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Abstract

Constraint Satisfaction Problems (CSPs) can be used to represent and solve many 

problems in Artificial Intelligence and the real world. When solving Constraint 

Satisfaction Problems, many o f  the methods developed and studied have focused only 

on the solution o f binary CSPs while a large portion o f real life problems are naturally 

modeled as non-binary CSPs. In this thesis we have designed an empirical study to 

investigate the behaviour o f  several local search methods in primal and dual constraint 

graph representations when solving non-binary CSPs. Local search methods tend to 

find a solution quickly since they generally give up the guarantee o f  completeness for 

polynomial time performance. Such local search methods include simple hill-climbing, 

steepest ascent hill-climbing and min-conflicts heuristics hill-climbing. We evaluate 

the performance o f  these three algorithms in each representation for a variety o f 

parameter settings and we compare the search time cost means o f  two groups to 

support the comparison.

Our comparison shows that we can use local search to solve a CSP with tight 

constraints in its dual representation and gain a better performance than using it in its 

primal representation. When constraints are getting looser, using local search in 

primal representation is a better choice. Among the three local search methods used in 

our empirical study, min-conflicts heuristics hill-climbing always gain the best 

performance while steepest ascent hill-climbing tends to have the worst performance 

and simple hill climbing is in the middle or sometimes it is the best.
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Chapter 1

Introduction

Many problems in Artificial Intelligence (AT) and other areas o f computer science can 

be viewed as special cases o f Constraint Satisfaction Problems (CSPs) [Nad90]. CSPs 

are worth studying in isolation because they are general problems which have unique 

features that can be exploited to arrive at solutions [Tsa93], These unique features 

make CSPs one o f the most powerful mechanisms for representing complex 

relationships in real life problems and AI problems such as computer vision, temporal 

reasoning and resource allocation in solving AI planning and scheduling problems.

1.1 Statement of the Problem

Basically, a CSP is a problem composed o f  a finite set o f  variables, each o f which is 

associated with a finite domain, and a set o f constraints that restricts the values that the 

variables can simultaneously take [Tsa93]. There are three factors in a constraint 

satisfaction problem: variables, a domain for each variable and constraints among these 

variables. The goal is to find one assignment, all assignments, or the best assignment 

o f values to the variables from their associated domains such that the assignment 

satisfies all the constraints. Finding the best assignment falls into another category 

which is called constraint optimization problem (COP) and it is not discussed in this 

thesis.
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Solutions for CSPs can be found by systematic search methods or by local search 

methods which use randomness to aid in the search [NagOl]. Systematic methods 

generally search the space o f partial solutions by generating consistent assignments to 

variables with values from their domains and then extending these partial solutions to 

full solutions one variable at a time. Systematic methods such as chronological 

backtracking and forward checking are complete search methods which can find all 

solutions. Local search methods investigate the space o f all complete assignments o f 

values to variables for consistent assignments. Local search methods are generally 

incomplete search methods which aim to find one solution, but may fail to find any 

solution even if  one exists.

A constraint satisfaction problem can be represented as a constraint graph. Algorithms 

for solving CSPs exploit the search space according to the structure o f the constraint 

graph. Generally, there are two ways o f presenting CSPs in a constraint graph. One is 

the primal constraint graph and the other is the dual constraint graph. A primal 

constraint graph directly reflects the original constraint satisfaction problem 

framework while a dual constraint graph is a structural transformation o f  the primal 

representation o f  the given CSP. The dual constraint graph is an equivalent 

representation o f  the primal constraint graph where the primal constraints are the dual 

variables, and the dual constraints are compatibility constraints on the primal 

variables shared between the primal constraints.

CSPs can be binary or non-binary. A binary CSP is a CSP with unary and binary 

constraints only. A non-binary CSP is a CSP with constraints not limited to unary and 

binary constraints. A non-binary constraint involves at least three variables. Local 

search methods have been used frequently to solve binary CSPs represented as primal 

constraint graphs. It is possible to use local search to solve binary and non-binary 

CSPs in their dual representation. In this thesis we are going to solve binary and 

non-binary CSPs represented as a primal constraint graph or dual constraint graph by 

using different local search methods and compare their performance. The question we
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are interested in is whether and under what circumstances one representation may be 

preferred to the other.

1.2 Motivation

When solving Constraint Satisfaction Problems, many o f the methods developed and 

studied have focussed only on the resolution o f binary CSPs which are limited to 

constraints involving at most two variables. The justification for this is the fact that any 

non-binary CSP can be translated into an equivalent binary CSP. [RPD90]. Although 

binary representation and non-binary representation are equivalent terms o f solutions, 

the latter specifies the CSP in a more natural way. As well, the non-binary CSP 

constraint graph may contain structural information that can be exploited to make the 

search process more efficient. With the help o f dual constraint graph a lot o f existing 

binary constraint satisfaction algorithms can directly handle non-binary CSPs since 

the dual representation has a binary structure.

Many real life problems require a solution (not all solutions) to be found quickly. In 

many situations, a timely response by a CSP solver is crucial. A CSP solver may 

spend days or years solving some special kinds o f CSPs on conventional hardware by 

using systematic search methods such as backtracking and forwardchecking [Tsa93]. 

For example, in scheduling transportation airplanes, in a freight airport terminal, one 

may be allowed very limited time to schedule a lot o f airplanes and delays could lead 

to extremely high cost. In the Hubble Space Telescope scheduling problem [MPJL93], 

ten o f thousands o f astronomical observations per year must be scheduled and thus a 

timely response by a scheduling system is required. In some applications such as 

allocating resources to emergency rescue teams, solutions should be found in a 

limited time, otherwise they are useless if they are found too late [Tsa93]. In these 

cases local search could be useful. Local search methods generally give up the 

guarantee o f  completeness for polynomial time performance [NagOI].
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1.3 Outline

The remainder o f this thesis is organized as follows: Chapter 2 gives some 

background related to CSP structure and techniques for solving CSPs. Chapter 3 

discusses the use o f local search methods to solve a CSP in its dual representation 

versus in its primal representation and give the empirical study design structure. 

Chapter 4 gives the experiment results according to the approach presented in Chapter 

3. Chapter 5 is the conclusion.
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Chapter 2

Background

CSPs can be used to represent and solve many problems in AI and the real world. 

Constraint satisfaction is a term which covers a wide range o f methods to solve these 

problems stated in the form o f a set o f constraints. In this chapter we will introduce 

related CSP definitions and search methods.

2.1 Constraint Satisfaction Problems (CSPs)

A constraint satisfaction problem gives a model which describes some requirements 

for a finite number o f variables by using constraints. The set o f possible values which 

is called the domain for each variable is finite. Here we give a formal definition o f 

CSP.

Definition 2.1 A constraint satisfaction problem (CSP) is a tuple P(V,D,C) whose 

components are defined below:

• r =  {v/, . . . ,  v„} is a finite set o f n variables. In this thesis we also use uppercase 

Vi to represent a certain subset o f V  which contains variables v,;, v/2, ... , v,*.

• D = {£)/, . . . ,  Dn} is a set o f domains. Each variable V/ e  Ehas a corresponding 

finite domain o f  possible values, A . We also use D(vi) to represent the domain 

o f variable v,.
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• C = {Cl, , Cm} is a set o f  m constraints. A constraint tells which 

value-combined tuples are allowed for a certain subset F/ o f all the variables. A 

constraint C, = < F , SC  on an ordered set o f variables F  = {v,/, v,2, . . . ,  v ,a } C 

F  is defined as a relation on these variables, Si C  D(vn) x . ..xD (vi0. This 

relation stands for the set o f allowable combined values for the variables in F .

In this thesis we also use the notation C /,2 to represent C, with V,={v], V2 } and

Si ,2  to represent the combined-value tuples allowed in C/.

Now we give the following definitions by the above CSP P(V,D,C).

Definition 2.2 The number o f  variables involved in a constraint is known as the 

arity o f the constraint. A unary constraint only involves one variable; a binary 

constraint has two variables involved; a non-binary constraint has arity greater than 

two. The problem arity o f a CSP is defined as the maximum constraint arity in this 

CSP.

Definition 2.3 Given a set o f variables F  ^  {vu, Vi2 , . . . ,  v,i}, a value assignment 

from domain D(Vf) to variable v„ for each variable in this set, is called an 

instantiation. For example, < v/, 1> is an instantiation for variable v/. A solution is 

an assignment o f  values to all the variables, so that each variable in P  is assigned a 

value from its domain, and all the constraints in P  are satisfied simultaneously. A CSP 

is solvable if  it has at least one solution, otherwise it is unsolvable or over 

constrained.

Definition 2.4 A CSP which only contains unary and binary constraints is called a 

binary CSP. A CSP which has one or more non-binary constraints is called a 

non-binary CSP.

Constraint satisfaction problems can be characterized by their tightness, which could 

be measured under the following definitions.
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Definition 2.5 The tightness of a constraint T(Ci^is measured by the number o f 

tuples that satisfy the constraint over all possible combined-value tuples in C,. T(Ci)  = 

S I T  where S  is the number o f Si (combined-value tuples allowed in C,) and T  is the 

number o f  all possible combined-value tuples in C, according to the domains o f  each 

variable involved in Q.

Figure 2.1(a) map to be colored

{red, blue, green} {red, blue, green}

{red, blue, green} {red, blue, green}

Variables: v;, v̂ , V3, V4 

Domains:
Domain of V/ D(V]): {red, blue, green}
Domain of V2  D (v 2): {red, blue, green}
Domain of Vj D (v 3)'. {red, blue, green}
Domain of D (v 4): {red, blue, green}

Constraints:
C,\ Viî V2 Cj. V,i^ 3  C}. V,i^ 4

C4. V2î V3 C5. V3TV4

Figure 2.1(b) a constraint graph of the CSP in 2.1(a)

Figure 2.1 M ap coloring problem - a binary CSP

Definition 2.6 The tightness o f a CSP T(P) is measured by the number o f  solution 

tuples over the number o f  all distinct combined-value tuples over all variables in P.

Tightness is a relative measure. Some CSPs solving techniques are more suitable for 

tighter problems, while others are suitable for looser problems.
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Here we use the map coloring problem [Kum92] to explain concepts for CSP. In the 

map coloring problem in Figure 2.1(a), we need to assign a color to each area o f the 

map from a set o f colors such that no two adjacent areas have the same color. Figure 

2 .1(a) shows an example o f a map to be colored. The map has four areas which are to 

be colored red, blue or green. Figure 2.1(b) is the CSP model which describes the 

problem. In the map coloring problem, each area is a variable and the domain o f each 

variable is the given set o f colors. For each pair o f areas that are adjacent on the map, 

there is a constraint between the corresponding variables which disallows the same 

value to be assigned to these two variables. For this map coloring problem in Figure 

2 . 1 , there are four variables {v;, V2, vj, V4 } and each variable has the same domain 

(red, blue, green}. There are five constraints {C/: v ; # 2, Cf. C3 : vii^V4 , C4 . V2^V3 , 

Cj: V3 î V4 ). The number o f satisfied tuples o f C/ is 6  and these tuples are {{red, blue), 

{red, green), {blue, red), {blue, green), (green, red), {green, blue)}. The number o f all 

possible combined-value tuples for Cy is 3x3=9. Therefore the tightness o f constraint 

Cl is T(Ci) = 6/9. There are total 6  solution tuples for this map coloring problem 

which are {{red, blue, green, blue), {red, green, blue, green), {blue, red, green, red), 

{blue, green, red, green), {green, red, blue, red), {green, blue, red, blue)}. The 

number o f all distinct combined-value tuples over all 4 variables is 3x3x3x3=81.

Thus we get the tightness o f this map coloring problem T(P) = 6/81.

A constraint in a CSP can be given either explicitly, by enumerating the tuples 

allowed, or implicitly, e.g., by an algebraic expression. When constraints are given 

explicitly, they are known as extensionai constraints, and when constraints are given 

implicitly, they are known as intensional constraints. In Figure 2.1(b) the constraints 

are given in an intensional form. We can also enumerate constraint Cf. v f( v 2 in its 

extensionai form as S 1 2  {{red, blue), {red, green), {blue, red), {blue, green), {green, 

red), {green, blue)}.
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2.2 Binary CSPs and Non-Binary CSPs

Constraint Satisfaction Problems can be divided into binary CSPs and non-binary 

CSPs which are also called general CSPs. A binary CSP is a CSP with unary and 

binary constraints only, which means, each constraint o f  this CSP is either a constraint 

which restricts a single variable or a constraint between two variables. The map 

coloring problem in Figure 2.1 is a binary CSP sinee each constraint is only between 

two variables. In Figure 2.1b we can see that only two variables are involved in each 

o f the five constraints C/, C^, C3 , C./and C5, which means that the adjacent areas in 

that map can not take the same color. A CSP with constraints not limited to unary and 

binary will be referred to as a non-binary CSP.

Before giving an example o f  non-binary CSPs, we now present some definitions from 

graph theory in [NagOl].

Definition 2.7 A graph G is a structure <V, E>, where V = {vi, V2, ..., Vn} is a finite 

set o f elements called vertices (also referred to as nodes), and E = {ei, 02, . . . ,  en}, is a 

finite set o f elements o f called edges, such that every element o f E is a pair o f distinct 

elements from V. V is called the vertex set o f G, while E is called in the edge set. An 

edge in a graph can only connect two nodes.

Definition 2.8 The edges o f a graph may be assigned specific values or labels, in 

which case the graph is called a labelled graph.

Definition 2.9 A binary CSP can be associated with a constraint graph G. N(G), 

which is the set o f  nodes(vertices) in G, corresponds to the set o f  variables and E(G), 

the set o f  edges in G, corresponds to the set o f binary constraints [Mac77].

An edge in a constraint graph only connects two nodes since a binary constraint only 

involves two variables. For example. Figure 2.1b is a constraint graph for the binary
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CSP in Figure 2.1a. In Figure 2.1b, the set o f nodes N (G ),which includes v/, v ,̂ V5 and 

V4 , corresponds to the set o f variables in the map coloring problem. The set o f  edges 

E(G), which includes Ci, C2 , C3 , C4 and C5, corresponds to the set o f  binary constraints 

in the map coloring problem. Constraint graphs are also referred to as constraint 

networks.

Definition 2.10 A hypergraph is a generalisation o f a graph where the set o f edges is 

replaced by a set o f  hyperedges. A hyperedge extends the notion o f an edge by 

allowing more than two nodes to be connected by a hyperedge. A hypergraph is a 

structure <V,E'’>, where V is a set o f nodes and E** is a set o f hyperedges, with each 

hyperedge is a subset o f the node set V.

In a constraint graph, an edge is only allowed to connect two nodes. This representation 

is good for binary CSPs, but is limited when representing non-binary CSPs. Thus we 

use hypergraph for non-binary CSPs.

I^^^Ajiyperedger^resenti^^

o A hyperedge 

representing

C, \ V1+V2

I

A hyperedge 

representing 

G :  V 2<  V3

o

Variables: v/, v̂ ,

Domains:
Domain o f  V]D(vi): {1,2,3} 
Domain o f  V2  D(v2): {1, 2, 3} 
Domain o f  vj D(v3)\ {1, 2, 3}

Constraints:
C/: v/7̂ V2 
Cf. V 2 <  V 3  

C 3 :  V j +  V 2 +  V j> 4

Figure 2.2 An example o f non-binary CSPs and its hypergraph

10
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Figure 2.2 is an example o f  non-binary CSPs. Here we can see that the graph is a 

hypergraph since there is one hyperedge connects three nodes v/, V2  and v^. This 

hyperedge represents constraint Q : v/+ V2+ vj > 4, which involves three variables v/,

V2 and V}.

2.3 Transform Non-Binary CSP into Binary CSP

In the early research o f constraint satisfaction problems, many o f the methods 

developed and studied focussed only on solving binary CSPs which are limited to 

constraints involving at most two variables. The justification for this has been the fact 

that the non-binary and binary representations are equivalent in terms o f solutions 

[RPD90]. But many real life problems contain non-binary constraints and the most 

natural way to model such real life problems is to construct non-binary CSPs. For 

example a non-binary constraint which specifies that a set o f n variables needs to be 

assigned different values (called an all_diffevent constraint [NagOl]) can also be 

specified by a set o f binary constraints which restricts any two variables in the variable 

set can only be assigned different values from their domains. Although these two 

formulations are equivalent in terms o f the solutions that they admit, the former is 

clearly the one that specifies the requirement in a more natural way. As well, it may be 

more efficient to solve a non-binary CSP directly.

From the above we can find that there are two good reasons for looking carefully at the 

issue o f translating non-binary CSPs into binary CSPs. First, non-binary CSPs appear 

quite frequently when modeling real life problems. The second reason is that, as noted 

above, a common justification for focusing solely on binary CSPs is the fact that a 

non-binary CSP can be translated into an equivalent binary representation.
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There are two well known modeling techniques which can be used to transform a 

general (non-binary) CSP model into an equivalent binary CSP: the dual graph 

method and the hidden variable method.

2.3.1 Dual Graph Method

A hypergraph for a non-binary CSP is also called a primal representation, or primal 

constraint graph, since it directly represents this non-binary CSP. In [DP89] Dechter 

and Pearl introduced the dual representation to CSP researchers which originally 

comes from the relational database community. They propose the transformation o f 

any non-binary CSP into its dual representation. The main idea o f transforming a 

non-binary CSP into its dual representation is to construct a new CSP where 

constraints in the original non-binary CSP are now variables with structured domains 

and variables in the original non-binary CSP are now the constraints. The dual graph 

method for transforming a non-binary CSP into a binary CSP is also known as dual 

encoding.

Definition 2.11 Given a CSP, the dual constraint graph associated with it is a 

labelled graph, where N=C. For every pair o f constraints Q , Cy e  C, such that F,n Vj i- 

0 ,  there is an edge in the dual constraint graph, connecting nodes C, and Cy. A dual 

constraint graph is the dual representation o f a CSP.

The following example illustrates how dual graph method converts a non-binary CSP

into a binary CSP. First consider the following non-binary CSP P h

Variables: v/, v^, v ,̂ V4

Domains:
Domain o f v/: D(vi) = {1, 2}
Domain o f V2 ’. D(v2)  = {0 ,1}
Domain o f  v :̂ D(v3)  = {1, 2, 5}
Domain o f  v.#: D(v4)  = {1 ,2 ,3 }

Constraints:
C  1,2,3'- V i + V 2 <  Vs

12
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Cj,4: vi<V4
C2,3 '■ V2 i= V 3

For any CSP model there are three factors: variables, domain for each variable and 

constraints among these variables. According to these three factors there are three main 

steps in the dual encoding for constructing the dual graph for a non-binary CSP from 

its primal representation. Here we use P I  to represent the original non-binary CSP 

and use P2 to represent newly constructed binary CSP:

a) Construct the variables:

For each primal constraint in the original CSP P I  we construct a 

corresponding dual variable in P2. Thus the constraints in the primal 

representation become the variables in the dual representation.

1) For constraint € 1,2 ,3 in PP. changed to the dual node € 1,2 ,3 ,

2) For constraint € 1,4 in PP. changed to the dual node € 1,4 ,

3) For constraint € 2,3 in PP. changed to the dual node € 2 ,3 .

There are three dual variables in P2  (also called dual nodes in the dual graph), 

which correspond to the three constraints in PP

b) Construct the domains:

Since every dual variable is a constraint in the original CSP, the domain o f 

each dual variable is the set o f tuples that satisfy the constraint. The following 

table illustrates how to get the dual domain for a dual node:

Dual
Node

Corresponding 
constraint in FI

Related domains 
inP ]

Tuples satisfying the 
constraint

Dual Node’s 
domain in P2

Cl,2,3 C  1,2,3'. V; + V2  < V3

D ( v i ) = { l , 2 } 
D ( v 2 ) - { 0 , I )  

D (vs)=  {1 ,2 ,3 }

\.V}=1,V2=0,V3=2
2. v/=7, V2 =0 , V3 = 3

3. V/=7, V2=7, V3=3

4. V/=2, V2=0, V3=3

{{1 , 0 , 2 ), 

{1, 0, 3), 

(1 ,1 , 3), 
{2 , 0 , 5)}

Cl,4 € 1 ,4  : v j < V 4
D ( v , ) = { l , 2 )
D (v4 ) ^ { \ ,2 ,3 }

\ . V r l , V 4 = 2

2. V/=7, V4=3
3. Vi=2, V4=3

{(1 , 2 ), 

(1, 3), 
(2, 3)}

C2,3 € 2 ,3 : V2  i ^ 3

D (v 2)  = [0 , 1 } 
D (v 3 )= {1 ,2 ,3 )

1. V2=0, V3=l
2 . vt= 0 , V3 = 2

3. V2=0, V3=3
4. V2=7, V3=2

5. V2 =l, vj=5

{(0 , 1 ), 
(0 , 2 ), 

(0, 3), 

( 1 , 2 ), 
(1, 3)}

13

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



c) Construct the constraints;

Check all the constraints in the original CSP P I. I f  two constraints in the 

original CSP share any variables, then there is an edge connecting the two 

nodes in the new binary representation P2. This constraint is a compatibility 

binary constraint which restricts same values should be assigned to the shared 

variable between the two dual nodes. The follow table shows how to get the 

new dual constraints in P2\

Dual
Nodes

Corresponding 
constraint in PI

Shared
variables

New constraints in P2

Cl,2,3
Cl,4

C 1,2,3'- V i + V 2 < V3  

Ci,4 : v i < V 4
Vl

1 . V/ should be assigned the same values 
from the domains of the dual nodes: 
D (C 3 ,2 ,3)  a.ndD(Ci,4)

Cl,2,3 

C 2 .3

C 1,2.3'- V; + V 2 < V 3  

C2,3 '- # 5

V2

2 , V2  should be assigned the same values 
from the domains of the dual nodes: 

D (C  1,2 ,3)  and D (C 2 ,3)

V3

3. V3  should be assigned the same values 
from the domains of the dual nodes: 
D (C l,2 ,3 )^d  D(C2,3)

Cl,4

C2,3

Cl,4 '. V] <V4 

C2,3 '- # 5
.................—

Following the above three steps now we get the new binary CSP P2, which is 

transformed from the non-binary CSP by the dual graph method. The new CSP P2 is a 

binary CSP since each o f its dual constraints only involves two dual variables. Figure

2.3.1 is the primal representation and the dual representation o f the non-binary CSP 

P I.

As CSP constraints can be represented either intensionally or extensionally, in primal 

graph either representation is allowed. But for the dual graph method that converts the 

primal constraints into dual variables, the dual domains need to be stored explicitly. In 

the above example the dual graph method gets the dual domains which are 

enumerated as tuples while the primal constraints are given implicitly. When 

modeling many real life problems the primal constraints are frequently expressed

14
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extensionally. In that way the dual graph method can get the dual domains without a 

conversion.

C ,,4

V i V4

C2,3
c

V2 V5

Variables: { V;, Vj, Vj, v }̂

C onstrain ts:

Cl,2J-  V, +  V 2 <  Vs 

Cl , 4 : V i < V 4

C2 .3  ’■ V2  i^V3

Domains:

D ( v , ) = { I ,2 )

D (v :^= { 0 , l}

D(vs)= {1 ,2 ,3 }  

D (v4) = { I , 2 , 5}

Primal Representation of PI

C l ,4

Dual V ariables: { €1,2.3, Cj.4 , €2,3}

Dual Domains:

D(C,.2,s)  =  { (/, 0,2),  {1 ,0, 3), {], 1, 5), (2, 0, 3))

D(C,4) = { { 1 ,2 ) , { I ,3 ) , { 2 ,3 )}

D(C2.3) =  {{0,1), {0,2), (0, 3), (I ,  2), ( 1 ,3}}

Dual C onstraints:

1. V; should be assigned the same values from the 

domains o f  the dual nodes: D(Ci,2.3) and D(Ci,4)

2. V2 should be assigned the same values from the 

domains o f the dual nodes: D(Ci,2,3) and DfCs.s)

3 . V3 should be assigned the same values from the 

domains o f the dual nodes: D(Ci,2.3) and D(C2.3)

Dual Representation of PI

Figure 2.3.1 Primal and dual representations of a non-binary CSP P I

2.3.2 Hidden Variable Method

15
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In [Dec90], Dechter shows how to represent any non-binary relation with binary 

relations using hidden variable method. Unlike the dual graph method which throws 

away the original variables and introduces new dual variables into the dual graph, the 

hidden variable method keeps all the primal nodes (variables) o f the original CSP and 

adds new nodes which represent the primal constraints to the hidden representation. 

The hidden variable method is also known as the hidden encoding.

In the hidden variable representation, the set o f variables includes all o f  the variables 

o f the original problem with no changes to their domains plus a new set o f “hidden” 

variables which were called h-variables.

These “hidden” variables are constructed as follows. For each constraint C, in the 

original problem we add an h-variable //,. The domain o f Hi consists o f a unique 

identifier for every satisfying tuple in the constraint Ct. For every h-variable H  we 

add a binary constraint between H  and each o f the variables involved in the constraint 

Ci, In this way the “hidden” variable H  and an original variable Vk are thus 

constrained. Every value o f  H  corresponds to a tuple o f values for the variables in the 

constraint Q  and thus defines a unique value for v .̂ Henee, the binary constraint 

between Hi and Vk consists o f a unique value for v* for every value o f  //,.

Consider the following non-binary CSP from [NagOl] which has 6 variables and 4 

constraints. Each variable has the same domain {0 ,1}. The constraints are:

Cl,2,6 : V/ +  V2 +  V(5 =  1 

C ] ,3 ,4  \ V i - V 3  +  V4  =  \

C4.5.6 : V.̂  +  Vj -  Vfi > I 

C 2,5 ,6  : V 2  +  V s  -  V 6  =  0

Given below. Figure 2.3.2 is the hidden variable representation for the CSP above.

16
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Figure 2.3.2 An example o f hidden variable representation 
for a non-binary CSP

In Figure 2.3.2, there are ten variables: the six original variables vi, V2 , vj, V4 , vj, 

and four “hidden” variables Hi, H 2 , H 3 , H 4 , one for each constraint in the original 

problem C;,2,e, C 1,3,4 , C4,5,6 , C2 ,s,6 - For example, the constraint C 1,2 ,6  has a 

corresponding h-variable H], whose domain can be the set{7, 2, 3} (a unique 

identifier for each o f the seven tuples in the constraint). We can define a 

correspondence between the values o f H[, and the tuples in C /2,6 as follows:

1 ^  (0, 0 ,1), 2 ^  ( 0 ,1, 0), 3 ^  (7, 0, 0)

Then, we add a constraint between the pairs o f variables {v/, ///} , {v2, H i)  and {vg. 

H i } ,  giving the binary constraints,

C v i ,H i= m i ) ,  (0 ,2), (1, 3)}

Cv2,Hi = { (0 ,l) , (1, 2), (0, 3)}

Cv6,Hi= { (1 ,1), (0, 2), (0, 3)}

For example, for binary constraint Cvi,hi, the value 1 for H i corresponds to the tuple 

(0, 0 ,1 )  in which vi = 0. Hence, F7; = 7 is only compatible with v/ = 0.

After the two well known methods, dual graph method and hidden variable method, 

were proposed in [DP89] and [Dec90], some research which is based on systematic

17
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search and problem reduction techniques has been done. In [BB98], the dual graph 

method and the hidden variable method are compared under forward checking which 

is a backtracking-based algorithm. In [BB98] Bacchus and van Beek also give some 

guidance for when one should consider translating between non-binary and binary 

representations. In [SW99] Stergiou and Walsh extend the above results and compare 

the dual encoding to the hidden encoding, and they also give transformations between 

the dual encoding and hidden encodings. [BCBW02] is an extension o f [BB98] and 

[SW99], which performs a detailed formal comparison o f the dual encoding and 

hidden variable encoding under forward checking and maintaining arc consistency 

algorithms. In [NagOI] Nagarajan presents new encodings based on dual encodings 

for non-binary constraint satisfaction problems and extends the standard forms o f 

local consistency defined in the dual representation.

2.4 Search

In CSP research more effort probably has been spent on searching than in other 

approaches. Since different constraint satisfaction problems have different problem 

characters and solution requirement, a large amount o f search methods are developed 

to solve CSPs. Search methods can be roughly classified into two categories: 

systematic and local search.

2.4.1 Systematic Search

Often systematic search method for solving CSPs is a combination o f  a standard 

backtracking procedure, along with problem reduction techniques before and 

interleaved during search. Problem reduction techniques transform CSPs to equivalent 

but hopefully easier problems by reducing the size o f the domains and constraints in 

the original problems [Tsa93]. The basic idea behind problem reduction involves the

18
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removal o f redundant values from the domains o f the variables and the tightening o f 

the constraints so that the size o f the search space decreases. For example, given two 

variables v/ and v ,̂ each o f which has the same domain {1 , . . . , 1 0 }, and a binary 

constraint between v/ and is given as v/ + < 5. It is possible to see that the domain

o f each variable can be easily tightened with a number o f  redundant values removed 

from both o f the domains, so that they are changed to {7, 2, 5}. Problem reduction 

normally does not produce solutions, but can be done as pre-processing step for 

another algorithm, or step by step, interwoven with the exploration o f the search space 

by a search algorithm. In the latter case, subsets o f the search space are cut off, saving 

the search algorithm the effort o f systematically investigating the eliminated elements, 

which otherwise would happen, even repeatedly. In [Mac77] Mackworth defines three 

local consistencies which are node, arc and path consistency to characterize the 

property o f binary constraint networks. In [Fe78] Freuder generalizes this to 

k-consistency.

Many systematic search algorithms such as forward checking [HE80], back-jumping 

[Gas78], and constraint-directed backtracking (CDBT) [PG97] have been proposed, 

most o f which are variations o f the basic backtracking method. These search methods 

are capable to investigate the entire search space in a systematic manner which 

guarantees that eventually either all the solutions are found, or, if  no solution exists, 

this fact is determined with certainty. This typical property o f  algorithms based on 

systematic search is called completeness.

The basic backtracking algorithm was first generalized by Bitner and Reingold in 

[BR75]. The backtracking algorithm (BT) includes a recursive procedure which 

explores the search space under certain variable order and domain value order. In 

algorithm BT, variables are instantiated sequentially, i.e., variables are assigned values 

according to a kind o f  variable order. Once all the variables relevant to a constraint are 

instantiated, the recursive procedure will check the validity o f  the constraint. I f  a partial 

instantiation violates any o f the constraints, backtracking is performed to the most
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recently instantiated variable which still has alternative values available. Since the BT 

algorithm will always backtrack to the last decision when it becomes unable to 

proceed, it is also called chronological backtracking. Figure 2.4.1.1 [Tsa93] shows the 

control o f BT and Figure 2.4.1.2 gives the pseudo code which describes the BT 

algorithm in detail.

^  S tart ^

P ick  an o th er variab le

B ack track  to  p rev ious 

cho ice  po in t, i f  any , i f  no 

v a lu e  can  be  assig n ed  to  

v; fail i f  n o w here  to  

b ack track ed  to

* cho ice  po in t: p ick  

a lte rn a tiv e  v a lu es from  v 

i f  back track ed  to  h ere

A ll v ariab les instan tiated?

Yes

Success

p ick  a  variab le  v

p ick  one  v a lu e  from  th e  d o m ain  o f  

V w hich  is com patib le  w ith  

chosen  partial instan tia tion

Figure 2.4.1.1 Control of backtracking algorithm

Clearly, whenever a partial instantiation violates a constraint, backtracking is able to 

prune off a subspace from the Cartesian product o f all variable domains. Kumar points 

out in [Kum87] that the backtracking method essentially performs a depth-firth search 

o f the space o f potential solutions o f the CSP.
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Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



procedure backtracking(V , D, C) 
begin
bt(V, { }, D, C) 
end

prodedure bt(VARS, ENV, D, C)
/* VARS is a set o f variables which have not been instantiated */ 
/* ENV is a partial instantiation */ 
begin 
1 .

2 .

3.
4.
5.
6 .

7.
8 .

9.
10. 

11 . 

12.

13.
14.
15.
16. endif 
end

if  VARS = { } then 
return ENV 

else
pick one variable v from VARS 
repeat

pick one value x  from Dv 
delete x  from Dv  

if  ENV + {< V , jc  > }  violates no constraints in C then 
RESULT := bt( VARS-{v}, ENV+{< v, x >}, D, C) 
if  RESULT o { } then 

return RESULT 
endif 

endif 
until Dv = { }  
return { }

Figure 2.4.1.2 Backtracking algorithm (BT)

Consider the following map coloring problem as a binary CSP:

Variables: vi, V2, V3 

Domains:
Domain o f v/: Dv; = {red, blue, green} 
Domain o f vf. Dv2 = [red, blue}
Domain o f V3 : DV3 = {red, green} 

Constraints:
Cj: vii^V2 
Cf. vi ^  V3 

C3 .V 2 +V3
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Now we launch algorithm BT under the variable order {v/, V 2 , V 3 }  to get the solutions o f 

the above map coloring problem. In this example we use BT to find all the solutions, 

so if one solution is found and there are other possible instantiations haven’t been 

explored, BT will continue the search procedure.

1) For v i = r e d ,  it violates no constraints, go on to assign value for v ;̂

2) For V]=red, V2=red, it violates the constraint vf^V2 , do backtracking;

3) For V ] = r e d ,  V2=blue, it violates no constraints, go on to assign value for vj;

4) For V ] = r e d ,  V 2 = b l u e ,  v s = r e d ,  it violates the constraint v i i ^ s ,  do backtracking;

5) For V ] = r e d ,  V 2 = b l u e ,  V 3 = g r e e n ,  it satisfies all the constraints, thus, it is a

solution, then, do backtracking.

6 ) For vi=blue, it violates no constraints, go on to assign value for v ;̂

7) For V ] = b l u e ,  V 2 = r e d ,  it violates no constraints, go on to assign value for V3;

8 ) For V ] = b l u e ,  v f= r e d , V3= red ,  it violates the constraint ViP^s, do backtracking;

9) For V ] = b l u e ,  V 2 = r e d ,  V 3 = g r e e n ,  it satisfies all the constraints, thus, it is a

solution, then, do backtracking.

10) For v i = b l u e ,  V 2 = b l u e ,  it violates the constraint v i ^ V 2 ,  do backtracking;

11) For V ] = g r e e n ,  it violates no constraints, go on to assign value for v ;̂

12) For V ] = g r e e n ,  V 2 = r e d ,  it violates no constraints, go on to assign value for V3;

13) For v i = g r e e n ,  V 2 = r e d ,  V 3 = r e d ,  it violates the constraint V2# 5, do backtracking;

14) For V ] = g r e e n ,  V 2 = r e d ,  V 3 = g r e e n ,  it violates the constraint v/^vj, do

backtracking;

15) For v j = g r e e n ,  V 2 = b l u e ,  it violates no constraints, go on to assign value for V3;

16) For vi=green, V 2 = b l u e ,  V3=red, it satisfies all the constraints, thus, it is a

solution, then, do backtracking.

17) For v i = g r e e n ,  V 2 ~ b l u e ,  V 3 = g r e e n ,  it violates the eonstraint v/^vj, since all the

possible values have been assigned to vy, V 2  and vy, BT terminates.

In Step 5, 9 and 16 we get the solutions for this map coloring problem:

Solution 1: {< vy, r e d > ,  <  V 2 , b l u e > ,  <  V 3 , g r e e r i > }
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Solution 2; {< vj, blue>, < V2 , red>, < V3 , green>)

Solution 3; {< vy, greeri>, < V2 , blue>, < V3 , blue>)

The time complexity o f BT is exponential. I f  a CSP has n variables, each o f which has 

a domain with size a, and there are e constraints in this problem. Since there are 

altogether </ possible candidate solutions and for each o f the n-tuples (candidate 

solution) all the constraints must be checked once in the worse ease, the time 

complexity o f algorithm BT is 0(a"e) [Tsa93]. The search efficiency could be 

improved if  the domain size can be reduced. This could be achieved by problem 

reduction techniques.

2.4.2 Local Search

Local search launches the search process at some random state which is an 

instantiation including all variables and then continues by iteratively moving from one 

state to another in the search space in a non-deterministic manner, guided by 

heuristics. The next move is partly determined by the outcome o f the previous move. 

Typically local search methods are incomplete which means even if  the given CSP 

has a solution, they are not guaranteed to find it eventually. They are also not 

guaranteed to report there is no solution if  the given CSP has no solution. But local 

search have always been attractive as will be shown below in [Hoo98]: First, many 

constraint satisfaction problem are constructive by nature, it is known that they are 

solvable and what is required is actually the generation o f a solution rather than just 

deciding whether a solutions does exist. Secondly, in many real-world applications 

often the time to find a solution is limited. In these situations systematic methods 

often have to be aborted after the given time has been exhausted and none o f the 

solutions have been found while in the same situation local search methods may offer 

a solution within the time limit.
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The local search methodology often uses the following terms some o f  which 

originally appear in [Bar98]:

• state (node): one possible assignment o f all variables from their domains; the

number o f states is equal to the product o f each domain's size.

• evaluation value: the number o f satisfied constraints o f the state.

• neighbor: the state which is obtained from the current state by changing one

variable’s value from its domain.

• move: one move means to pick a neighbour state from the current state’s

neighbourhood and make this neighbour state as the next current state.

• strict local optimum: the state that is not a solution and the evaluation values

o f all o f  its neighbors are smaller than the evaluation value o f this state.

• plateau: the state that is not a solution and the evaluation values o f  all o f  its

neighbors are equal to the evaluation value o f this state.

• local optimum: the state that is not a solution and the evaluation values o f all o f

its neighbors are smaller than or equal to the evaluation value o f this state. 

Local optimum can be seen as a state which is either a plateau or a strict local 

optimum.

• global maximum: the state is a solution.

Hill-climbing methods are probably the most known strategies o f local search [Bar98]. 

These hill-climbing methods use heuristics to incrementally alter inconsistent value 

assignments o f all the variables and move towards a solution. Their stochastic nature 

generally gives up the guarantee o f completeness which is provided by systematic 

search methods [Bar98].

The problem with Hill Climbing algorithms in general is that they do not guarantee to 

find a solution or report no solution. They may settle in strict local optima, where all 

neighbors are worse than the current state, though the current state is not a solution. 

They may also loop in plateaus, where all the neighbors have the same evaluation value 

as the current state (see Figure 2.4 [Tsa93]). In these situations local search algorithms
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terminates the current loop and randomly pickup an initial state again.

global
maximum

local
optima

plateau local
o p to u m

Figure 2.4 Possible problems with hill elimbing algorithms: 
the algorithms may stay in plateaus or local optima

Recently local search has been attractive in solving constraint satisfaction problems. 

In [SLM92] GSAT was introduced as a greedy local search method for solving 

propositional satisfiability problems. GSAT can also be extended to solve constraint 

satisfaction problems. [MPJL93] proposes the min-conflicts heuristic repair method 

which can be used in hill-climbing search. One major problem o f  basic local search 

algorithms is that they may get stuck in local optima. To this aim one general method 

is restarting from a new randomly generated initial state. Another common extension 

to prevent getting stuck in local optima is the application o f random walk [SKC94] 

which modifies the value o f a variable involved in a violated constraint randomly by 

choosing some other value than the current one. Another heuristic that allows 

escaping from local optima is Tabu search [Glo89] which can leave local optima by 

forbidding moves to recently visited states. Tabu search and random walk heuristics 

are compared in [SSS97]. An empirical study o f min-conflicts heuristics for binary 

CSPs is presented in [PR95]. Hoos and Stiitzle propose an empirical methodology 

[HS98] which is based on characterising run-time distributions o f  stochastic local 

search algorithms on single problem instances.
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2.5 Conclusions

In this chapter we gave a brief introduction to constraint satisfaction problems and 

briefly discussed different problem solving techniques. Among the different 

approaches, we will focus on observing behaviours o f several local search methods in 

primal and dual constraint graphs in Chapter 3.
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Chapter 3 

Local Search in Primal and Dual 
Constraint Graphs

In this chapter we describe several local search algorithms such as simple hill 

climbing, steepest ascent hill climbing and min-conflicts heuristics. We then illustrate 

how these local search methods are applied in primal constraint graph and dual 

constraint graph. Finally we give the empirical study design and discuss a statistical 

analysis method we used in this thesis for comparing the means o f two groups.

3.1 Local Search Algorithms

3.1.1 General Local Search Strategy

All the hill climbing algorithms described in this thesis are based on a common idea 

known as local search. In local search, an initial state (valuation o f variables) is 

generated and the algorithm moves from the current state to a neighbouring state until a 

solution has been found or the resources available such as maximum number o f moves 

and maximum number o f  iterations are exhausted. This idea is expressed in the 

following general local search algorithm (Figure 3.1.1) that enables implementation of 

many particular local search algorithms via definitions o f specific procedures. In the 

procedure we presented here, the evaluation value means how many constraints are
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satisfied. The more constraints are satisfied, the larger is the evaluation value. When 

all the constraints are satisfied, the evaluation value o f such a state equals to the 

number o f constraints in the original CSP.

Procedure LocalSearch (Max Moves, Max lteration) 
begin
1. s •<— random valuation o f variables
2. for i:= l to Max Moves do
3. for j :=1 to Max lteration do
4. if  evaluation(s)= the number o f all constraints then
5. return s
6. endif
7. select n in neighborhood(s)
8. if acceptable(n) then
9. s •«— n
10. endif
11. eudfor
12. s restartState(s);
13. endfor
14. return s

end

Figure 3.1.1 General local search algorithm

3.1.2 Simple Hill-climbing Algorithm

Hill-climbing methods are probably the best known strategies o f local search. First we 

look at the simple hill-climbing algorithm which is presented in Figure 3.1.2. The idea 

o f simple hill-climbing is:

1. Start at randomly generated state.

2. Move to the neighbor with a better evaluation value.

3. I f  a local optimum is reached then restart at other randomly generated state.
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This procedure repeats till the solution is found. The simple hill-climbing algorithm 

does not need to explore all the neighbors o f the current state. But the order o f the 

neighborhood states may make a difference since the simple hill-climbing method 

will choose the neighbor which has a better evaluation value by such order. Thus it 

determines which part o f the search space will be investigated next.

Procedure SimpleHillClimbing(Max Restarts) 
begin
1. for i:= l to Max Restarts do
2. s <— random instantiation o f all variables
3. while evaluation(s)<the number o f all constraints do
4. findNeighbor;
5. if no neighbor left in neighborhood o f s then
6. goto restart; /* a local optimum is reached */
7. else select n in neighborhood(s)
8. endif
9. remove n from neighborhood(s)
10. if evaluation(n)=the number o f all constraints then
11. return n;
12. endif;
13. if  evaluation(n)> evaluation(s) then
14. s -f— n
15. else goto findNeighbor
16. endif
17. endwhile
18. return s
19. restart:
20. endfor 
end

Figure 3.1.2 Simple hill-climbing algorithm

3.1.3 Simple Hill-climbing Flowchart

Below we give the flowchart (Figure 3.1.3) for simple hill-climbing according to the 
algorithm introduced in 3.1.2.
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Figure 3.1.3 Simple hill-climbing flowchart

30

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



3.1.4 Simple Hill-cIimbing Example

Now we use an example to illustrate how simple hill-climbing works to solve the map 

coloring problem (Figure 2.1) in its primal representation. This time we use domain

{7, 2, 3} instead o f  using {red, blue, green} in the following CSP (Figure 3.1.4.1):

Variables: v/, V2, vs, V4 

Domains:
Domain o f v/ D(vi)\ {1, 2, 3}
Domain o f  Dfv^): {1, 2, 3}
Domain o f vj D(v3): {1, 2, 3}
Domain o f V4 D(v4): [1, 2, 3}

Constraints:
C/: vii^V 2

C 2 .  V i  +  V 3

C3 . Vii^V4
C 4 :  V2i^V3 

C5 . V3i^V4

Figure 3.1.4.1 An example o f a binary CSP

Figure 3.1.4.2 is the search tree o f simple hill-climbing working in primal 

representation o f the binary CSP in Figure 3.1.4.1. Note that each node o f the search 

tree has the format: V1V2V3V4 (evaluation value). In this example, simple hill-climbing 

uses 3 moves and visits 11 search nodes to find the solution {< v/, 2>, < V2 , 3>, < V3 , 

1 > , < V 4,  3>}.

3.1.5 Steepest Ascent Hill-climbing

Steepest ascent hill-climbing algorithm which is presented in Figure 3.1.5 differs with 

the simple hill-climbing method in that the former evaluates all the neighbors o f  the 

current state and chooses the best one while the latter only explores part o f the 

neighborhood states and select a better one to move. The steepest ascent hill-climbing 

algorithm has to explore all the neighbors o f the current state before choosing the move 

and such a choosing process may take a lot o f time.
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Procedure SteepestAscentHiHClimbing(Max_Restarts) 
begin
1. for i;= l to Max Restarts do
2. s <— random instantiation o f ail variables
3. while evaluation(s)<the number o f  all constraints do
4. find the best neighbor n which has the largest evaluation value
5. if  evaluation(n)=the number o f all constraints then
6. return n;
7. endif;
8. if  evaluation(n)> evaluation(s) then
9. s <— n
10. else goto restart /* a local optimum is reached */
11. endif
12. endwhile
13. return s
14. restart:
15. endfor 
end

Figure 3.1.5 Steepest ascent hill-cIimbing algorithm

3.1.6 Steepest Ascent Hill-climbing Flowchart

Figure 3.1.6 is the flowchart for steepest ascent hill-climbing according to the 
algorithm introduced in 3.1.5.

3.1.7 Steepest Ascent Hill-climbing Example

Figure 3.1.7 is the search tree o f steepest ascent hill-climbing working in primal 

representation o f  the binary CSP in Figure 3.1.4.1. In this example, steepest ascent 

hill-climbing uses 2 moves and visits 13 search nodes to find the solution {< v/, 2>, <

V 2,  1> ,  <  V 3, 3 > ,  <  V 4,  ! > } .
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3.1.8 Min-conflicts Heuristics Hill-climbing

To avoid exploring ail the neighbors o f the current state some heuristics were proposed 

to find a next move. Min-conflicts heuristics is a heuristic repair method which 

attempts to minimize the number o f constraint violations after each step.

Min-conflicts heuristics was first introduced in [MPJL93]. The min-conflicts 

heuristics can be used with a variety o f different search strategies such as 

backtracking-based search and local search.

When applying min-conflicts heuristics in local search method, min-conflicts heuristics 

hill-climbing chooses randomly any conflicting variable, i.e., the variable that is 

involved in any unsatisfied eonstraint, and then picks a value which maximizes the 

number o f  satisfied constraints (break ties randomly). I f  no such value exists, it picks 

randomly one value which can form a neighbor that has the same number o f satisfied 

constraints as the current state does. Min-conflicts heuristics hill-climbing does not 

explore all the neighbors o f the eurrent state, but it explores all those neighbors which 

are related with the randomly ehosen conflicting variable by changing that variable’s 

value. If  all the neighbors have less number o f satisfied eonstraints than the current 

state, min-conflicts heuristics hill-climbing will restart the search procedure. The 

min-conflicts heuristics algorithm for hill-climbing is showed in Figure 3.1.8.

In the following parts o f this thesis we also use min-conflicts heuristics to represent 

using this heuristic repair method in hill-climbing algorithm.

3.1.9 Min-conflicts Heuristics Flowchart

Figure 3.1.9 is the flowchart for min-conflicts heuristics according to the algorithm 
introduced in 3.1.8.
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3.1.10 Min-conflicts Heuristics Example

Figure 3.1.10.1 is the search tree o f min-eonfliets heuristics working in primal 

representation o f  the binary CSP in Figure 3.1.4.1. In this example, min-conflicts 

heuristics uses 5 moves and visits 10 search nodes to find the solution {< v/, i> , < V2 ,

2>,<V3,  ! > ,< V 4 ,  2>}.

Procedure MinConflicsHeuristicsHillClimbing (Max Restarts) 
begin
1. for i:= l to M ax Restarts do
2. s <— random instantiation o f all variables
3. while evaluation(s)<the number o f all constraints do
4. randomly pick a variable V which is currently in conflict
5. neighborhood(s)=change V ’s value from its domain
6. choose the best neighbor n which has the largest evaluation value 

and evaluation(n)> evaluation(s)
7. if  evaluation(n)=the number o f all constraints then
8. return n;
9. endif;
10. if  no such neighbor in Step 6 exists, then
11. randomly choose a neighbor n which evaluation(n)= evaluation(s)
12. s <— n
13. endif
14. if  no neighbor’ evaluation value >= evaluation(s) then
15. goto restart
16. endif;
17. endwhile
18. return s
19. restart:
20. endfor 
end

Figure 3.1.8 M in-conflicts heuristics hill-climbing algorithm
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Search Tree Node Format:

evaluation value

V | V 2 \ 3  V4

X V  X  X ▼ 

2  2 3 1 (4)

X V V X 

1 2 5  1 (4)
value is
changed here to 
form a neighbor

X X X X
V2 now is not 
in conflict

X V X V 
2  2 3 1 (4)2 2 3 1 (4)

V V X X 

3 2 i  1 (4) 3 2 2 1 (4)

X V  V x

3 2 1 5  (4)

Figure 3.1.10.1 Search tree o f min-conflicts heuristics hill-climbing 
in primal representation

The search trees o f min-conflicts heuristics can be different even when the algorithm 

begins with the same start state. For example, in Figure 3.1.10.1, when the algorithm 

has the node (1231) as the current state after 2 moves, it randomly chooses a conflicting 

variable v/ to get its neighbors which are (2231) and (3231). But if  the algorithm 

chooses another conflicting variable V4  to get its neighbors, it will find a solution {< v/, 

/> , < V2 , 2>, < V3 , 3>, < V4 , 2>} immediately (See Figure 3.1.10.2). Since 

min-conflicts heuristics randomly chooses a variable which is in conflict to get
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neighbors, the search trees are different. Another reason to cause a different search tree 

is that min-conflicts heuristics will randomly chooses a neighbor which has the same 

evaluation value as the current state to continue the move when all the neighbors are not 

better than the current state (break ties randomly). In Figure 3.1.10.1 and 3.1.10.2, 

those dashed lines with arrow on one end indicate there are different ways to continue 

the search.

X X X X

Search Tree Node Format:

evalu ation  value

Vl V2 V3 V4

1 4 4 4 " '
X V X X ▼ 
2  2 3 1 (4)

value is /  \
changed here to V2 n ow  is not 
form  a  neighbor con flict

X V V X 
1 2 3  1 (4)1 2 2 1 (3)

X yj ^|x
1 2 3 5  (4)

Figure 3.1.10.2 Different search tree o f min-conflicts heuristics 
hill-climbing in the same primal representation

3.2 Local Search in Primal and Dual Constraint Graphs

The dual encoding which was first introduced to solve CSPs by Dechter and Pearl in 

[DP89] gives a way to transform a non-binary CSP into a binary CSP. [NagOl] has a 

thorough study on the dual encodings. In the last decade the dual encoding techniques
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for CSP solving have been mainly concentrated on systematic search coupled with 

various problem reduction methods before and interleaved during the search 

procedure. Almost in the same period the local search methods are frequently used in 

CSP solving, but most o f the research only exploited local search in binary CSPs. 

Empirical study o f local search on non-binary CSPs has seldom been mentioned. Thus 

we propose our approach to investigate local search behaviour on non-binary CSPs 

both in primal and dual representations. The local search methods which are studied 

in this thesis for solving non-binary CSPs in our research are simple hill-climbing, 

steepest ascent hill-climbing and min-conflicts heuristics hill-climbing [MPJL93].

Different local search methods visit different number o f nodes during the search 

procedure. During one move from one current state to the next current state, steepest 

hill climbing will investigate all the possible neighbours while simple hill climbing 

and min-conflicts heuristics hill-climbing only explore part o f them. For each node in 

the search tree the three local search methods will check all the constraints. So 

steepest hill climbing may take longer time to find a solution since it may visit more 

search tree nodes and check more constraints. But steepest hill climbing may use the 

least moves to get a solution if  it does not get stuck in a local optimum.

Since in the dual representation the dual domains are consistent value combinations 

which have satisfied the primal constraints inside the dual variables, if  there are tight 

constraints in the original CSP, local search on dual constraint graph may find a 

solution within a shorter time while local search on primal constraint graph need more 

moves to gradually get such tight constraints satisfied. But when the constraints are 

looser, local search on primal constraint graph may get a better performance than 

local search on dual constraint graph since under such situation the dual 

representation has big dual domain size which indicates a large number o f neighbors 

need to be visited during each move.
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In dual encodings the dual domains need to be explieitly stored. To fairly evaluate the 

performance o f  local search in primal and dual representations we store the primal 

constraints and dual domains both in an extensional form.

3.3 Empirical Study Design

In order to make the comparison objective and do the experiment efficiently, we 

design the requirement for empirical study as follows:

• Can deal with both binary and non-binary CSPs

• Represent primal constraints and dual domains extensionally

•  Can change the number o f variables

•  Can change the domain size

•  Can change the constraint tightness

•  Provide enough information to evaluate the performance

According to the above requirement the local search procedure gets the original CSP 

described in a flat file as an input. In our design the original CSPs can be very flexible 

so that we can make a deep empirical study to investigate the behavior o f local search 

on both primal and dual constraint graphs.

Experiment environment for empirical study:

The experiments are run on a P4 2.4G PC with Windows 2000. The programming 

language is Java.

3.3.1 Empirical Study Input Design

The input file is generated by a CSP problem generator which is described in Chapter

4. The content o f the input file is as follows:
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• Name o f the problem instance

• Number o f variables

•  Size o f each domain

•  Number o f constraints

• Variables involved in each constraint

•  Tightness o f each constraint

Below is an example o f input flat file;

ProblemB01,4,3
1.3
2.3
3.3 
4,5
1,1,2,90
2,2,3,4,50
3,1,4,10

The format o f the above flat file:

Line 1:
ProblemBO 1,4,3

Line 1 ProblemBO 1 4 3
Description: Problem Instance 

Name
Number o f 
Variables

Number o f 
constraints

Line 2 to 5:
1.3
2.3
3.3 
4,5

Line 2 1 3
Description Variable v/ Domain size o f v; is 3.

Line 3 2 3
Description Variable Domain size o f is 3.

Line 4 3 3
Description Variable vs Domain size o f is 3.
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Line: 5 4 5
Description Variable V4 Domain size o f v^is 5.

Line 6 to 8:
1,1,2,90
2,2,3,4,50
3,1,4,10

Line 6 1 1 2 90
Description Constraint C/ Variable v/ Variable Tightness: 90%

Line 7 2 2 3 4 50
Description Constraint C2 Variable Variable vj Variable V4 Tightness:

50%

Line 8 3 I 4 10
Description Constraint C 3 Variable v; Variable V4 Tightness: 10%

3.3.2 Empirical Study Output Design

To avoid getting stuck at local optima, local search often need to regenerate the initial 

state till it finds a solution and since local search investigates the search space in a 

non-deterministic manner, in each round the solution found generally is different. 

Below is the output in each round which finds a solution for the specific problem 

instance:

The solution.

How many times does the local search randomly generate the initial state? 

How many search tree nodes are visited during the search period?

How long does it take to get the solution (time cost)?

How many constraints are checked during the search period?

Note that “the nodes visited” for local search in primal constraint graph has a different 

meaning from it in dual constraint graph. For local search in primal, a node is a value 

assignment to all primal variables. For local search in dual, a node is a value
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assignment to all dual variables. For example, we consider the CSP P I  in Figure 

2.3.1:

Variables: {v/, v̂ , vj, V4 )

Constraints:

V ; +  <  V3

C ,J .  V,<V4  

C 2.3 ■ V2 ^ 3

Domains:

D ( v , ) = { l ,  2}

D(v2)={0 , 1 }
D (vs)=  { 1 , 2 , 3 }

DM  ={1,2,2}

Primal Representation of PI

Dual Variables: {C/ 2 ,3 , Cj 4 , € 2 ,3 }

Dual Domains:

D (C j,23) =  {(1, 0 , 2), ( 1, 0, 3), ( 1, 1, 3), (2, 0, 3)}

D ( C , j )  = { (1 ,2 ) , (1 ,3 ), (2, 3)}

D(C2.3) =  {(0,1), (0, 2), (0, 3), (1, 2), (1, 3)}

Dual Constraints:

1. V; should be assigned the same values from the 

domains o f  the dual nodes: D (C/ 2,3)  3od D(Cj 4)

2. V2 should be assigned the same values from the 

domains o f  the dual nodes: D ( C i  2,3) and D (C 2 ,j)

3. V3 should be assigned the same values from the 

domains o f the dual nodes: D (Cj 2,3) and D (C 2,3)

Dual Representation of PI

When we assign value to each primal variable as {<vi, 1>, <V2 , 0>, <V3 ,1>, <V4 , !>}, 

such value assignment is a node in local search on P i ’s primal representation. When 

we assign value to each dual variable as {< C jjj, (1, 0, 2)>, <Cij, (1, 2)>, <€ 2,3 , (0, 

1)>}, such value assignment is a node in local search on P i ’s dual representation.

Such difference also exists when we mention “the constraints checked” for local 

search on primal and dual representations.

For evaluating the behavior o f local search both in primal and dual representations, 

each problem instance will be run for 100 rounds. For each problem instance, we keep 

the average values and their variances for each output parameter and there is a 

summary result as the following:

• The average number o f times that local search randomly generates the initial 

state and its variance.
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• The average number o f search nodes visited during the search period and its

variance.

• The average CPU time to get the solution (time cost) and its variance.

•  The average number o f constraints checked during the search period and its

variance.

3.3.3 Empirical Study Comparisons

In this empirical study we intend to investigate the behaviour o f local search on 

primal and dual representations over different problem instances. The local search 

characters are compared under a ratio which is the move cost o f local search in dual 

representation comparing with the move cost o f local search in primal representation. 

First we illustrate what the move cost is in steepest ascent hill-climbing. One move 

for local search is from one current state to the next current state. For each move in 

steepest ascent hill-climbing, the search procedure will investigate all the neighbors o f 

the current state. For each neighbor, it will check all the constraints to get the 

evaluation value. The move cost in steepest ascent hill-climbing is the number o f 

possible neighbors multiplies the number o f constraints. In Figure 3.3.3.1 we give the 

move cost o f steepest ascent hill-climbing in primal representation and dual 

representation. We use the notion \SET\ to represent the size o f  a set, i.e., the number 

o f elements in this set. In Figure 3.3.3.1, |D(v,)| is the domain size o f  variable v, and 

|C| is the number o f primal constraints in a CSP, \D(Cj)\ is the domain size o f  dual 

variable Cj i.e., |T>(C;)| is the number o f satisfied tuples in primal constraint Cj, and 

\Cduai\ is the number o f  dual constraints in a CSP.
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1. The number o f neighbors in each move for steepest ascent
hill-climbing in primal representation:

n
# neighbors o f SteepestPrimal = X  (|^ (v /)|- l)

/=!
2. For each neighbor it will check all the primal constraints: |C|

3. The move cost o f steepest ascent hill-climbing in primal
representation:

n
M V SteepestP rim al ~  X  

/=!

4. The number o f neighbors in each move for steepest ascent
hill-climbing in dual representation:

m
# neighbors o f SteepestDual =  Y, ( l^ (C /)l" l)

7=1
5. For each neighbor it will check all the dual constraints: |Q„a/|

6. The move cost o f steepest ascent hill-climbing in dual representation:
m

SteepestDual ~  X  ^ ^ iP j) \~ ^ ^ V ^ d u a l \

7=1

Figure 3.3.3.1 Move cost of steepest ascent hill-elimbing

For each neighbor in simple hill-climbing and min-conflicts heuristics, they also need 

to check all the constraints to get the evaluation value, but they do not need to explore 

all the neighbors as steepest ascent hill-climbing does. Thus the move cost o f simple 

hill-climbing and min-conflicts heuristics will be less than the move cost o f  steepest 

ascent hill-climbing. But the move cost o f steepest ascent hill-climbing in Figure 

3.3.3.1 can be seen as the worst case for simple hill-climbing and min-conflicts 

heuristics. In Figure 3.3.3.2, we give the move cost ratio between move cost for local 

search in dual representation and move cost for local search in primal representation. 

We use the move cost in Figure 3.3.3.1 to represent the move cost o f local search 

methods in our empirical study.
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1. The move cost o f local search in primal representation:

M V l p  =  I  ( | / ) ( V / ) | - I ) x |q  
/=!

2. The move cost o f local search in dual representation:
m

M V l d =  Z  ( | / > ( Q ) |- 1 ) x |Q „ „ , |

7=1

3. Move Cost Ratio =
M V id

M V l p

Figure 3.S.3.2 Move cost ratio for local search

From Figure 3.3.3.2 we can find that the constraint tightness, domain size and 

constraint arity in the original given CSP are possible factors which can affect the 

ratio. A higher ratio means a higher move cost for local search in dual representation 

than in primal representation while a lower ratio means a lower move cost for local 

search in dual representation than in primal representation. For example, there is a 

CSP with 5 variables and 3 constraints. Each variable has the same domain size 10, 

the same constraint tightness 10%, each constraint has the same arity 3 and it has 5 

dual constraints. The number o f  satisfied tuples in each primal constraint is 

(10* 10* 10)* 10% = 100. The move cost for local search in dual representation is 

(100-1)*(100-1)*(100-1)*5 = 4,851,495. The move cost for local search in primal 

representation is (10-1)*(10-1)*(10-1) *(10-1)*(10-1)*3 = 177,147. Then the ratio 

will be 27.39.

In the empirical study, we use different move cost ratios to represent different 

problem instances. We compare the time cost o f local search in both representations 

as the ratio increases. When move cost ratio increases in the same experiment result 

table, it means the move cost for local search in dual representation also increases. 

Thus we can find when local search in one representation is prior to another. Since the
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“node visited” and “constraint” have different meaning in primal and dual 

representations, time cost is the most significant comparison o f local search in the two 

representations. In this kind o f  comparison we use T-test (See Appendix A) to tell 

whether the difference between the means o f time cost is significant or not.

We also compare the performance o f different loeal search methods on the same 

constraint graph representation. In this situation we briefly compare the number o f 

search nodes visited during the search period and the time cost to find a solution.

3.4 Conclusions

In this chapter we reviewed the three local search methods used in our empirical study 

and we also gave our approaches which focus on observing behaviours o f  the three 

local search methods in primal and dual constraint graphs.
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Chapter 4

Experiment Result and Analysis

In this chapter we provide the empirical evaluation for local search methods 

characters on primal and dual representations presented in Chapter 3. Random CSP 

problem instances were generated based on a four parameter model in [NagOl] which 

extends the standard four parameter binary CSP model in [Smi94]. The four 

parameter model in [NagOl] for generating non-binary CSP is described as the 

following:

1. Number o f variables: n

2. Size o f  each variable’s domain: m

3. Constraint density: p i

4. Constraint tightness: p 2

P i is the probability that there is a constraint among the variables in a CSP. The CSP 

generator used in our empirical study will generate problem instances in three 

problem classes. The number o f constraints for each problem class was determined by 

the problem arity, the number o f variables and the constraint density. For example, 

given a CSP with problem arity 5, 10 variables and constraint density p i  = 0.05, the 

CSP generator will generate a CSP with ((10 x 9 x 8 x 7 x 6) /  5!) x 0.05 = 12 

constraints.
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In our empirical study we generate 57 problems in 3 classes given blow. Each class is 

given by <n, a, m, pi>, where n is the number o f variables, a  is the problem arity, m is 

size o f the domains and p i  is the constraint density.

Class I: <9, 3, 10, 0.06>

Class II: <9, 3, 20, 0.06>

Class III: <12, 5, 10, 0.006>

Bach class contains a set o f problem instances with constraint tightness p 2 increasing 

from low value to higher values which indicates the problems in the class are getting 

easier. Such changing o f constraint tightness also affects the move cost ratio from low 

to high which means the move cost for local search in dual representation is getting 

greater. Problem Class II is based on Problem Class I which enlarges the domain size 

from 10 to 20. Problem Class III is also based on Problem Class I but it enlarges the 

number o f variables from 9 to 12.

Section 4.1, 4.2 and 4.3 present the results on Problem Class I, II and III. Each 

problem is run 100 times by each algorithm on a certain constraint graph, i.e., primal 

constraint graph or dual constraint graph. The following notation is used to represent 

the three local search algorithms on a certain constraint graph:

LPsim: simple hill-climbing on primal constraint graph

LDsim: simple hill-climbing on dual constraint graph

LPstp: steepest ascent hill-climbing on primal constraint graph

LDstp: steepest ascent hill-climbing on dual constraint graph

LPmc: min-conflicts heuristics hill-climbing on primal constraint graph

LDmc: min-conflicts heuristics hill-climbing on dual constraint graph

We also use the following notation when we measure the performance o f  different 

algorithms:
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MoR: move cost ratio

Rn: number o f times that local search randomly generates the initial state

Nd; number o f nodes visited in the search procedure

Cc: number o f constraints checked in the search procedure

Tm: CPU time cost by the search procedure to find a solution

Cl: confidence interval in T-test

4.1 Experiment Results and Analysis on Class I

In this section we present experiment results based on the problem instances in Class I. 

This class includes 19 problems each o f which has 9 variables, domain size 10, 

problem arity 3 and constraint density 0.06. Constraint tightness changes from 0.02 to 

0.2 in steps o f 0.01 which leads the move cost ratio increases from 2.11 to 22.11. A 

problem with smaller tightness value is a problem having tighter constraints.

4.1.1 Simple Hill-climbing on Class I

Table 4.1.1.1 is the time cost (Tm) result o f  simple hill-climbing on Class 1 on both 

two kinds o f the constraint graphs. Here we use T-test (See Appendix A) to compare 

the two means o f simple hill-climbing on both representations. In this thesis we 

launch all T-tests by a given alpha level a==0.05, T_cv =1.645. Cl is given as a 95% 

confidence interval on the difference o f means. If  |T_valuel > 1.645, we reject Ho 

which sets the hypothesis that the two means o f the two groups have no significant 

difference.. I f  |T_value| > 1.645 and T value is positive, we can conclude that the 

mean o f time cost for simple hill-climbing in primal representation is greater than the 

mean o f time cost for simple hill-climbing in dual representation, thus, LDsim 

generally can find a solution faster than LPsim in this problem instance. If  |T_value| > 

1.645 and T value is negative, we can conclude that the mean o f time cost for simple 

hill-climbing in primal representation is less than the mean o f time cost for simple
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hill-climbing in dual representation, thus, LPsim generally can find a solution faster 

than LDsim in this problem instance. If  IT value] < 1.645, we accept Ho and conclude 

that these two means have no significant difference. The CPU time is measured on 

millisecond.

Move Cost 

Ratio

LPsim  

Tm  M ean

LDsim  

T m  M ean
T_value A ccept H qI

C l

Low er

Bound

C l

U pper

Bound

2.11 348.28 5.94 9.813 LPsim Mean > LDsim Mean and Reject Ho 273.96 410.71

3.22 247.03 5.47 9.787 LPsim Mean > LDsim M ean and Rejeet Ho 193.18 289.93

4.33 56.73 5.78 9.012 LPsim Mean > LDsim M ean and Reject Ho 39.86 62.03

5.44 42.97 6.09 8.488 LPsim Mean >  LDsim Mean and Rejeet H q 28.36 45.39

6.55 30.00 7.50 7.215 LPsim Mean > LDsim M ean and Reject Ho 16.38 28.61

7.66 23.75 7.35 6.708 LPsim Mean > LDsim Mean and Reject Ho 11.61 21.19

8.77 17.03 7.03 5.466 LPsim Mean > LDsim M ean and Reject H q 6.41 13.58

9.88 16.87 6.87 5.418 LPsim Mean > LDsim M ean and Reject H„ 6.38 13.61

11.00 9.68 9.06 0.462 Accept Ho -2.01 3.24

12.11 9.38 8.43 0.741 Accept Ho -1.56 3.46

13.22 7.04 10.14 -2.507 LPsim Mean < LDsim M ean and Reject H q -5.52 -0.67

14.33 6.72 10.00 -2.688 LPsim Mean <  LDsim M ean and Reject Ho -5.67 -0.88

15.44 5.94 8.75 -2.624 LPsim Mean < LDsim Mean and Reject Ho -4.91 -0.71

16.55 4.38 8.75 -4.411 LPsim Mean < LDsim M ean and Rejeet Ho -6.31 -2.42

17.66 4.21 10.93 -5.761 LPsim Mean <  LDsim M ean and Reject Ho -9.01 -4.43

18.77 4.06 9.68 -5.335 LPsim Mean < LDsim M ean and Reject Ho -7.68 -3.55

19.88 3.90 9.85 -5.601 LPsim Mean < LDsim Mean and Reject H q -8.03 -3.86

21.00 2.97 10.47 -6.911 LPsim Mean < LDsim Mean and Reject Ho -9.62 -5.37

22.11 2.97 10.94 -7.028 LPsim Mean < LDsim M ean and Reject Ho -10.19 -5.74

Table 4.1.1.1 Time Cost of Simple Hill-climbing on Class I

The result o f  Table 4.1.1.1 is also presented as a graph in Figure 4.1.1.1. From this 

figure we can see that simple hill-climbing can find a solution faster in the dual 

representation when move cost ratio is low (MoR from 2.11 to 9.88). As the move 

cost ratio is increasing whieh indicates the problem is getting looser, simple 

hill-climbing will get a better performance in the primal representation (MoR from 

13.22 to 22.11) than in the dual representation. The value on Y axis is given in 

logarithmic scale.
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Figure 4.1.1.1 Comparison of Tm Mean o f  

Simple Hill-cIimbing on Class I

M ove C ost 

R atio

LPsim

Rn

LPsim

Nd

LPsim

Cc

LDsim

Rn

LDsim

Nd

LDsim

Cc

2.11 117.41 16116.03 80580.15 4.59 968.44 8715.96

3.22 77.37 11366.28 56831.40 2.63 903.49 8131.41

4.33 16.89 2596.60 12983.00 2.19 957.76 8619.84

5.44 13.03 1986.61 9933.05 1.90 1014.70 9132.30

6.55 8.85 1365.12 6825.60 2.05 1295.84 11662.56

7.66 7.24 1081.39 5406.95 1.76 1312.91 11816.19

8.77 5.16 767.06 3835.30 1.44 1222.49 11002.41

9.88 5.06 723.84 3619.20 1.39 1170.61 10535.49

11.00 3.04 419.92 2099.60 1.62 1603.32 14429.88

12.11 3.04 421.32 2106.60 1.36 1499.03 13491.27

13.22 2.29 311.65 1558.25 1.44 1806.49 16258.41

14.33 2.28 283.34 1416.70 1.32 1748.07 15732.63

15.44 1.94 242.61 1213.05 1.12 1504.60 13541.4

16.55 1.66 185.18 925.90 1.04 1516.75 13650.75

17.66 1.63 174.10 870.50 1.17 1897.88 17080.92

18.77 1.51 164.49 822.45 1.07 1734.06 15606.54

19.88 1.46 152.87 764.35 1.08 1753.19 15778.71

21.00 1.31 122.28 611.40 1.08 1811.20 16300.80

22.11 1.23 115.83 579.15 1.10 1959.58 17636.22

Table 4.1.1.2 Rn, Nd and Cc of Simple Hill-climbing on Class I
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In Table 4.1.1.2 we give the other three output parameters o f simple hill-climbing on 

Class 1 which includes number o f times that local search randomly generates the 

initial state (Rn), number o f nodes visited (Nd) and number o f  constraints checked 

(Cc). For those problem instances with very tight constraints, simple hill-climbing 

will spend a lot o f time to regenerate an initial state in the primal representation, thus, 

it cost longer time to find a solution as more nodes are visited in the search tree and 

more constraints are checked. The Nc and Cc can also reflect the time cost.

4.1.2 Steepest Ascent Hill-climbing on Class I

Move Cost 

Ratio

L Pstp  

Tm  M ean

L D stp 

T m  M ean
T_value Accept H ot

C l

Low er

Bound

C l

U pper

Bound

2.11 1567.51 22.18 10.202 LPstp Mean > LDstp Mean and Reject Ho 1248.46 1842.19

3.22 307.18 9.54 9.792 LPstp Mean > LDstp Mean and Reject Ho 238.06 357.21

4.33 77.33 9.53 8.821 LPstp Mean > LDstp Mean and Reject Ho 52.73 82.86

5.44 70.00 11.25 8.229 LPstp Mean > LDstp Mean and Reject Ho 44.75 72.74

6.55 36.87 10.94 6.817 LPstp Mean > LDstp M ean and Reject Ho 18.47 33.38

7.66 29.84 8.43 6.892 LPstp Mean > LDstp M ean and Reject Ho 15.32 27.49

8.77 23.12 8.43 6.069 LPstp Mean > LDstp Mean and Reject Ho 9.94 19.43

9.88 22.19 9.53 5.326 LPstp Mean > LDstp Mean and Reject H q 8.01 17.31

11.00 12.81 11.88 0.536 Accept Ho -2.46 4.32

12.11 12.18 10.63 0.955 Accept Ho -1.63 4.73

13.22 10.31 13.91 -2.101 LPstp Mean < LDstp Mean and Reject H q -6.95 -0.24

14.33 10.31 12.66 -1.451 Accept Ho -5.52 0.82

15.44 9.06 11.72 -1.811 LPstp Mean < LDstp Mean and Reject Ho -5.53 0.21

16.55 8.28 14.53 -3.811 LPstp Mean < LDstp M ean and Reject Ho -9.46 -3.03

17.66 7.34 12.97 -3.829 LPstp Mean < LDstp M ean and Reject Ho -8.51 -2.74

18.77 6.10 13.28 -5.006 LPstp Mean <  LDstp M ean and Reject H q -9.99 -4.36

19.88 5.62 15.31 -6.095 LPstp Mean < LDstp Mean and Reject Ho -12.81 -6.57

21.00 5.31 13.59 -5.809 LPstp Mean < LDstp Mean and Reject Ho -11.07 -5.48

22.11 5.78 15.94 -6.151 LPstp Mean < LDstp Mean and Reject Ho -13.39 -6.92

Table 4.1.2.1 Time Cost o f Steepest Ascent Hill-climbing on Class I
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Figure 4.1.2.1 Comparison of Tm Mean of 

Steepest Aseent Hill-cIimbing on Class I

M ove Cost 

R atio

L Pstp

Rn

L Pstp

Nd

L Pstp

Cc

L D stp

R n

LD stp

Nd

L D stp

Cc

2.11 335.91 73377.97 366889.84 12.02 3925.98 35333.82

3.22 57.41 13835.15 69175.75 3.15 1617.67 14559.03

4.33 13.23 3554.18 17770.90 2.35 1626.57 14639.13

5.44 12.08 3228.24 16141.20 2.33 1901.65 17114.85

6.55 6.03 1707.28 8536.40 1.84 1792.47 16132.23

7.66 4.81 1339.21 6696.05 1.38 1472.06 13248.54

8.77 3.82 1060.51 5302.55 1.30 1456.58 13109.22

9.88 3.74 993.92 4969.60 1.23 1635.47 14719.23

11.00 2.21 579.12 2895.60 1.35 2013.10 18117.90

12.11 2.09 551.71 2758.60 1.23 1860.76 16746.84

13.22 1.83 468.26 2341.30 1.34 2359.98 21239.82

14.33 1.95 468.38 2341.89 1.28 2239.70 20157.30

15.44 1.66 396.15 1980.75 1.05 2018.93 18170.36

16.55 1.56 364.07 1820.35 1.08 2138.05 19242.44

17.66 1.38 313.70 1568.50 1.09 2286.00 20574.00

18.77 1.29 273.46 1367.30 1.04 2273.56 20462.03

19.88 1.25 244.25 1221.25 1.08 2662.71 23964.39

21.00 1.16 230.95 1154.75 1.02 2413.82 21724.38

22.11 1.26 250.11 1250.55 12.02 3925.98 35333.82

Table 4.1.2.2 Rn, Nd and Cc o f Steepest Ascent Hill-elimbing on Class I
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Table 4.1.2.1 is the time cost (Tm) result o f  steepest ascent hill-climbing on Class I on 

both primal and dual constraint graphs. The result o f  Table 4.1.2.1 is also showed as a 

graph in Figure 4.1.2.1. From this figure we can see that steepest ascent hill-climbing 

can get a better performance in the dual representation when move cost ratio is low 

(MoR from 2.11 to 9.88). As the move cost ratio is increasing, steepest ascent 

hill-climbing will find a solution faster in the primal representation (MoR from 15.44 

to 22.11) than in the dual representation. We give Rn, Nd and Cc o f  steepest ascent 

hill-climbing on Class I in Table 4.1.2.2.

4.1.3 Min-conflicts Heuristics Hill-climbing on Class I

Move Cost 

Ratio

LPm c 

Tm  M ean

LDm c 

T m  M ean
T_value Accept Ho!

C l

Low er

Bound

C l

U pper

Bound

2.11 151.16 9.37 9.037 LPmc Mean > LDmc Mean and Reject H q 111.03 172.54

3.22 137.77 9.10 10.108 LPmc Mean > LDmc Mean and Reject Hg 103.72 153.61

4.33 121.87 5.14 10.156 LPmc Mean >  LDmc Mean and Reject Hg 94.21 139.25

5.44 76.10 6.57 9.308 LPmc Mean > LDmc Mean and Reject Hg 54.88 84.17

6.55 53.28 7.05 8.745 LPmc Mean > LDmc Mean and Reject Hg 35.86 56.59

7.66 29.84 7.04 7.534 LPmc Mean >  LDmc Mean and Rejeet Hg 16.86 28.73

8.77 22.97 7.19 6.528 LPmc Mean >  LDmc Mean and Reject Hg 11.04 20.51

9.88 13.28 7.81 3.548 LPmc Mean > LDmc Mean and Reject Hg 2.44 8.49

11.00 10.16 8.28 1.431 Accept Hg -0.69 4.45

12.11 9.38 8.52 0.625 Accept Hg -1.82 3.53

13.22 7.34 9.38 -1.621 Accept Hg -4.51 0.42

14.33 7.35 9.84 -1.821 LPmc Mean < LDmc Mean and Reject Hg -5.17 0.19

15.44 4.69 10.00 -4.342 LPmc Mean < LDmc Mean and Reject Hg -7.71 -2.91

16.55 5.15 10.16 -4.114 LPmc Mean < LDmc Mean and Reject Hg -.39 -2.62

17.66 3.59 12.19 -6.017 LPmc Mean < LDmc Mean and Reject Hg -11.41 -5.79

18.77 3.43 11.88 -7.115 LPmc Mean < LDmc Mean and Reject Hg -10.77 -6.12

19.88 3.28 11.41 -5.854 LPmc Mean < LDmc M ean and Reject Hg -10.85 -5.41

21.00 3.13 13.91 -8.029 LPmc Mean < LDme Mean and Reject Hg -13.41 -8.14

22.11 2.65 12.97 -9.222 LPmc Mean < LDmc Mean and Reject Hg -12.51 -8.12

Table 4.1.3.1 Time Cost o f Min-conflicts Heuristics Hill-cIimbing on Class I
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Min-conflicts Heuristics Hill-climbing on Class I

Move Cost 

Ratio

LPmc

Rn

LPmc

Nd

LPmc

Cc

LDmc

Rn

LDmc

Nd

LDmc

Cc

2.11 335.91 73377.97 366889.84 12.02 3925.98 35333.82

3.22 57.41 13835.15 69175.75 3.15 1617.67 14559.03

4.33 13.23 3554.18 17770.90 2.35 1626.57 14639.13

5.44 12.08 3228.24 16141.20 2.33 1901.65 17114.85

6.55 6.03 1707.28 8536.40 1.84 1792.47 16132.23

7.66 4.81 1339.21 6696.05 1.38 1472.06 13248.54

8.77 3.82 1060.51 5302.55 1.30 1456.58 13109.22

9.88 3.74 993.92 4969.60 1.23 1635.47 14719.23

11.00 2.21 579.12 2895.60 1.35 2013.10 18117.90

12.11 2.09 551.71 2758.60 1.23 1860.76 16746.84

13.22 1.83 468.26 2341.30 1.34 2359.98 21239.82

14.33 1.95 468.38 2341.89 1.28 2239.70 20157.30

15.44 1.66 396.15 1980.75 1.05 2018.93 18170.36

16.55 1.56 364.07 1820.35 1.08 2138.05 19242.44

17.66 1.38 313.70 1568.50 1.09 2286.00 20574.00

18.77 1.29 273.46 1367.30 1.04 2273.56 20462.03

19.88 1.25 244.25 1221.25 1.08 2662.71 23964.39

21.00 1.16 230.95 1154.75 1.02 2413.82 21724.38

22.11 1.26 250.11 1250.55 12.02 3925.98 35333.82

Table 4.1.3.2 Rn, Nd and Cc of Min-conflicts Heuristics Hill-climbing on Class I
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Table 4.1.3.1 is the time cost (Tm) result o f  min-conflicts heuristics hill-climbing on 

Class I on both primal and dual constraint graphs. The result o f  Table 4.1.3.1 is also 

showed as a graph in Figure 4.1.3.1. From this figure we can see that min-conflicts 

heuristics hill-climbing can get a better performance in the dual representation when 

move cost ratio is low (MoR from 2.11 to 9.88). As the move cost ratio is increasing, 

min-conflicts heuristics hill-climbing will find a solution faster in the primal 

representation (MoR from 14.33 to 22.11) than in the dual representation. We give Rn, 

Nd and Cc o f min-conflicts heuristics hill-climbing on Class I in Table 4.1.3.2.

4.1.4 Comparisons among Different Hill-climbing algorithms on 

Class I

I
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Move Cost Ratio

- LDsim

■■■* LPstp

LDstp 

LPmc 

- • — LDmc

Figure 4.1.4.1 Comparisons o f Tm Means for LPsim, LPstp, LPmc, LDsim,

LDstp and LDmc on Class I

Based on Table 4.1.1.1, Table 4.1.2.1 and Table 4.1.3.1, we give Figure 4.1.4.1 to 

compare the Tm means o f all the three algorithms on Class 1. From Figure 4.1.4.1 we 

can see that the three hill-climbing methods have similar performance on both primal 

and dual representations. But steepest ascent hill-climbing does not perform so well as 

simple hill-climbing and min-conflicts heuristics hill-climbing on both primal and
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dual representations that such characters is also showed from Figure 4.1.4.2 and 

Figure 4.1.4.3. Figure 4.1.4.2 and Figure 4.1.4.3 which compare Ne among these three 

algorithms on both representations are based on Table 4.1.1.2, Table 4.1.2.2 and 

Table 4.1.3.2. In Figure 4.1.4.1, 4.1.4.2 and 4.1.4.3, min-conflicts heuristics 

hill-climbing suggests that it have the best performance among the three algorithms.
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Figure 4.1.4.2 Comparisons o f Nc for LPsim, LPstp and LPmc on Class I
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Figure 4.1.4.3 Comparisons o f Nc for LDsim, LDstp and LDmc on Class I
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4.2 Experiment Results and Analysis on Class II

In this section we present experiment results based on the problem instances in Class II. 

This class includes 17 problems each o f which has 9 variables, domain size 20, 

problem arity 3 and constraint density 0.06. Constraint tightness changes from 0.0075 

to 0.03 in steps o f 0.0025, from 0.03 to 0.1 in steps o f O.OI.The move cost ratio 

increases from 3.10 to 42.05. Class II is based on Class I but it enlarges the number o f 

domain size from 10 to 20.

4.2.1 Simple Hill-climbing on Class II

Move Cost 

Ratio

LPsim  

Tm  M ean

LDsim 

T m  M ean
T_value Accept Ho"!

C l

L ow er

Bound

C l

U pper

Bound

3.10 2790.05 100.01 11.031 LPsim Mean >  LDsim M ean and Reject H q 2212.03 3168.04

4.15 1249.37 62.96 9.611 LPsim Mean > LDsim M ean and Rejeet H q 944.46 1428.36

5.21 1114.21 48.59 9.735 LPsim Mean > LDsim M ean and Reject H q 851.09 1280.14

6.26 369.84 43.28 8.788 LPsim Mean > LDsim M ean and Reject H q 253.72 399.39

7.31 322.19 35.93 8.837 LPsim Mean > LDsim M ean and Reject H q 222.77 349.74

8.36 222.50 30.15 8.602 LPsim Mean > LDsim M ean and Reject H q 148.52 236.17

9.42 147.17 33.59 7.538 LPsim Mean > LDsim M ean and Rejeet H q 84.04 143.11

10.47 122.50 38.59 6.492 LPsim Mean > LDsim M ean and Rejeet H q 58.57 109.24

11.52 116.10 45.63 5.752 LPsim M ean > LDsim M ean and Reject H q 46.46 94.47

12.57 66.08 31.25 4.791 LPsim M ean > LDsim M ean and Reject H q 20.57 49.08

16.78 37.81 30.31 1.572 Accept H q -1.84 16.84

21.00 22.66 35.00 -3.014 LPsim Mean < LDsim M ean and Reject H q -20.36 -4.31

25.21 17.65 40.05 -5.277 LPsim Mean < LDsim Mean and Rejeet H q -30.71 -14.08

29.42 13.90 38.13 -6.168 LPsim Mean < LDsim Mean and Rejeet H q -31.92 -16.53

33.63 11.88 51.41 -7.737 LPsim Mean < LDsim Mean and Reject H q -49.54 -29.51

37.84 11.87 52.82 -7.852 LPsim Mean < LDsim Mean and Reject H q -51.17 -30.72

42.05 9.06 50.47 -8.362 LPsim Mean < LDsim Mean and Reject H q -51.11 -31.71

Table 4.2.1.1 Time Cost of Simple Hill-climbing on Class II

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-PRIMAL GRAPH 

■■ DUAL GRAPH

10000

1000

100

10

1

V  <3- fo- %• <>,■ ^■

M ove C ost Ratio

Figure 4.2.1.1 Comparison of Tm Mean o f  

Simple Hill-cIimbing on Class II

M ove C ost 

R atio

LPsim

Rn

LPsim

Nd

LPsim

Cc

LDsim

Rn

LDsim

Nd

LDsim

Cc

3.10 475.43 128582.08 642910.44 21.90 16957.69 152619.2

4.15 199.09 57851.64 289258.16 10.22 10367.76 93309.93

5.21 172.99 51667.53 258337.64 6.66 8846.21 79615.89

6.26 55.45 17233.10 86165.50 5.32 7903.72 71133.47

7.31 47.31 14982.82 74914.10 3.61 6311.84 56806.56

8.36 32.34 10419.11 52095.55 2.77 5462.39 49161.51

9.42 20.29 6531.80 32659.03 2.73 6101.02 54909.18

10.47 17.42 5670.87 28354.35 2.87 6955.54 62599.86

11.52 16.71 5396.73 26983.65 2.90 7853.72 70683.47

12.57 9.47 3061.06 15305.30 1.92 5539.44 49854.96

16.78 5.39 1732.79 8663.95 1.56 5463.11 49167.99

21.00 3.20 1011.59 5057.95 1.38 6299.44 56694.96

25.21 2.63 794.15 3970.75 1.30 7097.38 63876.42

29.42 2.10 622.03 3110.15 1.21 6876.21 61885.89

33.63 1.86 497.50 2487.50 1.20 8489.26 76403.34

37.84 1.93 529.90 2649.50 1.20 9171.98 82547.82

42.05 1.62 405.44 2027.2 1.10 9004.26 81038.43

Table 4.2.1.2 Rn, Nd and Cc o f Simple Hill-climbing on Class II
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Table 4.2.1.1 is the time cost (Tm) result o f simple hill-climbing on Class II on both 

two kinds o f the constraint graphs. The result o f  Table 4.2.1.1 is also presented as a 

graph in Figure 4 .2 .1.1. From this figure we can see that simple hill-climbing can find 

a solution faster in the dual representation when move cost ratio is low (MoR from 

3.10 to 12.57). As the move cost ratio is increasing which indicates the problem is 

getting looser, simple hill-climbing will get a better performance in the primal 

representation (MoR from 21.00 to 42.05).

We give Rn, Nd and Cc o f simple hill-climbing on Class II in Table 4 .2 .1.2. As the 

same situation in Class I, for those problem instances with very tight constraints, 

simple hill-climbing will spend a lot o f time to regenerate an initial state in the primal 

representation, thus, it cost longer time to find a solution as more nodes are visited in 

the search tree and more constraints are checked.

4.2.2 Steepest Ascent Hill-climbing on Class II

Table 4.2.2.1 is the time cost (Tm) result o f steepest ascent hill-elimbing on Class II 

on both primal and dual constraint graphs. The result o f  Table 4.2.2.1 is also showed 

as a graph in Figure 4.2.2.1. From this figure we can see that steepest ascent 

hill-climbing can get a better performance in the dual representation when move cost 

ratio is low (MoR from 3.10 to 16.78). As the move cost ratio is increasing, steepest 

ascent hill-climbing will find a solution faster in the primal representation (MoR from 

25.21 to 42.05) than in the dual representation. We give Rn, Nd and Cc o f steepest 

ascent hill-climbing on Class II in Table 4.2.2.2.
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Move Cost 

Ratio

L Pstp  

T m  M ean

LD stp 

T m  M ean
T_value Accept Ho?

C l

Low er

B ound

C l

U pper

Bound

3.10 3195.47 94.68 9.157 LPstp Mean > LDstp Mean and Reject Ho 2437.15 3764.42

4.15 3206.58 106.72 9.505 LPstp Mean > LDstp Mean and Reject H q 2460.68 3739.03

5.21 1114.21 48.59 9.735 LPstp Mean > LDstp Mean and Reject H q 851.09 1280.14

6.26 749.69 62.19 9.147 LPstp Mean > LDstp Mean and Reject Ho 540.18 834.81

7.31 749.53 67.66 9.065 LPstp Mean >  LDstp Mean and Reject Ho 534.45 829.28

8.36 337.03 43.13 8.638 LPstp Mean > LDstp M ean and Reject Ho 227.21 360.58

9.42 313.91 55.15 8.129 LPstp Mean > LDstp M ean and Reject Ho 196.36 321.15

10.47 174.53 50.78 6.822 LPstp Mean > LDstp M ean and Reject Ho 88.21 159.29

11.52 179.85 47.65 6.833 LPstp Mean > LDstp M ean and Reject Ho 94.28 170.11

12.57 119.37 51.56 6.229 LPstp Mean > LDstp M ean and Reject Ho 46.47 89.14

16.78 82.97 45.79 3.947 LPstp Mean > LDstp M ean and Reject Ho 18.71 55.64

21.00 48.91 44.06 0.497 Accept H q -14.25 23.95

25.21 35.62 56.40 -3.182 LPstp Mean < LDstp M ean and Reject Ho -33.57 -7.98

29.42 26.41 55.63 -4.901 LPstp Mean < LDstp Mean and Reject Ho -40.91 -17.53

33.63 20.93 61.72 -6.491 LPstp Mean < LDstp Mean and Reject Ho -53.11 -28.47

37.84 20.32 66.25 -6.887 LPstp Mean < LDstp Mean tind Reject H q -59.00 -32.85

42.05 15.78 65.94 -7.738 LPstp Mean < LDstp Mean and Reject H q -62.86 -37.45

Table 4.2.2.1 Time Cost o f Steepest Ascent Hill-climbing on Class II
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Steepest Ascent Hill-climbing on Class II
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M ove C ost 

R atio

L Pstp

Rn

L Pstp

Nd

L Pstp

Cc

LD stp

Rn

LD stp

Nd

LD stp

Cc

3.10 368.09 150221.52 751107.75 14.72 16568.73 149118.56

4.15 331.01 149641.73 748208.94 12.07 18570.46 167134.14

5.21 172.99 51667.53 258337.64 6.66 8846.21 79615.89

6.26 66.21 34812.32 174061.60 4.92 11183.71 100653.39

7.31 63.21 34898.89 174494.45 3.91 10174.53 91570.77

8.36 27.80 15773.04 78865.20 2.68 7745.12 69706.08

9.42 25.13 14685.85 73429.25 2.90 9697.53 87277.77

10.47 13.48 8132.25 40661.25 2.45 8847.90 79631.10

11.52 13.52 8254.26 41271.30 2.16 8398.32 75584.88

12.57 8.84 5497.38 27486.90 2.15 9321.73 83895.57

16.78 6.02 3826.39 19131.94 1.47 7877.93 70901.36

21.00 3.43 2180.78 10903.90 1.25 7683.34 69150.06

25.21 2.52 1604.37 8021.85 1.33 9876.71 88890.39

29.42 2.03 1209.06 6045.35 1.14 9661.48 86953.32

33.63 1.62 935.39 4676.95 1.15 10886.97 97982.73

37.84 1.62 891.11 4455.54 1.13 11926.19 107335.71

42.05 1.35 718.80 3594.00 1.05 11681.23 105131.07

Table 4.2.2.2 Rn, Nd and Cc o f Steepest Ascent Hili-climbing on Class II

4.2.3 Min-conflicts Heuristics Hill-climbing on Class II

Table 4.2.3.1 is the time cost (Tm) result o f min-conflicts heuristics on Class II on 

both primal and dual constraint graphs. The result o f  Table 4.2.3.1 is also showed as a 

graph in Figure 4.2.3.1. From this figure we can see that min-conflicts heuristics 

hill-climbing can get a better performance in the dual representation when move cost 

ratio is low (MoR from 3.10 to 16.78). As the move cost ratio is increasing, 

min-conflicts heuristics hili-ciimbing will find a solution faster in the primal 

representation (MoR from 25.21 to 42.05) than in the dual representation. We give Rn, 

Nd and Cc o f min-conflicts heuristics hill-climbing on Class III in Table 4.2.3.2.
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Move Cost 

Ratio

LPm c 

T m  M ean

LDm c 

T m  M ean
T_value A ccept Ho?

C l

Low er

Bound

C l

U pper

Bound

3.10 316.29 30.18 9.127 LPmc Mean > LDmc Mean and Reject Ho 224.67 347.54

4.15 289.22 26.27 9.552 LPmc Mean > LDmc Mean and Reject Ho 208.99 316.91

5.21 300.60 52.64 8.316 LPmc Mean > LDmc Mean and Reject Ho 189.52 306.39

6.26 273.44 25.32 9.129 LPmc Mean > LDmc Mean and Reject Ho 194.85 301.38

7.31 251.70 21.22 9.176 LPmc Mean > LDmc Mean and Reject Ho 181.25 279.71

8.36 227.20 28.45 8.721 LPmc Mean > LDmc Mean and Reject Ho 154.08 243.41

9.42 201.89 25.78 8.689 LPmc Mean > LDmc Mean and Reject Ho 136.38 215.83

10.47 142.03 29.06 7.871 LPmc Mean > LDmc Mean and Reject Ho 84.83 141.12

11.52 101.72 28.75 7.036 LPmc Mean > LDmc Mean and Reject H q 52.64 93.29

12.57 86.25 33.91 5.688 LPmc Mean >  LDmc Mean and Reject Ho 34.31 70.37

16.78 51.72 34.68 2.994 LPmc Mean > LDmc Mean and Reject Ho 5.88 28.19

21.00 33.75 37.50 -0.922 Accept Ho -11.71 4.21

25.21 20.94 40.78 -5.372 LPmc Mean < LDmc Mean and Reject Ho -27.07 -12.61

29.42 20.95 46.72 -6.262 LPmc Mean <  LDmc Mean and Reject Ho -33.83 -17.71

33.63 16.56 47.66 -8.541 LPmc Mean < LDmc Mean and Reject H q -38.23 -23.96

37.84 11.41 52.81 -10.249 LPmc Mean < LDmc Mean and Reject H q -49.31 -33.48

42.05 8.60 59.22 -11.791 LPmc Mean < LDmc Mean and Reject Ho -59.03 -42.21

Table 4.2.3.1 Time Cost of Min-conflicts Heuristics Hill-climbing on Class II
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Figure 4.2.3.1 Comparison of Tm Mean of 

Min-conflicts Heuristics Hill-climbing on Class II
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Move Cost 

R atio

L Pm c

Rn

LPm c

Nd

LPm c

Cc

LDm c

Rn

LDmc

Nd

LDm c

Cc

3.10 48.29 9719.92 48599.60 9.07 3393.21 30538.89

4.15 49.98 8765.79 43828.95 5.59 3055.06 27495.54

5.21 56.28 9435.97 7179.85 7.88 5517.62 49658.58

6.26 55.86 8638.21 43191.05 3.28 2871.23 25841.08

7.31 52.95 7935.67 39678.35 2.53 2463.49 22171.45

8.36 48.11 7091.12 35455.60 2.83 3310.54 29794.86

9.42 43.86 6405.69 32028.45 2.54 2867.86 25810.74

10.47 32.20 4569.75 22848.75 2.58 3276.73 29490.57

11.52 23.55 3272.35 16361.75 2.30 3255.74 29301.66

12.57 19.26 2735.88 13679.40 2.50 3894.00 35046.00

16.78 12.42 1669.74 8348.70 2.02 4007.50 36067.50

21.00 8.49 1087.09 5435.45 1.81 4277.69 38499.21

25.21 5.36 675.23 3376.15 1.65 4659.31 41933.88

29.42 5.35 653.08 3265.40 1.63 5209.89 46889.01

33.63 4.21 493.38 2466.89 1.64 5451.34 49062.06

37.84 3.35 368.36 1841.80 1.55 6013.13 54118.17

42.05 2.47 261.78 1308.90 1.48 6684.93 60164.37

Table 4.2.3.2 Rn, Nd and Cc o f Min-conflicts Heuristics Hill-climbing on Class II

4.2.4 Comparisons among Different Hill-climbing algorithms on 

Class II

Based on Table 4.2.1.1, Table 4.2.2.1 and Table 4.2.3.1, we give Figure 4.2.4.1 to 

compare the Tm means o f  all the three algorithms on Class II. Figure 4.2.4.1 shows 

three hill-climbing methods have similar characters as they are in Class I. Steepest 

ascent hill-climbing does not perform so well as simple hill-climbing and 

min-conflicts heuristics hill-climbing on both primal and dual representations (See 

Figure 4.2.4.2 and Figure 4.2.4.3). These two graphs comparing Nc among the three 

algorithms on both representations are based on Table 4.2.1.2, Table 4.2.2.2 and 

Table 4.2.3.2. In Figure 4.2.4.1, 4.2.4.2 and 4.2.4.3, min-conflicts heuristics 

hill-climbing suggests that it have the best performance among the three algorithms.
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4.3 Experiment Results and Analysis on Class III

In this section we present experiment results based on the problem instances in Class III. 

This class includes 21 problems each o f which has 12 variables, domain size 10, 

problem arity 5 and constraint density 0.006. Constraint tightness changes from 0.01 

to 0.02 in steps o f 0.01, from 0.02 to 0.025 in steps o f  0.0025, from 0.03 to 0.1 in 

steps o f 0.01.The move cost ratio increases from 26.58 to 266.75. Class 111 is based on 

Class 1 but it enlarges the number o f  variables from 9 to 12 and arity from 3 to 5.

4.3.1 Simple Hill-climbing on Class III

Table 4.3.1.1 is the time cost (Tm) result o f  simple hill-climbing on Class 111 on both 

two kinds o f the constraint graphs. The result o f Table 4.3.1.1 is also presented as a 

graph in Figure 4.3.1.1. From this figure we can see that simple hill-climbing can find 

a solution faster in the dual representation when move cost ratio is low (MoR from 

26.58 to 66.61). As the move cost ratio is increasing which indicates the problem is
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getting looser, simple hill-climbing will get a better performance in the primal 

representation (MoR from 106.63 to 266.75) than in the dual representation.

Move Cost 

Ratio

LPsim  

T m  M ean

LDsim 

T m  M ean
T_value A ccept Ho"!

C l

L ow er

B ound

C l

U pper

B ound

26.58 2124.86 123.91 9.889 LPsim Mean > LDsim M ean and Reject Ho 1604.39 2397.51

29.25 2247.32 119.53 10.040 LPsim Mean > LDsim Mean and Reject Ho 1712.43 2543.14

31.92 1359.38 118.59 9.271 LPsim Mean > LDsim M ean and Reject Ho 978.47 1503.11

34.58 1425.47 127.50 9.147 LPsim Mean > LDsim Mean and Reject Ho 1019.84 1576.09

37.25 1476.25 128.75 9.189 LPsim Mean > LDsim M ean and Reject Ho 1060.11 1634.89

39.92 982.66 128.91 8.696 LPsim Mean > LDsim M ean and Reject Ho 661.33 1046.16

42.59 864.06 99.37 8.775 LPsim Mean > LDsim M ean and Reject Ho 593.89 935.48

45.26 872.35 135.46 8.394 LPsim M ean > LDsim M ean and Reject Ho 564.82 908.950

47.93 506.40 141.39 6.941 LPsim Mean > LDsim Mean and Reject Ho 261.94 468.07

50.60 490.47 132.03 6.981 LPsim Mean > LDsim Mean and Reject H q 257.81 459.06

53.26 459.22 138.91 6.715 LPsim Mean > LDsim Mean and Reject Ho 226.81 413.81

59.92 303.59 122.18 5.613 LPsim Mean >  LDsim M ean and Reject H q 118.06 244.75

66.61 282.50 147.64 4.282 LPsim Mean > LDsim M ean and Reject Ho 73.14 196.57

79.95 163.28 158.91 0.195 Accept Ho -39.51 48.2

106.63 77.18 189.22 -5.656 LPsim Mean < LDsim M ean and Reject Ho -150.86 -73.21

133.32 46.09 232.98 -8.206 LPsim Mean < LDsim Mean and Reject Ho -231.52 -142.25

160.00 28.75 255.93 -9.215 LPsim Mean < LDsim M ean and Reject Ho -275.49 -178.86

186.69 23.91 280.16 -9.529 LPsim Mean < LDsim Mean and Reject Ho -203.54 -308.95

213.37 17.50 341.57 -9.898 LPsim Mean < LDsim M ean and Reject Ho -388.23 -259.91

240.06 15.00 398.91 -10.045 LPsim M ean < LDsim M ean and Reject Ho -458.81 -309.01

266.75 11.25 426.72 -10.168 LPsim Mean < LDsim M ean and Reject Ho -495.55 -335.38

Table 4.3.1.1 Time Cost o f Simple Hill-climbing on Class III
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Simple Hill-climbing on Class III

M ove C ost 

R atio

LPsim

Rn

LPsim

Nd

LPsim

Cc

LDsim

Rn

LDsim

Nd

LDsim

Cc

26.58 405.53 70803.38 354016.88 3.51 19086.69 209953.60

29.25 422.68 74995.75 374978.80 3.08 18278.88 201067.69

31.92 244.77 45028.40 225141.95 2,76 18227.86 200506.60

34.58 256.78 47294.92 236474.64 2.83 20011.91 220130.95

37.25 260.60 49105.26 245526.30 2.59 19785.86 217644.69

39.92 172.56 32716.20 163581.00 2.28 18621.27 204834.05

42.59 148.50 28687.06 143435.30 1.78 15237.18 167608.98

45.26 151.28 29081.20 145406.00 2.13 20854.36 229397.88

47.93 86.17 16845.92 84229.60 2.15 21455.84 236014.23

50.60 82.02 16271.24 81356.20 1.89 19958.81 219546.92

53.26 77.24 15283.55 76417.75 1.93 21541.56 236957.12

59.92 49.64 10056.69 50283.45 1.83 18571.44 204285.94

66.61 45.75 9361.16 46805.80 1.66 23247.17 255718.80

79.95 25.99 5405.01 27025.05 1.42 24240.04 266640.53

106.63 12.33 2541.69 12708.45 1.35 29216.86 321385.40

133.32 7.21 1505.43 7527.15 1.29 36396.42 400360.62

160.00 4.48 920.99 4604.95 1.20 40011.86 440130.40

186.69 3.89 782.15 3910.75 1.14 43114.69 474261.47

213.37 2.91 563.53 2817.70 1.17 53121.55 584337.10

240.06 2.59 483.69 2418.45 1.17 60105.34 661158.75

266.75 2.02 361.63 1808.15 1.19 65107.29 716180.06

Table 4.3.1.2 Rn, Nd and Cc o f Simple Hill-climbing on Class HI
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We give Rn, Nd and Cc o f  simple hill-climbing on Class II in Table 4.3.1.2. As the 

same situations in Class I and Class II, for those problem instances with very tight 

constraints, simple hill-climbing will spend a lot o f  time to regenerate an initial state 

in the primal representation, thus, it cost longer time to find a solution as more nodes 

are visited in the search tree and more constraints are checked.

4.3.2 Steepest Ascent Hill-climbing on Class III

Move Cost 

Ratio

L Pstp  

T m  M ean

LD stp 

T m  M ean
T_value Aeeept Mg'!

C l

Low er

B ound

C l

U pper

Bound

26.58 3327.02 167.03 9.537 LPstp Mean > LDstp Mean and Reject Hg 2510.59 3809.38

29.25 2867.67 246.41 9.141 LPstp Mean >  LDstp Mean and Reject Hg 2059.19 3183.32

31.92 2597.03 157.64 9.396 LPstp Mean > LDstp Mean and Reject Hg 1930.54 2948.23

34.58 2118.11 103.59 9.502 LPstp Mean >  LDstp Mean and Reject Hg 1598.99 2430.04

37.25 1712.18 154.69 9.068 LPstp Mean >  LDstp M ean and Reject Hg 1220.86 1894.11

39.92 1570.94 142.81 9.056 LPstp Mean > LDstp Mean and Reject Hg 1119.05 1737.21

42.59 1252.49 137.66 8.826 LPstp Mean > LDstp Mean and Reject Hg 867.27 1362.38

45.26 1131.40 146.56 8.631 LPstp Mean >  LDstp M ean and Reject Hg 761.19 1208.48

47.93 945.00 107.66 8.814 LPstp Mean > LDstp Mean and Reject Hg 651.14 1023.53

50.60 591.40 96.88 8.262 LPstp Mean >  LDstp Mean and Reject Hg 377.21 611.83

53.26 663.91 115.00 8.301 LPstp Mean > LDstp Mean and Reject Hg 419.31 678.51

59.92 641.71 114.21 8.100 LPstp Mean > LDstp Mean and Reject H 399.86 655.13

66.61 393.75 136.72 6.186 LPstp Mean > LDstp M ean and Reject Hg 175.59 338.46

79.95 219.06 136.09 3.242 LPstp Mean > LDstp Mean and Reject Hg 32.82 133.11

106.63 120.00 169.22 -2.42 LPstp Mean < LDstp M ean and Reject Hg -88.95 -9.48

133.32 89.85 163.28 -4.071 LPstp Mean <  LDstp Mean and Reject Hg -108.77 -38.08

160.00 55.31 309.69 -8.375 LPstp Mean < LDstp Mean and Reject Hg -313.91 -194.84

186.69 40.63 196.10 -8.089 LPstp Mean < LDstp M ean and Reject Hg -193.13 -117.81

213.37 31.25 232.50 -8.953 LPstp Mean < LDstp M ean and Reject Hg -245.31 -157.19

240.06 24.38 250.16 -9.358 LPstp Mean < LDstp Mean and Reject Hg -273.06 -178.49

266.75 21.41 251.87 -9.542 LPstp Mean < LDstp Mean and Reject Hg -277.79 -183.12

Table 4.3.2.1 Time Cost of Steepest Ascent Hill-climbing on Class III
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Figure 4.3.2.1 Comparison of Tm Mean of 

Steepest Ascent Hill-cIimbing on Class III

M ove Cost 

R atio

L Pstp

Rn

L Pstp

Nd

L Pstp

Cc

LD stp

Rn

L D stp

Nd

L D stp

Cc

26.58 431.56 110836.45 554182.20 5.72 26480.09 291280.90

29.25 362.75 95797.10 478985.53 4.55 23369.30 257062.22

31.92 316.07 86962.90 434814.47 4.97 22027.07 242297.77

34.58 246.97 70119.46 350597.28 2.70 16048.47 176533.19

37.25 197.45 56907.57 284537.88 3.82 24384.06 268224.70

39.92 177.33 52547.70 262738.47 3.21 21893.27 240826.00

42.59 135.41 41548.94 207744.69 2.91 21133.92 232473.10

45.26 119.06 37236.59 186182.95 2.96 22815.06 250965.60

47.93 99.59 31438.24 157191.20 2.08 16508.06 181588.66

50.60 60.89 19639.98 98199.90 1.78 15392.84 169321.23

53.26 66.97 21913.84 109569.20 1.99 17557.42 193131.60

59.92 63.98 21343.44 106717.20 1.73 17331.28 190644.16

66.61 36.99 12847.99 64239.95 1.80 20173.94 221913.44

79.95 19.52 7110.69 35553.45 1.58 19977.71 219754.81

106.63 10.47 3953.05 19765.25 1.49 25476.95 280246.38

133.32 7.22 2773.24 13866.20 1.24 24779.75 272577.30

160.00 4.56 1783.16 8915.80 1.21 28905.13 317956.40

186.69 3.23 1231.18 6155.95 1.15 29945.87 329404.62

213.37 2.65 999.85 4999.25 1.12 34841.53 383256.88

240.06 2.16 789.05 3945.25 1.14 38444.64 422891.00

266.75 1.92 681.67 3408.35 1.09 38856.80 427424.97

Table 4.3.2.2 Rn, Nd and Cc o f Steepest Ascent Hill-climbing on Class HI
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Table 4.3.2.1 is the time cost (Tm) result o f steepest ascent hill-climbing on Class III 

on both primal and dual constraint graphs. The result o f  Table 4.3.2.1 is also showed 

as a graph in Figure 4.3.2.1. From this figure we can see that steepest ascent 

hill-climbing can get a better performance in the dual representation when move cost 

ratio is low (MoR from 26.58 to 79.95). As the move cost ratio is increasing, steepest 

ascent hill-climbing will find a solution faster in the primal representation (MoR from 

106.63 to 266.75) than in the dual representation. We give Rn, Nd and Cc o f  steepest 

ascent hill-climbing on Class III in Table 4.3.2.2.

4.3.3 Min-conflicts Heuristics Hill-climbing on Class HI

M ove Cost 

Ratio

LPm c 

T m  M ean

LDm c 

T m  M ean
T_value Accept H gl

C l

L ow er

Bound

C l

U pper

Bound

26.58 2462.35 85.60 10.113 LPmc Mean > LDmc Mean and Reject Ho 1916.15 2837.34

29.25 2318.19 81.41 9.704 LPmc Mean > LDmc Mean and Reject Ho 1785.02 2688.53

31.92 2173.60 97.98 9.733 LPmc Mean > LDmc Mean and Reject Ho 1657.67 2493.56

34.58 2058.75 72.18 9.806 LPmc Mean >  LDmc Mean and Reject H q 1589.52 2383.61

37.25 2038.75 106.78 9.721 LPmc Mean > LDmc Mean and Reject Ho 1542.45 2321.48

39.92 1735.60 90.15 9.554 LPmc Mean > LDmc Mean and Reject Ho 1307.91 1982.98

42.59 1821.83 145.63 9.273 LPmc Mean > LDmc Mean and Reject Ho 1321.91 2030.46

45.26 1556.29 89.17 9.494 LPmc Mean >  LDmc Mean and Reject Ho 1164.23 1769.99

47.93 1457.30 80.93 9.498 LPmc Mean > LDmc Mean and Reject Ho 1092.36 1660.37

50.60 1350.16 93.12 9.341 LPmc Mean > LDmc Mean and Reject Ho 993.26 1520.81

53.26 1337.82 97.50 9.287 LPmc Mean > LDmc Mean and Reject Ho 978.55 1502.08

59.92 1287.49 101.40 9.482 LPmc Mean > LDmc Mean and Reject Ho 940.91 1431.24

66.61 963.13 90.15 9.184 LPmc Mean > LDmc Mean and Reject Ho 686.67 1059.28

79.95 549.21 98.43 8.678 LPmc Mean > LDmc Mean and Reject Ho 348.97 552.58

106.63 172.81 167.35 0.266 Accept Ho -34.72 45.64

133.32 83.28 148.89 -4.675 LPmc Mean < LDmc Mean and Reject Ho -93.12 -38.11

160.00 48.44 126.41 -9.901 LPmc Mean < LDmc Mean and Reject Ho -117.36 -78.57

186.69 35.15 215.78 -11.891 LPmc Mean < LDmc Mean and Reject Ho -210.41 -10.85

213.37 22.19 214.84 -11.971 LPmc Mean < LDmc Mean and Reject Ho -224.19 -161.11

240.06 14.85 245.81 -11.467 LPmc Mean < LDmc Mean and Reject Ho -269.84 -191.07

266.75 12.50 186.57 -11.047 LPmc Mean < LDmc Mean and Reject Ho -204.95 -143.18

Table 4.3.3.1 Time Cost o f Min-conflicts Heuristics Hill-climbing on Class HI
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M ove Cost 

R atio

LPm c

R n

LPm c

Nd

LPm c

Cc

LDmc

Rn

LDm c

Nd

LDm c

Cc

26.58 503.72 50474.98 252374.9 6.97 8383.09 92213.99

29.25 485.95 47376.47 236882.38 6.24 8108.44 89192.84

31.92 489.17 44655.48 223277.36 6.62 9386.93 103256.23

34.58 472.97 42179.20 210896.00 5.19 7268.07 79948.77

37.25 487.91 42241.86 211209.31 6.80 11019.01 121209.11

39.92 438.27 35993.32 179966.69 5.12 8908.09 97988.99

42.59 475.68 37991.71 189958.56 4.59 10541.29 115954.29

45.26 412.5 32551.96 162759.80 4.55 9154.77 100702.49

47.93 401.36 30409.69 152048.45 4.08 8266.28 90929.08

50.60 359.00 27374.82 136874.10 4.35 9555.30 105108.34

53.26 382.61 28069.75 140348.75 4.41 9813.70 107950.70

59.92 373.22 26799.9 133999.50 3.73 9947.34 109420.81

66.61 286.48 19872.24 99361.20 3.24 9072.86 99801.46

79.95 176.27 11717.22 58586.10 2.62 10214.13 112355.54

106.63 58.18 3671.33 18356.65 2.33 11581.12 127392.32

133.32 29.27 1809.22 9046.09 2.02 10291.42 113205.62

160.00 18.11 1061.99 5309.95 1.81 13035.08 143385.88

186.69 13.06 773.80 3869.00 1.58 13387.13 147258.44

213.37 8.77 487.13 2435.64 1.58 14913.96 164053.56

240.06 5.90 323.78 1618.90 1.32 14392.93 158322.23

266.75 5.07 270.84 1354.20 1.24 16565.75 182223.27

Table 4.3,3.2 Rn, Nd and Cc o f Min-conflicts Heuristics Hill-climbing on Class HI
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Table 4.3.3.1 is the time cost (Tm) result o f min-conflicts heuristics on Class III on 

both primal and dual constraint graphs. The result o f  Table 4.3.3.1 is also showed as a 

graph in Figure 4.3.3.1. From this figure we can see that min-conflicts heuristics 

hill-climbing can get a better performance in the dual representation when move cost 

ratio is low (MoR from 26.58 to 79.95). As the move cost ratio is increasing, 

min-conflicts heuristics hill-climbing will find a solution faster in the primal 

representation (MoR from 133.32 to 266.75) than in the dual representation. We give 

Rn, Nd and Cc o f  min-conflicts heuristics hill-climbing on Class 111 in Table 4.3.3.2.

4.3.4 Comparisons among Different Hill-climbing algorithms on 

Class III

Based on Table 4.3.1.1, Table 4.3.2.1 and Table 4.3.3.1, we give Figure 4.3.4.1 to 

compare the Tm means o f  all the three algorithms on Class 111. Figure 4.3.4.1 shows 

three hill-climbing methods have similar characters as they are in Class 1 and Class 11. 

Figure 4.3.4.2 and Figure 4.3.4.3 comparing Nc among the three algorithms on both 

representations are based on Table 4.3.1.2, Table 4.3.2.2 and Table 4.3.3.2.
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Figure 4.3.4.1 Comparisons o f Tm Means for LPsim, LPstp, LPmc, LDsim,

LDstp and LDme on Class III
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4.4 Conclusions

In this chapter we present the experiment result on three problem classes. The 

comparisons show that local search methods can get a better performance in the dual 

representation when move cost ratio is low. As the move cost ratio is increasing, local 

search will find a solution faster in the primal representation than in the dual 

representation. Among the three local search methods in our empirical study,
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min-conflicts heuristics hill-climbing suggests that it have the best performance 

among the three algorithms, steepest ascent hill-climbing tends to be the worst and 

simple hill climbing is in the middle or sometimes it is the best.
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Chapter 5

Conclusions

In this thesis we designed an empirical study to investigate the behaviour o f  several 

local search methods in primal and dual constraint graph representations. Such local 

search methods used in our empirical study included simple hill-climbing, steepest 

ascent hill-climbing and min-conflicts heuristics hill-climbing.

Our approach focused on observing behaviours o f  several local search methods in 

primal and dual constraint graphs. The measurements we used to characterize the 

behaviour o f the three local search methods were: number o f times that local search 

randomly generates the initial state, number o f nodes visited in the search procedure, 

number o f constraints checked in the search procedure and CPU time cost by the 

search procedure to find a solution. Since search node in primal constraint graph has 

different meaning from it in dual constraint graph, the number o f nodes visited was 

used to compare different local search methods on the same constraint graph 

representation. Between the primal and dual representations, we briefly compared 

time cost to find a solution. We used T-test which is a statistical analysis method to 

compare the time cost means o f two groups to support the comparison in our empirical 

study. We launched all T-tests by a given risk level a = 0 .0 5 , critical value T_cv 

=1.645. A 95% confidence interval on the difference o f means was also given in the 

comparison result.
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In our comparison result all the three hill-climbing algorithms could find a solution 

within a shorter time in dual representation than in primal representation when move 

cost ratio was low. As the move cost ratio was increasing which indicated the problem 

was getting looser, local search methods got a better performance in the primal 

representation than in the dual representation. Such results show that we can use local 

search to solve a CSP with tight constraints in its dual representation and gain a better 

performance than using it in its primal representation. When constraints are getting 

looser, using local search in primal representation is a better choice.

Among the three local search methods used in our empirical study, min-conflicts 

heuristics hill-climbing suggested that it have the best performance among the three 

algorithms while steepest ascent hill-climbing tended to have the worst performance 

and simple hill climbing was in the middle or sometimes it was the best.

5.1 Future Work

In our empirical study, move cost o f local search is an essential factor affecting the 

performance o f  local search. Domain size, number o f constraints and constraint 

tightness, constraint density and constraint arity in both primal and dual 

representations can affect the move cost. It would be interesting if  we pay more 

attention to all o f  the above factors on how they affect the move cost in various local 

search methods. Such research will help us give a clearer view to decide which kind 

o f representation is more suitable to be used in solving CSPs with different characters.

One problem for local search methods is meeting local optima. In our empirical study, 

we regenerate initial state or break ties randomly (in min-conflicts heuristics) to 

escape from local optima. There is also other improvement such as random walk 

[SKC94] or Tabu search [Glo89] can be add to current local search methods to avoid 

local optima.
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Appendix A

T-test

In this appendix we review some issues related to T-test which is used in the empirical 

study to investigate the behaviour o f local search algorithms in CSP’s primal and dual 

representations. Due to the non-deterministic manner o f local search algorithms, one 

can get different solutions if  running the algorithm on the same problem instance for 

several times, each o f which costs different time length. The traditional way to get the 

performance o f  such algorithms is to run the algorithm on the same problem instance 

for a number o f  rounds and then get the mean. For example, one can run simple 

hill-climbing on a CSP’s primal constraint graph for 100 rounds. Then one can get the 

average search time by dividing the sum of search time consumed in each round by 100. 

Such average search time is also called the mean o f search time for these 100 rounds. 

M ost research on local search methods such as proposing a new local search algorithm 

or making an improvement for a current algorithm will compare the means o f  two 

algorithms’ time cost, which is a common form o f conducting an empirical study. Most 

research will conclude that algorithm B is better than algorithm A because the mean of 

algorithm B ’s time cost is less than the mean of algorithm A ’s time cost. Is it always 

correct to make such a conclusion? If the two means have some difference but do not 

differ a lot, for instance, the mean o f algorithm A ’s time cost is greater than the mean o f 

algorithm B ’s time cost with a difference o f 0.1 milliseconds, can we say algorithm B is 

better than algorithm A? Once we have summarized such data as means, how do we 

decide if  the observed differences between the two algorithms are real or just a chance
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difference caused by the natural variation within the measurements? In this thesis we 

use a statistical analysis method called T-test which is a common way to approach 

above questions. Generally when the sample size o f  each group is larger than 30, such 

test for assessing the difference o f the means between two groups is called a Z-test. In 

the following let us review the related T-test issues.

The T-test assesses whether the means o f two groups are statistically different from 

each other. Figure A p e n d ix l  is the formula for the T-test when the variances o f  the 

two groups are markedly different [PG94]. This formula is a ratio. The top part o f the 

ratio is the difference between the two means or averages. The bottom part is a measure 

o f the variability or dispersion o f the measurements which is called the standard error 

of the difference. To compute the standard error o f the difference, we take the variance 

for each group and divide it by the number o f rounds o f running the algorithm in that 

group. We add these two values and then take their square root. The specific formula 

for computing the standard error o f the difference is given in Figure Apendix_2.

The result o f  the formula in Figure Apendix l is called a T_vaiue. Now we illustrate 

how to use the T value to tell whether the difference o f the two means is significant or 

not:

1) The T-test is given under two hypotheses:

H o'. P a  =  P b ,  which sets the hypothesis that the two means o f  the two groups 

have no significant difference.

H a '. P a  >  P b  (or P a  <  P b ), which sets the hypothesis that the mean o f  algorithm 

A ’s time cost is greater (or less) than the mean o f  algorithm B ’s

time cost.

2) To test the significance, we need to set a risk level which is called the alpha

level. For practical purposes, the alpha level is conventionally set at 0.05. This 

means that five times out o f a hundred you would find a statistically
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significant difference between the means even if  there was none i.e., such 

difference is gained by chance.

T value = _
difference between group means

variability o f groups

Xa - X b

S E ( X a - X b )

I ^ - ' X b

/ Sa'  Sb'

/  — 2 "!-------- 7^  Ha Hb̂

Figure Apendix l  T-test formula when variances are unequal

S E ( X a - X b ) =

Figure Apendlx_2 Formula for the standard error o f the
difference between the means when variances are

3) We also need to determine the degrees of freedom (df) for the test. In the 

T-test for equal variances, the degrees o f freedom is the sum o f the number o f 

rounds o f running the algorithm in each group minus 2. For example, we run
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algorithm A and algorithm B both for 10 rounds, i.e., ni=10 and n2=10. Then 

we can get the degrees o f freedom for the T-test is 10 + 10 -  2 = 18. In the 

T-test for unequal variances, the degrees o f  freedom is calculated in a very 

complicated way. But for practical purposes, when niand n2 are both larger 

than 100, we can define d f is ^  oo.

Given the alpha level and the degrees o f freedom, we can look up the T_criticalvalue 

(T_cv) in a standard table o f  significance which is called a T-table. The T-table is used 

to determine whether the T_value is large enough to be significant. For example, given 

the alpha level a = 0 .0 5  and degrees o f freedom d f =18, we find T_cv = 1.734. Now we 

compare T value with T_cv. I f  |T_value| > T_cv, we can conclude that the difference 

between the means o f the two groups is significant and such difference between the 

groups is not likely to have been a chance finding, i.e., we reject the hypothesis Ho'- the 

two means have no significant difference. If  |T_valuel < T_cv, we will accept the 

hypothesis Hq. the two means have no significant difference. The T value will be 

positive if  the first mean is larger than the second and negative if it is smaller. If 

|T_value| > T_cv and T value is positive, we can conclude that the mean o f algorithm 

A ’s time cost is greater than the mean o f algorithm B ’s time cost. I f  |T_value| > T_cv 

and T value is negative, we can conclude that the mean o f algorithm B ’s time cost is 

greater than the mean o f algorithm A ’s time cost.

There are several issues we need to clarify when applying the T-test method in our 

empirical study:

1) One sided T-test and two sided T-test: In one-sided T-test, it is assumed that 

before doing the test we had a hypothesis that one mean o f the two means was 

greater (or less) than the other mean. If  we did not have such a prior 

hypothesis, and we only aim to test for a possible difference between the 

means, we need to do a two-sided T-test. The T-tahle for a one-sided T-test is 

different from the T-table for a two-sided T-test. In a two-sided T-test one 

would mostly multiply the alpha level by two. One-sided T-test is also called
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one-tailed T-test and two-sided T-test is also called two-tailed T-test. In our 

empirical study, we concentrate on whether the mean o f time cost for local 

search in primal is greater (or less) than the mean o f time cost for local search 

in dual, which is a one-sided T-test.

2) T-test under equal and unequal variances; In Figure Apendix l we give the

formula for T-test when the variances for two means are unequal. I f  the two 

variances are equal, there will be another T-test formula. The way to calculate 

the standard error o f  the difference (SE) and degrees o f freedom (df) is also 

different. But in our empirical study, the number o f tests in eaeh group is same, 

i.e., we run local search in primal representation and local search in dual 

representation on the same problem instance for equivalent times where ni= n2. 

Under such circumstance the T-test formula for equal variances is the same as 

the T-test formula for unequal variances.

3) T_cv = 1.645 when d f - ^  oo and a = 0 .0 5  in a one-sided T-test: In our empirical

study, we will run each algorithm on one problem instance for 100 times, 

which means the sample size is large enough to take the critical value (T_cv) 

as 1.645. So each time after we get the T value we can compare it with 1.645 

to see if  there is significant difference between the means.

Some researchers [SC89] recommend reporting confidence interval wherever means 

are estimated in T-test and their difference are reported. Confidence interval for the 

difference o f  the means in T-test [SC89] is an interval estimate for the difference o f the 

means. Interval estimates are often desirable because the estimate o f the difference o f 

the means may vary from sample to sample. Instead o f a single estimate for the 

difference o f the means, a confidence interval generates a lower and upper bound for 

the difference o f  the means. The confidence interval estimate indicates how much 

uncertainty there is in our estimate o f the true difference o f the means. Confidence 

interval is expressed under a confidence level. In practice a 95% confidence level is the 

most commonly used. A  95% confidence level can not be considered that there is a 95% 

probability that the interval computed from a given sample contains the true difference
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o f  the means. The interval computed from a given sample either contains the true 

difference o f  the means or it does not. The confidence level is the proportion o f 

confidence intervals that may be expected to contain the true difference o f the means. 

That is, for a 95% confidence interval, if  many samples are collected and for each 

sample the confidence interval is computed, there are about 95% o f these intervals 

which would contain the true difference o f  the means. In Figure Appendix S we give 

the formula o f confidence interval at a 95% level for the difference o f the means in a 

one-sided T-test when d f —>• oo, a = 0 .0 5  and variances are unequal. In our empirical 

study we report the 95% confidence interval for the difference o f the means in the 

T-test.

a 95% confidence interval = ( Xa -  Xb ) ±  1.96 x  SE ( Xa -  Xb)

=  ( X a - X b ) ± 1 . 9 6  X
Sa'  Sb'

+

Figure Appendix_3 Formula o f confidence interval at a 95% confidence
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