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MULTIVARIATE MOMENTS

AND COCHRAN THEOREDMIS

BY

TONGHUI (TONY) WANG
Abstract

This thesis 1s divided into two related parts:

(I) Moments. For z multivariate elliptically contoured random matrix ¥ ~
MECnxp( #t, Zy, ¢), formulae for finding the higher order moments of both ¥
and its quadratic forms are obtained in terms of u, ¥y and ¢, where Ly is
not required to have the form A @ . These results are so general that they
are uew even for the normal setting. Specific worked out examples on moments are
given for both normal and certain non-normal settings such as multivariate uniform
distributions, symmetric multivariate Pearson Type VII distributions, generalized
Wishart distributions, multivariate components of variance models and MANQVA

models.

The proofs involve linear operators in inner product spaces, Kronecker products,

multilincar differential forms and adjoint operators of the linear functions.

(II) Cochran Theorems. For a family of quadratic forms, { Q:(Y)}i,,of ¥

=1
with Qi(Y)=Y'W; Y +BY +Y'C;+ D;, W; symmetricand ¥ ~ Npxp( g, Sy ),

necessary and sufficient conditions are obtained under which

{Qi(Y)} is an independent family of Wishart Wp(m;, T, A; ) random matrices.
*)
(i)
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Such a result is referred to as a Cochran theorem. The Cochran theorems just men-
tioned are general in that the covariance matrix Ty need not take the form 45T
and need not be positive definite. Some of these results are extended further to the
case where either (1) W,{m;, T, A ) in (*) isreplaced by DWW, (myi.ma,, .00 A2,
the distribution of the difference of two independent Wishart random matrices Qs,
and Q2 with Qi ~ Wp(myi, E,A1:) aad Qai ~ Wp(ma,, S0\, ) or (i) Y s

multivariate elliptically contoured distributed.

The proofs involve linear operators in inner product spaces, Moore-Penrose in-
verses, projections, inclusion maps, spectra, invariant measures and conditional

expectations.

()
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CHAPTER ONE

INTRODUCTION

This thesis deals with multuvariate moments and Cochran theorems: all results
and applications arc of a theoretical nature. In this thesis, all inner product spaces
will be finite dimensional and over the real field . Those who prefer the matrix
approach may read inner product spaces as Euclidenan spaces and treat linear op-
crators as matrices. Also In this thesis, we shall use £, 17 to denote certain -,
p-dimensional inner product spaces over R, use £{V. E) to denote the linear space
of all lincar maps of V into E, use A, «, to denote the set of all 1 x p matrices over
R, usec R™ to denote M, xi, usc Sg {Ng) to denote the set of all self-adjoint. (non-
negative definite) T € £(E, E), and use S, (V,,) to denote the set. of all symmetric

(nonncgative definite) T € M, xn-
1.1. Motivation and goals

Until 1990, standard textbooks on multivariate analysis mainly concentrated on
multivariate normal distributions, see, e.g., Muirhead (1981), Eaton {1983) and An-
derson (1984). This was due not only to the fact that the multivariate observations
are, often, approximately normally distributed because of the central limit theorem
effect, but also to the fact that multivariate normal distributions and the corre-
sponding sampling distributions are mathematically tractable and “nice” results
can be obtained. In reality, samples obtained by rescarchers are not always from
normal populations. So paying attention to samples from nonnormal populations is
very important in multivariate analysis. In the past two decades, numerous papers
and several books have been focused on a class of nonnormal distributions, called the

elliptically contoured distributions. Many properties of the clliptically contoured
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distribations are stmdlar to those of the mnitivariate normal distributions. This
class of distributions contains both mltivariate normal distributions and certain
nonnorinal distributions. such as multivariare r-distributions, multivariate Canchy
distributions, multivariate Laplace distributions and multivariate nniform distribu-
tions, see, e, Fang and Anderson (1990), Fung. Kotz and Ng (1990) and Fang
and Zhang (1990). The distributions discussed in this thesis are also referred to
as nunltivariate elliptieally contoured distributinns [ or vector-clliptically contoured
distributions, as in Fang and Zhang (1990)], and they form a subclass of the above
“elliptically contonred distributions™.

Another major assumption in the standard multivariate analysis is that the
covarianee, Sy . of a normal random matrix Y, is cither of the form 4 o £
with positive defimite 4 and T, or of the form Z§=1 4; € &; with nonsingu-
lar 0., 4; ® T;. sce, c.g.. Anderson (1984, 1987), Rao and Kleffe (1988) and
Mathew (1989). To mect the requirements both in theory and in practice, the
above restrictions on Ty will ve relaxed in this thesis.

As shown by its title, our goals in this thesis are:

Part I: to generalize the existing results on moments from normal settings to
multivariate elliptically contoured settings without any restriction on Sy, and

Part II: to cxtend the existing Cochran theorems for normal as well as for
multivariate clliptically contoured scttings.

Before further describing Part T and Part I in Scction 1.3 and Section 1.4, we

shall first introduce multivariate clliptically contoured distribtutions in Section 1.2.
1.2. Multivariate elliptically contoured distributions

As a natural extension of multivariate normal distributions, we shall define mul-

tivariate elliptically contourced (MEC) distributions:

"~
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Definition 1.2.1. Ler £. V' be. respeciively. n-. p-dimensionad inner product
spacesover R, pu € L{V.E) and ¢ be a function of [0, oc ) iute the complex Held C.
Then a random operator Y in L{V E) is safd to be multivarite ellipticallv contonred
distributed { written as ¥ ~ MECncpl gt Ey. 0) [ if the characteristic fanetion

(c.f), ¥,of ¥ is given by
Y(T)=c"T®5(u), u={T. Sy(T). T Ll E). (1.2.1)

where p isthemeanof Y, ¢Sy = Cov(Y ) € L(L(V, E), L(V, E)) ix the covari-
ancc of Y, ¢ is a constant to be given Theorem 2.2.3. and { . ) is the trace uner

product defined by (B, C) = tr(B'C) = (C'B).

A special casc of the above definition was given by Anderson and Fang (1982a),
where Ey is of the form A © £, or Ty = diag( 5, L., .-, 5, ). Note that in
(1.2.1),1f

S(u) =2, w20, (1.2.2)

then ¥ ~ Npxp(p, Ey), the multivariate normal distribution with mear o aned
covariance Ty . When p=1 and Ey = 4, MEC, (i1, Sy, 6) is referred to as
the univariate elliptically contoured distribution with parameter (g, 4.0 ) and s

given by written as EC,(p, A, ¢). For this case, the cf., g,of y =¥ is
j(t) = e #g(t'At), t, p€E. (1.2.3)

Another special case of MEC, x,( 1, Ly, ¢), called the multivariate comnponents
of variance model, was discussed by Anderson et 2l. (1986), Anderson (1987), Rao
and Kleffe (1985) and Mathew (1989), where = XB, Sy = 3._| 4, &, and
o(u) = e~¥/2

Basic properties of MEC, «p( 2. Sy, ¢ will be discussed in Section 6.2, see,

e.g., Schoenberg (1938), Kelker (1970), Kariya and Eaton (1977), Dawid (1978),

3
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Chinielswski (1980), Muirhead (1980), Jensen and Good (1981), Cambanis, Huang,
and Simons (1981), Anderson and Fang (1982a), Fang and Zhang (1990), Fang,

Kotz, and Ng (1990), and numecrous references in Farg and Anderson (1990).
1.3 Moments

Calculations of moments are very important in statistical inference and have
received considerable attention in the past twenty years. But most papers on this
topic have been restricted to normally distributed random variables, sec, c.g., Scarle
(1971), Drygas (1984, 1985), Jinadasa {1986), Kleffc (1978), Magnus and Neudecker
(1979), Neudecker (1985) and Ncudecker and Wansbeek (1983, 1987). Von Rosen
(1988) adopted an approach based on differentiating the moment generating func-
tion of a normally distributed random matrix by the aid of matrix derivatives. He
obtained closcd expressions for the first four order momentsof ¥ ~ Nyxp( g, AQT)
and gave a recursive formula for the mth order moment, E{@™Y ), of ¥ for the
case where ¢ = 0.

Fory € EC,.{( 51, A4, ¢), formulac for cvaluating first four order moments of y can
be found in Fang and Xu (1986) and Anderson and Fang (1990). Li (1987} obtained
a formula for finding the first four order moments of y and gave expressions for
E(0"(y®y')) and E(Q"(y®¥' )®y).

Bascd on the matrix differential methods presented in Wong (1985, 1986), Wong
and Wang (1991) obtained a formula for evaluating E(@™Y )for Y ~ MEC,x,( 4, A®
¥, ¢). Even for the normal setting, this formula generalizes the corresponding re-
sults of Jinadasa (19S6), Neudecker and Wansbeck (1983, 1987) and von Rosen
(1988).

The first and sccond order moments of quadratic forms of ¥ € Npxp( 2, AQX)

were discussed by Neudecker (1983, 1990), Jinadasa (1986}, Browne and Neudecker

4
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(1988) and von Rosen (1988). For y ~ EC,( . A, ¢). Li (1937) obrained a formula
for Cov(y'Ciy, ¥'Cay) with symmetric C; and Ca: he also gave expressions for
higher order moments of its quadratic forms. Wong and Wang (1991) obtained a
formula for Cov (¥Y'WY') for the case where Y ~ MEC, xp(p. AR . 6) and W
is symmetric.

In Part I, we shall obtain formulae, Theorem 2.3.4 and Theorem 3.2.1, for eval-
uating higher order moments of both ¥ ~ A EC, (52, £y, ¢) and its quadratic
forms where Sy need not be of the form A®T. We shall give some specific workeed
out examples on moments for both normal and certain non-normal scttings such
as multivariate components of variance models, multivariate uniformn distributions,
generalized Wishart distributions and symmetric multivariate Pearson Type VII
distributions. For the case where Ty is not of the form 4 ® X . examples will also
be given in Part I. These results gencralize the corresponding results of Li (1987),

von Rosen (198S) and Wong and Wang (1991).
1.4 Cochran theorems

It is well known that Cochran thcorems play an important role in regression
analysis, analysis of variance, covariance analysis, MINQUE thecory, cte. A brief
review will be given as follows.

Suppose that y ~ N,(0, I,). Let 7 € {1,2,...,£} and W; be a symmetric mna-
trix of rank m; such that me W; = I,,. Cochran (1934) proved that {y'W,;y}!_,
is an independent family of x2,. random varizbles with m; degrees of freedom if

and onuy if
> mi=n. (1.4.1)

This result is referred to as Cochran’s theorem. Note that (1.4.1) is cquivalent to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the following eondition: for any distinet 7, 7 € {1,2,--- ,(}.
W, = W72, W, W; = 0. (1.4.2)

For y ~ N,.(p, . ), Craig (1943) proved that y'Wiy and y'Way are independent
if and only if WyW, = 0. Ogasawra and Takchashi (1951) extended Cochran’s
theorem to inchide the case where y ~ Nyu( g, &y ) with Ty = 4. They proved
that “ ¥’W,y and y'Way arcindependent x3 () and X3.(A2) random variables
if and only if (a) AW;AW; 4 = AW A, r(AW;A) =ri, 1 =1, 2, (b) AW AWLA =
0, (c) AW 1 AWop = AW, AW u =0, and (d) p'WiAWopn =0, where W) and
W. are symmetric and 4 is n.n.d. Since then, various versions of Cochran'’s theorem
were obtained by Rao (1962, 1973), Khatri (1963, 1968, 1977), Good (1963, 1969),
Chipman and Rao (1964), Hogg and Craig (1958), Rayner and Livingstone (1963),
Shanbhag (1966, 1969), Styan (1970), Nagase and Banerjee (1976), Tan (1977),
Wong (1982), Sik and DcGunst (1983), and many others mentioned in Anderson
and Styan (1982). All of these authors dealt with the situation where cach W; is
symmetric and/or £y may be singular.

Khatri (1962, 1963) extcnded Cochran’s theorem from the univariate case to
the multivariate case. His papers (1977, 1980, 1982) dealt with the case where

Ey = A® . He obtained a necessary and sufficient condition under which

{Q:(Y) }., is an independent family of W,(m;, £, ;) random operators Q;(Y),

(1.4.3)
where Qi(Y) =Y'W;Y + BYY +Y'Ci + D;, W; € Sa, Bi, C: € M,x, and D; €
Mpxp, and Wp(m, &, X) denotes the distribution of Z'Z with Z ~ Npyp( 2, Im @
£) and A = p'u. [ In the sequel, Wp{m, L, X) is referred to as a Wishart
distribution and W,(m,Z,0) is denoted by W,(m,L).] Later DeGunst (1987)

obtained a Cochran theorem, which, however, was essentially included in the above

G
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result of Khatri (1980). On the other hand, Pavur (1937) obtained a Cochran
theorem that no longer requires that Ty has the form A Q X, He proved, in his
Theorem 1, that “ {¥'W; Y}{_, is an independent family of 1,{ #(117), ¥) random
matrices Y'W;Y ” if and only if for any distinct ¢, 7 € {1.2.--- . (],
(Wi L)Sy(W;)=11:8% (L-4d)
and
(Wi 0 L)Ey(W; 80 1,) =0, (1.1.5)
where ¥ ~ Naxp(0, Sy ), T is positive definite, W, € N, and r(1}}) denotes
the rank of W;. This result was extended by Wong, Masaro and Wang {1991) to
the case where ¥ may be singular, cach W; is sclf-adjoint, Im Sy = $,00S, and
51, S2 are, respectively, nontrivial lincar subspaces of E, V', see Theorem 1.6.3.
For the general case where no condition whatever is imposed on (s, £y ), Wong,

Masaro and Wang (1991) also gave a nccessary and sufficient condition in terms of

self-adjoint operators under which

{Y'W; Y}, is an independent family of W,(m;, T, A;) random operators Y11, ¥,

(1.4.6)
where ecach W; € Sg. Although this Cochran theorein, Corollary 4.4.8, is very
general, verification of its conditions is not always casy. To remedy this, Wouy
and Wang (1992) obtained a Cochran theorem for the case where all W's are
nonnegative definite. This result, Corollary 5.3.5, is also an extension of Pavur’s
result mentioned above. The above two Cochran theorems of Wong ¢t al. {1991)
and Wong and Wang (1992) are further generalized in this thesis, sce Theorem 4.4.7

and Theorem 5.3.4.

Let DWp(m1,m2,E, A1, A2 ) denote the distribution of @) —Q2, where @ and

Q2 are independent W,(m;,Z, A1) and Wy(m2, L, Az ) random operators. With

7
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Q.Y ) and W,(m,, S,A;) in (1.4.3) being repiaced by Qi(Y) = Y'Y + BlY +
Y'B, + D; and DW,(my, e, T, A, Az ), Tan (1975, 1976) obtained & necessary and
sufficient condition under which (1.4.3) holds. Also with W,(m;, Z,A;) mn (1.4.6)
being replaced by DW,(mny;, mai, I, Ari, Az ), Wong (1992) obtained a necessary
and sufficient condition under which (1.4.6) holds. This result is further general-
ized in this thesis, sece Theorem 4.5.6. To relate this result to standard Cochran
theorems, we note that when A2 = 0 and ma = 0, DW,(my, ma, &, Ay, A2 ) is
nothing but the Wishart distribution W,(m,, I, A ).

All Cochran thcorems mentioned above are for the normal setting. Cochran
theorems for univariate elliptically contoured distributions can be found in Kelker
(1970), Anderson and Fang (19822, 1952b), Fang and Wu (1984), and Fan (1986).

For the multivariate case where X ~ MEC,«,(0, I, @ £, ¢) with positive
definitc £ and Pr(X = 0) = 0, Anderson and Fang (1982a) obtained a ncces-
sary and sufficient condition under which (X'W1 X, --- | X'W¢ X ) is a generalized

Wishart distributed random matrix with parameter {(my,--- ,m¢ megr; 55 6),

where meq; > 1 and 2:; m; = n. In Wang and Wong (1991), this result was
extended to Theorem 6.3.3, where Y ~ MECoxp(p, Sy, ¢), Pr(Y =) < 1,

Y e Ny, and W; € Ng (1=1,--- ,f).
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PART I

MOMENTS
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CHAPTER TWO

MOMENTS OF AN MULTIVARIATE ELLIPTICALLY

CONTOURED RANDOM OPERATOR

2.1 Introduction

In this chapter, we shall obtain a formnla for evaluating the mth order moment,
E("Y), of Y ~ MEC,xp(1t,Zy,¢) in terms of s, Ty and ¢. This formula 1s

reneral in that £y need not be of the form A @ .
8

In Section 2.2, we shall first introduce the notions of Kronecker products and
commutation operators and cite their basic properties. Then by using the differen-
tial method presented in Wong (1985, 1986), we shall obtain formulac for finding the
first four order moments of ¥ in detail. Even for the normal setting, these formulae
generalize the corresponding results of Magnus and Neudecker (1979), Neudecker

and Wansbeck (1983, 1987), Jinadasa (1986) and von Rosen (1988).

In Scction 2.3, with the ideas and results given in Section 2.2, we shall “conjee-
ture” a formula for cvaluating E(®™Y') in terms of p, Zy and ¢ and prove it by
induction. Special cascs of this formula were given in Wonyg and Wang (1991) with

Ly = AO T and von Roscn (1988) with ¥ ~ N; (0, 4 @ ).

In Scction 2.4, we shall rewrite our general formula for evaluating the mth order
moment of ¥ with small m in conventional forms. We then give some specific
worked out examples on moments for normal and certain non-normal scttings, such
as multivariate uniform distributions and symmetric multivariate Pearson Type VII

distributions.
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2.2 First four order moments

For this section and other sections of this thesis, we need the following notions
of outer products, Kronecker products and commutation operators,

For any z € E and y € V, the outer product, 20y, of r and y is defined as the
clement in £(V, E') such that

(ZB)=) = (v, )= for all = € 1| (2.2.1)

where (, } is the inner product on V. If z € R" and y € R*. then with the usual
bases for R" and R?, 20y = zy' € M, xp. For any lincar subspaces §) and Sy of £
and V, §5;00S, will denote the lincar span of {z0y: z € §). v € Sa}.

For any A € L(E,, Ez) and B € L(1,, V2), the Kronecker product, A & B, of A
and B is defined as the element in £(L(Vy, Ey), L(Vz, E2)) such that

(A®@B)C)=ACB' forall C e L(Vi,E\), (2.2.2

where E), E,, Vi and V; are all finite dimensional inner product spices over R,
The space L{L(V4, E1), L(Va, E,)) will be written as L{Ey, E2) @ L(V;, Vo). If A4 =
(ais) € Mnxp, and B = (bre) € M, xs, then with the usual bases for M, ., and
Mrxs, AQ® B = (ai;B) = (@ijbie)((i k), (j.0))» Where the (2,£)’s and (7,) s can be

ordered in any fixed way or not at all.
The commutation operator, K, ., on £(V, E) is defined by
Kon(T)=T', T e L(V,E). (2.2.3)

With the usual bases for E = R" and V = R?, K, € Mupsn, is called the

commutation matrix of order (np,np) and given by
KpnveeT = vee(T'), T € Mnx,,
where vecT is the columnized vector of T'.

10
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For easy citation, we list the following propertics of Kronecker products and
commutation matrices in Henderson and Searle (19815, Magnus and Neudecker

(1979), and Neudecker and Wansbeek (1983 ):

Lemma 2.2.1. (a) For any A € Mpixn, B € Mpuxq,
(i) Kp (ADB)N,q =B A,
(it) vec(A © B) = (I, @ Kgm @ I,)(vecA @ veeB),
(b) K}, = Knp, KpuKap = L.
(c}) Rprym = (I @ Ko )(Kpm © I).
(d) For any A, B € Muxp. tf{Knn(A' @ B)) = tr{A'B) = (vecd) vecB.

(c) For any A € M, x, B € Mpxq and C € Myx,, vece(ABC) = (A @ C') vecB.

Lemma 2.2.2. For any 4, B € L(E,E),
(1) (K2, @ In)vec(A @ B) = vee( K, (4" © B))
and

(ii) (Kpnr ® In}(vecA © vec B) = vec(Kp n(A @ B)).

Proof. We shall merely prove (i). (ii) can be proved similarly. Let {e¢;}7., be the

orthonormal basis of E. Then 4 and B can be written as
4= Z aipe ey, B= Z beere ey (2.2.4)
id=1 =1
Thus by Lemma 2.2.1,
(Kn2,n O Lvee(A QO B) = (KWp20 @ In)(In @ Rnon @ In)(vecd @ vecB)

= Z Z Qiirbee (K p2 0 © In)YIn @ K on @ I;)(vee(eleir ) ® vec(elee )
fit=14,00=1

(2.2.5)

11
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and
vee(Knn(A'©B)) = (KN © Ii2)vee(A' @ B)
= (Kn,n ® In2)(In © Knn @ In){({veed") @ veeB) (2.2.6)
= }: i @iivbee (K, 2 © In{{(Kan © Iz (vee{e;Oeir) @ vee(eBee .

ii'=1¢,0=1
Note that vec(e;le) = e; © e¢. So by (2.2.5) and (2.2.6), it suthices to show that
(I{n:",n e In)(In ] I{n.n ® In)(ci Qer Ve ® C.")

= (I\-n,n2 ® Iu)(I\’n,n @ I"’-’)(Ci W Cir Qe D pr )-

Since ) i
(I\'n?,n ® In)(In © I\n,n ® In)(ci Qeir Qe ® C(')
= (I\-n"',n e Iﬂ)(ci Qece@cir Sep)
=eQ¢rQc¢; Qepn
and

(I‘:n,n2 ® In)(I{n,n ® I,,z)(c.' B Qe ® el')
= (I{n,rﬂ b2 In)(ci' Qe;Qee® (.’(') =ct Qe e, Oep,

the desired result follows, [

Now let {ee}7_; and {f;}}_; be respcctively the orthonormal bases of E and
V. Then {e/f;}, {eer}, {£il3fs}, and {(eler) @ (f;0f;)} arc orthonormal
bases of L(V, E), L(E, E), L(V, V), and L(E, E) @ L(V, V) respectively. Thus Sy
in L(E,E) ® L(V,V) can be written as

n p
Ty= Y Y owpleDer) o (£01), (2:

L,=1;3'=1

I
(L]
.
=1
~—

where o i = (edf;, Sy (eeOfy)) = ovejj.

Theorem 2.2.3. Suppose that Y ~ MECp (g, Zy,¢) and the first four order

moments of Y exist. Then

12
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(i) E(Y)=p,

(h) E(Y &Y) =t 0—28(0)F,  Cov(Y)=—=26"(0)Sy,

(c) E(&Y)=*u =200V On+p0V+(In8 Kan)(V e ), 2 N,
and

(d) E(¢'Y) = ' —248(0)2 + 46" (0)42,

where
113

r
V= Z areji(ce @ ee)(f; @ f,' Y (2.2.8)

Lo=1j4=1
Or=VRuopu+popV+poVonu

+ (In @ I\-n,n ® Iu)(f/ QrOp+pdu &) 17)(11 @ I‘:jy_p O Ip) (2.2.9)

+ (K 2 @ L) @po V)i, ,015),

[y = 1% o 1% + (Iu © I‘:n.n © In)(V @ I7)(1’;: @ I\-p,p © Ip)
o (2.2.10)
(s @ L)V @ VYK, © ),

and orejjp. er, ee, f;, and fp are given in (2.2.7).

Proof. To Y(T) in (1.2.1), we shall apply the differential methods presented in
Wong (1985, 1986). Let dT) € L{V, E). Then by differentiating Y(T) with respect

to T, we obtain
E (c"” -Y)i(dTl.Y)) = Y(T)ildTy, p) + 2" T (u)(dTy, Zy(T)).  (2.2.11)
By letting T = 0 in (2.2.11),
iE((dT),Y)) = i([dTy, E(Y)) = i(dTh, p).

Thus by varying dTy € L(V, E), (a) follows. By treating dT) as a constant operator,
we shall differentiate (2.2.11) with respect to T. Let dT» € L(V, E). Then
E (“TVR(dT, Y) (dT:, y')) = V(T)2(dTy, 1) (dTs, ) + 265 TM &' (x)

x {i [(dTy, p) {dTs, Sy (T)) + (dT2, 1) {dTy, Sy (TY] + (dT1, Sy (dT2))}

+ 4T 6 () (dTy, Sy (T) (4T, Sy (T)).

13
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Letting T = 0 in {2.2.12), we obtain

PE((dTy, Y)Y (dT2, Y)) = i3{dTy, p) {dTe, 1) + 26" (O)dTy . Sy (dT)).  (2.2.13)

By the basic formulae tr(4 ® B) = tr(A)r(B), (4 @ BY(C & D) = (ACY & (BD).

and Lemma 2.2.1, we obtain

(dTy, p){dT, p) = (dTi @ dTo, p © p) = {vec g(vec u), vee dTi(vec dTs)'), (2.2.14)

and

(dTy, Ty (dT2)) = (V,dTy ® dT2) = (Sy, vee dT (vec dTnY), (2.2.15)

where V is given in (2.2.8). By (2.2.14) and (2.2.15), (2.2.13) becomes

(E(Y @Y),dT: @ dTz) = (1 ® 1 — 28'(0)V, dTy @ dTs)

and

(E(vecY(vec YY), vecdTi(vec dT>)') = (vec u(vec u) —2¢'(0) Sy, vec dT (vec dT))').

So (b) follows from varying dT} and dT3 in L(V, E).

Similarly, differentiating (2.2.12) with respect to T and letting dTy € L(V, E),
we obtain
) 3
E(eTV# [[(dTe,Y)) = Eo + Ex + £z + Es. (2.2.16)
=1
14
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1
wlieree

Ey =Y(T) fI(;z, dTe),
=
Ey =2ic! T ¢ (u) {3 [(dTy, 40) (dT2. p) {dTs, Sy (T))
+{dTy . 1) (dTs, p2) (dT2, Ty (T)) + (dT2, ) (dT3, 1) (dT3, Sy (T))]
+ (dTy, 1) (dTs, Sy (dT3)) + (dTe, ) (dTy, Sy (dT3))
+{dTs, 1) (T, Sy (dT2))},
Ey =48" ()T {i [(dTy 1) (dT2, Sy (T)) (T3, Sy (T) )
+ (T2, ) (AT, Sy (T (4T3, Ev(T)) + (dTs, ) (dT3, Sy (T)) (T2, Sy (T)))]
+ {dTy. Sy {dT2)) {(dT3, Sv(T)) + {dTh, Sy (dT2)) (dTo, Sy (T))

+ (dT%, Sy (dT3)) (dTh, Sy (T)) } ,

and

3
Ej = 8¢"(u)e' T T](dTe, Sy (T)).
=1

Letting T = 0 in (2.2.16), we obtain, upon simplifying,

BEY QY OY),dT 8dT: ©dTs) = (P ® p O p, dT) ® dT> ® dT3)
+ 1" (0O @V, dT) @ dT2 @ dTs + dT: @ dTy © dTx + dTe ® dTy ® dT3)
={pQpuonpn, élth)
+2%8'0) [ @V + TV @ i+ (In © Knn)(V @ 1), @ Ky )] - léldz})
and hence (c) follows from varying d7, dI% and d73 in L(V, E).

Differentiating (2.2.16) with respect to T again and letting d7; € L(V, E),

E (Ci(T.Y) i H (dT[, }-))

=1

= d(Eo +Ei+E.+ Eg) (dTg) . (2217)

=0 T=0

where
4

4
dEO(dIi)]T=0 = i“ H(thv p) = i’i (®4y! [@lth)’ 2‘2'18)

=1

15
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dEi(dTs)|T=0 = 226" (0){(dTy. p)[{dT2. 1) {eiT5. Sy (T3
+{(dTs, 1) (dT2. Sy (dT2)) + (dTy. p) (d T, Sy (dTa)))
+ (4T, ) (T3, ) (dT0. Sy (dT)) + (T o {d Ty o) (AT Sy (dT3))
+ {(dTs, g) {(dT, 1) (dT3, Sy (dT2))).

dEx(dTy) =0 = 46" (0) {dTy, Sy (dT2)) (dTs, Sy (dT3))

+ (dTy, Sy (dT:)) (dTe, Sy (dT2)) + (dTv, Sy (dT2)) (T Sy (T2

and
dE3(dTy)|r=0 = 0.
By Lemma 2.2.1, {2.2.14) and (2.2.15), we obtain
dE; (dT3)| 7m0 = — 26'(0) [(p ouev, {;i;lcm +dT, © dTy © dT: @ dT,
+dTy @dTy QdT> @ dT; + dTn @ d13 @ dT O dT; X
+ dT> @ dTy © dT\ @ dT3 + dT3 © dTy © dT © dTs)] -

4
={-2¢'(0)4,, [@l dT¢)
and

dEa(dT)rao =48"(ONV © V, zéxdTl +dT) @ dTs @ dTs © dT,
+dT, © dT, @ dT> @ dT) (2.2.20)

=(46"(0)s, [éélm),

where A and A, are givenin (2.2.9) and (2.2.10) respectively. Substituting (2.2.18)

4
(BO'Y), @ dT;) = (@"1 = 26'(0)41 +4¢"(0)oa, & dT)),
I= =
which yields (d) through varying dT; € L(V, E), 7 = 1,2,3,4. O

Note that if Y ~ Nnyxp(p, A @ T), then ¢'(0) = =1/2 and ¢"(0) = 1/4; so (d) of
Theorem 2.2.3 yields the corresponding results in Neudecker and Wansheck (1983,

1987) and von Rosen (1988).

16
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Corollary 2.2.4. (Li (1987)) Supposc that y ~ ECn{p, A,0). Then
(i) E{yy'}= pp' —2¢'(0}A  and
(ii) E(yy' @ yy') = pup' @ pp' — 26'(0)A] + 46"(0)A3,

whiere

and

AL = (T2 + Kuu)(A® A) + vec Avec A). 2.2.22

Proof. Since
yQy=vec(yy'), ye€E,

by applying vec™! to Theorem 2.2.3(b), we obtain (i). Note that

vee(yy' @ yy') = (Ia ® Kan © In){vec(yy') ® vec(yy'))

= (In QKun @ In)(y QyRy® y).
By Theorem 2.2.3(d),
E(yy' @yy') =vee  {{(In®Knn @ L)E(y @y Quy @ y)}

= vee ™ {(Tn @ Knn @ 1)[@" 1 — 28'(0)A1 +4¢"(0)A:]},

where Ay and As are given in (2.2.9) and (2.2.10} respectively. By Lemma 2.2.1

and 2.2.2, we obtain
(InOKnun®L ) vec AQuQu+p®@u@vecA) =vec(AQuu' +pp' @ A), (2.2.25)
veeAQu@u+u@p®vecd = vee[vee Alvec (up')) + vec (up'Yvec 4)'], (2.2.26)
and

(In OKun QL) (K, 2 QL) (vecAQu@u+p @ u® vec d)

= (K20 © LY{In © Kup @ In)[vec A @ vec(up') + vec (up') @ vec 4]

= (Kwrn @ L)vec(A@pe' +p'04)
vee [Kan(4 ® pp’ + pp' © 4)].

17
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vee NI O Kun O LM} = AQ upt’ + pp’ © A
+ vec A(vee (zp')) + vec (pu')(vee A) + Kon(A @ g + pp’ & ) (2.2.29)
= AJ.

Similarly we can obtain that

vee H{(In @ Knn © I)A2} = Al (2.2.30)

2.3 Higher order moments

In the last section, we obtained the first four order moments of ¥, Now we shall

use a similar approach to obtain formulae for evaluating the higher order moments

of Y.
Let T,dTy,- -+ ,dTm € L(V, E). Note that dY'(T)(dTy) is the value of the differ-
ential d¥(T) at dTy. For ¥ in (1.2.1), we define, inductively,

d™Y(TN(dT5)7y) = dwm—-1(T)dTw), (2,3.1)

where

Wma(T) = 7 YV(T)(dT})7' )y m 22, (2.3.2)

treating (cZTj)'J:":"l1 as a constant. For brevity, the higher order moments are assumed
to exist whenever they are used. Thus d™Y(T) is a multilincar function on the

18
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Cartesian product {(L(V,E}"™ = LV, E) x L(V,E) x -+ x L(V, E) of m copics of
L(V,E). Since Y(T) = E(*T"Y?), by (2.3.1) and (2.3.2), we obtain

=0 (2.3.3)

j=1

A"V (T)(dT;)I ) r=0 = E (c"‘”)z"" H(dT,-,}"))
= (i"E(@™Y), Ezlde),
J:

where @Y =Y QY ®---@Y for m times. Thus the finding of E(@™Y") is reduced
to finding the multilincar differential form d’“}:'(T)((de);-":] ). Let Sy, be the set of

all permutations of ¢ on {1,2,--+ ,m} (¢ is 2 one-to-one function of {1,2,--- ,m}

onto itself). Let €€ {1,2,---} with 20 > m > € and

Sme={0€Sn:io(l)<e(2) < - -<o(m—-~_),0(k) <o(m-—=Fk+1),

(2.3.4)
for k<m=-¢ om—-E+1)<o(m-C0+2)<---<o(l)}.
Note that Sp ¢ has m!/(2™~¢(m — £)!(2¢ — m)}) clements.
Theorem 2.3.1. Supposc that Y ~ MEC,x,(0,Zy, ). Then
d"F(T)(ATj)Fer) = Y 2690w
0 0ESm,¢
. o ‘ (2.3.9)
x [[(V,dToy ® dTo(mos+1y)  JI (V:dToy @ T),
k=1 k=m—L41

where V is given in (2.2.8).

Proaf. By (1.2.1), Y(T) = ¢(u), v = (T, Zy(T)). Since
du(dTy) = 2(dTy, Ty (T))

and
d?'u(dTl,dTg) = 2{dTh, Sy (dT2)),

19
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we obtain from (2.2.13),
du(dTy) = 2AV.dTy & T)

and

d&* u(dTy,dTr) = (17, dTy © dT>). (2.3.6)
Note that {from (2.3.6),

d"u((dT})i=,) =0 for r>2. (2.3.7)
By using (2.3.6) and (2.3.7),

dY(TYdT}) = ¢'(w)du(dTy) = 2¢'(u}{V,dT) © T,

EY(T)(dT1,dT) = 226" (w) [[(V,dT; © T) + 28'(u)(V', T @2 dT2).

=1

EY(TY((dT;)5=,) = 226" (u) Z (V,dT o1y © dTy) (V' dTzy & T)
e(1)<a(2)

+2°6@ ) [[(V,4T; 0 7),

J=t
and
EVT(ATYiy) = 26" () S (V,dT) ® dToi) (V, dTogsy @ dT3)
e(1)<e(2)
€Sy

4
+2%6%) D (V,dT,0) @ dTye) [[(V.dT 0 T)

o(1)<a(2) j=3
O‘ES;\

4
+2'¢W(w) [[(7.dT; @ T)

j=1

2
=22¢"(w) Y []{V.dToy @ dTo(mors))

0c€S5¢,2 k=)

3
+2260u) 3 (V,dT00) @ dToiay) [[(V, dToiy 2 T)
o€Ss.a k=2

4
+ 20 W) [[(V, dT0;y @ T).

j=t

20
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Therefore (2.3.5) is true for m = 1,2,3,4. In fact, these special cases were used to
conjecture (2.3.5). We shall now prove (2.3.5) by induction. Supposc that (2.3.5)

holds. Then by (2.3.1) and (2.3.2),

A" Y(TY(dT;) ) = Z (Bt + Do), (2.3.3)
03
where
m—{ -
Deyy = 2f+l¢(!+l)(u) Z H (V,dT k) @ dTg(mn—t+1))
ﬂesm_¢ k=1
l -
X H (VidTouy @ T) (V,dTim21 © T),
k=m—=L41
and
m={ _
Be=2900) Y J](V.dTew) ® dTo(morsn)
"esm,t k=1

[4
Z H (V’dTﬂ'(k) ®T) (VadTa(t) ® dTm41).

t=m—l+] p—p e (1
ke
It suffices to show that (2.3.8) is (2.3.5) with m being replaced by m + 1. Note that
if m=2s, then A,in(238)is0and {=s+1>(m+1)/2; f m =2s+1, then

€ =s+1=(m+1)/2. Thus reordering (2.3.8) in terms of ¢{9, we have

" Y (TYAT)EE) = 27 ¢ 0wy > [V, o) @ T) (V. dTns1 @ T)
o€Sm,m k=1

m

Z ¢ Ou){A] + A3},

_.._'
=
<

(2.3.9)
where
m—{+1 _ -1 . .
ar=s > I (V.dTw®dTamarsn) [ (V.dTon®T) (V,dTms1@T)
O€ESm -1 k=1 k=m=t+42
21
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and

m—{
A's = H (1-/" ch(k) Q dTo(m—k-{'-l))
CESm, ¢ k=1
[4 4
x Y T (V.dTop T (V.dTmir QdT().
t=m=L+1 p=me 1
k£t
Since
m 1
Yo [V dTew @T) (V,dTwn 0Ty = > [V dTa 7).
CESm,m k=1 FESm g1, m41 k=1

it suffices to show, from (2,3.9), that for (m +1)/2 < { < m,

m<+1=¢ I4
Z H (Va ch(k) ® dTo(m-i-l—k-!-l)) H (F.sdTo(k) oy T) = AI + ‘/-\:
C€ESm41,E k=1 k=m41={+1

(2.3.10)
The remaining argument given below is adopted from Wong and Liu (1992):
For A}, define ¢* on {1,2,--- ,m,m + 1} such that
@) o (k) =0o(k), o*(m—-k+1)=0c(m—-k+1)fork<m-{¢,
(i) e*(s)=o(s) form—£€+2<s<€¢-1, and
(i) o*()=m+1.
Then

c® € Sm.|.1_(. ('_)..3.11)

Similarly for A3, define &; on {1,2,--- ,m,m + 1} such that

(iv) 7¢(s) is the sth smallest element in {o(1)},--- ,a(m — &),0(t)}, s = 1,2,---,
m—4m—-£+1,

(v)forsin (iv), Ge(m+1—s+1)=oc(m—-k+1) if 5,(s) = (k) and k # ¢, and
G(m+1l-~s+1)=m+1if5/(s)=0(t), and

(v1) G¢(s) is the sth smallest element in {o(m —€+1},0(m —€+2), ---, a{&) }\
{e(®)}, s=m—£+3,---,L
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Then

5’, € 5m+1‘f. (2-3-12)

From (2.3.11) and (2.3.12), we know that any term in A7 and A3 is a term of the left
hand side of (2.3.10). Thus it suffices to show that the numbers of the terms in both
sides of (2.3.10) are equal. Note that dT,(y in A3 can be dTp(m—e41), "+ AT 00
and the munber of clements, | S ¢ |, of Snue 1s mI/(2™~4m — O)}{22 = m)!). So the

sum of the munber of terms of A} and AJ is

1Sm.e=1] + (€= (m = £))|Sm,el

m! op m!
— e -

_ (m +1)! - |5 |
TAaF = {(m + 1 - O — (m+ 1)) b

Thercfore (2.3.10) holds. By induction, we conclude that (2.3.5) holds for any

integer m. O

Corollary 2.3.2. Supposc that Y ~ MECynxp(0,Zy,¢). Then
E@*'Y)=0, s=1,2,---, (2.3.13)

and

(EQ>Y), & dTj) = (-2)*6)(0) > H(V,dTo(k) ® dTg(24mk+1))

=1
’ 0€S5a,,, k=1

=(-2)%60) ) (®’f",§l(dTa(k)®dfa(2s—k+1)))-
UGS'.':.D -
(2.3.14)

Let wf, , be the lincar function on £(V, E) x -+ - x L(V, E) (2s timces) determined
by

wl, a( @ dT;) Z ® (dTo(L) ® dT(25—k+1)) (2.3.13)

UGS:, »
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and let (wg, ,)° be its adjoint operator of wd, ,. Then for Y ~ MEC, (0. %y o).

we obtain from (2.3.14)
E(®*Y) = (=26 (0)(w?, ) (& T). (2.3.16)

For example, if we let s = 2, then Si2 = {6 € §; : o(1) < 6(2). o(1) < o).

c(2) < ¢(3)} = {(1,2,3,4),(1,3,4,2), (1,2,4,3)}. Thus (2.3.14) beeomnes
4 - -
{(E(®'Y), .®1de) = 43" (ONV Q V,dTy © dTs Q dT: @ dT}
J:
4
+ _®1(H}‘ +dT) @ dT: © dT» © dT3),
J=

which , by varying d71,--- ,dTy in £L(V, E), is Theorem 2.2.1 (d) with 0 = 0.
Now for Y ~ MECuxp(s2, Ly, d) with p # 0, let

Dnx={0€Smn:0(l)< - <o(k),o(k+1)< - < a(m)}. (2.3.17)
Then the number of elements, |Dm k], of Dm & is given by
| Dm x| = m!/(k{(m — k).

Theorem 2.3.3. Suppose that Y ~ MEC,x,(u, Xy, $). Then

Y(TNET)R) =Y, Y, 8u)(([dTwa)izy) [I i{dToi), -
k=00€Dnm 4 I1=k+1

Theorem 2.3.3 can be proved by using an argument similar to the proof of The-
orem 2.3.1.

Let S; ,, be the set of all permutations o, on {o(7),7 = 1,---2s} with
o{0(1)) < -+ < gu(0(s)), o.(o(k)) <ou(c(2s-k+1)) for E<s. (2.3.18)

Then by (2.3.3), (2.3.18), Theorem 2.3.1 and Theorem 2.3.3, we obtain

24
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Theorem 2.3.4. Suppose that Y ~ MEC, «,(u,Zy.¢). Then

%]
& | dT;) Zo"’(O) >

(E(o"‘(y)

c€im 20
Z (@"17, é (dT <(a(k)) G dT _(6(2,_k+1)))) H (}l, dTo(}))
0.‘:5, Ze k=1 j:'_’s-}-]
3 _
=2 (27670 Y (@ V)e(@™ T p),
*=0 GGD.-. 2e

x @ (@To. (o4 @ o (ot2r—ks1)) OB dTo());

Ta es; 20

where V is given in (2.2.8) and [2] denotes the integral part of 3.
As in Wong and Wang (1991), let s,€ € {0,1,---}, ¢ € Sa,4¢, waseo be
linear function on £L(V, E) x --- x L(V, E} (2s + ¢ times) determined by

the

[4
wre (AT = D @ (T oty ® AT (o2a-i+10) @ (D dTo(i));
0. €S; 5, =2
(2.3.19)
and
wo,t,0( é dTy(jy) = ép dT;, where dT; € L(V,E), j=1,---,{ (23.20)
j=l j:l
Then by Theorem 2.3.4,
[m/2] ) .
E@™Y)= Y (=2)'¢(0)2m2((8°V) ® (8™ 1)), (2.3.21)
s=0
where
(2.3.22

Qm.'.’s = Z (W2a.m—2s.a)‘

0€Dm 2,

and (wae m—2s,0)" is the adjoint operator of way m—2s,0-
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Thie formula for mth order moment of ¥ in (2.3.21) is more general than the
results given in von Rosen (1988) and Wong and Wang (1991) in that ¥y need not

have the form A ® &, where A € Vg and © € AY-.

Corollary 2.3.5. For the multivariatc components of variance modcel Y ~ MEC,,
(4, 521 4; © 5, 0) with 4; € Np and 5 € Mo j = Lo+, k. if the mth order
moments of Y exist, then E(@™Y) is given by (2.3.21) with V" = 3::-':1 veed (veeX;) .
Corollary 2.3.6. In Theorem 234, let p = 1 and Sy = 4 € N, ity =
Yaxi ~ MECnx1(p,A,6) = ECn(n, 4, ), the univariate clliptically contoured

distribution. Then for L € {1,2,---},

L
E@"vec(yy")) = Y (—2)"6"(0) { Q2L 24(® vec ) © (@ vee(pp'))} (2.3.23)

s=0
and

E[(®"vec(yy')) @ y)

L (2.3.24)
= Z(—2)’¢"’(0) {Q2141,2,((@°vec A) @ (@ "vec () ® 1) } -

a=0

Proof. Note that y @ y = vec(yy'), vy € R". From (2.3.21)
E(®"vec(vy')) = E(@*"y)

L
= Z(_2)3¢(s)(0)92[4,25((@3\’@644) @ (@" *vec(jp')))

=0
and

E[(@Fvec(yy")) ® y] = B(®@*F*y)

L
=) (-2)"6(0)22141,24((@"vec A) @ (" "vee (') @ 1),

=0

proving (2.3.23) and (2.3.24). O
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2.4 Examples

For small m, we shall first show how to rewrite our general formula (2.3.21) for

evaliating E(@™Y) in the conventional forms as we did in Theorem 2.2.1.
Example 2.4.1. Let m=3 and m=4in (2.3.21). Then

E(®Y) = Qup(@%p) - 26'(0)2%.2(V @ )

= @3;1 - 2{5'(0)[? Qu+nrd v + (In ® I\.’n,n)(v S P‘)(Ip ® I{p.p)]

(2.4.1)
and
E(@'Y) = (@' 1) — 28" (0)2(V @ p @ 1) + 46" (0)(V @ V) (.42)
242
= @' —2¢'(0)Q; +4¢"(0)Aa,
where V, & and Qs are given in (2.2.8), (2.2.9) and (2.2.10) respectively.
Proof. We shall merely prove (2.4.1) and
Q2 VOu®u) =24 (2.4.3)
By (2.3.22) and (2.3.20),
Q3,0(@%1) =g 31,23 (®°K) = @ (2.4.4)
Also by (2.3.17),
D;3.={0c€ S;:0(1) <e(2),0(3)} = {(1,2,3),(1,3,2),(2,3,1)}.
Thus we obtain from (2.3.22),
2= E Whie =W2,10,29 T WG T2, (2.4.5)
o€Ds,2
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By (2.3.18),

5('1.2,3).2 = {(1,2)}, 5(.1.3.:).'.' = {(1.3)} Staa ne = 12.3)}
Let T1,7>,T3 € L(V, E). Then obviously,
“’;,1.(1,2.3)(17 Ou)=Vyou (2.1.6)

Since
- 3 - 3
(w2 10.32)(V ® u), jngj) ={(Vou, wz,x.(x,s,z)(jgl’fj))
= (ff ® My Tl ® T3 @ T'.‘) = (17’ ® #, (In ® I\.n.u)(Tl ® T'.Z o :r:l)([p o I\'p,p)

- 3
= {(In @ Kn,n)(V @ ulIp @ K; ), J.§>1Tj),

by varying T1,T2, T3 € L(V, E), we obtain

Wiy 32V @) =T ® Kan)(V @ u)1, © K,.). (2.4.7)
Similarly, since
{wz,1,(2,3,)(V ® 1)y jélTj) =(Vouw, .(2,3.1)(jé11}))
=(Veu,OToT) = (Vau KnuTi @ T2 © 1)K, +)
= (Enma(V @ )Eyep, OT5) = (1OV, OT),
wayzanVOu) =poV. (2.4.8)
Therefore (2.4.1) follows from (2.4.4), (2.4.6), (2.4.7) and (2.4.8).
For (2.4.3), we obtain from (2.3.17),
Dy 2 ={(1,2,3,4),(1,3,2,4),(1,4,2,3),(2,3,1,4),(2,4,1,3),(3,4,1,2)} . (2.4.9)

So by (2.3.22),
t
Q2 =wy2,(1,2,3,4) T “’5,2,(1 3,24) T ‘-"':,2,(1,4,2,3)
(2.4.10)

4 ) t t
+w2,.2,(2,3,1,4) TW2.2,(2,4,1,7) F W22 (3,4,1,2)
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1y (2.3.18),
Stizame = {1215 500 = {13} S 4202 = {14}

Stzapape = {(2,3)}, Staan3)2 = {(2,9)}.5Gaam2 = {(3.4)}.

Let Ty, 12, T3, Ty € L(V, E). Then
wra12any(VOuOU)=VOuOL (2.4.11)

Since

(wia 320V ©rO R, jéﬁ]Tj)
=(Vorou “‘:.2.(1,3.2.4)(1_5373‘))
=(VorophohoheT)
=(VOnr®u (In® Knn ® L) &1 1), © Kypp Q 1))
= ((In @ Knn © L) (V@ 1 ® )T, ® Kpp @ L), J_c'_:glrj)
= (1 © Kan @ LNV © 4 0 600, € Kyp @ ), §T))

by varying the T;'s in £(V, E), we obtain
wia 132V OO u) =T ® Knn ® LYVOp®u)l, @K, L) (24.12)
Since

(wé.:.(l.-t.z.s)(f" Quru) jélTj)
={Voundp. wz.z.(l.-t.z.s)(jélj}))
=(Veorouy, hioT1 0T 0T:)
=(VOu®u Kn:nx(To 9 T @ Th ® Ti)Kp2 52)
= (VOuS iy Knznx(Knz 0 © In ) (@21 Ti)(Kp,p2 © Ip) K2 p2)
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g

- - Py e - - - 1r 1 4]
= ([I\n:‘n:(f\n:‘n & I,,)] (1‘ Spd i‘)[(l\p.r: N [,,\,l]\,,:_},:j . -i‘-:lj \

- - . - - “
= ((I\,,‘n: QLA (VOpd ;:.)I\;,:J,z(f\p:‘,, NNP SN J_C:\\lr,}

- by - 4
= {(Kpn QL)pQpC V)X, , 8 1), ‘@.lT_,«).
J:

‘-‘"é_g'(l'.('g':;)(vr Qu® ,Ll-) = (I\-n.n? Y In)(/‘ Qud f’.)(]\-p:,p \\ Ip')< (2-4-13)
Similarly,
Whaaany(VOuOp =poV op, (2.4.14)

(i-'v'; n (2’4‘1_3)(17 ® 124 @ P-) = (Irl © I\.nn ® In)(/‘ ® & ‘_.)(I: @ 1\-,,;. ol ],.). (2“1\-’)

and
wiaan)(VOROE) =p0poV, (2.4.16)
By (2.4.10) and (2.4.11) - (2.4.16), we obtain (2.4.3). O

Example 2.4.2. The symmetric multivariate Pearson Tvpe VII distribution,

MPVIL(u,4A,8), is ECa(p, A, ) with

oT (N —234)
730 (N - 2)

oc
(v") = / cos(rm¥zu)(1 + xz)_‘\"*'l;—ld:::, (2.4.17)
0

where N > 2 and m > 0. See Fang, Kotz and Ng (1990). Supposc that N > % + L

and y ~ MPVII,(u,A4,6). Then E(®@%vec(yy')) is given by (2.3.23) with

69(0) = (—m)* 2 LN = £ ~s)/T(N = Z), s=0,1,---, L. (24.18)

Proof. By differentiating both sides of (2.4.17) 2L times with respect to u, we
obtain for s =1,--- , L,

&2 4(u?)

du?.s

= 2°60)(0)[Sz,,,| = 2°6((0)(2s + 1)/F(s + 1) (2.4.19)

u=0
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::.H(f

FRT I-—" ! vy om=t
d="(u=) =2 N )/ (—mn)" 2271 + )-.\+-._.—([_.£

'qus n=0 w ‘\ - Ll

P(N-tl) T(s+HT(N-
- %) I‘('V st

(

= (~m)"

v'-’|3

N
_(=m)'T(s+3

)T
P(3)T(N =~

Thus (2.4.18) follows from (2.4.19) and (2.4.20). O

Note that the multivariate t-distribution, Mt.(m,u, A), is a special casc of
MPVIIL, (i, A, ¢) with N = (m+n)/2. So we can use Corollary 2.3.6, (2.3.23) and

(2.3.24) to obtain higher order moments of Mtn(m, i, 4). In particular,

Cov(y) = %A for m > 2

and

E(yy' @uyy') = pi' © pupt’ + A‘ (= 27";’1(;” ) AL form >4,

Example 2.4.3. Let U be an random operator such that vecU = u(™P)_ a uniform
random vcctor over the np-dimensional unit sphere in R"*?. Then

(i) E(U)Y=0, EUQ®URU)=0,

(ii) EU ©U) = V/np,

and
(HEUUUU)
1 Ve X - - —
" np(np+2) VOV -+ @K@ L)V VXL © Kpp @ 1)

+ (Kpnz @ L)YV @ VY{K,2, ® I)],
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where V = vecl n(vee ).
Proof. (i) follows from (2.3.13). Let Z ~ N(0.7, & ). Then by Theorem 2.2.1,
we have E(Z Q@ Z) = V and
EZ0Z0Z0Z)=VOV+{T QRNu S L)V V)L, & Ky L)
+ (K2 @ LYV @ VYN, 0 1),
Recall that the stochastic representation of Z is Z £ RU, where B ~ 3 e veel 4

u("? and R is indcpendent of U. So
EUQU)=E(ZQ® Z)/E(R*) = V/(up)

and

EUQURUQU)=E(ZQZQ®ZO 2Z)/E(R")

1

= np(np -+ 2) [V ® V + (In ® I{nn ® In)(v ® V)(I]’ ® ]\—pp ® I,n)

+ (Knm2 ) (VO VYEK,2, ©L)],
proving (i) and (}i). O
Note that for large m, we may, as we did in Example 2.4.1, rewrite E(4™Y)
in (2.3.21) by using the notion of commutation operators. But, as it will be shown

below, the latter is less general and more complicated and also involves a lot of zero

entries.

Example 2.4.4. Suppose that Y ~ MEC,«, (0,Zy,¢). Let n = 6. Then by
(2.3.16),

E(@°Y) = ~84)(0)(w3 ,)"(@°V).
By (2.3.4),
Se3 = {0 € Ss:0(1) < o(2) < a(3), (1) < o(6), 0(2) < 7(5), a(3) < 5(4)},
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whicl has 61/(2%3') = 15 clements. Thus for any T; € L(V, E), 7 =1,--- .0,
_ 6 - 6
(wi0)' (@), & Ti) = (@V,w3,( 0 T)- (2.4.21)
J: 3
By (2.3.15) and (2.4.21),
u):’"( ‘;.3 T)=Nh 2Tz oL +T:@Th@Ts+T 0T, © Ts)
=1
+TOGOLOMoeLR+TRTidTi+ T @T: @ T}
+NNLATRBoleli+ 00T+ T @1 T
+NQTLATRLGOoLeh+ThidhoT + T @30T

+ NGO hGonheh+ihl +T 0T @ Ty

Thus by (2.3.16), we obtain, upon simplifying,

E(@°Y) = —8¢0) [@°V + (Jn2 © Knon © I )@ V(s ® Kpp @ L))

+ (I3 @ K2 W@ V)3 @ Kpp2) + (In © Kiyn ® I )(@* V(I ® K p ® I1s)
+(In @ Knn @ Knn ® YO V) ® Kp p © Kp,p ® 1)

+(In © Knn @ K2 0 )@ VNI, © Ky p ® K p2)

+(In © Kp2a © L)V, © Kp p2 @ I2)

+(Ta O Kp2in @ L2)(Ins © Koo @ L)(®*V)(Ips @ Kpp ® L)L ® K 2 © I2)
+ (Tn © Kz © Iis )Tz © Kn2, (@2 V)Ipa @ Ky p2 (I @ Ky 2 @ I2)

+(In Q@ K3 n ® L) (@VNI, @ K, p2 © 1)

+(In ® Koo @ In)Ins @ Knn © L)@ V)(Lps ® Ky p @ L)1 @ K ps @ 1)
+(In © Ky © In)(Ins ® K20 )(@° V(e ® Ky p2)(Ip ® K p2 ® 1)

+(In @ Kps o XS V), @ K o)

+ (In © Kyt ,n)(Ins © Ko @ In)(@°V)(Tps ® Kip,p ® Ip)(Ip ® Kp )

+ (In ® Kt n)(Ins © Koz o (& VYT, K p2)(Ip ® K p4)-
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Note that the above expression for writing E(&%Y ) in terms of 10 ' 0 17 and

commutation mairices is by no means unique.
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CHAPTER THREE

MOMENTS OF QUADRATIC FORMS

3.1 Introduction

In Chapter 2, we obtained formulac for evaluating the higher order moments of
Y ~ MECnx,(p, Ty, ¢) without assuming that Zy has the form A® Z. In this
chapter, these results will be used to obtain expressions for higher order moments
of quadratic forms . For comparison, the sccond order moment of these quadratic
forms and the covariance of the sccond degree polynomial of Y are written in conven-
tional forms. Even for the normal setting, these results generalize the corresponding
results of Browne and Neudecker (1988), Jinadasa (1986), Neudecker (1985, 1990),
Necudecker and Wansbeek (1987), and von Rosen (1988). For illustration, our re-
sults arc applied to multivariate components of variance models, ANOVA models
and generalized Wishart distributions. These models and distributions were inves-
tigated by Pavur (1987), Mathew (1989), Wong, Masaro and Wang (1991), Wong
and Wang (1992) and others.

3.2 Moments of quadratic forms

Theorem 3.2.1. Suppose that Y ~ MECnxp(t, Ly, ¢). Let Wy, Wh,--- W, €
L(E,E). Then
L
E(§ (Y'W;Y))
L . . (3.2.1)
= Z(—?)"t,:':("’)(())Vec_1 { [sz.,‘.’s((®"f/) ® (@2(1;_8)#))] Vec(j@le)}

s=0

and when p =0,
L Y L
E(Q,(Y'W;Y)) = (=2)46(0)vec™ {[(ng,,)‘(®"V)] vec(jglwg-)} , (3:2.2)
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where V, Qap 2, and ng‘a are given in (2.2.3), (2.3.21) and (2.3.16) respectively

1

and vec™" Is the inverse mapping of vec.

L
Proof. Since @I(}.ﬂ&rjy’)=(®L}‘-)s(.§ WYY,
= =1

e [E (-é’l(y""v"y))] = E[((®"YY ® (941))] vee( & W)
= 1 =t (3.2.3)
= [B(&*FY)] vee( _@I W)
P

By (2.3.21), {3.2.3) becomes

wee [B(§ rwi)|

= ZL:(‘2)’¢(3)(0) {Q2L,'.’s ((®°V) ® (Xg(l‘_")p)) }l vcc(}ét W5).

=0
Thus by apriying vec™! to both sides of (3.2.4), we obtain (3.2.1). Similarly, (3.2.2
can be obtained from (3.2.3) and (2.3.16). O

Corollary 3.2.2. In Theorem 3.2.1,let p=1,y =Y and Sy = A. Then

L
E(JJ'w;v)

j=1

L
= 3(=2)°¢)(0) {QoL,2,((®° vecd) @ (@ vec(un')))} vl é W;)

=0

and when u =0,

L
E[H(y'ij)] = (-2)%41(0) {(ng,,)‘(®chcA)}' vcc(}é1 W;)

=1
Proof. Note that
L
B[ W»)] = El(@"4)'( 8, W;)

j=1 (3.2.5)
= E(@* y) vee( ‘él w;)
J=

The desired results follow from (2.3.23) and (3.2.5). O
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Corollary 3.2.3. In Theorem 3.2.1, et L = 2 and consider the multivariate com-
pounents of variance model Y where Ly = Zf:x A;@5;, 4 € Ngand T € Ny
Then

(i) E[(Y'WY) @ (Y'WeY)] = p'Wip @ ' Wap = 26'(0)Vy + 46"(0) V2,

where

k
V1= 3 {4 W1)(S; © ' Wep) + tr{ A W2)(W Wip © )

i=1

2
+ vecS (vec(W Wi A;Wap))' + vec(w' Wi A4 Wip)(vecSyy  C20)

+ Ky p(Z; @ (' W1 A;Wap) + (' Wad; W) ® I5)}

and
k
Vo = E {tr(A; W) AW )vecS j(vecSe)' + to{ 4; W1 AWa)Kp o(Z; © S¢)
=1
+tr{4; W tr(AW2)(Z; @ Ze)}
(3.2.7)
(i) Cor(Y'WLY,Y'WaY) = 4¢"(0)V3 + 4[6"(0) — (4'(0))*]V4 — 26'(0) Vs,
where
k
Vi= Y {tr{4; WA W3)(E; @ T¢) + tr(A; W1 A W2)EK, (8 ® =)}
5.(=1
k
Vi= Z tr{A; W )tr( A Wa)vecE ;(vecZ,)',
=1
and

ke
Vs =Y {S; @ (u'WiA;Wap) + (1 W14;Wap) ® T;
j=1

+ Kppl(f WiV W) @ S5 + 5 @ (1 Wad; Wia)]} -

Proof. By Theorem 3.2.1,

E¥Y'WiY @Y'WoY) =vec  {E(Y @Y @Y @ Y)'vec(W; @ Wa)}.  (3.2.8)
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By Theorem 2.2.3 and Corollory 2.3.5.
[E(@'Y )] vec(Wh @ W) = [@'u - 26'(0)A + 4c’:"(0)&2]' vee(TH & 1),

where A; and A, are given in (2.2.9) and (2.2.10) respectively. By Lemma 2.2.1,
we obtain
(@) vec(Wr ® Wa) = vee(p' Wip © p'TWap), (3.2.9)
(Vor®u+p®u® V) ve(W, @ Wa)

= vec [V'(W1 @ Wa)(u ® ) + (1 ® ) (W1 © Wa)V]

. (3.2.10)
= vec {Z [vecZ;(vee(p' Wi A;Wapn)) + vec(u'Wh .-‘l,-l'lféy)(\'ccﬁ,-)']} .
Jj=1
and
(Ip ® Kp,p ® IP)(‘7 Qudu+puddu® v'),(In ® I\.n,n ® I,,)VCC( W@ ”'.')
=(L®K,, LYV Qu@u+u®p® V) (veeW; @ veeWs)
= (I, ® Kpp ® I)[V'vecW; ® vec(p' Wap) + vec(p' Wip) © (V'vecWa)]
k
= vec {Z [tr(A4; W1 )(Z5 @ ' Wap) + tr(A;Wo)(' Wi @ E_,-)]} .
=1
(3.2.11)
Also by Lemma 2.2.1 and Lemma 2.2.2,

EOVOr+Knn: @ L) p®pu@ V) Ky, ® I,,)]’ vee(W, © Wa)
=(Kpp: @LYVOu@p+p@p@ V) (Knz @ Li)vec(W) @ Wa)
=(Kpp ® Ip)(f} QuAp+prrd ?)'vcc(K,,‘n(W{ @ Wa))

= (Kpp2 ® L) [vee(V' K n(W] @ Wo)(1t @ ) + (1 @ 1) K (W] @ W2 )V)]

k
= (K, 2 ® 1) |:z (vecZ; @ vec(p'Wh A;Wap) + vee(u' WaA;Wipn) @ veeX, )}

i=1

k
= vec {Z Kpp[Z; @ (' W1A;Wapt) + (' W2 A;Wip) @ 2;’]} ~
=1
(3.2.12)
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Thus by (3.2.10) - (3.2.12),
vee™! [(Ay) vec(Wh @ Wa)]
= Zk: {tr(A;W1)(Z; @ p'Wap) + tr(A4;We) (0 Wi © ;)
j*'_‘!’ccgj(vf-'C(#'W{ AjWap)) + vee(p' Wy 4;W,p)(vecE;)
+K, (85 @ (W W1 A;Wap) + (W'W24;Wip) © Z5)),
proving (3.2.6). Similarly, we obtain
k

(V@ VYvee(W, @ W) = Y tr(4;W) A Wi)(vecS; ® vecSy), (3.2.13)
=1

Ip @ Kpp @ LYV @ VY (In ® Knn @ In)vee(Wr @ Wa)

M=

k
= C{ > (4 Wh)er(AWa)(S; @:,)} , o G219

(Kpp2 @ LYV @ V) (K2 ® In)vec(W; @ Wa)

x N (3.2.15)
=vecS D tr(A;W1AeWa) K p(S; @ e) ¢ -

i=1
By applying vee™! to (8.2.13) - (3.2.15), V2 in (3.2.7) follows. Therefore (i) follows
from (3.2.9), (3.2.6) and (3.2.7).
(11) Since
vee(Cov(Y' WY, Y W2 Y))
= E(vec(Y'W1Y) @ vece(Y'WaY)) — vec(E(Y'W1Y)) ® vec(E(Y'WaY))

= (I, ® K, © L)vec [E(Y' WY @ Y'WLY) — E(Y'W,Y) ® E(Y'WLY)],
(3.2.16)
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we obtain from (i),

EY'WiY @ Y'W.Y) - E(Y'W1Y) © E(Y'I1LY)
k
= —2¢'(0) Z {veeS;i(vec(p WiA;Wau)) @ vec(p' Wi, W) (veck,)
Jj=1

+ Kpp(f W14 Wap © S + S5 © ' Vo d 1V 1)}

k
+46"(0) Y {tr(A4;Wh AW})vecT;(veeSe) + tr(A; Wi AWL) K, (S @ £o))

5e=1
k
+4[6"(0) — ($'(0))"] D tr(A;Wi)tr(AcW2)(T; ® o).
=1

Substituting (3.2.17) into (3.2.16), we obtain, upon simplification,
vec [cov(Y' WY, Y'WLY))

k
= vec {4¢"(0) Z [te(A; W1 AW, )(E5 @ Te) + tr(A; Wi AWa) K, (S5 © S¢)]
jie=1

k
+4[8"(0) = (#'(0))%] S tr(4; W )tr( 4 We)vecS;(veeSe)'
Jj.&=1

k
—24'(0) Y [Z5 ® (W'WiA;War) + (' Wi A;Win) O X,
j=1
+ Ky (' W3A;Wik) @S, + S5 @ (1 Wa b Wy )]}
(3.2.18)

Thus, by applying vec™! to (3.2.18), (ii) follows . O

The above multivariate components of variance model ¥ was investigated by
Mathew (1989) and Wong and Wang (1992) for the normal setting. For k=1, von
Rosen (1988) and Neudecker (1990) obtained the above corollary for the case where
Y ~ Nuxp(p, A ® L) and V =vec A(vecZ).

Corollary 3.2.4. In Theorem 3.2.1,let L=2 ,u=0and W, =W, =W € S¢
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anied write
Tn

P n
= Z Z oy (el0ci ) @ (F;0f5) = Z (eildes) @ Ziav,
w'=13,3'=1

1,'=1

where i = Z?,j'm oiiv i fiOf5. Then

(i) E(Y'WY)=-2¢'(0)T oo (ciWei)Tii
and

(ti) E[(Y'WY @ (Y'WY)] =4¢"(0)4,
where

A= Z {(c';‘ W'c;,)(c',w1 We; Jvec By i (vec Zygir )

N
1y ,3),12,15=1

+ (c;t Wc‘; )(c Wcl )—‘11 l' ® ‘-‘12!..
+(el, Wei (el Wei ) Kpp(Ziiy 8 Tiaiy)}

and hence

n

Cov(¥'wy)= 3 {46"(0) [(e}, Weir)(eh Wei, )T, © Ty

il ni; 7£10il:=1

+(e”1’V€l2)(e it Wc!:)I\p.P(-‘t i @ Eizié)]

+4[4"(0) = (8'(0)1)(el, Wes (el We Wvee iy (veeSi)'} -
Proof. By Theorem 3.2.1 and Theoren 2.2.3,
E[(Y'WY @ (Y'WY)] = 46" (0)vec™ [Ao]'vec (W @ W), (3.2.19)

where Qs is given in (2.2.10). By (2.2.10) and (3.2.19), we obtain

(V@ VYvee (W @ W) = vec[V'(W @ W)V]

= Y (e, Wei,)(ey Weir vec By @ vec By ),

£,8) ,12,15=1
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(LR, O LYV OVY(In © Knn & In)vec (1179 117

= (I, ® K, ® I)(V'vec W © V'vec I})

= Y (e Wei e, Wen )2 © Kpp @ I)vec S Q@ vee D, ] (3.2.21)
"l vi'tv'.: ,i;:l

= Z (i, Wey )ei, Wew Jvee (S5 © Tijin),
in,i) iz, iy =1

and
(Kppz © L)V @ V) (fn2,n ® In)vec (W @ W)
= (K2 © L)(V ® V) vee (Kn n(W QW)

= (K, p2 ® Iy)vec [V'Ka (W @ W)V]
n (3.2.22
= Y (e, WeiNeh Wei, (K pp2 ® 1) [vec Sy iy © vee Sy
31,1} ,i2,i3=1

n

Z (e1, Wes )(eis Wes, Jvec [Kpp(Tiriy ® Tizir)] -

il,i;,!—:,l"z=1

Thus (ii) follows by substiuting (3.2.20) - (3.2.22) into (3.2.19). I
Example 3.2.1. Suppose that Y = (Y{,Y5) ~ MEC,x,(0,1, @ L, ¢) with }7 €
Mumxp. Then the distribution of W = ¥{'Y) is referred to as the generalized Wishart
distribution GWp(m;n — m; Z; ¢). By Corollary 3.2.3,

(i) E(W) = —24'(0)mXE and

(ii) Co (W) = 44" (0)m(I,2 + K;p)(T @ T) + 4m?2[¢"(0) — (4'(0))?]vec(vecL)'.

Note that if Y ~ Npxp(0, I, @ L), then W ~ GW,(m;n — m; Z;¢) = W, (1, £j,
and ¢'(0) = —1, ¢"(0) = 1. Thus E(W) = mE and cov(W) = m([,2+ K, (SZI).

Example 3.2.2. In ANOVA models with balanced subsample sizes, the following

properties are given for matrices Wy,--- , Wy in Ny,

k
W;Wj = 6,'1‘“/;, Z W;=1I,—Ja, (3.2.23)

i=1
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where Jo & M, . with each component equal to 1/n (sec, e.g. Pavur 1037 and

Wong, Masaro and Wang (1991)). Suppose that ¥ ~ MEC, ,.,i0. 5y o) with
k
Z Ve S+ (JuC L)E + H{J. & 1)

where H € My pxnp. Let Qe(Y ) =Y'WeY . {=1,--- k. Then

(1) E(Qe(Y)) = =26'(0)r(W)X.

(i) Cov(Qu(Y')) = 46™(0)r(We (1,2 & K, (ST T)+4{6" —(6'(0}12]vee S(vec TV,
and for any distinet £, ' = 1.2, [k,

(iii) Cov(Qn(Y' ). Qe-(Y')) = 0.
where r{1V,) denotes the rank of 7.
Proof. As we did in Section 2.2, let {¢;}}L; and {f;}}_; be the orthonormal bases
of R" and RP respectively, Eip = ¢jel, and Fjj» = f;fi,. Then H € My pxap can be
written as

H= Z Z hn 1r E;;
where b0 = (veeEp (vecFyj )',H). Thus by (3.2.2
E(Q(Y)) = E(Y'W,Y) = —26'(0)vec™! {[(wg‘a)'(ff‘)]'vecT'Vt} . (3.2.24)

where

»

Vo= Z veelVi(vecZ)

=L, (3.2.25)
+ 3N ki Ivec(JaEiir)(vecFyp ) + (vecEuiJn)(vecFy ;)]
L=l g,y =)

Since (w?,)(V) = V. we obtain from (3.2.24) and (3.2.25) that

k
E(Q((Y)) = —26'(0)vec™! {F'vecWy} = —24(0) {Z br(WiW)S
= (3.2.26)

n

14
Z Z ivrjj o(Jn Eiie We) Fjje + tr(Eiri Ja W) Fj ]
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Thus by (3.2.23). (3.2.26) becomes
E(Qe(¥)) = —20"(0)r(N7)T = =20" (03 W IT,

proving (i).
For (ii} and (iii), note that from Theorem 2.2.3 and (3.2.2). we obtain
E(¥Y'WY) 9 Y'WuY)
=46"(O)vec™ {[V O T + (Knn S LYV @ VYN, & 1) (3.2.27)
+ (In © Kun @ L)V 8 VYU, @ Kpp @ L)} vec(We u;.)} .

Similarly, as in the proof of Corollary 3.2.3, we obtain from (3.2.23) and (3.2.23),

vec™! [(17 ® V)'vec(W, @ W )] = Seeer(We)vecE(vee ), (3.2.2%)
vee™! [(I\’p‘pz LYV @ VY (,Kp2n & In)vee(Wr @ e )]
) (3.2.29)
= 5([-7'(“/[)1\’,,;,(.‘: L),
and
vee™! (I, © Kpp @ L)V & V) (In @ Knn © In)vec(We & 11)]
o (3.2.30)
= T‘(H’()T‘(Wp)(z ® S)
Substituting (3.2.28) - (3.2.30) into (3.2.27), we obtain
E(Q:Y)® Qu(Y)) = 48" (0)r(We) {bere [veeZ(vecE) + Kpp(T © Z))
(3.2.31)

+r(Wor(We X @ X)}.
Thus by (i) and (3.2.31),

Cov(Qe(Y)) = 4_0'"(0)r(W'[)(IP: + Ko (E 2 ) +4[8"(0) — (6'(0))vec Svec T,
proving (i1). Note that if £ # £, then (3.2.27) becomes
E(Qe(Y)@ Qu(Y)) =r(We)r(We (E @ E) = E(Qu(Y)) 2 E(Qr(Y))

and hence (iii) follows. O
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3.3 Further applications

For simplicity, in this section we shall assume that ¥ ~ MEC, «,(p. Ty, ¢)
. k
e S — oy,
with Sy = E j=1 A;0%;.

First we shall find the expectation of
A (Y) = Y'Y YW(Y'WL.Y), (3.3.1)

where Wy, Wa € L(E,E) and W € L(V, V).

Proposition 3.3.1. Supposc that Y ~ MEC,x,(u, Ly, ¢). Let Q1(Y") be given
in {3.3.1). Then

E(Q:(Y)) = (W1 )W (p' Wap) - 2‘33'(0){31 + 4¢"(0)D.’, (3.3.2)

where .
O, = > [t A;Wh)(T;W ' Wap) + tr{ A;Wa)(u' Wy pW ;)
j=1
+ tr{p Wa A; W g W)T; + to(S;W) (1 W 4; Wap)
+ up' W A;WouW'E; + ;W' W] A Wap]
and

k
0 = ) [t AW AWt WE)T; + tr{ 4, W1 AW3)(EW'S;)
jvl=l

+ tr{A; W Jer( AW ) (E;WEL)).

Proof. Since
vee(Q1(Y)) = vec[(Y' WA YV T (Y WLY)[(Y'WLY) ® (Y WIY)veeW,
vee(E(Q1(Y)) = E[(Y'W1Y) @ (Y WY )[vec V. (3.3.3)
By Corollary 3.2.3,

E[(Y'WY)® (Y'W2Y) = (W' Wip) ® (#'Wap) = 26'(0)V] +46"(0)V3,  (3.3.4)

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where V] and V3 are given in (3.2.6) and (3.2.7) with 1% being veplaced by WL

Since
(' Wip) © (' Wap)lveelV = vee[(p' 11 )WV W), (3.3.9)
k
ViveeW = ) {tr(4;W1)(T; © ¢ Wap) + tr( A1) (110 0 )
=
+ vecDj(vee(p Wy A; 1V 0)) + vee(p' T A1 0 ) (vee S )
+ Kp (S5 © (1'Wy .-1jt"".-_:;t) + (;L'”"é 4050 © 55)) veelt”
k
= \'CC{Z{tr(AJ‘I'Vl)(SjI’Vp.'T’Vgp) + tr(:l,-IvV;-)(;t'W, ;l”"}:,‘)
=1
+ tr(p' Wod; W W) + tr( S5 10) (0 Wy A Woap)
+ ' W AW uW'S; + ;W7 WA Wap]),
(3.3.6)
and

k
ViveeW = Y {tr(4;W1AWa)veeS;(vecSe)' + tr(A; Wi AcWi) R, (S 0 Se)
Jt=1

+tr(A; W) )tr(AW2)(S; ® S¢)} vecl’

k
= vec{ Z [tr(A; W AW tr(W )T + tr(A4; W, A W) (S WS
=1
+ tr(A; W) )tr( A W2)(E; WE()]}.
(3.3.7)

Thus (3.3.2) follows by substituting (3.3.4)-(3.3.7) into (3.3.3) and by applying
vec™! to both sides of (3.3.3). O

For the special case where Y ~ Npy, (¢, 4 @ £), the above result was obtained

by Neudecker and Wansbeek (1987).

Example 3.3.1. In Proposition 3.3.1, let Y ~ Npyp(p, I, @ L), k=1, A; =1,

L = 2. Suppose that W, be idempotent of rank m and Wyp = 0. Then

E[(Y'W,Y)W(Y'WY)) = 46" (0){mtr(EW)E + mEW'S + m*TWE).
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Example 3.3.2. Consider the multivariate elliptically contoured distribution given
in Anderson and Fang (1982a) where Y ~ MEC, «p(pt, diag(£1,22,--- , Za), 0).
Let Wy € S, and Wy = 0. Then by Proposition 3.3.1,

E((Y'WYYW(Y'WY)] = 46" (0} Z wi (t(WE)E; + W'
5, 6=1
+ wyj;wyeE; WEe},

where Wy = {w) j¢).

Proof. Let {c;}’=, be an orthonormal basis of . Then

n
ding(E1, 82,7+, ) = D (e;0¢) @ ;.
=1
Thus with k = n and 4; = ¢;Ue;(= ¢;c}), we obtain
tr (A; W 4,.W) = Z w'fj,, tr (A; W) = Z wy5;5-
7.0=1 =1
So by Proposition 3.3.1, the desired result follows. [
Now let E) be the g-dimensional inner product space over R and consider the

matrix sccond degree polynomial
Q:Y)=DY'WYD+LYB+B'Y'L' 4+ C, (3.3.8)

where W € Sg, D, B € L(E,,V), L e L(E\,E)and C € Sg,. Let X =Y — .
Then X ~ MECxp(0,8y,¢) and
QXN=Q:(V) =D (X +u)W(X+p) D+ L(X+pu)B+B (X +u)L' +C

=D XWXD+D'(X'Wu+ ' WX)D+LXB+BX'L' + Qa(pe),
(3.3.9)

where Q2(p)=D'p'WuD + LuB + B'p'L' + C.
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Proposition 3.3.2. Suppose that ¥ ~ MEC, «p(1t, . 0) with Ty = _\:jf:‘ 4
E;. Let Q2(Y") be given in (3.3.8). Then
(i) E(Q2(Y)) = =2¢'(0) Tio, tr(IVA;)D'S;D + Qa(n)

and
(i) Cov{Q2(Y)) = 4¢"(0) Zf,(:l to(WA;WAN I + Ko ) (D'E; D)@ (D'E DY
k
+4[¢"(0) ~ (&' (0)3) z tr(WA4;)tr(WAeg)vee (D'S; DY vee (D'S, DY
it=1

k
—28'(0)S U2 + Ko (L ® B+ (D'p'W) © D')(4; 8 S))

=

x (L' ® B+ (WpD) ® D)I, + K,.,).
Proof. By (2.3.13) and (3.3.9),

E(Q(Y)) = D'E(X'WX)D + Qa(s)

= D'vec™! {E(X ® X)'vecW} D + Qa(p)

%
=—2¢'(0) > _ tr(4;W)D'E; D + Qz(s),

j=1
proving (i). From Corollary 2.3.2, we know that thc odd order momnents of X e

zero. Thus
Cov(Q2(Y)) =Cov(D'X'WXD)
(3.3.10)
+ Cov(D'(X'Wu+ ' WX)D+ LXB +B'X'L").
Note that
vee(D'(X'Wu+ py'WX)D+ LXB+ B'X'L')
(3.3.11)
=T+ K; o (L@ B +(D'p'W)@ D' jveeX.
Cov(D'(X'Wp+y'WX)D+ LXB+B'X'Ly=(Ix + K,,)
x[L® B +(D'p'W)@ D'|Cov(X)[L' @ B+ (WuD) @ D|(I2 + K,,)
(3.3.12)

k
= —2¢'(0) Y (Ip + Ky, )L @ B' +(D'uW) @ D')(4; © L))
J=1

(L' @B+ (WuD)@ D)1« + K, ).
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Let X, = XD. Then X. ~ MEC,«,(0, Zj-':l 4; @ L., 0) with &,; = D"SJ-D.
Thus by Corolllary 3.2.3(ii),

Cov(D'X'WXD) = Cov(X.WX.)

k
=4¢"(0) Y (WA WAN Tz + Ky p)(E.; @ Za)

=1
k
+4[6"(0) = (8'(0))*] Y tr(W4;)tr (WAe)vee S.j(vec Eae)
5 t=1

&
= 4¢n(0) Z tr(WA,-WAg)(I,,; + I{p,p)(D'EJ‘D) Q (D'S(D)

j,(=1

k
+4[6"(0) = (#'(0)7] 3 tr(W4,;)tr (WAcvee (D'S;D)(vee (D'ScD)Y.
ni=1

(3.3.13)
Substituting (3.3.12) and (3.3.13) into (3.3.10), we obtain (ii). U

Jinadasa (1986) and Brownc and Neudecker (1988) obtained the above theorem

for the case where k=1 and YV ~ Nypep (1, 4 @ ).

Example 3.3.3. Suppose that y ~ ECpn(p,4,8). Let Q2(y) = ¥ Wy + 2y + ¢

with W =W' € M, xn, b € R" and ¢ € R. Then from Proposition 3.3.2, we obtain

E(Qx(y)) = =28'(O)tr(WA) + p'Wu + 2 u + ¢,

and

Cov{(Qa(v)) = 88"(0)tr(AW AW) + 4[6"(0) — (¢'(0))*)(tr (AW))?

—8¢'(O) [(W'W + H)A(Wu + b)].
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CHAPTER FOUR
MULTIVARIATE VERSIONS OF COCHRAN’S THEOREMS
4.1. Introduction

As mentioned in Section 1.4, it is well-known that Cochran thcorems play an
important role in regression analysis and analysis of variance. In this chapter, we
shall discuss the moment generating functions, the independence, and the distribu-
tions of quadratic forms of a normally distributed random operator ¥ in L(V, E)
and give several multivariate versions of Cochran’s theorems for the normal setting.

In section 4.2, we shall obtain an expression for the joint moment gencrating

function of quadratic functions { Q:(Y") }¢

_, with Qi(Y) = Y'W,Y +BIY +Y'C; +
D; and W;’s symmetric, and list some special cases for later use.

By using the formula given in Section 4.2, we shall, in Section 4.3, obtain a
neccessary and sufficient condtion under which { Q;(Y)} is an independent family
of random opecrators Q;(Y). This result generalizes the corresponding result of
Khatri (1980).

In Scction 4.4, we shall obtain a necessary and sufficient condition under which
{Qi{Y')} is an indcpendent family of Wishart W,(m;, T, ;) random operators
Qi(Y"). This result gencralizes the corresponding results of DeGunst (1987) and
Khatri (1980).

In Section 4.5, we shall extend the Cochran theorem given in Scction 4.4 to the
casc where Wi(m;, B, A;) is replaced by DW,(m1:, mai, T, A1i, A2i) . This general-
izes the corresponding results of Tan (1975, 1976) and Wong (1992).

We shall, in the last section, obtain a more applicable Cochran theorem for the

case where ¢ = 0 and Im Ty = 5;0S,(# 0} with S; and S. being linear subspaces
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of E and V respectively. For practical use, we shall give sonie conditions that imply

(1.4.6) but not vice versa.

4.2. Moment generating functions of quadratic forms

Let T € £L(V,V) and & > 0. We shall use % to denote the Moore-Penrose
inverse of T, use T” to denote the ath nonnegative definite (nadl) root of T,
use 7% to denote the ath n.n.d. root of TF and use 7° to denote TH7T. For
T € L(V,V), ro(T) will denote the spectral radius of T, i.c. ,(T) = max{|y| :

v is an eigenvalue of T'}.

Theorem 4.2.1. Let Y be a Npxp(p, Zy) random opcerator of a probability space
(Q,A,P) into L(V,E), i € {1,2,...,8}, Wi € Sg, B;, Ci € L(V,E). D; € L(V,V),
y € L(V,E) and

Qi(y) =y'Wiy+ Biy+y'Ci + D;. (4.2.1)
the joint moment generating function, Mq(y), of Q(Y') = (Q:1(Y), Q2(Y'), -+, Q«(Y"))
is given by

Moy (T) = |np — 28|~ ¥ezp{(T, Q) + (L,[S3(I - 22) ' SEI(L))/2), (4.2.2)

where
T= (T17T2a" N 3Tl); Ti° = (T: + 1:,)/21 7: € E(V, V),
4
U; =SI(W:@TO)SE, ¥= > T, ra(¥)<1/2
=1
and

L;=BT: + C;T! + 2WuT?, L= ZL

=1
Proof. Let Z ~ Npxp(0,Inp), where I, is the identity map on L(E, E) 2 L(V, V).
LetY, = pu+ E];-,(Z ). Then Y and Y. have the same distribution. So we may assume
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that Y =Y. =pu+ 3L {Z) Let i € {1,2,...,¢}, = € L(V.E), and Q;(z) = Q:i(y)-

Then
Qi(z2)=(p+E3() Wil + E ( N+ Bi(n+ Y( )

+(u+ i) Ci+ D
= (SE(2) Wi(TE(2)) + (B + ' Wi) (S5 (2))

+(2 (=) (Wip + Ci} + Qi(w)

and therefore
(Ti, Qi (2)) =tr(TiQ; (=) = (T, (T 22 W(Ey( )
+(T;, (B"*'#'W)(E EEN+(E 3( N (Win + C3)) + (T, Qiw))

= (2, i) + (= E(La)) + (T, Qilw))-
(4.2.3)

Now

4
(T, Qy Z(:r,, Qiy) = D _(Ty, Qi (=)
1=1 i=]

= (5, ¥()) + (=, TE(L)) + (T, Q(u))-

Since Z ~ Npuxp(0,1,,), the probability density function of Z with respect to the

Lebesgue measure for L(V, E) is { with

f(=) = (2=)7Pexp{—(z, 2)/2},  ze€L(V,E).

So

Maey(T) = E(exp{{T,(Q:(¥))})
- / ezp{(T, Q) + (5, B(=)) + (=, SE(LN} F2)s,
L(V.E)

Through factorization,

M(T) = |I - 23|~ 4T QUM pr(S3(LY),
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where X ~ N(0,(I — 2¥)"!), requiring that I,, — 2¥ is positive definite. Henee
for ro(¥) < 1/2,

Moy (T) = Hnp — 20| Fezp{(T, Q()) + (L, [SH(I - 20)7'SE|(L))/2).

a
Corollary 4.2.2. In Theorem 4.2.1,lct £ =1 and Q(y) = y'Wy+ B'y +4'C + D
with W € Sg, B, C € L(V,E) and D € L(V,V). Then the moment generating

function (mgf) of Q(Y) is

Moy(T) = |Inp — 2% |~ Fezp{(T, Q1)) + (L, SE(Lnp - 20)TSE(L))/2),

1 1
Ta(Z (W®T°) V<3

5 (4.2.4)
where T € L(V, V), T° = (T +T")/2,
v = SH(W @ T°)S}, (4.2.5)
and
L =BT+ CT' +2WuT". (4.2.6)

Khatri (1980) obtained Corollary 4.2.2 for the case where Zy = 4 @ &, Note
that due to the self-adjoint property of W @ T° in (4.2.4),

np — SE(W @ T°)S3| = |Inp — Sy(W @ T°)! = |Ly — (W @ T°)Sy|  (4.2.7)

and

2,,(1,.,, —si (w ®T°)2’)“}" = Sy(lny — (W@ T°)Zy)™!

(4.2.8)
= (Inp, = Zy(W @ T°)) ' Zy.
So we can express Moy)(T) in (4.2.4) without involving 2,%,. But in theory, it is

more convenient to use (4.2.4) because (W @T°)Zy, or By (W @T°), may not cven
be diagonalizable; see Wong (1982).
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Corollary 4.2.3. In Corollary 422, if W =1,, B=C =0,D =0. and Ly =
I.o %, then QY)Y =Y'Y ~ Wp(n, T, A), where A = p'u. Thus by (4.2.4), the mgf
of W,(n, T, A} is given by

Mw(T) = (I, = 2SI TS|~ Tezp{(T, A) + 2{TAT, S¥ (L, — 2£ITE) IS},

TeSv, ro(SITSH <. (42.9)
Example 4.2.1. Let y ~ N, (i, A) andlet W € Sg, be R", de€ R and ¢(y) =
y'Wy + 20y + d. Then by Corollary 4.2.2, the mgf of q(y) is given by
M(t) = I, — 2AYWAT |~ Fexp{t(u' Wy + 2b'p + d)
+ 2 (Wu + b) A¥(J, — 2#ATWAT) AN (W + b))},

where t € R and rp(tA¥WAY) < L. Moreover if W = A=I,, b= 0and d =0,

13—

then M, is the mgf of x3(A):

212

M,(t) = (1 = 2t)Fezp{(t + 1o

)AL

where A = p'pand t < 1/2.
4.3. Independence of quadratic forms

Suppose that ¥ ~ Ny »,(¢, By ). Consider the second degree polynomial opera-
tors Q1(Y), Q2(Y),--- ,Qe(Y'), where Qi(Y") are given in (4.2.1). For establishing

the independence of Q;(Y")’s, we need the following lemmas:

Lemma 4.3.1. (Laha (1956)). Suppose that £ ~ Ny(0, Ir,). Let Hy,Hs € Sp,
hiha € R™, qi(z) = 2’ Hiz + hiz and q2(z) = 2’ Haz + hoz. Then q1(z) and g2(z)

arc independent if and only if

(2) H{H» =0, (12) Hih, =10, (nz) Haohy =0, (zv) h’lhg =0.
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Lemma 4.3.2. (Craig (1943)). Let 4. B € Sy, Then AB =0 if and only if
[Im — sA|{Im — tB| = |I;n — sA — tB]

holds for all s and ¢t in R.

Lemma 4.3.3. Let P, Q, R, and S be polynomials in s and t with rationad cocf-
ficients such that

P(s,1)/Qls, 1) = exp{R(s, 1)/ S(s, 1)}

bolds for all s,t € R where P(0,0)/Q(0,0) = 1 and R(0,0)/5(0,0) = 0. Then
P(s,t) = Q(s,t) and R(s,t) = S(s,1).

This lemma can be found in Laha (1956) and Dricoll and Gundberg (19S6).

Theorem 4.3.4. Suppose thatY ~ Npy,(p, Ty). Leti € {1,2,--- £} and Qi(Y)
be given in (4.2.1). Then {Q:(Y)}., is an independent family of operators Qi(Y)
if and only if for any distinct 1,7 € {1,2,---,¢} and 2ny T3, T; € L(V, V),

(2) Sy(W: @ T?)Sy(W; @ T})Sy =0,

(b) Sy(Wi @ T7)Sy(L;) =0,
and

(c) (Li, Zy(Ly)) =0,
where TY = (T; + T})/2 and L; = BT + CT} + 2WiuT?. Henece {Qi(Y)} is

independent if and only if {Q:(Y)} is pairwise independent.

Proof. Suppose that {Q:(Y')} is independent. Let 7,7 € {1,2,---,€} with 1 # j.
Then Qi(Y) and Q;(Y) are independent. Let Q(Y) = (Q:(Y),Q;(Y)) and T =
(T3, T;). Recall that Q:(Y) and Q;(Y") are independent if and only if

Moey)(T) = Mo, vy(Ti) Mo, (v)(T;)- (4.3.1)

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



By Theorem 4.2.1, (4.3.1) is reduced to
oy = 20| S ezp{ (L, [S§Un, = 20)7 SENL)))
= Ly = 2040 bezp{{(Liy [S3(Tup = 205) 7 SEI(L0)))
+ Ly = 20,17 Fezp{(L;, [SE(Tap = 28,) T SEILN),
(V) < 1/2, ro (W) < 1/2, ro(¥;) <1/2,
where ¥; = _Y(IV OTHIZ, vV =¥,;+¥;and L = L; + L;. By Lemma 4.3.3,
(4.3.2) inplics that

np — 2(¥i + ¥;)| = np — 2941, — 29 (4.3.3)

and

(Li+ L, (S = 2%+ ¥,)] 7 SH(Li + L) (4.3.4)

= (Li, [S}(Fup — 20) 7 SHL)) + (L;, [SUnp — 22) 7 SEI(L))

Let e; and ¢; be the real values in the neighborhood of the origin such that
ci < 1/ro(¥i), ¢ <1/r,(¥;). (4.3.3)
Replacing 27; and 27 in (4.3.3) and (4.3.4) by ¢;T; and ¢;T; respectively, we obtain
Hop = ci¥i = ¢;¥;| = [Inp = %[ Znp — ¢; 5] (4.3.6)

and
(cili + ¢;L;. [S;“-(Inl, -V, — qulj)-lgg-](cgl-; - CJ'LJ'))
] -
= (eiLis [SE(Tnp — e SE(eiLs)) (4.3.7)
+(¢; L, [S§(Tnp - CJ"I’J')_I“:](CJ i)

Note that ¥; and ¥; are sclf-adjoint operators in L(E,E) @ £(V,V) and (4.3.6)
holds for all ¢; and ¢; in R with restriction (4.3.5). By Lemma 4.3.2, (4.3.6) implies
t™at

T, 0; =0, (4.3.9)
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ie.
1

SEIN @ TSy (W S TS = 0,

proving (a). By (4.3.5) and {4.3.8).
(Inp — ci¥i — ;)7 = (Tnp — i) {dup — ¢, ;)"

= (i(cﬂ’e)k) (i(%“l’ﬂk)

k=0 - k:Ow {‘1.39)
= .[np + Z(Ciq’i)k + Z(CJ‘I’J)‘

= (In}r _Ciqll')—l + (Iup - Cj\pj)—‘ - Inlv-

Substituting (4.3.9) into (4.3.7) and denoting S;S-(L,-) by L;, we obtain, upon stin-
plification,
C?(L:, (Inp - c,"IJ,')-l(L;» + '.ZCij(L;, (Inp - Ci\pi)_l(L; ))

+ LT, (Tnp — ;Y UL + 2¢ic{L], (Tup = ¢;¥5)7H(LS))

. . (4.3.10)
—ci(L7, LY) — c;{L5, L}) = 2cic;{L}, L})
=0.
By (4.3.5), we have the power serics expansions:
(Inp = i)™ = Lnp+ ¢;0; + cFH7 4+ --- (4.3.11)
and
(Inp = ¢;¥;) 7 = Loy + ;¥ + O3+ -+ (4.3.12)

Substituting the expressions on the nght-hand sides of (4.3.11) and (4.3.12) into

(4.3.10) and collecting the cocfficients of cic; and ¢ic?, we obtain

(L:, LJ‘) =0 (4.3.13)
and
(Li: O;%;(Li ) + (L5, Tii(L3) =0. (4.3.14)
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Note that

(L:, L) = (SE(Li), TE(L;)) = (Li. Sy(L;)) (4.3.13)

and

(L, ¥;%5(L7)) = (¥:(L5), i(L3)) 2 0. (4.3.16)

Thus (¢) follows from (4.3.13) and (4.3.15), and (b) follows from (4.3.14) and
(4.3.16).

Now suppose that (&) - (¢) hold. It suffices to show that
¢
Moo i(T) = [] Moy (T3)
1=1
for all T = (1), Ts,--- ,T¢) in Ny, where Ny is a neighborhood of 0 in I1° c(v.v).
By Theorem 4.2.1, {Q.-(Y)} is independent if
3 — 29} = [Tie, Hap — 294

and
(ii) (L‘[ (Inr - )‘I’ :;SI(L) ;—1( ] [ E(Int' )\I'i)_lv‘l(L )
where ¥; = SE(W; @ TO)Sh, Li = BiTi + C:T! + 2WiuT?, ¥ = £, i and

L=Y'_ L. By (a), ¥;¥; = 0 for all distinct 1,5 € {1,2,---,£}. So by Lemma

Ler=1

4.3.2, (1) follows. For the same reason, we have

¢
(Inp = 28)7" = [J(7 - 297",
=1
Since L; = B,T; + C;T) + 2W;uT?. for (ii), it suffices to show that with
A= (L[S - 3‘1’)""“(-’4 i)

Ajj=0fori#jand

Aii = (Li, [S3T - 200" SE(L0))-
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Since ¥;¥; =0 for 1 # j.

4 f oo
(Lp—20)" = [ -2007" = ] D 2w
a=1

s=1k=n

E

AR

= L.+

i (-~

«
]

1 &=1

Since cach ¥, = SL(IV, © T)SE. by (b).

A; = (Ls, ~Y(InP+ZZ(’\P PIZEIL))

=1 k=1

£ o™
= (Li, Sy(L;)) + ( zz Sy(W o TSy L, (-13.17)

s=1 k=1

= (Li, Sy (L;)) + (Li, [i[ 2Ty (W @ TSy (L, ).
By (b) again, for distinct z, 7,
Aij = (Li, Sy (L))
So by (c), Aij = 0 for i # j. Now by (4.3.17),

Asi = (Li, Sy(L) + (Ls, {Z[ 2y (W; & T7)*)Sy (L)

= (L, [T (2T SE(L)

k=0
= (L, [ (Tnp — ¥:)T'SENL)).
O

Now we are going to give an alternative proof of ‘only if part’ of Theoram 4.3.4:
Let 1,5 € {1,2,--- 6} with i # j and T}, T; € L(V,V). Sinee {Qi(Y)} is
independent, tr(TQi(Y)) and tr(T/Q;(Y)) arc independent. Similarly, as in the
proof of Theorem 4.2.1, let Z ~ Npwp(0,In @ I,). Then Y znd iz + £3(Z) have
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ince (; is a Borel functimx, QiY) and Qilp + Zy(2Z))

the siane distribution.
have the same distribution. Thus o7, Qi(p + = (Z))] and tr[TiQ:(1 + T3(2))]
are independent. By (4.2.3),
i =u[T[Qi(p+ T (Z))] =(Ti, Qi(n + Y(Z)))
(4.3.18)

(nv Ql(“))

= (veeZ)Y ¥,vecZ + (vcc(Sf,(L.-))'vch + (Ti, Qi(p)),

= (Z,9i(2)) + (2, S§(La) +

where ¥, = Eé,(I'V,- @ T?)E;. Since veeZ ~ Npp(0, In,), by Lemma 4.3.1, ¢; and
q, are independent, which implies that

1]
(it) ivee(S5(L;)) = 0,

(1) ‘I’.“I’)‘ =0,
(iv) [ec(SH (L) vee(TE(L;)) = 0.

(iif) W;vec(S(Li) = 0,
Now (a) follows fromn (i). Note that
(4.3.19)

Pivee(SE(L;)) = vee[SH (Wi @ TP)Sy(L;)] = 0.

By (ii). (iii) and (4.3.19),

jvee(S§(Li)) = vecSH(W; © T3)Sy(Li)] =0,

1.c.
SI(W: @ T)Sy(L;) =0 fori#j,
proving (b). Similarly from (iv),

[vec(SEHEMN] vee(SH(L;)) = (SELi) SEL;) = (Li, Sy(L;)) =0

proving (¢). O
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Corollary 4.3.5. In Theorem 4.3 4. if B=C =0 and D = 0. Then {Y'W Y} s
indepcndent if and only if for any distinct 1, 7 € {1.2.--- (Y and any T,. T, ¢ Sy,
(21) Sy(W;© T,)Sy¥(IV; 8 T;)Sy =
(b1) [Sy(W: @ T)Zy(W; € T))l(x) = 0.
and
(c1) {#, (Wi @ T)Zy(W; © Tj)()) = 0.
Hence {Y'W;Y'} is independent if and only if {Y'W3Y'} is pairwise independent.
Corollary 4.3.6. In Corollary 4.3.5, if cach WV} is n.n.d., then {Y'WY'} is inde-

pendent if and only If for any distinct 1, j € {1,2,--- ,(}.

(W; © L)Sy(W; @ I,) = 0. (-1.3.20)

Proof. By Corollary 4.3.3, it suffices to show that (al) - (cl} are cquivalent to
(4.3.20). Suppose that (al) - (c1) hold. Let T; = T} = [,,. Then (al) is reduced to

Ey(W: R L)Sy(W; @ I1,)Sy =0,
which is equivalent to
(W} @ L)Sy(W} o1, =0.

So (4.3.20) follows.

The “if part’ is obvious. O

Corollary 4.3.7. In Corollary 4.3.5, suppose that g = 0. Theu {Y'W,Y} is
independent if and only if for any distinct 1,7 € {1,2,--- , £}, Sy (W, 21, )Xy (W,
T;)ESy =0forall T;,T; € Sy. Henceif u =0 and Ly = AGX for some A € N and
T € Ny with £ # 0, then {Y'W;Y'} is independent if and only if AW, AW, 4 =0
for all distinct 1,7 € {1,2,--- ,£}.
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Example 4.3.1. Let y ~ N,(p, 4) and qi{y) = y' Wiy + 20y +d;. i = 1, 2, where
Wy, Wa € Sg. Then ¢y(y) and g2(y) are independent if and only if
(i) AW,AW,A =0,
(ii) AWLA(Wipn+ b)) = AW A(Wap+62) =0,
and
(i) (Wyu+0)'A(Wap +b) =0.
Morcover if (Wi + b;) = W;Ae; for some vector ¢;, 1 = 1, 2, then qi(y) and ¢2(y)

are independent if and only if AW, AW.4 = 0.
4.4. Cochran Theorems

Before we prove our generalized versions of Cochran’s theorems, we need the

following lennni

Lemma 4.4.1. Let £ € Sy with $ # 0. Then
() Sv = ({TET : T € Sv}),
(b) Sv = ({TETIT : T € Sv}),

and
(¢) Sy = ({TSTETET : T € Sv}).

where (S) denotes the lincar span of a given set S.

Proof. We shall merely prove {a) and (c).
(a) Since © € Sy and T # 0, there exists an orthonormal basis {f;}f_; of V

such that

r

S=Yoifi0f, oi#0iSno=0,i>n =1 (441)

J=1

where r = r(E) > 0. Let

B= {fJDfJ :j=lq"' vp}U{lefJ+fJDfl:i<ja i,j=19"' ,p}‘

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Then B is a basis for Sy-. Let
G =<{TET:Te€S}>.

Then it suffices to show that ; contains all fi{UIf; and adl £,Of, + £;07, withi < ;.
Let T = fiOf;, i < r. Then TST = o:f0fi. Since o; # 0, fOf, € C). Let
T = [Of + fif1, : > r. Then TET = o £i0f;i. Since oy £ 0. £,0f € . Thus
fOfieCforalli=1,...,p. Now let T = £,0f + £i0f; + £0f, + 107, Then

TIT = oy fiOf; + 0: i0A + o1 fil0ft + 0 101 + oy fOf1 + o4 O,

Since f{Of; € C1, TET € Cy, and o7 # 0, we conclude that f;0f, + f£iOf; € ).
(¢) Let C = ({TETTTET : T € Sv'}). Similarly as in the proof of (a). it sutlices
to prove that B C C. Let T = f;0f;. Then T(ET) = of £,0fi. Thus

fOfieC for i< (4.1.2)

Let «, B € R and T = of;0f; + B(fOf: + fiOf:). Then
T(2T)® =[(o:20',~ + B0 )0 + o’ ot f0f:
+ afol(a’o; + 2870 ) fi0f + fOf:) (3.4.3)

+ B2 (e’a; + Ao ) filOfr.
By (4.4.2) and (4.4.3) witha=8=1,

fOfc + iDfi €C for i, k<r (4.4.4)
By (4.4.2) and (4.4.3) again,
*B(fi0fe + fiOf:) + 2B fil0fk €C for i<r, k>,
whence by varying «, 8 € R, we obtain

f,’ka -}-kaf, €C, kafk €C for i:<r, k> (4.4.0)
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Let T = £,0f + /A0f, + £.00H + A0 + £0A, i,k > r. Then
T(ET) = o (£0f + 00 + A0 + £0f + ADS

+ £0f + AO0fc + A0 + £D0f).

Thus by (4.4.2) and (4.4.6),
fink + kafi e€C for 4, k>r. (4.4.7)

Henee BCC. O
We shall begin our versions of Cochran’s theorems by assuming that { = 1 and

“TX 2

Theorem 4.4.2. Supposc thatY ~ Npyp(41,Sy). Let W € Sg, T € Ny withE #
0.B.CeL(V,E), De L(V,V),y € L(V,E) and Q(y)} = yWy + B'y + y'C + D.

Then
QYY) ~ Wp(m,Z,A)

Mo, of 0 in L(V, V),

if and only if for any T in a necighborhood, My,

(2) t{SEHW @ T)SE) = mtfSITSHF, k=1,2,...,
(b) X =Q(n),
(c) Ty(BT") =Zy(CT"),

and
(d) (B +C+2W1)T°, Sillnp - 255(W @ TO)S3]-ISE(B + C +2Wp)T°))

= 4(\, T°SH[I, — 2SiTosH)-1SiTe)
(T+T)/2and T* = (T - T")/2. Moreover, if Q(Y) ~

where T =T°+T*.T° =

W,(m,Z, A) then
(c) m = tr[Sy (W @ TH))/r(Z).

Proof. Suppose that Q(Y') ~ W,(m,Z,A). Then

Moy(T) = Mw(T®), (4.4.8)
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where Mgy)(T) and M (T°) are given, respectively, in (4.2.4) and (4.2.9). Thus
by Lemma 4.3.3, (4.4.8) is equi\'alent to

(i) Hnp = 2S3(W © T°)S = |I, - 283 T°Th ™
and

(@) (T, Q1) + (L, Sp(Inp — 2THW ®

= (A, T°) +2()\,T°S¥(J, — 2TiT°

where L = BT + CT' + 2WuT® and T € Ny, a neighborhood of 0 in £V 17). By
analytic continuation, (1) amounts to

(1) U-SHWeT)T}| = |I- POTITTY|,
where P is an idempotent in L(E, E) of rank m. Replacing 2T° in (i) by T°/¢
with nonzero ¢ € R, we conclude that (i;) amounts to “S;},(W' ® T°).‘Jé- and P @
(S¥*T°T*) have the same characteristic polynomial”, i.c.

(i2) Sé-(W ® T°)B and P ® (S¥T°S}) have the same spectrm {v, bEy.

Since . . .
tr(P @ (SIT°SH)* = tr(P* @ (TIT°TH))

= tr(PHr(SIT°SH)F = mir(SIT°SH,

(i2) amounts to (a). By letting T° = £* in (a), (c) follows. Similarly, replacing
9T in (ii) by cT with ¢ < 1/r,(S3(W ® T°)T3) and collecting the cocflicients of ¢
and ¢?, we obtain

(1) (Qk), T) = (A, T°)
and

i9) (BT+CT'+2WuT®, S (Inp—cSL(WRT)SE )" SE(BT+C T +2W uT°))
=4(\, T°SH(I, — cTIT°)-1TiT°).
By choosing T = T* in (ii; } and (ii2), we obtain T° = 0,
(i) (Q(p), T7) =0,

and
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(iliz) ((B-C)T*,Zy((B-C)T")) =0.
Since

(Qu), T*) = tr((Q(u)) T"] = —tr{Q(u)T7],
(ifi1) implics that
(Q(u) = (Qu)Y, T*) =0,
i.c. Q(g) is a sclf-adjoint operator in £(V, V). Thus by (if,),
(Qu), T) = (A T°) =(Qw), T° +T7) = (A, T°)
= (Qu) =X, T°) =0.

By choosing T° = Qi) — A in (4.4.9), we obtain (b). Also by (iiiz2),

(4.4.9)

S}(B - C)T") =0,

proving (c). By using (iiiz) and substituting T = T° + T* into (ii2), we obtain
(B +C +2W)T*, B4 (I, — cSE(W @ T9)SH SH(B + € + 2Ww)T))
= 4()\, S¥[I, — cSIT°TI7ISIT?),
proving (d).
Now supposc that (2) - {d) hold. Then it suffices to show that (i) and (ii) above

hold. By the above argument for proving ‘necessity’, we know that (a) is equivalent

to (1). By (b), Q) is sclf-adjoint in Sy. Thus for any T € L(V, V),

(@), T*) = 5(Q(w), T~ T)
= $1(Q), T) - (Q), T
= 31(QM), T = (QGe), T)] =
So by (b),
(@), T) = (QU), T +T7) = (3, T°). (4.410)

G6
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By (c)
sl(B-0)T)=0 (4.4.11)

Let ¥ = SE(W @ T°)SE. Then by (4.4.11),

(BT + CT' + 2WpuT®, T3 (Lo, — 20)'SE(BT + CT' + 2WuT*))

= (S3((B + C +2Wp)T° + (B = C)T*), (Inp — 29)~! .
x SL((B+C +2Wu)T° + (B - C)T*) (12)

= (S3((B + C + 2Wu)T°), (Inp — 28)"'SE((B + C + 2V 1)T*Y).

Now (ii) follows from (4.4.10), (4.4.12) and (d). O
i From Theorem 4.4.2 and its proof, we have the following two results:

Corollary 4.4.3. In Theorem 4.4.2, if B = C = 0 and D = 0 then Q(Y) =
Y'WY ~ W(m,Z, ) if and only if for any T € Sy,

(al) tr(SE(W @T)TI)t = mtr(SITSHY, k=12,...,
and for T in a neighborhood Ny of Sy,

(bl) A=u'Wpu
and

(1) (, (W @ T)Z5(Inp — 2Z5(W @ TIZ) ' S3(W © T)](1))

= (), TS¥(I, - 2TITSE)"I1TT).

Moreover, if Q(Y) ~ W(m, T, )), then

(d1) m=tr(Ey(W @ Z¥))/r(Z).
Corollary 4.4.4. In Theorem 4.4.2, suppose that y = B =C =0, D = 0, and
P € L(E,E) with P2 = P and r(P) = m. Then the following conditions are
equivalent:

(22) Q(Y) ~ Wp(m,X).

(b2) |\[~T3(W @T)S|=|I-TITTH™, Tesy.
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(c2) U-SIWaT)Si=|I-Po(SiTSi), Tesv,

(d2) Ti(W @T)S; and P @ (SITS}) are similar, T € Sv.

(c2) tH(SHW @T)Si)* = mtr(SITTHE, k=1,2,...; TeSy.

The involvement of T in Theorem 4.4.2 is caused by the reality that Ty is not

assumed to have the form A@ T with A € Ng.

Corollary 4.4.5. In Theorem 4.4.2, if 3y = AQ® T with r(X) > 1. then Q(Y) ~
Wo(m, Z, A) if and only if

(23) AWAWA = AW A, tr(AW) = m,

(b3) AB = AC,

(c3) A=Qu)=(B+Wu)A(B+Wyu)=(B+Wp)yAWA(B + Wy,
Hence if B=C =0 and D =0, then Y'WY ~ Wy(m, Z, A} if and only if (23) and
(d3) hold, where

(d3) A= p'Wp=py'WAWu = ' WAW AW .

Proof. By Theorem 4.4.2, it suffices to show that (a) - (d) in Theorem 4.4.2 arc
cquivalent to (23) - (c3) here.

Suppose that (a) - (d) hold. Since &y = A® T,

te(SH(W @ T°)SE)* = tr(4i WA @ SiTesh)*

(4.4.13)
= tr(AY WA (DIT°SH), k=1,2,...,
Let 7° = £*. Then by (4.4.13), () is reduced to
tr(ATWAT) (S0 = mtr(E°), k=1,2,---,
Since tr(T0)* = tr(2°) = r(£%) = r(T) # 0, we obtain
tr(AFWANY =m, k=12, (4.4.14)
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and hence

tr(ATWAT) = tr(AW) = m. (4.4.15)
Let vy,v2,+++ ,v, be the nonzero cigenvalues of A¥WAY. Then by (b1 1),
tr(ATWAN® — 2tr(AT WA (4 AY) = 0,

l.e.,
3 >

Z(V? -2} 407 = Z vi(l =) =0. (1.4.16)

=1 =1
Since v; # 0, we obtain from (4.4.16),
vi=1l or -1, 1=1,2,---,s. (440.17)

But by (4.4.14) and (4.4.17),

s = Z V2 = tr(AYWAT)? = m.

i=1

Thus by (4.4.15), all »; =1, i.e. A¥W AT is idempotent of rank m, proving (a3).

By (c),
ABT XL =ACTES, foral T =(T-T")/2. (4.4.18)
Since r(Z) > 1, we may choose an orthonormal basis, { f; ?:n of V such that
r(Z)
o= oifOf;, @i #0, =12,
j=1

Thus T € £(V,V) can be written as

P
T = t;5(f0f ~ £+0f).
i<s
Let t = f; and f,. Then by (4.4.18),
P
A(B-C)T"Sfi = -1 A(B-C) Y t1;f =0

j'=1
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andd

p
AB~CIT S fa = 2B - Cjiltiaf) — L taj fi= 0.

}'=3

Thus by letting f2; = 0 and varying t);. £ R, j = 2.--- . p . we obrain
AB-C)f,=0. J=1.2.--.p (4.4.19)

Sinee {£,}7_, is an orthonormal basis of V7, (4.4.19) implies {h3). Replacing 277

by ¢T° with ¢ < 1/r,(S§T°S'I=') and substituting {23) and (b3) into (d). we have
(B +C+2W)T°. (4} S S, — 243 4F g TiT°TE) !

< (AT R SH((B+C + 20 )T

k=0
= AUB+Wp)T°. A(B + Wp)T°E)
+E(B+WRT. AWAB + W)T° Y SHeSiTosiysh)
k=1
= (B + W) A(B + Wy). T°ET°)

A"

=)
+ B+ W) AWA(B + W), T° ) SHEITTHFTITS)
k=1

(4.4.20)

and

o0
A T°SH(I, — 2SHTTHTITIT) = 2(A, T°SF ) (cSET°SH)*SiTe).

k=0
(4.4.21)
By (4.4.20) and (4.4.21). {d) reduces to
(B +Wu) A(B + Wp), *T°ST)
+{(B+Wp) AWA(B + Wp), *T° Y SH(cSIT°SH*TIT?) a2
k=1 s

k=1
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By comparing the coefficients of ¢=. ¢’ -+ on both stdes of (44220 we obtain thae
for all T° € Sy-.

(B +WuYAB+ W), T°ST) e

ey*y
XY

e

and
(B + WY AW AB + W), T°ST ST REEIY
Thus (c3) follows from (b). (4.4.23). {4.4.24) and Lemma 4410
The 'if part’ is obvious. O

Note that in Corollary 4.4.5. if B = C. then the assumption #{X) > 1 can be
reduced to T # 0. A similar result of Corollary 4.4.5 was obtained by Khatn {1980

as follows:

Corollary 4.4.6. In Corollary 1.4.5. conditions (a3)-{¢3) awre equivalent to (a3l
(b3). (3} and (£3), where

(e3) A=Q(p)=(B+Wu)yA(B+ Wy).
and

(f3) A(B+ Wu)=AWAM forsome M g LV E).
Proof. Suppose that (a3)-(c3) hold. Let 4. = A¥IVA%. By (a3), A. is au idem-
potent of rank m. Thus I, — 4. is 2lso an idempotent. By (€3}, we obtain (e3)

and

(B+WuYA(B+Wp)—(B+Wg) AWA(B + W) =0,

le.,

(A¥(B + W) (In - A.) (.4§(B +Wp)) = 0. (4.4.25)

Since I, — A. = (I, — A.)?, we obtain from (4.4.25) that

(I — 4.) (44 (B +Ww) =0,
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AB + Wy = AWA(B + 1.

Therefore (£3) follows from choosing M = B + W
Suppose that (a3), (b3). (¢3) and (f3) hold. By ({3) and (a3),
(B+Wu)A(B+Wpu)=(B+Wp)AIVAN
(4.4.20)
=(B+ Wp)AWAWANM = (B + W) AWA(B + W),

So by (3) and (4.4.26), we obtain (¢3). O

Now combining Theorem 4.3.4 and Theorem 4.4.2, we obtain the following ver-

ston of Cochiran’s theorem:

Theorem 4.4.7. Suppose that ¥ ~ Nop(i, Sy ). Let i € {1.2.--- . £}, W; € Sg.
B,. C.e LIV,E). D e L(V,V), and Qu(Y) =Y'W)Y + B}Y +Y'C; + D,. Then
{Q.Y)} is an independent family of W,(m;, E, A;) random operators if and only if
for any distinct i, j € {1,2,-+- ,€} and T; € L(V, V),

(2) tr{Sy(W; ©@ T?) = mte(ST2)* forall k=1,2,---,

(b) Ai = Qi(s).

(c) Sv(BiT7) = Zy(CiTY),

(d) (Lis (Inp = 2Sv(W; © T7?)) 7' Sy (L)) = 4(h, TP, = 2ET?)TISTY),

(c) Sy(Wi@ T2 )Sy(W; 9 T )y =0,

(f) Sy(Wi o T2)Ey(L;) =0,
and

#) (Li, Ty(L;)) =0,
where TP = (Ti + T)/2, T = (Ti = T})/2 and L; = (B; + C; + 2Wu)T7.
Corollary 4.4.8. In Theorem 4.4.7, let B; = C; =0 and D = 0. Then {Y'W}Y}
is an independent family of Wy(m;, S, A;) random operators if and only if for any

i, 7 €{1,2,---,€} and T; € Sy,

=~?
(&)
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{al) Ty (W1 S T} = m,-t:(ST,)k forall k=1.2.....
(61) (. (W3 & To)(dnp — 255 (115 & TSy (I8, 2 Tl
= (A, T,‘(Ip - QST,)_lSTg}.
(c1) Sy(Wi S THEy(W; 8 T;)Sy =0,
(d1) [Sy(W: @ THEy(1V; 8 T;](x) = 0.
and
(el) {u, (W © Ty (W; © T)l(n)).
Hence if u = 0, then {Y'W.Y} is an ind pendent funily of Wi, .Y\ random

operators if and only if (al) and (c1) hold for any i, 7 € {1.2,--- . ¢} and T, & Sv-.

Corollary 4.4.9. In Theorem 4.4.7, let &y = AQT with #(X) > 1. Thenu {Q.4Y))
is an independent family of W,(m;, &, \;} random operators if and ondy if for any
i, 7 €{1,2,---,¢},
(a2) AW;AW; 4 = AW, 4, r(AWV;) = m;,
(b2) AB; = AC;,
(c2) A= Qi(p) = (Bi + Wip) A(Bi + Wip) = (Bi + Win) AW A(B; + Wip),
(d2) AW;AW;A =0,
(e2) AWA(B; + W;p) =0,
and

(2) (Bi + Wip) A(B; + Wju) = 0.

Example 4.4.1. In Corollary 4.4.9, let

3 0 0 1 1 11 =1
~1fo 1 =10 _1{1 31 1
A‘§0—110’ W‘§1131

1 0 0 3 -1 11 1

andY ~ N(0,A®ZX). Then A is singular and W is symrmetric but not u.n.d. It is
easy to verify that the conditions of Corollary 4.4.9 are satisfied and so YWY ~
W(m,Z) with m = 2.
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4.5. Extensions of Cochran theoreins

In Theorem 4.4.7, we obtained a necessary and sufficient condition: under which
{Q,(Y)} is an independent family of W, (m;, T, A;) random operators. In this sce-
tion, we shall give some further extensions of this Cochran theorem to the case where
{Q.(Y'}} is an independent family of the difference of two independent Wishart
random operators Wi(rnyi, .2 15) and W(mai, 5, Azi). Let y ~ N, (0.7,) and
IV 2 Sk, Then Graybill (1969, p.352) proved that y' Wy is distributed as the dif-
ference of two independently distributed y>-variates if and only if 1V = W. This
result was extended by Tan (1975, 1976) and Wong (1992).

Lemma 4.5.1. Let Qy, Q2 be independent Wy,(m,,E, Ay ), W,(ma, T, A2) random
operators in L(V, V) and let U = Q) — Q. Then the mgf of U is My with

My(T) =, — 2SHTSH~ 5|1, + 2SHTTH 5

0]~

TS:)~'SET)

[ 40d

x exp{ (M = da, T) +2(0, TSH(Z, - 25
k) b 3 1 (4-5-1)
+2(X2, TS (I, +2$5TS‘-‘)‘1$5T)} ,

-

TeSy ro(SITE¥)< <.

2

We shall use DW,(m;,ma, T, Ay, A2) to denote the distribution of the above U
and use DWp(my,mz,Z) to denote DW,(my,m2,3,0,0). Note that when ma =
0 and A2 = 0, DW,(m;,ma, T, A1, X2) is nothing but the Wishart distribution
We(my, S, A1). To avoid the nuisance of treating DW,(m), m2, &) or Wy(m,;, Z)
with m; = 0, we assume, in the following sections, that m; > 0 and ma2 2 0.

For ¥ ~ N,xp(p,Ey), let

QYY=Y'WY+BY+Y'C+D (4.5.2)
and
QiY)=Y'W;}¥ + BYY +Y'C; + D;, 1=1,2,--. ¢, (4.5.3)
T4
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where W, W; € Sg. D. D, € $y-. B. B;. C. Ci € LV.EY. and D DLV VY
Several proofs in this section are adopted from Wong (1992), where B - ¢

Bi=Ci,1=1,2 ... ,L

atd

Theorem 4.5.2. Suppose that ¥ ~ N, (1, Sy). Let QYY) be given in (4.5.2)
Then Q(Y) ~ DW,(my,m2,S, Ay, A2) if and only if there exists a neigliborhood.
No, of 0 € L(V, V') such that for all T € Ny,

(2) Tnp~SH(W O T)Sg| = |I, — SETOSE ™l + SHTON s,

(b) Zy(BT") = ~Y(CT')

() (L, [S}(Tnp — SHW © T)T§) ' SHIL)Y)/2

=2(\;, T°SH(J, — SsT°Sa)-*SsT°)
+2(22, T°SH(I, + SIT°TH)-1TIT),

and _

(d) X1 — 2= Qn),
where T° =(T+T)/2, T*=(T-T")/2, and L = (B + C + 2Wu)T°.
Proof. Suppose that Q(Y') ~ DWp(m,,m2, T, A1, A2). Then by (4.2.4) and (4.5.1),
we know that for some neighborhood, Ny, of 0 in L(V, V),

Mowy(T) = My(T) forall T € Ny, (4.5.4)
which, by Lemma 4.3.3, is equivalent to: for all T € Ny,
np — 2S3(W @ TO)SE|~F = |I, — 253 TS} |- F (I, + oS4 T°SH "% (4.5.5)
and
(Q(w), T) + (BT + CT' + 2WpT®, [2 (Inp — "Ey(W 7 T°)E )7
x SE|(BT + CT' + 2WuT®))/2
(4.5.6)
= (A1 = Az, T°) +2(Ay, T°S(I, - 283 T°SE) " i T°)
+2(Ay, T°E¥(I, + 285 T°Th) 1Sy,
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Stuee 277 & Ny, {4.5.5) becomes

™3[4, + SETOSE| ™

"2

Uy — SEOW @ T°)Si| = |I, - SIT°T

and therefore {(a) follows. Similarly, replacing 27 in (4.5.6) by ¢T € Ny withce R

ind equating the coefficients of ¢ and ¢?, we obtain that for any T € N

(Q(“)! T) = (’\l = )‘23 T°> (45‘7)
and ‘
(BT+CT' +2WuT®, T4 (I, - cSHW @ T°)TE)™
x SL((BT + CT' +2WuT°))/2
(4.5.8)

=2(\;, T°S¥(I, — cSIT°TH)"'THT)
+2(Aa, T°S3(I, + cSIT°L3)7ITETe).
Let T = T°. Then T° = 0 and (4.5.8) reduces to

(BT* -~ CT*, Sy(BT* —CT*)) =0

i.c.
S(BT* - CT*) =0,
proving (b). Substituting (b) into (4.5.8), we obtain {¢). By the same argucment

as the proof of Theorem 4.4.2, we obtain from (4.5.7) that Q(u) = Ay — Ag, proving

().

The “if part’ is obvious. O

Corollary 4.5.3. In Theorem 4.5.2,let Sy = AQE withr(X) > 1. Then Q(Y) ~

DWp(my,ma,T, Ay, X2) if and only if
(i) AWAWAWA = AW A4,
(i) tr(AW) =my ~ma,  tr(AW)? = my +ma,
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({iii) AB = AC.

(iv) Ay — A2 = Q(u) = (B + WY AIWA(B + 1),
and

(v) A+ A2 = (B+WaYAB + W) = (B + W) AW AW AB + 1),
Moreover if Q(Y') ~ DW,(my,ma2,. &, Ay, A2) | then

my = %(tr(.—iI'V) + tr{ AW)?), ma = %(:r(.m')") — (A,
M = 2(B + W) (AWAWA + AWA)YB + W),
Az = %(B + W) (AWAW A — AW AYB + W),

Proof. By Theorem 4.5.2, it suffices to show that (a) - (d) there are equivalent to
(1) - (v) here.
Suppose that (a) - (d) hold. Let T = ¢SF € Np with ¢ € R and £ = T+Y.

Then (a) reduces to
W — cAYWAY @ 20| = |1, — cS°|™ |1, + cS°|™2, (4.5.9)

. L 1 .
Let vy,vs,--- ,v, be the nonzero cigenvalues of AzW A7, Then we obtain from

(4.5.9),

f[(l —e;)" =(1—-¢c)™(1+e)"™, (4.5.10)

i=1
where r = #(Z). By taking the logarithms, expanding and cequating the cocfficients

of ¢,c?,--- on both sides of (4.5.10), we obtain

vi=1 or y;=-=1, 7=12,---,s (4.5.11)
and
3 &
Z v; = my ~ ma, Z u;‘-’ = § = 1| + M. {4.5.12)
i=1 j=1
77
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Now (i) and (ii) follow from (4.5.11) and (4.5.12). By the proof of Corollary 1.4.3,

we know that (b) implies (iii). Note that

(A

(A, T°SH(I, - SIT°S2)~1S3T°) 4 (A, TSH(J, - SIT°S3)7I83T0),
= (A + Ay, D TOSHET T PAEIT)
k=0
+ (A = A, 3 T°THESITOTHHHITIT?)

k=0

anrl

1 1 1 1
(L, (S5 Ty - SEW @ T°SH) T SH(L))/2

(AYLSY [(In, — ATWAY @ SITTH) (A LEH))/2

{{ATLSY, (ATWAR ATLEH(SiT°SE)5)) /2 (45.14)

»
Il

(l
.Mz

0

{((B+C+2Wa)AT(ATWATFAI(B + C + 2Wy),

[l
™s

-
1
)

) 1 1 1

T°Si(SIT°TH)*TITO)}/2,

where L = (B + C + 2Wu)T°. By (i),
(ATWA)F = (AW 4, k=12,

and

(AYWATPAH = 43 WA4Y, £=0,1,2,---.
Thus (4.5.14) with (iii) reduces to

1 1 h] ]
(L. [S3(Jnp — SHW @ T°Z3) T SH (L)) /2

= 2((B + Wu) A(B + W), T°ST°)

k=0

(=<}
+2((B + W)Y AWAWA(B + Wp), 3 T°THESIT S TiTe),
k=1
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From (b), (4.5.13) and {4.5.15). we obtain
(QUe), T°) +2(B + Wiy A(B + W), T°ST*)

o
+2(B+WuYAWA(B + Wy), Y T°SHEITosiph+iniT)

k=0

+2((B + Wu)Y AWAWA(B + Wp), 3 T°SHESiTosh*siTe)
P (4.5.16)

(2. 1nd

= (M =2, T°) +2(\ — Ao, ) T°SHEITOSHPHIT

k=0

T°)
o
+2(A1 + Ao, Y T°TEH(SITOSHHTITY),
k=1
By comparing the cofficients of T°, (T°)?,--- on both sides of (4.5.16). we obtain

that for all T° € Ny,

(Qr), T°) = (A = A2, T°), (4.5.17)
(B+Wu) 4(B + W), T°ST®) = (A + Az, T°ST°), (4.5.18)

(B + Wu)Y AW A(B + Wp), T°STET®) = (A — Az, T°ST°ST?),  (4.5.19)

and
(B+Wu)AWAWA(B + W), T*(ST°)) = (A + do, T°(ET°)).  (4.5.20)

Thus (iv) and (v) follow from (4.5.17) - (4.5.20) and Lemma 4.4.1.
Now suppose that (i) - (v) hold. By (i} and (ii}, there exists an o-thonormal
basis, {e;}2;, of E such that A¥WAT =T e,0e; — 1 4™2 0. Thus

=m0t

. R my mytniz
Ly — ATWAR @S¥T°S¥ = Ly~ (O eOei— > eflde) 2 SiT°SH|
=1 i=m+1

= I, - BT EH[™ L, + SETOTH™,
proving (2). (b) follows directly from (iit) and (¢) can be proved by substituting
(1)-(v) into (4.5.14). O
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Corollary 4.5.4. In Corollary 4.5.3, conditions (i)-(v) arc equivalent to (1)-(iv),
(vi) and (vii), where

(vi) M+ X =(B+Wu)YA(B+ W)
and

(vii) (A— AWAWA)B + W) =0.

Proof. Let A. = (A¥WA¥)2. By (i) and (ii), 4. is an idempotent of rank m; +ma.

Thus I — A. is also an idempotent. By (v},
(B+Wu)AS(I, — ADAT(B +Wyu) =0,
which implies that (I, — 4.)A¥(B + W) =0. So
(AF = ATWAWAYB + Wu) =0,

proving (vii).
‘(i) - (iv), (vi} and (vii)’ = ‘(i) - (v)’ is obvious. O
By Corollary 4.5.4, we can rewrite Corollary 4.5.3 as follows:

Corollary 4.5.5. In Theorem 4.5.2, let By = AQ® T with r(Z) > 1. Then

Q(Y) ~ DWP(ml yma, 2, Al 3 A’.’)’

where

M = 2(B + W) (AWAWA + AWAYB + W)
and

Az = 5(B + W) (AWAW A — AWA)(B + Wp)
if and only if

(i) AWAWAWA = AW 4,

80
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(ii) tr(AW) = m; — ma, tr(AW)? = m; + ma,
(iti) AB = AC,
(iv) Qk) = (B + Wg)AWA(B + W),

and

(v) (A= AWAWAYB + Wy) = 0.

Corollary 4.5.5 was obtained by Tan (1975, 1976) for the cise where B = C.
Coroilary 4.5.3 was given py Khatri (19£€2, 1963) for the case where Ay = 0 and

ms = 0. We now arrive at our second version of Cochran’s theorem.

Theorem 4.5.6. Suppose that Y ~ N(u,Ty). Let i € {1,2,---,(}. W, & Sg,
T eNy withT # 0, and Q;(Y) be given in (4.5.2). Then {Qi(Y)} is an independent
family of DW,(m1:, mz:, S, Ati, Aai) random operators if and only if there exists 2
neighborhood Ny of 0 in L(V, V') svch that for any distinct 1,7 € {1,2,--- , €} and
for all T; € Ny,

(a) |np = Exy(Wi @ T7) = |, — ZT7|™V | T + T3 ™,

(b) Ty(B:iTy) = Ty (CiTY),

() ((Bi+Ci+2Wip)T7, [(Inp — Tv(Wi @ T)) ™' Sy |((Bi + Ci + 2Wip)T7))

= 4, T(Lp = ET)7ISTY) + (Aai, TP (4, + ST7) 7 ST,

(d) A= = Qi(n),

() Ty(W:®T2)Sy(W; ®TF)Sy =0,

(6 [Sr(W: @ Ty I(B; +C; + 2W;n)T}) =0,
and

(g) ((Bi+Ci+2Wipn)T7, Ty ((B; + C; + 2W;)T7)) = 0,
where T? = (T; + T7)/2 and T = (T; — T})/2.

Theorem 4.5.6 can be proved by Theorem 4.5.2, Theoremn 4.3.4, (4.2.7) and
(4.2.8).
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Corollary 4.5.7. In Theorem 4.5.6, let &y = A@ T withr(Z) > 1. Then {Qi(Y)}
is an independent family of DWy(myi, m2i, I, A1i, A2i) random opcrators if and only
if for any distinct 1,7 € {1,2,---,£},

(i) AW, A = AW, AW, AW; A,

(i1) tr(AW;) = myi — ma;, tr (AW;)? = my; + ma;,

(iii) AB; = AC;,

(iv) Mi—dai = Qi(p) = (Bi + Wip) AW A(Bi + Win),

(v) Aii+ doi = (Bi + Wip) A(B; + Wip) = (Bi + Wiu) AW AW, A(B; + W),

(vi) AW;AW;A = 0.

(vii) AW;A(B; + W;u) =0, and

(viii) (Bi+ Wip) A(B; + W;u) = 0.

Corollary 4.5.7 can be proved by Theorem 4.5.6 and Corollary 4.5.2. Corollary
4.5.7 was discussed by Tan (1975, 1976) for the case where all B; = C;. If all
mo; = 0 and all A2; = 0, then (i) and (ii) are cquivalent to © AW;AW;A = AW;A
and r(4AW;) = m,; ” and Corollary 4.5.7 is, therefore, reduced to the stendard

multivariate Cochran theorem.

Example 4.5.1. Let y ~ Np{p, 4), 7 € {1,2,---,8}, Qi(y) = ¥Wiy + 20y +
with Wi € S, Qv) = S5, Qiy), A=Y5 4, b=3"_biande= i e

Consider the following conditions:

(8) Q!(y) ~ ngn‘.‘,m;»;(’\lﬁ ’\2!') = Xgnl.'(}‘lf) - X:r!n;; ()\21')1 where X;Zn.;;(’\lf) and

x3,..(Azi) arc independent noncentral chi-square random variables, and where

my; = %(tr(.—if’V;)g + tr(AW;)), mo; = %(l&z'(AVV,-)2 — tr(AW;)),

Mi = 5 (Wip + b) (AW AW, A + AW AN Wit + bs),
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Ari = %(‘V,‘;A + b;)’(.—lII/’,-.-UV;.—l - .-UV;A)UV;;! <+ %

(b) Qily), Q2(y),--- ,Qe(y) arc indepcndently distributed;
(c) Q(y) ~ DxZy m.(M1y A2), where

my = St (AW + e (AW)),  ma = St (AT = (AW,

M = S(Wa+ B (AWAW A + AW )W +b),

and

de = 2(Wa+ B (AWAWA — AWA W +b);

(d) H{AYWAR) =T r(ATWid¥) and tr(AW)? = 30_, tr (A1)

(&) Qi(r) = (Wip+b;) AW:A(Wip+5:), and (A— AW, AW; )WV, 4 by) = 0;
and

(f) Q) =(Wp + b)) AWA(Wu +b), and (A—- AWAWAY Wy +8) = 0.
Then .‘ '

(i) (2),(b) and (£) imply (c),(d) and (e);

(ii). (b), (c) and (e) imply (a), (d} and (f);

(ii). (c),(d) and (e} imply (a), (b) and (1).
Proof. We shall merely prove (iii). (i) and (ii) can be proved casily by using Corol-
lary 4.5.4, Corollary 4.5.5 and Corollary 4.5.7. Suppose that (c), (d) and (¢) hold.
Then by (c), we obtain (f) and

AYWAWAW AT = ATWAS, (4.5.21)

By Theorem 2.1 of Tan (1975), (4.5.21) and (d) imply that for any distinen 2,
je{lsza“'ae}) i
AYW, AW AW AY = At WAl (4.5.22)
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and
ARULAN AT =0 (4.5.23)
Thus by (4.5.23) and (¢),
(Wip + b)) A(W;n + b))
= (Wip + ) AW AW A(Wip + b)) (1.5.24)
= (Wipe + b)) AW AW AW AW AW 4 b)) = 0.
and

At‘V,‘A{ij + bJ) = AW .41“’}.4“%(”7)';1 + bj) = 0. {-1.5.25)

Now (b) follows from (4.5.23)-(4.5.25) and (a) follows frowmn (4.5.22) and (¢). O
4.6. Cochran theorems for {Y'}V;Y' } with Iy = 5,08,

Although the Cochran theorems obtained in Section 4.4 and 4.5 are very general,
verifications of the conditions there are not always casy beeause of the involvernent
of variables T; ’s in £(V, V). The involvement of T;’s is caused by the fact that cither
£y may not be of the form A® £ or W;’s arc not assumed to be nand. i order to
set up some easily verifiable Cochran theorems, we may consider some restrictions
either on Ty or on W;’s. In this section, we shall improve scine restrictions on Ly
to the extent that Ty is not required to have the form A @ . Restrictions on Wy's
will be discussed in the next chapter.

Let S;, Sz be lincar subspaces of E, V respectively and §,0S, be the linear
span of {z0y : z € S, y € S2}. Suppose that ¥ ~ Np,,,,,(0,Zy) with restriction
ImZTy = 5,005,. Assume also that T is n.n.d. We shall show that, in the Cochiran
theorem, this S, is the place in which £ lies: ImX = 53 . Note that Xy = A X

is the special case of the above restriction where S} = IrnA and S, = /X,
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First, we introdnce the notion of inclusion maps. For any subset H of & given

st I, the inclusion map of H into K, denoted by Iy i or Iy, is defined by
In(z)=r=, z € H. (4.6.1)

Note that Iy (z) is used to show how H is embedded in K, scc Wong (1986).
Suppose that Ej, Ea are n;-, na-dimensional inner product spaces over R. Recall

that for any T € L(E,, E»), the adjoint T' € L(E-, E;) is defined by
(T'(s)z) = 0 T(z), z€Ey, ye ks (4.6.2)

Lemma 4.6.1. Let E,V be n-, p-dimensional inner product spaces over R, let S, T
be linear subspaces of E,V respectively, and let Is, It be the inclusion maps of S,
T into B,V respectively. Then

(1) As functions, Is € £(S, E) and I = Ps. Hence as opcrators IsIg = Ps in
L{E E).

(b) LetL € SOT and L. = I5LIy. Then (i) PsL =L = LPr,(ii)L = IsL.I},
and (iii) LY = I''L*Is. Hence if dimS = dimT = r(L), then L. is nonsingular

and L._I = I&-L*’Is.

Pre- ©. We shall merely prove (b)(iii): Let B = I+L*Is. Then
L.B= I.'S-LITL}L'*'IS = I'SLPTL+IS = I_'S-LL+IS.

Since LL* is sclf-adjoint, so is L.B. Similarly, BL. = I+L*LIy and BL. is

sclf-adjoint. Now
L.BL. = (IsLIpYIp LY LIp) = IsLPrLYLIr = IGLLY LIy = IcLIT = L..
Similarly, BL.B = B. Hence B=L}. O
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4 1 \ il

Theorem 4.6.2. Let ¥ be a random vector of a probabiliny spac

S NN, o BV

L(V,E) such that ¥ ~ N(0.Zy) and for some lincar subspaces
N S C(VVEN X~ 0 and

respectively, ImSy = §,0S, # {0}. Let W € Sk v
Q(y) = y'Wy. Then Q(Y) has a W,(mn, T) distribution for some positive integer
m if and only if

(2) Sy(WRIHISy(WOIH)Zy = Sy(IVQ THT,

(b) S2=1ImX,

and
(¢) tr(Sy(WQIH))=mr(Z)#0.

Procf. Since Y ~ N(0,Zy), ¥ € ImEy with probability 1. So we may assunn

that for any w € £, Y(w) € ImIy-.
Supposc that Q(Y) ~ W,(m, ). Then by Theorem 4.4.2, for any T' € Sy,
(-1.6.3)

tr (SEW @ T)E3)* = mtr (TITSHY, k=1,2,....

Let 7 = T+, Then from (4.6.3),

c=1,2,....

tr(SE(W @ SH)TE) = mr(S), &

’ -
is idempotent; hence (a) follows. Note that

So TE(W @ =)}

(4.6.4)

zg’ = Prmxy =P51D5._. = Ps, @ Ps,.

So
tr(S3(W @ T)S3) = tr(S3(W @ (Ps,TPs,))S3)

and therefore by (4.6.3),
mtr (SETTY) = mtr (3 (Ps, TPs,)T%).
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Sinee e > 0, (ET) = tr{Ps, TPs,t). A T) = {(Ps,TPs..T). Since T,

P, L P, are self-adjoint, & = P, ZPs,. In particular
ImX C ItnPs, = 5. {4.6.9)

Now let T = I, = £°. Then by (4.6.3), _.Y(I/V @, - S"))Sé = 0 and thercfore
LW e (I, - Z°)E} =0, ie,

(Ps,WPs,) O (Ps, (I, - °)Ps,) = 0. (4.6.G)
By Theorem 4.4.2(c),

0 < mr(S) = tr(Sy (W @ =) = tr(Sy SH(W © TH)EY)

= tr(Sy((Ps,WPs,) ® (Ps,=Ps,))).

So Ps,WPs, # 0. Thus by (4.6.6), Ps,(I, — £°)Ps, = 0. i.c., Ps, = T°Ps, and
henee Sa € ImE. Therefore by (4.6.5), S2 = ImX, proving (b). By Thcorem
4.4.2(e), m = tr(Ty (W @ =%))/r(Z); hence (c) follows.

Now supposc that (a) - (c) hold. Consider the inclusion maps [; and I» of )

and S into E and V respectively:
Lz)=z, z€ 85, I(z)=:z :&8. (4.6.7)
Let
Zw)=LY (), wef. (4.6.8)

Then each Y(w) € 50853 and Z(w) = (11 @ L)Y (w)), w € Q. So Z ~ N(0,Z2)
with
Sz = (I; @ I-'-)Sy(.h ® I:) (469)
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Note that I; 8 I» is a linear map of £(5;.5) into £{17 E) and by Lemuma 16,1,
(Lh S L)YE(4; & L) =y GLe i
Hence r(Ez) = r(Ey) and Tz 1s nonsingular. By (a).
SHW O SHE (I Q@ THEY =S5 (Vs Ehey. (+.6.11
By (4.6.4) and Lemma 4.6.1, &5 = (N1 & L)1) & L)', So by (-L.G.11),
(LOLY(WRISHSy(WQSH) L OL)= (L QLYW QSH) (= 1), (L6.12)

Let
W.=LWI., Z.=LSl. (-1.6.13)

Then W, € Ss, and T. € N,. Since S» = ImE, by Lemma 4.6.1, £, is nonsingular

and
=LS%L, S=LT.I. (1.6.14)
By (4.6.9), (4.6.12), and (4.6.14),
(W.@I-HZz(W. o= ) =W.oI] (1.6.15)

Now, consider the inclusion map I. of ImW, into S,:
I(z)=z, z€lImW.,. {1.6.1G)

Let
Z(w)y=1.Z(w), we. {4.6.17)

Then Z. = (I' ® Is,)(Z) ~ N(J,Ez. ) with

2. =(I.®1s,)Z2(1. © Is,). (4.6.18)
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Let

W..=I'W.I.. (4.6.19)
Then by Lemma 4.6.1, W.. is nonsingular and
Wl=IWkIL. (4.6.20)
By Lemma 2.1, W. = W.Prmw, = W.I.I,. So by (4.6.135),
(W.L)QSINEL (W) R =W. T . (4.6.21)

By multiplying I @ Is, from the left and multiplying I. © Is, from the right, we

obtain from (4.6.2) that
(W.e STNZ2 (W @ ST =W 0 200
Thus S, = W32P O .. Let
Z2.. = WizZ.. (4.6.22

Then Z.. ~ N(0,Zz,.) with Tz, = Itmw. © .. By definition, Z, Z.. ~
W(r(W.),Z.). So I.Z[,Z..I5 ~ W,(r(W.),hX.15). By (4.6.14), LE. I, = .
So it sufficics to show that YWY = L, Z!_Z..I;. By (4.6.22), (4.6.19), (4.6.17),
(4.6.12), {4.6.8), (4.6.7), and Lemma 4.6.1,

LZ.Z. 0= LZW..2.I, = LZ LILW.LI'.ZI,
= L2’ Prow. WaProw, 21, = h2'W.ZI,

= LEY'LEWHLLYLI, = Ps,Y'Ps, WP Y Ps, =Y'WY. O

The following result is our third version of Cochran’s theorem:
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Theorem 4.6.3. Suppose that ¥ ~ N, ,{0.Zy) with [mEy = S5, ~ 0}

where S). Sa2 are linear subspaces of E. 17 respectively. Letr € {1.2,--- 1, ¢
Se.y € LV.E). Qi(y) = ¥ Wiy. and T € AV with & # 0. Then {Q(YV} | is
an independent family of W,(m;. E) random operators for some m, < {1,200} if
and only if for any distinct 1,7 € {1,2,--- . {}.

fa) Sy(W;9TH)Sy(W; ©THEy = Sy (W, Q EHEy

(b) S:=1ImT,

(c¢) tr(Zy(W;®EH))=mr(Z)#0,

and

(d) Sy(W;wSHIy(W; 9 SHIy =0.

Proof. Supposc that {Q:(Y ')} is an independent family of 1, (7, T) randowm oper-

ators Qi(Y). By Theorem 4.5.2, (2) - (c) hold. By Corollary 4.4.8,
Sy(W; 0T)Zy(W; 0 T;)8y =0. (-1.6.23)

Let T; = T; = T+. Then (d) follows from (4.6.23).

Now suppose that (a) - (d) hold. Then by Theoremn 4.6.2, {Q:(Y")} is u family of
Wy(mi, L) random operators Qi(Y'). By Corollary 4.3.5, we need only prove that
{Qi(Y)} is pairwise independent. Let ¢, be distinct clements in {1,2,--- ,{}. By

(d) and the notations in the proof of Theorem 4.6.2, we obtain
(W@ NZz(W;.0I)=0 (4.6.24)

in the same way as we obtained (4.6.21). It can be proved that cach Wi, is n.n.d.

Let Z; = W Z. Then Z; = (W @ I)(Z) and so by (4.6.24),

Cov(Z:,2;) = (W @ DE2(Wi @) =0
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Siuee Z,. Z, are jointly normal, Z;. Z, and therefore A, = L.Z]Z,15. N, = 1.2 Z, I
are independent. By Lemma 4.6.1, A, = Q;(Y) and &; = Q;(Y). So Q,(}") and
Q,(Y') are independent. O
Corollary 4.6.4. In Theorem 4.6.3, suppose that Sy is nousingular. Then {Q,(Y)}
is an independent family of W,(r(W;),X) random operators Q,(Y") if and only if
for any distinct 1.3 € I,

(x) (W,0SH)Sy(W;2S+) =W, @S+
and

(b) (W, @SH)Sy(W; 3 SH) =0.

Note that ISy = EUV| so Corollary 4.6.4 follows from Theorem 4.6.3 dircetly.

So far we have concentrated on deriving necessary and sufficient conditions un-
der which {@Q:(Y}} is an independent family of Wp(m;, Z, A;) random operators.
But in practice, it is, mostly, the sufficient condition that is used in statistical in-
ference, and often, one can afford an castly verifiable sufficient condition that is not
neeessary. We shall give some examples in this direction.
Example 4.6.1. Suppose that Y ~ N(0,Zy). Let W € Sg such that

Sy(WeL)=P@T (4.6.25)

for some P € L(E,E) and T € Ny with & # 0. Then Y'WY has 2 Wp(m,Z)
distribution if and only if

(iy PP=r¢
and

(ff) trP = tr(P"’) =m.
Proof. Supposc that ¥ ~ W,(m,X). Then by Corollary 4.4.4(e),

te (Sy(W O T =mtr (ST, £=1,2,..., T€Sv. (4.6.26)
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By (4.6.25),
tr(Sy(WeT) = tr(Sy (W LY. & T) = tr((P @ )W, & TV
=tr(P & (ST))* = tr(P*)tr(ST*.
Since T # 0, we obtain from (4.6.26) that
tr(P*Y=m, k=12.... {4.6.27)

So (ii) follows and all cigenvalues of P must be cither 0 or 1. By using matrix
representations, we may assume that P, W € Muxn. £ € Mg, where 117 s

symmetric and T is n.n.d. Now by (4.6.27),
P=Qldiag(J;.J-_»,...,J,)Ql_l, (1(;28}

where Q: € My xn, cach Jordan block J; of P is of the form J = M+ Np, A2 {001},
Nl ] {0}, a.nd

oo

O

o

oo

oo
Y

2.

Ne=1}) . . . -« . | €M for ¢

(e R oo ]
o o
oo
oo
o~

Since ¥ is n.n.d.,

= diiag(Al,Ag,...,Ap)Q; (4.6.29)
for some p X p orthogonal matrix Q2 and for some A; 2> X2 > -+ = A, > 1. By

(4.6.25), (4.6.28), and (4.6.29),
SY(WoIt)=(Q:1@Q2)C(Q:2Q2)"", (4.6.30)

where C = diag(J1,J2,...,Js) @ (bijp;) and pj =1for 7 = 1,2,...,7(X); g, = 1
for j > r(Z), where §;;’s are the Kronecker symbols. Recall that A4 B and B A

have similar matrix representations. So
C issimilarto D,

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where D = diaglpy ..o 1) % dragldy Ja. oo J.). Now
D = diag(pding(Jy, ..., Jo ) pading(Jy. oo T adiag(Ur o 00

Sinee © £ 0, Ay > 0 and j; = 1. By Proposition 2.4 of Woug (1982). each Jordan

block of Sy (W s Styisa e Ror (g é) € M,yx2. So by (4.6.30). the J,'s must
be 0,1, or (g (1)) . Therefore by (4.6.28), P? = P?, proving (i).

Now suppose that (i) and (i) hold. Then
i (Sy(W e TH = [Sy(W e LY. ¢ T)*
=tr{(PO ), @ T)F = tr (P*)r (ETY k=1,2,---.
Thus by (i)

tr{Sy (V@ T)) = tr (P)tr (ET) {4.6.31)
and
tr (Sy (W o T)* =tc (P (ST, k=2.3,---. (4.6.32)

Now (4.6.26) follows from (4.6.31), (4.6.32) and (ii}). O

Example 4.6.2. Supposc that ¥ ~ N(0,Zy) and
Sy =4QS+(MOL)E +H'(M' ®I,)

for some A € Np. & € Ny, M € L(E,E), and H € L(E.E)@ L(V.V). Let
W; € Sg,i € {1,2.---,C}. Suppose also that for all distinct 7,7 € {1,2,---,{},
(2) AW AW A = AW, 4,
(b) WM =0,
and
(c) WiAW; =0.
Then {Y'W;Y'} Is an independent family of W,(m;,T) random operators Y'W;Y

with m; = tr(AW;).
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CHAPTER FIVE

COCHRAN THEOREMS WITH

NONNEGATIVE DEFINITE I1.°S
5.1. Introduction

In Chapter 4. we obtained three multivariate versions of Cochiran’s theovems. In
practice, for statistical inference in linear models such as MANOVA and regression
models, it is often the casc that all Wi's involved in quadritic forms {Y'11,Y7} are
not only sclf-adjoint but also n.n.d. Se in this chapter. we shall consider quadratie
forms Qi(Y)=Y'W,)Y + BYY + Y'C; + D; (z = 1.2,--- () with n.n.d. 's0 A
general Cochran theorem is then obtained for & normal random operator Y. This
result docs not rcquire that the covartamce, Xy, of ¥ ix pousingular or s of the
form A® L.

This chapter is organized as follows. In Scction 3.2, we shall state and prove
some preliminary results. In Section 5.3, an casily verifiuble Cochran theorem is
obtained and it is an extension of the results of Pavur (1987) and Wong sind Wiy
(1992). Examples and applications of the above Cochran theorem will be disenssed

in the last scction.
5.2. Preliminaries

We shall first prove the following lemmas.

Lemma 5.2.1. Suppose that Y is a random vector of & probability space into
L(V, E) such that the mean of Y is 0 and the covariance of Y is Zy. Let W € Ny,

T € Sv. Then
tr(Sy(W o T))f = tr(Ep (T2 W), k=1,2,---. (5.2.1)
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Proof. Recadl that Yy in LIL(VIE ) L(V. E)) is defined by
lu, Syvy =cov({(x.¥). (2. Y}), uve LV E)
Let Wp . be the commutation operator on L(V, E). Then by (2.2.2),
Y = K, a(Y). Sy = Kpnly ;.
So by Lemma 2.2.1(a),

i (Sy (T & WHF =t [KpaZy Kup(T @ W)
= tr [Kp n(Sy(W e T)) 'Sy K, (T 2 W)
=t [(Sy(W O T Ev Ko (T & WK,
=tr[(Sy(W @ T)) ' Sy(W @ T)]

=tr (Sy(W @ TH.

0

For any T € L(V,E), we shall use KerT to denote the kernel {z € V
Tr = 0} of T, usc (JmT)t to denote the orthogonal complement of I T and

use dim (ImT) to denote the dimension of ImT.

Lemma 5.2.2. Let W € Vg, © € Ay, Sy € Ngg vy, let m be a positive integer,

and let {e;}1oy, {fi}i=,, be respectively orthonormal buses of E and V' such that

W = i:w,-c;Dc.', = ic’jfjafj,

=1 =1

wheres=r(W),r=r(E), w; >0,i=1,2,--- ,s,and6; > 0,7 =1,--- ,r. Then

tr(Sy (T © W) = mtr(ST): forall T €Sy (5.2.2)
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if and only if

tr(WZ;;WEji ) = mojoj, Juii =120 (0.2.3)
=0, r=r+1.--.p (9.2.:0

and
=0, 7#7, 43 =12---p (5.2.5)

)
=1

where T;50 = g;iieileir and o = (fiUei, Sy (fpLep)) for all 1" =
1:2»"' RL jvj' = 1723"' » P-
Proof. Suppose that for any T € Sv, (5.2.2) holds. Since Syvr € Ne(rny.

Cjjriit = Ojrjirie {5.2.6)

Since {(f;0f;) ® (eileir)} is an orthonormal basis of L(V, V) @ L(E. E),

P n
Syr = Z ):: ;i (fiOf) © (eille;r)

jg=1id=1

= z”: i o;i (f;0f) @ (eiler) + H,

jg=1ii=t

where

P n n s n -
H= Z Z + D Z'*' Z Z ojyii(f;3fj) @ (eleir).  (5.2.8)

Hi'=1 |G =s41  i=adli=l i=stlit=1

Therefore

s n p
Sy (TeW)= Z Z Z w.'vO’_;j','.'-(ijTfJ':) & (e ).

=] i=1 j,5'=1

Let 7,7'=1,2,--- ,p and §;z’s be Kronecker symbols. Then

3 n P
tr(Sy(T@W)P =tr{ > D> D> wawindj,jiinTissiaiy

i,05=1 it,82=1 51,5 G2 05 =1

x [(f#,0T ;) @ (:,Cei)] [(fOT fi2) @ (ei,0cir )] }

3 »
= Z Z wiwi &, i el S Thin) (i TH)-

i|£'=1 jl vj: oj2 !];=1
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Sinee

ST =Y o;(£05)T =) a,(LOT )

1=1 J=1
(TP = Y 05,05, ThH))
jX 'j2=1

Therefore (5.2.2) becones
. »
—= i)
YooY wiwog el fie T (s Tfi)
=1 g =t

= > o50.(fi, Tfi)) forall T e Sv. (5.2.9)

JtaJz=1

Let T = f;00f;. Then
{(Fivr TEi) (Figs Tfia) = 833851385256 515

and
((Fis TFia))? = 65,58i2365, 56525+

Thus from (5.2.9), we obtain

A

> wiweoly =mei for j=1,2---.7, (5.2.10)
i,t'=1
and
Z w;w,-vo?j,-‘-, =0 fOl‘j =r+1,--' P (5.2.11)
1,i'=1

For distinct j and ', let T = f;0f; + f30f. Then
{Fins Thig) Sigo Thin) = 85058555 + 850 8345 W5, 56525 + 631 8525)
= 8515813385525 + 85845065, 5855 + 851303385, 565nr + 850 O3y 8 v S5
and
({fius TSI = (855655 + 6585 V-
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Thus (5.2.9) becomes

P
‘--. [
P

E Wy (0'””' -rO') S -r-o’”ru'cf} Ji'a -+ T Tyyrye ) = nunc
i,i'=1

which. by (5.2.10) and (5.2.11), implics that

Z win '(o'u u"'"’nn)=0

he e
R % A

(5.2.12)

Since w; >0 fori =1.2,-- s, (5.2.11) and (5.2.12) become

oy =0 for 1,/ =1,2,---,s8, J=r+1.--- .p

and
s (5.2.13)

C )
Py ot =12,

. -t s ‘
Gijiv =0jpei=0 for 7#7, 3,7 =12,--

Thus
Sj: Z aj,-,-,ve;':!c;: =0 for j=r+1,---,p

s pf =—
=

and
Ry L0

Sip= Y oipiwelen =0 for j#j, =12
i,i'=1

proving (5.2.4) and (5.2.3).

Now let T = f;0f; + fpOf; with j # j'. Then

Ui Thp) i Thiad = @iy + 650005350851 5855 + 65154055)
LENLRTIIN

= 65,505157851 36525 + 6577655651 16525 + 8513655085 5 8ias + 8y by iy

and

({fivs Tfi))? = (65,5655 + 8507 6525)°-

Thus (5.2.9) becomes

4
E | wiwi(Gjjis O jrivi+Cjejive Oy jiri+ O jrin Ojjeirit O yive Ojsins) = (0,0 jo 0 jor )

i,¥'=1
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which, by (5.2.13), implies that
S
W AN Y] . - .
Y wiweo T = megep, j#EG, G i =10 (5.2.14)

1=l

Combining (5.2.10) and (5.2.14), we obtain

2 WWe O30 Oy jiti = ma;Cy,  1,] = 1’2’. “e LT,

Li'=1

i.(!.
iT(I’VSij SJ'J') =meo;Ty, j’j' = 1) 2, T,
proving (5.2.3).
Now suppose that (5.2.3) - (5.2.5). Then from (5.2.7) and (5.2.8), we obtain

» L
Sy= Y (EF)6 | Y ij'ii'(c@es')) +H

53r=1 iit=1

z (fJDf] ®—‘JJ + H.

1J=1

By (5.2.4) and (5.2.5),

Sy = Z((fJDf,) ®T;;) + H.

j=1
Fori,i =s+1,---,n, since ¢;,ep € ker W, we have (I, @ W)H(I, @ W) =0. So

(T©W)H(T®W)=0and

tr(Sy(T QW) =ur (v\(fJDfJ) QL NTOW)+ H(TQW)
-] J_

tr Z(f,DTf,) QT;W+HT QW)

=t | S UOTH) O T W
-J‘_.1
= Y (FOTH)F#OT 3 )tr (S5, WEj 5 W).
=
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Thus by (5.2.3),

oSy (TQWW =m ¥ (HOTHNSOT 7, 00,0,

nr=1

=mur (Y o;(f;OTf,))

J=i

= mtr [Z Gj(ijfj)T]:‘

Jj=1
ie.,

tr (Syr (T © W) = mtr (ST,
proving (5.2.7). O

The above random vector Y7 is introduced for conventence. Indeed, the matrix
representation, [Ey-], with respect to usual bases in £ and R, can be written in
the form:

[EY'] = diag(En, 222, ceey E,,, 0,..., 0) -+ [Hr]
with (I, ® W)H(I, ® W) = 0. The same cannot be said for Sy,

Lemma 5.2.3. In Lemma 5.2.2, let 1,7’ = 1,2,--- s, j,7' = 1, ,r, a;,p =
ojjiir [0; and A; = Zii,zl aj;,-»e,-lje,-r = ¥;;/0;. Then the following two conditions
are equivalent:
(2) W2 Wy ) =mojop, 5,5 =127
(b) there exists an A € Ng such that

(i)A=A4; for j=1,2,---,r,

(ii) tr(WA) = m.

Proof. Suppose that (2) holds, i.e.

s
E Y
w,'w,-co’jj;,-oo'j'j,,-g = mcjaj's 1] = 1’2’ cee T

1,18 =1
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Thenfor 7 # 3, 7.7 =1,2,---,7,

T, = E Ly :(; E aa].”, = E w,,w '(l;”'(l.’ i

' =1 =1 =1

So

>

E wwy [a)u oa']"'a.l i + aJ Y ]
1,10 =1 =
(5.2.15)

X
o
= E wiwy (ajii —api) =0
=1

Sincew; >0,2=1,2,..+,s, we obtain from (5.2.15)
. v' . «' . - o' — e
ajip = apip forj #3540 =128 7,5 =12,

Sofor 7,7/ =1,2,---,r,

-
Aj = E ajiveille; = E ajive; ey = Aje.

i,i'=1 1,1'=]

Let A = A4;. Then it suffices to show that A € Ng. Foranyz =3 . _  za¢o € E,

we have

(z,dz) = (Z ZaCas Z 0161:9 (e;Dei')(Z ToCa))
a=]

5i'= a=]

(5.2.16)
s

1
= 0'_ TiTit 011"

1;ir=1

and

0< (f1DZ ZaCay SY'(lez IgCg))

=(Zra(f1‘3¢) Z Z ojiriv (fi0fi) ® (eiles )(Zzs(fxﬂeﬁ)))( 16)

=1 7j,3'=1

= E TiZy Ot -

1,1/=1
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Since 07 > 0, from (5.2.16) and (5.2.17). we have 4 € A and hence (b)) follows,
By (a),

m =

P tr(II"S,-jlt'Sj.j.) = tr(I‘f'.-l,'u'A)‘r).

Thus (b)(it) follows from (b)(1).
Now assume that (b)(1) and {(b)(it) hold. Then

A
~12

o N
tr(WZ;,WE;;) = tr(I'V—J.’IV - Yoo

j j
=tr(WA; WA )ojop =tr(WAWA)ej0; = majo;

proving (a). O

Lemma 5.2.4. In Lemma 5.2.2, the following conditions are equivident:
(a) For all T € Sy, tr(Sy«(T @ W) = mtr (ST, k=1.2..-..
(b) There exists an A € N such that
() (L, @ W)(Sy — @ AYT, @ W) = 0
and

(i) AWAW = AW, r(AW)=m.

Proof. Suppose that (a} holds. Then by letting & = 2, we obtain from Lemma 5.2.2
that
tr(WEijerj») =ma;oy, 5h1'=12,---

7

and

Ty» =y (H0f) @ ;5 + H, (5.2.18)
i=1
where H is given in (5.2.8). Then from Lemma 5.2.3, we know that there exists an

A € Ng such that A= A4; =Z;j/0;,7 =1,2,--- ,7. Thus, (5.2.18) becomes

Sy =y _o;(fi0f;) @ Tsi/e; + H
i=1

.
=Y oi(fCfi )0 A+H=S@A+H.

=1
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Sincee,, 640 € KerW fori, ' = s+ 1,--- ,n,
(L,oW)Ey —ZS@ANL,oW)=([, e W)H(I,oW) =0,
proving b(1). Thus by (b)(1),

tr Sy (TOW) =tr[(S@A+HNT W)
=t [(ST) @ (AW) + H(T @ W)}

=tr[(ET) @ (AW)]* = tr (ST)*tr (AW)*,
Hence for T = S+,
tr (Sy (ST @ W)F = tr (T%)*tr (AW)* = rtr (4W)*. (5.2.19)
Since r = r{E) > 0, from (a) and (5.2.19), we obtain
tr (AW) =m, k=12,---.
Also, since 4 € Ng, we have
tr(AW)* = tr(A¥WAN =m, for k=12,
So A} WAt is an idempotent of rank m, i.e.,
r(ATWA) =m

and

ATWATATWAY = ATWAS,

the latter of which is equivalent to

AWAW = AW (or WAWA=WA4).
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Since r(AW) = r(A T AT), (b)(ii) follows.
Now we assume that (b) holds. Let H =y, =T Q4. Thenforall T ¢ Sy and
k=1,2,---,
tr(Sy(TOW) =tr (S A+ HYT o W)*
= tr [(ST)© (AW) + H(T 2 u)*
= tr (ST)*tr (AW (by (BYE)
=tr (AT WAt (ST
=mtr(ST), (by (b)(i))
proving (a). O
The statement of the following result was given to us by Professor Rong-Lin Fu

and Professor Wei-Cai Deng, the proof was given by Professor, Wong and the detail

of the proof is listed here:

Lemma 5.2.5. Let Wy, Wa, --- ,Wee Ngand W =W, + Wa 4+ ... + W,. Then
(i) KerW =KerWyNKerWan---NKerW,
and

(ii) ImW=ImW, +ImWa+---+ImW,.

Proof. By induction we may assume that { = 2.

(i) Let z € Ker W. Then
Wz = (W1 + Wz)x =Wz + Waz =0,

and hence

(z, Wz) = (z, Wiz) + (z, Waz) = 0. (5.2.20)
Since Wy, Wa € Ng, (5.2.20) implies that
(z, Wiz} =0 and (z, Waz) =0,
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v Wiz =0 and Wor = 0. So
T € Ker W, N KNer W, (5.2.21)

Nowlet z € Ker Wi NKer Wy, Then Wiz = 0 and W3 = 0 and heniee Wiz 4+ Wz =
We = 0. Thus

r € KerW. (5.2.22

Combining (5.2.21) and (5.2.22), we obtain (i).
(i1) Let £ € ImW. Then there exists a y € E such that z = Wy = Wiy + Way.

Since Wiy € Im W, and Woy € ImW,, z € Im W) + Imm Wa, i.c.,
ImW CImW, + ImW,.
Thus it suffices to show that
dim (ImW) = dim (Im W, + ImW,).
Let 2 € KerWy N KerW,. Thenforall y,s € E,

(ya ‘/le) + <:7 ".’I) = Os

(z, Wiy} + (x, Waz) = (z, Wiy + Waz) = 0.

Soz € (ImW, + ImWa)*, ic.,
KerWinNKerWa C (ImWy + ImWa)t. (5.2.23)

Let z € (Im W, + Im W,)*t. Then (z, Wiy + Waz) =0 for any y,z € E, which is

cquivalent to

(y, Wiz} =0 {y, Wz) =0 forany wy, z€E.
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So z € Ker 117 N Ker 115 and hence by (5.2.23).
KerWiNKerWa={UmW, + Im )=, {3.2.2:1)

Now by (i) and (5.2.24),
dim{(ImW) =n ~dim(Ker W) = n —dim {Kcr 1V, 0 Ker 1)
=n—dim(ImW, + ImU2)Y) =n = (n = dim (D Wy + [ 113))
=dim (ImW; + Im112).
a

Note that n.n.d. properties of W and W;'s are essential for the above Lemma

5.2.2 - Lemma 5.2.5.
5.3. Cochran theorems with nounegative definite 117, s

Theorem 5.3.1. Let Y be a random vector of a probability space imo L{V, E)
such that ¥ ~ Npxp(0,Zy), W € Ng and let & € Ny with £ # 0. Then the
following conditions are cquivalent:
(a) QYY) =Y'WY ~ Wy(m,I),
(b) There exists an A € Ng such that

() (WL Sy -A@ZYW@L)=0
and

(i) AWAW = AW, r(AW)=m.

Proof. By Corollary 4.4.3 with u =0, we know that Q(Y') ~ W,(m, Z) if and only
if for any T € Sy,

tr(Sy(W @ T))* = mtr (ET), k=1,2,---.
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Also by Lemma 5.2.1, we have
a(Sy(Wa T = (Sy (T o) . k=12,

aned

Ty = I{p,n:YI\-n.p’

where K, is the commutation operator on L(V, E) defined by (2.2.2). So by
Lemma 5.2.4, it suffices to show that (i} is equivalent to
() (LeW)YEy. ~Sed)(,olV)=0.
Suppose that (i) holds. Let H = £y — A @ E. Then by Lemma 2.2.1,
Sy = KpnSylnp = Kpn[(AG )+ HIK,
= KNpn(AQE) K p+ KpnHRKp p =S Q@ A+ K, nHRp p.
Thus by Lemma 2.2.1 again,
(I, @W)Ey —ZA)(I, 0W)
= (I, @W)Kp n HK; (I, @ W)

(3.3.1)
= Kpnlnp(Ip @ W)y a H K (I, @ WK, nin
=RKon(WQL)H(W © I,)K, p.

So by (i) and (5.3.1), (iii) follows.
By a similar argument, we can prove that (iii) = (i). 5
Example 5.3.1. In Theorem 5.3.1, if W € N is positive definite, then the fol-
lowing conditions arc cquivalent:
(') Q(Y) ~ Wy(m, 5).
(b') There exists an A in N such that
(i)Sy =40C

and
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(i) AIWA= A, r(4) =m.

Proof. Supposc first that (a’) holds. By Theorem 5.3.1, there exists an A ¢\
such that

(W L)Sy - AV &1, =0.

Multiplying both sides by W1 ® I, we obtain Ty — 4 Q £ = 0, proving (b')(1).

By (b)(ii) and the cxistence of W1, we have
AWA=4 and  r(AWV) = r(A) = .

proving (b’).
Also by Theorem 5.3.1, (b') = (a'). O

Now we shall generalize Theorem 5.3.1 to include the noncentral case, 1o ¥~
Naxp(its Sy) with 4 € £(V, E).

.

Theorem 5.3.2. Suppose that ¥ ~ Ny (s, Sy). Let W 2 Nl X2 Ny withy
f(S)>1,and QY)=Y'WY +B'Y +Y'C+ D with Inu BC I W ind i C C
ImW. Then Q(Y) ~ Wp(m,Z,)) if and only if there exists an A € Ny such that
(31) (W@ L)Sy - 40 S)(W 8 1,) =0,
(bl) AWAW = AW, r(AW)=m,
(c1) AB= AC,
and
(d1) A= Q(p) = (B + Wu)A(B + Wp).
Moreover, if Q(Y') ~ W,(m, X, A), then
(el) m = tr(Sy(W @ ¥))/r(o).

Proof. By Theorem 4.4.2, we know that Q(Y) ~ W,(m, L, A) if and only if for any
T in a neighborhood, Ny, of 0 in L(V, V),
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() (S (W o T = mtr(ST°), k=1.2,...,

(b) A=Qlp),

(¢) Sy(BT*)=Sy(CT"),
andd

() (L, (Inp = 2y (W @ T°)) ' Sy (L)T°)) = 4(A, T°({, - 25T°)7'ST°)
where T =T+ T, T° =(T+T)/2,T" = (T-T"}/2and L = (B+ C+2Wu)T°.
Morvover, if Q(Y') ~ Wp(mn, Z, A) then

(¢) m=tr[Sy(W @ Z*)}/r(T).

Suppose that Q(¥') ~ W,(m, I, A). It suffices to show that (a) - (d) imply (al)-
{d1). By Corollary 5.2.4 and Theorem §.3.1, we know that (a) implies (al) and
(b1). Since Im B C ImW and Im C C Im W, therc exist some B., C. € L(V, E)

such that

B=WB. and C=WEC.. (5.3.2)

Thus by {c). (al) and (5.3.2), we obtain

(B-C)T°, =y((B-C)T*))

= {(WB. - WC.)T", Sy((WB. - WC.)T"))
={(WoTXB.-C.), Ev(WRT")|(B. - C.))
=(B. - C., [(WoT")Sy(WT)|(B.-C.))
= {(B.~C., WAW(B. - C.)T"£T")

= (BT* -CT", A(BT" -CT")T) =0,

ABT" - CT*)T =0. (5.3.3)
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So by the proof from (4.4.18) to (4.4.19). we obtain (cl1) from (5.3.3). Note that

(W OT*)(I - 2Sy(IF @ T°) 'Sy (I 9 T°)

_(W®T°)Z(28y (WO THSy (W & T°)
k=0

=(WOT°)Sy(WeT?)+(Wo T")Z( Sy (I @ TSy (1 0 7%) (5.3.40)
k=1

= WAW @ T°ST° + (W ®T°)Z 28y (I @ T)ESy-(IV & T°).
k=1

Let L. = B, + C. + 2u. Then by (5.3.2),
=(B+C+2Wu)T° = (WB. + WC. +2Wu)° = (W @ T°)(L.).  (5.3.5)

Thus replacing 27° by ¢T° with ¢ € R in (d) and using (5.3.4) and (5.3.5), we

obtain from (d),

(L., [PWAW @ T°ST° + & (I"®T°)5\c~y(W®T° Y Sy (W 0 TO)(L.))
a1l

=4\, T°(I, - cTT°)"'TT°)
[= ]
=40\, FT°ST° + 2 Y T°(cST°)'TT°).

k=1
(5.3.6)

By comparing the coefficents of ¢2, ¢3, --- on both sides of (5.3.6), we obtain

(L., [ WAW @ T°ZT~)(L.)) = 4(), T°TT"),
ie.,
(LLWAWL,, T°ET®) = {4\, T°ZT°).

So by Lemma 4.4.1, (5.3.2) and (c1),

A= %L’_WAWL. = (B+Wu)A(B + W),

proving (d1).
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Now suppose that (al) - (ad) hold. Let Z=WY = (W = [}, Then by ),
Z o~ Ny (Wi (WS LISy (W 2 L) = Npapliee. A T 5N
where j1o = W and 4. = WAW. Note that by (3.3.2).
QYY) =YW Iy + (IWWB.)Y +Y'IVC. + D
=Z'WZ+B.Z+2'C.+D=Q.(Z).
Thus by Corollary 4.4.9. it suffices to show that
(1) AWTAWTA, = A WA, u(d.WH)=m.
(i) A.B. = A.C..
and
(1) XM= Qu(p.) = (B. + WHu YA (B + W )
=(B. + WHp YA WT4(B. + 1V pu.).
By (al) and (bl). we obtain

AP A, = WATAW AW = WA AW A WA,

and

tr(AJVF) = WAWWF) = tr(AW) = ~(41V) = m.
proving (1). By (c1) and (5.3.2).
AB. = WAWB, = WABWAC - WAWC, = A.C..
and henee (i) follows. Also by (al). (d1), (5.3.2) and (5.3.7). we have
A=Q(u) = Qu(p.) =(B+Wu)yA(B +1Wp)

and
(B. + WHp YA WTA (B, + W)= (B. + WHp ) WAW AW (B, + W™ p,)

= (B + WHp) Au(B. + WTpl) = [W(B. + WTp ) A[W(B. + W¥u.)]
=(B+Wu)A(B+ Wy),
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proving (iii). 5

Note that in Theorem 35.3.2. if B = C. then the condition »{¥% > 1 can he

replaced by T = 0.

Corollary 5.3.3. Suppose that ¥ ~ Ny Sy ) Let W2 Vel M6 A\ wirds
C#£0.and QYY) =Y'WY. Then Q¥ ) ~ Uo(m. T N} if and only if there exists
an A € \g such that

(a2) (W L)Sy — A E)W S 1,) =0,

(b2) AWAW = AW, r(ATV) = m.

and

(c2) A=p'Wp=pu"VAT .

Example 5.3.2. (Eaton, 1983). Supposcthat Y ~ N, ip. Sy i with By = Ao ¥l
AB e N, W =058 QY)=YWY and £ € \\-. If BAB ix an orthogonal

projection of rank m and if BAW u = By, then Y'Y ~ W, (. X0 Wy

Proof. We may assume that £ = 0. Since Ey = A E T, condition (42) of Corollary

rd

5.3.3 holds. Since BAB =11 AW isan orthogonal projection.
(WA W AW Y = WEAWAW Y = WEAIE,

Cancelling WAL, we obtain AFTWAWSE = AFW3, and hence

AWAW = AW, (5.3.8)
Now
m =r(BAB) = r((Wiah) (4T W) = r(AFWE) > r(AW)
and

m = r(BAB) = r(BAB*AB) = r(WIAWAW ) < r(AW).
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Thus r{BAB) = r{AW) = m, proving (b2) of Corollary 5.3.3. Since BAW ;t = Bpu.
we: have WEAWu = Wiy, and henee

W WAW AW = (WEAW ) (WEAW ) = (Wip) (Wip) = o'W

Therefore by (5.3.8), @' WAWu = p' Wy, proving (c2) of Corollary 5.3.3. Hence by
Corollary 5.3.3, Q(Y) ~ W, (m,Z,p'Wu). O

Now we arrive at our fourth version of Cochran’s theorem:

Theorem 5.3.4. Suppose that Y ~ Npyxp(u,Zy). Let 1 € {1,2,--- L}, W; €
Ng, Bi, C; € L(V,E) with ImB; C ImW; and ImC; C ImW;, D; € L(V,V),
QiY) = Y'W,¥ + BYY + Y'C; + D;, and T € Ny with ~() > 1. Then {Qi(Y)}
is an independent family of Wy(my, £, A;) random operators if and only if for some
A in Ng and for any distinct ¢,5 € {1,2,---,£},

(2) Wi L)}y —AQI)W:®1I,)=0,

(b) AW, AW; = AW, r(AW;) = m;,

(c) AB; = AC:.

(d) Ai = Qi(pt) = (Bi + Win)' A(Bi + Wip),
and

(c) (W; @ L)Eyv(W; 1) =0.
Proof. Supposc that {Q:(Y)} is an independent family of W,(m;, T, ;) random
operators. Then by Theorem 35.3.2, for ecach z € {1,2,---,£}, there exists an 4; €
AN such that

(al) (Wi @ L) Sy - 4: 0 S)(W: @ L) = 0,

(bl) AW Wi = AW, r(4W;) = ma,

(c1) AB; = AC;,

and
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(d1) A = Qi) = (Bi + Wip) 4:(Bi + W),
- 4 - 14 14 =l —
Lt W=3 Wi, B=3Y1Bi. C=%,Ci. D=3, Dy =X,
and A = Y+, Mi. Then

1,

14
Q(}'-) = }«"“"’}; + B'}'- + }"'C o D = Z Q‘()-) ~ “'},(”)‘E‘ ‘\).
=1

Thus by Theorem 5.3.2 again, we obtain that for some A € .\,

(WRL)Sy —4QS)Wal)=0. (5.3.9)
By (a1) and (5.3.9),
(Wi @ L)Sy (W 0 I) = (W; ,1,) @ (5.3.10)
and
(W QL)Sy(W° R I,) = (WPAW ) £, (5.3.11)

where W = WW*. Multiplying both sides of (5.3.11) by W; @ I,,, we obtain
(WiW° @ L)Sy (WOW: ® I,) = (Wi WP AW W;) @ €. (5.3.12)

By Lemma 5.2.5, we know that ImW = ImW, 4+ --- + ImW,. So InW; C Iml¥
and therefore W;W?° = WOW; = W;. Thus by (5.3.12),

(W@ L)Zy(W: @ L) = (Wi AW;) @ L. (5.3.13)
By (5.3.10) and (5.3.13), (W;A:W:) @ S = (W:AW:) @ . Since £ #0,

W AW; = W;A;W;,, 1=1,---,L. (5.3.

I
o
—
o+
~—

So (a) follows from (al) and (5.3.14). Also by (5.3.14) and (bl), we: obtain

W, AW; = W, A;W; = W, AW, AW; = W AW, AW,
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e = r(AWL) = (AW AW € r(A ATV < r(ATF).
and
m; = r{A;W;) 2 (W, AiW;) = (W AW;) = r(A"o‘I'V,-) > (AW
which implics (b). Since It B; € Im W; and Im B; C Im W;, there exist Bf, Cr e
L{V, E) such that
B, = W.B;, Ci = W,C’. (3.3.19)
Thus by {c1), (5.3.14) and (5.3.15),
(B: = CiY Ai(Bi — Ci) = (B} = C;YW,A;Wi(B] - C})
= (B! - C)W;AW;(B; - C;) = (B; - CHAB:-C))=0,
and hence A(B; ~ C;) =0, proving (¢). By (5.3.14) and (5.3.15)
(Bi + Win) 4i(Bi + Wip) = [Wi(B] + p)] A:[Wi(B; + )

= (B} + u)/ Wi A Wi(B; + 1)

(5.3.16)
= (B; + u) WiAW(B; + p)
= (Bi + Wip) A((Bi + Wip).
So (d) follows from (d1) and (5.3.16). Now by Theorem 4.3.4, we obtain
Sy(W: @ Ti)Ey(W; @ T;)Zy = 0. (5.3.17)
Let T; = T; = I,,. Then (5.3.17) becomes
Sy(W: @ L)y (W; @ I,)Zy = 0. (5.3.18)

Since Wi, W; € Ng, (¢) follows from (5.3.18).

Now suppose that (a) - (e) hold. Then by Theorem 35.3.2. (a) - (d) imply that
Qi(Y) ~ Wp(mi, Z, \) for cach i € {1,2---,£}. By (d) and (5.3.13), we obtain

that for any distinct 7, j and T}, T; € L(V, V),

Sy(Wi ® T9)Sy(W; @ T))Sy
(5.3.19)
= Sy (In @ T7YWi © L)Zy(W; @ L)1 @ T )Zy =0,
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[Sy(Za @ IOy} (B,T; + C;T; + 2V iuTy)
19.3.20
=[Syl Q@ TY Wi L)Sy(W; S L)(B;T; + C; T, + uT;) = 0,
and

(ij:,' + CjT; + QPV,';ATJ?, Ey(B_,'Tj + CJ'TJ'- + '3“",';17'; )

= (BiT: + C{T{ + 2p, (Wi © I)Sy(W; © I,)] (B;T; + C;T; +2u)) =0,
(5.3.21)

where TP = (T; + T7)/2. Thus by Theorem 4.3.4, (5.3.19) - (5.3.21) imply that
{Q:i(Y)} isindependent. Therefore {Q:(Y')} is an independent family of W, X, \,)

random operators. O

Note that in Theorem 5.3.4, if all B; = C;, then condition r(X} > 1 can be

replaced by ¥ # 0.

Corollary 5.3.5. In Theorem 5.3.4, if Bi = C; = 0 and D; = 0, then {Qi(Y)} is
an independent family of Wy,(m;, Z, A;) random opcrators if and only if for some
in Ng and for any distinct ¢,7 € {1,2,---,L},

(a1) (W: ® L,)(By — A®)W: @ 1,) = 0,

(b1) AW, AW; = AW, r(AW;) = m;,

(c1) di = p'Wip = p'W;AW;p,
and

(d1) (Wi @ I)Zy(W; ® I} = 0.
5.4. Applications

As mentioned in Section 4.6, in practice, often it is the sufficient. condition that.
is used in statistical inference. We shall give a sufficient condition under which
{Q:(Y)} is an independent family of Wy(m;, £, A;) random opcrators cven without

assuming W; € Ng.
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Proposition 5.4.1. In Theoremn 5.3.4, let W; € Sg instcad of N, Then {Qi(Y')}
is wn independent famnily of Wo(m;, £, A;) random opcrators if for some A € Vg
and for any distinct ¢, 7 € {1,2,---,£},

G) (Wi 2 L)Sy —A@ S)W; @ 1,) =0,

(ii) AW, AW, A = AW A, r(AW;) =m,,

(iii) AB; = AC,

(iv) Xi = Qi{p) = (Bi + Wip) A(Bi + Wip) = (Bi + Win) AW, A(B; + W;p),
and

(v) (W; @ I,)Sy(W; @ I,) = 0.

Proof. Supposc (i) - {v) hold. Then by the proof of sufficiency of Theorem 5.3.4, (v)
tmplies (5.3.19) - (5.3.21) and hence by Theorem 4.3.4, (v) implics that { Qi(Y)}
is an indcpendent family of random operators. Therefore it sufficics to show that
for cach 7, Q;(Y) ~ W,(m;, T, A;), which follows from the proof of ‘Only if part’ of

Theorem 5.3.2. O

Note that whether the above (i) - (v) are necessary conditions, under which
{Qi(Y")} is an indcpendent family of Wy(m;, £, A;)} random operators, is still un-

known.

Proposition 5.4.2. Assume that ¥ ~ Nyxp( g, 2y ) withEy = AQ X + H for
some A € Ng and H, such that ImH C Im{M ® I,) for sommec M in Ng. Let
t € {1,...,8}, W € N, and Qi(Y) = Y'W;Y. Suppose that for all distinct
i,7 €{1,...,€},

(2) AW AW; = AW,  r(AW;) = m,

(b) WM =0,

(c) Xi=p'Wip=pg W; AWy,
and
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(d) W:AW; = 0.

Then {Qi(Y")} is an independent family of W,(m;, . \,) randow operators,

Note tbat the A4 € Vg in Theorem 5.3.4 can be constructed by ¥, By and sum of
Wi's. In practice, the given expression of A often does not coutain any parameters.

The following two results arc obtained for this purpose.

Proposition 5.4.3. In Corollary 5.3.5, supposc that p¢ = 0, &y is nond. and
T € Nv. Then the following two conditions are equivalent:
(2) {Q:i(Y)} is an independent family of W, (r( W;), T ) random operators Q, Y.
(b) For any distinct 3,3,

Q) (Wi L)Sy(Wi®L)=W:®L,

(1) (Wi ® L)y (W; @ 1) = 0.

Proof. By Corollary 5.3.3, it suffices to show that with m; = r(1V;) and o = 0,
conditions (al) - (c1) in Corollary 5.3.5 are cquivalent to condition (b).

Suppose that (21) -(c1) in Corollary 5.3.5 hold. Then by (al),
(W: @ L)Zy(W; ® I) = (Wi AW;) © X (5.4.1)

By (bl), r(W;) = r(AW;) = r(W;A). So we have TmW; = Im(W;A). Thus there
exists a B; € L(E, E) such that

W; = W;AB; = BIAW,. (5.4.2)
Substituting (5.4.1) into (5.4.2), we obtain
(W: @ I,,)Ey(W; @L)= (BIAW;AW,) @ £,

and therefore (b)(i) follows from (bl) and (5.4.2). Also (b)(ii) is the same as (cl).
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I
Now assume that (b) holds. Let W = ZI’V,‘. Then by (b)(1) and (b)(ii).

i=1
(WelLh)Zy(Wal,)=Wat. (5.4.3)
Multiplying both sides of (5.4.3) by W* @& I,, we obtain
(W@ L)Ey(W°oL)=WreX. (5.4.4)
Let {eq}2_; be an orthonormal basis of E such that
W = iwacoUco, we >0 a=12...,s5<n,
o=l
where s = r(W). Let {fs}5_, bc an orthonormal basis of 7. Then {calles },

{fs0fs}, and {(ealear) ® (f50fs)} arc orthonormal bases of L(E, E), L(V,V),
and £(E, E) ® £L(V, V) respectively. So

3 ?
We = Z eoles, T = z osp f80fs,
a=1 B.8'=1

n P
Yy = Z Z Jao'ﬂﬂ'(caaca') ®(fﬁDfB')a

aa’=18,8'=1
where o35 = (f5, Z(fp)) and Gaargp = (€alfs, Ty (eoOfs)}). Thus (5.4.4) im-
plics that
- P S r
Yo Y cearsplcallea) ® (f50fe) = (D wilealea) ®( Y opp fo0fs),
a,a’=1 3,8'=1 a=l1 8.8'=1
1.c.,
s ?
0= D 3 (doapsr = vaerw; ops)callar) ® (f50f5), (5.4.5)

a,a’=] g,8'=1
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where §,4’s are Kronecker symbols. By the linear independence of {{e Doy ) &

(fs8f3)}, we obtain from (5.4.5),
Caa’gg = SaarW, ogz. a0’ =1,....S, 33 =1.....pn

Let

n

| 4
H= Z Z aoo'ﬁﬂ'(comco') 1\ (fi‘mfﬁ')~

max(o,a’)>s 8.8'=1

Then

3

P
Sy = Z Z O’aq'ﬁﬁ'(coDco') o (fﬂDfﬂ') +H

a,o’'=14,8'=1

s P (5.4.6)
Y D bawrwilogglealear) © (f50fw) + H

oa'=18,8'=1

=Wt + H.

Chocse A = W*. By Lemma 5.2.5, ImW; C ImW = Im(W) + -+ + W) and
hence Wieq =0 foral @ =s +1,... ,n. So by (5.4.6),

(I’Vi ®Ip)(EY —AQ E)(Wi ® Ip) = (Wi % IP)H(Wi @ IJ') =0,
proving (a1). By (b)(i) and (al),
W; L =W, AW; @ %.

Since £ # 0, (bl) follows. (¢l1) is the same as (b)(ii). O
Pavur (1987) obtained the above result for the case where  is positive definite.

Proposition 5.4.4. Assume that ¥ ~ Npuxp(i1,Zy). Let W € N and X =
WY = (WHQL)(Y). Then X ~ Naxy( Wiy, Sx ) withEx = (Wial,)Ey(Wig

I,). Assume further that Zx is of the form P @ X, where P is iderupotent of rank
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m. Suppose that X'X ~ Wo(m,S,0/'Wy). Then A in Corollury 5.3.5 cau be
chosen as WPV ™3,
Proof. Let {e:}7; and {f;}%_, be respectively orthonormal bases of £ and 17, such

that,

r(W) )
W= wiele, = Y e fi5fi,
=1 Jj=1

wherew; >0, =1,... ,rf(W)and o; > 0,7 =1,...,7(Z). Then &y and P can

be written as

n P n
Sy = z Z Oiitjy (c,-Dc;-) @(ijfj:), P= Z p,-,-:c,-Dc,'-.
1L, =1 5,)'= 1=

From Sy = P ©® X, we obtain,
r(1v) P ) . n r(¥)
S wiwiowp (eBer) @ (f0fi) = D D piras(eiler) ® (f0;)-

0= 3,5'=1 i,i'=1 j=1

So when i > (W) or i > r(W), pir =0,i.c. ImP CImW . Morcover,
oiwjy =0, for 7>r(E) or j >r(Z) i =1...,.r(1W),

oivjjy =0, for j#j, 73 =L...,78) i =1,...,r(W),

and
oinjj = piwos/(wiwp)¥, for j=1,...,7(T) i,i'=1,....r(W).
, (V)
For 1,7’ = 1,... ,r(W), definc aii» = (wiwir)"¥pip and A = 5 ¢;i-¢il8e¢i. Then
1,i0=1

A=W-PW-%. So

r(W) r(X)
WeLSyWeL)= 3 3 piwivic;(eler)® (0/;)
f,1'=1 y=1

=W LAQI)NW ®1I),

i
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AWAW = 4W, (A =r (u'-%m'%) = (P = m.

Md 1 1 1 1
UWe=VIgYP(WIg)= @' WP T,
= WAV PU = H) 1 = /1Al
O

Now consider the multivariate components of variance model, see e, Anderson

et al. (1986) and Mathew (1989):

k
Y=XB+)» Ci&., (5.0.7)

=1

where X € Mnpyg is known, B € My, is unknown, C, € Al X n is known,

& ~ N(0,I,, ® Z,) and &,’s are independent. Thus
k
E(Y) = ‘YB, SY = Z 1,.1 @ E.‘a (5.“1.8)
s=1

where V, = C.C,, s =1,--- ,k. Note that Ty in {5.4.8) is not of the form 4 0 E.
For (5.4.7), A in Theorem 3.3.4 can be so chosen that it no longer depends on {115}
Proposition 5.4.5. ForY in (5.4.7), leti € {1,--- &}, W, € N,,, m;, > 0, £ £ 0,
and Q;(Y) = Y'W;Y. Then {Qi(Y)} is a family of independent W,(m;, S, 7, )
random matrices if and only if for any distinct 1,7 = 1,--- ,¢,

(a) Wi®L)Zy ~PRIYW:® L) =0,

(b) PW,PW; = PW;, «(PW,)=m,,

(c) Ai=B'X'W;XB =B'X'W;PW;XB,
and

(d) (Wi ® L)Ey(W; @ L) =0,
where P = 3°0_, o,V, and &, = tr(Z,)/tr(E). Moreover, if () and (1) hold, then

k
1
== t Vlm L2 L = ?"'76’
= mszzl r{ 1Z,, i=1
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The proof of Proposition 5.4.5 is similar to the proof of Theorem 5.3.1 with
W.PW, = W, AW, for all 1 € {1,...,¢€}.

Two remarks are in order:

(s) The operator A in Theorem 5.3.4 is by no means unique. Indeed, the 4 con-
structed in our proof satisfies Im4 € T m(ZLl Wi(= Z;,(I mW;)). » property
that is not required. Now, for any nonzero B € Ng with ImB C kcr(Zf___l W)

( = n{_,(kerW:)), A + B is another A that satisfies the conditions in Theorem
2.3.4.

(1) In practice, mostly, it is the sufficient conditions (a) - {¢) of Theorem 5.3.4
that arc used in statistical inference. For this, we note that in (a) - (¢), even if A
is replaced by 4; € Ng, {Y'W;Y'} is still an independent family of Wy(m;, T, ;)
random operators; when these 4;'s arc all equal to 4 with Ty = A @ T, we obtain

the corresponding standard result in, e.g., Khatri (1980) and DeGunst (1987).
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CHAPTER SIX

COCHRAN THEOREMS FOR AN

MULTIVARIATE ELLIPTICALLY CONTOURED MODEL
6.1. Introduction

So far, the Cochran thecorems we obtained are for the normal setting. As men-
tioned in Chapter 1, many properties of MEC distributions are very similar to Jliose
of multivariate normal distributions. In this chapter we shall extend the Cochran
Theorems in Chapter 5, from the normal sctting to the MEC sctting. The results
given in this chapter are extensions of the corresponding results of Anderson and
Fang (1982a, 1982b) and Pavur (1987).

In section 6.2 we shall state some basic propertics of the MEC distributions aud
define noncentral generalized Wishart distributions, Two versions of Cochrin’s
theorem will be discussed in Section 6.3. In the last section, we shall give some
examples, which are extensions of the results given in Scction 5.4. In the appendix,
we give an alternative proof for the ‘Only if part’ of Theoremn 6.3.1 by usiug the
formulae for the first and second order moments of quadratic forms of ¥ given in

Chapter 3.

6.2. Basic properties of multivariate

elliptically contoured distributions

We shall use u{"?} to denote a uniformly distributed random vector on the nnit
sphere in R"P. Suppose that X ~ MEC,xp(0,1r @ [}, ¢). Then the stochastic

spherical representation of X is given by

X2RU, vecU£ul®) (6.2.1)
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£ e ..
where (a) X Z Y means that X, Y have the same distribution. (b) U7 is o random
operator in L(V, E) and R is a nouncgative random variable that s independent of

U, aud (c) the distribution function, F, of R is related to ¢ by
* hed
AT = [ o T TR (6.2.2)
0
where
B, SN = B[],
sce Fang, Kotz and Ng (1990), and Fang and Zhang (1990).

Lemma 6.2.1. Supposc that X and Y are two random opcrators of a probabilty
space into L(V, E) such that X 2Y. Let gj» 7 = 1,2,--+ £, be Borel functions.

Then

(91(X), 92(X), -+ ,9e(X)) = (1Y), g2(¥ )y 5 9e(¥))- (6.2.3)

In particular,
(X'WL.X, X'WLX,--- X', X,) 2 (YWY, Y'WLY,--- . Y'I¥Y),

where Wy, Wa, --- , W, are constant operators in L(E, E).

Lemma 6.2.2. Assume that X is a random operator of a probabilty space into
L(V.E). Then the following statements are equivalent:

(i) X ~ MECaxp(0,1n ® I, 8);

(ii) the c.f. of X has the form ¢((T, T)) given in (6.2.2);

(iii) X £ RU. where R and U are given in (6.2.1);

(iv) X L I'X for every T € Ok, where Og is the sct of all orthogonal operators
in L(E, E).

For proofs of the above two lemmas, see Fang and Zhang (1990).
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Now suppose that }™ is a random operator of a probability space (82,4, ) into

L(V, E) such that ¥ ~ MECaxp(st.Sy.6). Then
Y £ pu+ REEU). (6.2.0)

where R and U are given in (6.2.1) and Sy € L(E.E) & £(V. V). Note that here

3
T3 (U) is the random operator

1
2

w—=IH{UWw)) € L(V.E), we.

Lemma 6.2.3. AssumcthatY ~ MEC,xp(11,Sy,¢). Let K € L(E.EYaL(V V).
Then
K(Y)~ MECxp(K(p), KSy k', $). (6.2.5)

In particular, if K = B ® C with B € L(E, E) and C € L(V, V), then

(BO®CYY) = BYC' ~ MECnxp(BuC',(BRC)Sy(BOC),¢). (6.2.6)

Definition 6.2.1. Let E = E, @ E2 D --- ® E; & E¢qy, the direct s of Ey,
Ea,---, Ey and Egy,, where Ey, E,,---, Ey, Egq are, respectively, iy, ma,---,
mye, meyy-dimensional subspaces of E and mey; = n — Z§=l ;. Suppose thit

X ~ MECnxp(v,In @ Z,¢). Partition X, v € L(V,E) into £ + 1 parts, i.c.,
X = {-Xlix2y"' ?Xt!X"*'l} (G°2'7)

and

v= {VI,V27"' Ve, Vl-i-l}’ (028)

where X;,v; € L(V,E;), 7 =1, 2, -++, &, £+ 1. Then the joint distribution of
(X1X1, X3Xa,---, X;X¢), denoted by GWp(mny1,ma, -+ ,1ng; treq1; & Ar, Aoy oo 5 Aeg
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&}, Is called the generalized Wishart distribution with parametersmy, my. -+ my,
ey, S, Al Azye.., A and ¢, and A = viv;, 3 = 1,2, 0 In particular, if

=1, m=my, then
XX, ~GWy(min - m; Z; Ay ¢). (6.2.9)

We shall use GW,(my, ma, -+ ,mye; meqr; L; @) to denote GWp(my, ma, -+ ,my
s mepr; &3 0,0,...,0; ¢) and use GW,(myn — m; Z; ¢) to denote GW(min —

m; £ 0; ¢). Morc specifically, let {ex}i_, be an orthonormal basis of £ and
Ejz({cm;‘—l"}'l:"'aem:‘})! j=1’2""’e’e+1'

Then the above X;’s are given by

Xj= Y (a8e)X ~MECuxpy(vi, », (aDer)®F,¢). (6.2.10)
k=mj;_1+1 k=mj;_+1

Note that for the case where X ~ Noxp(v, In @ ), GWy,(my,ma, - - -, me; mgqn;
S5 A1, A2,..., Ag; 4) is nothing but 2 joint distribution of independent Wishart
Wa(my, I, Ay), Wp(ma, I, A2) «-+, Wp(my, I, A¢) random operators and no longer
depends on mygy; . For the case where v = 0 and £ > 0, the joint probability density
function of ( X]X;, X3X»,---, X;X,) and its properties were obtained by Ander-

sion and Fang (1982a).

6.3. Cochran theorems for an multivariate

elliptically contoured model

Theorem 6.3.1. Assume that Y is a random operator of a probabilty space
(Q,A,P) such that ¥ ~ MECpnxp(pt,Zy,9) with P(Y = ) = 1. Let W € Ng
and Q(Y)=(Y — u)W(Y — ). Then

QYY) ~ GW,(m;n —m; T; ¢)
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if and only if there exists an 4 € Ng such that
() (WO L) Sy —A0T)Wol,)=0
and

(b) AWAW = AW,  r(4W) = m.

Proof. Suppose that Q(Y') ~ GW,(m;n — m;5;68). Let £ = E; ¢ Es, where
E, and E: are, respectively, m- and (n — m)-dimensional subspaces of E. Lot
X ={X1,X2} ~ MEC,xp(0,In®E,¢) with X; € (V, E;) and Xu € (1, Ey). Then
by the definition of GW,(m;n — m; T; ¢),

QY) = (¥ =) W(¥ — p) = X1 X, (6.3.1)

Let Xo = RU ~ MEC,xp(0,Ix @ I, ), where R and U are given by (G.2.1). By
(6.2.4) and (6.3.1),

R(SIU) W(SHV)) £ R*stuiu, st (6.3.2)

where X; 2 RU;E%, t = 1,2, and U = {U, Uz} with U, € (V,E,) and U, €
(V, E;). Since P(R = 0) = P(Y = p) = 1, there exists X € (0, oo) such that.
P(0 < R < K) > 0. Multiplying (5.3.2) by the indicator (g sy, we obtain

R(SEU)YW(SE(U)) £ RZSiUIU, S,

where RZ = Ijo i)R?. Since P(R. > 0) > 0, we may, without loss of generality,
assume that R is less that K. This also implics that 0 < E(R*’) < oo for all
£=10,1,2,... . Choose a chi random variable xnp, with np degrees of freedom
that is independent of R and U. Let Z = xnpU, Zi = xnpUs, and Z. = £5(Z).
Multiplying (6.3.2) by x3,, we obtain

R*Z\WZ. 2 R*2iziz, 5%

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TeSe. (6.3.3)

Thus
E(S T ZWZYy E(C(T,R’:ﬁ 7 zish)y
0, diag(l,,,.0) ©

nxp(0, Zy) and Z; % ~ N,

Since Z ~ Npyxy(0,In @ 1), Z. ~

¥). So by Corollary 4.2.2 and 4.2.3
E (T RAWE)) R=) = I, - 2RESIWRTISE|™F, TeN, (6.34)

(6.3.5)

and

E( stz zx kl'>IR-> = |I, - 2R*TITT: =%, T e Ny,

where Ny denotes a neighborhood of 0 € Sy. By (6.3.4) and (6.3.5), {6.3.3) becomes

E (I, - 2R*5iTS! |-—), T € Ny.

E(u,.,, QR?SE(W @ T)S |-*)
(6.3.6)

Let ¢ € R and P € £(E, £) be an idempotent operator of rank m. Then, replacing

2T in (6.3.6) by ¢T, we obtain
(Imp —cRZP® (E%Tz%)r%) . (6.3.7)

E (|1, - eR*S{(W e T)T5i ) =
. ,np) be the eigenvalues of 25(W' ® T) i and P®

Let vjand 3 (7 = 1,2,..

(SiTT7) respectively. Then {6.3.7) is reduced to
E(f(cR?)) = E(g(cR?)), (6.3.8)

where
np np
f)=TJ0 —zv;)7%, g(z)=[[(1 - z75)7* (6.3.9)
J=1 j=1
Now there exist r > 0 and sequences {a¢}, {d¢} such that
(6.3.10)

f@) =Y am’, glz)=) b, lel<r,
¢=0 =0
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e.g., we may choose r such that
rmax({|v;]: 7 2 1}U{|m|:7 21 < L.
By (6.3.8) and (6.3.10),

> al B(R¥?) =Y be!E(RY), o < /K (6.3.11)
=0 =0

-
-

Since E(R?) > 0 for £=0,1,2,... , by comparing the cocfficients of ¢, ¢!, ¢

R

on both sides of (6.3.11), we obtain
ar=bey, for £=0,1,2,....

So by (6.3.10),
flz) =g(z) for |z[<,

whence, by (6.3.9) - (6.3.11),

| Iy — cSHW @ T)SE|™¥ = | Iy — cP @ (STSH)| 4.
So by the theorem of identity or analytic continuation,
|Lnp - SH(W @ T)T} | = | Inp - P (SHTTY) . (6:3.12)
By Corollary 4.4.4, (6.3.12) is equivalent to
Z'WZ. ~ W,(m,5). (6.3.13)

Thus by Theorem 5.3.1, there exists an A € Mg such that (2) and (b) hold.

Now suppose that (a) and (b) hold. Let Y. = Wi(Y —p) = (Wi L)Y - p).
Then by (6.2.6) and (a),

Ye ~ MECnxp(0,(W} @ L)Sy(W* @ 1), 6) = MEC1p(0,W % £, 4),
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where W = W3 AW S, Let X ~ MECnxp(0,1, @ £,6). Then
Y, 2WwiAtx. (6.3.14)

Thus
QIY) =YY, & (WIATX)WIAYY = X'ATWATX. (6.3.15)

Let {ex}?-, be an orthonormal basis of E. From (b), we know that ATWA¥
is idempotent of rank m. So therc exists an orthogonal I' € L(E, E) such that
MAYWAIT = 30 exTes. Let Xo = ["X. Then X. ~ MECnyp(0,1. ® T 6).
So with X. = { Xu1, X2}, B1 = {{e1,¢2,.-- ,em}) and Xy = 3 i1, (exDer) X, €
LV, E), X, Xa ~ GW,(m;n —m; I; 8). Since

XWX £ XD AtwATX. £ XD (eler)X. = X!, X,
k=1

we obtain from (6.3.13), Q(Y) £ X', X.;, and therefore Q(Y) ~ GW,(m;n —
™m; S; 45) O

Note that Theorem 6.3.1 still holds if the assumption P(Y = i) = 0 is replaced
by a weaker condition P(Y =) <1,ie. P(R>0)>0.

Corollary 6.3.2. (Anderson and Fang (1982a)). AssumethatY ~ MEC,xp(0.1:®
T,¢) with ¥ being positive definite and P(Y = 0) = 0. Let W € S,. Then
Y'WY ~ GW,(m;n—m;E;¢) if and only if

W2 =W, (W)=m.

Theorem 6.3.3. Suppose that Y is a random operator of a2 probability space
(,A,P) such that Y ~ MECnxp(p, 8y ¢) and P(Y = p) < 1. Leti €
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{132"" 72}) vp’i € J\'.E: m; € {1329"' ?}y S(?—‘ 0) < -‘\"-\-’ and (2,()-\) = (}. —_
w)Wi(Y — u). Then (a) and (b) are equivalent:

-
(J

(e) (Q(Y), Q2(Y), -+ ,Qe(Y)) ~GWp(my, ma,--+ ,mpin— ) m Yo\

I

(b) For some A € Ng and for any distinct 1, j € {1,2,... ,(}.
(i) (Wi®L)}Zy —4AQIT)Wi® L) =0,
(ii) AW;AW; = AW;,  r(AW;)=m,,
(iii) W:AW; =0,

and

(iv) (W:® L)Zy(W;®1,)=0.

Proof. Suppose that (a) holds. Then by the definition of GW,(m,,..., me n —
2
Y mi; T; ¢), there exists a random matrix X ~ MECnxp(0,1. ® T, ¢) such that

=1
(Qi(Y), -, Qu(Y)) £ (X X1, . X}Xe), (6.3.16)

where X = {Xi,... , Xe,Xe41}, Xi € LIV,E;), 1 = 1,...,0,0+ 1, and meyy =

£
n — 3 m;. Thus for each i = 1,2,...,¢, by definition 6.2.1, the distribution of

=1
Q:(Y) is GW,o(mi;n — m;;5;6). So by Theorem 6.3.1, there exists an 4; € N
such that
[dl) (W;®L)Sy - A:@S)W:@1,)=0

and
(d2) AW A W; = AW, r(A:W;) = m;.
I4 4
Now let W = 53" W; and m = }_m;. Then by (6.3.16),
=1

=1

4 4
YV —p)WE —p)=3 Q)£ XX = X!, X1, (6.3.17)
=1 =1
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where Xoy = {X1,X2,.. . X} € LV, E € E2S---GE)and X = {Xa,Xexr} ~
MEC, «p(0,I, @ Z; ¢). Thus

(Y = ) W(Y = p) £ X!, X0y ~ GW,(m;n — m; T;6).
By Theorem 6.3.1 again, we obtain that for some A € Ay,
(WeL) Sy -AQ@S)W®e ) =0,
which is equivalent to
(W°RL)EZy —AQ@X)(W°QI;)=0, (6.3.18)

where We = WW* = W+W. Multiplying both sides of (6.3.18) by (W; @ [,,), we
have

(WiW° @ L)(Sy - AR S)W°W; ® I) = 0. (6.3.19)

By Lemma 5.2.5, we obtain ImW; C ImW and therefore W;W° = W°W; = W,.
So by (d1) and (6.3.19),

WiAW; @ =W; AW; ® &.

Since £ # 0,
W A:W; = W, AW;. (6.3.20)
So (b)(i) follows from (d1) and (6.3.20). Also by (6.3.20) and (d2),
WiAW,; = W; A;W; = WA WA W; = W AW, AW,

and m; = r(A;W;) = r(4AW;), proving (b)(ii).

For (b)(iii) and (b)(iv), let W, = W;+W;. Then by (6.3.16), (¥ —p )Y W.(Y ~p) ~
GWp(mi,mj;n—m;—mj; Z;¢). By Theorem 6.3.1 again, there exists an 4. € NV,
such that

(WeQL)Zy —4.@5)W.@L)=0 (6.3.21)
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and

WoA W AW, = W ATV, (6.3.28

(5
1o
[2V]
-

Since ImW, C ImW, by the above argument. we obtain
WA W, = W AW, (6.3.23)
So by (6.3.22), (6.3.23} and (b)(i1),
A(W; + Wi A(W; + W;)4 = A(W; + W;)4,

re.,

AW, AW; A + AW; AW A = 0. (6.3.24)

By Section 5.22 of Wong (1986), (6.3.24) implies that,
AW;AW;4 =0,

and therefore (b)(iii) follows. Again by (6.3.23), (b)(i), (b)(ii), and (b)(iii), (6.3.21)

is reduced to
(VV{ ® IP)EY(WJ' @ Ir) + (WJ' @ Ip)EY(Wi @ Ir) =0.

So by Section 5.22 of Wong (1986) again, (b)(iv) follows.

Now assume that (b)(i) - (b)(iv) hold. Let X = {X1,... , X¢, Xeq1} ~ MEC,, .,
0, I,®F, ¢), Zi = WF(Y ~ ) and Zo; = WFAIX,i=1,... 0. Then

(Z},...,2;Y ~ MECntxp(0,Z2,¢) (6.3.25)
and
(Zila' - 3Z:t )' ~ MECn!xP( 0; EZ.,¢), (03.26)
134 "
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where

wiol,
Yy = : Ty (W;“@Ip,... ,W';@Ip)
wiel,

(WE@L)Sy(WF@L) ... (WieL)Sy(W;el,)

: L : N
(WERL)Sy(WERL) ... (WfeL)Sy(WF al,)

= diag (W AW @E,... , W} AW} ® %) (by (b)) and (b)(iv))
and

% ";‘ 1 3 i
Lz. = (Wl' A‘ ®IP) (L. @ TYAW @ L,,... , ATWF @ 1)
W/ATQI,

= disg (WEAW} @S,... , WEAW} @) (by (b)(iil)).
Thus by definition (2.2),

(Z8,.... 2 2(24,..., 2" (6.3.27)
Let g(=1y-.. 5 2¢) = (2121,--- , 72t ), =i € L(V, E;). Then by Lemma 6.2.1,
(Z1Z1,.. , 24Z0) £ (ZayZar, - ZarZe),
1.c.,
(Qi(Y),--- 1 Qe(¥)) & (XiWL X, ... . X'WeX), (6.3.28)
where W; = A’:‘W;A';', i =1,...,4 Let {ex}}-, be an orthonormal basis of E.
Note that (b)(ii) and (b)(iii) imply that cach W; is an idempotent vpcrator of rank

m; and W;W ; = 0 for all distinct ¢,7. So there exists an orthogonal operator

I' € L(E, E) such that
Wl = Z erOes, i=1,...,¢L

k=m;_1+1
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Let X. = I"X. Then X. ~ MECnxp(0, In ® T.6). Thus with E, heing given in
(6.2.10) with v = 0, X. = {Xu1,... . Nog, Xoggr Jand Ny = (00, 4y o)X ¢
L(V,E), i=1,...,¢,

(XWX, ..., X'WX) 2 (X! T'WATX., ..., NI TX.)

o o (6.3.29)
= (‘Ytl‘\‘l" N ..X.(-\-f)'

By (6.3.28) and (6.3.29),

(@1 (¥),--- Qe(¥)) & (X1, Xt X1 Xoo),
proving (a). O

Corollary 6.3.4. In Theorem 6.3.3, if each m; = r(W;), then («') and (I') are
equivalent:
(@) (@(Y),Q2(Y),... ,Qe(Y)) ~ GWp(my, ma,... ;men — é, r{W ) S ).
(b') For any distinct 1, 3 = 1,2,...,¢,

() (Wi®@ L)Zy(W: @ L) = Wi G L,
and

() (W: ® I,)Sy(W; @ I,) = 0.
Proof. . The proof for (a')} = (') is the same as that of Proposition 5.4.3. For the
proof of (b') = (a'), by Proposition 5.4.3, it sufficics to shew that (b)(iii) holds for
any distinct ¢, 7 € {1,2,...,€}. By Corollary 5.2.5 again, IrnW;, IlV; C inW,
where W = Zf=1 W;. Since Wieq =0 for all @ = s+ 1,... ,n, we obtain from
(5.4.6),

n P
Wi@L)AEW;®L)= Y Y caapp(WicallWjeor) @ (fsBfp) = 0.

max{a,0')>8 8,8'=1
Thus by (b')(ii) and (5.4.7),
0= (Wi @ L)Zy(W; @ 1,) = (Wi @ LA T + H)W; & 1)

=W;AW; @ L.
Hence (b)(iii) follows as Z# 0. O
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4. Further applications

We shall now extend the following three results given in Section 5.4 from the

normal settings to the MEC scttings.

Proposition 6.4.1. . Assuirne that ¥ ~ MECnxp(pt,Zy,¢). Let W € Ng and
X = WY —p). ThenX ~ MECnxp(0,Zx,6) withTx = (WIQL)Sy (W Q).
Assumnic further that Ty is of the form PQT, where P is self-adjoint and idempotent
of rank m. Supposc that P(Y = p) <1 and X'X ~ GW,(m;n—-m;E;6). Then 4
in Theorem 6.3.3 can be chosen as W= PW ™%,

In MANQVA models with balanced subsample sizes, the following propertics are

given for matrices Wy,... , Wi in Ny,
k
WiW =8 Wi, Y Wi=In=Ja,
=1

where J, is an n X n matrix and cach component of J, is equal to 1/n, sec,
¢.g., Pavur (1987). Suppose that ¥ ~ MECnxp(0,Zy,9) and Zy is of the form
f: W; @ T + H, where H is an np x np matrix such that ImH C Im(J, ® I,,). Let
E;I(Y) =Y'W;Y,i=1,...,k Then from Theorem 6.3.3, we obtain that

k
(@i(Y),-.. ,Qu(Y)) ~ GW,(r(Wh),... ,r(Wi)in = > _ (Wi} E;9).

i=)
More generally, we can obtain:
Proposition 6.4.2. Assume thatY ~ MECpxp(0,Zy,¢) withZy = AQT + H
for some 4 € N, and H, such that ImH C Im(M @ I,) for some M in N,.
Let i € {1,... €}, W; € N, and Qi(Y) = Y'W;Y. Suppose that for all distinct
i,j €{1,...,¢},
(a) AW, AW, = AW, r(AW;) =m,
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(b) W:M =0,
and
(c) W:AW; = 0.
Then (Q1(Y'),...Qe(Y)) ~ GWyo(my,... ,mean — ém;; T:0).

=1

Proposition 6.4.3. Consider the multivariate components of vawtance model: Y ~
MECnxp(XB,Zy,¢) with Sy = ZJ 4 © S, Note that Sy here s not of
the form A® . Leti € {1,...,8}, Wi € N, mi > 0,8 # 0. and Q(Y) =
(Y —= XB)YWi(Y — XB). Then

{
(@:(Y), .., QuY)) ~ CWy(my,... ,msn = Y mi i)

i=1

if and only If for ary distinct 1,7 = 1,2,... ,¢,

(2) Wi L)Zy - PREYW:®I,)=0,

(b) PW;PW; = PW;, r(PW;)=m; and

(c) W:PW; =0, 1,7 €{1,...,€},
and

(d) (Wi ® L)Ev(W; @ L) =0,
where P = zk:oz_,A,, a, = tr(T,)/tr(T).

=1
Now for Y ~ MECnxp(p, By, ¢) with u # 0, we shall give sufficient conditions
under which
YWY ~GWy(m;n—m; Z; A, &), (G.4.1)

where W € Ng.

Proposition 6.4.4. Suppose that Y ~ MECnxp(p, Ly, % ). Lot W € Ng. Then
(6.4.1) holds if there exists an A € Ng such that

() (WeL)Sy - AW a L) =0,

(i) AWAW = AW,  r(AW)=m,
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el

(1ii) A= 'Wp=p' WAW

Proof. Let Y. = WiY = (W @ L)(Y). Then by Lemma 6.2.3 and (i),
Y. ~ MECaxp(Win, WIAW!@T, ). (6.4.2)

By (i), WEAW? is an idempotent of rank m and hence I, — WHAW T is also

idempotent. So there exists an orthogonal I' € £{E, E) such that

WIAWE: =T (Z cchk) I, (6.4.3)

k=1

where {ex}2_, is an orthonormal basis of E. By (iii),
0= p'Wp— p'WAWu = g’ WH(I, - WEAW )W iy,
which by (i1} implics that,

(I, - WIAWH)Wip =0,

Why=WiAWp. (6.4.4)

Now let X ~ MECnxp(Wip, I, ®Z, ¢). Then by (6.4.2) - (6.4.4).

Y.L WidWixX =T (z echk) I'X. (6.4.5)

k=1

Let X. = I'X and X.; = 31, (ex0ex)X.. Then Xo ~ MECnxp(I'Wip, I, ®

€. ¢) and by dcfinition 6.2.1,

X, Xa ~GW,(m;n—m; T; A5 6), (6.4.6)
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where
A= (Z(ekack)r'u'%p) (Z(Ck&k}l"il"’ﬁ;:)
k=1 k=1 /

= fWIDY (exSed) D Wip = /WAl =\,

k=1
Since

YWY =YY, 2 XWX £ XD) (exler)X.
k=1

= (i(ekDek)X.) (Z(fkgck)-\’.) 4 _\'11_\'.1‘
k=1 k=1

the desired result follows from (6.4.6). U

The following extension of Proposition 6.4.4 can be proved by Proposition G.i.

and Theorem 6.3.3.

Proposition 6.4.5. Suppose that Y ~ MECnxp(t,Zy,¢). Let i € {1,2...,(},
W;: € Ng. Then

t
(YWY, ... ,Y'WY) ~GW,(my,... ,mgn— Zm;; OIS VNI PP

i=1
if there exists some A € Ng such that for any distinct 7, j € {1,2,... ,{},
(a) (Wi @ L)y — A S)(Wi @ I,) = 0,
(b) AW:AW; = AW;,  r(AW;) =m;,
(c) di=p'Wip=p' WiAWyy,
(d) W:AW; =0,
and

(e) (Wi®@L)Zy(W;@1;)=0.
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Appendix

Let {e,}io, and {f;}5_, be orthonormal bases of £ and V' respectively such that

W= wiele, wi>0, i=12,...,s (A1)
=1
aned
.
L= 0ifi0fi, ¢;>0, i=12...,r (A2)
J=1

where s = (W) and 7 = r(£). Then Ey € L(E, E) @ L(V, V) can be written as

n P
Sy =Y (eDer)®Tir, Zie= ) oiwjy fiOfp (A3)

iir=1 Ji'=1
Now supposc that YWY ~ W,(m,E,4). Let E = E; @ Ea, where E; and £ are,
respectively, m- and (n — m)-dimensional subspaces of E. Let X = {X;,Xa} ~
MECnxp(0,In ® Z, ¢) with X; € (V, E;) and X € (V, E2). Then by the definition
of GWy(m;n — m; T; ¢),

Q)= (¥ — o) W(¥ — ) £ X} X, (A4)

Then
EXY'WY)=E(X{X;) and Cov(Y'WY) = Cov(X;X)). (AS)

By (Al), Corollary 3.2.4 and Example 3.2.1, (A3), upon simplification, is reduced

to
n

Z (iWei )i = Zs: wiT =mx (AG)

ir'=1 =1

and

Z wiwy {46"(0) [Sier @ Siir + K, p(Tiri @ Tivi)]
=1

+4 [8"(0) - (8'(0))*] vec Tii(vec Tyrp)' } (A7)

=m(l,: + K, ,)(E © ) + 4 [6"(0) — (6'(0))*] m*vec Z(vec T)'.
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By (A6), (A7) becomes

Z Wiy {-Ju' ®—4ll' +I\p ;i(wl P S, l)}

o =m{Il: + K, (S @
Now choose t = vee (f;0f;) =0 f;, 7=12,...,p. Then
' (Zir @i + Kp o Tii @ Siri)) t
=(f; ® f3) (Biv @ Ziwr + Kp p(Sei @ Zei)) (f; @ f)
= 0lj5 + Thij; = 207455

and

t'(I2 ® K, ,)(E © D)t = 203

Thus by (A8), we obtain

S
Z w,-w,-:o;?’,-.jj = ma;'-, 7=L2,...,p (A9)

' =1
Let t=f;® f; + f37 ® fj. Then
t’ (2" ® En' + I\p,p(ut' —n :))t

- 0’" i3 +O'“ t13' +0“ 37 +on 'y +ax‘33) +aa':]} + 0:':;’} + ”:'r} s

— 2 2 2 2
= 2(0,-;;"]- + Oitijje + Gitijey + 0',",‘]'1')
and

t'(IP’ G Kpp T ® Dit= 2("? + 0",%' )-

Thus by (A8), we obtain

Z w,w‘c(o‘, 3]] +0":‘JJI +U‘J‘J J + U‘:‘J J ) = Tn(o; + (7;: ). (.‘\10}

i’'=1

So by (A9), (A10) is reduced to
Zwtw3'(a:;]3'+axxjj)=0) j#j's j! j'=1,2--~:])- (Al}‘)
=1
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Lett=f@ fi+fp®f; #3573 =1,2,...,p. Then we have

' (Tiv @ Siir + Kp p(Tiri @ Tiri))
= aii'jjaii'j'j' + aii'jj' O'l"‘ijtj -+ aii'j'jaii'jj' + a“oj;jr al‘l"jj
Giriji@inijjr + OieijjrTuiyy + Tirij jTuijy + TirijrjrOitiy;
= 4( 0iirj;Oiirytj¢ + Ciivjj vy i )
and

t' (1,2 @ K p)(E@ It =2(0j05 +0j00;) = 40;05.

Thus by (AS), we obtain
Z wyw ( Gip ;i o jr + TijejjeTinjrj ) = MO0, ;#4357 =12,...,p.

(A12)
Note that w; > 0, : =1,2,...,s. By (42), (A9) and (All), wc obtain

oij; =0, L,'=12,...,s Jj=r+1l...,p (A13)
and
Giirjjr = oy =0, 3 #7, 7 7=12...,p, 5, =1,2...,s. (A14)

By (A14), (A12) implics that
z WiWp T 5304 j'j¢ = O ;0;5, ] %j’, j, j' = 1,2,.. « 5T (AIS)
=1

So combining (A10) and (A135), we obtain

E
. -l
E WiWyp OipjiCiinjrj0 = M0, 1,7 =1,2,...,7. (A16)

=1
Thercefore

n o p
Ty = Z Z oiijjr(eiles ) ® (F;0f;)

iLi'=1j,j'=

= z.: i oiij;(elein) ® (f;0f;) + H,

ii'=1j,j'=1

(A7)
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where

P n
H=3Y > owjpleDa) 906 (ALS)
Jo3 =1 max(s.i)>s
Now let ajirj = o4ir55/05, 7 = 1,2,... ,r. and 1, ' =1,2,....s. Theu for j = ',

77 =1,2,...,7, (Al6) implics that

3 ~
2 .
E w;w,v(a?‘-.j -— 20,","]'(1“'1'; -+ a:i’j' ) = E u'iu"i'( Qg — gy p ¥ == 0,

i,i'=1 Li'st
ie.,

. . c et s e . i
aiv;=aiwp, 4Lt =L12,...,8 JFi, 57 =L2...nr (A1D)

Let A = 57 ._, aiirneiCer. Then by a similar argument as in the proof of Covollary

5=

5.2.3, we can prove that 4 € Mg. Thus by (A19), (A17) is reduced to

EY = Z Z aii'j(eimci') ®O'3(fJDfJ)+H = .‘l@.‘:-*— !1. (.‘\20)
j»j'=1 3=

Since We; =0foralle;,i=s+1,...,n,
(WeL)HW®@IL)=0.

Thus by (A20),
(WRL)Sy —A@T+H)W e L) =0,

and hence (a) follows.

Now let Y. = W3(Y — ). Then by Lemma 6.2.3 and (a),
Y. ~ MECxpy(OWIAWI @, ¢)

and hence
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Thus by (A4),
(Y =) WY —p)=YY. 2 X'ATWAIX £ X| X,. (A21)
Now it sufficies to show that (A21) implies .hat
ASWAWAY = adwal, rAYWAR) =m
Let W, = ASW A, By (6.2.4),
X2 RUSY and X, £ RU,TE,

where U = {Uy, Uz } with Uy € £(E,,V) and R, U are given in (6.2.1). Thus by
(A21),

RESHUWLUSE £ RREIUIU, S (A22)
Choose a chi random variable xnp, with np degrees of freedom that is independent

of R and U and lct a be a constant vector in V such that a’Sa = 1. Then

XnpUE¥a ~ Np(0,I, @ a'Sa) = Nu(0, In)

-~
-~

and

m
1 = anUlgia ~ -‘Vn(O,Z exDey ).
k=1
Thus by (A22), we obtain

L 1 d a2 2 hA Pt
xﬁ,,R%’E?U’PV.UE:a = x;;pR‘a.'E2U{DI.»_.=a,
i.e.,
27 4 p2a., 4 p2 o2 A9
R:W.z=Rz;z; = R°x;,- (A23)

By Lemma 1 of Anderson and Fang (1982b) or by (¢) of Section 2.1.7 of Fang and
Zhang (1990), (A23) implics that ='W, = £ X5, which, by the standard univariate
Cochran theorem, imples that W2 = W, and r(W.) = m. So the desired result

follows. O
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