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Abstract

It is known that every torsion free C,-module of finite degree is completely reducible.
In this thesis, we provide a formula for the decomposition of the tensor product of
any simple torsion free C,-module of finite degree with any simple finite dimensional

Cr-module.
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1 Introduction

Let L be a finite dimensional simple Lie algebra over the complex numbers C, and
let H be a Cartan subalgebra of L. An L-module V is said to be a weight module if
and only if V = @,.p. V>, where

W={veV|hv=Ah)vioral he H}

Every simple finite dimensional L-module is a weight module and is completely de-
termined by its highest weight. However, in the case of simple infinite dimensional
L-modules, the story is quite different. In fact Lemire [13] showed the existence of
simple infinite dimensional modules which are not weight modules and due to this, the
classification of arbitrary simple modules seems unreachable. Therefore, the theory
has focused on the classification of simple weight L-modules having finite dimensional
weight spaces.

Early work by Lemire [12], Lemire and Pap [14], and Britten and Lemire [3], [4]
classifies all simple infinite dimensional modules having at least one 1-dimensional
weight space.

A big break through in the general problem of classifying all simple L-modules
having finite dimensional weight spaces came when Suren Fernando [7] reduced the
classification to classifying all simple torsion free modules of finite degree. A weight
L-module is torsion free provided all root vectors in L act injectively on V. Such
a module has, as its set of weights, a complete integral root lattice coset, and each
weight space has the same dimension, called the degree of the module. Fernando goes
on to show that the only simple Lie algebras over C admitting torsion free modules
are those of type A and C.

Mathieu [15] classifies and provides a realization of all simple torsion free weight
modules of finite degree. However, encouraged by Mathieu, Britten and Lemire con-
tinued on to obtain an elementary and explicit realization of simple torsion free mod-
ules using the notion of tensor products. Georgia Benkart, in a private communica-
tion, showed that the tensor product of any torsion free module of finite degree and

a finite dimensional module produces a torsion free module. Motivated by this, and

1
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their own result that explicitly constructs all simple torsion free modules of degree
1, Britten and Lemire [5] used the machinery established by Mathieu to prove that
every simple torsion free module of finite degree is a submodule of the tensor product
of a simple degree 1 torsion free module and a finite dimensional module.

The proof of this result was complicated by the fact that torsion free A,,-modules
are not, in general, completely reducible. However, Britten, Khomenko, Lemire, and
Marzorchuk [2] established the complete reducibility of torsion free C,-modules of
finite degree. The tragic flaw of their theorem is that they did not give the constituents
of the decomposition. In this thesis, we help diminish this gap by giving the actual
tensor product decomposition when a simple torsion free C,,-module of finite degree
is tensored with a simple finite dimensional module.

We begin by reviewing several known concepts that will be used throughout this
thesis. In sections 2 and 3, we provide some general properties of associative algebras
and Lie algebras, in particular, we give a more detailed illustration of semisimple Lie
algebras. The work in section 3 largely follows Humphreys [8].

Continuing with a review of known concepts, sections 4 and 5 give an overview of
the representation theory concepts used in this thesis. In particular, we give several
results (most of which are found in [8]), relating to the specific types of modules of
interest, those being finite dimensional modules, admissible modules, Verma modules,
and torsion free modules. Also in section 5, we introduce the main tools used in
obtaining the tensor product decomposition formulas given in sections 8 and 9, in
particular, the formal character and the central character.

The crucial result used in obtaining the formula in section 9 is Mathieu’s classi-
fication of simple torsion free modules of finite degree [15]. In sections 6 and 7, we
review Mathieu’s construction, giving his results in the setting needed in this thesis.

In section 8, in particular 8.3, we give our first previously unpublished results.
Theorem 8.2 gives a formula for the decomposition of the tensor product of any sim-
ple admissible highest weight C,,-module and any simple finite dimensional module.
Finally, in section 9, we give Theorem 9.1, which is the main result of this thesis.

This theorem provides a formula for the decomposition of any simple torsion free
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C.-module of finite degree and any finite dimensional C,-module.

2 Algebras

In this section, the algebraic structures and basic results that will be studied in this
thesis are briefly reviewed. It is assumed that the reader is familiar with vector space

theory, linear algebra, and some concepts from group theory.

2.1 Associative Algebras

Definition 2.1. An associative algebra A is a vector space over a field F endowed

with an operation x : A X A — A having the following properties:

i) There exists 1 € A such thata=ax1=1%a foralla€ A
i) (az + by) * z = a(z * 2) + by * 2), = * (ay + bz) = a(z *x y) + b(z * 2)

i) cx(yxz)=(T*y)*z

for all a,b € F, and z,y,z € A. A multiplicative subset of A is a subset S C A
with the property that xxy € S for allz,y € S. A subalgebra B < A is a sub-vector
space of A with the property that 1 € B and z xy € B for all z,y € B.

Definition 2.2. Let A and B be associative algebras, with products * and * re-
spectively. Let ¢ : A — B be a linear map from A to B with the property that
oz xy) = p(x) x p(y) for all z,y € A. Then ¢ is called an algebra homomor-
phism. If ¢ is bijective then ¢ is called an isomorphism. In this case, A and B
are said to be isomorphic, denoted A = B. When ¢ is bijective, and A = B, we call

¢ an automorphism.

Definition 2.3. Let A be an associative algebra, and I C A be a sub-vector space of
A. Then I is a left ideal of A provided yxx € I forallx € I andy€ A. I isa
right ideal of A provided xxy € I for allx € I andy € A. I is a two sided ideal
if I is both a left and right ideal.
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Definition 2.4. Let A be an associative algebra, and S C A. Let
I={ICA|Iisanideal of A and S C I}
Then ();cz I is the ideal generated by S.

Definition 2.5. Let A be an associative algebra, and I be a two sided ideal of A. The
quotient algebra is the associative algebra A/I = {z + I | z € A} with addition

and scalar multiplication given by
alz+ D +bly+I)=(ax+by)+1

and product

@+Dxy+D)=z*y+1

for any z,y € A and a,b € F.

Definition 2.6. Let A be an associative algebra. Then
Z(A)={z € A|za=az foralla € A}
is called the centre of A.

Z(A) is a commutative subalgebra of A.

2.2 Localization of Algebras

Definition 2.7. Let A be an associative algebra, and S C A be a multiplicative subset

of A. Then S satisfies Ore’s localizability condition provided

iyleS

1) S does not contain any zero divisors in A

i11) For any s € S and a € A there exist s € S and a' € A such that
as' = sd’

iv) For any s € S and a € A there exist s" € S and o” € A such that

s"a=a"s
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We call conditions #47) and iv) the right and respectively left Ore conditions.
Further, if S C A is a multiplicative subset of A, then an element s € S is said
to satisfy the right Ore condition provided for any a € A there exist s € S and
a' € A such that as’ = sa’. Likewise for the left Ore condition. Thus a multiplicative
subset containing 1, and not containing any zero divisors, satisfies Ore’s localizability
condition provided all of its elements satisfy both the left and right Ore conditions.

We now show that if two elements satisfy the left and right Ore conditions, then

their product also satisfies the left and right Ore conditions.

Property 2.1. Let A be an associative algebra, and S C A be a multiplicative subset
of A. Let 51,89 € S be two elements with the property that for any a € A, there
erist sy,s5 € S and d},ay € A such that as| = s1a| and asy = sqay. Then for any
a € A there exist s € S and a’ € A such that as’ = s;s9a’. Likewise, if s1,80 € S
have the property that for any a € A, there exist s{,s5 € S and af,a € A such that
sja = asy and sha = ajsy. Then for any a € A there exist s" € S and a” € A such

that s"a = a"s1s5.

Proof. We prove only the statement about the right Ore condition, since proof for
the left Ore condition is similar. Let a € A, and choose s € S and a} € A such that

as; = s1a}. Next, choose s, € S and a}, € A such that a}s) = sqah. Then
asysy = $1a)8y = $1520
setting a’ = a} and s’ = s s} gives the desired result. O

In particular, the previous property implies that if S C A is a set of vectors satis-
fying the left and right Ore conditions, which doesn’t contain any zero divisors, then

the multiplicative subset generated by {1} U S satisfies Ore’s localizability condition.

Theorem 2.1. Let A be an associative algebra, and S C A be a multiplicative sub-
set of A. If S satisfies Ore’s localizability condition, then there exists an associative

algebra B with the following properties:
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i) There exists an injective algebra homomorphism ¢ : A — B.
it) If s € S then ¢(s) is invertible in B.
ii1) If b € B then b= ¢(s)"'¢(a) for some s € S and a € A.

Proof. (See 3.6.2 and 3.6.4 in [6]) O

The following shows that such an algebra is unique.

Proposition 2.1. Let A be an associative algebra, and S C A be a multiplicative
subset of A satisfying Ore’s localizability condition. If By and B, are associative

algebras satisfying properties i), i1) and iii) in the above theorem, then By = B,.

Proof. Let ¢y : A — B, and ¢3 : A — B, be injective homomorphisms of A into B;
and B; respectively. Define ¢ : By — By by

P(¢r(s) " d1(a)) = ¢a(s) " da(a)

by property i), ¢ is surjective. We claim that for ¢ = 1,2, we have
&i(s1) Yi(ay) = ¢i(s2) 1¢i(az) if and only if there exist z € S and y € A such that
za; = yas and 81 = ySs, and hence that 9 is both well defined, and injective. Indeed,

if there exist such and x and y, then

$i(s1) " (1) = ¢i(s1) 7 i) T gil@)ilan)
= ¢i(zs1) " pi(zan)
= ¢i(ys2) " Pi(yaz)
= ¢i(s2) " 9iy) " Pi(y) ¢i(az)
= ¢i(s2) " di(az)
Conversely, if ¢;(s1) = ¢i(ar) = ¢i(s2)~"¢s(az), then since S satisfies Ore’s localizabil-

ity condition, we can choose x € S and y € A such that zs; = yss. Therefore,
$i(zar) = ¢i(z)pi(ar) = di(x)i(51)¢i(51) 7 di(a1)
= ¢i(2)Pi(s1)i(52) ' di(az)
= ¢i(y)#i(s2)$i(s2) " pila2)
= ¢i(y)$i(az) = di(yaz)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Since ¢; is injective, we have za; = yas, which proves our claim. It remains to
show that v is linear, and a homomorphism. Let b;,b; € B;, we will show that
(b + bg) = ¥(by) + ¥(bs), and ¥(bybz) = 1¥(by)¥(be). To this end, choose s1,s, € S
and a;,as € A such that

b= ¢1(s1)"d1(a1) and  bo = ¢i(s2) '1(a2)

Applying Ore’s localizability condition, choose ¢ € S and ¢ € A such that ts; = cso,

set s = ts; = csy. Then,
P(by + bg) = P(d1(s1) " Pr(ar) + di(s2) " ¢ (az))
= P($1(8) " ($1()b1(a1) + ¢1(c)¢1(a2)))
= P(¢1(s) (¢ (tar + cas)))
= ¢2(5) " (¢2(tar + cap))
= ¢2(s) " (2(t)p2(a1) + b2(c)p2(a2))
= ¢a(s1) 7 pa(ar) + b2(s2) " ¢a(az)
= ¢(b1) + ¥(b2)

Next, choose u € S and d € A such that ua; = dss. Therefore

Pr(a))pr(s2) ' = ¢1(u)'¢1(d)  and  @a(a1)de(s2) " = ¢a(u) ' pa(d)

The following calculation completes the proof:

P(biba) = P(¢1(s1) " ¢ (a1)$1(s2) " p1(az))
= p(d1(s1) " 1 (u) " 1 (d) ¢ (a2))
= (1 (us1) " ¢1(daz))
= ¢a(us1) ™ $2(das)
= ¢2(51) 7 d2(w) " $2(d)¢2(a2)
= ¢a(51) 7 P2(a1)p2(s2) "' p2(az)
= P(d1(s1) 7 ¢1(a1)) (1 (s2) " $1(a2))
= p(b1)%(be)
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In practice, when A is embedded in B, we will simply denote the image of an
element a € A by a itself, thus considering A as a subalgebra of B. Therefore, for an
associative algebra A, and a multiplicative subset S satisfying Ore’s condition, if B
is an associative algebra satisfying properties ) i) and ii) in Theorem 2.1, we will
consider A as a subalgebra of B, and denote the elements of B by s~la, with a € A

and s € S.

Definition 2.8. Let A be an associative algebra, and S C A be a multiplicative subset
of A, satisfying Ore’s localizability condition. The localization of A relative to S is

the unique associative algebra, denoted Ag, satisfying

i) A< Ag.
it) Every element of S is invertible in As.
i11) Every element of Ags can be written in the form

s7'a for some s € S and a € A.

2.3 Lie Algebras

The following sections review the structure of Lie algebras, and in particular semisim-
ple Lie algebras. The majority of results in this section are taken from [8], generally

following the notation of that source.
Definition 2.9. A Lie algebra L is a vector space over a field F endowed with an

operation [-,-] : L x L — L having the following properties:

i) laz + by, 2] = a[z, 2] + by, 2], [z, ay + bz] = alz,y] + b[z, 2]
it) [z,2] =0

i) [z, [y, 2] + [y, [2, 2] + [z, [z, 4]] = O

for all a,b € F, and z,y,z € L. A Lie subalgebra K < L is a sub-vector space of
L with the property that [z,y] € K for all z,y € K.
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Notice that conditions ¢) and #3) giveus 0 = [t —y,z —y] = [z, 2] — [y, z] — [z, y] +
[v,9] = —[y, 2] — [z, 9], and hence [z,y] = —[y, z] for all z,y € L. Also, notice that
given any associative algebra A, we can create a Lie algebra A’ by setting A = A’ as
vector spaces, and defining [, : A’ x A" - A’ by [z,y] = x*xy—y*xzforallz,y € A"

For an example of a Lie algebra, let V' be a vector space over a field F, and consider
End V, the set of all linear transformations on V. Define [-,-] : End V x End V —
EndV by [z,y] = zy — yz where zy denotes the composition of maps z and y. Then
End V with this operation, and the usual addition, is a Lie algebra. We call this the
general linear algebra, denoted gl(V'). In the case where V is finite dimensional,
End V = M,(F), the n x n matrices over F. In this case, the operation [-,-] is
[z,y] = zy — yz where zy is the usual matrix multiplication of z and y. We denote

the general linear algebra of n x n matrices of F by gl,(F).

Definition 2.10. Let K and L be Lie algebras. Let ¢ : K — L be a linear map with
the property that o([z,y]) = [¢(z),¢(y)] for all z,y € K. Then ¢ is called a Lie
algebra homomorphism. As with associative algebras, if ¢ is bijective then ¢ is
called an isomorphism, and K and L are said to be isomorphic, denoted K = L.

Likewise, when ¢ is bijective, and K = L, we call ¢ an automorphism.
Definition 2.11. Let L be a Lie algebra. Then

(L, L] = spang{[z, 9] | 2,y € L}
is called the derived algebra of L. If [L, L] = (0) then L is said to be abelian.

For subalgebras K, and K of a Lie algebra L, we also make use of the notation:
[Kh K2] = Spanf{[w)y] l T € Klay € K2}

Definition 2.12. Let L be a Lie algebra, and I C L be a sub-vector space of L. Then
I is anideal of L, denoted I < L, provided [z,y] € I for allz € I andy € L. We say
L is simple provided L is not abelian and the only ideals of L are (0) and L itself.

In the definition of simple, we require that L be non-abelian because if L is abelian,

then every sub-vector space of L is an ideal. Hence if L is abelian and the only ideals

9
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of L are (0) and L itself, then L = (0) or L is one dimensional. Therefore the added
condition that L is not abelian simply guarantees that L is neither trivial nor one

dimensional.

Proposition 2.2. Let L be a Lie algebra, and I,J < L be ideals of L. Then [I,J] is
an ideal of L.

Proof. Let x = [z;,z,] for some z; € I and z; € J. Then,

[x,y] = [[zl’xJLy] = [1'1’ [xJ,y” + [z, [yawI]]

Since I < L, we have that [y, zj] € I, hence

[z, ly, z1]] = —[ly, z1], 2] € (1, J]

Likewise, since J < L, we have that [z;,y] € J, hence

[z1, [z, 9]] € (1, J]

Therefore [z,y] € [1,J]. O

3 Semisimple Lie Algebras

Though some of the results in this section are true over an arbitrary field, for simplic-
ity, we will restrict our attention to the case when F = C. Hence all Lie algebras and
Vector spaces throughout this section are assumed to be over the complex numbers.
Further, from this point on, we only consider finite dimensional Lie algebras. Hence,

in all results, the Lie algebra L is assumed to be finite dimensional.

Definition 3.1. Let L be a Lie algebra. Let L© = L, and for each i > 1 let
L® = [LE-D LE-D]. Then the sequence (L?) is called the derived series of L. L
is called solvable if L™ = (0) for some n. If I I L then I is said to be a solvable

ideal of L provided I is solvable as a Lie algebra.

Notice that due to Proposition 2.2, we have that for each i, L is an ideal of L.

10
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Proposition 3.1. Let L be a Lie algebra. If I and J are solvable ideals of L, then
I+ J is a solvable ideal of L.

Proof. (See Proposition 3.1 in [8]) a

Proposition 3.2. If L is a Lie algebra then L has a unique mazximal solvable ideal,

denoted Rad L.

Proof. Notice that (0) < L, and (0) is solvable. Therefore L contains at least one
solvable ideal. Due to the finite dimensionality of L, we therefore have the existence
of a maximal solvable ideal. It only remains to show uniqueness. To this end, let
M; and M, be maximal solvable ideals of L. The previous proposition implies that
M = M; + M, is a solvable ideal of L. By maximality of M;, we have that M = M,
and likewise, maximality of M, gives us M = M,. Thus M; = M, O

Definition 3.2. Let L be a Lie algebra. L is called semisimple provided Rad L =

(0). i.e. L is semisimple provided L has no non-trivial solvable ideals.

Proposition 3.3. If L is a non-trivial semisimple Lie algebra, then there exist ideals

Ly,..., Ly < L such that each L; is simple as a Lie algebra, and

Proof. (See Theorem 5.3 in [8]) 0O

3.1 Root Space Decomposition

Definition 3.3. Let L be a Lie algebra. For each x € L, let ad, : L — L be the
linear map on L given by ad,(y) = [z,y] for ally € L. Definead : L — End L by
ad(z) = ad, for all x € L. For each x € L, ad, is called the adjoint map of z.

Definition 3.4. Let V be a vector space, and ¢ € End V. Then ¢ is said to be
semisimple provided all of the roots of the minimal polynomial of ¢ are distinct.
Let L be a Lie algebra. An element x € L is called semisimple provided ad, is

semisimple.

11
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Notice that since C is algebraically closed, ¢ is semisimple if and only if ¢ is
diagonalizable. i.e. there exists a basis B of V such that the matrix of ¢ with respect
to B is a diagonal matrix.

The following is a standard result from linear algebra, and as such, we will omit

the proof.

Proposition 3.4. Let V be a vector space with dimV = n < oo, and ¢y,...,0n €
End V be commuting diagonalizable endomorphisms. Then ¢4, ..., ¢n are simulta-

neously diagonalizable.
Proof. (Omitted.) a

Recall that an element z in a Lie algebra L is called semisimple provided ad, €

EndV is semisimple.

Definition 3.5. Let L be a Lie algebra. A subalgebra T < L s called toral provided
T # (0), and every x € T is semisimple.

Proposition 3.5. Let L be a Lie algebra, and T < L be a toral subalgebra of L, then
(T,T] = (0).

Proof. (See Lemma 8.1 in [8]) |

This implies that if L is a Lie algebra, and T is a toral subalgebra of L, then for

every z,y € T we have

(adﬂ?ady - a’dyadfv)(z) = [1:7 [y,Z]] - [y, [:II, Z]] = _[Z’ [.’E,y]] =0

for all z € L, and hence ad;ad, = adyad,. Therefore, the collection of all ad, such
that z € T is a commuting family of diagonalizable endomorphisms on L. Due to
Proposition 3.4, we can find a basis B = {y1,...,yn} of L consisting of simultaneous
eigenvectors of the endomorphisms ad, for all z € T. Hence, for each 1 < ¢ < n, and
each z € T we have ad;(y;) = 7z y; for some vy, € F. Therefore, each eigenvector y;
defines a function of eigenvalues ; € T* given by 7;(z) = 7z, for all z € T, where T*

denotes the vector space of all linear functions of T into C.

12
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Proposition 3.6. If L is a non-trivial semisimple Lie algebra, then there exists an

x € L such that x is semisimple.

Proof. (See Section 8.1 in [8]) O

In particular, the previous proposition implies that every non-trivial semisimple
Lie algebra contains a toral subalgebra. Further, due to finite dimensionality, we have

that every non-trivial semisimple Lie algebra contains a maximal toral subalgebra.

Definition 3.6. Let L be a semisimple Lie Algebra. A Cartan subalgebra H < L

is a mazimal toral subalgebra of L.

Definition 3.7. Let L be a semisimple Lie algebra, and fix a Cartan subalgebra H.
For each a € H*, set

L, ={z € L|adp(z) = a(h)z for all h € H}
Set
A={a€ H |a#0 and L, # {0}}

Then the elements a € A are called the roots of L with respect to H, and the sets

Ly for a € A are called the root spaces.

i.e. Ly, is the collection of all simultaneous eigenvectors of ad(H) with correspond-
ing eigenvalue function «. Since there exists a basis of L consisting of simultaneous

eigenvectors of ad H, we have that

L=Ly&PLa
aclA :
Notice that Ly = {z € L | adp(z) = 0 for all h € H} is Cr(H), the centralizer of

Hin L.

Proposition 3.7. If L is a semisimple Lie algebra, and H < L is a Cartan subalgebra
of L then CL(H) = H.

Proof. (See Proposition 8.2 in [8]) O
This gives us the following root space decomposition:

L=He L.

13
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3.2 The Special Linear Algebra si(2,C)

We introduce the simple Lie algebra sl(2,C), which is the subalgebra of gl(2,C)
consisting of all 2 x 2 traceless matrices over C. sl(2,C) is called the special linear
algebra of rank 1. Here, the rank refers to the dimension of the Cartan subalgebra.

A basis for si(2,C) is given by {x1, 2, h} where

01 00 1 0
00 10 0 -1

Notice that H = spanc{h} is a Cartan subalgebra. Further,
[h,z1) =221 and  [h,z2] = -2z,

therefore taking @ € H* given by a(h) = 2 gives us Lo, = spanc{z,:} and L_, =

spanc{z.}. Notice, also, that in this case [z, 22| = h.

3.3 The Euclidean Space of Linear Functionals on H
Definition 3.8. Let L be a Lie algebra. Define k : L x L — C by

k(z,y) = Tr(adzady)
for all z,y € L. & is called the Killing form of L.

Clearly,  is a symmetric bilinear form on L. Further, x has the following asso-
ciative property:
K,([SI), y]a z) = R(:E, [y’ z])
for all z,y,z € L. To see this, notice that for any z,y € L,
adizy)(2) = [[z,9], 2] = [z, [y, 2] — [y, [#, 2]] = adrady(2) — adyad.(z)
and hence ad;, = ad,ad, — adyad,. Therefore
Tr(adyyad,) = Tr(adzadyad, — adyadad.)
= Tr(adsadyad, — ad;ad.ad,)
= Tr(ad;ady, )

14
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Proposition 3.8. Let L be a semisimple Lie algebra, with Cartan subalgebra H.
Then k is non-degenerate on H. i.e. If k(z,y) =0 for ally € L, then z = 0.

Proof. (See Corollary 8.2 in [8]) a

Proposition 3.9. Let L be a semisimple Lie algebra, with Cartan subalgebra H, and
root system A with respect to H. For each v € H*, there exists a unique element

t, € H such that y(h) = k(t,, h), for every h € H.

Proof. For each t € H, we can define a map -, : H — C by v(h) = «(t, h), for all
h € H. Of course, since k is a bilinear form, each -; is a linear map. We now consider
the map ¢ : H — H* given by ¢(t) = . Again, since & is bilinear, the map ¢ is
linear. Also, since k is nondegenerate on H, the map ¢ is injective. Therefore, ¢ is an
injective vector space homomorphism of H into H*. However, since dim H = dim H*,
we must have that ¢ is surjective as well. Hence, ¢ is invertible. i.e. for each v € H*,

we can choose a unique ¢, = ¢~!(7) such that y(h) = k(t,, h) for all h € H. O
In particular, for each o € A, there exists a unique ¢, such that
a(h) = k(ta, h)

for all h € H. Notice that in the above proposition, due to the linearity of =1, we
have that if 71,7, € H* then t, ., = ¢, +1,,.

Proposition 3.10. Let L be a semisimple Lie algebra, with Cartan subalgebra H,
and root system A with respect to H. Then the following properties hold:

i) A spans H*.

it) For every a € A, a(t,) # 0.

ii1) If a € A then —a € A.

Proof. (See Proposition 8.3 in [8]) O

Definition 3.9. Let L be a semisimple Lie algebra, with Cartan subalgebra H, and
root system A with respect to H. Define (-,-) : H* x H* — C by

(77 A) = K‘(t’h t)\)
for each v, A € H*.

15
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Proposition 3.11. Let L be a semisimple Lie algebra, with root system A. Let
E = spang(A) be the real span of the roots in A. Then (-,-) is an inner product on

E. Hence E is a Fuclidean space.

Proof. (See Section 8.5 in [8]) O

3.4 Simple Roots

Definition 3.10. Let L be a semisimple Lie algebra with Cartan subalgebra H and
root system A. A base AT C A for the root system A is a basis for the vector space

H* with the property that for each 3 € A,

for some aq, with either all ay, € Zyo or all aq € Z<o. If AT is a base for A, then

the roots o € A*™* are called simple roots.

Let F = spang(A) denote the real span of the roots in A. For each v € E, let
At(y)={a € A|(y,a) > 0}. For each a € A, let

Pa={A€ E|(a,)) =0}

be the hyperplane perpendicular to a. Since the union of finitely many hyperplanes

cannot cover the entire space F, we have that

E\|JP.#0

agh
We call an element v € E regular if v € E \ [J,ep FPa, and singular if v € P, for
some a € A.
If v € E is regular, then for every a € A, we have (v, a) # 0, hence a € At (%)
or @ € —AV(y). Thus A = At(y) U—-A%(y).
For each o € A*(y), we say that a is decomposable with respect to At(y) if
there exist a;,as € AT(y) with @ = oy + ;. We say that @ € At(«) is indecom-

posable if a is not decomposable.

16
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Theorem 3.1. Let L be a semisimple Lie algebra, with root system A. Let E =
spang(A). If v € E is regular, then

ATt (y) = {a € At(y) | a is indecomposable}

is a base for A. Further, if A" is any base for A, then ATt = A*H(v) for some

reqular vy € E.

Proof. (See Theorem 10.1.2 in [8]) O

In particular, the previous theorem implies that every root system A, of a semi-

simple Lie algebra, has a base.

Definition 3.11. Let L be a semisimple Lie algebra, with reai system A, and base
ATt Let € A, If B = Y jcp++ Ga0, we say that B is a positive root if all
aq € Z>p, and that 3 is a negative root if all a, € Z<y. Set

At ={a € A| ais positive}
and
A~ ={a € A| o is negative}
Clearly, by the definition of a base, A = A* U A~. Notice that since @ € A
implies —a € A, we have that A~ = —A™. Also, notice that if AtT = At*(v),

with 7 regular, then A" coincides with our earlier definition of A*(«y). Indeed, let

At ={ay,...,a,}, and let « € AT, Then

n
o = E a;¢;
i=1

for some a; € Z>o. Therefore

n

(77 Oi) = Z ai(’ﬁ ai)

i=1

since (7, ;) > 0 for all 4, we have that (y,a) > 0, hence @ € A*(y). Conversely, if
a € At (), then

(77 a) = Zai(va ai) >0

and since either all a; are non-negative, or all a; are non-positive, we must have the

former. i.e. a; > 0 for all . Therefore o € A*.

17
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Definition 3.12. Let L be a semisimple Lie algebra, with Cartan subalgebra H, and
root system A with respect to H. For each o € A, choose t, € H as in Proposition

3.9, and define
12 12

2 =

K(ta,ta) (o, @)
Proposition 3.12. Let L be a semisimple Lie algebra, with Cartan subalgebra H,
and root system A with respect to H. If A*Y is a base for A, then {h, | @ € A**}

a:

is a basis for H.

Proof. Set ATt = {a,...,0a,}. Since dim H = dim H*, and A** is a basis for H*,
we need only show that {h,,...,hq, } spans H. To this end, let ¢t € H, and choose
v € H* such that y(h) = k(t, h) for all h € H. Since A** is a basis for H*, we have

that v =) 7 | a;o; for some a; € C. Therefore for every h € H, we have

k(t, h) = v(h) = Z a;a;(h) = Z aik(te;, )

Therefore
K(t — Zaitan h)=0
i=1

for all h € H. Since « is non-degenerate on H, we must have

n

t= En:aitai = Z aiﬁa;l-'té—i)hai
i=1

i=1

a

For a semisimple Lie algebra L with root system A with respect to the Cartan
subalgebra H, we now fix a base A™ = {a,...,a,}, and hence we have a basis
9 = {hy,...,hy} of H, where h; = h,,. We call  the simple basis of H with
respect to A*T. We can also obtain the dual basis for H* relative to $) by choosing,

for each 7, w; € H* given by

wih;) = &;;
and extending linearly. We call
8': {UJI,. .. ,O)n}
18
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the fundamental basis for H*, and the elements w; € § are called the fundamental

weights.

Definition 3.13. Let L be a semisimple Lie algebra, with Cartan subalgebra H.
Define the product (-,-) : E x A — C by

(v, @)
(o, )

(v,a) =2
for ally € E and a € A.

Notice that this definition is possible, since by Proposition 3.10,

(o, @) = K(tg, ta) = alts) #0

Also, notice that (-,-) is linear in the first coordinate, but not in the second, and for
any a € A, and v € E, we have that

Kt ta) _ (1,0)

Y(ha) = K(ty, ha) = 2K(ta,ta) - (a, )

= (v, )

In particular, if A** = {a1,...,a,}, we have
(wi, aj) = bi;

Proposition 3.13. Let L be a semisimple Lie algebra, with root system A. Then the
following properties hold:

i) dim Ly = 1 for every a € A.

it) If a, 8,0+ B € A then [Lq, Lg] = Lot p-

i14) For each a € A, dim[L,, L_,) = 1, and {h,} is a basis for
[Los L_a}-

iv) For each a € A and each z,, € L, there exists an z_o € L_,
such that (2o, Z_o] = he and spanc{Tqy, Z-a, ha} = sl(2,C).

v) L is generated by | J,ep Lo

Proof. (See Proposition 8.3 and Proposition 8.4 in [8]) a
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Due to the previous proposition, we can choose a set of elements
{zo|a€eA}CL

with the following properties:
i) For each o € A we have L, = spanc{zaq}
1) [T, Z—a] = hq, for each a € A
i11) spanc{Ta, T—q, ha} = sl(2,C) for each a € A.

Notice that since spanc{zq, T-a, ha} = sl(2,C), we must have
[has Ta] = 224

and

[hw x—a] = -2z_,

Definition 3.14. Let L be a semisimple Lie algebra with Cartan subalgebra H. Let
A be the root system of L, with base A** = {a,...,a,}. A Chevalley basis of L

s a basis
{zo| @€ AYU{hy, |1 <i<n}
satisfying the properties
i) [ZayZT—a] = hqo for all a € A.
i) If, whenever a,B,a + 3 € A we have [Ty, Zg) = Ca,8Ta+s

then cop = —C_qa,—3-

Lemma 3.1. Let L be a semisimple Lie algebra with Cartan subalgebra H. Let A
be the root system of L. For each o € A choose z, € Lo and x_o € L_, such that

[Zas T—a] = ha. Then there ezists an automorphism o of L such that 0(zs) = —Z—-o

foralla € A and o(h) = —h for allh € H.
Proof. (See Proposition 14.3 in [8]) a

Proposition 3.14. Let L be a semisimple Lie algebra with Cartan subalgebra H. Let
A be the root system of L with base A™ = {0y,...,a,}. Choose {z, | a € A} such
that Ly, = spanc{z,} and [z4,%_o] = hy for all a € A. Then

{za|a € AYU{hy |1 <i<n}

20
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is a Chevalley basis of L.

Proof. We need only show that if, whenever a, 8,a + € A we have

[Za, Zg] = Ca,pTa+8,

then co 3 = —C_q,-g. Let a,B,a+ 0 € A. By Proposition 3.13, since [Lqa, Lg] = Lo+,
we have (T4, 5] = Ca gTarp for some co 5 € C and [T_q4, T-g] = C_q,—gT—q—p for some
C—a—p € C. Let 0 : L — L be an automorphism of L, as in Lemma 3.1. The following

calculation gives us our result

C-a-pT-a~p = [T-a) T
= [~Z-a, ~T_4]
= 0([Za; 74))
= 0(Ca,%a+s)

= —Ca,pT-a-p

3.5 Root Strings

Definition 3.15. Let L be a semisimple Lie algebra over C, with root system A. If
a, 3 € A, then the root string of a through ( is defined to be

{B+iae A|ieZ}

The following proposition gives a characterization of the root strings occurring in

A.

Proposition 3.15. Let L be a semisimple Lie algebra, with root system A. Then the
following properties hold:

i) for alla € A, ia € A if and only if ¢ = £1.
it) For all a,B € A, B(hq) € Z.

21
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i11) For all o, B € A, B — B(ho)a € A.
iv) For each o, € A, if m and n are the largest non-negative
integers such that 8 — ma, +na € A then f—ia € A

for all =m < i < n and B(hy) = m — n.
Proof. (See Proposition 8.4 in [8]) O

Notice that for each «a, 8 € A, since

ﬁ(ha) = <,3, a) = 2%5’_3;

we have that

ﬁ—2%aeA

which, in the Euclidean space E, is the reflection of the root § in the hyperplane

perpendicular to a.

3.6 The Weyl Group

Definition 3.16. Let L be a semisimple Lie algebra, with root system A. Let E be
the Fuclidean space spanned by A. For each a € A, let 0o : E — E denote the

reflection in the hyperplane perpendicular to o. i.e.

oa(7) =7 — 2&30 =7- (1, o)

for all v € E. Define the Weyl group, denoted W, to be the group generated by
{oa | € A}.

Proposition 3.16. Let L be a semisimple Lie algebra, with root system A. Let At
be a base for A. Then W is generated by the set {0, | @ € ATt}

Proof. (See Theorem 10.3 in [8]) O

Hence any element ¢ € W can be written as a product of reflections in the simple

roots.
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Definition 3.17. Let L be a semisimple Lie algebra, with oot system A. Let At
be a base for A, and At be the set of positive roots with respect to AT, Define

p=%Zﬂ

Beat
Proposition 3.17. Let L be a semisimple Lie algebra, with root system A. Let Att
be a base for A. Then for each o € At if B € At with 8 # « then 0,(8) € AT,

Proof. (See Lemma 10.2 B in [8]) O

Corollary 3.1. Let L be a semisimple Lie algebra, with root system A. Let AT be

a base for A. Then for each o € A*™", we have o,(p) = p — a.

Proof. Since o, permutes the § € AT with 3 # «, we have that

Corollary 3.2. Let L be a semisimple Lie algebra, with Cartan subalgebra H and
root system A. Let wy,...,w, be the fundamental weights with respect to a fized base

Attt ={aqy,...,0n}. Then
=3
i=1

Proof. Since {wy,...,wn} is a basis for H*, we can write p = Y ., aw; for some

a; € C. For each k, due to Corollary 3.1, we have
p—ak =0q,(p) = p— {(p, )
=p— (D awi, o)
i=1
n
=p= Y ai{wi, o)
i=1
= p — QrCg
Therefore a; = 1 for all k. O
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We now define another useful action of the Weyl group. It is simply the usual

action under a translation by p.

Definition 3.18. Let L be a semisimple Lie algebra, with root system A and fized
base At*. Let E be the Euclidean space spanned by A, and W be the Weyl group of
L. Define the affine action of W on E to be - : W x E — E given by

o-y=0o(y+p) —p

Definition 3.19. Let L be a semisimple Lie algebra, with root system A and Weyl
group W. Let AT and A~ be the sets of positive and, respectively, negative roots with
respect to a fized base At*. For each 0 € W define the length of o, denoted l,, to
be

lo =|{a€ AT |o(a) € AT}

We say o is even if I, is even, and o is odd if [, is odd.

Notice that Proposition 3.17 implies that each simple reflection o, with a € A*t

has length equal to 1. Therefore the reflections in the simple roots are all odd.

Definition 3.20. Let L be a semisimple Lie algebra, with Weyl group W. Define
sgn: W — Zy by
1 if oiseven

—1 if oisodd

sgn(o) =
for eacha e W.

Proposition 3.18. Let L be a semisimple Lie algebra, with Weyl group W. Then

the map sgn : W — Zs is a group homomorphism.
Proof. (See page 54 in [8]) O

Corollary 3.3. Let L be a semisimple Lie algebra with root system A and base A+
for A. Let W be the Weyl group of L. Then for each 0 € W, o is even if and only if

k
i=1
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for some o; € A1 with k even, and o is odd if and only if

k
o= H Oa;
i=1
for some o; € ATt with k odd.

Proof. By Proposition 3.16, we have

k
=1

for some o; € A**, Since sgn is a homomorphism, and every simple reflection is odd,

we have that .
sgn(o) = [ [ sgn(oa,) = (-1)*
i=1

Therefore o is even if and only if &k is even, and ¢ is odd if and only if k is odd. O

3.7 Type C Lie algebras

The main focus of this thesis will be the symplectic algebras, denoted sp(2n,C)
for n € Z-o. These are also called type C Lie algebras, and sp(2n,C) is simply
denoted C,. sp(2n,C) is defined as follows: Let

f:C'xC*"->C
be the non-degenerate skew-symmetric form on C" given by

0 I,
flo,w) =07 w
-I, 0
where I,, denotes the n x n identity matrix. Define sp(2n,C) to be the subalgebra
of gl(2n,C) consisting of all endomorphisms z € gl(2n,C) such that f(z(v),w) =
—f (Ua I(’UJ))
The algebras C, for n € Z- are simple, and therefore semisimple Lie algebras.

We now give a realization of the Lie algebra C,,. We further specialize the general

concepts from Sections 3.1-3.6 to this special case.
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C, can be viewed as the subalgebra of gl(2n,C) consisting of all matrices of the

N I, . .
form X = where each T'; is an n x n matrix such that I'7 = —T'y, T =T
Iy Ty

and I'7 =T}.

We fix a Cartan subalgebra H, equal to the set of all diagonal matrices in C,,. i.e.

D 0
H= D is a diagonal n x n matrix over C

0 -D

Define the linear maps €, ..., €, € H* by

diu 0 0
€ 0 0 = du
0 0 d2n,2n

for any diagonal matrix (d;;) € H.
Notice that for each ¢, with 1 < i < n, we have ¢, = —¢€,44, and that {e1,...,€,}

is a basis for H*.

Definition 3.21. Define the epsilon basis of H* to be
G ={e,... e}
The root system A of C,, with respect to H is given by:
A={xexe|i<j} U {2}
A base for A is given by
At ={g -6 |1<i<n—1} U {26}

We identify the simple roots with respect to this base as a; = ¢;,—¢; 4 for1 <i < n-1
and o, = 2¢,, hence A** = {ay,...,0,}. The positive roots with respect to A+

are given by

At={g+e¢|1<i<j<n}U{2]|1<i<n}
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and the negative roots by A~ = —A™*. The following is a Chevalley basis for C,:
Teime; = €ij —€nyjmys Jor1l<i<ji<n
Tete; = Cintj T €myi for1<i<j<n
T, =€Cimpqi 1Z1<n
T_o=2, foreacho€ A*
ho; = €ii — €ir1i+1 — (Entinti — €ntitintit1) forl<i<n-—1
ha, = €nn — €2n,2n

Where e; ; is the unit matrix, with a one in the %, j position, and zeros elsewhere.

Lemma 3.2. The epsilon basis {€1,...,<,} is orthogonal with respect to the inner

product given in Section 8.3. Further, (e;,€;) = (¢j,€;) for all i, 3.

Proof. For 1 < i < n, we have

hze,» = [$2e,~,1‘—2e,-] = €in+iCntii — CntiiCinti — €ii — Entinti

Therefore, for 1 < 4,5 < n, we have
(26,’, 2€j)
(2€j, 2€j)

In particular, if ¢ # j then (¢;,¢;) = 0. Therefore the elements ¢; for 1 < ¢ < n are

= 2¢€;(hoe;) = 2€i(€j,5 — €ntints) = 205

pairwise orthogonal. It only remains to show that for any ¢, j, we have (e, €;) = (¢;, ¢;).

To this end, select 7, with 1 <7 < n. Then

2€;(ha;) = 2€i(€ii — €i41,i41 — Entin+i T Entitlntitl) = 2

Therefore
(2€;,€; — €i41) (€&, &)
2=2 =
(€ — €ir1, € — €it1) (€i,€) + (€it1, €i41)
Solving this equation gives us (e;, €;) = (€41, €4+1), and hence (g;, €;) = (¢, ¢;) for all
i o

Proposition 3.19. Let (-,-). denote the inner product given in section 3.3, and (-,-)
denote the inner product with respect to which {€1,...,€,} is an orthonormal basis

for H*. Then there is some k € C such that

(’Yl, ’)’2)n = k(’)’l, ’72)
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for all 1,7, € spangA. In particular, we still have y(hy) = 2{2:2) for all v € spang A

(o)

and o € A.

Proof. Set k = (e1,¢€1)x. Due to the previous lemma, we have k = (¢;, €;), for all 3.

Let 71,72 € spangA. Then

n n
= Z a;€; and Y= Z bie;
i=1 » i=1

for some a;,b; € R.

(M, 12 = Z Z aibj(ei, €5)x = Z abk = kZ abi(ei, €) = k(m,72)
i=1 i=1

i=1 j=1

a

For ease of computation, in C,, we will use the inner product with respect to which

the ¢; are orthonormal. Due to the previous proposition, the formulas

(9
1) =2(,a)
and
_ o _o1a)
0.01(7) - 7 2((1,(1)

remain unchanged under this new inner product.

We can define a norm on the Euclidean space E = spangA, by

IERVAGR)

Notice that the roots of C,, come in only two different magnitudes. Indeed, for

1 <i < j < n, we have that
(i —€j 6 —€) = (e + €, 6+ €)= (—€+€j,—€;+€) = (—€ —€,—€ —€;) =2
and for 1 <7 < n we have
(26¢,26i) = (—261, —26,) =4

Therefore roots of the form =e; + ¢; have length equal to v/2 and roots of the form
+2¢; have length equal to 2.
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Definition 3.22. Let a € A. Then a is called a short root if |a| = V2 and o is
called a long root if |a| = 2. Denote by A the set of all short roots, and by At and

o~

A~ the positive, and respectively negative, short roots. i.e.
At={g+¢|1<i<j<n}
A~ = —A*

and

A=ATUA"

The fundamental weights of C,, are given by

i
Ww; = E €L
k=1

Indeed, for 1 <7 < nand 1< j < n, we have

<ZZ: fkaaj> =2 (et 82 €5 — €51)
k=1

(€ — €41, € — €j11)

= Z Okj — Z Okj1
k=1 k=1
0 ifj>1
=30 ifj<i =6
1 ifj=i

and

: (ch—l €k, 2€n) 1
n ) =2 — = = 20, n = (51;.,,,
<ka’a > (26n,262) 2 k; ¢

k=1
The fundamental basis for C, is

F={w, .. ,wn}
The element p = % Y wen+ @ =D o w; is given, with respect to the epsilon basis, by
p=2(n—i+1)ei
i=1

Let W denote the Weyl group of C,, and denote by o, the reflection in the

hyperplane perpendicular to a for each @ € A. We now illustrate the action of these
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reflections on elements of the Euclidean space F, with respect to the epsilon basis.
Notice that (ex,e; — ¢;) = 0, provided k # i or j. This means that if k # i or j then
¢k lies on the hyperplane perpendicular to €; — ¢;, and hence o, _;(€x) = €. Further,

(€16 — €5)
(Gi - Gj,Ei d Gj)

Oeie;(€) = € — 2 (6i—¢)=¢

and
(¢, & — &)
Oc,e.(€5) = €5 — 2 € —€i) =¢
€ ‘J(J) J (fi—ﬁj,ei—ej)(z ]) 2
Viewed as permutations on the subscripts of the elements {¢1, ..., €, }, the maps o, _;

where ¢ < j are the two cycles (¢ j). This implies that W contains all two cycles,
and hence contains all permutations on the subscripts of the elements {e;,...,€,}.

Also, (€;,2¢;) = 0 provided j # i. Hence, if ¢ # j then oy, (¢;) = €;. Further,
o2, (€:) = € — (€;,2¢€;)2¢; = —¢;
Thus, oy, is the map that changes the sign of ¢;. Defining e_; = —¢;, we have that

W contains any number of sign changes on the subscripts of the elements {e1,...€,}.

Since W is generated by the reflections o, for @; € A**, and
AT C{e—€]1<i<j<n}uU{2|1<i<n}
we have that W is the group of all permutations and sign changes on the subscripts
of {€1,...,€n}.

Definition 3.23. Define W to be the subgroup of W generated by the reflections in
the hyperplanes perpendicular to the short roots. i.e. W is generated by {0eze; | 1 <
i<j<n}
We can simplify calculations by noticing that for any v € E and any short root
a € A, we have
(v, @)
a)=2—F~= (v,
(v,a) (@) (1, 0)
Since o, _; € W for 1 < i < j £ n, we have that W still contains all permutations
on the subscripts of the elements {e1,...,€,}. The elements o ; generate all even

sign changes. Indeed,
Oeite;(€1) = € — (€1, € + €) (6 + €) = —¢;
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Ocive; (€5) = €5 — (€, € + €;) (€ + €5) = —¢;
and
Ocite; (€k) = €k
whenever k # i, j. Therefore o, _,0¢ ¢, is the map given by €; — €_; and ¢; — €_;.

We therefore have that W is the group of all permutations and even sign changes on

the subscripts of the elements {e,...,€,}.

4 Representations

4.1 Representations of Lie Algebras and Associative Alge-

bras

Recall that for any vector space V, the general linear algebra gl(V') is the Lie algebra
formed by taking the vector space End V, of all endomorphisms on V, together with
the commutator product [z,y] = zy — yz for z,y € End V.

Definition 4.1. Let L be a Lie algebra. A representation of L is a pair (¢,V)
where V is a vector space over C, and ¢ : L — gl(V') is a Lie algebra homomorphism,
where gl(V') denotes the general linear algebra. In this case, the vector space V is

called an L-module. For z € L, we can define the action of x on V by

zv = ¢(z)(v)

foreachv € V. If W <V is a sub-vector space of V with the property that ¢(x)w € W
forallz € L and w € W, then W is said to be a submodule of V, and (¢|w, W)
is called a sub-representation. In the case where V has no non-trivial, proper
submodules, we say that the module V is simple, and that the representation (¢,V)

s irreducible.

We have already, in a sense, made use of one Lie algebra representation, that

being the adjoint representation which is by definition
ad: L — gl(L)
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given by ad(z) = ad, for any z € L. This is indeed a representation, since for any

x,y,% € L, we have

adie)(2) = [[z, 4], 2] = [&, [y, 2]] - [y, [z, 2]] = adzady(2) — adyady(2)

and hence ad([z,y]) = ad(z)ad(y) — ad(y)ad(z). Under the adjoint representation, L

is itself, an L-module.

Definition 4.2. Let L be a Lie algebra, and U and V be L-modules, with action given
by oy : L — gl(U) and ¢y : L — gl(V') respectively. The L-modules U and V are said
to be equivalent, denoted U ~ V provided there exists a vector space isomorphism

0:U — V such that
0(du(z)(u)) = ¢v(z)(8(u))

forallz € LandueU.

Definition 4.3. Let L be a Lie algebra, and V be an L-module. A subset S CV of V
is said to generate V provided whenever W <V is a submodule of V with S C W,
we have W = V. i.e. there are no proper submodules of V' containing S. We say an

element v € V generates V if {v} generates V.

Definition 4.4. Let L be a Lie algebra, and V be an L-module. V 1is said to be
completely reducible if for every submodule U < V, there exists a submodule

U' <V such that
V=UagU

Proposition 4.1. If L is a Lie algebra, and V is a completely reducible L-module,

then any submodule W <V is also completely reducible.

Proof. Let W be a submodule of V. If U < W is any submodule of W, then U is a
submodule of V', hence V = U @& U’ for some submodule U’ < V. Set Uy, =U'NW.
For any w € W, we have w = u; + uy where u; € U and u; € U’. Since up = w—1u; €

W, we must have us € Ujy,. Therefore w = u; + up with u; € U and uy € Uy,. Hence
W=U+Uy
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Since both U’ and W are submodules of V, we must have that U}, is a submodule
of V. Hence Uy, is a submodule of W. Further, since U N U’ = (0), we must have
U N Uy, = (0). Therefore

W=U®aU,

O

Definition 4.5. Let L be a Lie algebra, and V be an L-module. V is called a semi-

simple module if there exist simple submodules W1, ..., Wy such that
k
v-@w
i=1

Proposition 4.2. Let L be a Lie algebra, and V be a semisimple L-module. Then V

is completely reducible.

Proof. Let U < V be a submodule of V. Choose simple modules Wy, ..., W such
that V = EB;;l W;. For each i, since U N W; is a submodule of the simple module
W;, we must have UNW,; = (0) or UNW; = W,. If U # V, then there exists i; with
UNW, = (0). Choose {iy,...,i,} maximal such that U, W, ,..., W,  are linearly
independent. i.e. UN(W;,, &---d W, )=0. Set U =W;, &--- & W,,. Clearly
U@ U’ is a submodule of V. Thus, for any ¢ ¢ {41, ...,i,} we have W,N(U@U’) is a
submodule of W;. Since W; is simple, this implies that either W; N (U @ U’) = (0), or
W; C U @ U’. The former contradicts maximality of the set {¢1,...,%,}, and hence
we must have W; CU @ U’ forall 1 <i < k. Therefore V=U & U'. a

The converse of the above proposition is not always true. However, it is true in

the case where V is finite dimensional.

Proposition 4.3. Let L be a Lie algebra, and V be a finite dimenstonal completely

reducible L-module. Then V is semisimple.

Proof. We apply induction on dimV. If dimV = 1 then V is simple, hence semi-
simple. Suppose the proposition is true for any completely reducible module W with

dimW < dimV. If V is not simple, choose a proper submodule W < V. Since
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V is completely reducible, there is a submodule W’ < V such that V.= W @& W’.
By Proposition 4.1, the modules W and W’ are completely reducible. Further, since
dimW < dimV and dim W’ < dim V, we can find simple modules Wy,..., W, <W
and Wi,..., W], < W' such that

k
w=w
i=1
and .
W/ — @ M/i,
i=1
Hence

k m
v=PpweoPpw
i=1 i=1
O

Since for any vector space V, the endomorphisms End V form an associative
algebra under the operation of composition, we can give a similar definition for rep-

resentations of associative algebras.

Definition 4.6. Let A be an associative algebra. A representation of the algebra

A is a pair (¢,V), where V is a vector space over C, and
¢:L— EndV

is an associative algebra homomorphism. Once again, the vector space V is called an
A-module. The action of A on V', submodules, sub-representations, simple modules,
irreducible representations and completely reducible representations are defined for

associative algebras analogous to their definitions for Lie algebras.

Definition 4.7. Let A be an associative algebra, and V be an A-module. An as-
cending chain of submodules is a finite sequence C = (Wy,...,Wy) consisting of
submodules of V such that

WoCcWy C---C Wy

where all inclusions are proper. The number k is called the length of the ascending

chain C, and is denoted by [(C).
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Definition 4.8. Let A be an associative algebra, and V be an A-module. Define the
length of V' to be the (possibly infinite) value

Length(V) = sup{k € Z>¢ | (C) = k for some ascending
chain C of submodules of V'}

Theorem 4.1. (Jordan-Hélder) Let A be an associative algebra, and V' be an A-

module. If Length(V) = k < oo then there exists an ascending chain
WoCc W C---C W,

such that Wy = (0), Wy =V and for each 1 < i < k the module W;/W,;_; is simple.
Such a sequence is called a composition series of V. Further, if Wo C --- C W;

and Uy C --- C Uy are two composition series of V, then the semisimple modules

k k
U=@Ui/Uiny and W =PWi/Wi,
i=1 i=1
are equivalent.

Proof. (See Theorem 3.5, and page 156 in [11]) a

4.2 The Universal Enveloping Algebra

Definition 4.9. Let L be a Lie algebra. A universal enveloping algebra of L is

an associative algebra U, with a map o : L — U satisfying
o(lz,y]) = o(z)o(y) — o(y)o(z)
such that for any associative algebra A having a map ¢ : L — A satisfying

W[z, 4]) = p(x)db(y) — ¥(y)¥(z)

there exists a unique associative algebra homomorphism ¢/ : 4 — A such that ¢ =

P ooao.
The following proposition shows uniqueness of the universal enveloping algebra.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proposition 4.4. Let L be a Lie algebra. If U; and U, are both universal enveloping
algebras, with maps o, : L — ) and o9 : L — Ly respectively, then there is an
associative algebra isomorphism ¢ : 1 — Us such that o3 = p o oy. Hence i3 = U,

and oo is simply the image of o1 under this isomorphism.

Proof. Since i1, is a universal enveloping algebra, we can find an algebra homomor-
phism ¢ : U; — U, such that

02 = 1007

We need only show that ¢; is a bijection. Since i, is also a universal enveloping

algebra, we choose the algebra homomorphism ¢, : Uy — i; such that

01 = 2 009

Then

P1O0YP2002 =100, =02
and

P20P1 001 =002 =01

However, 1y, : 4; — 4 is the unique homomorphism such that
ly, 001 =0

likewise, 1y, : Yy — Uy is the unique homomorphism such that
1y, 0 02 = 09

Thus @3 0 ¢; = 1y, and ¢; 0 3 = 1ly,. Therefore ws = ¢;*, and hence ¢; is an

isomorphism. O

Definition 4.10. Let V and W be vector spaces over C. The tensor product of V
and W, denoted V Q@ W is the vector space spanned by all vectors of the form v @ w
with v € V and w € W, such that the following properties hold:

i) (av; + bvg) @ w = av; @ w+ v @ w
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1) v ® (awy + bwp) = av ® wy + bv ® we

for all a,b € C, v1,v; € V and wy,w, € W. We can extend this definition to the
tensor product of any finite number of vector spaces, by associativity. i.e. If V1, V5, V3

are vector spaces, then
Vi aVe=V1®(1heV)=(el) el

Notice that the linear property of the tensor product implies that whenever By

is a basis for V, and By, is a basis for W, then
Byew ={v@w|v € By and w € By}

is a basis for the tensor product V ® W. In particular, we have that if dimV = n

and dim W = m, then dimV @ W = nm.

Definition 4.11. Let V be a vector space over C. Let T" =V RV ®:---QV (n
times), with the convention that T° = C. The tensor algebra of V is defined to be

T=pr
n=0
where the product in T is tensor multiplication. i.e. vw=vQ w for allv,w € T.

T is an associative algebra, due to the associative property of the tensor product.

Definition 4.12. Let L be a Lie algebra, and T be the tensor algebra of L. Let I be
the two sided ideal of T generated by {r @y —yQ®z — [z,y] | z,y € L}. Define

(L) =T/I

Proposition 4.5. (Universal Mapping Property) Let L be a Lie algebra, and A be
an associative algebra. Let ¢ : L — (L) be the canonical embedding of L into M(L).
If¢: L — A is a linear map satisfying the property

Y[z, y]) = Y(x)d(y) — ¥(y)v(z)
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for all z,y € L, then there erists a unique associative algebra homomorphism i/ :

M(L) — A such that /(1) =1, and ¢y =9’ 0 ¢. i.e.

L v A
o /
A
/
U(L)
Proof. (See Lemma 2.1.3 in [6]) a

Hence $4(L) is a universal enveloping algebra of L. Since such an algebra is unique
up tc isomorphism, from here on we will call 4(L) the universal enveloping alge-
bra of L.

To simplify notation, when working with the universal enveloping algebra, we will

neglect the tensor signs. i.e. x ® y will be denoted simply by zy.

Theorem 4.2. (Poincaré-Birkhoff-Witt) Let L be a Lie algebra, and $4(L) be the
universal enveloping algebra of L. If {1, z2,...,Z,} is an ordered basis for the vector

space L, then {125 ... 27 | m; € Z>o} is a basis of U(L).
Proof. (See Theorem 2.1.11 in [6]) a

Notice that the universal mapping property implies that if (1, V) is a Lie algebra
representation, i.e. ¥ : L — gl(V) is a Lie algebra homomorphism, then there is an
associative algebra representation ¢/ : U(L) — End V, extending 1. Hence every
L-module V is also a ${(L)-module, where the action of $4(L) on V is an extension of
the action of L on V. Conversely, if ¢ : U(L) — End V is a representation of (L)

then, considering the restriction of ¢ to L, we have for any z,y € L,

ALz, ) = d(zy — yz) = ¢(z)d(y) — d(y)d(z) = ¢lL(2)¢lL(y) — ¢l (v)4lL(z)

and hence @|;, is a Lie algebra representation of L. Therefore any #(L)-module V is

also an L-module under the same action.
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We will also make use of two representations under which (L) is itself an L-
module. The first being the left regular representation, denoted R : L — gl(M(L))
and given by

R(z)u = zu

for any z € L, and « € {(L). This is in fact a representation, since for any z,y € L

and u € U(L) we have
R([z,y))u = [z, ylu = (zy — yz)u = zyu — yzu = R(z)R(y)u — R(y) R(z)u

hence R([z,y]) = R(z)R(y) — R(y)R(z). The second representation of interest is the
adjoint representation, again denoted ad : L — g¢l(U(L)), and given hy

ad(z)u = zu — ux

This has already been shown to be a representation, and further, for each z,y € L we
have ad(z)|.(y) = zy — yz = [z,y] = ad,(y). Therefore when the action is restricted
to L, this definition coincides with our previous definition of the adjoint action of
L on itself. We can thus continue to denote ad(z) simply by ad,, without fear of
ambiguity.

The following proposition shows that this correspondence between L-modules and

$#(L)-modules also preserves simplicity and complete reducibility.

Proposition 4.6. Let L be a Lie algebra. Then V is a simple L-module if and only
if V is a simple M(L)-module, and V is a completely reducible L-module if and only
if V is a completely reducible U(L)-module.

Proof. Let B, = {z;1,22,...,Z,} be an ordered basis for L, and
By = {2272 ...ap™ | m; € Zxo}

be the corresponding Poincaré-Birkhoff-Witt basis for $(L). Let (¢,V) be a repre-
sentation of L. Then (¢, V) is a representation of ${(L), where 9’ is an extension of

. f W <V is a submodule of V under 4, then for any =" ...z € By ) and
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w € W, we have

(e ..ozt )(w) = P (z)™ . Y (z0) " (w)
=(xz)™ ... Y(z,)™" (W) € W

Therefore W is a submodule of V' under /. Conversely, if W is a submodule of V'

under 9/, then for any z € L and w € W, we have

P(z)(w) =¥ (z)(w) e W

Therefore W is a submodule of V under v if and only if W is a submodule of V' under
', It follows immediately that V is simple under ¢ if and only if V' is simple under
/. Complete reducibility follows as well. Indeed, if V is completely reducible under
the action of L, then for any submodule W of V under the action of Y(L), W is also
submodule of V' under the action of L. In this case, there exists a submodule W’ of
V under the action of L and hence also under 4(L) such that V = W @ W’. The

argument for the converse is identical. O

4.3 Induced Representations

We now give a useful method for constructing a representation of an associative
algebra A, given a representation of a subalgebra B < A.

Let A be an associative algebra, and B < A be a subalgebra of A. Let V be a
B-module. Let W be the sub-vector space of the vector space A ® V' spanned by the
set {(ab) ®v—a® (bv) | a € A,b € B and v € V}. Define the vector space A ®p V
by

ARgV =(AQV)/W

Let B agzv be a basis of A ®p V consisting of cosets of the form a ® v+ W, with

a€ AandveV.

Definition 4.13. Let A be an associative algebra, and B < A be a subalgebra of A.
Let V be a B-module with action given by ¢ : B — EndV. Define the induced
representation of V from B to A to be the pair (¢35, A ®p V) where

¢p(2)a®v+W) = (za) v+ W
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foralla® v+ W € Bag,v, and extending linearly. In this case, A ®p V is called
the induced module of V' from B to A.

For simplicity, we denote the cosets a @ v+ W € A ®p V by any choice of
representative a ® v, with a € A and v € V, under the condition that for any a € A,

be B and v € V, we have (ab) ® v =a ® (bv).

5 Representations of Semisimple Lie Algebras

In this section, we restrict our attention to representations of semisimple Lie algebras
over C. Unless otherwise mentioned any Lie algebra L in this section is assumed to be
semisimple, and over the complex numbers. Most of the results given in this section

can be found in [8].

5.1 Weight Space Decomposition

Definition 5.1. Let L be a semisimple Lie algebra with Cartan subalgebra H. Let V
be an L-module. For each A € H*, define the A\-weight space V) of V to be

Ww={veV|hv=Ah)v forall h€ H}

The elements v € V) are called weight vectors having weight equal to A. The

support of the module V, denoted Supp V is defined to be
Supp V' ={X € H* | V1 # (0)}
i.e. the set of all linear functionals corresponding to non-zero weight spaces in V.

Proposition 5.1. Let L be a semisimple Lie algebra with Cartan subalgebra H. Let

V be an L-module. If vq,...,v, € V are non-zero weight vectors having distinct
weights A1, ..., A\, € H* respectively, then vy, ..., v, are linearly independent.
Proof. We apply induction on n. The result is trivial if n = 1. Assume vy,...,vp_3

are linearly independent, and suppose

n—1

Up = E a;v;

i=1
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for some a; € C. Then, for every h € H, we have that

n-1

n-1 n—1
Za,-)\,-(h)vi = Z aihvi = h’Un = )\n(h)'l}n = Z)\n(h)%
i=1

i=1 =1

Therefore .
> " ai(hi = A)(B)ui =0
=1
due to linear independence of vy, ...,v,-1, we must have a;(\; — A,)(h) = 0 for all

1<i<n-—1andall h € H. Thus for each i, either a; = 0 or A\; = A,,. Since the \;
were assumed to be distinct, we must have that a; = 0 for all 1 < ¢ < n — 1. This

implies that v, = 0, which is a contradiction. O

In particular, the previous proposition implies that for any L-module V, the sum
> W
A€Supp V

is in fact a direct sum.

Definition 5.2. Let L be a semisimple Lie algebra, and V be an L-module. Then V
1s said to admit a weight space decomposition provided
v= P W
A€Supp V
Proposition 5.2. Let L be a semisimple Lie algebra with root system A. Let V be
an L-module. Then the following hold:

i) For each a € A, if v € V), then £,V € Vyya.
i1) The sum Dyesupp v V2 15 @ submodule of V.
i11) If V is finite dimensional, then V admits a weight space

decomposition.
Proof. (See Lemma 20.1 in [8]) a

Proposition 5.3. Let L be a semisimple Lie algebra with Cartan subalgebra H and
root system A. Then (L), under the adjoint representation, admits a weight space

decomposition, and Supp U(L) = spanz.
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Proof. If v1,ve € U(L) are weight vectors with weights «; and v, respectively, then
for any h € H we have

adp(v1v2) = hvyve — viveh
= hvive — vihvg + vihuy — viv0h
= adp(v1)v2 + viady(v2)
= (7(h) +72(h))vive

Therefore v; v, is a weight vector with weight v, +,. Applying induction, we see that
for any sequence vy, ..., vx € U(L) of weight vectors with respective weights v1,. .., Y,
the vector [T¥_, v; is a weight vector with weight S°% . . Let A* = {8,...,8n} be
the positive roots of A with respect to A*™* = {a1,...,a,}. Then by the Poincaré-
Birkhoff-Witt theorem,
Byyry = {20, ... & B .. hrah ...z | vy, st € Ly for all 4, 5}

is a basis of U(L). For any h € H, and any § € A, we have ady(zg) = B(h)zg,
and hence each z3 for B € A is a weight vector with weight 3. Further, since
H is abelian, the vectors h,, are weight vectors with weight equal to 0. There-
fore, for any choice of r;,s;,t; € Zyo for 1 < i < mand 1 < j < n, the vector

1 Tm

xl ... T B R x?l .. x},’:‘n is a weight vector with weight

Z(ti - 13)Bi

i=1

It is clear that any possible Z-linear combination of roots # € A can be formed by
such a sum. Further, if v € {(L) is a weight vector with weight v ¢ spanzA then by
Proposition 5.1, v is linearly independent of all vectors in By, which contradicts

the fact that By is a basis of Y(L). ' O

We now introduce the integral root lattice which, as we have just seen, is the set

of weights occurring in the universal enveloping algebra.

Definition 5.3. Let L be a semisimple Lie algebra with root system A, having positive

roots AT. The integral root lattice, denoted Q, is defined to be

Q={D_keo| ko € Z}

acA
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Define
Q+={Z kaalkaEZZO}

acAt

and

Q™ ={) kao| ka € Zco}

acA+
Definition 5.4. Let L be a semisimple Lie algebra with root system A, and A* be
the positive roots with respect to a fized base. Let V be an L-module. A weight vector
vt € V) is called a maximal vector if z,vt =0 for all a € At. The module V is
called a highest weight module of weight A if V is generated by v*. In this case,
A 1s called the highest weight of V.

Notice that this definition depends on the choice of base A*+.

Proposition 5.4. Let L be a semisimple Lie algebra with root system A, and AT =
{B1,--.,Bm} be the positive roots with respect to a fired base A*T = {ay,...,an}-
Let V' be a highest weight L-module of weight X, with mazimal vector vt € Vi. Then
the following hold:

i) V= spcmc{:lc‘lc_lﬁ1 .. .z’i"évar | ki € Zyo for 1 <i < m}.
i) If p € Supp V then p= X =3 | kia; for some k; € Zxo.
it1) dim V) = 1, and for each p € Supp V we have dim V), < co.

Proof. (See Theorem 20.2 in [8]) O

In particular, if v* has weight A, then each vector of the form xklﬁl ...z

is a weight vector, with weight equal to A — >_'*, k;3;. Thus, the previous proposi-
tion implies that every highest weight module admits a weight space decomposition.

Further, all weights lie in the coset A + Q™.

Proposition 5.5. Let L be a semisimple Lie algebra with Cartan subalgebra H. If V
s a simple L-module admitting a weight space decomposition, then SuppV C A+ @
for some A € H*.
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Proof. Let A be the root system of L. Let A € Supp V and let
v p v
~€Supp VN(A+Q)
We will show that U is a submodule of V. To this end, choose a basis By of U
consisting of weight vectors. Let u € By have weight v, hence v € A + Q. Then for

any a € A we have that either z,u = 0 or z,u is a weight vector with weight v + a.

Indeed, for any h € H we have
hzou = adp(zo)u + zohu = a(h)zu + Y(h)zou = (a + v)(h)zau

Since a+v € v+ Q = A+ Q, we have z,%: € U. Since {z, | @ € A} generates L, we

have that U is a submodule. Since V is simple, we must have V = U. O

Proposition 5.6. Let L be a semisimple Lie algebra with Cartan subalgebra H. Let
A*t be a base for the root system of L with respect to H. For every A € H* there

erists a unique simple highest weight L-module of weight A\, with respect to A*™.
Proof. (See Theorem 20.3A, and Theorem 20.3B in [8]) O
The previous proposition allows us to make the following definition.

Definition 5.5. Let L be a semisimple Lie algebra with Cartan subalgebra H, and
fized base AT for the root system of L. For each A € H*, denote the simple highest
weight L-module of weight X by L(X).

Notice that the previous definition depends on the choice of base A**. When the
base is implicit, we will denote simple A-highest weight L-module by L()\), however, if
we wish to specify a particular base for A, say B, we will denote the simple A-highest

weight module relative to B by Lg()).

Proposition 5.7. Let L be a semisimple Lie algebra with Cartan subalgebra H. Let
At = {ay,...,a,} be a base for the root system of L. If V is a finite dimensional

simple L-module then V = L(\) for some A € H*.
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Proof. Let A" be the positive roots with respect A**. By Proposition 5.2 , since V
is finite dimensional, V admits a weight space decomposition. Also, since V is finite

dimensional, we must have that Supp V is a finite set. If Ay € Supp V, then the set

{o+ ) _kio; € SuppV | k; € Zx for each i}

=1

is also finite. We can therefore choose my,...,m, € Z>( such that

/\=)\0+Zm,-a,- € SuppV

i=1
and for any sequence (ky, ..., ks) € Zxo with (ki,..., k) # (ma,...,my) and k; > m;

for all i, we have

Ao+ Z kia; € SuppV

i=1
Let vt € V) with vt # 0. Let 8 € At. Then 8 = Y., b;a; for some b; € Zxo.
Therefore zgvt has weight equal to Ao + > o ;(m; + b;)a;. Since S # 0 we have
(my+b1,...,mp+by) # (my,...,my,). Further, for each i, m; + b; > m; and hence

n

Ao + Z(mi + bi)a; ¢ Supp V

i=1
Therefore zgvt = 0, which implies v* is a maximal vector. Since the highest weight
module generated by vt is a submodule of V', and V is simple, we must have that V

is itself generated by v*. Therefore V = L(\). a

5.2 Finite Dimensional Modules

Theorem 5.1. (Weyl) If L be a semisimple Lie algebra, and V is a non-zero, finite

dimensional L-module, then V is completely reducible.
Proof. (See Theorem 6.3 in [8]) a

Definition 5.6. Let L be a semisimple Lie algebra, with Cartan subalgebra H having
simple basis $ = {hy,...,h,}. Let p € H* such that u(h;) € Zxq for all i. Then p s

called a dominant integral weight.
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Theorem 5.2. Let L be a semisimple Lie algebra, with Cartan subalgebra H. For
each A € H*, the simple highest weight L-module L()\) is finite dimensional if and

only if X is a dominant integral weight.
Proof. (See Theorem 21.1 and Theorem 21.2 in [8]) O

Corollary 5.1. Let L be a semisimple Lie algebra, with Cartan subalgebra H. Every
finite dimensional simple L-module is some L()\) where X\ is a dominant integral

weight.

Proof. If V is any finite dimensional simple L-module, then by Proposition 5.7, V =
L()) for some A € H*. Due to the previous theorem, A must be a dominant integral

weight. O

For calculation purposes, we introduce the following characterizations of dominant

integral weights.

Property 5.1. Let L be a semisimple Lie algebra, with Cartan subalgebra H having
simple basis $ = {hy,...,hn}. Let §F = {w,...,wn} be the fundamental basis of H*.
Then A € H* is a dominant integral weight if and only if

A=) buw
i=1
with each b; € Z.
Proof. Set A =37, bjw; for some b; € C. Then
Mhs) = bjw;(hs) = D bidi; = by
j=1 j=1
Hence ) is a dominant integral weight if and only if b; € Zx( for all i. O

In the case where the algebra is C,,, it will also be useful for us to consider
dominant integral weights using the epsilon basis & = {e€y, ..., €, }, for which we give

the following characterization:
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Property 5.2. Let H be the Cartan subalgebra of C,, given in Section 3.7, and & =
{€1,...,€n} be the epsilon basis of H*. Let p € H* such that p = Y .., a€;, with
a; € Z. Then u is dominant integral if and only if a; > a;41 for 1 <i<n-—1, and

a, > 0.

Proof. Let b, = a,, and let b; = a; — a;41 for 1 <i <n—1. Then

n

g”i‘*’i = Zibﬁf = i (i’%) € = En:ajfj

i=1 j=1 =1 \'ij =1
. . -1 -1
since for each j, we have } 0 b = an + 377 a; — > aiyn = a;. Therefore

p= >, bw;, and hence p is dominant integral if and only if b; > 0 for all 3. O

Proposition 5.8. Let L be a semisimple Lie algebra, with Weyl group W. Let L{u)
be a finite dimensional simple L-module, hence u is dominant integral. Then for every

o €W, and every v € Supp L(1) we have

o(v) € Supp L(u)

and

dim L(p), = dim L(p) ()
Proof. (See Theorem 21.2 in [8]) O

The previous proposition implies that for any ¢ € W we have

{o(v) | v € Supp L(u)} € Supp L(u)

Further, if v € Supp L(u) then

v=o0(0c""(v)) € {o(v) | v € Supp L(p)}
Therefore
{o(v) | v € Supp L(u)} = Supp L(u)

i.e. for every o € W we have o(Supp L(u)) = Supp L(u).
Recall that the algebra sl(2,C) is spanned by {z4, h,z_,} where H = spanc{h}

is a Cartan subalgebra, and @ € H* is given by a(h) = 2. The following lemma will
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be used to show that in a finite dimensional module V, for any weight v € Supp V,
and any root o € A, the weights of the form v + na for n € Z form a connected

string.

Lemma 5.1. Let L be a semisimple Lie algebra with root system A, and V be a
finite dimensional weight L-module. Let v € SuppV. Let a € A. Choose k,l €
Z>o minimal such that v+ (k+ 1)a ¢ SuppV and v — (I + 1)a ¢ SuppV. Then
(7 + ka)(hy) > 0 and (v — la)(h,) < 0.

Proof. Let vg € V,4ke. Then z4v9 = 0, since v+ (k+1)a ¢ Supp V. Set A = v+ ka,

i.e. vp has weight A. Let v, = #x’javo for all n > 0. Then for any h € H, we have
1 1 '
hv, = m((adh)(x’ja)vg + 2% hyy) = (A — na)(h)mm’javo = (A — na)(h)v,

Hence v,, has weight A — na.

1
n+1
T—-aqUn = —'ZE_a Vo = (TL -+ 1)vn+1

We claim that z4v, = (A(hg) —n+ 1)v,_; with the convention that v, = 0 for n < 0.

Applying induction on n, we notice that
Ty = 0= ()\(ha) + 1)’0_1

assuming Zotn—1 = (A(ha) — n + 2)v,_2, we have that

n!

1 1
= _havn—l + =Z_aTaVUn-1
n n

- %((A(ha) = 2(n = 1))vncy + (Aha) = 1+ 2)T_atn2)

= Z((MR) = 200 — 1)n + (A(ha) = n+2)(n ~ )

1 1 _
ToUn = —(adyy (T—a)T™, 0p) + ;L—'(x_aa:a:v'jalvo)

= ()\(h’a) -n+ 1)vn—-1

Notice that since A — (k+1+1)a =~ — (I+ 1)a ¢ Supp V, we must have vx,;41 = 0.
Choose m maximal such that v,, # 0. Then m < k+ . Notice that 0 = 2,Vpm41 =

(AM(ho) — m)vn, and hence A(hy) = m Therefore (v + ka)(hy) = m > 0. Further,

(7= la)(he) = A = (k+Da)(he) = m — 20k +1) < m — 2m = —m

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proposition 5.9. Let L be a semisimple Lie algebra with root system A. Let L(u)
be a finite dimensional simple L-module, hence u is dominant integral. Then for
every v € Supp L(p) and every a € A, if v+ na € Supp L(u) then for every m with
0 < m < n, we have v+ ma € Supp L(p).

Proof. Suppose 0 < m < n and v + ma ¢ Supp L(u). Since v € Supp L(u), we can
choose k € Z>o minimal such that v + (k + 1)a ¢ Supp L(). Then k& < m. Also,
since v + na € Supp L(u), we can choose | € Z minimal such that v+ (n -l —1)a ¢
Supp L(p). Then ! < n —m. By Lemma 5.1, we have that (v + ka)(ha) > 0 and
(v + na — la)(hy) < 0. Thus

v(hg) +2m > v(hy) + 2k = (v + ka)(hy) >0

and

v(ha) +2m < v(hy) +2(n—1) = (v + na — la)(hy) <0

which is a contradiction. |

5.3 Admissible Modules

Definition 5.7. Let L be a semisimple Lie algebra, and V be an L-module admitting
a weight space decomposition. For each v € Supp V, we define the multiplicity of v

in 'V, denoted my(v) to be the dimension of the v weight space in V. i.e.
my(v) =dimV,

In the case where V.= L()\) for some weight A, we will denote the multiplicity of v
in L(X) simply by my(v).

Notice that Proposition 5.4 implies that if V' is a highest weight module with
highest weight equal to A, then my(\) = 1 and for all v € Supp V we have my (v) <
00. Also, If y is a dominant integral weight then Proposition 5.8 implies that for any

v € Supp L(p) and any o € W, we have

my(v) = myu(a(v))
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Definition 5.8. Let L be a semisimple Lie algebra, and V be an L-module admitting
a weight space decomposition. We say that V is admissible provided V is infinite
dimensional, and there exists an N € Z>o such that for all v € SuppV we have

my(v) < N. i.e. the dimensions of the weight spaces in V are bounded.

Definition 5.9. Let L be a semisimple Lie algebra, and V be an admissible L-module.
Define the degree of V, denoted deg V' to be the least upper bound of the weight spaces
occurring in V. i.e.

deg V = max{my(v) | v € Supp V'}

Lemma 5.2. (Mathieu) Let L be a finite dimensional simple Lie algebra, and V be

an admissible L-module. Then V' has finite length.
Proof. (See Lemma 3.3 in [15]) O

Proposition 5.10. Let L be a finite dimensional simple Lie algebra, and V be a

completely reducible admissible L-module. Then V is semisimple.

Proof. Due to the previous lemma, the length of V' is finite. We apply induction on
the length of V. If Length(V) = 1, then V is simple, and hence semisimple. Assume
the result is true for any admissible module W with Length(W) < Length(V). If V is
not simple, choose W < V' to be a proper submodule of V', and choose a submodule
W' < V such that V. = W @ W'. For any ascending chain Wy ¢ W) C --- C Wy of

submodules of W, we have that
WoCcWLC---CW,CV

is an ascending chain of submodules of V. Hence Length(W) < Length(V'). Similarly,
Length(W’) < Length(V). We can therefore find simple modules Wy,..., W, < W
and W{,... , W/} < W’ such that

k
w=pw
=1
and "
W =Pw,
i=1
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Hence

k m
V=G_?m-@@m’
O

In Section 7, following the work of Mathieu in [15], we give a complete character-

ization of all simple admissible highest weight C,,-modules.

5.4 Verma Modules

For a semisimple Lie algebra L, with Cartan subalgebra H and root system A, with

positive roots At and negative roots A™, we let

and

Hence L = H®L*&®L~. Further, since [Ly, Lg) = Loip whenever o, f and a4+ € A,
it is clear that L+ and L~ are Lie subalgebras of L. Let LT = H @& L*. Then L™ is
also a Lie subalgebra of L.

For each A € H*, define the one dimensional L* representation (¥, C) where

Uy : Lt — gl;(C) is the linear map defined as follows: For all ¢ € C,
UA(h)(c) = Alh)c
for all h € H, and
Ui(z)(c) =0

forall z € Lt.
U, indeed defines a representation, since if y;,ys € L* then y1 = hy + z1 and

Yo = hy + x5 for some hy, hy € H and z;,z, € LT. Therefore, for all ¢ € C, we have

Ua([w1, y2]) (€) = Ua([h1 + 71, b2 + 72]) (c)
= Ua([h1, ha])(c) + Ta([h1, z2]) () + Wa([21, ha]) (c) + Ca([z1, 72])(c)
=0
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since [y, h] = 0, and [h, za], [21, ha], [21,35] € L*. Also,
(Ua(y1) Valy2) — Ualy2) ¥a(y1))(c) = Ua(hy + 21) Ua(he + 22) ()
~ Uy (hg + z2)¥p(h1 + z1)(c)
= Ux(h1)Ua(h2)(c) + Ua(h1)¥a(z2)(c)
+ Ua(21) Ualha)(c) + Ua(1)¥a(2)(c)
= Wa(h2)a(h1)(c) — Wa(z2)¥a(h1)(c)
= U (h2) Ua(21)(c) — Ua(z2) ¥a(21)(c)
= A(h1)A(h2)c+ 0+ A(h2)(0) + O
— Aho)A(h1)e — A(h1)(0) =0 -0
=0
Thus ©x([y1,32]) = Ta(31)Ta(3e) — Ua(32)Ta(31) for all 41,32 € L*. Due to the

universal mapping property, the Lt-module V is also a Ll(IAﬁ)-module under the

same action. This enables us to induce the following A-highest weight L-module.

Definition 5.10. Let L be a semisimple Lie algebra with Cartan subalgebra H. For
each A € H*, define the Verma module with highest weight \, denoted M()) to be
the induced module

M(X\) = U(L) ®yij+ C
where U(L*) acts on C according to U,.

Notice that M(X) is a A-highest weight module, with maximal vector 1 ® 1.

Proposition 5.11. Let L be a semisimple Lie algebra with Cartan subalgebra H.
Then for each A € H*, viewing M(\) as a U(L™) module, we have

M(X\) ~ U(L7)
where U(L~) is under the left reqular representation.

Proof. Let A** = {aj,...,a,} be a base for the roots system A of L. Let At =
{B,---,0m} be the set of positive roots with respect to A**. By the Poincaré-
Birkhoff-Witt theorem, we can choose a basis of U(L~) given by

Bp- = {275 ...27% |ri €Ly for 1 <i<m}
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and a basis of 4(L) given by
By = {0, ... a7 .. hpah .. xf | i85t € Ly for all 4, 5}
Define the map ¥ : U(L~) — M(X) by
I/J(xr_lﬁl e w';"bm) = xr_lﬂl ... a:’_"bm ®1

for each choice of rq, ..., € Zso, and extending linearly. v is clearly injective, and

for any choice of r1,...,7m,81,-.-,8n,t1...,tm € Z we have

1 Tm 81 8n ..t1 tm
xlg ... hy gz .. Th ®1

0 if t; # 0 for some ¢
gl ... 37 @[ A(ho,) otherwise
¥(0) if t; # 0 for some 4
¥ ((TTiey Mho,))aly, .. 2™ ) otherwise
Since the elements 275 ...277% hSL ... h%n xf,‘l e x},’:l ® 1 span M()), we have that

% is surjective as well. Finally, since U(L~) acts on both (L) and M(A) by left

multiplication, it is clear that i satisfies the condition

P(av) = z9(v)
for any choice of z,v € U(L™). O

Notice that for each A € H*, we have Supp M(\) = A+ Q™ = A — Q. We can
also give a formula for the dimensions of the weight spaces of M (), in the following

way:

Definition 5.11. Let L be a semisimple Lie algebra, with Cartan subalgebra H. Let
A be the root system of L, and A" be the set of positive roots. Define the Kostant
partition function K : Q — Zx¢ in the following way: For each v € Q, set K(v)

equal to the number of sequences (ko)aca+ C Zxo for which v =73 a+ katr.

Due to the restriction that the sequences (kg )aea+ must contain only non-negative

integers, we have that K(v) =0 for any v € Q™.
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Proposition 5.12. Let L be a semisimple Lie algebra, with Cartan subalgebra H.
Let X € H*, and M()\) be the Verma module with highest weight A. Then for each
v € Supp M()), we have dim M()), = K(\ — v).

Proof. Let v € Supp M()). Let v = A —v. Let At = {f,...,0n} be the set of

positive roots of L. Due to Proposition 5.11, we have that

{xklﬁxi' . xﬁ"[;m ®1 l ki € ZZO for1<i< m}

is a basis for M(A). For any h € H, we have that

hwﬁlﬂl e x’i’gm ®1= adh(x'ilﬁl . x'i"[';m) ®1+ x’i‘m . .z’i’gm ® h(1)

=1
k1

Hencez7l5 ... m’f’gm®1 is a weight vector of weight A—> "7~ k;5;. Therefore m’i‘ﬁl ... :c'i'gm ®
1 has weight v if and only if v = Y ;- ki5;. Thus the dimension of the v weight space
in M()) is the number of sequences (ky,...,k,) C Z>o for which v = > k:f;,

which is precisely K (7). a

5.5 Torsion Free Modules

Definition 5.12. Let L be a semisimple Lie algebra with root system A, and V be
an L-module admitting a weight space decomposition. We say that V is torsion free

provided for every a € A, the action of o, on V is injective.

We restrict our attention to those torsion free modules V' in which all weight
spaces of V are finite dimensional. Hence, from this point forward, when referring to

a torsion free module V, it is assumed that dim V), < oo for all A € Supp V.

Proposition 5.13. (Fernando) Let L be a semisimple Lie algebra with Cartan subal-
gebra H, and V be a simple L-module admitting a weight space decomposition. Then

V is torsion free if and only if SuppV = A+ @ for some A € H*.

Proof. (See Corollary 1.4 in [15]) a
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Proposition 5.14. Let L be a semisimple Lie algebra, and V' be a simple torsion free
L-module. Then there exists an N € Zxo such that dimV, = N for all v € SuppV.

In particular, V is admissible.

Proof. Let H be a Cartan subalgebra of L, and let A be the root system of L with
respect to H. Let ¢ : L — gl(V) be the map defining the action of L on V. By
the previous proposition, we have that SuppV = A+ Q for some A € H*. Let
v,v € Supp V. Then v — v € @, and hence

y=v+ ) keB=v+ Y kgB+ > kg

peA Bea+ BeA~
for some kg € Zyo. Let AT = {f,...,0n}, and hence A~ = {-f,...,—fn}.

Therefore,
y=v+ Y ki Y LB
i=1 j=1
for some ki,...,km,l1,. .. lm € Z»g. Set

o= d(zs)" ... ¢(zp,) " d(z_p)" ... B(z_p,)"™

then ¢ € gl(V) is an injective linear map. Further, for any v € V, we have that
o(v) € V,. We can therefore find a injective linear map between any two weight
spaces of V. Thus all weight spaces of V must have the same dimension. Since
torsion free modules are assumed to have finite dimensional weight spaces, we have

our result. |

5.6 Tensor Products of Modules

Definition 5.13. Let L be a Lie algebra, and V,W be L-modules. Let By and Bw
be bases for V and W respectively. We define the tensor product L-module to be

the vector space V. ® W under the following action:
z(v@w) = (zv) Qw + v ® (zw)

for each z € L, v € By and w € By, and extending linearly. Viewed as represen-

tations, we have that if ¢ 1 L — gl(V) and ¢ : L — gl(W) define representations of
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L onV and W respectively, then the tensor product representation is the pair
(P @Y,V QW) where g @Y : L — gl(V ® W) is the linear map given by
¢ @ P(z)(v @ w) = (#(z)v) ® w +v & (Y(z)w)
Forallz € L, v € By and w € By
The following calculation shows that the tensor product representation is indeed

a representation of L. For simplicity, denote the map ¢ ® ¢y by 6. Then, for any
z,y€ Landv®w €V ® W, we have

(6(x)6(y) — 0(y)0(z)) (v ® w) = $()$(y)(v) @ w+ ¢(y)(v) ® PY(z)(w)
+ ¢(2)(v) ® Y(y)(w) + v @ Y(e)Y(¥)(w)
— ¢(y)d(z)(v) @ w — ¢(z)(v) ® P(y)(w)
— #(y)(v) ® ¢(z)(w) — v ® P(y)(z)(w)
= ¢(z)¢(y)(v) @ w — $(y)8(z)(v) @ w
+v @ P(2)P(y)(w) — v @ Y(y)¥(z)(w)
= (¢(z)d(y) — ¢(y)(z)) (v) ® w
— v ® W(=)¥(y) — Y)Y (2)) (w)
= ¢([z,y)(v) ® w — v @ Y([z, y]) (w)
= 0z, y))(v ® w)

Proposition 5.15. Let L be a semisimple Lie algebra, with Cartan subalgebra H. If
11, o € H* are both dominant integral weights then

L(m) ® L(p) = D a L(v)

vEH*
for some a, € Zxo, where if a, # 0 then v is a dominant integral weight.

Proof. Since L(p;) and L(us) are both finite dimensional, the tensor product L(p) ®
L(p2) is also finite dimensional. By Weyl’s theorem, we have that L(u1) ® L(u2) is
completely reducible, hence by Proposition 4.3, L(u1)® L(u2) is a semisimple module.

Therefore there exist simple modules Vi, ...V, such that

L) ® L(ug) = @ a;Vi
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for some a; € Zyo. Each V; is finite dimensional, being a submodule of the finite
dimensional module L(u1) ® L(pug). Corollary 5.1, therefore implies that each V; =

L(v;) for some dominant integral v;. O

Proposition 5.16. Let L be a semisimple Lie algebra with root system A. Let V
be a torsion free L-module, and W be a finite dimensional weight L-module. Then

V @ W is torsion free.

Proof. Let a € A. Let By be a basis for V, and By be a basis for W consisting of
weight vectors. Let u € V @ W, with u # 0. Then
vEBy wEBw

for some a,,, € C with all but finitely many a,,, = 0. Suppose z,u = 0. Then

Z Z QpwTal @ W = — Z Z Ap¥ @ ToW (1)

vEBy weBw vEBy wEBy
Let

M = {w € Bw | avw # 0 for some v € By}

Set
M = {7y € Supp W | w has weight ~ for some w € M}

Since M is a finite set, we can choose 79 € M such that v — o ¢ M. Choose wg € M
such that wy has weight . Notice that there is no w appearing with some a., # 0
for which z,w has weight ;. Therefore wy cannot appear in any basic tensor on the

right hand side of (1). This implies that

E QpweTal @ wo =0
vEBy

Therefore z, Eve%v Ay = 0. Since V is torsion free, z, acts injectively on V, and
hence zue%v Gyuv = 0. This implies that a,w, = 0 for all v € By, which contradicts

our choice of wyg. O
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5.7 The Formal Character

Definition 5.14. Let L be a semisimple Lie algebra with Cartan subalgebra H. Define
the group € to be the abelian group consisting of the formal expressions e* for each

A € H*, with product given by

eMer? = pMitAe

fOT‘ all )\1,)\2 € H*.

We now introduce one of the main tools that will be used for computations in-

volving the tensor product of two modules.

Definition 5.15. Let L be a semisimple Lie algebra. Let V be an L-module admit-
ting a weight space decomposition, with finite dimensional weight spaces. Define the
formal character of V, denoted ch'V, to be the element in the group algebra ZI[€],
given by

chV = Z my(v)e”

vESuppV
Property 5.3. Let L be a semisimple Lie algebra with Cartan subalgebra H. Then
for any A € H*, the formal character of the Verma module M()) is given by

chM(X) = > K(y)e*

veQT

where K is the Kostant partition function.

Proof. Due to Proposition 5.11, we know that Supp M()X) = A — Q*, and by Propo-
sition 5.12, we have that ma) (X —v) = K(v) for each v € Q*, which gives our
result. a

Lemma 5.3. Let L be a semisimple Lie algebra. If U and V are both L-modules

admitting weight space decompositions, then
ch(U® V)= (chU)(chV)

Proof. Choose bases By and By of U and V respectively, each consisting of weight
vectors. Then {u @ v| u € By and v € By } is a basis of U ® V. Further, if u € By
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has weight v € Supp U and v € By has weight v € Supp V then for any h € H, we
have
h(u ® v) = (hu) @ v+ u ® (hv) = (v + 7)(h)(u ® v)
Hence u ® v is a weight vector with weight A 4+ v. Since such vectors form a basis for
U ® V, we have that Supp (U ® V) = Supp U + Supp V, and further,
chUaV)= >  my)my(7)e™” = (chU)(chV)

v € SuppU
4 € Supp V

a

Proposition 5.17. Let L be a semisimple Lie algebra. Let V be a finite dimensional

L-module, and U be an admissible L-module. Then U®V is admissible. In particular,
mygv(v) < (deg U)(dim V')
for all v € Supp (U ® V).

Proof. Due to the previous lemma,

ch(U®V)=(chU)(chV)= Z Z my (v)my (v)er

Y€Supp U veSupp V
Let A € Supp (U ® V). We see that A = v + v for some v € Supp U and v € Supp V.
Define

Sy={ve€SuppV | \—veSuppU}
Since Supp V is a finite set, we can choose weights vy, ..., 14 € Supp V such that
Sy={w,...,}

For each 1 < i < k set 7, = A — ;. Then the dimension of the A weight space in
U ® V must be

myev(A) = Y my(w)my () < (degU) Y my(v)

i=1 i=1

< (degU) ( > mv(u)>

vESupp V

= (deg U)(dim V)
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Since this gives a bound for all weight spaces occurring in U ® V', we must have that

U ® V is admissible. 0O

5.8 The Central Character

Proposition 5.18. (Schur’s Lemma) Let L be a semisimple Lie algebra, and V be
a simple L-module, with action given by ¢ : L — gl(V). If m € gl(V) such that
[7,¢(z)] = 0 for all x € L, then there ezists ¢ € C such that n(v) = cv for allve V.

i.e. ™ acts as scalar multiplication.
Proof. (See Lemma 6.1 in [8]) O

Definition 5.16. Let L be a Lie algebra, and (L) be the universal enveloping algebra
of L. The centre of U(L), denoted Z(3(L)), is defined to be

ZUL) ={z€ UML) | zz—2c=0 for all x € U(L)}

Definition 5.17. Let L be a semisimple Lie algebra, and Z(U(L)) be the centre
of the universal enveloping algebra of L. A function x : Z(U(L)) — C that is an
algebra homomorphism is called a central character. If V is a YU(L)-module with
the property that there exists a central character xv for which 2v = xv(z)v for all
z€ Z(M(L)) and allv € V, then V is said to admit a central character, and xv

1s called the central character of V.

Proposition 5.19. Let L be a semisimple Lie algebra with Cartan subalgebra H. Let
V be a simple L-module, then V admits a central character. In particular, for any
A € H*, the simple highest weight module L()\) admits a central character, which we
will denote by x».

Proof. Suppose the action of V on L is given by the map ¢ : L — gl(V). Let
z € Z({(L)). Then for any z € L, we have

[6(2), 8(2)] = ¢(2)8(z) — $(z)¢(2) = ¢(22 — z2) = ¢(0) = 0

By Schur’s lemma, we have that for each z € Z(U(L)) ¢(z)(v) = c,v for some ¢, € C
and all v € V. Define x : Z(U(L)) — C by x(z) = ¢,. Clearly, since ¢ is an algebra
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homomorphism, we have that x is an algebra homomorphism. Hence y is the central

character of V. O

Theorem 5.3. (Harish-Chandra) Let L be a semisimple Lie algebra, with Cartan
subalgebra H, and let A\, € H*. Then x) = X, i and only if there exists 0 € W
such that o(A + p) — p= p.

Proof. (See Theorem 23.3 in [8]) O
Lemma 5.4. If x; and x2 are central characters with ker x; C ker x3 then x1 = Xxo-

Proof. Let z € Z(U(L)), and zp = z — x1(2). Then 2, € ker x1 C ker x2, and hence
0= x2(20) = X2(2) — x1(2). Therefore x1(z) = x2(2). O

Proposition 5.20. Let L be a semisimple Lie algebra, and V be an L-module. If
Vi, ..., V. are submodules of V with distinct non-zero central characters x1,...,Xn

then V1,...,V, are linearly independent.

Proof. Suppose, to the contrary, that vq,...,v, € V with each v; € V;, and v; =
> 5 a:v;, for some a; € C. Since the x; are distinct, the previous lemma implies
that ker y; \ ker x1 # 0 for each 7 # 1. Therefore, for each 2 < i < n, we can choose
z; € Z(M(L)) such that z; € ker x; and z; ¢ ker x;. Then

0 7é X1(22)X1 (23) . Xl(zn)vl = 2923 ...2,0N1
= Z A;2923 ... 2p0;
1=2
=D aixi(z2)xi(z) . xi(za)vs
=2
=0
which is a contradiction. O

Proposition 5.21. Let L be a semisimple Lie algebra with Cartan subalgebra H, and
Z(M(L)) be the centre of the universal enveloping algebra of L. If x : Z(M(L)) — C

is an algebra homomorphism then x = x, for some A € H*.
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Proof. (See Proposition 7.4.8 in [6]) o

Proposition 5.22. (Kostant) Let L be a semisimple Lie algebra, with Cartan subal-
gebra H, and let \,p € H* with L()\) admissible, and L(u) finite dimensional. Let
Supp L(p) = {w1,...,v}. If z € Z(M(L)) then for any v € L(\) ® L(u) we have

k

Tz = x0sm(2))o = 0

i=1

Proof. (See Theorem 5.1 in [10]) a

Corollary 5.2. Let L be a semisimple Lie algebra, with Cartan subalgebra H, and
let \,u € H* with L(X) admissible, and T.(u) finite dimensional. Let Supp L(u) =
{vi,...,}. If V is a submodule of L(\) ® L(u), having central chamctef Xxv, then
XV = Xatw Jor some v; € Supp L(u).

Proof. Assume xv # X4, for any v; € Supp L(u). Then by Lemma 5.4, for each
1 < i < k we can choose 2; € ker xat,, \ ker xy. Setting z = 2;... 2, and applying
the previous proposition, we obtain for any v € V,

k

G =@ =]]2v=xv(2)}v=0

i=1 i=1
Therefore, 2 € ker xy. Yet, since xv(2) = xv(21) ... xv(2x), we must have z; € ker xy

for some 4, which is a contradiction. a

6 Construction of Simple Torsion Free Modules

In this section, we follow the work of Mathieu in [15] giving a characterization of all

simple torsion free modules.

6.1 Some Useful Computational Identities

We begin this section with three formulas, for computations in U(L).
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Lemma 6.1. Let L be a Lie algebra. Let x € L and y € MU(L). Then for every

Ne Z>0,
N N
(ade)V(y) =) (-1)V" yz "
n=0 n

Proof. We apply induction on N. When N = 1, this formula becomes ad,(y) =
xy—yz, which is simply the definition of the adjoint action on the universal enveloping

algebra. Assume the formula is true for N < k. Then
(adz)k(y) = adm((adw)k_l(y))

— k—1- k-1 k-1
= ad, Z(—l) " iy "
n

n=0

k-1
- Z(—l)k'l‘" k-1 gty gh1-n

n=0 n
k-1
k-1
— Z(_l)k—l—n xnyxk—n
n=0 n
k
k-1
— Z(_l)k—n :L‘ny.’ck—n
n=1 n-—1
k-1
k-1
+ () "yt
n=0 n
k-1
k-1 k-1
— (—1)k£12yk + :Eky+ Z(_l)k—n + Inyxk—n
k-1 k
- (—l)ka:yk + :L‘ky+ Z(_l)k—n xnyxk-—n
n=1 n
k
k
— Z(_l)k—n :l?ny:L‘k_n
n=0 n

O

Lemma 6.2. Let L be a Lie algebra. Let x € L and y € U(L). Then for every
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N € Z>07

N[N
Ny=>" (ade)™(y)z ™"
n=0 n
Proof. (The proof is similar to that of 6.1) O

Lemma 6.3. Let L be a Lie algebra. Let x € L and y1,y2 € U(L). Then for every

N € Z>0;
N[N
(ade)N(192) = ) (adz)™(y)(adz)Y ™" (y2)
n=0 n
Proof. (The proof is similar to that of 6.1) O

6.2 A Commuting Set of Roots

Definition 6.1. Let L be a Lie algebra, and (¢,V) be a representation of L. An
element = € L is said to be ¢-nilpotent if there exist an N € Z>¢ such that ¢(z)Nv =
0 for allv € V. z € L is called locally ¢-nilpotent provided the action of x is ¢-
nilpotent on every finite subset of V. Equivalently, x € L is locally ¢-nilpotent if for
each v € V there exists an N € Zyq such that ¢(x)Nv = 0. If the representation is

implicit, we will simply say z is nilpotent, or locally nilpotent.

Proposition 6.1. Let L be a finite dimensional simple Lie algebra with root system

A. Then for each o € A, the element x4 is locally ad-nilpotent on U(L).

Proof. Let o € A. Let
M, = {y € U(L) | (adz,)"(y) = 0 for some N € Z-,}

If x5 € L is another root vector, then (ad;,)™(zg) € Lgina- Yet, since L is finite
dimensional, {n € Z>¢ | Lgina # (0)} is a finite set, hence zg € M,. Clearly, M, is
closed under addition, and therefore L C M,, due to the root space decomposition of
L. Further, if y;,y» € M, then we can choose N; and N such that (ad,, )™ (y;) =
(ads,)V2(y2) = 0. Let N = N; + Np. Then, by Lemma 6.3 we have

(ade) i) = 3" [ 7] (@) ) (0 )

n=0 n
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yet, since for every n, either n > Ny or N — n > N,, we have

(adza)N(ylyz) =0
Therefore, whenever y;, Y2 € My, Y1y € M,, hence U(L) C M,. O

Proposition 6.2. If L is a finite dimensional simple Lie algebra, with root system
A, and V is a simple L-module. Then for each a € A, the action of z, on'V is either

injective or locally nilpotent.

Proof. Let M = {ve V | zYv =0 for some N € Z-¢}. We intend to show that M is
a submodule of V. To this end, let v € M, z € L, and choose Ny, N; € Zq such that
2Ny = 0 and (ad,,)™?(z) = 0. Notice that the latter is possible due to Proposition
6.1. Letting N = N; + Ny, by Lemma 6.2 we have
tNav = f: N (adz, )" (z)zN v
n=0 n

yet, since for every n, either n > N, or N —n > N, we have z)¥ zv = 0 hence zv € M.

Therefore M is a submodule of V. Since V is simple, this implies that M = (0) or
M =V. If M = (0), then the action of z, on V is injective, and if M = V/, the action

is, of course, locally nilpotent. O

Corollary 6.1. If L is a finite dimensional simple Lie algebra, with root system A,

and V is a simple L-module, then A = Al, Wy A% @ A W Ay, where
Al = {a € A| x4 and z_, are injective}
AY) ={a € Az, and x_, are locally nilpotent}
AY = {a € A | z, is locally nilpotent and x_,, is injective}
Ay = {a € A| z, is injective and x_, 1s locally nilpotent}

Proof. Let a € A, then z, is either injective or locally nilpotent, and z_, is either
injective or locally nilpotent. Therefore « is in one of A, A A} or A;;. Also, since
T, cannot be both injective and locally nilpotent, the sets Al,, A%, A} and Ay must

be disjoint. O

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Definition 6.2. Let L be a finite dimensional simple Lie algebra with root system A.
Let T C A such that [zp,, 2] =0 for all 8,52 € £. Then T is called a commuting

set of roots.

Notice that [zg,,2s,] = 0 if and only if Lg g = (0), which happens if and only if
L._g,-5, = (0). Thus & C A is a commuting set of roots if and only if [z_g,,z_g,] =0
for all 81,0; € L.

Proposition 6.3. (Mathieu) Let L be a finite dimensional simple Lie algebra and V
be a simple admissible L-module. Then there exists a set Ly C A of commuting roots

which is a basis for Q such that Ly C AL, U AJ.
Proof. (See Lemma 4.4 in [15]) a

Notice that the condition Iy C Al U A}, is equivalent to z_s acting injectively

onV forall g € Zy.

Definition 6.3. Let L be a finite dimensional simple Lie algebra and V' be a simple
admissible L-module. Define a basis of commuting roots with respect to V to be a

set Xy C A of commuting roots which is a basis for Q such that x_g acts injectively

onV forall f € Zy.
Recall that the usual base for the root system of C, is given by
A++ = {Oq,. .. ,Ozn}

where a; = ¢, — €;41 for 1 <i < nand a, =2¢,. For1 <i<mn,setf;=> . o

Clearly 3; + 0; ¢ A for any i and j, and hence [z, 24, = 0 for all i and j. Thus

2n= {ﬂla"'a/ﬁn}

is a commuting set of roots. Further, ¥, is a basis for (). Also, one can show that
the elements z_g, act injectively on any simple admissible highest weight C,,-module
L()\). Thus, ¥, is a basis of commuting roots with respect to any simple admissible

highest weight C,,-module.
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Proposition 6.4. Let L be a finite dimensional simple Lie algebra. Let V be a
simple admissible L-module, and Ty = {f1,...,0.} C A be a basis of commuting
roots with respect to V. Let S(Zy) be the multiplicative subset of (L) generated by
{l,z_p,,...,2-p,}. Then S(Ey) satisfies Ore’s Localizability condition.

Proof. By definition, 1 € S(Zy). S(Zy) cannot contain any zero-divisors, because
S(Zy) C UML), and U(L) does not contain any zero-divisors. Due to Property 2.1,
it suffices to show that the generators z_g for § € Xy satisfy the left and right Ore
conditions. Let 8 € Iy and u € U(L). Applying Proposition 6.1, we can choose
N € Zq such that ad® ,(u) = 0. For simplicity, choose N to be even. Applying

Lemma 6.1, we have

N
Z (-1)N- x’jﬂua:jfﬂ‘" =0

0<n<N n
Therefore
N—-n+1 N n—1 N-n
zT_g Z (-1) gV rurlg" | =uxly (1)
1<n<N n
and
N
Z (—1)N-ntl gt guz ;" g =N (2)
0<n<N-1 n
Setting v = —1)N-ntl " uz¥o" and 8 = 2V, in (1), and ¥" =
g 1<n<N 8 8 B
n

N
Y ocnen_q (=N 2" guz’ ;" and ¢” = 2, in (2) gives us z_gu’ = us’
T n

and v"z_g = s"u. a

We now have that for a finite dimensional simple Lie algebra L, given any simple
admissible L-module, V', we can find a basis of commuting roots, £, with respect to
V. Further, the multiplicative subset S(X) generated by {1} U{z_g | # € X} satisfies
Ore’s localizability condition. We can therefore form the localization algebra of LI(L)

with respect to S(X), which we will denote by Us(L). We now form the induced
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module

VE = Us(L) ®ury V
Recall that every element of x(L) can be written in the form s~!'u with s € S(X)
and u € 4(L). Hence, if & = {f1,..., 0.}, and By is any basis for V, we have that

Byz = {m’ilﬂl;pl?m .. JI’i"ﬂn Qv I ki,...,k, € ZSO, v E %V}

is a basis for VE.

Since (L) is embedded in iz (L), we have that VZ is also a 4(L)-module under

the action

(z®v)

[

u(% Q) =

= e

for any u € (L) and s™' @ v € By=.

We now give some useful properties of V=.

Proposition 6.5. (Mathieu) Let L be a finite dimensional simple Lie algebra. Let
V be a simple admissible L-module, and £ C A be a basis of commuting roots with

respect to V. Then V= is a weight module with the following properties:

HVVE
ii) Supp VE = Supp V + Q
i47) dim Vf =degV for all p € Supp V=
Proof. (See Lemma 4.4 in [15]) d

Recall Proposition 5.19, that all simple modules of a semisimple Lie algebra admit

a central character.

Proposition 6.6. Let L be a finite dimensional simple Lie algebra. Let V' be a simple
admissible L-module, and ¥ C A be a basis of commuting roots with respect to V.

Then VT admits a central character, and the central character of V* is that of V.

Proof. Let By be a basis for V, and

Bys = {w’?ﬂlxl?ﬂz .. .x'ﬁ"ﬁn Q| ki,...,kn € Z<o, v E By}
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be a basis for V=. Let 2 € Z(U(L)) and s~! ® v € By=, where
s = x’ilﬁl .. .:c’i"ﬁn for some non-negative integers ki,...,k,, and v € By. Since

zs = sz, we have that
21 _z 1z
1s s sl
hence

2(57'@v)=s12®@v=5"1Q2v=x(2)(s' ®v)

where y is the central character of V. O

6.3 Some Automorphisms

First, notice that if V is a simple admissible L-module, and Xy is a basis of com-
muting roots with respect to V, then the adjoint representation, and the left regular
representation can be extended to all of Us,, (L) acting on itself. We define for each

z € Uy, (L) the map ad, : Us, (L) — Us, (L), given by
ady(y) = 2y — yo
for all y € Ux, (L), and the left regular action of z on Us,, (L), given by
z(y) = zy

for all y € Us,, (L). These definitions, of course, coincide with the previous definitions
of the adjoint and left regular actions of L on 4(L). Also, notice that the formulas
given in section 6.1 still hold for the action of U5, (L) on itself.

Proposition 6.7. Let L be a finite dimensional simple Lie algebra. Let V be a simple
admissible L-module, and Xy C A be a basis of commuting roots with respect to V.

Then for each 3 € v, the action of ad,_, on Us, (L) is locally nilpotent.

Proof. Since S(Zv) is generated by {z_s | § € Iy}, and Ty is a commuting set
of roots, we must have that for each 8 € Xy and s € S(Zv), ad;_,(s) = 0. Let

v ¢ 45, (L), then
oty (5) =20 5) = (5) ==
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since _gs = sT_g, we have that

u T_gu uzT_g adg_g (u)
adz_ﬂ (——) = _ =
s s $ s

Therefore, for any N € Zy, we have
ad¥ (3> _ 9, ()
TP \s s
Since by Proposition 6.1, the action of ad,_, on (L) is locally nilpotent, the result
follows. O

Proposition 6.8. Let L be a finite dimensional simple Lie algebra. Let V' be a simple
admissible L-module, and Ty C A be a basis of commuting roots with respect to V.
Then for each 8 € Ty, z:}, is locally ad-nilpotent on Uy, (L). Further, for each
y € Usg, (L), and each B € Ty, we have ad:_z(y) = 0 if and only if adf_,(y) = 0.

Proof. Let y € Uy, (L). Then for each € &y we have

k
k
adjy=) (-1 G C

n=0 n
Therefore
k k
k k k k—n k-n n
zad 1 yz® = ) (-1) ¥y
- ;} e
k k
= (=DF ) (-nF 2? gyat "
n=0 n
= (-1)*ad;_y
Therefore
adz_éy = (—l)kx_kadﬁ_ﬁym‘k
and

adﬁ_ﬁy = (—l)kxkad’;:éyxk

for all y € U5, (L). Thus ad*_, (y) = 0 if and only if adk ,(y) = 0. Finally, since z_g
T4 -

acts locally ad-nilpotent on Uy, (L), we have that :c:}j also acts locally ad-nilpotent

on Uy, (L). d
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Definition 6.4. For any a € C, and n € Zyo, define

a ) ala—-1)...(a—n+1)
n n!
a
with the usual convention that =1.
0

Notice that in the case where a € Z-o and n < q, this coincides with the usual

binomial coefficient.

Definition 6.5. Let L be a finite dimensional simple Lie algebra. Let V' be a simple

admissible L-module, and &y = {f1,...,0n} € A be a basis of commuting roots with

respect to V. For each & = (a1,...,a,) € C", define ®; : Us, (L) — Us, (L) as

follows: For each y € Uz, (L) choose N € Z>q such that for every k > N we have
k _ .

adz_, (y) =0 for all i, and set

N N
ay An _ —
D;(y) = Z e Z RS (adx_ﬁl)kl . .(adz_ﬂn)k"(y)a:_f,: e :c_gi
k1=0 kn=0 1 n

Definition 6.6. Let L be a finite dimensional simple Lie algebra. Let V' be a simple
admissible L-module, and Ly = {B1,...,0n} € A be a basis of commuting roots with
respect to V. For each @ = (a,...,a,) € C*, define @} : Uy, (L) — Uz, (L) as
follows: For each y € Us, (L) choose N € Zxq such that for every k > N we have
ad;_, (y) =0 for all i, and set

N N
a1 ay,
U= ]| )" ledn Y@, 2,
k1=0 kn=0 1 n

Lemma 6.4. Let L be a finite dimensional simple Lie algebra. Let V be a sim-
ple admissible L-module, and £y be a basis of commuting roots with respect to V.
Let z,...,z, € Uz, (L) be commuting elements, which act locally ad-nilpotent on

My, (L). Let y € g, (L) and choose N € Z>q such that for every k > N we have
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adk (y) = 0 for all i. Then for any my, ..., my € Zxo we have

N N
mi Mn,, —Mn —-m § : } : m M
1171 ...l‘n y:l?n ....’El = c “ o
k=0 ka=0 \ K1 kr,

X (ad,,.l)k1 .. (adzn)k"(y)z;k" ... :45{'“1

Proof. By Lemma 6.2, we have

Mn
-— m —
:L‘?" yx'"' = Z " (a’d@n)k‘n (y) xn Fon
kn=0 n

If m, > N, then for all k, > m,, we have ad"(y) = 0. Hence

N Mn
my _ My _ _
Z k (ad:l:n)kn(y)xnkﬂ = Z f (adzn)kn (y)xnkn = Ty yz, ™"
kn=0 n kn=0 n

Also, if m,, < N, then for any k, > m,, we have

Mp | mgp(m,—1)...(my—ky+ 1)

k !

Since k,, > m,, the term m,, — (m, + 1) + 1 = 0 must appear in the numerator of the

My,

kn

above expression. Thus = 0. We therefore still have

N .
m.
D) " (ada, )P ()2
k

n=0 n

Finally, notice that since the z; commute, we must also have that ad;, commutes with

ad; for all ¢ and j. Thus, for any i < n, we have

N N
mit1 my,
A DI
k%

kip1=0  kn=0 \ Kiy1 kn

X (adg,,,)"* ... (ads, )" (y)z7*" .. .x;f;ﬂ) =0

The result follows by induction. O
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Corollary 6.2. Let L be a finite dimensional simple Lie algebra. Let V be a simple
admissible L-module, and Ty = {f1,...,0n} € A be a basis of commuting roots with

respect to V. Then for any m = (my,...,my) with all m; € Zyy, we have

—Mn -my

Pr(y) =275 .. 275 yzgr .2y

and

On(y) =z 5 ... agryxTy ... 2Ty

for ally € U5, (L).

Proof. This is simply Lemma 6.4, in the special cases where our set of commuting

elements are z_g,,...,z_g, and respectively, x:él, e ,:v:bn. O

Lemma 6.5. Let p(zy,...,z,) be a polynomial over C, in n variables. If there exists
an infinite set D C C, for which p(xy,...,z,) = 0 whenever x1,...,z, € D, then

p(x1,...,2,) =0 forall z,,...,z, € C.

Proof. We apply induction on n. If n =1, then either p =0, or

k
p(z) = [[(z - @)
i=1
for some k € Z-, and some a; € C. If p(z) = 0 whenever z € D, then
DcC {a‘l""’ak}

Since D is infinite, this is impossible, and hence p = 0. Assume the result is true
for any polynomial in n — 1 variables. Let d, € D, and let g4 (Z1,...,Zn-1) =
p(z1,...,Zn-1,ds). Then qq,(z1,...,Zn—1) = 0 whenever z1,...,2,_1 € D, and hence
4, (Z1,...,Tn_1) = O whenever zi,...,z, € C. Therefore, p(z1,...,Tn-1,%n) =
0 whenever z1,...,2, € C, and z, € D. Let c,...,cho-1 € C, and let g(z,) =
p(ciy ... Cn1,Ts). Then ¢(z,) = 0 whenever z, € D, and hence ¢(z,) = 0 for all
z, € C. Thus, p(z1,...,%,) = 0 for any choice of z,,...,z, € C. O

Proposition 6.9. Let L be a finite dimensional simple Lie algebra. Let V be a simple
admissible L-module, and Ly = {01, ...,08.} C A be a basis of commuting roots with

respect to V. Then for each a = (ay,...,a,) € C", ®; is a Us, (L) automorphism.
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Proof. Let y1, 0 € g, (L), and choose Ny, N such that for any k; > N; and any kp >
Ny, we have adf! |, (y1) = 0 and adi? | (y2) = O for all i. Setting N = max{N1, N}

we have, for any £k > N,

ad;_, (y1) = ad;_, (y2) = ad;_, (1 +32) =0

for all ¢ and hence by linearity of the ad, , we have that

Qa(y1 + y2) = Palyn) + Palye)

for any @ € C"*. We now intend to show that ®;(y;12) = @5(v1)Pa(y2) for all @ € C™.
As in the proof of Proposition 6.1, we have that, for any k > N;+ Ns, adﬁ_ﬁ (y1y2) =0

for all 7. Hence

N1+N2 N1+N2

Qa(1hye) = Z Z “ Zn Uky...kn

kn,=0 kl n
and
Ny N @ a
Oa(y)Pae) = | D Y Vky..kn
k=0  kn=0 \ K1 k.
aj Qp
Z Z Wky.. kn
kim0 kn=0 \ K1 kn

Where ug,. k., Vky.. kns Wy k. € Us, (L) for all k;, and do not depend on a. Consider

O, (y1y2) — Pa(y1)®Pa(y2). Let B be a basis for Uy, (L). We can write

Pa(y1y2) — Paly1)Pa(ye) = chv

veB
for some ¢, € C. Further, since the coefficients appearing in ®z(y1y2) and @5(y1)Ps(y2)
are all polynomials in ay,...a,, we have that
Ds(1112) — Pa(y1)®aly2) = Y _ polas, -, an)v
veB
where each p,(ay,...,a,) is a polynomial in variables a;, ..., a,. Further, whenever
a; € Z> for all i, due to Corollary 6.2, we have

Da(y1ye) — Paly1)®a(y2) = »_polar,...,an)v =0
vEB
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and hence p,(ay, ..., a,) = 0 for each v € B. By Lemma 6.5, we have that p,(a1,...,a,) =
0 for all aq,...,a, € C. Thus

Qa(192) — Paly1)®@a(y2) =0

for all @ € C". It only remains to show that each ®; is a bijection. We claim that @

is an inverse for ®;. To see this, let y € s, (L), and consider
5%a(y) —y
Due to Corollary 6.2, we have
P;0a(y) —y =0
whenever a; € Zx for all i. As before, since

®a(y) —y =Y qulas,...,an)v

vEDB
for some polynomials g, in variables a4, ..., a,, and each g,(a,...,a,) = 0 whenever
ai,...,0, € Z, by Lemma 6.5, we must have that ¢,(ai,...,a,) = 0 for all choices of
a,...,a, € C. Hence
P;0a(y) —y =0
for all @ € C" and all y € Uy, (L). a

6.4 Characterization of Simple Torsion Free Modules

Definition 6.7. Let L be a finite dimensional simple Lie algebra with Cartan subal-

gebra H. A coherent family M is an admissible L-module of degree d such that
i) SuppM = H*.
it) dim My =d for all A € H*.

i11) For any u € U(L)o there ezists a polynomial p(x) such that
p(A) =Tru|m, forall X € H*.
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Where A(L)o denotes the zero weight space of (L) with respect to the adjoint repre-
sentation of L on U(L). We say M is irreducible provided there exists A € H* such
that the U(L)o module M) is simple.

Recall that ¥ is a basis for (), and hence ¥ is a basis for H*.

Definition 6.8. Let L be a finite dimensional simple Lie algebra. Let V be a simple
admissible L-module, and & = {fy,...,8.} C A be a basis of commuting roots with

respect to V. Suppose the action of L on 'V is given by ¢ : L — gl(V'). Let
¢ : Us(L) — gl(VZ)

be the extension of ¢ to Us(L). Let v € H*, i.e.

n
v=>apb;
i=1

for some a; € C. Define the L-module V={[v] to be the vector space V= under the

action given by ¢ o ®; restricted to L, where @ = (ay,...,a,).

Proposition 6.10. Let L be a finite dimensional simple Lie algebra with Cartan
subalgebra H, and V be a simple admissible L-module. Let
L ={f1,-..,0a} € A be a basis of commuting roots with respect to V. If

V=2n:aiﬂi € H*

i=1
and

K= z”: b;0; € H*
=1
such that b; — a; € Z for each i, then VE[v] =~ VE[x].
Proof. Let the action of Us(L) on V* be given by the map
¢ : Uz(L) — gl(V¥)
Let m; = b; — a; for each 1 < i < n. Define the map o : V¥ — VE by

o(v) = ¢(z_p)™ ... ¢(z-p,)"" (v)
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for all v € VE. Then o is also a vector space isomorphism of V*[v] onto VZ[k]. Let

a=(ay,...,a,) and b= (by,...,b,). We claim that for all y € L and all v € VZ,

a((¢ 0 @a)(y)(v)) = (¢ 0 P5)(y) (o (v)) (1)

and hence that VZ[v] ~ VZ[k]. Let y € L. On the left hand side of (1), we have

o((¢0%a)(y)(v) = o ( (Z kz ( ) ( k,, ) uk) <v>>
= ¢(z7}, ... 275.)¢ (kz_: ,CX_: ( ) . ( Zn ) ukl...k,.) (v)
“EE)(2))e

Uy, hn = (adgc_ﬁl)k1 ... (adz_ﬁn)""(y)z:k" ) —ﬂl € Us(L)

Where

and

Letting By (zy be a basis of Us (L), we have that

a((¢ 0 Pa)(y)(v)) = ¢ ( > pz(al,'--,an)w) (v)

vG%uE(L)

where the p,(ai,...,a,) are polynomials in variables a,,...,a,. Likewise, on the

right hand side of (1), we have

N N
(90 P5)(y)(o(v)) (Z > ( ) ( Z" ) ukl...kﬂ) (o(v))
k1=0 n=0 n
N N by by
=¢ (lg),;) ( n ) ( " ) ukl...kanfal---xTﬁn) (v)
N N by b,
=¢ (lg——;ok;) ( kl ) ( kn ) wkl_,_kn) (’U)
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Where

m m.
Why,... on = Uky,knTf, - - - T, € Un(L)

Therefore
@o®)We®) =0 Y. albr,....b)z | (v)
wE%uE(L)
where the g¢,(a1,...,a,) are polynomials in variables b, ..., b,. Hence

o((¢o2a)(y)(v) — (o B)Bo@) =¢ | D falar,..,an,br,. .. ba)z | (v)

.’EE%,JE(L)
where the fy(ay,...,a,,b1,...,b,) are polynomials in variables ay,...,ap,b1,...,bn.

If a1,...,an,b1,...,by € Z>p, Corollary 6.2 implies that

(¢ 0 ®a)(y)(v)) = (2T, ... 275, )¢ (2%, ... 2% y2 5 ... 275) (v)
=¢ (Ii%l xingn —131 —ﬂ yw—g: —ﬂl) (U)
= ¢ (z25™ . .:c‘i"ﬂ:m"yx:g"_m" N A i W 5 B R ()
= (a¥y, .. aby yalln . xTh) (T .. 2T Y(v)
= (¢ 0 B5)(y)(o(v))

Thus, by Lemma. 6.5, the polynomials f;(a1,...,an,b1,...,b,) =0forallas,...,a,,b1,...

C. This proves (1), which gives the desired result. O

The previous proposition implies that for each coset 7 = v + @ € H*/(Q), where

v € H*, we can define, up to equivalence, the module V=[7] by
VED] = VE]

Proposition 6.11. Let L be a finite dimensional simple Lie algebra with Cartan
subalgebra H, and'V be a simple admissible L-module. Let ¥ be a basis of commuting

roots with respect to V. If v € H*/Q then Supp V=[] = ¥ + Supp V.

Proof. Let ¢ be the map defining the action of L on VE. Let £ = {f,...,06:.}.
Choose v € H* with # = v + Q. Then

n
v= Z a3
i=1

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for some a; € C. Set @ = (ay,-..,a,) € C*. Then by definition, V=[7] is the vector
space V= under the action given by ¢ o ®;. Let h € H. Notice that for any 3; € L,
we have ad_, (h) = 0. Therefore

1 1
ay Ay, _ _
AOES PR R (ado_, ) ... (ady_, )en(R)aZly .. aZf
k1=0 kn=0 1 n

Further, since ad;_,, (x-p,;) = 0 for all 4, j, the above equation reduces to

<I>a(h) =h+ % ad; ,(h x:l,
1 B; Bi
=1

n a; _
=h- Zl ) adh(sc_,gi)a:_},i

=h+ i a;B;(h)
=1
=h+v(h)

Let v € VE[D], such that v is a weight vector of V=. ie. ¢(h)(v) = v(h)v for some
v € Supp VT and all h € H. Then for any h € H we have

(60 Ba)(h)(v) = B(h+ v(A)w = (7 + v)(h)v
Hence v is a weight vector of VE[D] with weight v + v. Therefore
Supp VZ[7] = v + Supp V=
Since by Proposition 6.5 Supp V® = Supp V + @, we have our result. O

Corollary 6.3. Let L be a finite dimensional simple Lie algebra with Cartan subalge-
bra H. Let v € H*/Q. IfV is a simple admissible L-module, then Supp VE[7] = v+

for some A € H*, where ¥ is a basis of commuting roots with respect to V.

Proof. By Proposition 5.5, we have that SuppV C ) for some A € H*. The previous
proposition implies that

Supp VE[P] C v+ A
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Conversely, since {\} C SuppV, we have that

{)\} + 7 C Supp V>[7]
Since, {A\} + 7 = A+ v+ Q = A + I, we have our result. O
Definition 6.9. Let L be a finite dimensional simple Lie algebra with Cartan subal-

gebra H, and V be a simple admissible L-module. Let T C A be a basis of commuting
roots with respect to V. Define the module

Mg(V) = EB VE[p]
pEH*/Q
Proposition 6.12. (Mathieu) Let L be a finite dimensional simple Lie algebra, and
V' be a simple admissible L-module. Let ¥ be a basis of commuting roots with respect

to V. Then Mg(V) is a coherent family with degree equal to the degree of V. Further,
V is a submodule of Mx(V).

Proof. (See Lemma 4.5 in [15]) O

Property 6.1. Let L be a finite dimensional simple Lie algebra with Cartan subal-
gebra H. Let v € H*/Q. If V is a simple admissible L-module then |

VED - N = P Mz(V),

YED

where A € H* with SuppV C .

Proof. Clearly VE[p — A] < Mg(V), hence VE[p — )], < Mg(V), for each v €
Supp VE[p—}]. By Corollary 6.3, we have Supp VZ[7— )] =  and hence VE[p— ], <
Mg (V), for all v € ©. However, since by Proposition 6.5,

dim VE[p — X}, = deg V = dim Mz (V),

we must have
VED —~ Ny = Ms(V),
for all v € v. Thus
VEp - N = P VP -, = PMs(V),

YEY yeD
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Notice that by Lemma 5.2, since the module Mg(V) is admissible, it has finite
length. We can therefore apply the Jordan-Hélder theorem to make the following

definition:

Definition 6.10. Let L be a finite dimensional simple Lie algebra with Cartan subal-
gebra H, and let V be a simple admissible L-module. Let ¥ be a basis of commuting
roots with respect to V. Define the module Mss(V) to be the module such that for
each 7 € H*/Q, the module

@Mss(v)’)’

veD
is the direct sum of the simple quotients in any composition series of

@ ME(V)'V

YEV

Notice that for each 7 € H*/Q, the module P, ., Mss(V), is semisimple.

Definition 6.11. Let L be a finite dimensional simple Lie algebra with Cartan sub-
algebra H. A coherent family M of L is said to be semisimple provided for each
v € H*/Q, the module @

ves My is semisimple.

Lemma 6.6. (Mathieu) Let L be a finite dimensional simple Lie algebra, and V be
a simple admissible L-module with degree d. Then the following hold:

i) There ezists a unique semisimple coherent family M of degree d
such that V is a submodule of M.

i1) Such a coherent family M is irreducible.

ii1) M >~ M (V)

w) If V! is any infinite dimensional submodule of M then V is
admissible, and deg V' = d.

v) All simple submodules of M have the same central character.

Proof. (See Proposition 4.8 in [15]) d

In particular, the previous lemma implies that M, (V') is independent of the choice
of commuting roots X. Further, if V' is any simple infinite dimensional submodule of

Ms(V), then My (V') >~ My(V). And V' has the same central character as V.
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Lemma 6.7. Let L be a finite dimensional simple Lie algebra with Cartan subalgebra
H and root system A. Let V be a simple admissible L-module. Then M,s(V') contains
a simple admissible highest weight module Lg(\) for some A € H* relative to some

base B of A.

Proof. (See Proposition 5.7 in [15}) O

In view of the previous Lemma, for each simple admissible L-module, V', and base

B of A, we define the following sets:
HWg(Mg(V)) = {X € H*| Lg(]}) is a submodule of M (V)}

and

WB(Mss(V)) — {)\ +Q | AE HWB(Mss(V))}

Recall Proposition 5.19, that every simple module admits a central character, and

Proposition 5.21, that every central character is some y, with A € H*.

Proposition 6.13. (Mathieu) Let L be a finite dimensional simple Lie algebra with
Cartan subalgebra H, root system A and Weyl group W. Let B be a base for A, and

V be a simple admissible L-module with central character x» for some A € H*. Then
HWB(Mss(V)) = {U()‘ + P) -p+Q I S W}
Proof. (See Lemma 10.1 in [15]) O

In particular, the previous proposition implies that the set HW g(M,(V)) is
independent of the choice of base B. Therefore if V is any simple admissible L-
module, then M, (V) contains a simple admissible highest weight module L()) for

some A € H*, relative to any base of A.

Theorem 6.1. Let L be a finite dimensional simple Lie algebra with Cartan subalge-
bra H and root system A. Let V be a simple torsion free L-module. Then there exist

A€ H* and v € H*/Q such that
V ~ L(\)E[7]

where £ C A is a basis of Q consisting of commuting roots such that x_a acts injec-

tively on L(X) for all B € 3.
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Proof. Let degV = d. Since V is torsion free, by Proposition 5.13, we have that
SuppV = 7 for some ¥ € H*/Q, and every weight space of V has dimension equal
to d. Further, since V is a submodule of M,(V'), and every weight space of M,,(V')
has dimension equal to d, we must have
V =P M.(V)s
KEY
Due to Lemma 6.7 and Proposition 6.13, we can choose A € H* such that L(})
is a simple admissible highest weight submodule of M,,(V). By Lemma 6.6, since

M,,(V) is a semisimple coherent family of degree d, containing L()), we must have
Mo (V) = M o(L(N))

Therefore

V > @ Mao(L(N)x

KEY

Recall that, by definition, Ms(L())) has the property that the module €, ., M,s(L{\))x

Mg (L(X))s. However, since V is simple,

KEY

has the same composition series as P, .-

the composition series of V is V itself, and hence
V>~ @MZJ(L(A))K
KEY
Finally, Property 6.1 implies that
P M=(L(N)s = LV - N
REY

Taking 7 = 7 — X gives the desired result. O

Notice that in the previous theorem, since the simple admissible highest weight
module L(}) is a submodule of M,,(V), due to Lemma 6.6, we must have that the
central character of V is x.

We now have that every simple torsion free module is equivalent to the module
L(\)E[p] for some v € H*/Q, and some simple admissible highest weight module
L(}). In the next section, we give a characterization of all simple admissible highest

weight modules for C,.
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7 Simple Admissible Highest Weight C,-Modules

In this section, as in the previous section, we follow the work of Mathieu in [15],
giving several equivalent characterizations of simple admissible highest weight C,-
modules. For the remainder of this thesis, unless otherwise stated, the algebra is
assumed to be C,, with fixed Cartan subalgebra H as given in Section 3.7. A is
the root system with respect to H. A**t = {a,...,0,} is the base for A given in
Section 3.7, with A* and A~ being the positive and, respectively, negative roots with
respect to At*. § = {hy,..., h,} denotes the simple basis of H. & = {e1,..., €}
and § = {w1, ... ,wn} are the epsilon and, respectively, fundamental bases for H*. W

denotes the Weyl group of C,,, and

P=';' Zﬁ=zwi

BeA+ i=1

Further, the epsilon basis is orthonormal with respect to the inner product (-, ).

Proposition 7.1. (Mathieu) Let A € H*. The simple highest weight C,,-module L()\)

s admissible if and only if X satisfies the following three conditions:

Z) )\(hz) € ZZO fO'I" all 1 # n
W) Ahn) € 3 +Z
ii8) ARy + 2hy) € Z>_,

Proof. (See Lemma 9.2 in [15]) a

Recall that A(h;) = (), q;), and that A+ = { +¢; | ¢ < j} is the subset of A
consisting of all positive short roots. We now make the following observation, based

on Mathieu’s characterization of admissible C,, modules:

Corollary 7.1. Let A= , ase; € H*. The simple highest weight C,-module L())
is admissible if and only if a; € 3 + Z for all i, and (A + p, ) > 0 for alla € A+,
Proof. First, suppose L()) is admissible. Condition i¢) implies that
an € H +7Z
2
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since
(A 2€6,)
(26, 2¢,)

Further, condition 4) implies that for 1 < i < n, if a;41 € % + Z then q; € % + Z. We

Ahn) = (A, 2€,) =2 =(\ &) = an

therefore have that a; € % +Zforalli. If 1 <i<j<n,then

j-1 31
A+pe—e)=A+pd ax)=j—i+ Y Mu)>0
k=i k=i

due to condition 7). Condition 4i7) implies that

A+ p it €n) = A+ pany +an)
= (N an-1) +2(\, a,) +3
= Mhpo1 +2hn) +3>0

Finally, if 1 <7 < j < n, we have that

()\+p,€i+6j) = (/\+pa€i - E.‘i) +2()‘+p’€.7 _6"1—1)
+ A+ €1 —€) +F A+ p €1 + €)

>0

Next, suppose that a; € % + Z for all i, and that (A + p,a) > 0 for all o € A+, For
i # n, we have A\(h;) = a; — a;41 € Z, and

A(h,) = ()\-}-p,a,) -1 20

since a; € A*. Thus condition i) in Mathieu’s characterization holds. A(h,) = a, €

1+ Z, and hence condition i) holds as well. Finally,
Ahn—1+2hp) = (M én-1+€) =apn-1+an €EZ
and A(hp_1+2hy) = (A+p, €n—1+€n) —3 > —2. Thus condition i7) holds as well. O

Corollary 7.2. Let A=) . a;c; € H*. Let \+ p =737 | cie;. The simple highest
weight C,-module L()) is admissible if and only if ¢; € 3 + Z for alli, and ¢; > |cj|

foralli<j. ie c;>ca> > cp1 > |l
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Proof. Clearly, a; € 3 +Z if and only if ¢; €  + Z. Further, (A+p,¢; —¢;) > 0if and
only if ¢; > ¢; and (A + p,¢; + ¢;) > 0 if and only if ¢; > —c;. O

Lemma 7.1. If x : Z(U) — C is a central character, then there exists at most two
non-equivalent simple admissible highest weight C,-modules having central character
X. Further, if L(A\1) and L()\2) are non-equivalent simple admissible highest weight

Cn-modules having central character x, then

M—A¢Q

Proof. Suppose X, = X», for some A, Ay € H* such that L(\;) and L()\;) are
admissible. By Theorem 5.3, there exists ¢ € W such that a(A; + p) = A2 + p. By

Corollary 7.2, we have
M+p= Z Ci€;

i=1

for some ¢; € C with ¢; > ¢p > +++ > ¢,—1 > |¢y|. Likewise,

/\2 +p= i diE,'
i=1

for some d; € C with d; > dy > -+ > dp-y > |d,|. Since W is the group of
all permutations and sign changes on the subscripts of the ¢;, we see that the only

possibility, if A; # Ag, is that

n—1
Ao+ p= <Z Ci€i> — Cnép

i=1
Assuming A\ # Ay, we have A\; — Ay = 2¢p¢,. Since ¢, € % + Z, we have that
2¢c, € 1+ 2Z. Since ke, ¢ Q for any odd number k, we have \; — A\ € Q. O

In particular, the previous lemma implies that if L{);) and L()\2) are non-equivalent

simple admissible highest weight C,,-modules with the same central character, then

(Supp L(A1)) N (Supp L(X)) = 0
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8 Decomposition of L(\) ® L(u)

As in the previous section, our algebra is assumed to be C, with H, A, At =
{ag,...;an}, AT, AW, 9 ={h1,..., b}, E={e1,..., &}, F={w1,...,w,} and
p all as given in section 3.7. Further, unless otherwise stated, we will let A\, u € H*,

with L(\) admissible, and L(u) finite dimensional, hence u is dominant integral.

8.1 Complete Reducibility

We first confirm that the tensor product L(A) ® L(u) decomposes into a direct sum
of simple admissible highest weight modules.

Proposition 8.1. (Britten-Hooper-Lemire) Let p =3 ., a;w; be a dominant integral
weight, and let

7;= {N—de

i=1

di € Zxp, 0 < dp < 2a,+1,

0<d;<a;for1<i<n-—1, and Zd,-EQZ}

i=1
then L(—3w:) ® L(u) is completely reducible, with decomposition

L(~30n) ® L() = €D L(~50n +)

veTy,

Proof. (See Theorem 5.5 in [1]) O

Lemma 8.1. If A € H* with L(\) admissible, then there ezists a dominant integral
weight po such that L(A) < L(—3wn) ® L(po)

Proof. Due to Corollary 7.2, we can write A = > -, bie; with b; €  +Z, and A+ p =
S ci€i, where ¢, = b;+n—i+1,and c; > ¢ > - > a1 > [eal. Let K =b,—+%

for each ¢, and let

n-1
1
Ho= A+ suwn + (; 26,) + (|kn] = kn)en

hence

n—1
o = (Z(k,-+2)e,-) + |knl€n

i=1
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We first show that po is dominant integral by making use of the characterization
given in Property 5.2. For simplicity, denote the " coefficient in pg by a;. i.e. set

a;=k;+2for1 <i<n-1and a, = |k,|, hence

n

Ho = Z a;€;

i=1
Since k; € Z for all i, we have that a; € Z for all i. Further, for 1 <i < n -1, we
have that

0<cg-cy—1=b+n—i+1—(hp1+n—9)—1=b—biy1=ki —kiq
and hence k; > ki1 for 1 <i<n-—1. Also,
0<cp+ep1—1=b,+14+(b1+2)—1=b,+b1+2=k,+kn1+1
In particular, for 1 <i < n — 2, we have k; > k;;1 and hence
a;=k+22>2k+2=a

Also, a, = |k,| > 0. It only remains to show that a,_; > a,. Since k,_; > k,, we
have that k,_; + 2 > k,, and since k,_; > —k, — 1, we have that k,_; +2 > —k,.
Therefore a,_1 = kn—1 + 2 > |k,| = a,. Thus pg is dominant integral.

We now show that L(\) < L(—3wn) ® L(uo). First, notice that since k,_y > kn
and k,_; > —k, — 1, we have that 2k,_; > —1, and hence k,_; > 0. Further, since
ki > ki for 1 <i < n—1, we have that k; > 0 for 1 <4 < n — 1. With Proposition
8.1 in mind, we set d; = 2 for 1 <i < n-—1, and d,, = |k;| — k;. Clearly d; € Zy for

all 7, and since d,, = 0 or 2|k,|, we have that d; € 2Z for all 7, hence
Y die2z
i=1

Further, since k; > 0 for 1 <i<n—1, we have that 0 <2 < k; + 2, i.e.
0<d;<q

Finally, since 0 < |k,| — k, < 2|ky,|, we have that

0<d, <2an,+1
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Thus

1
A+ swe = po —

2 d;€; € 7:,,0

n
==

i=1
Therefore

Ly < P L(—%wn +v)

veTy,

a

Theorem 8.1. If \,u € H*, with L()\) admassible, and p dominant integral, then
L(X) ® L(p) is completely reducible.

Proof. Choose p such that L(\) € L(—3w) ® L{po). Then
L) @ L(w) < L(—5) ® (L) ® L(w)

Since L{uo) ® L(p) decomposes into a direct some of simple modules with dominant
integral highest weights, and the tensor product of L(—%w) with any such module is
semisimple, hence completely reducible, we must have that L(—iw) ® (L(po) ® L(p))
is completely reducible. Therefore

L()\) ® L(u) is a submodule of a completely reducible module, and is thus, itself,
completely reducible. O

Corollary 8.1. If A\, u € H*, with L()\) admissible, and p dominant integral, then
LY®Lp~ P alr+v)
vESupp L(p)

for some a, € Zsy, where a, =0 if L(A+ v) is not admissible.

Proof. By Proposition 5.16, we have that L()\) ® L(p) is admissible. Since we have

just shown it is completely reducible, Proposition 5.10 implies that L()\) ® L(u) is

semisimple. Further, since Supp (L(A) ® L(u)) = A+ p+ @, the weights on any

a-string, for any a € A% are bounded in the positive direction. This implies that any

simple submodule of L(A) ® L(u) is a highest weight module. Thus, we have
LyeLw= D ol

YEAHp+Q™
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for some a, € Z>o. Suppose v € A+ pu+ Q= with a, # 0. The dimensions of the
weight spaces of L(\) ® L(u) are bounded, and hence so are the dimensions of the
weight spaces of L(y). Thus L(v) is admissible. Further, L(vy) has central character
X+- By Corollary 5.2, we have x, = x)4v for some v € Supp L(u). Due to Lemma
7.1, we have either y = A+ v, or

(Supp L(7)) N (Supp L(A + v)) = 0

Since Supp L(A + v) C A+ ¢+ @ is in the same @-coset as Supp (L(A) ® L(u)), we
must have vy = A + v. O

8.2 Kac-Wakimoto Character Formula

For each A € H*, let Ay = {a € A | (\,a) € Z}, and let AT = Ay A+, Let
Wy = (04 | @ € A,) be the subgroup of the Weyl group W generated by the
reflections o, for a € A,. The following proposition is proven in [9] for Kac-Moody
algebras. Since every finite dimensional simple Lie algebra is a Kac-Moody algebra,
the result is true for finite dimensional simple Lie algebras. Further, in [9] the result
is given for only those A € H* such that (A + p,a) > 0 for all but finitely many
a € At. However, since for any finite dimensional simple Lie algebra, A* is finite,
we have that, in the case of finite dimensional simple Lie algebras, the result is true
for all A € H*. Since C, is finite dimensional and simple, we quote the result in our
setting, in which the algebra is C,,, with Cartan H, and root system A. Recall that
for each v € H*, M () denotes the Verma module with highest weight .

Proposition 8.2. (Kac-Wakimoto) Let A € H* be such that (A + p,a) > 0 for all
a € A}, Then
ch L(A) = Z sgn{c)ch M(o - \)

TEW,),

Proof. (See Theorem 1 in [9]) O

Notice that if A = >, a;¢; is such that a; € % 4+ Z then Ay = 5, and hence
AT = A* and W, = W. This gives us the following corollary:
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Corollary 8.2. Let A € H*. If L()\) is admissible then

ch L(X) = Z sgn(o)ch M(o - A)

ceW

Proof. For each a € A% we have (A + p,a) = (A + p,a) > 0 by Corollary 7.1, and

thus the conditions of Proposition 8.2 are satisfied. O

8.3 Multiplicity Formula

In this section, we provide a formula for the coefficients a,, occurring in the decomposi-
tion of L(\) ® L(u) given in Corollary 8.1. Recall that m,(v) denotes the multiplicity
of the weight v in L(u), with m,(v) = 0 when v ¢ Supp L(u).

Lemma 8.2. If A\, u € H*, with L(\) admissible, and L(u) finite dimensional, then
ALNSLE) = T mv) Y sgn(o)ch M(o - (A +1))
v€Supp L(p) oew
Proof. Recall that
ch M()) = Z K(y)e*

ye@t

where K : Q — Z3xq is the Kostant partition function. The following calculation gives

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



us our result.

ch (L(A) ® L(p)) = n(o)ch M(o - \) | (ch L(w))

o)ch M(o - A))( Z mu(v)e”)
v€Supp L(u)
ma(v) 3 K(7)er e

MM/\/\

veSupp L(u) 7EQT
= Sgn(a) Yo muw) Y K(y)erte
oew veSupp L(u) 7EQH
= sgn(o) Z mu(v)ch M(o - A+ v)
ceW " v€Supp L(p)
= Z sgn(o) Z mu(o(v))ch M(o - A+ a(v))
oeW veSupp L(y)

By Proposition 5.8

= Z sgn(a) Z mu(V)Ch M- (A+ v))

oW v€Supp L(p)

Also by Proposition 5.8
O

Clearly, for each v € Supp L(ps), we have that A+v = 3" | a;¢; where a; € 1 +Z.
With this in mind, we define the following two subsets of Supp L(u). Set

Ax(p) = {v € Supp L(u) | L(A + v) is admissible}

Ax(p) is thus the set of all weights v € Supp L(u) such that

)\+l/+p=2biei
i=1
with by > by > --- > b1 > |bn| Set
(1) = {v € Supp L(p) | (A+ v + p,@) = 0 for some o € A+}

Hence, IT)(u) is the set of all weights v € Supp L(u) such that

)\+V+p=ibi6i

=1
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with [b;] = |b;| for some i < j.

Lemma 8.3. Let A\, u € H*, such that L()\) is admissible, and L(u) is finite di-
mensional. Let k € SuppL(p). If k ¢ Ilx(u) then there exists a unique pair
(o,v) € W x Ax(u) such that o - (A+v) — A= k.

Proof. Let A+ p= Y, a;&;. Let x € Supp L(p) \ Ix(z), and

R+)\+p=ibi€i

=1
We must show that there exists ¥ € Supp L(u) such that v + X is admissible and
v=o0-(k+ A)— A for some o € W. For each v € Supp L(u) \ (1), set

B*(v) = {(k,1) | k <! and dy + d; < 0}
B~ (v) ={(k,]) | k <l and d — d; < 0}

where v+ A+ p =Y ¢_, diex. Now define ¢: II(v) \ I (i) — Zxo by
¢(v) = |B* (V)| + B~ (v)|

By Corollary 7.1, if ¢(k) = 0 then k € Ay(r). Claim that if ¢(k) > 0 then there
exists v € Supp L(u) \ Hx(u) such that v = o - (K + A) — X for some o € W and
d(v) < ¢(k). Indeed, if there exists ¢ < j such that b; + b; < 0 then set

V= Uei+€j(’<'+ A+ P) - ()‘+ ,0)
Let v+ A+ p= 3 4 Ckék, i€, i = —bj, ¢; = —b;, and ¢ = by, for k # i, 5. Then,
v=k+A+p—(k+A+pe+¢€)(e+e)—(A+p)

=K — (b +bj)(€ + ¢5)

= K+ (¢ + )& + )
and,

o(k) =Kk — (K, & + €)(& + €5)
= K- (bl —a; + bj - aj)(e,- -+ 6]')

=rs+(ci+cj+a,-+aj)(ei+ej)
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Since o(k) € Supp L(p), and 0 < ¢; + ¢; < ¢ + ¢; + a; + a;, by Proposition 5.9, we
have that v € Supp L(u).

We now show that |B~(v)|—|B~(s)| < |B*(k)|—|B*(v)|, and hence ¢(v) < ¢(k).
To see this, partition S = {(k,1) € ZxZ |1 < k <1 < n} into the following sets:

So={(k,l) € S| k,l #1i,j}

S_={(k,i)eS|k<i}U{(k,j)€S|k<jand k # i}

S,={G)eS|i<landl#}U{(y)eS|j<l}

Si; =1{(,9)}
Clearly, | B~ (v)NSol—| B~ (k)NSs! == | B*(k)NSp|—|B*(v)NSp| = 0. Since ¢; > b;, and
¢j > bj, we have |B-(¥)NS|—|B~(k)NS4| £ 0, and | BT (k)NS4|—|Bt(v)NS4| > 0.
Hence, ‘

|B=(v) N S| = [B7(k) N Sy4| < [BF (k)N Sy — |BF(v) N Sy

If k < ¢ then we have ¢y —¢; < 0 and by — b; > 0 if and only if by + b; < 0 and
¢ + ¢; > 0. Similarly for k < j with k # 4. Thus,

IB=) N S-| = |B~()) N S_| = |B*(x) N S_| - |B* () N S_|

Finally, since ¢; — ¢; = b; — bj, we have |B~(v) N S;;| = |B7(k) N S;;| = 0, and
|B*(k) N S;;| — |B~(v) N S;;] =1, which gives us the desired result.

If | B (k)| = 0 and there exists ¢ < j such that b; — b; < 0 then set v = o, _¢;(k +
A+ p)— (A+p). Again, let v+ A+ p =D 1, ckék, i.€.,, i = bj, ¢; = b;, and ¢ = by
for k # 4,7. Then, v = k+(c; — ¢;) (& — €;), and o(k) = K+ (¢; — ¢; + a; — a;) (& — €5).
Since 0 < ¢; — ¢j < ¢ — ¢; + a; — a;, we again have that v € Supp L(u).

Clearly, if |[B*(x)| = 0 then |B*(v)| = 0. We now show that

|B~(v)| < |B~(x)|

and hence that ¢(v) < ¢(k). Partition the set S = {(k,)) € ZxZ |1 <k <1< n}
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into the following sets:

So = {(k,1) € S| k,1 # i, 5}
Si- = {(k,i) € S | k < i}
Srs = {(i,)) € S |j <}
S ={G,0)€eS|i<l<j}

S+ ={U,DesS|j<i}
Sj-- ={(k,j) € S| k < i}
Si-={(k,j) € S|i<k<j}
Sig = {9}

Clearly, |B=(v)NSo| = |B~(k)NSo|. If k < 4, then ¢y —¢; < 0 if and only if by —b; < 0,

therefore

|B~(v) N Si-| =B~ (k) N 5|
Similarly,

|B~(v) N Sj—| = |B~ (%) N Si-|

|B~(v) N Sj+| = |B7(K) N Si++|
and

|[B~(v)N Si++] =|B7 (k) N Sj+|

Ifi < k < j, then since ¢; > b; and ¢; < bj, we have ¢;—c¢x > b;—by and cx—c; > bp—by,

hence
|B~(v) N Si+| < |B7 (k) N Si+|
and
|B~(v) N Sj-| < [B~(k) N Sj-]
Finally, since |B~(v) N S; ;| = 0, and |B~ (k) N S; ;| = 1, we have our result. O

Here, we note that all reflections in the hyperplanes perpendicular to the roots in
A* are in fact odd. i.e. sgn(os) = —1forall a € A*. This can be seen with following

calculations: If & = ¢;—¢; forsome ¢ < jthen oq = 04; 104, 5 - - - 00;1100;00441 - - - Oaj_300;-1-
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Thus, o,_; can be written as the product of 2(j — i + 2) + 1 simple reflections. If
a=¢+¢, with 1 <7< j < nthen 04 = 0¢;—¢,00,06-,0000¢;~¢n Since by the
are odd, o, is also odd. Finally, if

previous calculation we know o, _, and o,

—€n —€n

o= € + €, then 04 = 04,0¢,—¢,0an-

The following proposition shows that, in the character formula given in Lemma

8.2, we may neglect the weights v € II\(u). i.e. the initial sum may be taken over

Supp L(p) \ Ix(x).

Proposition 8.3. Let A\, u € H*, with L()\) admissible and L(p) finite dimensional.
Ifv e II\(p) then
Z sgn(o)ch M(o-(A+v))=0

oeW

Proof. Choose a € A* such that (A + v + p,a) = 0. Then

oa~(/\+1/)=aa()\+1/+p)—-p
(/\+z/+p,a)a_

=A+v+p—2
(o, @)

p

=4V
Therefore,

Z sgn(o)ch M(o - (A +v)) = Z sgn(c)ch M(ooq - (A + v))

ceW oeW

= Z sgn(o0y)ch M(00404 - (A +v))

oeW

=— Y sgn(o)ch M(o - (A +v))
UEW

a

Theorem 8.2. Let A\, u € H* such that L()\) is admissible, and L(u) is finite dimen-

sional. Then

LY®Lw~ P | D sonlo)mulo-(A+v) =) | LA +v)

vEAA(K) \oeW
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Proof. From Lemma 8.3 we have a one to one correspondence between

Supp L(u) \ () and all pairs (o,v) € W x Ay (p) with

o (A+v)— A€ Supp L(p) \ Mr(k)

Further, since

my,(v) Z sgn(o)chM(o - (A+v)) =0
aew
if v ¢ Supp L(w) \ I (1), we may rewrite the formula in Lemma 8.2 as

ch (L) ® L) = > Zm“ (A +v)—N)

veAx(B) oeW
X Z sgn(o’Yech M(a"-(A+o-(A+v) = ))
o'ew
= Y Tl 04
vEAN(1) oeW
X Z sgn(o’)ch M(d'c - (A + v))
o'eW
= T T sgno)mu(o - () - 3)
veAx (1) e
X Z sgn(o’)ch M(a’ - (A + v))
o'eW

= Z Z sgn(o)my(o - (A+v) — X)ch L(A + v)

vEA(H) geiV
By Corollary 8.1 we have that L()) ® L(p) = > ,ca,(u @ L() + v) for some

a, € Zxq. 1t therefore, only remains to show the linear independence of the characters
ch LA+ v) for v € Ax(u).
Suppose 3¢ 4, (u bvch L(A + v) = 0 for some b, € Z. Let

I'={v e A\(u) | b, # 0}

Assuming I # @, we may choose 1y € I' such that vo+Y .., c;a; ¢ T for any choice of
¢ € Z>o with not all ¢; = 0. Since a,,, # 0, and the term e*** occurs in ch L() + 1),
we must have that e*** occurs in ch L()\ + v) for some v € T, v # 15. Hence
At v=A+v -, ca; for some ¢; € Zxo. Therefore, ¢; = 0 for all ¢, and hence

v = vy, which is a contradiction. Therefore, I' = §}, which completes the proof. O
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8.4 Example

We give an example of the formula in Theorem 8.2, for the algebra C;. Let A =

1e1—1es. Then A+p = Ze1+1er, and hence A is admissible. Let p = wi+wy = 261 +-€,.

Supp L(1) = {2€1 + €2, 2¢; — €2, —2¢1 + €2, —2¢; — €2, € + 2¢,

€1 — 263, —€1 + 2€2, —€1 — 2¢€2, €1, €2, —€1, —€2}

where the weights in the 2¢; + €3 orbit have multiplicity equal to 1, and the weights
in the €, orbit have multiplicity equal to 2. We have

Ax(p) = {26 + €2, 2¢1 — €2, €1 + 2¢€2; €1 — 2€9, €1, €, —€1, —€2}

Oa(u) = {261 — €2, —€1 — 262}

The only remaining weights in Supp L(u) are
—2¢; +¢ and — €1 + 2€9
For these, applying Lemma 8.3, we see that
Og—ey - (A + —261 +€2) = A= —¢

and

Ogoer ' (A — €1 +26) — A =¢€

Due to the uniqueness in Lemma 8.3, each weight in Supp L(u) can appear as some

o - (A+v) — X in the formula

LY®L = > | sgno)mulo-(A+v) =X | LA +v)

vEA\ () \oeW

for at most one v € A)(u) and one ¢ € W. Further, the weights in II)(x) will not
equal o - (A + v) — X for any choice of 0 € W and v € A,(). The above formula is
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thus

m,(2e; + €2)L(A 4+ 2¢; + €3)
® m, (261 — &) L(A + 261 — €3)
® my(er + 2e2) L(A + €1 + 2¢€3)
® my(er — 2e) L(A + €1 — 2€3)
® my(e1) LA+ 1)
& (mmulez) — my(—€1 + 2€2)) L(A + €2)
& (mu(—€1) — mu(—26 + &2))L(A — &)
@ my(—e2) L(A — &)
Therefore

L()\) ® L(,u) jad L()\ + 261 -+ 62) <) L()\ + 261 — 62) &® L()\ + € + 262)
® L(\+ €1 — 2e2) ®2L(A + €1) & L(\ + €2)
®LO - &) ® 2L\ — )

9 Decomposition of V;(\) ® L(u)

Recall that & = {f,...,8,} where §; = >__, a; is a commuting set of roots, which
is a basis for @, and the elements z_g, act injectively on any simple admissible highest
weight Cp,-module L()). Let Uy denote the localization of the universal enveloping
algebra Y with respect to the multiplicative subset generated by {1,z_g,,...,2-g,}.
For any simple admissible C,-module V, the module V¥ is the induced module {5 ®y

V.

Definition 9.1. Let X € H* such that L()\) is admissible, and let

Y ={B,...,8:.} be as above. Let @ = (ai,...,a,) € C*. Define the module Vz(\)
to be the vector space L(A\)* under the action through the automorphism ®s, where
®; is as in Definition 6.5 i.e. If the action of Us on L(N)® is defined by the map
¢ : Us — gl(L(N)¥), then for all x € C,, and all v € V3()), we have

zv = ¢(®a(z))(v)
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Notice that setting v = Y., a;5; gives us Vz(\) = L(\)*[P], where  is the
coset v + ). We have simply changed the notation in the case where the module is
derived from a simple admissible highest weight C,-module, since in this case, the
set ¥ no longer depends on the module L()). Notice that if a = (as,...,a,) and
b= (by,...,b,) with a; — b; € Z, then by Proposition 6.10, we have V;(\) ~ V§()).

Further, notice that if V' is any simple torsion free module, then by Theorem 6.1,
we have that V' ~ V;()) for some A € H*, and some a € C".

Finally, notice that since both Vz(\) and L(\) are submodules of Ms(L(})), in
the case where V;()\) is simple, Lemma 6.6 implies that V;(A) has central character
Xxx. In particular, if V is a simple torsion free module, then

V = V() for some A € H* and @ € C™ where y, is the central character of V.

Lemma 9.1. Let A\, u € H* such that L(A\) is admissible and L(p) is finite dimen-
sional. Set m = (my,...,my) with each m; € Z. Then L(A) ® L(u) is equivalent to
a submodule of Vi (A) ® L(p). In particular, the Hg-module L(A\) ® L(p) is equivalent
to a sub-Ug-module of Vim(A) ® L(p).

Proof. Consider the case 7 = 0. We have V5()\) = Ug ®y L(A). Let M be the sub-C,,-
module 1®y L(A) < V3(A). Then M ~ L()), and hence M ® L(u) ~ L(A)® L(1), and
M® L(p) is a submodule of V5(A)® L(u). Proposition 6.10 implies that Vi (A) 2 V()

whenever m; € Z for all 7. The result follows. O

Lemma 9.2. Let A\, u € H* such that L(\) is admissible and L(p) is finite dimen-
sional. There exists a weight v € Supp V5(A\) ® L(i) such that dim(V5(X) ® L(u)), =
(deg L(A))(dim L(u)), and for all m = (ma,...,my) with each m; € Z<y, the weight
space (Vim(A) ® L()) 432 mis; 15 equivalent as a Uo-module to some weight space of
L(X\) ® L(p).

Proof. Let d =deg L()). Let 7, be a weight of L()) such that
dim L(A\)y, =d
Since the z_g, act injectively on L()), we have that
dim L(A)yo+ s, ks = @
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for any choice of ky, ..., k, € Z<o. Let Supp L(p) = {w,...,u}, where each
vi=p+ sz'jﬁi
=1

with the p;; € Z<o. For each 1 < i < n, set p; = min{pir,...,pu}- Set v =p+ vy +
Y il Let m = (my,...,m,) with each m; € Z<p. Set v1 = Yo+ 1y (i +m:) ;.
We claim that the v+, m;3; weight space of L()\) ® L(x) has dimension equal to
(deg L(X))(dim L(p)). Indeed, for each 1 < j < I, choose a basis B, for the v; weight
space of L(u). Also, for each 1 < j < I, choose a basis B.,; for the v — > 1| pi; 5;
weight space of L()\). Notice that since

n n
M- Zpijﬁi =%+ Z(mi + i — pij) Bi
i=1 i=1

and m; + p; — p;; < 0 for all 4, we have that the dimension of the v, — > ., pi; i

weight space of L()) is equal to d, for all j. We now have that a basis for the
Y+ Yo, mif = 1 + p weight space of L(A) ® L(y) is given by

{v;®w; | v; € By, w; €B,,, 1 <5<}

and hence the v + > ., m;3; weight space of L(A) ® L(u) has dimension equal to
(deg L(N\))(dim L(y)), which proves our claim. Since L(A) ® L(u) is equivalent to a
submodule of V() ® L(p), we have that

(LX) ® L)y, mis: S (Vo(A) © L)) ysmr, mas:

where the equivalence is as {l-modules. However, by Proposition 5.17, since deg V5(\)®

L(p) < (deg L(X))(dim L(p)), we must have, in fact,

(LX) ® L)y sy miss = (Vo(A) @ L{p))y+ 5, mas
where the equivalence is as $lp-modules. For any such choice of m, we also have
Vo(A) ® L(p) = V() @ L(p)

and hence
(L()‘) ® L(»u'))'y+z:?=1 mif = (Vﬁ@()‘) ® L(.“’))’HE?:l m; B

as Uy modules. il
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Recall that for A € H*, the vector space Vz(\) = V5(A) for all @ € C*. However,
the action of L on these vector spaces is different for each a. With this in mind, we

make the following observation:

Lemma 9.3. Let A\, u € H* such that L()\) is admissible and L(u) is finite dimen-
sional. Choose v € Supp (V5(A) ® L(r)) as in Lemma 9.2. There exists a set of
vectors B, which is a basis for the v+ 3 ., a;,; weight space of Vz(A) ® L(p), for
all a = (ay,...,a,) € C". Further, the action of o on B in Vz(\) ® L(u) yields

elements whose coefficients with respect to B are polynomials in variables a,, ..., an.
Proof. Let
Supp L(p) = {w1,...,u}
where each "
vVi=p— Zpij,@i

i=1
with the p;; € Zxo. For each 1 < j <[, choose a basis B, for the v; weight space
of L(y). Let {v1,...,v4} be a basis for the v — u weight space of V5()). Then since

the z_g, act injectively, and the dimensions of all weight spaces of V5(\) are equal,

we have for each 1 < j <,
{x:]éi" .. .x:zﬁ’;‘jvk |1 <k<d}

is a basis for the v — (u — >, pi; ;) weight space of V5()). Thus a basis for the
weight space of V5(A) ® L(u) is given by

‘B(,={:c:g‘l"...x:?2‘jvk®wj |1<k<dw;€B,,1<j<1}

The same set of vectors By is hence also a basis for the v+ 3., a;3; weight space
of Va()\) ® L(i), where @ = (ay,...,a,) € C". Denote this basis by B;, when in the
module Vz(A) ® L(u). Notice that for any v € B;, and any z € iy, we have

v = E fou(a,... an)u

u€B;

where the f,.(ai,...,a,) are polynomials in variables a,,...,axn. O
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Proposition 9.1. Let A\,u € H* such that L()\) is admissible, and L(p) is finite
dimensional. Let x1,...Xxx be the distinct central characters occurring in L(A) ® L(p).

Then for any element z € Z (M), we have

k

[ = xi(z)v=0

i=1

for allv € Vz(A\) ® L(u), and all a = (ay,...,a,) € C*.

Proof. Choose v € (Supp V5 ® L(u)) as in Lemma 9.2. Applying Lemma 9.3, for
each @ = (a1,...,a,) € C" let B; be a basis for the v+ Y .., a;f; weight space of
Va(A) ® L(p), such that B; = By as sets of vectors, for all a and b. Let z € Z(Y),

and set
k

2 = _H(z - xi(2))

For any v € B;, we have

20V = Z foular,...,az)u

u€B;
where the f,,(a1,...,a,) are polynomials in variables a1, ..., a,. Clearly zpv = 0 for
any v € L(A) ® L(n). Let m = (my,...,my), with each m; € Zo. Since B is a
basis for the v+ 3", m;0; weight space of Vi (A) ® L(p), due to Lemma 9.2, we have
2v = 0 for any v € B. Thus, by Lemma 6.5, the polynomials f,.(a;,...,a,) =0
for all ay,...,a, € C. Therefore, for all a, we have zpv = 0 for all v € B;. Next, let

a be arbitrary, and let v’ be any weight of V3()\) ® L(p). Set

v~y =) bibi
i=1

for some b; € C. Since the support of V;(\) ® L(u) is a single Q-coset, we must have

Zaiﬂi - szﬂi = Zazﬂi'l"’Y—’Y' €eQ
i=1 i=1

i=1

Therefore
Va(\) ® L() = Vi(3) ® L()
in particular, these modules are equivalent ${3-modules. Hence
(Va(A) ® L(w))y =~ (Vs(A) ® L(w))y
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as $lg-modules. Since Bj is a basis for the v+ Y ;- b;6; = v weight space of V3(\) ®
L(p), we have that zgv = 0 for all v € (V5(A) ® L(u))y, and hence for all v €
(Va(A) ® L(p)). Thus for all @ and all v € Supp Vz(X) ® L(p), we have zov = 0 for
all v € (Vz()\) ® L(p)), which completes the proof. O

Lemma 9.4. Let x4, ..., xx be distinct non-zero central characters. Then there ezists

z € Z(Y) such that x;(z) # x;(2) for all i # j.

Proof. We apply induction on k. If k = 1, the result is trivial. Choose z, such that
xi(20) # xj(z0) for all 1 < ¢ # j < k—1. For each 7 < k, let x; € kerx; \ ker xx.
Set z = [[,, zi- Then z € kery; \ ker xx for all ¢ < k. For each n € Zy, set
2, = zo+nx. Then for all n € Zxg, and all ¢ < k, we have x;(2,) = x:(20). Therefore
for all n € Z>q we have x;(2,) # x;(2n) for all 1 < i # j < k — 1. Further, since
xk(z) # 0, we have xx(zn) # xx(zm) for all n # m € Zq. Since

{Xk(2n) | n € Zo}
is an infinite set, and
{xi(zn) |1 <i<kand n€Zy} ={xi(z)|1<i<k}
is a finite set, we can choose m € Zxq such that
Xk(zm) € {xi(2) | 1 <i < k and n € Zx}
which gives the desired result. O

Proposition 9.2. Let \,u € H* such that L()\) is admissible, and L(u) is fi-
nite dimensional. Set L(A) ® L(u) = Y&, M;L()\;), as in Theorem 8.2. Let a =
(a1,...,a,) €C", and for each 1 < i < k, set

= {v € Vz(A) @ L(1) | 2v = x»,(2)v for all z € Z(U)}

Then each V? is a submodule of Vz(\) ® L(p), and

Vi) ® L(k) = EBV"

Further, for each i, we have deg V;* = M;deg L();).
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Proof. For any z € i, v € V2, and z € Z(il), we have zzv = z2v = x),(2)zv, and
hence V;? is a sub-i-module of Vz(\) ® L(y). By Proposition 5.20, since the x), are
distinct non-zero central characters, we have that V, ..., V& are linearly independent.
Choose z € Z(4) such that x,(20) # x»;(20) for any i # j. For each 1 <r <k, let
f+(z) be the polynomial

(@) = [[(= = x:(0))
iFET
Since the x,(20) are distinct, we have that the polynomials

{fr(@) | 1< <k}

are relatively prime. Choose polynomials g,(z), ..., gk(z) such that

1= Z fi(x)gi(z)

For each 1 < r < k, set z. = f-(20), and let U* = {zv | v € Va(\) ® L()} be the
image of z on V3(\) ® L{u). Then for any v € V3(A) ® L(u), we have

k
v = Zzigi(zo)v eV +---+ U
i=1

Notice that
Ut = {v € Va(X) ® L(1)} | 20v = xx.(20)v}
Indeed, if 2,v € U2 then

(20 — X (#0))2rv = H(Zo — X (20))v =0

i=1
Conversely, if v € Vz(A) ® L(u) with zgv = x»,(20)v, then

v
IT.2 O (20) = xnu(20))

and hence v € U?. Therefore the U? are the eigenspaces for the action of 2z, on

2r v

Va(A) ® L(p). Further, Z(4) is a family of commuting, diagonalizable endomorphisms

on V3(A) ® L(u), and is hence simultaneously diagonalizable. Therefore, since the
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X»; take distinct values at z;, we must have that the z, eigenspace determines the

simultaneous eigenspaces for all z € Z(), hence U = V2 for all 1 < ¢ < k. Thus,

k
Ui+ + U =PV?
and hence
Va(A\) ® L(p) = @V“

Next, choose v € Supp V5(A) ® L(u) according to Lemma 9.2. Applying Lemma 9.3,
choose a set of vectors By that is a basis for the v weight space of V5()\) ® L(u),
with the same set of vectors, denoted 9B;, being a basis for the v+ )7 | a;5; weight
space of Vz(A) ® L(u). Again, we have that the action of Hy on B; yields elements
whose coefficients with respect to the basis 98; are polynomials in variables ay, ..., a,.
For each 1 < r < k, let [2.]s, denote the matrix representation of z, acting on the
v+ i a0 weight space of V;3(A) ® L(p) with respect to the basis Bz. Thus,
the entries in [z,;]p, are polynomials in variables ai,...,a,. This implies that the
determinant of [z,]ms,, and the determinants of any sub-matrices of [z,]p, are all
polynomials in variables ay,...,a,. For any m = (my,...,m,) with my,...,m, €
Z<p, Lemma 9.2 implies that the v + >, m;f; weight space of Vin(A) ® L(u) is
equivalent as a Up-module to a weight space of L(A) ® L(u). Therefore the rank of
the matrix [z,]m,, is at most M,deg L(A,). This implies that for any ¢ > M,deg L(\,),
the determinant of any g x ¢ sub-matrix of [z]sm,, is zero. Let ¢ > M,deg L(),), and
let Az be any ¢ x g sub-matrix of [z.]s,. Then det A; is a polynomial in variables
ai,...,an, and whenever ay,...,a, € Z<y, we have det A; = 0. Thus, by Lemma
6.5, we have det A; = O for all @ € C". Therefore the rank of [z,]s, is at most
M,deg L()\.). However, since V2 is the image of the action of z,, the rank of [z,]s, is

equal to the dimension of the v+ >, a;f; weight space of V2. Therefore
dim(Vr&)'HE?:l aip < Mydeg L();)

for all @. Further, if 4/ is any other weight of V;(\) ® L(u) then
n
vy =7+ Z bi5;
i=1
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for some b; € C with a; — b; € Z. Therefore the v/ weight space of V/? is equivalent to
the v' weight space of Vf’. Thus

dim(vra)’y’ = dim(v;g)’HZ?:l b < M, deg L()‘r)

Since v was arbitrary, we have that deg V,* < M,deg L()\,). Since r was arbitrary,
the above holds for all 1 < r < k. Notice that since B; is a basis for (V;(A) ®

L(p))y+5r, ai8;» We must have

dim(Va(3) ® L))y s, s = (deg LON))(dim L(1)

Therefore,
(deg L(X))(dim L{p)) < (deg Va(A) ® L(p))
k
=) degV?
=1

k
< Z M;deg L()\;)

= deg (L(A) ® L(u))
< (deg L(A))(dim L(p))

Thus equality holds, and hence deg V2 = M;deg L(\;) for all 1 <¢ < k. a

Lemma 9.5. Let V be a simple torsion free C,-module, with central character x.
If A € H* such that L(\) is admissible, and x = x», then V = Vz()\) for any
a={(ai,...,an) € C" such that \+ 3 ., a;5; € Supp V.

Proof. By Theorem 6.1, we have that V' ~ Vj(v) for some v € H* with L(y) admis-
sible, and some b = (by,...,b,) € C*. Further, we have x, = x». By Lemma 7.1,
if v # X then L(\) and L(7) are the only simple admissible highest weight modules
with central character x, and A\ + Q # v+ Q. Let M be the semisimple coherent
family containing V, with degree equal to the degree of V. By Proposition 6.13, M
contains simple admissible highest weight modules with central character x, having

highest weights in both the v + @ coset, and the A + @) coset. Since there is exactly
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one such choice in each coset, we must have L(A\) < M and L(y) < M. Therefore,
by Lemma 6.6,
M = Mg(L(N)) = Mys(L(7))

and hence

Vim= @ M= P M=V

vev+IL, biBitQ VEMIL aiBitQ

for any @ = (ay,...,a,) € C such that A+ > 5, a;3; + Q = Supp V. |

Proposition 9.3. (Britten-Khomenko-Lemire-Mazorchuk) Let V be a torsion free
Cn-module with finite dimensional weight spaces. Then V s completely reducible,

hence semisimple.
Proof. (See Theorem 1 in {2]) a

Theorem 9.1. Let V;()\) be a simple torsion free C,-module, and L(p) be a simple
finite dimensional highest weight C,-module. Then

Vi) ® Lw) ~ €D <Z sgn(o)my(o - (A +v) - )\)) Va(A+v)

veAr(p) \oeW

and each V(A + v) is a simple torsion free C,-module.

Proof. For each v € Ay(u), set
= {v € Va(\) ® L(p) | 2v = xp4u(2)v for all z € Z(H)}

by Proposition 9.2, we have that

ViheLw~ @ v

vEA (1)

Further, for each v € A,(n) we have

degV? = Z sgn(o)my(o - (A+v) — A) | deg L(A 4+ v)
oeW
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Let v € Ax(u). By Proposition 5.16, V;(\) ® L(u) is torsion free, and hence V2 is

torsion free. Due to Proposition 9.3, V2 is therefore semisimple. Thus,

for some simple torsion free modules U;. Since V2 has central character xa4., and

support equal to
Atu+Y afi+Q=A+v+) afi+Q
i=1 i=1
we have, by Lemma, 9.5, that every U; is equivalent to V(A + v). Therefore

Ve~ kVai(A+v)

Further,
Z sgn(o)my(o - (A +v) —A) | deg LA+ v) = deg V¢
oeW
= kdeg Va(A +v)
= kdeg L(A +v)
and hence
Ve | Y sgn(o)mu(o - (A+v) = X) | Va(A+v)
oew
which completes the proof. O
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