University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

Theses, Dissertations, and Major Papers

1977

A study of positioning time in a combined manual and decision task.

Joseph S. Tsui University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Tsui, Joseph S., "A study of positioning time in a combined manual and decision task." (1977). *Electronic Theses and Dissertations*. 779.

https://scholar.uwindsor.ca/etd/779

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

| |

National Library of Canada

Cataloguing Branch
Canadian Theses Division

Ottawa, Canada K1A 0N4

NOTICE

Bibliothèque nationale du Canada

Direction du catalogage Division des thèses canadiennes

AVIS

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Lôi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

> LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS REÇUE

A Study

of

Positioning Time in a Combined Manual and Decision Task

Ъγ

Joseph S. Tsui.

A

Thesis.

submitted to the Faculty of Graduate Studies

through the Department of Industrial Engineering

in partial fulfillment of the requirement for

the Degree of Master of Applied Science

at

University of Windsor

Joseph S. Tsui 1977

I wish to dedicate this thesis to my family.

Abstract

A Study of Positioning Time in a Cimbined Manual and Decision Task.

Twenty subjects, ten male and ten female, performed a Combined Manual and Decision Task involving Move and Positioning. Four distances of Move (7", 10", 13" and 16"), three levels of Lateral Clearance (0.008", 0.063" and 0.250"), and four levels of Informational Load (1, 2, 3, 4 bits) were used for these experiments. were also analysed for Same-sided Movements and Crossbody Movements. Index of Bifficulty and Informational Load were found to be significant (p<0.05). Sex was not found to be a significant variable affecting performance time (p>0.05), whereas Direction of Move was, even in a narrow region of 10° on either side of the 90° angle of Move. Linear Regression Models for predicting performance have been developed using Distance, Clearance and Index of Difficulty. The latter (I) was found to be correlating adequately, simple to use and able to accomodate any motion strategy changes due to varying distances in the task.

ACKNOWLEDGEMENT

I am deeply grateful for the kind considerations that my family and friends have given me throughout the period I was writing this thesis.

My special thoughts go to my father and to Miss Stella Hui who helped to accomplish the massive typing; to Miss Irene Shek for her constant encouragements and to Mr. Subash Arora for his generous help in completing the analytical work.

I wish also to extend my gratitude to Dr. A. Raouf for his unfailing encouragements and guidance and to the National Research Council for its financial support. which has made this project possible.

TABLE OF CONTENTS

Dedicati	en -			<u>.</u>
Abstract				
Acknowle	dgeme	ent I		iii
Table of	Cont	ent		ìy
List of	Table	es	•••••	vi
List of	Illus	stratio	ons	ix
List of	Apper	ndix .		xii
Chapter	I	Introd	uction	1
Chapter	II.	Litéra	ture Survey	4
•		2.1	Introduction4	•
	•	2.2	Combined Manual and Decision Tasks 4	
	,	2.3	Information Content in Control of Movement 5	
Chapter	ΙÌΙ	Equipm	nent and Experimental Design	13
- •		3.1	Introduction	
		3.2-	Performance Time	
,		373	Equipment Set-up	
_		3.31	Signal-Response Unit	•
•	,	3.32	Pape Reader Unit	
		3.4	Expérimental Design	•
	•	3.41	Procedure	
•		3.42	Instruction to the Subjects 22	
		3.5	Pilot Experiment	
Chapter	IV	The S	tudy	25
	_	4.1	Objectives	
·	•	4.2	Experimental Conditions 25	
•		4.21	Validity of Informational Load Corresponding to Number of Hole Alternatives	,

	. /	
	· · · · /	4.22 Choice of Levels of H, C and D 30
	· / 🛉	4.3 Methodology
•		4.4 The Subjects
		4.5 Data Collection
•	Chapter V	Data Analysis
-	Chapter V	5.1 Introduction
		5.2 Analysis Models
		5.3 Validity of Analysis model 45
	Chapter VI	Experimental Results and Discussion
	Chapter vi	6.1 Analysis of Variance
•		6.2 Test of Means of Significant Effects 52
	•	6.3 Vairance Components of Major Effects 54,
		6.4 Effect of Informational Load on Performance Times
•	•	6.5 Linear Regression
. -		6.6 Graphical Analysis
	Chapter VII	Conclusions and Suggestions for Further Study 66
•	Appendices	A
•	-	В 72
	-	c *
		D 80
	•	F138ª
	<i>:</i>	
		F145
•		G159
•	Bibliography	221
	Vite	224

v

LIST OF TABLES

Table 4.1	Conversion of C and D parameters to Index of Difficulty (I)	28
4.2		33
4.3	Order of Run Randomisation for Five Female Subjects - 2	34
4.4	Order of Run Randomisation for Five Male Subjects 1	
4.5	Order of Run Randomisation for Five Male Subjects - 2	
5.1		
5.2	Validity of Model 1 at each level of Distance; Left-sided Movement	
5.3	Validity of Model 2; Right-sided Movement (Part 2)	••
5.4	Validity of Model 2; Left-sided Movement (Part 2)	
5.5	Validity of Model 4; Angle of Movement effect for D ₁	
5.6	Validity of Model 4; Angle of Movement effect for D2	
5.7	Validity of Model 2; Angle of Movement effect for D ₃	">
5.8	Validity of Model 2; Angle of Movement effort 5 P	
6.1	Summary of Variance Components	50
6.2	Effect of Informational Load on Performance Times; Right-sided Movement	54
6.3	Effect of Informational Load on Performance Times; Left-sided Movement 5	

•		and the control of th
Table	6.4	Right-sided movement, tomparison between linear regression models 3 and 4
	6.5	Left-sided movement, comparison between linear regression models 3 and 4
	B.1	Experimental Run-times and Rest Periods 76
	D.1.1	EMS Values; Nested Mixed Model, Main Effects Distance D ₁ and D ₄
• • .	D.1.2	EMS Values; Nested Mixed Model, Main Effects at Distance D2 and D3
·	D.1.3	EMS Values; Nested-Mixed Model, Angular Effect at Distance $D_1 = 7$ " and $D_4 = 16$ " 84
· (D.1.4	EMS Values; Nested Mixed Model, Angular Effect at Distance $D_2=10$ " and $D_3=13$ " 86
٠	D.1.5	EMS Values; Nested Mixed Model, Distance & Clearance as Separate Factors
	D.1.6	EMS Values; Nested Mixed Model, Distance and Clearance Combined in Index of Difficulty
.• •	D.2.0	ANOVA of Performance Times, Pilot Study 92
	D.2.1	ANOVA of Performance Times; D ₁ = 7"; Right-sided Movement
•	D.2.2	ANOVA of Performance Times; D ₂ = 10"; Right-sided Movement
	D.2.3	ANOVA of Performance Times; D ₃ = 13"; Right-sided Movement
	D.2.4	ANOVA of Performance Times; D ₄ = 16"; Right-sided Movement
		ANOVA of Performance Times; D ₁ = .7"; Left-sided Movement
	D.2.6	ANOVA of Performance Times; D ₂ = 10"; Left-sided Movement
:	D.2.7	ANOVA of Performance Times; D ₃ = 13"; Left-sided Movement
	D.2.8	ANOVA of Performance Times; D ₄ = 16"; Left-sided Movement

Table	D.2.9	ANOVA of Performance Times; Effect due to Direction of Movement; Distance D ₁ = 7"	101
٠	D.2.10	ANOVA of Performance Times; Effect due to Direction of Movement; Distance D ₂ = 10"	102
	D.2.11	ANOVA of Performance Times; Effect due to Direction of Movement; Distance $D_3 = 13$ "	103
•	D.2.12	ANOVA of Performance Times; Effect due to Direction of Movement; Distance $D_4 = 16$ "	104
	D.2.13	ANOVA of Performance Times; Right-sided Movement; Distance and Clearance Considered Separately	105
-, ·	D.2.14	ANOVA of Performance Times; Left-sided Movement; Distance and Clearance Considered Separately	106
	D.2.15	ANOVA of Performance Times; Right-sided Movement; Index of Difficulty considered	107
	D.2.16	ANOVA of Performance Times; Left-sided Movement; Index of Difficulty considered	108
	E.1	$PT = b + b_1 H + b_2 C + b_3 D \dots$	141
	E.2	$PT = b + b_1 H + b_4 I \dots$	141
	E.3 ,	PT = b+b ₁ H for different levels of clearance (C) and distance (D)	142
,	E.4	PT = b + b ₂ C + b ₃ D for different levels of H	143
	Ė.5	$PT = b + b_4 I$ for different levels of H	144
	F.1.	$PT = b + b_{1}H + b_{2}C + b_{3}D \dots$	156
•	F.2	$PT = b + b_1H + b_4I \dots$. 157

LIST OF ILLUSTRATIONS

		•	
igure	*	Block Diagram Showing Various Cosceptual Elements in a Combined Decision and Manual Task	14
,	3.2	Diagram Showing the Block Layout . of the Equipment	15
	A.1	Top View - S-R Unit	70
	A.2	Side View - S-R Unit	70
,	A.3	Signal-Response Unit	71
· ;	A.4	Tape-Reader, Time Measuring and Recording Units	71
•	A.5	Equipment Layout	71
,	B.1	Schematic Layout of Stimulus-sets in the Two-hole-alternatives Tasks	73
	B.2	Schematic Layout of Stimulus-sets in the Four-hole-alternatives Tasks	73
	₽.3	Schematic Layout of Stimulus-sets in the Eight-hole-alternatives Tasks	74
, `	B.4	Schematic Layout of stimulus-sets in the Sixteen-hole-alternatives Tasks	74
	B.5	Schematic Layout of the Angular . Differences of Movement at each Distance tested	75
	C.1.1	Mean Performance Time Vs Trial Sequence for Subject Z.E	79 _a
	C.1.2	Mean Performance Time Vs Trial Sequence for Subject T.P	79 _b
	C.1.3	Mean Performance Time Vs Trial Sequence for Subject A.M	79 _c
	.c.2.1	Standard Deviations of Practice-Trial Vs Trial Sequence for Subject A.M	ر 79

Figure	C.2.2	Standard Deviations of Practice- Trial vs Trial Sequence for Subject T.P
•	C.2.3	Standard Deviations of Practice- Trial vs Trial Sequence for Subject Z.E
	D.1	Performance Time vs Informational Load for all subjects (I = 5.807 ibits) 128
	D.2	Performance Time vs Informational Load for all subjects (I = 7.808 ibits) 128
•	D.3	Performance Time vs Informational Load for all subjects (I = 7.0006 ibits) 129
	D.4	Performance Time vs Informational Load for all subjects (I = 9.0008 ibits) 129
	D.5	Performance Time vs Informational Load for all subjects (I = 10.8084 ibits) 130
	D.6	Performance Time vs Informational Load for all subjects (I 12.0010 ibits) 130
	D. 7	Performance Time vs Index of Difficulty (H = 1 bit)
•	D.8	Performance Time vs Index of Difficulty (H = 2 bits)
	D.9	Performance Time vs Index of Difficulty (H = 3 bits)
	D.10	Performance Time vs Index of Difficulty (H = 4 bits)
	D.11	Performance Time vs Angle of Movement (C ₁ , D ₁)
	D.12	Performance Time vs Angle of Movement (C ₁ , D ₂)
•	D.13	Performance Time vs Angle of Movement (C ₁ , D ₃)
·	D.14	Performance Time vs Angle of Movement (C _R , D ₄)
	D.15	Performance Time vs Angle of Movement (C ₂ , D ₁)
		Performance Time vs Angle of Movement (Co. Do)

•		
Figure	D.17	Performance Time vs Angle of Movement (C ₂ , D ₃)
•	D.18	Performance Time vs Angle of Movement (C ₂ , D ₄)
	D.19	Performance Time vs Angle of Movement (C ₃ , D ₁)137
1	D.20	Performance Time vs Angle of Movement (C ₃ , D ₂)137
<i>}•</i> :	D.21	Performance Time vs Angle of Movement (C ₃ , D ₃)138
	D.22	Performance Time vs Angle of Movement (C ₃ , D ₄)
	F.1	Showing Motion Strategy for the two- hole-alternatives task when number 3 or number 15 is shown on the screen 147
	F.2	Performance Time vs Distance (C ₁)150 (Right-sided Movement)
	F.3	Performance Time vs Distance (C_2) 150 (Right-sided Movement)
	F.4	Performance Time vs Distance (C ₃)151 (Right-sided Movement)
,	F.5	Different Response sets for D_3 and D_4 levels as against D_1 and D_2 levels149
	F.6	Motion Strategy corresponding to different response sets used in the four-hole-alternatives tasks152
•	F.7	Performance Time vs Index of Difficulty for H = 2 bits

List of Appendix

Appendix A	Equipm	nent Layout
	1.	Schematic Representation of the Stimulus-Response Unit
	2	Pictorial view of the Equipment Layout
Appendix B	Exper	imental Conditions and Procedure 72
	. 1.	Schematic Layout of Stimulus-sets in Multiple-Alternatives Tasks 72
	2.	Durations of Experimental Runs and Rest Periods
Appendix C	Analy	sis of Learning Behavior77
Appendix D	Detai	ls of Data Analysis 80
- "	1.	Tables of EMS Values81
•	2:	ANOVA Tables91
	· 3.	Test of Means
	4.	Computations-Component Variances of Main Effects122
	5.	Graphical Representations of Results127
Appendix E '	Table	s of Linear Regression Models138
Appendix F		n Strategy145
Appendix G	Compu	ter Programs and Printouts159
:	1.	Master Program to Organise and Store Experimental Data on Tape160
`	2.	Program Subroutine FDHINT for plotting Histograms165
	3.	Sample Histograms of Experimental Data including Distribution Statistics10 Subjects
· ·	4.	Mean Experimental Performance Time. 190

6. SAS Linear Regression - Performance Time Vs H,C,D for Left-sided Movement207 7. SAS ANOVA - Left-sided Movement211 8. SAS ANOVA - Right-sided Movement216		5.	SAS Linear Regression - Performance Time Vs H,C,D for Right-sided Movement	
7. SAS ANOVA - Left-sided Movement211	•	6.	SAS Linear Regression - Performance Time Vs H,C,D for Left-sided Movement	•
8. SAS ANOVA - Right-sided Movement216	•	7.	SAS ANOVA - Left-sided Movement211	
	•	8.	SAS ANOVA - Right-sided Movement216	
	-			22

and the second s

A CONTRACTOR OF THE STATE OF TH

arapa karangan salah terbesah ka

CHAPTER I INTRODUCTION

From the measurement and prediction point of view, work study researchers have classified industrial tasks into two main areas. Those which are simply manual in nature, repetitive and pattern-forming are termed "type I tasks" (Raouf 1973), whereas tasks in which the worker is required to exercise both his psycho-motor and decision making abilities are called type II tasks or 'combined decision and manual tasks' (Sadosky 1969, Raouf and Mehra 1974, Thomas et al 1974). Much work has been done and recorded with regard to the measurement and prediction of type I tasks. Relatively few useful findings, however, are available in the literature to the work-study practitioner of the behavior of type II task.

Psychologists (Posner 1962, Fitts and Radford 1966, Welford 1960) have attempted in the past two decades to understand the psychological and physiological processes involved in basic human decisions. In most cases, however, their experimental tasks do not simulate the industrial conditions and their findings are not directly applicable. In order to develop a methodology for establishing performance standards for type II tasks, it is necessary that our understanding of human performance of such tasks be increased.

Decision involved in type II tasks falls mainly intotwo categories:

- in resolving 'time uncertainties' the worker does not know in advance when a stimulus will occur to which he is to respond;
- 2. in resolving 'choice uncertainties' the worker is uncertain from cycle to cycle about which stimulus will occur or which response is required from among a finite set of possible stimuli or responses.

When there is an explicit response for each stimulus, i.e. a 1:1 mapping of stimulus and response, the task is said to be information conserving. Much work in industry involves this kind of task such as in monitoring devices and inspection tasks.

Type II tasks investigated recently (Raouf 1973, Sethi 1975) involved only the simpler manual motions, Reach and Move. The more complicated element Positioning with decision-making as an added dimension has not been studied.

Fitts and Posner (1967) proposed an index of difficulty (I) as a parameter in measuring the performance times in positioning tasks. Other researchers have since tested its highly significant correlations with the performance times of pure manual or type I tasks, (Crossman 1954 Welford 1956 Hancock 1960). Its significance with type II tasks has as yet not been systematically studied.

The present thesis presents an investigation of the effect of informational load on combined decision and positioning tasks where information is conserved and only choice-uncertainties are involved with no preview of the stimulus signals. Under each informational load, the difficulty of the task is controlled by varying the distance of move and clearance for positioning. The use of the index of difficulty in predicting performance time of such tasks is also examined.

CHAPTER II

LITERATURE SURVEY

2.1 Introduction

. To serve as a background to the present study, a survey of relevant work done in the following areas are presented in this chapter.

- (1) Combined manual and decision tasks
- (2) Information content of movement control

2.2 Combined Manual and Decision Tasks

Sadosky (1969) developed a methodology for predicting the mean cycle times for combined manual and decision tasks based on a critical path analysis technique. The task employed in his study included the manual elements Reach, Grasp, Move and Position occurring in parallel with a decision of choosing to press one out of four buttons. In such tasks when different components were performed simultaneously in a task cycle, a critical path could be traced as the longest time duration path in the cycle. Slack values also occurred as the differences in time between the critical path activities and the parallel non-critical path activities. From the critical path and these slack measures, Sadosky found that the extent of signal preview in the decision component interacted

with the manual elements. The largest effect was with minimal preview and the effect lessened as the preview occurred earlier in the task cycle.

Thomas (1971) explored some probabilistic aspects of performance times for a combined manual and decision task. He used a task similar to that of Sadosky (1969) but with different probability distribution which governed the occurrence of each alternative from a set of four alternatives. He found that:

- the operator always sought an optimum strategy as he learned the motion sequence of the task;
- When the operator had fully learned, the performance times of the manual components of the task became normally distributed;
- 3. the decision component of the task might be considered as an isolated entity, its time as a function of the input uncertainty and the movement involved.

Raouf (1973) found that the information processing rate (IPR) varied amongst different individuals, even if experimental conditions which were known to affect performance times were kept constant. The performance times of the subjects were, however, relatively constant and were better estimates for combined manual and decision tasks.

Raouf and Mehra (1974) found that both the choice uncertainty and the magnitude of the manual element reach were significant variables affecting performance times. In an experiment in which three levels of reach (7 inches, 10 inches and 14 inches) and three levels of informational

loads consisting of equiprobable stimuli (1 bit, 2 bits and 3 bits) were investigated, increase in performance times due to informational load was found to be highest for the reach of smallest magnitude and it decreased as magnitude of reach increased. For the same magnitude of reach, performance times increased as informational load increased.

Raouf and E1-Sayed (1975) performed a similar experiment in which three informational loads (H), three distances of move (D) and two angles of move directions for each combination of informational load and distance were investigated. The angles included were 32 and 148 degrees at 7 inches reach, 55 and 125 degrees at 11 inches reach, and 66 and 114 degrees at 15 inches reach. In all these cases, it was found that the effect of angular differences on performance times was not significant, (p>0.05)

2.3 Information Content in Control of Movement

In the experiments of Bailey and Presgrave (1958), it was found that manual movement times was a joint function of the extent and required accuracy of movement. Fitts (1954) reported three experiments in an attempt to quantify the relationship of performance time with these movement parameters. The tasks employed were:

- 1. tapping alternately two plates separated by some distance,
- 2. the transfer of washers from one pin to another,
- 3. the transfer of pins from one hole to another.

He found that movement time was well predicted by the relationship

$MT = a + b \log_2(2A/W)$

where A was the amplitude of the movement (the distance from the centre of one target to the centre of the other), W was the width of the target in the tapping task or the tolerance in the other two tasks, and a and b were experimental constants. From the results he concluded that human motor system has a relatively constant information capacity defined as the rate at which one can produce consistently one class of movement from among several alternative movement classes, (Fitts, 1954). The human information capacity was found to be in the range of 10 hits per second. Following the reasoning of the information theory as discussed by Shannon and Weaver (1949), Fitts derived the information content of a movement as measured by the Index of Difficulty (I) = $log_2(2A/W)$. The significant implication of the Index of Difficulty is the trade-off between distance of a movement and width of the target. According to Fitts, if the distance of a movement is doubled, the movement time remains constant if the width of the target is also doubled.

Various researchers have since tested the Fitts equation against empirical data and have found satisfactory compliance. Hancock, Langolf and Clark (1973) calculated I for all distance-tolerance combinations of Move and

Position for MTM-1 and compared these to the data card times. It was found that the correlation between I and time was r=0.80. The slope constant b in the associated regression equation MT = a + b.log₂(2A/W) was 3.0 *TMU/bit or 108 ms/hit which compared closely with values in the range of 100 ms/bit found by Fitts and Radford (1966). Keele (1968) performed similar analysis on the data of Bailey and Presgrave (1958) and obtained even higher linear correlation coefficient, r=0.97.

Fitts and Peterson (1964) extended the concept of the Index of Difficulty to a simple two-choice combined decision and manual task. The subjects were to hit one of the two targets separated by a horizontal distance with a stylus. The appearance of the visual stimulus on the side of the correct target was preceded by a warning signal. It was found that I had a small effect on reaction time alone. However, for a range of I between 2.6 to 7.6 bits per response, there was a high correlation between movement time and I (r=0.99).

Scholes (1970) conducted an experiment to investigate the effect of directions of movement on movement times and reaction times in discrete motor tasks. He found that:

- direction of movement had a significant effect on movement time but not on reaction time,
- 2. there was a high position correlation between movement time, Index of Difficulty I and direction of movement.

However, in his experiment there was no response uncertainty involved in the subject's decision. The subjects were told before each cycle which direction to make the response. Reaction time was defined simply as the time-lapse between the on-coming of the visual stimulus and the beginning of the designated manual response.

One interpretation of the Index of Difficulty as proposed by Fitts (1954) and Fitts and Peterson (1964) is the maximum relative uncertainty that can be tolerated for a correct movement in a series having a specified average amplitude. Therefore the minimum mental organisation required of a particular correct movement is reflected by the choice of one from among k possible categories of amplitudes within which the movement is to terminate. The measurement of this accomplished by a binary Index of Difficulty made up of an accuracy to amplitude ratio,

 $I = \log_2(2A/W)$

The choice of the particular denominator is arbitrary since the range of possible amplitudes must be inferred.

Twice the amplitude in the numerator would ensure a positive value for ID as well as having the effect of adding one bit per response to its magnitude.

An alternative interpretation of the Fitts equation is by way of feedback control as proposed by Keele (1968) and similarly by Crossman and Goodeve (1963). Three

assumptions are made in their proposal:

- 1. There is a minimum required time for processing feedback whereby the time for each successive corrective movement after the initial movement is made constant (t).
- 2. The initial movement time is less than that of the corrective movement by a constant (a) since the time to decide how far to make the initial movement is not included in this movement time.

From assumptions (1) and (2), the total movement time for the initial movement and n-1 subsequent corrective movements is

$$MT = (n-1)t + (t-a)$$
(1)

3. The relative accuracy of a movement is constant. That is

$$X_{i} / X_{i-1} = K$$
(2)

where X_i is the mean absolute distance from the centre of target after ith corrective movement.

Under this assumption,

$$X_{0} = A \qquad \dots (3)$$

where A is the amplitude of movement and

$$X_n = \mathbb{Y}/2$$
(4)

where W is the width of target and X_n is the last corrective movement terminating at about the edge of the target.

From equations (2), (3) and (4):

$$X_n = KX_{n-1} = K^2X_{n-2} = \dots = K^nA = W/2$$
 (5)

and therefore:

$$n = \frac{-\log_2(2A/W)}{\log_2 K} \qquad \dots \qquad (6)$$

From equations (6) and (1):

$$MT = b.\log_2(2A/W) - a$$
 (7)

Equation (7) is compatible with Fitts equation because in Fitts experiments (1954) the best-fit line also intersects the movement time axis below the origin making (a) a negative value.

Since the choice of the numerator in Fitts' Index of
Difficulty ID is arbitrary and since it reflects a rather
ambiguous inferrence on the range of possible correct amplitude,
other versions of ID have been suggested, Welford's (1960)
Index of Difficulty (ID) is one of the more widely accepted.

$$ID' = K \log_2(\frac{A+W/2}{W})$$

This formulation makes movement time dependent upon a kind of Weber fraction in that the subject is called upon to distinguish between the distances to the far and near edges of the target. Besides a better fit to the data points of Fitts, use of Welford's version has the effect of moving the

best-fit line from intersecting the performance time axis at a negative quantity to pass through the origin which is more agreeable conceptually. (Performance Time at I=0 cannot be negative).

Various methods have been proposed to predict performance times of combined decision and manual tasks. include critical path analysis, information processiong rate and total task performance times. There is, however, no general agreement as to the proper methodology to be used. Combined decision and manual tasks investigated by recent researchers consist only of the simpler Move or "Reach" motions (Raouf 1973, Raouf and Khare 1975, Raouf and Mehra 1974, Sethi 1975). The more complicated Positioning tasks have been studied only in isolation from the decision element (MTM report 109, 110). The Index of Difficulty as proposed by Fitts and Peterson (1964) may be a useful concepin predicting performance time of complex motions, such as positioning, where both accuracy and amplitude are equally important factors. With this view of the state of the science in mind, the present study is designed to develor a prediction model for the combined decision and positioning task as well as to investigate the usefulness of the concept of Index of Difficulty.

CHAPTER III

EQUIPMENT AND EXPERIMENTAL DESIGN

3.1 Introduction

This chapter describes in detail the equipment set-up and experimental procedures employed in the study. The experiment was conducted in the Industrial Engineering laboratory at the University of Windsor. The task under study was combined decision and positioning in a discrete manner from cycle to cycle. Performance times of subjects were measured while doing such a task.

3.2 Performance Time

This is defined as the time elapsed between the appearance of the visual stimulus and the completion of the positioning response. It consists of the following elements:

- 1. Occurrence of stimulus
- Detection of stimulus
- 3. Decision
- 4. Selection of response
- 5. Act of positioning
- Completion of response

The above are illustrated in Fig. 3.1.

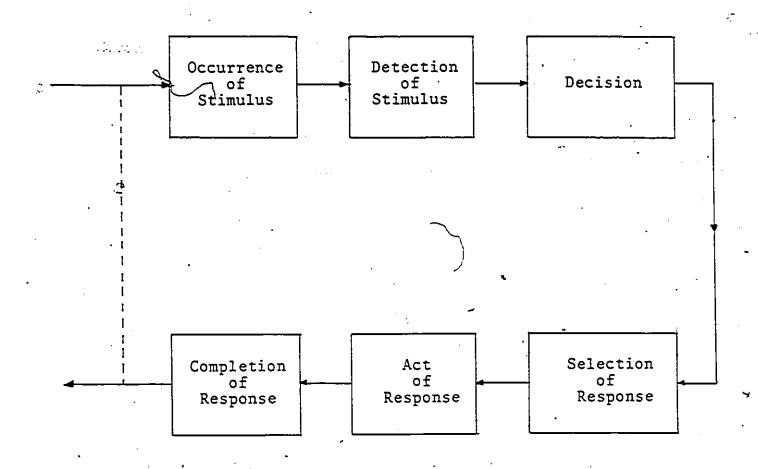


Figure 3.1 Block Diagram Showing Various Conceptual Elements in a Combined Decision and Manual Task.

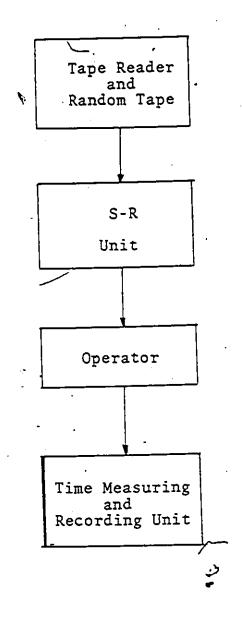


Figure 3.2 Diagram Showing the Block Layout of the Equipment

3.3 Equipment Set-up (See Figure 3.2)

The experiment consisted of the following units:

- 1. Signal-Reponse Unit
- 2. Tape Reader Unit
- Time Measuring and Recording Unit

3.31 Signal-Response Unit (See Appendix A)

A special signal-response unit in the shape of a metal box with a changeable wooden top plate was designed and built for the experiment. The signal was provided by a random number displayed on a screen and the response was the positioning of a metal pin into one of the holes on the response top plate specified by the number displayed. The components of this unit are the following:

A. The Signal Indicator

The signal indicator was located about 4 inches above the pin-pocket. It transmitted and displayed the random numeric signals from the tape reader onto a rectangular screen of 1 inch by 6/8 inch. The number on the screen appeared as the subject lifted the metal pin from the pin-pocket. It stayed on until the subject had completed positioning the pin into the thus specified hole on the response top plate. If the pin was positioned into a wrong response hole, the number on the screen remained until a following pin(s) was lifted from the pin-pocket and positioned into the correct hole.

Since the counter in the Time Measuring Unit continued for as long as the signal was on, this feature allowed any error in positioning to be detected later in the analysis by virture of the extraordinary large performance time value of the particular error cycle.

B. The Pin System

The pin system consisted of six cylindrical metal pins 1/4 inch in diameter and 1-1/4 inches long. Each pin weighed about 8 grams. The pin stood vertically in the pinpocket with about half of its length above the surface of the equipment. As it was removed and positioned into one of the holes on the response top plate, it dropped onto a conveyorbelt system which carried it again to the pin-pocket region. In the meantime, a subsequent pin was pushed up the pocket into position by a carrier-gear system. The time between the removal of one pin and the arrival of the second pin at its ready position was about \$700 milliseconds. This duration was designed to be sufficiently longer than any of the performance cycle time (the positioning performance time plus the return of the hand to the pin-pocket region) experiment. Such a feature ensured the discrete nature of the task while avoiding excessive idle time between cycles.

C. The Response Top Plate

The response top plate, 17 inches wide and 12 inches long, was fitted onto the equipment before each experimental

run. This changeable feature facilitated investigation of the effect of clearance on positioning performance times by simply having different size holes on separate response plates. Three such plates were made having hole sizes of 0.258", 0.313" and 0.500" in diameter respectively. On each response plate, there were 16 holes of equal size which were equally spaced in the form of a square matrix 3 inches apart from each other. Numbers 1 to 15 and number 0 were labelled above the holes as shown in figure A.1 in Appendix A. The arrangement of these numbers was the same on each response plate throughout the experiment. Number 0 was included in this experiment because it was within the range of the BCD signals used by the tape reader and thus greatly facilitated the making of random number tapes.

3.32 Tape Reader Unit

The Tape Reader Unit consisted of two parts, the Random Number Tape and the Tape Reader.

A. Random Number Tape

This was a standard computer paper tape punched on any of the teletype punching machines using the IBM BCD system code.

The RANDU¹ package of IBM 360 computer was used to generate uniformly distributed random numbers corresponding to the hole

See computer program listings in Appendix G

numbers used in different experimental runs. Tapes were prepared for 2, 4, 8, 16 holes tasks with equal probability of occurrence of each number in a set. Appendix B contains a listing of the hole numbers chosen for the different hole-alternatives tasks.

B. Tape Reader

For the present study, a SLO-SYN Tape Reader was employed which read the hole pattern on the random tape and transmitted corresponding electrical signals to the S-R unit. The signals were then decoded and displayed on the screen. The removal of the metal pin in the S-R unit triggered each number to be read by the tape reader and displayed.

The Tape Reader Unit as a whole controlled

- the number of hole alternatives N as a factor in the experimental condition,
- (ii) the sequence of occurrence of the hole numbers.

3.33 Time Measuring and Recording Unit

Counter and a DIGITEC Paper Tape Punch Unit. The timer was triggered as a number appeared on the screen and shut off when a metal pin was positioned into the specific hole on the response top plate designated by the number displayed. The time so elapsed in milliseconds and the corresponding hole number were punched on a paper tape. This tape was later converted into

computer data cardsofor the analysis.

Figure 3.2 shows the block layout of the equipment.

3.4 Experimental Design

In the present study, performance time (PT) as defined earlier was the response variable. The independent variables included:

- 1. Effect due to male and female differences (x)
- Response parameters including the distance, the direction of move and clearance for pin positioning. These are defined as follows:
 - Distance of Move (D) distance in inches measured along
 the surface of the S-R equipment
 from the centre of the pin-pocket
 to the centre of the response hole
 on the top plate.
 - Direction of Move(A) the angle measured anticlockwise from the horizontal line intersecting the centre of the pin-pocket to the direction of move.
 - Clearance (C) the differences in inches between the diameter of the metal pin and the diameter of response holes on the top plate.
- 3. Informational Load in bits as defined by Shannon and Weaver (1969) for equiprobable stimulus and response in multichoice reaction task.

 $H \text{ (bits)} = \log_2 N$

where N is the number of hole-alternatives in an experimental run.

3.41 Procedure

The study was conducted in one of the Industrial Engineering laboratories having normal air conditioning and adequate lighting. A pilot experiment was performed prior to the main study in order to guide in the design of experimental procedures and make final adjustments on the equipment features. Relevant findings in the pilot experiment will be summarised in a later section of this chapter.

Before the commencement of the actual test, each subject underwent a learning session in which he performed the combined decision and positioning task for the condition of 16 hole-alternatives and clearance (C1=0.008".) The learning session lasted for one hour and about 1300 task cycles were completed.

The combined decision and positioning task was comprised of the following steps:

- Removed the pin from the pin-pocket with a combination of the right hand thumb, index and middle finger.
- 2. Detected the number shown on the screen.
- Moved pin to the hole corresponding to the number shown on the screen.
- Inserted pin into the hole until the fingers touch the wooden top plate.
- Released pin.

After completing the above, the subject moved the hand back to the pin-pocket region and prepared to start the next cycle. A run for each experimental condition varied between 2 to 16 minutes depending on the number of hole alternatives employed in the condition. Appendix B lists the run time and number of cycles for each condition. To minimise fatigue, sufficient rest periods were proved between runs.

3.42 Instructions to the Subjects

To standardise the method of positioning and to accommodate differences due to individual physical features, the following instructions were given to the subjects . before the start of the study.

- 1. The subject was to sit up-straight in front of the signal-response equipment with the centre line of his body aligned approximately with the centre line of the equipment. The subject was reminded from time to time to maintain this posture:
- 2. He was to sit at a height such that his lower right arm was in a horizontal position while touching the pin in the pin-pocket with his right hand fingers.
- The distance from the equipment was to be such that he would extend his maximum reach without moving his shoulder while touching hole number one at the far left upper corner of the top plate.

4. The subject was to hold the pin with his thumb, index and middle finger and insert it into the specified hole. He (she) would release the pin only when his (her) fingers touched the wooden surface.

3.5 Pilot Experiment

Three male subjects were employed in this preliminary study, which consisted of two parts:

- 1. A learning experiment using the task of 16 holealternatives with the closest clearance ($C_1 = 0.008$).
- 2. A randomised factorial experiment with two levels of distance ($D_1 = 7$ " and $D_2 = 16$ "), three levels of clearance ($C_1 = 0.008$ "; $C_2 = 0.063$ " and $C_3 = 0.250$ ") and one level of informational load, that of four bits (16 hole-alternatives).

It was found that:

- All three subjects achieved a fully learned state after a practice of 1200 task cycles. See Appendix C.
- Performance times of the subjects varied significantly from each other.
- Clearance was a significant factor while distance was not.
- design, were found to be inapplicable because subject

 X distance interaction was Found to be significant
 (p>0.05)

The ANOVA table of the pilot experiment performance times is presented in Appendix D.

With reference to the results and observations made during the pilot experiment, the main study was planned and conducted. Details of the main study are discussed in the following chapters.

CHAPTER IV

THE STUDY

4.1 Objectives

The following were the objectives of this study:

- 1. to examine the effect of informational load (H) on the combined decision and positioning task.
- 2. to examine how the positioning parameters of distance and clearance affect performance time.
- 3. to investigate differences in performance between male and female subjects, and
- 4. to examine the usefulness of the Index of Difficulty (Fitts and Peterson 1964) as a prediction parameter in the performance of such tasks.

4.2 Experimental Conditions

The factors included in the experiment were:

1. Four levels of Informational Load (H):

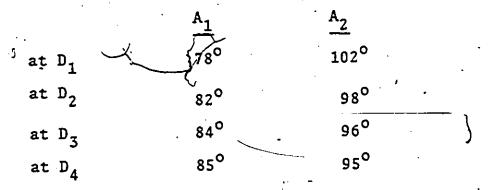
	Number of	hole-alter	natives	corres	ponding	to		<u>H</u>
		2		•			1	bīt
		4		· .		,	2	bits
•		8	. /	•	٠٠.		3	bits
	•	16	•			2	4	bits

Three levels of Clearance (C)

$$C_1 = 0.008''$$

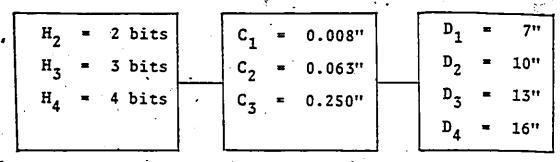
$$C_2 = 0.063$$
"

$$C_3 = 0.250$$
"

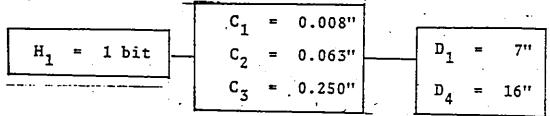

3. Four levels of Distances (D)

$$D_2 = 10^{11}$$

$$D_3 = 13''$$


4. Four pairs of Angular Differences in movement (A)

corresponding to the four distances (see Appendix B)


A₁'s referred to right-sided movements while A₂'s referred to left-sided or cross-body movements.

The right-sided movements and the left-sided movements were analysed separately and the results compared. Within each category, two sets of conditions were investigated. The main conditions were the factorial combinations of three higher levels of informational load and all levels of clearance and distances represented diagramatically as follows:

The Main Conditions

The supplemental conditions were the factorial combinations of one level of H (1 bit) with three levels of C and 2 levels of D (D_1 =7" and D_4 =16") represented diagramatically as follows:

The Supplementary Conditions

Combinations of C and D were rearranged according to Fitt's Index of Difficulty (I). To avoid confusion with the unit of informational load, the magnitude of I shall be called ibits in this report. The transformation was made as follows:

Fitts called the unit of Index of Difficulty bits although there is no established relationship with the 'bits' used in binary information uncertainty as in Shannon and Weaver (1949). The author wishes to avoid confusion between the two but at the same time retain the binary implications suggested by Fitts (1954); Fitts and Peterson (1964).

C,D	<u>I</u> ibits		Ranked	Level	of I	
C ₃ D ₁	5.807			- 1	ş	
C ₃ D ₂	6.323	•		2 .	Ħ	
C ₃ D ₃	6.701			3 _	•	
, c ₃ D ₄	7.001			4		
C ₂ D ₁	7, 808		***	5	•	
c ₂ b ₂	8.323		•	6.	٠,	
C ₂ D ₃	8.701			7.		. •
C ₂ D ₄	9.001	•	•	-8	•	
C_1D_1	10.808	<i>:</i>	•	9 -		
C ₁ D ₂	11.321			10		
C ₁ D ₃ .	11.699	·		11		
C ₁ D ₄	12.001		_	12		•

Table 4.1 Conversion of C and D parameters to Index of Difficulty(IL

In all conditions, one response variable, the performance times in milliseconds, was recorded and analysed.

4.21 Validity of Informational Load corresponding to Number of Hole Alternatives.

Shannon and Weaver (1949) derived the information 'uncertainty' in a stimulus set and termed it entropy H where

$$H = -\sum_{i} p_{i} \sum_{j} p_{ij} \log_{2}(pij) \text{ bits}$$
 (1)

p_i is the probability that stimulus i occurs from a finite set of alternatives (i=1,...,n), and p_{ij} is the conditional probability of stimulus j occurring immediately after i. Employing this entropy measure, various researchers have found a positive linear relationship with performance times in choice reaction tasks.

When there is no sequential dependency of the stimuli, i.e. $p_{ij} = p_i$ for all i, equation (1) becomes

$$H = - \Sigma_j \quad p_j \quad \log_2(p_j) \quad \text{bits}$$
 (2)

In the present study, the set of numbers programmed to appear on the screen was the stimulus set and the holes corresponding to these numbers were the response set. There was a 1:1 correspondence of stimulus to response. Furthermore, the sequence of numbers in the stimulus set was randomised and also each number occurred with equal probability i.e. $p_j=1/n$, where n is the number of hole alternatives in the task. In this case equation (2) reduces to:

$$H = -\frac{n}{\Sigma} \frac{1}{n} \log_2(1/n) \text{ bits}$$

$$j=1$$

$$= -n \frac{1}{n} (-\log_2 n) \text{ bits}$$

$$= \log_2 n \text{ bits}$$
(3)

Equation (3) is the measure of informational 'input' or 'load' used in the analysis of the present study. By varying the number (n) of the hole alternatives in the stimulus set, different levels of informational load were obtained.

4.22 Choice of Levels of H, C and D.

It was planned that the experimental conditions should cover the maximum range of parameter magnitudes normally encountered in real work situations which do not exert excessive mental and physical strain on the operator.

Bayha and Hancock (1971) reported that more than 16 alternatives in a stimulus set would cause mental overload and greatly reduce the efficiency of the worker in a repetitive kind of work. Commonly found also is the situation of 1:1 correspondence between stimulus and response such as in assembly work, sorting and monitoring devices. In view of the above, the number of hole alternatives planned in the study was therefore 16 or below and employing 1:1 stimulus-response correspondence.

MTM* system has classified closeness of fit in positioning tasks as follows:

	ě	Lateral Clearance
·Class	23	0.010"to 0.048"inclusive
Class	22	0.050"to 0.298"inclusive
Class	21	0.300"to 0.700"inclusive

^{&#}x27;Engineered Work Measurement' by Karger and Bayha.

For ease of comparison and interpretation of results, the levels of clearance investigated in the present study were designed to fall within these categories also.

Move distances in the range of 7" to 16" were e used because they are commonly found in work design and that they are within the maximum reach of the average worker.

4.3 Methodology

According to equation (3) in section 4.21; 2, 4, 8, 16 hole-alternatives sets corresponded to 1, 2, 3, 4 bits of informational load respectively provided that the alternatives in each set occurred with equal probability and were free from sequential dependence. Tapes were accordingly prepared to produce these stimulus sets. Hole numbers 2, 3 and holenumbers 14, 15 made up the 2 two-alternatives sets. Hole numbers 2, 3, 6, 7 and numbers 10, 11, 14, 15 made up the 2 four-alternatives sets. Hole numbers 1 to 8 and numbers 9 to 15 and 0 made up the 2 eight-alternatives sets, and finally, all 16 hole numbers were used in the sixteen- alternatives set. this scheme of stimulus-set planning is shown diagramatically in Appendix B. The distances of rightsided movements corresponded to hole numbers 3, 7, 11, 15 and that of left-sided movements corresponded to hole numbers 2, 6, 10, 14. The same holes were considered in each level of informational load and each level of clearance. Therefore, performance times data corresponding to these holes alone were

collected and analysed. For instance in a eight-alternatives task at distances $D_3=13$ " and $D_4=16$ ", data for four holes, numbers 2, 3, 6, 7, were collected in one run. Hole numbers 2 and 6 corresponded to D_4 and D_3 respectively of the leftsided movement. Hole numbers 6 and 7 corresponded to D_4 and D₃ respectively of the right-sided movement. Each subject performed a (3x3x4) factorial experiment for the main conditions and a (1x3x2) factorial experiment for the supplementary-conditions. Since data were collected simultaneously for both right-sided and left-sided movements as illustrated in the above example, the actual total number of experimental runs were twenty-one for each subject. The order of these twenty-one runs was randomised for each subject and by nature of the random occurrence of the numbers in the tapes, the conditions in each run were randomised within the run. order of randomisations of the twenty-one runs for each subject is shown in Tables 4.2 to 4.5. (For instance, subject U.C. in Table 4.2 performed condition H = 1 bit and I = 12in the first run and conditions H = 2 bits, I = 4 and H = 2 bits, I = 3 simultaneously in the second run, and so on.) This feature resulted in considerable savings in experimental time as well as minimising both the subject's boredom and fatigue.

The right-sided movements were analysed separately from the left-sided movements as if in two distinct classes. In each class, a factorial model was used to analyse the effects of the experiment and a performance time prediction model was developed.

	K.M.	4 08,07,06,05 1 05 2 02,01 2 06,05 2 04,03 1 09 09 1 04,03,02,01 3 04,03 3 04,03 1 08,07 1 08,07 1 12,11 2 12,11 3 02,01 4 12,11,10,09
,	H L.S.	1 01 2 08,07 2 10,09 4 12,11,10,09 1 05,02,01 1 06,05 1 04,03 1 06,05 1 08,07 2 08,07 3 08,07 4 08,07,06,05 5 02,01 7 02,01 7 04,03
	C.B.	3 06,05 1 04,05 4 12,11,10,09 3 04,03 2 04,03 3 02,01 1 12 1 12,11 2 12,11 2 08,07 4 08,07,06,05 2 02,01 1 08 1 08 2 02,01 1 08 2 02,01 3 08,07 6 05 7 08,07 8 07,06 1 08
	H I.C.	1 12 2 04,03 4 04,03,02,01 3 10,09 4 12,11,10,09 2 02,01 0 05,03 1 09,07 2 06,05 1 01,09 2 10,09 3 06,05 1 08,07 1 12,11 2 12,11
3	н н. S.	4 04,03,02,01 3 06,05 1 12,11,10,09 1 09,05 2 02,01 3 12,11 0 09,05 2 02,01 1 08 1 01,09 2 04,03 1 12,11 1 08,07 0 08,07
	Order Of Experi- mental Run	1 2 3 4 4 6 6 10 11 13 14 15 16 19 20 21

Order of Run Randomisation for Five Female Subjects. Table 4.2

Terminology: H - Informational Load

1 - Index of Difficulty

H. H	2 12,11 2 04,03 2 06,03 3 06,05 1 09,07,06,05 3 02,01 3 10,09 2 08,07 3 12,11 1 12 1 08 1 08,07 1 08,07
S.I.	08,07 12,11,10,09 02,01, 08,07,06,05 09,07 12,11 12,11 12,11 04,03 06,05 10,09 02,01 08,07
≖I	242411888124818228112
P.C.	06,05 09,07,06,05 02,01 04,03,02,01 .04,03 08,07 12,11 01 12,11 08,07 12,11 08,07 10,09 12,11 08,07 10,09
≖1,	ын4ы4ныи0иччи4ыычыичио
L.S.	08,07,06,05 08,11 12,11 10,09 06,05 04,03 02,01 01 12,11 12,11 12,11 04,03 08,07 08,07 08,07 08,07 08,07 08,07 08,07 08,07 08,07 08,07
田	.44888488848484848
<u>Ι</u> Ι,υ,	3 08,07 3 04,03 4 12,11,10,09 2 12,11 2 02,01 1 12,0 4 04,03,02,01 1 09, 3 06,05 3 06,05 1 08,07 1 01,09 3 12,11 4 08,07
Order Of Experi- mental	110 8 4 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Order of Run Randomisation for Five Female Subjects. , Table 4.3

Terminology: H - Informational Load

I - Index of Difficulty

	
T.P.	08,07 02,01 12,11 06,05 01 09 12,11 10,09 12,11,10,09 08,07,06,05 08,07,06,05 04,03,02,01 04,03,02,01 04,03
Ξl	88008HHH04040HH48880
<u>I</u> P.A.	10,09 01 12,005 06,05 06,05 06,05 12,11,10,09 04,03 10,09 12,11 04,03 04,03 04,03 04,03 04,03
工	<u> </u>
д М.М.	02,01 04,03 02,01 06,05 08,07 09,07 12,11 12,11 04,03 10,09 10,09 10,09 06,05, 01,11,10,09 08,07,06,05
πı	9988811988811981444
J.S.	08,07 10,09 12,11 06,05 01 02,01 12,11 12,11 10,09 12,11,10,09 12,11,10,09 04,03 08,07
± 1	22202222222222222222222222222222222222
H I.7.	1 08 1 12 1 09 3 10,09 2 08,07 4 04,03,02,01 2 02,01 3 06,05 3 08,07 1 01 1 2,11 2 06,05 3 06,05 3 06,05 4 12,11 2 04,03 4 12,11 1 04
Order Of Experi- mental Run	10 22 43 20 11 11 11 12 12 13 13 13 13 13 13 13 14 15 16

Order of Run Randomisation for Five Male Subjects. Table 4.4

Terminology: H-Informational Load

I-Index of Difficulty

<u>п</u> <u>т</u> м.А.	3 06,05 4 04,03,02,01 2 04,03 1 12,01 3 08,07 4 08,07,06,05 2 02,01 1 08 1 12,11 0 09 1 08 1 00 1 08 1 00 1 08 1 00 1 08 1 00 1 08 1 00 1 08 1 00 1 00
K.K.	08,07 12,11 12,11 10,09 01,03 04,03 08,07 12,11 10,09 06,05 06,05 08,07 07,00 08,07 08,07 08,07 08,07 08,07
HI HI	0010010888881H8804H444
<u>I</u> K.A.	08,07,06,05 06,05 12,03 12,01 02,01 12,11,10,09 02,01 12,11 12,11 12,11 12,11 12,11 04,03 06,09 06,09 07
ΞΙ	40242244222222444
H I.Z.	3 10,09 2 02,01 1 09,01 3 06,05 1 06,05 2 08,07 2 12,11 3 12,11 3 04,03 4 04,03,02,01 4 12,11,10,09 1 04,03,02,01 1 08,07,06,05
	·
I.S.	04,03 08,07 04,03 12,11,10,09 08,07,06,05 10,09 12,11 04,03,02,01 05,01 06,05 06,05 10,09 08,07 08,07
ΞΙ	
Order Of Experi- mental Run	22 4 3 3 4 3 5 4 3 5 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

Order of Run Randomisation for Five Male Subjects. Table 4.5

Terminology: H - Informational Load

I - Index of Difficulty

4.4. The Subjects

Ten male and ten female right-handed students at the University of Windsor were selected as subjects for this experiment. Their age range from nineteen to twenty-six.

Three of the male subjects performed in both the pilot experiment and the main study. For the pilot experiment the students were paid \$10 each. For the main study, each subject was paid \$15. All subjects were in good physical condition and were interested in the study. Each subject had about one hour of learning practices before the actual recording of data. The main study took about seven hours to complete which was divided into three sessions in successive days. The time of each experimental condition varied according to the number of hole-alternatives in the task. Sufficient rest periods were given to the subjects between conditions, (see Appendix B).

Before the actual recording of data, the subject was given twenty practice cycles to adapt himself/herself to each new experimental condition.

4.5 <u>Data Collection</u>

In each of the twenty-one experimental runs, performance times corresponding to each of the relevant response holes as described earlier (Appendix B, section 4.3 and 4.4 of text) were collected on data cards. Thirty cycle times were recorded for each response hole. A computer program

(see Appendix F) was prepared to sort the time data into the different hole categories, screen out any errors and outlying points under the criteria of four standard deviations from the sample mean $(\mu \pm 46)$.
Twenty data points were used for this analysis.

Errors made by the subjects in positioning into a wrong hole were few and far in between during the whole study, no consideration of its effect was therefore deemed necessary.

CHAPTER V

DATA ANALYSIS

5.1 Introduction

The analysis of experimental data was divided into two parts. Part 1 investigates the effects of informational load, clearance and sex differences on performance times at the four levels of distance separately (i.e. D=7", 10", 13" and 16"). The purpose was to establish the basic relationships among these factors while isolating the effect of the small angular differences associated with the distance levels. In part 2, such angular effect was assumed negligible across all distance levels. Studies by Scholes (1970) and El Sayed (1975) have indicated that small angular differences (70 max in this study) in the narrow region on the same side of the 90° angle of movement had negligible effect on movement times. The purpose of this part was to examine the combined effect of distance and clearance on performance times and the usefulness of the index of difficulty (I) as a prediction parameter for such tasks.

In both Parts 1 & 2, the effects of the same sided movements as explained in the previous chapter were first analysed separately and then compared. Analysis of variance (ANOVA) Newman. Kuel's test of significant means and variances of components analysis were employed. Part 1 also investigated the effects of different sided movements (angle of movement)

at the four levels of distance whereas Part 2 compared the combined effect of clearance and distance with the integrated factor I. It should be noted here that only general directions of movements were considered in this study (same sided versus cross-body movements) and not the specific angular differences in degrees.

Graphs were plotted to ullustrate the relationships of performance times with the various significant effects.

Finally, prediction models were developed for each class of movement given the limitations of the experimental conditions of the present study. Histograms for every condition of each subject Gere plotted using a standard computer program (See Appendix G), a sample of which is presented in Appendix H. The means, standard deviations, maximum and minimum values of the performance times were also given by the same program. The Statistical Analysis System (SAS) computer package developed by Barr and Goodnight (1973) was used both in the ANOVA and prediction model analysis.

5.2 Analysis Models

Within each class of movement, a randomised factorial nested mixed model was used for the analysis of performance times.

Part 1

$$x_{ijkln} = \mu + \alpha_i + \beta_{j(i)} + \gamma_k + \delta_1 + \alpha \gamma_{1k} + \cdots + \beta_{j(i)} + \epsilon_{n(ijkl)} + \alpha_{j(i)} + \alpha_{j(ijkl)} + \alpha_$$

Sex Difference (x) $X_1 = male$ X_2 = female $^{\beta}$ jk(i) = Subject nested within sex (s) j = 1....10 = Informational Load (H) k = 1,2,3,4 for Distance $D_1 = 7$ " and D₄ = 16" $H_{\tau} = 1$ bit $H_2 = 2$ bits $H_3 = 3 \text{ bits}$ $H_4 = 4 \text{ bits}$ k = 1, 2, 3 for Distance $D_2 = 10$ " and D₃ = ·13" $H_1 = 2 \text{ bits}$ $H_2 = 3 \text{ bits}$ $H_3^- = 4 \text{ bits}$ δ_{1} = Clearance (c) 1 =], 2, 3 $C_1 = 0.008$ " $C_2 = 0.063$ " $C_3 = 0.250$ "

 $\varepsilon_{n(ijkl)}$ = residual including cell repetitions

Xijkln is the performance time of the nth observation for the 1th level of clearance, kth level of informational load, jth subject and ith sex in the above model were considered as fixed

41

factors whereas & was random

In the analysis of the effect of the angle of movement, a randomised factorial nested mixed model was again used for each level of distance:

$$X_{ijklmn} = \mu + \alpha_i + \beta_j(i) + \gamma_k + \delta_1 + \theta_m + \alpha\gamma_{ik} + \cdots$$

$$+ \beta\gamma_{jk}(i) + \cdots + \alpha\gamma\delta_{ikl} + \cdots + \beta\delta\theta_{jlm}(i) + \cdots$$

$$+ \varepsilon_{n(ijklm)} \qquad \cdots \qquad \cdots \qquad (2)$$

where

 α , β , δ and ϵ are the same as in the previous models.

Part 2

$$X_{ijklmn} = \mu + \alpha_i + \beta_{j(i)} + \gamma_k + \alpha_1 + \lambda_m + \alpha \gamma_{ik} + \cdots$$

$$+ \beta_{jk(i)} + \cdots + \alpha_{j} \delta_{ikl} + \cdots$$

$$+ \varepsilon_{n(ijklm)} \qquad \cdots \qquad (3)$$

where

>

$$\alpha_i$$
 = Sex Difference (x), i=i,2
 x_1 = male
 x_2 = female

$$\tilde{\beta}_{j(i)}$$
 = Subject(s) nested with sex, j = 1,...,10
 γ_k = Informational Load (H), k = 1, 2, 3
 H_1 = 2 bits
 H_2 = 3 bits
 H_3 = 4 bits

$$\delta_1$$
 = clearance (C), 1 = 1, 2, 3
 C_1 = 0.008"
 C_2 = 0.063"
 C_3 = 0.250"

$$\lambda_{m}$$
 = distance (D), m = 1,2,3,4

$$D_{1} = 7 \text{ inches}$$

$$D_{2} = 10 \text{ inches}$$

$$D_{3} = 13 \text{ inches}$$

$$D_{4} = 16 \text{ inches}$$

 α , γ , δ , λ in the above model were considered as fixed factors whereas β was considered as random factor.

In the case where index of difficulty replaces C and D as an integrated factor in the experimental conditions, the following model was used.

where

 η_1 = index of difficulty (I), 1 = 1,...,12 I_1 = 5.808 ibits; I_2 = 6.323 ibits; I_3 = 6.701 ibits I_4 = 7.001 ibits; I_5 = 7.808 ibits; I_6 = 8.323 ibits I_7 = 8.701 ibits; I_8 = 9.001 ibits; I_9 =10.808 ibits I_{10} =11.321 ibits; I_{11} =11.699 ibits; I_{12} =12.001 ibits

 $\alpha,\beta,\gamma,\epsilon$ are the same as in the previous model.

5.3 Validity of Analysis Model

Since data were obtained simultaneously for both the right-sided and left-sided movements and for each level of distance included in an experimental run, there were consequently some restrictions on the randomisation of all the experimental conditions. A goodness of fit test was applied to the analysis models (Draper and Smith) to see if they significantly deviate from the actual conditions of the experimental set-up. The pure error component - the repetition effect within each experimental cell, was isolated from the theoretical residual (i.e. excluding all interaction term) of the models. The lack of fit component - the remainder of residual after pure error, was tested against the pure error component for significance. Table 5.1 to 5.4 show the validity of models used in the separate classes of movement. Tables 5.5 to 5.8 show the model validity when angle of movement effect was considered.

As it is seen in the tables that the models used in every case were significant and that the lack of fit error was insignificant (p> 0.05). It is therefore concluded that models 1, 2, 3 and 4 were acceptable for the analysis.

	Source	d.f.	SS	MS	F-value	Findings at 5% Level
	Total	4799	191717654		•	·
	Regr.	258	92411185	358183	16.36	Significant
D ₁	Resid.	74541	99306469	21869		
	L of F	4522	98891787	21869	1.00	
	P.E.	19	414682	21825		
	Total	3599	127327431		•	
•	Regr.	198	55637196	280996	13.33	Significant
D ₂	Resid.	3401	71690235	21079		
2 2	L of F	5382	71423562	21119	1.52	Not Significant
	P.E.	19	2-6673	14035		
	Total	3599	153542315		-	
	Regr.	198	82955862	418969	20.18	Significant
D ₃	Resid.	3401	70586453	20754		
	L of F	3382	70273870	20778	_1.2	Not Significant
	P.E.	19	312583	16451		
-	Total	4799	213418621			
D ₄	Regr.	258	110773134	429353	18.99	Significant
		4541	102645487	22604	4	
	L of F	4522	102231/925	2260	7 1.03	Not Significant
	P.E.	19	413562	2176	6	

Table 5.1 Validity of Model 1 at each level of Distance; Right-sided Movement.

		•				
	Source	d.f.	SS	MS	F-Value	Findings at 5% Level
	Total	4799	236832117			
}	Regr.	258	130794884	506957	21.71	Significant
D ₁	Resid.	4541	106037233	23351		
*	L of F	4522	105776683	23392	1.70	Not Significant
	P.E.	19	260550	13713		
	Total	3599	135007517			
ļ	Regr.	198	59377408	299885	13.48	Significant
D_2	Resid.	3401	75630109	22238		
2	L of F	3382	74735479	22098	0.47	Not Significant
	P.E.	19	894670	47088		
	Total	3599	157015000		• /	
	Regr.	198	87084864	439822	21.39	Significant
D 3	Resid.	3401	69930136	20562	•	
3	L of F	3382	69465643	20540	0.84	Not Significant
	P.E.	. 19	464493	24447		
	Total	4799	257546231	5		
	Regr.	258	142720890	553181	21.87	Significant
D ₄	Resid.	4541	114825341	25286	;	
1 4	L of F	4522	114290769	25274	0.89	Not Significant
Ì	1 1 0 1					.

Table 5.2 Validity of Model 1 at each level of Distance; Left-sided Movement.

Source	df	ss*	ms	F-ratio	Findings at 5% level
Total	14399	603976797		<u>-</u> '	
Regression Residual	482 13917	291528527 312448270	604830.9	26.94	Significant
Lack of Fit	13898	311786929 661341	22433.9 34807.4	0.644	Not Significant

Table 5.3 Valididty of Model 2, Right-sided Movement (Part 2)

Source	₫£	ss	ms	F-ratio	Findings at 5% level
Total	14399	601905609			-
Regression Residual	482	294894536 307011073	611814.3	27.55	Significant
Lack of Fit Pure Error	13898	306704390 316683	22068.2 16667.5	1.32	Not Significant F _{0.05} =1.88

Table 5.4 Validity of Model 2, Left-sided Movement (Part 2)

<u> </u>				·	
Source	đ£	SS	ms	F-ratio	Findings at 5% level
Total	9599	445138420		1	
Regression Residual	321 9278	234740242	731278 22677.1	32.25	Significant
Lack of Fit	9259	210128627 269551	22694.5	1.59	Not Significant F _{0.05} =1.88

Table 5.5 Validity of Model 4, Angle of Movement effect for D₁

- Source	df	SS	ms	F-ratio	Findings at 5% level
Total	7199	267849601		s	•
Regression Residual	239 6960	114118206 153731395	477482 22087.8	21.62	Significant
Lack of Fit	6941 19	153094098 637297	22050 33542	0.657	Not Significant F _{0.05} =1.88

Table $5.\overline{6}$ Validity of Model 4, Angle of Movement effect for D_2

Source	đ£	SS	ms	F-ratio	Findings at 5% level
Total	7199	299557865	•		
Regression Residual	239 6960	155679100 143878768	651376.9	31.51	Significant
Lack of Fit	6941	143526011 352757	20678.0	1.11	Not Significant F _{0.05} =1.88

Table 5.7 Validity of Model 2, Angle of Movement effect for D3

Source	đf	SS	m.s	F-ratio	Findings at 5% level
Total	9599	416481015			
Regression Residual	321 9278	227640576 .188840439	709160.6	34.84	Significant
Lack of Fit	9259	188464655 375784	20354.7	1.03	Not Significant F _{0.05} =1.88

Table 5.8 Validity of Model 2, Angle of Movement effect for D_4

CHAPTER VI

EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Analysis of Variance:

The effects of the experiment were tested by the ANOVA procedure of the SAS package according to the analysis models in Chapter V. 5% significant level (\hat{p} <0.05) was used in all cases.

Part 1 models:

- 1. It was found that for both the right-sided and leftsided movements and for all levels of the distance (D):
 - a. The main effect of informational load (H) and clearance (C) were significant (p<0.05);
 - b. Male and female difference was not significant (p>0.05);
 - c. All first order interactions of sex (X) informational load (H) and clearance (C) were not significant (p>0.05);
- 2. The right-sided and left-sided movements were significantly different (p<0.05) at all levels of D.

Part 2 models:

For both right-sided and left-sided movements:

- a. The main effects of informational load (H), clearance(C) and distance (D) were significant:(p<0.05)
- b. Male and female difference was not significant in the experimental task (p>0.05);
- c. The index of difficulty (I) when used in place of C and D showed a significant effect (p<0.05);

d. The H x D interactions were significant which might be explained by the deviation of performance times between D_2 and D_3 as described in Appendix F (Motion Strategy).

It is clearly seen from the above analysis that the models used in the two Parts give similar results. The assumption that the angular effect associated with the levels of distance being negligible is validated.

Preparation of tables of EMS values as well as ANOVA tables of results are presented in Appendix D.

6.2 Test of means of Significant Effects:

The Newman Kuel's Test was applied to the significant effects obtained from the ANOVA. Again, 0.05 level of . significance was used in all cases.

From the Part 1 models, it was found that for both the right-sided and left-sided movements, the mean performance times for each level of H (2, 3, 4 bits) were significantly different at each level of distance; the same was found for those of the three levels of clearance C. From the Part 2 models, index of difficulty and distance level means, however, behaved a little differently in the right-sided versus the left-sided movement.

Results of the Newman Kuel's Test on the two effects can be summarised as follows:

- 1. Right-sided Movement:
 - A) Distance (D)

 Lévels of D in ascending order of means:

1 3 2 4

B) Index of Difficulty (I)

1 5 3, 2 9 7 4 6 10 11 8 12

- 2. Left-sided Movement:
 - A) Levels of D in ascending order of means:

1 3 <u>2</u> 4

B) Index of Difficulty (I)

Levels of I in ascending order of means:

1 3 2 4 5 7 6 9 8 11 10 12

The insignificant difference between levels 2 and 3 of distance is probably due to the motion strategy difference across these levels (See Appendix F). There appears to be significant changes in the ascending order of the index of difficulty level means which may be traced directly to the effect of the distance component in the logarithmic transformation of the index.

6.3 Variance Components by Major Effects:

Detailed calculations of the component variances are presented in Appendix D. Only Part 2 models were used in this case. Results are summarised here in the following table:

	.)		<u> </u>
	Component	Right-sided Movement	Left-sided Movement
ANALYSIS I	Subject Effect (S)	23.93%	29.44%
	Informational Load (H)	47.20%	53.82%
	Clearance (C)	16.10%	12.69%
	Distance (D)	12.75%	14.06%
_	Subject Effect (S)	25.54%	30.77%
ANALYSIS II	Informational Load (H)	50.36%	56.27%
	Index of Difficulty (I)	24.10%	12.96%
	•		

Table 6.1 Summary of Variance Components

Informational Load (H) is the single most significant effect in the present experimental model. It accounts for about one-half of the total variance in the model with the remainder divided between the effect of subject differences

and the movement parameters (C and D or I). Informational Load is notably more significant for the left-sided movement than the right. In comparison, H in the left-sided movement account for 6% more of the total variance than in the right movement.

Index of Difficulty is comparable with the combination of clearance and distance in accounting for the variance in the model. There is however some indication of better accountability if the right-sided movement - a 16% difference from the combined C and D variance portion as compared to a 22% difference in the left-sided movement.

6.4 Effect of Informational Load on Performance Times

MTM values for the manual components of the experimental conditions was first intended to be used to highlight the effect of the Informational Load on performance time.

However, it was found to be indequate in this instance because of the approximation in the MTM definition of Positioning tasks. Instead, extrapolation values from the regression models in Appendix D are listed here in Table 6.2 and 6.3 along with experimental values for comparision.

There is a marked increase in performance time between a purely manual task and one with two alternatives, and again between the 3-bit and 4-bit tasks. The former is a good indication of the effect of decision imposed on the manual task while the latter approaches the situation of mental overload as indicated by Bayha and Hancock (1971).

1 790 894 938 1023 1145 1 4 936 1002 1084 1063 1295 2 1 720 827- 894 1095 1082 2 4 808 937 1021 1091 1260 3 1 680 713 856 903 1000 3 1 680 713 856 903 1206	Expt.Cond. Extr.Value		Expt. Values			$H_A=4$ bits	
1 790 334 1002 1084 1063 1295 2 1 720 827 894 1095 1082 2 4 808 937 1021 1091 1260 3 680 713 856 903 1000 3 3 3 3 1075 1206	C	ָם	H ₀ =0 bit	H _l =1 bit	H ₂ =2 bits	H_=3 B1ts	¹¹ 4 01C3
2 1 720 827. 894 1095 1082 2 4 808 937 1021 1091 1260 3 1 680 713 856 903 1000 3 1 1000 1000		` 1	790	894	938	1023	1145
2 1 720 827. 894 1095 1082 4 808 937 1021 1091 1260 1 680 713 836 903 1000 3 1000 1000 1000		. 4	936	1002	1084	1063	1295
2 4 808 937 1021 1091 1260 1 680 713 856 903 1000 3 1000 1000		1	720	827-	894	1095	1082
3 1 680 713 650 1075 1206	2	4	808	937	1021	1091	1260
		1 .	680	713	856	903	1000
4 740 857 961 1033 1233	3	4	740	857	961	1,035	1206

Table 6.2 Effect of Informational Load on Performance Times; Right-sided Movement.

Evnt	.Cond.	Extr. Value		Expt. V		
C	D	H ₀ =0 bit	H ₁ =1 bit	H ₂ =2 bits	H ₃ =3 bits	$H_4=4$ bits
_ 	1, -	. 854 ,	962	1029	1094	1247
1	4	895	1020	1111	1165 ′-	1286
	1	720	852	967	1042	1226
. 2	4	808	940	1041	1101	1258
•	, 1	680	813	910	982	1154
3	4	740	892	977	1057	1174
Ave	.% incr	ease 13	5.9 10	.14 6	.7 14	.0

Table 6.3 Effect of Informational Load on Performance Times; Left-sided Movement.

6.5 Linear Regression:

Linear regression was used to develop prediction models for the performance time in the combined decision and positioning task. Here again, only Part 2 models were used to give meaningful results. Two approaches were used: considering C and D as separate factors and considering I in place of C and D.

Detailed tables of linear regression coefficients are given in Appendix E and only selective models are listed in this section:

a. Right-sided Movement:

Performance Time (ms) = 623.31 + 106.60H - 411.20C + 14.33D ...model 1

where H is the informational load in bits

C is the lateral clearance in inches

D is the distance of move in inches

R-square = 0.9104

Significance level of Fit = 0.0001

Standard Error of Regression = 35.13 ms

Maximum % deviation of residual = 7.2%

Performance Time (ms) = 523.72 + 102.60H + 25.08I ...model 2

where I is the index of difficulty in ibits

R-square = 0.8003

Significance level of Fit = 0.0001.

Standard Error of Regression = 51.65 ms

Maximum % deviation of residual = 8.5%

B. Left-sided Movement

Performance Time (ms) = 769.58 + 105.89H - 419.63C + 5.57D ... model 3

R-square = 0.8970

Significance level of Fit = 0.0001

Standard Error of Regression = 35.42 ms

Maximum % deviation of residual = 7.2%

Performance Time (ms) = 592.34 + 105.90H + 22.361 ... model 4

R-square = 0.8939

Significance level of Fit = 0.0001

Standard Error of Regression = 35.41 ms

Maximum % deviation of residual = 6.3%

The mean values of experimental conditions, predicted values, Residuals, lower and upper 95% confidence limits for the means generated by the above four models are listed in Appendix H (computer print-out).

For the left-sided movement, the conditions of fit is comparable between using C and D separately or using a single factor I. For the right-sided movement, the correlation

coefficient (R) difference is tested for significance using the Fisher's Z transformation $(\rho \neq 0)^*$.

From model 1: $R_1 = \sqrt{0.9104} = 0.9541$

From model 2: $R_2 = \sqrt{0.8970} = 0.9470$

 $z_1 = 1.1513 \log_{10}[(1+R_1)/(1-R_1)] = 1.875$

 $Z_2 = 1.1513 \log_{10}[(1+R_2)/(1-R_2)] = 1.802$

 $\sigma_{(Z_1-Z_2)} = \sqrt{\frac{1}{N_1-3}} + \frac{1}{N_2-3}$ where N_1 , N_2 are the sample size of the corresponding model, $= \sqrt{\frac{2}{36}}$ here $N_1=N_2=36$

Hypothesis $H_0: {}^{\mu}Z_1={}^{\mu}Z_2$ and $H_1: {}^{\mu}Z_1={}^{\mu}Z_2$

Under hypothesis Ho:

$$z = \frac{z_1 - z_2 - 0}{\sigma(z_1 - z_2)}$$

$$= \frac{1.875 - 1.802 - 0}{0.235}$$

$$= 0.310$$

Using a two tail test of z in the normal distribution,

 ρ is the theoretical population correlation coefficient

and at 5% level of significance, R_1 and R_2 of the two models are not significantly different.

Comparison between the predicted values of the two sets of models are shown in tables 6.2 and 6.3. There is only a 3.5% average difference for the right-sided movement and an even less, 1.69 average difference for the left-sided movement.

For both the left-sided and right-sided movements, it is seen that coefficient of H is about four times higher than that of I. This indicates clearly that changes in informational load have much greater effects on total performance times than the parameters governing the manual component of the task.

6.6 Graphical Analysis

Graphs of Performance Time (PT) versus Informational Load-(H) and Index of Difficulty (I) are shown in Fig. D.1 to Fig. D.10. Performance variations due to direction of movement (A) are shown in Fig. D.11 to Fig. D.22.

It is seen that Performance Time varies linearly with Informational Load at all levels of (I). However, the linearity of I with PT decreases as H increases such as indicated by the associated correlation factors. This implies that at higher levels of H, there is an increasing amount of parallel activity in the task (decision element occurring in parallel with the manual elements). Such a phenomenon is shown in the plots of PT versus I rather than PT versus H because the latter has a much greater effect on

Performance Times of such tasks.

Right-sided movements are in most cases accomplished faster than the cross-body movements (left-sided movements). Cross body movements involve the arm and forearm in motion about the shoulder joint whereas right-sided movements can be accomplished mainly by the forearm alone moving about the elbow. A larger mass and variety of muscles are involved in cross body movements compared to those in right-sided movements and therefore require longer performance time. . The exceptions seen in the case H=4 bits and D = 16" can be explained by the fact that most subjects tended to shift their bodies toward the left as the experiment proceeded. This actually made the movement to the left-sided hole (#2) a straight forward move (a 90° move) while the right-sided hole (# 3) remained at some angle to the right. Such a shift was so natural with most subjects that it was impossible to prevent. This phenomena is not peculiar to the experimental task but can be observed whenever a person is doing work with one hand. The most natural position for doing -such work appears to be some distance from the centre line of the body toward the working hand. For instance, writing with the right hand is most conveniently done at some distance towards the right.

6.7 Use of the Index of Difficulty

It is shown in section 6.5 that the Index of Difficulty is comparable with the separate factors of C and D in the linear regression of experimental data. Using I.D., R-square

for the left-sided movement is 0.8983 and that for the rightsided movement is 0.8003. Again in Table 6.3 and 6.4, mean experimental performance times are compared to the predicted values obtained by using model 3 (C and D) and model 4 (I.D.) It is seen that the average & difference between the two. models are 1.6% for the left-sided movement and 3.5% for the right-sided movement. The maximum deviation between the models is only 7.5%. Nevertheless, one significant advantage in the use of I over C and D is in the case when different motion strategies are inherent in the task. As in the present study, the subjects employed one motion strategy when he moved in the range of seven to ten inches, and another in the range of thirteen to sixteen inches (detailed discussion in Appendix F). With C and D; two significantly different linear models were required. However, one model using I was sufficient in relating to the data across both ranges. This feature can be explained by the logarithmic transformation of C and D to form the Index.

 $I = log_2(2D/C)$ ibits

Taking the logarithm · of the ratio of D and C reduces the absolute magnitude of any changes in either D or C.

As explained in Appendix F, it is the distance (m) from the decision region to the response hole that is significantly affecting the manual performance time. The changes of m corresponding to those of D are conceivably less in tasks involving motion strategy changes. Thereby transforming D logarithmically, the changes of m are approximated.

62

region within which the first initial move ends and the second directional move to the response hole begins.

It is often the case in industrial tasks such as encountered in assembly lines where the work is comprised of a number of sub-tasks each involving a different narrow range of distance of movement. Motion strategy changes are therefore inherent in such tasks. A medication model using I automatically accommodates these differences and is thus more simple to use than the conventional parameters of C and D.

	rimen ditio		Mean Performance	Predi Value		Absolute Difference	<pre>å Difference in term of</pre>
н	С	D	<i>'</i>	Model 3	Model 4	in Predicted Values	Observed - Values
	1	1 2 3 4	938 1009 1009 1084	926 969 1012 1055	1000 1013 1022 1030	49 19 15 50	5.6 2.0 1.6 5.2
2	2	1 •2 3 4	894 976 926 1021	903 946 989 1032	925 937 947 955	20 9 42 77	2.2 0.9 4.5 7.5
	3	1. 2 3 4	836 932 898 961	826 869 912 955	875 888 897 905	49 19 15 50	5.6 2.0 1.6 5.2
	1	1 2 3 4	1023 1022 1070 1063	1028 1071 1114 1157	1103 1145 1124 1133	75 74 10 24	7.3 7.2 0.9 2.0
3	2	1. 2 5 4	965 1095 1011 1091	1006 1046 1092 1134	1027 1040 1050 1057	21 , 3 9 42 77	2.1 0.8 4.1 7.0
	3	1 2 3 4	903 997 964 1035	929 972 1015 1058	977 990 1000 1007	48 18 15 51	5.3 1.8 1.5 4.9
	1	1 2 3 4	1145 1167 1225 1295	1130 1174 1217 1260	1205 1218 1227 1235	79 44 10 25	6.5 3.7 0.8 1.9
4,	2	1 2 3 4	1082 1150 1188 1260	1108 1151 1194 1237	1129 1142 1152 1159	21 9 42 78	1.9 0.7 3.5 6.1
	-3	1 2 3 4	1000 1094 1130 1206	1031 1074 1117 1160	1079 1092 1102 1109	48 18 15 21	4.8 1.6 1.3 4.2

Table 6.4 Right-sided movement, comparison between linear regression models 3 and 4.

				Ç	•		
	erime: nditi		Mean Performance Time of	Predic Value Model 3	(M:S.)	Absolute Difference in	<pre>† Difference in term of Observed</pre>
H	С.	D	Conditions M.S.	Moder 5		Predicted Values	Values -
	1	1 2 3 4	1029 1077 1048 1111	1046 1057 1066 1072	1017 1034 1051 1067	29 23 15 5	2.8 2.1 1.4 . 0.4
2	2	1 2 3 4	967 1041 975 1041	979 990 999 1005	994 1010 1027 1044	15 20 28 39	1.5 1.9 2.8 3.7
	3	1 2 3 4	910 999 929 977	934 945 954 961	915 932 949 966	15 13 5 5	1.6 1.3 0.5 0.5
	1,	1 2 3 4	1094 1187 1135 1175	1152 1163 1172 1178	1123 1139 1156 1173	29 24 16 5	2.5 2.1 1.4 0.4
3	2	123	1042 1139 1069 1201	1085 1096 1105 1111	1100 1116 1133 1150	15 20 28 39	1.4 1.9 2.6 3.5
	3	1 2 3 4	982 1075 1025 1057	1040 1051 1060 1067	1021 1038 1055 1072	19 13 5 . 5	1.9 1.2 0.4 0.4
	1	1 2 3 4	1247 1225 1292 1286	1257 1269 1277 1284	1229 1245 1262 1279	28 23 15 5	2.2 1.8 1.1 0.3
4	2.	1 2 3 4	1226 1190 1283 1258	1190 1202 1210 1217	1205 1222 1239 1256	15 20 29 39	1.2 1.6 2.2 3.1
-	3	1 2 3 4	1109	1145 1157 1165 1172	1127 1144 1160 1177	18 13 5 5	1.5 1.1 0.4 0.4
		 -			Aver	age % diffe	rence 1.6%

Table 6.5 Left-sided movement, comparison between linear regression models 3 and 4.

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

In this study, a combined decision and positioning task was investigated under laboratory conditions. The informational load was varied between one to four bits, lateral clearance for positioning between 0.008 inch to 0.25 inch, and distance of move between seven inches to sixteen inches. The task was discrete in nature and repetitive. The decision element in the task involved only resolving uncertainty in choosing among alternative responses which occurred with equal probability. From the analysis of the experimental data collected, the following conclusions can be made with respect to such a task within the limitations of the experimental conditions.

- There is no significant difference in performance times between male and female operators in the task (p>0.05).
- 2. Information load is a highly significant factor in the total performance time of such a task. Performance time increases linearly and sharply accross the range of two to four bits of Informational Load.
- 3. -- Both clearance and distance of move are significant factors affecting performance time. Performance time decreases as clearance increases and increases as distance increases.

- Positioning times into holes on the left side of the equipment is significantly different from those on the right side although the actual angular difference between the movements is 24 degrees at the maximum.
- 5. The index of difficulty I as defined by Fitts and Paterson (1964):

 $I = \log_2(2D/C)$

where D = distance of movement

C = lateral clearance of positioning is found to be a significant factor in affecting performance time.

- The use of the index of difficulty (I) in a prediction model for the performance time of such a task is comparable with one using separate clearance and distance factors. Use of 'I' is recommended here for the following reasons:
 - a) it is simpler in practical applications such as in establishing standard performance times whereonly one parameter needs to be specified.
 - the model automatically accommodates any changes in motion strategy when different distance-ranges are inherent in performing the task. (See Appendix F). As part of the conclusion, two prediction models are presented here for further verification and investigation. Their practical significance is certainly subjected to the limitations of the experimental conditions in the study.

For the right-sided movement:

Performance Time (ms) = 523.72 + 102.60H + 25.08I For the left-sided movement:

Performance time (ms) = 592.34 + 105.90H + 22.36I

where H = informational load in bits

I* = index of difficulty in ibits

Suggestions for Further Studies:

- 1. Verification of the prediction model proposed is needed by further studies before it can be applied to determine standard performance times of similar industrial tasks.
- 2. The use of I as a parameter in other combined decision and manual tasks needs to be explored.
- The task in the present study is one of information conserving where there is a 1:1 mapping of stimulus and response. Information reduction and information creation tasks need to be further investigated.
- 4. The probability of occurrence of the alternatives in the present task follows a uniform distribution. The case where different distributions govern the occurrence of the alternatives has not yet been studied.

^{*} unit defined in Chapter Four

Appendix A

Equipment Layout

- 1. Schematic Representation of the Stimulus-Response Unit.
- 2. Pictorial View of the equipment Layout.

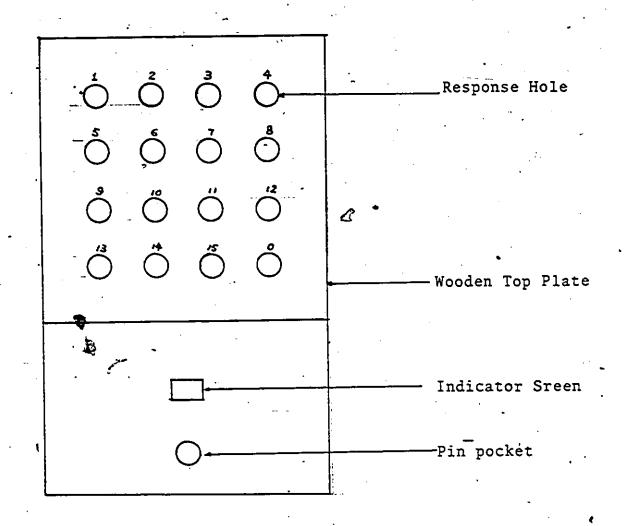


Figure A.1 Top View - S-R Unit

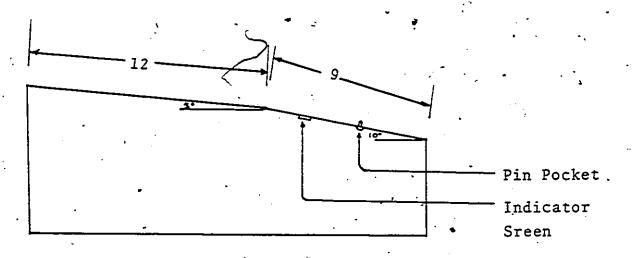


Figure A.2 Side View - S-R Unit

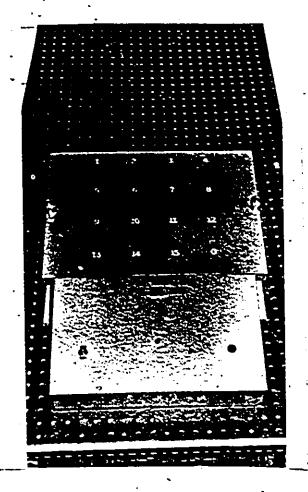


Fig.A.3 Signal-Response Unit

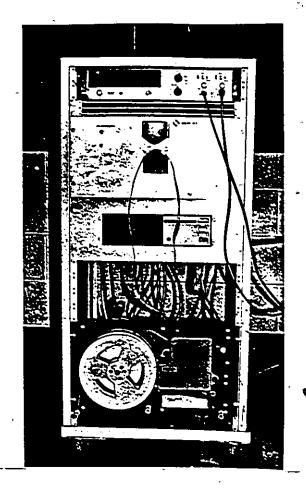


Fig. A.4 Tape-Reader,
Time Measuring,
and Recording Units.

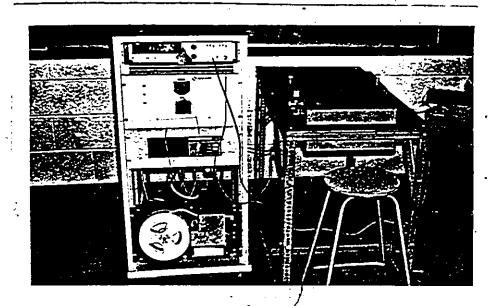


Fig. A.5 Equipment Layout.

Appendix F

Experimental Conditions and Procedure

- Schematic Layout of Stimulus-Sets in Multiple-Alternatives Tasks.
- 2. Durations of Experimental Runs and Rest Periods.

H = 1 bit

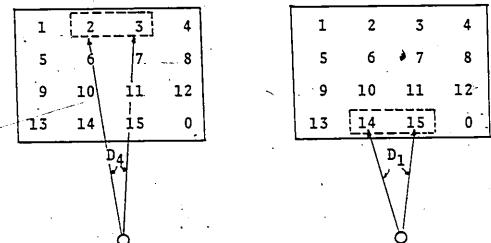


Figure B.1 Schematic Layout of Stimulus-sets in the Two-hole-alternatives Tasks.

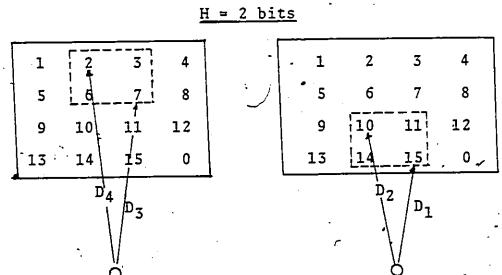


Figure B.2 Schematic Layout of Stimulus-sets in the Four-hole-alternatives Tasks.

H = 3 bits

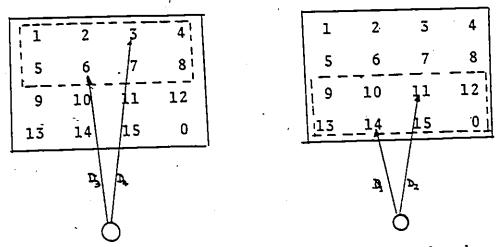


Figure B.3 Schematic Layout of Stimulus-sets in the Eight-hole-alternatives Tasks.

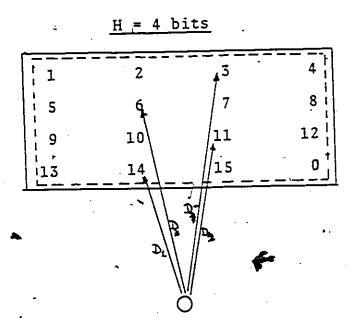


Figure B.4 Schematic Layout of stimulus-sets in the Sixteen-hole-alternatives Tasks.

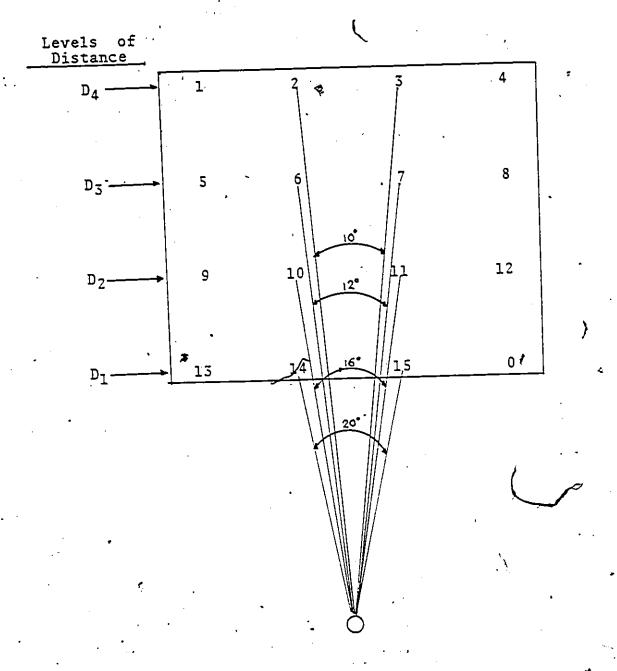


Figure B.5 Schematic Layout of the Angular Differences of Movement at each Distance tested.

Durations of Experimental Runs and Rest Periods

The approximate duration of each experimental run was planned keeping in mind the following conditions:

- 1. Each stimulus alternative in the experimental run occurred with equal probability.
- 2. When fully learned, the cycle time for the task converged to a narrow range around 0.045 minute irrespective of experimental conditions (see Appendix C). Depending on the number of hole-alternatives in the task, a time limit was designed to collect about thirty performance times for each relevant response holes.
 Minimum rest period after each run was also planned accordingly and is shown below:

Number of Response holes	Experimental Run-time	Rest Period After run
(n)	(min.)	(min.)
2	3	1(()
4	6	3
8	12	7
16	24	15

Table B.1 Experimental Run-times and Rest Periods.

Appendix C

Analysis of Learning Behavior

As part of the Pilot Study, three subjects performed the sixteen-hole-alternatives task with C₁ level of clearance. The tape was prepared such that the hole pattern occurred in sets of sixteen numbers within which each hole number occurred only once and the order of the numbers were randomised within each set. This feature allowed a practice-trial to be defined in this learning experiment in terms of the sets of sixteen task-cycles. A subject performed about 85 trials consisting of over 1300 task-cycles. The aggregate means and the standard deviations of the performance times within each set were plotted against trial sequence and are shown in Figure C.1.1 to Figure C.1.3 and Figure C.2.1 to Figure C.2.3 respectively.

From the scatter plots, it is seen that the subjects had learned the task fully in less than 1200 practice cycles. The above findings were supported by the observations made during the experiment at about the 1000. th cycle,

- the subject's hand motion which was irregular initially now became well defined from cycle to cycle. Hand-searching for the response hole was eliminated.
- 2. a pattern was established in which the subject moved his hand back to the pin-pocket area at a definite speed, and then waited to grasp the pin as it surfaced. The cycle of motion takes about 0.045 minute to complete which was a factor dependent solely on the movement cycle of the pinconveyor system.

To ensure that the data of the main study were obtained while the subjects had attained fully learned state, best fit lines were fitted to the selected twenty data points of each experimental condition from the main study. It was found that less than 5% of all the regression lines had slopes significantly different from zero at the 5% level.

Histograms of the experimental conditions as in Appendix G also show that the distributions are in most cases normal by the X^2 -square test.

Mean Performance Time Vs Trial Sequence for Subject Z.E. Fig. C.1.1

Mean Performance Time Vs Trial Sequence for Subject f.P.

. 0.28E 04 00				•			
* * * 0 B92 * 0		:	•	;	• •		
0.24E 04 40	₹Î		•	•			:
0.22E 04 **					A second	:	
. 0-20E 04 **	•	. 14		En constitution			
0.12E 04 +		•	•				
O.16E D.	5 :	•	•	•	•	•	*
0.146 04 00		* . * . * . * . * . * . * . * . * . * .		•	•	•	

Mean Performance Time Vs Trial Sequence for Subject A.M.

0.12E 04 ** 0.75E 03 ** 0.45E 03 ** 0.45E 03 **	0.146 04 00	•	• • • • •
	· 0.12E 04		*****
			•••••
			•••••
	60	Agent of the second	•
	53		• • • • •
	0+45E 03 +		
			•••••
	6		•••••

Standard Deviations of Practice-Traal Vs Trial Sequence for Subject A.M. Fig. C.2,1

•			
	 •	•	

Standard Deviations of Practice-Trial Vs Trial Sequence for Subject

Fig. C.2.2

••	`				:	
U.45E ON 44				•		• • • • •
0.30F 03 to	*	•	•	\	• • • • • • • • • • • • • • • • • • • •	•
0.15E 03 4.					* * * * * * * * * * * * * * * * * * * *	•••••
0.00 00 00			•		(

0.15E 04 ++

0.146 04 .

0.116 04

10.12E 04

0.40E 03

0.75E 03 4

•	•••••	•	·:	•	•••••	•••••		•	•
	•						٠.	. •	
,	: •		•	٠,		-		•••	
	◆	•				٠.			•
			•.	•		•			•
		•	• •			,		•••	
•		,			٠			•••	
			•	٠				***	
	· . •				•	•		•	
	-		. •				•		***
						•		+1	• •
								- * *	
	<i>F</i>				• . • •		•		* * * * * * * * * * * * * * * * * * *
	•						•	**	# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		. :	•		:			:	* 0
			,				4		· · · · · · · · · · · · · · · · · · ·
	ď					• .	7	•:	**************************************
								•••	**************************************
			•					•	0 + 0 · 0
****	*****	*****	*~;**	* • • • •	****				• 0 • 0 • 0
⊕ 0		0.11E 04	3E 03	0.785 03	E 03 4	03	E 03	0.18E 03 .	0.30E 02 ***
₩0 B₩1 •0	0.12E		0.938	0.78	0.636	O. 4 8E	0.33E	0.188	0 • .30E

Standard Deviations of Practice Trial Vs Trial Sequence for Subject 2.E.

Fig. C.2.3

APPENDIX

.D

- 1. Tables of EMS Values
- 2. ANOVA Tables
- 3. Test of Means
- 4. Computations Component Variances of Main Effects
- 5. Graphical Representation of Results

Tables of EMS Values

To determine the proper denominator in the F-test and to calculate variance components, EMS values of main effects as well as interaction terms were established (Hicks, 1973). Calculations of these EMS values are shown in the following tables.

Part 1 models:

Table D.1.1 EMS Values; Nested Mixed Model, Main Effects at Distance D_1 and D_4 .

Effect -	Symbol	Level	Type
Informational Load	H	4	Fixed
Clearance	c,	3 .	Fixed
Subject	S _{1(m)}	10	Random
Sex	$\mathbf{x}_{\mathtt{m}}$	2	Fixed
Residual	R _{n(ijklm)}	20	Random

(contd....)

•	•	2710	EMS	$+60\sigma_{SH}^{2}$	$\sigma_{\rm R}^{2} + 80\sigma_{\rm SC}^{2} + 1600\phi_{\rm C}$	$\sigma_{\rm R}^2 + 240\sigma_{\rm S}^2 + 2400^{\phi}_{\rm Y}$	$\sigma_{\rm R}^2 + 240\sigma_{\rm S}^2$	OI.	$\sigma_{\rm R}^2 + .600_{\rm HC}^2 + 6000_{\rm HX}$	$\sigma_{\rm R}^2 + 60\sigma_{\rm HS}^2$	$\sigma_{\rm R}^2 + 80\sigma_{\rm CS}^2 + 800\phi_{\rm CX}$	$\sigma_{\rm R}^2 + 80\sigma_{\rm CS}^2$	$\sigma_{\rm R}^2 + 20\sigma_{\rm SHC}^2$	g _R ²	- 0
	20	≃ i	=	20	. 20	20	20	20	20	50	20	20	20	7	
	2		E	2	2	0.	1	2	2	1,	0	7	1	rl	
	10	≃ -	7	, 10	10	10	1	10	. 10	1	10		H	-	
	13	- 	7	~	ó	3	3	0	٤٠,	8	0	0	0	-	
``	b :	<u>.</u>	7	0	4	4	4	0	0	0	4	4	0	FH	
			source	;. H	·	×	S _{1(m)}	H x C _{1j}	H x X _{im}	$H \times S_{i1(m)}$	C x x jm	$C \times S_{j1(m)}$	$S \times H \times C_{ij1(m)}$	R _{n(ij1m)}	-

Informational Load	Fixed Fixed Random Fixed Random Garage + 600 SH + 6000
tional Load H ₁ C _j 3 Ce C _j 3 X _m 2 1 R _{n(ij1m)} 20 3 3 10 2 2 3 3 10 0 2 2 3 3 10 0 2 3 3 10 0 2 0 0 0 10 2 0 0 0 10 2 0 0 0 10 2 3 3 10 0 2 3 3 10 0 2 2 2 2 3 3 10 0 2 3 3 10 0 2 3 3 10 0 2 3 3 10 0 2 3 3 3 1 1 1 1 2 2 3 2 3 3 1 1 1 1 2 2 3 2 3 3 1 1 1 1 2 3 3 1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 1 5 3 3 1 1 1 1 5 3 3 1 1 1 1 1 5 3	Fixed Random Fixed Random 0 BMS a _R ² + 60a _{SH} ² +
Ce C _j S ₁ (m) 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fixed Random Random 0 BMS
The state of the s	Random Random 0 EMS BMS
idual 3 3 10 2	Fixed Random 0 BMS a _R ² + 60a _{SH} ² +
Rh(ij1m) 20 3 3 10 2 R F 1 j m m 3 10 2 2 3 0 10 2 2 3 3 10 0 2 3 3 10 0 2 0 0 10 2 0 3 10 0 2 0 3 10 0 2 2 2 2 2 3 3 10 0 2 3 3 10 0 2 3 3 10 0 2 3 3 10 0 2 3 3 10 0 2 3 3 10 0 2	Random 0 EMS σ _R ² + 60σ _{SH} ² +
3 3 10 2 i j R F i j 1 m	$\frac{0}{\sigma_{R}^{2}+60\sigma_{SH}^{2}}$
1 j j j m 0 3 10 2 2 3 3 10 0 2 3 3 10 0 2 0 0 10 2 0 3 10 0 2 0 3 10 0 2 3 3 10 0 2 3 3 10 0 2 3 3 10 0 2	EMS $\sigma_{R}^{2} + 60\sigma_{SH}^{2} +$
0 3 10 2 3 0 10 2 3 3 1 1 0 0 10 2 0 0 10 2 0 3 10 0 3 1 1 3 0 10 0	$a_{\rm R}^2 + 60a_{\rm SH}^2 +$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•
3 10 0 3 1 1 1 0 10 2 3 10 0 3 1 1 1	$\sigma_{\rm R}^2 + 60\sigma_{\rm SC}^2 + 1200\phi_{\rm C}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sigma_{\rm R}^2 + 180\sigma_{\rm S}^2 +$
10 2 10 0 1 1 10 0	$^{\prime\prime}$ + 180° s
10 0 6 1 1 0	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+
3 0 10 0 20	, + 600 _{HS}
	σ _β ² . +
3 +0 1 1 20	. cs
0 0 1 1 20	+
1 1 1	

(to be continued, PTO.)

EMS Values; Nested Mixed Model, Angular Effect at Distance $D_1=7''$ and $D_4=16''$ Table D.1.3

Γ	T							
	Type	Fixed	Fixed	Fixed	Random	Fixed	Random	·
-	Levels	7	4		10	7	. 20	·
	Symbol	۸	Н	, Y	S ₁ (m)	×	Rp(ijk1m)	
	Bffects	Angle	Informational Load	Clearance	Subject	Sex	Residual	

	 		<u>-</u>		.		<u> </u>	<u> </u>	<u>, </u>	_							•	•
B.M.S.	σR2 + 240 σSA2 + 4800φA	$\sigma_{\rm R}^2$ + 120 $\sigma_{\rm SH}^2$ + 2400 $\phi_{\rm H}$	$^{\sigma_{ m R}}^{2}$ + 160 $^{\sigma_{ m SC}}^{2}$ + 3200 $^{\phi}_{ m C}$	$\sigma_{R}^{2} + 480 \sigma_{S}^{2}$	$\sigma_{R}^{2} + 480 \sigma_{S}^{2} + 4800 \phi_{X}$	$\sigma_{\rm R}^2 + 60 \sigma_{\rm SAH}^2 + 1200 \phi_{\rm AH}$	$\sigma_{\rm R}^2 + 80 \sigma_{\rm SAC}^2 + 1600\phi_{\rm AC}$	$\sigma_{R_{\bullet}^{2}} + 40 \sigma_{SHC}^{2} + 1200\phi_{HC}$	$\sigma_{R}^{2} + 240 \sigma_{SA}^{2} + 2400 \phi_{XA}$	$\sigma_{R}^{2} + 120 \sigma_{SH}^{2} + 1200\phi_{XH}$	$\sigma_{\rm R}^2 + 160 \sigma_{\rm SC}^2 + 1600 \phi_{\rm XC}$	$\sigma_{\rm R}^2 + 240 \sigma_{\rm SA}^2 .$	σ_{R}^{2} + 120 σ_{SH}^{2}	$\sigma_{\rm R}^2$ + 160 $\sigma_{\rm SC}^2$.	σR2 + 60 σSAH2	$\sigma_{\rm R}^2$ + 80 $\sigma_{\rm SAC}^2$	σR2 + 40 σSHC2	$\sigma_{ m R}^{2}$
R 20 p	20	20	20	20	20	20	. 20	20	20	20	20	, 20	20	. 07	20	20	20	-
F 2 m	2	2	. 2	1	0	7	2	7	0	0	0,			-	Н	-		. .
R 10	1.0	10	,10	-	10	10	10	10	10	10	10	H	г	-		-	1	ь ¬
я Х	3	8	0	₩.	. w	ы	0	0	3	23	0 .	82		0	5	0	0	H .
E 4.6	4	0	4	4	4	0	4	. 0	4	0	4	4	0,	4	0	4	0	-
Р 1	0	2.	7	2	7	0	0	٤٠	0	7	7	0	, 2	2	0	0	7	· 😝 .
Source	A ₁	, H	ď	(m) S ·	w _x	A × H _{1,j}	A x Cik	H x Cjk	A x X _{im}	II x X _{jm}	$C \times X_{km}$	S x A ₁₁ (m)	S x H _{j1(m)}	$S \times C_{k1}(m)$	S x A x H ₁ j1(m)	S x A x Cik1(m)	S x H x Cjk1(m)	Rp(ijklm)

BMS Values; Nested Mixed Model, Angular Effect at Distance $D_2=10^{11}$ and $D_3=13^{11}$

		 ,					<u> </u>
Type	Fixed	Fixed	Fixed	Random	Pixed	Random	<i>ٺ</i>
Levels	, 2.	ĸ	'n	10		20	_
Symbo1	۸1,	· · ·	ا بخی	S _{1(m)}	w _X	Rp(ijkim)	
lffects	Angre	Informational Load	Clearance	Subject	Sex	Residual	

(to be continued, PTO)

ſ			•	 -		- -		{	· <u> </u>										•
*		BMS $\sigma_{D}^{2} + 180 \ \sigma_{CA}^{2} + 3600 \ V_{A}^{2}$	2 + 120 σ_{SH}^{2} +	+ 120.0 _{SC} ² + 2400	² + 360 og ² ·	2 + .360	$^{2} + 60 \sigma_{SAH}^{2} + 1200$	$^{2} + 60 \sigma_{cAC}^{2} + 1200$	$^{2} + 40 \sigma_{cm}^{2} + 1200$	$^{2} + 180 \sigma_{2}, ^{2} + 1800$	$^{2} + 120 \sigma_{\text{CH}}^{2} + 1200$	$^{2} + 120 \sigma_{\text{C}}^{2} + 1200$. + 180 0c4.2	2 + 120	2 + 120		2 + 60 02.2	0	C
		·	d	, ρ'	g R	$\sigma_{\mathbf{R}}$	σ _R	a	α _D	ئ" ؛	α ° ·	, ¨α Φ	ďρ	, `α α	d r	d L	a ``	g" ``	ر م
	- R - C - C - C - C - C - C - C - C - C	202	20	>20	7 20	20	20	20	20	20	. 20	20	20	. 20	20	20	70	20	H .
		2	5	7		0	7	2	2	0	. 0	0>	-	-	7	Н	П	7	
 -	R 10	10	10	10	<u>_</u>) 10	10	10	10	10	1.0	10	F-1	П	-	٦		1	1
	 ⊏ ਲ ਨ	3	23	0	ъ	بى س	~~ ~	0	0	3	3	0	٤.	ъ	0	3،	0	0	1
		8	0	8	M.	8	o 	ю.	• •	. 3	9	ه. س'	3	0.	.3	0	۲,	0	,
	H 2 H	0	٧,	<u>;</u> 2		مهر	ء (o —-	ب ر	.0	2	, 2	0	7	2	0	0	2	
	Source	A ₁	Нj	Ck,	S1(m)	× ×	A X Hij	A x Ç _{ik}	H × C _{jk} ·	A x X _{im} ,	H x X _{jm 7}	$C \times X_{km}$	S x A _{il(m)}	S x H _{j1(m)} .		S x A x H _{ij1(m)}	S x A x Cikl(m)	S x H x Cjk1(m)	Rp(ijklm)

Part 2 model:

EMS Values; Nested Mixed Model, Distance and Clearance as Separate Factors. Table D.1.5

	Type	Fixed	Fixed	Fixed	Fixed	Fixed	Random	tinued)
	Levels	3	٤	4	10	. 2 .	20	(to be continued)
•	Symbol	H	C _J	$\mathbf{p}_{\mathbf{k}}$	S _{1(m)}	w X	R _{p(ijklm)}	
	Effects	Informational Load	Clearance	. Distance	Subject	Sex	Residual	

EMS	$\sigma_{\rm R}^2 + 240 \sigma_{\rm SH}^2 + 4800 \phi_{\rm H}$	$\sigma_{\rm R}^2 + 240 \sigma_{\rm SC}^2 + 4800 \Phi_{\rm C}$	+ 180	$\sigma_{\rm R}^2 + 720^{\circ} \sigma_{\rm S}^2 + 7200 \phi_{\rm X}$	$\sigma_{R}^{2} + 720 \sigma_{S}^{2} .$	$\sigma_{\rm R}^2 + 80 \sigma_{\rm SHC}^2 + 1600 \phi_{\rm HC}$	$\sigma_{R}^{2} + 60 \sigma_{SHD}^{2} + 1200 \phi_{DH}$	σR ² + 240 σHS ² + 2400φHX \	$\sigma_{\rm R}^2 + 240 \sigma_{\rm HS}^2$	$\sigma_{\rm R}^2 + 60 \sigma_{\rm SDC}^2 + 1200 \phi_{\rm CD}$	$\sigma_{\rm R}^2 + 240 \sigma_{\rm CS}^2 + 2400 \phi_{\rm CX}$	$\sigma_{\rm R}^2$ + 240 $\sigma_{\rm CS}^2$	$\sigma_{\rm R}^2 + 180 \sigma_{\rm SD}^2 + 1800 \phi_{\rm DX}$	$/\sigma_{\rm R}^2 + 180 \sigma_{\rm DS}^2$	$\sigma_{\rm R}^2 + 80 \sigma_{\rm SHC}^2$	$\sigma_{\rm R}^2 + 60 \sigma_{\rm SCD}^2$	$\sigma_{\rm R}^2 + 60 \sigma_{\rm SHD}^2$	$\sigma_{\rm R}^{\ 2}$,
20 R) or	200	(20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	г і
2 E	2			0	-	, 2	2	• ——		2	0	1	0		1	1	1	1
10 R 1	10	10	10	10		10	10	10	r - i	10	10	-	10		. ~	н	-	г
4 t X	4	4	0	4	4	4	0	*	4	0	♥	4	0	0	4	.0	0	1
S ::	8	0	8	<u></u>	3	0	8	23	<u>س</u>	8	0	0	33	33	0	0	ы	.1
Σ H -H	0		ю	ب	33	0	0	0	0	0	3	m	ю	53	0	ю	• 0	1
Source	$H_{\mathbf{i}}C$	Ċ	D _k	· wx	. ^S 1(m)	H x C _{1j}	H x D _{1k}	H x X _{im}	H x Sil(m)	$C \times D_{1k}$	$C \times X_{jm}$	$C \times S_{j1(m)}$	$D \times X_{km}$	D x Sk1(m)	$S \times H \times C_{IJ1(m)}$	S x C x Djk1(m)	S x H x Dik1(m)	Rn(ijklm)

EMS Values; Nested Mixed Model, Distance and Clearance Combined in Index Table D.1.6

of Difficulty.

	2		•	,	-		,	, II _{\$\phi\} 00	1200 ϕ_{I}	400 \$HI	: ,	•		•	کو مخ		XIφ 009	
	,		•		, · · · \		-	+ 4800	+ 12	+					+ 7200	₹ 2400)9 +	
							E M S	+ 240 σ _{SH} ²	$+$ 60 $\sigma_{\rm SI}^2$	+ 20 σ _{SHI} ²	+ 720 052	+ 240 0 _{SH} ²	+ 60 σSI ²	+ 20 ⁰ SHI	$+720 \sigma_{\rm S}^{2}$	+ 240 °SH	+ 60 0SI ²	
Туре	Fixed	Fixed	Random	Fixed	Random			g ₂ 2	OR 5	σ _R ²	OR .	σR ²	· a _R ²	g 2	σ_{R}^{2}	σ_{R}^{2}	$\sigma_{\mathrm{R}}^{\ 2}$	$\sigma_{\rm R}^{-2}$
		•	<u>~</u>		~ 	20	≚ ∉	20	20	. 20	20	20	20	20	20	20	20	٠ ٦
. Levels	% .	12	10	5,	, 20	2 =		2	2	2	FH ,		r-i	1	0	0	• 0	<u>-</u>
Symbol	H;	Lj	Sk(1)	x ₁	R	10	< .×	10	10	10	7	7	.		10	10	10	-
S			<u></u>	_		12	من بـ	12	0	0	12	12	0	0	.12	12	0	T
ts	nal Load	ifficulty	•			20 11	. •-T	0	3	0	'n	0	٤	0	3	0	3	1
Bffects	Informational	Index of Difficulty	Subject ~	Sex	Residual		Source	11	ı,	H x I _{ij}	Sk(1)	$S \times H_{1k}(1)$	$S \times I_{jk(1)}$.	$S \times H \times I_{ijk(1)}$	X ₁	1 x X ₁₁	x X _{j1}	Rm(ijkl)
•			•				Sol			<u> </u>	S	s x	x x	S ×		<u>*</u>	×	Rm(i

ANOVA Tables

Table D.2.0

ANOVA of Performance Times for the Pilot Study.

Table D.2.1-D.2.8

ANOVA of Performance Times for the Part 1 Models at individual distances and directions of movement.

Tables D.2.9-D.2.12

ANOVA of Performance Times for the Part 1 Models at individual distances showing the effect due to right-sided versus left-sided movements.

Cables D.2.13-D.2.14

ANOVA of Performance Times for the Part 2 Models wherein clearance and distance are considered as separate factors.

Tables D.2.15-D.2.16

ANOVA of Performance Times for the Part 2 Models wherein Index of Difficulty I replaces C and D.

ANOVA of Performance Times, Pilot Study Table D.2.0

Findings at . 5% level	Significant	Significant	Not significant	Significant	Significant	Not significant		
Prob>P	0.0001	0.0001	0.7259	0.0027	0,0001	0.4351		
E,M.S.	σ_{R}^{2} + 180 σ_{S}^{2}	$\sigma_{\rm R}^2$ + 60 $\sigma_{\rm SC}^2$ + 120 $\phi_{\rm C}$	σ_{R}^{2} + 60 σ_{SC}^{2}	$\sigma_{\rm R}^2 + 90 \sigma_{\rm SD}^2 + 180 \phi_{\rm D}$	$\sigma_{\rm R}^2 + 90 \sigma_{\rm SD}^2$	$\sigma_{\rm R}^2 + 30\sigma_{\rm SDC}^2 + \phi_{\rm CD}$	$\sigma_{\rm R}^2 + 30 \sigma_{\rm SDC}^2$	$\sigma_{\rm R}^2$
F-Value	62.09	176,90	0.54	5,999	56.48	1,09	3.70	
M.S.	511717.40	749820.30	4257.09	2663950.34	444040.08	32024.80	29115.37	7861.30
d.f.	87	2	4	Ħ	7	2	4	522
Source	ß	ပ	SxC	Q	SxD	C×D	SxDxC	R

ANOVA of Performance Times ; $D_1 = 7^{11}$; Right-sided Movement. Table D.2.1

			_								
Findings at 5% Level	Significant	Significant	Not Significant	Not Significant	Not Significant	Not Significant			`		•
Prob>F	0.0001	0.0001	0.7692	0.7683	0.9779	0.9530			•		· · · · · · · · · · · · · · · · · · ·
E M S	$\sigma_{\rm R}^2 + .60\sigma_{\rm SH}^2 + 1200\phi_{\rm H}$	$\sigma_{\rm R}^2 + 80\sigma_{\rm SC}^2 + 1600\phi_{\rm C}$	$^{'}\sigma_{\rm R}^{2} + 240\sigma_{\rm S}^{2} + 2400\phi X$	$\sigma_{\rm R}^2 + 20\sigma_{\rm SHC}^2 + 400\phi_{\rm HC}$	XIIφ09 +	$\sigma_{\rm R}^{2} + 80\sigma_{\rm CS}^{2} + 800\phi_{\rm CX}$	$\sigma_{\rm R}^2 + 240\sigma_{\rm S}^2$	$\sigma_{\rm R}^{2} + 60\sigma_{\rm HS}^{2}$	$\sigma_{\rm R}^2 + 80\sigma_{\rm CS}^2$	$\sigma_{R}^{2} + 20\sigma_{SHC}^{2}$	$\sigma_{\rm R}^{-2}$
F-Value	124.873	53.837	(0.087	0.553	0.063	0.048					
M.S.	13416658.4	5933177.7	104546.4	37694.6	76976.4	5337.5	1213352.7	107442.8	110206.2	68132.4	21868.7
d.f.	3	, 2	-	9	23	2	18	54	36	108	4560
Source		:	×	IIxC	. IIxX	СхХ	s	IlxS	CxS	SxIIxC	~

. ANOVA of Performance Times; $D_2^{\rm e}$ 10"; Right-sided Movement

	T							-				_
Findings at 5% Level	Significant	Significant	Not Significant	Not Significant	Not Significant	Not Significant	•			•	•	
ProbyF	.0.0001	0.0001	0.5302	0.1748	0.9352	0.6539				`		
	+1200¢ _H	+1200¢ _C	+1800¢ _X	+400¢AC	XHφ009+	χ ₂ φ ₀₀₉₊	_					
S M El .	$\sigma_{\rm R}^2 + 60\sigma_{\rm SH}^2$, an 2+ 600 sc	$\sigma_{\mathrm{R}}^{2+180\sigma_{\mathrm{S}}^{2}}$	σR2+ 20σ211C +400ΦΛC	$\sigma_{\rm R}^{2}$ + 60 $\sigma_{\rm HS}^{2}$	$\sigma_{\rm R}^{2+}$ 600 $\sigma_{\rm CS}^{2-7}$	10 12+24042	$\sigma_{\rm R}^{2+60\sigma_{\rm HS}^2}$	$\sigma_{\rm R}^{\ 2} + 60\sigma_{\rm CS}^2$	$q_R^{2+20\sigma_{SHC}^2}$	σ _R ²	
F-Value	798,19	37.777	0.561	1.631	0.670	0.439		• • • • • • • • • • • • • • • • • • •				
M.S.	8265963.1	· 2667147.4	651157.5	115079.7	7.76977.	30961.9	1161239.3	89879.3	70603.2	. 70573.4	21040.0	
d.f.	2	2,	,	4	. 2	. 2 .	1,8	36	36	72	34.20	
Source	.			Πχ̈́C	llxX	CxX	S	IIxS	CxS	SxlixC	~	

ANOVA of Performance Times; $D_3 = 13$; Right-sided Movement. . Table D. 2.3

Findings at 5% Level	Significant	Significa-t	Not Significant	Not Significant	· Not Signifiçant	Not Significant			•		_v e	
Prob>F	0.0001	0.0001	0.5302	0.1410	0.9236	0.9284						
E M S	$+60\sigma_{SH}^{2}+1200\phi_{H}$	$+,60\sigma_{SC}^{2}$ $+1200\phi_{C}$	$180\sigma_{\rm S}^2 + 1800\phi_{\rm X}$	$\sigma_{\rm R}^2 + 20\sigma_{\rm SHC}^2 + 400\phi_{\rm AX}$	$\sigma_{\rm R}^{2} + 600 \sigma_{\rm HS}^{2} + 600 \phi_{\rm HX}$	$+60\sigma_{CS}^{2}$ $+600\phi_{CX}$	2400S ²	oogs	,0σ _{CS}	2002HC	•	
	σ _R ² +	σ _R ² +	$\sigma_{\rm R}^2 + 180\sigma_{\rm S}^2$	· 0R2 +	0R2 +1	σ _R ² +	$\sigma_{\rm R}^2 + 240\sigma_{\rm S}^2$	$\sigma_{\rm R}^2 + 60\sigma_{\rm HS}^2$	$\sigma_{\rm R}^2 + 60\sigma_{\rm CS}^2$	$\sigma_{\rm R}^2 + 20\sigma_{\rm SHC}^2$	$\sigma_{\rm R}^2$	
F-Value	193.951	65.021	1.632	1.781	0.079	0.074	•					
M.S.	23611207.4	3382416.8	1703503.5	125100.5	82798.9	3847.4	1044052.6	121737.8	52020.1	70231.1	20583.2	
d.f.	2	. 2	r -d .	4	. 2	2	18	3.6	36 ·	7.2	3420	
Source	==	ပ	×	HxC	HxX	CxX	S	HxS	CxS	SxHxC	≃ مر	

ANOVA of Performance Times; D_4 = 16"; Right-sided Movement. Table D.2.4

Findings at	10407 80	Significant	Significant	Significant	Not Significant	Not Significant	Not Significant				•	
'Prob>F	1000	0.0001	0.0001	0.5171	0.5411	0.9428	0.2494		,			
E M S		$\sigma_{\rm R}^2 + 60\sigma_{\rm SH}^{+1200\phi_{\rm H}}$	$\sigma_{\rm R}^2 + 80\sigma_{\rm SC}^2 + 1600\phi_{\rm C}$	$\sigma_{\rm R}^{2} + 240\sigma_{\rm S}^{2} + 2400\phi_{\rm X}$	$\sigma_{\rm R}^2$ + $20\sigma_{\rm SHC}^2$ + $400\phi_{\rm HC}$	$\sigma_{\rm R}^2 + 60\phi_{\rm HX}$	$\sigma_{\rm R}^2 + 80\sigma_{\rm CS}^2 + 800\phi_{\rm CX}$	σ_{R}^2 +240 σ_{S}^2	$\sigma_{\rm R}^2 + 60\sigma_{\rm HS}^2$	$\sigma_{\mathrm{R}}^{2} + 80\sigma_{\mathrm{CS}}^{2}$	$\sigma_{\rm R}^2 + 20\sigma_{\rm SHC}^2$	$\sigma_{\rm R}^{2}$
F-Value		175.472	83.576	0.450	0.957	0.126	1.439		-			
M.S.		22350109.0	6012831.46	656838.0	57296.7	. 183733,5	103554.0	1458656.	, 127371.1	71944.9	59866,4	21996.1
d.f.		₽.	, 7	-	9	જ	7	18	54	36.	108	4560
Source		Ξ ΄	ပ	×	HxC	H≰X	CxX	S	HxS	CxS	SxHxC	×

ANOVA of Performance Times; $D_1 = 7$ "; Left-sided Movement. Table D.2.5

Ī												
	Findings at 5% Level	Significant	Significant	Not Significant	Not Significant	Not Significant	Not Significant	,				
	Prob>F	0.0001	0.0001	0.5150	0.1865	0,9880	0.9233		,			•
	S M 8	$\sigma_{\rm R}^2 + 60\sigma_{\rm SH}^2 + 1200\phi_{\rm H}$	$\sigma_{ m R}^2 + 80\sigma_{ m SC}^2 + 1600\phi_{ m C}$	$\sigma_{\rm R}^2 + 240\sigma_{\rm S}^2 + 2400\phi_{\rm X}$	$\sigma_{\rm R}^2$ +20 $\sigma_{\rm SHC}^2$ +400 $\phi_{\rm HC}$	σ" + 60φ _{HX}	$\sigma_{\rm R}^{2} + 80\sigma_{\rm CS}^{2} + 800\phi_{\rm CX}$	$\sigma_{\rm R}^2 + 240\sigma_{\rm S}^2$	$\sigma_{\rm R}^2 + 60\sigma_{\rm HS}^2$	$\sigma_{\rm R}^2 + 80\sigma_{\rm CS}^2$	$\sigma_{\rm R}^{2} + 20\sigma_{\rm SHC}^{2}$	g _R ²
	F-Value	189.055	60.748	0.455	1.497 ·	0.041	0.079				·	
	M.S.	23837535.2	5605790.4	632343.7	142744.7	57179.6	7330.6	1389913	126035.3	92279.0	95586.0	23310.9
	d.f.	∞ ′	7	7	9	8	2	. 18	54	36	108	4560
	Source	<u>:</u>	ۍ. د	×	HxC	IIXX	. CxX	S	lixS	CxS	SxllxC	~
							•		_			

ANOVA of Performance Times; D_{a} 10"; Left-sided Movement. Table D.2.6

L					R		
				ŗ			Findings at
1	source	d.r.	M.S.	F-Value	E M S	Prob>F	5% Level
· ,	=	2	5775180.0	50,128	$\sigma_{\rm R}^2 + 60\sigma_{\rm SH}^2 + 1200\phi_{\rm H}$	0.0001	Significant
- <u></u>	ပ	2	3145608.1	49.293	$\sigma_{\dot{R}}^2 + 60\sigma_{SC}^2 + 1200\phi_{C}$	0.0001	Significant
	×	1	687965.2	0.450	$\sigma_{\rm R}^{-2}$ +180 $\sigma_{\rm S}^{-2}$ +1800 $\phi_{\rm X}$	0.5174	Not Significant
	HxC	4	57911.8	0.802	+ 20σ ² HC	0.5299	Not Significant
	HxX	2	22590.6	0.015	+ 600 ²	0.9863	Not Significant
	CXX	2	111696.1	1.750	+ 600 ² S	0.6539	Not Significant
	თ	18	1529752.1		+2400 ²	•	,
<u></u>	HxS	7	1,5207.7		$\sigma_{\mathrm{R}}^{2} + 60\sigma_{\mathrm{HS}}^{2}$		
	CxS	36	63814.3	,	$\sigma_{\rm R}^2 + 60\sigma_{\rm CS}^2$		-
	SxHxC	7.2	72210.1	٠,	σ _R ² + 20σ ² _{SIIC}		•
· · · ·	×	3420	22375.7				
· · · · · · · · · · · · · · · · · · ·	•				-		
J							

7

ANOVA of Performance Times; D_3 = 13"; Left-sided Movement. Table D.2.7

Findings at 5% Level	,	Significant) Significant	Not Significant	Not Significant	Not Significant	Not Signifiçant						ŧ.	,•
Prob>F	0.0001	0.0001	0.0001	0.2157	0.1410	0.9236,	0.9284							
E M S	$\sigma_{\rm R}^2 + 60\sigma_{\rm SH}^2 + 1200\phi_{\rm H}$	$\sigma_{\rm R}^2 + 60\sigma_{\rm SH}^2 + 1200\phi_{\rm H}$. 6002c	$\sigma_{\rm R}^{2} + 180\sigma_{\rm S}^{2} + 1800\phi_{\rm X}$	$\sigma_{\rm R}^2 + 20\sigma_{\rm SHC}^2 + 400\phi_{\rm AC}$	$\sigma_{\rm R}^2 + 60\sigma_{\rm HS}^2 + 600\phi_{\rm HX}$	$\sigma_{\rm R}^{2}$ +.60 $\sigma_{\rm CS}^{2}$ +600 $\phi_{\rm CX}$	$\sigma_{\mathrm{R}}^2 + 240\sigma_{\mathrm{S}}^2$	$\sigma_{\mathrm{R}}^{2} + 60\sigma_{\mathrm{HS}}^{2}$	$\sigma_{\rm R}^2 + 60\sigma_{\rm CS}^2$	$\sigma_{\rm R}^2 + 20\sigma_{\rm SHC}^2$	$\sigma_{\rm R}^2$		
F-Value	193.951	193.951	65.021	1.632	1,781	0.079	0.074				·		_	
M.S.	23611207.4	23611207.4	3382416.8	1703503.5	125100.5	82798.9	3847.4	1044052.6	121737.8	52020.1	70231.1	20583.2	:	
d.f.	2	2	2		\$	2	2	18	, , , , , , , , , , , , , , , , , , ,	36	72	3420		
Source	エ	Ξ	ن ن	×	HxC	Hxx	XXC	S	HxS	SXO .	SxHxC	~	•	

ANOVA of Performance Times; $D_4 = 16$ "; Left-sided Movement.

Findings at 5% Level	Significant '	Significant	Not Significant	Not Significant	Not Significant	Not Significant			•	/	, in
Prob>F	0.0001	0.0001	0.6322	0.2815	0.8828	0.3159			_		. ,
B M S	$\sigma_{\rm R}^2 + 60\sigma_{\rm SH}^2 + 1200\phi_{\rm H}$	$\sigma_{ m R}^2$ + 80 $\sigma_{ m SC}^2$ +1600 $\phi_{ m C}$	$\sigma_{\rm R}^2 + 240\sigma_{\rm S}^2 + 2400\phi_{\rm C}$	$\sigma_{\rm R}^2 + 20\sigma_{\rm SHC}^2 + 400\phi_{\rm HC}$	$a_{\rm R}^2 + 60\phi_{\rm HX}$	$\sigma_{\rm R}^2 + 80\sigma_{\rm CS}^2 + 800\phi_{\rm CX}$	σ_{R}^{2} +240 σ_{S}^{2}	$\sigma_{\rm R}^2 + 60\sigma_{\rm HS}^2$	$\sigma_{\rm R}^2 + 80\sigma_{\rm CS}^2$	$\sigma_{\rm R}^2 + 20\sigma_{\rm SHC}^2$	
F-Value	177.400	113.308	0.632	1.259	0,218	1,190		-		3.	
M.S.	17659828,5	6061015.3	928767.9	68956.7	320240.0	63687,4	1469015.1	99547.9	53491.5	54752.3	18648.6
d.f.	3	Z	-R	` 9	ີ ເກ	2	1.8	54	36	108	4560
Source	H	ິນ	×	HxC	HxX	CxX	S	· · · · · · · · · · ·	CxS	SxHxC	~

ANOVA of Performance Times; Effect due to Direction of Movement;

d.f.M.S.P-ValueB M SProb>F $\frac{7}{54}$ 1625562.2 0.24 $\frac{7}{9R}^2 + 480 \cdot g_S^2 + 4800 \phi_X$ 0.6282 Not211530155.2 0.24 $\frac{7}{9R}^2 + 120 \cdot g_{SH}^2 + 2400 \phi_H$ 0.0001 $51gn$ 211530155.2 69.17 $\frac{7}{9R}^2 + 120 \cdot g_{SL}^2 + 4800 \phi_L$ 0.0001 $51gn$ 116588649.8 164.59 $\frac{7}{9R}^2 + 240 \cdot g_{SL}^2 + 4800 \phi_L$ 0.0001 $51gn$ 2111327.8 1.10 $\frac{7}{9R}^2 + 240 \cdot g_{SL}^2 + 2400 \phi_L$ 0.0001 $51gn$ 28812.9 0.25 $\frac{7}{9R}^2 + 800 \frac{5}{8}A + 1600 \phi_L$ 0.0001 $51gn$ 18 2502477.2 $\frac{7}{9R}^2 + 800 \frac{5}{8}A + 1600 \phi_L$ 0.7859 Not18 100787.8 $\frac{7}{9R}^2 + 600 \frac{5}{8}AH$ $\frac{7}{9R}^2 + 600 \frac{5}{8}AH$ 54 808829.5 $\frac{7}{9R}^2 + 600 \frac{5}{8}AH$ 36 35791.4 $\frac{7}{9R}^2 + 80 \frac{5}{8}AC^2$	Ž.		•		• •				· []
d.f.M.S. $F-Value$ $F M S$ 1 625562.2 0.24 $\sigma_R^2 + 480 \sigma_S^2 + 4800\phi_X$ 2 11530155.2 69.17 $\sigma_R^2 + 120 \sigma_{SH}^2 + 2400\phi_H$ 1 11530155.2 69.17 $\sigma_R^2 + 120 \sigma_{SH}^2 + 2400\phi_H$ 1 11530155.2 69.17 $\sigma_R^2 + 240 \sigma_{SG}^2 + 3200\phi_G$ 1 111327.8 1.10 $\sigma_R^2 + 240 \sigma_{SA}^2 + 4800\phi_A$ 2 808829.5 19.03 $\sigma_R^2 + 240 \sigma_{SA}^2 + 1500\phi_A$ 18 2502477.2 $\sigma_R^2 + 80\sigma_S^2AC + 1600\phi_A$ 18 100787.8 $\sigma_R^2 + 480 \sigma_S^2$ 54 808829.5 $\sigma_R^2 + 240 \sigma_{SA}^2$ 54 808829.5 $\sigma_R^2 + 240 \sigma_{SA}^2$ 36 35791.4 $\sigma_R^2 + 80 \sigma_{SAC}^2$		Not significant	Significant	Not significant	Significant	Significant	•	Not significant	at e1
Distance D ₁ = 7 inches. d.f. M.S. F-Value 1 625562.2 0.24		0.7859	0.0001	0.3079	0.0001	0.0011	0.0001	0.6282	Prob>F
Distance D ₁ =7 inches d.f. M.S. P-Value 3 36435364.1 190.79 2 11530155.2 69.17 1 16,588649.8 164.59 2 8812.9 0.25 18 2502477.2 18 100787.8 54 808829.5 55 86829.5 66 11 7	2 2	+ 1600¢AC	+ 1200 [¢] AH	+ 2400¢XA	+ 4800¢A		+	+ 4800¢X	
Distance D ₁ =7 inches d.f. M.S. F-Value 3 36435364.1 190.79	+ 240 °SA ² + 60 °SAH + 80 °SAC	+	+	+ 240 g _{SA}	240 osh	+ 160	+ 120 °SF	+ 480. σ _S ²	X
d.f. M.S. F-Va d.f. M.S. F-Va 1 625562.2 0. 2 36435364.1 190. 2 11530155.2 69. 1 16588649.8 164. 2 11530155.2 69. 3 808829.5 19. 18 2502477.2 19. 18 100787.8 100787.8 54 808829.5 5 54 808829.5 5 36 35791.4		$\sigma_{ m R}^{~2}$	$\sigma_{\rm R}^{2}$	$\sigma_{\rm R}^{\ 2}$	$\sigma_{\mathrm{R}}^{\ 2}$	$\sigma_{\rm R}^2$	$\sigma_{\rm R}^{\ 2}$	gR,	es.
Distance d.f. M.S. 1 625562.2 3 36435364.1 2 11530155.2 1 11530155.2 3 808829.5 3 808829.5 18 2502477.2 18 100787.8 54 808829.5		0.25	19,03	1.10	164.59		190.79	0.24	F-V8
	100787.8 808829.5 35791.4 19933.6	8812.9	808829.5	111327.8	16588649.8	11530155.2	36435364,1	625562.2	
Source X H A A AxH AxC SxA(X) SxAx(X)	18 . 54 36 9275	2	8		т.	.5	M		d.f.
L	SxAxH(X) SxAxC(X) R	AxC	АхН	XXA	<	ن ت	= 	×	Source

ANOVA of Performance Times; Effect due to Direction of Movement;

			a	Distance D ₂ =	* 10"		
1	Source	d.f.	.S.M.	्र-Value	вжѕ	Prob>F	ringings at 5\$ level
_ }	*	-	1338869.8	0.52	$\sigma_{\rm R}^2 + 360 \sigma_{\rm S}^2 + 3600 \phi_{\rm X}$	0.5123	Not significant
	 #	2	13888905.8	81,13	$\sigma_{\rm R}^2$ + 120 $\sigma_{\rm SH}^2$ + 2400 $\phi_{\rm H}$	0.0001	Significant
	ပ	. 7	5780705.7	54.09	$\sigma_{\rm R}^2$ + 120 $\sigma_{\rm SC}^2$ + 2400 $^{\phi}_{\rm C}$	0.0001	Significant
	Κ	н.	5514653.3	53.94	$\sigma_{\rm R}^2$ + 180 $\sigma_{\rm SA}^2$ + .3600 $\phi_{\rm A}$	0.0001	Significant
	XxA	H	253.0	0.0002	$\sigma_{\rm R}^2$ + 180 $\sigma_{\rm SA}^2$ + 1800 $\phi_{\rm XA}$	0,9598	Not significant
	АхН	7	152236.5	4.49	$\sigma_{\rm R}^2$ + 60 $\sigma_{\rm SAH}^2$ + 1200 $^{\phi}_{\rm AH}$	0.0178	Significant
	AxC	2	32049.7	1,16	$\sigma_{\rm R}^2 + 60 \sigma_{\rm SAC}^2 + 1200 \phi_{\rm AC}$	0.3242	Not significant
•	s(x)	18	2588758.7	117.80	σ _R ² + 360 σ _S ²	0.0001	Significant
	SxA(X)	18	102232.2		$\sigma_{\rm R}^2$ + 180 $\sigma_{\rm SA}^2$	•	
	SxAxH(X)	36	33902.3	•	σ _R ² + 60 σ _{SAH} ²		
	SxAxC(X)	36	27547.4		σR2 + 80 σSAC2 .		
	~	6928	21926.1		or.		
]						

ANOVA of Performance Times; Effect due to Direction of Movement; Distance $D_3 = 13$ inches.

		nistance 13	· callall + c + _ {			
Source	d.f.	M.S.	F-Value	вмѕ	Prob>F	Findings at 5% level
×	1	1824801.3	1.06	$\sigma_{\rm R}^2 + 360 \sigma_{\rm S}^2 + 3600 \phi_{\rm X}$	0.3190	Not significant
	. 2	41075158.1	202.94	$\sigma_{\rm R}^2 + 120 \sigma_{\rm SH}^2 + 2400 \phi_{\rm H}$	0,0001	Significant
U	8,	. 6633071.2	79.47	$\sigma_{\rm R}^2 + 120 \sigma_{\rm SC}^2 + 2400 \phi_{\rm C}$	0.0001	Significant
٠ < .	,	6467897.7	53,14	$\sigma_{R}^{2} + 180 \sigma_{SA}^{2} + 3600 \phi_{A}$	0,0001	Significant
XXX		244981.3	2.01	$\sigma_{R}^{2} + 180 \sigma_{SA}^{2} + 1800 \phi_{XA}$	0.1702	Not significant
AxH	. 2	226301.2	5.57	$\sigma_{\rm R}^2 + 60 \sigma_{\rm SAH}^2 + 1200^{\phi}_{\rm AH}$	0.0079	Significant
AXC	. 3	26715.3	1.20	$\sigma_{\rm R}^2 + 60 \sigma_{\rm SAC}^2 + 1200 \phi_{\rm AC}$	0.3126	Not significant
\$(x)	18	1729.69.2	85.20	$\sigma_{\rm R}^2 + 360 \sigma_{\rm S}^2$	0.0001	Significant
SxA(X)	18	121704.9		$\sigma_{\rm R}^2 + 180 \sigma_{\rm SA}^2$	•	•
SxAxH(X)	36	40629.4		$\sigma_{\mathrm{R}}^2 + 60 \sigma_{\mathrm{SAH}}^2$		
SxAxC(X)	36	22235.1		$\sigma_{\rm R}^2 + 80 \sigma_{\rm SAC}^2$		
≃	6928	20349.0		ση² "		-
	-					

ANOVA of Performance Times; Effect due to Direction of Movement; Distance D, = 16". Table D.2.12

Findings at	5% level	Not significant	Significant	Significant	Significant	Not Significant	Significant	Not significant	Significant				
	Prob>F	0.5229.	0,0001	0.0001	0.0001	0.5241	0.0027	0.9144	0.0001	•			
27	EMS	$\sigma_{\rm R}^2 + 480 \sigma_{\rm S}^2 + 4800 \phi_{\rm X}$	$\sigma_{\rm R}^2 + 120 \sigma_{\rm SH}^2 + 2400 \phi_{\rm H}$	$\sigma_{\rm R}^2$ + 160 $\sigma_{\rm SC}^2$ + 3200 $^{\phi}_{\rm C}$	$\sigma_{\rm R}^2 + 240 \sigma_{\rm SA}^2 + 4800 \phi_{\rm A}$	$\sigma_{\rm R}^2 + 240 \sigma_{\rm SA}^2 + 2400^{\phi}_{\rm XA}$	$\sigma_{\rm R}^2 + 60 \sigma_{\rm SAH}^2 + 1200^{\phi}_{\rm AH}$	$\sigma_{\rm R}^2$ + 80 $\sigma_{\rm SAC}^2$ + 1600 $\phi_{\rm AC}$	$\sigma_{\rm R}^2$ + 480 $\sigma_{\rm S}^2$	$\sigma_{\mathrm{R}}^2 + 240 \sigma_{\mathrm{SA}}^2$	$\sigma_{\rm R}^2$ + 60 $\sigma_{\rm SAH}^2$	σR ² + 80 σSAC ²	$\sigma_{ m R}^2$
DISTANCE DA	F-Value	0.5425	204.88	116.17	10.08	0.435	5,471	0.08915	166.50				
n i	M.S.	1573860.0	39832043.2	12071927.7	272038.3	11745,9	177894.3	1919.3	2900690.1	26981.2	32510.5	21528.1	17442.8
	d.f.	٠,٢	ю	2	ı	1 /	1	8	18	18	. 54	36	9275
•	* Source	×	.	U	<	XxX	AxH	AxC	s(x)	SxA(X)	SxAxII(X)	SxAxC(X)	x

ANOVA of Performance Times; Right-sided Movement; Distance and Clearance Considered Separately, Table D.2.13

	Findings at 5% level	Significant	Significant	Significant	Not significant	Not significant	Not significant	Not significant	Not significant	Significant	Significant	Significant							The second secon
ocharacery.	Prob>F	0.0001	0.0001	0.0001	0.5065	0.9989	0.7630	0.3939	0.7302	0.001	0.0242	0.0001		 -					
and offeriance constants achai	EMS	$\sigma_{\rm R}^2 + 240 \sigma_{\rm SH}^2 + 4800\phi_{\rm H}$	$\sigma_{\rm R}^2$ + 240 $\sigma_{\rm SC}^2$ + 4800 $\phi_{\rm C}$	$\sigma_{\rm R}^2$ + 180 $\sigma_{\rm SD}^2$ + 3600 $\phi_{\rm D}$	$\sigma_{\rm R}^2 + 720 \sigma_{\rm S}^2 + 7200 \phi_{\rm X}$	+ 240	$\sigma_{\rm R}^2$ + 240 $\sigma_{\rm SC}^2$ + 2400 $\phi_{\rm XC}$	$\sigma_{\rm R}^2 + 180 \sigma_{\rm SD}^2 + 1800 \phi_{\rm XD}$	σR2 + 80 σSIIC + 16004IIC	$\sigma_{\rm R}^2$ + 60 $\sigma_{\rm SHD}^2$ + 1200 $\phi_{\rm HD}$	$\sigma_{\rm R}^2$ + 60 $\sigma_{\rm SHC}^2$ + 1200 $\phi_{\rm DC}$	$\dot{\sigma}_{R}^{2} + 720 \sigma_{S}^{2}$	$\sigma_{\rm R}^2$ + 240 $\sigma_{\rm SC}^2$	$\sigma_{\rm R}^2$ + 180 $\sigma_{\rm SB}^2$	$\sigma_{\rm R}^2 + 240 \sigma_{\rm SH}^2$	σR ² + 80 σSHC ²	$\sigma_{\rm R}^2$ + 60 $\sigma_{\rm SDC}^2$	$\sigma_R^2 + 60 \sigma_{SHD}^2$	α. 2
pracance and c	F-Value	266.441	83.23	99,53	0.47	0.004	0.277	1,02	0.51	9.34	2.54	175.43					-		
le To	M.S.	51261249,1	13993948,4	13226158,9	1853945.5	845,9	46633.8	135041.6	80713.6	700933.4	107646.3	3914487.7	168138.4	132889.8	192550.3	157686.3	42398.9	75060.3	22196. 3
	d.f.	2	2	ъ	٦		5	8	7	9	9	18	36	54	36	72	108	90	13936
	Source	=	ပ	Ω	×	XXII	XxC	XxD	HxC	HxD	CxD	S(X)	SxC(X)	SxD(X)	SxH(X)	SxHxC(X)	. SxDxC(X)	SxHxD(X)	~

ANOVA of Performance Times; Left-sided Movement; Table D.2.14

	Findings at 5% level	Significant	Significant	Significant	Not significant	Not significant	Not significant	Not significant	Not significant	Significant	Not significant	Significant	•		•			•		
Separately.	Prob>F	0.0001	0,001	0.001	0.6555	0.8127	0.6823	0.6431	0.5692	0.0001	0.6457	0.0001	•			•			•	
Clearance Considered	E M S	$\sigma_{\rm R}^2$ + 240 $\sigma_{\rm SH}^2$ + 4800 $\phi_{\rm H}$	$\sigma_{R}^{2} + 240 \sigma_{SC}^{2} + 4800 \phi_{C}$	$\sigma_{\rm R}^2 + 180 \ {\rm g_{SD}^2} + 3600 \phi_{\rm D}$	$\sigma_{\rm R}^2 + 720 \sigma_{\rm S}^2 + 7200 \phi_{\rm X}$	$\sigma_{\rm R}^2 + 240 \sigma_{\rm SH}^2 + 2400 \phi_{\rm XH}$	$\sigma_{\rm R}^2 + 240 \sigma_{\rm SC}^2 + 2400 \Phi_{\rm XC}$	$\sigma_{\rm R}^2 + 180 \sigma_{\rm SD}^2 + 1800 \phi_{\rm XD}$	$\sigma_{\rm R}^2 + 80 \ \sigma_{\rm SHC}^2 + 1600 \phi_{\rm HC}$	$\sigma_{\rm R}^2$ + ; 60 $\sigma_{\rm SHD}^2$ + 1200 $\phi_{\rm HD}^4$	$\sigma_{\rm R}^2 + 60 \ \sigma_{\rm SDC}^2 + 1200 \phi_{\rm DC}$	$\sigma_{\rm R}^2 + 720 \sigma_{\rm S}^2$	$\sigma_{R}^{2} + 240 \sigma_{SC}^{2}$	$\sigma_R^2 + 180 \sigma_{SD}^2$	σR + · 240 σSH	$\sigma_{\rm R}^2 + 80 \sigma_{\rm SHC}^2$	σR ² + 60 σSDC ²	$\sigma_R^2 + 60.\sigma_{SHD}^2$	OR2 1	
stance and	F-Val	290,31	106.52	12.32	0.9496	0.36	0.39	0.57	0.97	18.40	0.71	200.31		•	•	, ,l		٠	-	
Dis	M.S.	54802174.8	14396445.6	2223893,5	4276213.9	66895.8	53297.8	102421.2	192427.9	1593796.7	27288.5	4502763,9	135157,9	180583,1	188952,3	198436,4	38527.0	88524.4	22467.7	
† 2	d.f.	2		3	H	2	2	ß	4	9	9	18	36	54	36	7.2	108	108	13936	
	Source	H	ن	Q	×	X×H	XXC	XxD	HxC	HxD	CxD	s(x)	SxC(X)	SxD(X)	SxH(X)	SxHxC(X)	SxDxC(X)	SxIIxD(X)	~	

ANOVA of Performance Times; Right-sided Movement; Index of Difficulty Considered, Table D.2.15

Findings at Prob>F 5% level	0.5065 Not significant	0.0005 Significant	0.0001 Significant	0.7121 Not significant	0,9960 Not significant	0,0001 Significant	0.0001 Significant			
EMS	$\sigma_{\rm R}^2 + 720 \sigma_{\rm S}^2 + 7200 \phi_{\rm X}$	$\sigma_{\rm R}^2 + 240 \sigma_{\rm SH}^2 + 4800 \phi_{\rm H}$	$\sigma_{R}^{2} + 60 \sigma_{SI}^{2} + 1200 \phi_{L}^{4}$	$\sigma_{R}^{2} + 60 \sigma_{SI}^{2} + 600 \phi_{IX}$	$\sigma_{\rm R}^2 + 240 \sigma_{\rm SH}^2 + 2400 \phi_{\rm HX}$	$\sigma_{\rm R}^2 + 20 \sigma_{\rm SHI}^2 + 400 \phi_{\rm HII}$	$\sigma_{\rm R}^2 + 720 \sigma_{\rm S}^2$	$\sigma_{\rm R}^2 + 240 \sigma_{\rm SH}^2$	$\sigma_{\mathrm{R}}^2 + 60 \sigma_{\mathrm{SI}}^2$	σ _R ²
F-Value	0.47361	13.12	69,05	0.73	0.004	3.47	178.53			
M.S.	1853945,5	51361249.1	6210204.7	654745.8	845.9	240248 10	3914487.7	192550.3	89939.9	21925.7
d.f.	1	2	11	11	5	22	18	36	198	13702
Source	×		H	I×X	ХхН	HxI	S(X)	SxH(X)	S×I(X)	~
	d.f. M.S. F-Value EMS Prob>F 5% leve	d.f. M.S. F-Value E M S Prob>F 5% leve 1 1853945.5 0.47361 σ_{R}^{2} + 720 σ_{S}^{2} + 7200 ϕ_{X} 0.5065 Not signi	d.f. M.S. F-Value E M S Prob>F 1 1853945.5 0.47361 σ _R ² + 720 σ _S ² + 7200φχ 0.5065 2 51361249.1 13.12 σ _R ² + 240 σ _S ² + 4800φ _H 0.0005	d.f. M.S. F-Value E M S Prob>F 1 1853945.5 0.47361 $\sigma_{R}^{2} + 720 \sigma_{S}^{2} + 7200 \phi_{X}$ 0.5065 2 51361249.1 13.12 $\sigma_{R}^{2} + 240 \sigma_{S}^{2} + 4800 \phi_{H}$ 0.0005 11 6210204.7 69.05 $\sigma_{R}^{2} + 60 \sigma_{S}^{2} + 1200 \phi_{J}$ 0.0001	d.f. M.S. F-Value E M S Prob>F 1 1853945.5 0.47361 $\sigma_{R}^{2} + 720 \sigma_{S}^{2} + 7200\phi_{X}$ 0.5065 2 51361249.1 13.12 $\sigma_{R}^{2} + 240 \sigma_{SH}^{2} + 4800\phi_{H}$ 0.0005 11 6210204.7 69.05 $\sigma_{R}^{2} + 60 \sigma_{SH}^{2} + 600\phi_{IX}$ 0.7121	Source d.f. M.S. F-Value E M S Prob>F 5\$ 5\$ 60 L M.S. F-Value B M S B M S Prob>F 5\$ 5\$ 60 L M.S. B M S M S M S M S M S M S M S M S M S M	d.f.M.S.F-ValueE M SProb>F $5\$$ 11853945.5 0.47361 $a_R^2 + 720 \ a_S^2 + 7200 \phi_X$ 0.5065 Not2\$1361249.1 13.12 $a_R^2 + 240 \ a_S^2H + 4800 \phi_H$ 0.0005 Sign11 6210204.7 69.05 $a_R^2 + 60 \ a_S^2H + 1200 \phi_H$ 0.0001 Sign11 654745.8 0.73 $a_R^2 + 60 \ a_S^2H + 2400 \phi_HX$ 0.7121 Not2 845.9 0.004 $a_R^2 + 240 \ a_S^2H + 2400 \phi_HX$ 0.9960 Not22 246248^10 3.47 $a_R^2 + 20 \ a_S^2H + 400 \ \phi_HI$ 0.0001 Sign	Source d.f. M.S. F-Value E M S Prob>F St Source A.f. M.S. F-Value E M S Prob>F St Source X 1 1853945.5 0.47361 $a_R^2 + 720 a_S^2 + 7200 \phi_X$ 0.5065 Not I 16210204.7 69.05 $a_R^2 + 240 a_S^2 + 1200 \phi_Y$ 0.0005 Sign XXI 11 654745.8 0.73 $a_R^2 + 60 a_S^2 + 600 \phi_I X$ 0.7121 Not XXH 2 845.9 0.004 $a_R^2 + 240 a_S^2 + 400 \phi_H X$ 0.9960 Not HXI 22 $2 \lambda 0248^3$ 0 3.47 $a_R^2 + 20 a_S^2 + 400 \phi_H X$ 0.0001 Sign S(X) 18 3914487.7 178.53 $a_R^2 + 720 a_S^2$	Sourced.f.M.S.F-ValueE M SProb>F54X11853945.5 0.47361 $a_R^2 + 720 \ \sigma_S^2 + 72004$ 0.5065 NotH251361249.1 13.12 $a_R^2 + 240 \ a_S^2 H + 48004$ H 0.0005 SignI116210204.7 69.05 $a_R^2 + 60 \ a_S^2 H + 12004$ H 0.0001 SignXXI11 654745.8 0.73 $a_R^2 + 60 \ a_S^2 H + 24004$ H 0.7121 NotXXH2 845.9 0.004 $a_R^2 + 240 \ a_S^2 H + 40004$ H 0.9960 NotHXI22 240248.0 3.47 $a_R^2 + 20 \ a_S^2 H + 40004$ H 0.0001 SignS(X)18 3914487.7 178.53 $a_R^2 + 720 \ a_S^2$ H 0.0001 SignSXH(X)36 192550.3 $a_R^2 + 240 \ a_S^2$ H $a_R^2 + 240 \ a_S^2$ H	Source d.f. M.S. F-Value E M S Prob>F 54 X 1 1853945.5 0.47361 q _R ² + 720 o _S ² + 7200¢ 0.5065 Not H 2 51361249.1 13.12 q _R ² + 240 o _S ² H + 4800¢ 0.0005 Sign I 11 6210204.7 69.05 q _R ² + 60 o _S ² H + 1200¢ 0.0001 Sign XxI 11 654745.8 0.73 q _R ² + 60 o _S ² H + 2400¢ 0.7121 Not XxH 2 845.9 0.004 q _R ² + 240 o _S ² H + 400 ¢ 0.7121 Not HxI 2 240248.0 0.004 q _R ² + 240 o _S ² H + 400 ¢ 0.0001 Sign S(X) 18 3914487.7 178.53 q _R ² + 720 o _S ² H 0.0001 Sign SxH(X) 36 192550.3 q _R ² + 240 o _S ² H 0.0001 Sign SxI(X) 198 89939.9 0 _R ² + 720 o _S ² H 0.0001 Sign

ANOVA of Performance Times; Left-sided Movement; Index of Difficulty Considered; Table D.2.16

Findings at 5 5% level	Not significant	Significant	Significant	Not significant	Not significant	Significant	Significant		•	
Prob>F	0.6555	0.0001	0.0001	0,8015	0.7902	0.0001	0.0001			4
B M S	$\sigma_{\rm R}^2 + 720 \sigma_{\rm S}^2 + 7200 \phi_{\rm X}$	$\sigma_{R}^{2} + 240 \sigma_{SH}^{2} + 4800\phi_{H}$	$\sigma_{R}^{2} + 60 \sigma_{SI}^{2} + 1200 \phi_{I}$	$\sigma_{R}^{2} + 60 \sigma_{SI}^{2} + 600\phi_{IX}$	$\sigma_{\rm R}^2 + 240 \sigma_{\rm SH}^2 + 2400 \phi_{\rm HX}$	$\sigma_{\rm R}^2 + 20 \sigma_{\rm SHI}^2 + 400 \phi_{\rm HI}$	$\sigma_{\rm R}^2$ + 720 $\sigma_{\rm S}^2$?	$\sigma_{\rm R}^2$ + 240 $\sigma_{\rm SH}^2$	σ _R ² + 60 σ _{SI} ²	$\sigma_{ m R}^{2}$
 F-Value	0.95	290.03	34,15	0.63	0.35	5,99	203.06	-		
M.S.	4276213.9	54802174.8	3238936.6	59893.4	66895.8	490578.3	4502763.9	188952.3	94838.8	22173.5
d.f.	1	7	11	11	7	22	18	36	198	13702
Source	×	=	H	XxI	ХхН	HxI	(x)s :	SxH(X)	S×I(X)	~ ~

Test of Means

Newman Kuel's Range Test (Hicks, 1973) is applied to the means of performance times at different levels of effects found significant (p<0.05) in the ANOVA.

(The means are listed in the ANOVA computer printout in Appendix G).

Notations to be used in this section are:

S.E. = Standard Error = | Error Mean Square | number of observations in each level of effect

d.f. = degree of freedom of error

L.S.R. = Least Square Range

St.R = Studentised Ranges at 5% level of significance and at error degree of freedom

H = Informational load levels

I = Index of Difficulty

C = Clearance levels

D = Distance of move

S = Significant (p<0.05)

N.S. = Not significant (p>0.05)

Part 1 - Effect of informational load and clearance
analysed at four levels of distance (D) separately

A.1 Informational load (H) at D=7"

· .	Ri	ght S	ided N	Move	nent		Le	ft S	ided M	ovemen	t
	ascendin order	g l	2 .	3	4		ı.	2	3	·	
Means		831	889	964	107	6	871	93	5 1006	1209	
S.E.			9.46						10.2	4	
d.f.	_		54						54		
St.R.		2.	84 3	. 42	3.	76		:	2.84	3.42	
L.S.R.		26.	87 32	. 35	35.	57		29	80.9	35.02	
	4 Vs	3 =	110>	26.8	37	S	4 V	s 3 =	= 203>	Ž9.08	s
) Vs	2 =	. 75>	32.3	5 5	S	3 V	s 2 =	= _31>	29.08	s ·
· /	/ 2 Vs	1 =	58>	26.8	37	S	2 V:	sl:	= 64>	29.08	S

SUMMARY: All levels of H are significantly different from all other levels (p<0.05) for both the right sided and left sided movements

A.2. Informational load H at D = 10"

,	Righ	t Sided Mo	vement	Left Sided Moveme				
(H) in	ascending order	2 3	. 4	2	3 4			
Means		972 1071	1104	1039	1133 1175			
S. E.	•	8.65			9.79			
d.f.	•	36			36			
St.R		2.86	3.44	2.86, 3.44				
L.S.R.		24.74 2	9.76	27	.99 33.68			
,	4 Vs 3	= 33>24.7	4 S		= 42>27.99			
	3 Vs 2	= 99>24.7	4 S	3 Vs 2	= 94>27.99	S		

SUMMARY: All levels of H are significantly different from all other levels (p<0.05) for both right sided and left sided movements.

A.3 - Informational load (H) at D = 13"

	Right Sided Movement	Left Sided Movement
(H) in ascend		2 5 4
Means	944 1015 1181	985 1076 1260
S.E.	10.05	10.07
d.f.	36	36
St.R.	2.86 3.44	2.86 3.44.
L.S.R.	28.74 34.57	28.80 34.64
	4 Vs 3 = 166>28.74 S	4 Vs 3 = 184>28.80 S
	3 Vs 2 = 71>.28.74 S	3 Vs 2 = 91>28.80 S
SUMMARY:	All levels of H are signi	ificantly different from
	all other levels (p<0.05)) for both right sided
•	and left sided movements.	•

A.4 Informational load (H) (at D = 16" Right Sided Movement Left Sided Movement

(H) in	ascending order	1	2	3	4	1	2	3	4	
Means)		831	889	964	1076	991	1043	1111	1236	
S.E.			- 10.3	0 .			·	9.11		
d.f.			54					54		
St.R.		. 2.	84 3	.42	3.76	2	.84	3.42	3.76	
L.S.R.	•	29.	25 35	. 23	38.73	25	.87	31.15	34.25	
	4 Vs	3 =	112>2	9.25	S	4	Vs 3	= 125>	25.87	S
		-	75>2			3	V·s 2	= 68>	25.87	S
	. 2 Vs	1 =	58>2	29.25	s	2	Vs 1	= 52≥	25.87	S

SUMMARY: All levels of H are significantly different from all other levels (p<0.05) for both right sided and left sided movements.

B.1 Clearance (C) at D = 7"

	Left	Sided	Movem	ent	Right	Sided	Movement	:
(C) in	ascending	3	2	1	. 3	2	1	
Means	:	1015	1078	1123	913	981	1035	,
S.E.			8.30		`	7.60		
`d.f.			36	•		36		
St.R.		2.86	3.	44		.86	3.44	
L.S.R.		23.74	28.	.55	21	.74	26.14	
	1 V	s 2 =	45>23.	.74 S	1 Vs 2	= 54>	21.74	
	. 2 V	's 3 =	63>23.	.74 S	2 Vs 3	= 68>	21.74	

SUMMARY: All levels of (C) are significantly different from all other levels (p<0.05) for both right sided and left_sided movements.

B.2	Clearance	(C)	at	D	■.	.10"
	02000	\- ,		_		

Lei	Et Sided Movement	Right Sided Movement			
(C) in ascending order	1g 2 1	3 2 1			
Means	1061 1123 1163	1908 1074 1099			
S.E.	7.67	7.29			
d.f.	36	36			
St.R.	2.86 3.44	2.86 3.44			
L.S.R.	21.93 26.38	20.85 25:08			
1.1	Vs 2 = 40>21.93 S	1 Vs 2 = 25>20.85 S			
2 1	Vs 3 = 62>21.93 S	2 Vs 3 = 66>20.85 S			

SUMMARY:
All levels of (C) are significantly different from all other levels (p<0.05) for both right sided and left sided movements.

***	arance (C) at	D =	13''			<
	ded Movement	·.	Right	Side	l Movem	ent
(C) in ascendi order	ng	1	3	2	1	,
Means	1053 . 1110 1	159	997	1042	1101	
S.E.	6.68			6.58		
d.f.	36	•		36		
St.R.	2.86 3.	44	:	2.86	3,44	
L.S.R	19.10 22.	98	1:	8.82	22.64	
1 \	/s 2 = 49>19.10	s,	1 Vs	2 = 59	>18.82	s
2 1	/s 3 = 57>19.10	S	2 Vs	3 = 45	>18.82	s

SUMMARY: All levels of (C) are significantly different from all other levels (p<0.05) for both the right sided and left sided movements.

B. 4	Clearance (C) at D =	16"
Le	eft Sided Movement	Right Sided Movement
	scending rder 3 2 1	3 2 1
Means	1069 1134 1191	1068 1124 1181
S.E.	7.74	6.68
d.f.	36	36
St.R.	2.86 3.44	2.86 3.44
L.S.R.	22.14 26.63	19.10 22.98
	1 Vs 2 = 57>22.14 S	1 Vs 2 = 57>19.10 S
	2 Vs 3 = 65>22.14 S	2 Vs. 3 = 56>19.10 S

SUMMARY:

All levels of (C) are significantly different from all other levels (p<0.05) for both right sided and left sided movements.

Part 2 -Effect of Distance and Index of Difficulty as analysed according to the Part 2 models.

A. Right-sided Movement

1 Index of Difficulty (I)

The means of Performance Times are arranged in escending order as follows:

• From standard tables, for d.f.=198; and at 5% level of significance, the Studentised Ranges are:

2:77 3.32 3.63 3.86 4.03 4.77 4.29 4.39 4.47 4.55

Therefore the Least Square Ranges are:
23.97 28.75 31.44 33.43 34.90 36.11 37.15 38.02 38.71 39.40

8 vs 12 = 58 > 23.97 Significantly different
Therefore 12 is significantly different from all other levels

8 vs 11 = 22 < 23.97 Not significantly different

8 vs 10 = 24 <-28.75 Not significantly different

8 vs 6 = 50 > 31.44 Significantly different

Therefore 8 is significantly different from levels 1,5,3,2,9,7,4,6

11 vs 10 = 2 < 23.97 Not significantly different

11 vs 6 = 28 < 28.75 Not significantly different

11 vs 4 = 34 > 31.44 Significantly different

Therefore 11 is significantly different from levels 1,5,3,2,9,7

10 vs 6 = 26 > 23.97 Significantly different

Therefore 10 is significantly different from levels 1,5,3,2,9,7,4,6

6 vs 4 = 6 < 23.97 Not significantly different

6 vs 7 = 32 > 28.75 Significantly different

Therefore 6 is significantly different from levels 1,5,3,2,9,7

4 vs 7 = 26 > 23.97 Significantly different
Therefore 4 is significantly different from levels 1,5,3,2,9,7

7 vs 9 = 6 < 23.97 Not significantly different
7 vs 2 = 33 > 28.75 Significantly different
Therefore 7 is significantly different from levels 1,5,3,2

9 vs 2 = 27 > 23.97 Significantly different
Therefore 9 is significantly different from levels 1,5,3,2

. 1

2 vs 3 = 11 < 23.97 . Not significantly different 2 vs 5 = 28 < 28.75 Not significantly different 2 vs 1 = 95 > 31.44 Significantly different

Therefore 2 is significantly different from level 1

3 vs 5 = 17 < 23.97 Not significantly different
3 vs 1 = 87 > 28.75 Significantly different
Therefore 3 is significantly different from level 1

5 vs 1 = 67 > 23.97 Significantly different Therefore 5 is significantly different from level 1

The above results can be summarised as follows: Level of I in ascending order of means

F 5 3 9 7 4 6 10 11 8 12

Distance (D)

The means of the Performance Times in ascending order:

Levels of distance D 1 3 2 4

Means 976 1047 1060 1124

Standard Error (S.E.) = $\sqrt{\frac{132890}{3600}}$

= 7.15

From standard tables, for d.f.=54 and at 5% level of significance, the Studentised Ranges are: 2.84 3.42 3.76

The Least Square Ranges are : 20.31 24.45 26.88

l vs 4 = 148 > 26.88 Significantly different

3 vs 4 = 77 > 24.45 Significantly different

2 vs 4 = 64 > 20.31 Significantly different

1 vs 2 = 84 > 24.45 Significantly different

3 vs 2 = 13 < 20.31 Not significantly different

1 vs 3 = 71 > 20.31 Significantly different

Graphical representation of the above results:

Level of D in ascending.order of D: 1

3 2

B. <u>Left-sided Movement</u>

1 Index of Difficulty (I)

The means of Performance Times in ascending order are:

Level of I 1 3 2 4 5 7 6 9 8 11 10 12

Means 1015 1053 1061 1069 1079 1109 1123 1123 1134 1159 1163 1191

Standard Error (S.E.) = $\sqrt{\frac{\text{Error Mean Square}}{\text{number of observations in each level of ID}}}$

 $= \sqrt{\frac{94839}{1200}}$

= 8.89

From standard tables; for d.f.=198 and at 5% level of significance, the Studentised Ranges are:

2.77 3.32 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55

The Least Square Ranges are: 24.63 29.51 32.27 34.32 35.83 37.07 38.14 39.03 39.74 49.45

12 vs 10 = 28 > 24.63 Significantly different
Therefore 12 is significantly different from all other levels.

10. vs 11 = 4 < 24.63 Not significantly different

10 vs 8 =- 29 < 29.51. Not significantly different

10 vs 9 = 40 > 32.27 Significantly different

Therefore 10 is significantly different from 1,3,2,4,5,7,6,9

11-vs 8 = 25 > 24.65 Significantly different
Therefore 8 is significantly different from all other levels with
lower means.

8 vs 9 = 11°< 24.63 Not significantly different 8 vs 6 = 11 < 29.51 Not significantly different

8 vs 6 = 11 < 29.51 Not significantly different

8 vs 7 = 24 < 32.27 Not significantly different

8 vs 5 = 55 > 34.32 cSignificantly different

Therefore 8 is significantly different from levels 1,3,2,4,5

9 vs 6 = 0 < 24.63 Not significantly different

9 vs 7 = 13 < 29.51 Not significantly different

9 vs 5 = 44 > 32.27 Significantly different

Therefore 9 is significantly different from levels 1,3,2,4,5

6 vs 7 = 13 < 24.63 Not significantly different

6 vs 5 = 44 > 29.51 Significantly different

Therefore 6 is significantly different from levels 1,3,2,4,5

 π vs 5 = 31 > 24.63 Significantly different

Therefore 7 is significantly different from all Levels with lower means.

5 vs 4 = 10 < 24.63 Not significantly different

5 vs 2 = 18 < 29.51 Not significantly different

5 vs 3 = 26 < 32.27 Not significantly different

5 vs 1 = 64 > 34.32 Significantly different

Therefore 5 is significantly different from level 1.

4 vs 2 = , 8 < 24.63 Not significantly different

4 vs 3 = 16 < 29.51 Not significantly different

4 vs 1 = 54 > 34.32 Significantly different

Therefore 4 is significantly different from level 1.

2 vs 3 = 8 < 24.63

Not significantly different

2 vs 1 = 46 > 29.51

Significantly different

Therefore 2 is significantly different from level 1.

3 vs 1 = 38 > 24.63

Significantly different

The graphical summary of the results is as follows:

Level of I

3

2

7

6

9

11

10

12

2 Distance (D)

The means of Performance Times in ascending order:

Levels of D

. 1

3 ,

2

4

Means

1072

1106

1115

1131

Standard Error (S.E.) = $\sqrt{\frac{180583}{3600}}$

= 7.08

From standard tables; for d.f.=54 and at 5% level of significance, the Studentised Ranges are: 2.84 3.42 3.76

The Least Square Ranges are : 20.11 24.21 26.62

 $1 \tilde{v}s 4 = 59 > 26.62$

Significantly different

3 vs 4 = 25 > 24.21

Significantly different

2 vs 4 = 16 < 20.11

Not significantly different

1 vs 2 = 43 > 24.21

Significantly different

3 vs 2 = 9 < 20.11

Not significantly different

1 vs 3 = 34 > 20.11

Significantly different

Graphical representation of the results:

Level of D:

I

3 2

Computation - Component Variances of Main Effects

This section utilises Part 2 models only as the basis for the computation of effect component variances.

Right-sided Movement

1. Clearance and Distance as separate factors, from ANOVA table D.2.13:

S _R ²	=	22196.3	(1)
$s_R^2 + 720 s_S^2$		3914487.7	
$s_R^2 + 240 s_{SH}^2$	=	192550.3	(3)
$S_R^2 + 240 S_{SH}^2 + 4800 \phi_H$	· =	51361249.1	(4)4
s _R ² + 180 s _{SD} ²	=	132889:8	(5)
$S_R^2 + 180 S_{SD}^2 + 3600 \phi_D$	=	13226158.9	(6)
$S_R^2 + 240 S_{SC}^2$. =	168138.4	(7)
$S_R^2 + 240 S_{SC}^2 + 4800 \phi_{C}$. =	13993948.4	(8)
where S _R ² , S _S ² , S _{SH} ² , S _C ² , S _{SC} ² ,	S	D ² , ^ф H, ^ф C,	$\phi_{\overline{D}}$ are .
estimates of variances of the co	rre	sponding ef:	fects in .
the mixed model.			

From (1) and (2)
$$S_S^2 = 5405.96$$

From (3) and (4)
$$\phi_{\text{H}} = 10660.15$$

From (5) and (6) D = 3637.02From (7) and (8) C = 2880.38Total Variance $= S_S^2 + \phi_H + \phi_D + \phi_C$ = 22583.5

\$-age variance attributed to subject differences
(S) = 23.93

%-age variance attributed to effect of Informational

%-age variance attributed to Distance effect

Load

(D) = 16.10

(H) = 47.20

\$-age variance attributed to Clearance effect $(C)^{-} = 12.75$

2. Index of Difficulty (I) as a factor replacing C and D.
From ANOVA table D.2.16:

$$s_R^2 = 21925.7 \dots (1)$$

$$S_R^2 + 720 S_S^2 = 3914487.7 \dots (2)$$

$$S_R^2 + 240 S_{SH}^2 = 192550.3 \dots (3)$$

$$S_R^2 + 240 S_{SH}^2 + 4800 \phi_H = 51361249.1 \dots (4)$$

$$S_R^2 + 60 S_{SI}^2 = 89939.9 \dots (5)$$

$$S_R^2 + 60 S_{SI}^2 + 1200 \phi_I = 6210204.7 \dots (6)$$

where S_R^2 , S_S^2 , $S_{\bar{I}}^2$, $S_{S\bar{I}}^2$, $S_{S\bar{H}}^2$, ϕ_H , $\phi_{\bar{I}}$ are estimates

.of variances of the corresponding effect, in the mixed model.

From (1) and (2)
$$S_S = 5406.34$$

From (3) and (4)
$$_{\rm H}$$
 =10660.15

From (5) and (6)
$$I = 5100.22$$

Total variance =
$$S_S^2 + \phi_H + \phi_I$$

%-age of variance attributed to subject differences

$$\cdot$$
 (S) = 25.54

%-age of variance attributed to effect of Informational

Load
$$.$$
 (H) = 50.36

%-age of variance attributed to effect of Index of

B. Left-sided Movement

1. Clearance and Distance as separate factors. From ANOVA table D.2.15:

$$S_R^2 = 22467.7...(1)$$

$$S_R^2 + 720 S_S^2 = 4502763.9 \dots (2)$$

$$S_R^2 + 240 S_{SH}^2 = 188952.3 \dots (3)$$

$$S_R^2 + 240 S_{SH}^2 + 4800 \phi_H = 54802174.8 \dots (4)$$

$$S_R^2 + 180 \sigma_{SD}^2$$
 = 180583.1(5)

$$S_R^2 + 180 \, \sigma_{SD}^2 + 3600 \, \phi_D = 2223893.5 \dots (6)$$
 $S_R^2 + 240 \, \sigma_{SC}^2 = 135157.9 \dots (7)$
 $S_R^2 + 240 \, \sigma_{SC}^2 + 4800 \, \phi_C = 14596445.6 \dots (8)$

From (1) and (2) $S_S^2 = 6222.63$

From (3) and (4) $\phi_H = 11377.75$

From (5) and (6) $\phi_D = 567.59$

From (7) and (8) $\phi_C = 2971.10$

Total variance $= S_T^2 + \phi_H + \phi_D + \phi_C$
 $= 21138.67$

\$-age variance attributed to subject difference (S) = 29.44

\$-age variance attributed to effect of Informational Load (H) = 53.82

\$-age variance attributed to effect of Distance (D) = 2.69

\$-age variance attributed to effect of Clearance (C) = 14.06

From ANOVA table D.2.14:

22173.5(1)

= 4502763.9(2) $S_{R}^{2} + 720 S_{S}^{2}$

 $S_R^2 + 240 S_{SH}^2$ = 188952.3(3)

$$S_R^2 + 240 S_{SH}^2 + 4800 \phi_H = 54802174.8 \dots (4)$$

$$S_R^2 + 60 S_{SI}^2 = 94838.8 \dots (5)$$

$$S_R^2 + 60 S_{SI}^2 + 1200 \phi_I = 3238936.6 \dots (6)$$

From (1) and (2)
$$S_S^2 = 6223.04$$

From (3) and (4)
$$\phi_{H} = 11377.75$$

From (5) and (6)
$$\phi_{I} = 2620.08$$

Total variance =
$$S_S^2 + \phi_H + \phi_I$$

= 20220.87

\$-age variance attributed to Subject Difference

$$(S) = 30.77$$

%-age variance attributed to effect of Informational

Load
$$(H) = 56.27$$

%-age variance attributed to effect of Index of

Difficulty
$$(I) = 12.96$$

Graphical Representations of Results

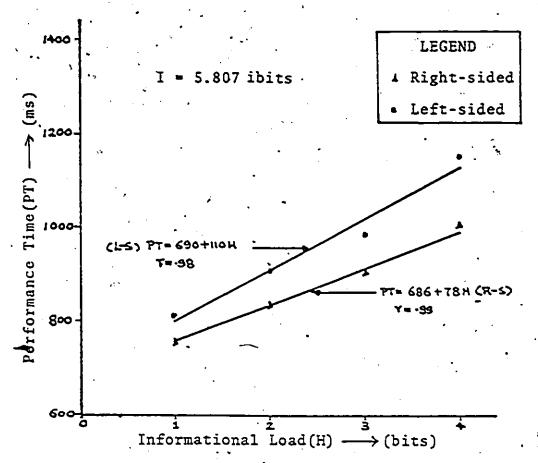


Figure D.1 Performance Time vs. Informational Load for all subjects

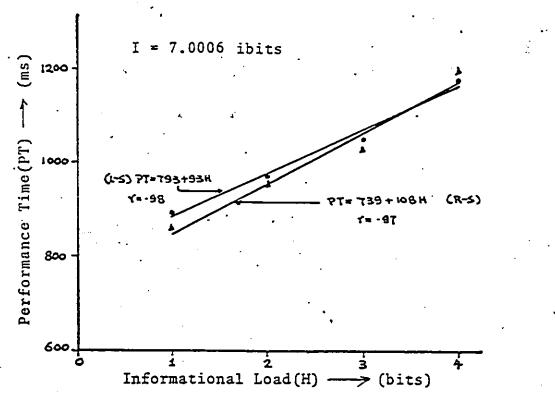


Figure D.2 Performance Time vs. Informational Load for all subjects

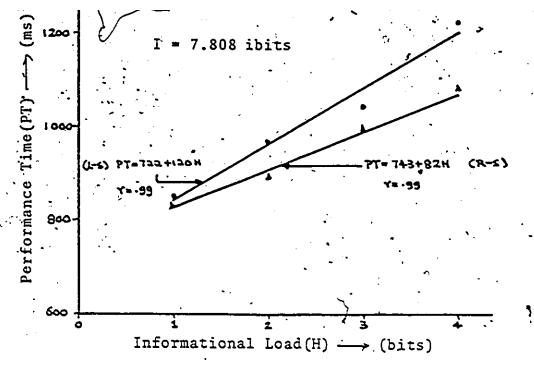


Figure D.3 Performance Time vs. Informational Load for all subjects

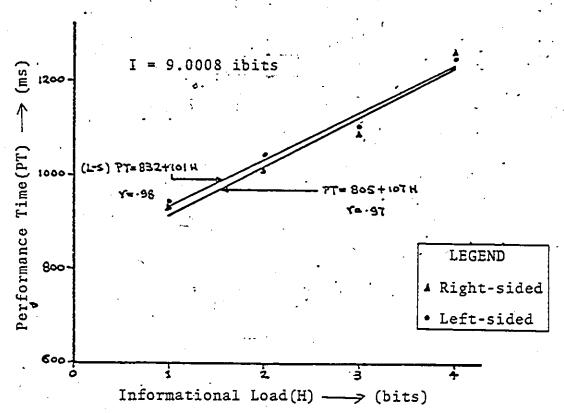


Figure D.4 Performance Time vs. Informational Load for all subjects

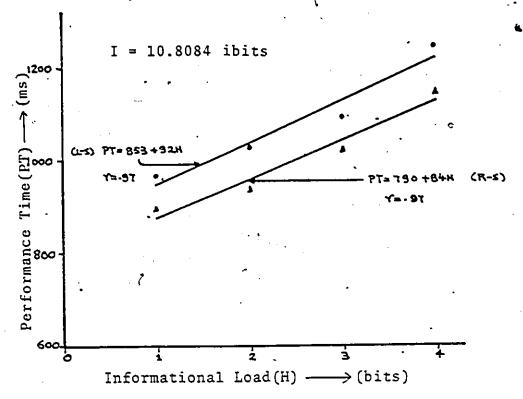


Figure D.5 Performance Time vs. Informational Load for all subjects

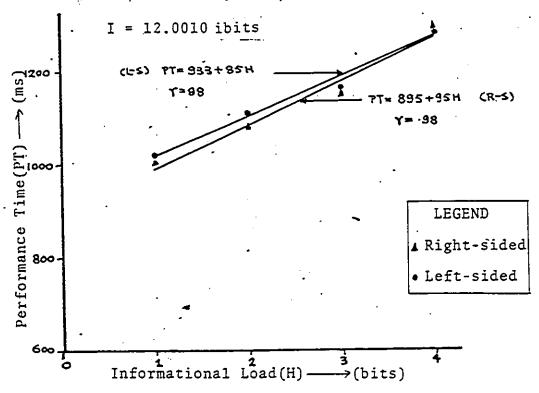


Figure D.6 Performance Time vs. Informational Load for all subjects.

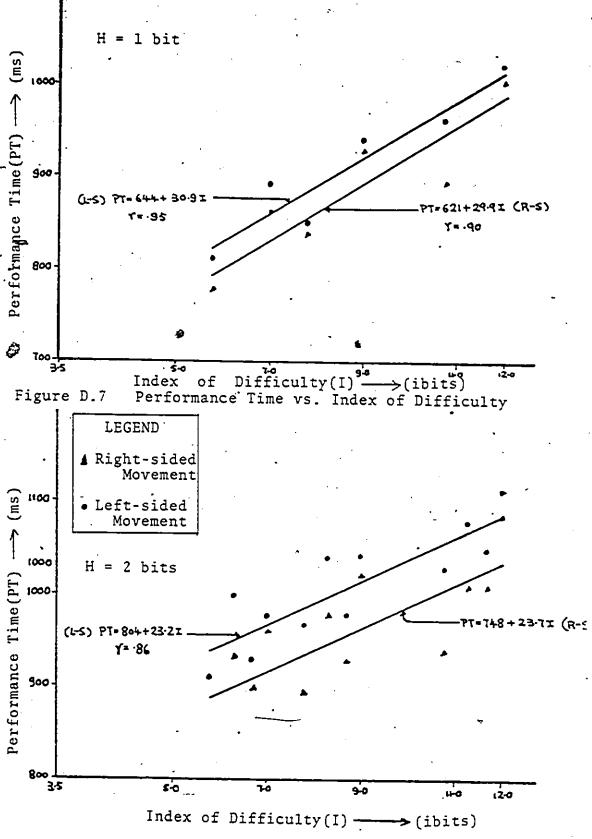


Figure D.8, Performance Time vs. Index of Difficulty

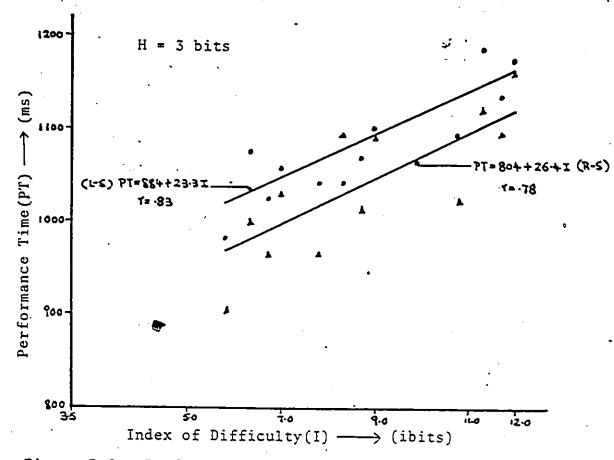


Figure D.9 Performance Time vs. Index of Difficulty

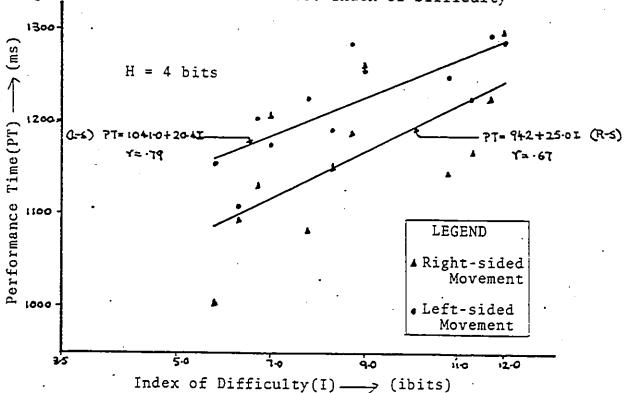


Figure D.10 Performance Time vs. Index of Difficulty

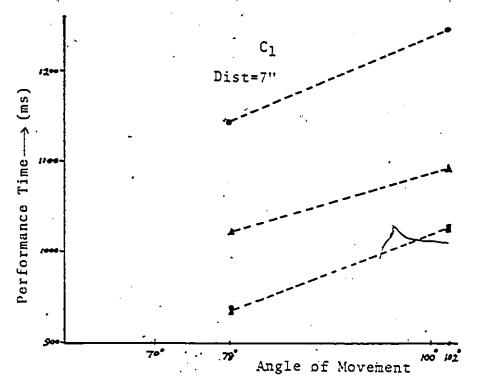


Figure D.11 Performance Time vs. Angle of Movement

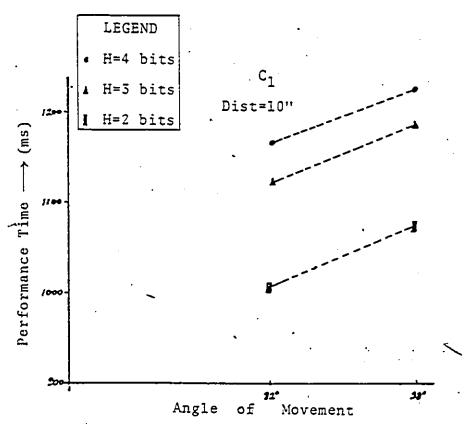
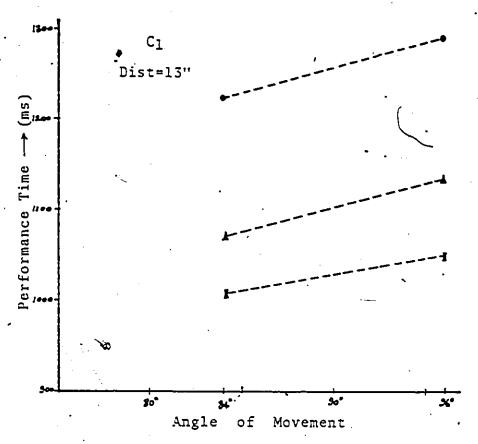



Figure D.12 Performance Time vs. Angle of Movement

)

Figure D.13 Performance Time vs. Angle of Movement

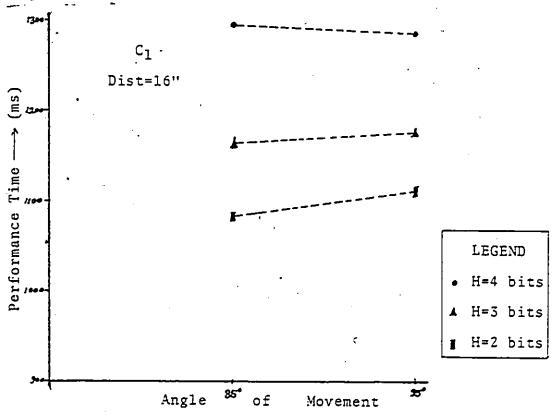


Figure D.14 Performance Time vs. Angle of Movement

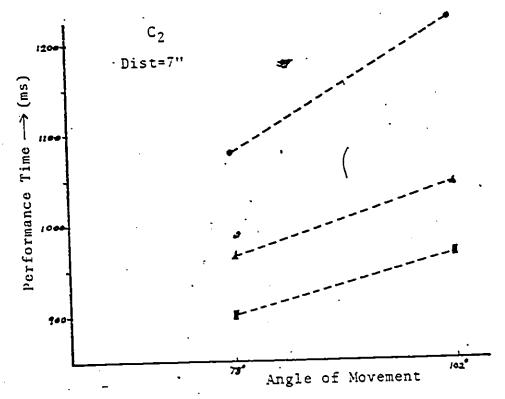


Figure D.15 Performance Time vs. Angle of Movement

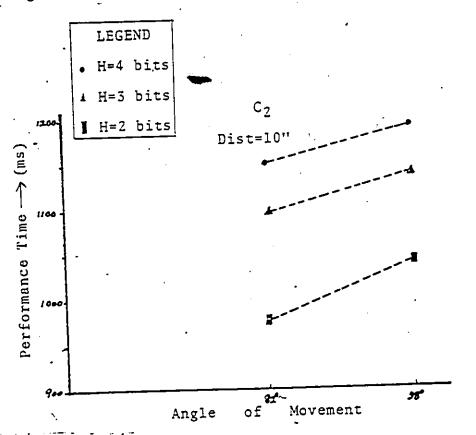


Figure D.16 Performance Time vs. Angle of Movement

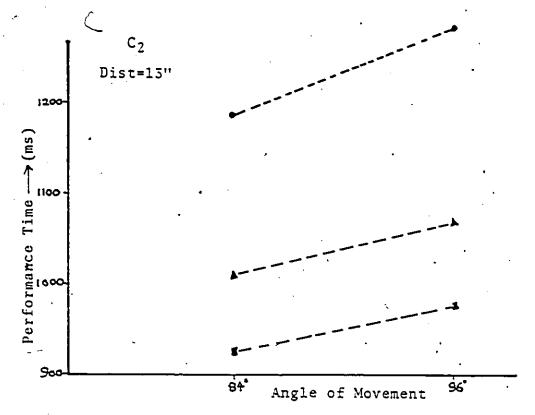


Figure.D.17 Performance Time vs..Angle of Movement

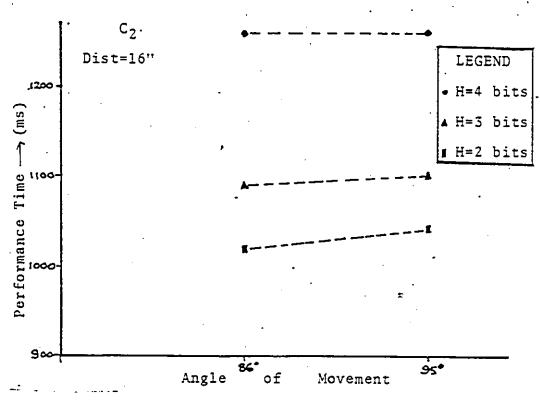


Figure D.18 Performance Time vs. Angle of Movement

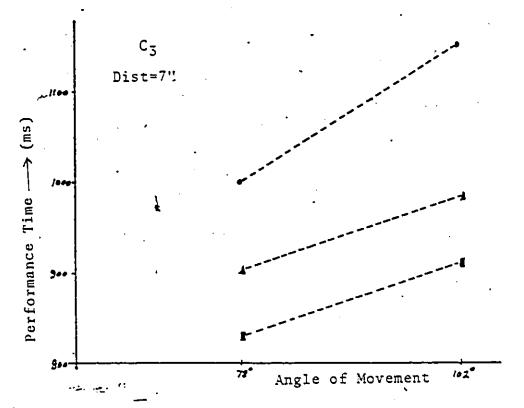


Figure D.19 Performance Time vs. Angle of Movement

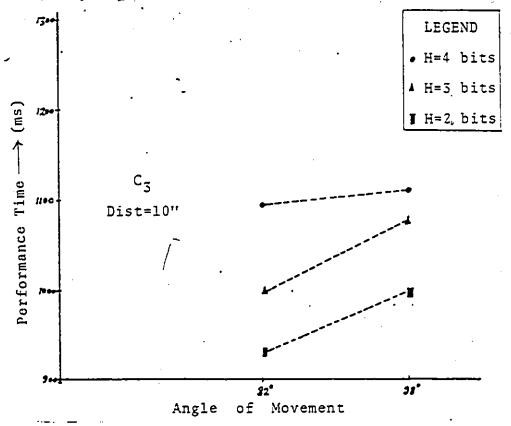


Figure D.20 Performance Time vs. Angle of Movement

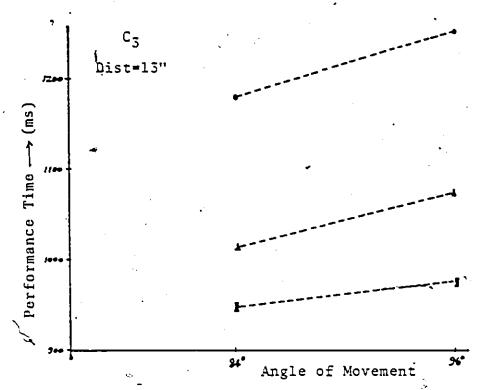


Figure D.21 Performance Time vs. Angle of Movement

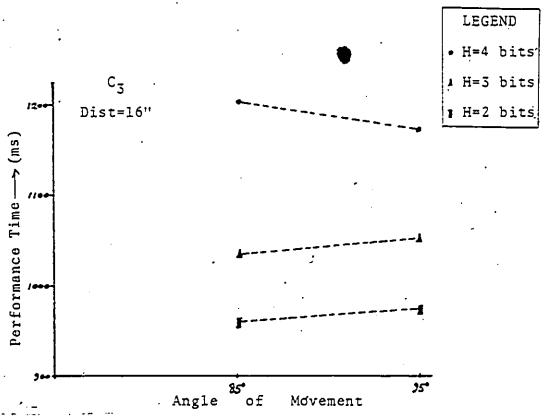


Figure D.22 Performance Time vs. Angle of Movement

Appendix E

Tables of Linear Regression Models

Linear Regression Procedures of the SAS-package were used in fitting linear models of Performance Times in terms of combinations of significant experimental effects. The goodness of fit and model coefficients are given in tabular form to facilitate comparison between Right-sided and Left-sided Movements and across levels of effects. Terminology used in this section is as follows:

PT = Performance Times in milliseconds

H = Informational Load in bits

C = Lateral Clearance in inches

D = Movement Distance in inches

I = Index of Difficulty (Fitt's version :

 $I = log_2[2D/C]$) in bins

b = Regression Intercept with the PT-axis

bl = Coefficient of H in model

 b_2 = Coefficient of C in model

b3 = Coefficient of D in model

b₄ = Coefficient of I in model

S.E. = Standard Error

R-Square - meaning the square of multiple correlation.

i.e. ratio of variance accounted for by the

model to the total variance.

Significance Level of Fit - probability greater than the

F-ratio taken as the MS of regression to the

MS of residual.

Maximum % Residual - the maximum a-solute difference between the actual value and the predicted value expressed as the percentage of the actual.

Table B, 1 PT = b + b1 H + b2 C + b3 D

		٥	þ	b ₂	b3	Significance R-Square S.H. of Max.' & Level of Fit	R-Square	S.E. of Regression	Max.' \$ Residual
	'b'-values 623.31 106	623.31	106.60	.60 -411.20 14.33	14.33	0.0001	0,9104	35.13	7.2
Right- Sided Movement	S.E. of	30.61	7.17	56.47 1.75	1.75		: •	-	
	16'-values 769.58 105.89	769.58	105.89	-419.63 5.57	5.57	0.0001	0.8970	35.42	7.2
Left- Sided Movoment	S.B. of	30.86	7.23	56.93	56.93 1.76				
						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-		

Table B.2 PT = $b + b_1 H + b_4 I$

-	Residual		s	v	w w
Max			8.5	8	8.8
	Regression		51,65	51.65	51.65
	R-Square	0	0.8000	CÓ08.0	0.8939
	Significance Level of Fit R-(Square	1000	700010		
	b4	25.08		4.10	4.10
	b_1	102.60		10.54	10.54 4.10
	م.	523.72		48.70	1 1 2
,	•	'b'-values 523.72 102.60 25.08		S.H. of 'b'-values	S.E. of 48.70 b'-values 592.34
,	•		_		Kight- Sided Movement

Table E.3 PT=b+b1H for different levels of clearance(C) and distance(D)

	· «	Levels of C,D	Ъ	b ₁	Significance Level of Fit	R-Square	S.E. of Regression
		C3D1	685.63	78.03	0.0068	0.9815	16.93
		C_3D_4	739.35	108.07	0.0142	0.9651	16.49
	.'b'-values	C_2D_1	743.17	82.14	0.0057	0.9841	32.49
ĺ	, b values	C_2D_4	804.89	106.98	0.0170	0.9593	34:82
Rìght-		ClDI	789.97	83.66	0.0190	0.9553	26.60
Sided Movement		C ₁ D ₄	895.42	95.30	0.0111	0.9756	25.78
,		C ₃ D ₁	20.75	7.58			
	*	· C ₃ D ₄	39.79	14.53			•
\$.	Standard Error of	C ₂ D ₁	20.20	7.38			•
	'b'-values	C2D4	42.65	15.57	8.	•	· v
	•	.C ₁ D ₁	35.04	12.79		·· .	•
		C ₁ D ₄	31.58	11.53			•
		C3D1	690.75	109.57	0.0142	0.9812	32.95
<i>5</i> 4	•	C ₃ D ₄	790.50	92.77	0.0041	0.9983	33.55
	'b'-values	C ₂ D ₁	722.24	119.91	0.0120	0.9796	15.95
	, , , , ,	C ₂ D ₄	831.92	101.35	0.0130	0.9875	29.36
Left-		ClDI	853.39	91.86	0.0226	0.9483	33.92
Sided		C ₁ D ₄	933.04	84.98	0.0076	0.9796	19.38
		C3D1	40.36	14.74			
		C ₃ D ₄	19.54	7.14	•		
·	Standard Error of	C ₂ D ₁ ·	41.10	15.01		•	
	'b'-values	C ₂ D ₄	35.97	13.13	· •	•	•
		C ₁ D ₁ .	41.55	15 17			.•
		C ₁ D ₄	23.74	8.67	•		*

6
7
6
5
4
fforent
-
Ť
۶
1
+
2
-
+
C
2
4
_
2
1
Ę
<
٠.
Œ
d
9

								1
		Levels of H (bits)	. Ь	bz	b_3	Significance Level of Fit	R-Square	S.E. of Regression
		- -	805.92	-500,13	11.24	. 0.0114	0.9474	24.06
· :-	1.11	· (V)	855,92	-382.01	12,34	0.0013	0.7858	34.53
	santeAd.	۲nz	.954,71	-458.87	11.40	0.0032	0,728i	43.07
Right-		4	982.71	-392.72	19.25	0.0001	0.9654	16.67
Sided Movement	,		28.77	94,90	2.18	:	•	
		2	37.05	96.12	2.97	ı		
	b'-values	3	46.22	119.91	3.70			
; • 15,		4	17.89	46.42	1.44			•
		1	868,94	-488.41	8.41	0.0749	0.8225	41.39
	141 201	. 2	66.886	-417.77	5.61	. 0.0061	0.6818	37,26
· .	sanra	۳	1074.35	_419.06	5,26	0.0098	0.6437	40.29
Left-		4	1198.47	/-422.06	5,85	0.0017	0:7723	30.08
-Movement	4	1	49,50	163,25	3.76			
	Standard	2	39,99	103.73	3.21		•	
	'b'-values	¥	43,23	112,16	3.47			
		4	32.28	83,73	2.59			

Table B.5 PT = b + b₄ I for different levels of H

		-					
		Levels of H (bits)	_q 	, P4	Significance Level of Fit	R-Square	S.B. of Regression
,		H	6,20,29	30,00	0,0169	0.8015	36.76
	1 h . wa] was	2	748.00	23.77	0,0034	0:5983	44.87
-	50	8	804.49	26.43	0.0032	0.6030	49.38
Right-		4	942.08	25.04	0.0150	0.4589	62,61
Movement	-	1	67,16	7.47			
	Standard		\$5.70	6.16	•		
	b'-values	3	61.29	6.78			
į		₹	77.72	8.60			
		1	643.80	30.84	0.0050	0.9021	26.63
	1b1-valuec	. 2	804.17	23.29	0.0006	0.7324	32.41
•	3	8	884.89	23.34	0.0009	0.7046	34.80
Left- Sided		4	1041.01	20.44	0.0027	0.6197	36.87
Movement "		7	45.70	5.08			
	Standard	2	40.24	4.45			
	b'-values	۲,	43.20	4.78			
•		4	45.77	5.06			•
					-		

Ĵ

Appendix F

Motion Strategy

During the experiment, it was observed that as each subject progressed toward fully learned state, he developed a pattern of movement forming a motion strategy which he considered to be the most efficient. Although individuals varied in this self-developed motion strategy, there was, however, one feature common to all subjects. began the task cycle by picking up the pin from the pinpocket and as he focused his eyes on the indicator screen, his hand moved quickly a certain distance from the pinpocket in the direction of the hole on the top plate. then slowed down in a region some distance from the pinpocket as he began the eye-search for the direction of the final move to the appropriate hole. The above strategy can be illustrated by using the simplest two-hole-alternatives task at D=16" and D=7".

Consider first the task involving hole numbers 2 and 3. The subject picked up the pin from the pin-pocket, made a fast move to a certain distance d_1 toward the two holes as he was detecting the number on the screen. He slowed down in a region bound by the dotted line around point P_1 . At this point of time, he had just completed detection of the number and began eye-searching and mentally preparing for the next and final 'move' to the appropriate hole. If hole numbers 14 and 15 were involved instead, a similar motion pattern was observed but the hand slowed down in a region around P_2 , a distance d_2 away from the

pin-pocket.

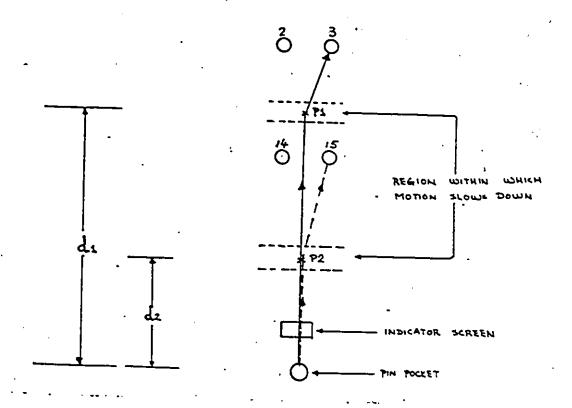


Figure F.1 Motion Strategy for the two-holealternatives tasks when number 3 or number 15 is shown on the screen.

In both cases, it was conceivable that the fast initial move was an overlearned motion resembling a simple reflex action after picking up the pin in the particular task concerned. During that motion, eye focus, detection and choice-time were critical relative to the manual motion time. Distances d_1 and d_2 were thus independent of the

time it took for such move. In the latter part of the motion (P₁ to hole number 3 or P₂ to hole number 15), however, visual and kinesthetic feedback was essential in controlling the movement and producing the accuracy of positioning required by the task. In such cases, distance of movement together with clearance became critical factors in the motion time:

This observation was comparable with that of Thomas (1971) when he noted that his subjects developed a motion strategic of two almost distinct moves; an initial fast move to an indefinite position at a point near the most likely response button as perceived by the subject, and a shorter move to the final destination.

In the present study, it was found that the performance times for D_3 =13" were consistently lower than those for D_2 =10" at all three levels of clearance C and at H=2 bits and H-3 bits. This feature is shown graphically in Figure F.2 to F.4. Distance of Move has been found in all previous researches to have positive correlation with performance time in combined decision and manual tasks, (Raouf and Sethi 1974), nevertheless, the present pecularity can be explained with reference to motion strategy of different tasks as described earlier.

For the four-hole-alternatives and the eight-holealternatives tasks used in this experiment, (corresponding to H=2 bits and H=3 bits respectively), two different sets of response holes were used for distances ${\rm D_3}$ and ${\rm D_4}$ as against ${\rm D_1}$ and ${\rm D_2}.$

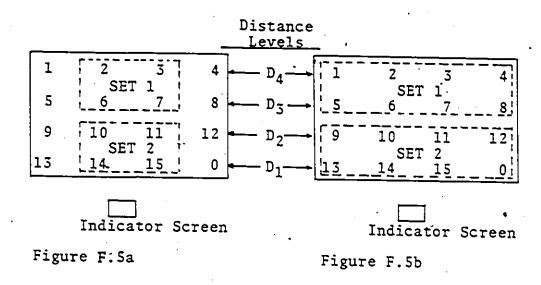
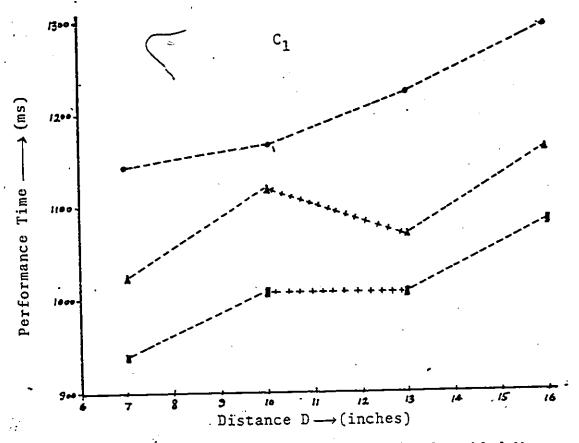
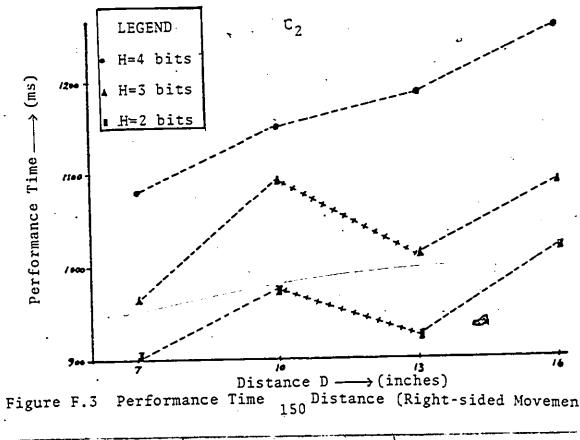




Figure-F.5 Different Response sets for D_3 and D_4 levels as against D_1 and D_2 levels.

Considering the four-hole-alternatives task with the two sets of response holes as in Figure F.Sa, the following situation was observed and is illustrated as in Figure F.6. For D_1 and D_2 levels, the first 'move' ended at around P_1 and continued along m_1 or m_2 depending on the stimulus number. For D_3 and D_4 levels, the first 'move' ended at around P_2 and continued along m_3 or m_4 depending again on the stimulus number. Due to the relative location of P_1 and P_2 , the distance m_2 was actually longer than m_3 . Since distance was significant only in the latter part of the total task motion (i.e. along the m's) as explained earlier,

Performance Time vs. Distance (Right-sided Movement)

Distance (Right-sided Movement)

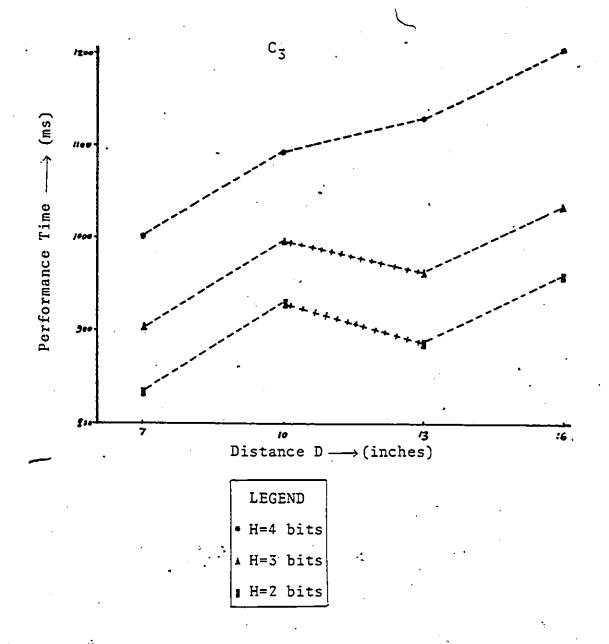


Figure F.4 Performance Time vs. Distance (Right-sided Movement)

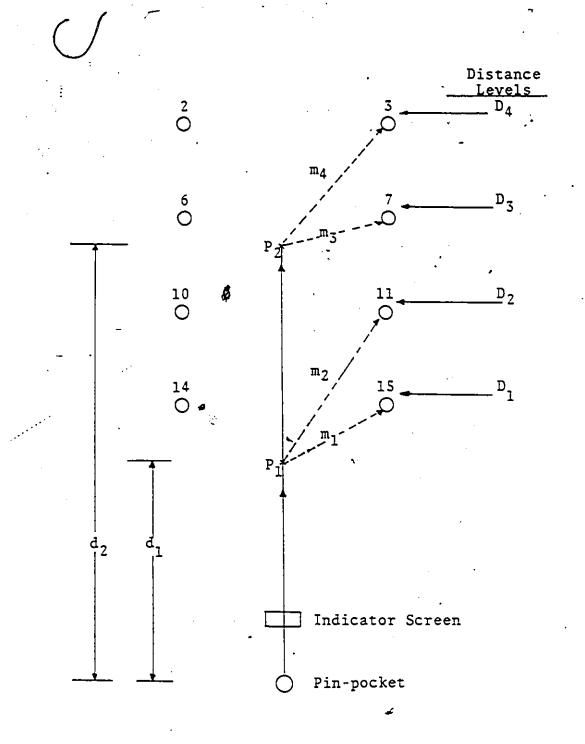


Figure F.6 Motion Strategy corresponding to different response sets used in the four-hole-alternatives tasks.

the time taken to move to hole number 7 in the upper response set could conceivably be shorter than that to hole number 11 in the lower set. According to motion strategy postulated here, it was therefore not the total distance D_2 or D_3 that was directly related to performance times but the distances m_2 or m_3 beginning at P_2 or P_3 that were significant.

In the case of the sixteen-hole-alternatives task, (i.e. H=4 bits), all the holes were included in the response set. The first 'move' for every task cycle ended at about the same region some distance from the pin-pocket, thus the second 'move' to any hole began at about the same point. The ratio of the m distances in this case approximated that of the D distances and consistant increases of performance times with distance D resulted. This feature is shown in Figure F.2 to F.4 in contrast with the pecularity at H=2 bits and H=3 bits.

Error in Prediction Model Due to Motion Strategy Difference

To examine the effect of the deviation between D_2 and D_3 as in Figure F.2 to Figure F.4. Two sets of least square linear regressions were developed, one from the data of levels D_1 and D_2 , the others from the data of levels D_3 and D_4 . These two sets are compared with the model in which all four levels of D are included simultaneously. Only Right-sided Movement is considered in this section. Results of the Left-sided Movement are expected to be similar. The model

coefficients, the corresponding standard errors and the measure of fitness of the two sets are presented in the following tables for comparison.

From Table F.1, it is seen that the three best fit lines are significantly different from one another. The intercept coefficients 'b's of the models with 2-D levels are 3s (standard deviations) and 7s away on either side of the 4-D model. The coefficient by of D for the D3D4 model is almost double that for the 4-D model. Plots of the best fit lines for the three levels of H at C_1 level of clearance and for the three different models are shown in Figure F.7 a 95% confidence limits for the three models are also given It is clearly evident here that the by the dotted lines. three models are distinctly different from one another, and $_{r}$ -prediction equations have therefore to be developed for D $_{1}$ D $_{2}$ levels and D3D4 levels separately when D and C are considered as separate motion parameters.

replaces C and D, the coefficients 'b's of the three models are similar. The standard errors of regressions and coefficients are also comparable. The best fit lines for the three models when H=2 bits are plotted in Figure F.7.

The corresponding 95% confident limits of the two 2-D models are also given. It is shown here surprisingly that the three lines are actually very close to one another and the 95% condifence bounds almost completely overlap. It suggests

therefore that the 4-D model is adequate in relating the performance times to the index of difficulty even though differences in motion strategy are inherent in the experimental design.

		•
	$\mathbf{p_4}$ D	י
	+	
	$\mathbf{p}_{2}\mathbf{c}$	2
	+	
	$\mathbf{b_1}$ H	1
	+	
	م	
	Ħ	
	ΡŢ	
•		
	_	
	· -	
	. Table	
	•	

·þ

_	—,					,	
S.B. of	Kegression		35.14		34.74		30.78
O Contraction	olanbe-v		0.9104		0.8965		0.9439
Significance	TO TOAD!		0.0001		0.0001	-	0.001
ء	2	14,33	1.75	14.44	5.46	25.74	4.84
å	22	-411.20	56.47 1.75	-407.10	78.95	-403,59	69.96 .4.84
, ig		106,60	p. 7.17	93.91	10.03	117,22	8.89
٦		623.31	30.61	733.09	56.53	403.74	. 75.75
		'b'-values	S.E. of.	'b'-values	S.B. of 'b'-values	'b'-values	S.E. of 'b'-values
		A11 4	(Levels of D		¹ 1, ¹¹ 2	•	, 13, 13
	Z	06	=	ΣÓΒ	17 P	ZOC:	= 1

Terminology used here are the same as in Appendix E.

Table F.2 PT = b + b₁H + b₄I

		•							_
۴.,	· · · ·		q	þ	b ₄	Significance Level of Pit	R-Square	S.H. of Regression	<u> 48</u>
×0 =	A11 4	'b'-valuos	523,72	102.60	25.08				
	Level's of De	S.H. of	48.70	48.70 10.54	4.10	0,0001	0.8003	52.44	A
200	2	'b'-values	562.00	87.98	22.92			•	
स्मान् <u>।</u> ८	D ₁ ; D ₂	S.H. of ib'-values	58.64	12.95	5,11	0.0001	0.8153	44.89	
ZOO		'b'-values	523.89	117,23	22.87				
.¤⊐. ∾	D3, D4	S.H. of 'b'-values	63,52	13.27	5.26	0.0001	0.8660	45.97	
1				 - -					-

Terminology used here are the same as in Appendix, E.

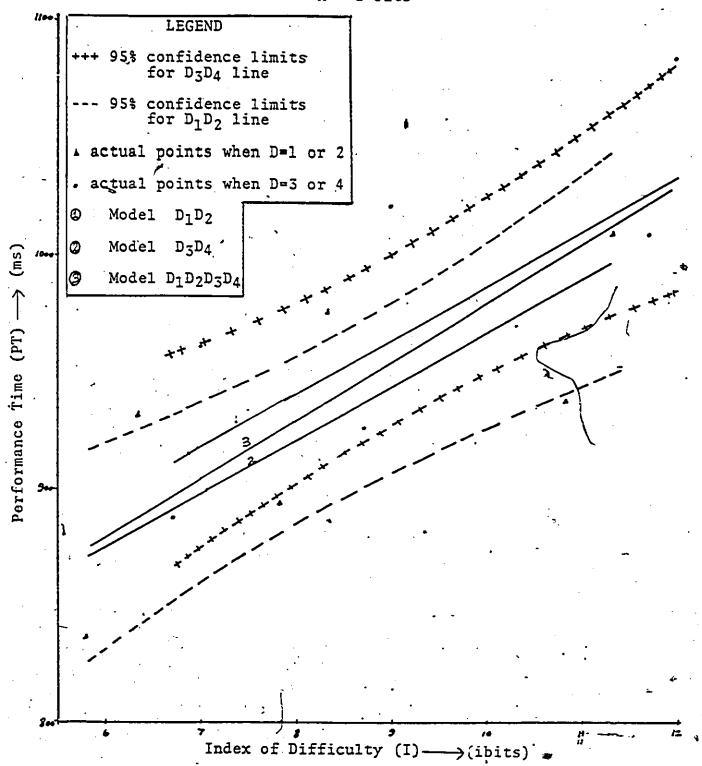


Figure F.7 Performance Time vs. Index of Difficulty for H=2 bits

APPENDIX G

Computer Programs and Printouts

Master Program to Organise and
Store Experimental Data on Tape

```
DATE # 76101
     FORTRAN IV G LEVEL
```

```
-ANYANZAFEA1/K,Y,COUNT,T! 4E,ICARO
-SAMANZAREAP/IN,OUT,SFX,SUINC,CONDHO,IPAR,YY,KX,STDEV,THEAM,
-4735,SMHS,DATA,AMGLE
-8-15-1
                                                                                                                                                                                                                                                                                          (Y(1,1),X(1,1),1*1,7), 105, 10C
                                                                                                                                                                                                                                                                                                                                                                     JI = 1 + 1 50
+ 10C ) ( YC DPR (1 + J1 ) + XC D9 R (1 + J1 ) + 1 × 1 + 7 ) + 103 + 1 DC
+ NE + 0 ) GO TO 34
                                                                                                                                                                                                                                                                                                                                                                                                                5.16f) (Y(1,3),X(*),1*1,7),105,105
                                                                            1 Jul 10.
(5.800) (HINCI, J), HAUT(I, J), I*1
                                                                                                                                                       SURND#1,10
(6,500) SURNO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   3.0) GO TO 2
                                                                                                                                                                                                      15,1×08CM0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    161
```

```
PAGE 0002
  03/04/14
   DATE # 76101
   ¥
ĭ
¥
V G TVFL
```

1, SUGJ, NO.1, H, IN=E, GG2(N)... H, OUT, ID... NOSARS DEVIATION "", FA.D. "HEAN OF SAMPLE #1, FA.D. REI 120 FOOOISEX, SUBNO, IN, OUT, ANGLE, IR, DATA (SJBNO, IN, OUT, COMDITION NUMBER ",11,10X, "HOLE NJHBER ",13) OCO) SEX, SIB NO.11 N.OUT, ANGLE, IR, DATA (SU BND, IN, OUT, AND. I.NE.3.4ND. I.NE.14.AND. I.NE.15)GR TO 77 .600011C010.1 .60.2.08.PAIP.E0.4) ICCNO=1C0NO+1 3=1,1PAF1 85(T14E(1,13)-4895)/5095 66=44,1G0 T0 27 AF+1 (A 0001 STDE V, THE AH (1CPN0 \$SUNNO) UT(1CDND \$SUNNO) 0-3-08-1-50-15) 9-2-08-1-60-14)A1 9)=TIME(1.17) 11=1,1PAP) vet 1,11)+SUY iU4/1PAR1 100 FORWA 500 FO 105 4007 5000 6000

03/04/14 ID.FOCDIC.SQUACE.NOLIST.NODECK.LOAD.NJHAP 129, FROGRAM SIZE # 1114 GORTSAN IV G LEVE.

PAGE 0003

```
03/04/14
                       SUBROUTINE ARRAY
INT=GER X(7,150), Y(7,150), COUNT(16), TIME(16,250), HOLE
CQMMON/AREA1/X,Y,COUNT, TIME, ICARD
DO 3 J=1,ICARD
DO 2 I=1,7
TE(Y(I,1), LT,500, DR,Y(I,J), GT,2000) GD TD 2
HOLE=X(1,J)
COUNT(HOLE)
AIME(HOLE)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             540
= 76101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DATE = 76101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FFCT* ID.FBCDIC.SOURCE.NOLIST.NODECK.LOAD.NOMAP
FFGCT* NA ME = ARRAY . LINECNT = A0.
STUPCE STATEMENTS = 14. FPGGRAM SIZE = ND DIAGNOSTICS GENERATED
 DATE
  ARRAY.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ARRAY
    2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         I BEFECT*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     THAT IN C LEVEL
   G LEVFL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  * 51 SNUIT CU *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             * ST AT 15T1 CS*
    2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           S'NOI L GU #
   FOR TE AN
                                                                                                                                                           00 12
00 13
00 14
                           00.00
                                                                                                                                                                                                                                                               163
                                                                                                                                                1100
```

PAGE OOG

PAGE CC

4_

```
03/04/14
00 7 12=1,20
SUYSO=(DATA(SYRNO,IN,OUT,ANGLE,12)-TWEAN)++2+5UMSO
STO=V=SORT(SUMSOZ19,)
GETUGN
                                                                                                                                                                                      IF (IPER 66 T-20)GO TO 5
CALL 9ANDU(IXI+IYI+RI)
IXI=IYI
CALL PANDU(IX2+IY2+R2)
IXP=IY2
V=(-2+0*ALOG(RI))**Ö+5*COS(6+283*R2)
N=(-2+0*ALOG(RI))**Ö+5*COS(6+283*R2)
                                                                                                                                                                                                                                                                                                                                                                70 6 11-1,20
TS JY=DA TA (SUBNO,IN,DUT,ANGLE,II) +TSUM
TYFAN=TSUM/20,
                                                                                                                                                                                                                                                                                      12' = IPAR /2+10

DO 4 I = 1,20

DA TA(SUBNO,IN, BUT, ANGLE,I) = YY(123)

120=120-1
                                                                                                                                                                JA TA ( SUAND.I N.OUT.ANGLF.I) =YY(I)
                                                                                                                                        IPAR.GT.20) GO TO 1
                                                                                                                                                                             043=10AF+1
                                                                                                                                                                                                                                                                                                                                                                                                    5U''S0 = 0.
                                                                                                                                                                                                                                                                                                                                       CONTINUE
                                                                                                                                                                                                                                                                                                                                                      SUM=C.
                  IV G LFVFL
                  FOW TP AN
                                          9,01
```

ပ္

PAGE

2. Program Subroutine FDHINT to plot

Histogram for every experimental condition

```
SUBROUTINE FOMINT (X.N.NTYPE.TITLE)

(1)-- X = THE INPUT VECTOR. ORDERED L TO H

(2)-- N = THE NUMBER OF OBSERVATIONS < X(N) >

(3)-- NTYPE < 0 ==> FO TABLE: GRESTER THAN ZERO ==> FO TABLECHIST

(4)-- TITLE = ONE CARD OF INFORMATION AS A HEADING

COMMON/SFOHIT/JINT.F. MAX.MIN.RANGE.XINT.EMEAN.INTMEN.ESTOVN.EMED

COMMON/SFOHIT/JINT.F. MAX.MIN.RANGE.XINT.EMEAN.INTMEN.ESTOVN.EMED

COMMON/SFOHIT/JINT.F. MAX.MIN.RANGE.XINT.EMEAN.INTMEN.ESTOVN.EMED

COMMON/SFOHIT/JINT.F. MAX.MIN.RANGE.XINT.EMEAN.INTMEN.ESTOVN.EMED

COMMON/SFOHIT/JINT.ECO..COMPO (20).FOLOO).COMPO (20).LINE/*--*/

INTEGERE/(ZCI.D(20).FDL(20).FDL(20).FDL(20).CHINFQ(20).Y(2C).GO.TOP

FAROT.RANGE.X(N).SUMFD.SUMFD2.FACTOR.CLINTI.XINT.B.INTVL(5)/1.2.3.5

INTEGEREXMAX.X/Z7FFFFFFFF/

LDGICALJUMP
                       0000
                                                                                                                                                                                                                                                                                               20000
                                                                                                                                                                                                                                                                                               30000
  163
                                                                                                                                                                                                                                                                                                50000
                                                                                                                                                                                                                                                                                               60000
                                                                                                                                                                                                                                                                                               80000
                                                                                                                                                                                                                                                                                           1 00000
                                                                                                                                                                                                                                                                                           110000
                                           INTEGERXYMAXX
LDGICALJUMP
SUMFD=0
SUMFD2=0
N2=N/2
TDP=X(N)
50T=X(1)
RANGE=TDP-50T
FACT==-1
  168
169
170
171
172
                                                                                                                                                                                                                                                                                             20000
                                                                                                                                                                                                                                                                                              50000
                                                                                                                                                                                                                                                                                           170000
                                                                                                                                                                                                                                                                                               80000
                                                                                                                                                                                                                                                                                           190000
                                            ATE INTERVAL WIDTH ==> 10 TO 20 INTERVALS. MAXIMIZED IF(RANGE.GT.15)GOTO10003 INTERVALS.
                                                                                                                                                                                                                                                                                          210000
 177
178
179
                   IF(PANGE.GT-15)GOTG10003
INT=PANGE
GOTD10005
INT=FANGE/FACTOR

DQ 00004 = 1.8
INV=CLINTIVINTVL(1)
IF(INT.EC.0)GOTD10004
IF/INT.GE.10.AND.INT.LT.10)GOTG10005

00004 CONTINUE
FACTOR=FACTOR=10
GOTG10003
PACTOR=FACTOR=/10
IF(FACTOR.NE.0)GOTG10003
PAINT=0000

SCOOD FORMAT("-CXN.*T COMPUTE SUITABLE INTERVAL WIOTH*)

GOOS JINT=INT+1
XINT=INTVL(1) *FACTOR
CALCULATE STARTING VALUE FOR BCTTCM OF FIPST INTERVAL
NBOT=90T/XINT
GO=XINT*NBOT
IF(FACTOP.GT.1)FACTOR=1
IF(GO+XINT.LE.BOT)GO=GO+XINT
IF(FACTOP.GT.1)FACTOR=1
IF(GO+XINT.LE.BOT)GO=GO+XINT
EXCLS(1.1)**GO
NXINT*XINT-1
CXLC(1)**GO+XINT/2.
IF(GO+XINT*JINT.LT.*TOP)JINT=JINT+1
D090006K=2.JINT
KM 1=K-1
EXCLS(K,1)**FXCLS(KM1+1)+XINT
                                                                                                                                                                                                                                                                                           220000
                                                                                                                                                                                                                                                                                           230000
 151
152
152
153
154
155
                                                                                                                                                                                                                                                                                           250000
                                                                                                                                                                                                                                                                                           260000
                                                                                                                                                                                                                                                                                          270000
                                                                                                                                                                                                                                                                                           20000
                                                                                                                                                                                                                                                                                          290000
                                                                                                                                                                                                                                                                                          300000
 186
167
198
 189
                                                                                                                                                                                                                                                                                          34000C
                                                                                                                                                                                                                                                                                          350000
191
192
193
194
                                                                                                                                                                                                                                                                                          340000
                                                                                                                                                                                                                                                                                           370000
                                                                                                                                                                                                                                                                                         380000
195
196
197
                                                                                                                                                                                                                                                                                          430cao
                                                                                                                                                                                                                                                                                         440000
450000
450000
470000
480000
 198
20 i
20 2
                                                                                                                                                                                                                                                                                         4 90000
203
204
                                                                                                                                                                                                                                                                                         500000
205
206
207
208
                     DU 90000RE2.JINT

KM 18K-1

EXCLS(K+1) = FXCLS(KM1+1) + XINT

FXCLS(K+2) = FXCLS(KM1+2) + XINT

90006 CM ID(K) = CMID(KM1) + XINT

CALCULATE FPEQUENCIES IN THE INTERVALS
209
                                                                                                                                                                                                                                                                                        560000
570000
210
211
212
                                          K=1
                                                                                                                                                                                                                                                                                         580000
                                          PRINTE 100. N

*****CALCULATION OF MEAN, ST. DEVN., AND MEDIAN
                                                                                                                                                                                                                                                                                         590000
213
214
215
216
217
218
220
                                         EMEAN=0.
DD800I=1.N
                                          EMEAN=EMEAN+XCI-)
                                                                                                                                                                                                                                                                                        630000
                      BOG
                                                                                                                                                                                                                                                                                         640000
                                         SUM=0.

DO 801 I=1.N

SUM=5UM+(SMEAN-X(I)) ##2.

ESTDYN=507 T(SUM/(N-I))

EMED=X(N2+1)
                                                                                                                                                                                                                                                                                        650C00
                                                                                                                                                                                                                                                                                        650000
670000
580000
                     108
221
222
223
224
                                                                                                                                                                                                                                                                                        190000
                                          # X=0

#A X=0

#A X=0

#IN=XXMA XX
                                                                                                                                                                                                                                                                                        720220
                                                                                                                                                                                                                                                                                        710000
                                          JUMPESTRUE.
HERE FIT OBSERVATION INTO PROPER CLASS,
                                                                                                                                                                                                                                                                                        730000
740000
225
                                         DOGCOOBIE! JINT
B=EXCLS(I.2)
IF(EMEAN.GT.E)INTMEN=I+1
226
227
228
                                                                                                                                                                                                                                                                                        760000
220
                                                                                                                                                                                                                                                                                       790000
                                         D0 90007J=K .M
                                                                                                                                                                                                                                                                                        800000
```

```
18(X(J).GT.B)GOTO10008
231
222
273
274
235
                                                                                                                                                                                                                                                                                                                                                                                                                                   820000
830000
                               90007 NFIENT 101

IF(I-NE-JINT)NFIEO

1000F F(I)ENFI

IF(NFI-GT-MAX)MAXENFI

IF(MIN-GT-NFI)MINENFI
                                                                                                                                                                                                                                                                                                                                                                                                                                    840000
                                                                                                                                                                                                                                                                                                                                                                                                                                     250000
                                                                                                                                                                                                                                                                                                                                                                                                                                     050000
236
237
238
239
240
                                                                                                                                                                                                                                                                                                                                                                                                                                     870000
                                                                  IF(NFI .LT. 5) JUMP=.FALSE.
                                                                                                                                                                                                                                                                                                                                                                                                                                     880000
                                                                                                                                                                                                                                                                                                                                                                                                                                     A 90000
                               KeJ
NCUMFENCUMF+NFI
CUMFD(I) =NCUMF
PRINTA3.TITLF.TOP.BOT.RANGE.XINT.SEMEAN.INTMEN.ESTOVN.TMED
PRINTA3.TITLF.TOP.BOT.RANGE.XINT.SEMEAN.INTMEN.ESTOVN.TMED
PRINTA3.TITLF.TOP.BOT.RANGE.XINT.SEMEAN.INTMEN.ESTOVN.TMED
PRINTA3.TITLF.TOP.BOT.RANGE.XINT.SEMEAN.INTMEN.ESTOVN.TMED
PRINTA3.TITLF.TOP.BOT.RANGE.XINT.SEMEAN.INTMEN.ESTOVN.TMED
PRINTA3.TITLF.TOP.BOT.RANGE.XINT.SEMEAN.INTMEN.ESTOVN.TMED
PRINTABAL.TOP.BOT.RANGE.XINT.SEMEAN.INTMEN.ESTOVN.TMED
PRINTABAL.TOP.BOT.RANGE.XINT.SEMEAN.INTMEN.ESTOVN.TMEN.ESTOVN.TMED
PRINTABAL.TOP.BOT.RANGE.XINT.SEMEAN.INTMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.ESTOVN.TMEN.E
                                                                K=1
                                                                                                                                                                                                                                                                                                                                                                                                                                     900000
                                                                                                                                                                                                                                                                                                                                                                                                                                     910000
                                                                                                                                                                                                                                                                                                                                                                                                                                      920000
  241
242
                                                                                                                                                                                                                                                                                                                                                                                                                                     OCCOO
                                                                                                                                                                                                                                                                                                                                                                                                                                      950000
  244
245
                                                                                                                                                                                                                                                                                                                                                                                                                                      570000
                                                                                                                                                                                                                                                                                                                                                                                                                                       990000
  247
245
249
250
                                                                                                                                                                                                                                                                                                                                                                                                                                  1600000
                                 SUMPDESUMPOFISH

IJFIJ=1J==1J

FD2(I)=IJFIJ

SUMFD2=SUMFD2+IJFIJ

WRITE(6.40005)(LINE.L=1.33)

X=JINT+1
                                                                                                                                                                                                                                                                                                                                                                                                                                  1010000
                                                                                                                                                                                                                                                                                                                                                                                                                                       030000
   251
252
253
254
                                                                                                                                                                                                                                                                                                                                                                                                                                   1040000
                                                                                                                                                                                                                                                                                                                                                                                                                                        1-0000
                                                                   D0 80 C0 21=1.JINT
                                                                                                                                                                                                                                                                                                                                                                                                                                   1060000
                                  DO BOCC21=1.31A

LHK-I

FDDCT=F(L) #10C./N

8C002 DRINT4C004.L. SEXCLS(L.1) .EXCLS(L.2) .CMID(L), F(L), FDRCT.D(L).FD(L).F

#D2(L).CUMF(L).CUMFP(L)

DD INT4CC5.(LINE.I=1.33)

PRINT4CC5.SUMFD.SUMFD2

IF(JUMP)GOTD77777

CALLCHIGED(F.JINT.Y.NINT.CHINFQ)

IF(NINT.NE.1)GOTD80003

DRINT40021

GOTD902
    255
                                                                                                                                                                                                                                                                                                                                                                                                                                  1080030
    256
     258
259
                                                                                                                                                                                                                                                                                                                                                                                                                                    1120000
     260
                                                                                                                                                                                                                                                                                                                                                                                                                                   1146000
     261
262
263
254
                                   GOTO 902

8000 3 PRINTAG.NINT (CHINFO(I) | 1=1 NINT)

GOTO 779

777$7 NINT=JINT
                                                                                                                                                                                                                                                                                                                                                                                                                                     1160000
      265
                                                                                                                                                                                                                                                                                                                                                                                                                                     1190000
     266
        267
                                                                    CO777I=1.WINT
CHINFQ(I)=F(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                       1210000
      268
      269
270
271
                                                                                                                                                                                                                                                                                                                                                                                                                                        220000
                                                                                                                                                                                                                                                                                                                                                                                                                                       1240000
                                    K=0
CALCULATION OF CHISO TESTS
DO708L=1.NINT
XF=0.

K=CHINFG(L)+K
DO7C71=J-K
XI=X(I)
IF(XI.LT.EMEAN)INTMEN=L
POSSIBLE ERROR MERE
7C7 XF=XF+XI
CHINWY: | XXF/(K-J+1)
                                                                    K=0
                                                                                                                                                                                                                                                                                                                                                                                                                                      1250000
                                                                                                                                                                                                                                                                                                                                                                                                                                       1290000
                                                                                                                                                                                                                                                                                                                                                                                                                                       1300000
                                                                       CHINAN(F)=XE\(K-1+1)
                                                                                                                                                                                                                                                                                                                                                                                                                                        1340000
                                                                                                                                                                                                                                                                                                                                                                                                                                        1350000
          280
                                       708
                                                                       J=K+1
                                                                         MAXFO + CHINFO ( INTHEN)
                                                                                                                                                                                                                                                                                                                                                                                                                                            360000
         281
282
293
284
                                                                       EU=N=1./NINT
CHINHL=C.
                                                                                                                                                                                                                                                                                                                                                                                                                                        1370000
                                                                                                                                                                                                                                                                                                                                                                                                                                        1360000
                                                                       CHIUNF=0.
DD 901 I=1.NINT
IF=CHINFO(I)
XF=IF
                                                                                                                                                                                                                                                                                                                                                                                                                                         1400000
          285
286
                                         IFECHINFO(1)

XFE PE

CHIXMNECHINNN(1)

XGEXF /MA XFG#0.3969423

XXEARS(CHIXNN-EMEAN)/ESTDVN

ENDO.3969423 = FXP(-0.5 = XX = XX)

CHINML=CHINML+(XG-EN) **2/EN

901 CHIUNF=CHINML+(XG-EN) **2/EU

DO INTACHICHINHL-CHIUNF

002 IF(NTYPE.GT.C)CALLHISTGM(TITLE.NTYPE.N)

RETURN

43 FORMAT('IFREQUENCY DISTRIBUTION FOF*.20 AA/'O MAXIMUM =*.110."

a MINIMUM = *.110." RANGE **.*110." INTERVAL WIDTH =*.110/'O

a MINIMUM = *.110." RANGE **.*13." ST. CVN. = *.612.5." MED

**MEAN = *.612.5." IN INTERVAL **.*13." ST. CVN. = *.612.5." MED

**IAN = *.612.5." IN INTERVAL **.*13." ST. CVN. = *.612.5."

**IAN = *.612.5." IN INTERVAL **.*13." ST. CVN. = *.*.*10."

**FEOUENCIES DF **.*10X.**D**.9X.**FD**.4X.**FEOD=2**.*T122.**CJM F - X*/!

**FEOUENCIES DF **.**O**.8X.**2016)

APT FORMAT('O FISONORMAL =*.612.5." CHISO JNIFORM =*.G12.5!

**ACOUENCIES DF **.**O**.8X.**2016)

APT FORMAT('C CHISO NORMAL =*.G12.5." CHISO JNIFORM =*.G12.5!

**ACOUENCIES DF **.**O**.8X.**2016)

**APT FORMAT('C CHISO NORMAL =*.G12.5." CHISO JNIFORM =*.G12.5!

**ACOUENCIES DF **.**O**.8X.**II.0."**TO**.1X.**II.0.**TX.**G12.5.**JX.**18.**JX.**F8.**2.**3(3X.**E15).**ZX.**IE.**IX.**F6.**2)
                                                                                                                                                                                                                                                                                                                                                                                                                                        1410000
                                                                                                                                                                                                                                                                                                                                                                                                                                         1430000
           288
289
                                                                                                                                                                                                                                                                                                                                                                                                                                          1440000
                                                                                                                                                                                                                                                                                                                                                                                                                                          1450000
           290
          291
292
293
294
295
                                                                                                                                                                                                                                                                                                                                                                                                                                          1460000
                                                                                                                                                                                                                                                                                                                                                                                                                                          1470000
                                                                                                                                                                                                                                                                                                                                                                                                                                              490000
                                                                                                                                                                                                                                                                                                                                                                                                                                          1500000
           296
                                                                                                                                                                                                                                                                                                                                                                                                                                              520000
           297
                                                                                                                                                                                                                                                                                                                                                                                                                                           1540000
                                                                                                                                                                                                                                                                                                                                                                                                                                          150000
157000
150000
150000
           298
                                                                                                                                                                                                                                                                                                                                                                                                                                             1600000
             300
```

```
SUBROUTINECHIGRP(F.JI,NT.Y.NINT.CHI,NEQ)
  305
  306
                INTEGERF (JINT) . Y( JINT) . CHINEQ( JINT )
  307
                TNIL=TNIN
  30 B
                DO 598 I=1.JINT
  309
            598
                Y( [)=F( [)
  310
                IF(NINT.GT.3)GO TO 599
IF(NINT.GT.2)GO TO 777
           597
  311
                IF(Y(1).LT.5.OR.Y(2).LT.5)G0 T0 4
  312
  313
               DO 3 I=1.NINT
  314
                CHINFO(I)=Y(I)
  315
                RETURN
 316
               NINT=1
 317
                CHINFO(1)=Y(1)+Y(2)
  31 A
                RETURN
                IF(Y(1).GE.S.AND.Y(2).GE.S.AND.Y(3).GE.5)GC TO 2
IF(Y(1).LT.51GO TO 6
Y(2)=Y(2)+Y(3)
  319
  320
 321
  322
                IF(Y(2).LT.5)00 TO 4
 323
             5 NINT=2
 324
                60 TO 2
 325
                Y(1)=Y(1)+Y(2)
 32€
                (E)Y=(S)Y
 327
                IF(Y(2)-LT-5-OR-Y(2)-LT-5)GO TO 4
 328
               GJ TO
 329
           599 IHALF=NINT/2
 330
               K SP0 T= 2
 331
               L=1
 332
               M=Y(1)
           600 IF(4.GE-5)GO TO 601
 .333
 334
               M=M+Y(KSPOT)
 335
               KSPOT=KSPOT+1
 336
337
          601 CHINFO(L)=M
 338
               L=L+1
 339
340
               ¥=Y(KSPOT)
               K SPOT=K SPOT+1
          SOZ IF(KSPOT-LE-IHALF)GO TO 600
 341
 342
               CHINFO(L)=M
 343
               L=L+1
 344
               リニL
345
346
               M=Y(NINT)
               K SPCT=NINT-1
 347
              IF(M.GE.5)GO
M=M+Y(KSPOT)
                              TO 701
 348
 340
               K SPO T=K SPO T-1
 350
               GD TD 770
 351
          701 CHINFO(L)=M
352
               L=L+1
353
              M=Y(KSPOT)
354
              KSPOT=KSPOT-1
          770 IF(KSPOT+GT+IHALF)GO TO 700
355
 356
              NMJK=J-1
357
              IF(M.GE.S.AND.CHINFO(NMJK).GE.5)GD TO 702
358
              KF SPOT=K SPOT+1
359
               IF(NMJK.NE.KFSPOT)GO TO 778
360
              M=Y(KFSPOT+1)
361
              L=L-1
362
              CHINEO(NMJK)=CHINEQ(NMJK)+M
363
              L=L-1
GD TO 703
364
365
             CHINFO(L)=M
366
          703 M=(L-NMJK)/2
367
              IF(IABS(M).E0.0)G0 T0 99999
368
                  704 I=1.M
              DO
369
              IK=L+1-1
370
              IM=NMJK+I
371
              NSKIP=CHINFQ(IM)
372
              CHINFO(IM)=CHINFO(IK)
373
              CHIVEOLIK)-NSKIP
374
       93999
             NINTEL
375
              IF(CHINFQ(NMJK).GE.5) RETURN
376
             DO 705 I=1.L
Y(1)=CHINFQ(1)
377
         705
378
              GO
                 TO 597
379
              END
```

```
380
                 _SUBPOUTINEHISTGM(TITLE.LINES.IN)
                  INTEGERF (20) . Y(20) . JUNK(5)
PEALCH ID(20) . TITLE(20) . LINE / -
381
 392
                                                                    " " " BLANK/
                                                                                                   SSSS* Z. GRADH
                 1(20)
383
                  COMMON/SFOHIT/JINT.F.MAX.MIN.JUNK
            COMMON/FOHSSE/Y.CMID
DD 333 III=1.20
333 GRAPH(III)=BLANK
384
385
386
387
          30000
                  WRITE(6.40006) TITLE
                  IF (MIN .EQ . C) MIN=1
388
         50003
339
                  NMA X=MA X-M IN+ 1
390
                   SCALE=FLCAT(LINES-7)/FLOAT(NMAX)
                  SCALE=FLCAT(LINES-///FLUMI(NMAA/
SC=1./SCALE;
DO 334 J=1.JINT
Y(J)=(F(J)*SCALE+.5)
N=LINES/30
N=LINES/30
IF((LINES-N*30).LE.3*(N-1))N=N-1
NSKIP=N*73+30-LINES
391
392
393
 394
375
396
            297 IF (NSK 1P.NE. 0) PRINT4 CC20. (I.I = 1.NS KIP)
298 K= (MAX + SCALE + 1.5)
397
398
                  FREQ=MAX+1GC./IN
399
400
                  L INF S≃L INE S-7.
401
                  90 80005 I=1.LINES
402
                  LL=K-I
403
                  IF(LL.EG.0)GD 'TO 6COO'1
                  DO 80004 J=1.JINT
IE(Y(J).FQ.LL)GRAPH(J)=$$$$;
WRITE(6.40007)FREQ.GRAPH
ADA
405
406
407
          80005 FREQ=FREQ-SC *100./IN
                  M=7+5+JINT/4
408
409
         60301
                  WRITE( 6.4005)(LINE.I=1.M)
                  (E. TAIL. 1=M. (M) GIMD) (80004.6) THE (E. TAIL. S=M. (M) GIMD) (80004.6) THE (E. TAIL. S=M. (M) GIMD) (80004.6)
410
411
412
                  WRITE(6.40010)(CMID(M).M=3.JINT.3)
413
                  LINE S=LINES+7
         SOCOL RETURN
414
         40005 FORMAT( * *.33A4/) -
40006 FORMAT( * 1HISTOGRAM F CR. *.20A4//)
415
416
         40007 FORMAT(F9-2,9X,20A5)
417
418
         40008 FORMAT(
                                  FRED *.6X.7(G12.5.3X))
416
         49.00 Q
                 FORMAT( * +,19X.7(G12.5.3X))
#5¢
         40C10
                  FORMAT( * .. 24x,7(G12.5,3X))
421.
                                *-A13
         40020
                  FORMAT( .
422
                  END
```

SENTRY

Sample Histogram of Experimental Data including Distribution Statistics

	•	
,	0°	
128, PEAN OF SAMPLE = 876. N FOR	417 INTEPVAL WIDTH =	H€DIAN = 829.00
IANGE T	417	
4 OFPEAFORM	730 RANGE*	128.20
E = 876. HISTUGRA	730	ST. DVM.
SAMPL		•
8. WEAN DF R	HINIMUM *	IN INTERVAL 6, ST. DVH. = 128.20
10N = 12	1147	•
DEVIAT) }	876.3(
STANDARD DEVIATION # 1	MINISTER	HEAN = 876.30

INT. MO.	EXACT LÍMITS	115	HI 0-P01 NT	1 12. 1		0 1	C	F + D + + 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	K 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	k
1 1 1 1	t 1 1 1 1 1 1 1 1 1	1 1 1 1	: : : : : :			c		18	20 1	20 100.00
	OF OF 1	1169	1154.5	-	2.00	•			Q	9
r.			***	-	2,00	80	æ	*		200
<u>*</u>	1110 TO	1139			0	^	0	c	18	00.06
1.3	1060 TO	1109	1094+5	5		. •	•	9	1 0	90.00
	1050 10	1079	1004.5	-	2.00	c	٠.	;		84.00
<u>.</u>		0001	034.5	0	00.0	ស	0	•	•	
-	01 0201				00.8	4	•	<u>9</u>	11	A5.0C
0.	990 10	1019	1/004.5	- ,		r	10	1.8	91	A0.00
đ	540 10	686	. 44.50	N	00.01	;	•	•	•	70.00
,		9	944.50		00.0	œ.	Ь	•		
Ø	930 10	*0.6		-	5.00		-	-	•	.0°0%
	01 00¢	929	00.419	• •		c	•	0	£ 1	63.00
, •	670 TO	668	A 84 • 50		00.	•	1	8	13	65.00
•		869	A 54 4 50	N.	10.00	-	•		-	65.00
n 17		0.5	824.50	M	15.00	-2	91	-	•	
* 71		600		7. 17.	15,00	ri I	6	2.7	60	40.00
•	780 10	608	00.446.2	; r		4	1 2 2	48	ĸ	25.00
,	750 10	119	7 64 , 50	*1	00.0	- u	011	٠. د.	~	10.00
-	720 TO	749	734.50		1 1000	1 1		1 1 1 1	1 1 1	† -
1 1 1 1	1 1 1 1 1 1 1 1	; ; ;				5 7 T S	II.	355		

REGROUPED FOR CHISO TESTS TO GIVE 3 INTERVALS WITHFREQUENCIES OF

CHISO UNIFORM = 1+3000 CHISO NORMAL = 0.710596-01

\simeq
F
-
A
GR
ST
-

HISTOGRAM OFPERFORMANCE TIMEFOR MAINSTUDY

TIME

SEX

លស្នាសាស្ត្រសាស្ត្រសាស្ត្រសាស្ត្រសាស្ត្រ

										1.5.1	* * *		3 5 5	t t		1154.
	•								***	8 5 5 5	*	*	4444	t t t	1124.5	-
				-				•	2555	\$33\$	5555	\$55 \$	\$118	1094.5	ល	1064.5
					-		•		2 6 6 6	\$ 12.5 E	\$44\$	\$ \$ 5 5	1988	04.5	1034.5	: :
					\$ 2 2 2	5525	£ 22 %	1.51.5	6555	Ų.	2323	5555	\$ \$ \$ \$	1004		974 •50
			•							~				1 1	944 .50.	6
									\$15\$	5155	4144		\$515	914.50	746	
					5555	\$55\$	44	14	\$555	\$	ю	5553	. \$555	! !	854.50	884 • 50
5551	551.5	\$1 5 8	\$ \$ \$ \$ \$	\$ \$ \$ \$	\$ \$ \$ \$ \$	\$335	\$ 1 1 5	\$ 1 1 5	21.18	\$1 53	\$ 9 P S	\$ \$ \$ \$	2223	50	9	
4155	4545	\$ 4.55	4.654	\$\$\$\$	\$\$\$\$	\$\$\$\$	\$\$\$\$	5555	23.4.8	2553	\$443	\$\$\$\$	\$33\$	824		94.50
<u>بر</u> بو	*1	4	₩	4	\$ \$ \$ \$	\$	₩ ₩	₩;	•A •∻	44	\$	\$	4	l t	4.50	~
٠.		•			49	\$	ي. دو	ű,	5555	\$	\$ 5	۶÷	₩	734.50	76	
									•		•			! ! !		
5.0	3.9	φ.	1.7	0.7	49.6	សំ	ŝ	4		4.2	Ş	-	1.07	FREO		

ı

				т т	1 . 1 . 1	20 100.90	96.00	99 • 00	85.00	00.00	80 + 00	75.00	70.00	55.00	30.00	20.00	2.00	2.00
			••) O	1 1	20	0.	61	1.7	91	91	÷.	₹.	=	٥	•	=	-
				F + D + + 2	i i i ' i i k	64	•	50.	<u> </u>	0	•	-	o	, VC	c	27	0	52
	,			<u>.</u>	1 1 1 1 .		c	10	4	0	N	-	0	ı,	7	6-	•	S
~	30			o	1 1 1 1	7	ું	- ເ ດ		M	œ	-	•	7	2	£.	4	ស្
HAINSTUDY	INTEFVAL WIDTH =	1 = 742.00	• .	ж Ж	1 1 1 1 1 1	5.00	00.0	10.00	5.00		2.00	5.00	15.00	25.00	09.01	15.00	00.0	5.00
E T IMEFOR	JBU INT	HEDIAN =		· L	! ! !	-	0	2	-	0	-	-	£ /	IS	/ *	n	•	-
PPLE = 766. HISTOGRAM OFPERFORMANCE TIMEFOR WAINSTUDY	606 RANGE= 3	ST. DVH. = 94,319		HI D-POINT	1 1 1 1 1 1 1 1	974.50	944.50	914.50	884,50	954.50	824.80	7 94 . 50	7 64 . 50	734.50	7,04.50	674.80	644.50	614.50
¢ DEVIATION # 94. MEAN OF SAMP DISTRIBUTION FOR	986 HINIHUM =	IN INTERVAL 6.		FXACT LIMITS	1	989 70 989	930 TO 959	900 TO 929	e70 TO 899	840 TO 069	610 TO 839	780 TO 609	750 TO 779	720 TO 749	612 01 059	660, TO 689	630 TO 659	600 TO 629
STANDARD DEVLATION FREGUENCY DISTRIBUT	MAXIMUM = 9	HEAN = 766.05	•	INT. NO.	1 " 1	13	. 12	11		6.	8	.	•	ស	•	r 17.	N S	

CHISO UNIFORM × 1.3000

REGROUPED FOR CHISO TESTS TO GIVE 3 INTERVALS WITHFREQUENCIES UP

		100	~	10	~	ř	_		•	•	•	•	•	•	•	. •	•	•	801.0	•
CYCLE	-	~:	m	¢	יט	c	7	œ	5	10		12	13	7 -	15	9 7	1 7	- -	6-	0
H.0UT=1D	~ ∶	0	ત્ય	<u>ر</u>	α,	∼ ≀	٠. من	ત્ય		~	∾ '	~1	α,	~ .	~:	⊘ t	2	ഡ	24	N
SUBJ. NO.H.IN=LOGS(N)		~ .	~.	u c	~ .	V (→ .	→•		~ ·	~ .	→ •	→ •	.	~ ·	→ .	- ·	· ·	.	! / Z
•	-			• •	~ <i>-</i> -		٠.		-		-	-	- ۱	- ٠	- ۱	-	-		-	•

MAINSTINA
TIMEFOR
OFPERFORM ANCE
HISTOGRAM

HISTOGRAW FOR

_		,	
r	٦		ŧ

•		· ·	
		•	
	•		
	ů.		`.
} •			
STAKIDARD DEVIATION = 143. PEAN OF SAMPLE = 952. FREQUENCY DISTRIBUTION FOR	INTERVAL WIDTH =	MEDIAN = 910.50	
ice ii	503		•
OFPEQFORMA	791 RANGE≃	ST. DVM. = 143.18	. •
952. 068 AH	~	₽	
HI ST	191	T. 0	
AMPLE			
OF S	n	Ġ	
WEAN	HINIHOH =	IN INTERVAL 6.	,
143. FOR	I	21	•
IATION =	1291		
DEV 0 1S	13	951	
STAMBARD	MAX INUM	MEAN = 951.60	

HI C-POINT

EXACT. LIMITS

INT. NO.

1 1 1 1		2 4 A A L	-	3,00	12	2	<u> </u>	
1290 TO.	1319	C • F DC •	• •		•	•		19 95,00
1260 TO	1289	1274.5	;	00.0	•	, .		
1230 TO	1259	1 244.5	0	00:0	. 10	o	o	
ו מיסו	1229	1214.5	•	00.0	C r	•	•	19 95.00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, 000	. 194.5	0	00.0	CC	0	•	19 95,00
01 0/11		¥ .	• •	10.00		*	98	19 95.00
1140 10	1100	1	•		•		YE .	17 85.00
1110 70	1139	1124.5	-	5.00	c	Ç	5	
1000 10	1109	.1094.5	1	5.00	ທົ	ហ	Ma Maria	30.08 31
1050 10	1079	1064.5	-	2.00	₹	•	91	15 75,00
1020 10	1049	1034.5		00.0	Ð	e	0	14 70.00
0.055	1019	1004.5	Ο.	00.0	Q		o	14 70.00
940 10	989	974450	0	00.0		c	0	14 70.00
930 10	959	944.50		00.0	0	°.	c	14 .70.00
OT 005	626	914.50	ស	. 2E.00	ī	٠ د د	, '	14 70.00
670 TO	669	884.50	-	00*5	-2	№ . 1	*	9 45,00
640 10	869	964150	*	13, 20.00	E I	-12	36	30.04 R
010 TO	628	824.50	n	15.00	4 1	21-	€ .	4 20.00
280 10	809	7.94.50	-	2.00	\$ 	1 10 1 1 1		00.0

REGROUPED'FOR CHISO TESTS TO GIVE '3 INTERVALS WITHFREQUENCIES OF

CHISO NORMAL = 0.2822\$

CHISO UNIFORM # 0.70000

HISTOGRAH OFPERFORMANCE TIMFFOR HAINSTUDY

HISTOGRAM FOR

	•			CUM F - X		
	٠	,	•	F + D + + 2	1	- -
	. 50			FO	1 1 1	٥
•	•		•	٥	1 1	c
HEFOR HAINSTUDY	INTERVAL WIDTH =	HEDIAN = 778.50		* L.		2, 5,00
HANCE FI	5.34			•	1. 1.	•
STANDARD DEVIATION = 1.10. FEAN OF SAMPLE = 815. FREOVENCY DISTRIBUTION FOR HAINSTURY HISTOGRAM OFFERFORMANCE LIMEFOR MAINSTURY	691 RANGER	ST. DVM. # 130.31	•	-410-POINT	ı	1274.5
110. VEAN OF SAMPI N FOR	HINIHUN =	IN INTERVAL 4.		FXACT LIHITS	7	1260 TO 1299
DEVIATION = DISTRIBUTIO	= 1275	815,45			i . i	
STANDARD FREGUENCY I	# MAXI4IM #	MEAN = 815,45		INT. NO.	1 1 1 1 1 1	13 .

										-		
100.00	05.00	94.00	95.00	95.00	95.00	95.00	.95,00	00.06	70.0n	55.00	35.00	10.00
20	6	-	6.	19	6	6	ĵo I	9	4.	=		~
18	٥	٥	0	•	0		•	,*	0	4	02	1.8
٥	0	0	0	0	c	o	e Q	•		•	01-	
c	8			, 10	* .	Ю	N	-	•	, T	CV 1	m -
5.00	00.0	00.00	00.0	00.0	00.0	. 00*0	5.00	20.00	15.00	20.00	25.00	10.00
. –	۰	•		0	0	۰	-	4	m	∢.		
٠					•			•		•		1
1274.5	1 224 . 5	1174.5	1124.5	1974.5	1024.5	974.50	924.50	874.50	824.50	774.50	724.50	674.50
L			•	_)
1299	1249	1199	4149	6010	1049	666	949	899	849	799	749	669
1260 TO	1200 TO	. 1150 TD	1100 TO	1050 TO	01 0001.	550 TO	01 006 '	£50 TO	, 800 TO	750 TO	2C0 TO	650 TO
,	•				``.	•	a.					1 1
13 '	12	=	01		6 0	۲.	9	so	•	m	2	- 1 - 1

REGROUPED FOR CHISO TESTS TO GIVE 3 INTERVALS WITHFREAUENCIES OF

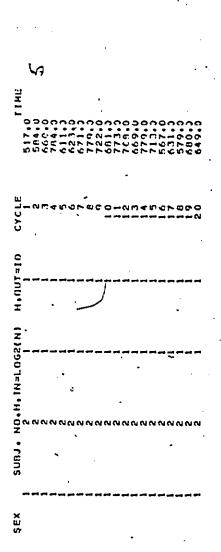
CH150.UNIFORM = 0.10000E 00 CH150 NORMAL = 0.89644E-01

	•,	•	• .	•	• .	·	* * *	274.5
	• •		•					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
. I	4			MA,INS TÜ DY		•		.5 1174.5
+	836 436 731 732 732 732 732 732 732 732	7227 8920 8828 8788 7788 6000 1186 1186 1186 1186 1186 1186 11	691.0	TIMEFOR M			1	1074.5
E LOYO	-מבפשה י	16694WW-001	200	OF PERFORMANCE			: ا ا جب جب ا جب جب جب در جب جب	974 - 50 1024 50
H.OUT=10'	រ	กตลตลตลตล		STOGRAM OFPER			1 50 50 50 50 50 50 50 50 50 50 50 50 50	
062(N)			77	HISTOG		4 44 44 44 44 4 44 44 44 44 4 44 44 44 4		824.50 4.50
INI		•	,	e _a		1) 12 14 14 14 14 14 14 14 14 14 14 14 14 14	**************************************	4.50
HON FERNS	ผลผลผลผล	N ณ ณ ณ ณ ณ ณ ณ ณ ณ	ณพพ	•	•	44 45 45 46 49 46 49 46	*****	674.50
ທ	। ्र जिल्लाम्बर्गास्य स्टब्स्ट्रस्य स्टब्स्	, 		FOR			11	•
SEX				HISTOGRAW	•	25.00 101.00 101.00 117.00 117.00 117.00 100.00 100.00 100.00	- S S - 1	FREO
		•	178			•	1	

٠				
•	•	1	. ,	FD . F + D + + 2
·•	٠			G.
	15		•	•
				c
SAMPLE = 0074. HISTOGRAH OFPERFORMANCE TIMEFOR MAINSTURY	INTERVAL WIDTH =	MEDIAN = 670.00		T.
r Iwefa		HEOI		L.
ANCE	267		∢	
АН ОГРЕЯГОВА	517 GANGE=	ST. DVN: # 76.438		MIC-POINT
1 STOGR	17	. DVN		Ŧ.
¥.	.	ST	-	1
FOR MEAN OF 55	HINIHUM =	IN INTERVAL 11.		EXACT LIMITS
UTION	784	_		
STANDARD DEVIATION = 76. MEAN OF FREQUENCY DISTRIBUTION FOR	H MIMI XY	HEAN # .669.00		ÎNT. NO.
•				٠.

CHH F - X

O


100.00	00.20	80.00	80,00	A0.00	75.00	09.59	65,00	55.00	40.00	34.00	30 • 00	25.00	50.00	20.00	10.60	2.00	2.00	F.000
20.	61	٠,	91	16	E :	13	F	=	Œ	-	•	n	*	•	۵.	∹	- ک	_
*	147	0		91	. 10	•	۸:	•	-	4	G,	91	0	7.2	64	•	•	
•	21	0	•	•	۰	0	લ	· ·	7	R' 1	FF -	•	•	-12		•	0	•
· œ	۲,	· ·		*	m	, N	.	0	<u>.</u>	-2	m 1	4 1	ឆ្ន 1	9 -	-7-	E 1	0-	:
5.00	15,00	00.0	00.0	5.00	10.00	,00.0	10.00	15.00	5.00	5.00	\$ • 00	. 2.00	00.0	10.00	5.00	00.0	00.0	
-	n	. 0	6	-	. 2	0	2	'n	-	-	: _	-	.	2	-	• •	0	
787.00	772.00	757.00	742.00	727.00	712.00	00.169	682.00	00.739	6 52 , 00	637.00	622.60	00.708	592,00	577.00	562.00	547.00	532.00	
794	779	764	749	734	719	704	, 689	674	659	644	629	614	599	\$ 584	569	554	639	
780 TD		750 TO	735 10	720 10	705 40	650 10	675 TO	660 10	-645 TO	£30 TO	615 TO	600 10	£85 TO	570 TO	#55 TO ;	540 TO	525 TO	•
٠	•		•					•					~	•		;		
														_				

REGROUPED FOR CHISO TESTS TO GIVE. 3 INTERVALS WITHFREQUENCIES OF

4.98

SUMS

CHI SO UNIFORM # 2,5000 CHISO NORHAL = 0.64774E-02

HISTOGRAH OFPERFORMANCE TIMEFOR HAINSTUDY

HISTOGRAM FOR

. •			•											•		
****	2452	88.88	5555	****	2.5.5		****	1111					\$ 655 \$ 533 \$	787.00		772.00
			_		. 5555	* 1818	2 2 2 2	2222		2555 2555				742.00	12.00 757.00	27.00
****	2222	27.55	\$ \$ \$ \$	\$ \$ \$ \$ \$					5515 5155	1515 1515 1116 5515	\$ 515 5138	\$511 1222	3888 8988	652.00 697.00	667.00	32.00
	•	•							1111 1111	8884 8888	5555 5555	4122 2212	\$255 E525		622.00	92.00
			,		1228	***	5355	1555		\$ \$ \$ \$. \$ \$ \$ \$				562,00	0 . 577.00	547,00
•	-				•	•			****	\$ \$ \$ \$	2222	\$355	***	517.00	532,00	_
 00.61	13,03	12.86	11.79	10.71	44.0	8.57	7.50	6.43	5.46	4.29	3.21	2.14	1.07	FREG		•

17	HAX 14U4 % MEAN % 890.20	IIII HINIHUH	, 5		336	RANGE: 3:36 INTEFVAL WIDTH # 96.610 HEDIAN # 867.50	1DTH = •50		20		÷	
17	NT. NO.	EXACTL	: : :	- 1	t <u>.</u>	≯₹ !± , •	•	د	FO	F *D * 62	, HOO,	•
1			1 :	1	1 1 :	1.1.1	1 .	1 1		1 1 1 1 1	1 1 1	1
15	1.7	1100 TO	6111	1109.5	-	5.00	٠,		•	181		
15 1000 TO 1079 1089+5 1 5.00 9 9 10 10 10 10 10 10	~		1099	1 699.5	0	00.0			, 6		יי	3.03
14 1040 TG 1059 1049,55 0 0,000 0 0,000 0 0 0 0 0 0 0 0 0	. 1.5		1 1 7 7 9	1 069.5	-	5.00	-		· c) <u>.</u>	- .	00.5
13 1020 TO 1039 \$ 1029.5 1 5.00 T 7 7 9 11 11 11 11 11 11 11 11 11 11 11 11 1	+1		1059	1049.5		00.0	•			ē '	<u>-</u>	0.60
1000 TO 1019 1009-55 1 5.00 6 0 0 17	· E T			1 029.5	. →	5.00		-			= (00.06
10 940 TO 999 969.50 1 5.00 5 5 5 25 1 17 900 TO 940 TO 959 949.50 1 5.00 3 3 3 9 9 16 7 900 TO 919 900.50 2 10.00 1 1 2 16 8 860 TO 899 860.50 3 15.00 0 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	12		1019	1009.5		00.0			٠ .		E '!	0.06
10 940 TO 979 949-50 0 0-00 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-		666	989.50	-	2.00			, (c	. 0	: :	85.00
9 940 TO 959 949-50 1 5-00 3 1 3 9 9 16 9 920 TO 930 920-50 0 0.00. 2 0 0 16 7 900 TO 919 900-50 2 10-00 1 1 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	960,10	626	969.50	•	00.0			, c		·	33.00
6 6 6 80 TO 937 929.50 0 0.000. 2 0 0 15	٥		626		-	5.00		m		> 0	<u>.</u>	
6 660 TO 619 909.50 2 10.60 1 2 2 15.60 1 3 15.60 1 3 15.60 1 3 3 15.60 1 3 3 15.60 1 3 3 15.60 1 3 3 15.60 1 3 3 15.60 1 3 3 15.60 1 3 3 15.60 1 3 3 15.60 1 3 3 15.60 1 3 3 15.60 1 3 3 15.60 1 3 3 15.60 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	•	920 TO	933	929.50	0	00 • 0		. ~	` c	•	ַ <u>.</u>	000
6 660 TO 679 669.50 1 5.00 0 0 0 13 5 660 TO 679 669.50 3 15.00 -2 7-2 4 3 620 TO 689 689.50 1 5.00 -2 7-2 4 3 620 TO 689 689.50 2 10.00 -3 -6 18 E - 1 780 TO 799 789.50	<u>'</u> .		919	903.50	∾.	10.00			-	· •	<u>.</u>	00*67
\$ 660 TO 679 669.50 3 15.00 -1 -3 3 12 4 640 TO 659 649.50 1 5.00 -2 6-2 4 3 620 TO 639 629.50 2 10.00 -3 -6 16 2 800 TO 819 609.50 4 20.00 -4 -16 64 6 6 8 CHISO NORMAL = 0.39923 CHISO UNIFORM = 0.40000	<i>,</i>		608	984.80	-	. 2.00			: C	 N C	<u>:</u> :	
# E40 TO 859 849-50 1 5.002	·		979	8 69 50	m	15.00	:	. =	, ,	· •	2 :	30.60
### ##################################	•		959	849,50		3.00	t		7. E	n •	<u>.</u>	00.00
### ### ### ### ### ##################	m		939	829.50	2	10.00	i	ו וייז	i «		· .	10.64
### 10.000	~		819	909.50	∢	20.00	i) (e •	י ע	00.04
R CHISO TESTS TO GIVE 3 INTERVALS WITHFREQUENCIES OF 6 8 8 0.39923 CHISO UNIFORM # 0.40000	i :		799	9.50	8	10.00	ĭ		2 0	* C	e a	20.00
R CHISO TESTS TO GIVE 3 INTERVALS WITHFREQUENCIES OF 6		•		; · ;	1 † [1	1 1			1 1		u 1 1 ` I	
6 8 8 CHISO UNIFORM # 0.40000	AEGROUPED FOR CI	TESTS TO		j			6	#. ;	0	A 26		
= 0.39923 CHISO UNIFORM = 0.				•						•	ړ .	
	H	0.39923	CHI SO UNIFORK	7					•		,	

HISTOGRAM OFPERFORMANCE TIMEFOR MAINSTUDY

HISTOGRAM FOR

I NO I	, , ,	EXACT LIMITS	HITS .	MIO-POINT	Ľ.	¥.	°.	FO	F+0++2	•	CUM F - X	
		i . i . i .	! ! ! !	; ; ; ; ; ;	: : :	, 1 1 1 1	F		1 1 1	1 .		,1
50		1060 TO	1079	4 059.5	-	5.00	. 12	12	144	-	20 100.00	0
61		1640 70	1059	1049.5	0	00 • 0		Ġ	: o			_
¥1 1	·	1020 TO	1039	1029.5	¢	00.0	. 01	•			19 05.00	
/ 17	•••	1000 TO	1019	1 009.3	0	00.0	6	.`	0		19,95,00	_
16		980 TO	666	989.50	0	00.0	œ	0	•	7	19 95.00	_
1.5	_	9£0 TO	626	969.50	•	00.0	۲-	•	0		19 95.00	_
•	,	940 10	959	944.50	0 1	00.0	. 0		c		19 95.00	_
£ 1	<i>b</i> .	920 10	939	929.50	ے	0000	.	0	0		19 95,00	_
		. 900 TO	919	06.400	2	10.00	•	•ev	32		19 95.00	_
\		, 9 TO TO	668	889250	-	5,00	m	n	٥		17 85.00	
_ 2 18		e60 TQ	679	\$ \$69.50	2	10.00	N,	• <u>•</u>	80		16 80.00	_
° 3		ego-to	620	849.50		5.00	-		<u>ت</u>		14 70.00	
Œ		820 TO	639	829.50	4	20.00	•	0	0		13 . 65.00	_
6		800 TO	A19	809.53	-	2.00	•	- 1	-		9 45.00	٠.
•		760, 10	1807	7.89.50	2	1,0 . 00	~ 1	* -	Œ		00.04	
zs.		760 TO .	479	769.50	∾_	10.00	E:	9-	18.		6 30.00	
•		740 10	159	749.50	1	5.00	4	4	16		44 20.00	_
m		720 TO	739	729.50	<u></u>	5.00	- 5-	1 Ω	25		3 15.00	_
∾,		700 TO) 612	709,50	، ستر	5.00	~ °-	9	36		2 10.00	•
1 1 - L - 1	1 1	660 TO	669	669.50		5.00	- 4	-1	49		5.00	
		-			• • •		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1	í 1 : 1 : 1	! !	1 .	ı
REGROUPED FOR	FOR CHISO	TESTS TO GIVE	IVE 3 INTERVALS	WI THE REOUENCIES		٠	· .:	î	•		•	
•	2 4			•								•
CHISO NORMAL # 0.14492	IAL = 0.14	492	CHISQ UNIFORM #	IRM # 0.10000E 00				,				
									-			

INTERVAL WIOTH = MEDIAN = 024.50

372

RANGE

869

MINIHUM = ', IN INTERVAL 8.

1070

824.70

HAX 14UM =

ST. DVN. = 84.805

STANDARD DEVIATION = 65. WEAN OF SAMPLE = 825. FREOVENCY DISTRIBUTION FOR HAINSTUDY HISTOGRAM OFPERFORMANCE TIMEFOR HAINSTUDY

			٠									
HAX IHUM	= 1215	S HINIHUN	HUN =	85.8	RANGE=	35.7	INTERVAL	WIDTH #		20		
HEAN	964.25	IN INTERVAL	VAL 7.	ST. DVN.	. = 94.B31	Ħ,	MEDIAN ≈ 9	00*9%			•	
INT. NO.	-	EXACT LIHITS	1H1 TS	, <u>z</u>	MI D-PO! NT	<u>.</u>	ŭ.	¥.	c	FD	F •D • • 2	, cor
1 1 · 3 · (1 t 1 1	1 3	1 1	1 1 1		1 1 t	1 1 1	1 1 1	† † †	: : :	1 1 1 1	1 t
<u>-</u>	٠		1219		1 209.5	-	5.00	0	12	12	104).
18		1180 TO	1199	-	1199.5	•	00.00	ō		•	•	-
17	,	1160 TO	1179		1169.5	۰,	00.0	ō	10	0	۰	-
. 91		1140 TD	1159		1149.5	-	5.00	Ō	6	c	ĕ	-
15		1120 10	₹ 11	-	1129.5	0	00.0	0	æ	0	0	-
*:		1100 TO	1119		109.5	0	00.0	0	^	•	c	-
13		1380 TO	1 1099	-	1099.5	•	00.00	O	÷	e,	•	-
12		1060 TO	1079		1 059.5		0.00	ŏ	ß	6	0	-
-	,	1040 TO	1059	-	049.5	-	5.00	0		•	91	-
10		1020 10	1039	-	029.5	63	10.00	0	'n.		. 61	
٥		1000 TO.	1019	-	1 009,5	,	. 5.00	0	æ	, Ņ	•	-
Œ	•	. 01 086.	666	6	989.50	-	5.00	c	_	-	-	7
~		7960 TD	9.7.9	c	969.50	-	5.00	•	c	0	, oʻ	-
ø		940 TO	959	6	949.50	m	15.00	0	-	ro L	E	-
ស		920 10	939	6	929.50	-	5.00	e	₹	-2	•	
∢		00 TO	016 .	•	9 09 • 50	QI	16.00	c	E)	\$ 1	6 1	,
		880 TO	668	0	089.50	rn (15.00	c	4	-12	A	
ru	•	860 TO	879	8	869.50	~	10.00		۱ دن	- 3 0	20	
		840 TO	857		849.50		5.00	c	9	9-	90 E	

100.00 00.36 95.00 95.00 90.00 75.00 70.00 65.00

00.06 85.00

36.06 90.09 60.06 30.00

40.00

44.00 60.03

REGROUPFO FOR CHISO TESTS TO GIVE 3 INTERVALS WITHFREAUENCIES OF

CH1 50 UNIFORM # 0.40000 CHISO NORMAL = 0.10490

				•	
T I HE 890.0	0.000 100 000 000 000 000 000 000 000 00	· · · · · · · · · · · · · · · · · · ·	TIMEFOR MAINSTUDY		
CYCLE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		HISTOGRAH OFPERFORMANCE		, 00 00 00 00 20 00 00 20 00 00 20 00 00 20 00
H.OUT=10	• တသတ်လတ်လေလတ်လည်း မောင်လည်း မေသည် လည်းသည် သည် မောင်လည်း	3	GRAM OFPEI		******
NO•H•IN≖LOGZ(N)	กดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดด	u '	D181H		40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
·rens		•	AN FOR		oneo
SEX	.•	d	HISTOGRAM	· . 186	12.00

,		•	•	ŭŸ	ا ا ا	1209	1.49.5
			***	****	3535	1149.5	129.5
				w #	1 1 1	1089.8	069.5
	٠	.		2222		1049.5	•
	9 4					1029.5	1
				\$ \$ \$ \$ \$ \$ \$ \$ \$ \$		ı	009.5
			\$ \$ \$ \$ \$ \$ \$ \$	\$ 5 5 5 5 5 5 5	\$ \$ \$ \$ \$	989.50	<u></u>
			\$ 1 1 S \$ 1 2 S	5 1 5 5 5 1 1 5 5	\$ 5 3 \$	969.50	
**************************************		4 4 4 4 4 4 4 4 4	4444	3555	\$\$\$\$	969	949.50
			5555			929,50	946
	W 1				•	50	
***						909.50	• 50
	96.9			**	<u></u> ,	869.50	889.50
			*****	\$ \$25.5 \$ \$3.5 \$ \$3.5	5888 4	849.50	
12300	9.64	6.43 08.43	8 • 3 • 4 • 2 • 5	2,14	1.07	FREO	

		20	
6	ION = 98. WEAN OF SAMPLE = 978. BUTION FOR MAINSTUDY HISTOGRAM OFPERFORMANCE TIMEFOR MAINSTUDY	INTERVAL WIDTH #	HEDIAN = 964.00
	IANCE T	369	
	3. RAM OFPERFORM	RANGE=	. = 98.317
-	SAMPLE = 976 HISTOGE	808	, ST. DVM.
	98. WEAN OF FOR	MINIHUM =	IN INTERVAL 9. ST. DVM. = 38.317
	DEVIATION = DISTRIBUTION	н 1176	
	STANDARD DEVIATION FREQUENCY DISTRIBL	HAX IMUN	HEAN # 977.65

x 1 x 1 u 1	100.00	00.36	00°06 1	00.00	00.06	98.00	70.00	10.00	70.00	1.5.00	00'09	45.00	.35.00	35.00	20.00	10.00	10.00	2,00	5.00
CUE	30	0	1.8	1.8	#1	(1)	=	1.	71	£ 3		ū	•		•	, CV	~	-	-
F + D + + 2	001	18	0	•	J Ł	75	c	c	•		0	~	0	27	32	0	36	0	t
FD	10	œ	0			,	0	•	N	-	0	6.	0	6	.	0	9	0	Ė
i i i	01	ō.	60		¢	ئ	•	F 7	Cų.	-	0	7	- 5	E.	*	6	9:	. 7	0:
1 34 34 4 7 1	5.00	5.00	00.0	00.0	5.00	15.00	0.00	00.0	5.00	5.00	15.00	10.00	00.0	15,00	10.00	00.0	5.00	00.0	2.00
tu t t	-	-	•	0	- ,	. P	0	ó	-	-	n	. 2	0	ţ.	8	0	-	0	-
M104-01M	1169.5	1149.5	1129.5	1 109 45	1 089 . 5	1 069.5	1049.5	1 029.5	1 009 • 5	989.50	969,50	949.50	929.50	909.50	0.89.50	969,50	849.50	A29.50	809.50
115	1179	1159	1139	11119	1099	1079	1059	1039	1019	. 666	979	959	939	919	899	678	859	839	819
EXACT LIMITS	1160 TD	1140 TD	1120 TD	01 0011	1000 10	1060 TO	1040 10	1020 10	1000 TD	01 086	960 TO	940 10	520 TD	9C0 TO	BEO TO	BFO TO	840 10	820 TO	8C0 TO
1									•			-		•			,	•	
INT. NO.	0	. 61	17	97	- 2	*	13	12		10	۰	æ		. •	មា		F	8	-

REGNOUPED FOR CHISS TESTS TO GIVE 3 INTERVALS NITHFREQUENCIES OF

CHISQ UNIFORM # 0.10000E 00 CH150 NORMAL = 0.24461

HISTOGRAM OFPERFORMANCE TIMEFOR MAINSTUDY

FREGUENCY	FREGUENCY DISTRIBUTION FOR	ON FOR		HISTOGRAM OFPERFORMANCE LIMEFOR MAINSTUDY	BREORMANCE II	HEFUD YAIN	STUDY VE					
HAX 1HUN	1259	HIMIMUM		825 RANGE=	4 34	INTERVA	INTERVAL WIDTH	~ ``	30	,	•	
HEAN #	966.85.	IN INTERVAL	•	ST. DVM. # 112	112.65	HEDIAN =	947.00					
INT. NO.		EXACT LIMITS	v	H104-01H		Ŀ	, ¥.	٥	FO	F + 00 4 6 2	90	se I
1 1 C	1 1 1 1	1230 TO	1359	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1			1 0	1 -	1 .	1 1	: 6
*.	,	1200 TO	1229	1214.5		00.00	90	· 6	• •	ā °	2 0	00.00
E .		1170 TO	1199	1194.5		. In	5.00	7		6 4	6	95.00
12		1140 TO	1169	1154.5	-	0	00.0	œ		0	19	00.00
1.1	•	1110 TO	1139	1124.5	-	00.00	00	ĸ	٥	c	1.8	90.00
. 10		1080 TO	1109	1094.5		0.00	00	•	0	0	-	90.00
o		1050 TO	1079	1 064 . 5	•	2 10.00	• , 00		•	. c .	18	00.06
æ		1020 TO	1049	1034.5		1 5.00	00	N	N	•		80.00
1		950 TD	1 01 9	1004.5	,,	3 15.00	00	_	m	Pr	<u>.</u>	75.00
د 89	•	960 TD	686	974.50	,	1 5.00	. 00	0		0	12	00.09
ß		930 10	957	944.53	,,,	2. 10.00	00	-11	1	2	: =	55.00
•		QT 00P	929	914.50	•	3 15.00	. 06	ر ا	9 1	<u>.</u>	•	48,00
m	•	e70 TO	999	8 84 550	,,	2 10.00	. 00	£ 3	÷	\ e	·c	30.05
'n	•		96.9	8 54 850	•	1, ,15,00		4	-12	, 84	Ę	20.00
-1,	1	010 10	839	824.50	- · · · · · · · · · · · · · · · · · · ·	00*5	100 100	16. I	ស្គ [ា]	. %	-	2.00.
					•		SUHS	in in	¥.	5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3	1
REGROUPED FOR		CHISQ TESTS TO GIVE		3 INTERVALS WITHFIRE	WITHFPEQUENCIES OF		•			,	· 5. ;	
	10 40						•					
CHI SO NORHAL	DRHAL # 0.11543		CHI SO UNIFORM	[FORM = 1.3000		-		-	•	•	. ~	

- નો		1 7
		1
g of the second		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
I Me	MAINSTUDY	1124.5
922 922 9632 9632 9632 9632 100 100 100 100 100 100 100 100 100 10	4 00 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3	**************************************
/ *	\	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* C	OF PERFORMANCE ************************************	24624 64684 66888 68884 600 648454 6684 6684 6684 6684 6684 6684 66
*C * I * I * I * I * I * I * I * I * I *	ن کن کا	40 40 40 40 40 40 40 40 40 40
*I * * * *Z	σ /	######################################
20 C C Mananananananananananananananananananan	T T T T T T T T T T T T T T T T T T T	. ୟ ରିଜର ଖେବା ଓ ୮
U	######################################	**************************************
* * SUBJ	Σ C	
# # X # U # S # #	00.47.70	######################################

4. Mean Experimental Performance Times

5-6 HOUT 3-4 HIN SEX 1-2 SUBJECT DATA (

V AR TABLES 28900 OBSERVATIONS IN DAȚA SET GENERAL

HOUT=5 THEN 10CT=3 10CT=4

HOUT=6 THEN D HOUT=7 THEN D HOUT=8 THEN D 1 IF HOUT=9.1H

HGUT=8 T HOUT=9 T HOUT=16

HOUT = 11 HOUT = 12

14400 03 SER VATIONS IN DATA SET HCDAI ۵ BY HIN CL SORT PFOC

VARIABLES

Z

PROC MEANS OUT=AVER ; BY HIN CL

C.V. x 33.378 52.289 0.00 17.248	33. 32.3.378 52.289 54.986	33,4375 92,289 00,0 64,986 15,810	33.375 52.289 0.00 54.986 15.233	33 375 52 209 0 0 0 54 906 18 221	33.375 52.289 0.0 0.0 16.920
2,000000 10,000000 10,000000 20,000000 1952,000000	2.000000 10.000000 1.000000 20.000000 1747.000000	2.000000 10.000000 2.000000 1785.000000	2.000000 10.000000 10.000000 20.000000 1929.000000	2 0000000 1 0 000000 1 0 000000 2 0 000000 1 1 2 4 0 0 0 0 0 0	2 . 000000 1 0 . 000000 1 . 000000 2 0 . 000000 1 6 4 0 . 000000
000000	1.00000 1.00000 1.000000 1.000000	000000000000000000000000000000000000000	1.0000000000000000000000000000000000000	1.000000	1.000000 1.0000000 1.00000000 1.00000000
100,000 300,000 300,000	10666103.6268	10000000000000000000000000000000000000	100.0000 33cc.0000 0.00 13300.0000	100,0000 3300,0000 13300,0000	100.000 3300.000 000 000 13300.000 1938365
2233 -000000 2233 -0000000 426 -0000000 37 \$20 -000000	(#2 CL #3 D = 1 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL#3 2 203 2 203 2 203 4 2 203 4 3 6 2 6 6	#2 CL=3 '	yr 1, 20	2 CL=) D=1.0 640.000000 420.000000 4203.000000 3304.39.000000
25062 27067 03333 07136	0.250627 6.270677 0.6 33.33333 26732.089290	0.250627 8.270677 0.0 33.733333 25,459.516,64	. <u> </u>	0.250627 8.270677 0.070677 33.333333 76587.240732	0.250627 0.370577 0.3333333 27272784333
6.5)0626 2.475878 6.0 5.77353 161.739837	0.500626 2.875878 0.0 5.773503 163.479503	0.5)0626 2.675678 6.0 5.77357 159.550376	0.5)062f 2.075876 0.9 5.773503 1.5.120531	0.500626 2.675978 0.00 5.773503 162.933840	0.530626 2.075878 0.0 5.773503 165.16056
1.5(COOC 5.5000CU 1.6C0COC 1.5C0COC 937.566256	1.500000 5.500000 10.600000 10.900000	1.506000 5.506000 1.606000 1009.245250	1.506600 5.500600 1.500600 1014.04000	1.500000 5.500000 1.00000 10.50000 894.229500	1.65 C0000 5.50 C000 1.00 C0000 976.10 575 0
00444 0000 0000	00000 00000	44444	00000 00000 00000	4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	64444 00000 00000
SEX SUBJECT ANQ E CYQ E T I WE	SEX SUBJECT ANGLE TIME	SEX SUBJECT ANG.E CYO.E ITHE	SEX SUBJECT SUBJECT TIME TIME	SEX SUBJECT ANGLE CYG. E TIME	SEX SULUFECT ANGLE CYCLF TIME
	SEX 400 1.5(COUG G.S) 14626 0.254627 600 0.00000 1.00000 1.00000 2.000000 33.37 400 1.00000 0.00000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000 1.0000000 1.000000 1.00000000	SEX 400 1.5f(6006 6.5) U6/26 6.50 U6/26 0.50 U6/26 U6/26 0.50 U6/26 U6/2	SEX	\$\frac{\text{Subject}{\text{Condens}} \begin{array}{c ccccccccccccccccccccccccccccccccccc	THE

	32.289 32.289 30.00 30.00 30.00 30.00 30.00	200000 200000 200000 200000		00000000000000000000000000000000000000		52.289 00 52.289 00 50.00 00 54.986 00 16.083		83.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		33.375 62.289 0.0 54.986	
HI CH	2.000000 10.000000 1.000000 20.000000 1976.000000	2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	2 000000 1 00000000 1 000000 2 0 000000		2.000000 1.0.000000 1.000000 1.000000 1.000000		2.000000 10.000000 1.000000 20.000000 1995.00000		2.000000	
-AUT	1.000000 1.000000 1.000000 1.000000	000000		1.00000 1.000000 1.000000 832.00000	• • • • • • • • • • • • • • • • • • •	1.000000 1.000000 1.000000 860.00000		1.000000 1.000000 1.000000 1.000000		1.000000 1.000000 1.000000 1.000000 724.000000	
CORRECTED SS	1330,0000 3300,0000 13300,0000 19679667,9600	00000000000000000000000000000000000000		100,0000 3300,0000 13300,0000 13536958,1724		100.0000 3300.0000 0.0 13300.0000 17344541.7500		100.0000 3300.0000 0.00 13300.000		100.0000 3300.0000 0.0 13300.0000 14597385.6328	
SUH	643.000000 2243.0000000 443.3000000 4240.000000	### CL#0 U=10 ### CL#0 U=10 #### CL#0 U=10 ###################################	N=4 CL=0 D=13	6.00.000000 22vu.000000 400.000000 42v0.000000	N=4 CL=3 D=16	5201.0000000 2201.000000 4-0.000000 4 201.00000 518550.00000	IN=4 CL=0 0=7	6u0.000000 22u0.000000 4u0.00010 42u1.000000	×4 CL=3 0=10	600 .000 000 000 000 000 000 000 000 000	
S VARIANCE	0.256627 6.270677 0.0 33.333333 49322.476096	0.050627 8.270677 0.0		0,250627 8,270677 6,0 33,333333 33,21,213465	H	0.0 0.0 33.333333 43470.029449	14	0.250627 8.276677 0.0 33.333333	NIH:	0.250627 6.270677 0.0 33.333333 36.584.926398	
STANDARD DEV	0.500626 2.875878 0.0 5.773533 222.086641	0,50626 2,875878 0,077353	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.500626 2.875878 0.0 5.773503 184.143413		0.500626 2.875878 0.0 5.773503 208.494675		0.500626 2.875878 0.0 5.773503 212.754475		0.500626 2.875878 0.0 5.773503 191.271865	
NAM	1.50000 5.50000 1.000000 10.50000	5.50000 5.500000 1.000000		1.500000 5.500000 1.000000 10.500000		1.500000 5.5000000 1.000000 10.500000		1.503640 5.506000 1.610000 10.5366603		1.500000 5.500000 1.000000 1.00500000 1.1500345750	
2	00000 00000 4444	4 4 4 4 4 00000	1	4 4 4 4 4 0 0 0 0 0 0 0 0 0 0		64444 00000		4 4 4 4 0 0 0 0 0 0 0 0		4444 0000 0000	
VARIAGLE	SEX SUBJECT ANGLE CYOLE TIME	SEX SUBJECT ANGLE CYCLE TIME	1	SUNJECT SUNJECT ANGLE CYOLE TIME		SUPJECT SUPJECT SVCLE CYCLE TIME		SUBJECT SUBJECT SVALE CVALE	-	SEX SUNJECT ANOLE CYCLE TIME	

	33.375 0.03.275 54.986 16.698	25.00 85 85 85 85 85 85 85 85 85 85 85 85 85	33.375 52.289 54.786	78.008	52.289 52.289 56.989 66.986
H1 GH 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 . 0000000 1 0 . 0000000 2 0 . 0000000 1 990 . 0000000	2.00000 10.00000 10.00000 20.00000 1838.00000	2.000000 10.000000 20.000000 1953.000000	2.000300 10.000300 20.0000 1905.0000300	2,000000 10,000000 1,000000 2,000000 1,969,000000
LOW LOGO 1.000000 1.000000 811.000000	1.000000 1.000000 1.000000 1.000000	000000000000000000000000000000000000000	1.000000 1.000000 1.000000 1.000000 813.000000	1: 000000 1: 000000 1: 000000 1: 000000 838: 00000	1.000000 1.000000 1.0000000 880.00000
CCAPRECTED SS 100,0000 3300,0000 13300,0000	160.0000 3300.0000 13300.0000	100.000 3300.0000 1300.0000 13031334.3056	100.0000 33C0.0000 13300.0000	100.0000 3300.0000 0.0 13300.000	100.0000 3300.0000 0.000 13300.0000
N=4 CL=5 D=13 SU4 SU2 500000 \$225 500000 \$400.000000	##4 CL=) D=16 220.00600 420.00600 420.006000 503473.006000	1N#4 CL#3 D#7 603.300000 2.300.00000 4.00.000000 4.00.000000	= CL=3 D=10	4 CL=3 D=13 2.20 .00.000 2.20 .00.000 9.0 .00000 4.20 .00000	4 CL=3 D=16 540.0000000 2200.000000 420.000000 4820.000000
VARIANCE 0.250627 8.270677 8.270677 33.333333 37681.309373	0.256627 8.270577 0.0.0333333442233344422355555	0.250627 8.270677 0.0 33.43333 32.659.983333	0.250627 8.270577 0.0 33.333333 29549.585421	0.250627 8.270677 0.0 333333 29294	0.250627 8.270677 31.133333 39.566.534737
STANDARD DEV 0.500626 2.975870 0.0773503 194.118287	0.500626 2.875878 0.0 5.773503 210.303496	0.500626 2.875878 0.0 5.777503 180.720733	0.500626 2.875878 0.6773503 171.89929	0.500626 2.87F878 0.0 5.773503 168.224629	0,500626 2,875878 0,0 5,773503 198,913385
HEAN 1.500000 5.50000 1.500000 10.500000	1259.68250000 1259.68250000 1259.682500	1.500000 5.500000 1.000000 10.500000	1.500000 5.500000 1.000000 1094.677250	1.500000 5.500000 1.000000 1.130.10250	1 530000 5 550000 1 6 50000 1 206 540000
A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	444 0004 0000 0000	4 4 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 000 4 000 000 000 000 000 000 000 000	44 0004 0000 0000 0000	00044
VARIARLE SEX SUBJECT ANGLE CYGLE TIME	SEX SUDICT CAN F TIME	SEX SURJECT ANGLE CYOLE TIME	SEX SUPECT SCYCLE TIME	SFX SUBJECT ARG.E CYCLE TIME	SEX ⁶ /SUBJECT SUBJECT ANGLE CYCL F TIME

1-2 SUBJECT, 3-4 HIN 5-6 HOUT TIME 13-19; GENGRAL ; ' DDNAME=FT10F001 ANGLE 9-10 CYCLE

28800 DESERVATIONS IN DATA SET GENERAL

7 VARIABLES

SET GENEFAL: 1 F ANGLE=2;

SET GENEFAL: 1 F ANGLE=2;

IF HOUT=1 THEN CL=.25;

IF HOUT=3 THEN CL=.25;

IF HOUT=3 THEN CL=.25;

IF HOUT=4 THEN CL=.25;

IF HOUT=5 THEN CL=.25;

IF HOUT=7 THEN CL=.0625;

IF HOUT=7 THEN D=10;

IF HOUT=7 THEN D=10;

IF HOUT=7 THEN CL=.0625;

IF HOUT=7 THEN D=10;

IF HOUT=9 THEN CL=.0625;

IF HOUT=9 THEN CL=.255;

IF HOUT=10 THEN CL=.3625;

IF HOUT=11 THEN CL=.3625;

IF HOUT=12 THEN CL=.3625;

IF HOUT=12 THEN CL=.3625;

IF HOUT=12 THEN CL=.78125E-07;

IF HOUT=12 THEN D=16

14400 OBSERVATIONS IN DATA SET COHI

VARIABLES

PROC SOR,T + BY HIN CL D ;

PFOC MEANS OUT=AVERAGES ; BY HIN CL D ;

	H16H C.V. X	2.000000 52.289 10.000000 52.289 2.000000 64.986 1825.000000 16.492	2.600000 33.375 10.00000 52.269 2.000000 6.0 20.000000 64.986 1645.000000 14.403	2. CO0000 33.375 2.000000 52.269 20.000000 54.986 1721.000000 154.986	2.000000 33.375 1C.000000 52.289 2.000000 54.986 1964.000000 15.31A	2.000000 52.289 2.000000 62.289 2.000000 64.986 1905.000000 17.891	2.000000 33.375 10.000000 52.289 2.000000 54.986 1891.000000 17.288
	רטא	1.CCCCC 1.000000 2.CCCCOCO 1.000000 886.0CC	1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1.00000 2.000000 2.000000000000000000000	1.000000 1.0000000 1.0000000 1.0000000	1.00000 2.00000 1.000000 1.000000	1 + 000 00 00 00 00 00 00 00 00 00 00 00
	CORRECTED SS	100.0000 3300.0000 13300.0000 11489373,5375	100,00000 3300,00000 ,3300,00000 13300,00000	100,000 3300,000 0,0 13300,000 10244048,7930	100,0000 3300,0000 0,000 1330,0000	100.0000 3300.0000 13300.0000 13400.0000	100.0000 3300.6000 13300.6000
IN=2 CL=0 0=7	, SU4	425.000000 425.0000000 425.000000	142 CL=0 D=10 2,000,000000 4,000,0000000000000000000	#2 C(=) D=13 C-000000 B-000000000000 B-0000000000000	44 4 36 2 000000	IN=2 CL=0 D=7 5~U0 000000 22U0 0000000 42U0 0000000 42U0 00000000000000000000000000000000000	N=2 CL=3 D=10 6-2 0000000 22-0.000000000000000000000000000
= :	VARIANCE	0.250527 8.270677 0.0 33,333133 28795.422400	HIH 0.250627 0.270677 0.0 13.333333 24078.027558	0.259627 0.270677 0.0 33.33333 25674.307752	0.250627 8.270677 0.0 33.333333	0.250627 0.270677 0.0 13.33333	0.250627 8.270627 0.0 33.333333
•	STANDARD DEV	0.500626 2.075078 0.0 5.773503 169.692140	0.500626 2.6075878 0.0 5.773503 155.170963	0.500626 2.0 0.0 0.0 5.773503	0.500626 2.675878 0.0 6.773503 1.70.125467	0.500626 2.875878 0.0 0.773503 173.028808	0.500626 2.875878 0.0 0.0 1.773503
	HEAN	1.500000 5.500000 2.000000 10.500000	1.500000 2.600000 10.6000000 1077.319000	1.500000 2.500000 2.500000 10.500000	1.500000 2.000000 10.500000	1.500000 2.500000 2.00000 10.50000	1 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	2	44444	44444	44444	74444 03000	4444	4444 0000 0000
	VARIABLE	SEX SUBJECT ANGLE CYQLE TIME	SEX SUBJECT ANQLE CYCLE	SUBJECT SUBJECT ANGLE CYOLE TIME	SEX SUBJECT JAGE CYQLE	SEX SUBJECT ANGLE CYOLE TIME	SEX SURUECT ANGLE CYOLE

2 2.759626		HEAN	STATI	IS I CHIN	#2]cl=5 6=13 . sum	CORFECTED SS /	ron	ноти	÷
1.000000 1.0000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000	- 500000 - 50000000000000000000000000000	00000	0.50062 2.87587 0.0 5.77350 52.20065	0.25462 8.27667 0.0. 33.33333 3167.474 ft ft	2543.00000 E40.000000 600.00000 4 246.00000	100,0000 33C0,0000 0.0 13300,0000 243822,4839	52	2.00000 2.000000 2.000000 2.000000	34000 B
Control Cont	10 10 10 10 10 10 10 10 10 10 10 10 10 1	20000	0.50062 2.87587 0.0 5.77350 154.41635	0.250627 8.270677 0.0 13.333333	2 CLE3 D=16. 2 CUC.00000 2 CUC.00000 8 UO.300000 9 L300.0000000000000000000000000000000000	100.000 3300.000 13300.000	1.00000 2.00000 1.000000 2.000000	2 00000 2 000000 2 000000 2 000000 59 8 0 00000	20044 20006 20006
00		1 00000 1 00000	0.50062 2.87587 6.00 5.77350	0.250627 8.270677 0.0 33.333333 5006.936310	2 CL=0 D=7 600.00000 2200.00000 900.00000 4200.00000 64093.30000	100.0000 3300.0000 000 13300.0000 17767.68877	1.00000 2.00000 1.000000 0.00000	000000000000000000000000000000000000000	7400W
00 2-506626 0.256627 2-5050000 100.00600 1.000000 2.000000 33.22 00 2-5075670 2-50500000 3300.00000 1.000000 1.000000 2.000000 52.2 00 5.773503 33.33333 42.000000 7820471.21560 630.60000 1975.00000 15.0 01 140.000637 19600.178485 371567.500000 7820471.21560 630.600000 1975.000000 15.0 02 5000000 1.000000 1975.000000 133.33333 42.000000 1330.00000 1.0000000 1.0000000 1.000000 1.000000 1.0000000 1.000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.000000 1.000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.00000000	BBOB4	80000 00000 00000	0.50062 2.87587 0.00 5.77350 46.21500	HI 0.250627 6.7 600 33,333,333	#2 CL=3 D=10 2 200.00000 2 200.00000 8 200.00000 399743.10000	100.0000 3300.0000 13300.0000	200000 200000 2000000 2000000000000000		D0044
CCC 0.530626 0.250627 2.400.00000 100.00000 1.000000 2.00000 CCC 2.75373 3.250.00000 3300.0000 1.000000 2.00000 2.00000 2.00000 0.0<	928-	800000 8000000 8000000 800000000000000	0.50062 2.07567 0.0 5.77350 40.00063	HI 0.250627 8.270677 0.0 33.333333	2 CL=) D= 13 2 240 + 000000 2 240 + 000000 8 240 + 000000 4 240 + 50000000000000000000000000000000000	100.0060 3300.0000 13300.000 820471.2156	20000000000000000000000000000000000000	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W/040
	- CO O O O	1 00000	0.53062 2.17587 5.77359 2.22418	H1 0.250627 8.270677 0.0 33.333333	#2 CL#3 D#16 2200.00000 2201.00000 8003.00000 4200.00000	100.0000 3300.0000 0.0 13300.0000	2 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 00000 2 2 000000 2 2 000000	240044 240044 240044

C. V.	33.375 52.259 60.096 16.779	33. 52.289 6.0 54.689 16.689	MM	521 521 521 521 531 540 540 540 540 540 540 540 540 540 540	33.375 52.289 0.0 54.986 17.794	33.375 52.289 0.0 54.986 15.986
ндн	2.000000 10.000000 2.000000 20.00000 1843.00000	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0000000 2 00000000 2 0000000000000000	2 0000000 2 0000000 2 0000000 2 0 000000 1 9 3 5 000	2.000000 2.000000 2.000000 2.000000 1.927.00000	2.000000 2.000000 2.000000 1935.000000
	1.000000 1.000000 2.900000 1.000000	1.000000 2.000000 2.000000 1.000000	1.0000000 2.0000000 1.0000000	1.000000 1.000000 2.000000 1.000000	1.000000 2.000000 1.000000 1.000000	1
CORPECTED 55	00 00 00 00 00 00 00 00 00 00 00 00 00	10C.0090 3300.0000 0.00 13300.0000	100.0000 3300.0000 0.0 13300.0000	100.0000 3300.0000 0.00 13309.0000	100.0000 33CC.0000 0.00 13300.0000 13737711.3199	100.0000 3360.0000 13300.0000
7-3 CL-3 D-7	619 000000 82303 000000 1100 0000000 0000000 0000000 000000	#3 Cl.#3 D=10 1.00 .000000 2.00 .000000 4.00 .000000 4.00 .000000	#3 CL=U D=13 2.00.000000 R200.000000 A200.000000	#3 CL#3 D=16 2400,000000 100,0000000 100,0000000 100,0000000 100,0000000 100,0000000 100,0000000	1M#3 CL*0 D=7 2.3C3.005000 2.3C3.0050000 4.7C3.0050000000000000000000000000000000000	=3 CL=3 D=10 600,000000 2200,000000 420,000000 455423,200000
TINY TOWN	25052 27067 0 33333	0.250527 8.270677 0.0 33.333333333935.861529	0.250627 0.270677 0.0 333,33333 26994.540174	0.250627 6.270677 0.0 33.133333 27551.385500	0.250627 0.270677 0.0 33.333333333430.354185	H114= 0.250627 0.033333 32.993.149259
CTANNAGO DEV	350 259 259	N 00	0.500626 2.075878 0.0 5.773503 164.300153	0.500626 2.8475078 0.0 5.773503 1.67.197277	5006 5006 9758 7735 5541	0.500626 2.875879 0.773533 181.640164
3	1.500000 5.500000 2.000000 10\50000	1.500000 5.500000 2.000000 10.500000	1.8C0000 2.5C00000 2.000000 10.5C00000	1.500000 5.500000 2.000000 10.500000	1.500000 5.500000 2.00000 10.50000	1. 36. 50000 2. 500000 2. 5000000 1. 36. 500000
3	4444 00000 00000	44444	44444 00000 00000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	444 3004 3000 3000 3000 3000	44444 00000
	EX UNUECT NG. F. YOL E	SEX SUBJECT ANGLE CYOLE TAME	SEX SUBJECT ANGLE CYCLE TIME	SEX SUBLECT SYQLE CYQLE TIME	Section 1997	SEX SUBJECT ANGLE CYQLE TIME

	× *>	882 800 800 800 800 800 800 800 800 800	83.0 50.0 50.0 60.0 14.70	600 60 600 60 600 60 600 60 600 60	800 80 80 80 80 80 80 80 80 80 80 80 80	52.289 52.289 54.080 16.077	116 98 98 98 98 98 98 98 98 98 98 98 98 98	1.
	H] EH	2.000000	2.000000 2.000000 2.0000000 2.0000000 1781.000000	2.000000 10.000000 2.000000 20.000000	2.000000 10.000000 2.000000 20.000000 1.942.000000	2.000000 10.000000 2.000000 20.000000 1968.00000	2.000000 10.000000 2.000000 20.000000 1870.00000	
	LOW	1.000000 1.000000 1.000000 2.000000 2.000000	1.000000 74 1.000000 1.0000000	2000000 000000000000000000000000000000	1.000000 2.000000 7.000000	1.000000 2.000000 2.000000 721.000000	1.000000 2.000000 2.000000 1.000000	•
: 1 . 7 .	CORFECTED SS	100.00000 33C0.00000 133C0.0000 9371105.57440	100.000 3300.000 000 13300.000 10463019.6538	100.0000 3300.0000 13300.0000 11644690	100.0000 3300.0000 13300.0000 11829021.5100	100,0000 3300,0000 13300,0000 10631014,9716	13300-001 0000 0000 13300-0001 10279115-0531	
#3 CL,=0 D#13	, 5 U4	42000000000000000000000000000000000000	#3 CL-0 D=16	N#3 CL=0 D#7	#3 Cl,=0 D=10 2200.000000 2200.000000 423.0000000 430.000000	=3 C(,=) D=13 -2.2.0.000000 -2.2.0.000000 -2.2.0.0000000 -2.2.0.0000000 -2.2.0.00000000000000000000000000000000	A#3 CL=0 D#16 600,000000 2200,000000 9200,000000 4200,000000	
NE	VA9 I ANCE	0.250627 0.677 0.0 33,333333 23,486,480136	9.250627 8.270677 0.0 33.33333 26.223.106902	H1 0.250627 8.270677 0.0 33.333333	0.250627 0.270677 0.0 33,333333	0.250627 6.270677 0.0 33,331333 27165,400931	0.250627 0.0270677 0.0333333333222	
- < -	STANDARD DEV	0.5CV626 62.075870 0.0 5.773503 153.252994	0.500626 2.675978 0.0 5.773503 161.935502	0.500626 2.075878 0.0 5.773503 170.835265	\$\circ\$ 0.500626 \$\circ\$ 2.675878 0.0 0.0 1.72.182085	0.500626 2.875878 0.0 5.773503	0.500626 2.073878 0.0 5.773503	
	HEAN	1.8500000 5.5000000 . 2.000000 10.500000	1.50000 2.500000 2.5000000 10.500000	1.50000 2.500000 2.500000 10.500000	1 . 5000 00 2 . 5000 00 2 . 5000 00 10 . 5000 00 10 . 5000 00	1.500000 2.500000 10.500000 10.500000	1.500000 5.500000 2.000000 10.500000 1057.660750	
	z	44444 00010 0000	44444 00000	00000 00000	44444	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44444 00000	
-	VAGIABLE		SEX SUDJECT ANGLE CYQLE	SEX SUBJECT ANGLE CYCLE	SEX SUDJECT ANGLE CYCLE	SEX SUBJECT ANGLE CYOLE	SEX SUDJECT ANGLE CYCLE TIME	

•	× • > • O	000 000 000000	33.376 52.236		.37	52.289 0.0 54.986 15.298		33.375 52.289 0.0 54.986 15.167		333 52.23 52.23 54.23 54.23 54.23 55		55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	H	2.000000 2.000000 2.000000 1 95 7.000000	2.000000	0000	00000	10,000000 . 2,000000 20,000000		20.00000 20.000000 20.000000 1988.000000		2.000000 2.000000 2.000000 1.981.00000		2.000000 10.000000 2.000000 20.000000 1944.000000
	LOW	1.000000 1.000000 2.00000 1.00000	1 • 000000	00000	00000	1.000000 2.000000 1.000000 850.00000	<u> </u>	1.000000 2.000000 2.000000 1.000000	•	1.000000 2.000000 2.000000 737.000000		1.000000 1.000000 2.000000 722.000000
	CORPECTED SS	106.0000 3300.6000 00.00 13300.0000	160.000	1	100	0000		100,000 13300,000 13300,000 15169209,6244		100.0000 3300.0000 0.0 13300.000		100.0000 3300.0000 0.0 13306.0000 17421987.1900
Ma4 C.=0 D=7	SUM	22.0.006.000 22.0.006.000 22.0.006.00 42.0.006.00 49.006.00	1200 E	20.000000	4 CL=3 D=13	5203-0000000 4203-0000000 516948-400000	N=4 CL=0 0=16	600.000000 2203.000000 800.000000 423.000000 514233.500000	IN=4 CL=0 D=7	6U3.0030C0 22U0.000000 8U0.000000 42U.000000	r4 CL=0 D=10	6 JU . 000000 2 2 LU . 000000 0 8 2 LU . 0000000 0 8 2 LU . 0000000 4 7 5 9 4 2 . 000000000000000000000000000000000
I	VARIANCE	0.256527 6.276677 0.6 33.33333 41.262.776746	H1 0.250627 8.270677 0.0	40061,210526	•	33333	HIN	0.250627 8.270677 0.0 33.33333	H		NIX NIX	0.250627 0.0 33.333333 43664.128296
	STANDARD, DEV	2,675678 2,675678 5,773503 2,03,132412	50062 67587	!	•	77350		0.500626 2.675678 0.0 5.773503 194.78228	• • • • • • • • • • • • • • • • • • •	0.500626 2.875878 0.0 5.773503 235.483010		0.500626 2.8758787 0.0 5.773503 2.08.953633
	MFAN	1.E00.00 5.E00000 12.500000 4247.11.000	- M M M M M M M M M M M M M M M M M M M	1000	- 5000¢	2.00000 10.50000 1292.371000		1.500000 5.500000 2.60000 10.500000 1285.556250		1.500000 5.500000 2.500000 1226.336CC		1.500000 5.500000 2.000000 10.600000 11.89.955000
,	2	44444	4 4 4 0 0 0 0 0 0 0 0	400	50	A 4 6 2000 000 000		44444 000000 00000	. #	200		4 4 4 4 4 0 0 0 0 0 0 0 0 0 0
	VARIARLE	SCX SUBJECT: AND, E CYOLE TIME	SEX SUNJECT ANG. E	11.6	×5	ANGLE CYCLE T 14E		SEX SUBJECT ANGLE CYCLE TIME		SEX SUBJECT ANGE CYCLE TIME		SEX SUBJECT ANGLE CYOLE TIME

	> •	0040 004 E 94	200 00 00 00 00 00 00 00 00 00 00 00 00		50000 100000 100000 100000	_	83.373 62.289 154.289		523 523 523 540 540 540 540 540 540 540 540 540 540	•	50.00 50.00
	H1G 2.00000	10.000000 2.000000 1952.000000	000000 • 20 000000 • 2 0000000 • 2 0000000 • 2	•	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	2.000000 1.0.000000 2.0.000000 1.91.3.000000		2.000000 2.000000 20.000000 1874.000000		2 · CC0000 2 · CC00000 2 · C000000 1 · D 7 3 · C000000
	000000	1,000,000 2,000,000 1,000,000 813,000,000	1.00000 1.00000 2.00000 1.000000 829.00000	• • • • • • • • • • • • • • • • • • •	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1.000000 2.000000 2.000000 778.000000		1.000000 1.000000 2.000000 1.000000 1.000000	•	1.000000 1.0000000 1.0000000 1.0000000 893.000000
SSYSTEM	CTED S	3300.0000 0.00 13300.0000 15685147.7798	100.0000 3300.0000 13300.0000 15853071.4244		100.0000 33C0.0000 0.0 13300.0000 1875659.4298		100.0000 3300.0000 0.00 1300.0000 11987977.0975		100.0000 3300.0000 0.0 13300.0000 12965106.3260		10526287.6304
A H A L Y S I	SUH	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 203 000000 2 203 000000 2 203 000000 3 200 000000 503 201 0500000	IN=4 CL=0 D=7	500 000 000 000 000 000 000 000 000 000	## CL#3 D=10	644.00000000000000000000000000000000000	N=4 CL=3 0=13	2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N=4 CL=0 D=16	600 000000 2200 000000 600 000000 4200 000000 469552 800000
1 S T I C 4 L	ARIAN	33.33333333333333333333333333333333333	0.250627 6.270577 6.270577 33.333333333333333333333333333333333	T	0.250627 0.0 33.33333 47030.920877	HIH	0.250627 8.270677 0.0 33.333333 300,5.055.482	ни	0.250627 8.270577 0.0 33.333333 32454.060817	AIH	0.250627 8.270577 9.0 33.33333 26.391.673259
STAT	RD OF	0.5 JUGER 2.075678 0.0 5.77 J503 198.270369	0.500626 2.075078 0.0 5.773803	-	0.500626 2.875878 0.0 5.773503	f 1 1 1 1 1 1 1 1 1	0.500626 2.875878 0.0 5.773503 173.335096	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	0.530626 2.675878 0.0 5.773503 180.260924		0.500626 2.975878 0.0 5.773503 162.424362
	HEAN	1.500000 5.500000 2.00000 10.500000	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1.500000 2.500000 2.000000 10.500000		1.500000 5.500600 2.600600 10.500000		1.500000 5.500000 2.00000 10.500000		1.500000 5.500000 10.500000 1173.88220000
	z	4 4 4 4 4 0 0 0 0 0 0 0 0 0 0	00000		44444 00000 00000		4 4 4 4 00000	1	44444 00040 0000		44444 00000 00000
٠	AR I A BL. E	SEX SURJECT ANO. E CYO. F TIME	SEX SUBJECT NNO. F.		PSEX SUBDECT ANGLE CYCLE TIME		SEX SUBJECT ANGLE CYQLE TJUE		SEX SUUJECT ANGLE CYCLE TIME	1 1 1	SEX SUBJECT ANGLE CYGLE TIME

5. SAS Linear Regression Procedure Printout

Performance Time versus Hin, C, D for Right-sided Movement

PRUC REGR	•	- - -			t s - s - t s - t c s t s - s - s - s - s - s - s - s - s -	
DATA SET	••	AVER	NUMBER OF	NUMBER OF VARIABLES = 4	NUMBER OF	NUMBER OF CLASSES # 2
VAKIABLES	••	HIN TIME CL O	כר ס			
********	* * *	*********	*********	***********		***********
CLASSES		LEVELS	VALUES			
SEX		, -	_	•	,	
SUBJECT		-	ĸ			

I	
ш -	
_	
S	
>	
S	
S	
-	
S	
<u>, </u>	
Ļ	
<	
I	
<	
_;	
<	
U	
-	
-	
s s	
_	
-	
<	
_	

	STANDARD DEV	0.82807867	112.22433106	. 0.10F1B107	3.40168026	•
	VARIANCE	0.68571429	12594.30048134	0.01106306	11.57142.657	
	COARECTED SS	24.00000000	440800.51684706	0.38720703	465.00060000	
SIMPLE STATISTICS	UNCORRECTED SS ,	348.00006.00	40282823.05973608	0.79760742	5166.00000000	
	MEAN	3, 00000000	1052,00895833	0.10677093	11.50000000	
	KUS	1 68 00000000	37872.32250000	3.84375000	414.00000000	
36	VARIARLE	Z	T INE	ช	0	

ANALYSIS OF VARIANCT TABLE , REGRESSION COEFFICIENTS , AND STATISTICS OF FIT FOR DEPENDENT VARIABLE TIME

C.V. 3.34008 TIME MEAN 052.00896	* * * * * * * * * * * * * * * * * * *		
F-SOUARE 0.91036829 STD DEV 35.13798806	F VALUE 204.63012 53.02698 67.35942 67.35942 67.35942 0.0 0.0 0.757799 0.757799 0.4343619	UPPER 95% CL FOR MEAN 952-84265312 991-284265312 991-26066783 1081-8135512 928-3876432 1009-35797307 1657-35136332 855-74590127 854-62078344	1051-19340569 1131-55-16569 1131-55-16569 1055-732789519 1105-732789519 1105-732789519 1105-732789519 1105-732789519 1105-6856919 1196-6857379 1196-6857379 1131-6457778 1131-64577789 1131-64577789 1131-64577789 1131-64577789 1142-81511794
33884 0.0001	252652.345231C6 65471.26078764 03167.20729245 510 ERQ B 30160764191, 7.17251178 56.46837283 1.74602066	DWER 95X 0	1005,23726112 1053,47510854 1054,2771051 1034,2771051 1077,66175352 1077,66175352 1077,66175352 1077,66175352 1077,66175352 1071,6917057 1131,6917057 1131,6617273
108,33	PHOB > F 0.0C31 0.0C01 0.0001 0.0001 0.0001 0.0001 0.0001	RES 100 111.952961 40.628236 23.348496 33.03376 63.338496 11.536219 63.10912 63.10912	
ибан s guare 1 33763 • 60476038 . 1234 • 57820519	F VALUE 204 •53012 53.0269U 67.35942 67.35942 18=0 6456 0490 8196 0728		1.20556723 7.18633390 7.18633390 7.18633390 8.72826868 8.72826868 8.6276193 7.617433697 7.8169596 7.32695343 8.32695343 8.32695343 8.32695343 8.32695343 8.32695343 8.32695343 8.32695343 8.32695343 8.32695343 8.32695343 8.32695343 8.32695343 8.32695343 8.32695343
SOUARES 81428114 70256592 51664706	AL SS 20106 778764 29245 79245 7 FDR 110 14.3	. NO-8004C000-0	0 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5UH OF SOUARE 401290,8142811 39539,7025659 440803,5166470	SEOUE 252252+ 652471- 83167- 83167- 8	10000000000000000000000000000000000000	13.960.0000 14.940.0000 15.160.0000 15.160.0000 15.061.0000 17.00000 17.00000 17.000000 17.000000000000000000000000000000000000
70 88 88	0F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5332823833	1022 1022
SCHRCE REGRESSION ERROR CORRECTED TOTAL	SOURCE HIN CL D SOURCE 1MTF3 CEPT HIV CL D	00 NUMBER 12.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	# # # # # # # # # # # # # # # # # # #

0.000000000

39509, 70256591 -0,0000000-0.21765951

FIRST ORDER AUTOCORRELATION OF NESTUJAL'S SUM OF SQUARED RESTOUALS - EPROR SS

DURBIN-WATSON D

SUM OF SOUARED RESTOUALS

SUM OF RESIDUALS

2.36459241

HALYSISTICS OF FIT FOR DEPENDENT VARIABLE HEAN SQUARE F VALUE F	A N A L Y S I S S Y S T E H FICIENTS , AND STATISTICS OF FIT HEAN SQUARE F V 2668.7144ASI7 F VALUE PROB > F 94.67193 0.00001 37.53142 0.00001 37.53142 0.00001 37.5500 0.00001 37.5500 0.00001	A M A L Y S I S S Y S T E M FICIENTS . AND STATISTICS OF FIT WEAN SQUARE 2668.7144ASI7 F VALUE PROB > F 94.67193 0.0001 37.53142 0.0001 37.5500 0.0001 37.5500 0.0001 37.5500 0.0001 37.5500 0.0001
L Y S I S S Y S T E • AND STATISTICS OF F •	A N A L Y S I S S Y S T E FICIENTS AND STATISTICS OF F PERN SQUARE	T I S T I C A L A N A L Y S I S S Y S T E REGRESSION COEFFICIENTS , AND STATISTICS OF F SUM OF SOUARES 352732.94015648176366.47007024 RB067.57669057 2668.711447517 440800.51684705 SEQUENTIAL 55 F VALUE PROB > F 252652.34620105 100.0001 100.75500 100.75500 0.00001 9.72995 100.0001
L Y S L Y S L AND AND 66.470 68.714 F VAL F VAL 7.531	FICIENTS , AND PEAN S 2668.714 2668.714 94.671 94.671 97.550 97.550 97.550	T I S T I C A L A N A L Y S REGRESSION COEFFICIENTS , AND SUM OF SOUARES HEAN S 352732,94015648 176366,470 R0067,57669057 2668,714 440600,51684705 176368,714 SEQUENTIAL SS F VAL 252652,34620106 17636,075500 100,75500 9,72998 6,12384
	14.	T 1 S T 1 C A L REGRESSION COEFF SUM OF SOUARES 352732-94015648 R8067-5769057 A40900-51684705 SEQUENTIAL SS 252652-34620106 100000-59395543

SAS Linear Regression Procedure Printout

Performance Time versus Hin, C, D for
Left-sided Movement

PROC REGR S DATA=AVERAGES ; CLASSES EEX SUBJECT ; WODEL TIME=HIN CL D / P CLH ; TITE + LIN-REG - TIME VS HIN CL D + ;

	•	- 24 × E C 1	I LINAMEGO I HE VS MIN CL O	
DATA SET	••	AVERAGES	MUMBER OF VARIABLES # 4 NUMBER OF CLASSES #	CLASSES # 2
VARIABLES		HIN TIME CL D	י פר ט	
CLASSES		LEVELS	CLASSES LEVELS VALUES	
se x √.		-		
SUBJECT		-	សា	

	•		STANDARD DEV	0.02807867	105,56831747	0.10518107	3.40168026	
			VARIANCE	4.68571429	11144 66565448	0,01105306	11,57142857	:
	٥		CORRECTED SS	24.00000000	390063.43790672	0.38720703	402.0000000	,
	LIN. REG. TIME VS HIM OLD	STHPLE STATISTICS	UNCORPECTED 55	348 - 22000000	. 44472662+3891µ363	0 .79760742	\$166,60000000	•
	L		MEAN	3.00000000	1106.9787WR61	0. 00677083	11.5000000	
ر	· (2)	•	NUS	100,0000000	39836.03675600	3.84375000	414.00000000	
(36	VARIABLE	NIN	TIME	ಕ	٥	

LIM, REG. TIME VS HIM CL D ANALYSIS OF VARIANCE TAÜLE , REGRESSICH COEFFICIENTS , AND STAFISTICS OF FIT FOR DEPENDENT VARIABLE TIME

C.V. 3.20147 11HE HEAN	PROB > 6.000.000.0000.0000.0000.0000.0000.00		•
R-\$QUARE 0.89703739 STD DEV 18.42683939	214-43599 54-32558 10.02986 10.02986 0.0 0.0 0.0 0.03064150 0.01809114 0.17964378	UPPER 95% CL FOR MEAN 1056-65955618 1073-4505136 1073-4505136 1019-513578573 1019-513578573 1059-81159547 1059-81159547 1059-81159547 1059-9115954 1157-9135954 1157-9135954 1157-513595 1157-513595 1157-513595 1157-513595 1157-513595 1158-513595 1256-3550595	
3081 0.0001	PAPTIAL SS 269130.23635004 68183.16734019 12588.08379743 30.85925058 7723147331 5693157028 1,76037380	LOWER GSX CL FOR HEAN 10227-715657593 10227-715657593 10227-715657593 10227-715657593 10227-715657593 10227-715657593 10227-715657593 10227-715693 1025-7159575 1025-7159575 1025-7159575 1025-7159575 1025-7159575 1025-7159575 1025-7159575 1025-7159575 1025-7159575 1025-7159575 1025-7159575 1025-7159575 1025-7159575 1025-71595 102	
9 2 ° 9	PROB > 171	### ### ##############################	
ияли s филе 116633.02917349 1255.06094935	F VALUE 214.43599 54.32638 10.02986 10.02986 10.03985 10.02986 10.02986 10.02986 10.02986 10.02986	70.501CTED VALUE 13.94794521 55.957812443 55.957812443 56.957816384 10.619802848 10.619802848 12.4173216384 13.917893 14.131692 15.41732163 15.41732163 16.617376	
6752766 6752766 6037906 3790672	AL 55 39004 34019 179743 T FOR 14 14	000000000000000000000000000000000000000	
3 349901.4 32 40161.9 35 390063.4	DF SEQUENTI 1 269130.236 1 69133.167 1 12588.063 8 8843667 15.63042455 5.57509537	00 SERVED 1678-1910 1677-1919-1919-1919-1919-1919-1919-1919-	1000000
SOURCE REGRESSION EHROR CORRECTED TOTAL	Squace HIN CL D SQUACE INTERCEPT TABLE TO D TABLE TO TABLE TO	NOON	000

				•				•
	y				•	*		
		•	•			C.V. 0072 7867 7860	š	•
	- ,	•				20072 20072 FEAN 97860	A 88	\
	,				•			•
	· • • • • • • • • • • • • • • • • • • •			•		3.20072 3.20072 Tipe mean	PAG9	
	のないなられなったりーのではつールウーシャラチャルケト	ちしゅうちゅんさい	*			F 3	۵	
````			•		`	•		£ 05
20	#34>0000404m04m040404m04m040404m04m0404m04m0	ひのちょくひとらな				•	•	VALUES 064150 195909
G-2,		<b>もとりじゅうきゃん</b> りらかな→アリのさ		*	` .		M 40	* 0.
. 50	* * * * * * * * * * * * * * * * * * * *		•		4	B & 3. 0	VALUE 5373 4019	
<u> </u>	よびとりしょうなんないないないないないないない。 よびとうしょくないないないないないないないないないないないないないないないないないないない	034886480 6-26-1-661				JARE 5997 0EV	VAL 537 491	E 004
-	OOCOOCCEPT THE TOO SONAN		•			\$ 50 \$ 10 \$ 10 \$ 10	<u> </u>	5,000
•				• .	Ĭ	89396997 89396997 810 DEY 41 847025	~~	•
	•				=	•		• ;
	•		•		, <u>u</u>	o 8	•	
_		0048		_	VARÍABL	•		. •
ુ છે.	なののならしなりのイフーとアニカでのアルトラーン	00-675000	0.00000000	.000000000 .32635131 .64775676	- 🐔			C 0 P-4" 4
×₹	40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40404 40	のではとうしのです	000000	.326351 .547756	. 4	L 5	8 6 6 8 4 6	460
SA	######################################	<b>ふじのせとのごすり</b> ゆうさん むりゅうり	. 60	0 7 6	>	1 < Ea	0 ب	50 3 576 3
Βæ	COPONAUCE AND COMMANCONAUCE OF THE COMMAND OF THE C	C400400-04	0 10	0 0 4	<b>=</b> .	E 0 .	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	200
뜻민			0		Ě	E.	122	22.0
10	のできるというできます。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 とっていました。 と。 と。 と。 と。 と。 と。 と。 と。 と。 と。 と。 と。 と。	<b>ドロのようの→~◆</b> .	· •	7	Ĭ.	•	<b>4 • </b> ;	mre.
			ĝ`		DEP END EN T		- P	•
	• 1		. •		. 8		. 28	
	ļ .		1		Œ	F VALUE 8.96966	` %^	•
					2	₹ 69		
ږ	00000000000000000000000000000000000000	70-010-01			<b>-</b> •	> 6	•	
3	48F04F04-NUO-000-000-00040-	70000000	_		. 2	F 8	L	
=		กษณะกลุมอง				<b>→</b> ±	_ 88	7 565 .
٠, ق	070046184444444444444444444444444444444444	57499-48V		• •	E=2 0F			- 588
	######################################				ฐ ซ	•	9 00	A + • •
	-41'40UR   160-040 RUSAUNU	0044-0444			2		ā.,	£ 000
		1 1		يَ	, MG.			tions.
			•	· 2	8 E	2 -		<b>5</b> .
		•		<u>, 9</u>	INDEXO IO STAT	499637235 499637235 46803473	ರ ∢ದ	•
4	i j			6 B	5 %	9 9 9	VALUE \$3734 \$3198	
ò	-NESSECANDONO-E-MORANA		-			NA 00	> "0	
<u> </u>	12 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- NO - O - O - O - O - O - O - O - O - O	i	ž č	-	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	L dm	Ì
23	日本スートロストーウのアウののひのと、一ち日スーエスト	C4-40000	• 1	. 8		202 204 204	20	√ .*
₽₹			•	· 🗕	7.5	<b>*</b> -	•	، المحمد ه
ē,		30-64-02/4 5-66-met-5-5	· 51	5 4	JECTS FFHTS	-		= 222
_	PROPERTY OF THE PROPERTY OF TH	800000C	5 :	HE L	UBJECTS ICIFHTS			*
•	0700000000	40464	2 :	- J	9 E			5 466
			हा ( स	0000 d		70 72 72 72 72 72 72 72 72 72 72 72 72 72	ti 4-0	garant.
ı				± · Q · · ·	ALL S		8 00	ĭ
			DUA	7 A		3 1 1 2	AL.	<b>-</b>
			STOUAL		₹ ₹	\$92758 445148 437906	2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
٥	10000000000000000000000000000000000000	2000000000	RESI	<b>□ <u>.</u>. ⊢</b>	. F OA	656 656 63.4	аиғит! Al. 30, 23639 35, 75536	
نن≷		000000000	द ले		செய	-0-0		•
22		10000000000000000000000000000000000000	ें हैं है			J 20 - ^	a	
OO SE	paronacaux properties of the p	004400-RPS		FIRST DURBI	HEG HEG	9 <del>4 4</del> 6 .	35	
¢	Charles		HOS .	5 5	J -			- 22 E
	000-6000000000000000000000000000000000	4000mmp3nm	• • • •	" *L C	щ			n vátue:
			<b>;</b>		TAULE	F 4 E 5	L	> ~80 > 40 0 0
	·   ·				_	F . E .	<i>(</i> 2)	E 485
-					W		1,	
					4HCE			700 °C
	1	•	•					/
œ	j. •				2 <b>3</b>	ہ		
2.5	-NEGONOCHNERONSCO-NEGONOCH		•		>	TOTAL		
ORS	- とうないないというないないないというないないないというというないというないとい	*********		•	. , 90	, F		
"×	. ا	•			8	SOUAGE REGKESSTON GRFDP COARECTED		<u>-</u>
		•			-	S\$100 CTE0	=	<u>س</u> _
	, I		•	•	Ξ.	15 a 25 · ·	<u> </u>	÷ % €
		•	•	•	AHALYS	SOUPGE REGRES GREGA CORREC	SOURCE HIN THIERD	anuace Infercept History
	•	•	•		₹	S E 5	8. EE	ê EEF
				-	•			
	•						•	
		•						••

To the s

SAS ANOVA Procedure

and

ANOVA Printout

for

Left-sided Movement

( Sample, Model 4 of Part 2 )

```
DÁTA GEÑERAL 🎢
 INDUT FUNAMERSTICECCI STX 1-2 GUOUFCT 7-4 HIG 5-6 HOUT 7-A
 VARIABLE
28900 OBSERVATIONS IN DATA SET GENERAL
 DATA ALLSUS :
SET GENERAL : IF ANGLE=2 :
 IF HUUT=1 THEN INCEXD=1
 IF HOUT=2 THEN TRIDEXD=2
IF HOUT=3 THEN I TRICKD=3
IF HOUT=4 THEN INQEXD=4
 IF HOUTES THEN INDEXDES
IF HOUTES THEN INDEXDES
IF HOUTET THEN INDEXDES
E=CYRCAI NEHT 8=TUCH FI . F GYRCH IN SHOULH 9
 IF HOUT=10 THEN INDEXD=10
 IF HOUT=11 THEN INDEXO=11 IF HOUT=12 THEN INDEXO=12 DEOR HOUT;
 VARIABLES
14400 DESERVATIONS IN DATA SET ALLSUB
 PRIC SORT : BY SEX SUBJECT HIN INDEXD :
 PROC ANDVA SORT=2:
CLASSES SEX SUBJECT HIN INDEXD:
MEANS SEX SUBJECT HIN INDEXD:
MODEL TIVT=SEX SUBJECT(SEX) HIN INDEXD HIN*INJEXD HIN*SUBJECT(SEX)
: INDEXD *SUBJECT(SEX) HIN*INDEXD*SUBJECT(SEX) SEX*HIN SEX*INDEXD
TRST HIN BY SUBJECT(SEX):
TEST SUBJECT(SEX) HIN*SUBJECT(SEX):
TEST SUBJECT(SEX) HIN*SUBJECT(SEX):
TEST SUBJECT(SEX) HIN*SUBJECT(SEX):
TEST SUBJECT(SEX) BY PESIDUAL:
TEST SUBJECT(SEX):
 TEST SEX BY SUBJECT(SEX)
 TEST SEX BY SUBJECT(SEX);
TEST SEX#HIN BY HIN#SUBJECT(SEX);
TEST SEX#INDEXO BY INDEXD *SUBJECT(SEX)
TITLE * ANDVA FOR ALL SUBJECTS ANGULES
```

ANOVA FOR ALL SUBJECTS ANGLE=2

### DATA SET ALLSUB

## ANDVA FOR ALL SUBJECTS ANGLE= 2

## MEANS

	•	. ,
INDEXD	N	TIME
1 2 3 4 5 6 7 6 0 10 11 12	1200 1200 1200 1200 1200 1200 1200 1200	1015.38008 1061.28592 1052.56675 1052.57928 1078.75517 1123.16508 1109.55192 1123.74958 1123.74958 1123.23217 1162.88133 1158.65150 1190.54500
HIN * 2 3 4	4800 4800 4800	1008.91702 1090.11227 1220.70710
SUBJECT 1 2 3 4 5 6 7 8 9	1440 1440 1440 1440 1440 1440 1440 1440	1034.37292: 1033.93139 1179.70996 1174.45167 1092.08389 1186.59049 1167.10972 1145.07042 1026.33292 1026.13562
SEX 1 2	7200 7200	1123.81131 1089.34629
OVERALL MEANS	14400	1106.57880

	A VALYSIS OF VARIANCE FOR VARIABLE TIME		11 106.	1196.57880 C.V.	13.4565715 %	
	SOURCE	DF	SUM UF SOUARES	WEAN SOUARE		-
•	XIIS	-	4276214	4276213,9	•	
	SUBJECT( SEX)	1.9	81049751	4502763.9		
-	, NIH	ď	169664350	54802174.8		
<u></u>	INDEXO	`=	35620303	3238936.6		
	HIN* INDEXO	<del>د</del> د	10792723	490578.3		
	SUBJECT #HIN( SEX)	36	6802282	188952.3		,
•	SUBJECT+INDEXD(SEX)	198	1877/1106.8	94839.8		•
	fundect while tube xo (sex)	396	32431670	81898.2		
	SEXONIN .	Ci	207551	66895.8	•	
•	SEX# INDEXD	=	7 29 8 2 7	£6863• <b>4</b>		
	RESIDUAL	13702	JU 382075 B	22173.5		
	CORRECTED TOTAL	14399	161916191	A1945.7		
· ·				•		
TESTS	SOINCE	0F	SJH UF SOUAPES	HEAN , SOUAPE	F VALUE	PROB > F
NUMER ATON:	ŽĮ.	n:	139604350	54802174.B	12,17079	0.0007
D IENDA IN ATOF : SUBJECT (SEX)	SUBJECT(SEX)		8 10 49751	4502763.7		
THUNEE VALUE T	. INDEXP	=	35628303	3230936.6	34 + 1 5201	00000,
DENDH DIATOR:	DERICH HINTOP: SUBJECT+1NDEXD(SEX)	961	10778068	94838.8		
NUMER ATOR:	suajec T( sex)	10	, 81049751	4502763.9	203,06994	0.0001
DEWONIYATOR: RESIDUAL	RFSIDUAL.	13702	33 3820798	22173.5		
NUMEF ATOR:	SUBJECT HIN SEX)	36	, 6802282	188952.3	0.52155	0.0001
DENDH IN+1041	RESIDUAL	13702	30 3820798	22173.5		

#### ANOVA FOR ALL SUBJECTS ANGLESS

TESTS	SOURCE .	ישר י	SUM OF SOUAPES	MCAN 50U495	P VALUE .	PROB > F
NUMER ATOR:	SUBJECT+INGL XD ( SEX)	108	18778688	24838.6	· 4.27713	.0.0001
DEMNY INATOP:	FESTOUAL	13702	7820748 س	77173.5		
NUMERATOR:	HIN# 190EXD	72	10792723	490578-3	5.99010	0-0001
DENGH IN ATOL :	SUBJECT+MIN-INDEXD(SEX)	394	32431670	61593-2		
NUMBERATOR:	SEX		4276214	4276213.9	0.94969	0.0555
DENON IN ATTO	SUBJECTESEXE	18	81049751	4402743-9		
NUMERATOR:	SEX+HIN	2	133792	66895.4	C.35494	0.7092
SOTA IN POSS	SUBJECT ON EN ( SEX )	35	6802282	184952.3		
HUMER ATOR:	SEX= INDEXO	11	455427	54793.4	0.67153	0.8014
DENOM INATUR :	SUBJECT+INDEXD ( 25 K)	198	16775068	94838-6		

ANDVA FOR ALL SUBJECTS ANGLESS

21144 SUNDAY. APPIL 25. 1976

STATISTICAL ANALYSIS SYSTEM

DESIGNED AND IMPLEMENTED BY

RRAB EBMAL YMOHTMA THOIFGOOD GAARCH EBMAL

DEPARTMENT OF STATISTICS
MOSTH CAPOLINA STATE UNIVERSITY
DALEIGH, NORTH CASCLINA
__AUGUST, 1972

A USER'S GUIDE TO THE STATISTICAL ANALYSIS SYSTEM

STUDENTS SUPPLY STORES
MOOTH CAROLINA STATE UNIVERSITY
RALEIGH. NORTH CAROLINA 27007

AT A COST OF \$7.95 PLUS POSTAGE AND HANDLING

SAS ANOVA Procedure

and

ANOVA Printout

for

Right-sided Movement

(Sample, Model 4 of Part 2 )

DATA GENERAL INPUT DONAME =FT10F001 7-8 ANGLE 9-10 1-2 CYCLE 11-12 28800 OMBERVATIONS IN DATA SET GENERAL 7 V ARAIABLES SET GENERAL IF ANGLE=1 HOUT=1 THEN INDEXD=1 IF INDEXD=2 HOUT=3 **エNOEXD=3** H 10 1=4 THEN THEN THEN I NOEXD=4 INCEXD=5 τ= ĮF I NOE XD=6 **ドラリア=6** THEN INDEXD=7
THEN INDEXD=8
THEN INDEXD=9 I= HOUTET HOUT=8 I = HDUT=9 THEN INDEXD=10 THEN INDEXD=11 HOUT=10 HOUT=11 THEN INDEXD=11 HOUT=12 THEN INDEXD=12 īŦ DROP HOUT : 14400 OBSERVATIONS IN DATA SET ALLSUB VARIABLES PROC SORT ; BY SEX SUBJECT HIN INDEXD ; PROC ANDVA SORT=2;

CLASSES SEX SUBJECT HIN INDEXD;

MEANS SEX SUBJECT HIN INDEXD;

MODEL TIME SEX SUBJECT(SEX) HIN INDEXD HIN*SUBJECT(SEX)

INDEXD**SUBJECT(SEX) HIN*INDEXD**SUBJECT(SEX*) SEX*HIN SEX*INDE**D INDEXDESTRICT(SEX) HINENDEXDESTRICT SEXPERIOR IN A SEXPLOY SEAR IN A SEXPLOY SEAR IN A SEXPLOY SEAR IN A SEXPLOY SEAR IN A SEAR IN A SEAR IN A SEAR IN A SEXPLOY SEAR A SEXPLOY A SEXPLO TEST TEST TEST TEST TEST TEST ANOVA FOR ALL SUBJECTS ANGLE=1

DATA SET ALLSUB

THE PROPERTY OF THE

TO THE STATE OF THE PROPERTY O

٠,

CLASSES VALUES

SEX 1 2 ...

SUBJECT 1 2 3 4 5 6 7 8 9 10

HIN 2 3 4

INDEXD 1 2 3 4 5 6 7 8 9 10 11 12

#### ANDVA FOR ALL SUBJECTS ANGLES:

#### **メニエ 45**

INDEXO	FI .	TIME
1 2 3 4 5 6 7 9 9 1 1 1 1 2	1200 1200 1200 1200 1200 1200 1200 1200	913.21975 1008.02625 957.30650 1067.42250 980.73708 1073.84967 1041.98533 1123.99508 1023.31208 1099.40442 1101.55850 1181.20033
HIN		
3 .	4300 4300 4300	957.00250 1036.81777 1162.20660
,	•	
SURJECT 1 2 3 4 5 6 7 8 9	1440 1440 1440 1440 1440 1440 1440 1440	C83.E8924 QQE.92181 11C6.95847 1C94.44076 1042.43382 1149.97264 1114.94597 1089.35597 971.27410 966.99681
SEX 1 2	7200 7200	1C63.3556C 1C4C.66232
OVERALL MEANS	14400	1.052.00896

C.V. 14.0752935 X	WEAH SQUAFF	1853945.5	391446.7.7	51361249.1	F210204.7	240248.9	192550.3	0.49199.0	69148.1	PA5.9	65475+8	21928.7	41801.9	•	HEAN SOUARE F VALUE PROR > F	51361249.1 13.12081 0.0005	1914487.7	6210264.7 69.04836 0.0001	6.919.9	3914467.7 178.53409 0.0001	21925.7	
1052,06696		1353945 188	72460778 391		68312252 421	5285657 24	69 31 61 1	17808166	27382763	1692	723234					•	70460778 39	68312252 62	17806106	7046077B 39	130426173	
HEALL	SUM OF SOUNESS	1 35	7046	132722448	1189	. 628	69 3	1790	2738	•	7.2	3,10426173	001905669		SJM OF SOUARES	132722498	7046	. 68.31	1780	7046	3004	
LF TIVE	30	***				22	36	198	396	23		13702	14339		30	. CV	<b>81</b>	:	661	<del>-</del>	13702	i
AVALYSIS OF VARIANCE FOR VAPIABLE TIME	SOURCE	XIII	(x 25.11.04f.605	211	UX SON I	HIN41NDE XO	SUNJECT THINGSEX)	SUBJECT * INDEXD (SEX)	SUBJECT *HIN* INDEXO(SEX)	11.0 X 4.2	GEX* INDEXE	PESIDUAL	CORRECTED TOTAL		305068	N. T.	DENDA HIATOR : SURJECT (SFX)	ומטן, אט	DEMONTHATOP: SUPJECT * THDEXX (SEX)	Subject (Sex)	: RESIDUAL	
												-			2	CIVERNIN 9	DENDA INIATOR	AUNGE ATO 2	SENDY IN ATOP :	WING PATORS	DENTITION : RESTRUAL	

	•	ANDV F FOR	ANDVA FOR ALL SULJECTS ANGLES	הרE= }			
TESTS	Johnos	OF.	SIM OF SOURFES	MFAN SQUARE	F VALUE	PROR > F	
NIIME E ATOS:	SIMJECT+THPF XD (SFX)	199	17809166	89939+9	A.10203	0.0001	
DENSH INATOR : RESTOUAL	RESIDUAL	13762	100426173	21025.7			
NUMEFATOR:	HIN* INDEXO	er ev	5285457	240244,0	3.47440	0.0001	
DĒMOY INATOR!	ŋĖMJ 1 NATOR : . SUÑJECT ♦H IN ♦ INDEXO (SEX)	306	27302663	65148.1	· >		
NUMTE AT 19:	איצ		1451945	1853945.5	0.47361	0.5065	
CERALY IN ATOR :	GEIAIM IMATOR: SUMJEGT(SEX)		70460778	1914487.7		,	
NUMER ATOR:	NH*X±S	<b>«</b>	1692	P45.9	0.00439	0 • 9960	
1 3014 PL MCN 30	DENIMINATOR: SUBJECT #MIN(SEX)	36	6931811	192550, 3			
NUMERANTOR:	SEX+ INDEXD	=	720234	65475.8	0.72799	0.7121	
OF NOW IN ATOR:	DENNYTHATNA: SUBJECT#INDEX3(SEX)	198	17808106	0.99.39.0			

## **BIBLIOGRAPHY**

- Barr, A.J., Goodnight, J.H., 1973, Statistical Analysis System. Department of Statistics, North Carolina State University.
- Bayha, F.H., Hancock, W.M., Application Guidelines on Decide Action Research. Department of Industrial Engineering, University of Michigan, Ann Arbor, Michigan.
- 3. Bowker A.H. and Lieberman G.J., 1972. Engineering Statistics Prentice-Hall Inc., Englewood Cliffs, New Jersey.
- 4. Draper and Smith, "Applied Regression Analysis" . . second edition. John Wiley and Sons Inc.
- 5 Draper and Smith, 1966, "Applied Regression Analysis", Second Edition. John Wiley and Sons. Inc.
- Fitts P.M., 1954, The Information Capacity of the Human Motor System in Controlling the Amplitude of Movement. Journal of Experimental Psychology, Vol. 47, #6.
- 7. Fitts P.M. and Peterson J.R., 1964, Information Capacity of Discrete Motor Responses. Journal of Experimental Psychology, Vol. 67, #2.
- 8. Fitts P.M. and Radford B.K., 1966, Information Capacity of Discrete Motor Responses Under Different Cognitive Sets. Journal of Experimental Psychology, Vol. 71, #4.

- 9. Hancock, W.M. and Foulke, J.A., 1963, Learning Curve Research on Short-Cycle Operations, Res. Report #112, M.T.M. Association, New Jersey.
- 10. Hicks, C.R., 'Fundamental Concepts in the Design of Experiments', second edition. Holt, Rinehart and Winston.
- 11. Hicks, R.C., 1973, Fundamental Concepts in the Design of Experiments, (New York: Holt, Rinehart and Winston, Inc.).
- 12. Keele, S.W., 1968, Movement Control in Skilled Motor Performance, Psychological Bulletin Vol. 70, #6, Part 1.
- 13. Posner, M.I., 1962, An Information Approach to Thinking. University of Michigan, Technical Report #02814.
- 14. Raouf, A., 1973, Information Processing Rate and Prediction of Decision Times, J.M.T.M., xviii.
- 15. Raouf, A., and El-Sayed, E.A., 1975, Effect of Informational Load and Angle of Moves on Performance Time in a Combined Manual and Obecision Task, Proceedings, A.I.I.E. 1975 Spring Annual Conference.
- 16. Raouf, A., and Khare, S., 1975, Effect of Informational Load on Human Performance in a Combined Manual and Decision Task, American Industrial Hygiene Association Journal, 36. 1.
- 17. Raouf, A., and Mehra, M.L., 1974, Experimental Investigations Related to Combined Manual and Decision Tasks, Int. J. Prod. Res., Vol. 12, #2; 151-157.

- 18. Sadosky, T.L., 1969, Prediction of Cycle Times for Combined Manual and Decision Tasks,
  Research Report #116, M.T.M. Association,
  New Jersey.
- Scholes, E.E., 1970, Information Capacity of Manual
  Discrete Motor Responses Compared for
  Different Directions and Amplitudes of
  Movement, Master Thesis, Naval Postgraduate
  School, 1970.
- 20. Shannon, C.E., and Weaver, W., 1949; The Mathematical Theory of Communication, Urbana:
  University of Illinois Press.
- Thomas, M.U., 1971, "Some Probabilistic Aspects of Performance Times for a Combined Manual and Decision Task", a Ph.D. Dissertation, ... Industrial Engineering, University of Michigan.
- 22. Thomas, M.U., Hancock, W.M., and Chaffin, D.B., 1974, Performance of a Combined Manual and Decision Task With Discrete Uncertainty, Int. J. Prod. Research 12, 3.
- Welford A.T., 1960, The Measurement of SensoryMotor Performance: Survey and Reappraisal of
  Twelve Years' Progress Ergonomics, 1960,
  Page 189-230.
- 24. Bailey and Presgrave, 1958, 'Basic Motion Time Study' McGraw Hill, New York.
- 25. Crossman and Goodeve, 1963, 'Feedback Control of Hand Movement and Fitts' Law'.

  Communication to The Experimental Phychology Society.
- 26. Handcock, Langolf and Clark, June 1973. Development of Standard Data for Sterioscopic Microscopic Work, A.I.I.E. Transaction, Volume 5, #2.
- Welford A.T., 1975. Effect of Informational Load and Angle of Move on Performance Time in a Combined Manual and Decision Task.

  Proceedings, A.I.I.E. 1975 Spring Annual Conference.

28. Sethi, H.S. 1975. Effect of Information Reduction on Certain Aspects of Operator's Performance in a Decision Task. A.M.A.Sc. Thesis, Industrial Engineering, University of Windsor.

# Vita Auctoris

1948	Born in Hong Kong.
1966	Graduated from Form V at St. Louis School.
1968	Senior Matriculation at New Method College.
1972	Graduated at University of Windsor with
	B.A. Sc. in Chemical Engineering.
1975	Graduated at University of Windsor with
	Business Communication.
1976	.Employed in Industrial Engineering functions
	with the Northern Telecom Limited.
1977	Candidate for the degree of Master of
	Applied Science