
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2011

A Distributed Task Management Solution for Peer-
To-Peer and Cloud Environments
Lichun Zhu
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Zhu, Lichun, "A Distributed Task Management Solution for Peer-To-Peer and Cloud Environments" (2011). Electronic Theses and
Dissertations. Paper 106.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/72776752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/106?utm_source=scholar.uwindsor.ca%2Fetd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Distributed Task Management Solution
for Peer-To-Peer and Cloud Environments

by

Lichun Zhu

A Thesis
Submitted to the Faculty of Graduate Studies

through Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2011

© 2011 Lichun Zhu

A Distributed Task Management Solution

for Peer-To-Peer and Cloud Environments

by

Lichun Zhu

APPROVED BY:

__
Dr. Gokul Bhandari

Odette School of Business

__
Dr. Jianguo Lu

School of Computer Science

__
Dr. Christie Ezeife, Co-supervisor

School of Computer Science

__
Dr. Robert Kent, Advisor

School of Computer Science

__
Dr. Joan Morrissey, Chair of Defense

School of Computer Science

September 28, 2011

 iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis

has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or

otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I

have obtained a written permission from the copyright owner(s) to include such

material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

 iv

ABSTRACT

In this thesis we introduced the Lightweight Coordination Calculus based logic

programming approach to the programming models of the Platform-as-a-Service cloud.

By using this approach, PaaS based cloud systems will enable cloud application

developers to have more options to implement various kinds of programming models for

their distributed tasks. We built a prototype framework based on OpenKnowledge

middleware because the OpenKnowledge currently is the only framework that fully

supports the LCC based programming model. By adding task control and administrative

features such as automated task initiation, task status querying, task termination and

input/output message channel, we extended the original usage of the OpenKnowledge

framework and made it capable of being used to construct PaaS cloud systems. The

automation level of the transformed OpenKnowledge framework is improved and its

original advantages are retained simultaneously. All of our work reveals the underlying

mechanism of the next generation Platform-as-a-Service cloud system which supports

logic programming.

v

DEDICATION

The thesis is dedicated to

 those who enlightened me,

and to those who supported me.

vi

ACKNOWLEDGEMENTS

First, I owe my deepest gratitude to my supervisor, Dr. Robert Kent, who guided me

as I stepped into the fantastic domain of distributed computation, and provided great

patience, encouragement, guidance and support of my exploration. Without his help

during a time of handicap, it would have been impossible for me to find a proper thesis

topic and proceed in the correct direction.

Besides my supervisor, I would like to thank the rest of my thesis committee: my co-

supervisor, Dr. Christie Ezeife, Dr. Jianguo Lu, and Dr. Gokul Bhandari, for their

encouragement, insightful comments, and hard questions.

I thank my fellow classmates of the School of Computer Science department: Paul

Preney, Lihua Duan, and Xin Wu, for the broad and stimulating discussions of emerging

state of art technologies and theories. In particular, I am grateful to Xin Wu for

enlightening me with the first glance of a feasible path.

I would like to thank my family: my mother-in-law Yuguang Zhong, my wife

Lingru Li and other parents on both sides, for the encouragement and support both

spiritually and physically during these busy days and nights. Last, I would send my deep

regret to my daughter, Caroline, for my losing a lot of time to fulfill my responsibility as

a father.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ABSTRACT .. iv

DEDICATION ..v

ACKNOWLEDGEMENTS .. vi

LIST OF TABLES ...x

LIST OF FIGURES ... xi

1. INTRODUCTION... 1

2. BACKGROUND STUDY ... 4

2.1 Contemporary PaaS Cloud ..4

2.1.1 INTRODUCTION OF PAAS CLOUD .. 4

2.1.2 LIMITATION STATEMENT .. 5

2.2 LCC and OpenKnowledge Framework ...5

2.2.1 INTRODUCTION OF LIGHT WEIGHT COORDINATION CALCULUS
BASED MODELING TECHNOLOGY.. 5

2.2.2 TASK MANAGEMENT AND COORDINATION SUPPORTED BY OK
FRAMEWORK .. 7

2.2.3 LIMITATION STATEMENT OF EXISTING OK FRAMEWORK 8

2.3 Summary and Statement of Research Objectives ...9

2.4 Related Work ..10

2.4.1 IN THE DOMAIN OF CLOUD COMPUTATION 10

2.4.2 IN THE DOMAIN OF AGENT SYSTEMS ... 11

2.4.3 IN THE DOMAIN OF GRID AND P2P .. 12

2.4.4 SUMMARY .. 13

2.5 Contribution ..13

3. OPENKNOWLEDGE SYSTEM ARCHITECTURE AND
COORDINATION PROTOCOL ANALYSIS ... 16

3.1 Lifecycle of an Interaction ..18

viii

3.2 Issues for Enhancing and Extending ...25

4. FORMALIZATION ... 28

5. DESIGN AND IMPLEMENTAION ... 30

5.1 System Architecture ..30

5.2 Design of Task Description Data Structure ..31

5.3 Design of GP ...33

5.4 Extension made to the OKManager ..40

5.5 Enhancements to the Role Allocation Procedure ..41

5.6 Enhancements to the Interaction Complete Procedure41

6. EXPERIMENTAL APPROACH AND RESULTS ... 43

6.1 Experimental Environment Usage ..43

6.1.1 START THE ENVIRONMENT ... 43

6.1.2 SUBMIT A TASK .. 47

6.1.3 AUTOMATED TASK ENROLMENTS AND SHOW TASK STATUS 48

6.1.4 TERMINATE A TASK .. 51

6.1.5 USER I/O MESSAGE CHANNEL VIA THE MESSAGECLIENT API 51

6.1.6 INVOKE A CHILD TASK WITHIN A RUNNING TASK 52

6.2 Performance Analysis ...54

6.2.1 PERFORMANCE ANALYSIS VIA REAL TESTING ENVIRONMENT ... 55

6.2.2 PERFORMANCE ANALYSIS VIA SIMULATION..................................... 57

6.2.3 SIMULATION OF SEQUENTIAL TASK PROCESSING 58

6.2.4 SIMULATION OF CONCURRENT TASK PROCESSING 60

6.3 Concerns about Dead Locks ...65

7. CONCLUSIONS AND FUTURE WORK .. 66

7.1 Conclusions ...66

7.2 Future Work ..68

REFERENCES ...70

APPENDICES ..74

ix

A1. MAJOR ADMINISTRATIVE RELATED METHODS OF EXTENDED
OKMANAGER AND OKMANAGERIMPL ... 74

A2. NEWLY ADDED MESSAGE TYPES ... 78

A3. TEST DATA COLLECTED FROM REAL EXPERIMENTS 80

A4. SOURCE CODE AND EXPERIMENT DATA DOWNLOAD 81

A5. LCC SPECIFICATION AND EXAMPLE ... 82

A6. OPENKNOWLEDGE COMPONENT EXAMPLE... 85

VITA AUCTORIS ...88

x

LIST OF TABLES

TABLE 1. COMPARISON OF TASK MANAGEMENT MECHANISMS. ... 13

TABLE 2. TASKDESCRIPTION RELATED OPERATIONS .. 33

TABLE 3. MAJOR METHODS OF TASKMANAGERHELPER .. 35

TABLE 4. MAJOR METHODS OF MESSAGECLIENT AND MESSAGECLIENTIMPL 38

TABLE 5. TESTING ENVIRONMENT ... 43

TABLE 6. SOURCE CODE TREE OF THE EXTENDED OK FRAMEWORK 44

TABLE 7. MAJOR ADMINISTRATIVE RELATED METHODS OF OKMANAGER AND

OKMANAGERIMPL .. 77

TABLE 8. NEWLY ADDED MESSAGE TYPES FOR TASK MANAGEMENT PURPOSE 79

TABLE 9. TEST DATA COLLECTED FROM REAL EX EXPERIMENTS .. 80

TABLE 10. DESCRIPTION OF FILES AND TRANSCRIPTS .. 81

xi

LIST OF FIGURES

FIGURE 1. OK SYSTEM COMPONENTS AND THEIR RELATIONSHIPS 16

FIGURE 2. LIFE CYCLE OF OK SYSTEM ... 19

FIGURE 3. [UML] SEQUENCE DIAGRAM FOR PUBLISHING AN INTERACTION MODEL 20

FIGURE 4. UML SEQUENCE DIAGRAM FOR SEARCHING IM AND ROLE SUBSCRIPTION 21

FIGURE 5. UML SEQUENCE DIAGRAM FOR INITIATING AN INTERACTION 22

FIGURE 6. UML SEQUENCE DIAGRAM FOR CHOOSING PARTNERS AND ALLOCATING ROLES23

FIGURE 7. UML SEQUENCE DIAGRAM FOR STARTING AND TERMINATION OF AN

INTERACTION ... 25

FIGURE 8. LOGICAL ARCHITECTURE OF THE PROTOTYPE TASK MANAGER 31

FIGURE 9. UML CLASS DIAGRAM OF TASKDESCRIPTION .. 32

FIGURE 10. UML CLASS DIAGRAM OF GP ... 33

FIGURE 11. UML SEQUENCE DIAGRAM FOR I/O REQUEST BETWEEN OKC INSTANCE AND

TASK MANAGER ... 39

FIGURE 12. UML SEQUENCE DIAGRAM FOR I/O REQUEST RELAY BETWEEN OKC INSTANCES

OF PARENT TASK AND CHILD TASK ... 40

FIGURE 13. UPDATED UML SEQUENCE DIAGRAM FOR CHOOSING PARTNERS AND

ALLOCATING ROLES ... 41

FIGURE 14. UPDATED UML SEQUENCE DIAGRAM FOR THE TASK COMPLETING PROCESS ... 42

FIGURE 15. INITIAL RUNNING ENVIRONMENT OF GP1 ... 45

FIGURE 16. IP AND PORT ALLOCATION OF INITIAL RUNNING ENVIRONMENT 46

FIGURE 17. INITIAL RUNNING ENVIRONMENT OF GP2 ... 46

FIGURE 18. SCREEN SHOT AFTER TASK “HELLO WORLD” IS SUBMITTED (GP2) 48

xii

FIGURE 19. SCREEN SHOT AFTER TASK “HELLO WORLD” IS SUBMITTED (GP1) 49

FIGURE 20. SCREEN SHOT OF HOW ORIGINAL OK WORKS WITH THE “DINING PHILOSOPHER”

EXAMPLE. ... 50

FIGURE 21. SCREEN SHOT AFTER TASK “HELLO WORLD” INVOKED CHILD TASK “D INING

PHILOSOPHERS” (GP1) ... 53

FIGURE 22. SCREEN SHOT AFTER TASK “HELLO WORLD” INVOKED CHILD TASK “D INING

PHILOSOPHERS” (GP2) ... 54

FIGURE 23. RESPONSE TIME WITH FIXED NUMBER OF PEERS AND CHANGING NUMBER OF

ROLES. 58

FIGURE 24. RESPONSE TIME WITH FIXED NUMBER OF ROLES AND CHANGING NUMBER OF

PEERS. .. 59

FIGURE 25. p

r

M N

L N

⋅
⋅

RATIO VS. THE THROUGHPUT.. ... 61

FIGURE 26. EXPANDED VIEW OF FIGURE 25, WHICH SHOWS THAT THE THROUGHPUT HAS AN

UPPER LIMIT ... 62

FIGURE 27. TASK SUBMISSION SPEED/THROUGHPUT RATIO V/TP VS. AVERAGE RESPONSE

TIME T OF ALL DATA SERIES WITH UPPER BOUND AND LOWER BOUND ENVELOPE. 64

FIGURE 28. EXPONENTIAL REGRESSION FUNCTION OF AVERAGE RESPONSE TIME T BASED ON

FIGURE 27 .. 65

1

1. INTRODUCTION

In recent years, a new service model called Cloud computing [Buyya et al

2009][Zhang et al 2010] has gained considerable interest and undergone rapid

development. Within this service model, resources such as CPU and storage capacity are

provided as general utilities that can be leased and released by users through the internet

in an on-demand fashion. From the perspective of users, the cloud is a kind of virtual

sandbox that hides the complexity of management details of internal distributed resources

and provide services at different levels: from the infrastructure level, which offers virtual

machine service; to the platform level, which offers operating systems and application

framework service; and to the application level, which offers specific software utility to

end users. In this thesis, we focus on the platform layer service, also called Platform-as-a-

Service (PaaS), which offers the service of a computation platform that enables

application developers to submit and manage their own distributed tasks to the cloud.

There are many tools and frameworks at this level that have emerged to support

distributed data storage and access and software programming. Through a literature

review we found that, compared to the advances made in data storage and access

measures, progress towards more effective support for programming methodologies

offered by existing PaaS frameworks are relatively limited. Due to the distributed nature

that cloud computing has, we focus our attention to the concurrent system modeling

techniques.

In 2005, Robertson et al presented a new modeling technique that is called the Light

Weight Coordination Calculus (LCC) [Robertson 2005]. They also presented a

middleware framework called OpenKnowledge [PA et al 2007] that provides application

2

developers a flexible way to define complex programming models using LCC and also

provides basic support to deploy and execute such applications in a peer-to-peer based

overlay network.

We conducted research on exploring how to introduce LCC based concurrent system

modeling techniques to the domain of PaaS cloud computation by studying the

underlying working mechanism of OK, and found that one major obstacle is its lack of a

sophisticated management infrastructure that automates the task deployment, launch of

interactions as well as the monitor and task control functionality after the distributed task

is launched.

In this thesis, we constructed a task manager prototype framework by providing two

extensions to the OK framework to make it cloud ready. First, we extended the OK

framework’s computation model from the “submit-manual select–subscribe–allocation-

run” model to the “submit-proactive select–subscribe–allocation-run” model by

introducing a new type of peer (GP) that has the intelligence of detecting and

participating newly submitted tasks proactively. Second, we enhanced the task

management functionality of the OK framework by adding a task control console to the

peer so that user can monitor the execution status of the distributed task and provide

intervention to the execution process.

The significance of our research lies on:

1. To the best of our knowledge, we believe that we are the first to introduce formal

concurrent system based modeling techniques (specifically LCC) to the domain

of cloud computation. It is expected that cloud application developers will

3

benefit from more selections enabled to design their applications and have more

controls on the distributed resources.

2. We provided partial solutions to management and coordination challenges

encountered during the construction of the prototype framework. The method

we used to solve the challenges can be contributed to the design of the future

generation cloud infrastructure that supports above computation models.

3. The open source OK framework coupled with the extensions and modifications

presented in our work can be used to support and conduct further research, and

we provided a benchmark for comparison against future improvements.

The impact of this work is expected to change how the applications are constructed

to utilize clouds. This will be achieved using the new features developed in this thesis

that support more complex coordination and negotiation protocols.

The rest of the thesis is organized in this way: Section 2 presents the background

study. Section 3 analyzes lifecycle of OK framework and proposes our enhancements and

extensions to the framework. Section 4 presents formalization of the task management

model we extended. Section 5 presents the detailed design and implementation of our

approach. Section 6 demonstrates our experimental approaches and result analysis.

Finally, in section 7, we present our conclusions and some opportunities for future work.

4

2. BACKGROUND STUDY

2.1 Contemporary PaaS Cloud

2.1.1 Introduction of PaaS Cloud

According to [Zhang et al 2010], Cloud computing is a model for enabling

convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider interaction.

From above definition and the study of how existing cloud system works, it demonstrates

that two important requirements that cloud management system should solve are the

dynamically provision of resources for tasks and how Service-Level-Agreement

established via negotiation [Buyya et al 2009]. Cloud computation works at three

different layers, infrastructure, platform and application. At the level of platform, the

computation model delivers a computing platform and/or solution stack as a service, i.e.

providing platform layer resources, including operating system support and software

development frameworks, which is called Platform-as-a-Service (PaaS). Typical PaaS

providers include Google App Engine [Google App Engine], Aneka system [Chu et al

2007], Apache HaDoop [HADOOP Project] and Microsoft Windows Azure [Windows

Azure].

From the aspect of software development, two factors of major concerns are how

data is stored and accessed, and how to design and express a distributed computation

within cloud. At the data storage layer, PaaS clouds provide technologies such as

distributed file system [Google GFS][HDFS] to provide persistent and durable storage for

applications in the cloud. As to how to express a distributed computation within cloud,

5

the Aneka system [Chu et al 2007] SDK enlisted three programming models that are

adopted as standards in all other PaaS cloud SDKs:

 Task Programming Model: In this model, a distributed application is a

collection of independent tasks. The system does not enforce any execution order or

sequencing but these operations have to be completely managed by the developer on the

client application if needed.

 Thread Programming Model: This model provides fundamental component for

building distributed applications based on the concept of distributed thread. It allows

developers to have finer controls to a single thread.

 MapReduce Programming Model: MapReduce [Dean and Ghemawat 2008] is a

widely used programming model in PaaS cloud. It provides a standard mechanism to split

task into partitions, map them to the worker nodes in the cloud, and then aggregate or

reduce the computation result and present it to the end user.

2.1.2 Limitation Statement

Compared to the data storage service methods, the programming models offered by

PaaS that developer can choose are still limited. For applications that have complex

interacting role relationships, currently there is little way of defining such interaction

model at abstract level. This situation gave us the motivation to introduce LCC based

interaction model into PaaS.

2.2 LCC and OpenKnowledge Framework

2.2.1 Introduction of Light Weight Coordination Calculus based modeling technology

[Robertson 2005] defines the notion and syntax of the Light Weight Coordination

Calculus (LCC), and explains how to use LCC to define the message exchange protocol

6

among different roles scattered over a p2p network. One can refer to Appendix A5 for

detailed specification and example. In the rest of the thesis, we use term “protocol” to

represent the interaction model defined using LCC, and use “OK” to represent the

OpenKnowledge framework.

The LCC based modeling originates from process calculi [Milner et al 1992], Actor

model [Agha 1986] and the study of role & social norm based multiple-agent systems

[Robertson 2005]. Although LCC is used to describe behaviour of agents in multiple-

agent systems, it has been proven through our work to also possess significant power to

deal with other domain of applications.

From the aspect of business process standards, there exist two methods of automated

arrangement, coordination, and management of complex computer systems, one is

orchestration, and the other one is choreography [Peltz 2003].

Characterized by workflow specifications like BPEL [OASIS-BPEL 2007],

orchestration is a kind of collaboration, which focuses on a common goal and has a

central coordinator that controls the involved participants and coordinates the execution

of their different operations. The involved participants do not need to have the knowledge

about their position in a higher business process. Only the central coordinator of the

orchestration knows this, so the orchestration is centralized with explicit definitions of

operations and the order of invocation of the participants.

On the other hand, choreography such as [W3C-WS-CDL 2004] is a collaborative

effort focused on a common goal, but there is no central coordinator (at least logically).

Each participant involved in the collaboration effort knows exactly when to execute its

operations and whom to interact with.

7

The LCC automatically falls to the choreography category based on its specification.

Compared with orchestration based collaboration, choreography possesses the advantages

like:

� Fully decentralized nature make it suitable for distributed environment with p2p

based fabric,

� Easier to achieve load balance and avoid single point of failure.

However, the decentralized nature of choreography also adds the difficulty to implement

this collaboration pattern.

2.2.2 Task management and coordination supported by OK Framework

The OK framework is a middleware that is designed to support deploy, launching

and interpreting distributed tasks with interaction model defined in LCC. Taking the

advantage of a modeling language LCC that can be used to define the interaction model

at abstract level, OK hides the underlying message relay operation to the application

developer and provides a nice and neat way for developers to focus their effort on

defining: the role of peers, the business logic of each role (implemented as class library

called OKC or OpenKnowledge Components) and the way peer interact each other. The

standard routine of running a task is (For detailed task lifecycle explanation at API level

please refer section 3.1):

1. User publish the interaction model defined in LCC and necessary supportive code

defined as OKC package (see Appendix A6 for example),

2. Distributed participants subscribe to the roles of the published interaction model

and download the code needed,

3. The OK middleware selects from the subscribers and initiates the task runtime

8

environment, then handles the control of the task to a selected component called

Coordinator,

4. The Coordinator interprets the LCC and controls the message1 exchange with all

selected role participants.

2.2.3 Limitation Statement of existing OK framework

By comparing OK’s standard routine of running a task to the internal requirements of

PaaS as mentioned in Section 2.1.1, which are dynamically provision of resources for

tasks and Service-Level-Agreements established via negotiation. One can see that the OK

framework already provides the provision and negotiation mechanism to some extent,

which established a base for integrating OK middleware into the infrastructure of PaaS

cloud. However, existing OK framework still have limitations that hinders this

integration:

Limitation one: limited management supports.

Existing OK framework only offers a small management interface. However, it can

only satisfy the management requirements on a single peer. Other than this, existing OK

framework does not offer task management supports for users to control and monitor the

status of their submitted tasks as well the communication mechanisms between the task

manager and its running task, or between one task and another.

Limitation two: the role subscription (step 2 in section 3.1) of current

implementation of OK is not automated.

1 One thing need to be noted is that the term “message” mentioned from here on is different to the message
mentioned in section 2.2.1. Due of the implementation method as described in later section 3.1, the LCC
“message” defined in section 2.2.1 is virtual message that is semantically meaningful within the scope of
coordinator’s LCC interpreter itself. The “message” mentioned from here on is actual structured data
packages that are relayed between peer endpoints.

9

Limitation three: the coordination method (step 4 in section 3.1) of current

implementation of OK is based on centralized model. The distributed coordination

mechanisms depicted in [Robertson 2005] are not realized in existing implementation.

The centralized coordination model will increase the network traffic and make the

coordinator component itself a single point of failure.

2.3 Summary and Statement of Research Objectives

In section 2.1, we analyzed the limitations of the programming models that current

PaaS cloud supports, which reveals the significance of enriching cloud programming

models using other programming methodologies such as logic programming in the

concurrent systems realm. Based on our further analysis in Section 2.2, we found that

LCC based logic programming approach is an ideal candidate for PaaS clouds because of

its choreography based nature. The underlying design of the OK framework that supports

the deployment and runtime management of LCC based tasks already provides some

extent of provision and negotiation mechanism that PaaS cloud system requires. This also

makes it worthwhile to integrate OK into the PaaS cloud infrastructure. However, major

obstacles exist to achieve this integration. We summarized three limitations in section

2.2.3 that reveals our objective in this integration.

Statement of Research Objectives:

The objective of our work is to demonstrate that the LCC based logic programming

approach, and its entire set of supportive mechanisms provided by OK framework, can be

integrated into the infrastructure of the cloud platform, through enhancing the provision

and negotiation mechanism of existing OK framework and extending its task

management functionality.

10

 In this thesis research, our practical goal is to construct a prototype system that

provides for proving the concepts and establishing benchmarks of behaviour, while also

serving as a foundation platform for future research. We focused on solving the first two

limitations in section 2.2.3, namely enhancement of the management capabilities and

interface, and automation of role subscription. For limitation three, that deals with the

low efficiency problem of the centralized coordination mechanism, since it does not

affect the runnability of the system we leave it as one major problem to be solved in

future optimization research.

2.4 Related Work

We surveyed task management solutions provided by distributed computation

systems from different domains. Our goal is to evaluate their pros and cons, and examine

if they have unique characteristics that can be referred to and provide comparison in the

future evolution of our solution.

2.4.1 In the domain of Cloud computation

Related work includes the Aneka system [Chu et al 2007]. As the producer

Manjrasoft Ltd. mentioned [Chu et al 2007], Aneka is a platform for deploying clouds

developing applications on top of it. It provides a runtime environment and a set of APIs

that allow developers to build .NET applications that leverage their computation on either

public or private clouds. Like OK, it is a middleware that provides a set of APIs that

support developers to build their own applications. We find that several of its components

have correspondences in OK system. The Aneka Scheduler is actually performing the

role that the OK Coordinator does, and the Aneka Executor is doing OKManager

functionality (which will be further explained in section 3). The major advantage of

11

Aneka is that it provides a complete mechanism for security, management functions like

task monitoring and accounting, while the major weak point of Aneka is its lack of

methods to describe complex coordination between work units running on different

Executors at abstract level like LCC to OK.

Another related work is the Apache HaDoop [HADOOP Project], which is an open

source software library that allows for the distributed processing of large data sets across

clusters of computation and data storage nodes using a simple programming model. This

project is widely used in PaaS based Google applications. The Cloudera Enterprise offers

a collection of administrative tools to enhance the HaDoop’s functionality from the

aspect of Authorization Management & Provisioning, Resource Management and

Integration Configuration & Monitoring. The major limitation of HaDoop is it only

supports the MapReduce [Dean and Ghemawat 2008] model for its distributed

computation.

2.4.2 In the domain of Agent systems

A related work in the domain of Agent systems is the JADE (Java Agent

DEvelopment Framework) [Bellifemine et al 2001]. The JADE framework is running on

top of one or many containers (including one main container, additional containers are

registered to the main container). In each container can register one or many agents and

each agent has a collection of behaviours that defines the agent’s task. The main

container has two special agents, one is Agent Management System that provides

administration and monitor service, another one is Directory Facilitator that provides

search and index service. Although JADE provides a management mechanism, like

Aneka, one major weak point is that it still does not provide a way to enable user define

12

the interaction model in an abstract manner. User will have to implement their interaction

model through implementing different behaviours and message relay protocols at low

level. A later work based on JADE is WADE (Workflows and Agents Development

Environment) [Caire et al 2008], which provides the support of defining, deploying,

executing and fault management of workflow tasks over a network composted of JADE

nodes. However, the workflow is expressed at Java class level and it is user’s

responsibility to deploy the activities to different agents.

2.4.3 In the domain of Grid and p2p

Related work on distributed task management on peer-to-peer network can be seen

on [Yan et al 2005] and [Yan et al 2006], which introduced the p2p-based decentralized

workflow management system, known as SwinDeW. This system combines grid (based

on GT4) and p2p (based on Sun JXTA) technologies and simulates the enactment of

business processes in a decentralized manner. Similar to the way that OK allocates roles

to subscribed peers, SwinDeW assigns activities called processes to suitable peers. As

workflow execution is coordinated by distributed peers, management and monitoring of

workflow execution becomes more difficult. To handle the management task, SwinDeW

implements a special, but centralized management peer that communicates with ordinary

peers directly to obtain the related information. Compared with other related works, the

stated workflow management mechanism provided by SwinDeW is comparatively more

complete. What we want to explore is to construct a management mechanism over a fully

decentralized p2p network, while it still retains all the management mechanism provided

by SwinDeW, and provide support for LCC based tasks.

13

2.4.4 Summary

In Table 1, we compare the aforementioned three related works with the current

OK framework and our proposed OK framework with task management extension. From

the table, we state once again that our goal is to enable the OK based collaborate network

with enhanced process management, automated process deployment and process

enactment along with the full advantage of LCC based interaction model definition. The

features listed under the proposed OK with task manager column can be viewed as a wish

list that needs to be implemented in our work.

 Current
OK

Aneka PaaS
Cloud /
HaDoop

JADE SwinDeW Proposed OK
with Task
Manager

Scope of
manageability

Local Whole
network

Whole network Whole network Whole
network

Formal
definition of
Interaction
Model

LCC at
abstract
level

No Through WADE
–
workflow builder
at instance level

XML process
definition
language

LCC at
abstract level

Role
distribution

Manual Work units
distributed
automatically

Agents distributed
manually

Activities
distributed
automatically

Automatic

Peer selection
and process
enactment

Automatic Manual Manual Automatic Automatic

Show task
running status
and Intervene
the task process

No Yes, through
Management
Studio / web

Yes, through
Remote
Management
Agent

Yes, through
monitoring and
administration
service

Yes

Decentralized
management

Yes (weak) No No No Yes

Table 1. Comparison of task management mechanisms.

2.5 Contribution

We list two contributions of our work:

1. Proposed a new concept of introducing LCC based logic programming approach

into the programming models of the PaaS cloud in order to enable cloud

14

application developers to have more options to implement various kinds of

programming models for their distributed tasks,

2. Built a prototype framework that proves this concept is feasible and serve as a

platform to support future research.

Based on the objective stated in section 2.3, in the prototype of the extended OK

framework, the working scenario is a pool of peers with computation resources for

generic purposes (GP) cooperate each other. To ensure the prototype is runnable and

meets the PaaS cloud requirement of integration, we summarized a minimal set of

features need to be implemented listed as follows:

� Dynamic join of peers: new GP can join the network dynamically.

� Fully decentralized management pattern. Each GP can act as a management

console, which greatly lowers the management burden of the whole system.

� User interface: each GP has a management console that can accept and execute

users’ input, including task submit, show task status, and terminate a task.

� Task detection: each GP routinely checks from the Discovery Service for pending

tasks, decides if it has enough resources to participate the role of the task, and

subscribe to the selected role.

� Input/output channel: redirect the input/output requests of roles on distributed

peers back to the management console or the parent task.

In [Robertson 2004], the author proposed a broker model as shown as below (5), (6)

that act as an extension of LCC. In this model, a client role can request the broker role to

send the whole protocol of a task and then initiate and continue as the received protocol.

In this way, a client peer can acquire knowledge from a broker peer and then act to

15

complete a specific task. No further achievements have been found be done in this

direction. In our experimental work, we realize a scenario that can be seen as one step

toward this direction. Instead of transfer a whole protocol, a task managed by our

prototype task manager can invoke a child task that uses a newly published or existing

interaction model. The child task can communicate with is parent task and further interact

with the end user at the management console via the above mentioned input/output

channel.

 (5)

(6)

In the following sections we will analyze how the OK framework works at

underlying level and we will demonstrate how to extend the framework to make it

capable to manage distributed collaborating partners.

16

3. OPENKNOWLEDGE SYSTEM ARCHITECTURE AND
COORDINATION PROTOCOL ANALYSIS

As shown in Figure 1, the architecture of the OK system includes many modules

which we discuss individually in the following [PA et al 2007]:

Figure 1. OK system components and their relationships

� Interaction Model (IM)

 The IM is a piece of script written in the LCC language which defines how

multiple roles collaborate between each other to complete a task. It can be published

to the p2p network and can be found by OK peers.

� OpenKnowledge Component (OKC)

The OKC is a class library that implements the service provided by the roles.

From the perspective of LCC language, it implements the functionality of

17

constraints. It is mobile and can be published to the Discovery Service (DS). Peers

that want to act as specific roles can find and download proper OKC libraries the DS,

and use it to support its business functionality upon interaction initiated.

� OK Manager - OKManager

The OKManager is the class module that controls all other OK peer modules.

Its functions include creating OKC instance from an OKC, delegating constraints

received from coordinators to appropriate OKC instance, delegating all the

publishing, subscription and search actions.

� Coordinator

The Coordinator is the component dynamically allocated to a peer that interprets

the IMs and coordinates the communication with each OKC Instances.

� OKC Instance – InteractionRunContext

The component generated after the peer is accepted to play as a specific role in

an IM, which contains the pointers to the OKCs needed for solving all the

constraints in a specific run of an interaction. It interacts with Coordinator to

complete the interaction.

� Discovery & Storage Service (DS)

The DS provides persistent storage for published IMs and OKCs and dynamic

storage to their descriptive information. It also stores other information such as

available coordinators, roles for published IMs, subscribed candidates for roles etc.

Currently it is constructed based on Pastry [Rowstron and Druschel 2001] based p2p

framework.

� Interpreter

18

The interpreter is a LCC parser that interprets the IM by transforming it into a

parse tree. It determines which role is acting, which message is to be sent by

expanding, traversing and closing branches of the tree. It also interacts with OKC

instances to collect results of constraints to determine how to traverse the tree.

Like other peer-to-peer or agent based systems, the OK interaction is completed

based on message exchange. The basic component of an OK network that can listen to

and handle the received message must implement the Endpoint interface. Each Endpoint

has a unique URI called EndpointID. Many above mentioned components including OK

Manager, Coordinator, OKC Instance and DS etc are derived from the Endpoint that are

designated to handle specifically kinds of messages based on their functionality. The

module at transport layer that support the message exchange is called Communication

Layer.

From Figure 1 one can also see that the manager (OKManager) is the class module

that controls all the other modular components in a peer.

3.1 Lifecycle of an Interaction

Figure 2 depicts our in-depth analysis about how the whole OK framework works

based on the life cycle of an interaction. The lifecycle of an interaction contains eight

steps, plus one initial step when a peer joins the network.

19

Figure 2. Life cycle of OK system

� Step 0: Peer Joins To The Network

This action is taken place between OKManager and DS. Whenever a peer joins the

OK network, it can choose whether it can be dynamically selected to act as the

Coordinator. If it chooses to behave like a Coordinator, it will send the

RequestSubscribAsCoordinator message to the DS to register itself as a candidate of the

Coordinator.

� Step 1: Publish An Interaction Model

As shown in Figure 3, the IM publishing action takes place between OKManager and

DS when a peer in the network decides to publish a new Interaction Model to the network.

The OKManager of the peer that wants to publish the IM sends a

RequestPublishIMMessage to DS. The DS publishes this IM to the p2p network, and

provides persistent storage to the published IM. Each published IM will be assigned with

a unique Interaction Model ID.

20

OKManager DSCommunication Layer

PublishIM through
DiscoveryProxy.PublishIM RequestPublishIMMessage handlePublishIM

create PublishIMHandler,
insert descriptor to FreePastry network,
persistant storage of LCC

ResultPublishMessage

handleResultPublishMessage()
invoke callback registered in
a list called PublishCallbacks

Figure 3. [UML] Sequence diagram for publishing an interaction model

� Step 2: Search IM and Subscribe To Interaction

After an IM is published, it is discoverable to all the peers in the network. The peer

can inquiry a published IM by search its name. The DS will return the Interaction Model

ID, descriptive information and all the roles it has. Then the peer can decide which role it

can participate. Upon it decides which role to participate; it uses the sequence described

in Figure 4 to subscribe to the role. This interaction is taken place between OKManager

and DS.

21

OKManager DSCommunication Layer

SubscribeToRole:

SubscriptionNegotiator for
peer selection
SubscriptionSpec for
details of the subscription
invoke
DiscoveryProxy.SubscribeToRole

RequestSubscribeToRoleMessage

handleSubscriptionToRole

create SubscriptionToRoleHandler,
insert subscription descriptor
to FreePastry network,

Subscription details are managed
by RoleSubscriptionManager

DiscoveryResultMessage

handleResultSubscribeMessage()
invoke callback registered in
a list called SubscribeCallbacks

RequestIMMessage

ResultSearchIMMessage

searchIM()
handleRequestIM

create IMQueryHandler,
query from FreePastry
 - getRemoteAsynchronous()
handleAnswer()

handleResultIMMessage
SearchIMCallback.handleNewIms

Figure 4. UML Sequence diagram for searching IM and role subscription

When the OKManager of a peer decides to subscribe itself to a role of an IM, it

invokes its SubscribeToRole member function. Inside this function, an instance of

SubscriptionSpec class is created along with a SubscriptNegotiator instance, which is

later used for peer selection. The SubscriptionSpec instance contains all the subscription

information and is sent via the RequestSubscribeToRoleMessage to the DS. The

subscription information is then made discoverable and is managed by the

RoleSubscriptionManager.

� Step 3: Initiate The Interaction – Choose the Coordinator

As mentioned above, the roles of an IM can be subscribed by different peers over the

network. All the subscription information is maintained by the RoleSubscriptionManager

in the DS. The RoleSubscriptionManager checks if all roles of an IM is subscribed and

the interaction is ready to start. When the interaction is ready to start, it sends a

22

StartInteractionMessage to a selected peer that is registered to be a candidate of the

Coordinator. After the peer that is selected as the Coordinator received this message, it

goes into the bootstrap process (OK uses BootStrapCoordinator to handle the

Coordinator’s bootstrap process).

Figure 5. UML Sequence diagram for initiating an interaction

� Step 4: Choose Partners

This interaction happens between the BootStrapCoordinator and the

SubscriptionNegotiator of subscribed peers via message SelectPeersMessage. It belongs

to the peer election process. The SelectPeersMessage contains the subscription

information of all proposed peers. It is first sent from BootStrapCoordinator to each

SubscriptionNegotiator. The SubscriptionNegotiator of each peer uses its own experience

to select peers it is comfort to interact with using OK provided trust model interface. The

subscription information of selected peers is also packed into a SelectPeersMessage and

is sent back to the BootStrapCoordinator. Each time upon received the

SelectPeersMessage, the BootStrapCoordinator uses haveAllSelectRequestsReplied

function to check if all subscribed peers are replied. If all subscribed peers are replied, it

23

uses the list of agreed peers to find out a mutually compatible team of peers to run the

interaction. And then starts to allocate the roles to the team of peers.

� Step 5: Allocating Roles

The BootStrapCoordinator sends CommittedRequestMessage to selected peers.

When the SubscriptionNegotiator of a selected peer receives the message, it can either

choose to accept the request, which means that it will join the interaction, or choose to

reject the request. If the negotiator selects to accept the request, it will create the runtime

context of the role on the peer as well as the diagnostic module that is used for

monitoring and auditing purpose. The runtime context is also called the OKC instance

that has a new endpoint id. It will be used to interact with the Coordinator during the

BootstrapCoordinator OKMngr/SubscriptionNegotiatorCommunication Layer

agreeTeamWithPeers
 ...
handleAgreedTeam

SelectPeersMessage

Select peersSelectPeersMessage

if haveAllSelectedRequestReplyed
CreateInteractionTeam
 askCommitment
...
handleCommitment
or
handleRejection

CommitmentRequestMessage

based on Accept policy,
either acceptRequest or rejectRequest

if acccept, create OKC instance with type
InteractionRunContext, send new endpoint id
to Coordinator; create Diagnostic module
for auditing and monitoring purposeCommittedMessage or RejectCommitmentMessage

After all SubscriptionNegotiators
have been contacted, invoke
processCommittedList()

create instantiated subscription
list that contains endpoint ids
of OKC instances

invoke Coordinator.coordinate()
method to start interaction

InteractionConfigurationMessage fireSubscriptionAccepted, fire events
to all listeners that the subscription
is accepted and interaction is ready

Figure 6. UML Sequence diagram for choosing partners and allocating roles

interaction (solving constraints requested by Coordinator). A ComittedMessage or a

RejectCommitmentMessage will be sent back to the BootStrapCoordinator after the peer

24

accepts or reject the commitment request. As to the BootStrapCoordinator, after it has

accepted committed message from all the selected roles, it will invoke the Coordinator’s

coordinate member function, which starts the interaction.

� Step 6: Start Interaction

The Coordinator uses LCCIntegreter that is a LL parser generated by [JavaCC] to

interpret the LCC interaction model. By executing the IM, the Coordinator determines

which role is switched to the current role and which constraint is going to be solved.

When the Coordinator needs to resolve a constraint, it sends SolveConstraintMessage to

the InteractionRunContext instance of the peer that is allocated with the specific role. The

constraint is solved remotely and the result is sent back to Coordinator via the

SolveConstraintResponseMessage. From here we can see that the current OK kernel uses

orchestration to handle the interaction at fundamental level. The Coordinator is the one

that actually owns the conversation. Solving the constraint remotely is similar of

invoking web services from service providers. The choreography only happens at abstract

level. A difference of OK based orchestration versus BPEL based orchestration is that the

OK Coordinator is dynamically allocated, which provides room for future improvements

on fault tolerance and load balancing optimization etc.

� Step 7: Interaction Terminate

The Interpreter on the Coordinator determines which role is completed. When all

roles are completed and there is no next role to execute, the interaction goes into the

terminate state and gets into the shutdown process.

� Step 8: Interaction Feedback

25

The shutdown process fires interactionEnded event to all its listeners, which causes

sending InteractionCompletedMessage to InteractionRunContext instances of all

participated peers and fires up the cleanup process on each peer. The

InteractionCompletedMessage also contains the status information on the Coordinator,

hence peers can determine how things going on during the execution of the IM.

Coordinator OKM/InteractionRunContextCommunication Layer

coordinate()

for each role,

 Intepreter.addInstance(OKC,role,args)

Intepreter.StartInteraction

SolveConstraintResponseMessage

invoke subscribed OKC member

functions to solve the constraint

SolveConstraintMessage

InteractionCompletedMessage
Interaction complete

shutdownInteraction

cleanup registrations

handleMessage

Figure 7. UML Sequence diagram for starting and termination of an interaction

� Step 9: Learning From Interactions

This is an optional step. As participated peers can receive abundant information from

Coordinator about the execution of the IM, they can use this information to adjust their

future behaviour autonomously.

3.2 Issues for Enhancing and Extending

Based on the lifecycle analysis of the existing OK framework and the proposed

features mentioned in section 2.5, we proposed two extensions and three enhancements to

the OK framework:

� Introduce the concept of task coupled with a new data structure called

26

TaskDescription to the extended OK framework

A task represents one execution of an interaction model. It uses a

TaskDescription instance to record all of the information of its internal state. Each

TaskDescription has a unique task id. It contains the reference to the interaction

model and the descriptive information of the required collection of OKCs. The

TaskDescription instance retains all the runtime status of the lifecycle of a task from

pending, running to termination. It is publishable and is discoverable by participant

peers.

� Introduce a new component to the framework called Generic Peer (GP)

The GP component acts at the top most layer of a peer in the p2p environment.

At one hand, it provides a management console to handle the end user’s input/output

requirements, which includes a command parser to interpret task submit, task status

query and terminate task commands, and also provides interface for user to provide

input for a participant of running task and display output information of a remote

task participant to the management console. On the other hand, the GP routinely

inspects the DS and tries to find pending tasks in which it can participate potentially.

Upon finding a matching task, the GP selects a role based on its own resources and

subscribes the role to the DS, and let the OK framework to select and execute the

interaction.

� Enhance the task management mechanism to the existing control manager

(OKManager)

The management functionalities of above mentioned GP is supported by an

extended OKManager, which contains an enhanced message relay interface. Certain

27

types of messages for the administrative purpose are added. Detailed message types

are defined in the following categories: task publish, task status query, updating task

status, task termination and inter-task communication.

� Enhancements added to the coordinator allocation procedure (Step 3)

Upon the coordinator of an interaction is selected, The TaskDescription need to

be updated to reflect the allocation of the Coordinator.

� Enhancements added to the role allocation procedure (Step 5)

 Upon a role is allocated to the subscriber of the interaction of a task and the

OKC instance is created, the TaskDescription need to be updated to reflect the

creation of the OKC instance.

28

4. FORMALIZATION

We define the distributed task as

 T = {Tid, pm, Rs, Ps, RP} (7)

Where Tid is the unique identifier of the task, pm is the peer from which the task is

submitted; Rs is the set of roles that the task defined, Rs = {r 1, r2, …, rn}; Ps is the set of

peer variables that represent the peer for the role to run, Ps = {P1, P2, …, Pn }; RP is a

subset of Rs × Ps, which contains a set of tuples like (r1, P1), (r2, P2), that we call agents.

We use T’ to represent the instantiated task, i.e. the task after deployed to the

network that is under running state.

 T’ = {T id, pm, C, Rs, Ps’, RP’} (8)

Where the Tid and pm are same as above, C is the id of the allocated coordinator for

the interaction, Rs is the same set of roles as defined above (We presume each role

contains all the information at implementation level, which is defined by OKC class

library. When a role is deployed to a peer, the OKC is deployed to the same peer

accordingly), Ps’ is the set of peer ids that are allocated to the task. Ps’ = {p 1, p2, …, pn },

we use lower case characters to represent id of actual peers that are constants. RP’ is a

subset of Rs × Ps’ , which contains a set of tuples like (r1, p1), (r2, p2), that we call

instantiated agents.

After a task is submitted from GP running at peer pm, its roles will be automatically

subscribed by a group of listening GPs. The task enrollment is the process of instantiating

Pi ∈ Ps to pi ∈ Ps’ and instantiating (r i, Pi) ∈ RP to (r i, pi) ∈ RP’. The difference

between the original OK framework and the extended OK framework is that to the latter,

the instantiating process is automatic.

29

A role r i of task T can decide whether to redirect user input/output request to the

task’s management console pm or handle the I/O request on local pi, depending on if it

uses provided API to handle the user I/O request. If the role decides to redirect user’s I/O

to the task’s management console, the user I/O request that generated at (r i, pi) ∈RP’ will

be relayed to pm via the extended message interface of OKManager and the management

console at pm will act as an I/O broker to collect input or display output to the end user. If

the task T’ = {T id, pm, C, Rs, Ps’, RP’} is the child task of another task T’0 = {T id0, pm0, C0,

Rs0, Ps0’, RP’0}, when the message of I/O request is relayed to the management console of

T’ at pm, it will be cached in a message queue instead of being processed. The running

instantiated agent (rk, pk) ∈RP’0 that belongs to the parent task can inspect the cached I/O

request and either process the request and send the input back to (r i, pi) ∈RP’, or it can

relay the I/O request to the parent task’s own management console at pm0 hence a chain of

message relay channel is formed and user at the management console of the parent task

can control the execution processes of both the task and its child tasks.

30

5. DESIGN AND IMPLEMENTAION

5.1 System Architecture

The proposed system architecture of the task management system is shown in Figure

8. The entire system contains a collection of Generic Peers. Each peer itself is a Java

application running on the same or different machines.

After a GP is launched, it automatically joins the network. All GPs are running based

on the same code base that enables them either to be a management console or a role

subscription listener. Therefore an end user can submit new tasks and query task runtime

information at the management console of any GP. A GP can subscribe to one or many

roles of one or more tasks, depending on its own capability such as computation power,

resources etc. After it subscribes to the roles, it participates in the interaction lifecycle

depicted in section 3.1. From here on, we call the GP from which task T is submitted as

the task manager of task T, and other GPs that participate with task T as participant GPs

of T.

The whole system is implemented using Java programming language (JDK 1.5 or

above).

31

Figure 8. Logical architecture of the prototype task manager

Below is the detailed design of the task management system.

5.2 Design of Task Description Data Structure

The TaskDescription data structure is used to record the status of a submitted task.

Each TaskDescription instance retains all runtime status of the lifecycle of the task from

pending, running to termination. It is publishable and is discoverable by participant peers.

32

Figure 9. UML Class diagram of TaskDescription

TaskDescription related operations are defined as follows:

Operation Description

Create task The TaskDescription instance is created upon a task is submitted. Upon creation,

the status is initiated as PENDING, and the set of TaskOKC reflects the minimal

set of required OKCs to support the running of the task. At this time, because the

interaction is not started, the Coordinator EndpointID is null, the OKC Instance

EndpointID of each TaskOKC is also null.

Publish task Upon task submission, its search criteria and the EndpointID of the OKManager

are published to DS and are discoverable. The effective TaskDescription instance

is stored at the OKManager from which the task is submitted.

Search task Query the DS by using criteria strings, obtain the OKManager Endpoint from

which the task is submitted, and then query from the OKManager

Update task status During the lifecycle of a task, the TaskDescription instance is always updated to

reflect the current task status:

� The Coordinator EndpointID will be updated when the interaction is

ready to start, with the selected Coordinator’s EndpointID;

� The corresponding TaskOKC’s OKC Instance EndpointID will be

updated when the OKC instance is created.

� The status of the TaskDescription will be changed to RUNNING when

interaction is started.

33

� The status of the TaskDescription will be changed to COMPLETE when

interaction is completed

After the TaskDescription instance is updated, it will be written back to the list of

running task of the OKManager from which the task is submitted. When the task

is completed, the instance will be taken away from the list of running tasks of the

OKManager.

Table 2. TaskDescription related operations

5.3 Design of GP

The Generic Peer is the top level program of the peer application that runs as an

autonomous peer. It contains a group of classes either added to the OK kernel or extended

from the existing classes of the OK kernel. The class diagram of the Generic Peer can be

referred to as Figure 10.

Figure 10. UML Class diagram of GP

34

The myGP class is a new class introduced as the main entrance of the peer

application.

It has two functionalities. The first function is to use a timer to schedule a timer task

that checks the DS regularly in order to find and attempt to participate newly submitted

tasks, by invoking method TaskManagerHelper.selectAndSubscribeRole. The second

function is to use class GPManagerConsole to construct a user interface, interpreting user

submitted administration commands.

In order to make the extended code more manageable, we introduced the

TaskManagerHelper class that provides a group of static functions that are used for task

managements. All these functions provide synchronized interface to their callers. Major

methods include:

Method Description

tmSubmitTask Submit a new task.

Parameters:

mgr – reference to OKManagerImpl instance

taskname – string of task name,

im – string of the interaction model defined in LCC,

okcs[] – array of OKCDescription,

ptid – task id of parent task if has one

Returns:

A TaskDescription instance

tmShowTask Query the task running status and print out.

Parameters:

mgr – reference to OKManagerImpl instance

taskname – string of task name

tmTerminateTask Terminate a task.

Parameters:

mgr – reference to OKManagerImpl instance

tasked – id of the task to be killed

35

force – Boolean value to specify if the kill is a forced kill

selectAndSubscribeRole Inspect a newly submitted task, select proper role and subscribe to the role.

Parameters:

mgr – reference to OKManagerImpl instance

td – the TaskDescription of the task to be inspected

Returns:

A SubscriptionSpec instance – the data structure that records the

subscription of a role

Table 3. Major methods of TaskManagerHelper

The pseudo code for task submission is as follows:

Procedure tmSubmitTask (ManagerPeer, TaskName, IM, OKC[], parentTid)

 returns TaskDescription

Begin

 T := new TaskDescription(generateTaskID(), TaskName);

 T.okmanagerEpid := ManagerPeer.EndPointID;

 Publish IM to DS if IM not published, set T.imid: = id of published IM or existing IM;

 For each okc in OKC[]

 Begin

 Publish okc to DS if okc not published; register okc to T’s TaskOKC list;

 End;

 ManagerPeer.TaskList.add(T); // Register T to local list of submitted tasks

 Publish T to DS;

 Return T;

End

The procedure for display task status is fairly simple, the pseudo code is:

Procedure tmShowTask (ManagerPeer, taskname)

Begin

tset[] := searchTaskFromDS; // get list of published tasks

For each t in tset[]

Begin

TaskDescription tdescr := searchTaskFromOKM(t); // get task detail from task

 // manager

Print(tdescr);

36

End;

End

The pseudo code for task termination is as follows:

Procedure tmTerminateTask (ManagerPeer, taskid, isforce)

Begin

tset[] := searchTaskFromDS; // get list of published tasks

For each t in tset[]

Begin

If t.taskid = tasked Then

Begin

 M := createTaskCompletedMessage(t, force);

 Send M to t’s Coordinator;

 /* Upon received M, the coordinator will perform all the resource release works

 and send InteractionComplete messages to all the participants of the task */

End;

End;

End

The pseudo code for task enrollment is as follows:

Function selectAndSubscribeRole (ManagerPeer, T) returns SubscriptionSpec

Begin

 IM := searchIMFromDS(T.taskname);

Select role to subscribe based on IM’s role semantics and subscription status of

T.TaskOKC[];

OKCDescription okcdes := searchOKCFromDS(selected T.taskOKC);

Download OKC code from DS and save it to local OKC storage;

// Subscribe to the selected role from DS

SubscriptionSpec s := subscribeToRole(selected role, okcdes);

// register endpoint id of the SubscriptionNegotiator of selected role

T.taskOKC.subscriberEPID := s.subscriberEPID;

 Return s;

End;

tset[] := searchTaskFromDS; // get list of published tasks

For each t in tset[]

37

Begin

TaskDescription tdescr := searchTaskFromOKM(t); // get task detail from task manager

SubscriptionSpec s := selectAndSubscribeRole(self.mamager, tdescr);

If sub <> null then

Begin

 // update task subscription information back to task manager

 updateTaskDescriptionToOKM(tdescr, s);

 Register tdescr to local list of participated tasks;

End;

End;

It is possible to consider several algorithms to deal with the role select and

subscription problem. In this thesis we have selected simple algorithm to let participant

GP decide which task and role to subscribe. The GP only considers two factors to decide

the role subscription to ensure that a task can be initiated upon minimal running criteria

has been reached.

� If the maximum number of subscription has reached;

� If the minimal number of requested subscriptions of a role has reached.

More sophisticated selection algorithms that consider load balance and performance

optimization will be introduced in the future versions.

The MessageClient interface and its implementation MessageClientImpl is the client

API that provides synchronized interface for inter-task and task/manager communication.

It contains the following 4 methods:

Method Description

Input Redirect user input request to the task’s management console in order to get

user’s input.

Parameters:

prompt – string to be displayed to the user

38

defaultval – string of default value to be displayed to the user

Returns:

Input string provided by end user

Prompt Redirect output request to the task’s management console.

Parameters:

prompt – string to be displayed to the user

checkChildConsoleIO Called by parent task to contact the management console of child task to get

the next cached I/O request message.

Parameters:

childtsk – TaskDescription of child task

Returns:

Cached RequestConsoleIOMessage message

 answerChildInput Send response to the role of child task peer who sent the I/O request message.

 Parameters:

origReqMsg – original RequestConsoleIOMessage message send by role of

child task

ret – string to be returned

Table 4. Major methods of MessageClient and MessageClientImpl

Figure 11 displays the time sequence of how the Input and Prompt methods work

between an OKC instance of a role and the task’s management console. The Task

manager’s OKManager acts as a server by responding I/O requests sent from OKC

instance of participant GPs.

39

Figure 11. UML Sequence diagram for I/O request between OKC instance and task manager

Figure 12 displays the time sequence of how the checkChildConsoleIO and

answerChildInput methods work between OKC instances of parent task and child task.

The inter-task I/O request process uses simplified producer/consumer design pattern.

Like Figure 11, the participant GP of child task send I/O request via its OKManager to its

task manager’s OKManager. Instead of generating user interface and process the I/O

request, the task manager of child task noticed that the request is sent by a child task and

simply caches the request in its local queue, hence the request will be hold and wait for

the inspection & process request sent from parent task. The OKC instance of a participant

GP that belongs to the parent task can initiate a request to inspect its child task’s I/O

requests. The inspection request is sent to the task manager of child task. The I/O request

is then de-queued and returned to the OKC instance of parent task. One thing to be noted

here is that the result message of the I/O request is sent back directly from the participant

GP of parent task to the participant GP of child task, and the response message

ResultColsoleIOMessage must retain the original request handler information so that the

OKManager of child task’s participant GP can find the matching callback function to

40

Task manager's OKM of
child task

OKM of participated GP
of child task

Communication Layer

RequestConsoleIOMessage

InstanceOKC of child
task

Console I/O request:

MessageClient.Input
MessageClient.Prompt

RequestConsoleIO()

handleResultConsoleIOMessage

OKM of participated GP
of parent task

InstanceOKC of parent
task

handleRequestConsoleIOMessage

cache I/O request

Communication Layer

inspectConsoleIOFromOKM()

checkChildConsoleIO

InspectConsoleIOMessage

ResultConsoleIOMessage

ConsoleIOCallback.handleIO

ResultInspectConsoleIOMessage

InspectConsoleIOCallback.handleIO()
answerChildInput()

getCommunicationLayer()

handleResultInspectConsoleIOMessage

Figure 12. UML Sequence diagram for I/O request relay between OKC instances
of parent task and child task

handle the returned message. From Figure 12 one can also notice that the top-level API

that directly called by OKC instance uses synchronized pattern and the underlying

communication between different OKManagers are working under the asynchronous

mode.

5.4 Extension made to the OKManager

Both TaskManagerHelper and MessageClientImpl class uses the extended

OKManager interface to complete their functions. We extend the management interface

and its implementation to handle the task management and I/O redirect functionalities.

The extended functionalities include a collection of methods that are used

asynchronously based on listener design pattern and message relay between peers. Major

41

extended methods can be referred to from Appendix A1, and the detailed description of

messages used by these methods can be referred to from Appendix A2.

5.5 Enhancements to the Role Allocation Procedure

Figure 13. Updated UML sequence diagram for choosing partners and allocating roles

In order to keep the task status updated, we modified the role allocation procedure by

introducing an update task description message relay operation to the time sequence.

Updated time sequence diagram is shown as Figure 13.

5.6 Enhancements to the Interaction Complete Procedure

Figure 14 demonstrates how message propagates from the GP that sends the

TaskCompleteMessage to the task’s Coordinator and then sends to the task manager and

all participated GPs. This sequence is added to the diagram of starting and termination of

an interaction described in Figure 7.

42

Figure 14. Updated UML sequence diagram for the task completing process

43

6. EXPERIMENTAL APPROACH AND RESULTS

We discussed all aspects of the experimental work involved in this thesis. In the

following subsections we first demonstrate the use of the prototype framework in the

order of: the experimental environment, task submission, task enrollment, task

termination, and message channel and parent/child task interaction, then discuss the

performance analysis based on the experiment conducted on real environment and

experiment conducted via simulation.

6.1 Experimental Environment Usage

6.1.1 Start the Environment

We construct the testing environment on two machines as shown in Table 5:

 Machine 1 Machine 2

Configuration CPU: Intel T5670 Duo CPU 1.80GHz

MEM: 3GB

OS: Windows Vista Ultimate

Java: JDK 1.60

CPU:

MEM: 768MB

OS: Windows XP SP2

Java: JDK 1.60

LAN: 100Mbps LAN

Usage Discovery Service-1st node, GP1 Discovery Service-2nd node, GP2

Table 5. Testing environment

The source code of the prototype can be downloaded from the SVN server described

in Appendix A4 or be requested via the author’s email. Table 6 displays the source code

tree of the extended OK framework:

./startDiscovery.cmd

or ./startDiscovery.sh

File for launching the Discovery Service. Files with extension “.cmd”

are for WINDOWS platform. Files with the “.sh” extension are for Linux

platform. Class org.openk.service.discovery.StartDiscoveryAndStorage

is the main entry.

./startGP.cmd

or ./startGP.sh

File for launching the GP application.

Class org.openk.core.tm.impl.myGP is the main entry.

44

./startOK.cmd or

startOK.sh

File for launching the original OK Manager. We still use this application

to build OKC packages or do some testing work.

Class org.openk.core.management.impl.OKManagerImpl is the main

entry.

./build/ Folder for the destination of the compiled files

./config/ Folder for configuration files, frequently used files include:

defaults.properties: main resource file for OK framework.

logging.properties: resource file for log4j configuration, used to set the

logging preference.

./FreePastry-Storage-

Root/

FreePastry generated folder for cached files, used by DS.

./lib/ Third party library (jar) files that should be added in the Java classpath.

./log/ Directory of log files.

./res/ User interface related resources for testing application.

./src/ Folder for all source code files of OK framework. We made changes to

the following three sub folders.

./src/discovery/ Source code for Discovery Service. Changes are made on files under this

folder for new publishable resource types.

./src/src/ Source code for the OKManager and GP client application.

Most of the extensions are added to under the org.openk.core.tm

namespace.

./src/storage/ Source code for persistent storage of published LCC, OKCcode used by

DS. Changes are for the purpose of improving the system stability by

upgrading the version of FreePastry based p2p communication layer

from 2.0b to 2.1.

./gettingstarted/ Folder of applications for demonstration and testing purposes.

Table 6. Source code tree of the extended OK framework

Figure 15 displays the initial running environment of the first testing machine. We

can launch the Discovery Service by running the batch command startDiscovery.cmd.

After the DS is running, it listens at port 6678 for requests sent from other DS nodes and

listens at port 7000 for requests sent from underlying GPs. After the DS application is

launched, we launch the GP application by executing command startGP.cmd, which uses

45

the IP address of the pre-launched DS as its bootstrap host, 7000 as its bootstrap port and

listens at port 4000 (configurable in resource file config/defaults.properties) for incoming

request sent from DS or other GPs.

Figure 15. Initial running environment of GP1

We can use the same steps to launch the DS and GP on the second machine. One

difference is that in order to construct a single Discovery Service ring, the second DS

should use the first DS as its bootstrap node. The complete runtime configuration is

shown in Figure 16.

Management

console of GP1

Discovery Service

System logs

46

Machine 1. IP:192.168.111.100

Discovery Service, 1st node

BootStrap Host: 192.168.111.100

BoorSrap Port: 6678

Local Port: 6678

CommunicationLayer Port: 7000

Port

6678

Port

7000

GP
1

DiscoveryBootStrap Host: 192.168.111.100

DiscoveryBoorSrap Port: 7000

CommunicationLayer Port: 4000

Port

4000

Machine 2. IP:192.168.111.101

Discovery Service, 2nd node

BootStrap Host: 192.168.111.100

BoorSrap Port: 6678

Local Port: 6678

CommunicationLayer Port: 7000

Port

6678

Port

7000

GP
2

DiscoveryBootStrap Host: 192.168.111.101

DiscoveryBoorSrap Port: 7000

CommunicationLayer Port: 4000

Port

4000

Figure 16. IP and port allocation of initial running environment
The second GP can also register itself to the first DS directly, which saves one DS

node and demonstrates that one DS can accept the registration request from multiple GPs.

The initial running environment of the second testing machine is shown in Figure 17.

Figure 17. Initial running environment of GP2

Management

console of GP2

47

6.1.2 Submit a Task

Figure 18 displays what happened after one submits a testing application “Hello

World” from GP2. The “Hello World” application is provided by the original OK

framework as an example. The example command is:

 run hello -im ./gettingstarted/lcc/helloworld.lcc \

 -okc "peerResponder | ./gettingstarted/bin/ResponderOKC.jar; \

 peerGreeter | ./gettingstarted/bin/GreeterOKC.jar"

In which “hello” is the name of the task and will be used as the name of the published

interaction model as well. The file “./gettingstarted/lcc/helloworld.lcc” after “–im”

option contains the specification of the interaction model defined in LCC. Items specified

after the “-okc” option are the OKC packages developed to support the interaction. Items

are delimited by semicolon. For each item, the string before the “|” is the name of the role

that the OKC is designed for, and the path after “|” is the path to access the OKC package

in specialized format. One can use the OK Manager tool to construct the OKC package

by referring to the “Creating and Publishing OKCs” section in [OpenKnowledge Manual].

48

Figure 18. Screen shot after task “Hello World” is submitted (GP2)

After the command is submitted, it will pass through a serial of publishing steps

depend on whether the IM or OKCs’ availability in DS. A task ID will be displayed to

user in the format of “<taskname>/<unique serial number>”.

6.1.3 Automated Task Enrolments and Show Task Status

After the task is submitted, its pending state will be captured by the registered GPs

within a short time interval. We use the “show” or “s” command to display status of all

49

Figure 19. Screen shot after task “Hello World” is submitted (GP1)

submitted tasks. From Figure 19 one can see the task status after the “Hello World” task

is fully launched. The allocation of roles to different GPs is non-deterministic due to

situation of each GP and the time point of subscription of each GP. The “show”

command displays the endpoint id of all the requested peer components: the OKManager,

allocated coordinator, the SubscriptionNegotiator of each role and the OKC instance of

each role. Because the task is submitted from GP2, GP2 now acts as the task manager of

this task, and the user input dialog is displayed on GP2 only, as shown in Figure 18.

50

Figure 20. Screen shot of how original OK works with the “dining philosopher” example.

The automated task enrolment represents one of the major adaptions added to make

OK cloud ready. For comparison, we use Figure 20 to display the user interface of the

original OK manager. From its interface one can find that the original OK manager

provides basic management user interface for users to:

� Publish and search an IM,

� Create, publish, search and download an OKC package,

� Import, remove OKC packages from local repository.

From above one can see that compared to the extended OK framework, the original

OK manager only provides limited management functions. Because the original OK does

not support the concept of task explicitly, user will have no way either to find out the

global status of a running Interaction Model, or force control to the course of the

interaction from outside. The steps of selecting a role and participating in an interaction is

Step 1, search the published
interaction model

Step 2, search and download
OKC if necessary

Step 3, select a role to
subscribe, and then click
the “Subscribe to Role”
button.

Step 4, submit the
subscription

51

also annotated in Figure 20, from which one can see that with original OK, the role

selection process has to be completed manually. This makes the original task manager not

applicable to the cloud platform, in which computation resources or work units should be

distributed dynamically via negotiation.

6.1.4 Terminate a Task

Currently, one can submit a “kill <taskid>” command at any registered GP as long

as one knows the task’s identifier. The “kill ” command has an “-f” option. If this option is

not set, it performs a mild termination, i.e. the coordinator only informs its LCC

interpreter to set the status of all the roles to “Completed”, and let the interpreter to finish

the task in its succeeding operations. Otherwise, if the force option is set, it performs a

forced termination, i.e. in addition to notify the LCC interpreter to set the complete status

of each role, the coordinator actively send InteractionCompletedMessage message to the

OKC instances of all participant GPs and send TaskCompletedMessage message to the

task manager.

6.1.5 User I/O Message Channel via the MessageClient API

The user I/O message channel functionality is provided as a client MessageClient

API to application developers. It is the decision of the developer about whether to use the

MessageClient API to redirect the I/O request to the manage console or let the I/O

request be processed at local peer without using the MessageClient API. Figure 18

displays the input dialog displayed by the manage console of the task manager, in which

one can see the endpoint id from which input request sent as well as the prompt message

“Please enter a greeting to send to the other agent” and default value “Hello”. The user

input will be send back to the GP who invoked the MessageClient method.

52

The user I/O message channel is useful when the agent is running at a remote node of

the cloud. In this situation nobody will handle the user input requested at an unattended

node, the only way to get the request processed is to redirect it to the management

console.

6.1.6 Invoke a Child Task within a Running Task

To test invoking a child task within a running parent task, we rewrite the “Hello

World” application by adding the interpreting to the user input. When the peerResponder

receives user input “r” returned from the task manager, it will submit a new task which is

an extended version of the “Dining Philosopher” example using MessageClient API. The

child task will use the same GP that behave as the peerResponder role of the parent task

as its task manager, and its I/O requests will be cached to the I/O queue of the task

manager of the child task. When the peerResponder receives the user input “c” returned

from the task manager of the parent task, it will invoke the de-queue operation on the

cached I/O queue of the child task’s task manager, and process the user I/O locally based

on the fetched I/O request, from which user provide selection about whether a

philosopher should eat or think. The selection will then be send back to the role of the

child task that had sent the original I/O request.

53

Figure 21. Screen Shot after task “Hello World” invoked child task “Dining Philosophers” (GP1)

Figure 21 and 22 demonstrates that the roles of the child task are distributed on

different GP’s. Because the peerResponder role of the parent task, which initiates the

child task, is allocated to GP1, the input dialog for child task is displayed at GP1. However

the input dialog of parent task is displayed at GP2, which is because the parent task is

submitted from GP2. All above phenomena demonstrate that the I/O redirection between

parent task and child task works as the design of the message holding mechanism

described in Figure 12 of Section 5.3 expected.

54

Figure 22. Screen Shot after task “Hello World” invoked child task “Dining Philosophers” (GP2)

6.2 Performance Analysis

We measure the performance of the prototype task manager by using two metrics:

response time and throughput. Because our focus is not to study the performance of the

application but to study the performance of the task manager itself, we focus on how

much time the task manager used to launch a task and how many tasks can be launched

within certain unit of time. We define “task launch” as the action that task manager takes

to subscribe all roles of a task and switch its status from PENDING to RUNNING, and

define:

� Task launch response time (or response time T): average time for the task

manager to launch a task;

55

� Task launch throughput (or throughput TP): average number of tasks can be

launched in a given amount of time.

The method we used to analyze the task launch performance is:

First we conduct experiments on real test environment. The goal is to exam if the

collected experimental results conform to the calculated results based on the formula for

sequential processing of tasks (only allow one task to go through the subscription/launch

procedure each time).

Second, we conduct sequential task processing experiments on the simulator to

examine if the collected results conform to the calculated results based on the formula. In

this way, we can verify that both the prototype system and the simulator behave in the

same pattern.

Finally we conduct heavy loaded concurrent task processing experiment on the

simulator, and reveal how different factors affect the response time T and throughput TP.

6.2.1 Performance Analysis via Real Testing Environment

Based on the system design, for the sequential submission of tasks, the response time

depends on the number of peers in the system and the number of roles to be subscribed.

In an ideal scenario, we assume the time used for role subscription and the time used for

the interaction to launch to be constant. We define:

 td time interval that the GP checks pending tasks

 ts average time for a GP to subscribe a role

 tl average time for the coordinator to launch an interaction

 Nr number of roles to be subscribed (in the rest of the thesis, for ease of

analysis, we treat single role with n instances the same as n roles with single

56

instance. This engagement does affect the analysis result because the subscription

procedure does not make difference between subscribing to one of the multiple

instances of a single role and subscribing to one role from a group of roles each

requires only one instance),

 Np number of GPs in the system

Assuming the roles are evenly distributed to participated GPs, each GP will subscribe

ceil(Nr/Np) roles. The task launch response time of the system is:

 T = td/2 + [ceil(Nr/Np) – 1] td + ts ceil(Nr/Np) + tl (9)

 = ceil(Nr/Np) (td + ts) - td/2 + tl

Where T consists of four parts:

 td/2 Average wait time for GP to check and subscribe the first role

 [ceil(Nr/Np) – 1] td GP’s poll/select interval for the rest [ceil(Nr/Np) – 1] roles

 ts Nr/Np Total role subscription time for ceil(Nr/Np) roles

 tl Rest of the interaction initiation time

Table 9 in Appendix A3 shows the test data gathered from running the tasks in the

real testing environment. As noted, we executed the “Hello world” (containing 2 roles)

and the “Dining Philosophers” (containing 6 roles) example separately on single GP,

double GP single DS, double GP and double DS configurations.

By comparing the collected response time with the calculated response time based on

formula (9), we found that for single task scenario, the response time meets with formula

(9), which is proportional to Nr and inverse to Np.

From Table 9 we also found that the number of peers in Discovery Service does not

affect the response time significantly. This is because the DS is an independent

57

subsystem that provides discovery and storage service to other parts of the system. Its

query time is constant and only depends on the scale of the underlying Pastry network.

6.2.2 Performance Analysis via Simulation

To study the response time in a larger scale, we used [PeerSim Project] to construct a

simulator that simulates the role selection and subscription behaviour in an environment

with more peers and number of roles. The simulator works on event based mode. It

contains:

� One DS component which represents the whole Discovery Service；

� A group of nodes that represents the GP notes. It uses the same algorithm to select

and subscribe roles of submitted tasks. The number of GP nodes is configurable

as the Network Size or Np;

� A traffic generator that generate tasks at a specific rate (Task Generation Speed v),

and the number of roles of a task (Nr) and its lifespan L can be configured either

as fixed values or be assigned randomly from a range;

� A message observer that monitors the running status of the system at configurable

time interval and serves the functionality to gather and aggregate data for

analysis;

� Other configurable parameters include the total number of tasks to be submitted

(TOTALNUMTASKS), maximum number of roles a GP can subscribe at one time

(M), td, ts and tl of the system.

Because the current design of the task management framework prototype is based on

ideal lab environment at this stage, for simplicity, the simulator is constructed based on

two assumptions:

58

� All peers are running on computers with the same configuration (CPU, memory),

they have equal chance of being selected,

� The system is running under ideal state, i.e. no failure of nodes, no transport

failure, all messages can arrive at destination.

6.2.3 Simulation of Sequential Task Processing

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
e

sp
o

ns
e

 T
im

e
-T

(s
)

Number of roles -Nr

Response TimeT With Fixed Number of Peers Np
td=5s, ts=2s, tl=1s, M=10, Np=5

by calculation

by simulation

Figure 23. Response time with fixed number of peers and changing number of roles. Tasks are
submitted sequentially. One observes that results gathered via simulation are close to the

calculated values based on formula 9, where R-square=0.990. The width of the upper
bound/lower bound envelop falls within 5s, which matches to td, the time interval that a GP

examines pending tasks.

Figure 23 demonstrates the comparison between calculated response time (green line)

and simulation results (blue line, average response time of 100 tasks per group) in the

situation of sequential task processing when the number of peers is fixed, from which we

can see the response time collected via simulation are quite close to the calculated values.

The response time increases linearly with the increase of number of roles, and the slope

matches to (ts+td)/Np=1.2. The upper boundary and lower boundary lines are drawn based

on the maximum response time and the minimum response time collected on each round

59

of experiment. The height of the region falls within td = 5s, which is the interval that the

GP checks pending tasks.

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

po
ns

e
T

im
e

-T
(s

)

Number of peers -Np

Response Time T With Fixed Number of Roles Nr
td=5s, ts=2s, tl=1s, M=10, Nr=6

by calculation

by simulation

Figure 24. Response time with fixed number of roles and changing number of peers. Tasks are
submitted sequentially. As in Figure 23, one observes that results gathered via simulation are

close to the calculated values based on formula 9, where R-square=0.993. The width of the upper
bound/lower bound envelop falls within 5s, which matches to td, the time interval that a GP

examine pending tasks.

Figure 24 demonstrates the comparison between calculated response time (green line)

and simulation results (blue line, average response time of 100 tasks per group) in the

situation of sequential task processing when the number of roles is fixed, from which we

can see the task load time values collected via simulation are also close to the calculated

values. The task load time decreases inversely with the increase of number of peers.

From Figure 23 and Figure 24 we can see that curve T by simulation and curve T

calculated by using formula (9) are closely fitted each other, which suggests that the

simulator works the same way as what formula (9) predicts.

60

6.2.4 Simulation of Concurrent Task Processing

Next we studied the cases that tasks are submitted at a steady rate without having to

wait until the previously submitted task is launched. We submit groups of auto generated

tasks (1000 tasks per group) to the simulator in order to reveal how five predictors affect

the task launch response time T and task launch throughput TP. The predictors are:

 M maximum number of roles a GP can subscribe at one time;

 L average life span of tasks;

 Nr average number of roles of all tasks during an experiment;

 Np number of peers;

 v speed of task submission.

We find that the throughput TP actually depends on combined predictor p

r

M N

L N

⋅
⋅

.

Figure 25 reveals the linear relationship between p

r

M N

L N

⋅
⋅

and TP.

61

TP = 0.9182x - 0.0055
R² = 0.9987

0.000

0.050

0.100

0.150

0.200

0.250

0.000 0.050 0.100 0.150 0.200 0.250

T
hr

o
ug

hp
ut

 T
P

(1
/s

)

x = M/L * Np/Nr

(M/L * Np/Nr) vs. Throughput TP
td=5s, ts=2s, tl=1s

M=5, L=105, 1/v=14

M=10, L=105, 1/v=14

M=20, L=105, 1/v=14

M=10, L=210, 1/v=14

Figure 25. p

r

M N

L N

⋅
⋅

ratio vs. the throughput. Tasks are submitted concurrently. One can observe

that the task launch throughput of all series clustered together and is linearly dependent on the

ratio p

r

M N

L N

⋅
⋅

. The regression equation is shown in the graph, where R-square=0.9987.

62

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.000 0.100 0.200 0.300 0.400 0.500 0.600

T
hr

o
ug

hp
ut

T

P
(1

/s
)

M/L * Np/Nr

(M/L * Np/Nr) vs. Throughput TP
tl=1s

td+ts=7, Np/Nr=1, var M

td+ts=7, Np/Nr=1, var L

td+ts=7, Np/Nr=2, var M

td+ts=7, Np/Nr=2, var L

td+ts=14, Np/Nr=1, var L

TPmax=0.2857

TPmax=0.1428

TPmax=0.0799

Figure 26. Expanded view of figure 25, which shows that the throughput has an upper limit

Further experimental results show that the TP has an upper limit as shown in Figure

26. The upper limit depends on td+ts and Np/Nr, which is TPmax = 1/(td+t r) * Np/Nr. In

summary, the throughput obeys the following empirical formula:

max

0.9182 0.006

1

p

r

p

d s r

M N
TP

L N

N
TP

t t N

⋅
≈ ⋅ −

⋅

= ⋅
+

 (10)

Where the slope 0.9182 is constant and does not depend on any of L, M, Nr, Np, td, ts

and v.

The reason why TP has an upper limit can be explained as follows:

When p

r

M N

L N

⋅
⋅

reaches to certain level, which means that M becomes large enough, L

reduced to certain extent, and the system always has enough peers to host all roles, the

63

system will be able to launch all tasks in time within the time span of td+ts. At this stage,

the only factor that affects the throughput will be reduced to the schedule interval time td,

role subscription time ts, and Np/Nr ratio.

Next we looked at the task launch response time T. When the speed of submitting

tasks exceeds the system’s throughput, more and more tasks will not be processed in time

and will be queued to be processed. The longer the queue is the longer the response time

will be for those tasks waiting at the tail of the queue. Therefore, the average task launch

response time in the situation of infinite task feed will be emanative and is not

measurable under this overloading situation. As a result, the average task launch response

time T should only be measured under the condition that the task submission speed does

not exceed the throughput TP.

We observe T’s distribution along with the combined predictor v/TP as shown in

Figure 27, in which T is only measureable within v/TP’s region [0, 1]. The T upper bound

and lower bound envelops of all series of data overlaps each other. Based on

experimental results, the lower bound lines of the envelops of all data series stay as a

horizontal line Tmin = 3s, where 3 seconds is the sum of ts + t l, which is the most

optimistic situation that all roles of a submitted task are subscribed instantly and the task

launched without any delay within the td period. The trend of T arises along with the

increase of v/TP and roughly obeys formula

4.3595

0.5767
v

TPT e
⋅

≈ ⋅ where [0,1]
v

TP
∈ and R2=0.6344 (11)

The regression function is shown as Figure 28. Because the R-square of formula (11) is

not very high, the calculated T is just a rough estimate. Future work will include more in-

depth research on how T is affected by each of the predicates M, L, Nr/Np and v.

64

0

50

100

150

200

250

300

350

400

0.170 0.270 0.370 0.470 0.570 0.670 0.770 0.870 0.970 1.070

A
ve

ra
g

e
R

es
po

ns
e

T
im

e T
(s

)

v/TP ratio

v/TP Ratio vs. Average Response Time T

Figure 27. Task submission speed/throughput ratio v/TP vs. average response time T of all data
series with upper bound and lower bound envelope. The quantity v/TP is the ratio of task

submission speed divided by the throughput. One can observe that the closer the v/TP ratio
approaches to 1, the variation of either the upper bound or the average response time becomes
more dramatic. This can be explained using the nature of the producer/consumer model: The

task launch throughput represents the system's maximum consuming speed of submitted tasks.
When the task submission speed, i.e. the producing speed, approaches to the consuming speed,

where tasks are generated with random lifespan and number of roles, the system will more
likely to reach into a temporary overload state, although this overloading state will get relieved

in the long run, it will make some queued tasks' response time become extra long. The closer the
producing speed approaches to the consuming speed, the harder these overload state will get

relieved. Therefore the upper bound/ lower bound envelop will becomes wider. The behaviour of
individual random generated tasks that are blocked in the waiting queue will have more impact

to the calculation of average response time. Until the task producing speed overtakes the
consuming speed, the overload state will not be able to get relieved in the end, and the average

task response time becomes emanative and not measurable.

65

T = 0.5767e4.3595x

R² = 0.6344

0

50

100

150

200

250

300

0.170 0.270 0.370 0.470 0.570 0.670 0.770 0.870 0.970 1.070

A
ve

ra
g

e
R

es
po

ns
e

T
im

e
 T
(s

)

x = v / TP

v/TP Ratio vs. Average Response Time T

Figure 28. Exponential regression function of average response time T based on Figure 27

6.3 Concerns about Dead Locks

For the scenario of sequential task submission, the system will not able to execute or

accept new tasks if Nr > Np ⋅ M. For the concurrent task submission scenarios, dead lock

could happen when the Nr/Np Ratio approaches to M. Currently the prototype does not

take deadlock into considerations. The deadlock detection and handling mechanisms will

be added to the future improvements. We could use time-out based deadlock detection

mechanism and algorithms to select and release exclusively occupied resources forcibly.

66

7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this thesis, we presented the design and implementation of a software platform

that realizes a prototype task management framework to support the running and

managing of the LCC based collaboration model under PaaS cloud environment. The

framework is constructed through enhancing and extending the OK framework. It

improves the provision and negotiation mechanism of existing OK framework and also

its manageability. The contributions of our work are:

1. We first proposed the concept of introducing role and social norm based logic

programming approach to enrich the programming models of PaaS clouds and

used this prototype framework to prove our concept,

2. The framework provides partial solutions to the fully decentralized management

challenges of a choreography based distributed collaborating network. The

method we used to solve the challenges can be contributed to the design of the

future generation cloud infrastructure that supports PaaS based computation

models.

3. We performed performance measurements of task launch time behaviours and

thereby provided a benchmark for comparison against future improvements.

4. The prototype framework itself can serve as a research platform to support future

research. .

The detailed work includes

� Extending existing task management functionality with a set of fully distributed

task submission/termination control and task monitoring functionalities,

67

� Enhancing the underlying task management mechanism of OK framework from

the “submit-manual select–subscribe–allocation-run” model to the “submit-

proactive select–subscribe–allocation-run” model, which improved the

automation level of the task management and make it satisfies two basic

requirements of cloud systems, i.e. dynamic provision of resources for tasks and

SLA achieved via negotiation.

Although our work is still preliminary, the prototype framework can be used to

support and conduct further research, and provide benchmarks and new research hot

spots. In the end, our work will impact the way applications are constructed to utilize

clouds, and provide cloud application developers with more options to designing and

manage their applications.

By analyzing the experimental results, we revealed the underlying mathematical

formulas that reflect the performance of the prototype task manager by using different

methods, including both real environment experiment and simulation, and under different

scenarios, including sequential task processing and concurrent task processing. We

focused on analyzing how task launch throughput is influenced by different predictors

and in turn how the task launch response time is influenced by task launch throughput

and task submission speed. The experimental data collected both from testing and

simulation supports the view that the task launch response time is linearly dependent on

the number of roles for subscription and inversely dependent on the number of peers in

the system in sequential task processing scenario. For concurrent task processing

scenarios, we found that the average task launch throughput TP is closely related to the

combined ratio of r

p

L N

M N

⋅
⋅

 and obey the formulas described as (10). We realized that the

68

task launch response time T is only measurable when the task submission speed does not

exceed TP. Its relationship with task submission speed and TP can be roughly depicted

using formula (11). The collected performance data will be used as the benchmark for the

future system optimization.

7.2 Future Work

Currently, the prototype system is only a proof of concept system with less concern

for performance, robustness, security and completeness of functionalities. To produce a

production system, future work will need to be fulfilled from the following aspects:

1) Performance and robustness:

Replace the existing centralized coordination mechanism with a distributed

coordination mechanism depicted in [Robertson 2005] to improve the performance

and robustness of the OK framework.

More sophisticated role selection algorithms, deadlock detection and handling

mechanisms, auditing, post-run analyzing mechanisms, automated distribution of

3rd party libraries, and version control of published IMs, OKCs and 3rd party

libraries.

2) User level security and transport level security:

� Introducing domain based authentication and authorization mechanism to

the task management framework. Trust model of p2p system will be fully

studied.

� Introducing message level security to the communication layer.

3) Transport level improvement:

� Extend the communication layer to support message relay across

69

NAT/firewall features.

� Optimize the publishing and discovery algorithm that is based on Pastry

overlay network for OK Discovery Service.

From the aspect of research, the problem to be solved in the future with the highest

priority is the optimization of the existing coordination model. As LCC is originated from

concurrent system models like Actor model and process calculi, it inherits the

indeterminacy in concurrent computation [Agha 1986], (indeterminacy caused by the

arrival order of messages does not necessarily corresponds to the sending order of

messages). Although the collaboration model of current OK framework appears to be

fully distributed and choreography based, it actually uses centralized coordination and

sequential computation to solve the indeterminacy problem which sacrifices the

performance and increases network traffic. Future research will focus on breaking down

the coordinator into distributed mode. Due to feasibility concern, current consideration

tends to adopt the hybrid coordination model which is partial centralized and partial

distributed. To weigh to which extent the distribution should be requires further study.

70

REFERENCES

1. [Robertson 2005] Robertson, David. 2005. A Lightweight Coordination Calculus for Agent
Systems. Springer Berlin / Heidelberg, Declarative Agent Languages and Technologies II,
Lecture Notes in Computer Science, vol. 3476, 183-197.

2. [Robertson 2004] Robertson, David. 2004. Multi-agent Coordination as Distributed Logic
Programming. Springer Berlin / Heidelberg, Logic Programming, Lecture Notes in Computer
Science, vol. 3132, 77-96. Doi: 10.1007/978-3-540-27775-0_29, Url:
http://dx.doi.org/10.1007/978-3-540-27775-0_29

3. [PA et al 2007] PA, de Pinninck, D, Dupplaw, S, Kotoulas, R, Siebes. 2007. The OpenKnowledge
Kernel. Proceedings of the XXI International Conference on Computer, Information and Systems
Science. Available at:
http://www.cisa.informatics.ed.ac.uk/OK/Publications/The%20OpenKnowledge%20Kernel.pdf

4. [Quan et al 2007] Xueping Quan, Chris Walton, Dietlind L. Gerloff, Joanna L. Sharman, and
Dave Robertson. 2007. Peer-to-peer experimentation in protein structure prediction: an
architecture, experiment and initial results. In Proceedings of the 2006 international conference
on Distributed, high-performance and grid computing in computational biology (GCCB'06),
Werner Dubitzky, Mathilde Romberg, Assaf Schuster, Peter M. A. Sloot, and Michael Schroeder
(Eds.). Springer-Verlag, Berlin, Heidelberg, 75-98.

5. [Dillon et al 2009] Dillon, Tharam, Chang, Elizabeth, Meersman, Robert, Sycara, Katia,
Robertson, David, et al. 2009. Models of Interaction as a Grounding for Peer to Peer Knowledge
Sharing. Advances in Web Semantics I. Lecture Notes in Computer Science, Springer Berlin /
Heidelberg. vol. 4891, 81-129

6. [Milner et al 1992] Milner, Robin, Parrow, Joachim, and Walker, David. 1992. A calculus of
mobile processes, I. Information and Computation, Volume 100, Issue 1, September 1992, Pages
1-40, ISSN 0890-5401, 10.1016/0890-5401(92)90008-4.

7. [Milner et al 1992] Milner, Robin, Parrow, Joachim, and Walker, David. 1992. A calculus of
mobile processes, II. Information and Computation, Volume 100, Issue 1, September 1992, Pages
41-77, ISSN 0890-5401, 10.1016/0890-5401(92)90009-5.

8. [Agha 1986] Agha, Gul. 1986. Actors: a model of concurrent computation in distributed systems.
MIT Press, Cambridge, MA.

9. [Peltz 2003] Peltz, Chris. 2003. Web Services Orchestration and Choreography. Computer, pp.
46-52, October, 2003.

71

10. [Trecarichi et al 2009] Trecarichi, Gaia and Rizzi, Veronica and Vaccari, Lorenzino and
Marchese, Maurizio and Besana, Paolo 2009. OpenKnowledge at work: exploring centralized and
decentralized information gathering in emergency contexts. Technical Report DISI-09-011,
Ingegneria e Scienza dell'Informazione, University of Trento.

11. [OASIS-BPEL 2007] Web Services Business Process Execution Language Version 2.0. OASIS
Standard, April 2007. Available at: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

12. [W3C-WS-CDL 2004] Web Services Choreography Description Language Version 1.0. W3C
Working Draft, December 2004. Available at: http://www.w3.org/TR/2004/WD-ws-cdl-10-
20041217/

13. [Yan et al 2005] Yan, J., Yang, Y., Kowalczyk, R., Nguyen, X.T. 2005. A service workflow
management framework based on peer-to-peer and agent technologies. Quality Software, 2005.
(QSIC 2005). Fifth International Conference on Quality Software (QSIC'05), pp. 373-382, doi:
10.1109/QSIC.2005.8.

14. [Yan et al 2006] Yan, Jun, Yang, Yun, and Raikundalia, G.K. 2006. SwinDeW-a p2p-based
decentralized workflow management system. Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on , vol.36, no.5, pp.922-935, doi: 10.1109/TSMCA.2005.855789.

15. [Besana and Barker 2009] Besana, Paolo and Barker, Adam. 2009. An Executable Calculus for
Service Choreography. In Proceedings of the Confederated International Conferences, CoopIS,
DOA, IS, and ODBASE 2009 on the Move to Meaningful Internet Systems: Part I (OTM '09).
Springer-Verlag, Berlin, Heidelberg, 373-380. DOI=10.1007/978-3-642-05148-7_26.

16. [Buyya et al 2009] Buyya, Rajkumar, Yeo, Chee Shin, Venugopal, Srikumar, Broberg, James, and
Brandic, Ivona, 2009, Cloud computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility, Future Generation Computer Systems, Volume 25, Issue 6,
June 2009, Pages 599-616, ISSN 0167-739X, DOI: 10.1016/j.future.2008.12.001.

17. [Zhang et al 2010] Zhang, Qi, Cheng, Lu, and Boutaba, Raouf, 2010, Cloud computing: state-of-
the-art and research challenges, Journal of Internet Services and Applications, Volume 1, Issue 1,
May 2010, Pages 7-18, Springer London, DOI: 10.1007/s13174-010-0007-6.

18. [Barros et al 2006] Barros, Alistair, Decker, Gero, and Dumas, Marlon. 2006. Multi-staged and
Multi-viewpoint Service Choreography Modelling. TECH REPORT. Available at:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.420.

19. [Chu et al 2007] Chu, Xingchen, Nadiminti, K., Jin, Chao, Venugopal, S., and Buyya, R.. 2007.
Aneka: Next-Generation Enterprise Grid Platform for e-Science and e-Business Applications. e-

72

Science and Grid Computing, IEEE International Conference on, vol., no., pp.151-159, 10-13
Dec. 2007 doi: 10.1109/E-SCIENCE.2007.12.

20. [Bellifemine et al 2001] Bellifemine, Fabio, Poggi, Agostino, and Rimassa, Giovanni. 2001.
JADE: a FIPA2000 compliant agent development environment. In Proceedings of the fifth
international conference on Autonomous agents (AGENTS '01). ACM, New York, NY, USA,
216-217. DOI=10.1145/375735.376120. Available at: http://doi.acm.org/10.1145/375735.376120

21. [Caire et al 2008] Caire, Giovanni, Gotta, Danilo, and Banzi, Massimo. 2008. WADE: a software
platform to develop mission critical applications exploiting agents and workflows. In Proceedings
of the 7th international joint conference on Autonomous agents and multiagent systems: industrial
track (AAMAS '08). International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 29-36.

22. [HADOOP Project] The Apache HaDoop Open Source Project. Available at:
http://hadoop.apache.org/

23. [Rowstron and Druschel 2001] Rowstron, Antony and Druschel, Peter. 2001. Pastry: Scalable,
Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems. Springer
Berlin / Heidelberg, Middleware, Lecture Notes in Computer Science, vol. 2218, 329-350. Doi:
10.1007/3-540-45518-3_18, Url: http://dx.doi.org/ 10.1007/3-540-45518-3_18.

24. [OpenKnowledge Manual] OpenKnowledge Manual.
Available at: http://www.cisa.inf.ed.ac.uk/OK/download/manual.pdf

25. [OASIS-BPEL 2007] Web Services Business Process Execution Language Version 2.0. OASIS
Standard, April 2007. Available at: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

26. [W3C-WS-CDL 2004] Web Services Choreography Description Language Version 1.0. W3C
Working Draft, December 2004. Available at: http://www.w3.org/TR/2004/WD-ws-cdl-10-
20041217.

27. [Dean and Ghemawat 2008] Dean, Jeffrey and Ghemawat, Sanjay. 2008. MapReduce: simplified
data processing on large clusters. Commun. ACM 51, 1 (January 2008), 107-113.
DOI=10.1145/1327452.1327492.

28. [Google App Engine] Google App Engine, Available at: http://code.google.com/appengine.

29. [Google GFS] Ghemawat, S, Gobioff, H and Leung, S-T. 2003. The Google file system. In
proceeding of SOSP, October 2003.

73

30. [HDFS] Hadoop Distributed File System. Available at: http://hadoop.apache.org/hdfs

31. [Windows Azure] Windows Azure, Available at: www.microsoft.com/azure

32. [UML] The Unified Modeling Language. Object Management Group. Available at:
http://www.uml.org/

33. [JavaCC] Java Compiler Compiler, The Java Parser Generator, Available at: http://javacc.java.net

34. [PeerSim Project] PeerSim: A Peer-to-Peer Simulator.
Available at: http://peersim.sourceforge.net/

74

APPENDICES

A1. Major administrative related methods of extended OKManager and
OKManagerImpl

Method Description

searchTask

(new)

Search task information from DS based on query terms by invoking

OKDiscoveryProxy.searchTask method. Its purpose is to get task id

and task manager’s endpoint id.

Parameters:

query – terms for query criteria

limit – max number of returned items

callback –SearchTaskCallback typed callback function

Message sent: RequestTaskMessage

Message received: ResultSearchTaskMessage

searchTaskFromOKM

(new)

Query task’s TaskDescripition information from a task’s manager

endpoint. The reason we store TaskDescripition detail at the manager

side instead of DS side is that information published to DS is not

changeable due to the current underlying p2p layer limitations based

on FreePastry.

Parameters:

query – terms for query criteria

receiver – receiver’s manager end point id

callback – SearchTaskCallback typed callback function

Message sent:

RequestTaskMessage

Message received:

ResultSearchTaskMessage

searchIM

Search published interaction model from DS based on query terms by

invoking OKDiscoveryProxy.searchIM method.

Parameters:

query – terms for query criteria

limit – max number of returned items

receiver – receiver EndPointID

callback –SearchIMCallback typed callback function

Message sent:

75

RequestIMMessage

Message received:

ResultIMMessage

searchOKCs Search published OKC information from DS based on query terms by

invoking OKDiscoveryProxy.searchOKCs method.

Parameters:

query – terms for query criteria

limit – max number of returned items

receiver – receiver EndPointID

callback –SearchOKCCallback typed callback function

Message sent:

RequestOKCMessage

Message received:

ResultOKCMessage

updateTaskToOKM

(new)

Update changes of a subscription or instantiation status back to the

OKManager from which the task is submitted, all changes are updated

to the task’s TaskDescripition instance stored in the OKManager’s

task list.

Parameters:

t – id of the task

sub - SubscriptionSpec data structure of the subscription

information receiver – receiver EndPointID

callback – PublishCallback typed callback function

Message sent:

RequestUpdateTaskMessage

Message received:

ResultPublishMessage

removeOKC Remove OKC from local OKC repository.

Parameters:

okc – OKCDescription information of the OKC

downloadOKC Download published OKC code from DS and add it to local OKC

repository by invoking OKDiscoveryProxy.downloadOKCcode

method.

Parameters:

okc – OKCDescription information of the OKC

76

callback – DownloadOKCCodeCallback typed callback function

Message sent:

RequestOKCMessage

Message received:

ResultDownloadOKCCodeMessage

subscribeToRole Subscribe to specific role of a published interaction to DS by invoking

OKDiscoveryProxy.subscribeToRole method.

Parameters:

adapt – SubscriptionAdaptor instance that provides maping between

role and OKC

policy – AcceptPolicy, available values: ONE/ALL/NONE

participant – string of the role

participantArgs – ArgumentList type, not used currently

modelID – id of the interaction model

subscriptionDescription - Description of the subscription that can

be searched

subscriptionParams - Map<String,Object>, not used currently

expireInterval – number of millisecond of expiration

diagnostics – Boolean value of enable diagnostics, additional

listeners for the incoming messages

callback – SubscribeCallback typed callback function

EOIListeners - List<InteractionLogConsumer>, listeners that

monitors end of interaction

askForPeerSelection – Boolean value indicates whether the

bootstrap coordinator should ask the peer to select the peers it wants

to interact with

Returns:

A SubscriptionSpec instance for subscription information

Message sent:

RequestSubscribeToRoleMessage

Message received:

DiscoveryResultMessage

getParticipated_tasks

(new)

The Participated_tasks is a collection that stores all pending or running

tasks’ information that are participated by local GP.

getTasklist The Tasklist is a collection that stores all pending or running tasks’

77

(new) information that are submitted by local GP.

requestConsoleIO

(new)

Send task role’s input/output request to the manager of the task. Used

by MessageClient’s Input and Prompt method.

Message sent:

RequestConsoleIOMessage

Message received:

ResultConsoleIOMessage

inspectConsoleIOFromOKM

(new)

Inspect I/O request on the task manager of a child task and get the next

I/O request message. Used by MessageClient.checkChildConsoleIO

method

Message sent:

InspectConsoleIOMessage

Message received:

ResultInspectConsoleIOMessage

publishTask Publish the TaskDescription to DS to make the task searchable by

other GPs through invoking OKDiscoveryProxy.publishTask method

Message sent:

RequestPublishTaskMessage

Message received:

ResultPublishMessage

publishIM Publish an IM to DS to make it searchable by other OKManagers

through invoking OKDiscoveryProxy.publishIM method

Message sent:

RequestPublishIMMessage

Message received:

ResultPublishMessage

publishOKC Publish the OKCDescription of an OKC to DS to make it searchable

by other OKManagers through invoking

OKDiscoveryProxy.publishOKC method.

Message sent:

RequestPublishOKCMessage

Message received:

ResultPublishMessage

Table 7. Major administrative related methods of OKManager and OKManagerImpl

78

A2. Newly added message types

Message Type From To Description Content Response

Message

RequestTaskMessage OKDiscoveryProxy

of participant GP

Discovery

Service

Search task

from DS

RequestID – handler for

callback matching,

Query terms of task

description

ResultSearchTaskMessage

OKM of

participant GP

OKM of task

manager

Get task

information

from task

manager

ResultSearchTaskMessage Discovery Service

or OKM of task

manager

OKM of

participant

GP

Response of

above message

RequestID, A

TaskDescription instance

RequestPublishTaskMessage OKM of task

manager

Discovery

Service

Publish task

information to

DS

RequestID, A

TaskDescription instance

ResultPublishMessage (existing)

RequestUpdateTaskMessage OKM of

participant GP

OKM of task

manager

Update task

description to

task manager

RequestID, TaskID,

SubscriptionSpec

ResultPublishMessage

TaskCompletedMessage OKM of any GP in

the network

Coordinator Inform

Coordinator or

task manager to

terminate task

TaskDescription, force flag

Coordinator OKM of task

manager

RequestConsoleIOMessage OKM of OKM of task Relay user I/O RequestID, TaskID, string to ResultConsoleIOMessage

79

participant GP manager request from

task manager

be displayed, operation type

– INPUT or OUTPUT,

default value to be displayed

prior to input

ResultConsoleIOMessage OKM of task

manager or OKM

of participant GP

of parent task

OKM of

participant

GP

Response of

above message

RequestID, string of result

InspectConsoleIOMessage OKM of

participant GP of

parent task

OKM of

child task

manager

Get next I/O

request from

child task

RequestID, TaskID ResultInspectConsoleIOMessage

ResultInspectConsoleIOMessage OKM of child task

manager

OKM of

participant

GP of parent

task

Response of

above message

RequestID, original

RequestConsoleIOMessage

sent by child task

Table 8. Newly added message types for task management purpose

80

A3. Test data collected from real experiments

Test Data
GP check interval: 5 s max # of roles per peer can participate: 10

response time(s)

DS # GP# roles GP1 GP2 GP1 GP2 GP1 GP2 GP1 GP2 GP1 GP2 GP1 GP2 avg

1 1 2 9.142 14.130 9.473 14.160 9.900 14.171 10.944 14.291 9.420 14.191 9.776 14.189 11.982

avg ts #1: 0.854 avg ts #2: 3.277 avg tl #1 0.109 avgtl #2 0.500 Calculated: 9.317 14.554 11.936

error(s): (0.047) -0.39%

1 1 6 37.605 57.653 39.897 61.418 38.087 57.152 39.857 62.560 38.429 56.651 38.775 59.087 48.931

avg ts #1: 1.709 avg ts #2: 5.604 avg tl #1 1.134 avgtl #2 0.451 Calculated: 38.887 61.576 50.231

error(s): 1.300 2.66%

1 2 2 9.477 10.566 8.369 8.082 7.641 8.930 8.662 8.101 8.011 8.382 8.432 8.812 8.812

avg ts #1: 1.384 avg ts #2: 5.917 avg tl #1 0.118 avgtl #2 0.581 Calculated: 4.002 8.998 8.998

error(s): 0.186 2.11%

1 2 6 27.076 29.515 27.357 26.078 27.587 30.684 31.826 27.786 31.015 34.810 28.972 29.775 29.775

avg ts #1: 1.618 avg ts #2: 5.868 avg tl #1 0.680 avgtl #2 0.537 Calculated: 18.034 30.640 30.640

error(s): 0.866 2.91%

2 2 2 8.744 7.942 8.071 7.311 8.423 8.171 8.404 9.234 7.631 11.246 8.255 8.781 8.781

avg ts #1: 1.404 avg ts #2: 5.687 avg tl #1 0.119 avgtl #2 0.469 Calculated: 4.023 8.656 8.656

error(s): (0.124) -1.42%

2 2 6 30.374 30.785 29.032 27.670 31.746 34.730 29.795 28.811 28.385 32.657 29.866 30.931 30.931

avg ts #1: 1.603 avg ts #2: 5.664 avg tl #1 0.646 avgtl #2 0.467 Calculated: 17.954 29.959 29.959

error(s): (0.972) -3.14%

relative
error

response time(s) response time(s) response time(s) response time(s) response time(s) avg response time(s)

Table 9. Test data collected from real ex experiments

Note: above data are collected in groups of different number of DS, GPs and roles to subscribe. In each group we collect five pairs of data from GP1 and
GP2 with single task running on machine #1 and #2 respectively. For ease of comparison, under each group of collected data, we provide calculated task
response time based on formula (9). The average task subscription time ts and average interaction launch time tl are also based on collected data。For cases
with # of GP greater than 1, roles are evenly distributed to each peer. The response times for these cases in grey area are calculated using max aggregation
function rather than the avg function because the final response time depends on the time used on the slower node.

81

A4. Source code and experiment data download

All source code for the Task Manager, the simulator and the experiment data can be

downloaded from the SVN server at:

svn+ssh://safetysurvey.ca/export/vhosts/sites/safetysurvey.ca/svn/repos/projects/SurveyProjects/v

2.0_or_older/jack

or upon request at zhu19@uwindsor.ca.

File Path Filename Description
ok-tm Refer to Table 6 Source code of enhanced OK kernel and task

manager.

peersim src/peersim/taskmanager/* Source code of the implemented simulator for
task manager.

taskmanager.cfg Configurations file for implemented task
manager simulator.

Run.cmd Batch command to start the task manager
simulator.

Mui.m

Matlab script that visualizes the time series of a
task simulation.

TMObserverlog.dat Input for mui.m generated by peersim.

Mynlinfit.m Matlab script that generate the empirical formula
via nonlinear least-squares regression

t.dat T, v, Nr/Np * L/M data extracted from
testdata.xls, used as input for mynlinfit.m

thesis testdata.xls Excel spreadsheet of raw and derived
experimental data

Table 10. Description of files and transcripts

82

A5. LCC Specification and Example

The BNF definition of LCC [Robertson 2005] is:

 Framework := {Clause, . . .}

 Clause := Agent :: Def

 Agent := a(Type, Id)

 Def := Agent | Message | Def then Def | Def or Def | Def par Def |null ← C

 Message := M ⇒ Agent | M ⇒ Agent ← C | M ⇐ Agent | M ⇐Agent ← C

 C := Term | C ∧ C | C ∨ C

 Type := Term

 M := Term

The LCC is a set of clauses; each clause defines how a role in the interaction be

performed. Roles are described as a(Role, Identifier), which contains the name of the role

and an identifier for the individual peer undertaking that role. The definition of

performance of a role is constructed using combinations of the sequence operator ‘then’

or choice operator ‘or’ to connect messages and changes of role. Messages are either

outgoing to another peer in a given role (‘⇒’) or incoming from another peer in a given

role (‘⇐ ’). Message input/output or change of role can be governed by a constraint

defined using the normal logical operators for conjunction, disjunction and negation. A

constraint acts as a function or service that returns a Boolean value to indicate if it is

satisfied. There are two kinds of constraints: proaction constraints and reaction

constraints. Proaction constraints define the circumstances under which a message

allowed by the dialogue framework is allowed to be sent. Each constraint is of the form:

 A : (M ⇒ Ar) ← Cp (12)

83

Where A and Ar are peer descriptors (of the form a(Role, Id)); M is a message sent

by A addressed to Ar; and Cp is the condition for sending the message (either empty or a

conjunction of sub-conditions which should hold in A). If Cp returns true value, which

means the constraint is satisfied, message M will be sent from A to Ar. Reaction

constraints define what should be true in a peer following receipt of a message allowed

by the dialogue framework. It usually returns true and is used to define the post action

after A received message M from Ar. Each constraint is of the form:

 A : (M ⇐ As) ← Cr (13)

Below is a piece of LCC script which describes the interaction model of dining

philosophers (Full length source code can be found at “gettingstarted/lcc/

diningphilosophers1.lcc” of the source tree):

1. r(waiter, initial)
2. r(philosopher, necessary, 5)
3.
4. a(waiter, W) ::
5. // Initialise
6. null <- getPeers("philosopher", Peers) and initialise(Peers, NumP) then
7. a(waiter(Peers, NumP), W) then
8. a(waiter, W)
9.
10. a(waiter(Peers, NumP), W) ::
11. null <- Peers = []
12. or // choice
13. (null <- Peers = [Peer | PeerR] and getID(Peer, ID, PID) then
14. init(ID, NumP) => a(philosopher, Peer) then
15. (
16. (
17. requestLeft(ID) <= a(philosopher, Peer) then
18. (
19. left(ID) => a(philosopher, Peer) <- giveFork(ID)
20. or
21. waitLeft(ID) => a(philosopher, Peer)
22.)
23. or
 …
50.)
51. then
52. a(waiternew(PeerR, NumP), W)

Infinite recursion

Head and tail list operation

Proactive constraint for
sending a message

84

53.)
54.
55. a(philosopher, P) ::
56. init(Temp, NumP) <= a(waiter, W) <- initialise1(Temp, NumP) then
57. (
58. (
59. requestLeft(Temp) => a(waiter, W) <- wantsLeft(Temp)
60. then
61. (
62. left(Temp) <= a(waiter, W) <- gotLeft(Temp)
63. or
64. waitLeft(Temp) <= a(waiter, W) <- gotWaitLeft(Temp)
65.)
66.)
67. or
 …
86.)
87. then
88. a(philosophernew, P)

The first two lines of above script specify that there are two roles in the interaction,

the waiter and the philosopher. This interaction needs one waiter and five philosophers.

The interaction starts from the waiter role. The interpretation process of the LCC script is

a series of clause expansion and closing similar to the way other logical programming

languages are executed [Robertson 2005].

The getPeers("philosopher", Peers) constraint at line 6 is an OK predefined

constraint that provides a list of participant peers that act as the specific role, which is

“philosopher” in this case. All the arguments for constraints are reference arguments that

can pass information in or out. The initialise constraint at line 6 uses argument Peers to

initialize the waiter’s user interface, and returns a number via output parameter NumP to

represent the number of participant philosophers.

The a(waiter(Peers, NumP), W) statement at line 7 and its clause definition starting

from line 10 demonstrates a scenario that a role can retain its state at LCC level. The

clause a(waiter(Peers, NumP), W) at line 10 can be explained as: the agent act as role

Reactive constraint after
receiving a message

85

waiter running at peer W, which retains a list of peers (which is the list of philosopher

OKC instances) and number of philosophers. The body of the clause a(waiter(Peers,

NumP), W) is a standard design pattern of a finite recursion in logic programming, which

is achieved through splitting a set into its header element and the tail set (line 13), taking

the header element and passing the tail set to the next level of recursion (line 52). At last,

the recursion stops until the set (Peers) becomes empty (line 11).

A6. OpenKnowledge Component Example

The LCC script only defines how different roles interact through role state change or

message exchange, and uses constraints to define the pre-condition of whether the action

will happen or the post-condition about the consequences of the action. The internal logic

of these constraints is implemented as OpenKnowledge Components (OKC).

An OKC is a class library that contains descriptive information about what the OKC

is about and a class that contains the implementation of all the constraints of a role as

member functions. The following sample code is the OKC source code for the waiter role

of above “diningphilosophers” LCC.

1. public class PeerWaiterOKC extends OKCFacadeImpl
2. {
3. private static final int WIDTH = 320;
4. private static final int HEIGHT = 340;
5. ...
21. private List peerList = new ArrayList();
22. public boolean[] forks = new boolean[] { true, true, true, true, true };
23.
24. public boolean initialise(Argument Peers, Argument NumP)
25. {
26. List ps = (List)Peers.getValue();
27. NumP.setValue(new Integer(ps.size()));
 ...
43. if (frame == null)
44. {
45. //Initialize the UI
 ...
92. frame.setVisible(true);

Corresponds to constraint
initialize. Returns true or
false to indicate if the
constraint is satisfied...

Set and get the
argument value

All OKC classes inherit the
OKCFacadeImpl base class.

86

93. }
94. return true;
95. }
96.
97. public boolean giveFork(Argument ForkIndex)
98. {
99. // Update the state of the dining table, set result based on the fork's availability
 ...
118. updateGUI();
119. return result;
120. }
121.
122. public boolean forkReturned(Argument ForkIndex)
123. {
124. // Update the state of the dining table
 ...
128. updateGUI();
129. return true;
130. }
 ...
164. }

Above source code can be compiled and built into an OKC package (which is a jar

file) using OK Management Tool. The OKC package can published to the DS and can be

found and downloaded by the peer that is allocated with the specific role. After an

interaction is launched, the OKC package will be loaded into the memory as a part of the

OKC Instance to provide the constraint solving service upon requested by the

Coordinator.

The above example demonstrates three advantages of using LCC and OKC based

programming model to design and implement distributed applications. First, by using

LCC, one can easily grasp the essential characteristics of the interaction through role

identification, message exchange and reasoning about social norms. Second, the

definition of the interaction model is modular due to the role-based nature of LCC. Third,

the introducing of OKC helps developers to organize the implementation details in an

87

elegant manner. Therefore, we see great prospect in introducing LCC based modeling

techniques to cloud application development.

88

VITA AUCTORIS

Name: Lichun (Jack) Zhu

Place of birth: Xining, Qinghai, P.R.China

Education:

 Bachelor of Engineering, Computer Science,

 University of Science and Technology of China, Hefei, China

 1989-1994

 Master of Science, Computer Science Department,

 University of Windsor, Windsor, Canada

 2006-2008, 2011

	University of Windsor
	Scholarship at UWindsor
	2011

	A Distributed Task Management Solution for Peer-To-Peer and Cloud Environments
	Lichun Zhu
	Recommended Citation

	

