
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

Session models of navigational behavior of Web applications in Session models of navigational behavior of Web applications in

EFSM. EFSM.

Songtao Chen
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Chen, Songtao, "Session models of navigational behavior of Web applications in EFSM." (2005). Electronic
Theses and Dissertations. 3434.
https://scholar.uwindsor.ca/etd/3434

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3434&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/3434?utm_source=scholar.uwindsor.ca%2Fetd%2F3434&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Session Models of Navigational Behavior of Web

Applications in EFSM

by

Songtao Chen

A Thesis
Submitted to the Faculty of Graduate Studies and Research

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2005

©2005 Songtao Chen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09780-9
Our file Notre reference
ISBN: 0-494-09780-9

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10X132 Q

Abstract

While providing better performance, transparency and expressiveness, the main

features of the web technologies such as web caching, session and cookies, dynamically

generated web pages etc. also make the web applications more complex and error-prone.

In this regard, formal verification and specification-based testing play an important role

in assessing the correct navigations of the web applications. As the basis for the static

analysis or test case generations, the formal models of the web applications should

contain information of the navigational behavior comprising the web technologies we are

interested in. Here we provide the automated generation of such a model in terms of

Extended Finite State Machines from a set of descriptions of the functionality of each

individual element of the web applications. The generated model can be used for better

quality assurance for web application in formal verification and specification-based

testing. We take into account the cookies and dynamic link techniques used in the

dynamically generated web pages, as they may have impact on the correct web page

navigations.

Keywords: Web Application, Dynamic Web Page, Session and Cookies, Web

Navigation, Extended Finite State Machine, Reversing Engineering, Formal Verification

and Specification-based Testing

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

The work presented here would not have been possible without the help of many

people.

First and foremost, I would like to express my sincere gratitude to my advisor, Dr.

Jessica Chen, for her fruitful guidance and patience with my progress.

I would like to thank my committee members, Dr. Chunhong Chen, Dr. Dan Wu and

Dr. Ziad Kobti for spending their precious time to read my thesis and putting on their

comments, suggestions on the thesis work.

I would also like to thank Ms. Hanmei Cui, Mr. Xiaoshan Zhao, Ms. Lihua Duan and

other members in our research group, for their valuable advice and interesting discussion.

Finally, I would like to give special thanks to my family. I thank my wife, Ms. Guoxin

Zheng, for her great support, encouragement and patience.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract.. iii

Acknowledgement... iv

List of Tables...vii

List of Figures... viii

1. Introduction... 1

2. Related Work... 5

2.1 Web Application Design Models.. 5

2.2 Web Application Verification Models..6

2.3 Web Application Testing Models...7

2.4 Summary...9

3. Background... 10

3.1 Architecture of Web Application.. 10

3.2 Homepage and URL... 10

3.3 Client and Web Server... 11

3.4 Web Application...12

3.5 Dynamic Link and Web Page Template...12

3.6 Session and Cookies... 13

3.7 An Example: Online Flea Market... 13

4. EBNF Specification for the WAD Language..18

4.1 Backus-Naur Form and Extended Backus-Naur Form..18

4.2 Data Exchange — Input, Global, and Cookie Variables...19

4.3 Static Web Pages and Dynamic Web Page Links .. 20

4.4 Dynamic Web Page Template... 21

5. EFSM Session Model from WAD Specification...24

5.1 Finite State Machine (FSM).. 24

5.2 Extended Finite State Machine (EFSM).. 24

5.3 EFSM Session Model from WAD Specification...26

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.1 Modeling Cookie, Global and Input Variables in EFSM...................................26
5.3.2 Modeling the Interaction between Client and Web Application....................... 27
5.3.3 Modeling Navigation among Web Pages..28

6. Translating a WAD into EFSM Session Model... 29

6.1 The Driver...30

6.2 Template Data Processing Module...30

6.2.1 Block Processing Component..30
6.2.2 Singlelf Processing Component...33
6.2.3 ExtraAction Thread Component..33

6.3 Static Data Processing Module... 36

6.4 Data Output Module...36

6.4.1 Output EFSM Format..38
7. Experiment and Evaluation..39

7.1 Introduction for the Variables... 39

7.2 EFSM Model for Static Web Pages..41

7.3 EFSM Model Including Global Variable and Input Variable...................................42

7.4 EFSM Model Including Cookie Variable.. 43

7.4 EFSM Model for Online Flea Market Example...45

7.5 Complexity of Our Approach.. 50

8. Conclusion and Future W ork...52

8.1 Conclusion...52

8.2 Future W ork..53

Reference..54

Appendix A Source Code for Our Translating Tool... 58

Appendix B WAD Data Files for Online Flea Market..70

Appendix C Rules in Web Application Description (WAD)... 73

Appendix D Source Code for Online Flea Market Example..75

Vita Auctoris... 85

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 1. Files in Online Flea Market system..14

Table 2. The name of variables and their value scopes..................................... 40

Table 3. The transitions in Online Flea M arket... 46

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1. Architecture of web application...10

Figure 2. The navigation graph of Online Flea Market..15

Figure 3. An example of EFSMs [18].. 26

Figure 4. A high level view of translating too l..29

Figure 5. A transition with the extra action in target state.. 34

Figure 6. The EFSM for Online Flea Market...46

Figure 7. The relation between states and transitions... 51

Figure 8. The total processing time and number of states... 51

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction

The Internet has become a vital tool as the primary device for information sharing. It is

increasingly becoming a body of the business world. We have web systems for all major

areas such as education systems, finance systems, entertainment, transportation systems

etc. The core of the Internet is the World Wide Web, or simply the web. The web consists

of billions of web sites and is ever growing. A web site consists of a set of documents,

called web pages, stored on a server computer and can be accessed remotely via the

Internet. A web page is usually in HTML format, which is interpreted by a web browser

to be viewed by users.

A web page usually contains internal links targeting at other web pages. These links

are presented to clients by web browser and the client may easily navigate to the target

web page by clicking on a link.

Traditionally, a web site is content-based: The web pages are static; the users browse

and navigate through web pages with the help of a web browser and the use of the

internal links. The web pages are only loosely linked since Hypertext Transfer Protocol

(HTTP), the communication protocol used between web browser and web server, is

stateless. The server will not memorize the browsing history or any information a client

provided before, nor will a web page be able to share information directly with another

web page on the client’s side. As a result, the web pages cannot be tailored and each web

page is relatively independent. A client can jump forward or backward among web pages

freely.

The advance in networking and web technology not only improved the efficiency of

the Internet but also gave birth to a new generation of web pages: function-based web

pages. These web pages are capable of gathering information from clients and passing it

to the server. Their content may be dynamically generated by the server based on the

information collected from the users. A web page with dynamic content is sometimes

called a dynamic web page, and the script used to generate it called a template. A web

server may use cookies, which are small piece of textual information generated by the

server and stored in the local storage of a web browser, to trace the statuses of its clients.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

They allow the server to identify its clients, to establish a one-to-one relationship with

them, to store information for them and to customize dynamic web pages for them. The

web pages become tightly coupled and are often called a web application.

A web application often uses cookies to implement session control. A session refers

to all the connections that a single client might make to a web server in the course of

viewing any web pages in the application. Sessions are specific to both the individual

client and the application. Since cookies are specific to each client, it can be used as

session variables. The behavior of a web application during a session depends on the

interaction between the server and its client: Not only the content of dynamic web pages

can be different but also the navigation among web pages is affected: certain pages may

or may not be available to the client depending on whether an internal link targeting it

exists in a dynamic web page.

While providing better performance, transparency and expressiveness, the main

features of the web technologies such as web caching, session and cookies, dynamic web

pages etc. also make the web applications more complex and error-prone. The increasing

complexity leads to a growing amount of errors in web applications, of which examples

can be found at The Risks Digest [25].

This increasing number of errors asks for better testing of the web applications. In this

regard, formal verification and specification-based testing play an important role in

assessing the correct navigations of web applications [8, 9 and 14]. Such techniques,

however, usually require a web application to be modeled formally.

To reduce complexity, a formal model is usually abstract, containing only the

information related to its purpose. Especially, the flow of information between a web

page and the server, the relationship among dynamic web pages and the navigation traces

by internal links during a session are essential to quality assurance. On the other hand, for

convenience, a web application is usually specified on per web page/template basis, not

as an incorporated entity. It is hard to figure out the navigation traces among web pages

from such a specification, since the interaction among web pages are made indirectly

using the web server as a medium. What we need is an incorporated model emphasizing

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on the navigational behavior, extracted automatically from a set of separate

specifications, each describing the behavior of an individual web page.

In this thesis work, we discuss how a session model for a web application emphasizing

the navigation among web pages can be generated by integrating individual web page

specifications.

To specify the behavior of each web page, we define a specification language, Web

Application Description (WAD), for both static and dynamic web pages. It specifies the

internal links, the control flow in dynamic web page templates, the cookies and the data

collected/stored by server. All these are the elements for integrating individual web

pages together as a web application. For simplicity we do not consider browser behavior

and client side script.

A WAD specification can be given as part of the specification for the web application,

or, if the specification is lost, outdated or not available, it may be extracted automatically

from coding itself. WAD is abstract but it maintains enough similarity to web-

application developing languages such as JSP, ASP, Perl, etc. for easy extraction. With

suitable adaptor, web applications implemented in different developing languages can be

extracted to our unified WAD.

From WAD specification we generate integrated session model for a web application

in Extended Finite State Machine (EFSM) [22] format. Finite State Machine (FSM) [22]

is well recognized as effective, precise and graphical tool to describe system behavior on

various levels of abstraction. However, in practice some systems include variables and

operations based on variable values; ordinary finite state machines are not powerful

enough to model in a succinct way the physical systems any more. Here we consider

abstract the model in EFSM from a set of descriptions of the functionality of each

individual element of the web applications. EFSM is finite state machine extended with

variables. It is good for the design and analysis of both circuit and communication

protocols [10, 16, and 21]. Many testing and verification work are based on this model

[12, 18, 22, and 24]. It is easily translated into the input languages such as Promela [17]

for model checking [33]. These characteristics make EFSM valuable for modeling web

application sessions.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We formally define a specification language, WAD, which comprises a set of

production rules in Extended Backus-Naur Form (EBNF) [27] format, for each

individual element of a web application. We assume we are given a set of descriptions of

the functionality for each individual element of this web application, and the descriptions

conform to the WAD we define. We discuss the modeling of internal links, client inputs,

cookies, and dynamic web page templates and how to use these elements to build the

session model. We develop a tool to provide the automated generation of the EFSM

model from a WAD specification of the web applications. The derived model can serve

as the formal basis for both model checking and specification-based testing on the

correct navigation of web applications where we take into account the effects of some

advanced web techniques, such as session/cookies, dynamic web page, share data, etc.

This thesis is organized as follows. In Chapter 2, we introduce related works on

modeling web applications. In Chapter 3, we give a background about web and web

application. In Chapter 4, we introduce the WAD language, including a set of production

rules in EBNF format. In Chapter 5 and Chapter 6, we introduce the EFSM session

model and explain how such a model is generated from a WAD specification. An on-line

flea market example is used to illustrate our approach throughout this thesis work.

Chapter 7 presents our experiment and evaluation on the methodology we propose.

Chapter 8 gives the conclusion and future work.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Related Work

There are several approaches on modeling web applications, concentrating on design,

verification and testing respectively. We investigate the related modeling works in the

following three aspects: web application design, web application verification and web

application testing.

2.1 Web Application Design Models

Bichler and Nusser [5] present a Structured Hypermedia Design Technique (SHDT).

SHDT is a semi-formal design technique which is capable of modeling the structured

information represented in a web application. The proposed graphical notation provides a

comprehensible framework for the development of a web-based information system. The

design process is further facilitated by the SHDT Web-Designer, a design tool, which

supports the graphical notation of the methodology and is capable of generating HTML-

pages and CGI-Scripts at every step of the design process.

The modeling methodologies for web application design are concentrated on

developing notations to describe web applications. Since Unified Modeling Language

(UML) [26] is widely adopted as modeling language in software engineering, several

approaches try to extend UML to model the web applications.

Conallen [11] discussed using the common behavior package in UML to model the

business logic in web applications. Client pages, server pages, forms and frames are

defined as classes in UML, with their contents modeled as stereotyped attributes of the

class. Links between web pages are modeled as associations between the linked classes.

The modeling is viewed from the perspective of business logic in structure and functional

view, so some user interface attributes affecting presentation and browsing semantics are

intentionally left out from this model.

N. Koch et al. [3, 15, and 19] developed UML-based Web Engineering (UWE), a

framework for web application development with UML. UWE includes navigational

classes and these classes are inter-related with connection components, such as index,

query, menu, etc.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ceri et al. [7] proposed a modeling language WebML, an XML based modeling

language for web application design. The focus of WebML is primarily from the user’s

view and the data modeling. All WebML elements are notations described with XML. A

tool is developed to support WebML and a design could be converted WebML format

automatically.

Besides the modeling methodologies above, statechart is also widely used to model the

navigation behaviors for web applications, especially for frame-based web pages.

Zheng and Pong [34] first employed statechart to model hypertext, whether it is frame-

based or scrolling-based. The browsing semantics of hypertext is modeled by directed

arcs and input/output events among the involved frame and button states.

Lieung et al. [23] used statechart to model dynamic web page, frame-based web pages

and concurrently viewing of web pages by multiple windows.

2.2 Web Application Verification Models

Chen and Zhao [9] proposed a labeling transition model for web navigation by

combining a given abstract description of the web navigation with the abstract behavior

model of web browser in the presence of session control and browser cache. The abstract

pages navigation diagram for a web application is given; they give out a set of rules; by

applying the rules on the navigation diagram, they get the label transition model. Then,

model checking tool (such as Spin [17]) can be employed to check the property which

should be held for the system. The model considers not only the dynamic aspect of

modem web application but also some browser behavior. Compared with this thesis

work, they only model the sessions for the authorization. Also they do not consider the

relationship between the cookies information and the dynamic content/link.

May Haydar et al. [14] presented an approach for modeling web application using

communicating finite automata model based on the user-defined properties to be

validated. They used the dynamic (black-box based) approach by executing the

application under test (navigation and form filling), and observing the external behavior

of the application by intercepting HTTP requests and responses using a proxy server.

They extracted and converted the observed behavior into an automata based model. The

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

obtained model could then be used to verify properties with a model checker. But they

only consider web application whose behavior is independent of its history and does not

rely on the client/server state. That is, they do not consider the session/cookies etc,

advanced techniques which are widely used in web applications currently.

Sciascio et al. [30, 31] presents how to verify a web application with a model checking

tool NuSMV and Computation Tree Logic (CTL). The model of a web application is a

web graph, which consists of nodes and arcs. In the web graph, nodes represent pages,

links, and windows, and the arcs connect nodes. The browsing from one page to another

includes at least three nodes and two arcs: the first arc connects the start page to one of its

hyperlinks, and the second one connects the hyperlink to the destination page. All the

requirement properties are written in CTL formulas. A symbolic model verifier, NuSMV,

is applied for model checking. The final results and counter examples are reported.

Alfaro [1] proposed a technique on model checking static web sites with |a,-calculus.

The main purpose of model checking in [1] is to verify the connectivity properties and

frame properties for a web site. A web site is considered as a graph which consists of

nodes and edges. A node in the graph represents a web page and the edges represent

links. If the page contains frames the graph node is then a tree whose tree nodes are pages

loaded in frames and tree edges are labeled by frame names. However, only static web

pages are considered in their works. The requirements are described in constructive |i-

calculus. A model checking tool, MCWeb was developed. After model checking, the tool

can report errors automatically, such as broken links, duplicated frame names, non-

hierarchical frame content, etc.

2.3 Web Application Testing Models

Ricca and Tonella [28, 29] focused on extracting a UML model of web applications.

This model, a class diagram, is mainly used for the analysis of static web applications:

HTML code inspection and scanning, data flow analysis, and semi automatic test case

generation. A tool called ReWeb is developed to visit and gather all web pages and their

relations for a web site. After that, a UML-based model for the web site is constructed by

this tool. In [32], the above mentioned modeling technique is extended such that a web

application is executed to extract models for dynamic web pages using server's access

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

logs. These logs present limited information on the requests since only the request

headers are logged. In case dynamic pages are generated based on POST method

requests, the form data submitted is usually stored in the message body of the request;

thus, making those pages requests undistinguishable and introduce unnecessary non

determinism into the resulting model.

Kung et al. [20] extend traditional data flow testing techniques to web application.

They proposed a web application testing model (WATM) for web applications testing. A

WATM model of a web application is created by reverse engineering from the source

documents. The testing is divided into three parts: object perspective, behavior

perspective and structure perspective. The object perspective of the WTM describes the

class structures of a web application including request, response, navigation and

redirection. The behavior perspective of the WATM focuses on page navigation, and

page navigation diagram (PND) derived from object relation diagram (ORD) is

employed. Finally a navigation tree started from the home page is constructed and the

testing of the navigation behavior is based on this PND. The structure perspective of the

WATM is related to control flow and data flow information of a web application. Thus

block branch diagram (BBD) and function cluster diagrams (FCD) are used respectively

for describing control flow and data flow.

Graunke et al. adopted X-Calculus to model web form related web applications in [13].

This model is used to solve a special kind interaction problem between a single client and

a single server. Each web application in this model is divided into a single server and a

single client. The server contains a table that maps the requested URL to a process

program. A client consists of a current form web page, and all previously visited web

pages. Each form contains variables and the URL that the form data will be sent to. A set

of rules is defined that regulate the transitions from one page to another.

Beek and Mauw [4] used labeled transition system to model web application and the

conformance testing is applied to this model. Each transition in the model represents a

communication action between the application and a client. With this model, the

navigation behaviors of a web application are modeled as URL label series. They also

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proposed a MRRTS (Multi Request-Response Transition Systems) to deal with the

session information in web application.

Andrews et al. [2] presented a new approach for modeling and testing web application,

i.e. by using Finite State Machine. They proposed a technique based on hierarchical finite

state machine with constraints for generating test case. It first divides a complex web

application into subsystems, components and logical web pages, and models them with

FSM, that is, an Aggregation FSM is built for the web application, and then generates test

sequences from them. These sequences are then combined together and form desired test

case by some test criteria. But their work is in a preliminary stage, such as how to define

a logic web page and distinguish it (Logic web page is currently identified by hand).

Further, their starting point is not clear: Did they assume the specification for web

application was available? What is the format for this specification?

2.4 Summary

Modeling methodologies for web applications are immature currently. It needs to find

effective way to model web applications for testing and verification. The formal models

of the web applications should contain information of the navigational behavior

comprising the web technologies we are interested in, such as session/cookies, dynamic

links, and dynamic web pages, etc. But few research works have been done in this area.

Our approach aims at defining this kind of formal models. The distinct feature of our

work is the modeling of dynamically generated pages with cookie and dynamic links,

which have critical impact on the correct web navigations.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Background

3.1 Architecture of Web Application

Client Web Server Application DataBase
Server Server

Browser HTML, CGI, etc Java Oracle

Figure 1. Architecture of web application

Figure 1 illustrates architecture of web application. The modem web application has

expanded to a three-tier model and now more generally to an N-tier model. Clients use a

browser to visit web sites, which are hosted and delivered by web servers. But to increase

quality attributes such as security, reliability, availability, and scalability, as well as

functionality, most of the software has been moved to a separate computer—the

application server. Indeed, on large web sites, a collection of application servers typically

operates in parallel, and the application servers interact with one or more database servers

that may mn a commercial database. The ability to separate presentation (typically on the

web server tier) from the business logic (on the application server tier) makes web

software easier to maintain and expand in terms of customers serviced and services

offered.

3.2 Homepage and URL

Homepage is a top level document of a web site. It is usually served as a starting page

for client’s browsing.

URL stands for Universal Resource Locator, and it is used to identify a unique

resource in the web. The format of URL is defined in RFC 1738. A URL consists of three

parts, protocol field, host address, and url-path. Each protocol indicates a category of

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resources, such as http, ftp, telnet, etc. A host’s address consists of the host’s IP address

and the port number. A url-path is a relative path used inside a server in the Internet. The

communications between a web client and a web server mainly rely on the HTTP. Each

HTTP request contains an HTTP URL for a specified web page in the web server. The

format of an HTTP URL is: http://<host>:<port>/<path>?<search_parameters>. Here

“http://” indicates the resource type is http, and the communication protocol that is used

to send this request is HTTP. The <host> identifies a unique web server in the Internet.

<host> is the web server’s IP address and <port> is the port number that the web server

uses for HTTP communication. The default port number for a web server is 80. If the port

number is not included in an HTTP URL, it means 80 is used as destination port number.

Because an IP address is related to a domain name that is stored in DNS (Domain Name

Server), a client can obtain the IP address of a web server by requesting domain name

service. <path> specifies the relative storage position of the request resource.

<search_parameters> consists of search parameters a client passes to the web server.

These parameters could be used to compute and generate a web page.

http ://www. google, com/ search? q=China&num= 10

The example above shows the basic elements that consist of a URL. “http://” indicates

the resource type is HTTP and the browser will use HTTP protocol to send this URL

request, “www.google.com” is the domain name and the corresponding IP address can be

resolved by querying a DNS (Domain Name Service) server. The port number is implicit

and it is the default 80. “search” is a relative directory and “q=China&num= 10” is a

search part.

3.3 Client and Web Server

Client is the software that allows users the ability to post information into and retrieve

information from World Wide Web. A web browser is a typical example of client

software.

Web server is responsible for monitoring the incoming request messages and replying

response messages with web pages according to the requests. When a request reaches a

web server, the web server retrieves the URL from the request message. This URL is

used to identify a unique web page in a web server. If the requested web page is a static

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://%3chost%3e:%3cport%3e/%3cpath%3e?%3csearch_parameters
http://%e2%80%9d
http://%e2%80%9d

HTML web page stored in a directory of the web server, the server reads this HTML file,

encapsulates it in a response message and sends the message back to the requested web

browser. If the web server cannot locate a static web page in its local directory with the

URL, it passes the request URL to an application server which hosts dynamic web page

generating module.

3.4 Web Application

Traditionally, a web site is content-based. The web pages are static, and the users

browse and navigate through web pages with the help of the internal links. The web

pages are only loosely linked since HTTP is stateless.

The advance web technology gave birth to a new generation of web pages: function-

based web pages, sometimes called Web Application. These web pages are capable of

gathering information from clients and passing it to the servers. Their content may be

dynamically generated by the server based on the information collected from the users.

Most web applications need to identify its clients, to establish a one-to-one relationship

with them, to store data for them and to customize dynamic web pages for them. The web

pages become tightly coupled.

3.5 Dynamic Link and Web Page Template

A web page with dynamic content is sometimes called a dynamic web page and the

script used to generate it called a web page template. For a link to dynamic web page,

sometimes called dynamic link, we must also specify the input parameters and their

corresponding values. A web page template, in conjunction with its dynamic link,

determines the content of a dynamic web page.

Typically a dynamic web page generating module consists of a dispatcher and page

generating procedures. The dispatcher receives the request URL and calls the

corresponding procedure to generate a web page. This dynamically generated web page

is sent to the web server, and a response message that contains this new page is returned

to the requested web browser.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Session and Cookies

Since web applications need to identify its clients, to establish a one-to-one

relationship with them, to store data for them and to customize dynamic web pages for

them, web server need to maintain communication sessions with them. Unfortunately, the

communication protocol between web server and client is stateless and it does not

provide the functionality on session control. The connection is only established during

the time a client sends out a request and receives a response message.

That is where the cookies have come from. Cookies are small piece of textual

information. After receiving a page request from a client, web server generates a cookie

and sends it with the response message to the client. The client receives the response

message and stored the cookie in the local storage of a web browser. The client returns it

unchanged when later visiting the same web site or domain. A web server can identify

each client by issuing different cookies on the browsers who have visited it. The use of

cookies gives a web server the abilities to trace the status of its client browsers and

maintain the communication session tracking with them.

3.7 An Example: Online Flea Market

In this thesis work, we use an online flea market example to illustrate our approach. It

is a web site where people come to buy or sell items. This online system allows multiple

clients to use it, and admits authorized clients to post items for sale and to buy interested

items from the system. A user can register to the site using a unique user name and

become an authorized user. The web application employs cookies/session technique to

implement the dynamic web pages for this system, making it more effective.

This system provides two main functions to the clients. One is to allow authorized

clients to buy some interested items from the system; the other is to provide a service for

authorized users to post item(s) for sale.

Any client who visits some web page in the web site will be given a list of currently

available items. Each entry in the list is an internal link directing to a web page

containing the details of the item. The client may browse the details of an item by

clicking on the corresponding link. Once browsed, the server will mark the item as

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“viewed”, as long as the client remains in the web site. To buy an item, a client must be

an authorized user, fill out related form and submit it. The exchange is based on first-

come-first-serve. If the quantity of an item runs out, it will be taken off from the available

list and an apology message will be sent to the client. An authorized user can pose items

for sale. For each kind of item, the user gives it a name, a short description, the price per

item and the quantity available. For simplicity the web site accepts no more than 5 items

to be posted at the same time.

To explain the modeling issues more clearly, we give an implementation of this system

in Java language, using the Model-View-Controller (MVC) 3-tiers architecture [35]. The

navigation structure of the system is shown in Figure 2. In this figure, the web application

is presented in a logic view. The related web pages and templates are denoted as nodes in

a directed graph. Some major links and forms in the system are concretely presented in

the corresponding node. Each directed edge starts from an internal link located in a

starting node and ends at a target node. The files used in the system are listed in Table 1.

No File N am e Type

0 index.jsp JSP

1 showltcm.jaxa Servlet
*> postIlem.html HTML.

3 form.jsp JSP

4 purchase.java Servlet

5 failurcl.html HTML

6 success 1 .html HTML

7 adding.java Servlet

8 Iailurc2.html HTML

9 success2.html HTML

I ’ser.java JavaBean
I Item.java JavaBean

T able 1. Files in O nline F lea M arket system

The homepage (i.e., the index.jsp) for the system is a template. The instance of this

template (i.e., a concrete page) provides two links when a client visits this page.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List for available items
Bosting item for sale

Item i
Item j

Item 1
Item 2 User:

Item Name:
Price:
Quantity:
Submit J

\ Back to homepage

Item n

Back to homepage

Item name is ...
The price is ...
Left quantity ...
User:
Quantity of purchase:

Submit
Back to homepage

Figure 2. The navigation graph of Online Flea Market

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One link, which is labeled with List for available items (see Figure 2), leads client to the

purchase service. The other link, which is labeled with Posting Items fo r Sale, leads client

to the posting item service. The former points to template showltem, and the latter to a

static HTML filepostItem.html.

showltem is a servlet class. An instance of it will show all currently available items for

clients. The available items are dynamic: when a client posts some items to the system,

these items become available to the clients; when the quantity of an item runs out, the

item disappears from the client’s view. So, showltem shows a list of dynamic links to the

clients. Each entry in the list is an internal link directing to a web page containing the

detail information of the item. The client may browse the details of an interested item by

clicking on the corresponding link. We assume the number of items in our system is fixed

and known in advance: the maximum number of items is five.

If a client clicks an internal link in the showltem page, an instance of the template

named form.jsp will query the system, retrieve the related data from the system database

about this item and lay them out in this page. There is also a form in this page which is

provided for the clients to fill out for purchase this item. So, this client may take a

detailed look at this item, fill out the corresponding form and submit it. The

corresponding URL for processing this form, called purchase, is a Java dispatcher. It will

redirect the client’s request to successl.html if the purchase activity is successful, or

redirect the request to failurel.html if the purchase activity fails. The three web pages

form.jsp, successl.html, and failurel.html all contain a static link Back to Homepage,

which points to the homepage, i.e., index.jsp.

The system employs the cookies/session technique to implement an effective feature:

if a client clicked some item in the showltem page, and took a detailed look at the

succeeding web page, which is an instance of form.jsp for this item, or if the client filled

out the corresponding form and submitted it, but the purchase activity failed, the web

server uses cookies to record the item for this client with the understanding that the client

is interested in that item. When the client gets back to the homepage, there is a dynamic

link pointing to form.jsp which is a concrete page of the template with the detailed

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information for that item in it. The system exploits this dynamic link to promote online

purchase activity by reminding the clients of their interested items.

postItem.html is a static HTML file. It provides the clients with a service for posting

items to the system. Based on the input of the client, the associated URL (i.e., adding) for

processing this form will redirect the client’s request to successl.html if the posting

activity is successful, or redirect it to failure2.html if the posting activity failed. The three

web pages postItem.html, successl.html, and failure2.html all contain a static link Back to

Homepage, which points to the homepage, i.e., index.jsp.

User.java and Item.java are two JavaBean class in our example. They are necessary

for type definition, computation and making use of the database, etc. We set up a

database server to store all information for our system.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. EBNF Specification for the WAD Language

4.1 Backus-Naur Form and Extended Backus-Naur Form

Backus-Naur Form (BNF) is a well-established formalism for describing the syntax of

computer programming languages. It combines great simplicity and naturalness with a

fair degree of expressive power. Basically, it is a notation that one can use to specify a

generative grammar which defines the set of all possible strings of symbols that

constitute programs in the subject language together with their syntactic structure.

A BNF grammar comprises a set of production rules. Each production rule has a left

side and a right side separated by the metasymbol ‘::=’ . The left side consists of a

nonterminal symbol, which is a string of one or more characters enclosed by ‘<’ and ‘> \

A nonterminal is a name for a type of abstraction or syntactic category of the subject

language. The symbol ‘::=’ may be read as ‘consist o f or ‘is defined as’; i.e., a

production rule is a definition for the nonterminal which forms its left side. There should

be precisely one rule for each distinct nonterminal used in the grammar. The right side of

a rule consists of one or more alternative specifications separated by occurrences of the

metasymbol ‘|’ (read as ‘or’). Each alternative is a sequence of nonterminal and/or

terminal symbols, where a terminal is a token (character or indivisible group of

characters) of the subject language.

For example, the production rule

<assign> ::= <variable> = <expression>

states that the abstraction <assign> is defined as an instance of the abstraction <variable>,

followed by the symbol ‘=’, followed by an instance of the abstraction <expression>.

The expressive power of BNF is the use of recursion in the grammar. This enables an

infinite number of terminal strings to be generated by a finite (and small) number of

production rules. For example, the rule

<series> ::= <statement> | <series> ; <statement>

is recursive because the right side refers to the nonterminal being defined. According to

the first alternative, a <series> may consist of a single <statement>. Hence, according to

the second alternative, it may also consist of two <statement>s separated by a semicolon

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a terminal). Hence, according to the second alternative again, it may also consist of three

<statement>s separated by two semicolons. By the inductive argument, one can see that it

may in fact consist of any number of <statement>s separated by semicolons.

In order to reduce the size and increase the clarity of grammars, BNF is often

augmented with additional notations, the result is EBNF. A language defined in EBNF

can always be defined in equivalent basic BNF notations. In this thesis work, we use the

EBNF notations defined in [27] to describe our Web Application Description language

(WAD).

4.2 Data Exchange — Input, Global, and Cookie Variables

In a web application, the server may collect information from the clients by requesting

them to fill out forms on the web page. In a WAD specification, the information provided

by the clients is represented as a variable of the Input type. Its value is set by the client

and its scope is within a specific web page.

It is often necessary for a web server to store or provide some data for users. Such data

may be accessed by all processes residing on the server. In WAD we use Global type

variables to represent such data. Its value is preset and its scope is global.

Cookie is special: it is saved on client’s computer as a text string, but the client has no

control over its value and usually will not access it either. A cookie can be set and/or read

by the process on the server, but processes servicing different clients will get different

cookie values. In WAD we use Cookie type variables to represent cookies. We are

interested mostly in session-based cookies. The value of a Cookie variable is set at the

beginning of a session and its scope is within the session.

For simplicity, we require all variables to be of integer values and variable names to be

made from lower case letters, digits and underscores only:

1. ^variables-- : :~ fr-'varDcf -'j

2. " 'varDcf> ::- '-:'varName> •"varType> |<varValuc>]

3. •• varName> :: < Let ter- Alphanum - *

4. <Letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m

| n | o | p | q | r | s 111 u | v | vv | \ | v | z

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. <Alphanum-> ::= - Letter-- 1 -Digit-'

6. < D i g i t 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

7. ■-varType'-:." Global | Input | Cookie

8 . - - v a r V a lu e - ' - L Digit -1 1 Undcllncd

For example, in the Online Flea Market example, the quantity of an item will be the

global variable because every client can access it. User name will be an input variable

which is associated with a specific client, and a cookie variable can be used to identify a

client if an item has been browsed by the client during the session:

iteml_quantity Global 1;

var_cookiel Cookie 0;

user_name Input;

4.3 Static Web Pages and Dynamic Web Page Links

To specify a static web page, we need its URL and the internal web page links it

contains, either static or dynamic.

It is sufficient to represent a link to a static web page as a URL link. For a link to

dynamic web page, sometimes called dynamic link, we must also specify the input

variables and input values, if there is any, since the content of a dynamic web page will

be determined dynamically by a server process from a template according to the specified

input variable, input values and other information.

1. <StaticWebPage> SW<lJRL->: L !<URL-| ' !-'-DynamicWcbPageLink>!

2. <URL> :: (‘-Letter - 1) !<Alphanunv> \ . J-

3. Dynamic Web PageLink> ::= D<URL> j--'varName> != <varValue> ! j ‘

For example, in the Online Flea Market example, we have a web page for users to post

items to the system. It is a static web page with a form for the client to fill out and submit

- a link to a dynamic web page:

SW /fleamarket/postltem.html:

D /fleamarket/adding user_name=l item_name=2

item_price=03 item_quantity=2

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D /fleamarket/adding user_name=2 item_name=l

item_price=01 item_quantity=l

D /fleamarket/adding user_name=0

In the next section, we examine dynamic web page template which, in conjunction

with a dynamic web page link, determines the content of a dynamic web page.

4.4 Dynamic Web Page Template

A dynamic web page template is actually a server side program, which generates an

HTML file for the client’s request or redirects the client’s request to another webpage or

template according to the information available to it. To specify a template, in addition to

its URL we need to show the logic of the program.

Bohm and Jacopini’s work [6] demonstrated that all programs could be written in

terms of only three control structures, namely the sequence structure, the selection

structure, and the repetition structure. To make our WAD more general, we need to

include these three structures in our WAD. The sequence structure is built into our WAD.

For the selection structure, we consider the If/Else selection structure. For the repetition

structure, we use the loop structure.

In WAD, a template is partitioned into several execution blocks. It considers two

sequentially executed statements, i.e., assignment statements and link statements. It also

includes selection structure blocks and loop structure blocks.

The production rules for the dynamic web page template are described as following:

1. -^Template*:: T <U R L >: |<:Block>! 1

2. <'Block'*::-- S ('■■Assignment. Statement*

| ' Link_Statcment>

! <-Selcction_Block'-'

< L o o p _ B lo ek ')

3. < Assignmcnt_Statement > :: - A (^Variable - = -'Expression-'--*)

4. •~Link_Statemcnl> :: P -TJRL > |<varName> = <'varValuc'*J

1 R <U R L - (- \arN am e -■ - -■ varValue'T

5. <Soleclion_Block> ::= If <-Condilion> Then \ <-Block> f [Else L' Block>! |

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. ^'I.t)op B lock'3- ::= j L ^Condition--- '■ Block '-j '

7. --C ondition'':: - -Expression" ̂Relation-' < Expression-'

<S. --E x p ress io n '^ (-'E x p ress io n '- (+ | - | * | /) -'Expression-) ! (<E]emenl>)

9. Element^ -'varNamC'-1 -'VarValue>

10. -'Relation > | == | < | >= | <= | And | Or

A link statement is an exit point. There are two types of link statement: print out link

statement and redirect link statement. The former adds an internal web page link to the

HTML file generated, after which client may choose to navigate to the web page

specified by the link. The latter redirect the client to the specified web page directly

without consulting the client.

As an example, there is a piece of code in the showltem.java (a java servlet class) as

following:

PrintWriter out = response.getWriter();

String id = ii.getltemld()+"";

String Na - ii.getItemName();

out.priniln("<a

hrefi-' "http: 7137.207.234.190:8080/Hcamarkct lbmi.jsp?id - "-id-" " "”- N a ' "va-"):

We model this link as a print out link statement:

P /fleamarket/form.jsp id = 1

As another example, there is a piece of code in the purchase.java (another servlet

class) as following:

response.setContentType("text/html");

String user = req.getParameter("userID");

String pass = req.getParameter("passwd");

USERS use = new USERS();

use.setlD(user);

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (!u sc .is \'a lid (pass)) response. sondR ed irect("/lleam arkel/fa i hi re 1 .lit ml");

We model this link as a redirect link statement:

R /fleamarket/failurel .html

The homepage (i.e., the index.jsp) in our example is a template. We explain how to use

the WAD to describe it here. The instance of this template (i.e., a concrete page) provides

two static links when a client visits this page. One link leads client to the purchase item

service. The other link leads client to the posting item service. These two links are static

ones. The former points to template showltem, and the latter to a static HTML file

postItem.html. There may be some dynamic links in the homepage for a specific client if

this client browsed some items but not purchased before. Each dynamic link is an internal

link directing to a web page (an instance of template form.jsp) containing the detail

information of the item in which this client is interested in. The system allows for

maximum five items to be posted for sale, as we assumed before. So the index.jsp is

described as follows:

T /fleamarket/index.jsp:

S(P /fleamarket/showltem)

S(P /fleamarket/postltem.html)

S(L (var_cookiel == 1) S(P /fleamarket/form.jsp item_id=l)

L (var_cookie2 ==1) S(P /fleamarket/form.jsp item_id=2)

L (var_cookie3 = 1) S(P /fleamarket/form.jsp item_id=3)

L (var_cookie4 == 1) S(P /fleamarket/form.jsp item_id=4)

L (var_cookie5 ==1) S(P /fleamarket/form.jsp item_id=5)

)

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EFSM Session Model from WAD Specification

5.1 Finite State Machine (FSM)

Finite state machine [22] have been widely used to model systems in diverse areas,

including sequential circuits, some types of programs (in lexical analysis, pattern

matching, etc.), and communication protocols. The demand for system reliability

motivates research for the problems of testing finite state machines to ensure their correct

functioning and to discover their behavior.

Definition One: A finite state machine (FSM) M is a quintuple

M = (I, O, S, 8, X)

where I, O, and S are finite and nonempty sets of input symbols, output symbols, and

states, respectively.

6: S x I —> S is the state transition function and

X: S * I —> O is the output function.

When the machine is in a current state 5 in S and receives an input a from I, it moves to

the next state specified by d (s, a) and produces an output given by X (s, a). □

An FSM can be represented by a state transition diagram, a directed graph whose

vertices correspond to the states of the machine and whose edges correspond to the state

transition; each edge is labeled with the input and output associated with the transition.

5.2 Extended Finite State Machine (EFSM)

Finite state machines model well sequential circuits and control portions of

communication protocols. However, in practice the system which we have interest

usually includes variables and operations based on variable values; ordinary finite state

machines are not powerful enough to model it in a succinct way. Extended finite state

machines [22], which are finite state machines extended with variables, had emerged

from the design and analysis of this kind of system.

To model a web application, including dynamic contents and cookies/session, we

extend finite state machine with variables as follows. We denote a finite set of variables

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by a vector: v = (v , , . . v t). A predicate on variable values P(v) returns True or False;

a set of variable values v is valid if P(v) = True. An action is an assignment: v := A(v)

where A is a function of v .

Definition Two: An extended finite state machine (EFSM) is a six-tuple [22]:

EFSM = (S, s 0,1, O, T, V)

where s 0 is an initial state (in our example, it is the system’s homepage.), and S, I, O, V

and T are finite set of states, input symbols, output symbols, variables, and transitions,

respectively. Each transition t in the set T is a six-tuple

t = (st, e t, i t , o t, P t, A t)

where s t, e t , i t and o t are the start (current) state, end (next) state, input, and output,

respectively. P t (v) is a predicate on the current variable value and A t (v) gives an

Action on variable values.

Initially, the machine is in an initial state s 0 e S with initial variable values: v injt.

Suppose that at a state s the current variable values are v . Upon input a, the machine

follows a transition t = (s, e, i, o, P, A) if v is valid for P: P (v) = True. In this case, the

machine outputs o, changes the current variable values by action v := A(v) , and moves

to state e.

For each state s e S and input i e I, let all the transitions with start state 5 and input i

be: t : = (s ; , e t , i t , o ;. , P i , A t), 1< i < r. In a deterministic extended finite state

machine(EFSM) the sets of valid variable values of these r predicates are mutually

disjoint, i.e., V P(n V p = 0 , 1< i < r. Otherwise, the machine is nondeterministic. In a

deterministic EFSM there is at most one possible transition to follow. □

Figure 3 shows a simple coffee vending machine which has S = {idle, busy}, s 0 =

{idle}, 1= {insert, coffee, done, display}, V = {x, m, y}. We assume x, m, and y are of

integer subrange [0..5].

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{m := rn - - }

iDLt

t-4.i ihsp!,<!j | , y : = m } ts: display / { y ; = m }

Figure 3. An example of EFSMs [18]

5.3 EFSM Session Model from WAD Specification

Like the basic FSM, an EFSM consists of states and transitions between the states.

Each transition is associated with an input, a condition, and a sequence of actions. A

transition is triggered by the input provided that the enabling condition is satisfied. An

input may be parameterized. When a transition is traversed, certain actions may be

performed. An enabling condition is a boolean predicate with variables and must be

evaluated to true in order for the transition to be made.

In our approach, we translate each static web page and dynamic web page template

visited during a session as a state in the EFSM session model. A transition between two

states represents a possible navigation between the two web pages. To represent the

client’s interaction with the web application, a parameterized input symbol, which stands

for a client’s browsing request for a web page (clicking on the link), is defined for each

dynamic web page template.

5.3.1 Modeling Cookie, Global and Input Variables in EFSM

As we explained before, three types of variables, namely Input variables, Cookie

variables and Global variables are used in WAD to model the communication and data

exchange between the clients and the web server.

Cookie variables and Global variables can be adapted into EFSM straightforwardly.

We are interested mainly in session-based cookie, whose value is local to a session and

will not be memorized once the session is over. Since the EFSM we generated represents

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a session and a local variable in EFSM is shared by all states, valid through out the

EFSM, a cookie variable can be represented directly as a local variable of the EFSM. A

Global variable, on the other hand, is shared by all session EFSMs and should be

translated as a global variable in the EFSM.

Now we explain how to deal with Input variables. The scope of an Input variable is

within a web page and during each visit to the web page the value will be reset. However,

no variable in EFSM is local to a state or a group of transitions only.

To solve the problem, we use an EFSM local variable to represent each Input variable

in each state. To avoid name confliction we first assign a unique ID to each state and

postfix all Input variable names of that web page with the ID. In each transition leading

to the state (a navigation link), all the Input variables are initialized so the value from the

last visit will not be carried over.

The initial value of an input variable may be preset by the web site. For example, a

redirection statement or an internal link may customize the target web page by including

the values of the Input variables, sometimes called URL-Rewriting. In other cases such

values must be provided by the client. In the former case, a value assignment statement

will be added for each input variable to the action of the transition. In the latter case, the

value of the Input variable will be collected from the user through an input event.

5.3.2 Modeling the Interaction between Client and Web Application

As we mentioned above, we use an input symbol to represent a client’s browsing

request for a web page (clicking on a link). The parameterized input symbol represents

the client’s input.

For each dynamic web page template with n input variables, we define an input event

as Input_ID(vi,...vn) where ID is the unique id assigned to the state representing the

template and vi,...vn are the names of the input variables. For simplicity, we consider

these input variables vi,...vn are independent with each other. The navigation, which

requires user input to lead to the template, will be translated into a transition with an

input event Input_ID.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similarly, for a dynamic web page template without input variable or a static web

page, we define event Input_ID(), with zero parameters. Event Input_ID is generated

when the user clicks on the corresponding link leading to the web page.

5.3.3 Modeling Navigation among Web Pages

In our approach, if an internal link in web page A points to web page B, in EFSM

session model it is represented by a transition from state A to state B.

The translation for internal links in a static web page is straightforward. Each transition

includes a proper triggering event. If the target state is a dynamic web page template and

if any of the input variables is preset, an assignment statement will be added into the

transition action for each preset value. The transitions have no guard condition.

While translating a dynamic web page template, we need to take into account the

internal logic of the template. From WAD specification we flatten each dynamic web

page template into the set of all possible execution traces. A transition is generated for

every internal link or redirection statement presented in each trace. The guard condition

of the transition is the condition for the template to execute this trace. It is generated

while flattening the template. The transition action includes all value assignment

statements for Global variables and Cookies variables occurred in the trace, as well as

assignment statement used for presetting input variables of the target web page.

If the transition represents a redirection statement, it does not need to be triggered by a

client and the transition does not include an input event: It can be taken as soon as the

condition is satisfied. If the transition represents the generation of an internal link,

however, it will include an input event, similar to the case of a static web page.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Translating a WAD into EFSM Session Model

In this chapter, we will explain some technical details in the tool we implemented for

translating a set of WAD files into its corresponding EFSM session model.

As we mentioned before, we assume we are given a set of descriptions of the

functionality for each individual element o f a web application, and the descriptions

conform to the WAD we define. We developed a tool to process these description files to

derive the EFSM session model for the web application. Each static web page and web

page template is modeled as a state in our EFSM model. So, the major task of our tool is

to derive from a data file, which describes a static web page or a web page template, the

conditions, inputs parameters, and actions for the corresponding transitions.

The input of the tool is a set of WAD data files which describe the functionalities for a

specific web application. In our Flea Market example, there are ten data files (file0.txt,

filel.txt, file2.txt, ..., file9.txt). The data are stored in text format, and the files are with

.txt extension.

data file Driver Data Output Module

Static Data Processing Module

Template Data Processing
Module

Figure 4. A high level view of translating tool

From a high level view, our tool is divided into four modules (see figure 4): the

Driver, the Static Data Processing Module, the Template Data Processing Module, and

the Data Output Module. The following content introduces each module in detail:

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 The Driver

The Driver will read the data files according to the user’s instructions, distinguish

whether it stands for a static web page or a page template automatically, preliminarily

processes the data and pass them to related module for later processing.

The algorithm in the Driver is:

read the data from a designated file:

distinguish it is from a template or from a static web page:

if'this tile stands for a template

invoke the Statements component to process the data:

store the results in a string array;

pass this array to Blocks component for later processing;

else ■ this tile stands for a static web page

invoke the Static Date Processing Module to process the data:

6.2 Template Data Processing Module

This module is the most important part in our tool, because we are greatly interested in

the web page templates which take into account the cookies/session and dynamic link,

etc. This module is also the most complicated part compared with other modules, because

it will derive each transition starting from it, and to accumulate related conditions and

actions for every transition.

The Template Data Processing Module comprises Block Processing Component,

Singlelf Component, SingleLoop Component, ExtraAction Thread Component,

TransitionVector class, GetTargetName class, etc.

6.2.1 Block Processing Component

This component is the principal part in the Template Data Processing Module, and it

carries the most burden of the processing module. The component needs to calculate the

related conditions and actions for every transition. It also needs to deal with the possible

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

recursion in the condition blocks and loop blocks, because these two blocks may include

deep level blocks. Another challenge part in it is that an ExtraAction Thread component

is employed to check the possible extra actions in the target state, if the target state is for

a page template.

The algorithm in the Blocks Processing Component is:

for a given string array (each element is a statement or block);

for a given accumulated conditions on higher levels;

for a given accumulated actions on higher levels;

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Processing Blocks (. . .)

lor each block

if (this block is an assignment statement)

append this assignment with previous actions;

else if (this block is a link statement)

invoke the GctTargetName class to get the name for the target state:

process this block to get possible inputs;

process this block to get a transition;

store the transition in a destination tile;

i f the target state is a template

start an BxtraAction thread:

7 this thread will check if there are extra actions in target state;

waiting for this thread to terminate;

get the thread's processing results from Transition Vector component:

add the possible actions to the current actions:

store the transition in a tile or print it out;

else i f (this block is a condition block)

partition it to If statement and Blse statement;

pass the lirst part to S inglelf component for recursion processing;

pass the second part to Blocks component for recursion processing;

else if (this block is a Loop block)

partition it to a set o f single loop statement:

pass each single loop statement to SinglcLoop component for recursion

processing;

■ illegal statement or block

system exits.

end

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.2 Singlelf Processing Component

This component deals with a challenging part in the Template Data Processing

Module: it processes the blocks in an If statement recursively.

The algorithm in the Singlelf Processing Component is:

for an i f statement, partition it into two parts: condition and blocks:

append the condition with previous higher level conditions using AND relationship:

lor the second half, invoke the Statements Component to process it;

store the processing results in a string array;

pass this string array to Blocks component for recursion processing;

end.

6.2.3 ExtraAction Thread Component

This component mainly includes the ExtraAction thread class and the Blocks 1

Processing Component. The functionalities in the Block Processing Component and

Block 1 Processing Component are similar. The main difference is that the former

outputs the processing results to a file; the latter adds the processing results to a Vector

for later computation use.

In the Blocks Processing Component, when the target state of a link transition is a web

page template, the process will start an ExtraAction thread to check if there are possible

extra actions for that link transition.

For example, in our Online Flea Market example, there is a template showltem.jsp. In

our WAD language, it is described as follow:

T /fleamarket/showltem:

S(L (var_global I -1) S(P ■ lleamarket. form.jsp item _id = -1)

L (var_global2==l) S(P /fleamarket/form.jsp item_id==2)

L (var_global3==l) S(P /fleamarket/form.jsp item_id==3)

L (var_global4==l) S(P /fleamarket/form.jsp item_id==4)

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L (var_global5==l) S(P /fleamarket/form.jsp item_id==5))

S(P /fleamarket/index.jsp)

inside it, the first link transition points to another template form.jsp with an input variable

item_id = 1 . So, we need to check extra actions in the target state, i.e., form.jsp. The

form.jsp is described as the following:

T /fleamarket/form.jsp:

S(L Citem id—~ 1) S(A var_cookiel = l)

S(P fleamarket purchase user_nam e-l purcliase_quantity ^1)

L (item_id==2) S(A var_cookie2=l)

S(P /fleamarket/purchase user_name=2 purchase_quantity=l)

L (item_id==3) S(A var_cookie3=l)

S(P /fleamarket/purchase user_name=0))

The first link transition in the showltem is from showltem to form.jsp. This transition

ends at a state representing form.jsp where condition item_id == 1 in the form.jsp is

satisfied. So, the corresponding action, i.e., var_cookiel = 1, must be included in the

transition, as described in Figure 5:

The algorithm in the ExtraAction Thread Component is:

read the data from the corresponding data file;

invoke the Statements component to process the data;

store the results in a string array:

pass this array to Blocks 1 Processing Component for later processing;

oClick: (ite m jd ==1) [var_global1==1] / var_cook1 ='*

showltem form.jsp

Figure 5. A transition with the extra action in target state

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The algorithm in the Blockl Processing Component is:

for each block

if (this block is an assignment statement)

append this assignment to the previous actions:

else i f (this block is a link statement)

invoke the GetTargetName component to get the name for the target state:

process this block to get possible inputs:

process this block to get a transition:

store the transition in the Transition Vector for later computation use;

else if (this block is a condition block)

partition it to if-stalement and else-statement;

pass the first part to S inglelfl component for recursion processing;

pass the second part to Blocks 1 component for recursion processing;

else if (this block is a Loop block)

partition it to a set o f single loop statement;

pass each single loop statement to SingleLoopl component for recursion

processing:

illegal statement or block

system exits.

end

The Singlelfl component is used to deal with the If statement in Blockl Processing

Component. The function in it is very similar to the Singlelf Processing Component. The

only difference is that in the Singlelf Processing Component, the method invokes the

Blocks Processing Component recursively while in the Singlelfl component, its method

invokes the Blockl Processing Component recursively.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The SingleLoopl component is used to deal with the loop statement in Blockl

Processing Component. The function in it is very similar to the SingleLoop Processing

Component.

6.3 Static Data Processing Module

This module is to process the WAD data fdes which are from static web pages.

Compared to the Template Data Processing Module, it is very simple. The module

includes the StaticFile class, GetTargetName component and DynamicLink class. Its

main goals are to get the names of target states, to get the possible inputs for each

transition, to check the extra actions in the target state if that state is for a template, and to

pass the transitions to Data Output Module finally.

6.4 Data Output Module

According to the user’s selection, this module can either print the previous processing

results out immediately, or output the results to a data file permanently for future use.

For example, the tool may prompt a dialogue box asking for an input file name:

m

'! > Enter the input file name:
V file l .t/l|

OK Cancel

The use inputs the filel .txt, which stores the WAD data for the showltem template:

filel.txt:

T /fleamarket/showltem:

S(L (var_globall==l) S(P /fleamarket/form.jsp item_id==l)

L (Var global2==l) S(P /fleamarket/form.jsp item_id==2)

L (var_global3==T) S(P /fleamarket/form.jsp item_id==3)

L (var_global4==l) S(P /fleamarket/form.jsp item_id=4)

L (var_global5==l) S(P /fleamarket/form.jsp item_id==5))

S(P /fleamarket/index.jsp)

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After the processing, the tool will print the results on the screen, as following:

The tool will also output the processing results into a file permanently for future use,

as the following:

Transition 1

click(ilem _id=l)[var_globall-~l] var_cookicl- l

showltem — > form.jsp

Transition 2

click(item_id==2)[var_global2==l] / var_cookie2=l

showltem — > form.jsp

click(item_id=-3)[var_global3=" 1]./' var_cookic3-l

showltem — form.jsp

Transition 4

click(item_id==4)[var_global4==l] /

showltem — > form.jsp

Transition 5

click(item_id- 5)[var_globul5 ==1] /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t \ v! II41)0 WS \sys I em 3 At. 111 <1. <■ x o
i : \ s o n g t a o \ J a w a J e >.jauac * . j a va

i:S s o n j j t a o S J a v a _ R e > ja v a MyToo 12
r a n s i t io n 1
howl t e n -...> form.jsp
l i c k C item itl ==l> l v a r . _ g I o b a l l = = l] / v a r . _ c o o k ie l =1

ransit ion 2
howl tern > f o r n . j s p
l i c k < ifcem _id==2> tv ar_ jgr lob a l2= “l J ✓ v a r _ c o o k i e 2 = i

r a n s i t i o n 3
h ow ltem — — > form.jsp
lickC item i d = = 3 > t v a r g l o b a l 3 = = l 1 t v a r _ c o o k i e 3 =1

ransition 4
howltem --------> form.jsp
lickC itein_id==4> Evar_<f loba 14==1]

ransition 5
howltem --------> form.jsp
lick< i t e n»_id"" = 5 > [v ar _ g l o ha 15 = =i 1 /

ransition 6
bowItem --------> index.jsp
li ckOEl /

NsonqtaoSJava Re>

37

showltem — ' form.jsp

Transition 6

click()[] /

showltem — > index.jsp

6.4.1 Output EFSM Format

This tool uses the following format to output the results for EFSM session model:

Transition Number

Input (input parameters and corresponding values) [Conditions] / Actions

Starting State — > Ending State

For the above example:

Transition 1

click (item__id== 1)[var_global 1 == 1] / var_cookiel=l

showltem — > form.jsp

It means this transition starts from showltem state, and ends at form.jsp state. The input

symbol is click, its only parameter is item_id and corresponding value is integer 1. The

condition is var_global 1 == 1. The action is var_cookie 1=1.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. Experiment and Evaluation

For experiment, we use the Online Flea Market web application as an example to

illustrate our approach. We have provided the source code of this example in Java

language (see the Appendix C for the source code of the Online Flea Market), using the

Model-View-Controller (MVC) 3-tiers architecture [35]. We extracted each individual

element in this web application to get the corresponding data file which is in our WAD

format manually (see the Appendix B for these data files). We have applied the

developed tool (see the Appendix A for its source code) to process these data files to get

the EFSM session model. The following introduces the experiment and the evaluation.

7.1 Introduction for the Variables

As we explained before, three types of variables, namely Global variables, Cookie

variables and Input variables are used in WAD to model the communication and data

exchange between the clients and the web server. For simplicity the Online Flea Market

web site accepts no more than 5 items to be posted at the same time.

In our implementation, we used five global variables (var global 1, var_global2, ...,

var_global5) to identify the items’ availability. They are accessible for all clients. The

value scope of them is integer 0 and 1. If the value of a Global variable is 1, it means the

related item is available for clients. Otherwise, the related item is not available. We have

other global variables (iteml_quantity, item2_quantity, ..., item5_quantity) to identify

each item’s available quantity for clients. Their value scopes are integer 0, 1, and 2. The

default value is 0 .

We also used five Cookie variables (var_cookiel, var_cookie2, ..., var_cookie5) to

demonstrate whether a specific item was viewed by a client. If an item was viewed by a

client, the corresponding Cookie variable will be assigned integer value 1, otherwise it

will be assigned integer value 0 (default value).

There are some Input variables in our system. The user_name is an input variable to

distinguish the users. Its value scope is integer 0, 1, 2. Value 1 and 2 stand for two

different registered users. Value 0 stands for unregistered user. Another Input variable is

item_id which is an identifier for a specific item user selected for browsing or for

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

purchasing. Input variable purchase_quantity is used to specify how many quantity a

client wants to buy for a specific item. When a client posts an item to the web site for

sale, Input variable item_name and item_price are used to describe the item’s name and

its price, variable item_quantity is used to specify this item’s initial quantity.

The names of these three kinds of variables and their corresponding value scopes are

listed in the following Table 2.

Variables Type Variable Names Value

Global Variables var_global 1 0 , 1

var globa! 2 0 , 1

var_global3 0 , 1

var globa!4 0 , 1

var_global5 0 , 1

iteml_quantity 0 , 1 , 2

item2 _quantity 0 , 1 , 2

itme3_quantity 0 , 1 , 2

item4_quantity 0 , 1 , 2

item5_quantity 0 , 1 , 2

Cookie Variables var_cookiel 0 , 1

var_cookie2 0 , 1

var_cookie3 0 , 1

var_cookie4 0 , 1

var cookie5 0 , 1

Input Variables user name 0, 1,2
item_id 1,2, 3, 4, 5

item_name 1,2, 3, 4, 5
item_price 01,02, 03,04, 05

purchase_quantity 1

item_quantity 1 , 2

Table 2. The name of variables and their value scopes

The default value for any Global variable and Cookie variable is integer 0; the default

value for any Input variable is Undefined.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 EFSM Model for Static Web Pages

This should be the simplest case our modeling approach will meet. It does not include

any Global variable, Cookie variable, or Input variable.

For example, in our Online Flea Market web site (see the Figure 2 in page 15), there is

a web page, named success2.html (S9 in Figure 2). The WAD description for this page is

stored in data file, i.e., file9.txt, and the content is as following:

SW /fleamarkct success2.html:

1. tl eama rket/ post I torn. htm 1

D Tl can utrk et/i nd ex .j sp

By using our tool to process this data file, we get the following result:

Enter the input file name:

* file9

OK Cancel
1 ,

In the above result, the transition 1 of this page is from static web page success2.html

to another static web pagepostItem.html. This case does not include any Global variable,

Cookie variable, or Input variable. The model we get is simply a normal Finite State

Machine. Just an input symbol click, the system will traverse from web page

success2.html to postItem.html.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 EFSM Model Including Global Variable and Input Variable

Let us consider the case when our modeling approach includes Global variables.

For example, in our Online Flea Market web site (see the Figure 2 in page 15), there

a template, named as adding (S7 in Figure 2). The WAD description for this template

stored in data file, i.e., file7.txt, and the content is as following:

T 'fleamarkct'adding:

S(lf (uscr_namc=-0) Then S(A user_namc=Undcfined)

S(R / lleamarket-'fai 1 ure2 .html)

Else S(L(item name 1) S(A var_globall-l)

S(A item l_quantity-itcm_quantity)

S(A uscr_name_Undefined)

S(A i 1 cin_name_ U ndelincd)

S(A i tem_pri ce-U ndefi ned)

S(A item_quantitv-l.'ndefined)

S(R ' tleamarket. suecess2.html)

L (item_name=2) S(A var_global2=l)

S(A item2_q uantity=itcm_quantity)

S(A uscr_name- Undefined)

S(A item_name "Undefined)

S(A itcm_price- Undefined)

S(A itcm_quantity=Undefined)

S(R ■■'fleamarket/success2 .html)

By using our translating tool to process the data file,

Illl̂ L.J
*£$) Enter the input file name: "

file7.txlj

OK Cancel

J
we get the following result:

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I V w l M I M ' w ' I W n K I i i I . ' 1* l i i ' l '•>■*

I>: N son g t ao \ J a v a ...He > j a m a H a l o o 12
I r a n a i t i o r s 1
a d d i n g -.......> i a i . l a . r e 2 , h t ^ l
R O Cue e5-_!Uisise j / - U n d o f la s t 'd

T r a n s i t i o n 2
a d d i n g > ‘; u c c e K s 2 ,) s t s n l
lROr.it; en.../same ' "1 1 u a> \....g i© h all ”1 i te r a l goant; i t <j- i t e?;? , /fu a n t i f .*>
& i t e ^ s .. .p r ic e - U n d e f i n e d iieira....qu.ant i t g-’-U ndef i n e d

T r a n s i t io n 3
a d d i n g .> s » c c e s s 2 . h t r n i
R< > [i t o rL jia rse .1 / v a r_ .< |lo bo .12 :- t iV.>
d s t s:isi>._{tr ie e -Hfide f ir» e d i t en...qo t I ?; >j

s o n g t ' a o \ J a u a Re

Pt2._.gu-:ust i t », ihtde f \ ned

...nane “U n d o f in e d it€;F>....nap>e ‘d in d e l i n e l

: i t »5it_.<|«.(.an t i t y u o es _ n arse :;:U n d e f i n e d i.tono an« - f lm ie f ir s e l

The transition 2 is as following:

Transition 2

R()fitem_name -"11 ■ var_global 1 = 1 iteml_quantity=item_quantity

user_namc=Lindelined item_namc= I, ndclincd

itcm_priee= Undefined item _quantityd)nde(incd

adding — -> success2.html

In this transition, a registered user posted iteml to the web site successfully, and the

system traverses from adding to success2.html. So, the corresponding global variable

var_globall is assigned the value 1 , which means this item is available for all clients; the

other global variable iteml_quantity is assigned the value of Input variable

item_quantity.

For the four Input variables, i.e., user_name, item_name, item_price, and

item_quantity, they are carried from the previous state (S2 in Figure 2). Before leaving the

state (adding), they must be reset to their default values, i.e., Undefined. This will prevent

the values from being carried over to previous the state when that client revisits the

previous web pages.

7.4 EFSM Model Including Cookie Variable

Let us consider the case when our modeling approach includes Cookie variables.

In our Online Flea Market web site (see the Figure 2 in page 15), there is a template,

named as showltem (S3 in Figure 2). The WAD description for this template is stored in

data file, i.e., file3.txt, and the content is as following:

T fleamarket/tbrm.jsp:

S(I. (item_id--= 1) S(A var_cookic 1 = 1)

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S(P /flcamarkct'purchasc usor_name 1 purchase_quantity^l)

I. (item id- -2) S(A var_eookic2=l)

S(P /llcamarkct/purchasc user_name~2 purchasc_quantily=l)

I. (ilcm _id= 3) S (/\ var_eookie3=l)

S(P ■ llcamarkct/purchasc user_namc=0)

S(I’ / lleamarket index.j sp)

By using our implemented tool to process the data file,

m m iHTEnter the input file name:
1 o file3.ttf |

OK Cancel

we get the following result:

\songtao\Jaua„Re

In the transition 1 of this web page template, a registered user selects iteml to

purchase. If the user gives the click input, the system will move to the purchase state. In

the meanwhile, a Cookie variable var_cookiel, which is originally set to integer value 1

in the form.jsp, will be carried to the next state, i.e., the purchase state.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.4 EFSM Model for Online Flea Market Example

Now, let us consider the whole Online Flea Market example, which includes Global

variables, Cookie variables, Input variables, and dynamic links, etc.

As mentioned at the beginning of Chapter 6 , the input of the tool is a set of WAD data

files which describes the functionalities for a specific web application. More concretely,

for our Flea Market example, there are ten data files (file0.txt, filel.txt, file2.txt, ...,

file9.txt). Each of them describes a static web page or a web page template in our WAD

language. The data are stored in text format, and the files are with .txt extension.

We ask the tool to process all the ten data files, as showed in following:

■h bh
1 ^ Enter the number of files want to process: |
I^ H H p 10

1 phHh ICancel

It gives us following results:

The number of all transitions is 36 for Online Flea Market example. The results are

showed in the Figure 3.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t lc l3

111 t l2

tie2 1 t3

t 3 4

t 3 213t 2
t 3 1

t2B

t 2 7

Figure 6. The EFSM for Online Flea Market

The transition information is summarized in the table 3:

Transition 1

incie\.jsp — > show Item

Transition 2

clickOO /
index.jsp — > postItem.html

Transition 3

cliek(item icl—— 1)[var_cookie 1] / var_eookiel=l

index.jsp— > form.jsp

I ransition 4

click(item_id==2)[var_cookie2==l] / var_cookie2=l

index.jsp — > form.jsp

Table 3. The transitions in Online Flea Market

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transition 5

elick(ileni_id“ 3)[var_cookie?-^I] ■ var_cookie3-l

index.jsp — form.jsp

Transition 6

click(item_id==4)[var_cookie4==l] /

index.jsp — > formjsp
Transition 7
cliek(iteni_id-=5)[var_cookie?--11 /

index.jsp— lbrm.jsp

Transition 8

click(item_id==l)[var_globall==l] / var_cookiel=l
showltem — > formjsp

Transition 9
click(item_id==2)[var_global2“ =l] / var_cookie2=l

showltem — > form.jsp

Transition 10

click(item_id==3)[var_global3==l] / var_cookie3=l
showltem — > formjsp
Transition 11

click(itein_id- -4)[var_g]ohal4~ -1].

show Item — •' form.jsp

Transition 12

click(item_id==5)[var_global5==l] /
showltem — > form.jsp
Transition 13

clickOLJ '
show Item — > index.jsp

Transition 14

click(user_name=l,item_name=2,item_price=03,item_quantity=2)[] /
postItem.html — > adding
Transition 15
el ick(user_namc- 2.ilem_name~ 1 .item_priee-() 1 .item_quantity= 1)[J '

postItem.html — > adding

Table 3. The transitions in Online Flea Market (Cont.)

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transition lb

click{ user__name_0)|]

postItem.html — adding

Transition 17

click()[] /

postItem.html — > index.jsp

I ransilion 18

click(uscr_name-" 1 .purchase_quanlity-1)[item _id-- 1] var_cookiel=l

form.jsp — > purchase

Transition 19

click(user_name=2,purchase_quantity=l)[item_id==2] / var_cookie2=l

form jsp — > purchase

Transition 20

clickt uscr_name-0)[ilem_id=-3] ■ var_cookie3=l

form.jsp — purchase

Transition 21

clickOD /
form jsp — > index.jsp

Transition 22

R()fuser.,name- -01 user_namc=l indcfined

purchase — '■ failure 1 .html

Transition 23

R()[item_id=l && purchase_quantity<iteml_quantity] / var_cookiel=0

item l_quantity=item l_quantity-purchase_quantity

purchase_quantity=Undefined item_id=Undefined

purchase — > successl.html

Transition 24

R()[item_id- 1 && purchase_quantity=iteml_quantity] var_cookiel~0

var_global 1-0 purchase_quanlity- Undefineil item_id^L'ndeHmed

purchase — > success 1 .html

Table 3. The transitions in Online Flea Market (Cont.)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transition 25

R0|ilem _id“ 2 && purchase_quantily'-itcm2_quanlityj / var_coohie2-()

item2_quantity-ilem2_quanlity-purchase_quantily

purehase_quantily-Undermed item_id—Undefined

purchase — success I .html

Transition 26

R()[item_id=2 && purchase_quantity=item2_quantity] / var_cookie2=0 var_global2=0

purchase_quantity=Undefined item_id=Undefined

purchase — > successl.html

Transition 27

R()[] ■' uscr_name“I.Undefined it em_id—Undefined purehase._quantity-Undelincd

purchase -—> failurcl.html

Transition 28

clickOQ /

failurel.html — > index.jsp

Transition 29

 .

successl.html — > index.jsp

Transition 30

R()[user_name==0] / user_name=Undefined

adding — > failure2.html

1’ransition 31

R()[ilem_name==l] / \ar_global 1 = 1

iteml_quantity=ilcm_quanlity user_name-l'ndelincd

item. name-Undefined ilem_price-Undeiined ilenijquantily-lJndefined

adding — > suecuss2.html

Transition 32

R()[item_name==2] / var_global2=l

item2_quantity=item_quantity user_name=Undefined

item_name=Undefined item_price=Undefined item_quantity=Undefmed

adding — > success2.html

Table 3. The transitions in Online Flea Market (Cont.)

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I ransition 33

failurc2.html — ■■■ postItem.html

Transition 34

clickOQ /
failure2.html — > index.jsp

I ransition 35

suecess2.html — > postItem.html

Transition 36

click()[] /

success2.html — > index.jsp

Table 3. The transitions in Online Flea Market (Cont.)

From the result, we see that in our approach the models of the navigation behavior of

the web application in the Online Flea Market takes into account global data, cookies,

input data and dynamic web page generation techniques, etc.

The dynamic links may depend on user’s previous navigation (cookie variable), such

as the transition 4 in the Table 3; it may also depend on shared data (global variable),

such as the transition 8 in the Table 3.

7.5 Complexity of Our Approach

The complexity of our approach is determined by the complexity of various phases.

For analyzing the source code of web application to get the corresponding WAD data, the

time complexity is O(n), where n is the number of statements in the source code. There

are p transitions in each WAD data file, and p «= n. The translating tool sequentially

processes the WAD data files to get the related EFSM for this web application (actually

the thread part can be replaced by a piece of sequential codes). The time complexity is

O(k-p), where k is the number of WAD data files.

The following two figures confirm our analysis.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

35

30

25

20

15

10

5

0

I Total Number of
Transitions

3 4 5 6 7 8 9

Total N um ber of S ta te s

10

Figure 7. The relation between states and transitions

Total Processing Time(milliseconds)

45000
40000
35000
30000
25000
20000
15000
10000
5000

0 -K i
1 2 3 4

I Total Processing
Time(milliseconds)

Total Number of States

Figure 8. The total processing time and number of states

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8. Conclusion and Future Work

8.1 Conclusion

In this thesis work, we have presented an approach for automatically generating

session model of navigational behavior of web application in Extended Finite State

Machine (EFSM) [22]. With the availability of the related Web Application Description

(WAD) data files, which conforms to the format of WAD specification, to describe the

functionality of each individual element of the web applications, we can apply the

translating tool we implemented to automatically generate the whole system’s EFSM

session model.

We defined the WAD language in Extended Backus-Naur Form (EBNF) [27] format

for both static and dynamic web page. This WAD language considered not only the

statements in normal programming language, such as sequence structure statement, the

selection structure statement, and the repetition structure statement, but also some

characters in web application, such as link statement, global variable, cookie variable,

input variable and dynamic link. So, it is powerful enough to describe a web application

which includes shared data, cookies and dynamic web page generation techniques in

which we have great interest.

We implemented a translating tool to automatically generate the system’s session

EFSM model from a set of individual WAD data files for a web application. These

individual files conform to the WAD specification we defined. Each of them describes

the functionality of a static web page or a page template, especially the navigation

behavior including shared data, session control, the flow of information between a web

page and the server, the relationship among dynamically web pages and the internal links.

We demonstrated the experiment results for processing a set of WAD data files of the

Online Flea Market example. This web application comprises all the web technology we

are interested in. The experiment results show that the efficiency of our translating tool is

good enough, because the processing is sequential. The acquired EFSM session model

gives out the whole system navigation behavior which considered the factors we

emphasized.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.2 Future Work

In this modeling approach, we still have some limitation, which could be listed as

following:

1. There is a gap between the source codes of a web application and its

corresponding WAD data files. Even though our WAD keeps enough similarity

to web application developing languages such as JSP, ASP, Perl, and it is power

enough to describe a web application, we still need an adaptor to extract the

WAD data from source codes;

2. The approach needs to improve to model the EFSM output more explicitly. Right

now, in our EFSM model, the output of a transition is implicitly expressed with

the name of the target state. To more precisely modeling the output in the EFSM

model, some output variables need to be included in our system probably.

3. This approach needs to be refined to deal with concurrent problem in a web

application. For example, in our Online Flea Market, when two clients purchase

the same item, there is a race for shared data. Our approach cannot model this

case.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reference
[1] Luca de Alfaro. Model checking the World Wide Web, In Proc. of the 13th

International Conference on Computer Aided Verification (CAV’01), pages 77-85, Paris,

France, July 2001.

[2] Anneliese Andrews, Jeff Offutt and Roger Alexander. Testing Web Application by

Modeling with FSMs, to appear, Software SYstems Modeling, Springer, 2004.

http://isse.gmu.edu/facultv/ofut/rsrch/abstracts/webtest.html (last accessed February

2005).

[3] H. Baumeister, N. Koch, and L. Mandel. Towards a UML Extension fo r Hypermedia

Design, In UML 99, LNCS 1723, pages 614-629, 1999.

[4] H.M.A. van Beek and S. Mauw. Automatic Conformance Testing o f Internet

Application. In Proc. of the 3rd International Workshop on Formal Approaches to Testing

of Software (FATES 2003), pages 53-63, Montreal, Canada, October 2003. Also

appeared in LNCS 2931, pages 205-222, 2004.

[5] M. Bichler and S. Nusser. Developing Structured WWW-sites with W3DT, In

Proceedings of the Web Net - World Conference of The Web Society, pages 103-111,

San Francisco, CA, USA, October 16-19, 1996.

[6] Bohm, C., and G. Jacopini. Flow Diagrams, Turing Machines, and Languages with

Only Two Formation Rules, Communications of the ACM, Vol. 9, No. 5, pages 336 -

371, May 1966.

[7] S. Ceri, P. Fratemali and A. Bongi. Web Modeling Language (WebML): a modeling

language fo r designing Web sites, In Computer Networks, Vol. 33, Issue 1-6, pages 137-

157, 2000.

[8] Jessica Chen and S. Chovanec. Towards Specification-Based web Testing, In

NETWORKING 2002 Workshops on web Engineering and Peer-to-Peer Computing,

LNCS 2376, pages 165 - 171, 2002.

[9] Jessica Chen and Xiaoshan Zhao. Formal Models fo r Web Navigations with Session

Control and Browser Cache. Proc. of the International Conference on Formal

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://isse.gmu.edu/facultv/ofut/rsrch/abstracts/webtest.html

Engineering Methods (ICFEM’04), LNCS 3308, pages 46-60, Seattle, U.S.A., November

2004.

[10] Kwang Ting Cheng and A.S. Krishnakumar. Automatic Functional Test Generation

Using the Extended Finite State Machine Model, Annual ACM IEEE Design Automation

Conference archive, Proc. of the 30th International Conference on Design Automation,

pages 86-91, Dallas, Texas, United States, 1993.

[11] J. Conallen. Modeling web Application Architectures with UML, Communications of

the ACM, Vol. 42, No. 10, 1999.

[12] Marcelo Fantinato and Mario Jino. Applying Extended Finite State Machines in

Software Testing o f Interactive Systems, 10th International Workshop, DSV-IS 2003,

Funchal, Madeira Island, Portugal, June 11-13, 2003.

[13] P. Graunke, R. B. Findler, S. Krishnamurthi, and M. Felleisen. Modeling Web

Interactions, In European Symposium on Programming, 2003.

[14] May Haydar, Alexandre Petrenko, and Houari Sahraoui. Formal Verification o f web

Applications Modeled by Communicating Automata, IFIP International Federation for

Information Processing 2004, Lecture Notes m Computer Science, Vol. 3235, pages 115-

132, 2004.

[15] R. Hennicker and N. Koch. A UML-Based Methodology for Hypermedia Design, In

Proc. of the 3rd International Conference on the Unified Modeling Language (UML

2000), LNCS 1939, pages 410-424, 2000.

[16] G. J. Holzmann. Design and Validation o f Protocols, Englewood Cliffs, NJ:

Prentice-Hall, 1990.

[17] G. J. Holzmann. The Spin Model Checker, Primer and Reference Manual, Addison-

Wesley, 2003.

[18] Hyoung Seok Hong, Insup Lee, Oleg Sokolsky and Hasan Ural. A Temporal Logic

Based Theory o f Test Coverage and Generation, Proc. of the 8 th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS 2002), LNCS 2280, pages 327-341, 2002.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[19] N. Koch, H. Baumeister, R. Hennicker, and L. Mandel. Extending UML for

Modeling Navigation and Presentation in Web Applications, In Modeling Web

Applications in the UML Workshop, UML2000, 2000.

[20] Kung, D.C., Chien-Hung Liu and Pei Hsia. An Object-Oriented Web Test Model for

Testing Web Application, Proc. of Quality Software, 2000, pages 111-120, First Asia-

Pacific Conference on Quality Software, Oct. 30-31, 2000.

[21] R. P. Kurshan. Computer-aided Verification o f Coordinating Processes. Princeton,

NJ: Princeton Univ. Press, 1995.

[22] Lee, David and Yannakakis, Mihalis. Principles and Methods o f Testing Finite State

Machines-a Survey, Proc. of the IEEE, Volume: 84, Issue: 8 , pages 1090-1123, August,

1996.

[23] K. R. Leung, L. C. Hui, S. M. Yiu and R. W. Tang. Modeling Web Navigation by

Statechart, In the 24th Annual International Computer Software and Applications

Conference, 2000.

[24] Naim Maloku and Marjeta Frey Pucko. SDL-Based Feasible Test Generation for

Communication Protocols, International Conference on Trends in Communications,

EUROCON'2001, Volume 2, pages 536-539, July 4-7, 2001.

[25] Peter G. Neumann, ACM Committee on Computers and Public Policy, moderator:

The Risk Digest, Forum On Risks To The Public In Computers And Related Systems.

httn://catless.ncl.ac.uk/Risks/ (last accessed February 2005)

[26] OMG. OMG Unified Modeling Language Specification, Version 1.5, March 2003.

[27] Frank G. Pagan. Formal Specification o f Programming Languages. Chapter 1&2,

pages 1-72, Prentice-Hall INC., New Jersey, 1981.

[28] Filippo Ricca and Paolo Tonella. Analysis and Testing o f Web Application, Proc. of

ICSE'2001, International Conference on Software Engineering, pages 25-34, Toronto,

Ontario, Canada, May 12-19, 2001.

[29] Filippo Ricca and Paolo Tonella. Testing Processes o f Web Application, Annuals of

Software Engineering, Vol. 14, Issue 1-4, pages 93-114, December 2002.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[30] E. D. Sciascio, F. M. Donini, M. Mongiello, G. Piscitelli. AnWeb: a System for

Automatic Support to Web Application Verification, In Proc. of the 14th International

Conference on Software Engineering and Knowledge Engineering, 2002.

[31] Sciascio, F. M. Donini, M. Mongiello, G. Piscitelli. Web Applications Design and

Maintenance Using Symbolic Model Checking, In Proc. of IEEE the 7th European

Conference on Software Maintenance and Reengineering (CSMR'03), pages 26-28,

March 2003.

[32] Paolo Tonella and Filippo Ricca. Dynamic Model Extraction and Statistical Analysis

o f Web Applications, Proc. of WSE 2002, International Workshop on Web Site

Evolution, pages 43-52, Montreal, Canada, October 2, 2002.

[33] Xiaoshan Zhao. Model Checking Correct Web Page Navigations with Browser

Behavior, Master Thesis, University of Windsor, September 2004.

[34] Yi Zheng and Man-chi Pong. Using Statecharts to Model hypertext, Proc. of the

ACM conference on Hypertext, pages 242-250, December 1993.

[35] Microsoft web site, http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnpattems/html/DesM V C. asp

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://msdn.microsoft.com/library/default.asp?url=/library/en-

Appendix A Source Code for Our Translating Tool

List the main classes in our translating tool:

/* author: Songtao Chen
date: March 30, 2005
purpose: This is one of my driver classes,

may deal with individual data file or set of data files.
*/
import j avax. swing. *;
import java.io.*;
import j ava.util. *;

public class MyTool2
{

public static void main(String[] args) {
String num_files = JOptionPane.showInputDialog("Enter the number of files want to

process:");
int n = Integer.parselnt(num_files);
for (int j= 0 ; j<n; j++) {

//Date d l= new Date();
//long ddl = dl.getTime();
//System.out.println(dd 1);
int statenum;
File mylnputFile;
String input;
String

state_name[]={"index.jsp","showltem","postItem.html","form.jsp","purchase",
"failurel .html","successl .html","adding","failure2 .html","success2 .html"};

input = JOptionPane.showInputDialog("Enter the input file name:");
mylnputFile = new File(input);
if (!myInputFile.exists()) JOptionPane.showMessageDialog(null,

"The file does not exist.");
String file_num = input.substring(4, input.indexOf("."));
statenum = Integer.parselnt(file_num);

StringBuffer input_word= new StringBuffer();
StringBuffer copy_input= new StringBuffer();
try
{

FileReader InFile = new FileReader(myInputFile);
BufferedReader MyReader = new BufferedReader(InFile);

// BufferedWriter writer = new BufferedWriter(new FileWriter("out.txf'));
input = MyReader.readLine();
while (input != null) // at end of file the line is null

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
input_word. append(input);
input_word.append("\n");
copy_input.append(input);
copy_input.append("\n");
input = MyReader. readLine();

}
MyReader. clo se();

}
catch (FileNotFoundException e)
{

System.out.println("File can not be found");
}
catch (IOException e)
{
System.out.println("File can not be closed");

}

// get the number of statement on the top level, for partition use.
Statements sta = new Statements!);
int numjS = sta.getStatementsNum(input_word);

// get the statements on the top level, place them in the array.
String top_s[]= new String[num_S];
top_s = sta.getStatements(copy_input);

String actions = "";
if (state_name[statenum].indexOf(".html") != - 1){

String s = new String(input_word);
StaticFile.Processing(state_name[statenum], s);

}
else

Blocks.processBlocks(state_name[statenum], to p _ s ,a c tio n s) ;

//Date d2= new Date();
//long dd2 = d2.getTime();
//System.out.println("time cosuming"+ (dd2-ddl)+".");
//System.out.println(dd2);

try{
File myOutputFile = new File("EFSM.txt");
FileWriter OutFile = new FileWriter(myOutputFile);
BufferedWriter w = new BufferedWriter(OutFile);
Vector vT = TransVector.getVector();
for(int k=0; k<vT.size(); k++)

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
Transition t = (Transition)vT.get(k);
w.write(t.toStringl ());
w.newLine();
w. write(t. to String3 ());
w.newLine();
w.write(t.toString2());
w.newLine();
w.newLine();

}
w.close();
}
catch (Exception e)
{
System.out.println("Something wrong here with writing results to the EFSM file.");

}

System.exit(O);
}

}

/* author: Songtao Chen
date: March 30, 2005
purpose: Processing blocks on same level, for recursion use.

*/
import java.util. *;

public class Blocks)

public static void processBlocks(String state_name, String top_s[], String con, String
actions) {

int num_S = top_s.length;
for (int i=0; i<num_S; i++){

// deal with "Actions" in a transition. Actions should be accumulated.
if(top_s[i] .charAt(0)=- A') {

StringTokenizer tokens = new StringTokenizer(top_s[i]);
String no_use = tokens.nextToken();
actions = actions+tokens.nextToken()+"
continue;

}

// deal with "Print a URL"
else if(top_s[i].eharAt(0)=='P') {

String inputs = "click(";
StringTokenizer tokens = new StringTokenizer(top_s[i]);

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

String no_use = tokens.nextToken();
String target = GetTargetName.getName(tokens.nextToken());
while (tokens.hasMoreTokens()){

inputs = inputs + tokens.nextToken() +
}
inputs = inputs.substring(0 , (inputs.length()-l))+

// if the target is a template,
// need to start a thread to check the extra actions which are described in the
// target state.
if (target.indexOf("html") == - 1){

ExtraAction extra = new ExtraAction(target);
extra.start(); // start a thread to check extra actions.

// waiting for this thread dying,
while (true) {

if (extra, isAlive()) continue;
else break;

}

Vector results = TransitionVector.getVector();
for (int k=0 ; k<results.size(); k++) {

Transition tt = (Transition)results.get(k);
String c = tt. condition;
// every extra action found needs to add to actions.

if(con.indexOf(c) !=-1 || inputs.indexOf(c) != -1){
actions = actions + tt. actions;

}
}

results.clear(); // very inportant to clear the elements in the vector;
TransitionVector.setVector(results); //and reset it to Transition Vector.

// because other target state will use the static variable.
}
Transition t = new Transition(state_name, target, con, actions, inputs);
t.display();
Vector trans = TransVector.getVector();
trans. addElement((Obj ect)t);
T rans V ector. setV ector(trans);
continue;

}

// deal with "Redirect to a URL"
else if(top_s[i].charAt(0)=='R') {

String inputs = "R()";
StringTokenizer tokens = new StringTokenizer(top_s[i]);

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

String no_use = tokens.nextToken();
String target = GetTargetName.getName(tokens.nextToken());
Transition t = new Transition(state_name, target, con, actions, inputs);
t.display();
Vector trans = TransVector.getVector();
trans. addElement((Obj ect)t);
T rans V ector. set V ector(trans);
continue;

}

// deal with loop statement
else if(top_s[i].eharAt(0)=='L') {

StringTokenizer tokenLs = new StringTokenizer(top_s[i], "L");
while (tokenLs.hasMoreTokens()){

SingleL.printTran(state_name, tokenLs.nextToken(), con, actions);
}
continue;

}

else if(top_s[i].eharAt(0)==T) {
// this If statement is only "If... Then..." format,
if (top_s[i].indexOf("Else") == -1)

SingleIf.printTran(state_name, top_s[i], con, actions);
else { // this If statement is "If... Then... Else..." format.

String first = top_s[i].substring(0, top_s[i].indexOf("Else"));
SingleIf.printTran(state_name, first, con, actions);
String second = top_s[i].substring(top_s[i].indexOf("Else")+5);

// deal with the blocks in after the "Then".
StringBuffer sec = new StringBuffer(second);

StringBuffer sec_copy = new StringBuffer(second);

Statements sta = new Statements!);
int length_S = sta.getStatementsNum(sec);
String processing!) = new String[length_S];
processing = sta.getStatements(sec_copy);
Blocks.processBlocks(state_name, processing, con, actions);

}
}
else continue;

}
}

}

/* author: Songtao Chen

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

date: March 30, 2005
purpose: process each Loop statement.

"Loop statement" format is: (condition) S(A ...) S(A...)... S(P...)
or (condition) S(A ...) S(A...) ... S(R...)

*/
import java.util.*;

public class SingleL{

public static void printTran(String state_name, String loop, String con, String actions)
{

int first = loop.indexOf("(");
int pair = GetMatchIndex.GetMatch(loop, first);
String condi = con + loop.substring(++first, pair);
String ss = loop.substring(++pair);
StringBuffer sec = new StringBuffer(ss);
StringBuffer sec_copy = new StringBuffer(ss);
Statements sta = new Statements();
int length_S = sta.getStatementsNum(sec);
String processing^ = new String[length_S];
processing = sta.getStatements(sec_copy);
Blocks.processBlocks(state_name, processing, condi, actions);

}
}

/* author: Songtao Chen
date: March 30, 2005
purpose: process each If statement.

"If' format is: If (condition) Then S(A ...) S(A...)... S(P...)
or If (condition) Then S(A ...) S(A...)... S(R...)

*/
import java.util.*;

public class Singlelfj
public static void printTran(String state_name, String if_state, String con, String

actions)
{

int first = if_state.indexOf("(");
int pair = GetMatchIndex.GetMatch(if_state, first);
String condi = con + if_state.substring(++first, pair);
String ss = if_state.substring(++pair);
StringBuffer sec = new StringBuffer(ss);
StringBuffer sec_copy = new StringBuffer(ss);
Statements sta = new Statements();
int length_S = sta.getStatementsNum(sec);

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

String processing^ = new String[length_S];
processing = sta.getStatements(sec_copy);
Blocks.processBlocks(state_name, processing, condi, actions);

}
}

/* author: Songtao Chen
date: March 30, 2005
purpose: This is a thread class for processing the target node

*/

import java.util.*;
import java.io.*;
import javax.swing.*;

public class ExtraAction extends Thread]
public String targetName;

public ExtraAction (String target)]
targetName = target;

}

public void run(){
String filename, input="";
if (targetName.equals("index.jsp"))

filename = "file0.txt";
else if (targetName.equals("showItem"))

filename = "filel.txt";
else if (targetName.equals("form.jsp"))

filename = "file3.txt";
else if (targetName.equals("purchase"))

filename = "file4.txt";
else

filename = "file7.txt";

StringBuffer input_word= new StringBuffer();
StringBuffer copy_input= new StringBuffer]);
File mylnputFile = new File(filename);
if (!mylnputFile.exists])) JOptionPane.showMessageDialog(null,

"The file does not exist.");
try
{

FileReader InFile = new FileReader(myInputFile);
BufferedReader MyReader = new BufferedReader(InFile);
input = MyReader.readLine]);

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

while (input != null) // at the end of a file, the line is null
{

input_word. append(input);
input_word. append("\n");
copy_input. app end(input);
copy_input.append("\n");
input = MyReader. readLine();

}
MyReader. close();

}
catch (FileNotFoundException e)
{

System.out.println("File cannot be found");
}
catch (IOException e)
{
System.out.println("File cannot be closed");

}

// get the number of statement on the top level, for partition use.
Statements sta = new Statements();
int num_S = sta.getStatementsNum(input_word);

// get the statements on the top level, place them in the array.
String top_s[]= new String[num_S];
top_s = sta.getStatements(copy_input);

String
state_name[]={"index.jsp","showltem","postItem.html","form.jsp","purchase",

"failurel .html","successl .html","adding","failure2.html","success2.html"};
String file_num = filename.substring(4, 5);

int statenum = Integer.parselnt(file_num);

Blocksl.processBlocks(state_name[statenum], t o p _ s , "");
}

}

/* author: Songtao Chen
date: March 30, 2005
purpose: the method in this class is invoked by the thread to check the extra actions

the target state.
*/
import java.util.*;

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public class Blocks 1 {

public static void processBlocks(String state_name, String top_s[], String con, String
actions)!

int num_S = top_s.length;

for (int i=0; i<num_S; i++){

// deal with "Actions" in a transition. Actions should be accumulated.
if(top_s[i] .charAt(0)==A') {

StringTokenizer tokens = new StringTokenizer(top_s[i]);
String no_use = tokens.nextToken();
actions = actions+tokens.nextToken()+"
continue;

}

// deal with "Print a URL"
else if(top_s[i].charAt(0)=='P'){

String inputs = "click ";
StringTokenizer tokens = new StringTokenizer(top_s[i]);
String no_use = tokens.nextToken();
String target = GetTargetName.getName(tokens.nextToken());
while (tokens.hasMoreTokens()){

inputs = inputs + tokens.nextToken() +
}
inputs = inputs.substring(0, (inputs.length()-l));

//extra transition here needs to add to TransitionVector.
Transition t = new Transition(state_name, target, con, actions, inputs, 0);
Vector trans = TransitionVector.getVector();
trans. addElement((Obj ect)t);
T ransitionV ector. set V ector(trans);

}

// deal with loop statement
else if(top_s[i].charAt(0)==:'L') {

StringTokenizer tokenLs = new StringTokenizer(top_s[i], "L");
while (tokenLs.hasMoreTokens()){

SingleLl.printTran(state_name, tokenLs.nextToken(), con, actions);
}
continue;

}

else if(top_s[i] .charAt(O)— T) {
// this If statement is only "If... Then..." format,
if (top_s[i].indexOf("Else") == -1)

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SingleIfl.printTran(state_name, top_s[i], con, actions);
else { // this If statement is "If... Then... Else..." format.

String first = top_s[i].substring(0, top_s[i].indexOf("Else"));
Singlelfl .printTran(state_name, first, con, actions);
String second = top_s[i].substring(top_s[i].indexOf("Else")+5);

// deal with the blocks in after the "Then".
StringBuffer sec = new StringBuffer(second);

StringBuffer sec_copy = new StringBuffer(second);

Statements sta = new Statements();
int length_S = sta.getStatementsNum(sec);
String processing[] = new String[length_S];
processing = sta.getStatements(sec_copy);
Blocksl.processBlocks(state_name, processing, con, actions);

}
}
else continue;

}
}

}

/* author: Songtao Chen
date: March 30, 2005
purpose: accumulating transitions in a vector.

the transitions are described in the target state.
*/
import java.util.*;

public class TransitionVector{

private static Vector vec = new Vector();

public static void setVector(Vector v){
vec = v;

}

public static Vector getVector(){
return vec;

}
}

/* author: Songtao Chen
date: March 30, 2005

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

purpose: this is the class for the transition between two states.
*/

public class Transition!
static int count = 0;
int num;
String start;
String end;
String condition;
String actions;
String inputs;

public Transition (String s, String e, String c, String a, String i){
count++;
num = count;
start = s;
end = e;
condition = c;
actions = a;
inputs = i;

}

public Transition (String s, String e, String c, String a, String i, int no_use){
start = s;
end = e;
condition = c;
actions = a;
inputs = i;

}

public void display() {
String temp = "Transition "+ num + "\n"+start+" — > "+end;
System.out.println(temp);
temp = inputs + "["+condition+"] / "Tactions;
System.out.println(temp+"\n");

}

public String toStringl(){
return "Transition "+ num;

}
public String toString2(){

return start+" — > "Tend;
}
public String toString3(){

return inputs + "["+condition+"] / "Tactions ;
}

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

/* author: Songtao Chen
date: March 30, 2005
purpose: process the WAD data file for a static web page.

*/

import j ava.util. *;

public class StaticFile{

public static void Processing(String state_name, String st) {

StringTokenizer tokens = new StringTokenizer(st, "DL");
String no_use = tokens.nextToken();
while (tokens.hasMoreTokens()){

String t = tokens.nextToken();
DynamicLink.Processing(state_name, t);

}
}

}

/* author: Songtao Chen
date: March 30,2005
purpose: process each Dynamic Link in a static web page.

*/
import j ava.util. *;

public class DynamicLink{

public static void Processing(String start, String st) {

StringTokenizer tokens = new StringTokenizer(st);
String target = GetTargetName.getName(tokens.nextToken());
String in = "click(";
while (tokens.hasMoreTokens())

in = in + tokens.nextToken()+",";
in = in.substring(0, (in.length()-l))+")";
Transition t = new Transition(start, t a r g e t , i n) ;
t.display();
Vector trans = TransVector.getVector();
trans.addElement((Object)t);
T rans V ector. setV ector(trans);

}
}

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B WAD Data Files for Online Flea Market

Data file name: file0.txt
T /fleamarket/index.jsp:

S(P /fleamarket/showltem)
S(P /fleamarket/postltem.html)
S(L (var_cookiel==l) S(P /fleamarket/form.jsp item _id=l)

L (var_cookie2==l) S(P /fleamarket/form.jsp item_id==2)
L (var_cookie3==l) S(P /fleamarket/form.jsp item_id==3)
L (var_cookie4==l) S(P /fleamarket/form.jsp item_id==4)
L (var_cookie5==l) S(P /fleamarket/form.jsp item_id==5)
)

Data file name: filel.txt
T /fleamarket/showltem:

S(L (var_globall==l) S(P /fleamarket/form.jsp item_id==l)
L (var_global2==l) S(P /fleamarket/form.jsp item_id==2)
L (var_global3==l) S(P /fleamarket/form.jsp item_id==3)
L (var_global4==l) S(P /fleamarket/form.jsp item_id==4)
L (var_global5==l) S(P /fleamarket/form.jsp item_id==5)
)

S(P /fleamarket/index.jsp)

Data file name: file2.txt
SW /fleamarket/postltem.html:

D /fleamarket/adding user_name=l item_name=2
item_price=03 item_quantity=2

D /fleamarket/adding user_name=2 item_name=l
item_price=01 item_quantity= 1

D /fleamarket/adding user_name=0
L /fleamarket/index.jsp

Data file name: file3.txt
T /fleamarket/form.jsp:

S(L (item_id== 1) S(A var_cookie 1=1)
S(P /fleamarket/purchase user_name=l purchase_quantity=l)

L (item_id==2) S(A var_cookie2=l)
S(P /fleamarket/purchase user_name=2 purchase_quantity=l)

L (item_id==3) S(A var_cookie3=l)
S(P /fleamarket/purchase user_name=0)

)
S(P /fleamarket/index.jsp)

Data file name: file4.txt
T /fleamarket/purchase:

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S(If (user_name==0) Then S(A user_name=Undefined) S(R
/fleamarket/failurel .html)

Else S(L (item_id=l && purchase_quantity<iteml_quantity)
S(A var_cookiel=0)
S(A iteml_quantity=:iteml_quantity-purchase_quantity)
S(A purchase_quantity=Undefined)
S(A item_id=Undefined)
S(R /fleamarket/successl .html)

L (item_id=l && purchase_quantity=iteml_quantity)
S(A var_eookiel=0)
S(A var global 1=0)
S(A purchase_quantity=Undefined)
S(A item_id=Undefined)
S(R /fleamarket/successl .html)

L (item_id=2 && purchase_quantity<item2_quantity)
S(A var_cookie2=0)
S (A item2_quantity=item2_quantity-purchase_quantity)
S(A purchase_quantity=Undefined)
S(A item_id=Undefined)
S(R /fleamarket/successl.html)

L (item_id=2 && purchase_quantity=item2_quantity)
S(A var_cookie2=0)
S(A var_global2=0)
S(A purchase_quantity=Undefined)
S(A item_id=Undefined)
S(R /fleamarket/successl .html)

)
S(A user_name=Undefined)
S(A item_id=Undefined)
S(A purchase_quantity=Undefined)
S(R /fleamarket/failurel .html)

)

Data file name: file5.txt
SW /fleamarket/failurel.html:

D /fleamarket/index.jsp

Data file name: file6.txt
SW /fleamarket/successl.html:

D /fleamarket/index.jsp

Data file name: file7.txt
T /fleamarket/adding:

S(If (user_name==0) Then S(A user_name=Undefmed) S(R /fleamarket/failure2.html)
Else S(L (item_name==l) S(A var globall=l)

S(A iteml_quantity=item_quantity)

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S(A user_name=Undefined)
S(A item__name==Undefined)
S(A item_price=Undefined)
S(A item_quantity=Undefined)
S(R /fleamarket/success2.html)

L (item_name==2) S(A var_global2=l)
S(A item2_quantity=item_quantity)
S(A user_name=Undefined)
S(A item_name=Undefined)
S(A item_price=Undefined)
S(A item_q uantity= U ndefin ed)
S(R /fleamarket/success2.html)

)
)

Data file name: file8.txt
SW /fleamarket/failure2.html:

L /fleamarket/postltem.html
D /fleamarket/index.jsp

Data file name: file9.txt
SW /fleamarket/success2.html:

L /fleamarket/postltem.html
D /fleamarket/index.jsp

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C Rules in Web Application Description (WAD)

Rules for Global variable, Cookies variable, Input variables:

1. '■■variables"- ::= !•■- varDef -} ‘

2. -varDef-" ::= '"varName" <varType> [<varValue>|

3. <\arName> *■ Letter-" p Alphanum - 1 _ } ‘

4. Letter> a | b | c | d | c | f | g | h | i | j | k | l | m

| n | o | p | q | r | s 111 u | v | w | x | v | /

5. <Alphanum ■ -Letter-" j -Digit--

6. " Digit> 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

7. ■■varType - :: - Global | Input | Cookie

8. ■- varValue> :: - f- Digit -j | Undefined

Rules for static web page, dynamic link:

9 '■ Statie\VebPage> : ~ SW- URI >: I. {<URL'-[!<DynamicWebPageLink>!

10. <URL> ::~ (- Letter" ! /) 1-Alphanum" j ■■ .. J

11. -DynamicWebPageLink'- D <IJRL■>)<varName> {= -• varValue>j \ '

Rules for dynamic web page template:

12. '■■'.Template'' T '-U RL>: !-B lo e k > l 1

13. - - B l o e k - - S (-•-'■Assignmenl_Statemcnl>

■ Link_Statem ent ■

, <Seleetion_Bloek "

1 •:'Loop_B lock>)

14. <A ssignm enl_Statem ent - A (<V ariable> - '-E xpression -)

15. < Link_Statem ent - :: P - URL ’ J<varNam e> --varValue"-!

. R - U R L > !< v a r\a m e> - <varV alue>! ’

16. ''S eleetion_B lock ■• ::= If ̂ 'C ondition"-Then | *'Bloek~' ! [Else b B lock-!

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17. -■ Loop_Block> ! L - Condition > -'Block--) 1

18. --Condition ' ::= •' Expression-- --Relation-' --Expression-

19. - Expression> :: - (<Expression-> (+ | - | * | /) --Expression'-) (--'Element'')

20. - - .E le m en t- - - 'v a rK a m e : -1 --varValue->

2 1. - Relation ■ > | == | c | >= | <= | And | Or

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D Source Code for Online Flea Market Example
List the main file of Online Flea Market:

0. index.jsp:

<%@ page import="java.io.* " %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
<head>

<title>index.j sp</title>
<body>
<hl>my web application</hl>
List for available items

Posting item for sale

<% Cookie cookies[] = request.getCookies();
if (cookies != null) {

Cookie cookie;
for (int j=0; j<(cookies.length-l); j++) {

out.println("you interested item :");
cookie = cookies [j];
String name = cookie. getName();
String id = cookie.getValue();

out.println("<ahref=\"http://137.207.234.190:8080/thesisPro/form.jsp?id="+id+ "
\"> " +name+"");

out.println("
");

}
}

%>
</body>
</html>

1. showItem.java:

import j ava.util. *;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class showltem extends HttpServlet

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://137.207.234.190:8080/thesisPro/form.jsp?id=%22+id+

{
public void doGet(HttpServletRequest req, HttpServletResponse resp) throws

ServletException, IOException
{
resp. setContentT ype("text/html");
PrintWriter out = resp.getWriter();
Vector linkltems = new Vector();
item it = new item();
linkltems = it.searchltems();

out.println("<body>\n"+"<hl>songtao's ugly web application</hl>");
for (int j=0; j<linkltems.size(); j++)
{ item ii = (item)linkltems.get(j);

String id = ii.getltemld()+"";
String Na = ii.getItemName();
out.println("<ahref=\"http://137.207.234.190:8080/thesisPro/form.jsp?id="+id+ "

\"> " + Na + "");
out.println("
");

}
out.println("Back to

homepage");
}

}

2. postItem.html:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
<head>

<title>PostingItemForm.jsp</title>
</head>
<body>

<form name="chen" action="/thesisPro/servlet/adding">
<p align=left>filling out the following form to post your item :</p>
<center>Enter your Id: <input type=text name="userID" size=25>

Enter your Password: <input type=password name="passwd" size=20>

Enter item name: <input type=text name="name" size=20>

Enter item value: <input type=text name="Bid" size=l 5 >

<input type=submit name="Submit" value="Submit">
<input type=Reset name="Reset" value="Reset"> </center>

</form>

Back to homepage

<body>

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://137.207.234.190:8080/thesisPro/form.jsp?id=%22+id+
http://l

</html>

3. form.jsp:

<%@ page import-'java.util.*" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
<head>

<title>Form.jsp</title>
<script type="text/javascript">
< ! —

function Validate()
{
if (document.chen.userID .value == "")

{
alert("Your must enter your ID.");
return (false);

}
else if (document, chen.passwd.value = "")

{
alert("Your must enter the quantity.");
return (false);

}
else if (document.chen.Bid.value == "")

{
alert("Your must enter your bidding value.");
return (false);

}
else return (true);
}

//-->
</script>
</head>

<body>
<p align=left>You are interested in this item:</p>

<% String idS = request.getParameter("id");
int idl = Integer.parselnt(idS);
item it = new item();
it = it.selectltem(idl);
Cookie coo = new Cookie("SessionCoo"+idS, idS);

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

response.addCookie(coo); %>

<p>Item name is: <%= it.getItemName() %>

Item initial value is: <%= it.getltemlni() %> </br>
Item current value is: <i ID="current"><%= it.getItemCur() %></i> </p>
Number of bid is: <%= it.getNumofbid() %>

<form name="chen" action="/thesisPro/servlet/purchase"

onSubmit="retum(V alidate())">
<p align=left>fill out the following form for purchasing this item :</p>
<center>Enter your Id: <input type=text name="userID" size=25>

Enter your Password: <input type=text name="passwd" size=20>

Enter your quantity: <input type=text name="Bid" size=15 >

<input type=submit name="Submit" value="Submit">
<input type=hidden name="id" value="<%= idS %>"> </center>

</form>

back to homepage

<body>

</html>

4. purchase.java:

import java.io.*;
import j avax. servlet. *;
import javax.servlet.http.*;

public class purchase extends HttpServlet
{

public void doGet(HttpServletRequest req, HttpServletResponse resp) throws
ServletException,IOException

{
resp. setContentType("text/html");
String user = req.getParameter("userID");
String pass = req.getParameter("passwd");
USERS use = new USERS();
use.setID(user);

if (! use.isValid(pass)) resp.sendRedirect("/thesisPro/failure 1 .html");
else {

item it = new item();
int idnum = Integer.parseInt(req.getParameter("id"));
int yourbid = Integer.parseInt(req.getParameter("Bid"));

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if(it.updateltem(idnum, yourbid))
{

Cookie cookies[] = req.getCookies();
Cookie cookie;
for (int j=0; j<(cookies.length-l); j++)

{
cookie = cookies [j];
String temp = "SessionCoo"+idnum;
if ((cookie.getName()).equals(temp))
{

cookie. setMaxAge(O);
break;

}
}

resp.sendRedirect("/thesisPro/successl.html");
}

else resp.sendRedirect(7thesisPro/failurel .html");
}

}

public void doPost(HttpServletRequest req, HttpServletResponse resp) throws
ServletException,IOException

{
doGet(req, resp);

}
}

5. failurel.html

back to the item list

back to homepage

6. successl.html

good, success.
back to homepage

7. adding.java:

import java.io.*;

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

import j avax. servlet. *;
import javax.servlet.http.*;

public class adding extends HttpServlet
{

public void doGet(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException

{
resp.setContentType("text/html");
String user = req.getParameter("userID");
String pass = req.getParameter("passwd");
USERS use = new USERSO;
use.setID(user);
PrintWriter out = resp.getWriter();

if (! use.isValid(pass)) resp.sendRedirect("/thesisPro/invalidUserl.html");
else{

item it = new item();
String itname = req.getParameter("name");
int inibid = Integer.parseInt(req.getParameter("Bid"));

if(it.addltem(itname, inibid))
resp.sendRedirect("/thesisPro/success.html");

else resp.sendRedirect("/thesisPro/failurel .html");
}

}

public void doPost(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException

{
doGet(req, resp);

}
}

item.java:

import java.sql.*;
import java.util.*;

public class item
{

private int id;
private String name;
private int inivalue;

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

private int curvalue;
private int numofbid;

public void setltemld(int ii) { this.id = ii; }

public int getltemld() { return id; }

public void setItemName(String Name) { this.name = Name; }

public String getItemName() { return name; }

public void setltemlni(int iii) { this.inivalue = iii; }

public int getltemlni() { return inivalue; }

public void setItemCur(int iiii) { this.curvalue = iiii;}

public int getItemCur() { return curvalue ; }

public void setNumofbid(int iiiii) { this.numofbid = iiiii;}

public int getNumofbid() { return numofbid ; }

public Vector searchltems()
{

Vector linkltems = new Vector();
try{

Connection con = dbUtils.getConnect();
System.out.println("GoodB");
java.sql.Statement stat = null;
stat = con.createStatement();

String query = "select * from items order by id";
ResultSet rs = stat.executeQuery(query);

while (rs.next()) {
item it = new item();

it. setltemld(rs. getlnt(1));
it.setItemName(rs.getString(2));
it.setltemlni(rs.getlnt(3));
it. setItemCur(rs. getlnt(4));
it. setNumofbid(rs. getlnt(5));

linkltems. addElement(it);
}

rs.close();
stat.close();
con.close();

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
catch(SQLException e) { return null; }

return linkltems ;
}

public item selectltem(int num) //select a item with the id.
{

item itl = new item();
try { Connection con = dbUtils.getConnect();

Statement state=con.createStatement();

String queryl = "select * from items where id="+num ;
ResultSet rsl = state.executeQuery(queryl);
while (rsl.nextO) {

if(rsl.getlnt(l) = num)
{

itl .setltemld(rs 1 ,getlnt(1));
itl .setItemName(rsl .getString(2));
itl .setltemlni(rs 1 .getlnt(3));
itl .setItemCur(rsl .getlnt(4));
it 1. setNumofbid(rs 1. getlnt(5));

}
}

rsl.close();
state. close();
con.close();

} catch(SQLException g) { System.out.println(g.getMessage());
return itl; }

return itl ;
}

public synchronized boolean addItem(String name, int ini)
{

try{ Connection con=dbUtils.getConnect();
Statement state = con.createStatement();

String queryl = "select max(id) maxid from items";
ResultSet rs = state.executeQuery(queryl);
int num = 1;
if (rs.next()) { num = rs.getlnt("maxid");

num ++;}

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

String insert-'insert into items values " ;
String in = "("+num+",'"+name+"',''+ini+","+ini+",0)";
state. execute(insert+in);

rs.close();
state.close();
con.close();

}
catch (SQLException e) { return false ;}

return true

USERS.java

import java.sql.*;

public class USERS
{

protected String Nam e-'";
protected String ID -" ';
protected String Address="";
protected String Phone-"';

public void setID(String id) { this.ID = id ; }

public boolean isValid(String pass)
{

String password-'";
Statement stmt = null;

try{ Connection con = dbUtils.getConnect();
stmt = con.createStatement();
String query - "SELECT PASSWORD FROM USERS WHERE ID

='"+ID+"'";
ResultSet results = stmtexecuteQuery(query);

while(results.next())
{

password= results.getString(l);
}

stmt.close();
con.closeQ;

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
catch (SQLException e) { return false; }

if (pass.equals(password))
return true;

else return false;
}

}

dbUtils.java

import java.sql.*;

public class dbUtils
{

public static Connection getConnect()
{

Connection con;

try { Class.forName("oracle.jdbc.driver.OracleDriver");
String url = "jdbc:oracle:thin:@goedel.newcs.uwindsor.ca:1521 :CS01
con = DriverManager.getConnection(url, "chenl2j", "chenl2j");

}

catch (ClassNotFoundException f) { return null ; }
catch (SQLException e)

{ System.out.println(e.getMessage());
return null ; }

return con;
}

}

8. failure2.html

posting item again

back to homepage

9. success2.html

back to homepage
 Post item again.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita Auctoris

Name:

Place of Birth:

Year of Birth:

Education:

Songtao Chen

Fuzhou, Fujian, P.R.China

1964

University of Windsor, Windsor, Ontario, Canada

2001-2005 M.Sc. in Computer Science

Zhejiang University, Flangzhou, P.R.China

1986-1989 M.Eng. in Engineering Thermophysics

Tsinghua University, Beijing, P.R.China

1981 -1986 B.Eng. in Thermal Energy Engineering

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Session models of navigational behavior of Web applications in EFSM.
	Recommended Citation

	tmp.1618933257.pdf.pajJ0

