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. ABSTRACT.

In this dissertation, steady magnetofluid
dynamic flows are considered uﬁder a'vériety of éssumptiﬁnél
The major pért of this work is‘deﬁoted to a considerat;b;'H
of viscous incompréssible flaﬁs‘of infiﬂitely conducting_
£luids. | ‘

(1) Constantly inclined plane flows of'incompreésible,
viscous and perfectly conduétihg'fluids:
" Introducing the curvilinear coordinatés (6 ,0)
) ~
in the physical plané, where ¢ is the streamfunction, we
transform the system of equatioms governing the flow wheﬂ

the magnetic field makes a constapt‘angle with the velocity -’

field. Using this transformed system, we determine all

L mm——— .

- ™
possible flows for which the streamlines are involutes of
N s hY .

4 . . . .
a curve and when streamlines and their orthogonal trajecto-

ries form an isometric net: \

In the speciai casé\gfégrthogOna; flows, we
determine the geometries and solutions when the cufrén£
density vanishes. We also establish that‘the s;reamlines
in an 6rthogonal irrotational flow are either concurrent =
straight lines or parallel straight liﬁes; Employing the ﬁ
hodograph transformation, we obtaih a linear partial‘ _
differential equation ¢of second order which'is_used to

-

obtain some particular solutions.

ii
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(2} Transverse flows of viscous ipcompressible fluids:
For such .flows, the.most general velbcity fie;d
consistent with the transverse magnetic field is obtained.

For the study of plane transverse flows, with the magnetic

field vector anmal to ;he plane of flow, we emplbj

L]

naturég'streamline'coordinates and determine all possible

AN . . .
flows,fdr\giii:-the streamlines are (a) straight lines, .
(b) involutesQf a plane curve and (c) isometric.:

(3) Axisymmetric magnetohydro dynamic fiows-qf éérfectly
. conducting viscous fluids{ o .

o We'oﬁtain a non—lineak'partial-differential equatfon
to be satisfied by the Stokes streamfunction. A class of |
exact solutions of this equétion zg\disgﬁssed-bjtaking qn
particulér solﬁtioﬂ. Finally, we stﬁdy'meridional.motipn .r
of an inviscié fluid under the influence.of a toroidél,migﬁ‘
ﬁetiq field and consider a particular flow.

(4) Qlane flows of inviscid, compressible and perfectly
c_:onauc ting flu ids: > |
' | We recast the'goyerning system of eguations in
terms ©of the streémfunction and the magnetic flux functién
as independent variables. We use this system to find the
éeometries and solutions of irrotational flows .and flows

with zero current density.

iii
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CHAPTER I

INTRODUCTION

(A) ,Histénical Sketch
Magnetofluid dynamics (MFD) -is the. study of\motion

-

of an .electrically cohducting f£luid in the preséhce cf a
magnetic field. The interactions betﬁ?en the-magﬁétic.field

and 'the motion of the conducting fluid- give rise ta new

--phenomena and have provided challenging probiems. Due to

‘the fluid motion in the presence of magnetic field electric

currents are pfbduced\which in turn medify the magnetic

field. At the same time flow of currents ip the magnetic

field produces mgchanical'forces which modify the £luid

motion. Astrcphysicists and geoéhysiqisﬁs have lonéjséudied
magnetofluid dynamic flows in connection with problems such
as sunspot theory and the origin of earth's magnetic field..

Recently investigatiohs'in to the engineering aspects of

magnetofluid dynamits, such as in the areas of direct con-

version of energy and magnetofluiddynamis propulsion, have
gained importance. MFD has also been applied in the con-
struction of electromagnetic pumps énd fiow meters.

| In theoretical investigations of magnetofluid
dynamic problems it is'necessary to consider fluid dynamic
as-well as electromagnetic ecuations, modified to take into
account the interactions between the ?luia motion and the

magnetic field. Thus the mathematical study of magnetofiuid

1
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dynamics is primarily concerned with a system of non-linear

partial differential equations arising from the well known
pﬁysical conservation laws applied to the continuum model
6f fiuid. Most of the exact solutions of the MFD problems
to date have been obtained for inéiscid fluids of infinite
electrical conductivity. 'Tbe results obtained’ through such
idealiggtion of real fluids provide a basic unéerstanding
of the subject. Though ifnis desirable to rélax'such rés:
trictive assumptions of idéality whénever poééible, to .do
so usually neceésitates recourse to approximate methods
of solution. |

A number of investigators have taken the approach
of isolating special classes of flows in MFD that 'can be

mathematically associated with some flows in ordinary £luid

dynamics. The advantage of such an approach lies in the

resulting applicability of existing fluid dynamical techniques

to MFD. H. Grad (1960) established the reducibility of a
number of magnetofluid dynémic qroblems to fluid dynaﬁic
flows by appropriate identificzation of variables. Aiigned
flows and transverse flows were given by Gréd as examples ‘
qf reducible flows. Later on, oﬁher classes of flows, 1n
particular orthogoﬁal, constantly inclined 'and axisymmetric
flows were studied by using similar methods.

éome description of these classes of flows and the

current status of the related research is surmarized below.

q



e b i = 2 < - -

-

Aligned Flows:

These are flows for which magnetic field vector is
everywhere parallel to the velocity vector. Aligned flow
are the most extensivély studied of the magnetofluid dynamic
flows. §S. Chandrasekhar (1956) investigated the stability
of an aligned flow solution of MFD equations for the case
of inviscid incompressible fluids. In recent years, many
authors have analysed aligned MFD -flows by attempting to
£ind suitable transformations that will yield the corres-
ponding gas dynamic flow equaticns. I. Imai (1960) obtained
such-a correspondence with two dimensional irrotational gas
flow, while R. Peyret (1962) associated aligned MFD flows
to rotational gas flows; M. Vinokur. {1961} cbiained a kizne-
matic formulation for three dimensional aligned flows of

_ideal gases. P. Smith (L963) géneralized some of the results
of steady rotational flows of ideal gases to'aligned flows.
G. Power and D. Walker (1964) established a correspondence

" between two dimensicnal aligned flows of a gas with arbitrary
equation of state and a four-parameter class of rotational
gas flows. ©. P. Chandna and V. I. Nath (1972} developed a
substitution principle, for fluids having arbitrary eguation
of state, that corresponds to Prim's substitution principle
fdr classical gas flows.

¢

Orthogonal Flows.

Flows are said to be orthogonal if the velocity and

o




the_ magnetic fields are evervwhere orthogonal to eacH cther.
Iu. P. Ladikov (1962) derived two Bernoulli type eguations
for.orthogonal flows of inviscid fluids with infinite ele-
ctrical conductivity. Power and Walker (1965), and Power
and Talbot (1969), studied plane compressible orthogonal
flows by reducing the problem to that of rotational gas
dynamic flows. Power and Walker (1967) established ﬁhe
redﬁcibility of cerﬁain steady plane orthogonal flows of
viscous incompressible fluids to ordinary fluid £lows of

viscous compressible fluids. Nath and Chandna (1973)

. investigated steady plane viscous incompressible MFD flows,
using the streamfunction and magnetic flux function as
indevendent variables. Thesé authors determined flow geo-
metries for orthogonal flows when the streamlines are either
straight lines or involutes of a curve.

Transverse Flows. .

By transverse flows we mean fléws for which the
magnetic field is unidirectional. E. Grad (1960)-studied
transverse flows of inviscid perfectly conﬁucting coméressi—
ble fluid for the‘situation where the veleocity vector lies
in the plane perpendicular to the direction of magnetic field.
He obtained two integrals, one relating the magnetic induction
with the speed of sound and the other a generalized Bernoulli
equation. R. M. Gunderson (1966, 1969) studied transverse
flows using method of character;stics and extended the idea

of simple waves to such flows. Chandna (1972) obtained a
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compatibility equation for steady plane transverse flow of
inviscid compressible perfectly conducting flﬁids. Nath and
Chandna (1973) developed a substitution principle for such
flows and Chandna, Smith and Nath (1975) studied channel flow

under a transverse magnetic field.

Constantly -Inclined Flows.
These flows ére defined to be flows for which the
magnetic field makes a2 constant angle with the velocity field.
Until 1973, there appears to be no mention of such flows in
the literature. J. S. Waterhouse and J. G. Kingston (1973)
investigated constantly inclined flows of incompressible non-
viscous fluids with infinite electrical conductivity. Toews
and Chandna (1974) considere@'constaptly inclined flows of
inviscid compressible fluids -and éeneralized sbme of the
results previously derived for'orthogonal £lows. In another
paper Chandna, Toews and Nath (1975) studied- these flows of

viscous incompressible fluids.

Axisvmmetric Flows.

By axisymmetric MFD flows we mean MFD flows where all
the flow characteristics including the magnetic field have
symmetry about an axis. ‘Such flows of inviscid incompressible
fluids have_been investigated by many authors. V. C. A.
Ferraro (1954} studied such flows in connection with equili-
brium of magnetic stars. S. Chandrasekhar (1956) obtained
sclutions for a large elass of ﬁorce-freelaxisymmetric fields.

R. R. Long (1960) and C. S. Yih (1965) have studied steady
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axisymmetric flows of perfectly conducting, inviscid
incompressible fluids. Recently K. B. Ranger (1970) has
given some interesting exact solutions for such flows. He
dealt with an axisvmmetric configuration where there is
finite inviscid fluid motion .inside a perfectly conducting
liquid sphere in the presence of magnetic £field. In another
paéer Ranger (1970) has studied élow motion of.a viscéus
finitely conducting fluid past a sphere in the presence of

a torcidal magnetic field.

(B} Outline of the Present Work.

In this work, steady flows of electrically conducting
fluids in the presence of a magnetic field are investigated
under a variety of assumptions. The major part of this
investigation is. devoted to a consideration of viscous
incompressible plane flows of infinitely éonducting fluids.
First, the geometry of flows is investigated for constantly
inclined flows for two situations. These correspond to the
cases when the streamlines are either involuteg of a curve
or form an isometric nét with their ortheogonal trajectories.
Aligned flows and orthogonal flows are treated as special
cases of constantly‘inclined flows. For orthogonal flows,
the geometrical implications of having zero current density
and zero vorticity are investigated. Using hodograph trans-
formation, a linear partial differential equation of second
order is obtained for such flows and this equation is used

to obtain some particular solutions.



Next, transﬁerse flows of viscous incompressibkle
fluids having finite electrical conductivity are investigated
and most general velocity field, cons}stent with unidirectional
_magnetic field, is obtained. Some geometrical results are
obtained for flows with velocity vector lying in the plane
perpendicular to the direction of magnetic field.

Pinally, axisymmetric flows, that have rec ly
received much attention, are examined for incompressible
fluids when viscous effects are no£ negiected‘and exact
solutions are obtained. -

) In a somewhat different vein, some préperties of
plane steady comoresszble flows of perfectly conducting
fluids are alseo lnvestlgated by introducing stream function
and magnetic flux function as independent variables. Geo-
metries and solutions are obtained in the case of ixrotatio-
nal flows and flows with zero current density.

A detaiied outline of the present work follows.

Chapter II deals with constantly inclined viscous
incompressible plane flows. 1In section 1, we give the
equations of motion for magnetofluid dynamics in their most
general form. 1In section 2, we obtain the flow equations
for the steady plane flow of a viscous incompressible fluid
having infinite electrical conductivity. In section 3, we
transform these eguations by introducing curvilinear co-
ordinates (¢, ¥ ) where ¥ is the streamfunction. Flows

where sireamlines are involutes of a curve are considered in



section 4 and it is established that the streamlines must

be concentric c1rcles. In sectlon 5, we consider flows where
stre;mllnes and thelr orthogonal trajectorles form an iso-
metric net and it is shown that the streamlines are restricted
to parallel straight lines, concurrent lineg, concentric
circles or logafithmic spirals. Finally, in section 6, we
find solutions to voftex and radial flow probliems.

In chapter III, we consider plane viscous flows with
orthogonal magnetic and vglocity field distributions. In
cection 1, the Flow equations are obtained with ¢, ¥ as
independent variables where ¢ is the magnetié flux function
and ¥ is the streamfunction. Flows with zero current density
are considered in section 2. In section 3, all possible
jrrotational flows are classified and corresponding solutions
are obtained. Using Hodograph transformaéion a linear partial
differential equation is obtained in section 4, known solutions
of which can be used to £ind solutions of +he £lows under
investigation. In the next section we consider some par-
ticular solutions.

In chapter IV, we study magneto;luld dynanic flows
of viscous incompressible fluids having finite electrical
conductivity,-whén the magnetic field is acting in a fixed
direction. In section 1, we find the most general velocity
field that is compatible with such a magnetic field. Plane

transverse flows with magnetic field perpendicular to the

plane of flow are studied in the remaining chapter. In’



section 2, the magnetic field is eliminated from the flow
~equations and the resulting equations are transformed to
natural streamline coordinates. In section 3, we consider
flows having straight streamlines and establish that stream-
lines must be either concurrent or parallel. In section 4,
the flows whose streamlines are the involutes of a curve are
determiﬂed. Fiows with an isometric streamline pattern are
investigated in section 5.

Chapter V deals with steady plane compressible
magnetofluid dynamic flows. In section 1, the system of
equations governing the flow of thermally non-conducting
inviscid fluids with infinite electrical conductivity are
formulafed with ¢, .y as independent variables, where ¢ isA
the magnetic flux function and ¥ 1s the stream function.

In section 2, we consider irrotational orthogonal flows.

We classify these flows and find the corresponding solutions.
In the next section we study the geometry of constantly
inclined flows with zero current density and f£ind the
solutions of the corresponding flows.

Chapter VI deals with steady axisymmetric magneto-
fluid dynamic flows of viscous incompressible fluids havihg
infinite electrical conductivity. In section 1, we obtain
a non-linear partial differential eguation for the stream-
function employing the cylindrical polar c¢oordinates with
2z - axis along the axis of symmetry. In section 2, a class

of exact solutions for these flows is obtained and a
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particular solution is'discussed. In section 3, we
consider.the flows when stream function ¢ is a function

of z only. Lastly, we consider meridional motiSﬁ in
section 4. We consider an inviscid flow in the meridional
plane under the influence of toroidal magnetic field.

This problem reduces to a non-linear partial differential

equation of second order in ¥ involving tweo arbitrary

functions and a particular flow is investigated.

N -

<



CHAPTER II

PLANE VISCOUS FLOWS with CONSTANTLY INCLINED

MAGNETIC and VELOCITY FIELDS.

Many authors have considered orthogonal and aligned.
- flows. However, the more general class of constantly
inclined flows did not receive much attention until recently.
. Watérhousé and Kingston (1973} classified the possfble flow
configurations for constantly inclined flows of.inviscid
incompressible fluids of infinite electrical conductivi%f.
Chandna, Toews, and'NatH (1975) considered constantl& inclined
flows of viscoﬁs incompressible fluids and established thaf
the only possible flows with straight streamlines are those
with radial or parallel streamlines.

| In th; preéent chapter we study. constantly inclined
f}oﬁs of a viscous incompressible fluid of infinite electricai
conductivity. This study is carried out by adapting a tech-
niq;;\devéloped originally by Martin (1571) to investigate
steady plane flowé of a non—con&ucting viscous incompressible

fluid. We introduce curvilinear coordinates (¢, ¥) in the

physical plane, where the coordinate lines ¥ = constant are '

t+he streamlines, and transform the governing system of equgtions

with ¢, ¥ as independent variables, Using this system we

determine all possible flows for which the streamlines are
involutes of a curve and when streamlines and their ortho-

gonal trajectories form an isometric net.

1l

e n e, Al i
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Section 1. General Equations of Motion of Magneto-Fluid-
<5

Dynamics

The fundamental equations of MFD, governing the

flow of thermally-nonconducting and electrically conduct-
ing fluids are as follows

ap : oo ;
T div (pV) = 0 _ (21.01)

" (Conservation of Mass)

-
3V

- -+ . -+ -+ -+
P 5t + p{V:grad)V + grad p = div t + g J x H + pF

(21.02)
A

(Conservation of Linear Marentum)

- -2
pT %% +pTV-grads = ¢ + div (k grad T) + %; (21.03)

(Conservation of Energy)

- L
j = curl K {(21.04)
- a+
= - OH .
curl E = -p 7t . (21.05)
(Maxwell Equations)
-+ -> -+ -+
j = o(E + pV x H) (21.06)
(Ohm's Law)
p = plp,s) ' (21.07)

(Eguation of State)
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- )
where V denotes the velocity vector, p the density, p the

pressure, s Ehe specific entropy, y the magnetic permea- |,

bility, ; the external body forces per unit mass, E the
magnetic field vector, E the electric intensity vector,

5 the current density vector, o the electrical conduc-

- ~=tivity, x« the thermal conductivity, T the absolute

temperature of the fluid, 1 the yiscous Stress tensor and

¢ the heat influx due to viscous dissipation.

If ; = (vl,vz,v3) and n is the coeffigignt of

vi;cpsity, then the components Tij of the viscous stress

hY
tensor t are given by

-

. oV, ov

e onfot o oy 2 ‘v v
Tys = “(axj + Bxi) 5N 6ij div v {21.08)

wWhere sij is the Kronecker delta.
Heat influx due to viscous dissipation, ¢, is given by

3 - v

3 B
¢ = § £ ¢ Eii (21.09)
j=1 i=1 ij °%4

Eliminating E and E between (21.04), (21.05) and (21.06),

we get the equation for magnetic field as

~curl(V x H) - curl (EF curl H) = 3t {(21.10)
Taking divergence of both sides of (21.05) gives

3 e o
Eg(dlv H) = 0 .
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-+ .
This implies that div E is constant relative to time and
. . -
consequently the magnetic field vector H is taken to’ be

solengidal,

g
div H =0 (21.11)

Equation (2i.ll) can be regarded as a constraint for the

L

=
initial configuration of the magnetic field H.
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Section 2. Equations of Steady Plane Flow of a Viscous

Thcompressible Fluid Having Infinite

Electrical Conductivity

In the case of incompressible fluids of infinite

electrical conductivity equat%ons of steady motion reduce

to_‘
) -
div(pVv) = 0
™
-+ . 2> - -+
p(V-grad)V = grad p = 0 V'V + p(curl H) 'x K
-
curl (VxH) = 0
- ->

When the flow is two-dimensional with magnetic

field vector in the plane of flow, above egquations

become:
Zion) + =(pv) = 0  (22.01)
3x F% .
2 2 3H oH
3u 3u 3p _ . ,d° 1 3°u, _ 2 _ 1
(22.02)
2 2 8H 8H
3V v 3p _ 3TV 37V - 2 _ 1
p(uax + Vay) * 3y B n(axz * aVZ) + uhl(ax ax )

-

—_ (22.03)




L

7
,4/
D

uli, - le = K (22.04)

oH 9H v
1 2 _

T + i 0 ‘ (22.05)

-+ >
where V = {(u,v), H = (Hl’HZ) and K is an arbitrary
constant which is zerc far the aligned flows and non-zero

in the_case of non-aligned flows.t

We define the following functions

p oS3V __3u

3y -

N . aH2 _ BHl
J ax Y

(22.06)

h= %QVZ + p

N

2 2 ~
wherein V° = u® + v°. i

Using (22.06), we can rewrite eguation (22.02) as

2
3 I ah Ju v a7 3w duw
pluz— + ve) + == - pluzs + ve) (— + - ==)
: X 3y 3x X aIx axz Ix3y- Y

—HJHZ
or
—pv(EY - 2wy, 3h 0 Bw 33U, AV,
iz Ttk "ay Y "ax Gx Ty T MIER o

v
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and making use of (22.0l1), we get

Similarly,

20 4 i = - 2B
nW PVM+1-\3H2— X

(22.03) gives us

oW .
n 3% puw + B]Hl

3h
ey

n

[

Therefore, the five partial differentiéf’equations (22.01)

tc {22.05) are replaced by a system of seven partial

differential equations,

%(‘pu) + %(pv) =0 (22.07)

(Eguation of Continuity)

b g = -2h
n Iy - pvw + uJHZ = % (22.08)
(Momentum Eguaticn)
B . = 3B
N puw + ijl = 3y ‘(22.09)
(Momentum Equation)
qu - le = K (22.10)

(Equation for Magnetic Field)
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oH. )28
1 2 _ .

EE—'+ 37 0 (22.11)
(Solenoidal Condition on H)

v _ 3u _ ; (22.12)

ax Y ' :
(Vorticity)

3H

2 1.
= §§_ = j {22.13)

(Current Density)

The advantage of this system of eguations over the ori-
ginal system is that the order of the parﬁial differential
equation has decreased from two to one.

| Equation (22.07) implies the existence of a stream .

function ¢ (x,y) such that

and the curves v(x,y) = constant define the family of
streamlines. Let us take ¢ (x,y) = constant to be some
.arbltrary family of curves such that it generates, with
the family of curves ¥(x,y) = constant, a curvxlxnear
coordinate system (é,y) in the physical plane. In place

- of the rectangular coordinates (x,y), we introduce
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curvilinear coordinates (¢,y) as the independent
_.variables. Then the first fundamental form for the

physical plane is given by

as? = Ed¢2 + 2Fdédy + qu:z , | (22.15)
where )
B= 5%+ Eh?,
F=%.%+%.%, (22.16)
c= (3% + Gh2.
We have

provided that 0<|J|<=, where J denotes the Jacobian

= 8x 3y _ 3x 3y
J 3o 30 T (22.18)
From {22.16) and (22.18), we have
J = tu (22.19}

where W = YEG - F2 .
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Let o be the angle made by the tangent to the
coordinate line y = constant, directed in the sense of

increasing ¢, with the x-axis. Then, we have (see

Abpendix 2)
.3%_ - /E cos ¢ , %{-: /E sin a (22.20)
%E = F. cos a - J_ sin ¢ , %% =L cos o + F sin «
YE VE Y /B /E
(22.21)
and
de _ J .2 3¢ _ J 2
32-ET1c 3w F 12 (22.22)
where
2 _ 1 _3E , ,p8F _ DIE
2 _ 1 ,.38G _ _3E
rip = EEE(EEE Faw’ (22.23)
2 _ 1 3G _ ,.3F , 3G
Tho = ;IZ—(EW 2Fa¢ + Fa‘:z)‘

The three functions E, F, and G of ¢,y must satisfy the

Gauss equation (see Appendix A):

=

3 W 2
- - !

W 2 =

<
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Section 3. fTransformation of Basic Egquations

Hereafter in this chapter, we consider steady
plane flows of an incompressible fluid of infinite
electrical conductivity where the magnetic. field vector
iies in the plane of flow and makes a constant angle §
with the velocity vector throughout theiflow region.
Aligned fiows where magnetic lines of force coincide
with the streamlines are treated as special cases of
such flows.' In the case of non-aligned flows, (22.10)

implies
HV sin § = X (K#0) (23.01)

where H = /Hz + H2

i 2
For aligned flpws, we have

>
= £V

¥

where f is an arbitrary scalar function, and from (22.11)

and (22.7) we get

which implies that £ is constant along streamlines so
" that £ = £(y). Consequently, in the case of aligned

flows, instead of (23.01} we have
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-

H= [£(y)]V (23.02)

Equation of Continuity: Using (22.17) in (22.14), we

get

o
RS
|
'—l
%)
»
@

v o

|
s

¢

Equations (23.03) show that the fluid £flows along the
streamlines towards higher or lower parameter values @
accordingly as J is positive or negative.

If we introduce polar coordinates V,8 in the
hodograph plane, so that 8 is the direction of flow in

the physical plane, then
u=Vegos 8 ,v=YV sin 8

and equations (23.03) become

3% = pVJ cos 8 : Y - pVJ sin 8 (23.04)
[

¢

There are two possible cases:

Case 1. When.® = «, where ¢ is the angle made #by the
tanget to the curve y = constant, directed in the sense
of increasing ¢, with x-axis, In this case (22.20) and

(23.04) imply that
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. pVI =YE , J>0 (23.05)

Case 2. When 8 = 7 + o.

In this case, from (23.04), we have

.3_3;. = -pVJ cos & , %% = —-pVJ sin «.

and therefore, from (22.20}, we get

pVI = =YE , T < 0 (23.06)
From the above two cases, we conclude that in Case 1, the
£luid flows towards higher parameter valuesd , while in
Case 2, the fluid flows towards lower parameter values ¢.
In either case, from (22.19), we obtain

pVW = /E (23.07)

The (é,¢)-plane is mapped upon the hodograph plane by the

relation

e. (23.08)

Solenocidal Condition on H: H makes an angle ¢ + § or

a + 6§ — © with the x—axis accordingly as fluid flows

along the streamlines towards higher or lower parameter
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values ¢ .

P-increasing

o
S
-
v
o > X g >
Case 1 (8 = ). Case 2 {8 = 7+a).
Therefore, we have
H, = Ty cos(a+§) H, = I sin(a+é) (23.09)

wherein positive or negative sign is taken accordingly as

J is positive or negative.

Using the transformation equations (22.17) in

(22.05), we obtain

Employing (22.20), (22.21) and (23.09) in the above

equation, we get
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[EE cos(a+d) - H sin(a+&)ig] (iL cos a + F sin o)

P9 2¢ /B JE

+ {%% sin (a+8) + H cos(a+5)ii] YE COS o

oy
8H . 2 .
[35 cos (a+d) H sxn(a+6)33] YE sin o
-[B—H sin(«+§) + H cos(a+a)a—°] (£ cos a - = sin «)
2 1 JE /E
=0
where 3%, %% are given by (22.22). On simplification, we

obtain

2H . . °oH . J .2 -
EE(J cos 6 P sin §8) + M E sin & 5 rll H(F cos ¢ +

. 2
J sin 8) + J r12

]
o

H cos @ (23.10)

The Vorticitv w: By definition,

Q]ar
e
2




" On substituting

+
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v

+ .
-V 8in o

where positive or negative sign is taken according as J

15 positive or negative,.we find that

-Juw = (— sin a+ V cos a
+ (Ez-cos a—-V sin o
Ix o
where -3_1::' 3¢’ W

ax
3y

3y .
T

The above eguation simplifies to

where we have made use of W 2

-

From (23.07), on using identities (2.17) and

= gV
YEWw= F3¢

(A.18), we get

Eav

W~

3y

g

"(F T

3
3

J.

(7 Fl

{(—

&4

+ JV=

¢

11

2

sin ¢ + V cos o

- B

- L

r

3V .
(EE cO0s o V sina

x' %%, are given by (22.20) and (22.21).

12)

22)

i&)iﬁ

3y 3¢

ac)ax

B

(23.11)
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Using (23.07), (22.22) and above expressions for %%} %%
in (23.1l), we obtain
a
EWw= —= (F ril E riz) - £ 63 riz - E rgz)
p YEW o YEW
VR ril
pYEW "
or
2 _ o222 2.2 2.2
pEW w = F Fll 2FT12 + E r22 + W Pll
"~
- Comn2 2.2
= EGI‘ll ZEFI‘12 + = 1‘22
or
bw = 35 (Gril - 2Fr§2 + Ergz)
W
Employing the identity (2.19), we get
1 3 ,F B
o = (5% - H @) - (23-12)

The Current Density j: By the definition of j and

(22.17), we have

= —2 - L

J T T3y
S L2 oy PHp gy PHogx My gy
J'3é By U 9o 39 By CRU
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Using (23.09), (22.20), (22.21) and {22.22), we obtain

—i—[%E{F cos & + J sin &) - %%»E sin § B
JEqLe?

+

JH .2 . 2 .
I 12 (5 cos 6 - F sin &) + JH I, sin 5]. (23.13)

The Momentum Equations: Using (22.14) and (23.09) in

(22.08), we get

3 3

]

o2

Y

L) wE ; = - 39 , 30 2%
ay) + wgy u j H sin(a+d) = ( = +

n(

b
2l
4
&
ar

%]
<
-

Oon employing (22.17) and the fact that W = *J, above

eguation reduces to

3w 3x . dw 2%k _ 3y . in(as8) = -2R 3y . 30 B
n( 5% 39 + 30 ¢) wa¢ + p WEH J sin(e+é) = 35 30 f 3o 36

(23.14)

Likewise, (22.09) takes the form

dw 3y _ 3w 3y, _ X i si sy = —oh ax , 3h 3x
Rl5s 36 T By 380 T Uae T M WHI SRl = gy T %
(23.15)

Multiplying (23.14) by 3% and (23.15) by %% and adding

yields
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augex ay _ ax By, _, [(2%2 ﬂﬂ [
n - 3¢) w [ 5% + (a¢) + p WHJ 33c054u+6)

DY < - _ 3hdx 3x . 3y 3y m[gz ﬂﬂ
+ E%Sln(a+6)] = B¢La¢ 50 + 3% 3¢) + 5y (a¢) +(a¢)
or
24 - = —p b, gdh
nd gy~ Euw+? g Hj YE cos § = -F 5 T E 57
(23.16)
where (22.16), (22.18) and (22.20) have been used.
Likewise, multiplying (23.14) by %% and (23.15) by %% and
adding results in
ndJd %% - Fu + p‘W H j(ji coé 5 + 4 sin §)
¥ E /e
ah 2h
T (23.17)

Sumning up, we have the following theorem:-

Theorem 1: If the streamlines ¢ = constant and an
arbitrarily chosen family of curves ¢ = constant generate
a curvilinear coordinate system (¢,9) in the physical
plane of the fluid flow under study, the system of seven
partial differential eguations (22;07) to (22.13)
involving seven unknowns u, v, Hl’ HZ' w, J and h are

replaced by the following svstem

4
.
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' N
dw s/ _ ah oh
L. sad=fg22-F5 2
rLJ'a¢ Em-i-uWHj_E‘co 7 Fa¢,
»
nT ¥ -Fe 4y WES E— cos § + L sin &)
v YE ’E
_ g2 _ g 2h
= F I G 7%
(Momentum Equations) .
_ I3 B | 2 E,
w = EW(TSCW) T (7))
(Vorticity)
JH . °H . - JH .2
%(J cos § F sin 8} + .a_i; E san & T rll ?(23.18)
(F cos 6 + J sin §) +JH1‘§2cos<S=0,
(Solencidal Condition on E)
r’ﬁ.Wj=%}-{-(Fcosa+Jsin6) - 3 2 o5 6
¢ oy
JH .2 . . 2 .
+ 5 rll {(J cos & F sin 6) + JH r12 s%ns,
{Current Density Eguation)
3 W 2, R
3vE T1) “agtE a2 T 0
(Gauss Eguation) )
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of six partial differential equations in seven unknowns

E, f, G, w, 3. H and h. Here E, F, G are given by

Ax, 2

Ay, 2
(3; + (2

E= 7%

and W = /EF-—I-‘?' , J = w,

the positive or negative sign being taken accordingly as
the parameter value ¢ increases Or decreases in the
direction of flow.

Given a solution

t=
0

)

E(¢,¥), F=F{,v), G G(o,0), H= H(d,¥) .,

w(¢;¢)r h=h~(¢r\l’)r j

€
It

3(¢,¥)

of the system (23.18), we can find x, ¥ 2S functions of

¢, from
z=x+ iy = Je-"i%_(’ﬂ (Edy + (F + iJ)av}  (23.19)
. . YE

where
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!

g .2 2 .
a = fﬁ—l {rll dé + L dy} (23.20)

E, F, G, H, w, j and h may now be obtained as functions

of x, v. Then Hl' Hz, u, v and p are obtained from

. _ HW A
Hl + 1H, = 7T—exp[}(a+6ﬂ
.. _7E -
u+ iv = o exp (ia)
E
' p—h“—'—z.
2pW

The system (23.18} is an underdetermined system 2s
there are seven unknowns and only'six equations. It can
be made a determinate system in several ways. We consider
two different methods éf making the abofe system
determinate.

Method 1l: The orthogonal trajectories of the streamlines
¢ = constant may be chosen as the coordinate lines ¢ =
constant. In this case F = 0 and the momentum equations

(23.16) and (23.17) become

Jw

. . _ _ %h
n J 35 ~ Ee tu E/GHJjcos § =E v (23.21)
nJ-Eg—‘;'!-uJ/EHjsinG:—G% (23.22)

r

T e
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.rion 32 _ 3°h
Using the integrability condition 3539 3v3s we get

[ 4

©r

5 J 3 3 T 3w P 5
[EE B - 54 B] - F0sm cos s

+-£,7(ju%6) sin a]- =0 .
Therefore, we have the corocllary,

Corollary 1: If streamlines y = constant and their
orthogonal trajectories ¢ = constant are taken as the
curvilinear coordinate system (¢+y) in the physical plane,

the fluid flow under study is represented by the system:

3- J Buw 3 ,J duw, - I 3 ,- R
" [ﬁ‘é‘ 9G] - B IEEECRE
+ ai(j B L) sin 5] =0 . (23.23)
v /G _
__1 3 &8
- 0 = ) (23.24)
. oH o oH . oFE JH 3G _
J cosoa—¢-+ E 51n5W+ %H.sxnsw+ TGcosd-ﬁ-— 0
. f
(23.25)
JEW 3= 3 sing 2B _ BH _ 3E , JH _,o. 36
EWJ .:l’.'s:s.nc‘)‘3¢ E:cc?sﬁw %Hcosdw-i-ZGs:Lno 3%
(23.26)
_ai.(L .3_§_) + _a_(i. _B_G._) =0 (23.27)
VRGP ¥ Ep ¢
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of five partial differential equations in five unknowns
E, é, w, H and j. |
Method 2. If the magnetic lines and the streamlines do
not coincide anywhere in the flow region, i.e., if the
flow is not an aligned flow, then magnetic lines can be
taken as the coordinate lines ¢ = constant. Equation
(22.11} implies the existence of a magnetic flux function

¢ such that

20 _ LR
5~ & H (23.28)

2 ' oy 1
and the curves ¢ = constant define the family of magnetic
lines. From the transformation equations (22.17) .and

(23.28) we get

9% ¥ - JH, . (23.29)

and therefore,we obtain

N
H=/H§+H2=-{§-

1 (23.30)

Conversely, eguation (23.30) implies the solenoidal
-
condition on H, namely, equation (22.11). Observing

that, in this case, we have

= _ﬁ.;x .JE.Ji YEG si
J T 3¢ 36 EG sin &



>

= x 2
=5

|%

'a e
+ 33:‘ = JEG cos § (23.31)

w
w
-~

¢

the equations {22.21) yield

°xX -

f—cosa—isinu = /G cos & cos a - /G sin 6 sina
vJE /E

| r

H W cos (a+8)

2y - in (ats
3y HE W sin{a+8)

These equations imply that

3% _
FI'E 1
3Y . Euym
I 2

where positive sign is taken if the £fluid flows along the
streamlines towards higher parameter values of ¢, i.e.,

if J > 0. Therefore, ecquation (23.30) is equivalent to

2 ay
7 JHl S i JH2
or
- -a—¢- = H .a_¢. =
Y 5y s X Hy
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establishing the equivalence of (23.30) and (22.11).

Using (23.31) in the Gauss equation (22.24)}, we

get
.53_ 1 {~/EG cossg—g-i-ZE cosdai- (/EG)-E%—E]
Y | 2E/EG sin & ¢ Y
-—-53— 1 (E-E;—;"-“COSG'/EG%?—)] =0
¢ | 2E/EG sin & v
or
o[ cossse 12 28] 3 (1 26
3y, E ¢ JEC oV 3¢ “/Eg °°
32 .
+cosoa—¢—é—¢ ZlnE-i-lnG:,:O
or
K3 cos § 3E _ _1 3E 2 1§g_cosaa_c;_ =0
3y E 9¢ ,/E‘—G'Bw 99 /E_G'M G 3y
(23.32)

Employing (23.30) and {(23.31) in the current density

egquation (23.13), we ha\}e

@WJ=%(-§):’G ﬁ(%)acosa
J¥G sin & 1 26 . 3E
+ T po (E-—B-—coso/fé-a-a)

or




3G : 3E
[Ega- cos § YEG 3$]

i
¥
e
=,
—
=

]
&l
~
=
=
+
= |-

G
(-W‘) . (23.33)

Likewise emploving (23.30) and (23.31) in the

momentum equations (23.16} and (23.17), we get

aw.

n YEG sin & Fraie Ew+1p G j /YE cos &
=g o _ . 8h
= E 5 YEG cos § 5%
or
n /G sin & %% -/YEuw+yu /G Jj cos &
=r’§g—h-/§cosé% (23.34)

and similarly

n /E sin § 39 _ JEcos § w + p /G

= /E cos § = -~ /G = . (23.35)
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The vorticity equation (23.12) becomes
. .1 3 E '
w= .o T»( (23.36)

We, thercfore, have: ’ y

Corollary 2: When the streamlines y = constant and the

magnetic lines ¢ = constant are taken as the curvilinear
coordinate system (¢,y) in the physical plane, the flow
is given’ by the following system of five partial differ-

. : N ~
ential egquations:

/G s;né‘—— -~ YVEuw+pg /G jcos § = /‘ - /G cos 6 %%,
_ oh ah
n’E sin 037 - /Ecosbw+p /6 3 =/E cos 8 i VG 3

sy E 3¢ VEG 3y 34 JEG 3 G Y
' (23.37)
= -1 2E '
w = oW 3IP(W) ]
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Section 4. Flows in which Streamlines are Involutes of

a Curve C

We now investigate flows in which streamlines '
¢ = constant are involutes of curve C. Martin (1971) has
studied such flows for electrically non-conducting fluids
and established that the streamlines must be concentric
circles. Nath and Chandna (1973),extended this result to
the'magnetohydrodynamic'flows having orthogonal magnetic
and velociéz_fields.

Inééoducing the orthogonal coordinate system
formed by the tangent lines and invelutes of C, the
squared element of arc length is given by (see Apéendix A)

2 2

as2 = ar? + (g-o0)%ap?

{(24.01)

where ¢ denotes the parameter constant along.an involute
representing the length of string used to generate the
jnvolute, g is the angle of elevation of a tangent line
to C, and o = ¢(B) is the arc length along C measure&
from a fixed point.

We are seeking those flows for which i

6 =¢(8) , v =139(E) (24.02)

Using (24.02) in (22.15),‘we get
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as? = £s'2ag2 + 2Fstyt dsdc + Gyrlag’

and comparing it with (24.01) we find that

E = (E_—C{._)z ., F = ] ’ G = _l_.
¢ . ) q,(z
and : (24.03)
_ i |
IS

L2 1 - w] . Ll 2lg-odw| _1 2

ST 3B | ¥ (g-a) D TFCIE e TE §T 3
1 3 rjH - 3 (e-=c) .
+pFaB[%—r]COSO+pI ﬁ[jH T :]sulo 0

.or
. g%-[ =) %%} + 1 g%-[(a—c)%gl - ¢t 3%+ u 55 (3H) cos 8
+p == [ jH(g-c)] sin 6§ = 0 (24.04)
Similarly, (23.24) yields
b= Sf®t 1B [—(s—c)w‘]
p(E—a) ¥' 3% ¢°

N SR T (PSR |
w = ;-(ETGTEE [(E G")l,)] (24.05)

1

or
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From (23.25), we obtain .
(£~a) 1 3E (.E—ci ing = 2H 1 2(g-dg)
WCOSGQ_FBB ¢& s1in 4)—(3 +5-;HS:anS.¢ ¢'2

+ _____!P‘(E"U) H cosﬂ-a—as- (. 12) =0
26" pt
or
%%- cos & + a—g (-0} sin & + K sin § = 0 , (24.06)
-
and (23.26) reduces to
2
~ (-0 5 = {609) 3,538 | (E-0)7cos § 3H
l2 1 l2 t B \2 L aE
¢y o Y Ty
-~ % H cos é 2(5—2) + (E_Uéw H siné 35 (—= 2)
vigt 24 v
or -
(E~a)§ = g—g sin § - (£-0) 2_1; cos § - H cos & (24.07)

Equation (23.27) becomes

1 af_e' 2¢-03] .1 3 13 .17 _
TR T2 97 3 | TEo7 37 38 .2

which is identically satisfied.
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Using (24.05} to eliminate v from (24.04), we get

S S R I - LB gy ¥ - glrr J
5 78 [(g—q)f‘] +3 BE[ T o+ T=aT ~ ¢ (E~a).

-

¢-261 ) . )
+ -(—)2 + §_B-CjH)' cos§ + a—g-[jH.(_E"'Q‘)] sindé= 0
pLE-D :
or
3:;;%:‘2 plo® P! ;b“ (iv)
e G g2 G T AV =]
£-c E-a g '
w‘zc‘ 3 . . 2 : . -
- _(_)5. - pa—B.(JH) cosé ~ yp -,‘)—E—[;]H(g—c)] siné =0
E-a _ -

(24.08})
- Eil
Equations (24.06) to (24.08) are valid for non-aligned as

well as aligned flows.

Non-aligned Flows: For such flows, we have an additional

réstriction,

EV sin § = K , 7
which gives ’
pK W pX 1
= = - =r (24.09)
s:.nS/E—; sin 4 ¢
g

From (24.06) and (24.07), we get

l . . _ U
- (E"O’)j sin § — a—B' ’
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and by virtue of (24.09), it implies that j = 0. Equation

(24:08), therefore, reduces to
3n¢'c‘2 + nytc" (E-a) + (np* - c'w‘z) (s—a)z - mp“(E—c)B
+ 2mp™ (e=o}? + ne V) gm0y = 0 (24.10)

Por the relation (24.10) to hold identically, it must Eold

~
-

. on the curve C given by £ = o (8) and consequently
3nptot? = 0
ihplying that ¢' = 0. It means that radius of curvature

of C is identically zero and the streamlines are concen-

tric circles.

° Aligned Flows: In this case (24.06) implies that
'HE = F (£), where F is an arbitrary function of £.

From (24.07) we have

s _ F(&)
J = F(E) (E_c) r
and ﬁ24.08) becones =7

3n¢‘0‘2 + nyto®(g-c) + [nw‘ - 0‘&‘2 + qu2(£) c‘] (E-ﬁiz

- g (g=) 3+ 2np (5ma) A gV g-)® =0
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By the same argument as used earlier, we see that q' = 0

and streamlines are concentric circles. We, t‘!iefore,
¥ ‘
ve., .

Theorem 2: If the streamlines are involutes of some curve
C then C must be a point and the streamlines are circles

concentric at that point.

~as %
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Sectibn 5. Isometric Net

In this section we study those £flows in which
- streamiines and their orthogonal trajectories coincide
with the curves in_anhisometgic net (£,q). These flows
for electribally non—conducting fluidé have been investi-
gatédmby 3aftin (1971).

Let

z (g) (25.01)

z=x+1iy

be an analytic function of ¢ = ¢ + 1a . The curves
£ = ronstant, and ¢ = constant in the Zrélane (physical
pPlane) form an isometric net. We want to determine all

flows fer which

6 = (€} . v ==p(g) ' (25.02)

the functions ¢(g), @(u) being at our disposal.
-

~The squared element of arc length in the isometric
net (E{c) is given¢by
as?® = A(z,0) (@52 + do?) (25.03)

'
s

“where A = Iz‘(c}lz. In this case the coefficients E, F,
‘and G of the first fundamental form

ds? = Eas? + 2rasdy + Gaye




46

are. given by

SRR YCTT:)H ¢z 2LEed) (25.04)
U ED) (v (a))

by using (25.02) and comparing'with (25.03) .
Using (25.02)} to introduce £,q as indéiendent
variables in the Gauss equation (22.24) and substituting

for E, F, G from (25.04), we get

1L[9_‘@]+1a_ vrac] _ g

v' 30 |} Bc ¢ 3¢ A 3E

or
1 % 2
3171'[‘—3 (In 3) + -5 (In ) =0 (25.05)
b4 Yot 3L

<

which implies that 1n A is a harmonic function.

Since

-from (25.02), we ‘have

_alxey) o 1 30ky) o 2
M N T M VLY GO B A (25'06),-,/»
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-

Using (25.04), and (25.06) in (23.20}, we get

BE do + 22 %E. ] :
3

[e]

1
L_—i
bl e
| umimn |
]

2 .2
- gt ! 1 ar + 1 32 ¢ ]
st o LT 2 3¢ ¢ 9% GigZ 3 pt do

|
Ny
f ',
!
>
wlar
b
[o]]
LM
+
>
ar
\ml.v
o
qQ
| SO

(25.07)

I
WX
—
r-—"l
1
[o]]
v
+
0)
"‘&
o)
qQ
—

where 2= 1n .

If m denotes a harmonic function conjugate to 2,

then
8 _dm 22 _2m
oL 9q ' °q ag .
and (25.07) reduces to ////
“~ ¢ = % [EE-dE + EE-dUJ
9L 3G
- m 7

where Cq is an arbitrary constant.

From (23.19), z is given by
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.zsz{adgw-i.wdw]
JE

r

Py 9

fexp (ia) Y% (dg + i dc)

ie
e °© fexp [35(2,+ im)] dzg (25.09)

Substituting for E, F, G from {(25.04) in the system of

equations (23.23) to (23.27), we obtain

2 2 .
1 [3 CI B_w_:\ _—t ?ﬂ.;. u[:—g(jﬁr’i— cos §)

262 g2 3
a o’
+ E—(jﬂﬁ sin 5)] = 0, (25.10)
'l
w= -2, ) (25.11)
3aH . 38 . 38 a8 _
cosdﬁ-t- s:.nésg-i-i; H Slnﬁﬁ-}-%H coséﬁ— o}
’ (25.12)
and
- H _ 3z : 2
/)Tj—-Sln(SaE/ cos § = %Hcos&ac+15?151n6-§a—
g (25.13)

We consider the aligned and non-aligned flows separately.

T e T e e T e ST SN
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Aligned Flows: In this case sin & = 0 and (25.12)

become

)
x

9H .

I

w
v

which implies that
/A H = F(o)

where F (o) is an arbitrary function cf c.

Equation (25.13) reduces to

A=~ 2

: = - i F'(q) + F{ao) %%_” F(c) %l
Fy 2a7% 22/% °°
OI‘,
. _ _F'(o)
3= A

~afpqldn? - L S RSN EIL LY s N ML 1 8 w“"’]
o A 9L A A '3g A 2 A BC A
9k g
Seletae,, L 2@Y] - | o

or
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T o (32,2, 32,27  pyw 2L (_iv)] 3
n[tb (&4 RCOL T R + oy 5L

- D}lFF" a_%.= 0

orx

Bh)2 + @2 - 2R L L [y - B2 F ()Pt (@)

Y3 F] q g
(iv) ‘ ;
. ?_E& P I = 0 (25.14)

provided that ¥" # 0, i.e. w 7# 0.

If we set

i

3L _ ~é£ 1 Bp
u = I V = = 3= r 2 _ﬁ‘j’( - 'w—rr F(q)FI(G)]

PE q
. 25.15
p™ w(lv) (25 )
. . ¥ Y
then u + iv is an analytic function of ¢ and (26.14)
beccmes
u2 + v2 - gau - 2bv+ c =0
which can be rewritten as
m-a)l+ (v-bl2-RrR"=0 (25:16)

where R% = a2 + b2 -~ ¢, with a, b and ¢ being functions

of ¢ only. The following lemma shows that (25.16) implies
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the function u, vy are constants,
Lamma: If u + iv is an analytic function of ¢ 4 iq, such

that u, v satisfy the relation

(u-a)? + (v-b)2 - 8% = g
2 _ 2 2 - =
where R™ = a® 4+ b® -~ ¢ and a = a(g), b = b(g)}, and
¢ = ¢(v), then u, v must be constants.
Proof: Differentiating (26.16) with respect to £ and ¢

reépectively, we get
Ju 9V _
2(11‘3.)'9? + 2 (v b)—a? =0

2(u—a)%% + 2(v-b)%§ - 2{u-ajal(g) - 2(v—b)b‘(c) - 2RR' =0

o
. . . . . s v 3v
Using Cauchy-Riemann equations to eliminate 3T and T
from these equations, we obtain
3u da
2(u—a)§€ - 2(v—b)33;— 0
2 (u-a) 52 + 2(v-b)£2 = 2(u-a)a' + 2(v-b)b' + 2RR'
Solving the preceding equations for %? and i%, we get
- t N AT t ) t
3u _ (u-a)a' + (v-b)b® + RR (v-b)
3L T R2
' (25.17)
- v - 1 H
§_§= (u-aja' + (\zf b)b' + RR (u-a)

R
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where (25.16) has been used.
Differentiating (25.16] twice with respect to

£, twice with respect to ¢ and adding, we get

”

u _ ¢ 2V
3o~ 2b° 3%

u 2 su, 2 v
8q ?

3v,2 V.2 _
(35 + Gt ot ngl + (53 2at

2

- (u-a)a® - (v=b)b" + at? 4 bt2 - R¢2 - RR" = 0

(25.18)

vV 9V
3T+ 3o and

from (25.18), we find that

Using Cauchy-Riemann egquations to eliminate
2u 2
38’ Ba
u, v must satisfy a second relation

(25.17) to eliminate

2" [(u-a)a'+ (v-b) b'+RR" Jz

2
_ 2 [a‘(u—a)+b‘(v—b)]-[(u—a)a‘+(v-b)b'+RRﬂ .
, Z
-, . R
- (u-a)a"~(v=b)b" + a'? + b'? — R'? _RR" = 0
or
[ T 4 t
(Eifi— - a") (u-a) + (313-;— - b")(v-b) + a'? + b'? + R = ¢

{25.1¢8)

Assuming that vorticity w does not vanich identically,
a' # 0 and (25.19) cannot vanish identically, Consegquently,

u, v can be expressed as functions of ¢ alone on solving
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(25.16) and (25.19). It means that

and

Hence u and v must bé constant.
If we take u, v to be constants agr bO then from

(25.15) we have

Lo

9L _
5t %o

r

.
35 © b,

and therefore,

g = aog - boc + ¢, m= bog + a

o I do

o

Fl

where Cqor do are arbitrary constants. Now (25.09) yields

ie -
z=¢e ° Jhexp[%(ao+ibo}s + %{ao+ibo)c'+ %(co+idé)} daz

= C fexp(Af.) \dc

where A = %(a_+ib ) and C = exp{ia +} (co+ido)] )

On integrating we get

z = z, + Cr ifa=0

(25.20)

z + S Pt

o]



54 -
/
where zoAis an arbitrary constant. [
. : ) p
, Since the streamlines are the transforms of the |
lines ¢ = constant, they are restricted to (1) paralle
lines if A = 0, (2) concurrent lines if a, # 0, bo = 0,
(3) concentric circles if aj = 0, b # 0, (4) 1?4thmic
spirals if a, # 0, b, #ﬁO.

Non-aligned Flows: Froﬁ (23.01}, (23.07) and (25.04), we

have

_  pK/X
H=3Tsing : (25.21)

Using (25.21) in (25.12}, we obtain

LY

pX cos & T 3 . pK 1 3r _ pK/X . pK cosé = 3L
»' sin & 2/% .5 wt 2% ac ¢.2 2¥v'sing 3E
oK s 32 _
t gt A =0 .
or
1, 1
cos § %% + sin 4 %g = %T sin 4 (25.22)

Differentiating (25.22) with respect to £, we have

2 2
cos § L sin 4§ 2 2 .
BEZ 3E3a

©
i

Noting that & is a harmonic function, we get



Ve

55

P 28 22
-BT; [Sln § -—g— cos Q '—aq 0
or,
: 28 _ 3% _
sin 6 3T cos & ¥ £()

Equations (25.22) and (25.23) imply that

24
. %%

e
= f{g)sin § + %T sin § cos &

1y 1T . '
%&g‘= :—i—smz § - £(£) cos §
~ 3 . . .
where £(f) is an arbitrary function of .
. 322 322 _ -
Using -fhe fact that —= + —5s = 0, we obtain
: - ; 352 302

v _4a ", _- -
-f'(g) = E;(ET)Sln ) constant, A

so that

p' (o} = a exp [(%Acz

+ Bo) cosec 6] 2. F 0

f(g) = —ag + ¢

where a, A, B, C are arbitrary constants.

(25.23)

(25.24)

(25.25)




5

2 2 -.::~ - TRAL
LMY S b SRS el S X 32 2y _a_r]
“[pa —+ —3) ~ o3 {(ag +( )} t oy 3q
; PE pq '
Semar g ' Z 1-
S5t R agtjﬁff) cos § + (jH/_)SLn g 0
(25.26)
Using (25.21}, (25.22) in (25.13), we obtain
/Ay o= 25 %l - cot § 2K E-7—‘-+ cot § ngr e
zvl/’f 13 24)(/“ Pt
_ oK/ 22 . pKYX 38
Bogt oot 8 53+ By 5t
or,
[ = BK 2L _ 24 y"
j = oy [ 3 cotdé T + cot § 3T
= ___255_ 32 (25.27).
v'sin®é B3f
Eguations (25.22), (25.26) and (25.27) yield
_ v 22,2 . ,3%,27_ n  (iv) 2nu"t 3R _ y'v" 38
N [(ag) N (?E)_] ox ¥ Sy u - s Wl ¥
+ “gzlez [ 32% cot & + (32 2 cot & + aa§£
"sin™§ P! 3E §9a
321,202 87 7
+ E 3o 2 £ ca—r 4]

or

56

Eliminating w from (25.10) using (25.11), we get
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or

32, 2 28,2 oyt 207 3L 9t . 2k
)"+ R ittt T

3,2:2 : .
E]
+_u&_2_’\_§3.£:= 0 (25.28)
nsin~é "

As a result of (25-24) and (25.25), we obtain

2 = %Asin § 02 + Acos 6 .£o—- kAsin 6E2 + (B cos 6+ C sin 8)€

"4+ (B sin & - C cos 8)a + D, ©(25.29)

and
m = XA cos 5;;2 - A singto- %A cos(g'g2 - (B sin 8~ C cosé):
+ (B cos 8§ + C sin §)o + Dy (25.30)

where Dy, D, are arbitrary constants.

Fram (25.25), (25.28Y and (25.29), we get
(Ao + B) +(-af + 0)2(ac 4 B) - 2 [ (ac + B)%cosec ¢ + A]

* {(Agsin g+ Afcos 6§+ B sin 6-C cos )

+ (Ag + B) [(Ao’ + B)%cosec &+ 3A] cosec & (cont'd)




+ %(Ac + B) (Ao cos 6§~ AfEsin §+ B cos §+ C sin §)

5 "iﬁ3K2 ‘
- exp [(%AO' + Bg) cosec 6]+ —-3——‘--2—- (AO’-{- B)
a’nsin” §

- {Agcos 6§— Afsindé + B cos§ + C siné)
2, . 3 ' 2_. -
- exp | Ag” (sin 6 - 5 cosecd) - Af"sin &+ 2Afocos 6

+ 2(B cos 6+ C sin 6)g+ (2Bsin 6-"2C cos 6~ 3B tosec §)o

+2Dl] =0 : . (25.31)

For the relation (25.31) to hold identically, A = 0 and

either B= 0 or Becos§ + C siné = 0. From (25.09), we
have.
o - .
z°+.Dz; ) if B=0, C=20
2Di

a3 _i_ 5 -
zo-u3 STH 5- C cos &) exp [ 2(13 sin 6- C cos 6)?;]

if B cos 6§+ C sindé= 0,

Z= 4
B sin - C cos &# 0. &
,2D(sin §- i cos §) C . . ]
z5t o _ex'p[-z- (sin &§+ i cos iS)c
if B.= 0, C # 0.
\

>
where 2, is an arbitrary constant and D = !5(01 + 1 D2) .
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As the streamlines are the transforms of the
lines g = constant, they are restricted to (1) parallel
lines if B = C = 0, (2) concurrent lines if B = 0; C#0
and & = t % R (ﬁ) concentric circles if:B sin 6- C-cos § .
# 0 and B cos §+ C sin & = 0, (4) logarithmic spirals if
B=0,C# 0 and ¢ # X % . SumTing up, we have,
Theorem 3: If the streamlines and their orthogonal
trajectories coincide with the curfes in an isometric ’
net then the streamlines are restricted to (1) parallel

straight lines (2) concurrent lines, (3) concentric

circles and {4) 1logarithmic spirals..

q.

*-
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Section 6. SOIutions for:SoﬁéxParticular Flows

- Hexe we study vortex and radial flows whentthe
magnetic field vector % makes a constént non-zero angle
§ with the velocity vector.

(L) Vorféx Flows: Using the polar coordinates

(r,8), the square of the element of arc length is given by

2 2

as? = ar? + r2ae? (26.01)

gince the streamlines ¢ = congtant are concentric cixcles,

taking the origin at the cemmon centre, we have

-~

p =) , ¢ =¢(8) (26.02)

where ¢ = constant are the orthogonal trajectories of the

family of streamlines.

+

prom (22.15) and (26.02), we get = -

* ge2 = E512402 + 2F6'y'dsdr + Gv'2ar? (26.03)
comparison of - (26.01) and (26.03) yields
r2 1

£S5

¢|

and
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T = %x ax 3

_ ax’ 3 ox 9 /\

= W— 1N a—r 3—2’-:’

_ r

=T FhpT (26.05)

Without any loss of generality, we can assume
$*(6) > 0 and that fluid is flowdmg in the clockwise
direction so that J < 0 and pt{r) > 0.

From (26.04 (23.01) and (23.07), we get

3.

4 » K
v='é’— ; H= e (26.06)

- o

Using (26.04) in the vorticity equation (23.12), we obtain

l 3 ,E
= @
ox '
o= -3 2 b, = - o2 ler + 2] (26.07)
T T br 3TV pr LY A b W
Employing (26.04) and (26.05) in (23.25), we get -

e
+ + & H 51n5 —— =0
grets 3 T ST o prer?

o cos 5§ 3H rzsin BH

(26.08)

Using (26.06) in (26.08), we find that




r?sin § pK " y" +'3§ X __ 9
¢l¢l2 sxn 0‘4,\2 Y ¢t2¢(
. or /
‘wg 1
m-r‘_ bl
which on' integration ines
i y' = Ar - _ (26.09)

where A is an arbitrary non-zero constant.

From the current density equatién'(23.26)‘andlusing (26.04)

to (26.06), we see that

r s _ r2cosé oK v" _ 4 pK cos & 2r
¢:2¢. 31y Siné .2 S1n o ¢,2¢.2
or
5 = pK cot & 22 - f.}_..] (26.10)
¢'2 ¥ .

Using (26.09) in (26.10), we get

5 =0 | (26.11)

Similarly, from (26.09) and (26.07), we have

o =22 " (26.12)
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Momentum equations (23.21) and (23.22), with the help of

(26.12) and (26.12), simplify to

7

and _ : €.13)
_ 5 -0 - ‘

I

= ==

p

3

p

.which on integration yields

a2

h = + B

L 4

where B is an arbitrary constant.

From (26.06) and (26.09) we have

G
Ar pXK
= —_— H = ————
v p. A sin o T

As h = %sz + p, the pressure is given by

,2.2 2.2
a’r
p=22--x3L 43
a2 2.
- a‘r
= £B .
. - Zp

(26.14)

(26.15)
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{(2) Radial Flows:

In this case the streamlines are concurrent
straight lines emerging from the origin and their ortho-
gonal trajectories ¢ = constant are concentric circles.

Therefore, we have
b = ¢{x) , ¢ =v(0) (26.16)

From (22.15) and (26.16), we obtain

as? = per2ar? 1+ 27y 'y 'aheds + Gy'2ge2 (26.17),

Comparing (26.17) with (26.01), we ha@e

cA Lol2
B = iz- ‘ F =90 ¢ G = _.r_'
ot ,;,12
and ) - (26.18)
— ’ r
IS T

For the cutward flow J > 0 {(taking ¢'(r) > 0), we have

p'(8) > 0, From (26.18), (23.01} and (23.07), we obtain

_JE _ v
v = EW = 5T ’
(26.19)
RN} S
H sin & ¢
/j .

\

T e e e B e T A



Employing (26.18) in the vorticity equation (23.24), we

obtain

v = - T 3w T
= - X (26.20)
pxr

prom (26.18) and (23.25), we get

r Y9 " pKr 51n 5§ 3
§ . T
gy COS °FT 7T 5ind w') * ¢, ) (51no 7 )
+.pKr _% 3 ( 1 y + rzoK w'zcos 8 ;& _i(rz y =
24T yT 38 ¢'2 ¢'¢'2sin 8 2r2 &' 3r ¢'2
or
ey _ .
rcot § - —IT + recot g=20
or
[ 37-.- = 2 cot § (26.21)
which on integration yields
28 cot § :
' = A e (26.22}

Using (26.18) and (26.19) in the current density equation
(23.26), we find that )
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¢ ' r . - r sin & 1 8'(' : ‘pkrf ) - cos. § 3 '(‘
\ ¢,2¢, J oy $¢ Ir'sin ¢‘2¢‘ ) sin ;pr)
4 pKr cos § 3 1, 'rz'K'w"z-'_a(' .2)

; .~ 2 +
— p12 28 o022 o2y 5y

-

or

Using (26.22) in {26.23), we obtain -

pX 2
25 cot § [2 + 2co§ 8 ]

.
|

A

2PK

Asiﬁzﬁ e26 cot ¢

(26.23)

(26.24)

From (23.23) with v ahd j given by (26.20) and (26.24),

we get
n 8 ,ré'p" 2 n 9 ; P! L )
-T-s-—(lll =) +_|—(_ T T
¢ r o'y pr3 Y' 96 ré'u pr2 pé
4+ M cos § _i'( 202K2r2 )y o+ y sin & 3
T ] T
¢ ar sin36 ¢'3 Y 36 sin3d¢
or

»4
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_ 4un cots 93K2 r4

anpe + oy (V2 vy orde,
v'" sin” §

+ ——3——2—1' =0 (26,25}

Equation (26.25) must hold fof all values of (r,s). Since
the left hand side of (26.25) is a polynomial of degree
four in r, all its .coefficients must be zero. 1In
particular, equating the coefficient of r to zero, we

obtain

Ll T32

5“—2"—52—— (Yr - cot ) = 0

piesin® & "
cr » S,

At

5T = cot § v

{(26.26)

Equation (26.26) éogether with (26.21) implies that

cot 6§ =0, ¢" = 0 and (26.25) is identically satisfied.
Thus we conclude that radial flow is possiblé only when
the magnetic field is orthogenal to velocity field. 1In

this case, from (26.20) and (26.24), we get

\_—/‘-\

w = Q \ . !
20K
3=

where ¢' = A,
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From momentum equations (23.21) and (23.22) with’v, j

N 5h

\
)

given by (26.27), we obtain s
ah'_
, w0
and

" r St
A ATAE A

which imply that

TN

On integration we get -

ub2K2r2
h===—75—*38
A

and- therefore, pressure i1s given by

2,2 2 2
p = - kP Kzr _AT L

A 2pr2




_CHAPTER III

VISCOUS ORTHOGONAL FLOWS

In this chapter steady orthogonal flows of a
viscous incompressible fluid having infinite electrical
conductivity are investigated. Power and Walker (1967)
establ;shed the reducibility of certain viscous ortho-
gonal flows of incompressible £luids to plane flows of
non-conducting fluids. In the case of inviscid incom--
pressible fluids, Kingston and Talbot (1969} classgéied
completely the possible £low configurations and in'doing
so obtained some interesting spira% flows. ©Nath and
Chandna (19f3} established that the only viscous inccm-
pressible orthogonal flows with straight streamlines are
parallél éf radial flows.

| First we determine the geometry of the orthogonal
flows with zero current density. We also establish that
the streamlines in an irrotational orthogonal flow are
either concurreht'straight lines or parallel straight
lines. Finally, using the hodograph transformation the
flow problem is reduced to the solution of a linear partial
differential egquation of second order. The usefulness of
this approach is illustrated by cpnsideriné some particular

examples.

69
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Section 1. " Flow Equations

—
- The steady flow of a viscous incompressible

fluid of infinite electrical cenductivity is governed by

the following system of equations:

'

’

aiv(eV) = 0 (31.01)-

< p(%-grad)G + grad p =.ﬁ curl H x H + nVZG (31.02)
curl (V x H) = 6 (31.03)

- div E=0 , . (31.04)G

y 4 c

In the case of two dimensional flows, with B in the plane

of flow and orthegonal to velocity vector 3, we have

¥ = (u,v),nag%rxﬁ = (H),E,)

e

with

Hl = =AV , HZ =_Au . {(31.05)

where 3 is a scaler function.

From (31.03), we get

uH, - VH; = K (31.06)

where K is an arbitrary non-zerc constant.
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Equations (31.05) and (31.06) yield
. Kv 'Kﬁ . 2V2 _ 2
H= (~ ) and H = K (31.07)
;7" ;7
where V = |V| and E = |H]|.

Equations (31.01) and (31.,94) YMmply the existence-

of streamfunction ¢ (x,y) and magnetic flux function ¢ (x,y)

such that
By _ By
5% - TPV v pu
and (31.08)
3 - 3 -
x "B v o3y =Ry

The curves ¢ = constant and thelcurves ¢ = constant are

. the étreamlines and the magnetic field lines.respectively.
These curves form an orthogonal curvilinear coordinate
gystem in the physical (x,y)—élane. Using (31.08) in.

(31.06), we obtain

pK = pqu - val'

S o e = s —— =

3y ax 3% 3y 3 (X,v)
or
-»
T . .:» a (x!v) =7 __l
™ J W pK . (31.09)
[
I,’ -
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<t

Introducing the funciions

= ¥PV> + D

_3u

X Y
B

E
|
o o
<
(N

_
ay

o
|
5

and with ¢,% a

o~ / - .
W T3 +u/G -G 3B
\ / TR 2T )
-\/ . / .
2l i 21 .36,
vio—= 3y T 3% g 9
P VEG °¥ * /86 %0
N S B
© =TT (3)

jindependent variables the system

ations

(31.10)

(31.11)

©(31.12)

n

(31.13)

(31.14)
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- and Y if vélocity'magnitude V is constant along

73
, N 5
Section-2.  Zero Current Density

In this section we consider the special ciass
of plane orthogonal flows for which the magnetic field
term vanishes from the momentum equationés"?his will be
the case if curl ¥ x H = 0 and since curl:§ is orthogonal
tc the plane of flow, we must have curl-H = 0. Using
(31.07), we see that a)necessary and sufficient condition
for the abovéfbgfggg;iity is

[

TRy oo Ky, L

< .
£
N+
N
Tl
o4
<'F4
N\_’
+
<
o
<{?A
I
o

_ Using (31.01), we get

L]

I
o

- V.grad (i) (32.01)
v

which implies that velocity magnitude is constant along

streamlines. Thus;_we b&vé :

) ° . ] s \. L
Thecrem *l: TFor a steady imcompressible wiscous, plane
el - =l

N . , -/f . O
£low with orthogonal magnetic and velocity fiezs\aistri—

‘butions, the magnetic force on a fluid element is zero if-

[ [y P

R
N

streamlines.

. . " e

) . . .
N -
.
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We investigate the geometric implication of the above

poséibility. 'Taking 3 =®in (31.14), we get

Gy L
'a—¢('5-)f—0

Using (31.09) in (32.02); we have

. )
5 EE(QKF) =0 -
or
Gf'al,gfw)

where f(y) is$ an arbitrary function of y.

From (31.09), sihce F = 0, we have

From (32.03) and (32.04), we find that

E=oxF®)

(32.02)}

(32.03)

(32.04)

oA

Substituting‘the expressions for E,G given by (32.03), \\=*

(32.05) in (31.12), we obtain s

: o -
a2 ) 1 a2 r .
— (m‘y)"’ — (£(@))y =0

i 3y 3d
T~ or . : '
s 1 _ Al
\
1
/A‘-"‘-h = ~ - ~
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where A, B are arbitrary constants.

Usiﬁg (32.06) in (32.05) and (32.03) respectively, we gét

==—=g— .S = xpm ¥ (32.07)

Let o be the angle made by the tangent to the curve
y = constant, directed in the sense of increasing , with

x-axis. From (23.20), with F = 0 and using {32.07), we

3
get

. A
‘ = - TJ ds (32.08)
KN
Integration of (32.08) vields

a =By = kA (32.09)

: [
where a4 is an arbitrary constant. /’
Introducing the complex variable l =x + 1vy,
from {(23.19) we have
-

z =fei°‘ (E &+ i '—5,7&»3

~___’

u[exn [1(a —kA¢)J [ ETE dg + i —4—;;;;?—-d¢]
VpKiAw+Bj \
p .
E 3

,\_/f_
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. or

'zo+—exp i (a -azw)] ,/7"‘“ if A £ 0

Tz o= o . (32.10)
zg + exp(i%).[ﬁ—gr# + i/;-r—EK ¢] if A =0

From (32.10) we sce that the streamline§ ¢ = constant
are either concentric circles or a family of parallel
straight lines. Hence, we have

Theorem 2: If in a steady incompressible viscous plane .
‘orthogonal flow gf infinitely conducting fluid the
current density is zero, then the streamlines must be
either concentric circles or parallel straight lines. -~

Without any loss of generality the origin can

be taken at Z and x-axis in the direction making G, = 0.
In the case of étreamlines being a family of concentric

o

circles (A # 0), we have

' 21 AUAE "
z =z exp (- %1A¢) /

\.

or )

_ 2 _ 2 "Aé  AV+B
x=gzsin= /==, v =3xcos -/ ¥
* (32.11)
From (32.11), we get ’ N
22 '
Av + B = XA pXr . (32.12)
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and
Bomtan @ = w2 - (32.13)
where 6 represents the vectorial angle in the (x,y)-plane.

From (32.12) and (31.08), we find that

5
u = %Ky , v _=-kMx (32.14)
. s
i

- r' )
Similarly, from (31.08) and {32.12), we get

Hl=—'§_§7=£_§ , H?=g%=i—§ (32.15)
Also from {(31.13), we‘have
‘ ® = -KA | (32.16)
‘Equations (31.10) and (31.11) now yield
memo Beo
implying thét b -
h = KAY + constant
é) o ) 3£I$2Azpr2 f Pq (32.17)

where p, -is an arbitrary constant.

r
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Since p = h -~ 3-spv2 , pressure is given by

= Pg + i‘- K2A29r2 - %—pAZKzrz

o}
I

1 . 2.,2.2
po-*-g-pAKr .

I
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Section 3. Irrotational Flows
Since o = 0, (31.13) yields ' ‘\

.é ‘B, .
'33(3) =0 (33.01)

Using (31.09) in .(33.01), we get

3 (PKE) = 0
or .
E = L_‘fi) - (33.02) )

vhere g(¢) is an arbhitrary function of 4. As EG = Jz‘r

from (31.09) and’ (33.02), we obtain

= 1

= sxgey (33.03)

Substitoting E, G frem, (33.02), (33.03) in

(31.12) gives

“
2

3 ())+‘32' 1y -0
;;f (g ;;7 (EIFT) =

or
oy _
SGET = 2 + b | - . (33.04)

where a, b are arbitrary constanks.

S ’ W\\\
X -

r
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Using (33.04) in (33,02) and (33.03), we have

LRI e e
BT R@m B ¢ ¢ T TR (33-05)

As in*the previous section, ‘these forms of E, G imply

that

a = % L2 PN
where ub is an arbitrary constant, and
- folm s ]
pK{as+ D) P
2 as+ . a .
zo‘i'lg oK e_x.P [l(ﬂo'f'-i— w)] :Lfa#O
T . [B ico oo
zo+['p'fs¢+l p—Klb]e ifa=20
(33.07)

where 2z, is an arbitrary comélex number.

Therefore, the streémlines ¥ = constant are e?ther con-
current straight lines or parallel stréight lines and we
have:

Theorem 3: If a steédy incompressible viscous plane-g

- oxthogonal. flow of infinitely conducting f£luid is irro-

2. . .
tational then the streamlines must be either concurrent

straight lines or parallel straight lines.®

U

Sl oo

(33.06)

"N

%

e L, Ty
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As before Zq and @ can be taken to be zero, If

o
a #.0, then from. (33,07}, we have

_ 2 fab+ Cay _"Z'aé-.l-b ."é\b
* =3/ 9877 ¢+ ¥ T /oy ST
(33.08)

The functions ¢ and y are given by

as+b = Xp Ka2r2
and ' . (33.09)
. .
¥ y = 7 tan Yy = % &

From (31.08) and (33.09), we find that

2x . ~ 2y
u = ﬁ. ’ v = 2 -
apr apr 1y
and , o (33.10)
Ey, = -kapKy ., H2 = kapKx N

From _(31.14), we.have
j = apK T (33.11)
Cos

With the help of (33.05) and (33.11), the equations
(31.10) and (31.11) reduce to

“sh ." 3h
2

3 = =papk ’ W=0

”~

giving : . _ ((

i{.\
W
[}




N

g2

g
]

~paprKe + constant

~ex2a’r? + o ' (33.12)

where ¢ is an arbitrary constant. Pressure is given by

#— 359'\72

—Lup 2K2a2r2

g
I

[

- ——éL? + c
pa“r

i
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Section 4. ' Hodograph Transformation

Using (31.07) in .(31.04), we get

'?. " Kv ‘% L RKu
= (= =) + == (=) =0
3x v %y ;f
‘b ')
or \\’_,”.,-
.é) ’ - -

v su , Kv u . v " Ku u SOV,
_a_f+ —2--3—-1? + F(Zu-a—x-+ 2Va—x—) - F(2u3? + ZVF—f) =0,

[}
H

1
<14w
<

which simplifies to

2 2.9 Ldu T 3V 2. 3v

2 _
(V -a )W + 21.1V(§J—{- - -a?) + (V - )FSC— =0 (34.01)
Equation (31.01) can be written as
v [ av ’
§§-+ 3; =0 (34.02)

(34.01) and (34.02) are i partial differential equations
in two dependent variables u, v. This non-linear sy;tem
of equations can be made lig?ar by the hodégraph trans-
formation. We introduce u and v as independent variables
and regard x, y as functions of u and v, assuming that the
Jacobian

_ 3w 3v  Ju v

_ I =y Tyt O
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By means of the transformation relations
: . :

“du _ .8 ‘ﬁu_ 'Bx -;av__°a“ "“év_‘”.a.x
il R it R - e I i

equations (34.01) and (34.02) are transformed to

4

2_ 2,9x Ay, _ 2. 2,3y _
~-{v -u )W+ 2uv(é-§-—m (v u)au—o, )
_ (34.03)
D A
er +-a-T1-—- 0. (34.04)

Equation (34.04) implies that there 1s a function ¥ (u,v)

_such that

‘ ST

v

al

|»

W
= e —_—= 3
u Y 3%

@
ab

Employving (34.05) in (34.03), we obtain

[ .

;- z
) 2 Cn 2 L2,
2 .2, 9%y 3% 2 2, 8%y _
(v u-)-a—2-+4uvm (v—u)—i-—-o
v 3u
% (34.06)

-
-

Introducihg poléu: coordinates V,8 1in the {u,v)-plane
4 .
through the relations

-

“

g u = v cc;s e , v V sin ¢ (34.07)

® \\‘1 )

St

we get
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et

.a%=cose R W=s'n6
(34.08)
38 _ _ sin 8 98 _cos @
u v ro3v v
. ' \
and therefore
¥ _ 9y BV, 9¢ 98
Ju v 3u 98 du
Y s
=,3—3-cose _%é_sn.ne
3Y _ 3Y 3V 3 36
v 3V av 38 av
™
_ 3y . 3¥ cos 8
= w7 sin & + 55 v
22y _ 3 Yy cos o 4+ 2% Sin’ _ 3 3¢, ‘sin @
au2 Ju eV v \Y 3a ‘39 v
+'%§ (cos 6251n 3] " s%nze cos )
v v
_3% 2, _ 2% 2sin 8 cos 8 , 3% sin’9
BVZ avas v ae2 V2
¥ sinze 3¥ 2sin 6 co5 §
oV v a6 V2
32? - 32? sinf cos § + 82? (cosze - sinze) _‘32
agfv avz ENEL . v ae2
- 0¥ sin 6 cos & _ 3Y¥ (cosze - sinze)
oV v EL] V2
33i = 332 sin26 + 32Y  2s5in B cos © + 3%y cos?e
aw? - av? evev v 30° v2
+ 3y cos2 8 _ gg_ésin 8 cos 6
v v 38 V2”q
”

LS —— L

v

2

e e e UL

¥ sin € cos ©

w

R Pt SO
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In terms of V, 6 as independent va;iables (34.06) becomés

2 2 . 2 2 .2
2 97y 2 3”Y sin 26 d"Y sin"8 a¥ sin”™8
Vieos 20 457 058 “awme T w Y7oz TW v
‘ 9¥ sin 26 2 2W 82? co; 29
+ a5 =5} + Visin 20 (% sin 267+ 2
3] 2 BVBB v :
ve v |
> & ' ' ~
2, . . S IR 52
U . U ! w
_ 3 g 51n228 _ %@ 51nv28 _ %% coszze} vZcos 28 { : 31n28
38 v L v . v |
o _
- * _’/
L 3°Y sin 20 3% cos®s _ 3Y cos® _ 3¥ sin ze\} 6
avas v ae2 V? oV v 26 'v?. B
i . which simplifies to .
ASNE SN
s . ,(Q
a2y 2 v )
R G- - s A LA (34.09)
" av Ve 38 :
Knowing a solution VY(V, 6) of (34.09), from (34.05) we ha¥e
- Y __3y ' ’
*Ew Or YT T H (34.10)
o where u = V cos 8, v = V sin © r—““$b'
& , . _ : \\h_;J_,,//’"
ja From these equations we can find u,v as functions of xéy
( provided that ' -
b~ -
o{x, ¥)
Y YT # 0 . -
b . -
. et
p . P N
s
-
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However, the velocity field thus obtained must satisfy the
integrability‘condition for pressure, in which case p can
Eé determined frpm momentum equations. The magnetic field

vector H is given by (31.07).

In the next section we consider some examples.




g8

Section 5. Some Particular Solutions

(1) -Radial Flow: A simple solution of (34.09) is given by

3 )

. v -
| - = —_—
¥ =%k, 8 =k, tan { 3 ) (35.01)
where k, is a positive constant. /
From- (34.10), we get
S
av v2
(35.02)
)
b4 o .2
v
Equations (35.02} yield
k'2
x2+y2=—%
v
or .
k
<
V=
where r2 = x2 + yz‘
*rherefore
I S T
kK, 2
(35.03)
vy _ % ¥
eV E T 2
/ 0 r

—_—
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Equations (35.03) represent a purely radial flow. The

magnetic field is given by

Y
I
T
M
o

Ky Kx
(- ) (35.04)
o o

The expfessions for V and H thus obtained must satisfy

the momentum equations (31.02) which may be written as

3w ... ' 3h <
n -a—y - puv + usz = I% (35.05)
and
n %% - pwu + ujHl = %% . (35.06)
From definitions of «» and j, we find .
koy kox
©w = = =z 2 x + — 2y=20 (35.07)
r - r
2
j=2= (35.08)

]
Using (35.03), (35.04), (35.07) and (35.08) in (35.05) and

(35.06) respectively, we obtain

2
oh 2uK x oh 2uK"v
- , 9 _ _ B2 ¥ (35.09)
oX k2 3y k2

o o]
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From_ (35.09), on integration, we get

r

(2) Vortex FPlow: If we assume that ¥ = ¥ (V), then (34.09)

gives

i
<

which yields
= le . (35.10)

where kl is an arbitrary positive constant.

On integrating (35.10), we get ,

|\
2

s 1. .2
Y o< 5 Ll (™ + v- ) + k2 (35.11)
From (34.10), we have
_ 8Y _
X =3 =KV .
{(35.12)
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The. velocity field is given by

- Y = X
u = - ’ v =
Ky Xy

(35.13)

These relations represent a circulatory flow with constant

angular velocity 1/kq-

->
From (31.07) magnetic field vector H is given by

Kklx Kkly
B =- > . E, = - > (35.14)
r r
Vorticity w and current density j are given by
w = 2 A
f1
(35.15)
. 2Kklyx 2Kk1xy _
3= - % + i =
r . r

Using (35.15) in the mementum equations {35.05) and

(35.06), we obtain

: dh . 2pX
‘ IxX 2
VA 1
oh - 20y
7Y - g 27
1

which imply that
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2
p:h_%pvz’-:&fua. (35.16)

(3) Spiral Flows: Superimposing the above two solutions.

of (34.09) we consider

1 2

Y=k, 0+ gk Vot 3 (35.17)
From (34.10), we have -
u
X = kO 5 2 + klv
u® + v
(35.18)
v .
v = k -k, n
0 u2 + v2 1 ]
The Jacobian
2 2
a(x’y)={k0_2kou }{,ko_zkov :
3 (u,v] u2+v2 : (u2+v2)2 u2+v2 (u2+v2)2
2
2k uv 2k uv - k
S Ry g Y =R - =g,
(u“+v®) e+ (u™+v™)

. 2 ko
vanishes when V= = .
: 1
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. From (35.18), we obtain

' k 2
2 _ 7o ‘2V2
r = ...._2.-{- kl

which gives

3

v2 =

2
2kl

2

in the region x2 + y© > 2kokl .

From (35.19) we see that two different flows are

one with

2 )
£+ [ - 4k, kg

and the other with

1

Equations (35.18) can be rewritten as

<

2 f4 2, 2
> r- - r - 4k° kl
> ;
2k

b 4

(35.19)

possible,
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on solving for u, we get

2

2 ko kox
{ ky +"'T)u=-—2-"kly
v v .
S
or
X v2 y ' ' '

u = ko — - kl r2 | . . (35.202)

and sihilarly,
v x '
v =k, 12+k1‘ — 1 (35.20b)

[ r
s

where V is given by (35.19).

If (r,5 ) denote the polar co-ordinates in the (x,y)-plare ’
and Vor VB represent the velocity components in the direction
of 'increasing r and B respectively, at a point (r,8) then

from (35.20), we have

v, = ' v, = k g— {35.21)

‘and the magnetic field@ vector H, being orthogonal to the

velocity vector, is given by

; Hr _ KVB_ _ Kkl
- - 2
_ _ ;7 T
B . L (35.22)
ﬁ- ) er _ Kko ’
B v rv
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Yorticity w 1is given by

‘w='%{%—8(rv6')-%—g(vr)}

1 .| 2
= { _kl = {ve )}
1 fZ .
= {1 = > } {35.23)
1 . 4 2 o
y/r -4 ko kl

Similarly, current density j 1is 'given by

1,9 5 .
3=1—‘{E(rHB)—ﬁ(Hr)}
TN T S
- "r 3r )
K { = }
_ X1 = (35.24)
ke T et max Pk ,

In terms of polar co-ordinates, momentum equations

(35.05) and (35.06) become -

@
Tk
|
H
[+ B
™
+
g .
4
™ .
1
-
=
;'-’

-3 v
= £ (35.25)
v.
1 3h St Vg
T -B‘E‘ n T - pwvr-qu —5 (35.26)



Using {35.21),

' respectively, we get
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(35.23) and (35.24) in (35.25) and (35.286)

3h - {1+ z } - X3 L } (35.27)
CE3 2 2%  rv? e’ -4x, 2 2y%
{r -4k kl ) 1 ‘
and
2 pk 2
2h —- a2 r o] r
.= + 8nk_“k - {1+ 1
9B ‘ 0 1(r4~4K 2)372 kl (ri-ax 2k 2)%
l o 1
uK2k 2
- (1F ——3 > ) (35.28)
o} {x —4k° kl.L’ :
3%n  _ 3°n
From the integrability cond:.tlon,araB = SE3T ¢ for h, we get
2 2
3 pko K kl _ pko UK kl r2
3r T 7K - X + . K ) b
1 o 1 0 (" =4K_“k, )
2
+ 8Bn k_ "k ] =0
1 (x 4 -2k 2k12)3/2
or * 5 B
pk ukK%k - ..
o _ 1 4 4, 2, 2 4n , 4 2, -2, _
( X, X ) T4k Tk %) + E (r’+2k “k;7) = 0 (35.29)
As (35.29) must hold for all values of r, we have
2 .2 )
an pko _ K kl .
r
EI‘ kl ko
.2 2,
2n pko RK kl
s i
1 1l 0
which reguire that
k02 L2
n =0, —x = —F—)- (35.30)
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Using (35.30) in (35.27) aggﬁcss.ze), we get
"

3 (cioax 2. 4%
P = + p { 2r + 0 1 . 21'}
- 2k12 (r4:ﬁk62k12)% z2
and
3k 2pk,
_ 98 kl
which "imply that
- 2k _k
h =+ p 4 2 2 - =1 071
—_— ;f {2 r -4k0 kl Zkoklcos #}
1 r
2pk0
- =8 +C _ (35.31)
Ky .
where C is an arbitrary ‘constant.
Pressure is given by .
1 2 .
Pp=h-~- §4>V
. ...
- 2k k 2
_ D 4 ,. 2 2 _ _ =1 “o7ly _ pr :
= + 2 {3‘/; 4ko k" 4kokl cos ——5——} =,
2pk B
- B + C .
1

-

It is interesting to note from (35.30) that in order to
have a sprial flow, the fluid must be inviscids, Kiﬁgston
and Talbot (1969) obtained such spiral flows while classi-

fying the possible plane ortﬁogonal flows for an inviscid

incompressible fluid. -

vY>?




CEAPTER IV

TRANSVERSE VISCOUS FLOWS

oa—
e

Magnetofluid dyﬁﬁﬁic flows with magnetic field'acting
in a fixed direction, referred as'traﬁsverée flows, have.geen
studied by several authors in the past few years. H. Grad
(1960) consf?ered transverse flows of inviscid compressible
fluids and derived two inteérals. R. M. Gunderscon (1966,1969)
studied these flows using the method of charecteristics.

0. P. Chandna'(19%2) obfained é com?atisility equation for

such flows and used it to obtain particular solutions. Nath
and éhandna (1973) deveioﬁed a substitution principle for

these flows and in.another paper Chandna, Smith and Nath

(1975) considered tragévérse flow through a logarithmic channel.

In thié éhapter, we coﬁsider-the transverse flows of’
viscous incompreséible £luids having finite electrical con-
ductivity and obtain the most general velocity field con-
sistent®with the transverse magnetic fiéld. For the study
of plane irénsverse flows, with the magnetic field perpendi-
cular to the plane of flow, we employ n&tural-streamline co-
ordinates and recast the governing system of equations in
terms of tgese co-ordinates. Using the transformed system,
we determine all possible flows for qﬁich_the streamlines
are (a) straight'lines, (b) involutes of a plane curve and

{c) isometric.

§-
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 Seection 1. Flow Equations. ;
A

The steady filow of a viscous incompressible fluid

~

of electrical conductivity ¢ in the-presenée of magnetic

\  field is governed by the following system of eguations

- ’ div v = 0. , {41.01)

- - -+ - - . Y
P (V. grad) V + grad p=nV2V+u (curl H}=xE {41.02)
curl (Vv x H) 5 9 H=0 : ¥ (41.03)

cwhere the magnetic field vector is solenoidal , i.e.

aiv H = 0 (41.04)

Throughout this chapter, we consider the magnetic field
to be acting in a constant direction and without loss of

generality we may take H parallel to z - axis.

’ . . e
If x, v, 2 are ‘the spatial coordinates and 1, 2, K

are the unit vectors along x, y and z - axis respectively
then we may write
-

- -+
HE = H k, v = (u, v, w) (41.03)

and from (41.04), we have

=0 or E=H(x Y (41.06)

Substitution of. (41.05) in” (41.03) vields

3 3 .

T (0 H = =— (v H) =0 {31.07)
;pd -

9 - d _1 2 -

T (u B) + 5y (v B) = 0o vVoE (41.08)_
Using (41.06) in (41.07) and (41.08), we get

’ . u -
g% =0, 2L=0 . (41.09)
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and,

|

3 3 Jd H a H
B 4 — E = e _— .
X (uH) 3y (vE) uo ( ax2 ay2 )

From the continuity equation (41.01), we have

(41.10)

(41.11)

Differentiating (41.11) with respect to z and using

(41.09) yields

2

m
4
|

o

a
28]

2

Equations (41.11l) and (41.12) imply that

Ju
w=f(x, y) —z( 3 ¥ 3y )

where f(x, y) is an arbitrary function of x, y.

(41.12)

Thus the most general velocity field which is consistent

with the transverse magnetic field is given by

u = u{x, v}, v =vix, v)

d
£ ) - 20 3wt 3 )

w
Using (41.01) and (41.06) in (41.02), we obtain

> -+ 1 2
Pleurl V) x V + 5 p grad V© + gradp

‘ > 1 2
= -1 curl(curl vV} - ZH grad H". ,
- - - Q -* -+
and introducing vorticity vector @ = curl V, we

- . -+
po x V + grad(p + % uE? + % pv?) + N curl W=

(41.13)
¢

get

o

(41.14)
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. ’ v
The. velocity field (41.13) must satisfy the dynamital

Iy

equations (41.14) which can be‘intqrpreted as inEegrabikity
conditions for (p+% uH2+% sz).

For example, let us consider a plane flow in the
(v, zf—planf with all the variables independent of x.
In this case

o =0, v =v(y), w=£(y)-z v'{y)
and - (41.15)
H = H(Y) | '

Substituting (41.15) in (41.14), we get

p{ - £ £' + zf'v' + zEv" - sz'V")
o+ 2 ur? + Lovd)e e = 0
5y > - ‘ (41.16a)
and
- zvemy 4 Log? + L y2
p(VE' - zvv™) + £=(p + ZuH® + 5 V) | (41.16b)
+ n(zv™ - £") = 0
<q - o - 1 2.1 2, .
Integrability condition for (p+3 WE™+5 oV7) is
PpE'Vv' + £fv" ~- 22v'v" - v'f' - vE" 4+ zyu™ 4 zv'v™)
= nlav - gy
which requires that
pvv™ - v'y") = nv(lv) , E™=0
ox
2 -
p [VV“' (v'} ] TAvVe =8y,
(41.17)

fn=C2
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where ¢y and c, are arbitrary constants.

2
Having determined the velocity field from (41.17), we obtain .

H from (41.10),

2
d 1l 4
_( vHE ) = e —
dy HO gy 2
which on integration gives .
_ dH
uwo vH + kl =& -

Integrating once more, we get

- = exp(ucfv dy)-[kljexp(—ucfv dy) dy + k2
(41.18)

where kj and k2 are arbitrary constants.
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Section 2. Plane Flows with i Perpendicular t¢ the Plane

P

of Flow.

In this éection ané the subsequent sections, we
consider plaﬁe flows in the (x,y) -plane. Let the family
of curves w(x,y) = constant represent the streamlines and
¢ (x,y) = constant be their orthogonal trajectories. 1In the
orthogonal curvilinear co-ordinate system (¢,y), the squared

element of arc length for the (x,y)-plane is given by

as? - g(o,v) a6 + G(6,9) av’ (42.01)

where the coefficients E, G must satisfy the Gauss equation

a _ -
aqj(‘/}, é-aqfc‘;) + 53¢ _;-W/' =0 . (41.02)

In terms of the streamline co-ordinates (¢,¥), the system

of equations (41.01), (41.10) and (41.14) representing the

transverse flow is replaced by

sty ) g, (42.03)
aH _ 1 3 G 9H 3 E 9H,] _
"V 35 /R s HUED] o (42.04)
© = “/%_E ,g—w( /E V) (42.05)
AT 1 .2 E jw _
pvé—g+r¢(p+-§uH)+n/G;§a-0 (42.06)
V2 2 oW
p_g NI YE - FT(p + uH ) + ﬂ//_ Fr 0 (42.07)
ES >
where w = k.

:','r'-;‘ . .., .
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Equations (42.02) to (42.07) constitute a system of six -
partial differential equations with six dependent variables,
namely, V, E, G, p, H and w.

Eliminating (p+% UHZ) from (42.06) and (42.07), we get

2
) E dw 3 G 3w 3 av 3 VT /B _
n[w(fé 35 " w‘ff w’] * p[w(" 3s) T e VE av ’] =0

ox

3 E juw 5 . B 3 fva .-
ﬂ[w(_fgw)+£(fj§-a—-¢j-)]+pﬁ'[/gﬁ(/ﬁV)]=0

or

[+5]
-
)

3 E 3w
”[w‘fe vt

using (42.03), we get

Jw 3 .
5‘5):{ - p-ﬁ( Y& vu) = 0,

3 E 3w 3 G 3w Jw _ '
n [gw—( G W) +E(_f% 'a—¢')] - Q/G\V -¢— = 0. (42.08.)

P

Equations (42.02), (42.03) aﬁd (42.08) withw given by (42.05)
form a system of three non-linear partial differential
equations in three unknowns V, E and G. Xnowing a solution

v =v@,), E=E(,0), G=G(,y) of this system gf eguations,
we can f£ind H from (42.04) and then pressure can be determined

from (42.06) and (42.07).
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Section 3. Straight Streamlines

among the familiar flow patterns of a plane flow

ing straight streamlines-are the parallel flows and radial

fiows. In this section we investigate all possible flows
. L4

wi traight streamlines. We assume that streamlines -are
not para ﬁd envelope a curve C. The tangent lines to
¢ and the invol f € form an orthogonal curvilinear net
‘for which the squared %lemeﬁt of arc length is given by
(see Appendix A} )

2

as? = a6? +[¢- o P av® - (43.01)

where ¢ is the parameter constant a%ong each individual
involute, ¢ denotes the arc length along C from some f£ixed
point, and ¥ denotes the angle of inclination of the tangent
line to C with the x-axis. The function o ; c{y) depends on
the curve C. Clearly the curves ¢ = constant are the involu-

tes of C and the curves y = constant are its tangent lines.

“Prom (43.01) and (42.01), we get’
E=1, G-= [¢ - c(;p)]z (43.02)

Substituting for E, ¢ from (43.02) in the Gauss equation

(42.02) we obtain

z—:—z[c:n— sty = o,

which is identically satisfied. From (42.03) and (43.02),

we have
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V=g /[6-ow)] . (43.03)
where g(¥) is an arbitrary function of y.

Using .(43.02), (43.03) in vorticity equation (42.05), we get

1 3

- ,—— (U) o (u)]
{¢o - c(w)}z[g (v} =+ - o) . (43.04)

Eq. (42.08), with E and G given by (43.02), vields

Q

o

w du
“aw[__ET$T 0 ] + n—g[(¢ =g (y)) ——] - D(¢-U(¢))-V§a = 0.
(43.05)

h=d

Eliminating 'V and w between (43.03), (43.04) and (43.053),

we obtain
- niz =2 {gtve" (1) (6-0) + g™ (9) (6-0)2 + 3g' (V) o (V)
SV (6~0)°
. ]
(¢-0) + 3g(v)o' (m}] + “‘E[— {29’ (v) {¢-0)
(¢-0c)
+ 3 g(w)c'(m}] - 5012 g (9 (8-0) + 35 (W0 w)]

(v=0)

which simplifies to

q

—15n g o'3 = (4=a) ( 10n g o' o" + 157 g'c'2 )

2
- (¢“‘O’) ( 67] g"c' -+ 4n glo." +n g G"l + 91'] g cl + 3Dg20,1 )

5 ‘
- (=) (ng"™+ 4ng'" + 2pgg'} =0, (43.06)

Since ¢,y are independent variables, the identity (43.06)

can hold only if all coefficients vanish identically. In




107

t .
particular this requires that

15n g () o'>(¥) = 0.

As g(y) cannot vanish identically, we see thaﬁ'

o' (y) = 0.
But o'(y) represents the radius of curvatiure of C and
therefore C must reduce to a point and streamlines are
concurrent straight lines.

We therefore have:

Theorem 1. If the streamlines in a steady plane transverse
flow of a viscous electrically conducting fluid are straight

lines they must be either concurrent or parallel. .
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Section 4. Streamlines are involutes of a curve C

Tn this section we investigate the gecmetric
implicétion of prescribing the streamlines to be involutes
of a curve. We consider the orthogonal net formed by the
‘streamlines, the inveclutes of ¢, and their orthogonal tra-
jectories, the tangant lines to C. Let ¥ denotes the para-
meter which is constant along each indi&idual involute, ¢
the arc length along(t from a fixed‘point on C, and ¢ the
angle of inclination!of the tangent lines to C with the x-axis.
The streamlines are represented by ¥ = constant and their
orthogonal trajectories, the tangent lines to C, by ¢ = constant.

The squared element of arc length in this (¢,¥) net is given by

2

as? = ap? + {v-o ()} as? (44.01)

On comparing {(44.01) with (42.01), we obtain

E = {w—c(¢)}2, G =1, (44.02)

-

From these expressions for E and G, we see that the Gauss
equation is identically satisfied.

Substituting for E, G from {(44.02) into (42.03) and
(42.05), we get

v = vE) : ' (44.03)
and

_ 1 3 i
_m = T Te=o(e)} aw[{w U(¢)}V(¢)]

1

- [V' () + V) /{y-o(¢) }] (44.04)

- .. e
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From (44.02) and {42.08), we obtain

oy

9 . dw 3 1 Jw qw _
n Splooenis] « o[y Bl v 35 -0
Using (44, 04) to elimipate w, we get
{np—c(c::)} VT () + V) = V() /{v-a () }]

- V() §—¢ o () /1= ()13 ) + ev2 ()t () /{v-0(6)12 = 0,

-

or

3N V)G 2G) + 3nv(v)e” (6) (b0 ()}

V) - pv3()e' (81 {0-0(8)}% - av' (¢) {v-0(e) 13
+ 20 V@) e=0(8) 30 + avm () {y=0(8)}° = 0. (44.05)

For the relation (44.05) to hold identically, it must hold

on the curve C whose equation is U ? c(é) and therefore

3n v(v) 0'2(¢) = 0.
As V() is not identically zero, the radius of curvature
d'(és of C nust be zerc and the curve C reduces to a point.
Therefore the stream-lines must be concentric circles with
this point as the common centre.
jhus; we have:
Theorem 2. 1If the stream-lines in a steady plane transverse
flow of a viscous ellectrically conducting fluid are involutes

of a curve then the stream-lines must be concentric circles.
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section 5. Flows with Isometric Geometry

In this section we study the implication of requiring
that the streamlines y = constant and their orthogonal tra-
jectories é = constant form an iscometric net; so that E and

G are everywhere equal. Let

E=0C=qg2{¢,V (45.01)

The Gauss equation (42.02), in this case, reduces to

22 Y
——21n g + ——2ln g = 0. (45.02)
3¢ 3
Fromq (42.03), WEvget
| g Vv ="£() ’ (45.03)

where f is an arbitrary function of Y. Using (45.03) in
(42. 05, yields

W= - Ty £ () . (45.04)
g

From (45.01) and (42.08), we have

82m 32w Jw
N ==+ —) - pgv T3 = 0. (45.05)
© 3w ad

Using (45.03} and (45.04) in (45.05}, we obtain

an . 3 2 3 2
- ;ﬁ £ (¥) [(ggln g™ + (galn g) ]
2 2
+ 2_1.]2_ £1 (u))[a_zln g + g_zln g] + i% f"(lb) %Tln g
( g 36 3y g i
N - Dy -2 i) Sping =0 .
L y ®
‘ g g

Making use of (45/02), we get

4 -
N

e e i m T o e fa e A
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4 ' 3 2 )
- g—g £ (w)[(ﬁ In ) + ({5 In g)2]+ ?—f"(w)g—wln g
"t . :"‘2 r a
_§7f (w)—g—‘ifw)fcw) FER g =0

Assuming that the vorticity is not identically zero, we have

£ (Y # 0 and on dividing throughout by - EEEL%EL, we get
. : - g

3 2 3 2 P g
(==1n g)~ + (gwln g)© + i £ (v) galn g

o¢
o) 3 o) (45.06)
_ n m W _
Ty gt 9t aEy < O
If we set
3 : o
£ = -a—(pln 9. _; = = -3-_7,')ln g a = - 40—.” £,
(45.07)
_ T o _E)
b = 2FT () ! and c = T

then & + iZ is an analytic function of ¢ + iU, and (45.07)

becomes p 5 .
E° + 7 - 2af - 2br + ¢ = G,

which can be rewritten as

(E-2a)2+ (£ -b)2 - RZ = ¢ (45.08)

where R2=a2+b2-c with a, b, ¢ being functions of ¥ only.

As a consequence of the Lemma in section 5 of Chapter II

we see that the functions § and Z must be constant. If we
take these constants to be a,, b, respectively, £from (45.07),

we get
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_ _ 8 _
T = BI;Jln g = be .
and therefore *
1n g = acd- by¥ + C, - (45.09)

If o denStes the local angle of inclination of the tangent

to a streamline, then

3¢ _ 1 3/E 3¢ _ 1 3G .
i T 3 " VE 56 (45-10)

Using (45.01) and (45.09) in (45.10), we cbtain

a?

o _ 123 __2%.,3,4-=
% - g o wnITR

Je _ 13 _ 38 _
iR T

which imply that

@ = byo + agy +\do (45.11)
where do is an arbitrary constant.

Introducing the complex variable z = x+iy, we have

%% = YE exp( ic )
= exp( apé — boy + Co). exp 1(beo + acy + de)
= exp{(ag+ ibg)e + i(ag* ibe)y + (cot+ 1da)}
and
%% = i/G exp{iq)
= i exp{{a¢+ ibgle + i(agt ibold + (Cot idg) }
giving
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zo + (B/A) exp{A(¢+iy) if a#o,

N
"

(45.12)

z, + B (6+i0) if A=0,

where z 1is an arbitrary constant, A = a,+ib,, B = expl(c,+id,).
! ince the streamlines are given by y = constant,
as a consequence of (45.12); we see that the streamlines
are restricted to
(2) parallel straight lines if A = 0 i.e. ag=b,= 0,
(b) <concurrent straight lines if a #0, b= 0,
(¢} <concentric circles, if a,= 0, by# 0,
4a) logarithmiclspirals if a,# 0, b,# 0.
Summing up, we have :
Theorem 3. If the streamlines in a plane transverse flow
of a viscous electrically conducting fluid and their
orthogonal trajectories -form an isometric net then the

streamlines are restricted to the parallel straight linres,

concurrent lines, concentric circles or logarithmic spirals.



* CHAPTER V

PLANE COMPRESSIBLE MFD FLOWS

We investigate steady plane flows of perfectly
conducting compressible fluids in this chapter. Iu. P.
Ladikov (1962) derived two important Bernoullil type
equations for these flows under certain assumptions and
used these egquations to study the flows having orthogonal
magnetic and velocity fields. Ee also studied homgntropic
radial and vortex flows of polytropic gases. Power and’
Walker (1965), and Power and Talbot (1969) studied plane
compressible orthogonal flows by reducing the problem to
that of rotational gasdynamic flows. Chandna and Nath (1873)
generalised some properties of gasdfnamics, originally |
investigated by Chandna and Smith (1971), to these flows.
Recently Toews and Chandna (1974) considered plane com-
_pressible-flows when the magnetic and velocity fields are
.constantly inclined to each other, and extended some of the
results previg;sly derived for orthogonal flows.

First we reformulate the system of eq;gtions govern-
ing the flow with ¢, ¥ as independent variables where ¢ is
the magnetic flux function and ¥ 1is the stream function. We
use.this system to f£ind the geometry of the irrotational com-
pressible flows with orthogonal magnétic and velocity Eields
and obtain corresponding solutions. We also determine the
geometry of constantly inclined flows with zero current

density and find the corresponding soluticns.

114
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Section 1. Flow Equations

The steady flow of an inviscid, thermally non-conducting
compressible fluid having infinite electrical conductivity,
in the absence of external forces, is governed by the

following system of equations:

div (V) =0 | (51.0 1)

* p(%.grad) % + grad p = ug x % . (51.02)
-3 -3 -

curl (V x H) =0 ' (51.03)

div & = 0 {51.04)

J = curl & (51.05)

V.grad s = 0 (51.06)

together with an apprdpr;ate equation of state p=p(p,s).
Using the identity
(?.grad) V=X grad V2 -V xo .
where the vorticity vector » is defined by
o = curl ¥

and V =|§], the momentum equation (51.02) can be rewritten as

grad p + ¥ pgrad V2 - p? X o =u'3 x (51.07)
In the case of plane flows with B in the plane of flow

and using cartesian coordinate (x,v) with

Vo= (u,v), B = (), H,)
we have
+—- i‘i_a—u = -
v = G -5y K=ok,
(51.08)
H H

uJ
n
Q)T
I
~
"
)
A
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where % is the unit vector perpendicular to thé (x,v)-plane,
Equation (51.03) implies that -
u Hy =V Hl = K

where K is an arbitrary constant which i; zero in the case
of aligned flows and non-zero for aon—aligned flows.

We assume that velocity and magnetic field vectors
are nowhere paral;el and therefore K is non-zero.
The governing equations (51.01) to (51.06) for plane flow

take the form

3 ) _
B_X(pu) + W(DV) = 0 {(51.09)
g 8V2
= + % pSy ~pwv = -y dH, .. (51.10)
3P 4 v’ + pon = SH (51.11)
ay : p ay pw - B ] 1 -
qu - le = K (51.12)
oH oH :
1 2 _
v Ju
'a—x -a? = w (5]:.14)
°H oH
2 1 . ‘
3% 5y ”‘3 {51.15)
95 as _ )
uss + Viy = 0 . (51.16)

Eguations (51.09) and (51.13) imply the existence of a

streamfunction ¥ {x,y) and a magnetic £lux function ¢ (x,y)




117

such that
I .
2L = - v, 22 = ou (51.17)
and
3 _ 26 - _ oy -
= H,, 2 B (51.18)

We introduce ¢ and v as independent variables with

x = x(¢p,0), vy =ylb.0)
defining a sys?em of curvilinear coordinates in the
{#,y)-plane. The coordiqate curves ¥ (x,v)=.constant represent
streémlinas while the curves ¢ (x,y})= constant represent
magnetic field lines.

Using (51.17) and (51.18) in (51.12), we £ind that

-9 3d _ 3w 36 _3(p,v) _ 1
PR =35 3x “3x 3y 50Goy) 3 (51.19)

where Jacobian J is defined by (22.18).

Bquation of Continuity. As in section 3 of Chapter II, we

find that the fluid flows along the streamlines towards
higher orllower parameter values ¢ accordingly as J is
positive or negative and
p WV =/E (51.20)
YE _ic

u + iv = 53 e (51.21)

Solenocidal condition on B: From (51.18) and (A.4), we get

ax _ 3y _
50 ng, E¥ = JH, .

Proceeding exactly as in the gcction 3 of Chapter II in the

S
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case of "Eguation of Continuity", we find that

WH=/G, (51.22)

W s _ /G i
B, +iH, = T2 e _ (51.23)

where 8 is the angle between the tangent to the co-ordirate
line ¢ = constant, directed in the sense of increasing y,
with the x-axis.

The vorticity » : From (51.14) and (A.4), we get

- |
o= QLY L vy,

Making use of
u=+Vcosa v =+Vsinca
where positive or negative sign is raken®according as J is

positive or negative, and using (A.7) and (A.10), we obtain

'fﬁ:w@=sg—;7—-Eg—g-+ng—g (51.24)

From (51.20}, we have

av _ 1 L,y - _E 3o

r
6 2vpz 30 W2 VW2p3 3é
av o T3 (E ) E 9o |
3y zvpz FI W2 VW2p3 sU

-

Employing .the identities. (A.17) and (A.1l8), we get

E

av 1 2 2 30
S = —{F TS, -ETS,}- —= 22,
30  pYEW ° 11 12 /‘Ewoz b
av _ 1 2 2 4 _ E 3p
T " ER W{P Iy E]’zz} __fféw,: 5
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Eliminating %% ’ v from (51.24) and using (A.1ll), we obtain

Y
F 2 2, _ _E 2 _ o .2
YE Wu = ;7§—w (F Tyy E lel VEW (F Tys E Pzg)
__EF  3p 2 ap /iw 02
ROVRL 0 2W/E W TEEW 11
or .
2 2 _ 2 2.2 _E 30 _ .30
pEW w® = EG rll 2%F le + E T22 5 (Fa¢ an)
or
S A Ey - &y - t__(E3 _Edp,
R R Y v ‘W Wl W3 W oy
o}
1.3 F 3 - E : '
=7l gg(sﬁ) - =(=2)1 (51.25)

3y pW

where identity (A.19) has been used.

The current density j: From (51.'15) and (a.4),-we have

sy o Pzay  M2ay  Max 3% ax
ad dv FITER 8¢ L) 3y 99
On substituting
E) = * K cos B, ) H, = + H sin §,
we find that
- ) .
+ J3 =(%3 sin g+ B cosg%%d %5 —(%? sing + H cose%ﬁ g;
+ (Eg cosB - H sinB%%) %E -(%g cosB - H sinf— 5)7; .
(51.26)
Making use of the relations
~
8% = /G cos B, 8¥ - /G sin 8

oy

3y

- —— - .-
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cos 3+/g sing , & _F Sin g - g-cos R .,
G

3¢ /G YG

X

¢

Ol

in (51.26), after some simplification, we get

. H H
. JBW§ = G%E - F%E + HJ%% (51.27)

Eliminating H from (51.27) with the help of (51.22) and using

3y G 11 ! 3 G 12
(51.27) takes the form
2
. _GW 3 , ¢ FW 3 , G G I35 2
m o— L (2)) - 2 + = = _
g T ERG? T Re
- GW 1 2 2 y_EWl 2 2
G 2 € Topm F T 07 75 256 1, - F Iy
S r2
WG 11
or
. 1 2 Z 2
W - - 2ZF + B
I=gier iy Tiy?
or G
1 F
3= siEE- L (51.28)

Momentum Equations. Equation (51.10) can be written as

2 2
3 3¢ , 3D 3y 3V° 36 L 3V° au,_ o
‘a’%a TR ATl el s T ST ewv = —uik,
or
3 ay o323y .y aViay _, av? ) 3 2y
36 30 a3y 36 ‘P 3e a3y 3y 3% ~w3s = HI g
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where (51.17), (51.18) and (A.4) have been used.
Similarly, from (51.11), we get

2 -

' 2

3p 8x , 9p dx _ , 3V" 9x | av”® 3x 0x _ . 8%

-3¢ 30 T30 e~ Prom Py s TYEe 7Y Iay
(51.30)
. . IX 3 . .
Multiplying (51.29) by g3, (51.30) by g% and adding, yields
3p av? )
J(Btb + %p -mb—) = -uJdl

and using (51.20), we obtain

P 3 E i =
13_@--1- X p 39 (;2?) +uj 0 (51.31)

Again, multiplying (51.29) by o , (51.30) by %% and adading

gives

2
_sie Vv =
J(3¢ + X% paw ) Jw 0

and using (51.20) to eliminate V, we get

9 ! E —
§5+ kpw(ﬁ) +y =0 (51.32)

Enerdy equation. Equation (51.16) transforms to

Qv
0
[+3 ]
-
[+B ]
0
ar
|
S
L+ D)
&
|
[mt
|
+
Q)
|
ar
|
L
[
[t}
o

Gg 5x T Ay

or

%% =0, or s =s(p). (51.33)




In view of preceding derivations we see that the system of
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equations (51.09) to (51.16) is replaced by

) B 2 =
‘ (momentum)
oA B __ = :
s
3 (w2 -8 (W ;2 =
w'E 11 ) - 55E T2 ) =0 (51.36)
' {(Gauss)
1.9 P 9 ,E
w = W{W(Fﬁ) - W(W)} (51.37)
(Vorticity)
5 = %{%(%) - %‘%” (51.38)

(Current density)

s _ ’
5 = 0 (Energy) (51.39)
with
1
J=x5 (51.40)

and an ecquaticn of state

p =9 (PI s) (51.41)

We can find x, v as functions of ¢,¥ from

z = x + iy = fe—"‘%éﬁ‘-’— [EdS + (F + iJ)ay} (51.42)

J, .2
- | = 51.4
c _fE(rll de + Iy, dv). (51.43)
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Section 2: Irrotational Flows.

In this section we consider irrotational plane,flows-
of compressible f£luids when the magnetic and velocity fielas
are everywhere orthogecnal. We investigate the gecmetries of
these flows and f£ind the corresponding solutions.

Geometry. Since F=0, and from (51.37), we find that

3 E

-wow T 0

and using (51.40), -we have

SE=0, or E=E() (52.01)
T
. 2 1 .
Since J = EG = =5—5 + G is given by
p K
G = -—2—71 ' {(52.02)
K<p°E - |
P E -

From (51.38) and (51.40), we get

13 8y - 2,3
=z aqs(w) K™ p 53 (pG)
\ | .
= p 53( l/pE)r (52.03)

Substitution of (52.03) and (51.40) in (51.34) gives

~
SR 4 ipx? B—Ewp%(l/p}:) = 0. (52.04)

a¢ 3%

Employing (51.50) and (52.01) in (51.35), we find that

Y]
d

}

=0 or p = p($) (52.05)

Q2
«=

L d

n
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\Assuming that the equation of state is of the product form
- .

p = Py (p) 51(‘5)
by virtue of (51.39) and (52.05), we can write
p = P(¢) S} (52.06)

where P(¢) = Pl(P): S(l!)) = Sl(s)-

Employing (52.05), (52.06) and (52.01) in (52.04), we obtain
bt ($) + XKZS(VIP(6) E' (9)
(52 07)
LR (8)E(8) + P(S)E' ($) I/ {P@IEZ ()N =0

Using {(52.01) and (52.02) in the Gauss equation, we get

Sl %ﬁﬁ) + 50 3 g%g) = o,
or
5t E%E (2L =0,
or ‘
B2 + % pE' () = p2E% £(9), (52.08)
_;\

where £(¥) is an arbitrary function of ¥.

. Substituting p = P(¢) S(¥) in (52.08), we find that

E B! (6)S() + XE' (8)P(6)S(¥) = B2 P2(9) SZ(WIE(V),

orx

2 s—{E P'($) + %E' ()P} = S (V).

]
1

Since the left hand side is a function of ¢ alone, we must have
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1

SMWYE(Y) (52.09)

-1, ' '
-E-Z';Z{E P'(d) + XP E'(4)}
constant, A.

From (52.07) and (52.0%), we obtain
.2 . U - 2.2
p'(¢) + K" S(PIP(E'(9) - =5 {A E'P” + ¥P E' ()} = O,
EP

or

1.2 _ 1 U 2 ' Cn
-E-K S{y) = W)[?{ AETP + XE' (¢)} P (@)] (52.10)

As ¢,V are independent variables, (52.10) regquires that
S(w) = constant ,
putting a restriction on the equation of state, which must
be of the form
‘ p = p(p) ‘ {52.11)
Equations (52.02) and {52.11) give us p = p(¢),
and therefore + G = G(d)

Again, from Gauss equation, we have-

1 3/6,
( 7E 53—) = 0,

wlar
-

therefore writing VE = g'(¢), we have

YG = A gl$) + B (52.12)
where A, B are arbitrary constants.

from (51.43) and (52.12) we f£ind that

30
99

-

Q
Q
ll—'

I
]

G

— =

2 3/G _
J 3¢ d

1
VEdss Cth

@
<=
[

I+
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giving us
@ = ag+ AV © (52.13)
where o, is an arbitrary constant. o

Equations (51.42), (52.12) and (52.13) yield

w

; = exp(ia)-g' (),

ar

a»

z

= + & exp(ie)-{ A g(¢) + B}.

@
Ay

On integration we get
1 ] e .
(z, + ¥ explicet inY)-{A g(s) + B}, if A#0;

Z =4 (52.14)

2o * exp(ic,)-{ g (¢) + iB Y}, if A=0.

As a consequence of (53.14) we see that the curves ¥ = constant
are concurrent lines if A # 0 and parallel straight lines

if A= b. By suitably choosing co-ordinates is, we can

take z, = 0 and ¢, = 0. We also assume that J>0.

Solutions

() If A #£ 0, without loss of generality we can take B = 0.

From (52.14), we get

x = g(s) cos (A},
(52.15)

vy g(¢) sin (Ay)

Solving (52.15) for ¢ and y, we find that

[ 2 2
9’(¢)‘= x ty =1r, ?

Y = (1/7A) .tan'l(y/x) =8 /A. (52.16)
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whé;e (r,0) are the polar coordinates.
From (52.12) and (52.16}, we have
- = g'(e) = 1788
/B =gl (o) = 1/(gD) .

YG = Ar

and (51.40) yields

A r/(%%) = 1/ (pK)
or

=% = pKAY (52.17)
Velocity magnitude is given by

vV = apf-f? = K/E = 1/(Apr}. (52.18)

From (51.22), we see that

H= '/—"Gq- = pKAr. (52.19)

Current density is given by

13 8 o k22
= 7 55 = oK 5506
2K d_

- dr(prz) (52.20)

fl

where p = p(r).

From momentum equations (51.34) and (51.35), we obtain

dp 2 dE s oA
a3 + XK%p T + yj = 0,
or
dp p & 1 2.2 d 2, _
T oo Eml R tuE A eghEl =0 (52.21)

2A o r
Using the eqhation of state, which is of the form.p =p (P},

we can determine p and p as functions of r from (52.21).
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If A = 0, then the stream-lines and the magnetic field

lines are orthogonal families of parxallel straight lines

and we have

x = g(9), Yy = B . (52.22)

From (52.12) we get

- daé =
YE = 1/(dx /G = B,
and (51.40) yields
de, _ 1 . 8¢ _ .
B/(?— = 5K ! l.g. = pKB. (52.23)

V, H and j are now given by

Vv = X/E = %E_’ H= K/G= pKB ,
< _ 2 3 _ n 8P
J = pK -a—¢(pG)‘ = KB ax - {52.24)
From momentum eguations. we obtain -
l ,dp 24 1 2.2 dpy _
ety + K Glgas) WRTET Hl =0
pP“K™B
which integrates to yield
b= p, - wkEH? + = . (52.25)
pB

Summing up, we have

Theorem 1. If a steady plane orthogonal flow, of an inviscid

compressible fluid, is irrotational then it must be either

radial or parallel flow. For the radial flows

v = S e. H = KApr ee, == dr(Dr ) k
- fre 4, 1. . .22 d 2
and P =Py f{ZA: ar (p—zrz) ’+ HXTATE a—f(Or )}’ﬂ-f_‘\
In the case of parallel flows (\

and

XB p'(x) 3

!

l - - - .
'C’ = D—B--él, H = pXB e2, 3

;
R - 22 _2,.=
p = p, — KB p g7y -
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Section 3. Flows with zero Current density

We now consider plane flows when the magnetic
field vector I makes a constant non-zero angle § with the
velocity vector and investigate the implication of zero

current density j.

Geometry:
In this case, we have
J = YEG sin § = J.f_x ’ (53.01)
F = /EG cos & =%-K cot &. (53.02)
From (51.38), (53.01) and (53.02), we get
. _ 13 .G 23 '
3= g fi—ep_(ﬁ) = pK W(DGL
Therefore, current density j = 0 is equivalent to
3p6) = 0, d.e. 9G = £(1), (53.03)

where £(y) is an arbitrary function of Y. From (53.01) and

-

(53.03), we find that

PE = — 32 = L ) (53.04)

0GKk%sins  K2sin%é £(v)

Since j = 0, (51.34) and (51.40) vield

ap 2 3E _
36 T H KPP 5 =0
or
2 3p 2, 3 _ apy
[od W'FZSK{E—Q—(QE) B?(p—}-o,
where c2 = %E, Prom (53.04) we see that %—4pE) = 0, therefore
. p 9
(c® - xx%E) %-% = 0. | (53.05)

1£ (- yx%E) = pz - %Vz # 0, i.e. the Mach number is not
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equal to Y2, then %% = 0 meaning that the density remains
constant along the stream-lines and p = p(¥). From (53.03)
and (53.04) we conclude that E and G are functions of

alone. Gauss equation (51.36), reduces to

3 , 1 _3E ., _
EE(' 5EW = EX) ) =0,
or
WI% g—?; = Q. (53.06)

where a is an arbitrary constant. Writing /G = g'(y),
eq. (53.06) gives
IWE _ : :
-éw—- a g (H’J):
or -
VE = a g(¥) + b, | (53.07)

where b is an arbitrary constant. Using (53.07) in (51.43),

we get
e _ 1 (- E 3E ) = - 1 JE
39 2EJ FR 2/EG Sin 6 ou
- _ 1 3YE _ a
T VG sin § 3¢ sin & (53.08)
and”
83 1 ,_ L 3E ., _ _ cotd 3E
W o3ms CF gt 5w (53.09)
Equations (53.08) and (53.09) vield
- _ a . |
& =ey - gy ¢ +-cot § In{a g(¥)+b} (53.10)

where ¢, is an arbitrary constant.

From (51.42), we obtain

d

N

= VE exp(ia) = {a g{(¥)+bl exp(ic},

[+ 3}
R

02

§$-=\{/§ + 17% ) exp(ia) =-g'(¥) exp{i(a+d)}
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and z is given by
z, + i explioy 2212 b} gin s, if af 0;
2 = ' (53.11)

z, + exp(ic,}{g) exp(is) + bo}, if a=0.

From (52.11) we conclude that the streamlines ¢ = constant
are either cohcgntric circles (when a ¥ 0) or parallel
straight lines (when a = 0)-. - .
Solutions. . T o d

By suitably choosing co-ordinate axes, we can take
z, = 0. We also assume -that J>0 i.e. sin §>0.
(a) When a # 0, without loss of generality we can take

b =0. From (53.11), we get

x = = siné sinc g(¥),

- (53.12)
y = sind cosc g(y)
or
’ _x
_ g¥) = 5155
and ‘ (53.13)
% = 512 8 (¢, + cotd 1In r - 8},
where a, = %¥v + o + cot § ln(a/sin ¢).
From (53.07) and (53.13), we get .
5 — i & _ dv ... -
YE = ar/sin §, vG = 1/( 3z sin )
and (51.40), we find that
' dv _ aKex (53.14)

dr ~ sin §

Vv and H are now given by
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v = YE/PW™= aKr/sin §,
(53.15)
H = YG/W = Ll/ar .
Vorticity is given by
) N
w'= - K2p g—ﬁ - - 2aK/sin § (53.16)

From momentum eguations (51.34) and (51.35}, we have

:?E.= 0
99 ’
3P 4 2 3E _ g2, 38E - ¢
N X7 "
implying that ‘
dp _ , .2 GE _ azxzpr
= =3 Xpgz = —>—
- - sin™6 -
or
a2K2
P =D, + ———§—~[D rdr (53.17)
sin™§

where p = p{r) which can be determined by (53.17} and the
equation. of state.

(by If a =0, then streamlines and magnetic field lines are
two families of parallel straight lines making an angle §

with each other. In this case, (53.11) yields

x = b cos a, ¢+ cos{a#8lg(y,

(53.18)

y b sin @, ¢ + sin(a +8)g(y)

Choosing x-axis along streamlines we have ¢, = 0, and

»
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6 = (x - y cot §), g(¥) = y/sin §. ~ (53.19)

o=

From (53.07), (53.19) and (51.40), we get

== =Db K p (53.20)

Vv, H and w are given by
v=K/YE=DbZXK,

1
b sin &

o
it

: pK/G

2_ JdE _
X%p EI = G

and w

Momentum eguations imply that p = constant, Do -

Summing up, we have

Theorem 2: If the current density is zero throughout a
constantly inclined compressible plane flow and Mach

number is not equal to v/2, then the streamlines are either

concentric circles or parallel straight lines.

For the circular streamlines, solution is given by

v = aKr H =

5n 6’ ' p = p(r) , s = s(r),

L
axr

a?%K?
= g -
p Py SinZs’* dr .

while in the case of parallel £lows

1
vV =DbK, H= b sin 3’ P = Pur P= ply), s = sl(y}.




CHAPTER VI ,

AXISYMMETRIC MAGNETOHYDRODYNAMIC FLOVIS

In recent years many authors have studied
axisymmetric magnetohydrodynamic flows of an infinitely
'condﬁcﬁing inviscid fluid. V. C. A. Ferrarc {1954) found a
general condition to be satisfied by any poloidal magnetic
field in equilibrium with an incompressible £luid and gave
a particular solution. §. Chandrasekhar (1956) gave solutions
to a large class of force-free fields. R. R. Iong (1960) and
C. S. ¥Yih (1965) have also considered steady axisymmetric
flows of perfectly conducting, inviscid imcompressible fluids.
Recentlf K. B. Ranger (1970) has given some interesting exact
solutions of steady MHD equations under above assumptions.
He considered finite fluid motion inside a liquid sphere.
c. Soéou (1972) extended some of the solutions given by Ranger
by taking into account the gravitational potential of the fluid.
We consider steady axisymmetric MHD flows of incom-
pressible infinitely conducting fluid when viscosity is also
taken into accouﬁ{/jnd obtain a qgg—linear partial differential
egquation for the |streamfunction Y. We then give a class of

']
exact solutionﬁ/énd also discuss a particular solution.
"t N -
Finally, we st?dy meridional motion of an inviscid £luid
under the influence of toroidallmagnetic field and consider

a particular flow.

134
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Section 1. Flow Egquations.

The steady-state equations of motion for a viscous

infinitely conducting incompressible fluid are as follows

div ¥ = 0 (61.01)

o (V.grad) ¥ + gradp = nv?%¥ + y (curl Tx & .. (61.02]
curl®@ x f) =0 : {(61.03)

div & = 0 (61.04)

We make use of cylindrical polar coordinates (r,¢,z) and
consider a flow in which all the dependent variables are
function of r and z only. By virtue of (61.01) and (61.04)

velocity and magnetic fields may be expressed by (Ranger,1970)

=L Slyer U2
T r ar ez + r oZ er + r e¢
(61.05}
e 1oy o+ 1 3y + T -+
H=-zde +o &2 + 28,

where ¢ is the Stoke's streamfunction,'x is the flux function
for the poloidal magnetic field,§g is the rotationa& or swirl
component of the fluid velocity field,"% is the toroidal
component of the magnetic field and Ez, Er, E¢, are the unit
vectors at a point (r,¢,z)'in the directions of increasing
Z, r, b, respectivély.

Equation (61.02} can be rewritten as

-

-+ -> - hl ->
Hx curl® - V x cuxlV = -~ graéP - 5 curl (curl V)

o=

(61.06)

where P = % + % V2.

Using the expressions (61.03) for V and X in (61.06) and

A
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. - - -+ .
resolving along e, e and e., we get three scalar egquations

r ¢
k.
p 1 oy 1 3y u T 37 U U
B X)) - 55 LW +5 555~ =5 57
p r2 Z - z p r2 z ;7 z
- .22 _n3._
= 3z pr arL(¢) {(61.07)
w1l 3x _1_3y wT_ 3T _U_2U
5 7 3¢ L s 3ee (W T o TZ T T2
r b
_ 3P n_ 9 .
37 + T azL(tp) . (61.08)

0 2 3r 3z 2 3z dr Z 3r 9z _2 o2 3t
= 3 () (61.09)
pr )
where the Stokes operator L is defined by
L LS ¢
az2 arz r Br_
Employing the int bility conditi azP = 32p from
ploying e integrability ion z—w= = mommy L

(61.07) and_{61.08), we obtain

pla ,9x Lix) 3 (9x Lx) _ 1 3_ 3y L)
t[58 B - Ry )] - [ )

or

3 (x, L(x)/rz)
3(z, )

2uT 31  2U 30U 3 (v, L(w)/rz)
32 a(.zr I)

- X
p

=.%; L[LF&)]. . {61.10)
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Equation (61.09) can be rewritten as

S(E:E) _ % %%%f%} = g rL (U) , (61.11)

Similarly, {using (61.05) in (61,03), we get three scaler

equations
%2[%(%%%5"%5%%>]=0 " (61.13)
=3 %?w "r% - %(;% 5 - Ef 2y =0 (6‘1.14)

l(aw 2X - 3% 3)y - constant, C

oxr

We consider the case when C = 0. This will be the case, .

for instance, if there is a stagnation point in the meridian

plane. Then we have
(61.15)
Equation (61.14) simplifies to

: , ,
8w, T/x7) _ 30,U/x") _ _
3(2,1) Sz,rT - © | (61.16)
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The governing eguaticns of motion (61.01) to (61.04) are,
therefore, replaced by (£1.10}, (61,11), {61.15) and (61.16)
in'terms of the functions y,x, U and T.
Equation (61.15) implies, in general, thft

x = £Q) : (61.17])
where fbis an arbitrary function of .

Using (61.17} in (61.16), we get

3 (w,T/r2) | 30y, £ Iv/z2]

3 (z,1) 3 (z,x} =0
Since
. 2
AW, E WIVULEYY _ aw 3., 2,_ 3V 3,4 2
3 (z,1) = -a—'z-a-;(f (l,'J)U/I } Ea—z(f (w)U/r ]
R R IR A 3v 3 LU
= f£'({¥) ?E'EE(‘ﬁ) f'(w)gg 5;(—5)
r . r
. L2
. o(£w), U/xr™)
elz,r) :
Hence (61.16) reduces to
3 (o NT-£ 0N /2%) _
3 (z,xr) ? - -
whi&h implies that
T - £.04) U=xgWl, (61,28

where g () is an arbitraxy function of y.
If we iﬁpose the restriction

LU} =0 (61.19)

on U, then (61.11) reduces to -
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3 (v, U) _ualx,T) _
(2447 o 9(z,xr) 0 (61.20)

Note that in the case of inviscid fluids (61.20) holds
without the restriction imposed by (61.19). Using (61.17)
in (61.20), we have

(W, U-(u/p)E' (W)T )

=0,
3l(z,x)

which means that N

U - % £1(¢) T = h(v) (61.22)
"« where h(¥) is an arbitrary function of U.
Solving (61.18) and'(61-22) for U and T, we get

.U = h(w) + (u/o) x f () glu)
[f wﬂ]“

(61.22)
r o BQ) £ +x g(w)

1 - w/e) [£'(9)]%

assumming that 1- %I}‘(¢)]2 # 0.
Using (61.17) and (61.22) in (61.10), we find that the

stream Function ¢ must satisfy the egquation

. 2u rlgw) + h(U)f (¥) 3y

[;r g () + h(LYE" () + £W)yn'w)?

> {1- (u/prer? )}Z‘az R
2 2
2U £ . rg + hf' 2_h+ (u/p)rf'g oy
+_fwmwwi——ﬂ—— 3y
p 1-2e =R e

2
' 2., ¥ 2.0 h + (u/p)r"f'qg 20 £'£"
{(h' + Erf v Bopcr + el }
¢ P g p s) 1 - (u/p) £12000

’ i w
L 3l Lwy/rd _ uer B TETLHE (2% "+ 3% “Tr/xd)
a(z’r) P (Z;I) ’

(cont'd)-

Ve
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= 0
= of L{L(y)}, {61.23)
since
2 2
L(x) = £ %—% s GHP e g %—% v (2oL 28
4 X

£' L(y) + £° {(%%2 + (%)2} .

Eguation (61.23) can be simplified further to give

2
2 [u u 2 4 u 4
st (l.-. = f ) rg gl + r f'f"g
r3(1— % f'z)2 P P pz

2

2

- o1- M oge2 R VR 2]9;:_: 3 (U,L(v) /r4)
a-ted nn - Lo’ |5 SN
s, Lo fern ¢ (g &AL

- 3z, 0) . = E;L{L(¢)}.

or

3(y,6/r2)

_ 1
a(z,r) - E'i.' L{L('(,U)} ’ i (61.24)

-

= —P.'z _E_ 1£01 8;’;2 ﬂ_Z
G = (1 5 £'7) L{Y) 5 £rev (7)) T+ (z7) }

ven b 4.2, R
L n r4g g . h h' L £'f (p r g+ h7)
p U .2 2 p u 2
-2« 1- e - B
P (1- 3 ) (1- 5 ) (= 5 £19)
= -k 2 - 3_1,7.1-2 3y, 2 1, '
= (- 3 £'9LW) S el e (5T F ey by
R (61.25)
functions g, and hl are defined as
. = I N S
1o kgt ?) 1750~ B
P p

Equation (61.24) is a nonlinear partial differential equation

for the stream function y.
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Scction 2. Some Exact solutions: -

As the governing eguations are non-linear, analytic
solutions for the visccous flows of conducting £luids are
scarce. K. B. Ranger (1970} has given some interesting
examples of exact solutions for axisymmetric flows of
inyiscid infinitely conducﬁing fluids. When viscosity ig

neglected (61.24) reduces to

3 (v, G/rd)

a({z,r =0

which implies, in general, that

= (1o B £:2 M cveagp S92 3y, 2 4 , '
G = (1 > £r7L(y) - 5 £'8 {52° + %Y + xr7gy + by
—1 :
= x"F(y) {62.01)

where F(¥) is an arbitrary function of u.
Any solution of (62.0l1} which simultaneously satisfies
the uation
L{L(y}} = 0, (62.02)
represents a solution of the eguation (61.24] and gives an
analytic solution for a-viscous flow problem.
The fourth-order partial differential equation (62.02}

can be decomposed to a pair of second-order egquations:

L(¥,)
L{¥y)

0,
(62.03)
L ’

and the general sdtution (62.02) iIs given by V¥ = Yy + Y-

If we take f£'(y) to be constant, g'(y)=0, h'(y)=0
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and F(¥)1= - k A where {l- % f‘2) = k, then (62.01) becomes

LW = - Az © (62.04)

F-4
whose general solution is

v o= % Axd 4+ o

From (62.04), we see that -

L{L)} = - LA r2) =0

Therefore any solution of (62.04) will represent a solution
cf a viscous flow problem;
Using spherical polar coordinates (R,6,¢}, equation (62.04)

may be wtitten as

2 : -
32y 1 3%y _ _cos 8 3y _ 2ein?
: __2_ 2 -— 2 - '5—8— - = AR S.A-.n 5
aRZ R™ 36 R"sin 8
or
2 2 .2 : L
I - )
3 v . 1 82 3 v arR%(1- 89 (62.05)

/ 3RS R® 3B .
( .

where 8 = cos 8.
We try a solution of (62.05) of the foxm

v

Substituting (62.06) in (62.05), we obtain

H(R) (1 - 821 . : (62.06)

R2 E® - 2 E= - A R

whose. general solution is

1 4

1 R AR . (62.07)

E(R) = CR%+ C,

-
10
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The. requirement of finite velocity as R+0 implies that C2=0.
In the case of a spherical vortex inside R = a, we should o

have ¢ = 0 at R = a and therefore <

1 2 i}
Clv—-ﬂ)—-}&a i
Therefore the streamfunction is given by
v =2 rE? -Rha - e (62.08)

where R < a.
If g=0 and h=0, from (61.22} we see that
U=0, T=2¢0

and we have meridional motion. The streamfunction

i

v = 2 r%a% rHa - 8h

%3 rz(a2 - r2 - 22) with r2 + z2 < a2

it

gives "Hill's Spherical Vortex"” inside the sphere R = a

(Lamb, 1932)

However, if h=0 but g7#o then from (61.22), we get

U_ypgf! T _
U-pgt ., IZ__9 _ . (62.09)
TP (1- %f‘z) - %f'z)

representing a rotation with constant angular velocity
Bget/ - %f'z) added to the above case of Hill's
spheriéal vortex.

If we take h#0 then the swirl component of velocity
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U _ h/r +(u/o)gf'

r (1 -(n/p) £'2

becomes infinite on the axis. Hence we must take h = 0.

rrom (61.07) and (61.08) we £ind that

3P 2n Y 12, 3y
3z P AT At iy
=2T] - a,b = —-E ‘2
5 A BZ , k 1 5 £
‘and
9P ") f,ZAEE _ Aﬁi _u 21'9'2 + (u/p gf')2 oy
3r T P 3T 3T p .2 k

k

= -k al¥ B2
k Aar o g~ 2r

which on integration give us

10

= 2% Az - = kAzrz(a2 - r2 - 22)— E% g2r2 + B

for R ¢ a, that is r? + z° < a2, ~ (62.10)

We now consider the stream function in the region

outside the sphere R = a. From (62.07), we cbserve that

w* = (ClR + C, R™ (1 -8 ) (62.11)

is a solution of (62.05) with A = 0.
Since the two expressions for the stream function, namely
(62.08) and (62.11), must be such that the component of

velocity normal to the surface of the sphere R = a is zero




145

on both sides of surface, we reguire that the radial velocity

given by (62.11) be zero,

- ;5;;;_555_ = ;f 55_ =0 when R = a,
“or
C2 = = Cla3
Therefore {62.11) becomes
* 2 a3 2
yo= Cl(R - §—)(l - 87) (62.12)

-
»

Further, the continuity of tangential velocities on both

sides of the surface R =.§, requires that we have

Nl b
7l_—_ §§ = _E:_—' %% when R = a.
R"sind R7sin 8

From {62.08) and (62.12), we get

~ _ 1 2 .
’,cl = - Iz Aa (62.13)

and therefore stream function outside the region R ¢ a is
given by

*

vt

o™

3
22 - 294 - gd)
2 3/7

a?r?(l - (2% (52.14)
rT+z”

|
1
rid

L
The stream function given by (62.14) determines an irrotational

flow outside the sphere R = a which is parallel to z - axis

with velocity - %? Aaz at infinity.

AP e

kP R
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Section 3. Flows with ?% =0

In this case components of velocity and magnetic
field along the z - axis arxe zero, and thé motion is in
planes perpendicular to z - axis.

When %% = 0, (61.24) can be written as

vz (& -n Qi&
dz 3r 2 pPr g, 4
or
b o.,2, &%u, 2 . dy 2
r[(l - L fr5 —-—%(- —37) - = f'f"(a-z:) (- —3-)
P dz x P x
1 1
‘ + 2 r392+l{}:2<-3§)
(l"a-f ) (—E ) r
] fre” 2u 2 ~2h2' n d4$ (siH]
+ - —— (= g ) | - = — =0 (63.01)
P (1-g-f'2)2 P rB] b g ¥ &z

where £, g, h are functions of ¥ , which is a function of
z only. Equation (63.01) can be satisfied only if coef-

ficient of different powers of r are zero. Therefore

u 2, a7y u w G, 2 h h'
(1- B g2y &0 W opeen (@2, Db
P e P & (12 2%
u _ £'£"h? '
+ : =0 (63.02)
Pl £12)2
u Y 2 FIE" 2
% e o2 a-ted
v b
4
d¥ - o (63.04)
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From (63.03) we get

g = ad - % £14) (63.05)

where A is an arbitrary constant.

~

From (63.02), we have

. 2
o B2 &1 [ B g2y & a [ on? 1.
(-5 £ )dz[ (- &% dz]""?‘dw[l_;i f,z_[‘o
5 .

or
. 2
(- e g —iu‘-f—z =B (63.06)
Cl"g )

where B is an arbitrary constant.

Equation (63.06) gives :

@ Ju g2y L p2)k S K g2
O R VA

By choosing f' and h, we can determine w(zf‘which must also

satisfy (63.04) for viscous fluids.

Velocity field is given by

$o.Ll ,ldvy , U=
v = rir Szt iz T T €
r, U2
h'+ = r"f'g
=5[{if3(1 T A Ll L]y P S My
r (l_l-lfn) ¢

and magnetic field E is given by

2
Y PR spvryos S-S R N P I B
k—r_[{if\/é(l pf ) h/(l 5 £ )}er-i- T_E__f-%)%]
‘ p

where g is given by (63.05). Flow between two concentric

rotating cvlinders belongs to this class of sclutions.

.
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Section 4. An Inviscid Flow Problem

In this section we consider the flow of an inviscid

-

iﬁcompressible f£luid in the presence of magnetic field when

the swirl or rotational component of velocity is zero, i.e.

. 2 g
y = h(y) + (u/p)r” £' (Wgly) _ 0, (64.01)
U 2
l—-p—f

i

which implies that if ¢ is not a fuction of r alone then
either ) ' o

(1) h(¥)

0, £ {y)
0, g (y)

Since magnetic field ﬁ_is given by

0;

or (1i) h(y oj

-»___];' Yy > l‘i QY - T -+
H = T £ (9 3r Sz T T £ () 5z °r T % € *
. . > T - -+
we see that in the first case H = r e¢ = rg(¥) e¢, i.e., the.

magnetic field is toroidal; while -in the second case T = 0 and

- 1 aw - -+
= {1 ! - =
H £ r 3r 2 * er}

i
e

implying that the magnetic field is poloidal. We thus have
Theorem: If the fluid flow is meridional then the magnetic
field is either toroidal or polecidal unless the flow is along
the axis alone. .

In the case of meridional flow under the influence of a
toroidal magnetic field, we have £' = 0, h = 0 and so the

equation (61.24) reduces to

ney) + Lt gt = 2 T (V) (64.02)
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where F(y) is an arbitrary function of 3.

K. B. Ranger (1970} considexed the cases when

(1) gf{vig'y) XK, X being a positive constant, F(y) =0

(ii) g@W)g' () = K, Fly) = = «, (a > 0},
In these cases {64.02) reduces to a linear partial differen-

tial equation of second order in .

We consider the case when g(y)g'(}) = % A¢2, F(U) = 0.
In this case (64.02) becomes
2 2
34y 3%y _ 13y 2.4 _
-a-—§-+—2- 25_1_‘+A¢r =0 (64.93)
z ar .

We }ook for "invariant solutipns" of (64.03) employing
the group theory method devéioped gy A. J. A. Morgan{l952).
Definitions pertinent éo this method and main results of
Morgan's theory are given in Appendix B, Our first step is
to-find a possible one parameter transformation group such

that the differential form

2 2
_ 37y 3%y _ 1 3y 2. 4
$ = n >+ =5 - % = ab“r (54.04)
z or

is "Conformally invariant" under the second enlargements of

that group. We try a transformation group of the form

z = aVz
— T =2 (64.05)
§ = ay

where m, n, p.are the real numbers, a is the parameter of
the grpup; and find m, n, P such that the differential form

6 is conformally invariant under the transformations (64.05).

o
b
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Employing (64.05) in (64.04), we get
A2 2

3 g + 3 3 _ % %% " A$224
9z oF - 1 - 2 - y
= aP 2m iip+ aP 2n3°0 _ _p~2n 1 3y + Aa2P+4n¢2r4
z2 arz r 9r

which shows that the differential form ¢ given by (64.04)
is an “absoclute invariant” under the continuous one para-

meter group of transformations defined by (64.05) if

2p + 4n =0
or
m = n, p=-6n .
It follows that ¢ is an absolute invariant under the

transformation group

Z = a'z = bz
¥ = a% = br (64.06)
7= a %y - 576

As a consequence of Theorem 2, Appendix B, we see that the

invariant solutions of the partial differential equation
(64.03) can be expressed in terms of the{solutions of a new

egation with the number of independent variables reduced by
N :

one. As there are only two independent variables in the |

v

. ]
original equation, the problem reduces to the solution of

an ordinary differential eguation.

We can express the differential form 4 in terms of
new variables p and G and the derivatives of G with respect
to n. The variable n is to be an absolute invariant of the

. | | " "
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subgroup of the transformations of the independent variables
z, r¥. By definition of absolute invariant of a group, n is

a functicn such that

n(z, ¥) =nlz, x)
where

z=bz, T=bzx (64.07)
There is no well defined manner for-finding an absolute
invariant, but rgcoghising that the transformation involves
powers of b, we might try

n =z xS

and seek a value of s such that zr® would be invariant

under (64.07)., This means that

- z ES =2 rS .

or

bz bs rs = z rS
Therefore, we must have

%
s = -1
Y

This choice ¢f s means that

n = z/r ' {64.08)

is an absolute invariant of the subgroup of transformations
defired by (64.07).
The functién G is defined by
GMM) = g(z,xr,¥) (64.09)
where g is an absolute invariant of the group of transform-

ations (64.06) for both dependent and independent varlabies.
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As there is only one dependent variable ¥y, we have to find
just one absolute invariant of (64.06) which is functionally
independent of n. We try g of the form

g = vt
and look for a value of t such that vr¥ is invariant

under (84.06). This implies that

4

b—6+t'wrt = ¥ rt
. 3,
which reguires that
t =6
Therefore . h///
g =4y r6 { (64.10)

According to Theorem 2 (Appendix B), the invariant

solutions of equation (64.03) can now be expressed'iﬁ terms
of nn and the function G{n) defined by (64.09).

From (64.09) and (64.10}, we have

g=v = el

so that,

% am) (64.11)

n

Y
where n = z/r.

Substituting ¢ = r % ¢(n) in (64.03) and employing

~
-

n = z/r, we get

-6
r°o3 [1 ., s . ..-7 -6z _,
Gliem]s - T em- s ;GW]
-12 4

- % [-6::-7 Gl) - x ° EE-G'(n)] + Ar %My ¥ =0

r



153 ‘

or _
(l+n2) G"(n) + 1501 G'(n) + 48 G("} + A Gzﬁn) = 0
(64.12)

We have thus reduced the problem of solviﬁg the partial
differential equation (64.03) to that of finding the solution
‘0f a non-linear ordinary differential equation in G(n).

.Let us consider meridional flow inside an infinite
cone z = r. On the boundary of cone, n = 1 and sinée tﬁe

flow must be tangential to it, we must have

G(1) =.0 | (64.13)
We specify the other boundary condition of the form
G'(l) =K s
where K is a constant. ' ’
We solve (64.12) nﬂhericallx\;ubjecr to the boundary
conditions (64.13) and (64.14) by applving Runge-Kutta

fourth-order method to the system of equations

G' = u

u' = -(15n u + 48G + AG2)/ (1 + nz),

for specific values of the constants A and K; and plot
some streamlines for the resulting flows.
Taking K = 40, for different values of A, the

solutions are given by the fcllowing tables:
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A= 4.0
n G{n} G'(n)
1.0 0.0 40.0
1.1 2.696 15.755

1.2 3.484 1.499
1.3 3.253 ~5.071
1.4 2.628 -6.872
1.5 1.954 -6.378
1.6 1.377 -5.105
1.7 0.934 -3.781
1.8 0.614° -2.674
1.9 0.390 -1.834
2.0 0.239% " -1.229
2.1 0.138 -0.808
2.2 0.073 -0.521
2.3 0.031 -0.328
2.4 0.005 -0.200
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a =

m G(n) G'{n)
1.0 0.0 ’ 40.0
1.1 2.703 15.98
1.2 3.537 2.19
1.3 3.386 ~4.26
1.4 2.831 -6.31
1.5 2.196 -6.16
1.6 1.626 -5.17
1.7 1.167 -4.02
1.8 0.819 -2.98
1.9 0.564 ~2.15
2.0 0.382 -1.52
2.1 0.255 -1.06
2.2 0.166 -0.73
2.3 0.105 -0.50

2.4 0.064 " .34
2.5 0.036 -0.22
2.6 0.018 -0.15
2.7 » -0.006 -0.09
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. A= -2.0 P
n G(n) G'(n)
1.0 0.0 40.0
1.1 2.716 ° 16.433
1.2 3.645 ~ 3.8655
1.3 3.670 . -2.390
1.4 3.291 -4.763
1.5 2.779 ~5.282
1.6 2.226 -4.942
1.7 1.801 -4.266
1.8 1.412 -3.518
1.9 1.096 - -2.819
2.0 0.845 -2.217
2.1 0.648 -1.723
2.2 0.497 -1.327
) 2.3 0.380 -1.017
. 2.4 0.291 -0.777
2.5 0.223 -0.593
2.6 0.171 -0.452
2.7 0.131 . -0.345
2.8 0.101 -0.264
2.9 0.078 -0.202
3.0 0.060 -0.655
3.1 0.046 -0.119 -
3.2 0.036 -0.092
3.3 0.028 -0.071
3.4 0.0%2 ~-0.055
3.5 0.017 . -0.042
3.6 0.013 -0.033
3.7 0.010 -0.026
3.8 0.008 -0.020
3.9 R 0.006 : -0.016
4.0 -~ 6.005 -0.012
4.1 0.004 -0.010
4.2 0.003 -0.008
4.3 0.002 -0.006
4.5 0.001 -0.004




157

S N R
L ] * * L] - L] - . L] L)

WwiwtoRPOYC OIS WNDEHE O

OD2O0OUMNOOARNOCOIUVIWNHOWO WU

ooqmmmmh»»phuwwwwwwwmwwwwMm_wwwr—-

« & ¥ & 4 " * ¥ s

G(n) : G'(n)
0.0 40.0
2.723 . 16.662
3.705 4.422
3.822 ~1,315
3.551 -3.731
3.130 -4.5)4
2.674 -4.508
2.240 -4.139
1.851 . -3.628
1.515 -3.089
1.232 £2.579
0.998 -2.123
0.805 - -1.731
0.649 -1.401
0.523 -1.129
0.422 -0.907
0.340 : -0.727
0.275 -0.583
0.223 -0.467
0.181 -0.374
0.147 -0.301
0.120 . -0.242
0.098 -0.195
0.081 -0.158
0.067 : -0.128"
0.055 ~-0.104
0.046 : -0.085
0.032 -0.057
0.022 *  -0.039
0.016 ~-0.026
0.011 -0.018
0.008 ' -0.013
0.006 -0.0I1
0.004 ‘ -0.007
0.003 . -0.005
0.002 -0.003
0.001 -0.001
© 0.0003 -0.0004

0.0001 ~-0.0001

&
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APPENDIX A

Section 1. Some Results from Differential Gecmetry

v

- Let
x = x($,9), Yy = yl,¥) (A.1)
define  a system of curvilinear coordinates in the (X,y)-plane.
p .

With t¢,¢) as curvilinear coordinates, the squared element

of arc length along any curve is given by

as® = E(4,v) a¢Z + 2F(4,u) dd Ay + G(6,P;av’ (A.2)
where ~
3.
’ E= (597 + (3H?
F:é—a—'}'-?-y-élz ) (A-3)‘

Equations (2.1) can be solved to obtain

6= olx,y), U= U(x,y)

such that ) . ["‘\

-

x _ o ov | ;o
® J 3y ' 3¢ J ax !
- ) " (a.4)
X _ _ ;3¢ Y - 5 8%
T T TR

provided that 0<|J| <=, where J denctes the Jacobian giveﬁ by

sokxdy
T =330 T 5y 30 (A.5)

From (A.3) and (A.4), we find that

'_'\
s

162 - L
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J =+ W, where W =4 E G - F2 (A.6)

Let ¢ be the angle made by the tangent to the coordinate
line ¥ = constant, directed in the sense of inqreasing ¢,

with x—-axis. From the first equation of (A.3), we get

ax_ - : "3 _ .
5% = YE cos « , F% = YE sin o, (A.7)

The first two equations in (A.3) can be rewritter in the form
¥9x 9x dy 9y _
5575 35 76 7 P
9X 9x dy 9y _
kT T A

. s . d -
On solving these eguations for —5, we obtain

o
(3% 3y _ 9y 9x, 3x _ . 3y _ 8y
a9 Y 39 9?9y ® ay 99
or . »
J%:E%—P%
or

v _ gax, ooy
Eswp =93 *F 30 (A.8)

3 _ . ax _ . 3y

Using (A.7) in (A.8) and (A.9), we get :

o



4

le4

%% = 7% cos o - 7% sin a,
%%-= 7% cos o + 7% sin c.

On computing the integrability conditicns

(A.10)

32x 3 3%x 32y = 32Y
3¢ 3¢ . 9V a9 ' 99 oY oY 09
from (A.7) and (a.10), we obtain
L 2a F . J aa
- YE'sin ¢ 3 + ( 75 Sin @ + - cos u)§$
1l 3 1 23F F BJE
= 77E 35 * VE 3% ~ ZE/E 59 °°S ©
J 3E 137
ana )
L3 F J da _ ,_ 1 3
YE cos ¢ 3y - ( -5 cos g. & sin u)53 = { I/E 5
1l 3F P °E, . J QJE 1l 3J
.t 7E 3¢ ~ 35VE 36510 ¢ - (3EyE 35 T VE 36 °°S ¢
Solving these eguations for %% and %%, we find that
de _ 1 . _ 3E . 3F _ . BE
53-8 CF3gtEG T EF )
20 _ 1 _ L3S ;3G
3% " 285 " Fap tEgg)
which can be written as
s _ J .2 : 3¢ . J 12
36 £ l11 ¢ . 3 " EF12 (a.11)

s



whére 1y
2 1 3E 3F ' _3E
Ty, = =% {- P 55 + 2E == ~ E=> },
1 oy AT a0 30
(A.12)
ré, = L {252,

From (5{11), we see thét-the integrability condition

implies that

- -

5 . J .2 3,32, _ .
gty - gy -0 (2.13)
Equation (A.13) simply means that the Gaussian curvature
1 ia W .2 2 W .2 v
k=gl gl gl -5l g M1

of a plane equals zero, and is referred to as Gausé equation.
Conversely, if E;F,G arergiven as functibns_of [N
such that Gauss eguation {(A.13) is satisfied thHen we show
that the functions x{¢,p) and y{¢,y) can be obtained in
terms of E, ¥ and G where E,F,G satisfy (a.2).
Eguation (A.13) implics the existence of ¢ = gld,v)

such that

Ja

3¢

<y

2
Tyy v 30
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’ a=f(g—“d¢+-gﬁd¢)
_ 3, .2 2
—fg(rll d$ + Iy, dy ), (A.14)

The funcgaons x{$,y) and y(¢,y) are then given by

- x =[{(/E cos a)dé + ( 7% cos o - %E sin «) 4y},

. " (a.15)
i v sz(/E sin a)d¢ + ( 7% sin & + 7% cos a) dyl.

~ Introducing the complex variable z = x + iy, eguations (A.1l5)

-

can bhe writtén in a concise foxrm as
z =.J.%§ exp(ic) {E d¢ + (F +°1J) 4yl (A.16)

where ¢ is given by (A.1l4).
We sum up the above results in the form of fcllowing theorem.
Theorem: Three functions E, ¥, G of ¢,y serve as coefficients

in the first fundamental form

-

2

as® = Eas? + 2rdsdy + Gaw2

for a plane with a curvilinear cocordinate system
x = x(6,y), y = vis,u).

if and only if they satisfy the Gauss equation

J .2
(g I3y

IQ)
IQJ

2y _
lel = 0.

ti 4

(

)
[« ]

¥ Q

If this condition is satisfied then the functions x(¢,y)
5

and y(¢,y} defining the curvilinear coordinate systenm,

are given in terms of E, F, G by .
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o
2z =j%§ exp(ig). (E &b + (F + iJ) TS
where
a=J%(rild¢+rizdxp) .

From the relation <

W=/EG - F2 '

we find that

‘3 E 1 3E E 3G 3E 3F
- —) = ———-(E—+G——2F—]
35 2w2) ol [ C 39 3¢ 3¢ :
_ 1 2 _ 2 -

Similarly, the following identities can be established:

—
8]
o

(—) == (FT - ET ) (a.18)
3y 2W2 W2 12 22
3 F 3 B, _ 1 2 _ 2 2
E'“Q(ﬁ) .’a"'y(ﬁ)‘ﬁ(crn 2F T, +ETS, )
(A.19)
2 L. ‘
where T22 is given by
2 1 3G L 3F 3G
r = — - — =
5o ;;7 ( E v 2F 5T + F 53 Y.
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Section 2. Orthogonal cuxvilinear coordinate system formed

by tangent lines and involutes of a curve C.

Here we consider the system of orthogonal curvilinear
coordinates formed by tangents to a curve C and their ortho-
gonal trajectories, the involutes I of C.

) v c

. A
Let ¢ denotes the arc

length AT along C measured
Y

1)

from some fixed point A, then
equation of an inveolute I of

C is of the form .

a ' , - AB

":’1 =T(g) + a0t

position vector of P, T position vector of T and ) = TP.
L%
. dr
As e is a tangent vector to the involute, we have
- -
dr
.1 _
o
or
T+ aen + 1Y - (A.22)
(+¥e;
. . N ‘ )
where ¢ is the curvature and n the unit normal vector to
C at T. Hence, ?
~ dA
1 +~CE_-,— 0

-
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@

A = constant - O

E-o0 (A.23) .

where f{ is a constant. For each value of £ there is an

involute. The eguation of the involutes is therefore

'El =T+ (¢ -g )% (A.24)

and they can be obtained by unwinding a string originally

stretched along the curve, keeping the string taut all th

-
time. Here £ = ¢ + TP denotes the length of string used

to construct the involute.

-

Unit tangent vector. to thé inveclute I at P is

% = l=-_ld0' = (E -O-) 'Y @.—; '
1 ds;  do dsy ds, ~

where S, representg arc length along I. Taking positive

direction of %l to be that of h, we get Q'
rd

_ da  _
(E a ) K Egl =
or - ’/ 4 . . ~f
dsl . .
—‘—do— = (g el ) © ° (A. 25)"

The square of the element ¢f arc length ds in the orthogonal

curvilinear coordinate system formed by tangent lines to C

and their orthogonal trajectories, the involutes I of C, is
given by . -

2

- 2 2
és dSl + dsz

where dsq and ds, are +he elements of arc length along the
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involutes and the téngentﬁ\reSPectively.

-~

. From (A.25), we havﬁiu

ds; = (g -o lk. do

Hence - ;
as? = ag? + (g -0 1% % ad (A. 26)
If g is the angle-which the tangent lines to C at T makes

with the x-axis, we have

dg

_1 . L
—E-— " 4 . (A.27)
From (A.26) and (A.27), we get
ds? = ag? + (¢ - & )2 ap? (A.28)

where ¢ = o (g). 1In this coordinate svstem, the coordinate

curves { = constant are the involutes of the curve C and
T . . -

the curves g = constant, its tangent lines.

w ) - 2 .

{l

. o~

N




APPENDIX B

I. Transformation Groups. _ .

Let £.(x;, cees *m: a) (1=1, ..., m) be a set of
functions continuous in both the variables X = (xl, ....,xm)
and a. The variable a will be referred as parameter- of the
functions.

Given a specific ;alue of parameter a, the values of

the function are- found by assigning values to the variables

x3- We regard the functions fi (x; a) as transforming the

variables (X7, Xgr-----vs Xn) into a set of variables

bl

} such that

m

(il,'iz,...., X
. f

For a particular value of the parameter a, say, ay, we
write the transformation of x =”(xl,..., xm) into

.

E = (il’.'.T' -}?m) as

o

1f the set of functions £y is "functionally independent”
“u\\\ that is, if the Jacobian of the set of functions £,
3£, of

1 L
. Rk | axl .}me
L - ’ - . M
- of ’ of
&S m
ol
- B & A
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does not vanish in a region R, then-we can express x; as:

functions X, xz.....xm such that

_ 1
X4 _fl

i ( Xyreeeor Fpi al) (i =2,..., m)

and the transformation car:ying ('El,...., Em) back into

(Kyrecrr xm) can be defined as
ot %= x
al~ L

T;l is called the'inverée transformation of Ta .
1 : 1
Two different transformations are defined by

different values of the parameter a. Thus if aq and a, ,

are two distinct values of a, we consider T& and Ta to

be different transformations. We consider sét of ali
transformations T, obtained by aésigning different values
+to a, and form a transformation group.

By the product of two transformations 'I'al aﬁd Ta2
we mean application of t?i’tfansformations successively;
that is, a point X is taken into a peint S as follows

7. T, x =T (T. x) =T, % =
a; a3~ @y Bt %7

<1§u

A set of transformations is said to be closed under the
_ product definition if, given any set—of'parametric values
[ 4 o .
ay and a,, 2 parametric value a, can always be found such
. ~——

that T, is a unique member of the set of given trans-
3

formations and

[

. : 'Ta‘T =T
o l -
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A transformation which leaves each point unaltered

is called an "identity transformation". Thus T, is an
0
identity transformation if

X =X -
T ~ ~

20
By our previous definition of T;l'we see that
. 1
T;; T, X = T;l X =x ,
> i A

and similarly

-1 - -

T T . x =x {
8y &1~

Thus we see that T - T =T 7 = I,the identity transformation.
21 %1 4 :

e say that a set of transformations = {Ta} constitutes .a
. . ¢

group if

(1} The set is closed.

e )

(2) There exists a transformation I €2, such that

TTE=T, TX=Tx

-
for everv transformation T, of the set. I is called’
- . @
the id$ntity transformation.
»n (3) The’p;dduct is assqpiative,'
. (T, T. )x=(T. T. )T x (for all x)
. al a2 8.3 o~ al 8.2 a3 ~ ~
(4) Given any transformation Ta an inverse transformation
_ 1
Tal belonging to the set, exists”such that
1 :
7 ) -



T-l T Xx =T T_l

X =X (for all .x)
al al ~ al al ~ ~

A subgroup of a given group of transformations is a set of
elements contained in the given grcup and is such that these

elements by themselves constitute a group.

2. Absolute Invariants

Let 7 be a continuous transformation group with an
. »
individval member represented by T,,a being parameter of the
group, and let ZL(x) be a function of x = (xl,..-.,xm). If

=T X
a ~

1]

and if

bl

z (x) =% (x)
foﬁ every transformation T, and for all x then z(x) is said
to be an absolute invariant of the group. If a trxansformation

group is defined by -

T, =%
with -
x; = fiuﬁf""’ X a)

then it is proved in general group theory that the group has’

(m - 1) functionally independent absolute invariants

B3 (Xyreeer X)) (3 = 1,00, m-1); that is, functions ¢
" J

" such that /

Cj{xl""’-xm) = ’;j(il,...,ﬁh) (3 =1,...,m1})
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3. Continucus Transformation Groups and\Partial

el

Differential Equations.

~

We now consider an arbitrary one-parameter continuous
group of transformations defined by
xX. = fi( xl,.‘::.,xm; a} (i=1l,...,m;m22)
T, * (B.01)
yi = h.'l.( er----lyn:a) (j'—'-:(---rn;n;l)
The transformations defined by T

Ky= £ ( Xysenns X5 @) 1 (B.02)

are assumed to define a subgéoué of the given group of
. transformations.

When considering a system of partial differential
equations we identify X with the independent variables and
Y3 with the.dependent variables of the system of pértial
differential equations.under study. We assume that the'yj
are differentiable functions of the xj_upt%‘ény-requi;ed
order.

If’ the transformations of the partial derivatives of
the §j with respect to tﬁe x; are appended to the transfor-
mations defined by (B.0l):, then the resulting set of
transformatioﬁs is also a continuous one-parameter gréup.
The new groups constructed in this way are called

" wenlargements" of the group J and denoted by Jijjf_",ﬁk
accordinglf as the transformations‘of the partial deriva-

tives of the ¥y upto order 1, 24..., k are added successi-

‘vely to those of J, ‘j‘, ceey -jk-x,

s
-

o -

"
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The set of transformations defined by

xX; = fi( Kyreweey X i a)
form a subgroup of the group of transformations (B.01)
‘and hence form a group having (m - 1) functionally

independent "absolute invariants®

N30 Xyreens xm), ...... N m—l( Xyreenns xm).

Considering the group of transformations (B.0l) as
a whole, when considered as transformations of (m + n)
variables namely, ki,..., Xt yl..:, Ynr there are {(m + n - 1}
functionally independent absolute invariants. We therefore

append the invariants

gr(xl,...,xm; yl,...,yn), ...... ,gn(xl,..;.,xm;yl,...,yn)

-

to the invariants ngs....., ng_;. We choose these later

set of invariants such that the Jacobian

agl Bgl *

. . T £ 0 (B.03) .
- - %

ag_ o,

aylviunocunﬁi‘

Theorem 1. If the variables yj"§j are implicitly defined ~
as functions of the x; and Ei by the egquations

gj(xl,....,xm; yl,...,yn) = zj(xl,....,xm) (B.04)
9 gj (xl.""'xm;i;l"-"';n) = Zj (El; ..... ,)_Cm) (B.OS)

-
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Then a necessary and sufficient condition for the Y3
(defined implicitly as functions of the x; by equations

(B.04)) to be-exactly the same functions of x; as the yj

are of the ﬁi (as de?ined by (B.OS)) is that

zj(xl""‘{xm) = Zj(xl,....,xm) = zj(xl,...,xm) {B.06)

The condition {B.06) is eguivalent to

R R R L A (B.07)

The Ny.-.., N, 4 are the funct%onally independent absolute
invariants of the subgroup of transformations felating the
variables x; to ii_giyeﬁ by (B.02). =

Proof of the above theorem is given in Morgan (1952).
However, the equivalence of (B.06) and (B.07) can be seen
easily. Relation (B.06) implies that the z5 é?e absclute
invariants of transformations on thg X defined by |

;i - fi( xl"'ﬂ;xm; a)

As the njyr--.r m,_; are {m = 1) functionally independent
absolute invariants of the above group, any absolute
invariant of the above group is expressible as a2 function
of these (m - 1) functicnally independent invariants which
form & maximal set. Therefore z. can be expressed as a

J
_function of nyr--., no-1° that is,

-

zj(xl,..., x ) = Fj(hl,..., Mooy -

/—’
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Definition 1: By a "differential form of the kth order in

m independent variables" we mean a function, of the form

3 Y ? ¥
= O (RyreeraX P ¥yreeeer¥orneer —Fppeans, ) (8.08)
Bxl X
m
whose arguments are the variables X: the functions Yy of
the X and the partial derivatives of the yj with respect
to the X5 upto the order k.
‘ The differential form ¢ will be assumed to be of class
cl. For convenience consider the arguments in a given

differential form ¢ , such as defined by (B.08), to be p in

number , and designate them by zl,-..,zp, for example,

Chaer - .
s
. C yn Bkyn
Zy7FLr TpTHpreeen Ty eeee I 3T Tk
me__l me

Suppose that the'arguments z; transform unde{ the transform-

ation laws of a continuous one-parameter transformation group

r

Gyt (zl,...,zp)‘———a (EI---rEp)a i.e. G,z = é’

-

Definition 2 A differential form ¢(zl,...,zp) is said to

be "conformally invariant" under a one-parameter transform-
ation group G_z = g , if under the group transformations, it

satisfies the relaékon '

P
¢(El,...,'z'p) = F(21reeeezyi @) 9(2y,eenr2) (B.09)
' ’ \

where F(zy ...,zp; a) isjsome function of the z; and the

P

-~

group pg;ém ter a.

N

b
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If ¢ satisfies a relation

6 (2yreenizy) = F@). $(2)0eeniz) (B.10)

then the differential form ¢ is said to be "constant con-
formally invariant" under the group transformation.
rurthermore if F{a) = 1, so that ' "

¢(El,...,§p) = $(2y000002)) (B.11)

then ¢ is said to be “aksolutely invariaﬁt" under the
transformation group.

Assuming again that yj are dependent variables‘and X
are independent variables, and the expressions
x, = £5 00 oy @)

7= hylypeeygral 7

defiﬁe a one- parameter group of transformations J of these
variables, we define invariance of a system of differential

qugtions as follows:

pefinition 3: A system of kth- order partial differential

gguatlons 3ky aky
¢-(xlr---lxm7ylr---fyn:---: j];r---.r i) =0 (B.12)
J X ox
1 m
Com .

is said to be “invariant‘ﬁgaer a continuous-one—pérameter
group of transformations b/“ if each of the kth- crder
differential forms ¢j is conformally invariant under the
kth-enlargement Uk of J . It means thaﬁ, given the trans-

formatiog\group :jk,.the differential forms ¢j_satisfy the

relations .L__N\
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k= k-
_ - - - 3 ¥y Y,
¢j(xl'..-'xm;yl,.--,ynl---';i:-;jgl"-lm)
k
Y, akYn
=F(xlr—o-.erYl:---:Yn:----;;—gr a)¢j(xl""’xm’yl""';_'F)
m xm
B.13
( )1b

‘Definition 4: By "invariant soluticons" of a system of
Y

-
-

partial differential equations is meant that clgss of solu-
tions of that system, whiFh have the property that yj are
exactly the same fﬁnctign of the x; as the §j are of the X, -
In view of the theorem 1, the condition that invariant
solutions exist can be sﬁnplifiéd to the establishment of

the relation

gj(xlr---vmeer---,Yn) = Fj(nl'i"'nm—l) (B.14) .

o

where nyse-ernp are functionally independent absolute
invariants of thHe set of transformations

Ei = £, (X ,0e0,x ;@) -

and g3s Gpsee-s9, are n absolute inva;iénts of the group

of transformations (B.0l) which togather with Ny nz,;..,nm_l
form a set of (m + n - 1) functionally independent absolute
invariants of group (B.Oi) such that (B.03) is satisfied.

1

Assuming that Fj gC” , by Implicit Function Theorem,

yj can be expressed as

’ I
Y§TY Wy e ¥ Gy reeeaGy) = Y500 e Xy Fraee s F)

in some neighbourhood of the point (xl,...,xm). -
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. . We now state the principal theorem of Morgan's (1952)
approach. The gignificance of fhis theorem is.that it gives
tvonditions under which tbé number of independent variables
in a partial differential egquation can be reduced by one in
the process of obtaining invariant solutions.

Theorem 2: If each of the differentia} forms ¢j in the
system (B.12) of partial differential equations is conformally
jnvariant under the kth-enlargement of the group JJ given by
(B'Olk' then the invariant solutions of (B.1l2) can be
expressed in terms of.the solutions of a new system 6f
partial differential eguations

a%F 3%F

. L n, _
¢j(nl,...,nm_l, Fl"':'Fn""’ Tre e Yy =0 (B.15)

3Ny LRI}

+

in (m - 1) independent variableSinl,...,nm_l.
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