University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2001

Representing relational database designs in the UML.

Xin. Zhao
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Zhao, Xin., "Representing relational database designs in the UML." (2001). Electronic Theses and
Dissertations. 3327.
https://scholar.uwindsor.ca/etd/3327

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/3327?utm_source=scholar.uwindsor.ca%2Fetd%2F3327&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM! films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Representing Relational Database Designs in the UML

By
Xin Zhao

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2001

© 2001 Xin Zhao

i+l

j Li ° tionale
i g
isitions and isitions et
ép’la‘li%graphic Services ::qrv‘:e&s bibli:graphiques
395 Waellington Street 395. rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your s Vot réiérence
Our 89 Notre réidrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-67607-2

Canada

9521778

APPROVED BY:

/

Dr. Quan Wen (External Reader)

Department of Economics

B bftt,

Dr. Subir Ifanﬁyopaéﬁyay (Internal Reader)

School of Computer Science

S

Dr. Liwu Li ((Supemsor)

School of Computer Science

T

Dy/Xiaobu Yuan (Chair)

School of Computer Science

ABSTRACT

Database Reverse Engineering (DBRE) refers to mapping relational schemas into
semantically enriched models. Most of researches on DBRE map relational databases into
the ER or EER models. They differ in input requirements and output. Unlike previous
DBRE approaches, this thesis provides a methodology for mapping relational databases
into an object-oriented designs in the UML. A distinct advantage of our approach is that
it unifies objected oriented application designs and relational database designs. In this
thesis, we first provide the Unified Modeling Language (UML) representations for basic
relation schemas, with rigorous definitions for relational model concepts given by the
UML metamodel and Object Constraint Language (OCL). Then, the paper classifies
relational databases based on the types and number of inclusion dependencies. Finally, a

general approach for mapping relational databases into object-oriented designs in the
UML is specified.

Key words: UML, relational schemas, object-oriented model, database reverse
engineering, frameworks, Entity-Relation Model, OCL, function dependency, inclusion
dependency.

iii

ACKNOWLEDGEMENTS

I would like to express my deep appreciation to my advisor, Dr. Liwu Li. His patience
and guidance make this work possible.

Also, [am appreciative of Dr. S. Bandyopadhyay for being my internal reader. His

invaluable suggestions and comments are the great helps to the thesis.

I would specially thank Dr. Quan Wen for being the external reader from his busy
schedules.

Specially, thank Dr. Xiaobu Yuan for serving as the chair of the committee.

Finally, I want to express my appreciation to my wife Bo Shen, for her encouragement,
support.

v

3.3.2 Inclusion Dependency
3.3.3 Basic Types For Key-based Inclusion Dependency
3.3.4 Representing Other Integrity constraints in the UML
3.4 Representing Relational Dependencies In The UML
3.5 Classification of relational databases

28
30
33
35
37

4. Applying the UML in Database Reverse Engineering 41

4.1 Introduction To Database Reverse Engineering
4.2 Basic Transformations
4.3 Mapping Relational Database Schemas Into Object-Oriented Models
4.3.1 Mapping Referential Diagrams In Binary Type
4.3.2 Mapping Referential Diagrams In Star Type
4.3.3 Apply The Mapping Rules In An Example
4.3.4 More Discussions On DBRE

5. Conclusion
5.1 Conclusion
5.1.1 Innovation
5.1.2 Achievements
5.2 Future Work

6. References

VITA AUCTORIS

41
45
49
49
54
60
63

65
65
65
65
66

67

n

Figure 1.1
Figure 1.2
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16

LIST OF FIGURES

A UML expression for relation supplier

An example of mapping OO designs from relational databases
The UML modeling for a system's Architecture

An example of class diagram

A class diagram with various relationships

An example of association class

An example of package

Stereotypes

Constraint

Tagged Value

Abstract syntax of Extension Mechanisms

An Object Diagram

A class diagram example

A stereotyped class representing a relation schema

Date type

An example of UML representation for a relation
Inclusion dependency

An example for key-based inclusion dependency
An example for partial key- to- key dependency
An example for key-to-key Dependency

An example for identifying Dependency

An example for identifying Dependency
Expressing integrity as notes for class Supplier

An example for stereotyped operations

A diagram representing attributes

A class diagram representing functional dependencies
Binary type

Star type

Snowflake type

w

00 00 3 W

Figure 3.17
Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26
Figure 4.27
Figure 4.28
Figure 4.29
Figure 4.30

Hybrid type

An example for inclusion dependency

An OO mapping example

An example for candidate key splitting

An OO mapping for candidate key splitting
An example of null attributes

An example for null attributes to OO model
An OO model for schemas in figure 4.2

A general dependency example

An OO model for a general dependency example
An OO model for unary dependency

An OO model for figure 3.9

An example for Partial key- to- key dependency
A generalization relationship

An example of key-to-key

An OO model for a generalization relationship
A star type example

An OO model for star schema

A star schema example

An OO model for star schema

A recursive relationship

An OO model for recursive relationship

A temnary relationship

An OO model for temary relationship

A ternary relationship

An OO model for a ternary relationship

A binary representation for a ternary relationship
A hybrid ternary relationship

A comprehensive example

Part of schemas after candidate Splitting

An OO model for schemas in figure 4.28

40
45
45
46

47
47
49
50
50
50
51
51
51
52
52
54
54
55
55
56
56
57
57
58
58
59
59
60
61
62

Figure 4.31
Figure 4.32

A finished OO model for schemas in figure 4.28
An OO model with persistent classes (part)

62

Table |
Table 2
Table 3
Table 4

LIST OF TABLES

The UML architecture

An example of multivalued dependency
Comparisons between relations and classes
ANSI SQL 92 data type and UML data type

15
23

26

CHAPTER1 Introduction

1.10verview of This thesis

1.1.1Motivation
The development of database application involves a close working relationship between

the application developers and the database development teams. Their work is often
interrelated and overlapped. Often, software developers follow object-oriented analysis
and design methodologies, using the OO CASE tool, such as the UML. Database
designers may use other design methodologies and design tools, such as the Entity-
Relation diagrams (ERD). Since software developers and database designers use different
tools and methodologies, and they speak different languages, the cooperation and
communication between them are often the biggest challenges in database application

development [22].

The UML can be used to model the whole database development process. from business
requirements to physical data models. If data modelers use UML notation to model
databases, they too can follow object-oriented analysis and design methodologies. So, the
software development and database design process both use one unified language and one
tool. thus giving a great boost to database application development. Such a method is
called object-relation mapping methods{22]. Many authors have studied object-relation
mapping methods[22]. Methods and tools of object-relation mapping, like Rational Rose
[22] and Sybase PowerDesigner [20] have been developed.

Also. the object-relation approach has advantages over the ER model and overcomes some
limitations from the ER model. In the ER model, because it treats entities and
relationships differently, during conceptual design phases. it often give problems when
making choices between entities and relationships. Also. the ER model has other
limitations. It cannot express general inclusion dependency:; it can only express a special
case of inclusion dependency-foreign key. Last but not least, the ER model can not

express functional dependency easily. This gives problems both in database design phases
and database reverse engineering.

Unlike Rational Rose, which applies the UML in relational database design in a forward
engineering way, in this thesis, we apply the UML in relational database reversing
engineering. The first part of the thesis is to use the UML diagrams and Object Constraint
Language to represent relational databases. The second part of this thesis is to transform
the relational schemas, represented by the UML notation, back to object oriented designs
in the UML. So, the database designs and database application designs are unified into
object-oriented notations in the UML.

1.1.2 Overview Of Major Works of This Thesis

1.1.2.1 Representing relational databases in the UML

The relational model is concerned with three aspects: data structure, data integrity, data
manipulation [3]. When representing relational schemas, the UML representation of
relational databases should give a consistent view of relational databases, without
ambiguity and losing information. In this thesis, we focus on representing data structures
as well as data integrity. The challenging part of the work is that, for the concepts in

relational model. the UML representation should give corresponding formal definitions in
the UML.

The UML diagrams and OCL generally are often used to deal with domain specific
problems. The UML diagrams are generally used to model object-oriented software
designs, and Object Constraint Language (OCL) is used to express constraints of domain-
specific software designs. However, to represent relational databases, we use the UML at
more abstract level: UML metamodel level. The primary responsibility of the UML
metamodel layer is to define a language for specifying models [18]. For each modeling
element. the UML defines a set of abstract syntax, semantics, rules, by using OCL and
natural language. In representing relational databases in the UML, we introduce a set of
stereotypes, tagged values. and give the formal definition in OCL which conforms to the
ways of UML definition for its model elements.

One traditional expression for relational schema is as follows:

Supplier {S#.sname, status,city}

[}

In this thesis. we give a UML representation for schema Supplier as follows:

«Relation»
Supplier

S#: INT {PK}
SNAME: CHAR
STATUS: CHAR
CITY: CHAR

Figure 1.1 : A UML expression for relation supplier

In figure 1.1. we use the UML extension mechanisms to express integrity constrains:
relation supplier is expressed as a stereotyped class; primary keys is expressed as
tagged value {PK}. And. for each introduced stereotype and tagged value, we also give a
formal OCL definition for its semantics at the UML metamodel level.

Comparing the two expressions above, we can see that the UML representation has the

following advantages over traditional expressions in representing relational schemas:

e The UML represent relation schemas as stereotyped classes. The representation can
be easily interpreted not only by programmers, but also by UML tools. And, this view
provides foundations for integrating relational databases into object oriented designs.

e The UML expression clearly captures the integrity constraints of relations, including
key constraints and other constrains. The expression has rigorous definition in the
UML, thus eliminating ambiguities.

e The functional dependencies in relations can also be represented consistently in the
UML. rather than expressed separately by additional symbols as traditional
expressions. This will be addressed in later chapters.

1.1.2.2 Database Reverse Engineering
Database Reverse Engineering (DBRE) refers to understanding legacy databases and
mapping them to a higher level of abstraction model , like the ER model. It deals with the

problem of comprehending an existing system and recovering corresponding design
specification [23].

The need for DBRE arises for many situations. In many organizations, there exists a large
number of legacy database systems which lack of documentation, thus giving major
difficulty to understand these legacy systems, and utilize them. Also, when integrating
legacy systems into new systems, like providing a knowledge based interface to an
existing database [19]. One way to solve these problems is to map the legacy systems into
more semantically enriched model. In addition, DBRE facilitate technology transition
[23]. A semantic enriched model will be needed. for example, in order to convert an

existing database into an object-oriented database.

A wide range of DBRE methods has appeared since the beginning of 1980s. Most of them
map the existing database systems into conceptual modes - the ER or EER model.
However, each of these methods has its own characteristics. They differ in input
requirements and output, and apply to different situations [14]. For example, Chiang
[23.24] provides a DBRE method. which requires only part of information from legacy
databases. including the database instance, relation schemas, primary keys and part of
inclusion dependencies. The output of his approach is the Extended Entity-Relationship
(EER) model. Similarly, Markowitz et al.'s [29] method needs key dependencies and key-
based inclusion dependencies. Carellanos [1] gives a set of examples to map relational
schemas into an object-oriented data model. In his paper. he also introduces some OO

concepts, like Generalization. Cartesian aggregation, Interest Dependency etc.

DBRE approach in this thesis

In this thesis, we provide a new approach and methodology for DBRE. Unlike previous
related works. we map relational databases into object-oriented designs in the UML.
Comparing with the ER or EER model, the OO model in the UML captures more
meanings. The constructs in the UML, like classes, associations, generalizations, are all
well defined in the UML metamodel. A distinct advantage of our approach is that it
unifies the OO designs and database designs. It will facilitate interoperations between
relational databases and OO applications. For example, we can easily implement the
mapped OO designs and integrate them into OO applications.

In our approach, we assume that database schemas are in third normal form (3NF) or
BCNF; keys, inclusion dependencies (theses information can be retrieved from the
database catalog or generated from database instances), data and code are also available
for analysis.

Bases on the UML representations for relational databases, we classify the database
schemas into binary types and star types according to the various types of Inclusion
dependencies. Then, the classified schemas are mapped to an OO designs in the UML
accordingly.

Our approach is generally as follows:

1. Basic Schema transformation: Inclusion Dependency Splitting, Candidate key splitting.
2.Classifying of relational databases, based on types for key-based Inclusion dependency.
3. Mapping the classified schemas accordingly.

3. Fusion and splitting for the mapped UML diagrams.

Let take one trivial example, for relation schemas:
EMPLOYEE (EMP_NUM. NAME. DEPARTMENT, SALARY)
DEPARTMENT (DEPT_ID, NAME. BUDGET)
Artribute DEPARTMENT in relation EMPLOYEE is a foreign key pointing to primary key
DEPT_ID of relation DEPARTMENT. We map them back to object oriented designs in the
UML as showed in figure 1.2:

Employee Department
Employee_ID: int . |0 Dept_ID :int
Name : String Name: String

Salary: Float Budget : Float

Figure 1.2 : 4n example of mapping OO designs from relational databases

In this example, the two relational schemas with foreign key dependency relationship are

mapped into two classes with one-to-many aggregation relationship in the UML.

1.2 Organization Of This Thesis

This thesis is organized into six chapters.

Chapter 1 gives a brief introduction to the major works of this thesis with some trivial
examples.

Chapter 2 introduces the UML. With the UML, this thesis focus on the architecture of the
UML and Object Constraint Language. In particular, UML metamodel is addresses in
detail.

Chapter 3 first give a brief introduction to the concepts of relational model. Then, a set of
UML constructs are introduced to represent relational databases. To facilitate database
reverse engineering, we classify relational databases according to two different categories.

Chapter 4 gives set of rule for transforming relational databases into object-oriented
designs in the UML. At the end of chapter 4, a comprehensive example is introduced to
illustrate the methods introduced in this thesis.

Chapter 5 summarizes the achievements of the thesis as well as some recommendations
for the future work.

CHAPTER 2 The UML and Object Constraint Language (OCL)

2.1 Introduction to the UML

The unified Modelling Language (UML) is a standard language, released by OMG (Object
Management Group) in 1997, for modeling software intensive systems. The UML can be
used to specify. visualize, construct, and document software systems. A software system
can be viewed from a number of perspectives. Different persons in a software system,
such as end users, analysts, developers, testers, etc., may look at a software system in
different ways at different times.

In an object-oriented software system, its architecture can be viewed from five

interlocking views showed as follows:

Design View Implementation
g View
» L

Use Case

View

Deployment

Process View View

Figure 2.1: The UML modeling for a svstem's Architecture [9]

The UML supports all these views with a set of class diagrams.

Use case view: This view describes the requirements and functions of a system. End users,
analysts, and testers can see it. In the UML, this view is modelled by use case
diagram.

Design view: This view captures the functions of a system. This view is mainly used by
developers and analysts. In the UML, Class diagrams and Collaboration
diagrams model this view.

Process view: This view mainly encompasses the threads and processes of a system. In the

UML, active class diagram represents the threads and processes.

Implementation view: This view encompasses the components and files that consist of the
physical implementation of a system. In the UML, component diagram represents
the configuration management of a system.

Deployment view: This view encompasses the nodes that how a software system’

components are distributed. The deployment diagram describes this view.

Although the UML is a process-independent modeling language, it is well suited to
develop object oriented systems in a user-case-driven, architecture-centric process. In this
thesis, since we apply the UML to model structure of relational databases, we only deal
with static part of the UML diagrams. In particular, class diagrams are talked in detail, and

interaction diagrams are not addressed.

Class Diagrams

Classes are the important building blocks in object oriented systems. A class is actually an
abstract data type. It describes the structure and behaviors of a set of objects. Classes can
represent software things. hardware things, or conceptual concepts in an application

domain. The UML provides a graphical representation for classes as the following figure:

/ Class name
Employee -
-Name:String
~Address: String .
~Salary: Float Aaributes
IsActiv
Opoerations

Figure 2.2: An example of class diagram

Attributes:

In a full form, the syntax of an attribute in the UML is :
[Visibilitylname [multiplicity] [:typel [=initial-value]
[{property-string}l

The following are three pre-defined properties:

e Changeable:
e AddOnly:
e Frozen: this matches const inC++and final inJava.

Operations
The syntax of an operation in the UML is
[Visibility] name [parameter-list] [:return type]
[{property-string}]
Visibility
e Public: Any outside classifier can use the feature.

e Protected: Any descendant of the class can use the feature.
e Private: only the classifier itself can use the feature.

Scope

Instance : each instance of the class holds its own value for the feature

Classifier: There exist only one value of the feature for all instances of the class. C+ and
Java support this as stat ic attributes and operations.

Multiplicity

Multiplicity means the number of instances a class may have. It applies to both classes and

attributes of a class.

Relationships in the UML
A relationship is a connection among things. The UML defines four important

relationships: dependencies. generalizations, associations, and realizations.

Controller EmbededAgent
<<Interface>> SetTopController —»| PowerManager
URLStreamHandlé
& StantUp()
OpenConnection()
Parse URL() ShutDown()
SetURL() Connect() == Chaneilterator

Figure 2.3: A class diagram with various relationships

Dependency:

It specifies that a change of one thing may affect another thing that uses it. A dependency

is rendered as a dashed line. One common case of dependencies is that one class uses
another class as an argument in the signature of an operation. If the interface and behavior

of the used class changes, it affects the calling class. In figure 2.2, ChanelIterator is

dependent on SettopController.

The UML defines a number of stereotypes for dependencies. These stereotyped
dependencies apply dependency relationship among classes, among packages, among use

cases, among state machines, etc.

Generalization

A generalization is a relationship between a general thing and a more specific thing.

Generalization is supported directly by OO programming languages with Inheritance.

Association

An association is a structural relationship. It specifies that objects of one thing are

connected to objects of another.

Person

Employee

[——

Employer

Job

Description
salary

An association has a number of properties:

The role at each end of the association: It specifies the role of a class at the near end play.

Company

Figure 2.4: An example of association class

Multiplicity: It means the number of instances a class may have. In figure 2.4, for each
object of company, there exists at least one object of person working for it; each person
can work for any number of companies.

Navigation: The associations can only navigate in a given direction.

Aggregation: This is a2 whole/part relationship.

Association classes

In the UML, an association class is a modeling element that has both association and class

properties. In figure 2.4, class Job is an association class.

Realization

Most of the time, a realization specifies the relationship between an interface and the class
that implements the interface.

Packages

In the UML, a package is a mechanism for organizing elements into groups. Packages
should be loosely coupled and very cohesive. A package may own elements. It is a
composite relationship between a package and the elements it owns.

The visibility of elements in a package can be controlled just as attributes are controlled in
a class. There are two kinds of relationships between packages: dependencies and

generalizations. The following diagram shows one example of package:

«Subsystem»
FieldAccess

Figure 2.5: An example of package

11

2.2 Extension Mechanisms of the UML

The UML provides a rich set of modeling concepts and notations that have been carefully
designed to meet the needs of typical software modeling projects. However, in some
cases, users may need new modeling elements, or need to attach domain-specific
information to a modeling element. The UML metamodel provides three extension
mechanisms to let users add new building blocks, create new properties, and specify new

semantics. These three extension mechanisms are Constraint, Stereotype, and
TaggedValue [18].

Stereotype

Stereotypes provide a way of classifying UML elements so that they behave in some way
like new “virtue” metamodel elements. A stereotype must refer to a base UML element
and a stereotype share the attributes, associations, and operations of its base class, but it
may have additional constraints and different meaning. Unlike Constraints and tagged

values. any model element can only be marked as most one stereotype.

At UML metamodel level, the Sterotype metaclass is a subtype of GeneralizableElement.
If a sterotype is a subtype of another stereotype, it inherits all of the constraints and tagged

value from its stereotype super-type.

UML predefines a set of stereotypes for its model elements. The following diagram is one

example:

«Exceptions»
Unflow

—O

HumiditySensor
Figure 2.6: Stereotypes

In figure 2.6. class HumiditySensor is rendered as a new symbols; class
Underflow is stereotyped as «Exceptions».

Constraint

In the UML metamodel, a Constraint can be directly attached to a built-in model element
as well as a stereotyped element to give semantic restrictions to that Model element.
Constraints apply to both UML metamodel elements and user-level model elements. Users
are free to choose languages to write constraints, such as Object Constraint Language,

programming languages, mathematical notations, or natural language.

Portfolio Corporation

{Secure}

BankAccount

\\ Person

Figure 2.7: Constraint

In figure 2.7. constraint {secure} specifies that, across an association between
Portfolio and BankAccount. communication is encrypted, and constraint {Or}
specifies that class BankAccount can not associate class Corporation and class

Person at the same time.

TaggedValue

A tagged value is a (Tag, Value) pair that allows users to add arbitrary information to any
model element as well as a stereotyped element. A tag is a name string that is unique for a
given element. Values should be represented as strings to give arbitrary information for a
tag. The interpretation of a tag is beyond the scope of UML, and users or tool generators
must determine it. For a model element, whether it is stereotyped or not, it can specify a
list of tags. Like Constrains. tagged values apply both to UML metamodel elements and
user-level model elements. Constraints and tagged values are uses to extend the semantics

of model elements which they are attached to.

13

«Subsystem»
FieldAccess
{version=2.5 status=checked in}

Figure 2.8: Tagged Value

In figure 2.8, Two tagged values are defined for the subsystem FieldAccess. The tag
"version = 2.5" denotes the current version of the element. The tag "status = checked in"

denotes the status of that element.

Abstract Syntax of Extension Mechanism [18]

The complete abstract syntax for the extension mechanisms is expressed as the diagram
below [18]:

Modelelement | TaggedValue

. tag:Name
value:String

Constraint

GeneralizableElement .

{Xor}

S(ereotypé J :

icon: Geometry
baseClass: Name

0.1

Figure 2.9:Abstract syntax of Extension Mechanisms

14

2.3 The UML metamodel
The UML metamodel is defined as four-layer metamodel architecture, including meta-
metamodel, metamodel, model, user objects (user data) [18]. The descriptions for each

model is summarized in the following table.

Layer Description Example

Meta-metamodel Defines the language for | MetaClass,
specifying metamodels MetaAttribute

metamodel An instance of a meta- Class,Attribute,
metamodel. Defines the Association
language for specifying a model

model An instance of a metamodel. | Employee,

Defines a language to describe | department

an information domain.

User objects (user | An instance of a model. Defines | <smith>,

data) a specific information domain. | <human resource>

Table [: UML metamodel architecture

In this thesis. to model relational databases, we mainly deal with the UML at metamodel

level. So. we will focus our discussions on the UML metamodel.

Metamodel

In the UML architecture, metamodel is an instance of a meta-metamodel. The primary

responsibility of the metamodel layer is to define a language for specifying models. The

UML specification [18] defines metamodel as a logic model rather than a implementation

model. In the UML, the metamodel is described in a semi-formal manner using the

following views:

e Abstract Syntax: The abstract syntax is presented in a UML class diagram showing the
attributes of the metaclasses and their relationships. The attributes of a metaclass are

enumerated with a short explanation.

15

e Well-formedess rules: The well-formedess rules refer to the static semantics of UML
metaclasses. The rules must be satisfied for the construct to be meaningful. The rules
can be specified by the OCL or natural language.

e Semantics. The meaning of the constructs is defined using natural language.

e Standard Elements: For each metaclass, it can define a set of standard elements using
UML extension mechanisms. The standard elements include stereotypes, constraints,
and tagged-values.

e Notes: This may contain rationales for the uses of the constructs, and examples

illustrating the uses of the constructs. The notes are all written in natural language.

For example, element Association is one construct in the UML. At the UML
metmodel level. the semantic and syntax for element Association is defined as
follows [18]:

Association:

An association defines a semantic relationship between
classifiers. The instances of an association are a set of
tuples relating instances of the classifiers.

Attributes

Name: The name must be unique
Associations

Connections: an association consists of at least two
AssociationEnds.

Stereotypes

Implicit
Standard Constraints

Xor
Tagged values

Persistence

Also. element association has many well-formedess rules. One rule is defined by

natural language and OCL as follows:

16

The AssociationEnds must have a unique name within the
Association.

Self.allConnections->forall (rl,r2|rl.name=r2.name implies rl=r2)

From the example above, we can see that one rule for element association is written

in the OCL, and the OCL <:ztement conforms to the syntax of element association.

Model

A model is an instance of a metamodel. The model layer is used to define a language
describing an information domain. Any user’s design, like class diagrams, sequence

diagrams. activity diagrams, are all in model level.

User object
A user object is an instance of a model. In the UML, object diagrams is in the level of user
object. A object diagram is a snapshot of a class diagram. In figure 2.9 below, object P is

an instance of class Person. and object D1 is an instance of class Department.

P:-Person .QL&W

name= “Scott” name="US sales™
employeeld=2312
department="sales™

Figure 2.10: An Object Diagram

17

2.4 Object Constraint Language (OCL)

When applying UML in software modeling, there often exist needs to describe additional

constraints on object models. The additional constraints can be expressed by natural

language. However, this approach often results in ambiguities. Object Constraint

Language (OCL) is developed to avoid ambiguous constraints. OCL is a formal language

for expressing constraints [18]. In the UML semantics, OCL is used to specify the well-

fomedness rules in the abstract syntax. Also, at model level, UML modelers can use OCL

to specify application-specific constraints. OCL has the following characteristics:

e It is a pure expression language. When an OCL expression is evaluated, it has no side
effects.

e [t is a modeling language. not a programming language. It main purpose is to express
constrains as a supplement to the UML diagrams.

e [tis a typed language. It predefines a set of types.

e [t roots in first-order-logic.

There are two basic types of constraints. One Constraint is stereotyped as
«invariant», which is associated with a Classifier. This constraint is used to express
static constraints, which must be true for all instances of that type; Another Constraint is
stereotyped as «precondition», and «postcondition». This constraint is associated

with operations or methods to express dynamic constraints.

Person Company

- Name: Strin
Name: Strin : g
age: [n(egerg numberOfEmployees:Integer
sex: enum/ male. female} Empl)
birthdate: date o == StockPrice(): Real
income(date) : Integer

Figure 2.11: A class diagram example

Each OCL expression is written in the context of a UML model. In the class diagram
above, for example, there are some constraints:

18

One static constraint is that the number of employees in any company must always
exceed 50. This can be expressed by the OCL expression as follows:

Context Company inv:

Self .numberOfemployee>50
An alternative expression is:
Context c: Company inv:

c.numberOfEmployees>50

Also, constraint can be associated with operations or methods to express dynamic

constraints. In the UML metamodel, the general expression for specifying dynamic
constraints is:

Context Typename::operationName (paraml : typel,..) : ReturnType
Pre parameterOk: paraml

Post resultOk: result

In the expression above, the name parameterOok and resultOk are attributes of the
metaclass Constraints inherited from ModelElement. In the diagram 2.10, for example,

one constraint for operation income (date) is expressed as follows:

Context Person:: income (d: Date) :Integer

Post : result = age * 10000

Types and Properties in OCL

In OCL, like any other typed languages, a number of basic types are predefined, including
Boolean, Integer, Real, String. These types are available to the modelers all
the time and independent of any specific user model. In addition, all classifiers from the
UML model. such as classes, interfaces, are all types in OCL.

In OCL, attributes, association-ends, and side-effect-free methods and operations are all

referred as properties.

For example, in figure 2.10, in the context of company, we can write constraint "The

number of employees of a company must not be zero” as:

19

Context company

Inv: self. employee->notEmpty
The expression above shows Association End employee is used as a property.
Collections
In OCL, Collection is a predefined abstract type. It includes three concrete types: Set,
Sequence. and Bag. A Set contains no duplicate unordered elements, and a Bag may
contain duplicate elements, and elements in a Sequence are ordered Below are some
examples:

Set {1,5,10,6}

Bag {3,3,5,5,8 }

Sequence { "ape", "nut" }
Collections have a set of operations. One important operation used often in this thesis is
Select and ForAll. One form of Select is:

Collection->select (boolean-expression)
The result of a Selection is a sub set of a collection. For example, in figure 2.10, the
following OCL expression specifies that a collection of all the employees older than 50 is
not empty:

Context Company inv:

Self.employee->select (age>50) ->notEmpty
One form of ForAll operation is:

Collection->forAll (v:type|boolean-expression-with-v}
For example. in the context of a company of figure 2.10, the following OCL expression
specifies the employees who have the first name "Jack":

Context Company inv:

Self.employee->forAll (forename = ‘'Jack')

CHAPTER 3 The UML representation for relational databases

3.1 Introduction to relational model

The relational model, introduced by Codd [6,7], is by far the dominant model of modern
database technology. The relational model is concerned with three aspects: data structure,
data integrity, and data manipulation [3].

A definition of relation
Date [3] gives a definition of relation as follows:
Given a collection of domains Dy, Da, Dy, a relation consists of two parts, a heading
and a body. The heading consists of a fixed set of {attribute-name: domain-name} pairs,
denoted as follows:

{<A;: D> <Aq: D>, <A D>}
The body consists of a set of tuples. Each tuple consists of a set of <attribute: attribute-
value> pairs. denoted as follows:

<A V> <Aa: V>0 <A Vo

V, is a value from domain D, and A, is an attribute name.

This definition denotes the data structure of relational model. From the definition, we can

conclude the properties of relations as follows:
e There are no duplicate tuples in a relation.
e Tuples in a relation are unordered.

e All attribute values are atomic

One informal representation for a relation schema is as follows:

® TableName (attribute,,attribute,,..,attributey)

Relational data integrity

Candidate keys
The data integrity of the relational model is subject to a very large number of integrity

rules. Among these rules, the concept of candidate key and foreign key, further clarified

21

by Codd [6] . are the general integrity features. Date [3] gives the definition of Candidate
key as follows :

Let R be a relation, a candidate key, say K, for R is a subset of the set of attributes
of R, such that no two distinct tuples of R have the same value for K, and no proper subset
of K has the uniqueness property.

For a given relation with more than one candidate key, the designated candidate key for

that relation is primary key.

Foreign keyvs
Let Ri.R. be two relations, a foreign key FK in R is a subset of the set of attributes of R,
such that there exist a candidate key in R; and each value of FK in R> must have the

identical value in R,. The referential integrity is that the database must not contain any

unmatched foreign key values.

Other data integrity constraints

Date [3] summarizes database-specific integrity rules, or business rules, as follows:

e Domain rule: it specifies the legal value for a given domain.

e Attribute rules: it specifies the legal value for a given attribute.

e Relation rules: it specifies the legal values for a given relation. The rule only refers to
the given relation without referencing any other domains and relations.

e Database rule: it specifies the legal values for a given database. Database rule inter

relates two or more distinct relations.

Functional dependency

Armstrong [32] first formalizes the theory of Functional Dependency (FDs). He states
that a functional dependency (FD) is a many-to-one relationship between two sets of
attributes within a given relation. One definition for FD is given below [32]:

Given a relation R, A and B are subset of the set of attributes of R, the function
dependency FD A—B holds if and only if each value in A has associated with exactly one

value in B.

From the definition above, we can see that any candidate key in a relation R functionally
determines all attributes in relations R.
Further, Armstrong [32] gives three inference rules to computer all FDs from a given set
FD (the rule more usually called Armstrong's axioms). They are listed as follows:

Let A, B, C be arbitrary subsets of the set of attributes of the given relation R, then:

1. Reflexivity: if B is a subset of A, then A-B.

2. Augmentation: if A-B, then AC-BC.

3. Transitivity: if A-B and B-C, then A-C.

Muiltivalued-dependency
Fagin [28] first gives a sound theoretical introduction to the notion of Multivalued

dependency (MVD). He states that MVD is of a new kind of dependency and a

generalization of Functional dependency (FD). The following table illustrates the

concepts:
Emplovee Child Salary Year
Hilbert Hubert $35k 1976
Hilbert Hubert $40k 1977
Gauss Tom $40k 1975
Gauss Tom $50k 1976
Gauss Greta $40k 1975
Gauss Greta $50k 1976
Pythagorus Peter $15k 1975

Table 2: An example of multivalued dependency

In the table above, relation Employee (Employee, Child, Salary, Year) conforms to BCNF
[6]- The primary key for relation Employee consists of all its attributes, with no FDs in the
relation. However, the relation Employee involves a good deal of redundancy. In the
table, many attribute values are stored redundantly, name Hubert, for example, is stored
twice in the table above. In addition, this relation leads to certain update anomalies. For
example, to insert a new row for Employee Hilbet with a new child, say Jim, it is

necessary to create two new tuples, one is (Hilbert, Jim, $35k, 1976), another tuples is

23

(Hilbert, Jim, $40k, 1977). Similarly, if you want to delete a salary entry for an employee,
you have to delete all tuples for the employee with that salary entry. In the table above,
deletion of salary $50k for Employee Gauss involves two tuples, one is (Gauss, Tom,
$50k. 1976). another tuple is (Gauss, Greta, $50k, 1976).

To address the anomalies above, Fagin's [26] definition of Multivalued dependence is as
follows:

Let R be a relation, and A,B.C be arbitrary subsets of the set of attributes of R, B is
multidependent on A (A——B) if and only if the set of values of B depends only on the

set of values of A and independent of the set of values of C.

In addition. Fagin [26] gives two other different views of MVDs. Each view stands for a
definition for MVD.
1. In relation R (A. B. C), A—~—B|C holds if and only if R equals to the join of its
projection R1 (A, C) and R2 (A, B).
2. A——B holds for R (A, B, C) if and only if, whenever (x, y, z) and (x, y', Z) are
tuples of R, then so are tuples (x, y, z’) and (x, Y. z).
In relation R (A. B, C) , the value set of B is only dependent on the value set of A and
independent of the value set of C. Similarly, the value set of C is only dependent on the

value set of A and independent of the value set of B.

3.2 Mapping relational schemas to the UML classes

The relational model is concerned with three aspects: data structure, data integrity, and
data manipulation [3]. In the UML, a class can naturally represent a relational schema,
while an object of a class represent a tuple in a relation. In the UML metamodel level. we

use stereotyped class «Relation» to represent a relation schema.

«Relation»

R

Figure 3.1 A stereotyped class representing a relation schema

Properties of a relation Properties of a class

no duplicate tuples no identical objects

tuples are unordered Objects in a class are unordered
all artributes are atomic Auwtributes can be any data type

Table 3: Comparisons berween relations and classes

From the table above. we can see that an attribute of a class can be of any data type, and it
can be arbitrarily complex, while attributes of a relation can only be atomic. However, to
model relational schemas, we can restrict the attributes of classes stereotyped as

«Relation». Here. the definition of cardinality and degree of relations can be expressed in
the UML metamodel as follows:

Degree: Given a relation R . the number of attributes for R is called its degree. The OCL
definition of cardinality for class R is:

self.allFeatures.select (f|f.name ="attribute")-size

Cardinality: Given a relation R, the number of tuples for R is called its cardinality. The
OCL definition of degree for class R is:

Self.alllnstances.collection—-size

Domain vs. Data types
Date [3] states that a domain is a named set of scalar values (a scalar value represents an
atomic value). A domain provides a pool of values. Further, Mr. Date states that a domain

is a data type. SQL 92 standard defines a set of primitive data types. In comparison, the
UML metamodel defines a set of data types.

ANSI SQL 92 data type The UML data type
CHARACTER(n) OR CHAR(n) String

VCHAR String
NUMBER(P.S) OR DECIMAL(P.S) Float

INTEGER OT INT Integer
SMALLINT Integer

FLOAT(P) Float

REAL Float

DATE Stereotype «type»

Table 4: ANSI SQL 92 data tvpe and UML data tvpe
From the table above. we can see that there is no matching data type in the UML for Date

in SQL. So, to facilitate model relation schemas. we can define a new data type Date in
the UML.

«Type»

Date

Figure 3.2 Date tvpe

3.3 Representing Integrity Constrains in the UML
3.3.1 Primary keys

In the UML, we can use tagged values to add additional properties for attributes. We also
can use stereotype «PK» to classify the attributes as primary key, stereotype «FK» to
classify attributes as foreign keys. However, since any model element can use at most one
stereotype, and in some cases, an attribute can server as a part of primary key as well as a
part of foreign key in a relation, using stereotype is not a choice here. So, we attach tagged
value {PK} to an attribute to state the attribute is a part of primary key, tagged value
{FK} to an attribute to denote that the attribute is part of foreign key, tagged value
{Unique} to an attribute to denote that the attributes is a candidate key.

«Relation»
DEPARTMENT

NAME: CHAR {PK}
MANAGER: CHAR
BUDGET: FLOAT

Figure 3.3 An example of UML representation for a relation

As for composite keys or composite foreign keys, we give all the attributes tagged value

{PK} or {FK} respectively. For a relation R (class R), the definition of primary key by
OCL in UML metamodel is as follows:

PrimaryKey=Self.allFeature—collection (f|£f.tagged="PK")
self.instance.forAll(i,j |i.PrimaryKey<>j.PrimaryKey)

Similarly, we can give the OCL definition of Candidate keys for relation R as follows:

CandidateKey=Self.allFeature-collection (f|£f.tagged="Unique")
self.instance.forAll(i,j |i.CandidateKey<>j.CandidateKey)

3.3.2Inclusion dependency
An Inclusion dependency refers to a functional dependency between two sets of attributes
[15]. These two set of attributes can reside in the same relation or different relations. A

special case for Inclusion dependency is foreign key dependency, in which one set

attributes is the key of a relation schema.

In the UML metamodel. more formally, Let R; and R, be two classes stereotyped as
«Relation», and X, Y be subset of attributes of R;, R, respectively, the semantic of
inclusion dependency R; (X) < Ra (Y) represented in OCL is as follows:

R;.allInstances.forAll (i:R;|R;.allInstances- collection(j:

R;|i.X = j.Y).size =1)

Inclusion dependency R, (X) < Rz (Y) can be expressed by UML diagram as follows:

«Relation» «Relation»
R1 R2
«Inclusion»
cee L ____¢nmelisiom» »
X {D= {X. Y} Y

Figure 3.4: Inclusion dependency

In the figure above. a stereotyped dependency and tagged value pair are used to denote the
inclusion dependency Ri(X) < Rx(Y).

An inclusion dependency can be key-based or non key-based. For a inclusion dependency,
Ri(X) € Rx(Y). if Y is a candidate key of R, this inclusion dependency is key based.

Furthermore, if Y is the primary key of R», the inclusion dependency is a foreign key
dependency.

Key-based inclusion dependency

Given two relation schema R; and R,, if Ri.X ¢ R,.Y, Xis a foreignkeyof Rjand Y isa

candidate key of R, we define it as key-based inclusion dependency [19], rendered as

R;.:X— R..Y. In the UML, a key-based inclusion dependency is stereotyped as "Foreign
key" or "FK".

More formally, Let R; and R, be two relation schemas, X is one foreign key attribute of

Ri. Y is a candidate key of Ra, A key-based dependency R;.X— R1.Y can be formally
defined by OCL as follows:

X
Y

R;.allInstances.forAll (i:R;|R;.allInstances-collection (

R:.allFeatures—collect(f|

R>.allFeatures—collect (£

j:Ra|1i.X=j.Y) .size=1)

«Relation»
EMPLQOQYEE

EMP_ID: INT {PK}
NAME : CHAR
SALARY: INT
DEPT_ID: INT {FK}

{ID= {Dept_Id, Dept_[D}}

f.tagged="FK")
f.tagged="PK")

«Relation»
DEPARTMENT

Dept_ID :INT {PK}
NAME: CHAR
BUDGET :INT

Figure 3.5: An example for key-based inclusion dependency

3.3.3 Basic types for key-based Inclusion dependency

In the following part, since all non key based dependencies can be transformed into key-
based dependency [19], we only deal with key-based inclusion dependencies (foreign key
dependency). According to the types of left side and right side of a key-based Inclusion
dependency, we can further classify them into different categories. This will facilitate

future database reverse engineering.

e Non kev- to- key Dependency

This type of dependency is represented as non-key — key. It refers to that, given two
relation schema R, R., for dependency R;.X — R..Y. X is a foreign key set of R; and Y is
the key attribute set of R.. In the UML, a key-based dependency is stereotyped as "Foreign
key" or "FK".

One example is showed as figure 3.6.

e Partial kev- to- key dependency
This type of dependency is represented as partial kev— key. In this type of dependency.

the left side is part of the key attributes of a relationship, and the right side is the key

attributes of a relation schema.

«Relation» «Relation»
PERSON ACCOUNT
S Pt B gt
: = h 3) : { i
{Fk= {SIN_NUM. SIN_NUM}} BALANCE : FLOAT

Figure 3.6: An example for partial key- to- key dependency

In the figure above. the primary key of relation ACCOUNT consists of two attributes:
Account_Numand SIN_NUM, but attribute SIN_NUM also is a foreign key.

e Key- to- kev dependency

This type of dependency is represented as key — key. Both sides of the dependency are
key attributes. More formally, Let R;, R, be two relation schemas, X is the key attribute

30

set of Ry, Y is the key attributes set of R». R;. X — R,.Y can formally defined by OCL as
follows:
X = R,.allFeatures — collect(f| f.tagged="PK")
Y = R,.allFeatures—collect(f| £.tagged="PK")

R,.allInstances.forAll (i:R; | R;.allInstances— collection(

j: Ry|i.X = j.¥Y).size =1)

«Relation» «Relation»

EMPLOYEE CONTRACT EMP
EMP_NUM: INT (PK <<Foreign Key>> EMP. NUM :INT {PK.FK)
NAME.CAHR e 1EMP UM, EMP MLt HOUR_RATE: FLOAT
DEPARTMENT:INT | (Fk= {EMP_NUM. EMP_NUM}} -

Figure 3.7: An example for key-to-key Dependency

e [dentifving dependency
In addition to the categories for foreign key dependencies defined above. according to its
semantics, a foreign key dependency can either be an identifying dependency or a non-

identifying dependency. An identifying dependency corresponds to a weak entity [19].

«Relation» «Relation»
EMPLOYEE DEPENDENTS
EMP_NUM:INT {PK|} <<Foreign Key>> .
NAME: CHAR B Pt L odios SN EMP_NUM:INT {PK. FK}

_ - NAME: CHAR {FK}
DEPARTMENT: INT | {Fk= :El“ﬂrg;:;f’::nif"’-“‘“m’ ' | pOLICY AMOUNT: FLOAT]
Py H

Figure 3.8: An example for identifying Dependency

An identifying dependency is a dependency between two dependent tables, where the
child table cannot exist without the parent table. All of the primary keys of the parent table
become both primary and foreign key columns in the child table. In figure 3.9, an
employee can purchase insurance policy to cover their dependents. If an employee is
eliminated from table Employee, the correspondent records on Dependents table should be
eliminated as well. The identifying relationship is represented as a tagged value
{identifying} on the dependency.

31

More formally, Let R; and R2 be two relation schemas, X is a foreign key of Rj, Y is a
candidate key of R.. The identifying foreign key dependency can formally defined by
OCL as follows:
X = R:;.allFeatures—collect(f| f.tagged="FK")
Y = R;.allFeatures—collect(f| f.tagged="PK")
R;.allInstances.forAll (i:R; | R;.allInstances-dcollection(
j: Ra | 1i.X = j.Y).size =1)
R;.allInstances.forAll (i:R, | R;.allInstances=YExist(
j: Ry | 1i.¥Y = 3.X))

In the UML, we can also use composition to represent identifying relationship between

two relations showed as follows:

«Relation» «Relation»
EMPLOYEE DEPENDENTS
EMP_NUM: INT {PK} 1 . EMP_NUM: INT {PK.FK}
323?5 ESS\E}T T L NAME: CHAR {PK}

NT: POLICY AMOUNT:

Figure 3.9: An example for identifying Dependency

32

3.3.4 Representing other integrity constraints in the UML
[n relational model, there are domain constraints, relation constraints, database constraints
{3]. In the UML. OCL can express these integrity constraints elegantly without ambiguity.
In supplier and part database, for example:

Supplier (S#, SNAME, STATUS, CITY)

Part (P#, PNAME, COLOR, WEIGHT, CITY)

SP (S#, P#, QTY)
One domain rule is "the quantity number must large than zero and less than 500". This can
be expressed by OCL expression as follows:

Context SP inv:

Self.quantity<=500 and self.quantity>=0

One exampie of relation constraint is " suppliers in London must have status 20". The
OCL expression is:
Context supplier inv:
self.allInstances.forAll (k|k.CITY="LONDON" implies
k.STATUS=20)

To express the constraints in UML diagrams, one straightforward way is to attach notes to
classes.

. Self.quantity<=500
«Relation» and self.quantity>=0
SUPPLIER .-

S#: CHAR {PK}

SNAME: CHAR

STATUS: CHAR
CITY: CHAR

Figure 3.10 : Expressing integrity as notes for class Supplier

However. this method has some drawbacks. For a class diagram, there may have many
notes, some are general information in natural language, and some are for integrity

constraints in OCL expression. Thus, a code generator must distinguish these notes and

33

other general notes accordingly. In addition, adding many notes for a diagram makes it
unclear and cumbersome.

In data modeling, all the integrity constraints, including key constraints, domain
constraints, database constraints, are static properties for a database. In the UML, these
properties can be expressed as stereotyped operations, so code generators can interpret

these operations in both forward and reverse engineering way.

To model constraints, we can define two set of stereotyped operations from two different
point of views. One set of operations use stereotypes. like «check», «triggem. These
operations directly link to logic database designs.

For example,

«Relation»
SUPPLIER

S#: CHAR {PK}
SNAME: CHAR
STATUS: CHAR
CITY: CHAR

supplierl «checkn
supplierl «unique»
supplier! «triggem

Figure 3.11: An example for stereotyped operations

«check» supplierl: this operation defines domain constraint that can be implemented by
"check” condition of SQL, for example, "the status of supplier must large than 10" is one
of this kind.

«trigger» supplier3: this operations defines table constraints , which can be implemented

by triggers. One exampie is "no supplier with status less than 20 can supply any part in a
quantity greater than 50".

Another set of stereotyped operations use «domain rule», «relation rule», «database rule».
The semantic of these stereotypes conform to each constraint respectively. This method
only give the semantics of constrains in the diagram, and let the code generator to

implementation the constraints, thus providing a more flexible solution.

34

3.4 Representing relational dependencies in the UML
Since functional dependencies describes relationships between attributes within a relation,
we need to model a subset attributes in the UML. Here, we introduce a stereotype

«Property» for class. The stereotype restricts the class to contain only attributes.

«Propeﬂy»

name

attributes

Figure 3.12: A diagram representing attributes

In UML metamodel. this constraint is expressed by OCL as follows:

Self.allFeatures .forAll (f|f.oclIskindOf (Attribute))
In the UML, we can use a many-to-one association to represent a functional dependency.
The following is functional dependency diagram for relation supplier in UML.
For example, a relation supplier (S#, sname, City) has functional
dependencies: S#-sname and S#—city. These two functional dependencies are
represented by the figure 3.1.

For any relation with a set of functional dependencies, we can use a stereotyped class
diagram to represent functional dependencies. By this way, the dependency constrains in a

relation is preserved . and can be transformed, interpreted by tool generators.

35

S#: CHAR

«Property»
SNAME

SNAME: CHAR

«Propertyn
CITY

Figure 3.13: 4 class diagram representing functional dependencies

CITY: CHAR

36

3.5 Classification of relational databases

Since all relational schemas are evolved through certain design phases., and are
transformed from common semantic models. like the ER model. The semantic enriched
relationship in the ER model. such as many-to-one, many-to-may, IS-A relationship, etc.,
are all mapped into flat inclusion dependencies in relational model. So, it is natural to
analysis the basic type of referential diagrams [3] in relational database. This will facilitate

Database Reverse Engineering (DBRE) as well as the UML representation for relational
databases.

Degree of Key-based Inclusion dependencies for a relation schema

For a relation schema, it may have a number of foreign keys. Each foreign key can be a
single attribute or composite attribute. The degree of foreign key for a relation schema is
important for relation detecting. Since after relation splitting, all the inclusion
dependencies are key based [19].

A relation schema may have several foreign keys, and there may exist relational schemas.
which are foreign-key dependent on ii. To distinguish various types of relational schemas.
we introduced two concepts: D, and Din. Given a relation schema R, the degree of
foreign keys in which R serves as client side is defined as Dy«(R). The number of
inclusion dependencies in which a schema serves as key side is defined as Din(R). More

formally. in the UML metamodel level, for a class R, these two concepts defined by OCL
are as follows:

allDependencies=self.allContents—~Union(c|c.oclIskindOf (

Dependency))

Dou: (R) =self .allDependencies—select (d|d.client=self)-size

D:; (R)=self.allDependencies—~select (d|d.supplier=self)-size

In section 3.3.3, we classify the inclusion dependencies into several types. For a whole

database, we use concept Doy and Din to classify relational schemas into different types.

37

Then, for the grouped schemas, we further classify them by the types of inclusion

dependencies. So, we use a divide-and -conquer method in DBRE.

Binary type

This type of referential diagram consists of two schemas, with one schema foreign key
dependent on the other schema. This is the most basic relationship, and it roots in binary
relationship in conceptual model. It can be further classified by the type of inclusion

dependency as stated in 3.3.3. Later we will see the mappings based on this types. It is
illustrated in figure 3.15.

«Relation» «Relation»
R1 R2
<<F k>>
X1 {PK} e e X2 {PK}
X1 {FK}

Figure 3.14: Binary tvpe

To make more formally without ambiguity, Let R|,R2 be two relation schemas, X, is the
key attribute set of R,. Y, is the foreign key attribute set of R,, if R..Y—R;.X and
Dout(R2) =1 and Din(R:) =0, we say the relationship of this two schemas is in binary type.

Star type

This type of referential diagram consists of several schemas, with one schema foreign key
dependent on all other schemas. Schemas in this type may have various relationships in
conceptual model. depending on whether the schema with foreign keys has its own
designated primary key or not. The star type is illustrated as figure 3.16. In the figure,
relation R has a number of foreign keys, each of them pointing to a schema. The
relationship among these schemas can be treated as many separate binary relationships or
as a whole unit.

More formally, Let R, Ry, Ra,..., R, be relation schemas, X is the key of Ry, Y;(1<i<n) is
one of foreign keys of R. if RY—R,;.X; and R.Y>—R:.X;5 ,....R.Y;—R..Xq, Dou(R) =0
and Dis(R) =0. we say the relationship among these schemas is in star type.

38

«Relation»
R1

X1 {PK}

«Relation»
R2

X2 {PK)

«FK»

«Relation»
R

«Relation»
Rn

Y1 {FK}
Y2 {FK}

Yn (FK}

Xn {PK}

Snow flake type

Figure 3.15: Star type

This type of referential diagram consists of several schemas. with each schema foreign
key dependent on another schema. In figure 3.17, R; is foreign key dependent on R.. R: is

foreign key dependent on R; . and so on. This type obvious contains several binary

relationships. But. it may roots in schema normalization based on function dependencies

in a schema. So. it worth to stand out as a special type.

More formally. Let R,. R;...R, be relation schemas, X is the key attribute setof R;, Y, is

the foreign key attribute set of R, R;.Y|—R2.X5, R2.Y-—R;.X; ... and Rp.i.Yn.1—Ru- X4,

Dou(Ri) =1 and Diz(R;) =0. we say the relationship among these schemas is in snow flake

type.

«Relation»
RI

{PK} X1
FK YL

Figure 3.16: Snowflake type

«Relation»
Rn

{PK) Xn
{FK!Yn

39

Hybrid type

This type of referential diagram consists several schemas, with some schemas foreign key
dependent on other schemas and these schemas also have foreign key dependencies
pointing to them.. This type of schema consists of basic type mentioned above. Hybrid
type is illustrated as figure 3.18. In the figure, three schemas Teacher, Offering,

Course

ol

R Offering F-..

Enrollment Teacher

Emplovee

Employee, are in star type. Also, the three schemas -Offering, Employee,

Enrollment, are in star type.

Figure 3.17: Hybrid type

CHAPTER4 Applying the UML in Database Reverse

Engineering

4.1 Introduction to database Reverse engineering

Software reverse engineering deals with the problem of comprehending an existing system
and recovering corresponding design specifications [14]. As one branch of software
reverse engineering, database reverse engineering (DBRE) has gained wide interests since
mid 1980s. A common motivation for performing reverse engineering is that the original
design specifications and design process were not well documented. The application of
DBRE technology has many advantages, such as facilitate maintenance and redesign, help
the integration of databases. Also, in case of converting an existing database into an object
oriented database, or integrating several databases, it is essential to obtain a conceptual
model from existing databases.

Many papers has been published to address DBRE approaches. They differ in input
requirements and output. and apply to different situations [14]. Chiang's [24.25] method
requires the database instance, relational schemas. primary keys and part of inclusion
dependencies as input: Markowitz et al.'s [30] method needs key dependencies and key-
based inclusion dependencies: Navathe's [2] method requires the relational schemas in
3NF or BCNF. The output of these method is the ER or EER model. Petit et al's [13]
method requires the relation schemas, data instances and code as input. All the output of
these methods is the ER or EER model.

Chiang [24] defines database reverse engineering as the process of examining an existing
database system to identify the database's contents and their interrelationships, and recover
information about the application domain semantics. Through database reverse
engineering, the flat database schemas are mapped into a semantically enriched data
model. which is closer to the application domain and easy to understand. He also provides
an abstract algorithm for schema translation.

41

With different input requirements, Paul [19] gives a detailed algorithm for all the three
steps. However, since the reverse engineering needs some extent of human interactions.
The mapping may take different results depends on different situations. Also, his method
does not consider the evolution of functional dependencies in relational schemas. His
approach is generally as follows:
1.Candidate key splitting. If a relation schema contains several keys, it may
corresponds to more than one object type. However, whether such a schema should be
mapped into different objects depends on the domain semantics, and should be decided
by users.
2. Inclusion Dependency Splitting. This happens when foreign key dependency is not
key based. that is, a foreign key does not point to a primary key. This step splits such a
schema into a set of schemas so that all foreign keys point to the primary keys.

3. Folding transformation. This step removes all inclusion dependency cycles.

In comparison, Johanesson's [20] method is more related with this thesis. In his paper. he
assumes that all relations schemas are in third normal form (3NF), and the input for his

method requires keys, candidate keys and inclusion dependencies.

There is another work closely related to this thesis. Carellanos [1] gives a set of examples
to map relational schemas into an object-oriented data model. in the paper, he also
introduces some OO concepts, like Generalization, Cartesian aggregation. Interest
Dependency etc. He did shed some light on this topic. However, he mapped relation
schemas into an OO data model. not OO designs as proposed in this thesis, the purpose of
his approach is to overcome heterogeneity between different database systems. In

addition, his approach is not complete; the concepts he introduced are not defined.

Motivations and Advantages of mapping schemas into OO designs

Database applications involve two parts of work: application designs and database
designs. Applications designs describes the business logic, GUI layers. and produce, in
object oriented designs. class diagrams and interaction diagrams; Database designs
describe the persistent part of applications and produce the data model representing the

logic and physical implementation of a database. Traditionally, these two parts are
separate. Database designs involve cooperation among business analysts, data modelers,
users having domain knowledge. The most widely used tool for database design is the ER
or EER related tools. The ER model has enveloped a lot since it first appearance in 1970s.
The fundamental constructs in the ER model are entities, relationships and attributes.

Today. there are many ER or EER representations and ER design tools available on the
market.

Application designs involve software developers. The main trend in today's software
development follows object oriented technology. In object oriented designs using UML
tools. software developers use the logical class diagram to represent the main static view
of applications, and use UML interaction diagrams to model the dynamic view of
applications. etc. For the whole database application designs, database designs and
application designs may be conducted separately. But eventually, software developers
need to represent data models in the application designs. The area of interface and overlap
between these two parts often give the most challenging aspect of database application
development [23]. To integrate data model in object oriented designs. we need a high level
understanding on database schemas. This can be represented by the ER model. However,
if the application designs follow an object oriented methodology using the UML, it is not
easy to integrate the ER model into the UML diagrams. In our approach, we map the flat
database schemas into object oriented designs in the UML, and the mapped database
schemas can be naturally integrated into object oriented application designs. For example,

a database table can be modeled as a persistent class and integrated into class diagrams.

Input requirements for DBRE

Lurdes [15] provides a list of items for the input and the assumptions required by the

DBRE method and he states that the current DBRE methods differ in these items listed as

follows:

e Semantic Knowledge. This includes attributes semantics and attributes name
consistency.

e Data and Code

43

e (Candidate keys

e Foreign keys or key-based inclusion dependencies
e Non key functional dependencies (3NF)

e Non key-based inclusion dependencies

¢ Human input

In this thesis, since we deal with modern databases, some information for a database, such
as candidate keys, foreign keys are assumed to be available (these information can be
retrieved from the database catalog). Usually, data and code are also available for analysis.
We assume database schemas are in third normal form (3NF) or BCNF.

4.2 Basic transformations

¢ Inclusion dependency transformation

There are two kinds of inclusion dependencies: non-key based and key based. The first

step of schema transformation is to transform non-key based inclusion dependencies into

key-based inclusion dependencies [19]. In modern databases, non-key based inclusion

dependencies are not widely supported. In this thesis, we only briefly illustrate such

transformation by the following example:

«Relation»
City
Name: Char {PK}

Country: Char
Population: Number

Figure 4.1: An example for inclusion dependency

In figure 4.1. foreign key attribute LIVES_IN of relation PERSON is foreign key

«Inclusion»

R e L L T

{ID ={lives_in, country}}

«Relation»
Person

S$S#: Number {PK}

Lives_in: Char {FK}

dependent on non-key attribute country of relation CITY. To transform this non-key

based inclusion dependency into key-based. we first map relation City into two objects:

CITY and COUNTRY. The foreign key dependency is mapped into many-to-one

association in the UML as showed in figure 4.2. The schemas in figure 4.1 is translated

into the following OO model:

City

Name: Char

Population: Number

Country

Country: Char

Live_in

Person

SS#: int

Figure 4.2: An OO mapping example

45

o Candidate key splitting.

For relations with more than one candidate keys, each candidate key may represent a
separate object in real world. When mapping schemas with more than one candidate keys,
it is basically up to the users to decide based on the domain semantics. Chiang [23] and
Johannesson [19] have discussed candidate key splitting. In this thesis, we propose that

candidate splitting is also influenced by the inclusion dependencies pointing to them.

«Relation»
Department

NAME: CHAR {PK}
MANAGER: CHAR {Unique}
BUDGET: FLOAT

Figure 4.3: An example for candidate key splitting

In figure 4.3, relation DEPARTMENT has two keys, one is primary key Name. the other is
candidate key MANAGER. This schema may be split into two schemas- DEPARTMENT and
MAMNAGER with one-to-one association as showed by the following figure:

Department Manager

Name: String
Budget: Float

Name: String

Figure 4.4: An OO mapping for candidate key splitting

In some cases. a candidate key does not mean distinct object type in real world. For
example. relation STUDENT has two candidate keys, one is STUDENT _ID, the other is
NAME. Candidate key name is an attribute of student, and it does not mean a different
object type. However. if a candidate key servers as the key side of an inclusion
dependency, it should be split accordingly. We give the mapping implications for
candidate key splitting as follows:

Mapping implication: Let R, R' be two relation schemas, X;. X, X, be candidate
kevs of R individually, for any candidate key X, if R’(Y) < R(Xy holds, then split R to
R-R(X). R(X)).

e Null value

For relation schemas, only non-key attributes are allowed to be null [3]. If an attribute is
null-allowed, that means some objects has null value with this attribute. This intuitively
maps to a special class in OO model. However, it is up to the users to make the decision

according the domain semantics.

«Relation»
EMPLOYEE

EMP_NUM: INT {PK}
NAME : CHAR
DEPARTMENT: INT {Null}
SALARY: FLOAT {Nuil}

Figure 4.5: An example of null attributes

In figure 4.5, relation Employee has two null-allowed attributes: DEPARTMENT and
SALARY. Based on the semantics of the domain, there may exist some privileged
employees who do not belong to any department, and some special employees who may
get salary from other companies. So, relation EMPLOYEE in the figure 4.5 may map to
the following OO modei:

Employee

Emp_Num: int
Name : String

Department: String
|_salary: flogt

LF
] |

Special_Emp Privileged_Emp

Figure 4.6: An example for null attributes to OO model
Generally, for relation schemas with null-allowed attributes, for each null-allowed

attribute, the schema may have a distinct object type in OO model. Again, such

47

transformation is finally decided by users. To put the transformation more formally, the

mapping implication is given as follows:
Mapping implication: Let R be a relation schema, A, A>, be null-allowed attributes of R,

in object oriented model. map R into R, R;=R-R;(A;). R:=R-R (A>). while R;, R: be

subclasses of R..

48

4.3 Mapping relational database schemas into object-oriented models
4.3.1 Mapping referential diagrams in binary type

For a relational database, at logic model level, what we see is a flat system of tables
related by inclusion dependencies. When transforming a database into object oriented
model, we adopt a divide-and-conquer method, that is, we divide the whole system into a
number of subsystems according to the classifications in 3.5 (binary type, star type, etc.),
then transform each subsystem accordingly.

As defined section 3.5, schemas in binary type involves two schemas, and can be further
classified by its foreign key dependencies. To map this type of schemas into object
oriented model, various domain semantics and different foreign key dependencies are
needed.

Non key -to- key

As defined in 3.3.3. general dependency is non-key-key dependency. It roots in
many-to-one relationship in the E-R model. However. when mapping it to OO model, the
dependency may map to an aggregation or many-to-one association, depending on the
domain semantics, and should be decided by the users. The example given below talks
about only simple key attributes. In case of composite key (primary key consists of more
that one attributes). the mapping is simply the same.

In figure 4.2. the two schemas have a non key -to-key dependency. Generally, the
dependency is mapped to a many-to-one association. But, in this example, in OO model,

the two objects has an aggregation relationship. The correspondent OO model for figure
4.2 is as follows:

Employee Department
Employee_ID: int : l<> Dept_ID :int
Name : String Name: String
Salary: Float Budget : Float

Figure4.7: An OO model for schemas in figure 4.2
In figure 4.8. schemas EMPLOYEE and EMP_TYPE has a general dependency. The

schema is transformed into a plain many-to-one association in figure 4.9:

49

«Relation» «Relation»

EMPLOYEE EMP_TYPE
EMPLOYEE_ID:INT| _«ForcignKey» J EMP_TYPE:INT

A : N: CHAR
NNAME CHAR |15 lype 1. cmp_ypet | DESCRIFTION:C
TYPE_ID: INT

Figure 4.8: 4 general dependency example

Employee EMP_TYPE
Employee_ID: int ' !| Emp__type:int
Name : String Description: String

Salary: Float

Figure 4.9:4n OO model for a general dependency example

There is a special case: self-referencing [3]. For example,

EMP (EMP#, SALARY, MGR_EMP#)
In relation EMP. MGR_EMP# represents the employee number of the manager of the
employee, and EMP# is the primary key. MGR_EMP#-EMP# holds for this relations. In

OO model. relation EMP correspond to two classes:

Employee Manager
Employee_ID: int * 1] Emp_ID:im
Name : String Name: String
Salary: Float

Figure 4.10:4An OO model for unary dependency

50

Partial key -to -key

As defined in 3.3.3, another foreign key dependency is partial key—key. It roots in

various relationships in semantic model. For identifying dependency in figure 3.9, it maps

to a composition as showed below:

EMPLOYEE

EMP_NUM: integer
NAME: String

DEPARTMENT:integer

DEPENDENTS

.l

hd EMP_NUM :integer
NAME: String
POLICY AMOUNT:

Figure 4.11:4An OO model for figure 3.9

For an general partial key-to key dependency in figure 4.12, it maps to an generalization

relationship in figure 4.13.

«Relation»
Employee

Name : CHAR
Salary: FLOAT

Emp_ID: NUMBER {PK}{,

«Relation»
Contract_emp

«FK» Emp_ID :int{PK.FK}

{ID={Emp_Id.EMP_ID}} Hour_rate: NUMBER {PK}

Figure 4.12:4An example for Partial kev- to- key dependency

Employee

Emp_[D: Int
Name : String
Salary: Float

Contract_emp

Hour_rate: Float

Figure 4.13: A generalization relationship

51

Key- to- key

This case means that key attributes in one relation also serve as foreign key.

«Relation» «Relation»

Employee Department
{PKJEmp_ID: NUMBER [_ <<FK>> {PK1} Dep_ID :NUMBER
Name : CHAR {ID={Manager,EMP_ID}} {PK2,FK}Manager: NUMBER
Salary: FLOAT Budget: FLOAT

Figure 4.14: An example of key-to-key

In the example above, relation DEPARTMENT has two candidate keys, one is DEPT_ID
and the other is MANAGER. Key MANAGER also is a foreign key pointing to key of
relation EMPLOYEE. According to the mapping method, relation department should be
split into two relations: DEPARTMENT and MANGER .

So, the OO model for the schemas above is:

Employee
Emp_ID: Int
Name : String
Salary: Float
Manager i et
1 1
. <£ A Dept_Id: Int
Emp_ID: Int Budget: Float

Figure 4.15: An OO model for a generalization relationship

52

We summarize the mapping rule for binary type as the following implications:

Mapping Implication : For two schemas RI, R2 in binary type, that is D, (R;)=1 and
Din(R>) =1, depending on the type of inclusion dependency, schemas has different OO
mappings. If the inclusion dependencies in R, is the type of partial key- to -key, consider
map to many-to-to one association or aggregation. If the inclusion dependencies in R! is
the rvpe of keyv- to -kev, consider map to generalization or composition. The choices are

made by users according to the domain semantics.

53

4.3.2 Mapping referential diagrams in Star Type
As defined in 3.3.3, schemas in Star type involves three or more schemas, with one
schema foreign key dependent on other schemas. In other words, there is a relation R, it

meets Dy, (R)>=2. For schemas in Star type, depending on the type of foreign
dependency, the schemas have different mappings.

«Relation»
PERSON

EMP_ID: INT |PK}
NAME : CHAR
SALARY: FLOAT

«Relation»
COMPANY

COMP_ID :NUMBER {PK}
NAME: CHAR
BUDGET: FLOAT

u
L4 .

’

.
.

.
. ,
«FK» .) «FK»n

’
.

«Relation» .
WORKSFOR

EMP_ID: INT {PK_FK}
COMP_ID: INT{PK.FK !
{_SINCE: Date

.
<

Figure4.16: A star type example

In figure 4.16. the three schemas is in Star type. Relation WORKSFOR has no designated
primary key itself and has two foreign key attributes. The two inclusion dependencies is

the type of partial key -to key. The primary key of relation WORKSFOR is
composed by two foreign keys.

Person Company
- -
Emp_ID: Int T Comp_I[D :Int
Name : String ' Name: String
Salary: Float . Budget: Float
Worksfor
Since:Date

Figure 4.17: An OO model for star schema

54

So, relation WORKSFOR is not an object type and should maps to an association class. If,

for example, relation WORKSFOR has no attribute SINCE, this relation only maps to a

plain association.

«Relation» «Relation» «Relation»
EMP TYPE L EMPILOYEE DEPARTMENT
- «FK» | EMP_ID:INT tPky | «FK» .| DEPT_ID:INT (PK]
EMP_TYPE :INT {PK} DEPARTMENT: INT {FK BUGGET: FLOAT
DESCRIPTION: CHAR EMP_TYPE: INT {FK}! | = b

Figure 4.18: A star schema example

In case of the foreign dependencies are type of general dependency. These dependencies
are treated separately. and each should maps to one association. In figure 4.18, relation
EMPLOYEE has a desiganated primnary key and two foreign keys. In this example, from
the domain knowledge . we can see that these two foreign key dependencies should be
treated seperatedly. and relation EMPLOYEE is a distinct class. So, we map it to three

classes with two associations as follows:

E
mp_type ‘ Employee Department
Emp_type :Int 1.1 . * 11| Dept_ID :Int
Description: String Emp_ID: Int Bugget: FLOAT

Figure 4.19: An OO model for star schema

A special case for this type schema is that: one schema has two partial key -to-
key dependencies. and these two dependencies point to the same relation schema. In
figure 4.20, relation Request has two foreign keys, and the two inclusion dependency is
intype partial key-to -key.

55

«Relation» «Relation»

. MU . < S REQUEST
COURSE { ID={current.Course_ID}}
COURSE_ID: INT {PK} CURRENT :INT {FK}
NAME: CHAR «FK» PREREQ: INT {FK}

{ID={Prereq.Course_ID}}
Figure 4.20: A recursive relationship

The relation schemas map to a recursive relationship of object type Course as showed

in figure 4.21.

Course

Course_ID: Number
Name : Char

Requires

Figure 4.21: An OO model for recursive relationship

Mapping Implication : For schemas R R>R; in star type, that is, there exist a schema
R, Dou(Ry=2 and inclusion dependency set I. If all inclusion dependencies in R; are type
of partial kev- to- kev, consider map R; to many-to-many association . If R; has a
designated primary key and its inclusion dependencies are tvpe of non key- to -key, map

R; to a separate object tvpe in OO model.

56

In case of schemas in Star type involving more than three schemas. That is, for total n
schemas, there is a relation schema R;, Doy (R;) = n-1. Relations in this type may root in
ternary relationship in semantic model [12]. The paper [12] summarizes ternary
relationships in E-R model as: functional relationship, partial functional relational

relationship. and general relationship. Each of these relationships converts to a different

relation model.

«Relation» «Relation» «Relation»
| | PATIENT
.] «FK» RX#: Int {PK} «FK» PAT ID: Int {PK
Doc#: Int tPKY | 20] fea#- Int {FK} fo-ece----- N - {PK}
pat_id: Int {FK}
ndc#: int {FK}

+ «FK»

[l
'
[
0
[
'
'

TS

«Relation»
DRUG

NDC#: Int {PK}

Figure 4.22: A ternary relationship
In the figure above. relation PRESCRIPTION has a designated primary key RX#, and
three foreign key attributes. The foreign key dependencies of relation RESCRIPTION
are all in type of non key-to-key. Since it has a designated primary key, it maps to

a distinct object type in OO model. For the foreign key dependencies, they can be treated
separately. So. it maps to the following OO models:

Prescription
Doctor pt Patient
Doc#: Int I A R . L, | PATID:mt
-
1.1
Drug
NDC#: Int

Figure 4.23: An OO model for ternary relationship

57

Let take another example, in figure 4.24, the key of relation SUPPLIERS consists of
three foreign key attributes: SUP#, PROJ#, PART#. Each of these three auributes
serves as a foreign key pointing to a different relation. Since the relation has no designated
primary key itself, it is not a distinct object type in the real world. So, it maps to an

ternary association as showed in 4.25:

«Relation»
«Relation» SUPPLIERS «Relation»
SUPPLIER PROJECT
3 ST) \ «FK» SUP# INT {PK, FK}!| «FK» .
SUPs: INT tPK} | «FK» | PROJ: INT (PR o o e | PROJ#INT tPK)
""" PART#: INT {PK.FK)
QUANTITY: INT

PRICE: FLOAT

«FK»

K- - c o=~ 4

«Relation»
PART

PART#: INT {PK}

. 1..1 d . d 1..1
Supplier Suppliers Part

Project

Figure 4.25: An OO model for a ternary relationship

For the OO model in figure 4.25, supplier is a termary association. Because in QO
model, termary association is hard to implement. We can use an altemnative binary
association to represente it. In figure 4.26, we treat association supplier as a object type,
the ternary relationship is transformed into three many-to-one associations.

58

Part

SUP*: Int . /(\ « | PART#Im
------ uppliers

Projectt
PROJ#: Int

Figure 4.26: A binary representation for a ternary relationship

Hybrid Star Type
In figure 4.27. the primary key of relation ADVISES also servers as the foreign key

pointing to another relation STUDENT. Relation advises also has two foreign keys.
FAC_ID, AREA_ID.

«Relation»
«Relation» ADVISES «Relation»
FEACULTY STUDENT
F CINT (PK! «FKn» ST_NO: INT {PK! «FK» ST_NO: INT {PK!
FACID:INT iPK3 o 2o FAC ID: INT {FK} f-===--=--- S I ‘
""" AREA ID INT IFK!

; «FK»
«Relation»
L _MAJOR |
AREA [ID: INT {PK}

Figure 4.27: A hybrid ternary relationship

Mapping Implication : For a set of relation schemas.R.R,....R, if exist a schema R,
such that D,, (Ri)=n-1, consider map schemas to ternary relationships. If R; has a
designated primary kev. map R; to a separate class in object oriented model. If R; has no

designated primary kev, map R; to a ternary relationship with association class in object

oriented model.

59

4.3.3 Apply the mapping rules in an example

We now present a general method for translating a relational schema into an object

oriented model based on the rules that we introduced in previous chapters.

1.Basic Schema transformation: Inclusion Dependency Splitting, Candidate key splitting.
2.Classifying of relational databases, based on types for key-based Inclusion dependency.

3. Mapping the classified schemas accordingly.

4. Fusion and splitting for the mapped UML diagrams.

To illustrate the method above. we now give a comprehensive example :

«Relation»
COURSE

COURSE#: INT {PK|
TITLE: CHAR

A
g

E <<FK>>

«Relation»
OFFERING

COURSE#: INT PK}
OFF#: INT |PK.FK!
DATE: DATE
LOCATION: CHAR

[Y
g
'
'

«FK»

\

«Relation»
Instructor

COURSE#

< INT {PK.FK}

OFF#: INT {PK.FK}
EMP#: INT {PK.FK}

«Relation»
DEPARTMENT

DEPT#: INT |PK!
NAME: CHAR
DEAN: INT {PK.FK}

¢
s
'
'
1 <<FK>>
'

2

«Relation»
EMPLOYEE

EMP#: INT {PK}
NAME: CHAR
ADDRESS:INT {FK}
SALARY: FLOAT {NULL}

«Relation»
ADDRESS

«Relation»
COUNTRY

ADD#: INT {PK}
STREET: CHAR
CITY:CHAR

CON# :INT {FK}

...........

CON#:INT {PK}
NAME: CHAR

Figure 4.28: A comprehensive example

In the example above. relation DEPARTMENT has two keys: DEPT# and DEAN. Accoring
to uur mapping method, relation DEPARTMENT should be splited into two relations:

DEPARTMENT and DEAN, and relation DEAN has a inclusion dependency relationship
with DEPARTMENT showed as follows.

. Relation»
«Relation» «Relation» «
DEPARTMENT DEAN EMPLOYEE
«FK» «FK» EMP#: INT {PK}
DEPT#: INT {PK} [e---=---=-==-1 EMP#: INT {PK.FK}F-===---~ *| NAME: CHAR
NAME: CHAR DPET#: INT {FK} ADDRESS:INT {FK)
SALARY: FLOAT {NULL}

Figure 4.29: Part of schemas after candidate Splitting

Now. according to the second step, we classify the schemas bases on the types we
introduced. For this example, we can see that the inclusion dependency between relation
COURSE and OFFERING is partial key-to-key, so it maps to a generalization in object
oriented model. Relation INSTRUCTOR has no designated primary key and it is foreign
key dependent on relation OFFERING and EMPLOYEE, so it maps to an association in
object oriented model. The inclusion dependencies between DEPARTMENT and
EMPLOYEE, between EMPLOYEE and ADDRESS are non key-to-key. So, these general

dependencies map to associations. After step 3. the transformed OO model is in figure
4.30.

After analyzing figure 4.30, we can see that class Employee, Address, Country is
in snow flake type (defined earlier). From domain knowledge, we can see that Address,
Country can be treated as attributes of class Employee. So, we can aggregate these
three classes into class Employee with some attributes functional dependent on other
attributes. In addition, for attribute SALARY of relation EMPLOYEE, since it is null

allowed, according out mapping rules, this deserve a separate class inherited from class
Employee. The finished object model for figure 4.28 is showed in figure 4.31.

61

Course Address Country
[D: Int - L
Courscr: Int 7 . Country# : int
Title: String City: Sming Name: String
Country: Int
rAY 1
Offering Employce
Off#: Int e instructor *| Emp#: Int
Datc: Datc Namec: String
Location: String Address: Int
Salary: Float
O ’ Department
| manager 1 | pep: ine
Dcpartment: Int Name: String

Figure 4.30: An OO model for schemas in figure 4.28

Course
Course#: Int
Title: String
Employee
Emp#: Int
Offering Name: String
Address: Int
Off%: Int |+ instructor *| Salary: Float
Date: Date Street: String
Location: String City: String
Country: String

1

Dean Department
SpecialEmp I'M .
anager | Dept#: Int
¥ ent: Int Name: String

Figure 4.31: A finished OO model for schemas in figure 4.28

4.3.4 More discussions on DBRE

For DBRE approaches, it is important to ensure that the produced semantic models,
whether in ER or object oriented model, possess as least as much information as the
original relational schemas. With regard to this question, Paul [20] gives formal proofs
that his method can produce semantic model which carrying more information than
original schemas. In this thesis, we transform relational databases into object oriented
models. Since object oriented is not a formal model like relational model, the two models
possess information at different levels. So. to test whether the transformation is correct,

we propose that this can be conducted in two ways.

An object oriented model in the UML notation, the constructs and associations all have
well defined meanings. For classes representing persistent data, rather that implement
them in object oriented languages, we translate them into relational tables. Such a method,
called object-relation approach, has been proposed by Rational Rose [23]. If we follow a
certain object-relation approach. we can map the object oriented models back to relational
databases. However. the new mapped databases may not be exactly the same as the
original one. but capture same information. So. the correctness of object-relation mapping
is much a practical problem. which can be best answered by experiments, rather than a

theoretical problem. which can be formally reasoned.

In figure 4.32, there are three classes tagged as {persistent}. The tagged classes represent
that they are not transient as other classes. Usuaily, they map to database tables. Also, we
notice that class CourseManager is associated with class Course. These two classes
represent two different designs. Class CourseManager is transient class in application
design: it capture business rules such as add a course; it is implemented by object oriented
languages. Class course is a persistent class; it can capture some business rules and
maps to a database table. So. at design phase, application design and database are unified
into UML representation. Next, for persistent classes, we can follow object-relation

approach to transform them into databases tables.

63

Department

{persistent}
name: Name
| CourseManager
1L=] addInstructor()
addCourse() removelnstructor()
removeCourse() getInstructor()
changeCourse()
! I.* 0.1
AssignedTo
* 1.* I.* 0..1 chairperson
Course Instructor
{persistent} {persistent}
Teaches
name:Name . L.* name:Name
courselD:Number

Figure 4.32: An OO model with persistent classes (part)

CHAPTER § Conclusion

5.1 Conclusion

In this thesis, we first give a brief yet deep introduction to the UML and its underlying
structures, including UML metamodel and Object Constraint Language. Then, we briefly
introduce the concepts of relational model. The thesis consists of two parts: representing
relational databases in the UML; transform relational databases into object-oriented
designs in the UML.

5.1.1 Innovation

The UML is built on a four layer model architecture. Traditionally, users deal with the
UML at model level. In this thesis, we propose that the UML can also be used to represent
relational databases. To model relational databases, we introduced a set of extended
constructs, specifically designed for representing relational databases, using UML
extension mechanisms. All the introduced constructs are defined in the UML metamodel
level with Object Constraint Language (OCL). The UML representation may interest
database designers as well as application developers. Also, we introduced a new approach
for database reverse engineering. In this approach, we transform the relational schemas
back to object-oriented designs in the UML. With our approach, the logic databases and
database designs are unified into the UML notations. This will give a great boost to
database development.

5.1.2 Achievements

The major contributions of this thesis is as follows:

e We first apply the UML notation to represent relational databases. In doing so, we
introduce a set of new constructs using UML extension mechanisms. In addition, for
the new constructs, to make the semantic clear and conform to the relational database
concepts, we provide rigorous definitions for them using OCL. We believe that the
UML representation of relational database has distinct advantages: the representation
is unified into the UML notation; the representation can be interpreted by UML tool

generators.

65

e We provide a general method of transforming relational schemas into object oriented
designs. In particular, we first classify relational schemas in the UML representations
by the types of inclusion dependencies. Then, we provide transformation rules from
classified relational schemas to objected oriented model in the UML. The major

advantage of our method is that it unifies object oriented application designs and
database designs.

5.2 Future Work

For DBRE approaches, one important issue to address is that whether the mapping rules is
complete, that is whether all relational structures in database implementations are covered
by the mapping rules. With DBRE approach in this thesis, the set of mapping rules root in
database conceptual design technology. We come to the rules by analyzing the various
types of conceptual design models, such as binary relationship, temary relationship,
generalization, etc. We believe that the rules covers a reasonably range of database
structures. However, there may exist some database structures which are not covered by
our mapping rules. Essentially, the completeness of a DBRE approach is largely an
empirical question which can be best addressed by testing on real databases [24]. Some
researches have addressed this issue as well. A prototype system, called the Knowledge
Extraction System (KES) [24,25] has been developed to conduct the testing of their DBRE
approach. With regard to the approach in this thesis, we expect a prototype system to be

developed to test the completeness and integration with object oriented application
designs.

Rational rose [23] has applied the UML in relational database designs in a forward
engineering way. And. most DBRE tools transform relational databases into the ER or
EER model. For notations and methods introduced in this thesis, we expect a tool

generator which understands our notations and apply our transformation rules in the
future.

66

6.

[V

References

[Catellanos 1991]. M. Catellanos amd F. Saltor. "Semantic Enrichment of Database
Schemas: An Object Oriented approach”. In First International Workshop on
Interoperability in Multidatabases systems, Ed, Y. Kambayashi et al, pp71-78,1991.

[C.Batini 1992]. C. Batini. S. Ceri, and N. Shamkant. "Conceptual Database Design -
An Entity-Relationship Approach”. Benjamin Cummings, 1992.

(C.J.Date 1995], C.J.Date. "An Introduction to Database Systems". 6'" edition,
Addison-Wesely Publishing, 1995.

[Comyn-Wattiau 1996], Comyn-Wattiau and J. Akoka. "Reverse engineering of
relational database physical schemas”. In B. Thalheim. editor, Proc. of the 15th Int.
Conf. on Conceptual Modeling, pages 372-391. Cottbus, Germany, Oct. 1996.

[Debabrata Dey 1999]. Debabrata Dey. Veda C. Storey, Terence M. Barron.

"Improving Database Design through the Analysis Relationships". ACM Transactions
on Database systems.Vol.24, No. 4. December 1999.

[E.F.Codd 1970], E.F.Codd. "A Relational Model of Data for Large shared Data
Banks". CACM 13, No.6, June 1970.

[E.F.Codd 1972], E.F.Codd. "Further Normalization of the Database Relational

Model". In Data Base Systems, Courant Computer Science Symposia Series 6.
Englewood cliffs. N.J:Prentice Hall, 1972.

[E.F.Codd 1988], E.F.Codd. "Domains, Keys, and Referential Integrity in Relational
Databases". InfoDB3. No.1. Spring 1988.

67

10.

It

13.

14.

16.

[Grady Booch 1999] .James Rumbaugh, lvar Jacobson and Grady Booch. "The
Unified Modeling Language User Guide". Addison-Wesley publishing, 1999.

[Java Blend white paper2001], Java Blend white paper. Sun Microsystems Inc., 2001.

[J. Hainaut 1993], J.-L. Hainaut, C. Tonneau, M. Joris, and M. Chandelon. "Schema
transformation techniques for database reverse engineering”. In R. Elmasri and V.
Kouramajian, editors, Proc. of the 12th Int. Conf. on Entity-Relationship Approach,
pages 353-372, Arlington. Texas, USA, Dec. 1993.

. [J. Henrard 1998]. J. Henrard, V. Englebert, J.-M. Hick, and R. D. "Program

understanding in databases reverse engineering”. In Int. Work-shop on Program
Comprehension. 1998.

[J.-M. Petit 1996]. J.-M. Petit, F. Toumani, J.-F. Boulicaut. and J. Kouloumd-jian.
"Towards the reverse engineering of denormalized relational databases”. In Proc. of

the 12th Int. Conf. on Data Engineering, New Orleans, USA, Feb. 1996. IEEE Press.

[J.Winans 1991], J.Winans and K.H Davis. Software reverse engineering from a
currently existing IMS database to an Entity-Relationship Model, in H. Kangassalo,

ed., "Entity-Relationship Approach: The Core of Conceptual Modeling" (Elsevier
Science, Amsterdam. 1991) 334-348.

. [L. Pedro 1998], L. Pedro-de Jesus and P. Sousa. "Selection of re-verse engineering

methods for relational databases (extended version)". Technical report, IST, Mar.
1998. http://asterix.ist.utl.pt” mlp/pubs/selmethod.ps.

[Lurdes 1998], "Selection of Reverse engineering Methods for Relational Databases".
Lurdes Pedro-de-Jesus, Pedro Sousa.

68

17.

18.

19.

[M. Blaha 1998], M. Blaha and W. Premerlani. "Object-Oriented Modeling and
Design for Database Applications”. Prentice-Hall, 1998.

[OMG 1999], "OMG Unified Modeling Language Specification”, version 1.3, June
1999.

[O. Signore 1994], O. Signore, M. Loffredo, M. Gregori, and M. Cima. "Using
procedural pattemns in abstracting relational schemata”. In Proc. of the 13th Int. Conf.
on Entity-Relationship Approach, volume 881 of LNCS, Dec. 1994.

. [P. Johannesson 1994], P. Johannesson. "A method for transforming relational

schemas into conceptual schemas”. In Rusinkiewicz, editor. Proc. of the 10th Int.
Conf. on Data Engineering, pages I15— 122, Houston, 1994. I[EEE Press.

. [PowerDesigner 2001], PowerDesigner 8.0 Beta version documentation, January,

2001.

. [P.P.Shan Chen 1976], Peter Pin-Shan Chen. "The Entity-Relationship Model-Toward

a Unified View of Data". ACM TODSI. No.1 March 1976.

. [Rational rose 2000], "Rational rose white paper”. Rational Inc, 2000.

. [R.Chiang 1994], R. Chiang, T. Barron, and V. Storey. "Reverse engineering of

relational databases: Extraction of an EER model from a relational database”. Data &
Knowledge Engineering, 12:107- 142, 1994.

. [R.Chiang 1995], R. Chiang. "A knowledge-based system for performing re-verse

engineering of relational databases”. Decision Support Systems, 13:295-312, 1995.

69

26.

30.

31.

[R.Chiang 1997], R. Chiang, T. Barron, and V. Storey. "A framework for the design

and evaluation of reverse engineering methods for relational databases”. Data &
Knowledge Engineering, 21:57- 77, 1997.

. [Ronald Fagin 1977], Ronald Fagin. "Muitivalued Dependencies and a New Form for

Relational Databases”. ACM TODS2, NO.3, September 1977.

. [Ronald Fagin 1977], Ronald Fagin. "A Complete Axiomatization for functional and

Multivalued Dependencies”. Proc.1977 ACM SIGMOD Intemnational Conference on
Management of Data, Toronto, Canada, August 1977.

. [Ronald Fagin 1977], Ronald Fagin. " A Normal Form for Relational Database That is

Based on Domains and Keys". ACM TODS 6., No3, September 1981.

[V. Markowitz 1990], V. Markowitz and J. Makowsk. "Identifying extended entity-
relationship object structures in relational schemas”. IEEE Transactions on Software
Engineering, 16(8), Aug. 1990.

[W. Premerlani 1994], W. Premerlani and M. Blaha. "An approach for reverse
engineering of relational databases". Communications of the ACM, 37(5), May 1994.

. [W.W.Armstrong 1974], W.W.Armstrong. "Dependency Structure of Data Base

Relationships”. Proc. IFIP congress, Stockholm, Sweden, 1974.

70

VITA AUCTORIS

Xin Zhao was bom in 1969 in Henan, P.R.China. He graduated from Huazhong
University of Science and Technology where he obtained a B.E in Computer Science &
Engineering in 1990. Hc is currently a candidate for the Master's degree in Computer
Science at the University of Windsor and hopes to graduate in Fall 2001.

71

	Representing relational database designs in the UML.
	Recommended Citation

	tmp.1363959364.pdf.F1shR

