, and consider 

E nd  V , the set o f a ll linear transform ations on V". Define [-, *] : E nd  V  x  E n d  V  —*• 

E nd  V  by [x ,y \ =  xy  — yx  where xy  denotes the composition o f maps x  and y. Then 

E nd  V  w ith  th is operation, and the usual addition, is a Lie algebra. We call th is  the 

g en e ra l lin e a r  a lg eb ra , denoted g l(V ).  In  the case where V  is fin ite  dimensional, 

E nd  V  =  M n(F), the n  x n  matrices over F. In  th is case, the operation [•,•] is 

[x, y] =  xy  — yx  where xy  is the usual m a trix  m u ltip lica tion  o f x  and y. We denote 

the general linear algebra o f n x n  matrices o f F  by gln( F).

D e f in it io n  2 .10. Let K  and L  be L ie  algebras. Let p  : K  —> L  be a linear map with  

the property that p ( [x ,y ])  =  [<p(x), <p(y)\ fo r  a ll x ,y  € K . Then <p is called a L ie  

a lg e b ra  h o m o m o rp h is m . As w ith associative algebras, i f  <p is bijective then ip is 

called an is o m o rp h is m , and K  and L  are said to be is o m o rp h ic , denoted K  =  L . 

Likewise, when p  is bijective, and K  =  L , we call p  an a u to m o rp h is m .

D e f in it io n  2 .11. Let L  be a L ie  algebra. Then

[L, L] =  span¥{[x , y] \ x, y  e L )

is called the d e r iv e d  a lg e b ra  o f L . I f  [L ,L ] =  (0) then L  is said to be a b e lia n .

For subalgebras K \  and K 2 o f a Lie algebra L, we also make use o f the notation:

[K i,  K 2\ =  spanr { [x ,y \  \ x  € K x,y  €  K 2}

D e f in it io n  2 .12. Let L  be a L ie  algebra, and I  C L  be a sub-vector space o f L . Then 

I  is an id e a l o f L , denoted I  <  L , provided [x, y] G I  fo r  a l lx  G I  and y  € L . We say 

L  is s im p le  provided L  is not abelian and the only ideals o f L  are (0) and L  itself.

In  the defin ition  o f simple, we require th a t L  be non-abelian because i f  L  is abelian, 

then every sub-vector space o f L  is an ideal. Hence i f  L  is abelian and the only ideals

9
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of L  are (0) and L  itself, then L  =  (0) or L  is one dimensional. Therefore the added 

condition tha t L  is not abelian sim ply guarantees tha t L  is neither tr iv ia l nor one 

dimensional.

Proposition 2.2. Let L  be a L ie algebra, and I , J < L b e  ideals o f L  

an ideal o f L .

Proof. Let x  =  [ x j , x j ]  for some x j  £ I  and x j  £ J. Then,

[x ,y ] =  [[x u x j ] , y ] =  [ x i , [ x j , y ] }  +  [x j , [ y ,x j ] ]

Since I  <  L , we have tha t [y, x j]  £  / ,  hence

[.x j , [ y , x / ] ]  =  ~ [ [ y ,x j ] , x j \  £ [ I ,J ]

Likewise, since J  <  L , we have th a t [ x j , y] £ J , hence

[xI , [x J ,y}\ £  [I , J ]

Therefore [x ,y ] £ [ I ,  J].

3 Semisimple Lie Algebras

Though some o f the results in  th is section are true over an a rb itra ry  field, for sim plic­

ity, we w ill restric t our a tten tion  to  the case when F  =  C. Hence a ll Lie algebras and 

Vector spaces throughout th is section are assumed to  be over the complex numbers. 

Further, from  th is  po in t on, we only consider fin ite  dimensional Lie algebras. Hence, 

in  a ll results, the Lie algebra L  is assumed to  be fin ite  dimensional.

D efinition 3.1. Let L  be a L ie  algebra. Let L =  L , and fo r  each i  >  1 let 

£W =  [Z/h-i) Then the sequence ( L ^ )  is called the derived series o f L . L

is called solvable i f  L ^  =  (0) fo r  some n. I f  I  <  L  then I  is said to be a solvable 

ideal o f L  provided I  is solvable as a L ie  algebra.

Notice th a t due to  Proposition 2.2, we have th a t for each i,  l / 1) is an ideal o f L.

10

. Then [ I ,  J ] is

□
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Proposition 3.1. Let L  be a L ie  algebra. I f  I  and J  are solvable ideals o f L , then 

I  +  J  is a solvable ideal o f L .

Proof. (See Proposition 3.1 in  [8 ]) □

Proposition 3.2. I f  L  is a L ie  algebra then L  has a unique maxim al solvable ideal, 

denoted Rad L .

Proof. Notice th a t (0) <  L, and (0) is solvable. Therefore L  contains at least one 

solvable ideal. Due to  the fin ite  dim ensionality o f L, we therefore have the existence 

of a m axim al solvable ideal. I t  on ly remains to  show uniqueness. To th is  end, let 

M i and M 2 be m axim al solvable ideals o f L. The previous proposition implies tha t 

M  =  M i +  M 2 is a solvable ideal o f L. B y m axim a lity  o f M i,  we have th a t M  =  M i 

and likewise, m axim a lity  o f M 2 gives us M  =  M 2 . Thus M i =  M 2 □

Definition 3.2. Let L  be a L ie  algebra. L  is called sem isim ple provided Rad L  =

(0). i.e. L  is semisimple provided L  has no non -triv ia l solvable ideals.

Proposition 3.3. I f  L  is a non -triv ia l semisimple L ie  algebra, then there exist ideals 

L \,  ■. ■ ,L k  <3 L  such that each L i is simple as a L ie  algebra, and

t  =  ® i ,
i= i

Proof. (See Theorem 5.3 in  [8 ]) □

3.1 R oot Space D ecom position

Definition 3.3. Let L  be a L ie  algebra. For each x  € L , let adx : L  —> L  be the 

linear map on L  given by adx (y ) =  [x ,y ] fo r  a ll y  € L . Define ad : L  —> E n d  L  by 

ad{x) =  adx fo r  a ll x  € L . For each x  G L , adx is called the adjoint map o f x.

Definition 3.4. Let V  be a vector space, and 4> € E nd  V . Then is said to be

sem isim ple provided a ll o f the roots o f the m in im a l polynom ial o f <f> are distinct. 

Let L  be a L ie algebra. A n  element x  E L  is called sem isim ple provided adx is 

semisimple.

11
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Notice th a t since C is algebraically closed, 0  is semisimple i f  and only i f  0 is 

diagonalizable. i.e. there exists a basis 23 o f V  such tha t the m a trix  o f 0  w ith  respect 

to  23 is a diagonal m atrix .

The follow ing is a standard result from  linear algebra, and as such, we w ill om it 

the proof.

P ro p o s it io n  3.4. Let V  be a vector space w ith  d im  V  =  n  <  oo, and 0 1 , . . .  , 0 m £ 

E nd  V  be commuting diagonalizable endomorphisms. Then 0 i , . . . ,  0TO are sim ulta­

neously diagonalizable.

Proof. (O m itted.) □

Recall tha t an element x  in  a Lie algebra L  is called semisimple provided adx £ 

E n d V  is semisimple.

D e f in it io n  3.5. Let L  be a L ie  algebra. A subalgebra T  <  L  is called to r a l  provided 

T  7  ̂ (0), and every x  £ T  is semisimple.

P ro p o s it io n  3.5. Let L  be a L ie  algebra, and T  <  L  be a tora l subalgebra o f L , then

fr,r] = (o).

Proof. (See Lemma 8.1 in  [8 ]) □

Th is implies tha t i f  L  is a Lie algebra, and T  is a to ra l subalgebra o f L , then for 

every x ,y  € T  we have

(adxady -  adyadx){z ) =  [x, [y, z]\ -  [y, [x, z]] =  - [ z ,  [x, y}} =  0

for a ll z £ L , and hence adxady =  adyadx. Therefore, the collection o f a ll adx such 

th a t x  £ T  is a commuting fam ily  o f diagonalizable endomorphisms on L. Due to  

P roposition 3.4, we can find a basis IB =  {y \ , . . . ,  yn} of L  consisting o f simultaneous 

eigenvectors o f the endomorphisms adx for a ll x  £ T . Hence, for each 1 <  i  <  n, and 

each x  £ T  we have adx(yi) =  7 ixyi for some 7 ^  £  F. Therefore, each eigenvector yl

defines a function o f eigenvalues 7 , £  T *  given by 7 *(x) =  7 « , for a ll x  £ T , where T *

denotes the vector space o f a ll linear functions o f T  in to  C.

12
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P ro p o s it io n  3.6 . I f  L  is a non -triv ia l semisimple Lie algebra, then there exists an 

x  E L  such that x  is semisimple.

Proof. (See Section 8.1 in  [8 ]) □
In  particu lar, the previous proposition implies tha t every non -triv ia l semisimple 

Lie algebra contains a to ra l subalgebra. Further, due to fin ite  dimensionality, we have 

tha t every n on -triv ia l semisimple Lie algebra contains a m axim al to ra l subalgebra.

D e f in it io n  3 .6 . Let L  be a semisimple L ie Algebra. A  C a r ta n  su b a lg e b ra  H  <  L  

is a m axim al toral subalgebra o f L .

D e f in it io n  3 .7 . Let L  be a semisimple L ie algebra, and f ix  a Cartan subalgebra H . 

For each a  E H * , set

L a fo r  a  E A  are called the r o o t  spaces.

i.e. L a is the collection o f a ll simultaneous eigenvectors o f ad (H ) w ith  correspond­

ing eigenvalue function  a. Since there exists a basis o f L  consisting o f simultaneous 

eigenvectors o f ad H ,  we have tha t

Notice th a t L 0 =  { x  E L  \ adh{x) =  0 for a ll h E H }  is Cl (H ), the centralizer o f 

H  in  L.

L a =  { x  E L  | adh{x) =  a (h )x  fo r  a ll h E H }

Then the elements a  € A  are called the ro o ts  o f L  w ith respect to H , and the sets

L  — L q ©  L a
aeA

P ro p o s it io n  3 .7 . I f  L  is a semisimple L ie algebra, and H  <  L  is a Cartan subalgebra 

o f L  then CL(H ) =  H .

Proof. (See Proposition 8.2 in  [8 ]) □

This gives us the follow ing r o o t  space d e c o m p o s it io n :

L  =  © ® L a
a e A

13
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3.2 The Special Linear A lgebra sl(2,C)

We introduce the simple Lie algebra 5 / (2 , C ), which is the subalgebra o f g l(2,C) 

consisting o f a ll 2  x  2  traceless matrices over C. 5 / (2 , C) is called the sp ec ia l lin e a r  

a lg e b ra  o f rank 1. Here, the rank refers to  the dimension o f the Cartan subalgebra. 

A  basis for 5 / (2 , C) is given by { x i , x 2 , h}  where

0  1 0  0 1 0
X\ = x 2 = h

0  0 1 0 0  - 1

Notice th a t H  =  spanc{h } is a Cartan subalgebra. Further,

[h, x i]  =  2 x i and [h, x 2] =  —2 x 2

therefore tak ing a  € H *  given by a (h ) =  2 gives us L a =  s p a n c {x \}  and L _ a =

spanc{x2}. Notice, also, th a t in  th is  case [ x i , x 2] =  h.

3.3 T he Euclidean Space o f Linear Functionals on H  

D efinition 3.8. Let L  be a L ie  algebra. Define k  : L  x  L  —> C by

n (x ,y )  =  T r(a d xady) 

fo r  a ll x ,y  € L. k is called the K illing form o f L .

Clearly, k is a symm etric b ilinear form  on L. Further, k has the follow ing asso­

ciative property:

K ([x ,y ],z ) =  «(*, [v.*])

for a ll x ,y ,z  £ L . To see th is, notice th a t for any x ,y  G L,

ad[x,v\(z) =  [[x ,y ],z ] =  [x, [y ,z ]\ -  [y, [x,«]] =  adxady(z ) -  adyadx(z )

and hence ad\x^  =  adxady — adyadx. Therefore

T r(a d ix<y]adz) =  T r{a d xadyadz — adyadxadz)

=  T r(a d xadyadz — adxadzady)

—  T r ( a d xad[yiZ])

14
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Proposition 3.8. Let L  be a semisimple L ie  algebra, w ith Cartan subalgebra H .  

Then k  is non-degenerate on H . i.e. I f  k (x , y) =  0 fo r  a ll y  G L , then x  =  0.

Proof. (See Coro llary 8.2 in  [8 ]) □

Proposition 3.9. Let L  be a semisimple L ie  algebra, w ith Cartan subalgebra H , and 

root system A  with respect to H . For each 7  G H *, there exists a unique element 

t-f G H  such that 'y(h) =  « (f7, h), fo r  every h G H .

Proof. For each t  G H , we can define a map : H  —> C by 7 t (h) =  n (t, h), fo r a ll 

h G H .  O f course, since k is a b ilinear form , each 7 t is a linear map. We now consider 

the map p  : H  —» H *  given by p ( t)  — 7 *. Again, since k  is bilinear, the map ip is 

linear. Also, since n is nondegenerate on H , the map p  is in jective. Therefore, <p is an 

in jective vector space homomorphism o f H  in to  H *. However, since d im i /  =  d im  / / * ,  

we must have th a t p  is surjective as well. Hence, p  is invertib le, i.e. for each 7  G H *, 

we can choose a unique =  y?_1 (7 ) such th a t 7 (h) =  «;(f7, h) for a ll h G H . □

In  particu la r, for each a  G A , there exists a unique t Q such tha t

a (h ) =  K (ta , h)

for a ll h G H . Notice th a t in  the above proposition, due to  the linea rity  o f p ~ x, we 

have th a t i f  7 1 ,7 2  G H *  then t 7 l+ 72 =  t7l +  t l2 .

Proposition 3.10. Let L  be a semisimple L ie  algebra, w ith Cartan subalgebra H , 

and root system A  with respect to H . Then the fo llow ing properties hold:

i)  A  spans H *.

i i )  For every a  G A , a ( ta) 7  ̂0. 

in )  I f  a  € A  then —a  G A .

Proof. (See Proposition 8.3 in  [8 ]) □

Definition 3.9. Let L  be a semisimple L ie  algebra, w ith Cartan subalgebra H , and 

root system A  uhth respect to H . Define {-,•)■  H *  x  H *  —> C by

(7 , A) =  K (ty ,tx )

fo r  each 7 , A G H *.

15
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Proposition 3.11. Let L  be a semisimple L ie  algebra, w ith  root system A . Let 

E  =  span$i(A) be the real span o f the roots in  A. Then (•, •) is an inner product on 

E. Hence E  is a Euclidean space.

Proof. (See Section 8.5 in  [8 ]) □

3.4 Sim ple R oots

D efinition 3.10. Let L  be a semisimple L ie  algebra w ith Cartan subalgebra H  and 

root system A. A  base A++ C A fo r  the root system A  is a basis fo r  the vector space 

H * w ith the property that fo r  each 0  G A,

0  =  ^ 2  aaa
ae A++

fo r  some aa, w ith either a ll aa e Z>0 or a ll aa G Z<0. I f  A++ is a base fo r  A , then 

the roots a € A++ are called sim ple roots.

Let E  — span^(A ) denote the real span o f the roots in  A . For each 7  E E, let 

A + (7 ) =  {a  € A  | (7 , a ) >  0 }. For each a e A ,  let

Pa =  { \ e E \  (a ,A)  =  0}

be the hyperplane perpendicular to  a. Since the union o f fin ite ly  many hyperplanes 

cannot cover the entire space E , we have tha t

E \  \ J P a ^ < b
aeA

We call an element 7  € E  regular i f  7  e E  \  U«eA Ea, and singular i f  7  € Pa for 

some a e A .

I f  7  e E  is regular, then for every a  e A , we have (7 , a ) 7  ̂ 0, hence a  e A + (7 ) 

or a  e —A + (7 ). Thus A  =  A + (7 ) U —A + (7 ).

For each a  e A + (7 ), we say th a t a  is decom posable w ith  respect to  A + (7 ) i f  

there exist a i , a 2 e A + (7 ) w ith  a  =  ot\ +  a 2. We say th a t a  € A + (7 ) is indecom ­

posable i f  a  is not decomposable.

16
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T h e o re m  3.1. Let L  be a semisimple L ie  algebra, w ith root system A . Let E  =  

span^(A ). I f  7  G E  is regular, then

A ++(7 ) =  {a  6  A + (7 ) | a  is indecomposable}

is a base fo r  A . Further, i f  A ++ is any base fo r  A, then A ++ =  A ++ (7 ) fo r  some 

regular 7  G E.

Proof. (See Theorem 10.1.2 in  [8 ]) □

In  particu lar, the previous theorem implies th a t every root system A , o f a semi­

simple Lie algebra, has a base.

D e f in it io n  3 .11. Let L  be a semisimple L ie algebra, w ith root system A , and base 

A + + . Let f3 G A . I f  (3 =  52aeA++ aaa, we say that (3 is a p o s it iv e  ro o t  i f  a ll

aa G Z>o, and that (3 is a n e g a tiv e  ro o t  i f  a ll aa G Z<o- Set

A + =  { o  G A  | a  is  p os itive }

and

A -  =  { a  G A  | a  is  negative}

Clearly, by the defin ition  o f a base, A  =  A + U A - . Notice th a t since a  G A  

implies —a  G A , we have th a t A -  =  —A + . Also, notice th a t i f  A ++ =  A ++ (7 ), 

w ith  7  regular, then A + coincides w ith  our earlier defin ition o f A + (7 ). Indeed, let

A ++ =  { q i ,  . . . ,  a „ } ,  and le t a  G A + . Then
n

Oi UjOj
4 = 1

for some a* G Z>0. Therefore
n

(7 , 0!) =  ^ a j ( 7 ,ai)
1 = 1

since ( 7 , a j ) >  0 for a ll i, we have th a t (7 , a) >  0, hence a  G A + (7 ). Conversely, i f  

a  G A + (7 ), then
n

(7,o) = > 0
2 = 1

and since either a ll ai are non-negative, or a ll a* are non-positive, we must have the 

former, i.e. a* >  0 for a ll i. Therefore a  G A + .

17
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D e f in it io n  3 .12. Let L  be a semisimple L ie  algebra, w ith Cartan subalgebra H , and 

root system A  with respect to H . F o r each a  € A , choose t a € H  as in  Proposition  

3.9, and define

h — 9 — o ^a
a ~  K(ta ,ta )  (a , a)

P ro p o s it io n  3.12. Let L  be a semisimple L ie  algebra, w ith Cartan subalgebra H ,

and root system A  with respect to H . I f  A ++ is a base fo r  A , then {h a \ a  € A ++ }

is a basis fo r  H .

Proof. Set A ++ = ' { a i , . . .  , a n}. Since d im #  =  d i m # * ,  and A ++ is a basis for # * ,  

we need only show tha t { h a i , . . . ,  han]  spans # .  To th is end, le t t  € # ,  and choose 

7  € # *  such tha t 7 (h) =  n (t, h) for a ll h G # .  Since A ++ is a basis for # * ,  we have 

tha t 7  =  Ym =\ aia i f ° r  some a* € C. Therefore for every h € # ,  we have

n  n

k (t, h) =  7 (h) =  ^ 2 aia i(h )  =  '^ 2 a i K (tcti, h) 
i= l i= l

Therefore
n

n (t ditati j hf fi
i= 1

for a ll h €  # .  Since k is non-degenerate on # ,  we must have

v - '  , v —' f^(ta i, )
t  — /  y a ita% — /  y Uj r -  hQi

i= l i= 1

□

For a semisimple Lie algebra L  w ith  roo t system A  w ith  respect to  the Cartan 

subalgebra # ,  we now fix  a base A ++ =  { a u , . . . ,  « „ } ,  and hence we have a basis 

9) =  { h i , . . . ,  hn}  o f # ,  where hi =  ha i- We call 9) the s im p le  basis o f #  w ith  

respect to  A ++ . We can also obta in  the dual basis for # *  re lative to  9) by choosing, 

for each i,  07  G # *  given by

( h j  ) — <5y

and extending linearly. We call

5  =  { ^ i ,  • • • ,wn}

18
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the fundam ental basis for H*,  and the elements ojt £ $ are called the fundam ental 

weights.

D efinition 3.13. Let L  be a semisimple L ie  algebra, w ith Cartan subalgebra H.  

Define the product ( • , • ) :  E  x  A  —> C by

(7 . a ) =  2  7— ~T {a , a )

fo r  a ll 7  £ E  and a  € A .

Notice th a t th is defin ition  is possible, since by Proposition 3.10,

(a , a ) =  K(ta, t a) =  a ( ta) ^  0

Also, notice th a t (•, •) is linear in  the firs t coordinate, bu t not in  the second, and for 

any a  £  A , and 7  € E, we have th a t

/ 7 \   /, , \ r> ^ ( ^ 7  i^ai)  ___________ / \'y{ha) — ha) — 2 —  —- — 2- -  — (^ j
fc(ta i t aj  (q , CXj

In particu la r, i f  A ++ =  { a j , . . . ,  o n}, we have

(u)i, otj) =  Sij

Proposition 3.13. Let L  be a semisimple L ie  algebra, w ith  root system A . Then the 

fo llow ing properties hold:

i)  d im Z/Q =  1 fo r  every a  £  A .

i i )  I f  a , (3, a  +  (3 E A  then [L a, Lp\ =  L a+/g.

H i) For each a  £ A , d im [L a,L _ Q] =  1, and {h a}  is a basis fo r  

\L a, L —a] .

iv )  F o r each a  £ A  and each x a £ L a there exists an X -a £  L _ a 

such that [xQ,X -a\ — ha and spanc{xa, x_ a , hQ}  =  s l(2,C).

v ) L  is generated by (JaeA L a ■

P roo f (See Proposition 8.3 and Proposition 8.4 in  [8 ]) □
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Due to  the previous proposition, we can choose a set o f elements

{ x Q | a  £  A }  C L

w ith  the follow ing properties:

i ) For each a £  A w e  have L a =  spanc{xa}

i i ) [xa,x_ a] =  ha , for each a  £  A

in )  spanc{xa , X -a, ha}  =  s l(2,C)  for each a  £  A .

Notice th a t since spanc{xa , x_a, ha}  =  s l(2,C),  we must have

[/la, Xa] — 2xa

and

[hoj, X—qJ — 2x_a

D e f in it io n  3 .14. Let L  be a semisimple L ie  algebra w ith Cartan subalgebra H . Let 

A  be the root system o f L , w ith base A ++ =  { « ! , . . . .  an}. A  C h e v a lle y  basis o f L  

is a basis

{ x a | a  €  A }  U {h ai | 1 <  * <  n }

satisfying the properties

i)  [xa, x_a] =  ha fo r  a ll a  £ A.

i i )  If, whenever a , f3,a +  f3 £ A we have [xa , xg] =  catpxa+p, 

then a,—/?•

L e m m a  3.1. Let L  be a semisimple L ie  algebra w ith  Cartan subalgebra H . Let A 

be the root system o f L . Fo r each a  £ A  choose x a £ L a and x_Q £ L - a such that 

[xa,x _ Q] =  ha . Then there exists an automorphism a o f L  such that a (x a) =  —x_a 

fo r  a ll a  £ A  and a (h ) =  —h fo r  a ll h £ H .

Proof. (See Proposition 14.3 in  [8 ]) □

P ro p o s it io n  3.14. Let L  be a semisimple L ie  algebra w ith Cartan subalgebra H . Let 

A  be the root system o f L  w ith base A ++ =  { a i , . . . ,  a „ } .  Choose { x a | a  £  A }  such 

that L a =  spanc{xa}  and [xa,x _ a] =  ha fo r  a ll a  £ A . Then

{ x Q | a  £ A }  U {h ai | 1 <  i  <  n }
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is a Chevalley basis o f L .

Proof. We need only show th a t if, whenever a , (3, a  +  /3 G A  we have

[Xa , xp \  Ca,pXot+P •

then cQtp — —C-a - 0 . Let a ,/3 ,a + P  G A . B y Proposition 3.13, since [L a ,Lp \ =  L a+p, 

we have \xa , x ^  — ca^pxa+p for some cQtp G C and [x_a, x_p] =  c_a^ p x _ a_p for some

c -a -p  € C. Let u  : L  —> L  be an automorphism o f L , as in  Lemma 3.1. The follow ing

calculation gives us our result

C—a,—p X —a —P 1 [ x ~  a ^ X —̂

=  [—a:-*, - x - p ]

=  o { [ x a ,xp] )

=  cr(catp xa+p)

=  Ca,pX—ot—P

□

3.5 R oot Strings

D e f in it io n  3 .15. Let L  be a semisimple L ie  algebra over C, w ith root system A . I f  

a, (3 G A , then the r o o t  s t r in g  o f a  through (3 is defined to be

{(3 +  ia  G A  | i  G Z }

The follow ing proposition gives a characterization of the root strings occurring in

A .

P ro p o s it io n  3.15. Let L  be a semisimple L ie  algebra, w ith root system A . Then the 

fo llow ing properties hold:

i)  fo r  a ll a  G A , ia  G A  i f  and only i f i  =  ±  1.

i i )  F o r a ll a , (3 G A , f3(ha) G Z .
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in )  F o r a ll a,(3 e A , (3 — (3(ha)a  £ A .

iv )  For each a,f3  £ A , i f  m  and n  are the largest non-negative 

integers such that (3 — m a , [3 +  n a  £ A  then ft — ia  £ A  

fo r  a ll —m  < i < n  and f3(ha) =  m  — n.

P roo f (See Proposition 8.4 in  [8 ]) □

Notice th a t for each a , (3 £ A , since

0 ( K )  =  </S,Q> =  2 ^
(a , a )

we have tha t

f 3 - 2 ^ \ a e A  
(a , a )

which, in  the Euclidean space E , is the reflection o f the roo t (3 in  the hyperplane 

perpendicular to  a.

3.6 T he W eyl Group

D efinition 3.16. Let L  be a semisimple L ie algebra, w ith root system A . Let E  be 

the Euclidean space spanned by A . For each a  € A , let aa : E  —> E  denote the 

reflection in  the hyperplane perpendicular to a . i.e.

("7
= 7 -  2 r J ~ ^ : a  =  7 -  (7, a ) a  {a , a)

fo r  a ll 7  £ E . Define the W eyl group, denoted W , to be the group generated by 

{a Q | a  £ A } .

Proposition 3.16. Let L  be a semisimple L ie  algebra, w ith root system A . Let A ++ 

be a base fo r  A . Then W  is generated by the set {a a \ a  € A ++}.

Proof. (See Theorem 10.3 in  [8 ]) □

Hence any element a  £ W  can be w ritte n  as a product o f reflections in  the simple 

roots.
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Definition 3.17. Let L  be a semisimple L ie  algebra, w ith root system A. Let A++ 

be a base fo r  A, and A+ be the set o f positive roots w ith respect to A++. Define

0eA+

Proposition 3.17. Let L  be a semisimple L ie  algebra, w ith root system A. Let A++ 

be a base fo r  A. Then fo r  each a  £  A++, i f  (3 £  A+ with (3 ^  a  then aa ({3) £ A+.

Proof. (See Lemma 10.2 B in [8]) □

Corollary 3.1. Let L  be a semisimple L ie  algebra, w ith root system A. Let A++ be 

a base fo r  A. Then fo r  each a  £  A++, we have crQ(p) =  p — a.

Proof. Since oa permutes the (3 £  A+ with (3 ^  a, we have that

/  \

&a(p) — &a
1 1 ^ 
2 “ + 2  E  $

0  e A+  

0 * a  )

1 1 V-  ̂ _

p e A+  

0 ^ a

□

Corollary 3.2. Let L  be a semisimple L ie  algebra, w ith Cartan subalgebra H  and 

root system A . Let u j\ , . . .  ,ojn be the fundam ental weights w ith respect to a fixed base 

A ++ =  { a i , . . . ,  a n}. Then
n

p = J 2 oji
i= 1

Proof. Since {c ji,  . . . ,  uin}  is a basis for H *, we can w rite  p =  5Z"=1 for some 

Oi £  C. For each k, due to  C oro llary 3.1, we have

p - a k =  aak(p) =  p -  (p, a k)a k
n

=  p -  { Y a iU t ,a k)a k 
2=1 
n

=  p -  Y ai(Ui ’ a k)a k 
i= 1

=  p — aka k

Therefore ak =  1 for all k. □
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We now define another useful action o f the W eyl group. I t  is sim ply the usual 

action under a translation  by p.

D e f in it io n  3 .18. Let L  be a semisimple L ie  algebra, w ith root system A  and fixed 

base A + + . Let E  be the Euclidean space spanned by A , and W  be the Weyl group o f 

L. Define the a ffin e  a c tio n  o f 'W o n E t o b e - : W 'X . E - ^ E  given by

group W . Let A + and A  be the sets o f positive and, respectively, negative roots w ith  

respect to a fixed base A ++ . For each a  G W  define the le n g th  o f a, denoted la, to

We say a is even i f  la is even, and a  is o d d  i f  la is odd.

Notice th a t Proposition 3.17 implies th a t each simple reflection oa w ith  a  G A ++ 

has length equal to  1. Therefore the reflections in  the simple roots are a ll odd.

D e f in it io n  3 .20. Let L  be a semisimple L ie algebra, w ith Weyl group W . Define 

sgn : W  —> Z 2 by

fo r  each a  € W .

P ro p o s it io n  3 .18. Let L  be a semisimple L ie  algebra, w ith Weyl group W . Then 

the map sgn : W  —> Z 2 is a group homomorphism.

a ■ 7  =  <7 ( 7  +  p) — p

D e f in it io n  3 .19. Let L  be a semisimple L ie  algebra, w ith  root system A  and Weyl

be

l(j =  |{<* € A + | <r(a) G A  }|

1 i f  a  is  even 

- 1  i f  a  is  odd

Proof. (See page 54 in  [8 ]) □

C o ro lla ry  3 .3 . Let L  be a semisimple L ie algebra w ith root system A  and base A ++ 

fo r  A . Let W  be the Weyl group o f L . Then fo r  each a  G W , a is even i f  and only i f

k

a  =  Y l aoi
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fo r  some ct; G A ++ w ith  k even, and a  is odd i f  and only i f

k

<? =  Y [P a i
i=1

fo r  some a* G A ++ w ith  k odd.

Proof. B y  Proposition 3.16, we have

k 

i= 1

for some an G A ++. Since sgn is a homomorphism, and every simple reflection is odd, 

we have tha t
k

sgn(a) =  JJst?n(crQi) =  ( - l ) fc
i=l

Therefore a  is even i f  and only i f  k is even, and a  is odd i f  and only i f  k  is odd. □

3.7 T ype C  Lie algebras

The m ain focus o f th is  thesis w ill be the sym plectic algebras, denoted sp(2n, C) 

for n  G Z>o- These are also called type C  Lie algebras, and sp(2n, C ) is sim ply 

denoted Cn. sp(2 n, C) is defined as follows: Let

/  : Cn x  ^  €

be the non-degenerate skew-symmetric form  on Cn given by

f ( v ,w )  =  v1
0  I n

~ In  0
w

where I n denotes the n  x  n  id e n tity  m atrix . Define sp(2n, C ) to  be the subalgebra 

of g l(2 n ,C ) consisting o f a ll endomorphisms x  G g l(2 n ,C ) such th a t f ( x ( v ) ,w )  =  

- f ( v , x ( w ) ) .

The algebras Cn for n  G Z >0  are simple, and therefore semisimple Lie algebras. 

We now give a realization o f the Lie algebra Cn• We fu rthe r specialize the general 

concepts from  Sections 3.1-3.6 to  th is  special case.
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Cn can be viewed as the subalgebra o f g l( 2 n, C ) consisting o f a ll matrices o f the

r2
form  X  =

r3 r4
and FT =  T ,.

where each T* is an n  x n  m a trix  such th a t T f  =  — T4, T j =  r 2

We fix  a Cartan subalgebra T t: equal to  the set o f a ll diagonal matrices in  Cn. i.e.

*

D  0
\

n  =  < D  is a diagonal n  x  n m a trix  over C
0 —D

4

Define the linear maps e4, . . . ,  e2n € H *  by

/ dn 0 0
\

e* 0 0

\ 0 0 d2n,2n /

=  da

for any diagonal m a trix  (da) £ H .

Notice th a t for each i, w ith  1 <  i  <  n, we have e* =  — en + i , and th a t { e i , ..., en} 

is a basis for Ti*.

Definition 3.21. Define the epsilon basis o f l i *  to be

6  =  { e i , . .. ,en}

The root system A  o f Cn w ith  respect to  7 i is given by:

A  =  {±C j ±  ej | i  <  j }  U { ± 2 Cj}

A  base for A  is given by

A++ =  {ei -  £i+1  | 1 <  i  <  n  -  1} U {2 e „}

We iden tify  the simple roots w ith  respect to  th is  base as a* =  e, —e, +1 for 1 <  i  <  n —1 

and a n =  2e„, hence A ++ =  { q i ,  . . .  The positive roots w ith  respect to  A ++

are given by

A + =  {ej ±  6j  | 1 <  i  <  j  <  n }  U {2ej | 1 <  i  <  n }
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and the negative roots by A  =  — A + . The follow ing is a Chevalley basis for C „:

S'u—tj ^-n+j,n+i f  OT 1 ^  i  <  j  ^  Tl

Kti+tj =  &i,n+j "f" Cj,n+i f  OT 1 ^  ^  J ^  ^

^2tj &i,n+i I  ^  i  ^  Tl

X - a  =  x ^ / o r  eac/i a G A +

hat ®i+l,t+l (^n+i,n+i Cn+i+l,n+t+l) /o ^  1 ^  i  ^  7Z. 1

han =  &n,n &2n,2n

Where e^j is the u n it m a trix , w ith  a one in  the i , j  position, and zeros elsewhere.

Lemma 3.2. The epsilon basis {e i , . . . , e n} is orthogonal w ith respect to the inner 

product given in  Section 3.3. Further, (e,, et ) =  (e j,e j) fo r  a l l i , j .

Proof. For 1 <  i  <  n, we have

h-2ei =  [X2et , %—2 et] =  ^i,n+i^n+i,i ^n+i,i^i,n+i =  &i,i ^n+i,n+i

Therefore, fo r 1 <  i , j  <  n, we have

2 (2 e 2 e ) =  =  — en+j,n+j) =  25,j

In  particu la r, i f  i  ^  j  then (ej.Cj) =  0. Therefore the elements e* for 1 <  i  <  n  are 

pairwise orthogonal. I t  only remains to  show th a t for any i ,  j ,  we have (e*, e*) =  (ej, ej). 

To th is end, select i,  w ith  1 <  i  <  n. Then

2 t i(h a i) 2 Cj(ej j l,i+ 1 &n+i,n+i "t" ®n-H+l,n+*+l) 2

Therefore
2  _  o (2 et,Ct — Ct+i) _  ^ ______ (ei i €i)_____

(e* — ej+i,  e, — Cj+i) (e,, ef) +  (e j+i, Cj+i)

Solving th is equation gives us (et , e,) =  {ei+ i,e i+ i) ,  and hence (ej,e*) =  for a ll

i , j .  □

Proposition 3.19. Let (•, •)„ denote the in n e r product given in  section 3. 3, and (•, •) 

denote the inner product w ith  respect to which { e i , . . .  ,en}  is an orthonorm al basis 

fo r  TL*. Then there is some k G C such that

(7 i,72)« =  ^ (7 1 , 7 2 )
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fo r  a ll 7 1 ,7 2  6  span® A . In  particu lar, we s t il l have 7 (ha) =  fo r  a ll 7  6  span® A  

and a  G A .

P roof Set £ =  (e i,e i)K. Due to  the previous lemma, we have k =  {el) e*)* for a ll i. 

Let 7 1 ,7 2  € span® A . Then

n  n

7 i =  ^ 2  OtCi and 72  =  ^  hlU
j=l i=l

for some at , bi G R.

n  n  n  n

(7 1 , 7 2 )*  =  =  J ^ a ^  =  A : ^ a i 6i (ei ,ei ) =  £ (7 1 , 7 2 )
i=l j= l i=l i=l

□

For ease o f com putation, in  Cn we w ill use the inner product w ith  respect to  which 

the 6j are orthonorm al. Due to  the previous proposition, the formulas

7 ( W  =  2 ^(a, a)

and
/ \ 0 (7, a)
7 ) =  7  -  2 7 — T<*(a, a)

remain unchanged under th is  new inner product.

We can define a norm on the Euclidean space E  =  span® A , by

M  =  \ / ( 7 , 7 )

Notice th a t the roots o f C „ come in  only two different magnitudes. Indeed, for 

1 <  i  <  j  <  we have tha t

(ej — Cj, Cj — e_j) =  (ej +  e_j, +  t j )  =  ( —e, +  Cj, —Cj +  ej) =  ( —e, — ej, —e, — e )̂ =  2

and fo r 1 <  i  <  n  we have

(2ej, 2 6j)  =  (—2ej, —2e*) =  4

Therefore roots o f the form  ±e, ±  t j  have length equal to  \ /2  and roots o f the form  

± 2 Ci have length equal to  2 .
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D e f in it io n  3 .22. Let a  € A . Then a  is called a s h o r t  r o o t  i f  \a\ =  \ /2  and a  is 

called a lo n g  ro o t  i f  |a| =  2 . Denote by A  the set o f a ll short roots, and by A + and 

A -  the positive, and respectively negative, short roots, i.e.

A + =  {ei ± e j \ l  < i  <  j  < n )

A "  =  - A +

and

A  =  A + U A '

The fundam ental weights o f Cn are given by

Ui =  y i  efc
*:=i

Indeed, for 1 <  * <  n  and 1 <  j  <  n, we have

i
kfc=l

ej+ i)
(ej  — ej+ l)  — eJ+l)

A:=l fc= l

0  i f  j  > i

0  i f  j  < i  =  h j

1 i f  j  =  i

and

. \  o ( E L i £fc>2e«) _  s^  e*, a n )  -  2  {2en 2en) -  2  2 ^  2 <ifcn -  Sin
\k= 1 k= 1

The fundam ental basis for Cn is

£  =  {c ji,  . . .  ,u n}

The element p — \  S aeA+ a  =  E L i  u i *s g iven> w ith  respect to  the epsilon basis, by

n

p =  ^ ( r a  -  i  +  l)e .
i= l

Let W  denote the W eyl group o f Cn. and denote by aa the reflection in  the 

hyperplane perpendicular to  a  fo r each a  € A . We now illus tra te  the action o f these
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reflections on elements o f the Euclidean space E , w ith  respect to  the epsilon basis. 

Notice th a t (e*,, el — ej) =  0, provided k  ^  i  or j .  This means th a t i f  k  ^  i  or j  then 

e* lies on the hyperplane perpendicular to  £; — Ej, and hence aej_6j.(efc) =  t*,. Further,

and

aU-£j (€i) ~  ei 2 . ^  _  . (Cj E j )  —  Ej
V̂i * j > * j )

Viewed as perm utations on the subscripts o f the elements { e i , . . . ,  e „}, the maps au _€j 

where i  <  j  are the two cycles ( i  j ) .  Th is implies tha t W  contains a ll two cycles,

and hence contains all perm utations on the subscripts o f the elements { e i , . . . ,  en}.

Also, (Ej,2Ei) =  0 provided j  ^  i. Hence, i f  i  j  then cr2t i (ej) =  Ej. Further,

cr2t i (et) =  e» -  (Ei,2 Ei)2 Ei =  -e*

Thus, o2u is the map th a t changes the sign o f e,. Defining e_i =  —e,, we have tha t 

W  contains any number of sign changes on the subscripts o f the elements { e i , . . .  en}. 

Since W  is generated by the reflections aai for a* € A ++, and

A ++ C {Ei — Ej | 1 <  i  <  j  <  n }  U {2ej | 1 <  i  <  n }

we have th a t W  is the group o f a ll perm utations and sign changes on the subscripts 

of { e i , . . . , e n}.

D e f in it io n  3 .23. Define W  to be the subgroup o fW  generated by the reflections in  

the hyperplanes perpendicular to the short roots, i.e. W  is generated by {cru±ej | 1 <  

i  <  j  <  n }.

We can s im p lify  calculations by notic ing th a t for any 7  £ £  and any short root 

a  € A , we have

<7,«) =  2 ^  =  (7 ,a )
(a, a)

Since aei- ej G W  for 1 <  i  <  j  <  n, we have th a t W  s till contains a ll perm utations 

on the subscripts o f the elements { e i , . . .  ,en}. The elements aei+€j generate a ll even 

sign changes. Indeed,

&£i+ej(€i) — (^ii +  £ j)(ei "h £j) £j
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Cr( ,+ ( j ( t j )  — €j  — (£j )  ei +  €j ) ( €i +  6j )  ~  ~ €i

and

=  efc

whenever k i , j .  Therefore at i- eiati+ej is the map given by e* i—> e_j and Cj i—> e_j. 

We therefore have th a t W  is the group o f a ll perm utations and even sign changes on 

the subscripts o f the elements { e i , . . . ,  en}.

4 Representations

4.1 R epresentations o f Lie A lgebras and A ssociative A lge­

bras

Recall th a t for any vector space V , the general linear algebra g l(V )  is the Lie algebra 

formed by tak ing  the vector space E nd  V , o f a ll endomorphisms on V, together w ith  

the com m utator product [x, y\ =  xy  — yx  for x ,y  G E nd  V .

D e f in it io n  4 .1 . Let L  be a L ie  algebra. A  re p re s e n ta t io n  o f L  is a p a ir (<f>, V ) 

where V  is a vector space over C, and (j): L  —> g l(V ) is a L ie  algebra homomorphism, 

where g l(V ) denotes the general linear algebra. In  this case, the vector space V  is 

called an L -m o d u le . For x  S L , we can define the a c tio n  o f x o n V  by

xv  =  <j)(x)(v)

fo r  each v E V .  I f  W  <  V  is a sub-vector space o fV  with the property that (p(x)w  G W  

fo r  a ll x  G L  and w  G W , then W  is said to be a s u b m o d u le  o fV ,  and W ) 

is called a s u b -re p re s e n ta tio n . In  the case where V  has no non-triv ia l, proper 

submodules, we say that the module V  is s im p le , and that the representation (cj), V ) 

is ir re d u c ib le .

We have already, in  a sense, made use o f one Lie algebra representation, tha t 

being the a d jo in t  re p re s e n ta tio n  which is by defin ition

ad \ L  —> g l(L )
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given by ad(x ) =  adx for any x  G L. Th is is indeed a representation, since for any 

x ,y ,z  € L , we have

ad\x,y](z) =  [fc, y \,z ] =  [x, [y, z}\ -  [y, [x, z]] =  adxady(z ) -  adyadx (z )

and hence ad([x, y]) =  ad(x)ad(y) — ad(y)ad(x). Under the adjo in t representation, L  

is itself, an L-module.

D e f in it io n  4 .2 . Let L  be a L ie  algebra, and U and V  be L-modules, w ith action given 

by <pu : L  —* g l(U ) and (fiv '■ L  —> g l(V ) respectively. The L-modules U and V  are said 

to be e q u iv a le n t, denoted U  ~  V  provided there exists a vector space isomorphism  

6  : U  —> V  such that

6 ((j)U(x )(u ))  =  cj)V (x)(d (u ))

fo r  a ll x  € L  and u G U.

D e f in it io n  4 .3 . Let L  be a L ie  algebra, and V  be an L-module. A  subset S C V  o fV  

is said to g e n e ra te  V  provided whenever W  <  V  is a submodule o f V  w ith S  C W , 

we have W  =  V . i.e. there are no proper submodules o fV  containing S. We say an 

element v E V  generates V  i f  { v }  generates V .

D e f in it io n  4 .4 . Let L  be a L ie  algebra, and V  be an L-module. V  is said to be 

c o m p le te ly  re d u c ib le  i f  fo r  every submodule U <  V , there exists a submodule 

U ' <  V  such that

v  =  u ® u '

P ro p o s it io n  4 .1 . I f  L  is a L ie  algebra, and V  is a completely reducible L-module, 

then any submodule W  <  V  is also completely reducible.

Proof. Let W  be a submodule o f V. I f  U <  W  is any submodule o f W , then U  is a 

submodule o f V , hence V  =  U  ©  U' for some submodule JJ' <  V . Set =  U ' f l  W . 

For any w  € W , we have w  = u \ + U 2 where u\ € U  and U 2  £  U '. Since U 2 = w — U \  € 

W , we must have U2 € U'w . Therefore w  =  u\ +  U2 w ith  iq  G U  and U2 € U'w . Hence

W  =  U +  U'w  
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Since both  U' and W  are submodules o f V , we must have th a t U'w  is a submodule 

of V . Hence U'w  is a submodule o f W . Further, since U  f l  U ' =  (0), we must have 

U  f l  U'w  =  (0). Therefore

W  =  U @ U lv

□

D e f in it io n  4 .5 . Let L  be a L ie  algebra, and V  be an L-module. V  is called a sem i­

s im p le  module i f  there exist simple submodules W \ , . . . ,  Wk such that

k
v  =  © t v ,

i= 1

P ro p o s it io n  4 .2 . Let L  be a L ie  algebra, and V  be a semisimple L-module. Then V  

is completely reducible.

Proof. Let U <  V  be a submodule o f V. Choose simple modules W i, . . . ,  Wk such 

tha t V  =  Wi. For each i, since U  f l  Wi is a submodule o f the simple module 

Wi, we must have U Pi Wi =  (0) or U (1 W, =  Wr. I f  U ^  V , then there exists i \  w ith  

U  f l  W jj =  (0). Choose { i 1;. . . ,  i m}  m axim al such tha t U, W ix, . . . ,  W im are linearly 

independent, i.e. U  f l  (W ix ©  • • • © Wirn) =  0. Set U' =  W tl ©  • • • ffi Wim. C learly 

U  © U ' is a submodule o f V. Thus, for any i  ^  { * i , . . . ,  im}  we have W i f l  ( t / ©  U ') is a 

submodule o f Wi. Since Wt is simple, th is  implies tha t e ither W i f l  (U  ©  U ') =  (0), or 

Wi C U  ©  U '. The former contradicts m axim a lity  o f the set { * i , . . .  ,*m},  and hence 

we must have Wi C I f  ©  U' for a ll 1 <  i  <  k. Therefore V  =  U  ©  U '. □

The converse o f the above proposition is not always true. However, i t  is true  in  

the case where V  is fin ite  dimensional.

P ro p o s it io n  4 .3 . Let L  be a L ie algebra, and V  be a fin ite  dimensional completely 

reducible L-module. Then V  is semisimple.

Proof. We apply induction  on d im  V. I f  d im  V  =  1 then V  is simple, hence semi­

simple. Suppose the proposition is true  for any completely reducible module W  w ith  

d im  W  <  d im  V. I f  V  is not simple, choose a proper submodule W  <  V . Since
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V  is completely reducible, there is a submodule W ' <  V  such th a t V  =  W  ©  W '. 

By Proposition 4.1, the modules W  and W ' are completely reducible. Further, since 

dim  W  <  d im  V  and d im  W ' <  d im  V , we can find simple modules W i , . . . ,  Wk <  W  

and W { , . . . ,  W ^ <  W ' such tha t

k

W -  =  @ W i

i = l

and
m

i=l
Hence

k m
V  =  Q > W i < s Q )W 'i

i = 1 t= l

□

Since for any vector space V, the endomorphisms E n d  V  form  an associative 

algebra under the operation o f composition, we can give a s im ilar defin ition for rep­

resentations o f associative algebras.

D e f in it io n  4 .6 . Let A  be an associative algebra. A  re p re s e n ta tio n  o f the algebra 

A  is a p a ir  (0, V ), where V  is a vector space over C, and

(f): L  —> E n d  V

is an associative algebra homomorphism. Once again, the vector space V  is called an 

A -m o d u le . The action o f A  on V , submodules, sub-representations, simple modules, 

irreducible representations and completely reducible representations are defined fo r  

associative algebras analogous to the ir definitions fo r  L ie algebras.

D e f in it io n  4 .7 . Let A  be an associative algebra, and V  be an A-module. A n  as­

c e n d in g  c h a in  o f submodules is a fin ite  sequence C =  (Wo, . . . ,  Wk) consisting o f 

submodules o fV  such that

W o C W i C - ' - C W k

where a ll inclusions are proper. The number k is called the length o f the ascending 

chain C, and is denoted by 1(C).
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Definition 4.8. Let A  be an associative algebra, and V  be an A-module. Define the 

length o fV  to be the (possibly in fin ite ) value

Leng th (V ) =  sup{/c € Z > 0  | 1(C) =  k f o r  some ascending

chain  C o f  submodules o f  V }

Theorem  4.1. (Jordan-Holder) Let A  be an associative algebra, and V  be an A - 

module. I f  Length ( \ / )  =  k <  oo then there exists an ascending chain

W o C W iC - - -  c w k

such that Wo =  (0), W k =  V  and fo r  each 1 <  i  <  k the module W i/W {- \ is simple. 

Such a sequence is called a com position series o f V . Further, i f  Wo C • • • C  W k 

and Uo C • • • C Uk are two composition series o fV ,  then the semisimple modules

k k

u  =  ©  U i/U i- !  and w  =  ( $  W i / W - i
i=  1 i=1

are equivalent.

Proof. (See Theorem 3.5, and page 156 in  [11]) □

4.2 The U niversal Enveloping A lgebra

Definition 4.9. Let L  be a L ie  algebra. A  universal enveloping algebra o f L  is

an associative algebra i t ,  with a map a  : L  —> i t  satisfying

a {[x ,y })  =  a (x )a (y ) -  a {y )a (x )  

such that fo r  any associative algebra A  having a map if) : L  —» A  satisfying

*/>([x,y]) =  iP(x)*P(y) -

there exists a unique associative algebra homomorphism  : i t  —► A  such that tp =  

ip1 o a .

The follow ing proposition shows uniqueness o f the universal enveloping algebra.
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Proposition 4.4. Let L  be a L ie  algebra. I f  ill a n d il2 are both universal enveloping 

algebras, w ith maps o \ : L  —> H i and cr2 : L  —» H 2 respectively, then there is an 

associative algebra isomorphism  : H i —» i l 2 such that er2 =  </? o <7 1 . Hence H i =  i l 2 

and <r2 is simply the image o f o \ under this isomorphism.

Proof. Since H i is a universal enveloping algebra, we can find an algebra homomor­

phism ipi : H i —► H 2 such tha t

C2  — <Pi o (J\

We need only show th a t Lpi is a bijection. Since H 2 is also a universal enveloping 

algebra, we choose the algebra homomorphism y>2 : H2 —► H i such tha t

o\ =  y?2 o cr2

O </?2 0  <72 =  °  <Ti — 0 2

g>2 0 0 &1 =  P2 0 C?2 =

H i is the unique homomorphism such tha t

l i i i  0  0 1  =  cn

likewise, 1U2 : H2 —♦ H2 is the unique homomorphism such tha t

life 0 cr2 =  cr2

Thus g>2 0  =  lu i and =  ln 2- Therefore <£2 =  yjj"1, and hence </?i is an

isomorphism. □

D efinition 4.10. Let V  and W  be vector spaces over C. The tensor product o fV  

and W , denoted V  8 > W  is the vector space spanned by a ll vectors o f the fo rm  v < 8  w

w ith v € V  and w  € W , such that the fo llow ing properties hold:

i)  (av 1 +  fw2) ® w  =  avi <8 )w  +  to 2 <8 > w
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ii) v  <g> (aw\ +  bw2) =  a v ® w i  +  b v ® w 2

fo r  a ll a,i) e C, 6  y  and w \,w 2 £ W . We can extend this defin ition to the

tensor product o f any fin ite  number o f vector spaces, by associativity, i.e. I f \ \ , V 2,Vz 

are vector spaces, then

Vi <g> V2 <8> V3 =  Vl <g> (V2 (8> V3) =  (V i <8> V2) ®  V3

Notice th a t the linear property o f the tensor product implies th a t whenever 03 y  

is a basis fo r V , and 03 w  is a basis for W , then

w — ® w  | v E 03y and w  € 03 iy }

is a basis for the tensor product V  <g> W . In  particu la r, we have th a t i f  d im  V  =  n  

and d im  W  =  m, then d im  V  <S> W  =  nm.

D efinition 4.11. Let V  be a vector space over C. Let T n =  V  ® V  (8> • • • ® V (n  

times), w ith  the convention that T ° =  C. The tensor algebra o fV  is defined to be

OO
T  =  0 7 ™

71=0

where the product in  T  is tensor m ultip lication, i.e. vw  =  v ® w  fo r  a ll v ,w  € T.

T  is an associative algebra, due to  the associative property o f the tensor product.

Definition 4.12. Let L  be a L ie  algebra, and T  be the tensor algebra o f L . Let I  be 

the two sided ideal o f T  generated by { x  <B> y — y (8) x  — [x ,y ] \ x, y € L } .  Define

i l ( L )  =  T / I

Proposition 4.5. (Universal Mapping Property) Let L  be a L ie  algebra, and A  be 

an associative algebra. Let (f> : L  —+ it(L) be the canonical embedding o f L  in to  11 (L). 

I f  i f  : L  —» A  is a linear map satisfying the property

i/j( [x ,y \) =  ip(x)ih(y) -  ^ (y )fp (x )
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fo r  a ll x ,y  € L , then there exists a unique associative algebra homomorphism i f '  : 

i l ( L )  —► A such that i f ' ( l )  =  1, and i f  =  4>' °  4>- i-e.

V’
L

/

Proof. (See Lemma 2.1.3 in  [6 ]) □

Hence i l ( L )  is a universal enveloping algebra o f L. Since such an algebra is unique 

up to  isomorphism, from here on we w ill call i1 (L ) th e universal enveloping alge­

bra o f L.

To s im p lify  notation, when working w ith  the universal enveloping algebra, we w ill 

neglect the tensor signs, i.e. x  ® y  w ill be denoted sim ply by xy.

Theorem  4.2. (P o incare -B irkho ff-W itt) Let L  be a L ie  algebra, and il(L) be the 

universal enveloping algebra o f L . I f  { x \ ,X 2 , . ■ ■, x n}  is an ordered basis fo r  the vector 

space L , then {x™ 'x ™ 2 . . .  x™n \ m i G Z>o} is a basis o f i l ( L ) .

Proof. (See Theorem 2.1.11 in  [6 ]) □

Notice th a t the universal m apping property implies th a t i f  (■?/>, V )  is a Lie algebra 

representation, i.e. ^  : L  —> g l(V )  is a Lie algebra homomorphism, then there is an 

associative algebra representation •0/ : U (L ) —► E nd  V , extending i f .  Hence every 

L-m odule V  is also a il(L )-m o d u le , where the action of l l ( L )  on V  is an extension of 

the action o f L  on V. Conversely, i f  4> : i l ( L )  —> E nd  V  is a representation o f i t ( L )  

then, considering the restric tion  o f (p to  L , we have fo r any x ,y  G L ,

<P\L{[x,y]) =  <t>(xy -  yx) =  4>{x)(t>(y) -  (p(y)<l>(x) =  <j>\L (x)(f)\L (y) -  (j>\L(y)</>U(a;)

and hence (j)\l  is a Lie algebra representation o f L . Therefore any il(L )-m o d u le  V  is 

also an L-m odule under the same action.
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We w ill also make use o f two representations under which i f ( L )  is itse lf an L- 

module. The firs t being the le f t  re g u la r  re p re s e n ta tio n , denoted R : L  —► g l(iX (L )) 

and given by

R (x )u  =  xu

for any x  € L , and u € i l ( L ) .  This is in  fact a representation, since for any x ,y  E L  

and u  G i l ( L )  we have

R ([x , y ])u  =  [x, y]u  =  (xy  — yx )u  =  xyu  — yxu  =  R (x )R (y )u  — R (y )R (x )u

hence R ([x ,y ])  =  R (x )R (y ) — R (y )R (x ). The second representation o f interest is the 

a d jo in t  re p re s e n ta tio n , again denoted ad : L  —> g l( i i(L ) ) ,  and given by

ad(x)u  — xu  — ux

This has already been shown to  be a representation, and further, for each x, y  € L  we 

have ad(x)\L (y) — xy  — yx  =  [x ,y ] =  adx (y). Therefore when the action is restricted 

to L , th is defin ition  coincides w ith  our previous defin ition o f the adjo in t action o f 

L  on itself. We can thus continue to  denote ad(x) s im ply by adx, w ith o u t fear o f 

ambiguity.

The follow ing proposition shows th a t th is  correspondence between L-modules and 

il(L )-m odu les  also preserves s im p lic ity  and complete reducibility.

P ro p o s it io n  4 .6 . Let L  be a L ie  algebra. Then V  is a simple L-module i f  and only 

i f V  is a simple i l ( L ) -module, and V  is a completely reducible L-module i f  and only 

i f V  is a completely reducible ii(L )-m odule .

Proof. Let 03l  =  { x i ,  x 2, . . . ,  x n}  be an ordered basis for L , and

®u(L) =  {x ^ x ™ 2 . . .  x™n | m i 6  Z > 0}

be the corresponding P o incare-B irkho ff-W itt basis for i l ( L ) .  Let (ip, V ) be a repre­

sentation o f L . Then ( ip ',V ) is a representation o f i l ( L ) ,  where ip' is an extension o f 

ip. I f  W  <  V  is a submodule o f V  under ip, then for any x ™ 1 . . .  x™n € f8 u(x,) and
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w  G W , we have

. . .  x™ ")(w) =  ip, (x 1)mi . . .  if / (x n)m" (w )

=  iP(x1 )m i . . . iP (x n)mn( w ) e W

Therefore W  is a submodule o f V  under ip '. Conversely, i f  W  is a submodule o f V  

under ip', then for any x  G L  and w  G IT , we have

ip (x )(w ) =  ip '(x )(w ) G W

Therefore IT  is a submodule o f V  under ip i f  and only i f  IT  is a submodule o f V  under 

ip'. I t  follows im m ediately tha t V  is simple under ip i f  and only i f  V  is simple under 

ip'. Complete reduc ib ility  follows as well. Indeed, i f  V  is completely reducible under 

the action o f L, then for any submodule W  o f V  under the action o f i l ( L ) ,  W  is also 

submodule o f V  under the action o f L. In  th is  case, there exists a submodule W ' o f 

V  under the action o f L  and hence also under i l(L )  such th a t V  =  W  ©  W '. The 

argument for the converse is identical. □

4.3 Induced R epresentations

We now give a useful method for constructing a representation o f an associative 

algebra A, given a representation o f a subalgebra B  <  A.

Let A  be an associative algebra, and B  <  A  be a subalgebra of A. Le t V  be a 

B-module. Let W  be the sub-vector space o f the vector space A ® V  spanned by the 

set { ( ab) ® v - a ®  (bv) | a G A, b G B  and v G V } .  Define the vector space A  V  

by

A  V  =  (A ®  V ) /W

Let 25a ®bv  be a basis o f A  V  consisting o f cosets of the form  a ® v  +  W , w ith  

a G A  and v G V.

Definition 4.13. Let A  be an associative algebra, and B  <  A  be a subalgebra o f A . 

Let V  be a B-module w ith action given by <p : B  —» E n d V . Define the induced  

representation o fV  from  B  to A  to be the p a ir  (<Pb,A <S>b V-) where

(p^(x)(a  <8 > v  +  IT )  =  (xa) ® v  +  W  
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fo r  a ll a <S> v +  W  £ ^ a ®bv , and extending linearly. In  this case, A  ® b  V  is called 

the in d u c e d  m o d u le  o f V  from  B  to A .

For sim plic ity, we denote the cosets a ® v +  W  £  d  F  by any choice of 

representative a ® v ,  w ith  a £ A  and v £ V , under the condition th a t for any a £ A, 

b £ B  and v £ V , we have (ab) ®  v =  a <8 > (bv).

5 R epresentations of Sem isimple Lie Algebras

In  th is  section, we restric t our a tten tion  to  representations o f semisimple Lie algebras 

over C. Unless otherwise mentioned any Lie algebra L  in  th is  section is assumed to  be 

semisimple, and over the complex numbers. M ost o f the results given in  th is  section 

can be found in  [8 ].

5.1 W eight Space D ecom position

D e f in it io n  5 .1 . Let L  be a semisimple L ie algebra with Cartan subalgebra H . Let V  

be an L-module. Fo r each A E H * ,  define the A -w e ig h t space V\ o fV  to be

The elements v £ V \ are called w e ig h t v e c to rs  having w e ig h t equal to A. The 

s u p p o r t o f the module V , denoted Supp V  is defined to be

i.e. the set o f a ll linear functiona ls corresponding to non-zero weight spaces in  V .

V  be an L-module. I f  v \ , . . .  ,v n £ V  are non-zero weight vectors having d istinct 

weights A i , . . . ,  An £ H *  respectively, then v \ , . . . , v n are linearly independent.

Proof. We apply induction  on n. The result is tr iv ia l i f  n  =  1. Assume v \ , . . . ,  un_ i 

are linearly independent, and suppose

V\ =  {v  £ V  | hv =  A(h )v  f o r  a ll h £  H }

Supp V  =  {A  € H *  | UA ?  (0 )}

P ro p o s it io n  5 .1 . Let L  be a semisimple L ie  algebra with Cartan subalgebra H . Let

n —1

i = l
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for some a, £  C. Then, for every h £ H , we have tha t

n —1 n —1 n—1

=  ^ 2 aihv i =  hvn =  A n(h)vn =  ^ A  n(h)v i
i= l i= 1 i= l

Therefore n—1

^   ̂®i(Aj An)(ti)V i 0

i= l

due to  linear independence o f i>i,. . .  we must have Oj(Aj — An)(h ) =  0  for a ll

1 <  i  <  n  — 1 and a ll h €  H . Thus for each i,  e ither =  0 or A, =  An. Since the Ai 

were assumed to  be d is tinct, we must have th a t Oj =  0 for a ll 1 <  i  <  n  — 1. This 

implies th a t vn =  0 , which is a contradiction. □

In  particu la r, the previous proposition implies th a t fo r any L-m odule V , the sum

E  %
AeSupp v

is in  fact a direct sum.

D efinition 5.2. Let L  be a semisimple L ie  algebra, and V  be an L-module. Then V  

is said to adm it a weight space decom position provided

V =  ®
AeSupp v

Proposition 5.2. Let L  be a semisimple L ie  algebra w ith root system A. Let V  be 

an L-module. Then the fo llow ing hold:

i)  For each a  G A, i f  v e V \  then x av £ V \+oc-

i i )  The sum © *e S u p p V ^  is a submodule o fV .

H i) I f  V  is fin ite  dimensional, then V  admits a weight space 

decomposition.

Proof. (See Lemma 20.1 in  [8 ]) □

Proposition 5.3. Let L  be a semisimple L ie algebra w ith Cartan subalgebra H  and 

root system A. Then i l (L ), under the adjo in t representation, admits a weight space 

decomposition, and S u p p il(L ) =  span%A .
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Proof. I f  v \ ,v 2 G i t ( L )  are weight vectors w ith  weights 71  and 7 2  respectively, then 

for any h G H  we have

adh(viv2) =  hv \v 2 — v \v2h

=  hv \V2 — v \hv 2 +  v \hv 2 — v \v2h

-  adh(v i)v 2 +  v iadh{v2)

=  (71(h) +  72(/i))t»it)2

Therefore V\V2 is a weight vector w ith  weight 71  +  7 2 - A pp ly ing  induction, we see tha t 

for any sequence v \ , . . . ,  Vk G i l(L )  o f weight vectors w ith  respective weights 7 1 , . . . ,  7  

the vector n t= i  vi a weight vector w ith  weight ]T )i= i7 i- Let A + =  { /? i , . . .  ,(3m}  be 

the positive roots o f A  w ith  respect to  A ++ =  { o i , . . . ,  a n} . Then by the Poincare- 

B irkh o ff-W itt theorem,

®n(£) =  W - h  • • ■ J - p J Q  ■ ■ ■ I 6  Z >o for a11 *» i }

is a basis o f i t ( L ) .  For any h G H , and any (3 G A , we have adh{xp) =  (3(h)xp, 

and hence each xp fo r f3 G A  is a weight vector w ith  weight j3. Further, since 

H  is abelian, the vectors hai are weight vectors w ith  weight equal to  0. There­

fore, for any choice o f r t , s3, t t e Z>o for 1 <  i  <  m  and 1 <  j  <  n, the vector 

x rfp x . . .  x r"j3m h '^ . . .  h®" Xfo . . .  4 ™ is a weight vector w ith  weight
m

-  r t )Pi
i —1

I t  is clear tha t any possible Z-linear combination o f roots f3 G A  can be formed by 

such a sum. Further, i f  v G i l ( L )  is a weight vector w ith  weight 7  ^  spanzA  then by 

Proposition 5.1, v is linearly  independent o f a ll vectors in  ® u (l), which contradicts 

the fact th a t is a basis o f i l ( L ) .  □

We now introduce the in tegra l root la ttice  which, as we have jus t seen, is the set 

of weights occurring in  the universal enveloping algebra.

D e f in it io n  5.3. Let L  be a semisimple L ie algebra w ith root system A , having positive 

roots A + . The in te g ra l r o o t  la t t ic e ,  denoted Q, is defined to be

Q =  kQa  | ka e  Z }
aeA
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Define

Q + =  {  ^ 2  kaa  | ka G Z>0}
a£A+

and

Q  =  {  ^  ^ kaQi | ka G Z<0}
a€A+

D e f in it io n  5.4. Le i L  be a semisimple L ie  algebra w ith root system A, and A + be 

the positive roots w ith respect to a fixed base. Let V  be an L-module. A  weight vector 

v+ G V\ is called a m a x im a l v e c to r  i f  x av+ =  0 fo r  a ll a  €  A + . The module V  is 

called a h ig h e s t w e ig h t m o d u le  o f weight X i f  V  is generated by v+ . In  this case, 

X is called the h ig h e s t w e ig h t o fV .

Notice th a t th is defin ition  depends on the choice o f base A ++.

P ro p o s it io n  5.4. Let L  be a semisimple L ie algebra w ith root system A, and A + — 

{ / ? ! , . . . ,  /3m}  be the positive roots w ith respect to a fixed base A ++ =  { a i , . . . ,  a n}. 

Let V  be a highest weight L-module o f weight X, w ith  maximal vector v+ E V \.  Then 

the fo llow ing hold:

i)  V  =  spanc{xk2 ^  . . .  x k̂ mv+ \ k i G Z > 0 f o r  1 <  i  <  m } .

i i )  I f  p  E Supp V  then p  =  X — ^»a * f o r some ki € Z>o-

H i) d im  V\ =  1, and fo r  each p  G Supp V  we have d im  <  oo.

Proof. (See Theorem 20.2 in  [8 ]) □

In  particu lar, i f  v+ has weight A, then each vector o f the form  x kf ^  .. . x k™pmv+ 

is a weight vector, w ith  weight equal to  A — Y^v=i k ifii- Thus, the previous proposi­

tion  implies th a t every highest weight module adm its a weight space decomposition. 

Further, a ll weights lie in  the coset A +  Q ~ .

P ro p o s it io n  5.5. Let L  be a semisimple L ie  algebra w ith Cartan subalgebra H . I f V  

is a simple L-module adm itting a weight space decomposition, then Supp V  C. X +  Q 

fo r  some X G H * .
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Proof. Let A  be the roo t system of L. Let A £ Supp V  and le t

n
7GSupp v n (A + Q )

We w ill show th a t U  is a submodule o f V . To th is end, choose a basis *B[/ o f U  

consisting o f weight vectors. Let u £ 03u have weight 7 , hence 7  E A +  Q. Then for 

any a  £ A  we have th a t e ither x au =  0 or x au is a weight vector w ith  weight 7  +  a. 

Indeed, for any h E H  we have

hxau =  adh(xa)u  +  x ahu =  a (h )x au +  j ( h ) x au =  (a  +  7  ) {h )x au

Since a  +  7 £ 7  +  Q =  A +  Q, we have x au E U. Since {a:a | a  £ A }  generates L , we 

have th a t U  is a submodule. Since V  is simple, we must have V  =  U. □

Proposition 5.6. Let L  be a semisimple L ie  algebra w ith Cartan subalgebra H . Let 

A ++ be a base fo r  the root system o f L  w ith respect to H . F o r every A £ H * there 

exists a unique simple highest weight L-module o f weight X, w ith respect to A + + .

Proof. (See Theorem 20.3A, and Theorem 20.3B in  [8 ]) □

The previous proposition allows us to  make the follow ing defin ition.

D efinition 5.5. Let L  be a semisimple L ie  algebra w ith Cartan subalgebra H , and 

fixed base A ++ fo r  the root system o f L . Fo r each A £ H * , denote the simple highest 

weight L-module o f weight A by L (A).

Notice th a t the previous defin ition depends on the choice o f base A ++ . W hen the 

base is im p lic it, we w ill denote simple A-highest weight L-m odule by L(A), however, i f  

we wish to  specify a particu la r base for A , say B , we w ill denote the simple A-highest 

weight module re lative to  B  by L b  (A).

Proposition 5.7. Let L  be a semisimple L ie  algebra with Cartan subalgebra H . Let 

A ++ =  { q i ,  . . . ,  a n}  be a base fo r  the root system o f L . I f V  is a fin ite  dimensional 

simple L-module then V  =  L(A) fo r  some A £ H *.
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Proof. Let A + be the positive roots w ith  respect A ++ . B y Proposition 5.2 , since V  

is fin ite  dimensional, V  adm its a weight space decomposition. Also, since V  is fin ite  

dimensional, we must have th a t Supp V  is a fin ite  set. I f  Ao G Supp V , then the set

n

{A 0 +  X !  k ia i G Supp V  | ki € Z > 0 for each i }  
i= 1

is also fin ite. We can therefore choose m i , . . .  ,m n G Z>o such tha t

n

A =  A0 +  m id i G Supp V  
1=1

and fo r any sequence (Aq,. . . ,  kn) G Z>o w ith  (fci , . . . ,  Av,) ^  ( m i , . . . ,  m n) and ki >  rrii 

for a ll i,  we have
n

A0 +  ^ 2  ki& i Supp V
i= 1

Let v+ G V\ w ith  v+ ^  0. Let f3 G A + . Then f3 =  X a = i f ° r  some € ^>o- 

Therefore has weight equal to  A0 +  +  h)on. Since f3 ^  0 we have

(m i +  6 i , . . . ,  m n +  bn) ^  ( m i , . . . ,  m n). Further, for each *, m* +  6, >  m i and hence

n

A0 +  +  b i)d i Supp V
2—1

Therefore aqjtd~ =  0, which implies u+ is a m axim al vector. Since the highest weight 

module generated by v+ is a submodule o f V , and V  is simple, we must have th a t V  

is itse lf generated by v+ . Therefore V  — L(A). □

5.2 F in ite D im ensional M odules

T h e o re m  5.1. (W eyl) I f  L  be a semisimple L ie  algebra, and V  is a non-zero, f in ite  

dimensional L-module, then V  is completely reducible.

Proof. (See Theorem 6.3 in  [8 ]) □

D e f in it io n  5 .6 . Let L  be a semisimple L ie  algebra, w ith Cartan subalgebra H  having 

simple basis 9) =  { h i , . . . ,  hn} .  Let p  G H * such that p {h f) G Z>o fo r  a ll i.  Then p  is 

called a d o m in a n t in te g ra l weight.
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T h e o re m  5.2. Let L  be a semisimple L ie  algebra, w ith Cartan subalgebra H . For 

each A G H * , the simple highest weight L-module L (A) is fin ite  dimensional i f  and 

only i f  X is a dom inant integral weight.

Proof. (See Theorem 21.1 and Theorem 21.2 in  [8 ]) □

C o ro lla ry  5.1. Let L  be a semisimple L ie  algebra, w ith Cartan subalgebra H . Every 

f in ite  dimensional simple L-module is some L ( A) where X is a dom inant integral 

weight.

Proof. I f  V  is any fin ite  dimensional simple L-m odule, then by Proposition 5.7, V  =  

L (A) fo r some A € H *. Due to  the previous theorem, A must be a dom inant integral 

weight. □

For calculation purposes, we introduce the follow ing characterizations o f dom inant 

integral weights.

P ro p e r ty  5 .1 . Let L  be a semisimple L ie algebra, w ith Cartan subalgebra H  having 

simple basis 9) — {h \ , . . . ,  hn}. Let $  — {a>i,. . . ,  u>n}  be the fundam ental basis o f H *. 

Then X G H * is a dom inant integral weight i f  and only i f

n

A =  biUi
i=1

with each bi G Z>0.

Proof. Set A =  for some bi G C. Then

n  n

A (h{ ( — bj uij (hi ( — bj Sij — bi
3=1 j =1

Hence A is a dom inant integral weight i f  and only i f  bi G Z>o for a ll i. □

In  the case where the algebra is Cn , i t  w ill also be useful for us to  consider 

dom inant integra l weights using the epsilon basis &  =  { e i , . . . ,  e„} , for which we give 

the follow ing characterization:
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P ro p e r ty  5.2. Let 7 i be the Cartan subalgebra o f Cn given in  Section 3.7, and &  =  

{ e i , . . . , e n}  be the epsilon basis o f 7 i* . Let p  G Tt* such that p  — ai €i> w 

ai G Z . Then p  is dom inant integral i f  and only i f  ai >  ai+ i fo r  1 <  i  <  n  — 1, and 

an >  0 .

Proof. Let bn =  an, and le t bi =  ai — al+ i  fo r 1 <  * <  n — 1. Then

n  n  i n  /  n  \  n

6*0;, =  bi6j  — ^  f ^  bi j  Cj =  a j€ j

»=1 «=1 j = 1 j = 1 \i=j /  j=l

since for each j ,  we have b, =  an 4- a* _  1^”= /  ai+ i =  aj-  Therefore 

p  =  X T = i ^<4 : and hence p  is dom inant integra l i f  and only i f  bi >  0  for a l i i .  □

P ro p o s it io n  5.8. Let L  be a semisimple L ie  algebra, w ith Weyl group W . Let L (p )  

be a f in ite  dimensional simple L-module, hence p  is dom inant integral. Then fo r  every 

a  G W , and every v G Supp L (p ) we have

a (u ) G Supp L (p )

and

d im  L (p )v =  d im  Z/(//)CT(„)

Proof. (See Theorem 21.2 in  [8 ]) □

The previous proposition implies th a t for any a  G W  we have 

{a (u )  | v  G S u p p L (//) }  C Supp L (p )

Further, i f  u G Supp L (p )  then

v =  a (a ~ 1 (u )) G {<j { v )  \ v  E Supp L (p ) }

Therefore

(cr(z') | v  G S uppL (p ) }  =  S uppL (p )

i.e. for every a G W w e  have cr(S uppL(/i)) =  S uppL (p ).

Recall tha t the algebra s l(2,C)  is spanned by { x a , h, x_Q}  where H  =  spanc{h } 

is a Cartan subalgebra, and a  G H *  is given by a (h )  =  2. The follow ing lemma w ill
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be used to  show th a t in  a fin ite  dimensional module V, for any weight 7  G Supp V, 

and any roo t a  G A , the weights o f the form  7 +  na  for n  G Z  form  a connected 

string.

L e m m a  5 .1 . Let L  be a semisimple L ie algebra w ith root system A , and V  be a 

fin ite  dimensional weight L-module. Let 7 G Supp V. Let a  G A . Choose k , l  G 

Z > 0 m in im a l such that 7 +  (fc +  1 )a  ^  Supp V  and 7 — (I +  l ) a  ^  S u p p f/. TTien 

(7 +  k a )(h a) >  0  and ( 7  — la ) (h a) <  0 .

Proo/. Let v0 G V1 +ka- Then :rau0 =  0, since 7  +  (fc +  l ) a  ^  Supp V. Set A =  7  +  ka, 

i.e. v0 has weight A. Let vn =  jjja ;"ai>o for a ll n  >  0. Then for any h G H ,  we have

hvn =  —A(adh)(x n_a)vQ +  xn_ahv0 ) =  (A -  n a ) ( / i ) - l f / aM0 =  (A -  n a )(h )v n 
n\ n\

Hence vn has weight A — na.

X -Qvn =  —.x njfifivQ =  (n  +  l) v n+i 
n!

We claim  th a t x Qvn =  (X (ha) — n +  l)u n_ i w ith  the convention th a t un =  0 fo r n  <  0. 

A pp ly ing  induction  on n, we notice tha t

=  0 =  (A (ha) +  l )u _ i

assuming x avn_ i =  (A (ha) — n  +  2 )vn- 2, we have tha t

=  ^ ( a d ^ i x - a j x ^ v 0) +  ^  (ar.ai aa :^ 1ub)

1 *, 1
— t l aVn—l +  'E—a.3'aVn—1 

n n

=  ~ ((X (h a) -  2 (n -  l ) ) u „ _ i  +  (A (/iq) -  n  +  2 )a;_at;n_2)

=  ^  ( ( ^ ( * )  -  2(n -  l ) ) v n_i +  (X(ha) - n  +  2)(n  -  l)u n- i )

=  (A(/ra) n  +  l)u n_ i

Notice th a t since A — (fc +  Z +  l ) a  =  7 — (Z +  1 )a  £ Supp V , we must have Vk+i+i =  0. 

Choose to m axim al such th a t vm 0. Then to  <  fc +  Z. Notice th a t 0 =  a;auro+1  =  

(X(ha) — rn)vm and hence A(ha) =  to  Therefore ( 7  +  k a )(h a) =  to >  0. Further,

(7 — la ) {h a) =  (A — (fc +  l )a ) (h a) =  to — 2(fc +  Z) <  to  — 2to =  —to

□
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P ro p o s it io n  5.9. Let L  be a semisimple L ie  algebra w ith  root system A . Let L (p )  

be a fin ite  dimensional simple L-module, hence p  is dom inant integral. Then fo r  

every is £  Supp L (p ) and every a  £  A , i f  is +  n a  £  Supp L (p ) then fo r  every m  with  

0 <  m  <  n, we have is +  m a  £  Supp L (p ).

Proof. Suppose 0 <  m  <  n  and is +  m a  £  Supp L (p ). Since is £  Supp L (p ), we can 

choose k £  Z>o m in im al such th a t is +  (k  +  l ) a  ^  S uppL(//). Then k <  m. Also, 

since is +  n a  £  Supp L (p ), we can choose I £  Z  m in im al such th a t u +  (n  — I — l ) a  ^  

S uppL (p ).  Then I <  n  — m. B y Lemma 5.1, we have th a t (v  +  k a )(h a) >  0 and 

(is +  n a  — la ) (h a) <  0. Thus

v(h a) +  2 m  >  is(ha) +  2 k — (is +  k a )(h a) >  0

and

is(ha) +  2 m  <  is(ha) +  2 (n  — I) =  (is +  na  — la ) (h a) <  0  

which is a contradiction. □

5.3 A dm issible M odules

D e f in it io n  5 .7 . Let L  be a semisimple L ie algebra, and V  be an L-module adm itting  

a weight space decomposition. For each is £  Supp V , we define the m u l t ip l ic i t y  o f is 

in  V , denoted m y  (is) to be the dimension o f the is weight space in  V . i.e.

m y  (is) =  d im  Vv

In  the case where V  =  L (A) fo r  some weight X, we w ill denote the m u ltip lic ity  o f is 

in  L (X ) simply by m \(is).

Notice th a t Proposition 5.4 implies th a t i f  V  is a highest weight module w ith  

highest weight equal to  A, then m y ( X) =  1 and for a ll v £  Supp V  we have m y  (is) <  

oo. Also, I f  p  is a dom inant integra l weight then Proposition 5.8 implies tha t for any 

is £  Supp L (p )  and any a £  W , we have

m ^ is ) =  m ^(a(is))
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D e f in it io n  5 .8 . Let L  be a semisimple L ie  algebra, and V  be an L-module adm itting  

a weight space decomposition. We say that V  is a d m is s ib le  provided V  is in fin ite  

dimensional, and there exists an N  £  Z>o such that fo r  a ll u £  Supp V  we have 

m v (v) <  N . i.e. the dimensions o f the weight spaces in  V  are bounded.

D e f in it io n  5 .9 . Let L  be a semisimple L ie  algebra, and V  be an admissible L-module. 

Define the deg ree  o fV , denoted deg V  to be the least upper bound o f the weight spaces 

occurring in  V . i.e.

d e g F  = max {m v (u) \ v  £ S upp I^}

L e m m a  5.2. (M ath ieu) Let L  be a fin ite  dimensional simple L ie algebra, and V  be 

an admissible L-module. Then V  has fin ite  length.

Proof. (See Lemma 3.3 in  [15]) □

P ro p o s it io n  5.10. Let L  be a fin ite  dimensional simple L ie  algebra, and V  be a 

completely reducible admissible L-module. Then V  is semisimple.

Proof. Due to  the previous lemma, the length o f V  is fin ite. We apply induction  on 

the length o f V. I f  L eng th (F ) =  1 , then V  is simple, and hence semisimple. Assume 

the result is true for any admissible module W  w ith  Length (W ) <  Leng th (F ). I f  V  is 

not simple, choose W  <  V  to  be a proper submodule o f V , and choose a submodule 

W ' <  V  such th a t V  =  W  ©  W '. For any ascending chain Wo C W \ C • • • C W*, o f 

submodules o f W , we have tha t

W0 C Wi C • • • C W k C V

is an ascending chain o f submodules o f V. Hence Length (W ) <  Leng th (F ). S im ilarly, 

Length (W ') <  Length ( I / ) .  We can therefore find simple modules W i , . . . ,  Wfc <  W  

and W ( , . . . ,  W ^  <  W ' such tha t

k

W  =  ® W
»=i

and
m

W' =  @ W 't
1=1
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Hence
k m

v  =  ® w i m ® w l
<=1 i=1

□

In  Section 7, follow ing the work o f M ath ieu in  [15], we give a complete character­

ization o f a ll simple admissible highest weight C„-modules.

5.4 Verm a M odules

For a semisimple Lie algebra L , w ith  Cartan subalgebra H  and roo t system A , w ith  

positive roots A + and negative roots A - , we let

L+ =  ®  L *  
aeA+

and

L ~ =  ©  L<* 
a€A~

Hence L  =  H @ L + ® L ~ . Further, since [L a, L@\ =  L a+p whenever a, (3 and a+ (3  € A , 

i t  is clear th a t L + and L~  are Lie subalgebras o f L. Let L + =  H  0  L + . Then L + is 

also a Lie subalgebra o f L.

For each A € H *, define the one dimensional L + representation ('I'a, C) where 

: L + —> gh (C ) is the linear map defined as follows: For a ll c (E C,

*x (h )(c )  =  A (h)c

for a ll h € H , and

&x(x)(c)  =  0

for a ll x  6  L + .

indeed defines a representation, since i f  y 1 , 1/2 € L + then y\ =  h\ +  x \  and 

y2  — h2 +  X2 for some h i, h2 € H  and X i,x 2 € L + . Therefore, for a ll c € C, we have

^A([ lh, lfe] )(c) =  ^ x ( [h i +  x i , h 2 +  x 2 ])(c)

=  ^ x ( [ h l , h 2] ) ( c )  + 'FaQ/M, Z2])(c) + V x ( [ x i , h 2 ] ) ( c )  +  $a([®1,®2])(c) 

=  0
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since [h i,h 2] =  0, and [h i, x 2], [#1 , h2], [ x i , x 2\ £ L + . Also,

( ^ x ( y i) ^ x ( y 2 ) -  V \ ( y 2 )V \(y i))(.c ) =  ^ x ( h  +  x i) ^ x ( h 2 +  x 2)(c)

-  ^ A(/i2 +  x 2)V x (h i +  * i) ( c )

=  y x(hx) y x{h2){c) +  aM *  a( * 2)(c)

+  <*>x(x i)V x (h 2 )(c) +  * x (x i) ty x ( x 2 )(c)

-  <bx{h2)^x{hi)(c) -  *x (x2)*x(hi)(c)

-  ^ x (h 2) ^ x { x 1)(c) -  V x(x 2 ) y \ { x i )(c)

=  X (h i)X (h2)c +  0 +  X(h2)(0) +  0

-  X(h2)X (h \)c  -  A (M (0 )  -  0 -  0 

=  0

Thus ®A([yi, l fe]) =  ^ \ ( y i ) y \ { y 2 ) -  ^ x (y 2 ) ^ x (y i)  for a ll y i,y 2 G L + . Due to  the 

universal mapping property, the L +-module V  is also a i t ( L +)-module under the 

same action. Th is enables us to  induce the follow ing A-highest weight L-module.

D e f in it io n  5 .10. Let L  be a semisimple L ie  algebra with Cartan subalgebra H . For 

each X E H * ,  define the V e rm a  m o d u le  with highest weight X, denoted M (  A) to be 

the induced module

A f ( A ) = H ( L ) 0 1J(£+)C

where i t ( L + ) acts on C according to

Notice th a t M (A )  is a A-highest weight module, w ith  m axim al vector 1 <g) 1.

P ro p o s it io n  5 .11. Let L  be a semisimple L ie algebra w ith Cartan subalgebra H . 

Then fo r  each X G H * , viewing M ( A) as a i t (L~ ) module, we have

M { A) ~  i t ( L - )

where i t (L ~ ) is under the left regular representation.

Proof. Let A ++ =  { q i ,  . . . ,  a n}  be a base for the roots system A  o f L . Let A + =  

{ P i , . . . , / 3 m}  be the set o f positive roots w ith  respect to  A ++ . B y the Poincare- 

B irk h o ff-W itt theorem, we can choose a basis o f i l ( L _ ) given by

=  { Xrf . . .  x rp0m I r t G Z >0  for 1 <  * <  m }
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and a basis o f 11 (L ) given by

®u(L) =  {® _ft • • • xr-pmhZ  ■ ■ ■ h* nx X ■■■x tm \ e  Z >o for a11 h i )

Define the map ip : —> M (A ) by

^ - ( h  ' • • X- ^ J  =  X-fh ■ ■ ■ XT~0m ®  1

for each choice o f i q , . . . ,  r m G Z>o, and extending linearly, ip is clearly in jective, and 

for any choice o f r \ , . . . ,  r m, s i , . . . ,  sn, t \ . . . ,  tm G Z  we have

• ■ • * - % ,  * £  '  ■ '  h > %  • ■ ■ ®  1  
/

0  i f  t i ^  0  for some i

x rl ^  ■ . . x r™pm ®  F ir= i H h a i) otherwise

-0 (0 ) i f  U 7̂  0  for some i

k ( ( I I 2 =i A( /l««))x -/31 • • • x -"kn) otherwise

Since the elements . . .  x rJnpm . . .  fi®"x ^  . . .  x ^  0  1 span M ( A), we have tha t 

ip is surjective as well. F inally, since U (L ~ ) acts on both  i t ( L - ) and M ( A) by le ft 

m u ltip lica tion , i t  is clear th a t ip satisfies the condition

ip (xv ) =  X1p(v)

for any choice o f x, v G □

Notice th a t for each A G H *, we have S uppM (A ) =  A +  Q~ =  A — Q + . We can 

also give a form ula for the dimensions o f the weight spaces o f M ( A), in  the follow ing 

way:

D e f in it io n  5 .11. Let L  be a semisimple L ie  algebra, w ith Cartan subalgebra H . Let 

A  be the root system o f L , and A + be the set o f positive roots. Define the K o s ta n t 

p a r t i t io n  fu n c t io n  K  : Q  —> Z>o in  the fo llow ing way: For each v  G Q, set K (v )  

equal to the number o f sequences (ka)aea+ Q ^>o fo r  which v =  X]aeA+

Due to  the restriction th a t the sequences (ka)aea+ must contain only non-negative 

integers, we have tha t K (u )  =  0 for any v  G Q ~ .
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P ro p o s it io n  5 .12 . Let L  be a semisimple L ie  algebra, w ith Cartan subalgebra H . 

Let A G H * , and M ( A) be the Verma module w ith highest weight A. Then fo r  each 

v G S up p M (A ), we have d im M (A ) „  =  K (X  — u).

Proof. Let v  G Supp M (A ). Let 7  — A — v. Let A + =  { /? i , . . .  ,(3m}  be the set o f 

positive roots o f L. Due to  Proposition 5.11, we have tha t

{ xk~p1 - ■ ■ xkPf3m ®  1 | fci G ^>o fo r 1 <  * <  m }

is a basis for M (A ). For any h E H , we have tha t

h x \  • • • x k_rPm <8 > 1 =  adh{ x \  . . .  x k_m0J  ® 1 +  x \  . . .  x k_r0rn ® h( 1 )

=  U (A )  -  w m )  A  • ■ • z -ft»  ®  1

Hence x k_}0 i . . .  is a weight vector o f weight A— kP i- Therefore x kf 0 i . . .

1 has weight u i f  and only i f  7  =  Y ^iL  1 kiPi- Thus the dimension o f the u weight space 

in  M (A ) is the number o f sequences [k \ , . . . ,  km) C Z>o fo r which 7  =  Y a = i 

which is precisely K ( 7 ). □

5.5 Torsion Free M odules

D e f in it io n  5 .12. Let L  be a semisimple L ie  algebra w ith root system A , and V  be 

an L-module adm itting a weight space decomposition. We say that V  is to rs io n  free  

provided fo r  every a  G A , the action o f x a on V  is injective.

We restric t our a tten tion  to  those torsion free modules V  in  which a ll weight 

spaces o f V  are fin ite  dimensional. Hence, from  th is  point forward, when referring to  

a torsion free module V , i t  is assumed tha t d im  V\ <  0 0  for a ll A G Supp V.

P ro p o s it io n  5 .13. (Fernando)  Let L  be a semisimple L ie algebra w ith  Cartan subal­

gebra H , and V  be a simple L-module adm itting a weight space decomposition. Then 

V  is torsion free i f  and only i f  Supp V  =  A +  Q fo r  some A G H * .

Proof. (See C oro llary 1.4 in  [15]) □
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P ro p o s it io n  5.14. Let L  be a semisimple L ie algebra, and V  be a simple torsion free 

L-module. Then there exists an N  G Z>o such that d im  Vu =  N  fo r  a ll v  G Supp VC 

In  particu lar, V  is admissible.

Proof. Let H  be a Cartan subalgebra o f L , and le t A  be the root system o f L  w ith  

respect to  H .  Let (p : L  —> g l(V ) be the map defining the action o f L  on V. B y 

the previous proposition, we have th a t Supp V  =  A +  Q for some A G H *. Let 

i / j G  Supp V. Then 7  — v £  Q, and hence

7 =  i/ +  '*Tt kpP =  v +  ^ 2  k? P +  k$P
A /3e A+ /9e A-

for some kp G Z >0. Let A + =  { /? i , . . .  and hence A -  =  { —f a , . . . ,  — /3m}.

Therefore,
771 TO

7 =  V +  ^ 2  kiPi -  X !  l i&
i=l j =1

for some k \ , . . . ,  km, L , . . .  , lm G Z>o- Set

C7 =  </>(^1) fcl . . .  ( f t i x p j ^ c f i x - h ) 11 . . .  (j)(x_0m)lm

then a  G g l(V )  is an in jective linear map. Further, for any v G Vu we have tha t 

a(v) G V1. We can therefore find a in jective linear map between any two weight 

spaces o f V . Thus a ll weight spaces o f V  must have the same dimension. Since 

torsion free modules are assumed to  have fin ite  dimensional weight spaces, we have 

our result. □

5.6 Tensor P roducts o f M odules

D e f in it io n  5 .13. Let L  be a L ie  algebra, and V ,W  be L-modules. Let fBy and 2$vv 

be bases fo r  V  and W  respectively. We define the te n s o r p ro d u c t  L -m o d u le  to be 

the vector space V  ®  W  under the fo llow ing  action:

x (v  ® w) =  (x v ) (g) w  +  v <S> (xw )

fo r  each x  G L , v G and w  G 03w , and extending linearly. Viewed as represen­

tations, we have that i f  <j> : L  —> g l(V ) and ip : L  —> g l{W ) define representations o f
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L  on V  and W  respectively, then the tensor product representation is the p a ir  

(<p8 ip ,V  8  W ) where (p8 ip '■ L  —> g l(V  8  W ) is the linear map given by

4> 8  ip (x )(v  8 w) =  (<p(x)v) < 8  w  +  v 8  (ip (x)w )

For a ll x  G L , v G and w  G 93w-

The follow ing calculation shows th a t the tensor product representation is indeed 

a representation o f L. For s im plic ity, denote the map (p 8  ip by 0. Then, fo r any 

x ,y  G L  and v 8  w  G V  8  W , we have

(9 (x)d(y) -  0 (y)O (x))(v 8  w) =  <p(x)<p(y)(v) 8 w +  (p(y)(v) 8  ip (x)(w )

+  <p(x)(v) 8  ip (y)(w ) +  v 8  ip (x)ip (y)(w )

-  (p{y)<p{x){v) 8  w  -  <p(x)(v) 8  ip (y)(w )

— <p{y){v) 8  ip (x)(w ) — v 8  ip (y)ip (x)(w )

=  <p(x)(p(y)(v) 8 w — cp(y)<p(x)(v) 8  w

+  v 8  ip (x)ip(y)(w ) — v 8  ip (y)ip (x)(w )

=  ( 0 ( * M y )  -  <P(y)<P{x)) (v) 8  w

- v 8  (ip(x)ip(y) -  ip (y)ip (x)) (w)

=  <p([x, y ])(v ) 8  w -  v 8  ip([x, y ]){w )

- 0 { [x ,y ] ) ( v 8 w)

Proposition 5.15. Let L  be a semisimple L ie  algebra, w ith Cartan subalgebra H . I f  

p, \ , p 2 £ H * are both dom inant integral weights then

L { p j )  8  L ( p 2) =  0  avL { v )
ueH'

fo r  some a„ G Z>o, where i f  av ^  0 then u is a dominant integral weight.

P roo f Since L ( p i)  and L (p 2) are both  fin ite  dimensional, the tensor product L {p f)  8  

L (p 2) is also fin ite  dimensional. B y  W eyl’s theorem, we have th a t L (p i )  ®  L (p 2) is 

completely reducible, hence by Proposition 4.3, L (p i)  8  L (p 2) is a semisimple module. 

Therefore there exist simple modules V \ , . . .V n such tha t
n

L ( f i i )  8  L ( p 2) =  0  aiVi
i= 1
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for some a* G Z>o- Each V i is fin ite  dimensional, being a submodule o f the fin ite  

dimensional module L ( / i i )  ® L (p 2 ). C oro llary 5.1, therefore implies th a t each Vi =  

L (v i)  for some dom inant integra l vt . □

Proposition 5.16. Let L  be a semisimple L ie  algebra w ith root system A. Let V  

be a torsion free L-module, and W  be a fin ite  dimensional weight L-module. Then 

V  <S> W  is torsion free.

Proof. Let a  G A. Let be a basis for V , and fBw be a basis for W  consisting of 

weight vectors. Let W , w ith  u /  0. Then

u =  £  avwv  ® w 

for some avw G C w ith  a ll bu t fin ite ly  many avw =  0. Suppose x au =  0. Then

Y  Y  avwx av ® w  =  ~ Y ,  Y j avwV ® XaW
W(z?&w v£*Bv w€.i"&W

Let

M  =  {w  G Q3w | avw ^  0 for some v G 93y}

Set

M  =  {7 G Supp W  | w  has weight 7 for some w  G M }

Since M  is a fin ite  set, we can choose 70  G M  such th a t 70  — a  ^  M .  Choose wo G M

such th a t w 0  has weight 70. Notice th a t there is no w  appearing w ith  some avw 0

for which x aw  has weight 70. Therefore Wq cannot appear in  any basic tensor on the 

righ t hand side o f (1). Th is implies tha t

Y  avw0 XaV ® w 0  =  0 
v&Sy

Therefore x a ^2ve<Qv aVWov =  0. Since V  is torsion free, x a acts in jective ly  on V , and 

hence Ylve'Bv avwov =  0- This implies th a t aVWQ =  0 fo r a ll v G which contradicts 

our choice o f wq. □
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5.7 T he Formal Character

D efinition 5.14. Let L  be a semisimple L ie  algebra with Cartan subalgebra H . Define 

the group £  to be the abelian group consisting o f the fo rm a l expressions ex fo r  each 

A £ H * , w ith  product given by

gAigA2 _  gAi+A2

fo r  a ll A^,A2 £ H * .

We now introduce one o f the m ain tools th a t w ill be used for com putations in ­

volving the tensor product o f two modules.

D efinition 5.15. Let L  be a semisimple L ie algebra. Let V  be an L-module adm it­

ting a weight space decomposition, w ith fin ite  dimensional weight spaces. Define the 

formal character o fV ,  denoted ch V ,  to be the element in  the group algebra Z [£ \, 

given by

c h V  =  m y{v )e '/
veSuppv

Property 5.3. Let L  be a semisimple L ie  algebra w ith Cartan subalgebra H . Then 

fo r  any A € i f * ,  the fo rm a l character o f the Verma module M ( A) is given by

ch M (A ) =  K (7 ) eA ~ 7

7 eQ+

where K  is the Kostant p a rtition  function.

Proof. Due to  Proposition 5.11, we know tha t S uppM (A ) =  A — Q+ , and by Propo­

sition 5.12, we have th a t m M(a)(A — 7) =  K ( 7) for each 7  £ Q + , which gives our 

result. □

Lemma 5.3. Let L  be a semisimple L ie  algebra. I f  U and V  are both L-modules 

adm itting weight space decompositions, then

ch(f7 <g> F )  =  (chC /)(chP )

Proof. Choose bases Q3[/ and o f U  and V  respectively, each consisting o f weight 

vectors. Then {u  <g> v \ u £ Q3[/ and v G 03v }  is a basis o f U  ®  V. Further, i f  u  £ 03[/
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has weight v  £ Supp U  and v £ 23y  has weight 7  £ Supp V- then for any h E H , we 

have

® v) =  (/m ) ® u +  u (g) (/w ) =  (1/  +  7 )(h )(u  <g> i>)

Hence u <g> v is a weight vector w ith  weight A +  u. Since such vectors form  a basis for 

U  (g> V , we have th a t Supp (U  ® V ) =  Supp C7 +  Supp V , and further,

c h (U  <g> V ) =  ^  m u (u )m v ('y)ey+L' =  (chU)(cla.V)

v  e  Supp t /

7  £ Supp v

□
P ro p o s it io n  5 .17. Let L  be a semisimple L ie  algebra. Let V  be a fin ite  dimensional 

L-module, and U be an admissible L-module. Then U<S>V is admissible. In  particular,

mu®v (v) <  (d e g f/)(d im  V )

fo r  a ll v 6  Supp (U  0  V ).

Proof. Due to  the previous lemma,

ch (U  <g V ) =  (c h [/) (c h F )  =  m u ( i)m v {v )e 1+u
7GSupp£/ i/6 S u p p V

Let A £ Supp {U  ® V ) .  We see tha t A =  7  +  v  for some 7  £ Supp U  and u € Supp V. 

Define

S \ =  { v  £ Supp V  | A — v  £ Supp [ / }

Since Supp V  is a fin ite  set, we can choose weights 1 7 , . . .  ,Vk £ Supp V  such tha t

S \ =

For each 1 <  i  <  k  set 7 * =  A — 27. Then the dimension o f the A weight space in  

U  ® V  must be
fc fc

n»i/®v(A) =  5 3 m j/(7 i )m y(j/i ) <  (deg Cf)
i=l i=l

< ( d e g t / ) f  m v ( i / ) J
\i/€ S u p p  V  /

-  (deg f/) (d im  V )
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Since th is  gives a bound for a ll weight spaces occurring in  U  ®  V , we must have tha t 

U <g> V  is admissible. □

5.8 T he Central Character

Proposition 5.18. (Schur’s Lemma) Let L  be a semisimple L ie  algebra, and V  be 

a simple L-module, w ith action given by (f) : L  —> g l(V ). I f  tt G g l(V ) such that 

[7r, <f)(x)] =  0 fo r  a ll x  G L , then there exists c G C such that k ( v ) =  cv fo r  a ll v G V . 

i.e. 7r acts as scalar m ultip lication.

Proof. (See Lemma 6.1 in  [8 ]) □

Definition 5.16. Let L  be a L ie  algebra, a n d il(L )  be the universal enveloping algebra 

o f L . The centre o fiX (L ), denoted Z ( i i ( L ) ) ,  is defined to be

Z ( i l ( L ) )  =  {2  G i l ( L )  | xz — zx =  0 f o r  a ll x  G i l ( L ) }

Definition 5.17. Let L  be a semisimple L ie  algebra, and Z ( iI (L ) )  be the centre 

of the universal enveloping algebra o f L . A function  x  '■ Z ( i i( L ) )  —> C that is an 

algebra homomorphism is called a central character. I f  V  is a ii(L )-m o d u le  w ith  

the property that there exists a central character x v  fo r  which zv =  X v ( z ) v  fo r  a ll 

z G Z ( l l( L ) )  and a ll v € V , then V  is said to adm it a central character, and x v  

is called the central character o f V .

Proposition 5.19. Let L  be a semisimple L ie algebra w ith Cartan subalgebra H . Let 

V  be a simple L-module, then V  admits a central character. In  particu lar, fo r  any 

X G H * , the simple highest weight module L (A) admits a central character, which we 

w ill denote by xx-

Proof. Suppose the action o f V  on L  is given by the map (j> : L  —► g l(V ).  Let 

2  G Z ( i l( L ) ) .  Then for any x  G L , we have

[4>{z), <f>(x)\ =  <f>{z)<t>{x) — <j)(x)(j)(z) =  (f>(zx — xz) =  (f)(0 ) - 0

By Schur’s lemma, we have tha t for each 2  G Z ( i l( L ) )  4>(z)(v) =  czv for some cz G C 

and a ll v G V. Define x  '• Z ( i l( L ) )  —> C by x ( z) — cz■ Clearly, since (f) is an algebra
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homomorphism, we have tha t x  is an algebra homomorphism. Hence x  is the central 

character o f V. □

T h e o re m  5.3. (Harish-Chandra) Let L  be a semisimple L ie  algebra, w ith Cartan  

subalgebra H , and let X ,p  G H * . Then xx =  Xfi t f  and or%  * / there exists a  G W  

such that a(X  +  p) — p =  p.

Proof. (See Theorem 23.3 in  [8 ]) □

L e m m a  5.4. I f  x i  and X2 are central characters w ith  k e rx i Q ker X2 then x i  =  Xi-

Proof. Let 2  G Z ( i l( L ) ) ,  and z0  =  z — x i(z ) .  Then z0 G k e rx i Q kerX 2 , and hence 

0 =  X2 {z0) =  X2 {z) ~  X i(z ). Therefore x i( z )  =  X2 ( z ) .  □

P ro p o s it io n  5 .20. Let L  be a semisimple L ie  algebra, and V  be an L-module. I f  

V \ , . . . ,V n are submodules o f V  w ith d is tinct non-zero central characters X i > • • • > Xn 

then V i , . . .  ,Vn are linearly independent.

Proof. Suppose, to  the contrary, th a t v \ , . . .  ,v n G V  w ith  each Vi G Vt , and V\ =  

X ^ = 2  ai vii  f ° r  some ai G C. Since the Xi are d is tinct, the previous lemma implies 

tha t ker Xi \  ker X i 7  ̂ ® for each i  ^  1. Therefore, fo r each 2 <  i  <  n, we can choose 

Zi G Z ( l l ( L ) )  such tha t z{ G k e rx i and zt k e rx i -  Then

0 ^  X l(z 2 )X l(z 3) . . . X l(zn)Vl =  Z2 z3  . . . ZnVi
n

=  atz2z3 . . .  znVi
i = 2

n

=  ^ 2 a iX i^ X i^  ■ • • Xi( Zn)Vi 
i = 2

=  0

which is a contradiction. □

P ro p o s it io n  5.21. Let L  be a semisimple L ie  algebra w ith Cartan subalgebra H , and 

Z(iX (L)) be the centre o f the universal enveloping algebra o f L . I f  x  '■ Z (iX (L )) —> C 

is an algebra homomorphism then x  =  Xx f o r some X G H * .
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Proof. (See Proposition 7.4.8 in [6]) □

P ro p o s it io n  5 .22. (Kostant) Let L  be a semisimple L ie algebra, w ith Cartan subal­

gebra H , and let X , p e H *  w ith L (A) admissible, and L (p ) fin ite  dimensional. Let 

S uppL(p ) =  { v \ , . . . ,  Uk}- I f  z G Z ( i l ( L ) )  then fo r  any v G L ( A) <g> L (p ) we have

k

n ( * _  * * + « * ( * ) ) " = °
i= 1

Proof. (See Theorem 5.1 in  [10]) □

C o ro lla ry  5 .2 . Let L  be a semisimple L ie  algebra, with Cartan subalgebra H , and 

let X ,fi G H * w ith L ( A) admissible, and L (p ) fin ite  dimensional. Let S up p L (p ) =  

{ i / i , . . . ,  Vk}. I f V  is a submodule o f L(X ) <g) L (p ), having central character x v ,  then 

Xv =  Xx+ui fo r  some € S up p L (p ).

Proof. Assume x v  7̂  Xx+^ f ° r  any v, € S uppL(p ). Then by Lemma 5.4, for each 

1 <  i  <  k  we can choose z, G ker Xx+v, \  ker x v - Setting z =  z i . . .  Zk, and applying 

the previous proposition, we obta in  for any v G V,

k k

I I ( Z ~  X \ + M ) v  =  1 1 ^  =  X v(z )hv =  0 
i= l i= l

Therefore, 2  G ker x v ■ Yet, since X v(z) =  X v (z i)  ■ ■ ■ Xv(zk), we must have Z{ G ker 

for some i,  which is a contradiction. □

6 Construction of Simple Torsion Free M odules

In  th is section, we follow the work o f M athieu in  [15] giving a characterization o f a ll 

simple torsion free modules.

6.1 Som e U sefu l C om putational Identities

We begin th is section w ith  three formulas, for computations in  i l ( L ) .
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L e m m a  6 .1 . Let L  be a L ie  algebra. Let x  £ L  and y  £  i t ( L ) .  Then fo r  every 

N  £  Z>0,

N (  n \
( a d , f  M  =  ^ ( - 1 ) " - "  x " ! / * " - "

n= 0  \  71 /

Proof. We apply induction  on jV. W hen N  =  1, this form ula becomes adx (y) =

x y —yx, which is sim ply the defin ition  o f the adjo in t action on the universal enveloping 

algebra. Assume the form ula is true  for N  <  k. Then

(adx)k(y) =  adx((adx)k~1 (y))

=  adx ( (  k ~  1 ] x ny x k~1~n
\ n = 0  \  H J

=  ^ ( - l ) fe_1- n | k ~  1 j xn+1 y x k~1~n
n=Q \  n J

-  ( k ~  1 J xnvxk~n
n=o \  n J

=  ( k ~  1 | x ny x k- n
n— 1 \  ^   ̂ j

+  ] T ( - l ) fc- "  ( k ~ l  ) xny x k~n 
n= 0  \  n I

fc_1 '  '  k - l  \  I  k - 1

= (-l)W  + z*y+£(-l)*_” I I  j l + ( „ J J X " V X '’ ~ "

fc_1 f  k \
=  ( ~ l ) kxyk +  x ky +  J ] ( - l ) fc- n x ny x k~n

n=l \ n  J

=  E t - 1)* - "  ( k  1 xnyxk~n
n=o \  n J

□

L e m m a  6 .2 . Let L  be a L ie  algebra. Let x  £ L  and y £  i t (L ). Then fo r  every
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Proof. (The proof is similar to tha t of 6.1) □

L e m m a  6.3. Let L  be a L ie algebra. Let x  E L  and y i,y 2 € i t (L ). Then fo r  every

nilpotent on every fin ite  subset o f V . Equivalently, x  E L  is locally (p-nilpotent i f  fo r

im p lic it, we w ill simply say x  is nilpotent, o r locally nilpotent.

P ro p o s it io n  6.1 . Let L  be a f in ite  dimensional simple L ie  algebra w ith root system 

A . Then fo r  each a  E A , the element x Q is locally ad-nilpotent on i l ( L ) .

Proof. Let a  € A . Let

I f  x /3 E L  is another root vector, then (adXa)n(xg) E Lp+na. Yet, since L  is fin ite  

dimensional, {n  E Z>o | Lp+na /  (0 )} is a fin ite  set, hence xp E M a. Clearly, M a is 

closed under addition, and therefore L  C M a, due to  the root space decomposition o f 

L. Further, i f  y i,V 2 £ M a then we can choose N i and N 2 such th a t {adXa)Nl (y i)  =  

(adXa)N2 (y2 ) =  0. Let N  =  N i +  N 2. Then, by Lemma 6.3 we have

n = 0 \  ^  ,

Proof. (The p roof is s im ila r to  th a t o f 6.1) □

6.2 A  C om m uting Set o f R oots

D e f in it io n  6 .1 . Let L  be a L ie algebra, and {<fi,V) be a representation o f L . A n  

element x  € L  is said to be 0 -n ilp o te n t  i f  there exist an N  E Z>o such that 4>{x)Nv — 

0 fo r  a ll v E V . x  E L  is called lo c a lly  0 -n ilp o te n t  provided the action o f x  is </>-

each v E V  there exists an N  E Z>o such that <f>{x)Nv — 0. I f  the representation is

M a =  {y  E i l ( L )  | (adXo)N(y ) =  0 for some N  E Z >0}

(adXa)N (y iy 2) =  (adXa)n (y l )(adx)N- n{y2)
T l= 0
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yet, since for every n, e ither n >  N \ or N  — n  >  N 2, we have

{adxa)N iy m )  =  0

Therefore, whenever y i , j /2 £ M a, yxy2 G M a, hence i l (L )  C  M a. □

P ro p o s it io n  6.2 . I f  L  is a fin ite  dimensional simple L ie  algebra, w ith root system

injective o r locally nilpotent.

Proof. Let M  =  {v  G V  \ v =  0 for some N  e  Z >o}. We intend to  show th a t M  is 

a submodule o f V. To th is  end, let v  G M , x  G L , and choose N X,N 2  G Z>o such tha t 

x ^ v  =  0 and (adXa)N2 (x) =  0. Notice th a t the la tte r is possible due to  P roposition 

6.1. L e ttin g  N  =  N i +  N 2, by Lemma 6.2 we have

yet, since for every n, e ither n  >  N 2 or N  — n >  N i,  we have x%xv =  0 hence xv  G M .  

Therefore M  is a submodule o f V . Since V  is simple, th is  implies th a t M  =  (0) or 

M  =  V . I f  M  =  (0), then the action o f x a on V  is injective, and i f  M  =  V , the action

C o ro lla ry  6 .1 . I f  L  is a fin ite  dimensional simple L ie algebra, w ith  root system A , 

and V  is a simple L-module, then A =  A y  l+l Ay l±J Ay l±) Ay, where

A y  =  { a  G A | x a is locally n ilpotent and x_ a is in jective}

Ay =  { a  G A | x a is injective and X - a  is locally n ilpotent}

Proof. Let a  G A, then x a is e ither in jective or loca lly n ilpoten t, and a;_Q is either 

in jective or loca lly n ilpotent. Therefore a  is in  one o f Ay, Ay, Ay or Ay. Also, since

x a cannot be both  in jective and loca lly n ilpoten t, the sets Ay, Ay, Ay and Ay must

be d is jo in t. □

A, and V  is a simple L-module. Then fo r  each a  G A, the action o f x a on V  is either

is, o f course, locally n ilpotent. □

Ay =  { a  G A | x a and X - a  are in jective}

Ay =  { a  G A | x a and x _ a are locally n ilpotent}
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Definition 6 .2 . Let L  be a f in ite  dimensional simple L ie algebra w ith root system A. 

Let E C  A such that [xgx, xgf\ =  0 fo r  a ll /3\, £  S . Then E is called a com m uting

set o f roots.

Notice th a t [ x ^ , x ^ ]  =  0 i f  and only i f  Lpl+ fo =  (0), which happens i f  and only i f  

=  (0). Thus E  C A is a com m uting set o f roots i f  and only i f  [x - ^ , £-/%] =  0 

for a ll /? i,/?2  £ S.

Proposition 6.3. (M ath ieu) Let L  be a fin ite  dimensional simple L ie  algebra and V  

be a simple admissible L-module. Then there exists a set E y  C A  o f commuting roots 

which is a basis fo r  Q such that E y  C A y  U A y .

Proof. (See Lemma 4.4 in  [15]) □

Notice th a t the condition E y  C A y  U A y  is equivalent to  x_p  acting in jective ly 

on V  for a ll (3 G E y .

D efinition 6.3. Let L  be a fin ite  dimensional simple L ie  algebra and V  be a simple 

admissible L-module. Define a basis o f com m uting roots with respect to V  to be a

set E y  C A o f commuting roots which is a basis fo r  Q such that x_p acts in jectively

on V  fo r  a ll f3 G E y .

Recall th a t the usual base for the root system of Cn is given by

A++ =  { a i , . . . , a n}

where a* =  e* — ei+ \ for 1 <  i  <  n  and a n =  2en. For 1 <  i  <  n, set /?< =  a k- 

C learly fii +  (3j  £  A  for any i  and j ,  and hence [ x ^ x g ]  =  0 for a ll i  and j .  Thus

=  {/3i> • • • > A i}

is a com m uting set o f roots. Further, E n is a basis for Q. Also, one can show th a t 

the elements £_& act in jective ly  on any simple admissible highest weight C„-m odule 

L (A). Thus, E „  is a basis o f com m uting roots w ith  respect to  any simple admissible 

highest weight C^-module.
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P ro p o s it io n  6 .4 . Let L  be a fin ite  dimensional simple L ie algebra. Let V  be a 

simple admissible L-module, and E y  =  { /3i }  C A  be a basis o f commuting

roots w ith respect to V . Let 5 (E y )  be the m ultip licative subset o f i l ( L )  generated by 

{ l , a : - f t , . . .  ,X -pn}. Then 5 (E y )  satisfies O re’s Localizability condition.

Proof. B y  defin ition, 1 G 5 ( £ y ) .  5 ( £ y )  cannot contain any zero-divisors, because 

5 ( £ y )  C i l ( L ) ,  and i l ( L )  does not contain any zero-divisors. Due to  P roperty 2.1, 

i t  suffices to  show th a t the generators x_p for (3 G E y  satisfy the le ft and righ t Ore 

conditions. Let (3 G E y  and u G i l ( L ) .  A pp ly ing  Proposition 6.1, we can choose 

N  G Z > 0  such tha t ad^_0 (u) =  0. For sim plic ity, choose N  to  be even. A pp ly ing  

Lemma 6.1, we have

£  1 ) z - X V  = 0
0<n<N \ n  J

Therefore

x. ■P E(-d
,l<n<N

N —n+1 x 7l ri ux  \ n I = U X _ Q (1)

and

V - n + l

0<n<N—1
x f p U X ^ p ” 1 I X - 0  — X ^ p U  (2)

Setting u' =  X a<n<n (~ ^ )N n + 1  ^  J x -p  u x - p n and s' =  x_p in  (1 ), and u" =

E o < n < v - i ( _ 1 ) iV _ " +1 ^  j  xn-gUX!fi_fin~l  and s" =  x^p  in  (2) gives us x -p u ' =  us' 

and u "x -p  =  s"u. □

We now have tha t for a fin ite  dimensional simple Lie algebra L , given any simple 

admissible L-module, V , we can find a basis o f commuting roots, E, w ith  respect to  

V. Further, the m u ltip lica tive  subset 5 (E )  generated by {1 }  U {x_p  \ (3 G E }  satisfies 

Ore’s loca lizab ility  condition. We can therefore form  the localization algebra o f i l ( L )  

w ith  respect to  5 (E ) ,  which we w ill denote by !d^(L ). We now form  the induced
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module

I / s =  ife (L )  ® m  V

Recall tha t every element o f f i E(-L) can be w ritte n  in  the form  s_1m w ith  s G 5 (E ) 

and u  G i l ( L ) .  Hence, i f  E  =  {/5i , . . . ,  (3n}, and 93y is any basis for V , we have th a t

=  {ahfoohfo . . .  x k̂ n <g> v \ h , . . . ,  kn e  Z < 0, v G

is a basis for

Since il(R )  is embedded in  i I E(L ), we have tha t is also a lt(L )-m od u le  under 

the action
,1  . u . 1  .

t t ( -  <8 > n) =  <g) v)
s I s

for any u G i l(R )  and s_1 ® G

We now give some useful properties o f V s .

P ro p o s it io n  6 .5 . (M ath ieu) Let L  be a fin ite  dimensional simple L ie algebra. Let 

V  be a simple admissible L-module, and E C A  be a basis o f commuting roots w ith  

respect to V . Then is a weight module w ith the fo llow ing properties:

i ) V < V E

i i )  Supp V E =  Supp V  +  Q

H i) d im  I f  =  deg V  f o r  a ll p  G Supp V E

Proof. (See Lemma 4.4 in  [15]) □

Recall P roposition 5.19, th a t a ll simple modules o f a semisimple Lie algebra adm it 

a central character.

P ro p o s it io n  6 .6 . Let L  be a fin ite  dimensional simple L ie  algebra. Let V  be a simple 

admissible L-module, and E  C A  be a basis o f commuting roots w ith respect to V . 

Then I / E admits a central character, and the central character o f V E is that o f V .

Proof. Let 58y be a basis for V , and

OSyE =  { x ^ x ^  . . .  <g> v I k i , . . . , k n e  Z < 0, v G 58y}
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be a basis for V s . Let 2  £ Z ( i l ( L ) )  and s - 1  ® v  £ ® y£ ,  where 

s =  x k}p x . . .  x k™pn for some non-negative integers k \ , . . . , k n, and v £ 2$y. Since 

zs =  sz, we have th a t
2 1 2 1 2 

I s  s s i

hence

where x  is the central character o f V . □

6.3 Som e A utom orphism s

F irst, notice th a t i f  V  is a simple admissible L-m odule, and E y  is a basis o f com­

m uting roots w ith  respect to  V , then the adjo in t representation, and the le ft regular 

representation can be extended to  a ll o f iXzv (L )  acting on itself. We define for each 

x  € 11z v {L )  the map adx : 11z v (L ) —> 11s v {L ), given by

adx (y) =  x y - y x

for a ll y  £ 11 sv (L),  and the le ft regular action o f x  on 11 ev (L) ,  given by

x (y ) -  xy

for a ll y  G i l ^ v (L ). These definitions, o f course, coincide w ith  the previous defin itions 

of the ad jo in t and le ft regular actions o f L  on i l ( L ) .  Also, notice th a t the formulas 

given in  section 6 .1  s t ill hold fo r the action o f 11 sv (L )  on itself.

P ro p o s it io n  6.7 . Let L  be a fin ite  dimensional simple L ie  algebra. Let V  be a simple 

admissible L-module, and E y  C A  be a basis o f commuting roots w ith respect to V . 

Then fo r  each (3 G E y , the action o f adX fj o n i i^ v (L ) is locally nilpotent.

Proof. Since 5 (E y )  is generated by | (3 G E y } ,  and E y  is a com m uting set 

o f roots, we must have th a t for each f3 G E y  and s £ S (E y ) ,  adx_0 (s) =  0. Let

U
s G i l Sv.(L ), then
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since x^ps — sx_p, we have tha t

A ( u \  X -pu ux^p adx_0 (u)

adx- e \ s )  =  ~ s  T ~  =  s

Therefore, for any N  G Z>o we have

Since by Proposition 6.1, the action o f adx _ 0  on i l ( L )  is locally n ilpoten t, the result 

follows. □

P ro p o s it io n  6 .8 . Let L  be a fin ite  dimensional simple L ie  algebra. Let V  be a simple 

admissible L-module, and E y  ^  A  be a basis o f commuting roots w ith respect to V . 

Then fo r  each (3 G E y , xZp is locally ad-nilpotent on i i ^ v (L ). Further, fo r  each 

V £ ib :v (Z ) ,  and each (3 G E y , we have adk_! (y ) =  0 i f  and only i f  adk (y) =  0.
x - p  0

Proof. Let y G $Jl-£v (L ). Then for each [3 G E y  we have

=  E G 1) * " ”  f  k I
n= 0  \  n  /

Therefore

n = 0 \  n

k '  k ■ fcJi „ , ^ k —n

Therefore

and

n —0  \  71

=  ( - 1  )k“ dk y

adkx- i y  =  ( - l ) kx - kadkx v x - k

adx_0y =  { ~ l ) kxkadkxZiy x k

for a ll y  G !d-£v (L ). Thus adk (y) =  0 i f  and only i f  adk (y) =  0. F ina lly, since X-p
x - 0  "

acts loca lly ad-nilpotent on i l s v (L ), we have tha t xZp also acts loca lly ad-nilpotent 

o n i l Sv(L ). □
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D e f in it io n  6 .4 . For any a G C, and n  G Z>o, define

_ a(a — 1 ) . . .  (a — n  +  1 )a

n

with the usual convention that I 1 = 1 .

n!

0

Notice tha t in  the case where a G Z>o and n <  a, th is  coincides w ith  the usual 

binom ial coefficient.

D e f in it io n  6 .5 . Let L  be a fin ite  dimensional simple L ie algebra. Let V  be a simple 

admissible L-module, and E y  =  {(3\ , . . .  , p „ }  C A  be a basis o f commuting roots w ith  

respect to V . For each a =  ( a i , . . . , a „ )  G Cn, define <f>a : 11 t.v {L ) —► i l ^ v (L ) as 

fo llows: Fo r each y  G Hev {L ) choose N  G Z > 0 such that fo r  every k >  N  we have 

(y) =  0  fo r  a ll i,  and set

M y )  ( ? V "  f r *  ) • ■ • (aM j kn(y )x -_ t  • • • X~_%
fc1= o fc„=o \  m J  \  kn J

D e f in it io n  6 .6 . Let L  be a fin ite  dimensional simple L ie  algebra. Let V  be a simple 

admissible L-module, and E y  =  { /? i , . . . ,  f in}  C A  be a basis o f commuting roots w ith  

respect to V . For each a — (c i i , . . . , a n) € Cn, define : i l Ev (L )  —> iX-£v (L ) as 

fo llows: F o r each y  €  He^ (L ) choose N  G Z>o such that fo r  every k >  N  we have 

(y) =  0  fo r  a ll i,  and set

fcl=0 kn=0

L e m m a  6 .4 . Let L  be a fin ite  dimensional simple L ie algebra. Let V  be a sim ­

ple admissible L-module, and E y  be a basis o f commuting roots w ith respect to V . 

Let x i , . . . , x n G H e v {L ) be commuting elements, which act locally ad-nilpotent on 

H ev (L ). Let y  G H ev (L ) and choose N  G Z>o such that fo r  every k  >  N  we have
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adk.(y) =  0 fo r  a ll i.  Then fo r  any m i , , m n 6  Z>o we have

N  N

fcl=0 fcn= 0 Y K1 J

x (adXl)kl . . .  (adXn)kn(y )x~ kn . . .  x f kl

Proof. B y Lemma 6.2, we have

mn (  m  \

c i  V fc. /

I f  m n >  N , then for a ll kn >  m n, we have adk"(y )  =  0. Hence

E  ( )  (“ O N y K - * ”  “ E l 171" )  («0 ‘ " ( y ) < ‘ " =
fc„=o y hn J kn=o \y hn J

Also, i f  m „ <  N , then fo r any kn >  m n, we have

m r, mn(mn -  1) . . .  (mn - k n +  l)  
k 1rvn .

Since kn >  m n, the term  m n — (m n +  1) +  1 =  0 must appear in  the num erator o f the

m n \
above expression. Thus ( I =  0. We therefore s till have

kn J

“ E l ” 1" )

F inally, notice th a t since the x, commute, we must also have th a t adXi commutes w ith  

adx for a ll i  and j .  Thus, fo r any i  <  n, we have

\fci+i=0 fcn=0 y  &1+1 J  \  Kn

X (adXi+1)ki+1. . .  (adXn)kn(y )x~ kn . . .  =  0

The result follows by induction. □
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C o ro lla ry  6 .2 . Let L  be a fin ite  dimensional simple L ie algebra. Let V  be a simple 

admissible L-module, and E y  =  { f ix , . . . ,  /3n}  C A  be a basis o f commuting roots w ith  

respect to V . Then fo r  any in  =  ( m i , . . . ,  m n) w ith a ll m* G Z>o, we have

and

&m(y) =  x - h  ■ ■ • x~-Zny x - k  ■ • •

fo r  a ll y  G HeV(L ).

Proof. Th is is sim ply Lemma 6.4, in  the special cases where our set o f commuting 

elements are X- ^ , . . . ,  x_pn and respectively, x Z ^ , xZ \ n. □

L e m m a  6.5. Let p (x i , . . . ,  x n) be a polynom ial over C, in  n  variables. I f  there exists 

an in fin ite  set D  C C, fo r  which p ( x \ , . . .  , x n) =  0 whenever x i , . . .  , x n G D , then 

p (x i , . . .  , x „ )  =  0 fo r  a ll X i , . . .  , x n G C.

Proof. We apply induction  on n. I f  n  =  1, then either p =  0, or

k

p ( ® ) = n < *  -
i=l

for some k G Z>o, and some a, G C. I f  p(x) =  0 whenever x  G D , then

D  C {a i ,  . . . , a k}

Since D  is in fin ite , th is is impossible, and hence p — 0. Assume the result is true 

for any polynom ial in  n — 1 variables. Let dn G D, and le t Qd^ixi, • ■ •, £n- i )  =  

p( x i , . . . ,  x n- i , d n). Then qdn(x  i ,  • • • > ^ n - i)  =  0 whenever x i , . . . ,  x „ _ i  G D , and hence 

q ^ x  i , . . . , x n_i )  =  0 whenever x i , . . . , x n G C. Therefore, p ( x i , . . .  , x „ _ i , x n) =  

0 whenever x i , . . . , x n G C, and x n G D. Let c i , . . . , c „ _ i  G C, and let q(xn) =  

p (c i, . . .  ,Cn_i ,xn). Then q(xn) =  0 whenever x n G D, and hence q(xn) =  0 for a ll 

xn G C. Thus, p ( x i , . . . ,  xn) =  0 for any choice o f x i , . . . ,  x „  G C. □

P ro p o s it io n  6 .9 . Let L  be a fin ite  dimensional simple L ie  algebra. Let V  be a simple

admissible L-module, and E y  =  { f ix , . . . ,  fin}  C A  be a basis o f commuting roots w ith

respect to V . Then fo r  each a, — ( a i , . . . ,  an) G Cn, a Hev (L ) automorphism.
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Proof .  Let y i ,  y2 €  i le v (L ), and choose N i , N 2 such that for any k \  >  N \  and any k 2 >  

N 2, we have a d 1! 1 ( y i )  =  0  and a d * 2 (y2) =  0  for all i . Setting N  =  m a x { N i ,  N 2}
Pi

we have, for any k  >  N ,

adL 0i ( y i )  =  adL 0i (y2) =  a d * _ 0X y i  +  y2) =  0

for all i  and hence by linearity of the adx_/3i we have that

M v i  +  2/2 ) =  M v i )  +  $0(2/2)

for any a  €  C n. W e now intend to show that $0(2/12/2) =  $0(2/1) $0(2/2) f ° r all a  €  C n. 

As in the proof of Proposition 6 .1 , we have that, for any k  >  N i + N 2, ad *  (2/12/2) =  0
Pi

for all i .  Hence
N i + N 2 N ! + N 2 (  n  \  (  n \

*.<».«.)= E •" E -  K-*-
k h  \ h  )  \ k  j

and

^ ( 2/ i ) ^ ( y 2) =  f  x :  - - • x :  f ai V.. f
\fci=o fcn=o \  k \  J  \  kn J

n 2 n 2

ifci=o fc„=o \  ki J \  kn
x 1E - E  ( ? -  !* K-*.

W here Uk1...k„,Vk1...kn ,'Wki...kn £  i l y,v { L )  for all kt) and do not depend on a. Consider 
$0(2/12/2) ~  $ a (2/ i )$ a (y 2). Let 58 be a basis for i l Ev(L ). W e can write

$0(2/12/2) -  $ s (2/ i )$ « (2fe) =
u€25

for some Cy €  C. Further, since the coefficients appearing in $3(2/12/2) and $ „ (2/1)$5(2/2) 
are all polynomials in a \ , . . .  a n , we have that

$0(2/12/2) -  $ a (y i)$0(2/2) =  ^ 2 pv( a i , . . . , a n)v

where each p v( a i , . . . ,  a n ) is a polynomial in variables a i , . . . ,  an . Further, whenever 
ai €  Z>o for all i,  due to Corollary 6.2, we have

$0(2/12/2) -  $ a (v i)$ a (2fc) =  5 ^Pi»(ai,- ■ - , a n ) v  =  0
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and hence p „ ( a i , . . . ,  an) =  0 for each v £ 93. B y Lemma 6.5, we have th a t pv( a \ , . . .  ,dn) 

0 fo r a ll a i , . . . ,  an £  C. Thus

^ a ( y m )  -  $a(yi)<My2) = o

for a ll a £  C ” . I t  only remains to  show th a t each is a b ijection. We claim  tha t 

is an inverse for <ba. To see th is, le t y £  i l zv (L ), and consider

$a$a(y) -  y

Due to  C oro llary 6 .2 , we have

$ a$a(y) -  y  =  0  

whenever at £  Z>o for a ll i. As before, since

$ a *M y ) ~ y  =  ^ 2  qv(a i> • • • ’ a^ v
veas

for some polynom ials qv in  variables a i , . . . ,  an, and each ^ ( a j , . . . ,  a „) =  0  whenever 

a i , . . . ,  an £  Z , by Lemma 6.5, we must have tha t qv( a i , , an) =  0 fo r a ll choices o f 

a i , . . . ,  an £  C. Hence

$a$a(y) -  y  =  0

for a ll a £  Cn and a ll y £  □

6.4 C haracterization o f Sim ple Torsion Free M odules

D e f in it io n  6 .7 . Let L  be a f in ite  dimensional simple L ie algebra w ith Cartan subal­

gebra H . A  c o h e re n t fa m ily  M . is an admissible L-module o f degree d such that

i)  Supp M . =  H * .

i i )  d im  Ad a =  d fo r  a ll A £ H *.

H i) F o r any u £ il(L )o  there exists a polynom ial p (x ) such that 

p (A) =  T ru \M x f o r  A £ H *.
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Where i l (L ) 0  denotes the zero weight space o / i l ( L )  with respect to the ad jo in t repre­

sentation o f L  o n U (L ). We say M  is ir re d u c ib le  provided there exists A € H * such 

that the il(L )o  module M . \  is simple.

Recall th a t E is a basis for Q, and hence E is a basis for H *.

D e f in it io n  6 .8 . Let L  be a fin ite  dimensional simple L ie algebra. Let V  be a simple 

admissible L-module, and E =  { P i ,  ■ ■ ■,P n }  C A  be a basis o f commuting roots w ith  

respect to V . Suppose the action o f L  o n V  is given by 0 :  L  —> g l{V ). Let

cf>' : i l E(L ) ->  g l(V E)

be the extension o f (j) to i l E(L ). Let v  € H * , i.e.

n

v = Y l ai&
i=1

fo r  some aj € C. Define the L-module V E[u] to be the vector space V s under the 

action given by o restricted to L , where a, =  ( a i , . . . ,  an).

P ro p o s it io n  6.10. Let L  be a fin ite  dimensional simple L ie  algebra w ith Cartan  

subalgebra H , and V  be a simple admissible L-module. Let 

E =  { /3 i , . . .  ,(3n}  C A  be a basis o f commuting roots w ith respect to V . I f

n

V =  ^ 2  A £ H *
i =1

and
n

k  =  W i  e H *
i=1

such that — ai €  Z  fo r  each i,  then V T‘[i'\ ~  F s [ac].

Proof. Let the action o f i l E(L ) on be given by the map

<t>: M L )  -> g l(V * )

Let m{ =  bi — ai fo r each 1 <  i  <  n. Define the map a  : —> F E by

o(v) =  . . .  d){x-gn)mn{v)
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for a ll v  G V E. Then a  is also a vector space isomorphism o f V z [u] onto V s [k]. Let 

a — ( a i , . . . ,  an) and b =  (6 1 , . . . ,  bn). We claim  th a t for a ll y  € L  and a ll v € F E,

<*{(<!>0 ®a ) ( y ) ( v ) )  =  (4>o $h)(y)(<r(v)) (1 )

and hence th a t V ^ v ]  ~  V^f/c]. Let y  € L. On the le ft hand side o f (1), we have

N N , „  ,
ai  \ an

v((<f>°$a)(y)(v)) =  0  j ( J 2  "  H  ••• ”  I j (V)
,fci=o fc„=o V /  V kn

N  N  , „ .
O i \  I  & n

=  ^ . . . ^ ( E - E ‘ , ••• "  ) ) (u)
, fc1=o fc„=o \  k\ j  \  kn

Where

and

"  :  K - ] w
,fci= 0  fc„= 0 \  M /  \

Uki,...,kn — {p‘dx_01) 1 • • • {o,dX /3n) n(y)x- ^ l ■ ■ ■  ̂ils(L)

v * . ^  • • • X ^ u k l_ kn G H e (L )

Le tting  ® uE(z,) be a basis o f 11e (L ), we have tha t

a(((f> o ^ ) ( y ) ( v ) )  =  <j) \ ] T  px(o i , . . . , o „ )a ;  J (v)
V e» u s(i,) /

where the px( a i , . . . ,  an) are polynomials in  variables a i , . . . , a n. Likewise, on the 

righ t hand side o f ( 1 ), we have

(0 o $-b)(y)(cr(v)) =  ^  [ 5 Z  • • ' X I  ( ^  I - " !  bU )
\ i^ o  i^o \ h  J \ k n J J

yfc1=o *:„=o y m J \  kn J J

= ^ ( e - e ( M  <»>
\ f c i = 0  fc„=0 V 1 /  V n  /  /
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Where

Wku...,kn =  Uku...,knx ™ '01 • • ■ x ’X  E i l e (L )

Therefore

(</) 0  $-b){y){<r(v)) =  (f> I ^ 2  Q x {h , . . . ,b n)x  I (u)

where the qx (a \ , . . . ,  an) are polynom ials in  variables 61 , ,  6n. Hence

<r((0 o $ a) ( y ) ( u ) ) - ( 0 o $ 6)(y )(a (t;)) =  0  j  ^  / a( a i , . . . ,  an , 61; . . . ,  bn)x  J (v)
\^e®us(z,) /

where the / x ( a i , . . . ,  an , b i, . . . ,  6n) are polynom ials in  variables . . .  ,a n,bx, . . .  ,bn.

I f  a i , . . . ,  an , 61 , . . . ,  bn £ Z>o, C oro llary 6 .2  implies tha t

0  $ a )(y )(u )) =  • • • x™pn)<t> • • • x â nyxZ fn ■ • • x :% ) (v)

=  cj> (x ™ '01 . . .  x™znx a_'0 i . . .  x ^ y x Z a0 n . ■ ■ xZa0\ )  (v)

- 1  ( x - T 1 • • • • ■ • x -% ~m ix - k  ■ ■ ■ * % . )  (v)

=  (t> ( x \  . . .  x \ y x . . .  xz% ) . . .  X ^ n)(v)

=  {(j> o $-b){y ){a {v ))

Thus, by Lemma 6.5, the polynomials f x {a 1 , . . . ,  an , 6 1 , . . . ,  bn) =  0 for all a i , . . . ,  an, 6 1 , . . . ,  bn £ 

C. Th is proves (1), which gives the desired result. □

The previous proposition implies tha t for each coset 9 =  1/  +  Q £ H * /Q , where 

v £ H * , we can define, up to  equivalence, the module V s [9] by

V s [9] =  V ^[u \

P ro p o s it io n  6.11. Let L  be a fin ite  dimensional simple L ie algebra w ith Cartan  

subalgebra H , and V  be a simple admissible L-module. Let E  be a basis o f commuting 

roots w ith  respect to V . I f  9 £ H * /Q  then S u p p y s [p] =  9 +  Supp V .

Proof. Let <j> be the map defining the action o f L  on V ^ . Let E =  {/?i ,. ..,(3 n}.

Choose v £ H *  w ith  9 =  1/  +  Q. Then

— ^  f i i
i= 1

79
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for some a,- G <C. Set a =  ( a i , . . . ,  an) G Cn. Then by defin ition, V E[u} is the vector 

space V E under the action given by 0 o Let h G H . Notice th a t for any $  G E, 

we have ad%._g (h) =  0. Therefore

1 1 '  \ I a *
w = E  ■ - £  • • • ” («<<■-* )*■••• )*" w x - k  ■ ■ ■ x - %

ki=0  fc„ = 0  y  J  y kn J

Further, since adX 0 .(x - fy )  =  0 for a ll i , j ,  the above equation reduces to

$ a(h) =  h +  ^  ^  j  a*1* - *

=  h ~   ̂̂  j “ d h ix -fiJ x Z ft

n

=  h +  Y ^ a iP i(h )

=  h +  v(h )

Let v G F E [P], such th a t u is a weight vector o f y E. i.e. u) =  7 (/i)u  fo r some

7  G Supp P E and a ll h £ H . Then for any h £ H  we have

( 0  o <f>  ̂' ’ 0  v - / =  =  ( 7  +  ^ )(h )u

Hence v is a weight vector o f F E [p] w ith  weight 7  +  1/. Therefore

Supp P s [p] =  z/ +  Supp F E

Since by Proposition 6.5 Supp V E =  Supp V  +  Q, we have our result. □

C o ro lla ry  6 .3 . Let L  be a fin ite  dimensional simple L ie algebra w ith  Cartan subalge­

bra H . Let P G H * /Q . I f V  is a simple admissible L-module, then S u p p F E[p] =  P +A  

fo r  some A £ H * , where IL is a basis o f commuting roots w ith respect to V .

P roo f By Proposition 5.5, we have tha t Supp V  C A for some A G H *. The previous 

proposition implies tha t

S u p p y E[p] C p  +  A 

80
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Conversely, since {A } C Supp V, we have th a t

{A } +  V C Supp F E[z/]

Since, {A }  +  v =  \  +  v  +  Q =  \  +  v,  we have our result. □

D e f in it io n  6 .9 . Let L  be a fin ite  dimensional simple L ie algebra w ith Cartan subal­

gebra H , and V  be a simple admissible L-module. Let S C  A  be a basis o f commuting 

roots w ith respect to V . Define the module

M S{ V ) =  ®  V*{i>]
v € H * / Q

P ro p o s it io n  6 .12. (M ath ieu) Let L  be a fin ite  dimensional simple L ie algebra, and

V  be a simple admissible L-module. Let E be a basis o f commuting roots w ith respect 

to V . Then SA-zfV) is a coherent fam ily  w ith degree equal to the degree o fV . Further,

V  is a submodule o f

Proof. (See Lemma 4.5 in  [15]) □

P ro p e r ty  6 .1 . Let L  be a fin ite  dimensional simple L ie algebra w ith Cartan subal­

gebra H . Let v  G H * /Q . I f V  is a simple admissible L-module then

v £ {* -  * ]  =  ®  M z ( V ) 7

- f E P

where A € H * w ith  Supp V  C A.

Proof. C learly y E[i> — A] <  M x ( V ) ,  hence V ^ [u  — A] 7 <  -M E( y ) 7 for each 7  G 

Supp V E[i/ —A]. B y C oro llary 6.3, we have Supp 1AE[P — A] =  v  and hence VrE[i>—A]7 <  

M 'z {V ) 1  for a ll 7  G za However, since by Proposition 6.5,

d im  F E \v — A] 7 -- deg V  =  d im  .M i;( V ) 7

we must have

f / E [p -  A]7 =  .M Ea o 7

for a ll 7  G v.  Thus

Vs [p -  A] = ®  Vs [P -  A], =  ®  M stV ),
7e v -icv
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Notice tha t by Lemma 5.2, since the module Ad?,(V) is admissible, i t  has fin ite  

length. We can therefore apply the Jordan-Holder theorem to  make the follow ing 

definition:

D e f in it io n  6 .10 . Let L  be a fin ite  dimensional simple L ie algebra w ith Cartan subal­

gebra H , and let V  be a simple admissible L-module. Let E be a basis o f commuting 

roots w ith respect to V . Define the module Adss(V ) to be the module such that fo r  

each v e H * /Q , the module

© M . 0 0 ,
7£i/

is the direct sum o f the simple quotients in  any composition series o f

© * M V ) ,
761^

Notice th a t for each v  € H * /Q , the module 0 76£, Adss(V ) 1  is semisimple.

D e f in it io n  6 .11. Let L  be a fin ite  dimensional simple L ie algebra w ith Cartan sub­

algebra H . A  coherent fam ily  Ad o f L  is said to be s e m is im p le  provided fo r  each 

v  € D * IQ , the module © 7€i> Ad 7  is semisimple.

L e m m a  6 .6 . (M ath ieu) Let L  be a fin ite  dimensional simple L ie  algebra, and V  be 

a simple admissible L-module w ith degree d. Then the fo llow ing hold:

i ) There exists a unique semisimple coherent fam ily  Ad o f degree d 

such that V  is a submodule o f Ad.

i i ) Such a coherent fa m ily  A i  is irreducible.

H i) Ad ~  M SS(V )

iv ) I f  V ' is any in fin ite  dimensional submodule o f A4 then V  is 

admissible, and deg V ' =  d.

v ) A ll simple submodules o f Ad have the same central character.

Proof. (See Proposition 4.8 in  [15]) □

In  particu lar, the previous lemma implies tha t Adss(V )  is independent o f the choice 

o f com m uting roots E. Further, i f  V ' is any simple in fin ite  dimensional submodule of 

then Adss(V ')  ~  A4SS(F ) . And V ' has the same central character as V.
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L e m m a  6.7. Let L  be a fin ite  dimensional simple L ie  algebra w ith Cartan subalgebra 

H  and root system A . Let V  be a simple admissible L-module. Then M .Ss (y ) contains 

a simple admissible highest weight module L b { X )  fo r  some A E H * relative to some 

base B  o f A .

Proof. (See Proposition 5.7 in  [15]) □

In  view o f the previous Lemma, for each simple admissible L-m odule, V , and base 

B  o f A , we define the follow ing sets:

H W b { M ss{V )) =  { \ e n * \  L b {A) is a submodule o f M SS(P ) }

and

H W b ( M ss(V ))  =  {A  +  Q  | A E H W b ( M ss(V ) ) }

Recall P roposition 5.19, th a t every simple module adm its a central character, and 

Proposition 5.21, th a t every central character is some xx  w ith  ^  G H *.

P ro p o s it io n  6.13. (M ath ieu) Let L  be a fin ite  dimensional simple L ie  algebra w ith  

Cartan subalgebra H , root system A  and Weyl group W . Let B  be a base fo r  A , and 

V  be a simple admissible L-module w ith central character xx fo r  some A E H *. Then

H W b { M ss{ V) )  =  {a{  A +  p ) - p  +  Q \ a e W }

Proof. (See Lemma 10.1 in  [15]) □

In  particu la r, the previous proposition implies tha t the set H W b {M .ss(V ))  is 

independent o f the choice o f base B. Therefore i f  V  is any simple admissible L - 

module, then A i ss(V ) contains a simple admissible highest weight module L(A) for 

some A E H *, re lative to  any base o f A .

T h e o re m  6 .1 . Let L  be a fin ite  dimensional simple L ie algebra w ith Cartan subalge­

bra H  and root system A . Let V  be a simple torsion free L-module. Then there exist 

A G H * and P G H * /Q  such that

V  ~  L (A )e [P]

where E C  A  is a basis o f Q consisting o f commuting roots such that x_p acts injec- 

tively on L(A) fo r  a ll (3 G S.
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Proof. Let deg V  =  d. Since V  is torsion free, by Proposition 5.13, we have th a t 

Supp V  =  7  fo r some 7  € H * /Q ,  and every weight space o f V  has dimension equal 

to  d. Further, since V  is a submodule o f A4SS(F ), and every weight space o f A4SS(V ) 

has dimension equal to  d, we must have

V  =  @ M „ ( V ) K

Due to  Lemma 6.7 and P roposition 6.13, we can choose A € H *  such th a t L (A) 

is a simple admissible highest weight submodule o f M as(V ). B y  Lemma 6 .6 , since 

M .SS(V ) is a semisimple coherent fam ily  o f degree d, containing L ( A), we must have

M SS(V ) ~  M SS( L ( \ ) )

Therefore

^ ® - M ss(L (A ))k

k£7

Recall tha t, by defin ition, M SS(L (X )) has the property tha t the module M SS(L (X ))K

has the same composition series as M -e (L (X ))k. However, since V  is simple, 

the composition series o f V  is V  itself, and hence

Finally, P roperty 6.1 implies tha t

$ W A | ) ,  = i(A )E[7 -  A]
k£7

Taking v  =  7  — A gives the desired result. □

Notice th a t in  the previous theorem, since the simple admissible highest weight 

module L (A) is a submodule o f A4SS(V ), due to  Lemma 6 .6 , we must have tha t the 

central character o f V  is xx-

We now have tha t every simple torsion free module is equivalent to  the module 

L (X )T,[iy] for some v  € H * /Q ,  and some simple admissible highest weight module 

L (A). In  the next section, we give a characterization of a ll simple admissible highest 

weight modules for Cn.
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7 Simple Adm issible H ighest W eight Cn-M odules

In  th is section, as in  the previous section, we follow the work o f M ath ieu  in  [15], 

g iving several equivalent characterizations o f simple admissible highest weight Cn- 

modules. For the remainder o f th is thesis, unless otherwise stated, the algebra is 

assumed to  be Cn, w ith  fixed Cartan subalgebra hi as given in  Section 3.7. A  is 

the root system w ith  respect to  hi. A ++ =  {a u , . . .  ,a n}  is the base for A  given in  

Section 3.7, w ith  A + and A ~  being the positive and, respectively, negative roots w ith  

respect to  A ++ . S) =  { h i , . . . ,  hn}  denotes the simple basis o i hi. © = { e r , . . . ,  en} 

and #  =  (co'i, . . . ,  ujn}  are the epsilon and, respectively, fundam ental bases for h i* . W  

denotes the W eyl group o f Cn, and

p = 5 £ ^ = i >
/3eA+ »=i

Further, the epsilon basis is orthonorm al w ith  respect to  the inner product (•, •).

Proposition 7.1. (M ath ieu) Let A £ h i*. The simple highest weight Cn-module L ( A) 

is admissible i f  and only i f  A satisfies the fo llow ing three conditions:

i ) A (h i) £ Z > 0 fo r  a ll i  ^  n

i i ) A(hn) € |  +  Z

H i) A(h„_i +  2hn) £ Z>_2

P roof (See Lemma 9.2 in  [15]) □

Recall th a t A (h i) =  (A, a t), and th a t A + =  {e* ±  ej \ i  <  j }  is the subset o f A  

consisting o f a ll positive short roots. We now make the follow ing observation, based 

on M ath ieu ’s characterization o f admissible Cn modules:

Corollary 7.1. Let A =  £ 77*. The simple highest weight Cn-module L { A)

is admissible i f  and only i f  ai € |  +  Z  fo r  a ll i,  and (A +  p, a ) > 0  fo r  a ll a  £ A + .

Proof. F irs t, suppose L (A) is admissible. C ondition i i )  implies tha t

1 „  an £  -  +  Z
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since

X(hn) =  (A, 2 e„) =  2 -^  — r̂- - (A, en) =  an

Further, condition i ) implies th a t for 1 <  i  <  n, i f  a^+i £  |  +  Z  then a* £ |  +  Z. We 

therefore have th a t a, £ |  +  Z  fo r a ll i. I f  1 <  * <  j  <  n, then

j - 1 j - i
(A +  p, Ci -  ej) =  (A +  p, a k) =  j  -  i  +  ^  A (/ifc) >  0

fc=i k = i

due to  condition i ). C ondition m )  implies tha t

(A +  p, en_ i +  en) =  (A +  p, a n_ i +  a n)

=  (-^j c^n-i) +  2(A, a n) +  3 

=  A (h „_ i +  2hn) +  3 >  0

Finally, i f  1 <  i  <  j  <  n, we have tha t

(A +  p, Cj +  6j )  =  (A +  p, ej — 6j) +  2(A +  p, Cj — en_ i)

+  (A +  p, en_ i — en) +  (A +  p, en_ i +  e„)

>  0

Next, suppose th a t a* £ |  +  Z  fo r a ll i, and th a t (A +  p, a) > 0  for a ll a  £ A + . For 

i  7  ̂ n, we have A (/ij) =  a* — a j+ i £ Z , and

A(/ij) =  (A +  p, a ,) -  1 >  0

since a* £ A + . Thus condition i)  in  M a th ieu ’s characterization holds. A(hn) =  an £ 

|  +  Z , and hence condition i i )  holds as well. F inally,

A(hn_ i +  2hn) — (A, en_ i +  e„) =  an_ i +  an £ Z

and X(hn- \  +  2hn) =  (A +  p, en_ i +  en) — 3 >  —2. Thus condition m ) holds as well. □

Corollary 7.2. Let A =  € Tf*. Let A +  p =  X ^ = i c»e*- s^mP^e highest

weight Cn-module L (A) is admissible i f  and only i / c ,  £ |  +  Z /or a ll i,  and c, >  |cj| 

fo r  a ll i  <  j .  i.e. C\ >  c2 >  • • • >  c „_ i >  |c„|.
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Proof. Clearly, a* G |  +  Z  i f  and only i f  q  € |  +  Z. Further, (A +  p, e* — £j) >  0 i f  and 

only i f  Q >  c, and (A +  p, e, +  Cj) >  0 i f  and only i f  c, >  —cr  □

L e m m a  7.1. I f  x  '■ Z (H ) —> C is a central character, then there exists at most two 

non-equivalent simple admissible highest weight Cn-modules having central character 

X■ Further, i f  L ( A i) and L ( A2) are non-equivalent simple admissible highest weight 

Cn-modules having central character x , then

Ai — A2 ^  Q

P roo f Suppose x \ i  — Xa2 for some A i,A 2 G H *  such th a t L { \ \ )  and L ( A2) are 

admissible. B y Theorem 5.3, there exists a  G W  such th a t cr(Ai +  p) =  A2 +  p. B y 

Corollary 7.2, we have
n

A i+ p = cjCj 
i=1

for some c, G C w ith  C\ >  c2 >  • • • >  c „_ i >  |c„|- Likewise,

n

A2 +  p =  djCj 
*=1

for some G C w ith  d i >  d2 >  • • • >  d „_ ! >  |d„|. Since W  is the group o f 

a ll perm utations and sign changes on the subscripts o f the e*, we see th a t the only 

possibility, i f  Ai ^  A2, is tha t

A2 +  p =

Assuming Ai ^  A2, we have Ai — A2 =  2cne„. Since Cn G |  +  Z , we have tha t 

2c„ G 1 +  2Z. Since ken £ Q  for any odd number k, we have Ai — A2 ^  Q . □

In  particu la r, the previous lemma implies th a t i f  L (A i) and L ( A2) are non-equivalent 

simple admissible highest weight Cn-modules w ith  the same central character, then

(S u pp L (A i)) f l  (S uppL(A 2)) =  0
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8 D ecom position of L ( A) ® L ( f i )

As in  the previous section, our algebra is assumed to  be Cn w ith  7 i, A , A ++ =  

A + , A - , W , f )  =  {h 1, . . . , h n} , 6  =  { e i , . . . , e n}, £  =  (cux,. . .  ,wn}  and 

p a ll as given in  section 3.7. Further, unless otherwise stated, we w ill le t X ,p  € H *, 

w ith  L ( A) admissible, and L (p )  fin ite  dimensional, hence p  is dom inant integral.

8.1 C om plete R educib ility

We firs t confirm  tha t the tensor product L ( A) <8 > L (p )  decomposes in to  a d irect sum 

of simple admissible highest weight modules.

P ro p o s it io n  8.1 . (Britten-Hooper-Lem ire) Let p  =  X ^ = i be a dom inant integral 

weight, and let

weight p 0 such that L (A) <  L ( —\u jn) ®  L(po)

Proof. Due to  Coro llary 7.2, we can w rite  A =  w ith  b, € |  +  Z , and A +  p =

n
0 <  di <  ai fo r  1 <  i  <  n  — 1, and d, € 2Z

i—1

then L ( — <8 ) L (p ) is completely reducible, w ith  decomposition

Proof. (See Theorem 5.5 in  [1]) □
L e m m a  8.1. I f  A G PC* w ith L (A) admissible, then there exists a dom inant integral

S r= i ° ieii w here Ci =  bi +  n  — i  +  1, and Ci >  C2 >  • • • >  cn_ i >  \cn\. Let kt =  +  §

for each i,  and let

hence
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We firs t show th a t p 0 is dom inant integral by making use o f the characterization 

given in  P roperty 5.2. For sim plic ity, denote the i th coefficient in  po by a*, i.e. set 

^  =  ki +  2  for 1 <  i  <  n  — 1 and an — \kn \, hence

Since ki € Z  for a ll i, we have th a t a, 6  Z  for a ll i. Further, for 1 <  i  <  n  — 1, we 

have tha t

0  <  (k -  a + i -  l  =  bi +  n - i  +  l -  (6i+ i +  n - i ) - l  =  b i -  bi+ 1 = ki+ i

and hence ki >  k i+ i for 1 <  i  <  n  — 1. Also,

0  <  C n  +  C n - I  —  1 =  6n  +  1 +  ( f > n - l  +  2) —  1 =  6n  +  6n _ i  +  2 =  k n  +  fcn _ i  +  1

In  particu la r, for 1 <  i  <  n — 2, we have kt >  kl+ \ and hence

Also, an =  |Avi| >  0. I t  only remains to  show th a t an_i >  a„. Since fcn_ i >  fcn, we 

have th a t A;„_i +  2 >  kn, and since kn_ i >  — kn — 1, we have th a t fc„_i +  2 >  —kn. 

Therefore an_ i =  +  2 >  |fc„| =  an. Thus p 0 is dom inant integral.

We now show th a t L(A ) <  L ( —|o;n) (g) L(po)- F irs t, notice th a t since fcn_ i >

and A:n_ i >  — kn — 1, we have th a t 2&n _ 1 >  —1, and hence kn_ i >  0. Further, since 

h, >  fcj+i  for 1 <  i  <  n  — 1, we have th a t ki >  0 for 1 <  i  <  n  — 1. W ith  Proposition 

8.1 in  m ind, we set di =  2  for 1 <  i  <  n  — 1 , and dn =  |fci| — fc*. C learly di € Z > 0 for

all i , and since =  0 or 2 1 | , we have th a t di G 2Z for a ll i, hence

n

2= 1

n

Y d i £ 2 Z
i= 1

Further, since ki >  0 for 1 <  i  <  n  — 1, we have th a t 0 <  2 <  ki +  2, i.e.

0  <  di <  ai

Finally, since 0 <  \kn \ — kn <  2\kn \, we have tha t

0  <  dn <  2 a„ +  1
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Thus

A +  - o >2 — Po — di6i G
i = i

Therefore

L (A) <  0  L ( - - u ; n +  i/)

T h e o re m  8.1. I f  X ,p  G 71*, w ith L { A) admissible, and p  dom inant integral, then 

L (A) ® L(/x) is completely reducible.

Proof. Choose po such th a t L (A ) <  L ( —|o>) ® L (p o). Then

L(A ) <g> L (//)  <  L ( - ^ u ; )  <g> (T (/r0) ® T (/i) )

Since L (p 0) <g> T(/x) decomposes in to  a d irect some o f simple modules w ith  dom inant 

integral highest weights, and the tensor product o f L ( —\uS) w ith  any such module is 

semisimple, hence completely reducible, we must have tha t L ( —Iu )  ®  (L ( / i0) ® L {p ))  

is completely reducible. Therefore

L ( A) <8> L {p )  is a submodule o f a completely reducible module, and is thus, itself, 

completely reducible. □

C o ro lla ry  8 .1 . I f  \ , p  G 7 i* , w ith  L ( A) admissible, and p  dom inant integral, then

L ( A) ® L (p )  ~  ©  avL {  A +  r')
v€Supp L(fi)

fo r  some a„ G Z>o, where a„ =  0 i f  L (A +  i/) is not admissible.

Proof. B y  Proposition 5.16, we have th a t L ( A) ® L (p )  is admissible. Since we have 

ju s t shown i t  is completely reducible, Proposition 5.10 implies th a t L (A) 0  L (p )  is 

semisimple. Further, since Supp (L (X ) <g> L (p ))  =  A +  p  +  Q~, the weights on any

o-string, for any a  G A + are bounded in  the positive direction. Th is implies th a t any 

simple submodule o f L(A ) ® L (p )  is a highest weight module. Thus, we have

L (A )® L G u )~  0  a7 T (7 )
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for some a1 € Z>0. Suppose 7  G A +  / j +  Q~ w ith  a7 /  0. The dimensions o f the 

weight spaces o f L(A ) <g> L (p )  are bounded, and hence so are the dimensions o f the 

weight spaces o f L ( 7 ). Thus L (7 ) is admissible. Further, L ( 7 ) has central character 

X7. B y C oro lla ry 5.2, we have y 7 =  X\+u fo r some v  G Supp L (f j) .  Due to  Lemma

7.1, we have either 7  =  A +  u, or

(S u pp L (7 )) f l  (S uppL(A  +  u)) =  0

Since S uppL(A  +  u) C A +  p  +  Q  is in  the same (J-coset as Supp (L (A) (g> L (p )) ,  we 

must have 7  =  A +  v. □

8.2 K ac-W akim oto Character Formula

For each A G H *, le t A j  =  { a  G A  | (A, a ) G Z } ,  and le t A ^  =  A \  f l  A + . Let 

W \ =  (oa | a  G A \)  be the subgroup o f the W eyl group W  generated by the 

reflections aa for aG A j .  The follow ing proposition is proven in  [9] for Kac-M oody 

algebras. Since every fin ite  dimensional simple Lie algebra is a Kac-M oody algebra, 

the result is true  for fin ite  dimensional simple L ie algebras. Further, in  [9] the result 

is given for only those A G * such th a t (A +  p, a ) >  0 for a ll bu t fin ite ly  many 

a  G A + . However, since for any fin ite  dimensional simple Lie algebra, A + is fin ite, 

we have tha t, in  the case o f fin ite  dimensional simple Lie algebras, the result is true 

for a ll A G H *. Since Cn is fin ite  dimensional and simple, we quote the result in  our 

setting, in  which the algebra is Cn, w ith  Cartan TL, and roo t system A . Recall tha t 

for each 7  G H *, M ( 7 ) denotes the Verma module w ith  highest weight 7 .

P ro p o s it io n  8.2 . (Kac-W akim oto) Let A G 7 i* be such that ( \  +  p, a ) >  0 fo r  a ll 

a  G A j .  Then

ch L(A ) =  sgn(a) ch M (a  ■ A) 
aEWx

Proof. (See Theorem 1 in  [9]) □

Notice th a t i f  A =  Ym = i a*e* suc^  a* ^  2 +  ^  ^ en anc* hence

A  J =  A + and W> =  W . This gives us the follow ing corollary:
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C o ro lla ry  8 .2 . Let A G PL*. I f  L ( \ )  is admissible then

ch L(A ) =  sgn(a ) ch M (a  • A)

(JEW

Proof. For each a  G A + we have (A +  p, a ) =  (A +  p, a ) > 0  by Coro llary 7.1, and 

thus the conditions of Proposition 8.2 are satisfied. □

8.3 M ultip licity  Formula

In th is  section, we provide a form ula for the coefficients av occurring in  the decomposi­

tion  o f L(A ) ® L (p )  given in  C oro lla ry 8.1. Recall tha t m ^ u )  denotes the m u ltip lic ity  

of the weight v in  L (p ), w ith  m ^{u) =  0 when u ^  Supp L (p ).

L e m m a  8.2. I f  X ,p  G PL*, w ith  L ( A) admissible, and L (p ) f in ite  dimensional, then 

ch (L(A ) <S> L {p ))  =  ^  m M(v) sgn(a )ch M (a  • (A +  //))
i/eSupp L(p) CTevv

Proof. Recall tha t

c h M (A ) =  ^ 2
7 eQ+

where K  : Q —* Z>o is the Kostant p a rtitio n  function. The follow ing calculation gives
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us our result.

ch (L (A ) <g> =  I Y ^  sgn(a)ch M (a  • A) I (ch L (/i) )
V e w  /

=  I ^  s^n(cr)ch M(<r • A) J I Y  m #1(i/)e"
\< t€ W  /  y'CSupp L(p)

=  Y  s9n (a ) Y  m ^ u) Y  K ( ' l ) e‘T'X~1eU
CTgvv i/eSupp L(n)  7 eQ +

=  ^ s g n ( ( r )  ^  iC (7 )e<T-A+,y“ 7

ct€ >v  peSupp L(#i) 7  eQ +

=  ^  sgn(a ) m tl(v )ch .M {(j • \  + v )
CTe>v veSuppL(p)

=- sgn(cr) y ^  m #1(a (i/))ch  M (cr • A +
CTeVV i^eSuppL(p)

B y Proposition 5.8

=  £  S0 n (a ) £  m M(i/)ch M (cr • (A +  i/))
CTgvv i^eSupp L (p)

Also by Proposition 5.8

Clearly, for each v  G Supp L (/i) ,  we have tha t A +  ^  =  X ^ = i a*e* where a* G 

W ith  th is in  m ind, we define the follow ing two subsets o f Supp L (f i) .  Set

A \(n )  =  { u  G Supp L ( f i)  | L (A +  i/) is admissible}

A \(n )  is thus the set o f a ll weights u G Supp L (/i)  such tha t

n

A +  v +  p — y   ̂b{6i
i=1

w ith  £>i >  ft2 >  • • • >  ^n—i >  |fe»|. Set

IIa(/x) =  {i^ G Supp L (//)  | (A +  v  +  p, a ) =  0 for some a  G A + } 

Hence, n> (p ) is the set of a ll weights v  G Supp L (p )  such tha t

n

a + v + p = y  fejCj
i= i
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w ith  |6j| =  \bj\ for some i  <  j .

L e m m a  8.3. Let A,/x G L i* , such that L { A) is admissible, and L (p ) is fin ite  d i­

mensional. Let k  G Supp L (p ). I f  k  £  nA (/i) then there exists a unique pa ir

(a, v) G W  x  A \(p )  such that a  • (A +  v) — A =  k.

Proof. Let A +  p =  X T= i ai ei- Let k  G Supp L {p ) \  U \(p ),  and

n

K + \  + P = ^  ] biCi 
1 = 1

We must show tha t there exists v  G Supp L {p )  such th a t v  +  A is admissible and 

v =  a  ■ (k  +  A) — A for some a  G W . For each v  G Supp L ( f i)  \  set

B + (v) — { ( k , I) | k <  I and dk +  di <  0 }

B ~ (v ) =  {(/c, I) | k <  I and dk — di <  0}

where v +  A +  p =  Y Z =  l  *• Now define (f>: I I ( i/ )  \  n*(/x) —> Z > 0 by

M  =  \B + (v)\ +  \B ~ {v )\

B y Coro llary 7.1, i f  4>(k ) =  0 then k G A \(p ) .  C laim  th a t i f  4>(n) >  0 then there 

exists v  G Supp L (p ) \  U \(p )  such th a t u =  a • ( k +  A) — A for some a  G W  and

4>{v) <  4>{k ). Indeed, i f  there exists i  <  j  such th a t 6, +  bj <  0 then set

v  =  aei+£j(n  +  A +  p) — (A +  p)

Let v +  A +  p =  Y l=  i  °k^k, i-e., Ci =  - b j ,  cj =  - b u and ck =  bk for k ±  i , j .  Then,

U = K - \ -X - \ -p  — (k  +  A +  P, 6j +  Cj)(ei +  Cj) — (A +  p)

= K — ifi i  +  b j ) ( e i  + Cj )

=  K +  (ci +  Cj){Ci +  Cj)

and,

g ( k )  =  K — ( k , Ci + € j ) ( e i  +  Cj )

— k  (b{ a{ d" bj a j) (ej ~i- efij

=  K +  (Cj +  Cj +  flj +  Uj)(ei +  Cj)
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Since g ( k )  G Supp L (p ), and 0 <  q  +  Cj <  c* +  c.,- +  a; +  a,j, by Proposition 5.9, we 

have th a t v  G Supp L {p ).

We now show th a t \B ~ (v )\ — \B ~ (k )\ <  |jB+ (/c)| —|J3+ (i/)|, and hence (j)(u) <  4>{n). 

To see this, p a rtitio n  S =  { (k , I) E Z x Z \ l < k < l < n }  in to  the follow ing sets:

s 0 =  { ( k , i ) e s \ k , i ^ i , j }

5_ =  { ( k , i ) E S \ k < i } l )  { ( k , j ) G S \ k <  j  and k ^  i }

S+ =  { ( i ,  I) G S | i  <  I and I ±  j }  U { ( j ,  I) E S \ j  <  1}

S i , j  =

Clearly, |5_(̂ )n50| — |-B~(K)n50; ~  |B+(K)nS'0|-|B+(z/)n50| =  0. Since c, >  6,, and 

Cj >  bj, we have |B_(̂ )fi5+| — |JB_(«)n5+| <  0, and |5+(/?)n5+| — |.B+(i/)n5+| >  0. 

Hence, 

\B ~{u ) n 5+1 -  Ib - { k )  n 5+1 < \b + (k) n  5+1 -  \B + (u ) n 5+1

I f  k <  i  then we have ck — q  <  0 and bk — fe, >  0 i f  and only i f  bj. +  bj < 0  and 

Ck +  Cj >  0. S im ila rly  for k <  j  w ith  k  ^  i. Thus,

|B ~ {v )  n 5_| -  |5 - ( k )  n  5_| =  IB + {k) n 5_I -  IB + (v) n  5_I

F inally, since c* — Cj =  bj — bj, we have |B ~ {u ) f l  ShJ| — \B ~ (k ) f l  ShJ| =  0, and 

\B + (k ) D S i j | — |B ~ {y )  f l  S i j | =  1, which gives us the desired result.

I f  | 5 + (k)| = 0  and there exists i  <  j  such th a t 6, — bj <  0  then set v  =  cr£i_£j(/t +  

A +  p) -  (A +  p). Again, le t v  +  A +  p =  Y l= i  c^ k ,  i.e., c* =  bj, Cj =  &*, and ck =  bk 

for k ^  i,  j .  Then, u =  k +  (cj — C j)(ti — t j) ,  and g (k ) =  n +  (q  — Cj +  a,i — a j)(e, — €j). 

Since 0 <  Cj — Cj <  Cj — Cj +  at — a,j, we again have tha t u G Supp L (p ).

Clearly, i f  |B + (k)| =  0 then \B + (u)\ =  0. We now show tha t

\B ~(u)\ <  \ B - ( k )\

and hence tha t 4>(u) < 0(ac). P artition  the set 5 = {(k , l ) G Z x Z | l < f c < K n }
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in to  the follow ing sets:

S0 =  { ( k , l ) G S | k , l  ±  i , j }  

S i- =  { ( k , i)  e  S \ k < i }  

Si++ =  { ( i , l ) e S \ j < l }  

Si+ =  { ( * , / )  e S \ i  < 1  <  j }  

SJ+ =  { ( j , l ) e S \ j < l }  

Sj -  =  { ( k , j ) e S \ k < i }  

Sj -  =  e S \ i < k < j }

S i j  =

Clearly, |£?- (i/)nSo| =  |-B "(/c )n 5 0|. I f  k <  i, then c*, —c* <  0 i f  and only i f  bk — bj <  0, 

therefore

\ B ~ ( v ) n S i - \  =  \ B - ( K ) n S j —  |

Sim ilarly,

\ B - ( u ) n S j -  \ =  \ B ~ ( K ) n S i - \  

|B ~ (u )  n  5 j+ | =  |b ~ (k ) n  Si++1

and

| £ - ( i / ) n s i++| =  \ B - ( K) n s j+ \

I f  i  <  k  <  j ,  then since Ci >  bi and Cj <  bj, we have Ci—Ck >  h —bk and Ck~Cj >  bk—bj,

hence

and

i+

|B  (i/) n 5 j - |  <  \B  ( « ) n 5 j - |

F inally, since \B ~(u) f l  S ij\  =  0, and \B ~ (k ) n  SltJ\ =  1, we have our result. □

Here, we note tha t all reflections in  the hyperplanes perpendicular to  the roots in 

A + are in  fact odd. i.e. sgn(aa) =  - 1  for a ll a  G A + . This can be seen w ith  follow ing 

calculations: I f  a  =  t i —t j  fo r some i  <  j  then aa =  (Ja ] l uaj_7 . . .  crat+1cra.erQi+1 . . .  cra j_2a
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Thus, cru - e- can be w ritte n  as the product o f 2( j  — i  +  2) +  1 simple reflections. I f  

a  =  t i  +  €j, w ith  1 <  i  <  j  <  n  then aa =  o(] _£n oan au _£n aan aCj _£n. Since by the 

previous calculation we know cr£i- £n and cr£j_£n are odd, aQ is also odd. F inally, i f  

ex t n then oa Gan <r£i _£n <Jan.

The follow ing proposition shows tha t, in  the character form ula given in  Lemma

8.2, we may neglect the weights v G I I \ (p ) .  he. the in it ia l sum may be taken over 

S u p p L ( /x ) \ I IA(/x).

P ro p o s it io n  8.3. Let A , / i  € J i* , w ith  L (  A) admissible and L {p ) fin ite  dimensional. 

I f  v  G I I A(/r) then

^  sgn(cr)ch M (o  ■ (A +  v)) =  0 

,e w

Proof. Choose a  G A + such th a t (A +  v  +  p, a ) =  0. Then

oa • (A +  v) — oa( \  +  v  +  p) — p

n (X +  u +  p ,a )
=  A +  v  +  p — 2--------------    O' — p

{a , a)

= \  v

Therefore,

^  sgn(o )ch M (cr • (A +  u)) =  s^n(a)ch M (o o a ■ (A +  u))

crevv (xevv

=  s<7n(cr<7Q)ch M (o o aoa • (A +  u))

=  — s^n(cr)ch M (a  • (A +  u))

□

T h e o re m  8.2. Let A ,/r G Lf* such that L (A ) is admissible, and L (p ) is fin ite  dimen­

sional. Then

L ( A) 0  L(/x) ~  ©  £  sgn(cr)m ^(a  • (A +  i/) — A) j L(A  +  i/)
i'€Ax(») Vaevv /
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Proof. From Lemma 8.3 we have a one to  one correspondence between 

Supp L(fj,) \  11a(m) and a ll pairs (a, v) G W  x  A \(g )  w ith

a  ■ (A +  u) -  A G Supp L (n ) \  n A(//)

Further, since

m ^ iy ) 1 2  sg n (a )ch M (a  • (A +  v)) =  0 

oew
i f  v  Supp L (g ) \  IIa(/x), we may rew rite  the form ula in  Lemma 8.2 as 

ch (L (A ) ® L(/z)) =  ^ 2  »y(o- • (A +  v) -  A)
veAx(n) CTevv

x  ^ 2  sgn(a')ch. M {a ' ■ (A +  a  • (A 4- v) — A))

tr'ew

=  H  1 2  +  " )  “  A)
vZAxin) CTevV

x  1 2  sgn(a')ch. M (a 'a  • (A +  v ))

o-'evv

=  1 2  1 2  sg n^a ^m ^a  ■ (A +  u) -  A)
veAx(p) a<zw

x  1 2  sgn(a ')ch M (a ' • (A +  v))

o-'evv

=  1 2  1 2  sgn{o )m ^{a  • (A +  u) — A )chL(A  +  v)
veAx(n) a£W

By Coro llary 8.1 we have th a t L(A ) ® L(/x) =  Y h^Axir) av L {^  +  z') for some 

av G Z>o- I t  therefore, only remains to  show the linear independence o f the characters 

chL(A  +  v) for u G A \(g ,).

Suppose Y v€Ax(h) +  v) =  0 for some bu G Z. Let

r  = {u G Ax(fj) \ K ^ 0 }

Assuming T /  0, we may choose vq G F such th a t u0 +  ^  T for any choice o f

q  G Z>o w ith  not a ll Cj =  0. Since a ^  ^  0, and the term  eA + " 0 occurs in  ch L {A +  i^o), 

we must have th a t eA+"° occurs in  ch L (A  +  v) for some u E T, u ^  uq. Hence 

\  +Vo =  \  +  i/ — 52”=1 CjOj for some Cj G Z > 0. Therefore, c, =  0 for a ll i,  and hence

v =  v0, which is a contradiction. Therefore, T =  0, which completes the proof. □
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8.4 Exam ple

We give an example o f the form ula in  Theorem 8.2, for the algebra Ci- Let A =  

|e i — |e 2. Then X + p  =  §gi +  |g 2, and hence A is admissible. Let p  =  U i + uji =  2g i+g2.

Supp L (p ) — {2ej +  g2, 2ei — c2, — 2gi +  g2, — 2gi — g2, +  2c2,

ei — 2 e2, —gi +  2 g2, —1 \ — 2 g2, ei, e2, —gi, —g2}

where the weights in  the 2 gi +  e2 o rb it have m u ltip lic ity  equal to  1 , and the weights 

in  the t i  o rb it have m u ltip lic ity  equal to  2. We have

A\{p)  =  {2ei +  g2, 2gi — g2, Gi +  2e2, Gi — 2e2, ei, e2, —ei, — e2}

Ha (a*) =  { —2ei — g2, —gi — 2e2}

The only remaining weights in  Supp L (p )  are

—2 gi +  e2 and — ci 4- 2 c2

For these, applying Lemma 8.3, we see tha t

aei-t2 ' ^— 2gi +  g2) — A =  —Gi

and

a€i-62  • (A — Gi +  2g2) — A =  g2

Due to  the uniqueness in  Lemma 8.3, each weight in  Supp L {p )  can appear as some 

a ■ (A +  v) — A in  the form ula

L ( A) <g) L (p )  =  X /  I X /  s9n (a )m n(a  ' (A +  v) ~  A) I L (A +  z/)
ueAx(n) Vaeiv /

for at most one v  G A \(p )  and one a  G W . Further, the weights in  II> (p ) w ill not 

equal a ■ (A +  v) — A for any choice o f a  G W  and i/ G A \(p ) .  The above form ula is
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thus

m n{ 2 ^i +  C 2)L(\ +  2 ei +  £2 )

© m /J(2ei — t2 ) L { \  +  2ei — e2)

©  wip(e 1 +  2e2)-^(A +  ei +  262)

©  m ^ e i  — 2 t 2j L { \  +  ei — 262)

© m #1(e i)L (A  +  ei)

© (m mu(e2) -  +  2e2))L (A  +  e2)

© ( m ^ - e  1) -  m ^ ( - 2 ei +  e2))L (A  -  d )

© m /i( - e 2)L (A  -  e2)

Therefore

L(A ) © T (/ i)  ~  L (A  +  2ei +  62) ©  L (A  +  2ei — €2) © jL(A +  ei +  2 6 2 )

© L (A  © e i — 2 6 2 ) ©  2L(A +  ei) ©  L (A  +  ef)

© L(A  — €1) ©  2L(A — €2)

9 D ecom position of Va(A) 0  L ( f i )

Recall th a t S — {(3 \, . . .  ,/? „} where /3, =  J2 j= i  a j  is a commuting set o f roots, which 

is a basis for Q, and the elements X-pt act in jective ly on any simple admissible highest 

weight Cn-module L { A). Let He denote the localization o f the universal enveloping 

algebra i t  w ith  respect to  the m u ltip lica tive  subset generated by . . .  ,x_ /3n}.

For any simple admissible Cn-module V , the module V E is the induced module He ©u 

V.

D e f in it io n  9 .1 . Let \ e H *  such that L (A) is admissible, and let 

S =  { /3 i, . . .  ,/? „} be as above. Let a =  ( a i , . . .  ,an) 6  Cn . Define the module 14(A) 

to be the vector space L ( A)E under the action through the automorphism where 

<f>a is as in  D efin ition  6.5 i.e. I f  the action  o /H e  on L (A )E is defined by the map 

<j>: He —> g l(L (A)s ), then fo r  a ll x  € Cn and a ll v € 14(A), we have

X V  =  </>($o(x))(u)
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Notice tha t setting v  =  X a = i gives us 14(A) =  L (A )s [i/], where 9 is the 

coset v +  Q. We have sim ply changed the nota tion  in  the case where the module is 

derived from  a simple admissible highest weight Cn-module, since in  th is case, the 

set S no longer depends on the module L ( A). Notice th a t i f  a =  ( o i , . . .  ,a n) and 

b =  (b i, . . . ,  bn) w ith  cii — bi E Z , then by Proposition 6 .1 0 , we have 14(A) — 14(A).

Further, notice th a t i f  V  is any simple torsion free module, then by Theorem 6.1, 

we have th a t V  ~  14(A) for some \  ETC*, and some a € C ” .

F ina lly, notice th a t since both  14(A) and L(A ) are submodules o f M SS(L (A)), in  

the case where 14(A) is simple, Lemma 6 .6  implies tha t 14(A) has central character 

X\. In  particu la r, i f  V  is a simple torsion free module, then 

V  =  14(A) for some A E TL* and a E Cn where xx  is the central character o f V.

L e m m a  9.1. Let A ,// € 7 i* such that L { A) is admissible and L ( f i)  is fin ite  dimen­

sional. Set fh  =  ( m i , . . .  ,m n) w ith  each m i E Z . Then L ( A) <g> L ( f i)  is equivalent to 

a submodule o/14»(A) (x) L (p ). In  particu lar, the IXo-module L ( A) (g)L(fi) is equivalent 

to a sub-Uo-module o f V rn(\) &  L (p ) .

Proof. Consider the case m  =  0. We have Vq(A) =  Hs <8 >uL(A). Let M  be the sub-Cn- 

module l<g>u£(A) <  14(A). Then M  ~  L ( A), and hence M ® L (p )  ~  L(A)<8 )L (/i) , and 

M ® L (p )  is a submodule o f Vq(A )® L(/i). P roposition 6.10 implies tha t 14n(A) — 14(A) 

whenever m t E Z  for a ll i. The result follows. □

L e m m a  9 .2 . Let A, p E  Tt* such that L (A) is admissible and L ( f i)  is f in ite  dimen­

sional. There exists a weight 7  E Supp 14(A) <8 > L {p ) such that dim(14(A) <S> L {p ) )1 =  

(d e gL (A ))(d im L (/x )), and fo r  a ll m  =  ( m i , . . .  ,m n) with each m i E Z<o, the weight 

space (Vrn(A) <8 >-b(^))7+x;"=1mi/3i equivalent as a Ho-module to some weight space o f 

L (A) ® L (f i) .

Proof. Le t d =  degL(A ). Le t 70  be a weight o f L(A) such tha t

d im  L (  A)7o =  d 

Since the act in jective ly on L (A), we have tha t

d im  -£'(A) 70+ £ " =1 tufa =  d 

1 0 1
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for any choice o f k i , . . .  ,k n E Z <0. Let Supp L ( / i)  =  { 1 7 , . . . ,  i^ } , where each

n 

i = 1

w ith  the p ij € Z<0. For each 1 <  i  <  n, set pi =  m in { p j i , . . .  ,pu }. Set 7  =  p  +  7 0  +  

Z T = iP iA - Let ™ =  (m i> • • - , m n) w ith  each m* e  Z <0. Set j i  =  7 0  +  I X 1 (Pi +  m i)& -  

We cla im  tha t the 7 +  mj/3* weight space o f L ( A) ® L (p )  has dimension equal to

(deg L(X )) (d im  L (p ) ) . Indeed, for each 1 <  j  <  I, choose a basis 95^. for the Uj weight 

space o f L (p ).  Also, for each 1 <  j  <  I, choose a basis 237U- for the 71  — X ™=1  A  

weight space o f L (A). Notice th a t since

n n

71 -  5 3  Pi j  P i  =  70 +  5 3 ( m i + P i ~  P i j ) ^
2=1 2=1

and rrii +  pi — p^ <  0  for a ll i,  we have th a t the dimension o f the 71  — Po'A 

weight space o f L ( A) is equal to  d, for a ll j .  We now have th a t a basis for the 

7  +  J27=i m if i i =  7 i +  A weight space o f L ( A) ® L(/x) is given by

{uj ® w j  | V j  e  937U-, W j  € Q3„., 1 < j < 0

and hence the 7  +  2 "=1  n iiP i weight space o f L(A) ® L (/ i)  has dimension equal to  

(d e g L (A ))(d im L (p )) ,  which proves our claim. Since L ( A) ® L (p )  is equivalent to  a 

submodule o f Vg(A) ® L (p ),  we have tha t

(L(A ) ® L (p )) 'r+'£,?=1mii3i ~  (^o(A) <® L(/x))7+^n=iTni/gi

where the equivalence is as Ho-modules. However, by Proposition 5.17, since deg Vo(A)® 

L (p )  <  (de gL (A ))(d im L (ju )), we must have, in  fact,

(L(A) ® L ( / i) )7+E?=imift ~  (V&(A) ® L (/x))7+E"=imi/3i

where the equivalence is as llo-modules. For any such choice o f m, we also have

Vq(A) ®  L (p )  ~  V^(A) ® L (p )

and hence

(L(A) ® L (/x))7+^ = im .ft ~  (V *(A ) ® L (/x))7+^ = im .ft 

as ilo  modules. □

1 0 2
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Recall tha t for A G T i*, the vector space 14(A) =  14(A) for a ll a G C ". However, 

the action o f L  on these vector spaces is different for each a. W ith  th is  in  m ind, we 

make the follow ing observation:

L e m m a  9.3 . Let A ,/ i  G J f*  such that L ( A) is admissible and L (p ) is fin ite  dimen­

sional. Choose 7  G Supp (14(A) ® L(pZj) as in  Lemma 9.2. There exists a set o f 

vectors 03, which is a basis fo r  the 7  +  X ) " =1  al f3l weight space o f 14(A) ® L (p ), fo r  

a ll a =  ( a i , . . .  ,an) G Cn . Further, the action  o / ito  on 03 in  14(A) 8  L {p ) yields 

elements whose coefficients w ith respect to 03 are polynomials in  variables a \ , . . . ,  an .

Proof. Let

Supp L (p )  =  {Z7 , . . . , i / ; }

where each
n

vj  =  p -  ^ 2  Pa ̂
i— 1

w ith  the p ^  G Z>0. For each 1 <  j  <  I, choose a basis 03^ for the 17  weight space 

o f L {p ). Let { u i , . . . ,  Vd] be a basis for the 7  — p  weight space o f 14(A). Then since 

the X-fc act in jectively, and the dimensions o f a ll weight spaces o f 14(A) are equal, 

we have for each 1 <  j  <  I,

{x f f j f f  . . .  xZPfo V k | 1 <  k <  d }

is a basis for the 7  — (p — Y ^i= \P ijP i) weight space o f 14(A). Thus a basis for the 7

weight space o f Vg(A) <8 > L {p )  is given by

=  { x l P0\j • • • xZPfo V k <g> w j | 1 <  k <  d, Wj G 03„., 1 <  j  <  1}

The same set o f vectors 03g is hence also a basis for the 7  +  )T)"= i weight space 

of 14(A) <8 ) L (p ), where a =  (0 1 , . . . ,  an) G C ” . Denote th is  basis by 03a, when in  the 

module 14(A) 8  L {p ). Notice th a t for any v G 03„, and any x  G ilo , we have

xv  — ^   ̂ fv ,u if lii ■ ■ • 1 an)u
US®a

where the /„ ,u(a 1 , . . . , an) are polynom ials in  variables a \ , . . .  ,an. □
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P ro p o s it io n  9.1. Let A, pi E TL* such that L ( A) is admissible, and L(pi) is f in ite  

dimensional. Let X i, • • • Xfc be the d is tinc t central characters occurring in  L(A) ® L ( / / ) .  

Then fo r  any element z E Z ( i I), we have

k

I I ( *  ”  Xi (z) )v  =  0
i= 1

fo r  a ll v E 14(A) <S> L(pi), and a ll a =  (a i , . . . ,  a „) E Cn .

Proof. Choose 7  E (Supp Vg ® L(pi)) as in  Lemma 9.2. A pp ly ing  Lemma 9.3, for 

each a =  (0 7 , . . . ,  an) E C " le t 93„ be a basis fo r the 7  +  ]C "=1 weight space o f 

14(A) ® L (n ), such tha t 93a =  93g as sets o f vectors, for a ll a and b. Let 2  E Z ( i f ) ,  

and set
k

Zo =  J J f c  ”  Xi (z) )
i= i

For any v E 93 a, we have

ZqV — ^  ) fv ,u ifl 1) • ■ • > CljfjU 
ue<Ba

where the f v,u(o-i, ■ ■ ■, «-n) are polynomials in  variables a i , . . . ,  an. C learly ZqV =  0 for 

any v E L (A) ® L(pi). Let m  =  ( m i , . . .  ,m n), w ith  each ra* E Z<q. Since 93m is a 

basis for the 7  +  m *A  weight space o f Vm(A) ® L {p ), due to  Lemma 9.2, we have 

ZqV — 0 for any v E 93m- Thus, by Lemma 6.5, the polynomials / „ >u(a 1 , . . .  ,an) =  0 

for a ll 0 1 , . . . ,  an E C. Therefore, for a ll a, we have ZqV =  0 for a ll v E 93a. Next, let 

a be arb itrary, and le t 7 ' be any weight o f 14(A) <g> L (fi) .  Set
n

7  -  y  =  5 Z  bi&
i= 1

for some bi E C. Since the support o f 14(A) <8 > L (p )  is a single Q-coset, we must have

n n n

^ 2 aia ~ Y 2 bi& = S  + 7 _ e Q 
2=1 2=1 2=1

Therefore

14(A) <g> L (n )  ~  14(A) ® L(pi) 

in  particu lar, these modules are equivalent ito-modules. Hence

(14(A) <8 > L (p i))y  ~  (14(A) ® L(p i))1>
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as ito-modules. Since is a basis for the 7  +  X)"=i bifii =  V  weight space o f V|(A) <8 > 

L(fj,), we have tha t zqv =  0  fo r a ll u £  (14(A) ®  L(n))^>, and hence fo r a ll v £ 

(14(A) <g> L (n ) )y .  Thus for a ll a and a ll 7 ' £  Supp 14(A) ® L ( / i) ,  we have 20u =  0 for 

a ll v £  (14(A) <8 > L (p ) )y ,  which completes the proof. □

L e m m a  9.4. Let x i ,  ■ ■ ■, Xk be d is tinct non-zero central characters. Then there exists 

z £ Z ( i l )  such that X i{z) 7^ X j(z) f o r aM j -

Proof. We apply induction  on k. I f  k  =  1, the result is tr iv ia l. Choose z0 such tha t 

X i(z0 ) 7̂  X j(z0 ) f ° r  a ll 1 <  i  ^  j  <  k — 1. For each i  <  k , le t Xi £  ker Xi \  ker Xk- 

Set x  =  Then x  £  ker x% \  ker Xk for a ll i  <  k. For each n £  Z > 0, set

zn =  zo +  nx. Then for a ll n  £  Z>o, and a ll i  <  k, we have X i(zn) =  X i(zo)- Therefore 

fo r a ll n £  Z>0 we have Xt(zn) 7^ X j(zn) for a ll 1 <  i  ^  j  <  k — 1. Further, since 

X/c(z) 7̂  0, we have Xk(zn) i 11 Xk(zm) for a ll n ±  m  £  Z>0. Since

{Xk{zn) I n £  Z>0}

is an in fin ite  set, and

{X i(zn) \ l  < i  < k  and n £ Z>0}  =  {X i^ o )  I 1 <  * <  k }

is a fin ite  set, we can choose m  £  Z > 0 such tha t

Xk{zm) $ {X i{zn) | 1 <  i  <  k  and n £  Z>0}

which gives the desired result. □

P ro p o s it io n  9 .2 . Let \ , f i  £ H *  such that L (A) is admissible, and L ( f i)  is f i ­

n ite dimensional. Set L (A) (g> L(/x) =  M iL (A*), as in  Theorem 8.2. Let a =  

( a i , . . . ,  an) £  Cn, and fo r  each 1 <  i  <  k, set

V f  =  { v e  14(A) <g> L ( / j)  | zv =  xa i ( z )v fo r  a ll z £ Z (  I I ) }

Then each Vfi is a submodule o f 14(A) <8 > L(/x), and

k
V4(A ) ® L M  =  © V f

i=l

Further, fo r  each i, we have deg VJa =  M jd e gL (A j).

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proof. For any x  G i l ,  v G V f,  and z G Z ( i l ) ,  we have zxv  =  xzv =  xX i(z)xv, and 

hence V f  is a sub-ll-m odule o f 14(A) <g> L(/x). B y  Proposition 5.20, since the xxt are 

d is tinc t non-zero central characters, we have th a t V f , ,  Vff are linearly independent. 

Choose zo G Z ( i l)  such th a t X \ i ( z o) 7^ XXj(z o) for any i ^  j .  For each 1 < r  <  k, let 

f T{x) be the polynom ial

f r {x) =  n ( - X , ( . o ) )

Since the Xxt { za) are d is tinc t, we have th a t the polynomials

{ / r ( * J  I 1 <  r  <  k }

are re la tive ly prime. Choose polynom ials g i( x ) , . . .  ,gk(x) such tha t

k

1 =  ^  f i ( x )9 i ( x )
i =1

For each 1 <  r  <  k, set zr =  f r (z0 ), and le t 17“ — {z rv | v G 14(A) 0  L {g ) }  be the 

image o f zr on 14(A) 0  Then for any v G 14(A) 0  L {g ), we have

k
v =  Y l  zi9 i(zo)v G 17“  H +  U f

i—1

Notice tha t

17“  =  { » €  14(A) 0  L (n ) }  | Zqv =  Xxr (zo )v j 

Indeed, i f  zr v G 17“  then

k

(z0 -  XXr (zo) ) zrV =  J J (2 0 -  XXi (zo) ) v  =  0 
i=1

Conversely, if  v G 14(A) 0  L {g )  w ith  zQv — Xxr (zo)v , then

v

Z r n * r ( X K ( z0 ) - X X i ( z0 ) ) = V  

and hence v G U f. Therefore the U f are the eigenspaces for the action o f z0 on 

14(A) 0 L(/x). Further, Z ( i l)  is a fam ily  o f commuting, diagonalizable endomorphisms 

on 14(A) 0  L (p ), and is hence simultaneously diagonalizable. Therefore, since the
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X \i take d is tinc t values at z0, we must have th a t the z0 eigenspace determines the 

simultaneous eigenspaces for a ll z G Z ( i l ) ,  hence U f — Vta for a ll 1 <  i  <  k. Thus,

Next, choose 7  G Supp 14(A) <8 > L (p )  according to  Lemma 9.2. A pp ly ing  Lemma 9.3, 

choose a set o f vectors 93q th a t is a basis for the 7  weight space o f 14(A) ® L (f i) ,  

w ith  the same set o f vectors, denoted 93a, being a basis for the 7  +  52"=1 a*A weight 

space o f Vg(A) ® L {p ). Again, we have th a t the action o f ilo  on 93a yields elements 

whose coefficients w ith  respect to  the basis 93 a are polynomials in  variables a i , . . . ,  an. 

For each 1 <  r  <  k, le t [zr \<bs denote the m a trix  representation o f zr acting on the 

7 +  E " = i cii(3i weight space o f 14(A) ® L(/x) w ith  respect to  the basis 93a. Thus, 

the entries in  [zr ]<Ba are polynomials in  variables a i , . . .  ,a n. Th is implies tha t the 

determ inant o f [2r ]<8a> and the determ inants o f any sub-matrices o f [zr ] are all 

polynomials in  variables a i , . . . ,  an. For any m  =  ( m i , . . . ,  m n) w ith  m i , . . . ,  m „ G 

Z<o, Lemma 9.2 implies th a t the 7  +  E £ = i weight space o f 14i(A) <8 > L (p ) is 

equivalent as a ilo-m odule to  a weight space o f L(X ) ® Therefore the rank o f

the m a trix  [zr ] ^  is at most M r deg L(Ar ). This implies th a t for any q >  M r deg L (Ar ), 

the determ inant o f any q x q sub-m atrix o f [zr ] ^  is zero. Let q >  M rdegL(X r ), and 

let Aa be any q x  q sub-m atrix o f [zr \<%s. Then det A & is a polynom ia l in  variables 

a i , . . . ,  an, and whenever a i , . . . ,  an G Z<o, we have det A d =  0. Thus, by Lemma 

6.5, we have det A a =  0 for a ll a G C n. Therefore the rank o f [zr ]<Bs is at most 

M r degL(X r ). However, since V® is the image o f the action o f zr , the rank o f [zr ]sa is 

equal to  the dimension o f the 7  +  E L i  °»A weight space o f V?. Therefore

k

and hence
k

Fa( A ) ® L ( M) =  ® K *

d im (y “ )7+E n=i ai0. <  M rdegL(X r )

for a ll a. Further, i f  7 ' is any other weight o f 14(A) ® L {p )  then

n

i=1
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for some bi G C w ith  a* — 6* G Z. Therefore the V  weight space o f V f  is equivalent to  

the 7 ' weight space o f V f. Thus

d im ( l/a)y  =  d im ( t ;b)7+E n=ibift <  M r degL(A r )

Since 7 ' was arb itra ry, we have th a t deg V? <  M rdegL(A r ). Since r  was arb itrary, 

the above holds for a ll 1 <  r  <  k. Notice th a t since is a basis for (14(A) 8  

L ip ) )1+Y^=1a ^ ,  we must have

dim(14(A) (8 > L ( / / ) )7+Er=i„<ft =  (d e g L (A ))(d im L (/i))

Therefore,

(deg L(A)) (d im  L (p ))  <  (deg 14(A) 8  L {p ))

k

=  £ d e g v;a
i= l
k

<  ^ 2  M id e g  L ( Ai)
2—1

=  deg (L(A) 8  L ( f i) )

<  (d e gL (A ))(d im L (/ /) )

Thus equality holds, and hence deg V f =  M i deg L(A j) for a ll 1 <  i  <  k. □

L e m m a  9.5. Let V  be a simple torsion free Cn-module, w ith central character x- 

I f  A G 77* such that L (A) is admissible, and x  — Xa, then V  =  14(A) fo r  any 

a =  ( a i , . . . ,  an) G C " such that A +  5Z"=1  OiA G Supp V.

Proof. By Theorem 6.1, we have th a t V  ~  14(7) f ° r  some 7  G 77* w ith  £ (7 ) admis­

sible, and some b =  (6X, . . . ,  bn) G <Cn. Further, we have %7 =  xa- B y Lemma 7.1, 

i f  7  ^  A then L(A) and £ ( 7 ) are the only simple admissible highest weight modules 

w ith  central character x , and A +  Q ^  7  +  Q. Let M  be the semisimple coherent 

fam ily  containing V , w ith  degree equal to  the degree o f V . By Proposition 6.13, M . 

contains simple admissible highest weight modules w ith  central character x , having 

highest weights in  both the 7  +  Q  coset, and the A +  Q  coset. Since there is exactly
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one such choice in  each coset, we must have L (A) <  M  and L (7 ) <  M .. Therefore, 

by Lemma 6 .6 ,

M  ~  M SS(L (X )) ~  M U L ^ ) )

and hence

V i( l)  =  ©  =  14(A)

for any a =  (a 1 , . . . ,  an) G C such th a t A +  ^ ”=1  a*A +  Q =  Supp V . □

P ro p o s it io n  9.3 . (Britten-Khom enko-Lem ire-M azorchuk) Let V  be a torsion free 

Cn-module w ith fin ite  dimensional weight spaces. Then V  is completely reducible, 

hence semisimple.

Proof. (See Theorem 1 in  [2]) □

T h e o re m  9.1. Let 14(A) be a simple torsion free Cn-module, and L (p ) be a simple 

fin ite  dimensional highest weight Cn-module. Then

14(A) ©  L (p )  -  ©  (  J ]  sgn(a )m ^(a  • (A +  u) -  A) J 14(A +  v)
1/6-Aa (/i)  \<TgVV J

and each 14(A +  v) is a simple torsion free Cn-module.

Proof. For each u G set

14“  =  { « £  14(A) © L (ff)  | zv =  x \+ u {z )v  for a ll -z G Z (  i l ) }  

by Proposition 9.2, we have tha t

14(A ) ® L ( / / ) ~  ©  1C
1/6̂ 4* (m)

Further, for each u G A \(p )  we have

deg I/ 5 =  I ^ 2  sgn(a )m ^(a  • (A +  u) -  A) J deg L ( A +  u)

\* e w  J
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Let v e A \(n ) .  B y Proposition 5.16, 14(A) <g> L ( / i)  is torsion free, and hence is

torsion free. Due to  P roposition 9.3, V “  is therefore semisimple. Thus,

k

2 = 1

for some simple torsion free modules Ul . Since Vjf has central character xa+i/ 5 and 

support equal to

we have, by Lemma 9.5, th a t every Ui is equivalent to  V&( \  +  v). Therefore

n n

A +  /x +  'y a*&  +  Q — A +  v  +  'y '  diPi +  Q
i= 1

y ;  ~  kVa{ a +  u)

Further,

y ;  spn(a)m M(<r ■ (A +  z/) -  A) deg L (A  +  u) =  deg y “

=  fcdeg 14 (A +  za) 

=  fcdeg L (A  4- z/)

and hence

crew

which completes the proof. □
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