View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Scholarship at UWindsor

University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

2011

A Distributed Task Management Solution for Peer-
To-Peer and Cloud Environments

Lichun Zhu
University of Windsor

Follow this and additional works at: http://scholaruwindsor.ca/etd

Recommended Citation

Zhu, Lichun, "A Distributed Task Management Solution for Peer-To-Peer and Cloud Environments" (2011). Electronic Theses and
Dissertations. Paper 106.

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://core.ac.uk/display/72776752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/106?utm_source=scholar.uwindsor.ca%2Fetd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Distributed Task Management Solution
for Peer-To-Peer and Cloud Environments

by
Lichun Zhu

A Thesis
Submitted to the Faculty of Graduate Studies
through Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2011

© 2011 Lichun Zhu

A Distributed Task Management Solution

for Peer-To-Peer and Cloud Environments

by

Lichun Zhu

APPROVED BY:

Dr. Gokul Bhandari
Odette School of Business

Dr. Jianguo Lu
School of Computer Science

Dr. Christie Ezeife, Co-supervisor
School of Computer Science

Dr. Robert Kent, Advisor
School of Computer Science

Dr. Joan Morrissey, Chair of Defense
School of Computer Science

September 28, 2011

DECLARATION OF ORIGINALITY

| hereby certify that | am the sole author of tthissis and that no part of this thesis
has been published or submitted for publication.

| certify that, to the best of my knowledge, mydisedoes not infringe upon anyone’s
copyright nor violate any proprietary rights andtthny ideas, techniques, quotations, or
any other material from the work of other peopleluded in my thesis, published or
otherwise, are fully acknowledged in accordancé whe standard referencing practices.
Furthermore, to the extent that | have includedydgpted material that surpasses the
bounds of fair dealing within the meaning of then@da Copyright Act, | certify that |
have obtained a written permission from the copyrigwner(s) to include such
material(s) in my thesis and have included copiesuegh copyright clearances to my
appendix.

| declare that this is a true copy of my thesigluding any final revisions, as
approved by my thesis committee and the Graduaidiet office, and that this thesis has

not been submitted for a higher degree to any diinérersity or Institution.

ABSTRACT

In this thesis we introduced the Lightweight Coaedion Calculus based logic
programming approach to the programming model$efRlatform-as-a-Service cloud.
By using this approach, PaaS based cloud systerfisemable cloud application
developers to have more options to implement varlonds of programming models for
their distributed tasks. We built a prototype fravoek based on OpenKnowledge
middleware because the OpenKnowledge currentlyhés dnly framework that fully
supports the LCC based programming model. By adtdisk control and administrative
features such as automated task initiation, taglustquerying, task termination and
input/output message channel, we extended thenafigisage of the OpenKnowledge
framework and made it capable of being used to toactsPaaS cloud systems. The
automation level of the transformed OpenKnowledgenework is improved and its
original advantages are retained simultaneousllyofbur work reveals the underlying
mechanism of the next generation Platform-as-aiSereloud system which supports

logic programming.

DEDICATION

The thesis is dedicated to
those who enlightened me,

and to those who supported me.

ACKNOWLEDGEMENTS

First, | owe my deepest gratitude to my superviBor,Robert Kent, who guided me
as | stepped into the fantastic domain of distedutomputation, and provided great
patience, encouragement, guidance and support oexploration. Without his help
during a time of handicap, it would have been inggae for me to find a proper thesis
topic and proceed in the correct direction.

Besides my supervisor, | would like to thank thet i my thesis committee: my co-
supervisor, Dr. Christie Ezeife, Dr. Jianguo LudabDr. Gokul Bhandari, for their
encouragement, insightful comments, and hard curesti

| thank my fellow classmates of the School of Cotepiscience department: Paul
Preney, Lihua Duan, and Xin Wu, for the broad amddating discussions of emerging
state of art technologies and theories. In padicul am grateful to Xin Wu for
enlightening me with the first glance of a feasibégh.

| would like to thank my family: my mother-in-law iguang Zhong my wife

Lingru Li and other parents on both sides, for #meouragement and support both
spiritually and physically during these busy dagd aights. Last, | would send my deep
regret to my daughter, Caroline, for my losing tadbtime to fulfill my responsibility as

a father.

Vi

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY oottt ee e e iii
N 1S3 I 23 O PP v
DEDICATION .ottt ettt e et e e e e e e e e e e e e e e e s s s s brnneeeaeeeeeas %
ACKNOWLEDGEMENTS .o e et e e e eaaas Vi
LIST OF TABLES ... oottt ettt ettt e e e e e e e e e e e e e e e e e s s nnnnne s X
LIST OF FIGURES ...ttt a e e e aaaas Xi
1. INTRODUCTION. .. .utttiiiiiiiiiiiiiiiee e e mmmiibbb bt e et e e e e e e e e e e e e e neeeee s 1
2. BACKGROUND STUDY ...ttt e e s eaaa e e eaa e aen 4.
2.1 Contemporary PaaS Cloud.........ccooooiiiiiecceeeeeiceeeee e 4.
2.1.1 INTRODUCTION OF PAAS CLOUD ...cocttiiiiiiie e ieeeee e 4
2.1.2 LIMITATION STATEMENT ...ttt ee e e e e eeees 5
2.2 LCC and OpenKnowledge Framework............coooueeeiiiiiiiin e, 5
2.2.1 INTRODUCTION OF LIGHT WEIGHT COORDINATION CALCULUS
BASED MODELING TECHNOLOGYciiiiiiiiiiiiiie ettt e e e eeaainnn e e e e s e e e 5
2.2.2 TASK MANAGEMENT AND COORDINATION SUPPORTED BY OK
FRAMEWORK oeiiiiiiiiieeitis ettt s s e e e e e e e e atbb e e e e e e e ee e bea s saeaaaeeeaaeeenssnnsaeeeeeennes 7
2.2.3 LIMITATION STATEMENT OF EXISTING OK FRAMEWORK 8
2.3 Summary and Statement of Research Objectives.............ccccvvvvvvvvvinnnnnn. 9
2.4 Related WOTKcoooiiiiiiiit sttt e e e e e e s e s s e e e e e 10
2.4.1 IN THE DOMAIN OF CLOUD COMPUTATIONccoviiieeieeiiiiiiieeeeeeenns 10
2.4.2 IN THE DOMAIN OF AGENT SYSTEMS......coiii it 11
2.4.3 IN THE DOMAIN OF GRID AND P2P ..o, 12
2.4.4 SUMMARY oottt e et e et aaaeens 13
2.5 CONIDULION it 13
3. OPENKNOWLEDGE SYSTEM ARCHITECTURE AND
COORDINATION PROTOCOL ANALYSIS ...t 16
3.1 Lifecycle of an INteractionoovveuuiiiiiiii e 18

vii

3.2 Issues for Enhancing and EXteNdingccccccceeeoeeeie e 25

4. FORMALIZATION ...ittiiiiieeiiiiiit ettt e e e e et e e e e e s snstaeeaeeeeennseeneeens 28
5. DESIGN AND IMPLEMENTAIONouuiiiiii e 30
5.1 System ArChite€CIUIEoovvieiiieii e e 30
5.2 Design of Task Description Data StruCturecccee...ceeeeeeeeeeeeeeveeeeeeeiiiiinns 31
RGN B <1 T | 0)] 33
5.4 Extension made to the OKMaNAQErccemmmemieieeeeeeeeeeeeeeeeiiene s 40
5.5 Enhancements to the Role Allocation Procedure.............eevvveeviiiiinenennnnn. 41
5.6 Enhancements to the Interaction Complete Procedure............ccccceeeennn.. 41
6. EXPERIMENTAL APPROACH AND RESULTSccoiiiiii e, 43
6.1 Experimental Environment USAgEooicccceeeeeeeeeeviiiiiiineee e e e e e e eaeeeee 43
6.1.1 START THE ENVIRONMENT ...ttt e e eeaeees 43
6.1.2 SUBMIT A TASK ..o e et eea e e een e e ennnn e ennn s DT

6.1.3 AUTOMATED TASK ENROLMENTS AND SHOW TASK STATUS ...48

6.1.4 TERMINATE A TASK ..ot s 51

6.1.5 USER I/O MESSAGE CHANNEL VIA THE MESSAGECLIENT ARI....51

6.1.6 INVOKE A CHILD TASK WITHIN A RUNNING TASK ..o, 52
6.2 Performance ANAIYSISiiiiiiiie e 54

6.2.1 PERFORMANCE ANALYSIS VIA REAL TESTING ENVIRONMENT.. 55

6.2.2 PERFORMANCE ANALYSIS VIA SIMULATION. ... 57
6.2.3 SIMULATION OF SEQUENTIAL TASK PROCESSINGccccceeeeennen.n. 58
6.2.4 SIMULATION OF CONCURRENT TASK PROCESSING.....coccevvven.... 60
6.3 Concerns about Dead LOCKSc..veeie oo h.6
7. CONCLUSIONS AND FUTURE WORK ... e 66
A R 0o] 4 (ol [U1] o) ¢ 1R 66
T2 FULUIE WOOTK oo et 68
REFE R EN CES ... oot s ovese e e et e e e e e e e e e e e e e e e e e e ae e ee s ranarreeeaearaenenenns 70
AP P ENDICES .. .o e et 74

viii

Al. MAJOR ADMINISTRATIVE RELATED METHODS OF EXTENED

OKMANAGER AND OKMANAGERIMPLccooiiiiiiii e 74
A2. NEWLY ADDED MESSAGE TYPES ... 78
A3. TEST DATA COLLECTED FROM REAL EXPERIMENTS..................... 80
A4. SOURCE CODE AND EXPERIMENT DATA DOWNLOAD..................... 81
A5. LCC SPECIFICATION AND EXAMPLEooviimemeeieeienni 82
A6. OPENKNOWLEDGE COMPONENT EXAMPLE........cooimreiiiiieee, 85
VITA AUCTORIS L.ttt e e ettt e e e e e e et e e e e e ennanns 88

LIST OF TABLES

TABLE 1. COMPARISON OF TASK MANAGEMENT MECHANISMScivviniieiiieeeiineeeeineeenannns 13
TABLE 2. TASKDESCRIPTION RELATED OPERATIONS.uuiiittuieiitieeeetineeeeiineeeenineenennnens 33
TABLE 3. MAJOR METHODS OFT ASKMANAGERHELPER.......iititiiiiiiiiieeeiiin et 35
TABLE 4. MAJOR METHODS OHMIESSAGECLIENT AND MESSAGECLIENTIMPLcvvvnneeeeee. 38
TABLE 5. TESTING ENVIRONMENT ... ttttieeettieeeetinaesettnsesessnseeessmassnsssnesssnnsesesnnsesessnnanes 43
TABLE 6. SOURCE CODE TREE OF THE EXTENDE@K FRAMEWORK.......cctvvuiiieiineeeinnneeennns 44

TABLE 7. MAJOR ADMINISTRATIVE RELATED METHODS OFOKMANAGERAND

OKIMANAGEHRMPL ...ttt ettt ettt e et e et se s e e aeen e e e et e e eaa s e e ean s eeetneeeenanaaens 77
TABLE 8. NEWLY ADDED MESSAGE TYPES FOR TASK MANAGEMENT PURP@S.................. 79
TABLE 9. TEST DATA COLLECTED FROM REAL EX EXPERIMENTSuuiiirinieiiiineeeeiineeeenneeens 80
TABLE 10.DESCRIPTION OF FILES AND TRANSCRIPTS...ccutuiiiiieieineeeerieeeenieeeennnnnes 81

LIST OF FIGURES

FIGURE 1. OK SYSTEM COMPONENTS AND THEIR RELATIONSHIPS.........cooveiveiieinicereenneanes 16
FIGURE 2. LIFE CYCLE OFOK SYSTEM....ccuviiuietieiietieiteeeteeitesntesteesteeseessesseesseanaessaesrenns 19
FIGURE 3. [UML] SEQUENCE DIAGRAM FOR PUBLISHING AN INTERACTION MODEL.......... 20

FIGURE4. UML SEQUENCE DIAGRAM FOR SEARCHINGM AND ROLE SUBSCRIPTION....... 21
FIGURE5. UML SEQUENCE DIAGRAM FOR INITIATING AN INTERACTION......cvvveeeeeeeesennnns 22
FIGURE 6. UML SEQUENCE DIAGRAM FOR CHOOSING PARTNERS AND ALLOCATIS ROLES3

FIGURE 7. UML SEQUENCE DIAGRAM FOR STARTING AND TERMINATION OF AN

N 0 O L L 25
FIGURE 8. LOGICAL ARCHITECTURE OF THE PROTOTYPE TASK MANAGER.........ccuuveiennnnen. 31
FIGURE9. UML CLASS DIAGRAM OF TASKDESCRIPTION.cuuiiiitieeieiineeeiiineeeeineeeennne 32
FIGURE 10.UML CLASS DIAGRAM OFGP ...t e e 33

FIGURE 11.UML SEQUENCE DIAGRAM FORI/O REQUEST BETWEENDKC INSTANCE AND
TASK MANAGER ...vveivieieteeeseeeeeeesesatesssesasessseessesssssaseeessssssesesseeansesssesasesssseanees 39

FIGURE 12.UML SEQUENCE DIAGRAM FORI/O REQUEST RELAY BETWEENOKC INSTANCES
OF PARENT TASK AND CHILD TASK..u.eecvveeuveeeseeeiteessesessesssesessessssessessssssnsessssssnsessnns 40

FIGURE 13.UPDATED UML SEQUENCE DIAGRAM FOR CHOOSING PARTNERS AND
ALLOCATING ROLESvveeveeiteeeeteessesesseessesssesassessssssssassssssesasssssnsssssssssesssesssessses 14

FIGURE 14.UPDATED UML SEQUENCE DIAGRAM FOR THE TASK COMPLETING PROCESS 42

FIGURE 15. INITIAL RUNNING ENVIRONMENT OF GP.....cviiuiiiiiciecie et 45
FIGURE 16.1P AND PORT ALLOCATION OF INITIAL RUNNING ENVIRONMENT.........ccveevrenne.. 46
FIGURE 17.INITIAL RUNNING ENVIRONMENT OF GP....coviviiiiciecie et 46
FIGURE 18.SCREEN SHOT AFTER TASKHELLO WORLD” IS SUBMITTED(GP%).................. 48

Xi

FIGURE 19. SCREEN SHOT AFTER TASKHELLO WORLD” IS SUBMITTED(GPY).......ccc... 49
FIGURE 20. SCREEN SHOT OF HOW ORIGINAIOK WORKS WITH THE" DINING PHILOSOPHER
EXAMPLE . .ttt ettt ettt ettt e et et e e e et et et e e et e et et ennan e ean e 50
FIGURE 21. SCREENSHOT AFTER TASK“HELLO WORLD” INVOKED CHILD TASK “DINING
PHILOSOPHERS (GP) .ttt ettt e e e e e e e e e eeeeeennnnes 53
FIGURE 22. SCREENSHOT AFTER TASK“HELLO WORLD” INVOKED CHILD TASK “DINING
PHILOSOPHERS (GP.) ...ttt ettt e e e e e e e e e eeeeeeenenees 54

FIGURE 23. RESPONSE TIME WITH FIXED NUMBER OF PEERS AND CHANGBINUMBER OF

FIGURE 25. M IN, RATIO VS, THE THROUGHPUT. .eveee e e, 61

FIGURE 26. EXPANDED VIEW OF FIGURE25, WHICH SHOWS THAT THE THROUGHPUT HAS AN
UPPER LIMIT 1ot s aa e e 62

FIGURE 27.TASK SUBMISSION SPEEBTHROUGHPUT RATIOV/TP VS. AVERAGE RESPONSE
TIME T OF ALL DATA SERIES WITH UPPER BOUND AND LOWER BOUD ENVELOPE 64

FIGURE 28. EXPONENTIAL REGRESSION FUNCTION OF AVERAGE RESPONSBVE T BASED ON

FIGURE 27 e 65

Xii

1. INTRODUCTION

In recent years, a new service model called Cloocthputing [Buyyaet al
2009][Zhang et al 2010] has gained considerable interest and undergapid
development. Within this service model, resouraehsas CPU and storage capacity are
provided as general utilities that can be leasetiraleased by users through the internet
in an on-demand fashion. From the perspective efsyghe cloud is a kind of virtual
sandbox that hides the complexity of managemeiatildeidf internal distributed resources
and provide services at different levels: from itifeastructure level, which offers virtual
machine service; to the platform level, which dffeperating systems and application
framework service; and to the application leveljclhoffers specific software utility to
end users. In this thesis, we focus on the platiaser service, also called Platform-as-a-
Service (PaaS), which offers the service of a cdatpn platform that enables
application developers to submit and manage thvir distributed tasks to the cloud.

There are many tools and frameworks at this lelrat have emerged to support
distributed data storage and access and softwargrgmnming. Through a literature
review we found that, compared to the advances miadéata storage and access
measures, progress towards more effective supporipfogramming methodologies
offered by existing PaaS frameworks are relatiVielyjted. Due to the distributed nature
that cloud computing has, we focus our attentiorthi® concurrent system modeling
techniques.

In 2005, Robertsort al presented a new modeling technique that is c#fled.ight
Weight Coordination Calculus (LCC) [Robertson 2009]hey also presented a

middleware framework called OpenKnowledge [BtAal 2007] that provides application

developers a flexible way to define complex prograng models using LCC and also
provides basic support to deploy and execute spglications in a peer-to-peer based
overlay network.

We conducted research on exploring how to introdi€€ based concurrent system
modeling techniques to the domain of PaaS cloud pcvation by studying the
underlying working mechanism of OK, and found tbaé major obstacle is its lack of a
sophisticated management infrastructure that autsmnhe task deployment, launch of
interactions as well as the monitor and task comtactionality after the distributed task
is launched.

In this thesis, we constructed a task manager gymedramework by providing two
extensions to the OK framework to make it clouddsedaFirst, we extended the OK
framework’s computation model from the “submit-mahselect—subscribe—allocation-
run” model to the “submit-proactive select—subserdllocation-run” model by
introducing a new type of peer (GP) that has theelligence of detecting and
participating newly submitted tasks proactively.c@®al, we enhanced the task
management functionality of the OK framework by iadda task control console to the
peer so that user can monitor the execution staftibe distributed task and provide
intervention to the execution process.

The significance of our research lies on:

1. To the best of our knowledge, we believe that veethe first to introduce formal

concurrent system based modeling techniques (spabyfLCC) to the domain

of cloud computation. It is expected that cloud lejapion developers will

benefit from more selections enabled to desigrr thygplications and have more
controls on the distributed resources.

2. We provided partial solutions to management andrdination challenges
encountered during the construction of the prowtifamework. The method
we used to solve the challenges can be contribiatéde design of the future
generation cloud infrastructure that supports almmreputation models.

3. The open source OK framework coupled with the esiters and modifications
presented in our work can be used to support andum further research, and
we provided a benchmark for comparison againstéutanprovements.

The impact of this work is expected to change hlogvapplications are constructed
to utilize clouds. This will be achieved using thew features developed in this thesis
that support more complex coordination and negotigtrotocols.

The rest of the thesis is organized in this waycti8e 2 presents the background
study. Section 3 analyzes lifecycle of OK framewarkl proposes our enhancements and
extensions to the framework. Section 4 presentsidbration of the task management
model we extended. Section 5 presents the detdd#styn and implementation of our
approach. Section 6 demonstrates our experimemgtoaches and result analysis.

Finally, in section 7, we present our conclusiond some opportunities for future work.

2. BACKGROUND STUDY
2.1 Contemporary PaaS Cloud
2.1.1 Introduction of PaaS Cloud

According to [Zhanget al 2010], Cloud computing is a model for enabling
convenient, on-demand network access to a sharedl gfoconfigurable computing
resources (e.g., networks, servers, storage, agiphias, and services) that can be rapidly
provisioned and released with minimal managemeduottedr service provider interaction.
From above definition and the study of how exiswhgud system works, it demonstrates
that two important requirements that cloud managensgstem should solve are the
dynamically provision of resources for tasks andwh&ervice-Level-Agreement
established via negotiation [Buyyet al 2009]. Cloud computation works at three
different layers, infrastructure, platform and apgiion. At the level of platform, the
computation model delivers a computing platform/angolution stack as a service, i.e.
providing platform layer resources, including opierg system support and software
development frameworks, which is called PlatforraeService (PaaS). Typical PaaS
providers include Google App Engine [Google App Befj Aneka system [Chet al
2007], Apache HaDoop [HADOOP Project] and Microséfindows Azure [Windows
Azure].

From the aspect of software development, two factdrmajor concerns are how
data is stored and accessed, and how to desigrexprdss a distributed computation
within cloud. At the data storage layer, PaaS dopdovide technologies such as
distributed file system [Google GFS][HDFS] to prdeipersistent and durable storage for

applications in the cloud. As to how to expresssiributed computation within cloud,

the Aneka system [Chat al 2007] SDK enlisted three programming models that a
adopted as standards in all other PaaS cloud SDKs:

Task Programming Model: In this model, a distributed application is a
collection of independent tasks. The system dodsentorce any execution order or
sequencing but these operations have to be comphataged by the developer on the
client application if needed.

Thread Programming Model: This model provides fundamental component for
building distributed applications based on the emphof distributed thread. It allows
developers to have finer controls to a single tthrea

MapReduce Programming Model:MapReduce [Dean and Ghemawat 2008] is a
widely used programming model in PaaS cloud. Ivges a standard mechanism to split
task into partitions, map them to the worker nomtethe cloud, and then aggregate or

reduce the computation result and present it tetiteuser.

2.1.2 Limitation Statement

Compared to the data storage service methods,rtdgggonming models offered by
PaaS that developer can choose are still limitext. d&pplications that have complex
interacting role relationships, currently therelitde way of defining such interaction
model at abstract level. This situation gave usrtagivation to introduce LCC based

interaction model into PaasS.

2.2L.CC and OpenKnowledge Framework
2.2.1 Introduction of Light Weight Coordination Calculbased modeling technology

[Robertson 2005] defines the notion and syntaxhef ltight Weight Coordination

Calculus (LCC), and explains how to use LCC torethe message exchange protocol

among different roles scattered over a p2p netwOrke can refer to Appendix A5 for
detailed specification and example. In the resthef thesis, we use term “protocol” to
represent the interaction model defined using L@Gd use “OK” to represent the
OpenKnowledge framework.

The LCC based modeling originates from processutidlgliiner et al 1992], Actor
model [Agha 1986] and the study of role & sociarmdbased multiple-agent systems
[Robertson 2005]. Although LCC is used to deschiebaviour of agents in multiple-
agent systems, it has been proven through our weodtso possess significant power to
deal with other domain of applications.

From the aspect of business process standards, ékist two methods of automated
arrangement, coordination, and management of comptanputer systems, one is
orchestration, and the other one is choreogrape§ZR2003].

Characterized by workflow specifications like BPEIOASIS-BPEL 2007],
orchestration is a kind of collaboration, which dses on a common goal and has a
central coordinator that controls the involved jggraints and coordinates the execution
of their different operations. The involved papents do not need to have the knowledge
about their position in a higher business procé€sdy the central coordinator of the
orchestration knows this, so the orchestrationeistralized with explicit definitions of
operations and the order of invocation of the pgoéints.

On the other hand, choreography such as [W3C-WS-2004] is a collaborative
effort focused on a common goal, but there is mdrak coordinator (at least logically).
Each participant involved in the collaboration effknows exactly when to execute its

operations and whom to interact with.

The LCC automatically falls to the choreographyegaty based on its specification.
Compared with orchestration based collaboratioaretgraphy possesses the advantages
like:

® Fully decentralized nature make it suitable foitrdbsited environment with p2p

based fabric,

® Easier to achieve load balance and avoid singlet difailure.

However, the decentralized nature of choreograpdty adds the difficulty to implement

this collaboration pattern.

2.2.2 Task management and coordination supported by Gi#nework

The OK framework is a middleware that is designedupport deploy, launching
and interpreting distributed tasks with interactimodel defined in LCC. Taking the
advantage of a modeling language LCC that can bd tesdefine the interaction model
at abstract level, OK hides the underlying messafgy operation to the application
developer and provides a nice and neat way for ldpges to focus their effort on
defining: the role of peers, the business logieath role (implemented as class library
called OKC or OpenKnowledge Components) and the pegy interact each other. The
standard routine of running a task is (For detaiéesk lifecycle explanation at API level
please refer section 3.1):

1. User publish the interaction model defined in LA®@ aecessary supportive code

defined as OKC package (see Appendix A6 for example

2. Distributed participants subscribe to the roleshef published interaction model

and download the code needed,

3. The OK middleware selects from the subscribers iaitthtes the task runtime

environment, then handles the control of the tas& selected component called
Coordinator,
4. The Coordinator interprets the LCC and controlsrttessageexchange with all

selected role participants.

2.2.3 Limitation Statement of existing OK framework

By comparing OK’s standard routine of running &testhe internal requirements of
PaaS as mentioned in Section 2.1.1, which are digadlgn provision of resources for
tasks and Service-Level-Agreements establishedagatiation. One can see that the OK
framework already provides the provision and negioin mechanism to some extent,
which established a base for integrating OK middienmnto the infrastructure of PaaS
cloud. However, existing OK framework still havemitations that hinders this
integration:

Limitation one: limited management supports.

Existing OK framework only offers a small managemiaterface. However, it can
only satisfy the management requirements on aesipgér. Other than this, existing OK
framework does not offer task management supportaders to control and monitor the
status of their submitted tasks as well the compatiun mechanisms between the task
manager and its running task, or between one taslaaother.

Limitation two: the role subscription (step 2 in section 3.1) afrrent

implementation of OK is not automated.

1one thing need to be noted is that the term “ngeSsaentioned from here on is different to the ragss
mentioned in section 2.2.1. Due of the implemeatathethod as described in later section 3.1, th€ LC
“message” defined in section 2.2.1 is virtual mgssthat is semantically meaningful within the scope
coordinator's LCC interpreter itself. The “messageéntioned from here on is actual structured data
packages that are relayed between peer endpoints.

Limitation three: the coordination method (step 4 in section 3.1)cafrent
implementation of OK is based on centralized moddie distributed coordination
mechanisms depicted in [Robertson 2005] are ndizeshin existing implementation.
The centralized coordination model will increase thetwork traffic and make the

coordinator component itself a single point ofdad.

2.3Summary and Statement of Research Objectives

In section 2.1, we analyzed the limitations of gnegramming models that current
PaaS cloud supports, which reveals the significasfcenriching cloud programming
models using other programming methodologies sukHogic programming in the
concurrent systems realm. Based on our furtherysisain Section 2.2, we found that
LCC based logic programming approach is an ideadiickate for PaaS clouds because of
its choreography based nature. The underlying desfighe OK framework that supports
the deployment and runtime management of LCC baasskk already provides some
extent of provision and negotiation mechanism BedS cloud system requires. This also
makes it worthwhile to integrate OK into the Pa&&ud infrastructure. However, major
obstacles exist to achieve this integration. We reanzed three limitations in section
2.2.3 that reveals our objective in this integnatio

Statement of Research Objectives

The objective of our work is to demonstrate that ti€C based logic programming
approach, and its entire set of supportive mechan@ovided by OK framework, can be
integrated into the infrastructure of the cloudtfolan, through enhancing the provision
and negotiation mechanism of existing OK framewakd extending its task

management functionality.

In this thesis research, our practical goal idéostruct a prototype system that
provides for proving the concepts and establishiegchmarks of behaviour, while also
serving as a foundation platform for future reskakve focused on solving the first two
limitations in section 2.2.3, namely enhancementhaf management capabilities and
interface, and automation of role subscription. kmitation three, that deals with the
low efficiency problem of the centralized coordinat mechanism, since it does not
affect the runnability of the system we leave itoe®e major problem to be solved in

future optimization research.

2.4 Related Work

We surveyed task management solutions provided ibtridited computation
systems from different domains. Our goal is to eatd their pros and cons, and examine
if they have unique characteristics that can berrefl to and provide comparison in the

future evolution of our solution.

2.4.1 In the domain of Cloud computation

Related work includes the Aneka system [Céiual 2007]. As the producer
Manjrasoft Ltd. mentioned [Chat al 2007], Aneka is a platform for deploying clouds
developing applications on top of it. It providesuatime environment and a set of APIs
that allow developers to build .NET applicationattieverage their computation on either
public or private clouds. Like OK, it is a middlergathat provides a set of APIs that
support developers to build their own applicatiof& find that several of its components
have correspondences in OK system. The Aneka Skheduactually performing the
role that the OK Coordinator does, and the AnekachHtor is doing OKManager

functionality (which will be further explained irestion 3). The major advantage of

10

Aneka is that it provides a complete mechanisnmsémurity, management functions like
task monitoring and accounting, while the major kvgaint of Aneka is its lack of
methods to describe complex coordination betweerk wmits running on different
Executors at abstract level like LCC to OK.

Another related work is the Apache HaDoop [HADOQ®j&ct], which is an open
source software library that allows for the disttdd processing of large data sets across
clusters of computation and data storage nodeg @ssimple programming model. This
project is widely used in PaaS based Google afita The Cloudera Enterprise offers
a collection of administrative tools to enhance th@Doop’s functionality from the
aspect of Authorization Management & Provisionirfgesource Management and
Integration Configuration & Monitoring. The majoimitation of HaDoop is it only
supports the MapReduce [Dean and Ghemawat 2008]elmfmd its distributed

computation.

2.4.2 In the domain of Agent systems

A related work in the domain of Agent systems i® thADE (Java Agent
DEvelopment Framework) [Bellifeminet al 2001]. The JADE framework is running on
top of one or many containers (including one maintainer, additional containers are
registered to the main container). In each contatae register one or many agents and
each agent has a collection of behaviours thatnéefithe agent's task. The main
container has two special agents, one is Agent NEmant System that provides
administration and monitor service, another on®iectory Facilitator that provides
search and index service. Although JADE providemanagement mechanism, like

Aneka, one major weak point is that it still doed provide a way to enable user define

11

the interaction model in an abstract manner. Uskéhave to implement their interaction
model through implementing different behaviours anessage relay protocols at low
level. A later work based on JADE is WADE (Workflswand Agents Development
Environment) [Caireet al 2008], which provides the support of defining, ldgmg,

executing and fault management of workflow taskerav network composted of JADE
nodes. However, the workflow is expressed at Jalamsclevel and it is user’s

responsibility to deploy the activities to diffetagents.

2.4.3 Inthe domain of Grid and p2p

Related work on distributed task management on-foepeer network can be seen
on [Yanet al 2005] and [Yaret al 2006], which introduced the p2p-based decentrlize
workflow management system, known as SwinDeW. Blgigem combines grid (based
on GT4) and p2p (based on Sun JXTA) technologiak samulates the enactment of
business processes in a decentralized manner.aéitoithe way that OK allocates roles
to subscribed peers, SwinDeW assigns activitiekedglrocesses to suitable peers. As
workflow execution is coordinated by distributecee management and monitoring of
workflow execution becomes more difficult. To hamdhe management task, SwinDeW
implements a special, but centralized managemestthat communicates with ordinary
peers directly to obtain the related informatiomntpared with other related works, the
stated workflow management mechanism provided byBSewW is comparatively more
complete. What we want to explore is to construttaamagement mechanism over a fully
decentralized p2p network, while it still retailsthe management mechanism provided

by SwinDeW, and provide support for LCC based tasks

12

2.4.4 Summary

In Table 1, we compare the aforementioned threste@lworks with the current
OK framework and our proposed OK framework wittktasanagement extension. From
the table, we state once again that our goal éné&ble the OK based collaborate network
with enhanced process management, automated pratEdsyment and process
enactment along with the full advantage of LCC Hasg¢eraction model definition. The
features listed under the proposed OK with taskagancolumn can be viewed as a wish

list that needs to be implemented in our work.

Current Aneka PaaS JADE SwinDeW Proposed OK
OK Cloud / with Task
HaDoop Manager
Scope of| Local Whole Whole network Whole network| Whole
manageability network network
Formal LCC at| No Through WADE| XML process| LCC at
definition of | abstract - definition abstract level
Interaction level workflow builder | language
Model at instance level
Role Manual Work units| Agents distributed Activities Automatic
distribution distributed manually distributed
automatically automatically
Peer selection Automatic | Manual Manual Automatic Automatic
and process
enactment
Show task| No Yes, through Yes, through| Yes, through| Yes
running status Management | Remote monitoring and
and Intervene Studio / web | Management administration
the task process Agent service
Decentralized | Yes (weak)| No No No Yes
management

Table 1. Comparison of task management mechanisms.

2.5 Contribution

We list two contributions of our work:
1. Proposed a new concept of introducing LCC basent lpgpgramming approach

into the programming models of the PaaS cloud ideorto enable cloud

13

application developers to have more options to @mant various kinds of
programming models for their distributed tasks,

2. Built a prototype framework that proves this coricispfeasible and serve as a

platform to support future research.

Based on the objective stated in section 2.3, engdiototype of the extended OK
framework, the working scenario is a pool of peefth computation resources for
generic purposes (GP) cooperate each other. Taeetise prototype is runnable and
meets the PaaS cloud requirement of integration,swemarized a minimal set of
features need to be implemented listed as follows:

® Dynamic join of peers: new GP can join the netwaykamically.

® Fully decentralized management pattern. Each GP atdnas a management

console, which greatly lowers the management buodiéime whole system.

® User interface: each GP has a management consdleah accept and execute

users’ input, including task submit, show taskusgtaand terminate a task.

® Task detection: each GP routinely checks from tlsed@very Service for pending

tasks, decides if it has enough resources to paate the role of the task, and
subscribe to the selected role.

® [nput/output channel: redirect the input/outputuesis of roles on distributed

peers back to the management console or the pasat

In [Robertson 2004], the author proposed a brokedehas shown as below (5), (6)
that act as an extension of LCC. In this modeljentrole can request the broker role to
send the whole protocol of a task and then initzateé continue as the received protocol.

In this way, a client peer can acquire knowledgemfra broker peer and then act to

14

complete a specific task. No further achievemeragehbeen found be done in this
direction. In our experimental work, we realizecagrgario that can be seen as one step
toward this direction. Instead of transfer a whel®tocol, a task managed by our
prototype task manager can invoke a child task ulsas a newly published or existing
interaction model. The child task can communicaté 8 parent task and further interact
with the end user at the management console viaabitwe mentioned input/output

channel.

alclient(B), A) =
ask(send protocol(T)) = a(broker, B) + have task(T) then
inform(protocol(T, P)) < a(broker, B) then

: (5)
a(broker, B) ::

ask(send_protocol(T)) < a(client(B), A) then

inform(protocol(T. P)) = alclient(B).A) < protocol_for_task(A,T.P) (6)

In the following sections we will analyze how th& @amework works at
underlying level and we will demonstrate how toeext the framework to make it

capable to manage distributed collaborating pastner

15

3. OPENKNOWLEDGE SYSTEM ARCHITECTURE AND
COORDINATION PROTOCOL ANALYSIS

As shown in Figure 1, the architecture of the Olstegn includes many modules

which we discuss individually in the following [P&t al 20071]:

:Olher OK Peers:) :Olher DS Peers:

Ve OK Peer communicates
Pastry Middlgware
contains Pastry Pastry
Discovery | Storage
OKManager f *
uses § uses uses
| 85— ‘
' v ' v S R 158 o -
. = - o 25 DiscoveryService
Coordinator Component Subscription > Discovery <] €
Negotiator Repository Negotiator 8e Proxy - g 5] I \
I s Sa Ul © uses uses
Subscription % S s g ¥ ¥
b @ o
Repository =& User 2 Role Coordinator
uses Interface S Subscription | Subscription
manages coordinates /| [Manager Manager
Intepreter manages manages)
Application Layer
| y y v
intepretes OKCs Subscription | ?KC Note: components filled in gray are
Specs uStancos capable of communicating with other
J peers via the Communication Layer
Interaction .

Figure 1. OK system components and their relationships

® Interaction Model (IM)

The IM is a piece of script written in the LCC ¢armge which defines how
multiple roles collaborate between each other toplete a task. It can be published
to the p2p network and can be found by OK peers.

® OpenKnowledge Component (OKC)

The OKC is a class library that implements the iserprovided by the roles.

From the perspective of LCC language, it implemetite functionality of

16

constraints. It is mobile and can be publishechto Discovery Service (DS). Peers
that want to act as specific roles can find andrdoad proper OKC libraries the DS,
and use it to support its business functionalitgrumteraction initiated.

® OK Manager -OKManager

The OKManageris the class module that controls all other OKrpaedules.
Its functions include creating OKC instance from @QKC, delegating constraints
received from coordinators to appropriate OKC inst&a delegating all the
publishing, subscription and search actions.
® Coordinator

The Coordinator is the component dynamically alleddo a peer that interprets
the IMs and coordinates the communication with €aKIC Instances.
® OKC Instance dnteractionRunContext

The component generated after the peer is accépteldy as a specific role in
an IM, which contains the pointers to the OKCs mreedor solving all the
constraints in a specific run of an interaction.iriteracts with Coordinator to
complete the interaction.
® Discovery & Storage Service (DS)

The DS provides persistent storage for published #id OKCs and dynamic
storage to their descriptive information. It algores other information such as
available coordinators, roles for published IMsystribed candidates for roles etc.
Currently it is constructed based on Pastry [Rowstind Druschel 2001] based p2p
framework.

® Interpreter

17

The interpreter is a LCC parser that interpretsiihdy transforming it into a
parse tree. It determines which role is acting, clvhimessage is to be sent by
expanding, traversing and closing branches of tbe. tit also interacts with OKC
instances to collect results of constraints tordetee how to traverse the tree.

Like other peer-to-peer or agent based systemsOWenteraction is completed
based on message exchange. The basic componemtQK anetwork that can listen to
and handle the received message must implemeiidrttipointinterface. Eaclendpoint
has a unique URI calleBndpointiID Many above mentioned components including OK
Manager, Coordinator, OKC Instance and DS etc arved from theEndpointthat are
designated to handle specifically kinds of messdgesed on their functionality. The
module at transport layer that support the messaghange is called Communication
Layer.

From Figure 1 one can also see that the man&eMéanagey is the class module

that controls all the other modular components peer.

3.1Lifecycle of an Interaction

Figure 2 depicts our in-depth analysis about hosvinole OK framework works
based on the life cycle of an interaction. Theckfde of an interaction contains eight

steps, plus one initial step when a peer joinsdteork.

18

OKDiscoveryService

Figure 2. Life cycle of OK system

® Step 0: Peer Joins To The Network

This action is taken place betwe®Managerand DS. Whenever a peer joins the
OK network, it can choose whether it can be dynaitjicselected to act as the
Coordinator. If it chooses to behave like a Coaathn it will send the
RequestSubscribAsCoordinatmessage to the DS to register itself as a caredinfathe
Coordinator.
® Step 1: Publish An Interaction Model

As shown in Figure 3, the IM publishing action takgace betwee®KManagerand
DS when a peer in the network decides to publisava Interaction Model to the network.
The OKManager of the peer that wants to publish the IM sends a
RequestPublishiIMMessadge DS. The DS publishes this IM to the p2p netwaid
provides persistent storage to the published IMhRaublished IM will be assigned with

a unique Interaction Model ID.

19

OKManager Communication Layer DS

handlePublishiM

1
PublishIM through = !
DiscoveryProxy.PublishiM T—‘ RequestPublishiIMMessage

create PublishiIMHandler,
insert descriptor to FreePastry network,
| persistant storage of LCC

invoke callback registered in

1
1
1
1
l
1 -
1
1
i
a list called PublishCallbacks :

U

handleResultPublishMessage() ﬁ

ResultPublishMessage

Figure 3. [UML] Sequence diagram for publishing an interacton model

® Step 2: Search IM and Subscribe To Interaction

After an IM is published, it is discoverable to #ie peers in the network. The peer
can inquiry a published IM by search its name. Disewill return the Interaction Model
ID, descriptive information and all the roles ishd@hen the peer can decide which role it
can participate. Upon it decides which role to ipgoate; it uses the sequence described
in Figure 4 to subscribe to the role. This inte@acis taken place betwe€&dKManager

and DS.

20

O
n

OKManager Communication Layer

handleRequestiM

I
I
searchiM() [~~~ "~ ﬂ RequestiIMMessage

create IMQueryHandler,
query from FreePastry

- getRemoteAsynchronous()
handleAnswer()

Y
1
I
|

ResultSearchIMMessage
handleResultiMMessage -
SearchIMCallback.handleNewIms

SubscribeToRole: /ﬂ RequestSubscribeToRoleMessage
SubscriptionNegotiator for : handleSubscriptionToRole
peer selection :
SubscriptionSpec for | create SubscriptionToRoleHandler,
details of the subscription l insert subscription descriptor
invoke : _ | to FreePastry network,
DiscoveryProxy.SubscribeToRole 1 T

l DiscoveryResultMessage Subscription details are managed

- 1 by RoleSubscriptionManager

handleResultSubscribeMessage() B u\ :
invoke callback registered in | :
a list called SubscribeCallbacks : :

! 1

Figure 4. UML Sequence diagram for searching IM and role subsaption

When theOKManagerof a peer decides to subscribe itself to a rolamflM, it
invokes its SubscribeToRolemember function. Inside this function, an instarafe
SubscriptionSpeclass is created along with SubscriptNegotiatotinstance, which is
later used for peer selection. TBabscriptionSpemstance contains all the subscription
information and is sent via th&equestSubscribeToRoleMessage the DS. The
subscription information is then made discoveraldad is managed by the
RoleSubscriptionManager
® Step 3: Initiate The Interaction — Choose the Coorhator

As mentioned above, the roles of an IM can be suiEt by different peers over the
network. All the subscription information is maimead by theRoleSubscriptionManager
in the DS. TheRoleSubscriptionManageshecks if all roles of an IM is subscribed and

the interaction is ready to start. When the inteéoacis ready to start, it sends a

21

StartInteractionMessagéo a selected peer that is registered to be aidaedof the
Coordinator. After the peer that is selected as@berdinator received this message, it
goes into the bootstrap process (OK udgsotStrapCoordinatorto handle the

Coordinator’s bootstrap process).

OKMngr/CoordinatorNegotiator DS/RoleSubscriptionManager
| |
. . |
| Communication Layer
} check subscribed roles,
} -|— —] if InteractionModel.checkReady() then
| StartInteractionMessage invoke notifyCoordinator, which selects
! a coordinator and send
StartinteractionMessage

BootStrapCoordinator.bootstrap ﬁ

Figure 5. UML Sequence diagram for initiating an interaction

® Step 4: Choose Partners

This interaction happens between th8ootStrapCoordinator and the
SubscriptionNegotiatoof subscribed peers via mess&pectPeersMessagk belongs
to the peer election process. TigelectPeersMessageontains the subscription
information of all proposed peers. It is first séram BootStrapCoordinatotto each
SubscriptionNegotiatorThe SubscriptionNegotiatoof each peer uses its own experience
to select peers it is comfort to interact with gs@K provided trust model interface. The
subscription information of selected peers is @laoked into &electPeersMessagad
is sent back to theBootStrapCoordinator. Each time wupon received the
SelectPeersMessagethe BootStrapCoordinator uses haveAllSelectRequestsReplied

function to check if all subscribed peers are explilf all subscribed peers are replied, it

22

uses the list of agreed peers to find out a muwtuaimpatible team of peers to run the

interaction. And then starts to allocate the rotethe team of peers.

® Step 5: Allocating Roles

The BootStrapCoordinatorsends CommittedRequestMessade selected peers.

When theSubscriptionNegotiatoof a selected peer receives the message, it taer ei

choose to accept the request, which means thatl ifoim the interaction, or choose to

reject the request. If the negotiator selects tepicthe request, it will create the runtime

context of the role on the peer as well as the raiaic module that is used for

monitoring and auditing purpose. The runtime contexalso called the OKC instance

that has a new endpoint id. It will be used torate with the Coordinator during the

BootstrapCoordinator

Communication Layer

agreeTeamWithPeers

handleAgreedTeam

if haveAllSelectedRequestReplyed
CreatelnteractionTeam
askCommitment

handleCommitment
or
handleRejection

After all SubscriptionNegotiators B
have been contacted, invoke
processCommittedList()

create instantiated subscription
list that contains endpoint ids
of OKC instances

invoke Coordinator.coordinate()
method to start interaction

SelectPeersMessage

SelectPeersMessage

CommitmentRequestMessage

CommittedMessage or RejectCommitmentMessage

1]

InteractionConfigurationMessage

Select peers

based on Accept policy,
either acceptRequest or rejectRequest

if acccept, create OKC instance with type
InteractionRunContext, send new endpoint id
to Coordinator; create Diagnostic module

for auditing and monitoring purpose

fireSubscriptionAccepted, fire events
to all listeners that the subscription

is accepted and interaction is ready

Figure 6. UML Sequence diagram for choosing partners and atating roles

interaction (solving constraints requested by Coatdr). A ComittedMessag®r a

RejectCommitmentMessagdl be sent back to thBootStrapCoordinatoafter the peer

23

accepts or reject the commitment request. As toBib@StrapCoordinatorafter it has
accepted committed message from all the selected, b will invoke theCoordinator’s
coordinatemember function, which starts the interaction.
® Step 6: Start Interaction

The Coordinator usesLCClintegreterthat is a LL parser generated by [JavaCC] to
interpret the LCC interaction model. By executihg iM, the Coordinator determines
which role is switched to the current role and Wwhaonstraint is going to be solved.
When theCoordinatorneeds to resolve a constraint, it seBds/eConstraintMessagde
theInteractionRunContexnstance of the peer that is allocated with trecsje role. The
constraint is solved remotely and the result ist desick to Coordinator via the
SolveConstraintResponseMessdg®m here we can see that the current OK kersest u
orchestration to handle the interaction at fundaaldevel. The Coordinator is the one
that actually owns the conversation. Solving thest@int remotely is similar of
invoking web services from service providers. Thereography only happens at abstract
level. A difference of OK based orchestration verB®PEL based orchestration is that the
OK Coordinator is dynamically allocated, which pies room for future improvements
on fault tolerance and load balancing optimizagtm
® Step 7: Interaction Terminate

The Interpreter on theCoordinator determines which role is completed. When all
roles are completed and there is no next role ecr@e, the interaction goes into the
terminate state and gets into the shutdown process.

® Step 8: Interaction Feedback

24

The shutdown process fir@seractionEndedevent to all its listeners, which causes

sending InteractionCompletedMessag@o InteractionRunContextinstances of all

participated peers and

fires up

the cleanup process each peer. The

InteractionCompletedMessag#so contains the status information on @mordinator,

hence peers can determine how things going on gitiim execution of the IM.

Coordinator

coordinate()

for each role,
Intepreter.addinstance(OKC,role,args)

Intepreter. Startinteraction

Communication Layer

OKM/InteractionRunContext

SolveConstraintMessage

handleMessage -

Interaction complete -
shutdownInteraction

SolveConstraintResponseMessage

|

|

|

I invoke subscribed OKC member
L — — functions to solve the constraint

ﬁ

InteractionCompletedMessage

cleanup registrations ﬁ

Figure 7. UML Sequence diagram for starting and terminationof an interaction

® Step 9: Learning From Interactions

This is an optional step. As participated peersrearive abundant information from

Coordinator about the execution of the IM, they oae this information to adjust their

future behaviour autonomously.

3.2lIssues for Enhancing and Extending

Based on the lifecycle analysis of the existing @&mework and the proposed

features mentioned in section 2.5, we proposedetxtensions and three enhancements to

the OK framework:

® [ntroduce the concept of task coupled with a newa dstructure called

25

TaskDescriptiorto the extended OK framework

A task represents one execution of an interactiondeh It uses a
TaskDescriptionnstance to record all of the information of itdernal state. Each
TaskDescriptionhas a unique task id. It contains the referencéhéointeraction
model and the descriptive information of the regdircollection of OKCs. The
TaskDescriptiorinstance retains all the runtime status of theciitle of a task from
pending, running to termination. It is publishabled is discoverable by participant
peers.
® [ntroduce a new component to the framework calleddsic Peer (GP)

The GP component acts at the top most layer ofea ipethe p2p environment.
At one hand, it provides a management console idlbahe end user’s input/output
requirements, which includes a command parsertégret task submit, task status
guery and terminate task commands, and also prewiderface for user to provide
input for a participant of running task and displaytput information of a remote
task participant to the management console. Onother hand, the GP routinely
inspects the DS and tries to find pending taskshich it can participate potentially.
Upon finding a matching task, the GP selects a baked on its own resources and
subscribes the role to the DS, and let the OK fraonk to select and execute the
interaction.
® Enhance the task management mechanism to the ngxisbntrol manager

(OKManage}

The management functionalities of above mention®&l i& supported by an

extendedOKManager which contains an enhanced message relay ineer@ertain

26

types of messages for the administrative purposedded. Detailed message types
are defined in the following categories: task pstplitask status query, updating task
status, task termination and inter-task commurocati
® Enhancements added to the coordinator allocatiooggiure (Step 3)

Upon the coordinator of an interaction is selectdte TaskDescriptiomeed to
be updated to reflect the allocation of the Coathn
® Enhancements added to the role allocation procg@iep 5)

Upon a role is allocated to the subscriber of ititeraction of a task and the
OKC instance is created, thEaskDescriptionneed to be updated to reflect the

creation of the OKC instance.

27

4. FORMALIZATION
We define the distributed task as
T = {Tig, pm, R, Ps, RP} (7)

WhereTq is the unique identifier of the tasgy, is the peer from which the task is
submitted;Rs is the set of roles that the task definBd= {r4, r2, ..., k}; Psis the set of
peer variables that represent the peer for thetoolein,Ps = {P1, P;, ..., R }; RPis a
subset oRs x Ps, which contains a set of tuples like, P1), (r2, P»), that we call agents.

We useT’ to represent the instantiated task, i.e. the &ftdr deployed to the
network that is under running state.

T'={Tia, pm. C, R, Ps, RP’} (8)

Where theTiy andp,, are same as aboVg,is the id of the allocated coordinator for
the interaction,Rs is the same set of roles as defined above (Weupressach role
contains all the information at implementation lewehich is defined by OKC class
library. When a role is deployed to a peer, the OisGdeployed to the same peer
accordingly),Ps is the set of peer ids that are allocated todsk.Ps = {p1, p, ..., p },
we use lower case characters to represent id aalapeers that are constan®P’ is a
subset ofRs x Ps', which contains a set of tuples like, p1), (r2, p), that we call
instantiated agents.

After a task is submitted from GP running at pggrits roles will be automatically
subscribed by a group of listening GPs. The tas&liement is the process of instantiating
Pi O Pstop OPs and instantiatingri, P) O RP to (ri, p) O RP’. The difference
between the original OK framework and the extend&dframework is that to the latter,

the instantiating process is automatic.

28

A role r; of taskT can decide whether to redirect user input/outpquest to the
task’s management consqgdg or handle the 1/O request on logal depending on if it
uses provided API to handle the user I/O requéghelrole decides to redirect user’s I/O
to the task’'s management console, the user I/Cestdhat generated @t, p) ORP’ will
be relayed tgnvia the extended message interfac®©&Managerand the management
console apny, will act as an 1/0 broker to collect input or depoutput to the end user. If
the taskT’ = {Tiq, pn, C, R, Ps, RP’} is the child task of another ta$ky = {Tigo, Pmo, Co,
Rso, Pso, RP’g}, when the message of I/O request is relayed tandmreagement console of
T atpm, it will be cached in a message queue insteacewigbprocessed. The running
instantiated agerfty, px) ORP’gthat belongs to the parent task can inspect thisechltO
request and either process the request and sendptlieback ta(r;, p) ORP’, or it can
relay the 1/0 request to the parent task’s own rgameent console @, hence a chain of
message relay channel is formed and user at thagearent console of the parent task

can control the execution processes of both theaad its child tasks.

29

5. DESIGN AND IMPLEMENTAION

5.1 System Architecture

The proposed system architecture of the task mamagiesystem is shown in Figure
8. The entire system contains a collection of Geneeers. Each peer itself is a Java
application running on the same or different maekin

After a GP is launched, it automatically joins tregwork. All GPs are running based
on the same code base that enables them either éorbbanagement console or a role
subscription listener. Therefore an end user cam#wnew tasks and query task runtime
information at the management console of any GI&PAcan subscribe to one or many
roles of one or more tasks, depending on its ovpalmidity such as computation power,
resources etc. After it subscribes to the rolepaiticipates in the interaction lifecycle
depicted in section 3.1. From here on, we callGfefrom which task is submitted as
the task manager of tagk and other GPs that participate with tdsks participant GPs
of T.

The whole system is implemented using Java progiamianguage (JDK 1.5 or

above).

30

~ OpenKnowledge
’/ " Discovery and Storage Service

Discovery
e Service

Generic Peer
- task submitted
from here

, Generic Peer - available

Task Manager

Inside a Generic Peer

Participant Generic Peer Management Console
Inside a Generic Peer - allocated roles

Subscription Listener

Subscribed roles for |— @

Subscription Listener user Srl;lbr:“litted task: 7
P

Subscribed roles for

user submitted task;: | —— @
Fy g T—@

Management Console

External Services
database, web services etc

User deployed OKCs

Figure 8. Logical architecture of the prototype task manager
Below is the detailed design of the task managemsystiem.

5.2Design of Task Description Data Structure

The TaskDescriptiordata structure is used to record the status eofbanited task.
EachTaskDescriptiorinstance retains all runtime status of the liféeyaf the task from

pending, running to termination. It is publishahled is discoverable by participant peers.

31

TaskDescription

-TaskID

-Parent TaskID

-Task description : string(idl)
-Interaction Model ID
-OKManager EndpointID

-Coordinator Endpoint|D TaskOKC

-Status -OKC Description : string(idl)
+createTaskID() ® -Role

+setCoordEPID(in coordEPID) -SubscriptionNegotiator Endpoint|D
+clearOKCs() 1 * |-OKClInstance EndpointID
+addOKC(in Role, in Description) +setinstanceEPID(in instanceEPID)

Figure 9. UML Class diagram of TaskDescription

TaskDescriptiorrelated operations are defined as follows:

Operation

Description

Create task

Th&askDescriptionnstance is created upon a task is submitted. Upon cre
the status is initiated 8&ENDING and the set of askOKCreflects the minima
set of required OKCs to support the running of the tAskhis time, because th
interaction is not started, the CoordinaEordpointIDis null, the OKC Instanc
EndpointID of eachTaskOKCis also null.

ation,

1%

Publish task

Upon task submission, its search criterigraiandpointID of the OKManager
are published to DS and are discoverable. The effeCagkDescriptioninstance

is stored at th©@KManagerfrom which the task is submitted.

Search task

Query the DS by using criteria strings, obt@i®KManagerEndpoint from
which the task is submitted, and then query fronQK&anager

Update task statu

5 During the lifecycle of a task, theaskDescriptiorninstance is always updated
reflect the current task status:
® The CoordinatoiEndpointID will be updated when the interaction
ready to start, with the selected Coordinat&rslpointiD,
® The correspondingTlaskOKCs OKC Instance EndpointiD will be
updated when the OKC instance is created.
® The status of th@askDescriptionwill be changed taRUNNING when

interaction is started.

to

S

32

® The status of th&askDescriptiorwill be changed t€ OMPLETEwhen
interaction is completed

After the TaskDescriptiorinstance is updated, it will be written back to the list of

running task of th©KManagerfrom which the task is submitted. When the task

is completed, the instance will be taken away from the listrfing tasks of the

OKManager

Table 2. TaskDescription related operations

5.3 Design of GP

The Generic Peer is the top level program of ther @gplication that runs as an

autonomous peer. It contains a group of classhkerasidded to the OK kernel or extended

from the existing classes of the OK kernel. Thessldiagram of the Generic Peer can be

referred to as Figure 10.

<<interface>>

org.openk.peer.Peer

org.openk.core.module.Userlnterface|

java.util. TimerTask

JAN 7N %
mysP <<uses>> myTask
-currentGP : myGP
-timer ——————————>
-+init() +run()
+main() |
/ 1 <<interface>> |
<<interface>> / MessageClient |
OKDiscoveryProxy / OMManagerimpl
+searchTask() / |
+searchiM() |
+searchOKCs() / +searchTask() -
+subscribe ToRole() PN se€s~>—+searchiM() MessageClientimpl <<us.es>>
+publichIM() 1 ‘ 1 +searchOKCs() |
+publichOKC() / +searchTaskFromOKM() +Input()
+publichTask() / +updateTaskTOOKM() +Prompt() |
+downloadOKCcode() / +removeOKC() +checkChildConsolelO()| |
+TaskCompleted() +downloadOKC() +answerChildinput()
/ +subscribeToRole() |
/ +getParticipated_tasks() |
+getTasklist()
/ +requestConsolelO() < |
/ +inspectConsolelOFromOKM() -~ S<uses>>> |
v +publishIM() \\ o
+
GPManagerConsole +gﬁg:::ﬂ$a§i8 \\ TaskManagerHelper
- 1 _
+processCommands() <<uses>> +tmSubmitTask()
+processRunCommand() +tmShowTask()
+processKillCommand) m — — — — — — — — — — — — — — — +tmTerminateTask()

+processShowCommand()

Figure 10. UML Class diagram of GP

33

+selectAndSubscribeRole()

The myGP class is a new class introduced as the main emdrari the peer
application.

It has two functionalities. The first function 8 tise a timer to schedule a timer task
that checks the DS regularly in order to find attérapt to participate newly submitted
tasks, by invoking methodaskManagerHelper.selectAndSubscribeRdlbe second
function is to use clagsPManagerConsol& construct a user interface, interpreting user
submitted administration commands.

In order to make the extended code more manageaixe,introduced the
TaskManagerHelpeclass that provides a group of static functiorat Hre used for task
managements. All these functions provide synchezhinterface to their callers. Major

methods include:

Method Description

tmSubmitTask Submit a new task.

Parameters:
mgr — reference t&OKManagerimpinstance
taskname — string of task name,
im — string of the interaction model defined in LCC,
okcs[] — array oOKCDescription
ptid — task id of parent task if has one

Returns:

A TaskDescriptiorinstance

tmShowTask Query the task running status and print out.
Parameters:
mgr — reference t&OKManagerimpinstance

taskname — string of task name

tmTerminateTask Terminate a task.

Parameters:
mgr — reference t&OKManagerimpinstance
tasked — id of the task to be killed

34

force — Boolean value to specify if the kill is a forced kill

selectAndSubscribeRolelnspect a newly submitted task, select proper role and subseribe role.
Parameters:

mgr — reference t&OKManagerimpinstance

td — theTaskDescriptiorof the task to be inspected
Returns:

A SubscriptionSpeinistance — the data structure that records the

subscription of a role

Table 3. Major methods of TaskManagerHelper

The pseudo code for task submission is as follows:

Procedure tmSubmitTask (ManagerPeer, TaskName, IM, OKQgnpEid)
returns TaskDescription

Begin
T := new TaskDescription(generateTaskID(), TaskName);
T.okmanagerEpid := ManagerPeer.EndPointID;
Publish IM to DS if IM not published, set T.imidid=of published IM or existing IM;
For each okc in OKCJ]
Begin

Publish okc to DS if okc not published; register okc 0TESkOKC list;

End;
ManagerPeer.TaskList.add(T); // Register T to localdfstubmitted tasks
Publish T to DS;
Return T;

End

The procedure for display task status is fairlygenthe pseudo code is:

Procedure tmShowTask (ManagerPeer, taskname)
Begin
tset[] := searchTaskFromDS; // get list of publishedks.
For each tin tset[]
Begin
TaskDescription tdescr := searchTaskFromOKM(t); // gektdetail from task

/ manager
Print(tdescr);

35

End;
End

The pseudo code for task termination is as follows:

Procedure tmTerminateTask (ManagerPeer, taskid, isforce)
Begin
tset[] := searchTaskFromDS; // get list of publishedks
For each tin tset[]
Begin
If t.taskid = tasked Then
Begin
M := createTaskCompletedMessage(t, force);
Send M to t's Coordinator;
/* Upon received M, the coordinator will perform alkthesource release works
and send InteractionComplete messages to all thecjpantits of the task */
End;
End;
End

The pseudo code for task enrollment is as follows:

Function selectAndSubscribeRole (ManagerPeereflirns SubscriptionSpec
Begin
IM := searchIMFromDS(T.taskname);
Select role to subscribe based on IM’s role semantics @lstsption status of
T.TaskOKC[];
OKCDescription okcdes := searchOKCFromDS(selected T.taskOKC);
Download OKC code from DS and save it to local OKCaste;
/I Subscribe to the selected role from DS
SubscriptionSpec s := subscribeToRole(selected role, okcdes);
I/ register endpoint id of the SubscriptionNegotiatoseliected role
T.taskOKC.subscriberEPID := s.subscriberEPID;
Return s;
End;

tset[] := searchTaskFromDS; // get list of publishedks.

For each tin tset[]

36

Begin
TaskDescription tdescr := searchTaskFromOKM(t); // gektdetail from task manager
SubscriptionSpec s := selectAndSubscribeRole(self.mamdgscr?;
If sub <> null then
Begin
/I update task subscription information back to taskager
updateTaskDescriptionToOKM(tdescr, s);
Register tdescr to local list of participated tasks;
End;
End;

It is possible to consider several algorithms taldeith the role select and
subscription problem. In this thesis we have setbsimple algorithm to let participant
GP decide which task and role to subscribe. Theo@¥ considers two factors to decide
the role subscription to ensure that a task camibiated upon minimal running criteria
has been reached.

® [f the maximum number of subscription has reached;

® |f the minimal number of requested subscriptiona oble has reached.

More sophisticated selection algorithms that cagrsidad balance and performance
optimization will be introduced in the future verss.

The MessageClieninterface and its implementatidviessageClientimgk the client
API that provides synchronized interface for ini@sk and task/manager communication.

It contains the following 4 methods:

Method Description

Input Redirect user input request to the task’s managemerdleam®rder to get
user’s input.

Parameters:

prompt — string to be displayed to the user

37

defaultval — string of default value to be displayed to e u
Returns:

Input string provided by end user

Prompt

Redirect output request to the task’s management console.
Parameters:

prompt — string to be displayed to the user

checkChildConsolelO

Called by parent task to contact the manageomsaie of child task to ge
the next cached I/O request message.
Parameters:

childtsk —TaskDescriptiorof child task
Returns:

CachedRequestConsolelOMessagessage

t

answerChildinput

Send response to the role of childgaskwho sent the 1/0O request mess
Parameters:

origRegMsg — originaRequestConsolelOMessagessage send by role

child task

ret — string to be returned

hge.

Table 4. Major methods of MessageClient and MessageClientfph

Figure 11 displays the time sequence of howltipait and Prompt methods work

between an OKC instance of a role and the task'sagement console. The Task

manager'sOKManager acts as a server by responding /0O requests semt OKC

instance of participant GPs.

38

Task manager's OKManager OKM of participated GP InstanceOKC

| |
Communication Layer ! }
| |
| |
1 1

RequestConsolelO()

~

RequestConsolelOMessage Console I/0 request: ﬁ

Prompt information to user,
ask for user input if request input

handleRequestConsolelOMessage ﬁ

MessageClient.Input
MessageClient.Prompt

ResultConsolelOMessage

—

handleResultConsolelOMessage ﬁ

ConsolelOCallback.handlelO

Figure 11. UML Sequence diagram for 1/O request between OK(hstance and task manager

Figure 12 displays the time sequence of how theckChildConsolelOand
answerChildInputmethods work between OKC instances of parent aaskchild task.
The inter-task /0 request process uses simplifieaducer/consumer design pattern.
Like Figure 11, the participant GP of child task&d/O request via it©OKManagerto its
task manager©©KManager Instead of generating user interface and protesd/O
request, the task manager of child task noticetth®arequest is sent by a child task and
simply caches the request in its local queue, hémeeequest will be hold and wait for
the inspection & process request sent from paeskt fThe OKC instance of a participant
GP that belongs to the parent task can initiatequest to inspect its child task’s 1/10
requests. The inspection request is sent to tlkenmtamager of child task. The 1/O request
is then de-queued and returned to the OKC instahparent task. One thing to be noted
here is that the result message of the 1/0 reqaesint back directly from the participant
GP of parent task to the participant GP of childktaand the response message
ResultColsolelOMessagaust retain the original request handler inforovatso that the

OKManagerof child task’s participant GP can find the manghcallback function to

39

OKM of participated GP
of parent task

checkChildConsolelO ﬁ

~

OKM of participated GP
of child task

Task manager's OKM of
child task

handleRequestConsolelOMessage

cache I/0 request

1
:Communication Layer!
IRequestConsolelO()

< _ ReguestConsolelOMess; “

InstanceOKC of child

task

T
|
|
|
1
|
i

[} . .
! Communication Layer

inspectConsolelOFromOKM()

> |

" ‘InspectConsoleIOMessag

ResultinspectConsolelOMess

v 4, @

1
ge

F

) spectConsoIeIOCaIIback.péndIelO()
answerChildInput() 7
| / |

4 i
getCommunicatignLayer()
1 yi !

>

/s

ResultConsolelOMessage

handleResultinspectConsolelOMessage ﬁ

Figure 12. UML Sequence diagram for I/O request relay between K instances

711

; ConsolelOCallback.handlelO

/
/ |
/ 1

handleResultConsolelOMessage ﬁ

of parent task and child task

Console I/O request:

MessageClient.Input
MessageClient.Prompt

handle the returned message. From Figure 12 on@lsamotice that the top-level API

that directly called by OKC instance uses synclmexhi pattern and the underlying

communication between differel@KManagersare working under the asynchronous

mode.

5.4 Extension made to the OKManager

Both TaskManagerHelperand MessageClientimplclass uses the extended

OKManagerinterface to complete their functions. We extelnel tnanagement interface

and its implementation to handle the task managem e I/O redirect functionalities.

The extended functionalities

include a collectioi methods that are used

asynchronously based on listener design pattermeessage relay between peers. Major

40

extended methods can be referred to from Appendixahd the detailed description of

messages used by these methods can be referreditd\ppendix A2.

5.5Enhancements to the Role Allocation Procedure

BootstrapCoordinator ‘ OKMngr/SubscriptionNegotiator ‘ OKMnagr of Task Manager
| Communication Layer |
|
agreeTeamWithPeers [N\——~ m SelectPeersMessage 1| Selectpeers
L -
T
handleAgreedTeam N ! SelectPeersMessage /‘ ‘ B
-~ based on Accept policy,
u either acceptRequest or rejectRequest
if haveAllSelectedRequestReplyed 1\ !

I
i
I
' if acccept, create OKC instance with type
I
I
I

CreatelnteractionTeam : -
é ’ InteractionRunContext, send new endpoint id
askCommitment ﬂ CommitmentRequestMessage to Coordinator; create Diagnostic module
B | | for auditing and monitoring purpose;
handleCommitment ! Commi RejectCommi

*newly added:

or X
handleRejection u |
i

I I

After all SubscriptionNegotiators B ﬂ |
have been contacted, invoke !
processCommittedList()

I
I
I
I
I
I
I
I
I
|
I
|
I
I
I
I
I
I
I
I
I
I
}
|
if acccept, update EndpointiD of OKC !
instance and EndpointID of Coordinator I
I

I

I

I

I

I

I

|

I

|

I

|

I

I

}

i

InteractionConfigurationMessage to the subscription specification.

create instantiated subscription
list that contains endpoint ids

of OKC instances to all listeners that the subscription

is accepted and interaction is ready

local submitted task list

U fireSubscriptionAccepted, fire events ﬁ

update TaskDescription to ﬁ

method to start interaction RequestUpdateTaskMessage

i

i

i

i

|

i

! T

| |
invoke Coordinator.coordinate() ! updateTaskDescriptionTOOKM -

i

i

| ! ResultPublishMessage

i

i

i

|

i

Figure 13. Updated UML sequence diagram for choosing partme and allocating roles

In order to keep the task status updated, we neatithe role allocation procedure by
introducing an update task description messagey rgbeeration to the time sequence.

Updated time sequence diagram is shown as Figure 13

5.6 Enhancements to the Interaction Complete Procedure

Figure 14 demonstrates how message propagates tliemGP that sends the
TaskCompleteMessage the task’'sCoordinatorand then sends to the task manager and
all participated GPs. This sequence is added talitgram of starting and termination of

an interaction described in Figure 7.

41

OKM of any joined GP || OKM of Task Manager || Coordinator OKM!/InteractionRunContext

T T
| |
|

T
|
|
! ! Communication Layer
tmTerminateTask TaskCompIeteMessage }

|

‘ ‘
} TaskCompletedMessag
‘ /

< m\ InteractionCompletedMessage
unregister task from local /

submitted task list 7

T
|
|
|
|
|
|
|
|
|
|
|
)

/

cleanup registrations
unregister task from local
participated task list

| |

| |

t |

| |
| | |
} sh‘mtdown Interaction }
| | |
| 1 |

Figure 14. Updated UML sequence diagram for the task compliety process

42

6. EXPERIMENTAL APPROACH AND RESULTS

We discussed all aspects of the experimental wavklved in this thesis. In the

following subsections we first demonstrate the ak¢he prototype framework in the

order of. the experimental environment, task subioig task enroliment, task

termination, and message channel and parent/cagl interaction, then discuss the

performance analysis based on the experiment ctediugn real environment and

experiment conducted via simulation.

6.1 Experimental Environment Usage

6.1.1 Start the Environment

We construct the testing environment on two machaseshown in Table 5:

Machine 1 Machine 2
Configuration CPU: Intel T5670 Duo CPU 1.80GHz | CPU:
MEM: 3GB MEM: 768MB
OS: Windows Vista Ultimate OS: Windows XP SP2
Java: JDK 1.60 Java: JDK 1.60
LAN: 100Mbps LAN
Usage Discovery Service'hode, GP Discovery Service™ node, GR

Table 5. Testing environment

The source code of the prototype can be downlo&ded the SVN server described

in Appendix A4 or be requested via the author’s ierfiable 6 displays the source code

tree of the extended OK framework:

JstartDiscovery.cmd

or ./startDiscovery.sh

File for launching the Discovery Service. Files with extensiomd”
are for WINDOWS platform. Files with the “.sh” extension arelfinux
platform. Classorg.openk.service.discovery.StartDiscoveryAndSto

is the main entry.

JstartGP.cmd
or ./startGP.sh

File for launching the GP application.

Classorg.openk.core.tm.impl.myG® the main entry.

43

age

JstartOK.cmd on File for launching the original OK Manager. We still use tpglication

startOK.sh to build OKC packages or do some testing work.
Class org.openk.core.management.impl.OKManagerinmpl the main
entry.

Jbuild/ Folder for the destination of the compiled files

Jconfig/ Folder for configuration files, frequently usédd include:

defaults.propertiesmain resource file for OK framework.
logging.propertiesresource file for log4j configuration, used to set the

logging preference.

./FreePastry-Storage- FreePastry generated folder for cached files, used by DS.

Root/

b/ Third party library (jar) files that should be adtlin the Java classpath

Jlog/ Directory of log files.

Jres/ User interface related resources for testing application.

Jsrc/ Folder for all source code files of OK framework. iWade changes tp
the following three sub folders.

Jsrc/discovery/ Source code for Discovery Service. Changes areoméites under this

folder for new publishable resource types.

Jsrc/src/ Source code for the OKManager and GP client application
Most of the extensions are added to under dhhg.openk.core.tm

namespace.

Jsrc/storage/ Source code for persistent storage of publisbéd OKCcode used by
DS. Changes are for the purpose of improving the systabilist by

upgrading the version of FreePastry based p2p communicatyen
from 2.0b to 2.1.

Jgettingstarted/ Folder of applications for demonstradioeh testing purposes.

Table 6. Source code tree of the extended OK framework

Figure 15 displays the initial running environmetthe first testing machine. We
can launch the Discovery Service by running thelatommandstartDiscovery.cmd
After the DS is running, it listens at port 6678 fequests sent from other DS nodes and
listens at port 7000 for requests sent from undeglycPs. After theDS application is

launched, we launch the GP application by executorgmandstartGP.cmdwhich uses

44

the IP address of the pre-launched DS as its aptbbst, 7000 as its bootstrap port and
listens at port 4000 (configurable in resource dd@fig/defaults.propertiggor incoming

request sent from DS or other GPs.

: Discovery Service
[Deternining local host” 168.111.188
; H g Management

It h n = PastryNode [SNH: <@x56: >/jackn 192 168111 .10
ice initialization complete

[S [T [T

€= /cyqdriveff/mes/lava/ok-tm
Determining local host’s IP... 192.168.111.1680
Using SPSMather

(GP3258975191555731456>

IGP3258975191555731456> 7

Usage =

console of GP

k-tm
1,915 CoordinatorSubscriptionHanager: supdateLocalEnd
There are 1> helps?
1.916 CoordinatorSubscriptionManager: supdateLocalEndflipyocgousy 915557314565 _
s> tg=CTimer—1> Scheduling a ResourceExpirylask for COORDINAIOR e
168.111.100:1886:2486911863708592128 : testBopenk.co.uk to timeout a
liseconds>
<DEBUG ©2:54:11,921 SubscriptionManages::cancellinerTaskforEndpoin
-thread-6> About to remove Timew : java.util.TimerB15fcd8c for En
192.168.111.166: 4000: 248691186 3708592128 *testBopen
ge>
3,296 myGPémyTask: irun> ty=<Timer—4> TH41: Scheduled
3,380 OKDiscoveryServiceInpl:handleMessage> tg=Cpoo
equestTaskMessage :: version =B.1 sender = endpoint:/s
258975191555731456 testBopenk.co.uk receiver = endpoint: /.
est RequestID = endpoint://192.168.111.1686:4888:32589751]
stBopenk.co.uk 4>
KDEBUG ©2:54:13.300 TaskQueryHandler::<init>> tg=<pool-3-thread—7> 5
Dt — Ty T
I DEBUG ©2:54:13,308 PastryDiscoveryServiceInpl: tgetRemoteRsynchronous> to=<pool-[NEEEEE L L R I S W =0 A =0
3-thread-7> Remote search for TASK_UID with description taskmanagew> ~oktm
<DEBUG ©2:54:13,381 PastryDiscoveryServicelnpl: igetlocal> ty=(Selector Thread —
Default> Searching for TASK UID with descri taskmanager> n, Arqumentlis
KDEBUG B2: 381 PastryDiscoveryServicelnpl:igetlocal> tg=<Selector Thwead —| :
Default> Searching for TASK UID with description taskmanager>

System logs

- - . . el "
< i ' [, org.openk.servicediscovery - src/discovery -

ok-tm/src/stc/org/op /tm/ienpl/M lientmpl java

Figure 15. Initial running environment of GP;

We can use the same steps to launch the DS andhGliresecond machine. One
difference is that in order to construct a singlieddvery Service ring, the second DS

should use the first DS as its bootstrap node. ddraplete runtime configuration is

shown in Figure 16.

45

/—Machlne 1.1P:192.168.111.100

Discovery Service, 1% node

Port
BootStrap Host: 192.168.111.100
BoorSrap Port: 6678

6678

/—Machlne 2.1P:192.168.111.101

Discovery Service, 2" node

BootStrap Host: 192.168.111.100

J Port BoorSrap Port: 6678

Local Port: 6678
CommunicationLayer Port: 7000

Port
7000

6678

Local Port: 6678
CommunicationLayer Port: 7000

Port
7000

I_F'ort
4000 [
L b

JT'(TI
1 4000

GP,

DiscoveryBootStrap Host: 192.168.111.100
DiscoveryBoorSrap Port: 7000
CommunicationLayer Port: 4000

L F

GP,

DiscoveryBootStrap Host: 192.168.111.101
DiscoveryBoorSrap Port: 7000
CommunicationLayer Port: 4000

J AN

Figure 16. IP and port allocation of initial running environment
The second GP can also register itself to the BXStdirectly, which saves one DS

node and demonstrates that one DS can acceptgiseration request from multiple GPs.

The initial running environment of the second tgtmachine is shown in Figure 17.

B-O-Q- | Q- i EE

[£ Packag | J2 Mierar |27 awiga 50 . JuJhat — O

[J] SubscriptionNegotiatorInpl. java

jarLoader

- jarPackager
-] AeeeptPoliay. java
1] AdaptorsCache. java
- [J] AnnotationComparator. java
~[1] ArgTranslator, java
o [f] ConstraintAdaptor. java
[7] FunctionCallidaptor. java
|4] FunctionComparator. java
o [I] INOKC sComparator, java
~[J] InteractionlogConsumer. java
[1] InteractionRunContext, java
~[J] MethodSemantic. java
[1] 0XCCede. javs
~[4] DECDeseription. java
[3] 0KCFacade. jave
[J] DECFeerComparator. java
rs

BF Outline 57 B E W o
@ . setMainRole (Role)
@ . getMainole ()
© = setMainkol ehrgs (hrgumentList)
@ . getMainkoledrgs ()
@ - getInteractionMode1TID ()

|2} diningphilosephers 1

[Determining local host’s IP...
Using SPSMather
P1A762775588@87175168>

B &Y s | &%

e i Re=g 0 @
[3] PastryDiscoveryServi

Management

192.168.111.188 console of GP

@ . getleseription()

< >

© - handleMessage (essage) {2 Problems | @ Javadoe [Declaration | [F] Task Lizt EJ Consele 52 3 Search % Ant| [History =0
@@ selactPears Meszage] Wo comsales to display at thi= tima : e
acceptFeer (SubseriptionSpec) o i
< b

Writahle Smart Tnsert 349 ¢ 51

Figure 17. Initial running environment of GP,

46

6.1.2 Submit a Task
Figure 18 displays what happened after one subaitssting application “Hello
World” from GR.. The “Hello World” application is provided by theriginal OK

framework as an example. The example command is:

run hello -im ./gettingstarted/Icc/helloworld.lcc \
-okc "peerResponder | ./gettingstarted/bin/ResponderfakG
peerGreeter | ./gettingstarted/bin/GreeterOKIC.j

In which “hello’ is the name of the task and will be used as t@meof the published
interaction model as well. The file./gettingstarted/Icc/helloworld.l¢cafter “—im”
option contains the specification of the interactmodel defined in LCC. Items specified
after the “okc’ option are the OKC packages developed to sugperinteraction. Items
are delimited by semicolon. For each item, thengthefore the “|” is the name of the role
that the OKC is designed for, and the path afteis‘fhe path to access the OKC package
in specialized format. One can use the OK Manag@rtb construct the OKC package

by referring to the “Creating and Publishing OK@gttion in [OpenKnowledge Manual].

47

AR DI 0-G - iBEHE SS0 o 1@ 8 s

i &Y k| &%
’\;" - _I}_ - o
12 Packag | T2 Hierar %5 Faviga 53 JuJUnit| © O || [diningphilosophers. 1 [3] PastryliscoveryServi B Subzcriptiontiegotaat % WG =0

= zlg 2011-5-2 add

[J] Subscription¥ezotiatorInpl. javs
B jarLosder
jarPackager ng SPSMather
P1@76277558887175168> run hello —im .~ gettingstartedslccshelloworld.lcc —okc “p er
leerResponder | . /gettingstarted/bin/ResponderOKC. jar;peerGreeter . /gettingstarted/|
lhin/GreeterOKC. jar"

1: Publishing IM: hello

: handle IM publish. wakeup 1
e : Publishing OKC: sponder0KC
JA¥Y handle OKC publish, wakeup 1

&

1] AcceptPalicy. java

9] AdaptersCache. java

- [I] AzmotatienComparator. java
[J] ArgTranslator. jawa

- [J] Constrainthdaptor. java
[3] FunctionfallAdaptor.
[4] Functiong

endpoint://192.168.111.104:4000:1076 277550807 17516 8.default@user.com>

Please enter a greeting to send fo the other agent:

|EEte -us: Pending
1] OECFacad] - ' 111076 2775508071 75168 1def ault Puser . co e

<) okcEPID
5 Dutline £2 & W W e wt
@ . setMainRole (Role)
© @ . getMainRolel)
@ o setMainRel ehrgs (ArgumeniList)
@ . getMainRoledrgs ()
- @ getInteractionMlodelID0)
@ . getleseription() L sl i3 :
@ .. handlellessage Message) {2 Problens | @ Javados |[E) Decleration [E] Task Lizt Bl Consels 032 § Search i Ant| B History =g
it &g selectPeersMessage)

ubmitted at: Mon May 38 B83:88:85 EDT 2611

P1876277550807175168 > v

Ho consoles to display at this time y .
& acceptFeer (SubzeriptionSpec) e

Writable Smart Insert 349 51

Figure 18. Screen shot after task “Hello World” is submitted(GP,)

After the command is submitted, it will pass thrbug serial of publishing steps
depend on whether the IM or OKCs’ availability irSDA task ID will be displayed to

user in the format of “<taskname>/<unique seriahbar>".

6.1.3 Automated Task Enrolments and Show Task Status

After the task is submitted, its pending state Wwél captured by the registered GPs

within a short time interval. We use th&how or “s’ command to display status of all

48

ning local host's IP... 192.168.111.188

astryNode [SNH: <Bx56BB9A..>/jackn/192.168.111.108:6678 IDiscovery Sery) HEs 3B B & 2N

E: Jeygdrivesfimes/lava/ok-tm
Bubmitted at: Mon May 38 B3:88:85 EDT 2611
aunched at: Mon May 30 ©3:08:28 EDT 2811, 14.221 ceconds tince submit.

i task(s> displayed.
CP3258975191555731456> s

Task: hello TID: hello/1386739263728

[inID: d28d48d4ebc4a2h3acade2B8?cc?e%8e Status: Running

ManagerEPID: endpoint://192_168_111.184:4888:1876277558807175168 :defaultBuser. co
n

: endpoint://192.168.111.1P0:4080:418458869253535744: testPopenk.co.uk
bEPID okcEPID

ponderOKC endpoint://192.168. 3 :4@808:2858854780713737)
:defaultPuser.com endpoint://192.168.111.1A4:4000:5364298465897650048 :def a|

K peerGreeter endpoint://192.168 111 .104:4800:3843A8157982328 7|
ef aultBuser.com endpoint://192.168.111.104: :3368359278093967360:def a|
om

131 removed.> ; Mon May 30 B3:88

DEBUG 83:09:89,287 TaskHanagerHelperdl::handleNeulns> tg=<pool-3—h . nched at: Mon May 3@ 03:08:23 EDI 2011, 17.786 seconds since subnmit.

nd these IMs: [org.openk.module.interpreter.lcc.urapper.LCCHode 1

1> i task<s> displayed.

DEBUG @3:09:89.287 TaskManagerHelpersi:handleNeuIns> tg=<pool-3-fipioce975191665931456>

: handle get IM from DS, uakeup 271>

DEBUG 83:09:89,288 TaskManagerHelper::selectAndSubscribeRole> tg=<Timer-227> TH

?1: Found IM: d28d48d4ehc4aZb3acade2@7cc?e98e-hello>

DEBUG 83:89:89,290 TaskManagerHelper::selectAndSubscribeRoled tg=(Timer—227> TH

71: End eycle: ALl OKCs are registered.>

DEBUG @3:09:89,.382 OKManagerIm; handLeGenericDiscoveryResultMessage> tg=<pool
hread-1> 1 am removing timeout for requestID = endpoint://192.168.111.180:48)
58975191555731456 : testBopenk.co.uk 131>

< |]

For Help, press F1 v DOS Mod: 2011-5-29 12:29:58 File Size: 506 NS

l
0@ =%

nput Director W 7011-5-30

Figure 19. Screen shot after task “Hello World” is submitted(GP,)

submitted tasks. From Figure 19 one can see thestatus after theHello World’ task
is fully launched. The allocation of roles to ditfet GPs is non-deterministic due to
situation of each GP and the time point of subsiompof each GP. Theshow”
command displays the endpoint id of all the reqeeepeer components: tKManager
allocated coordinator, thBubscriptionNegotiatoof each role and the OKC instance of
each role. Because the task is submitted fromm GI® now acts as the task manager of

this task, and the user input dialog is displayeds; only, as shown in Figure 18.

49

|
& /cyadrive/f/mesilava/ok-tm

OKCDescription keyword = P
rrentDiscoverahle.getClass() +

coverable.getClass ()
erable.getClass ()
erable.getClass <)
n
urrentDiscoverable .getClass <)
() Create New Subscription
Mapping Results

[Model
o (] philosopher3

Subscription Options

class

class or|

class or|

class

B O Cpenknowledge

File Tools Help

Search Terms: ‘dmmg

{f \OPEN

or| c&; ’jj/e‘

) ‘ My Peer

e [# Local Components

[subscribed Roles

|4 Lacal visualisations
[F Favourite Searches

nﬁ

~ i
Step 1, search the publishe =TT
Z0% interaction model 7 =l
——] Step 2 search and dow
: OKC if necessary
b Search Results
: _] | Description m. —
Lﬂgllﬂﬂl!g?ﬁn?;iSF?ﬂEﬁ?!dIﬂll’|§| o -~ Description i:_;-;:giEaf;;E;
| L
\/Step 3, select a role to
ke subscribe, and then click
the “Subscribe to Role”
Search For Implementations | button.
Subscribe to Rol ‘ 5
ubscribe to Role

Accept Policy: {nME

Subscription Parameters

Parameter Name: :

Parameter Value: |

[_] Subscribe for Diagnostic Information about this Imerammnj/ |

Create New OKC For Role

Step 4, submit the
subscription

Model View

‘ Cancel |

Subscriﬂow ‘

BCEE

% 9 m M

Figure 20. Screen shot of how original OK works with the “thing philosopher” example.

The automated task enrolment represents one ah#jer adaptions added to make

OK cloud ready. For comparison, we use Figure 2€@isplay the user interface of the

original OK manager. From its interface one card fthat the original OK manager

provides basic management user interface for users

® Publish and search an IM,

® Create, publish, search and download an OKC package

® Import, remove OKC packages from local repository.

From above one can see that compared to the extédideframework, the original

OK manager only provides limited management fumstiadecause the original OK does

not support the concept of task explicitly, useli wave no way either to find out the

global status of a running Interaction Model, orct control to the course of the

interaction from outside. The steps of selectimgla and participating in an interaction is

50

also annotated in Figure 20, from which one canthaé with original OK, the role
selection process has to be completed manuallg. fkkes the original task manager not
applicable to the cloud platform, in which compigatresources or work units should be

distributed dynamically via negotiation.

6.1.4 Terminate a Task

Currently, one can submit &ili <taskid>" command at any registered GP as long
as one knows the task’s identifier. THell” command has an f-option. If this option is
not set, it performs a mild termination, i.e. theowinator only informs its LCC
interpreter to set the status of all the rolesGorhpleted, and let the interpreter to finish
the task in its succeeding operations. Otherwistei force option is set, it performs a
forced termination, i.e. in addition to notify th€C interpreter to set the complete status
of each role, the coordinator actively sdnteractionCompletedMessageessage to the
OKC instances of all participant GPs and s@adkCompletedMessageessage to the

task manager.

6.1.5 User I/O Message Channel via the MessageClient API

The user I/O message channel functionality is pledias a clienMessageClient
API to application developers. It is the decisidrihee developer about whether to use the
MessageClienAPI to redirect the 1/O request to the manage censo let the 1/O
request be processed at local peer without usiegMéssageClientAPIl. Figure 18
displays the input dialog displayed by the managescle of the task manager, in which
one can see the endpoint id from which input regsest as well as the prompt message
“Please enter a greeting to send to the other dgamd default value Mello”. The user

input will be send back to the GP who invoked MessageClientnethod.

51

The user 1/0 message channel is useful when the &gainning at a remote node of
the cloud. In this situation nobody will handle th&er input requested at an unattended
node, the only way to get the request processdd iedirect it to the management

console.

6.1.6 Invoke a Child Task within a Running Task

To test invoking a child task within a running paréask, we rewrite theHello
World’ application by adding the interpreting to the nisgut. When thg@eerResponder
receives user input “r’ returned from the task nggmait will submit a new task which is
an extended version of th®ihing Philosopher example usindMessageClienAPl. The
child task will use the same GP that behave apdieeRespondenole of the parent task
as its task manager, and its I/O requests will &#ehed to the 1/O queue of the task
manager of the child task. When theerRespondereceives the user input “c” returned
from the task manager of the parent task, it vmlloke the de-queue operation on the
cached I/O queue of the child task’s task managet,process the user I/O locally based
on the fetched I/O request, from which user proviidection about whether a

philosopher should eat or think. The selection wikn be send back to the role of the

child task that had sent the original 1/0 request.

52

E: /cyqdrive/fimesilavalok-tm

. 192.168.111.108 2 task(s)> displayed.
(GP1637725620671560704

! 192.168.111.100:4000:163772562067

1D2: Do you want to start eating?

i

defaultBus

8314221243396871424 testlopenk.co.uk
okeEPID

696 :testBopenk.co_uk
===
-104:4080:1552304923766609)
B:65794890608619754496 :test

088 :6116 4325142902476 iver = | I
: : Request1D
om 132> i : i ubmit .
2088 TMQueryHand 4!

PastryDiscd = = 8 o
j3-thread—15> Remote search for IM_UID with de i N : Status: Pen:

ing
DEBUG B3:23:84,2089 PastryDiscoveryServicelmpli: 1 ¢ |2.168.111.190:4800: 16377256286 71568704 testBopenk.co .u
Default> Searching for IM_UID with description

DEBUG B3:23:84,2089 PastryDiscoveryServicelmpls: okeEPID

/192.168 .111. -t 3247343118927872 testO)
/7192 168 .111 .100:4060:2429244388089646080:test

.215 PastryDiscouerys
Default> Searching £ ID with eipt i int://192.168.111 .10 2957095825718301184: test
< Ropenk.co.uk
(P3 philosopher3 endpoint://192 .168.111.100:40 24508317932254935084 :test|
Gopenk.co.uk
o .3 philosopheri endpoint://192 168 .111.1084:40 4212015544183745536 :def a
DEBUG 93:23:04.215 IMQueryHandler: handlefns. 1 e The Picon
> Found [d28d48d4ehc4aZh3acade2B7cc?e98e] ims & —
Hon May 30 83:28:45 EDT 2811
Launched at: Mon May 30 @3:21:18 EDT 2811, 25.449 seconds since submit.

EECOXMEE

Figure 21. Screen Shot after task “Hello World” invoked chitl task “Dining Philosophers” (GPy)

Figure 21 and 22 demonstrates that the roles ofckild task are distributed on
different GP’s. Because thmeerResponderole of the parent task, which initiates the
child task, is allocated to GPhe input dialog for child task is displayed at;GRowever
the input dialog of parent task is displayed ab,G#hich is because the parent task is
submitted from G All above phenomena demonstrate that the I/Or@etion between
parent task and child task works as the designhef message holding mechanism

described in Figure 12 of Section 5.3 expected.

53

[H @O %0 Q| Y-

P & -

% Packag | J2 Hierar | Haviga 53

<

5% futline 53

[J] SubseriptionNe %
(= jerloader
§= jarPackager
1] AcceptPolicy. java
[¥] AdasptorsCache. jav
[1] AnnotationConpara

[1] AreTranslator. j=v G

] et o amamt . - |
endpoint:/s192 .1
endpoint: /7192 .168.111.188:

[¥] OECCode. java

[J) OKCDeseription. ja
[¥] OMCFacade java
[J] OKCEeerComparator

~ @ . setlainkele (Rals)
. gethainkols ()

@ setiainkoledrgs (o DN
@ gethainkolehres ()

- @ getInteractioniodell

Ju Tnit| =

[ResponderOKC
stestBopenk.co.uk
[Bopenk.co.uk
GreeterOKC
[92@:defaultPuser.com
Bopenk.co.uk
. R R R
Submitted at: Mon May 38 28:27 EDT 2811
Launched at: Mon May 3@ @3:20:35 EDT 26811, 8.212 seconds since submit.

El dlmng:phllasop}\erJ

peerResponder

peerGreeter

s> displayed.
IGP6116432514290247680>

31 eeds right fork

onds since submit.

:3904834855824941
4022747238408 test|

endpoint://192.168.111.104:4000:1552304923766609,
endpoint:/-192.168.111.180:

7948906B6197544% : test

= TaskManager

intID()):
ozEPID) ;

EFID " + subsc:
VE)

DY)z
ber by subEPIDT

@ . getleseription()
@ o handleMessage Message)
i+ O selectPeers Message)
& acceptFeer (SubscriptionSpec]

[Z Problens | @ Tavadoc [[E) Declaration | [F] Task Lisd

[Ho consoles to display at this time,
“

ritable

Smart Insert

v
7] >
v =
) e y Search| % Ant|) History m]
] -
r"’ L
\._.1)
340 | i

Figure 22. Screen Shot after task “Hello World” invoked childtask “Dining Philosophers” (GP,)

6.2 Performance Analysis

We measure the performance of the prototype taskage by using two metrics:

response time and throughput. Because our focostiso study the performance of the

define:

manager to launch a task;

54

application but to study the performance of theék tagnager itself, we focus on how
much time the task manager used to launch a taskew many tasks can be launched
within certain unit of time. We define “task laurics the action that task manager takes

to subscribe all roles of a task and switch itsustdrom PENDING to RUNNING and

® Task launch response time (or response tifite average time for the task

® Task launch throughput (or throughptlP): average number of tasks can be

launched in a given amount of time.

The method we used to analyze the task launchnpeaftce is:

First we conduct experiments on real test envirartméhe goal is to exam if the
collected experimental results conform to the daled results based on the formula for
sequential processing of tasks (only allow one tagho through the subscription/launch
procedure each time).

Second, we conduct sequential task processing iexpats on the simulator to
examine if the collected results conform to thegkated results based on the formula. In
this way, we can verify that both the prototypeteys and the simulator behave in the
same pattern.

Finally we conduct heavy loaded concurrent taskcgseing experiment on the

simulator, and reveal how different factors affénet response tim€ and throughputP.

6.2.1 Performance Analysis via Real Testing Environment

Based on the system design, for the sequential isslon of tasks, the response time
depends on the number of peers in the system andutmber of roles to be subscribed.
In an ideal scenario, we assume the time usedfersubscription and the time used for

the interaction to launch to be constant. We define

ty time interval that the GP checks pending tasks

ts average time for a GP to subscribe a role

t average time for the coordinator to launch arrauion

Nr number of roles to be subscribed (in the rest ef tthesis, for ease of

analysis, we treat single role withinstances the same asroles with single

55

instance. This engagement does affect the analsidt because the subscription
procedure does not make difference between subsgrib one of the multiple
instances of a single role and subscribing to @he from a group of roles each
requires only one instance),

Np number of GPs in the system

Assuming the roles are evenly distributed to pgrdied GPs, each GP will subscribe

ceil(N/Np) roles. The task launch response time of the system
T =ta/2 + [ceil(N/Np) — 1] ty + ts ceil(N/Np) + t 9)
= ceil(N/Np) (ta+ ts) - ta/2 +
WhereT consists of four parts:
ta/2 Average wait time for GP to check and subscribditserole
[ceil(N/Ny) — 1]t GP’s poll/select interval for the refseil(N/Np) — 1] roles
ts Ni/Np Total role subscription time fareil(N./Np) roles
t) Rest of the interaction initiation time

Table 9 in Appendix A3 shows the test data gathém@a running the tasks in the
real testing environment. As noted, we executed'Hwlo world’ (containing 2 roles)
and the Dining Philosophers (containing 6 roles) example separately on singke,
double GP single DS, double GP and double DS cordt@gns.

By comparing the collected response time with #iewdated response time based on
formula (9), we found that for single task scenatt@ response time meets with formula
(9), which is proportional tdl; and inverse ti\,.

From Table 9 we also found that the number of peeBiscovery Service does not

affect the response time significantly. This is duese the DS is an independent

56

subsystem that provides discovery and storagecsetei other parts of the system. Its

guery time is constant and only depends on the sfdhe underlying Pastry network.

6.2.2 Performance Analysis via Simulation

To study the response time in a larger scale, wd [BeerSim Project] to construct a
simulator that simulates the role selection andssuaption behaviour in an environment
with more peers and number of roles. The simulatorks on event based mode. It
contains:

® One DS component which represents the whole Disgdvervice

® A group of nodes that represents the GP notesel the same algorithm to select
and subscribe roles of submitted tasks. The nummb&P nodes is configurable
as theNetwork Sizer Np;
® A traffic generator that generate tasks at a sjge@fe (Task Generation Speéd
and the number of roles of a tadk)(and its lifespar. can be configured either
as fixed values or be assigned randomly from agang
® A message observer that monitors the running stdttiee system at configurable
time interval and serves the functionality to gatla®d aggregate data for
analysis;
® Other configurable parameters include the total memof tasks to be submitted
(TOTALNUMTASK) maximum number of roles a GP can subscribe atiome
(M), t4, ts andt, of the system.
Because the current design of the task managemameWwork prototype is based on
ideal lab environment at this stage, for simplicitye simulator is constructed based on

two assumptions:

57

® All peers are running on computers with the samdigoration (CPU, memory),
they have equal chance of being selected,
® The system is running under ideal state, i.e. nlré&aof nodes, no transport

failure, all messages can arrive at destination.

6.2.3 Simulation of Sequential Task Processing

Response Timel With Fixed Number of PeersNp

td=5s, ts=2s, tlI=1s, M=10, Np=5

35.000

30.000

‘/./0/‘\0
25.000

20.000 //,/v ~ff
15.000 ’/./."\‘/ by calculation
—— by simulation

10.000

Response Time T (s)

5.000 -

0.000
123 456 7 8 91011121314151617 1819 20

Number of roles -Nr

Figure 23. Response time with fixed number of peers and chamgi number of roles. Tasks are
submitted sequentially. One observes that results gathered v&mulation are close to the
calculated values based on formula 9, wheR-square=0.990. The width of the upper
bound/lower bound envelop falls within5ss, which matches tdy, the time interval that a GP
examines pending tasks.

Figure 23 demonstrates the comparison betweenlatdduresponse time (green line)
and simulation results (blue line, average respaimse of 100 tasks per group) in the
situation of sequential task processing when threbar of peers is fixed, from which we
can see the response time collected via simulatierguite close to the calculated values.
The response time increases linearly with the am®eof number of roles, and the slope
matches tot{+ty)/N,=1.2. The upper boundary and lower boundary lines eaevidl based

on the maximum response time and the minimum resgptime collected on each round

58

of experiment. The height of the region falls withj = 5s, which is the interval that the

GP checks pending tasks.

Response Timel With Fixed Number of RolesNr
td=5s, ts=2s, tlI=1s, M=10, Nr=6
50.000
45.000
& 40.000 *\\
- 35.000 |-\
£ 30.000 \
t, 25.000 \
g 20.000 —=— by calculation
& 15.000 by simulation
€ 10.000 =\
5.000 \/‘\H“
0.000
123456 7 8 91011121314 151617 18 19 20
Number of peers -Np

Figure 24. Response time with fixed number of roles and chgimg number of peers. Tasks are
submitted sequentially. As in Figure 23, one observes thedsults gathered via simulation are
close to the calculated values based on formula 9, wheResquare=0.993. The width of the upper
bound/lower bound envelop falls withinss, which matches tdy, the time interval that a GP
examine pending tasks.

Figure 24 demonstrates the comparison betweenlatdduresponse time (green line)
and simulation results (blue line, average respaimse of 100 tasks per group) in the
situation of sequential task processing when thabrar of roles is fixed, from which we
can see the task load time values collected vialsiion are also close to the calculated
values. The task load time decreases inverselytiélincrease of number of peers.

From Figure 23 and Figure 24 we can see that clirbg simulation and curvd
calculated by using formula (9) are closely fitteaich other, which suggests that the

simulator works the same way as what formula (8jjuts.

59

6.2.4 Simulation of Concurrent Task Processing

Next we studied the cases that tasks are subnattadsteady rate without having to
wait until the previously submitted task is laundh@/e submit groups of auto generated
tasks (1000 tasks per group) to the simulator deioto reveal how five predictors affect

the task launch response tifiand task launch throughptP. The predictors are:

M maximum number of roles a GP can subscribe atioree
L average life span of tasks;
Ny average number of roles of all tasks during aregrpent;

Np number of peers;

v speed of task submission.

M [N
We find that the throughpulP actually depends on combined predietLeDr\l—p.

r

M [N
Figure 25 reveals the linear relationship betwelfeg\l—p andTP.

r

60

(M/L* Np/Nr) vs. Throughput TP
td=5s, ts=2s, tl=1s
0.250
TP = 0.9182x-0.0055
R2=0.9987
0.200 -
w
S //
& 0.150
= 5 + M=5, L=105, 1/v=14
Q. (]
< v _ — —
g 0.100 M=10,L=105, 1/v=14
2 M=20, =105, 1/v=14
. % M=10,L=210, 1/v=14
0.050
0.000
0.000 0.050 0.100 0.150 0.200 0.250
X = M/L * Np/Nr
Figure 25. M IN; ratio vs. the throughput. Tasks are submitted concurrently. One caobserve

L[N,
that the task launch throughput of all series clustered togéer and is linearly dependent on the

ratio MMNo The regression equation is shown in the graph, veine R-square=0.9987.
LIN

r

61

(M/L* Np/Nr) vs. Throughput TP
tl=1s

0.300

0.250 TPmax=0.2857
@
< 0.200
o
(= TPmax=0.1428 ¢ td+ts=7, Np/Nr=1, varM
53 0.150 . R . . » td+ts=7, Np/Nr=1, varL
=4 Xeu * td+ts=7, Np/Nr=2, varM
S 0.100 -°
= 4 td+ts=7, Np/Nr=2, varL

o x % TPmax=0.0799
pd * td+ts=14, Np/Nr=1, var L
0.050 P
*
>
.
0.000
0.000 0.100 0.200 0.300 0.400 0.500 0.600
M/L * Np/Nr

Figure 26. Expanded view of figure 25, which shows thale throughput has an upper limit

Further experimental results show that Tiehas an upper limit as shown in Figure
26. The upper limit depends ag+ts and Ny/N;, which is TPmax= 1/(ts+t;) * Np/N;. In

summary, the throughput obeys the following emplrformula:

M [N
TP=0.9182—" - 0.00¢
LIN

r (10)
1 N,
TP, = 32
NI’

Where the slope 0.9182 is constant and does neindepn any of, M, N, Ny, ty, ts

and v

The reason whyP has an upper limit can be explained as follows:

M [N
When TN ® reaches to certain level, which means WMdtecomes large enough,

r

reduced to certain extent, and the system alwagsehaugh peers to host all roles, the

62

system will be able to launch all tasks in timehwitthe time span df+ts. At this stage,
the only factor that affects the throughput willieeluced to the schedule interval titpe
role subscription timé, andNy/N; ratio.

Next we looked at the task launch response fim&/hen the speed of submitting
tasks exceeds the system’s throughput, more and tasks will not be processed in time
and will be queued to be processed. The longequleee is the longer the response time
will be for those tasks waiting at the tail of thheeue. Therefore, the average task launch
response time in the situation of infinite task dewill be emanative and is not
measurable under this overloading situation. Assalt, the average task launch response
time T should only be measured under the condition tretakk submission speed does
not exceed the throughptP.

We observel’s distribution along with the combined predictoffP as shown in
Figure 27, in whichT is only measureable withwiTPs region [0, 1]. Thel upper bound
and lower bound envelops of all series of data laper each other. Based on
experimental results, the lower bound lines of ¢heelops of all data series stay as a
horizontal lineTmi, = 3s, where 3 seconds is the sum tgf+ t;, which is the most
optimistic situation that all roles of a submittiedk are subscribed instantly and the task
launched without any delay within thg period. The trend oT arises along with the
increase of/TP and roughly obeys formula

5053

4.3 V]
T=05767e ™ where —-0[0,1] andR’=0.6344 (11)

The regression function is shown as Figure 28. Bse#he R-square of formula (11) is
not very high, the calculatelis just a rough estimate. Future work will includere in-

depth research on hoWis affected by each of the predicates M, KNNand v.

63

v/ITP Ratio vs. Average Response Timeé
400

350

300

250
200

150

100

Average Response Timé&(s)

50

O .
0.170 0.270 0.370 0.470 0.570 0.670 0.770 0.870 0.970 1.070

v/ITPratio

Figure 27. Task submission speed/throughput ratie/TP vs. average response timé€ of all data
series with upper bound and lower bound envelope. The quanyit/TP is the ratio of task
submission speed divided by the throughput. One can obsertreat the closer thev/TP ratio
approaches to 1, the variation of either the upper bound or thaverage response time becomes
more dramatic. This can be explained using the nature of therpducer/consumer model: The
task launch throughput represents the system's maximum congung speed of submitted tasks.
When the task submission speed, i.e. the producing speedpepaches to the consuming speed,
where tasks are generated with random lifespan and number of kes, the system will more
likely to reach into a temporary overload state, although tis overloading state will get relieved
in the long run, it will make some queued tasks' respongame become extra long. The closer the
producing speed approaches to the consuming speed, the hardeesle overload state will get
relieved. Therefore the upper bound/ lower bound envelop will beenes wider. The behaviour of
individual random generated tasks that are blocked in the witing queue will have more impact
to the calculation of average response time. Until the task@ducing speed overtakes the
consuming speed, the overload state will not be able to getiesled in the end, and the average
task response time becomes emanative and not measurable.

64

v/ITP Ratio vs. Average Response Timé
300

250

200

150

100

50 Rz

Average Response Timé&(s)

0
0.170 0.270 0.370 0.470 0.570 0.670 0.770 0.870 0.970 1.070

Xx=Vv/TP

Figure 28. Exponential regression function of average respoasime T based on Figure 27

6.3 Concerns about Dead Locks

For the scenario of sequential task submissionsylstem will not able to execute or
accept new tasks Mir > Np LM. For the concurrent task submission scenarios, ekd
could happen when th¥,/N, Ratio approaches tM. Currently the prototype does not
take deadlock into considerations. The deadlockatien and handling mechanisms will
be added to the future improvements. We could imse-out based deadlock detection

mechanism and algorithms to select and releasesxely occupied resources forcibly.

65

7. CONCLUSIONS AND FUTURE WORK

7.1Conclusions

In this thesis, we presented the design and impiéatien of a software platform
that realizes a prototype task management frameworlsupport the running and
managing of the LCC based collaboration model urRkaS cloud environment. The
framework is constructed through enhancing and nelkbg the OK framework. It
improves the provision and negotiation mechanismexasting OK framework and also
its manageability. The contributions of our work:ar

1. We first proposed the concept of introducing rohel aocial norm based logic
programming approach to enrich the programming risode PaaS clouds and
used this prototype framework to prove our concept,

2. The framework provides partial solutions to thdyfecentralized management
challenges of a choreography based distributedalmotating network. The
method we used to solve the challenges can beilootgd to the design of the
future generation cloud infrastructure that suppdPaaS based computation
models.

3. We performed performance measurements of task tatime behaviours and
thereby provided a benchmark for comparison agéimste improvements.

4. The prototype framework itself can serve as a rekealatform to support future
research. .

The detailed work includes

® Extending existing task management functionalitthva set of fully distributed

task submission/termination control and task meomgpfunctionalities,

66

® Enhancing the underlying task management mechaofs®@K framework from
the “submit-manual select—subscribe—allocation-rumddel to the “submit-
proactive select—subscribe—allocation-run” modelhiclw improved the
automation level of the task management and makeatisfies two basic
requirements of cloud systems, i.e. dynamic pronisif resources for tasks and
SLA achieved via negotiation.

Although our work is still preliminary, the protgg framework can be used to
support and conduct further research, and provelechmarks and new research hot
spots. In the end, our work will impact the way laggiions are constructed to utilize
clouds, and provide cloud application developerthvmore options to designing and
manage their applications.

By analyzing the experimental results, we revedtes underlying mathematical
formulas that reflect the performance of the prgiettask manager by using different
methods, including both real environment experingt simulation, and under different
scenarios, including sequential task processing @mtturrent task processing. We
focused on analyzing how task launch throughpubfisenced by different predictors
and in turn how the task launch response timeflaanced by task launch throughput
and task submission speed. The experimental ddtactsal both from testing and
simulation supports the view that the task lauredponse time is linearly dependent on
the number of roles for subscription and inversipendent on the number of peers in
the system in sequential task processing scen&o. concurrent task processing

scenarios, we found that the average task launclughputTP is closely related to the

combined ratio of% and obey the formulas described as (10). We ezhlizat the
p

67

task launch response tirmes only measurable when the task submission sgees not
exceedTP. Its relationship with task submission speed &Rdcan be roughly depicted
using formula (11). The collected performance aathbe used as the benchmark for the

future system optimization.

7.2 Future Work

Currently, the prototype system is only a prootohcept system with less concern
for performance, robustness, security and compdstef functionalities. To produce a
production system, future work will need to beifléfl from the following aspects:

1) Performance and robustness:

Replace the existing centralized coordination meigma with a distributed
coordination mechanism depicted in [Robertson 20@%hprove the performance
and robustness of the OK framework.

More sophisticated role selection algorithms, deeklldetection and handling
mechanisms, auditing, post-run analyzing mechanism®mated distribution of
3 party libraries, and version control of publishidds, OKCs and % party
libraries.

2) User level security and transport level security:
® Introducing domain based authentication and authttan mechanism to
the task management framework. Trust model of p2&pem will be fully
studied.
® Introducing message level security to the commticicdayer.
3) Transport level improvement:

® Extend the communication layer to support messagkiyr across

68

NAT/firewall features.
® Optimize the publishing and discovery algorithmttigabased on Pastry
overlay network for OK Discovery Service.

From the aspect of research, the problem to beedalv the future with the highest
priority is the optimization of the existing coandtion model. As LCC is originated from
concurrent system models like Actor model and pscealculi, it inherits the
indeterminacy in concurrent computation [Agha 198@)determinacy caused by the
arrival order of messages does not necessarilyegponds to the sending order of
messages). Although the collaboration model ofeuriOK framework appears to be
fully distributed and choreography based, it adyuakes centralized coordination and
sequential computation to solve the indeterminacgblem which sacrifices the
performance and increases network traffic. Futasearch will focus on breaking down
the coordinator into distributed mode. Due to fedisy concern, current consideration
tends to adopt the hybrid coordination model whiglpartial centralized and partial

distributed. To weigh to which extent the distribantshould be requires further study.

69

REFERENCES

1.

[Robertson 2005] Robertson, David. 2005. A Lightwei@ldordination Calculus for Agent
Systems.Springer Berlin / Heidelberg, Declarative Agent lgamages and Technologies I,
Lecture Notes in Computer Scieneel. 3476, 183-197.

[Robertson 2004] Robertson, David. 2004. Multi-agent r@ioation as Distributed Logic
Programming.Springer Berlin / Heidelberg, Logic Programming,cliere Notes in Computer
Science vol. 3132, 77-96. Doi: 10.1007/978-3-540-277729D,_ Url:
http://dx.doi.org/10.1007/978-3-540-27775-0_29

[PA et al2007] PA, de Pinninck, D, Dupplaw, S, Kotoulas, Rb8& 2007. The OpenKnowledge
Kernel. Proceedings of the XXI International ConferenceCamputer, Information and Systems
ScienceAvailable at:
http://www.cisa.informatics.ed.ac.uk/OK/Publications/The%2&@mowledge%20Kernel.pdf

[Quanet al 2007] Xueping Quan, Chris Walton, Dietlind L. Gerlofhanna L. Sharman, and
Dave Robertson. 2007. Peer-to-peer experimentation in proteictuse prediction: an
architecture, experiment and initial results.Proceedings of the 2006 international conference
on Distributed, high-performance and grid computimg computational biology (GCCB'06)
Werner Dubitzky, Mathilde Romberg, Assaf Schufteter M. A. Sloot, and Michael Schroeder
(Eds.). Springer-Verlag, Berlin, Heidelbergs-98.

[Dillon et al 2009] Dillon, Tharam, Chang, Elizabeth, Meersman, Robertar@y Katia,
Robertson, Davidet al 2009. Models of Interaction as a Grounding for Peer to Peer Kn@sled
Sharing.Advances in Web SemanticsUecture Notes in Computer Sciencgpringer Berlin /
Heidelbergwvol. 4891, 81-129

[Milner et al 1992] Milner, Robin, Parrow, Joachim, and Walker, Dali#92. A calculus of
mobile processes, Information and Computation/olume 100, Issue 1, September 1992, Pages
1-40, ISSN 0890-5401, 10.1016/0890-5401(92)90008-4.

[Milner et al 1992] Milner, Robin, Parrow, Joachim, and Walker, Dati@92. A calculus of
mobile processes, linformation and Computatign/olume 100, Issue 1, September 1992, Pages
41-77, ISSN 0890-5401, 10.1016/0890-5401(92)900Q09-5

[Agha 1986] Agha, Gul. 1986. Actors: a model of concurocemputation in distributed systems.
MIT Press Cambridge, MA.

[Peltz 2003] Peltz, Chris. 2003. Web Services Orchestratiah ChoreographyComputer pp.
46-52, October, 2003.

70

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

[Trecarichi et al 2009] Trecarichi, Gaia and Rizzi, Veronica and Vaccari, Lorenzino and
Marchese, Maurizio and Besana, Paolo 2009. OpenKnowledge atexpi&ring centralized and
decentralized information gathering in emergency conteékéxhnical Report DISI-09-011,
Ingegneria e Scienza dell'Informazighéniversity of Trento.

[OASIS-BPEL 2007] Web Services Business Process Executioguage Version 2.@ASIS
Standard, April 2007Available at: http://docs.oasis-open.org/wsbpel/2.0/wstp&l. pdf

[W3C-WS-CDL 2004] Web Services Choreography Descriptiamguage Version 1.0/3C
Working Draft, December 2004. Available athttp://www.w3.0rg/TR/2004/WD-ws-cdI-10-
20041217/

[Yan et al2005] Yan, J., Yang, Y., Kowalczyk, R., Nguyen, X.T08. A service workflow
management framework based on peer-to-peer and agent techndhgiéty Software, 2005.
(QSIC 2005) Fifth International Conference on Quality Software (QSBY;'fp. 373-382, doi:
10.1109/QSIC.2005.8.

[Yan et al 2006] Yan, Jun, Yang, Yun, and Raikundalia, G.K. &08winDeW-a p2p-based
decentralized workflow management syst&ystems, Man and Cybernetics, Part A: Systems and
Humans IEEE Transactions on , vol.36, no.5, pp.922-935, Hoil109/TSMCA.2005.855789.

[Besana and Barker 2009] Besana, Paolo and Barker, Adam. 20@xecutable Calculus for
Service Choreographyn Proceedings of the Confederated Internationahfécences, CooplS,
DOA, IS, and ODBASE 2009 on the Move to Meaningfieirmet Systems: Part | (OTM '09)
Springer-Verlag, Berlin, Heidelber@73-380. DOI=10.1007/978-3-642-05148-7_26.

[Buyyaet al 2009] Buyya, Rajkumar, Yeo, Chee Shin, Venugopal, SrikuBraberg, James, and
Brandic, Ivona, 2009, Cloud computing and emerging ITfqlats: Vision, hype, and reality for
delivering computing as the 5th utilittfuture Generation Computer Systendslume 25, Issue 6,
June 2009, Pages 599-616, ISSN 0167-739X, DOI: 16/ffdture.2008.12.001.

[Zhanget al 2010] Zhang, Qi, Cheng, Lu, and Boutaba, Raouf, 20J@ydCtomputing: state-of-
the-art and research challengés,rnal of Internet Services and Applicatiph®lume 1, Issue 1,
May 2010, Pages 7-18, Springer London, DOI: 10.10@%/84-010-0007-6.

[Barroset al 2006] Barros, Alistair, Decker, Gero, and Dumas, Marl@&262 Multi-staged and
Multi-viewpoint Service Choreography Modelling. TECH RBFPD Available at:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.14290.

[Chu et al 2007] Chu, Xingchen, Nadiminti, K., Jin, Chao, Venugo[®., and Buyya, R.. 2007.
Aneka: Next-Generation Enterprise Grid Platform for e-SciendeeaBusiness Applicationg-

71

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Science and Grid ComputindEEE International Conference owol., no., pp.151-159, 10-13
Dec. 2007 doi: 10.1109/E-SCIENCE.2007.12.

[Bellifemine et al 2001] Bellifemine, Fabio, Poggi, Agostino, and RimasS&ivanni. 2001.
JADE: a FIPA2000 compliant agent development environmientProceedings of the fifth
international conference on Autonomous agents (AGEN1) ACM, New York, NY, USA,
216-217. DOI=10.1145/375735.376120. Available at: Httpi.acm.org/10.1145/375735.376120

[Caireet al 2008] Caire, Giovanni, Gotta, Danilo, and Banzi, Massi2@®8. WADE: a software
platform to develop mission critical applications exploitaggents and workflowsn Proceedings

of the 7th international joint conference on Autoraus agents and multiagent systems: industrial
track (AAMAS '08). International Foundation for Anbmous Agents and Multiagent Systems,
Richland, SC, 29-36.

[HADOOP Project] The Apache HaDoop Open Source Project. Avwilalat:
http://hadoop.apache.org/

[Rowstron and Druschel 2001] Rowstron, Antony and DrelsdReter. 2001. Pastry: Scalable,
Decentralized Object Location, and Routing for Large-Scale Pdeedo-SystemsSpringer
Berlin / Heidelberg, Middleware, Lecture Notes inr@puter Sciengevol. 2218, 329-350. Doi:
10.1007/3-540-45518-3_18, Url: http://dx.doi.ot§.1007/3-540-45518-3_18.

[OpenKnowledge Manual] OpenKnowledge Manual.
Available at: http://www.cisa.inf.ed.ac.uk/OK/download/manudil.p

[OASIS-BPEL 2007] Web Services Business Process Executiqgubge Version 2.(DASIS
Standard April 2007. Available at: http://docs.oasis-open.orgfest?.0/wsbpel-v2.0.pdf.

[W3C-WS-CDL 2004] Web Services Choreography Descriptiorgbage Version 1.0/3C
Working Draft December 2004. Available at: http://www.w3.0rg/TR/200BAWs-cdI-10-
20041217.

[Dean and Ghemawat 2008] Dean, Jeffrey and Ghemawat, Sanjay N&@Reduce: simplified
data processing on large cluster€ommun. ACM 51 1 (January 2008), 107-113.
DOI=10.1145/1327452.1327492.

[Google App Engine] Google App Engine, Availableldtp://code.google.com/appengine

[Google GFS] Ghemawat, S, Gobioff, H and Leung, S-T320be Google file systerm
proceeding of SOS®ctober 2003.

12

30. [HDFS] Hadoop Distributed File System. Availableltp://hadoop.apache.org/hdfs

31. [Windows Azure] Windows Azure, Available atww.microsoft.com/azure

32. [UML] The Unified Modeling Language. Object Management Grdwailable at:
http://www.uml.org/

33. [JavaCC] Java Compiler Compiler, The Java Parser GeneratoraBleadit: http://javacc.java.net

34. [PeerSim Project] PeerSim: A Peer-to-Peer Simulator.
Available at:http://peersim.sourceforge.net/

73

APPENDICES

Al. Major administrative related methods of extth®@KManager and

OKManagerimpl

Method Description
searchTask Search task information from DS based on query terms bkiimyo
(new) OKDiscoveryProxy.searchTaskethod. Its purpose is to get task id
and task manager’s endpoint id.
Parameters:
query — terms for query criteria
limit — max number of returned items
callback -SearchTaskCallbadyped callback function
Message senRequestTaskMessage
Message receive@esultSearchTaskMessage
searchTaskFromOKM Query task’sTaskDescripitiorinformation from a task’s manager
(new) endpoint. The reason we stdraskDescripitiordetail at the manager
side instead of DS side is that information published$as not
changeable due to the current underlying p2p layer limitabased
on FreePastry.
Parameters:
query — terms for query criteria
receiver — receiver's manager end point id
callback -SearchTaskCallbadyped callback function
Message sent:
RequestTaskMessage
Message received:
ResultSearchTaskMessage
searchiM Search published interaction model from DS based on querg tgrm

invoking OKDiscoveryProxy.searchlivhethod.
Parameters:

query — terms for query criteria

limit — max number of returned items

receiver — receiver EndPointID

callback -SearchIMCallbackyped callback function

Message sent:

74

RequestiMMessage
Message received:

ResultiMMessage

jat

searchOKCs Search published OKC information from DS basegdeny terms by
invoking OKDiscoveryProxy.searchOK@sethod.
Parameters:
query — terms for query criteria
limit — max number of returned items
receiver — receiver EndPointID
callback -SearchOKCCallbackyped callback function
Message sent:
RequestOKCMessage
Message received:
ResultOKCMessage
updateTaskToOKM Update changes of a subscription or instantiation status balek t
(new) OKManager from which the task is submitted, all changes areagc
to the task’sTaskDescripitiorinstance stored in the OKManager's
task list.
Parameters:
t — id of the task
sub - SubscriptionSpec data structure of the subscription
information receiver — receiver EndPointID
callback —-PublishCallbackyped callback function
Message sent:
RequestUpdateTaskMessage
Message received:
ResultPublishMessage
removeOKC Remove OKC from local OKC repository.
Parameters:
okc — OKCDescription information of the OKC
downloadOKC Download published OKC code from DS and aidiocal OKC

repository by invokingDKDiscoveryProxy.downloadOKCcode
method.
Parameters:

okc — OKCDescription information of the OKC

75

callback -DownloadOKCCodeCallbadyped callback function
Message sent:

RequestOKCMessage
Message received:

ResultDownloadOKCCodeMessage

subscribeToRole

Subscribe to specific role of a publishedsiction to DS by invoking
OKDiscoveryProxy.subscribeToRateethod.
Parameters:
adapt —SubscriptionAdaptomstance that provides maping betwe
role and OKC
policy — AcceptPolicy, available values: ONE/ALL/NONE
participant — string of the role
participantArgs — ArgumentList type, not used currently
modellD — id of the interaction model
subscriptionDescription - Description of the subscriptiwat can
be searched
subscriptionParams - Map<String,Object>, not used currently
expirelnterval — number of millisecond of expiration
diagnostics — Boolean value of enable diagnostics, additional
listeners for the incoming messages
callback —-SubscribeCallbackyped callback function
EOIlListeners - List<InteractionLogConsumer>, listeners that
monitors end of interaction
askForPeerSelection — Boolean value indicates whether the
bootstrap coordinator should ask the peer to select the peensts
to interact with

Returns:

A SubscriptionSpeimstance for subscription information
Message sent:

RequestSubscribeToRoleMessage
Message received:

DiscoveryResultMessage

getParticipated_tasks

(new)

The Participated_tasks is a collection that stores all pendingoing

tasks’ information that are participated by local GP.

getTasklist

ren

The Tasklist is a collection that stores all pgnadirrunning tasks’

76

(new)

information that are submitted by local GP.

requestConsolelO

(new)

Send task role’s input/output request to the manager cdiskeWsed
by MessageClient’s Input and Prompt method.
Message sent:
RequestConsolelOMessage
Message received:

ResultConsolelOMessage

inspectConsolelOFromOKN

(new)

1 Inspect I/O request on the task manager of a child task arftegadxt
I/0 request message. UsedMgssageClient.checkChildConsolelO
method
Message sent:

InspectConsolelOMessage
Message received:

ResultinspectConsolelOMessage

publishTask

Publish theaskDescriptiorto DS to make the task searchable by
other GPs through invokinQKDiscoveryProxy.publishTaskethod
Message sent:

RequestPublishTaskMessage
Message received:

ResultPublishMessage

publishiM

Publish an IM to DS to make it searchable by oft€Managers
through invokingOKDiscoveryProxy.publishivMhethod
Message sent:

RequestPublishIMMessage
Message received:

ResultPublishMessage

publishOKC

Publish th&KCDescriptionof an OKC to DS to make it searchable
by other OKManagers through invoking
OKDiscoveryProxy.publishOK@ethod.
Message sent:

RequestPublishOKCMessage
Message received:

ResultPublishMessage

Table 7. Major admin

istrative related methods ofOKManager and OKManager | mpl

77

A2. Newly added message types

Message Type From To Description Content Response
Message
RequestTaskMessage OKDiscoveryProxy| Discovery Search task RequestID- handler for ResultSearchTaskMessage
of participant GP | Service from DS callback matching,
OKM of OKM of task | Get task Query terms of task
participant GP manager information description
from task
manager
ResultSearchTaskMessage Discovery Service | OKM of Response of RequestiDA
or OKM of task participant | above message| TaskDescriptionnstance
manager GP
RequestPublishTaskMessage | OKM of task Discovery Publish task RequestiDA ResultPublishMessadexisting)
manager Service information to | TaskDescriptiorinstance
DS
RequestUpdateTaskMessage | OKM of OKM of task | Update task RequestiDTaskID, ResultPublishMessage
participant GP manager description to SubscriptionSpec

task manager

TaskCompletedMessage

OKM of any GP in
the network

Coordinator

Inform

Coordinator or

TaskDescriptionforce flag

Coordinator OKM of task task manager to
manager terminate task
RequestConsolelOMessage | OKM of OKM of task| Relay user I/O | RequestID, TaskIBstring to | ResultConsolelOMessage

78

sage

participant GP manager request from | be displayed, operation type
task manager | — INPUT or OUTPUT,
default value to be displayed
prior to input
ResultConsolelOMessage OKM of task OKM of Response of RequestIDstring of result
manager or OKM | participant | above message
of participant GP | GP
of parent task
InspectConsolelOMessage OKM of OKM of Get next I/O RequestID, TaskID ResultinspectConsolelOMes;
participant GP of | child task request from
parent task manager child task
ResultinspectConsolelOMessag®KM of child task | OKM of Response of RequestliDoriginal
manager participant | above message| RequestConsolelOMessagge

GP of parent

task

sent by child task

Table 8. Newly added message types for task managemh purpose

79

A3. Test data collected from real experiments

Test Data
GP check interval: 5s max# of roles per peer can patrticipate: 10
response time(s) response time(s) response time(s) pesse time(s) response time(s) avg response time(s)response time(s)relative
#DS # GP % roles GP1 GP2 GP1 GP2 GP1 GP2 GP1 GP2 GP1 GP2 GP1 GP2 avg error
1 1 2 9.142 14.130 9.473 14.160 9.900 14.171 10.944 14.291 €420 4.191 9.776 14.189 11.982
avg ts #1: 0.85¢4 avg ts £2: 3.277 avgt #1 0..109 a&tl# 0.500 Calculatedl: 9.31f 14.5%4 11.936
error(s){” (0.047) -0.39%
1 1 6 37.605 57.652 39.897 61.418 38.087 57.152 39.857 62.560 4238. 56.651 38.77% 59.087 48.931
avgts #1: 1.709 avgts £2: 5.604 avgt #1 1.134 a’tl # 0.451 Calculatedl: 38.88J7 61.576 50.231
error(s) 1.300 2.66%
1 2 2 9.477 10.566 8.369 8.082 7.641 8.930 8.662 8.101 8011 g4.382 8.432 8.812 8.812
avgts #1: 1.38< avgts £2: 5.917 avgt #1 0.118 a’tl # 0.581 Calculatedl: 4.00R 8.998 8.998
error(s)|” 0.186 2.11%
1 2 6 27.076 29.51E 27.357 26.078 27.537 30.684 31.826 27.786 0131 34.810 28.971 29.775 29.775
avg ts #1: 1.618 avg ts £2: 5.868 avgt #1 0.680 a’tl# 0.537 Calculatedl: 18.034 30.640 30.640
error(s)’ 0.866 2.91%
2 2 2 8.744 7.942 8.071. 7.311 8.423 8.171 8.404 9.234 7.631 11.246 8.255 8.781 8.781
avgts #1: 1.404 avgts £2: 5.687 avgt #1 0.119 a’tl# 0.469 Calculatedl: 4.02B 8.636 8.656
error(s)’ (0.124) -1.42%
2 2 6 30.374 30.78E 29.032 27.670 31.746 34.730 29.795 28.811 3828. 32.657 29.86 30.931 30.931
avgts #1: 1.603 avgts £2: 5.664 avgt #1 0.646 a’tl # 0.467 Calculatedl: 17.954 29.9%9 29.959
error(s) (0.972) -3.14%

Table 9. Test data collected from real ex experimés
Note: above data are collected in groups of differeimber of DS, GPs and roles to subscribe. Ih geaup we collect five pairs of data fra&P,; and

GP;, with single task running on machine #1 and #2eetyely. For ease of comparison, under each gobapllected data, we provide calculated task
response time based on formula (9). The averagestdxscription timésand average interaction launch titpgre also based on collected d&ar cases
with # of GP greater than 1, roles are evenly ithsted to each peer. The response times for tresesdn grey area are calculated usiagaggregation
function rather than thavg function because the final response time dependsestime used on the slower node.

80

A4. Source code and experiment data download

All source code for the Task Manager, the simulatodt the experiment data can be

downloaded from the SVN server at:

svn+ssh://safetysurvey.ca/export/vhosts/sites/safetysaa/eyn/repos/projects/SurveyProjects/v
2.0_or_older/jack

or upon request ahul9@uwindsor.ca

File Path Filename Description
ok-tm Refer to Table 6 Source code of enhanced OK kernel and task
manager.
peersim src/peersim/taskmanagerSource code of the implemented simulator for

task manager.

taskmanager.cfg Configurations file for implemented task
manager simulator.

Run.cmd Batch command to start the task manager
simulator.
Mui.m Matlab script that visualizes the time series of ja

task simulation.

TMObserverlog.dat Input for mui.m generated by peersim.

Mynlinfit.m Matlab script that generate the empirical formy
via nonlinear least-squares regression

a

t.dat T, v, NN, * L/M data extracted from
testdata.xls, used as input for mynlinfit.m

thesis testdata.xls Excel spreadsheet of raw and derived
experimental data

Table 10. Description of files and transcripts

81

A5. LCC Specification and Example

The BNF definition of LCC [Robertson 2005] is:

Framework :={Clause, . . .}
Clause := Agent :: Def
Agent := a(Type, Id)

Def := Agent | Message | Def then Def | Def or PBef par Def |null-C
Message := M= Agent | M= Agent< C | M #Agent | McAgent« C

C=Term|CaC|CvVvC

Type := Term
M :=Term
The LCC is a set of clauses; each clause definesaoole in the interaction be

performed. Roles are describedagRole, Identifier)which contains the name of the role
and an identifier for the individual peer undertakithat role. The definition of
performance of a role is constructed using comhonatof the sequence operatihren’

or choice operatofor to connect messages and changes of role. Messagesther
outgoing to another peer in a given role) or incoming from another peer in a given

role (‘¢’). Message input/output or change of role can beeghed by a constraint

defined using the normal logical operators for aagjion, disjunction and negation. A
constraint acts as a function or service that nstir Boolean value to indicate if it is
satisfied. There are two kinds of constraints: ptioa constraints and reaction
constraints. Proaction constraints define the aonstances under which a message

allowed by the dialogue framework is allowed toskat. Each constraint is of the form:

A:(M=Ar «Cp (12)

82

WhereA andAr are peer descriptors (of the fom(Role, Id); M is a message sent
by A addressed tér; andCp is the condition for sending the message (eitheptgor a
conjunction of sub-conditions which should holdAh If Cp returnstrue value, which
means the constraint is satisfied, messkbewill be sent fromA to Ar. Reaction
constraints define what should be true in a pekoviing receipt of a message allowed
by the dialogue framework. It usually returtnge and is used to define the post action

after A received messagd from Ar. Each constraint is of the form:
A:(M¢EAs)<Cr (13)
Below is a piece of LCC script which describes thieraction model of dining

philosophers (Full length source code can be fouatd “gettingstarted/lcc/

diningphilosophersl.I¢oof the source tree):

1. r(waiter, initial)

2. r(philosopher, necessary, 5)

3

4. a(waiter, W)

5. [/lInitialise

6. null <- getPeers("philosopher"”, Peers) andialise(Peers, NumP) then

7. a(waiter(Peers, NumP), W) then

8. a(waiter, W) Infinite recursion j

9. L

10. a(waiter(Peers, NumP), W) :: Head and tail list operation
11. null <- Peers =]

12. or // choice

13. (' null <- Peers = [Peer | PeerR] and getllHéY, ID, PID) then

14, init(ID, NumP) => a(philosophergBr) then

15.

16. ((Proa(_:tive constraint for
17. requestLeft(ID) <= a(philosophemré?) then sending a message
18. (

19. left(ID) => a(philosophdpgeer) <- giveFork(ID)

20. or

21. waitLeft(ID) => a(philosophdPeer)

22.)

23. or

50.)

51. then

52. a(waiternew(PeerR, NumP), W)

83

3.) Reactive constraint after
4.] receiving a message

55. a(philosopher, P) ::
56. init(Temp, NumP) <= a(waiter, W) <- initizgk1(Temp, NumP) then

58. (

59. requestLeft(Temp) => a(waiter, W)wantsLeft(Temp)
60. then

61.

62. left(Temp) <= a(waiter, W) <- goft@emp)

63. or

64. waitLeft(Temp) <= a(waiter, W) gotWaitLeft(Temp)
65.)

66.)

67. or

86.)
87. then
88. a(philosophernew, P)

The first two lines of above script specify thagri are two roles in the interaction,
the waiter and thephilosopher This interaction needs oneaiter and fivephilosophers
The interaction starts from theaiter role. The interpretation process of the LCC sdspt
a series of clause expansion and closing similgdhéoway other logical programming
languages are executed [Robertson 2005].

The getPeers("philosopher”, Peersjonstraint at line 6 is an OK predefined
constraint that provides a list of participant [getitat act as the specific role, which is
“philosophet in this case. All the arguments for constrains eeference arguments that
can pass information in or out. Thetialise constraint at line 6 uses argumémersto
initialize thewaiter's user interface, and returns a number via oytpoimeteNumPto
represent the number of participant philosophers.

The a(waiter(Peers, NumP), Wetatement at line 7 and its clause definition stgrt
from line 10 demonstrates a scenario that a roteretain its state at LCC level. The

clausea(waiter(Peers, NumP), Wit line 10 can be explained as: the agent actlas ro

84

waiter running at peekV, which retains a list of peers (which is the b$tphilosopher
OKC instances) and number of philosophers. The bafdthe clausea(waiter(Peers,
NumP), W)s a standard design pattern of a finite recurgidogic programming, which
is achieved through splitting a set into its headement and the tail set (line 13), taking
the header element and passing the tail set tndkielevel of recursion (line 52). At last,

the recursion stops until the sPegrg becomes empty (line 11).

A6. OpenKnowledge Component Example

The LCC script only defines how different roleseiraict through role state change or
message exchange, and uses constraints to deéimeedfcondition of whether the action
will happen or the post-condition about the congseges of the action. The internal logic
of these constraints is implemented as OpenKnowl&igmponents (OKC).

An OKC is a class library that contains descripfiviermation about what the OKC
is about and a class that contains the implementadf all the constraints of a role as
member functions. The following sample code is@&C source code for theaiter role

of above tiningphilosophersLCC.

1. public class PeerWaiterOKC extends OKCFacad All OKC classes inherit the
2. { OKCFacadelmpbase class.

3. private static final int WIDTH = 320;

4

private static final int HEIGHT = 340;

Corresponds to constraint
initialize. Returns true or

5.
21. private List peerList = new ArrayList();
22 false to indicate if the

public boolean[] forks = new boolean]] { trugue, true, true, true

constraint is satisfie
24, public boolean initialise(Argument Peers, éagent Num
25. {

26. List ps = (List)Peers.getValue();

27. NumP.setValue(new Integer(ps.siz
argument value

43.

if (frame == null)

44. {
45. Initialize the UI
92. .fr.ame.setVisibIe(true);

85

93. }

94, return true;

95. }

96.

97. public boolean giveFork(Argument Forkindex)
98. {

99. /[Update the state of the dining table,restlt based on the fork's availability
118. updateGUI();

119. return result;

120. }

121.

122. public boolean forkReturned(Argument Forkixd
123.

124. // Update the state of the dining table
128. updateGUI();

129. return true;

130. }

164.}

Above source code can be compiled and built int@&C package (which is a jar
file) using OK Management Tool. The OKC package pablished to the DS and can be
found and downloaded by the peer that is allocatéd the specific role. After an
interaction is launched, the OKC package will bedied into the memory as a part of the
OKC Instance to provide the constraint solving mervupon requested by the
Coordinator.

The above example demonstrates three advantagesingf LCC and OKC based
programming model to design and implement distaduapplications. First, by using
LCC, one can easily grasp the essential charatiterisf the interaction through role
identification, message exchange and reasoning tabodial norms. Second, the
definition of the interaction model is modular doethe role-based nature of LCC. Third,

the introducing of OKC helps developers to orgaritee implementation details in an

86

elegant manner. Therefore, we see great prospeaatroducing LCC based modeling

techniques to cloud application development.

87

VITA AUCTORIS

Name: Lichun (Jack) Zhu
Place of birth: Xining, Qinghai, P.R.China
Education:
Bachelor of Engineering, Computer Science,
University of Science and Technology of ChinaféieChina

1989-1994

Master of Science, Computer Science Department,

University of Windsor, Windsor, Canada

2006-2008, 2011

88

	University of Windsor
	Scholarship at UWindsor
	2011

	A Distributed Task Management Solution for Peer-To-Peer and Cloud Environments
	Lichun Zhu
	Recommended Citation

	

