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Abstract
W ith the rapid development of the Internet and distributed systems, communica

tion protocols play a more and more important role. The correctness of the design 

of these communication protocols becomes crucial especially when critical appli

cations are concerned. Common logical design errors in communication protocols 

include deadlock states, unspecified receptions, channel overflow, non-executable 

transitions, etc. Such design errors can be removed via protocol synthesis, or be 

detected through reachability analysis. The former may introduce more states and 

transitions than needed and the latter suffers from state space explosion problem. 

Here we present an improvement on existing technique to transform a protocol design 

into a deadlock-free one where the number of introduced new states and transitions 

can be considerably reduced. We also propose a sound reduction technique on a class 

of protocol designs to significantly reduce their sizes in order to perform reachability 

analysis.

Keyw ords: Communication Protocols, Protocol Synthesis, Formal Verification, 

Protocol Design, Communicating Finite State Machines.
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1 INTRODUCTION 1

1 Introduction

W ith the rapid development of the Internet and distributed systems, communica

tions among individual processes play a more and more important role. Protocols 

are the core of the communication networks. A protocol is communication software 

that specifies the interactions among a set of communicating entities by exchanging 

messages over the channels. In other words, “A protocol defines the format and 

the order of messages exchanged between two or more communicating entities, as 

well as the actions taken on the transmission and/or receipt of a message or other 

event” [18]. These entities, in some literature, are also called communicating pro

cesses. Very often, each process is modeled as a communicating finite state machine 

(CFSM)[2, 3] and each channel between two processes is modeled as an error-free 

simplex FIFO queue.

A protocol design consisting of a set of CFSMs may suffer from logical errors. 

The common logical errors include deadlock states, channel overflow, nonexecutable 

transitions, etc. Once a faulty protocol is put into use, especially for critical ap

plications, the loss can be enormous. Thus, it is crucial to construct an error-free 

protocol design and formally verify its correctness before the implementation. Typ

ical approaches to achieve this goal are as follows.

(1) Protocol synthesis. Given a partially specified protocol design, a complete de

sign is constructed formally and automatically so that the constructed design 

does not manifest any logical errors. In reverse engineering, a set of obser

vations of an existing communication system can be regarded as a partia lly 

specified protocol design, and the recovery of the presumed design is the work 

of protocol synthesis.

(2) Formal verification. There are two directions in the literature: theorem prov

ing and finite state based model checking. The former involves three aspects, 

namely, formal modeling of the design, formal modeling of the design proper

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 INTRODUCTION 2

ties, and the inference rules to prove the design satisfies the properties. For the 

latter, the design is interpreted as operational models, such as Finite States 

Machines (FSM) or Labeled Transition Systems (LTS), and the design proper

ties are normally modeled by temporal logic languages. These approaches use 

state exploration techniques to check if  the design conforms to the properties. 

In the context of this thesis, when we mention formal verification it  means the 

finite state based model checking approach since the protocol is modeled as a 

set of CFSMs.

In a software life cycle, protocol synthesis is used in the design phase, and formal 

verification is used in the design verification. A  software engineer may have different 

concerns under these two situations though he/she is always dealing w ith the logical 

errors in the protocol design. In the design phase, a major concern is to construct a 

minimum design that is error free and satisfies all the requirements of the customers. 

In the design verification, he/she w ill confront state explosion problem; i.e., the state 

space increases exponentially w ith the increase of the size of the protocol design, 

so one of the major concerns is to reduce the number of states meanwhile all the 

logical errors in the design can s till be detected. This thesis is motivated by these 

concerns, and some improvements are made upon existing methods.

In the design phase, when a set of observations is given, we aim at constructing a 

deadlock-free design from it. The work in this thesis is motivated by [6]. In [6], three 

construction rules were proposed, and we want to improve the th ird  rule, namely, 

Ruleneg, in a sense to add fewer states and transitions while the constructed design 

is s till deadlock-free. Given a 2-process protocol design, the original rule adds the 

entire negation ( “negation ” means if  a transition in the specification is a sending 

transition w ith the label —m, then the negation of that transition is a receiving 

transition w ith the label +m ; vice versa. ) of the specification of one process onto 

the specification of the other process. Actually, some of the newly added states and 

transitions make no contribution to the removal of deadlock states. Therefore, in
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1 INTRODUCTION 3

our improved Rule'neg we consider only the partial specification of one process that 

can really help to remove the deadlock states, and thus fewer states and transitions 

are added to the specification of the other process.

In th e  design verification, the  m ethod we propose aims a t reducing the  num ber 

of states of the specification of each process before the global reachability analysis. 

Actually, our method can be regarded as pre-processing of the global reachability 

analysis, and other reduction methods, such as partial order reduction, can be ap

plied to our derived specifications. We develop two reduction rules to deal w ith a 

specific pattern of transitions in the protocol specification, that is, at some state, 

there is a choice about the execution order of two transitions; whatever option is 

chosen, after the execution of these two transitions, the same state is entered eventu

ally. Reduction Rule 1 deals w ith the choice of a sending transition and a receiving 

transition while Reduction Rule 2 deals w ith the choice of two sending transitions to 

different processes. When the conditions of the rules are met, some transitions can 

be considered as redundant transitions for formal verification and are removed, thus, 

the search state space is reduced. Furthermore, we prove Reduction Rule 1 preserves 

deadlock and unspecified reception states and channel overflow errors but may not 

preserve non-executable transition errors. When the error of non-executable transi

tions is concerned, Reduction Rule 1 should not be used. We also prove Reduction 

Rule 2 preserves all these four errors. In this thesis, we only discuss the verification 

of these four errors; the verification of other advanced properties is beyond the scope 

of this thesis. In the end, we discuss the efficiency of our reduction method w ith two 

examples. The drawback of this method is that if  the protocol specification does 

not contain any pattern conforming to the conditions of the rules, the application 

of our method has no effect.

The rest of the thesis is organized as follows. Section 2 discusses the related 

work on the construction of protocol design and the reduction techniques of pro

tocol design verification. Section 3 introduces the terminology and notation used
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1 INTRODUCTION 4

throughout the thesis. Section 4 shows some common errors of protocols and the 

advanced properties of protocols. In Section 5, we improve the th ird  construction 

rule to construct a deadlock-free protocol design w ith adding fewer states and tran

sitions when a set of observations is given. In Section 6, we propose a method w ith 

two reduction rules to reduce the protocol specifications during design verification. 

In the last section we address the conclusions of this thesis and future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 RELATED WORK 5

2 Related Work

2.1 Related Work of Protocol Design Construction

2.1.1 P ro to co l Synthesis Approaches

The methods of protocol synthesis are divided into two categories: protocol-oriented 

synthesis methods and service-oriented synthesis methods. The former completes 

the protocol design w ith the given incomplete one; and the latter constructs the 

underlying protocol w ith the specification of the service that the protocol should 

provide. Saleh [25] gave an annotated bibliography on the synthesis of communica

tion protocols. The method discussed in Section 5 belongs to the first category: we 

start from incomplete traces/observations, complete the design so that the interac

tions between its protocol entities proceed w ithout manifesting any logical errors.

The related work we discuss here shares some common assumptions: 1) The 

channels are FIFO and reliable; 2) The formal model is communicating finite state 

machine (CFSM), which we w ill give formal definition in next section.

One of the most influential papers in protocol-oriented synthesis is presented by 

Zafiropulo et al. in [34], and it  is referred to as the ZWRCB methodology. Given 

two CFSMs, which might be incomplete or erroneous, the methodology proceeds as 

follows:

(1) The designer adds one sending transition to one machine;

(2) The designer executes an algorithm that is based on the synthesis rules to 

add the corresponding receiving transitions to another machine. In the paper, 

three rules are developed to add the receive transitions.

This procedure continues un til the termination condition is met, that is, the same 

state is reentered by the same receiving transition. Note, the designer should interact 

w ith the procedure whenever a designer’s decision is needed.

Their approach is different from ours in the following aspects:
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2 RELATED WORK 6

(1) Theirs is a forward engineering method while ours may be used as a reverse 

engineering method. Though the given design might be incomplete, in their 

approach, it  is assumed that some information in the format of the design 

graph is given. Ours may start from a set of traces, and we have to construct 

the design from them.

(2) Theirs can deal w ith the protocol w ith cycles while ours can only deal w ith 

tree-like graphs. This is because the former can identify when and which states 

are repeated from the graph directly while ours cannot identify the states from 

the implementation.

(3) The ZWRCB method first flattens the graph of each machine into a tree and 

adds all the missing receiving transitions into the tree. Then use a “flooring” 

operation to merge identical states and edges. In  contrast to that, we construct 

the design directly w ithout an intermediary graph.

(4) The ZWRCB method only considers that one sending transition may have 

multiple responding receiving transitions; but actually, the sending transition 

may have multiple occurrences; i.e., for the sending transition and the cor

responding receiving transition, a one-to-many relationship is possible, and a 

many-to-one relationship is possible, and a many-to-many relationship is also 

possible.

(5) The ZWRCB is semi-automatic while ours is automatic.

The work of Sidhu [26] synthesizes n-process synchronous protocol designs from 

the informal specification; e.g., English description or informal graphical representa

tions. He developed the global specification as a reachability tree which is the same 

as the one in [34]. In particular, he formalized the states of the global specification 

as an n x n m atrix which contains the information of each process and each chan

nel. The author gave some suggestions for preserving the error-free property during
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2 RELATED WORK 7

protocol synthesis but no rule is given to guarantee its error-freeness. Our approach 

starts from a set of formal — but maybe incomplete — traces and the approach 

results in an error-free design.

The work of Gouda and Yu [12] is lim ited to two CFSMs and is based on the as

sumption that protocols are asymmetric where one machine M  has a higher prio rity 

than the other. The algorithm takes machine M  and constructs two communicating 

machines M ' and N ' such that 1) M ' is constructed from M  by adding some re

ceiving transitions to it, and 2) the communication between M ' and N ' is bounded 

and free from errors. They only add receiving transitions while we add both sending 

transitions and receiving transitions.

The work of Choi [8] is lim ited to two CFSMs. It starts from a set of well-formed 

protocol sequences, then applies a synthesizing algorithm to generate the CFSMs, 

and finally uses equivalence relations to reduce the CFSMs.

The work of Kakuda and Wakehara [16] synthesizes protocols for an unlim ited 

number of processes. The key idea of their approach is components. First, the 

protocol specification of one process is split into many components according to 

which process it communicates w ith; second, it  matches the components from 22 

patterns developed by the paper to get a refined deadlock-free design; finally, it 

synthesizes the refined components to a protocol specification.

2.1.2 The Idea o f A lu r et al.

In [1], A lur et al. answers the following questions: does a given design exactly 

describe an implementation? That is, is the design realizable by an implementation? 

If  it  is realizable, does it  contain any deadlock states? Furthermore, what are the 

conditions that guarantee a deadlock-free realizable design?

An example in [1] is given in Figure 1 to show the idea of A lur et al. It  is 

the setting of a nuclear power plant. Two clients, Pi and P2, can perform remote 

updates on the processes which control the plant: process UR controls the amount
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UR NA P2

inc

inc

double

double

MSC,

P1 UR NA P2

inc

double

double

inc

MSC2

P, UR NA P2

inc
double

inc

double

Figure 1: An Example to Show the Idea of A lur et al.

of Uranium fuel in the daily supply and process N A  controls the amount of N itric 

Acid in the daily supply. It is necessary that these amounts be equal in order to 

avoid a nuclear accident. The “inc” message denotes a request to increment the fuel 

amount by one unit, while the “double” message denotes a request to double the 

fuel amount. MSC\ and MSC2 are the design of this system. The authors argue 

that any system implemented according to this design w ill definitely have a trace 

like M S Chad which w ill result in an incorrect fuel m ix and furthermore an nuclear 

accident. They then conclude this system must be redesigned.

Their ideas share some similarities w ith ours:

• Analyze and construct a deadlock-free design from a given set of traces though 

they are in the form of message sequence charts in [1];

•  Solve the similar problem; i.e., if  we project these traces to the distributed 

components at first, then compose them to a global specification, more traces 

w ill be created than the previous ones.

We also have some differences:

• Our approach is to construct a deadlock-free design while their approach is 

to verify if  a design is deadlock-free. Our approach adds transitions to the 

protocol specification directly according to our rules; and after one execution 

of our rules, we construct all the possible traces. A lur et al. propose two 

conditions for a deadlock-free design and thus two algorithms to check if  these
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2 RELATED WORK 9

two conditions are satisfied respectively; if  the design is not deadlock-free, 

the run stops and one faulty trace is given. Once there is a faulty trace, the 

protocol of the system has to be redesigned.

•  We use a different formalism, namely, CFSM, and it  has strength and weak

ness. The strength is that the design is always realizable: we do not need 

to consider solving the realizability problem. This is because the finite state 

machine is an abstraction of the behavior of the corresponding real machine. 

On the other hand, message sequence charts they use can contain more in

formation, for example, a message sequence chart implies a ll the partial order 

relations among the events while we cannot find this information from the 

known traces. Thus, their approach can find more traces than ours.

2.2 Related Work on Reduction During Protocol Verifica

tion

2.2.1 P a rtia l O rder R eduction  (P O R )

Partial order reduction [11, 10] is a series of state reduction techniques used in the 

verification tool SPIN. I t  avoids redundant interleaving of transitions by selective 

search. POR uses the concept of trace equivalence to partition the set of a ll the 

possible transitions. Two traces are equivalent if  one can be transformed into the 

other by swapping adjacent independent transitions. One representative trace is 

selected from each equivalence class, thereby reducing the state space.

POR is different from our method proposed in Section 6 in the following aspects. 

First, it  is applied during the global reachability analysis while our reduction rule 

can be applied on the protocol specifications before the global reachability anal

ysis. In some sense, our method proposed in Section 6 can be considered as the 

pre-processing of POR. Second, though both methods try  to find out what kind of 

interleavings are unnecessary for verification, POR focuses on the interleavings in
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2 RELATED WORK 10

the global specification while our method focuses on the interleavings in the proto

col specifications. Third, distinguishing the independent transitions is a huge and 

complicated task for partial order reduction since it  needs to consider the partial or

der relations am ong different processes, bu t for our m ethod, it is straightforw ard to  

distinguish if  two transitions are independent w ithin one process, namely, if  sending 

messages or receiving messages are enabled at the same time but to or from different 

channels, they are independent. Fourth, the sleep set method in POR is similar to 

ours in a way that both deal w ith special patterns of independent transitions. But 

the sleep set method is based on the record of the tracing history so it  is dynamic 

while our method is static. F ifth, POR is more efficient than ours as far as reduced 

states and transitions are concerned.

2.2.2 S im ultaneous R eachab ility  A nalysis (S R A ) and B locking-based Si

m ultaneous R eachab ility  A nalysis (B S R A )

Simultaneous Reachability Analysis (SRA) [22, 17] and Blocking-based Simultane

ous Reachability Analysis (BSRA) [20, 21] are reduction techniques to tackle the 

state explosion problem during protocol reachability analysis in another direction. 

SRA allows multiple process to proceed simultaneously and merge all the involved 

transitions as one transition w ith multiple simultaneously executable actions. How

ever, each process can execute at most one transition each time. BSRA is based on 

the idea of SRA and made some improvements in the sense that more transitions 

can be merged each time by introducing the notion of blocking points. In BSRA, 

transitions of receiving messages in different processes and transition sequences of 

sending messages to different processes are merged into one transition in the global 

network of the protocol. Its idea is to use local blocking points, which are states 

w ith one or more outgoing receiving transitions, or w ith no outgoing transitions 

at all. The merging must start and stop at local blocking points. The algorithm 

preserves deadlocks and non-executable transitions, but channel overflow and un
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specified receptions are not guaranteed to be preserved. However, the algorithm can 

be modified to preserve these two properties. For example, to verify the property 

of channel overflow of a channel c, the algorithm w ill delay the consumption of the 

messages in c as much as possible; the algorithm can only check one channel of one 

execution.

The reduction technique works in an eager semantics in a sense that when a 

message is sent to the channel, it  w ill be consumed in the next transition during 

reachability analysis. Thus, the interleaving w ith delayed executions is reduced.

Note: They used a different definition of unspecified receptions from ours in 

that they do not consider the possibility of succeeding transitions consuming the 

messages already in the channels.

2.2.3 P refix-based Techniques

[15, 5] proposed a prefix-based algorithm to solve state explosion problem during 

formal verification, and it  is called reachability testing. One important concept is 

“race variant” , which is the common prefix of some traces. A ll possible traces are 

partitioned according to race variants: traces w ith the same race variant as their 

prefix are in the same equivalence class. The idea of the algorithm is to control 

an execution up to a certain point (the end of race variant) and then exhaustively 

explore the possible paths after that point. In the next run, a ll the information of 

the previous run is abandoned. That is how it  solves the state explosion problem. 

The most challenging task of this method is how to identify and compute the race 

variants. A partial order “happened before” relation is defined to help to identify 

the race variants.

It is a technique starting from application levels for verifying concurrent programs 

and it  is implemented as prototype tool RichTest.
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3 Preliminary

We consider an n-process communication protocol (or n-process protocol, protocol 

for short) as a fixed number of processes communicating w ith each other by sending 

and receiving messages over error-free simplex channels. Each process is a protocol 

entity which is represented by a communicating finite state machine (CFSM), and 

each error-free simplex channel is represented by an unbounded FIFO queue. The 

following definition of CFSM is formalized as in [6].

D e fin itio n  3.1 (C om m unication  F in ite  S tate M achines) A communication f i 

nite state machine is a quadruple (S,M,s°,—>) where

•  S is a finite set of states and s° E S is the in itia l state,

• M  is a finite set of messages and

• —>C S x {+m , — m\m E M }  x S is a set of transitions.

A transition (s, p,, s') E —» of a process, also denoted as s -!—> s', intuitively, 

changes the state of the process from s to s' by event pi. We use —m to denote the 

event of sending message m, and +m  to denote the event of receiving message m. 

Moreover, we w ill use Em to denote the set of events of sending/receiving messages 

in M \ i.e., EM =  { + , —} x M . In this thesis, since we use graphs to represent 

the specifications of processes and protocols, we also call the events that cause the 

transitions the labels of the transitions, as we do in graph theory, for convenience.

Note: an erroneous channel, which is also called a noisy channel or an unreliable 

channel, distorts the messages passing through it. In the appendix of [34], Zafirop- 

ulo et al. used a CFSM to model the behavior of an erroneous simplex channel 

responding to one particular message x. Whenever a message x is received, the pro

cess representing the behavior of the channel moves to the state s1 from the in itia l 

state. Then it  arb itra rily chooses one of the following actions to return to the in itia l
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a

-x+x

Figure 2: Model An Erroneous Channel Using CFSM

state from state sl : 1) non-event, which models the behavior that the channel loses 

the message x\ 2) sending x', which models the behavior that the channel corrupts 

X] or 3) sending x, which models the behavior that the channel lets the message 

go through unchanged. Figure 2 shows the process of an erroneous channel using 

CFSM. Furthermore, an erroneous channel may reorder the messages if  it  contains 

more than one message. Solving problems caused by erroneous channels, error recov

ery, numbering messages and synchronous hand-shaking techniques may be applied. 

I t  is another im portant topic of protocol design area, and some research work has 

been done upon it, such as [23, 7], etc. In this thesis, we focus on solving problems 

caused by concurrent actions rather than those of erroneous channels, so we restrict 

our discussion to error-free, FIFO channels, which means the channels always send 

what they have received in the same order.

In a protocol, we use binary relation ( i , j )  to denote the existence of a simplex 

channel from process Pi to process Pj, and we use to denote all messages that 

can be put onto it. For convenience, we assume that the messages in different chan

nels are all distinct. This assumption is reasonable because the sender should know 

the destination of the message in order to send it  out to the channel and the receiver 

should know the source of this message. In a sense, each message has a header to 

label its source and destination, and to make the messages in different channels 

disjoint. Now, we can give the definition of n-process communication protocols.
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D e fin itio n  3.2 (n-process C om m unication P ro toco ls) An n-process commu

nication protocol P  is a triple (L, M, T) where

•  L  C { ( i , j ) \ i , j  E [ l ,n ] , i  ±  j }  f o r n >  2,

•  M  =  {M itj\( i, j )  e L } with M i}j n M kJL =  0 i f { i , j )  ^  (k , l) and

•  T  =  e [1,n\, M i =  U M jti) }  is a set of

CFSMs.

In the context of this thesis, we use Pi to represent the i th process of n—process 

protocol P, and use T* to represent the CFSM of process Pj.

An n-process Communication Protocol is minimal if  no reduction can be made to 

(CFSMi)?=1 using standard determinization and reduction algorithms in automata 

theory [14].

A global state of a protocol is composed of a local state of each process and a 

content of each channel. The content of the channel can be represented as a string 

u) of messages which might be empty. In this thesis, we may use “state” as a short 

for “global state” and “local state” w ill be used in an explicit way. We use an n x n  

m atrix to represent a global state as in [31]. Let s* denote the local state of process 

Pj, and let c jjj denote the content of simplex channel Then we have a global

s:

S i ^1,2 ^1,3 k-h ,n

<^2,1 S2 <W,3 ■■ ^2 ,n

^3,1 <^3,2 S3 . •• <^3 ,n

Wn, 2 U n, 3 • sn

The evolution of a protocol is described in terms of the transitions from one 

global state to another. Such transitions are bu ilt up on the basis of the transitions
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of each process, taking into account their effect on the contents of related channels. 

We use M  to denote the length of a string u  and considering it  is a FIFO channel, 

we w ill assume the following functions on strings:

•  del(u)) (M  > 1) returns the string resulting after the first element of ui is 

deleted;

•  ins(u>, m ) returns the string resulting after m is appended at the end of cu;

•  o;[z] (|cj| >  1) returns the ith  element of u.

The in itia l global state is characterized in this way: 1) each process Pi, i  G [1, n], 

is at its in itia l state 2) a ll channels are empty; i.e., for any i f f  G [1, n], i  ^  j ,  

uiij =  e. In this thesis, we assume protocols are periodic; i.e., after an execution 

of the protocol, it  returns to the in itia l global state; therefore, we do not have any 

additional final global state, and the in itia l global state is regarded as the only final 

global state.

If each process of a protocol cannot execute its next sending transition until 

it  receives the reply to the previous sent message, it  is a synchronous protocol. 

Otherwise, it  is an asynchronous protocol. In this thesis, we discuss methods of 

general protocols but especially suitable for asynchronous protocols.

D e fin itio n  3.3 (N e tw o rk  o f a P ro to co l) The network N  of protocol P  =  (L , 

{M i j  | ( i , j )  € L } ,{(S i,M j,s ° ,—>j))f=1) is a quadruple (S, M, s°, —>), where

& I W . n S  ^

- M  =  {Ji=1_ n M i ;

S ^ FI(iJ)eL

- —>C S x Em x S is the set of transitions defined as follows: Vs, s' G S, 

m G M k>i where s =  n<=i,...,««< x I I K j  € MfJ),

s s' i f f  3(k, I) G L, m G M kj,  and s[ G Si such that
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•  uk,i[ 1] =  m,

+ m  i
•  Si  >i S\ ,

•  s' =  r i i= l , . . . , i—l,Z+l,...,n Si x  s [  X I l( i tj)eLA(i,j)^(k,l) u i ,0 X del{uk,l); 

s s' i f f  3(k, I) G L, m G M*,^, and s'k G S'*, such that

—m  /

•  s' =  rii=i,...,fc-i,fc+i,...,nSj x sfe x n(ij)eLA(ijV(fc,z) x ins(uk,i,m);

The network of a protocol is actually a directed graph in which global states are 

denoted as nodes and transitions are denoted as arcs. In this thesis, we use the net

work of a protocol and the global specification of a protocol interchangeably; we use 

the protocol specifications of a protocol and CFSMs of a protocol interchangeably. 

Note: M *j means a string over alphabet M itj  and it  is possibly an empty string.

D e fin itio n  3.4 (Reachable States) Let N  — (S, M, s°, —►) be a network of pro

tocol P. A state s G S is reachable i f  s =  s°, or fo r some r  >  1, 3s1,...,s r G S, 

3 /x i,..., p,r G Em such that sr =  s and s*_1 s% fo r i =  1,..., r.

D e fin itio n  3.5 (Traces) Let N  — (S, M, s°, —>) be a network of protocol P  and 

s G S is a reachable state. I f  s =  s°, then the trace p of s is s. Otherwise, fo r some 

r  >  1, 3s1, ..., sr G S, 3 /^ i,..., pr G Em, sl fo r i =  1,..., r, such that sr =  s.

Let p =  p ip 2--hr, then p G E*M is a trace of s, and we have s° s.

Intuitively, a state s is reachable iff there exists a trace p leading to it  from the 

in itia l state. R w ill denote the reachable global state space of a protocol P. Clearly, 

R C S since R contains only those states in S that are reachable. We also use p[i] 

to denote the «th element of p and \p\ to denote the length of the p.

A trace p G E*M is well-formed if  all receiving events have their corresponding 

sending events; a well-formed trace p G E*M is complete if  a ll sending events have 

their corresponding receiving events.
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D e fin itio n  3.6 (W ell-fo rm ed Trace) Ve G EM, Q £ E*M, e is possible after a

trace g i f  3m G M , such that either e is a sending event —m or e is a receiving 

event +m  only when the number of —m of g is more than the number of +m  of g. 

A trace p G E*M is well-formed i f  fo r every prefix g of p, the next event e is possible 

after g.

D e fin itio n  3.7 (C om plete Trace) A well-formed trace p G is complete i f  fo r 

all m G M , the number of —m of p is equal to the number of +m  of p.

D e fin itio n  3.8 (D e te rm in is tic  N e tw o rk) Let N  — (S, M, s°, —►) be a network 

of protocol P, and p G E*M is a trace. s° after p is a set of states defined as 

{s|s° — s}.  N  is deterministic i f  fo r all p G E*M, s° after p has at most one 

element; otherwise, it  is nondeterministic.

In this paper, if  not specified, the network of a protocol is deterministic.

Unlike a trace, we define the fragment of a trace p as a path a which can start 

from any state, and we have a G E*u . Moreover, for any s G R, we have the following 

expressions of the formulas:

•  s1 > sr+1 if  3s2, sr G S such that s* s*+1 for i  =  1,..., r;

• s where a G E*M if  3s' such that s s';

• s -+-* where a G E*M if  fis' such that s s'.

• <J\.o2 is the concatenation of two paths Oi and cr2, and we have s ai'a2 > s", 

where G E*M, if  3s, s', s" G S, such that (s s') A (s' s").
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4 Properties of Protocols

4.1 Common Errors of Protocols

In this thesis, we assume the channels between protocol entities are reliable, and 

the receiver can eventually get the message that is sent to it if  it  waits long enough; 

i.e., we do not discuss the protocols w ith explicit time constraints such as time

out. W ith in this framework, we discuss some properties of protocols that people are 

concerned w ith, i.e., potential design errors, namely, deadlock state, nonexecutable 

transitions, state ambiguities, and channel overflow. The reason why we call them 

potential design errors is because some of these errors are designed on purpose by 

the designers. For example, the designers may intend to terminate the protocol at 

a deadlock state when its function is complete rather than returning to the in itia l 

state. However, it  is always useful to identify these potential errors.

4.1.1 D eadlock States

A deadlock is a reachable global state s where all channels are empty and no process 

can send a message.

D e fin itio n  4.1 (D eadlock S tates) Let P  =  (L , { M i j \ ( i , j ) e T }, {(S*, M j,

) } ”=1) be a protocol and N  =  (S ,M ,so,—>) a network of P. A state s is called 

deadlock i f  it  is reachable and s =  rii=i,...,n5i x Tl(i,j)eL£ an<d fa  £ [1 ,n ],m  € Mi, 

such that Si

Figure 3, which is a modification of [34], shows an example of various potential 

design errors. A t the beginning of the interaction, both process Pi and P2 are at 

their in itia l states. When Pi enters state r 1 by sending the message x , P2 enters 

state t 1 by sending the message z at the same time. Then Pi receives the message 2 

and enters state r 2, while P2 receives the message x and enters state t2. Now both 

process are waiting to receive messages while all channels are empty and no process
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Figure 3: An Example of Two-process Protocol Containing Various Design Errors

can possibly send a message. Thus, the global state containing r 2 and t2 as its local 

states for process Pi and P2 respectively is a deadlock state in the network of the 

protocol.

4.1.2 U nspecified R eception States

An unspecified reception is a reachable global state s where the head of an incoming 

channel cannot be consumed by the related process at s and at all reachable global 

states succeeding s.

D e fin itio n  4.2 (U nspecified R eception S tates) Let P  =  (L, {M itj \ ( i , j )  G L },

{(S i,M i,s <- ,-^ i) } f=i) be a protocol and N  =  (S', M, so, —>) a network of P. A state

s is called an unspecified reception state i f  it  is reachable and s =  H j=i ...,n si x
[i]

I I ( i , j ) e L  U i j , where U i j  6 M fp  such that 3(k, l )  e L, ujk,i e, s  H -, and

\/t (z S, a £ E*m, such that s — > t : t  M-.

Our definitions of deadlock states and unspecified reception states conform to 

the notions in most literature, such as [34, 6], etc.. However, in some literature, 

such as [1], the definitions of deadlock states and unspecified receptions are com

bined together as deadlock states since both the deadlock states and the unspecified 

reception states share the common problem; i.e., they both get stuck and there is
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no outgoing transition from them in the network of the protocol, therefore, we w ill 

use error state for a shorthand of deadlock state or unspecified reception state.

In Figure 3, there is an unspecified reception error. Let us look at the following 

scenario. Both process Pi and P2 are at their in itia l states. The process P2 sends 

the message 2  and enters the state t 1. The process Pi receives the message z and 

enters the state r 1, then Pi continues to send the message y. Now it  is stuck. Both 

processes are waiting for receiving messages while the head of channel (1 , 2 ), namely 

y, cannot be consumed by P2. Thus, the global state containing these two local 

states is an unspecified reception state in the network of the protocol.

4.1.3 Channel O verflow

A channel overflow error may occur if: 1) the length of the content of a channel may 

be infinite, since no channel in the real world can have an infinite length to contain 

the content; 2 ) the length of the content of a channel is finite but it  is greater than 

the physical lim itation of the channel.

D e fin itio n  4.3 (C hannel O verflow  E rro r) Let P  =  (L , { M i j \ ( i , j ) G L },{(S i, 

Mi, s°, —>i)}?=i) be a protocol, N  =  (S, M, so, —>) the network of P. For any s G S, 

s =  ni=i,...,„s< x El( i , j ) e L  Wij, where u>ij G M f , and the physical limitation of the 

channel (i , j ) is k^j. a channel overflow error occurs over channel (i , j ) i f  3s G 

S, p G E*m such that s° s and kitj  < \oJif.

D e fin itio n  4.4 (Bounded P ro to co l) Let P  =  (L, { MLj|(i, j )  G L }, {(Si, M u s i

—b)}?=1) be a protocol and N  =  (S, M, so, —0 a network of P. I f  3k, k is an integer, 

fo r any state s =  x I I (i,j)eLu i,j> where G M t*-, such that \uiij\ <  k,

then the protocol P  is a bounded protocol. Otherwise, it  is unbounded. I f  k is the 

least integer satisfying condition \uiij\ <  k, we say the protocol is k— bounded.

Figure 4 shows a simple example of unbounded protocol: if  process P2 delays 

receiving the messages in channel (1 , 2 ), the length of the content may be infinite
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Figure 4: An Simple Example of An Unbounded Protocol

and we cannot find an integer always greater than it. The example in Figure 3 is a 

2-bounded protocol. A ll synchronous protocols are 1-bounded protocols.

A possible solution to tackle the channel overflow errors for an unbounded pro

tocol is to modify the protocol itself either considering the recovery mechanism or 

making the protocol bounded. To tackle the channel overflow error for a A;—bounded 

protocol, we can set the physical lim itation of channels greater than k or modify the 

protocol itself.

The definition of the bound of a protocol P  comes from the network of P  which 

may suffer from the state explosion problem, but it  is hard to find a better way. 

Next, we w ill show that it  is not easy to find the bound of P  from other specifica

tion, such as CFSMs of P. Let us start w ith the following claim.

Claim,-. Given a protocol P  =  ( L , {M i j \ ( i , j )  G !,},{(,% , Mi, s°, —N)}”=1), P  is 

unbounded if  in any C F S M i, 3a G E*Mo where a — such that for any

I G [1, r], iii is in set { —} x M itj  for some j  G [1, n] and s| -^-A s?,..., sj.

P r o o f :  The condition of the claim actually guarantees there is a cycle of sending 

transitions in a CFSM. W ith this condition it  is obvious that the process can always 

send the messages to the channel. Thus, it  is possible there exists a trace w ith an 

infin ite length. □
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Figure 5: Counterexample of Invalid Claim 1

Intuitively, a protocol is unbounded if  any of its CFSMs has a sending transi

tion cycle. This cycle is called a livelock in some literature. Actually, the above 

condition is sufficient but not necessary: the reverse is invalid. Figure 5 shows a 

counterexample: There is no sending transition cycle in any of the CFSMs, but the 

communication between Pi and P3 is not bounded when Pi and P2 keep talking and 

P3 is not going to receive any messages from the channel (1,3).

For a sim ilar reason, both directions of the following claim are invalid.

Invalid Claim: P  is k—bounded iff 3j  G [1 ,n \,a  G E*M. of CFSMi,  where 

a =  H i...Hr, such that V7 G [1, r  — 1], hi is in set { —} x M y ,  Hr is in set {+ }  x M y ,  

sj s f , ..., -^ A s [+1, and k is the maximum number of hi that go to the same

channel i , j  for some j .

In fact, i f  we can find such k as that in the above claim, we can only conclude 

that the protocol is at least k—bounded. Thus, to decide the bound of a protocol, 

knowing only the information of each CFSMi of P  is not enough, we have to know 

the composition of them, i.e., the network N  of P.

4.1.4 N onexecutable T ransitions

Since the network N  of a protocol P  is the composition of all the process entities, 

it  is straightforward that transitions in N  involving process p  is a subset of the
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transitions defined in the corresponding CFSM of the process Pi. On the other 

hand, the transitions defined in the CFSM of the process Pi may not be a subset 

of transitions in N  involving the corresponding process Pi. In the CFSM of the 

process Pi, some states may never be reached and some transitions may never be 

executed under normal conditions. We are more concerned about nonexecutable 

transitions because whenever these transitions are identified, we can trace and find 

the unreachable states.

D e fin itio n  4.5 (N onexecutable T ransitions) Let P  =  (L, {M itj\( i, j )  G L }, 

{(Si, Mi, s ° , —► i)}£=i )  be a protocol, N  — (S, M, So,—>) the network of P, and 

H G EMi an event of process Pi. A transition Si s' of process Pi is nonexe

cutable i f  fo r all s G S that are reachable and contain Sj as its local state of process 

Pi, $s' G S, such that s s', where si is the local state of process Pi at s '.

In Figure 3, no normal transition sequence can cause state t2 of P2 to receive 

message x, hence t3 is not entered and message u cannot be sent. Consequently, 

state r 3 of process Pi cannot be reached and the receiving transition w ith label +z  

is nonexecutable.

4.1.5 S table States and S tate A m b ig u ities

A tuple (s i,..., sn) of states is stable when all the channels between them are empty. 

Identifying stable-state tuples is useful for detecting loss of synchronization if  the 

protocol is intended to be a synchronous protocol.

D e fin itio n  4.6 (S tab le-sta te  Tuples) LetP  =  (L, { Mitj \ ( i , j ) G L }, {(Si, Mi, s°, 

- b)}?=i) be a protocol. I f  3s G S, such that V ( i, j)  G L,uJij =  e, then (sp ...,sn) is 

a stable-state tuple, where Si is the local state of process Pi at s.

For 2-process protocol, a pair (s i,s2) of process Pi and P2 is stable when the 

channels between them are empty.
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A state ambiguity exists when more than one state in one process can coexist 

stably w ith the exact same state of the other process.

D e fin itio n  4.7 (S ta te  A m b ig u ity ) Let P  =  ({(1,2), (2 ,1)}, {M i)2, M 2)i} ,  {(Si, 

Mi, s®, —>i)}i=1) be a 2-process protocol. (s i,s2) is a stable-state pair at s, where 

s G S, si, s2 is the local state of process Pi and P2 at s respectively. A state ambigu

ity exists when 3s' G S such that (s i,s2) is a stable state pair with either (si =  s'x) 

or (s2 =  s ').

In Figure 3, when process P i sends messages x and y and enters state r 2 even

tually, P2 receives the message x and y and returns to its in itia l state eventually. 

(r ° ,t° ) and (r2,t°) are both stable-state pairs. Hence, t° of P2 can coexist w ith two 

states of P i, namely, r° and r 2, and it has a state ambiguity.

Note: The notion of state ambiguity is useful when 2-process protocols are con

cerned. State ambiguity is not necessarily an error, and it depends on the designer’s 

intention. In this thesis, we do not discuss the potential error of state ambiguity.

4.2 Advanced Properties of Protocols

In the previous subsection, we discussed several simple traditional properties of pro

tocol design, namely, deadlock states, nonexecutable transitions, channel overflow, 

and state ambiguity. W ith the development of the IT  industry, more advanced prop

erties have come into our concern. Among them, properties most used are divided 

into two categories: safety properties and liveness properties. As described in [19], 

intuitively, a safety property insists that “bad things” do not happen, a liveness 

property insists that “good things” do eventually happen. For example, the prop

erty described in English could be “for all the paths from in itia l state, a global state 

containing the local state s* of process P, must eventually happen” ; “there exists 

a path in  which all the global states do not containing the local state Si of process 

Pi” ; etc. Actually, all the design errors we discussed in the previous subsection
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are in the fam ily of the safety properties. In the literature, protocol properties are 

flexibly specified as temporal formulas using some temporal logic languages, such 

as linear-time propositional temporal logic (LPTL), computation tree logic (CTL), 

etc. How to verify these properties is a problem of model checking. Since model 

checking is not our focus, in this thesis, we only give a general procedure to verify 

a general property of a protocol.

As we know many properties can be represented as LPTL formulas. In [33], it 

is proved that it  is possible to build a Buchi automaton [4] that accepts exactly the 

infinite words satisfying the temporal formula. A construction of a Buchi automaton 

from a formula can be found in [32, 27]. The following procedure can be found in 

[33, 30]:

(1) Build a Buchi automaton for the negation of the specified formula /  which 

represents the required liveness property, and the resulting automaton A f 

accepts a ll sequences of states that violate the formula / ;

(2 ) Compose Af and (CFSMi)f=1 of the protocol P  as product A;

(3) Check if  A is empty. I f  A is empty, it  means P  satisfies the property / ,  

otherwise, P  does not satisfy the property / .

In this thesis, we do not discuss the advanced properties of protocols. The reduc

tion rules in Section 6  cannot be generalized for the detection of these properties.
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5 Construction Rules During Protocol Design

In this section, we discuss the following problems: Given a set of observations, do 

they correspond to a deadlock-free design? If  they do not correspond to a deadlock- 

free design, can we construct a deadlock-free design containing all these observations 

w ith reasonable construction rules? Is this design minimum? If  we cannot construct 

such a design, what else do we need to do? Can more observations be helpful?

Our work of the construction of protocol designs is an improvement of the work 

of Chen and Ural in [6 ]. We use the first two construction rules, namely, Rule^t 

and Rulered, and four examples in [6 ]. The th ird  rule Ruleneg of the paper solves 

the deadlock state problems by m irroring the specification of one process onto the 

specification of the other process; however, we prove this rule adds more states and 

transitions than needed, and in this thesis, we improve Ruleneg in the sense that the 

added states and transitions are no more than and often less than those added by 

original Ruleneg while it  is s till guaranteed that no deadlock states are left.

5.1 Previous Work

The proposed method in [6 ] is presented in the context of reverse engineering. The 

method is used to recover a deadlock-free design when a set of global observations 

of an existing implementation is given.

D e fin itio n  5.1 (G loba l observations) A global observation is a well-formed and 

complete trace that starts from and ends at the global in itia l state without passing 

through the local in itia l state of any process twice.

We do not require that the given set of global observations is complete; i.e., all 

the possible traces are included or all the transitions of presumed design are exe

cuted at least once since these assumptions are too strong for reverse engineering. 

Actually, the classical algorithms in automata theory, such as the subset algorithm,
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minimization algorithm in [14], which were proposed decades years ago, can con

struct the design for the first case. However, when a set of observations is given, 

we can assume the observation is conducted by some experienced people who know 

what functions of the system are of the user’s concern and can recognize the start 

and the end of the observation; it is possible that the concerned functions are only 

part of all the functions of the existing system. We cannot construct any design 

beyond the observations. Under the following assumptions, our solution guarantees 

that the constructed design is deadlock-free.

•  The functionality of the implementation of a protocol design is periodic; i.e., 

all the observations start from and end at the in itia l state.

• The presumed design has no other cycles when the protocol specifications are 

expressed as CFSM graphs except those starting from and ending at the in itia l 

state. This is because other cycles can not be recognized if  the states in the 

graph cannot be identified; i.e., an observer cannot realize whether some state 

has already been repeated during an execution. In the literature, some tech

niques have been developed to identify the states such as the D-method based 

on distinguishing sequences in [13], the U-method based on UIO sequences 

in [24], the W-method based on characterization sets in [9], etc. However, 

all these methods require the knowledge of the protocol design. In reverse 

engineering, the implementation is a black box and no design is available, so 

far, there is no complete solution to the state identification problem in reverse 

engineering although partial solution has been proposed in [28].

• Both the protocol specifications and the network of the protocol are determin

istic.

• More than one trace is observed. I f  only one trace can be observed then it  is 

the correct design and no further work is necessary.
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The method has two steps:

(1) Project each observation to the individual process, and construct the draft 

design CD0(O), in which the projections of each process start from and end 

at the local in itia l states;

(2) Apply construction rules to the draft design. There are two directions: 1) 

Apply Ruledet first and then Rulered, this direction does not change the se

mantics of the draft design, and some deadlock states can be removed, but 

the constructed design may not be deadlock-free; 2 ) Apply Ruledet first and 

then Ruleneg. This method w ill add new semantics to the draft design, all the 

deadlock states are removed and the constructed design is deadlock free.

5.1.1 P ro je c tio n  o f G loba l O bservations and In it ia l Design C on struc tio n

In this subsection, we discuss the first step of the method. We use the same projec

tion derivation rule as in [6 ]. Given a trace p, we can derive proj(p, i ), the projection 

of o on process Pp.

proj(p, i)

e if  p — e

- r r i i jp ro j (p', i) if  p =  - m idp' for j  e [  1 , n]

+m jjiproj(p', i ) if  p =  +mjti(f for j  e [1, n]

pro j(p ' , i) if  p =  -m ijp 1 or Pm^ip' for l , j  e [1,n ] , l ^ i

p ro j (p, i ) reflects the sequence of events w ithin the trace p that are related to 

process Pj. Since p starts from and ends at the global in itia l state w ithout going 

over it, p ro j(p ,i) starts from and ends at the local in itia l state w ithout going over 

it.

Given a set of traces £  =  { p i, ..., pr }, we can derive a set of projections on process 

Pi, denoted as p ro j{E ,i), where proj(E , I) =  {pro(p3, i ) \ j  6  [1 , r],p ro j(p j ±  e)}. We 

use pro jiE , i ) over £  for process Pi, for i — 1,..., n, to construct CFSMi.
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D e fin itio n  5.2 (G enerated C FSM ) Given a set of projections p ro j(E ,i)  =

{b i, ..., bk} over E on process Pi, where bi ^  e fo r I =  1 , k, k >  1. The C FS M  

over p ro j{E ,i)  is (S', M*, s°, —>) where:

• S =  {s l’j \l E [1, k] , j  E [1, |6i| -  1]} U {s0} ;

• s° E S is the in itia l state;

•  Mi =  U M jj);

• —>C S x Em, x S is the least relation satisfying

-  s° ---- -U s1,1, fo r I G [1 , k];

_  sl,j-1 sl,ĵ  j Qr l e ^  G [2) \bt \ -  1];

-  fo r I E [1 , k ] , j  =  \k \ , j  >  2; and

-  s° s° fo r I E [1, k\, \bi\ =  1.

In the following, we use CD q(E) to denote the constructed design (L, M, (T j}”=1), 

where Tj is the C FS M  over p ro j(E ,i)  as defined in  the above definition.

5.1.2 C o n stru c tio n  Rules Ruledet and Rulered

In this subsection, we review the first two construction rules, namely, Ruledet and 

Rulered to construct protocol design in [6]. Note, these two rules are applicable to 

n —process protocols.

When two processes send messages concurrently, we call this phenomenon a 

collision. The incomplete observations can cause deadlock states or unspecified 

receptions only when there are collisions in the presumed design. We have the 

following proposition (See [6 ] for proof).

P ro p o s itio n  5.1 I f  the presumed design of the set of observations is deadlock free, 

unspecified reception free, and free from collisions, and the constructed design C D (0) 

is deterministic, then C D {0 ) is free from deadlocks and unspecified receptions.
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Figure 6 : Demonstration to Ruledet f° r Protocol Design 

Let T{ =  (Si, M i, sf, — be the C F S M  of process Pi in a given C D 0(O).

Ruledet'. I f  3 s f,s f,s f e Si, si ^  sf, 3\i G EM, such that sf -A -s f and sf -^>sf, 

then

(1) Remove sf from 5*;

(2) Remove s| from —

(3) V // G E m, sf € Si, such that sf sf, substitute sf sf by sf sf in — 

Note, this rule is Ruledet in [6 ]. How this rule is applied is shown in figure 6 .

Rulered■ I f  3s-, sf € Si, sf ^  s f, V/i G Em, Si G S'*, such that sf -A- s* if f  sf -A- s*, 

then

(1) Remove sf frornSf,

(2) Remove sf s* from —>■* for any s* G 5* and f i G EM',

(3) V// G jEW, Si e Si, such that s* -A- s f, substitute s* -A- sf by s* -A- sf in

Note, this rule is Rulered in [6]. How this rule is applied is shown in Figure 7. 

Ruledet can remove the deadlocks and unspecified receptions caused by nonde

terminism and Rulered can help to reduce the design. Meanwhile, these two rules 

do not introduce any new deadlocks or unspecified receptions.
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Figure 7: Demonstration to Rulere(i for Protocol Design

Theorem  5.2 Ruledet does not introduce any new deadlock or unspecified reception 

to tree-like constructed designs.

Theorem  5.3 Rulered does not contribute to the removal of any deadlock or un

specified reception, nor does it  introduce new errors to the constructed design.

Besides the properties we discussed, Ruledet preserves trace equivalence. First, 

we given some useful definitions in the set theory.

D e fin itio n  5.3

• A re la tio n  is a set of ordered pairs.

• A relation R in a set X  is re flex ive  i f  (Vx G X)(x ,x )  G R.

•  A relation R in a set X  is an tisym m e tric  i f  (x,y) G RA (y, x) £ R => x =  y.

• A relation R in a set X  is tra n s itiv e  i f  (x, y) G R A (y, z) e R  (x, z) G R.

• A relation R in a set X  is an equivalence re la tio n  i f  R is reflexive, sym

metric and transitive.

•  A relation R in a set X  is a p a rtia l o rder i f  R is reflexive, antisymmetric, 

and transitive.

• A p a rtia lly  ordered set is an ordered pair (X, ■<) in which X  is a set and 

-< is a partial order in X.
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•  I f  Vx, y G X ,  (x ^  y) V (p ^  x), then ^  is calZed a to ta lly  ordered set or a 

chain.

D e fin itio n  5.4 (Trace Equivalence) [29] Le tTr(p) denote the set of traces of p. 

Two processes p and q are trace equivalent, notation p = r r 9, ifT r (p )  =  Tr(q). In  

trace semantics, two processes are identified i f f  they are trace equivalent.

Theorem  5.4 Given a tree-like CFSM, Ruledet preserves trace equivalence.

P ro o f: We first prove one transformation of Ruledet and multiple transformations 

can be induced. Let Vp G T r(T t), p =  p ip 2 -..pr , and T \ is the transformation 

function of Ruledet■ We have three conditions: 1) 3p i,l G [1, r], such that pi =  p 

and p passes sf and sf; 2) 3/p, I G [1, r], such that pi =  p but p does not pass both 

s j and sf; i.e., p passes sf and sf; 3) f lp i, l G [ l, r ] ,  such that pi =  p.

For case 1), though the transition sf sf is removed, this transition is replaced 

by sf —— sf and all the transitions starting from sf has been moved to sf. Also 

because the graph is tree-like, no other transition can enter sf and the trace passing 

sf but not passing sf does not exist. Hence, p is s till in the set of T r ^ i iT t ) ) .

For case 2) and 3), p is not changed at all, so p is s till in the set Tr^tF fT i)). 

Thus, we have Tr{T[) C Tr(tFi(Ti)). On the other hand, since Ruledet removes 

the transitions w ith consideration of replacement of affected traces, no new trace is 

created and every trace in T rifF fT i) )  should also be in Tr(T i). Hence, we also have 

Tr{dFi{Ti)) C Tr(T i). Therefore, Tr(T j) =  Tr(tFi(Ti)). Ruledet preserves the trace 

equivalence. □

5.2 Examples and Deadlocks in the Constructed Design

In  this subsection, we give some examples to show that constructed designs may 

contain deadlock state errors and unspecified reception errors and how Ruledet can 

remove the errors of Example 5.1-5.2, while leaving some errors of Example 5.3-5.4 

unremoved, which can be removed by using Ruleneg.
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T2T1

Note: The dashed states may cause deadlock.

(A) Construction Design CD0(O) of Example 5.1

T2T1

(B) Construction Design Ruledet(CD0(O) )of Example 5.1

Figure 8 : The Constructed Designs of Example 5.1

Example 5.1 (from [6 ]) Consider a protocol w ith two processes and two channels 

between them. We have a set of traces as:

O =  { —£ l,2  +  £1,2 — -2-2,1 +  22,1 "  2/1,2 +  2/l,2j ~ ^1,2 +  ^1,2 ~  2/1,2 +  2/1,2 ~  ^2,1 +  32,1}

Figure 8 (A) shows the constructed design CD0(O). T i and T2 in C D 0(O) are the 

C FSM s  over p ro j(0 ,1) and p ro j(0 ,2) respectively. Let us look at the following 

scenario: Tx sends Xi)2 and enters r 3, then T2 receives Xi>2 and enters t l . Now it  

reaches a global state
(  3 \r 6 e

\ 6 (1 /

in the network of this design, and it  is a deadlock state because both 7\ and T2 

are expecting to receiving messages while both channels are empty. Let us apply 

Ruledet to C D 0(O) and the deadlock states are removed. The specification after the 

construction is shown in Figure 8 (B).
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T2

Note: The dashed states may cause unspecified 
receptions.

(A) Construction Design CD0(O) of Example 5.2

T1 T2

(B) Construction Design Rulede( (CD0(O)) of Example 5.2

(C) Construction Design Rulered (Ruledet (CD0(O))) of Example 5.2

Figure 9: The Constructed Designs of Example 5.2

Example 5.2 (from [6 ]) Consider a protocol w ith two processes and two channels 

between them. We have a set of traces as:

O =  { —# 1,2 +  ^1,2 ~  ^2,1 +  22,1 — « 2,1 +  U2,l, “ # 1,2 +  ^ 1,2 “  2/2,1 +  V2,1 — Ul,2 +  u l,2}

Figure 9 (A) shows the constructed design CD0(O). 7\ and T2 in CDq(O) are the 

CFSM s  over p ro j(0 ,1) and p ro j(0 .2 ) respectively. Let us look at the following 

scenario: T\ sends Xi$ and enters r 3, and T2 receives x lj2  and enters t 1, then sends
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z2,i and enters t2. Now it reaches a global state

V ZM t2

in the network of this design, and it  is an unspecified reception state because T i is 

expecting to receive y2,i while only z2,i is available in the channel. This example 

is suitable for applying Ruledet and Rulered. A fter applying these two rules, the 

deadlock states are removed and the specification is minimized. The specification 

after the construction is shown in Figure 9(B) and (C).

Example 5.3 (from [6 ]) Consider a protocol w ith two processes and two channels

between them. We have a set of traces as:

O  =  { —#1,2 +  x l ,2 ~  u l ,2 ~  2/2,1 + U i t2 +  2/2,1 ~ 32,1 + 22,1,

“ 2/2,1 — x l,2 +  2/2,1 — 22,1 +  x l,2 +  22,1 — U\^ +  ^ 1,2}

Figure 10 shows the constructed design CD0(O). Ti and T2 in CD0(O) are the 

C FSM s  over p ro j(0 ,1) and p ro j(0 ,2 ) respectively. Let us look at the following 

scenario: T\ sends x 1;2 and enters r 1, then T2 receives x^2 and enters I 1, after that, 

T2 sends y2ii and enters t2, then T\ receives 1/2,1 and enters r 2. Now it reaches a 

global state

{  r 2 e )v e t 2 J

in the network of this design, and it is a deadlock state because both T i and T2 are 

expecting to receive messages while both channels are empty. However, this example 

is a little  complex, and after Ruledet is applied, we can s till observe that potential 

deadlock state in Figure 10(B).

Example 5.4 Consider a protocol w ith two processes and two channels between them.
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-X ,

+ Z ;

-U .

T1

+x,

+u + X ,

-2,1 +u

T2

Note: The dashed states may cause deadlock.

(A) Construction Design CD0(O) of Example 5.3

-X ,

+ X ,

+u. +x.+Z-.

+u

Note: The dashed states may cause deadlock.

(B) Construction Design Ruledel(CD0(O)) of Example 5.3

Figure 10: The Constructed Designs of Example 5.3
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J'V

>33)

(?)

(t*)
+*1*

5*9

r29.;

5*9

Note: The dashed states may cause deadlock.

(A) Construction Design CD0(O) of Example 5.4

Note: The dashed states may cause deadlock.

(B) Construction Design Ruledgt (CD0(O)) of Example 5.4

Figure 11: The Constructed Designs of Example 5.4

We have a set of traces as:

O  =  { — Z/2,1 +  2/2,1 — x l,2 +  x l,2 — ^ 2 ,1  — Ul,2  +  Ul,2 +  w 2,l

-V 2,i +  o2,i -  elj2  +  e i)2 -  / i ,2 +  / i ,2 -  0-2,1 +  ^2,1 -  h ,i +  b2,i, 

— 2/2,1 +  2/2,1 — ^ 2,1 +  '022,1 — 02,1 +  02,1 — ^ 1,2 +  ^ 1,2 

—u i,2 +  w1>2 -  02,1 +  02,1 ~  b2;i +  62,i -  e i)2 +  ex,2 -  f i ,2 +  f i ,2,

—2/2,1 +  2/2,1 -  x l,2 — W 2,l  +  w 2,l — 02,1 +  02,1 +  ^ 1,2 

—2X1,2 +  01,2 -  e Xi2 -  a2,i +  a2,i -  62,1 +  &2,1 +  el ,2 -  / l ,2 +  f l , 2 , 

- X l , 2  -  2/2,1 -  01,2 +  2/2,1 -  0 2̂,1 +  012,1 -  02,1 +  02,1 

+ X i t2 +  U  1,2 — e i,2 — 02,1 +  02,1 _  &2,1 +  &2,1 +  el ,2 _  / l ,2 +  / l , 2}
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Figure 11(A) shows the constructed design CD0(O). T i and T2 in CD0(O) are 

the CFSM s  over p ro j(0 ,1) and p ro j(0 ,2) respectively. I t  contains four deadlock 

states in the network of this design, namely,

t 1

/  r 19

V

e

f3

\  /  r 29

V

e

t5

\  f  r 22

V
The first deadlock state is due to nondeterminism, and the rest are due to the 

rules of composing the network of a protocol, which allow at some global state, 

the next transition can be any available transition from the protocol specifications. 

W ith the rules, more traces than the given set of observations may be created. For 

Example 5.4, the application of Ruledet removes the first deadlock state as shown in 

Figure 11(B), but the other two deadlock states remain.

The reasons of occurrences of the deadlock states and unspecified receptions 

include nondeterminism as shown in Example 5.1-5.2 and incompleteness of obser

vations as shown in Example 5.3-5.4. In the next subsection, we give construction 

rule Rule'neg to remove the deadlock states caused by incomplete observations for 

the 2-process protocol.

5.3 Improvement on Construction Rule Rule'neg

From the point of view of software engineering, the desirable properties of a protocol 

design include: 1) it  meets all the requirements of the customers; 2 ) it  does not 

manifest any logical error; 3) the design is minimum so that after design phase, 

programming and testing can be more efficient.

As we mentioned in the previous subsection 5.2, we introduce the improved 

Rule'neg to remove the deadlock state caused by incomplete observations while 

Rule'neg adds no more states or transitions to the design than Ruleneg. Note, both 

Ruleneg and Rule'neg can only be applied to 2-process protocols. Also, w ithout spe

cial indication, Rule'neg means the improved Rule'neg, not the original Ruleneg. 

First, we give the definition of negation of a trace.
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D e fin itio n  5.5 (N egation  o f Traces) Let a be a path, the negation of a, denoted 

by a, is defined as

e a =  e 

—ma' a =  +m a'

+m a' <t  =  —ma'

Let pos(u) denote the sequence of all the events of receiving messages in u  in 

the same order, and neg{uj) the sequence of all the vents of sending messages in uj 

in the same order, we have

pos(u)

e u> =  e

+ m p o s ( u ' )  u  =  + m u '

pos(uj') u j  =  —  mw

neg{uj)

e u; =  e

— m n e g ( u j ' )  uj =  — m u '  

n e g { u i ' )  uj =  + ra u /

D e fin itio n  5.6 Let P  be a 2-process protocol, a is a path from the local in itia l 

state in T i, and a' is a path from the local in itia l state in  T2. a and a' can form a 

trace in the network of P  i f  we can execute all the transitions in a and a' without 

encountering any deadlock state or unspecified reception.

We apply Rule'neg to tree-like CFSMs. For each tree-like CFSM, the sequence 

of events between s° and s is unique w ithout passing s° twice. We use neg(s) and 

pos(s) to denote the sequence of sending and receiving events respectively from s° 

to s. Note, CD q and R ule^fiG D ^{0)) contain only tree-like CFSMs.

Let P be a given deterministic protocol w ith two CFSMs Ti and T2. We assume 

there is no unspecified reception error in the constructed protocol design. Rule'neg 

aims at removing the error of deadlock states.

Rule'neg:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 CONSTRUCTION RULES DURING PROTOCOL DESIGN 40

(1) In T<2, while 3srj £ £2) s2> but for all m ^i £ A/2,1 £ £2  such that

si ^ U s l  do:

in Ti, if  3s} £ Si, s f - ^ s } ,  such that pos(s}) =  pos(sl), neg(s\) — neg(sl), 

and a and o' can form a trace in the network of P, but $s\ for all 7711,2 £ M i,2 

such that s} — m i’2 > s f, then

(a) select one path q from s} to the local in itia l state sf;

(b) append q to s} in T2; i.e., add the new states of q into S2 , and add the 

new transitions of q into —>2;

(2) I f  3s1, s2 £ (S^s1 7̂  s2) such that pos(s1) — pos(s2) and neg(s1) — neg(s2), 

then

(a) remove s2 from S2 ;

(b) Vp £ Em, s £ S2 , such that s2 s, substitute s2 s by s1 s in —»•2;

(c) V/x £ Em , s £ 1S2, such that s s2, substitute s s2 by s s1 in _ >2.

A straightforward algorithm that applies the first step of Rule'neg can be w rit

ten by adapting Depth-First-Search Algorithm  (DFS). For a 2-process protocol P, 

suppose u is the maximum number of states among CFSMs, and v is the maximum 

number of transitions among CFSMs, the time complexity of the adapted algorithm 

is 0( (u +  v)2). For step 2, in [6 ], an algorithm is proposed w ith the time complexity 

0(uv).

Rule'neg is applied to the design after the application of R,uledet, so it  works on a 

deterministic design w ith the tree-like structure, and the structure is preserved after 

the execution of step (2). Step (1) of Rule'neg is to find the potential deadlock states 

and append a path w ith a sending event as its first event to each potential deadlock 

state. Since the sending transitions can always be executed, the potential deadlock 

states w ill not be deadlock states any more. Also, it  is sufficient to check only one
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protocol specification of P , that is, either T i or T2, and all its potential deadlock 

states are removed. This is because when no state in one machine is a potential 

deadlock state, the global states containing these states as local states cannot be 

deadlock states.

Note that the application of Rule'neg adds new semantics to the specification 

of P, however, since a good design very often includes the m irroring of the other 

protocol specification in one protocol specification, the design constructed by this 

rule is quite reasonable.

Also, pos(s{) =  pos(s2) and neg(s\) — neg{s\) does not necessarily mean the 

path reaching s2 and the path reaching .sj can form a trace in the network of P, that 

is, there exists a trace in the network of P  such that the projections of this trace on 

Pi and P2 are exactly those two paths. To avoid adding undesired transitions, we add 

the condition that a in T2 and o' in Tx can form a trace in the network of P  and reach 

some global state which contains both S2 and s]; as its local states. For example, we 

have two paths, which are the fragments of two observations: px =  — xXj2 —1/2,1+ 112, i~

32,1 +  32,1 — U\ t2 +  x i )2 +  Ui)2, and p2 =  — £1,2 +  24,2 — y2jX +  2/2,1 — u i,2 +  wi,2 — 24,1 +  z2jX. 

Project these two observations to Tx and T2, we have uj\ =  —xX:2 +  y2;X +  z2}X — uXj2 

and =  - 2:1,2 +  2/2,1 -  « i,2 +  32,1 in Tx, and =  —2/2,1 -  32,1 +  ^ 1,2 +  « i,2 and 

lo\ =  +2q,2- 2/2,1+ M i,2 -32,1 in ^ 2- Thus, we can see pos(uj\) =  pos(ujl) =  + 2/2,1+ ^ 2,1 

and neg(u\) =  negiuj^) =  —x X)2 — uX:2, but these two paths cannot form a trace in 

the network of P. Furthermore, we can see none of these states in the P  is a deadlock 

state so far.

Since T2 is deterministic and tree-like, a is unique. However, the paths that can 

match a in T i might be more than one. Since we assume there is no unspecified 

reception, there are two cases for those matching paths: 1) paths that match a and 

do not cause deadlock at s\: 2) paths that match cr but cause deadlock at s\. For 

case 1 ), since there is no deadlock and unspecified reception error, it  means there 

exists a sending transition among next transitions at in Tx. For case 2), since
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there is a deadlock but not unspecified reception error, it means the next transitions 

at s\ are all receiving transitions. I f  we choose one of the paths starting from sj 

and ending at the in itia l state s? in the latter case, whose first event is the label of 

a receiving transition, appending the negation of the path to state s3>, the potential 

deadlock w ill be removed since a sending transition is always executable. Because 

of a sim ilar reason, we can see although more than one state in T i might cause 

deadlock states w ith Sg, we only need to consider one such state and append the 

negation of one of its followed paths to the in itia l state to si,, all potential deadlock 

states are removed.

P ro p o s itio n  5.5 For any constructed design P with only tree-like deterministic 

CFSMs, Bsl G S2 , s2, Vm2)i G M 2)l7 j^s2 G S2 such that S2 —m2A > s\. I f  there

is a deadlock state in the network of P, o' exists in T\ such that a and o' can form  

a trace in the network of P.

P r o o f :  From the definition of deadlock states, we know when the deadlock occurs, 

both of the channels are empty. It means every sending transition has the matching 

receiving transitions, and vice versa. Suppose s1 is a deadlock state containing Sj as 

its local state of process P2, it  means there must exist o' in T i such that o' includes 

the events that receive all the messages sent to the channel (2 , 1) by the events in 

o and meanwhile a includes the events that receive all the messages sent to  the 

channel (1,2) by the events in o'. Thus, o and o' form a trace in the network of P. 

□

P ro p o s itio n  5.6 For any constructed design P with only tree-like CFSMs, the de

sign after the application of Rule'neg is deadlock free.

PROOF: When we apply Rule'neg on T2, all the risky states, i.e., all the states that 

have no outgoing sending transitions, w ill be examined. The risky states may be 

real deadlock states, and may be not. There are three cases: 1) si; cannot find a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 CONSTRUCTION RULES DURING PROTOCOL DESIGN 43

matching state ,s( in T i; 2) there are matching states for s% but for each s} there 

is at least one outgoing sending transition at sj; 3) si, find a matching state and 

there is no outgoing sending transition at sj, we say S2 is a potential deadlock state.

For case 1), from  Proposition  5.6, we know si, is not a  deadlock state.

For case 2), because a sending transition is always executable, the global state 

containing both s} and si; cannot be a deadlock state.

For case 3), Rule'neg deals w ith the potential deadlock states. The application 

of Rule'neg w ill add a sending transition to every potential deadlock state, thus, the 

potential deadlock is removed. Furthermore, the appended path is the negation of 

the path in T\ and it  means the appended path w ill not introduce any new deadlock 

state. □

P ro p o s itio n  5.7 Rule'neg adds no more states and transitions than the original

Ruleneg.

PROOF: The original Ruleneg adds the entire negation of T l onto T2, while the goal 

of the improved Rule'neg is to add the transitions that really help to remove deadlock 

states, which are part of the negation of T i. In the worst case, the improved Rule'neg 

adds the entire negation of T i as the original Ruleneg. □

Now we can use Rule'neg to remove the deadlock in the Example 5.3. Figure 12 

shows that the application of Rule'neg has two steps: first, it identifies t 2 as a potential 

deadlock state and appends the negation of path + 22,1 — Wi,2 to f 2; second, it merges 

state t6 and state t7 because pos(t6) =  pos(t7) and neg(t6) =  neg(t7).

Figure 13 shows how Rule'neg works on Example 5.4. The application of this 

example is a b it different from Example 5.3 in a way that the first step of Rule'neg 

has been applied twice before moving to the second step. This is because we put a 

“while” -statement in the rule condition.

Unlike Ruledet and Rulered, Rule'neg can only be applied to 2-process protocols. 

This is because for n —process protocols (when n >  3), the specification of one
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+x,

+u:
!+ Z ;

+Z;

+U ,

T 1 T2

(A) Construction Design Ruleneg' (Ruledet(CD0(O))) of Example 5.3 -  Step 1

+x,

-U,

+u, +x.+Z;

+z: +u.

T1 T2

(B) Construction Design Ruleneg' (Ruledet(CD0(O))) of Example 5.3 -  Step 2

Figure 12: The Constructed Designs of Example 5.3 Using the Improved Rule'neg
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+xi.

+u.

+e1. +e,

+ei.

(A) Construction iign Rulene9' (Ru/e^, (CD0(O))) of Example 5.4  

-  Step 1

(B) Construction Design R u le ^ ' (R u/e^, (CD0(O))) of Example 5.4  

-  Step2 

Also Apply R u le ^ to  T 1

Figure 13: The Constructed Designs of Example 5.4 Using the Improved Rule'neg
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process involves the interaction w ith other processes (usually more than one process), 

and the m irroring of it  w ill also involve more than one process, which w ill make the 

semantics of the m irroring specification ambiguous. Furthermore, Rule'neg assumes 

there is no unspecified reception error and aims a t removing all the  deadlock states 

without composition of the network of P.

5.4 Summary and Comparison

The work in this section is inspired by the work in [6] and now we compare them. 

The idea of removing the deadlock states w ithout the composition of network of P  

is exciting because the composition of the network of P  may cause state explosion 

problem. Our Rule'neg improves the original Ruleneg in the sense that it  removes 

a ll the deadlock states w ith less augmentation of transitions. Disadvantage of the 

improved Rule'neg comparing to the original one is that the complexity of the algo

rithm  is increased because of the selection of relevant paths while the original rule 

just copies the entire negation of T\ on to T2.

Figure 14 shows the constructed design using the original Ruleneg in [6]. We can 

see the added path +U\$ — 2/2,1 from t l to t3 has no contribution to the removal of 

deadlock, which is not added as shown in Figure 12. For example 5.4, Figure 15 

shows the constructed design using the original Ruleneg. Comparing it  w ith the 

constructed design using the improved Rule'neg in Figure 13, we can see 3 more 

states and 5 more transitions are added, similarly, they do not contribute to the 

removal of the deadlock states.

Comparing Rule'neg w ith Ruleneg for these two examples, we evaluate the reduc

tion efficiency as in Table 1.

Note that Rule'neg can work independently w ithout applying Rule^t before it, 

tha t is, Rule'neg can apply on CD0(O) directly while Proposition 5.5-5.7 s till hold. 

We apply Rule^t before Rule'neg because of two reasons: 1) we want to remove 

the states and transitions that are unnecessary to take into account for Rule'neg
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+Z ;

+X,

+U.

+X1

+u.

T 1
T 2

Figure 14: The Constructed Designs w ith Rules in [6 ] of Example 5.3

+V,'+w.

+w.+W;

+v2 +v.

-e,

-e ,

+x.

+u,

-v2

-v2
+x.

-w.

+U--V j

+e,

T 1 T 2

Figure 15: The Constructed Designs w ith Rules in [6 ] of Example 5.4
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Ruleneg adds Rule'neg adds Reduction Efficiency

states transitions states transitions states transitions

T2 in Example 3 1 3 0 1 1 0 0% 67%

T2 in Example 4 5 9 2 4 50% 56%

Table 1: The Reduction Efficiency of Rule'neg Compared w ith Ruleneg

and minimize the specification first; 2 ) Ruledet may reduce the number of potential 

deadlock states, thus, the times of appending the negation of some paths in Ti 

are reduced. For example, in Figure 11(A), t 1 in T2 is a potential deadlock state, 

and Rule'neg w ill be applied to this state; but after applying Ruledet, this state is 

merged to t9 and it  is not a potential deadlock state any longer, which is shown in 

Figure 11(B), then Rule'neg w ill not be applied to this state.

The improved Rule'neg assumes there is no unspecified reception in the con

structed design. Actually, resolving unspecified reception error is an open problem. 

The following example shows unspecified reception is hard to tackle w ith incomplete 

observations.

Example 5.5 (from [6 ]) Consider a protocol w ith two processes and two channels 

between them. We have a set of traces as:

O —  { 3̂ 1,2 + ^1,2 — 2/2,1 + 2/2,1, —22,1 + ^2,1 — ^ 1,2 + ^ 1,2}

Figure 16(A) shows the constructed design CD0(O). T\ and T2 in CD0(O) are 

the CFSM s  over p ro j(0 ,1) and p ro j(0 ,2) respectively. Let us look at the following 

scenario: T\ sends X\$ and enters r 2 while T2 sends z2,i and enters t 1. Now it  reaches 

a global state
( 2 \r  x i>2

y ^ 2,1 t 1 J

in the network of this design, and it  is a deadlock state because T\ is expecting to 

receive 2/2,1 while channel (2 , 1) contains only z2j  and T2 is expecting to receiving
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+u

T2T1

Note: The dashed states may cause deadlock.

(A) Construction Design CD0(O) of Example 5.5

-u.

-X ,+ Z 2

+Z;

i r
+u.

+x.

+v,
+x.

T1 T2

(B) Presumed Design of Example 5.5

Figure 16: The Constructed Designs of Example 5.5
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u \ t2 while channel (1 ,2) contains only x i;2- We can see neither of our rules can be 

applied to this example to remove the deadlock states.
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6 Reduction Rules During Design Verification

To verify a concurrent system using the state exploration technique, the state ex

plosion problem is always a big concern. The solution is to reduce the possible 

exploration space. In the literature, the researchers usually focus on the state re

duction techniques during the global reachability analysis, such as [11], etc. It is 

also possible to conduct the reduction on the protocol specifications right before the 

global reachability analysis.

6.1 Reduction Rules

In this subsection, we discuss two reduction rules. We call CFSMs specifying each 

process of a protocol as protocol specifications comparing to the notion of the global 

specification during reachability analysis. We assume the protocol specifications are 

minimal and deterministic. W ith in the framework, we give the following two rules 

to reduce the protocol specifications.

Reduction Rule 1: Given an n-process protocol P =  (L , { M i j \ ( i , j )  G L }, {(Si, M it 

i) ,  if  for any process P*, 3s-, s f, s f, sf G Si} rai)fc,raM G M*, where k ,l G 

[1 , n], such that

is} sf) A (si sj) A (sf s f) A (sf sf), and

•  M  G S, mUj, miiV G Mi, where u, v G [1, n], such that (sf 7̂  s i) A((s( +TÔ  > sf) 

V (s' - = ^  s f)) or (sf ^  sj) A ((s f sf) V (sf s '));

then remove state sf and transitions sf +m ’1 > sf and sf mi,k > sf from the spec

ification of process P*.

Reduction Rule 2: Given an n-process protocol P  =  ( L , {M i j \ ( i , j)  G L}, {(Si, Mi, 

»“ ►*)}£=!)> ^  f° r any process Ph 3 s f,s f,s f,s f G St , m ^ m ^ i  G M<, where k ,l G
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Reduction Rule 1

Reduction Rule 2

Figure 17: Demonstration to the Reduction Rules for Deadlock Verification 

[1 , n], k I, such that

ification of process Pi.

For Rule 1, the first condition requires there is a specific pattern of transitions in the 

protocol specification, that is, at some state, there is a choice about the execution 

order of a sending transition and a receiving transition: 1) execute the sending 

transition first, then the receiving transition; 2 ) execute the receiving transition 

first, then the sending transition. Whatever option is chosen, after the execution of 

these two transitions, the same state is entered eventually. The second condition

• M  G S, mUji, mitV G Mi, where u,v e [1, n\, such that (ŝ  ^  sf)A((s- +mu'‘ > sf)

then remove state sf and transitions s • —— sf and sf — sj  from the spec-
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requires the states and the transitions to be removed should not have any other 

states or transitions involved. The sent message and the received message in Rule 1 

can be exchanged w ith the same process or different processes. Rule 2 considers a 

similar choice pattern but both of the transitions are sending transitions. For Rule 

2, we require that these two messages must go to different channels. I f  these two 

messages go to the same channel, because the channel is FIFO, the choice w ill have 

different impact on the content of the channel, that is, if  the orders of the messages 

are different, the contents of the channel are different even though the messages are 

same. Furthermore, different states in the global specification are entered after the 

execution of these transitions. Thus, no state or transition can be removed. The 

second condition of Rule 2 also requires the states and the transitions to be removed 

should not have any other states or transitions involved. How to apply Rule 1 and 

Rule 2 is shown in Figure 17.

A straightforward algorithm that applies Rule 1 can be w ritten by adapting 

Depth-First-Search Algorithm  (DFS). For an n —process protocol P, suppose u is 

the maximum number of states among CFSMs, and v is the maximum number of 

transitions among CFSMs, the time complexity of the algorithm applying Rule 1 

is 0(n (u  +  ?;)). Similarly, the time complexity of the algorithm applying Rule 2 is 

0(n (u  +  v)).

The reduction efficiency of our rules depends on the protocol design itself. I f  the 

protocol is a synchronous protocol, then our rule is of no use. Actually, no reduction 

techniques are useful in that case. I f  the protocol has some concurrent transitions, 

the reduction w ill be useful.

Next, we prove the application of the Rule 1 preserves the properties of error 

states, and channel overflow while Rule 2 preserves the properties of error states, 

nonexecutable transitions, and channel overflow. First, we prove that the application 

of the Rule 1 and Rule 2 preserves the property of error states of a protocol design.
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6.2 Preserving Error States Property

As we mentioned in Section 4, we use error state for a shorthand of deadlock state 

or unspecified reception state since at either of these states the execution gets stuck 

and no outgoing transition is possible.

Our rules preserve a strict error states property; i.e., during reachability anal

ysis, the error states should remain erroneous in the global specification after the 

applications of the rules. A looser requirement can be: if  the global specification 

has an error state, then after the application of the rules, the global specification 

s till has an error state. It  does not bound the error w ith the state. We start the 

proof w ith Rule 1. Intuitively, the form of this kind of pattern is an interleaving of 

two enabled transitions at the same state s i. A t this state, process Pi can either 

get a message from one channel, or send a message to some other channel. Both of 

these transitions can be executed separately. Now we check the behavior of these 

four states during reachability analysis. Due to the presence of the existence of

sending transition s j  sf, any global state containing state si as its local state

for the process Pi is not an error state. Because of a similar reason, neither are 

the states containing state sf. We can check transition sf +mi't > sf to see if  this 

receiving transition w ith label +m iti may introduce an error state. Thus checking
, l  1 Q O A ■,

path S i > sf A s f  > sf becomes unnecessary.

We introduce some notations: Ti denotes the CFSM of process Pi, T( denotes 

the CFSM after applying Rule 1 once, P i denotes the mapping of Rule 1 from Tj to 

T[, then we have P\ : R  —> Tf. Furthermore, we overload the notation of P i to the 

network of P. Let N  be the network of P  before Rule 1, and P i(N )  is the network 

of P  after applying Rule 1 to some process Pi once. I f  we can prove one application 

of Rule 1 preserves the error state property of a protocol, then multiple applications 

are implied.

P ro p o s itio n  6.1 I f  a global state in N  is reachable but not an error state, then
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either this global state presents in P \{N ) which implies it  is reachable but not an 

error state or this global state is removed.

PROOF: Because of the removal of s f, the states that have the state sf as their local 

state for process Pi are removed. Then we discuss the states that remain. Suppose 

s £ S' is a global state in N  that is reachable but not a error state. Since s is a 

reachable state, there exists a trace g £ E*M from the in itia l state, g =  P1P2■ ■■Pr, 

such that s0 S i,..., sr_ i sr and sr =  s. Since s is not an error state, there 

is a path a £ E*M, which starts from s and ends at some error state or the in itia l 

state(in this case, all the states on the trace are not error states). Thus 3/,, t is an 

integer, a =  pr+i, Pt, such that s sr+i , ..., st_ i st and either st is an error

state or st =  s0. Then we have p =  p.a and it  is a trace that passes on s. Let 

pe =  and p,f =  —m^k, where e, /  £ [1 ,t],e  < f .  Then pe and p f represent

the labels of transition sf —•—* > sf and transition sf ——^  sf respectively.

Trace p must contain both pe and pf. We prove it  by contradiction. First, we 

suppose p contains pe and does not contain p j. Since p f is an event to send a 

message and it can always be executed, and there is no other transition that can 

leave from state sf, p w ill contain p f too. Second, we suppose p contains p f and 

does not contain pe. Since there is no other transition entering state sf except the 

transition w ith label pe, such p does not exist. Hence, there are two cases to be 

considered: 1) p does not contain pe and p j\ 2 ) p contains both pe and pf.

For case 1), the application of rule 1 w ill not affect p of s. Thus, s is not an 

error state in P i(N ).

For case 2 ), let se_1 be the last global state that contains sf as its local state for 

process Pj, se and s ^ 1 the first and the last global state that contains sf as its local 

state for process P* respectively, and sf the first global state that contains sf as it 

local states for process Pi. Since p contains both pe and p f , p  can be decomposed 

as p — g'.pe.j.pf.a', where se_1 se and s^ _1 sf. I f  se and s^ _1 are the same 

state, 7  =  e. It is obvious that the transition w ith label —ra^j is in g' and that the
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transition w ith label -Fmy is in a'. The transitions in 7  are from other processes 

other than process Pi and independent from either the transition w ith label pe or 

the transition w ith label p./; otherwise, transitions in 7  cannot be inserted between 

them because of the specification of process Pj. Let p' =  o'.pf.~/.pe.a' which is 

obtained by exchanging the positions of pe and Pf. Because of the existence of path

gi _ > g2 yy s 2 ..+mfc’z > jn protocol specification of process Pi, trace p' must

exist in P ffN ). Thus, s is not an error state in P ffN ). □

P ro p o s itio n  6.2 I f  a global state in P i(N ) is reachable but not an error state, then 

this global state in N  is reachable but not an error state.

PROOF: Trivial. Similar proof to the proof of Proposition 6.1. □

P ro p o s itio n  6.3 A global state in N  is an error state if f  this global state in P i (N) 

is an error state.

P r o o f : Trivial. Similar proof to the proof of Proposition 6.1. □

Theorem  6.4 P i preserves the property of error states of a protocol P.

P r o o f : From Proposition 6.1-6.3, we know there are fewer states in P ffN ), but 

those states in N  but not in T \ (N) are not error states. For those states in both N  

and P ffN ), we have that they are not error states in N  iff they are not error states 

in P i(N )  and that they are error states in N  iff they are error states in P ffN ). 

Thus, P i preserves the property of error states of a protocol P. □

Similarly, we introduce some notations for Rule 2: P 2 denotes the mapping of 

Rule 2 from Ti to T(, then we have P -2 '■ P  T[. Furthermore, we overload the 

notation of P? to the network of P. N  is the network of P  before the application 

of Rule 2, and p 2 {N) is the network of P  after applying Rule 2 to some process Pi 

once.

Theorem  6.5 P2 preserves the property of error states of a protocol P.
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+m. ,+m.

+m. +m.

+m.
Invalid Rule

Figure 18: Demonstration to the Invalid Reduction for Error State Verification 

P r o o f : Similar to the proof of theorem 6.4. □

Now, we show the following rule is not valid in terms of preserving error states. How 

the rule works is shown in Figure 18.

Invalid Rule: Given an n-process protocol P  =  (L, {M itj\( i, j )  G L }, {(Si, M i, sf, — 

)}"=1), for any process Pi, 3sf, sf, sf, sf G Sit mkti, raM G M {, where k, I G [1, n), k /  

I, if

.  (Sf si) A (si s!) A ( S f  sf) A (Sf  si), and„2 ,  „4 \ A  ( + m i ' i  '  „3'\ a  f „ 3  + mM  ,

•  M  G S', mu>i, m i)V G Mi, where u, v G [1, n], such th a t (s( ^  s f) A((s( u,t > s f) V 

(s' s f)) or (s' *  sf) A ((sf sj) V (sf s '));

o _ _ , , i  TTi ^ q  _ o  "f* H Tj 2 4 «
then remove the state sf and the transitions s•  sf and s f  sf trom

the specification o f process Pi.

We give a counterexample in Figure 19 to show this rule is invalid. I t  is a 3- 

process protocol. In the reachability analysis, the global states containing sf are 

not error states since the receiving transition sf + - —3 > sf can be executed. The 

global states containing sf may be error states in N  if  event sequence is chosen as 

+ m i)2 — m 2)i rather than +m i)2 — m 2]3 — m2li for T2. But after applying Invalid
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- m

+ m ,

-m

T1

- m ,

- m .

-m,2,1

12

Invalid Rule

Figure 19: A Counterexample of the Invalid Rule for Error States Verification

Rule, the states containing S3 become error states and the states containing S3 are 

removed. Thus, the error states property of the reachability analysis are changed in 

terms of our strict definition of preserving error states.

6.3 Preserving Channel Overflow Property

Channel overflow occurs because the physical lim itation of a channel is less than the 

length of content of possible traces. We want to prove after the transformation of 

Rule 1 and Rule 2, channel overflow properties is preserved; i.e., for each channel 

( i , j )  G L  the network N  of P  has a channel overflow error if f  P (N )  has a channel 

overflow error where T  is the mapping of Rule 1 or Rule 2. We have the following 

theorem.

Theorem  6 . 6  IF\ preserves the property of channel overflow of a protocol P.
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P r o o f :

We prove the following equivalent statement: V(i, j )  E L, there exists a trace in 

T \{N )  that have equal length of the content to or longer length of the content than 

th a t o f the  removed traces. The statem ent is equivalent to  the  above because i f  the 

removed traces are not the only traces that have the longest length of the content of 

the channel ( i , j ) ,  the overflow of the channel ( i , j )  w ill s till occur after those traces 

are removed.

We divide the set of all traces of N  into two families: traces affected by the 

reduction T\  and traces not affected by the reduction T\.  For those traces that 

are not affected by the reduction P i, the traces are remained as they were and the 

contents of the channels are not changed. Hence, for any ( i , j )  £ L, if  the trace 

causes a channel overflow in N,  then it also causes a channel overflow in P i (N).

For the traces affected by the reduction, we have two cases: 1) traces that only 

contain +m i/, 2 ) traces that contain both Pm/,* and —m*,*,. As shown in the proof 

of Proposition 6.1, the removed traces that only contain — mitk do not exist because 

there are no other incoming transitions of si except si • • sf  according to the 

requirement of rule 1.

For case 1), traces in N  that contain only +771/,* can be decomposed as p =  

Q.+mi j .7 , where q is a trace from the global in itia l state to the last global state that 

contains sf as the local state for process Pi, 7  is a path starting from the first global 

state that contains sf as the local state for process P* but not surpass the last global 

state that contains sf as the local state for process P*. 7  might be empty. A fter P i, 

Pm /,*.7  is removed from N. For channel (/, i), suppose — len at the last global 

state containing sf. A fter the receiving transition sf +m,'‘ > s f, we have operation 

del{uj^i) to channel (I, i), and |u;/,j| is len — 1 . According to the specification of p , 

we know that between sf +mi,z > sf and sf —m%'k > sj, it  is impossible to have other 

receiving transitions in Ti. However, 7  may have sending transitions from process 

Pi to Pj. Let the number of such transitions be inc, then \ui,i\ =  len — 1 +  inc.
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W ith the specification of p , because the sending transition w ith label —ra ^  can 

always be executed and the transition in 7  is not relevant to it, we have the trace 

p' =  Q. — mitk-7  in Ti (N) .  A t the ending state of trace p', in channel (I, i ), the length 

of the content is len +  inc , which is obviously greater than that of p; for channel 

(i, k), the length is increased by 1 because of the sending transition sf —— A sf and 

we have operation ins{u^*, m ^ ) to channel (i, fc); for any other channel except (Z, z) 

and p has the same length as fJ.

For case 2), as we have discussed in the proof of Proposition 4.1, for each p of 

N  that contains both P ra^ and —ra ^ , there exists p' in both N  and N ' such that 

p =  p. +  m iii.r). — m^k-cr and p' =  p. — ra j^.7 . H-ra^.cr, where p is a trace, 7  and a are 

paths and both may be empty. The transitions w ith labels in the 7  are not relevant 

to the transitions we removed. I t  is straightforward that at the ending state of p, 

V(z, j ) G L, p has the same length as p'.

Hence, the reduction T \ does not change the overflow property in this case. □

Theorem  6.7 preserves the property of Channel Overflow of a protocol P.

PROOF: A ll the proof of other traces except those containing only — m iti is similar to 

the proof of Theorem 6.7, so we only discuss the traces containing only —ra^ here. 

We decompose those traces as p =  p. — ray.7 , where p is a trace from the global 

in itia l state to the last global state that contains s j as the local state for process P*. 

7  is a path from the first global state that contains sf as the local state for process 

Pi but not surpass the last global state that contains sf as the local state for process 

Pi. 7  might be empty. A fter P2) —m^ . 7  is removed from N.

From the specification of Ti, we know that both transitions of sending message 

—m^k and —rn,hi are enabled at sf. This means that the cause, which has the partial 

order relationship w ith these two transitions and should happen before these two 

transitions, have happened before sf. Thus, the cause must be in p and must not 

in 7 . Because of the rules of composing the network of P, there exists a trace
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p' =  q . — rnl k. — mi:i .7 in both N  and N 1. A t the ending state of p', for channel 

{i, k), the length is greater by 1 than that of p. For any other channel, the length is 

the same as that in p. Hence, channel overflow property is preserved. □

Now we show InvalidRule  may not preserve channel overflow property. The 

problematic traces are those containing only We can decompose each trace as

p =  g.+m^i.7 , but we cannot always find a trace that has longer length of content for 

a ll channels. For example, p' =  g are not suitable because 7  may have some sending 

transitions from process Pk or process Pi to process Pi, p' =  p. T rn ^ . +  7  is not

suitable because channel (k, i ) w ill have less length.

6.4 Preserving N onexecutable Transitions Property

When we discuss deadlock states or channel overflow, we ta lk about the properties 

of executable transitions of P. I f  the transitions are nonexecutable, actually, the 

reduction w ill not give us relief on the state explosion problem since those transitions 

w ill not be composed into the network of P. For Rule 1, if  some transitions are 

removed, we w ill not know if  they are executable by comparing Tj and the projection 

of N  on Ti. However, Rule 2 can preserve the property of nonexecutable transitions 

by inference from the remained transitions.

P ro p o s itio n  6 . 8  For Rule 2, transitions s] — s 2 ^  s 2 — rLiL>sj  are executable 

i f f  transitions s} — sf A sf — rPULf sj  are executable.

P r o o f :

=>) Suppose transitions sf —r- ’k > sf A sf —UhU sf  are executable, then at least 

one global state containing s i as its local state for the process Pi can be reached.

.s j sf A s f  sf are sending transitions, so they can always be executed

whenever that global state is reached.

<̂ =) Similar proof as the other direction. □
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Figure 20: An Example to Show Rule 1 Does Not Preserve the Property of Nonex

ecutable Transitions

Theorem  6.9 T i preserves the property of nonexecutable transitions of a protocol 

P.

P r o o f : From the above proposition, during the global analysis, i f  we find

sj — s? As? — sj  are executable, so are s i — sf Asf — s4. otherwise,

s i — sf A sf — sj  are nonexecutable. □

As far as nonexecutable transitions are concerned, Rule 1 and Invalid Rule may 

not preserve the property since there always exists a chance that the receiving tran

sition are nonexecutable. An example in Figure 20 shows Rule 1 does not preserve 

the property of nonexecutable transitions. For T2, it  must receive a message from Ti 

before it  can send a message to T\. Hence, the transitions t° +m2,1 > t2 A t2 — U 

are nonexecutable. I f  they are removed, there is no way to recover this information.

6.5 Summary and Examples

Now we summarize the reduction rules and their properties preservation of deadlock 

states, channel overflow and nonexecutable transitions in Table 2.

Here we give a two-process protocol design which has neither deadlock state nor 

nonexecutable transitions and show how the Rule 1 works. Figure 21 is the CFSMs
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Rule 1 Rule 2 Invalid Rule

Deadlock States V V X

Unspecified Receptions V V V

Channel Overflow V V X

Nonexecutable Transitions X V X

Table 2: The Properties Preservation Table of Reduction Rules

Original number Reduced number Reduction Efficiency

states transitions states transitions states transitions

T I 7 8 1 2 14% 25%

T2 9 12 2 4 2 2 % 33%

Global 36 71 5 13 14% 18%

Table 3: The Efficiency Table of Reduction Rule for Example 1

of the protocol P  and Figure 22 is the generated global specification. Because there 

are only two processes involved, Rule 2 is not suitable to be applied.

For this example, we evaluate the reduction efficiency of our method as in Table 3.

The second example has a deadlock state and two nonexecutable transitions, 

which is represented by dashed lines in the protocol specification in Figure 23. Fig

ure 24 is the generated global specification. We see after the application of Rule 1, 

the deadlock state is s till in the global specification and two nonexecutable transi

tions are not in the global specification.

For this example, we evaluate the reduction efficiency of our method as in Table 4.
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T2T1

(A) The Original Protocol Specifications of The Example

T2
T1

(B) The Reduced Protocol Specifications of The Example

Figure 21: The Application of the Rule 1 upon Example 1

Original number Reduced number Reduction Efficiency

states transitions states transitions states transitions

T I 5 5 0 0 0 % 0 %

T2 7 8 1 2 14% 25%

Global 19 28 2 5 11% 18%

Table 4: The Efficiency Table of Reduction Rule for Example 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6 REDUCTION RULES DURING DESIGN VERIFICATION 65

Note: The dashed lines means 
states and transitions are 
reduced by the rule 1.

Figure 22: The Global Specification of Example 1
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+ U /

T2

(A) The Original Protocol Specifications of Example 2 

%

(B) The Reduced Protocol Specifications of Example 2

Note: The dashed lines present non-executable transitions and states.

Figure 23: The Application of the Rule 1 upon Example 2
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+ X |

+y

A Deadlock State! * >

Note: The dashed lines means 
states and transitions are 
reduced by the rule 1.

Figure 24: The Global Specification of Example 2
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6.6 A Discussion

In the literature, reduction techniques are performed during the global reachability 

analysis, but the reduction method proposed in this section is performed before the 

global reachability analysis. The former is dynamic and the latter is static.

As we mentioned in Section 1, in model checking based formal verification, the 

design is interpreted as operational models, such as Finite States Machines (FSM) 

or Labeled Transition Systems (LTS), and the design properties are normally mod

eled by temporal logic languages. From the view of model checking, our method 

conducts transformation on the protocol design before checking if  it  satisfies the 

property. For an n—process protocol P, we denote the specification of process Pi 

as Tj, the performed transformation as P, the desired design property as tjj- II is a 

“parallel” operator which composes the processes of a protocol (that is, processes 

w ill be executed together to form the network of that protocol), and h is an bi

nary relation operator which means “satisfies” . Ideally, ( T i|| T2|| ...|| Tn) b b  iff 

(^■(Ti)H P (T2)\\ ...|| P(Tn)) b ?/>, where b  is a general property expressed by some 

temporal logic language.

However, the work of this section is not that general. The lim itation of our 

work is in two aspects: 1) lim ited applicability of the transformation rules, that is, 

only two special patterns are considered; 2) the properties we can preserve is not 

so general that any existing temporal language can express more properties than 

those we discussed and the transformation of applying our rules may violate other 

properties. For example, when the desired property is “there exists a trace such that 

the event receiving message m ij followed by the event sending message , but 

these transitions are removed in Tj by applying Reduction Rule 1, and such trace w ill 

never be found in  the global reachability analysis. In this case, the desired property 

is violated. So our work may just be a start.
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7 Conclusion and Future Work

In reverse engineering, when a set of observations is given, we aim at constructing 

a deadlock-free design from it. In [6], three construction rules were proposed to 

achieve this goal. In this thesis, we have improved the th ird  rule Ruleneg. W ith 

improved rule Rule'neg we take into account the contribution of the m irror of T i, 

and only select the ones that can really help to remove the deadlock states. By 

this improvement, fewer states and transitions may be added to T2. However, the 

improved Rule'neg may not be an optimal solution in the sense of constructing a 

minimum design w ithout deadlock errors, in the future, we w ill continue our study 

to answer the question like “Does there exist an optimal solution for this problem?” 

or “I f  such solution exists, how to achieve it? ” . This method only works for 2-process 

protocols, and how to remove the deadlock states in n —process protocols is left as 

future work. Furthermore, the problem of removing unspecified receptions remains 

open.

In this thesis, we have also proposed a method to reduce the number of states 

of protocol design right before global reachability analysis during protocol design 

verification. We developed two reduction rules to deal w ith a specific pattern of 

transitions in the protocol specification. Reduction Rule 1 deals w ith  a choice of a 

sending transition and a receiving transition while Reduction Rule 2 deals w ith a 

choice of two sending transitions to different processes. When the conditions of the 

rules are met, some transitions can be considered as redundant transitions for the 

formal verification and are removed, thus, the search state space is reduced. Fur

thermore, Reduction Rule 1 preserves deadlock and channel overflow errors but may 

not preserve non-executable transition errors. Reduction Rule 2 preserves all these 

three errors. In the end, we discussed the efficiency of our reduction method w ith 

two examples. The drawback of this method is if  the protocol specification does not 

contain any pattern conforming to the conditions of the rules, the application of our 

method is not effective. In this thesis, we only discuss four logical errors, namely,
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deadlock states, unspecified receptions, channel overflow, and non-executable tran

sitions, and other advanced properties verification is left for future work. Also, we 

only discuss the pattern that two paths have two same events but of a different 

order, discussion of paths w ith multiple events is left for future work.

Other possible future work include: (1) study the possibility of the present meth

ods in the context where the communication channels are not FIFO; (2) study the 

possibility of the present methods in the context where the communication channels 

are not error-free.
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