University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2003

Computing the minimum perimeter triangle enclosing a convex
polygon: Theory and implementation.

Anna Valentinovna. Medvedeva
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Medvedeva, Anna Valentinovna., "Computing the minimum perimeter triangle enclosing a convex polygon:
Theory and implementation." (2003). Electronic Theses and Dissertations. 1528.
https://scholar.uwindsor.ca/etd/1528

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1528?utm_source=scholar.uwindsor.ca%2Fetd%2F1528&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

COMPUTING THE MINIMUM PERIMETER
TRIANGLE ENCLOSING A CONVEX POLYGON:
THEORY AND IMPLEMENTATION

by
Anna V. Medvedeva

A THESIS

Submitted to the Faculty of Graduate Studies and Research
through the School of Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the
University of Windsor
Windsor, Ontario, Canada

Copyright ©2003, Anna V. Medvedeva
All Rights Reserved

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-82876-X
Our file Notre référence
ISBN: 0-612-82876-X

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

ABSTRACT

Geometric optimization, an important field of computational geometry, finds the best
possible solution to a computational problem that involves geometric objects. It allows
the development of faster and simpler algorithms by virtue of exploiting the geometric
nature of the problem. An attractive fundamental problem in this area is one of
approximating a convex n-gon with a simpler convex k-gon, where k < n, and the area or
the perimeter of the approximate object is minimized. This problem arises in a wide
range of applications, such as geographic information systems (GIS), spatial databases,
pattern recognition, and computer graphics, to name but a few. The approximation of
convex polygons with their respective enclosing triangles is a particularly interesting
problem; however, finding an optimal linear time solution for computing the minimum
perimeter triangle enclosing a convex polygon was a long-standing open problem, which

turned out to be more difficult than determining an enclosing triangle of minimal area.

In this thesis, we suggest some theoretical and practical justifications for the
linear time complexity of a recently proposed optimal solution and provide an efficient
and robust implementation of that solution. We derive, analyze, and solve for various
instances an algebraic equation that expresses the perimeter of the circumscribing triangle
in terms of the geometric configuration of the enclosed object for the main subsidiary
problem variant. In this problem, such an enclosed object is defined by a pair of points
above a given line. The existence of this algebraic expression and its solution further
suggest the existence of a linear solution to the original problem. Our object-oriented
implementation of the algorithm relies on several essential geometric preliminaries,
which were mathematically derived to provide for higher efficiency. The proposed
implementation is complete and robust in the sense that it will work for all input
instances. We have performed several software testing techniques to guarantee this claim.

Our result is asymptotically more efficient than previous solutions for the same task.

i

DEDICATION

To my husband and friend, Yuriy Y. Pastyrskyy, for his love, support,

understanding, and endless help.

iv

ACKNOWLEDGEMENTS

There are many people 1 would like to thank for their help during my studies at the
University of Windsor. First, I wish to express gratitude and appreciation to my graduate
supervisor, Dr. Asish Mukhopadhay, for his careful and kind guidance, dedicated
instruction, and thought-provoking discussions during our collaboration and my studies at
the University of Windsor. His valuable advice and fruitful suggestions have not only
contributed to the quality of my Master’s thesis work, but have motivated me to become a
more careful, creative, and inquisitive researcher, and provided an inspiration for my
future endeavors. Dr. Mukhopadhyay, “a computational geometer who does absolutely
first class work” [WWW?3], has greatly impressed me with the quality of his research.
Indeed, without his supervision and guidance, this thesis work would have not been

possible.

Next, I would like to thank the Internal and External Readers from my Thesis
Committee, Dr. Liwu Li and Dr. Myron Hlynka, for having the patience to read the
manuscript and for their attentive and helpful comments and suggestions. Their
understanding, knowledge, and feedback have helped me a great deal while working on

the final version of this document.

My appreciation goes to the Thesis Committee’s Chair, Dr. Peter Tsin, who
equipped me with the knowledge in the subject of Algorithms through his comprehensive
60-454 course, Design and Analysis of Algorithms, and who has provided various

support during my second year of studies at the University of Windsor.

My most heartfelt thanks go to my beloved husband, Yuriy Y. Pastyrskyy, for
taking interest in what I do, for his love and understanding, for his support and sacrifices,
and for the enormous help that he had provided to me during our 2.5-year stay in Canada.
I am also grateful for all our discussions related to the subject of this thesis, being it
theoretical work or implementation details. I thank Yuriy for all his brainstorming ideas

and thoughtful suggestions that have inspired many creative solutions.

Special thanks to my father-in-law, Prof. Yaroslav A. Pastyrskyy, for his prompt
and valuable responses to my mathematical questions, for his dedicated and patient

support, and for his frequent e-mails from home.

Finally, I want to thank both families, my husband’s in Lviv, Ukraine and mine in

Seattle, the United States, for all their prayers, support, and encouragement.

vi

TABLE OF CONTENTS

A BSTRACT vvvvtieerriiiirererreesstssmnsiessiessseesseoerssmsnnsnnsansesenastcnnsnsssssssssssssniassssssssasassesrasessanssnses 1t
DEDICATION ..uvviivivieiiteeeeeeeessreenseeesssesssssesssssssssssssssssessseesssssassessssosssesssassssssasasssessssasssses iv
ACKNOWLEDGEMENTScovierrieireeietessresestessasssnesssssesesseesssstssssssessssssommsemmsnsesssssesssssosseees v
LIST OF TABLES ..evvtiiveeettiecteeeiiereeesseissssessssseesssssassssessssesensessesseesissessoesennmsansssassarsassses xi
LIST OF FIGURES ...ceiiieiiiiiiieeieeieiieiceseseseneraneeeeeesessessnananaesasseasessntnnnssessassssnsnnresosassasios xii
LIST OF APPENDICEScvveeueeiieesusenserossiassrsessesssseessuesssessaresosssessssssncossssanssssssassasssaesssees XV
CHAPTER 1 INTRODUCTIONcoceierenieeenreeesunesesueesoneesesssasessssesennssssssaessssssessansssssasesss 1

1.1 COMPUTATIONAL GEOMETRY AND OTHER COMPUTING SCIENCEScceeeiiiennne 1

1.2 CONCEPTS OF GEOMETRIC OPTIMIZATION IN COMPUTATIONAL GEOMETRY......... 4

1.3 THE PROBLEM OF APPROXIMATION OF CONVEX POLYGONScvvviiinniiiieenininecens 4

1.4 THE PROBLEM OF FINDING THE MINIMUM PERIMETER TRIANGLE ENCLOSING A

CONVEX POLYGONcciiiioitretieerieenrserintereesesssssenssssmmesetereeseessssssirssssssssesssosssnmanassesassonss 5
1.5 PROBLEM APPLICATIONS ..oeeccvveeererieeesenriesnnessosseessssseessseetssssessmsesssnsnsesassasssssees 6
1.6 COMPUTATIONAL MODEL AND OTHER ASSUMPTIONScccovvuiriiviniireesinrneseseases 6
1.7 MOTIVATION FOR THE THESIS ...ccciutteieiiierrsreeseieeeresnnieesenesosnsisineesesssssesssnassennes 7
1.8 OBJECTIVES OF THE THESIS ...eeetrecuererieierenmrreessenesessisssisnnsssssssnessnassnnssssessnsassesss 8
1.9 STRUCTURE OF THE THESISccvtiiiiiriereinieeesineeseneeesnoetesseneessnncssassssesosnssssssneanes 9
CHAPTER2 AN OVERVIEW OF EXISTING APPROACHEScccvvuernuermreireeirineroniesesneeninnas 11

2.1 THE PROBLEM OF APPROXIMATION OF CONVEX POLYGONS: A BRIEF OVERVIEW

OF THE LITERATURE ...uuuieriieerrimeeinsiereesianeianeeeeseeeensmensssssesassmsssssseennmnnsisnsasaessnsssonssssns 11
2.2 FINDING THE MINIMUM AREA TRIANGLE ENCLOSING A CONVEX POLYGON 13
2.2.1 PROBLEM STATEMENT ..ctiiiiiieriieiieareennneeneeeereseeesssesimnnmesssessessrsenssesssnnsnns 13

Vit

222 THE FIRST SOLUTION ..iieriiieiiiiaiereesiareuennmsinessinsserssnsssssssisasassssinanssronsseoss 13
2.23 AN OPTIMAL SOLUTION ...ceveiveeirereneriiieecieiiiiiiiiisneiimminnansnesssesssssssssessssesses 14

2.3 COMPUTING THE MINIMUM PERIMETER TRIANGLE ENCLOSING A CONVEX

POLYGONoouitimietieeessieseseseeeesesstessesesesessesesessssasesessssesssssancasesenesensesesenusesissnssnsnssenss 15
2.3.1 PROBLEM STATEMENTooveviuirererrreesesesssssseseneneesssesenesssessescssssenmsenessanss 15
2.32 THEFIRST AND SUBSEQUENT SOLUTIONS ...ccvuvereueveeereersuaseseensressenenssersnns 15
2.3.3 AN OPTIMAL SOLUTIONcoveviveueeeeresrseresesssnssssesesessssssenionesencsssaessasisssenes 18

CHAPTER3 OUR FRAMEWORK FOR COMPUTING THE MINIMUM PERIMETER TRIANGLE

ENCLOSING A CONVEX POLYGONcooiiiiiiiieiiiesireereteenitseieesinecsssecissssnesnesessessnsassssance 19
3.1 A LINEAR TIME ALGORITHM OVERVIEWuurticreiiinniinniiernisinisinsrnnsmssreassssaes 19
3.2 PROVIDING PROOFS FOR THE MINIMUM PERIMETER TRIANGLE CONFIGURATION
CONDITIONS......ccuvtrieereerireeesiseesinsesesrsssaessssasassaesesssessssessssseesasstessincesasssssssnnssssssssnanssness 28
3.3 GEOMETRIC PRELIMINARIES FOR THE LINEAR TIME ALGORITHM........ccecueerneee 31

CHAPTER 4 SOLVING THE MINIMUM PERIMETER TRIANGLE PROBLEM

ALGEBRAICALLYcovvirieiererinearsstoseessessessesssessessesnsessessessessessessisssssstssssisessesnsessssnessanses 41
4.1 A SIMPLE SUBSIDIARY PROBLEMcceeureeiiireresieesineeeessessessensernsensssssssnssens 41
4.2 THE MAIN SUBSIDIARY PROBLEMccuuuriieiiecinriiiiinneeenisnieecessnireieeessssnnnnsasens 42
4.3 SOLVING THE MAIN SUBSIDIARY PROBLEM FOR A SPECIAL CASE......ccceevvennene 47
4.4 DERIVING THE MAIN ALGEBRAIC EQUATION (GENERAL CASE)....coovuurreriennnnnn. 49
4.5 ANALYZING THE MAIN EQUATION....c.cooovteieenmieneeemecneeseesaiosnisssionseesareesssssseense 56
4.6 NUMERICAL RESULTS ...oiiioiiiiiiiien ettt ieiesesinics s esesessansaessnneesssnnens 58

CHAPTER 5 IMPLEMENTATION OF A LINEAR TIME ALGORITHM FOR COMPUTING THE

MINIMUM PERIMETER TRIANGLE ENCLOSING A CONVEX POLYGON......cccviiviiiiriiiiinnannnne 60

viil

5.1 OBJECT-ORIENTED ANALYSIS AND DESIGN (OOA/OOD) ...cocvvviinnniiiiiannneene 60
5.2 OBJECT-ORIENTED PROGRAMMING (OOP) ...cccccomuivriiriiriiniiiniirninienirenes e 63
5.3 SOFTWARE SYSTEM TESTING AND TESTING RESULTS......covveiriiinnrinnieininnanenes 64
CHAPTER 6 IMPLEMENTATION DETAILScvvviciviiererieeeiieeeeneenssinnresniecssnntesnninesnssasssees 66
6.1 CHOOSING AN INPUT POLYGON BY SPECIFYING THE EUCLIDIAN ORTHOGONAL
COORDINATES OF ITS VERTICES: USE OF OPENGL GRAPHICS LIBRARYcoovieicrrnnnnnne 66
6.2 VERIFYING THE INPUT POLYGON FOR CONVEXITY ..ccovueeeenurcareeriinineesnsssneansees 68
6.3 COMPUTING THE MINIMUM PERIMETER TRIANGLEcvvviiiiiiinniriinnnnieiaeesnnenas 68
6.4 GRAPHICAL REPRESENTATION OF ALGORITHMIC DETAILS: USE OF OPENGL.....69
6.5 EFFICIENCY ISSUESitiiiiieeiiieieteessvesecnrreesineesoneessseessesnssssssssssssnessnnsassssessss 70
6.6 ROBUSTNESS ISSUES ..oeiecotiiieitieeitireniteeecrneessseesesseeseseaeesossacssonsessnssnsssnsnnesssess 71
6.7 IMPLEMENTATION CHALLENGES.......ccovvteetteeireerneeraneieneresnressnsessssesssesssesssanses 71
CHAPTER 7 EVALUATION OF THE PROPOSED FRAMEWORK: ALGEBRAIC AND
EXPERIMENTAL RESULTS ...vvviiieiiienieriiireeiteeeeteeaestaeiearesesasesanstesesonnessssnessssnsessnnnmenssanes 72
7.1 THEORETICAL RESULTS ...ccoioiiiiirrerereeeireeesasseeseseeesnieeeesinaesesensinsastessnsnnsanssnens 72
7.2 IMPLEMENTATION AND EXPERIMENTAL RESULTS ...ccorcveerienueeeriiierennneeisnnenennes 72
CHAPTER 8 ~ CONCLUSION AND FUTURE WORKocvieivieeriirnenrireiosineesaninessisnnesenneeanie 75
8.1 CONCLUSIONvvieicveeeeireessireeiseeessaesasssesasseeassesesssnesessormeesessessesassessssessornes 75
8.2 FUTURE WORKccoruieiureiieeiireeireeeeesennaastnsaeessessessesssecsnsessaresessessssessssneonsasas 77
8.2.1 FUTURE WORK IN TWO DIMENSIONSoeeeutierrierreeresreessmcesuesssiesassesisnnes 77
8.2.2 GENERALIZATION TO HIGHER DIMENSIONS.....veeeiererereereerineeesianersininieenes 78
BIBLIOGRAPHY ...c.oveieurienvreeiseeeretessaeasessseeassesssessssessssesssssssesssssesssessaneesineessssssssssasseens 79
REFERENCED LINKS ..oieuttiiiiiieiecnieeeiteresiaeesesessesunessesseesssnnsenssssessarsesessnsesmssssssssssnsessuns 83

ix

APPENDIX A: SOME ALGEBRAIC RESULTS GENERATED WITH MATHEMATICA 4 84
APPENDIX B: NUMERICAL SOLUTIONS TO THE MAIN SUBSIDIARY PROBLEM IN GRAPH AND
TABULAR FORMATS .c.eoiiiieriiiiieeeerseinniteresssonsnmuencoresascossasnsmasasesesossaiassssasessasssssnaasosssesass 85
APPENDIX C: IMPLEMENTATION INTERFACE DEVELOPED USING MFC (MICROSOFT

FOUNDATION CLASSES) — SCREENSHOTS ..eeiciutirererererrneeeesssneeionsssmeecosaisseessssnessasssassasns 102

VITA AUCTORIS :cvvvverieneerreereieereeeeressssinesonsssmssnesssssssssorssesssssssosssssssasssresssssssasssssnnssnseoses 105

Table 4.1

Table 4.2

Table 4.3

Table 7.1

Table A.1

LisT OF TABLES

A restriction on the value of d: Examples for some /

Some numerical solutions to the minimum perimeter triangle
problem (Special case: H = h)

Some numerical solutions to the minimum perimeter triangle
problem (General case: H > h)

Experimental results showing the number of iterations for
different n-gons

Numerical solutions to the main subsidiary problem

summarized

xi

47

59

59

73

100-101

Figure 1.1

Figure 1.2

Figure 1.3
Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9

Figure 3.10

Figure 3.11
Figure 3.12
Figure 3.13

Figure 3.14

LIST OF FIGURES

Geometric interpretation of a database query

Examples of simplicial partitions (with disks, triangles) and

a simplex range query (lisa query line)

A triangle that circumscribes a convex polygon P
Finding the minimal area enclosing triangles

Finding the minimal perimeter enclosing triangle

A fragment of a totally monotone matrix

Fitting a circle into a wedge from the right

Fitting a circle into a wedge from the left

A minimum perimeter configuration for a given edge
Edge notation for a convex polygon

Vertex notation for a convex polygon

Linear time algorithm: Step 1

Linear time algorithm: Step 2

Linear time algorithm: Step 3

Linear time algorithm: Step 4

Linear time algorithm: The result of the first iteration

for edge ¢;

The minimum perimeter configuration conditions: Geometry

Finding an antipodal pair of points
Finding a point antipodal to an edge

Finding a line antipodal to an edge

xii

13

15

17

19

20

21

22

23

23

24

25

26

27

29

32

32

33

Figure 3.15

Figure 3.16

Figure 3.17

Figure 3.18

Figure 3.19

Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12

Figure 4.13

Finding a circle inscribed in a degenerate wedge and
that touches a line

Geometric details for finding a circle in Figure 3.15
Finding a circle inscribed in a degenerate wedge and that
passes through a point

Finding a circle inscribed in a wedge and that touches a line
Finding a circle inscribed in a wedge and that passes
through a point

The first subsidiary problem

The second (main) subsidiary problem

A triangle for points P, O, and line L: Acute angle configuration
A triangle for points P, Q, and line L: Obtuse angle
configuration 1

A triangle for points P, O, and line L: Obtuse angle
configuration 2

A degenerate configuration

A special case: H=h

A general case: H > 4 (acute-angled configuration)

The perimeter function: Geometric insights

The perimeter function: Deriving the main equation

The minimum perimeter configuration

The maximum perimeter configuration

Only the minimum perimeter configuration when # =1 (H = h)

xiii

34

35

36

37

39

42

43

44

45

45

46

48

49

52

53

57

57

58

Figure 4.14

Figure 5.1

Figure 5.2

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure A.1

Solutions to the main subsidiary problem (triangle angles)
Software system class diagram engineered with

Rational Rose 2000

Microsoft Foundation Classes (MFC) version 6.0:

A diagram generated with Rational Rose 2000

Choosing polygon vertices by clicking with a mouse

A convex polygon is chosen or “closed”

A minimum perimeter triangle flush with one of the polygon
edges (All iterations are shown)

The minimum perimeter triangle for the polygon is found
(Minimum triangles corresponding to all edges are shown)
Geometric details of the linear time algorithm

Geometric meaning of /, d, and x

Xiv

58

61

62

67

67

68

69

70

&5

Appendix A

Appendix B

Appendix B

LIST OF APPENDICES

Some algebraic results generated with Mathematica 4
Numerical solutions to the main subsidiary problem
in graph and tabular formats

Implementation interface developed using MFC

(Microsoft Foundation Classes) — Screenshots

XV

84

85

102

Chapter 1 INTRODUCTION

1.1 COMPUTATIONAL GEOMETRY AND OTHER COMPUTING SCIENCES

Computational geometry is having an ever-increasing influence on various branches of
computing and information sciences. Database systems, pattern recognition, geographic
information systems, and computer graphics are just a few examples of the fields where
the procedures can be made more rigorous and the algorithms more efficient by the

application of principles discovered in computational geometry.

salary/year
60,000 -)
40,000 R R
employee age
30 40

Figure 1.1 Geometric interpretation of a database query

Consider problems in the area of database systems that, at the first glance, have
not much in common with computational geometry. Nevertheless, many types of
database queries can be formulated geometrically. An example of a typical range query in
a relational database is to retrieve all employees with yearly wages between 40,000 and

60,000 and who are between 30 and 40 years of age (Figure 1.1). A record, or a tuple, in

a database that has d attributes can be interpreted as a point in d-space (multidimensional
space). Then, queries that ask to report all records that lie in a certain query interval
transform into reporting all the points lying in the corresponding d-dimensional block.
The query region in this case is rectangular, and such rectangular range queries belong to

orthogonal range searching [BKOS97].

Figure 1.2 Examples of simplicial partitions (with disks, triangles) and
a simplex range query (fisa query line)

While simple rectangular range queries can be answered without involving the
computational geometry techniques, answering range queries over non-rectangular
regions, called simplices (see examples in Figure 1.2), can be difficult. The area of
simplex range searching deals with the queries of more general structure, when the query
range is of non-orthogonal form. Let us consider the following example [BKOS97]. The
city authorities are planning to build a new airport. The population density can be
represented on a map by plotting a point for every, say, 5000 people. Then, the query of

how many people would be affected by the new airport construction (say, in terms of the

noise level from the planes that exceeds a certain level), would transform into reporting
the number of points in the query region around the new construction. The query region
in this case is non-orthogonal and can generally be of any shape (the term “simplex” is
typically described as “simple polygon”; however, the shape of the region can be more
flexible). Simplex range searching deals with preprocessing of points into a data structure

such that the points lying in a query simplex can be counted, or reported, efficiently.

Pattern recognition is another area that is broadly influenced by the advances in
computational geometry. For instance, convex hulls and the algorithms for their selection,
sorting, and computing have been extensively used in many pattern recognition problems
[Tou85]. Voronoi diagrams have also been used to efficiently solve some geometric
problems that arise in pattern recognition and other fields. Another geometric problem
that occurs in pattern recognition and that was solved in computational geometry is a
problem of decomposition of simple polygons into convex components (for example, the
problem of decomposition of a non-convex polygon into a minimum number of convex

polygons [KS85]).

One of the most effective ways of obtaining efficient algorithms (in many
computing fields) is application of so-called bucketing techniques, also discovered in
computational geometry (for details, see a survey [AEIIMS85]). “Buckets” are the
subregions into which the entire region under consideration is partitioned. The bucketing
techniques are applicable, for example, to the problem of minimum-weight perfect
matching in the plane, which asks to match the » points in pairs so as to minimize the

sum of the distances between the matched points.

These and many other problems that find their solutions in computational

geometry are used in pattern recognition and other computing fields.

1.2 CONCEPTS OF GEOMETRIC OPTIMIZATION IN COMPUTATIONAL

GEOMETRY

In general, there are two kinds of computing problems:
1. An optimization problem asks, what is the best solution? An example is the well-
known traveling salesman problem, which minimizes the cost of overall travel.
2. A decision problem asks, is there a solution with a certain characteristic? An

example is a Hamiltonian cycle with a cost less than some fixed cost &.

Geometric optimization problem is an optimization problem induced by a collection of
geometric objects (e.g. [FS75], [DB83]). The process of finding the best possible solution
to such a computational problem is called geometric optimization. The objective of
geometric optimization is to find an optimal solution with the minimum (or maximum)

value in a region that contains all possible problem solutions.

Geometric optimization allows the development of faster and simpler algorithms
by virtue of exploiting the geometric nature of the problem (see [AS98] as well as the
examples in section 1.1). This is because often a non-geometric problem can be reduced
to a geometric one with a simpler and more efficient solution (e.g. orthogonal range

searching for relational database querying).

1.3 THE PROBLEM OF APPROXIMATION OF CONVEX POLYGONS

The problem of finding a simpler convex polygon (or polytope in higher dimensions) that
approximates a given convex polygon (polytope) [Gru83] has been studied extensively in

the past two decades. Being fundamental in nature, this problem, nevertheless, finds

various practical applications, discussed in section 1.5. In its general case, this problem
can be described as circumscribing and inscribing convex n-gons with, respectively,
minimum and maximum area (or perimeter) k-gons. Typically, k < 7, and the resulting
approximate polygon is, in its geometric sense, simpler than the original polygon.

There are, naturally, two “flavors” of this general problem, where one deals with
finding the circumscribing polygon and the other attempts to find the inscribing polygon.
Both the enclosure and inclusion problems can be viewed as polygon approximation
problems. The existing approaches for solving both types of problems are briefly

discussed in Chapter 2 (section 2.1).

1.4 THE PROBLEM OF FINDING THE MINIMUM PERIMETER TRIANGLE

ENCLOSING A CONVEX POLYGON

Figure 1.3 A triangle that circumscribes a convex polygon P

A special case of the polygon approximation problem is a problem of finding a triangle of
minimal perimeter that circumscribes a given convex polygon (Figure 1.3). This problem

constitutes the major subject of this thesis and will be investigated in detail in subsequent

chapters. The geometric significance of points P and O in Figure 1.3 will also be

discusses in detail.

An optimal linear time solution to the minimum perimeter triangle problem was

recently suggested by Bhattacharya and Mukhopadhyay [BMO1], [BMO02].

1.5 PROBLEM APPLICATIONS

Solutions to the polygon approximation problems find their applications in various

practical settings. The following list provides some of these important applications.

1. Stock-cutting problems in manufacturing (cut a sheet of material into smaller
subparts under various constraints, such as all subparts are congruent to a given
shape),

2. Packing and optimal layout problems,

3. Collision avoidance in robotics,

4. GIS (geographic information systems) that maintain maps and spatial data for the
environment, military, and city planning,

5. Spatial databases,

6. Pattern recognition,

7. Scientific computing and visualization,

8. Computer graphics,

9. Data compression.

1.6 COMPUTATIONAL MODEL AND OTHER ASSUMPTIONS

Our computational model for the problem of finding the minimum perimeter triangle

enclosing a convex polygon assumes a random-access computer with infinite precision

real arithmetic. While this assumption is permissible for the theoretical solution, it will
not be appropriate for the implementation of the theoretical result. We will address this

issue later when we discuss robustness of our implementation in Chapter 6 (section 6.6).

We further assume that the solution of simple algebraic and trigonometric
equations takes constant time, O(1). In addition, we presume that all geometric primitives
that are computed in the course of the algorithm (such as cross points, antipodal points,
and excircles), which, in general, may involve solving several algebraic equations of

various degrees, can also be obtained in constant time.

Finally, our computational model for the algebraic solution to the main subsidiary
problem, discussed in Chapter 4, assumes that the algebraic equations involving
polynomials of degree higher than four can also be solved in constant time. While this
assumption is not accurate in the general sense, it nonetheless may be applied here, since
we can simply view such high-degree polynomials as a “black box™, and apply the power

of, say, numerical methods, to provide the solution(s) in an efficient manner.

1.7 MOTIVATION FOR THE THESIS

Qur motivation for this thesis is two-fold.

First, it has been evident for some time that in several practical situations, the best
algorithm from the theoretical point of view is prone to be outperformed by more naive
methods. That is why, claiming an efficient algorithm with optimal or near-optimal time
complexity is not always sufficient for the purposes of solving a practical problem. If we
wish the results of our research to be of some practical use, we should not forget to

investigate the efficiency of our solution in a practical setting. We considered

implementing a novel linear time algorithm for computing the minimum perimeter
triangle enclosing a convex polygon due to Bhattacharya and Mukhopadhyay [BMO1],
[BMO02] in order to offer an efficient practical solution to this problem, in addition to

achieving an optimal theoretical result.

Second, it has been unknown to us whether the number of iterations necessary to
compute a minimum perimeter triangle corresponding to each polygon edge is finite and
whether it depends (and if so, how) on the number of polygon edges #. In its degenerate
case, the problem of finding the minimum perimeter triangle enclosing a convex polygon
can be construed as a problem of finding the minimum triangle configuration for an
object defined by a pair of points above a given line (Chapter 4). We considered solving
this main subsidiary problem variant algebraically in order to verify that a solution to the
minimum perimeter triangle problem can be expressed and solved mathematically. We
also used our implementation of the algorithm to verify in many problem instances that
the number of iterations mentioned earlier is not only finite, but also is small enough to

consider this solution to be of practical importance.

1.8 OBIJECTIVES OF THE THESIS

First, this thesis aims at providing an efficient and robust implementation of a novel
linear time algorithm for computing the minimum perimeter triangle enclosing a convex
n-gon. The implementation should be efficient in the sense that it should comply with the
algorithm’s linear time complexity while achieving a small constant factor. To attain this,
all the preliminary geometric operations used in the algorithm should be computed
efficiently, that is in constant time. The implementation should be robust in the sense that

it should work for all input instances. The efficiency and robustness are necessary for

providing a solution of practical use.

Second, this thesis aims at solving the minimum perimeter triangle problem for
the main subsidiary case algebraically. Expressing the perimeter of the enclosing triangle
via the geometric configuration of the enclosed object that is defined by a pair of points
above a line, analyzing this expression, and providing the solution for various instances is
the second goal of the thesis. The characterization of the perimeter function in the
mathematical sense is important for better understanding of the problem and for

analyzing the approaches to finding its best solution.

1.9 STRUCTURE OF THE THESIS

In Chapter 1 we provide an introduction to the area of computational geometry and its
field of geometric optimization. We also introduce the problem of approximation of
convex n-gons with simpler convex k-gons. A particular problem of finding the minimum

perimeter triangle enclosing a convex polygon is also introduced in Chapter 1.

Chapter 2 gives a review of the literature for the problems of computing the
minimum area and minimum perimeter triangles that enclose convex polygons (sections
2.2 and 2.3, respectively). A brief literature overview regarding more general polygon
enclosure and inclusion problems (where a triangle is extended to a general k-gon), is

provided in section 2.1.

In Chapter 3, we present our theoretical framework for computing the minimum
perimeter triangle enclosing a convex polygon. This includes an overview of a recently-
proposed linear time algorithm, proofs for the minimum perimeter triangle configuration

conditions, and a mathematical derivation of many geometric operations used in this

algorithm.

Chapter 4 concludes the theoretical portion of the thesis by describing an
algebraic approach to solving the main subsidiary case of the minimum perimeter triangle
problem. It provides an equation that expresses the perimeter of the circumscribing
triangle via the geometric configuration of the enclosed object, defined by two points
above a line. Minimizing this expression for the perimeter gives a solution to the main

subsidiary problem.

Chapter 5 discusses an object-oriented methodology for our implementation of the
linear time algorithm for the problem at hand. This includes OOA and OOD (object-
oriented analysis and design), OOP (object-oriented programming) in C++, as well as a
discussion of several software testing techniques applied to the resulting software system.

Chapter 6 addressed the implementation in more detail. In addition, here, we
concentrate on such important issues of our software system as efficiency and robustness.

Chapter 7 evaluates the framework proposed in the thesis, including theoretical
and implementation results.

Finally, Chapter 8 provides a conclusion and projects the directions for future

work.

10

Chapter 2 AN OVERVIEW OF EXISTING APPROACHES

2.1 THE PROBLEM OF APPROXIMATION OF CONVEX POLYGONS: A

BRIEF OVERVIEW OF THE LITERATURE

Recall from Chapter 1 (section 1.3) that there are two general types of polygon
approximation problems: the inclusion and enclosure problems.

Let us first consider the inclusion problem.

The potato-peeling problem asks to find the largest convex polygon contained

inside a given simple polygon. A potato of polygon P is the maximum area (or

perimeter) convex polygon contained in 7. The potato-peeling problem was solved by
Chang and Yap [CY84] for a general case and for the case when the desired polygon was
maximized with respect to perimeter. The proposed algorithms have O(n7) and O(nﬁ)
time complexities, respectively.

Dobkin and Snyder [DS79] considered the potato-peeling (inclusion) problem,
when the polygon included inside a convex polygon was a triangle of maximal area. They
proposed a linear time algorithm for this case. Later, their result was extended from

triangles to convex k-gons by Boyce ef al. [BDDGS85]. Boyce et al. obtained algorithms

for both, maximal area and perimeter cases. The running time of these solutions is
O(k -nlog? n) The main idea behind these algorithms is that the vertices of any maximal

k-gon must be a subset of the vertices of the input polygon. In both, [DS79] and
[BDDG8S5], the input polygon is restricted to be convex. Thus, the techniques proposed in

these papers do not work for a more general case of simple polygons. The general potato-

11

peeling problem was solved in [CY84], as it was mentioned earlier.

The enclosure problem has been considered for the following cases.

The problem of enclosing a convex polygon with a triangle of minimal area was
first considered by Klee and Laskowski [KL85]. They derived an O(n log’ n) solution.

Later, O’'Rourke et al. [OAMBS86] improved it to linear time, which is optimal. We will
give a more detailed discussion of these approaches in section 2.2. Also, we will provide
a comprehensive coverage of the problem investigated in this thesis; that is, finding the
minimum perimeter enclosing triangle for a given convex polygon (beginning in section

2.3 and throughout this thesis).

De Pano [DeP84] extended the method described in [KL85] from triangles to

convex k-gons. He obtained a solution for all £, His solution’s time complexity is

exponential in k: O(nk‘2 log® n) Later, Chang and Yap [CY84] improved De Pano’s
result to O(n3 log k). Finally, Aggarwal et al. [ACY85] refined the Ilatter solution to
O(n2 lognlog k).

In addition to triangles and general k-gons, the enclosure problem was also
approached for enclosing rectangles and squares. For the problem of finding the smallest
rectangle containing a given polygon, Toussaint [Tou79] proposed a linear time solution.
In generalization to three dimensions, O’Rourke [OR084] described an O(n3) algorithm
for the smallest rectangular box enclosing a given polyhedron. The problems related to

finding the smallest square containing a given polygon were addressed in the paper by De

Pano and Aggarwal [DA84].

12

2.2 FINDING THE MINIMUM AREA TRIANGLE ENCLOSING A CONVEX

POLYGON
2.2.1 PROBLEM STATEMENT

Given a convex polygon P, find a triangle 7 that encloses % and has the minimum area

among all triangles enclosing 7.

2.2.2 THE FIRST SOLUTION

Klee and Laskowski [KL85] provided the first solution to the problem of finding a
triangle of minimal area that encloses a convex polygon. They derived an O(n log’ n)

algorithm that finds all such triangles. In general, there exists more than one triangle (a

family of triangles) with the minimum area property.

Figure 2.1 Finding the minimal area enclosing triangles

The first and subsequent approaches for finding the minimum area enclosing

triangles are based of the following two heuristics discovered in [KL85] (see Figure 2.1).

13

1. First, the midpoint of each side of the enclosing triangle 7~ touches polygon 7.

2. Second, at least one side of triangle 7 is flush with an edge of polygon 7.

The strength of the first solution to the minimum area problem lies in proving these
important properties, as well as in establishing an elegant geometric characterization of
the minimal area enclosing triangles, which permits the avoidance of brute-force
optimization. The authors show that although there may be infinitely many local triangle

minima, they fall into at most n equivalence classes, each of which is a “segment” of
triangles having the same area [OAMBS6]. In other words, there are at most O(n)
regions that contain the local minima. Finding these local minima takes O(n log2 n) time;
then, selecting the global minima from the local ones is accomplished in additional O(n)

time, making the overall time complexity of this solution O(n log? n)

2.2.3 AN OPTIMAL SOLUTION

O’Rourke et al. [OAMBS86] improved the solution of Klee and Laskowski [KL85] to

linear time, and showed that O(n) is the optimal time complexity for this problem. The

algorithm suggested by O’Rourke ef al. finds all minima and just one minimum in O(r)
time.

The linear time solution is built on the same heuristics (midpoint and flush edge)
as the first solution; however, the researchers avoid computing each local minimum
afresh, without using any information gained from finding the previous local minima

[OAMBS86]. They move from one minimum to the next in an orderly fashion, which

allows them to achieve the linear time complexity.

14

2.3 COMPUTING THE MINIMUM PERIMETER TRIANGLE ENCLOSING A
CONVEX POLYGON

2.3.1 PROBLEM STATEMENT

Given a convex polygon P, find a triangle 7 that encloses P and has the minimum

perimeter among all triangles enclosing 7.

2.3.2 THE FIRST AND SUBSEQUENT SOLUTIONS

The first solution to the minimum perimeter problem was proposed by De Pano [DeP87].
The time complexity of this algorithm is O(n3) An important contribution of the paper is

establishing the following property (similar to the minimal area enclosing triangles):

8§ =¢€;

Figure 2.2 Finding the minimal perimeter enclosing triangle

15

De Pano suggested the following framework for finding the minimum perimeter
triangle enclosing a convex polygon. For any triple (i, j, k), let 7} j & be the minimum
perimeter circumscribing triangle with its first side s, flush with the polygon’s edge e;, its

second side s, containing vertex v, of the polygon, and its third side s; containing vertex

v, of the polygon (Figure 2.2). Then, there exists a point p, on the triangle’s side s, and

the polygon, and the point p; on the triangle’s side s; and the polygon, such that the
length of s, between point p, and the end-point it shares with s; equals the length of s3

between point p3; and the end-point it shares with s; [AP88]. This approach allows

computing such 7; ; ; triangles in constant time. There are n’ possible triples (i, j, k) to

be considered and, therefore, De Pano’s algorithm runs in O(n3) time.

De Pano’s complexity was later improved to O(nz) by Chang and Yap [CY84].
The latter approach is based on the principle discovered for computing the minimum area
enclosing triangles, which is also applicable to the minimum perimeter problem: there are
at most O(n) regions that contain local minima. In a given region, it takes O(1) time to
determine the local minima. Each region is “two-dimensional”, since there are O(n)
regions corresponding to each polygon edge and a total of n edges. A region is thus
denoted as Region(i, j). Therefore, the overall time complexity of this solution is O(n2)

Aggarwal and Park [AP88] used the powerful matrix searching technique in
higher dimensions to reduce the complexity of the minimum perimeter triangle problem
to O(nlogn). The matrix searching technique is based on searching in sorted matrices.

The main idea of this approach is that a set of candidate critical values can be represented

by an nXn matrix (in two dimensions), where each row and column is sorted. Then, the

16

approach recursively eliminates sub-matrices with certain properties, finally leaving »
sub-matrices. The binary search is then performed on the remaining » candidates in order
to find the final minimum or maximum answer. The running time of the matrix searching

technique is O(logn) times the cost of the decision problem. The minimum (or the

maximum) element of every row of a fotally monotone matrix can be found in linear

time. In a totally monotone matrix (see a fragment in Figure 2.3), @ < g h =y <
1J1 12

a. . » where a is an element of the matrix and 7 and j are the row and column matrix

j2

indices respectively.

J1 J2
h ailjl a’]iz
2 iy aizjz

Figure 2.3 A fragment of a totally monotone matrix

As it was mentioned above, Aggarwal and Park used the matrix searching

technique to derive their O(nlogn) solution to the minimum perimeter triangle problem.

Their algorithm creates an nx(2n—2)x(2n-1) matrix A = {a ; ; 4} that is totally
monotone and is defined as follows. For 1<i<n and i< j<k<i+n,let a;; be the

perimeter of triangle 7} ; mod n, k mod » » Provided this triangle exists [AP88]. If this triangle
does not exist, a ; ; x is set to infinity. According to De Pano’s cubic solution [DeP87],

each entry in matrix 4 can be computed in constant time. And since the perimeter of the

17

minimum perimeter triangle for the polygon is simply the minimum entry in A4, it is
possible to find the solution to the problem in O(nlogn) time, based on the fact that
matrix 4 is totally monotone.

It is important to note that even a powerful matrix searching technique that often
provides linear solutions, did not yield a linear time answer to the minimum perimeter

triangle problem. Finding a linear time solution to this problem turned out to be more

difficult than finding an optimal linear time solution to the minimum area problem.

The existence of a linear time algorithm had been a matter of conjecture for over

10 years.

2.3.3 AN OPTIMAL SOLUTION

Finally, Bhattacharya and Mukhopadhyay [BMO01], [BMO02] proposed a linear time
algorithm for solving the minimum perimeter triangle problem. Their solution will be

discussed in great detail in the next chapter (Chapter 3).

18

Ch&pt@l‘ 3 OUR FRAMEWORK FOR COMPUTING THE
MINIMUM PERIMETER TRIANGLE ENCLOSING A CONVEX POLY-
GON

3.1 A LINEAR TIME ALGORITHM OVERVIEW

We begin with providing a detailed overview of a linear time algorithm for computing the
minimum perimeter triangle enclosing a convex polygon of n edges/vertices due to
[BMO1] and [BMO02]. Our algorithm description will be based on the paper [MMO03]. In
the discussion that follows (all remaining thesis chapters), a polygon refers to a convex
polygon.

It was established in [DeP87] that a minimum perimeter triangle that

circumscribes a convex polygon is flush with at least one of its edges (Figure 3.3).

Figure 3.1 Fitting a circle into a wedge from the right

The main idea of the algorithm is to consider each polygon edge in turn and

19

compute a minimum perimeter triangle that is flush with this edge. This computation is
built on a novel scheme of circle-fitting and wedge-flipping. The former consists of fitting
the smallest circle into a wedge that contains the given polygon as shown in Figure 3.1.
Once such a circle is determined, we also have a new wedge that contains the polygon as

shown in Figure 3.2, and we repeat the previous step with this new wedge. This is wedge-

Sfipping.

Figure 3.2 Fitting a circle into a wedge from the left

It was proved in [BMO1] and [BM02] that in each step, or iteration, we reduce the
perimeter of the enclosing triangle. We stop when we obtain an enclosing triangle AABC
such that BP = CQ, where P is the point where the circle fitted into the wedge W(CA, CB)
touches AB, and Q is the point where the circle fitted into the wedge W(BA, BC) touches

AC (see Figure 3.3).

The circle-fitting procedure makes use of a solution to the following basic

problem.

20

Figure 3.3 A minimum perimeter configuration for a given edge

When the circle-fitting and wedge-flipping procedure terminates, we have a
triangle of minimum perimeter. The proof of the former makes fundamental use of the
fact that the solution to the following problem (Problem 2) is a unique one and can also

be found by circle-fitting and wedge-flipping.

21

Finally, the linearity of the algorithm crucially depends on the fact that the
following left-interspersing lemma holds [BMO2]. Its chief implication is that we do not

have to backtrack as we move from one edge to the next in an anticlockwise order.

Proof The proofis provided in [BM02]. B

The polygon needs to be traversed in a clockwise order too, as shown in the
papers [BMO1] and [BMO2], and a similar right-interspersing lemma underlies the

linearity of this search.

Let us take a closer look at how this linear time algorithm works step-by-step.
Figures 3.6 through 3.10 illustrate some details of the algorithm that will be discussed
shortly. An input polygon is defined by a set of its edges and a set of its vertices (Figures

3.4 and 3.5 respectively) that are named in a counter-clockwise order.

e3 e4
6 e3

e7 el
el

Figure 3.4 Edge notation for a convex polygon

22

Figure 3.5 Vertex notation for a convex polygon

A list of procedures discussed below is performed for each polygon edge in turn.
We refer to the overall procedure as an anticlockwise search of polygon edges due to the
direction in which the edges are considered. There is a corresponding clockwise search

with the only difference being the order in which the polygon edges are traversed.

.

Figure 3.6 Linear time algorithm: Step 1

First, the algorithm finds a circle inscribed in a degenerate wedge, formed by an

23

edge under consideration — e; to begin with — and a line antipodal to e;, and that also
touches the next anticlockwise edge, e, (Figure 3.6). If the point of tangency belongs to e;
(not the case in our example), we stop. This point of tangency becomes point O (see
Figure 3.10), and the tangent line that contains point O, e; here, becomes a new triangle
side. Otherwise, we find a circle through polygon vertex p; inscribed in the same
degenerate wedge as before (Figure 3.7). If the tangent to the circle at this point is also
tangent to the polygon (meaning it only touches the polygon in one point), we stop and
assign point Q and a new triangle side correspondingly. Else, we move to the next edge e;
and repeat the procedure that was just performed for edge e,. In this manner, we find

point O by a brute-force search.

Figure 3.7 Linear time algorithm: Step 2

We define a concept (already mentioned above) of an antipodal line for edge e; as
a line parallel to e; tangent to the polygon, and that passes through a polygon vertex

antipodal to the e; or lies on a polygon edge that includes an antipodal to e; vertex.

24

Another concept used in the algorithm is one of a balanced wedge. A wedge W is
said to be balanced when we find a line through a given point Q contained in W, such that
this line is tangent to the largest circle inscribed in W that passes through point 0. A
wedge is balanced for a polygon when such a tangent line is also tangent to the polygon.
In this case, point Q is on the boundary of the polygon, inside /. And we can see how the

concept of a balanced wedge can be used to find such a point Q.

Figure 3.8 Linear time algorithm: Step 3

Once we have found a balanced wedge for the first degenerate configuration
(steps 1 and 2 in Figures 3.6 and 3.7 respectively), we switch to a new wedge whose arms
are along the newly found tangent line and our current edge e; (Figure 3.8). We find point
P (see Figure 3.10) and a line tangent to P in the same brute-force manner as we found
point O (Figures 3.8 and 3.9). The only difference is that now we start from an edge that

immediately follows the antipodal point or the antipodal line (es here).

25

Figure 3.9 Linear time algorithm: Step 4

Once we have found points P and Q and their corresponding tangent lines that
become two new sides of the enclosing triangle (Figure 3.10), we have completed the
first iteration of the algorithm for edge e;. We now check the following condition,
necessary (but not sufficient) to attain a minimum perimeter triangle configuration for a
given edge: |BP| = |CQ|. If this condition is satisfied, we have the minimum perimeter
triangle for the current edge, and we stop. No more iterations are needed for this polygon
edge. If, on the contrary, the condition is not satisfied, we repeat the procedures outlined
for the first iteration again. This will be the second iteration for a given edge. The only
difference here and in any subsequent iteration is that we do not have to start with a
degenerate wedge, and instead use the tangent line found for point P in the preceding
iteration. This evidently allows us to progress to a new enclosing triangle configuration,
which, as it was shown in [BMO1], has a reduced triangle perimeter. Finally, we remark

that if the height of point P becomes less than the height of point Q at any time, we stop

26

and move on to the next polygon edge, as such a configuration would not generate a
minimum perimeter triangle according to [BMO1]. It is then necessary to traverse the
edges in a clockwise order to check if such an edge has a minimum perimeter triangle

corresponding to it.

Figure 3.10 Linear time algorithm: The result of the first iteration for edge e;

Note that determining whether a line is tangent to a polygon can be done by
considering the n products of the form (y, —m-x, —b)-(y'—m-x'~b), where (x,,,) is
a polygon vertex (0<i<n), (x’,y’) is the center of the circle that defines the tangent
line, and y =m-x+b is the equation of the tangent line. If all such products are negative

or all are positive (some may be zero as those for the vertices on the tangent line), then,

the line is tangent to the polygon.

Below is the algorithm in pseudocode that computes the minimum perimeter

triangle circumscribing a convex polygon in linear time [BMO1], [BMO02]. Note that

27

procedure MinPerimeter has to be executed for every polygon edge. The minimum

perimeter triangle for the polygon is the minimum among the triangles computed for all

polygon edges (for some edges, such triangles may not exist — see Algorithm).

3.2 PROVIDING PROOFS FOR THE MINIMUM PERIMETER TRIANGLE

CONFIGURATION CONDITIONS

28

These conditions are not independent; that is, one can be inferred from the other.
They were originally mentioned in [BMO1] and then presented in [BMO02]; however,
there were no detailed proofs provided to justify these claims. Due to their importance for

the algorithm, we provide the corresponding proofs here.

Figure 3.11 The minimum perimeter configuration conditions: Geometry

Proof Consider the minimum perimeter configuration of Figure 3.11. It was shown in
[BMO1] that points P and Q lie on the polygon. We now show that the algebraic

conditions specified in the Theorem are correct.

1. The six equalities below follow from geometry of the minimum perimeter triangle
configuration (see Figure 3.11):
BP = BZ, CQ = CY,

AP = AW, AQ = AX

29

CZ = CW, BY = BX.
The perimeter of the enclosing triangle can be expressed as follows:
Perimeter = BC+ BP+ AP+ AC

= BC+BZ+AP+ AC
———

CZ

=CL+AP+AC=2-CZ
e —

cz

AP + AC = CZ in the last expression since CZ = CW = AC + AW =AC + AP.

On the other hand, the perimeter can also be expressed as follows:

Perimeter = BC+CQ+ AQ+ AB

= BC+CY+AQ+ 4B
k____v_.._l

BY

= BY+AQ+AB=2-BY
BY

AQ + AB = BY in the last expression since BY = BX = AB + AX = AB + AQ.

Thus we have:

202 =28Y = BZ=CY = BP=CQ. O

BC+BZ BC+CY

. BY=BX >

BC+CY=A4B + AX =

BC+ CQO=A4AB+ AQ

Subtracting BP from both sides of the last expression we obtain:

BC+ CQ—~BP=AB—-BP + AQ

And since CQ — BP = 0 (due to property 1 of the Theorem) and AB — BP = AP,

we finally have: BC = AP+ AQ. &

30

3.3 GEOMETRIC PRELIMINARIES FOR THE LINEAR TIME ALGORITHM

The algorithm uses several geometric operations as it computes the enclosing triangles
for the polygon. In particular, it relies on the operations such as finding a point and a line
antipodal to a polygon edge, finding an excircle for a triangle, computing a point of
tangency of a circle and a line, finding a circle inscribed in a wedge, computing a cross
point of two lines, and so on. To achieve maximum efficiency for our implementation of
the algorithm, we mathematically derived optimal solutions for all operations specified in
the algorithm. All geometric primitives were determined through the use of Euclidian

orthogonal coordinates.

The following discussion provides the expressions for some of these primitives.
Most expressions below were derived using line coefficients (from line equations). In
cases when lines are vertical, some trivial modifications to the derived expressions are

needed. They are omitted here due to their simplicity and space limitations.

1. Finding a point antipodal to an edge.

Proof Let S be a set of N points in the plane. Let also points 4 and B constitute the

farthest pair of these N points. To prove that points 4 and B also constitute an antipodal
pair of points, we need to show that a set of N points in the plane admits parallel lines of
support (by definition of antipodal points [PS85]). On Figure 3.12, such lines of support
are labeled L; and L,. Since B is the farthest point from 4, it follows that all points from

set S must lie in the disk determined by the circle centered at point 4 with radius equal to

31

distance (4, B). 1t then follows that we can construct a line of support Z; which is tangent
to the circle at point B. We can construct a line of support L, in a similar way. Since L,

and L, are each orthogonal to line segment [4, B], they must be parallel, thus proving the

Proposition. B

Figure 3.12 Finding an antipodal pair of points

Figure 3.13 Finding a point antipodal to an edge

32

Based on the Proposition, a point antipodal to a given polygon edge is found as

the farthest from that edge polygon vertex (Figure 3.13).

2. Finding a line antipodal to an edge.

A line that is antipodal to a given polygon edge is parallel to that edge and passes through
an antipodal to that edge point (Figure 3.14). The antipodal line may be flush with

another polygon edge.

Figure 3.14 Finding a line antipodal to an edge

3. Finding a circle inscribed in a degenerate wedge and that touches a line.

There are always two circles that can be inscribed between two parallel lines and that

touch a third line, non-parallel to the first two lines (Figure 3.15).

If the two parallel lines, L, and L,, are given by their corresponding equations

y=mx+b and y=m,x+b, (note that for parallel lines, m; = my), and the third line’s
equation is y = m,x + b, (line L3), then, the coordinates of the centers of the two circles

and the circles’ radiuses (which are the same in this case) are found using the following

33

logic. (Note that choosing one of the two circle solutions is trivial as the excircle of

choice and the polygon lie on the opposite sides of line L3.)

L;

L,

Figure 3.15 Finding a circle inscribed in a degenerate wedge and that touches a line

First, we notice that the radius of the resulting circle is half the distance between
the two parallel lines. Second, finding the center of the circle can be done after analyzing
the geometric configuration illustrated in Figure 3.16. We can see from Figure 3.16 that
our resulting circle is inscribed in a rhomb formed by the two given parallel lines and the
third line and a line parallel to the third line, line L, (from simple geometry, it is only

possible to inscribe a circle in a parallelogram if that parallelogram is a thomb).

The main idea of our approach is that thé radius of the circle whose diameter is
defined by a line segment of line L; confined between lines L; and L, (the “bigger” circle
in Figure 3.16) is equal to the length of the median of the right triangle whose right angle
is fixed in the center of the “smaller” circle and the base is flush with the diameter of the

“bigger” circle. In other words, £ MO, N =90° and the radius of the circle centered in

point O; is equal to the median of A MO, N that corresponds to its rights angle. Finding

34

the length of the median is trivial: it equals to % of the length of line segment [M, N]. It

then only remains to shift the center of the “bigger” circle by the length of the median to
the right, so to arrive at the center of the “smaller” circle that was our objective (O; to O;
shift). Note that in a general case, “smaller” and “bigger” terms are not relevant and were

only used in our discussion to provide clarity in referral to Figure 3.16.

Ly

L,

Figure 3.16 Geometric details for finding a circle in Figure 3.15

Due to space limitations and due to their simplicity, we omit the expressions for

the final solution.

4. Finding a circle inscribed in a degenerate wedge and that passes through a

oint.

The following idea provides a solution to this geometric primitive. Let the coordinates of

a point inside a degenerate wedge be (x’,y”) and let us assume that this point is contained

35

in the wedge (Figure 3.17). There are, as in the previous case, always two solutions. For

both of them, the radius is found trivially as yz of the distance between the two parallel

lines. Choosing one of the two solutions is not difficult and depends of the geometric

configuration of the polygon. We always choose a circle that is exterior to the polygon.

Ly

L,

Figure 3.17 Finding a circle inscribed in a degenerate wedge

and that passes through a point

If the two parallel lines, L; and L,, are given by their corresponding equations

y=mx+b and y=m,x+b, (for parallel lines, m; = my), and the coordinates of a
given point are (x', y'), then, the coordinates of the centers of two circles (xl, yl) and

(x2 Vs) can be found by solving the following system of equations (we omit the solution

here due to its simplicity):

b +b,

y=mx+

(" =x) + ("= y) =(d/2)

, where d is the distance between the given parallel lines.

The first equation of the system implies that the center of the inscribed circle(s)

36

lies on the line that is parallel to the given parallel lines and is “half-way” between them.
The equation of such a line is the first equation in the system. The second equation of the
system implies that the given point (x’,3") belongs to the circle(s). Solving this system
for x and y, we obtain the coordinates of the two circles inscribed between the two

parallel lines and that pass through (x’,3").

5. Finding a circle inscribed in a wedge and that touches a line.

L,

Figure 3.18 Finding a circle inscribed in a wedge and that touches a line

Here, we have three non-parallel lines y =mx+b,, y=m,x+b,,and y =m,x+b,. We

want to find a circle inscribed in a wedge formed by the first two lines, L; and L;, and
that touches the third line, Ls (is an excircle to it). There are two mathematical solutions
to this condition (Figure 3.18), which have different radiuses. The solution of choice (the

excircle) simply has a bigger radius.

Generally speaking, there are a total of four possible solutions to this condition,

37

two of which are not shown in Figure 3.18 and are inscribed in the other wedge formed
by lines L, and L,. This wedge is obtuse-angled in Figure 3.18. We thus find all four of

these solutions algebraically and then choose the two that have their circle centers on the

bisector of the given wedge.

M1'=\/m12 +1+\/m§ +1

M} = \[m? +1+fm? +1

M =—m +1+m +1

M, = —|m? +1+m? +1

B, = b \Jm? +1+b,\/m’ +1

B; =b\Jm; +1+b,\/m] +1

B; =b\Jm} +1-b,\/m] +1

M= |m? +1+\/;32 +1

M?=—m? +1+fm? +1

M =Jm? +1+fm? +1

M} =—\m +1+\/m32 +1

Bl =b\Jm? +1+b,m? +1

B} =by\Jm? +1—b,m? +1

B;=b1\/m32 +1+b4m +1

B, =b\Jm? +1=b,/m? +1 Bl =b\Jm? +1—bym? +1

Ky =mfml +lem[mi 1 KJ =myyfmd +1 =l +1
Ky =mfml +1=mmd 41 KY=m\fmd + 14 myfmi +1
Ky =mfm} +1=myfm? +1 K =mmd +1=myfm? +1

The four possible circle centers are now given by the following expressions. Note

that finding the circles’ radiuses is now trivial as they are simply the distances from the

circle centers to the corresponding arms of the given wedge.

38

X=(B"M-B-M")/(K'-M"-K"-M’) (for all four cases),

Y=(B"K"-B"-K')J(K"-M'-K’'-M") (for all four cases).

6. Finding a circle inscribed in a wedge and that passes through a point.

L;

Figure 3.19 Finding a circle inscribed in a wedge and that passes through a point

Finally, we find a solution to the condition depicted in Figure 3.19, where the point inside
the wedge has the coordinates (x”,y"). Note that this solution will be of a fundamental

importance to our algebraic expression derived for the main subsidiary problem in

Chapter 4.
A=(m, -m +1)
B==2m? +1)-(x'+y - m')+2m’ - (b - m? +b,)+ 2m, (b’ = b,)
C=(m2 +1)- () + () ~2y"-b')+ b (28, + m? -b')-B?

D=B*-4.-4-C

39

In the equations above, m’ and b’ are the coefficients of a line equation that
defines a bisector of the given wedge. There are always two distinct bisectors for a given
non-degenerate wedge, which cross at a 90° angle. Choosing the correct bisector is done
with respect to the location of point (x’,y’) that is contained in the wedge.

Mathematically, the two bisectors are found as follows:

a, =m21/m12 +1~my\Jm; +1 a, =——m21/m12 +1—mJm; +1

by =m} +1—m? +1 bzsz§+1+Jmf+1

¢, =by\Jm] +1 b \m; +1 ¢, ==b,\Jm} +1—b\/m; +1
4 al ’ c1 ’ az ’ Cz
1 bl 1 bl ’ b2 ’ b2

Finally, the coordinates of the centers of the inscribed circles and the circles’ radiuses are
determined as follows (“left” and “right” circles refer to their centers’ relative x
coordinates).

Left circle: Right circle:
%, =(-B-D)24 x, =(-B+D)24

7 4 4 ’
y,=m-x +b V,=m %, +b

R, =\/(x1 —-x')2 +(J’1 _y,):z R, :\[(xz _x,)z +(y2 —y,)2
Choosing between the two circles is done based on the circles’ radiuses. Clearly, we

choose a circle with a bigger radius.

40

Ch&pt@l’ 4 SOLVING THE MINIMUM PERIMETER TRI-

ANGLE PROBLEM ALGEBRAICALLY

In this chapter, we discuss our findings regarding the expression of the circumscribing
triangle’s perimeter via the geometric configuration of its enclosed object for the main
subsidiary problem (Problem 2). In this problem, a degenerate object if formed by a pair
of points located at some heights above a given line. Such an algebraic expression and its
solution help establish an existence of a linear time answer to the minimum perimeter

triangle problem for a convex polygon.

We begin this chapter with reiterating the statements of the two important

problems from Chapter 3.

4.1 A SIMPLE SUBSIDIARY PROBLEM

A solution to this simple problem is obtained by fitting a circle into the wedge W

that passes through point Q. A line tangent to this circle at point O forms the third side of
the minimum perimeter triangle for Problem 1. The first two triangle sides are flush with
the arms of the given wedge. We note that for a given wedge it is always possible to
inscribe two circles that pass through a given point Q (see section 3.3). We call one of
these circles an excircle (a circle with a bigger radius) and the other an incircle [BMO02]

(Figure 4.1). For the purposes of this problem, we always select the excircle.

41

excircle

incircle 4

Figure 4.1 The first subsidiary problem

The reason why A ABC in the solution above is the minimum perimeter triangle
for Problem 1 is due to the following [BM01]. The perimeter of the minimum perimeter

triangle is equal to twice the length of a tangent from the apex of the wedge to the
excircle of the triangle: 2-|BY | in Figure 4.1. (An excircle of a triangle is fitted into a
wedge formed by the extensions of two of the triangle sides, while touching the third side
from the outside of the triangle). The perimeter is clearly least when the excircle touches

AC at Q.

4.2 THE MAIN SUBSIDIARY PROBLEM

42

Figure 4.2 The second (main) subsidiary problem

The problem of finding the minimum perimeter triangle for a pair of points above

43

a line (Problem 2) can be construed as a degenerate case of the problem where the

minimum perimeter enclosing triangle is found for the polygon (and corresponds to one

polygon edge, to be precise) [BMO1]. In fact, the same scheme of circle-fitting and
wedge-flipping used to derive the linear time algorithm for the polygon, can be used to

solve Problem 2 (see pseudocode above, [BMO1]).

Figure 4.3 A triangle for points P, Q, and line L: Acute angle configuration

Let us consider solving Problem 2 algebraically. To do this, we aim at deriving an
algebraic expression for the perimeter of the enclosing triangle and minimizing it with

respect to the perimeter over one or more geometric parameters.

For the purposes of this problem, let us denote the height of point P over line L as
H and the height of point O over line L as 4. Without loss of generality, we can reduce
the number of parameters in the problem by setting H to 1, which is equivalent to scaling

the remaining parameters by a factor 1/H. Thus, the scaled height of P becomes H/H = 1

44

Figure 4.4 A triangle for points P, O, and line L: Obtuse angle configuration 1

Figure 4.5 A triangle for points P, Q, and line L: Obtuse angle configuration 2

and the scaled height of Q becomes h/H. We also scale the horizontal distance between

45

points P and O, d/H. We further refer to the scaled measures of [PP|, |00, and

Po
simply as 1, 4, and d, respectively. (P’ and Q" are the projections of £ and Q on line L.)

Figures 4.3, 4.4, and 4.5 show three possible triangle configurations (one acute-

angled and two obtuse-angled) that need to be considered for the purposes of Problem 2.

We denote the distance between points B and P’ as x. We then observe the three
possible cases of the enclosing triangles (Figures 4.3, 4.4, and 4.5) to find the minimum

perimeter solution to Problem 2.

A / 4 .
QR_QR+d _, p_ d-h

h 1 (1-h)

QR:h%(f—'%} >1=>d >(1-hh(/hY -1

L P’ B 0’ C R

Figure 4.6 A degenerate configuration

Before we proceed with our derivation of algebraic expressions, it is important to
note that the value of d, the horizontal distance between points P and Q, cannot be

arbitrary, and is constrained by the following expression {BMO1]:

d>(1-hW/h) -1,

46

Clearly, there is no restriction on d when & = 1. The above restriction can be

derived by examining a degenerate configuration shown in Figure 4.6 below. The idea is

that in order to have a minimum perimeter triangle configuration, |OR| >1.

d-h

(1-#)

restriction — see Figure 4.6.)

(Expression Q'R =

follows from triangle similarity and helps derive our

Table 4.1 provides some practical values for the restriction on d.

0.01 98.995

0.1 8.955
0.2 3919
0.3 2.226
0.4 1.375
0.5 0.866
0.6 0.533
0.7 0.306
0.8 0.150
0.9 0.048
1 0

Table 4.1 A restriction on the value of d: Examples for some £

4.3 SOLVING THE MAIN SUBSIDIARY PROBLEM FOR A SPECIAL CASE

The simplest case of the main subsidiary problem is when points P and Q are at equal
heights over line L (Figure 4.7). In this case, we obtain a simple equation of degree four
that gives us the minimum perimeter triangle. This equation is derived based on some

triangle similarities observed in the configuration of Figure 4.7 and also on the fact that

47

y=x+ % (Figure 4.7). Here is this equation:

4 _dY/
x +d-x A—O.

|4P|=|4'B|=x+d[2=y

Figure 4.7 A special case: H = h

Solving this equation for x (which can be done exactly and in constant time), we
obtain a configuration for the minimum perimeter triangle. A general solution to this
equation (expressed via d) was derived using a software package Mathematica 4 for
Students [WWWS5]. A printout from Mathematica that contains four roots (two of which
are real) is attached to the thesis (Appendix A). Note that one real root that is negative in
value (once the corresponding values for variables # and d have been plugged into the
solution expressions) does not have geometric meaning, as the only possible minimum

perimeter configuration for the special case is one that is acute-angled.

Additionally, some numerical solutions to the equation above are provided in

section 4.6.

48

4.4 DERIVING THE MAIN ALGEBRAIC EQUATION (GENERAL CASE)

[SN |

v

L d=d1+d2

Figure 4.8 A general case: H > h (acute-angled configuration)

1. The first approach

Solving the main subsidiary problem for a general case turned out to be more difficult
than for a special case discussed in the previous section. Our first intuitive solution was to
express the triangle’s perimeter using the two properties of the minimum perimeter

configuration proved in Chapter 3 (section 3.2).

The perimeter of the minimum perimeter triangle can be expressed as follows:

P=2-(x+d+\/x2 +1-h2 /52 +1).

To minimize the perimeter of the triangle, we took a derivative of this expression
with respect to x and performed some simple calculations, obtaining the following

equation that related several geometric attributes of the minimal perimeter triangle

49

configuration:
358 +4- (212)- x* +6-(1-h*)- x* + 287 —h* ~1=0.

The last expression corresponds to the acute angle configuration of Figure 4.3.
There are two more variations of the expression for the perimeter corresponding to
Figures 4.4 and 4.5. They include, instead of (x + d), the (d — x) and (x — d) terms,
respectively. All these variations yielded the same solution. This, along with the fact that
the resulting solution for x did not depend on d (depended only on k) raised suspicion
concerning this first approach. In addition, the approach did not yield any rational roots

for a special case when H = h.

2. The second approach

In our next approach, we analyzed the configuration depicted in Figure 4.8 (which is the
same approach undertaken for a special case in the previous section). The figure
possesses a variety of similar triangles, allowing the construction of a system of algebraic
equations. Along with the similarity principle, it is also possible to utilize the following
expression from simple geometry that connects the half-perimeter measure p with the

lengths of the triangle’s sides a, b, and ¢, and the height of the triangle’s apex over its

base a (hy): h, = g—J plp—a)p—-b)p-c). We arrived at the following expression for
a

the acute angle configuration in Figure 4.8:

(a’+x)‘(\/l+x2 —V1+x* =K’)-—-\/(1+x2)-(1+x2 ~h2)—(1+x2 —h2)=0.

This expression simplifies to the previously-derived equation for s = 1 (special case):
4 B odr/ =
x"+d-x A =0.

50

Using this second approach, it is necessary to derive two more similar expressions

for the obtuse angle configurations of Figures 4.4 and 4.5, as in general they are different.

3. Solving the main subsidiary problem for a general case (the third

approach)

The weakness of the first and, to some extend, of the second approach is that they only
consider the minimum perimeter triangle configuration without trying to characterize the
perimeter function in general. In our final approach, we define the perimeter function,
Perimeter = f{x), and study its behavior as it is determined by the geometric parameters x,
d, and h. However, unlike our first and second approaches, we allow this function to
represent the perimeter of any circumscribing triangle, not just the minimum perimeter
triangle. We define this general function based on the coordinates of points P and Q and

of the triangle’s vertex B.

We obtain our final expression as follows. We fix points P and Q in the plane and
allow point B (the left triangle’s apex) to move along the triangle’s side BC (Figure 4.9).
We transform the coordinate system in such a way that all points along the triangle’s side
BC have a zero y coordinate. We then begin moving point B from infinity on the left
along the side BC in the right direction. As we move point B, we inscribe a excircle that
passes through point O into a wedge formed by the triangle sides B4 and BC. The
perimeter of the enclosing triangle is defined as twice the distance from the apex of this
wedge (point B) to the point of tangency of the inscribed excircle and the extension of the
side BC (point Y; see Figure 4.9). We denote the x coordinate of this point of tangency ¥

as F (the y coordinate of this point is zero as it was mentioned earlier). Furthermore, we

51

notice that F is determined as a function of the x coordinate of point B.

The key idea of our approach is that finding the minimum perimeter triangle

implies minimizing the following function:
Perimeter = 2(F (x)—— x),

where x is the coordinate of point B as it moves along the side BC.

B(x, 0) P Q0 C Y(0) L

Figure 4.9 The perimeter function: Geometric insights

By inscribing a circle into the wedge W(BA, BC) we guarantee that one of the two
wedges is always balanced. The other wedge W(CA, CB) becomes balanced when the
minimum perimeter configuration is achieved. As we move point B from left-to-right, we
balance the wedge W(BA, BC) by fitting an excircle into it through point Q. This allows

us to find the corresponding coordinates of the remaining triangle vertices 4 and C.

Expressing the Perimeter function through the coordinates of points P, O, and B

52

allows us to derive the main algebraic equation for Problem 2. It is then possible to
transform this equation from the coordinate form into the form that uses already familiar
distances x, %, and d. (Please note that the distance x between points B and P’ as it was
previously defined and the x coordinate of point B, x, are not the same. The “x” notation

was chosen in both cases to signify the meaning of the corresponding variables.)

BP = BP"
PP”=P'P”

P’(Bx + B +(B-B) ,0)

B(B,.0)

Figure 4.10 The perimeter function: Deriving the main equation

Let us denote the x and y coordinates of points P, O, B, and Y as P(P P),

x2"y
Q(Qx,Qy), B(Bx,By), and Y(Yx,Yy). Note that B, = Y, = 0. Using the geometry in Figure

4.10, we derive the following expressions involving the coordinates of these points.

P P
M’ = 2 , B =-B, 2 =-B, M,
P,~B,+,P?+(P,-B,)’ P,—B,+,P*+(P,-B,)’

IDJ’ BxPy
M, = , M, =0, B =- =-B_-M,, B,=0.
]::C—Bx Px-Bx

53

The coefficients calculated above are for the equations of the following lines:
y=M x+B,, the equation of a line defined by points B(B,.0) and P(P.,P,),
y=M,x+ B,, the equation of the x axis, which is incident on the triangle’s side BC, and

y =M%+ B’, the equation of a bisector of the wedge W(BA4, BC).
We now have:

A=(M, M’ +1)

B=-2-(M?+1)-(0. +0Q, -M')+2M"(B"-M? + B,)+ 2M,(B'~ B,)

C=(M2+1)-(0>+Q?-20,-B')+ B'(2B, + M} - B')- B

D=B*-4.4.C

And we finally have an equation for the perimeter function expressed through the

coordinates of points P, O, and B:

Perimeter(x)=2-(F(x)-x)=2-(Y,~B,)= 2-(

- B+
B_\/B_BXJ’

24

where the ““+” sign needs to be chosen since we are interested in a circle with a bigger

radius (an excircle inscribed in a wedge).

The final equation follows from the fact that the x coordinate of the center of the

excircle is the same as the x coordinate of point Y (see Figure 4.10).
The equation above can be simplified to the following form:

Perimeter(x)

=0,.-B, + %5

+
2 P,—B,+P}+(P,-B,)

2

5 Q5

w0+ -|o:+0;+2:8,

P,~B,+P*+(P.-B.) P,-B,+P +(P,-B,)

54

We can now transform this expression from the coordinate form into the distance

form using the following conversions:

Q,-F =d,
P -B =x,
0, =d+x+B_,
Q,=h, P =H=1l

We finally arrive at the following algebraic equation that relates the perimeter of

the circumscribing triangle with the geometric parameters x, d, and 4.

Perimeter(x) e dt et h [h +2d+ 2x]— B2

h
-+
2 x+Vx? +1 \/x+\/x2 +1 i+ +1

Minimizing this expression for the perimeter with respect to x, we can obtain a
solution to Problem 2, that is the minimum perimeter triangle corresponding to a given
combination of parameters 4 and d. We thus take a derivative of the last expression and

then simplify its result, obtaining:

h-(l+ ad J
holo— VI+x°
(x+“l+x2)2 h-[l+ ad J(2d+2x+~——}f——~j
L [l+ x J _ vi+x® x+V1+x?
- V1+x? + x+1+x° (x+\/1+x2)2
— 2
(x+ I+) h~(2d+2x+

=0

h
x+\/1+x2J

x+41+x?

) h h-(—l+h+d~(x+\/l+x2»
_l+x2+x\/1+x2 —«/—«/—2 h-(d+x—h-x)
2N1+x
\/ x+41+x2

This Mathematica-generated equation can be solved for x to obtain the final solution.

2U-h% +

=0 (simplified).

2

(x+ 1+x

55

4.5 ANALYZING THE MAIN EQUATION

The perimeter function obtained in the previous section appears to be of high degree, and
attempting to simplify its expression (by eliminating the square roots) yields a complex
equation with high powers of x. Trying to solve this equation in its general form by using
the software package Mathematica did not provide any results. However, when
substituting concrete values for variables 4 and d, we were able to obtain the solutions for

the above equation, and therefore characterize the behavior of this function.

It appears evident from our analysis that the perimeter function behaves as

follows. It has, in cases when H > h and d >(1-hW(l/h)’ =1 (see section 4.2), two

extremums, since our equation always has two real roots. Furthermore, after examining
these roots, we conclude that one of them corresponds to the minimum perimeter
configuration (Figure 4.11), while the other (the bigger root) corresponds to the

“maximum” perimeter configuration (Figure 4.12).

These results are consistent with an observation that the two main properties of
the minimum perimeter triangle configuration are satisfied twice as we move point B

from infinity on the left along the triangle’s side BC to the right.

It is necessary to note that the algebraic function for the perimeter obtained in the
previous section needs to be restricted in the geometric sense, so that not to allow any
degenerate configurations which would violate the statement of Problem 2 (such as point
P being interior to the side AB). This restriction can be easily established by noticing that
point P remains interior to the triangle’s side 4B as long as the y coordinate of point 4 is
greater than that of point P. The coordinates of point A can be calculated through the

coordinates of points P, (, and B based on finding the excircle for the wedge W(B4, BC).

56

Minimum Perimeter Triangle (two points above a line)

rimeter = 1174.0567306945056

Pel

d=
=
H=

h (3 M@

2
i}
0.

ja=}

A666666666666667

jCQ = 150.08331018803634
|BP| = 150.16324450410627

IAP|HAGY = 437926828654 187
[BC] = 437.0

P {200,150}
Q {5008,75)
B {123 0)

A204.0,246.0)
C (630.0, 0.0}
¥ (780, 0)

BP=7 P
Acute

Jaz]
@<

Figure 4.11 The minimum perimeter configuration

Minimum Perimeter Trisngle {two points above a line)

|CG = 287 6054434586027
{BP| = 297.57 184006555457

[ARIHAQ] = 332.0624567593421
|BCI=331.0

P (200,150)
({500.,75)
57,0

A (190,05
C{788.0, 0
¥ (1085, 0)

|BPY = -257
Obtuse 1

Figure 4.12 The maximum perimeter configuration

(Note that point B is fixed when the perimeter is minimal.) Finally, the minimum peri-

meter properties are satisfied only once for our special case when & = H (Figure 4.13).

57

Minimum Perimeter Triangle (iwo points above a line)

Perimeter = 1291.4819814034584
d=108

h=10

x = 0545

1CQ = 227 7740108089525
|BP| = 227.77403106089535

APIHAQY| = 418.836458360866%56
|BCj= 4180

P (200,200)
Q{400,200
(31, 0)

A(300.0, 384.0)
€ {508.0,0.0)
¥ (736, 0)

{BP =109
Acute

<

Figure 4.13 Only the minimum perimeter configuration when k=1 (H=h)

4.6 NUMERICAL RESULTS

Figure 4. 14 Solutions to the main subsidiary problem (triangle angles)

Tables 4.2 and 4.3 show some numerical solutions to the main subsidiary problem (the
value of x uniquely identifies a family of triangles with the same angles). In addition,

Appendix B contains a variety of numerical results in both, graph and tabular formats.

58

0.068337

86.0907°

0.409586

67.7267°

0.544933

61.4126°

0.716673

54.3719°

1.01297

44.6308°

1.30292

37.5065°

1.50489

33.6041°

1.66500

30.9891°

1.79982

29.0570°

1.91742

27.5436°

2.89632

19.0480°

(Special case: H = h)

Table 4.2 Some numerical solutions to the minimum perimeter triangle problem

1 79.9071° | 11.3560° | | 155.5560° | 4.7473°

| 55.2304° | 9.4570° 1 170.7497° | 1.8424°
3 | 56.4954° | 19.4836° 80 | 171.3586° | 3.4456°
| 41.7349° | 15.4427° | -16.632 | 176.5592° | 1.3756°

" 47.1079° | 26.0772° | 1 176.1788° | 2.2916°
| 35.5764° | 20.4306° 489 | 178.4720° | 0.9167°
41.4571° | 31.9816° 994 | 178.5677° | 1.1458°
515 | 31.7656° | 24.9076° | 99.998 | 179.4270° | 0.4584°

Table 4.3 Some numerical solutions to the minimum perimeter triangle problem

(General case: H >)

59

Chapter 5 IMPLEMENTATION OF A LINEAR TIME
ALGORITHM FOR COMPUTING THE MINIMUM PERIMETER
TRIANGLE ENCLOSING A CONVEX POLYGON

Our implementation follows the algorithm closely. We find a minimum perimeter triangle
for each edge of an m-gon. The polygon edges are considered in clockwise and
anticlockwise order, with both implementations available to the user. One of the sides of
the minimum perimeter enclosing triangle is always flush with the corresponding
polygon edge, a property proved by De Pano [DeP87] and utilized in the implementation.
The remaining two sides are found by using the wedge-switching and circle-fitting

technique, described in Chapter 3 (section 3.1).

One of the goals of our implementation is providing means for graphical
demonstration of the execution of the algorithm. We thus create a graphical user interface
(GUI) that displays all the geometric details of the algorithm, as well as handles the user
input. Our software system is fairly complex as it interleaves the logic involved in the
algorithm and the user interface involved in visualization and animation. The overall
software system consists of approximately 8,000 lines of C++ code (including OpenGL
and MFC code). Such complexity asks for proper software engineering procedures for the

development of our software system, including OOA/OOD, OOP, and testing.

5.1 OBJECT-ORIENTED ANALYSIS AND DESIGN (OOA/OOD)

Figure 5.1 shows a class diagram for our software system that was engineered using
Rational Rose 2000 [WWW2]. We will omit the stages of requirements engineering and

of OOA/OOD that precede the creation of the class diagram due to space limitations.

60

setOfTwoVaiues

rianglePerimeters : GLfioatjn]
sminTrianglePerimeter : GLtloat|

setOffwaPoints

etOf TwoPoints()
etOf TwoPoints()
etOiTwoPoints
s et0fTwoPoinis)
etTwoPoints()
efTwoPoints()
efTwoPoints()
{FirstPoint()
etSecondPoint()
iFirstPointX{)
jefFirstPointY()
etSecondPaintX()
etSecondPointY()
ntTwoPoints()
rawTwoPoints(}
rawTwoPoints Special(}

' WindAntipedaltine()

k noseOnOppositeSide()
00seOnOppositeSide

¥is TangentLine(}

isTangentLine()

triangle

rawhMinirmum Perim eter Triangle()
etTriangle)

etTriangie()

etTriangle()
etNumbarOftterations(}
getNumberOftterations()

drawTriangle()
drawTriangleFade()
drawTriangleFinal()
drawTriangleQuit)

drawPointSpecialPius()
drawPointSpecialPlus()

drawTempPoint()
rawTempPoint()
indCenterPoini()
indCenterPoint()
dDistance)
indDistance()

enter : point
enterX : GLfloat
terY: Glfioat

etCircleCentarX()

{MyetCircleCanterY()
MgetCircieRadius()

AniCircle()

rawCircle()

rawCircle()
rawCircleSpecial()
rawCircleSpecial()
rawChasenCircie()
rawChosenCircie()
rawChosenNextCircle()
rawChosenNextCircle()

rawChosenTriangleCircle()

rawChosenNextTriangleCircie(}
rawChasenNexTriangleCirdie()

drawTriangleQuitSpecial(}

ling

Fvertical : bool

“#is stHorizontal()

Zis Vertical()

HisHorizontai()

rintLine()
rawLineSegment()
rawlineSegment()
rawl.ineSegmentSpecial()
rawl.ineSegmentSpecial()
rawd.ine()

rawlineBlack(}

SEdrawLineTriangleSideSegmentFinal()
ifdrawkineTriangleSideSegmentFinal()
Sedrawivinim umPerimeter Triangle()
K &drawMinimum Perimeter Triangle()
ERdrawlLineTriangleSideSegmentQuiy)
%ramd.meTriangleSideSegm entQuit()

%rami neTriangleSideSegmentFade()

PaE

*drawl.ineTriangleSide()

rawChosenBisectorLine(}

stendLine()

alculateStape()

alculateSiope()

alculateintercept()
alculatelntercept()

ind Projection()

1$8%find Projection()

iticalculateCrossPoint)

5 IcutateCrossPoint()

indPerpendicutarLine()
indPerpendicularLine()
KHMarelinesParaliel()

relinesParaliel()
reLinesPemendicular()
¥areLinesPempendicular()

RdrawlineTriangieSideSegmentQuitSpecial()
Pdrawl ineTriangleSideSegmentQuitspecial()

setOfTwol.ines

pointt : point
int2 : paint
fine2 : ling

io0intd ¢ point
inaint4 : point
1.: Glfloat

% etOf TwolLines()
etOfTwolLines()

etSecondPoinfY()
isefTwolines()
effwolines()
effwolines()

ndCirdeRadius PointinAngle()

Figure 5.1 Software system class diagram engineered with Rational Rose 2000

61

(aimiosyiyany uoheayddy was) |

n dov o] | prosvn R - iy wan) 0QUPIYORD |
WEmE?.mwsaﬁoSno sezomaouoom_oo ! WAPUDUPIUILO !
N\ /
/X ainiomn iony uopeddy woip)|
Weinanory uogieoyddy woi)| | (miodlliary uonEo|ddy Eo:vm 20enISeIG0 i

[WelieNegeInD U WeBoeI0 - | m

wa) | i iddy woug)
{(eihiodniary Uowealiddy wosp ! [(aimoanyony uoneojiddy Gor) | _|r uoomc_x:jm_oo _ m.:uos__g:coﬁoo \—

| iebmidugeicd | | swnosdageind .
N H, Y

™~ /a/m:w m@:ssmﬁ.« uopesyddy woig Whmssezg& usoif : 1 Eecw H Iy v wouy
Jmcmmwﬁ_asm .rm.oo | el 1 sogsifuis) ! 3eItila] JIoARINIAD * WSWNIOARI0D : ddyuimo
/>& ,,,,,,,,,,, vV ﬂw
" 5 wop! iddyag] dy wru) iy uoneofiddy wiai) ! ' : wap! : won)
| m QUNOSERERIC0. | | A0IRdioali0RIo0 ™, | jenagioela09ead | wewncogo P peaniumo
T RN e - -
/.///1 // ™ . T e e
,,,,,,, — = e

ey - — . >

m@:.aa«_ﬁh(vopeayddy word Tl e P T o e

i seuidefessensioD e - - P

- k] vssu
([0’9 04N iuibad ssep)|

A diagram generated with Rational Rose 2000
62

Figure 5.2 Microsoft Foundation Classes (MFC) version 6.0:

Figure 5.2 shows a general diagram for the MFC (Microsoft Foundation Classes)
library [WWWT1] that was used in our implementation to generate part of the GUIL The

other part of the GUI was developed using OpenGL [WWW4].

5.2 OBJECT-ORIENTED PROGRAMMING (OOP)

We have implemented our software system in C++ on the Windows XP platform. We
used Microsoft’s Visual Studio 6.0 [WWWI1] with its MFC (Microsoft Foundation
Classes) library. In addition, we used OpenGL graphics library, version 1.2 [WWWA4] for

visualization, animation, and processing of interactive user input.

For the purposes of implementation convenience, we have introduced several C++
classes that correspond to some geometric primitives. The following class specification
code shows examples of some classes used in the software system. Note that functions
such as accessor functions, OpenGL and MFC drawing/interface functions, constructors

and destructors, as well as some other functions are omitted below.

Once the code for all geometric operations is written, we follow the algorithm in
invoking the necessary functions to accomplish the tasks specified by the algorithm. As
we compute the geometric primitives during the progression of the algorithm

(intersection points, antipodal lines, inscribed circles, etc.), we graphically display the

intermediate results using OpenGL.

63

5.3 SOFTWARE SYSTEM TESTING AND TESTING RESULTS

Reliability of a software system is a measure of success with which the observed behavior
of the system conforms to system’s specifications. Our expectation for this software
system is that it should work for all input instances; that is, for any polygon specified via

the Euclidian coordinates of its vertices in the plane.

64

We have performed the following testing techniques in order to improve the
reliability of our software system. As a result of testing, we have been able to detect and
eliminate several software system faults (or bugs). The following discussion of the testing

techniques is based on [Bin00].

1. Black-box testing (testing the system while considering it as a “black box”).

Black-box testing tests a software system product against the end user, against
external specifications. It is done without any internal knowledge of the product. The
test cases for black-box testing can be derived using approaches such as equivalence
partitioning, boundary-value analysis, error guessing, and cause-effect graphing. All

of these approaches were used to some extend in testing of our software system.

2. White-box testing (testing for possible algorithmic errors).

White-box testing requires knowledge of the internal program structure to derive test
cases from the internal design specification or from the code. The test cases are
designed based on the algorithmic logic. The goal here is the correct implementation

of this logic.

3. OOT (object-oriented testing that discovers faults on the level higher than

algorithmic, which is the object-oriented level for the system).

Object-oriented testing strategies include unit testing in the object-oriented context,
where the smallest testable unit is a class or an object, and integration testing in the
object-oriented context. Both unit and integration testing were performed on our
software system. In particular, we used the following object-oriented fest patterns
from [Bin00]: Combinational Function, Invariant Boundaries, Round-trip Scenario,

Integration Collaborations, and Extended Use Case.

65

Chapter 6 IMPLEMENTATION DETAILS

As it was stated in Chapter 5 (section 5.2), our implementation is in C++, and utilizes the
OpenGL graphics library [WWW4] for visualization and animation and the MFC library
[WWW1] for GUI generation. The proposed implementation computes the minimum
perimeter enclosing triangle for any given convex polygon that is input by a user
interactively by clicking with a mouse. Also, the user can specify the x and y polygon
vertex coordinates by entering them in a form. Finally, several sample polygons are
available to the user, so that no user input is required. The algorithm and our

implementation run in O(n) time, where n is the number of polygon vertices/edges.

The implementation takes the polygon vertices Euclidian coordinates as input and
computes a minimum perimeter enclosing triangle corresponding to each polygon edge.
For some edges, such a triangle does not exist [BMO1], [BM02]. The implementation
proceeds in both anticlockwise and clockwise order when considering polygon edges. It

then reports a triangle with the smallest perimeter among the computed triangles.

6.1 CHOOSING AN INPUT POLYGON BY SPECIFYING THE EUCLIDIAN
ORTHOGONAL COORDINATES OF ITS VERTICES: USE OF OPENGL GRAPH-

ICS LIBRARY

We use OpenGL graphics library in order to code for the portion of our software system
that processes user mouse clicks for entering the vertices of an input polygon. We record

the user-entered coordinates in a file for future use and processing.

Figures 6.1 and 6.2 show the screenshots of our OpenGL-generated GUI, which

66

enables entering the coordinates of the polygon vertices interactively.

, \\\
7

PO

| Clear

Exit

R e T

Figure 6.1 Choosing polygon vertices by clicking with a mouse

Figure 6.2 A convex polygon is chosen or “closed”

67

6.2 VERIFYING THE INPUT POLYGON FOR CONVEXITY

There are several different ways to check if a polygon is convex. A trivial approach is to
verify that all the inner angles in the polygon are less than 180°. We suggest utilizing the
following technique for convexity verification, which is simpler than other evaluated
techniques from the implementation point of view.

The magnitude of the cross product of three points 4, B, and C on the plane is
given by (X, —-X,)- (¥, =Y,)= (X, ~X,) (¥. ~Y,). The idea is that if the magnitudes

of every three consecutive vertices are all positive or all negative, the polygon is convex.

6.3 COMPUTING THE MINIMUM PERIMETER TRIANGLE

Figure 6.3 A minimum perimeter triangle flush with one of the polygon edges

(All iterations are shown)

68

Figure 6.4 The minimum perimeter triangle for the polygon is found

(Minimum triangles corresponding to all edges are shown)

Figures 6.3 and 6.4 show how our software system displays the results of the algorithm
for computing the minimum perimeter triangle. For every polygon edge, all iterations are
displayed (Figure 6.3). This allows us to visualize the process of minimizing the
perimeter of the enclosing triangle as the algorithm progresses from one iteration to the
next. At the end, the resulting minimum perimeter triangles that correspond to different
polygon edges are shown together (Figure 6.4), and the minimum triangle for the polygon

is chosen as a minimum among the triangles computed for every polygon edge.

6.4 GRAPHICAL REPRESENTATION OF ALGORITHMIC DETAILS: USE OF
OrPENGL

Our software system allows step-wise visualization of geometric details of the algorithm.

69

Figure 6.5 Geometric details of the linear time algorithm

This visualization is made possible by using OpenGL graphics library. Figure 6.5 screen-

shot shows many geometric details displayed by the software system simultaneously.

6.5 EFFICIENCY ISSUES

The algorithm uses several geometric operations as it progresses in its execution. In
particular, it relies on the operations such as finding an antipodal point, finding an
excircle for a triangle, computing a point of tangency of a circle and a line, finding a
circle inscribed in a wedge, computing a cross point of two lines, and so on. To achieve
the maximum efficiency for our implementation, we mathematically derived optimal

solutions for all operations specified or implied by the algorithm (see Chapter 3).

70

6.6 ROBUSTNESS ISSUES

All coordinates and geometric equation coefficients for this implementation are floating-
point numbers. Since we use finite-precision arithmetic, all comparison tests are carried
out with respect to an input precision. For instance, for many algorithmic operations, the
software system computes lines through their algebraic equations, and checks whether
two lines are parallel. In this case, we compare the floating-point coefficients of the line
equations not exactly, but rather with certain precision, specified by the user. This
precision identifies an acceptable error limit beyond which the values being compared are
considered indistinguishable. Accordingly, if the absolute value of the difference is
greater than the specified precision, the values are considered distinct. Our typical

precisions used for most calculations are 0.1, 0.01, and 0.001.

The same precision argument applies to the key comparison operation in the
algorithm, which determines the number of wedge-switching and circle-fitting iterations
necessary to either terminate the iterations and output the minimum perimeter triangle for
the edge under consideration (when BP = CQ) or conclude that the current edge cannot

generate a minimum perimeter triangle (when the height of P becomes less than of).

We make our implementation robust by means of introducing this precision
property, whose value is used to anticipate and eliminate various problems throughout the
program, which typically result from dealing with finite-precision arithmetic.

6.7 IMPLEMENTATION CHALLENGES

The biggest challenge was establishing a tradeoff in specifying the precision for different

purposes, e.g. for parallel line identification versus computing the difference |BP| — |CQ).

71

Chapter "/ EVALUATION OF THE PROPOSED FRAME-
WORK: ALGEBRAIC AND EXPERIMENTAL RESULTS

7.1 THEORETICAL RESULTS

We have derived an algebraic expression for the perimeter function in the case of the
main subsidiary problem variant. We have also provided the analysis of the behavior of
this function, and determined that the function has two extremums (the minimum and the
“maximum’) in the case when H > & and one extremum (only the minimum) when H = h.
Due to limitations on the computing power available to us, we were unable to solve the
equation for minimization of the perimeter in its general form; however, we succeeded as
providing solutions in cases when numerical values of parameters / and d were plugged
into the equation. Appendix B contains many such numerical results in graph and tabular

formats.

7.2 IMPLEMENTATION AND EXPERIMENTAL RESULTS

The key factor in characterizing the efficiency of our implementation is the number of
iterations computed for each polygon edge in the process of finding an enclosing triangle
of minimum perimeter corresponding to that edge. We performed the following
experiments in order to empirically determine whether there is any dependency of the
number of such iterations on n. We executed our program for various arbitrary n-gons,
where 7 varied from 4 to 30. Each polygon was specified by the floating-point Euclidian
coordinates of its vertices. Table 7.1 shows our results, where “Average” and

“Minimum’ have the following meaning. We recorded the average of the number of iter-

72

4 2.75 2.75 2 2 2.00 2 2
4 1.75 1.75 2 2 1.75 1.75 2 2
4 11.0 14.0 11 14 11.0 11 14

8 3.25 3 3 3.25 4 4
8 2.88 2.88 3 3 6.00 4 4
8 11 14 3.38 10 12

13 4.08 431 3 3 4.08 4.08 4 4
13 3.31 3.69 3 3 4.08 4.77 4 4
13 4.62 5.08 4 4 5.31 6.15 3 3

18

5.89

4.33

18

4.22

28 5.07 5.79 9 11 6 7
28 5.32 6.04 3 3 4.75 5.25 4 4
28 4.54 4.75 6 6 5.79 6.43 4 4

Table 7.1 Experimental results showing the number of iterations for different n-gons

73

ations, “Average”, that were needed to compute a minimum perimeter triangle for each
polygon edge (the average was computed over all polygon edges). We also recorded the
number of iterations, “Minimum”, that corresponded to the edge that produced the
minimum perimeter triangle for the polygon. We performed both, anticlockwise and
clockwise searches of the polygon edges. The averages and the “minimum” values were
computed for both of the edge searches. The number of polygon vertices n and the

polygon vertex coordinates were chosen arbitrarily.

Our experiments indicate that the number of iterations necessary to compute a
minimum perimeter triangle for a polygon edge does not depend on the number of edges
n, and is rather determined but the geometry of the input polygon, as well as by the
desired calculation precision. This result agrees with the algorithm’s linear time

complexity and shows that this complexity can be achieved experimentally.

Our results also show that the algorithm often finds the same minimum perimeter
triangle whether we consider polygon edges in anticlockwise or clockwise order. The
number of iterations may slightly differ for anticlockwise and clockwise solutions, which
is particularly true for polygons with no geometric symmetry. We also observe that the
final minimum perimeter triangle for the polygon is often (in our experiments) flush with
the longest polygon side (especially for large n). Finally, we find that our resulting

minimum perimeter triangle for the polygon is not dependent on our choice of precision.

The proposed implementation in its current version (version 1.0) works for 3 <n
< 1000 polygon edges and allows a maximum of 100 iterations for each polygon edge.
Minimizing or eliminating the GUI component of the software system can substantially

improve its potential. We retain the GUI at this time for demonstration purposes.

74

Chapter 8 CONCLUSION AND FUTURE WORK

8.1 CONCLUSION

First, we have derived an algebraic equation that expresses the perimeter of the enclosing
triangle via several geometric parameters of the enclosed degenerate object, formed by a
pair of points above a given line. Although due to its high degree, the equation cannot be
solved precisely in its general form, we have been able to provide several concrete
solutions to the equation by plugging the constant values for the equation parameters /
and d. These numerical results (Appendices A and B) indicate that the perimeter function
for the main subsidiary problem variant has exactly two extremums (when H > h). We
further claim that the first extremum is associated with the minimum perimeter triangle
configuration, whereas the second corresponds to the “maximum” perimeter configur-
ation, both satisfying the two main properties of the minimum perimeter triangle (derived

in Chapter 3). When H = h, we have one extremum (only the minimum).

Second, we have given an implementation of a linear time algorithm for
computing the minimum perimeter triangle enclosing a convex polygon. This
implementation has been shown to be reliable for various input instances.
Asymptotically, our implementation is more efficient than previous solutions for
accomplishing the same task. Our software system also achieves flexibility by allowing
the user to specify the precision to which arithmetic comparison tests are to be
performed. It appears that the precision factor determines the number of iterations needed
for every polygon edge while computing its corresponding minimum perimeter triangle

candidate, if one exists. Thus, our implementation controls its own constant factor by

75

means of specifying the precision variable. We have demonstrated that the average
number of iterations is small and rarely exceeds 10 for precisions of 0.1 and 0.01 and for
polygons with up to 30 edges. This once again illustrates that the number of iterations for
each polygon edge is at most a fraction of n, and the overall number of iterations for all
edges of the polygon is on the order of n. We have shown that the resulting minimum
perimeter triangle is not dependent on whether we first consider the polygon edges in
clockwise or anticlockwise order. We have also observed that the final minimum
perimeter triangle for the polygon is often (in our experiments) flush with the longest
polygon side. Finally, we have demonstrated that the resulting minimum perimeter
triangle is not dependent on our choice of precision value.

Our implementation is efficient and complies with the algorithm’s linear time
complexity while achieving a small constant factor. We have verified empirically that the
number of iterations necessary for computing a minimum perimeter enclosing triangle
corresponding to each polygon edge — when such a triangle exists — is a factor which is at
most a fraction of n for each polygon edge. The sum of these factors over all iterations for
n polygon edges is on the order of n, implying the linearity of the algorithm. The space

complexity of our algorithm and implementation is O(n) and the amount of extra space

used in the implementation is O(1) if we omit the GUI component.

Our use of OpenGL and MFC makes the implementation graphical and inter-

active.

76

8.2 FUTURE WORK

Future work related to the problem of finding the minimum perimeter triangle enclosing a
convex polygon can be projected in the following two directions. First, we may consider
the same and related problems in two dimensions (such related problems can include any
problems concerning optimization of geometric objects in 2D). Second, our proposed
framework may also be generalized to higher dimensions. The following two sections

summarize these possible directions for future work.

8.2.1 FUTURE WORK IN TWO DIMENSIONS

A natural question is can we do better than O(n)? Our experimental results indicate that

in many cases, especially when » is relatively large, the resulting minimum perimeter
triangle is flush with the longest polygon edge. Does this mean that we only have to
consider one edge? In general, the answer is no. However, in applications that allow a
certain level of imprecision as a tradeoff for increased efficiency, we may want to
consider computing only the minimum perimeter triangle that corresponds to the longest
polygon edge. The result may well be the minimum perimeter triangle for the polygon. At
any rate, it appears to be difficult to characterize the time complexity of our approach if it
is only applied to one polygon edge, since the number of iterations for any edge can be on

the order of n.

Another interesting question is how to generalize an enclosing triangle to an
arbitrary k-gon? Also, how to generalize a convex polygon to a simple polygon? The
latter question can be answered in the practical sense by convexifying a non-convex

polygon (by calculating its corresponding convex hull) and then applying the algorithm to

77

the resulting convex polygon.

Yet other important questions to investigate are what the connection to the
minimum area triangle is? Which enclosing triangle is a better choice? Intuitively, the

answer to the latter question is expected to be application-dependent.

8.2.2 GENERALIZATION TO HIGHER DIMENSIONS

In general, it has been difficult to generalize such problems to higher dimensions. Even in
3D (three dimensions), the problem statement for finding the minimum perimeter triangle
changes to that of finding a tetrahedron of minimal surface area that encloses a given
convex polyhedron. Alternatively, one may wish to minimize the total edge length of the
enclosing tetrahedron. The minimum area triangle problem in 2D (two dimensions)
would correspondingly transform into finding a minimum volume bounding tetrahedron
in 3D. Naturally, even a 3D-extension imposes new challenges, since the approaches that
perform well in 2D are not sufficient in higher dimensions, and their generalization may
not be feasible. In higher dimensions (d-dimensions), the problem of finding the
minimum perimeter triangle transforms into a problem of finding a d-dimensional
tetrahedron that encloses a given convex polytope. Again, the approaches from 2D are

not readily generalized to d-dimensional space.

78

[Aga97]

BIBLIOGRAPHY

P. Agarwal, Range searching, In Handbook of Discrete and Computational
Geometry, Eds. J. E. Goodman and J. O’Rourke, pp. 575-598, CRC Press,

Boca Raton, FL, 1997.

[AAEFV98] P. Agarwal, L. Arge, J. Erickson, P. Franciosa, and J. Vitter, Efficient

[AE99]

[ASO8]

[ACYS5]

[AP8S]

[ABOO]

[ABROO]

searching with linear constraints, In Proceedings of the ACM Symposium
on Principles of Database Systems, Vol. 17, pp. 169-178, 1998.

P. Agarwal and J. Erickson, Geometric range searching and its relatives, In
B. Chazelle, J. E. Goodman, and R. Pollack, Eds., Advances in Discrete and
Computational Geometry, Vol. 23 of Contemporary Mathematics,
American Mathematical Society Press, Providence, RI, pp. 1-56, 1999.

P. K. Agarwal and M. Sharir, Efficient algorithms for geometric
optimization, ACM Computing Surveys, Vol. 30, pp. 412458, 1998.

A. Aggarwal, J. S. Chang, and C. K. Yap, Minimal area circumscribing
polygons, Special issue of Visual Computer: International Journal of
Computer Graphics, 1985.

A. Aggarwal and J. K. Park, Notes on searching in multi-dimensional
monotone arrays, FOCS, pp. 497-512, 1988.

S. Alstrup and G. Brodal, New data structures for orthogonal range
searching, IEEE Symposium on Foundations of Computer Science, pp.
198-207, 2000.

S. Alstrup, G. Brodal, and T. Rauhe, Optimal static range reporting in one
dimension, The IT University of Copenhagen, Technical Report, November

2000.

79

[AEIIMSS]

[BKOS97]

[BMO1]

[BM02]

[Bin00]

[BDDGS5]

[CY84]

[CR96]

[DeP84]

T. Asano, M. Edahiro, H. Imai, M. Iri, and K. Murota, Practical use of
bucketing teckniques in computational geometry, 1985. |

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
Computational geometry — algorithms and applications, Springer-Verlag,
1997.

B. Bhattacharya and A. Mukhopadhyay, A linear time algorithm for
computing the minimum perimeter triangle enclosing a convex polygon,
Proceedings of the 17th European Workshop on Computational Geometry
(EUROCG-01), pp. 43-47, Institute of Computer Science, Freie Universitit,
Berlin, 26-28 March 2001.

B. Bhattacharya and A. Mukhopadhyay, Orn minimum perimeter triangle
enclosing a convex polygon, Japan Conference on Discrete and
Computational Geometry, December 2002.

R. V. Binder, Testing object-oriented systems: Models, patterns, and tools,
Addison-Wesley, 2000.

J. E. Boyce, D. P. Dobkin, R. L. Drysdale, and L. Guibas, Finding extremal
polygons, SIAM J. Comput., Vol. 14, pp. 134-147, 1985.

J. S. Chang and C. K. Yap, 4 polynomial solution for potato-peeling and
other polygon inclusion and enclosure problems, In 25th Annual
Symposium on Foundations of Computer Science, pp. 408-416, Singer
Island, Florida, IEEE, 24-26 October 1984.

B. Chazelle and B. Rosenberg, Simplex range reporting on a pointer
machine, Comput. Geom. Theory Appl., Vol. 5, pp. 237-247, 1996.

A. De Pano, Approximations of polygons and polyhedra: Potentials for

research, Manuscript, 1984.

80

[DeP87]

[DAS4]

[DS79]

[DB83]

[FS75]

[GG98]

[Gru83]

[KS85]

[KL85]

[MMO3]

N. A. A. De Pano, Polygon approximation with optimized polygonal
enclosures: applications and algorithms, Ph. D. Thesis, 1987.

A. De Pano and A. Aggarwal, Finding restricted K-envelopes for convex
polygons, Proc. of the 22nd Allerton Conference on Comm. Control and
Computing, 1984.

D. P. Dobkin and L. Snyder, On a general method for maximizing and
minimizing among certain geometric problems, Proc. IEEE Symp., 20th
FOCS, pp. 9-17, 1979.

D. Dori and M. Ben-Bassat, Circumscribing a convex polygon by a polygon
of fewer sides with minimal area addition, Computer Vision Graphics and
Image Processing, Vol. 24, pp. 131159, 1983.

H. Freeman and R. Shapira, Determining the minimum area enclosing
rectangle for an arbitrary closed curve, CACM, Vol. 18, pp. 409413,
1975.

V. Gaede and O. Glnther, Multidimensional access methods, ACM
Computing Surveys, 30, 2 (June), pp. 170-231, 1998.

P. M. Gruber, Approximation of convex bodies, In Convexity and Its
Applications, Editor P. M. Gruber, Birkhauser, 1983.

J. M. Keil and J.-R. Sack, Minimum decompositions of polygonal objects,
1985.

V. Klee and M. C. Laskowski, Finding the smallest triangles containing a
given convex polygon, J. Algorithms, Vol. 6, pp. 359-375, 1985.

A. V. Medvedeva and A. Mukhopadhyay, 4An implementation of a linear

time algorithm for computing the minimum perimeter triangle enclosing a

81

[OR084]

[OAMBS6]

[PS85]

[RV73]

[Tou79]

[Tou83]

[Tou83]

[Vit01]

[Wil82]

[Zie99]

convex polygon, Manuscript, School of Computer Science, University of
Windsor, 30 April 2003.

J. O’Rourke, Finding minimal enclosing boxes, Technical Report, Dept. of
Electrical Engineering and Computer Science, The Johns Hopkins
University, 1984.

J. O’Rourke, A. Aggarwal, S. Madilla, and M. Baldwin, 4n optimal
algorithm for finding minimal enclosing triangles, Journal of Algorithms,
Vol. 7, pp. 258-269, 1986.

F. P Preparata and M. 1. Shamos, Computational geometry An introduction,
Springer-Verlag, 1985.

A. W. Roberts and D. E. Varberg, Convex functions, Academic Press, 1973.
G. T. Toussaint, Pattern recognition and geometric complexity, Sth
International Conference on Pattern Recognition, pp. 1324-1347, 1979.

G. T. Toussaint, Solving geometric problems with the “rotating calipers”,
Proceedings IEEE MELECON ’83, Athens, Greece, 1983.

G. T. Toussaint, editor, Computational Geometry, Elsevier Science
Publishers B. V., 1985.

I. Vitter, External memory algorithms and data structures: dealing with
massive data, ACM Computing Surveys, Vol. 33, No. 2, (June), pp. 209~
271, 2001.

D. Willard, Polygon retrieval, SIAM J. Comput., Vol. 11, pp. 149-165,
1982.

M. Ziegelmann, External memory computational geometry state of the art,

1999.

82

[WWW1]

[WWW2]

[WWW4]

[WWW3]

REFERENCED LINKS

Microsoft Corporation, Visual C++ version 6.0 (Microsoft Visual Studio®
version 6.0), http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/veedit98/HTML/vestartpage.asp (as of May 2003).

Rational Software Corporation, Rational Rose® (Rational Rose 2000),
http://www.rational.com (as of May 2003).

Richard Anderson (a personal website), Our Northern India Tour, Dept. of
Computer Science and Engineering, University of Washington, Seattle,
http://www.cs.washington.edu/homes/anderson/india/delhi html (as of May
2003).

Silicon Graphics, Inc., OpenGL® (OpenGL version 1.2), http://www.opengl.
org (as of May 2003).

Wolfram Research, Inc., Mathematica® 4 for Students, http://www.wolfram.

com (as of May 2003).

83

APPENDIX A: SOME ALGEBRAIC RESULTS GENERATED WITH
MATHEMATICA 4

Special case of the main subsidiary problem: 4 = H.

Solve[xtd + (x43) +d- (d*2) /1 4==0, =]

{fx- a 1| 2@ (9t VI@VEi- @) 1
D [+ -
4 2\ 4 (9.3 @el.2T@) 23%3 2
@ 2@ (~odh-+/3 BVeds 27)M & .
. .) . L
25 ot 3 avE T @) 237 B » oo s e owre |
4 & - — S * 213
4 31/31(-9&1—\/3 d3\[644272)113 23%
o2 2 & 2R (-o&t-v3 @ver-aT®)"? 4
R i . N
§INT S0 o5 aveL @) CEE 2
& 22 (-9a V3 @Vea. 27 R) &
£, . -
2,
2 (o VIaver.a@)” 233 “ ez (o3 @@ 11’
4.5 - = M 23
4 31/31(—9d4—\/—3 & srzre?)m 234
fres 4 1| 2 & (-9d -3 @Vea-278)” 1
N o . i
402y 4 a3 ge-VI@va.i®) 2323 2
& 242 (-3 dVeds 1)’ & |
&, . . ,
YY) 2.
2 3 (o VIavei @) 23273 B i I{‘wﬁ&\[m)m
4 15 * 273
b anfsa T oV and]m 23
[x a 1 | 28 (-9 -VI@Ver. @) 1
R I + -
42\ 4 (9@ 3 BVEE. T @) 233 2
& 28 (-odt-V3 @Vear 27 @) &)
—_— - +
T~ e gy 3 2/3
2 3w gtV @Ved 21 @) 23 - o .{-9a4ﬁasm)l’3
4 |2 _ . e
¢ anlsas el ene]1’3 23%3

d=1/2 NSolve[x*4 + (x43) /2-1/16= 0, x]

{{x-> ~0.690139}, {x>-0.109724 - 0.4572371}, {x~> -0.109724+ 0.457237 1}, {x%-> 0.409586}}
d=2
-_— NSolve[x*4 + (%43) »2-1= 0, =]

{{x->-2.10692}, {x—- -0.304877-0,7545291}, {x~> -0.304877+0.7545291}, {x- 0.716673}}
d=1

BE— NSolve[x*4 +x43-1/4==0, x

{{x->-1.16012}, {x>-0.192409-0.5986921}, {x-> -0.192409+ 0.5986921}, {x - 0.544933}}

84

APPENDIX B: NUMERICAL SOLUTIONS TO THE MAIN SUBSIDIA-

RY PROBLEM IN GRAPH AND TABULAR FORMATS

Recall that the main subsidiary problem for the minimum perimeter enclosing triangle
asks to find a triangle of minimum perimeter that contains two given points P and O
(located above a given line L) on two of its sides. The height of point P over line L (over
the third triangle’s side) is equal to or greater than the height of point 0, and P is located

to the left of O (Figure A.1).

Appendix B contains some numerical results for the main subsidiary problem that
were determined algebraically. These results are displayed in tables and also in graphs of

the following format:

Perimeter = f(x),

where the values for the perimeter are plotted against the values of x.

Figure A.1 Geometric meaning of 4, d, and x

The following series of graphs and tables show how the perimeter of the

enclosing triangle changes with respect to x, the distance from the left triangle’s vertex B

85

to the projection of point P on side BC, P’ (Figure A.1).

The two parameters that determine the triangle’s perimeter are the distances z and
d (for the sake of generosity and simplicity we have scaled all measures by H). The
parameters / and d varied in the intervals (0, 1] and [5, 30], respectively. Specifically, the

perimeter function was determined for the following combinations of values of and d:

Due to a restriction imposed on the value of d as related to % (see section 4.2),

d>(1—-hh(1/h) -1, some combinations of the mentioned % and d may mnot be

represented, as they can not generate a minimum perimeter triangle. Also, the graphs are

provided only for 2= 0.2, 0.4, 0.6, 0.8, 1.

Table A.1 summarizes the numerical results for the main subsidiary problem. It
lists the perimeter values that are scaled by H, similarly to all other values that express
distances in Figure A.1. This allows providing the perimeter values for a family of

triangles. Every triangle in a family has the same values for all three angles.

In our analysis of the perimeter function, we have found that the conditions |BP| =
|CQ| and |AP| + |AQ| = |BC| are satisfied in two cases: the minimum and the maximum
perimeter triangle configurations. This can be seen from the graphs in this Appendix,
whose functions always (except when % = 1) possess two extremums (the minimum and

the maximum).

The following graphs were generated using Mathematica 4 for Students

[WWWS5].

86

25

20

15

10

20

18

16

14

Parimeter {x), d = 5, h = 0.2

-6

-2

Perimeter (X)),

d=5 h=204

-4

87

28

26

24

22

20

18

16

60

50

40

30

20

Perimeter (x), d = 5, h = 0.6

-5

88

10

20

29

28

27

25

24

23

22

40

35

30

25

20

T Ty

YT

L T

TTTY

T T

T T

T

-5

10

-5

89

10

55

50

40

35

30

120

100

80

60

40

10

90

20

40

40

38

36

34

32

60

50

40

30

20

-5

10

91

10

90

80

70

60

50

40

180

160

140

120

100

80

60

40

Perimeter (x), d = 15, h

0.8

10

20

7

T

T

92

20

40

60

60

55

50

40

35

80

70

60

50

40

~5

10

93

10

20

120

110

100

80

70

90

Perimeter (x), d = 20, h = 0.6

MR]

T R

TS

T

Lo

FENI I

60

50

225

200

175

150

125

100

75

50

Perimeter (x), d = 20, h = 0.8

T

T

T

T

L

-100 ~-50 0 50

94

70

65

60

55

50

90

80

70

60

50

-10

95

10

20

140

120

100

80

60

300

250

200

150

100

20

40

~100

96

50

100

85

30

75

70

65

60

55

120

100

80

60

40

T T

T

=T T7

I N

T

T T

Perimeter

10

97

20

180

160

140

120

100

80

350

300

250

200

150

100

Perimeter {(x), d = 30, h = 0.6
-60 ~40 -20 0 20 40 60

~150

-100

98

50

100

150

3

25, 30 bottam -up

15, 20,

10,

\

d =5

h = 1,

_

Ferimster (X},

200

100

150

Note that the graphs reflect the mathematical expression for the perimeter function without being
restricted by the statement of Problem 2. That is, the degenerate configurations where point P is
not interior to the triangle’s side AB are represented as decreasing perimeter beginning at some
point beyond the maximum perimeter configuration (for negative x, H > k). These configurations
do not provide “better solutions” to the minimum perimeter problem as they violate its statement.

99

80

&0

40

20

-20

None

N/A

5 0.1 None None N/A
5 0.2 None None None None N/A N/A
5 0.3 14.061 14.601 0.071 -1.806 Acute Obtuse 1
5 0.4 14.706 16.879 0.328 -3.154 Acute Obtuse 1
5 0.5 15.221 20.150 0.496 -4.898 Acute Obtuse 1

10 0.1 None None None None N/A N/A

10 0.2 24.378 25.248 0.178 -2.200 Acute Obtuse 1
10 0.3 25.288 28.724 0.473 -4.134 Acute Obtuse 1
10 0.4 25.982 33.439 0.662 -6.580 Acute Obtuse 1
10 0.5 26.552 40.075 0.807 -9.950 Acute Obtuse 1

15 0.1 33.647 33.702 -0.219 -1.060 | Obtusel | Obtusel
15 0.2 35.144 37.662 0.421 -3.561 Acute Obtuse 1
15 0.3 36.111 42.959 0.678 -6.329 Acute Obtuse 1
15 0.4 36.861 50.070 0.858 -9.943 Acute Obtuse 1
15 0.5 37.482 60.050 1.002 -14.967 Acute Obtuse 1

Table A.1 Numerical solutions to the main subsidiary problem summarized

20 0.1 44.195 ;14.705 0.094 ’ -1.849 Acute Obtuse 1
20 0.2 45.733 50.121 0.576 -4.861 Acute Obtuse 1
20 0.3 46.758 57.219 0.823 -8.497 Acute Obtuse 1
20 0.4 47.557 66.719 1.003 -13.290 Acute Obtuse 1
20 0.5 48.222 80.038 1.149 -19.975 Acute Obtuse 1

25 0.1 54.626 55.760 0.254 -2.496 Acute Obtuse 1
25 0.2 56.223 62.596 0.6%94 -6.140 Acute Obtuse 1
25 0.3 57.300 71.489 0.939 -10.655 Acute Obtuse 1
25 0.4 58.143 83.375 1.121 -16.632 Acute Obtuse 1
25 0.5 58.847 100.030 1.270 -24.980 Acute Obtuse 1

30 0.1 64.990 66.835 0.368 -3.105 Acute Obtuse 1
30 0.2 66.646 75.080 0.790 -7.408 Acute Obtuse 1
30 0.3 67.772 85.765 1.037 -12.808 Acute Obtuse 1
30 0.4 68.655 100.035 1.222 -19.971 Acute Obtuse 1
30 0.5 69.393 120.025 1.374 -29.983 Acute Obtuse 1

Table A.1 Numerical solutions to the main subsidiary problem summarized (Continued)

101

APPENDIX C: IMPLEMENTATION INTERFACE DEVELOPED USING
MFC (MICROSOFT FOUNDATION CLASSES) — SCREENSHOTS

Software system’s main window

{Copy the selectionrand puit £ ori the Clgbosrd.

SR GEA R T R R L 33

2. “Choosing a polygon” window

102

3. “About” window

4. “Non-convex polygon error” window

 ALBORITHM ONLY WORKS FOR CONVEX|

5. “Selecting a sample polygon” window

103

6. “Creating a custom polygon” window

7. “Entering polygon coordinates” window

104

VITA AUCTORIS

Anna Valentinovna Medvedeva was born in Kyiv, Ukraine on December 16, 1972. In
1989, she graduated from a high school in Kyiv, Ukraine that provided specialization in
Computer and Information Science and Cybernetics. In 1995, Anna received a Bachelor
of Science in Radiophysics and Electronics from Kyiv University, Kyiv, Ukraine. Anna
and her family immigrated to the United States in 1996. In 1999, she received a Bachelor
of Science in Genetics and Cell Biology from Washington State University, Puliman,
Washington, U.S.A. Anna is in the process of completing her Master’s degree in
Computer Science at the University of Windsor, Ontario, Canada. Her plans include
pursuing a Ph. D. in Computer Science (Bioinformatics) and working in industry. Anna’s
future research interests include applications of Computing Science to problems that arise
in Medicine and Biology. She is also planning to become an Oracle DBA Certified

Professional (OCP).

105

	Computing the minimum perimeter triangle enclosing a convex polygon: Theory and implementation.
	Recommended Citation

	tmp.1363786207.pdf.M8uqv

