University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2001

A study on test cases generation for object-oriented programs
based on UML state diagram.

Xiaohong. Yang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Yang, Xiaohong., "A study on test cases generation for object-oriented programs based on UML state
diagram." (2001). Electronic Theses and Dissertations. 833.

https://scholar.uwindsor.ca/etd/833

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F833&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/833?utm_source=scholar.uwindsor.ca%2Fetd%2F833&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directiy to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

A Study on Test Cases Generation for Object-Oriented

Programs Based on UML State Diagram

By

XIAOHONG YANG

A thesis
Submitted to the Faculty of Graduate Studies and Research
Through the School of Computer Science in Partial
Fulfillment of the Requirements for the Degree of
Master of Science at the
University of Windsor

Windsor, Ontario, Canada
April, 2001

© 2001, Xiaohong Yang,

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
335 Wallington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your Nl Votre rédrence
QOur lie Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

(Canada

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-62305-x

Abstract

Software testing expenses are estimated to be between 20% and 50% of total
development costs. Software testers need methodologies and tools to facilitate the testing
portion of the development cycle. State-based testing is one of the most recommended
techniques for testing object-oriented programs. Data flow testing is a code-based testing
technique, which uses the data flow analysis in a program to guide the selection of test
cases. Both state-based testing and data flow testing have their disadvantages. State-based
testing does not analyze the program code, and thus could miss the detection of data
members that do not define the states of the object class. Selecting data flow test cases
from data members for testing classes is difficult and expensive. To overcome their
weakness, a hybrid class test model is proposed, which contains both the information
from specification about the state change of object instances of the Class Under Test
(CUT) and the information from the source code about the definition and use of the data
members in the CUT. With such an uniformed architecture, we can obtain automated
tools to generate test cases for state-based testing and perform data flow testing at the
same time. The combination of the two techniques is essential in improving our testing
environment, and thus contributes to the enhancement of the reliability of software
products. The proposed hybrid testing strategy can be used in both software design stage
and software implementation stage. A Standard-based UML information exchange
format--- XMI is used to describe UML design specification in the hybrid testing
strategy, to bridge the software designer and software tester. No matter what kind of
CASE tools designer use, as long as it is saved as XMI format, the testing tool can easily

understand design specification from different design tools.

Keywords: class testing, hybrid testing strategy, Grey-box testing, data flow
analysis, state-based testing, def-use pairs, finite state machine, state diagrams,
XMl1, UML

Acknowledgements

The work presented in this thesis could not have been possible without the support of

many people.

First, [would like to express my sincere thanks and appreciation to my supervisor, Dr.
Xiaojun Chen, for giving me the opportunity to do research in software-testing study.
Her work ethics, advice, enthusiasm, and encouragement through the development of this

work were the most important factors that helped me finished my M. Sc. program.

[would also like to thank my committee members, Dr. Diana Kao, Dr. Arunita Jaekel
and Dr. Peter Tsin for spending their precious time to read this thesis and their comments,

suggestion on this thesis work.

My special thanks go to the secretary of the School of Computer Science, Ms. Mary
Mardegan, for her consistent helps. Thanks go to Li Fang , Xiubin, Hanmei, Wayne, for
their valuable comments, interesting discussions, supportiveness, and kindness. I really

appreciate all of their help.

I am deeply grateful to my husband, Ming Lei, for his love and support; and my parents,

for their understanding and encouragement.

Table of Contents

ABSTRACTttt ettt et e et e et e e een s enbesennns i1
ACKNOWLEDGEMENTS........iiitiiiiiiincirieeee e eeie e e e 111
TABLE OF CONTENTS.....ooviiiiii ettt et e erer e e v
LISTOF ACRONYMS . ..ottt e VI
LISTOF FIGURES.cooiiiiiiiii et et e e e VIi
LISTOF TABLES. ...ttt et Vil
CHAPTER 1 INTRODUCTION..........coiiiiiiiiiiieii et e e 1

1.2 Motivation
1.3 ObJCHVES.....eniitiitiitiinitiiiieeieiree e e e ereran e e et enneansbernseresennessomsonens 5
1.4 THeSIS StIUCLUTE.........cucovererieerireeietries st erensenensesensesensnnesencasensnsns T

CHAPTER 2 RESEARCH BACKGROUND............ 8
2.1 State-based TESHNE........coeuerrrereerreseessercrsenssssesseressvenseennsssrnsseesnnsressnenenen 8

2.2 Data flow TESHNG........covrerererrerrerreriaseisise sreeveereseesnnerenessnseesesensessnessns 12

2.3 State Transition DIagrams.cceeurieiriiirernrerereneeenseerensnmsees 14
2.4 XMI for UML information Exchange............c..ccovvvveiirivieienieeneennnn. 16
2.5 TEMMINOIOZY.....uoiveiiiniiiieiiii et e eteeeetee et e e ra e e e e ersee e e s areananne 19

CHAPTER 3 THE HYBRID TESTING STRATEGY FOR OBJECT-ORIENTED

PROGRAMS TESTING......cccccotnnrenncinneens 21
3.1 A priority bounded queue class example for hybrid testing strategy.............21
3.2 Framework of hybrid testing strategy..........ccccovveieiiiiiirinireieenernnenen 24
3.3 Extract UML design specification by parsing XMI ceeeennn 25

3.4 Static analysis by scanning the data flow paths to get
sequences of definition and USES..........c...c.eeeieniiniiniiiiiiieeieeeee e 26

3.5 Using State Diagram and Sequences of definition and uses to construct
hybrid Class Test Model . 28

3.6 From Hybrid Class Test Mode! generate test cases and data member

1

OCCUITENCES SEQUENICES. .c.ocrrnrerermrrersassesnenene restsvensserasenesnstsnesessasesereesassens 33

3.7 Data flow anomalies detection technique within sequences of methods............ 35
3.8 Transfer test cases to XMI format to deploy each test software......................... 36
3.9 CSE StUAY.....ecucrreerirceiernreesceeesesee et sr st as e b b e esas b 37

CHAPTER 4 DESIGN AND IMPLEMENTATION OF PROTOTYPE OF TEST
CASES GENERATION SYSTEM......ccccctucrecsensarssessessnssmmmenssnssssssesssssssossd /
4.1 System Requirements....... reeveseseereretes e s e ra s e r s e an e nee s nee e raess 47

4.2 Development of XMI parser and State-Transition Table construction module...48
4.3 Design and Implementation of source code parser and Def-use info Generator...54
4.4 Development Hybrid class test model navigation and

Def-Use info Insertion algorithm..............coooiiiiiiiiiiiiireeees 60
4.5 Test Cases Generation Prototype and its GUIcoovvvreeiccicnnercnncnnnen 61

CHAPTER 5§ METHODOLOGY EVALUATION.....c.cccoiturinincncncsereessnecanne 04
5.1 A Symbol Table Class.......cccccevvieeeieriiiiiriniiininiirrnnenereeesesressesssssnense s . 04

5.2 Four testing techniques SUMMArY.............cooeviininiiiniiienini e 70
CHAPTER 6 RELATED WORK........ crsessnsatesrnessanene 72
6.1 Test cases generation from UML specification........ccecerevvvnrneenienennnnnnen. 72
6.2 Test cases generation using state-based testing Strategy.............oceevereevereenenns 73
6.3 Test case selection using data flow testing Strategy............coveereerrerurerseerereenee 75
6.4 Data Anomaly testing techniques......... cereerensnstesesananenne 19

6.5 Advantages of our approach..........ceeeeeevvvveniiniiiiiiiiniiiiieenn 17

CHAPTER 7 CONCLUSIONS AND FUTURE WORK.......... ceesesescsacssennse .18
T 1 CONCIUSIONS.c..eeeeeneeieneeeeereerecerreeesessesssssssssesssnsssses ssassnsnssasonsessnssssonnsnnes 78

T2 FUUEE WOTK...oooeeeeeeeeiiecreeieesenseneeeeesncsessessesasssssesssesssssacessessonssensnase 19

BIBLIOGRAPHYcccieuiiuuiinnirtncnnnceninsanieessissencssnssesnscsnnanes creesessee ~ 30
APPENDIX A XMI REPRESENTATION FOR QUEUE CLASS..................... 84
APPENDIX B JAVA CC PARSER GRAMMAR FILE FOR

JAVA SOURCE CODE.ccucivniiimiiiiiiiniiii e 90
VITAAUCTORIS.....ooiiiiii e 99

List of Acronyms

CuT Class Under Test

C-Use Compute Use

CASE Computer Aided Software Engineering
CSTD Class State Transition Diagram

DOM Document Object Model

DTD Document Type Definition

Def-Use pair Definition-Use pairs

EBNF Extended Backus Naur Form
EFSM Extended Finite State Machine
FSM Finite State Machine

GUI Graphic User Interface

HTCGS Hybrid Test Case Generation System

JavaCC Java Compiler Compiler

OMT Object Management Team

OSD Object State Diagram

P-Use Predicate Uses

UML Uniform Model Language

XMl XML based Metadata Interchange
XML eXtended Markup Language

List of Figures

Figure 1-1 Life cycle testing phases..........cocovveeerevveeencnneiinrenirneeneeencrenneenneennn @

Figure 2-1 state transition diagram of the stack class.................c..covvvevirennennene 10
Figure 2-2 state transition tree of the stack class..............c..cooeceeiiiiiineenniiennn 1l
Figure 3-1 the UML state diagram of the qUeue............covecoemrreverereerecrecrennnrcneencennencs 23
Figure 3-2 implemented C++ code of the queue class............ccoouerercrerrrnnenenrencrenens 23
Figure 3-3 the whole process of test cases generation of hybrid testing....................... 24
Figure 3-4 add() method and its directed flow graph..........ccccocorureeeveccrencrennrnnreenennn 27
Figure 3-5 method control flow graph and class state diagram............cccoeeecvreecrecrunnce. 29
Figure 3-6 hybrid testing model that integrates control flow graph.........c.ccccoecrserevennee 30
Figure 3-7 Hybrid class testing model............cocccovererrerrnenecrceneeneeeseerereseesssesnesssesennes 31

Figure 3-8 The transition tree of the queue class from hybrid class testing model......... 35

Figure 3-9 Test cases generator deploy test cases with XMI format.............ccooveveneeee.. 37

Figure 3-10 the source code of class CCOINBOX..........ccccoeeereerrrercenesereeeneeeenereeererenens 38

Figure 3-11 the state diagram of CCoinBoX Class............ccoevuvereverrrrerereirersirensiscnnnnesenens 38
Figure 3-12 the XMI fragment of class CcoinBox UML design specification................ 39

Figure 3-13 the XMI DOM HrE.........cceeeeemmieencrrenrseresenenessseesessssessseresssssesessssssssessssnsnes 40
Figure 3-14 The hybrid class testing model of class CcoiNBOX..........cceurereverenerererenennnes 41
Figure 3-15 the transition tree of class CCOINDOX............ovvmreveererimieereecreneneeresesssennes 43
Figure 3-16 the modified ReturnQtrs() and AddQtrs() function for CcoinBox 46
Figure 4-1 the XMI parser and state-transition table construction module....................... 49
Figure 4-2 the XMI DTD for UML state and transition..............c.eeeeeecuereeeennsssencrerenenns 50
Figure 4-3 the XMI template for UML State-transition.............ccceeuruecrerreensecsscnscsessensennens 51
Figure 4-4 the XMI fragment of class Queue UML design sepecifiction............cccc....... 52
Figure 4-5 State-transition construct from queue class XMI file. 53
Figure 4-6 State-transition diagram extract from queue class XMI file 54
Figure 4-7 JavaCC generated source code parser and def-use tree builder....................... 55

Figure 4-8 the JavaParser code for source code check and build def-use tree.................. 56
Figure 4-9 the Def-use info XML file generated from CcoinBox class..........cc.ocrueeeenecn. 59

Figure 4-10 the hybrid class testing model navigation and Def-use info insertion

Figure 4-12 Test cases generated by prototype System..............coceeveeerrrnrereserssnceensnc03

Figure 5-1 SYmbOoITable Class..........coceveereremserecenrrusrsnsseesessssessssessasssssssaesssssssssssssssssensns 66
Figure 5-2 The hybrid class test model class SymbolTable...........cccccoerereerervcreccccnrrennnnne 66
Figure 5-3 the transition tree of class SymbolTable...........cccoceevereriereeeeirerereensesesenseenees 68

List of Tables

Table 2-1 the actions of data flow anomaly.............coeeviiiiiiiiiiiiiiin i e 13
Table 3-1 the test result of CoinboX ObJECL..........covrvvemrererrrresrsesrsensenannane R T
Table 3-2 the definition-uses of the data members within sequences of methods........45
Table 4-1 path condition information extracted for class Coinbox..........c.c..co.c....e. 57
Table 5-1 the evaluation of the hybrid testing method.............cccooveevrrereceereevereceennnene. 70
Table 5-2 summary of four class testing techniquUES.ccccocoeeeerrenreenencrennesseerennnees 72

Chapter 21

INTRODUCTION

This chapter gives an introduction to the work of this thesis. It includes its aim,
motivation and objectives. It also discusses the features and advantages about framework

of test cases generation based on hybrid testing strategy.
1.1 Aim

The aim of this thesis is to study and develop a new test cases generation method, which
combines the state-based testing and data flow testing techniques. This technique is based
on a test model called hybrid class test model, which contains both the information from
specification about the state change of object instances of the Class Under Testing (CUT)
and the information from the source code about the definition and use of the data
members in the CUT. It belongs to a hybrid testing strategy. It generates basic test cases
through navigating the class state transition diagram. and mapping each implemented
class method’s data occurrences into Hybrid Class Test Model. Then data anomaly
detection can be applied. This method overcomes the shortage of state-based testing that
may miss detection of code implementation errors, and significantly improves the
performance of data flow testing. At the same time, it also reduces test case number and
test cost for data anomaly detection. A strategy of test case generation is provided and a

prototype of our object-oriented program test cases generation system is implemented.

1.2 Motivation

1.2.1 Why choose test cases generation as the main research focus in this thesis?
Expense on software testing is estimated to be between 20% and 50% of total
development costs [Glass 1990]. Software testers need methodologies and tools to
facilitate the testing portion of the development cycle. In software testing, test case

generation is the most difficult, expensive and tedious. It can easily take several months

of hard work. Because test cases generation is labor intensive and expensive, automating

the process could significantly reduce the costs of software development.

1.2.2 What challenges does software testing have if tested programs are object-
oriented?

Object-oriented programming is easier to maintain through better data encapsulation and
the reuse of classes, but object-oriented techniques have made software testing harder due

to encapsulation, inheritance, data binding, overriding/overloading and polymorphism.

1.2.3 Why use UML state diagram as one of the main testing resources that generate

test cases?

There is an increasing need for effective testing of software in design stage. UML
(Uniform Model Language) provides a powerful mechanism for describing software and
itis widely used in software design. Advantage of using software description languages
such as UML is that they provide a convenient way for generating test cases. Although
UML is not completely formalized, certain aspects of a language, in particular the UML

State chart diagram. are precise enough to be utilized for test generation.

Software design descriptions represent a significant opportunity for testing because they
precisely describe how the software functions behave in a form that can easily be
manipulated by automated means. Design notations can be used as a basis for output
checking, significantly reduce one of the major costs of testing. The process of generating
test cases from design will help the test engineer discover problems with the design itself.
If this step is done early, the problems can be eliminated early. It saves time and
resources. Generating test cases during design also allows testing activities to be shifted
to an earlier part of the development process, which allows for more effective planning

and utilization of resources.

1.2.4 Respective disadvantages of State-based testing and Data-flow testing

Some testing techniques (e.g. state-based testing and data flow testing) used to test
conventional programs have been adapted for testing object-oriented programs. State-
based testing is one of the most popular techniques for testing object-oriented classes.
State-based testing only observes changes of state values and focuses on state dependent
behaviors of objects. The state values are combined values from its data members at a
particular point in time [Tuner and Robson, 1993]. This means that state-based testing
only involves data members, which have an effect on behaviors of an object. Some data
members in a class may exist for other purposes and do not define object states. Those
unexamined data members in state-based testing need to be detected by some other
techniques in order to ensure the quality of implemented classes. State-based testing only
examines state change and behavior rather than internal logic, such that data faults may
be missed. State-based testing does not examine program code, and thus could miss the

detection of data members that do not define the states of an object class.

Data flow testing is expensive when it is used for object-oriented program testing.
Selecting data flow test cases from data members for testing classes at the intra-class
level is difficult and expensive. Weyuker [1984, 1990] proposed a technique to generate
test cases that covers all du-paths (definition-use path). The method reaches an
exponential number of test cases in the worst-case scenario. If 4 is the number of two way
decisions in the program, then in the worst case all du-paths require O(2“) of time to
generate test cases. Meantime some of the test cases may be infeasible, as the selection is
based on the definition-use pairs. Furthermore, the data flow test cases cannot be
completely generated if any data flow anomalies exist in the class, because the anomalies

may break the def-use pairs that are the basis of selecting data flow test cases.

Each testing strategy has its own purpose. State-based testing transforms a class behavior
model into test cases. Data flow testing generates test cases based on the patterns of
definitions and uses of the data members in a class. State-based testing does not detect
data members that do not define states. However, this can be examined using data flow

testing.

1.2.5 Test case generation can be paralleled with system design and implementation
phases in software development life cycle

There are some existing software development life cycle models.

The Waterfall development model progresses from the analysis phase to the design
phase, through to the coding and finally the testing phase. In this model, there is necessity
to revisit earlier phases of development. This is because the implications of a decision in
a phase could not have been foreseen until it was worked through in later phases. In
addition, if faults are not found until the testing phase, then we need to revisit previous
life cycle phase in order to fix the faults. This may cause the product being delivered late.

It increases costs.

OMT
Madelling Life Cycle
Taol Testing phases
Analvze Desun Desnm Implement Debug (Rework) Requirements,
Problem Need Svstem Objects Ubjeuts Desiznns, Programs. and Tests
Write
Requirements Detine Desim Write Run Evaluate
Test Tests Tests Test Tests and
Cases Cases Cases Cases Software
Specitication
Based
Test Generation
Toul

Figure T-T Lije cycle testing phases

James Rumbaugh and his colleagues developed the Object Modeling Technique (OMT)
(Rumbaugh etc., 1991]. The testing phase of the life cycle follows the implementation
phase. During the testing phase, defining test cases, designing test cases, writing tests
cases, and then running test cases are performed sequentially. Finally, the software is
evaluated. In this model, the testing tasks are also performed after an object is
implemented. The tasks of defining, designing, and writing test cases cannot be

performed in parallel with the tasks of defining, designing and implementing objects.

In our solution, test cases should be developed alongside requirements, design and coding
(see Figure 1-1). Testing should not be envisaged as a distinct phase of the life cycle but
as an integral part to the design and build process. Testing is put in each stage in our
hybrid testing method. After software design stage, specification-based testing (mostly
State-based testing) is needed. When implementation coding finishes, specification-based
testing and code-based testing need to be done to detect errors. The ability of detecting

existing data anomaly shows that code-based testing is a necessary testing step.

1.2.6 Why XMl is used as information exchange format in the hybrid testing
format

Automatic testing requires a standard information exchange format, which allows
software designer and software tester (could be testing software) to exchange design

specification (now popular based on UML).

In software development life cycle, when designers finish their design, the design result
is saved as some kind of file. In order to automate testing, testing tool should read and
understand the designer’s design file. Unfortunately, the gap between designer and tester
still exists. Most researchers just manually input the design specifications. Pioneer
researcher Jeff Offutt propose to parse some specific design document, like Rational
Rose’ mdl file to get the semantic meanings of the specifications (Jett Offutt, 1999). But
this is a vender dependent solution. A standard-based, vender independent UML
information exchange format is needed to bridge the software designer and tester,

otherwise, automatic testing can not be language independent.

1.3 Objectives

Both state-based testing and data flow testing have their disadvantages. To overcome the
weakness, adapt and improve the existing testing techniques, Grey-box object-oriented
class testing technique is presented. This kind of Grey-box object-oriented class testing
technique is a hybrid method, based on state bascd testing and data flow testing.

This method is not a simple way to combine state based testing and data flow testing. It
maps methods of the implemented CUT onto the transitions of the state model, in order to
generate sequences of implemented methods. Based on the sequences, intra-class data
flow test cases can be selected using the conventional def-use path selection technique
(also used by Harrold and Rothermel [1994]).

[tis very expensive to generate test cases only from source code based on data flow testing.
Applying the hybrid method, the data flow testing technique can be used in detecting data
members to find data faults that occur within those data members. These data faults may
not be examined in state-based testing. The proposed data flow testing technique is used
on intra-class testing. It concerns tracing the flow of data members among methods in the
class, rather than local variables within an individual function. Moreover, all definitions
and uses are associated with class methods rather than statement blocks in a function. The
number of d-u (definition-use) paths is reduced. Hybrid testing strategy keeps the

advantage of data flow testing and significantly reduces the testing cost.

The hybrid testing strategy can be used in software design stage and software
implementation stage. In design stage, testers can start design test cases and do
simulation testing. After the coding phase, data flow testing can be applied based on the
state information. It does not need to reengineer source code to get state information.

Expense on test case generation is reduced significantly.

A Standard-based UML information exchange format--- XMI (XML based Metadata
Interchange) is used in my research work, to bridge the software designer and software
tester. No matter what kind of CASE tools designer use, as long as it is saved as XMI
format, the testing tool can easily understand design specification from different design

tools.

1.4 Thesis Structure

This thesis consists of seven chapters. Chapter 2 discusses research background. It
includes kinds of testing strategy, state-based testing and data flowing testing, and
evaluates advantages and shortcoming of each method. Chapter 3 describes the grey-box
hybrid class testing strategy, and chapter 4 presents the design and implementation of a
prototype of test cases generation system for Object-Oriented Program. Chapter 5 shows
the results of the evaluation of our approach. Chapter 6 describes the comparison of this
work with related work done so far by other researchers. Finally, Chapter 7 provides

conclusions and recommendations for future work.

Chapter Two

RESEARCH BACKGROUND

This chapter evaluates the techniques of state-based testing and data flow testing for
testing object-oriented classes. It also introduces the UML state diagram, and gives a

brief discussion about UML information exchange standard---XMI.

2.1 State-based Testing

2.1.1 What is state-based testing?

State-based testing is to examine the interactions within an object by monitoring the
changes of states. and errors are detected by testing states of an object.

State-based testing emphasizes on testing the state change of an object due to possible
method calls in each state.

Usually. state-based testing exercises an implementation to see whether it produces the
correct response tor ditterent use case and message sequences. A state machine model
can represent both control responsibilities and the class intertace that implements them.

Test suits that are eftective at finding control bugs can be generated from these models.

2.1.2 State-based testing approaches

In state-based testing, as in all types of dynamic class testing, the object of a class is
tested rather than the class itself, since the latter is not executable.

State-based testing is often realized according to given specification about the behavior of
the instances of the Class Under Testing (CUT).

With state-based testing methods, we can generate test cases by traversing test trees
[Chow, 1978], spanning trees [Kung et al., 1994, 1996] or state-transition trees [Binder,
1995]. Test cases can be derived from Finite State Machines (FSMs) [Chow, 1978] or
extended state models [Kung et al., 1993, 1994, 1996; Binder, 1995]. Some state-based

testing methods manually inspect test results using the state models.

2.1.3 State-based testing for object-oriented programming

In an object-oriented language, a class contains both methods and data members.
Private members are encapsulated within the class and are invisible from outside. An
object encapsulates its states (i.e. the combinations of the values of data members), and
only the methods of the object can be referred to or modify its data members. Therefore,
the behavior of an object may be controlled by its states and message sequences.
Additionally, classes are usually designed to accept certain sequences of messages. They
may respond differently for a particular set of encapsulated values. Based on these
characteristics of object classes, state-based testing is proposed to observe the values
stored in the state of objects and focus on the state dependent behavior of the objects.
The benefit of state-based testing lies in its ability to examine the interactions within an

object by monitoring the changes of states.

State-based testing is one of the most recommended techniques for testing object-
oriented programs. This technique was originally proposed by Tumner and Robson
[1993]. Their approach is based on FSMs, and determines input states and output states
for each method from the design of the class. The changing states rely on the values that
are changed by the transitions. Feasible method sequences, which are generated along
with the class specification (e.g. state transition diagram), can be used to check whether
the object-oriented program follows the methods sequence patterns required by
specification. The testing processes are: (1) for every state s, to create an object and set it
to the state, (2) to invoke the operation f with the parameter x and chosen test data, and

(3) the resulting state s’ is compared with the state predicated by the transition function.

2.1.4 State transition diagram to a state transition tree

Adopting state-based testing, Binder in [1995] transcribes the state transition diagram of
an Account class to a state transition tree, and the tree is used to generate test cases. This
state transition tree, the test-tree derived using the Object Test Model in [Tse and Xu,
1995, 1996] and the reachability tree are similar to the spanning trees used in [Kung et
al., 1996, 1993; Chow 1978]. A test case is generated after traversing each full or partial

branch in the tree.

Here we give an often-used example stack to express the state transition tree. Assume
that the bounded stack class can only store five units of data and has push and pop
methods. The state spaces of a stack object consists of six states, from the empty state, to

one containing one unit, to another containing two units, etc., to the full state.

In practice. an n array size of queue has n+1 state spaces (state value is from 0 to n).
From a modelling perspective, the state space diagram is not acceptable since every
change of state value results in a “new" state. Therefore, the state space must be divided
into a more manageable and meaningful substate size. For this example, the behaviour of
stack suggests three states: empty, loaded, and full. The methods push and pop are
modelled as events. Sending pop to an open stack results in empry stack when the popped
item was the only item in the stack. Sending push to a loaded stack results in a full stack
only if the stack contains one less item than the maximum allowed before the push. In all

other cases. push and pop result in the loaded state.

The stack’s state transition diagram in Figure 2-1 is used in an object design for
describing its state changes and behaviours. In Figure 2-2, the stack’s state transition

diagram is transcribed to a state transition tree

push(x)

push(x)

push(xy
FullStackException

Figure 2-1 State transition diagram of the stack class

i0

~

\ Emply
Pointer arc
v
Loaded

d ‘X

Empty Loaded Loaded Full

a: push data transition _.é_

d : pop data transition Loaded

Figure -2 The state transition tree of the stack class

2.1.5 Test Case Generation using state transition tree
The method of producing test cases from state transition sequences has been discussed in
[Chow. 1978; Binder. 1995 and Kung et al., 1996]. The first step in generating test cases

tor the class under test is to prepare a state transition tree (or spanning tree).

Generally. the initial state in the state transition diagram becomes the root node in the
tree. and each transition out of the initial state is a branch to a node that represents the
resultant state of the transition. Therefore, the next possible states of the initial state in
the diagram are the child nodes of the root node on the tree. This is repeated for each
subsequent state to build the tree until (1) the node already appears on the previous level
or (2) the node corresponds to a final state in the state transition diagram [Chow. 1978;
Binder. 1995].

Each path from the root in the tree comprises a possible transition sequence from the
beginning state to the end state in the state transition diagram. A path also shows a
sequence of test cases to detect whether or not the state changes correctly. The state
transition tree derived from the state transition diagram of the stack class is given in
Figure 2-2. A sequence or a single test case is obtained by tracing each full or partial
path in the tree. For example, a sequential test case <Empty, push, Loaded, pop,
Empty> is produced by following the bold branches in Figure 2-2.

11

2.2 Data flowing Testing

2.2.1 what is data-flow testing?

Data flow testing is a code-based testing technique, which uses the data flow analysis in a
program to guide the selection of test cases [Harrold and Rothermel, 1994; Frankl and
Weyuker. 1988]. For object-oriented programs, it can be used in method_level testing as

well as intra_class testing.

Since the 1980’s. numerous data flow-testing approaches have been discussed in the
literature [Harrold and Rothermel. 1994]. Most of these techniques are based on data

flow analysis and require test data (cases) to exercise definition-use paths.

2.2.3 Data-flow analysis in data-flow testing
The advent of data flow analysis used in compiler optimization has also affected the
strategies of software testing. In conventional program testing, data flow analysis of the

program is a mechanism for selecting execution paths, which should be tested.

Data flow analysis is the examination of the use of variables in a program, i.e. the
sequences of actions on the variables. An improper use of data is a data anomaly [Chan
and Chen. 1987]. The important types of data flow anomalies stated in [Beizer, 1990;
Fosdick and Osterweil. 1976] consist of: (1) defining a variable twice with no intervening
use, (2) using a variable that is killed. and (3) releasing variables that are defined but not

used.

Data flow analysis examines where/how variables are defined with values and
where/how the values of the variables are used. A test path is formed from definitions to

uses in a program.

A definition-use pair (def-use pair) is an ordered pair (d, u), where a statement called d

contains a definition of a variable v. which is used in a statement u in a program.

Uses of a variable are further divided into two classes, as either computation uses (c-use)
or predicate uses (p-use) [Rapps and Weyuker, 1985]. A c-use occurs when the value of
a variable is used in a computation or output statement, and a p-use occurs when the
value is used in a condition (predicate) statement. For instance, the if (x >0) {x =y +
10;} statement contains a p-use of x and a c-use of y, followed by a def of x. The data
flow testing criteria can be found in [Harrold and Rothermel, 1994; Frankl and Weyuker,
1988].

A variable is killed (k) when its value is released or it contains no known value. “Killed"
(or undefined) is that the instance of a variable is killed [Beizer, 1990)]. The anomalies

that are often used are listed in Table 2-1

Table 2-1 The actions of data flow anomaly

Actions on Anomaly
a variable
dd A define action is followed by a define action. Probably a
harmless anomaly but strange.
ku A kill (undefined) action is followed by a use (reference) action.
A harmful anomaly, the value is released before reference.
dk A define action is followed by a kill action. Why was the variable
defined but not used? Probably an anomaly.
d- A variable was defined without usage. Probably an anomaly, but
this could be a global definition.
- A variable is used without definition. Probably an anomaly, but
the variable may have been previously defined.

A major characteristic of classes is the interaction between data members and methods.
This interaction is represented as definitions and uses of data members within methods.
Data flow testing criteria are based on the patterns of definitions and uses of the program
variables. They test the individual data definition-use relationships. Therefore. data flow
testing can be applied in detecting those data members. which are not examined in state-

based testing. in order to find data faults that occur within those data members.

When executing a data flow test case, the test case is said to exercise a def-use path if the

path is traversed.

Many researchers [Fosdick and Osterweil, 1976] have used data flow analysis to detect
programming faults known as “data flow anomalies”. When the pattern of use of
variables is abnormal, there is an anomaly in the data flow, such as misspelling and
confusion of variable names, omission of statements, incorrect parameter usage, and so
on. For instance, variables having the “referencing killed variable anomaly™ are usually

due to a misspelling.

2.2.4 Control Flow Graphs in data-flow analysis

A control tlow graph is used to represent the control structure of a program, and the
graph is defined in Harrold [1993] states:
"4 control flow graph is a directed graph where each node in the graph
represents a basic block and each edge represents the flow of control between
basic blocks. ™

In a control flow graph. there is an edge on the graph from node D; to node D if D;
immediately follows D; in some execution sequence. This also indicates that D; is a
successor of D;, and D; is a predecessor of D;. Edges representing conditional transfer of
control are labelled "T" (true) or "F" (false) on the graph. other edges are unlabeled. To
represent entry into the program (function) and exit from it, a start node (named "s") and

a terminal node (named "t") are added to a control flow graph.

In data-flow analysis, it can be used to generate data member occurrences by traveling

the def_use paths in a control flow graph.

2.3 State transition diagrams

A state transition diagram is a graphic representation of a state machine. Nodes represent
states. Arrows (directed edges) represent transitions. The annotations on the edges

represent events and actions.

14

A class state transition diagram only contains states, transitions and events, although
state transition diagrams for classes may contain states, events, conditions, transitions and
actions [Booch, 1994]. An action is an operation and is associated with an event. “4
state can be defined in terms of a condition; conversely, being in a state is a condition”
[Rumbaugh et al., 1991]. For deriving sequences of test messages and parsing test
results, only the states and events are used.
Definition: A class state transition diagram (CSTD) of a class C can be modeled as 4-
tuple (S, E, T, s), where
S is a finite set of states, i.e., S = {s | s = (def)} where defis a predicate on state
attributes.

o E is a set of events. which are receivable for the objects of C.

o T is a finite set of transitions, i.e.. T = {(s;, t. 5j) | si. s; € Sand te T}.

e s is a virtual state representing the period before an object is created.
Using the stack class specification as an example. the process of constructing a class state
transition diagram is demonstrated in the following subsections. The above example

stack’s CSTD corresponding to its dynamic behavior is given in Figure 2-1.

States
The state of an object is determined by the values of its attributes. Sets of values are

grouped together into a state according to properties that affect the behavior of the object
[Rumbaugh et al, 1991]. This also means that the states of an object can be formed by
the sets of state values. The object of a class may have a large range of state spaces
(values). For modeling the state space in CSTD, they must be partitioned to a more
manageable substate size and each of them shares the properties of interest. For example,
the array size of a stack is n. There may be from 0 to n elements on the stack as indicated
by the top attribute. The state space for the stack can be divided by top=0, 0<top<n and
top=n. These three substates are considered and depicted in a diagram rather that n

states.

15

Events

An event causes the state of an object to change [Martin and Odell, 1992; Booch, 1994],
and it serves as a marker for a particular time when the state change occurs. Events are
sent from client objects and replies may be expected. When an object receives an event,
the state changing to the next state depends on the current state and the event. This
implies that the current state is a precondition, when it is true, the event triggers some
actions, and then the state is changed. The specification may explicitly state what events

the object can receive.

State Transitions
A state transition represents the fact that an event’s occurrence causes the state of an

object to change. Each transition is drawn as a direct arc to connect two states. A state
may be a source state and target state of a transition (i.e. it has a state transition to itself),
and a state may have many different unique state transitions. These are labeled with the

events that cause the transitions. and point to the next states.

2.4 XMI for UML information exchange

2.4.1 What is XMI?

XMl is an acronym for “XML Metadata Interchange™. XMl is a standard from OMG
(Object Management Group). XMI solves the general interchange problem by creating an

open interchange format from a domain representation using UML.

The main purpose of XMI is to support the exchange of metadata (structured data
describing object based models for information systems) between modeling tools based
on the OMG UML (an object based modeling language). XMI is an OMG architecture,
which is aimed at supporting interoperation of information systems within diverse and

distributed installations.

XMI uses XML so that XMI data exchanges can take advantage of the extensive
technology development surrounding XML and the Web.

"XMI' is made up of:

16

¢ Rules for generating XML Document Type Definitions (DTDs) from metamodels
(these metamodels are descriptions of classes of metadata; these classes of
metadata may include the specifications of the metamodels themselves, to as
many levels as required)

o Rules for generating XML Documents from metadata

¢ Design guidelines for XMl-related DTDs and XML data

¢ Actual DTDs supporting UML

XMTI has been developed in response to an OMG requirement for a Stream-based Model

Interchange Format. in the specific context of UML.

As there are different vendor based CASE (Computer aided Software Engineering) tools,
all these tools support UML. Their serialization code is different. For instance, like
Rational Rose’s mdl file and select TogetherSoft Enterprise’s enp file cannot exchange.
Meanwhile in software development life cycle, software designer and software tester can

be different people. How can testing tool understand the designer’s idea is a problem.

XMI can fill this gap. Software designer provides an XMI file for their UML design
specification. Testing tool can easily parse this XMI file and get the UML exchangeable

information. generate test cases and plan software testing automatically.

2.4.2 XM file format

XMI's XML document production process is defined as a set of production rules. When
these rules are applied to a model or model fragment, the result is an XML document.
The inverse of these rules can be applied to an XML document to reconstruct the model
or model fragment.

ENBF Rules Representation the XML produced by XMI is represented here in Extended
Backus Naur Form (EBNF).

The tollowing are the production rules:

i. Document> .- <Z: XM

17

2. <XMI> = "<xmi:XMI"
<Ja:Namespaces>
(<3:Header>)?
(<6:Content>)?
(<4:Differences>)?
(<5:Extensions>)?
"</xmi:XM]>"

3. <Header> ::= "<xmi:header>"

"</xmi:header>"

3a. <Documentation> ::= "<xmi:documentation>" //text//
"</xmi:exporterVersion>")*
"</xmi:documentation>"

3b. <Model> ::= ("<xmi:model name=" //name//

"</xmi:model>")*

3¢. <Metamodel> :: ("<xmi:metamodel name="//name//

"version=" //version//
<2e:Link>? ">" /text/
"</xmi:metamodel>")*

3d. <Metametamodel> ::= ("<xmi:metametamodel name=" //name//

The XMI EBNF representation can reference in XMI specification document. [omit the

rest long document about XMI file EBNF format.

2.4.3 XMI DTD architecture

Every XMI DTD contains the elements generated from information, plus a fixed set of
element declarations that may be used by all XMI documents. These fixed elements
provide a default set of data types and the document structure, starting with the top-level
XMI element. Each XMI document contains one or more elements called XMI that

serves as a top-level container for the information to be transferred. The XMI element

contains the following structural elements:

18

o Header, which contains version declarations and optional documentation regarding
the transfer

e Content, which contains the core information that is to be transferred

¢ Difference, which specify the differences between two XMI documents to be
transferred.

o Extensions. which allows the transfer of private tool information beyond that already

present ina DTD.

Generating element declarations provides an architectural consistency for each element in
several important areas: Object identity, extensibility. navigation. and linking. This
consistency lets tools know how to traverse any XMI document or DTD in a regular
manner to find the information needed.

o Object identity is standardized through the xmi.element.att.macro (called an XML
entity), which declares markers for optionally declaring unique identity via uuids,
plus optional shorthand labels and local document ids.

o Extensibility is standardized by the optional xmi.extension element which allows
nested extensions in addition to those present in the extensions section.

¢ Navigation is standardized by the regular patterns trom which DTDs are generated.

o Linking is standardized through the xmi.link.att.macro.

2.5Terminology

2.5.1 Test Cases

Test cases are sets of input data (or series of test messages) that demonstrate whether the
software program performs as expected [Lorenz. 1993]. They can be designed using
black-box. white-box or Grey-box strategies [Beizer, 1995].

Object-oriented class testing is used to detect errors in the implementation of the object
states and/or the methods. Therefore, the test cases of object-oriented programs focus on
the state and the methods involved with the state changes. Most existing work in class
testing has selected sequences of messages to test for errors. One reason why test cases
are made of sequences of messages is that the execution paths of each message are

determined by the states of the object.

19

2.5.2 Test Messages

In an object-oriented program, objects mainly interact via messages, which may be used
to request a corresponding service or to provide data (return the value of a parameter).
Firesmith [1993] states: “The sender and the receiver of a message have numerous, and
different responsibilities. Testers should test to determine whether any of these
responsibilities have failed to be met.” In Turner and Robson [1993], test results are
evaluated by sending sequences of test messages to an object under test. This is a

common approach for object testing.

2.5.3 Test Oracles

Test resuit checking is one of the most important considerations in automated testing
[Beizer. 1990]. A test oracle is a means by which the behavior of a software system or
program can be verified. Turner [1995] defines: “A test oracle is a person or program
that is able to determine whether the output or results generated by a test case represent

the expected values. ™

Chapter Three
Hybrid testing strategy for Object-Oriented Programs Testing

In this chapter. a hybrid testing strategy for Object-Oriented programs testing is proposed
which is based on state based testing and data flow testing. This method is not a simple
way to combine state based testing and data flow testing. It maps methods of the
implemented Class Under Test (CUT) onto the transitions of the state model, in order to
generate sequences of implemented methods. Based on this sequence, intra-class data

flow test cases can be selected using the conventional def-use path selection technique.

Applying the hybrid method, the data flow testing technique can be used in detecting data
members to find data faults that occur within those data members. These data faults may

not be examined in state-based testing. On the other hand. the data flow testing technique
in the hybrid method is concerned with tracing the flow of data members among methods
in the class. rather than local variables within an individual function. The hybrid class test

model keeps the advantage of data flow testing and significant reduces the testing cost.
3.1 A priority bounded queue class example for hybrid testing strategy

For explaining the hybrid testing strategy, a queue class is adopted. Assume the following

specification expresses the requirements of the printer queue class for a largesystem:

“The printer queue class has limited space to contain five units of data (jobs). Each print
Job has been assigned a priority. A higher priority job is processed before any job of
lower priority, and two jobs with the same priority are processed according to the order
in which they were added to the queue object.

A created printer queue object provides insert job, remove job, and check size services.
As a job is inserted, it will be stored at the rear of the queue object, if the object has a
space. The front job in the queue is removed, if the object receives a removal message
and the queue is nonempty. The check size service returns the current job items in the

queue object.”

The UML state diagram of queue class is in Figure3-1, and its implementation source

code is shown in Figure 3-2.

In the class there are four methods, plus a constructor and a destructor. Moreover, a sort()
is declared as a private function. which cannot be called from the outside of the queue
class. When a queue object is declared, the constructor queue() causes the object to be at
the Empty (initial) state, and the data members f; r, count and Q[] array are initialized.
The Q[Size] is declared for storing job data. The fand r data members are two array
indices, used to indicate the position from/in, which the next data will be deleted/added.
Moreover. the count data member is used to calculate the amount of data added to an
object of the queue. The add() method is executed when a non-full quene object receives
an “insertion” message. Ifa “removal” message is sent to an object and its state is non-
empty. the del_data() method can be performed. The statements of both the add() and
del_data() functions show that the quewe class is implemented as a circular model.
Rather than shifting items left when a job data is deleted, the queue elements are logically
arranged in a circle. The data member count maintains a record of the number of jobs in
the quewe. and if count equals Size. the queue object is full. The is_empty() and sizes()
methods look at the current status of the current data items in an object. The add()
method is executed when a non-full quewe object receives an “insertion” message. If a
“removal” message is sent to an object and its state is non-empty, the del_data() method

can be performed.

size()

‘ queue() Empty

del_data(

del_data()

Figure 3-1 the UML state diagram of the queue

constint Size = 5;

class queue{
protected: char Q[Size]; // bounded array
int fr /! Front/Rear index of queue

int count, // acounter of the array
void sort(); // decreasing order

public. queue(void), // default constructor
void is_empty(void),
int add(char),// add data to the queue
char del_data(};/delete data from the queue
void sizes(void).// get the size of the queue
~gueue(void); // destructor

|3
queue::queue(void){
r=-1, f=0;
count=0;
for (inti = 0; i < Size; i++)
Qf ="}

}
int queue::add(char data){
if (count == Size)}{

cout << "Not room for adding new data to stack\n”;

retumn (0);}
r++;
if{r==Size){
r=0:}
Q[r] =data;
count++;
sort(); // Enable this class to be a priority queue
return (1);

char queue::dei_data(}{

}

char data;

if (count == O){
cout << "can't delete data from an empty

stack\n",

return('0’);}

data = Q[f);

fe+:

if(f==Size){
=0}

count--;

return (data);

void queue::is_empty(X

if (count == 0)

cout<<"The queue is empty\n",
else

cout<<"The queue is non-empty\n";

void queue::sizes(){

}
queue::sort(){

cout << "the size of the queue :" << count
<< ll\n'l; ‘
return; ‘

It Bubble sort or others can be adopted here.

'}
queue::~queue(){
cout << "\n releasing the queue object \n";

}

Figure 3-2 Implemented C++ code of the queue class

[353
W

3.2 Framework of hybrid testing strategy

[Design Class State Diagram (Designer) l Implemented Class Source
i (Developer)

l Transfer Function Names Data Occurrences
I XMI-based UML File I ' u Code'clieck
dequences of
l Parser Definition and Uses
DOM Tree-based
State diagram \[Tybrid Class Test Model I

Deploy
Test Cases with
XMI format

Figure 3-3 Hybrid Class Test Architecture

The hybrid class test architecture can be seen in Figure3-3.

At first. software designer designs the software according to sottware requirements. This
design specification follows UML design notation, and then it is saved as a XMI format
file. The design specification is sent to implementation team and testing team.

Second. the testing tool parses the XMI tormat design specification. builds a DOM tree
based class state diagram. No matter source code has been finished or not, the testing tool
can build a Hybrid Class Test Model from design specification. Then pure State-based
cases can be generated through Hybrid Class Test Model. This kind of test cases can be
used to detect the design errors.

Third. when source code has been implemented. the implementation team sends the
source code to testing team. From the CUT definition. we can retrieve information about
the definition and use of data members in order to perform data flow testing/analysis.
With the help of the class state diagram, the testing software put source code into def-use
information generator, generate the def-use pair information, and then map the
information for each given method in a given state. These def/use sequences are then
added to the transitions on the class state diagram. The obtained new diagram is the
hybrid class test model. Using this model, the testing tool generates State-based test cases
and data flow test cases. Through analyzing state-based test cases, the testing tool checks

state related design and implementation errors. Through analyzing the data flow

definition-use information, the testing tool detects the data anomaly in code

implementation, and finds possible solution to remove the data anomaly.

From above describing, the hybrid testing strategy can be used in different software
development stage. In software design stage, we can use this strategy to do test case
generation, although code has not been implemented. The design errors could be found.
After the code has been implemented, the design specification and source code both are
available. Hybrid testing strategy can generate both state-based and data flow test cases.

Through running these test cases, we can find design errors and implementation errors.

Here, the test case generation framework provides a flexible mechanism to handle state-
based testing and data-flow testing advantages, and overcome shortcomings of each.
Meanwhile it also provides Object-Oriented programs automatic testing solution. Further,
the design specification can be transferred between design software (CASE tool) and
testing software with XM! format. Test cases (method sequences, can be shown in
sequential diagram) also can be transformed in XMI format. So test cases can be

deployed and executed in a distributed system.

3.3 Extracting UML design specification by parsing XMI

In our research, assume that software designer has already finished the software design
and provided the UML design specification with XMI format.

XMl is a kind of XML file. If testing software would like to use the information, it need
parse this file according to UML DTD.

A XMI parser is built to do this job. This XMI parser is a DOM (Document Object
Model) parser. It builds a DOM tree, and then translates DOM tree to State transition
diagram. At last, we get related information.

After analyzing object behavior, the following information needs to be identified:

o The states an object can have;

o The state transitions that can occur;

e The events that can occur; and

e The operations that can take place as an event occurs.

25

¢ There are a finite number of states and transitions;
o The behavior of the object can be defined with the states;
e The transitions between the states depict the state change;

o All states can be reached from the initial state; and each state has a unique name.

3.4 Static analysis by scanning the data flow paths to get sequences of definition and

use

In a class definition. the methods of an object can define, use or define-use its data
members. Therefore. global definitions and uses of each data member in methods can be

extracted by static analysis through scanning the data flow paths.

The global definitions and uses of data members within each method should be computed
first to enable the detection of data flow anomalies of data members within the sequences
of methods. While computing global definitions and uses of data members. the static data
flow analysis can be applied to detect whether any data anomalies occur on the local

variables or data members within the function.

As we mentioned in Chapter 2, a directed tlow graph. also called a control flow graph,
contains the definition and use of data variables. It can be used to generate the data
member occurrences. The data occurrences are shown within programs and facilitate the

computation of def-use pairs.

In detecting intra-class data anomalies and selecting intra-class data flow test cases, only

the data members in the public methods or in the private methods are concerned.

The global definition and use of data members within each function are considered in our
research. This means in each function, we just record the inter-method data member
definition and user information. If the data member s definition-use pairs are already

matched inside a function, we will omit these kinds of data occurrences.

For example, to simplify the presentation of each method of queue, each code statement
is a unit in which the definition and/or use of data members can occur. Each statement
number in the add() function corresponds to a node number in the control flow graph, see
Figure3-4. Nodes | and 3 represent a conditional transfer of control and each one has

two labeled edges emerging from it. For example, node 3 has two successor nodes, 4 and

3.
|1th q%iézﬂg(c::rsgit;){ p-use(count) c-use(r)
cout << "Not room for new \n"; deflr)
return (0);
p-use(r)
2. 4
3. if(r==Size}{ I def(r)
4 r=0)
5. Q[r] =data;
6. count++
7. return (1); c-use{count) " c-use(r), def(Q)
} def(count)

Figure 3-4 The C++ code add() member function on the left and its directed flow graph on
the right. Nodes in the graph represent statements in the function; start and
terminate nodes are added to aid analysis.

From Figure3-4, the p-use(count). c-use(r) and c-use(count) at nodes 1. 2 and 6 are
concerned as to judge. whether the count and r data members used in this function have
been properly defined in the preceding functions. Moreover, it is necessary to examine
whether the defined r. Q and count data members, i.e. def(r), def(Q) and def(count), can

be used in the succeeding functions.

In Figure 3-4, the bold definitions and uses of data members should be computed in
addition to the non-bold data members. Here we have the definition-use pairs: dpu(r,
2)={3}, dcu(r, 2)={5} and dcu(r. 4)={5} which have formed sub paths within the add()
function. Whether the data member r (defined at statements 2 or 4) or the data members
O and count (defined at statement 5 and 6 respectively) will be used in the succeeding

functions, will need to be examined.

The global definition and use of data members within each function are revealed in its

implemented transition, such as:

Empty, add(data), sort(), NotFull, (0<count<3), {p-use(count), c-use(r), def(r), def(Q),
c-use(count), deffcount)}

To clear and simplify the representation, we use this format:
Empty — NotFull (add(data), A)

where A:[(use, count), (use, r), (def, r). (def. Q), (use, count), (def, count)]

3.5 Using state diagram and global data occurrences to construct Hybrid Class Test
Model

In hybrid testing, we can build a Hybrid Class Test Model from two fields. One field is
state diagram. which is constructed from XMI file. A state diagram models those states
that are reachable from any given state by messages sent to methods. The other is global
data occurrence of each method. which is extracted by static analysis scanning the data
flow paths (expressed by control flow graph). A control flow graph models how states are
computed. It does not show how the method that the control tlow graph represents is

related to other methods.

The Hybrid Class Test Model that integrates method control flow graphs is constructed
by joining state transition diagram and control flow graphs (Figure 3-5). It provides a
model of all intraclass control flow paths (Figure 3-6). Such a model can provide the
missing linkages among class methods. So a Hybrid Class Test Model is composed of
two parts: one representing data members and methods, the other representing states,

transitions. and data occurrences in methods.

The basic construction of the Hybrid Class Test Model that integrates control flow graphs
is illustrated with class queue. Class queue has four main methods: add(), delete(),
queue() and sizes(). Figure 3-5 shows two parts of class queue. The first part shows the
four method control flow graphs. The second part illustrates the state model for class

queue. Because state is the result of method activation, we can substitute method graphs

into state transitions. The control flow graphs are imbedded in the state model to suggest

how each state is computed (Figure 3-6).

The Hybrid Class Test Model that integrates control flow graphs is a class scope, code-
based model for path analysis. It shows how paths in each method may be followed by

paths in other methods, thereby supporting CUT path analysis.

Method add() Method deletet) Method queue()

Method siass()

Class state diagram

Queue()

sizes()

Figur3-5 Method control flow graph and class state diagram of class queue

c-use({count)
deficount)

delete()

sizes()

c-use{count)
deflcownt)

Figur3-6 State diagram that integrates control flow graph ofqueue class

Here we give the definition of Hybrid Class Test Model.

We assume that the behavior of an object of the CUT is specified in a class state diagram.
A class state diagram shows the possible states of an object instance of the CUT, the
possible calls of all public methods defined in the CUT in each state, and the state change
of the object due to the method calls. Precisely, a class state diagram is a finite state

machine (S, V. F. M. —) where

e Sisa finite set of states. It denotes the set of possible states of the instances of the
CUT.

¢ Vs a finite set of data members. It contains the data members that we are interested in
the CUT.

o For each state s in S, F(s) returns the values of each data member in the CUT.
¢ M is a finite set of public method names appeared in the CUT.
e — ¢ SxMxS is a ternary relation that denotes the set of transitions. (si, m, s2) e—.,

also written as §} M, g3 , denotes the possibility of state change from sl to s2 trigged

by method m.

As an example. Figure 3-7 shows a Hybrid Class Test Model of class queue.

(queue(). Al)

(sizes(). A2)
(add(). A3)
(del_data(). A4)
(add(). A8)
NotFull > Full
O<count<$§ count=3
(sizes(). AJ)
(del_data(). A9)
(del_data(). A7)
add(). A6)

(sizes(). A10)

Figure 3-7 Hybrid Class Test Model of the queue Class

where
¢ S={S0. Empty, NotFull, Full}

o V = {count}

31

o F is defined as follows:
F(S0) undefined
F(Empty) (count)=0
0<F(NotFull) (count) <5
F(Full)(count)=5
o M={ queue(), sizes(). add(), delet_data(void)}

® — contains

S0 queue() , prnry

Empty sizes() , Empty
Empty add()_, NotFull
NotFull del-data() | Empty
NotFull SiZeSQ)_, NotFull
NotFull 34400, NotFull
NotFull del-data() , Nopy)
NotFull 2440, pyj)

Full ‘M‘“—au—» NotFull
Full $1zesQ)_, py))

Using white-box testing techniques, we can parse the source code (Figure 3-2) to
retrieve information about the definition and use of the data members in the CUT.
Al: [(def.count), (def.r), (def. f). (def, Q)]

A2: [(use, count))

A3: [(use. count), (use. r), (def, r), (def, Q), (use, count), (def, count)]

Ad4: [(use, count), (use. f), (use. Q), (def, f)., (use. count), (def, count)]

A5: [(use. count)]

AG: [(use. count), (use. r). (def, r), (def. Q), (use, count), (def, count)]

AT: [(use, count), (use. f), (use, Q), (def. f), (use, count), (def, count)]

A8: [(use, count), (use. r), (def, r), (def, Q), (use, count), (def, count)]

A9: [(use. count). (use. f), (use, Q), (def,), (use, count), (def, count)]

(%)
~

Al0: [(use, count)]

3.6 From Hybrid Class Test Model to generate state-based test cases and data

member occurrences sequences

The method of producing test cases from state transition sequences has been discussed in
[Chow. 1978: Binder, 1995 and Kung et al.. 1996].

In Chow's work [Chow. 1978]. a testing tree is derived from Finite State Machines
(FSMs). Test cases are manually generated by traversing test trees {Chow, 1978]

In Binder’s work [Binder. 1995]. he transcribes the state transition diagram of an Account
class to a state transition tree. and the tree is used to generate test cases.

In Kung's work [Kung et al.. 1996]. a program-based state testing technique, has been
proposed. The testing steps of the technique are:

l. to produce an object state diagram (OSD) from any C++ program using a reverse

engineering tool. and then

[

to analyse the object state behaviours and generate test cases for testing object state

interaction using a composite object state testing tool.

In conclusion of the above three people’s work, the first step in generating test cases for
the class under test is to prepare a transition tree (or spanning tree). The transition trees
can be derived from the state transition diagram in Binder’s work, the finite state

machines in Chow’s work or the object state diagrams in Kung et al.’s work. The nodes
of the transition tree represent the states of the diagram. The edges of the tree represent

transitions between the states.

We applied the method referred in section 2.1.5. The initial state in the Hybrid Class Test
Model becomes the root node in the tree. and each transition out of the initial state is a
branch to a node that represents the resultant state of the transition. Therefore, the next
possible states of the initial state in the diagram are the child nodes of the root node on

the tree. This is repeated for each subsequent state to build the tree until (1) the node

33

already appears on the previous level or (2) the node corresponds to a final state in the
Hybrid Class Test Model.

Each path from the root in the tree comprises a possible transition sequence from the
beginning state to the end state in the Hybrid Class Test Model. A path also shows a
sequence of test cases to detect whether or not the state changes correctly. The transition
tree derived from the Hybrid Class Test Model of the queue class is given in Figure 3-8.
A sequence or a single test case is obtained by tracing each full or partial path in the tree.
For example. a sequential test case <Empty, Add, NotFull, Delete, Empty> is produced
by following the bold branches in Figure 3-8.

By navigating the transition tree (Figure 3-8), we can get the test cases:

Test casel: <Empty, add. NotFull, Delete, Empty>

Data Occurrences Sequence:

(def. r). (def. f). (def, count), (def, Q), (use, count), (use, r). (use, count), (def, r), (def, Q).
(def. count). (use. count), (use. f). (use. Q). (use, count), (def, f), (def. count)

Test case2: <Empty. add. NotFull, add. Full, Delete, NotFull>

Data Occurrences Sequence:

(def. r). (def. 1. (def. count), (def. Q), (use. count), (use. r), (use, count), (def, r), (def. Q),
(def. count). (use, count), (use. r), (use. count), (def, r), (def, Q), (def. count), (use,
count), (use, r). (use, Q). (use. count), (def, f), (def, count)

» Test Case 3: < Empty, add, NotFull, add, NotFull>

Data Occurrences Sequence:

(def. r). (def, f), (def, count), (def. Q), (use, count), (use, r), (use, count), (def, r), (def, Q),
(def, count), (use. count), (use. f). (use, Q), (use. count), (def,), (def, count)

» Test Case 4: < Empty, add, NotFull, delete, NotFull>

Data Occurrences Sequence:

(def. r). (def. £). (def. count), (def. Q). (use, count), (use, r), (use, count), (def. r), (def, Q),

(def. count). (use. count). (use, r), (use. count). (def, r), (def. Q). (def, count)

34

Empty

(use, count),
(use,),
(use. Q),

(use, count),

. (def.).

| (use. count)

Delete

Full’

Delete NotFull

{use. count),

(use-ry— -
(use.count), (use. count),

" (use, r),
((: :: '8') (use. Q),
(use. count),
(det’ 1.
(det.count)

NotFull
Empty

................ . {USE.COURTT ,'

T g ru:scfff
((!cl. 0. (use, count),

(def. count), . . -, (dellT),
(det. Q)

Notkull”

(use, count),
{use. 1),
(use, Q).
(use, countO,
(det. 1.
{det, count)

(del,
(def’, count) ~

" N NotFull

(use. count),
(use. r),
(use. count),
(det.).
(det. Q).
(det’ count)

Figure 3-8 The transition tree of the queue class from Hybrid class testing model

3.7 Data flow anomalies detection technique within sequences of methods

By checking code. data flow anomalies can be found. It is similar to the cost that the
compiler using the information known at compiling time can detect some data flow
anomalies. However. the method sequences are unknown until run-time when the
sequences of messages are sent from the client objects in an arbitrary order. For
detecting data anomalies of data members within the feasible sequences of methods, the
approach given in chapter 2 is adopted in this hybrid testing technique. Therefore. the
usage of every data member can be stored in the transition tree in order to generate

sequences of actions on each data member and facilitate data anomaly detection.

The transition paths in the Hybrid Class Test Model show all feasible sequence behaviors
of the required object. Based on the transition paths. the data anomaly detection steps of

this hybrid class test method are:

(1) Revealing the global definitions and uses of data members within functions.
In object-oriented classes, the methods of an object can define, use or define-use its
data members. Therefore, global definitions and uses of each data member in
methods can be extracted by scanning the data flow paths.
(2) Transforming the state transition diagram to Hybrid Class Test Model.
After getting all global definitions and uses of data members within functions,
mapping these def-use pairs to form the Hybrid Class Test Model.
(3) Generating sequences of occurrences of data members from Hybrid Class Test
Model.
Each node in the Hybrid Class Test Model (see Figure 3-7) contains a function name
and the data occurrences within the function. Using transition tree concept, the
sequences of def-use information can be generated by traversing the paths in the
transition tree.
(4) Detecting data anomalies of data members within the generated sequences.
In general. an anomaly on a data member in a sequence of data occurrences occurs if
one or more of the dd. ku and dk data anomalies exists in the sequence.

More detail can be seen in our case study.

3.8 Transferring test cases to XMI format to deploy each testing software

The design specification is transferred between design tool (CASE tool) and testing tool
with XMI format. Testing tool can easily parse the vendor-independent format design
information. and build its testing model. Further. after the test cases are generated. testing
software distributes test cases to respective test driver with XMI format in distributed
system. Each test case can be run in different environment, different platform with
different program languages. Testing tool can deploy test cases with XMI format to a
distributed testing environment. Distributed processes coordinate their activities with
XMI format. In respective distributed process, the test driver transfers test cases to
detailed test program in right language, which fit for its environment and platform. This

will significantly improve flexibility of distributed testing system.

36

- Distributed
Deploy Test case Test Driver Testing
with XMI file (c++)Unix Environment
platform
Deploy Test case Test Driver
Test Cases with XM file (Java) Test
Generator P Windows Controller
platform
Deploy Test case Test Driver
with XM file (Smalltalk)
L

Figure 3-9 Test Cases Generator deploy Test Case with XMI format
in distributed testing environment

3.9 Case study
A coin box component of a vending machine is presented in [Kung et al., 1996] as an
example to demonstrate their testing approach. The example called class CCoinBox is

adopted as the study case.

3.9.1 Case Description

The coin box component in [Kung et al.. 1996] has very simple function. Only quarters
(25-cent coins) are receivable and vending is allowed when two quarters are received.
The functions of the component consist of adding a quarter, returning the current
quarters, resetting it at the initial state and vending. The C++ source code of the

CCoinBox class illustrated in the paper is shown in Figure 3-10.

There is an error in the implemented CCoinBox class. Kung et al. detects the error via

state testing. They report:

“... that there is an error in the implementation. But the error is not obvious.
We argue that the error cannot be easily detected by functional testing and/or
structural testing of the methods since: ..., the error was due to interactions

involving more than one method through an object state.”

class CCoinBox {

unsigned totalQtrs; {ltotal quarter coliected

unsigned curQtrs; licurrent quarters collected

unsigned allowVend,; /1 1 = vending is allowed
public:

CCoinBox() {Reset();}

void AddQtr(); /ladd a quarter

void ReturnQtrs() {curQtrs = 0;} lIreturn current quarters

unsigned isAllowVend() {return allowVend:}
void Reset() {totalQtrs = 0; allowVend = 0; curQtrs = 0;}

void Vend(); Ifif allowed, update totalQtrs and curQtrs
I
void CCoinBox :: AddQtr() {
curQtrs = curQtrs + 1; /ladd a quarter
if (curQtrs > 1) Ifif more than one quarter is coliected
allowVend = 1; Iithen set allowVend
}
void CCoinBox :: Vend() {
if (isAllowVend()) { 1fif alowVend
totalQtrs = totalQtrs + curQtrs; flupdate totalQirs,
curQtrs =0; llcurQtrs, and
alowVend = 0; llalowVend,
} llelse no action

}

Figure 3-10 The C'+ + source code of class CCoinBox [adopted from Kung et al.. 1996]

3.9.2 Applying Hybrid testing to Class CcoinBox

The test approach is achieved by
(1) Using state-based testing to generate test cases and inspect test results, and

(2) Following the data flow analysis approach to detect data anomalies within the sequences of

methods.

An appropriate State Diagram to describe the behavior of the coin box component yielded at

detailed design level is required. Assume that it is similar to the one presented in Figure 311.

» The State Diagram and Hybrid Class Test Model
UML state diagrams are used in our approach for generating test cases. The UML State Diagram,

Figure 3-11 describes the behavior of the CCoinBox class.

I:mﬂmo .| S1(StandBy} ‘

,E [..
/ VN
/ \,\) N .. Vend(
RetnQis) \ JAdeausQ .. N
Vo S S
' ! RelumOt?S&\ RN
Vg ~
) o S .
i S2AShartOtManey) | AddCtrs() J S3(ReadytoVend)
[| 1

Figure3-11 State Diagram of CoinBox from software designer

38

<?xml version="1.0" encoding="UTF~8"?>
<!DOCTYPE XMI SYSTEM "uml.dtd">
<XMI zmi.version="1.0">
<XMI.header>
<XMI.metamodel xmi.name="UML" xmi.version="1.3"/>
</XMI.header>
<XMI.content>
<Model Management.Model smi.id="xmi.l" xmi.uuid="10-6-3-14--
ld8eé6ee:ed422a266809:-8000">
<Behavioral_ Elements.State_Machines.StateMachine.context>
<Foundation.Core.Class xmi.idref="umi.2"/>
</Behavioral Elements.State_Machines.StateMachine.context>
<Behavioral Elements.State_Machines.StateMachine.top>
<Behavioral Elements.State_Machines.CompositeState xmi.id="zmi.4{">
<Foundation.Core.ModelElement.name>state _machine_top</Foundation.Core.ModelElemen
name>
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Behavioral FElements.State_Machines.State.stateMachine>
<Behavioral Elements.State_Machines.StateMachine xmi.idref="xmi.3"/>
</Behavioral_ Elements.State_Machines.State.stateMachine>
<Behavioral Elements.State_Machines.CompositeState.subvertex>
<Behavioral Elements.State_Machines.Pseudostate xmi.id="xmi.5"
#mi.uuid="10-6-3-14--1dBeb6bee:ed2aa66809:-7£fc">
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>

<Behavioral Elements.State_Machines.Transition xmi.idref="xmi.ll"/>
</Behavioral glements.State_Machines.Event.transition>
</Behavioral Elements.State_Machines.SignalEvent>
</Foundation.Core.Namespace.ownedElement>
</Model Management.Model>
</¥MI.content>
</XMI>

Figure 3-12 The XMl fragment of class CcoinBox UML design specification

SourceView

PreView | DTDView

"S- Model_Management. Model
— % Foundation.Core Modeflement name
~ R Foundation.Core.ModeiElement isS pecification
~+R Foundation Core GeneraiizableE lement.isRoot
- Foundation Core. GeneraicableE lement sl eaf
-4 Foundation.Core.Generaizable€ lement.itAbstract
<-4 Foundation.Core. Namespace. ownedE lement

- Foundabon. Core ModeElement isS peciication
-4 Foundation Core. GeneralizableE lement.isRoot
-2 Foundation Core. GeneralizableElement.isLeaf
i 4R Foundation Core Generaizable€ jement isAbstiact
. -+ Foundation Core Class.sActive
: &4 Foundation Core ModeElement namespace
+48 Foundation. Core ModelElement behavior
. +-¥R Foundation Core Namespace ownedE lement
3R Behavioral_Elemenis.State_Mactwnes SignalE vent
-4 Behaviors_Elements. State_Machines. SignalE vent
+ 4R Behavioral_Elements. State_Machnes SignalE vent
-8 Behavicial_Elements State_Machines SignalE vent
¥R Behavioial_Elements.State_Machnes. SignalE vent
¥R Behavioral_Elements. State_Machines. SignalE vent
+-4R Behavioral_Elements.State_Machnes. SignalE vent
- Behaviorai_Elements. State_Machines.SignalE vent
4R Foundation. Core Mode/Element. name
. - Foundation. Core. ModeElement. isS peciication
&4 Foundation. Core ModeElement namespace

=R Behavioral_Elements. Slate_Machines.E vent tiansiion
-4 Behavioral_Elements State_Machines. Transition
R Behavioral_Elements State_Machines. [1ansion

Figure 3-13 The XMI DOM tree

[Tipe l Na
Attribute e
Attribute it
Attribute
KT I——

e

40

(CCoinBox(). Al)

curQtrs=0¢
allowVend=0

V\(Vcnd(). A6)

(AddQtrs(). A2)
(ReturnQirs(). AS)

(ReturnQtrs(). A3)

S3

curQurs=1
allowVend=0

curQtrs=2
allowVend=1

(AddQtrs(). Ad)

Figure 3-14 Hybrid Class Test Model of class CCoinBox

Assume the CCoinBox UML design specification is saved as XMI format (see
Figure 3-12). The testing tool parses the XMI format design specification. builds a
DOM tree based CUT state diagram (see Figure 3-13). On the class state diagram.
the respective def/use sequences are then added to the transitions. The obtained new
diagram (see Figure 3-14) is the hybrid class test model of class CCoinbox.
Following the description,
where
S = {S0, S1, S2, 83}
V = {curQtrs, allowVend}
F is defined as follows:
F(S0) undetined
F(S1)(curQtrs)=0
F(S1)(allowVend)=0
F(S2)(curQtrs)=1
F(S2)(allowVend)=0
F(S3)(curQurs)=2

41

F(S3)(allowVend)=1
M={CCoinBox(), AddQtr(),ReturnQtrs(),Vend()}

— contains

so ECoinBox() | ¢;
s1 AddOr() | ¢,
§2AddO() | ¢3
52 ReturnOtrs()_, ¢,

S 3Relurn0!rs() N,

g3 Vend()_, ¢,

—eS x L x S contains the transitions. Each transition leL is a pair of the name of

the method to trigger the transition and a list of definition/use of data members in the
the CUT.

According to the state values given in the class state diagram, the below def/use
sequences are obtained from the source code.

Al: [(def. curQtrs), (def, allowVend), (def. totalQtrs)]

A2: [(use, curQtrs), (def. curQtrs), (use, curQtrs)]

A3: [(def. curQtrs)]

A4: [(use, curQtrs), (def, curQtrs), (use. curQtrs), (def, allowVend)]

A3: [(def, curQtrs)]

A6: [(use. allowVend), (use, curQtrs), (use, totalQtrs), (def. curQtrs).

(def. totalQtrs), (def, allowVend))

» The Transition Tree of Class CcoinBox

Using the algorithm in section 3.6, the transition tree of the CCoinBox class can be built.
The structure of the tree is depicted in Figure 3-15. Each node represents a state of the
CCoinBox object. It contains a method, state values and the corresponding data member

occurrences in the method.

CConBox() curQtrs=0, (det, CurQtrs),
allowVend=0§ (def. allowVend).
S, (def; totalQtrs)

AddQtr() [curQurs=1. [(use, curQu), | -
allowVend=0 |(def, cu)

S, (use, curQfrs) J

ReturnQtrs()] curQtrs=0. "ﬂet.(r()trs) AddQp() curQirs=2, (use, curQtrs).
allowVend=0 allowVend=1 | (def. curQtrs).

S, l (use. curQurs),
S, (def. allowVend)
i [T
ReturnQirs()] curQtrs=0. | (det.¢ M [Vend()] curQtrs=0, (use. allowVend),
allowVend=0 . (use. curQtrs).
S, . (use, totalQtrs),
(def, curQtrs).

ﬂlpsz.}d=O (def. totalQtrs),
(det. allowVend)

Figure 3-15 The irasition tree diagram of class CCoinBox

» State-based Testing and Test Results

The test message generator visits each node of the transition tree from the root, along the
paths. While traversing the tree test message file for a CCoinBox object is produced. A
section of the test message file for a CCoinBox object (called CCB) is listed on the left-
hand side of Table 3-1. If the CCB object is examined by executing the file, the
execution results of test messages are stored in a test result tile, which is shown on the
right hand side of Table 3-1.

The test result inspector can detect the error which occurs in the ReturnQtrs() function
within the method sequence CCoinBox() — AddQtr() —» AddQtr() — ReturnQtrs(). This
error occurs, because after the sequence of methods is executed the resulting state values
(curQtru = 0, allowVend = I) cannot match the expected state values (curQtru = 0,
allowVend = 0).

Table 3-1 The test result files of a CCoinBox object

method Names State Values

CCoinBox() curQtrs = 0. allowVend =0
AddQtr() curQtrs = |, allowVend =0
ReturnQtrs() curQtrs = 0. allowVend =0
CCoinBox() curQtrs = 0, allowVend = 0
AddQtr() curQurs = 1, allowVend =0
AddQtr() curQtrs = 2. allowVend = |
Vend() curQtrs = 0, allowVend =0
CCoinBox() curQtrs = 0. allowVend =0
AddQur() curQurs = 1, allowVend =0
AddQur() curQtrs = 2, allowVend = 1
ReturnQurs() curQtrs = 0, allowVend = |

» Data Flow Anomaly Detection

The def-use info generator can produce lists of data occurrences within the sequences of
methods when it traverses the transition tree of the CCoinBox class (in Figure 3-15). The
lists of data occurrence for the three sequences of methods of the class are shown in
Table 3-2.

The definition-use pairs of each data member in the lists are computed in order to find
any data anomalies. The grey bold arcs in Table 3-2 show the pairs of definition-use data
members. The black dotted arcs show that data anomalies may occur, for example. when

data members are defined without being used.

The black dotted arcs in the first row of Table 3-2 show that the allowVend and rotalQtrs
data members defined in CCoinBox() and the curQtrs data member defined in
ReturnQrrs() are not used within the sequence of methods. However, they may be used
within other methods such as AddQtr() »>AddQtr() »Vend(). The curQtrs data member
defined in ReturnQtrs() can be used in the first AddQtr() function, and the totalQtrs data

member can be used in the Vend() function.

Two allowVend data members are defined in CCoinBox() and the second AddQtr()

function respectively without any intervening use. This can be found in the second row

of Table 3-2. The same data anomaly can be found in the third row of the table. This

raises the questions: [s it necessary to define the allowVend data member in the

constructor? If it is necessary. should it be used before the second definition in the
AddQrr()? In the third row, an allowVend data member (defined in the AddQtr()

function) and a curQtrs data member (defined in the ReturnQtrs() function) are not used.

Table 3-2 The definitions - uses of the data members within sequences of member functions

CCoinBox() | AddQtr() AddQtr() ReturnQtrs() Vend()
def{curQtrs. use(curQtrs).
Pttt i
I allowVend, deflcurQtrs). dcﬂcurQ(rs)
tolalQ(;s) use(curQtrs)
ﬁsc(allochnd). def(totalQrrs).
det{curQtrs, use{curQtrs). use(eurQtrs). _
P e use(curQurs). dei{curQtrs).
~ | allowVend. def{curQtrs). deflcurQtrs). =
L use(eurQtrs), use(totalQtrs). def{allowVend).
totalQtrs) use(curQtrs) def(allowVend)
use(eurQtrs).
def{curQtrs. use(curQtrs). -
o defcurQtrs). | ’
3 allowVend. def{curQurs). deflcurQrs)
. use(curQtrs).
totalQtry) use{curQtrs) “ra

dcﬂallochmli)

As in the discussion of the first row above, the defined curQtrs data member can be used

in the AddQtr() >AddQtr() »Vend() sequence. In the preceding sequence, however,

another defined allowVend data member follows the unused allowVend data member, as

computed below.

A sequence of member functions in Table 3-1

CCoinBox() »>AddQtr() >AddQtr() —>ReturnQtrs()

def(curQtrs)

defaliowVend) >
use(allowVend)

45

usé(cuerrs)

New following member functions
~AddQtr() >AddQtr() >V end()

def{allowVend)

To remove this data anomaly, should the allowVend data member defined in the AddQrr()
function be used in the following ReturnQtrs() function? In other words, should it be
used as a predicate use or a computation use?

» Possible Solution for Removing the Error in Class CcoinBox

There are several ways to solve the data anomalies of the allowVend data member in
functions CCoinBox() and AddQtr(). One method is to reference the allowVend data
member as a predicate-use based on data flow analysis for achieving all-definition
coverage, as shown in the following ReturnQtrs() and AddQtr() functions. The former
replaces the ReturnQirs() function. which only contains a single statement curQtrs = 0;

see Figure 3-16. Thus the changes are:

void ReturnQtrs() { void CCoainBox::AddQtr()
if (curQtrs > Q) {curQtrs = 0;} curQtrs = curQtrs + 1;
if (allowVend > Q) {allowVend = 0;} if (curQtrs > 1 && allowVend == 0){
} allowVend =1; }
}

Figure 3-16 The moditied RetumQirs() and AddQtr() functions tor the CCoinBox class

This replacement not only eliminates the data anomaly of the allow}end data member but
also removes the state-based error discovered previous. If the ReturnQirs() function in
Figure 3-16 was coded as above and the sequence of methods CCoinBox() —» AddQur()
— AddQtr() — ReturnQtrs() were executed, then the resultant state values of a
CCoinBox object would be curQtrs == 0 and allowVend == 0, rather than the error
result curQtrs == () and allowVend == I, shown in Table 3-2. This indicates that the
above correction solves the data anomaly and removes the state-based error. Kung et al.
in [1996] have eliminated the state-based error by changing the ReturnQrrs() function to
void ReturnQtrs() { curQtrs = 0; allowVend = 0;}.
However, this solution does not exclude the data anomaly of the allowVend data member.
Additionally. it raises another argument: should the allowVend and curQtrs data members
be reset to zero in the function if their values are already zero? For example, if the
sequence of functions CCoinBox() —» AddQtr() — ReturnQtrs() — ReturnQurs() are

applied to a CCoinBox object, this can result in switching off a light when it is already
off.

46

Chapter Four

Design and Implementation of Prototype of Test case
generation system based on hybrid testing strategy

The design and implementation of Hybrid Test Case Generation System (HTCGS) is

based on the hybrid testing strategy and algorithm explained in Chapter 3. It mainly

involved the UML design specification transformation and test cases generation module.

In HTCGS. testing software gets design specification through parsing XMI file. XMI

provides a vendor-independent, platform-independent and language-independent standard

based way to exchange design specification between design software and testing

software.

4.1 System Requirements

The prototype of Hybrid Test Case Generation System (HTCGS) is implemented using
Java. XMl and UML. There are several reasons to choose Java, XMI and UML.

‘I

Java is a general purpose. object-oriented programming language, which provides
powertul features for file processing. GUI and string manipulation. Java is platform
independent and reusability. Java provides the API with CORBA and XML
implementation. In UML 1.3, Java-XMI and UML-XMI mapping are provided. Java

is the best choice for implementing hybrid test case generation system.

UML provides a powerful mechanism for describing software. UML combines the
three popular approaches of Booch, Rumbaugh and Jacobson, and has been accepted
by the OMG as an industry standard for object-oriented analysis and design notation.
[t comprises a number of diagrams used to describe different aspects of a system

including static. dynamic and use-case views.

XML Metadata Interchange Format (XMI) specifies an open interchange model,
which is intended to give developers working with object and distributed technology
the ability to exchange data between tools, applications, repositories, business objects.

and programs based on XML. This is a stream-based model interchange format that

47

enables exchange of modeling, repository, and programming data over the network
and Internet in a standardized way. XMI is a much-needed specification to bring
consistency and compatibility to applications created in collaborative environment.

XMl is a perfect information format for automated test case generation system.

The HTCGS environment for this implementation requires Windows95/NT or UNIX
operating system, JDK1.2 or higher version., with Apache group XML parser Xerces.
Novosoft's NS UML 0.4.17 or higher.

4.2 Development of XMI parser and State-Transition Table construction module

[n our research, we assume that software designer has finished the software design and

saved his UML design specification in a XMI format file.

In this thesis. a tool called XMI Parser and State-transition Table construction Module
(XPSTM) has been developed for automatically generating State-transition table
information from XMI file. It is implemented in four main classes: state-transition table
builder class, XMI parser class, state-transition pair class, and state-transition table
class. XPSTM’s class diagram is in figure 4.1. A third part package Novosoft's NS UML
is used in this XMI parser implementation, which transfer the basic XMI components to

Java class mapping.

Class state-transition pair stores the information of state. and its incoming transition and

output transition relationship.

Class State-transition table class contains a series of state-transition pair and initial state,

current state information.

Class State-transition table builder manages the XMI parser, and generates a state-

transition table for class that have state machines.

48

XMI parser class heavily handles the work that parses the XMI file, and builds a DOM
(Document Object Model) tree of XML file. In my implementation, a third part package
NS UML 0.4.13 is used to help parsing the XMI file.

State-transition Table Builder
QpumiStruc : XMIPaser

ptc : TransitionPairTable
&psitNext: Hashtable

XMiPaser Q,suPrevious :Hashtable
&pfleName : String
& XMtile : FilelnputSream SgenerateTable()

QmodeClassDictionary :Hashtable
&intialState : String

&1 _XMireader - novosoft UML XMireader TransitionPairTable
) anNexl:Hashlable
QgetinitState() &stPrevious (Hasntable
QgetModeClassDictonary() QmodeCIassDiclonary;hnshlable
QparseUMLAIgorhm () ansifonPairs : Hashtable
Qreadline() &prurrentSiate | Sying
. A aniualSlam :String
<<XM[File>> &previousState : Sting
Novos0R UML UML SpecificationFile Qamec[Ou'pu[; String

&pransitions : Vector
”’ncom ingTrans : Vector

XMl boulqoianrans : Vector

UML core
management)
State-transition pair

fpStateName
&pTransitionName

Figure 4-1 the XM1 Parser and State-transition Table construction Module

Figure 4-2 gives a XMI DTD (Document Type Definition) fragment about UML State
and transitions.

Figure 4-3 describes how to represent the UML state, transition, and state machine in our
XMI Parser and State-transition Table construction Module. This is a template-based
representation. Figure 4-4 shows a XMI fragment for queue class UML design

specification, emphasis the state and transition parts.

Figure 4-5 gives a screen snoop about the generation of State-transition table of Queue

class. This table is extracted from the input XMI file.

The State-transition diagram also can be extracted from XMI file. Figure 4-6 shows the

queue class State-Transition diagram that is extracted from XMI file by our system.

49

<!-- UML CLASS: State -->
<!ENTITY % StateProperties 'iStateVertexProperties;' >
<!ENTITY % deferredEvent 'deferredEvent' >
<!ELEMENT deferredEvent (XMI.reference) >
<!ENTITY % StateAssociations 'iStateVertexAssociations:,
ideferredEvent;*’ >
<!ENTITY t entry 'entry' >
<!ELEMENT entry (#PCDATA | ActionSequence)* >
<IENTITY ! exit 'exit' >
<!ELEMENT exit (#PCDATA i ActionSequence)* >
<!ENTITY i internalTransition 'internalTransition' >
<!ELEMENT internalTransition (Transition*) >
<!ENTITY ¢ StateCompositions 'iStateVertexCompositions;,
tentry;?,
texitc;?,
i‘internalTransition;?' >
<!ELEMENT State (‘remoteContent; |
{(iStateProperties;,
iStateAssociations;,
tStateCompositions;)) >
<!ATTLIST State XMI.ElementAttributes;>
<!=-- UML CLASS: SignalEvent -->
<!ENTITY ! SignalEventProperties 'iModelElementProperties;' >
<!ENTITY ¢ SignalEventAssociations '3ModelElementAssociations:,
isignal;’ >
<!ENTITY : SignalEventCompositions 'iModelElementCompositions;' >
<!ELEMENT SignalEvent <ijremoteContent; |
{*SignalEventProperties;,
tSignalEventAssociations;,
tSignalEventCompositions;)) >
<!ATTLIST SignalEvent :XMI.ElementAttributes;>
<!-- UML CLASS: SimpleState -->
<!ENTITY ¢ SimpleStateProperties '“StateProperties;' >
<!ENTITY ' SimpleStateAssoc:ations 'iStateAssociations;’ >
<IENTITY ¢ SimpleStateCompositions 'iStateCompositions;' >
<!ELEMENT SimpleState (iremoteContent; |
(iSimpleStateProperties;,
rSimpleStateAssociations:;,
iSimpleStateCompositions;)) >
<!ATTLIST SimpleState :XMI.ElementAttributes:>
<!-- UML CLASS: StateMachine -->
<!ENTITY : StateMachineProperties 'iModelElementProperties;’' >
<!ENTITY % StateMachineAssociations 'iModelElementAssociations;,
icontext;?' >
<!ENTITY ¢ top 'top' >
<!ELEMENT top (CompositeState) >
<!ENTITY ¢ transitions 'transitions' >
<!ELEMENT transitions (Transition)* >
<!ENTITY ! StateMachineCompositions 'iModelElementCompositions;,
itops,
itransitions;?' >
<!ELEMENT StateMachine (iremoteContent; |
(iStateMachineProperties;,
iStateMachineAssociations;,
iStateMachineCompositions:)) >
<!'ATTLIST StateMachine 3i{MI.ElementAttributes;>

Figure 4-2 The XMI DTD for UML State and trarsition

50

Kle= == = = = - = UML meta-class: State - - - - - - - -->
<macro name="StateProperties”>
<! [CDATA[
StateVertexProperties
11>
</macro>
<macro name="StateAssociations">
<! [CDATA{
StateVertexAssociations
1>
</macra>
<macro name="StateCompositions">
<! [CDATA(
StateVertexCompositions
<entry>
<acl>self.entry</ocl>
</entry>
<exit>
<ocl>self.exit</ocl>
</exit>
<internalTransition>
<ocl>self.internalTransition</ocl>
</internalTransition>
11>

</macro>
<template class="uci.uml.Behavioral Elements.State_Machines.State">
<! {CDATA[
<State XMI.id = "<ocl>self.1id</ocl>">
StateProperties
StateAssociations
StateCompostitions
</State>

1>

</template>

Clmm = = = 2 e - - UML meta-class: SignalEvent - - - - ~ - - -->
<macro name="SignalEventProperties">

<! [CDATA{

ModelElementProperties

1>

</macro>

<macro name="SignalEventAssociations">

<! [CDATA[

ModelElementAssociations

<signal> <X{MI.reference /> </signal>

11>

</macro>

<macro name="SignalEventCompositions">

<! [CDATA{

ModelElementCompositions

11>

</macro>

<template class="uci.uml.Behavioral Elements.State_Machines.SignalEvent">

<! [CDATA[

<SignalEvent XMI.id = "<ocl>self.id</ocl>">
SignalEventProperties
SignalEventAssociations
SignalEventCompositions

</SignalEvent>

11>

Figure 4-3 The XMI template for UML State-transition

51

<?xml version="1.0" encoding="UTF-8"?>

CHMI umiwersion="1.9">

cn>
zmi.name=""IML" zmi.versicn="1.3"/>

<Model Management.Model umi.id="umi.l" xmi.uuid="127-0-0eb23:e52e988al4:-8000">

... <Foundation.Core.ModelElement.name>queue</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.namespace>

<Foundation.Core.Namespace xmi.tdref="xmi.l"/>

</Foundation.Core.ModelElement.namespace>

<Behavioral Elements.State_Machines.StateMachine xmi.id="xmi.3"

#mi.uuid="127-0-0-1--6fcbeb23:e52e%988al4:-7ffd">
<Foundation.Core.ModelElement.name>queueStateMachine</Foundation.Core.ModelElement.naf
>

<Behavioral Elements.State_Machines.Transition xmi.id="xmi.12" xmi.uuwid="127-0-0-1--
6fcbebl23:e52e988ald:~TE£4">
<Foundation.Core.ModelElement.name>delete</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>

<Behavioral_Elements.State_Machines.Transition.trigger>

<Behavioral_Elements.State_Machines.Event xmi.idref="umi.24"/>
</Behavioral Elements.State_Machines.Transition.trigger>
<Behavioral Elements.State_Machines.Transition.stateMachine>
<Behavioral Elements.State_Machines.StateMachine xmi.idref="xzmi.3"/>
</Behavioral Elements.State_Machines.Transition.stateMachine>
<Behavioral Elements.State_Machines.Transition.source>
<Behavioral Elements.State_Machines.StateVertex xmi.idref="xm1.13"/>
</Behavioral Elements.State Machines.Transition.source>
<Behavioral Elements.State Machines.Transition.target>
<Behavioral Elements.State Machines.StateVertex xmi.idref="xmi.l0"/>
</Behavioral Elements.State_Machines.Transition.target>
<Behavioral Elements.State_Machines.Transition.guard>
<Behavioral Elements.State Machines.Guard zmi.id="xmi.25">
<Foundation.Core.ModelElement.1sSpecification xmi.value="false"/>
<Behavioral Elements.State_Machines.Guard.expression>
<Foundation.Data_Types.BooleanExpression umi.id="xmi.26">
~Frynaarion.lata_Types gressicn.lanyiage «cesi- /Foundation.Data _Typ

3D
1%}
i
i
LA
3
13
U
&

nLLanguage

4]

<Frunaaticn.latd Types.Isprassicon.sody cosuntaitiio Touncaticn.lata _Types.Esprassisn.poay s
</Foundation.Data_Types.BooleanExpression>

</Behavioral Elements.State_Machines.Guard.extpression>

<Behavioral Elements.State_Machines.Guard.transition>

<Behavioral Elements.State_Machines.Transition xmi.idref="xmi.l2"/>

</Foundation.Core.Namespace.ownedElement>

‘e </Model_Management .Model>
</XMI.content>
</EMI>

Figure 4-4 The XMI fragment of class Queue UML design specification

w
9

| state-centric & [Tt viawot queve (Rows. 004}
Table |'utes vs. Properties

==
? gg queueStateMachine

queue !
O @ (anon Pseudostate) B =
; Name i Enty Action | ExitAcion | ParentMState |
? © Emety | {(@non Pseudostate) state_machine top NA E
—* queue 1 Empty state_machine_top N/A 3
R
—> det_data0 NPl ftate_machine_top N/A éj
- Add) || Ful ste_machine_top NA ,‘.’jj
9 NotFull J %3
— adaQ : ig
— del_data) ﬁ
— dal_data) i;ﬂ
> del_da :
: 4]
— AddQ i ;‘/.
9 Drun ! o
— adeQ ‘ 173
s
— dei_010 e
A As Table
(a)
;Trwﬁwcmo v 'a LTakia vaw ot Jueue (R M2 :_i
[isututubinfiotnd J—- o]
D e : o
? og queusStateMachine i tatis | Transitions vs. Properties 'I ?i
s It e s e e Py
queue i |]
; zf
9 —_ QU.‘I'O l:, e T e S e TR L S A mRLLTmE, —_“_'_-ﬁ
V1 Nams : Source ! Taiget : Trgger Guard | Eftect Steteotype)724
. (anon Pseudostate) | ilm Transmon) Emety el WA et
i 4
S Empty -1 tanan Transioon) Emoty NotFul 000 NA %
@ — a0 1 canon Transaion) NotFul oty o_gma0) WA I/j
S Empty 1} {anon Transaon) NotFud Fa) Wa i
S Notfull canon Transmion) Fult NetFu ¥ nA
' P
© — ael_das0 i ?‘5
L i
& Hotfun ; B
B4
= Empty i B
® —s ad0 ' A
A %
S Notfult i ﬁ
H %
S Full L xj
® — du_data) i
S Full s %
S NotFull j[~:ﬂ~ Table

(b)

Figure 4-5 State-transition table construct from queue class XMI file
(a) State-view
(b) Transition-view

e« & |IE] [ol0]-] @i®iclw /@@ = [OiojoNA RIS

] :o:g queueStateMachine

queue

L4 . (anon Pseudastate)
9 S Empty

- queue(}

—> dei_data)

— Aga) |
Q@ = NotFun

— Add)

=~ dei_datx) R

—> dei_data) 40 dol_supO

— Add)
Q = Fun

— ad90

— del_sata) NotFul Ful

LX i

¢

U R T S TR R SRR g 5 id!

| maowm jsshite]

Frirgiure 4-6 State-transition diagram that is extracted from queue class XMI file
4.3 Design and Implementation of Source code Parser and Def-use info Generator

In order to automatically get class method’s data occurrence information, a source code

parser is developed for static analysis source code. check the source code control flow

graph structure.
4.3.1 JavaCC-Generated Source Code Parser

The source code parser and def-use info generator of our environment are developed

based on Sun Microsystems Java Compiler Compiler (JavaCC) and Visitor design
pattern.

JavaCC is a LL parser generator for Java, compared to the well-known LR parser

generator YACC for c. Both JavaCC and the parsers it generates are certified as 100%

pure Java and run on more than forty different platforms without any need for porting the
code.

JavaCC generates top-down (recursive descent) parsers as opposed to bottom-up parsers
generated by YACC like tools. This allows the use of more general grammars. The
lexical specifications such as regular expressions, strings, etc. and the grammar
specifications (the BNF) are written together in the same file. [t makes grammars easily

read and also easily maintain.

The Grammar of the source code parser can be seen in Appendix B.

The package shown in Figure 4-7 contains the class that forms the parser that generates a
linked list and tree structure from a Java source files.

The main class JavaParser takes a stream and sends it to the tokenize and then parse it

into a tree and returns the root of the tree

Def-use Generator
JavaParser
JavaParserTokenManager &pcodeParser : JavaParser
SDef-use-Transfer() &pdef-use tree DOM Tree

Swanableinialize() SGenerate_Def_Use_Info()

Qarray Inilizer(
SoperationDecleration()
SType()
TokenManager SExprassion() LinkNode
QConditionOrExpression()
Token JavaParserConstant Node
. _ Qaccept()
JITJavaParserState o SOUVI'CQVISROF .
defnitionVariabieNode
QuisitNode() - -
QvisitBlockStatementNode()
DoStatementNode
lots of source .
ConditionVisiter classdeclareVisitor Sfucture node DoStatementVisitor

. wisitor

Figure 4-" JuvaCC-generuted Source code parser and def-user tree builder

55

PARSER BEGIN(JavaParser)

public class JavaParser |
//Parse an input source code stream and produce a tree representing
public LinkNode parseSource(java.io.DatalnputStream in) {
// Create a parser object
JavaParser parser = new JavaParser(in);
// Now parse the input stream
try {
rootNode n = parser.transfer();
// Turn the Java source token-tree into a Def-use Node-tree
def-userVisitor vl = new def-userVisitor();
LinkNode theTree = (LinkNode)n.jjtAccept(vl,null);
recurn theTree;
} catch (Exception e} |
System.out.println(e.getMessage());
return null;

}

}
PARSER_END(JavaParser)

Figure 4-8 The JavaParser code for source check and build def-use tree

4.3.2 Symbolic Execution
There are more than one possible Def-Use pairs in each method. as exist condition and
switch statements in source code.
We use symbolic execution to capture three relevant aspects of method behavior:
(1) The conditions associated with the execution of paths in the method’s control flow.
(2) The relationship between input and output values of a method
(3) The set of variables defined along each path. Both kinds of specifications are
expressed as a set of prepositional formulas involving the values of method
parameters and component attributes before and after a method is executed.
The information we extract for a class method consists of a set of formulas in the
following form:
<precondition> => (<attribute>’=<symbolicexpression>)*
< setofdefinedattributes>
Each precondition is a predicate on attributes and method parameters that leads to the
execution of a given path traversing the method. The set of defined attributes includes all

the attributes that are defined along such path. The symbolic expression defines the new

56

value of an attribute after a method is executed. This expression involves method
parameters and the old values of the attributes.

Due to the inherent complexity of this kind of static analysis techniques, our algorithms
for symbolic execution can take advantage of programmer provided information. Details
on these algorithms are referenced in [A. Coen-Porisini etc.. 1991], [Ugo Buy etc, 1999].
For our example, the specifications extracted for component CCoinBox are shown in
Tabled-1,

Tabled-1: Path Condition Information extracted for class CCoinBox

CCoinBox()

(true) = totalQtr'=0

def={totalQtrs. curQtrs, allowVend} curQtrs’ =0
allowVend’=0

AddQtrs()

(curQtrs>1) = totalQtrs’=totalQtrs

def={curQtrs, allowVend} curQtrs =curQtrs+1
allowVend'=1

(curQtrs==0) = totalQtrs’=totalQtrs

def={curQtrs} curQtrs’=1

Vend()

(allowVend=0) = totalQtrs’=totalQtr + curQtrs

def={totalQtrs. curQtrs, allowVend} curQtrs’' =0
allowVend'=0

(allowVend==0) = allowVend'=0

def={ }

ReturnQtrs()

(true) = totalQtrs'=totalQtr

det={curQtrs} curQtrs’=0

4.3.3 XML Support

With the Extensible Markup Language (XML) becoming the emerging standard for data
interchange, we build the XML support for Def-Use info result from JavaParser.

Adapting our Source code Parser into a Def-Use XML parser is a relatively straightforward
task. Since only the syntax has changed, but not the semantics of the production rules is

still the same.

For Example, def-use info generated from CCoinBox class
{ Method CCoinBox(),

{[condition, true],
((def. curQtrs), (def. allowVend), (def, totalQtrs)]}
H
{ Method AddQtrs(),
{[condition. (curQtrs>1)),
[(use, curQtrs), (def, curQtrs), (use. curQtrs), (def, allowVend)}}
{[condition, (curQtrs==0)|,
[(use. curQtrs), (def. curQtrs)}}

}
{ Method ReturnQtrs(),

{[condition, true],
[(def, curQtrs)}}

H
{ Method Vend().

{[condition, (allowVend=0)].
[(use. allowVend), (def. totalQtrs), (use, curQtrs), (def. curQtrs), (use, totalQurs), (def, allowVend)|}

{[condition, (allowVend==0)],

(n
}
Transfer to Def-Use XML:

<CCoinBox>

<CCoinBox__method>
<condition attr="true™™>
<def> curQtrs </def>
<def> allowVend </def>
<def> totalQtrs </def>
</condition>

</CCoinBox__method>

<AddQtr__method>

<condition curQtrs>”1"™>

<use> curQtrs </use>
<def> curQtrs </def>
<use> curQtrs </use>
<def> allowVend </def>

</condition>

<condition curQtrs="0">
<use> curQtrs </use>
<def> curQtrs </def>

</condition>

</AddQtr__method>

<ReturnQtrs_method>
<condition attr="true">
<def> curQtrs </def>
</condition>
</ReturnQtrs_method>
<vend_method>
<condition allowVend="1">
<use> allowVend </use>
<def> totalQtrs </def>
<use> curQtrs </use>
<def> curQurs </def>
<use> totalQtrs </use>
<def> allowVend </def>
</condition>
<condition allowVend="0">
</condition>
</vend_method>
</CCoinBox>

=] CCoinBox__| meihod
8] condition
@ atr
- Ny, def
Ny def
=-{] AddQur__method
&] condition
— @ cuQus
\ use

=23 Hetumﬂtrs method
B D condition
@ altr

N
=23 vend. melhod

culQlis

allowVend

totaﬁlls

culQlrs

cuQurs

cuQlis

TR
ate- o
GRS

P

cuQlrs

cuiQlrs

Figure 4-9 The Def-Use info XML file generated from CCoinBox class

4.4 Development Hybrid Class Test Model Navigation and Def-Use info Insertion
Algorithm
After State-transition Table and Def-Use info tree have been built, a hybrid class test

model navigation and Def-Use info insertion algorithm is implemented.

This algorithm is used to generate the state-based test cases (a set of method
sequences), and for each test case, generated a unique def-use pairs for data flow
analysis. In this algorithm, we assume that all Def-use info condition variables

depend on class state variables.

Figure 4-10 shows the algorithm.

The Hybrid Class Test ModelNavigation and Def-use info msertion Algonthm
BEGIN
Step! The initial state in Hybrid Class Test Model as the root node

Step2 Examine the state that corresponds to each non-terminal leaf node in the tree and each
outbound transition on thi state. At least one new edge willbe drawn for each transition.

Step3 Foreach edge and node drawn in step2:

Note the corresponding transition event on the new branch

Find the transition name which equals the def-use info method's name

Calculate the condition Boolean value according to the class state value

Select a unique sequences of def-use pairs to this transition on this branch

if the state that the new node represents is already represented by another node or

is a final state, mark this node as terminal, no more transition are drawn from this node

cenop

Stepd Repeat step2.3 until all keaf nodes are marked terminal

END

Figure 4-10 The Hybrid Class Test Model Navigation and Def-use info insertion Algorithm

For example, the hybrid class test model navigation algorithm generate a test case:

Coinbox() {} = AddQtrs() {curQtrs=0, allowVend=0}-> AddQtrs(){curQtrs=1,
allowVend=0} <> ReturnQtrs(){curQtrs=0, allowVend=1}

Then response to this test case, can get a unique sequence of def-use pairs like:

[(def. curQtrs). (def. allowVend), (def, totalQtrs)], (because, condition always true)

60

[(use, curQtrs), (def, curQtrs)], (because , condition curQtrs==0 true)
[(use. curQtrs), (def, curQtrs), (use, curQtrs), (def, allowVend)], (because, condition
curQtrs==1 true)

[(def, curQtrs)}, (because, condition always true)

4.5 Prototype of Test Cases Generation and Its GUI

Section 4.2 introduces how to transfer a XMI file into a State-Transition Table. Section 4.3
describes from source code generation global Def-Use info XML file. Section 4.4 discusses
how to insert the Def-Use info to Class State-Transition Table to get Hybrid Class Test

Model. and navigate this model to get test cases.

After we have integrated previous implementation, a Test Cases Generation prototype is
built.

Figure 4-11 shows the overview of prototype system. which gives a view of the source
code of CUT. Figure 4-12 is a screen capture for the prototype system that has generated

the test cases for CCoinbox example.

61

- Class.Testing Ul (demo)

1A

New Phjoet

>

Stat sStap

dR2

Report sixu Maetrics

A

2

YSoutce Viewer

public class CColnBox { :
it totalQurs; {Rotal quarter collected
int cwrQurs; ficustent quarters collected
boolean allowVenct /rue=vending is alowed
public CCoinBox()
{
Reset();
}
public void AddOr{
CwQlrs+=1; /tadd a quarter
H(curQtrs>1) /M more than one quarter is collected
allowVend=true; /Ahen set allowVend e
) 2
(isANowVend) 1M allowVend %
totalQrs=totalQlrs+curQtrs; /update totalQtrs 2 i
curQtrs=0; licurQirs, and
I public void Reset() (B
4 totalQrs=0;

Figure 4-11 Test Cases Generation Prototype GUI for view Source Code

o JEC) 2

Test Progress

71{6) Test Cases for “CCoinBox™
@ 716) Automatic Test Cases
® & (1) CCoinBox
® JTestCaset
9 TjTestCaseinput
| THIS = new CCainBox §;
®)2 Outcomes
=} Exception: <NO-Exception>
@ THIS.isAllowvend () = faise
® @& {1] AddOtr
® *jTestCase!
®) TestCase nput
| CCoinBox THIS = new CCainBox ();
| THIS AddOtr O;
® 112) Outcomes
] Exception: <NO-Exception>
® THISsAllowvend (= false
& [1] Vend
© =) TestCase !
@ [1] Reset
© “)TestCase!
@ (1] RetunQtrs
© “]TestCase !

?

®
| Q

Q @& (1] isAllowvend
gl

& ~1TestCase

[0} User Defined Test Cases _

Figure 4-12 Test Cases Generated by Prototype system

Chapter Five

Methodology Evaluation

Harrold and Rothermel [1994] employ their data flow testing technique on a symbol
table class (called SymbolTable) and show how to generate test cases for inter-method

and intra-class testing.

5.1 A Symbol Table Class

Since specification-based testing approaches may not provide sufficient code coverage,
Harrold and Rothermel [1994] suggest a technique for class testing that supports
conventional data flow testing for the data flow interactions in a class. The technique is
listed as follows:
(1) A graph representation, called a class control flow graph. is developed for the class
under test. In the class control flow graph. the connections of all methods in the
class are depicted.

(2) The data flow information is computed from the graph for data tlow testing.

In order to explain their approach for class testing, Harrold and Rothermel [1994]
propose the SymbolTable class, coded in C++, as an example. The class contains the
SymbolTable, ~SymbolTable, AddtoTable and GetfromTable public methods and six
private methods: Lookup, Hash, GetSymbol, Getinfo, AddSymbol, and Addinfo.

The calls from public methods to private functions and interactions among private
functions in the SymbolTable class, show that it is a suitable example for demonstrating
their testing technique in intra-method and inter-method testing. Except for the
constructor and destructor, there are only two public methods in the class. It is a simple
example to show the determination of sequences of public method calls in an arbitrary
order, based on the data flow criteria. It is a good example to show that the hybrid class
testing technique can also be employed for testing the classes. which have complicated

connections of public and private functions.

Case Description

The implemented SymbolTable class is shown in Figure 5-1. A symbol table is usually
used throughout a compilation to build up information about the names of identifiers used
throughout a source program. While compiling a program, the compiler must record the
names (including type, scope, and memory assignment) of all declared identifiers. When
the compiler parses an identifier outside of a declaration statement, it checks to see
whether the identifier has been declared. If it has, the compiler looks up the appropriate
information in the symbol table. If it has not, the compiler gives an “undefined symbol”
error message [Weiss, 1998]. A symbol table usually has enough storage (implemented
via a linked-list, a binary tree or an extensible table) for storing all the possible identifiers

in a source program.

lIsymboltable.h: definition of Symboltable class int SymboiTable :: AddtoTable (char *symbol, char

int saveindex;
int Hash(char *);
saveindex = index = Hash(key);
while (strcemp(GetSymbol(index), key) !=0) {
index++;
if (index == tablemax) /*wrap around */
index = 0;
if (GetSymbol(index)==0 || index==saveindex)
return NOTFOUND;

}
return FOUND;
}

}

#include “symbol.h” : *syminfo) {
int index;
class SymbolTable { if (numentries < tablemax) {
private. if (Lookup(symbol, index) == FOUND)
TableEnter “table; return NOTOK;
Int numentries, tablemax; AddSymbol (symbol, index);
int *Lookup (char *); Addinfo (syminfo, index);
Public; numentries++;
SymbolTable (int n){ return OK;
tablemax =n; }
numentries = 0; return NOTOK;
table = new TableEntry{tablemax; }. }
~SymbolTable() { delete table;};
int AddtoTable (char *symbol, char *syminfo); int SymbolTable :: GetfromTable (char *symbol, char
int GetfromTable (char *symbol, char *syminfo); **syminfo) {
¥ int index;
Il symboltable.c: implementation of SymbolTable class if (Lookup(symbol, index) == NOTFOUND)
#include “symboitable.h” retum NOTOK;
*syminfo = Getinfo(index);
int SymbolTable :: Lookup(char *key, int index){ return OK;

}

void symbolTable :: AddInfo (syminfo, index){
strciay(table[index].syminfo. syminfo);

char *SymboiTable :: Getinfo(index) {

retdm tablefindex].syminfo;

Figure 5-1 Partial listing for the Symbollable class [adopted from Harrold andRothermel, 1994]

Applying Hybrid Testing to Class Symbol Table

65

(SymbolTable().Al)

EmptyTable

(AddioTable(). A3)

! . NonEmptyTable
(GetfromTable(), A3) (AddtoTable(), A4)
numentrics<tablemax

Figure 5-2 The Hybrid Class Test Model of cluss SymbolTuble

(GettromTable(), A2)

¢ § = {S0. EmptyTable. NonEmptyTable}

¢ V = {numentries, tablemax, table}

o F is defined as follows:
F(S0) undefined
F(EmptyTable) (numentries)=0
F(NonEmptyTable)(numentries)< tablemax

e M ={ SymbolTable(), AddtoTable(), GettromTable()}

e — contains

S0 SvmbolTable() > EmptyTable

EmptyTable GetfromTable() EmptyTable

EmptyTable 3ddtoTable() o, £y Table

NonEmptyTable AddtoTable()_, NonEmptyTable

NonEmptyTable GetfromTable() NonEmptyTable

According to the state values given in the class state diagram. the below def/use

sequences are obtained from the source code of CUT.
Al: [(def, numentries), (def. tablemax), (def. table)]
A2: {(use, table), (usc, tablemax), (usc, table))

66

A3: [(use, numentries), (use, tablemax), (use, table), (use, tablemax), (def,
table). (use, numentries), (def, numentries)]

Ad4: [(use, numentries), (use. tablemax), (use, table), (use. tablemax), (def,
table), (use, numentries), (def, numentries)]

A3: [(use, table), (use. tablemax), (use, table)]

The Transition Tree of Class Symbol Table

The Lookup(). GetSymbol(). AddSymbol(), and Addinfo() functions are directly or
indirectly called by the AddtoTable() function. The data members, table. numentries and

tablemax are defined and used within those functions. A similar situation occurs when

the GetfromTable() function is executing.

Table(), | numentries=0| (def, tablemax),

) R N ‘\(def. table)

Symbol EmptyTabl::[(def, numentries),

\o'n\

.,.-' ﬁmpl\ (use, numentries),
LI Table (use, tablemax),
Gettrom Empl).'!’ (use, table), (use, table),
Table() A*" (use, tablemax), / (use, tablemax),
numentries=0| (use, table) P * (def, table),
N " numentries < |(use, numentries),
P - tablemax j(def, numentries)
e I
P .
Addto [NonEmpty Ptuse, numentries), Gettrom| NonEmpty | (use, tabie),
Table(Tal*'; (use, tablemax), Table() | Table (use, tablemax)
(use, table), numentries < | (use, table)
(use, tablemax), tablemax
(def, table),
numentries < | cu(numentries),
tablemax | def{numentries)

Figure 5-3 The transition tree of class SymbolTable from hybrid testing

Test Messages

Examples of sequences of methods in the file are listed as follows. The implemented

SymbolTable class passes the testing by executing the sequences of test messages.

67

SymbolTable() »GetfromTable();
SymbolTable()—>AddtoTable() »AddtoTable() >GetfromTable();
SymbolTable() >GetfromTable() —>AddtoTable() »AddtoTable();

SvmbolTable() —»AddtoTable() »GetfromTable() 5GetfromTable() »AddtoTable()

The Def-Use Information of the Data Members

Before computing the definition-use pairs within the sequences of test messages, the

speciality of each data member of the class is discussed as follows:

» The tablemax data member is defined with an initial value in the constructor. Itis
used in AddtoTable() and Lookup() as a predicate use.

» Data member numentries is initialized (defined) with a zero value in the constructor,
and its value is increased after the AddroTable() function is executed. It is used and
defined in the AddtoTable() function.

» Anarray format data member table contains n (where tablemax = n) different table
entries. When computing definition-use pairs. each individual entry is treated as a
single variable. Therefore. each entry is:

(a) defined with an initial value when the table is created,

(b) checked whether it is empty before an identifier is added into it, so that each table
entry is used in the GetSymbol() function before it is defined in the functions
AddSymbol() and AddInfo().

Based on the above discussion and using the data flow technique of the hybrid testing

method. no data anomaly was found within the SymbolTable class at intra-class testing

level.

Discussion

The SymbolTable class has only two public methods, and there are only four
discretionary sequence methods. It is not so difficult to pick up feasible sequences from

the sequence functions. The intra-class sequences of methods <AddtoTable,

68

AddtoTable> and <AddtoTable, GetfromTable> are selected by computing intra-class
def-use pairs in [Harrold and Rothermel, 1994]. The generation of sequences of intra-
class test messages using the state-based technique of hybrid testing is easier than using
data flow testing.

When selecting sequences of methods for the SymbolTable class, Harrold and Rothermel
state: “.... This suggests that GetfromTable cannot affect AddtoTable, and that we do not
need to test method sequence <GetfromTable, AddtoTable> "

Nevertheless, in practice a GetfromTable message that is followed by an AddtoTable
message may be sent to a SymbolTable object. For example. the variable i was not
declared before if (i < x) condition statement. The compiler responds with the error
message “Error TestSyntax.cpp 6: Undefined symbol i’ This example shows that it is
possible to send a GetfromTable message to a symbol table object before sending an
AddtoTuble message to it.

This case study indicates that code-based testing may not generate enough test cases and
the requirements of specifications should also be considered. The hybrid-testing tool

serves these two approaches. to improve traditional class testing.

Evaluation

No known state-based errors or data anomalies were found in the SymbolTable class.

Hybrid testing can also produce all definition-use information within both the public and

private functions of a class.

Harrold and Rothermel in [1994] adopt existing data flow testing techniques to generate
test cases for intra-method, inter-method and intra-class testing upon the class control
Sflow graph. This graph depicts the connection of all the methods of the class under test.
Data anomaly detection is not discussed in [Harrold and Rothermel, 1994]. Table 5-1
shows the evaluation of the hybrid class testing method using the SymbolTable class. No
known errors were found by the hybrid method, but it can generate more test cases for

intra-class testing than the method of Harrold and Rothermel.

69

Table 5-1 The evaluation of the hybrid class testing method using the SymbolTable class

Testing Class SymbolTable Techni Error Removal
Method _Siate‘based Data echnque sllggestion
Errors Anomalies '
o More test cases generated for
The Hybrid intra-class testing by using the
Method Not found | Not found state-based technique No
o Data anomaly detection
H&R's No No Test case generation based on No
Method execution execution data flow criteria

5.2 Summary of the four class testing techniques

For evaluation the hybrid testing strategy, three existing cases from previous research
work are adopted. The benefit of adopting and adapting existing cases from research
work is that the cases provide an opportunity to carry out comparisons. Another major
benefit of using existing case studies is that there is an understanding of the error domain

under study.

A coin box class. called CCoinBox, presented by Kung et al. in [Kung, 1996]
demonstrates their object state testing technique for finding state-based errors. [n using
this class | would like to seek to establish that hybrid-testing model is capable of finding
the same state-based errors as the technique of Kung et al., as well as other errors such as

data anomalies. This example can be seen in case study of Chapter 3.

Harrold and Rothermel in [Harrold and Rothermel, 1994] employ their data flow testing
technique on a symbol table class (called SymbolTable) and show how to generate test
cases for inter-method and intra-class testing. This class is selected to demonstrate
whether hybrid-testing model can generate the same (or more) test cases, in order to show
whether hybrid class testing can be considered as being better than data flow testing in
intra-class test case generation. The private member functions of the SymbolTable ciass

contain many intra-class definition-use pairs. This class therefore provides an

70

opportunity to determine whether hybrid-testing model has the ability to detect data flow

anomalies.

Hong et al. [Hong, 1995] propose the class flow graph (CFG) of the Door class to

demonstrate their data flow testing technique for generating all definition coverage test

cases. In adopting this class [am seeking to reproduce these results using hybrid-testing

model. In addition. the data flow technique of the hybrid method can further be used to

detect whether any data anomalies exist in the generated test cases.

Table 5-2 Summary of the four class testing techniques

The hybrid testing Kung et al.’s Harrold an'd Hong et al.’s
technique technique|30) Roth.e rmel’s technique|20]
technique|{18|
. . i Class Flow
Hybrid Testing Model | Obicct State Diagrams, - Graphs. flow
TN constructed by Class Control Flow
. combined State-based - - X . graphs represent
Test model L ' symbolically exccuting | Graphs. connecting T
testing and data flow AR, . = | both the control
i~ the member tunctions | all methods in classes N
analysis, N o and data flow of
d of the classes.
classes
Test Units Class Class Class Class
State view Combinationof’ ¢ Combination of Combination of
) attribute values attribute values attribute values
Specification-based » - Specification-
Approach and codebased Code-based Code-based based
- State-based fauit e
l'esnP k detection and data Slau-b.m':.q.laull Data flow testing Data flow testing
Technique e analysis
anomaly analysis
Testcases Transition tree. derived . Computing defuse .
. . o : From test model =~ From test model
generation from hybrid test model pairs
Test Case Sequence of methods N, ,) , Sequence of
Format and defuse pairs Sequence of methods Sequence of methods methods
: All states and ;
Measure of . transitions coverage. all | All states and . All definition
. : . ; L All-use coverage
Quality definition coverage at ¢ transitions coverage. coverage
intra-class fevel i

I

Chapter Six

Related Work

This chapter gives a brief review of earlier work on test cases generation based on state-
based testing and data flow testing, including related work on generation test case from
UML specification, test case generation from source code. and data anomaly testing

technique. Then we describe the advantages of our hybrid testing approach.
6.1 Test cases generation from UML specification

[n this section, we review two types of test case generation research based on UML
specification.

6.1.1 UMLTest (Rose-based Test Data Generation Tool)

Jeft Offutt and Aynur Abdurazik [1999. 2000] presented an approach to generate test
cases from UML State diagram. They built a Rational Rose-based Test Data generation
tool (UML Test), parsed Rational Rose specification file (called an MDL file) to get the
semantic meanings of the specifications. Then according to different coverage criteria.

generate state-based testing cases.

[n their work. as the first step, they parse Rose MDL file to get semantic meaning.
Rational company doesn’t provide open documentation about MDL format. In their
paper, there are some assumptions about MDL format. Further there are a lot of CASE
tools that can build software design specification, but with different serialization format.
MDL is a vendor dependent format.

Compared with our solution, we use XMI format to transfer UML information. As XMI
is vendor independent and system independent, our solution can be easily adopted to
different UML-based CASE tools.

6.1.2 EFSM-based Test case generation from UML State diagram

Young Gon Kim et al [1999] presented a specification-based approach to class testing
using UML state diagrams. A set of coverage criteria is proposed based on control and
data flow in UML state diagrams. Test cases are generated satisfying these criteria from
UML state diagrams. There are two steps in their solution. First, control flow is
identified by transforming UML state diagrams into extended finite state machines
(EFSMs). The hierarchical and concurrent structure of states is flattened and the
broadcast communication is eliminated in the resulting EFSMs. Second. data flow is
identified by transforming EFSMs into flow graphs. Conventional data flow analysis
techniques can be applied in tlow graphs. The approach transforms UML state diagrams
to flow graphs. and then takes conventional flow analysis to generate test cases from flow
graphs. The bridge between UML state diagram and flow graphs is extended finite state
machines (EFSMs). In the paper. the authors did not mention an automated environment
to support the total process of test cases generation. In their approach. they apply existing
data flow techniques and coverage criteria. Test cases can be generated as a set of paths
that cover the associations between the definitions and uses of each variable and state in

UML state diagrams.

6.2 Test Cases Generation using State-based Testing Strategy

In this section, three researches about State-based testing strategy are reviewed.

6.2.1 Threaded multi-way tree

Tsai et al [1999] introduced a State-based testing strategy, using a threaded multi-way
tree concept. They followed Chow [1978] work, testing techniques using Finite State
Machines (FSMs). A threaded multi-way tree is used to represent the Loop State. The

testing solution proposed by Tsai, need manually input the testing specification.

6.2.2 Object State Diagram (OSD)

Kung et al. [1993 and 1996] introduced an object state test model based on an object state
diagram (OSD). They proposed a reverse engineering approach to automatically derive
an OSD from the C++ source code. They extracted states and transitions from the result
of the symbolic execution of each method in the class. In an OSD, a state of an object is
defined by the value range of a subset of the data members in the object, and state
transitions are defined by the execution of a method. A test tree, constructed from the
OSD. is then used to generate test cases for testing the state behavior. The disadvantage
of this state-based testing method is the cost of creating object models (e.g. state
machines) from the code. Assume, for example. a class has VN state defining data
members and each data member has three states, such that the value of a data member has
three intervals (e.g. k < 0; 0 <k <x: k >x). The total number of possible combined states
are 3" . For inspecting test results, they adopted the fault tree analysis technique. This is
quite different from the state-based testing, which is used for generating test cases in their
papers. The fault tree analysis which “requires expert knowledge which is difficult to

Sind and usually subjective " [Kung et al.. 1996].
6.2.3 State Model for specification-based testing

McGregor and Korson [1994] proposed a specification-based testing approach based
upon design states. A state model of a class built directly either by examining the class
under test or trom an analysis/design specification is required. Additionally, they defined
design states on some set of attribute values. Methods were modeled as events. A
transition in the model is defined by input parameters and the current object state, a
method, and method output parameter and the target object state. They use design states
to describe the changes in behavior of the object class. The main idea of their technique
is: “For functional testing, the goal is to prove that the software performs in
conformance with its specification. In order to achieve that goal, test cases are

constructed, executed and the results compared with expected behavior”. In their

74

technique, however, each test case (a sequence of messages to an object) and the test

results still rely on a human oracle and the state model.

6.3 Test Case Selection Using Data Flow Testing Strategy

Harrold and Rothermel [1994] proposed an approach for class testing based on data flow
testing. This technique uses interprocedural data flow analysis on all the methods of a
class. They developed a class control flow graph to connect all methods in the class, and
adapted the data flow analysis algorithm to compute the data flow information required
for data flow testing. This technique can test the interaction of an object’s methods.
Since a variable can be defined in one method and used in another, this technique
provides a way of selecting sequences of method invocations. For applying data flow
testing into classes. they derived a sequence of intra-class test cases from the intra-class

def-use information.

Harrold and Rothermel in [1994] define three testing levels (intra-method. inter-method
and intra-class) for class testing, and use the SymbolTable class as an example to
demonstrate their data flow technique. Harrold and Rothermel {1994] also state that the
further advantage of their technique is to determine which sequence of methods should be
executed to test a class. and point out error sequences with examples that need not be run.
However. their class example only has two so that the selected intra-class test cases
(based on intra-class def-use pair) are merely pairs public methods of ordered functions.
If a class has ¥ public methods. then there are V! sequences at the intra-class testing
level. In fact, it is very difficult to select all possible test cases and exclude all infeasible

sequences from the N! sequences by referencing the functionality of the class.

6.4 Data Anomaly Testing techniques

Dynamic data flow analysis techniques are addressed in [Chan and Chen, 1987; Huang,
1979]. Chan and Chen propose an automated instrumentation system to perform data
flow analysis for Pascal programs. Huang uses a program instrumentation technique for
detecting data flow anomalies. In the program instrumentation process, additional

statements are inserted into a program for the purpose of information gathering.

75

Chan and Chen in [1987] describe their dynamic data flow anomaly detection system
(AIDA) for Pascal programs. For dynamically carrying out data flow analysis, they
adopted the technique of program instrumentation {[Huang, 1979], which involves the
insertion of software probes into the source code of the programs to collect information.
[n order to initialize. trace or check the states of variables, AIDA transforms the source
code to form instrumented programs. A state transition diagram is used in AIDA to
present the state change of each variable and the same diagram is also used in [Huang,
1979]. When a variable enters the abnormal state, this implies a data flow anomaly on
the variable [Chan and Chen. 1987].

Static data flow anomaly detection techniques on either intra-procedure or inter-
procedure level are discussed in [Fosdick and Osterweil, 1976]. They use path
expressions in which the actions in each variable along the program execution paths are
expressed. and then the expressions are evaluated relative to each variable [Fosdick and
Osterweil. 1976] to efficiently detecting anomalous data flow patterns in a program,
which can be represented by a graph first. Then, using static data flow analysis, we can
scan the paths entering and leaving each node of the graph to show anomalous data action
combinations. The paths of method sequences of a class at the intra-class level can be
depicted in the state transition diagram of the class. Thus that static analysis technique is

adopted for detecting data anomalies on data members within the sequences of methods.

A practical technique for data anomaly detection is:

(1) Determine whether a data anomaly is present,

(2) Find a path containing the anomaly, and then

(3) Attempt to determine whether the path is executable.

Although infeasible sequence messages can be selected as test cases, performing data
anomaly detection on infeasible sequence messages is not necessary. A data anomaly on
such a non-executable path is of no concern in this research. The executable sequences
of methods (paths) at the intra-class level can be easily generated using state-based

criteria.

76

6.5 Advantages of Our Approach

A hybrid class test model is proposed in our hybrid testing strategy, which contains both
the information from specification about the state change of object instances of the Class
Under Test (CUT) and the information from the source code about the definition and use
of the data members in the CUT. With such an uniformed architecture. we can obtain
automated tools to generate test cases for state-based testing and perform data flow
testing as the same time. The combination of the two techniques is essential in improving
our testing environment and thus. contributes to the enhancement of the reliability of

software products.

Hybrid testing strategy keeps the advantage of state-based testing and data flow testing.
Hybrid testing generates the data member definition-use information based on class state
transition relationship. not just navigating all public method of the whole sequences

(Harrold and Rothermel’s proposal 1994), and significantly reduces the testing cost.

Hybrid testing can detect some data anomaly that State-based testing cannot trace. In

chapter 3, case study gives a good example.

A Standard-based UML information exchange format--- XMI (XML based Metadata
Interchange) is used in my research work. to bridge the software designer and software
tester. No matter what kind of CASE tools designer use, the testing software can easier
understand design specification from different design tools. So hybrid-testing strategy

provides a fully automated testing framework for class testing.

77

Chapter Seven

Conclusions and Future Work

This chapter draws the conclusions and describes possible directions for future work

related to this research.

7.1 Conclusions

In this thesis. Hybrid testing strategy is proposed for class testing.

Main contributions of this thesis are:

1.

o

(9%

Propose a hybrid class test model, which contains both the information from
specification about the state change of object instances of the Class Under Test
(CUT) and the information from the source code about the definition and use of the
data members in the CUT. With such a uniformed architecture. we can obtain
automated tools to generate test cases for state-based testing and perform data flow
testing as the same time. The combination of the two techniques is essential in
improving our testing environment and thus, contributes to the enhancement of the
reliability of software products.

The hybrid testing strategy can be used in software design stage and software
implementation stage. In design stage, testers can start design test cases. After the
coding phase, data flow testing can be applied based on the state information. It need
not reengineer to get state information from source code. Expenses of test case
generation are reduced significantly.

A Standard-based UML information exchange format--- XMI (XML based Metadata
Interchange) is used in my research work, to bridge the software designer and
software tester. No matter what kind of CASE tools designer use, as long as save as

XMI format. the design specifications can be easier understood by testing software.

78

7.2 Future Work

With any research or project there is always more that can be done to improve or build
upon the propositions or developments. This is true of this research and in particular the
design and development of the class-testing tool.

Main areas of future work have been identified:

It would worth extending the hybrid class testing technique to cluster testing technique.

79

[§S)

wh

10.

11.

BIBLIOGRAPHY

. A. Coen-Porisini, F. De Paoli, C.Ghezzi, and D.Mandrioli. (1991) “Software specification

via symbolic execution”. IEEE Trans Software Engineering, SE-17 (9): 884-899, 1991

Alhir. S.S. (1998), UML in a nutshell, O’Reilly, 1998.

Aynur Abdurazik, Jeff Offutt (2000), *Using UML Collaboration Diagrams for Static
checking and test generation”, Proceedings of 3rd international conference on UML

(UML’00), 2000.

Beizer, B. (1990) Software Testing Technigues, 2™ ed. Van Nostrand Reinhold.

Beizer, B. (1995) Black-Box Testing: Techniques for Functional Testing of Software and

Svstems. John Wiley & Sons, Inc.

Binder. R. V. (1996a) “The FREE Approach for System Testing: Use-cases, Threads, and
Relations™. Object Mugazine, 6(2), pp. 73-81.

Binder. R. V. (1996b) “Testing Object-Oriented Software: a Survey”, Software Testing,
Verification and Reliability, (6), pp. 125-252.

Chan, F.T. and Chen, T.Y. (1987) “*AIDA-A Dynamic data flow anomaly detection system

for Pascal programs”, Software-practice and Experience, 17(3): 227-239

CHEN, H.Y, TSE. T.H., (1998), “In black and White: an integrated approach to class-

level testing of object-oriented programs”, ACM Trans on Software engineering and

methodology, 1998, 7(3): 250-295

Chow, T.S.. (1978), "Testing software design modeled by finite-state machines”, IEEE
Transactions on Software Engineering, SE-4, n.3, 178-186, 1978

Doong, R.-K. and Frankl, P.G.(1994), “The ASTOOT approach to testing object-oriented
programs”, ACM Trans on software engineering and Methodology, 1994, 3(2):101-130

. Frankl, P. G. and Weyuker, E. J. (1988) “An Applicable Family of Data Flow Testing

Crileria”, IEEE Trunsactions on Software Engineering, 14{10), pp. 1483-1498.

80

14.

17.

19.

. Firesmith, D. G. (1993) “Testing Object-Oriented Software”, Proceedings of 11"

International Conference on Technology of Object Oriented Language and Systems, (TOOLS
USA, '93), New Jersey, pp. 407-426.

Fosdick, L.D. and Osterweil, L. J. (1976), “Data Flow analysis in software reliability”, ACM
Computing surveys 8(3): 305-330.

. Gao. J. Z.. Kung, D., Hsia, P.. Toyoshima, Y. and Chen C. (1995) “Object State Testing for

Object-Oriented Programs”, Proceedings of International Computer Software and
Application Conference (COMPSAC '93), The IEEE Computer Society, pp. 232-238.

. Glass. R.L. (1990), “Software Maintenance is solution-not a problem”. Journal of

systems and software, 11(2): 77-78.

Harel. D.. (1987), "Statecharts: a visual formalism for complex systems”, Science of

computer programming, 1987, Vol8, 231-274

. Harrold. M. J. and Rothermel, G. (1994) “Performing Data Flow Testing on Classes™,

Proceedings of the 2" ACM SIGSOFT Svmposium on the Foundations of Software
Engineering, pp. 154-163.

Hoftman. D. and Strooper. P. (1997), “ClassBench: a Framework for Automated Class
Testing™, Software - Practice and Experience, 27(5), pp. 573-597.

. Hong, H. S.. Kwon, Y. R. and Cha, S. D. (1995), “Testing of Object-Oriented Programs

Based on Finite State Machines™, Proceedings of APSEC '93, Australia, pp. 234-241.

. Huang, C-M,, Lin, Y-C.. and Jang, M-Y. (1995). “An Executable Protocol Test Sequence

Generation Method for EFSM-specified Protocols™, IFIP Transactions C: Communication

Systems — Protocol Test Svstems, pp 29-44.

. Huang, J. C. (1979), “Detection of Data Flow Anomaly Through Program Instrumentation”,

[EEE Transaction of Software Engineering, SE-5 (3), pp. 226-236.

. Jorgensen, P.C. and Erickson, C., (1994),“Object-oriented integration testing”,

Communications of ACM, 1994, 37(9): 50-38

8!

(]
w

33.

. Jeff Offutt and Aynur Abdurazik, (1999), “Generating tests from UML specifications”,

proceedings of the second IEEE international conference on the Unified Modeling
Language (UML99), 1999, PP416-429

. Kim, Y.G., H.S.Hong, S.M.Cho (1999), “Test cases generation from UML State

Diagrams™. IEE Proceedings, Software, 1999, 146(4): 187-192

. Kirani, S and Tsai, W. T. (1994), “Method sequence specification and verification of

classes™. Journal of Object-Oriented Programming, October, pp. 28-38.

. Kung, D. C.. Gao. J.. Hsia, P., Lin, J. and Toyoshima, Y. (1993). “Design Recovery for

Software Testing of Object-Oriented Program™. Proceedings of the Working Conference on

everse Engineering, Baltimore Maryland. IEEE Computer Society Press. pp. 202-211.

. Kung, D. C., Suchak. N., Gao. J. and Hsia, P. (1994), “On Object State Testing”. Proceedings

of the 18" Annual International Computer Software & Applications C onference, IEEE

Computer Society Press. pp. 222-227.

. Kung, D., Gao, J., Hsia, P., Toyoshima, Y., and Chen, C. (1995). “A Test Strategy for Object-

Oriented Programs™. Proceedings of Computer Sofiware and Applications Conference. Dallas
Texas, pp. 239-244.

. Kung, D.. Lu, N., Venugopalan, N., Hsia. P.. Toyoshima. Y. Chen, C. and Gao, J (1996), *

Object State Testing and Fault Analysis for Reliable Software Systems™, Proceedings of the

7" International Symposium on Software Reliability Engineering, New York, pp. 76-85.

. Lorenz. M. (1993) Object-Oriented Software Development, Englewood Cliffs, New Jersey:

Prentice Hall.

. Luo, G., Bochmann, G. v. and Petrenko, A. (1994), “Test Selection Based on Communicating

Nondeterministic Finite-State Machines Using a Generalized Wp-Method”, IEEE
Transactions on Software Engineering, 20(2), pp 149-162.

McGregor. J. D. and Korson, T. D. (1994), “Integrated Object-Oriented Testing and

Development Processes”, Communications of the ACM, 37(9) pp. 59-77.

34.

|92}
W

36.

38.

40.

41.

43.

44.

Parrish, A. S., Borie, R. B. and Cordes, D. W. (1993), “Automated Flow Graph-Based
Testing of Object-Oriented Software Modules”, Journal of Systems and Software, 23, pp. 95
109.

. Rapps, S. and Weyuker, E. J. (1985), “Selecting Software Test Data Using Data Flow

Information™. [EEE Transactions on Software Engineering, SE-11 (4), pp. 367-375.

R. M. Hierons, "Testing from a Z Specification”. Sofrware Testing, Verification and
Reliability, Vol. 7. (1997) 19-33.

. Tsai, B-Y.. Stobart, S., Parrington. N. and Mitchell, 1. (1999) “Automated Class Testing

Using Threaded Multi-way Trees to Represent the Behavior of State Machines™. Volume 8,

the Annals of Software Engineering Journal, pp. 203-221.

Tse, T. H. and Xu, Z. (1996). “Test Case Generation for Class-Level Object-Oriented
Testing”, Proceedings of the 9" international Software Quality Week (OW '96), San

Francisco.

. Turner. C.D. and Robson. D.J. (1995). A state-based approach to the testing of class-based

programs . Software: Concepts and Tools. 1995, 16(3): 106-112.

Ugo Buy. Carlo Ghezz. Alessandro Orso, Mauro Pezze, A framework for testing object-
oriented components”, ICSE'99 Workshop on Testing distributed Component based Systems.
1999

Weyuker, E., T. Goradia and A Singh, "Automatically Generating Test Data from a Boolean
pecification”. [EEE Trans on Software Engineering, Vol. 20, No. 5. (1994), pp. 353-363.

. XMI Specification Document, ftp://ftp.omg.org/pub/docs/ad/98-0701.pdf

JavaCC web site: http://www.metamata.com/javacc

Novosoft’s NS UML web site: http://nsuml.sourceforge.net/

Appendix A XMI file for queue class

<?xml version="1.0" encoding="UTF-8"72>
<¥MI xmi.version="1.0">
<¥MI.header>
<¥MI.documentation>
<XMI.exporter>Novosoft UML Library</XMI.exporter>
<¥MI.exporterVersion>0.4.19</XMI.exporterVersion>
</3XMI.documentation>
<¥MI.metamodel xmi.name="UML" xmi.version="1.3"/>
</¥MI.header>
<¥MI.content>
<Model Management.Model xmi.id="xmi.l" «ml.uuid="127-0-0-1--6fcbeb23:e588al4:-8000">
<Foundation.Core.ModelElement.name>untitledModel</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isAbstract xmi.value="false"/>
<Foundation.Core.Mamespace.ownedElement>
<Foundation.Core.Class xmi.id="xmi.2" xmi.uuid="127-0-0-1-b23:e52e988ald:-TE£E">
<Foundation.Core.ModelElement.name>queue</Foundation.Core.ModelElement . name>
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isAbstract xmi.value="false"/>
<Foundation.Core.Class.isActive xmi.value="false"/>
<Foundation.Core.ModelElement.namespace>
<Foundation.Care.Namespace xmi.idref="zmi.l"/>
</Foundation.Core.ModelElement.namespace>
<Foundation.Core.Mamespace.ownedElement>
<Behavioral Elements.State Machines.StateMachine xzmi.id="wmi.3"xmi.uuid="12">
- Foundation.Core.ModelElement.name>queueStateMachine</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.lsSpecification xmi.value="false"/>
<Foundation.Core.ModelElement.namespace>
<Foundat:ion.Core.Namespace xmi.idref="xm1.2"/>
</Foundation.Core.ModelElement.namespace>
<Behavioral_Elements.State_Machines.StateMachine.context>
<Foundation.Core.ModelElement xmi.idref="xmi.2"/>
</Behavioral_Elements.State_Machines.StateMachine.context>
<Behavioral Elements.State_Machines.StateMachine.top>
<Behavioral Elements.State _Machines.CompositeState xmi.id="xmi.4">
<Foundation.Core.ModelElement.name>state_machine_top</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Behavioral_Elements.State_Machines.State.stateMachine>
<Behavioral Elements.State_Machines.StateMachine xmi.idref="xmi.3"/>
</Behavioral Elements.State_Machines.State.stateMachine>
<Behavioral Elements.State_Machines.CompositeState.subvertex>
<Behavioral_Elements.State_Machines.Pseudostate xmi.id="xmi.5"
“mi.uuid="127-0-0-1--6fcbeb23:e52e988al4:-7£fc">
<Foundation.Core.ModelElement.i1sSpecification xmi.value="false"/>
<Behavioral Elements.State_Machines.Pseudostate.kind xmi.value="initial"/>
<Behavioral Elements.State_Machines.StateVertex.container>
<Behavioral Elements.State_Machines.CompositeState xmi.idref="xmi.4"/>
</Behavioral_ Elements.State_Machines.StateVertex.container>
<Behavioral Elements.State_Machines.StateVertex.outgoing>
<Behavioral Elements.State_Machines.Transition xmi.idref="xmi.é"/>
</Behavioral Elements.State_Machines.StateVertex.outgoing>
</Behavioral_Elements.State_Machines.Pseudostate>
<Behavioral Elements.State_Machines.State xmi.id="xmi.7"
ami.uuid="127-0-0-1--6fcbeb23:e52e988al14:-7££fb">
<Foundation.Core.ModelElement.name>Empty</Foundation.Core.ModelElement .name>
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Behavioral Elements.State_Machines.StateVertex.container>
<Behavioral Elements.State_Machines.CompositeState
“mi.idref="=mi.4"/>
</Behavioral_Elements.State_Machines.StateVertex.container>
<Behavioral Elements.State Machines.StateVertex.outgoing>

84

<Behavioral Elements.State_Machines.Transition
xmi.idref="xmi.8"/>
</Behavioral_Elements.State Machines.StateVertex.outgoing>
<Behavioral Elements.State_Machines.StateVertex.incoming>
<Behavioral Elements.State_Machines.Transition
#mi.idref="xmi.6"/>
<Behavioral Elements.State_Machines.Transition
ami.idref="xmi.9"/>
</Behavioral_Elements.State_Machines.StateVertex.incoming>
</Behavioral Elements.State_Machines.State>
<Behavioral Elements.State Machines.State #mi.id="xmi.l0"
“mi.uuid="127-0-0-1-~cfcbeb23:e52e988a14:-7££3">
<Foundation.Core.ModelElement.name>NotFull</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Behavioral Elements.State_Machines.StateVertex.container>
<Behavioral Elements.State_Machines.CompositeState
“mi,idref="xmi.4"/>
</Behavioral_Elements.State_Machines.StateVertex.container>
<Behavioral Elements.State_Machines.StateVertex.outgoing>
<Behavioral Elements.State_Machines.Transition
zmi.1dref="xmi.9"/>
<Behavioral Elements.State_Machines.Transition
=“my.idref="umi.11"/>
</Behavioral Elements.State_Machines.StateVertex.outgoing>
<Behavioral Elements.State_Machines.StateVertex.incoming>
<Behavioral Elements.State_Machines.Transition
“my.idref="vmi.8"/>
<Behavioral Elements.State_Machines.Transicion
#my.1dref="xmy.12"/>
</Behavioral _Elements.State_Machines.StateVertex.incoming>
</Behavioral Elements.State_Machines.State>
<Behavioral Elements.State_Machines.State xmi.id="xmi.13"
s“mi.uurd="127-0-0-1--6fcbeb23:e52e988al4:-7££8">

“Foundation.Core.ModelElement.name>Full</Foundation.Core.ModelElement . .name>
<Foundation.Core.ModelElement.1sSpecification xmi.value="false"/>
<Behavioral Elements.State_Machines.StateVertex.container>

<Behavioral Elements.State_Machines.CompositeState
<mi.idref="xm1.4"/>
</Behavioral_Elements.State_Machines.StateVertex.container>
<Behavioral Elements.State_Machines.StateVertex.outgoing>
<Behavioral Elements.State_Machines.Transition

“mr.idref="xmi.12"/>
</Behavioral Elements.State_Machines.StateVertex.outgoing>
<Behavioral Elements.State_Machines.StateVertex.incoming>

<Behavioral Elements.State_Machines.Transition
smy.idref="xmi.11"/>
</Behavioral Elements.State_Machines.StateVertex.incoming>
</Behavioral Elements.State_Machines.State>
</Behavioral_Elements.State_Machines.CompositeState.subvertex>
</Behavioral Elements.State_Machines.CompositeState>
</Behavioral Elements.State_Machines.StateMachine.top>
<Behavioral _Elements.State_Machines.StateMachine.transitions>
<Behavioral_Elements.State_Machines.Transition xmi.id="xmi.é"
mi.uuid="127-0-0-1-~6fcbeb23:e52e988al4:-7££fa">
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Behavioral Elements.State_Machines.Transition.stateMachine>
<Behavioral Elements.State_Machines.StateMachine xmi.idref="xmi.3"/>
</Behavioral_Elements.State_Machines.Transition.stateMachine>
<Behavioral Flements.State_Machines.Transition.source>
<Behavioral Elements.State_Machines.StateVertex xmi.idref="xmi.3"/>
</Behavioral Elements.State_Machines.Transition.source>
<Behavioral Elements.State_Machines.Transition.target>
<Behavioral Elements.State_Machines.StateVertex xmi.idref="xmi.7"/>
</Behavioral Elements.State Machines.Transition.target>
</Behavioral_Elements.State_Machines.Transition>
<Behavioral Elements.State_Machines.Transition xmi.id="xmi.8"

“my.uuid="127-0~0-1--6fcbeb23:e52e%88al4:-7££7">

<Foundation.Core.ModelElement.name>add</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Behavioral Elements.State Machines.Transition.trigger>

<Behavioral Elements.State_Machines.Event xmi.idref="xmi.l4"/>
</Behavioral_Elements.State_Machines.Transition.trigger>
<Behavioral Elements.State_Machines.Transition.stateMachine>
<Behavioral Elements.State_Machines.StateMachine xmi.idref="xmi.3"/>
</Behavioral Elements.State_Machines.Transition.stateMachine>
<Behavioral Elements.State_Machines.Transition.source>
<Behavioral Elements.State_Machines.StateVertex xmi.idref="xmi.7"/>
</Behavioral Elements.State_Machines.Transition.source>
<Behavioral Elements.State_Machines.Transition.target>
<Behavioral_Elements.State_Machines.StateVertex xmi.idref="xmi.l0"/>
</Behavioral _Elements.State_Machines.Transition.target>
<Behavioral_Elements.State_Machines.Transition.guard>
<Behavioral Elements.State_Machines.Guard xmi.id="xmi.l15">
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Behavioral Elements.State_Machines.Guard.expression>
<Foundation.Data_Types.BooleanExpression xmi.id="xmi.l&">
~Frunaatizn.lata Types.Evpressicn.languagestcols/Foundaticn.Daza_Types.Expressicn. language™
<Foundat:ion.Data_Types.Expression.body>countslt;5</Foundation.Data_Types.Expression.body>
</Foundation.Data_Types.BooleanExpression>
</Behavioral Elements.State_Machines.Guard.expression>
<Behavioral Elements.State_Machines.Guard.transition>
<Behavioral Elements.State_Machines.Transition
#mi.idref="xmi.8"/>
</Behavioral Elements.State_Machines.Guard.transition>
</Behavioral Elements.State_Machines.Guard>
</Behavioral_Elements.State_Machines.Transition.guard>
<Behavioral Elements.State_Machines.Transition.effect>
<Behavioral Elements.Common_Behavior.ActionSequence xmi.id="umi.l7">
<Foundation.Core.ModelElement.name></Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Behavioral_Elements.Common_Behavior.Action.isAsynchronous
xmy.value="false"/>
</Behavioral_Elements.Common_Behavior.ActionSequence>
</Behavioral Elements.State_Machines.Transition.effect>
</Behavioral Elements.State_Machines.Transition>
<Behavioral_Elements.State_Machines.Transition xmi.id="xmi.9"
xmL.uuld="127-0-0-1--Afcheb23:e52e988al4:-7££6">
<Foundation.Ccore.ModelElement.name>delet</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.isSpecification xmi.value="tfalse"/>
<Behavioral Elements.State_Machines.Transition.trigger>
<Behavioral_Elements.State_Machines.Event xmi.idref="xmi.l38"/>
</Behavioral Elements.State_Machines.Transition.trigger>
<Behavioral_Elements.State_Machines.Transition.stateMachine>
<Behavioral Elements.State_Machines.StateMachine xmi.idref="xmi.3"/>
</Behavioral Elements.State_Machines.Transition.stateMachine>
<Behavioral Elements.State_Machines.Transition.source>
<Behavioral_ Elements.State_Machines.StateVertex xmi.idref="xmi.10"/>
</Behavioral _Elements.State_Machines.Transition.source>
<Behavioral Elements.State_Machines.Transition.target>
<Behavioral Elements.State_Machines.StateVertex xmi.idref="xmi.7"/>
</Behavioral Elements.State_Machines.Transition.target>
<Behavioral Elements.State_Machines.Transition.gquard>
<Behavioral Elements.State_Machines.Guard xmi.id="xmi.19">
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Behavioral_ Elements.State_Machines.Guard.expression>
<Foundation.Data_Types.BooleanExpression xmi.id="xmi.20">
<Foundation.Data_Types.Expression.language>bool</Foundation.Data_Types.Expression.languag
e>
<Foundat:ion.Data_Types.Expression.body>countsgt;0</Foundation.Data_Types.Expression.body>
</Foundation.Data_Types.BooleanExpression>
</Behavioral Elements.State_Machines.Guard.expression>
<Behavioral Elements.State_Machines.Guard.transition>
<Behavioral Elements.State_Machines.Transition xmi.idref="umi.9"/>
</Behavioral Elements.State_Machines.Guard.transition>
</Behavioral Elements.State Machines.Guard>
</Behavioral Elements.State Machines.Transition.guard>
</Behavioral Elements.State_Machines.Transition>
<Behavioral Elements.State_Machines.Transition xmi.id="xmi.ll"
ami.uuid="127-0-0-1--6fcbeb23:e52e988al4:-7££5">
<Foundation.Core.ModelElement.name>add</Foundation.Core.ModelElement.name>"
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>

86

<Behavioral Elements.State_Machines.Transition.trigger>
<Behavioral Elements.State_Machines.Event xmi.idref="xmi.2l"/>
</Behavioral Elements.State_Machines.Transition.trigger>
<Behavioral Elements.State_Machines.Transition.stateMachine>
<Behavioral Elements.State_Machines.StateMachine xmi.idref="umi.3"/>
</Behavioral Elements.State_Machines.Transition.stateMachine>
<Behavioral Elements.State_Machines.Transition.source>
<Behavioral Elements.State_Machines.StateVertex xmi.idref="xmi.l0"/>
</Behavioral Elements.State_Machines.Transition.source>
<Behavioral Elements.State_Machines.Transition.target>
<Behavioral _Elements.State _Machines.StateVertex xmi.idref="xmi.l3"/>
</Behavioral Elements.State_Machines.Transition.target>
<Behavioral Elements.State_Machines.Transition.guard>
<Behavioral Elements.State_Machines.Guard xmi.id="xmi.22">
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Behavioral Elements.State_Machines.Guard.expression>
<Foundation.Data_Types. Booleansxo:ession Ami.id="=mi.23">
z Laz .x_.,E":.:’."p"’:b‘y‘..4'1(}1..3;,*’ sccal-/Founzation, ua[l_.‘/D"b <pressi cn.language .
<Foundation.Data_Types.Expression.body>countslt;5</Foundation.Data_Types.Expressiaon.body>
</Foundation.Data_Types.BooleanExpression>
</Behavioral Elements.State_Machines.Guard.expression>
<Behavioral Elements.State_Machines.Guard.transition>
<Behavioral_Elements.State_Machines.Transition xmi.idref="umr.lLl"/>
</Behavioral_ Elements.State_Machines.Guard.transition>
</Behavioral Elements.State_Machines.Guard>
</Behavioral Elements.State_Machines.Transition.gquard>
</Behavioral Elements.State_Machines.Transition>
<Behavioral Elements State Machlnes Transition xmi.:d="xm1i.12"
#mi.uuid="127-0-0-1--6fcbeb23:e52e988al4:-T££4">
<Foundation.Core.ModelElement.name>delete</Foundation.Core.ModelElement,name>
“Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Behavioral Elements.State Machines.Transition.trigger>
<Behavioral Elements.State_Machines.Event xmi.idref="xm1.24"/>
</Behavioral Elements.State Machines.Transition.trigger>
<Behavioral Elements.State_Machines.Transition.stateMachine>
<Behavioral Elements.State_Machines.StateMachine zmi.idref="xmy.3"/>
</Behavioral_Elements.State_Machines.Transition.srtateMachine>
<Behavioral Elements.State_Machines.Transition.source>
<Behavioral Elements.State Machines.StateVertex umi.idref="xm1.13"/>
</Behavioral Elements.State_Machines.Transition.source>
<Behavioral Elements.State_Machines.Transition.target>
<Behavioral Elements.State_Machines.StateVertex xmi.idref="xmi.!0"/>
</Behavioral Elements.State_Machines.Transition.target>
<Behavioral_Elements.State_Machines.Transition.guazd>
<Behavioral Elements.State_Machines.Guard xmi.id="xmi.25">
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Behavioral Elements.State_Machines.Guard.expression>
<Foundatxon.oata_Types.BooleanSxpression #mi.id="xmi.26">
-anguagerccal-/Foundation.lata _Types.Euprassisn. language
[CETPEC AN 0 Te SERThe TH 130 L ZMN unaaticn .-qx.d .,CDS prassion.ocay
</Foundation.Dbata_Types. BooleanExpression>
</Behavioral Elements.State_Machines.Guard.expression>
<Behavioral_Elements.State_Machines.Guard.transition>
<Behavicral_Elements.State_Machines.Transition xmi.idref="xmi.12"/>
</Behavioral Elements.State_Machines.Guard.transition>
</Behavioral Elements.State_Machines.Guard>
</Behavioral_Elements.State_Machines.Transition.quard>
</Behavioral Elements.State_Machines.Transition>
</Behavioral Elements.State_Machines.StateMachine.transitions>
</Behavioral Elements.State_Machines.StateMachine>
</Foundation.Core.Namespace.ownedElement>
<Foundation.Core.Classifier.feature>
<Foundation.Core.Attribute xmi.id="xmi.27">
<Foundaticn.Core.McdelElement.name>count</Foundation.Core.ModelElement .name>
<foundation.Core.McdelElement.isSpecification =mi.value="false"/>
<Foundation.Core.Feature.owner>
<Foundation.Core.Classifier xmi.idref="xmi.2"/>
</Foundation.Core.Feature.owner>
</Foundation.Core.Attribute>
<Foundation.Core.Attribute xmi.id="xmi.28">

- - -—— Snda? IO Do ~——— e
“foundaticon.Clormc.tcdelliement Jaamesgl/reundation.Core M

F4=3-3- 34

- _ . o
UucLticilicu . ualiie~

87

<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Foundation.Core.Feature.owner>
<Foundation.Core.Classifier xmi.idref="xmi.2"/>
</Foundation.Core.Feature.owner>
</Foundation.Core.Attribute>
<Foundation.Core.Operation xmi.id="xmi.29">
<Foundation.Core.ModelElement.name>queue</Foundation.Core.ModelElement .name>
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Foundation.Core.BehavioralFeature.isQuery xmi.value="false"/>
<Foundation.Core.QOperation.isRoot xmi.value="false"/>
<Foundation.Core.Operation.isLeaf xmi.value="false"/>
<Foundation.Core.QOperation.isAbstract xmi.value="false"/>
<Foundation.Core.Feature.owner>
<Foundation.Core.Classifier xmi.idref="xmi.2"/>
</Foundation.Core.Feature.owner>
</Foundation.Core.QOperation>
<Foundation.Core.Operation xmi.id="xmi.30">
<fFoundation.Core.ModelElement.name>add</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.1sSpecification xmi.value="false"/>
<Foundation.Core.BehavioralFeature.isQuery xmi.value="false”/>
<Foundation.Core.Operation.isRoot zmi.value="false"/>
<Foundation.Core.Operation.isLeaf xmi.value="false"/>
<Foundation.Core.Qperation.isAbstract xmi.value="false"/>
<Foundation.Core.Feature.owner>
<Foundation.Core.,Classifier xmi,idref="zmi.2"/>
</Foundation.Core.Feature.owner>
<Foundation.Core.BehavioralFeature.parameter>
<Foundation.Core.Parameter xmi.id="xmi.31">
<Foundation.Core.ModelElement.name>data</Foundation.Core.ModelElement .name>
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Foundation.Core.Parameter.kind xmi.value="in"/>
<Foundation.Core.Parameter.behavioralFeature>
<Foundation.Core.BehavioralFeature xzmi.idref="xmi.30"/>
</Foundation.Core.Parameter.behavioralFeature>
<Foundation.Core.Parameter.type>
<fFoundation.Core.Classifier xmi.idref="xm1.32"/>
</Foundation.Core.Parameter.type>
«~/Foundation.Core.Parameter>
</Foundation.Core.BehavioralFeature.parameter>
</Foundation.Core.Operation>
<Foundation.Core.Operation xmi.id="xmi.33">
<Foundation.Core.ModelElement.name>delte</Foundation.Core.ModelElement .name>
<Foundation.Core.ModelElement.isSpecificdation xmi.value="false"/>
<Foundation.Core.BehavioralFeature.isQuery xmi.value="false"/>
<Foundation.Core.Operation.isRoot xmi.value="false"/>
<Foundation.Core.Operation.isLeaf xmi.value="false"/>
<Foundation.Core.QOperation.isAbstract xmi.value="false"/>
<Foundation.Core.Feature.owner>
<Foundation.Core.Classifier xmi.idref="umi.2"/>
</Foundation.Core.Feature.owner>
</Foundation.Core.QOperation>
<Foundation.Core.Operation xmi.id="xmi.34">
<Foundation.Core.ModelElement.name>size</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Foundation.Core.BehavioralFeature.isQuery xmi.value="false"/>
<Foundation.Core.Operation.isRoot xmi.value="false"/>
<Foundation.Core.Operation.isLeaf xmi.value="false"/>
<Foundation.Core.Operation.isAbstract xmi.value="false"/>
<Foundation.Core.Feature.owner>
<Foundation.Core.Classifier xmi.idref="xmi.2"/>
</Foundation.Core.Feature.owner>
</Foundation.Core.Operation>
</Foundation.Core.Classifier.feature>
</Foundation.Core.Class>
<Foundation.Core.DataType xmi.id="xmi.32">
<Foundation.Core.ModelElement.name>char</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.isSpecification zmi.value="false"/>
<Foundation.Core.GeneralizableElement.isRoot xzmi.value="false"/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value="false"/>
<foundation.Core.GeneralizableElement.isAbstract xmi.value="false"/>
<Foundation.Core.ModelElement .namespace>

83

<Foundation.Core.Namespace xmi.idref="xmi.l"/>
</Foundation.Core.ModelElement.namespace>
</Foundation.Core.DataType>
<Behavioral Elements.State_Machines.SignalEvent xmi.id="xmi.14">
<Foundaticn.Core.ModelElement.name>tl</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Foundation.Core.ModelElement .namespace>
<Foundation.Core.Namespace xmi.idref="=zmi.l"/>
</Foundation.Core.ModelElement.namespace>
<Behavioral Elements.State_Machines.Event.transition>
<Behavioral Elements.State_Machines.Transition xmi.idref="umi.35"/>
<Behavioral Elements.State_Machines.Transition xmi.idref="xmi.8"/>
</Behavioral Elements.State_Machines.Event.transition>
</Behavioral Elements.State_Machines.SignalEvent>
<Behavioral Elements.State_Machines.SignalEvent xmi.id="xmi.l8">
<Foundation.Core.ModelElement.name>t2</Foundation.Core.ModelElement .name>
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Foundation.Core.ModelElement.namespace>
<Foundation.Core.MNamespace xmi.idref="umi.l"/>
</Foundation.Core.ModelElement.namespace>
<Behavioral_Elements.State_Machines.Event,transition>
<Behavioral Elements.State_Machines.Transition xmi.idref="xzmi.9"/>
</Behavioral Elements.State_Machines.Event.transition>
</Behavioral Elements.State_Machines.SignalEvent>
<Behavioral Elements.State_Machines.SignalEvent xmi.id="xmi.21">
<Foundation.Core.ModelElement.name>t3</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Foundation.Core.ModelElement ., namespace>
<Foundation.Core.Namespace xmi.idref="xmi.l"/>
</Foundation.Core.ModelElement.namespace>
<Behavioral_Elements.State_Machines.Event.transition>
<Behavioral Elements.State_Machines.Transition xmi.idref="xmi.ll"/>
</Behavioral Elements.State_Machines.Event.transition>
</Behavioral Elements.State_Machines.SignalEvent>
<Behavioral Elements.State_Machines.S5ignalEvent xmi.:d="xzmi.24">
<Foundation.Core.ModelElement.name>td</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.1sSpecification xm:i.value="false"/>
<Foundation.Core.ModelElement .namespace>
<Foundation.Core.Mamespace xmi.idref="xmi.l"/>
</Foundation.Core.ModelElement.namespace>
<Behavioral_Elements.State Machines.Event.transition>
<Behavioral Elements.State_Machines.Transition xmi.idref="umi.l2"/>
</Behavioral Elements.State_Machines.Event.transition>
</Behavioral Elements.State_Machines.SignalEvent>
</Foundation.Core.Namespace.ownedElement>
</Model Management.Model>
</*MI.content>
</EMI>

89

Appendix B
//Scurce Code Parser Grammar File

.

-

* Author: Xiachong Yang

v Date: Feb. 2001

* This file contains a Java grammar and
actions that implement a frontc-end.

v/

options {
JAVA_UNICODE_ESCAPE = true;
b

PARSER_BEGIN(JavaParser)
public class JavaParser |

oublic static void main(String args(l}) {
JavaParser parser;
1t (args.length == 0) {
System.out.println("Java Parser
Version l.1l: Reading from standard input .
RS
parser = new JavaParser(System.in);

} else Lf (args.length == 1)} {
System.out.printlin("Java Parser
Yersion l.l: Reading from £ile " + args(0}

L K
try |
parser = new JavaParser (new
java.io.FileinputStream(args(0]));
} catch
1java.lo.FileNotFoundException e; ¢
System.cut.println{"Java Parser
Yersion l.l: File " + args{Q] + " not

found.");
return;
}
} else |

System.out.printin("Java Parser
Yersion l.l: Usage 1s one of:");

System.out.println(” java
JavaParser < inputfile”);

System.out.println("OR");

System.out.println(" java
JavaParser inputfile”);

return;

}

try |
parser.CompilationtUnit();
System.out.println("Java Parser

Yersicn l.l: Java program parsed
successfully.”):

} catch (ParseError e) |
System.out.println(e.getMessage())};
System.out.println("Java Parser

Version l.l: Encountered errors during
parse."};

1

PARSER_END(JavaParser)

/* WHITE SPACE */

SKIP :
{

| "\g"
| "\n"
| "\pg"
AN
}

/* COMMENTS -/

MORE :
{

"//" : IN_SINGLE_LINE_COMMENT
i

<"/es® ~["/"]> : IN_FORMAL_COMMENT
[

"/*" : IN_MULTI_LINE_COMMENT
}

<IN_SINGLE_LINE_COMMENT>
SPECIAL_TOKEN :
{

<SINGLE_LINE_COMMENT: "\n" | “\r"
"\r\n" > : DEFAULT
}

<IN_FORMAL_COMMENT>
SPECIAL_TOKEN
{

<FORMAL _COMMENT: "*/" > : DEFAULT

b

<IN_MULTI_LINE COMMENT>
SPECIAL_TOKEN :
{

<MULTI_LINE_COMMENT: "*/" > : DEFAULT

}

<IN_SINGLE_LINE_COMMENT, IN_FORMAL COMMENT, [
N_MULTI_LINE_COMMENT>
MORE :
{
< ~[] >
}

/* RESERVED WORDS AND LITERALS */

TOKEN :

{

ABSTRACT: "abstract” >
BOOLEAM: "boolean" >
BREAK: "break"” >

BYTE: "byte” >

CASE: "case" >

CATCH: "catch" >

CHAR: "char" >

CLASS: "class" >
CONST: "const" >

CONTIMUE: "continue" >
DEFAULT: "default” >

DO: "do” >

DOUBLE: "double” >
ELSE: "else" >
EXTENDS: "extends” >
FALSE: "false" >
FINAL: "final® -~

AN A A A

AN NANAA

’AANANAANAN

90

FINALLY: "finally" >
FLOAT: "float™ >

FOR: "for" >

GJOTG: "goto" >

IF: "if" >

IMPLEMENTS: "implements” >
IMPORT: "import" >
INSTANCEQF: "instanceof” >
INT: "int" >

INTERFACE: "interface" >
LONG: "long” >

HATIVE: "native” >

NEW: "new" >

NULL: "null” >

PACEKAGE: "package">
PRIVATE: "private” >
PROTECTED: "protected" >
BUBLIC: "public" >
RETURN: "return" >
SHORT: "short” >

STATIC: "static” >
SUPER: "super" >

SWITCH: "switch” >
SYNCHRONIZED: "synchronized” >
THIS: "this" >

THROW: "throw" >

THROWS: "throws" >

< TRANSIENT: "transient"™ >
< TRUE: "true" >

* TRY: "try" >

< VQID: "wvoid" >

< YOLATILE: "wvolatile” >

< WHILE: "while" >

AAAANANANAAA

A A AN

~

AN L LN A A A AN AN

I

A

|
|
|
|
|
|
I
I
!
!
|
|
!
|
|
|
|
|
!
|
!
|
!
!
i
!
|
|
|
I
I
t
!
}

/* LITERALS */

TCKEN :
{
< INTEGER_LITERAL:
<DECIMAL_LITERAL> (["1","L"])?
| <HEX_LITERAL> ({"1","L"])?
| <OCTAL_LITERAL> (["Ll","L"])?

|
< #DECIMAL LITERAL: ["1"-"9"] (["0"~-
"gri) e >
|
< #HEX_LITERAL: "Q" (["x","¥"] ([("0Q"~-
g, ngt-ngn, "AY="F")+ >
|
< #QCTAL_LITERAL: "Q0" (["0"-"7"])* >
!
< FLOATING_POINT_LITERAL:
([707-"g")T+ . % (["Q"="9n])~
(<EXPONENT>)? (["f","F","d","D"]})2
"™ (["0"-"3"] 1+ (<EXPOMNENT>)?
cgrer, e, "d","0"1) ?
I (["Q"-"9"];+ <EXPONENT>
(MER,TEN, A, "D)2
[{(["Q"="8"])+ (<EXPONENT>)?
("€", "E", "d", "D"]
>
|
< #EXPONENT: ["e","E"] (["+","-"])2
("0"-"3"1) - >
|
< CHARACTER_LITERAL:
CITTLMA, AT, L)
AN

(

["n",“t","b",":","f",“\\”,"'”,"\""]
1oreT-rT") | [non-"7"} 12
I ["0"-"3"] [nou_u7ul {"o"
)

!
< STRING_LITERAL:
wy o
{ =0\, "\, "\n”, "\c"])
AN
(
["n"I "t"l "b"’ "r"l "E"I "\\"I " "l "\"“1
I A b B S VA I 4
I {"Q"=-"3"] ["o"~"7"] {"Q"
)

) v
LA

b
/* IDENTIFIERS */

TOKEN :
{
< IDENTIFIER: <LETTER>
(SLETTER>|<DIGIT>)* >
!
< #LETTER:

{
"\u0024",
"\uQ041"-"\u005a",
"\uQQs£",
"\uQ061"-"\u007%a",
"\ug0c0"-"\u00ds",
"\uQ0d8"-"\u00fte",
"\uQOf8"-"\uOofe",
"\uQl0Q"-"\ultfe",
"\u3040"-"\u31g¢e",
"\u3300"-"\u337e",
"\u3400"-"\u3d2d",
"\udeQ0"-"\ugffe",
"\uf900"-"\ufatt"

>
|
< #DIGIT:

{
"\u0030"-"\u0039",
"\u0660"-"\u0669",
"\ugefo"-"\u06£9",
"\uQ966"-"\uC96t",
"\uQ9%e6"-"\ul09%ef",
"\uQagé"-"\ula6f",
"\uQae6"-"\ulaef",
"\uObé&6"-"\ulGbsf",
"\uQbe7"-"\uObef",
"\uQcé6"-"\ulc6£",
"\ulce6"-"\ulcef",
"\u0déa"-"\uldaet",
"\uQe30"-"\ule59",
"\uQedQ"-"\uded9",
"\ulQ40"-"\ul049"

-"7e

_n7n]

/* SEPARATORS */

TOKEN :

{

LPAREN: "("
RPAREN: ")"
LBRACE: "("
RBRACE: "}" >
LBRACKET: "[" >
RBRACKET: "}" >
SEMICOLON: ";" >
COMMA: "," >
DoT: "." >

v VvV V

AN LA NN AN AN

i
|
|
|
1
|
|
!
}

/* QPERATORS */

TOKEN :

{

ASSIGN: "=" >
GT: ">" >

LT: "<” >
BANG: "!" >
TILDE: "=~" >
HQOK: "2" >
COLQM: ":™ >
EQ:
LE:
GE: ">=" >

NE: "!=" >

SC_OR: "11" >

SC_AND: "&&" >

INCR: "+#¢" >

DECR: "--" >

BLUS: "+" >

MINUS: "=" >

< STAR: "*" >

< SLASH: "/" >

BIT_AND: "s" >

8IT_OR: "|" »

¥OR: """ >

REM: "3" >

LSHIFT: "<<" >

BSIGNEDSHIFT: ">>" >
RUNSIGNEDSHIFT: ">>>" >
PLUSASSIGN: "+=" >
MINUSASSIGN: "-=" >
STARASSIGN: "*=" >
SLASHASSIGN: " /=" >

ANDASSIGN: "&=" >

CRASSIGN: "|=" >

{ORASSIGN: "~=" >

REMASSIGN: "i=" >
LSHIFTASSIGN: "<<=" >
RSIGMEDSHIFTASSIGN: ">>=" >
RUNSIGNEDSHIFTASSIGN: ">>>=" >

A A AN A A

g

ANA AN A AN N AN

AN ’

A AN AN A

A A A ANA NN AN AN

|
I
I
I
I
I
I
|
|
I
|
!
|
|
!
i
!
!
|
!
|
I
I
I
|
|
!
!
|
!
i
!
!
|
!
}

[TrrTTeTYTIITTYIrrrrr v rer e s e v T r e T rr Y eI Y

* THE JAVA LANGUAGE GRAMMAR STARTS HERE *

TrTYrrTeTTIEITIEYICIIYEIIYIIEYFII YT CICETIIRTCIYYIYIYIYIY])

/0
v Program structuring syntax follows.
</

void CompilationUnit() :
{}
{

| PackageDeclaration() |}

(ImportDeclaration())*
{ TypeDeclaration{())*
<EQE>

}

void PackagebDeclaration()
£}
{
"package” Name(} ";"
}

void ImportDeclaration()
{}
{
"import" Name() ["."™ "+**] ";"
}

void TypeDeclaration() :
{}
{
LOOKAHEAD(("abstract" | "final" |
"public” }* "class”)
ClassDeclaration{()
|
InterfaceDeclaration()
|

nen
’

}

/v
* Declaration syntax follows.
.
/

void ClassDeclaration()

th

{
{ "abstract” | "final" | "public”)*
UnmodifiedClassDeclaration()

}

void UnmodifiedClassDeclaration() :
i

{

"class” <IDENTIFIER> ["extends"” tlame()

["implements" NameList()]
ClassBody()
}

void ClassBody() :
{}
{
"{" (ClassBodyDeclaration(} }* "}"
}

void NestedClassDeclaration(} :
{}
{
{ "static" | "abstract” | "final” |
"public" | “"protected” | "private" }*
UnmodifiedClassbeclaration()
}

void ClassBodyDeclarationi) :
{}
{

LOOKAHEAD(2)

Initializer()

LOOKAHEAD(("static" | "abstract”
"final"™ | "public" | “"protected” |
"private”)* "class"

NestedClassDeclaration(})

[

LOOKAHEAD(("static” | "abstract”
"final” | "public”" | "protected" |
"private”)* "interface”

MestedInterfaceDeclaration()
|

LOOKAHEAD(["public”" | "protected" |
"private” | Name() "(")

ConstructorDeclaration()

}
LOOKAHEAD(MethodDeclarationLookahead() }
MethodDeclaration()

}
FieldDeclaration()

}

// This production is to determine
lookahead only.

void MethodDeclarationLookahead()
t}

{

("public” | "protected” | "private” |
"static" | "abstract”" | “"final" | "native"
| "synchronized")*

ResultType(} <IDENTIFIER> " ("

}

void InterfaceDeclarationt()

{}

{
« "abstract" | "public" -
UnmodifredlnterfaceBeclarationy()

vord NestedlnterfaceDeclaration()
{}
{

("static" | "abstract” | "finai"
"public" | "protected" | "private” }°
UnmodifiedInterfaceDeclaration()

}

void UnmodifiedInterfaceDeclaration() :
{1
{

"interface" <IDENTIFIER> ["extends"
MameList () |

"{" { InterfaceMemberDeclaration())~* "}"
}

void InterfaceMemberDeclaration() :
(}
{

LOOKAHEAD(("static" | "abstract”
"final" | "public" | "protected” |
"private"”)* “class"

NestedClassDeclaration()
|

LOOKAHEAD(("static" | "abstract" |
"final” | "public" | "protected” |
"private"”)* "intertace”

NestedInterfaceDeclaration(}
|

LCOXAHEAD(MethodDeclarationLookahead() }

MethodDeclaration()

FieldDeclarationt)

}

void FieldDeclaration() :
{}
{

{ "public” | "protected"” | "private"
"static” | "final" | "transient" |
"volatile”)~

Type() VariableDeclarator() (","

VariableDeclarator())* ";"
}

void VariableDeclarator() :
{}
{
VariableDeclaratorId() ["="
VariableInitializer() |
}

void VariableDeclaratorId()
{}
{

<IDENTIFIER> ("[" "]")+
}

void VariablelInitializer() :
{}
{
Arraylnitializer()
!
Expression(}
}

void Arraylnitializer()
i}
{

"{" [variablelnitializer() |
LOOKAHEAD(2) "," Yariablelnitializerz() ;°* |
[P B
}

void MethodDeclaration()
{}
{

("public" | "protected” | "private"
"static”™ | "abstract" | "final" | "native"”
| "synchronized")*

ResultType ()} MethodDeclarator() [
"throws" Mamelist(} |

(Block() [":")

}

void MethodDeclarator() :
{}
{
<IDENTIFIER> FormalParameters() ("[" "|"
)'
}

vold FormalParameters() :
{}
{
"(" [FormalParameter{() (","
formalParameter())* | Mm"
}

void FormalParameter{) :
{}
{
["final™] Type(} VariableDeclaratorId(}
}

void ConstructorDeclaration() :
{}
{
["public" | "protected" | "private” |
<IDENTIFIER> FormalParameters() {
"throws" Namelist()]
ll(l'
[
LOOKAHEAD (ExplicitConstructorlnvocation(})
ExplicitConstructorInvocation() |
(BlockStatement())*

myn

}

void ExplicitConstructorinvocation()
i}
{
LOOKAHEAD("this" Arguments()
“this" Arguments() ";"
!
[LOOKAHEAD(Z) PrimaryExpression()
"super” Arguments{} ";"
}

namy

won

void Initializer() :
{}
{

{ "static" |
}

Block(}

/*
* Type, name and expression syntax
follows.
*/

vord Typel()
{1
{
(PrimitiveTypet) |
}

"[n uI"

Name()) ()"

vaoid PrimitiveType()
{}
{
"boolean”
|
"char"

"hyte”

"shore”

" "

int
" lonq"

"float"
|

"double”
}

vord ResultType() :
i}
{
"void"
!
Type ()
t

94

void Name ()
/'

* A lookahead of 2 is required below since
"Name” can be followed

* by a ".*" when used in the context of an
"ImportDeclaration”.

v/
{}
{

<IDENTIFIER>

(LOOKAHEAD(2)

)
}

"." <IDENTIFIER>

void MamebList () :
{}
{
Name ()
("," Name()
1

.

/'
* Expression syntax follows.
*/

void Expression{) :
/~
* This expansion has been written this way
instead of:
M Assignment () | ConditionalExpression()
* for performance reasons.
* However, it is a weakening of the
grammar for 1t allows the LHS of
* assignments to be any conditional
axpression whereas it can only be
* a primary expression. Consider adding a
semantic predicate to work
* around this.
*/
£}
{
ConditionalExpression()
l
AssignmentOperator() Expression()
I
}

void AssignmentOperator() :
{}
{

"_n | ezt | /=" | i=e

S>5=" |

| =" omezr
"ee=" |

}

L EL] mE=t | Mazw | omyon

void ConditionalExpression()
(}
{

ConditionalOrExpression(}
Expression() ":" ConditionalExpression{() |
}

[o

void ConditionalOrExpression() :
(}
{

ConditionalAndExpression() (
ConditionalAndExpression())*
}

e

s A f‘nndv’ -

(}
{

InclusiveOrExpression()
InclusiveQrExpression() }*
}

{ "g&"

void InclusiveOrExpression() :
{}
{

ExclusiveQrExpressiont)
ExclusivedrExpression())*
}

(g

void ExclusiveOrExpression() :
i}
{

AndExpression{)
}

("*" AndExpression{())*

vord AndExzpression() :
{}
{

EqualityExpression{) (
EqualityExpression{())*
}

e

volid EqualityExpression{)
i}
{
InstanceQfExpression(} { ("==" |

InstanceQfExpression())°*
)

mian

void InstanceOfExpression()
{}
{

RelationalExpression() [
Type () |
}

"instanceot”

void RelationalExpress:ion() :
{}
{

ShiftExpression() |

">=")} ShiftExpress:ion()
1

("< |
).

wut o) ezt

voird ShiftExpression() :
{}
{

AdditiveExpression() (
">>>") AdditiveExpression()
}

["e<”
).

[">>"

vord AdditiveExpression() :
19
{

MultiplicativeExpression()
) MultiplicativeExpression() }*
}

G L

void MultiplicativeExpression() :
(}
{

UnaryExpression() ((
UnaryExpression())*
}

wern i

o

LA

rold UnaryEzpression{() :
{}
t

95

{ "+" | "-") UnaryExpression(}
l PrelncrementExpression(}
| PreDecrementExpression()
[UnaryExpressionNotPlusMinus ()
}

void PrelncrementExpression(} :
{}
{
"++" PrimaryExpression()
}

void PreDecrementExpression() :
{}
{
"--" PrimaryExpression()
1

void UnaryExpressionNotPlusMinus() :
t}
{
(v
l
LOOKAHEAD(CastLookahead())
CastExpression()
|
PostfixExpression()

ey

UnaryExpression{()

}

// This production is to determine
lookahead only. The LOCRAHEAD
specifications
// below are not used, but they are there
just to indicate that we know about
// this.
void CastLookahead()
{}
{

LOOKAHEAD (2}

"(" PrimitiveType()

LOOKAHEAD (" (" Mame() "[")

" (" Name() "[" "]"
|

n(n Name() n)n ("womn | Wiy] n(n 1
<IDENTIFIER> | "this"™ | "super" | "new"
Literal())
}
7oid PostfixExpression(} :
{}
{

BrimaryExpression() ["++" | "-="]

}

void CastExpression() :

{1

{
LOOKAHEAD (" (" PrimitiveType())
"(" Type() ")" UnaryExpression()

LOOKAHEAD (" (" Name(})

n(n TYPE() n)n
UnaryExpressionNotPlusMinus ()
}

vaid PrimaryExpression() :
{}

{
PrimaryPrefix ()
PrimarySuffix()) -

t

(LOOKAHEAD(2

void PrimaryPrefix(} :
£}
{
Literal()
|
"this"

"super"” "." <IDENTIFIER>
" (" Expression() ")"

AllocationExpression{)

LOOKAHEAD(ResultType() "." "
ResultType() "." "class"

|
Mame ()

}

void PrimarySutfix()
th
t

LOQOKABEAD (2)

wow owepign

LOOKAHEAD (2)
"." AllocationExpressiont()

[" Express:ion() "]"

"." <IDENTIFIER>
!

Arguments ()
}

void Literall)
i}
{
<INTEGER_LITERAL>
|
<FLOATING_POINT LITERAL>

<CHARACTER _LITERAL>
<STRING_LITERAL>

BooleanLiteral()
I

NullLiteralyi)
+

void BooleanLiteral()
i}
{
"true”
|
"false"
}

vord MullLiteral()
{}
{
"null"
}

voliad Arguments() :

)

class”

}

{}
{

"(" [ArgumentList()] ")"
}

void ArgqumentLisc()
{}
{

Expression(}) ("," Expression{(})*

}

void AllocationExpression() :
t}
{
LOOKAHEAD (2)
"new"” PrimitiveType() ArrayDimsAndInits(}
|

"new" Name ()
(
ArrayDimsAndInits()
|
Arguments() { ClassBody() |

)
}

/.

* The second LOOKAHEAD specification below
LS Co parse to PrimarySuffix

* if there is an expression between the
L S RN

v/
void ArraybDimsAndInits()

t}

{

LOCKAHEAD(2)

{ LOOKAHEAD{Z2)

LOOKAHEAD (2)
|

"{" Expression() "]")+ {(

wpw owpn).

("

{" ™1™)Y+ Arraylnitializer()
}

/0
* Statement syntax follows.
v/

void Statement () :

{1

{
LOCKAHEAD(2)
LabeledStatement ()
Block{)
EmptyStatement ()
StatementExpression() ";"
SwitchStatement (!}
IfStatement ()
WhileStatement ()
DoStatement ()
ForStatement (]

BreakStatement ()

ContinueStatement()

ReturnStatement ()
ThrewStatement ()

SynchronizedStatement ()
I

TryStatement ()
}

void LabeledStatement() :
{}
{
<IDENTIFIER> ":" Statement()
}

void Block()
t}
{

R
b

BlockStatement ()

yo omye

vold BlockStatement() :
{}
{
LOOKAHEAD (["final” | Type()
<IDENTIFIER>)
LocaiVariablebeclaration(}

w.n
v

Statement(}

UnmodifiedClassDeclaration!)

void LocalVar:iableDeclarat:ion()
£
{
{ "final" | Type() YarrableDeclaratori
Ve

"," VariableDeclarator()
b

vord EmptyStatement(} :
t}
{

"o
;

}

vord StatementExpression() :
/v

* The last expansion of this production
accepts more than the legal

(

* Java expansions for StatementExpression.

This expansicn does not
* use PostfixExpression for performance
reasons.
°/
{}
{
PrelncrementExpression(}

PreDecrementExpression{)

e

rimaryExpression()
{

"

AssignmentOperator ()
]

Expression()

97

void SwitchStatement ()} :
{}
{
"switch" "{" Expression{)
(SwitchLabel() (BlockStatement ()

wyn miw

[

myn

}

void SwitchlLabel() :
{}
{

"case" Expression()
!

"default” ":*
}

void IfStatement() :
/v

* The disambiguating algorithm of JavaCC
automatically binds dangling

* else's to the innermost if statement.
The LOOKAHEAD specification

v is to tell JavaCC that we know what we
are doing.

7
{}
{

"LE" "(" Expression(} ")" Statement() |{
LOOKAHEAD(1) "else" Statement() |
}

void WhileStatement()
(}
{
"while" "(" Expression(}
}

)" Statement()

void DoStatement()
(}
{

"do" Statement ()

wyn e

}

"while™ " (" Espression{()

void ForStatement() :
(}
{

“for" "(" [ForlInmit() }
Expression{) | ":;" [ForUpdate() |
Statement ()

}

non [

wyw

void ForInit() :
(}
{
LOOKAHEAD(["final" | Type()
<IDENTIFIER>)
LocalVariableDeclaration()
|
StatementExpressionList(}
}

void StatementExpressionlList{(} :
{1
{

StatementExpression()
StatementExpression{() ;"
}

" w
[

void ForUpdate() :
{}
{
StatementExpressionList()
}

void BreakStatement{) :
{}
{
"break" [<IDENTIFIER> | ";"
}

void ContinueStatement ()
£}
{
"continue” [<IDENTIFIER>] ";"
}

void ReturnStatement() :
i}
{
"return” { Expression{} | ";"
}

vold ThrowStatement()
£}
{
"throw" Expression() ":"
}

void SynchronizedStatement(} :
{}
{
"synchronized” " (" Expression(j ")”
Block!;
}

voird TryStatement(
/t
* Semanti¢ check required here to make
sure that at least one
* finally/catch s present.
v/
{}
{
"try” Block()
{ "catch" "!" FormalParameter() ")"
8locki{))
["finally"” Block{)]
}

98

VITA AUCTORIS

Xiaohong Yang was born in 1968 in Wuhan, China. She graduated from Huazhong
University of Science & Technology, Wuhan, P.R.China in 1990, where she received a
Bachelor’s degree in Computer Engineering. From there she went to work in an

electronic technology Company.

In 1992, she went back to Huazhong University of Science &Technology, and received a
Master’s degree of Computer Engineering in 1995. She is currently a candidate for the
Master’s degree in Computer Science at the University of Windsor, and hopes to graduate

in the summer of 2001.

	A study on test cases generation for object-oriented programs based on UML state diagram.
	Recommended Citation

	tmp.1363370417.pdf.GFenh

