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) ) ABSTRACT

-

An investig%tion is_présented fqr steady nétural
convection flow over a écmi—ipfinite.vertiéal pléte induced
by diffusion and chemical réactioﬁ.. Tﬁe flow is assumed to
be two-dimensional and laminar. pr large Grashof numbers,

is reduced to a boundéry-laycr‘type,.and this

>

hihary systems with mass - diffusion.
. L /. .
Perturbation-type similar SOlU%lOHS are obtained for
the case of uniform concentration along the plate. The

investigation is extended to sccond order perturbation

:terms. The similar coordinate length is contracted from

~

infinity to,unity by a suitable transformation and then

Taylor series ‘solutions are constructed. ' It has been observed

.

that the first and sccong order perturbation solutions in

concentration are found to be significantly shaller than

the zeroth ordeér solution.

Truncating the series after the 1Cth power, the zeroth

‘order approximate solution is compared with the numerical

>
solutions. These numerical solutions are obtained by the
Runge-Kutta integration scheme in cor%?ration with the
Nachtsheim-Swigert technique (1905) to correct the initial

- - G
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guesses at the surface beundary. The results £6r no

Feaction (i.e. zercth order approximation) appear to be

in a reasonable agreement for the small Schmidt numbers.,
L " .
But for high.Schmidt numbers, the series solutions appear
' L]

tc be unstable.

3

An investigation upon the governing eguations reveals

-that the similar solutions exist only for a certain type of
i a

problem consisting of distributed concentrations‘along

-

the plate. The following three families of distributgd

y

surface concentrations whose functionalities are prescribed

by the order of the reaction are studied:

- {4
1. For geferal nth order XKinetics:®
3-2n
— = N x

cO Coo

2. For first order rcaction kinetics:
' -
c_ - C = N x

‘ 0 oo

3. For 3/2th order rYeaction-Kinetics-

~

I Loy
) #thlx . ) :

These families assume the similar solutions. For the

. -

problems 2 and 3, numérical results for negligible reaction

/

e N



rate are compared with those o

'

. L]
. \
The comparison shows excellent agreemen

t”- -

f Sparrow and Gregg (1%

£
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NOMENCLATURE \

In the follow1ng list of symbols, dlmen31ons are given

in terms of mass (M), l%ngth (L), time (GB ) and temperature (T).

Grx

fLe

Sc

=  Grashof number = gﬁ'(co-coéj 0

LATIN LETPE&: P

= non-dimensional species concentration.

= specific heat of fluid at constant pressure,

12 1g7!

= chemical molecular diffusivity, e

%1

= non-dimensional stream- function. - ' N

= acceleration due to gravity,

F
‘Le?

V2

= thermal conductivity of the fluid,

MLT T 6”3

= Lewis number' = a/D

= Préndti number = J/a

=  Schmidt number = }ﬂQ/D'-

= absglute temperature of fluid, _ T

= universal gas constant

. ML2 6_2T—1 (mole)_1

Xiv
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J#

Rl

Ll

0

<

it

U

] . ) ) -1
velocity component in x - direction, L ©

velocity component in Y - direction, L 9—1
Q .
vertical distance along the surface, L

horizontal distance from the surface, L

activation energy, S

mass flux . \)

(moles) L%t

homogeneous chemical rate-constant
(n:xole-s)l_nL:an“3 ot
fluid pressure,
. . __'- 1 -
‘ : ML .@® 2

volumetric heat-source rate.

T, = chemical reaction-rate,

ML g
vol 3
ume, L
. -1
velocity vector, 1o
similarity distance (dinensionless)
oxdex of reaction

Reynolds number.

Nusselt number.



€ 2

I

n

GREEK LETTERS

jﬁz;» = thermal diffusivify, LEG—1 ' . X

- . ) -1
thermal coeficient of volumetric expansion, T

volumetfic-coefficient_of expansion with concentration,
-1
13 (mole)
non-dimensional temperature.

dynamic viscosity of fluid,

M Yol >

E_ = Kinematic viscosity of fluid L

2.-1

=
fluid density, ML 3

Stream function, dimensions depend on the coordinate
system.

Y [ Grx 1/4
x{ 4

Similarity variable 7= = [___

Dimensionless reaction-numbers

2k e3/2 1/2
= _x
_ gp*

the "del" operator

= i— + i _a_ + k _a__
ox oy oz '
2 2 2
RN N
xS 3y° :522

xvi
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based on distance x
based on temperature level
based on species concentration level

at the surface
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CHAPTER I

INTRODUCTION

1.1 Concepts and definitions:

Y

Boundary value problems invo}§ing the principles of
heat and mass diffusion in a fluid medium, where the results
are directly influenced by the presence of fluid motion may

\
in general be termed convection processes If the motion
'of the fluid is determined by boundary conditions specified
eXternally to the System, such as-forcing air through a
Passage in which anﬁexternal Pressure gradient is specified,
the process is called forced convection. Otherwise, if the
f1u1d velocities are caused by the effects of gravity force,
~i.e. by the interaction of a body force with variable
density arising from heat or mass diffusion, then the
"Process is called natural convection.

The phenomena of naﬁural convection can be observed in
the atmosphere, in bodies of water,adjacent to domestic -
heating radiators or over sun-heated fields and roads.

The basic equations which describe natural convection
flows are similar to those of other fluid flows and diffusion

Processes, with the essential difference that, in natural



are commonly used are as follows: : ﬁ?
*

Local Grashof number: Grx = 9B (CO—COO)XB - .

! | | 2 :
/ , : '
dchmiat number: Se = Jp y
Prandti number: Pr = J/q

b 2
Local Nusgelt number: Nu = I (x) ( x‘)
\ * C0—coo /j}
‘Local Reaction Rate number:
: n-3/2
"G(X) = X |
JIB
where,
9 = acceleration due to gravity

-

‘B = volumetric coefficient of €Xpansion with
concentration §peci¢s

. € = .species.concentration at the plate surface
o= SbPecies concentration at the ambjent fluig
' X = co—ogdinate length along the plate
v o=

kinematic viscosity of the fluia

£}



.

D = CLemical,moleéular diffusivity
- e a = tgérmal moiecular diffusivity

J%x) = local mass flux
k = reaction—réte constant ,
n = order of reaction ’
. X 3 <

The qua?tlty cr - 9B ((:O—C'OO)L‘J

ve

where L 1is a characteristic length of the plate, is called

the Grashof number. This number is a measure of the vigor

o

of the flow -induced due to buoyancy-effects. It arises in
the force-momentum balance as the ratio of the relative

magnitudes of viscous force and the inertia force. The

~

Grashof number“of natural convection flow is ana}ogous to
' { )

the Reynolds number of forced flow, / Gr corresponding

to Re. The characteristic feature of this number is

that stability and transition are defined in the limits of

this number. The quantities Pr = V/a- and Sc = Vb are

p
defined as the Prandtl and Schmidt numbers respectively. -

The former one occurs in the energy equation whereas the

latter one occurs in the mass-diffusion equation. These two
numbers are the indicators of the steepness of the

*

gradients of temperature and concentration respectively in



y
the flow field. As for instance, for high Prandtl number
' fluids, the temperature gradient is much steeper than that

for low Prandtl nunber fluids.

v

The local mass flow per unit area (mass flux) from the

surface of the plate to the fluid mAy be calcutated from

r

Fick's first law of diffusion:

3= - e,
which is the three-dimensional form of Fick's law. For a
two dimensional case, if we assume that the mass flux component
pér;llel to the surface is very smail compareé to that
Perpendicular to the surface, then the mass flux from the

pPlate surface to the fluid may be written as

. P o oc

‘> . J(x) = —-D(_é;)}{fo
It is cdstomary to express mass transfer charactéfistic; in
terms of a "mass-transfer coefficient” h, ‘defined as the
mass transfer per unit area (i.e. mass flﬁx) divided by the
éoncentfation difference causing the mass—transfeé, Since
_ tﬁe flux is often variable over thefsurfacg even~for a
uniform concentrétion aifference, the mass transfer coefficiénf

h varies over the surface .’ Theréfore, one may'speak of

local values h# or of average values 'H.-



This local value is given by

Lo IYx) D a(_a_c)

oy =0

c -C c —-c
0 0O @

ultiplying through by x/D, & dimensionless combination

is ifound which is called the local Nusselt number (a2 mass

transfer parameter):

The¢average mass transfer coefficient h from x =0 to L

may be found from the following integral:

h = Aaverage mass flux

average concentration dlfference
d[ .jp x)dx:}
1 .
L. ’
o ,

Thus the averagé transport parameter is given by

&

7 : ‘v
P, :

NﬁL =/ 5 » Wwhich is a measure of mass flow per
unit area from the surface of the plate to the fluid in

dimensionless form. . LT
: n-3/2
The quantity 2k (co-ccb) xl/2

V. 9p*

RN



6

arises as an indication of the relative. importance of the

chemical reaction-

iy

rate in the mass diffusion equation and

is called the rééction—rate‘humber, details of which are

discussed in Chaptér Iv.

- -
-

—h



1.2 Historical Summary

Investigation of natural convection flow began as early
as 1881, when Lorenz calculated the heat transfer from a hotv
vertical plate in .still air. He used the assumption that
the‘velocity and temperature distributions at any point
._depend only on the distance from the Plate. .Schmidt and

Beckmann in 1930 proved that this assumption was .quite

unsatisfactory. At about that time, Prandtl's laminar

n
v
-

bounde;y—layer fencepts were introduced to fluid mechanics.’
Schmidt and Beckmahn were the first to apply the concepts

of boundary—layer theory to natural convectlon flows. ' Their
calculations for this problem indicated that the boundary -
layer may be thin compared with the height of the verﬁical
hot plate, and consequently, hhat‘the components of the
gradients in velocity paégllel to the surface of the plate

would be relatively small. Hence they showed that the

. approximations of the boundary-layer theory wefe applicable - - -

"to the formulation of natural convection problems.
An analysis of relative orders of magnitude, which is
demonstrated by Gebhart (1971), yields the system of o

equations governing the distributions of velocity, and

concentration applicable to flows which result inithin

-



.. - B S ' 8
convection layers. These convectlon layers are boundary—
layers whlch arise in flows at high Grashof number This

S

number is 1nd1cat1ve of the buoyancy fgrce. '(In forced
: . ;

convection flow the boundary—layer region results from
flows at hlgh Reynolds number ) v

One classigal problem of natural convectionsflow has
been treated by Jakob in 1949, Bird et al in 1963 and Kays
in 1966. The problem concerns the flow hetween two vertical
- parallel walls held at‘differeht temperatures and placed in
a fluid of unlform density and vrscosrty.' Heat transfer and
the resultlng buoyancy effeqt then cause the fluid near the
hotter wall to rise and that near the colder wall to descend.
Thus convection currents are set up 1n the fluid domain
between the walls and the calculations infer .that the temp~
erature distribution is a linear function of the distance
between the walls while the velocity proflle ShOWS a cubic
Varlatlon These results appear to conform well to the
phy31cal knowledgé of the problem.'

Another problem discussed by Bird et al 1n 1963 concerns
a flat vertrcal Plate: held at temperature To and suspended
‘_in an infihite body of fluigd, initially at rest with uniform
density and viscosity. 'The temperature ot the fluid

%

1)‘



|

/

<N~ . -
place on the pPlate, which disturbs - the cbncentratidn of A

- ' o
initially is Tl where T, <5(Tof Convection_curygnts are
essentially parallel to the Plate and are set up by the
bUQyéncy effect.. Assuming that thelflow is confined to 3
neighbbhrhood of the pPlate which is small in compafison
with the plate leﬁg;h‘éhd that tranﬁverse velocityz
components are negligible, the steady state boundary—layer
formulation yields a set‘of cbupléd non-linear ordinary
aifferential eqguations for the flow field. The equations
were no; solved; rather the aﬁthors presented a‘aimensionai
ahalysis of these egations. This type of problem is best

i

described and discussed in the work of Morgan and Warner (1956)

~also Ostrach (1953)

A problem of steady state natural convection induced

by chemical diffusion from a vertical plate has been reported

2

by Levich (1962). The Plate, at zero concentration of a

given chemical ‘species A, but containing some catalytic

substances, is placed in a fluid solution of A" at con-

centratlon C6>O When the plate comes into contact with

the solutlon an heterogeneous chemical reaction takes '’

ﬁear the surface. Changes in cbncentration imply density

gradients which, in the presence of a gravitational field,

>



_{. . : 10

induce natural convection flow near the plate. Under the
| ¢

assumption that concentration grédients are significant
. . X

only in a very thln layer 1mmed1ately adjacent to Ehe

-

* reaction surface the author finds an approximate analytical
solutlon for the*bgncentratlon and velocity dlstrlbutlons

valld for high~ Schmldtnumbers only.

A steady state two—zijijiional boundary layer anlaysis

(for temperature diffusi of the effects of viscous

dissipation in the case of external flows produced by a

vertical surface in a fluid of uniform denéity and viscosity
has been reported by Gebhart (1962). Similarity analysis of

the relevant equations of motion and énergy shows that the

magnitude of the viscous dissipation effects is given by

a x-dependent dissipation number defined by e(x):.géf ,
‘ Cp
where, %T; volumetric coefficient of thermal expansion

Cb: specific heat at constant Pressure.

For most practical'cases with common fluids ¢ is very small

7

of the order_10—6, and on the basis of this fact, a per-
turbation anélysis was carried out about thii ngmber The
resultlng Zero and first order approxlmatlons for temperature

and 'zero order stream-function are integrated numerically

. o
for varioug Prandtl numbers. From the 'calculation it appears
. i

A .
P . R N
. . . . =
.



11
/ . L '

that at the lea&ing-édge of the surface, the éffeét of.
dissipatign on heat transfer is zero, whenge thé‘effect e
incréases with ijgjigse og the body force and/or along th;Q§
surface, becoming abpreciable near the upper limit of the 1
Plate height. .With the double boundéryélayer concepts,
Roy (1969) extended the above problem for high Prandtl
number fluids and isothermal'surf?ces. A similar caléulation,
but.fdr higher Prandtl numbers, was carriedlout by Stewartson
and Jones (1957). Morgan and Warner (1956) have aiso con-—
sidered several two-dimensional steady problems of heat
transfer at high Prandtl nuﬁberf. Thi relevant equations_ ..
of motion and temperature for forced and natural convéct%on
are tranéformed to the equations valid in the momentum
boundary,layer’using dimensional.ana;ysis. Their results

I
€ in good agreement with those of Ostrach (1953)

An analysis is presented for steady laminar natural
convec?ion zrom a‘vertical.plate having a non-uniform -
temperature'by éparrow_and Gregg' (1958). They have con-
sidered two families of surface temperatures which permit N
the finding of similarity solutions of the boundary-layer

equations. Numerical results are presented ‘at Pr = 0.7 and 1.

’ . .
Gebhart and Mollendorf (1969) considered the effects
(3

ks
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of viscous dissibation in extérnal.steady natural convection
flows over a vertical surfaée in an extensive medium at
rest. ' They showed that a simiiarity solution exists.for
the-boundary-layer equations when an exponential variation

ofRsurface temperature is assumed.
. The distribution of a solute concentration in a layer )
of chemical solution subject to a drying process has been
described bk;Meadley (1971). The author has considered a
horizontal 1a¥er of a solid-in-liquid solution initially of
uniform concentratidn.and depth. The solven£ is then forced
to evaporate con%inuously\from the free surface which
causes a back—d1ffus1qn‘?f the dissolved' s0lids into the
remaining liquid layeQ:‘and this results in a one dimensional
unsteady distribution of solute concentration. This
problem essentiallj describes the behaviour of the solute
concentration in a liquid 1ayer of contiﬁuously varying
depth. Assuming thls varying depth to be an analytlc
functlon of time, an approximate solution has en, presented.
) Combined thermal and species diffusion flois have been
considered by some authors. A problem of this type, having
51mu1taneous mass and:heit dlffusion from a wetted 1sothermal

vertlcal surface in a non—saturated atmosphere, has been

)
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reported by Somers (195¢). He has assumed that the con-

centration of the diffusing Species is very small. The

analytical methoqﬁ similar to those used in classical
boundary—layer theory.

Gill et al (19(y) investigated these simultancous
buoyancy effects in gaseous binary diffusion, The
enthalpy, thermal conductivity, vViscosity and density have
been allowgd to vary with concentration and have been
studied anependently. A normal velocity conditien is
assumed to obtain at the surface. Numerical solutions are
obtained with regults which appear to be relatively
significant.

Wilcox (1001 investigated the same problem b; assuming
the velocity, temperature andg concentration distributiong
arbitrarily. Comparison has been made with resﬁlts of
Ostrach (1953).

Lowell and Adams (1967) have looked Anto the problem

‘ : 4
described by Gill et al (19G5), from the éimilarity anaiysis
viewpoint. The usual physical characteristies of the fluid ;re

dassumed constant. They have found that a similarity
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solution for this Problem is possible only fof an isothermal
surface. 'The usual velocity boundary condition and the
effects of comparable concentration level are included in
this study.

AaAn asympﬁotic analysis of the same problem for
Sc>> Pr has been made by Lightfoot (1968). He has assumed
that the species diffuéion buoyancy effect is very smal}
compared to that.caused by thermal diffusion. The resulting
transport relation has not agreed with the general result
of Wilcox (1961). Thus it seems that the interaction
between heat and mass tranéfer in natural convection
deserves some further analysis.

Pera and Gebhart 61972) have studied the process
involved in heating of the earth by sunlight, where the
resultlng atmospheric thermal convection may be 1nfluenced
by the presence of moisture evaporated from the ground.
The authors have considered natural convection flows from
a horizontal isother@al and semi-infinite‘surface given
by the combined buoyancy effects of surface ﬁeating and
diffusion of chemical species, Simifarity anlalysis is
used and the resulting differential.eqUations are integrated
with a fourth order R&nge—Kutta Scheme, in combination with

a linear interpolation to correct for dnspecified boundary

”



conditions at the surface.

Natural cbnvection flows adjacent to a vertical
surface resulting from the simulteneous buoyancy effects
of thermal and mass diféusioﬁ have been considered by
Gebhart and Pera (1971). Their report shows that there
is a similarity solution for cpmbined buoyéncy effects.
The differential equations ar; solved by numerical comp-
utations for Pr = Sc. The efféct of increasing the Prandtl
hﬁmber is to reduce the velocity level, with a consequent
thinning of the thermal and species diffusion boundary-
layer thicknesses. Stability analysis is also used with
the combined buoyancy effects and neutral stability curves
are shown in a stability plane fof a flow of fluid having
P. = 6.7. It appears that increasing the species diffusion
effects relati&e to thermal flux from the plate surface has
a destabilizing influence on the fldw near the leading edge.

Details of the principles of transport phenomena may
be found by referring to Bird (1956) and that of chemical’
kinetics by referring to Aris (1965). similarity and

perturbation techniques are available in the references

including the authors Hansen (1964) apd vanDyke (1960).

o



1.3 : Objectives

The foregoing discussion has presented a survey of
principal past studies concerning natural ébnvection-fIOWS
‘over semi-infinite vertical plates immersed én an ambient
fluid; where the flow is induced by both heat and chemical
diffusion mechanisms and is governéd by the usual-steady
state laminaf'bounaary-layer assumétions.

An interesting exéénsion of.fhis problem, and one
which, with the exception af Levich (1962), has been
largely neglected to date, is the study of effects caused
by the inclusion of general chemical reaction of order n..
In particular, iﬁ'is proposed here to study‘the steady
state behaviour of the same binary sﬁstem composed-of a
semi-infinite plate and ambient fluid, each initially at
different concentrétiéns of a given chemical species, but
between which a homoéeneoﬁs irrever;ible.isothermal chemgcal
reaction of order n is assumed to take place.

The basic eguations of na£ural convection required for
éhe formhlatian of this problem are discussed in Chapter II.
A similarity analysis of.ghese equqtioéé is then présented
in Chapter III. The problem Posed b?.retaining.a uniform

concentration of the chemical species along the plate
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surface is studied inrchapter Iv. The_equations are
r;guced, usihg perturbation expansions, to problems
iniordinary differential equations which are then solved
by means of both numerical and anal&tical‘techniques. .
Following this, direct similarity solutiqné of the basic
equations are presented in Chapter V for the case of
distributed concentration along the élate.

The salient results and conclusions are discussed in

detail in Chapter VI.
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CHAPTER II

BASIC EQUATIONS IN NATURAL CONVECTION

The basic equations of hatural convection are those
glven by the principles of conservation of mass (fluld)
conservation ©Of momentum and conservation of mass (specxes)

by diffusion. The equations are written in general form:

2y vy -o (2.1)
o0 . N
FIZ +@on] = po-wsw P oy ag)
s - 3V
9 + (¥-¥)e = v-(Dye) + & (2.3)
9
where, .
> fivi :
V = === = .average velocity
DI
j)i = density of the ith species

[H

= Velocity of the'ith species
= concentration of the ith species 4

—
v
i
c
jD = ‘E:fi= total dénsity of the mixture

’ -

Q8 = time
p = Static pressure

»

V. (fV¥} = net rate of mass efflux per unit volume

18 oA
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Y . : i ‘ .
) j’{f&: + - (E-E)E}. = mass of fluid mixXture per unit
- LeO volume times acceleration
f g, = gravitational force on element of. fluid per unit.
volume
Yp = pressure force on element of fluid per unit volume

!

2 : . - .
wiV'V + 1/37(Y-V)] = viscous force on element per unit

volume
?: C .
;6 = rate of accumulation per unit volume
S .
(V-V)e = rate of transport of chemical species by bulk
flow per unit volume ..
-~ -

V.{DVc) = rate of transport of chemical species b
- S N - y
molecular diffusion per unit volume

- Ard

= rate of generation or loss &f species mass by
chemical reaction per unit volume. -

> - ) . .
Herc_f =_J (c) 1is the density variation at a .given point
in the flow region. Aall remaining symbols are defined in the

.

nomenclature.
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Boussinesqg Approximation:

Expanding ﬁ = f(c) about ccn by Taylor series

-

expansion, keeping the pressure fixed, we have

£=F0 v ic-c o)) +°{(C-Ca)}

where Poo = density of the ambient fluid at a po‘int

away frqm the plate,

and coo = concentration of the species at the ambient

L4

fluid. 1If the concentration changes from CCD are small such
that second and lowér order terms may be neglected in this

-~

exXpansion, .then we have o _ \

F5 P P e,y
j’&D {1 - 5*(c-coo)}

-~

where g¥= - j%" (g_f ) is defined
c - .
oo c=C

O .

A8 .mass coefficient of the volumetric expansion.

Thus, for steady flow, the continuity equation becomes
L€y =
]

Then using f: Sboo{l - B*\(C-Q )} , we have
- Tlf{t - B (ccg)} 1y-o

which implies that § (z-v) -f

* .
(o¢] ,B (YJY_’C) =

L.

N
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Y

and hence v.y = ”\&.\g

—_e

is a good approximation
provided that g% is s.u“;fféi;zntly small.
The quantity in the momentum equation is the actual

local static pPressure, which may be decomposed‘ in the

- . (

+ .
v - h "~ Pn /
9

fo ltfowing way:

P = P

hydrostatic pressure in the(\zenfﬁ:b‘ medium at rest

where _};3_1;1
R |

P

- pressure due to motion which ig usually small’

compared- to B -
With this.definition, the difference between the body

force fg and the graaient of pressure Vp 1in the momentum

equation is

. _
- Up = - v —

Pg-vo= FPg- v - |
For the body force arising from'gravity acting in the
negative x direction,

Eph - L aph = —ifoog

ox

where 1 is the unit vector in the x-direction (c.f. Fig. 1).

*'I'hus,

fg— Up = —ﬂiﬁj’c'n {l - ﬁ*(C-Cw )} +},fmg - ¥,

=iefgeNc-c ) -, | !
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Y=o,

- and the momentum equation for steady motion becomes, with

L)

: $
Thu§ for 5.(C C03)<<l, | |
P ; = i + - - . ’ -
(T2)L = Vv + sgpt(ec ) -,
| Fo

Thus the equations of Continuity, momentum and mass for

fo

Steady, laminar motion can be written as : .
Continuity: Vv = o0 | (2.4)
, . . = iqst (e " A
Momentum: (v E.).‘L = vvex + igp .(c S )_foogpm (2.5)
Mags: - (¥'We = pvcw &7 - (2.6)

The equations (2.4) Q.S)End 2.6) result from the Boussinesq

approximation- and apply in the case of constant Viscosity

K and diffusion COefficient D.’

22
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ORDER ANALYSIS

Consider a vertical surface of height L at a uniﬁbrm.

concentration CO, in an extensive uniform medium at con-

e -

centration Coo' Let a characteristic length, velocxty
pressure ~and concentration be given by L, ‘U f IF and

<y - €0 respectlvely.

Ihtroducing the following dimensionless quantities
5 .

X' _"?'E ’
= L
r _ XY
Yy = L (
Y = (u,v)
u’ =2
T u
c
V,.=’E_ 02~1)
u -
C — c"'cmﬂ { J
o 00
oo Fm ‘
Pn = £ 2
o0 ¢

into equations (2.4), (2.5) and (2.6) yields the féllowing
O )

. dimensionless equations:
o -
X . . -f - .
Continuity: -§£7 LA 0 (2.8)
| ; .




Lol
- n

Momentum: v
” _ ’ x _ ’
u ou + v/_ggj ~ 98 L(cyc )e - op/
’ -
ox Ay 0 !
c
P ’
v /3%’ 32u
+ U];( 2 2 (2.9)
c \ax 9
L,
uw v+ vl vl = - apm’+ v 357 4 Bav,> (2.10)
-, s E— —_— s 2 ’,2
U
ax oy Sy’ <L ox oy
Mass:
‘ ' - e/ (2'11)
u’ 3¢ -+ viac = p (aec,+ azc )+ e
3’ 3y’ LU r2 ay'2 Uc(co c )
- gﬁf(c -c )L o
Considering that 0 "o = 0(1),
2 ' . ’ .
u ..
. c 1
it follows that P . 3 /l '
UCL i//;ﬁ (CO_COO)L =" Gr .
: > :
Y . v

'Thus the dimensionless Parameters which arise in natural

convection are

%3 |
- Gr = Grashof number =, 9p°L (CO coo)

92

Sc = Schmidt number

v/D

oy

£
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is usually called the

*3

The quantity G6r = 98 L (CO*COD)
: ve

Grashof number, which indicates a measure of the flow induced.

The Grashof number is analogous to the Re}nolds number of
U L
>0
v

It was almost 30 years after the discovery of the

forced. flow, Re = , with for corresponding to Re.
boundary-layer concepts by Prandtl for forced flows, that
Schmidt and Beckmann (1930) proved experimentally, for a

flow around a héated vertical Plate in air, that the boundary

region is thin compared with the height of the surface. As

a result, the components of gradients parallel to the surface

are relatively_gﬁgil. fhus one 1s encouraged to.apply the

boundary-layer concept and assumptions to the general

equagions of the present problem. |
Following the usual technique, c.f. Curle and Davies

(1968), we assume that

W= o) )

x’ = ‘O(l) | ‘ ‘
vl = 0(§) |
c = o(lf



where,

and

as follows, with respectlve orders 1nd1cated below each term-

26

Y is the thickness of a momtentum boundary layer,
g(: is the thickness of a concentration'bounﬁary layer,

§, §_ <<1. _ d

Equations (2.8, (2.9), (2 10) and (2 11) are written

’ / . .
QU v =0 (2.13)
ax’ dy’
1 1

dy”’ ar | ax’° ayIE 5;7
S | S 1/% 1 1 1/82
u! avl-l- vl av I:: _1—- [BEV’ . aevl] . apmt (2 15)
3’ dy’ Jor Lax’? 372 Sy’
16 o 1 ) 1/
'} b
uw’ ac A -N 1 [82c 2c ] L ¢
ax’ 3" sefor Lax® 52" U legcy
(2.16)
2
1 1 § /5, 1 /8 ¢
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From (2.14), it follows that, for §«1,

Bau & Bzu .
-2 2
ax oy .

Further, if the Grashof number is large, and we assume that
in the convection region near the surface, the viscous force
is of the sare order as the force dQue to convection of

momentum as well as the buoyancy force, then we must have

$2 /or = o(1)

1
0 }
s . L4J Gr

From (2.15), it is clear that all the terms are 0O(§) so that

o
I

Fd
o g as §—0

—

/

oy

F 4 A Vi
and (2.15) is equivalent to Pn = pm'(x) ]

| 3% « 3%
Assuming that from (2.16), we have for 8C<< 1, —-72<< 7o
ax oy

and further if we assume that for sufficiently la‘rge_Grashof

5
S

number, 0(§) = o(gc), then

gi [SCJE ]= 0(1), —_
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whence, SC = 0 [‘ “l
. /S¢ 4 [Gr

Considerationﬁoffthese results leads to the set of basic
equations which are valid within a convection-layer and

which have the following form:

¥, o - (2.17)
ax )% ' ‘
udu v du " T
+ — = gB (c—coo) + 2 T 5 _'m (2.18)
Sy 3v° foo ax
u Jdc v dc - D 2c - i :
ax Y oy
{



CHAPTER III

FORMULATION OF THE PROBLEM ‘

3.1 General Statement of the Problem

We consider steady two-dimensional laminar viscous flow

“»

Over a semi-infinite vertical plate immersed in an ambient
fluid, wvhere a homogeneé;s isothermal irreversible chemical

reaction of nth order .is assumed to occur in the fluid,

betwecen the chemical constituents of rplate and fluid. The
-follgwing assumptions are made:

1. .The fluid is Newtoniaon,

2. Two-dimensional laminar-stea&y flow is considered,

3. The physical properties associated with the problem
such as viscosity, dlffu51v1ty etc. are assumed
constant.

“. The Boussinesq approximation is taken into con-
sideration for buoyancy effects, which impltes
small density changes in the grav1tat10nal field.

5. The Reaction number i§ assumed small. .
- \

6. Static pressure gradiehts arising from the con-
vection currents are neglected; that is, inertial
forces in the convective flow field are assumed to
be in balance with’ buoyancy and viscous forces,
and there is no externally applied pressure gradlent

-

A change in chemical composition of the fluid near the

surface of the plate is considered to produce.lighter fluid

- 29
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there, which rises asg the .buoyancy force overcomes gravity
resulting in 2n upward movement of the fluid particles
(c.f. fig. 1 ang 2). 1If a heavier fluid were produced

]

the reverse effect would be observed but the mathematical
)

Problem would be essenﬁfgily the same. . The chemical species
is first transferred from the.plate to the ambient fluig
by d{ffusion and then-carried away by induced convection
currenta. A_distinguishing feature of this problem is
that when a chemical reactlon occurs in the bulk of the
fluld the diffusing species may be depleted, whereas in
problems without chemical reaction, no such effect is
Possible. The basic equations which govern th;s\process
derive from' the following_p;inciples:

i. Conservation of masa (£luiq).

2. Conservation;of momentum,
e

3. Conservation of mass (species) ~ (Fick's second
law of diffusion).

4. Aépropriate law of chemical reaction.

The.equatioﬁs that are used to describe this £ypc of
flow problem have already beeh discussed in Chapter II and
have been .derived Wlth the aid of the usual boundary-layer

assumptions. These are equat10ns(2&?).to(2d9) of Chapter 11

and they have incorporated the assumptions (1) to' (5).
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They may now be used with the appropriate chemical. reaction
law, for which the re;cgion-rate te_rmy é“’arisin? in the
equations is described .4in the appendix and takes the form
&M= -k[c - cbo]n’ where k .is the maction-rate and n.
is the 6rder of réaction. Aésumption {5) relates to the

magnitude of k  and will be discussed later.

Now invoking the last assumption (6) dﬁm,o, equations (2.17)

- dx
to (2.19) reduce finally to:
du + @é = 0 ‘ | (3.1)
ax ay '
Wou +vau =yY3%u + g’ c . (3.2)
ox oy Bye
2 n \
ugdt + v oc = D 3°C - kC (3.3)
ox Jy Sy
where C¢ = ¢ - ¢ .
oo

The relevant boundary conditions are:

at y = 0O, u=v =0, Vx (no slip conditi on)

(3.%)

at y—5o0, u=v= o0, vx (uniformity at oo )

. ) €C—0, Vx (uniformity &t co)
Further, c = Co(x) is prescribed at tHe Plate
surface y = : (3.5)

N
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¥ Here co(x) is a given function of x representing the
concentration distribution bPrescribed along the plate.

For the purpose of formula;ing the gé@neral mathematical
Problem, the preséribed function %§x) is considered to be
arbitrary. 1In reality,.however, the nature of this'functiop
méy be subject to severe limitations.which arise from the
chemical kinetics involved in éetting up steady-state

" conditions for a given species and ambient fluid.

Introducing the stream function Y(x,yY) defined by

Y -
Ay 4 °
(3.6)
v ¥
=3 N |
equations (3.1) to (3.5) reduce to
- = + ggfc (3.7)
‘Vy‘yyx ‘Vx'fyy ‘FYYY T
_ n
.,I,ycx - \chy = DcW - kC (3.8)
with boundary conditions
y = 0. ‘ c \y =y = 0 v
Y X L (3-9)
cC = Co(x)
4
Y-—o00;: . ‘Vy =y, = 0
’ (3.10)
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We shall now investigate the possibility(6?/;imilarity

solutions for this set of equations (c.f Hansen '(1964)).

<



ﬁ
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3.2 Similarity analysis of Basic Equations

1,

@ are constants. Then we have the following quantities:

X = a'x '
— nl L}
y = a’y
— . p . (3-11)
¥ = ay |
c = aYec -
. I~
where a is a parameter and the exponents ‘m, n P and

_ ~ptny;
Jyy' a IP?.
~p+2nl —_ -
L= _
Vyy = 2 Yoy )
- 3ni T
Yyyy © Yyvy
g (3.12)
Yx -~ a B -_i ’
= a-P-l‘-nH-nl 17— —
\PYX Y X
c - -g+m - _
X X
_ -q+ﬁl —_
C -
y a y




-

Substitutihg (3-.12) into (é.'{) and (3.8), after

simplification we have, °

T :—- YIRTIREEEY 0 Sau ity p ¢ [ ~q+2p-2n;-m
Vg ¥z Vg Pgg Vo Yegy 2

L —- ny,_m+p _ - -ngt+p+g- - -
—_ _ = - 1 _ n q nl m n
\*/}7 C}.E l{/—}-:cy' ~HDa C__. ka C.

(3-14)
If (3.13) and (3.14) are invariant under the trans-
formation group (3.11), then one must have,
k]
- P = m-n
q = n - 4n_ . .
1 . | (3.15)
m 6 - in “ '

Now consider the following group of the independent variables:

}?a)'rﬁ = a7 ﬁml (xayﬁ)

N .t
. '

This group will-be invariant if a = - B/y
,; : m 6 = 4n ' C '
; where « = —;I = 1 - o (3.16)

4 -
Thus we have. the following possible similarity.variables:

g8’ c (3-13)
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. | 1B
Nxy) = K o~ka(yx ) (3.17)
| e
() = kg (vx 1,/7) (3.18)

where kl, k2 and B are arbitrary constants.
ﬁekt consider the complete group with respect to the

stream function V(x,y).

_ -
L TN T Rymp ni+e.p o poouop
.i1ﬁ3=a1_21w2(x1y2 3)_
v ! ) ll-2+"lr’1-ll
This group will be invariant if.. uB = - —;f:“I——
Withdut7105§f2f generality, chbosipg KA = 0, By = 1, one

»

v . - ‘ " - . _®
can write the transformation of the stream function Y (x,y)

-as follows: ;
y - 1

¥oy) = Nox T g - " (3.19)

G

A
where N, is an arbitrary constant and fl(YP is a
function 6f'q¥aldne.
Similarly, we can writé the transformatiop of the
. .
concentration-distribtuion as follows:
S | Y-y §
S N - LA '
Clx,¥) "=, x 00 . (3.20)
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where 3, is an arbitrary constant, and f2(>z) is another
functlon of "l alone.
These general trax%’sfomation groups (3.17) (3 18), (3.19)

‘and (3. 20) are fotmd to be valid except for the follow:.ng

'rf. -

orders of reaction: l 3/2 and 5/3.

Using relations (3.17), (3.19) and (3.20), the boundary’

conditions (3.9) and (3.10) imply the fo]l.lowing:‘

at 1(:: 0: - ‘_fl(o) = 0 }' ; w (3,21)
’ £,(0) = 0 - |
at "‘o(= K, | fl(ﬁl)a_; = 0
| foq) = o
£,(K) = AN (3.22)
2 ?la xY co(x)

Also using relations (3.18), (3.19) and (3.20), the boundary

conditions (3.9) and (3.10) would require that ;

+

af.: 1(= 0: | fl(O) =-0"
f;(O) - 0 ’ (3_23)
1 4‘?
£2(0) == [XT ]
2 L CO(X) _
and at 1(= o : £i(0) = 0.

N o () = 0 B2
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Thus for B ¥ 1, with the transformations (3.17), (3.19)
and (3.20), the following ordinary differential equations

rgsult: j

]_KE B '7_2){ ln('(/l(l) T ("(f

o . | R Y:
+A 1(5“1)(3"_1) {’ ln("ffxl)}  Wreg
Y %

N (]

o ‘)[(ﬁ_l)(ﬁ_a).,(fl' - 3x2p(ﬁ-1i{— _}f_(xz_/ﬁ)}{rzfl +22f1}

+'§ { M(,Z/Kl)} {’Zf +3:(°'f 7, }} | ~_

. SN
' , X, 3-8 '
+ 2 [ Inbx | = . (3.25)
A RRP X2 2.
v
e
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- ' ( - _B-1 .‘
N A _In ?!/Kl) B (-1 ¢/ _ry=l ’
,l 2K25 { ‘—K—2~——} T— 7(f1f2 c(—'y—)"zflfQ} .

= - DA_BK, [(5-1) {-“h‘(?f/’ﬁ}—ﬁ_ Yf /
| | ) | K2 2

28-2
- KB {& lnl((’;{/xl)} B {7(f2’+ yffz}]

. n n
—_khe £, ‘ (3.26)

-~

For 8 = 1, equations (3.25) and (3.26) reduce to the

following simpler forms:-

2 _w 3 s
£+ -
LTI g e -

*{%—2 1 fi)?" —T; {"(flfl, + "(eflfl”} ]= 0

(3.27)

’ 2_u —!
.éz.[‘)(f2+’)[ fe’] +l'y_f 7fl'f2

n-3/2
kA
- 1 s _ 2 n
'J(fle - f2 = 0
Y gp
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The boundary conditions for equations (3.25), (3.26), or
(3.27) ana (3.28) are given by (3.21) and (3.22). v
Again for -ﬁ# 1, with the transformations (3.18), (3.19)

and (3.29), the folloaing ordinary differential equations

/ %
result:

© JE Efm___e (2—n) 1-8 -’2 ) *—2§l“
- At = 28 K £ - (B1)(5-3n)7 B ££

4

- 1p
T ﬁ(5“3n)"(ﬁ £

E VE [(ﬁ—l)(ﬁé)'?('zfl'+ 3ﬁ(ﬁ-1)7(‘1f1”] .

£, | (3.29)

gs¥m “( : ';_

. 1-
“ao_ ?é ’ o -
DEf ) = ”( 2f £, + (3r175)flf2

(1-8)
- DE(ﬁ-'l)v("'l £, +k GC”(E e (3.30)

-3
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-, -

where Kél/B(6—kn)
E'= Al

A, (6-kn)

o= T T 3
,ﬁ?\lxe |

A 5 (6-tn)

1/8
BA K,

G =

For B =1, equations\r3.29) and (3.30) reduce to the

following simpler forms:

£ £, 0+ i ££7 1——2f7'2 = 0 (3.31)
1 2 v 1n y 1= ‘
7 {
n-1 -
o oyl ;o yb . kA n _
%(_:f2+ ££, . ££, 1)2 £,= 0

(3.32)

The boundary conditions for (3.29) and (3.30) or for (3.31) |
and (3.32) are given by (3.23) and (3.24). |

Examination of the boundary conditions (3.22) and (3.23)
reveals that similarity analysis based on the transformation
grot;lp (3.11) is not mear;;ngful when

(a) C,(x) = Constant (uniform concentration along
S the plate)

N . L\‘i}f



(b) c_(x) = F(x) (the most general condition
0 . } .
where F is an arbitrary function

o of x alone)

However, a tractible pProblem is obtained Provided that

CO(X) = N x ' (3_33)

where N is some given constant.

It appears from these results that a formal simplification
of the problem using sxmllarlty analysis (with the simplest
transformation group (3-11)), that 1s, a precise aefinition
of the problem in terms of ordinary differential equations,
is possiblg only if the initial concentration is descrihad
along the plate according to (3.33). This would be useful

in the case where the prescribed distribution approximates

[

A simple power law where form depends on the Particular

order of reaction of the system. 1In Practice, depending on

the particular cheniical constituents chosen, it may or may

[

not be possible to achieve and maintain in steady~state g

concentration distribution along the plate in accordance

’

with (3.33), such as to permit useful application of this

approach. The mathematical treatment is'valid,however and

some theoretlcal inferences may be of con51derable academic

1nterest



CHAPTER IV

UNIFORM CONCENTRATION AT THE PLATE

We conéider that a vertical plate comﬁosed of speéies
A has been immersed in a fluid at rest with uniform density
and viscosity. We will assume that the concentration of A

in the solution at the plate surface is maintained (by some

suitable external means) at a uniform congentration Cqy-
-

Conéentration differences between the plate and the ambient

_—

Ty

fluid will induce convection—diﬁfusional flow and we assume

that steady-state conditions havg been attained.
During this process, the spedies A and the fluid B

will react chemically with each oth x. The primary objective
in this study is to show the effect of this reaction upon

"the mass transfer and the natural convection flow which

ensues.

.J
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4.1 The Perturbation Method

The differential equations which describe the steady-
‘state behavicur of the system described above and which
incarporate the assumptions listed in Chapter III can be

written as

Qu + v o : (4.1)
ox oy - :
u du v du \)Bzu *
-_— 4 - = —--—-E + gﬁ (C—- CCD) R (1}.2)
ox oy y - _
> v D »° » | '
Hoe , vooc _ ——‘é + ¢, (4.3)
ax  dy oy

The appropriate boundary conditions are:

.at  y = 0O u=v =20
' (4.4)
Cc = C‘O
at Y : u=v=20 3
) (4.5)
cC = Cm‘

A stream function Y(x,y) is introduced to satisfy

the continui Y equation (4.1). Also, as described in the

appendix, may be replaced with the appropriate reaction
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- rate function, and the governing equations become
-1
, y - -
‘ ' (4.6)
Y o
vV o= - =,
ox
: ‘ .
_ %
Yy Yy ™ e Yy = YWy + 98T (0 - e ), (4.7)
2] _ _ _ It . ’
'"chx - \}/xcy —( Dcyy k(c c.) , (4.8)
with boundary conditions .
y = 0 ‘*’y = Wx = O:
(4.9)
¢ = <4,
Y2 \Py = \.}lx.'-' 0,1 ’./,/"
7 (%.10)
c T CCD. //
-
Introducing the transformations-~
P “.
c-c .
¢ = C—,C"V’. . (4.11)
S0 .

. G ) - .
- X | xx
M Gey) o ox {4 } , | (4.12)
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1/
Yxy) = W{ir;:s} ) (5.13)
- ~ b
3. _
B c .
where Gr_ = ° (:g oo \ (4.14)

which may be called the local Grashof numbef, equations
"~ (%.7) and (4.8) reduce to

&t
an>

___+C+3fd_2_f_:‘ - 2(df)= 0 (4.15)

1 M

ana 1 9_(52 4 3t & e(x) c™ = o, - (4.16)

where e{x) = 0 w
() (4.17)
Jas*
and  Sc =  V/D, which is called the Schmidt number.

Use of the transfomations (%.11), (4.12) ang (4.13)
reveals that the partial diffefential equations (4.7) and
(4.8) nearly reduce to ordinary differential equations in
the variable " excepting for one coefficient €(x) which
remains dependent on x. This coefficient may be termed the
local reaction-rate number and may be considered arbitrarily

small depending on the slowness of the reaction. Hence
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for ¢ = 0, the similarity analysis is complete and
equations (4.15) and (4.10) may be asSumed to admit a
solution C = Co(q) and f = fo(q)- In the casé .

L

¢ # 0, if the reaction-rate is such that

k (e, - c )2n—3

gp™
for some %\)Cg a solution may be possible by perturbatién—
expansion about - ¢(x) of order g, provided attention is
confined to the region downstream of the leading edge

given by 0<x<

We therefore réewrite the transforms as follows:

clx,y) = c.e) - (6.19)
c 1/4 . :
yix,y) = ug{j £0p,€) /(-’4.20)
4
where Gr 1/4
Wey) = F {T"} - h.21)
. n-3/2)
and ce(x) = 2k(co - Coo) x1/2 (H.EE).
gp™* |

Thus we have the following derivatives:

<



VR ) 1/2 i

- gB'(CO -c ) |
vy = o = } xR b
- o 1 . (4.23)
L 3/
Yyy Vg (c " ) 1/1% f | . |
(4.24)
" 4 gﬁ*f( )
Yyvy . 71111 : (4.25)
o e A
et BJ{QJB (co S )}. x_%/uf
- . . .
- Vyx.l/e {gﬁ (CO-Coo)}f
. yv? 'l_
| ) 1/1
+ VK (e~ e )T i | 9B7(ep - e ) £
gp™ 2 © (4.26)
Vyu = 292 {ga*(co- e )}/2 %
| w° _
_3/4.-' - _3/4

| -\!yx'_,' {gﬁ (CO-CCD)}
. ' 42 le}l

4y x (co - c )n_'l'

V-l N R

o+

N \
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- o
cx - 1 y x—5/4{95 (CO - coo)} CTZ
1 2
- n-3/2
+ k(co - 'CCD ) x_l/2C€ (4.28)
Jap*
S, 14
c, = Nt {gé_,(sfo " %% )}_C ' (%.29)
402 7 ' ~
. , \ *
¥ (eq - o) ) ~1/2
vy * 2 e (4-30)

Intfoducing these derivatives into equations (5.7) and':fQ

(4.8) results in

f7z'r(7( + C + 3ff-7(7(— 2f12-( + 2e{f€f??.?— f? -f72- €}= O (4.31) g
and : ' - -

<4 - " |
ﬁ(’j + 3£Cy + e{2f€cq - 2f71 .- cn} =0 (4.32), -

Sc

—-

and the following perturbation scheme about ¢ may be
. .

employed:
f(q,e) = fofq) + efIOq)-+ €2f2(7) + ... ) V?u,33)
. 2 . 7
c(\?,e) = CO(T() +3€C1‘(7) + ¢ c2(7?) + ... | (4-34)
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Substituting (4 33) and (4.34) into (4.31) and (4.32)
results 1n the followlng sets of - ordlnary dlffe*entlal

) equatlons for each order of e:

The zeroth-order approximation:

ll.l rr _ . B .
£5 + ¢+ 3fofo S eff = 0 (4.35)
. i - T
” / _ ' . f .
Cq + 3SefCco = 0 | (4.36)
- The first—order approximation:
‘ - n
£ e s 4 ££7 - 687 = o 4
1 TG 55y 4 3fF o1 < (4.37)
‘C' +' S £ c; + 3f ¢ c.f/-cl =0 4.38
1 e {5£,c5 + 3 1’ 170 ~ .o} =10 (5.38)
 The éecond~qrder approximation:
ver . o et 2 ” ’
£, _c + 3E, £, + 7f0fg‘— gfof2 = ufl - 5, (4.39)
cll C l}f ./ P . .n_l
si + 3f0 2 002 g 7f2c0 = 2f1c1 tnclco - 5flc1
. o . (a.s0)
The-third-order:approximation:'
s o L
- £ + C, + 3f_f + 9f” f - 10f f
3T G T35y 4 9 3,;._03

L. ' '

R4 7
= 10£; £, ~ 5, f 7f1f2 (4.51)
F‘?\ i



f_{; 3fC'+5fc + 7€.¢ + of.c”
03 172 2Tl 370

-

N

‘o \ .

_ n-1 n{n-1) 2 n-2 '
= nC,C T+ - S (4.42)
The mth approximation: ‘
f”’+c +Z (2r+3)ff o
m r=0Q
o
. m . Tk '
, I4 N ) ’
2 > (m-r+1) ££7 = 0 (4.43)
“0+ I (ar 43 fC _ 2 % (m-r)f’c
- > ) m-r =5 r m-r

Sc r=0

"

i

Coefficientof R in the expansion of
¥ - -
{Co teC; + .+ ¢ ;][31_3} ‘(4.‘1{1})

The boundary.conditions may be written as

£(0) = 0
£.00) = o 1= 0 o (4.45)
CO(O) = 1 "

Cr+l(0) =0

[
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£ @) =C (o) =0 —
() (o) i o
o .
r=20,1,2,3, ... m A
. ‘ S ’ . ¢
| ‘ Here the prime denqtes differentiation with respect
to q -

i The zeroth-order approximations describe the stream

function and the concentration distribu510n W1thout -chemical

—

Teaction, whereas the higher order approx1matlons cescrlbe
these distributions when chemlcal reactlon 1s present in

. the system. : e




53
4.2 ' Ygeries Soluticns

s
— A Y t

In this section, we shall construct series solutions -
for small Schmidt numbers. First, for the zeroth-order

approximation, the equations are,

£+ Cy + 3f0f5’— 2f62 =0 (4.47)
cg'+ 38cE,cl = 0 | ' (4.48)

The boundary conditions are:

£,(0) = f(;(o) =0y =

=0 i (4.49)
cy(0) =1 .
fé(oo) = CO(GD) = 0 ‘as 7I—+CD' u(h.BO) |
v

ot _
Introducing the contrycted coordinate,z = 1 - e q, such that

£ = F,(2) (n.51)
o)

are defined on the reduced domain 0<2<1, yields the initial-

i

6,(2) : (4.52).

value problem for FO-and:GO’ given by the equations

1}

| 3_s 2 ” 7/
(1-2) F0—37(1-Z) | Fy+ (1-2) Fo + Gg4

§ 3Fo{(1-—z)2 FJ- (1-z-)FO’}- 2(1-2)% /% = 0 (4.53)
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(1~2) Gy = G4 + 3sc FyGp =0 , . (4.54)
and the initial conditions
FO(O) = 0
Fol0) = o
FJ(0) = a at 2 = 0 - (4.55)
GO(O) = 1 )
GJ(0) = B

A and B are constants representing the extra (but unknown)
required initial conditions, which may be evaluated such that

the asymptotic boundary conditions

P — 0 | | (4.56)

—
G, o | //\

/s

»1. _ i

are satisfied as 2

-

The Taylor series about Z = 0 have been constructed
N _ .

up to the order le as follows,

F (2) = A‘gf +  (3a-1) 23 4 (11 AQB—b)_gE B
© 1 T 3r 4t

+ (A2 + 50A - 10B ~ 35) gé
51

-_—

)+ (a58® « 274a - 858 - 205) 26
' !
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+ (17A2 + 1764A - "735B - 1624 + 3ScAB + 5AB) gz
' 71

+ (—13A3 + 19bOA2 + 13068A - 6774B - 13132 + 84ScAB

+.14QAB - 3ScB) 2_8

8!

+ (-468a° + 224678°% + 109584 — 6764B, ~ 118124

+ 1638ScAB.+ 2730AB - 108ScB - 3ScB® — 5923_g2
.9

+ (-10210A3 + 32&435A2 + H8o76A - 718530B - 1151700

+ 28350 ScAB + 31250AB - 2610ScB - 1355ch2 + 775 2
“A%p _ 262 AEB) _z_lf + o(zll) (4;57)

- 111 SCBAE - 90Sc
~ ” 10!

G =1+ Bz + 3_2_2 + (213)53_ + (6B - 35caB) 2°
° - 23 37 3¢

+ (JEIJ,B ~ 30ScAB + 3ScB) z_5
51

+ (120B - 255ScAB + 45ScB + 3ScB2) _z_b
' ’ 6!

+ (7208'~ 2205ScAB + 525ScB + 635cB2 - 3ScBA2
2AQB).ZZ
7!

+ 90Sc

+ (50408 - 20307SchAB + 5880ScB + 966ScBS - Bliscpa®

+ 25208c°A2 28
- 8!

B - 315Sc2AB)
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+ (403208 - 2018525cAB + 67347SeB + l3b08$cB2

2 491405cA%s- 1134 05c2aR

-

- 16385c8a2 - 15ScAB
- 5138c282A + 3155c23)‘32
9!
+ (362880B - 2170340ScAB + 807975ScB + 18983u5c82

- 283QOSCBA2 - b753cA32 +'395cA3B + 8505OOSCA2B

2

- 2734208¢c“AB - 230858c2B2A + lhl?SSceB + 756ScaA3B

- 75608c3A3B + 11433&252)_gi9 + o(zll) (4.58)
10!

-

4

. [ i
Here A and B are obtaineq/by applying the conditions
(4.56), (4.57) ana (4.58).
The following numerical values of A and B have been

- Obtained for the indicated values of the Schmidt numbers Sc.

Sc A -B
0.01 1.7370415  0.346431
0.72 1.4745512 1.3404531

. 7 -
| 1.0 1.2300844 © - 2.21663
2.0 C 0.643657 §.11492

- o ’ 10°
Table I. Series solution up to 2 °

1
1
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Sc A -B
0.01 0.587793 0.368832
0.72 0.570367 0.440012
1.00 0.562434 - 0.472348
2.00 0.525362 ' ~0.607107
Table 2: Series solution up to,28
1 I ;
./‘\ N
o Sc- A -B
\'j ) . -
0.01 "0.4902845 ' O« 4086164
e
O.72 0.4852061 0.%543084 @
1.00 0.4830848 0.458013
2.00 . 0.4742812 . 0.518398
Table 3: Series solution up to 7"

It should be noted that these values are to be interpreted
as having validity for the approximating Taylor expansions, only

in a neighbourhood of z = Q (Z = 0) and not for the full range

021 (og ‘1(goo).



-

Solution of the first-order approximation:

Let fl(ql) = Fl(Z)

il

()

‘where 2 = 1 - ¢ T

G, (2)

58

(4.59)

In;roducing (4.59) into equations (4.37) and (#.38)

one obtains the following differential equations with their

initial and asymptotic boundary conditions:

2w

3 "' ’
(1-2) Fooo= 3(1-2) Fy + (l—ZlFl + Gy

.

s 5?1_{(1-2)2 Fél— (1—z)F6-}

- 2 u ’ £
+ 37 {(1-2) F, —(l—Z)Fl'} - 6(2-2)%F F,
2 e ’ ’
(1-2) 6" - (1-z)c) + SC{5(1-—Z)GOFl
+3(1-2) F G, - 2(1—Z)FSG1—G3;} = 0

The initial conditions are:

F{(o) = 0
F;(O). = 0
‘Fl(O) = A 3
Gl(O) = 0

i
W

) .
G;(O) 1 at 2 = 0

(4.62)
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- The asymptotic conditions are:
, o
Fl(l) —> 0
. | (4.63)
Gl(l) — 0

-

e

as Z——1.
Here, A, and Bl are the unknown initial conditions at -
the surface of the Plate.

The Taylor series about Z — 0 have been éonstructed'

up to the order 26 as follows:

A122 . 23 2
LF(2) = ot (3Al) 31 * (llAl-Bl) y
. | z° 6
+',(50A1h1031 + 12aA, - sc) 5T * o(z7)y  (4.64)
- . . . i\\ﬁ
52 73
) Gl(z) = B2 + (Bl + Sc) o1 +~{281 + Sc(3 + nBJ}»gT

+ [6 B, + Sc{n(n-—l);al-k énB + AB) - '5EA. + 1;}];5

it
| : ; .
+ [24B; + Sc{n(n-1)(n-2)B3 + 10n(n-1)B
+ 35nB + 10AB, - 50A B - 331}‘
+35c°(2a-3)] 2 4 025 T (h.es)

2
5!
4

C

#
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Solution of the Second-order approximation:

-

Let f2(‘rl)‘=. F,o(2) \
Colq) = 6,(2) (4.66)
where 2 =" 1l - e—q

By using (4.66), equations (4.39) and (3.40) can be
transfdfmed to the following differential equations with
their initial and asymptotic boundary conditions:

~

177 2_ . y
(1-2)35‘\ - 3(1-2) F2£+ (1-2)5‘2 + G,

. 3; F, {(1-2)%2”; (1-z)1~*2'} o

I

8 (1-2)%F r, + 78, {(1-2)% /- (1-z)F0’}

Ie

4(1-2)%,% - s, {(1-2)%1”-(1-z)p1'} (4.67)

_1_{(1—2)2 62”— (1—z)c2’} + 3FO(1-z)G2’
Sc . |

/ . . 7
- 4(1—2)F0 G, +. 7(1—2‘)5‘2@

: ’ ' / n-1 . :
= 2(1—Z)G1Fl - 5(l_z)F1G1 * 06,60 (.68)
. o

The initial conditions are:
Fal0) = 0 ) - | l

’
Fa(O) = 0 | -

F/ 4 ‘ i n
FE(O)‘ = A, | at 2 = 0 " (4.69)
GE(O) = 0 / o

4 ' t:
Ga\(O)_ = B, .J o
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The asymptotic conditions are: ™. |,

‘1) — s
F2%) } (4.70)

62(1) — 0

ey

as 2 — 1

Here A2 and B, are the assumed initial conditions at the

surface of the plate.

O

The Taylor series about 2 = 0 have been constructed
#

b

as follows:

2 23 4
F (Z) = A, 2° + A + (11A_-B_) z
>(Z) 2 2. (3 a,) o (11a.-B,) Z
‘ .29 .5 6 '
{(s0 + éa)a, - 108, + 3A712° + o(z?) (4.71)
SE
G, (2) =B,Z + B 22+{2B +nScB}é3
2 2 257 2" UM 5
(6B, + 5nScB, + Sc {53132—731&2 |
| 4
HAB) o+ 2n(n—1)BBl} ] _z_:T + 0(25) (4.72)

The unknown quantities A, Bi and A,, B, are all determined
- .

by using the conditions (4.63) ana (4.70) in terés of Sc, n

2

A and B. .The values of Al’ Bl’ and AE’ B2 are given by,
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L

Al = [:Sc {2036 + 1190 B n + 210n (n—l‘)B2
+ lkn(n—lj(n—E)Bé} + 3Sc2(23A ~-41)]

/{1050 Sc B - (154 + 1éA)(274 + Sc(15a - 3))} |
- | : (4.73)

(154 +.12A)A1 - Sc

By = S (3.7%)
14 -
2
- 148, - 3aA
o e T3 (4.75) .
154 + 6a - -
B —s’21BA24«1-14 GA{ B A.B
2 = S [21Ba; + (154 + 1908, + AB)
~+ 2n(n-1)mB)} ]/ [98scB )
’ {
- (50 + 55¢ A)(154 + 6a)] (4.76)
‘(:} . .



63

4.3 ’ Numerical Solution

Bquations (4.35), (4.36), (4.37), and (4.38) with
their appropriate boundary conditions (4.45) and>(&.4§) have

| been integrated numerically for various,Schmidt numbers

and reaction ofders using a Runge-Kutta integration ~

Program in conjunction with the Nacht Sheim-Swigert

technique (1965) to correct for assumed starting values

i

of the initial éonditions at the surface. The reéﬁlts,
therefo;e, will be restricted to the first-order approx—‘
imation in the: basic perturbation expansions.

The generalrforms of the equations to be treatéarare;

L
]

f”’(n_) = F(£% £/, g/, ¥, 9,M) - . - (B.T7)
'Tq) = G(£% £7, g/, £, 9:7) (4.78)
with initial and asymptotic boundary conditions. ‘ '

M=o .f(O) = £°(0) = o

g(0) = 1

1= () — 0 N

. g (@) —o0



P

@ e &
With two' asymptotic boundary conditions ‘it - is
necessary to.assume sta:tiﬁg values fog_two additibnal
: initial'conditioﬁsi i.e. let T ]
A = £"(0) : -(4.81)
B = g/(0) | (4.82)
and it is required that
as lim‘ f’(A,B,?{) = foq(A,B), =0 _(§.83)
'Y(———)m
lim g'(A,_B,v(_) =.9,.(,B) =0 . (4.84)
(e I ﬂ

Suppose that Al ///j

and‘Bl dare trial values f6r A and B

such that ' C e

\ | L
~ {
A=_’ Al+h N . ‘
B = ,Bl + k

Where h and k are small, and thus we have by (4.83) ana
’ 1

(4.84) that

- .

. )
£ (Al + h, B +kx) = o0 , | (4.85)
gaa(Al + h, B, +kx) = o . o (4,86).

. ., i N - »
Also to satisfy th asymptotic boundary conditions, we

3

assume that the gradients of (4.85) and ‘(4.86) must ?é

Zero at infinityvh

—



Thus we have

foo(AL * B, By + %) = 0 | . (u.87)

Gor(Py * My By + k) = 0 - (4.88)

By applying Taylor series expansions for small h and k.
" to the équatidns (4.85) to (4.88) and truncatlng the higher
order terms 1nclud1ng O(h ) and O(k } we have the following

four equations for two unknowns h and k.

£ (7,B) . (4.89)
gﬁb (A:B) (4‘90)
;A- ‘ : ;
£7n,8) + h o +x %% - o (4.91)
> T A OB ! .
PR 0g’ . dg’ L S
g’ (A,B) + h ““oo_+ k w = 0 . (4.92)
(o8] aA// OB . ’

. . . N . ) f .
(Using the current values of A and B. instead of A, and Bl)
The values of ‘h and k are extracted with'the aid of

a least—square method and these values are glven by

the f0110W1ng matrlx equatlon



Y )+( (ag) af Of’ ag) 3q_ af" £ a%j 3¢ ] N
(aA =
- f/-
% %, % %%, 8T oy dy R ag? sae? el |
( oo)+ +< + 2 D) k.
aA aB aA OB aA aB aA oB

——

g L
_ i
7’ V' I/ 7 ’
fGD BfGD + oo dg . fOO afoo + 9 og */
oA AA aA ox
4 Vi ” r ’ 7
fco afoo + 9o Bgm + foo afoo + 9 agCD (4.93)
B dB . 3B 3B OB | .
The least-square error is given by
2 2 - 2 .2 :
= B .0!
E %n t g+ ﬁn * 9, (4.04)

The partial deri&atives that appear in the solutions of
”h and k can be obtained by integrating the perturbcd:
différeﬁtial equations withltheir appropriate initial
conditions. | . | '

The perturBed differential equations for the A-derivatives

with the initial conditigns are: (from eq. (4.7?)j

Jf = JF dE"+ BF8f+8F_8_g+BF8f+8F8 | (4.95)
A - af'an df’ oA 3g”3A  3f aA 39 aA 2
gg oG af + aG af + ac gg + 0G 3f + ae ag

aA Yl aA Sf’ 3A 39’ 3A  Bf A ag aA . -(u.96)‘

an aB aA aB aA aB Sa 3B e



, €7
”(2ai§=é§=§3=§1'=0
oA oA dA oA
(4.97)
_ggu__ _ ‘ ‘
aa = 1 .

/

The perturbed differential equaEions for: B-derivatives

with the initiél conditions are:  (from equation(H.TB)j
Of" = OF 3"+ OF 3f'+ OF 3g'+ OF Of + OF ¢ .
3B Of'3B 3£ 3B 39'3B  Of 9B  Og 9B (4.98)
29" = 26 2"+ 36 3’ + 36 39"+ 36 Bf + 36 3g -
3B Of"3B  Jf 3B 3g“3B ' Jf JB dg 3B (4.99)
N= 0: 2 =03f"= 39 = 3£"= o (¥.100)
OB B oB 0B . -
3= 1
OB

Thus to correct the trjal values of Al and Bl .

. original equations (4.77) to (4.82) plus the perturbed

the

equations (4.95) to (4.100) with their appropriate initial
cohaitions‘should be.integrated simultaneousiy uplto a‘
Certéin SQiﬁable'poihé, where the Erial values of Al and
'Bl are cé;;ected-'

After two or three iteratiogé at the same point, where
the least—squaxq Crrors appear to be steady, the intggration—

)

p:
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-

range 1s extended and the integfation is repeated up to
that extended poiﬁt.' This iteration .process will continué—
and the integration range may be increased until we arrive
at the solution we desire, where ﬁhe least square error
assumes a minimum, smaller than a Pre-assigned value.

The principal resultsof the calculations for Sc = 0.0l

and for the second order reactions are listed in Tables 4

and 5.

i

“Tt should be noted that thr asymptotic behaviour of

these results is probably characterized by exponential decay.

Foraexample, one can see this from eg. (4.47) which, as

T—acn, takes the form

~
£rp

£+ 37f0f0” = 0, for f_— constant,

{

The conclusions and the intcrpretations_of the results

indicating the exponential dependence on 7/ .

are discussed in Chapter VI.

Fa



s\

C c’ e c c’

M 0 0 1 1
O { '1.00000 ~-0.08365 /.. Q.00000 -0.03161
1 0.91644_ -0.08335 -0.02689 © ~0.02244
2 { 0.83375 ~0.08181 -0.04541 - -0.01484
3| o.75324 -0.07902. | -0.05705  -0.00868
b | o.67604 -0.07525 ~0.06322 ~0.00386
5 1 0.60297 -0.07080 -0.06516 ~ =0.00022
6 | 0.53157 1 ~0.06594 ~0.06399 +0.00239
7 { 0.47115 -0.06089 ~0.06066 . ; +0.00416
8 | o.11279 ~0.05582 . -0.05589  +0.00526
9 | 0.34956 -0.05088 -0.05030 0.00585
10 | 0.31096 -0.04614 -0.04432 0.00606
11 | 0.26707 -0.04168 ~0.03827 " 0.00599
12 | 0.22749 ~0.03753 ~0.03240 0.00574
13 | 0:19189 " -0.03371 ~0.02683  0.00537
14 | 0.15995 -0.03022 ~0.02167 TN 0.00494
15" 0.13134 -0.02705 10.01696 ' ‘0.00447
16 | 0.10575 ~0.02418 -0.01272 . 0.00401
17 | 0.08288 -0.02160 | -0.00893 0.00355
18 | 0.06245 -0.01929 -0.00559 0.00312
19 | -0.04k21 -0.01722 -0.00267 . 0.00273
20 | 0.02793 -0.01536 ~0.00012 - 0.00236
21 | 0.01341 -0.01371 S .
22 | 0.o00045 -0.01223 - y; -
Table.H:_ Results of Numerical solutions of concentrations

with their gradients for 5¢ = 0.01 and n = 2. .

T~

. /I‘

o —



N

/T“‘\\\

fg fg I £ ]f;
0 | 0.00000 0.98302 0.00000 ~0.01282
1| o.53u8n 0.17050 | -0.00993 ~0.00622
2 | 0.54730 ~0.06764 -0.01449 ~0.00365
3 | 0.47118 ~0.07544 -0.01722 -0.00166
L 0.40050 - =0.06596 -0.01790 +0.00018
5 | 0.33887 ~0.05749 | -0.01709 +0.00131 .
6 | 0.28515 ~0.05009 -0.01543 0.00193
7 | 0.23839 ~0.04356 ~0.01335. " 0.00219
8 | 0.19778 -0.03777 -0.01112 0.00223
9 | o.16062 -0.03264 ~0.00893 0.00212
10 | 0.13231 ~0.02807 ~0.0068g 0.00192
11 | 0.10629 ~0.02401 -0.00509 0.00167
12 | o.08412 ~0.02040 ~0.00355 0.00140
13 | 0.06535 -0.01718 -0.00228 0.00112
1 | o0.04963 -0.01431 -0.00129 0.00086
15 | 0.03662 ~0.01175 . | -0.00056 0. 00060
16 | 0.02602 | -0.00g47 -0.00007 0.00037
17 | 0.01757 - ~0.007h +0.00020 0.00017
18 |.0.01105 —0;00563- 0.00027 ~0.0000C1
19 | 0.0062! ~0.00h01 | 0.00018 ~0.00017
20 | 0.00296 [ "-0,00257 | -0.00006 -0.00031
21 | 0.00105 ~0.00128 - -
22 | 0.00035 -0.00013 - -
\

Table 5.

Results of Numerical soiutiohs of Velocity

distributions and their gradients for Sc = 0,01

L)

e

n=2.:

L)
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L.y Effect upon mass-transfer

The local and average mass flwes from the surface of
ehe élate are presented in this section. The dimensionless
mass flux pa;émeter known as the Nusselt number.is'cal_
culated in te#ms“ef the solutions of the differential
eqﬁations.

Thus the local mass-transfer Parameter is given by,

l/u ./ /
| _ [ff}ﬂ Cé(O)l:l + e(x) Cl(O) + ee(x) 2(0) +
7 ) o) T
"t4.101Y
And the avérage‘mass transfer parameter f0r~afplate of '
‘height L is given by
: L 1 L \ l_/ll" ’, ' 2 ’, " |
Nu = _.Jg p sz CQ(O)_[l + e(x) C}(O) + e (x) Cago) .
| ) CHON
' dx‘
/i ’ ’ ’
- -4 e [ 2] e d ey 19 4 3 2p00)
3 0 S0 0.
+ .. .] ‘ (4.102)
s



% 3
where Gr = 9B (cﬁcan).L k(e hcoo)

From the relations (4.101) and (4.102),-it has been observed
that the'maés transfer is a fdnction of cohcentration*gradient
at the surface of the plate. ‘Thié concentration-gratient

is again dependent upon the échmidt number and the reaction-
kKinetics. Solving the governing equations by numerical and
anélyticél p:oéedure;_the numerical values of this con-
centrétion—gratient are evaluated for different Schmidt
numbers and for different reaction orders. From the mass
transfer parameter, it is observgd that the transport®is nil

at the leading edge of the plate,-and it becomes Prominent

at the upper limit of the plate height.
! . :

i e,

4
—



CHAPTER V

BISTRIBUTED CONCENTRATION ALONG THE PLATE FOR VARIQUS -

(-

REACTION-KINETIC
/ .

This Chapter consists of similarity solutions which
may be found when the initial concentration along the
surfacé of the plate is assumed to obey some algebraic
law with respect to the oréer of chémical reaction. 1In
_the prevéous chapter, we have presented.an analysis giving

rise to perturbation~typé similarity solutions,

- - -

5.1 Basic Equations for various orders of Reaction-Rate

<

Case (I): For general nth order-chemical recaction.

Consider the following transformation:

Similarity variable: 7z(x,y) = y.b(x) | (5.1)
_ | | |
Stream function: — q;(x,y) = J a(x) £ (?? (5.2)
dimensionless concentration: - C(x,y) = — Coo (5.3)
: ?O @
and e(x) % Sy = €5 | : (5.4)



i
Introduc1ng these transformations into equations (H 7) and

(4.8), one obtains the following ordlnary differential

equations:

b
c” N , ae x M1 o
— == fc' - X 5~ C =0 (5.6)
Sc b b e Vb
pro;ided,
a - ‘ . VT
5 .
A '
Px=c, I (5.8)
b2 )
x=cy . | (5.9)
be.a' : .‘
. ; ' ra”

* : : g .
gg e . ‘
- ‘2 = Cu : : o - (5-10)
ab31) . : : '

n_l ' ' . .
k e
V32 F(.]() o oo (6.1

where Cl,'ce, C3, Cq are. constants and F is an arbit;ary.
function of'z;alone, and sub’ x means differentiation with

. respect o x.
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The ‘relations (5.7) to (5-.11) reveal that the
. ' 3)
transformations (5.1) to (5.4) mudt be of the following
. ] \ . . ”

forms: - | : /
.y [er] i "
- . .1
1( (%,v) % | 523n > | (5 | 2)
' . er - :
Y (xy) = J(5-3H) [HJ LU (5.13)
cxy) = T ‘% (5.24)
co_ca)
and ¢ - ¢ = initial distribétion function
0 oo 1 N
3-2n | | sf
= N x . (%.15)
where Grx = local Grashof numbers
R .
_ 9B x3(co~cm) (5.16)
V2
and N 1is a dimensional guantity.
The equations (5.5) and (5-6) become:
£% + ¢+ (5-3n)f£"- (-u—en)f'2 = 0 - (5.17)
C” + (5=3n)ygc’ I 273D g0 o . (5.18)
- - 3-2n
Sc : , :
- i -1 ~ ] -.- .
where _p = x N° » @ dimensionless rate number.

' . 5—3n'



The boundary conditions are:

£(C) = o
SO = o (5.19)
c(o) = 1
?( - @ £ (oo ) = 0o )

| (5.20)
Clw) = o) \

It has been observed that the initial diStribution
(5.15) Can produce valid ordinary differential equations
(5.17) and (5.18) eﬁcept for n =1, 3/2 and 5/3. From
physical considerations, the analysis for_the case n = 5/3

"1s of little impértance, beeause 4 reaction with this
order is very rare. ‘The féllowing analysis is made

‘only f8r n = 1 and 3/2.

Case II: For the first order chemical Yeaction. |

Assume the following transformations.

/%

. Similérity variable: ‘7< (x,y) = ‘}K{ [er} i (5_é1)'
| | ; <1 a
‘ Grx AN
Stream function: Y (x,y) = 1JC1 [- J £ (Y) (5.22)
C )
1



Concentration:

Case

nd - =
a S c

(o)

The equations becoTe,

(

£+ ¢+ c, (££”- f’e)
” ‘ p '
c” 1 cl(fc - fC) - gC

kcl )

¥ .
g9 N

.5c ‘ .

where - q =

The boundary conditions

I1T1:

For the 3/2th order chemical

77

- ‘oo (5.23)
CO- cﬁo -~
.‘Nx /\; ' (5.24)
o i
. <
3
= 0 (5.25)
<0 (5.26)
> -7

are given by (5.19) andg (5.20).

L

reaction.

In this case,

Similarity variable:

‘assume the following transformations:

. .l .),'--_
e - (Y7 (e (5-27)
Z_ 1Y) = 1)2 . ]}2 Clx :
. . - y e
Stream function:
Ngﬁ*) 173
Yix,y) = Ve (37§i €1 (5.28) -
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‘ 3
Dimensionle557cqncentration: -
‘ c-c . . ‘ o
i c(x,y) = o) ' (5.29p
) c~c . : :
. 0O o ‘ ‘ :
| 4 [Ngﬁ]l/z <
and €% = N e |72 17 (5.30)
. The equations become = = - s
o f w ;2 . _ % . L
frrCcHCc(EF- 20 7) = 0 - (5.31)
Terew T (ee’ - ugey - 32 _ g - " (5.32)
Sc . . - '
. x N/ . o
where .r = . ,
' g J{NQB" 2/3 - '
The boundary conditions are given by (5.19) and (5:20).

o .

.,

AN
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. 5.2 — -Series Solutions.

with theilr relevant boundary cqnditions<are given by,

F(Z) = A.lZ | +(§_‘?‘:}_)§;'Z_3_ + .(11A—B~6 % . -

+ [50 A + (3-n)a® - 10B - 35 - psc] ZJT + 0(27) (5.33)
. (- . : 5:

. ®(2)=1+8Bz3+ (B+ psc)z?
I 2!

T

.+ [2}?;'4- 3pSc'+_ Sc{%‘h + pnB}:‘ _32_? »
3~-2n

&+ [SB + 11pSe + 53¢ (E:EE‘A + png)

.+ Sc {%‘ (A +2aB ~ 1) - (5-3n) aB

4+ pn (n-1) B3 = pp (B + pSc)}] _z__i‘ " 'o(z5) (5.34)
1where | | ‘ o
£0) = #(2) y -
| el = ()
o oz 7 A | < (5.35)
C A= E"(0) 0 |

]
]
(7]
\
—
. O
L
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The series solutions of the equations in the Case II, with

G(2)

=1 are'givén by

% . S :
= az2® + (3a-1) 23 + (11a-B-6) 2" |
2! -3t t '
2 : 5 6 .
+ (A7 + 508 - 10B - 35 - gse) Z7 + 0(27) (5.36)
; ' . _5! _ :
: o,
= 1+ BZ + (B + gSc) 2°
' : 2!

+{:2B + 3ch + Sc (A-+ qB)} z3
31

+'[6B + 5c{a + AB —~ 1 - q(B.+ gSc}

- are given by

£ 5(h + qp) + nq}] 2!+ ()  (5.37).
Similarly, series solutions in the Case 111 with cl=1
= a z° =1) 23
=AZ  + (3a71) 2° '+ (11A-B-6) _z__ 3
2l - 3! ) yto .
. ! -
+ (38° + S0n - 108 - 35 - rsc) z° + o(z0) (5.38)
i ~ ' -5l
| o>~
¢

——
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‘approximate solutions of theeqyations

. ' S 81

G(Z) =1 + BZ + (B + rsc) z° -
: . 2! )
LI )

+{23’ + 3rSc + Sc (4A + 3r _B)}_ z_3
: ! 2 1

+ [68 + 1lrsc + 5sc (4a + 3rB) - -

. 2 : ' -
+ Sc ;EQ (A + 28B - 1) - aB +‘3rB2
‘ ’ . : 4
IR (0 + rSc)}] z' v o(z%) - (5-39)

ui

. 5 .
The values of A and B in all the three cases are fou%d by

8 | '//k—\ "

- )
F.(A;B) = 0 as |,z —s1 (5.40)

It

G (A,B) 0 i

s
p

The roots of 7 and B are obtained by the use of Newton -
Raphson methods for small Schmidt numbers. The following
. e )

numerical values of A and B for Sc = O. 72 and for

reaction number unlty have been Obtained for the 1nd1cated

values of the order Qf reaction.



n A’ ~B
1 0.3775115 0.939694
3/2 0.3824861 0.905062
“e - 0.3900558 0.821376
Table 6;

Numerical values of A and B

of reaction.

for varioys order

r
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5.3 - : Numerical Solutioh:'

o

The differentiql’equatioﬁs (5.1?), (5.18), (5 25),

. (5:26),'(5.31) and (5.32) are alil integfated numérically

J

interpretétions Of the results are disqusEbd in- the

-

with their relevant boundary conditions. These equations

Swigert gechnique_(l965) to correct'ﬁhe first choices of
ial values. Results of-the numerical solutiéns
Qf the cOncéntration angd the <elocity distribution; are
digcuséea fé;_various flow Parameters in Chapter vi.

Finally, Table 7 g9ives the reSulté_of the numerical solutions

’

gradients for Sc. = 0.01, n = o, The cénciusions and the

following Chapter.,

s

Ntegrated by using ga Rgnge—ﬁhtta method withAHachtsheim—\
> . , oS ' :

o
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Table T

ARl

~

for

Sc
n

P

= 0.01

(G £ £ c c’

0 0.00000 o.?78a1 1.00000 -C.18036
0.5 | 0.27101 0.33106 0.91130 © -0.17403
1.0] o0.3002 0.05359 0.82621 ~0.16600
1.5 0.35293 -0.00157 0.74540 -0.15730
\2+0 1 0{31360 ~0. 08941 0.66897. -0.14839
2.5 O.26821 -0.08782 0.59700 40.13937
3.0 0.22721 -0.07980 0.52948 -0.13062

CELEY PS50 -0.07106 0.46035" ‘fo;12189 '
4.0 { 0.15509 -0.06262 0.40756 -0.11331" \\.
§05 1 0.12580 | -0.05464 " 0.35301 ~0.10491
5.0 0.10036 -0.04717 0.30261 -0.09672
55 | 0.07853 | -o.oko022 0.25625 -0.03874
6.0 |- Q-Oéggﬁ J~o.o3381 0.21383 -0.08098
6.5 o.oaan ~0.02792 0.17523 -0.07345
?;o *0.03203 -0.02257 0.14033 —0.06615
7.5 | 0.02198 | -0.01773 0.10903- . ~0.05908
8.0 o.oth21 | -o0.0134L 0.08121 -0.05224
8.5 0.00847 -0. 00959 0.05675 —0.0h561
9.0 | o.00053 | -0.00020 0.03555 -0.03921
9.5 | ©.00213 ~0.00341 0.01750 - -0.03301
10.0| 0.00103. | -0.00102 \0.60251 -0.02701
_Results of Nﬁmerical Solutions of velocify QES?

Lo T

"Concentration distributions with their gradients
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Effect upon Mass transfer

N

are calculated as follows:
o .

N

[

.Nu

’

Similarly, we tan have

J7(x) o

Cc_ —-c

0 "o

-

5 = -¢c'(o

N 5* '
X
[112(5-—3n)]

Local mass transfer parameter for the case I is given

Tﬁe local mass fluxes from the surface of the plate
e

\
o

by

14,
6-4n

(5.41)

he local mass transfer parameters

} ‘ '
fbr the cases II and ITI rehpeggively as follows:
. :

P i i
f Nu =
X

The relations (5.41) to (

SchmiBt_numbers and the order of réactions.

e

1/4

™ Grx
c -
~ 1

: ’
table 8 shows the mass transfer Parameter C (

¢

(5.42)

[

1/3
J s

5.43) are all dependent upon the
The following

0} for different

values of the Schmidt numbers and for the reaétion order n

and the reaction number unity for the relation (5.41).

7



&
Sc -c’(0) }
N 0.01 0.18036753 /—\
BCRE 1.3369751 )
1.00 |7 1.skores .
10.00 ‘ 4565486
100.00 . 14 .990554
1000. 00 45008224
<
Table - \ MaSj transfer parameters for different Schmidt

—
- nhumbers,

Mass transfer parameters c’(0) for the relations
(5.A2i'and (5.43) are given in Table 10, for the reaction
. .

rate number of 0.01. N . N

«
—
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) : §
w_-———4_~__on_example chgmlcals such as SOdlum chlorlde Or potassium .

6.1 "~ Discussion of Results

///’"

) : CHAPTER VI

RESULTS AND CONCL.USIONS

N

_ o
Preliminary Remarks

The reaction rate number - ~

Sy . o

© 32 ‘ :
. 2Zk(c e ) ' .
e(x) = - RN, V£ | (6.1)
. gB# . : .

1

is small for most chemlcal spec1es with slow reaction rate.

. - =Y

chlorlde with dllute acids and sugar with dilute acids can °

be categorlzed in this class of species. This number plays .

.an 1mportant role for tge problem described in Chapter Iv.
-Thus to establlsh the numerlcal order for €(x) in the case

“-\of uniform concentratlon at the pPlate, we may Present the

following discussion.
'The ‘basic perturbation expansion is
, S o 2 _ g
CF’I’E) = CO(qL) + €(x) Cl('?() + € (x)c2(7() ... (6.2)

87.

£

-~
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Suppose that(

< K, where .K' i1s a numerically known
Cl

¥
' -

e

upper bound for all}( in caiculations. (Thé graph of
. \ 1

as a function of4( for Sc = 0.0 and n = 1 from the truncated
series éolution_up‘to Z§ 1s shown in Fig.(21}). Assuming

C
_2

<y

" that lim = ¥, and that (6.2) is a convergent series,

5(——; 00

let 62 x)c }() £ 0.1 ¢ say, for O<’?( <oo, = (6.3)

e )Cl(j)_

50 that an estimate of the error in usgng the truncated

¥

solution,
Y
= Y) + x) c; ?) o (6.4)

ls of order 0.1 % or

T

x)|< o.001 | Sx : . (6.5)
Since [_l has the lower bound i, we therefore fequire that
C2 ’
0. OOl '
| e X) |< . | (6.6)
Let _9;%21 = E , 80 that 0< [e(x)|§‘§, and ¢ (x) is of



I~

4

o : g
) _ a0
Th n--3
Then Ek(co-c ) [ 1/2| P
- o (6.7
I e(x)l = ‘
T
1mpl'ies
gr¥ -
2 (56.8)

~and y’ can now be defined as )

_O<x~< [Hk,z(co—cco )En—3 E

1f we define thg non-dimensgional plate coordinate

e ‘5 2n-3
! { -
x’ = k 'S0 coo) X, . (0.9)
- :
9k
1 ' v Y
then we require that .. -
O<x,\< EE, where I;_')_ Q- OOl ‘
ol o
and K is the upper bound of | 72 for |j<? <P, >
: C
1

given that P = P(Sc,n ) is numerically known as the practical
range of '7( in the calcula_tiox_'xs when é«—)O asymptotically.

As we know that the similarity variable ?[ is given by ’

.
-

L4

‘e Grx
*( = X [ ] , dimensionless co—ordlnates X
X

7
'Ir



~ o 2n-3
, Ik (ca—cog} :
x = po - X : {6.10)
. i g‘[f _ -
n-1
kl/?(co—cq)) ¢
y’ = Y - (0.11)
JL1/2 < ’
’ ” —l/),l

where Y = v (x (6.11)

Thus, for the calculated solutions, the domain of validity

along the plate length is given by

>

o< XKEQ'; (6.12)

. /s ”
With this choice of x  and Y , the nondimensional
. : . LI

velocity component parallel t& the body force may be defined

by

gp™ /

=u= J £ | 12 » H1/2
- == {5 v e fl(()} ()
‘ (6.13)

Also the local mass transfer parameter Nu%,'can be cal-

culated as follows:

Nux

o7 = Ny, = -{co'(o) ¥ (:é)l/ecl'(oil(xe/"‘)

I Ul/2k3/2

(co—coo) .
. (6.14)



-

 that the concentratlon at the plate must be a functlon of

—y

‘ .
: concentratlon Problem is known to be- 0 x.\f*g

-centratlon CO( ’) has a magnltude over the range O<fx<1&

the Plate. length prescrlbed by the order of - reactlon of

. ¥
the orm , ' T
1 T, \
- 3-en o
Sol¥) - = N x + c o A - (B.15)
. . o )
.'which can be.written~as,k' . . .
‘\_.__-/“} \ . LI F
p : 1 D S - \
’ : 3-2n J\w3-2n - oL
colx") = N4 (x"N" 7 % © 002 {0.187
. r . )
- @ » gﬁ".t\
where 3 = 7 . ' (6.17)
¢ : le(c ~-c )2-n 3 -

5

It would now be of interest to compare results between

»*

‘the two tyYpes of problems, j.e. between the case of an

initial concentration dlstrlbuted along the pLate'and that

of g uniform 1n1t1al concentratlon for flxed vdlues'of n

(- PN

and Sc. In order for thisg comparison to he meanlngful

e

however, it would be necessary that the distributed con- ™

2

which 13 in somd'wh?\fnsedﬁon thq chosern uniform \}alueicO

/.‘ . R
it L o . A

w4
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o For example, one could use an averaging process for the

distributed concentratlon at the plate whlch is averaged to the

unlform Concentratlon value chosen for- comparison,

—N

requiring

that . 2

15 VFOTX’)GX = ¢4 ' ' (6;18)
I

: . gl . . '
“Using the expression-for O(x Q\from above and performing.

the integration, one obtalns

¢
r

1 1
) 4
- 2 -2 Z
(co—cco) = N g3en 2_22} ;_:,;3 FE (6.19) v
o (mk2)
N : . s k ’ ! o .
Thus using thé‘value'of a, we have, o
1 {
3= 2n * : 3-2n .
‘{4 2n 4k e : _ (6.20)
F - (ng2)

We know from the ﬁistributed theory that.the reaction rate
» )

parameter is given by,

N

n-3 .
p = kN = ’ ' ~ - (6.21)
J Ngg : o ' '

5-3n ‘ : JRRET '

[
el
Dt 0
L e
r

f‘\"\ .
L.

S
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which can be rewritten as

| -
1 v ! . 2 - “l .
% _ 3-2n 3-2 -{
i [‘gﬂ] - [%3*“] ’ p L3 (6.22)
2 ) ’ ’
4k -
o

Thus the relation between P and 6 *whlch is requ1red

1

‘for meanlngfﬁl comparison is given by the combination”d of\

(6. 20) and (6.22),

-, 3-2n '
o3l 2 el i/2 ‘ :
p = (3 21'1) (5 31'1) g , . | (6.23)
A ‘4-‘2n . q' - N
o (n# 2)
. -, ‘
€.g. when n = 0, . v
| , s
Po= X2 E s 0mE. o L

Hence for an averaged comparison and for given E, i.e. for

-given‘Sc, n for some uniform,concentration problem, p must

be .chosen accordlég?to (6. 23). Accordihgly, functional
dlstrlbutlon of concentration CO(X,)“ with respect to the .

uniform concentration €y 2at the plate is given by the

-

following relation:

r



9%

L .
() 3-2n 2 1
c (x)-c _ ~ — LN on
G s o B () 32) 3-2n x3 &1 “125)
g - s » 4 -
and when n =0, ~x
P 1/3 .
c.(x") - c T =2/3 : .
0 @ 5 .  1/3 '
— = = z ) p {x") ._ - (6.26)
’ €0” 0. " |
T _ i

The graphical representation of the distributed concentration
is shown in Fig. 28, compared with the uniform case-

-~

according to (6.206).
In gétting the boundéry—layer thickness, the following ..

criteria are used. - _ ) - =

Let yé = maximum value of y’ corresponding to a

velocity value ug,

and ‘4’ = maximum velocity value over the flow region.

>

(= SN

Then if - u i = .0.0l, we say that

d

yé is the boundary—lay¢r1thickness for that particular

571

profile.
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4 . e

Results For Uniform Concentration at the Plate

In the following, Qe‘discuss the results'obtainéd
pPreviously by nuﬁerical and analytical procedures.,

Fig. 1 sketches the physical plane of the velocity
field and Fig, 2 sketéhes ?he véi#city and concentration
distributions in the physical plane.

Solutions of the zeroth ordéa approximation (without

- the reaction-rate term) in ‘concentration by Taylor series

expansidﬁ"éfe displayed graphically in Fig. 3. These
solutions are obtained for small Schmidt number, e.q.
Sc = 0.0l. Here =2 represents the contracted co-ordinate

length 1/4

2 = 1—'e—1 where"(-—*‘;Y{ %ﬁ]

a éimilarity vériable of the problem. This figure shows
the gradual 1mprovement in the solution by the addltlon
of terms. Comparison between the Zzeroth, first and second-
order terms in the perturbatlon expansion is shown in Fig. 4,
for Schmidt number Sc = 0.01, and the reaction order n = 1.
It may be observed that the perturbatlon'functlon cl is

0(10 ) and C, is 0(10 ) indicating their smallness of

magnitude relative to Cb.



The numerical solutions for the concentration
distribution C, in terms of the zeroth and first order ﬁ‘
functions (tb and Ci), are presented in Figs. 5,6 and 7,
for the Schmidt_nﬁmbers Sc = 0.01, 100, 10,000 respectively

~and for the fixed reaction—grder n = 2. The numericak™__,
procedure adopted here has been descrlbed in Chapter Iv.

It has been numerically found that the estlmatlons of

the values of ¢ (x) for these values of Schmidt numbers

and the reaction order are as follows:-

O(E) = e(x) 7 X 10 -l for Sc' = 0.01 }
ne= 2
e(x)g 7 x 10°° for Sc = 100 }
n=2
é(x)< 8.x 1073 for Sc = 10,000

n=2
whéﬁ.the exror bound in the solution is allowed‘to 10%
inseach case.
The diménsionless concentration profiles C as a funbtion
of the dimensionless coordinate y"(pexpendicular
t; the vertical plate) are depicted in Fig. 8, for S& = 0.01
and n = 2Ladefor Va¥i§us dimensionless stations x’ on

the plaﬁe. It may be observed that when x' increases,
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the concentration distributions expand and coijfgyently

A
e

onhe may expect the boundary-layer thickness (y'b) to
increase accordingly. This illustrates the physical

.situationlof.boundary—layer growth.
As we know, the movement of a chemiéal species from
a high coﬁcéﬁtration region to a low concentration region
. %
can be observed with the naked eye, when, for example a
small crystal of’potassium permanganate’(KMnO%)_is dropped
into a beaﬁfr of waFer. The ﬁMnOa begins to.Q&ssolve in

t
the water and we observe that there i1s a dark purple

concentra;ed solution of KMnOH very near to the crystal.
The progress of the diffusion can best be followed by -
Observing the growth of the purplé fegion, the dark purple
where the KMnOa concentration is high and the light purple
where it is low.

fhe sitﬁation described- above, for_a simple experiment,
can be observed for the present problem in Fig. Q, which is
& consequence of the numerical solutions obtained fQr a
caée of uniform concentration along the plate. (Fig. 8).
The picture displayed in Fig. g démonstrates the way in
which cbnﬁentratibn varies away from iis maximum value‘at

the surface of the vertical plate. The family of

L7

5
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concentration curves is determined by a scaling technique
in which the line density varies along the orthogonal
curves in propation to the aétual concentration distribution.
Fig. 10 and Fig. 11 show the concentration distributions
fo} Sc = 100, lO,QOG and for n = é for various stations
at the d;mensionless Plate length (x’).

The results shown in Figs. 12 and 13 demonstrate
the concentration.variations within a thin region for high
Schmidt number fluids, namely, for Sé = 100, 10,000 and

for n = 2. By comparison of these concentration pictures

with that of Fig. 9, it may be obsérved that for high

Schmidt numb&r fluids i.e. for species with low diffusivities,

mass transfer occurs in a very thin region near the Plate,

This is a physical result whicﬂ has been readily deduced
from £hé mathematical célculations.

The dimensionless velocity distr;butions at various -
distances x~ along the plaﬁe and the consequent boupdary-
layer growth are shown in Fig. 14. It is observed that
very near to the leading edge of the plate, the boundary;-f‘

layer thickness appears insignificant, but grows rapidly

a small distance away from the leading edge, ‘as expected.



Fig. 15 graphs toe boundary-layer‘thicknesses yb’
as a function of.the plate coordinate x° for Sec = 100,
10,000 and for n = 2, This figure indicates the
maaimum boundary-layer thickness‘according to the arbitrary

definition given on page 94 and shows the rapid growth'of-
.the layer W1th1n whlch the effectlgy flow occurs.

The effect of chemlcal reactlon rate on the concen-"
tration profile may be observed in Fig. 16. ‘.The constant
'concé;tratlon curve . C = 0.8 of Fig. 9 appears to flatten
out, expandlng the 1nd1cated diffusion domalnqby as much
as 50% as the rate of'reaction increases tenfold.

Thus from this it hppears that 1ncrea51ng the reactlon
rate while keeping all other parameters fixed, tends to
encourage the solute mass- transport away from the plate an
effect which may be expected in practice.

Figs. 17 and 18 demonstrate a similar behaviour for

the constant concentration curves C = 0.6 and.cC = O.hy

S _ . ) ) L
A comparison of the numerical and series solutions for
. T
A

99

13

S¢ = 0.01 and k = 0 (without reaction) is presented jin
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Fig. 19. The .series ‘solution for concentration up to

1 . . . S
~order -2 O 1s compared with the numerical solution for

1

the same case, showing a maximum discrepancy at 2 = 0.8 -

of 10 ¢ in the series solution relative- - to the numerical

Bl

calculation.,

¥

Fig. 20 shows the instability in the series solution
for concentration in terms of the zeroth order approximation
up to ‘Zlo for high Schmidt numbers thus indicating,that

the series solution is meaningful 6nly for small Schmidt

£

numbers of the order ,0(10_2)

C

1

-

Fig. 21 shows a.typical graph of as a function

of 7(, taken from the series sdblution faor the concentration

distribution and from which it appears that the upper hound
C

<

of

, discussed’previously, seems to occur about'?’: 1.

-

Fig. 22 shows the effect of order of reaction n, as
it varies from n = 0, 1, 2 at fixed Sc = 0.01 on the

concentration distribution at the station x’ = 0.5. Prom

of reaction over [0,2] (effectively increasing the
sensitivity of the species depletion rate with change in

concentration) tends to expand the diffusion-convection
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-

layer away from the Plate by a factor from two to three
times, with a general decrease in concentration gradients.
Hence cone may expect a larger, while less distinct;

diffusion-layer for larger order n.

Fig. 23 shows similar effelts of -varyingWVn on the
velocity profiles at the Same station, emphasizing the.
expansion of the a&tual convection-layer in concert with
the diffusion;iayer when .n is increased.

Fig. 24 shows the effect of reaction érder and Schmidp
number on the mass transfer at the Plate. The graphs are
piotted;to disﬁlay the mass transfer parameter Nﬁx as a

function of Schmidt number for varying n.

The results show that for  0<Se< 10" ana o< ng 2,

at the point x7 = 10-4’ the initial mass transfer of the

" ”
species from the Plate Nux is close to a linean*increasing

function of Sc with sl%pe of order lO_b; while there appears

to be only a marginal decrease with incfeasing n.
Gebhart investigated the viscous dissipation effects
‘ ' \
' ' . Coe . N .
in natural convection about semi~infinite flat-vertical -

surfaces (isothermal) in 1962. He started with the usual

* . . ’ :
equations for conservation of mass, momentum and energy.

-
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Though the mathematical formulation of the.problem of

uniform concentration along the plate is similar up to

zeroth order terms to that of Gebhart's (1962), the essential -
difference oécq&s in the presenée of the first o;dgr terms,
wherein Gebhart includes viscous dissipation effects and

in the present work it refers to chemical kinetics. Therefore,
the following Table 9 has been dgawn up to show the

significant difference in the final numerical results obtained

for .Pr = Sc = 0.0l and 100 in the first order approximation

terms.
Gebhart's (1962) | - Author's Results
Sc = Pr :
0,(0) | -c/(0)
0.01 0.003497 n=1l: 0.0477435
. ) ' n=2: 0.0325043
16 C0.h877 “n =1 15.72654
n =2 11.2733
> - v
Table 9: Numerical results for the 1lst order approximation.

’
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Initial Concentration Distributed along the .Plate

The following discussions, for the distributed
A

1
concentration along the bPlate, are based on thé calculations

-

ﬁsing the theory of Chapter III. 4
The results of the numerical solutions for éonceﬁtration

and velocity distributions at  Sc from 0.01, to 103, n=20

M [

and p = 1 are given in Fig. 25 and Figq. 20 respectively.
The concentration and velocity profiles are drawn against
-‘ the dimensionless éimilarity variablevz. The boundary

layer region decreases in thickness as the Schmidt number
: P ’

. [ ’ ., .
increases; thus for high Schiiidt number flpgids, mass.

~—

diffusion takes place within a thin .layer. This agrees
with the results discussed ‘by many authors including

Morgan and wWarner (1956), oOstrach (1953), Sparrow and

L3

\

Gregg (1956) and'Schlichting (1955).
Fig. 27 shoﬁs the ‘effect of chemical reaction upon

-

mass transfer at the surface'of the plate. From these
results it appears' that the amount of mass flowing with
reaction is considerably greater than that without reaction

and the transfer coefficient is a rapidly increasing \7
. - -

monotonic function of Schmidt number, up to Sc = 103.at n=0. "
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The choice of distributed as against uniform initial

-

Concentrations at the plate, to be used for the purpose of
: -

determining the effect of distribution (discussed bﬁeviously in
<

the preliminary remarks), is shown in Fig. 28;
L] B - . 5

By éveraging the initial distribution Concentration at the

plate and choosing this averdge value to be equal to the uni form

H

¢oncentration value, a comparison between the concentraticmprofiles
in these two cases is possible. Fig. 29 shows the comparison

between the concentrations at y' = 0.1 (near the plate), whereas

~

Fig. 30 shows thescomparisod of the concentrations at y’ =“8 (far

from the plate), for'Sc = 0.0l and n = 0. The figures 28,29 and 30

>
3

L=

"Teveal that for the uniform case, the concentration profile decreases
. A

’in magnitude from the maximum constant value along the plate to a
much lower range far from the -plate. Near-£he p%ate'énd over most
of the domain of x:‘the concentrationrprofile is close to éhe uniform
value, while indicating irrgygularity and a steep grédient in a
neighboprhood of the leadingredge at x'= 0. Sufficien&ly:farifrom
the plate, the irregularity apparently disépéears and the_pfof%le
reduces to a more smoothly inc;gaéing function of x“. 'For the éﬁ%— -
tributed case, the same figures show that the profiie decreasés
uniformly from its initial distribution-ét the plate to the. minimum L
curve far from the Plate, with little apparent change in éhape

characteristics. .

A striking fegture of these results is that, although the

distributed curve at the plate varies widely above and below the

. : ' o .

- -
’
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uniform case (Flg 28),\a concentration profile is produced away
from iLthe plate (Flg 30) Wleh is uniformly above that of the uniform
case and not essentlally different 1n shape. This suggests that, if
an initial concentration is malntalned in a functlonal varlatlon along
the plate then the results produced in the amblent fluid after some
ddlstance from the plate may not differ greatly ‘in character from that
produced if the initial concentration had been distributed uniformly.

Fig. 31 and Fig. 32 give the results of the -series solutlons of
concentration and velocity distributions ,Obtained for the dlstrlbuted
problem. Nume;;nal results of concentration proflles are shown in
Fig. 23 for this problem These results for various values of reaction
orders cannot be compared due to the fact that the Plate surface
concentration distribution depends upon the order cf reaction, thus
comprising independent problemgfor each order of reaction,so these
results show only independent behaviour for each n.

Finally, the following teble shows a comparison of our results’
for the cases of negligible (p = O:Ol) and zero\(p = 0) reaction-
rate with those of Sparrow and Gregg (1958), w ich illustrates the

expected similarity in the magnitude'of‘the surface gradient terms.

Sc = pr | Sparrow and-Gregq 7¢huthor's.ReSUlts
| "(0) -C(0)
Power law n = 1 First order reaction
‘ p=0.0l | p=o02
1.0 - 0.9898 | o.8u69 0.8632
0.7 0.8806 0.7546 " 0.7876
Exponential case - 3/2 order reaction
pP.= 0.01 | p= 0
1.0 0.832 . 0.8203476 | 0.823695
e t 0.735 0.7330996 | 0.735827

Tablé 10: Comparison.of Results of Sparrow 'and Gregg
%5 8) with author's results. :

This table shows the excellent agreement between the Sparrow. et. al's
results and the author's results-for negllglble reac&;on_rate.

>
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6.2 . Concluding’ Remarks:

1

Steady-state natural convection flow over a semi-
infinite vertical Plate has been studied for the. specific

case in which the pPlate is of given concentration in.a

chemical species and convection arises as a result of

chemical reaction and diffusion within an ambient fluid

surreunding the plate.. The formulation of the problem

- has been based on the cla351ca1 assumptions of the boundary«

O

layer theory, using the Navier-Stokes equations with
typical laws of chemicalvdiffusion and reaction rate
kinetics applied to a two-dimensional field. .The objectiue

in this study has been to determine solutions of'rhe basic

equations which will yield the two.dimensional concentration
i . 3 N

and flow fields away from the plate, when a éiveﬁ con-

. gentration distribution is maintained along the plate

surface. T ) : ?
In the case of uniform concentration along the plate,

the problem has been reduced to finding 51m11ar1ty-type

N

solutlons for varlous order terms in perturbatlon expan31ons

about an effective reaction number. Application of the

results -is therefore restrlcted ‘to low reaction numbers

]

or as is further showu for a given reactlon-rate, the

~

b
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domain of validity must conseguently be restricted to a

small region down-stream from the leading edge. Solutions

-

have been prepared using both anaiytécafiand nunerical \
technique§.~_Iﬁ‘the anaIytiSﬁl case,lt:uncated Taylor
series have bgsn constructéd for the concentration
distributions and stream functiohs, but these are found

Ll

to!be valid for .small Schmidt nufbers, of ‘order 6.01 or
ress. From npn—dimensi§33;iggtion of t£e bqsic &quations,
it has been ﬁound that the problem isemsentially,two—_
-Parameter, comprising £he reéctidn—rate'order (n) and
Schmid£ numbe? (sc). & nume;ical technique based on the
Nacht-Sheim method has been developeg and aﬁélied to this
ﬁroblém.‘ Solutions have been calculated and presented for

- . !
Sc = 10 2, lO2 and 10" at n = 2. It is generally found

that'ﬁorﬁg} concentration gradients are large aﬁﬁ non -
unifofm‘n;ar the leading edge: rapidly decreasing and .
becoming more uniform for poigté downstream. Also the
boundary-layer thickhesg apéears to incfeas% with decreasing
 orders of Sc. Th% chemicgl reaction-rate (k) is not an”

. explic;t pafamete; and therefore contr;buteﬁ as a‘dimensional

scalind factor ‘only. It has beer found that increasing the

value of k, while keeping other pParameters fixed, has
/ N '

f ) , .
r " ‘ s - ~
2
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the effect ofsséaiing curves of constant concentration
outward from the plate. This means that an increase in
reaction-rate may be expected to éonside;ably increase
the spatial penetration of the'difquipg chemical species.

It has éiso been found that increasing the magnitude
of the reaction order n fo;'fixed Schmidt number Sc has
the effect 6f expanding the effective diffusion and convection
layers, while there is some ind;cation that initial mass
transfér at the plate de9reases slightly;. It therefore

seems that the presence of chemical reaction in general

will result in an apparent 1ncreasé'1n dlffu81on—convectlon

L
T

effects, with larger but less distinct (as indicated by
lower normal gradients) boundary layers.

‘ In the caég\ahere the initial concentration. at the

" plate is nonuniform, a study has been made which applies

onily ' to distributions w?ose mathematical form,isxdependent
on the reaction order n. When this. is assumed, it has
been found thaf complete similarity solutions are available.
Thatlis, the partiai differential equations which govern

the problem may be reduced to a éystem of ordinary

differential equatiohs. Solutlons for n\q}l ble reaction-

rate art compared to those of Sparrow et al (155¢8) for two

[
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Schmidt number vélues 0.7 and 1.0. The comparison shows
good agreement with our results. From these results, for

fixed n = 0, it has bekn foung that the depth of

with decrea31ng Sc; thlS conforms to .what mlght be expected

phy51ca11y namely, that the diffusion ang convective

effectg would be expanded with an inerease 1; dlffu31v1ty
ﬂbe features of this study which are essentially new

derive from including reaction-rate KlnethS in natural

convection flow. "When the initigzl concentration at the

the.leading edge is small. However,-similarity solutionsg

for the distributed concentration along the plate permit

the reaction. Although Stability and transition are defineqd
in terms of Grashof number 11m1ts and the reaction-rate
Parameter is 1ndependent Oof Grashof number , still, for

apprec1ab1e effects of reactlon-rate, the flow may not

e

Temain laminar, - : “*\\‘ ////

"%
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_Zero_th order approximation
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APPENDIX

"DESCRIPTION OF 'THE REACTION KINETIC THEORY.

-

In this appendix we discuss chemical Kinetics which

arise in the problem.

Let us define the rate % reaction:; Consider a reaction
in which substances A and B react to form the Product C.

. Suppose, CA

then,

<lo?elee 57

A ‘+ B —— ¢
concentratioﬁ of A
concentration of B Cos
concentrationlof C
volume of the mi;fure
number of moles of A in V
rnumber éfrmoles of B in V.

number of moles of C in V

5

S

The reaction rate r_ with respect to C is defined as the
rate per unit volume of - reacting fluid at which the substance
C is being produced or lost by reaction.

Symbolically,

o1 9w)
e TV Ta

1 d(vcc)

Tv . dt
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and in our notation,

d(vc
(ve,)
dt

= 1, = = (A-1)

If the volume V of the system jis constant then (A-1) can be
written as, -

dcc :
‘¢ T Yo T o | _ (A-2)
Again from experiment and from theory, it is known that
for simple gas reactions, the reaction rate is proportional

to the product of small 1ntegral powers a and B of the
concentration of the reagents, -

thus if the order of a reaction is a w.r.t. substance A,

ﬁ\mnt.amﬂmmeB,

the rate equatdion may be written as

@ A
r = k <. Ca . | (A-3)
where k = rate constant.

L s

In general, these powers q and f may be fractional or
integral including zero. ThlS order of reaction is determineq

by an experimental procedur In general case, the finits of
K,ln the metrlc—s{?tem, WOuld be:

(g-moles)l_a’B (litres)m‘ﬁ_l '(sec)"l
For reversible reaction, say . .

A + B ‘kl > C

é k2 > A + B |

the rate of reaction of the substance C can be written as,

- : B _ v
rC = kl CACB kQCC
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The raté constant k generally obeys the following relation,
k= ko'eE/RT

This equation known as the Arrhenius equation has k6=constant’
» .

-~ B = activation energy, commonly in the range
. 10,000 to 50,000 cal/(gm. moles)

. R = universal gas constant,

and, T = ¢ absolute temperature.

In general, for homogeneous reversible reaction, we can
write the rate ag follows:

Y

-E/RT g _ éEﬁxRT’

' _ B.
r = koe IT C 0 IICj J
ﬁwhere the reaction is:
k.
Za, —02, 3
J |
kl
Zaj — 9o, ZAj -
Cj - concentration of Aj
C; ~ concentration of B.

where r is the rate of production of Bj' \\

Consider the following reaction:

2Nacl + H_SO "= Na,SO0 + ‘EHCi

<l 2 2Lt L

Sodium Sulphuric Sodium Hydrochlorice
" Chloride - Acid Sulphate Acid

If the dissociation of NacCl in the presence of an agqueous
dilute solution of Sulphuric Acid is of the nth order, then the
concentration C of Nacl satisfies

N Y
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(a-3)

Similarly, we can define zeroth, first or fractional orders.

The equatlon (A-}4) states that the rate of decrease of
concentration C is proportional to C where n is the order
of reaction. If the reaction rate is fast then k is large,

if it is slow, then Xk is small and if there is no {?actlon
then ¥ = 0.

-/

/f‘\_'
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