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Abstract

Katherine L. Arthurs 
University of Windsor

Upper Extremity Soft and Rigid Tissue Mass Prediction using Segment 
Anthropometric Measures and DXA

Multiple linear stepwise regression was used to generate equations to predict bone 

mineral content (BMC), fat mass (FM), lean mass (LM), and wobbling mass (WM) of 

three segments of the upper extremities including the arm, forearm, and forearm + hand 

segments using simple anthropometries. Full body scans using Dual Energy X-ray 

Absorptiometry (DXA) were used as the reference method. 100 (50 M, 50 F) young 

adults, ranging in age from 17 to 30 years, volunteered where data from 76 participants 

was used to generate the equations while data from the remaining 24 was used for 

equation validation. Prediction equations exhibited high adjusted R2 values (range from

0.854 to 0.968). Scatter plots of the actual versus predicted masses of the validation 

group revealed a close relationship (R2 range from 0.681 to 0.951). This indicates that 

accurate estimates of in-vivo tissue masses for upper extremity segments can be predicted 

by anthropometries.
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GLOSSARY

2-C A 2-component model is a method of in vivo (see below) body
composition estimation where values for fat content are generated through 
the assessment of two of the body’s components, usually fat and fat-free 
masses.

4-C A 4-component model is a method of in vivo body composition estimation
which incorporates the analysis of four different body components. Fat is 
then calculated with the use of pre-generated formulas.

BMC Bone Mineral Content refers to the make up of the bone. For example, it
accounts for bone calcium, and relates to bone density and strength.

CT Computerized Tomography, a type of imaging technology utilizing
rotating x-ray tubes and film to produce cross-sectional tissue images for 
diagnostic and body composition tissue analyses.

DV Dependent variable, a value that is affected or determined by another
factor or value. For this study the dependent variables consisted of the 
tissue masses for each of the segments.

DXA Dual Energy X-ray Absorptiometry is an imaging technology which uses
photon rays to measure soft and rigid tissues based on their density. A 
useful tool in medical and research fields for bone density and body 
composition analysis.

FM Fat Mass, the masses of the body made up of fatty tissues.

FFM Fat Free Mass includes the mass of all the tissues in the body that are not
fat.

In Vivo Reference to the living population.

In Vitro Reference to post-mortem population.

IV Independent variable, a value that is unchanged when compared to others
or used to determine or predict others. The independent variables of this 
study consisted of the anthropometric measurements and other predictor 
variables.

K Counting Potassium counting is a method of body composition analysis where fat
may be estimated by the amount of potassium found in the body, since it is 
assumed that potassium only exists in lean tissue.

LM Lean mass refers to soft tissue mass in the body that is not fat. This is
mostly composed of muscle tissue but also includes tendons and 
ligaments.
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mRem milli-roentgen-equivalent man, unit of radiation dose

MRI Magnetic Resonance Imaging allows for high resolution view of soft
tissues from detectors mapping out the targeted tissues as they respond to a 
360° magnetic field and radiation waves.

Rigid mass Musculoskeletal tissue in the body that is not soft, mainly bone.

ROI Regions of interest are specific regions of the body that are targeted for
analysis. This term is used in reference to specified segments for body 
composition analysis using the DXA software.

SEE Standard Error of the Estimate, a measure, in grams, of the degree of error
for the prediction equations.

Segmentation A method of separating body parts from the rest of the body for 
independent body composition analysis.

Soft Tissue Soft Tissue refers to the fat and lean mass components of the body.

WM Wobbling mass encompasses all the non-rigid parts of the body, including
soft tissues such as fat, muscle tissue, internal organs, as well as bodily 
fluids.

xi
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I. INTRODUCTION

Biomechanics focuses on studying internal and external forces on the body, often 

by way of biomechanical modeling. Biomechanical models function to illustrate the 

mechanics of a living body and how it responds to different variables (i.e. force). These 

models are important tools for answering questions about human capacities, injury 

prevention, as well as static and dynamic assessments relating to ergonomics and 

athletics, among other things. Such models are developed to simplify the complex system 

of the human body and acquire specific information pertaining to that system.

The mechanical system of the human body is made up of rigid (bones) and non- 

rigid (muscles and other soft tissues) masses, which are attached to each other via 

connective tissues (Liu & Nigg, 2000). These masses respond differently to internal and 

external forces placed on them, which affect the way the body will respond in different 

scenarios. The differential motion of the soft and rigid tissues has been found to play a 

significant role in the body’s response to impact loading (Gittoes, Brewin, & Kerwin, 

2006).

Biomechanical modeling has traditionally used rigid link segments to estimate 

internal joint forces (Farley & Gonzalez, 1996; Ferris & Farley, 1997). However, this 

type of modeling does not result in representative values of the human during impact 

because it does not account for soft tissue motion that occurs relative to bone (Gruber, 

Ruder, Denoth, & Schneider, 1998). The increase of research in this area over the last ten 

years has lead to the coining of the phrase “wobbling mass” (WM), which encompasses 

all the non-rigid parts of the body, including soft tissues such as fat, muscle tissue, 

internal organs, as well as bodily fluids (Yue & Mester, 2002).

1
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Studies that have examined the effects of WM have reported that soft tissue mass 

and rigid-body mass react differently in many situations (Yue & Mester, 2002). In fact, 

soft tissue masses have been found to greatly influence the magnitude of transmitted 

forces through body segments (Gruber et al., 1998). More specifically, Pain and Challis 

(2006) reported that joint torques and forces calculated in their WM model were lower 

than those of a rigid-body model and accentuate the importance of determining the effects 

of soft tissue motion during impacts. As a result of such findings, it has been suggested 

that a model of the human body using rigid segments alone is only justified for studying 

slow quasi-static movements and is particularly not appropriate when studying impact 

situations (Liu & Nigg, 2000).

A specific challenge to biomechanists who want to incorporate wobbling tissues 

into biomechanical models has been the quantification of body tissue masses in living 

people. Body composition quantification methods can therefore aid in answering 

questions of how and why our bodies physically respond the way they do. It is a 

reasonable challenge since accurate quantification involves precise measurement of the 

components that make-up the body.

Much of the data available on human body composition have come from cadaver 

segmentation studies and even these are limited (Clarys, Martin, Marfell-Jones, Janssens, 

Caboor, & Drinkwater, 1999). Data attained from cadavric research may be useful, but it 

must be interpreted and used with caution since cadavers are often embalmed and frozen 

then thawed for data collection which, some studies have shown, can affect the structural 

and mechanical properties of the tissue (Callaghan & McGill, 1995). Other limitations of 

in vitro research include: segmentation and dissection differences between investigators, 

the effects of cadaver fluid loss, the limited number of studies conducted for body

2
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composition quantification, accompanied by the small number of specimens used for 

these studies, and also the complication of applying in vitro data to a living population. 

Further, there has been a lack of in vivo research done to validate such data (Clarys et al., 

1999), leaving a specific need for in vivo research focussed on the quantification of WM 

in segments such as those in the upper and lower limbs.

Modem imaging technologies have allowed researchers to analyze tissues beneath 

the skin in living people. These methods have been developed to specifically assess rigid 

tissues, soft tissues, or both. As energy passes through the body, investigators are able to 

obtain measures of the body without having to use invasive methods. Through the use of 

modem imaging technology, segmenting techniques may also be applied to current in 

vivo studies. Holmes, Andrews, Durkin, and Dowling (2005) used anthropometric 

measurements to create regression equations to predict in vivo soft tissue masses of the 

lower limbs. They used Dual Energy X-ray Absorptiometry (DXA), which has the 

capacity to measure both rigid and soft tissue masses, to validate these predictions by 

specifically segmenting the lower extremities using DXA software. They were the first to 

develop working equations for the estimation of soft tissue masses in living people in this 

manner. These equations save researchers both the time and money that would otherwise 

need to be spent on technologies such as DXA. However, this work is limited in terms of 

the number of people that were scanned and because it only considered the lower 

extremities.

The literature reflects growing attention paid to musculoskeletal injuries of the 

upper extremities. Researchers are increasingly concerned with upper limb injuries that 

occur during work (e.g. Potvin, Chiang, Mckean, & Stephens, 2000), recreational 

activities (Sherker & Cassell, 1999; Made & Elmqvist, 2004), and as a result of falling

3
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with outstretched arms (e.g. Hsiao & Robinovitch, 1998). In light of the increase in upper 

limb musculoskeletal disorders incurred during these types of activities, it is important to 

understand the mechanisms of injury in order to decrease or even prevent their 

occurrence. This understanding depends on having accurate upper extremity 

biomechanical models which account for WM contributions. However, before these 

types of models can be developed, accurate estimates of in vivo soft tissue masses for the 

upper limbs must be made available.

The availability of soft tissue masses for the upper extremities of living people is 

not available in part because of the cost associated with the use of the necessary scanning 

equipment. This high cost is also reflected in the low number of appropriate scanners 

available for use. In addition to this, there would be a large time commitment to any 

researcher interested in gaining such data since a large sample group would be required to 

ensure the accurate representation of the population. If a method could be developed to 

easily predict specific tissue masses of the upper extremities the cost and time necessary 

for obtaining the data would be significantly decreased. In lieu of this, such data may 

become more readily available and lend itself not only for use in biomechanical 

modelling that accounts for WM, but could also be used to predict tissue masses of any 

interested party, including athletes and those with health and body composition related 

concerns.

Purpose

The purpose of this study was to create tissue mass prediction equations for the 

upper extremities, similar to the ones created by Holmes et al. (2005) for the lower 

extremities, which allow for the estimation of in vivo bone mass (BMC), fat mass (FM),

4
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lean mass (LM) and wobbling mass (WM = LM + FM) from simple segmental 

anthropometric measures. Separate equations were created for three segments of the 

upper extremity including the arm, forearm, and the forearm and hand segments. DXA 

scans were used to provide the actual tissue masses for purposes of developing and 

validating the equations.

5
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II. REVIEW OF LITERATURE

Biomechanical Models 

Background

Biomechanical models have been developed as simplified versions of the human 

body for the purpose of better understanding the body and the way it responds to different 

stimuli. Traditionally, biomechanists have used rigid segment modeling to simulate and 

analyze movement activities such as running and hopping (Farley & Gonzalez, 1996; 

Ferris & Farley, 1997). True to their name, this form of modeling consists of a system of 

connected, rigid segments representing in vivo segments. Segment connections are 

sometimes represented by a series of springs and dampers in order to simulate human 

movement (Liu & Nigg, 2000; Pain & Challis, 2004).

These types of models have been useful analysis tools, allowing further 

investigation into the complexity of human motion. However, it is apparent that rigid 

segment modeling is too simplistic in some dynamic situations (e.g. impact). Since 

spring and damper systems, or other methods of rigid segment connection are typically 

constant throughout the model, they do not account for neuro-muscular regulation (Liu & 

Nigg, 2000), nor do they account for rapid changes in joint angles or muscle activity 

following the impact (Bobbert, Yeadon, & Nigg, 1992). These inaccuracies inherent in 

rigid segment modeling have led researchers to explore other, more realistic forms of 

human modeling. However, resistance to develop or use a model that would consider 

these elements is met because it would mean a great increase in the complexity o f the 

model. Pseudo-rigid body models have been developed which include some elements of 

increased complexity (Midah, Howell, & Norton, 2000) but, more ideally, models 

including wobbling masses have been developed and are now being used more and more

6
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frequently in research (Gruber et al., 1998; Liu & Nigg, 2000; Pain & Challis, 2002; 

Gittoes et al., 2006).

Wobbling Mass Models

Wobbling mass (WM) models incorporate both soft and rigid masses of the body 

into a more complete system and model structure. They contain rigid segments with soft 

tissue masses attached to them by viscoelastic tissue connections. This allows the WM to 

oscillate around the segments’ rigid mass centres (Gittoes et al., 2006; Pain & Challis, 

2006). It is important that WM models include this functional ability since it has been 

found that human WM can be displaced relative to the bone (Gruber et al., 1998). This 

happens frequently in dynamic situations and is important since the movement of the WM 

has been shown to have a significant effect on in vivo attenuation of force in dynamic, 

especially impact, situations. Soft tissue movement can account for observed decreases in 

joint moments (Gruber et al., 1998; Yue & Mester, 2002).

WM models have been developed largely to realistically replicate the response of 

the human body to impact loads (Gruber et al., 1998). Particular focus has been placed 

on the lower extremities, specifically impact loading of the heel (Gruber et al., 1998; Pain 

& Challis 2004, 2006) and the effects of rigid and WM distribution on load attenuation 

(Liu & Nigg, 2000). Although similar work has not been completed for the upper 

extremity, valuable information has been gained from these lower extremity studies that 

may be applied. For example, soft tissue properties have been found to play an important 

role in shock attenuation in the leg following heel impact (Gittoes et al., 2006; Pain & 

Challis, 2006). It is reasonable to assume that the soft tissues of the palm would have 

similar effects on the upper extremity during impacts to outstretched hands, such as

7
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would occur during falls. As stated earlier, the largest hurdle for researchers concerning 

WM models is accounting for the added complexity associated with all the tissues. If 

wobbling mass tissue magnitudes could be predicted with simple anthropometric 

measurements, this would significantly decrease the effort, time and money that would be 

required to develop a WM model of the upper extremities.

Upper Limb Injuries 

Recreation and Falls

Upper extremity injuries are becoming more and more prevalent with the increase 

of sports such as in-line skating and snowboarding (Sherker & Cassell, 1999; Made & 

Elmqvist, 2004). Injuries related to these sports are a result of falling and impact bracing, 

at high velocities. Despite decreased velocities during walking, this is the most common 

mechanism of many upper limb injuries of the elbow and the wrist in both the young and 

elderly (Amis & Miller, 1995; Hsiao & Robinovitch, 1998). These falls often occur in a 

backwards direction, and have been found to have high impact velocities at the hand and 

wrist, leading to a high injury rate (Tan, Eng, Robinovitch & Wamick, 2006). 

Snowboarders, especially beginners, have a tendency to fall frequently, both forwards and 

backwards, and since the rider’s legs are anchored to the board they are not able to step 

out to correct imbalance. Therefore, as they are falling, their arms and hands are their 

only defence against the ground (Made & Elmqvist, 2004). For snowboarders, the most 

common diagnoses for injury are lower arm/wrist fractures (20%), and lower arm sprains 

(12%) (Made & Elmqvist, 2004). In sports such as this and in-line skating, soft tissue 

injuries occur in addition to possible damage to the bone (Sherker & Cassell, 1999).

8
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Occupational Injuries

Upper limb injuries, due to impact, may also be incurred at work. It is not 

uncommon to have manufacturing assembly tasks that involve repetitive hand impacts 

(Potvin et al., 2000). For example, in door trim panel installation in the automotive 

industry, the base of the hand is used as a hammer to force the plastic push pins of the 

trim into the metal frame to seat the panel (Potvin et al., 2000). Even if the impact 

velocities of this type of work do not reach those of a fall, the repetition is sufficient to 

put the worker at significant risk of injury for developing disorders such as hand arm 

vibration syndrome. In addition to the trauma placed on the body as a result of repeated 

impacts, employees are often required to be in awkward positions while completing these 

tasks, putting themselves at further risk of fracture and/or soft tissue injury.

Summary

The high incidence of upper extremity musculoskeletal disorders incurred as a 

result of daily activities (work and recreation) is further evidence of the need for 

biomechanical assessment of in vivo upper limbs. This could provide great insight into 

how such injuries occur and how they may be prevented. Quantification of the masses 

that comprise the upper extremities is an important step towards understanding their 

responses. If body composition prediction equations were available, inputs for WM 

models could be attained through the use of simple anthropometry. WM models 

simulating upper limb impacts could then provide investigators with specific knowledge 

of how individual tissues respond in a given situation, thereby providing insight into why 

and when upper limb injury may occur.

9
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Methods of Body Composition Quantification

In order to learn and understand the make-up and function of the human body, 

early researchers turned to cadaver dissection. This form of investigation allowed for 

sub-epidermal levels of observation and separation of deep tissues, which is not feasible 

in living people. Direct evaluation of living people is appealing compared to cadaveric 

work because it is more time efficient, living people are more readily available than 

cadavers, and it reduces the amount of error that may be incurred as a result of applying 

in vitro research results to the living population. Traditional methods of estimating in 

vivo body composition, which are relatively inexpensive and easy to use, include 

techniques such as anthropometry, total body water, and bioelectrical impedance. Every 

method of body composition estimation has advantages and limitations. Since no method 

is free of error, they are often used to validate each other (Martin, Daniel, Clarys, & 

Marfell-Jones, 2003). Recent technologies have also made it possible to take direct in 

vivo measurements of deep body tissues for use in research and medical diagnosis. These 

imaging technologies include, but are not limited to: magnetic resonance imaging (MRI), 

computed tomography (CT), and dual energy x-ray absorptiometry (DXA).

In Vitro Methods of Body Composition Quantification

By the end of the nineteenth century anatomical mass data were based on only 

nine dissections, and only muscle and body masses were reported (Martin, Spenst, 

Drinkwater, & Clarys, 1989). A series of questions concerning muscle mass in relation to 

athletics, nutrition, and gravity deprived environments, lead to more in depth 

investigations (Martin et al., 1989). With the increased interest in body composition by 

means of in vitro dissection, methods were developed for tissue separation and

10
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segmentation, in order to quantify soft tissue masses of specific body parts individually. 

There is no simple way of segmenting the human body geometrically (Grand, 1977). 

Therefore, various methods have been derived whereby most of the differences between 

them are centered around the selection of the cutting plane when separating body parts 

(Clarys & Marfell-Jones, 1994). Three main methods have been developed for cadaver 

segmentation.

Three Methods of Anatomical Segmentation

The first method allows for the segmentation of body parts by sawing across the 

joint centres of frozen cadavers that separate the targeted segment(s) (Braune & Fischer, 

1889; Dempster, 1955). This may result in the division of a bone as well as soft tissues 

into two different segments (Figure 2: see Methods). For example, when segmenting the 

leg from the thigh at the knee, the cutting plane will divide the femoral condyles and 

patella so that the distal portions will be segmented with the calf, while the remaining, 

proximal portions will be incorporated with the thigh segment. This type of uni­

directional segmentation was justified because it was seen as essential for biomechanical 

analysis. Despite the perceived necessity of the uni-directional segmentation, the idea of 

the joint centre cutting plane raised some questions and concerns as to the allocation of 

bone portions that were separated as a result (Clarys & Marfell-Jones, 1994).

The second segmentation method, developed by Grand (1977), took on a  slightly 

more complex methodology than that of Braune and Fischer. This method involves the 

separation of individual muscles at their origins and insertions through the cutting of 

tendons. Following this separation, the entirety of each muscle is assigned to one of the 

bordering segments on either side of the joint. The muscle is generally attributed to the
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segment containing the majority of that muscle’s mass. For example, segmentation about 

the knee joint would attribute the thigh with the biceps femoris and medial knee flexors 

while the leg segment would claim the patella along with the long muscles of the region. 

Grand segmented in this fashion so that the intact muscle groups of one dissection could 

be compared, in corresponding segments, to another specimen (Grand, 1977).

The third segmenting technique was developed as a compromise between the two 

existing methods in order to insure maximum usability of dissection data while not 

sectioning any bones. In 1984, Clarys, Martin, and Drinkwater segmented both fresh and 

embalmed cadavers by severing the segment at the joint space (similar to the method used 

by Braune and Fischer, and Dempster), in the general plane of the proximal articulating 

surface. However, rather than segmenting the bone, as performed in the first method, 

Clarys and colleagues chose to circumvent any bony parts where they protruded across 

the plane of the cut (Figure 1). This would allow bone ends to remain intact with the 

appropriate segment, similar to Grand’s approach.

Limitations of In Vitro Research

Until the 1980s, most of the cadaver research performed in this area quantified the 

mass of total segments, but not the internal composition of those segments (Clarys & 

Marfell-Jones, 1994), or noted the composition masses but not the total body masses 

(Clarys et al., 1999). Another unfortunate downfall of cadaver research is the lack of 

direct methods for fat estimation (Clarys, et al., 1999). Direct methods of in vitro 

investigation have been used to measure fat, but use of these direct methods for validation 

of in vivo fat estimation techniques has been predominantly ignored.
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Despite the leading role that cadavers have played in body composition research, 

there have been relatively few studies performed to investigate this matter. Further, many 

of the studies performed have obtained data from only a small number of specimens 

(Dempster, 1955; Clarys et al., 1999). As a result, the data collected from these small 

populations may not be an accurate representation of the larger population (Holmes et al., 

2005).

One of the largest challenges of segmentation for the purpose of body composition 

quantification is the sensitivity of the data with respect to the method of segmentation. 

Significantly different results between studies are likely if different researchers use 

different methods of segmentation. Therefore, body composition data can not be directly 

compared between studies unless the same segmentation methods have been accurately 

followed. Instead, the data must be interpreted with the idiosyncrasies of the 

investigator’s data gathering techniques (Dempster & Gaughran, 1955).

There is a need for dissections which include in vivo methods for the purpose of 

validation. Without such studies, research will continue by way of comparing several 

indirect methods of evaluation, but true conclusions will be unreachable (Clarys et al., 

1999). Mathematical models have been developed by Hanavan (1964) to help overcome 

the limitations with the application of cadaver research to the living. These models are 

not frequently used though because they assume that the body has a uniform density 

throughout, which is potentially a major source of error (Clarys & Marfell-Jones, 1986).

Frozen/Embalmed verses Fresh Cadavers

In vitro specimens may be compromised due to post-mortem effects such as 

changes in tissue properties and mechanics. Little research has been conducted in this

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



area, however, it has been found that bioelectrical impedance of a lateral abdominal 

skinfold in rats increases exponentially in the first 120 hours after death (Querido, 1998). 

This signals that some changes do occur in the body after death that could potentially 

affect body mass composition research. It is not known what causes this or whether or 

not this phenomenon occurs in humans. However, it is important to bear in mind that 

post-mortem changes may exist and have effects on collected tissue mass data, which in 

turn, should be used and interpreted cautiously.

Consideration should also be given to the condition of the specimen for dissection. 

Many cadavers are frozen and/or embalmed prior to dissection. It has been shown that 

structural properties of porcine vertebrae are altered as a result of frozen storage 

(Callaghan & McGill, 1995). The properties of other tissues have not been investigated, 

but as a result of the unknown and the potential effects on body composition and its 

quantification, it is necessary to realize the potential for error here. Despite this, the 

problems typically experienced during a fresh/frozen cadaver dissection are related to 

bodily fluid loss. Grand (1977) went as far as to say that fluid loss occurs as a part of 

every dissection, in muscle more than bone. Clarys, Martin, and Drinkwater (1984) 

found a two kilogram weight loss of their specimen and attributed it to evaporation from 

the moist tissues which were exposed during dissection. The discrepancies caused by the 

fluid evaporation, in most cases, have not been found to significantly affect body 

composition measurements.

Some methods typically used to decrease evaporative weight loss during 

dissection include storing the specimen in humidified areas and embalming the specimen 

prior to dissection. It has been found that embalming an in vitro subject (with embalming 

fluid) may restore hydration to a morphology more representative of the living state
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(Todd & Lindala, 1928). However, despite the advantages embalming has regarding 

body fluid evaporation, it is not without its disadvantages. To correctly preserve a cadaver 

via embalming about 6 litres of embalming fluid must be injected either into the left 

femoral artery or the carotid artery (Clarys et al., 1984). Body composition inaccuracies 

may be introduced if this fluid is not evenly distributed. Clarys and colleagues (1984) 

found that fat, muscle, and undifferentiated tissues retained more of the embalming fluid 

than the bone or skin. As a result, increased weights and anthropometric measurements 

of the specified tissues were increased in comparison to the skin and bone.

In Vivo Methods of Body Composition Quantification

Segmentation and body tissue separation are ideal for determining body 

composition of cadavers. Since direct measurements can not be made in vivo, several 

methods have been developed for body composition estimation. These models vary in 

level of complexity, accuracy, and availability. The most commonly used traditional 

methods include: multi-component models such as hydrostatic weighing, total body 

water, bioelectrical impedance, potassium counting, and anthropometry. A general 

description of each method is outlined below.

Multi-component Models

Multi-component models are a means of estimating body composition by 

accounting for a number of the body’s components or compartments together. Multi- 

component models are typically either comprised of two components or four components. 

A limitation of using this type of model to estimate body composition is that any errors or
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inaccuracy incurred during the measurement of one component, or more, may compound 

and compromise the combined results (Lohman & Going, 1993).

2-Component Model (2-C)

2-C models are designed to provide body composition analysis based on two of 

the body’s components. The components most often used for this type of analysis are the 

fat and fat-free mass (FFM) components. The premise behind the 2-C model is that if the 

FFM of the body can be determined, than body fat can be found indirectly as the 

difference between the body weight of the participant and their FFM (Ellis, 2000). Body 

density has been used as a 2-C model. In fact, hydrodensiometry has been used as a 

reference method for body composition for a long time (Kohrt, 1998). Nuclear-based 

methods also exist as 2-C models, such as potassium counting (Ellis, 2000).

Hydrostatic Weighing

Hydrostatic weighing or hydrodensiometry is a method of measurement whereby 

the participant sits on a chair, completely submerged in water, and exhales as much as 

they can. Body volume is calculated by a measurement of water displacement while 

underwater weight can be gained digitally since the chair can be suspended from load 

cells (Wellens, Chumlea, Guo, Roche, Reo, & Siervogel, 1994). Prior to submersion, 

residual lung volume is assessed by helium dilution, allowing the body volume from 

displacement to be consequently adjusted (Visser, Fuerst, Lang, Salamone, & Harris, 

1999; Salamone et al., 2000). In order to decrease methodological error and lend to 

participant comfort, the water temperature is usually maintained from 32-35 °C and
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participants are asked to wear bathing suits. Also to ensure reliable data, multiple 

submersions are performed, and the average of the most consistent trials is usually taken 

(Visser et al., 1999; Salamone et al., 2000).

This 2-C model has been used as the gold standard in the past, but with recent 

advances in depth imaging technologies, it is being used less frequently of late. One of 

the drawbacks that may contribute to its decrease in popularity may be how difficult the 

task is for participants to perform (Kohrt, 1998). Despite investigators’ efforts to make 

subjects as comfortable as possible, the subjects are still required to submerge themselves 

a number of times while exhaling and trying to sit on a chair underwater. Another 

limitation is the assumption that the ratio of FFM components (water, protein, and 

minerals) is unchanging across varying demographics. This is not true of the human body 

and assuming so may result in less accurate results for some populations, particularly 

children and the elderly (Kohrt, 1998). The biggest problem though with using 

hydrodensiometry as a means of body composition estimation is in deriving percent body 

fat, which involves converting density to fatness (Ball, Altena, & Swan, 2004).

Potassium Counting

Potassium counting (K counting) is a procedure that has been developed for the 

estimation of whole body lean tissue. This works on the theoretical basis that the 

naturally occurring K in the body exists in the body’s FFM (Wang, Zhu, Wang, Pierson,

& Heymsfield, 2003). This K may be measured with a gamma ray and two sodium iodide 

detectors which are often placed just above and below the xiphoid process (Grinspoon et 

al., 1996; 1998). The K is counted at each of these detectors with a body scintillation 

counter (Haarbo, Gotffedsen, Hassager, & Christiansen, 1991). Counted K may be
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related to the lean body mass at a rate of 2.5g K/kg lean body mass (Grinspoon et al., 

1996). However, in order to allow measured potassium in the body to yield FFM 

estimates, studies have been done to determine total body potassium to FFM ratios for 

men and women independently, and provide necessary formulae for each (Forbes, 1987). 

There are disadvantages of total body K counting for both researcher and participant. For 

the researcher, facilities to perform such investigations are limited and potentially 

difficult to obtain. For the participant, this procedure has been found to be somewhat 

claustrophobic which may lead to subject recruitment limitations (Haarbo et al., 1991).

4-Component Model (4-Q

A 4-C model can be any model incorporating four different components. Prior 

and colleagues (1997) suggest that the assessment include: fat, water, mineral, and protein 

(residual) compartments. This would account for fluctuation of water, minerals and FFM 

density within the participant. However, it has also been suggested that the four 

components used for body composition assessment would best include: body density, 

total body water, total bone mineral mass, and body weight (Visser, et al., 1999;

Salamone et al., 2000). The compartmental data collected from each of these components 

would then be inserted into a formula derived by Lohman and Going (1993) in order to 

determine percent body fat. As a result, FFM may also be obtained by subtracting this 

value from the participant’s body weight (Visser et al., 1999).

The body density required for this formula may be collected via hydrostatic 

weighing (Salamone et al., 2000; Visser et al., 1999). In order to gather data pertaining to 

the total body bone mineral mass, DXA imaging can be utilized (Salamone et a l., 2000). 

Whereas DXA assumes constant body water, the 4-C model allows a more individually
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accurate assessment since it does account for individual differences in water content and 

the mineral content of the FFM (Visser et al., 1999).

Along with modem imaging technologies this 4-C model has been used more and 

more. However, one issue that needs be considered is the use of hydrostatic weighing for 

determining FM because it introduces the limitations of this method, such as the density 

to fat conversion. Another limitation of the 4-C model is that it is not convenient or even 

realistic to gather data for all four components on a large group of subjects.

Total Body Water

Water molecules are made up of one oxygen and two hydrogen atoms. This 

method of calculating total body water as an assessment of body composition is based on 

the premise that the hydrogen atoms can be exchanged with isotopic water, substituting 

the hydrogen with deuterium (Culebras & Moore, 1977). A known dose of deuterium 

oxide of about 4.0 g diluted in about 50 ml of water can be ingested orally by the 

participant (Salamone et al., 2000), or injected (Culebras & Moore, 1977). After the 

deuterium has entered the body some time must be given to allow the deuterium oxide to 

equilibrate with the water, with the assumption that the distribution of volume o f the 

isotope and the mode of exchange are similar to those of water. This enables the 

possibility of calculating total body water and deriving FFM (Wellens et al., 1994) by 

using the equilibrium concentration as the denominator (Culebras & Moore, 1977). This 

information is obtained by a comparison of blood (Salamone et al., 2000), saliva 

(Wellens, 1994), or other bodily fluids, taken before the deuterium was given, and two to 

five hours after (Wellens, 1994; Salamone et al., 2000). A high-resolution mass 

spectrometer can be used to detect the deuterium oxide (Wellens, 1994; Salamone et al.,
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2000). Corrections need to be made in the case that the deuterium oxide entered an 

exchange with hydrogen atoms not of a water molecule (Culebras & Moore, 1977; 

Wellens et al., 1994; Salamone et al., 2000). It has been found that without correction 

this method can overestimate total body water by up to 5% (Culebras & Moore, 1977). 

Salamone and colleagues (2000) corrected their sample by dividing the deuterium • 

dilution space (litres) by 1.041. These results have been found to show high correlation 

with body weight (Culebras & Moore, 1977).

Bioelectrical Impedance

Bioelectrical impedance analysis measures the body’s resistance of an applied 

alternating current (Lukaski, Johnson, Bolonchuck, & Lykken, 1985). Since water 

contains dissolved electrolytes it is able to conduct the current while other body 

components are unable to (Chumlea, & Guo, 1994; Van Marken Lichtenbelt, Westerterp, 

Wouters, & Luijendijk, 1994). As a result, the resistance of the current can translate to 

total body water (Deurenbuerg, 1996). This technique is based on the theory that the 

body’s ionic circuit is set up like a series circuit (Kotler, Burastero, Wang, & Pierson, 

1996). However, this is not a certainty and may be an inherent error of this method. 

Further, this model is based on the assumption that the body is cylindrically shaped, 

which is not the case (Kotler, et al., 1996). Another assumption used for bioelectrical 

impedance analysis is that the hydration is constant (Deurenberg, 1996). However, 

hydration varies between subjects, which may result in over or underestimation of fat 

and/or FFM. For example, if there is a decrease in bodily hydration an impedance 

increase will result (Deurenberg, 1996). Differences have also been found between very 

lean individuals and those who are obese. Research has shown that large errors may exist
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in the predicted body fat percentages for very lean subjects even to the point where the 

FFM may be found to be larger than the subject’s actual body weight. For obese 

participants, it was found that impedance underestimated body fat (Deurenberge, 1996). 

Though bioelectrical impedance enables estimates of fat and FFM, the assumptions, 

limitations, and errors that surround the theoretical basis and results, do not reflect 

positively on the method.

Anthropometry

Anthropometry is the science that deals with the measure of size and shape of the 

human body. Several types of anthropometric measurements exist and are regularly used 

by investigators including: segment lengths, breaths, widths, circumferences and 

skinfolds. Although there are many reasons warranting the collection of anthropometric 

data, the most popular is body fat assessment, despite the fact that this provides only an 

indirect measure (Ball, Altena, & Swan, 2004). A valid concern of several researchers 

with regards to anthropometry is the potential for error or subjectivity of the 

measurements, such as correct anatomical landmarking (Fuller et al., 1991; Perini, de 

Oliveira, dos Santos Omellas, & de Oliveira, 2005). However, despite these limitations, 

many studies have reported accuracy, precision and reliability of such measurements, 

even between investigators (Jackson, Pollock, & Gettman, 1978; Klipstein-Grobusch, 

Georg, & Boeing, 1997). Anthropometry is an attractive method of body composition 

estimation, not only due to its accuracy, but because it is cost effective and easy to 

perform.
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Skinfold Measurements

The measurement of skinfold thickness has been used as a practical means for 

body fat evaluation (Bray, Greenway, Molitch, Dahms, Atkinison, & Hamilton, 1978). 

The theoretical basis of this method is that a majority of the body’s fat store exists in the 

subcutaneous tissue, which is loosely attached to the underlying tissue. Therefore, a 

reasonable fat measurement can be made by pinching the skin and measuring the fold 

with a pair of callipers (Edwards, Hammond, Healy, Tanner, & Whitehouse, 1955).

Limitations exist with this form of anthropometry. The first is the fact that not all 

body fat can be accounted for at the subcutaneous level. For example, it is known that 

fatty tissue exists, as a protective lining, around the body’s internal organs. The second is 

that considerable variability can occur between studies based on methodological 

differences. How tightly the skin is pinched during measurement (Edwards, et al., 1955), 

and the anatomical location of the measurement (Bray et al., 1978), are important 

considerations. As a result of these types of limitations, greater error has been found for 

skinfolds than for other types of anthropometric measurements (Fuller et al., 1991). Error 

has also been observed to vary between individuals of differing body types, with error 

increasing with percent body fat (Nordhamn, Sodergren, Olson, Karlstrom, Bessby, & 

Berglund, 2000).

Despite these limitations, skinfold measurements have been considered an 

adequate method for the evaluation of a large number of people due to its easy execution, 

low cost, and relative accuracy (Perini et al., 2005). On their own, these are not good 

enough reasons to use this method for body composition estimation. However, skinfolds 

have been found to be accurate indicators of actual levels of fatness and fat distribution
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(Mueller & Malina, 1987), and values obtained from skinfold calliper measurements are 

consistent with those of hydrostatic weighing (Womersley & Dumin, 1977).

Circumferences

Segmental circumference measures may also be used to estimate percent body fat 

of the targeted segment. However, to use circumferences for total body estimates, a wide 

range of circumference locations may be utilized. It has been strongly recommended that, 

for body composition purposes, circumference measures be combined with regression 

equations. This recommendation stems from findings indicating that suppressor variables 

exist and may be useful for determining more accurate estimates of body fat percentages. 

For example, though arm and forearm circumferences do not correlate well with 

circumferences of the waist or gluteus, they can be used as predictors. This will allow 

waist and/or gluteus circumferences to be more valid estimates of percent fait (Pollock, 

Hickman, Kendrick, Jackson, Linnerud, & Dawson, 1976). The reliability of this type of 

measurement is greater than that of skinfold thickness and is not affected by body type 

differences (Bray et al., 1978; Mueller & Malina, 1987). Like skinfold thickness and 

other forms of anthropometry, circumference measurements are inexpensive to perform 

and easy to take.

Summary

Increases in obesity have lead to an influx in research surrounding links o f  

morbidity to increased percent body fat. Body composition is an important tool in the 

assessment of human mechanics and simulation. With the ever increasing knowledge of 

the human body it is now becoming possible to combine body composition data with
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biomechanical analysis via wobbling mass modeling to learn how body composition may 

affect in vivo mechanics. The body composition estimates derived by the outlined 

methods may be used as modeling inputs for better understanding the effects of 

musculoskeletal response and injury. It is important to bear in mind though, that 

traditional methods of body composition estimation, like hydrostatic weighing and 

bioelectrical impedance, are limited in their accuracy, availability, and suitability across a 

variety of demographics (Prior et al., 1997). With the assistance of modem imaging 

technologies, more complex and accurate measurement data may be acquired and used to 

validate some of the more traditional methods such as anthropometry. With the 

validation of these methods, researchers will not always be required to turn to expensive 

imaging techniques but will be able save both time and money, confidently using a 

traditional method.

Imaging Technology

Advances in technology, along with a demand of more complex body composition 

measurement, has lead to the development of imaging equipment. The most commonly 

used imaging techniques for this purpose include: computerized tomography (CT), 

magnetic resonance imaging (MRI), and dual energy x-ray absorptiometry (DXA).

Computerized Tomography fCT)

CT is an advanced imaging technique requiring rotating x-ray tubes and x-ray 

film. As the participant advances into the chamber, the tube rotates 360°. This produces 

a series of cross-sectional images at anatomically determined locations (Salamone et al., 

2000) viewed from all around the subject. Through computer analysis, each x-ray image
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from all angles can be reconstructed. As a result, the appearance of the images can be 

enhanced. CT shows a combination of soft and hard tissues while separating soft tissues 

into muscle tissue mass and adipose tissue mass (Salamone et al., 2000). CT may also be 

used to show fluid collection in the body (Yamaguchi, Yamauchi, Yamada, Ariyoshi, 

Ailawa, & Kato, 2001). When used to aid in body composition evaluation, CT is not 

without its downfalls. As a result of the complexity of the CT machine, this technique is 

very costly. This is especially limiting for body composition research, which often 

involves relatively high participant recruitment. There are also some technical limitations 

that may compromise the application of the results obtained from CT. The fact that CT 

assesses adipose tissue rather than FM is its largest weakness for body composition 

estimation (Salamone et al, 2000). DXA however, may be a better choice than CT for 

body composition matters since it provides FFM and FM (Visser, et al., 1999). DXA also 

distinguishes the tissue types throughout the body, thereby limiting the amount o f 

possible misclassification and allowing for more accurate results.

Magnetic Resonance Imaging fivTRP

The MRI machine is composed of a bed for the participant to lie down on and a 

tube into which the bed and participant slide. Magnets are built inside the 360° of the 

tube’s outer wall. These magnets, located across from one another, create a large 

magnetic field, which attracts positive forces, causing protons in tissues to align parallel 

to force fields. Following this alignment, radio waves are introduced at right angles, 

causing protons to “wobble” out of alignment. Termination of the radio waves causes 

realignment or relaxation, resulting in the return of protons to their original position.
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Changes in energy radiation are picked up by detectors in the tube when the protons 

return to their relaxed state.

MRI is therefore able to produce high resolution images that are clear enough to 

distinguish between healthy and diseased soft tissues. This ability to analyze the soft 

tissue of the living population is valuable, and as such, attempts have been made to use 

this tool to aid in body composition evaluation. Animal models and human cadaver 

studies have been used to verify the accuracy of the estimates of adipose tissue mass and 

its anatomical distribution in order to verify MR imaging of the living (Ellis, 2000). MRI 

has been shown to be well suited for assessment of whole body adipose tissue or lean 

tissue distribution using multi-slice models (Ross, 1996). MRI has been said to be better 

than CT for indicating the size and extent of most musculoskeletal soft-tissue masses 

(Sartoris & Resnick, 1987). Though soft tissue analysis is a big part of body composition, 

analysis of the bone should not be disregarded. A downfall of MRI is that it does not 

distinguish bone, so the soft tissue surrounding the bone is blurred. Therefore, MRI is not 

a great selection for accurate bone mass estimates for body composition evaluation. In 

addition, the high cost of MRI is a significant drawback for its use, especially when there 

are other methods that are much less expensive (Sartoris & Rensnick, 1987). This is less 

of an issue when evaluating a single patient, but becomes a more real concern when 

collecting data for a body composition study, which usually involves a large number of 

participants. It seems more viable to save MRI for clinical diagnosis of soft tissue 

abnormalities and use techniques that are better able to differentiate between tissues and 

include clear bone analysis for body composition estimation.
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Dual Energy X-rav Absoroptiometrv (DXA)

DXA scanning is a more recent addition to the body composition measurement 

repertoire. This technology represents a significant advancement in techniques available 

for body composition research and evaluation (Ellis, 2000). DXA is the first method to 

include the assessment of bone mineral content (BMC) in its evaluation of the body’s 

composition (Salamone, et al. 2000), and provides information about the general 

anatomical distribution of bone within the body (Ellis, 2000). Along with this, DXA has 

been considered a three-compartment model since it not only includes bone mineral mass, 

but also FM and FFM (Kohrt, 1998).

A DXA scanner works similarly to an x-ray, where the patient lays on a scanning 

table and either pencil or fan-beam photon x-rays are passed through them to a detector. 

The information is then sent to the computer system, where the DXA software interprets 

and displays the data. DXA determines body composition based on measures o f intensity 

of x-rays, passed through the body, onto the detectors (Salamone, et al., 2000; Genton, 

Didier, Kyle, & Pichard, 2002). The attenuation of the x-rays depends on the mass, 

density, and chemical composition of the tissue it has passed through. Since bone, lean 

tissue, and fat differ with respect to these aspects, the computer, using pixels, is able to 

make a map of the body and its components with their respective masses and locations 

within the body (Ellis, 2000; Genton et al., 2002).

DXA is an appealing method for body composition quantification because it goes 

a step further than other methods, by estimating bone mineral density along with soft 

tissue mass (Van Loan, 1998). These measurements are all gathered in one scan which 

only takes between 5 and 20 minutes to perform. Since results are available immediately 

(Ellis, 2000), the convenience, combined with timeliness of the procedure, adds to its
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attraction for researchers. DXA is also beneficial for participants since the only 

cooperation necessary involves lying motionless while the scan is completed (Bracco, 

Thiebaud, Chiolero, Landry, Burckhardt, & Schutz, 1996). This non-invasive procedure 

also avoids the claustrophobic conditions of other methods such as CT and MRI (Haarbo, 

et al., 1991; Van Loan, 1998).

One of the greatest allures of DXA though is that it provides regional assessment 

of the body (Van Loan, 1998). Further, it provides both peripheral and central regional 

measurements of different soft tissue types (Mazess, Barden, Bisek, & Hanson, 1990). 

This is valuable as it offers the potential for determining the importance of altered fat 

distribution in population studies of many important disease states (Ley, Lees, & 

Stevenson, 1992).

Despite the many advantages of DXA, it is not without limitations. One of these 

limitations stems directly from the premise behind the method. DXA results are based on 

three variables calculated to represent bone, lean tissue and fat. Since the computer pixels 

are measured based on two parameters (attenuation at low and high energy), it is not 

mathematically possible to resolve the system (two equations with three unknown 

variables) without some assumptions being made (Bracco et al., 1996). DXA makes three 

main assumptions to attain the three variables. The first may imply that the composition 

of soft tissue overlying bone must have the same composition as the surrounding tissues. 

Another possible assumption with the use of DXA is that potential bone pixels with a 

small amount of calcium (below the threshold value) may be counted as lean tissue rather 

than bone. This misallocation would result in a minute misrepresentation of both bone 

and lean tissue for that pixel. And thirdly, the most commonly referred to assumption 

involves in vivo hydration of FFM. To avoid the interference of water content, DXA
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software assumes that the lean tissue contains about 73% water (Bracco et al., 1996).

With this final assumption, measurement of FM is relatively unaffected by fluctuations in 

hydration status (Kohrt, 1998), so those measured with DXA do not need to have 

regulated water intake and physical activity prior to the scan. These assumptions made in 

the DXA process affect such a small percentage of the pixels that, though they allow for 

highly accurate calculations of the desired variables, their overall effects are miniscule.

Beam hardening is another concern when considering DXA. Beam hardening occurs 

because DXA is calibrated with phantoms, representing either the spine or hip, which 

may not be appropriate for other parts of the body, such as the forearm (Blake,

McKeeney, Chhaya, Ryan, & Fogelman, 1992; Wellens et al., 1994). Beam hardening 

preferentially removes lower energy photons from the radiation beam compared to the 

higher energy photons. This may cause a shift in the spectral distribution from low to 

higher effective energies with increasing body thickness. As a result, the attenuation 

coefficients for bone and soft tissue used in the DXA equation may depend on body 

thickness varying between participants, and even body parts (Blake et al., 1992). It has 

been shown though, that despite the possibility of beam hardening, this should be only a 

minimal concern regarding DXA’s ability to predict body fat (Jebb, Goldberg, Jennings,

& Elia, 1995).

Radiation has also been a concern of participants when using DXA since this 

method uses ionizing radiation. However, the radiation dose from one whole body scan 

has been measured to be negligible, typically less than 1 mRem (Ellis, 2000; Haarbo, et 

al., 1991). In fact, Fuller, Laskey, and Elia (1992) found that the resultant radiation dose 

to the skin was only measured to be about 0.075 mRem per scan. This number is 

exceedingly small, especially considering that the effective dose of radiation required for
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multi-slice CT is estimated from 800 to 900 mRem (Nieman, Cademartiri, Lemos, 

Raaijmakers, Pattynama, & de Feyter, 2002; Kemerink et al., 2003). Considering that the 

average, annual dose of radiation in the United States is approximately 360 mRem 

(United States Nuclear Regulatory Commission, 2005), the amount of radiation that 

participants are exposed to for one full body DXA scan is less then they would naturally 

be exposed to over the course of one day.

Depending on the type of research, it should be noted that some studies have 

reported that results from a DXA machine from one company should not be directly 

compared to that of another company, or if two scans are to be performed it is important 

that the same type of machine is used. This consideration has been suggested since DXA 

instruments produced by different manufacturers may provide slightly different results 

(Van Loan, 1998). There are several factors that may contribute to such differences, 

including: varying assumptions made on behalf of the DXA, different software versions, 

or differing components making up the DXA. For example, some scanners use a pencil- 

beam while others use a fan-beam. However, these differences should not significantly 

affect the results since research has shown that both types of scanning methods perform 

similarly (Visser et al., 1999). Pencil-beams are usually considered more accurate, but 

slower than fan-beam scanners. Recent research has shown though that little difference 

exists, not only between pencil- and fan-beams, but between manufacturers as well 

(Ioannidou et al., 2003).

Another limitation of DXA technology is the price. The cost of DXA compared to 

other imaging techniques is very good. However, this price is still very costly compared 

to other forms of body composition research such as anthropometry (Haarbo, et al.,

1991). These types of methods though are not as accurate as DXA and some may also

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



require further investigation by way of a reference method, whereas DXA is totally 

independent (Van Loan, 1998).

Despite its few limitations, DXA is gaining popularity as the best practical 

criterion measure in body composition assessment (Ball, Altena, & Swan, 2004). DXA 

has been validated by several studies and found to be worthy of “prime time” within the 

realm of clinical evaluation of body composition (Van Loan, 1998). Several qualities 

have led to this positive feedback, at the forefront of which is the precision and accuracy 

of the measurements for in vivo study, coupled with the added ability to investigate 

specific regions or segments (Haarbo et al., 1991; Fuller et al., 1992). DXA is also 

popular due to its ability to directly assess fat distribution (Fuller et al., 1992), as opposed 

to other non-imaging techniques such as anthropometry and hydrostatic weighing, which 

are a step further removed. It is important, when using in vivo imaging, that the 

limitations are remembered, since there is no perfect method for body composition 

measurement. Taking this into consideration, along with the high costs of imaging 

technology, the ability to predict tissue masses from simple anthropometric 

measurements, generated through validated regression analysis, becomes increasingly 

advantageous.

Prediction Equations for Body Composition Estimation

The idea of using traditional body composition methods to develop prediction 

equations is not a new one. In fact, the first regression equations to predict body density 

with anthropometric variables, were developed over fifty years ago when the advantages 

of this approach were realized (Jackson & Pollock, 1978). The most commonly used 

method for developing prediction equations is anthropometry, specifically skinfold
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thickness to determine percent body fat. Along with skinfolds, segment circumferences 

have also been used to predict body composition (Jackson & Pollock, 1978). Several 

other traditional methods including bioelectrical impedance, total body water, potassium 

counting, and hydrostatic weighing (Wilmore & Behnke, 1970; Sun et al., 2003) have 

been used to predict body fat, lean body weight, and body density. Though there are some 

limitations, these methods have been largely accepted. One of the limitations is that 

prediction equations tend to be population specific for gender, age, and/or body type 

(Jackson & Pollock, 1978; Lean, Han, & Deurenberg, 1996). Another limitation is that, 

until recently, no study had developed prediction equations that would allow for the 

estimation of soft tissue masses and bone density in living people. This type of work has 

become possible with the advent of modem imaging technologies. The development of 

prediction equations for determining these masses in vivo would allow for more accurate 

biomechanical modeling of the body in highly dynamic or impact situations.

As alluded to earlier, few studies have chosen to include WM estimates in their 

predictive equations. Further, none of these studies have focused on the tissue masses of 

the upper extremities. Past work has been focussed on the lower extremities. Holmes 

and colleagues (2005) performed an in depth study of the lower extremities, taking 24 

anthropometric measurements from each participant bilaterally. The measurements 

included segment lengths (6), circumferences (6), breadths (8), and skinfolds (4). DXA 

was used as a reference method for the development of prediction equations for fat mass, 

lean mass, wobbling mass and bone mineral content for the thigh, leg, and leg and foot 

segments. In general, the predicted tissue masses were found to be highly correlated with 

the DXA measures (R2 = 0.85 to 0.96, for LM and WM). However as previously stated,
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this study only investigated the lower extremities. Similar work has yet to be completed 

for the upper extremities.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



III. METHODS

Participants

Participants consisted of young adults ranging in age from 17 to 30 years. They 

were primarily recruited from the Department of Kinesiology at University of Windsor. 

Recruitment occurred mainly in undergraduate classes, following a brief information 

session regarding the study, including the purpose, and an overview of the methods and 

incentives for their involvement. Incentives offered to the participants, for volunteering 

their time, included a free kinesiology research t-shirt and a printout of their personal full 

body DXA scan. Each printout included a scanned image of their body with details 

regarding the mass and composition of body segments. Both female and male 

participants were recruited, and data were collected from 100 people in total, in order to 

further improve statistical, predictive power observed by Holmes et al. (2005). All 

procedures were approved by the University of Windsor Research Ethics Board (see 

Figure A l, Appendix) as well as the ethics board of Windsor Regional Hospital.

Participants were randomly assigned to two subgroups after the data collection 

was complete. The first group, comprised of 76% of the participants, was used for 

prediction equation generation for bone mineral content (BMC), fat mass (FM), lean mass 

(LM), and wobbling mass (WM) for each of the upper limb segments including the arm, 

forearm, and forearm and hand segments, independently. The second group (24% of the 

participants) was used as an independent group to validate the generated equations.

Volunteer participants were not to exceed 198 cm (6.50 ft) in height or 60 cm 

(1.97 ft) in width from shoulder to shoulder. These dimensions represent the maximum 

possible size of the DXA scan and are delineated by lines on the scanner bed that the
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participants lie on. Any mass situated outside of these lines would not be accounted for 

in the scan and would result in inaccurate segment mass measurements.

Instrumentation

Anthropometry

The purpose of this study was to predict in vivo segment tissue masses (BMC, 

FM, LM, and WM (WM = FM + LM)) from simple anthropometric measures. Segment 

lengths, circumferences, widths, and skinfolds (see Table 1 below) were taken with the 

use of a soft measuring tape (segment lengths and circumferences), small anthropometer 

(segment breadths) [Lafayette Instrument Company, model #01291], and skinfold 

callipers (skinfold thickness) [Slimguide Callipers, Creative Healthcare Products]. These 

measurement methods are cost effective, reliable, relatively easy to use, and widely 

accepted in research for the investigation of body composition (Georg, & Boeing, 1997).

DXA

Actual tissue masses of the upper extremities were determined using DXA.

These tissue masses included BMC, FM, LM, and WM for each segment of interest. 

DXA is accepted as a valid and reliable approach to body composition analysis and is 

commonly used for clinical and research applications (Haarbo et al., 1991; Fuller et al., 

1992; Van Loan, 1998; Ball, Altena, & Swan, 2004).

The DXA scanner used for this study was a GE Lunar Prodigy Advance, located 

at the Metropolitan campus of the Windsor Regional Hospital. This DXA scanner uses 

fan beam technology, resulting in high precision, and less than a 1% coefficient of 

variance for both BMD and total tissue values (GE Healthcare, 2004). The scan itself
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took approximately 5 minutes to complete, resulting in a radiation dose of about 0.04 

mRem to the participant. This is less than the average radiation dose rate (0.238 mRem) 

for one hour of a commercial airline flight (Feng, Chen, Sun, Duan, Jia, Zhang, 2002).

Procedures

Data collection for this study occurred in two parts. First, bilateral anthropometric 

measurements were taken for each participant. Participants were also scanned using the 

DXA machine to provide actual tissue masses for each body segment of interest. Each 

participant underwent both types of data collection on the same day, within minutes of 

each other.

A separate room at the hospital was available for the purpose of performing the 

anthropometric measurements. Two biomechanics graduate students, trained in 

anthropometric measurement, collected bilateral measures of both the upper and lower 

extremities in the form of 6 segment length measures, 6 circumference measures, 8 

breadth measures, and 4 skinfolds for each extremity. Detailed descriptions of the 

anthropometric measurements taken are listed in Table 1 for the upper extremities and 

Table A l of the Appendix for the lower extremities (Note: the lower extremity data will 

be used in another study). The measurements listed in Table 1 parallel those successfully 

utilized by Holmes et al. (2005) for the lower extremities study (Table Al). All 

measurements were recorded to the nearest millimetre. One investigator obtained 

measurements from the right side while the other measured the left. All participants were 

instmcted to wear shorts and t-shirts (or similar clothing) during measurement to enable 

reliable access to body landmarks. Participants were also requested to wear clothing that 

did not have any metal including buttons, zippers, snaps, or under-wires, that would
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interfere with the scan. It took approximately 15 minutes to measure each participant.

Therefore, the total time commitment for each participant was approximately 20 minutes.

Table 1: Description of upper extremity measurements taken bilaterally and recorded to 
the nearest millimetre, where (M-L) and (A-P) indicate that the measurements was taken 
in the medial-lateral and anterior-posterior directions, respectively.__________________
Variables Measurement Descriptions
Lateral Arm Length Distance between the acromion process and the 

lateral aspect of the articular capsule of the elbow 
joint

Medial Arm Length Distance between the axilla and the medial aspect of 
the articular capsule of the elbow joint

Proximal Mid-Arm Length
Distance between the axilla and the medial aspect of 
the humerus at the level of maximum circumference 
midway between the acromion process and the 
articular capsule of the elbow joint

Lateral Forearm Length Distance between the lateral aspect of the articular 
capsule of the elbow joint and distal of the lateral 
(radial) styloid process

Medial Forearm Length Distance between the medial aspect of the articular 
capsule of the elbow joint and the distal aspect of the 
medial (ulnar) styloid process

Proximal Mid-Forearm Length Distance between the medial aspect of the articular 
capsule of the elbow joint and the medial aspect of 
the ulna at the level of maximum forearm 
circumference between the articular capsule of the 
elbow joint and the styloids

Arm Circumference Distance around the humerus and overlying tissue at 
the level of the axilla

Mid-Arm Circumference Maximum distance around the humerus and 
overlying tissues midway between the acromion 
process and the articular capsule of the elbow

Elbow Circumference Distance around the epicondyles of the humerus
Mid-Forearm Circumference Maximal distance around the forearm midway 

between the articular capsule of the elbow joint and 
the styloids

Wrist Circumference Distance around the ulna and radius, and overlying 
tissues just proximal to the styloids

Styloid Circumference Distance around the styloids and overlying tissues
Arm Breadth Distance across the humerus and overlying tissues 

between the axilla and arm
Mid-Arm Breadth (M-L) Distance across the humerus and overlying tissue at 

the level of maximum circumference midway 
between the acromion process and the articular
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capsule of the elbow joint
Mid-Arm Breadth (A-P) Distance across the humerus and overlying tissue at 

the level of maximum circumference midway 
between the acromion process and articular capsule 
of the elbow joint

Elbow Breadth (M-L) Distance across the widest aspect of the elbow joint 
capsule.

Mid-Forearm Breadth (M-L) Distance across the ulna and radius and overlying 
tissues at the level of maximum forearm 
circumference

Mid-Forearm Breadth (A-P) Distance across the ulna and radius and overlying 
tissues at the level of maximum forearm 
circumference

Wrist breadth Distance between the lateral aspects of the ulna and 
radius and overlying tissues just proximal to the 
styloids

Styloid Breadth Distance between the radial and ulnar styloid 
processes and overlying tissues

Medial Forearm (ulnar) Skinfold Vertical fold on the medial aspect of the forearm at 
the level of maximum circumference

Posterior Forearm Skinfold Vertical fold on the posterior aspect of the forearm at 
the level of maximum circumference

Anterior Arm (Bicep) Skinfold Vertical fold on the anterior aspect of the arm at the 
level of maximum circumference midv/ay between 
the acromion process and the articular capsule of the 
elbow joint

Posterior Arm (Tricep) Skinfold Vertical fold on the posterior aspect of the arm at the 
level of maximum circumference midv/ay between 
the acromion process and the olecranon process

Data were collected at the hospital over the course of three weekday evenings 

from 4:30 pm to 8:00 pm and two consecutive Saturdays from about 8:30 am to 4:30 pm. 

These times were suggested by the hospital in order to avoid conflicts with their clinical 

patients. Each participant in this study was directed to the rooms used for anthropometry 

measurement and DXA scanning but participants were considered visitors of the clinic 

and were not admitted to the hospital.

Prior to scanning a participant, their mass and height were taken and each female 

was screened for pregnancy since even slight amounts of radiation can be harmful to a
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fetus in the early stages. For scanning, participants were asked to lie supine on the 

scanning bed with their arms at their side, palms facing down and their feet were bound 

together to ensure that all limbs remained inside the scan window parameters and that the 

body was aligned. Perimeter boundary lines were marked on the scan bed. It was 

important that all body parts remained inside these lines during the scan because any part 

of the body outside of the scan window would not be included in the scan, and would 

result in inaccurate body composition results. Participants were instructed to remove 

their jewellery and were asked to, in a private changing room provided, don a traditional 

hospital gown for their DXA scan, only if the clothing they were wearing had metal in it. 

An investigator was in the room with the hospital’s DXA technicians during each scan to 

ensure the consistency of data collection.

Following the DXA scan, each participant was given a print-out containing a 

general overview of their personal whole body scan results. Data from each scan were 

saved in a computer file to be analyzed in the Ergonomics lab at the University of 

Windsor during the following weeks. Copies of each scan were also archived at the 

hospital in a separate database from that of their patients. These data will not be used by 

the hospital clinic, but were kept for their records of machine use.

DXA Analysis

Scan files were analyzed by the primary investigator using the DXA analysis 

software (enCORE, 2006, GE Healthcare, version 10.51.006). Data were also analyzed 

by a secondary investigator to assess the reliability of the segmentation methods (to be 

reported in a follow-up study).
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Although whole body scans were performed, this study focused on analyzing the 

data from the upper extremities only. The enCORE software allowed specific isolation of 

particular regions of interest (ROI) by creating a polygon around the desired area. This 

enabled the segmentation of the upper limbs from the rest of the body at the shoulder, and 

also allowed various analyses of the arm via segmentation at the elbow and wrist (see 

Figure 1). In doing so, the BMC, FM, LM, and WM of the right and left arm, forearm, 

and forearm and hand segments were determined.

The polygons used to outline the desired ROIs were comprised of straight 

adjoining lines. Therefore, the segmentation technique used was a combination of that of 

Dempster (1955) (see dashed lines in Figure 2) and Clarys and Merfell-Jones (1986) (see 

solid black lines in Figure 2). The straight lines of the polygon do not allow investigators 

to segment perfectly around bony processes, such as the humeral head of the shoulder (as 

per Clarys and Marfell-Jones, 1986), nor does the software have the capability to include 

all the muscle mass of the segment similar to Grand (1977) if it is outside the specified 

ROI. However, like Dempster and Clarys and Marfell-Jones, the joint space was targeted 

for each segmentation as accurately as possible to eliminate as much bone and soft tissue 

misallocation as possible from adjoining segments.
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Figure 1: Region of interest selected from enCORE software including the arm, 
segmenting around the humeral head and at the elbow

B

Figure 2: A. segmentation at the shoulder joint, B. segmentation at the elbow joint, and C. 
segmentation at the wrist. The dashed lines represent Dempster’s segmenting technique 
(1955) and the solid black line represents the technique by Clarys et al. (1984) (figures 
are from Clarys & Marfell-Jones, 1986).
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Statistical Analyses

All statistical analyses were performed using SPSS for Windows, version 15.0. 

Initial Analyses

The measured anthropometric data and the tissue mass data from DXA for each 

participant were manually keyed into a computer for statistical analysis. The 

anthropometric data were comprised of sex, height, mass, and age, along with the 24 

anthropometric measurements for each of the left and right sides of the body. The tissue 

mass data comprised BMC, FM, LM, and WM for each of the four segments on both the 

left and right sides of the body. Two segmentation trials with the DXA software were 

performed for each segment. Therefore, a total of 114 values were input for each of the 

participants.

To ensure the accuracy of the inputs, the differences and averages for each of the 

variables were calculated between the left and right sides. Sizable differences were then 

double checked with the original values. In addition, frequencies and scatter plots for 

each of the variables were analyzed to locate miss-typed values and to indicate possible 

univariate outliers. Values found outside the normally distributed range were verified 

against the original values. Any miss-keyed data were replaced with the actual value, 

while outliers were replaced by the mean value for that variable (Tabachnick & Fidell, 

2001).

In order to determine if there was a difference between the two methods of arm 

segmentation (i.e. the “whole shoulder method” where the region of interest extended 

superiorly from the axilla to include the whole shoulder verses the “humeral head 

method” where the region of interest encapsulated the humeral head only), a paired t-test
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was conducted. This was performed for each of the left and right sides and for each of 

the four tissue types; 8 pairs all together.

A one-way analysis of variance (ANOVA) was run to determine if there were 

significant differences between the first and second segmentation trials for each segment 

and each tissue type. This was done to determine the repeatability of the segmentation 

method used.

Sex differences were investigated between DXA tissue mass variables with a one­

way ANOVA. If significant differences are found as a result of this analysis, sex may 

need to be coded for independently in the developed regression equations (see Section

3.5.2 below).

Differences in the DXA tissue masses and the anthropometric measures between 

the left and right sides of the body were analyzed using paired t-tests.

The total sample of 100 participants was divided into two subgroups. The 

generation group was composed of 76 randomly assigned participants (38 males and 38 

females). The remaining 24 participants comprised the validation group. This 

independent group was used to assess the accuracy of the generated prediction equations 

(Jackson & Pollock, 1978; Wang, et al., 2003; Holmes, et al., 2005). The between group 

participant ratio is similar to that used by Holmes and colleagues (2005).

Levene’s test for homogeneity of variance was conducted on the generation and 

validation group variables to ensure that between group discrepancies across the variables 

were minimized. The equality of variance between groups is important for an accurate 

validation of the generated equations.

Means and standard deviations between the sample groups and sexes were 

analyzed to ensure between group similarities for each of the variables. A one-way
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ANOVA was performed to determine if there were any sex differences for all 

anthropometric measures within the generation sample.

A correlation matrix was generated for the anthropometric variables to determine 

if any pair was highly correlated. Highly correlated variables may lend themselves to 

possible elimination in the regression analysis, or cause problems resulting from inflation 

or deflation if the variance explained due to redundance that highly correlated variables 

may cause. This step also helped to simplify the resulting prediction equations and 

enhanced the variable to participant ratio for the generation sample, before variables are 

stepped in or out of the regression analysis. This procedure helped ensure that the most 

relevant and true predictive measures were included in the final regression models.

Prediction Equation Generation

The prediction equations were generated by way of multiple linear stepwise 

regression. This method uses a combination of forward selection and backward 

elimination, and was used to determine the best predictors and final equations for BMC, 

FM, LM, and WM of the arm, forearm, and forearm with hand segments separately. 

Predictor variables included segment lengths, circumferences, breadths, skinfold 

measures, sex, height, and mass. When using multiple linear regression analysis, certain 

statistical assumptions are made. These assumptions include: the absence of outliers, 

normality and homoscedasticity, and the absence of multicollinearity.

Outliers

Outliers are data cases that fall outside the normal range of the rest of the data. 

These cases must be treated before regression analysis because they may largely impact
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equation generation and could greatly increase the standard error of the regression model 

(Tabachnick & Fidell, 2001). Both univariate and multivariate outliers were screened for. 

As previously stated, univariate outlier screening included the use of descriptive statistics, 

frequencies and scatter plots. In addition, histograms were analyzed to determine normal 

bell-shaped, grouped scores. Z-scores were also calculated, with values exceeding ± 3.29 

considered as outliers.

Multivariate outliers were screened using Mahalanobis distance at the time of 

regression analysis in order to avoid screening based on desired outcome, and over-fitting 

data by making unnecessary deletions along with the outliers (Tabachnick & Fidell,

2001). SPSS calculates a minimum, maximum and mean value for Mahalanobis distance. 

The maximum value was selected to ensure a conservative analysis. This value was then 

compared to a chi-square critical value, using a P of 0.001 and degrees of freedom minus 

one (df-1), whereby the d f  is equal to the number of independent variables (IVs) -  1. If a 

case had a Mahalanobis maximum value that was greater than the chi-square critical 

value, then a multivariate outlier was assumed. If this analysis indicated an outlier, 

Cook’s distance was used to indicate whether the outlier played a significant role in the 

regression analysis. If Cook’s distance was not significant (i.e. < 1.0), the involved 

variable was not omitted because it did not represent an influential data point.

Normality and Homoscedasticitv

Normality is the assumption that the variables are normally distributed. This was 

initially assessed with the use of histograms, normal probability plots (P-P plots), and by 

evaluating the skewness and kurtosis statistics, where normality is increasingly violated 

the further skew or kurtosis deviates from zero. A common method for detecting non-
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normality is to determine the ratio between the skewness and kurtosis statistic and their 

respective standard errors (statistic/standard error). For an alpha level of 0.05, it is 

suggested that this ratio should not greatly exceed ± 1.96 (Stevens, 2002). However, 

Tabachnick and Fidell (2001) suggest that, for samples of around 100 or more cases, the 

significance of the level of skewness is less important than the actual size. As a result, it 

is useful to use Kline’s (1998) rule of thumb: accepting an absolute skew value of < 3, 

and kurtosis value of < 10. Both of these analyses were assessed in this study to 

investigate normality.

Another method used to evaluate normality was to plot the residuals after the 

regression analyses were performed. This analysis was also used to evaluate linearity and 

homoscedasticity. Normality was identified if the residuals plotted were evenly 

distributed across the “0 residuals (errors)” line. Linearity was identified with residuals in 

a line along the “0 residuals (errors)” line. An example of non-linearity would be a plot 

representing a curve with a “U” shape. Linearity was also observed using the normality 

plots initiated to assess the prior assumption. Homoscedasticity was a safe assumption if 

the values were evenly distributed away from the “0 residuals (errors)” line, within the 

range of the trend for that variable (not a specified cut-off distance).

Multicollinearitv

Multiple linear regression also assumes that there is an absence of 

multicollinearity among the IVs of the regression. Multicollinearity occurs when the IVs 

are very highly correlated, and may result in an unstable matrix. The redundant variables 

inflate the size of the error and weaken the analysis (Tebachnick & Fidell, 2001). In 

cases such as this, these variables were considered redundant and only one was selected
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to continue into the regression analysis. Multicollinearity was assessed with the 

collinearity diagnostics, calculated along with the regression. An indication of 

multicollinearity exists when the tolerance value is <0.1 (Norusis, 2005), or when the 

variance inflation factor (VIF) is > 10 (Kline, 1998). The tolerance value is a measure of 

the strength of the linear relationships of the IVs. It is the proportion of the variability of 

that variable that is not explained by its relationships with other IVs in the model. The 

VIF value is the reciprocal of the tolerance value, measuring the increase in variance of 

the coefficients due to the correlations of the IVs (Norusis, 2005).

The initial evaluation of the prediction equations for each of the tissue masses for 

each segment was to assess the adjusted squared multiple correlation (R2) and the 

standard error of the estimate (SEE). The R2 value is a representation of the amount of 

explained variance of the DV by the IVs, where 1.0 is the perfect score (all the variance is 

explained). There is no cut-off value for R2 that indicates an acceptable amount of 

predictive power for the equation, however, predictive power increases as R2 approaches 

1.0. The SEE value is reported in the standard unit of measurement of the analysis; in this 

case, it represents the standard error in grams of the predicted output.

Prediction Equation Validation

In order to assess the accuracy of the produced regression equations, 

anthropometric data from the validation group (12 males and 12 females) were entered 

into the equations. The predicted tissue masses from each were then compared to the 

actual masses measured by DXA for each participant. The difference between the 

predicted and actual masses was calculated, along with the percent error and the root 

mean squared error (R M S error)-
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Scatter plots of the predicted and actual masses were created and simple linear 

regression was performed to quantify the relationship between the predicted and actual 

tissue masses. The resultant simple regression equations were reported, together with the 

amount of variance explained (i.e. R values).
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IV. RESULTS

Initial Results 

Accuracy of Data Input

Significant differences between entered anthropometric data for left and right 

sides, and between trial one and trial two for the DXA measured tissue masses, were 

cross-checked with the original data set and, in most cases, were found to be miss-keyed. 

The miss-keyed data were then corrected. Frequencies and scatter plots confirmed that 

these data had been correctly entered. Only one case remained for which the deviation 

from the rest of the data could not be explained. This outlier was the left elbow 

circumference of a participant, which was 14.7 cm in magnitude. This was 11 cm below 

the mean value for this variable, thus it was replaced with the group mean value.

Variable Analysis

The arm segment masses determined from the two segmentation methods at the 

shoulder joint, were found to be very highly correlated (r > 0.991), but statistically 

significant (P < 0.05). There were no significant differences between the masses from the 

first and second segmentation trials (P < 0.05). Therefore, values from the two trials 

easily lent themselves to combination and were averaged together. Significant 

differences (P < 0.05) were found to exist between the sexes in all but three of the tissue 

masses: left and right thumb BMC (P = 0.223 and 0.535, respectively), and whole 

shoulder arm FM (P = 0.075). Mean scores for the left and right sides were found to be 

statistically different for all DXA variables (P < 0.05) and for 13 of the 24 anthropometric 

measurements. The right side was found to be greater for 75% of the measurements, but 

the mean difference between sides was only 5% and did not exceed 21%. Despite these
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differences, left and right side measurements were averaged since separate regression 

equations for left and right sides of the body were not deemed useful or practical.

Between Sample Group Analyses

Homogeneity of variance between the IVs of the generation sample group (N =

76) and the validation sample group (N = 24) were performed using Levene’s statistic via 

ANOVA. All of the anthropometric variables were found to be homogeneous between 

the generation and validation groups (P > 0.05).

Means and standard deviations were calculated independently of sex for each of 

the IVs, age and BMI. This was done with each of the sample groups separately (Table 

2). No significant differences were found between the generation and validation samples. 

Significant sex differences (P < 0.05) were found within the generation sample for only 

lateral arm length and proximal arm breadth.

Independent Variable Assessment

Correlations between independent variables (IVs) ranged from R -  0.343 to 0.957, 

with many of the variables correlating highly to each other (R > 0.80). Highly correlated 

variables were targeted for elimination prior to the stepwise regression procedure. Based 

on the correlations analysis, reliability of the measurement (Burkhart, Arthurs, & 

Andrews, 2007), measurement type, and direction of measurement, the number o f IVs 

was reduced from 16 to 11 for the arm, and from 17 to 11 for the forearm and forearm 

and hand segments (these segments included the same variables). Height, mass, sex, and 

elbow circumference were common variables for all three segments.
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Table 2: Mean (± SD) scores of the general physical characteristics and anthropometric 
measures for male and female participants in both sample groups.

Variable/Measure Generation Sample (n 
M (n = 38) F (n

= 76) 
=38)

Validation Sample (n = 
M (n = 12) F (n =

24)
12)

Physical Characteristics
Age (yrs) 21.8 (2.7) 21.8 (1.7) 22.0 (2.7) 21.3 (1.1)
Height (m) 1.8 (0.1) 1.7 (0.1) 1.7 (0.0) 1.7 (0.1)
Mass (kg) 78.9 (11.8) 62.0 (9.2) 75.6 (10.1) 64.5 (10.8)
BMI (kg/m2) 25.4 (3.1) 22.6 (3.5) 25.1 (3.6) 22.8 (2.9)

Lengths (cm)
Arm (L) 31.0 *(1.7) 29.2 (1.5) 30.3 (1.7) 30.5 (2.0)
Arm (M) 25.9 (1.3) 24.7 (1.3) 25.8 (1.3) 25.7 (2.2)
Arm (prox, mid) 13.5 (1.0) 12.6 (1.2) 13.2 (0.9) 12.6 (1.6)
Forearm (L) 27.5 (1.4) 25.9 (1.0) 27.1 (0.6) 26.4 (1.5)
Forearm (M) 25.5 (1.3) 24.1 (1.0) 25.2 (1.3) 24.5 (1.4)
Forearm (prox,

mid) 11.7 (0.9) 11.6 (0.8) 11.9 (0.8) 11.9 (1.1)

Circumferences (cm)
Arm (prox) 34.1 (3.1) 28.9 (2.8) 33.8 (3.2) 30.4 (3.0)
Arm (mid) 31.7 (3.1) 26.8 (2.5) 31.1 (3.0) 27.3 (2.8)
Elbow 27.8 (2.2) 23.7 (1.9) 27.5 (2.4) 24.0 (1-8)
Forearm (mid) 26.1 (2.4) 22.0 (1.7) 25.5 (2.1) 21.8 (1.8)
Wrist 17.8 (1.2) 15.5 (0.9) 17.7 (1.0) 15.6 (1.0)
Styloid 17.5 (1.0) 15.3 (0-7) 17.4 (0.9) 15.3 (0.8)

Breadths (cm)
Arm (prox) 11.1 *(1.1) 9.8 (1.0) 10.6 (1.0) 10.3 (1-1)
Arm (mid, M/L) 8.5 (0.8) 7.3 (0.8) 8.5 (0.9) 7.7 (0.8)
Arm (mid, A/P) 10.1 (1.2) 8.1 (0.9) 9.8 (1.0) 8.2 (1-0)
Elbow 9.0 (0.6) 7.8 (0.6) 8.8 (0.7) 7.9 (0.8)
Forearm (mid, M/L) 8.3 (0-7) 6.9 (0-6) 8.1 (0.7) 6.9 (0-5)
Forearm (mid, A/P) 6.7 (0-6) 5.7 (0-5) 6.7 (0.6) 6.8 (0.5)
Wrist 5.9 (0-4) 5.2 (0.3) 5.8 (0.4) 5.3 (0.4)
Styloid 5.8 (0.4) 5.1 (0.3) 5.7 (0.3) 5.2 (0.3)

Skinfolds (mm)
Forearm (mid, M) 4.3 (1.2) 6.3 (2.5) 4.5 (1.0) 7.4 (2.2)
Forearm (mid, P) 4.3 (1.2) 5.9 (2.7) 4.3 (0.8) 6.6 (1.4)
Arm (mid, A) 5.1 (2.4) 7.0 (2.0) 4.5 (0.9) 7.8 (2.5)
Arm (mid, P) 11.4 (4-3) 15.9 (5.6) 10.5 (3-7) 18.0 (5.0)

Note: A = anterior; P = posterior; M = medial; L= lateral; mid = midpoint of the segment between anterior 
and posterior or medial and lateral surfaces.
*Sex difference within generation sample significant at P <  0.05.
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Prediction Equation Generation 

Testing Assumptions 

Outliers

Univariate outliers were initially screened for using frequencies and scatter plots. 

Histograms were also used to visually evaluate the data range and distribution for each 

variable. No abnormalities or extreme data were detected with this analysis. Z-scores 

were less than the predetermined cut-off value of ± 3.29 for all variables, except posterior 

arm skinfold (z = 3.30). It was decided to leave this case in since the extremeness of the 

standardized score depends on the size of the sample. With a large sample size, a few z- 

scores greater than 3.29 are expected (Tabachnick & Fidell, 2001) and the difference 

between the cut-off value and the score was minimal (0.01).

Eight of the 12 equations indicated the presence of multivariate outliers where the 

Mahalanobis maximum value exceeded the cut off value indicated by the chi-square 

analysis. The remaining four equations, LM for the arm, and WM for all three segments, 

did not indicate the presence of multivariate outliers. Cook’s distance was applied to 

assess whether the equations that had Mahalanobis distances suggesting the presence of 

multivariate outliers, would significantly change the regression coefficient if the 

offending case were to be deleted (Tabachnick & Fidell, 2001). In each case, Cook’s 

distance indicated insignificant effects (Cook’s distance < 0.484). Therefore, deletion of 

cases was not necessary.

Normality and Homoscedasticity

The normal probability plots (P-P plots) showed data clustered along the 

“expected cumulative probability” (y-axis) verses “observed cumulative probability” (x-
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axis) line. This was the case for all tissue mass segments following regression analysis. 

The skew ratio was violated in the four skinfold measurements and the kurtosis ratio was 

exceeded in the arm circumference, styloid circumference, mid-forearm breadth (M-L), 

posterior forearm skinfold, medial forearm skinfold, and anterior arm skinfold 

measurements. Based on Kline’s rule of thumb, there were no violations of normality in 

either skew or kurtosis as values did not exceed 2.4 or 4.9, respectively.

Residual plots showed that data were normally distributed, with the exception of a 

few cases of minor clustering. This analysis, in conjunction with the others described 

above, resulted in the conclusion that the assumption of normality was satisfied.

Linearity was indicated by the residual plots as the data were located around/along 

the residual errors line at zero. In addition, the assumption of homoscedasticity was 

satisfied as the residual data were found to be evenly distributed along the zero errors 

line.

Multicollinearity

Multicollinearity was assessed at the time of regression analysis with the 

collinearity diagnostics provided. After the first set of equations was developed, it was 

discovered that four of the 12 equations had multicollinearity problems. The affected 

equations included LM of the arm as well as the WM for all three segments. The 

offending variables were arm circumference and mid-arm breadth (A-P) for LM and WM 

of the arm segment, styloid and elbow circumference for WM of the forearm, and styloid 

circumference for the WM of the forearm and hand segment. The offending variables 

were removed from the analysis and new equations were developed. The new equations
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did not have multicollinearity problems. However, they did result in slightly lower 

adjusted R2 values and higher SEE values than the initial equations.

Prediction Equation Evaluation

Following data cleaning procedures, 12 prediction equations were generated, each 

from 11 IVs, and their respective adjusted R2 and SEE values were noted (see Table 3). 

All adjusted R2 values were > 0.85, where LM and WM of the forearm resulted in an R2 

value of 0.968. F  values ranged from 89.07 (BMC forearm + hand) to 457.78 (WM 

forearm) and were significant at alpha < 0.05. SEE values ranged from 7.74g (BMC 

forearm) to 154g (LM arm).

Prediction Equation Validation

Anthropometric data from the validation sample group were entered into the 

generated equations to validate their predictive ability. Mean errors were <±3 1  grams, 

with the largest errors occurring in the LM of the arm and the forearm and hand (Table 4). 

The smallest mean error was noted for the WM of the arm (0.25 g). Mean percent errors 

ranged from 15.5% to - 2.2%, where 10 of the 12 equations resulted in mean errors of < ± 

4.3%. RMSerrors ranged from 7.9 g to 180.3 g, with 9 of 12 equations having R M S errors of

< 86.0 g.

The actual and predicted tissue masses were highly correlated, as seen in the 

scatter plots in Figure 3, with R2 values ranging from 0.68 (LM of the forearm) to 0.97 

(WM of the arm). Generally, WM tissues generated the highest R2 values compared to 

the other tissue masses.
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Table 3: Prediction equations for BMC, FM, LM, and WM tissues of the arm, forearm, 
and forearm + hand segments.

Mass type and Location Eq
#

Adj.
R2

SEE
(g)

Bone Mineral Content Mass (BMC)
Y1(arm) = -310.134 + 5.52(xl) + 102.064(x2) + 3.386(x3) 1 0.866 9.4

^(forearm) = -196.308 + 4.343(x4) + 37.94(x2) + 3.037(xl) + 
2.333(x5)- 1.14(x6) 2 0.862 7.7

Y1(forearm+hand) = -269.554 + 6.743(x4) + 54.823(x2) + 3.675(xl) + 
3.172(x7)- 1.508(x6) 3 0.854 10.7

Fat Mass (FM)
Yr(arm) = -653.914 + 18.560(x8) + 7.72(x9) + 21.098(xl0) - 
94.972(xl 1) + 30.172(xl2) 4 0.870 79.7

Y1(forearm) = 148.929 + 10.539(x6) + 1.996(x9) + 11.023(xl3) -  
180.851(x2) 5 0.861 22.5

Y^forearm+hand) = 135.618 + 10.297(x6) + 2.163(x9) + 10.867(xl3) 
-  173.159(x2) 6 0.860 22.4

Lean Mass (LM)
Y‘(arm) = -3621.559 + 85.810(xl) -  37.805(x8) + 75.424(xl4) + 
55.056(x3) -  27.816(xl0) 7 0.942 154.8

^(forearm) = -2193.008 + 49.334(x4) -24.651(xl3) + 21.197(xl5) + 
26.796(x5) + 76.163(xl6) + 339.118(x2) + 45.198(xll) 8 0,968 50.5

Y^forearm+hand) = -2837.067 + 66.216(x4) -  31.69(xl3) + 
19.764(xl5) + 34.462(x5) + 15.059(xl) + 57.329(xl 1) + 71.674(xl6) + 
400.319(x2) 9 0.967 65.4

Wobbling Mass (WM)
Y^arm) = -3349.668 +64.762(xl) + 14.097(x9) -  20.162(x8) + 
71.605(xl4) + 36.312(x3) 10 0.964 127.1

Y^forearm) = -1492.793 +22.131(x l5 )+  100.012(xll) + 4.948(x9) + 
32.219(x5) + 90.268(xl6) 11 0.968 49.8

Y^forearm+hand) = -2500.727 + 127.402(xl6) + 29.627(x5) + 
289.239(x2) + 22.866(xl5) + 127.559(xl 1) + 4.963(x9) + 20.479(x7) 12 0.963 69.4

Note: Where: xl = elbow circumference (cm), x2 = height (m), x3 = medial arm length (cm), x4 = styloid 
circumference (cm), x5 = lateral forearm length (cm), x6 = posterior forearm skinfold (mm), x7 = medial 
forearm length (cm), x8 = posterior arm skinfold (mm), x9 = mass (kg), xlO = anterior arm skinfold (mm), 
x l 1 = gender (0 for F, 1 for M), x l2  = arm breadth (cm), xl3  = medial forearm skinfold (mm), x l4  = arm 
circumference (cm), xl5  = mid-forearm circumference (cm), x l6  = med/lat mid-forearm breadth (cm).
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Table 4: Mean (±SD) predicted and actual masses (DXA) and mass error for the 
validation sample (n = 24).

Tissue and Predicted Actual Error KMb
Segment____________ (g)______________ (g)______________ (g)___________  n o r Error fe)

BMC
Arm 93.3 (21.3) 90.7 (22.4) 2.6 (12.5) 4.3 (16.1) 12.5
Forearm 73.8 (17.8) 73.3 (18.2) 0.6 (8.1) 1.7 (13.4) 7.9
Forearm + hand 99.5 (24.4) 98.6 (24.8) 0.9 (11.4) 1.9 (13.9) 11.2

FM
Arm 548.0 (211.9) 565.3 (229.7) -17.3 (68.6) 1.2 (20.9) 69.4
Forearm 102.4 (48.4) 95.3 (60.6) 7.1 (29.9) 15.5 (40.8) 30.1
Forearm + hand 111.7 (48.2) 104.7 (59.6) 7.0 (28.8) 12.5 (33.4) 29.0

LM
Arm 1717.2 (594.2) 1686.5 (631.5) 30.6 (141.2) 3.2 (10.1) 180.3
Forearm 868.2 (246.0) 889.2 (269.4) -21.0 (153.9) 0.0 (22.4) 152.1
Forearm + hand 1083.9 (323.7) 1114.7 (344.1) -30.8 (81.5) -2.2 (9.7) 85.5

WM
Arm 2251.8 (593.0) 2251.5 (589.1) 0.3 (108.6) 0.1 (5.3) 112.3
Forearm 965.1 (239.7) 979.2 (255.5) -14.2 (57.8) -1.0 (7.5) 49.9
Forearm + hand 1201.0 (306.0) 1213.9 (331.7) -13.0 (91.9) -0.4 (9.1) 69.2
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Figure 3: Relationships between predicted and measured tissue masses. BMC for the 
arm (A), forearm (B), and forearm + hand (C). FM for the arm (D), forearm (E), and 
forearm + hand (F). (continued)
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V. DISCUSSION

Summary of Results

Twelve tissue mass prediction equations were produced for the upper limbs 

including those for bone mineral content, fat mass, lean mass, and wobbling mass for the 

arm, forearm, and forearm and hand segments. These predictive equations were 

developed from a series of anthropometric measurements including segment lengths, 

circumferences, breadths, and skinfolds. The generated equations resulted in a mean R 

of 0.91 across all tissue masses and segments, with the highest R2 values attained for the 

lean and wobbling mass tissues. The equations were validated based on an independent 

sample. Mean % errors and RMS errors ranged from -2.2 % and 15.5 %, and 7.9 g and

180.3 g for BMC of the forearm and arm LM, respectively. Scatter plots of predicted and 

actual segment tissue masses revealed high predictive power of the equations, resulting in 

R2 values ranging from 0.967 to 0.681 for WM of the arm and LM of the forearm, 

respectively.

Comparison to the Literature

The equations developed in the current study resulted in equivalent or greater 

explained variance and lower SEEs in general than those of Holmes et al. (2005) for the 

lower extremities (Table 5). The mass of the lower extremity segments is greater than 

the upper extremity segments, which may translate into greater measurement error, and 

therefore, less variance explained. It is also possible that the differences in error between 

the lower and upper extremities could be attributed to errors in landmark identification for 

the lower extremity segments in some cases. For example, to obtain the medial thigh 

measurement in the Holmes et al. (2005) study, it was necessary for participants to
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position and hold the end of the measuring tape over their pubis symphysis due to issues

of modesty. Relying on the participants themselves increases the amount of between

subject variability for this measure and will impact equation predictions.

Table 5: Comparison of explained variance (R2) and standard errors (SEE) for each of the 
tissue mass segments between the current study and that of Holmes et al. (2005) for the 
lower extremities.

Study Segment BMC 
R2 SEE(g) R2

FM
SEE(g) R2

LM
SEE(g)

WM 
R2 SEE(g)

Holmes, Thigh 0.745 26.0 0.892 431.0 0.907 409.0 0.889 419.0
et al., Leg 0.673 22.0 0.811 193.0 0.862 187.0 0.920 121.0
2005 Leg + 

foot
0.737 24.0 0.785 200.0 0.872 209.0 0.925 139.0

Mean 0.718 72.0 0.829 274.7 0.880 268.3 0.911 226.3

Current Arm 0.866 9.4 0.870 79.7 0.942 154.8 0.964 127.1
Forearm 0.862 7.7 0.861 22.5 0.968 50.5 0.968 49.8
Forearm 
+ hand

0.854 10.7 0.860 22.4 0.967 65.4 0.963 69.4

Mean 0.861 9.3 0.863 41.5 0.959 90.2 0.965 48.8

Though several methods of body composition estimation are available and have 

been used, DXA was selected to determine actual tissue masses for this study because it 

has the capacity to directly measure tissue masses in vivo. Tissue measurement from a 

living person avoids limitations such as the restricted availability of cadaver specimens 

(Dempster, 1955; Clarys et al., 1999), estimating mass discrepancies resulting from fluid 

loss (Grand, 1977; Clarys et al., 1984), or possible post-mortem tissue changes 

(Callaghan & McGill, 1995; Querido, 1998). These limitations make it difficult to apply 

in vitro tissue data to the living population.

Many methods of in vivo tissue mass and body composition estimation, such as 

potassium counting, bioelectrical impedance, total body water, and even anthropometry 

and multi-component models, are only indirect methods and often times do not provide
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masses of several different tissue types (i.e. BMC, FM, LM, and WM) (Salamone, et al., 

2000; Ball, Altena, & Swan, 2004). Further, and perhaps more importantly, these types 

of methods do not provide segment specific tissue masses, but rather of the body as a 

whole (Van Loan, 1998; Ellis, 2000; Genton et al., 2002).

DXA does have its limitations; the leading one for this study was cost. However, 

despite the expense, DXA was still sought because of its ease of measurement, the 

reasonable time commitment for participants, and most importantly, the ability to attain 

the specific tissue mass type and segment data required for the purposes of the study. As 

convenient as DXA scanning seems, it is equally important to note that it has been shown 

to be a reliable and accurate method of data collection (Van Loan, 1998; Haarbo et al., 

1991, Fuller et al., 1992). It has been compared to known masses and found to be a 

reliable source of measurement (GE Healthcare, 2004). DXA has also been found to be 

comparable to several other methods of body composition, including other imaging 

technologies (Gately et al., 2003; Wang et al., 2003). These two factors alone have 

served to justify its use in other, similar studies (Fuller et al., 1992; Van Loan, 1998; 

Holmes et al., 2005).

Other studies predicting body composition in living people have primarily focused 

on body density and anthropometric measures. Until recently, similar studies have not 

included the prediction of soft and rigid tissues independently (Holmes et al., 2005). 

Despite this limitation, previous studies showed strong predictive capacity for the masses 

they were targeting (Table 6), and indicate that estimating body composition using 

anthropometric measures can account for more variance and result in less error in  general 

than when utilizing body density to estimate fat and fat free mass (FFM). Using indirect 

estimation of body density to produce actual tissue masses is most likely the cause of the
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greater error and lower predictability, compared to those equations based on direct 

measures from imaging technologies (Ball, Altena, & Swan, 2004).

Table 6: A comparison of predicted body composition across studies using R2 and SEE 
(g) values.

Study Prediction
Men Women Sexes

combined
Mean
R2

Mean
SEE

Mean
R2

Mean
SEE

Mean
R2

Mean
SEE

Current Study BMC, FM, LM, WM of 
upper extremities from 
athropometric measures 
& DXA

— — —

0.91 55.8g

Holmes, et al. 
(2005)

BMC, FM, LM, WM of 
lower extremities from 
anthropometric 
measures & DXA

— —

0.84 198.3g

Lean, Han, &
Deurenberg
(1996)

FM of the body from 
anthropometric 
measures & body 
density

0.77 9.4g/L 0.76 9.0g/L
— —

Wilmore &
Behnke
(1970)

Body density & LM 
from anthropometric 
measures & hydrostatic 
weighing

— —
0.72
0.92

6.9g/L
1868 g

— —

Wang et al. 
(2003)

Body BMC by total 
body potassium & MRI

— — — — 0.96 1500g
Jackson &
Pollock
(1978)

Body density based on
anthropometric
measures

0.91 7.6 g — — — —

BMC, as measured by Wang et al. (2003), and LM as measured by Wilmore and 

Behnke (1970), have very high predictive power. The high mean observed SEE value 

reported by Wang et al. (2003) for BMC exceeds that of the current study by a factor of 

approximately 27 times. However, these equations predict BMC for the whole body and 

not only for the upper limbs. Despite the high predictive ability of the total body 

potassium method (Wang et al., 2003), it is complex, and requires the use of expensive 

equipment. This makes it difficult to obtain and therefore an impractical method for
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many researchers (Haarbo et al., 1991). The BMC equations, presented in the current 

study, offer very high predictive power and are obtained by using simple anthropometric 

measures. The current equations are also specific to the upper extremities, which makes 

them unique to the literature.

Jackson and Pollock (1978) provide excellent body density prediction from 

anthropometric measures, with small associated error. It is possible to convert density to 

fatness, however, this can be problematic (Ball, Altena, & Swan, 2004). Fat free mass 

can also be estimated but is influenced by error from the density to fatness conversion. 

Furthermore, the equations of Jackson and Pollock (1978) are unable to assess individual 

segments of the upper extremities, as well as soft and rigid tissue independently.

Potential Error Sources 

Measurement Error

Factors that may influence the accuracy of anthropometric measurements include 

land marking of anatomical features, measurement accuracy, and measurement recording. 

Despite the potential for error in this type of research, several studies investigating similar 

anthropometric data collection procedures using anthropometry, have found it to be 

reliable, even between two or more investigators (Jackson, Pollock, & Gettman, 1978; 

Klipstein-Grobusch, Georg, & Boeing, 1997, Burkhart et al., 2007).

The accuracy of anatomical land marking is important in anthropometric 

measurement studies since taking measurements from incorrect locations will result in 

incorrect values. The subjectivity of such measurements is a major limitation (Fuller et 

al., 1991; Perini et al., 2005). To ensure maximal land marking accuracy in the current 

study, both investigators who took the measurements, were trained together and practiced
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together prior to data collection. For most measurements, bony land marks were used 

because of their accurate representation of the segment endpoints (eg. mediail and lateral 

epicondyles of the humerus at the elbow), and because they are easy to locate.

The compressibility of underlying tissues may also contribute to significant 

measurement errors, particularly for circumference and breadth measurements. The 

magnitude of error associated with this depends on factors such as the type of 

measurement apparatus used (e.g. cloth measuring tape or callipers), as well as where on 

the segment the measurement is taking place (i.e. ends or mid segment where the bulk of 

the muscle resides). With circumference measurements, optimum tension in the 

measuring tape is important to ensure that the tape measure remains even all the way 

around the segment or target area. Both measurers in the current study were trained to be 

aware of this issue and to apply consistent tension and pressure between and within 

subjects.

The position of the body during measurement is also an important consideration. 

Whether the segment is flexed, neutral, or extended may affect the distribution o f mass, 

and therefore the measurements associated with these areas. To avoid error associated 

with body position variance, all participants were instructed to remain in anatomical 

position while the measurements were being conducted. The use of a standardized 

posture helped to minimize this effect between measurers and participants.

Measurements in this study were recorded to the nearest millimetre. The two 

trained measurers had little difficulty with this level of precision. However, it is possible, 

given the pace at which they were measuring, that precision of this order may have 

contributed to some minor errors.
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Arm Segmentation Method Using DXA

Tissue masses from two different arm segments were analyzed for each upper 

extremity using the DXA software to determine if there was any difference in how well 

they could be predicted. The “whole shoulder” segment was defined by a vertical line 

directed just medial to the humeral head. The “humeral head” segment was defined 

proximally by a curved line that encompassed the head of the humerus. Significant 

differences were found between the masses from the two arm segments (P < 0.05). It was 

decided that the humeral head segmentation method would be used in the final equation 

development since it was a better representation of the anthropometries used for 

prediction. For example, the most superior landmark considered was the acromion 

process. As such, the soft tissue that was encompassed by the whole shoulder 

segmentation method was not directly related to any of the measurements taken. To 

ensure that the most predictive segmentation method was selected, a few pilot regressions 

were run using both mass estimates. Greater variance was explained in the humeral head 

segment masses than those resulting from the whole shoulder segmentation approach.

Bilateral Data Collapse

Both the left and right upper extremities of participants were measured and 

segmented using the DXA software. ANOVAs revealed that significant differences 

between the sides occurred for all tissue masses in all segments and also in about half of 

the anthropometric measures (P < 0.05). Despite these differences, data from the two 

sides were averaged. The cause of the differences between the sides is not known. 

However, it is reasonable to assume that hand dominance may have played a significant
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role, since, on average, the right side contained 5 % more mass than the left, across all 

participants. Considering the likelihood of a positive relationship existing between hand 

dominance and tissue mass, this compares reasonably to the 8 -  15% of right hand 

dominant people in the general population (Hardyck & Petrinovih, 1977). Unfortunately, 

hand dominance was not recorded in the current study. Without these data it is not 

possible to verify the role that handedness may have played. Differences between the 

sides could also have been caused by other factors such as changes stemming from 

previous injuries. Averaging the anthropometries and tissue masses from the left and 

right sides of the body was deemed reasonable since separate equations for the two sides 

would be less generalizable, and potentially cumbersome to use. Support for averaging 

the bilateral measurements is also provided by previous work (Heymsfield, McManus, 

Smith, Stevens, & Nixon, 1982; Holmes et al., 2005)

Sex Effects

Significant differences between the sexes were found for all but three o f  the 

segment tissue masses determined by DXA. Similar differences have been reported in the 

literature, whereby separate prediction equations were generated for each sex (Wilmore & 

Behnke, 1970; Jackson & Pollock, 1978; Lean, Han, & Deurenberg, 1996), or sex was 

coded separately in the equations (Wang et al., 2003; Holmes et al., 2005) to account for 

the differences. However, in the current study, the initial attempts at equation generation 

revealed that, in most cases, sex was not getting stepped into the equations. Forcing sex 

into the equations had minimal effect; either slightly increasing the adjusted R2, or in 

many cases, actually decreasing the R2 and increasing the SEE. As a result, it was 

decided that sex would not be forced into the equations, and would be free to be stepped
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in if it explained enough variance. Five of the final equations code for sex, including 

those for arm FM, forearm LM, forearm and hand LM, forearm WM, and forearm and 

hand WM. Sex did not account for a significant amount of variance for the other segment 

tissue masses.

Independent Variable Selection/Reduction

The decision to eliminate some of the athropometric variables prior to entering 

them into the stepwise regression analyses, was based on several things, including 

improving the participant to variable ratio. It was decided first that variables would only 

be included in the equations that were specific to the segment measured. For example, 

forearm circumference was not entered into the analysis to generate the arm prediction 

equation. This automatically divided the variables into two groups, one for the arm 

segment and one for the forearm and forearm and hand segments. The elbow 

measurements, sex, height, and mass variables, were common to each. Next, the groups 

of variables were broken down further by measurement type. This separated each of the 

two variable groups into four, containing length, circumference, breadth, and skinfold 

measurements. Each of these four groups contained between two and five variables.

Elimination at this level was based on the relationship that the variables had with 

each other. Highly correlated variables were considered for elimination to help decrease 

the likelihood of multicollinearity problems. Decisions were also based on how reliable 

the anthropometric measurements were. A recent study by Burkhart, Arthurs, and 

Andrews (2007) assessed the between and within investigator reliability of the same 

anthropometric measures used for the current study. Reliability was measured in  terms of 

intra-class correlation coefficients or ICCs (see Appendix Table A2). Similarly, how
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difficult the measurement was to obtain was also considered. Consideration was also 

given to what plane the measurements were in. For example, if several of the variables 

selected measured the medial aspect of a segment, then an anterior/posterior measurement 

might be given priority over another medial measurement, if  other issues like 

multicollinearity did not preclude its consideration.

For some of the more difficult decisions about which variables would be deleted, 

trial regressions were run to determine which was more predictive. In some cases, both 

were kept. The process described above eliminated 11 variables from entering the 

regression analysis in total, leaving 11 variables for each of the arm, forearm, and forearm 

and hand segments that could have been selected. However, following the completion of 

the multiple linear regression analyses, it was found that two of the variables were not 

stepped into any of the equations. With the elimination of these variables, the resultant 

participant to variable ratios for the arm and forearm/forearm and hand segments were 

8.4:1 and 7:1, respectively. These ratios exceed the minimum standard of 4:1 suggested 

by Kerlinger and Pedhazer (1973). Holmes et al. (2005) cited a 4:1 ratio for the lower 

extremity equations they developed.

Assumptions of Multiple Linear Regression

Multiple linear regression assumes that there are no outliers present in the data. 

Only one variable, elbow circumference, was found to have one case displaced from the 

rest. The recorded value of this variable for the one subject was 14.7 cm, with the next 

smallest value being 21.3 cm. It is not possible that 14.7 cm is a true measure o f  elbow 

circumference for the population tested. Therefore, a recording error was likely. The 

outlier was replaced with the mean left elbow circumference measurement of the group
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(25.7 cm). This value, more favourably and reasonably, compares with the right elbow 

circumference measurement of 22.5 cm. Since significant differences were found 

bilaterally for many variables, it was decided not to replace the left value with that of the 

right.

Absence of multicollinearity is also an assumption that must be met for accurate 

multiple regression. After the original regression equations were generated, it was found 

that four of the equations violated this assumption. To correct this, offending variables 

were omitted one at a time to note the effects of each. For arm LM and WM, new 

equations were produced without the mid-arm breadth (A-P) measurement. For the WM 

of the forearm, the removal of both elbow and styloid circumference measurements was 

necessary. The equation for WM of the forearm and hand was corrected by simply 

omitting styloid circumference. Sometimes, by omitting these variables, other variables 

were stepped into the equation to account for the variance attributed to the omitted 

variable. Other times, the equation stayed the same, but accounted for a little less 

variance. No multicollinearity violations existed following equation modification.

Prediction Error

Holmes et al. (2005) reported that most of the equations they generated for the 

lower extremities overestimated the actual tissue masses, with the exception of FM of the 

thigh, and leg and foot segments. In comparison, the current equations overestimated 

seven of the tissue masses, while five were underestimated (Table 4). However, in all 

cases, the differences between the actual and predicted values were found not to be 

statistically significant (P < 0.05).
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The least amount of error was associated with the lean and wobbling masses, 

despite how large the masses were in magnitude. Percent errors in general were very low, 

ranging from 2.2% to approximately 4 % for the arm and forearm segments, respectively. 

These values are in line with those previously reported in the literature for body 

composition equations (Jackson & Pollock, 1977; Holmes et al., 2005).

Functional Significance and Application

The focus of this study was to provide simple, easy to use, and cost-effective 

equations to predict tissue masses of three segments of the upper extremities in living 

subjects. Twelve equations were produced which yielded high adjusted R2 values and 

relatively low SEE values.

It is anticipated that the primary use of these equations will be by researchers in 

biomechanics and associated health related fields. More accurate predications o f segment 

tissue masses will enable researchers to establish biomechanical models that more 

realistically represent the dynamic motion and responses to human movements.

The simplicity of the measurements allows most people, with the proper apparatus, 

to predict BMC, FM, LM, and WM. The only equipment necessary is a measuring tape, 

for the lengths and circumferences, and callipers for breadths and skinfolds. As such, 

team coaches and fitness trainers working in gymnasia or similar facilities, may find this 

data particularly useful since they are interested in quantifying body composition of their 

players and clients. Healthcare professionals may also like to use the equations as a 

means of diagnosing a problem, if access to more expensive imaging technologies is not 

possible (e.g. BMC in osteoporosis patients).
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Limitations

The most significant limitation of the current study is the number of participants.

It has been suggested that a good rule of thumb, at an alpha level of 0.05, is that the 

number of participants be > 50 + 8m, where m is the number of IVs (Tabachnick & Fidell, 

2001). For this study, that would require 138 participants for equation generation. The 

current study had 76. However, despite this limitation, other studies have cited and used 

smaller participant to IV ratios, which the current study has exceeded (Kerlinger & 

Pedhazer, 1973; Holmes et al., 2005). Further, the high degree of explained variance for 

each of the generated equations, along with the corresponding small SEEs, suggest that 

highly predictive equations were produced.

Having the anthropometric measurements taken by two people may have 

contributed to a systematic bias between the left and right side measurements. Significant 

differences between the measurements for the left and right sides of the body did exist in 

the current study. However, several studies have shown high measurement reliability 

within and between measurers (Jackson, Pollock, & Gettman, 1978; Klipstein-Grobusch, 

Georg, & Boeing, 1997). In particular, work by Burkhart et al. (2007), using the same 

anatomical landmarks and measurements, showed very high reliability between 

measurers, with intra-class correlation coefficients (ICCs) ranging from 0.59 to 0.99 for 

all measurements. Some between measurer differences may be attributed to discrepancies 

in anatomical land mark identification, but no systematic bias to this end, was detected 

during training or during data collection.

The generalizability of the equations is also somewhat limited due to the restricted 

sample they were generated from (i.e young, healthy adults). Body composition has been 

found to fluctuate with factors such as age (Baumgartner, Stauber, McHugh, Koehler,
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Garry, 1995; Baumgartner, 2000), sex (Daniels, Khoury, & Morrison, 1997), and health 

status (Poehlman, Toth, & Gardner, 1995). As a result, those that would like to utilize the 

equations for a specific application, need to keep the characteristics of the generation 

sample in mind.

Future Directions

The reliability of the segmentation approach used in this study needs to be 

quantified for multiple users and for multiple trials. Two segmentation trials were 

performed in this current study to provide a starting point for this analysis.

Prediction equations should be developed for more extreme body types, including 

people like body builders and the obese. The current equations, and those by Holmes et 

al. (2005), were developed for healthy, young adults. Separate equations for older adults 

and children would be extremely beneficial to encapsulate differences in body 

composition based on age. Being able to model the effects of wobbling mass, for 

example, is contingent on knowing how much wobbling mass there is in a given segment, 

for a given individual.

Future efforts should also be focused on the development of predictive equations 

for other segments of the body, including the trunk, neck and head regions. This 

however, is only a first step. Developing biomechanical models that incorporate both soft 

and rigid tissue components requires, in addition to knowledge of the tissue mass 

magnitudes, knowledge of how the tissue mass for each segment is distributed. Three 

dimensional imaging technologies will need to be utilized in order to provide this type of 

information, as DXA is limited to assessments of mass in two dimensions by the 

segmentation software that is provided by the manufacturers.
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VI. CONCLUSION

The results of this study indicate that simple anthropometric measurements can 

be used to accurately predict bone mineral content, fat mass, lean mass, and wobbling 

mass of the arm, forearm, and forearm and hand segments of young healthy adults. These 

equations will allow participant-specific tissue mass information to be determined for the 

upper extremities without the use of expensive imaging technologies, such as DXA.

They will also help to provide a better understanding of the effects that wobbling mass 

tissues have on the response of the upper extremities in dynamic situations, by enabling 

more accurate tissue models to be developed. The use of such models by researchers in 

allied health disciplines and engineering will hopefully result in an improved 

understanding of how we respond to external influences, such as impacts to the 

outstretched hands following a forward fall. This knowledge could translate into more 

effective injury prevention strategies that can be utilized to improve the health of people 

in a variety of activities.
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Table A l: Description of lower extremity measurements taken bilaterally and recorded to 
the nearest millimetre, where (M-L) and (A-P) indicates that the measurements were 
taken in the medial-lateral and anterior-posterior directions, respectively. These
measurements are identical to t rose used by Holmes et al. (2005).
Variable Measurement Descriptions
Lateral Thigh Length Distance between the superior iliac crest and the lateral 

aspect of the tibial plateau
Medial Thigh Length - Distance between the anterior level of the pubis 

symphysis and the medial aspect of the tibial plateau
Proximal Mid-Thigh Length Distance between the anterior level of the pubis 

symphysis and the medial aspect of the femur at the 
level of maximum circumference midway between the 
superior iliac crest and the tibial plateau

Lateral Leg Length Distance between the lateral aspect of the tibial plateau 
and the inferior base of the lateral malleoli

Medial Leg Length Distance between the lateral aspect of the tibial plateau 
and the inferior base of the lateral malleoli

Proximal Mid-Leg Length Distance between the medial aspect of the tibial plateau 
and the medial aspect of the tibia at the level of 
maximum calf circumference midway between the tibial 
plateau and the malleoli

Upper Thigh Circumference Distance around the femur and overlying tissue just 
inferior to the gluteal fold

Mid-Thigh Circumference Maximum distance around the femur and overlying 
tissues midway between the superior iliac crest and the 
tibial plateau

Knee Circumference Distance around the outmost projections of the tibia and 
overlying tissues

Mid-Calf Circumference Maximal distance around the calf midway between the 
tibial plateau and the malleoli

Ankle Circumference Distance around the tibia and fibula, and overlying 
tissues just superior to the malleoli

Malleoli Circumference Distance around the most lateral projections and 
overlying tissue of the tibia and fibula

Upper Thigh Breadth (A-P) Distance across the femur and overlying tissues just 
inferior to the gluteal fold

Mid-Thigh Breadth (M-L) Distance across the femur and overlying tissue at the 
level of maximum circumference midway between the 
superior iliac crest and the tibial plateau

Mid-Thigh Breadth (A-P) Distance across the femur and overlying tissue at the 
level of maximum circumference midway between the 
superior iliac crest and the tibial plateau

Knee Breadth Distance between the outmost projections and overlying 
tissue of the tibia at the level of the tibial plateau

Mid-Calf Breadth (M-L) Distance across the tibia and overlying tissues at the 
level of maximum calf circumference
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Mid-Calf Breadth (A-P) Distance across the tibia and overlying tissues at the 
level of maximum calf circumference

Ankle Breadth Distance between the lateral aspects of the tibia and 
fibula and overlying tissues just superior to the malleoli

Malleoli Breadth Distance between the most lateral projections and 
overlying tissues of the tibia and fibula

Medial Mid-Calf Skinfold Vertical fold on the medial aspect of the calf at the level 
of maximum circumference with the subject’s weight 
placed on the opposite leg

Posterior Mid-Calf Skinfold Vertical fold on the posterior aspect of the calf at the 
level of maximum circumference with the subject lying 
prone

Anterior Mid-Thigh Skinfold Vertical fold on the anterior aspect of the thigh at the 
level of maximum circumference midway between the 
superior iliac crest and the tibial plateau with the 
subject’s weight placed on the opposite leg

Posterior Mid-Thigh Skinfold Vertical fold on the posterior aspect of the thigh at the 
level of maximum circumference midway between the 
gluteal fold and the popliteal fossa with the subject 
lying prone
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Table A2: Mean (SD) measurements for the upper extremity by site (cm), measurement 
differences between and within-measurers (cm), and between and within-measurer 
reliability coefficients (ICCs). Significant differences (p<0.05) between-measurers and 
between sexes are indicated with a * and f , respectively (Burkhart et al., 2007).

Measures Mean Measurements (cm)
Overall Male (n=25) Female (n=25)

Measurement Differences (cm) 
Between Within

ICCs 
Between Within

Upper Extremity 
Lengths

Lateral arm *30.28 (1.14) 1-31.1(2.5) 29.5 (1.6) 1.45 0.21 0.84 0.88
Medial arm *24.4 (0.4) 24.7 (1.9) 24.1 (1.4) 1.28 0.21 0.85 0.80
Proximal mid-arm 10.6(0.12) 10.7 (1.5) 10.5 (2.1) 0.52 0.21 0.65 0.66
Lateral forearm *25.8(1.5) t26.9(1.9) 24.7 (1.5) 1.07 0.10 0.88 0.87
Medial forearm 25.7(1.2) 125.6(1.8) 24.0(1.4) 0.13 0.28 0.89 0.82
Proximal mid-forearm *11.4(0.8) 112.0(1.9) 10.9(1.7) 1.38 0.19 0.70 0.81

Circumferences
Upper arm *32.4 (3.0) 134.5 (3.2) 30.4 (2.9) 0.87 0.26 0.94 0.90
Mid-arm *31.2(4.8) 134.6 (3.2) 27.8 (2.9) 0.48 0.09 0.94 0.92
Elbow 26.3 (2.7) 128.2(1.7) 24.3 (1.5) 0.15 0.04 0.99 0.99
Mid-forearm *24.0 (2.9) 126.0 (2.0) 21.9(1.8) 1.28 0.19 0.93 0.96
Wrist *16.9(1.7) 118.2(1.0) 15.8 (1.0) 0.13 0.02 0.99 0.99
Styloid 16.7(1.6) 117.8(0.9) 15.6 (0.7) 0.09 0.06 0.99 0.98

Breadths
Upper arm *10.4(0.7) 110.9(1.6) 9.9 (1.2) 1.99 0.18 0.59 0.87
Mid-arm (M-L) *8.3 (0.8) 18.9 (0.9) 7.7 (0.9) 0.24 0.09 0.95 0.92
Mid-arm (A-P) 10.1(1.3) 110.9(1.6) 9.1 (1.0) 0.05 0.06 0.95 0.92
Elbow 9.1 (0.2) 9.2 (0.8) 8.9 (7.1) 0.11 0.65 0.86 0.93
Mid-forearm (M-L) 8.0 (1.0) 18.7 (0.8) 7.2 (0.6) 0.17 0.03 0.94 0.93
Mid-forearm (A-P) *7.6 (2.3) 19.2 (0.6) 5.9 (0.6) 0.29 0.07 0.92 0.91
Wrist *5.8 (0.5) 16.2 (0.4) 5.5 (0.4) 0.23 0.04 0.95 0.94
Styloid *5.8 (0.5) 16.1 (0.6) 5.4 (0.4) 0.15 0.07 0.78 0.91

Skinfolds
Medial forearm 0.6 (0.2) 10.5(0.1) 0.7 (0.2) 0.04 0.01 0.96 0.95
Posterior forearm 0.6 (0.1) 0.5 (0.2) 0.7 (0.2) 0.03 0.01 0.89 0.91
Anterior arm *0.8 (0.3) 10.6 (0.3) 1.0 (0.4) 0.25 0.04 0.87 0.88
Posterior arm *1.5 (0.4) 11.2(0.5) 1.8 (0.6) 0.25 0.01 0.96 0.96
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