University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2004

A decentralized code resource sharing model for grid computing.

Fan Wang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Wang, Fan, "A decentralized code resource sharing model for grid computing." (2004). Electronic Theses
and Dissertations. 586.

https://scholar.uwindsor.ca/etd/586

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/586?utm_source=scholar.uwindsor.ca%2Fetd%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A decentralized code resour ce sharing model for grid computing
Wang, Fan
ProQuest Dissertations and Theses; 2004; ProQuest

A Decentralized Code Resource Sharing

Model For Grid Computing

By

Fan WANG

A Thesis
Submitted to the Faculty of Graduate Studies and Research
Through the School of Computer Science
In Partial Fulfillment of the Requirements for
The Degree of Master of Science at the

University of Windsor
Windsor, Ontario, Canada

2004

©2004, Fan WANG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-92481-5
Our file Notre référence
ISBN: 0-612-92481-5

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Grid computing is concerned with developing a conceptual infrastructure for resource
sharing among geographically distributed virtual organizations. One important type of
resource for Grid application developers is code resource, typically accessed through
code repositories that store reusable software components. Current code resource
sharing mechanisms use the client/server model, which does not support distributed
code repositories. In this thesis, we approach the problem of distributed code resource
sharing in Grid environment by proposing a new model that provides a decentralized,

dynamic, scalable and heterogencous solution.

In our model, we use Peer-to-Peer (P2P) technology to support code resource sharing
in Grid context. Within our prototype software system, every computer is a Grid
“servent” node, which acts as both server and client by providing and requesting for
reusable software components. Thus, a distributed code resource sharing community is

established indeed.
In this thesis we report on the design and implementation of a prototype code resource
sharing software system. This system provides an effective way to aid Grid software

developers to obtain access to distributed code resources in a decentralized way,

featuring good economy and high autonomy within Grid networks.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEDICATION

To my parents, for their endless love!

To my siblings, for their care and support!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

My greatest thanks must be given to my supervisor, Dr. Robert D. Kent, for his
continuous encouragement and guidance. Without his enlightened help and comments,

this thesis work would never have been done.

I am also grateful to Dr. Chen and Dr. Zamani for their guidance and valuable

suggestions. Thanks also go to Dr. Yuan for as the chair of the committee.

I would like to thank my friends and colleagues at University of Windsor for their

earest help during my thesis work.
Finally, I would like to acknowledge financial support in the form of research

assistantships received during 2003 to 2004 from the Sharcnet Research Fellowships

program through a grant to Dr. Robert D. Kent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT ...ttt ettt st e sttt as et e et s s eerene et eer et st st steasesaesrasasstenseserassensen iii
DEDICATTON ...ttt ettt et es et ese et ees st e s st saeeseeveensesssssssaseeneesaseatssesessesesesnesonon iv
ACKNOWLEDGEMENTS.....coiiitiinieitinteietr it ereeseeess st ssaseses et essesensres s enssessessssotesssssssonsnnonen v
LIST OF FIGURES ...ttt re st v st nenssre e s se s bt s eneeneses Viil
LIST OF TABLES ..ottt st et essseve s et s tebe st etestabes et sseetssesoresasbosssasseshonsvennen X
L. INTRODUCTION........ooooeceeeeceeeeseeeeee e essesee e eseese e essees s sessse e 1
1.1 OVEIVIEW OF GIIU..oevivieiireiireirieeetretceeetetete ettt er e ettt sn st st s e se e e eaone 1
1.1.1 GIId COMCEPL...cenneieirteieiee et see e e e beae s sas b e es s e snene s ssesreeresaestsssansnntsnssnees 1

1.1.2 Grid ATCRIEECIUTEovevireeieicecee ettt ettt eea sttt ee 3

1.1.3 Grid CRAracteriStiCS ..v..evverierrierieierieteeeeieereeeeeereeres s s ereees s rensesesees e resesnessssasasesaone 5

1.1.4 Relationship With Other Distributed Technologies..........o.oovoieveiereeceerree e, 6

1.2 COAENEL PIOJECT...cceieeeeieeieirerietiieteeiee ettt ereere e sttt r e esnes e seesasnesaensenneseesenee 7

1.3 Thesis StAtCIMENLc.ccvvvrriereiereriirieiieiee ettt r e s senssesssone st essmeens 9

1.4 Organization Of the TRESIScoevivieiieiiietceec ettt enea 11

2. BACKGROUND. ...t eeres e saeeeseeseseennen 12
2.1 OVErvIEW Of PEET-t0-PEEI......coueeiiiiiicieree ettt sttt 12
2.1.1 Peer-t0-Peer COMCEPL ..ottt ettt es sttt n s ne s s onon 12

2.1.2 Peer-10-Peer ATCHItECIUTIEc.c.eevrveieieieietieiresiete ettt ettt et renesessanen 13

2.1.3 Peer-to-Peer DiScOVEry APProacheso.eeeveeveerimceeeeeeeeeteeeeeeeeveeeeeeeeesee e 15

2.1.4 Peer-to-Peer CharacCteriStiCSoovieierurrrerierieeresetetieteee e reree st reree e s seseressennens 18

2.1.5 Peer-to-Peer APPlICAtioNSccoeueuereriririenectrrreirtsreeeset ettt en s 20

210 IXTAPIOJECLcneviietcereieericneccreseteseetese et ettt tese s s et et saesaa s etensssessessassbebernssennon 21

2.2 Overview of SORIWAre REUSEccvvvieeiericceieeieecceteeeteectnv ettt sb s nen 23

2.3 Chapter SUIMIMATYccovrurecrererietsitsestsesesesesesesetesseresasasssssssnsssesesssssssssssnssesssesessassesosesns 27

3. RELATED WORK ..o sees e e seeseee 28
BT JEDl ittt et er e et et et e s e s s et et s ee s e neenee b e ae et enesene 28
BT OVEIVIEW ..ottt ettt ettt be e s e e re s e be st s e seete et eenesaeonessesssanseeas 28

3.1.2 Jini Resource Sharing MeChaniSm...........cveureveeieiveieerenieieeeceeceree e reenenaes 29

3.1.3 Advantages and DiSadvantages..........coeeeveeiriuieiiiceieceeeeeeee e 32

B2 GIODUSceeeiteiieteete ettt ettt e e st ettt bt et e et e vt nees e e s e e e eneanen 33
B2 T OVEIVIEW.coniiiiiiiitteeee ettt et et easeasea b e ta s snesossr e st et sossessasesneensneneesessene 33

3.2.2 Globus Resource Sharing MechaniSmcccevevveveevecnneisierciee e ereseneresc e 34

3.2.3 Advantages and Disadvantagescooevvvveererninrirnssesieesneeieeseesreesreeseeeeeesseesessnsnens 37

BB NAPSIET ..ttt sttt et s s et r et ettt e e s et b n et s nt et et s as e e et eanesae st et et ennen 38

BB GIULBILA. ..ottt ettt ettt e et e n ettt es et ee et ee e en e ettt serea 40

3.5 Chapter SUIMIMEATYcovivieeeieeiceeeee et ee et es e ese e e st s e e e e s e e et eee s eeeeasesaens 42

4. PROTOTYPE DESIGN & IMPLEMENTATION ..o, 44
4.1 MOTVALION. c..ceeiutitettetietestest ettt eeiet et e et es e eeeae s et e ese e en creeseeseseessnsaneseenesosoneeeeanennoeen 44

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 System Design GOalScccvcirrenrirrnretceererrste et sesse ettt 45

4.3 Prototype Model OVEIVIEW . ..c.ccueiiiriiiiiieneecenrentisriiete s bes esbesssssersenenrennene 46
4.4 Prototype Model DESIZI1coveureriirirriieienenisesiee ettt e vns e assees s s ssen 47
4.4.1 Roles I MOMEL........ooviiriiiieire ettt ettt n s 47

4.4.2 Working Modes in MOdEl.........cocoereeoiveeiieieeccieeeree et 50

4.4.3 Communication Messages in Model...........ccocoooiinniiici e 53

4.4.4 Structures of System ROIESovevveveeiiieirieeneee ettt 55

4.4.5 Scale Control in Modelcocceeirireniniiieirieeeeeee et ev st nens 58

4.4.6 Domain Split and Mergence it MOdel..........oououevevivieirieeieeeeeeceeeee e 59

4.5 Development ERVITONMENLcvvveeerrreieieeisieieseeseeieaeeeereetere e enerssessssessesessssssssseeenesenes 60
4.6 System Design SPECITICATIONecveeieiierirrecrereereeecere ettt et s eesteeeeneans e e sens 60
4.6.1 SYSLEIM USE CASESoeeieireeirriiieienite et eesesbes e aeseesseveebe s esesaenses s reeneessenenensssesaons 61

4.6.2 System Class DIa@rams.cccecceirceurreirereeesiescieeeessste et et eesee s et ererensennens 63

4.6.3 System Sequence DIagrams.........ccoecvvvererrerveesiericreeeseeeteereiee e e eeereereeseeessressenrens 67

5. SYSTEM DEPLOYMENT AND INTERFACE ..., 76
5.1 SYSIEIM SEIUP..c.veuiiireiecirtete ettt ettt e et e e et ettt asa e e s e beeeeeresreceenean 76
5.1.1 Setup for the role of Code ReQUESE PEET.....c.vcvevierinrecierricieteeeeeecre e 76

5.1.2 Setup for the role of Code Service Peer.........ocvviieiivireiieeeieieeeeeceee e, 77

5.1.3 Setup for the role of Code Service SUPErPeer.......c.covvvivveeeiecceceeeceeeee v 78

5.2 SYStem INLEITACEoeveeveeeeieieeee ettt et s b st st st creenenseneeneeresressonson 79
5.2.1 Code Request Peer INterface..........c.oovviveeivieeiceicecereeece et 79

5.2.2 Code Service Peer INterface..........cooveeeeivieeeieieeieecieeeeeieteeee et 83

5.2.3 Code Service SuperPeer INterface...........coviviviveuieriteeieee e 83

6. SYSTEM EVALUATION..........coomioeeeeeeeeeeeeeeeeneeeeeee oo, 85
6.1 INtErOPErabIlity.......cocreerirerrereictreniereieictet sttt b e e er e b a et neais 85
6.2 PEIfOIMIANCE ... ettt ettt e b st e b s tatesr s s eseereenesseneereeresaesaonean 86

6.3 SCALADIILY ...o.eovvrrciceeere ettt b bbb es st et e b neeas 90
6.4 IMPIEMENIADILILYcvvveverrereerieeteteiriet sttt sv ettt sen s er e nesseresessesenen 91

6.5 LIMITALIONS ...c.oeveieieieieiniriete ettt et st et a e st esaes s e esa st e st et ensenbesnssnessenesaneareeneen 91

7. CONCLUSION AND FUTURE WORKcoooooiomiroieecoeceeeeeee. 93
7.1 CONCIUSION ..ttt ettt e e reene st e esesestesaenesasenenessee s eaesanesonnons 93

T 11 INNOVALION et see et e et et ess bbb e v et s e seseennesnssresnsensenssensenns 93

7.1.2 ACHIEVEINENLS.....coeveevcireeinieiete st seses et ebe e st essbe e et s bt sese et enenetennessenes 93

7.2 Suggestions For Future RESEarch.........ccocovvevveinieieiineeieietieticre et 94
REFERENCESooiioeee e ss e 96
VITA AUCTORIS ..ot 101
vit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 1-1: The layered Grid architecture and its relationship to the Internet protocol

architecture [FOStEIO 1] . ccoieiriiiieiereceer ettt e svbebe s b e saeessba e e svesssaassnesbsees 3
Figure 2-1: A Simple Taxonomy of COmMPULEr SYSLEMSc.coueeeeieveeeiririneceererrcee e 13
Figure 2-2: P2P System ATChItECIUIE........ceveereierriririreeirereeicrereeceseeecere et et ees e s aee e 14
Figure 2-3: Centralized Directory ApProachcccececeverrenenicnenecenieseneeeeeeensnesessere s 16
Figure 2-4: Flooded Requests APProachco.coccoiemiirieinece ettt 17
Figure 2-5: Document Routing Approachc.ccocveveieiviniiniieiniiiiniensiseeceneeeeereee s 18
Figure 2-6: The JXTA Protocol SUIE.....cccccteieirmicereniimieierennicetsst ettt cncnsse e esonsens 22
Figure 2-7: Reuse-oriented software development process with Software Reuse.........c..c..... 26
Figure 3-1: Jini Resource Sharing Architecture and Workflow ..o 30
Figure 3-2: The Globus Resource Management Architecture [Foster98]cocvvvcreneinnns 35
Figure 3-3: Napster Content Sharing Mechanism.............ccccocvoiniiiiineiniiiiceeeene e 39
Figure 3-4: Gnutella Content Sharing Protocolcoooieeiieiiee e 41
Figure 4-1: Overall Architecture of the Proposed Model............coveeeievrerrerreieeeeeeeee 47
Figure 4-2: Multicasting Mode for Code Resource Searchingcoocoecveneeveerecrenicinrecncnnne 51
Figure 4-3: System Workflow in Multicasting Modecc.coceevevevrinenrencnrenencerencenceeeae 51
Figure 4-4: System Workflow in Routing Mode.......c.covieeiriinieieinccecrcrieecciecet e 52
Figure 4-5: Communication Messages for CRPcccocevveriiencrniiniieneneneeeeeeceee e 54
Figure 4-6: Communication Messages for CSP...........ccocccomircinciincniiincccteiece e 55
Figure 4-7: Communication Messages fOr CSS...........vrmrrrrrerieieeesesissesssessessessessessessseseeees 55
Figure 4-8: Code Request PEer StrUCIUIE.cccvvererreceeirere st tr e neieseesitevee s eie e sese e 56
Figure 4-9: Code Service Peer SIUCIUIE.ocvviiieviiiiitieiiireeee et 57
Figure 4-10: Code Service SuperPeer StuCtureccoccovvervenieiieiieinniene e 58
Figure 4-11: Use Case Diagram for Code Request Peer..........ccccoeeviiececcicninincne e 61
Figure 4-12: Use Case Diagram for Code Service Peer.........ccccoovoiececciciinnincncncicie 62
Figure 4-13: Use Case Diagram for Code Service SuperPeerccoccocmiiiiiiiiiiccnnnnne. 62
Figure 4-14: Code Request Peer (CRP) Class Diagram.........cccecivveveieicccvenneniirinncienennninnne 64
Figure 4-15: Code Service Peer (CSP) Class Diagram..........cccoeeeevvicrienenenennerneeneecreennenees 65
Figure 4-16: Code Service SuperPeer (CSS) Class Diagram.........c.ccoceveeecveciiiiinineneneniennae 66
Figure 4-17: CRP Broadcast Query Sequence Diagramco.ceeeeeriieereeennneentncecercnennnennes 68
Figure 4-18: CRP Route Query Sequence Diagram [Within Domain].........cccceceeevenenncnnnnn. 69
Figure 4-19: CRP Route Query (to CSS) Sequence Diagram [Across Domain]c..cc.c..... 70
Figure 4-20: CSP Search and Retrieve Code Sequence Diagram..........ccccoocevvceniereenienevienncnnne 71
Figure 4-21: CSS Forward Query Sequence Diagram [Query from CRP]......c.cocceiiiirneienanee. 72
Figure 4-22: CSS Forward Query Sequence Diagram [Query from CSS]......ccccocevveninennene. 73
Figure 4-23: CSS Search Code Sequence Diagramccccovevinieiiiinvivininnicinncncnneeenene 74
Figure 4-24: CSS Store Code Sequence Diagram............coecieieiiiicenriniene e ececeeee 75
Figure 5-1: CRP Setup package in Windows98/2000.........cccoviriireriniinireniencenrenecrenreecenenne 76
Figure 5-2: Microsoft Access™ Database Setup in Windowsccoc.oeueerrerreeeerrerieerees 77
Figure 5-3: Startup MySQL Database Service in Windows..........cocooieiriiesicneeiecsceere 78

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:
Figure 6-1:
Figure 6-2:

Domain Setting Dialog GUL.........ccccviverenirenernercres et eeeersesessesnsnsseens 79
GUI for Code REQUESE PEETeeruirerreirieneeerieieeteiectetestessesrasteaeensessesseesvesseesseens 80
GUI Example of Code Request Peer in multicasting modecoceveeerenereennnne. 82
GUI Example of Code Request Peer in routing modec.cceeveererrerevrnrncneniane. 82
GUI of Code Service Peer........cocouveieirieinececteteteete sttt 83
GUI of Code Service SUPErPEETcovivivenirieieietet ettt 83
Chart for Performance Comparison on Windows2000 with Access™oo......... 88
Chart for Performance Comparison on Linux with MySQL........cccooccvveeriervenenn. 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table 3-1: Core Globus Services [FOSter98].......ccovoivirmieriecrienrinineieee s s cereeecrs e seeeeseonees 33
Table 3-2: Comparison of the Existing Models with C/S Model........cccoevervvrreneenrecrrenrenenne 43
Table 6-1: Testing Result Table for performance on Windows2000 with Access ™vreen.... 87
Table 6-2: Testing Result Table for performance on Linux with MySQLcocooevevevvnennnne 89
Table 7-1: Comparison of the C/S model and proposed modelc.ccocoovvvereeirveceiieen. 94

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

In this thesis we report on the design and implementation of a prototype software
system for distributed code resource sharing in the context of Grid computing. In this
first chapter, we introduce the Grid environment in which our model applies, the

CodeNet project, thesis statement and the organization of this thesis.

1.1 Overview of Grid

1.1.1 Grid Concept

With the rapid development of computer technology, more and more computers
located at different sites are connected together to form a Local Area Network (LAN).
The demand for powerful distributed systems, which can take advantage of
geographically distributed computing resource, increases accordingly. “...A
distributed system consists of a collection of autonomous computers linked by a
computer network and equipped with distributed system software, which enables
computers to coordinate their activities and to share the resources of the system --
hardware, software, and data...” [Coulou94]. In recent years we have seen a rapid
evolution of technologies in distributed systems. From network protocols to distributed
system infrastructures, new concepts have been introduced. However, as the paradigm
of distributed system expands, new interconnectivity and interoperability challenges
arise. The conventional distributed computing technologies can not fully overcome

those challenges.

As a result, the concept of Grid has evolved to describe a set of resources distributed
over wide-area networks that can support large-scale distributed applications. Grid

(33

computing is defined as a “...hardware and software infrastructure that provides
dependable, consistent, pervasive, and inexpensive access to high-end computational

capabilities” [Foster99]. Since its creation, the term “Grid” has been used in so many

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contexts that it has become difficult to get a clear picture of what Grid really means. In
[FosterO1], Foster, Kesselman, and Tuecke attempted to erase the confusion by
defining the Grid problems as “...coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations.” In [Foster02a], Foster set up a
three-point check list for determining whether a distributed system is a Grid
application, those check points include: (1) coordinated resources that are not subject
to centralized control. (2) use of standard, open, general-purpose protocols and

interfaces. (3) delivery of nontrivial qualities of service.

A Grid is an infrastructure for globally sharing data or compute-intensive resources
such as large-scale data sets, supercomputers or computational clusters. Different from
conventional distributed systems, Grids focus on the interoperability between different
platforms and dynamic large-scale resource sharing among multiple virtual
organizations (VOs). The concept of VO is central to Grid computing. In a simple view,
a VO is a set of participants with various relationships that wish to share resources to
perform some specific tasks. VO examples include: a group of researchers from
computer science and life science work together to decipher information from an
mmmense amount of data that is generated by gene research of life science [Mewes00];
several consultants engaged by a car manufacturer to perform scenario evaluation
during planning for a new factory. As these examples suggest, the Grid problem is
central not only to science research, but also to industry, where the coordination of

distributed resources both within and across enterprises is increasingly important.

The resource sharing that Grid enables among VOs is not only file exchange but also
direct access to Grid networking resources, as is required by a number of collaborative
problem-solving and resource brokering strategies emerging in science, industry and
engineering. This kind of sharing is highly controlled with resource sharing policies
defined clearly by autonomous resource providers that govern access to resources. In
Grid, there exist multiple types of resource, including computational resource, storage
resource, network resource, code repositories and scientific instruments to name but a

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

few. In this thesis, we focus on sharing mechanisms for code repositories.

1.1.2 Grid Architecture

In Grid environments, VOs vary tremendously in their size, duration, purpose,
structure, community and supporting device platforms. Since the traditional distributed
technologies do not support an integrated approach to the wide variety of required
services and resources, and also lack of flexibility and control needed for enabling the
types of resource sharing necessary, there is a need to define a Grid software
infrastructure to support heterogenous VOs. In [Foster01], the Grid architecture
presented places a large emphasis on interoperability as it is fundamental to ensure that
VO participants can share heterogeneous resources dynamically. The architecture
organizes components into layers, as shown in Figure 1-1 [FosterO1]. Components
within each layer share common characteristics, but can build on capabilities and

behaviors provided by any lower layer.

Apphctian

|
g v E
IS Cdllective &
£ 5
_— [»]
g _ &
5 Y — | g
& Comedhivity %
: %
5

Figure 1-1: The layered Grid architecture and its relationship to the Internet

protocol architecture [Foster01]

The Grid fabric layer provides the lowest level of access to actual native resource and
implements the low-level mechanisms that allow those resources to be accessed and
used. More specifically, those mechanisms must include at least, state enquiry and

resource management mechanisms, each of which must be implemented for a large

Reprodhced with permission of the copyright owner. Further reproduction prohibited without permission.

number of local systems.

The Grid connectivity layer defines communication and authentication protocols for
network transactions between resources. Communication protocols enable data
exchange between Grid users and resources. Authentication protocols provide
cryptographically secure mechanisms for verifying the identifying Grid users and
resources. Many communication protocols in the connectivity layer are drawn from
TCP/IP protocols stack such as 1P, ICMP, TCP, UDP, DNS and so on. In this thesis,

our prototype system utilizes UDP, IP and DNS protocols for communication.

The Grid resource layer builds on the connectivity layer to implement protocols that
enable the use and sharing of individual resource. More specifically, two fundamental
components in this layer are (1) information protocols for querying the state of a

resource and (2) management protocols to negotiate access to a resource.

The Grid collective layer focuses on the coordination of multiple resources. Examples
of functionalities include resource discovery, co-allocation, scheduling and monitoring.
This is the layer where a wide variety of challenging distributed computing questions

must be answered.

Finally, the application layer is where VO applications are implemented and may use
several of the previous layers. As shown in Figure 1-1, the application layer is not
required to be based strictly on collective layer. For our prototype system in this thesis,

the application is based on Grid connectivity layer directly.

The description of this architecture in [Foster01] (Page 6-13) uses components defined
in the Globus toolkit [Globus] as concrete examples of Grid layer implementations.
Globus toolkit provides a set of tools and basic services that are currently leveraged by
many Grid efforts. Beyond the Globus toolkit, the Global Grid Forum [GGF] is a
consortium of over 1000 academic researchers and industrial partners whose goal is to

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

make recommendations for protocols and system design standards development in

Grid infrastructure.

1.1.3 Grid Characteristics
Distinguished from conventional distributed systems, Grid has many unique
characteristics as described in [Foster98] and [Foster02a]. We summarize those

characteristics as follows:

1. Decentralized Control: A Grid integrates and coordinates resource and users that
live within different control domains. Usually a Grid domain physically represents a
LAN connected with other LANs. In every domain there exists the native resource
management policy. There is no universal centralized control mechanism to rule

over all the components in all Grid domains.

2. Heterogeneity: A Grid is built from multi-purpose protocols and interfaces that
address such fundamental issues as authentication, authorization, resource discovery,
and resource access. Since a Grid involves many administrative domains, which
may vary tremendously in their size, purpose, structure and supporting platforms,
these protocols and interfaces must be standard and open to achieve interoperability

among heterogenous domains.

3. Dynamism: A Grid contains a great number of large-scale resources, which may be
in geographically distributed national or international groups. In each group,
resource and users can join or leave Grid community dynamically without affecting

the function of other Grid components.

4. High Performance: A Grid allows its constituent resource to be used in a coordinated
style to deliver various qualities of service, so the utility of the combined system is

greater than that of the sum of its parts.

Repfbducéd with permission of the copyright owner. Further reproduction prohibited without permission.

5. Scalability: A Grid may increase in its size when new resource joins or new domains
incorporate. This kind of change will not lower the performance of whole Gird
system, but increase the capability of Grid and make Grid more powerful to delivery

higher quality of services.

Because of the above distinctive and demanding characteristics, many powerful Grid
application systems have been produced in recent years. These systems display great
capability in areas including data-intensive computing, distributed computing,

collaborative work and remote access to scientific facilities.

1.1.4 Relationship With Other Distributed Technologies

The concept of controlled, dynamic sharing within VOs is so fundamental that some
problems and challenges in Grid also appear partially or completely in other
distributed systems. Therefore, Grid system can work with other existing technologies
for distributed resource sharing. For example, Grid can integrate web technologies
such as Java Server Pages (JSP) to build “VO Portals” that provide thin client
interfaces to sophisticated VO applications, WebOS addresses some of these issues as
described in [Vahdat98]; A company that has built an enterprise system using Java 2
Enterprise Edition (J2EE) and CORBA can use Grid technology to integrate its local

network with other external systems of other companies to form an enterprise market.

In recent years, there has been a strong convergence of interests among Grid
computing, Peer-to-Peer (P2P), Internet and Enterprise computing. A typical example
is the concept of Open Grid Services Architecture (OGSA) [Tuecke03] [Foster02b]
[FosterO2c], which is an area of intensive interest for Grid research now. In essence,
OGSA is the combination of concepts and technologies from the Grid and Web
services communities. In this thesis work, we focus on the integration of P2P

technology with Grid computing.

Grid is a very broad and abstruse topic in its domain of application and raises research

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

questions and challenges that span many areas of distributed systems, and even of
computer science in general. In [Casanova02], some critical issues related to the future
of Grid development are summarized. Resource dissemination and retrieval is one of

those important issues. It is also what this thesis focuses on.

1.2 CodeNet Project

As more and more computers are connected together through network technology,
users can solve complex problems by utilizing greater computing resources through
networks. Among all the Grid resources, code resource is an important type of resource
for software developers. It is formed by repositing existing software code components,
which then can be used as building blocks to construct new software systems. Code
resource sharing means making those reusable code components in code repository

available for distributed users to search and retrieve.

At the present time software programming codes are being produced with exponential
increase, but among all the produced codes, complete or partial redundancy exists, and
the reuse of codes is rare even though software development is difficult, especially
within parallel and Grid computing environments. One of the main reasons for this
situation is: the shortage of good applications or tools to assist software developers to
search for and retrieve suitable reusable software components from code repositories
through networks. To change this situation, the concept of CodeNet is brought

forward.

CodeNet is a research project conducted by Dr. R. Kent at the University of Windsor,
and directed at investigating issues involving both software reuse and Grid computing.
One objective of this project is to create Grid-enabled applications and tools that aim to
provide efficiently accessible distributed repositories for code developers within the

context of virtual communities served by Grid networks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lot of research and practice has been made on this project: In [Zhong00] and
[Zhang00], a prototype system named DORLM (Distributed Object-based Software
Reuse Library Module) was designed and constructed for software reuse and
reuse-oriented program development in a distributed computing context; In [Yu01], a
multi-server code service system model was suggested to solve the fundamental
problem of work balance for efficiency and fail over for availability; In [Zhao02],
object-relational database technology and the Java JINI concept were introduced into
the CodeNet project to establish a centralized object-relational database-based code

service retrieval system within a Grid test-bed environment.

In these works, the prototype systems all adopted a Client/Server (C/S) infrastructure,
in which all the available reusable code components are collected together and stored
in a server computer. Users must send requests to server computer and retrieve
server-side code components through network. This model can provide good
performance within LAN with limited clients. But, as the network becomes pervasive
and large-scaled, this code-resource sharing model will display some vital limitations
because of its high dependency on central server and increased cost of server
maintenance. Besides, with the appearance of the advanced Grid computing
technology, code repositories are increasingly prone to wide distribution, which is not
fully supported by traditional C/S model. Therefore, a new code resource sharing
mechanism is in urgent need for Grid networks environment. Based on the previous
research on CodeNet Project, in this thesis we import Peer-to-Peer (P2P) technology to

replace the traditional C/S code resource sharing model with a new approach.

To the extent that our research goal involves a peer-to-peer based approach to many
possible, different types of content sharing, we have also included a discussion of how
this approach is used to support sharing of code source files specifically, in the context
of CodeNet as it evolves. Thus, in this thesis, we view code sharing to mean a
generalization of more specific content sharing evidenced by some of the examples

referenced later, such as Napster.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Thesis Statement

This thesis presents the design and implementation of a new decentralized code
resource sharing model, in which peer-to-peer (P2P) technology is used to address
typical known limitations of content sharing systems, as exemplified by the CodeNet

project. These limitations include, but are not limited to:

1. High dependency: Current systems are too dependent on central code resource
server. If the server fails over, the whole system will stop working.

2. High cost: The cost for purchasing and maintaining the hardware and software in
server-side machine is too high.

3. Limited scalability: Each client must send requests to the central server for
searching and retrieving reusable software components. As the number of clients
increases, the load and bandwidth demands on the server also increases, eventually
preventing the server from handling additional clients.

4. High centralization: Current code sharing systems only support centralized code
resources, and do not support distributed code repositories among multiple Grid

domains.

We design and implement a new model for support of distributed code resource
sharing in Grid context. It overcomes the limitations of the conventional code resource
sharing mechanism with improved decentralization, interoperability, scalability and

dynamism.

In our proposed model, source code components can be stored into and retrieved from
distributed code repositories in a decentralized manner, thus the whole system avoids
dependency on central code repository server and reduces cost by sharing cost among
all peers. Based on the previous research of CodeNet project, our thesis extends the
CodeNet application system with a decentralized P2P based approach. With our model,

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we can further establish a Grid resource-sharing framework into which many existing
Grid applications and services can be incorporated for the next step. Our system can
also be taken as a code service to be integrated into Open Grid Services Architecture

(OGSA) [Tuecke03] [Foster02b] [Foster02c]

The objectives of this thesis can be summarized as follows:

e Propose and present a new model that supports distributed code repository based
sharing in Grid environments, where distributed code refers to generalized content
data.

e Design and construct a code resource retrieval prototype system that works in a
decentralized manner to overcome the shortcomings that exist in the previous
CodeNet implementations and other Client-Server based infrastructure

applications.

The qualities that a reasonable grid solution must possess include decentralized control,
heterogeneity, dynamism, high performance and scalability, as stated previously.
Also, a good solution must overcome the limitations of dependencies, costs, scalability
and centralization. In order to meet all these goals it is necessary to develop a
regimen of objective testing and evaluation; this is also a vital aspect of this thesis

research.

We note that throughout the thesis we often refer specifically to the CodeNet project.
The intention of this research project is to develop a laboratory framework and test bed
to investigate and analyze various aspects of code sharing on many levels. As such,
CodeNet is a generic representation of many other resource sharing systems and may
be understood to provide a bridge to appreciate the problems and possible solutions

that may arise in this research context.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 Organization of the Thesis

This thesis is organized into six chapters:

Chapter 1 gives a brief overview of Grid-related concepts and technologies, takes a
quick glance at CodeNet project, presents the statement and the organization of this

thesis.

Chapter 2 introduces the background knowledge of the code resource sharing. In this
chapter, we discuss the general concepts and technologies from two research areas:

Peer-to-Peer and Software Reuse.

Chapter 3 discusses the related work on resource sharing mechanism. In this chapter,
we describe four resource sharing models: Jini, Globus, Napster and Gnutella. We
review the mechanism of each model and compare these four models at the end of this
chapter in summary.

Chapter 4 defines the goals of new resource sharing model in Grid environment, and
presents the detailed design and implementation of the prototype system that fulfills
the model.

Chapter 5 discusses the steps required to deploy and use the prototype system.

Chapter 6 evaluates the features of the prototype system.

Chapter 7 draws conclusions from this thesis and suggests for future research

directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND

In this chapter, we introduce the background concepts and technologies related with
our proposed model. The chapter is organized into three sections. Section 2.1 discusses
the background knowledge on Peer-to-Peer. Section 2.2 describes the background

knowledge on Software Reuse. Section 2.3 summarizes this chapter.

2.1 Overview of Peer-to-Peer

2.1.1 Peer-to-Peer Concept

Peer-to-Peer (P2P) is a very controversial topic. There are several definitions of P2P
that are being used. The Intel P2P working group defines it as “the sharing of computer
resource and services by direct exchange between systems” [P2pwgO1]. The
Hewlett-Pachard corporate laboratory defines P2P as “a class of systems and
applications that employ distributed resource to perform a critical function in a
decentralized manner” [Milo02]. Clay Shirky defines P2P as “... a class of
applications that takes advantage of resource — storages, cycles, content, human
presence — available at the edges of the Internet. Because accessing these decentralized
resource means operating in an environment of unstable connectivity and
unpredictable IP address, P2P nodes must operate outside the DNS system and have
significant or total autonomy from central servers” [Shirky01]. In a simple view, P2P
is about sharing: giving to and obtaining from the peer community. A peer gives out

some resource and obtains other resources in return.

The concept of P2P 1s not new. It is based on technology and techniques that have
existed since the early days of Internet. But in recent years, P2P systems have grown
dramatically and received much attention as a means of sharing and distributing
information in distributed system. Conceptually, P2P is an alternative to the
centralized and client-server models of computing, where there is typically a single

computer or a small cluster of servers and many clients. In its purest form, the P2P

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system has no concept of server, and all participants are peers. A simple taxonomy of
computer systems from the P2P perspective is presented in Figure 2-1. All computer
systems can be classified into centralized systems and distributed systems. Distributed
systems can be further classified into the client-server model and the P2P model. The
P2P model can either be pure or be hybrid. In the hybrid P2P model, a server-like peer
is approached first to obtain meta-information, such as the identity of the peer on
which some resource is stored, after that, the P2P communication is performed.
Examples of the hybrid model include Napster [OpenNap], Groove[Groove]. In the
pure P2P model, there does not exist such a centralized peer, the communication
between peers happens directly. Examples of the pure model include Gnutella
[Gnutella}] and Freenet [Freenet]. In this thesis, aspects of both of these two P2P

models are adopted in our prototype system.

/Computer %

Centralized System Distributed System

(mainframes, workstations) /

Client-Server 7-to-l’<

Pure Hybrid

Figure 2-1: A Simple Taxonomy of Computer Systems

2.1.2 Peer-to-Peer Architecture

Figure 2-2 illustrates an abstract P2P system architecture. Theoretically speaking, a
complete P2P system is constructed by 5 functional layers: Communication layer,
Group management layer, Robustness layer, Class-specific layer and
Application-specific layer. Every layer contains one or several components. The P2P

architecture 1s described in [P2pwg01] (page 9-10).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application-specific _
Layer tools applications services
Class-specific | sepeduling meta-data messaging management
Layer
resource

Robusiness ity A iahili

security ageresation reliability
Laver i
wroup Manaseme . lecating and
Group Management discovery ating
Layer routing

“omamaunication

communication
Layer

Figure 2-2: P2P System Architecture

Communication: The P2P model covers a wide spectrum of communication paradigms
ranging from stable, high-speed links over the Internet to links through wireless
medium. The fundamental challenge of communication layer is to overcome the

problems related to the dynamic nature of P2P system.

Group Management: Peer group management includes two components: discovery of
other peers in the community and location & routing between those peers. Discovery
of peers can adopt highly centralized mechanism such as in Napster [OpenNap], highly
distributed mechanism such as in Gnutella [Gnutella], or somewhere in between.
Location and routing algorithms optimize the path of the messages traveling from one

peer to another.

Robustness: Robustness layer contains three main components: security, resource
aggregation and reliability, which are essential to maintaining robust P2P system.
Security is one of the biggest challenges for P2P systems. One premise of P2P

communication is that all the peers in peer community trust each other, which indeed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

poses a number of potential risks to the system. The P2P model provides the basis for
aggregating resource available on P2P community. Classifying the architecture of a
P2P resource aggregation component is very difficult because of the wide variety of
resources that may be aggregated across peers. Reliability in P2P system is a
challenging problem. It is difficult to guarantee reliable behavior because of the
inherently distributed nature of peer networks makes. The most common solution to

reliability across P2P system is to take advantage of scale and redundancy.

Class-Specific: In class-specific layer, scheduling applies to computer-intensive P2P
applications since computer-intensive tasks need to be broken into pieces, which must
be scheduled across the peer community. Metadata applies to content and file sharing
applications because it describes the content stored across nodes of the peer
community and may be consulted to determine the location and availability of desired
information. Messaging is used by collaborative applications because messages sent
between peers enable communication. Management is used to support managing the

underlying P2P infrastructure.

Application-Specific: In this layer, tools, applications, and services implement
application-specific functionality, which correspond to specific P2P applications

running on top of the P2P infrastructure.

For a P2P system, not all the layers and components are necessary. In this thesis, our
code resource sharing system is composed of components of communication,

discovery, locating and routing, resource aggregation and messaging.

2.1.3 Peer-to-Peer Discovery Approaches

In P2P system, there are three common P2P approaches for source sharing and

discovery in peer community.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Centralized directory approach. The typical and famous example of this approach is
Napster [OpenNap]. In this approach, the peers of the community communicate with a
central directory where they publish information about the resource they offer for
sharing (shown in Figure 2-3). Upon receiving request from a peer, the central index
server will match the request with the best peer in its directory. The best peer could be
the one that is fastest, cheapest, or the most available. Then the data exchange will
occur directly between the two peers. This model requires some managed
infrastructurc (the index server), which hosts information about all participants in the
peer community. This may cause the system to develop some scalability limits,
because it requires bigger server when the number of peers increases, and larger

storage when the number of users and resources increases.

——— search
- - - - download

Figure 2-3: Centralized Directory Approach

Flooded requests approach. The flooding approach is a pure P2P model in which no
advertisement of shared resource occurs. It is different from the central index approach.
Each request from a peer is flooded (broadcast) to directly connected peers, which
themselves flood their peers and so on, until the request is answered, as shown in
Figure 2-4. The typical and famous example of this approach is Gnutella [Gnutella].
The flooded requests approach requires a lot of network bandwidth and, hence, does
not prove to be very scalable; but it is efficient in limited communities such as a

company network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- search
- - - =g download

Figure 2-4: Flooded Requests Approach

Document routing approach. The typical and famous example of this approach is
FreeNet [Freenet]. In this approach, each peer of the community is assigned a random
peer ID and each peer also knows a given number of peers (see Figure 2-5). When a
file is published (shared) on such a system, an ID based on a hash of the file’s contents
and its name is assigned to the file. Each peer will then route the file towards the peer
with the peer ID that is most similar to the file ID. This process is repeated until the
nearest peer ID is the current peer’s ID. When a peer requests the file from the P2P
community, the request will be sent to the peer with the ID most similar to the file ID
until the file is found. The document routing model is very efficient for large, global
community. However, it has the limitation that the document IDs must be known
before requesting for a given document. Hence, it is more difficult to implement a
search than in the flooded requests model. Also, network partitioning can lead to an
islanding problem, where the community is split into independent sub-communities

that don’t have links to each other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

File

[d=hidata 0008 Id 000624

Td DG L300

Id 000200

Figure 2-5: Document Routing Approach

In this thesis, a variation of the flooded requests approach is adopted in our prototype

system for code resource searching.

2.1.4 Peer-to-Peer Characteristics
Compared with the traditional centralized and client/server systems, P2P approaches

have many characteristics benefits, as follows:

(1) Cost sharing/reduction. Centralized systems or Client-Server systems that serve
many clients typically bear the majority of the financial cost of the system. When
that main cost becomes too large, a P2P architecture can help spread the cost over
all the peers. For example, in the file-sharing space, the Napster [OpenNap] system
enabled the cost sharing of file storage, and was able to maintain the index required
for sharing. In the end, the legal costs of maintaining the index became too large, so
more radical P2P systems such as Gnutella [GnutellaO1] were able to share the
costs even further. Much of the cost sharing is realized by the utilization and
aggregation of otherwise unused resource, which results in both net marginal cost

reductions and a lower cost for the most costly system components.

(2) Improved scalability. Scalability is limited by factors such as the amount of

centralized operations that need to be performed. P2P system achieves improved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system scalability by avoiding dependency on centralized points. Early P2P
systems such as Napster [OpenNap] attacked the scalability problem by having the
peer directly download data files from the peers that possess the requested
document. As a result, Napster was able to scale up to over 6 million users at the
peak of its service. In the future, as the bandwidth and computation power continue

to grow, P2P system will enable more automated scaling.

(3) Resource aggregation: A decentralized approach lends itself naturally to
aggregation of resources. Each node in the P2P system brings with it certain
resources such as compute power or storage space. Applications that benefit from
huge amounts of these resources, such as compute-intensive simulations or
distributed file systems, naturally lean toward a P2P structure to aggregate these

resources to solve the larger problem.

(4) Increased autonomy. In many cases, users of a distributed system are unwilling to
rely on any centralized service provider. Instead, they prefer that all data and work
on their behalf be performed locally. P2P systems support a high level of autonomy
simply because they require that the local node do work on behalf of its user. The
principle example of this is the various file sharing systems such as
Napster{ OpenNap], Gnutella| Gnutella], and FreeNet [FreeNet]. In each case, users
are able to share file resource while maintaining autonomy and being a final

authority over their local system.

(5) Dynamism. In P2P systems, the computing environment is highly dynamic. That is,
resources, such as compute nodes, will be entering and leaving the system
continuously, either intentionally (e.g., because a user turns off his computer) or

unintentionally (e.g., due to a network link failing). Peer groups frequently change.
(6) Performance/Reliability. P2P systems aim to improve performance and reliability

by aggregating distributed storage capacity (e.g., Napster, Gnutella) and computing

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cycles (e.g. SETI@Home) of devices spread across a network. By aggregating
resources through low-cost interoperability, the whole is made greater than the sum
of its parts. Because of the dynamism and autonomy of peers, however, issues of
scale and redundancy become much more important in achieving performance and

reliability than in traditional centralized or distributed systems.

Because of these characteristics, we import P2P technology into the CodeNet project
to overcome the shortcomings that exist in previous code resource sharing

applications.

2.1.5 Peer-to-Peer Applications
Until now there already existed many types and variants of applications that employ
P2P technology, those applications can be classified into three categories: distributed

computing, content sharing and collaboration [BarkaiOl]:

Distributed computing P2P applications split a large task into smaller sub-pieces that
can execute in parallel over a number of independent peer nodes. One example
implementation is SETI@Home [Ander02] (searching for extraterrestrial life project).

Most implementations of this type have focused on compute-intensive applications.

Content sharing P2P applications focus on storing information on and retrieving
information from various peers in the network; an example application is Napster
[OpenNap]. This type of application allows peers to search for and download files that
other peers have made available. For the most part, current implementations have not
focused much on providing reliability and rely on the user to make intelligent choices
about the location from which to fetch files and to retry when downloads fail. They
focus on using otherwise unused storage space as a server for users. These applications
must ensure reliability by using more traditional database techniques such as
replication. Many research projects have explored the foundations of P2P file system
[Ratnasamy0O1] [Bolosky00] [Kubiatowicz00] [GribbleO1]. Filtering and mining

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

applications, such as OpenCOLA [Opencola] and JXTA search [Waterhouse02], are
beginning to emerge. Instead of focusing on information sharing, these applications
focus on collaborative filtering techniques that build searchable indices over a peer

network.

Collaborative P2P applications allow users to collaborate, in real time, without relying
on a central server to collect and relay information. Example applications include
Yahoo!, AOL, and Jabber instant messaging [StromO1], which enable computer users
to send messages to each other through a messaging server. Similarly, shared
applications allow people to interact while viewing and editing the same information
simultaneously; for instance, P2P games are hosted on all peer computers and updates

are distributed to all peers without requiring a central server.

The prototype system designed and implemented in this thesis is in the category of

content sharing P2P application.

From the description of its characteristics and applications we can see P2P is a more
general resource sharing modality that has much in common with Grid technologies.
But, in practice, the technical focus of work in these domains has not overlapped much
until recently, one reason is that P2P developers have so far focused entirely on
vertically integrated solutions rather than seeking to define common protocols that
would allow for shared infrastructure and interoperability. As the P2P applications
become more sophisticated and the need for interoperability becomes clearer there will
be a strong convergence of interests between P2P and Grid computing. In this thesis,
we research this aspect by importing P2P technology into Grid code resource sharing

to take advantage of P2P benefits.

2.1.6 JXTA Project
The JXTA Project [JXTA] [Wilson02] was started as a research project by Sun
Microsystems, Inc. on April 25,2001. It is intended to be a platform on which to

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

develop a wide range of distributed P2P applications. Technically, JXTA technology is
a set of open, generalized peer-to-peer protocols that allow any connected device (cell
phone, to PDA, PC to server) on the network to communicate and collaborate. It is not

an actual piece of application software.

The goal of JXTA is to provide a general-purpose network programming and

computing platform. The objectives of JXTA include:

o Interoperability: by enabling inter-connected peers to easily locate each other,
JXTA-based system nodes participate in community-based activities and offer
services to each other seamlessly across different P2P systems and different
communities.

e Platform independence: JXTA is designed to be independent from programming
languages, system platforms, and network platforms.

e Ubiquity: JXTA is designed to be implementable on every device with a digital

heartbeat, including applications, desktop computers, and storage systems.

JXTA project approaches the P2P space from the lower level by providing a set of

protocols based on XML messages, as shown in Figure 2-6.

Peer Info Peer Discovery | Pipe Binding
Protocol Protocol Protocol

Figure 2-6: The JXTA Protocol Suite

Peer Endpoint protocol provides a set of messages used to enable message routing
from a source peer to a destination peer. Rendezvous protocol handles the details of

propagating messages between peers. Peer Resolver protocol allows peers to send and

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process generic requests. Peer Information protocol provides peers with a way to
obtain status information from other peers on the network. Peer Discovery protocol
enables peers to discover peer services on the network. Pipe Binding protocol provides

a mechanism to bind a virtual communication channel to a peer endpoint.

The JXTA project has a layered architecture, which consists of three building layers: a
core layer, a middle services layer, and an application layer. The core layer includes
protocols and building blocks to enable key mechanisms for peer to peer networking,
including discovery, transport (including firewall handling and limited security), and
the creation of peers and peer groups. The services layer provides hooks for supporting
generic services (such as searching, sharing and added security) that are used in many
P2P applications. And finally, the application layer supports implementation of
integrated applications, such as distributed search & indexing, shared resources (CPU,
storage, etc.), instant messaging, collaborative work. The entire system is designed to
be modular, and to allow developers to pick and choose a collection of these services

and applications that suits their needs.

JXTA provides an abstract language for peer communication, enabling a wider variety
of services, devices, and network transports to be used in P2P networks. It takes the
complexity out of the network and operating environments so developers can quickly
build highly distributed applications. However, JXTA might not be suited to specific
standalone P2P applications. In an individual application, the network overhead of
XML messaging might be more trouble than it is worth, especially if the application
developer has no intention of taking advantage of JXTA’s capabilities to incorporate

other P2P services into the application.

2.2 Overview of Software Reuse

Software Reuse is a very important concept in software engineering. It is defined as
“the process of creating software systems from existing software rather than building

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

software systems from scratch” [Krueger92]. “The idea of software reuse is as old as
software engineering itself ” [Grinter01], as a means for overcoming the software
crisis--the problem of building large, reliable software systems in a controlled,
cost-effective way, the concept of building shared libraries of software components
that could be used among different programs was proposed by Doug Mcllroy at the

first NATO software engineering conference [Jacobson 97].

The motive of software reuse is simple: by reusing components developers would not
spend time writing code that already existed, and the existing code would already have
been tested for accuracy and completeness. Today software reuse is “an approach to
developing systems where artifacts that already exist are used again” [Tracz95]. The
types of artifacts that could be reused have evolved from the initial software reuse
proposal. In addition to generic source code, today’s software reuse programs reuse
requirements, analysis models, design structure, and specification and document. In
this thesis work, we mainly focused on reusable generic source code retrieval

mechanism.

“Software reuse has been recognized as a realistic and promising way to improve both
the productivity and the quality of new software projects” [Frakes94a). It improves
software productivity and shortens software developing time by avoiding creating
existed software components, increases software reliability and lowers maintenance

cost by adopting tested software components.

Software reuse has four steps: abstraction, storage, retrieval and recontextualization of
the components to be reused [GrinterO1]. Abstraction focuses on designing a reusable
artifact, abstracting components from tested and documented software. Storage means
storing components into repositories, usually a rational database. Retrieval is making
those components available to those who need to use. Recontextualization is making
components understandable to those who will incorporate it into their new systems, to
ensure components are technically compatible. However, this thesis focuses mainly on

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

retrieval mechanism for software reuse.

There exists great diversity in the software reuse technologies, for example: software
reuse libraries, application generators, source code compilers, and generic software
templates. Among those technologies, Software Reuse Libraries (SRLs) has captured
much attention [Frakes94b] [Basili97] [Atsumi02]. SRLs are based on composition
technologies, in which the components are self-contained entities such as data
structures, programs, objects, and the like, reusing these components is accomplished
by developer finding, understanding and adapting the components into a new
application. In definition, SRLs are a set of repositories that use specialized methods

for reusable software components classification, storage, retrieval, and delivering.

In [Zhong00], the process of the reuse-oriented software development with software
reuse library is presented as Figure 2-6. It involves development-for-reuse in which
reusable components are abstracted and brought together to store into a software reuse
library; and development-with-reuse in which reusable components are retrieved from
the library on the basis of specific requests and reused in the construction of a new
software system. More specifically, the whole reuse-oriented software development
process with SRL contains three distinct phases: the construction/storage phase, the
location/retrieval phase and the adaptation/generation phase. The first phase focuses
on the construction (either from the scratch or from existing software) and storage
(usually in a rational DBMS) of reusable software components. The second phase
deals with applying queries to find the desired components and retrieve those
components from SRL. The last phase focuses on adaptation and transformation of the

retrieved components to be integrated into the new software system.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Software
reguirements

Seratch/BExisting Domain New
gl

Component analysts component

Adaptation/Generation Phase
Construction/Siprage
Phase Location/Retrieval Phase
Development for reuse Development with reuse

’ Software Reuse Library

Figure 2-7: Reuse-oriented software development process with Software Reuse

In [Zhong00] and [Zhang00], the prototype system design adopted a centralized SRL
server infrastructure, which make the prototype DORLM (Distributed Object-based
Software Reuse Library Module) face an obvious dilemma [Henninger97]: in order for
the approach to be useful, the repository must contain enough components to support
developers, but when many components are available, it becomes troublesome for
finding and choosing appropriate reusable software components, which is the
bottleneck of the prototype system. In this thesis, we suggest a solution to this dilemma
by replacing the centralized SRL structure with a decentralized model in which a large

number of distributed software component repositories exist.

For current software reuse research, a bottleneck is the classification schema and
retrieval method of components [Damiani96]. Particularly, when large repositories of
components are available, classification and retrieval for reuse should be flexible to
allow the selection of components adaptable with a limited effort. In this thesis, we

suggest a new model that mainly focuses on software reuse retrieval mechanism.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Chapter Summary

In this chapter, we introduce the basic background knowledge related to our proposed
model. Some key concepts and technologies from both Peer-to-Peer computing and
soft reuse are discussed in this part. Conceptually, P2P is an alternative to the
centralized and client-server models of computing, it has many advantages over
client-server models for resource sharing. Software reuse is a realistic and promising
way to improve both the productivity and the quality of new software projects by
creating software systems from existing software components, rather than building
software systems from scratch. Software reuse is a foundational characteristic of the

CodeNet project.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. RELATED WORK

The rising popularity of network-based applications among end users has stimulated
research interests in resource sharing in large-scale networks, which led to the creation
of a lot of resource sharing models for distributed environment. Among those models,
the most successful ones are: Jini, Globus, Napster and Gnutella. In this chapter we
will discuss these 4 models. By studying the mechanisms underlying these models, we
can learn some important principles that can be adapted and used in our model design

and development.

3.1 Jini

3.1.1 Overview

Jini [Jini] is an infrastructure developed by Sun Microsystems for building scalable,
robust, distributed systems and parallel applications using Java [Baker0O1]. It provides
a set of application programming interfaces (APIs), runtime conventions and network
protocols that can facilitate building and deploying of distributed computing
applications. Jini enables dynamic deployment and configuration of distributed
resource, provides simple mechanism to enable components to plug together to form a
resource community with minimal planning, installation and human intervention.
Resource components in Jini may be physical devices or software objects that provide
services over published interface. In Jini terminology such devices or software objects
are called services, Jini community is the collection of services and clients

communicating with the Jini protocols.

Jini technology assumes a changing network environment, in terms of both the
components that make up the network and the way these components interact.
Jini-based software gives Jini services self-configuration and self-management
capabilities, which enable services and clients to communicate immediately on a
network without human intervention. The Jini community is also self-healing in that

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

services that leave community for intentional reasons or unintentional reasons do not
affect the remaining services’ operation. A Jini client that loses contact with a server

can recover and continue processing.

Jini allows any devices with a processor, some memory and a network connection to
offer services to other components on the Jini network. This class of devices includes
not only all the things we traditionally think of as computers, but also most of the
things we think of as peripherals, such as storage devices, printers and specialized
scientific instruments. Increasingly, the definition will also encompass a host of other
devices, such as cell phones, personal digital assistants (PDA) and microprocessor

controlled devices [Waldo99].

Jini architecture is defined in terms of the Java programming language, so the type of
system used for service descriptions is universal. That means in Jini networking, any
Java Virtual Machine (JVM) can provide a single execution environment, no matter
which platform hosts the virtual machines [Armold99]. Jini communication is built on
top of object serialization and Remote Method Invocation (RMI) [Wollrath97], the
Java equivalent of a remote procedure call, which enables clients to handle the desired
remote objects. Jini can also use RMI to pass objects as arguments and to return values,
making it easy to move objects as well as data across the network between JVMs since

Jini programming approach is object-ortented programming.

3.1.2 Jini Resource Sharing Mechanism
The basic Jini architecture is shown in the following Figure 3-1. As illustrated in the

figure, the workflow of Jini resource sharing mechanism is composed of 6 steps:

1. Discover:

First of all, a network service (hardware or software) that wants to join a Jini
community sends out a packet, which is multicast over the LAN for available Lookup
Service (LUS). The packet contains the necessary information for the LUS to respond

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the requester. If the LUS gets the request, it will immediately give a response to the

requester providing necessary information for network service to locate the LUS.

Lookup Service

Network i

Service

Service
Proxy

Network Client

Figure 3-1: Jini Resource Sharing Architecture and Workflow

2. Join:
Upon receiving a response from the LUS, a network service can register to join the Jini

community by exporting a proxy object of this service into the LUS.

3. Discover:
If network clients want to get access to services in Jini community, first they must look
for the LUS in the same way as network services do-- multicast request over the LAN

asking for an available LUS.

4. Lookup:

After the network client gets response from the LUS, it will send to the LUS a message
requesting the required service. Such a request takes the form of asking for an object
implementing a particular Java language type. For example, a client could ask for
something—either hardware or software—that implements a Java printing interface,
rather than asking for something called a printer.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Response:
The LUS responds to the network client by sending back a copy of the required

registered service’s proxy object.

6. Use:

The network client interacts with network service via service proxy object.

From the above workflow description, we can find three main components of the Jini
technology that enable Jini services and clients to spontaneously communicate with

limited need for administration. Those components are:

® Lookup Service — It is essentially a meta-service or naming service that keeps
track of all existing Jini services on the network. It is similar in function to the
RMI registry, the CORBA naming service etc. It accepts registrations from
services, each of which is called a service item, composed of service’s proxy
object, service ID, and a set of attributes associated with the proxy. A lookup
service guarantees the uniqueness of the service among multiple lookup services
with an assignment of a service ID, which is a random 128 bit number generated
from time at instigation together with the network host address. The lookup
service supports a template search based on any combination of the three criteria:
service ID, type (Java interfaces or classes) that a service supports, and associated
attributes. To search for a service, the client fills out a template using only the

fields it is interested in.

® Discovery Protocol- In order for services to be able to register themselves with a
lookup service, they initially send multicast messages out on the network
searching for one LUS. To discover available services, clients must also do the
same. This process is known as discovery. It has the advantage that neither
services nor clients need to be aware of the location of a lookup service in advance.
Most Jini systems use multicast protocol for discovery, but some Jini applications

3t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also use unicast protocol, which requires that the Jini services or clients must
know the IP address and the port number to locate and communicate with an
available LUS. Comparably, multicast is more suitable for spontaneous

networking,.

® Proxy Object — Jimi Clients use services through proxy objects that they download
from the lookup service server. These proxy objects provide the code for interface
that needed to invoke a particular remote service. The proxy objects are what the

Jini services register with the lookup service.

With Jini network services and clients, those core components work together to form a

dynamic Jini resource sharing community.

3.1.3 Advantages and Disadvantages

The biggest advantage of Jini is dynamism. Jini technology makes a network more
dynamic by allowing the plug-and-play of resource as services. Because of this feature
of dynamic management, Jini technology is widely used in distributed computing and
cluster computing. For example, J. Batheja used Jini and JavaSpace to support
parallel/distributed computing over a networked cluster [Bathja01]. Another important
advantage of Jini technology is autonomy. Because a Jini network is spontaneous and
self-managing, any resource can join Jini community as services, thus resulting

flexible aggregation of resource without much human administration and intervention.

However, since the Jini lookup service is intended to be used only in a LAN setting
that can support multicast protocol, by itself it is not appropriate for managing a large
number of Jini services spread over a Grid environment. Though there is a strong
interest for integrating Jini and Grid technology [Baker01] [SuzumuraOl]
[Furmento02], the current researches take advantage of Jini technology only within
Grid domain scope. Jini application is the LAN-based system. Jini infrastructure can’t
support the whole Grid networks that contain multiple Grid domains. Besides, in Jini

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

community, the LUS server is the key central component. If the LUS malfunctions,
neither the new services can register to join the Jini community nor Jini clients can get
suitable proxy object to communicate with Jini services, thus the whole system will
fail over. So the Jini infrastructure has too much dependency on central LUS server,

Jini model is not completely decentralized for resource sharing mechanism.

3.2 Globus

3.2.1 Overview

The Globus project [Globus] is a multi-institutional research effort that seeks to enable
the construction of computational grids that integrate geographically distributed
computational and information resource [Foster02d]. It provides a software
infrastructure for building applications to handle large-scale distributed, heterogeneous
computing resource as a single virtual machine. This project is led by Ian Foster and
Carl Kesselman based primarily at Argonne National Laboratory and the University of

Southern California since 1997 [Foster97].

The central element of the Globus project is the Globus Metacomputing Toolkit
(GMT), which defines a set of low-level tools, protocols and basic services required to
construct a computational Grid. Here we list the basic services in Table 3-1; those core
Globus services have become a de facto standard for building basic Grid computing

architecture introduced in Chapter 1.

Service | Name | Description

Resource manasgement GRAM | Resource allocation and process management
Communieation Nexus | Unicast and multicast communication services

Security GSI Anthentieation and related security services

Information MDS Distributed aceess to structure amd state information
Health and status HBM Monitoring of health and status of system components
Remote data access GASS | Remote access to data via sequential arul parallel interfaces
Executable management | GEM Construetion, caching, and location of executables

Table 3-1: Core Globus Services [Foster98]

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Those basic services provide solutions for particular problems, for example, Nexus
defines a low-level communication API to support a set of application-level
communication protocols; GSI (Globus Security Infrastructure) focuses on security
issues such as authentication & authorization. The Globus services have well-defined

interfaces so they can be incorporated into Grid applications in an incremental way.

The layered architecture of the Globus Metacomputing Toolkit is analogous to an
hourglass. At the neck of the hourglass there is a small set of core abstractions and
services from which many different high-level behaviors can be mapped onto many
different underlying technologies. These abstractions and services provide uniform
access to diverse implementations of local services, and building blocks upon which
global services can be built. A local domain need only provide these local services.

Global services can be built without knowledge of local implementation.

3.2.2 Globus Resource Sharing Mechanism
Among all Globus core services, the Globus Resource Allocation Manager (GRAM)
and the Globus Metacomputing Directory Service (MDS) are used for resource

management and sharing.

The Globus Resource Allocation Manager (GRAM) is at the bottom of the Globus
layered architecture. It provides the local component for resource management
[Czajk97]. Each GRAM manages a set of resource that are controlled under the same
site-specific allocation policy, which is often performed by a local resource
management system. For example, a single GRAM could provide access to the nodes
of a parallel computer, a cluster of workstations, or a set of machines operating within
a Condor pool. Thus, many GRAMs, each responsible for a particular “local" set of

resource, can be grouped to build a computational Grid.
In Grid built with Globus, computational tools and applications can express resource

allocation and process management requests in terms of a standard API since GRAM

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

provides a standard network-enabled interface to local resource management systems.
Until now GRAM can work cooperatively with six different local resource
management tools: Network Queuing Environment (NQE), EASY-LL, LSF,
LoadLeveler, Condor, and a simple “fork" daemon. Within the GRAM API, resource
requests are expressed in terms of an extensible resource specification language, which

plays an important role in the definition of global services requests.

GRAM services also provide building components based on which a range of global
resource management strategies can be constructed. A general resource management
architecture is defined by Globus project team, as illustrated in Figure 3-2. In this
architecture, a kind of standard called resource specification language (RSL) is used as
a common notation for expressing resource requirements. Resource requests are
expressed by a grid-enabled application in form of a high-level RSL expression. The
domain-specific resource discovery and selection policies are implemented by
resource brokers, which transform abstract RSL expressions into progressively more
specific domain-specific resource requirements until a specific set of resource is
identified. After this process, a so-called ground RSL expression, in which a specific

set of GRAMs are identified, is produced.

Brok REL
m“ i specializatton
RSL
ADDlcanic owries | InfoTmation
i & Infa Service
Ground
RSL

Co-allocator

Ritnple froumd RYL

Local GRAM [GRAM | GRAM

respurce

managers

Figure 3-2: The Globus Resource Management Architecture [Foster98]

35

”Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The final step in the resource allocation process is to decompose the RSL into a set of
separate resource allocation requests, which are dispatched to the suitable GRAMs. In
high-performance computations, it is important for system to co-allocate network
resource to ensure that a given set of resource is available for use simultaneously.
Within Globus, a resource co-allocator provides this service by breaking the RSL into
pieces, distributing it to different GRAMSs, and coordinating the return values.
Different co-allocators can be constructed to implement different approaches to the

problems of allocating and managing ensembles of resource.

In Gnid built with Globus, the resource and computation management are implemented
in a hierarchical fashion. An individual GRAM supports the creation and management
of a set of processes, or Globus job, on a set of local resource. A computation created
by a global service may then consist of one or more jobs, each created by a request to a
GRAM and managed via management functions implemented by that GRAM. This
resource management mechanism makes it very simple that local services can be used

to support a rich set of global functionality.

The Globus Metacomputing Directory Service (MDS) [Fitzg97] provides information
service for Grid resource sharing (as illustrated in Figure 3-2). The dynamic nature of
Grid environments requires that toolkit components, programming tools, and
applications must be able to adapt their behavior in response to changes in system
structure and state. In order to support collaboration in this kind of dynamic
environment, MDS is designed to provide an information-rich environment in which
dynamic information about system components is available. MDS stores and makes
accessible information such as the architecture type, operating system version and
amount of memory on a computer, network bandwidth and latency, available

communication protocols that describe the availability status of the Grid resource.
MDS consists of a set of tools and APIs for applications to discover, publish, and

access information about the structure and state of a computational Grid. It keeps

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information in a standard data representation, which is defined by the Lightweight
Directory Access Protocol (LDAP) [Howes95], in a LDAP server. LDAP defines a
hierarchical, trees-structured name space called a directory information tree and is
designed as a distributed service: arbitrary subtrees can be associated with distinct
servers. Thus, the local service required to support MDS is exactly an LDAP server (or
a gateway to another LDAP server, if multiple Grid domains share a server), plus the
utilities used to populate this server with up-to-date information about the structure and
state of the resource within that domain. The global MDS service is simply the

ensemble of all these servers.

Globus project is still in development. From the GMT 1.0 of 1998 to the GMT 2.0
release in 2002, the Globus Toolkit has evolved rapidly into a "the de facto standard”
for Grid computing. For resource sharing and management services, MDS-2
supersedes MDS-1, which pioneered the use of Grid information service concepts but
did not address all requirements. The Globus MDS-2 architecture [Czajk01] provides a
configurable information provider component called a Grid Resource Information
Service (GRIS) and a configurable directory component called a Grid Index
Information Service (GIIS) that aggregates information from multiple GRISs.
Currently Globus team releases the latest Globus Toolkit 3.0 version (GT3), which is

based on the new Open Grid Service Architecture (OGSA).

3.2.3 Advantages and Disadvantages

In Globus infrastructure, global resource can be well organized, published, discovered
with the help of GRAM and MDS services. The design principle of Globus is to
support system collaboration, resource sharing in heterogenous multi-institution
environments, resulting in a lot of technical advantages and usage benefits including

heterogeneity transparency, good scalability and collaboration ability.
However, the roles of resource brokers and LDAP servers make the resource discovery

components centralized. In every Grid domain, Grid applications or users have to send

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

requests to those centralized brokers or LDAP servers to transform high-level RSL or
to retrieve directory information for further resource access. If those components are
offline or at fault, the performance of the Grid domain will be decreased greatly, thus
affect the efficiency of the whole Grid. Besides, in practice, it is harder and more
complex to implement the Globus resource sharing infrastructure than other resource

sharing models.

3.3 Napster

Napster [Napster] was developed for sharing MP3 files over the Internet among a huge
set of users. It was among the first P2P content sharing P2P applications to gain
widespread recognition and use. Napster achieved great support due to its ease of use,

its accuracy, and of course the large demand that had developed for MP3 music files.

The Napster solution enables MP3 file sharing under the control of a centralized
directory server that maintains basic addressability and availability information about
the user nodes and the meta-information about the shared files. The centralization
allows a quick search for the requested file and assists in identifying the most suitable
location to download the files. The actual file transfer still happens over a direct TCP
connection between the requester and owner nodes. Napster Itself is a closed
application, but there is an open protocol known as OpenNap [OpenNap] that is based
on Napster. OpenNap extends the Napster protocol to allow sharing of any media type,

and the ability to link server-like peers together.

Napster is a high-profile P2P network that gives its members the revolutionary ability
to connect directly to other members’ computers and search their hard drives for digital
music files to share and trade. The operations of Napster are described in Figure 3-3.
Napster community members download a software package from Napster and install it
in their computers. The Napster central computer maintains directory of music files of
members who are currently connected to the network. The directory is automatically

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

updated when a member logs on or off the network. Whenever a member submits a
request to search for a file, the central computer provides information to the requesting
member who can then establish a connection directly with another member’s computer
possessing that particular file. The download of the target file takes place directly
between the members’ computers, bypassing the central computer. After a successful
download, the central directory is updated with the client address where a new copy of

the file is now located.

lseal MP3
files

Figure 3-3: Napster Content Sharing Mechanism

The biggest advantage of Napster and similar applications is they allow the sharing of
widely dispersed information stores without the need for a central file resource server,
thus reduce the cost by spread file resource over all the community member computers.
Community members can join and leave the Napster community freely without
affecting the function of other components in the community, thus improving the

dynamism.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, Napster protocol also shows some limitations because of its dependency on
the central directory server, which makes the sharing model not decentralized. If the
central directory server malfunctions, the whole Napster system will be at fault.
Besides, the capability of centralized directory server also constraint the size of the file

resource sharing community, thus results in scalability limit.

3.4 Gnutella

Gnutella [Gnutella] is an open protocol that is designed to allow for the sharing of all
file types, providing distributed discovery and sharing of resource across the
networking. Comparing with Napster, Gnutella is distinguished by its support for
autonomy and by its decentralized architecture. A Gnutella network consists of a
dynamically changing set of peers connected using TCP/IP. Each peer acts as a client
(an originator of queries) and a server (a provider of file information) and hence is

called a servent.

A computer wishing to participate in a Gnutella network does so by contacting other
Gnutella servents. The acquisition of those other servents’ addresses is not actually
part of the Gnutella protocol. Once connected, servent seeks out other servents by
sending searching query. To search for a file the query is sent to all connected servents.
If the servent has a matching file it responds with an answer. Gnutella is a pure P2P
model in which no advertisement of shared resource occurs. Instead, each request from
a servent is flooded (broadcast) to directly connected servents until the request is
answered or a maximum timeout. Thus, the entire network form a dynamic,
self-organizing network of independent entities. This virtual, application-level network
has Gnutella servents at its nodes and open TCP connections as its links. The Gnutella

protocol is illustrated in Figure 3-4 [Kant02].

Gnutella nodes provide client-side interfaces through which users can issue queries

and view search results, accept queries from other servents, check for matches against

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their local data set, and respond with corresponding results. These nodes are also
responsible for managing the background traffic that spreads the information used to

maintain network integrity.

i) Seareh, (37 Lovation
3 Reuent, (3 Resporise

Figure 3-4: Gnutella Content Sharing Protocol

In order to join the system a new node/servent initially connects to one of several
known hosts that are almost always available (e.g., gnutellahosts.com). Once
attached to the network, nodes send messages to interact with each other. Messages
can be broadcasted (i.e., sent to all nodes with which the sender has open TCP
connections) or simply back-propagated (i.e., sent on a specific connection on the
reverse of the path taken by an initial message). Several features of the protocol
facilitate this broadcast/back-propagation mechanism. First, each message has a
randomly generated identifier. Second, each node keeps a short memory of the recently
routed messages, used to prevent re-broadcasting and to implement back-propagation.

Third, messages are flagged with a time-to-live (TTL) parameter.

In Gnutella model, the messages allowed in the network are:

® Group Membership (PING and PONG) Messages. A node joining the network
initiates a broadcasted PING message to announce its presence. When a node
receives a PING message it forwards it to its neighbors and initiates a

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

back-propagated PONG message. The PONG message contains information about

the node such as its IP address.

® Search (QUERY and QUERY RESPONSE) Messages. QUERY messages contain
a user specified search string that each receiving node matches against locally
stored file names. QUERY messages are broadcasted. QUERY RESPONSES are
back-propagated replies to QUERY messages and include information necessary

to download a file.

® File Transfer (GET and PUSH) Messages. File downloads are done directly

between two peers using GET/PUSH messages.

The advantages of Gnutella protocol are its decentralized structure and
self-management ability. However, since Gnutella uses broadcast protocols for
resource discovery, it requires a lot of network bandwidth, and hence does not prove to
be very scalable. Anyway, Gnutella is very efficient in limited communities such as a

company or a research institute network.

3.5 Chapter Summary

In this chapter, we discuss some existing resource sharing models: Jini, Globus,
Napster and Gnutella. Those models have many reasonable features that can be used
for designing a new improved mechanism. We list these qualities below in a feature, or
attribute, matrix, Table 3-2, in order to more easily compare those different
resource-sharing models with C/S model. As shown in Table 3-2, Jini is excellent for
its self-management and dynamism; Globus does well in interoperability among
heterogeneous networks with high scalability; Napster is famous for its popularity and
cost sharing; Gnutella does quite well in establishing decentralized infrastructure and

providing good autonomy.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Feature Resource Sharing Model C/S
JINI Globus Napster Gnutella Model
Decentralization Medium Medium Medium High Low
Scalability Medium High Medium Low Medium
Interoperability Medium High Low Low Medium
Dynamism High Medium Medium High Medium
Cost of Ownership Medium High Low Low High
Autonomy High Low Medium High Medium
Targeted Environment LAN Grid LAN&WAN LAN LAN&WAN
Table 3-2: Comparison of the Existing Models with C/S Model
43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. PROTOTYPE DESIGN & IMPLEMENTATION

4.1 Motivation

Compared with other Grid computational resources, code resource has its own
character. First, it has a wide range of distributed providers. Unlike computational
resources or scientific facilities that are provided by a limited number of centralized
expensive supercomputers or special devices in some Grid domains, code resources
can be provided by a huge number of software developers from thousands of
computers distributed in all the Grid domains. Second, code resource sharing is
required by a large number of distributed users among geographically dispersed groups,
such as support for distributive collaborative programming. Every software developer
is a potential user who needs to search and retrieve proper reusable code components
from code repositories. So, as the networks become more pervasive and large-scaled,
code resources are increasingly prone to being more widely distributed and

decentralized than any other computing resource.

As we stated in Chapter 1, however, previous systems such as CodeNet adopted a
client/server infrastructure that does not support dispersed code repositories. With the
rapid development of network technology, traditional code resource sharing
mechanisms are not entirely suitable for large Grid network environments. We require
a new sharing mechanism that should be decentralized, heterogeneous, scalable and
dynamic enough to support both local and remote access to code resource with low

cost and high autonomy.

From the description in Chapter 3, we considered some successful resource sharing
mechanisms that are better than the traditional C/S model in some aspects. None of
those models can meet all of the requirements completely of distributed code resource
sharing. Jini does not fully support wide area networking resource sharing. Globus is
not completely decentralized. Napster’s performance depends on central directory

44

7 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

server and Gnutella is not very scalable. Therefore, we need to design a new code
resource sharing model for Grid environment to replace the conventional centralized

C/S code resource sharing mechanism.

4.2 System Design Goals

Based on the characteristics of code resource and Grid networks, the new code

resource sharing prototype system must be designed to achieve the following goals:

® The system must help the user to search and retrieve the suitable reused code

components from all the available code repositories in the local domain.

® The system can send requests to code resource in a decentralized manner, that is,
the system doesn’t need to get access to a centralized code repository server or
directory server, rather, multicast the requests to all the available local domain

code repositories without knowing their locations in advance.

® The system can get access to code resource in both local domain and also other
remote Grid domains. Thus, new users or resources can join the resource
community from several possible domains, thus improving the scalability of the
underlying systems that serve the community.

® The system can help users to control the scale of the code searching.

® The system must address interoperability issues. Users are able to get access to

code repositories established on different platforms or database systems.

® The code resource within code repositories can join or leave from the community

dynamically; this process will not affect other community resources.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

® The system will adopt a loose-coupled architecture to support flexibility.

® The system can enable computers as nodes to plug together to form a code
resource community with minimal planning, installation, administration and

human intervention, thus improving the autonomy of the community.

® Low-end computers (e.g. personal computers) can also be supported by the system

to run as a resource node in the code resource community.

4.3 Prototype Model Overview

After defining the goals of the target system, we design a prototype software system
that provides a more advantageous mechanism for code resource sharing within Grid

environment than the previous C/S model.

When running our prototype software, every participating Grid node (computer or
supercomputer) can send and receive query messages in a way that makes the node
both server and client. To search reusable software components from local domain
code repositories, the user node multicasts query messages to all the available code
repositories (other system nodes) in the local domain; if no suitable code components
can be found in local domain, the user node will send the query message to some
special system nodes that enable communication between remote domains. Thus,
system users can get access to widely distributed code repositories built on different
platforms within all Grid domains and, also, the reusable code component providers
can share their code resource to all users among Grid domains. In this way, an
aggregation code resource community with diverse code repositories is naturally
formed within Grid networks. Figure 4-1 shows the overall architecture of this

proposed code resource sharing model.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\ 2

/@gpeﬁeero
—»O
CodeBase Peer O | O
ase/SuperPeer CodeR¥ase JuperPeer
CodeBas¢ SuperPee) CodeBase SuperPeer

“« CodeBase SuperPeer

—»O

CodeBase Peer O &

CodeBase SuperPeer

CodeBase SuperPéer O%

CodeBase SuperPeer

Figure 4-1: Overall Architecture of the Proposed Model

4.4 Prototype Model Design

4.4.1 Roles in Model
In our prototype model, there exist 3 types of roles. Those roles work cooperatively to
provide services that integrate all the system nodes together to form a code resource

sharing community. Those roles include:

Code Request Peer (CRP): it acts as the code service requestor, which takes
parameters set or input by user, analyzes those parameters, forms a well-formatted
search request and sends this search request to code repositories. According to user’s
choice, the CRP can multicast the search request to all the available code repositories
in local domain, or route the search request to some gateway-like nodes in local
domain (those gateway-like nodes will forward the search request to other repositories
in remote domains). After sending out the search request, the CRP waits for searching

responses from code repositories, analyzes those response messages, and lists all the

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

searching results on Graphic User Interface (GUI) for user to choose. If a user selects
one result from the list, the CRP will send out the retrieval request to the specific code
repository that stores the needed reusable software component, wait for the retrieval
response from the repository, analyze the response message and finally generate the

reusable component source code into a file or display it on the GUL

Code Service Peer (CSP): it acts as the code service provider in local domain. In
essence, CSP is the interface of a core repository. Usually CSP is in listening status
waiting for code searching or retrieval requests sent from CRPs. While receiving
request, it will change to working status and make transactions. After this process, it

will return to listening status again.

There are two types of code requests received by CSP: code search request (defined as
A type request in programming) and code retrieval request (defined as B type request

in programming). The CSP takes different actions after receiving different requests.

After receiving a search request, the CSP will analyze the request message, transform
the message into the proper SQL query statement and execute SQL statement
searching in its code repository, which is under the management of a type of DataBase
Management System (DBMS). If proper record is found, the CSP will form a response
message (defined as A type response in programming) and send back this response to
the request CRP; if no result is found, the CSP will change back to listening status

without sending any response to request CRP.

Upon receiving a retrieval request, the CSP will analyze the request message,
transform the message into the proper SQL query statement and execute SQL
statement retrieving source code from code repository. After getting the result, CSP
will form a response message (defined as B type response in programming), and send

back this response to request CRP.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Code Service SuperPeer (CSS): it acts as the code service provider across Grid
domains. CSS functions the same as CSP. CSS is not only the interface of a code
repository, but also can send or receive code request other CSSs in remote domains. In
a simple view, CSS can be regarded as a “gateway” to connect code resource among

different Grid domains.

When a CRP can not find suitable reusable soft component in its local domain, it will
send the search request (defined as A type request in programming) to the CSS in the
local domain. After receiving the search request from local CRP, first the CSS takes the
same actions as CSP does. But if CSS can not find a suitable component in its own
repostitory, the CSS will form a search request message (defined as C type request in
programming) and send out this request to other remote domains’ CSSs according to

its routing list.

After a CSS receives a search request (C type request) from a remote CSS, this CSS
will analyze the request message, transform the message into the proper SQL query
statement and execute SQL statement searching in code repository. If result is found,
the CSS will form a response message (defined as D type response in programming)
and send the response back to the original request CSS, the one that receives search
request from CRP. If result is not found, the CSS will form a search request message
(defined as C type request) and send out this request to other CSSs according to its

routing list.

When a CSS receives a response (D type response) from a remote CSS, this CSS will
analyze the response message, transform the message into the proper SQL update
statement and execute the SQL statement inserting the new reusable component source
code into its reposttory. This process can help the code resource to achieve a
distributed storage balance. If next time some local CRPs request for the same reusable
component, they can get it within the scope of local domain instead of requesting
remote domains through CSS. After this process, the CSS forms a response (defined as

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E type response) and send it back to the local CSR that sent out the original search

request at the very beginning.

In summary, there exist 4 types of communication messages received by CSS: code
search request from CRP (A type request); code retrieval request from CRP (B type
request); code search request from other CSS (C type request); code resource response
from other CSS (D type response). There exist 5 types of communication messages
sent from CSS: code search response to local CRP (A type response), code retrieval
response to local CRP (B type response); code search request to other CSS (C type
request); code response to local CSS from remote CSS (D type response); code search

response to local CRP after getting response from remote CSS (E type response).

Any participating computer as a system node in the model may not run as just one role,
two or three roles can be run at the same system node. When a system node run at least
as a role of CSP, it is also called CodeBase Peer; when a system node run at least as a

role of CSS, it is also called CodeBase SuperPeer.

4.4.2 Working Modes in Model

In our prototype model, there exist two types of working modes: the multicast mode in
which reusable code components are searched and retrieved within local domain; the
routing mode in which reusable code components are searched and retrieved from

remote domains.

Multicasting Mode: In this mode, the CRP multicasts the request within its local
domain. Every available local CSP receives the request and makes transaction. After
receiving responses from CSPs, the CRP can list on GUI all the qualified reused code
components in local domain, and let user select the suitable one from the list to retrieve

and generate source code. (The mechanism is illustrated in Figure 4-2).

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CodeBase Peer

@)

C Q& Peer
CodeBase Peer
gdeBasg PRer

CodeBase Peer

CodeBase Peer

CodeBase Peer

Figure 4-2: Multicasting Mode for Code Resource Searching

The detailed system workflow in multicasting mode is illustrated in Figure 4-3.

CSP 3 CSP

=

Figure 4-3: System Workflow in Multicasting Mode

As showed 1n Figure 4-3, system workflow in multicasting mode is composed of the
following 4 steps:
1. CRP multicasts search request (A type request) to all the available CSPs in
local domain.
2. If qualified code component is found in a CSP’s code repository, this CSP will
send back a response (A type response) to CRP.
3. CRP sends request (B type request) to CSP asking for retrieving code
component.

4. CSP sends back the response (B type response) to CRP.

Routing Mode: in this mode, the CRP sends the request to several local CSSs that not
only have big code repository, but also can communicate with other CSSs in remote
domains. If the required code component is not found in its repository, the CSS will

route the request to several remote CSSs in other domains according to its routing list.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the qualified code component is found in remote Grid domain, the remote CSS will
send the code component to the local CSS, and the local CSS will import the new code
component into its code repository and notify the CRP to fetch the code component.

(The mechanism is illustrated in Figure 4-1)

The detailed system workflow in routing mode is illustrated in Figure 4-4.
9 8
1 !

CSS CSS 7——————> CSS

Figure 4-4: System Workflow in Routing Mode

As showed in Figure 4-4, system workflow in routing mode is composed of the

following 9 steps:

1. CRP sends code search request (A type request) to CSS in local domain.

2. If required code component is found in CSS’s repository, local CSS will give a
response (A type response) to CRP.

3. CRP sends query (B type request) to CSS asking for code component.

4. CSS sends back the response (B type response) with required code component
to CRP.

5. If required code component is not found, CSS will forward request (C type
request) to other remote domains’ CSSs.

6. If required code component is found, the remote CSS will return response (D
type response) containing required code component to the local CSS.

7. If required code component is not found, CSS will forwards query (C type
request) to other domains’ CSSs.

8. If required code component is found, the remote CSS will return response (D

type response) containing required code component to the local CSS.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9. CSS gives notification response (E type response) to CRP.
4.4.3 Communication Messages in Model
As mentioned in the previous section, there are a lot of communications between
system nodes in code source sharing community. Those communications are
completed with the help of several types of messages, which are pre-defined by the

system. The formats of those types of messages are described as follows:

A type request:

Type Code Keyword TimeStamp
A type response:

Type CSP or CSS IP Code Keyword | TimeStamp | Code Name | Code Description
B type request:

Type Code Keyword TimeStamp
B type response:

Type CSPor CSS IP TimeStamp Code Component | Code Description
C type request:

Type Code Keyword TimeStamp Original CRP IP| Middle CSSs’IPs | Hop Number
D type response:

Type Code Keyword TimeStamp | Code Component | Code Description

Middle CSSs’ IPs | Original CRP IP

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E type response:

Type CSS 1P Remote CSSsIPs | TimeStamp Code Name Code Description

Every message contains several information items: the “Type” item identifies the type
of this message, there are 5 message types represented by big case letters of A,B,C,D
and E; the “IP” item contains the address information of the system node, it can be
used for locating; "Code Keyword” is the searching criteria, with which the system
searches and retrieves suitable reusable code components needed by user; ”Code
Name” is the name of the required code component stored in a code repository; ”Code
Description” is the detailed statement of the required code component, it can be used to
judge whether the code component is qualified for user’s need or not; “Code
Component” is source code body of a specific code component; “TimeStamp” item
represents the valid period of this message; “Hop Number’ item represents the number
of CSSs that still can route this message, if the value is zero, the CSS that receives this
message will stop to route the message to the next CSS even if the qualified code
component is not found. “TimeStamp” and “Hope Number” items are used for

searching scale control that will discussed in section 4.4.6.

For CRP, it communicates with code resource community by sending out 2 types of

request messages and receiving 3 types of response messages as showed in Figure 4-5.

A type response

>

-B-typeresponse ¥ Code Request Peer
(CRP) ype request———»

E type response

Figure 4-5: Communication Messages for CRP

For CSP, it provides code service by sending out 2 types of response messages and

receiving 2 types of response messages as showed in Figure 4-6.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—AtypeTequest A type response >

Code Service Peer
> (CSP)

B type request B type response >

Figure 4-6: Communication Messages for CSP

For CSS, since it acts both as a code service provider and as a gateway to remote CSSs,
it functions to provide service by sending out 5 types of messages and receiving 4

types of messages as showed in Figure 4-7.

A type request q lype responrse——>
B type request q lype respomse

Code Service

p SuperPeer type request I

(CSS)
D type response | typeTresponse >

C type request

E type response

Figure 4-7: Communication Messages for CSS

4.4.4 Structures of System Roles
In our model, the source community is composed of a lot of system nodes. As we
described in the previous chapter, every system node plays one or several roles. In

implementation, every role is constructed by some functional parts.

Code Request Peer is composed of the following 4 parts:

® Code Request Peer Interface: the GUI interface between user and system.

® Code Request Peer Receiver: analyze the message received and make
corresponding transactions. If the message is retrieval result, then call Code
Generator.

® Code Request Peer Sender: integrate all the necessary information to form a

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

structured request message and send out the message.

® Code Generator: generate the well-formed source code for end user.

Figure 4-8 illustrates the Code Request Peer Structure

P Message Sender >

Interface

t Message Receiver [T

Code /

Crenerator

Figure 4-8: Code Request Peer Structure

Code Service Peer is composed of the following 5 parts:

® Code Service Peer Monitor: the GUI that displays CSP working status.

® Code Service Peer Receiver: analyze the message received and activate
Transaction Center to make corresponding transactions.

® Code Service Peer Sender: integrate all the necessary information to form a
structured message and send the message out.

® Code Service Peer Transaction Center: The transaction component that executes
SQL statement in code repository.

® (Code Service Peer Code Base: Database for storing code resource as a code

repository.

Figure 4-9 illustrates the Code Request Peer Structure

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Message Recgiver

1 ———
\1 Transaction |a

Code Base

Center

Message

Sender el

L |

Code Service Peer Monitor

Figure 4-9: Code Service Peer Structure

Code Service SuperPeer is composed of the following 6 parts:

® Code Service SuperPeer Monitor: the GUI that displays CSS working status.

® Code Service SuperPeer Receiver: analyze the message received and activate
Transaction Center to make corresponding transactions.

® Code Service SuperPeer Sender: integrate all the necessary information to form a
structured request message and send the message out.

® Code Service SuperPeer Transaction Center: the transaction component that
executes SQL statement in code repository.

® Code Service SuperPeer Routing List: the file that stores routing information--
remote CSS’s address.

® Code Service SuperPeer Code Base: Database for storing code resource as a code

repository.

Figure 4-10 illustrates the Code Request SuperPeer Structure

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N Message Receiver ‘

v

R‘i‘.“ﬁg Ll Transaction |}) Code Base
it

Center e
v
- Message pender >
: I

Code Service SuperPeer Monitor

Figure 4-10: Code Service SuperPeer Structure

4.4.5 Scale Control in Model
To maintain efficiency of the model system, three mechanisms are utilized to control
code searching scale in our model. Those mechanisms are TimeStamp, HopNumber

Control and RoutingHistroy Check

TimeStamp is used in both two working modes. Before CRP multicasts or routers the
code search request, a structured data called TimeStamp, which is the calculated result
of the request time and the timeout set by user, is added into the request message. As
the CSP or CSS receives a request message, it will first check the TimeStamp to make
sure that this request is still valid: if yes, the Peer or SuperPeer will make the following

transactions; if no, this request will be ignored.

HopNumber Control is used in routing mode. When CSS plans to forward the code
request to next CSS, it will check the HopNumber information in the request message.
If the HopNumber is zero, that means this CSS is already the last one the request
supposed to reach, so it will no longer forward the request; if the HopNumber is not
zero, this CSS will change the HopNumber information (minus 1) and forward the
request to other remote domain’s CSSs according to its routing list. In this way, the

user can control the size of the query chain in routing mode for code searching.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Routing History Check is also used in routing mode to avoid routing loop. If the CSS
plan to forward the code request to other CSSs, it will add its own identify information
(such as IP) into a structured data called Routing History in the request message. So if
the next CSS get the code request, it can check whether itself is already in the Routing
History: if yes, that means this request run into a routing loop, and the CSS will ignore
the request; if no, that means this request never reach the CSS before, so it will take the
corresponding transactions. In this way, the system can keep efficient and avoid

wasting computer resource for redundant work.

4.4.6 Domain Split and Mergence in Model

A logical Grid domain is usually represented by a physical LAN; so, a Grid containing
multiple domains is a wide area network interconnecting multiple LANs. Therefore,
the challenge of splitting and merging domains is indeed a physical network problem.
But since the physical network split and mergence need a lot of reconfiguration on
networks, our model use a mechanism that can partially solve the split and mergence
problem in a logic way instead of physically re-configurating networks, thus makes our

model more dynamic and flexible in a unstable environment.

In our model, the code resource integration in local domain within a network is
implemented with the concept of multicast group. A multicast group is a Class D IP
address (that is, in the range of 224.0.0.0- 239.255.255.255). Multicast message that is
sent to an address in this range is not destined for a single target node. Instead, this
message can be received by any host node that has joined this specific group. In our
prototype system, initially every CSP in a network joins a default multicast group (IP
224.0.0.1 in our implementation), so any search request sent to this group IP will be
received and transacted by all the CSPs in local domain. Since the physical routers
connected LANSs usually disable multicast traffic, the multicast search request will not
run across domain scope even if the same multicast group IP is used in a connected
neighbor LAN.

Therefore, in our model, the code resource domain split can be implemented by

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

making some CSPs leave the default multicast group to join a new multicast group. A
dialog window will pop up asking which multicast group this node want to join into,
every time we start up our prototype software program. The domain split procedure 1s
much easier to execute than the physical network split operation. Similarly, the code
resource domain merge is completed by merging CSPs belonging to different multicast
groups into one multicast group. Thus, the domain split and merge problems within
LANSs can be changed to multicast group split and mergen problems in our model.
Using the same mechanism, we can also solve domain split and merge problems across

LANS on condition that the routers connected LANs are set to support multicast traffic.

4.5 Development Environment

The prototype system is developed using the advanced object-oriented and distributed
technologies. Currently, the development and execution environment of the prototype

system is listed as follows:

® Implementation language: Java 2 (JDK1.4) for Microsoft Windows
98/NT/2000/XP and LINUX »

® DBMS: Microsoft Access'™ for Windows 98/NT/2000/XP, MySQL for Microsoft
Windows 98/NT/2000/XP, MySQL for Linux

® Platforms: Microsoft Windows 98/N'T/2000/XP and LINUX

® [Execution environment: Microsoft Windows 98/NT/2000/XP, LINUX, Unix with
Java Virtual Machine (JVM)

® Communication Port: the communication between system nodes takes place on
computer ports. In implementation, we define port 5000 for CRP communication,

port 6000 for CSP communication, port 7000 for CSS communication.

4.6 System Design Specification

Our prototype system is designed using Unified Modeling Language (UML), a

language that unifies much of engineering practices for modeling system. Based on the

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object-oriented paradigm, UML is utilized here for specifying, visualizing,
constructing and documenting our software system. This section will describe use

cases, class diagrams and sequence diagrams of our prototype system.

4.6.1 System Use Cases
As we state in section 4.4.1, there exist 3 types of roles in our proposed model. Every

role is expected to complete some functionalities.

Figure 4-11 elaborates the CRP use cases by detailing the functionality a CRP actor
expects of the system. The CRP can broadcast or router searching query. After
receiving response messages, it can list all the searching results or generate the

well-formed source code.

D D

\\«q_,—f"f
List Searching Results
Broadcast Query ™ . 7

.
- -
~
B {P\ -

~ I

-
R . Sl
- ¥~
. PN .~

£ Code Request T

Co T D

Route Query Generate Code

Figure 4-11: Use Case Diagram for Code Request Peer

Figure 4-12 elaborates the CSP use case by detailing the functionality a CSP actor
expects of the system. The CSP can listen and receive query, analyze the query to
determine whether to search code or retrieve code from code repository, and send back

response message.

ol

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O

Py (;TSearch Code
N -
T
Listen Query = *~_ L7
e “ —————— o _,,/)
T Fa Retrieve Code
/.,av-"——-__\ _,.-—"’" r'd "~ "'t..‘h
&) Code Servcie Peer -
Analyze Query S

Return Response
Figure 4-12: Use Case Diagram for Code Service Peer

Figure 4-13 elaborates the CSS use case by detailing the functionality a CSS actor
expects of the system. The CSS can listen and receive query, analyze the query to
determine whether to search code or retrieve code from code repository or store new
code into code repository, then send back response message or forward request to the

next CSS.

@ Search Code
Receive Query

h @
~ L7 L

(fm\r_’: o : % e Retrieve Code
Rl PN N"‘“‘*H,:}‘ e
Analyze Query Code Service ‘:/,)
<" SuperPeer ™ e
,1,’},‘-” ~ . Store Code
M (,4-""_'_'_"\
Forward Query _J

Return Response

Figure 4-13: Use Case Diagram for Code Service SuperPeer

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6.2 System Class Diagrams

The major system diagrams are described in following figures of 4-14,4-15 and 4-16.
Figure 4-14 shows the static structure of major classes of the CRP. PeerSearchGUI
class defines the graphic interface between user and system; PeerSearchTableModel
class specifies the methods the Jtable will use to interrogate a tabular data model;
PeerSearch class manipulates its components class to work together for
communication and transactions; CRPReceiver class is the component class of
PeerSearch class, it deals with receiving and analyzing messages received on the port;
CRPSender class is the component class of PeerSearch class, it deals with sending out
messages; CodeGenerator class is the component class of PeerSearch class, it deals

with generate well-formed source code from the message received by CRPReceiver.

Figure 4-15 shows the static structure of major classes of the CSP. PeerServiceGUI
class defines the graphic interface to display CSP working status; PeerService class
manipulates its components class to work together for communication and transactions
to provide code service; CSPReceiver class is the component class of PeerService class,
it deals with receiving and analyzing messages received on the port; CSPSender class
is the component class of PeerService class, it deals with sending out messages;
CSPTransactor class is the component class of PeerService class, it defines methods

for transacting with code repositories.

Figure 4-16 shows the static structure of major classes of the CSS.
SuperPeerServiceGUI class defines the graphic interface to display CSS working
status; SuperPeerService class manipulates its components class to work together for
communication and transactions to provide code service; CSSReceiver class is the
component class of SuperPeerService class, it deals with receiving and analyzing
messages received on the port; CSSSender class is the component class of
SuperPeerService class, it deals with sending out message; CSSTransactor class is the
component class of SuperPeerService class, it defines methods for transacting with
code repositories.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¥9

weadel(q ssep) (D) 1994 1sanbay apo) - 2ans1

fuung : (©o0s Poogueterdes.odsaezARUY

PYEdUEOEE] : Iyoedds
prooguebeR] | Pyoosiy

B\BBURD
L
SUB)

fuug : (ruodeubio fuugkpoe BRI,

Buing : Fpuwodeubuody

ORISR0

/

/
sy

/

3

Pion : (diadiedhng Buing ‘Jsanbey Buung 'ya0s JexIoSLRBElE] iSEoL Eed RS, [
PION (JSTHEIN0Y 914 “Isanberd BuinS “9PY0s BIoSLRAEEO)ISEoN e BdNS,,
pon - (dueed Buug “senbay Buiig ‘Bno0s BxosuReEa)IseoLny,

pon : (didhasiseonnil Bulng ‘ssenbey Buuls ‘1xo0s B oosuweBeEaisenY

a1 1sreroudy L !

pon - (Binjgew ey fung)senbadguio-e,
PO - (BssiuLpees fuLg)senbadyio-,

(MoxgRady

g < (fungoLIng,
06uss : (sinsandistie,

PO © (8 LNV IOULBAONIE
fuys : (dhasiseosnviess

por : QABTROURIES

pon : QReroLoBeseSy

Bung m_ n_cmimemm e S

1S : dyeed sue
fung : dhasiseonngs s
Buing : ysarbeay @y
BediREE] | Bioediy

Q1[6unag :BusesuodsafiiLorags,

buig : Busgeraieer 0 ¢
fuis : Bumshunaresdy BOONPIELUNEIS RO | PRONRIgRL YABaSSedd)
Bogueterd : pyosdy 3KELr : PRLINSU¢

Bug : Bussesucdsageviand,

BoosURieE(| PY0se

uaeagead
12 \7 1
|

pon : (nsedfurjoress [IBUUS)BILODRS,,
Buing : (Bumgevaury BungiroDroe
[10Buwng : (Buusburjaess fumg)epoarssy,

| an —\
asn

PRLDELS : PPLAPOgEp00d
UoRNgr : Lopngepa)ebe
Egue | egnuawd
Buug : duorruns194,
Bung : epopBuBHOMOY
fuus : oNdnRESEOINNGY
PV Ny oJE=THIT
L1 ONYEINSIL P
Buing : powieyfuraseg g,

NOUdEeShad

Yaragiad : yaeagradey
Buuig : INssxpreuEyfy,
[0fuwss : Insefuromes sy

PPONPELUOB3S BB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

werseiq ssep) (4SD) 199d INAIG 3p0)) S - an3f

plon : (duoag Buuig ‘asuodsay Buulg J1eyoos 19y00gweibeeg)osuodseygpuasy,
plon : (dEead Bumg ‘asucdsay Buulg “oyo0s j@yo0ogwelbeleglesucdsay ypuaSy,

Buwng : dueaddy

Buwyg : esuodseydy
1%oedweibeleq : j9)oedly
1eyoosweibeieq : 10300sRg

19puegdsd
|3

sue0D

(Jooniagioade,
plon : (Iinsay(eaL1ey Buuiglasuodsayquuo e,
pion : (ynsexbulyareag [J[l6uLig)esucdseydyuuo e,

Bumig : (promAarapod Buuig)epoommaLiovs, (IN9eonIE G190 de,
Buws : (193490 100 Sweibeleq)ebessapazAeuyy, [I0Buws : (promAenapos BuLis)epodyaessy,

] L plon : (sbBessapsniels m:.Emeam_QO L L Qg
joegquebereq : pyoedly — ealyIXa : BalyIxo obes sewqy
pdogwebereq : B0 sueuon 120 webeleq : 1940054y asn BgeTr : (egesnielsdy

16089 dSD) Buwis : Inseyieeye jauedr : puedsnielsie
- {0Bus : unsexbuiyaeasty INSeonm Sised

Buwig : promAajepoody
Buws : wmmmmm_zwémuw@w
20NI9GI08d

3

suejuo)
}

Buuls : (sweuasegapoos Buulg “4028ULOI8SEGEPOD BuLlg ‘pIOMARNOPOD Buuig)lionsodeyenauiode,

[I06unys : (aweuaseqapoo Bullg 10o8UUOaSEGEPOD BuLlg ‘ploMABNSPOD Bumg)loysodeyyosesse,

Buws : sweuseqsposRy
Buws : J028UL003SEGEPOIRE
Buulg : plomAenapoaiy

J0J0BSUBIL4SD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

weageI(q sse)) (SSD) 193419dng 391AI3S 9p0)) :9]-p dAn31g

Buulg @ (1e%20s j9yd0 gweibeieq)abessapsz Aleuvy,

oeduelbeleq : eyoeddy
1jo0gwelbeleq 103005Qy

19M3994 88D

l

.

pion : (dpead Bug ‘asuodsay Buing ‘1exy00s JaydogwelBeleq)asucdsayIpus Se

ploA : (dpeagiedng Buuls ‘esuodsay Bung 1934008 193005 welbeleg)asuodsaygpua Sy,
pioa : (1St HaINoy af14 1sanbay Bunl g 1oy 00s 19005 Wribeieg)isanbayOpua Sy,

pIoA 1 (dpead Buuig ‘asuodsay Bung 18008 Ja)o0gwelbele])asuodsay gpua Se

pIon : (duead Bug ‘esuodsey Bung ‘193008 1005 welbeleq)asuodsay YPua Se,

bung : drsediedngly
Bunls : deadR

Buing : 1s9nbaydy

Buyg : ssuodsoudy
oedueibeieq : 1exoedgy
1qoosweIbRIE g 18400598

19pUaSS SO

il
mEme:oo
.

poa : (3nseybuiyoseas [J[|6usig)asuodsay Jwio e,
poa : (nsaybuiyoieag [j[16uniglasuodsayquio e,
pioa : (Bunigisenbay BuliS) saNbayJWIO4q,
()eoniagreadiadnge

P1oA : (ynsay|eaiay Buylg)asuodsay guuody

pioa : (ynsaybuyoses s {]{16unlg)asuodsay v w0 4e,
Bunig : (pJomAayapod Buuyg)apoDanaLiate,
[11Bums : (promAexepod Bulig)apoOydieaSe,

3

(hnoHaonagies Hadnge,

pio : (aBessapysmiels Bunigletdsiae,

suiglu0Y asn

1 s0gwesbereq : 19y00sQy

Buing : yinsayieniaudn

[1{16uiys : 1inse ybulysiea gRY

Bumng : promieyaporm

Buulg : ebessop snie)siy
20118899 diadng

X

mEm*:oo
L

.

BalyiXa] : ealyixeebessowdm
[eqeTr : |8qesnielsg
19UB LT @ PUBGSNIBISEn

IN9anIegIaadladng

Buing : (sweusseqepoo Buulg '1093UUC0SSEQaPOD Buplg ‘promAeyepoo Bulig)Aiolisodaysasiiaye
({16um s : (sweusseqapod Bullg 'J008UUO8SEQEPOI BullS ‘PiomAaepod Bulig)Ainlisodoyyoieagy,

Buliig : aweuseqapoody
Buig 1 1099uU0DasEqapOdy
Buig : promAaepoode

1010BSUBIL §SD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6.3 System Sequence Diagrams
The eight major sequence diagrams are shown from Figure 4-17 to Figure 4-24,
which are used to describe the procedures of communication between and

transactions within system roles.

Figure 4-17 shows the CRP Broadcast Query Sequence Diagram to describe the

procedure of CRP searching and retrieving code component from CSP.

Figure 4-18 shows CRP Route Query Sequence Diagram to describe the procedure of

CRP searching and retrieving code component stored in local CSS originally.

Figure 4-19 shows CRP Route Query Sequence Diagram to describe the procedure of

CRP searching and retrieving code component not stored in local CSS originally.

Figure 4-20 shows CSP Search and Retrieve Code Sequence Diagram to describe the

procedure of CSP transacting with code repositories after receiving request.

Figure 4-21 shows CSS Forward Query Sequence Diagram to describe the procedure

of CSS forwarding request from CRP.

Figure 4-22 shows CSS Forward Query Sequence Diagram to describe the procedure

of CSS forwarding request from other CSS.

Figure 4-23 shows CSS Search Code Sequence Diagram to describe the procedure of

CSS searching and retrieving code component stored in code repository.

Figure 4-24 shows CSS Store Code Sequence Diagram to describe the procedure of

CSS importing code component from other CSS.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

weaserq aduanbag L19n) 3seoproag JAD :LI-p 231

(Jepogbieieus o

. (JBumrgoruencd
I
.

'
'
'
‘
'
.
'
'
'
'
.
'
'
'
'
'
'
'
'
'
'
'

()esuodseyezijeuy

e
_ 1
 S—

(Jpsuodseygpueg

L]

(1senbsyguiod:

o

i me_uoo«ww

(1seotun | ,“

H {)synseyysiy

B RN S o

3 i
m]
m ! 0
m ﬁrﬁ w i (Kkienpenaineyie s
m “ [l
j

3 ! Cmm:Onwm_“moN\ﬁ_m:(m m m
H (Jbsuodseyvypuesg m H m m M
H H) | H '
H | ; _ i _
) : _ ; 4
m [l m : " u |
1 ' (Oiseoninpy | H : H
: ¢ H i .
H .) 7 7 ' H
' | H t()1senbey vuio : ;
H ! !) j : :
m : ; H leppoysiees - :
m : : m : W ! (Aenpyusssies |
_ | | Tepomel | |
BpUsEISH JOAI56H 8D TeAe00UdYD | | ToPUSSJYD joiesgised | Tﬁm‘_mcwom_uoo {qeLyoieegiesd)| ﬁ_soﬁzmow_mmm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[uremo(q urgpg | weageiq ssuanbag LN AnoY LAD :81-+ 240314

| N

: : D ()epoopiesaus o :

: ‘ }cms:wot;\,oo : : m
: : (Jesuodsaipezhieuy :
: (Jpsuodseygpues : : : ;
; : (nseounissdiadng : : :
; : : : r :
! : ! ‘ | :
: : : ‘ !
: : ; ()8iponie g _1_ :
H : : ; 1J Oksanpamanayiag |
m ; : Osunsaxisiy ' :
: : : : :
: : : (Jesuodsaijezheuy : : : ;
m ()psuodsayypuss m & : : : ;
m 1 m | | ; m :
: : (¥seomnwies g1adng | " : :
; : : mCuwm:cwm.«E‘_oj\ :
; m “ : : ()sppououess :
: : ! : ” : ! (ksenpyoieesies |

, _ ! | Tepoma !
5PUsSSSD _ TBAD9YS 6D | | TerEoe Y dYD T8pus s 9o §oIeagiaa d PG EPEIELERS) ECEERISERE] TABUDIEs 855 d

” Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[urewo(ssoady] weaserq dduanboag (SSD 03) L1910 3INY NAD :61-p 2131

) } ,) ' !)
)) 1 ; ' : ;
) j 1 i ' | ;
m m m ! : ﬁ_ w N
; : m . j (Jepopbieieus j
i ! : | \
! : ﬁg : N : m m
: ; ; (Jesuodseiyezhleuy ; : H 1
_ ; S u | i | |
| {)psuodseygpussg ! : m m m m
m " m] m m m m
m (] _ " ; | ;
! ! Ca»mo_cs‘_mwntwa”:w ' \: m m !
: : : i (isenbeyguwioy] : mﬁr- :
| | m | L | ‘
) 1 ' H ; (Jelpodle o :
; ' : iy H j
; : m : ﬁ H 1 (}A1en pananeyies
! _ " m : ;] m
; : ﬁé) N Osunsewisi)
" : : [] " “
i ' (Jesuodsenazheuy w m ; !
1 H 1))
by ; /gu : | ;
H (Jbsuodseaygpuegs ! ' : ; ;
m m ()isesninwies ntm_nsw m “
' H | | , !
' ! m L(senbeyywio 4 ! ;
“ “ : : 1T m L :
: 1 ' 1 i (Jeppoyoieesg & j
: : : m ; : _
: H H | H 1 v (Aisnpyosiesgies |
. H ' ! H :) H

[Tepowmel | i
T0]BI6US HOpO D {qe1ydiesgise d| ITAoysiEsgise d

1
i
i
i

JjepuegsSsSo — TeATO8Y S S D _m>_mo®mmmu_ T6pUe S dud : jolee gies g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

weIde(q 99uanbag apo)) ALY puk YoILdS IS :0Z- 131

.
.
.
i
.
.
I
1
!
'
i
mvww:oamomm wio
'
i
i
i
)

..

{)Aetdsia ! D
m N¥ L3y 0
D:ouoom;_:om

(Aeidsia

(Jesucdsaygpues

1
H
H
H
H
H
H
:

:
(JeSessapozAleuy
H
H

Tisesiun

e T e e

esuodsayy uio

L

(Yheidsig

i

r

NYni3y

(OAeidsia m
H

(Jobesse wozAleuy

{Jesuodseyvypues

i

!
._J
e
R

Oisesrin W

{Thoseomissies g

; _
_ oIAI6 8166 d T_oaoww:ukhmmo_ TeAT6 539 50 TepUs S 45D

TBAIS58Y J U D _ _ TePUSEdYD w

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iL

[ddD woay L19nd]| weaseiq ddusanbag Arond) piemaog SSD :12-p 2In31

mcgmmzcwmogwwm
: ; m M ;
: : : o :
: — ()isenbalyowio4 : :
m T Qkedsia | ﬁ m m
m m (e | : m
! | 1 oInuUNYNL3Y | m m
_ m S m m
' ' i (Japonydiess ! ; :
w L Okedsig | : w

_ Ommmmmos_w;_mc”(

EGEVER

BEE
RIBSI35 giodng

EE

NEISEEPELLES

T0}J0BSUEILS GO

i19puagssd

Ta1599 455D

(hseosnyn pnies 4qiadng

J1epussdyd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[SSD wioay A19n)] weadelq dduanbag A19n) piemiog SS) 7T~ 2Indig

M (71senbayopuss; W w M
; r (1senbajyouuoy | |
m U | | ! |
: m Aeids m ! : : :
m i Oheidsig o i i " ;
: : * N m : |
: m §InuN¥NL3Y | W ! m
| w o | W |
: M | Ospooyouees | M w m
| L Okedsig | m W _

m (YoBessapazAleuy

| w m m m (hsenbayopusg

sjowsy TNo9o ER) m:_.,.E
RENERFEFE) N8 GI98 4lodng | IAJI8 G199 4isdng | TOJOBSUBIL S S| J19pUsSSSo JORI809d S S0 ERFEIPEEEE)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

YL

weasel(q 99uanbag apo) Yoaeds §S) :€7-p 2nSiy

TEUTBIG

TOAIe00HS S D

()asuodsayqgpuag :

: - (Jesuodsayq wuo4

[] |
(YAeidsig ;

3

]

NYNL3Y :

S

Ofeidsig |

e

(Japooysiess

'
'
:
'
'
'
1
'
v
'
¢
0
¢
'
(
'
'
'
'
'
'
|

(ebessapnozhleu

- 4

(Jisenbeyoppues

NEEE
TRIg8198 Ji9dng

EE)

ISEFICEPIET IS

JTO}0BSUBII§SD

18pusassSO

TR[§98°HS SO

_____j_________.__.4_.A_“““._____________

210

9y 19pUd SSSD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

weIgel(dduanbag apo)) 31015 §SD H7- 2an3L

m (esuodsoy3pues M : m w
; : A ;
| m : =l ;
m : ()ssuodsay3guuoy : m
()Aeldsiqg . : ;
| zmaum/? | m
m m | (spogeiois ! | |
| L Okeidsig | w |
m M e m w
: : ()ebessaspazhleuy

m w m ; m ()ssuodsayapuss |

BEE ER 910
TOAI859d dd D N8G90 4iedng |IAJI8 G199 4J9dNn g | JOJDESUBILI S S| JOpussSsSsSo IENERER) ERREFEEEEISe)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. SYSTEM DEPLOYMENT AND INTERFACE

This chapter describes how to deploy our system and how to use the system with GUI
interfaces. Some captured screens and examples are included to illustrate various

operations applied on the system.

5.1 System Setup

Our system was installed and tested on two kinds of platforms, Microsoft
Windows98/2000/XP™ and Linux. Java Run Environment (JRE) is required to run
all of three system roles: Code Request Peer, Code Service Peer and Code Service

SuperPeer

5.1.1 Setup for the role of Code Request Peer
The setup for the role of CRP is straightforward. First get the package of executable
program file “CRPjar” and a text file “routinglist.txt“, which stores the addresses of

the local CSSs.

To run the program in Windows 98/2000™ environment, simply double-click the
CRPjar file showed in Figure 5-1, it will run the program to make the computer as a
CRP. User can search reusable software components from code resource community,

browse all the searching result and retrieve the code components through GUI

CodeRequestPeer

PP rnubrgstid

Figure 5-1: CRP Setup package in Windows98/2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To run the program in Linux environment, simply open the terminal window, and type

the following command: java —jar CRP jar

5.1.2 Setup for the role of Code Service Peer
Unlike CRP, the setup for CSP requires not only JRE, but also Database Management
System (DBMS) for code repository management. Two kinds of DBMS are supported

by our system till now: Microsoft Access™ and MySQL.

In Microsoft Windows 98/2000 environment with Microsoft Access', first setup the
database for code repository as showed in Figure 5-2, then double-click the package
of executable program file “CSP.jar”, it will run the program to make the computer as

a CSP.

(]

PRCompLees Adoks

Microsoft dB ase Driver)
dBase Files - Word Microsoft dBase VFP Driver {* dbf)
Excel Files Microsoft Excet Driver [xls}
FoxPro Files - Word Microsoft FoxPro VFP Diiver [*.dbf]
SupeiCodeBase Driver do Microsalt Access {*.mdb}
Visual FoxPro Database Microsoht Visual FoxPro Otiver
Visual FoxPra Tables Microsoft Visual FoxPro Driver

={ ODBE MIcrosoft Access Setup
s

Figure 5-2: Microsoft Access'" Database Setup in Windows

In Microsoft Windows 98/2000 environment with MySQL, startup the MySQL
database service for code repository as showed in Figure 5-3, then double-click the

package of executable program files “CSPjar”, it will run the program to make the

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computer as a CSP.

#h; Gervices

Started Automatic LocalSystem

‘ SR DHCP Client Managesn... Started Automatic LocalSystem
. %Distributed Link Tra... Sends notif... Started Automatic LocalSystem
| RaDistributed Transac... Coordinate. .. Manual LocalSystem
| sﬁDNS Client Resolves a,,. Started Automatic LocalSystem
%Event Log Logsevent... Started Automatic LocalSystem
%Fax Service Helps you ... Marual LocalSystem
%Indexing Service Indexes co... Manusal LocalSystem
%lntemet Connectio... Provides n... Manuat LocalSystem
| %IPSEC Policy Agent Manages1... Started Automatic LocalSystem
%Logical Disk Manager Logical Disk,.. Started Automatic LocalSystem
. %Logical Disk Manage... Administrat,.. Manual LocalSystem
f %Machine Debug Man... Supportslo... Started Automatic LocalSystem

Sends and ... Started Automatic LocalSystem

S0 Sharted Butnnmatic LocalSystenm
; %Net Logon Supports ... Manual LocalSystem
1 %NetMeeting Remote. .. Allows aut... Manual Localsystem

: %Network Connections Manageso... Started Manual LocalSystem
; %Netwmk DDE Provides n... Manual LocalSystem
. %Network DDE DSDM Managess... Manual LocalSystem
: s%NMS Service Started Automatic LocalSystem
%Nnrtnn Antivirus Client Started Automatic LocalSystem
%NT LM Security Sup... Provides s... Manual LocalSystem
4 %NUTCRMKER Service Supports N.., Started Automatic LocalSystem
. %Performance Logs a... Configures... Manual LocatSystem
%Plug and Play Manages d... Started Automatic LocalSystem
%Print Spooler Loads files .., Started Automatic LocalSystem

i %Protected Storage Provides pr... Started Automatic LocalSystem “
%Qos RSVP Provides n... Manual LocalSystem
| e%)Remote Access Aut,,, Createsa... Manual LocalSystem
: %Remote Access Con... Createsa... Started Manual tocalSystem
fRemote Procedwre ... Providesth... Started Automatic LocalSystem
| %Remote Procedure ... Managest... Manual LocalSystem
| %Remate Registry Se... Allowsrem... Started Automatic LocalSystem
%Ramovable Storage Managesr.., Started Automatic tocalSystem
s%Routiﬁg and Remot... Offers rout... Disabled LocalSystam
Runds Service Enables st... Started Automatic LocalSystem

arted Automatic

] 6&}Seu:uril:y Accounts Stores
oo,

In Linux with MySQL, startup the service of database for code repository by opening

a terminal window and type command “mysqld start”, then open the other terminal
window and type the command: “java —jar CSPjar” to run the program to make this

Linux computer as a CSP.

5.1.3 Setup for the role of Code Service SuperPeer

Like CSP, the setup for CSS requires not only JRE, but also Database Management
System (DBMS) for code repository management. Two kinds of DBMS are supported
by system: Microsoft Access' ™ and MySQL. Besides, the setup of CSS also needs a

text file “routinglist.txt™, which stores the addresses of the remote CSSs.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Microsoft Windows 98/2000 environment with Microsoft AccessTM, set up the
database for code repository as showed in Figure 5-2, then double-click the package
of executable program files “CSS.jar”, it will run the program to establish the

computer as a CSS.

In Microsoft Windows 98/2000 environment with MySQL, start up the mySQL
database service for code repository as showed in Figure 5-3, then double-click the
package of executable program files “CSS jar”, it will run the program to establish

the computer as a CSS.

In Linux with MySQL, initiate the service of database for code repositories by
opening a terminal window and type command “mysqld start”, then open the other
terminal window and type the command: “java —jar CSS.jar” to run the program to

establish this Linux computer as a CSS.

5.2 System Interface

5.2.1 Code Request Peer Interface

When a computer runs the program to act as a CRP node, first a dialog GUI will pop
up asking which domain (multicast group) in this LAN the user wants this computer
to join. As shown in Figure 5-4, the default value is group 1. After setting the domain,

the system graphic user interface will appear as shown in Figure 5-5:

Figure 5-4: Domain Setting Dialog GUI

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£5 CodeNet Peer Searching Service Mode

S j e = ST

Figure 5-5: GUI for Code Request peer

There are three text input fields for setting searching parameters by user, and two
buttons for setting searching modes. These text input fields and control buttons are in

the upper part of GUI, their functions are as follows:

1. Code Query: this text field is for setting the searching criteria. In this part the
user can input several keywords to describe the required reusable code

component.

2. Max Result No: this text field is for setting the number of displayed search
results. After CRP sends out a search request, it may receive a lot of responses.
The Max Result No parameter will help the program to display only a limited
mumber of the first received results; usually, those results are returned from

the fastest or nearest CSPs or CSSs.
80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Searching Time: this text field is for setting the parameter that restricts the

valid time of request.

4. Search Button: it is a trigger to set program working in multicast mode.

5. Super Search Button: it is a trigger to set program working in routing mode.

In the middle of the GUI there is a table for displaying the search results. As shown in
an example GUI for multicasting mode in Figure 5-6, three results, which are
returned from different code repositories in local domain, are displayed in the table.
In this table, “No” column shows the sequence number of the returned results.
“CodeBase Site” column shows the IP address of CSP or CSS from which the result is
returned. “Code Name” column shows the names of returned results. “Code
Keyword” column displays the detailed description on the returned results. “Middle
CodeBase” shows the routing path that the search request has taken before getting a
result. As shown in an example GUI for routing mode in Figure 5-7, the “Middle
CodeBase” of a result 1s “137.207.234.171-137.207.234.121 -137.207. 234, 1837,
that means: the search request first reaches the computer whose 1P is 137.207.231.171,
since no suitable result is found in its code repository, the request is forwarded to the
second computer whose TP is 137.207.234.121, and no suitable one is found too. At
last the request reaches the third machine with IP of 137.207.234.183, where the

result 1s found and returned.

As the results are displayed in the table, the user can use mouse or keyboard to choose
one from those results (highlight a row in the table), and press the “Get Code” button
that is laid on the left side bottom of GUI. Then, the detailed well-formed source code

will be displayed in the text area, which is beside the “Get Code” button.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

< My Netwrc RealGne
Flas e

Play
£5 codeNet Peer Searching Sevvice Mode
a 333

zég‘gq % < = deind % 3148 B i
137.207.234.171 AddMethod add 2 numbers java No middle

137.207.234.121 AddMethod add 4 numbers java No midd!e

137.207.234.183 add 3 numbers java No middle codebase

ombmanunstrlg a, String b)

efurn (a+h);

{
. retumn (ab);
>

Figure 5-7: GUI Example of Code Request Peer in routing mode

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 Code Service Peer Interface

§ CodeNet Peer Seri -

Figure 5-8: GUI of Code Service Peer

The GUI of Code Service Peer is shown in Figure 5-8. Usually, CSP is in listening
status. When receiving a request on the port, CSP will display the received message
immediately on the GUI. When CSP takes transactions, the transaction message will

also be displayed on the GUI window.

5.2.3 Code Service SuperPeer Interface

i

udNet SsxSeme
=

o

Figure 5-9: GUI of Code Service SuperPeer

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The GUI of Code Service SuperPeer is shown in Figure 5-9. Usually CSS is in
listening status. When receiving request on the port, CSS will display the received
message immediately on the GUI. When CSS takes transactions, the transaction

message will also be displayed on the GUI window.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

6. SYSTEM EVALUATION

In this Chapter we present the evaluation of our prototype system.

6.1 Interoperability

Our system is a java-based application, so it can run on a wide variety of platforms
with JRE to guarantee interoperability. Our testing on interoperability is performed
using three scenarios: pure Microsoft Window™ platform environment; pure Linux

platform environment; and, a hybrid environment.

6.1.1 Simulation in the Pure Windows Environment

To test our prototype system in windows environment, we used 4 computers to deploy
system: one computer with Window 2000™ and Microsoft Access™ ran as a CSP,
one computer with Window XP™ and MySQL ran as both CSP and CSS, one
computer with Window 2000™ ran as a CRP, and one computer with Window 9g™
and Microsoft Access'™ ran as a remote CSS. The previous three computers were
connected with our University LAN, the last one was connected with Internet through
cable connection from Cogeco CableTV company. We tested our system on both
multicasting mode within our university LAN and routing mode with one local CSS

in our LAN & one remote CSS from Internet. On both these two scenarios, the

operations including code searching and retrieving were performed successfully.

6.1.2 Simulation in the Pure Linux Environment

To test our prototype system in Linux environment, we use 3 computers to deploy
system: one computer with Red Hat Linux (version 7.0) ran as a CRP, one computer
with MEPIS Linux (Version 2003.0) and MySQL ran as both CSP and CSS and one
computer with Red Hat Linux (version 7.0) and MySQL as a remote CSS. The
previous two computers are connected with our University LAN, the last one is
connected with Internet through cable connection from Cogeco CableTV company.

We tested our system on both multicasting mode within our university LAN and

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

routing mode with one local CSS in our LAN & one remote CSS from Internet. On
both these two scenarios, the operations including code searching and retrieving were

performed successfully.

6.1.3 Simulation in the Hybrid Environment

To test our prototype system in the hybrid environment, we used 5 computers to
deploy system: one computer with Window 2000™ and Microsoft Access™ ran as a
CSP, one computer with MEPIS Linux (Version 2003.0) and MySQL ran as a CSP,
one computer with Window XP™ and MySQL ran as both CSP and CSS, one Unix

8™ and Microsoft

workstation ran as CRP and one computer with Window 9
Access™ ran as a remote CSS. The previous four computers were connected with our
University LAN, the last one was connected with Internet through cable connection
from Cogeco company. We test our system on both multicasting mode within our
university LAN and on routing mode with one local CSS in our LAN & one remote

CSS from Internet. On both these two scenarios, the operations including code

searching and retrieving were performed successfully.

6.2 Performance

Our system is proposed to replace the traditional C/S application on code resource
sharing in CodeNet project, so we tested the performance of our system and compare
the experiments results with those of the C/S model system. We simulated the
performance testing on our system in LAN environment with 2 nodes, 4 nodes and 6
nodes. The performance is evaluated by the time that it takes for a code requestor to

receive response after sending out the request.

We test the system performance with different aggregation capability of code
repositories. There are three assumptions about our testing method:
1. All the code components, on average, are stored in the various code repositories

and no code redundancy exists.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. The code components are stored in databases randomly without any index.
3. The evaluation is based on the worst searching case. That is, the required code
component is stored as the last record in database.

OTM

We test system performance on two scenarios: Microsoft Windows 2000 ™ platform

with Microsoft Access™ and Linux platform with MySQL.

Table 6-1 shows the testing result table of client/server system and our system
running on Microsoft Windows 2000™ platform with Microsoft Access™. Figure
6-1 shows a comparison of the performance of our model with C/S model in
Microsoft Windows environment. In our testing, the computers that run as nodes have
the same hardware specification as: CPU-- Pentium III with 2.8GHz;

Memory—>512M; Bandwidth of the network-- 100Mbps.

Resource Capability | Client/Server Model Our Model (unit: ms)
(unit: records) (unit: ms) 2 Nodes | 4 Nodes | 6 Nodes

10 95 95 95 95
100 104 105 104 104

1000 115 114 113 113
10000 210 170 150 120
20000 340 210 170 160
30000 465 290 200 170
40000 600 340 210 185
50000 730 420 280 200
60000 851 465 290 210
70000 980 551 310 230
80000 1100 600 340 280
90000 1240 680 390 291
100000 1362 730 420 300

Table 6-1: Testing Result Table for performance on Windows2000 with Access' ™

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Performance Comparison on Windows 2000 with
Access

1600
"2 1400
2 X
S ——Qient/Serve
§ 1200 r Mdel
= 1000 —a— Qur Mbdel (2
£ nodes)
©
2 800 Qur Model (4
'q_) 600 nodes)
0 —- Qur Model (6
[o
5 400 nodes)
8 200
(Ve
0
- - Q9 Q 9 9 9
S N ¥ © ®© ©
o. h
Repositories Capability
(thousand records)

Figure 6-1: Chart for Performance Comparison on Windows2000 with Access™

Table 6-2 shows the testing result table of client/server system and our system
running on MEPIS Linux (Version 2003.0) platform with MySQL(version 4.0).
Figure 6-2 shows the chart to compare the performance of our model with C/S model
in Linux environment. In our testing, the computers that run as nodes have the same
hardware specification as: CPU - Pentium II with 2.8GHz; Memory - 512M;
Bandwidth of the network - 100Mbps.

From the result tables and charts we can draw the following conclusion:

If aggregation capability of code repositories is below the level (nearly 1000 records
in our condition), there is not obvious performance difference between C/S model and
our model. But if aggregation capability is over the level, the larger the aggregation
capability is, the higher performance our system achieves over C/S model; and the

more nodes there exist in community, the higher performance our system achieves

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

over C/S model.

Resource Capability|Client/Server Model] Our Model (unit: ms)
(unit: records) (unit: ms) 2 Nodes | 4 Nodes | 6 Nodes

10 25 25 25 25

100 25 25 25 25

1000 40 32 30 27

10000 130 80 70 66

20000 240 130 80 75

30000 330 170 110 80

40000 430 240 130 95
50000 520 260 150 105
60000 610 330 170 128
70000 701 400 230 135
80000 800 430 240 155
90000 891 490 250 170
100000 992 520 260 200

Table 6-2: Testing Result Table for performance on Linux with MySQL

It is reasonable to anticipate that the time for any single peer node to issue a request
and receive a response will have constant time, O(1), complexity using multicast
technique within a single domain. However, as the number of request-responses
increases to N nodes, issued simultaneously, the time complexity will be O(N). This
basic behaviour is verified by inspection of the graphs in Figures 6-1 and 6-2, where
the profiles are essentially linear. The deviations from linearity arise, for the most
part, from the fact that non-processable incoming requests are currently dropped in
our prototype system, and that requests that must be forwarded to a neighbouring
domain have non-deterministic response times. Since the number of non-local
responses is typically small this effect produces the fluctuations from strict linearity

in the figures.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Performance Comparison on Linux with MySQL

1200
T 1000
8 —— Client/Server
.g 800 Model
= ~=— Our Model (2
5 600 nodes)
E Our Model (4
o nodes)
g 400 s Our Model (6
§ 200 nodes)
o
0 o
589888
O- h ad
Repositories Capability

(thousand records)

Figure 6-2: Chart for Performance Comparison on Linux with MySQL

6.3 Scalability

Our model uses a decentralized architecture, so the scalability of resource community
is not limited by factors such as the amount of operations performed on central
components. Besides, our system provides support for low-end computers. This
feature makes it possible for a lot of Grid network devices with CPU and some
storage space to join resource community as a source code provider. Comparing with
high hardware and software requirements for computer as server in C/S model, our
solution is more scalable. In our model, the organization of system nodes into groups
also improves the source community scalability because new resource nodes can join
the code resource community as members in new group without taking too much

communication bandwidth in Grid networks.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Implementability

As stated in Chapter 5, our system is very straightforward to deploy. Any computer
with JRE can run our system working as a code requestor. Any computer with JRE
and database support can work as a code resource provider. For default system setting,
the communication happens on port 5000 for CRP, 6000 for CSP, and 7000 for CSS.
If a Grid node does not forbid those ports, it can run our system as any role or all 3
roles at the same time. The administration work needed in our model is to maintain
the routing list file on CRP and CSS to make sure the address information in the file is
correct so that request can be routed to the right local or remote CSSs. After a system
node starts up running the program, it joins the Grid code resource community and
cooperates with other node with high autonomy without much administration or

human intervention.

6.5 Limitations

Based on the observations of the system running, some limitations of our prototype

system are reported in the following.

(1) In our model, when a CSP or a CSS is in process of transacting one request, its
communication port is closed. So if a request message is coming at this specific

period, it may be ignored.

(2) The communication between system nodes is implemented on port. If the firewall
of one Grid domain blocks the specific CSS communication port, the code
resources located in this domain will not be accessible by CSSs in other remote

domains.

(3) In traditional client/server code resource sharing, all the code resource are stored
and managed in a centralized database server, so there does not exist redundancy.

In our model, the code resource are dispersed in multiples code repositories

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

without centralized management, so redundancy may exist. That may potentially

take up additional storing spaces in code repositories.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this paper we have proposed a decentralized code (generalized content data)
resource sharing model, and investigated the problem of dispersed code repositories
sharing. In our prototype system, based on results obtained from an objective suite of
evaluative tests, we achieve greater interoperability and higher performance with a
decentralized infrastructure than in client/server code sharing applications. We assert
that this new model can replace the conventional client/server model for Grid code

resource sharing in the future.

7.1.1 Innovation

The most innovative feature presented in our model is importing P2P technology and
methodology into code and generalized content sharing mechanisms in Grid
environment, thus solving several aspects of the problem of dispersed code
repositories sharing, for which the conventional client/server model could not provide

efficient support.

Different from other P2P applications that adopt only one discovery approach, our
software system uses two discovery approaches on both two scenarios: searching
within local domain and searching across remote domains. Thus, we are able to

overcome the scalability limits to make our model suitable for Grid environment.

7.1.2 Achievements

We propose a solution for code resource sharing in Grid environment. We design a
new model that extends existing source sharing protocols, importing P2P technology
into code reuse application area in Grid context. The new model inherits the

advantages of P2P systems in dynamism, ease of use, flexibility and decentralization.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Moreover, the new mechanism overcomes the disadvantages of existing protocols
and supports large-scale distributed code resource among multiple Grid domains.
Besides, the system is platform independent and can be flexible deployed with less
administration comparing with client/server model. In Table 7-1, we compare the
characteristics of our proposed model with the previous client/server model applying

on code sharing area.

Feature Conventional Our Proposed
Client/Server Model Model
Decentralization Medium High
Scalability Medium High
Interoperability Medium High
Dynamism Low High
Cost of ownership High Low
Autonomy Low Medium
Targeted environment LAN&WAN Grid, LAN&WAN
Performance Medium Individual Low,
Aggregate High

Table 7-1: Comparison of the C/S model and proposed model

7.2 Suggestions For Future Research

During the process of conducting this research program many additional problems
and issues arose that provide possible avenues for further investigation. Based on
the achievements of this thesis, the following potential future research directions are

recommended:

e Further research the enhancement of system security. The open and anonymous
nature of P2P networks leads to a lack of security in our prototype system. Some

Grid security mechanisms such as authentication and authorization should be

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

imported into our system as future work.

Design and establish powerful database capabilities and functionalities to

improve sharing and secure access to the code repositories.

Further explore code component searching and retrieval based on natural
language specification. In our system, we use keyword as searching criteria,
which is not a very efficient way for code components searching and retrieval.
The importance of natural language support arises due to the lack of knowledge of
actual keywords required to establish database entry matching during query;
providing further support through the use of synonyms and ontologies would
greatly improve on the query capability, while extending the domain of this

research into the area of Semantic Web.

Apply a theoretical testing analysis and additional refinements of our prototype

system.

Thoroughly test total system performance under heavy loads, in which either the
P2P model is deployed on a large Grid test bed or through simulation, varying
both the number of peers and the number of requests according to a range of

statistical distributions.

Further explore automated search and retrieval of binary executables and web
services to enable “intelligent” deployment of code resources onto the Grid
framework, much as DLL’s and other utilities are used within workstation and
server computing environments. This would extend the notion of compile and
link in static workstation environments to its extended, dynamic counterpart

within grids.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

1.

10.

11.

[Arnold99] Ken Arnold, “The Jini architecture: dynamic services in a flexible
network”, Proceedings of the 36th ACM/IEEE Conference on Design Automation,
June 1999

[Atsumi02] Noritoshi Atsumi, Shoji Yuen, Kiyoshi Agusa, Shinichirou
Yamamoto, “Middleware issues: Library evolution for reliable software”,

Proceedings of the international workshop on Principles of software evolution,
May 2002

[Ander02] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, Dan
Werthimer, “SETI@home: an experiment in public-resource computing”.
Communications of the ACM, Volume 45, Issue 11, November 2002

[Baker01] Baker, M.; Smith, G., “Jini meets the Grid”, Proceedings of the 2001
IEEE Conference on Parallel Processing, 2001

[BarkaiO1] Barkai, D. “Technologies for sharing and collaborating on the Net”,
Proceedings of the First International Conference on Peer-to-Peer Computing,
Aug 2001

[Basili97] Victor R. Basili, Steven E. Condon, Khaled El Emam, Robert B.
Hendrick, Walcelio Melo, “Characterizing and modeling the cost of rework in a
library of reusable software components”, Proceedings of the 19th International
Conference on Software Engineering, May 1997

[BathjaO1] J. Batheja and M.Parashar. “Framework for Opportunistic Cluster
Computing using JavaSpaces”. The 9" international Conference on High
Performance Computing and Networking (HPCN2001), Workshop on Java in
High Performance Computing, Amsterdam, Feb 2001

[Bolosky00] Bolosky,W., Douceur, J., Ely, D., and Theimer, M, “Feasibility of a
Serverless Distributed File System Deployed on an Existing Set of Desktop PCs”,
Proceedings of SIGMETRICS, Santa Clara, CA, USA, Jun 2000.

[Casanova02] Henri Casanova, “Distributed computing research issues in grid
computing”, ACM SIGACT News, Volume 33 Issue 3, Sep 2002

[Coulou94] George Coulouris, Jean Dollimore, and Tim Kindberg, “Distributed
Systems - Concepts and Design”, International Computer Science Series,

Addison-Wesley Longman, Inc., 2 edition, 1994.

[Czajk97] K. Czajkowski, I. Foster, C. Kesselman, S. Martin, W. Smith, and S.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Tuecke, “A resource management architecture for metacomputing systems”,
Technical report of Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, 1ll., 1997.

[Czajk01] Czajkowski, K., et al., “ Grid Information Services for Distributed
Resource Sharing”, [EEE International Symposium on High Performance
Distributed Computing, 2001.

[Damiani96] E. Damiani, M. G. Fugini. “Design and code reuse based on fuzzy
classification of components”, ACM SIGAPP Applied Computing
Review, Volume 4 Issue 2. September 1996

[Fitzg97] S. Fitzgerald, 1. Foster, C. Kesselman, G. von Laszewski, W. Smith,
and S. Tuecke. “A directory service for configuring high-performance distributed
computations”. Proceedings of 6th IEEE Symp on High Performance Distributed
Computing, pages 365-375. IEEE Computer Society Press, 1997.

[Foster97] 1. Foster, C. Kesselman. “Globus: A Metacomputing Infrastructure
Toolkit”. Intl J. Supercomputer Applications, 11(2):115-128, 1997.

[Foster98a] Foster, L., Keselman, C., Tsudik, G. and Tuecke, S, “A Security
Architecture for Computational Grids”, Proceedings 5" acMm Conference on
Computer and Communication Security, pp 83-91, Nov.1998

[Foster98b] 1. Foster, C. Kesselman. “The Globus Project: A Status Report”,
Proc. IPPS/SPDP '98 Heterogeneous Computing Workshop, pp. 4-18, 1998.

[Foster99] Foster, I., Kesselman, C. “The Grid: Blueprint for a New Computing
Infrastructure”, Morgan Kaufman Publishers, Inc, San Francisco, California,
1999.

[FosterO1] Foster, I., C. Kesselman, S. Tuecke. “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations”, International J. Supercomputer
Applications, 15(3), 2001.

[Foster02a] Foster, I, “What is the Grid? A Three Point Checklist”, GRIDToday,
http://www.gridtoday.com/02/0722/100136.html, July 20, 2002.

[Foster02b] I. Foster, C. Kesselman, J. Nick, S. Tuecke, “The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration”,
Open Grid Service Infrastructure WG, Global Grid Forum, June 22, 2002.

[Foster02c] 1. Foster, C. Kesselman, J. Nick, S. Tuecke, “Grid Services for
Distributed System Integration”. Computer, 35(6), 2002.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

[Foster02d] Ian Foster, “The Grid: A new infrastructure for 21% century
science”, Physics Today, February 2002

[Frakes94a] W.B. Frakes and S. Isoda. “Success Factors of Systematic Reuse”,
IEEE Software, Vol. 11, No.5, pp.15-19, Sept 1994,

[Frakes94b] Frakes, W. B. and Pole, T. “An empirical study of representation
methods for reusable software components”, IEEE Transactions on Software
Engineering, Vol. 20, No.8, pp.617-630, Aug. 1994

[Freenet] The FreeNet home page, http://www.freenetproject.org

[Furmento02] Nathalie Furmento, William Lee, Anthony Mayer, Steven
Newhouse, John Darlington; “ICENIL: an open grid service architecture
implemented with Jini”, Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, November 2002

[GGF] Global Grid Forum. http://www.gridforum.org/.

[Globus] Globus Project. http:/www.globus.org.

[Gnutella] The Gnutella home page, http:/www.gnutella.co.uk/

[Gribble01] Gribble, S., Halevy, A., Ives, Z., Rodrig, M., and Suciu, D. “What
Can Peer-to-Peer Do for Databases and Vice Versa?”, Proceedings of the
WebDB: Workshop on Databases and the Web, Santa Barbara, CA, USA, 2001

[Grinter01] Rebecca E. Grinter, “Session 4: From local to global coordination:
lessons from software reuse”, Proceedings of the 2001 International ACM
SIGGROUP Conference on Supporting Group Work, September 2001

[Groove] The Groove home page, http://www.groove.net/

[Henninger97] Scott Henninger, “An evolutionary approach to constructing
effective software reuse repositories”, ACM Transactions on Software
Engineering and Methodology (TOSEM), Volume 6 Issue 2, April 1997

[Howes95] T. Howes and M. Smith. “The LDAP application program interface”.
RFC 1823, August 1995.

[Jacobson97] Jacobson, I., Griss, M. and Jonsson, P, “Software Reuse:

Architecture, Process and Organization for Business Success”, ACM Press, New
York, NY, 1997.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37.

38.

39.

40.

41.

42.

43.

44

45.

46.

47.

48.

49.

[Jini] Sun Microsystems, Jini Specification.
http://'www.sun.com/software/jini/jini_technology.html

[JXTA] S. Microsystems. Project JuXTApose home page, http://www.jxta.org,

[Krueger92] Charles W. Krueger, “Software reuse”, ACM Computing Surveys
(CSUR), Volume 24 Issue 2. June 1992

[Kubiatowicz00] Kubiatowicz, J., Bindel, D., Chen,Y., Czerwinski, S., Eaton, P.,
Geels, D., Gummadi, R., Rhea, R.,Weatherspoon, H.,Weimer, W.,Wells, C., and
Zhao, B. “OceanStore: An Architecture for Global-Scale Persistent Storage”,
Proceedings of the Ninth international Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2000), November
2000.

[Mewes00] Mewes HW, Frishman D, Gruber C, Geier B, Haase D, Kaps A,
Lemcke K, Mannhaupt G, Pfeiffer F, Schuller C, et al., “MIPS: a database for
genomes and protein sequences”, Nucleic Acids Res. 28(1), pp.37-40, January
2000

[Milo02] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagarajal,
Jim Pruyne, Bruno Richard, Sami Rollins, Zhichen Xu. “Peer-to-Peer
Computing”. HP Laboratories Palo Alto, March 8th, 2002

[Napster] The Napster home page, http://www.napster.com

[Opencola] The OPENCOLA home page, http://www.opencola.com

[OpenNap] penNap: Open Source Napster Server,
http://opennap.sourceforge.net/

[P2pwg01] Peer-to-peer working group, “Bidirectional Peer-to-Peer
Communication with Interposing Firewalls and NATs”, P2pwg White Paper,
Revision 0.091. http://www.p2pwg.org. May 23, 2001

[Ratnasamy01] Ratnasamy, S., Francis, P., Handley, M., Karp R., Shenker, S. “A
Scalable Content-Addressable Network”, Proceedings of the SIGCOMM, pp.
161-172, 2001

[ShirkyO1] C. Shirky, “What is P2P ... and what isn’t”, an article published on
O’Reilly Network. http://www.openp2p.com/pub/q/all p2p_articles, 2001

[Strom01] Strom, D. “Businesses Embrace Instant Messaging”,
http.//enterprise.cnet.com/enterprise/0-9534-7-4403317. html. January 2001.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

[Suzumura01] Toyotaro Suzumura, Satoshi Matsuoka, Hidemoto Nakada, “A
Jini-based computing portal system”, Proceedings of the 2001 ACM/IEEE
conference on Supercomputing, November 2001

[Tracz95] Tracz, W., “Confessions of a Used Program Salesman:
Institutionalizing Software Reuse”, Addison-Wesley, Reading, MA, 1995

[Tuecke03] S. Tuecke, K. Czajkowski, 1. Foster, J. Frey, S. Graham, C.
Kesselman, T. Maguire, T. Sandholm, P. Vanderbilt, D. Snelling, “Open Grid
Services Infrastructure (OGSI) Version 1.0.”, Global Grid Forum Draft
Recommendation, 6/27/2003, 2003

[Vahdat98] Vahdat, A., Belani, E., Eastham, P., Yoshikawa, C., Anderson, T.,
Culler, D. and Dahlin, M, “WebOS: Operating System Services For Wide Area
Applications”, 7th Symposium on High Performance Distributed Computing,
July 1998.

[Waldo99] Jim Waldo, “The Jini architecture for network-centric computing”,
Communications of the ACM, Volume 42 Issue 7, July 1999

[Waterhouse02] Waterhouse, S., Doolin, D.M., Kan G., Faybishenko, Y.
“Distributed Search in P2P Networks”, IEEE Internet Computing 6(1), pp.68-72.
January-February, 2002.

[Wilson02] B. J. Wilson, “JXTA”, New Riders Publishing 2002.

[Wollrath97] A. Wollrath, J. Waldo, and R. Riggs, "Java-Centric Distributed
Computing”, [EEE Micro, Vol. 17, No. 3, pp. 44-53. May/June 1997

[YuO1] XiaoHong Yu. “SpiderNet—A Multi-Server Code Service Model Design
for Computational Grid Support”, Master Thesis, University of Windsor, 2000

[Zhang00] Michael Hui Zhang. “Design and construction of a library-based
software reuse model to support distrbuted and grid computing”, Master Thesis,
University of Windsor, 2000

[Zhao02] Xiaoquan Zhao, “A Centralized Object-Relational Database Based
Code Service Retrieval System Tool for Software Reuse”, Master Thesis,

University of Windsor, 2000

[Zhong00] Sheng Zhong. “Software Library for Reuse-Oriented Program
Development”, Master Thesis, University of Windsor, 2000

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS
Fan WANG was born in PR.China, 1975. He obtained the Bachelor’s degree in
Information System from ZhongNan University of Finance & Economics, WuHan,

PRC in 1997. He is currently a candidate for Master’s degree in Computer Science at

the University of Windsor and hopes to graduate in Winter 2004.

101

ﬁﬁeproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A decentralized code resource sharing model for grid computing.
	Recommended Citation

	tmp.1614194967.pdf.juPc7

