
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2004

Dueling CSP representations: Local search in the primal versus Dueling CSP representations: Local search in the primal versus

dual constraint graph. dual constraint graph.

Mingyan Huang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Huang, Mingyan, "Dueling CSP representations: Local search in the primal versus dual constraint graph."
(2004). Electronic Theses and Dissertations. 1787.
https://scholar.uwindsor.ca/etd/1787

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1787&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1787?utm_source=scholar.uwindsor.ca%2Fetd%2F1787&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Dueling CSP Representations: Local Search in the

Primal versus Dual Constraint Graph

by

Mingyan Huang

A Thesis
Submitted to the Faculty of Graduate Studies and Research

Through the School of Computer Science
In Partial Fulfillment o f the Requirements for

The Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2004

©2004 Mingyan Huang

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

1 ^ 1
National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque nationals
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-92447-5
Our file Notre reference
ISBN: 0-612-92447-5

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de ce manuscrit.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
dissertation.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Abstract

Constraint Satisfaction Problems (CSPs) can be used to represent and solve many

problems in Artificial Intelligence and the real world. When solving Constraint

Satisfaction Problems, many o f the methods developed and studied have focused only

on the solution o f binary CSPs while a large portion o f real life problems are naturally

modeled as non-binary CSPs. In this thesis we have designed an empirical study to

investigate the behaviour o f several local search methods in primal and dual constraint

graph representations when solving non-binary CSPs. Local search methods tend to

find a solution quickly since they generally give up the guarantee o f completeness for

polynomial time performance. Such local search methods include simple hill-climbing,

steepest ascent hill-climbing and min-conflicts heuristics hill-climbing. We evaluate

the performance o f these three algorithms in each representation for a variety o f

parameter settings and we compare the search time cost means o f two groups to

support the comparison.

Our comparison shows that we can use local search to solve a CSP with tight

constraints in its dual representation and gain a better performance than using it in its

primal representation. When constraints are getting looser, using local search in

primal representation is a better choice. Among the three local search methods used in

our empirical study, min-conflicts heuristics hill-climbing always gain the best

performance while steepest ascent hill-climbing tends to have the worst performance

and simple hill climbing is in the middle or sometimes it is the best.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Acknowledgements

The first person I would like to thank is my supervisor Dr. Scott Goodwin, an

energetic and hardworking professor with sense o f humor. He not only spent

countless hours o f discussion with me and provided immediate comments, but also

gave me guidelines for any o f my ideas, even the most immature ones.

I also extend my appreciation to the members o f my committee - Dr. S. Ejaz Ahmed

and Dr. J. Morrissey, not only for their spending precious time to read through my

drafts, but also for their advice and guidance in writing this thesis.

Thanks are also due to Dr. M. Hlynka from Department o f M athematics and Statistics,

University o f Windsor. He gave me a valuable tutorial in specific field o f statistical

analysis.

I would also like to thank my fellow students Lucy, Eric and Bob for their help and

useful comments during my research. I am grateful for the support and

encouragement from my family during my graduate study period in University o f

Windsor.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Table of Contents

Abstract ...iii

Acknowledgements .. iv

List of Figures .. viii

List of Tables ... xi

Chapter 1 Introduction... 1

1.1 Statement of the Problem...1

1.2 Motivation.. 3

1.3 Outline ... 4

Chapter 2 Background.. 5

2.1 Constraint Satisfaction Problems (CSPs)... 5

2.2 Binary CSPs and Non-Binary CSPs..9

2.3 Transform Non-Binary CSP into Binary CSP.. 11

2.3.1 Dual Graph Method... 12

2.3.2 Hidden Variable Method...15

2.4 Search ...18

2.4.1 Systematic Search.. 18

2.4.2 Local Search.. 23

2.5 Conclusions..26

C hapters Local Search in Primal and Dual Constraint G raphs..27

3.1 Local Search Algorithms...27

3.1.1 General Local Search Strategy... 27

3.1.2 Simple Hill-climbing Algorithm... 28

3.1.3 Simple Hill-climbing Flowchart... 29

V

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

3.1.4 Simple Hill-climbing Example... 31

3.1.5 Steepest Ascent Hill-climbing.. 31

3.1.6 Steepest Ascent Hill-climbing Flowchart...33

3.1.7 Steepest Ascent Hill-climbing Example...33

3.1.8 Min-conflicts Heuristics Hill-climbing...36

3.1.9 Min-conflicts Heuristics Flowchart.. 36

3.1.10 Min-conflicts Heuristics Example.. 37

3.2 Local Search in Primal and Dual Constraint Graphs..40

3.3 Empirical Study Design... 42

3.3.1 Empirical Study Input Design... 42

3.3.2 Empirical Study Output Design.. 44

3.3.3 Empirical Study Comparisons.. 46

3.4 Conclusions..49

Chapter 4 Experiment Result and Analysis...50

4.1 Experiment Results and Analysis on Class 1.. 52

4.1.1 Simple Hill-climbing on Class I ... 52

4.1.2 Steepest Ascent Hill-climbing on Class 1 ...55

4.1.3 Min-conflicts Heuristics Hill-climbing on Class 1................................. 57

4.1.4 Comparisons among Different Hill-climbing algorithms on Class I59

4.2 Experiment Results and Analysis on Class II... 61

4.2.1 Simple Hill-climbing on Class II.. 61

4.2.2 Steepest Aseent Hill-climbing on Class II ..63

4.2.3 Min-conflicts Heuristics Hill-climbing on Class I I 65

4.2.4 Comparisons among Different Hill-climbing algorithms on Class II...67

4.3 Experiment Results and Analysis on Class I I I ... 69

4.3.1 Simple Hill-climbing on Class III... 69

4.3.2 Steepest Ascent Hill-climbing on Class III...72

4.3.3 Min-conflicts Heuristics Hill-climbing on Class III 74

4.3.4 Comparisons among Different Hill-climbing algorithms on Class I II . 76

4.4 Conclusions.. 77

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 5 Conclusions... 79

5.1 Future Work..80

Appendix A T-test.. 81

Bibliography..87

Vita Auctoris ..101

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

List of Figures

Figure 2.1 Map coloring problem - a binary CSP ... 7

Figure 2.2 An example of non-binary CSPs and its hypergraph.. 10

Figure 2.3.1 Primal and dual representations of a non-binary CSP P I15

Figure 2.3.2 An example of hidden variable representation for a non-binary CSP.................. 17

Figure 2.4.1.1 Control of backtracking algorithm .. 20

Figure 2.4.1.2 Backtracking algorithm (BT) ...21

Figure 2.4 Possible problems with Hill-climbing algorithms..25

Figure 3.1.1 General local search algorithm...28

Figure 3.1.2 Simple Hill-climbing algorithm...29

Figure 3.1.3 Simple Hill-climbing flowchart ..30

Figure 3.1.4.1 An example of a binary CSP...31

Figure 3.1.4.2 Search tree of Simple Hill-climbing in primal representation...........................32

Figure 3.1.5 Steepest Ascent Hill-climbing algorithm.. 33

Figure 3.1.6 Steepest Ascent Hill-climbing flowchart... 34

Figure 3.1.7 Search tree of Steepest Ascent Hill-climbing in primal representation............... 35

Figure 3.1.8 Min-conflicts Heuristics Hill-climbing algorithm...37

Figure 3.1.9 Min-conflicts Heuristics Hill-climbing flowchart...38

Figure 3.1.10.1 Search tree of Min-conflicts Heuristics Hill-climbing

in primal representation..39

Figure 3.1.10.2 Different search tree of Min-conflicts Heuristics Hill-climbing

in the same primal representation.. 40

Figure 3.3.3.1 Move cost of Steepest Ascent Hill-climbing..47

Figure 3.3.3.2 Move cost ratio for local search..48

Vlll

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Figure 4.1.1.1 Comparison of Tm Mean of Simple Hill-climbing on Class I54

Figure 4.1.2.1 Comparison of Tm Mean of Steepest Ascent Hill-climbing

on Class I ...56

Figure 4.1.3.1 Comparison of Tm Mean of Min-conflicts Heuristics Hill-climbing

on Class I ...58

Figure 4.1.4.1 Comparisons of Tm Means for LPsim, LPstp, LPmc, LDsim, LDstp and

LDmc on Class 1 ... 59

Figure 4.1.4.2 Comparisons ofNc for LPsim, LPstp and LPmc on Class I60

Figure 4.1.4.3 Comparisons of Nc for LDsim, LDstp and LDmc on Class I60

Figure 4.2.1.1 Comparison of Tm Mean of Simple Hill-climbing on Class I I62

Figure 4.2.2.1 Comparison of Tm Mean of Steepest Ascent Hill-climbing

on Class I I ..64

Figure 4.2.3.1 Comparison of Tm Mean of Min-conflicts Heuristics Hill-climbing

on Class I I ..6 6

Figure 4.2.4.1 Comparisons of Tm Means for LPsim, LPstp, LPmc, LDsim, LDstp and

LDmc on Class II.. 6 8

Figure 4.2.4.2 Comparisons of Nc for LPsim, LPstp and LPmc on Class I I 6 8

Figure 4.2.4.3 Comparisons of Nc for LDsim, LDstp and LDmc on Class II69

Figure 4.3.1.1 Comparison of Tm Mean of Simple Hill-climbing on Class III........................71

Figure 4.3.2.1 Comparison of Tm Mean of Steepest Ascent Hill-climbing

on Class III...73

Figure 4.3.3.1 Comparison of Tm Mean of Min-conflicts Heuristics Hill-climbing

on Class III...75

Figure 4.3.4.1 Comparisons of Tm Means for LPsim, LPstp, LPmc, LDsim, LDstp and

LDmc on Class III... 76

Figure 4.3.4.2 Comparisons ofNc for LPsim, LPstp and LPme on Class III...........................77

Figure 4.3.4.3 Comparisons ofNc for LDsim, LDstp and LDmc on Class III..........................77

Figure Appendix l T-test formula when variances are unequal ..83

Figure Appendix_2 Formula for the standard error of the difference between the means

when variances are unequal..83

IX

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Figure Appendix S Formula o f confidence interval at a 95% confidence level........................ 86

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

List of Tables

Table 4.1.1.1 Time cost of Simple Hill-climbing on Class 1 ... 53

Table 4.1.1.2 Rn, Nd and Cc of Simple Hill-climbing on Class 1 ...54

Table 4.1.2.1 Time cost of Steepest Ascent Hill-climbing on Class 1.......................................55

Table 4.1.2.2 Rn, Nd and Cc of Steepest Ascent Hill-climbing on Class 1 55

Table 4.1.3.1 Time cost of Min-conflicts Heuristics Hill-climbing on Class I57

Table 4.1.3.2 Rn, Nd and Cc of Min-conflicts Heuristics Hill-climbing on Class I 58

Table 4.2.1.1 Time cost of Simple Hill-climbing on Class II..61

Table 4.2.1.2 Rn, Nd and Cc of Simple Hill-climbing on Class II ..62

Table 4.2.2.1 Time cost of Steepest Ascent Hill-climbing on Class II..................................... 64

Table 4.2.2.2 Rn, Nd and Cc of Steepest Ascent Hill-climbing on Class II 65

Table 4.2.3.1 Time cost of Min-conflicts Heuristics Hill-climbing on Class II6 6

Table 4.2.3.2 Rn, Nd and Cc of Min-conflicts Heuristics Hill-climbing on Class II 67

Table 4.3.1.1 Time cost of Simple Hill-climbing on Class III...70

Table 4.3.1.2 Rn, Nd and Cc of Simple Hill-climbing on Class III...71

Table 4.3.2.1 Time cost of Steepest Ascent Hill-climbing on Class III.................................... 72

Table 4.3.2.2 Rn, Nd and Cc of Steepest Ascent Hill-climbing on Class III............................73

Table 4.3.3.1 Time cost of Min-conflicts Heuristics Hill-climbing on Class III74

Table 4.3.3.2 Rn, Nd and Cc of Min-conflicts Heuristics Hill-climbing on Class III............. 75

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 1

Introduction

Many problems in Artificial Intelligence (AT) and other areas o f computer science can

be viewed as special cases o f Constraint Satisfaction Problems (CSPs) [Nad90]. CSPs

are worth studying in isolation because they are general problems which have unique

features that can be exploited to arrive at solutions [Tsa93], These unique features

make CSPs one o f the most powerful mechanisms for representing complex

relationships in real life problems and AI problems such as computer vision, temporal

reasoning and resource allocation in solving AI planning and scheduling problems.

1.1 Statement of the Problem

Basically, a CSP is a problem composed o f a finite set o f variables, each o f which is

associated with a finite domain, and a set o f constraints that restricts the values that the

variables can simultaneously take [Tsa93]. There are three factors in a constraint

satisfaction problem: variables, a domain for each variable and constraints among these

variables. The goal is to find one assignment, all assignments, or the best assignment

o f values to the variables from their associated domains such that the assignment

satisfies all the constraints. Finding the best assignment falls into another category

which is called constraint optimization problem (COP) and it is not discussed in this

thesis.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Solutions for CSPs can be found by systematic search methods or by local search

methods which use randomness to aid in the search [NagOl]. Systematic methods

generally search the space o f partial solutions by generating consistent assignments to

variables with values from their domains and then extending these partial solutions to

full solutions one variable at a time. Systematic methods such as chronological

backtracking and forward checking are complete search methods which can find all

solutions. Local search methods investigate the space o f all complete assignments o f

values to variables for consistent assignments. Local search methods are generally

incomplete search methods which aim to find one solution, but may fail to find any

solution even if one exists.

A constraint satisfaction problem can be represented as a constraint graph. Algorithms

for solving CSPs exploit the search space according to the structure o f the constraint

graph. Generally, there are two ways o f presenting CSPs in a constraint graph. One is

the primal constraint graph and the other is the dual constraint graph. A primal

constraint graph directly reflects the original constraint satisfaction problem

framework while a dual constraint graph is a structural transformation o f the primal

representation o f the given CSP. The dual constraint graph is an equivalent

representation o f the primal constraint graph where the primal constraints are the dual

variables, and the dual constraints are compatibility constraints on the primal

variables shared between the primal constraints.

CSPs can be binary or non-binary. A binary CSP is a CSP with unary and binary

constraints only. A non-binary CSP is a CSP with constraints not limited to unary and

binary constraints. A non-binary constraint involves at least three variables. Local

search methods have been used frequently to solve binary CSPs represented as primal

constraint graphs. It is possible to use local search to solve binary and non-binary

CSPs in their dual representation. In this thesis we are going to solve binary and

non-binary CSPs represented as a primal constraint graph or dual constraint graph by

using different local search methods and compare their performance. The question we

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

are interested in is whether and under what circumstances one representation may be

preferred to the other.

1.2 Motivation

When solving Constraint Satisfaction Problems, many o f the methods developed and

studied have focussed only on the resolution o f binary CSPs which are limited to

constraints involving at most two variables. The justification for this is the fact that any

non-binary CSP can be translated into an equivalent binary CSP. [RPD90]. Although

binary representation and non-binary representation are equivalent terms o f solutions,

the latter specifies the CSP in a more natural way. As well, the non-binary CSP

constraint graph may contain structural information that can be exploited to make the

search process more efficient. With the help o f dual constraint graph a lot o f existing

binary constraint satisfaction algorithms can directly handle non-binary CSPs since

the dual representation has a binary structure.

Many real life problems require a solution (not all solutions) to be found quickly. In

many situations, a timely response by a CSP solver is crucial. A CSP solver may

spend days or years solving some special kinds o f CSPs on conventional hardware by

using systematic search methods such as backtracking and forwardchecking [Tsa93].

For example, in scheduling transportation airplanes, in a freight airport terminal, one

may be allowed very limited time to schedule a lot o f airplanes and delays could lead

to extremely high cost. In the Hubble Space Telescope scheduling problem [MPJL93],

ten o f thousands o f astronomical observations per year must be scheduled and thus a

timely response by a scheduling system is required. In some applications such as

allocating resources to emergency rescue teams, solutions should be found in a

limited time, otherwise they are useless if they are found too late [Tsa93]. In these

cases local search could be useful. Local search methods generally give up the

guarantee o f completeness for polynomial time performance [NagOI].

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

1.3 Outline

The remainder o f this thesis is organized as follows: Chapter 2 gives some

background related to CSP structure and techniques for solving CSPs. Chapter 3

discusses the use o f local search methods to solve a CSP in its dual representation

versus in its primal representation and give the empirical study design structure.

Chapter 4 gives the experiment results according to the approach presented in Chapter

3. Chapter 5 is the conclusion.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 2

Background

CSPs can be used to represent and solve many problems in AI and the real world.

Constraint satisfaction is a term which covers a wide range o f methods to solve these

problems stated in the form o f a set o f constraints. In this chapter we will introduce

related CSP definitions and search methods.

2.1 Constraint Satisfaction Problems (CSPs)

A constraint satisfaction problem gives a model which describes some requirements

for a finite number o f variables by using constraints. The set o f possible values which

is called the domain for each variable is finite. Here we give a formal definition o f

CSP.

Definition 2.1 A constraint satisfaction problem (CSP) is a tuple P(V,D,C) whose

components are defined below:

• r = {v/, . . . , v„} is a finite set o f n variables. In this thesis we also use uppercase

Vi to represent a certain subset o f V which contains variables v,;, v/2, ... , v,*.

• D = {£)/, . . . , Dn} is a set o f domains. Each variable V/ e Ehas a corresponding

finite domain o f possible values, A . We also use D(vi) to represent the domain

o f variable v,.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

• C = {Cl, , Cm} is a set o f m constraints. A constraint tells which

value-combined tuples are allowed for a certain subset F/ o f all the variables. A

constraint C, = < F , SC on an ordered set o f variables F = {v,/, v,2, . . . , v ,a } C

F is defined as a relation on these variables, Si C D(vn) x . ..xD (vi0. This

relation stands for the set o f allowable combined values for the variables in F .

In this thesis we also use the notation C /,2 to represent C, with V,={v], V2 } and

Si ,2 to represent the combined-value tuples allowed in C/.

Now we give the following definitions by the above CSP P(V,D,C).

Definition 2.2 The number o f variables involved in a constraint is known as the

arity o f the constraint. A unary constraint only involves one variable; a binary

constraint has two variables involved; a non-binary constraint has arity greater than

two. The problem arity o f a CSP is defined as the maximum constraint arity in this

CSP.

Definition 2.3 Given a set o f variables F ^ {vu, Vi2 , . . . , v,i}, a value assignment

from domain D(Vf) to variable v„ for each variable in this set, is called an

instantiation. For example, < v/, 1> is an instantiation for variable v/. A solution is

an assignment o f values to all the variables, so that each variable in P is assigned a

value from its domain, and all the constraints in P are satisfied simultaneously. A CSP

is solvable if it has at least one solution, otherwise it is unsolvable or over

constrained.

Definition 2.4 A CSP which only contains unary and binary constraints is called a

binary CSP. A CSP which has one or more non-binary constraints is called a

non-binary CSP.

Constraint satisfaction problems can be characterized by their tightness, which could

be measured under the following definitions.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Definition 2.5 The tightness of a constraint T(Ci^is measured by the number o f

tuples that satisfy the constraint over all possible combined-value tuples in C,. T(Ci) =

S I T where S is the number o f Si (combined-value tuples allowed in C,) and T is the

number o f all possible combined-value tuples in C, according to the domains o f each

variable involved in Q.

Figure 2.1(a) map to be colored

{red, blue, green} {red, blue, green}

{red, blue, green} {red, blue, green}

Variables: v;, v̂ , V3, V4

Domains:
Domain of V/ D(V]): {red, blue, green}
Domain of V2 D (v 2): {red, blue, green}
Domain of Vj D (v 3)'. {red, blue, green}
Domain of D (v 4): {red, blue, green}

Constraints:
C,\ Viî V2 Cj. V,i^ 3 C}. V,i^ 4

C4. V2î V3 C5. V3TV4

Figure 2.1(b) a constraint graph of the CSP in 2.1(a)

Figure 2.1 M ap coloring problem - a binary CSP

Definition 2.6 The tightness o f a CSP T(P) is measured by the number o f solution

tuples over the number o f all distinct combined-value tuples over all variables in P.

Tightness is a relative measure. Some CSPs solving techniques are more suitable for

tighter problems, while others are suitable for looser problems.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Here we use the map coloring problem [Kum92] to explain concepts for CSP. In the

map coloring problem in Figure 2.1(a), we need to assign a color to each area o f the

map from a set o f colors such that no two adjacent areas have the same color. Figure

2 .1(a) shows an example o f a map to be colored. The map has four areas which are to

be colored red, blue or green. Figure 2.1(b) is the CSP model which describes the

problem. In the map coloring problem, each area is a variable and the domain o f each

variable is the given set o f colors. For each pair o f areas that are adjacent on the map,

there is a constraint between the corresponding variables which disallows the same

value to be assigned to these two variables. For this map coloring problem in Figure

2 . 1 , there are four variables {v;, V2, vj, V4 } and each variable has the same domain

(red, blue, green}. There are five constraints {C/: v ; # 2, Cf. C3 : vii^V4 , C4 . V2^V3 ,

Cj: V3 î V4). The number o f satisfied tuples o f C/ is 6 and these tuples are {{red, blue),

{red, green), {blue, red), {blue, green), (green, red), {green, blue)}. The number o f all

possible combined-value tuples for Cy is 3x3=9. Therefore the tightness o f constraint

Cl is T(Ci) = 6/9. There are total 6 solution tuples for this map coloring problem

which are {{red, blue, green, blue), {red, green, blue, green), {blue, red, green, red),

{blue, green, red, green), {green, red, blue, red), {green, blue, red, blue)}. The

number o f all distinct combined-value tuples over all 4 variables is 3x3x3x3=81.

Thus we get the tightness o f this map coloring problem T(P) = 6/81.

A constraint in a CSP can be given either explicitly, by enumerating the tuples

allowed, or implicitly, e.g., by an algebraic expression. When constraints are given

explicitly, they are known as extensionai constraints, and when constraints are given

implicitly, they are known as intensional constraints. In Figure 2.1(b) the constraints

are given in an intensional form. We can also enumerate constraint Cf. v f(v 2 in its

extensionai form as S 1 2 {{red, blue), {red, green), {blue, red), {blue, green), {green,

red), {green, blue)}.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

2.2 Binary CSPs and Non-Binary CSPs

Constraint Satisfaction Problems can be divided into binary CSPs and non-binary

CSPs which are also called general CSPs. A binary CSP is a CSP with unary and

binary constraints only, which means, each constraint o f this CSP is either a constraint

which restricts a single variable or a constraint between two variables. The map

coloring problem in Figure 2.1 is a binary CSP sinee each constraint is only between

two variables. In Figure 2.1b we can see that only two variables are involved in each

o f the five constraints C/, C^, C3 , C./and C5, which means that the adjacent areas in

that map can not take the same color. A CSP with constraints not limited to unary and

binary will be referred to as a non-binary CSP.

Before giving an example o f non-binary CSPs, we now present some definitions from

graph theory in [NagOl].

Definition 2.7 A graph G is a structure <V, E>, where V = {vi, V2, ..., Vn} is a finite

set o f elements called vertices (also referred to as nodes), and E = {ei, 02, . . . , en}, is a

finite set o f elements o f called edges, such that every element o f E is a pair o f distinct

elements from V. V is called the vertex set o f G, while E is called in the edge set. An

edge in a graph can only connect two nodes.

Definition 2.8 The edges o f a graph may be assigned specific values or labels, in

which case the graph is called a labelled graph.

Definition 2.9 A binary CSP can be associated with a constraint graph G. N(G),

which is the set o f nodes(vertices) in G, corresponds to the set o f variables and E(G),

the set o f edges in G, corresponds to the set o f binary constraints [Mac77].

An edge in a constraint graph only connects two nodes since a binary constraint only

involves two variables. For example. Figure 2.1b is a constraint graph for the binary

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CSP in Figure 2.1a. In Figure 2.1b, the set o f nodes N (G),which includes v/, v ,̂ V5 and

V4 , corresponds to the set o f variables in the map coloring problem. The set o f edges

E(G), which includes Ci, C2 , C3 , C4 and C5, corresponds to the set o f binary constraints

in the map coloring problem. Constraint graphs are also referred to as constraint

networks.

Definition 2.10 A hypergraph is a generalisation o f a graph where the set o f edges is

replaced by a set o f hyperedges. A hyperedge extends the notion o f an edge by

allowing more than two nodes to be connected by a hyperedge. A hypergraph is a

structure <V,E'’>, where V is a set o f nodes and E** is a set o f hyperedges, with each

hyperedge is a subset o f the node set V.

In a constraint graph, an edge is only allowed to connect two nodes. This representation

is good for binary CSPs, but is limited when representing non-binary CSPs. Thus we

use hypergraph for non-binary CSPs.

I^^^Ajiyperedger^resenti^^

o A hyperedge

representing

C, \ V1+V2

I

A hyperedge

representing

G : V 2< V3

o

Variables: v/, v̂ ,

Domains:
Domain o f V]D(vi): {1,2,3}
Domain o f V2 D(v2): {1, 2, 3}
Domain o f vj D(v3)\ {1, 2, 3}

Constraints:
C/: v/7̂ V2
Cf. V 2 < V 3

C 3 : V j + V 2 + V j> 4

Figure 2.2 An example o f non-binary CSPs and its hypergraph

10

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Figure 2.2 is an example o f non-binary CSPs. Here we can see that the graph is a

hypergraph since there is one hyperedge connects three nodes v/, V2 and v^. This

hyperedge represents constraint Q : v/+ V2+ vj > 4, which involves three variables v/,

V2 and V}.

2.3 Transform Non-Binary CSP into Binary CSP

In the early research o f constraint satisfaction problems, many o f the methods

developed and studied focussed only on solving binary CSPs which are limited to

constraints involving at most two variables. The justification for this has been the fact

that the non-binary and binary representations are equivalent in terms o f solutions

[RPD90]. But many real life problems contain non-binary constraints and the most

natural way to model such real life problems is to construct non-binary CSPs. For

example a non-binary constraint which specifies that a set o f n variables needs to be

assigned different values (called an all_diffevent constraint [NagOl]) can also be

specified by a set o f binary constraints which restricts any two variables in the variable

set can only be assigned different values from their domains. Although these two

formulations are equivalent in terms o f the solutions that they admit, the former is

clearly the one that specifies the requirement in a more natural way. As well, it may be

more efficient to solve a non-binary CSP directly.

From the above we can find that there are two good reasons for looking carefully at the

issue o f translating non-binary CSPs into binary CSPs. First, non-binary CSPs appear

quite frequently when modeling real life problems. The second reason is that, as noted

above, a common justification for focusing solely on binary CSPs is the fact that a

non-binary CSP can be translated into an equivalent binary representation.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

There are two well known modeling techniques which can be used to transform a

general (non-binary) CSP model into an equivalent binary CSP: the dual graph

method and the hidden variable method.

2.3.1 Dual Graph Method

A hypergraph for a non-binary CSP is also called a primal representation, or primal

constraint graph, since it directly represents this non-binary CSP. In [DP89] Dechter

and Pearl introduced the dual representation to CSP researchers which originally

comes from the relational database community. They propose the transformation o f

any non-binary CSP into its dual representation. The main idea o f transforming a

non-binary CSP into its dual representation is to construct a new CSP where

constraints in the original non-binary CSP are now variables with structured domains

and variables in the original non-binary CSP are now the constraints. The dual graph

method for transforming a non-binary CSP into a binary CSP is also known as dual

encoding.

Definition 2.11 Given a CSP, the dual constraint graph associated with it is a

labelled graph, where N=C. For every pair o f constraints Q , Cy e C, such that F,n Vj i-

0 , there is an edge in the dual constraint graph, connecting nodes C, and Cy. A dual

constraint graph is the dual representation o f a CSP.

The following example illustrates how dual graph method converts a non-binary CSP

into a binary CSP. First consider the following non-binary CSP P h

Variables: v/, v^, v ,̂ V4

Domains:
Domain o f v/: D(vi) = {1, 2}
Domain o f V2 ’. D(v2) = {0 ,1}
Domain o f v :̂ D(v3) = {1, 2, 5}
Domain o f v.#: D(v4) = {1 ,2 ,3 }

Constraints:
C 1,2,3'- V i + V 2 < Vs

12

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Cj,4: vi<V4
C2,3 '■ V2 i= V 3

For any CSP model there are three factors: variables, domain for each variable and

constraints among these variables. According to these three factors there are three main

steps in the dual encoding for constructing the dual graph for a non-binary CSP from

its primal representation. Here we use P I to represent the original non-binary CSP

and use P2 to represent newly constructed binary CSP:

a) Construct the variables:

For each primal constraint in the original CSP P I we construct a

corresponding dual variable in P2. Thus the constraints in the primal

representation become the variables in the dual representation.

1) For constraint € 1,2 ,3 in PP. changed to the dual node € 1,2 ,3 ,

2) For constraint € 1,4 in PP. changed to the dual node € 1,4 ,

3) For constraint € 2,3 in PP. changed to the dual node € 2 ,3 .

There are three dual variables in P2 (also called dual nodes in the dual graph),

which correspond to the three constraints in PP

b) Construct the domains:

Since every dual variable is a constraint in the original CSP, the domain o f

each dual variable is the set o f tuples that satisfy the constraint. The following

table illustrates how to get the dual domain for a dual node:

Dual
Node

Corresponding
constraint in FI

Related domains
inP]

Tuples satisfying the
constraint

Dual Node’s
domain in P2

Cl,2,3 C 1,2,3'. V; + V2 < V3

D (v i) = { l , 2 }
D (v 2) - { 0 , I)

D (vs)= {1 ,2 ,3 }

\.V}=1,V2=0,V3=2
2. v/=7, V2 =0 , V3 = 3

3. V/=7, V2=7, V3=3

4. V/=2, V2=0, V3=3

{{1 , 0 , 2),

{1, 0, 3),

(1 ,1 , 3),
{2 , 0 , 5)}

Cl,4 € 1 ,4 : v j < V 4
D (v ,) = { l , 2)
D (v4) ^ { \ ,2 ,3 }

\ . V r l , V 4 = 2

2. V/=7, V4=3
3. Vi=2, V4=3

{(1 , 2),

(1, 3),
(2, 3)}

C2,3 € 2 ,3 : V2 i ^ 3

D (v 2) = [0 , 1 }
D (v 3)= {1 ,2 ,3)

1. V2=0, V3=l
2 . vt= 0 , V3 = 2

3. V2=0, V3=3
4. V2=7, V3=2

5. V2 =l, vj=5

{(0 , 1),
(0 , 2),

(0, 3),

(1 , 2),
(1, 3)}

13

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

c) Construct the constraints;

Check all the constraints in the original CSP P I. I f two constraints in the

original CSP share any variables, then there is an edge connecting the two

nodes in the new binary representation P2. This constraint is a compatibility

binary constraint which restricts same values should be assigned to the shared

variable between the two dual nodes. The follow table shows how to get the

new dual constraints in P2\

Dual
Nodes

Corresponding
constraint in PI

Shared
variables

New constraints in P2

Cl,2,3
Cl,4

C 1,2,3'- V i + V 2 < V3

Ci,4 : v i < V 4
Vl

1 . V/ should be assigned the same values
from the domains of the dual nodes:
D (C 3 ,2 ,3) a.ndD(Ci,4)

Cl,2,3

C 2 .3

C 1,2.3'- V; + V 2 < V 3

C2,3 '- # 5

V2

2 , V2 should be assigned the same values
from the domains of the dual nodes:

D (C 1,2 ,3) and D (C 2 ,3)

V3

3. V3 should be assigned the same values
from the domains of the dual nodes:
D (C l,2 ,3)^d D(C2,3)

Cl,4

C2,3

Cl,4 '. V] <V4

C2,3 '- # 5
.................—

Following the above three steps now we get the new binary CSP P2, which is

transformed from the non-binary CSP by the dual graph method. The new CSP P2 is a

binary CSP since each o f its dual constraints only involves two dual variables. Figure

2.3.1 is the primal representation and the dual representation o f the non-binary CSP

P I.

As CSP constraints can be represented either intensionally or extensionally, in primal

graph either representation is allowed. But for the dual graph method that converts the

primal constraints into dual variables, the dual domains need to be stored explicitly. In

the above example the dual graph method gets the dual domains which are

enumerated as tuples while the primal constraints are given implicitly. When

modeling many real life problems the primal constraints are frequently expressed

14

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

extensionally. In that way the dual graph method can get the dual domains without a

conversion.

C ,,4

V i V4

C2,3
c

V2 V5

Variables: { V;, Vj, Vj, v }̂

C onstrain ts:

Cl,2J- V, + V 2 < Vs

Cl , 4 : V i < V 4

C2 .3 ’■ V2 i^V3

Domains:

D (v ,) = { I ,2)

D (v :^= { 0 , l}

D(vs)= {1 ,2 ,3 }

D (v4) = { I , 2 , 5}

Primal Representation of PI

C l ,4

Dual V ariables: { €1,2.3, Cj.4 , €2,3}

Dual Domains:

D(C,.2,s) = { (/, 0,2), {1 ,0, 3), {], 1, 5), (2, 0, 3))

D(C,4) = { { 1 ,2) , { I ,3) , { 2 ,3)}

D(C2.3) = {{0,1), {0,2), (0, 3), (I , 2), (1 ,3}}

Dual C onstraints:

1. V; should be assigned the same values from the

domains o f the dual nodes: D(Ci,2.3) and D(Ci,4)

2. V2 should be assigned the same values from the

domains o f the dual nodes: D(Ci,2,3) and DfCs.s)

3 . V3 should be assigned the same values from the

domains o f the dual nodes: D(Ci,2.3) and D(C2.3)

Dual Representation of PI

Figure 2.3.1 Primal and dual representations of a non-binary CSP P I

2.3.2 Hidden Variable Method

15

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

In [Dec90], Dechter shows how to represent any non-binary relation with binary

relations using hidden variable method. Unlike the dual graph method which throws

away the original variables and introduces new dual variables into the dual graph, the

hidden variable method keeps all the primal nodes (variables) o f the original CSP and

adds new nodes which represent the primal constraints to the hidden representation.

The hidden variable method is also known as the hidden encoding.

In the hidden variable representation, the set o f variables includes all o f the variables

o f the original problem with no changes to their domains plus a new set o f “hidden”

variables which were called h-variables.

These “hidden” variables are constructed as follows. For each constraint C, in the

original problem we add an h-variable //,. The domain o f Hi consists o f a unique

identifier for every satisfying tuple in the constraint Ct. For every h-variable H we

add a binary constraint between H and each o f the variables involved in the constraint

Ci, In this way the “hidden” variable H and an original variable Vk are thus

constrained. Every value o f H corresponds to a tuple o f values for the variables in the

constraint Q and thus defines a unique value for v .̂ Henee, the binary constraint

between Hi and Vk consists o f a unique value for v* for every value o f //,.

Consider the following non-binary CSP from [NagOl] which has 6 variables and 4

constraints. Each variable has the same domain {0 ,1}. The constraints are:

Cl,2,6 : V/ + V2 + V(5 = 1

C] ,3 ,4 \ V i - V 3 + V4 = \

C4.5.6 : V.̂ + Vj - Vfi > I

C 2,5 ,6 : V 2 + V s - V 6 = 0

Given below. Figure 2.3.2 is the hidden variable representation for the CSP above.

16

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Figure 2.3.2 An example o f hidden variable representation
for a non-binary CSP

In Figure 2.3.2, there are ten variables: the six original variables vi, V2 , vj, V4 , vj,

and four “hidden” variables Hi, H 2 , H 3 , H 4 , one for each constraint in the original

problem C;,2,e, C 1,3,4 , C4,5,6 , C2 ,s,6 - For example, the constraint C 1,2 ,6 has a

corresponding h-variable H], whose domain can be the set{7, 2, 3} (a unique

identifier for each o f the seven tuples in the constraint). We can define a

correspondence between the values o f H[, and the tuples in C /2,6 as follows:

1 ^ (0, 0 ,1), 2 ^ (0 ,1, 0), 3 ^ (7, 0, 0)

Then, we add a constraint between the pairs o f variables {v/, ///} , {v2, H i) and {vg.

H i } , giving the binary constraints,

C v i ,H i= m i) , (0 ,2), (1, 3)}

Cv2,Hi = { (0 ,l) , (1, 2), (0, 3)}

Cv6,Hi= { (1 ,1), (0, 2), (0, 3)}

For example, for binary constraint Cvi,hi, the value 1 for H i corresponds to the tuple

(0, 0 ,1) in which vi = 0. Hence, F7; = 7 is only compatible with v/ = 0.

After the two well known methods, dual graph method and hidden variable method,

were proposed in [DP89] and [Dec90], some research which is based on systematic

17

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

search and problem reduction techniques has been done. In [BB98], the dual graph

method and the hidden variable method are compared under forward checking which

is a backtracking-based algorithm. In [BB98] Bacchus and van Beek also give some

guidance for when one should consider translating between non-binary and binary

representations. In [SW99] Stergiou and Walsh extend the above results and compare

the dual encoding to the hidden encoding, and they also give transformations between

the dual encoding and hidden encodings. [BCBW02] is an extension o f [BB98] and

[SW99], which performs a detailed formal comparison o f the dual encoding and

hidden variable encoding under forward checking and maintaining arc consistency

algorithms. In [NagOI] Nagarajan presents new encodings based on dual encodings

for non-binary constraint satisfaction problems and extends the standard forms o f

local consistency defined in the dual representation.

2.4 Search

In CSP research more effort probably has been spent on searching than in other

approaches. Since different constraint satisfaction problems have different problem

characters and solution requirement, a large amount o f search methods are developed

to solve CSPs. Search methods can be roughly classified into two categories:

systematic and local search.

2.4.1 Systematic Search

Often systematic search method for solving CSPs is a combination o f a standard

backtracking procedure, along with problem reduction techniques before and

interleaved during search. Problem reduction techniques transform CSPs to equivalent

but hopefully easier problems by reducing the size o f the domains and constraints in

the original problems [Tsa93]. The basic idea behind problem reduction involves the

18

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

removal o f redundant values from the domains o f the variables and the tightening o f

the constraints so that the size o f the search space decreases. For example, given two

variables v/ and v ,̂ each o f which has the same domain {1 , . . . , 1 0 }, and a binary

constraint between v/ and is given as v/ + < 5. It is possible to see that the domain

o f each variable can be easily tightened with a number o f redundant values removed

from both o f the domains, so that they are changed to {7, 2, 5}. Problem reduction

normally does not produce solutions, but can be done as pre-processing step for

another algorithm, or step by step, interwoven with the exploration o f the search space

by a search algorithm. In the latter case, subsets o f the search space are cut off, saving

the search algorithm the effort o f systematically investigating the eliminated elements,

which otherwise would happen, even repeatedly. In [Mac77] Mackworth defines three

local consistencies which are node, arc and path consistency to characterize the

property o f binary constraint networks. In [Fe78] Freuder generalizes this to

k-consistency.

Many systematic search algorithms such as forward checking [HE80], back-jumping

[Gas78], and constraint-directed backtracking (CDBT) [PG97] have been proposed,

most o f which are variations o f the basic backtracking method. These search methods

are capable to investigate the entire search space in a systematic manner which

guarantees that eventually either all the solutions are found, or, if no solution exists,

this fact is determined with certainty. This typical property o f algorithms based on

systematic search is called completeness.

The basic backtracking algorithm was first generalized by Bitner and Reingold in

[BR75]. The backtracking algorithm (BT) includes a recursive procedure which

explores the search space under certain variable order and domain value order. In

algorithm BT, variables are instantiated sequentially, i.e., variables are assigned values

according to a kind o f variable order. Once all the variables relevant to a constraint are

instantiated, the recursive procedure will check the validity o f the constraint. I f a partial

instantiation violates any o f the constraints, backtracking is performed to the most

19

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

recently instantiated variable which still has alternative values available. Since the BT

algorithm will always backtrack to the last decision when it becomes unable to

proceed, it is also called chronological backtracking. Figure 2.4.1.1 [Tsa93] shows the

control o f BT and Figure 2.4.1.2 gives the pseudo code which describes the BT

algorithm in detail.

^ S tart ^

P ick an o th er variab le

B ack track to p rev ious

cho ice po in t, i f any , i f no

v a lu e can be assig n ed to

v; fail i f n o w here to

b ack track ed to

* cho ice po in t: p ick

a lte rn a tiv e v a lu es from v

i f back track ed to h ere

A ll v ariab les instan tiated?

Yes

Success

p ick a variab le v

p ick one v a lu e from th e d o m ain o f

V w hich is com patib le w ith

chosen partial instan tia tion

Figure 2.4.1.1 Control of backtracking algorithm

Clearly, whenever a partial instantiation violates a constraint, backtracking is able to

prune off a subspace from the Cartesian product o f all variable domains. Kumar points

out in [Kum87] that the backtracking method essentially performs a depth-firth search

o f the space o f potential solutions o f the CSP.

20

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

procedure backtracking(V , D, C)
begin
bt(V, { }, D, C)
end

prodedure bt(VARS, ENV, D, C)
/* VARS is a set o f variables which have not been instantiated */
/* ENV is a partial instantiation */
begin
1 .

2 .

3.
4.
5.
6 .

7.
8 .

9.
10.

11 .

12.

13.
14.
15.
16. endif
end

if VARS = { } then
return ENV

else
pick one variable v from VARS
repeat

pick one value x from Dv
delete x from Dv

if ENV + {< V , jc > } violates no constraints in C then
RESULT := bt(VARS-{v}, ENV+{< v, x >}, D, C)
if RESULT o { } then

return RESULT
endif

endif
until Dv = { }
return { }

Figure 2.4.1.2 Backtracking algorithm (BT)

Consider the following map coloring problem as a binary CSP:

Variables: vi, V2, V3

Domains:
Domain o f v/: Dv; = {red, blue, green}
Domain o f vf. Dv2 = [red, blue}
Domain o f V3 : DV3 = {red, green}

Constraints:
Cj: vii^V2
Cf. vi ^ V3

C3 .V 2 +V3

21

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Now we launch algorithm BT under the variable order {v/, V 2 , V 3 } to get the solutions o f

the above map coloring problem. In this example we use BT to find all the solutions,

so if one solution is found and there are other possible instantiations haven’t been

explored, BT will continue the search procedure.

1) For v i = r e d , it violates no constraints, go on to assign value for v ;̂

2) For V]=red, V2=red, it violates the constraint vf^V2 , do backtracking;

3) For V] = r e d , V2=blue, it violates no constraints, go on to assign value for vj;

4) For V] = r e d , V 2 = b l u e , v s = r e d , it violates the constraint v i i ^ s , do backtracking;

5) For V] = r e d , V 2 = b l u e , V 3 = g r e e n , it satisfies all the constraints, thus, it is a

solution, then, do backtracking.

6) For vi=blue, it violates no constraints, go on to assign value for v ;̂

7) For V] = b l u e , V 2 = r e d , it violates no constraints, go on to assign value for V3;

8) For V] = b l u e , v f= r e d , V3= red , it violates the constraint ViP^s, do backtracking;

9) For V] = b l u e , V 2 = r e d , V 3 = g r e e n , it satisfies all the constraints, thus, it is a

solution, then, do backtracking.

10) For v i = b l u e , V 2 = b l u e , it violates the constraint v i ^ V 2 , do backtracking;

11) For V] = g r e e n , it violates no constraints, go on to assign value for v ;̂

12) For V] = g r e e n , V 2 = r e d , it violates no constraints, go on to assign value for V3;

13) For v i = g r e e n , V 2 = r e d , V 3 = r e d , it violates the constraint V2# 5, do backtracking;

14) For V] = g r e e n , V 2 = r e d , V 3 = g r e e n , it violates the constraint v/^vj, do

backtracking;

15) For v j = g r e e n , V 2 = b l u e , it violates no constraints, go on to assign value for V3;

16) For vi=green, V 2 = b l u e , V3=red, it satisfies all the constraints, thus, it is a

solution, then, do backtracking.

17) For v i = g r e e n , V 2 ~ b l u e , V 3 = g r e e n , it violates the eonstraint v/^vj, since all the

possible values have been assigned to vy, V 2 and vy, BT terminates.

In Step 5, 9 and 16 we get the solutions for this map coloring problem:

Solution 1: {< vy, r e d > , < V 2 , b l u e > , < V 3 , g r e e r i > }

22

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Solution 2; {< vj, blue>, < V2 , red>, < V3 , green>)

Solution 3; {< vy, greeri>, < V2 , blue>, < V3 , blue>)

The time complexity o f BT is exponential. I f a CSP has n variables, each o f which has

a domain with size a, and there are e constraints in this problem. Since there are

altogether </ possible candidate solutions and for each o f the n-tuples (candidate

solution) all the constraints must be checked once in the worse ease, the time

complexity o f algorithm BT is 0(a"e) [Tsa93]. The search efficiency could be

improved if the domain size can be reduced. This could be achieved by problem

reduction techniques.

2.4.2 Local Search

Local search launches the search process at some random state which is an

instantiation including all variables and then continues by iteratively moving from one

state to another in the search space in a non-deterministic manner, guided by

heuristics. The next move is partly determined by the outcome o f the previous move.

Typically local search methods are incomplete which means even if the given CSP

has a solution, they are not guaranteed to find it eventually. They are also not

guaranteed to report there is no solution if the given CSP has no solution. But local

search have always been attractive as will be shown below in [Hoo98]: First, many

constraint satisfaction problem are constructive by nature, it is known that they are

solvable and what is required is actually the generation o f a solution rather than just

deciding whether a solutions does exist. Secondly, in many real-world applications

often the time to find a solution is limited. In these situations systematic methods

often have to be aborted after the given time has been exhausted and none o f the

solutions have been found while in the same situation local search methods may offer

a solution within the time limit.

23

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

The local search methodology often uses the following terms some o f which

originally appear in [Bar98]:

• state (node): one possible assignment o f all variables from their domains; the

number o f states is equal to the product o f each domain's size.

• evaluation value: the number o f satisfied constraints o f the state.

• neighbor: the state which is obtained from the current state by changing one

variable’s value from its domain.

• move: one move means to pick a neighbour state from the current state’s

neighbourhood and make this neighbour state as the next current state.

• strict local optimum: the state that is not a solution and the evaluation values

o f all o f its neighbors are smaller than the evaluation value o f this state.

• plateau: the state that is not a solution and the evaluation values o f all o f its

neighbors are equal to the evaluation value o f this state.

• local optimum: the state that is not a solution and the evaluation values o f all o f

its neighbors are smaller than or equal to the evaluation value o f this state.

Local optimum can be seen as a state which is either a plateau or a strict local

optimum.

• global maximum: the state is a solution.

Hill-climbing methods are probably the most known strategies o f local search [Bar98].

These hill-climbing methods use heuristics to incrementally alter inconsistent value

assignments o f all the variables and move towards a solution. Their stochastic nature

generally gives up the guarantee o f completeness which is provided by systematic

search methods [Bar98].

The problem with Hill Climbing algorithms in general is that they do not guarantee to

find a solution or report no solution. They may settle in strict local optima, where all

neighbors are worse than the current state, though the current state is not a solution.

They may also loop in plateaus, where all the neighbors have the same evaluation value

as the current state (see Figure 2.4 [Tsa93]). In these situations local search algorithms

24

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

terminates the current loop and randomly pickup an initial state again.

global
maximum

local
optima

plateau local
o p to u m

Figure 2.4 Possible problems with hill elimbing algorithms:
the algorithms may stay in plateaus or local optima

Recently local search has been attractive in solving constraint satisfaction problems.

In [SLM92] GSAT was introduced as a greedy local search method for solving

propositional satisfiability problems. GSAT can also be extended to solve constraint

satisfaction problems. [MPJL93] proposes the min-conflicts heuristic repair method

which can be used in hill-climbing search. One major problem o f basic local search

algorithms is that they may get stuck in local optima. To this aim one general method

is restarting from a new randomly generated initial state. Another common extension

to prevent getting stuck in local optima is the application o f random walk [SKC94]

which modifies the value o f a variable involved in a violated constraint randomly by

choosing some other value than the current one. Another heuristic that allows

escaping from local optima is Tabu search [Glo89] which can leave local optima by

forbidding moves to recently visited states. Tabu search and random walk heuristics

are compared in [SSS97]. An empirical study o f min-conflicts heuristics for binary

CSPs is presented in [PR95]. Hoos and Stiitzle propose an empirical methodology

[HS98] which is based on characterising run-time distributions o f stochastic local

search algorithms on single problem instances.

25

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

2.5 Conclusions

In this chapter we gave a brief introduction to constraint satisfaction problems and

briefly discussed different problem solving techniques. Among the different

approaches, we will focus on observing behaviours o f several local search methods in

primal and dual constraint graphs in Chapter 3.

26

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 3

Local Search in Primal and Dual
Constraint Graphs

In this chapter we describe several local search algorithms such as simple hill

climbing, steepest ascent hill climbing and min-conflicts heuristics. We then illustrate

how these local search methods are applied in primal constraint graph and dual

constraint graph. Finally we give the empirical study design and discuss a statistical

analysis method we used in this thesis for comparing the means o f two groups.

3.1 Local Search Algorithms

3.1.1 General Local Search Strategy

All the hill climbing algorithms described in this thesis are based on a common idea

known as local search. In local search, an initial state (valuation o f variables) is

generated and the algorithm moves from the current state to a neighbouring state until a

solution has been found or the resources available such as maximum number o f moves

and maximum number o f iterations are exhausted. This idea is expressed in the

following general local search algorithm (Figure 3.1.1) that enables implementation of

many particular local search algorithms via definitions o f specific procedures. In the

procedure we presented here, the evaluation value means how many constraints are

27

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

satisfied. The more constraints are satisfied, the larger is the evaluation value. When

all the constraints are satisfied, the evaluation value o f such a state equals to the

number o f constraints in the original CSP.

Procedure LocalSearch (Max Moves, Max lteration)
begin
1. s •<— random valuation o f variables
2. for i:= l to Max Moves do
3. for j :=1 to Max lteration do
4. if evaluation(s)= the number o f all constraints then
5. return s
6. endif
7. select n in neighborhood(s)
8. if acceptable(n) then
9. s •«— n
10. endif
11. eudfor
12. s restartState(s);
13. endfor
14. return s

end

Figure 3.1.1 General local search algorithm

3.1.2 Simple Hill-climbing Algorithm

Hill-climbing methods are probably the best known strategies o f local search. First we

look at the simple hill-climbing algorithm which is presented in Figure 3.1.2. The idea

o f simple hill-climbing is:

1. Start at randomly generated state.

2. Move to the neighbor with a better evaluation value.

3. I f a local optimum is reached then restart at other randomly generated state.

28

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

This procedure repeats till the solution is found. The simple hill-climbing algorithm

does not need to explore all the neighbors o f the current state. But the order o f the

neighborhood states may make a difference since the simple hill-climbing method

will choose the neighbor which has a better evaluation value by such order. Thus it

determines which part o f the search space will be investigated next.

Procedure SimpleHillClimbing(Max Restarts)
begin
1. for i:= l to Max Restarts do
2. s <— random instantiation o f all variables
3. while evaluation(s)<the number o f all constraints do
4. findNeighbor;
5. if no neighbor left in neighborhood o f s then
6. goto restart; /* a local optimum is reached */
7. else select n in neighborhood(s)
8. endif
9. remove n from neighborhood(s)
10. if evaluation(n)=the number o f all constraints then
11. return n;
12. endif;
13. if evaluation(n)> evaluation(s) then
14. s -f— n
15. else goto findNeighbor
16. endif
17. endwhile
18. return s
19. restart:
20. endfor
end

Figure 3.1.2 Simple hill-climbing algorithm

3.1.3 Simple Hill-climbing Flowchart

Below we give the flowchart (Figure 3.1.3) for simple hill-climbing according to the
algorithm introduced in 3.1.2.

29

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

No
random C ontro l < M ax R estarts

Yes

Yes

{ ^ I S u ccess JP is a so lu tion?

No

No

i f P has n e ieh b o r ?
(No neighbor left in neighborhood (P)

Yes

Yes

{ ^ V S u ccess J
S is a so lu tion?

No

No
ev aluation (S) > evaluation (P) ?

Find the next

neighbor o f ?
Y e s

Find the next neiahbor o f P

random C ontro l = 0

p ick up a random sta te P

random C ontro l ^ random C ontro l+1

p ick u p ne ig h b o r S and rem ove S from n e ig hborhood (P)

Figure 3.1.3 Simple hill-climbing flowchart

30

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

3.1.4 Simple Hill-cIimbing Example

Now we use an example to illustrate how simple hill-climbing works to solve the map

coloring problem (Figure 2.1) in its primal representation. This time we use domain

{7, 2, 3} instead o f using {red, blue, green} in the following CSP (Figure 3.1.4.1):

Variables: v/, V2, vs, V4

Domains:
Domain o f v/ D(vi)\ {1, 2, 3}
Domain o f Dfv^): {1, 2, 3}
Domain o f vj D(v3): {1, 2, 3}
Domain o f V4 D(v4): [1, 2, 3}

Constraints:
C/: vii^V 2

C 2 . V i + V 3

C3 . Vii^V4
C 4 : V2i^V3

C5 . V3i^V4

Figure 3.1.4.1 An example o f a binary CSP

Figure 3.1.4.2 is the search tree o f simple hill-climbing working in primal

representation o f the binary CSP in Figure 3.1.4.1. Note that each node o f the search

tree has the format: V1V2V3V4 (evaluation value). In this example, simple hill-climbing

uses 3 moves and visits 11 search nodes to find the solution {< v/, 2>, < V2 , 3>, < V3 ,

1 > , < V 4, 3>}.

3.1.5 Steepest Ascent Hill-climbing

Steepest ascent hill-climbing algorithm which is presented in Figure 3.1.5 differs with

the simple hill-climbing method in that the former evaluates all the neighbors o f the

current state and chooses the best one while the latter only explores part o f the

neighborhood states and select a better one to move. The steepest ascent hill-climbing

algorithm has to explore all the neighbors o f the current state before choosing the move

and such a choosing process may take a lot o f time.

31

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CD■D
O
Q.C
o
CD
Q.

■D
CD

C/)W
o 'o
o

oo■D
cq'

o
CD■D
O
Q.C
a
oo
■O
o

CD
Q.

■D
CD

(/)(/)

1111 (0)

2 l l l (3) I. 5111(3)

 ̂ 21512211 (3)5 l l l (3) 2511 (4) Search Tree Node Format:

2 3 1 1(4)

i311 (2) 5311 (3) 2521 (4) 2312 (4)
evaluation valuevalue is changed

here to form a
neighbor

Figure 3.1.4.2 Search tree o f simple hill-cIimbing in primal representation

Procedure SteepestAscentHiHClimbing(Max_Restarts)
begin
1. for i;= l to Max Restarts do
2. s <— random instantiation o f ail variables
3. while evaluation(s)<the number o f all constraints do
4. find the best neighbor n which has the largest evaluation value
5. if evaluation(n)=the number o f all constraints then
6. return n;
7. endif;
8. if evaluation(n)> evaluation(s) then
9. s <— n
10. else goto restart /* a local optimum is reached */
11. endif
12. endwhile
13. return s
14. restart:
15. endfor
end

Figure 3.1.5 Steepest ascent hill-cIimbing algorithm

3.1.6 Steepest Ascent Hill-climbing Flowchart

Figure 3.1.6 is the flowchart for steepest ascent hill-climbing according to the
algorithm introduced in 3.1.5.

3.1.7 Steepest Ascent Hill-climbing Example

Figure 3.1.7 is the search tree o f steepest ascent hill-climbing working in primal

representation o f the binary CSP in Figure 3.1.4.1. In this example, steepest ascent

hill-climbing uses 2 moves and visits 13 search nodes to find the solution {< v/, 2>, <

V 2, 1> , < V 3, 3 > , < V 4, ! > } .

33

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Start

random C ontro l = 0

No

random C ontro l < M ax R estarts

Yes

Fail
random C ontro l <— random C ontro l+1

p ick up a random sta te P

Success ^
Yes

P is a so lu tion?

No

tm pM ax

No

i f P has n e iah b o r ?
(No neighbor left in

neighborhood (P)Yes

p ick up n e ighbor S and rem o v e S from neig h b o rh o o d (P)

Y e s

\ Success JS is a so lu tion?

No

No

evaluation (S') > evaluation (tm n M ax) ?
Find the next

neighbor o f ?
Ĵ sa.

tm pM ax

Find the next neiahbor o f ?

Yes

No neighbor is better than P

No

tm pM ax

Figure 3.1.6 Steepest ascent hiil-climbing flowchart

34

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

CD■a
o
Q.c
o
CD
Q.

■D
CD

C/)

o 'o
o

oo■D
c q '

p.O’o
CD■D
O
Q .c
a
oQ
■O
o

CD
Q .

■D
CD

(/)(/)

1111(0)

2 1 1 1 (3) 3 iii l2 ll (2) l3 ll (2) ll2 l (3) lll3 (2)l l l 2 (2)

Search Tree Node Format:

2211 (3) 2311 (4) 2121 (4) 2 1 1 2 (3) 2113 (4)

value is changed evaluation value
here to fomi a
neighbor

Figure 3,1.7 Search tree o f steepest ascent hill-climbing in primal representation

3.1.8 Min-conflicts Heuristics Hill-climbing

To avoid exploring ail the neighbors o f the current state some heuristics were proposed

to find a next move. Min-conflicts heuristics is a heuristic repair method which

attempts to minimize the number o f constraint violations after each step.

Min-conflicts heuristics was first introduced in [MPJL93]. The min-conflicts

heuristics can be used with a variety o f different search strategies such as

backtracking-based search and local search.

When applying min-conflicts heuristics in local search method, min-conflicts heuristics

hill-climbing chooses randomly any conflicting variable, i.e., the variable that is

involved in any unsatisfied eonstraint, and then picks a value which maximizes the

number o f satisfied constraints (break ties randomly). I f no such value exists, it picks

randomly one value which can form a neighbor that has the same number o f satisfied

constraints as the current state does. Min-conflicts heuristics hill-climbing does not

explore all the neighbors o f the eurrent state, but it explores all those neighbors which

are related with the randomly ehosen conflicting variable by changing that variable’s

value. If all the neighbors have less number o f satisfied eonstraints than the current

state, min-conflicts heuristics hill-climbing will restart the search procedure. The

min-conflicts heuristics algorithm for hill-climbing is showed in Figure 3.1.8.

In the following parts o f this thesis we also use min-conflicts heuristics to represent

using this heuristic repair method in hill-climbing algorithm.

3.1.9 Min-conflicts Heuristics Flowchart

Figure 3.1.9 is the flowchart for min-conflicts heuristics according to the algorithm
introduced in 3.1.8.

36

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

3.1.10 Min-conflicts Heuristics Example

Figure 3.1.10.1 is the search tree o f min-eonfliets heuristics working in primal

representation o f the binary CSP in Figure 3.1.4.1. In this example, min-conflicts

heuristics uses 5 moves and visits 10 search nodes to find the solution {< v/, i> , < V2 ,

2>,<V3, ! > ,< V 4 , 2>}.

Procedure MinConflicsHeuristicsHillClimbing (Max Restarts)
begin
1. for i:= l to M ax Restarts do
2. s <— random instantiation o f all variables
3. while evaluation(s)<the number o f all constraints do
4. randomly pick a variable V which is currently in conflict
5. neighborhood(s)=change V ’s value from its domain
6. choose the best neighbor n which has the largest evaluation value

and evaluation(n)> evaluation(s)
7. if evaluation(n)=the number o f all constraints then
8. return n;
9. endif;
10. if no such neighbor in Step 6 exists, then
11. randomly choose a neighbor n which evaluation(n)= evaluation(s)
12. s <— n
13. endif
14. if no neighbor’ evaluation value >= evaluation(s) then
15. goto restart
16. endif;
17. endwhile
18. return s
19. restart:
20. endfor
end

Figure 3.1.8 M in-conflicts heuristics hill-climbing algorithm

37

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

No

random C ontro l < M ax R estarts

Yes

^ S uccess ^
Yes

P is a so lu tion?

No

Yes

{ ^
1 S uccess JS is a so lu tion?

No

Yes

ev aluationT ieS et IP) is null ?
(No neighbor is better than P)

No

random C ontro l = 0

p ick up a random sta te P

random C ontro l random C ontro l+1

neig h b o rh o o d (P) = change V ’s va lue from its dom ain

ran d o m ly p ick a v ariab le V w hich is cu rren tly in conflic t

S ’ (S ’ is a n e ighbor w h ich is random ly cho o sed in ev a lu a tio n T ieS e t (P))

choose th e best n e ighbor S w h ich has the larg est evaluation value

and ev a luation (S) > evaluation (P)

ev alu a tio n T ieS e t (P) = choose neighbors from ne ig h b o rh o o d (P) w here

evaluation (S) = evaluation (P)

Figure 3.1.9 Min-conflicts heuristics hill-cIimbing flowchart

38

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Search Tree Node Format:

evaluation value

V | V 2 \ 3 V4

X V X X ▼

2 2 3 1 (4)

X V V X

1 2 5 1 (4)
value is
changed here to
form a neighbor

X X X X
V2 now is not
in conflict

X V X V
2 2 3 1 (4)2 2 3 1 (4)

V V X X

3 2 i 1 (4) 3 2 2 1 (4)

X V V x

3 2 1 5 (4)

Figure 3.1.10.1 Search tree o f min-conflicts heuristics hill-climbing
in primal representation

The search trees o f min-conflicts heuristics can be different even when the algorithm

begins with the same start state. For example, in Figure 3.1.10.1, when the algorithm

has the node (1231) as the current state after 2 moves, it randomly chooses a conflicting

variable v/ to get its neighbors which are (2231) and (3231). But if the algorithm

chooses another conflicting variable V4 to get its neighbors, it will find a solution {< v/,

/> , < V2 , 2>, < V3 , 3>, < V4 , 2>} immediately (See Figure 3.1.10.2). Since

min-conflicts heuristics randomly chooses a variable which is in conflict to get

39

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

neighbors, the search trees are different. Another reason to cause a different search tree

is that min-conflicts heuristics will randomly chooses a neighbor which has the same

evaluation value as the current state to continue the move when all the neighbors are not

better than the current state (break ties randomly). In Figure 3.1.10.1 and 3.1.10.2,

those dashed lines with arrow on one end indicate there are different ways to continue

the search.

X X X X

Search Tree Node Format:

evalu ation value

Vl V2 V3 V4

1 4 4 4 " '
X V X X ▼
2 2 3 1 (4)

value is / \
changed here to V2 n ow is not
form a neighbor con flict

X V V X
1 2 3 1 (4)1 2 2 1 (3)

X yj ^|x
1 2 3 5 (4)

Figure 3.1.10.2 Different search tree o f min-conflicts heuristics
hill-climbing in the same primal representation

3.2 Local Search in Primal and Dual Constraint Graphs

The dual encoding which was first introduced to solve CSPs by Dechter and Pearl in

[DP89] gives a way to transform a non-binary CSP into a binary CSP. [NagOl] has a

thorough study on the dual encodings. In the last decade the dual encoding techniques

40

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

for CSP solving have been mainly concentrated on systematic search coupled with

various problem reduction methods before and interleaved during the search

procedure. Almost in the same period the local search methods are frequently used in

CSP solving, but most o f the research only exploited local search in binary CSPs.

Empirical study o f local search on non-binary CSPs has seldom been mentioned. Thus

we propose our approach to investigate local search behaviour on non-binary CSPs

both in primal and dual representations. The local search methods which are studied

in this thesis for solving non-binary CSPs in our research are simple hill-climbing,

steepest ascent hill-climbing and min-conflicts heuristics hill-climbing [MPJL93].

Different local search methods visit different number o f nodes during the search

procedure. During one move from one current state to the next current state, steepest

hill climbing will investigate all the possible neighbours while simple hill climbing

and min-conflicts heuristics hill-climbing only explore part o f them. For each node in

the search tree the three local search methods will check all the constraints. So

steepest hill climbing may take longer time to find a solution since it may visit more

search tree nodes and check more constraints. But steepest hill climbing may use the

least moves to get a solution if it does not get stuck in a local optimum.

Since in the dual representation the dual domains are consistent value combinations

which have satisfied the primal constraints inside the dual variables, if there are tight

constraints in the original CSP, local search on dual constraint graph may find a

solution within a shorter time while local search on primal constraint graph need more

moves to gradually get such tight constraints satisfied. But when the constraints are

looser, local search on primal constraint graph may get a better performance than

local search on dual constraint graph since under such situation the dual

representation has big dual domain size which indicates a large number o f neighbors

need to be visited during each move.

41

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

In dual encodings the dual domains need to be explieitly stored. To fairly evaluate the

performance o f local search in primal and dual representations we store the primal

constraints and dual domains both in an extensional form.

3.3 Empirical Study Design

In order to make the comparison objective and do the experiment efficiently, we

design the requirement for empirical study as follows:

• Can deal with both binary and non-binary CSPs

• Represent primal constraints and dual domains extensionally

• Can change the number o f variables

• Can change the domain size

• Can change the constraint tightness

• Provide enough information to evaluate the performance

According to the above requirement the local search procedure gets the original CSP

described in a flat file as an input. In our design the original CSPs can be very flexible

so that we can make a deep empirical study to investigate the behavior o f local search

on both primal and dual constraint graphs.

Experiment environment for empirical study:

The experiments are run on a P4 2.4G PC with Windows 2000. The programming

language is Java.

3.3.1 Empirical Study Input Design

The input file is generated by a CSP problem generator which is described in Chapter

4. The content o f the input file is as follows:

42

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

• Name o f the problem instance

• Number o f variables

• Size o f each domain

• Number o f constraints

• Variables involved in each constraint

• Tightness o f each constraint

Below is an example o f input flat file;

ProblemB01,4,3
1.3
2.3
3.3
4,5
1,1,2,90
2,2,3,4,50
3,1,4,10

The format o f the above flat file:

Line 1:
ProblemBO 1,4,3

Line 1 ProblemBO 1 4 3
Description: Problem Instance

Name
Number o f
Variables

Number o f
constraints

Line 2 to 5:
1.3
2.3
3.3
4,5

Line 2 1 3
Description Variable v/ Domain size o f v; is 3.

Line 3 2 3
Description Variable Domain size o f is 3.

Line 4 3 3
Description Variable vs Domain size o f is 3.

43

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Line: 5 4 5
Description Variable V4 Domain size o f v^is 5.

Line 6 to 8:
1,1,2,90
2,2,3,4,50
3,1,4,10

Line 6 1 1 2 90
Description Constraint C/ Variable v/ Variable Tightness: 90%

Line 7 2 2 3 4 50
Description Constraint C2 Variable Variable vj Variable V4 Tightness:

50%

Line 8 3 I 4 10
Description Constraint C 3 Variable v; Variable V4 Tightness: 10%

3.3.2 Empirical Study Output Design

To avoid getting stuck at local optima, local search often need to regenerate the initial

state till it finds a solution and since local search investigates the search space in a

non-deterministic manner, in each round the solution found generally is different.

Below is the output in each round which finds a solution for the specific problem

instance:

The solution.

How many times does the local search randomly generate the initial state?

How many search tree nodes are visited during the search period?

How long does it take to get the solution (time cost)?

How many constraints are checked during the search period?

Note that “the nodes visited” for local search in primal constraint graph has a different

meaning from it in dual constraint graph. For local search in primal, a node is a value

assignment to all primal variables. For local search in dual, a node is a value

44

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

assignment to all dual variables. For example, we consider the CSP P I in Figure

2.3.1:

Variables: {v/, v̂ , vj, V4)

Constraints:

V ; + < V3

C ,J . V,<V4

C 2.3 ■ V2 ^ 3

Domains:

D (v ,) = { l , 2}

D(v2)={0 , 1 }
D (vs)= { 1 , 2 , 3 }

DM ={1,2,2}

Primal Representation of PI

Dual Variables: {C/ 2 ,3 , Cj 4 , € 2 ,3 }

Dual Domains:

D (C j,23) = {(1, 0 , 2), (1, 0, 3), (1, 1, 3), (2, 0, 3)}

D (C , j) = { (1 ,2) , (1 ,3), (2, 3)}

D(C2.3) = {(0,1), (0, 2), (0, 3), (1, 2), (1, 3)}

Dual Constraints:

1. V; should be assigned the same values from the

domains o f the dual nodes: D (C/ 2,3) 3od D(Cj 4)

2. V2 should be assigned the same values from the

domains o f the dual nodes: D (C i 2,3) and D (C 2 ,j)

3. V3 should be assigned the same values from the

domains o f the dual nodes: D (Cj 2,3) and D (C 2,3)

Dual Representation of PI

When we assign value to each primal variable as {<vi, 1>, <V2 , 0>, <V3 ,1>, <V4 , !>},

such value assignment is a node in local search on P i ’s primal representation. When

we assign value to each dual variable as {< C jjj, (1, 0, 2)>, <Cij, (1, 2)>, <€ 2,3 , (0,

1)>}, such value assignment is a node in local search on P i ’s dual representation.

Such difference also exists when we mention “the constraints checked” for local

search on primal and dual representations.

For evaluating the behavior o f local search both in primal and dual representations,

each problem instance will be run for 100 rounds. For each problem instance, we keep

the average values and their variances for each output parameter and there is a

summary result as the following:

• The average number o f times that local search randomly generates the initial

state and its variance.

45

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

• The average number o f search nodes visited during the search period and its

variance.

• The average CPU time to get the solution (time cost) and its variance.

• The average number o f constraints checked during the search period and its

variance.

3.3.3 Empirical Study Comparisons

In this empirical study we intend to investigate the behaviour o f local search on

primal and dual representations over different problem instances. The local search

characters are compared under a ratio which is the move cost o f local search in dual

representation comparing with the move cost o f local search in primal representation.

First we illustrate what the move cost is in steepest ascent hill-climbing. One move

for local search is from one current state to the next current state. For each move in

steepest ascent hill-climbing, the search procedure will investigate all the neighbors o f

the current state. For each neighbor, it will check all the constraints to get the

evaluation value. The move cost in steepest ascent hill-climbing is the number o f

possible neighbors multiplies the number o f constraints. In Figure 3.3.3.1 we give the

move cost o f steepest ascent hill-climbing in primal representation and dual

representation. We use the notion \SET\ to represent the size o f a set, i.e., the number

o f elements in this set. In Figure 3.3.3.1, |D(v,)| is the domain size o f variable v, and

|C| is the number o f primal constraints in a CSP, \D(Cj)\ is the domain size o f dual

variable Cj i.e., |T>(C;)| is the number o f satisfied tuples in primal constraint Cj, and

\Cduai\ is the number o f dual constraints in a CSP.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. The number o f neighbors in each move for steepest ascent
hill-climbing in primal representation:

n
neighbors o f SteepestPrimal = X (|^ (v /)|- l)

/=!
2. For each neighbor it will check all the primal constraints: |C|

3. The move cost o f steepest ascent hill-climbing in primal
representation:

n
M V SteepestP rim al ~ X

/=!

4. The number o f neighbors in each move for steepest ascent
hill-climbing in dual representation:

m
neighbors o f SteepestDual = Y, (l^ (C /)l" l)

7=1
5. For each neighbor it will check all the dual constraints: |Q„a/|

6. The move cost o f steepest ascent hill-climbing in dual representation:
m

SteepestDual ~ X ^ ^ iP j) \~ ^ ^ V ^ d u a l \

7=1

Figure 3.3.3.1 Move cost of steepest ascent hill-elimbing

For each neighbor in simple hill-climbing and min-conflicts heuristics, they also need

to check all the constraints to get the evaluation value, but they do not need to explore

all the neighbors as steepest ascent hill-climbing does. Thus the move cost o f simple

hill-climbing and min-conflicts heuristics will be less than the move cost o f steepest

ascent hill-climbing. But the move cost o f steepest ascent hill-climbing in Figure

3.3.3.1 can be seen as the worst case for simple hill-climbing and min-conflicts

heuristics. In Figure 3.3.3.2, we give the move cost ratio between move cost for local

search in dual representation and move cost for local search in primal representation.

We use the move cost in Figure 3.3.3.1 to represent the move cost o f local search

methods in our empirical study.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. The move cost o f local search in primal representation:

M V l p = I (| /) (V /) | - I) x |q
/=!

2. The move cost o f local search in dual representation:
m

M V l d = Z (| / > (Q) |- 1) x |Q „ „ , |

7=1

3. Move Cost Ratio =
M V id

M V l p

Figure 3.S.3.2 Move cost ratio for local search

From Figure 3.3.3.2 we can find that the constraint tightness, domain size and

constraint arity in the original given CSP are possible factors which can affect the

ratio. A higher ratio means a higher move cost for local search in dual representation

than in primal representation while a lower ratio means a lower move cost for local

search in dual representation than in primal representation. For example, there is a

CSP with 5 variables and 3 constraints. Each variable has the same domain size 10,

the same constraint tightness 10%, each constraint has the same arity 3 and it has 5

dual constraints. The number o f satisfied tuples in each primal constraint is

(10* 10* 10)* 10% = 100. The move cost for local search in dual representation is

(100-1)*(100-1)*(100-1)*5 = 4,851,495. The move cost for local search in primal

representation is (10-1)*(10-1)*(10-1) *(10-1)*(10-1)*3 = 177,147. Then the ratio

will be 27.39.

In the empirical study, we use different move cost ratios to represent different

problem instances. We compare the time cost o f local search in both representations

as the ratio increases. When move cost ratio increases in the same experiment result

table, it means the move cost for local search in dual representation also increases.

Thus we can find when local search in one representation is prior to another. Since the

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“node visited” and “constraint” have different meaning in primal and dual

representations, time cost is the most significant comparison o f local search in the two

representations. In this kind o f comparison we use T-test (See Appendix A) to tell

whether the difference between the means o f time cost is significant or not.

We also compare the performance o f different loeal search methods on the same

constraint graph representation. In this situation we briefly compare the number o f

search nodes visited during the search period and the time cost to find a solution.

3.4 Conclusions

In this chapter we reviewed the three local search methods used in our empirical study

and we also gave our approaches which focus on observing behaviours o f the three

local search methods in primal and dual constraint graphs.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Experiment Result and Analysis

In this chapter we provide the empirical evaluation for local search methods

characters on primal and dual representations presented in Chapter 3. Random CSP

problem instances were generated based on a four parameter model in [NagOl] which

extends the standard four parameter binary CSP model in [Smi94]. The four

parameter model in [NagOl] for generating non-binary CSP is described as the

following:

1. Number o f variables: n

2. Size o f each variable’s domain: m

3. Constraint density: p i

4. Constraint tightness: p 2

P i is the probability that there is a constraint among the variables in a CSP. The CSP

generator used in our empirical study will generate problem instances in three

problem classes. The number o f constraints for each problem class was determined by

the problem arity, the number o f variables and the constraint density. For example,

given a CSP with problem arity 5, 10 variables and constraint density p i = 0.05, the

CSP generator will generate a CSP with ((10 x 9 x 8 x 7 x 6) / 5!) x 0.05 = 12

constraints.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In our empirical study we generate 57 problems in 3 classes given blow. Each class is

given by <n, a, m, pi>, where n is the number o f variables, a is the problem arity, m is

size o f the domains and p i is the constraint density.

Class I: <9, 3, 10, 0.06>

Class II: <9, 3, 20, 0.06>

Class III: <12, 5, 10, 0.006>

Bach class contains a set o f problem instances with constraint tightness p 2 increasing

from low value to higher values which indicates the problems in the class are getting

easier. Such changing o f constraint tightness also affects the move cost ratio from low

to high which means the move cost for local search in dual representation is getting

greater. Problem Class II is based on Problem Class I which enlarges the domain size

from 10 to 20. Problem Class III is also based on Problem Class I but it enlarges the

number o f variables from 9 to 12.

Section 4.1, 4.2 and 4.3 present the results on Problem Class I, II and III. Each

problem is run 100 times by each algorithm on a certain constraint graph, i.e., primal

constraint graph or dual constraint graph. The following notation is used to represent

the three local search algorithms on a certain constraint graph:

LPsim: simple hill-climbing on primal constraint graph

LDsim: simple hill-climbing on dual constraint graph

LPstp: steepest ascent hill-climbing on primal constraint graph

LDstp: steepest ascent hill-climbing on dual constraint graph

LPmc: min-conflicts heuristics hill-climbing on primal constraint graph

LDmc: min-conflicts heuristics hill-climbing on dual constraint graph

We also use the following notation when we measure the performance o f different

algorithms:

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MoR: move cost ratio

Rn: number o f times that local search randomly generates the initial state

Nd; number o f nodes visited in the search procedure

Cc: number o f constraints checked in the search procedure

Tm: CPU time cost by the search procedure to find a solution

Cl: confidence interval in T-test

4.1 Experiment Results and Analysis on Class I

In this section we present experiment results based on the problem instances in Class I.

This class includes 19 problems each o f which has 9 variables, domain size 10,

problem arity 3 and constraint density 0.06. Constraint tightness changes from 0.02 to

0.2 in steps o f 0.01 which leads the move cost ratio increases from 2.11 to 22.11. A

problem with smaller tightness value is a problem having tighter constraints.

4.1.1 Simple Hill-climbing on Class I

Table 4.1.1.1 is the time cost (Tm) result o f simple hill-climbing on Class 1 on both

two kinds o f the constraint graphs. Here we use T-test (See Appendix A) to compare

the two means o f simple hill-climbing on both representations. In this thesis we

launch all T-tests by a given alpha level a==0.05, T_cv =1.645. Cl is given as a 95%

confidence interval on the difference o f means. If |T_valuel > 1.645, we reject Ho

which sets the hypothesis that the two means o f the two groups have no significant

difference.. I f |T_value| > 1.645 and T value is positive, we can conclude that the

mean o f time cost for simple hill-climbing in primal representation is greater than the

mean o f time cost for simple hill-climbing in dual representation, thus, LDsim

generally can find a solution faster than LPsim in this problem instance. If |T_value| >

1.645 and T value is negative, we can conclude that the mean o f time cost for simple

hill-climbing in primal representation is less than the mean o f time cost for simple

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hill-climbing in dual representation, thus, LPsim generally can find a solution faster

than LDsim in this problem instance. If IT value] < 1.645, we accept Ho and conclude

that these two means have no significant difference. The CPU time is measured on

millisecond.

Move Cost

Ratio

LPsim

Tm M ean

LDsim

T m M ean
T_value A ccept H qI

C l

Low er

Bound

C l

U pper

Bound

2.11 348.28 5.94 9.813 LPsim Mean > LDsim Mean and Reject Ho 273.96 410.71

3.22 247.03 5.47 9.787 LPsim Mean > LDsim M ean and Rejeet Ho 193.18 289.93

4.33 56.73 5.78 9.012 LPsim Mean > LDsim M ean and Reject Ho 39.86 62.03

5.44 42.97 6.09 8.488 LPsim Mean > LDsim Mean and Rejeet H q 28.36 45.39

6.55 30.00 7.50 7.215 LPsim Mean > LDsim M ean and Reject Ho 16.38 28.61

7.66 23.75 7.35 6.708 LPsim Mean > LDsim Mean and Reject Ho 11.61 21.19

8.77 17.03 7.03 5.466 LPsim Mean > LDsim M ean and Reject H q 6.41 13.58

9.88 16.87 6.87 5.418 LPsim Mean > LDsim M ean and Reject H„ 6.38 13.61

11.00 9.68 9.06 0.462 Accept Ho -2.01 3.24

12.11 9.38 8.43 0.741 Accept Ho -1.56 3.46

13.22 7.04 10.14 -2.507 LPsim Mean < LDsim M ean and Reject H q -5.52 -0.67

14.33 6.72 10.00 -2.688 LPsim Mean < LDsim M ean and Reject Ho -5.67 -0.88

15.44 5.94 8.75 -2.624 LPsim Mean < LDsim Mean and Reject Ho -4.91 -0.71

16.55 4.38 8.75 -4.411 LPsim Mean < LDsim M ean and Rejeet Ho -6.31 -2.42

17.66 4.21 10.93 -5.761 LPsim Mean < LDsim M ean and Reject Ho -9.01 -4.43

18.77 4.06 9.68 -5.335 LPsim Mean < LDsim M ean and Reject Ho -7.68 -3.55

19.88 3.90 9.85 -5.601 LPsim Mean < LDsim Mean and Reject H q -8.03 -3.86

21.00 2.97 10.47 -6.911 LPsim Mean < LDsim Mean and Reject Ho -9.62 -5.37

22.11 2.97 10.94 -7.028 LPsim Mean < LDsim M ean and Reject Ho -10.19 -5.74

Table 4.1.1.1 Time Cost of Simple Hill-climbing on Class I

The result o f Table 4.1.1.1 is also presented as a graph in Figure 4.1.1.1. From this

figure we can see that simple hill-climbing can find a solution faster in the dual

representation when move cost ratio is low (MoR from 2.11 to 9.88). As the move

cost ratio is increasing whieh indicates the problem is getting looser, simple

hill-climbing will get a better performance in the primal representation (MoR from

13.22 to 22.11) than in the dual representation. The value on Y axis is given in

logarithmic scale.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-PRIMAL GRAPH

- DUAL GRAPH

10000

Z 1000
0(J
1 100HC4HO
u

M ove C o st R atio

Figure 4.1.1.1 Comparison of Tm Mean o f

Simple Hill-cIimbing on Class I

M ove C ost

R atio

LPsim

Rn

LPsim

Nd

LPsim

Cc

LDsim

Rn

LDsim

Nd

LDsim

Cc

2.11 117.41 16116.03 80580.15 4.59 968.44 8715.96

3.22 77.37 11366.28 56831.40 2.63 903.49 8131.41

4.33 16.89 2596.60 12983.00 2.19 957.76 8619.84

5.44 13.03 1986.61 9933.05 1.90 1014.70 9132.30

6.55 8.85 1365.12 6825.60 2.05 1295.84 11662.56

7.66 7.24 1081.39 5406.95 1.76 1312.91 11816.19

8.77 5.16 767.06 3835.30 1.44 1222.49 11002.41

9.88 5.06 723.84 3619.20 1.39 1170.61 10535.49

11.00 3.04 419.92 2099.60 1.62 1603.32 14429.88

12.11 3.04 421.32 2106.60 1.36 1499.03 13491.27

13.22 2.29 311.65 1558.25 1.44 1806.49 16258.41

14.33 2.28 283.34 1416.70 1.32 1748.07 15732.63

15.44 1.94 242.61 1213.05 1.12 1504.60 13541.4

16.55 1.66 185.18 925.90 1.04 1516.75 13650.75

17.66 1.63 174.10 870.50 1.17 1897.88 17080.92

18.77 1.51 164.49 822.45 1.07 1734.06 15606.54

19.88 1.46 152.87 764.35 1.08 1753.19 15778.71

21.00 1.31 122.28 611.40 1.08 1811.20 16300.80

22.11 1.23 115.83 579.15 1.10 1959.58 17636.22

Table 4.1.1.2 Rn, Nd and Cc of Simple Hill-climbing on Class I

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Table 4.1.1.2 we give the other three output parameters o f simple hill-climbing on

Class 1 which includes number o f times that local search randomly generates the

initial state (Rn), number o f nodes visited (Nd) and number o f constraints checked

(Cc). For those problem instances with very tight constraints, simple hill-climbing

will spend a lot o f time to regenerate an initial state in the primal representation, thus,

it cost longer time to find a solution as more nodes are visited in the search tree and

more constraints are checked. The Nc and Cc can also reflect the time cost.

4.1.2 Steepest Ascent Hill-climbing on Class I

Move Cost

Ratio

L Pstp

Tm M ean

L D stp

T m M ean
T_value Accept H ot

C l

Low er

Bound

C l

U pper

Bound

2.11 1567.51 22.18 10.202 LPstp Mean > LDstp Mean and Reject Ho 1248.46 1842.19

3.22 307.18 9.54 9.792 LPstp Mean > LDstp Mean and Reject Ho 238.06 357.21

4.33 77.33 9.53 8.821 LPstp Mean > LDstp Mean and Reject Ho 52.73 82.86

5.44 70.00 11.25 8.229 LPstp Mean > LDstp Mean and Reject Ho 44.75 72.74

6.55 36.87 10.94 6.817 LPstp Mean > LDstp M ean and Reject Ho 18.47 33.38

7.66 29.84 8.43 6.892 LPstp Mean > LDstp M ean and Reject Ho 15.32 27.49

8.77 23.12 8.43 6.069 LPstp Mean > LDstp Mean and Reject Ho 9.94 19.43

9.88 22.19 9.53 5.326 LPstp Mean > LDstp Mean and Reject H q 8.01 17.31

11.00 12.81 11.88 0.536 Accept Ho -2.46 4.32

12.11 12.18 10.63 0.955 Accept Ho -1.63 4.73

13.22 10.31 13.91 -2.101 LPstp Mean < LDstp Mean and Reject H q -6.95 -0.24

14.33 10.31 12.66 -1.451 Accept Ho -5.52 0.82

15.44 9.06 11.72 -1.811 LPstp Mean < LDstp Mean and Reject Ho -5.53 0.21

16.55 8.28 14.53 -3.811 LPstp Mean < LDstp M ean and Reject Ho -9.46 -3.03

17.66 7.34 12.97 -3.829 LPstp Mean < LDstp M ean and Reject Ho -8.51 -2.74

18.77 6.10 13.28 -5.006 LPstp Mean < LDstp M ean and Reject H q -9.99 -4.36

19.88 5.62 15.31 -6.095 LPstp Mean < LDstp Mean and Reject Ho -12.81 -6.57

21.00 5.31 13.59 -5.809 LPstp Mean < LDstp Mean and Reject Ho -11.07 -5.48

22.11 5.78 15.94 -6.151 LPstp Mean < LDstp Mean and Reject Ho -13.39 -6.92

Table 4.1.2.1 Time Cost o f Steepest Ascent Hill-climbing on Class I

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-PRIMAL GRAPH

-DUAL GRAPH

10000

1000

100

10

1

V ‘b- V <b- <o- %• o>- "O' V* ' J ' *v' ' ? ' ?

M ove C ost R atio

<v̂-

Figure 4.1.2.1 Comparison of Tm Mean of

Steepest Aseent Hill-cIimbing on Class I

M ove Cost

R atio

L Pstp

Rn

L Pstp

Nd

L Pstp

Cc

L D stp

R n

LD stp

Nd

L D stp

Cc

2.11 335.91 73377.97 366889.84 12.02 3925.98 35333.82

3.22 57.41 13835.15 69175.75 3.15 1617.67 14559.03

4.33 13.23 3554.18 17770.90 2.35 1626.57 14639.13

5.44 12.08 3228.24 16141.20 2.33 1901.65 17114.85

6.55 6.03 1707.28 8536.40 1.84 1792.47 16132.23

7.66 4.81 1339.21 6696.05 1.38 1472.06 13248.54

8.77 3.82 1060.51 5302.55 1.30 1456.58 13109.22

9.88 3.74 993.92 4969.60 1.23 1635.47 14719.23

11.00 2.21 579.12 2895.60 1.35 2013.10 18117.90

12.11 2.09 551.71 2758.60 1.23 1860.76 16746.84

13.22 1.83 468.26 2341.30 1.34 2359.98 21239.82

14.33 1.95 468.38 2341.89 1.28 2239.70 20157.30

15.44 1.66 396.15 1980.75 1.05 2018.93 18170.36

16.55 1.56 364.07 1820.35 1.08 2138.05 19242.44

17.66 1.38 313.70 1568.50 1.09 2286.00 20574.00

18.77 1.29 273.46 1367.30 1.04 2273.56 20462.03

19.88 1.25 244.25 1221.25 1.08 2662.71 23964.39

21.00 1.16 230.95 1154.75 1.02 2413.82 21724.38

22.11 1.26 250.11 1250.55 12.02 3925.98 35333.82

Table 4.1.2.2 Rn, Nd and Cc o f Steepest Ascent Hill-elimbing on Class I

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.1.2.1 is the time cost (Tm) result o f steepest ascent hill-climbing on Class I on

both primal and dual constraint graphs. The result o f Table 4.1.2.1 is also showed as a

graph in Figure 4.1.2.1. From this figure we can see that steepest ascent hill-climbing

can get a better performance in the dual representation when move cost ratio is low

(MoR from 2.11 to 9.88). As the move cost ratio is increasing, steepest ascent

hill-climbing will find a solution faster in the primal representation (MoR from 15.44

to 22.11) than in the dual representation. We give Rn, Nd and Cc o f steepest ascent

hill-climbing on Class I in Table 4.1.2.2.

4.1.3 Min-conflicts Heuristics Hill-climbing on Class I

Move Cost

Ratio

LPm c

Tm M ean

LDm c

T m M ean
T_value Accept Ho!

C l

Low er

Bound

C l

U pper

Bound

2.11 151.16 9.37 9.037 LPmc Mean > LDmc Mean and Reject H q 111.03 172.54

3.22 137.77 9.10 10.108 LPmc Mean > LDmc Mean and Reject Hg 103.72 153.61

4.33 121.87 5.14 10.156 LPmc Mean > LDmc Mean and Reject Hg 94.21 139.25

5.44 76.10 6.57 9.308 LPmc Mean > LDmc Mean and Reject Hg 54.88 84.17

6.55 53.28 7.05 8.745 LPmc Mean > LDmc Mean and Reject Hg 35.86 56.59

7.66 29.84 7.04 7.534 LPmc Mean > LDmc Mean and Rejeet Hg 16.86 28.73

8.77 22.97 7.19 6.528 LPmc Mean > LDmc Mean and Reject Hg 11.04 20.51

9.88 13.28 7.81 3.548 LPmc Mean > LDmc Mean and Reject Hg 2.44 8.49

11.00 10.16 8.28 1.431 Accept Hg -0.69 4.45

12.11 9.38 8.52 0.625 Accept Hg -1.82 3.53

13.22 7.34 9.38 -1.621 Accept Hg -4.51 0.42

14.33 7.35 9.84 -1.821 LPmc Mean < LDmc Mean and Reject Hg -5.17 0.19

15.44 4.69 10.00 -4.342 LPmc Mean < LDmc Mean and Reject Hg -7.71 -2.91

16.55 5.15 10.16 -4.114 LPmc Mean < LDmc Mean and Reject Hg -.39 -2.62

17.66 3.59 12.19 -6.017 LPmc Mean < LDmc Mean and Reject Hg -11.41 -5.79

18.77 3.43 11.88 -7.115 LPmc Mean < LDmc Mean and Reject Hg -10.77 -6.12

19.88 3.28 11.41 -5.854 LPmc Mean < LDmc M ean and Reject Hg -10.85 -5.41

21.00 3.13 13.91 -8.029 LPmc Mean < LDme Mean and Reject Hg -13.41 -8.14

22.11 2.65 12.97 -9.222 LPmc Mean < LDmc Mean and Reject Hg -12.51 -8.12

Table 4.1.3.1 Time Cost o f Min-conflicts Heuristics Hill-cIimbing on Class I

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- PRIMAL GRAPH

- DUAL GRAPH
10000

I 1000

oU
I 100
H
o

I

^ 'O' "O'

M ove C ost Ratio

Figure 4.1.3.1 Comparison of Tm Mean of

Min-conflicts Heuristics Hill-climbing on Class I

Move Cost

Ratio

LPmc

Rn

LPmc

Nd

LPmc

Cc

LDmc

Rn

LDmc

Nd

LDmc

Cc

2.11 335.91 73377.97 366889.84 12.02 3925.98 35333.82

3.22 57.41 13835.15 69175.75 3.15 1617.67 14559.03

4.33 13.23 3554.18 17770.90 2.35 1626.57 14639.13

5.44 12.08 3228.24 16141.20 2.33 1901.65 17114.85

6.55 6.03 1707.28 8536.40 1.84 1792.47 16132.23

7.66 4.81 1339.21 6696.05 1.38 1472.06 13248.54

8.77 3.82 1060.51 5302.55 1.30 1456.58 13109.22

9.88 3.74 993.92 4969.60 1.23 1635.47 14719.23

11.00 2.21 579.12 2895.60 1.35 2013.10 18117.90

12.11 2.09 551.71 2758.60 1.23 1860.76 16746.84

13.22 1.83 468.26 2341.30 1.34 2359.98 21239.82

14.33 1.95 468.38 2341.89 1.28 2239.70 20157.30

15.44 1.66 396.15 1980.75 1.05 2018.93 18170.36

16.55 1.56 364.07 1820.35 1.08 2138.05 19242.44

17.66 1.38 313.70 1568.50 1.09 2286.00 20574.00

18.77 1.29 273.46 1367.30 1.04 2273.56 20462.03

19.88 1.25 244.25 1221.25 1.08 2662.71 23964.39

21.00 1.16 230.95 1154.75 1.02 2413.82 21724.38

22.11 1.26 250.11 1250.55 12.02 3925.98 35333.82

Table 4.1.3.2 Rn, Nd and Cc of Min-conflicts Heuristics Hill-climbing on Class I

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.1.3.1 is the time cost (Tm) result o f min-conflicts heuristics hill-climbing on

Class I on both primal and dual constraint graphs. The result o f Table 4.1.3.1 is also

showed as a graph in Figure 4.1.3.1. From this figure we can see that min-conflicts

heuristics hill-climbing can get a better performance in the dual representation when

move cost ratio is low (MoR from 2.11 to 9.88). As the move cost ratio is increasing,

min-conflicts heuristics hill-climbing will find a solution faster in the primal

representation (MoR from 14.33 to 22.11) than in the dual representation. We give Rn,

Nd and Cc o f min-conflicts heuristics hill-climbing on Class I in Table 4.1.3.2.

4.1.4 Comparisons among Different Hill-climbing algorithms on

Class I

I

10000

1000

100

10

1

Move Cost Ratio

- LDsim

■■■* LPstp

LDstp

LPmc

- • — LDmc

Figure 4.1.4.1 Comparisons o f Tm Means for LPsim, LPstp, LPmc, LDsim,

LDstp and LDmc on Class I

Based on Table 4.1.1.1, Table 4.1.2.1 and Table 4.1.3.1, we give Figure 4.1.4.1 to

compare the Tm means o f all the three algorithms on Class 1. From Figure 4.1.4.1 we

can see that the three hill-climbing methods have similar performance on both primal

and dual representations. But steepest ascent hill-climbing does not perform so well as

simple hill-climbing and min-conflicts heuristics hill-climbing on both primal and

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dual representations that such characters is also showed from Figure 4.1.4.2 and

Figure 4.1.4.3. Figure 4.1.4.2 and Figure 4.1.4.3 which compare Ne among these three

algorithms on both representations are based on Table 4.1.1.2, Table 4.1.2.2 and

Table 4.1.3.2. In Figure 4.1.4.1, 4.1.4.2 and 4.1.4.3, min-conflicts heuristics

hill-climbing suggests that it have the best performance among the three algorithms.

100000

10000

LPsim

LPstp

LPmc

1000

100

M ove C ost Ratio

Figure 4.1.4.2 Comparisons o f Nc for LPsim, LPstp and LPmc on Class I

-a

XJ
oz
0

1
;z

10000

1000

100

10

......■-— * «-... ^ ___.M---------------
f"" -----1— ..

“b ’ V <b- <b- %• o,-

Move Cost Ratio

- LDsim

'• LDstp

-LDmc

Figure 4.1.4.3 Comparisons o f Nc for LDsim, LDstp and LDmc on Class I

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Experiment Results and Analysis on Class II

In this section we present experiment results based on the problem instances in Class II.

This class includes 17 problems each o f which has 9 variables, domain size 20,

problem arity 3 and constraint density 0.06. Constraint tightness changes from 0.0075

to 0.03 in steps o f 0.0025, from 0.03 to 0.1 in steps o f O.OI.The move cost ratio

increases from 3.10 to 42.05. Class II is based on Class I but it enlarges the number o f

domain size from 10 to 20.

4.2.1 Simple Hill-climbing on Class II

Move Cost

Ratio

LPsim

Tm M ean

LDsim

T m M ean
T_value Accept Ho"!

C l

L ow er

Bound

C l

U pper

Bound

3.10 2790.05 100.01 11.031 LPsim Mean > LDsim M ean and Reject H q 2212.03 3168.04

4.15 1249.37 62.96 9.611 LPsim Mean > LDsim M ean and Rejeet H q 944.46 1428.36

5.21 1114.21 48.59 9.735 LPsim Mean > LDsim M ean and Reject H q 851.09 1280.14

6.26 369.84 43.28 8.788 LPsim Mean > LDsim M ean and Reject H q 253.72 399.39

7.31 322.19 35.93 8.837 LPsim Mean > LDsim M ean and Reject H q 222.77 349.74

8.36 222.50 30.15 8.602 LPsim Mean > LDsim M ean and Reject H q 148.52 236.17

9.42 147.17 33.59 7.538 LPsim Mean > LDsim M ean and Rejeet H q 84.04 143.11

10.47 122.50 38.59 6.492 LPsim Mean > LDsim M ean and Rejeet H q 58.57 109.24

11.52 116.10 45.63 5.752 LPsim M ean > LDsim M ean and Reject H q 46.46 94.47

12.57 66.08 31.25 4.791 LPsim M ean > LDsim M ean and Reject H q 20.57 49.08

16.78 37.81 30.31 1.572 Accept H q -1.84 16.84

21.00 22.66 35.00 -3.014 LPsim Mean < LDsim M ean and Reject H q -20.36 -4.31

25.21 17.65 40.05 -5.277 LPsim Mean < LDsim Mean and Rejeet H q -30.71 -14.08

29.42 13.90 38.13 -6.168 LPsim Mean < LDsim Mean and Rejeet H q -31.92 -16.53

33.63 11.88 51.41 -7.737 LPsim Mean < LDsim Mean and Reject H q -49.54 -29.51

37.84 11.87 52.82 -7.852 LPsim Mean < LDsim Mean and Reject H q -51.17 -30.72

42.05 9.06 50.47 -8.362 LPsim Mean < LDsim Mean and Reject H q -51.11 -31.71

Table 4.2.1.1 Time Cost of Simple Hill-climbing on Class II

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-PRIMAL GRAPH

■■ DUAL GRAPH

10000

1000

100

10

1

V <3- fo- %• <>,■ ^■

M ove C ost Ratio

Figure 4.2.1.1 Comparison of Tm Mean o f

Simple Hill-cIimbing on Class II

M ove C ost

R atio

LPsim

Rn

LPsim

Nd

LPsim

Cc

LDsim

Rn

LDsim

Nd

LDsim

Cc

3.10 475.43 128582.08 642910.44 21.90 16957.69 152619.2

4.15 199.09 57851.64 289258.16 10.22 10367.76 93309.93

5.21 172.99 51667.53 258337.64 6.66 8846.21 79615.89

6.26 55.45 17233.10 86165.50 5.32 7903.72 71133.47

7.31 47.31 14982.82 74914.10 3.61 6311.84 56806.56

8.36 32.34 10419.11 52095.55 2.77 5462.39 49161.51

9.42 20.29 6531.80 32659.03 2.73 6101.02 54909.18

10.47 17.42 5670.87 28354.35 2.87 6955.54 62599.86

11.52 16.71 5396.73 26983.65 2.90 7853.72 70683.47

12.57 9.47 3061.06 15305.30 1.92 5539.44 49854.96

16.78 5.39 1732.79 8663.95 1.56 5463.11 49167.99

21.00 3.20 1011.59 5057.95 1.38 6299.44 56694.96

25.21 2.63 794.15 3970.75 1.30 7097.38 63876.42

29.42 2.10 622.03 3110.15 1.21 6876.21 61885.89

33.63 1.86 497.50 2487.50 1.20 8489.26 76403.34

37.84 1.93 529.90 2649.50 1.20 9171.98 82547.82

42.05 1.62 405.44 2027.2 1.10 9004.26 81038.43

Table 4.2.1.2 Rn, Nd and Cc o f Simple Hill-climbing on Class II

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.2.1.1 is the time cost (Tm) result o f simple hill-climbing on Class II on both

two kinds o f the constraint graphs. The result o f Table 4.2.1.1 is also presented as a

graph in Figure 4 .2 .1.1. From this figure we can see that simple hill-climbing can find

a solution faster in the dual representation when move cost ratio is low (MoR from

3.10 to 12.57). As the move cost ratio is increasing which indicates the problem is

getting looser, simple hill-climbing will get a better performance in the primal

representation (MoR from 21.00 to 42.05).

We give Rn, Nd and Cc o f simple hill-climbing on Class II in Table 4 .2 .1.2. As the

same situation in Class I, for those problem instances with very tight constraints,

simple hill-climbing will spend a lot o f time to regenerate an initial state in the primal

representation, thus, it cost longer time to find a solution as more nodes are visited in

the search tree and more constraints are checked.

4.2.2 Steepest Ascent Hill-climbing on Class II

Table 4.2.2.1 is the time cost (Tm) result o f steepest ascent hill-elimbing on Class II

on both primal and dual constraint graphs. The result o f Table 4.2.2.1 is also showed

as a graph in Figure 4.2.2.1. From this figure we can see that steepest ascent

hill-climbing can get a better performance in the dual representation when move cost

ratio is low (MoR from 3.10 to 16.78). As the move cost ratio is increasing, steepest

ascent hill-climbing will find a solution faster in the primal representation (MoR from

25.21 to 42.05) than in the dual representation. We give Rn, Nd and Cc o f steepest

ascent hill-climbing on Class II in Table 4.2.2.2.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Move Cost

Ratio

L Pstp

T m M ean

LD stp

T m M ean
T_value Accept Ho?

C l

Low er

B ound

C l

U pper

Bound

3.10 3195.47 94.68 9.157 LPstp Mean > LDstp Mean and Reject Ho 2437.15 3764.42

4.15 3206.58 106.72 9.505 LPstp Mean > LDstp Mean and Reject H q 2460.68 3739.03

5.21 1114.21 48.59 9.735 LPstp Mean > LDstp Mean and Reject H q 851.09 1280.14

6.26 749.69 62.19 9.147 LPstp Mean > LDstp Mean and Reject Ho 540.18 834.81

7.31 749.53 67.66 9.065 LPstp Mean > LDstp Mean and Reject Ho 534.45 829.28

8.36 337.03 43.13 8.638 LPstp Mean > LDstp M ean and Reject Ho 227.21 360.58

9.42 313.91 55.15 8.129 LPstp Mean > LDstp M ean and Reject Ho 196.36 321.15

10.47 174.53 50.78 6.822 LPstp Mean > LDstp M ean and Reject Ho 88.21 159.29

11.52 179.85 47.65 6.833 LPstp Mean > LDstp M ean and Reject Ho 94.28 170.11

12.57 119.37 51.56 6.229 LPstp Mean > LDstp M ean and Reject Ho 46.47 89.14

16.78 82.97 45.79 3.947 LPstp Mean > LDstp M ean and Reject Ho 18.71 55.64

21.00 48.91 44.06 0.497 Accept H q -14.25 23.95

25.21 35.62 56.40 -3.182 LPstp Mean < LDstp M ean and Reject Ho -33.57 -7.98

29.42 26.41 55.63 -4.901 LPstp Mean < LDstp Mean and Reject Ho -40.91 -17.53

33.63 20.93 61.72 -6.491 LPstp Mean < LDstp Mean and Reject Ho -53.11 -28.47

37.84 20.32 66.25 -6.887 LPstp Mean < LDstp Mean tind Reject H q -59.00 -32.85

42.05 15.78 65.94 -7.738 LPstp Mean < LDstp Mean and Reject H q -62.86 -37.45

Table 4.2.2.1 Time Cost o f Steepest Ascent Hill-climbing on Class II

-P R IM A L GRA PH

-D U A L G R A P H

10000

I
ts 1000
0
1 100H
0
u
1

<D- ‘b - 'V- *b- s> - Jo*
(S' (J*

M ove C ost Ratio

Figure 4.2.2.1 Comparison of Tm Mean of

Steepest Ascent Hill-climbing on Class II

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M ove C ost

R atio

L Pstp

Rn

L Pstp

Nd

L Pstp

Cc

LD stp

Rn

LD stp

Nd

LD stp

Cc

3.10 368.09 150221.52 751107.75 14.72 16568.73 149118.56

4.15 331.01 149641.73 748208.94 12.07 18570.46 167134.14

5.21 172.99 51667.53 258337.64 6.66 8846.21 79615.89

6.26 66.21 34812.32 174061.60 4.92 11183.71 100653.39

7.31 63.21 34898.89 174494.45 3.91 10174.53 91570.77

8.36 27.80 15773.04 78865.20 2.68 7745.12 69706.08

9.42 25.13 14685.85 73429.25 2.90 9697.53 87277.77

10.47 13.48 8132.25 40661.25 2.45 8847.90 79631.10

11.52 13.52 8254.26 41271.30 2.16 8398.32 75584.88

12.57 8.84 5497.38 27486.90 2.15 9321.73 83895.57

16.78 6.02 3826.39 19131.94 1.47 7877.93 70901.36

21.00 3.43 2180.78 10903.90 1.25 7683.34 69150.06

25.21 2.52 1604.37 8021.85 1.33 9876.71 88890.39

29.42 2.03 1209.06 6045.35 1.14 9661.48 86953.32

33.63 1.62 935.39 4676.95 1.15 10886.97 97982.73

37.84 1.62 891.11 4455.54 1.13 11926.19 107335.71

42.05 1.35 718.80 3594.00 1.05 11681.23 105131.07

Table 4.2.2.2 Rn, Nd and Cc o f Steepest Ascent Hili-climbing on Class II

4.2.3 Min-conflicts Heuristics Hill-climbing on Class II

Table 4.2.3.1 is the time cost (Tm) result o f min-conflicts heuristics on Class II on

both primal and dual constraint graphs. The result o f Table 4.2.3.1 is also showed as a

graph in Figure 4.2.3.1. From this figure we can see that min-conflicts heuristics

hill-climbing can get a better performance in the dual representation when move cost

ratio is low (MoR from 3.10 to 16.78). As the move cost ratio is increasing,

min-conflicts heuristics hili-ciimbing will find a solution faster in the primal

representation (MoR from 25.21 to 42.05) than in the dual representation. We give Rn,

Nd and Cc o f min-conflicts heuristics hill-climbing on Class III in Table 4.2.3.2.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Move Cost

Ratio

LPm c

T m M ean

LDm c

T m M ean
T_value A ccept Ho?

C l

Low er

Bound

C l

U pper

Bound

3.10 316.29 30.18 9.127 LPmc Mean > LDmc Mean and Reject Ho 224.67 347.54

4.15 289.22 26.27 9.552 LPmc Mean > LDmc Mean and Reject Ho 208.99 316.91

5.21 300.60 52.64 8.316 LPmc Mean > LDmc Mean and Reject Ho 189.52 306.39

6.26 273.44 25.32 9.129 LPmc Mean > LDmc Mean and Reject Ho 194.85 301.38

7.31 251.70 21.22 9.176 LPmc Mean > LDmc Mean and Reject Ho 181.25 279.71

8.36 227.20 28.45 8.721 LPmc Mean > LDmc Mean and Reject Ho 154.08 243.41

9.42 201.89 25.78 8.689 LPmc Mean > LDmc Mean and Reject Ho 136.38 215.83

10.47 142.03 29.06 7.871 LPmc Mean > LDmc Mean and Reject Ho 84.83 141.12

11.52 101.72 28.75 7.036 LPmc Mean > LDmc Mean and Reject H q 52.64 93.29

12.57 86.25 33.91 5.688 LPmc Mean > LDmc Mean and Reject Ho 34.31 70.37

16.78 51.72 34.68 2.994 LPmc Mean > LDmc Mean and Reject Ho 5.88 28.19

21.00 33.75 37.50 -0.922 Accept Ho -11.71 4.21

25.21 20.94 40.78 -5.372 LPmc Mean < LDmc Mean and Reject Ho -27.07 -12.61

29.42 20.95 46.72 -6.262 LPmc Mean < LDmc Mean and Reject Ho -33.83 -17.71

33.63 16.56 47.66 -8.541 LPmc Mean < LDmc Mean and Reject H q -38.23 -23.96

37.84 11.41 52.81 -10.249 LPmc Mean < LDmc Mean and Reject H q -49.31 -33.48

42.05 8.60 59.22 -11.791 LPmc Mean < LDmc Mean and Reject Ho -59.03 -42.21

Table 4.2.3.1 Time Cost of Min-conflicts Heuristics Hill-climbing on Class II

-P R IM A L GRA PH

-D U A L G R A PH

Oo

10000

^ V V <b- -v- %■ o>- ^ \- cf>- c^- 4 ' ^■

M ove C ost R atio

Figure 4.2.3.1 Comparison of Tm Mean of

Min-conflicts Heuristics Hill-climbing on Class II

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Move Cost

R atio

L Pm c

Rn

LPm c

Nd

LPm c

Cc

LDm c

Rn

LDmc

Nd

LDm c

Cc

3.10 48.29 9719.92 48599.60 9.07 3393.21 30538.89

4.15 49.98 8765.79 43828.95 5.59 3055.06 27495.54

5.21 56.28 9435.97 7179.85 7.88 5517.62 49658.58

6.26 55.86 8638.21 43191.05 3.28 2871.23 25841.08

7.31 52.95 7935.67 39678.35 2.53 2463.49 22171.45

8.36 48.11 7091.12 35455.60 2.83 3310.54 29794.86

9.42 43.86 6405.69 32028.45 2.54 2867.86 25810.74

10.47 32.20 4569.75 22848.75 2.58 3276.73 29490.57

11.52 23.55 3272.35 16361.75 2.30 3255.74 29301.66

12.57 19.26 2735.88 13679.40 2.50 3894.00 35046.00

16.78 12.42 1669.74 8348.70 2.02 4007.50 36067.50

21.00 8.49 1087.09 5435.45 1.81 4277.69 38499.21

25.21 5.36 675.23 3376.15 1.65 4659.31 41933.88

29.42 5.35 653.08 3265.40 1.63 5209.89 46889.01

33.63 4.21 493.38 2466.89 1.64 5451.34 49062.06

37.84 3.35 368.36 1841.80 1.55 6013.13 54118.17

42.05 2.47 261.78 1308.90 1.48 6684.93 60164.37

Table 4.2.3.2 Rn, Nd and Cc o f Min-conflicts Heuristics Hill-climbing on Class II

4.2.4 Comparisons among Different Hill-climbing algorithms on

Class II

Based on Table 4.2.1.1, Table 4.2.2.1 and Table 4.2.3.1, we give Figure 4.2.4.1 to

compare the Tm means o f all the three algorithms on Class II. Figure 4.2.4.1 shows

three hill-climbing methods have similar characters as they are in Class I. Steepest

ascent hill-climbing does not perform so well as simple hill-climbing and

min-conflicts heuristics hill-climbing on both primal and dual representations (See

Figure 4.2.4.2 and Figure 4.2.4.3). These two graphs comparing Nc among the three

algorithms on both representations are based on Table 4.2.1.2, Table 4.2.2.2 and

Table 4.2.3.2. In Figure 4.2.4.1, 4.2.4.2 and 4.2.4.3, min-conflicts heuristics

hill-climbing suggests that it have the best performance among the three algorithms.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0
1H
<4-.O

10000

1000 LPsim

LDsim

 LPstp

LDstp

LPmc

- • — LDmc

vj) <̂\ ^ tSV
= V <0- fo- %■ ^ S - ^fo• ' - - '

Move Cost Ratio

"?>■ 4 '

Figure 4.2.4.1 Comparisons o f Tm Means for LPsim, LPstp, LPmc, LDsim,

LDstp and LDmc on Class II

1000000

100000
•o

10000
>

oz

— LPsi m

-~m— LPstp

"A - LPmc
1000

0

1z
100

Move Cost Ratio

Figure 4.2.4.2 Comparisons o f Nc for LPsim, LPstp and LPmc on Class II

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T)O

100000

10000

1000

100

10

1

- LDsim

LDstp

- LDmc

^ V <3- fc- ^ • %• <%■ .JJ- <V- c^- o$b- 4 '

Move Cost Ratio

Figure 4.2A.3 Comparisons o f Nc for LDsim, LDstp and LDmc on Class II

4.3 Experiment Results and Analysis on Class III

In this section we present experiment results based on the problem instances in Class III.

This class includes 21 problems each o f which has 12 variables, domain size 10,

problem arity 5 and constraint density 0.006. Constraint tightness changes from 0.01

to 0.02 in steps o f 0.01, from 0.02 to 0.025 in steps o f 0.0025, from 0.03 to 0.1 in

steps o f 0.01.The move cost ratio increases from 26.58 to 266.75. Class 111 is based on

Class 1 but it enlarges the number o f variables from 9 to 12 and arity from 3 to 5.

4.3.1 Simple Hill-climbing on Class III

Table 4.3.1.1 is the time cost (Tm) result o f simple hill-climbing on Class 111 on both

two kinds o f the constraint graphs. The result o f Table 4.3.1.1 is also presented as a

graph in Figure 4.3.1.1. From this figure we can see that simple hill-climbing can find

a solution faster in the dual representation when move cost ratio is low (MoR from

26.58 to 66.61). As the move cost ratio is increasing which indicates the problem is

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

getting looser, simple hill-climbing will get a better performance in the primal

representation (MoR from 106.63 to 266.75) than in the dual representation.

Move Cost

Ratio

LPsim

T m M ean

LDsim

T m M ean
T_value A ccept Ho"!

C l

L ow er

B ound

C l

U pper

B ound

26.58 2124.86 123.91 9.889 LPsim Mean > LDsim M ean and Reject Ho 1604.39 2397.51

29.25 2247.32 119.53 10.040 LPsim Mean > LDsim Mean and Reject Ho 1712.43 2543.14

31.92 1359.38 118.59 9.271 LPsim Mean > LDsim M ean and Reject Ho 978.47 1503.11

34.58 1425.47 127.50 9.147 LPsim Mean > LDsim Mean and Reject Ho 1019.84 1576.09

37.25 1476.25 128.75 9.189 LPsim Mean > LDsim M ean and Reject Ho 1060.11 1634.89

39.92 982.66 128.91 8.696 LPsim Mean > LDsim M ean and Reject Ho 661.33 1046.16

42.59 864.06 99.37 8.775 LPsim Mean > LDsim M ean and Reject Ho 593.89 935.48

45.26 872.35 135.46 8.394 LPsim M ean > LDsim M ean and Reject Ho 564.82 908.950

47.93 506.40 141.39 6.941 LPsim Mean > LDsim Mean and Reject Ho 261.94 468.07

50.60 490.47 132.03 6.981 LPsim Mean > LDsim Mean and Reject H q 257.81 459.06

53.26 459.22 138.91 6.715 LPsim Mean > LDsim Mean and Reject Ho 226.81 413.81

59.92 303.59 122.18 5.613 LPsim Mean > LDsim M ean and Reject H q 118.06 244.75

66.61 282.50 147.64 4.282 LPsim Mean > LDsim M ean and Reject Ho 73.14 196.57

79.95 163.28 158.91 0.195 Accept Ho -39.51 48.2

106.63 77.18 189.22 -5.656 LPsim Mean < LDsim M ean and Reject Ho -150.86 -73.21

133.32 46.09 232.98 -8.206 LPsim Mean < LDsim Mean and Reject Ho -231.52 -142.25

160.00 28.75 255.93 -9.215 LPsim Mean < LDsim M ean and Reject Ho -275.49 -178.86

186.69 23.91 280.16 -9.529 LPsim Mean < LDsim Mean and Reject Ho -203.54 -308.95

213.37 17.50 341.57 -9.898 LPsim Mean < LDsim M ean and Reject Ho -388.23 -259.91

240.06 15.00 398.91 -10.045 LPsim M ean < LDsim M ean and Reject Ho -458.81 -309.01

266.75 11.25 426.72 -10.168 LPsim Mean < LDsim M ean and Reject Ho -495.55 -335.38

Table 4.3.1.1 Time Cost o f Simple Hill-climbing on Class III

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-PRIMAL GRAPH

- DUAL GRAPH

o0
1H
cC3

10000

1000

100

10

1

Move Cost Ratio

Figure 4.3.1.1 Comparison of Tm Mean o f

Simple Hill-climbing on Class III

M ove C ost

R atio

LPsim

Rn

LPsim

Nd

LPsim

Cc

LDsim

Rn

LDsim

Nd

LDsim

Cc

26.58 405.53 70803.38 354016.88 3.51 19086.69 209953.60

29.25 422.68 74995.75 374978.80 3.08 18278.88 201067.69

31.92 244.77 45028.40 225141.95 2,76 18227.86 200506.60

34.58 256.78 47294.92 236474.64 2.83 20011.91 220130.95

37.25 260.60 49105.26 245526.30 2.59 19785.86 217644.69

39.92 172.56 32716.20 163581.00 2.28 18621.27 204834.05

42.59 148.50 28687.06 143435.30 1.78 15237.18 167608.98

45.26 151.28 29081.20 145406.00 2.13 20854.36 229397.88

47.93 86.17 16845.92 84229.60 2.15 21455.84 236014.23

50.60 82.02 16271.24 81356.20 1.89 19958.81 219546.92

53.26 77.24 15283.55 76417.75 1.93 21541.56 236957.12

59.92 49.64 10056.69 50283.45 1.83 18571.44 204285.94

66.61 45.75 9361.16 46805.80 1.66 23247.17 255718.80

79.95 25.99 5405.01 27025.05 1.42 24240.04 266640.53

106.63 12.33 2541.69 12708.45 1.35 29216.86 321385.40

133.32 7.21 1505.43 7527.15 1.29 36396.42 400360.62

160.00 4.48 920.99 4604.95 1.20 40011.86 440130.40

186.69 3.89 782.15 3910.75 1.14 43114.69 474261.47

213.37 2.91 563.53 2817.70 1.17 53121.55 584337.10

240.06 2.59 483.69 2418.45 1.17 60105.34 661158.75

266.75 2.02 361.63 1808.15 1.19 65107.29 716180.06

Table 4.3.1.2 Rn, Nd and Cc o f Simple Hill-climbing on Class HI

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We give Rn, Nd and Cc o f simple hill-climbing on Class II in Table 4.3.1.2. As the

same situations in Class I and Class II, for those problem instances with very tight

constraints, simple hill-climbing will spend a lot o f time to regenerate an initial state

in the primal representation, thus, it cost longer time to find a solution as more nodes

are visited in the search tree and more constraints are checked.

4.3.2 Steepest Ascent Hill-climbing on Class III

Move Cost

Ratio

L Pstp

T m M ean

LD stp

T m M ean
T_value Aeeept Mg'!

C l

Low er

B ound

C l

U pper

Bound

26.58 3327.02 167.03 9.537 LPstp Mean > LDstp Mean and Reject Hg 2510.59 3809.38

29.25 2867.67 246.41 9.141 LPstp Mean > LDstp Mean and Reject Hg 2059.19 3183.32

31.92 2597.03 157.64 9.396 LPstp Mean > LDstp Mean and Reject Hg 1930.54 2948.23

34.58 2118.11 103.59 9.502 LPstp Mean > LDstp Mean and Reject Hg 1598.99 2430.04

37.25 1712.18 154.69 9.068 LPstp Mean > LDstp M ean and Reject Hg 1220.86 1894.11

39.92 1570.94 142.81 9.056 LPstp Mean > LDstp Mean and Reject Hg 1119.05 1737.21

42.59 1252.49 137.66 8.826 LPstp Mean > LDstp Mean and Reject Hg 867.27 1362.38

45.26 1131.40 146.56 8.631 LPstp Mean > LDstp M ean and Reject Hg 761.19 1208.48

47.93 945.00 107.66 8.814 LPstp Mean > LDstp Mean and Reject Hg 651.14 1023.53

50.60 591.40 96.88 8.262 LPstp Mean > LDstp Mean and Reject Hg 377.21 611.83

53.26 663.91 115.00 8.301 LPstp Mean > LDstp Mean and Reject Hg 419.31 678.51

59.92 641.71 114.21 8.100 LPstp Mean > LDstp Mean and Reject H 399.86 655.13

66.61 393.75 136.72 6.186 LPstp Mean > LDstp M ean and Reject Hg 175.59 338.46

79.95 219.06 136.09 3.242 LPstp Mean > LDstp Mean and Reject Hg 32.82 133.11

106.63 120.00 169.22 -2.42 LPstp Mean < LDstp M ean and Reject Hg -88.95 -9.48

133.32 89.85 163.28 -4.071 LPstp Mean < LDstp Mean and Reject Hg -108.77 -38.08

160.00 55.31 309.69 -8.375 LPstp Mean < LDstp Mean and Reject Hg -313.91 -194.84

186.69 40.63 196.10 -8.089 LPstp Mean < LDstp M ean and Reject Hg -193.13 -117.81

213.37 31.25 232.50 -8.953 LPstp Mean < LDstp M ean and Reject Hg -245.31 -157.19

240.06 24.38 250.16 -9.358 LPstp Mean < LDstp Mean and Reject Hg -273.06 -178.49

266.75 21.41 251.87 -9.542 LPstp Mean < LDstp Mean and Reject Hg -277.79 -183.12

Table 4.3.2.1 Time Cost of Steepest Ascent Hill-climbing on Class III

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a

u

PRIMAL GRAPH
D U A L G RA PH

^ ^ ^ ^ <b̂ 4=̂ ^ ^ ^ ^
cf>- <̂ V <̂ V 4 - 4 - kV 4* 4 - <0̂ - 4 ^ - c ^ ' c ^ ' c ^ '

M ove Cost Ratio

Figure 4.3.2.1 Comparison of Tm Mean of

Steepest Ascent Hill-cIimbing on Class III

M ove Cost

R atio

L Pstp

Rn

L Pstp

Nd

L Pstp

Cc

LD stp

Rn

L D stp

Nd

L D stp

Cc

26.58 431.56 110836.45 554182.20 5.72 26480.09 291280.90

29.25 362.75 95797.10 478985.53 4.55 23369.30 257062.22

31.92 316.07 86962.90 434814.47 4.97 22027.07 242297.77

34.58 246.97 70119.46 350597.28 2.70 16048.47 176533.19

37.25 197.45 56907.57 284537.88 3.82 24384.06 268224.70

39.92 177.33 52547.70 262738.47 3.21 21893.27 240826.00

42.59 135.41 41548.94 207744.69 2.91 21133.92 232473.10

45.26 119.06 37236.59 186182.95 2.96 22815.06 250965.60

47.93 99.59 31438.24 157191.20 2.08 16508.06 181588.66

50.60 60.89 19639.98 98199.90 1.78 15392.84 169321.23

53.26 66.97 21913.84 109569.20 1.99 17557.42 193131.60

59.92 63.98 21343.44 106717.20 1.73 17331.28 190644.16

66.61 36.99 12847.99 64239.95 1.80 20173.94 221913.44

79.95 19.52 7110.69 35553.45 1.58 19977.71 219754.81

106.63 10.47 3953.05 19765.25 1.49 25476.95 280246.38

133.32 7.22 2773.24 13866.20 1.24 24779.75 272577.30

160.00 4.56 1783.16 8915.80 1.21 28905.13 317956.40

186.69 3.23 1231.18 6155.95 1.15 29945.87 329404.62

213.37 2.65 999.85 4999.25 1.12 34841.53 383256.88

240.06 2.16 789.05 3945.25 1.14 38444.64 422891.00

266.75 1.92 681.67 3408.35 1.09 38856.80 427424.97

Table 4.3.2.2 Rn, Nd and Cc o f Steepest Ascent Hill-climbing on Class HI

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.3.2.1 is the time cost (Tm) result o f steepest ascent hill-climbing on Class III

on both primal and dual constraint graphs. The result o f Table 4.3.2.1 is also showed

as a graph in Figure 4.3.2.1. From this figure we can see that steepest ascent

hill-climbing can get a better performance in the dual representation when move cost

ratio is low (MoR from 26.58 to 79.95). As the move cost ratio is increasing, steepest

ascent hill-climbing will find a solution faster in the primal representation (MoR from

106.63 to 266.75) than in the dual representation. We give Rn, Nd and Cc o f steepest

ascent hill-climbing on Class III in Table 4.3.2.2.

4.3.3 Min-conflicts Heuristics Hill-climbing on Class HI

M ove Cost

Ratio

LPm c

T m M ean

LDm c

T m M ean
T_value Accept H gl

C l

L ow er

Bound

C l

U pper

Bound

26.58 2462.35 85.60 10.113 LPmc Mean > LDmc Mean and Reject Ho 1916.15 2837.34

29.25 2318.19 81.41 9.704 LPmc Mean > LDmc Mean and Reject Ho 1785.02 2688.53

31.92 2173.60 97.98 9.733 LPmc Mean > LDmc Mean and Reject Ho 1657.67 2493.56

34.58 2058.75 72.18 9.806 LPmc Mean > LDmc Mean and Reject H q 1589.52 2383.61

37.25 2038.75 106.78 9.721 LPmc Mean > LDmc Mean and Reject Ho 1542.45 2321.48

39.92 1735.60 90.15 9.554 LPmc Mean > LDmc Mean and Reject Ho 1307.91 1982.98

42.59 1821.83 145.63 9.273 LPmc Mean > LDmc Mean and Reject Ho 1321.91 2030.46

45.26 1556.29 89.17 9.494 LPmc Mean > LDmc Mean and Reject Ho 1164.23 1769.99

47.93 1457.30 80.93 9.498 LPmc Mean > LDmc Mean and Reject Ho 1092.36 1660.37

50.60 1350.16 93.12 9.341 LPmc Mean > LDmc Mean and Reject Ho 993.26 1520.81

53.26 1337.82 97.50 9.287 LPmc Mean > LDmc Mean and Reject Ho 978.55 1502.08

59.92 1287.49 101.40 9.482 LPmc Mean > LDmc Mean and Reject Ho 940.91 1431.24

66.61 963.13 90.15 9.184 LPmc Mean > LDmc Mean and Reject Ho 686.67 1059.28

79.95 549.21 98.43 8.678 LPmc Mean > LDmc Mean and Reject Ho 348.97 552.58

106.63 172.81 167.35 0.266 Accept Ho -34.72 45.64

133.32 83.28 148.89 -4.675 LPmc Mean < LDmc Mean and Reject Ho -93.12 -38.11

160.00 48.44 126.41 -9.901 LPmc Mean < LDmc Mean and Reject Ho -117.36 -78.57

186.69 35.15 215.78 -11.891 LPmc Mean < LDmc Mean and Reject Ho -210.41 -10.85

213.37 22.19 214.84 -11.971 LPmc Mean < LDmc Mean and Reject Ho -224.19 -161.11

240.06 14.85 245.81 -11.467 LPmc Mean < LDmc Mean and Reject Ho -269.84 -191.07

266.75 12.50 186.57 -11.047 LPmc Mean < LDmc Mean and Reject Ho -204.95 -143.18

Table 4.3.3.1 Time Cost o f Min-conflicts Heuristics Hill-climbing on Class HI

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- PRIMAL C>RAPH
-DUAL GRAPH

10000

1000

100

10

1

<0 <1̂ c§V ^ 4
0?- <b'̂- 4- 4- 4- ($?• 4- 4- <?• 4- 4 \4 \4 -

M ove Cost Ratio

Figure 4.3.3.1 Comparison o f Tm Mean of

Min-conflicts Heuristics Hill-climbing on Class HI

M ove Cost

R atio

LPm c

R n

LPm c

Nd

LPm c

Cc

LDmc

Rn

LDm c

Nd

LDm c

Cc

26.58 503.72 50474.98 252374.9 6.97 8383.09 92213.99

29.25 485.95 47376.47 236882.38 6.24 8108.44 89192.84

31.92 489.17 44655.48 223277.36 6.62 9386.93 103256.23

34.58 472.97 42179.20 210896.00 5.19 7268.07 79948.77

37.25 487.91 42241.86 211209.31 6.80 11019.01 121209.11

39.92 438.27 35993.32 179966.69 5.12 8908.09 97988.99

42.59 475.68 37991.71 189958.56 4.59 10541.29 115954.29

45.26 412.5 32551.96 162759.80 4.55 9154.77 100702.49

47.93 401.36 30409.69 152048.45 4.08 8266.28 90929.08

50.60 359.00 27374.82 136874.10 4.35 9555.30 105108.34

53.26 382.61 28069.75 140348.75 4.41 9813.70 107950.70

59.92 373.22 26799.9 133999.50 3.73 9947.34 109420.81

66.61 286.48 19872.24 99361.20 3.24 9072.86 99801.46

79.95 176.27 11717.22 58586.10 2.62 10214.13 112355.54

106.63 58.18 3671.33 18356.65 2.33 11581.12 127392.32

133.32 29.27 1809.22 9046.09 2.02 10291.42 113205.62

160.00 18.11 1061.99 5309.95 1.81 13035.08 143385.88

186.69 13.06 773.80 3869.00 1.58 13387.13 147258.44

213.37 8.77 487.13 2435.64 1.58 14913.96 164053.56

240.06 5.90 323.78 1618.90 1.32 14392.93 158322.23

266.75 5.07 270.84 1354.20 1.24 16565.75 182223.27

Table 4.3,3.2 Rn, Nd and Cc o f Min-conflicts Heuristics Hill-climbing on Class HI

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.3.3.1 is the time cost (Tm) result o f min-conflicts heuristics on Class III on

both primal and dual constraint graphs. The result o f Table 4.3.3.1 is also showed as a

graph in Figure 4.3.3.1. From this figure we can see that min-conflicts heuristics

hill-climbing can get a better performance in the dual representation when move cost

ratio is low (MoR from 26.58 to 79.95). As the move cost ratio is increasing,

min-conflicts heuristics hill-climbing will find a solution faster in the primal

representation (MoR from 133.32 to 266.75) than in the dual representation. We give

Rn, Nd and Cc o f min-conflicts heuristics hill-climbing on Class 111 in Table 4.3.3.2.

4.3.4 Comparisons among Different Hill-climbing algorithms on

Class III

Based on Table 4.3.1.1, Table 4.3.2.1 and Table 4.3.3.1, we give Figure 4.3.4.1 to

compare the Tm means o f all the three algorithms on Class 111. Figure 4.3.4.1 shows

three hill-climbing methods have similar characters as they are in Class 1 and Class 11.

Figure 4.3.4.2 and Figure 4.3.4.3 comparing Nc among the three algorithms on both

representations are based on Table 4.3.1.2, Table 4.3.2.2 and Table 4.3.3.2.

10000

1000

tfl
c;

100
tj

H
os 10

s
1

<b̂- ^
M ove C ost Ratio

- LDsim

' LPstp
-LDstp

-LPmc

Figure 4.3.4.1 Comparisons o f Tm Means for LPsim, LPstp, LPmc, LDsim,

LDstp and LDme on Class III

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1000000

100000

10000 —•— LPsim
—■— L P stp

■-“ir ■■■■ LPmc
1000

100

Move Cost Ratio

Figure 4.3.4.1 Comparisons o f Nc for LPsim, LPstp and LPmc on Class III

100000

10000

1000

100

10

1

»—LE)sim
LD stp

0 ? c?> 0^ (<> c?> Q ? 4 C§=
<!>■ 0,"' 4 ' t?*' <?■

M ove C ost Ratio

Figure 4.3.4.3 Comparisons o f Nc for LDsim, LDstp and LDmc on Class III

4.4 Conclusions

In this chapter we present the experiment result on three problem classes. The

comparisons show that local search methods can get a better performance in the dual

representation when move cost ratio is low. As the move cost ratio is increasing, local

search will find a solution faster in the primal representation than in the dual

representation. Among the three local search methods in our empirical study,

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

min-conflicts heuristics hill-climbing suggests that it have the best performance

among the three algorithms, steepest ascent hill-climbing tends to be the worst and

simple hill climbing is in the middle or sometimes it is the best.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusions

In this thesis we designed an empirical study to investigate the behaviour o f several

local search methods in primal and dual constraint graph representations. Such local

search methods used in our empirical study included simple hill-climbing, steepest

ascent hill-climbing and min-conflicts heuristics hill-climbing.

Our approach focused on observing behaviours o f several local search methods in

primal and dual constraint graphs. The measurements we used to characterize the

behaviour o f the three local search methods were: number o f times that local search

randomly generates the initial state, number o f nodes visited in the search procedure,

number o f constraints checked in the search procedure and CPU time cost by the

search procedure to find a solution. Since search node in primal constraint graph has

different meaning from it in dual constraint graph, the number o f nodes visited was

used to compare different local search methods on the same constraint graph

representation. Between the primal and dual representations, we briefly compared

time cost to find a solution. We used T-test which is a statistical analysis method to

compare the time cost means o f two groups to support the comparison in our empirical

study. We launched all T-tests by a given risk level a = 0 .0 5 , critical value T_cv

=1.645. A 95% confidence interval on the difference o f means was also given in the

comparison result.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In our comparison result all the three hill-climbing algorithms could find a solution

within a shorter time in dual representation than in primal representation when move

cost ratio was low. As the move cost ratio was increasing which indicated the problem

was getting looser, local search methods got a better performance in the primal

representation than in the dual representation. Such results show that we can use local

search to solve a CSP with tight constraints in its dual representation and gain a better

performance than using it in its primal representation. When constraints are getting

looser, using local search in primal representation is a better choice.

Among the three local search methods used in our empirical study, min-conflicts

heuristics hill-climbing suggested that it have the best performance among the three

algorithms while steepest ascent hill-climbing tended to have the worst performance

and simple hill climbing was in the middle or sometimes it was the best.

5.1 Future Work

In our empirical study, move cost o f local search is an essential factor affecting the

performance o f local search. Domain size, number o f constraints and constraint

tightness, constraint density and constraint arity in both primal and dual

representations can affect the move cost. It would be interesting if we pay more

attention to all o f the above factors on how they affect the move cost in various local

search methods. Such research will help us give a clearer view to decide which kind

o f representation is more suitable to be used in solving CSPs with different characters.

One problem for local search methods is meeting local optima. In our empirical study,

we regenerate initial state or break ties randomly (in min-conflicts heuristics) to

escape from local optima. There is also other improvement such as random walk

[SKC94] or Tabu search [Glo89] can be add to current local search methods to avoid

local optima.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

T-test

In this appendix we review some issues related to T-test which is used in the empirical

study to investigate the behaviour o f local search algorithms in CSP’s primal and dual

representations. Due to the non-deterministic manner o f local search algorithms, one

can get different solutions if running the algorithm on the same problem instance for

several times, each o f which costs different time length. The traditional way to get the

performance o f such algorithms is to run the algorithm on the same problem instance

for a number o f rounds and then get the mean. For example, one can run simple

hill-climbing on a CSP’s primal constraint graph for 100 rounds. Then one can get the

average search time by dividing the sum of search time consumed in each round by 100.

Such average search time is also called the mean o f search time for these 100 rounds.

M ost research on local search methods such as proposing a new local search algorithm

or making an improvement for a current algorithm will compare the means o f two

algorithms’ time cost, which is a common form o f conducting an empirical study. Most

research will conclude that algorithm B is better than algorithm A because the mean of

algorithm B ’s time cost is less than the mean of algorithm A ’s time cost. Is it always

correct to make such a conclusion? If the two means have some difference but do not

differ a lot, for instance, the mean o f algorithm A ’s time cost is greater than the mean o f

algorithm B ’s time cost with a difference o f 0.1 milliseconds, can we say algorithm B is

better than algorithm A? Once we have summarized such data as means, how do we

decide if the observed differences between the two algorithms are real or just a chance

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

difference caused by the natural variation within the measurements? In this thesis we

use a statistical analysis method called T-test which is a common way to approach

above questions. Generally when the sample size o f each group is larger than 30, such

test for assessing the difference o f the means between two groups is called a Z-test. In

the following let us review the related T-test issues.

The T-test assesses whether the means o f two groups are statistically different from

each other. Figure A p e n d ix l is the formula for the T-test when the variances o f the

two groups are markedly different [PG94]. This formula is a ratio. The top part o f the

ratio is the difference between the two means or averages. The bottom part is a measure

o f the variability or dispersion o f the measurements which is called the standard error

of the difference. To compute the standard error o f the difference, we take the variance

for each group and divide it by the number o f rounds o f running the algorithm in that

group. We add these two values and then take their square root. The specific formula

for computing the standard error o f the difference is given in Figure Apendix_2.

The result o f the formula in Figure Apendix l is called a T_vaiue. Now we illustrate

how to use the T value to tell whether the difference o f the two means is significant or

not:

1) The T-test is given under two hypotheses:

H o'. P a = P b , which sets the hypothesis that the two means o f the two groups

have no significant difference.

H a '. P a > P b (or P a < P b), which sets the hypothesis that the mean o f algorithm

A ’s time cost is greater (or less) than the mean o f algorithm B ’s

time cost.

2) To test the significance, we need to set a risk level which is called the alpha

level. For practical purposes, the alpha level is conventionally set at 0.05. This

means that five times out o f a hundred you would find a statistically

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

significant difference between the means even if there was none i.e., such

difference is gained by chance.

T value = _
difference between group means

variability o f groups

Xa - X b

S E (X a - X b)

I ^ - ' X b

/ Sa' Sb'

/ — 2 "!-------- 7^ Ha Hb̂

Figure Apendix l T-test formula when variances are unequal

S E (X a - X b) =

Figure Apendlx_2 Formula for the standard error o f the
difference between the means when variances are

3) We also need to determine the degrees of freedom (df) for the test. In the

T-test for equal variances, the degrees o f freedom is the sum o f the number o f

rounds o f running the algorithm in each group minus 2. For example, we run

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm A and algorithm B both for 10 rounds, i.e., ni=10 and n2=10. Then

we can get the degrees o f freedom for the T-test is 10 + 10 - 2 = 18. In the

T-test for unequal variances, the degrees o f freedom is calculated in a very

complicated way. But for practical purposes, when niand n2 are both larger

than 100, we can define d f is ^ oo.

Given the alpha level and the degrees o f freedom, we can look up the T_criticalvalue

(T_cv) in a standard table o f significance which is called a T-table. The T-table is used

to determine whether the T_value is large enough to be significant. For example, given

the alpha level a = 0 .0 5 and degrees o f freedom d f =18, we find T_cv = 1.734. Now we

compare T value with T_cv. I f |T_value| > T_cv, we can conclude that the difference

between the means o f the two groups is significant and such difference between the

groups is not likely to have been a chance finding, i.e., we reject the hypothesis Ho'- the

two means have no significant difference. If |T_valuel < T_cv, we will accept the

hypothesis Hq. the two means have no significant difference. The T value will be

positive if the first mean is larger than the second and negative if it is smaller. If

|T_value| > T_cv and T value is positive, we can conclude that the mean o f algorithm

A ’s time cost is greater than the mean o f algorithm B ’s time cost. I f |T_value| > T_cv

and T value is negative, we can conclude that the mean o f algorithm B ’s time cost is

greater than the mean o f algorithm A ’s time cost.

There are several issues we need to clarify when applying the T-test method in our

empirical study:

1) One sided T-test and two sided T-test: In one-sided T-test, it is assumed that

before doing the test we had a hypothesis that one mean o f the two means was

greater (or less) than the other mean. If we did not have such a prior

hypothesis, and we only aim to test for a possible difference between the

means, we need to do a two-sided T-test. The T-tahle for a one-sided T-test is

different from the T-table for a two-sided T-test. In a two-sided T-test one

would mostly multiply the alpha level by two. One-sided T-test is also called

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

one-tailed T-test and two-sided T-test is also called two-tailed T-test. In our

empirical study, we concentrate on whether the mean o f time cost for local

search in primal is greater (or less) than the mean o f time cost for local search

in dual, which is a one-sided T-test.

2) T-test under equal and unequal variances; In Figure Apendix l we give the

formula for T-test when the variances for two means are unequal. I f the two

variances are equal, there will be another T-test formula. The way to calculate

the standard error o f the difference (SE) and degrees o f freedom (df) is also

different. But in our empirical study, the number o f tests in eaeh group is same,

i.e., we run local search in primal representation and local search in dual

representation on the same problem instance for equivalent times where ni= n2.

Under such circumstance the T-test formula for equal variances is the same as

the T-test formula for unequal variances.

3) T_cv = 1.645 when d f - ^ oo and a = 0 .0 5 in a one-sided T-test: In our empirical

study, we will run each algorithm on one problem instance for 100 times,

which means the sample size is large enough to take the critical value (T_cv)

as 1.645. So each time after we get the T value we can compare it with 1.645

to see if there is significant difference between the means.

Some researchers [SC89] recommend reporting confidence interval wherever means

are estimated in T-test and their difference are reported. Confidence interval for the

difference o f the means in T-test [SC89] is an interval estimate for the difference o f the

means. Interval estimates are often desirable because the estimate o f the difference o f

the means may vary from sample to sample. Instead o f a single estimate for the

difference o f the means, a confidence interval generates a lower and upper bound for

the difference o f the means. The confidence interval estimate indicates how much

uncertainty there is in our estimate o f the true difference o f the means. Confidence

interval is expressed under a confidence level. In practice a 95% confidence level is the

most commonly used. A 95% confidence level can not be considered that there is a 95%

probability that the interval computed from a given sample contains the true difference

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o f the means. The interval computed from a given sample either contains the true

difference o f the means or it does not. The confidence level is the proportion o f

confidence intervals that may be expected to contain the true difference o f the means.

That is, for a 95% confidence interval, if many samples are collected and for each

sample the confidence interval is computed, there are about 95% o f these intervals

which would contain the true difference o f the means. In Figure Appendix S we give

the formula o f confidence interval at a 95% level for the difference o f the means in a

one-sided T-test when d f —>• oo, a = 0 .0 5 and variances are unequal. In our empirical

study we report the 95% confidence interval for the difference o f the means in the

T-test.

a 95% confidence interval = (Xa - Xb) ± 1.96 x SE (Xa - Xb)

= (X a - X b) ± 1 . 9 6 X
Sa' Sb'

+

Figure Appendix_3 Formula o f confidence interval at a 95% confidence

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[Bar98]Roman Bartak. “On-line Guide to Constraint Programming” ,
http://kti.mff.cuni.cz/~bartak/constraints/, Prague, 1998,

[Bar99]Roman Bartak. “Constraint Programming: In Pursuit o f the Holy Grail", in

Proceedings o f the W eek o f Doctoral Students (WDS99), Part IV, pages 555-564,

MatFyzPress, Prague, 1999.

[BB98]F. Bacchus and P. van Beek. “On the Conversion between Non-Binary and

Binary Constraint Satisfaction Problem s”, in Proc. National Conference on Artificial

Intelligence (AAAI-98), Madison, Wisconsin, 1998.

[BC94]Christian Bessiere and Marie-Odile Cordier. "Arc-Consistency and

Arc-Consistency Again", in Proceedings ECAI'94 Workshop on Constraint, 1994.

[BC99]P. van Beek and X. Chen. “CPlan: A constraint programming approach to

planning”. In Proceedings o f the Sixteenth National Conference on Artificial

Intelligence, pages 585-590, Orlando, Florida, 1999.

[BCBW02]Fahiem Bacchus, Xinguang Chen, Peter van Beek and Toby Walsh.

‘̂‘’Binary vs. Non-Binary Constraints ”, Artificial Intelligence, 2002.

87

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

http://kti.mff.cuni.cz/~bartak/constraints/

[BD94]P. van Beek and R. Dechter. "Constraint Restrictiveness Versus Local and

Global Consistency", in Principles o f Knowledge Representation and Reasoning,

(KR-94), pages 572-582, Bonn, Germany, May 1994.

[BD95]Peter van Beek and Rina Dechter. "On the minimality and global consistency o f

row-convex constraint networks", Journal o f the ACM, vol. 42, pages 543—561, 1995.

[Bee94]Peter van Beek. "On the Inherent Level o f Local Consistency in Constraint

Networks", National Conference on Artificial Intelligence, pages 368-373, 1994.

[Bes94]C. Bessi. "A fa s t algorithm to establish arc-consistency in constraint networks",

Technical Report TR-94-003, January 1994.

[BFOOJJ. C. Beck and Mark S. Fox. “Dynamic problem structure analysis as a basis fo r

constraint-directed scheduling heuristics”. Artificial Intelligence, 117(I):3I-81, 2000.

[BFML99]C. Bessiere, E. C. Freuder, P. Meseguer and J. Larrosa. “On forw ard

checking fo r non-binary constraint satisfaction ”, in Principles and Practice o f

Constraint Programming, CP-99, volume 1713, pages 88-102, Springer Verlag, 1999.

[BFR95]C. Bressiere, E. C. Freuder and J. C. Regin. “Using inference to reduce

arc-consistency computation”, in Proceedings o f IJCAI, pages 592-598, 1995.

[BFW95JA. Boming, B. N. Freeman-Benson and M. Wilson. “Constraint hierarchies ”,

Lisp and Symbolic Computation, Vol. 5, pages 223-270, 1995.

[BG95]F. Bacchus and A. Grove. “On the Forward Checking Algorithm ”, Principles

and Practice o f Constraint Programming (CP-95), pages 292—309, 1995.

88

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

[BMR95] S. Bistarelli, U. Montanari and F. Rossi. “Constraint solving over

semirings”, in Proceedings o f IJCAI, pages624- 630, 1995.

[BMRSVF99] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie and H.

Fargier. “Semiring-based CSPs and Valued CSPs: Frameworks, Properties and

Comparison”, Constraints 4(3), 1999.

[BR75]James R. Bitner and Edward M. Reingold. “Backtrackprogramming

techniques”, ACM Press, pages: 651 - 656, New York, NY, USA, 1975.

[BR95JF. Bacchus and P. van Run. “Dynamic variable ordering in CSPs ”, in

Proceedings C P ’95, pages 258-275, Cassis, France, 1995.

[BR96]Christian Bessiere and J. C. Regin. "MAC and Combined Heuristics: Two

Reasons to Forsake FC (and CBJ?) on H ard Problems", Principles and Practice o f

Constraint Programming, pages 61-75, 1996.

[BR97JC. Bessiere and J. C. Regin. ''Arc consistency fo r general constraint networks:

preliminary results”, in Proceedings o f Intemantional Joint Conference on Artificial

Intelligence, lJClA-97, PAGES 398-404, 1997.

[BTW96JJ. Borrett, E. Tsang and N. Walsh. “Adaptive constraint satisfaction: the

quickest f ir s t princip le”. Proceedings ofEC A l, pages 160-169, 1996.

[CBP95]J. C. Culberson, A. Beacham, D. Papp. “Hiding Our Colors”, C P’95

Workshop on Studying and Solving Really Hard Problems, Cassis, France, 1995.

[DB97]Rina Dechter and Peter van Beek. "Local and global relational consistency".

Theoretical Computer Science, Vol. 173, pages 283-308, 1997.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[DB01]R. Debruyne and C. Bessiere. “Domain filtering consistencies”. Artificial

Intelligence Research, 14:205-230, 2001.

[Dec90]R. Dechter. "On the expressiveness o f networks with hidden variables", in

Proceedings o f the Eighth National Conference on Artificial Intelligence (AAAI-90),

pages 556-562, Boston, MA, July 1990.

[Deb96]R. Debruyne. “Arc-Consistency in Dynamic CSPs is No More Prohibitive ”,

Eighth Conference on Tools With Artificial Intelligence, pages 299-306, 1996.

[Dec92]R. Dechter. “From local to global consistency ”, Artificial Intelligence,

55:87-102, 1992.

[DFGMTT96]David A. Clark, Jeremy Frank, Ian P. Gent, Ewan MacIntyre, Neven

Tomov and Toby Walsh. “Local Search and the Number o f Solutions”, Principles and

Practice o f Constraint Programming, 1996.

[DJ97]N. W. Dunkin and P. G. Jeavons. "Expressiveness o f Binary Constraints fo r the

Frequency Assignment Problem", in Proceedings o f the lEEE/ACM Workshop, Dial M

for Mobility, 1997.

[DM89]R. Dechter and I. Meiri. “Experimental Evaluation o f Preprocessing

Techniques in Constraint Satisfaction Problems ”, in Proceedings o f the Eleventh

International Joint Conference on Artificial Intelligence, pages 290-296, 1989.

[DP89]R. Dechter and J. Pearl. "Tree Clustering schemes fo r constraint-processing".

Artificial Intelligence, Vol. 38(3), pages 353-366, April 1989.

[Fal94]Boi Faltings. "Arc-Consistency fo r Continuous Variables ”, Artificial

Intelligence, Vol. 65, pages 363-376, 1994.

90

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

[FCS97]Jeremy Frank, Peter Cheeseman, and John Stutz. “When gravity fa ils: Local

search topology”. Journal o f Artificial Intelligence Research, 7:249-281, 1997.

[FD95]D. Frost and R. Dechter. “Look-ahead value ordering fo r constraint satisfaction

problem s”. Proceedings o f IJCAl, pages 572-577, 1995.

[FL96]H. Fargier and J. Lang. “M ixed constraint satisfaction: a fram ework fo r

decision problems under incomplete knowledge ”, Proceedings o f AAAI, pages

175-180, 1996.

[Fra96]Francesca Rossi. "Existential Variables and Local Consistency in Finite

Domain Constraint Problems", Principles and Practice o f Constraint Programming,

pages 382-396, 1996.

[Fre78]Eugene C. Freuder. “Synthesizing constraint expressions ”, Communications o f

the ACM, Volume 21, Issue 11, November 1978.

[Fre95]E. C. Freuder. “Systematic versus stochastic constraint satisfaction, Panel

discussion”. Proceedings o f IJCAl, pages 2027-2032, 1995.

[FW89]Eugene C. Freuder and Richard J. Wallace. “Partial Constraint Satisfaction ”,

Proceedings o f the Eleventh International Joint Conference on Artificial Intelligence,

lJCAl-89, Detroit, Michigan, USA, 1989.

[Gas74]J. Gaschnig. “A Constraint Satisfaction M ethod fo r Inference M aking”, in

Proceedings o f the 12th Annual Allerton Conference on Circuit Systems Theory, pages

866-874, 1974.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Gas78] J. Gaschnig. “Experimental case studies o f backtrack vs. Waltz-type vs. new

algorithms fo r satisficing assignment problems ”, in Proceedings o f the Canadian

Artificial Intelligence Conference, pages 268-277, 1978.

[Gin93]M. L. Ginsberg. “Dynamic Backtracking”, Journal o f Artificial Intelligence

Research vol. I, AI Access Foundation and Morgan Kaufmann, pages 25-46, 1993.

[GJC94]M. Gyssens, P. Jeavons, and D. Cohen. “Decomposing constraint

satisfaction problem s using database techniques”, Artificial Intelligence, 66:57-89,

1994.

[Glo89] F.Glover. “Tabu S e a r c h -P a r tI”, ORSA Journal on Computing,

l(3):I90-206, 1989.

[GMC97]L. Getoor, G. Ottosson, M. Fromherz, and B. Carlson. “Effective redundant

constraints fo r online scheduling”, in Proceedings o f the Fourteenth National

Conference on Artificial Intelligence, pages 302-307,1997.

[GMPW96]I. Gent, E. MacIntyre, P. Prosser and T. Walsh. “The constrainedness o f

search”, in Proceedings o f AAAI, 1996.

[GotOO]G. Gottlob. “A comparison o f structural CSP decomposition m ethods”.

Artificial Intelligence, 124:243-282, 2000.

[GSWOO]I. Gent, K. Stergiou and T. Walsh. “Decomposable constraints ”, in New

Trends in Constraints, Proceedings o f ERCIM/Compulog-Net Workshop, Spring

Verlag, 2000.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[GW93]I. Gent and T. Walsh. “Towards an Understanding o f Hill-climbing

Procedures fo r S A T ”, in Proceedings o f the Eleventh National Conference on Artificial

Intelligence, pages 28-33, 1993.

[GW95]I. Gent, T. Walsh. “Phase transitions from real computational problems ”, in

Proceedings o f 8th International Symposium on AI, pages 356-364, 1995.

[HDR78]R. Haralick, L. S. Dais and A. Rosenfeld. “Reduction Operations fo r

Constraint Satisfaction”, Information Science 14:199-219, 1978.

[HDT92]P. van Hentenryck, Y. Deville and Choh-Man Teng. “A generic

arc-consistency algorithm and its specializations ”, Artificial Intelligence Vol. 57,

pages 291-321, 1992.

[HE80]R. Haralick and G. Elliot. “Increasing tree search efficiency fo r constraint

satisfaction prob lem ”. Artificial Intelligence 14(3):263-3I3, 1980.

[HL88]C. Han and C. Lee. “Comments on M ohr and Henderson's path consistency

algorithm”. Artificial Intelligence 36, pages 125-130, 1988.

[Hoo98]Holger H. Hoos. “Stochastic Local Search - Methods, Models, Applications ”,

PhD thesis, Darmstadt University o f Technology, Germany, 1998.

[HS98]Holger H. Hoos and Thomas Stiitzle. “Evaluating Las Vegas Algorithms -

Pitfalls and Rem edies”, In Proceedings o f UAI-98, pages 238-245. Morgan Kaufmann

Publishers, 1998.

[KB97]G. Kondrak and P. van Beek. “A theoretical evaluation o f selected

backtracking algorithm s”, Artificial Intelligence, 89:365-387, 1997.

93

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

[Kum87]V. Kumar. “Dept-First Search ”, in Encyclopedia o f Artificial Intelligence,

Vol2, pages 1004-1005, 1987.

[Jea95]P. Jeavons. “Tractable constraints on ordered domains ”, Artificial

Intelligence, 79:327-339, 1995.

[JC99]D. E. Joslin and D. P. Clements. “Squeaky Wheel Optimization ”, Journal o f

Artificial Intelligence Research vol. 10, pages 353-373, 1999.

[JL02JN. Jussien and O. Lhomme. “Local Search With Constraint Propagation and

Conflict-Based H euristics”, Artificial Intelligence vol. 139, no. 1, pages 21-45, 2002.

[LDOO]J. Larrosa and R. Dechter. "On The Duel Representation o f Non-Binary

Semiring-Based CSPs", in workshop 1 (Soft Constraints) o f the "Sixth International

Conference on Principles and Practice o f Constraint Programming" (CP2000),

September, 2000.

[LLH95]J. Lee, H. Leung and H. Won. "Extending G EN ETfor non-binary constraint

satisfaction problems", in 7th International Conference on Tools with Artificial

Intelligence, pages 338-342, 1995.

[LMSV98JJ. Larrosa, P. Meseguer, T. Schiex and G. Verfailli. "Reversible DAC and

Other Improvements fo r Solving Max-CSP", AAAl-98, pages 347-352, 1998.

[Kum92]Vipin Kumar. “Algorithms fo r Constraint Satisfaction Problems: A Survey”,

the AI Magazine, pages 32-44, 1992.

[Mac77] A. K. Mackworth. “Consistency in networks o f relations ”, Artificial

Intelligence, 8(1):99-118, 1977.

94

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

[Mc79] J. McGregor. “Relational Consistency Algorithms and Their Applications in

Finding Subgraph and Graph Isochronism ”, Information Science 19:229-250, 1979.

[MH86]R. M ohr and T.C. Henderson. “Arc and Path consistency revisited”. Artificial

Intelligence 28:225— 233, 1986.

[MMOO]V. Manquinho and J. Marques-Silva. "On solving boolean optimization with

satisfiability-based algorithms", in Sixth International Symposium on Artificial

Intelligence and Mathematics, January 2000.

[MPJL93] Steven Minton, Andy Philips, mark D. Johnston and Philip Laird.

''Minimizing Conflicts: A Heuristic Repair M ethodfor Constraint-Satisfaction and

Scheduling Problem s”, Journal o f Artificial Intelligence Research, 1993.

[Nad88]B. Nadel. “Tree search and arc consistency in constraint satisfaction

algorithms ”, in Search in Artificial Intelligence, Springer-Verlag, pages 287-342,

1988.

[Nad90]B. Nadel. “Some Applications o f the Constraint Satisfaction Problem ”,

Technical Report CSC-90-008, Computer Science Department, Wayne State

University, 1990.

[NagO 1] Sivakumar Nagaraj an. “On Dual Encoding fo r Constraint Satisfaction ”, PhD

thesis. University o f Regina, 2001.

[Par97]Andrew J. Parkes. “Clustering at the phase transition ”, in Proceedings o f the

Fourteenth National Conference on Artificial Intelligence (AAAI-97), pages 340-345,

1997.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[PG94] Armitage P and Berry G. "'Statistical Methods in Medical Research ”, 3rd

edition, Oxford: Blackwell Scientific Publications, 1994.

[PG97]Wanlin Pang and Scott D. Goodwin. "Constraint-DirectedBacktracking”,

Australian Joint Conference on Artificial Intelligence, 1997.

[PG97a]W. Pang and S. D. Goodwin. “A revised sufficient condition fo r hacktrack-free

search”, in Proceedings o f 10th Florida AI Research Symposium, pages 52—56,

Daytona Beach, FL, M ay 1997.

[PGOO]W. Pang and S. D. Goodwin. "Consistency in general C SPs”, in The 6th

Pacific Rim International Conference on AI, pages 469-479, 2000.

[PGOI]W. Pang and S. D. Goodwin. "Binary representation fo r general CSPs ”, In

Proceedings o f I4th Florida AI Research Symposium (FLAIRS-200I), 2001.

[PR95] D. G. Pothos and E. B. Richards. "An Empirical Study o f Min-Conflict Hill

Climbing and Weak Commitment Search ”, Proceedings o f CP-95 Workshop: Studying

and Solving Really Hard Problems, pages 140— 146,1995.

[PreOOJS. D. Prestwich. "Stochastic Local Search in Constrained Spaces”,

Proceedings o f Practical Applications o f Constraint Technology and Logic

Programming, pages 27-39, Practical Applications Company, 2000.

[Pre01]S. D. Prestwich. "Local Search and Backtracking vs Nan-Systematic

Backtracking”, AAAI 2001 Fall Symposium on Using Uncertainty within

Computation, Cape Cod, MA, November 2001.

96

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

[Pre02]Steve Prestwich. “Maintaining Arc-Consistency in Stochastic Local Search”,

in Workshop on Techniques for Implementing Constraint Programming Systems,

2002.

[Pre02a]S. D. Prestwich. “Coloration Neighbourhood Search With Forward

Checking”, Annals o f Mathematics and Artificial Intelligence vol. 34 no. 4, pages

327-340, 2002.

[RPD90]F. Rossi, C. Petrie and V. Dhar. “On the equivalence o f constraint satisfaction

problem s”, in Proceedings o f the 9th ECAI-90, pages 550-556, 1990.

[Rut94]Zs. Ruttkay. “Fuzzy constraint satisfaction ”, Proceedings o f 3rd Int. Conf. on

Fuzzy Systems, pages I263-I268, 1994.

[San94]M. Sannella. “The SkyBlue Constraint Solver and its Applications”, MIT Press,

1994.

[San99]T. Sandholm. “An algorithm fo r optimal winner determination in

combinatorial auctions”, in Proceedings o f IJCAI-99, 1999.

[SBHW96]B. Smith, S. C. Brailsford, P. M. Hubbard, and H. P. Williams. “The

progressive party problem: Integer linear programming and constraint programming

compared”. Constraints, 1:119-138, 1996.

[SC89] George W. Snedecor and William G. Cochran. “Statistical Methods, Eighth

Edition”, Iowa State University Press, 1989.

[SF94]D. Sabin and E. C. Freuder. “Contradicting conventional wisdom in constraint

satisfaction ”, in Proceedings o f the 11th European Conference on Artificial

Intelligence, pages 125-129, Amsterdam, 1994.

97

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

[SF96]M. Sqalli and E. C. Freuder. “Inference-based constraint satisfaction supports

explanation”, in Proceedings o f AAAI, pages318-325, 1996.

[SF97]DanieI Sabin and Eugene C. Freuder. “Understanding and Improving the MAC

Algorithm ”, in Proceedings o f the Third International Conference on Principles and

Practice o f Constraint Programming (CP97), Austria, 1997.

[SG91]R. Sosic and J. Gu. “3,000,000 queens in less than one minute ”, SIGART

Bulletin, Vol. 2, pages 22-24, 1991.

[SG95]B. Smith and S. Grant. “Sparse constraint graphs and exceptionally hard

problem s”, in Proceedings o f IJCAl, pages 646-651, 1995.

[SGSOO]Josh Singer, Ian P. Gent and Alan Smaill. “Backbone fragility and the local

search cost p e a k ”. Journal o f Artificial Intelligence Research, 12:235-270, 2000.

[SKC94]B.Selman, Henry A. Kautz and Bram Cohen. “Noise Strategies fo r

Improving Local Search”, In AAAF94, pages 337-343, 1994.

[SLM92]B. Selman, H. Levesque and D. Mitchell. “A new method fo r solving hard

satisfiability problem s”, in Proceedings o f AAAI, pages 440-446, 1992.

[Smi94]Barbara M. Smith. “The Phase Transition and the Mushy Region in Constraint

Satisfaction Problem s”, European Conference on Artificial Intelligence (ECAl-94),

pages 100-104, 1994.

[SRGV96]T. Schiex and J. C. Regin and C. Gaspin, G. Verfaille. "Lazy arc

consistency", in Proceedings o f 13th National Conference on Artificial Intelligence

(AAAl-96), pages 216-221, 1996.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[SSS97]01af Steinmann, Antje Strohmaier and Thomas Stiitzle. “Tabu Search vs.

Random Walk", KI-97 Advances in Artificial Intelligence, Springer Verlag, LNCS,

Vol. 1303, 1997.

[SV98]Eddie Schwalb and L. Vila. “Temporal Constraints: A Survey", Constraints,

3(2-3), pages 129-149, 1998.

[SW99JK. Stergiou and T. Walsh. “Encodings o f non-binary constraint satisfaction

problems ", in Proceedings o f the National Conference on Artificial Intelligence,

AAAI-99, pages 163-168, 1999.

[TBK95JE. Tsang, J. Borrett and A. Kwan. “An attempt to map the performance o f a

range o f algorithm and heuristic combinations", in Proceedings o f AI and Simulated

Behaviour, pages 203-215, 1995.

[Tsa93]E.P.K.Tsang. “Foundations o f Constraint Satisfaction ", Academic Press,

1993.

[TW92JE. Tsang and C. Wang. “A generic neural network approach fo r constraint

satisfaction problem s". Neural Network Applications, Springer-Verlag, 1992.

[U1176] J. R. Ullman. “A n Algorithm fo r Subgraph Isomorphism ", Journal o f the ACM

23:31-42, 1976.

[Wal75]D.L. Waltz. “Understanding line drawings o f scenes with shadows ”, in The

Psychology o f Computer Vision, McGraw-Hill, New York, 1975.

[Wal96]R. Wallace. “Practical applications o f constraint program m ing", Constraints,

Vol. 1, pages 139-168, 1996.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[WBHW01]J. P. Watson, J.C. Beck, A.E. Howe, and L.D. Whitley. “Toward an

Understanding o f Local Search Cost in Job-shop Scheduling ”, in Proceedings o f the

Sixth European Conference on Planning (ECP-2001), 2001.

[WBF98]R. Weigel, C. Bliek, and B. Faltings. “On reformulation o f constraint

satisfaction problem s", in Proceedings o f the 13th European Conferenee on Artificial

Intelligence, pages 254-258, Brighton, United Kingdom, 1998.

[Yok97]Makoto Yokoo. “Why adding more constraints make easier For

Hill-climbing”, Principles and Practice o f Constraint Programming, 1997.

[YY97]C. Yang and Ming-Hsuan Yang. “Constraint networks: A survey”, in

Proceedings o f the IEEE volume 2, pages 1930-1935, 1997

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita Auctoris

Mingyan Huang was bom in 1974 in Shanghai, China. She graduated from Hua Gong

Fu Zhong High School in 1992. From there she went to Wuhan University where she

obtained a B.Eng. in Computer Software in 1996. From 1996 to 2001 she had been

working in Shanghai Mobile Communication Corporations. She is currently a

candidate for the M aster’s degree in Computer Science at the University o f Windsor

and hopes to graduate in June 2004.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Dueling CSP representations: Local search in the primal versus dual constraint graph.
	Recommended Citation

	ProQuest Dissertations

