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ABSTRACT

An experimental investigation into the effectiveness of
variéus catalytic formulations for the oxidative ammonolysis
of m-xylene in the temperature range of 300-500°C was carried
out.’ Catalysts were 5ased upon vanadium oxide, deposited on
highly activated '7Calumina. Catalyst evaluation was made
on the basis of the selectivity for the formation of nitriles,
for each catalyst. Activity of the carrier, its pretreatment
aﬁd the method of preparing the catalyst were found to effect’
the selectivity of nitriles. Incorporation of oxides of
transition metals to the base oxide-V,05, showed varying
influence on the selectivity for nitriles of the catalyst.
Presence of the water vapour in the reaction mixture was
also found to have an important effect on the selectivity
for the nitriles, Of all the catalysts tried out under
identical conditions of temperature, concentrations and
contact times, a co-precipitate of tin chloride and ammonium

vanadate showed the best yield and selectivity for nitriles.
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CHAPTIER 1
INTRODUCTION

As early as 1832, Wohler and Liebig synthesized benzoyl-
cyanide and benzonitrile, but the toxicity of nitriles and
the limited availability of the raw materials that go into
the production of these compounds hampered further work
in this Tield for many years. It was only during 1920-35
that large tonnages of acrylonitrile, phthaleonitriles,
acetonecynanohydrin, adiponitriles and trichloroacetonitriles
were produced. These compounds found unlimited applications
in the manufaciure of plastics, synthetic rubbers and
fibres, dyvestuffs and fumigants. Other applications for
these nitriles and others prepared more recently have
been in the field of synthetic resins, war-gases, insecticides,
speciality solvents and most important of all as intermediates
in the synthesis of pharmaceuticals, vitamins and plastics.
Increased demand for aromatic nitriles, used as intermediates
and in the synthetic resin field has necessitated search
for economically optimum methods for producing these compounds.

Vapor phase catalytic oxidative ammonolysis of benzene,
toluene xylenes and other aromatic compounds has been
successfully carried out in the past. In the present work,

effectiveness of various catalyst formulations for forming



m-phthalonitrile from m-xylene in the presence of ammonia
and oxygen (air) in the temperature range of 300-500°C was
studied. Reaction was carried cut in an isothermal fixed
bed catalytic reactor. High effectiveness of a specific
catalyst was interpreted as formation of dinitrile with
side reactions and carbonization of m-Xylene occurring to
an insignificant degree only. Catalysts screened for
their effectiveness were based on either vanadium oxide

or vanadium oxide modified with oxides of ¥Mn, Cr, B, Co,
Yo and Sb.Binary catalysts,tin vanadate and manganese
p-tungstate were also tested. The influence of following
parameters on yield and selectivity of nitriles was studied
for the catalyst formulationsmentioned above.,

1. Surface area of the catalyst.

2, Precalcining of carrier at 900°C and 1250°C over
prolonged periods whereby crystal structure was so
modified that increased catalytic activity was
achieved,

3. Percentage of oxide devosited on the catalyst,

L. Water vapor in the reaction mixture,

5. Contact time for the reaction mixture in the
reaction zone,

The objective of the study was primarily to choose the
most promising catalyst for further studies into the kinetics
and mechanism of this complex reaction. The latter will
facilitate the design of an efficient reactor set up for

obtaining high yields of nitriles in the oxidative ammonolysis

of xylenes.



CHAPTER II
LITERATURE SURVEY

A. Nitriles

Because of their industrial applications as intermediates
in the manufacture of synthetic rubbers and fibres, dyestuffs,
pharmaceuticals, fumigants and insecticides, nitriles
were prepared as early as 1832 by Wohler and Liebig (1).
Historical background, natural occurrence, preparation by
various chemical methods and industrial applications for
nitriles have been exhaustively covered by Mowrey (2).
Because of the inherent limitations of these methods for
the manufacture of nitriles, vapor-phase catalytic oxidative
ammonolysis of various hydrocarbons-paraffins, aromatics,
olefins and substituted unsaturated molecules, aldehydes,
~acids and easters, alcohols, and efhylene'oxide was suggested (3).
This one step procedure of contactingin the vapor-phase the
hydrocarbon, ammonia, and oxygen with a suitable catalyst
was found to be in marked contrast with the previously
. known methods, such as reaction of aromatic halides or
sulfate with alkali-cyanide, Gecomposition of diazonium-
halides with potassium-cuprous-cyanide, decomposition of
isothiocyanates with copper or zinc dust.

B. Ammoxidation of Aromatics

Oxidative ammonolysis of xylene, toluene, and trimethyl



benzene was carried out successfully in the presence of a
catalyst (consisting of mixed oxides of molybdenum and
phosphorous deposited on alumina) in the temperature range
496-580°C, with yields of nitriles of the order of 10%,
based upon the moles of hydrocaroon charged (3). O-phthalo-
nitrile was prepared from phthalic anhydride in the presence
of oxides of tungsten, chromium, and/or vanadium at 400°¢
with yields of 61.9-72% (4). Klimitasetal. (5) reported

activated carbon effective between 310-&2500 and silica

supported on activated alumina effective beiween 900-107500,

as catalysts for the oxidative ammonolysis of toluene. They
observed a marked improvement in the yield of benzonitrile
from toluene in an adiabatic reactor as compared to an
iso{hermal one. They, however, could not find any beneficial
effect of water vapor in the reaction mixture upon the

yield of mononitrile for isothermal operation of the reactor.
Nitrosation of toluene, xyienes, and p-picoline((CsNHu)CHB)
with nitric oxide between 400-700°C in the presence of
dehydrating catalysts, such as silver extended on inert
support was‘reported to give high yields and conversions and
the carbonization of hydrocarbon and side-product formation
was low (6), Liquid-phase ammoxidation of m-xylene in the
presence of manganese bromide as a catalyst gave a yield of

31% for m-phthalonitrile with predominant product being

2 mixture of m-cyanobenzamide (CgHN,0) and 1,3 C gH,, (CN) (GO, N, )

(7). Most of the work on the oxidative ammonolysis of

hydrocarbons in Russia has been carried out with vanadates



as the catalysts (8-10). In their work, Suvorov.et al, (11, 45)
found that water vapor in the reaction mixture has an

important influence on the yield of nitriles besides provid-

ing a means of efficient control of reaction temperature.

The reaction has been carried out in fluidized bed reactors
with both the single and multi-oxides as catalysts (12-16).
Fluidized beds offer but marginal improvement in the yield

of dinitriles., Many papers have appeared on the simultaneous
ammoxidation of xylene isomers (o=, m~, p~) and the influence
of:presence of one on the yield of other isomer's dinitrile (9,15,
17,18). Ohta et al. (19) studied the activity of X-Mo '
(where X is ferrdus, nickel or cobalt oxide and Mo is oxide

of molybdenum) for ammoxidation of p-xylene for various
peréentages of X in the binary oxide catalyst. They reported
the formation of complete oxidation ?roducts—CO, COZ, HCN

with single oxides of ferrous, nickel, and cobalt. For the
ammoxidation of o-xylene where o-phthalaﬁide is the primary
product with conventional catalysts based on vanadium penta-
oxide, Nakamura et al. (20) found that manganese p-tungstate
gives very good yields of o-phthalonitrile around 470°C,

In the past twenty years, numerous papers on the amn-
oxidation Qf aromatic hydrocarbons in the presence of a
variety of catalysts have appeared. The literature in this
field is mostly in the form of patent specifications. Some
of the more important references alonglwith whatever data

is available from these appear in Appendix I,
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CHAPTER III

EXPERINENTAL AND THEORETICAL CONSIDERATIONS

A, Experimental Consideration for Scientific Selection
of Catalysts

Considerable efforts have been expended in the past to
evolve scientific.principles for catalyst selection. Develop-
ment of 'Multiplet Theory' in this connection has been one
of the major successes. In brief, this theory postulates
that catalysis proceeds under the action of chemical forces
which are characterized by bonds of specific, closely defined
length and of specific energy of dissociation. Catalysis is
a chemical phenomenon, i.e., intermediate interactions of
chemical nature occur between the catalyst and the reacting
atoms. This being so and the fact that chemical valence
forces are effective over a short range, the atoms will
react only upon contact with the catalyst., From the known

valence bond angles, lengths and energies, energy of
formation and dissociation of the intermediate complexes

ican be calculated and thus the occurrence of specific reactions
can be ascertained. This theory has been successfully applied
in many hydrogenation, dehydrogenation, hydrogenolysis and
dehalogenation reactions. But the theory in the present state
can not be applied to oxidation reactions and acid base

catalysis (21).



Selection of catalysts includes finding both the
suitable Eatalysts for a reaction as well as the reactions
which would occur on such a catalyst. Multiplet theory
has been of immense help in solving the latter part of the
problem as evidenced by experimental verifications of
predictions made about the comparative ease with which
hydrogenolysis of different bonds in polyfunctional molecules
on nickel can be carried out. In this comnection, prepara-
tion of({-decalol from decaline (010H18) peroxide hydrogen-
ation on nickel and previously unknown transformations of
furan (C4ﬁ40) derivatives are worth mentioning. ILack of
data on bond(between the catalyst and reacting atoms)energies
at present precludes wide-spread usage of the theory for a
scientific selection of a catalyst for a specific reaction.

B. Selectivity Considerations

Oxidative ammonolysis, also referred 4o as ammoxidation,
of xylenes is a complex set of consecutive and simultaneous

reactions as outlined below.

| ! . co
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Function of the catalyst in this set of reactions is
to selectively accelerate the main consective reaction till
C6H5(CN)2, l.e.,
CH, CE, N
C)— £) o
" CH CN CN
[ 3 }
Selectivitj is controlled by suitable control of the

relative rates of the independent parallel reactions (3)

and (&), shown below.
CH H

3
—~>- (3)
CH CN

3

CO,COZ,HCN

(&)
The simultaneous and independent formation of m-phthalo-

nitrile and CO, C02, HCN is favoured by catalytically
heterogeneous surfaces. A Heterogeneous Surface is defined as:

If,for individual types of surface areas, the
adsorption coefficients of a given species are ags 2ps a3, ‘os
and of another species are ai, aé, a;, +++y the surface is
heterogeneous if

2, #a, # By cerers (5)

a; £ aé #-a; ceenee (6)

Thus, reduction of non-homogenity of a surface, either

during the preparation of the catalyst, or by selective

poisoning of certain sections should increase the selectivity

of the catalyst for the desirable nitriles vis-a-vis produéts



of complete ammoxidation, viz., co, COZ,HCN.

Tt is widely recognized that the method of preparation
of a catalyst has a marked snfluence on its catalytic activity,
upon the energy of activation of a specific reaction and
surface non-homogenity.

Selection of a carrier is of equal, if not more importance
in determining the activity of a catalyst for either the
laboratory or jndustrial use. A carrier besides providing
the conventionallyrecognizedyproperties,viz., surface area
for the reactants to come in contact with the catalyst and
undergo reaction, mechanical strength for the catalyst
deposited on it, increased resistance to sintering at high
temperatures and an outlet for heat for exothermic reactions,
is not caﬁalytic-activity-wise inert in some reactions. In
other words, it exerts strong influence on the activity and
selectivity of a catalyst for certain reactions. One of
the most important carriers]r;alumina became especially
important when used with outstanding success in the hydrogen-
atibn of aromatic rings, dehydrogenation of alicyelic compounds
and dehydrocyclization reactions (21).

In short, in.spite of extmnsive work into developing
reliable and simple relationship between catalytic activity
. of a substance and its physio-chemical properties such as
structure, electric-conductance (Electronic Theory of Catalysis
for §emi-conductors), electron work-function and magnetic
su;ceptibility, the theory has not advanced to a stage where

catalysts for specific reactions could be predicted with 100%



10

accuracy. Under the circumstances, one has to compromise
to obtaining~empirical data on various catalysts,.chosen by
applying known scientific principles to a greater or lesser
extent, From this data, one could make conclusions as to
the optimum catalyst for a certain reaction.

C. Criteria for Optimum Catalyst

Optimum catalyst is one whose surface comprise a large
number of active sites that are optimal under the given
reaction conditions. Such a catalyst may be far from optimal
under marginally different reaction conditions. Hence, a
catalyst with homogeneous surface (from the standpoint of
energetic and structure correspondence) may be less advantage-
ous under changing reaction conditions. In heterégeneous
surfaces, range of energetic variations of various sections
is fairly wide, so that changed reaction conditions. will
still meet sufficiently large number of active sites which
are optimal,

In order to select the best catalyst, it is imperative
to consider reaction rates for various catalysts under their
optimal conditions of performance-starting composition of
reactants, temperature and pressure. Thelatier are determined
by the thermodynamics and kinetics of a reaction.

Transition from one cafalyst to another one may result in
a change in reaction kinetics and mechanism. Certain conditions
may .be optimal for one catalyst but far removed from optimal
performances for another catalyst. Thus, study of reaction

kinetics is essential to decide the optimal conditions for
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a catalyst.

Compériéon of reaction rateAthrough its rate constant
should be made only if reaction kinetic's equations are
identical. One can use initial rates for activity comparison,
again for identical kinetics only. It is erroneous to compare
various catalysts by the temperature needed by them to reach
prespecified conversion since temperature coefficients may
be different for different catalysts. Thus, the most
suitable criterion for deciding optimum catalyst formulation
would be to find the amount of desirable products formed
per unit surface area of the catalyst under its optimal

reaction conditions.

D. Heat of Reaction Considerations

Overall reaction can be put as,

CH ' CN
3 foNH_+10 Catalyst .
M3¥3% | %oo-s0000 6,0 (7)

CH N
Befow are tabulated the standard heat of formation

(Zfo298 1) of various components in (7) above, along with

0
the standard entrovy (3298.10K).
Table T

Heat of Reaction Data

Component(phase) [&Hfzgs 1(Kcal/g.mole) 8298 loK(Kcal/g.mole)

m-xylene (g) 4,12 84,31
ammonia ( % -11.04 46,01
oxygen (g 0.00 49,00

?- hthalonitrile 82,54 . 88.31
g

water (g) -57.80 45,11




[XHggs 1%k = Heat of reaction at 298.1%
=Z§H8298.10K(g) products-jreactants]

(o} _
Asyg8.1% =

1}

o] _
A630g.1% =

12

(8)

[62.5% + 6(-57.80)] - [#.12 + 2(-11.08) + 3(0.0)]

-2

46,3 Keal/g.mole

5398 1%(8) [products - reactants]
88.31 + 6(45.11) - 84,31 - 2(46,01) - 3(49.00)

(-

-281.94 Keal/g.mole

= 35,64 Kcal/g.mole

246.30 - 35.6k4)

(9)

Heat of reaction can be calculated from the equation (10)

for any temperature other than 298.1%.

T

o _ ' Dy.2 Aco3
AH = IH +AaT‘+ —-Z-—T + —3—T

Parameters a,b,c are tabulated in Table II1.

Table IT
Values of parameters for Equation (10)
Component a b c
m-xylene T 0.85 {117.7 -43,91
m-phthalonitrile b, b9 1163.78 39.38
water 8.22 0.15 1.3k
ammonia 6.70 6.30 -
oxygen 0.00 0.00 0.00
Therefore,
Aa = 39.56
Ab = 35.36 x 1072
Aec = -75.85 x 1076
and, IH = -246,30 - 11.80 - 1.56 + 0.66

Since the reac¢tion is carried out in the temperature

range of 100-5000C. we will calculate AH® at an average

|

-259.00 Kcal/g.mole

(10)
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temperature of ¥50°C (= 748. 1%K). ;
o - _ 39.56x748.1 . 35. 35(10°7)x748. 1
DHoyg, 10 = ~259.00 * 1ooo %1000

75.85(10" )x748.13
3x1000

-259,00 + 29,6 + 9.99 - 10,62

-230.12 Kcal/g.mole

E. Heat Transfer Calculations

(Ref.: Chem. Eng. Kinetics, 2nd Ed., Smith, M.J., p.Lbb
Equation 11-77)
_ Dupe
(Tc - Ts)max = -=%  Cs (11)

(~230.12 Kcal/g. mole)(0.166 cmz/sec)k
_Cg—glj-g ﬂole/cm

(6.2x10" ¥ cal/sec.cm.%c)
11,4°C

" Pemperature increase of catalytic bed due to heat of
reaction, assuming no heat carry-away by the reaction mixture:
Fiow rate of m-xylene (average) = 1.5 g./Hr =(1,5/106)gmole/=r
Heat liberated =(1.5/106)(230.38)(1/3600)(1000) cal/sec.
= 0.9 cal/sec.
1(0,94)(0.186) cal/°C
0.7 cal/°C

Heat capacity of catalytic mass

n

Temperature increase per second of reaction contact

time = (0.9/0.7) = 1.3°C.



CHAPTER IV
EXPERIMENTAL APPARATUS

The oxidative ammonolysis of m-xylene ( BP 138-39,
VW 106.17, Highest purity, supplied by Fisher Scientific
Ltd.) was carried out in an all quartz reactor tube, 13 mm
in dizmeter and 200 mm long, wrapped on the outside with
nichrome wire for heating. The reactor was divided into
three sections as follows: |
(a) Preheater zone - packed with inert support.
(b) Reaction zone - packed with catalyst.
(¢c) Buffer zone - packed with glass wool.
Each section was heated separately with nichrome heater
around it. The maximum voltage of nichrome wire around
each section was as follows:
| (a) Preheater zone 500 ¥
(b) Reaction zone 250 W
(c) Buffer zone 500 W
The power inout to each section was controlled with variable
auto-transformer (0-120/140 V, Maximum amperage 10), For
details of reactor see Fig.1. Temperature in various sections
was measured with chromel-alumel thermocouples (ungrounded
welded measuring junction sheathed in stainless steel 304

tube of dizmeter 1/16", probe length 6")., The temperature

1L
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of the catalyst bed was measured both at the top and the
bottom surfaces so as to know the temperature distribution
across the length of the bed.

Nitrogen (purity 99.99 % minimum) from a cylinder
(Matheson Co. Ltd.) with a 0-100 psig outlet pressure
regulator, was controlled with Milli-Mite forged needle
valve CV.1 (flow range: 0-20,000 ccom at inlet pressure of
25 psig, Cv facfor: 0.28, micrometer vernier handle, manufaciur-
er: Hoke Controls Ltd.) and the flow was monitored with flow-
meter FM 2 (capacity: 0-700 ccpm air @ 14,7 psig and 70°F) .,
Anhydrous ammonia from cylinder (pressure: 114 psig @ 70°F),
supplied by Matheson Ltd. was passed through control valve
CV.2 (Milli-mite needle valve) followed by a 'Lo-Flo' flow
meter FM 2 (capacity: 200 ccpm of air @ 14,7 psig, 20°F)
supplied by Schutte-Koerting Co. Itd.). Ammonia flow was
regulated with a corrosion resistent line regulator (series
71, supplied by Matheson I1td.) for an outlet pressure of
0-15 psig. Air supply was taken from lzboratory facilities
of low pressure air line (outlet pressure:ZOpsig)‘ provided
with an oil trap. The outlef pressure was regulated with a
Barrie-DevilBiss Ltd. regulator (0-100 psig). Flow of air
into the system was controlled with CV.3 (Milli-Mite needle
valve) and flow was measured with flowmeter FM 3 (capacity:
2270 copm of air @ 14,7 psig and 70°F).

.Products of ammoxidation, unconverted reactants and
nitrogen were passed through a two way stop-cock into the

condenser system or the vent. The former consisted of air



cooled and ice cooled condensers.

17

The exit gases were

passed over ascarite (sodium hydroxide impregnated on

asbestos) bulb to determine the 002 content of the exit gases.

The exit gases were vented into fume-hood.

Temperature of the catalytic bed was controlled with a2

Thermo Clectric 400 controller of the following specifications:

Range:

ISA Calibration:

Type of Control:
Proportional band width:

Reset:

0-675°C

K (Chromel-alumel)

ON-OFF proportional output
10%-50%F adjustable

Manual, adjustable

Products of oxidative ammonolysis of m-xylene were

analysed on GIC -Series 1520C (Varian Aerograph) with the

following specifications:

Detectors:

Column oven tempera-
ture control:

Carrier gas:

Recorder:

Disc Chart Recorder:

Thermal conductivity-four
filaments, tungsten-rkenium
WX, Hot Wire Hydrogen flame
ionization

Linear temperature progra-
mmer

Helium at 40 psig

Varian Aerograph (1 mv span)
Model 30

Model 607

Dual/Differential Electrometer available.

Surface area measurements for various catalysts were made

with Perkin-Elmer Shell HModel 212D Sorptometer through measure-

ments of nitrogen adsorbed on these materials at the tempera-

ture of liquid nitrogen. Calculation of specific surface area

is based on the BET equation,



CHAPTER V

EXPERIMENTAL PROCEDURE

The apparatus has been shown in Fig,2 as a flow diagram.
Independent flow systems were provided for nitrogen, oxygen
and ammonia with precision flow control valves and flowmeters.
Dry oxygen and nitrogen from cylinders were fed directly
to the reactor with a controlled flow of nitrogen via a
side stream going through the xylene vaporizer., ZXylene
vaporizer was enclosed in a constant temperature 6i1 bath
and insulated completely with glass wool. Nitrogen flowing
through the vaporizer was saturated with xylene vapor and
was ﬁixed with oxygen and ammonia streams. The tubing
carrying the reaction mixture was kept warm by winding nichrome
heater wire around it and wrapping it with glass wool, This
was necessary %o avoid condénsation of the xylene from the
reaction mixture. The reaction mixture flowed through +the

reactor tube wherein it was raised to a temperature 10-20°C

below the desired reaction temperature in the preheating zone,pack-

" edwith inert alumina granules, The temperature of the exit
stream from preheating zone was monitored via thermocouple 7/C 2,
The heat input through the preheater was controlled with a
standard variac, After floring through the catalyst bed,

the reaction mixture was led through the condenser system.

18
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Condenser system consisted of air cooled condenser AC, ice
cooled condensers IC and CO2 absorber, The uncéndensed
gases were exhausted into fume hood.

Catalyst under screening studies was held in the
reaction zone, surrounding the thermocouple's tips. With
glass wool plug on the top surface of the catalyst, inert
carrier was filled in the remaining length of reactor.
System was warmed up slowly by supplying controlled voltages
through coil heaters, to avoid undue stresses in the glass
set up.

0il bath temperature was increased and maintained
constant at 90°¢c. Xylene vaporizer was immersed in the oil
bath after noting its initial weight. Carrier gas nitrogen
was" introduced in the vaporizer (xylene bubbler) at such
s flow rate that the maximum concentration of xylene in the
reaction mixture did not exceed 2% as beyond this concentra-
tion of xylene in the feed mixture, possibilities of occurrence
of explosion existed (23). Saturated nitrogen passed through
the reactor reaction zone where xylene was ammoxidized in
the presence of ammonia and oxygen. Time of commencement
of xylene feeding was noted.

Temperature indicated by thermocouple T/C 3 was
continuously monitored with a potentiometer. When tempera-
ture reached ZOOOC, controlled amounts of oxygen, nitrogen
and ammonia were introduced into the system. Flow rates

of oxygen, ammonia and nitrogen were such that molar ratios



of NH3 to xylene was 3-4. This is the suggested range by
Gassoﬁ et al. (23). Minimum concentration of 02 was 5% and that
of oxvlene 3%. .

Flow of nitrogen was decided by the bed length provided‘and
the desired contact time for the feed mixture. Flow rate of
the key reactant viz. m-xylene was varied independent of other
reaction conditions by appropriate adjustment of 0il bath
temperature and flow rate of nitrogen through the vaporizer.

By increasing oil bath temperature and flow rate of nitrogen,
flow of m-xylene could be increased and vice-versa. Depending
upon the temperature of the feed mixture leaving the preheater
zone, power was readjusted so that temperature was 10-20°C

below the temperature at which ammoxidation was desired to be
carried out. Temperature of reaction zone as monitored by T/C 1
was fed to the controller where error between set point (desired
temperature of reaction BOO-SOOOC) and. existing temperature
decided the power input into HW 3.

During the unsteady temperatur; period (normally 1 hour)
the products formed were vented into fume-hood. Once controller
shows a reasonably (SOC) constant temperature of the bed over
a period of 1/2 hour, quantitative sampling of the reaction
products weré commenced by letting the products, unconverted
xylene, N2, 0Oz, NH3 flow through the condenser system. Any
solid product formed during reaction was depdsited in- the
air condenser while unconverted xylene and intermediate

products were condensed in liquid form in the ice cooled

condenser tube. The uncondensed components flowed through
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a bulb filled with preweighed amount of ascarite (HaOH on
asbestos) wherein CO, absorbed. HCN would also absorb.

Sampling was continued for a period of 1 hour after
which the xylene left in the vaporizer was weighed to know
the xylene fed during the period of run (1 hour). Supply
of 02, ammonia and NZ for xylene vaporizer was stopped.
Nitrogen was allowed to flow through the system for 1 hour
after the sampling was over.

The products formed along with unconverted xylene
were dissolved in methanol, The sample so obtained was
analysed with gas chromatograph for xylene (unconverted),
m-tolunitrile and m-phthalonitrile,

ANALYTICAL PROCEDURE

Unreacted m-xylene and procducts of ammoxidation
viz. m-tolunitrile and m-vhthalonitrile were separated gas
chromatographically,

By injecting standard solution of m-xylene, m-TN and
m-PN; retention times of these components under the conditions
of chromatography were determined for later identifications.

Calibration charts were prepared for knovn but varying
concentrations of m-xylene, m-TH and m-PH in methanol to
know the calibration coefficients.

Sample was made by dissolving the products in methanol.
To know the amounts of various products, 'Internal Standard
Method®' was adooted. In this method, known amounts of
suitably chosen internal standards were added. The product's

weight in the sample was known from the formula:



Weight of the product = (Weight of Internal standard)x
(Calibration coefficient)x(Area of the product
peak/Area of the Internal Standard peak)
The other pertinent details for the gas chromatographic
analysis of product's sample were:
Sample size:r 0.5 M1
Column: 10.0 x 0.125 0D SS

8% FFAP deposited on AW(DNCS)
Chromosorb W 60/70

Detector: Thermal conductivity
Program: Isothermal at 110°C for 5 min.
' 110-175°C at 20°/min.
175-250°C at 40°/min.
Temperature: Injector 250°C, Detector 285°C
Flow rates: Column A 15 ml/min. (Helium)
Column B 30 ml/min. (Helium)

Chart Speed: 20 /Hr

Internal

Standard: pseudo-cumene for m-xylene and
m~-tolunitrile, o-toluamide for
m-phthalonitrile.

For the products of complete oxidation, the following
procedure was adopted.

For HCN, titration of an alkali solution in which
the gas had been dissolved against a standard N/50 HZSO&
solution gave the amount of HCN formed during the sampl-
ing period. |

For 002, ascarite bulb ;ncrease in weight during

sampling was equivalent to the 002 formed.



CHAPTER VI
CATALYSTS INVESTIGATED

The catalysts subjected to screening tests to ascertain
their effectiveness for accomplishing oxidative ammonolysis
of m-xylene are tabulated in Table III onpage25. In the
table also appear the physical proverties of the catalysts -
surface area in mz/g and bulk density in g/cc.

The method of prepvaration of various catalysts is
outlined next.

PREPARATIONS:

_ CATALYST #1. Vanadium oxide (0.5 parté) was suspended
in distilled water (5), heated to 90°C, and oxalic acid (1.5~2)
gradually added until vanadium oxide was completely reduced
to give a clear blue sslution of vanadyl oxalate +this solution
was poured over 8-i4 mesh inert alundum (9) and evaporated
to dryness at 100°C with constant stirring of the mass. The
impregnated carrier was calcined at 500°C for 12 hours in a
stream of air to give 5% V205 on alundum., This catalyst
was aged under catalytic conditions for a day before use.

CATALYST #2, Preparation vrocedure outlined above for
catalyst #i was repeated except that 8-il mesh activated
T-alumina (9 parts) was used.

CATALYST #3. Preparation trocedure outlined above for

catalyst #2 was repeated except that 8-14 mesh activated

2L
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alumina used was precalcined at 90096 for 12 hours,

CATALYST #4, Preparation procedure outlined above
for catalyst #2 was repeated except that 8-14 mesh activated
alumina used was precalcined at 1250°C for 12 hours. |

CATALYST #5. Preparation procedure outlined in the case
of catalyst #4 was repeated except that 8-14 mesh pre-activat-
ed alumina (%.5 parts) was impregnated with the solutibn of
vanadyl oxalate to give 10% V205 on alumina,

CATALYST #6. Preparation procedure outlined in the
case of catalyst #4 repeated except that 8-14 mesh pre-
activated alumina (2.25 parts) was impregnated with the
solution of vanadyl oxalate to give 20% V205 on alumina.

. CATALYST #7, Vanadium oxide (1.5 g) was suspended in
water (20 g) and reduced to a blue solution of vanadyl
oxalate at 90°C with oxalic acid (5.2 g). Ammonium molybdate
(1,94 g equivalent to 1.5 & MOOB) was added to the above
 golution. Pre-activated alumina .(8-14 mesh)(27 g) was added
to the solution. Water was gvaporated at 100°C with constant
stirring of the mass. The impregnated carrier having 5%

V205 and 5% MoO3 was calcined at 100°¢ for 12 hours in a
stream of. air and finally aged for a day under catalytic conditions
before screening tests were performed on it,
CATALYST #8. To a hot (90°C) suspension of V205 (2.69¢)
in water (30g) oxalic acid (6.73g) was added. The resulting
blue solufion of vanadyl oxalate was mixed with a solution

of CrO3 (2.97g) in water (30g) reduced with oxalic acid

(11.42g). The solution thus obtained was further mixed with



29

ammonium molybdate (0.53g) and preactivated alumina (33g).
Water was evaporated with constant stirring of the mass
and the impregnated carrier was calcined at 4000C for 12 hours
in a stream of air %o give a composition of ViCriMo i1 10:10:1.

CATALYST #9, Added manganese nitrate (0.8g) instead
of ammonium molybdate as outlined above for catalyst #8, to
give a composition of ViCr:ln :: 10:10:1,

CATALYST #10. Added lead nitrate (0.98g) instead of
ammonium molybdate as outlined above for catalyst #8, to
give a composition of V:Cr:Pb :: 10:10:1.

CATALYST #11. Added cobalt nitrate (0.87g) instead of
ammonium molybdate as outlined above for catalyst #8, to
give a composition of ViCriCo :: 10:10:1.

CATALYST #12. Added o-boric acid (1.82g) instead of
ammonium molybdate as outlined above for catalyst #8, to
give a composition of V:Cr:B :: 10:10:1.

CATALYST #13. Added antimonyl oxide (0.36g) in the
form of antimonyl tartrate instead of ammonium molybdate
as outlined above for catalyst #8, to give a composition
of V:Cr:Sb :: 10:10:1.

CATALYST #14, Ammonium vanadate (25g) was dissolved
in water (400 cc) at 85°C. To the solution thus obtained
'was added gradually stannic &hloride (13.8g)-highly diluted.
The orange colored precipitate of tin vanadate obtained was
washed several times with distilled water to dissolve out
ammonium chloride formed during precipitation of tin vanadate.

The precipitate was filtered and dried in an oven at 100°C
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for 6 hourswith occasional stirring to give 27.5g of tin
vanadate. It was calcined in the reactor at 400°C for
4 hours in a stream of air.,

CATALYST #15., Ammonium p-tungstate (13.4g) was dissolved
in hot (80°C) water (170 ce) with stirring, To this solution
was added dropwise over a period of 5 minutes another solution
obtained by dissolving manganese nitrate (6.1g) in water
(20 cc). The precipitate of manganese p-tungstate obtained
was washed and magnesium nitrate (5.7g) dissolved in water
(5 cc) added. Water was evaporated by heating in a water
bath, paste was shaped into small globules (1/8") and left
for drying in an oven at 100°C for 6 hours. The granules
obtained were calcined at 450°C for 4 hours before use.

| CATALYST #16, Preactivated alumina (23 parts) was
mixed with a solution of ammonium molybdate (1.5) in
water (8) and concentrated ammonium solution (1), The
mixture was dried with stirring and calcined at 450%¢C

for 6 hours to give 10% MoO3 on alundum.



CHAPTER VII
RESULTS AND DISCUSSION
The objective of this study was to obtain data on catalyst
performance under high' conversion conditions so that commercial
conditions of reactor operation were approached as closely
as possible. The reactor was thus operated as an integral one.
The kinetic equation for an integral reactor is given by,
r = aN,/av (12)
where r is the point rate of reaction in moles/(sec.)(ce),
dN; is the change in molal rate of flow of a component i in
(mo;es/sec.), and dV is the differential element of reactor
volume.
Yield of the reaction for a product P(np) has been
defined as follows. : _
M =050, (13)
whereCfP: fraction of product P in the reaction products,
in other words selectivity for P {dimensionless
number)
CA’ fraction of key reactant A converted into products
- i.e;, relative degree of conversion of 4 (dimen-
sionless number)
Selectivity of the reaction for the product P «j}) when
expressed on molar basis and the stoicﬁiometry of the reaction
equation is taken into account, ranges from 0 to 1.0, The

following definition for(ip is used.

31
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oS =6, A/§ Jolp - s
where §. §£: degree of conversion to product P and of
key reactant A, respectively (dimensionless
number)
‘JP’\jA' stoichiometric coefficients for species
P and A, respectively (dimensioniess number)
MP’ MAz molar mass of species P and A, respectively
(g/g mols)
Degree of conversion §3 of a componeht J is so defined
that it is positive always. Thus,
§J = wJO - W5 (15)
where WJo’ WJ sre the mass fractions of any component J
initially and finally, respectively.
Rating of a catalyst is defined as an arbitrary number

below. _
R, = 100x (A /T ;) | (16)
where R.: Rating of catalyst i (°c.sec. )
(fp . Selectivity of the reaction for product P with
catalyst  (dimensionless number)
7,1 Average catalyst (i) bed temperature (°c)
T.: Average residence +ime for the feed mixture
in the ca»alyst (i) bed (sec.)
Average residence time (T) - also termed as contact time
has been calculated as follows. ‘
T= V /oy (17)

where Vc: volume of the catalyst in the reaction zone (ce)
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QRs volumetric flow rate of the feed mixture at

NTP (cc/sec.)

e}

Space Velocity (SV) is the inverse of contact time
hours, Thus,
' SV = Qp/V_ (18)
where Qé: volumetric flow rate of the feed mixture at
NTP (cc/hr)
The reaction products obtained in significant yields were

1. meta-phthalonitrile
2, meta-tolunitrile
3, hydrocyanic acid

4, CO0,, H,0

2 2

The temperature range studied was, as stated earlier
250-500°C, Yield of m-phthalonitrile ranged from 0 to 86%,
depending upon the reaction conditions employed and the catalyst
in use. Yield of m-tolunitrile ranged from 0 to 50%, Influence
of presence of water vapor in the reaction mixture upon the
yields of various ammoxidation products was studied over a
range of 0 to70% water vapor in the feed mixture. Influence
of contact time over yield was studied by varying T over 0.1-1,0
~ second. |
The major product of oxidative ammonolysis of m-xylene

was m-vhthalonitrile though significant quantities of m-tolu-

nitrile were obtained at 1low temperatures and contact times,
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At temperatures 2 500°C, substantial proportion of m-xylene
was oxidized completely into CO2, Ho0.

The exact kinetics of the reaction - oxidative ammonolysis
of m-xylene, are not known. The present work does not aim at
jinvestigating the kinetics of this reaction system; its
primary objective was t0 analyse the data to ascertain the
relative effectiveness of various catalysts on the basis of
yield and selectivity in the outlet stream.

The criterion for comparison of catalysts has to be arrived
at rationally so that cormercial importance of various products
- specially.monO'and dinitriles, is appropriately accounted
for. The combined selectivity for m-tolunitrile and m~phthalo-
nitrile is a satisfactory criterion if the objective is 1o
maximize production of nitriles - mono and di. This would be
the case if facilities for recycling intermediate product
m-tolunitrile, exist. Of course,'if the primary interest is
in commercial value of m-phthalonitrile alone, selectivity
should be based upon m-phthalonitrile only. However, m-tolunitrile
as an end product has been found to possess important industrial
applications,such as in the preparation of polymers useful
for coatings, goes into the production of nail lacquers,
photochromic paper for ultra-violet pulse lasers, heart-affeci~
ing pharmaceuticals and ‘exhibits fungacidal activity. Besides,
the mono - (B.P. 213°C) and di-nitrile (M1.P. 162°C) can be easily

separated as pure compounds. Thus it is justifiable from the
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standpoint of commercial exploitation va}ue of each product that
the evaluation of a catalyst be based on selectivity for total
nitriles.

The implication of tne criterion for catalyst evalua
above, is that a catalyst with a high selectivity converts substan-
tial fraction of m-xylene intc the desired products; nitriles., A
low selectivity signifies poor activity 6f the catalyst for nitriles -
i.e., majority of the key reactant; m-xylene, is being ccnverted
into undesirables; C0, CO,, etc.

Ultimately, the merits of a complex reaction operation are inti-
mately related to the amount of a desired product obtained with
respect to the amount of a key reactant fed - i.e., yield of the
reaction. However, a low yield but high selectivity is generally
acceptable since the unconverted m-xylene could be separated from
the products and recycled.

A. Data Compilation

The data obtained has been tabulated in Appendix II. Reliability
of the data was assured by using suitable precautions in taking
readings during the course of experimental runs. Thus, weight of
n-xylene fed was measured to an accuracy of .01 g (meximum error L7).
GC analysis of product samples was repeated for random runs to ensure
reproducible results, temperature of the reaction was measured with
fast response and extremely sensitive chromel/alumel thermocouples
(maximum error i.1°C, and flow rates of NH3, 02 2nd Np were determined
with precision rotameters (maximum error 2%). A maximum cumulative
error of 10% is estimated in the data reported, on the basis of
errors in readings.

In order %o study the effect of activity of carrier on the yield

and selectivity of nitriles, runs (#1-13) were made with 5% V205

devosited on 1. Inert and 2, Activated alumina (no precalcination).
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Precalcination of the carrier was performed at two temp-
eratures - 900° and 1250°C. Beneficial effects of precalcina-
tion of the carrier were studied (runs # i4-23) by screening
the following catalysts:

3. 5% V205 deposited on activated alumina (precal-
cined at 900°C for 12 hours).

L, 5% V205 deposited on activated alumina (precal-
cined at 1250°C for 12 hours).

Optimum concentration of the cataly;t on the activated

carrier (precalcined at 125000 for 12 hours) was studied (run

# 26-33) by screening the following catalysts:

5, 10% V04
6. 20%‘v205
7. MoO, as a catalyst was tried out (run # 34-37)

3

by depositing 10% of it on activated alumina (precalcined at
1250°C for 12 hours).

The following binary catalysts were subjected to ammoxida-
tion runs to study the influence of incorporation of other
metallic compounds (deposited on activated, precalcined alumina)
on yield and selectivity of nitriles.

8. V,04 - Fo0y (runs # 38-41)
9. SnCl, - NH,VO, (runs # 70-75)
10. ammonium-paratungstate - Mn(N03)2 (runs # 42-46)

Mixed oxides V-Cr-X, where X denotes the following oxides
were also studied for their selectivity for nitriles.

11. Pb (II) (runs # 63-66)
12, Mo (VI) (runs # 51-5&)
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13. Sb (III) (runs # 55-58)

14, Co (II) (runs # 67-70)

15. Mn (II) (runs # 47-50)

16. B (III) (runs # 59-62)

The influence of contact time (0.1,0.4,0.8,1.0 sec.) on
yield of mono-nitrile, dinitrile and total ammoxidation products
was studied (runs # 76-91) on tin vanadate as the catalyst.

The influence of water vapour in the reaction mixture (moles
of water vapour per mole of mOxylene fed = 4,40,85) on the
yields of nitriles was studied (runs # 92-104) on tin vanadate
as the catalyst.

B. Discussion of Results

Results of the runs made on various catalysts mentioned
above.have been tabulated in Appendix III.

I. Inert Alumina as Carrier for Vz0j

Figure 3 is a plot of yield and selectivity for toral

nitriles (m-tolunitrile and m-phthalonitrile) in the temperature
range 350-55FC with 5% V205 deposited on inert alumina as the
catalyst, Due to a low surface area for the catalyst (0.3 mz/g),
it had a very poor yield for nitriles (maximum of 8% at 500°C).
O0f the xylene converted into products, a maximum of 40% was
converted into nitriles in the temperature range 350-400°C and
a space velocity of 7160 hrs'l. The low yields and selectivities
obtained in the reaction with catalyst on inert carrier was due

to a lack of pore structure of the carrier which allowed but

very short contact time between the catalyst and reaction mixture.
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The arbitrarily defined Rating of the catalyst is very low
(Appendix III - VANADIA-I) showing the catalyst to possess poor
performance characteristics. . '

II, Effect of Activity of the Catﬁlyst Carrier

The selectivity of the catalyst is considerably improved

by impregnation of the oxide of vanadium on activated alumina.
Alumina was activated by precalcination, heating in a muffle
furnace at 900 and 1250°C for 12 hours. The results of the
runs made with this catalyst are shown in figures LA, UB where
yields and selectivities for total nitriles have been plotted
against temperature of the catalyst bed for no calcination
and precalcination at 900 and 1250°C of the carrier. Under
identical conditions of reactor operation, yield for nitriles
is improved to about 20% for the catalyst impregnated on a
carrier which is precalcined at 1250°C for 12 hours., The cata-
lyst shows good selectivity for nitriles (a maximum of 92% at
400°C) in the temperature range 380-41000 but it drops signifi-
cantly at higher temperatures. Thus higher the temperature of
precalcination of the carrier better is the selectivity for
nitriles. This is due to the fact that precalcination opens up
the porous structure of the catalyst by expelling entrapped
gases and thus exposing more area for contact with the reactants.
However, a temperature of precalcination beyond 125000 can only
achieve little improvement in the selectivity for nitriles
beyond the 92% obtained for vrecalcination at 1250°C.

III, Effect of per cent V0s deposited on precalcined (1250°C
for 12 hours) carrier



SELECTIVITY (%) OF TOTAL NITRILES >

80

Cly

70

55

50

451

A  NO CALCINATION .
o 900°C 12 HRS.
1250°C 12 HRS.

340

380 420 450 500

TEMPERATURE OF CATALYST 2=D °C —

OXIDATI

“M

%
VE AN

ANFONOLYSIS OF m-XYLENZ ON 5% VAN. OXIDZ
DEPOSITED ON ACTIVATED ALUMINA

FIGURE 44 EFFECT OF PRETRSATMENT OF CARRIZR ON

SELECTIVITY FOR NITRILES AT VARICUS TELFS.

4o



.50 © 1250C 12 HRS. -1

NITRILES

YIELD (%) OF TOTAL

bl

A NO CALCINATION
2 900 C i2 HRS.

340 380 220 460 500
TEMPERATURE OF CATALYST BED C—B>

OXIDATIVE  AMMONOLYSIS OF M-XYLENE ON 5% VAN. OXIDE
DEPOSITED ON ACTIVATED ALUMINA

FIGURE 4B EFFECT OF PRETREATMENT OF CARRIER ON
YIELD OF NITRILES AT VARIOUS TEMPERATURES



L2

Figure 5 éhows the influence of impregﬁation of various
percentages of V205-5,10,20 on the yield and selectivity for
nitriles. The overall activity is marginally increased for
10% V505 as compared to that for 5% V205 (maximum of 57% yield
at kZOOC for 10% V205 compared to a maximum of 43% at 100°¢c
for 5% V205). Selectivity for nitriles is not significantly
affected by higher percentages of oxide on the carrier. Yield
and selectivity for nitriles for 20% V05 were uniformly lower
than that for 5% V205 in the temperature range investigated.
This could probably be due to the fac% that the deposition of
20% V505 causes formation of more than monolayer of Vz0g -
whereby layers underneath the outermost layer are not exposed
to the reaction mixture. However, surface area determinations
showed 20% V205 catalyst having a higher surface area than 5%
V205 (see Table IV, pp 25).

Figure 6 shows the yield and selectivity for nitriles -
m-tolunitrile and m-phthalonitrile separately, for 10% V205 on
precalcined (1250°C for 12 hours) alumina. Selectivity for
m-phthalonitrile is fairly constant over the temperature range
500-460°C while that for m-tolunitrile decreases gradually in
this temperature range.

IV, MoO3 on Activated Precalcined Alumina

Figure 7 shows‘the yields and selectivities for fotal
nitriles obtained with 10% MoO5 deposited on precalcined alunmina
in the¢ temperature range of 350—500°C. At a space velocity of

1

3870 hrs ~ with &4 moles of ammonia and 20 moles of oxygen for

each mole of m-xylene in the reaction mixture, a maximum
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selectivity of 60% (yield 25%) for total nitriles is obtained

. in the temperature region of 350-450°C., The catalyst shows

lower activity for ammoxidation of m-xylene even at a contact

time of 0,93 secs as compared to 0.5 secs for V203,
V. Binary Catalysts

The influence of incorporation of o, W, Mn and Sn
oxides to catalysts based upon V205 on the yield and selecti-
vity for total nitriles are plotted in Figures 8 to 11,
Catalyst based upon 5% MoO3-5% V205 shows marginal improvement
in the yield and selectivity for total nitriles as compared
to those for 5% Mo03 (Figure 8). Figure 9 shows the yields
and selectivities for total nitriles over manganese p-
tungstate as the catalyst at a space velocity of 1370 hrs-1
in the temperature range of 300-550°C. The maximum yield
(65%) and selectivity (75%) for nitr?les are obtained at a
fempera‘ture of 480°C. The comparat.ive evaluation of this
catalyst shows it to possess a low rating for nitriles (see
Appendix III). Perhaps the catalyst has its imporiance in
the selective conversion of o-xylene to o-phthalonitrile as
compared to.m-xylene. Figure 10 shows the effect of tempera-
Ture on the yield and selectivity for nitriles, on total
conversion of m-xylene and conversion of Xylene to CO, COo,
ﬁCN. Conversion of m-xylene to complete ammoxidation products
increases with temperature and becomes a vredominant product

beyond 500°c,

e o —— e e o -
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Figure 10 shows the equivalent.plot for tin vanadate
as the catalyst. The temperature of the catalyst was varied over
the range 325—&2500 and the space velocity was maintained‘constant 2
8000 nrs™t, A maximum'yield of 65% at 400°C for total
nitriles is obtained with aAcorresponding selectivity .of
85%. Comparative evaluation of the catalysts shows it to
possess very good rating for nitriles (Appendix I1I).
Rating of the catalyst - manganese p-tungsfate for m-phtha-
lonitrile is 0.05 while that for tin ﬁanadate is 6.36.

Figure 11 shows the overall yield and selectivity
for mono and dinitriles as a function of temperature for
tin vanadaté as the catalyst. This catalyst shows a
broad temperature range (330-420°C) over which the yield
for m-phthalonitrile is fairly constant. Conversion to
complete ammoxidation products is marginal only in this

temperature range.
VI, Effect of Contact Time on Yield

Figures 12 and 13 show the influence of contact time
on yield gnd selectivities of various products at the reaction
temperatures of 360 and 120°C with tin vanadate as the catalyst,
Contact time has an important influence on the yield of various
products., Higher contzct times result in formation of larger

proportion of CO, COp, HCH in the products. The rating of the
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catalyst drops at higher contact times exhibiting.the necessity

to carry out this reaction at lower contact times so as to

obtain appreciable yields of nitriles. Over the contact times

investigated, temperature has little influence on yields; the

reaction can be safely carried out with more or less constant

yields of desirable products over wide temperature range (50°C),
VII. Effect of Water Vapor in Reaction Zone:

Figures 14-16 show the effect of various percentages
of water vapor in the reaction mixture upon the yields and’ |
Kostromin et al. (45) have established that aromatic

carbonyl and carboxyl compounds are obtained in improved
yields in the vapor-phase catalytic oxidation of alkylbenzene
if water vapor were introduced in the reaction zone. In our
experiments with various percentages of water vapor in the
reaction zone, the yield of m-phthalonitrile is considerably
increased whereas the amount of side reaction causing the
splitting of (X-carbon atom of the side chain is reduced.

The catalyst shows a uniform 'rating' of the order of 0.2
over a widened temperature range (360-43000) i.e, optimum
temperature range of the reaction is extended. The beneficial
influence exerted by water in the reaction mixture is explain-
ed by the fact that it takes part in the reaction as a donor
of H+ and (OH)™ groups. Suvorov (46) put forth the following
mechanism for the transfer of (0H)™! groups to the molecules
of the organic compounds and on the path for the formation

of nitriles,
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M: Catalyst - metallic part
VIII. Mixed Oxides:

Figures 17 and 18 show the influence of addition
of oxides of Mn, B, Pb, Co, and Sb to V205-Cr03. The mixed
catalystshows varying yields and selectivities for nitriles.
Smooth curves can not be drawn through the data points as
the curves intérmingle and spread out as function of tempera-
ture of the reaction. The only inference that could be made
is that addition of various oxides has a random effect on the
selectivity of the catalyst for nitriles 1In other words the
data points show no set trend. Addition of MnO, however, has
the most favourable influence on the selectivity for nitriles
while the oxide of Pb shows the most dampening effect on the
activity of the catalyst.

Presence of unpaired electrons in the d- shell of the
. electronic configuration of the transition metals has been

proposed to influence the relative catalytic activity of

59

nickgl-cobalt alloys (14). This hypothesis does not satisfact-

orily explain the data obtained in the present investigation

as shown in the next page.
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Table IV
Element | Atomic {Group Unpaired d-electrons Rating of the
Number Catalyst under
Identical Condition
B 5 3a No d-shell occupied 082
Co 27 8 Md,, (7) . 060
Mo 42 6 Md, ,(10) Nd5(5) .070
Pb 82 ba Mdio(lo) Nd, 5(10) 04, ,(10) . 046
Mn 25 7b Md(5) .095
Sb 51 5a Mdlo(lo) Nd10(1o) .053

Thus the co-precipitated tin vanadate shows the best
promise as a catalyst with the most favourable selectivity for
m-phthalonitrile in the ammoxidation of m-xylene. Water vapor
in the reaction zone is essential to reduce the side reactions
whereby the yield of nitriles is jncreased as also the optimum
temperature range of the reaction for the catalyst under investiga-
tion. The selectivity of the nitriles for this catalyst is
much higher than that for any other catalyst tried in the
present study, Vanadium oxide shows excessive activity for
complete oxidation products and this is not suitably modified
so as to increase the selectivity of nitriles by the inclu-
sion of various oxides of transition metals.

C. Comparison with Previous Work

A brief comparison of the present work with available
1iterature from the past has been tabulated in Table v,
Following are some of the important observations that

emerge from this comparison.
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1) Addition of various metallic oxides to vanadium
oxide influenced the resulting performance characteristics of
the impregnated catalysts to varying degrees. In this conn-
ection, Mn0 improves the selectivity considerably while PbO
causes a sharp decrease in the selectivity for m-phthalbnitrile
and m-tolunitrile. This is in disagreement‘with the data
obtained by Yoshio, et al., (32-38).

2) Manganese paratungstate,claimed in the litera-
ture as a versatile catalyst for ammoxidation of a wide variety
of aromatic hydrocarbons (20), does not show better selectivi;
ties than V205 for m-xylene ammoxidation. Catalyst also
shows poor life if subjected to prolonged reaction conditions.

3) Tin vanadate shows steady selectivities over
wide temperature fange (350-425°¢) whereby by operating the
reactor on lower side of temperature range, high yields of
m-tolunitrile can be obiained. The yield of m-phthalonitrile

is satisfactorily high over this temperature range,
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CHAPTER VIII
CONCLUSIONS

Vapor phase catalytic oxidative ammonolysis of the
meta isomer of xylene was performed in the presence of
ammonia for the screening studies on various nromlslng
catalysts. Catalysts subjected to screening tests con-
sisted of those based upon either Vanadium oxide or Stannic
oxide. Reaction was carried out in fixed bed quartz reactor.

1. V205 deposited on inert carrier shoﬁed very little
activity proving the importance of large surface areas for
the activity of oxide impregnated catalysts.

2, Major work was done on the V 05 deposited on
activated alumina where carrier was pretreated by heat
treatment at 900°C and 1250°C o#er extended periods of
time, Pretreatment had 2 favourable influence on the over-
éll activity of the catalyst though selectivity for the
desirable product - m-phthalonitrile is not improved substan-
tially..

-3, Most of the catalysts based upbn V205 show signi-
ficant activity for the oxidative ammonolysis of aromatic
hydrocarbons at temperatures higher than 460°C., As a con-
sequehce the data was collected for the study of various
paraméters over a temperature range of 350-500°C.

L, The percentage of V205 1mnregnated on the carrier
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has an important influence on the overall activity of the
catalyst (based upon per gm. of catalyst). En&ugh V205
should be impregnated so that monolayer of V205 is deposited
on the whole of pore structure of the carrier whereby the
whole of the pore surface is available for reactioﬁ. In this
connection it was found that 20% V205 on activated carrier
showed an activity which was lower than that for 5% Vz°5'

5, Contact time improves the yield of complete ammoxida-
tion products. A contact time of 0.5 sec., for tin vanadate -
is optimum for good yields of m-phthalonitrile.

6. Water vapor improves the yield of intermediate
products., It also extends the optimum range of catalyst
operation.

7. Tin Vanadate shows the most optimum selectivity for
m-phthalonitrile.

8, Mixed triple oxides (VZOS_CrOB-M) do not result in
significant improvement of the selectivity for dinitrile.

It may be concludéd that the present investigation has
improved and extended the available knowledge on the behaviour
of various catalysts for the oxidative ammonolysis of m-xylene
under wide temperature conditions.

The results show that for catalysts based upon V205 a
temperature rangecﬁ‘&OO-h}OOCiS'to be recommended on the basis
of combined selectivity for nitriles. If m-phtﬂalonitrile
is the only product of interest, the temperature fange of

420-160°C is optimum.
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The catalyst showing the best promise on the basis of
selectivity fornitriles is tin vanadate. Catalysts based
upon vanadium oxide show excessive activity for products

of complete oxidation.

The results of this investigation should prove to be
of much value in the selection of a catalyst and the reaction
conditions most favourable for achieving optimum selectivities

of nitriles.
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